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ABSTRACT 

Coordination is the essential process by which teams manage the interdependence 

inherent in teamwork. Existing research has laid a foundation for understanding the processes of 

team coordination. However, existing coordination theory and empirical research have 

significant limitations. To address these limitations this dissertation proposes the Coordination 

Signal Theory, an information-theory based paradigm for understanding the social, motivational, 

and informational process mechanisms necessary for a team to coordinate. This framework 

presents theoretical grounding for understanding coordination as an information exchange 

process, highlighting the central role of social cognition and feedback. Specifically, the CST 

distinguishes between two forms of coordination (i.e., in situ and a priori) and considers the 

contextual conditions that impact their effectiveness. Additionally, coordination has thus far 

primarily been studied as a static, single-level phenomenon. Existing models of coordination do 

consider the dynamic, multi-level nature of coordination, but such efforts are yet to be fully 

explored. The proposed theoretical framework directly addresses these issues presenting two 

separate formal models of team coordination that focus on the nature of dynamic feedback and 

the impact of these processes occurring in locally embedded contexts. This work uses these 

models to present directions for future empirical study and practical application. 

Key Words: Coordination, Team Dynamics, Network, Dynamic Systems, Computational 

Modeling
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Introduction 

Individual commitment to a group effort – that is what makes a team work, a company 

work, a society work, a civilization work. 

 -Vince Lombardi 

Consider an orchestral arrangement; numerous skilled musicians act in complete 

harmony to produce amazingly precise and coordinated effort. The dedication, practice, and 

rehearsal necessary for a polished orchestra to attain its level of prowess is truly a wonder. 

Considering such feats of exact coordination serves as a compelling backdrop for considering the 

nature of teams. 

Teamwork is a concept of ubiquitous importance within the modern world. As work gets 

increasingly complex, little in the modern world is accomplished by individuals in isolation. 

Instead, modern work is characterized by complex, constantly changing demands performed by 

diverse teams integrating diverse skills and areas of expertise that increasingly include machine 

agent team members. As such, research on teams and team processes is an active, vibrant area of 

academic inquiry. This field has been particularly successful at describing antecedent mediators 

and moderators of team coordination and performance. In doing so, the teams literature has 

highlighted numerous constructs and relationships of importance.  

One of the primary features of a team is its interdependence. Teams differ from simple 

disconnected groups of individuals due to their dependence on each other. Understanding the 

role of interdependence in shaping team processes, and the factors that enable a team to manage 

these interdependencies is therefore critical to the work of studying teams. Coordination – the act 

of managing interdependence – therefore plays an essential role in a team’s functioning and 

outcomes. Based on this, efforts to understand team processes have led researchers to identify 
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various cognitive and affective emergent team states as well as team behaviors that correlate with 

team coordination and performance (DeChurch & Mesmer-Magnus, 2010b; Klein & Kozlowski, 

2000; Kozlowski & Klein, 2000; Marks et al., 2001). In fact, a rich literature identifies both 

antecedents of and outcomes associated with coordination (DeChurch & Mesmer-Magnus, 

2010b; LePine et al., 2008). However, despite this depth of research, advances in our 

understanding of coordination are affected by common limitations that have generated 

conspicuous deficits in our understanding of how teams manage interdependence. 

Coordination represents a complex, dynamic phenomenon, where teams must constantly 

strike a balance between maintaining rehearsed a priori plans, beliefs, and strategies to meet the 

complex demands of interdependent work while responding to and incorporating newly available 

information in unrehearsed ways, in situ. The ever-changing balancing act of coordination is 

therefore highly dynamic in nature. Moment to moment, individuals must reaffirm or adjust their 

actions in what collectively becomes a storm of decisions. The reality of coordination is thus 

much more complex than the typical approaches used to study coordination would suggest. The 

majority of research on coordination and its impacts describes coordination (as a team emergent 

state) as being predicted by static characteristics of team cognition (e.g., sharedness of the mental 

model) and specific actions (e.g., planning, communication, etc.) aimed at facilitating team 

management of interdependence (Rico et al., 2008, DeChurch & Mesmer-Magnus, 2010b; A. 

Espinosa et al., 2002). While such research provides valuable insight into coordination, this static 

aggregate antecedent-outcome variable pairing based approach is limited in its ability to 

illuminate the dynamic nature of coordination processes or the complexities of the socially 

embedded multi-level character of team coordination.  
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These limitations have significant practical import. Existing research has revealed to 

researchers and practitioners alike that facilitating the development of a shared mental model 

helps teams coordinate. Additionally, this work shows that efforts to augment team planning and 

the effectiveness of team communications supports coordination. While valuable, there are 

numerous practical questions that this work leaves unanswered. Consider just a few such 

questions: Mental models are important, but what is it specifically about the mental models that 

best supports coordination? The sharedness of a mental model may predict coordination, but I 

posit that there is more nuance here that the existing work cannot identify. Second, when should 

interventions designed to support coordination be applied? There is a considerable difference 

between coordination done in situ and coordination done a priori yet the existing understanding 

of coordination has little to offer regarding when each approach to coordination will be more 

effective. Third, where within a team’s social structure should interventions focus? While 

coordination necessarily occurs within the context of a team’s social structure, the existing 

research provides limited insight regarding how to practically leverage the social team context to 

augment coordination. Lastly, how to facilitate coordination between humans and machines in 

modern work contexts where machines increasingly play the role of a team member, not just a 

tool? The coordination literature to date has little to say regarding the unique complexity of 

human-machine team (HMT) coordination. 

I propose that to more fully understand the theoretical nature and practical drivers of team 

coordination, this work requires a fundamental shift in scientific philosophy from a construct-

oriented perspective to process-mechanism-oriented theory (Grand et al., 2016; Kozlowski & 

Chao, 2018; Kozlowski, 2022; Olenick et al., 2022). To this end, the primary objective of this 

dissertation is to present the Coordination Signals Theory (CST), a formal, process-mechanism 
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oriented framework for understanding coordination. Moving beyond constructed-oriented 

methods and variance models that dominate psychological literature, I propose an explicitly 

mechanism-oriented theory explicating drivers of team coordination process sequences. Building 

on this theoretical framework, two complementary formalized mathematical models of team 

coordination are presented. Each of these models provides powerful theoretical and practical 

insights into team coordination processes. Furthermore, the formalized nature of these models 

provides a tool for facilitating greater machine-based awareness of human coordination demands, 

thereby augmenting HMT coordination effectiveness. 

CST advances our understanding of coordination processes by bringing to light the 

critical role of informational processes in coordination efforts. Moreover, the CST framework 

highlights distinctions in the contextual effectiveness coordination efforts that occur during a 

team’s action phases vs. those occurring during a team’s coordination phase. In conjunction with 

these theoretical expansions, this framework explicitly incorporates the critical role of context 

and specifically explicates two contextual characteristics (i.e., complexity and volatility) of work 

done in teams that have critical impacts on the role and effectiveness of team coordination. These 

advances provide clear practitioner-relevant insights into the importance of facilitating a 

coordination-signal-rich environment and further provide clarity on contexts where such efforts 

will have a greater impact.  

Not only does the CST framework highlight the theoretical importance of informational 

processes and team characteristics such as complexity and volatility, it does so from a dynamic 

perspective. Dynamics in psychological processes have long been considered important, but are 

understudied due to the complexities of issues they pose. This framework of coordination is 

explicitly dynamic. It not only distinguishes between a priori and in situ coordination efforts, but 
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it models the process of a team coordinating as a dynamic, ever-changing process. Of particular 

note, this model highlights the theoretical importance of dynamic feedback within coordination, 

and the first proposed model directly investigates the potential of this feedback to support a 

cyclical self-amplification of coordination under certain circumstances. This pattern of dynamic 

feedback has immensely important implications for efforts to augment coordination.  

Furthermore, the CST explores the multi-level embeddedness of coordination. 

Coordination, on some level, is an inherently social phenomenon. Surprisingly, little effort has 

considered the direct role of social factors in coordination. In the context of coordination 

research, social features of a team such as trust, shared identity, etc. have been studied as 

antecedents of coordination, but primarily as distal predictors which have an effect moderated by 

team cognition (Rico et al., 2008). Such approaches overlook the fact that for team members to 

coordinate they must not only know what to do to support teammates and manage 

interdependence, but they must want to help. There are critically important direct social-

motivational processes of coordination that are almost entirely overlooked. The proposed CST 

framework advances our understanding of team coordination by distinguishing between knowing 

what to do in a given situation and the social motivation for doing it. Further, CST acknowledges 

that this process is driven by individuals, suggesting that a simple aggregate approach to 

understanding coordination may overlook the socially embedded nature of individual decisions 

to coordinate their actions or not. An understanding of the socially embedded nature of 

coordination provides further important insights into where to apply potential interventions 

accounting for the critical role of team social structures. 
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A Process Mechanism Oriented Framework of Coordination 

Teamwork… is the fuel that allows common people to attain uncommon results.  

         -Andrew Carnegie 

 This chapter presents a review of the team coordination literature to establish a 

groundwork for understanding and studying coordination from a process mechanism perspective. 

To this end, it is important to recognize two concepts that are closely related to coordination. 

These are 1) team performance, and 2) interdependence. After reviewing these concepts this 

chapter presents a framework for distinguishing between a priori and in situ forms of 

coordination. This is foundational to the development of the Coordination Signals Theory.  

Foundations of Team Performance 

 Performance has been described as a primary criterion of organizational research (Kim & 

Ployhart, 2014; Mathieu & Gilson, 2012), and is the end aim of most organizational 

interventions. Although in recent years, more humanistic perspectives have become prevalent in 

the field of organizational psychology (e.g., well-being, diversity and inclusion: Bezrukova et al., 

2016; Bliese et al., 2017; Nielsen et al., 2017; Roberson et al., 2017), performance remains a key 

criterion of the organizational sciences. As such, there is a long and rich history of studying 

performance in organizations.  

Despite being one of the dominant constructs and criteria for organizational research, 

performance is a highly ambiguous topic. Some authors (i.e., Mathieu et al., 2017; Mathieu & 

Gilson, 2012) have suggested its ambiguity is important because of the broad array of contexts in 

which performance is used. No general construct appropriately applies to each situation so there 

is a need to allow a context-dependent operationalization of performance Therefore, it is 
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imperative to have a clear understanding of what the undergirding principles that define 

performance are. 

Defining performance is a challenge in part because linguistically performance refers to 

both efforts (behavioral inputs) and effects (outputs). In an attempt to address this ambiguity, 

Campbell et al. (Campbell et al., 1993) delineated between individual effectiveness (based on the 

outcomes of individual effort) and individual performance (based on behavioral effort regardless 

of the outcome). This convention identified the distinction between effort and effect; however, 

this framework is focused entirely on the individual, and it becomes much more ambiguous 

when you try to follow this convention to distinguish between collective team effort and 

collective team outcomes. In a framework that helps address this ambiguity, Beal and colleagues 

(Beal et al., 2003) distinguished between performance behaviors and performance outcomes as 

two distinct but closely related forms of performance. Conveniently, these concepts can be used 

to describe performance at both the individual and team level, making it ideal for discussing a 

multi-level phenomenon such as coordination and interdependence, while remaining a relevant 

tool for understanding individual performance contributions.  

Individual Performance 

 At the earliest origins of organizational psychology, researchers have been interested in 

how to augment individual performance (DeNisi & Murphy, 2017). As just one example, the 

principles of scientific management espoused by Taylor (1911) provided guidelines and practices 

for augmenting individual workers’ performance. This extremely mechanistic view of work was 

based on a pessimistic belief about worker motivation and therefore focused on amplifying 

performance through a rigorous routine. Taylorism took the lack of motivation and laziness of 

the workers as a given, and therefore did not attempt to augment performance by increasing the 
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overall effort; instead, it provided tools to ensure that the effort of each worker was most 

efficiently transformed into outputs.  

 Although Taylorism has largely gone out of favor, the underlying concepts of scientific 

management are still prevalent in the organizational literature. For example, researchers have 

shown that making plans and developing work strategies lead to increased job performance 

(DeChurch & Mesmer-Magnus, 2010b; A. Espinosa et al., 2002; Marks et al., 2001). Similarly, 

deliberate practice (Macnamara et al., 2014, 2016) and training (Bezrukova et al., 2016; Kim & 

Ployhart, 2014) are antecedents of job performance. In each case, though there may be some 

motivational effects, the primary theoretical rationale for improved individual performance is 

simply the fact that individuals will effectively choose where to spend their effort despite not 

necessarily caring more or being any more motivated to perform. This concept was well stated 

by Frank Gilbreth: “Most of the chance improvements in human [performance]… have been hit 

upon… by men who were lazy—so lazy that every needless step counted” (Kelly, 1920, p. 34). 

 By contrast, a large body of research highlights the importance of motivational predictors 

for performance. Much of the early motivational work was based on the tenants of behaviorism 

(Skinner, 1965). From these perspectives, rewards and punishments are paramount to 

motivational processes. This suggests that individual job performance can be best affected by 

using appropriately scaled time rewards and punishments. However, strict behaviorism is not the 

only historic perspective on motivational antecedents of job performance. As early as the original 

Hawthorne studies researchers realized that environmental factors play a critical role in workers’ 

willingness to put effort toward their work (Mathieu et al., 2017, 2018). A significant amount of 

research has built on these early foundations, highlighting the motivational impact of things such 

as goal setting (Austin & Vancouver, 1996; Bateman et al., 2002; Locke & Latham, 1990), self-
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efficacy (Bandura, 1994; Katz-Navon & Erez, 2005; Sherer et al., 1982), the fit between person 

and job characteristics (Greguras & Diefendorff, 2009; Kristof-Brown & Guay, 2011), and 

perception of one’s job (Boswell et al., 2009; Judge et al., 2017, 2017) on performance. Other 

perspectives have considered the impact of leadership on individual motivation to perform and 

have found that leader-member exchange (Dunegan et al., 2002; Martin et al., 2016), servant 

leadership (de Waal & Sivro, 2012; Liden et al., 2014), ethical leadership (Bello, 2012; Huang & 

Paterson, 2017), and transformational/transactional leadership (Bass et al., 2003; Bono & Judge, 

2004; Lowe et al., 1996) are all predictive of individual performance efforts. Thus the job 

performance literature is consistent with an operational paradigm of performance outcomes and a 

motivation paradigm of performance effort. 

Team Performance 

Despite the value and depth of the individual job performance literature, it does not 

effectively describe the nature of performance in a team. Practices and interventions designed to 

maximize individual performance may increase the team’s ability to achieve its goals 

(Kozlowski & Bell, 2003; Kozlowski & Klein, 2000), but this is not necessarily the case. For 

example, consider the difference between a five-person-team basketball game and a one-on-one 

basketball game. In the one-on-one game, there is no utility to sharing (i.e., passing) the ball, or 

any form of coordinating one’s effort for that matter. By contrast, researchers have demonstrated 

that basketball teams that do not coordinate tend to perform poorly despite having proficient 

individuals (Grijalva et al., 2020; Summers et al., 2012). Attempting to maximize the individual 

performance of each team member is not sufficient to maximize a basketball team’s performance 

and will likely lead to poorer coordination and, thus, reduced performance. This extends directly 
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to modern work settings where team membership is fluid and the boundaries between teams are 

fuzzy (Bell & Kozlowski, 2002; Mortensen & Haas, 2018). 

Explaining these differences, the teams literature has a number of broad models and 

frameworks that discuss the unique nature of performance in teams. For example, the IPO 

framework (Marks et al., 2001; Mathieu et al., 2017; Steiner, 1972) was developed as a heuristic 

model, expressing how a team is a system that takes certain input constructs, processes them, and 

produces outcome constructs. This model helps to delineate the role of certain constructs as 

inputs, processes, or outputs. For example, one application of the IPO model describes team 

adaptation as an important factor of team performance (Burke, 2014). Despite its continued 

popularity, the base IPO model has various limitations. For example, Ilgen et al. (2005) noted 

dynamic feedback is an essential component of team performance and concluded that “the I-P-O 

framework is insufficient for characterizing teams” (p.520). In a bit of a shift from the original 

IPO model, Marks and colleagues (2001) established distinct transition and action phases in 

which IPO processes iteratively function. Marks and colleagues further set forth a model of team 

performance which delineates affective emergent states (e.g., shared moods, cohesiveness, etc.), 

cognitive emergent states (e.g., shared mental models), and processes (e.g., team planning). This 

framework more clearly delineates distinctions between the different forms of team constructs, 

and further emphasizes the importance of interdependence as a key moderator connecting team 

emergent states and processes with team performance. 

These foundational teams theories have been used to shape various team-performance 

studies. This work has consistently found that, at least in interdependent contexts, factors 

impacting a team’s ability to work well together, and coordinate efforts are highly important for 

team-performance outcomes. For example, affective emergent states such as team cohesion (Beal 
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et al., 2003; Evans & Dion, 1991; Grossman et al., 2022) and team conflict (De Dreu & 

Weingart, 2003; De Wit et al., 2012; O’Neill et al., 2013), cognitive emergent states such as 

shared mental models (DeChurch & Mesmer-Magnus, 2010a, 2010b; J. R. Turner et al., 2014), 

and team processes such as team planning (DeChurch & Mesmer-Magnus, 2010b; LePine et al., 

2008; Marks et al., 2001) and team communication (Lyons & Popejoy, 2014; Marlow et al., 

2018), have all been demonstrated to be important predictors of team-performance outcomes in 

interdependent teams.  

Parallel to individual performance are two potential theoretical mechanisms driving these 

findings. First, due to interdependence, a team’s ability to effectively coordinate their effort will 

significantly impact the outcomes associated with the efforts of the team members. This is 

analogous to the operational perspective of performance outcomes described for individuals in 

line with the mechanisms of various emergent states, including shared mental models and 

cohesion, and have been found to predict team performance. Such emergent cognition and affect 

enable greater performance as individual members of a team know how to and choose to act in a 

way that best supports the team’s objectives (A. Espinosa et al., 2002; March, 1991). This is an 

operational perspective of performance because the individuals are not necessarily more 

motivated to work harder because of the team context. 

The second theoretical mechanism is a social motivational phenomenon. Individuals are 

motivated to act in accordance with social identities that they internalize (Abrams & Hogg, 1999; 

Hogg, 2001; Kreiner et al., 2006). Similarly, through affective contagion, it is possible for 

motivational states to spread among team members (Hennig-Thurau et al., 2006; Wróbel, 2010). 

In line with social identity theory, this is particularly true if they share an identity. Social 

contextual forces may drive an individual who is in a cohesive team to have more fully 
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internalized the team’s goals and therefore be more motivated to put effort into their respective 

tasks (Beal et al., 2003). Likewise, conflict – particularly relationship conflict – can isolate 

individuals from a team identity, leading to reduced motivation to perform in accordance with 

the team’s goals (De Dreu & Weingart, 2003). There is much more that could be said regarding 

the factors that lead to shared motivation, but for the present purpose, it is sufficient to note that 

individual performance efforts can be enhanced in a team setting through collective motivational 

processes that are impacted by both team emergent states and collective identification. 

Emergent States  

Numerous theories and frameworks for understanding teams have been popularized. One 

has had a significant impact in shaping our understanding of the nature of work in a team. This is 

the framework of team-processes and emergent states proposed by Marks and Colleagues (2001). 

According to this model, teams can be studied in terms of three primary components. These are 

affective emergent states, cognitive emergent states, and team processes. Affective emergent 

states are team-level, affective phenomena, such as group positive affect (DeChurch & Mesmer-

Magnus, 2010b; Marks et al., 2001), team-efficacy (Gully et al., 2002), and team cohesion 

(Grossman et al., 2022). An affective state can be said to emerge compositionally (c.f., 

Kozlowski & Klein, 2000) as the affect of members of the team converges toward a common 

level. Alternatively, collective divergence across the affective states of team members produces 

compilational emergence.  

Similarly, cognitive states emerge through processes of convergence and divergence (J. 

R. Turner et al., 2014). Two closely related examples of emergent cognitive states are transactive 

memory systems and team mental models (Hollenbeck & Spitzmuller, 2012). Both describe how 

individuals in a team have a mental representation of their team’s work. This mental model can 
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converge compositionally, leading to shared team cognition. This is referred to as a team mental 

model. In other cases, team members do not need to actively participate in each task assigned to 

the team or know everything that their team members are doing to perform well. In such cases, 

teams often form distributed mental representations of their work such that they have shared 

understandings of how their work interacts with team members but do not need to know the 

specific details of the work performed by others. This is referred to as a transactive memory 

system. The differences between these two emergent cognitive states (i.e., team mental models 

and transactive memory systems) are beyond the scope of this dissertation, and the terms will be 

used interchangeably.  

In addition to emergent team states that are affective and cognitive in nature, teams are 

understood by their processes. A process is a sequence of actions or events that leads to team 

outcomes (Marks et al., 2001). From an operations perspective, teams are made up of more than 

one individual who each performs tasks to achieve shared goals (Kozlowski & Bell, 2003). We 

can see here, that work in a team is defined by team members, the tasks they perform, and the 

outcomes of these tasks. Team processes are the unique sequence of actions and behaviors of the 

team that supports these efforts (Kozlowski & Chao, 2018).  

Interdependence 

 In all the work done to study team performance, there are few studies that actively 

connect individual performance paradigms to the team level. Aggregate measures of individual 

performance have been used to predict or even represent collective performance (Kozlowski et 

al., 2013; Kozlowski & Klein, 2000), and such models have been used to justify the effectiveness 

of interventions designed to improve individual performance as a lever for augmenting the 

team’s performance. However, theoretically, this approach necessitates an additive form of 
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performance that is ignorant of the much more complex reality of interdependence found in most 

teams. Though the connection between individual and collective performance is sometimes 

represented as being moderated by interdependence, this too fails to adequately address the 

complex reality of interdependence.  

Interdependence is a defining factor of teams (Griffin, Somaraju, Dishop, et al., 2022; 

Kozlowski & Ilgen, 2006). As Kozlowski and Bell stated, "Recognition of the central importance 

of team workflow, and the task interdependence it entails, to team structure and process is a... 

key characteristic of the organizational perspective on workgroups and teams," (2003, p. 455). 

 Thus, interdependence is crucial to understanding the nature of teams. However, the 

current construct-oriented approaches that use an aggregate team report variable to assess the 

level of interdependence in a team are unable to model the locally embedded process 

mechanisms driving interdependence’s impact on teams., The current approaches to studying 

interdependence suffer significant methodological issues and fail to account for the localized 

embeddedness of interdependence in teams; they are thus unable to study the finer-grained 

impacts of various patterns of interdependence and the nuances of these interdependence 

structures (Hemsley & Griffin, 2022). 

 In a recent set of papers explicating the nature and measurement of interdependence, 

Griffin et al. (2022a, 2022b) explicitly discuss the complex network of interactions described by 

interdependence in a team. Such an interdependent reality makes it clear that a purely additive 

perspective of connecting individual- to team- performance is insufficient to effectively evaluate 

or theorize about performance in a team. In this paper, the researchers clarify that 

interdependence takes numerous forms (e.g., task interdependence, outcome interdependence, 

sequential interdependence, pooled interdependence), many of which have overlapping or 
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ambiguous interpretations. By considering interdependence in a network context we can 

recognize interdependence as a relational construct such that one entity’s performance is 

impacted by something it “depends on”. From this perspective, interdependence across a whole 

team is not simply an additive measure, but a structural reality that has unique and complex 

implications for the team. 

In the follow-up paper, Griffin et al. (2022b) proposed a formalized representation of 

interdependence networks which clarifies that each dependency relationship is parameterized by 

a relationship weight. This generalized formalism for interdependence allows us to represent any 

interdependent relationship among individuals, tasks, and states, in terms of additive (or pooled), 

inhibitive (or conjunctive), or facilitative (or disjunctive) relationships. The paper presents a 

formal state-space model of collective performance which accounts for the complex connections 

between individual and team-performance outcomes. Whereas the vast majority of studies 

regarding interdependence use it as a single aggregate measure of a team construct, this dynamic 

network-based perspective describes interdependence as a mechanism by which complex 

patterns of performance emerge. Importantly this framework is a generalized framework 

compatible with numerous conceptualizations of interdependence found in the literature (e.g., 

Courtright et al., 2015; Shiflett, 1972; Steiner, 1972).  

As discussed previously, the team’s emergent processes and the work they performed are 

defined largely by the nature and degree of interdependence in the team (DeChurch & Mesmer-

Magnus, 2010b; Stewart & Barrick, 2000). For example, Hollenbeck et al. (2012) built a 

theoretical typology for teams, followed by Lee and colleagues (2015) who developed an index 

for defining teams based on their level of “vertical” and “horizontal” interdependence. 

Illustrating that teams and the work they do are shaped by various forms of interdependence, 
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resource and input independence impact how a team must plan out its efforts. Process 

interdependence, such as workflow and sequential interdependence, impacts the timing and 

coordination demands of a team (Van de Ven et al., 1976), while outcome interdependence has 

important interpersonal effects (Pennings, 1975; Van Der Vegt et al., 2000). To a large extent, if 

you understand the nature and structure of interdependence in a team, you can understand the 

nature and function of the team. 

Because of the complexities of interdependence, for highly interdependent teams, 

randomly picking tasks to perform or trying to optimize individual performance independently 

will often yield poor team performance results. This is well illustrated by considering a 

basketball team. If everyone tried to optimize their independent performance, they would never 

pass, never screen, and generally play as if it were a game of 1 vs. 9, not 5 vs. 5. “Teams” 

behaving in such a way will clearly perform poorly. The interdependent nature of basketball 

enables one team member to augment the performance of another (Grijalva et al., 2020; 

Summers et al., 2012). But to do so, the team must act in a coordinated and controlled manner 

that is responsive to performance feedback. Consistent with these ideas, numerous researchers 

have explicitly studied the impact of interdependence as a moderator between performance and 

predictors such as coordination (Rico et al., 2008), team cohesion and emergent affect (Gully et 

al., 2012), team emergent cognition (DeChurch & Mesmer-Magnus, 2010b; Kozlowski & Ilgen, 

2006), and team processes (LePine et al., 2008). As such, interdependence in teams makes team 

coordination (i.e., the management of dependencies - A. Espinosa et al., 2002) highly 

consequential and has a significant impact on the observed coordination in teams (Cheng, 1983).  
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Team Coordination 

Given the central importance of interdependence in team functioning and performance, 

managing interdependence appropriately and effectively is a key factor in shaping the reality of 

work done by teams. Coordination – which is often defined in terms of a team’s ability to 

manage its dependencies (A. Espinosa et al., 2002) – is therefore a critical factor to understand in 

efforts to augment team functioning.  

Research on the topic of coordination has gained prominence due to its essential role. For 

example, to facilitate coordination and increase team performance, teams often make plans and 

assignments for who will do what, how, and when (A. Espinosa et al., 2002). As part of these 

arrangements, they may make contingency plans for how to handle various potential scenarios. 

As highlighted by Stout et al. (1999) efforts to generate clear shared plans are an attempt to 

establish shared models of work across the team, ensuring that there is a clear understanding of 

each member’s role within the work system. This work can be described as transition phase 

efforts and behaviors to coordinate future work.  

Coordination efforts done during a transition phase can be further split into two focuses: 

1) individual model development, and 2) relational model development. As Kozlowski et al. 

(1999) describes, individuals initially focus on their own performance and only afterwards do 

they start building models based on dyadic relationship and eventually the entire team. The 

initial individual mental models are established through practice, planning, and assignment. 

These models dictate who will do what, when, how, and under what circumstances. This is a 

rigid form of mental model, focused on what one individual needs to do, not how one’s tasks 

relate to others or the greater team working system. By contrast, relational models are typically 

developed later through a process consisting of team discussions and activities aimed at helping 
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team members recognize their place within the broader team’s performance system. Such efforts 

enable team members to understand how their tasks impact others and help them to be more 

responsive to each other’s needs but do not focus as much on specifics of who will do what and 

when. Notably, though individual model development often is more prevalent early on and 

relational later, both forms of model development generally occur concurrently to some extent. 

Teams differ in their developmental stage (i.e., how early or late in the development process they 

are) and their overall focus on individual-specific task plans and contingencies, vs. relational 

models of the teams’ work.  

In contrast to this transition phase coordination work, team members often coordinate “on 

the fly” while they are performing their role-essential tasks. Notably, this in situ coordination is 

closely related to the concept of adaptability; however, these are distinct concepts. A team’s 

ability to coordinate in situ is likely to enable them to effectively respond to unforeseen shocks, 

but even in highly stable environments where teams do not need to be highly adaptable, a team 

may benefit greatly from high levels of in situ coordination. While in situ, engaged in the team’s 

tasks (i.e., during an action phase - Marks et al., 2001), team members coordinate by both 

explicitly communicating with each other – making requests, stating availability, etc. – and 

implicitly by personally observing team members and acting according to one’s mental model of 

the work to best facilitate team performance (A. Espinosa et al., 2002). In fact, a primary goal of 

transition phase efforts to develop relational mental models is to augment a team’s ability to 

coordinate in situ (during an action phase).  

For this reason, I reference a priori coordination efforts as those efforts to facilitate plans, 

task assignments, resource allocations, etc. that were developed before the actual performance 

scenario. By contrast, I refer to efforts aimed at facilitating “on the fly” coordination as in situ 
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coordination efforts regardless of whether the effort occurred during the action phase (e.g., 

making a request to help with a task) or in a transition phase (e.g., relational mental model 

development). In situ coordination itself only represents the management of interdependence that 

occurs during an action phase, but I categorize efforts and behaviors aimed at facilitating this 

type of coordinating as in situ coordination efforts regardless of if they occur during an action 

phase or transition phase. Similarly, a priori coordination itself is coordination that originates 

from decisions made during a transition phase. However, a priori coordination efforts would 

include action phase efforts such as mental rehearsal of one’s assigned tasks, as long as it is an 

effort aimed at facilitating coordination that originated a priori.These insights point to the 

importance of communication and shared mental models for coordination in teams. Additionally, 

this brings clarity regarding two different focuses of mental model development. However, much 

is still not understood regarding the nature of coordination, and specifically the processes by 

which team coordination emerges. I propose the CST, a framework aimed at addressing three 

key gaps in our understanding of coordination. Firstly, coordination research has dominantly 

focused on emergent team cognition as an antecedent but has largely overlooked the essential 

impact of the social context in which coordination occurs, as well as other features of the team’s 

performance context (e.g., complexity and volatility of the context). The proposed CST 

framework describes the critical role that social factors play in coordination explicit and 

centerstage while also providing a foundation for understanding the differential impact of 

coordination based on the team performance context. Secondly, existing research takes a 

predominantly static approach to understanding coordination which fails to recognize the 

dynamic nature of coordination. Specific existing coordination research overlooks the impact of 

dynamic feedback loops in driving patterns of team coordination. CST incorporates principles of 
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dynamics such as feedback, equilibrium, and stability, to develop a theoretical understanding of 

the dynamics of coordination processes. Lastly, existing research has almost exclusively taken a 

construct-oriented approach to understand coordination, noting for example the correlations 

between constructs such as shared mental models and team coordination without more deeply 

investigating the process mechanisms facilitating the emergence of coordination itself. The 

proposed model explicitly defines social and information-based process mechanisms by which 

teams are able to coordinate. This not only highlights predictors and antecedents of coordination 

but provides a strong theoretical understanding of how coordination could occur. Given the 

enormous impact that coordination can have on teams and the essential role that teamwork plays 

it is imperative that research address these gaps to investigate paths for more effectively 

facilitating team coordination and performance. 

It is important to note that the exact definition of coordination is not universally agreed 

upon. While the notion that coordination relates to a team’s ability to manage interdependence is 

generally accepted, many researchers have proposed much more narrow conceptualizations of 

coordination. For example, Marks and colleagues (2001) incorporate coordination into their 

taxonomy of team processes. Their definition of coordination explicitly focuses on timing and 

sequencing of interdependent actions. A strong association between coordination and 

timing/sequencing is understandable because many of the conceptualizations of interdependence 

itself are closely tied to timing and sequencing. Despite this, I suggest that taking a more general 

interpretation of coordination – consistent with the work of Espinosa et al. (2002), and Rico et al. 

(2008) – provides valuable insight. Specifically, building on the network-based conceptualization 

of interdependence espoused by Griffin et al. (2022a, 2022b), sequence and timing specific 

forms of interdependence can be reconceptualized within a broader network-based paradigm. 
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This allows us to think of coordination in terms of general efforts to manage the impact of 

interdependence without being tied to one form of interdependence (e.g., sequential 

interdependence). The work presented here would apply to a more narrowly defined concept of 

coordination, but is also applicable more broadly. 

None of this is aimed at calling into question the merit of the more narrowly defined 

conceptualizations of coordination. In fact, future empirical work to test this framework will 

almost certainly utilize more narrowly defined team processes, including a timing/sequencing-

based operationalization of coordination. However, the generalized definition is adequate for the 

purposes of this dissertation. Specifically, this approach allows us to consider how team 

processes that are explicitly related to managing interdependence (e.g., planning) are related 

despite often being considered separately. Furthermore, by using a more generalized paradigm 

for coordination, this framework lays key foundational ideas that future work will rely on to 

present a generalized coherent network-based paradigm for understanding interdependence.  
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Information Theory and Social Mechanisms of Coordination 

Alone we can do so little. Together we can do so much. 

          ― Helen Keller 

To address existing gaps in the coordination literature, I propose a dynamic model of 

both cognitive and social process mechanisms driving the emergence of coordination in teams. 

The proposed CST framework explicates theoretical process-mechanisms by which coordination 

in a team can occur.  

Before presenting the information theory-based paradigm, it is valuable to consider the 

distinction between a priori and in situ coordination efforts. The defining distinction here is that 

a priori coordination efforts establish what tasks an individual should perform based on 

anticipated scenarios that have not yet occurred. Because this coordination occurs at a time 

separate from the actual performance of tasks it is difficult to manage high levels of precision 

though a priori coordination. On the other hand, in situ coordination efforts facilitate teams in 

making on-the-fly adjustments to the tasks they are performing. Because in situ coordination 

occurs while performing the team tasks, it is more time-sensitive and requires more adaptation, 

flexibility, and cognitive resources in general. The end goal of both a priori and in situ 

coordination efforts is to help team members work in a way that appropriately accounts for 

interdependence in the team context. As such they are both accurately referred to as coordination 

efforts. However, they differ significantly in regard to context, available resources, and timing. 

As such I propose that a priori and in situ coordination are two distinct and essential components 

of team coordination efforts. Noting that either approach to coordination is essentially an effort 

to communicate some information (i.e., needs, requests, availability, objectives, etc.) among 

team members, I leverage an information theory paradigm (Shannon, 1948) to explore the 



 

 

23 

 

informational process mechanisms of coordination. I first provide a brief overview of 

information theory, then describe an information theory-based paradigm for understanding team 

coordination efforts. 

Principles of Information Theory  

 Information theory is a set of analytical and theoretical tools used to study and understand 

the conveyance of information. It has had prominent historical impacts on the development of 

the internet, error-correcting code, robust secure communications, and Bayesian statistics, to 

name just a few applications. The fundamental unit in information theory is a ‘bit’ which 

represents a single yes-no question. Multiple packets of information, or bits, are combined to 

make up what I will refer to as a signal. Signals are sent from some source to some receiver. 

