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ABSTRACT

Statistical signal processing plays a crucial role in numerous fields of modern technology and

science. Some of the important applications include extracting signals from noisy data, processing

images and videos for tasks like compression and enhancement, and analyzing time-varying data,

such as climate data and asset prices. In this dissertation, we address two problems related to

statistical signal/image processing.

The first issue involves a generalized version of the multi-reference alignment problem in one

dimension, inspired by modern data applications such as cryo-electron microscopy. The objective

is to recover an unknown signal 𝑓 : R → R from multiple observations that have been translated,

dilated, and corrupted by additive noise. In the presence of large dilations and corruptions,

observational data do not resemble the underlying signal. Although current approaches in the field

have shown empirical success in the absence of dilations, no approach has successfully provided

convergence guarantees for signal inversion while dilating, translating, and corrupting observational

data all at once. Thus, we propose an unbiased estimator for the bispectrum of the unknown signal

which depends on the corrupted samples and knowledge of the dilation distribution. To validate

our proposed estimator, we use it for bispectrum recovery, and invert the recovered bispectrum to

achieve full signal inversion.

The second problem concerns neural texture synthesis, which is important for understanding

how humans perceive texture. Current approaches require regularization terms or some type of

supervision to capture long range constraints, such as the alignment of bricks, in images. To remedy

this issue, we propose a new set of statistics for examplar-based neural texture synthesis based on

Sliced Wasserstein Loss, and augment our proposed algorithm with a multi-scale synthesis process.

Based on qualitative and quantitative experiments, our results are comparable or better than current

state of the art methods.
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CHAPTER 1

THESIS OVERVIEW

We provide a brief outline of this thesis, which focuses on two problems in statistical signal

processing: multi-reference alignment and texture synthesis. The second chapter focuses on a

variation of the multi-reference alignment problem, which is motivated by Cryoelectron microscopy

that won the Nobel prize in 2015. The original multi-reference alignment problem focuses on

recovering a function 𝑓 : R3 → R from observations that have been translated, rotated, or

corrupted by additive noise. The challenge in this problem is the following: in the presence of large

corruptions, observational data do not resemble the underlying signal.

However, the multi-reference alignment problem is not necessarily an accurate representation

of reality. One expects small physical variations in objects, such as macro-molecular structure in

the context of Cryo-EM or deformation of an object in the context of object registration. Thus, it

is of interest to consider a model where each observation has been deformed by a diffeomorphism

𝜏 ∈ 𝐶2(R3). However, the class of diffeomorphisms is challenging to study. We address a

simplified one-dimensional version of diffeomorphism MRA where we only consider a specific

class of diffeomorphisms, dilations of the form 𝜏(𝑥) = (1 − 𝑐)𝑥, which we will call dilation MRA.

Under mild assumptions, we propose an algorithm that is able to recover the ground truth signal

using Fourier invariants, namely the power spectrum and bispectrum. Previous results provide a

nonlinear estimator for bispectrum recovery, and we recover the bispectrum via a novel nonlinear

estimator. This is a first step towards a model that can address general classes of diffeomorphisms,

which will be left for future work.

The third chapter considers the problem of texture synthesis, which focuses on generating a new

texture from a reference texture. The generated texture should have the same perceptual qualities

as the reference texture without being a repetition of the old texture. We consider a modification

the Heeger Bergen texture synthesis algoritm, which generates new textures via matching wavelet

coefficients between a reference texture and white noise. To increase the robustness of the algorithm,

we first create a nonlinear version of the wavelet transform by applying a set of nonlinearities to
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each wavelet coefficient after performing a wavelet transform. We then extend our formulation

by creating a modification of Mallat’s invariant scattering transform, the Two Layer Scattering

Pyramid. We attempt to histogram match coefficients of the Two Layer Scattering Pyramid to get

good synthesis results. However, we find that our results are not competitive with state of the art

algorithms, which motivates the last main chapter of this dissertation.

For chapter four, instead of using an understood and mathematically tested representation like

the scattering transform, we switch to using statistics of a deep convolutional neural network,

VGG19. We propose a new set of statistics for texture synthesis using Sliced Wasserstein Loss,

which is an approximate solution to an optimal transport problem. Our results are compared with

current state-of-the-art algorithms in single texture synthesis that have comparable run-time. We

find our results are competitive with the state-of-the-art, but do require hyperparameter tuning or

user-added spatial constraints. Additionally, we propose a multi-scale algorithm to augment our

results, which improves the results of our synthesis dramatically.
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CHAPTER 2

BISPECTRUM INVERSION FOR
MULTI-REFERENCE ALIGNMENT

2.1 Introduction to MRA

The multi-reference alignment (MRA) problem, is a problem where we want to recover an

unknown signal 𝑓 : R → R from many observations that have been randomly translated and

corrupted by an additive noise. Is there a way to recover 𝑓 from these observations? A formal

description of the assumptions is given in Model 1.

Model 1. Suppose we have 𝑀 independent observations of a function 𝑓 ∈ 𝐿2(R) defined by

𝑓 𝑗 (𝑥) = 𝑓 (𝑥 − 𝑡 𝑗 ) + 𝜀 𝑗 (𝑥), 1 ≤ 𝑗 ≤ 𝑀,

where

• supp( 𝑓 𝑗 ) ⊂ [−1
2 ,

1
2 ] for 1 ≤ 𝑗 ≤ 𝑀 .

• {𝑡 𝑗 }𝑀𝑗=1 are independent samples of a random variable 𝑡 ∈ R.

• {𝜀 𝑗 (𝑥)}𝑀𝑗=1 are independent white noise processes on [−1
2 ,

1
2 ] with variance 𝜎2.

The MRA problem is a simplified version of problems in cryo-electron microscopy (cryo-EM),

and is similar to problems in other fields such as structural biology [17, 35, 36, 41, 42, 50], image

registration [11, 18], and image processing [54].

To solve the problem outlined in Model 1, current methods can be grouped into two categories.

The first of which is synchronization methods [2, 3, 4, 5, 9, 12, 13, 38, 46, 53], which try to recover

each translation factor {𝑡 𝑗 }𝑀𝑗=1, align each of the signals using the recovered translation factor,

and average the aligned signals to get a smoother estimate for the ground truth signal. However,

synchronization methods can be problematic when the signal-to-noise ratio (SNR) is small. To

illustrate this point, consider the following picture:

Looking at Figure 2.1, with small amounts of noise, one can align the signals and then average

the translated signals to get a cleaner version of the ground truth signal, up to a translation. However,

at high noise levels, these peaks aren’t recognizable, which makes this "synchronization" process

unreliable.
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Figure 2.1 Left Column: three ground truth signals that have been translated without any additive
noise. Middle Column: Adding Gaussian noise with mean zero and 𝜎2 = 0.2 to each of the
signals in the left column. Right Column: Adding Gaussian noise with mean zero and 𝜎2 = 1.2
to each of the signals in the left column. Reference: [6].

The second approach involves estimating the signal directly using ideas such as the method of

moments [22, 28, 44]; a subclass of the method of moments technique, is the method of invariants

technique [2, 7, 15, 26, 27]. Additionally, expectation maximization (EM) algorithms [1, 16] have

also shown success for signal recovery.

One problem with Model 1 is that it is not an accurate representation of real world applications.

In particular, for three dimensional applications such as cryo-EM, molecules are randomly rotated

and one only has access to 2D projections of the molecule like below:
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Figure 2.2 An example of the Cryo-EM problem. The 3D object at the top of the figure is the
ground truth object. One has 2D slices of the object that are noisy, rotated, and possibly translated.
Reference: [47].

However, the model does not consider of physical variations in the objects, such as macro-

molecular structure which “flop" around. One can think of these deformations as a diffeomorphism

acting on the molecule before retrieving the slices. In other words, if 𝑔 is a function extracting

the slices and 𝑥 is a molecule, we retrieve 𝑔(𝜉 (𝑥)), where 𝜉 ∈ 𝐶2(R𝑛) has a bĳective, continuous

hessian. The problem of adding random diffeomorphisms to Model 1 is much harder though. This is

because the class of all diffeomorphisms encompasses a variety of different possible deformations.

To simplify the problem, we consider a simple subset of all possible diffeomorphisms, the set of

dilations. This leads to the formulation of Model 2 below:

Model 2. Suppose we have 𝑀 independent observations of a function 𝑓 ∈ 𝐿2(R) defined by

𝑦 𝑗 (𝑥) = 𝑓 ((1 − 𝜏𝑗 )−1(𝑥 − 𝑡 𝑗 )) + 𝜀 𝑗 (𝑥) := 𝑓 𝑗 (𝑥) + 𝜀 𝑗 (𝑥), 1 ≤ 𝑗 ≤ 𝑀

Furthermore, assume that

• supp( 𝑓 𝑗 ) ⊂ [−1
2 ,

1
2 ] for 1 ≤ 𝑗 ≤ 𝑀 .

• {𝑡 𝑗 }𝑀𝑗=1 are independent samples of a random variable 𝑡 ∈ R.

• {𝜏𝑗 }𝑀𝑗=1 are independent samples of a uniformly distributed random variable 𝜏 ∈ R satisfying

E[𝜏] = 0 and Var(𝜏) = 𝜂2 ≤ 1
12 .
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• {𝜀 𝑗 (𝑥)}𝑀𝑗=1 are independent white noise processes on [−1
2 ,

1
2 ] with variance 𝜎2.

Dilations are one of the simplest class of diffeomorphisms other than translations, but Model

2 is significantly more difficult to solve compared to Model 1, even at low noise levels. Consider

Figure 2.3. Intuitively, as we see in Figure 2.3, dilations add another degree of difficulty to the

Figure 2.3 Left Column: three ground truth signals that have been translated without any additive
noise. Middle Left Column: Dilating each of the signals. Middle Right Column: Adding
Gaussian noise with mean zero and 𝜎2 = 0.5 to each of the signals in the left column. Right
Column: Adding Gaussian noise with mean zero and 𝜎2 = 2 to each of the signals in the left
column. Reference: [26].

problem. Regarding alignment, the main challenge arises from the additive noise.

Regarding the method of invariants, it utilizes translation invariant Fourier features, such as the

power spectrum and bispectrum. Before we begin, define 𝐿𝑞 (R) as the set of functions 𝑓 such that

∥ 𝑓 ∥𝑞𝑞 =
∫
R
| 𝑓 |𝑞 𝑑𝑥 < ∞. The Fourier Transform of 𝑓 ∈ 𝐿1(R) is

𝑓 (𝜔) =
∫
R
𝑓 (𝑡)𝑒−𝑖𝑤𝑡 𝑑𝑡, (2.1)
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the power spectrum is

(𝑃 𝑓 ) (𝜔) = | 𝑓 (𝜔) |2, (2.2)

and the bispectrum is

𝐵 𝑓 (𝜔1, 𝜔2) = 𝑓 (𝜔1) 𝑓 ∗(𝜔2) 𝑓 (𝜔2 − 𝜔1). (2.3)

However, in the case of Model 2, using an approach with Fourier invariants results in significant

difficulties because the Fourier Transform modulus is unstable to small dilations. Consider the

operator 𝐿𝑐 𝑓 (𝑡) = 𝑓 ((1 − 𝑐)𝑡). For small 𝑐, this is a minor rescaling of the function 𝑓 . Let

𝜉 (𝑡) = (1−𝑐)𝑡; it is clear that 𝜉 is a diffeomorphism, specifically a dilation. Then 𝐿𝑐 𝑓 (𝑡) = 𝑓 (𝜉 (𝑡))

with ∥𝜉′∥∞ = 1 − 𝑐. Choose 𝑓 (𝑡) = 𝑒𝑖𝛼𝑡𝜃 (𝑡), where 𝜃 is smooth with fast decay. We see that

𝐿𝑐 𝑓 (𝑡) = 𝑒𝑖𝛼(1−𝑐)𝑡𝜃 ((1 − 𝑐)𝑡), and it follows that

𝐿𝑐 𝑓 (𝜔) =
∫
R
𝜃 ((1 − 𝑐)𝑡)𝑒𝑖𝛼(1−𝑐)𝑡−𝑖𝜔𝑡 𝑑𝑡

=
1

1 − 𝑐

∫
R
𝜃 (𝑡)𝑒𝑖𝛼𝑡−𝑖 𝜔

1−𝑐 𝑡 𝑑𝑡

=
1

1 − 𝑐 𝜃 ((1 − 𝑐)
−1𝜔 − 𝛼).

Looking at the norm now, for 𝑐 < 1/2, we see that from an argument identical to [34],

∥|𝐿𝑐 𝑓 | − | 𝑓 |∥22 ≈ |𝑐𝛼 | · ∥ 𝑓 ∥
2
2. (2.4)

Since 𝛼 is arbitrary, we see why Fourier invariants are unstable to small dilations.