Information theory describes how we can understand various forms of communication and 

informational processes in terms of the ability to convey signals made up of these yes-no bits of 

information. Information theory is fundamentally interested in the constraints of conveying such 

signals. 

Returning to the concept of coordination, up to this point we have outlined a 

parsimonious framework for understanding coordination in terms of team processes that either 

happen during transition phases (i.e., a priori) or during action phases (i.e., in situ). In 

incorporating dynamics into this framework it is important to highlight why this may matter. 

From an information theory perspective, coordination is the process of sharing signals and 

incorporating information among team members regarding what, when, and how tasks should be 

performed. For example, making and disseminating an a priori action plan is an act of passing on 

information to each teammate about what they should do and when. Similarly, in situ 

coordination occurs as team members communicate with each other (thereby passing on 
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information) or observe each other (thereby receiving information) and incorporate this 

information into their plans. Whatever form coordination takes, there is some coordination 

signal being used by the team members to adjust their actions to facilitate each other. 

Information theory speaks to the constraints of sending a signal, including the accuracy 

and costs of such efforts. This perspective applied to coordination highlights three key 

characteristics of coordination: accuracy (i.e., does the receiver get the correct message), 

cognitive load (i.e., how much information is being shared), and volatility (i.e., how quickly does 

the message become inaccurate or obsolete). Information theory is used to formally quantify 

concepts such as information and therefore provides a powerful foundation to qualitatively 

describe theoretical concepts such as accuracy, cognitive load, and volatility.  

Accuracy represents how likely a recipient of information correctly identifies what the 

information is saying, or how many bits are correctly interpreted. Coordination accuracy then 

represents the ability of teammates to accurately identify what their teammates are doing and 

convey their own needs. Information volatility can be defined as a dynamic aspect of information 

accuracy representing the extent to which accuracy persists over time. Information load is the 

amount of information (number of bits) required to convey a given message. For coordination, 

the information or cognitive load reflects the detail and extent of the coordination signal. 

Information Accuracy 

Not every message is accurately interpreted; this is a universal problem that has had 

enormous consequences throughout history. In information theory, a key characteristic of a given 

signal is the accuracy with which it is received and interpreted. I define information accuracy to 

be the extent to which some receiver of a signal can accurately identify the original meaning of 

the message. Trying to spell out a word over the phone is an excellent example of this. Without 
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visual cues, it is often difficult to differentiate similar-sounding letters (e.g., M and N), and 

individuals often are forced to repeat the same letter multiple times because the person (or 

machine) at the other end cannot properly identify the letter being communicated. The same 

issue is found in much more complicated messages. Consequential, informational inaccuracies 

occur frequently in teams. For example, in 2012, the large scientific multi-team system 

responsible for creating a Mars exploratory rover famously mis conveyed measurements of an 

essential component leading the rover to crash – a coordination mistake that cost over one 

hundred million dollars (Harish, 2017). Similar stories of costly and deadly mistakes due to 

poorly communicated information abound. 

There are three primary types of inaccuracy 1) transmission errors, 2) source errors, and 

3) temporal errors. At its most basic level, a signal’s accuracy depends on the ability of the 

sender to precisely articulate a message (encoding), and the ability of the receiver to interpret it 

(decoding) and integrate it into their understanding of the world around them. Anything that 

makes either of these processes (encoding or decoding) more difficult can cause errors to arise 

and thereby will constrain the signal’s accuracy. These inaccuracies represent transmission 

errors.  

Having a conversation is a common way to send and receive information about team 

objectives and processes; however, if the conversation occurs in a room where there are many 

distractions or background noise, there is a good chance that some of the information will be 

inaccurately conveyed (i.e., transmission error). Noise, distraction, and different 

languages/communication styles are all common sources of transmission error. 
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Figure 1 

Visual Representation of Coordination Signal Theory 

 

Note. TMM is for team mental model. Boxes are color coded. Yellow indicates signaling processes. Green indicates coordinated 

action. Dark blue is for context effects. Light blue is for social motivational factors. Social effects will notably also impact transition 

phase processes (e.g., TMM development). Three forms of error are indicated, based on the point at which an error develops.
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By contrast, many errors occur before the transmission of a signal. If the source of a 

signal does not have accurate information, the signal they send will be inaccurate. This is a 

source error. For example, if someone is told the wrong meeting time – regardless of how well 

they convey that meeting time to others – the information they convey regarding that meeting 

time will always be inaccurate. 

Further complicating the picture, information processing is a dynamic process (Shannon, 

1948). An important result of considering coordination in a dynamic framing is the decay of 

informational accuracy over time. Information tends to become less accurate as time progresses. 

This is directly tied to the law of entropy (i.e., the law of thermal dynamics that stipulates that 

systems tend to move toward disorder and chaos.). Over time, small discrepancies between what 

was expected and what actually happened accumulate, eventually leading to larger discrepancies. 

Signals that would have been highly accurate at one point lose their accuracy over time. CST 

uses the phrase temporal errors to refer to signal inaccuracies due to this decay (i.e., volatility) in 

information accuracy.  

If a team has a series of tasks that, according to the plan, should each take 30 minutes but 

really take 35 minutes, the timing of the tasks will differ significantly from the a priori plan after 

just a few tasks are completed. The further out from the starting time you travel, the greater this 

discrepancy. If the timing of tasks needs to be precise, such discrepancies can become very 

problematic. Not all sources of accumulated informational error are as systematic as this 

example. For instance, teams will experience periodic shocks (e.g., a machine at work is down, 

or a team member is on vacation, etc.) that change the accuracy of the original signal. As time 

passes these shocks will accumulate, making it more difficult to predict things in the distant 

future, than in the near-term future. 
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Figure 2 

Illustration of Accuracy Cognitive Load and Information Decay 

 

Note. Figure 2 illustrates three characteristics of signals. Cognitive Information Load (top), is 

based on the total information needed. Signal accuracy (middle) is based on whether the signal is 

correctly transmitted, and signal decay (bottom) is a naturally occurring process driven by the 

principle of entropy.  
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In this way errors in timing information easily accumulate unless recalibrated regularly. 

The degradation of information accuracy is a well-known phenomenon (Shannon, 1948; D. Shaw 

& Davis, 1983; Wicken, 1987) and a key reason that best practices in numerous settings include 

periodic feedback and recalibration. Even atomic clocks worldwide are recalibrated regularly to 

combat the entropy-driven decay of informational accuracy. From this perspective, recalibration 

is a process for clearing out older (and thus less trusted) information used by a system and 

replacing it with new observations. Each time a system is recalibrated it receives a new set of 

information as a guidepost to evaluate where things stand and make predictions for the future. 

Systems that do not periodically recalibrate themselves must rely on very old information, 

making them problematic to use or trust.  

The decay of informational accuracy (i.e., volatility) is a general principle (D. Shaw & 

Davis, 1983; Wicken, 1987) and is realized differently for distinct situations. This is closely tied 

to the law of entropy  which states that entropy (i.e., uncertainty) must increase. Consider a team 

example where highly precise information about timing is likely to become inaccurate very 

quickly. In a dance routine, the particular dance step that should be performed next is an example 

of precise information that becomes irrelevant just moments later. Thus a dance routine is a 

highly volatile team performance context. By contrast, software development is relatively much 

more stable. General details about who is responsible for fixing a particular code error or what 

software solution they will use will likely remain accurate for hours, days, or even weeks.  

The initial accuracy and precision of information are important factors in determining the 

rate of decay for informational accuracy. The bits of truth scattered in highly inaccurate signals 

are easily lost due to random contextual changes, etc. Thus, generally speaking, the more 

accurate an original signal is, the longer it will provide meaningful information. By contrast, 
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highly precise information (e.g., the exact second a train will arrive) is more sensitive than 

general signals (e.g., the day that a train will arrive).  

Coordination in a team requires individuals to respond to each other’s needs. This 

mandates some form of communication. Informational accuracy is a key factor determining the 

effectiveness of such coordination. If the information shared within a team is not accurate (e.g., 

the team thinks a person is doing task A, but they are doing task B), coordination is clearly 

impaired if not completely inhibited. Noise, distractions, misunderstandings, and time itself can 

all contribute to the accuracy or inaccuracy of the information conveyed by a team while trying 

to coordinate. While many of these factors contributing to the breakdown of information 

accuracy are unavoidable (e.g., random events) there are various strategies that can effectively 

shelter the informational accuracy of coordination signals.  

One strategy to maintain or increase information accuracy over time is to repeat a signal. 

This is something done in both computer communications (e.g., error-correcting code: 

Hamming, 1950) as well as interpersonal conversations (Stephens & Rains, 2011). Informational 

inaccuracies due to encoding (the source’s attempt to share the information) and decoding (the 

receiver’s attempt to understand the signal) issues become much less prevalent with repeated 

signals because random events that lead to encoding and decoding problems are unlikely to be 

randomly repeated. While repeated signals help minimize encoding/decoding signal error, this 

does not fix issues that arise when the originator of the signal has inaccurate information to begin 

with. One strategy to address source-inaccuracies is the use of multiple sources of information 

(Wang & Zhu, 1998). Although this practice is particularly prevalent in electronic 

communications, the idea applies to communications broadly. In particular, CST claims that if 
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one seeks information from multiple sources within a team context, they are more likely to get an 

accurate signal even if some of the information sources are not entirely reliable. 

Other strategies that increase informational accuracy are communication protocols. If a 

person is expecting to receive a signal, they can prepare for it and are more likely to receive it 

accurately. Establishing communication norms and coordination processes during a transition 

phase (relational model development) can reduce the number of errors that arise during in situ 

communications. One last strategy for maintaining the accuracy of a message is to actively 

propitiate it. For example, a team can set a schedule for when specific tasks will be started. 

Although there will be “bumps” in the process of completing the tasks if each team member 

actively works toward sticking to the exact schedule (i.e., instead of letting the information be 

descriptive of what to expect from others, letting it be prescriptive for themselves) the natural 

decay of accuracy may be stymied. There will still, most likely, be problems that arise as even 

flexible schedules become difficult to meet so the information’s accuracy will generally still 

decay; however, active efforts to maintain the accuracy of a signal message can help maintain the 

signal’s accuracy, making it usable for longer.  

Information Load 

The accuracy of information is closely related to the quantity of information in a 

message. According to information theory, the clearer and more detailed a message you want to 

send, the more packets of information are necessary. For example, simply telling someone to 

turn right or turn left requires exactly one bit or package of information. By contrast, telling 

someone exactly what letter on a keyboard to press requires five bits of information. This is 

because it requires at least five different yes-no questions to precisely convey a message that 

identifies one out of 26 options (i.e., log2 26 ≈ 5). Each possibility a signal can distinguish 
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between increases the complexity of the necessary signal. Generally, each yes-no question can 

double the number of distinguishable options that can be conveyed by a single signal.  

In the context of coordination, numerous ideas and concepts are often delivered through 

some communication signal. For example, consider a case where there are three members of a 

team (Anne, Bob, and Carter) who must each perform one of three tasks (K1, K2, and K3). The 

information required to share exactly which task will be accomplished by whom requires only 

two bits of information for each team member (six total). In reality, coordination is rarely this 

simple. Usually, individuals not only need to know what they are doing, but when, who they will 

work with, and what resources they have access to (Bachrach et al., 2018; Hollenbeck & 

Spitzmuller, 2012). Additionally, tasks can sometimes be performed in numerous ways and 

individuals may be able to engage in more than one task at a time. Each of these details increases 

the complexity of the signal necessary to coordinate. 

We can think of a team’s task plan as being made up of multiple distinct elements (e.g., 

Anne performs task S1). The general rule is that the amount of information required to convey a 

single element of a plan grows logarithmically with the total number of possibilities it can 

distinguish. A team’s plans rarely are conveyed by just one option. Instead, a team will have 

plans for different team members performing different tasks at different times under different 

contingencies. The combination of these distinct elements makes up the full plan – a mental 

model. A complete plan often includes information regarding multiple such elements; thus the 

total information required to convey a complete action plan is significantly higher than the 

information required to convey individual elements of a plan. 
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Figure 3 

Illustration of Information Load  

Note. Two bits of information can convey a signal with four potential options. Similarly, three 

bits of information can convey a signal with eight potential options. Thus, to identify one of a set 

of options requires a signal that has an information load that grows logarithmically with the 

number of options. However, fully conveying a plan (e.g., conveying what each person does at 

each time) requires significantly more information.  

 

The total information required to convey a complete plan is proportional to the total 

number of elements that must be conveyed. Conveying a plan with ten elements has an 

information load ten times higher than conveying a plan with a single element. Many plans will 

have multiple factors that each must be fully stipulated. For example, if we need to know exactly 

what each of three members of the team will be doing on a given day, this will require an 

information load three times greater than simply conveying what one person must do. If there are 

three times (e.g., morning, afternoon, and evening) that need to be planned out for each team 

member, the total information load required to share a complete plan of who is doing what and 
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when would triple because the plan would need to convey the same amount of information for 

each timeframe. Following this pattern, the information required to convey a full plan will 

increase exponentially with the number of elements that are being fully stipulated. If the timing 

needed to be more precise (e.g., hourly instead of three times a day) this information load would 

increase 24-fold instead. Contingencies further increase the information load of a team’s plan 

significantly, as each contingency requires a plan that will stipulate a whole new set of elements 

of a plan. 

It is worth noting here a connection between load and accuracy. Shifting from three 

timeframes to 24 timeframes allows a plan to have significantly more precision (i.e., temporal 

accuracy), but levies a significantly higher information load. The amount of information shared 

is thereby directly related to the maximum amount of accuracy achievable by a signal. 

Limitations to information accuracy can often be mitigated or suppressed by increasing the 

amount of information shared. 

Information theory provides a way to understand the costs and barriers associated with an 

information-sharing activity such as coordination. If a team member needs only a go/no-go 

message it requires very few cognitive resources to send, receive, and interpret. On the other 

hand, a detailed accurate description of what everyone in the team is doing, when, where, and 

how complete with contingencies and backup plans will require substantially more information 

and consequently put a much higher cognitive load on the team members involved.  

CST uses the term Cognitive Information Load (CIL) to describe how much information 

(Shannon, 1948) a coordination task requires. This term emphasizes the fact that to respond to a 

coordination signal, individuals must cognitively process it. CIL is important in determining both 

what forms of coordination are possible and how effective they will be. Research has shown that 
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cognitively demanding tasks inhibit each other, such that if someone is engaged in high load 

tasks (e.g., conveying a very detailed plan to a team member) they will be inhibited in their 

ability to perform other cognitively loaded tasks (M. L. Shaw & Shaw, 1977). This suggests that 

while coordinated effort may amplify the effectiveness of a team, it has its own cost as well as 

the potential to reduce overall performance. There is necessarily a balance to coordination efforts 

because sharing too much information exacts a high cognitive cost while sharing too little can 

lead to significant process losses. The exact nature of this balance is a question of considerable 

interest and is determined by 1) the cost associated with sharing information, 2) the accuracy of 

the information, 3) the rate of informational decay in the team, and 4) the nature of 

interdependency in the team (how much my team will be hurt by missing or inaccurate 

information). 

A Social/Information Based Paradigm of Coordination 

The impact of coordination on teams depends significantly on contextual factors. For 

example, coordination for teams with complex, multi-faceted interdependence structures will 

differ greatly from coordination in simpler team contexts. Complexity will require more detail to 

effectively coordinate. Similarly, coordination in teams that function in fast-paced, volatile 

contexts where task demands are constantly changing will differ significantly from those that 

function in more stable contexts. I map these ideas onto a single circumplex with the 

volatility/stability of the context on one axis and the complexity/stability on the other (See Figure 

4).  

Taking these concepts together, we can map out different work contexts based on their 

overall sensitivity to precision in timing (volatility) and their detail requirements (complexity). 

For example, software engineering is highly detail-sensitive – you often must know precisely 
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what packages and functions various components of software are using to effectively coordinate. 

However, software development rarely requires highly precise coordination (in the order of 

minutes or seconds). By contrast, a team rowing a boat requires very little detail, but tremendous 

precision in timing. 

A Priori and In Situ Coordination 

Information load and information accuracy strongly affect a priori and in situ 

coordination. In particular, these effects will depend on the complexity and volatility of the team 

performance context. That is, complex vs. volatile contexts will be differentially affected by a 

priori vs. in situ coordination. 

As noted previously, a priori coordination occurs during transition phases. It is less 

proximal to the actual moment of performance and therefore subject to more temporal 

degradation of information. For this reason it requires significantly more effort to maintain the 

accuracy of coordination signals that originate a priori. It is therefore often less effective to 

coordinate highly precise information a priori that is prone to informational decay, such as exact 

task timing information, required for synchronized task performance. When such information is 

coordinated beforehand, teams must actively dedicate effort to maintaining the integrity of the 

established schedule while accounting for delays and other issues that will arise during the 

performance of the tasks. CST specifically posits that these issues are particularly prominent in 

highly volatile team contexts where task demands switch frequently and precision is essential to 

effective coordination. 
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Figure 4 

Mapping of Teamwork Based on Complexity and Volatility 

 

Note. Dots in the figure represent an illustration of how different work contexts experience 

different levels of volatility and complexity. Timing-sensitive, volatile contexts (on the right) 

will generally be more reliant on effective in situ coordination efforts, while detail-oriented, 

complex contexts (top) will generally be more reliant on strong a priori coordination efforts. 

 

On the other hand, a priori planning often occurs when there are weak time constraints, 

and little additional task-based drain on cognitive resources. Consequently, a priori coordination 

effort is well suited for highly complex coordination that requires more effort to make decisions 

about and plan out. For the same reasons, a priori coordination is also less sensitive to 

Informational Cognitive Load than in situ coordination. As such, a priori coordination is 

expected to be more effective at addressing coordination demands for teams functioning in 
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highly complex contexts. Thus, although the natural decay of informational accuracy makes it 

difficult to accurately convey precise details, such as timing, through a priori coordination, it is 

well suited for providing detailed plans and contingencies that are not sensitive to precision in 

time.  

In contrast, in situ coordination efforts are aimed at facilitating changes to the tasks that 

team members perform during action phases. As such, it is less sensitive to the temporal 

degradation of information accuracy. This is because the information will be used by team 

members relatively close in time to when the signal is generated. Highly volatile team contexts 

will effectively meet coordination demands through in situ coordination. However, as noted 

previously, given that task changes associated with in situ coordination occur during the actual 

performance of a team’s tasks, it will generally happen while team members’ cognitive resources 

are being taxed. When a basketball player is in the middle of a drive, they do not stop to convey 

the entire play to their teammates. Instead, they rely on simple in situ signals from each other to 

leverage the shared models that they have already developed. Despite generally being less 

sensitive to the decay of informational accuracy over time, in situ coordination is more sensitive 

to the cognitive load of coordination. It is therefore unlikely that team members establish 

complex, detailed plans during their performance of other tasks. Thus, in situ coordination efforts 

are generally less effective at meeting the needs of high complexity team performance contexts. 

Taken together, a priori coordination is well suited for establishing complex and detailed 

plans and schedules. Although such plans are not always discussed in terms of transactive 

memory systems or shared mental models, one of the goals of such efforts can be described as 

establishing clear shared mental models or transactive memory systems among a team (Stout et 

al., 1999). In situ coordination on the other hand is best suited for precise (volatile) yet simple 
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coordination efforts. Team members can take small signals (either implicitly via observation, or 

explicitly through active cues and communication) to adjust work efforts in a precise manner. 

But coordinating complicated plans would quickly tax individual cognitive resources, thereby 

adversely impacting performance.  

Importantly the two forms of coordination are not independent. For example, researchers 

have found that in situ coordination efforts depend on the quality of a team’s shared mental 

models and plans (Stout et al., 1999). Well-established and detailed plans about how the team 

functions enable team members to use simple (i.e., low cognitive load) in situ coordination 

effectively despite the complexity of the context. Similarly, the ability to coordinate in situ 

enables teams to focus on establishing more general models of team functioning a priori instead 

of dedicating excessive team resources toward making and maintaining precise a priori plans. 

Hence, a priori and in situ coordination are dependent on each other, but clearly distinct in 

nature and limitations, necessitating studying them as distinct, yet related concepts. 

Moreover, just because one form of coordination effort is more effective in one context 

than another doesn’t mean that the other is obsolete. In highly volatile performance contexts 

where individuals are unable to interact or communicate, highly precise a priori coordination can 

take the place of in situ coordination. For example, highly trained special operations teams in the 

military often must function in a highly coordinated way with highly limited communications. 

On the other hand, teams that are extremely effective at in situ coordination may require less a 

priori coordination effort than would be expected.  

As illustrated in Figure 4, various forms of work are mapped onto a two-dimensional 

space based on their coordination needs. In situ coordination efforts will be more effective than a 

priori coordination for teams that are highly timing sensitive (volatile – right). Similarly, a priori 
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coordination will be important for highly detail-sensitive (complex – top) work. Those work 

contexts that are both detail and timing-sensitive likely require a high degree of both in situ and a 

priori coordination. 

Social Mechanisms of Coordination 

 One important insight from the information theory perspective of coordination is the 

essential role of social mechanisms of coordination. For the most part, the nature of social 

interactions and social relationships have been divorced from the mechanisms driving the 

emergence of coordination. For instance, constructs such as trust and group efficacy are often 

used as mediators for shared team cognition (DeChurch & Mesmer-Magnus, 2010b), but not 

incorporated as direct antecedents of coordination itself. This focuses on the idea that 

coordination is primarily based on having access to an accurate shared mental model, but fails to 

account for the social motivation for coordination. 

 However, the information theory perspective of these mechanisms highlights an 

important fact. These processes are not only informational, but social. The process of sharing and 

responding to signals from teammates requires individuals to communicate with each other. 

Furthermore, team members must respond to those signals. The extent to which individuals 

actively seek to share and respond to signals from each other is clearly crucial to a team’s ability 

to coordinate but is for the most part not included in models of coordination. I explicitly suggest 

coordination is driven in part by access to specific information (what to do when) and in part by 

social factors. I will refer to these social factors in aggregate as the level of social responsiveness 

among team members, or the social coupling strength. 

 There are various social factors that could impact team members propensity to 

communicate with and respond to coordination signals from each other. For example, Social 
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Identity Theory (Abrams & Hogg, 1999; Hogg, 2001; Stets & Burke, 2000) and Self 

Categorization Theory (J. C. Turner, 2010; J. C. Turner et al., 1987) provide foundational 

insights into identity-based mechanisms where individuals will selectively respond more to 

people they identify with. Other social factors that could impact team members’ level of 

responsiveness to each other include trust (Mishra, 1996; Schelble et al., 2022), cohesion 

(Grossman et al., 2022; Gully et al., 2012), conflict (O’Neill et al., 2013), and Leader-Member 

Exchange (Le Blanc & González-Romá, 2012), just to name a few.  

 The exact social mechanisms at play are not the focus of this dissertation, but instead the 

interplay between such social mechanisms and informational processes as they pertain to team 

coordination. As such, I will use the generic term Social Responsiveness (SR) to refer to the 

extent in which individuals share coordination signals, recognize those signals, and in turn 

respond to those signals. Future work will need to explicate the various social mechanisms that 

could be at play in more detail.  
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Coordination Amplification through Signal Exchange Reinforcement (CASER) 

An individual can make a change, but a team can make a revolution. 

           ― Amit Kalantri 

Due to the emergent nature of coordination, it is necessarily a dynamic phenomenon 

(Cronin, 2015; DeShon, 2012; Kozlowski & Chao, 2018; Xu et al., 2020) yet existing research 

on team coordination is largely static in nature (DeChurch & Mesmer-Magnus, 2010a; A. 

Espinosa et al., 2002; Rico et al., 2008; Van de Ven et al., 1976). In failing to study coordination 

as a continual, dynamic process occurring contemporaneously with teamwork processes, the 

coordination literature cannot adequately address the nuances of the complex mechanisms for 

team coordination (DeShon, 2012; Xu et al., 2020) including the role of feedback and social 

influence on coordination.  

I propose that under the right circumstances, teams can experience a form of positive 

coordination feedback where signals are reinforced through reciprocal exchange with team 

members. This process leads to a self-sustaining level of amplified coordination. The present 

chapter considers the conditions under which such a phenomenon (Coordination Amplification 

through Signal Exchange Reinforcement) would be consistent with the CST paradigm for 

coordination. Various dynamic systems found in nature and human populations exhibit a 

dynamic pattern of feedback. Feedback loops are responsible for numerous phenomena. 

Negative feedback loops are in some form present in every naturally occurring stable 

phenomenon. Positive feedback loops tend to be present in cases of instability, dramatic change, 

and self-propagating phenomena. Given the prominence and importance of such feedback 

features throughout the natural world, the potential role of feedback in governing/driving 

patterns of team coordination is of considerable interest. 
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Investigating the dynamic nature of coordination requires an understanding of the 

systems at play and the mechanisms driving the observed relationships. This can be much better 

understood using a systems thinking or process-mechanism oriented approach (Burke, 2014; 

Frank & Fahrbach, 1999; Griffin, Somaraju, Olenick, et al., 2022; Kozlowski et al., 2013; 

Olenick et al., 2022). Formal process-mechanism oriented theory is a powerful tool for 

developing a deeper understanding of a phenomenon and considering the implications of a 

proposed theory (Kozlowski & Chao, 2018) particularly with regard to dynamics. This 

dissertation presents two formal process-mechanism oriented models of coordination for this 

dissertation. In this chapter I propose the CASER model, a novel theoretical framework for the 

process mechanisms driving the emergence of socially amplified coordination through dynamic 

feedback. In doing so, this work considers the complexity and dynamics of coordination and 

team performance in a way that traditional approaches could not.  

Importantly, this work also highlights the importance of the multi-level social 

embeddedness to the coordination process. Coordination is an inherently social process that 

cannot be entirely understood by considering a team in aggregate. Motivation to coordinate, and 

decisions regarding what task to perform are necessarily strongly influenced by individual 

preferences and dyadic relationships. The present model relies on a simplistic aggregate 

approach but explicitly acknowledges the social nature of coordination. In doing so, it sets the 

foundation for the second model (see next chapter) which uses a network-based paradigm to 

study coordination. 

The results of this work are theoretical, and until properly combined with empirical 

validation should be treated as purely theoretical. Despite its limitations, such work has a 

profound ability to extend our understanding of social and psychological phenomena. Various 
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discussions on the values, limitations, and practices of formal theorizing and computational 

modeling are present within the literature (Olenick et al., 2022; Vancouver & Weinhardt, 2012). 

 The purpose of the present CASER model is three-fold. First, this model explicitly 

demonstrates the role of feedback in synergistically amplifying team coordination. Secondly, this 

model serves as a first test for distinctions between a priori and in situ coordination effort. 

Lastly, this model explicitly explores the essential role of social factors in driving coordinated 

team behavior. As a team-level model this work is more similar to existing models of 

coordination (e.g., Entin & Serfaty, 1999; A. Espinosa et al., 2002; Rico et al., 2008) and 

therefore provides a bridge from the existing literature to the more mathematically intense 

second model found in later chapters. Because of this, this team-level model will be easier to 

empirically validate.  

The second model (i.e., the Coordination Signal Network Model or CSN model), 

discussed in the following chapter, considers the same type of phenomenon on the 

individual/dyadic level, and investigates theoretical dyadic process mechanisms driving team 

coordination. Whereas the CASER model is simpler and interfaces more directly with existing 

literature, the CSN model provides a more in-depth investigation into the role of interdependence 

and the emergence of synchronicity in teams. This second model is more difficult to directly test 

empirically, but as I discuss below, it has the potential to inform teamwork design in a powerful 

way. Specifically, there is tremendous potential for this work to impact practice in the human-

agent teams domain. 

Theoretical Development  

 From the information theory perspective, coordinated behavior relies on signals, and in 

turn produces its own coordination signals. Thus at least some of the outputs of coordinated 
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behavior act as its own inputs. This input-output pairing is the hallmark of a system that will 

experience a positive feedback loop. Researchers have studied various such feedback loops. If 

these feedback loops are present, team coordination phenomenon will have a dramatic effect on 

the expected behavior of team coordination over time, as well as shaping the effectiveness of 

various coordination-oriented interventions. 

 A LASER represents a well-studied system that I believe makes a strong analogy for 

team coordination phenomenon (i.e., CASER). Specifically, I claim that the same general 

principles enabling a LASER to produce its amplified, cohesive light apply broadly to teams that 

are performing interdependent task work. Acknowledging that the reader is likely unfamiliar 

with how a LASER works, this analogy is discussed in greater detail in Appendix A. It is 

sufficient for the reader to know that LASERs provide a framework for understanding how a 

positive feedback loop can lead the system to produce sudden, discontinuous, and dramatic shifts 

in output. The formalized CASER model found in this chapter employs this analogy for 

understanding the potential nature of self-amplifying coordination processes. In doing so, I 

propose a process-mechanism-based theory of team coordination. In this chapter, I first discuss 

the core mechanisms and components of the framework. Next, I present a formal mathematical 

model of team-level coordination along with a dynamic systems analysis of the model. Finally, 

this chapter concludes by discussing the various contributions and implications of this formal 

theory. 

The Social Mechanisms of Coordination 

The CASER model is built around the concept that there are three psycho-social 

phenomena central to the emergence of coordinated effort. In addition to these three main 

mechanisms, I briefly highlight three additional mechanisms related to coordination signal. First, 
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individuals are motivated. The scientific literature on motivation is both broad and deep, and a 

full review of these topics is well beyond the scope of this dissertation (for reviews see: Kanfer 

et al., 2017; Park et al., 2013). Instead, I will speak very generally. For the moment, it is 

sufficient to note that individuals can be put into a motivated state where they are ready and 

willing to do work aimed at achieving something. There is generally some motivational stimulus 

responsible for putting the individuals in such a state. For example, work compensation (Landry 

et al., 2017), team goal-setting exercises (Park et al., 2013), interactions with transformational 

leaders (Lowe et al., 1996), or realization of self-autonomy (Deci & Ryan, 2000), self-efficacy 

(Bandura, 1994; Vancouver & Purl, 2017), and expectancy (Van Eerde & Thierry, 1996; Vroom, 

1964) can each act as a stimulus that motivates people to perform work. This stimulus can be 

internal (i.e., I come to recognize my autonomy) or external (i.e., a pay-for-performance system); 

they can also be intrinsic or extrinsic (Deci & Ryan, 2000). The point is simply that individuals 

in a team are motivated by something to act. If there is no motivation or cause for an individual 

to act, I claim that there can be no meaningful coordination.  

Importantly the motivational stimulus that puts an individual into a “motivated state” can 

take a social form, coming from one’s teammates. Exposure to motivated others may encourage 

teammates who are otherwise amotivated to act. This may occur through a process of affective 

contagion (Wróbel, 2010), social cognitive learning (Bandura, 1991), or some other psycho-

social process influencing individual instrumentalities, expectancies, or valences (Vroom, 1964). 

While the social mechanisms of motivational contagion are of interest, a thorough discussion of 

this topic is reserved for future work. For now, it is sufficient to simply recognize that 

individuals can be motivated by something (or someone) to act, and in particular, exposure to 

motivated teammates can increase one’s own motivation. This internalization of some 
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motivational stimulus is a key factor in enabling team members to act in a goal-directed or 

coordinated manner. 

Mechanism 1: Motivational Internalization. Individuals become willing to allocate 

effort toward team tasks as they are exposed to some form of motivational stimulus.  

 After an individual has become “energized” (i.e., motivated) and determined to act, the 

individual must determine what to do. A priori coordination and individually-oriented mental 

models will play a large part in determining at baseline what task an individual will consider 

pursuing and how. However, beyond outlining what tasks are possible for someone to do, the 

specific task that an individual engages in will be determined largely based on the individual’s 

objectives/preferences as well as the information received from their context including from their 

team members (i.e., in situ coordination). When there is no communication or signal that allows 

team members to act in correspondence with one another (i.e., in situ coordination is restricted), 

workers will necessarily have to individually determine among the possible courses of action 

outlined by their mental models of the work context. Sharedness of mental models is a key to 

coordination in such scenarios. In this way, a priori coordination efforts serve to set some 

boundaries around the potential actions that an individual will take, thus establishing a baseline 

level or coordinated action that can be expected to occur. Nevertheless, depending on the detail 

and precision of these plans, they may give workers considerable latitude for interpretation.  

Individually directed action occurs when individuals act according to non-shared 

priorities, objectives, or beliefs regarding what team members will do. In a given performance 

episode, if individuals are unable to respond to/communicate with team members (i.e., in situ 

coordination efforts), the actions individuals perform will necessarily be determined by internally 

elected priorities, preferences, and beliefs (DeShon & Gillespie, 2005). This lack of coordination 
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signal may be driven by obstacles to in situ coordination efforts; however, in many teams, 

constantly changing task demands (i.e., volatility) will reduce the longevity and thus the 

availability of coordination signals. Notably, even if a team has an accurate and shared mental 

model, without clear cues regarding what other members of the team are doing, it is difficult to 

act in a fully coordinated manner (Van de Ven et al., 1976). This is particularly true in highly 

volatile contexts, where team task demands change frequently. Thus, for teams performing in 

volatile contexts in the absence of clear coordinating signals (whether implicit or explicit), 

individuals will generally act in uncoordinated ways based on motivation in primarily an 

individualized manner. The impact of individually directed performance depends largely on the 

nature of interdependence in the team. A team where tasks greatly inhibit or facilitate each other 

requires precise coordination. In such work environments, coordination is essential and the 

pursuit of individual preferences and priorities may lead to significant process losses.  

Additionally, team members rely on social feedback and cues in driving individual 

motivation. When there is little or no coordination signal available, individuals will experience 

ambiguity that could have significant impacts on their motivation. For instance, as described in 

expectancy theory (Van Eerde & Thierry, 1996; Vroom, 1964), control theory (Carver & 

Scheier, 1982), and self-regulation more broadly (Lord et al., 2010), the ambiguity that a team 

member feels when provided little or no feedback regarding how their efforts relate to the work 

of the team will negatively impact their motivation to perform their tasks aimed at supporting 

team objectives. By contrast, self-determination theory would suggest that the autonomy 

afforded to individuals in such scenarios would greatly enhance their motivation to perform tasks 

that they personally value (Deci & Ryan, 2000). Additionally, various contextual factors will 

have a large impact in determining individual preferences and priorities. For example, DeShon 
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and colleagues found that socio-contextual cues (i.e., providing individual vs. team focused 

feedback) play an important role in determining whether an individual will act in a self-oriented 

or team-oriented manner (DeShon et al., 2004). Taken together this suggests that when there are 

strong competing individuals vs. team goals, a lack of real-time feedback or communications 

may prompt individuals to shift toward more personal priorities. Although such individually 

directed and individually motivated actions can be highly valuable to the team, such efforts are 

unlikely to be well aligned, leading to significant process losses in highly interdependent team 

work contexts. 

I refer to such individually directed/motivated action as spontaneous effort. This term 

reflects the nature of the effort being internally driven, and not done in response to some cue or 

signal. The stronger the discrepancy between individual and team objectives, as well as the 

stronger the discrepancy in various motivational factors such as the valence associated with those 

goals, the more individuals will act “spontaneously” in accordance with individually elective 

preferences and priorities, instead of being prepared to respond to team coordination signals. 

Additionally, volatility and weak in situ coordination efforts can increase the extent to which 

individuals are expected to produce “spontaneous effort”. 

Mechanism 2: Spontaneous Effort. Motivated individuals will act according to 

individual goals and uncoordinated, individualized perceptions of team goals in the absence of 

cues or communication facilitating team coordination. 

 By contrast, when teams engage in stronger in situ coordination efforts or teams are less 

volatile in their tasks, individuals will have crucial information regarding the team’s work 

processes available to them. This enables teams to coordinate their efforts more precisely in 

ways that facilitate team performance. Specifically, as motivated individuals are exposed to 
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coordination signals from others they will be more likely to act in a coordinated manner. 

Exposure here represents the process of sharing information inherent in in situ coordination. As 

discussed previously, the in situ coordination described may take various forms, including 

passive observation of one’s teammates or explicit active communication with them (A. 

Espinosa et al., 2002). As team members individually go about their work, they will adjust the 

tasks and activities that they engage in in such a way as to manage dependencies and better 

facilitate the efforts of the team as a whole (Cheng, 1983; A. Espinosa et al., 2002; Rico et al., 

2008; Van de Ven et al., 1976).  

For such in situ coordination efforts to enhance team performance, individuals must be 

motivated on some level to pursue team goals. They must also accurately determine what they 

should do to help the team. The first requirement is generally a fair assumption in a team given 

that teams are defined by the shared nature of their goals (Griffin, Somaraju, Dishop, et al., 2022; 

Mathieu et al., 2017). Researchers have repeatedly demonstrated the importance of having 

shared values and goals that team members internalize (Bono & Judge, 2004; DeShon et al., 

2004; R. E. Johnson & Chang, 2006). Without a highly shared goal, a team (or group), is 

unlikely to successfully coordinate. The degree of harmony within team goals can thus be 

understood as a key requirement for coordination efforts to positively impact team performance. 

The second assumption here is that individuals can adjust the tasks and behaviors they 

engage in to effectively improve team performance. This is not necessarily true in every team 

and highlights the essential nature of shared mental models or transactive memory systems in the 

coordination process. Teams that have not developed effective mental representations of work 

processes cannot effectively coordinate. No matter how aware an individual is of their 

teammates' actions, they will not be able to act in a coordinated way – managing 
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interdependencies – unless they have a clear concept (i.e., mental model) of those 

interdependencies. This is because even if they perfectly know what their teammate is doing and 

will do next, they do not necessarily understand how that information fits into the broader team’s 

work processes or how it impacts their own work. The claim here is that some understanding of 

how your work impacts others is necessary to adjust your work in a non-random way that 

positively impacts the team (Hollenbeck & Spitzmuller, 2012). In some extreme cases, a bad 

mental model may even lead to inaccurate attempts to coordinate, causing performance losses. 

It is therefore helpful to consider the processes of in situ coordination separately from the 

effectiveness of such coordination. I propose that individuals respond to coordination signals by 

adjusting their efforts in ways that they believe will better facilitate team performance. This can 

be thought of as “stimulated effort” because the effort was initiated by some coordination signal 

stimulus. Such stimulated effort will be in accordance with individually held beliefs and mental 

models of the work processes. As such, the effectiveness of this coordination will depend on the 

quality of their mental models.  

 Mechanism 3: Stimulated Effort. Motivated individuals will adjust the tasks and 

activities they engage in to better facilitate team pursuit of collective goals as a result of in situ 

coordination. 

 There are three additional signal-focused model mechanisms. First, in conjunction with 

this mechanism, coordinated actions such as those produced through stimulated effort will be 

visible to team members in some way. Individuals can actively broadcast what they are doing, 

making requests and informing others there by explicitly producing coordination signals. 

Otherwise, they can passively yet visibly act in a coordinated manner. Either way, coordinated 
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actions will produce some level of coordination signal which in turn enables future stimulated 

effort.  

 It should be noted that though the process of signal development is theoretically separate 

from the stimulated effort, they are closely related, and could be described as two outcomes of 

the same mechanism. 

Mechanism 4: In Situ Coordination Signal Generation. Stimulated Effort generates 

implicit and explicit coordination signals. 

On the other hand, a priori effort to establish action plans and assign tasks provides each 

team member with information regarding how to act in a coordinated manner. Thus, such a 

priori effort generates its own form of coordination signals. This a priori signal is not dependent 

on how much coordination action occurs because it is not generated by the actions of others. 

Instead, it depends on how effectively team members developed individual-oriented models of 

their actions during the transition phase. For example, team planning, practice, and rehearsal are 

all tools that a team can use to effectively promote coordination a priori. Effective a priori 

coordination will establish a baseline level of coordination signal available to each team member. 

Mechanism 5: A Priori Coordination Signal Generation. Stimulated Effort generates 

implicit and explicit coordination signals. 

Lastly, as described in detail previously, coordination signals experience decay or loss. In 

some work contexts, for instance, team members frequently must pivot from one task to another. 

In such cases, a request made by a teammate may be completely obsolete in just a few moments. 

On the other hand, many work contexts are much slower in pace. In a software development 

context, a request to fix a bug one day is likely still viable the next day or even week. Thus the 

longevity/decay of coordination signals is directly related to the timescale at which the work 
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context is measured. Volatile work contexts where task demands change from moment to 

moment have a much higher decay rate. In dynamic systems analysis, this decay rate is often 

referred to as a loss term. 

 Mechanism 6: Signal Loss. Coordination signals decay over time in relationship to the 

volatility of the work context. 

The Component Characteristics of Social Coordination 

 Having discussed three core social mechanisms of coordination defined in the CASER 

model, we are prepared to identify and discuss critical components and characteristics of a 

team’s system that enables it to experience emergent coordination. While without these 

characteristics coordination may occur, with these characteristics the theory implies a powerful 

pattern signal exchange among team members, which reinforces the team’s ability to coordinate. 

The Motivator. The first component is the motivator. The motivator is the answer to 

questions such as – Why do individuals engage in the team’s work in the first place? or What 

motivates action in the team? The nature of the motivator driving a team member’s effort has 

dramatic consequences on the team’s ability to work together and coordinate. If for example, the 

motivator is inconsistent either across people or over time, this can cause withdrawal in the form 

of reduced motivation (Vroom, 1964). The result is that if there is inconsistency in the motivator 

there will likely be some number of individuals disengaged from the team’s work at any given 

moment. Not only are disengaged individuals less performant (Judge et al., 2017), but they are 

more likely to shift their effort toward individually identified priorities and thus engage in more 

“spontaneous effort” rather than “stimulated effort”, making the proposed signal reinforced 

coordination difficult to achieve.  
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Likewise, motivators are known to have different strengths (Kanfer et al., 2017; Vroom, 

1964). Weaker motivation leads to less effort, which in turn leads to both less overall 

performance and fewer opportunities to coordinate at all. If there is not sufficient motivation a 

team will be unable to sustain the level of effort required to make coordination possible. 

Similarly, there are often numerous motivators acting on individuals at any given time. If 

individually-oriented motivators are stronger than team-oriented motivators, teammates will be 

more likely to act “spontaneously” rather than waiting for and responding to coordination signals 

and to produce coordinated “stimulated effort”.  

The Team Members. Team members are the next critical component of the team’s 

system. While there are numerous characteristics of team members that we could discuss, there 

are two that are particularly important to the emergence of feedback-amplified coordinated 

action. These are 1) cohesiveness/unity, and 2) stability/readiness. 

Both diversity and faultlines have important implications for team cohesion and unity 

(Choi & Sy, 2010; Flache & Mäs, 2008; Molleman, 2005; Thatcher et al., 2003). In a team, 

individual differences including experiential, demographic, educational, personality (Lau & 

Murnighan, 1998; Portes & Vickstrom, 2015), etc. can each have dramatic impacts on the unity 

and function of a team. The faultline literature provides a deeper theoretical discussion of this 

concept, considering how observable surface-level diversity often has a large impact on team 

cohesion early in the team’s development but deeper differences (e.g., personality) have more 

impact later on (Lau & Murnighan, 1998).  

Unity and uniformity lead to greater social identification (Abrams & Hogg, 1999; Stets & 

Burke, 2000), thereby increasing motivation to act in a prosocial manner. Such effects also 
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increase the desire to interact with, communicate with, and generally increase awareness of 

others. As such, highly united and uniform teams will often be more efficient at coordination. 

These effects do not mean that diverse teams cannot coordinate effectively; diverse teams 

are often able to coordinate highly effectively. However, there are significant barriers to unified 

team processes and coordination if a group has significant salient faultlines (Lau & Murnighan, 

1998). Various actions and activities have been shown to effectively mitigate or break down the 

effects of faultiness. For example, research has investigated ways to develop inclusive work 

cultures (Pless & Maak, 2004) including diversity training practices (Bezrukova et al., 2012) 

effectively. Similarly, identity and categorization theories suggest efforts to build a clearer team 

identity, including team-building and -development training, help mitigate the challenges 

associated with highly diverse teams (Stets & Burke, 2000; J. C. Turner, 2010) and promote 

unity. Similarly, there is evidence that diversity and allyship programs can improve team 

identities and performance (Taylor, 2015). In the end, teams with a collective identity will be 

more aware of, and more responsive to each other’s needs, regardless of how this shared identity 

is formed. 

Despite the connections between diversity and team cohesion, when considering 

uniformity/unity of a team in the context of coordination, sharedness in cognitive models is as 

important as sharedness in ethno-demographic factors. As DeChurch meta-analytically 

illuminated (DeChurch & Mesmer-Magnus, 2010b), the quality of one’s mental model has a 

tremendous impact on their ability to coordinate as a team. The more accurate and precise one’s 

mental model, the less information an individual requires when responding to coordination 

signals (i.e., coordinating in situ). While having a shared identity and mitigating challenges due 

to faultlines may enable team members to communicate more effectively and motivate them to 
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put more effort into in situ coordination, a shared understanding of their team’s work and tasks is 

essential for such communication to have positive results. No matter how closely a group 

identifies with each other or how well they can communicate, it will not make much difference if 

they have divergent concepts of what the team should be doing and what their own role should 

be. In fact, without an understanding of how one’s efforts impact others, teams that have a strong 

identity may act in an entirely social manner that enables team members to interact more with 

each other but does not manage task interdependencies. Thus, establishing shared and accurate 

mental models is a priority for teams. 

A second characteristic of team members that will facilitate emergent coordination is the 

“stability” of individual motivational states or “readiness”. If individuals act as soon as they 

become aware of a motivational stimulus, they do not have time to be influenced by the actions 

of others. Unless team members have a period where they are susceptible to the influence of 

others before determining their next task or action, they will act based on individual preferences 

(spontaneous effort). Essentially, individuals cannot be too quick to act on their motivation, or 

individual motivations cannot be too strong. This phenomenon is alluded to in the operations 

literature and can be referred to as a “ready” state or “readiness” (Cunningham et al., 2002; 

Wesensten et al., 2005; Wohl, 1966). I claim that a ready state of action, where an individual or 

component of a system is prepared for its next action but waits for the right impetus or signal, is 

necessary for the coordination of complex systems. A ready state often overlaps the performance 

of one's tasks. For example, in an orchestra, a violinist will continue playing their part even while 

continually readying themselves for input from a conductor or other musicians. The members of 

an orchestra must know their part well enough that they can both play their part and be ready for 

signals from the conductor at the same time.  
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As another example of a ready state, consider the state of an audience following a 

performance or speech. In many cultures, it is appropriate and even expected to applaud at the 

end of a performance, yet in some situations, it is not. For instance, it is considered impolite to 

applaud between movements of a musical piece despite potentially long silent pauses. This leads 

to a somewhat ambiguous situation for an unaccustomed audience member. In these ambiguous 

scenarios, untrained audience members are in a ready state, prepared to applaud but unwilling to 

be the first to applaud in case it is the wrong moment. As has been anecdotally documented by 

various individuals, it is easy in such situations to start an entire audience applauding (Díaz-Agea 

et al., 2022; Freedman et al., 1980); one person simply needs to start clapping loud enough to be 

heard to cause cascading applause (Díaz-Agea et al., 2022). In fact, in a social-motivational 

process, such moments of applause can motivate members of an audience that otherwise would 

have been completely uninclined to applaud at the given moment to start clapping. In this way, 

the actions of others can serve as the motivator, stimulating individuals to action, not just the 

guidepost directing that action.  

One consequence of the need for readiness is that in high-stakes and time-dependent 

scenarios, teams have more constrained ready time and thereby are more susceptible to 

coordination errors (Carron et al., 2002; Golden et al., 2018; Macnamara et al., 2014; Van 

Fossen et al., 2021). In such situations, individuals are driven to perform their tasks quickly, 

which limits their ability to be responsive to their teammates. Countering this requires significant 

effort. Again, an orchestra illustrates this point well. Music is highly time-dependent and if one 

member of the team is even a fraction of a second off in their timing, it will be noticeable. 

Coordination under such conditions requires tremendous amounts of precise rehearsal so that 

each member of the orchestra knows exactly their role in the ensemble and how it relates to 
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everyone else’s parts. This reflects significant transition phase coordination aimed at developing 

both individual and relational aspects of mental models. This enables members of an ensemble to 

perform their tasks while maintaining a ready state, responding to coordination signals around 

them.  

Depending on the nature of work, and the experience of the team, stimulated effort will 

require a different level of readiness, but in every case, unless members of the team are 

sufficiently ready to respond to each other, stimulated effort will be inhibited to some extent. 

Readiness can be promoted by making one’s tasks easier, thereby allowing individuals to spend 

more effort preparing to respond to coordination signals. This can be achieved through deliberate 

practice, or through strategies to simplify and aid the performance of individual tasks. 

Alternatively, readiness can be promoted by deliberately pausing or slowing initial performance 

to allow individuals to be responsive. In either case, the ability of a team to maintain ready states 

is an essential factor in enabling emergent coordination.  

Teams Work Context. A team’s work context has significant implications on the nature 

of coordination in a team. Specifically, the context is critical to producing a pattern of feedback-

amplified coordination. The visibility and availability of a coordination signal are significantly 

impacted by the work context. In some work contexts, individuals primarily work alone. In 

modern team contexts, teams may primarily work with each other virtually. These situations 

make it difficult for team members to be exposed to coordination cues and signals in situ. Other 

work contexts have established procedures, cultural norms, and spaces that are explicitly 

designed to make team efforts visible to other members of the team (Weick, 1993). For example, 

the agile working process used by many software development teams enables team members to 

easily identify what other members of their team are working on and the interdependencies 
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between their work (Abrahamsson et al., 2017; Dybå & Dingsøyr, 2008). Additionally, the work 

context can make a priori forms of coordination more easily accessible (e.g., visible reminders 

of action plans) further supporting the team’s coordination efforts. Although we do not fully 

understand the importance or impact of such factors, researchers have demonstrated that context 

impacts the effectiveness of coordination (DeChurch & Mesmer-Magnus, 2010b). 

Additionally, work contexts can be well designed to support the team working in unity. 

Culture (Carvalho, 2017), organizational policy, and physical spaces have tremendous potential 

to impact team coordination efforts, but relatively little research has been done in this space 

(Carvalho, 2017; DeChurch & Mesmer-Magnus, 2010b; A. Espinosa et al., 2002; V. I. Espinosa 

et al., 2022). More studies on the contextual factors that facilitate team development are direly 

needed. For example, factors such as the communication constraints of tasks are expected to 

impact performance (Katz & Tushman, 1979). If tasks are expected to be completed too quickly 

it can have negative impacts on quality, while too much time leads to periods of inactivity. As a 

related note, part of the additional work context factors that may impact a team’s ability to 

coordinate effectively would include the timing of feedback from others’ work efforts being 

precisely when one is most susceptible to the given signal. If this is possible, it has clear 

potential to positively impact team science. For the time being, it is sufficient to note that the 

work context can have an essential impact on these processes. 

Formalization of the CASER Model 

 To this point, I have presented the CASER model as a narrative description of 

mechanisms and components of a team that impact its ability to coordinate. Building on this I 

now develop the formalization of the CASER model in a dynamic systems framework (Matusik 

et al., 2019; Strogatz, 2015). 
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Table 1 

Mathematical Notation Used in the Formalized CASER Model 

Value Symbol ND Symbol Role Description 

Ready State 𝑅 𝜌 =
𝑅

𝑅𝑐
 Stock The number of motivated individuals ready to act. 

Coordination 

Signal 
𝑆 𝛾 =

𝑆

𝑆𝑐
 Stock How much coordination signal there is available to team members. 

Work 𝑊 𝜔 =
𝑊

𝑊𝑐
 Stock 

How much work is done. Performance is defined here as the change in 

work over time. 

Time 𝑡 𝜏 =
𝑡

𝑡𝑐
 Time Represents a unit passage of time. 

Social 

Responsiveness 
𝑘 𝑘∗ =

𝑚

𝑙𝑅
2 𝑘 IV 

To what extent individuals respond to the coordination signals they are 

exposed to. This is closely related to in situ coordination. 

Plan Precision 𝑝 𝑝∗ =
𝑝

𝑚
 IV How much coordination signal is available due to a priori coordination. 

Motivational 

Strength 
𝑚 – Model 

Parameter 
How motivated members of the team are to act. 

Signal Loss 𝑙𝑆 𝑟𝑙 =
𝑙𝑆
𝑙𝑅

 Loss Parameter How quickly coordination signal decays in the system. 

Ready State Loss 𝑙𝑅 – Loss Parameter 
How quickly motivated individuals tend to act in the absence of 

coordination signal (i.e., spontaneous effort). 

Interdependence 

Constant 
𝛽𝐶 𝑟𝛽 =

𝛽𝐶

𝛽𝑈
 Outcome 

Parameter 
To what extent coordinated (stimulated) effort leads to performance. 

Independence 

Constant 
𝛽𝑈 – Outcome 

Parameter 
To what extent uncoordinated (spontaneous) efforts lead to performance. 

Note. ND stands for nondimensionalized symbols. The Motivator Strength 𝑚, Ready State Loss 𝑙𝑅, and Independence Constant 𝛽𝑈 are all treated 

as model constants with the characteristic values and removed from the non-dimensional equations. 
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The Model 

 Dynamic systems models (DSM) are often represented by stocks and flows. Variables 

that represent quantities, levels, or magnitudes are referred to as “stocks”. The relationships 

between these stocks are referred to as “flows”. In these terms, a DSM enables us to account for 

the temporal changes in a system over time.  

 We can think of a team’s work system in terms of the amount of work done that is 

coordinated and the amount that is not. Due to interdependence, we can further assume that 

coordinated effort leads to greater performance (DeChurch & Mesmer-Magnus, 2010b) than 

uncoordinated effort, but is subject to some level of process loss (due to the effort required to 

shift to a more coordinated action). At a team level, we can describe a relatively simple system 

building on these concepts. There are three system stocks or variables of interest. These are the 

number of individuals in a motivated, ready state (referred to as R in the equations below), the 

amount of coordination signal present (referred to as S in the equations below), and the total 

amount of work done. As a DSM, the formalized CASER model will include three differential 

equations, one describing the change in each stock (see Equations 1, 2, and 3).  

The flows of the model come directly from the theoretical mechanisms developed 

previously. First, there is some motivator that increases the overall level of team readiness to act. 

I will label a parameter for the motivational strength m in the equations below. This is the 

theoretical “Mechanism 1” described above. The stronger the motivation for team members, the 

stronger the m value will be. 

Next, there are two flows out of the ready state stock. The first is from uncoordinated 

effort, or spontaneous effort (i.e., Mechanism 2 described above). The prominence of 

spontaneous effort is largely dictated by the stability of the ready state. If team members have a 
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highly stable ready state, there is more opportunity for them to respond to external coordination 

signals and perform in a coordinated manner. Therefore, the spontaneous effort mechanism is 

controlled by a parameter, lR, representing the loss (i.e., instability) of the ready state. Under time 

pressure, when it is difficult to wait for or respond to coordination signals – or when a task is too 

complicated to maintain a responsive ready state while performing tasks – the ready state will be 

less stable, spontaneous effort will be more prevalent, and the lR parameter will be larger. 

 Next, there is a stimulated effort (i.e., Mechanism 3) mechanism flow. This flow 

represents a loss in the number of individuals in a ready state, but an increase in the total 

coordination action performed. Due to in situ signal generation (i.e., Mechanism 4) this will lead 

to a corresponding increase in coordination signal; the more coordinated effort, the more 

information there will be on how to best coordinate. Unlike spontaneous effort, this is responsive 

to coordination signals (the higher the level of the S stock, the more stimulated effort should be 

expected). The concept is that when an individual in a ready state is exposed to the performance 

of others (i.e., they have the information required to act in a coordinated manner), they will be 

able to adjust their efforts and perform coordinated actions. This mechanism requires individuals 

who are in a ready state to interact with the coordinated performance signals of others and is 

therefore mathematically represented as the product of the ready state stock and the coordination 

signal stock. This is further controlled by a single parameter, k (for coupling strength or social 

responsiveness), which theoretically represents the responsiveness of individuals to each other. 

Individuals that have relation-oriented shared mental models care about shared outcomes, and 

who are in a context where communication is easy will have a strong coupling strength. In 

contexts where communication is sparse (e.g., virtual teams), communication is difficult, or 

social divides prevail, we would expect a weaker coupling and lower value for k.  
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 Coordination signal has its own direct source based on a priori coordination efforts (i.e., 

Mechanism 5). The more the team plans and prepares during the transition phase for specific 

action plans, the more information (i.e., signal) individual team members will have regarding 

how to act in a coordinated way. This in turn will augment the total amount of stimulated effort. 

This is represented by p in Equation 2 below. I refer to 𝑝 as Plan Precision, although it 

encompasses other forms of a priori coordination efforts broadly. 

For the final flow, there is a level of loss in the coordinated signal (i.e., Mechanism 6), 

representing the inherent volatility/decay of information over time. For example, if someone sees 

a team member working on a task, that information will become less helpful in efforts to 

coordinate as the time since the observation progresses. This decay in information is modeled by 

another loss term in the coordinating signal stock of the system. This is represented as lS in 

Equation 2. 

 
𝑑𝑅

𝑑𝑡
= 𝑚 − 𝑘𝑅𝑆 − 𝑙𝑅𝑅 (1) 

 
𝑑𝑆

𝑑𝑡
= 𝑝 + 𝑘𝑅𝑆 − 𝑙𝑆𝑆 (2) 

This model is both convenient and nearly isomorphic with the Strogatz (2015) model, 

making it readily usable. However, there are a few conceptual issues with the model that should 

be clarified to make it more usable in a team performance context. First, it is valuable to 

explicitly model the connection of this system with performance. We can define a third stock in 

the model representing the total work done over time. Consistent with other conceptual 

definitions of performance, we can specifically define outcome-oriented performance as the 

change in work accomplished in a given time period. We will refer to work notationally as W. 

Work accomplished is a function of the amount of coordinated effort, (i.e., it is proportional   
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Figure 5 

Dynamic Systems Representation of the CASER Model 

 

Note. Boxes represent systems stocks. Arrows represent the flows. The arrows are color-

coordinated, corresponding to the elements in the corresponding differential equations. 

 

to kRS), and uncoordinated effort accomplished (i.e., it is proportional to lRR). We can represent 

the rate at which coordinated and uncoordinated efforts lead to desired outcomes using two 

parameters: 𝛽𝐶 and 𝛽𝑈 respectively. The greater 𝛽𝐶 and 𝛽𝑈 are the more strongly coordinated and 

uncoordinated efforts (respectively) impact work outcomes. The greater the difference between 

these two values the more important coordination is. This leads to a third equation: 

 
𝑑𝑊

𝑑𝑡
= 𝛽𝑈𝑙𝑅𝑅 + 𝛽𝐶𝑘𝑅𝑆 (3) 
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Analysis of the Formal CASER Model 

Following general practice for similar DSMs, I investigated the dynamic behavior of the 

proposed formal CASER model. This model is simple in nature and most of these steps can be 

done in closed form. However, the resulting closed-form outcomes are difficult to interpret 

without applying numerical methods. For the purpose of this dissertation, I characterize this first 

model to the extent possible without using synthetic simulations.  

This CASER model specifically allows us to investigate coordination feedback and the 

potential for feedback to lead to amplified coordination. Such positive feedback loops are 

theoretically highly important and have significant implications for team interventions aimed at 

amplifying coordinated action.  

Following general dynamic systems analysis practice, I used a multi-step procedure for 

characterizing the behavior of the CASER model’s dynamic system. I first generated a non-

dimensional representation of the model (this is presented in Appendix A). This allows us to 

consider the general pattern of dynamic behavior implied by the model without worrying about 

scale or units (Strogatz, 2015). Next, I investigated the nature of equilibrium and potential 

bifurcations in the model and discuss their implications. I then discuss the trajectories and phase 

portraits of the system.  

Steady State and Equilibrium Analysis 

With a dimensionless system defined (See Appendix B), we can explore the qualitative 

behavior of the system and how it is expected to respond to different interventions. First, we will 

evaluate the null clines and steady states of the system. The null clines for the system are found 
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by setting the differential equations to 0 and solving. We will ignore any potential nullclines for 

the work equation1. This leaves us with the following null clines: 

𝜌 =
1

1 + 𝛾
 

𝛾 =
𝑘⋆𝑝⋆

𝑟𝑙 − 𝑘⋆𝜌
 

By construction, this equation for 𝛾’s null cline strictly assumes that 𝑝⋆ ≠ 0. When 𝑝⋆ =

0 (as is the case when there is no spontaneous effort) the null clines for the 
𝑑𝛾

𝑑𝜏
 equation split into 

two cases. 

𝑝⋆ = 0 ⇒ 𝛾 = 0 𝑜𝑟 𝜌 =
𝑟𝑙
𝑘⋆

 

The nullclines are presented in Figure 6 below. For 𝜌, the single possible null cline is not 

dependent on any parameters (i.e., we have defined the nondimensional system in a way that has 

removed all non-unitary parameters from the equation for the ready state), and therefore there is 

only one line for the 𝛾 null cline below. This is indicated by the double black line. Although the 

gamma null cline depends on three parameters, this can be further simplified to two parameters: 

𝑝⋆ and 
𝑟𝑙

𝑘⋆. For reasons which will become clear later, we will define �̃� as the inverse of the 

second parameters. In the figures below Social Responsiveness is measured in terms of this 

value. 

�̃� =
𝑘⋆

𝑟𝑙
 

Figure 6 demonstrates the effect of varying both of these parameters. Changes in 𝑝⋆ are 

indicated by the line type (solid vs. dashed) while changes in �̃� are indicated by the line color. 

 
1 As assumed, 𝑟𝛽 > 0 ⇒

𝑑𝜔

𝑑𝜏
> 0 

(4) 

(5) 



 

 

67 

 

Note that the fixed points are round at the intersections between the colored lines and the double 

black line. 

We see that when 𝑘⋆ < 𝑟𝑙 and 𝑝⋆ = 0 there is no intersection between these null clines, 

implying that there are no non-trivial fixed points in these cases. We will investigate this further 

by explicitly solving for the fixed points, showing that in such cases the system will approach a 

state with 𝛾 = 0. For all other cases, there is a positive intersection between the two null clines. 

We further note that increasing �̃� decreases the 𝜌 values for the null clines. This will have the 

effect of increasing the total amount of coordination. This is unsurprising, given that �̃� =
𝑘⋆

𝑟𝑙
, so 

larger values of �̃� indicate that there is a higher degree of coupling in the team in comparison to 

the loss ratio of the system. Intuitively, this should increase the steady state value of 𝛾. 

For a given value of ℎ, the null cline for 𝛾 asymptotically increases toward a value 

controlled by the null cline when 𝑝⋆ = 0. The larger 𝑝⋆ is, the more slowly the null cline 

approaches this value and consequently, the higher the value of 𝛾 at the intersection point 

between the two null clines. This demonstrates the intuitive fact that increasing the value of 𝑝⋆ 

(i.e., the rate of spontaneous effort) should increase the steady-state value of the coordination 

signal present. 
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Figure 6 

Nullclines For Ready State and Coordination Signal  

 

 

Note. The solid black line indicates the nullcline for the ready state. This is not dependent on the 

parameters so there is only one line. The colored lines indicate nullclines for the coordination 

signal at different levels of social responsiveness ( �̃� - indicated by color) and plan precision or a 

priori signal (p* - indicated by line type) holding all other parameters constant. Intersections 

(indicated with a red x) indicate steady, fixed points for the given parameters.  

 

Having made these observations, we will now calculate the values of the fixed points 

explicitly. Setting Equations 7 and 8 to equality and solving reveals the fixed points (𝜌, 𝛾). For 

simplicity, we define 𝑔 = (𝑘⋆ + 𝑘⋆𝑝⋆ + 𝑟𝑙) and ℎ = (𝑘⋆ + 𝑘⋆𝑝⋆ − 𝑟𝑙): 

(6) 
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𝑓1 = (
𝑔 + √𝑔2 − 4𝑟𝑙𝑘⋆

2𝑘⋆
,
ℎ − √ℎ2 + 4𝑟𝑙𝑘⋆𝑝⋆

2𝑟𝑙
) 

𝑓2 = (
𝑔 − √𝑔2 − 4𝑟𝑙𝑘⋆

2𝑘⋆
,
ℎ + √ℎ2 + 4𝑟𝑙𝑘⋆𝑝⋆

2𝑟𝑙
) 

We can assume 𝑟𝑙 > 0 (because 𝑙𝑅 > 0 and 𝑙𝑆 > 0 by definition), 𝑘⋆ > 0 (because 

necessarily 𝑙𝑅 > 0, 𝑚 > 0, and 𝑐 > 0), and 𝑝⋆ ≥ 0 (because 𝑝 ≥ 0 and 𝑚 > 0). For 𝑝⋆ ≠ 0, at 

𝑓1 the signal, 𝛾, must be negative, which is not possible. Therefore, there is only one possible 

fixed point (i.e. 𝑓2) whenever 𝑝⋆ > 0. Similarly letting 𝑝⋆ = 0, if 𝑟𝑙 > 𝑘⋆ the signal must still be 

negative at 𝑓1. Therefore 𝑓1 is not a viable fixed point whenever 𝑟𝑙 > 𝑘⋆. Otherwise, there are 

two equilibrium points only when 𝑝⋆ = 0 (i.e., 𝑝 = 0) and 𝑟𝑙 ≤ 𝑘⋆. These are found at the 

points: 

𝑓1 = (1,0) 

𝑓2 = (
𝑟𝑙
𝑘⋆

,
𝑘⋆ − 𝑟𝑙

𝑟𝑙
) 

In all other cases, the only equilibrium point is given by the original 𝑓2 equation above 

(Equation 6). For illustrative purposes, we plot the amount of coordination information (𝛾) 

against its derivative. Notice that the curve necessarily has a positive vertical intercept (for 𝑝⋆ >

0, and 𝑐⋆ > 0) and making 𝑓2 a stable, fixed point in all cases. Similarly, it is clear that when 

there are two fixed points, 𝑓1 is unstable. All other potential fix points are at boundary 

conditions. A quick assessment of boundary conditions (i.e., 𝛾 = 0, and 𝜌 = 0) demonstrates 

that there are no additional boundary-based fixed points. 

(9a) 
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Figure 7 

Phase Portrait for System Coordination Signal 

 

Note. Graph of the phase portrait for the system’s coordination signal. Fixed points are indicated 

by places where the derivative of 𝛾 (indicated on the vertical axis) is 0. The fact that all non-zero 

horizontal intercepts have shifted from positive to negative indicates that all non-zero fixed 

points are stable. 

 

Fixed points are found where the curves depicted in Figure 7 cross the horizontal axis. To 

characterize their stability, we can assess the slope of these curves at the intercepts. Negative 

slopes indicate a stable point, while positive slopes indicate an unstable fixed point. It is 

straightforward to demonstrate that for 𝛾 large enough, the derivative of 𝛾 is necessarily negative 

in all cases. Thus, the largest fixed point is necessarily stable. In the specific case where there are 
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two fixed points, it is straightforward to show that between the two points, the derivative is 

positive, so 𝑓1, the lower of the two fixed points, is necessarily unstable. 

Lastly, in Figure 8, I graph the fixed points for various values of 𝑝⋆ and 
𝑘⋆

𝑟𝑙
. 

The fixed point’s value appears to increase exponentially as �̃� increases, until it reaches a 

given linear rate of growth after which it continues to grow linearly. The larger the team’s rate of 

spontaneous effort (i.e. �̃�), the faster the fixed point's asymptotic linear growth. Notice that there 

is only a bifurcation when 𝑝⋆ = 0. In this case, the single fixed point remains stable at the 𝛾 = 0 

until �̃� > 1 (i.e., 𝑘⋆ > 𝑟𝑙) portion, at which point there is a bifurcation. 𝛾 = 0 remains an 

unstable, fixed point while there is a fixed point that increases in magnitude linearly with respect 

to 
𝑘⋆

𝑟𝑙
. 

Conceptually, when there is no spontaneous effort, a lack of coordination is a fixed point. 

But as long as the coupling strength is great enough, any perturbation (perhaps in the form of 

coordinated action) will lead the system to jump to a stable coordinated state. Any level of 

spontaneous effort eliminates this bifurcation behavior. 
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Figure 8 

Steady State Coordination Signal vs. Coupling Strength 

Note. Dashed black line indicates unstable, fixed point at no coordination when p*=0. This is the only 

bifurcation.  

 

Performance in the CASER Model 

We will now make a quick note regarding coordination and performance. Performance 

can be thought of as the change in work over time, and so we set: 

performance =
𝑑𝜔

𝑑𝜏
 

In this model, interdependence is represented in the ratio 𝑟𝛽. Setting this to 1 simulates a 

system where there is no difference between the impact of coordinated and un-coordinated effort 
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of desired outcomes. There is no benefit and no additional loss due to process costs for 

coordinated work. Thus, uncoordinated and coordinated effort are essentially indistinguishable 

when 𝑟𝛽 = 1. This is characteristic of complete independence (i.e., one team member’s work 

does not impact another’s). This motivates Lemma 1: 

|Lemma 1: Whenever coordination occurs (i.e., 𝛾 > 0), nondimensionalized performance 

is unitary if and only if the system is operationally independent (i.e., 
𝑑𝜔

𝑑𝜏
= 1 ⇔ 𝛽𝑈 = 𝛽𝐶) 

Proof: All fixed points are along the null clines for 𝜌, so at the fixed point(s) we have: 

𝜌 =
1

1 + 𝛾
⇒

𝑑𝜔

𝑑𝜏
=

1 + 𝑟𝛽𝛾

1 + 𝛾
 

𝛾 ≠ 0, 𝑟𝛽 = 1 ⇔
𝑑𝜔

𝑑𝜏
= 1 

Note that at 𝛾 = 0 all work is done in an uncoordinated manner and performance is still 

equal to 1. 

Conveniently (i.e., by design), the given nondimensional arrangement of the system has 

independent performance set to a constant value of 1. Any performance value greater than 1 in 

this nondimensional team performance system represents an amplification of performance by 

means of interdependence.  

Summary 

Up to this point, my dissertation develops the Coordination Signal Theory (CST) – a 

theoretical framework for understanding a synergistic amplification of team coordination. 