While we will address Model 2 later in this thesis, we first address a noiseless model, Model 3,

given by

Model 3. Suppose we have 𝑀 independent observations of a function 𝑓 ∈ 𝐿2(R) defined by

𝑓 𝑗 (𝑥) = 𝑓 ((1 − 𝜏𝑗 )−1(𝑥 − 𝑡 𝑗 )), 1 ≤ 𝑗 ≤ 𝑀

Furthermore, assume that

• supp( 𝑓 𝑗 ) ⊂ [−1
2 ,

1
2 ] for 1 ≤ 𝑗 ≤ 𝑀 .

• {𝑡 𝑗 }𝑀𝑗=1 are independent samples of a random variable 𝑡 ∈ R.
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• {𝜏𝑗 }𝑀𝑗=1 are independent samples of a uniformly distributed random variable 𝜏 ∈ R with

E[𝜏] = 0 and Var(𝜏) = 𝜂2 ≤ 1
12 .

Note that the lack of additive noise means one can estimate 𝐶 𝑓 = ∥ 𝑓 ∥2 and then dilate each

observation to have norm 𝐶 𝑓 , which makes this problem trivial. However we explore a solution to

Model 3 via Fourier invariants to provide intuition on how to approach Model 2.

2.2 Notation

Let 𝑔 = 𝐵 𝑓 . For the second and third models, let

𝑔𝜂 (𝜔1, 𝜔2) = E𝜏 [(𝐵 𝑓 𝑗 ) (𝜔1, 𝜔2)] .

We will also define the following constants and operations used in the rest of the paper:

𝐶0 =
(1 −
√

3𝜂)
(1 +
√

3𝜂)
, 𝐶1 = 2

√
3𝜂 , 𝐶2 =

1
1 +
√

3𝜂
. (2.5)

Additionally, define the dilation operator 𝐿𝐶𝑔(𝜔1, 𝜔2) := 𝐶4𝑔(𝐶𝜔1, 𝐶𝜔2). Note that in polar

coordinates (𝑟, 𝜃), we have 𝐿𝐶𝑔(𝑟, 𝜃) = 𝐶4𝑔(𝐶𝑟, 𝜃).

2.3 Power Spectrum Recovery for Model 3

Specific work from [26] has produced results for recovery of the power spectrum of a hidden

signal under certain assumptions in Models 2 and 3. We summarize their results below for Model

3 and explain how to adjust the results for Model 2.

Define

𝑝𝜂 (𝜔) := E𝜏
[
(𝑃 𝑓 𝑗 ) (𝜔)

]
(2.6)

We also let (𝑆𝐶𝑔) (𝜔) = 𝐶3𝑔(𝐶𝜔) be a rescaled dilation operator. In the case of the infinite sample

limit, we have the following theorem:

Theorem 1. Assume 𝑃 𝑓 ∈ C0(R) and 𝑝𝜂 as defined in (2.6). Then for 𝜔 ≠ 0:

(𝑃 𝑓 ) (𝜔) = (𝐼 − 𝑆𝐶0)−1𝐶1𝐿𝐶2 (3𝑝𝜂 (𝜔) + 𝜔𝑝′𝜂 (𝜔)) ,

where 𝐶0, 𝐶1, 𝐶2 are as defined in (2.5).
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One can now use this to derive an approximation of the infinite sample estimator. In practice,

one can estimate 𝑝𝜂 by

𝑝𝜂 (𝜔) :=
1
𝑀

𝑀∑︁
𝑗=1
(𝑃 𝑓 𝑗 ) (𝜔) . (2.7)

Additionally, a natural approximation for the estimator in Theorem 1 is

(𝑃 𝑓 ) (𝜔) := (𝐼 − 𝑆𝐶0)−1𝐶1𝑆𝐶2 (3𝑝𝜂 (𝜔) + 𝜔𝑝′𝜂 (𝜔)) , (2.8)

For the next theorem, define the quantity:

(𝑃 𝑓 ) (𝑘) (𝜔) := max
𝜉∈[𝜔/2,2𝜔]

| (𝑃 𝑓 ) (𝑘) (𝜉) | (2.9)

Using (2.8), the following convergence theorem holds:

Theorem 2. Assume Model 3, the estimator (𝑃 𝑓 ) (𝜔) defined in (2.8), 𝑃 𝑓 ∈ C3(R), and that

𝜔𝑘 (𝑃 𝑓 ) (𝑘) (𝜔) ∈ 𝐿2(R) for 𝑘 = 2, 3. Then:

E
[
∥𝑃 𝑓 − 𝑃 𝑓 ∥22

]
≲
𝜂2

𝑀

(
∥(𝑃 𝑓 ) (𝜔)∥22 + ∥𝜔(𝑃 𝑓 )′(𝜔)∥22

+ ∥𝜔2(𝑃 𝑓 )′′(𝜔)∥22
)
+ 𝑟 ,

where 𝑟 is a higher-order term satisfying

𝑟 ≤ 𝜂
4

𝑀

(
∥𝜔2(𝑃 𝑓 )′′ (𝜔)∥22 + ∥𝜔

3(𝑃 𝑓 )′′′ (𝜔)∥22
)
.

That is, in expectation, the convergence rate of (2.8) to the true power spectrum is 𝑂
(
𝜂2

𝑀

)
.

2.4 Power Spectrum Recovery for Model 2

Using these results from Model 3, we design estimators for Model 2. The main difficulty in

model 2 is because of the additive noise. First of all, the mean-squared error (MSE) is only finite

on a bounded interval due to the additive noise. Thus we consider a bounded frequency domain Ω,

and consider the MSE of an estimator 𝑃 𝑓 over Ω: E
[
∥𝑃 𝑓 − 𝑃 𝑓 ∥L2 (Ω)∥2

]
.

Another difficultly is that one cannot use 𝑝𝜂, the average of the observations without noise.

Instead, one has access to

1
𝑀

𝑀∑︁
𝑗=1

𝑃𝑦 𝑗 − 𝜎2 = 𝑝𝜂 + 𝑝𝜎
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where

𝑝𝜎 :=
1
𝑀

𝑀∑︁
𝑗=1

𝑓̂ 𝑗 𝜖̂
∗
𝑗 + 𝑓̂ ∗𝑗 𝜖̂ 𝑗 + 𝑃𝜖 𝑗 − 𝜎2 .

The particular problem is the term 𝑝𝜎, which is not continuous due to the additive noise. To remedy

this issue, we smooth the noisy power spectra via a low pass filtering:

(𝑝𝜂 + 𝑝𝜎) ∗ 𝜙𝐿 (2.10)

using a Gaussian filter with width 𝐿, 𝜙𝐿 (𝜔) = (2𝜋𝐿2)− 1
2 𝑒
− 𝜔2

2𝐿2 . Accordingly, we define a modified

version of (2.7):

(𝑃 𝑓 ) (𝜔) := (𝐼 − 𝑆𝐶0)−1𝐶1𝑆𝐶2

[
3(𝑝𝜂 + 𝑝𝜎) ∗ 𝜙𝐿 (𝜔) + 𝜔

(
(𝑝𝜂 + 𝑝𝜎) ∗ 𝜙𝐿

)′ (𝜔)] . (2.11)

Similar to before, (2.11) is an unbiased estimator of 𝑃 𝑓 when |𝑀 | → ∞ and 𝐿 → 0. Additionally,

we have the following result:

Theorem 3. Assume Model 2, the estimator (𝑃 𝑓 ) (𝜔) defined in (2.11), 𝑃 𝑓 ∈ C3(R), and that

𝜔𝑘 (𝑃 𝑓 ) (𝑘) (𝜔) ∈ 𝐿2(R) for 𝑘 = 2, 3. Then

E
[
∥𝑃 𝑓 − 𝑃 𝑓 ∥2

𝐿2 (Ω)

]
≲ 𝐶 𝑓 ,Ω

(
𝜂2

𝑀
+ 𝐿4 + 𝜎

2 ∨ 𝜎4

𝐿2𝑀

)
.

When 𝜎 ≥ 1, we may choose 𝐿 =

(
𝜎4

𝑀

)1/6
. Then we have

E
[
∥𝑃 𝑓 − 𝑃 𝑓 ∥2

𝐿2 (Ω)

]
≲ 𝐶 𝑓 ,Ω

[
𝜂2

𝑀
+ 𝐿4 +

(
𝜎4

𝑀

)2/3]
.

We will generalize these results for bispectrum recovery in the next sections. In other words, for

proper choice of 𝐿 and 𝑀 , the expected MSE converges to 0 as 𝑀 →∞.

2.5 Bispectrum Recovery for Model 3

Following [26], we propose a similar process for creating an estimator for the bispectrum. We

will first consider the case where we have an infinite number of samples and find an unbiased

estimator.
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Theorem 4. Suppose we have an infinite number of samples and assume that 𝐵 𝑓 ∈ 𝐶1(R2) An

unbiased estimator for the bispectrum is given by

𝐵 𝑓 (𝑟, 𝜃) = (𝐼 − 𝐿𝐶0)−1𝐶1𝐿𝐶2

(
4𝑔𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

)
.

Proof. Recall that the Bispectrum is given by

𝐵 𝑓 (𝜔1, 𝜔2) = 𝑓 (𝜔1) 𝑓 ∗(𝜔2) 𝑓 (𝜔2 − 𝜔1).

The Fourier Transform of each 𝑓 𝑗 is 𝑒−𝑖𝜔𝑡 𝑗 (1 − 𝜏𝑗 ) 𝑓 ((1 − 𝜏𝑗 )𝜔). Making a substitution,

𝐵 𝑓 𝑗 (𝜔1, 𝜔2) = (1 − 𝜏𝑗 )3𝑒−𝑖𝜔1𝑡 𝑗 𝑓 ((1 − 𝜏𝑗 )𝜔1)

· [𝑒−𝑖𝜔2𝑡 𝑗 𝑓 ((1 − 𝜏𝑗 )𝜔1)]∗ · 𝑒−𝑖(𝜔2−𝜔1)𝑡 𝑗 𝑓 ((1 − 𝜏𝑗 ) (𝜔2 − 𝜔1))

= (1 − 𝜏𝑗 )3 𝑓 ((1 − 𝜏𝑗 )𝜔1) 𝑓 ∗((1 − 𝜏𝑗 )𝜔1) 𝑓 ((1 − 𝜏𝑗 ) (𝜔2 − 𝜔1)).

So

(𝐵 𝑓 𝑗 ) (𝜔1, 𝜔2) = (1 − 𝜏𝑗 )3(𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝜔1, (1 − 𝜏𝑗 )𝜔2).

Since 𝜏 has uniform distribution with variance 𝜂2, the pdf of 𝜏 has form 𝑝𝜏 =
1

2
√

3𝜂
𝜒[−
√

3𝜂,
√

3𝜂] .

Thus:

𝑔𝜂 (𝜔1, 𝜔2) = E𝜏 [𝐵 𝑓 𝑗 (𝜔1, 𝜔2)]

= E𝜏 [(1 − 𝜏)3𝑔((1 − 𝜏)𝑤1, (1 − 𝜏)𝑤2)]

=

∫
(1 − 𝜏)3𝑔((1 − 𝜏)𝑤1, (1 − 𝜏)𝑤2)𝑝𝜏 (𝜏) 𝑑𝜏

Now we convert to polar coordinates (𝑟, 𝜃) and let 𝜏 = (1 − 𝜏)𝑟:

𝑔𝜂 (𝑟, 𝜃) =
1

2
√

3𝜂

∫ √
3𝜂

−
√

3𝜂
(1 − 𝜏)3𝑔((1 − 𝜏)𝑟, 𝜃)𝑑𝜏

=
1

2
√

3𝜂𝑟4

∫ (1+
√

3𝜂)𝑟

(1−
√

3𝜂)𝑟
𝜏3𝑔(𝜏, 𝜃) 𝑑𝜏.

Let 𝐻 be the antiderivative in the variable 𝑤 for the function ℎ(𝑤, 𝜃) = 𝑤3𝑔(𝑤, 𝜃). In other

words,
𝜕𝐻

𝜕𝑤
(𝑤, 𝜃) = ℎ(𝑤, 𝜃) = 𝑤3𝑔(𝑤, 𝜃).
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By Fundamental Theorem of Calculus,

2
√

3𝜂𝑟4𝑔𝜂 (𝑟, 𝜃) = 𝐻 ((1 + 3
√
𝜂)𝑟, 𝜃) − 𝐻 ((1 − 3

√
𝜂)𝑟, 𝜃).

Now take derivative with respect to 𝑟 and divide both sides by 𝑟3 to get

2
√

3𝜂
(
4𝑔𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

)
= (1 + 3

√
𝜂)4𝑔((1 + 3

√
𝜂)𝑟, 𝜃) − (1 − 3

√
𝜂)4𝑔((1 − 3

√
𝜂)𝑟, 𝜃).

We now apply the dilation operation 𝐿𝐶2 to both sides, which yields

𝐶1𝐿𝐶2

(
4𝑔𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

)
= 𝑔(𝑟, 𝜃) −

(1 − 3√𝜂
1 + 3√𝜂

)4

𝑔

(1 − 3√𝜂
1 + 3√𝜂 𝑟, 𝜃

)
.

We can also rewrite the right side in terms of 𝐼 and 𝐿𝐶0 to get

𝐶1𝐿𝐶2

(
4𝑔𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

)
= (𝐼 − 𝐿𝐶0)𝑔(𝑟, 𝜃).

Thus, an unbiased estimator is

𝑔(𝑟, 𝜃) = (𝐼 − 𝐿𝐶0)−1𝐶1𝐿𝐶2

(
4𝑔𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

)
.

□

However, we are only given a finite number of samples and do not have access to the estimator

above in actual applications. For Model 3, we can approximate 𝑔𝜂 by taking an average of 𝑀

samples using

𝑔̃𝜂 (𝜔1, 𝜔2) :=
1
𝑀

𝑀∑︁
𝑗=1
(𝐵 𝑓 𝑗 ) (𝜔1, 𝜔2).

Based on Proposition 4, a good choice for the estimator is

(𝐵 𝑓 ) (𝑟, 𝜃) := (𝐼 − 𝐿𝐶0)−1𝐶1𝐿𝐶2

(
4𝑔̃𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔̃𝜂

𝜕𝑟
(𝑟, 𝜃)

)
.

To show the estimator 𝐵 𝑓 has a small error, we will need the following lemma.

Lemma 1. Assume that 𝐵 𝑓 ∈ 𝐶1(R). Then

∥𝐵 𝑓 (𝑟, 𝜃) − 𝐵 𝑓 (𝑟, 𝜃)∥22 ≲ ∥𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃)∥22 +




𝑟 𝜕𝑔𝜂𝜕𝑟 (𝑟, 𝜃) − 𝑟 𝜕𝑔̃𝜂𝜕𝑟 (𝑟, 𝜃)



2

2
.
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Proof. We start with

𝐵 𝑓 (𝑟, 𝜃) − 𝐵 𝑓 (𝑟, 𝜃) = (𝐼 − 𝐿𝐶0)−1𝐶1𝐿𝐶2

(
4(𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃)) + 𝑟

(
𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃) −

𝜕𝑔̃𝜂

𝜕𝑟
(𝑟, 𝜃)

))
.

By using the triangle inequality,

∥𝐵 𝑓 (𝑟, 𝜃) − 𝐵 𝑓 (𝑟, 𝜃)∥22 ≤ 32𝐶2
1 ∥(𝐼 − 𝐿𝐶0)−1∥2∥𝐿𝐶2 ∥2∥𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃)∥22

+ 2𝐶2
1 ∥(𝐼 − 𝐿𝐶0)−1∥2∥𝐿𝐶2 ∥2





𝑟 𝜕𝑔𝜂𝜕𝑟 (𝑟, 𝜃) − 𝑟 𝜕𝑔̃𝜂𝜕𝑟 (𝑟, 𝜃)



2

2
.

To compute the spectral norm of 𝐿𝐶 , we revert back to Cartesian coordinates:

∥𝐿𝑚𝐶𝑔𝜂∥
2
2 = 𝐶8𝑚

∫
R

∫
R
|𝑔𝜂 (𝐶𝑚𝜔1, 𝐶

𝑚𝜔2) |2𝑑𝜔1𝑑𝜔2.

Let 𝑢 = 𝐶𝑚𝜔1 and 𝑣 = 𝐶𝑚𝜔2:

∥𝐿𝑚𝐶𝑔𝜂∥
2
2 = 𝐶6𝑚

∫
R

∫
R
|𝑔𝜂 (𝑢, 𝑣) |2𝑑𝑢𝑑𝑣 = 𝐶6𝑚 ∥𝑔𝜂∥22.

Thus ∥𝐿𝐶2 ∥2 = 𝐶6𝑚
2 . Our result also implies that

∥(𝐼 − 𝐿𝐶0)−1∥ ≤
∞∑︁
𝑗=0




𝐿 𝑗
𝐶0




 ≤ ∞∑︁
𝑗=0
𝐶

3 𝑗
0 =

1
1 − 𝐶3

0
.

Putting everything together,

∥𝐵 𝑓 (𝑟, 𝜃) − 𝐵 𝑓 (𝑟, 𝜃)∥22 ≤
16 · 12𝜂2

(1 − 𝐶6
0 )2(1 +

√
3𝜂)12

∥𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃)∥22

+ 12𝜂2

(1 − 𝐶6
0 )2(1 +

√
3𝜂)12





𝑟 𝜕𝑔𝜂𝜕𝑟 (𝑟, 𝜃) − 𝑟 𝜕𝑔̃𝜂𝜕𝑟 (𝑟, 𝜃)



2

2
.
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Now it suffices to prove that 12𝜂2

(1−𝐶6
0 )2 (1+

√
3𝜂)12 is bounded by constant:

12𝜂2

(1 − 𝐶6
0 )2(1 +

√
3𝜂)12

≤ 12𝜂2[
1 −

(
1−
√

3𝜂
1+
√

3𝜂

)6
]2

=
12𝜂2[(

1+
√

3𝜂
1+
√

3𝜂

)6
−

(
1−
√

3𝜂
1+
√

3𝜂

)6
]2

=
12𝜂2(1 +

√
3𝜂)12

(108
√

3𝜂5 + 120
√

3𝜂3 + 12
√

3𝜂)2

=
12𝜂2(1 +

√
3𝜂)12

𝜂2(108
√

3𝜂4 + 120
√

3𝜂2 + 12
√

3)2

≲
𝜂2

𝜂2 (1 +
√

3𝜂)12

= 𝑂 (1).

□

This lemma implies that we only have to bound

E
[
∥𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃)∥22

]
,

E

[



𝑟 𝜕𝑔𝜂𝜕𝑟 (𝑟, 𝜃) − 𝑟 𝜕𝑔̃𝜂𝜕𝑟 (𝑟, 𝜃)



2

2

]
with an 𝑂 (1/𝑀) bound on 𝑀 for 𝐵 𝑓 (𝑟, 𝜃) to converge to 𝐵 𝑓 (𝑟, 𝜃) with an 𝑂 (1/𝑀) bound. We

have the following result now.

Theorem 5. Suppose that 𝐵 𝑓 ∈ 𝐶3(R2) and also assume that 𝑟2 max𝛼∈[𝑟/2,2𝑟] |𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |2 ∈

𝐿2(R2, 𝑑𝑟 × 𝑑𝜃) and 𝑟3 max𝛾∈[𝑟/2,2𝑟] |𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃) |2 ∈ 𝐿2(R2, 𝑑𝑟 × 𝑑𝜃). Then the following

bound holds:

E
[
∥𝐵 𝑓 − 𝐵 𝑓 ∥22

]
≲
𝜂2

𝑀

(
∥(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + 2∥𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22 + ∥𝑟

2𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22
)

+ 𝜂
4

𝑀

(



𝑟2 max
𝛼∈[𝑟/2,2𝑟]

𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)




2

2
+





𝑟3 max
𝛾∈[𝑟/2,2𝑟]

𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃)




2

2

)
.

with

(𝐵 𝑓 ) (𝑟, 𝜃) = (𝐼 − 𝐿𝐶0)−1𝐶1𝐿𝐶2

(
4𝑔̃𝜂 (𝑟, 𝜃) + 𝑟

𝜕𝑔̃𝜂

𝜕𝑟
(𝑟, 𝜃)

)
.
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Proof. First, assume that the 𝐵 𝑓 : R2 → R. The argument will be generalized to the complex case

after. Notice that

|𝑔̃𝜂 (𝑟, 𝜃) − 𝑔𝜂 (𝑟, 𝜃) |2 =

������ 1
𝑀

𝑀∑︁
𝑗=1
(𝐵 𝑓 𝑗 ) (𝑟, 𝜃) − 𝑔𝜂 (𝑟, 𝜃)

������
2

.

Define

𝑋 𝑗 = 𝐵 𝑓 𝑗 (𝑟, 𝜃) − 𝑔𝜂 (𝑟, 𝜃) = 𝐵 𝑓 𝑗 (𝑟, 𝜃) − E[(𝐵 𝑓 𝑗 ) (𝑟, 𝜃)] .

This means each 𝑋 𝑗 is zero centered, so we have

E


������ 1
𝑀

𝑀∑︁
𝑗=1

𝑋 𝑗

������
2 = var


1
𝑀

𝑀∑︁
𝑗=1

𝑋 𝑗

 =
var(𝑋 𝑗 )
𝑀

.

Write

𝑋 𝑗 = 𝐵 𝑓 𝑗 (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃) + (𝐵 𝑓 ) (𝑟, 𝜃) − E[(𝐵 𝑓 𝑗 ) (𝑟, 𝜃)] .

Then

𝑋2
𝑗 ≲ (𝐵 𝑓 𝑗 (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃))2 + ((𝐵 𝑓 ) (𝑟, 𝜃) − E[(𝐵 𝑓 𝑗 ) (𝑟, 𝜃)])2

and

E[𝑋2
𝑗 ] ≲ E

[
(𝐵 𝑓 𝑗 (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃))2

]
+ E

[
((𝐵 𝑓 ) (𝑟, 𝜃) − E[(𝐵 𝑓 𝑗 ) (𝑟, 𝜃)])2

]
≲ E

[
(𝐵 𝑓 𝑗 (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃))2

]
.

Each 𝜏𝑗 has bounded variance and is supported on [−1/2, 1/2]. Taylor expand the dilated

bispectrum in radial variable in interval [𝑟/2, 2𝑟]:

(𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝑟, 𝜃) = (𝐵 𝑓 ) (𝑟, 𝜃) − 𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗 +
1
2
𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)

����
𝑟=𝛼

𝑟2𝜏2
𝑗 , 𝛼 ∈ [𝑟/2, 2𝑟] .

Now multiply both sides by (1 − 𝜏𝑗 )3 to get

(𝐵 𝑓 𝑗 ) (𝑟, 𝜃) = (1 − 𝜏𝑗 )3(𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝑟, 𝜃)

= (1 − 𝜏𝑗 )3(𝐵 𝑓 ) (𝑟, 𝜃) − (1 − 𝜏𝑗 )3𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗

+ (1 − 𝜏𝑗 )3
1
2
𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟2𝜏2

𝑗 .
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with 𝛼 ∈ [𝑟/2, 2𝑟]. It now follows that

(𝐵 𝑓 𝑗 ) (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃) = (3𝜏2
𝑗 − 3𝜏𝑗 − 𝜏3

𝑗 ) (𝐵 𝑓 ) (𝑟, 𝜃)

− (1 − 𝜏𝑗 )3𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗

+ 1
2
(1 − 𝜏𝑗 )3𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟2𝜏2

𝑗 .

with 𝛼 ∈ [𝑟/2, 2𝑟] .

Square both sides to get:

((𝐵 𝑓 𝑗 ) (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃))2 = (3𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 )2(𝐵 𝑓 )2(𝑟, 𝜃)

− 2(3𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 ) (1 − 𝜏𝑗 )3(𝐵 𝑓 ) (𝑟, 𝜃)𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗

+ (3𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 ) (1 − 𝜏𝑗 )3(𝐵 𝑓 ) (𝑟, 𝜃)𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟2𝜏2
𝑗

+ (1 − 𝜏𝑗 )6 [𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)]2𝑟2𝜏2
𝑗

− (1 − 𝜏𝑗 )6𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟3𝜏3
𝑗

+
(1 − 𝜏𝑗 )6

4
[𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)]2𝑟4𝜏4

𝑗 .