Building on this framework, I have developed a theoretical model for how socially-driven 

feedback may function in a team coordination context at the team level. This model is referred to 

as the CASER model. Below are the principles implied by this model. 
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Principles of the Model 

Using the tools of dynamic systems analysis, I have identified various qualitative patterns 

that the proposed CASER system will follow. These qualitative patterns are used to highlight 

principles of interest implied by the formal theory. First, I have demonstrated that the theoretical 

model is expected to have stable equilibrium trajectories. From a practical, or theoretical, 

perspective as long as the way in which a team’s system functions (including the typical level of 

motivation, team coupling, and stability of both ready states and information) is fairly static 

compared to the actual effort and performance of team members I propose that there will be a 

dynamic trajectory for the team’s level of coordination where it approaches some stable level. 

This is important because when considering the system in the long term we can characterize it 

simply in terms of these stable equilibrium values. On the other hand, when characterizing the 

short-run dynamics of the system, these theoretical mechanisms imply that whatever the current 

level of coordination is, it will gradually and smoothly get closer to this equilibrium value. This 

is driven by a process of dynamic coordination feedback. 

Equilibrium or steady-state levels of coordination are likely more important than 

temporary episodes of highly coordinated action. This is a principle of dynamics; often systems 

that are much weaker, but consistent, have a greater impact in the long run than those with very 

short bouts of strength. Recognizing the theoretical existence of such equilibrium behavior, and 

characterizing its nature is therefore of significant practical and theoretical importance. 

Principle 1: Coordination in a team will generally follow a dynamic equilibrium 

trajectory, approaching some steady level of coordination within a team. 

Notably, the steady equilibrium described by this system is 0 whenever both 1) the team 

has no external source of coordination, and 2) the rate of decay for the coordination signal’s 
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information is high compared to the coupling strength (i.e., the signal dissipates faster than it can 

be generated). Whenever there are no external sources of signal that can promote coordinated 

behavior or external factors promoting coordination, the signal must be steady enough (not decay 

too fast) to maintain itself. Otherwise, any observed level of coordination will quickly dissipate, 

and individuals will act almost exclusively in an independent manner. Conversely, when 

coupling strength is weak compared to the decay rate of information, there must be an external 

source of coordination information or opportunities for individuals. Otherwise, the team will not 

have access to the information needed to coordinate. 

Many team contexts impose barriers to communication. For example, virtual teamwork 

environments make it more difficult for individuals to observe and act on cues from their 

teammates. Similarly, some team contexts can make it difficult for individuals to be influenced 

or responsive to each other. 

This highlights two factors related to a team’s coupling strength. The availability of 

coordination signal and the responsiveness to such signals. The transformation from coordinated 

effort to coordination signal is an important factor driving a team’s coordination. While not 

discussed at length, the model allows us to consider the impact of the generation of coordination 

signals. The efficiency of transitioning coordinated effort into coordination signal will have a 

huge impact on the team’s ability to generate enough momentum to establish a steady level of 

coordination. 

In effect, this represents the visibility of others’ work in a team. Teams that actively 

promote and celebrate the efforts of their teammates will be much more efficient at generating 

coordinating signals from their effort. By contrast, teams that have very independent cultures, or 
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that work in contexts that are separate (i.e. virtual teams), siloed, or solitary will be much less 

efficient at generating such signals. 

Similarly, some team environments make it difficult for individuals to be influenced or 

responsive to each other, even if there is enough signal. In such cases, team members may be 

aware of each other but unwilling to, or uninterested in, acting on that information. Teams that 

lack a clear social identity may be less able to influence each other. In other cases, it may be 

much more difficult to change one’s current task once started, making it hard for team members 

to be very responsive to each other. 

The formal model indicates that in such cases where team “coupling” is weak (either for 

lack of signal production or lack of responsiveness), the team must rely on external cues and 

sources of information to act in a coordinated manner. In such cases, without such external cues, 

it is unlikely, if not impossible, to maintain a coordinated approach to work. Without either a 

sufficient level of coupling or external forces driving coordination, the team will fail to establish 

a steady level of coordinated effort. 

Principle 2: When a team establishes a strong level of coupling (i.e., social 

responsiveness - effectively generates signals and cues regarding each other’s activities, and 

actively responds to these signals) relative to the decay rate of information, the team will exhibit 

a non-trivial, steady level of coordination. The greater the coupling, the larger the steady level of 

coordination in the team. 

Principle 3: Teams exposed to some form of external coordination cues, or that have 

some inherent force driving coordination, in the absence of in situ cues will exhibit a non-trivial, 

steady level of coordination. The stronger such external influences, the larger the steady level of 

coordination will be. 
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Additionally, the model demonstrates the importance of the relative relationship between 

the level of instability for the ready state and the stability of coordination information. This ratio 

directly impacts the possible equilibrium levels of coordination in a team. In particular, by 

holding the level of stability in the ready state constant, increased stability in coordination 

information will lead to greater levels of coordination. Generally, the model suggests that the 

greater the ratio of stability in coordination information to the stability of the ready state, the 

greater the steady level of performance. 

These are concepts that, to my knowledge, have never been discussed or investigated. 

However, this framework would suggest that this ratio of stability is critical for predicting (and 

manipulating) team coordination levels. To form a highly coordinated pattern of effort, a team 

must have some level of stability in a “ready state” such that they can receive and respond to 

coordination signals. The dimensional representation of a team’s performance is used with the 

stability of the steady state to define the passage of time and is therefore ill-suited to 

investigating the impact of the stability of the ready state. Future work will need to investigate 

the impact of the stability of the steady state more fully. However, this work clearly provides 

evidence for the need to promote, visualize, celebrate, etc. the work done by others to establish 

an environment well-suited for incubating coordinated effort. 

Principle 4: By holding the stability of the ready state constant, a team’s steady level of 

coordination will be augmented as the stability of coordination information and signal is 

increased. 

This model also speaks directly to the relationship between coordination, 

interdependence, and performance. Specifically, coordination does not impact performance at all 
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unless there is a sufficient level of interdependence. However, in highly interdependent teams, 

coordination may be a critical factor driving the team’s performance. 

The connection between coordination and team performance is not new. Furthermore, the 

fact that this relationship is moderated by interdependence is not new. However, this model and 

its framework more broadly clarify and give important details to these relationships. From the 

operational paradigm used to establish this model, we see that at least one form of 

interdependence in this system is defined by the ratio of effectiveness of coordinated effort as 

compared to the effectiveness of uncoordinated effort. This definition itself is a clarification to 

the interdependence literature. It bespeaks a way of clarifying task interdependence in an 

operationally relevant way. In combination with its connection to the impact of coordination, it 

provides clarity and depth to our understanding of this relationship. 

Furthermore, this model can help us to identify potential limitations to our understanding 

of the impact that interdependence has on performance. Researchers have occasionally failed to 

find a significant moderating effect of interdependence on the relationship between coordination 

and performance (DeChurch & Mesmer-Magnus, 2010b). While surprising, these counter-

intuitive results could be explained by a lack of clarity in the constructs for coordination, 

performance, and interdependence. This model provides clarity to all three by situating itself in 

an operational paradigm. Additionally, the model describes variables that may obfuscate the 

generally straightforward moderation relationship. Specifically, process losses due to 

coordination (i.e., the loss of performance due to the effort required to adjust one’s work to be 

done in a coordinated manner) is an explanation for null moderation results. Specifically, if there 

is a high degree of process loss, interdependence as defined above (the ratio of effectiveness of 

coordinated to uncoordinated effort) will appear to be much smaller than it would otherwise be. 
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Principle 5: Coordination will generally lead to increased performance. This is 

dependent on the level of interdependence of the team (more interdependence means stronger 

relationships between coordination and performance), and the process inefficiencies associated 

with coordination. 

Finally, I note the essential role of feedback in these observed principles. Feedback 

originating from coordination signals drives future coordination. This feedback is essential to the 

equilibrium behavior of the system. In fact, much of the behavior described by Principles 1, 2, 4 

and 5 are directly related to the existence and nature of feedback in the system. Feedback is 

driven by the production of coordination information that is then used to signal future 

coordination in the team. This depends on the coupling strength (See Mechanism 2), the 

efficiency of generating coordination signal (See Mechanism 4) and the stability of coordination 

signal (See Mechanism 5). 

The notions of feedback and its relationship to a system’s ability to stabilize and control 

itself are well established in various academic literatures. However, this concept of stabilization 

through feedback is new to the coordination literature. This is a severe limitation of coordination 

as it restricts coordination to a static emergent state or team process, without acknowledging the 

complex reality of the dynamics of coordination. The presence of such coordination feedback 

further highlights the potential ability to augment coordination via means novel to the 

organizational literature, such as coupling strength (signal generation or responsiveness). 

Principle 6: Feedback is an essential driver of the impact of coordination, and a 

determinant of a team’s ability to establish a steady amplified level of coordinated effort. 
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Limitations of the CASER Model 

The CASER model presented here is limited in numerous ways. First, it is a simplification 

of reality. The model takes a very complex phenomenon and simplifies it into a concise system 

of three equations. While this is reasonable and consistent with best modeling practices (Olenick 

et al., 2022; Vancouver & Weinhardt, 2012), it does mean that the results are necessarily 

approximations. This is not an issue, because the model is being used primarily to investigate 

general patterns implied by the framework developed in this dissertation. However, because it is 

a simplification and because most of the interpretation was based on the nondimensionalized 

model, the results of this analysis should be taken as qualitative evidence used to produce 

principles that are logically consistent with the theory. 

These are not quantitative estimations of a parameter or an evaluation of empirical work. 

This work should be considered a process for generating theory; theory that is logically 

consistent, theoretically precise, and robust, but still theory, not empirical evidence that anything 

stated here should be expected in the real world. There is empirical evidence consistent with this 

model to the extent to which the theoretical concepts used to develop this formal model are 

supported by their own empirical evidence, but before using this work to guide interventions, 

make predictions, or make decisions, it should be thoroughly tested empirically for its ability to 

accurately and consistently predict patterns found in observed data. 

Another significant limitation of the CASER model is its reliance on team-level 

aggregations. The ready state of the team represents some complex pool of the overall readiness 

to perform across the entire team. While conceptually this may make sense, practically it is a 

difficult variable to measure or use. The aggregated “coordination signal” variable is similarly 

problematic. Of particular interest to me is that many of the relationships, process mechanisms, 
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and parameters described by this model may be better represented on an individual and dyadic 

level. For example, the responsiveness described by coupling strength will almost certainly be 

different between two people that get along and two people that don’t. On the other hand, the 

ability to observe coordination cues from team members is likely not constant across the entire 

team. Some team members will be better situated to observe such cues than others. These 

individual differences and the localized embeddedness of the coordination process mechanisms 

are important factors that we will investigate in greater detail in the following chapter. 
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Network Model of Emergent Coordination  

It is the long history of humankind (and animal kind, too) that those who learned to 

collaborate and improvise most effectively have prevailed. 

― Charles Darwin 

 The formal CASER model presented in the previous chapter provides a proof of concept 

that coordination can produce self-amplifying patterns of spontaneous effort. This work 

highlighted the impact and importance of feedback loops and signal exchange. By contrast, the 

present model provides more insight into the emergent multi-level nature of coordination as well 

as the impact of various forms of interdependence on coordination. The CASER model presented 

an aggregated approximation of team-level motivation, coordination, and coordination signals. 

To understand these processes and the implications of this theory more fully, I present this 

second formalization of this theory which presents a network-based representation of dyadic 

social coordination signals and influences and accounts for complex interdependence structures. 

I refer to this second model as the Coordination Signal Network (CSN) model. 

The CSN model builds upon the same three mechanisms described by the CASER model 

– the processes of motivational internalization, spontaneous effort, and stimulated effort. Yet this 

model provides more depth to this investigation, which allows us to investigate the potential 

differential impact of a priori vs. in situ coordination efforts, in team contexts that vary in their 

level of volatility and complexity. As such, this model enables us to fully investigate the 

theoretical claims made previously.  

 By taking a network-based approach, the CSN enables us to consider individual 

psychological processes and the differences in the broader context of team coordination efforts. 

This model enables us to more fully recognize and account for the complexity of social 
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structures and interdependence within a team and loosely builds upon the foundational Kuramoto 

Model (KM) as a model used to understand spontaneous synchronization in various systems. 

 In this chapter, as in the previous one, I begin by providing a brief overview of the 

complete CSN model before providing a step-by-step derivation of the model and its 

background. As noted, this model builds on the same mechanisms as the previous model and 

thus this chapter does not provide as much theoretical background. After presenting the 

derivation of the model, I discuss and present a simulation study aimed at investigating the 

implications of the model and specifically designed to consider the proposed theoretical 

relationships between a priori/in situ coordination efforts and team contextual 

volatility/complexity. 

Overview of the CSN Model 

 Before deriving the complete formal network-level coordination model I will briefly 

provide an overview of the CSN. First, I provide an overview of the general system to be 

modeled, then discuss the moralized mechanisms of the model. 

 It is assumed that a team is made up of some number of individuals (agents) who will 

perform some set of tasks. For simplicity's sake, there is a limited number of distinct tasks that 

the team members can perform at any point. Tasks are interdependent such that the concurrent 

performance of some task pairs is beneficial while it is best to avoid performing other pairs of 

tasks at the same time. At every given moment, each team member probabilistically elects to 

perform one of the possible tasks. The aim of the model is to evaluate those mechanisms that 

enable a team to coordinate task performance and adaptively manage task interdependence. 

 The number of team members is defined as n. Similarly, the number of possible tasks is 

defined as m. The model is made up of an equation dictating the probabilistic task that individual 
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team members will perform at any given time. Specifically, 𝑥𝑖,[𝑡] is defined as an m-dimensional 

vector encoding the probability of team member i performing each of the given tasks at time t. 

The basic architecture of the model is that the probability of team member i performing each of 

the tasks is based on some discrete Markov-like transition. 

𝑥𝑖(𝑡 + 1) = 𝑀𝑥𝑖(𝑡) , 

where M is an m-by-m matrix. If formalize the mechanisms and theory described previously to 

meaningfully define M such that it accounts for psychosocial patterns of coordination. 

The transition matrix, M, referenced in Equation 7 is defined by the column-normalized 

Hadamard-product (i.e., element-wise product) of three matrices. The first matrix represents 

individual objectives and preferences. This is closely related to the mechanism of spontaneous 

effort. Mathematically this matrix is written as Ω. The second matrix represents the impact of in 

situ coordination and is written as V. The third matrix describes the impact of a priori 

coordination. This is represented as P in the equations below. After being multiplied together, 

the columns are normalized so as to ensure that the resulting matrix is a Markov matrix. This 

normalization is represented by traditional matrix multiplication on the right by an appropriate 

diagonal matrix – represented here as D: 

𝑀 = (𝑃 ⊙ 𝑉 ⊙ Ω)𝐷 

⇒ 𝑥𝑖(𝑡 + 1) = (𝑃 ⊙ 𝑉 ⊙ Ω)𝐷 𝑥𝑖(𝑡) 

 In the remainder of this chapter, I derive the CSN model, providing theoretical, 

mathematical, and numerical evidence for the model before presenting a simulation study used to 

investigate this model. 
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Deriving the CSN Model from the Kuramoto Synchronization Model  

 The foundation of this work is the spontaneous synchronization model laid out by 

Kuramoto (1984). The Kuramoto Model (KM) provides a mathematical representation of the 

mechanisms through which various physical, biological, social, and psychological phenomena 

may occur. For example, the same model has been used to describe the emergent synchronization 

of clocks and pendulums, synchronized applause, and firefly blinks. I propose that 

synchronization provides a useful lens from which to understand the potential mechanisms 

driving the emergence of coordinated action in a team. For example, in a rowing team where 

each individual is performing essentially the same oscillatory task and motivated to do it at the 

same time, we could model their performance using the KM.  

I note that while synchronization implies performing the same task at the same time, 

coordination is much broader than this. Specifically, coordination implies performing the right 

task at the right time given what others are doing. Despite the differences in synchronization and 

coordination, I will demonstrate that the KM provides a powerful foundation from which to build 

a mathematical understanding of coordination. I extend the KM (continuous in time, continuous 

in space, and implies synchronized action) to a general form that is discrete in time, discrete in 

space (i.e., network-based), and applies to both synchronization and coordination more generally.  

Mathematically the KM is defined for a set 𝐴 of 𝑛 “nearly identical” oscillators. 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛}. Each oscillator is defined as being very near a shared limit cycle, the state of 

each oscillator is indicated based on its position within the limit cycle represented as 𝜃. The KM 

is as follows: 

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 +

𝑘

𝑛
∑sin

𝑗

(𝜃𝑗 − 𝜃𝑖) 

(8) 
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A complete review of the KM is beyond the scope of this dissertation. The main concept 

is that each oscillator is influenced by the other oscillator. This model is conceptually equivalent 

to a system of 𝑛 massless beads on a frictionless ring that each has a natural frequency 𝜔𝑖: 𝑖 ∈

{1,2, … , 𝑛} dictating a natural rate of rotation. Each bead is then connected by a spring with 

spring constant 𝑘. 

Each oscillator is influenced to be as near the other oscillators as possible while being 

influenced by its internal rate of rotation. This model has been used to describe various 

synchronization processes found in physics, biology, chemistry, and sociology. Similarly, we can 

use this model to describe cognitively what is happening in a team that is performing an 

oscillating task. For example, rowing. Each team member observes each other and is drawn to be 

in the same state at the same time (so that they can row in synchronization). 

Despite being a theoretically powerful foundation, this model requires the system to have 

a set of oscillators that are nearly identical (they all follow the same path). I derive an adaptation 

of this model that allows for individuals to be in one of a set of discrete states (i.e., performing a 

given task), and allows each individual to have a different “limit cycle” or natural pattern of 

transitions among the states they perform. Lastly, the proposed model allows for a generalized 

interpretation of “proximity” allowing individuals to seek states/tasks that are most helpful to 

each other instead of requiring them to always seek to perform the same task at the same time. 
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Figure 9 

Illustration of the Kuramoto Model 

 

Note. Illustration indicates only springs connecting other oscillators to a single central figure. 

The full model would include springs between every pair of oscillators. However, for the sake of 

clarity, additional springs were excluded. Oscillators rotate around the circle at a natural 

frequency (indicated by the rotating arrows) but are also influenced by the position of other 

oscillators (indicated by the springs). This model's spontaneous synchronization is where 

everyone seeks to be in the same state. 
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Adaptation of the KM Model for Team-Based Task Work 

While the Kuramoto Model (KM) provides an engaging tool to understand emergent 

synchronization within a team in some instances (e.g., rowing) it has several limitations that 

make it a poor representation of task work typical of teams. The KM in its original version is 

helpful for understanding and evaluating deterministic synchronization in nearly identical, 

loosely coupled oscillators that are near a limit cycle. At first glance, this requires a strong set of 

assumptions that would appear to typically not apply to teams. Furthermore, the KM is explicitly 

defined in continuous spaces. While this is ideal for modeling work such as rowing, which can 

be represented in terms of a single task with individuals at various phases within the given task, 

it is not immediately clear how this would extend to cases where there are various complex tasks 

that are not easily represented as oscillatory behaviors. In short, it would be easy to conclude that 

the applicability of the KM is tied to a very restricted set of team tasks that involve oscillatory 

behaviors. 

I propose simplifying the model by considering discrete space (i.e., a network of states) 

discrete-time generalizations of the KM. I further generalize the dyadic forces exerted by 

individual actors on each other such that they do not always drive individuals to want to perform 

the same task at the same time. To this end, I use a network paradigm, representing each task that 

a team can perform as a node within a network. Each discrete time step allows individuals to 

change tasks according to internally identified patterns and preferences. In each time step, each 

actor’s probability of transitioning to a given task will further be adjusted by their teammates. In 

this way, the network model avoids the determinism inherent in the original KM.  
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Figure 10 

Continuous and Discrete Network Space Kuramoto Models 

 

Note. The continuous space used in the Kuramoto model is approximated by a discrete network of K states. This is desirable because it 

sets us up for representing each discrete state as a distinct task. Individuals transition through the states much as they do in the 

continuous space Kuramoto model, but each move they make must be a discrete jump from one state to the next instead of being in 

between. The agents are numbered between 1 and 6 (i.e., a1, a2, …, a6) as are the states (s1, s2, …, s6). 
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Independent Discrete KM 

In our effort to derive a more general representation of the KM, we will start by deriving 

an independent model, then incorporate interdependence. We start by approximating the 

continuous space of the KM by dividing the circle (i.e., limit cycle) about which oscillators 

revolve into K distinct states. Oscillators (or agents as I will now refer to them) occupy a given 

state at a given time. These states can then be presented as a cyclical graph. Distance in this 

graph is defined by the arc distance between nodes in the cycle graph.  

We can model probabilistically what state a given agent will occupy at some time in the 

future. The oscillatory nature of this system suggests that we consider a probabilistic transition 

such that each agent is likely to transition some number of states (𝑤) forward around the circle in 

a single time step. We can further infer that there is some degree of uncertainty (either due to 

stochastic white noise or due to the error incurred by making the system discrete). So the given 

agent will most likely transition 𝑤 steps forward in a single time step, but may transition 

somewhat more or less than this; see Figure 11. In this section, we will present a formalization of 

this model and outline the proof that it is equivalent in the limit of time and space to the KM 

when coupling strength is set to 0. 

We begin with the set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, of 𝑛 agents (previously referred to as 

oscillators). Note that for now, we are working with an independent model so each agent moves 

according to its own internal priorities and is not influenced by others. Let 𝑆 = {𝑠0, 𝑠2, … , 𝑠𝑚−1} 

be a set of 𝑚 states2 (or tasks) that each agent can be in at a given time 𝑡. Note that I define the 

states 𝑚-periodically (i.e., 𝑠𝑖+𝑚 = 𝑠𝑖). Further, define time, 𝑡 ∈ ℤ+. We define 𝑥𝑖(𝑡) ∈ ℝ𝑚 as a 

 
2 I use the terms states and tasks interchangeably, based on the context. 
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vector such that the 𝑘𝑡ℎ element of 𝑥𝑖(𝑡) gives the probability that agent 𝑎𝑖 will transition to state 

𝑠𝑘 at time 𝑡. 

𝑥𝑖(𝑡)[𝑘] ∈ [0,1] 𝑠. 𝑡.  |𝑥|1 = 1, 𝑘 ∈ {1,2, … ,𝑚} 

Now let 𝛼:ℝ → ℝ such that for integer values, 𝑘, 𝛼(𝑘) represents the probability of some 

agent transitioning from a given state, 𝑠𝑖 to another state 𝑠𝑖+𝑘 independent of the influences of all 

other agents. Recall also that the states are periodic, so this function will also be m-periodic. 

Figure 11 

Probabilistic Transitions in Network Model 

 
 

Note. Dashed green lines indicate the natural progression around the set of possible states (tasks). 

Solid arrows indicate the probability of the agent transitioning to the given positions. The 

thickness of the arrows indicates the magnitude of the probability. This is an example where, on 

average, the agent depicted will move forward two states (i.e., w = 2). 
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𝛼:ℝ ↦ ℝ 𝑠. 𝑡. |𝛼|1 = 1,  𝛼(𝑘 + 𝑚) = 𝛼(𝑘) 

We can define an 𝑚 × 𝑚 matrix, 𝛺, where each element 𝛺[𝑖, 𝑗] = 𝛼(𝑖 − 𝑗) is as follows: 

𝛺 = [

𝛼(0) 𝛼(𝑚 − 1) … 𝛼(1)
𝛼(1) 𝛼(0) … 𝛼(2)

⋮ ⋮ ⋮
𝛼(𝑚 − 1) 𝛼(𝑚 − 2) … 𝛼(0)

] 

Notice that this is a circulant matrix, a fact that will be important soon. We will refer to 

𝛼(𝑘) as this circulant matrix’s base function. In the absence of influence from other agents, we 

can define 𝛼 such that: 

 𝑥𝑖(𝑡 + 1) = 𝛺𝑥𝑖(𝑡) (10) 

And more generally3: 

 𝑥𝑖(𝑡) = 𝛺ℎ𝑥𝑖(0) (10a) 

or 

 𝑥𝑖(𝑡 + ℎ) = 𝛺ℎ𝑥𝑖(𝑡) (10b) 

Thus, 𝛺 represents a Markov transition matrix. In the simplest case, we will make 

assumptions about 𝛺 that allow this to correspond asymptotically with the Kuramoto model. 

First, take 𝑅 to be the left permutation matrix operator that shifts rows in the matrix to its right 

down by one. 𝑅 ∈ ℝ𝑚×𝑚 

𝑅 =

[
 
 
 
 
0 0 … 0 1
1 0 … 0 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱

 0 0 … 1 0 ]
 
 
 
 

 

Set 𝛼 to be symmetric about some value 𝑤 = 𝐾
𝜔

2𝜋
∈ ℝ for 𝜔 ∈ ℝ: 

 
3 Note that though this is presented for discrete time, this extends nicely into continuous time representations as 

well, as long as 𝛺 is diagonalizable. Although 𝛺ℎ is not unique for non-integer h, there is a unique solution 𝛺ℎ 

which is also a circulant Markov matrix. 

(9) 
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𝛼(𝑤 + 𝑛) = 𝛼(𝑤 − 𝑛) 

We can now define 𝛺† as a symmetric/circulant matrix as follows: 

𝛺† =

[
 
 
 
 

𝛼(𝑤) 𝛼(𝑤 + 1) 𝛼(𝑤 + 2) … 𝛼(𝑤 + 1)
𝛼(𝑤 + 1) 𝛼(𝑤) 𝛼(𝑤 + 1) … 𝛼(𝑤 + 2)
𝛼(𝑤 + 2) 𝛼(𝑤 + 1) 𝛼(𝑤) … 𝛼(𝑤 + 3)

⋮ ⋮ ⋮ ⋱ ⋮
𝛼(𝑤 + 1) 𝛼(𝑤 + 2) 𝛼(𝑤 + 3) … 𝛼(𝑤) ]

 
 
 
 

 

 𝛺 = 𝑅𝑤𝛺† (11) 

Demonstration of Independent Equivalence. To prove the equivalence of this system 

with the KM, we need to be able to derive a function �̇�𝑖 based on the equation for 𝑥𝑖(𝑡). To do 

this, we can map each state, 𝑠𝑘, to an angle analogous to its position in the circular graph, 

𝜃(𝑠𝑘) =
2𝜋

𝑚
𝑘. We then define a function 𝜃:ℝ𝑚 ↦ [0,2𝜋) which takes a vector (𝑥𝑖(𝑡)) and maps 

it to the average angle associated with each of the states that agent 𝑎𝑖 could be in at time 𝑡 

weighted by their various probabilities. Define a function 𝑉:ℝ𝑚 ↦ ℂ.0: 

𝑉(𝑦) = ∑ 𝑦

𝑚−1

𝑘=0

[𝑘]𝑒
2𝜋𝑖
𝑚

𝑘
 

Now define 𝜃(𝑦): 

𝜃(𝑦) =
1

𝑖
Log

𝑉(𝑦)

|𝑉(𝑦)|
 

Where Log is the complex log operator such that: 

 𝑉(𝑦) = 𝑟𝑒𝑖𝜃(𝑦) (12) 

For some 𝑟 ∈ ℝ+. 𝜃 takes the angle implied by the complex number that results from 

𝑉(𝑦). 

Conveniently, we can define 𝑣 as the left multiplication by a row vector:  

𝑣𝑇 = [1, 𝑒
2𝜋𝑖
𝑚 , 𝑒

2𝜋𝑖
𝑚

2, … , 𝑒
2𝜋𝑖
𝑚

(𝑚−1)] 
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Such that: 

 𝑉(𝑦) = 𝑣𝑇𝑦 (13) 

This is a complex eigenvector of any circulant matrix. The corresponding eigenvalues 

take the form 𝑟𝑒𝜃𝑖 for 𝜃 ∈ [0,2𝜋) and 𝑟 ∈ ℝ+. 

To continue we must prove two short results: 

Lemma 2: 𝑣𝑇 is an eigenvector of the single row shift permutation matrix, 𝑅, such that 

𝑣𝑇𝑅 = 𝑒
2𝜋

𝑚
𝑖𝑣𝑇, or more generally: 

 𝑣𝑇𝑅𝑤𝑡 = 𝑒
2𝜋𝑖

𝑚
𝑤𝑡𝑣𝑇 (14) 

Proof: 

𝑣𝑇𝑅 = [𝑒
2𝜋𝑖
𝑚 , 𝑒

2𝜋𝑖
𝑚

2, … , 𝑒
2𝜋𝑖
𝑚

(𝑚−1), 1] 

= 𝑒
2𝜋𝑖
𝑚 𝑣𝑇 

Next, note that when the exponent of a matrix is defined, the eigenvalues of the power of 

a matrix are simply the powers of the eigenvalue. 𝑅 is diagonalizable, therefore in particular: 

𝑣𝑇𝑅𝑤𝑡 = (𝑒
2𝜋𝑖
𝑚 )

𝑤𝑡

𝑣𝑇 = 𝑒
2𝜋𝑖
𝑚

𝑤𝑡𝑣𝑇 

And we are done. 

We now need to prove one more Lemma. But first, we need a definition. Define a 𝑃-

periodic function 𝑓 as being Locally Dense about some value 𝑧 if and only if 𝑓(𝑥) ≥

𝑓(𝑦)∀𝑥, 𝑦:  |𝑥 − 𝑧| < |𝑦 − 𝑧|. For our purposes, we can relax this condition further to require 

only that 𝑓(𝑥) ≥ 𝑓(𝑦)∀𝑥, 𝑦:  |𝑥 − 𝑧| < 𝑃/4, 𝑃/4 ≤ |𝑦 − 𝑧| ≤ 𝑃/2.  

An 𝑚 × 𝑚 matrix, 𝑀 is defined as being locally dense about the diagonal if and only if 

the 𝑘th column of 𝑀 is a 𝑚-periodic function which is locally dense about 𝑘. 
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Lemma 3: For any locally dense matrix 𝑀 that is symmetric and circulant, 𝑣𝑇 will be an 

eigenvector that corresponds to a positive real-valued eigenvalue. 

Proof: Let 𝑓(𝑖) = 𝑀[0, 𝑖] = 𝑀[𝑖, 0]. Further, define 𝑓 to be periodic so that 𝑓(−𝑖) =

𝑀[𝐾 − 𝑖, 0]. Because 𝑀 is circulant we know that 𝑣𝑇 is an eigenvector of 𝑀, and 𝑣𝑇[0] = 1, and 

we only need to look at the first element of 𝑣𝑇𝑀 to get the corresponding eigenvalue. 

𝜆 = 𝑣𝑇𝑀[0] = ∑ 𝑒
2𝜋𝑖
𝑚

𝑗

𝑚−1

𝑗=0

𝑓(𝑗) 

Set: 

𝑞 = max
𝑚/4≤|𝑦|≤𝑚/2

(𝑓(𝑦)) 

𝜆 = 𝑣𝑇𝑀[0] = ∑ 𝑒
2𝜋𝑖
𝑚

𝑗

𝑚−1

𝑗=0

𝑞 + ∑ 𝑒
2𝜋𝑖
𝑚

𝑗

𝑚−1

𝑗=0

(𝑓(𝑗) − 𝑞) 

= 𝑞 ∑ 𝑒
2𝜋𝑖
𝑛

𝑗

𝑚−1

𝑗=0

+ ∑ 𝑒
2𝜋𝑖
𝑚

𝑗

𝑚−1

𝑗=0

(𝑓(𝑗) − 𝑞) 

Note that ∑ 𝑒
2𝜋𝑖

𝑚
𝑗𝑚−1

𝑗=0 = 0 

… = 0 + ∑ 𝑒
2𝜋𝑖
𝑚

𝑗

𝑚−1

𝑗=0

(𝑓(𝑗) − 𝑞) 

If 𝑚 is odd, given the periodic nature of 𝑒
2𝜋𝑖

𝑚
𝑗
 we have: 

𝜆 = 𝑒
2𝜋𝑖
𝑚

0(𝑓(0) − 𝑞) + ∑ 𝑒
2𝜋𝑖
𝑚

𝑗

⌊𝑚/2⌋

𝑗=1

(𝑓(𝑗) − 𝑞) + 𝑒
2𝜋𝑖
𝑚

(−𝑗)(𝑓(−𝑗) − 𝑞) 

Given that 𝑀 is symmetric, 𝑓(−𝑖) = 𝑓(𝑖) 

𝜆 = 𝑓(0) − 𝑞 + ∑ (𝑒
2𝜋𝑖
𝑚

𝑗 + 𝑒
2𝜋𝑖
𝑚

(−𝑗))

⌊𝐾/2⌋

𝑗=1

(𝑓(𝑗) − 𝑞) 
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Further note that (𝑒
2𝜋𝑖

𝑚
𝑗 + 𝑒

2𝜋𝑖

𝑚
(−𝑗)) ∈ ℝ ∀𝑗. This is because the imaginary part of this sum 

is 0. The real part of this sum depends on 𝑗. For |𝑗| < 𝑚/4 trigonometrically we can show the 

real part is strictly positive. For 𝑚/4 ≤ |𝑗| ≤ 𝑚/2 it is simple to show trigonometrically that the 

real part will be non-positive. 

𝜆 = 𝑓(0) − 𝑞 + ∑ (𝑒
2𝜋𝑖
𝑚

𝑗 + 𝑒
2𝜋𝑖
𝑚

(−𝑗))

⌊𝑚/4⌋

𝑗=1

(𝑓(𝑗) − 𝑞) + ∑ (𝑒
2𝜋𝑖
𝑚

𝑗 + 𝑒
2𝜋𝑖
𝑚

(−𝑗))

⌊𝑚/2⌋

𝑗=⌊𝑚/4⌋+1

(𝑓(𝑗) − 𝑞) 

We know that 𝑓(0) > 𝑞 so the first part is positive. For |𝑗| < 𝑚/4, we know 

(𝑒
2𝜋𝑖

𝑚
𝑗 + 𝑒

2𝜋𝑖

𝑚
(−𝑗)) > 0 and (𝑓(𝑗) − 𝑞) > 0 so the second part is positive. Lastly, for 𝑚/4 ≤

|𝑗| ≤ 𝑚/2 we know (𝑒
2𝜋𝑖

𝑚
𝑗 + 𝑒

2𝜋𝑖

𝑚
(−𝑗)) ≤ 0 and (𝑓(𝑗) − 𝑞) ≤ 0 so the third part is positive. 

Collectively, this proves that 𝜆 ∈ ℝ and 𝜆 > 0. 

If m is even, the same logic will hold with the addition of one extra term (i.e., 

representing the point exactly halfway around the circle). We find the following: 

𝜆 = 𝑓(0) − 𝑞 + 𝑒𝜋𝑖(𝑓(𝑚/2) − 𝑞) + ∑ (𝑒
2𝜋𝑖
𝑚

𝑗 + 𝑒
2𝜋𝑖
𝑚

(−𝑗))

⌊𝑚/4⌋

𝑗=1

(𝑓(𝑗) − 𝑞)

+ ∑ (𝑒
2𝜋𝑖
𝑚

𝑗 + 𝑒
2𝜋𝑖
𝑚

(−𝑗))

⌊(𝑚−1)/2⌋

𝑗=⌊𝑚/4⌋+1

(𝑓(𝑗) − 𝑞) 

= 𝑓(0) − 𝑓 (
𝑚

2
) + ∑(𝑒

2𝜋𝑖
𝑚

𝑗 + 𝑒
2𝜋𝑖
𝑚

(−𝑗))

⌊
𝑚
4

⌋

𝑗=1

(𝑓(𝑗) − 𝑞) + ∑ (𝑒
2𝜋𝑖
𝑚

𝑗 + 𝑒−
2𝜋𝑖
𝑚

𝑗)

⌊(𝑚−1)/2⌋

𝑗=⌊𝑚/4⌋+1

(𝑓(𝑗) − 𝑞) 

The summations must both have non-negative values for the same reasons as in the odd 

case. Further, 𝑓(0) − 𝑓(𝐾/2) > 0 because 𝑓 is locally dense about 0. With that, we have proven 

Lemma 3. 
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Theorem 1: The discrete network model presented in Equation 10a is equivalent to the 

KM when the coupling strength is 0. 