Using the inequality 2|𝑎𝑏 | ≤ |𝑎 |2 + |𝑏 |2, it follows that

2| (𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 ) (1 − 𝜏𝑗 )3(𝐵 𝑓 ) (𝑟, 𝜃)𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗 | ≤ (𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 )2 | (𝐵 𝑓 ) (𝑟, 𝜃) |2

+ (1 − 𝜏𝑗 )6 |𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗 |2

and

| (3𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 ) (1 − 𝜏𝑗 )3(𝐵 𝑓 ) (𝑟, 𝜃)𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟2𝜏2
𝑗 | ≤

1
2
(3𝜏2

𝑗 − 𝜏𝑗 − 𝜏3
𝑗 )2 | (𝐵 𝑓 ) (𝑟, 𝜃) |2

+ 1
2
|1 − 𝜏𝑗 |6 |𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟2𝜏2

𝑗 |2.

and

| (1 − 𝜏𝑗 )6𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟3𝜏3
𝑗 | ≤

1
2
(1 − 𝜏𝑗 )6 |𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝜏𝑗𝑟 |2

+ 1
2
|1 − 𝜏𝑗 |6 |𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃)𝑟2𝜏2

𝑗 |2.
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Take the expectation of both sides now. Since the pdf of 𝜏 is supported on [−1/2, 1/2] and zero

centered,

E[(3𝜏2
𝑗 − 𝜏𝑗 − 𝜏3

𝑗 )2] ≲ E[𝜏2
𝑗 ] ≲ 𝜂2.

The other terms with 𝜏𝑗 are bounded in a similar way. Thus

E[((𝐵 𝑓 𝑗 ) (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃))2] ≲ 𝜂2(𝐵 𝑓 )2(𝑟, 𝜃) + 𝑟2𝜂2 [𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)]2

+ 𝜂4𝑟4
[

max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |
]2
.

We also have

var[𝑋 𝑗 ] = E[𝑋2
𝑗 ]

≲ E[((𝐵 𝑓 𝑗 ) (𝑟, 𝜃) − (𝐵 𝑓 ) (𝑟, 𝜃))2]

≲ 𝜂2(𝐵 𝑓 )2(𝑟, 𝜃) + 𝑟2𝜂2 [𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)]2 + 𝜂4𝑟4
[

max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |
]2
,

and

E
[
(𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃))2

]
≲
𝜂2

𝑀
(𝐵 𝑓 )2(𝑟, 𝜃) + 𝑟2 𝜂

2

𝑀
[𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)]2

+ 𝜂
4

𝑀
𝑟4

[
max

𝛼∈[𝑟/2,2𝑟]
|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |

]2
.

Now we can take the integral and expectation to get

E
[
∥𝑔𝜂 (𝑟, 𝜃) − 𝑔̃𝜂 (𝑟, 𝜃)∥22

]
≲
𝜂2

𝑀
∥(𝐵 𝑓 ) (𝑟, 𝜃)∥22 +

𝜂2

𝑀
∥𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22

+ 𝜂
4

𝑀





𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |




2

2

The first term is now handled appropriately. We can now repeat a nearly identical argument for the

second term. Let 𝑔 𝑗 = 𝐵 𝑓 𝑗 and

𝑍 𝑗 = 𝑟
𝜕𝑔 𝑗

𝜕𝑟
(𝑟, 𝜃) − 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃).

We have

𝑟
𝜕𝑔̃𝜂

𝜕𝑟
(𝑟, 𝜃) − 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃) = 1

𝑀

𝑀∑︁
𝑗=1
𝑟
𝜕𝑔 𝑗

𝜕𝑟
(𝑟, 𝜃) − 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃).
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By Leibniz Rule, we can take the derivative inside the expectation to get E[𝑍 𝑗 ] = 0, and a similar

argument from before yields

𝑍2
𝑗 ≲

[
𝑟
𝜕𝑔 𝑗

𝜕𝑟
(𝑟, 𝜃) − 𝑟 𝜕𝑔

𝜕𝑟
(𝑟, 𝜃)

]2
+

[
𝑟
𝜕𝑔

𝜕𝑟
(𝑟, 𝜃) − 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

]2

and

E[𝑍2
𝑗 ] ≲ E

[(
𝑟
𝜕𝑔 𝑗

𝜕𝑟
(𝑟, 𝜃) − 𝑟 𝜕𝑔

𝜕𝑟
(𝑟, 𝜃)

)2
]
.

Taylor expand 𝜕𝑟 (𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝑟, 𝜃) to get

𝜕𝑟 (𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝑟, 𝜃) = 𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃) − 𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟𝜏𝑗 +
1
2
𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃)𝑟2𝜏2

𝑗 , 𝛾 ∈ [𝑟/2, 2𝑟] .

Since 𝑟 𝜕𝑔 𝑗
𝜕𝑟
(𝑟, 𝜃) = 𝑟 (1 − 𝜏𝑗 )4𝜕𝑟 (𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝑟, 𝜃), multiply both sides by (1 − 𝜏𝑗 )4:

(1 − 𝜏𝑗 )4𝑟𝜕𝑟 (𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝑟, 𝜃) = (1 − 𝜏𝑗 )4𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)

− (1 − 𝜏𝑗 )4𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟2𝜏𝑗 + (1 − 𝜏𝑗 )4
1
2
𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃)𝑟3𝜏2

𝑗

with 𝛾 ∈ [𝑟/2, 2𝑟] . Then

𝑟
𝜕𝑔 𝑗

𝜕𝑟
(𝑟, 𝜃) − 𝑟 𝜕𝑔

𝜕𝑟
(𝑟, 𝜃) = (𝜏4

𝑗 − 4𝜏3
𝑗 + 6𝜏2

𝑗 − 4𝜏𝑗 )𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)

− (1 − 𝜏𝑗 )4𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)𝑟2𝜏𝑗 + (1 − 𝜏𝑗 )4
1
2
𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃)𝑟3𝜏2

𝑗

with 𝛾 ∈ [𝑟/2, 2𝑟] . By a similar process from above,

E

[(
𝑟
𝜕𝑔 𝑗

𝜕𝑟
(𝑟, 𝜃) − 𝑟

𝜕𝑔𝜂

𝜕𝑟
(𝑟, 𝜃)

)2
]
≲
𝜂2

𝑀
∥𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22

+ 𝜂
2

𝑀
∥𝑟2𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22 +

𝜂4

𝑀





𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃) |




2

2
.

Thus

E
[
∥𝐵 𝑓 − 𝐵 𝑓 ∥22

]
≲
𝜂2

𝑀

(
∥(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + 2∥𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22 + +∥𝑟

2𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22
)

+ 𝜂
4

𝑀

(



𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |




2

2
+





𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃) |




2

2

)
.

18



For the case where 𝐵 𝑓 : R2 → C, simply write 𝐵 𝑓 = Re(𝐵 𝑓 ) + 𝑖Im(𝐵 𝑓 ) and repeat the

argument above. Then it follows that

E
[
∥Re(𝐵 𝑓 ) − Re(𝐵 𝑓 )∥22

]
≲
𝜂2

𝑀

(
∥Re(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + 2∥𝑟𝜕𝑟Re(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + +∥𝑟

2𝜕𝑟𝑟Re(𝐵 𝑓 ) (𝑟, 𝜃)∥22
)

+ 𝜂
4

𝑀

(



𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼Re(𝐵 𝑓 ) (𝛼, 𝜃) |




2

2
+





𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼𝛼Re(𝐵 𝑓 ) (𝛾, 𝜃) |




2

2

)
and

E
[
∥Im(𝐵 𝑓 ) − Im(𝐵 𝑓 )∥22

]
≲
𝜂2

𝑀

(
∥Im(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + 2∥𝑟𝜕𝑟Im(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + +∥𝑟

2𝜕𝑟𝑟Im(𝐵 𝑓 ) (𝑟, 𝜃)∥22
)

+ 𝜂
4

𝑀

(



𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼Im(𝐵 𝑓 ) (𝛼, 𝜃)




2

2
+





𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛾𝛾𝛾Im(𝐵 𝑓 ) (𝛾, 𝜃) |




2

2

)
.

Adding the two inequalities together yields the desired result. □

Now that we have solved the noiseless case, the goal is to move onto Model 2 and try to adapt

our method to work in the presence of additive noise.

2.6 Bispectrum Recovery for Model 2

Now we move on to Model 2. This is similar, but the additive noise creates two difficulties.

First, we must restrict ourselves from R2 to some finite domain Ω since the MSE is not well defined

on infinite intervals because of the noise. Second, we don’t necessarily have access to 𝑔̃𝜂 like

before. Instead, we only know
1
𝑀

𝑀∑︁
𝑗=1

𝐵𝑦 𝑗 .

Writing 𝜀(𝜔) =
∫ 1/2
−1/2 𝑒

−𝑖𝜔𝑥𝑑𝐵𝑥 as an integral with respect to a Brownian motion, it is clear that

E[𝐵𝜀 𝑗 ] = 0. Also, notice that E[𝐵𝜀 𝑗 ] = E[𝜀 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)], where each 𝜀 𝑗 is white
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noise process on [−1/2, 1/2] with variance 𝜎2. We see that for each index

𝐵𝑦 𝑗 (𝜔1, 𝜔2) = 𝐵( 𝑓 𝑗 + 𝜀 𝑗 ) (𝜔1, 𝜔2)

= ( 𝑓 𝑗 (𝜔1) + 𝜀 𝑗 (𝜔1)) ( 𝑓 ∗𝑗 (𝜔2) + 𝜀∗𝑗 (𝜔2)) ( 𝑓 𝑗 (𝜔2 − 𝜔1) + 𝜀 𝑗 (𝜔2 − 𝜔1))

= 𝑓 𝑗 (𝜔1) 𝑓 ∗𝑗 (𝜔2) 𝑓 𝑗 (𝜔2 − 𝜔1) + 𝑓 𝑗 (𝜔1) 𝑓 ∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)

+ 𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1) + 𝑓 ∗𝑗 (𝜔2) 𝑓 𝑗 (𝜔2 − 𝜔1)𝜀 𝑗 (𝜔1)

+ 𝑓 ∗𝑗 (𝜔2)𝜀 𝑗 (𝜔1)𝜀 𝑗 (𝜔2 − 𝜔1) + 𝜀 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2) 𝑓 𝑗 (𝜔2 − 𝜔1)

+ 𝑓 𝑗 (𝜔1) 𝑓 𝑗 (𝜔2 − 𝜔1)𝜀∗𝑗 (𝜔2) + 𝜀 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)

:= 𝐵 𝑓 𝑗 (𝜔1, 𝜔2) + 𝑅 𝑗 (𝜔1, 𝜔2).

Thus, we need to perform a 𝜎-based centering to recover 1
𝑀

∑𝑀
𝑗=1 𝐵 𝑓 𝑗 (𝜔1, 𝜔2). We see that if we

take the expectation over 𝜀, we have

E𝜀 [𝐵𝑦 𝑗 (𝜔1, 𝜔2)] = 𝐵 𝑓 𝑗 (𝜔1, 𝜔2) + E𝜀 [ 𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)

+ 𝑓 ∗𝑗 (𝜔2)𝜀 𝑗 (𝜔1)𝜀 𝑗 (𝜔2 − 𝜔1) + 𝜀 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2) 𝑓 𝑗 (𝜔2 − 𝜔1)] .

Now we know from Theorem 4.5 of [29]

E𝜀 [𝜀(𝜔1)𝜀∗(𝜔2)] = 2𝜎2
sin

(
1
2 (𝜔2 − 𝜔1)

)
𝜔2 − 𝜔1

.

Define ℎ(𝜔) = 2𝜎2 sin( 1
2𝜔)
𝜔

. Note that ℎ is an even function since it is the product of two odd

functions. Taking the expectation yields

E𝜀 [𝐵𝑦 𝑗 (𝜔1, 𝜔2)] = 𝐵 𝑓 𝑗 (𝜔1, 𝜔2) + 𝑓 𝑗 (𝜔1)ℎ(𝜔1) + 𝑓 ∗𝑗 (𝜔2)ℎ(𝜔2) + 𝑓 𝑗 (𝜔2 − 𝜔1)ℎ(𝜔2 − 𝜔1).

Now take the expectation over the translation and dilation parameters to get

E[𝐵𝑦 𝑗 (𝜔1, 𝜔2)] = E[𝐵 𝑓 𝑗 (𝜔1, 𝜔2)] + E[ 𝑓 𝑗 (𝜔1)]ℎ(𝜔1)

+ E[ 𝑓 ∗𝑗 (𝜔2)]ℎ(𝜔2) + E[ 𝑓 𝑗 (𝜔2 − 𝜔1)]ℎ(𝜔2 − 𝜔1).
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Denote the 𝜇(𝜔) = E[ 𝑓 𝑗 (𝜔)] and let 𝜇̃(𝜔) = 1
𝑀

∑𝑀
𝑗=1 𝑦̂ 𝑗 (𝜔). We will approximate the expectation

using

E[𝐵 𝑓 𝑗 ] ≈
1
𝑀

𝑀∑︁
𝑗=1

𝐵𝑦 𝑗 − 𝜇̃(𝜔1)ℎ(𝜔1) − 𝜇̃∗(𝜔2)ℎ(𝜔2) − 𝜇̃(𝜔2 − 𝜔1)ℎ(𝜔2 − 𝜔1)

=
1
𝑀

𝑀∑︁
𝑗=1

𝐵𝑦 𝑗 − 𝑅𝜎 .

After empirical centering by 𝑅𝜎, we can thus decompose the computable quantity into two pieces:

1
𝑀

𝑀∑︁
𝑗=1

𝐵𝑦 𝑗 − 𝑅𝜎 = 𝑔̃𝜂 + 𝑔̃𝜎,

where

𝑔̃𝜎 =
1
𝑀

𝑀∑︁
𝑗=1

𝑅 𝑗 (𝜔1, 𝜔2) − 𝑅𝜎 (𝜔1, 𝜔2) =
1
𝑀

𝑀∑︁
𝑗=1

𝑅 𝑗 (𝑟, 𝜃) − 𝑅𝜎 (𝑟, 𝜃).

The term 𝑔̃𝜂 + 𝑔̃𝜎 is not smooth due to the additive noise. Thus we need to add some procedure

to smooth the signal. Let 𝜙𝐿 (𝑟) = (2𝜋𝐿2)−1/2𝑒−𝑟
2/(2𝐿2) be a low pass filter. We define a new

estimator for Model 2 as

(𝐵 𝑓 ) (𝑟, 𝜃) := (𝐼 − 𝐿𝐶0)−1𝐶1𝐿𝐶2

(
4((𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿) (𝑟, 𝜃) + 𝑟𝜕𝑟 ((𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿) (𝑟, 𝜃)

)
. (2.12)

We will use the following two lemmas, whose proofs are similar to [26].

Lemma 2. Let 𝑞 ∈ 𝐿2(R2) and assume |𝑞(𝜔) | decays like |𝑞 |−𝛼 for some integer 𝛼 ≥ 2 and 𝜔

such that |𝜔 | ≥ 𝜔0 for some 𝜔0 > 0. Then for 𝐿 small enough,

∥𝑞 − 𝑞 ∗ 𝜙𝐿 ∥22 ≲ ∥𝑞∥22𝐿
4 + 𝐿4∧(2𝛼−2) .

Proof. We have 𝜙𝐿 ( |𝜔|) = 𝑒−𝐿
2 |𝜔|2/2 and

1 − 𝜙𝐿 ( |𝜔|) =
𝐿2 |𝜔|2

2
+𝑂 (𝐿3).
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Letting |𝜔| = 𝑟, we write the integral in polar coordinates and get

∥𝑞 − 𝑞 ∗ 𝜙𝐿 ∥22 =
1
(2𝜋)2

∥𝑞(1 − 𝜙𝐿)∥22

=
1
(2𝜋)2

∫ 2𝜋

0

∫ ∞

0
|𝑞(𝑟, 𝜃) |2 |1 − 𝜙𝐿 (𝑟) |2𝑟𝑑𝑟𝑑𝜃

=
1
(2𝜋)2

∫ 2𝜋

0

∫ 𝜔0

0
|𝑞(𝑟, 𝜃) |2 |1 − 𝜙𝐿 (𝑟) |2𝑟𝑑𝑟𝑑𝜃

+ 1
(2𝜋)2

∫ 2𝜋

0

∫ ∞

𝜔0

|𝑞(𝑟, 𝜃) |2 |1 − 𝜙𝐿 (𝑟) |2𝑟𝑑𝑟𝑑𝜃

:= 𝐼1 + 𝐼2.

For 𝐼1, we have

𝐼1 =
1
(2𝜋)2

∫ 2𝜋

0

∫ 𝜔0

0
|𝑞(𝑟, 𝜃) |2

(
𝐿2 |𝑟 |2

2
+𝑂 (𝐿3)

)2

𝑟 𝑑𝑟 𝑑𝜃

≤ 1
2𝜋2

(
𝐿4𝜔4

0
4
+𝑂 (𝐿5)

) ∫ 2𝜋

0

∫ 𝜔0

0
|𝑞(𝑟, 𝜃) |2𝑟𝑑𝑟𝑑𝜃

≲ 𝜔4
0∥𝑞∥

2
2𝐿

4 +𝑂 (𝐿5).

For 𝐼2,

𝐼2 ≤
𝐶2

(2𝜋)2

∫ 2𝜋

0

∫ ∞

1
𝑟−2𝛼+1(1 − 𝑒−𝐿2𝑟2/2)2 𝑑𝑟 𝑑𝜃

=
𝐶2

2𝜋

∫ ∞

1
𝑟−2𝛼+1(1 − 𝑒−𝐿2𝑟2/2)2 𝑑𝑟.

Using the same argument as [26], it follows that 𝐼2 ≲ 𝐿4∧(2𝛼−2) . □

Lemma 3. Let 𝑟𝑞(𝑟, 𝜃) ∈ 𝐿2(R2, 𝑑𝑟 × 𝑑𝜃) and assume its Fourier transform (̂·)𝑞(·) (𝜔) decays like

|𝑤 |−𝛼 for some integer 𝛼 ≥ 2. Then for 𝐿 small enough,

∥𝑟 (𝑞 − 𝑞 ∗ 𝜙𝐿) (𝑟, 𝜃)∥22 ≲ ∥𝑟𝑞(𝑟, 𝜃)∥22𝐿
4 + 𝐿4∧(2𝛼−2) + 𝐿3∥𝑞∥22.
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Proof. First, we switch back to rectangular coordinates:

∥𝑟 (𝑞 − 𝑞 ∗ 𝜙𝐿) (𝑟, 𝜃)∥22 = ∥(𝜔2
1 + 𝜔

2
2)

1/2(𝑞 − 𝑞 ∗ 𝜙𝐿) (𝜔1, 𝜔2)∥22

=

∫
R2
𝑤2

1 | (𝑞 − 𝑞 ∗ 𝜙𝐿) (𝜔1, 𝜔2) |2 𝑑𝜔1 𝑑𝜔2

+
∫
R2
𝑤2

2 | (𝑞 − 𝑞 ∗ 𝜙𝐿) (𝜔1, 𝜔2) |2 𝑑𝜔1 𝑑𝜔2

=
1
(2𝜋)2

∫
R2
|𝜕𝑡1𝑞(𝑡1, 𝑡2) − 𝜕𝑡1 (𝑞(𝑡1, 𝑡2)𝜙𝐿 (𝑡1, 𝑡2)) |2 𝑑𝑡1 𝑑𝑡2

+ 1
(2𝜋)2

∫
R2
|𝜕𝑡2𝑞(𝑡1, 𝑡2) − 𝜕𝑡2 (𝑞(𝑡1, 𝑡2)𝜙𝐿 (𝑡1, 𝑡2)) |2 𝑑𝑡1 𝑑𝑡2

:= 𝐼1 + 𝐼2.

For the first term, take derivatives to get

𝐼1 =
1
(2𝜋)2

∫
R2
|𝜕𝑡1𝑞(𝑡1, 𝑡2) − 𝜕𝑡1𝑞(𝑡1, 𝑡2)𝜙𝐿 (𝑡1, 𝑡2) − 𝑞(𝑡1, 𝑡2)𝜕𝑡1𝜙𝐿 (𝑡1, 𝑡2) |2 𝑑𝑡1 𝑑𝑡2

≲
1
(2𝜋)2

∫
R2
|𝜕𝑡1𝑞(𝑡1, 𝑡2) − 𝜕𝑡1𝑞(𝑡1, 𝑡2)𝜙𝐿 (𝑡1, 𝑡2) |2 𝑑𝑡1 𝑑𝑡2

+ 1
(2𝜋)2

∫
R2
|𝑞(𝑡1, 𝑡2)𝜕𝑡1𝜙𝐿 (𝑡1, 𝑡2) |2 𝑑𝑡1 𝑑𝑡2

≲ ∥𝜔1𝑞(𝜔1, 𝜔2) − (𝜔1𝑞) ∗ 𝜙𝐿 (𝜔1, 𝜔2)∥22 + ∥𝑞(𝑡1, 𝑡2)𝜕𝑡1𝜙𝐿 (𝑡1, 𝑡2)∥
2
2.

We use Lemma 2 to get

4∥𝜔1𝑞(𝜔1, 𝜔2) − (𝜔1𝑞) ∗ 𝜙𝐿 (𝜔1, 𝜔2)∥22 ≲ ∥𝜔1𝑞(𝜔1, 𝜔2)∥22𝐿
4 + 𝐿4∧(2𝛼−2) .

By how we defined 𝜙𝐿 , we also have 𝜙𝐿 (𝑡1, 𝑡2) = 𝑒−𝐿
2 (𝑡21+𝑡

2
2)/2. Take the derivative with respect to

𝑡1:

𝜕𝑡1𝜙(𝑡1, 𝑡2) = −𝐿2𝑡1𝑒
−𝐿2 (𝑡21+𝑡

2
2)/2

and get

∥𝑞(𝑡1, 𝑡2)𝜕𝑡1𝜙𝐿 (𝑡1, 𝑡2)∥22 ≤ 𝐿
3∥𝑞∥22.

The result is

𝐼1 ≲ ∥𝜔1𝑞(𝜔1, 𝜔2)∥22𝐿
4 + 𝐿4∧(2𝛼−2) + 𝐿3∥𝑞∥22.
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An identical argument is used to get

𝐼2 ≲ ∥𝜔2𝑞(𝜔1, 𝜔2)∥22𝐿
4 + 𝐿4∧(2𝛼−2) + 𝐿3∥𝑞∥22.

Now combine 𝐼1 and 𝐼2. The previous work implies

∥𝜔1𝑞(𝜔1, 𝜔2)∥22 + ∥𝜔2𝑞(𝜔1, 𝜔2)∥22 = ∥𝑟𝑞(𝑟, 𝜃)∥22

and

∥𝑟 (𝑞 − 𝑞 ∗ 𝜙𝐿) (𝑟, 𝜃)∥22 ≲ ∥𝑟𝑞(𝑟, 𝜃)∥22𝐿
4 + 𝐿4∧(2𝛼−2) + 𝐿3∥𝑞∥22.

□

Along with these two lemmas, we will also need the following lemma.

Lemma 4. Suppose 𝜀 is a mean zero Gaussian white noise supported on [−1/2, 1/2] with variance

𝜎2. For all 𝑝 > 0 and 𝜔 ∈ R,

E [|𝜀(𝜔) |𝑝] ≲𝑝 𝜎
𝑝 .

Proof. We rewrite 𝜀 as an integral with respect to a Brownian motion:

𝜀(𝜔) =
∫ 1/2

−1/2
𝑒−𝑖𝜔𝑥𝑑𝐵𝑥 .

Let

𝑔1(𝜔) = Re(𝜀(𝜔)) =
∫ 1/2

−1/2
cos(𝜔𝑥)𝑑𝐵𝑥 ,

𝑔2(𝜔) = Im(𝜀(𝜔)) =
∫ 1/2

−1/2
sin(𝜔𝑥)𝑑𝐵𝑥 .

For fixed 𝜔, the random vector
©­­«
𝑔1(𝜔)

𝑔2(𝜔)

ª®®¬ ∼ 𝑁 (0, Σ(𝜔)) where the covariance matrix is given by

Σ(𝜔) = 𝜎2 ©­­«
1 + sin𝜔 cos𝜔

𝜔
0

0 1 − sin𝜔 cos𝜔
𝜔

ª®®¬ .
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We will now prove a bound for 𝑔1(𝜔). An identical bound applies for 𝑔2(𝜔). Since 𝑔1(𝜔) is

normal,

E[|𝑔1(𝜔) |𝑝] = 𝜎𝑝
Var𝑝 (𝑔1(𝜔))

𝜎2𝑝

2𝑝/2Γ
(
𝑝+1

2

)
√
𝜋

≤ 𝜎𝑝
𝜎2𝑝

(
1 − sin𝜔 cos𝜔

𝜔

) 𝑝
𝜎2𝑝

2𝑝/2Γ
(
𝑝+1

2

)
√
𝜋

≲ 𝜎𝑝 .

Now we have

E[|𝜀(𝜔) |𝑝] = E
[(
|𝜀(𝜔) |2

) 𝑝/2]
= E

[
(𝑔2

1 (𝜔) + 𝑔
2
2 (𝜔))

𝑝/2
]

≲𝑝 (E
[
|𝑔2

1 (𝜔) |
𝑝

2

]
+ E

[
|𝑔2

2 (𝜔) |
𝑝

2

]
)

≲𝑝 𝜎
𝑝 .