Proof: 

Using Lemmas 2 and 3 we have the following result: 

𝑉(𝑥𝑖(𝑡)) = 𝑣𝑇𝛺𝑡𝑥𝑖(0) = 𝑣𝑇𝑅𝑤𝑡𝛺†𝑡𝑥𝑖(0) 

Set 𝜔 =
2𝜋𝑤

𝑚
: 

= 𝑟1𝑒
𝜔𝑡𝑖𝑣𝑇𝑥𝑖(0) 

Define 𝜃0 = 𝜃(𝑥𝑖(0)). 

= 𝑟2𝑒
(𝜃0+𝜔𝑡)𝑖 

For some 𝑟1, 𝑟2 ∈ ℝ+.  

 𝜃(𝑥𝑖(𝑡)) = 𝜃0 + 𝜔𝑡 (15) 

Taking the derivative of this yields the expected independent result from the KM when 

the coupling strength is set to 0:  

𝑑𝜃𝑖

𝑑𝑡
= 𝜔 

For this to work, the functions 𝑥𝑖(𝑡) and 𝜃(𝑦) must both be continuous and differentiable 

in 𝑡. That means they must be defined for 𝑡 ∈ ℝ, not just discrete 𝑡 values. However, this is true. 

Specifically, 𝛺 is diagonalizable because it is a real circulant matrix and therefore 𝛺𝑡 is well 

defined for 𝑡 ∈ ℝ. Similarly, 𝜃(𝑦) is differentiable for |𝑉(𝑦)| ≠ 0. Thus we have demonstrated 

that in the independent case (coupling strength set to 0), the KM model is equivalent to the 

network model presented here. 

As defined here, 𝛺 is necessarily circulant, implying that actors transition from task to 

task circularly. Later, we can relax this restriction and generalize so that Equation 10 represents 
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the probabilistic state that each agent will be in at some given point in the future based on their 

own unique transition matrix 𝛺. This is well defined for continuous-time as long as 𝛺 is 

diagonalizable, and is always well defined for discrete-time, 𝑡 ∈ ℤ+. 

𝑥𝑖(𝑡) = 𝛺𝑡𝑥𝑖(0) 

Formally Modeling Interdependence 

Having established a foundation for the CSN model the next goal is to extend this discrete KM 

model to account for interdependence on the state of all other agents. Define X as an m-by-n 

matrix where the ith column represents the probabilistic task/state transition of agent i.  

We can use an expectancy theory/utility-based motivational paradigm to derive this 

function given a few assumptions. Note that the KM essentially describes a system of oscillators 

that are motivated to be proximal to each other. The interdependence in their motion provides 

rewards and punishments for moving to states (i.e., performing tasks) that are proximal to each 

other. From this perspective, I define a utility associated with choosing to move to each state.  

Building on the three components of expectancy theory, the closer a potential state is to a 

teammate the higher the valence (i.e. value) and the more an agent will want to choose to move 

to the given state. Additionally, the more that agents believe making a given move will get them 

closer to the desired state (proximity to others) the more they will be motivated to make a given 

move. This is instrumentality. On the other hand, the further the state is from the state they were 

going to go to on their own the lower the expectancy. This suggests it is more difficult, or less 

rewarding to make larger deviations from their course as opposed to small deviations. More 

generally this reflects the difficulty of switching to the given state.  

Loosely following the expectancy value’s proposed multiplicative relationships I define 

two curves. One (E-Curve) reflects the expectancy or difficulty of making a given move. The 
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other (IV-Curve) represents a combination of instrumentality and valence. Similarly to the 

multiplicative proposition of expectancy theory, we can take the point-wise product of these 

curves, then normalize them to establish the total utility of a given move4. I refer to the 

normalized point-wise product of these two curves as the utility curve (U-curve). 

Before directly applying this work to the KM generally, we consider a non-oscillating 

single-dimensional system where there is exactly one agent that is driven to move closer to some 

target state (representing a teammate’s position they are responsive to). This agent also has a 

natural velocity, 𝑤. After establishing how things work in this non-oscillating scenario, we will 

expand this to reflect the oscillating system with multiple agents influenced by each other as 

described by the KM. 

If we fix the IV-curve’s shape and adjust the variability in the E-curve we see that the less 

the variability in the E-curve, the closer the agent’s motion will reflect its natural velocity. This 

is conceptually analogous to the notion of mass as described by Newtonian physics because the 

less variability in the expectancy curve (lower mass), the harder it is for external influences to 

change the agents' course of action. Noting this, for now, we will assume that the variance of the 

expectancy curve is fixed as 𝜎ω
2 . 

The utility curve encodes how much the agent is drawn to the target position. If we fix the 

E-curve and adjust the variance in the IV-curve, the impact on total utility is clear. The more 

closely the density of the Gaussian-valence curve is clustered around the target state’s position, 

the stronger the pull of the target on the agent (See Figure 12). Thus the variance of the IV curve 

reflects the strength of attraction. This is closely related to the notion of coupling strength found 

in the KM. Instead of coupling strength, I will refer to this as Social Responsiveness (SR) 

 
4 There are known issues with the multiplicative assumption of expectancy theory. However, by multiplying 

distributions instead of scalers this model avoids many of these known issues. 
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Figure 12 

Illustration of Normalized Product of Gaussian IV- and E-Curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The green line indicates the expectancy curve centered around 0 indicating that the further 

from one’s current state the more difficult a given transition is. The red line indicates the 

valence/instrumentality curve centered around 1.5. The motivational force or utility of any 

transition is given by the normalized point-wise product of these two curves (purple dotted line). 

When the variances are even (top) the product curve is centered halfway between them. But 

when there is less variance in the E-curve (middle) or IV-curve (bottom) the product curve is 

biased toward the curve with less variance. The standard deviations of these curves are 𝜎𝜔 and 

𝜎𝑆𝑅. 
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noting its close relationship to the concept of in situ coordination. The greater the SR strength the 

more the agent is exposed to, cares about, and responds to the position of the target. While this 

accounts for the valence of performing tasks that are proximal to a teammate (i.e., how much 

does the agent care about the target) it also incorporates notions of instrumentality (i.e., how 

much does the agent believe the given action will bring them closer to the desired reward) and 

even salience (i.e., how aware is the agent of the target in the first place). This variance will be 

represented as 𝜎𝑆𝑅. 

The point-wise product of two Gaussian curves is another Gaussian curve. Specifically, if 

we define the IV-curve by a function 𝑔𝐼𝑉(𝑥) = 𝑃𝐷𝐹[𝑁(𝑗, 𝜎𝑆𝑅
2 )], and define the E-curve by a 

function 𝑔Ω(𝑥) = 𝑃𝐷𝐹[𝑁(𝑤, 𝜎ω
2)], the normalized point-wise product (i.e., the U-curve) is 

defined as follows: 

𝑔𝑢(𝑥) = 𝑃𝐷𝐹 [𝑁 (
𝜎𝑆𝑅

2 𝑤 + 𝜎ω
2𝑗

𝜎𝑆𝑅
2 + 𝜎ω

2
,

1

1
𝜎𝑆𝑅

2 +
1
𝜎ω

2

)] 

 In this simple, single-dimensional example the expected change in the agent's location in 

one time step is then given by the mean of the utility curve. 

𝜎𝑆𝑅
2 𝑤 + 𝜎ω

2𝑗

𝜎𝑆𝑅
2 + 𝜎ω

2
 

To derive a discrete-space, discrete-time representation of the KM we will incorporate these 

concepts into the equation of the future state of a given agent. Using this, we derive an equation 

for 𝜎𝑆𝑅
2  given a fixed value of 𝜎ω

2  such that the resulting change in an agent’s position will be 

equal to the change predicted by the KM. 

Single-Agent Oscillating System. The concept described here becomes more complex 

once you account for the fact that the states described by the KM are periodic. Specifically, the 
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point-wise product of two periodic functions is not Gaussian anymore. However, if the variances 

of these nearly Gaussian IV- and E-curves are small in relation to the period length the resulting 

U-curve will be essentially Gaussian. We will discuss this in more detail later, but for now, it is 

sufficient to assume the following: 

𝜎𝑆𝑅
2 , 𝜎ω

2 ≪ 𝑚 

Two Distance Measures. It should be emphasized that distance in the KM is defined in 

two ways. The first type of distance is represented as the transition-distance. The transition 

distance represents how far an actor actually travels (or how difficult it is) when transition from 

their current state to another. In the present KM based example, this is defined as the arc-distance 

between states, indicating that actors move along the circumference of the circle. In this way the 

distance between any two states 𝑠𝑖 and 𝑠𝑗 is proportional to i – j. Specifically, we use the 𝜃 

function defined previously to define the arc-distance between two states 𝑠𝑖, and 𝑠𝑗. 

𝑑𝑎𝑟𝑐(𝑠𝑖, 𝑠𝑗) = 𝜃(𝑠𝑖) − 𝜃(𝑠𝑗) 

Additionally, there is an influence-distance. When actors are influenced by each other, 

the further they are the less they influence each other. This is related to the concept of 

instrumentation. The idea is that the further a target state is from one’s current state the less the 

actor believes that their effort will result in desired outcomes. This form of distance will depend 

on various factors but in the present KM based example it is measured by cord-distance cutting 

through the circle that the agents are set on. This is the shortest line connecting points across the 

center circle that the states are projected onto. To do this I project the states 𝑠𝑖, and 𝑠𝑗 onto the 

normed space that defines the circle. This is defined more rigorously later using the spectral 

decomposition of the circular graph. For now, it is sufficient to define a function, 𝑣⋆: 𝑆 ↦ ℝ2.  

𝑑𝑐𝑜𝑟𝑑(𝑠𝑖, 𝑠𝑗) = |𝑣⋆(𝑠𝑖) − 𝑣⋆(𝑠𝑗)|2  
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Figure 13 

Illustration of Distance of Transition vs. Distance of Influence 

 

Note. Arc-distance represents the actual distance an actor must transition through to get to the 

target state. Cord-distance represents the distance across which team influences will act. In the 

KM, the actors influence each other through direct lines, but actors must move around the 

circumference of the circle. In a more general sense, the transition-distance is defined by the Ω 

matrix, while the distance of influence is used to define the curves found in the columns of the 

V-matrix. The ratio of these is theoretically relevant to instrumentality. 

 

Time Step Size and 𝛀. We now use the expectancy-curve idea to more clearly define Ω. 

Ω is an m-by-m matrix with columns corresponding to the previous state and rows corresponding 

to the new state. Each entry in Ω conceptually gives the likelihood of transitioning from the state 

corresponding to the column to the state corresponding to the given entries row. Define Ω as a 

circulant matrix where each column represents the expectancy curve if the agent were at the state 

corresponding to that column. Here we are defining the circulant base function 𝛼 (see Equation 

9) as 𝑃𝐷𝐹[𝑁(𝑤, 𝜎ω
2)]. 
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To derive a discrete-time model asymptotically equivalent to the continuous time KM, 

we must consider time. In particular, we must define Ω as a function of the time step size so that 

we can evaluate the system as the time step dissipates to 0. To do this we must prove one result 

first. 

Lemma 4. Take a circulant matrix, 𝑀, with a Gaussian base function centered at 𝜇 (j is 

the column) and variance, 𝜎2. 𝑀ℎ will be circulant with Gaussian columns centered at ℎ𝜇 and 

variance ℎ𝜎2 for ℎ ∈ ℚ. 

Proof: 

To prove this we need to leverage two known facts: 

1) Multiplication on the left by a circulant matrix is the discrete equivalent of taking the 

convolution of the base function and defining the circulant matrix with a vector or the 

columns of a matrix.  

2) The convolution of two normal (or Gaussian curves) is Gaussian such that: 

𝑁(𝜇1, 𝜎1
2) ∗ 𝑁(𝜇2, 𝜎2

2) =  𝑁(𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2)  

 Leveraging these two facts, we know if h is an integer that 𝑀ℎ is equivalent to h matrix-

multiplications of M with itself. Given fact 1), each of these matrix multiplications produces a 

matrix with columns representing convolutions. In particular, the columns of 𝑀ℎ will be h 

convolutions of a Gaussian with itself. If the original base function of M is centered at 𝜇 with 

variance 𝜎2 the base function for the circulant matrix 𝑀ℎ will be centered at ℎ𝜇 with variance 

ℎ𝜎2. 

 Thus the result holds whenever h is an integer. Consider the case where h is one over an 

integer: ℎ =
1

𝑞
, 𝑞 ∈ ℤ Let Q be the circulant matrix with Gaussian base function centered at ℎ𝜇 
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and with variance ℎ𝜎2. Because 𝑞 ∈ 𝑍 we know that 𝑄𝑞 will be circulant with Gaussian based 

function centered at 𝑞ℎ𝜇 = 𝜇 with a variance of 𝑞ℎ𝜎2 = 𝜎2. Thus 𝑄𝑞 = 𝑀. 

 Because circulant matrices are diagonalizable 𝑀ℎ is well-defined (though not unique). In 

particular, there exists a solution: 

𝑀ℎ = (𝑄𝑞)ℎ = 𝑄 

 

We can scale the time step by a factor ℎ < 1 simply by taking 𝛺 to the power ℎ. 

Conveniently by defining 𝛺 as a circulant matrix with Gaussian columns, we ensure that we can 

equivalently take this power by multiplying the mean and variance of the 𝛺’s defining a 

Gaussian function by h. We can use these results to quickly extend the result to all ℎ ∈ ℚ. 

Notably, this work utilizes results that are dependent on the functions being continuous. 

For example, multiplication by a circulant matrix is equivalent to a discrete convolution, but fact 

two above is only necessarily true for convolutions of continuous functions. This will be true in 

the limit 𝑚 → ∞, which is sufficient for our needs.  

V and In Situ Coordination. To account for interdependence the model takes the 

Hadamard (elementwise) product of Ωℎ and a Valence/Instrumentality matrix V. Then normalize 

(done by multiplying by D). As with Ωℎ the columns of V are assumed to be Gaussian functions. 

For V, the functions are each centered at the target location (we will use j to refer to the target 

location). As a reminder, for the present time, we assume there is one agent that is influenced by 

a single fixed target – later we will extend this to account for the impact of agents responding to 

multiple other agents.  

𝑥(𝑡 + ℎ) = (𝑉 ⊙ Ωℎ)𝐷𝑥(𝑡) 

(17) 
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Unlike Ωℎ, V will not be circulant. Additionally, each column will incorporate not only 

the valence of proximity to the target state – which will be the same regardless of where the 

agent is coming from – but will also incorporate notions of instrumentality that differ based on 

the current state of the agent.  

As noted previously, the point-wise product of two Gaussian curves is Gaussian. By 

taking the Hadamard product of two matrices with columns that are Gaussian we are 

approximating this result. The resulting matrix will therefore have columns that approximate a 

Gaussian U-curve: 

𝑔𝑢(𝑥) = 𝑃𝐷𝐹 [𝑁 (
𝜎𝑆𝑅

2 𝑤 + 𝜎ω
2𝑗

𝜎𝑆𝑅
2 + 𝜎ω

2
,

1

1
𝜎𝑆𝑅

2 +
1
𝜎ω

2

)] 

  Before continuing we must prove another Lemma. 

 Lemma 5: Define M as a circulant matrix with a symmetric base function 𝑓 that is 

locally dense about 𝜇. Let 𝑥 ∈ 𝑅𝑚, 𝜃(𝑀𝑥) = 𝜇 + 𝜃(𝑥)  

 Proof:  

Taking the rotational permutation of M we get: 

𝑀⋆ = 𝑅−𝜇𝑀 

Where 𝑀⋆ is by design locally dense about the diagonal. By Lemma 2 

𝑣𝑡𝑀⋆𝑥 = 𝑟𝑣𝑡𝑥, for 𝑟 ∈ ℝ+ 

⇒ 𝜃(𝑀⋆𝑥) = 𝜃(𝑥) 

At the same time 

𝑣𝑡𝑀⋆𝑥 = 𝑣𝑡𝑅−𝜇𝑀𝑥 

= 𝑒
2𝜋𝑖
𝑚

(−𝜇)
𝑣𝑡𝑀𝑥 = 𝑒

2𝜋𝑖
𝑚

(−𝜇)
𝑟𝑒𝑖𝜃(𝑀)𝑣𝑡𝑥 
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⇒ 𝜃(𝑀𝑥) =
2𝜋𝜇

𝑚
+ 𝜃(𝑥) 

Deriving 𝝈𝑺𝑹
𝟐 . Deriving the variance 𝜎𝑆𝑅

2  by setting a discrete approximation of the 

velocity 
𝜃(𝑥(𝑡+ℎ))−𝜃(𝑥(𝑡))

ℎ
 equal to the KM’s equation for the instantaneous angular velocity of 

agent I as follows: 

Δℎ𝜃(𝑥(𝑡) ) =
𝜃(𝑥𝑖(𝑡+ℎ))−𝜃(𝑥𝑖(𝑡))

ℎ
= 𝜔𝑖 + 𝐾sin(𝜃𝑖 − 𝜃𝑗) , 

and assuming that the agent’s position is deterministic so that the xi(𝑡) has one element 

that is 1, and all others are 0. Let the state of agent i at time t be s. We get that 𝑥𝑖(𝑡 + ℎ) =

(𝑉 ⊙ Ωℎ)𝐷𝑥𝑖(𝑡) will be a vector equal to the element-wise product of the sth columns of 𝑉 and 

Ωℎ. This vector is symmetric about some central value. 

𝜇 =
𝜎𝑆𝑅

2 𝜃𝑠 + ℎ𝜎ω
2𝜃𝑗

𝜎𝑆𝑅
2 + ℎ𝜎ω

2
 

⇒ 𝜃(𝑥(𝑡 + ℎ)) = 𝜇 

Without loss of generality, we can set 𝜃𝑖 = 𝜃(𝑥𝑖(𝑡)) = 0. (In other words 𝑠 = 0). 

Notably, this implies that j is defined such that 𝜃𝑗 = 𝜃𝑗 − 𝜃𝑖. As such I will write this 𝜃𝑑 for 

difference. We can further simplify removing the natural frequency by defining 𝜃∗(𝑦(𝑡)) =

𝜃(𝑦(𝑡)) − 𝜔𝑖𝑡. (remember 𝜔𝑖 =
2𝜋

𝑚
𝑤𝑖.)  

This gives us: 

Δℎ𝜃(𝑥(𝑡) ) =
𝜃(𝑥𝑖(𝑡 + ℎ)) − 𝜃(𝑥𝑖(𝑡))

ℎ
=

𝜃⋆(𝑥𝑖(𝑡 + ℎ))

ℎ
+ 𝜔𝑖 

=
𝜎ω

2𝜃𝑑

𝜎𝑆𝑅
2 + ℎ𝜎ω

2
+ 𝜔𝑖 

Setting this equal to the KM we get: 

Δℎ𝜃(𝑥(𝑡) ) = 𝜔𝑖 + 𝐾sin(𝜃𝑑) 
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⇒
𝜎ω

2𝜃𝑑

𝜎𝑆𝑅
2 + ℎ𝜎ω

2
= 𝐾sin(𝜃𝑑) 

Solving for 𝜎𝑆𝑅
2   

𝐾(𝜎𝑆𝑅
2 + ℎ𝜎ω

2)sin(𝜃𝑑) = 𝜎𝜔
2𝜃𝑑 

𝐾𝜎𝑆𝑅
2 sin(𝜃𝑑) = 𝜃𝑑𝜎𝜔

2 − 𝐾ℎ𝜎ω
2sin(𝜃𝑑) 

𝜎𝑆𝑅
2 = 𝜎𝜔

2 [
𝜃𝑑

𝐾sin(𝜃𝑑)
− ℎ] 

 Importantly this variance is dependent on the current relative difference in position 

between the agent (𝜃𝑖) and the target state (𝜃𝑗). When we generate a matrix based on Gaussian 

curves centered at j, each column represents a different current location for agent i. As such this 

variance will differ for each column. On the other hand, regardless of where the agent is 

currently, the position of the target remains stable.  

 To conclude, we will reorganize this equation to aid in developing an intuition for its 

theoretical meaning. First, define 𝑟𝑑 as the ratio of arc-distance (𝑑𝑎𝑟𝑐 = 𝜃𝑑) and cord-distance 

(𝑑𝑐𝑜𝑟𝑑 = |𝑣⋆(𝑠𝑖) − 𝑣⋆(𝑠𝑗)|2)  

𝑟𝑑 =
𝑑𝑎𝑟𝑐

𝑑𝑐𝑜𝑟𝑑
 

 Next note the following (for illustration see Figure 14): Where 𝜌 is the angle between the 

tangent at 𝑠𝑖 and the cord between 𝑠𝑖 and 𝑠𝑗. 

𝑑𝑐𝑜𝑟𝑑

sin 𝜃𝑑
=

1

cos 𝜌
 

 Finally, this gives us: 

𝜎𝑆𝑅
2 = 𝜎𝜔

2 [
𝑟𝑑

𝐾 cos 𝜌 
− ℎ] 

(18) 

(19) 
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 With this, we are prepared to finalize the discrete time and discrete space representation 

of the KM. Before doing so we will pause and discuss the intuition behind this equation. 

 One last note, the variability in the curve that 𝑥𝑖(𝑡 + ℎ) defines will be equal to  

1

1
𝜎𝑆𝑅

2 +
1
𝜎𝜔

2

 

Figure 14 

Illustration of Similarity Ratio 

 

Note. The cosine of 𝜌 represents the similarity of the direction of motion (i.e., A) and the 

direction of influence (i.e., 𝐷𝑐𝑜𝑟𝑑). 
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 Theoretical Interpretation of 𝛔𝐒𝐑
𝟐  Equation. The variance of any column of the V 

matrix represents how strongly the target state influences the agents' movements. If there is no 

variance (i.e., the column is a delta function) then the agent will always move to the exact 

position of the target. If the variance is infinite (i.e., the column is uniform) then the target has no 

impact on the movement of the agent.  

 There are five components of Equation 19 above. Each component is described and the 

intuition behind their impact discussed. First 𝜎𝑆𝑅
2  is directly proportional to 𝜎𝜔

2 . This has 

relatively little theoretical importance and can mainly be thought of as a scaling factor. Because 

of this relationship, however, we can increase the total precision of 𝑥𝑖(𝑡 + ℎ), to arbitrarily high 

by simply decreasing the variance of the base function for Ω. The second feature of note is the 

solo h. This represents a correction factor for discrete-time effects. As the timestep decreases in 

size to zero, this factor has a diminished overall effect. Again, there is little theoretical 

importance here, as this reflects the impact of using a discrete representation. 

 The remaining three features are all theoretically meaningful. First, 𝐾 is closely related to 

the notions of social responsiveness and coupling strength. From an expectancy theory 

perspective, K is essentially a measure of the utility associated with proximity to the target state. 

The larger K is the smaller the variance of 𝜎𝑆𝑅
2  and the stronger the draw to the target state will 

be. Next both the 𝑟𝑑 and the cos 𝜌 terms are related to the concept of instrumentality. 

Specifically 𝑟𝑑 is the ratio between the straight line distance from the agent to the target, and the 

actual distance that the agent would travel to get to the target. The larger this ratio is the weaker 

the connection between the agent’s efforts and the desired state of being proximal to the target. 

In other words, greater values of 𝑟𝑑 represent weak instrumentality, and as such large 𝑟𝑑 values 

will diminish the influence the target has on the agent. The cos 𝜌 term is likewise related to the 
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concept of instrumentality. Specifically, this term gives the inverse of the cosine similarity 

between the direction of motion an agent must travel and the direction (across the circle) that 

they are being pulled. If these directions are orthogonal this suggests that no possible movement 

by the agent will immediately bring it closer to the target. As such, the agent would experience 

critically low levels of instrumentality. On the other hand, when these two directions are nearly 

parallel, this term will approach the value 1, indicating that the instrumentality of the given move 

is high. 

 Thus, the equation for 𝜎𝑆𝑅
2  (Equation 19) provides theoretical insight into the impact of 

valence and instrumentality associated with moving toward a desired state. 

Multiple Agents. The final step in describing this system is to incorporate multiple 

agents. Specifically, thus far the system has been identified with only one agent and a fixed 

target state. We will now extend this to apply to systems of 𝑛 agents that all impact each other. 

The extension is straightforward. Specifically, we can define 𝑉𝑖𝑗 as the independence 

factor accounting for the impact of agent j on i. Note that 𝑉𝑖𝑖 = 𝐼. To account for multiple 

sources of influence we simply calculate new independence factors for each one and take their 

product. 

𝑥𝑖(𝑡 + ℎ) = [𝑉𝑖1 ⊙ 𝑉𝑖2 ⊙ …⊙ 𝑉𝑖𝑚 ⊙ Ωℎ]𝐷𝑥𝑖(𝑡) 

Without loss of generality, we assume that 𝜃𝑖 = 0. With this, we can calculate 

𝜃(𝑥𝑖(𝑡 + ℎ)) based on the first column of [𝑉𝑖1 ⊙ 𝑉𝑖2 ⊙ …⊙ 𝑉𝑖𝑚 ⊙ Ωℎ]. Instead of calculating 

𝜎𝑆𝑅
2  separately for each alter agent’s location, we hold 𝜎𝑆𝑅

2  constant for each column across all V 

matrices. This is done by calculating 𝜃𝑑 based on the difference between 𝜃𝑖 and the average 𝜃 for 

all agents. Following the KM’s design, we divide K by N. Based on this we get the following: 

(20) 
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𝜃⋆(𝑥𝑖(𝑡 + ℎ)) =
𝜎𝜔

2 ∑
𝜃𝑗

𝑛𝑗

𝜎𝑆𝑅
2 + 𝜎𝜔

2
+ 𝜔𝑖 

From here it is straightforward to show: 

⇒ Δℎ(𝑥𝑖(𝑡 + ℎ )) = 𝜔𝑖 +
𝐾

𝑛
∑sin 𝜃𝑗 − 𝜃𝑖

𝑗

 

This is equivalent to the KM (Kuramoto, 1984). 

Equivalence to KM. By construction, the CSN described here is equivalent to the 

complete KM in the limit on the number of discrete states (i.e., 𝑚) and the limit on the size of the 

discrete-time interval (i.e., lim ℎ → ∞).  

There are various points where the proof thus far is not complete. Specifically, math 

repeatedly relies upon discrete approximations of continuous functions. Further work will need 

to demonstrate in each case the appropriateness of these approximations and whether the limits 

applied at the end sufficiently demonstrate equivalence to the KM. Furthermore, the relationships 

described here were originally applied to non-oscillating systems. Because the system is 

periodic, these relationships may have other issues. I posit that in each case appropriately 

allowing the number of states to increase, the time to decrease, and the base 𝜎𝜔
2  variance to 

decrease will be sufficient but leave the rigorous proof as an exercise for future work.  

Generalization of the CSN Model 

𝑥𝑖(𝑡 + ℎ) = [𝑃𝑖 ⊙ 𝑉𝑖 ⊙ Ωh]𝐷𝑥𝑖(𝑡) 

As described thus far, the formal CSN model (Equation 21) is not particularly useful for 

understanding teams. Both 𝛺 and 𝑉 are under strict assumptions that make the model act in an 

oscillatory manner equivalent in the limit to the KM. However, these strong requirements are not 

needed. Specifically, the model as presented here applies to numerous scenarios that have 

(21) 
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significantly relaxed assumptions. In this section, I will briefly describe the components of the 

CSN model theoretically and discuss multiple forms that these could take. I will also extend the 

CSN to account for a priori coordination efforts using the matrix 𝑃. 

Table 2 

Mathematical Notation Used in the Formalized CSN Model 

Value Symbol Shape Description 

Individual 

State 
𝑥 

𝑚 A vector encoding the probability of actor i being in a 

given state at time t. 

Expectancy 

Matrix 
Ω 

𝑚 × 𝑚 A matrix encoding how likely/difficult the transition 

from any one state to any other state for the given 

actor. This defines the notion of distance. 

Valence/ 

Instrumentality 

Matrix 

𝑉 

𝑚 × 𝑚 A matrix encoding how valuable transition to a given 

state will be (valence) as well as how much a given 

transition will bring the actor closer to the desired 

state (instrumentality). 

Plan Matrix 𝑃 

𝑚 × 𝑚 A matrix encoding the a priori model for what 

individuals believe they should perform at a given 

time. This is affected by precision in both temporality, 

and precision in ability to distinguish states (tasks). 

Normalization 

Factor 
𝐷 

𝑚 × 𝑚 

(diagonal) 

A diagonal matrix with values used to standardize 

Equation 21 such that the result is a proper Markov 

matrix.  

Note. ND stands for nondimensionalized symbols. The Motivator Strength 𝑚, Ready State Loss 

𝑙𝑅, and Independence Constant 𝛽𝑈 are all treated as model constants with the characteristic 

values and removed from the non-dimensional equations. 

 

Expectancy (𝜴) 

First, we will consider 𝛺. This is the natural transition matrix encoding what states/tasks a 

person is likely/able to transition to, given what they are currently doing. While it has thus far 

taken a circulant form (in effect assuming regular oscillation) it does not need to. Any 𝐾-

dimensional Markov transition matrix could be appropriate here. The point is that 𝛺 encodes the 

probabilistic transitions that a given actor will follow in the absence of external influence. 
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To illustrate just one alternative form, let us consider an example where one person 

always shifts to a specific task (resetting) whenever they complete other tasks. At any given time 

point they have a fifty-percent chance of resting or continuing with their task. When they are 

done, they have a fifty-percent chance of continuing resting and the remaining 50-percent chance 

is split between starting any of the remaining tasks. In this example, 𝛺 would look something 

like the following: 

𝛺 =

[
 
 
 
 
 
 
 
 
 

. 5 . 5 . 5 . 5 … . 5

. 5

𝐾 − 1
. 5 0 0 … 0

. 5

𝐾 − 1
0 . 5 0 … 0

. 5

𝐾 − 1
0 0 . 5 ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱
. 5

𝐾 − 1
0 0 … 0 ]

 
 
 
 
 
 
 
 
 

 

The first row of all . 5’s represents the fact that from any previous state, agents have a 50-

percent chance of deciding to transition to the first state - resting. The remaining rows all have a 

.5 on the diagonal, representing the fact that they have a 50-percent chance of remaining at a 

given task. The first column represents the fact that from the resting state, there is a 50-percent 

chance that the agent will keep resetting, and the remaining 50-percent probability is split among 

all the remaining states. 

This is just one example of the types of shapes that 𝛺 could take. The columns of 𝛺 must 

sum to 1, and it must be an 𝑚 × 𝑚 matrix. Additionally, it is assumed that 𝛺 has positive values. 

These are the restrictions of a Markov matrix. But otherwise, it can have any form within these 

restrictions that is desired. 

In many teams, the tasks are divided such that each team member is responsible for a 

specific set of tasks. Otherwise, individuals may simply have strong preferences for some tasks. 
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In this case, there will be specific rows in 𝛺𝑖 that have a much higher total than other rows. Tasks 

frequently performed by agent 𝑎𝑖 will have a large corresponding row sum in 𝛺𝑖 while tasks 

infrequently performed by agent 𝑎𝑖 likely have a much smaller corresponding row sum. 

It should be noted that conceptually 𝛺𝑖 represents the tasks that the given agent, 𝑎𝑖, is 

capable of performing/believes they are capable of performing. If someone frequently performs 

tasks that they are not assigned, this should be reflected in a larger corresponding row sum in 𝛺𝑖 

although they are not formally assigned to that task. 

Social Responsiveness (𝜿) 

Next, I note that 𝜅 may have various forms. As defined here it is a single value that is held 

constant across members of the team. However, it may be better represented as an individual 

characteristic (i.e., some people are more socially responsive than others) or a dyadic 

characteristic (i.e., some people respond more to specific others). In many cases, I suggest that a 

network-based representation of 𝜅 with dyadic values is merited. However, it is reasonable to 

assume that the disparities in 𝜅 values will be limited in some cases. In such cases, using a single 

𝜅 value represents a reasonable approximation of how the team will function. 

Instrumentality 

As defined above, the instrumentality is found within the equation for 𝜎𝑆𝑅
2 : 

𝑟𝑑
cos 𝜌

 

This is effective for representing the instrumentality of transitioning to a state 𝑠𝑘 

concerning the goal of being proximal to 𝑎𝑗. However, the way this works is specifically tied to 

the notion that tasks are distributed in a circle and the difficulty of changing from one task to 

another is related to the arc distance between the two tasks. This idea of instrumentality can be 

generalized. Specifically, in the circular case this represents the ratio of distance traveled 
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compared to straight line distance, as well as a measure of the similarity between the initial 

trajectory an agent will follow and the direct trajectory of influence. I define an instrumentality 

coefficient 𝜉 that generalizes these ideas. 

The assumption that for any agent to move to another state requires a change of some 

distance is in effect; however, there will be a lesser change in the distance upon which the force 

acts. The product of this ratio and the inverse of the cosine similarity between the trajectory of 

influence and the trajectory of motion will be defined as 𝜉, the instrumentality parameter. In 

cases where motion is not restricted to some path, this value will be 1. 

Interdependence Networks and Redefining Distance 

 Thus far, interdependence as used here could be defined by a circular interdependence 

graph, where individuals are driven to move to network positions most proximal to others. This 

simple set up is informative but not the only viable option.  

 We can generalize the notions of interdependence here by defining distance in two ways. 

First there is the way in which agents move. Distance here defines how easily an agent can move 

from one task to another. This will be incorporated into the expectancy matrix Ω. In the KM 

example, this distance of motion is defined by the arc distance between any two states when they 

are projected onto a circle. Instead, more complicated relations could be defined here, indicating 

the difficulty of transitioning between any two states. 

The other way to define distance is via proximity within an interdependence network. In 

the KM example, this second form of interdependence was established such that the proximity 

between any two states was defined by the straight-line chordal distance between the two states 

(when the states are projected onto a circle). Whereas the first distance was a distance of motion 

or transition, this distance is a distance of influence or attraction. While any matrix of non-
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negative values could be used to define a distance network, it is reasonable to use spectral 

clustering to estimate the distance of influence associated with a given interdependence network. 

Let 𝐺 be an interdependence network with positive weighted edges indicating pairs of 

tasks that are ideally performed together. I use the first two dimensions defined by the spectral 

decomposition of the graph Laplacian to define spectral positioning among the tasks. Distance is 

then defined by Euclidian distance between these spectral positions. Notably this is equivalent to 

what we did for KM when 𝐺 is a circular graph.  

The columns of 𝑉 will be of the form: 

𝑉𝑖𝑗[: , 𝑠] = 𝑟𝑒

−(𝜓𝑠−𝜓𝑗)
2

2𝜎𝑆𝑅
2

 

Where 𝜓𝑠 represents the spectral position of the sth state. In some cases, instead of being 

driven to perform similar tasks, it is ideal to perform tasks as distal as possible. In such cases, the 

negative sign in front of the Euclidean spectral distance will be removed. 

Multiple Interdependence networks may impact a team at one time. This can be modeled 

by defining additional 𝑉 matrices that for the new dependency network. Specifically, it is very 

possible that while spectral proximity is ideal, it is best if teammates do not double up on the 

same task. In this case distance to one’s self is defined as 0, and all other distances are set to 

some equal fixed number, and the negative sign is dropped. This leads to valence associated with 

not performing the same task as another agent. 

A Priori Coordination Effort 

 The last step in building the network model of team coordination is to incorporate a 

priori coordination efforts. The KM is an entirely spontaneous model of synchronization, 

however, in interest of investigating the theoretical claims of this model regarding the differential 

(22) 
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effects of in situ and a priori coordination in various team contexts, it is important to explicitly 

incorporate a mechanism for a priori coordination. 

 This managed using a new matrix 𝑃𝑖(𝑡). Specifically, the 𝑃𝑖(𝑡) matrices columns are all 

identical. The established plan for who will do what and when can change over time. As with 𝑉 

and Ω there 𝑃 is defined by variances, these control the level of precision in the plan. There are 

two different types of precision. Temporal precision controls how accurate the plan is regarding 

time. Secondly there is state precision which represents the ability of the plan to clearly 

distinguish between different states. 

Simulations of the CSN Model 

I have two main goals in the scope of this dissertation regarding this model. My first goal 

is to prove the equivalence of the network model with the KM. The purpose of proving this 

equivalence is to demonstrate the consistency of my proposed model with the existing literature, 

thereby demonstrating a level of credibility to an otherwise somewhat arbitrary formalization of 

the model. 

With this goal completed, my remaining goal is to explore the implications of this model. 

In the remainder of this chapter, I will describe a set of simulation studies conducted and present 

the results. This dissertation then concludes with a discussion and future directions. 

Overview of the Simulations 

To explore the dynamic nature of feedback within the complexities of a network 

paradigm for understanding interdependence in the system, I simulated 16,000 teams with 6 

agents each across 101 time steps (initial conditions and 100 simulated steps). Data were 

aggregated to the team level leaving 1,616,000 step-level observations. 
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Dependent Variable. The main dependent variable of the simulations was coordination. 

Technically, we measured a lack of coordination, defined as a Rayleigh Coefficient of the 

interdependent network (i.e. G) Laplacian matrix (i.e., call it L), and a vector 𝑥(𝑡). Where 𝑥(𝑡) ∈

ℝ𝑚, 𝑥 = ∑ 𝑥𝑖(𝑡) −
sum(𝑥𝑖)

𝑚𝑖 . 

𝑢 =
𝑥𝑡𝐿𝑥

𝑥𝑡𝑥
 

This value (Equation 23) represents a sum of squared differences between any two nodes 

in the network G weighted by the strength of the edge between the given nodes. When team 

members are performing actions that support each other this coefficient will be high, and when 

team members are simply randomly performing tasks, this will be very low. To define 

coordination, c, we scale the negative of all simulated u values across the 1.6 million 

observations. A c value of 0 represents coordination that is average across all simulations, while 

a 1 represents one standard deviation above the mean level of coordination. 

It should be noted that there are numerous alternative approaches to measuring 

coordination. Each has its own strengths, weaknesses, and theoretical nuances. The Rayleigh 

coefficient of the interdependence graph Laplacian most closely approximates my current use of 

coordination, but other applications may want to explore such parts as the correspondence 

measured as r in the equation for 𝜃(𝑥), or the Rayleigh coefficient of the graph adjacency 

matrix. As noted, the Laplacian approach provides clear theoretical meaning. However, one 

nuance of using this is that when multiple agents perform the same task this value is reduced, 

thus this operationalization of coordination does not count exact synchronization as coordination. 

In many cases, this may be appropriate, but in others, it is not. 

Independent Variables. There are two primary independent variables of interest. First is 

social responsiveness. This is 𝐾 as used previously in the equation for 𝜎𝑆𝑅
2 . For the remainder of 

(23) 
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this chapter, I will use SR to label this value for interpretability reasons. As 𝑆𝑅 increases, agents 

will be more strongly influenced by other agents. From an expectancy theory perspective, this 

represents the valence associated with proximity (defined by the influence-based-distance 

metric) to other agents’ states. Several parameters influence the scale and interpretation of 𝑆𝑅. 

Perhaps most notably the value of 𝜎𝜔
2  has a very direct impact on the way that 𝑆𝑅 functions. For 

this reason, exact values do not bear significant theoretical interpretation. However, based on 

previous work with the KM, it is reasonable to assume that 𝑆𝑅 ranges between 0 and 2. I allow it 

to go as high as 3 to illustrate what occurs in cases of extreme social responsiveness.  

The second independent variable is a priori plan precision. As noted previously, the 

matrix 𝑃 found in the model has precision in two ways. I use one factor that controls both types 

of precision. Essentially the precision term, p, controls the extent to which agents can distinguish 

between times as well as between individual tasks when attempting to follow a plan. The 

precision parameters (i.e., 𝜌𝑑 and 𝜌𝑡) listed below are used as variances incorporated into an 

error function describing the agents' ability to distinguish states or time. These variances are both 

divided by p. Thus large values of p indicate cases where the agents can accurately distinguish 

times or states, while small p indicates cases where agents are worse at making such distinctions. 

See the Appendix for more details on the implementation. In the simulations run for this 

dissertation, p ranges from 0 (indicating that there is not an effect from a priori effort) and 10 

(indicating a significant amount of a priori influence on tasks). 

Moderators. A primary goal of the CSN model is to address the variable effect of a 

priori and in situ coordination under complex vs. simple and volatile vs. stable teamwork 

contexts. As such there are two primary moderators, each with two values creating a 2X2 design 

(4,000 teams in each cell).  
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First, complexity describes the complexity of the interdependence structure. The concept 

of interdependence network structures was established by Griffin and colleagues (2022a, 2022b). 

In this paradigm, interdependencies are thought of as relationships between tasks, people, roles, 

and resources defining how one’s performance is impacted by others. In the simple case, 

interdependence is defined following a simple circular interdependence graph. This is analogous 

to the synchronization task described by the KM anddescribes a situation where tasks are clearly 

proximal (in which case you want to perform them at the same time) or not. There is little 

complexity; all you need to do is get as close to the same state as your teammates as possible and 

move with them. On the other hand, the complex case is defined by a randomly generated 

interdependence graph (with a density of .25). Managing interdependence in such a scenario 

effectively is much harder because each task a team member performs could have cascading 

consequences for their team members. Additionally, in the complex case, it is assumed that not 

only do team members want to perform tasks that aid each other, but there is a cost for having 

multiple agents performing the same task. 

As noted previously, this paradigm is distinct from but compatible with prominent 

conceptualizations of interdependence (e.g., Courtright et al., 2015; Shiflett, 1972; Steiner, 

1972). For example, sequential interdependence can be defined by defining interdependence 

relationships between tasks later in a sequence with outcome states of earlier tasks. For 

simplicity, I do not directly simulate a sequential interdependence structure, but could without 

significant effort.  

Volatility is measured through changes in the 𝑃 matrix. At each time point, there is a 

“perfect” plan established. This is defined by encouraging all members of the team to perform 

one of the tasks that correspond to either the largest n positive or smallest n negative value in the 
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first eigenvector of the interdependence graph Laplacian. At any moment every agent is assigned 

a specific task to perform based on this criterion. Thus, the plan will promote coordination as 

defined by the Laplacian. In the low-volatility condition, 𝑃 undergoes one shift from positive 

spectral positions to negative spectral positions. In the volatile condition, 𝑃 undergoes 10 such 

shifts (each time, each agent is assigned a new task). Note that agents are not able to perfectly 

identify the plan as discussed previously. Their individually held beliefs regarding the a priori 

plan incorporates noise into this plan accounting for potential errors in timing precision, and 

potential errors where proximal tasks are mistaken for each other. 

Table 3 

Model Variables and Parameters of Interest 

Name Symbol Value/ 

Range 

Description 

Independent Variables 

Social responsiveness 𝑆𝑅 [0,3] Strength of in situ coordination efforts 

Plan precision 𝑝 [0,10] Strength of a priori coordination efforts 

Moderators 

Complexity -  High/Low Overall complexity of task interdependence. This 

is related to sensitivity to detail and cognitive load 

of coordination demands.  

Volatility -  High/Low The extent to which task demands change 

frequently. This is related to the time scale of 

tasks and sensitivity to information decay. 

General Simulation Parameters 

Number of Simulations -  16,000 Total number of simulated teams 

Number of agents 𝑛 6 Number of agents in each team 

Number of tasks/states 𝑚 20 Number of tasks that team members chose among 

Number of time steps 𝑇 100 Number of time steps in each simulated team 

Model Parameters 

Expectancy constant 𝜎𝜔
2  .1 The variance in what tasks have a high expectancy 

State precision 𝜌𝑑 1 How well agents can distinguish between planned 

tasks 

Temporal precision 𝜌𝑡 12.5 How well agents can distinguish planned timing 
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Other Parameters of Interest. The CSN model incorporates various other parameters of 

interest. Due to the complexity of the model, interested readers are invited to look through the 

source code (Appendix C). With this said, I will list a few here worth noting in Table 3 below. 

Results 

Simulations of the CSN provide consistent support for the distinct temporal and density-

based effects of a priori (e.g., planning) and in situ (e.g., social responsiveness) coordination 

efforts. The general pattern of results found from the simulations for each of four cases are 

described separately (i.e., High/Low Volatility X High/Low Task Complexity). After this more 

qualitative discussion, I provide a quantitative analysis demonstrating the distinct effects of 

temporal load and temporal stability of a team’s performance context on coordination efforts. 

Notably, an SR score of greater than 1 represents agents being more influenced by others 

than by their own interests. As such, it is reasonable to consider SR > 1 as high, and SR > 2 as 

extremely high. The scale on P is dependent on simulation parameters, but for the sake of 

discussion, I refer to P = 10 as High a priori/planning efforts, 7.5 as Moderately-High, 5 as 

Moderate, etc. Coordination was standardized across the entire sample so that 0 represents 

average amounts of coordination compared to all other simulations, while 1 represents one 

standard deviation above the mean level of coordination. 

Qualitative Analysis of Simulated Coordination Patterns 

 Simulations are grouped into four cases, based on High/Low Complexity X High/Low 

Volatility. Each of the figures presented below represents one case (e.g., High Complexity, Low 

Volatility), and presents the average observed levels of coordination (i.e., the DV represented on 

the vertical axis) for teams with various levels of social responsiveness (in situ coordination 

represented on the horizontal axis) and various levels of a priori planning/coordination efforts  
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Figure 15 

Coordination in Low-Complexity, Low-Volatility Teams 

 

Note. Lines indicate coordination levels for the average of 50 simulated teams. Each line is fit using a localized cubic spline. Colored 

shaded regions represent 95% confidence intervals for the population mean of teams at a given level of social responsiveness 

(horizontal axis) and planning (line color).
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(represented through the color of a given line). Details regarding the operationalization and 

implementation of these factors can be found in Table 3 and Appendix C. 

Low C-Low V. Results for Low Complexity, Low Volatility (Figure 15) indicate 

relatively little impact from planning, but clear non-linear impacts for social responsiveness. The 

finding is that moderately high levels of SR promote coordination in these simple contexts; 

however, further increased SR levels actually leads to a diminished level of coordination. This is 

likely due to the fact that such high consciousness of what the other agents are doing leads to 

switching without consideration of their own needs or what the others may do in the future. An 

example of such behavior is prevalent in the common occurrence of when two people walking in 

opposite directions both step in the same direction multiple times to get around each other in a 

hallway.5  

 High C-Low V. Results for High Complexity, Low Volatility (Figure 16) are consistent 

with the theoretical predictions discussed previously. Specifically, a priori efforts appear to have 

more overall effect than in situ SR. For example, when P is 0 (the purple line), increases in SR 

have essentially no effect, whereas increases in P have clear and immediate positive effects on 

team coordination. In general, the more precision in planning the better. This is exactly what 

would be expected based on the theoretical discussion. 

There are, additionally, more nuanced features of the simulated results which merit 

discussion. It is important to first recognize, however, that many of the features in  

 
5 Notably this effect is not present when using a different operationalization of coordination (for example the density 

radius); however such operationalizations of coordination are primarily applicable to the context defined by low task 

complexity, as defined here.  
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Figure 16 

Coordination in High-Complexity, Low-Volatility Teams 

 

Note. Lines indicate coordination levels for the average of 50 simulated teams. Each line is fit using a localized cubic spline. Colored 

shaded regions represent 95% confidence intervals for the population mean of teams at a given level of social responsiveness 

(horizontal axis) and planning (line color).
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the simulated outcomes are likely artifacts of chance P; however, it appears that there is a general 

pattern where increased SR promotes coordination in teams with Moderately-High levels of (i.e., 

the green line), while increased SR leads to reduced coordination in teams with High levels of P 

(i.e., the yellow line). This suggests the theoretically important notion of interference, where 

strong levels of social responsiveness (SR) may mitigate the coordination benefits of planning. 

Future work will need to investigate this more.  

 Low C-High V. Results for high volatility contexts again were consistent with theoretical 

predictions discussed previously. Specifically, in highly volatile contexts social responsiveness is 

highly important overall, while P has inconsistent effects. In general, patterns are similar to the 

case with low complexity and low volatility where there is no clear if any P-effect, but a fairly 

clear SR effect. In fact, in the high volatility cases, this pattern is accentuated. For low to 

moderately high levels of SR, P has almost no apparent effect on coordination, whereas there is a 

clear positive strong effect of SR on coordination. Again, as SR becomes large there is clear 

simulated evidence of over-responsiveness where increased SR leads to reduced coordination. 

 Additionally, it appears that there may be a curvilinear effect for P on coordination when 

SR is high. This would suggest that teams working in simple but temporally volatile contexts 

will be less likely to experience the over-coordination phenomenon if they have moderate or 

moderately-high levels of P as opposed to very high or low levels of P. As mentioned previously, 

this “over-coordination” phenomenon is very dependent on the operationalization of 

coordination and disappears if you use the right coordination metric (See Appendix for details 

and comparisons of alternative operationalizations of coordination). 
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Figure 17 

Coordination in Low-Complexity, High-Volatility Teams 

 

Note. Lines indicate coordination levels for the average of 50 simulated teams. Each line is fit using a localized cubic spline. Colored 

shaded regions represent 95% confidence intervals for the population mean of teams at a given level of social responsiveness 

(horizontal-axis) and planning (line-color).
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Figure 18 

Coordination in High-Complexity, High-Volatility Teams 

 

Note. Lines indicate coordination levels for the average of 50 simulated teams. Each line is fit using a localized cubic spline. Colored 

shaded regions represent 95% confidence intervals for the population mean of teams at a given level of social responsiveness 

(horizontal-axis) and planning (line-color).
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 High C-High V. While results for high complexity and high volatility are consistent with 

the information theory-based paradigm used for understanding coordination, this model does not 

explicitly describe what should be expected in the case of an interaction between high 

complexity and high volatility. Our results indicated a sort of pick one way or another but not 

both patterns. 

For instance, in (Figure 18) there is a clear positive effect for SR (at least for moderate 

levels of SR) when P is low, and a clear negative effect for SR when P is high. Similarly, P has a 

clear positive impact on coordination when SR is low to moderately high, but very little effect 

when SR is high. Notably, coordination is optimized for low levels of SR and high levels of P. 

These simulations thus suggest the presence of an interaction where P and SR each have 

diminished effects as the other increases. The more socially responsive a team is, the less 

planning will help them, and the more they plan the less social responsiveness will help them 

coordinate in the context of these simulations. 

 

Table 4 

Regression Coefficients Predicting Coordination 

 Low C – Low V 

b (SE) 

High C – Low V 

b (SE) 

Low C – High V 

b (SE) 

High C – High V 

b (SE) 

Intercept -.152 (.043) -.73 (.044) -1.077 (.042) -.209 (.042) 

SR 1.268 (.054) .628 (.056) 1.974 (.053) .162 (.053) 

SR^2 -.548 (.017) -.298 (.018) -.708 (.017) -.207 (.017) 

P .042 (.013) .271 (.014) .164 (.013) .19 (.013) 

P^2 -.007 (.001) -.017 (.001) -.014 (.001) -.009 (.001) 

Note. Here, b represents unstandardized regression coefficients. C is for complexity and V is for 

volatility. Each model was identical but applied to data from different simulations (e.g., High 

Complexity, Low Volatility). 
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Regression Analysis 

 Using this same simulated team data, I regressed SR and P onto coordination for data 

collected from each of the four cases separately. Because coordination does not have an 

inherently interpretable scale, I standardized all coordination scores. Results are presented in 

Table 4. As seen in Figure 19, the a priori coordination efforts (e.g., planning) have a stronger 

impact on coordination in high-complexity team contexts situations vs. low-complexity contexts. 

This is seen from the fact that the line representing high complexity (solid red line) is higher than 

the line representing low complexity contexts (dashed blue line). Again, this provides support for 

the theorized relationship between a priori work and coordination in complex contexts.  

Figure 19 

Regression Coefficient of Planning on Team Coordination 

Note. The graph presents coefficients for P (i.e., a priori coordination effort) on team 

coordination controlling for P^2, SR, and SR^2. P ranges from 0 to 10. 
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There is mixed support for the relationship between contextual volatility and the 

importance of in situ coordination efforts. As demonstrated in Figure 20, SR has a stronger 

impact on coordination in volatile vs. stable contexts, but only when complexity is low. This is 

demonstrated by the positive slope for the low complexity contexts (blue-dashed line) in Figure 

20. It should be noted that for high complexity, increased volatility leads to a diminished impact 

of SR (see the red line in Figure 20). This highlights the presence of an interaction relationship 

between complexity and volatility. This may also be partly explained by the fact that all 

predictors are generally weaker in high complexity, high volatility teams, as seen in Table 4. 

Regardless, SR has a very different impact on coordination depending on the level of complexity. 

Figure 20 

Regression Coefficient of Social Responsiveness on Team Coordination 

 

Note. The graph presents coefficients for ST (i.e., in situ coordination effort) on team 

coordination controlling for SR^2, P, and P^2. P ranges from 0 to 3. 
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 As a supplemental analysis, I ran a set of regression models that predict coordination as 

anteceded by P, P^2, SR, and SR^2, and included complexity and volatility as moderators. 

Results are presented in Table 5 

Table 5 

Regression Coefficients for Simulated Data 

 Model 1: 

𝛽 (SE) 

Model 2: 

𝛽 (SE) 

Model 3: 

𝛽 (SE) 

Intercept .811 (.027) .162 (.032) .044 (.034) 

SR -.213 (.0122) 1.177 (.043) 1.177 (.043) 

SR^2  -.463 (.014) -.463 (.014) 

P .001 (.003) .001 (.003) .095 (.01) 

P^2   -.009 (.001) 

Complexity -1.151 (.031) -.895 (.037) -.979 (.039) 

SR -.159 (.014) -.707 (.05) -.707 (.05) 

SR^2   .183 (.016) .183 (.016) 

P  .099 (.004) .099 (.003) .167 (.012) 

P^2    -.007 (.001) 

Volatility -.177 (.031) -.127 (.037) -.074 (.039) 

SR  .056 (.014) -.05 (.05) -.05 (.05) 

SR^2   .035 (.016) .035 (.016) 

P  -.001 (.004) -.001 (.003) -.044 (.012) 

P^2   .004 (.001) 

Note. Regression coefficients and their standard errors, for models predicting standardized 

coordination scores as an outcome. 
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Summary 

The CSN model presented here has significant potential as a tool for exploring the 

implication of various facets of coordination in interdependent systems described by the CST 

framework. The CST paradigm provides valuable insights into the nature of coordination. 

Specifically, this model addresses the three limitations of coordination literature identified 

previously. First, this model explicitly incorporates social mechanisms driving the emergence of 

coordinated team action. This provides a clear perspective of how coordination processes are 

embedded within local team social contexts. Secondly, this model and simulations explicitly 

focus on the dynamic process of coordination, accounting for the important role of feedback and 

explicitly considering the trajectory of coordination in teams. Furthermore, the process-

mechanism-oriented model can directly assess the theoretical implications of this work. As such, 

this work serves as a viable foundation for future empirical investigations into the mechanisms 

driving coordinated team behaviors. As with the previous model, there are several principles 

distilled from the results of the model. 

Principles of the Model 

 The first principle is related to the concept of synchronization. Because the CSN is built 

upon an established model of synchronization (i.e., the Kuramoto Model), it brings with it a 

depth of information and a body of literature that is relevant to its interpretation. Although the 

equivalence of the proposed mathematical model is not strictly necessary for this to be a viable 

representation of the social-information theory-based paradigm of coordination process 

mechanisms, it provides valuable insight into the model. 

 The CSN model explicitly indicates a connection between synchronization and 

coordination. Perhaps most importantly, the model clarifies the distinction between the two 
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concepts. Whereas synchronization implies doing the same thing at the same time, coordination 

implies doing the right thing at the right time. As such, coordination represents a closely related 

but much more complex concept than synchronization. Understanding the differences between 

these two concepts may have important theoretical and practical implications. 

 Principle 7: Coordination is conceptually distinct from, yet closely related to, 

synchronization. 

 Results from the simulations serve as a test of “generative sufficiently” and the logical 

consistency of the theorized information-based coordination process mechanisms. In particular, 

this work explicates the impact of complexity and volatility on in situ vs a priori coordination. 

This serves as a foundation for understanding the differences between these two types of 

coordination and the contextual features of teamwork that influence their differential impacts. 

 The results demonstrate the logical consistency of the theorized relationships. In 

particular, in situ coordination efforts in the model have a stronger impact on team coordination 

outcomes for highly volatile teamwork contexts. Similarly, a priori coordination efforts have a 

stronger impact on team coordination efforts for simulated teams in highly complex work 

contexts. 

 Principle 8: Complex work contexts are more strongly impacted by a priori coordination 

efforts than simple work contexts. 

 Principle 9: Volatile work contexts are more strongly impacted by in situ coordination 

efforts than stable work contexts.  

 Consistently, results indicated that in situ efforts generally lead to increased levels of 

coordination as was predicted. But somewhat counterintuitively, this effect was only consistently 

found in low-complexity team contexts. Furthermore, this effect experiences diminishing returns 
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as in situ efforts increase. In fact, when social responsiveness increases from strong to very 

strong, overall levels of coordination appear to diminish in each of the simulated conditions.  

Notably, teams that have both highly complex and volatile tasks appear to have an 

interaction in the impact of a priori and in situ coordination. In particular, teams with a high 

degree of a priori coordination do not appear to benefit from a high degree of in situ 

coordination effort. 

These results suggest that teams can be too socially responsive, particularly in highly 

complex contexts. While perhaps counterintuitive at first, there are contexts where this makes 

sense. For example, teams that spend too much effort thinking about what the other person is 

doing may fail to account for their own task needs. Also, individuals driven to perform tasks that 

relate to their teammate’s task may end up duplicating effort. For instance, in teams where there 

is an extremely high level of responsiveness, slight changes in teammate’s actions necessary to 

accommodate a team’s plan could be responded to in an amplified way by teammates. This could 

lead to a positive feedback loop where the original team member adjusts their efforts even more 

drastically. While such cyclical, reactive behavior may be intended to lead to highly coordinated 

action, it is unlikely to do so in an effective way. As such, a more moderate level of social 

responsiveness may be ideal for enabling a team to incorporate and respond to new information 

within an action phase without over-responding. When a team is too socially responsive, the 

team members could possibly neglect their own initial responsibilities while making seemingly 

small natural adjustments to a team’s working strategy.  

 The results of this simulation do not prove that over-coordination is something that 

occurs in teams, it simply presents evidence that the mechanisms discussed in this coordination 

framework are sufficient to create this effect. Moreover, it is important to note that these results, 
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as with all simulated results, are parameter-specific. Additionally, these results depend 

significantly on the definition/operationalization of coordination used. Regardless, the results 

generally indicate that moderately high levels of social responsiveness are positive, but there is 

little need to put effort into further increasing social responsiveness to avoid these levels. This 

further demonstrates how the formalized theories can point to relevant but initially 

counterintuitive concepts. 

 Principle 10: Social responsiveness leads to increased coordination in teams with 

relatively simple task interdependence structures. 

Principle 11: Positive effects of social responsiveness experience diminishing returns 

such that, in general, moderately high levels of social responsiveness lead to maximal levels of 

coordination. Extreme levels of social responsiveness may lead to over-reactivity that leads to a 

reduced level of coordination. 

Limitations 

Results from these simulations are highly dependent on the parameters used and the 

specific operationalization of coordination as well as complexity and volatility. Thus, although 

the results are consistent with the theories’ expectations, this is likely, at least in part, dependent 

on these various operationalizations. The operationalization of coordination used here has some 

specific implications. Coordination as operationally defined here explicitly treats performance of 

the same task by multiple people as duplicated effort, not coordination. This implies a preference 

for an even spread of effort allocation. While duplicated effort may be performant in some cases, 

in many cases multiple tasks must be performed together. For this reason I opted to use this 

operationalization of coordination. It should be noted that this choice is likely to have amplified 

the “over-coordination” effect found in the simulations. While the results cannot be completely 
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explained by this operational choice, future work investigating various operationalizations of 

coordination should be used to evaluate how robust the over-coordination findings are.  

Another significant theoretical issue is that these simulations do not adequately account 

for the need teams have for the ability to adapt to unexpected events. In high complexity and 

high volatility, teams that have strong a priori coordination efforts, and no in situ coordinated 

efforts demonstrate maximized coordinated action. In other words, these teams did the best job at 

coordinating when they performed tasks ignorant of what their teammates were doing at that 

moment. This makes sense for conditions where the volatility the team tasks experience is 

predictable (as is the case in these simulations). It may be more appropriate to operationalize 

volatility in an unpredictable manner. This would lead to the strict observance of a priori plans 

to potentially be problematic if teams have no ability to respond to the unpredicted changes in 

their teammate’s needs. Future extensions to this model should account for random shocks to the 

team’s systems, and other sources of unpredictability. For example, simulations that incorporate 

sudden changes to the team’s work system, team membership, or the external context could 

provide insight not only into how effective teams are, but also how adaptable they are. It is 

expected that even in contexts where results suggested a priori coordination was more important 

than in situ for team effectiveness, teams should have a healthy level of responsiveness to 

effectively adapt. While not trivial, such simulations would be a straight-forward next step in this 

research stream. 

This model underscores the same important factors of coordination that the team-level 

model did. Specifically, it highlights the informational and motivational processes driving 

individuals to coordinate. It does so from a dynamic perspective, clearly and explicitly 

incorporating the localized embeddedness of each individual within their team context. Further, 
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this model highlights the importance of social factors in driving individual responsiveness to 

others and enabling teamwide coordinated effort. Another point to make is that while this model 

is largely conceptual at this point, it has significant potential as an applied tool for modeling the 

impact of different environmental factors, contextual factors, and policy decisions on a team’s 

ability to coordinate.  
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Discussion 

Never doubt that a small group of thoughtful, committed people can change the world. 

Indeed. It is the only thing that ever has. 

― Margaret Mead 

Overview 

 This dissertation lays a foundation for understanding and defining the process 

mechanisms of coordination in a team from a dynamic multi-level perspective. Building on this 

conceptual foundation, I specifically provided a detailed description of the socially embedded 

process mechanisms of emergent coordination in teams and organize this into the Coordination 

Signals Theory (CST) framework. Furthermore, this work specifically highlights a signal 

exchange/feedback process that can make coordination a synergistically amplified phenomenon 

and elucidates the distinction between two different forms of coordination efforts and their 

differential impacts on a team’s realized coordination.  

This dissertation contributes to the coordination literature by presenting the CST from an 

information theory-based paradigm underscoring the informational mechanisms of coordination 

that have thus far been largely overlooked. This informational perspective provides a unique and 

powerful way to characterize the coordination demands of various work contexts in terms of 

detail and time sensitivity. Although these contextual elements of work in teams likely play a 

critical role in determining coordination processes, little work has addressed these concepts, 

particularly in a way that addresses the dynamic nature of coordination. 

Moreover, the proposed CST includes two formal mathematical models. The first, the 

CASER model, is a dynamic systems model considering coordination from an aggregated team-

level perspective. This model identifies a qualitative pattern of socially amplified coordination 

through mechanisms of informational feedback. Results from the analysis of this model provide 
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clarity regarding the differential impacts of in situ and a priori coordination efforts on 

coordination signals. Of particular importance, this first model provides significant insight into 

the potential role of dynamic feedback in generating sustained team coordination. Each of these 

constitutes a unique contribution to the coordination literature.  

The CSN (i.e., the second model) presents a network-based perspective of coordination 

processes. This extends the work of the CASER model to account for the locally embedded 

nature of coordination in a team. This second CSN model provides further detail and insight into 

the potential social-informational process mechanisms driving the emergence of coordinated 

actions within teams. This work allows us to consider differences in task ability/assignment, as 

well as differences in interdependence structures and social structures. Results of study two 

provide a clear demonstration of the logical consistency of the theorized impacts of both in situ 

and a priori coordination, which have the potential to inform us of conditions wherein various 

coordination processes will break down, and when coordination is particularly effective. This 

work has highlighted various mechanisms and perspectives on how coordination occurs. Even if 

these are inaccurate, its contribution is to present formally defined mechanisms that can more 

clearly be represented and tested in future empirical work. 

The CSN had two parts. First, I derived the model as a discrete generalization of the 

Kuramoto model. This demonstrates the consistency of the model with existing approaches to 

studying collective synchronous behaviors. Having established the approximate equivalence, the 

next step is to conduct a simulation study. The simulations vary the level of complexity and 

volatility as well as factors representing in situ and a priori coordination. Results provide support 

for the conceptual viability of this social-information paradigm. In addition, this establishes a 

tool for further studying the dynamic, socially-embedded nature of coordination.  
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Table 6 

Principles From Model Results 

# Model Proposition 

1 CASER Coordination in a team will generally follow a dynamic equilibrium 

trajectory, approaching some steady level of coordination within a team. 

2 CASER When a team establishes a strong level of coupling (i.e., social 

responsiveness - effectively generates signals and cues regarding each 

other’s activities, and actively responds to these signals) relative to the 

decay rate of information, the team will exhibit a non-trivial, steady level 

of coordination. The greater the coupling, the larger the steady level of 

coordination in the team. 

3 CASER Teams exposed to some form of external coordination cues, or that have 

some inherent force driving coordination, in the absence of in situ cues 

will exhibit a non-trivial, steady level of coordination. The stronger such 

external influences, the larger the steady level of coordination will be. 

4 CASER Holding the stability of the ready state constant, a team’s steady level of 

coordination will be augmented as the stability of coordination 

information and signal is increased. 

5 CASER Coordination will generally lead to increased performance. This is 

dependent on the level of interdependence of the team (more 

interdependence means stronger relationships between coordination and 

performance), and the process inefficiencies associated with 

coordination. 

6 CASER Feedback is an essential driver of the impact of coordination, and a 

determinant of a team’s ability to establish a steady amplified level of 

coordinated effort. 

7 CSN Coordination is conceptually distinct from, yet closely related to 

synchronization. 

8 CSN Complex work contexts are more strongly impacted by a priori 

coordination efforts than simple work contexts. 

9 CSN Volatile work contexts are more strongly impacted by in situ coordination 

efforts than stable work contexts.  

10 CSN Social responsiveness leads to increased coordination in teams with 

relatively simple task interdependence structures. 

11 CSN Positive effects of social responsiveness experience diminishing returns 

such that in general moderately high levels of social responsiveness lead 

to maximal levels of coordination. 
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Practical Implications 

There are numerous practical implications for this work. First, by explicating the 

differences between in situ and a priori coordination, the CST points to distinct routes of 

intervention that practitioners and organizations can leverage to improve team coordination and 

augment performance. Specifically for teams that are in informationally loaded contexts where 

work is complex and tasks require significant amounts of detail to complete, this work suggests 

that effort focused on individual mental model development will be highly impactful. In such 

cases focusing too much on learning what one’s teammates are doing and the relationship 

between the roles of different members of the team by be counterproductive as it adds noise to an 

already cognitively loaded task. Relational model development would still be important, but this 

computational study and theory indicate that the priority should be to facilitate individuals 

learning their specific roles and tasks. 

On the other hand, when tasks switch frequently, and the team experiences high levels of 

volatility, the rigidity of a priori coordination which is characterized by this individual mental 

model development, can become a liability. Thus, in highly volatile conditions, the results of this 

work suggest that teams would benefit from efforts to better facilitate socially responsive task 

performance. Such efforts include increasing the ease of communication between team members 

and encouraging team members to put more effort into communication. This also would include 

work during transition phases to augment relational mental models that enable team members to 

understand how their work impacts and is reliant on the work of other members of the team. As 

in the reverse case, the individual mental model developmental focus of a priori coordination is 

still important in such cases, but this theoretical framework and the simulations suggest that a 

greater emphasis needs to be placed on relational model development in volatile team contexts. 
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Although these results are theoretical, they provide a clear justification for the generative 

sufficiency of the CASER and the CSN models. That is, this work demonstrates that the 

theoretical CST framework presented in this dissertation provides sufficient logical grounding 

for the proposed relationship between complexity/volatility and in situ/a priori coordination 

efforts. As such it provides a powerful groundwork to build upon for future empirical and 

applied research. This work has tremendous potential to augment our understanding of 

coordination and inform coordination-focused intervention. 

In addition to general principles that could be applied to work situations, the CST presents 

a foundation for understanding and augmenting coordination in human-machine teams (HMT). 

Although psychologists and organizational scientists have studied psychological processes 

impacting individual reactions to computer agent team members, this work is primarily on the 

level of individuals’ perceptions. This dissertation provides a way to understand the complexity 

of the socially embedded processes of coordination which may play an important practical role in 

enabling humans to respond to and signal computer agent team members more effectively. 

Similarly, computer scientists have put significant effort into enabling computer agent team 

members to interface well with humans. This is clearly evident in recent advances (e.g., 

ChatGPT). However, thus far this work is primarily focused on predictive models used to 

interpret explicit human signals. The framework presented in this dissertation possibly provides a 

route to enable computerized agent team members to symbolically encode their place within the 

team’s interdependent processes and proactively perform tasks in a way that better responds to 

the needs of human counterparts.  
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Limitations and Future Work 

 A significant limitation of this work is that it is simulation based. This is a powerful tool 

to develop theory, make predictions, and explore implications, but it is not empirical. As such, all 

results and propositions are demonstrably consistent with the CST, but future work will need to 

empirically validate these findings. This future research will incorporate various measurement-

related tasks. For instance, work is needed that will establish clear ways of distinguishing the 

complexity and volatility of teamwork contexts. As part of this work, it would be valuable to 

investigate various interdependence structures and their impacts. Further empirical research is 

also needed which investigates the role of information-sharing processes on coordination 

processes. These future empirical studies will also need to clarify differences between planning 

efforts aimed at development of individual vs. relational mental models. 