□

Lemma 5. Assume that the assumptions of Model 2 hold, 𝐵 𝑓 ∈ 𝐶3(R2), (·)𝐵 𝑓 (·) decays like | · |𝜅

for some 𝜅 ≥ 2,

𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) | ∈ 𝐿2(R2, 𝑑𝑟 × 𝑑𝜃),

and

𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃) | ∈ 𝐿2(R2, 𝑑𝑟 × 𝑑𝜃).

We have the bound

∥𝑔̃𝜎∥2𝐿2 (Ω) ≲Ω,𝜏

𝜎2

𝑀
∥ 𝑓 ∥42 +

𝜎4

𝑀
∥ 𝑓 ∥22 +

𝜎6

𝑀
.

25



Proof. We use triangle inequality to get

∥𝑔̃𝜎∥2𝐿2 (Ω) ≲







 1
𝑀

𝑀∑︁
𝑗=1

𝑓 𝑗 (𝜔1) 𝑓 𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)








2

𝐿2 (Ω)

+







 1
𝑀

𝑀∑︁
𝑗=1

𝑓 ∗𝑗 (𝜔2) 𝑓 𝑗 (𝜔2 − 𝜔1)𝜀 𝑗 (𝜔1)








2

𝐿2 (Ω)

+







 1
𝑀

𝑀∑︁
𝑗=1

𝑓 𝑗 (𝜔1) 𝑓 𝑗 (𝜔2 − 𝜔1)𝜀∗𝑗 (𝜔2)








2

𝐿2 (Ω)

+







 1
𝑀

𝑀∑︁
𝑗=1

𝐵𝜀 𝑗 (𝜔1, 𝜔2)








2

𝐿2 (Ω)

+







 1
𝑀

𝑀∑︁
𝑗=1

𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1) − ℎ(𝜔1) 𝜇̃(𝜔1)








2

𝐿2 (Ω)

+







 1
𝑀

𝑀∑︁
𝑗=1

𝑓 ∗𝑗 (𝜔2)𝜀 𝑗 (𝜔1)𝜀 𝑗 (𝜔2 − 𝜔1) − ℎ(𝜔2) 𝜇̃∗(𝜔2)








2

𝐿2 (Ω)

+







 1
𝑀

𝑀∑︁
𝑗=1

𝑓 𝑗 (𝜔2 − 𝜔1)𝜀 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2) − ℎ(𝜔2 − 𝜔1) 𝜇̃(𝜔2 − 𝜔1)








2

𝐿2 (Ω)

.

The argument for bounding the expectation of the first three terms is similar, so we only provide

the proof for the first term



 1
𝑀

∑𝑀
𝑗=1 𝑓 𝑗 (𝜔1) 𝑓 ∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)




2

𝐿2 (Ω)
. We have

E








 1
𝑀

𝑀∑︁
𝑗=1

𝑓 𝑗 (𝜔1) 𝑓 ∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)








2

𝐿2 (Ω)


=

∫
Ω

E


1
𝑀2

������ 𝑀∑︁𝑗=1
𝑓 𝑗 (𝜔1) 𝑓 𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1)

������
2 𝑑𝜔1 𝑑𝜔2

=
𝜎2

𝑀2

∫
Ω

𝑀∑︁
𝑗=1
| 𝑓 𝑗 (𝜔1) 𝑓 𝑗 (𝜔2) |2 𝑑𝜔1 𝑑𝜔2

=
𝜎2

𝑀2

𝑀∑︁
𝑗=1

∫
Ω

| 𝑓 𝑗 (𝜔1) 𝑓 𝑗 (𝜔2) |2 𝑑𝜔1 𝑑𝜔2

=
𝜎2

𝑀2

𝑀∑︁
𝑗=1

∫
Ω

| 𝑓 𝑗 (𝜔1) |2 𝑑𝜔1

∫
Ω

| 𝑓 𝑗 (𝜔2) |2 𝑑𝜔2

=
𝜎2

𝑀
∥ 𝑓 ∥4

𝐿2 (Ω)

≤ 𝜎
2

𝑀
∥ 𝑓 ∥|4

𝐿2 (R) ,
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where the last line follows from Phlancherel Theorem. A similar argument proves that each of the

first three terms on the right are bounded on the order of 𝜎2

𝑀
∥ 𝑓 ∥42.

For the fourth term, since E[𝐵𝜖 𝑗 ] = 0, we have

E








 1
𝑀

𝑀∑︁
𝑗=1

𝐵𝜀 𝑗 (𝜔1, 𝜔2)








2

𝐿2 (Ω)

 = E


∫
Ω

������ 1
𝑀

𝑀∑︁
𝑗=1

𝐵𝜀 𝑗 (𝜔1, 𝜔2)

������
2

𝑑𝜔1 𝑑𝜔2


=

∫
Ω

E


������ 1
𝑀

𝑀∑︁
𝑗=1

𝐵𝜀 𝑗 (𝜔1, 𝜔2)

������
2 𝑑𝜔1 𝑑𝜔2

=

∫
Ω

Var


1
𝑀

𝑀∑︁
𝑗=1

𝐵𝜀 𝑗 (𝜔1, 𝜔2)
 𝑑𝜔1 𝑑𝜔2

=
1
𝑀

∫
Ω

Var(𝐵𝜀 𝑗 ) 𝑑𝜔1 𝑑𝜔2.

We now bound Var(𝐵𝜀 𝑗 ). First, since the expectation is zero, by Holder’s inequality and the Lemma

4 to get

Var(𝐵𝜀 𝑗 ) = E[|𝐵𝜀 𝑗 |2]

= E
[
|𝜀(𝜔1) |2 |𝜀(𝜔2) |2 |𝜀(𝜔2 − 𝜔1) |2

]
≤ E

[
|𝜀(𝜔1) |6

]1/3
E

[
|𝜀(𝜔2) |6

]1/3
E

[
|𝜀(𝜔2 − 𝜔1) |6

]1/3

≲ 𝜎6.

Thus, we obtain

E








 1
𝑀

𝑀∑︁
𝑗=1

𝐵𝜀 𝑗 (𝜔1, 𝜔2)








2

𝐿2 (Ω)

 ≲
𝜎6

𝑀
|Ω|.

Now we bound the last three terms. We start with

𝐴 = E








 1
𝑀

𝑀∑︁
𝑗=1

𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1) − ℎ(𝜔1) 𝜇̃(𝜔1)








2

𝐿2 (Ω)

 .
Consider the random variable

𝐴 𝑗 = 𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1).
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Then

𝐴 = E








 1
𝑀

𝑀∑︁
𝑗=1

𝐴 𝑗 − ℎ(𝜔1) 𝜇̃(𝜔1)








2

𝐿2 (Ω)


= E








©­« 1
𝑀

𝑀∑︁
𝑗=1

𝐴 𝑗 − ℎ(𝜔1)𝜇(𝜔1)ª®¬ + ℎ(𝜔1)𝜇(𝜔1) − ℎ(𝜔1) 𝜇̃(𝜔1)








2

𝐿2 (Ω)


≲ E








 1
𝑀

𝑀∑︁
𝑗=1

𝐴 𝑗 − ℎ(𝜔1)𝜇(𝜔1)








2

𝐿2 (Ω)

 + E
[
∥ℎ(𝜔1)𝜇(𝜔1) − ℎ(𝜔1) 𝜇̃(𝜔1)∥2𝐿2 (Ω)

]
.

For the first term at the end of the inequality, we see that ℎ(𝜔1)𝜇(𝜔1) is the mean of 𝐴 𝑗 for fixed

(𝜔1, 𝜔2). Thus,

E








 1
𝑀

𝑀∑︁
𝑗=1

𝐴 𝑗 − ℎ(𝜔1)𝜇(𝜔1)








2

𝐿2 (Ω)

 =

∫
Ω

E


������ 1
𝑀

𝑀∑︁
𝑗=1

𝐴 𝑗 − ℎ(𝜔1)𝜇(𝜔1)

������
2 𝑑𝜔1 𝑑𝜔2

=

∫
Ω

1
𝑀

Var
[
𝐴 𝑗

]
𝑑𝜔1 𝑑𝜔2

We have

Var(𝐴 𝑗 ) = E[| 𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1) |2] − ℎ2(𝜔1)𝜇2(𝜔1)

≤ E[| 𝑓 𝑗 (𝜔1)𝜀∗𝑗 (𝜔2)𝜀 𝑗 (𝜔2 − 𝜔1) |2]

≲ 𝜎4E𝑡,𝜏 [| 𝑓 𝑗 (𝜔1) |2] .

Now substitute this back into the integral to get∫
Ω

1
𝑀

Var
[
𝐴 𝑗

]
𝑑𝜔1 𝑑𝜔2 ≲

𝜎4

𝑀

∫
Ω

E𝑡,𝜏 [| 𝑓 𝑗 (𝜔1) |2] 𝑑𝜔1 𝑑𝜔2 =
𝜎4

𝑀

∫
Ω

E𝜏
[
| 𝑓 𝑗 (𝜔1) |2

]
𝑑𝜔1 𝑑𝜔2

by translation invariance of the power spectrum. Now we have

𝜎4

𝑀

∫
Ω

E𝜏
[
| 𝑓 𝑗 (𝜔1) |2

]
𝑑𝜔1 𝑑𝜔2 =

𝜎4

𝑀
E𝜏

[∫
Ω

| 𝑓 𝑗 (𝜔1) |2 𝑑𝜔1 𝑑𝜔2

]
=
𝜎4

𝑀
E𝜏

[
1

1 − 𝜏𝑗

∫ ∫
| 𝑓 (𝜔̃1) |2 𝑑𝜔̃1 𝑑𝜔2

]
≲𝜏,Ω

𝜎4

𝑀
∥ 𝑓 ∥22.

28



For the second term,

E
[
∥ℎ(𝜔1)𝜇(𝜔1) − ℎ(𝜔1) 𝜇̃(𝜔1)∥2𝐿2 (Ω)

]
=

∫
Ω

ℎ2(𝜔1)E
[
|𝜇(𝜔1) − 𝜇̃(𝜔1) |2

]
𝑑𝜔1 𝑑𝜔2

≲ 𝜎4
∫
Ω

E
[
|𝜇(𝜔1) − 𝜇̃(𝜔1) |2

]
𝑑𝜔1 𝑑𝜔2

= 𝜎4
∫
Ω

E


������ 1
𝑀

𝑀∑︁
𝑗=1

𝑦̂ 𝑗 (𝜔1) − 𝜇(𝜔1)

������
2 𝑑𝜔1 𝑑𝜔2

Define 𝑍 𝑗 = 𝑦̂ 𝑗 (𝜔) − 𝜇(𝜔). Using similar steps to before, we get

E
[
∥ℎ(𝜔1)𝜇(𝜔1) − ℎ(𝜔1) 𝜇̃(𝜔1)∥2𝐿2 (Ω)

]
≲ 𝜎4

∫
Ω

©­« 1
𝑀

𝑀∑︁
𝑗=1

𝑍 𝑗
ª®¬

2

𝑑𝜔1 𝑑𝜔2

=
𝜎4

𝑀

∫
Ω

Var(𝑍 𝑗 ) 𝑑𝜔1 𝑑𝜔2

≲Ω

𝜎4

𝑀
(∥ 𝑓 ∥22 + 𝜎

2).

This means that we put everything together to conclude

∥𝑔̃𝜎∥2𝐿2 (Ω) ≲Ω,𝜏

𝜎2

𝑀
∥ 𝑓 ∥42 +

𝜎4

𝑀
∥ 𝑓 ∥22 +

𝜎6

𝑀
.

□

Theorem 6. Assume that the assumptions of Model 2 hold, 𝐵 𝑓 ∈ 𝐶3(R2), (·)𝐵 𝑓 (·) decays like

| · |𝜅 for some 𝜅 ≥ 2,

𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) | ∈ 𝐿2(R2, 𝑑𝑟 × 𝑑𝜃),

and

𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃) | ∈ 𝐿2(R2, 𝑑𝑟 × 𝑑𝜃).

For the estimator (𝐵 𝑓 ) (𝑟, 𝜃) defined for Model 2,

E
[
∥𝐵 𝑓 − 𝐵 𝑓 ∥2

𝐿2 (Ω)

]
≤ 𝐶 𝑓 ,Ω

(
𝜂2

𝑀
+ 𝐿4 + 𝜎

2 ∨ 𝜎6

𝐿2𝑀

)
,

where 𝐶 𝑓 ,Ω only depends on 𝑓 and Ω.
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Proof. First, we see that by an argument as in Lemma 1,

∥𝐵 𝑓 − 𝐵 𝑓 ∥2
𝐿2 (Ω) ≲



4𝑔𝜂 + 𝑟𝜕𝑟𝑔𝜂 − 4(𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿 − 𝑟𝜕𝑟 ((𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿)


2
𝐿2 (Ω)

≲


𝑔𝜂 − 𝑔̃𝜂

2

𝐿2 (Ω) +


𝑟𝜕𝑟𝑔𝜂 − 𝑟𝜕𝑟 𝑔̃𝜂

2

𝐿2 (Ω)

+


4𝑔̃𝜂 + 𝑟𝜕𝑟 𝑔̃𝜂 − 4(𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿 − 𝑟𝜕𝑟 ((𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿)



2
𝐿2 (Ω)

≲


𝑔𝜂 − 𝑔̃𝜂

2

𝐿2 (Ω) +


𝑟𝜕𝑟𝑔𝜂 − 𝑟𝜕𝑟 𝑔̃𝜂

2

𝐿2 (Ω) + ∥𝑔̃𝜂 − 𝑔̃𝜂 ∗ 𝜙𝐿 ∥
2
𝐿2 (Ω)

+


𝑟𝜕𝑟 𝑔̃𝜂 − 𝑟𝜕𝑟 (𝑔̃𝜂 ∗ 𝜙𝐿)

2

𝐿2 (Ω) + ∥𝑔̃𝜎 ∗ 𝜙𝐿 ∥
2
𝐿2 (Ω) + ∥𝑟𝜕𝑟 (𝑔̃𝜎 ∗ 𝜙𝐿)∥

2
𝐿2 (Ω)

By Theorem 1,

E
[

𝑔𝜂 − 𝑔̃𝜂

2

𝐿2 (Ω) +


𝑟𝜕𝑟𝑔𝜂 − 𝑟𝜕𝑟 𝑔̃𝜂

2

𝐿2 (Ω)

]
≲
𝜂2

𝑀

(
∥(𝐵 𝑓 ) (𝑟, 𝜃)∥22 + 2∥𝑟𝜕𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)∥22 + ∥𝑟

2𝜕𝑟𝑟 (𝐵 𝑓 ) (𝑟, 𝜃)]2∥22
)

+ 𝜂
4

𝑀

(



𝑟2 max
𝛼∈[𝑟/2,2𝑟]

|𝜕𝛼𝛼 (𝐵 𝑓 ) (𝛼, 𝜃) |




2

2
+





𝑟3 max
𝛾∈[𝑟/2,2𝑟]

|𝜕𝛾𝛾𝛾 (𝐵 𝑓 ) (𝛾, 𝜃) |




2

2

)
.

It suffices to bound the other four terms appropriately now. By Lemma 2,

∥𝑔̃𝜂 − 𝑔̃𝜂 ∗ 𝜙𝐿 ∥2𝐿2 (Ω) ≲ ∥𝑔̃𝜂∥
2
2𝐿

4 + 𝐿4∧(2𝜅−2) .

For 𝑔̃𝜂, notice that

∥𝐵 𝑓 𝑗 ∥22 = (1 − 𝜏𝑗 )6
∫
R2
| (𝐵 𝑓 ) ((1 − 𝜏𝑗 )𝜔1, (1 − 𝜏𝑗 )𝜔2) |2 𝑑𝜔1𝑑𝜔2

= (1 − 𝜏𝑗 )4
∫
R2
| (𝐵 𝑓 ) (𝜔1, 𝜔2) |2 𝑑𝜔1𝑑𝜔2

= (1 − 𝜏𝑗 )4∥𝐵 𝑓 ∥22

≤ 24∥𝐵 𝑓 ∥22.

Triangle inequality implies

∥𝑔̃𝜂∥2 =







 1
𝑀

𝑀∑︁
𝑗=1

𝐵 𝑓 𝑗








2

≤ 1
𝑀

𝑀∑︁
𝑗=1
∥𝐵 𝑓 𝑗 ∥2 ≲ ∥𝐵 𝑓 ∥2

and

∥𝑔̃𝜂 − 𝑔̃𝜂 ∗ 𝜙𝐿 ∥𝐿2 (Ω) ≲ ∥𝐵 𝑓 ∥22𝐿
4 + 𝐿4∧(2𝛼−2) .
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Also, by Lemma 3,

∥𝑟𝜕𝑟 (𝑔̃𝜂 − (𝑔̃𝜂 ∗ 𝜙𝐿))∥2𝐿2 (Ω) ≲ ∥𝑟𝜕𝑟 𝑔̃𝜂∥
2
2𝐿

4 + 𝐿4∧(2𝛼−2) + 𝐿3∥𝜕𝑟 𝑔̃𝜂∥22.

Now consider the error terms. First start with ∥𝑔̃𝜎 ∗ 𝜙𝐿 ∥2𝐿2 (Ω) . We have

∥𝑔̃𝜎 ∗ 𝜙𝐿 ∥2𝐿2 (Ω) ≤ ∥𝜙𝐿 ∥
2
𝐿1 (Ω) ∥𝑔̃𝜎∥

2
𝐿2 (Ω) ≲ ∥𝑔̃𝜎∥

2
𝐿2 (Ω) .

Now we consider ∥𝑟𝜕𝑟 (𝑔̃𝜎 ∗ 𝜙𝐿)∥𝐿2 (Ω) . Let 𝑅Ω = maxΩ |𝑟 |. We have

∥𝑟𝜕𝑟 (𝑔̃𝜎 ∗ 𝜙𝐿)∥2𝐿2 (Ω) ≤ 𝑅
2
Ω∥𝑔̃𝜎 ∗ 𝜕𝑟𝜙𝐿 ∥

2
𝐿2 (Ω)

≤ 𝑅2
Ω∥𝜕𝑟𝜙𝐿 ∥

2
1∥𝑔̃𝜎∥

2
𝐿2 (Ω) .

Since 𝜙 is a radial filter and we know the filter

𝜕𝑟𝜙𝐿 (𝑟) = (2𝜋𝐿2)−1/2𝜕𝑟
[
𝑒−𝑟

2/(2𝐿2)
]
= −(2𝜋𝐿3)−1/2𝑟𝑒−𝑟

2/(2𝐿2) .

It follows that

∥𝜕𝑟𝜙𝐿 ∥1 =
1
𝐿3

∫ ∞

0
𝑟𝑒−𝑟

2/(2𝐿2) 𝑑𝑟 = 𝐿−1

and ∥𝜕𝑟𝜙𝐿 ∥21 = 𝐿−2. We can also use our previous bound to get

∥𝑟𝜕𝑟 (𝑔̃𝜎 ∗ 𝜙𝐿)∥2𝐿2 (Ω) ≲𝜏,Ω, 𝑓 𝐿
−2

(
𝜎2 ∨ 𝜎6

𝑀

)
.

This finishes the proof of the theorem since each term is dependent on 𝐿, 𝑀 , and 𝜂2 now. □

Note that we can choose 𝐿 = 𝜎

𝑀1/6 to get a bound of 𝑂
(
𝜎6

𝑀

)
when 𝜎 ≥ 1. We let 𝐿4 = 𝜎6

𝐿2𝑀
,

and this gives a convergence rate of 𝑂 ( 𝜂
2

𝑀
+ 𝜎4

𝑀2/3 ) on the squared error.

2.7 Numerical Implementation of Bispectrum Recovery

Now that we have theoretical results to recover the bispectrum, we will use these results for

bispectrum recovery. After showing success for signal recovery, we will use our recovery results for

signal inversion with the phase synchronization algorithm from [7], which will require a recovered

power spectrum and recovered bispectrum, which will motivate our current approach of doing

power spectrum recovery first.
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We can discuss computing (2.12) numerically now. We cannot compute (𝐼 − 𝐿𝐶0)−1, but we

can still solve for the bispectrum by means of optimization. Similar to how we constructed the

estimator in the finite sample case, we will consider the infinite sample case first and derive an

optimization procedure. Based on this procedure, we will design another optimization procedure

for the finite sample case that is a good estimator when 𝑀 is large.

In the infinite sample limit, we have access to the term

𝑑 (𝑟, 𝜃) = 4𝑔𝜂 (𝑟, 𝜃) + 𝑟𝜕𝑟𝑔𝜂 (𝑟, 𝜃) (2.13)

and Proposition 4 implies that we can recover 𝑑 by solving the convex optimization problem

𝑔 = argmin𝑔̃∥(𝐼 − 𝐿𝐶0)𝑔̃ − 𝐶1𝐿𝐶2𝑑∥22, (2.14)

where the constants 𝐶0, 𝐶1, 𝐶2 depend on 𝜂 as given in (2.5). Note that for fixed 𝜂, this problem

is convex. Since the variance of the dilations is not necessarily known, 𝜂 is possibly an unknown

parameter and we must actually minimize

𝔏(𝑔̃, 𝜂) =


(𝐼 − 𝐿𝐶0 (𝜂))𝑔̃ − 𝐶1(𝜂)𝐿𝐶2 (𝜂)𝑑



2
2 .

In [26], the authors find 𝜂 via a nonconvex optimization problem while recovering the power

spectrum. We could mimic a similar process for bispectrum recovery, but it is likely this process

would fail. The reason for this is that the optimization problem for bispectrum recovery has a

larger number of variables, so memory limited methods are necessary. In addition, we also need a

recovered power spectrum for our bispectrum inversion algorithm anyway, so we would still need

to perform power spectrum recovery. We will choose to learn 𝜂 and recover the power spectrum

using a modification of the algorithm from [26] and describe the steps below.

For recovering the power spectrum, our data term is given by

𝑝data(𝜔) = 3𝑝𝜂 (𝜔) + 𝜔𝑝′𝜂 (𝜔) , (2.15)

and we can consider minimizer

𝑝 = argmin𝑝
∥(𝐼 − 𝑆𝐶0)𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22

𝜂2 , (2.16)
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Since 𝜂 may be unknown, we use the loss function:

L(𝑝, 𝜂) =
∥
(
𝐼 − 𝑆𝐶0 (𝜂)

)
𝑝 − 𝐶1(𝜂)𝑆𝐶2 (𝜂) 𝑝data∥22
𝜂2 . (2.17)

Theorem 7. Define the operator 𝐴 = 𝐼 − 𝑆𝐶0 . For the loss function in (2.17), we have

∇𝑝L(𝑝, 𝜂) =
2𝐴∗(𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data)

𝜂2

∇𝜂L(𝑝, 𝜂) =
1
𝜂2

∫
2(𝐴𝑝(𝜔) − 𝐶1𝑆𝐶2 𝑝data(𝜔))

𝜕

𝜕𝜂
(𝐴𝑝(𝜔) − 𝐶1𝑆𝐶2 𝑝data(𝜔)) 𝑑𝜔

− 2
𝜂3 ∥𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22.

Proof. The following computation is almost identical to [26], but we provide the details for com-

pleteness. We start with ∇𝑝L(𝑝, 𝜂) and fix 𝜂. We will ignore the 𝜂 dependence for this part of the

computation. The Frechet derivative is

L(𝑝) =
∥𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22

𝜂2 = 𝑁 (𝐴𝑝) ,

where 𝑁 𝑓 = ∥ 𝑓 − 𝐶1𝑆𝐶2 𝑝data∥22. Let ℎ be a test function. Then we have

(𝐷L)(𝑝)ℎ = (𝐷𝑁) (𝐴𝑝) ◦ 𝐷 (𝐴𝑝)ℎ = (𝐷𝑁) (𝐴𝑝) ◦ 𝐴ℎ

since 𝐴 is a linear operator. It follows that

|𝑁 ( 𝑓 + ℎ) − 𝑁 𝑓 − 2
𝜂2 ⟨ 𝑓 − 𝐶1𝑆𝐶2 𝑝data, ℎ⟩|
∥ℎ∥2

=
1
𝜂2

∥ℎ∥22
∥ℎ∥2

→ 0

as ∥ℎ∥2 → 0, and (𝐷𝑁) ( 𝑓 )ℎ = 2
𝜂2 ⟨ 𝑓 − 𝐶1𝑆𝐶2 𝑝data, ℎ⟩. Thus

(𝐷L)(𝑝)ℎ =
2
𝜂2 ⟨𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data, 𝐴ℎ⟩

= ⟨ 2
𝜂2 𝐴

∗(𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data), ℎ⟩.

It now follows that

∇L(𝑝) = 2
𝜂2 𝐴

∗(𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data) . (2.18)
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Additionally, using the work above, we have

∇𝜂L(𝑝, 𝜂) =
𝜂2∇𝜂 (∥𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22) − 2𝜂∥𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22

𝜂4

=
1
𝜂2

∫
2(𝐴𝑝(𝜔) − 𝐶1𝑆𝐶2 𝑝data(𝜔))

𝜕

𝜕𝜂
(𝐴𝑝(𝜔) − 𝐶1𝑆𝐶2 𝑝data(𝜔)) 𝑑𝜔

− 2
𝜂3 ∥𝐴𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22.