Another limitation of this work is that it does not directly address performance. Instead, it 

is focused entirely on the emergence of coordination. Other work has conceptually investigated 

the connection between interdependence and performance (Griffin, Somaraju, Olenick, et al., 

2022), but future work will need to explicitly connect these two concepts clarifying the role that 

factors promoting coordination play in team performance outcomes.  

As a final note, one area where these concepts and contributions are of particular 

importance is in human-machine teams (HMT). With the advent of advanced machine learning 

tools, machines are treated more as an autonomous members of a team – with their own roles, 

goals, and responsibilities – than simply as a tool used by human team members (Flathmann et 

al., 2019; C. D. Johnson et al., 2020; M. Johnson et al., 2012; Laengle et al., 1997; Schelble et 

al., 2022; Scheutz et al., 2017). This trend is prevalent in manufacturing (Flathmann et al., 2019), 

medical (Nourjou et al., 2011; van der Waa et al., 2021), transportation (Hussain & Zeadally, 
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2018), and military applications (Lin et al., 2008; Marchant et al., 2011), and will only expand 

further with technological advancements. Such HMTs have significant challenges that make 

coordination difficult because in many cases humans either do not trust or do not know how to 

properly integrate with autonomous machine team members. Similarly, machine learning 

algorithms utilized by autonomous machine team members are typically designed to perform a 

specific function, not to integrate cohesively within a complex social team context. By providing 

a rigorous theoretical framework for the concept of synergy and further providing a formal 

language from which to discuss these concepts, this dissertation is providing a critical bridge that 

could be used to facilitate the development of cohesive teamwork in HMTs. Thus, in addition to 

significant theoretical applications, this dissertation will lay an important practical foundation 

from which to approach resolving fundamental difficulties faced by integrated HMT’s. Future 

applications of this work will leverage it as a tool for augmenting coordination in HMT’s. 

Conclusion  

 Coordination is a critical part of work in teams, yet our existing understanding of 

coordination has major limitations. This dissertation presents the Coordination Signal Theory 

which expands the team coordination literature by providing a dynamic, social-embedded, and 

process-mechanism-oriented understanding of coordination. It uses two distinct yet 

complementary formal models (i.e., the CASER and the CSN model) to provide unique and 

novel insights into the nature of coordination. This work theory provides substantial conceptual 

developments and establishes a groundwork of process-mechanism-oriented theories capable of 

supporting future coordination research.  

 Not only does the CST framework provide critical theoretical advances to our 

understanding of coordination, but it also provides crucial practitioner-oriented insights into 
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interventions that could augment team coordination. As work in teams gets more complex and 

fast-paced, such work has the potential to play a powerful role. Specifically, the advent and 

spread of human-machine teams suggests the clear potential and importance of this work. 

 I submit that the CST and its accompanying formal models establish a groundwork that 

allows us to understand more clearly the beautiful nuance of how teams can coordinate in 

orchestral harmony. This elucidates concepts such as rehearsed (a priori) and unrehearsed (in 

situ) coordination. This work lays the groundwork for substantial advances in understanding and 

improving team coordination processes. 
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APPENDIX A: COORDINATION AND THE ANALOGY OF A LASER 

To motivate a deeper dive into the nature, impact, and function of coordination in a team 

on the level of process mechanisms, it is valuable to consider these concepts from a broader 

perspective first. To understand the impact of coordination, it is informative to consider the 

example of cohesive light found in a LASER. Specifically LASERs exemplify the value and 

impact of highly coordinated or synchronized systems in amplifying the effectiveness of the 

system. This serves as an excellent framework from which to approach an investigation of the 

emergent nature of team-performance amplification through coordinated effort. In the following 

section I will use the analogy of a LASER to illustrate the potential for coordination to act as a 

catalyst for synergistic performance application within a team. I first present a brief overview of 

how LASERs work, then present a theoretical discussion of how this is analogous to teams. This 

analogy is presented on a team level illustrating the function of coordination on the aggregate, 

laying the theoretical groundwork for understanding the more mechanistic network-based 

perspective that follows.  

Notably there are two primary ways I hypothesize that teams will be able to cause social 

application of performance: Coordination and Motivation. Though motivational processes have 

various similarities to LASER, the analogy is leveraged primarily to discuss social mechanisms 

of performance amplification through emergent coordination behaviors. Thus the focus of this 

section is to lay a groundwork for understanding how due to interdependencies among team 

member’s tasks, coordinated effort can allow teams to facilitate each other (or at least minimize 

interference) maximizing the effectiveness of the effort while minimizing process losses. 

Motivational routes for potential social facilitation of team performance are touched on here, but 

only briefly. They are discussed in greater de later on in this dissertation.  
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Overview of a LASER 

 Light Amplification by the Stimulated Emission of Radiation (LASER) is a process by 

which light is crafted into a single beam of same-frequency, in-phase light flowing in the exact 

same direction. Notably, the total amount of energy within a LASER’s single beam of cohesive 

light is not necessarily any greater than the amount of energy released from another light source 

(e.g., a lamp). This highlights a misconception often associated with LASERs. LASERs are more 

powerful than nonlasing light sources, not because of the total energy, but because of the 

precision of that energy. To tie this to a popular work adage, LASERs, “work smarter, not 

harder”. 

In a team’s work context, it is well known that interdependency among tasks can lead to 

process loss, where efforts misalign, are duplicated, or are overlooked due to the interdependent 

work environment (A. Espinosa et al., 2002; Steiner, 1972). This is a main theoretical 

justification for the importance of coordination within teams; teams that coordinate effectively 

outperform teams that do not; this is particularly true in highly interdependent work contexts. 

Returning to the LASER analogy then, we can think of a LASER as a light source that compels 

it’s light to be highly coordinated. In fact, the physics term for this is cohesive light, which points 

to the team notion of cohesion and coordination well. If we can get a team to act in a way similar 

to how a LASER functions so that their efforts are highly cohesive and coordinated, it is possible 

that we will see dramatic amplification of team performance. Thus, the way in which a LASER 

works provides useful insight as to ways we can potentially enhance team functioning. 

Specifically, the LASER analogy provides a theoretical model of social facilitation potentially 

capable of greatly enhancing team performance. Diving into the analogy deeper, there are three 
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primary components of a LASER, and three physical processes that enable a LASER to function, 

each analogous to a factor phenomenon of work in a team.  

Processes Necessary for LASERs 

 There are three core mechanisms that allow a LASER to function. These are 1) 

absorption, 2) spontaneous emission, and 3) stimulated emission. Absorption describes how a 

substance that is exposed to energy absorbs it. Spontaneous emission is the process by which 

energy already absorbed by a substance is released in the form of light energy. It is spontaneous 

because an energized substance will release its energy in the form of light on its own without any 

external stimulus. The resulting light will be released in a random direction at a random time. 

This is the process that produces most light we experience, whether in a campfire, an electric 

lamp, an LED, or a stovetop.  

 While these first two processes are sufficient to generate light, LASER-action (the term 

for the positive feedback loop that is responsible for the generation of cohesive light in a 

LASER) requires a third process: stimulated emission. When a substance is energized, there is a 

brief period before it releases its energy in the form of light. If energized material is struck by 

compatible light, it will immediately send out an identical ray of light. Therefore, the emission of 

light is stimulated by an existing ray of light and is not spontaneous. Unlike the random nature of 

spontaneously emitted light, light emitted via stimulation is cohesive, a fact that is responsible 

for the unique characteristics of LASERs. 

Components of a LASER 

 Further extending this analogy, consider the three primary components essential to 

generating a LASER. These are 1) the pump, 2) the LASER medium, and 3) the optical chamber. 
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We can think of these components as the motivators, the team members, and the team’s work 

context respectively. 

The LASER Medium. LASER medium is the substance that absorbs and subsequently 

releases energy in the form of light. In our analogy, these are the members of the team. 

Importantly, for a LASER to form, the medium must have certain characteristics. First, it must 

be uniform. For example, impurities in a ruby LASER will dramatically inhibit its ability to 

generate a cohesive beam of light. The primary issue here is that slight discrepancies lead to 

differences in the nature of light produced by the material. This in turn inhibits the process of 

stimulated emission. A second important characteristic of the LASER medium is the need for it 

to have a semi-stable energized state. When the medium is excited, it doesn’t immediately 

convert the input energy into light output; instead, it is able to hold onto the energy long enough 

to encounter light emitted elsewhere and thereby produce stimulated cohesive light. If the 

medium does not remain in an energized state long enough, there will be no chance for 

stimulated emission, and therefore a cohesive beam of light cannot be generated. 

The Optical Chamber. The second component necessary for a LASER is the optical 

chamber. This is where the LASER medium is stored, and where everything takes place. It is 

analogous to the team’s work context. There are two characteristics of the optical chamber 

crucial to generating a cohesive light. First, the optical chamber is fitted with parallel mirrors on 

either end. This enables light emitted by the LASER medium to be reflected back into itself, 

thereby providing more opportunities for stimulated emission of light that happens to be going in 

the right direction. Without this, energy would dissipate from the material at too fast a rate for 

LASER-action to ever occur. The second characteristic of the optical chamber of note is its 

precise dimensions. An optical chamber is designed to be exactly some whole number times the 
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wavelength of the emitted light. This enables the optical chamber to sustain a standing wave, 

maximizing the cohesive nature of a light emitted from a LASER.  

The Pump. In a LASER, the pump is the source of energy that is subsequently converted 

into light. Without some source of energy, a LASER will not turn on. Additionally, the 

performance of the LASER is closely tied to the consistency and strength of the energy pump. 

Weak and inconsistent sources of energy will lead to faltering LASER-action.  

___ 

A core concept to this is that cohesive work, such as in light produced by a LASER, is a 

far more effective tool than randomly dispersed work (e.g., a random light source). This notion 

applies directly to the study of teams. Researchers have found, for example, that coordinated 

effort is far more effective than uncoordinated effort (DeChurch & Mesmer-Magnus, 2010a; 

Rico et al., 2008). This is particularly true in highly interdependent work settings, where effort 

from one team member may greatly facilitate or inhibit the efforts of other team members (A. 

Espinosa et al., 2002). Coordinated effort toward a single clear goal will be far more effective 

than the same amount of effort allocated toward individual goals. Building on this foundational 

research, I use the perspective of how a LASER functions to provide a window into the 

underlying dynamic emergent processes of coordination and synchronization in a team.  

The process and components of a LASER are described in Table 7 they provide a 

powerful analogy and perspective for understanding a dynamic, emergent process of 

coordination that can be applied to understanding teams. In the following sections, I extensively 

rely on this analogy; however, only a simplistic understanding of the processes driving a LASER 

to function, as presented in Table 7 is necessary to understand the broader theoretical concepts 

herein described.  
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Table 7 

Mechanism and Components of Team Coordination and Correspondence to LASER 

 Teamwork LASER 
 Name Description Name Description 
Mechanisms  

Motivational 

Internalization 

 

 

Individuals put into a 

motivated “ready state” 

 

Stimulated 

Absorption 

 

Elections put in semi-stable 

energized state 

 Spontaneous 

Effort 

 

Individuals act according to 

internal objectives 
Spontaneous 

Emission 

Electrons drop to lower state 

spontaneously releasing 

photon 

 Stimulated 

Coordination 

 

Individuals act in 

coordinated way based on 

coordination signal 

Stimulated 

Emission 

Energized elections struck 

by photon and releases 

cohesive photon 

Components  

Motivator 

 

Source of motivation 

- Must be strong enough t 

reach level of population 

inversion 

 

 

Pump 

 

Source of initial energy 

- Must be strong enough to 

reach level of population 

inversion 

 Team 

Members 

The people being motivated 

- Must have reasonable 

level of social 

responsiveness 

- Must be capable of 

compatible work 

Laser 

Medium 

The substance being 

energized 

- Must have semi-stable 

energized state 

- Must produce cohesive 

light 

 

 Work Context Place where motivational 

coordination process occurs 

- Facilitate exposure to each 

other 

- Facilitate timing in a way 

that amplifies effort 

Optical 

Chamber 

Chamber designed to hold 

standing LASER wave 

- Designed to internally 

maintain beam  

- Built precisely to facilitate 

standing wave 
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APPENDIX B: NONDIMENSIONALIZATION 

To nondimensionalize a model we apply transformations to each stock variable, as well as 

time itself. These transformations remove the “characteristic units”, producing dimensionless 

variables. This technique is particularly valuable when we do not have theoretical values to put 

in for each of the values and are more interested in describing general patterns of behavior than 

specific observed patterns. In essence, although very mathematical, this technique applied here 

should be interpreted more qualitatively than quantitatively, as the values represent general 

concepts and not actual observed values. This technique is also a powerful tool for identifying 

qualitative patterns while reducing the total number of parameters required to fully parameterize 

a model. 

We set dimensionless variables for time (𝜏), ready state (𝜌), coordination signal (𝛾), and 

work (𝜔), and define characteristic units (𝑡𝑐, 𝑅𝑐, 𝑆𝑐, and 𝑊𝑐) as follows. 

𝑡 = 𝑡𝑐𝜏 

𝑅 = 𝑅𝑐𝜌 

𝑆 = 𝑆𝑐𝛾 

𝑊 = 𝑊𝑐𝜔 

Applying these transformations to Equations 1, 2b, and 3 gives us the following system of 

equations: 

𝑑𝜌

𝑑𝜏
=

𝑡𝑐
𝑅𝑐

𝑚 − 𝑡𝑐𝑆𝑐𝑘𝜌𝛾 − 𝑡𝑐𝑙𝑅𝜌 

𝑑𝛾

𝑑𝜏
=

𝑡𝑐
𝑆𝑐

𝑝 + 𝑡𝑐𝑅𝑐𝑘𝜌𝛾 − 𝑡𝑐𝑙𝑆𝛾 

𝑑𝜔

𝑑𝜏
=

𝑡𝑐𝑅𝑐

𝑊𝑐
𝛽𝑢𝑙𝑅𝜌 +

𝑡𝑐𝑅𝑐𝑆𝑐

𝑊𝑐
𝛽𝑐𝑘𝜌𝛾 
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This is simplified by setting appropriate characteristic units. Note that this can be done 

atheoretically by simply assigning characteristic units which best simplify the system. However, 

for pedagogical purposes, as well as to more clearly tie this work to psychological theory, we 

will provide theoretical rationale for the characteristic units being used where possible. 

First, we assign a characteristic unit for time, 𝑡𝑐. In this case we will let time be defined 

by the decay rate of the ready state. In doing so, we will define a dimensionless system where 

time is characterized by the stability of the team member’s ready state. Note that this is 

consistent with the work of Simon and Ando, which clarifies the effects of times scales on 

psychological processes (Simon & Ando, 1961). By setting the characteristic unit in this way, in 

effect, we establish the timescale at which the ready state changes as the primary time scale of 

the system. Anything occurring much faster than this time scale will appear to occur nearly 

instantaneously from this paradigm, and anything occurring much slower will appear to be static. 

While this system can be used to evaluate changes in this rate (e.g., possibly an intervention will 

increase the responsiveness of individuals to coordination signals) this choice makes it easiest to 

treat this decay rate (level of instability in the ready state) as a constant. From an atheoretical 

perspective, we simply set the final coefficient in Equation 1 to a unitary value. 

𝑡𝑐 =
1

𝑙𝑅
 

Next, we assign a characteristic unit for the ready state variable, 𝑅𝑐. Here we note that the 

system has a constant input value, 𝑚, defined by the motivational strength of the system. We can 

therefore define a characteristic unit for 𝑅 that is relative to this value. However, 𝑚 is a rate and 

so we will need to scale this value by the time characteristic unit. From an atheoretical 

perspective we are simply unitizing the first coefficient in Equation 1: 
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𝑅𝑐 = 𝑚𝑡𝑐 =
𝑚

𝑙𝑅
 

Now we must assign a characteristic unit for the coordination signal. It is reasonable and 

possible to set this in relation to the direct coordination signal strength, 𝑝; however, we will want 

to investigate cases where 𝑝 is trivial, or 0. With this in mind, it is a poor value to use as the basis 

of a characteristic unit. Instead, we will use the rate at which ready state individuals perform 

coordinated work (i.e., 𝑘𝑅𝑆). While there are multiple ways to set a characteristic unit for 𝑆 in 

this way, there is only one that simplifies the total number of parameters needed to define the 

system of equations. Note that though theoretically relevant, this choice is used to best simplify 

the model, not for theoretical clarity. From this atheoretical perspective, we are simply unitizing 

the second coefficient in Equation 1: 

𝑆𝑐 =
1

𝑘𝑡𝑐
=

𝑙𝑅
𝑘

 

Lastly, we assign a characteristic unit for work, 𝑊𝑐. This is done by setting the 

characteristic unit of work to be equal to the characteristic unit of the ready state, 𝑅𝑐 weighted by 

the impact that uncoordinated effort has on work, 𝛽𝑈. This ensures that the work done is 

measured in perspective of the rate at which work is done in an uncoordinated manner. Again, 

while this has theoretical meaning, it is a choice of convenience to simplify the model. 

Atheoretically, we are simply unitizing the first coefficient in Equation 3: 

𝑊𝑐 = 𝑅𝑐𝛽𝑈 =
𝑚

𝑙𝑅
𝛽𝑈 

As noted, for each of these selections of characteristic units, we have various options. The 

general behavior of the system is not dependent on the selection, and the selection could have 

been done purely atheoretically by selecting characteristic units that best reduce the total number 

of parameters needed to describe the system. By describing the theoretical relevance of each, I 
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hope to clarify notionally the effect of nondimensionalization. But such a theoretical foundation 

for nondimensionalization is not necessary to provide a lens into the qualitative patterns 

exhibited by the system. The completed nondimensionalized system is as follows: 

 
𝑑𝜌

𝑑𝜏
= 1 − 𝜌𝛾 − 𝜌 (24) 

 
𝑑𝛾

𝑑𝜏
=

𝑘

𝑙𝑅
2 𝑝 +

𝑚

𝑙𝑅
2 𝑘𝜌𝛾 −

𝑙𝑆

𝑙𝑅
𝛾 (25) 

 
𝑑𝜔

𝑑𝜏
= 𝜌 +

𝛽𝐶

𝛽𝑈
𝜌𝛾 (26) 

Finally, we define four parameters to simplify the dimensionless representation of the 

systems of equations. Although these parameters at face value are quite complicated, they bear 

theoretical meaning (and unlike the characteristic units used to derive these, the theoretical 

meaning is important to the interpretation of the patterns the system follows). To recognize this 

meaning, it is helpful to recall that by setting 𝑡𝑐 =
1

𝑙𝑅
 we have determined that instability of the 

ready state, 𝑙𝑅, defines time in our dimensionless system. Notably, defining time interims of a 

decay rate is a common practice 
1

𝑙𝑅
 appears in many of the dimensionless parameters and is a 

reminder that the value and meaning of the parameter is tied to the time scale. As long as we 

hold 𝑙𝑅 constant, this can be treated as a scaling value that does not impact the interpretation of 

the given parameter. 

Next, we note that two of the parameters have a product between 𝑐 and either 𝑚 or 𝑝. The 

way in which we interpret these results depends on the variables of most interest to us. If we are 

interested in the impact of a motivational intervention, we would likely want to assume that 𝑘 is 

held constant allowing for us to interpret 
𝑘𝑚

𝑙𝑅
2  as a weighted value for 𝑚. In most cases, I suggest 

that motivation, as presented in this model, is the least relevant of the three (i.e., 𝑚, 𝑝, and 𝑘) and 
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for this reason, I explicitly define the parameters in a way that allows us to define a parameter for 

each of 𝑝 and 𝑘 as long as we assume 𝑚 is held constant. This treats 
𝑚

𝑙𝑅
2  as simply a scaling factor. 

With these notes, we are prepared to theoretically define the parameters for the system. 

First, there is a coupling strength parameter, 𝑘⋆. This is directly proportional to the 

original coupling strength, 𝑘, as well as the motivational input into the system, 𝑚. It also 

accounts for the ready state stability, 𝑙𝑅 (used to represent time) loss parameter. Conceptually, 

this value represents the amount of coordinated effort performed over time as a function of in 

situ coordination. Perhaps more usefully, holding motivation, information loss, and the stability 

constant, 𝑘⋆ provide insight into the impact of coupling on the system: 

𝑘⋆ =
𝑚

𝑙𝑅
2 𝑘 

Next there is a parameter, 𝑟𝑙, that describes the ratio of decay of the ready state compared 

to the decay of the signal. This fraction has the loss term for the signal on top, so the faster 

coordination information degrades (i.e., the less stable the signal is relative to the ready state), 

the larger this parameter’s value will be. Similarly, small values for 𝑟𝑙 imply strong stability of 

the signal compared to the stability of the ready state. 

𝑟𝑙 =
𝑙𝑆
𝑙𝑅

 

The third parameter represents the ratio of direct coordination information (i.e., 𝑝 driven 

by a priori coordination) to the total motivational strength (i.e., 𝑚). This is represented as 𝑝⋆. 

Conceptually, this is a ratio between a priori and in situ coordination. The larger this ratio is, the 

more effectively the team coordinated a priori, relative to the total amount of motivation. 

𝑝⋆ =
𝑝

𝑚
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Lasty, we define a parameter representing the coordination interdependence ratio, 𝑟𝛽. This 

is the effectivness of coordinated effort, 𝛽𝐶, compared to the effectiveness of uncoordinated 

effort, 𝛽𝐶. This could also account for inefficiencies in coordinated effort due to subjects such as 

process loss. In general, we would assume 𝑟𝛽 > 1 because coordinated effort should be more 

effective than non-coordinated effort. However, it is possible for 𝛽𝑈 to be larger than 𝛽𝑐 in cases 

where there are high coordination costs and the work tasks are independent (this would lead to 

𝑟𝛽 ≤ 1). In some extreme cases where coordination is absolutely essential, it is possible for 𝛽𝑢 to 

actually be negative; however, for the present time we will assume 𝛽𝑈 > 0, so 𝑟𝛽 > 0. 

𝑟𝛽 =
𝛽𝐶

𝛽𝑈
 

We can substitute these values yielding the simplified, dimensionless system requiring 

only 4 parameters (along with the three state variables: 𝜌 - dimensionless ready state, 𝛾 - 

dimensisonless coordination information, and 𝜔 - dimensionless work) to define: 

 
𝑑𝜌

𝑑𝜏
= 1 − 𝜌𝛾 − 𝜌 (24a) 

 
𝑑𝛾

𝑑𝜏
= 𝑘⋆𝑝⋆ + 𝑘⋆𝜌𝛾 − 𝑟𝑙𝛾 (25a) 

 
𝑑𝜔

𝑑𝜏
= 𝜌 + 𝑟𝛽𝜌𝛾 (26a) 
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APPENDIX C: SOURCE CODE 

 In this appendix I provide the source code used to run simulations found in this 

dissertation.  

CASER Source Code: 

 The CASER model was analytically simulated using R. 

######### R Code for CASER MODEL ########## 

library(ggplot2) 

N = 60 

set.seed(42) 

 

gamma = (1:N)/(2/3*N) 

rho_rnc = 1/(1+gamma) 

rho_gnc <- function(gamma, cstar=1, rp=1, rl =1){ 

  return(rl/cstar - rp/gamma) 

} 

 

dir1 = rho_gnc(gamma,1,.1,.5) 

dir2 = rho_gnc(gamma,1,0.00001,.5) 

dir3 = rho_gnc(gamma,1,.1,1) 

dir4 = rho_gnc(gamma,1,0.00001,1) 

dir5 = rho_gnc(gamma,1,.1,1.5) 

dir6 = rho_gnc(gamma,1,0.00001,1.5) 
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# df = data.frame(gamma = rep(gamma,7), dgdt = c(rho_rnc, 

dir1,dir2,dir3,dir4,dir5,dir6), group = rep(1:7, each = 1500), l = 

c(rep(0,1500),rep(c(.5,1,1.5),each = (2*N))), rp = c(rep(0,1500),rep(rep(c(0,.1),each = 

1500),3))) 

df_gnc = data.frame(gamma = rep(gamma,6), rho = c(dir1,dir2,dir3,dir4,dir5,dir6), group 

= rep(1:6, each = N), l = c(rep(c(1.5,1,.5),each = (2*N))), rp = c(rep(rep(c(0.01,.1),each = 

N),3))) 

 

df_rnc = data.frame(gamma = rep(gamma,6), rho = rho_rnc) 

rho_gnc2 <- function(gamma, cstar=1, rp=1, rl =1){ 

  return(rep(rl/cstar, length(gamma))) 

} 

dir1 = rho_gnc2(gamma,1,.1,.5) 

dir2 = rho_gnc2(gamma,1,0.01,.5) 

dir3 = rho_gnc2(gamma,1,.1,1) 

dir4 = rho_gnc2(gamma,1,0.01,1) 

dir5 = rho_gnc2(gamma,1,.1,1.5) 

dir6 = rho_gnc2(gamma,1,0.01,1.5) 

 

# df = data.frame(gamma = rep(gamma,7), dgdt = c(rho_rnc, 

dir1,dir2,dir3,dir4,dir5,dir6), group = rep(1:7, each = 1500), l = 
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c(rep(0,1500),rep(c(.5,1,1.5),each = (2*N))), rp = c(rep(0,1500),rep(rep(c(0,.1),each = 

1500),3))) 

df_gnc2 = data.frame(gamma = rep(gamma,6), rho = c(dir1,dir2,dir3,dir4,dir5,dir6), 

group = rep(1:6, each = N), l = c(rep(c(1.5,1,.5),each = (2*N))), rp = 

c(rep(rep(c(0.01,.1),each = N),3))) 

 

ggplot() + ylim(0,1.6) + theme_apa() + 

  geom_line(data = df_gnc, aes(x=gamma, y=rho, group = group, color = as.character(l), 

linetype = as.character(rp)),size = 1.25)+ 

  geom_line(data = df_rnc, aes(x = gamma, y=rho),size=1.25) 

 

 

gamma = (1:N)/(2/3*N) 

rho = 1/(1+gamma) 

dgdt <- function(gamma,rho, c, rp, l){ 

  return(c*rp+c*rho*gamma - l*gamma) 

} 

dir1 = dgdt(gamma,rho,1,.1,.5) 

dir2 = dgdt(gamma,rho,1,0,.5) 

dir3 = dgdt(gamma,rho,1,.1,1) 

dir4 = dgdt(gamma,rho,1,0,1) 

dir5 = dgdt(gamma,rho,1,.1,1.5) 
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dir6 = dgdt(gamma,rho,1,0,1.5) 

df = data.frame(gamma = rep(gamma,6), dgdt = c(dir1,dir2,dir3,dir4,dir5,dir6), group = 

rep(1:6, each = N), l = rep(c(1.5,1,.5),each = (2*N)), rp = rep(c(0,.1),each = N)) 

 

ggplot(data = df, aes(x=gamma, y=dgdt, group = group, color = as.character(l), linetype = 

as.character(rp))) + 

  geom_line(size=1.2) + ylim(-.25,.25) + geom_hline(yintercept=0)+ theme_apa() 

 

f2 <- function(c, rp, l){ 

  h = c + c*rp - l 

  return((h + sqrt(h^2 + 4*l*c*rp))/(2*l)) 

} 

N=100 

k = 4 

df = data.frame(c = rep(1,N*k),rp = rep((1:k-1)/(2*(k-1)),each = N),l = 

rep(1/((1:N)/(N/2)),k)) 

df$rcl = df$c/df$l 

df$f2 = f2(1,df$rp, df$l) 

 

ggplot(data = df, aes(x=rcl, y=f2, group = as.character(rp), color = rp)) +  

  geom_hline(yintercept=0, linetype = "dashed",size = 1.2)+ geom_line(size = 1.2) + 

theme_apa() 
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##################################################################### 

 

Code for CSN Model 

The CSN Model Code is more complicated and split into different code files for running the 

model itself as well as analysis/data visualization code. The model was run in python and the 

analysis and data visualization was run in R. 

coordinationModel.py Source Code 

from utils import getTheta 

from utils import vr_crc 

from utils import getCircD 

import numpy as np 

from enum import Enum 

 

from scipy.linalg import circulant 

from scipy.special import erf 

 

 

class R_Type(Enum): 

    FLOOR = 0 

    ROUND = 1 

    CEILING = 2 

    RANDOM = 3 

    COMBINED = 4 

    COMPLEX = 5 

    DEFAULT = 0 
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class statePlan(): 

    def __init__(self, P=None, change_times=[0], sig2_t=None, sig2_d=None, D2=None): 

        self.trivial = True if (P is None or np.isinf(sig2_d)) else False 

        self.S = 0 if P is None else P.shape[0] 

        # P is S by T by A or  S by T 

        # P active up until the corresponding change time, at that value switches 

        self.sig2_t = sig2_t 

        self.sig2_d = sig2_d 

        self.D2 = D2 

        self.change_times = change_times 

        self.P = self.pUncertainty(P, sig2_d, D2) 

 

    def pUncertainty(self, P, sig2_d=None, D2=None): 

        if self.trivial: return None 

        sig2_d = self.sig2_d if sig2_d is None else sig2_d 

        if sig2_d == 0: return P 

        D2 = self.D2 if D2 is None else D2 

        if sig2_d is None or D2 is None: return P 

 

        M = np.zeros(P.shape) 

        D_star = np.exp(-D2 / (2 * sig2_d)) 

 

        if P.ndim == 2: 

            for t in range(P.shape[-1]): 

                M[:, t] = D_star @ P[:, t] 

        else: 

            for a in range(P.shape[2]): 
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                for t in range(P.shape[1]): 

                    M[:, t, a] = D_star @ P[:, t, a] 

 

        return M 

 

    def getP(self, t, agent=None, weights=None): 

        if self.trivial: return None 

        if weights is None: return self.getP_vec(t, agent).reshape((self.S, 1)) @ 

np.ones((1, self.S)) 

 

        M = np.empty((self.S, self.S)) 

        for j in range(self.S): 

            M[:, j] = (self.getP_vec(t, agent, weights[j])).squeeze() 

        return M 

 

    def getP_vec(self, t, agent=None): 

        P = self.P if (agent is None or self.P.ndim == 2) else self.P[:, :, agent] 

 

        if self.sig2_t is None: 

            index = None 

            for i in range(len(self.change_times)): 

                if self.change_times[i] > t: 

                    index = i 

                    break 

            M = P[:, -1] if index is None else P[:, index] if index >= 0 else 

np.ones(P.shape[0]) 

            # Gives the last P column if t >= ax change time 

            # Gives ones if t before first change time 
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            # give the P column number one less than the first change_time that is 

more than current time otherwise 

 

        elif np.isinf(self.sig2_t): 

            M = np.sum(P, 1) 

        else: 

            M = np.ones((P.shape[0])) * (1 + erf((self.change_times[0] - t) / 

self.sig2_t)) / 2 

            for i in range(len(self.change_times) - 1): 

                pv = (P[:, i]).squeeze() 

                M += pv * (1 + erf((t - self.change_times[i]) / self.sig2_t)) * ( 

                            1 + erf((self.change_times[i + 1] - t) / self.sig2_t)) / 

4 

            M += (P[:, -1]) * (1 + erf((t - self.change_times[-1]) / self.sig2_t)) / 

2 

 

        if M.sum() == 0: return np.ones(((P.shape[0]))) 

 

        return M 

 

 

class systemTransitionFunction: 

    def __init__(self, M, n_actors, n_states, common=None, fixedRotation=False, 

rot_velocity=0, dt=1, type=None): 

        M = np.asarray(M) 

        if M.ndim == 3 and common: raise ValueError("Common but gave 3D M") 

        if M.shape != (n_states, n_states) and M.shape != (n_states, n_states, 

n_actors): 
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            raise ValueError("Invalid matrix shape.") 

        self.OriginalM = M 

        common = common if common is not None else M.ndim == 2 

        self.isCommon = common 

        self.n_actors = n_actors 

        self.n_states = n_states 

        self.fixedRotation = fixedRotation 

        self.dt = dt 

        self.rot_velocity = rot_velocity 

        self.type = type if type is not None else R_Type.DEFAULT 

 

        if self.fixedRotation: 

            self.applyFixedRotation(rot_velocity, dt=dt) 

 

    def getOmega(self, agent=None, rv=None, dt=None, type=None): 

        # TODO fix handling dt. It currently treats it as if dt does nothings 

        if dt is not None: raise ValueError("Can not handel changing dt at this 

point") 

        if rv is not None or dt is not None: 

            rv = self.rot_velocity if rv is None else rv 

            self.set_rotation_velocity(rv, dt) 

 

        rv = self.rot_velocity 

        dt = self.dt 

        rad = rv * dt 

        rad = rad if np.isscalar(rad) else rad[agent] 

 

        if self.fixedRotation: 
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            return self.M_r if self.M_r.ndim == 2 else self.M_r[:, :, agent] 

 

        else: 

            M = self.OriginalM.copy() if self.isCommon else (self.OriginalM[:, :, 

agent]).copy() 

            return self.rotateMbyRad(M, rad, type) 

 

    def set_rotation_velocity(self, rv, dt=None): 

        dt = self.dt if dt is None else dt 

        if self.fixedRotation: 

            self.applyFixedRotation(rv, dt=dt) 

 

        self.dt = dt 

        self.rot_velocity = rv 

 

    def applyFixedRotation(self, rv, type=None, dt=None): 

        type = type if type is not None else self.type 

        if dt is not None: dt = self.dt 

        rad = rv * dt 

        self.M_r = self.rotateMbyRad_n(self.OriginalM, rad, type) 

 

    def rotateMbyRad_n(self, M, rad, type=None): 

        type = type if type is not None else self.type 

        if M.ndim == 2: 

            if np.isscalar(rad): 

                return self.rotateMbyRad(M, rad, type)  # CHECK: Should this bee 

self.isCommon? Also may need copy here 

            elif len(set(rad)) == 1: 
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                return self.rotateMbyRad(M, rad[0], type) 

            else: 

                M_full = np.empty(M.shape + rad.shape) 

                for a in range(len(rad)): 

                    M_full[:, :, a] = self.rotateMbyRad(M[:, :], rad[a], type) 

                return M_full 

 

        else: 

            M_full = np.empty(M.shape) 

            for a in range(M.shape[-1]): 

                rad_actor = rad if np.isscalar(rad) else rad[a] 

                M_full[:, :, a] = self.rotateMbyRad(M[:, :, a], rad_actor, type) 

            return M_full 

 

    def rotateMbyRad(self, M, rad, type=None): 

        type = type if type is not None else self.type 

        d_raw = (rad * self.n_states) / (2 * np.pi) 

        d = int((rad * self.n_states) // (2 * np.pi)) 

        p = ((rad * self.n_states) % (2 * np.pi)) / (2 * np.pi) 

        R_floor = np.roll(M.copy(), d, 0) 

        if type == R_Type.FLOOR: 

            return R_floor 

        elif (type == R_Type.ROUND and p > .5) or type == R_Type.CEILING: 

            R = np.roll(R_floor, 1, 0) 

        elif type == R_Type.RANDOM: 

            shift = np.random.choice([0, 1], size=(1), p=[1 - p, p])[0] 

            R = np.roll(R_floor, shift, 0) 

        elif type == R_Type.COMBINED: 
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            R = R_floor * (1 - p) + np.roll(R_floor, 1, 0) * p 

        elif type == R_Type.COMPLEX: 

            lam, Q = np.linalg.eig(np.roll(np.identity(M.shape[0]), 1, 0)) 

            R = Q @ np.diag(lam ** d_raw) @ np.linalg.inv(Q) 

        else: 

            raise ValueError("Invalid rotation type. Found: " + str(type)) 

 

        return R 

 

 

## Currently Coordination model takes everything at initialization. I would like to 

separate out 

# different initialization methods 

# also note that D and TaskDependence are distance matrices, likely generated from 

spectral distances 

 

class CoordinationModel: 

    def __init__(self, n_actors, n_states, 

                 k=1, m=None, w=None, w_dist=None, dt=1, 

                 Omega=None, D=None, TaskDependence=None, 

                 interdependenceWeights=None, 

                 temporal_correction=False, rotational_correction=False, 

                 x_0=None, 

                 random_seed=None, 

                 Plan=None, 

                 p_change_times=[0], 

                 rho_t=None, 

                 rho_d=0, 
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                 pD_index=None, 

                 deterministic=True, 

                 ): 

        """ 

 

        :param integer n_actors: The number of actors in the system 

 

        :param integer n_states: The number of stats that actors can occupy 

 

        :param k: The coupling strength parameter(s). Default 1. Typically between 0 

and 1. This controls how 

        strongly actors are influenced by each other If a single value k is applied 

to each actor. If a single 

        dimensional array, (length = n_actors) this represents how attractive each 

actor is. If a 2-dimensional 

        array, k[i,j] indicates how strongly actor_i is influenced by actor_j. This 

is not necessarily symmetric. 

        :type k: float OR n_actors length ndarray OR n_actors X n_actors ndarray 

 

        :param m: The mass parameter or propensity for actors to remain in the same 

state. Default None. If a single 

        value, the parameter is applied to all actors. If it is a n_actor ndarray 

each element is the mass parameter 

        for each given actor. If Omega is None this is used to calculate Omega. 

Calculated as rotated Gaussian based 

        on distance from the first matrix in D rotated by w. 

        :type m: float OR n_actors length ndarray or None 
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        :param w: The natural frequency of actors. If a single value all actors are 

given the same frequency. If an 

        array, give the natural frequency of each actor. 

        :type w: n_actors length ndarray OR None 

 

        :param w_dist: Distribution of natural frequencies. The mean and variance of 

frequencies. If None, 

        frequencies are set by w, or ignored. This overwrites values input by w. 

        :type w_dist: (float, float) OR None 

 

        :param float dt: The discrete time interval. Default 1. This is always 

positive and typically less than or 

        equal to 1. 

 

        :param Omega: Transition matrix. Default identity matrix if None, and m is 

None. Must be positive valued matrix 

        where columns add up to 1. 

        :type Omega: n_statesXn_states array OR n_statesXn_statesXn_actors array 

 

        :param n_statesXn_states TaskDependence: Interdependence matrix. Matrix 

representing positive an negative effects of 

        states on each other. D[i,j] represents the extent to which state_i is 

facilitated (if positive) or inhibited 

        (if negative) by someone being in state_j. D[i,j] = 0 indicates i is 

independent of j. 

 

        :param boolean temporal_correction: Weather to apply a time based correction 

to Xi 
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        :param boolean rotational_correction: Weather to apply a rotation based 

correction to Xi accounting for the 

        fact that interdependence does not act in the same direction as motion. 

        :param x_0: initial states for each actor. If single value all actors start 

at the same point. If 1D vector (n_actors) 

        it provides position for each actor. If 2D array (n_statesXn_actors) it gives 

probabilities for each actor being at each position. 

         If None randomly actors are randomly assigned 

        :type x_0: float OR ndarray OR None 

 

        :param random_seed: Random Seed 

        """ 

        if random_seed is not None: np.random.seed(random_seed) 

 

        self.n_states = n_states 

        self.n_actors = n_actors 

        self.internalTime = 0 

 

        if dt < 0: 

            raise ValueError("dt must be positive: input dt is " + str(dt)) 

        else: 

            self.dt = dt 

 

        self.temporal_correction = temporal_correction 

        self.rotational_correction = rotational_correction 

 

        if np.isscalar(k): 
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            self.k = np.full((n_actors, n_actors), k / (n_actors - 1)) 

 

        else: 

            k = np.asarray(k) 

            if k.ndim == 1 and len(k) == n_actors: 

                self.k = np.ones((n_actors, 1)) @ [k / (n_actors - 1)] 

            elif k.ndim == 2 and k.shape == (n_actors, n_actors): 

                self.k = k / (n_actors - 1) 

            else: 

                raise ValueError("Invalid k value --- k (coupling coefficient) must 

be a scalar, a 1D or a 2D ndarray") 

 

        np.fill_diagonal(self.k, 0) 

        self.common_w = False 

        if w is None and w_dist is None: 

            self.common_w = True 

            self.w = np.full((n_actors), 0) 

        elif w_dist is not None: 

            if len(w_dist) == 2: 

                self.w = np.random.normal(w_dist[0], w_dist[1], n_actors) 

            else: 

                raise ValueError("Invalid w_dist value --- w_dist Must be (float, 

float) or None.") 

 

        else: 

            if np.isscalar(w): 

                self.common_w = True 

                self.w = np.full((n_actors), w) 
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            elif len(w) == n_actors: 

                self.w = np.asarray(w) 

            else: 

                raise ValueError("Invalid w value --- w must be n_actor length array, 

scalar or None.") 

 

        if TaskDependence is None and D is None: 

            TaskDependence = getCircD(self.n_states) ** 2 

            D = TaskDependence 

        elif TaskDependence is None: 

            TaskDependence = D 

        elif D is None: 

            D = getCircD(self.n_states) ** 2 

 

        self.n_interdependence_d = 1 if TaskDependence.ndim == 2 else 

TaskDependence.shape[-1] 

 

        self.TaskDependence = np.asarray(TaskDependence) 

 

        if interdependenceWeights is None: 

            self.D_w = np.ones((self.n_interdependence_d)) 

        elif np.isscalar(interdependenceWeights): 

            self.D_w = np.full(self.n_interdependence_d, interdependenceWeights) 

        else: 

            self.D_w = interdependenceWeights 

 

        if m is None: m = 1 

        if np.isscalar(m): 
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            self.sigma2_m = self.sig2FromM(m) 

        else: 

            self.sigma2_m = np.asarray([self.sig2FromM(x) for x in m]) 

 

        self.sharedOmega = False 

        if Omega is not None: 

            Omega = np.asarray(Omega) 

            # self.Omega = Omega 

            if Omega.ndim == 2: 

                self.sharedOmega = True 

                if Omega.shape != (n_states, n_states): 

                    raise ValueError("Omega has invalid shape. Expected (" + 

str(n_states) + ", " + 

                                     str(n_states) + ") but got " + str(Omega.shape)) 

            elif Omega.ndim == 3 and Omega.shape != (n_states, n_states, n_actors): 

                raise ValueError("Omega has invalid shape. Expected (" + 

str(n_states) + ", " + 

                                 str(n_states) + ", " + str(n_actors) + ") but got " 

+ str(Omega.shape)) 

 

 

        else: 

            # m = np.asarray(m) 

            if np.isscalar(m): 

                self.sharedOmega = True 

                Omega = self.getOmegaFromD(self.dt * self.sigma2_m, D) 

                # Omega = self.getOmegaFromD(self.dt * self.sigma2_m, D) 

            else: 
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                m = np.asarray(m) 

                if len(m) != n_actors: raise ValueError( 

                    "Invalid m value. Expected None, scaler, or array of length " + 

str(n_actors)) 

                Omega = np.empty((n_states, n_states, n_actors)) 

                for a in range(n_actors): 

                    Omega[:, :, a] = self.getOmegaFromD(self.dt * self.sigma2_m[a], 

D) 

                    raise ValueError("There may be an Issue with tThis code") 

                # TODO fix line 319 code... self.getOmegaFromD(self.sigma2_m[a], D, 

w[a] * dt) 

 

        self.Omega = systemTransitionFunction(Omega, n_actors=n_actors, 

n_states=n_states, 

                                              fixedRotation=not self.w.any(), 

common=self.sharedOmega, 

                                              rot_velocity=self.w, dt=dt, 

type=R_Type.RANDOM) 

        # M, n_actors, n_states, common = None, fixedRotation = False, rot_velocity = 

0, rotated = False, dt = 1, type = None): 

 

        X = np.zeros((self.n_states, self.n_actors)) 

        if x_0 is None: 

            x_0_index = np.random.randint(self.n_states, size=self.n_actors) 

            for j, i in enumerate(x_0_index): 

                X[i, j] = 1 

                # TODO do not like that this code is repeated... 

        elif np.isscalar(x_0): 
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            X[x_0, :] = np.ones((n_actors)) 

        else: 

            x_0 = np.asarray(x_0) 

            if x_0.ndim == 1: 

                if len(x_0) != (n_actors): raise ValueError( 

                    "x_0 is wrong length. Expected n_actors (i.e., " + str(n_actors) 

+ ") but got " + str(x_0.shape)) 

                for j, i in enumerate(x_0): 

                    X[i, j] = 1 

            elif x_0.ndim == 2: 

                if x_0.shape != (n_states, n_actors): raise ValueError( 

                    "x_0 is wrong shape. Expected n_actors (i.e., " + str(n_states) + 

", " + str( 

                        n_actors) + ") but got " + str(x_0.shape)) 

                X = x_0 

 

            else: 

                raise ValueError( 

                    "initial condition (x_0), has too many dims. Expected scaler, 1D, 

or 2D but got " + str(x_0.ndim)) 

        self.X = X 

 

        pD = D if (pD_index is None or self.TaskDependence.ndim == 2) else 

self.TaskDependence[:, :, pD_index] 

 

        self.plan = statePlan(P=Plan, change_times=p_change_times, sig2_t=rho_t ** 2, 

                              sig2_d=(rho_d ** 2) * self.sigma2_m, D2=pD) 
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        self.deterministic = deterministic 

 

    def step(self, deterministic=None, dt=None, rotational_correction=None, 

time_correction=None): 

        # TODO fix handling dt. It currently treats it as if dt does nothings 

        if dt is not None: raise ValueError("Can not handel changing dt at this 

point") 

        if dt is None: dt = self.dt 

        if deterministic is None: 

            deterministic = self.deterministic 

        else: 

            self.dt = dt 

        if rotational_correction is None: rotational_correction = 

self.rotational_correction 

        if time_correction is None: time_correction = self.temporal_correction 

        X_next = np.empty((self.n_states, self.n_actors)) 

 

        for a in range(self.n_actors): 

            x_past = self.X[:, a] 

            sigma2_m = self.sigma2_m if np.isscalar(self.sigma2_m) else 

self.sigma2_m[a] 

            Omega = self.Omega.getOmega(a, type=R_Type.RANDOM) 

            Xi = np.ones((self.n_states, self.n_states)) 

            P = self.plan.getP(self.internalTime, a) 

            # t = self.internalTime 

            hi = True 

            for alter in range(self.n_actors): 

                if a == alter: continue 
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                k = self.k if np.isscalar(self.k) else self.k[a] if self.k.ndim == 1 

else self.k[a, alter] 

                alter_loc_prob = self.X[:, alter] 

                for depend in range(self.n_interdependence_d): 

                    w = self.D_w if np.isscalar(self.D_w) else self.D_w[depend] 

                    TD = self.TaskDependence if self.n_interdependence_d == 1 else 

self.TaskDependence[:, :, depend] 

                    TD = TD * w 

                    Xi *= self.calculateXi_2(alter_loc_prob, TD, sigma2_m, 

coupling=k, 

                                             

rotational_correction=rotational_correction, 

                                             time_correction=time_correction) 

 

            transition = (Xi * Omega) if P is None else (P * Xi * Omega) 

            x = transition @ x_past 

            # print("Expected Var: " + str(1/(1/(dt * sigma2_m)+ 1/(sigma2_m/k))) +". 

Found Var: " + str(np.var(x))) 

            # print() 

            if np.isclose(np.sum(x), 0): x = np.ones(self.n_states) 

            x = x / np.sum(x) 

 

            if deterministic: 

                flip = np.random.random() 

                x_d = np.zeros(self.n_states) 

                i = 0 

                found = False 

                while not found: 
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                    if found: 

                        continue 

                    elif i >= len(x): 

                        hi = True 

                    elif flip <= x[i]: 

                        x_d[i] = 1 

                        found = True 

                    else: 

                        flip -= x[i] 

                        i += 1 

 

                x = x_d 

            X_next[:, a] = x 

        self.X = X_next 

        self.internalTime += dt 

        return (X_next) 

 

    def sig2FromM(self, m): 

        return 1 / m 

 

    def getOmegaFromD(self, sig2, D2, isCirculant=False): 

        """ 

 

        :param sig2: Variance value 

        :param D2: Squared distance metric 

        :param theta: The angle changed. typically w * dt 

        :param isCirculant: If circulant there is a short cut to computations 

        :return: Omega matrix 
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        """ 

        if isCirculant: 

            v = np.exp(-D2[0, :] / 2 * sig2) 

            Omg_star = circulant(v) 

        else: 

            Omg_star = np.exp(-D2 / (2 * sig2)) 

        return Omg_star 

 

    def calculateXi_2(self, alter_loc_prob, D2, sigma2_m, coupling=None, 

rotational_correction=False, 

                      time_correction=False, S=None): 

        if S is None: 

            S = self.n_states 

 

        Xi_sum = np.zeros((S, S)) 

        for a in range(S): 

            if alter_loc_prob[a] > 0: 

                Xi_sum += alter_loc_prob[a] * self.calculateXi(a, D2[a, :], sigma2_m, 

coupling, rotational_correction, 

                                                               time_correction, S) 

        return Xi_sum 

 

    def calculateXi(self, alter_loc, D2_alter, sigma2_m, coupling, 

rotational_correction=False, time_correction=False, 

                    S=None): 

 

        if S is None: 

            S = self.n_states 
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        if coupling == 0: return np.ones((S, S)) 

 

        h = self.dt if time_correction else 0 

        rc = np.ones((S)) 

        if rotational_correction: 

            # TO 

            theta_d = 2 * np.pi * np.roll(np.arange(S) - (S - 1) // 2, -((S - 1) // 

2) + alter_loc) / S 

            sinTD = np.sin(theta_d) 

            zero_sin = np.isclose(sinTD, 0) 

            zero_theta = np.isclose(theta_d, 0) 

            zero_index = np.logical_and(zero_sin, zero_theta) 

            infty_index = np.logical_and(zero_sin, np.logical_not(zero_theta)) 

 

            sinTD[zero_sin] = 1 

            rc = theta_d / sinTD 

            rc[zero_index] = 1 

            rc[infty_index] = np.infty 

 

        D2 = np.repeat(np.asarray(D2_alter)[np.newaxis].T, S, 1)  # distance from 

potential positions to alter position 

        sigma2_xi = sigma2_m * (rc / coupling - h)  # sigma based on ego's current 

position and alter's position 

        # if sigma2_xi > np.var(D2_alter): 

        #     return np.ones((S, S)) 

        Sig2 = np.repeat(sigma2_xi[np.newaxis], S, 0) 

        Xi = np.exp(- D2 / (2 * Sig2)) 
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        return Xi 

 

    def getState(self): 

        return np.sum(self.X, 1) 

 

batchRunner.py Source Code 

import time 

import networkx as nx 

import pandas as pd 

import numpy as np 

 

from coordinationModel import CoordinationModel 

from utils import cmParamSet, getSpectralDistance, getCircD, InverseDAdj, Lps, 

rayleighQ, eigenScaled, getTheta, \ 

    spectralEmbedding 

from mesa.batchrunner import ParameterProduct 

 

 

class batchRunner(): 

    def __init__(self, fixed_Params, variable_Params=None, iterations=1, steps=1): 

        self.iterations = iterations 

        self.steps = steps 

        self.fixed_Params = fixed_Params 

        self.variable_Params = variable_Params 

 

    def run(self, fixed_x0=True): 

        varableParamProd = ParameterProduct(self.variable_Params) if 
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self.variable_Params is not None else [ 

            {"Fixed": True}] 

 

        data = pd.DataFrame( 

            columns=["id", "iteration", "step", 'Lps_Coordination', 

'Adjacency_Coordination', 'theta', 'r', 'DLC', 

                     'DAC'].extend(list(self.variable_Params.values()))) 

        id = 0 

 

        x_0_index = np.random.randint(self.fixed_Params['n_states'], 

                                      size=self.fixed_Params['n_actors']) if fixed_x0 

else None 

 

        for vps in varableParamProd: 

            p = cmParamSet({**self.fixed_Params, **vps}) 

            p.x_0 = x_0_index 

            if p.D is None: p.D = getCircD(p.n_states) ** 2 

            DAdj = InverseDAdj(np.sqrt(p.D)) 

            DL = Lps(DAdj) 

 

            if hasattr(p, "AdjM"): 

                if p.AdjM is None: 

                    p.AdjM = DAdj 

                if not hasattr(p, "TDD"): 

                    dims = p.AdjM_dims if hasattr(p, "AdjM_dims") else 2 

                    p.TDD = getSpectralDistance(p.AdjM, dims) 

            else: 

                p.AdjM = DAdj 
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            L = Lps(p.AdjM) 

            p.AdjM = eigenScaled(p.AdjM) 

 

            if hasattr(p, 'p'): 

                if hasattr(p, 'rho_t'): p.rho_t = p.rho_t / p.p if p.p != 0 else 

np.inf 

                if hasattr(p, 'rho_d'): p.rho_d = p.rho_d / p.p if p.p != 0 else 

np.inf 

 

            for r in range(self.iterations): 

                mod = CoordinationModel(n_actors=p.n_actors, n_states=p.n_states, 

k=p.k, m=p.m, w=p.w, w_dist=p.w_dist, 

                                        dt=p.dt, Omega=p.Omega, D=p.D, 

TaskDependence=p.TDD, 

                                        

interdependenceWeights=p.interdependenceWeights, 

                                        temporal_correction=p.temporal_correction, 

random_seed=p.random_seed, 

                                        

rotational_correction=p.rotational_correction, x_0=p.x_0, Plan=p.Plan, 

                                        p_change_times=p.p_change_times, 

rho_t=p.rho_t, rho_d=p.rho_d, 

                                        pD_index=p.pD_index, 

deterministic=p.deterministic) 

 

                state = mod.getState() 
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                Lps_Coordination_vec = np.empty(self.steps + 1) 

                Adjacency_Coordination_vec = np.empty(self.steps + 1) 

                theta_vec = np.empty(self.steps + 1) 

                r_vec = np.empty(self.steps + 1) 

                DLC = np.empty(self.steps + 1) 

                DAC = np.empty(self.steps + 1) 

 

                Lps_Coordination_vec[0] = rayleighQ(state - np.mean(state), L) 

                Adjacency_Coordination_vec[0] = rayleighQ(state, p.AdjM) 

                theta_vec[0], r_vec[0] = getTheta(state) 

                DLC[0] = rayleighQ(state - np.mean(state), DL) 

                DAC[0] = rayleighQ(state, DAdj) 

                for t in range(1, self.steps + 1): 

                    mod.step() 

                    state = mod.getState() 

                    Lps_Coordination_vec[t] = rayleighQ(state - np.mean(state), L) 

                    Adjacency_Coordination_vec[t] = rayleighQ(state, p.AdjM) 

                    theta_vec[t], r_vec[t] = getTheta(state) 

                    DLC[t] = rayleighQ(state - np.mean(state), DL) 

                    DAC[t] = rayleighQ(state, DAdj) 

                iterRows = {**{"id": str(id), "iteration": r, "step": 

np.arange(self.steps + 1), 

                               'Lps_Coordination': Lps_Coordination_vec, 

                               'Adjacency_Coordination': Adjacency_Coordination_vec, 

'theta': theta_vec, 'r': r_vec, 

                               'DLC': DLC, 'DAC': DAC}, **vps} 

                if 'p_change_times' in iterRows: iterRows['p_change_times'] = 

len(p.p_change_times) 
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                df = pd.DataFrame(iterRows) 

                data = data.append(df) 

                id += 1 

 

        return (data) 

 

 

class batchRunner2X2(batchRunner): 

    def run(self, hp_gap, verbose=True): 

        varableParamProd = ParameterProduct(self.variable_Params) if 

self.variable_Params is not None else [ 

            {"Fixed": True}] 

 

        data = pd.DataFrame( 

            columns=["id", "iteration", "step", 'Lps_Coordination', 

'Adjacency_Coordination', 'theta', 'r', 'DLC', 

                     'DAC', 

'complexity'].extend(list(self.variable_Params.values()))) 

        id = 0 

 

        if verbose: 

            TotalSimCount = self.iterations * 2 

            for key in self.variable_Params: 

                TotalSimCount = TotalSimCount * len(self.variable_Params[key]) 

            StartTime = time.time() 

 

        for vps in varableParamProd: 

            p = cmParamSet({**self.fixed_Params, **vps}) 
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            p.x_0 = None 

 

            p.D = getCircD(p.n_states) ** 2 

            DAdj = InverseDAdj(np.sqrt(p.D)) 

            DL = Lps(DAdj) 

 

            for lh in range(2): 

                if lh == 0: 

                    AdjM = DAdj 

                    TDD = p.D 

                    D_w = None 

                else: 

                    dens = p.dens if hasattr(p, 'dens') else .25 

                    TDD = np.empty((p.n_states, p.n_states, 2)) 

                    G = nx.gnm_random_graph(p.n_states, dens * (p.n_states * 

(p.n_states - 1) / 2)) 

                    AdjM = nx.to_numpy_array(G) 

                    AdjM = AdjM + .01  # ensure it is connected 

                    np.fill_diagonal(AdjM, 0) 

                    TDD[:, :, 0] = getSpectralDistance(AdjM, 2) 

                    TDD[:, :, 1] = 1 - 2 * np.identity(p.n_states) 

                    D_w = [1, -1] 

 

                p.AdjM = AdjM 

                p.TDD = TDD 

                p.D_w = D_w 

 

                L = Lps(p.AdjM) 
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                p.AdjM = eigenScaled(p.AdjM) 

 

                ###### update plan based on graph 

                v = spectralEmbedding(AdjM, 1) 

                ordInd = np.argsort(v.squeeze()) 

 

                tg = self.steps // hp_gap 

                evn = np.linspace(0, tg + tg % 2 - 2, self.steps // (hp_gap * 2) + 

tg % 2).astype(int) 

                odd = np.linspace(1, tg - tg % 2 - 1, self.steps // (hp_gap * 

2)).astype(int) 

 

                P = np.zeros((p.n_states, tg, p.n_actors)) 

                for a in range(p.n_actors): 

                    for i in range(len(evn)): 

                        P[np.random.choice(ordInd[:p.n_actors]), evn[i], a] = 1 

                    for i in range(len(odd)): 

                        P[np.random.choice(ordInd[-p.n_actors:]), odd[i], a] = 1 

 

                # P[:, a] = positive 

                # P[:, b] = 1 - positive 

                p.Plan = P 

                if hasattr(p, 'p'): 

                    if hasattr(p, 'rho_t'): p.rho_t = p.rho_t / p.p if p.p != 0 else 

np.inf 

                    if hasattr(p, 'rho_d'): p.rho_d = p.rho_d / p.p if p.p != 0 else 

np.inf 
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                for r in range(self.iterations): 

                    mod = CoordinationModel(n_actors=p.n_actors, n_states=p.n_states, 

k=p.k, m=p.m, w=p.w, 

                                            w_dist=p.w_dist, 

                                            dt=p.dt, Omega=p.Omega, D=p.D, 

TaskDependence=p.TDD, 

                                            

interdependenceWeights=p.interdependenceWeights, 

                                            

temporal_correction=p.temporal_correction, random_seed=p.random_seed, 

                                            

rotational_correction=p.rotational_correction, x_0=p.x_0, Plan=p.Plan, 

                                            p_change_times=p.p_change_times, 

rho_t=p.rho_t, rho_d=p.rho_d, 

                                            pD_index=p.pD_index, 

deterministic=p.deterministic) 

 

                    state = mod.getState() 

 

                    Lps_Coordination_vec = np.empty(self.steps + 1) 

                    Adjacency_Coordination_vec = np.empty(self.steps + 1) 

                    theta_vec = np.empty(self.steps + 1) 

                    r_vec = np.empty(self.steps + 1) 

                    DLC = np.empty(self.steps + 1) 

                    DAC = np.empty(self.steps + 1) 

 

                    Lps_Coordination_vec[0] = rayleighQ(state - np.mean(state), L) 

                    Adjacency_Coordination_vec[0] = rayleighQ(state, p.AdjM) 
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                    theta_vec[0], r_vec[0] = getTheta(state) 

                    DLC[0] = rayleighQ(state - np.mean(state), DL) 

                    DAC[0] = rayleighQ(state, DAdj) 

                    for t in range(1, self.steps + 1): 

                        mod.step() 

                        state = mod.getState() 

                        Lps_Coordination_vec[t] = rayleighQ(state - np.mean(state), 

L) 

                        Adjacency_Coordination_vec[t] = rayleighQ(state, p.AdjM) 

                        theta_vec[t], r_vec[t] = getTheta(state) 

                        DLC[t] = rayleighQ(state - np.mean(state), DL) 

                        DAC[t] = rayleighQ(state, DAdj) 

                    iterRows = {**{"id": str(id), "iteration": r, "step": 

np.arange(self.steps + 1), 

                                   'Lps_Coordination': Lps_Coordination_vec, 

                                   'Adjacency_Coordination': 

Adjacency_Coordination_vec, 'theta': theta_vec, 'r': r_vec, 

                                   'DLC': DLC, 'DAC': DAC, 'complexity': lh}, **vps} 

                    if 'p_change_times' in iterRows: iterRows['p_change_times'] = 1 

if len(p.p_change_times) > 2 else 0 

                    df = pd.DataFrame(iterRows) 

                    data = data.append(df) 

                    id += 1 

 

                    Now = time.time() 

                    if verbose: 

                        TE = round(Now - StartTime, 1) 

                        ETA = round((TE / id) * (TotalSimCount - id), 1) 
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                        print("\rSimulation " + str(id) + " of " + str(TotalSimCount) 

+ ". Time Elappsed: " + str( 

                            TE) + " seconds. Estmated time (seconds) remaining: " + 

str(ETA * 2), end='') 

 

        return data 

 

utils.py Source Code 

import numpy as np 

from scipy.linalg import circulant 

from scipy.spatial import distance_matrix 

 

 

def getCircD(n): 

    return circulant(getAngles(n)) 

 

 

def getAngles(S, x_0=0, ctr=0): 

    x = np.linspace(x_0, x_0 + 2 * np.pi * (S - 1) / S, S) 

    for i in range(S): 

        if x[i] <= ctr - np.pi: x[i] = (x[i] + 2 * np.pi) 

        if x[i] > ctr + np.pi: x[i] = (x[i] - 2 * np.pi) 

    return x 

 

 

def vr_crc(p): 

    m = getTheta(p) 
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    x = getAngles(len(p), 0, m) 

 

    return (vr(p, x, m)) 

 

 

def mn(p, x): 

    n = len(x) 

    sm = 0 

    for i in range(n): 

        sm += p[i] * x[i] 

    return sm / sum(p) 

 

 

def vr(p, x, m=None): 

    n = len(x) 

    if m is None: m = mn(p, x) 

    ss = 0 

    for i in range(n): 

        ss += p[i] * (m - x[i]) ** 2 

    return ss / sum(p) 

 

 

def getTheta(x, normR=True): 

    x = np.asarray(x) 

    n = x.shape[0] 

    v = np.exp(np.asarray(range(n)) * 2j * np.pi / n) 

    vx = v @ x 

    r = np.abs(vx) / sum(x) if normR else np.abs(vx) 
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    theta = np.angle(vx) 

    if x.ndim > 1: 

        for i in range(x.shape[1]): 

            if np.isclose(np.abs(vx[i]), 0): 

                theta[i] = np.nan 

            elif theta[i] < 0: 

                theta[i] += 2 * np.pi 

    else: 

        if np.isclose(np.abs(vx), 0): 

            theta = np.nan 

        elif theta < 0: 

            theta += 2 * np.pi 

 

    return theta, r 

 

 

class BaseParamSet(object): 

    def __init__(self, iterable=()): 

        self.__dict__.update(iterable) 

 

 

class cmParamSet(BaseParamSet): 

    def __init__(self, params=()): 

        default = {'n_actors': 6, 'n_states': 10, 'k': 1, 'm': None, 'w': None, 

'w_dist': None, 'dt': 1, 'Omega': None, 

                   'D': None, 'TaskDependence': None, 'interdependenceWeights': None, 

'temporal_correction': False, 

                   'rotational_correction': False, 
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                   'x_0': None, 'random_seed': None, 'Plan': None, 'p_change_times': 

[0], 'rho_t': None, 'rho_d': 0, 

                   'pD_index': None, 'deterministic': True} 

        default.update(params) 

        super().__init__(default) 

 

 

def getSpectralDistance(M, dims=None, norm=2): 

    v = spectralEmbedding(M, dims) 

    return distance_matrix(v, v, norm) 

 

 

def spectralEmbedding(M, dims=None, dropZero=False, lamWeight=False): 

    L = Lps(M) 

    lmda, v = np.linalg.eigh(L) 

    idx = np.logical_not(np.isclose(lmda, 0)) if dropZero else np.arange(1, len(lmda) 

- 1) 

    lmda = lmda[idx] 

    v = v[:, idx] 

    if dims is None: dims = len(lmda) 

    if lamWeight: v = v @ np.diag(1 / (lmda ** (1 / 2))) 

 

    if dims < len(lmda): 

        v = v[:, np.arange(0, dims)] 

 

    return v 
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def Lps(M, normalized=True): 

    D = np.diag(np.sum(M, 0)) 

    L = D - M 

    DISR = np.diag(1 / np.sqrt(np.sum(M, 0))) 

    if normalized: L = DISR @ L @ DISR 

    return L 

 

 

def rayleighQ(x, A): 

    return (x.T.dot(A).dot(x) / x.T.dot(x)) 

 

 

def getCordD(n): 

    v = np.empty((n)) 

 

    for i in range(n): 

        v[i] = (2 * np.sin(i * np.pi / (n))) ** 2 

 

    return circulant(v) 

 

 

def InverseDAdj(D): 

    M = D.copy() 

    np.fill_diagonal(M, 1) 

    M = 1 / M 

    np.fill_diagonal(M, 0) 

    return M 
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def eigenScaled(M): 

    lmda, v = np.linalg.eigh(M) 

    return M / np.abs(np.max(lmda)) 

 

 

def convergeRate(eps, cvp=.1): 

    """ 

    estimate rate of convergence q from sequence esp 

    """ 

    N = int(cvp * len(eps)) 

    if N <= 1: N = 3 

    equl = np.mean(eps[-N:]) 

    eps = np.asarray(eps) 

    eps = np.abs(eps - equl) 

    eps += np.random.random(len(eps)) * .0001 

    x = np.arange(len(eps) - 1) 

    y = np.log(np.abs(np.diff(np.log(eps)))) 

    line = np.polyfit(x, y, 1)  # fit degree 1 polynomial 

    q = np.exp(line[0])  # find q 

    return q 

 

simRuns.py Source Code 

from batchRunner import batchRunner2X2 

import numpy as np 

 

n = 6 
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S = 20 

dens = .25 

T = 100 

hp_gap = 3 

P_t_HighP = np.linspace(hp_gap, T - T % hp_gap, T // hp_gap) 

P_t_LowP = [T // 2] 

P_t = [P_t_LowP, P_t_HighP] 

 

a = batchRunner2X2({'n_actors': n, 'dt': 1, 'n_states': S, 'm': 10, 'rho_t': T / 8, 

'rho_d': 1, 'dens': dens}, 

                   {"k": np.linspace(0, 3, 16), 'p': np.linspace(0, 10, 5), 

'p_change_times': P_t}, iterations=50, 

                   steps=T) 

data = a.run(hp_gap) 

data.to_csv('sims.csv') 

 

Analysis and Data Visualization Source Code 

##################################################### 

######### Analysis and data visualization conducted using R 

library(tidyverse) 

library(ggplot2) 

library(stats) 

library(viridis) 

library(hrbrthemes) 
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df = read_csv("sims.csv") 

names(df)[length(names(df))]<-"dynamics" 

 

df1 = df %>% group_by(id,k,p,complexity,dynamics) %>% summarise(coord = -

mean(Lps_Coordination)) 

dfs = df1 

dfs$coord = scale(dfs$coord) 

dfs = dfs %>% mutate(k_sqrd = k*k, p_sqrd = p*p) 

df1 = df1 %>% mutate(k_sqrd = k*k, p_sqrd = p*p) 

 

fit_1 = lm(coord ~ k + p + k*dynamics + k * complexity + p*dynamics + p * complexity, 

dfs) 

summary(fit_1) 

 

fit_all = lm(coord ~ k + p + k_sqrd + k*dynamics + k * complexity + p*dynamics + p * 

complexity + k_sqrd*dynamics + k_sqrd * complexity, dfs) 

summary(fit_all) 

 

fit_all2 = lm(coord ~ k + p + k_sqrd + k*dynamics + k * complexity + p*dynamics + p * 

complexity + k_sqrd*dynamics + k_sqrd * complexity + p_sqrd * dynamics + 

p_sqrd*complexity, dfs) 

summary(fit_all2) 
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fit5 = lm(scale(coord) ~ (k) + (p) + (k_sqrd) + (p_sqrd), dfs %>% filter(complexity == 0, 

dynamics == 0)) 

fit6 = lm(scale(coord) ~ (k) + (p) + (k_sqrd) + (p_sqrd), dfs %>% filter(complexity == 1, 

dynamics == 0)) 

fit7 = lm(scale(coord) ~ (k) + (p) + (k_sqrd) + (p_sqrd), dfs %>% filter(complexity == 0, 

dynamics == 1)) 

fit8 = lm(scale(coord) ~ (k) + (p) + (k_sqrd) + (p_sqrd), dfs %>% filter(complexity == 1, 

dynamics == 1)) 

round(summary(fit5)$coefficients,3) 

round(summary(fit6)$coefficients,3) 

round(summary(fit7)$coefficients,3) 

round(summary(fit8)$coefficients,3) 

 

df3= df1 

df3['coord'] = scale(df3['coord']) 

df3$p = as.factor(df3$p) 
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ggplot(df3 %>% filter(complexity == 0, dynamics == 0 ), aes(x = k, y = coord, group = p, 

color = p, fill = p)) + geom_smooth(level = .95) + scale_color_viridis(discrete=T)+ 

scale_fill_viridis(discrete=T) + theme_ipsum() 

ggplot(df3 %>% filter(complexity == 1, dynamics == 0 ), aes(x = k, y = coord, group = p, 

color = p, fill = p)) + geom_smooth(level = .95) + scale_color_viridis(discrete=T)+ 

scale_fill_viridis(discrete=T) + theme_ipsum() 

ggplot(df3 %>% filter(complexity == 0, dynamics == 1 ), aes(x = k, y = coord, group = p, 

color = p, fill = p)) + geom_smooth(level = .95) + scale_color_viridis(discrete=T)+ 

scale_fill_viridis(discrete=T) + theme_ipsum() 

ggplot(df3 %>% filter(complexity == 1, dynamics == 1 ), aes(x = k, y = coord, group = p, 

color = p, fill = p)) + geom_smooth(level = .95) + scale_color_viridis(discrete=T)+ 

scale_fill_viridis(discrete=T) + theme_ipsum() 

#################################################### 