□

For this implementation, we need to calculate 𝐴∗, which we do analytically below. We have

⟨𝐴𝑔, ℎ⟩ =
∫

𝐴𝑔(𝜔)ℎ(𝜔) 𝑑𝜔

=

∫
(𝑔(𝜔) − 𝐶3

0𝑔(𝐶0𝜔))ℎ(𝜔) 𝑑𝜔

=

∫
𝑔(𝜔̃)

(
ℎ(𝜔̃) − 𝐶2

0ℎ

(
𝜔̃

𝐶0

))
𝑑𝜔̃

= ⟨𝑔, 𝐴∗ℎ⟩.

Thus,

𝐴∗ℎ(𝜔) = ℎ(𝜔) − 𝐶2
0ℎ

(
𝜔

𝐶0

)
. (2.19)

For implementations, one only has access to the estimate of 𝑝𝜂, so numerical implementations

will use the following estimate for the data term:

𝑝data(𝜔) := 3(𝑝𝜂 + 𝑝𝜎) ∗ 𝜙𝐿 (𝜔) + 𝜔
[
(𝑝𝜂 + 𝑝𝜎) ∗ 𝜙′𝐿

]
(𝜔)

L̃(𝑝, 𝜂) :=


(𝐼 − 𝑆𝐶0 (𝜂)

)
𝑝 − 𝐶1(𝜂)𝑆𝐶2 (𝜂) 𝑝data



2
2 ,

and recovered power spectrum is computed by minimizing L̃.

After recovering the power spectrum and an estimate for 𝜂, the problem for recovering the

bispectrum is

𝑔 = argmin𝑔̃∥(𝐼 − 𝐿𝐶0 (𝜂))𝑔̃ − 𝐶1(𝜂)𝐿𝐶2 (𝜂)𝑑∥22. (2.20)

for a fixed estimate 𝜂, which is a convex optimization problem. We let 𝑌 = 𝐼 − 𝐿𝐶0 . By a proof

identical to above, we get

∇𝑔̃𝔏(𝑔̃) = 2𝑌 ∗(𝑌𝑔̃ − 𝐶1𝐿𝐶2𝑑)
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Additionally, we have

𝑌 ∗ℎ(𝜔1, 𝜔2) = ℎ(𝜔1, 𝜔2) − 𝐶2
0ℎ(𝐶

−1
0 𝑤1, 𝐶

−1
0 𝑤2)). (2.21)

Like before, for numerical applications, we only have access to a finite number of samples, so

will have to have to modify our data term and loss function based on the estimator provided in

Model 2:

𝑑 (𝑟, 𝜃) = 4(𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜙𝐿 (𝑟, 𝜃) + 𝑟 [(𝑔̃𝜂 + 𝑔̃𝜎) ∗ 𝜕𝑟𝜙𝐿] (𝑟, 𝜃)

𝔏̃(𝑔̃) =


(𝐼 − 𝐿𝐶0)𝑔̃ − 𝐶1𝐿𝐶2𝑑



2
2 .

With this surrogate loss and data term, we can conduct numerical experiments in the next section.

2.8 Numerical Experiments for Bispectrum Recovery

We will now test our bispectrum recovery algorithm on the following signals:

𝑓1(𝑥) = 𝐴1𝑒
−5𝑥2

cos(4𝑥)

𝑓2(𝑥) = 𝐴2𝑒
−5𝑥2

cos(8𝑥)

𝑓3(𝑥) = 𝐴3𝑒
−5𝑥2

cos(12𝑥)

𝑓4(𝑥) = 𝐴41[−1/8,1/8] (𝑥)

𝑓5(𝑥) = 𝐴5sinc(4𝑥)

𝑓6(𝑥) = 𝐴6


2 − 2|𝑥 |, |𝑥 | < 1

0, otherwise
.

Like in [27], we define our hidden signals on [−𝑁/4, 𝑁/4], and the noisy signals are defined on

[−𝑁/2, 𝑁/2] with 𝑁 = 25. In frequency, the signals were sampled on the interval [−2ℓ𝜋, 2ℓ𝜋] with

ℓ = 4 and sampling rate of 𝜋/𝑁. The constants 𝐴𝑖 with 𝑖 = 1, . . . , 6 were chosen so that the SNR

for each 𝑓𝑖 was set to be 𝜎−2, where SNR =

(∫ 𝑁/2
−𝑁/2 | 𝑓 (𝑥) |

2 𝑑𝑥
)
/𝜎2. All signals, other than 𝑓4, were

generated in space. We chose to generate 𝑓4 in frequency. We chose to generate 𝑓4 in frequency

because of aliasing.

Regarding our signals, we chose our signals so that they could test the robustness of our proposed

method. The signals 𝑓1 to 𝑓3 are smooth with fast decay, which do not fit the assumptions to employ
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our proposed estimators. Nonetheless, 𝑓1 to 𝑓3 still perform well, which is most likely because of

their exponential decay rate. However, we note that as the peak of the power spectrum is farther

from the origin, our problem becomes much harder problem because the dilations cause larger

perturbations. This is shown in Figure 2.4.

We start with the case of oracle 𝜂 (i.e. 𝜂 is known) and consider two cases: 𝜎 = 0.5 and𝜎 = 1.0.

Error plots are shown in Figures 2.4 and 2.5. All oracle experiments were run with 𝜂 = 12−1/2 and

with a gaussian width of 𝐿 = 5( 𝜎
𝑀
)1/6 for bispectrum recovery and width 𝐿 = 10( 𝜎4

𝑀
)1/6 for power

spectrum recovery.

(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.4 Relative error decay with standard error bars for Bispectrum Recovery using Model 2
under the assumption of oracle 𝜂 = 12−1/2 with 𝜎 = 0.5.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.5 Relative error decay with standard error bars for Bispectrum Recovery using Model 2
under the assumption of oracle 𝜂 = 12−1/2 and 𝜎 = 1.0.

For all the signals, in the case where one only does empirical noise centering on the average

bispectra, which is marked in blue, there is a diminishing return in performance for large enough

𝑀 . This is most likely because the blue estimator has a dilation bias, and a large sample size will

not be able to overcome this. It will only be able to overcome the additive noise bias, so eventually

the blue line will plateau. In comparison, our inversion unbiasing procedure,which is marked in

red, demonstrates a continual drop in error for both choices of 𝜎, except for 𝑓5. Additionally, note

that the red decay line does not plateau, but is linear on the log-log plot, supporting the claim of

Theorem 5 that 𝐵 𝑓 is truly an unbiased estimator. The poor performance of 𝑓5 stems from the

fact that it does not obey the assumptions of Model 2 since sinc is not a compactly supported

function. The same is true for each of the Gabor functions, but their decay is exponential rather

than polynomial like the sinc.

Bispectrum recovery examples for 𝜎 = 0.5 are given in Figures 2.6 and 2.7. Note that in all
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the examples, once can "undilate" the additive noise unbiased bispectrum average. The results are

similar for 𝜎 = 1.0, but they are not provided in this thesis.

Figure 2.6 Example plots of recovery for 𝑓1, 𝑓2, and 𝑓3 under the assumption of oracle 𝜂 = 12−1/2

with 𝜎 = 0.5. Left: ground truth. Middle: Only Additive Noise Unbiasing. Our Unbiasing
Procedure.
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Figure 2.7 Example plots of recovery for 𝑓4, 𝑓5, and 𝑓6 under the assumption of oracle 𝜂 = 12−1/2

with 𝜎 = 0.5. Left: ground truth. Middle: Only Additive Noise Unbiasing. Our Unbiasing
Procedure.

We now consider the case where 𝜂 is unknown and estimated. Again, we have two cases:

𝜎 = 0.5, and 𝜎 = 1.0. For estimating 𝜎, since all the signals decay away from the origin, the

values of the power spectrum average should be near zero, sans noise. Thus, we find the variance

of the function values on the edge of the signal. All experiments will be run with 𝜂 = 12−1/2. Since

we now need to estimate the power spectrum, we let the width for the smoothing parameter for

power spectrum recovery be 5( 𝜎4

𝑀
)1/6 and use the smoothing parameter 5( 𝜎

𝑀
)1/6 for the bispectrum
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recovery. Note that the smoothing parameter for the power spectrum is smaller than the oracle

case. We found that 10( 𝜎4

𝑀
)1/6 and 5( 𝜎4

𝑀
)1/6 yielded similar results, so we decided to not change

the parameter.

In Figure 2.8, an error plot based on the number of samples is shown with 𝜎 = 0.5; in Figure

2.9, a similar error plot is shown with 𝜎 = 1.0. With regards to the estimation of 𝜂, the process

given in [26] was unreliable for all sample sizes. Our results show that our modified loss function

yields a more reliable estimate of 𝜂 for large 𝑀 . See Figures 2.20 and 2.21.

(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.8 Relative error decay with standard error bars for Bispectrum Recovery using Model 2
without prior knowledge of 𝜂 and with 𝜎 = 0.5.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.9 Relative error decay with standard error bars for Bispectrum Recovery using Model 2
without prior knowledge of 𝜂 and with 𝜎 = 1.0.

Our results indicate that we can recovery the bispectrum with a reasonable degree of accuracy.

The question is: do we have enough accuracy for full signal inversion?

2.9 Bispectrum Inversion and Hidden Signal Recovery

For hidden signal recovery, the tools we will need are a power spectrum recovery algorithm,

a bispectrum recovery algorithm, and a bispectrum inversion algorithm. We use [26] for power

spectrum recovery and 𝜂 estimation, our proposed bispectrum recovery algorithm, and the iterative

phase synrchonization algorithm [7] for bispectrum inversion. The general outline of the recovery

and inversion process is in Algorithm 2.2. The idea behind algorithm 2.2 is that we have already

recovered the magnitudes of the target signal via power spectrum recovery. Thus, if we are able to

recover the corresponding phase measurements, will recover the original signal.

The algorithm we use for phase recovery is iterative phase synchronization. Suppose that the
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bispectrum of our hidden signal is given by 𝐵, and our estimate of the phases for 𝐵 is given by 𝐵̃.

Suppose we have an estimate of the phase, 𝑦̃, say 𝑦̃𝑘−1 that is close to the ground truth. Then we

should have 𝐵̃ ◦𝑇 ( 𝑦̃𝑘−1) ≈ 𝑦̃𝑘−1 𝑦̃
∗
𝑘−1, where 𝑇 (𝑦) is the circulant matrix for the vector 𝑦 and ◦ is the

elementwise product of two matrices. We then approximate the phases via solving the optimization

problem:

argmax𝑧∈C𝑛Re{𝑧∗𝐵 ◦ 𝑇 (𝑦)𝑧}

subject to |𝑧[ℓ] | = 1∀ℓ. However, this solution is incorrect by a global phase. We need additional

information, namely 𝑓 (0), or some estimate of it.

Algorithm 2.1 describes the iterative phase synchronization algorithm:

Algorithm 2.1 Iterative Phase Synchronization

1: INPUT: normalized bispectrum 𝐵̂, estimation of phase of 𝑓 (0), given by 𝑦̄(0).
2: OUTPUT: Phase of Signal, 𝑦̃.
3: Let 𝑘 = 0.
4: while Stopping Criterion does not occur do
5: Increase 𝑘 by 1.

𝑦̂𝑘 ←− argmax𝑧∈C𝑛Re{𝑧∗𝐵̂ ◦ 𝑇 ( 𝑦̂𝑘 )𝑧} subject to 𝑧[ℓ] | = 1 ∀ℓ.

6:

𝑦̂𝑘 ←− 𝑦̂𝑘 ·
𝑦̃(0)
𝑦̂(0) .

7: If the signal is real, symmetrize it.
8: end while

Other methods, such as frequency marching [7], local non-convex optimization over the man-

ifold of phases [7], and semidefinite relaxation [4]. Frequency marching and iterative phase

synchronization have been found the have similar empirical performance. However, iterative phase

synchronization requires less assumptions, namely one does not need 𝑓 (1) ≠ 0. We have found

that local non-convex optimization over the manifold of phases did not yield good results in our

experiments, and semidefinite programming was infeasible due to memory requirements.
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Algorithm 2.2 Hidden Signal Recovery Algorithm
1: INPUTS: noisy signals {𝑦 𝑗 }
2: Calculate 𝑓 =

∑
𝑗 𝑦̂ 𝑗 , 𝑝𝜂 + 𝑝𝜎, 𝑔̃𝜂 + 𝑔̃𝜎.

3: Estimate the additive noise level, 𝜎̃, using the power spectrum on the edge of the signal.
4: Perform additive noise centering on the power spectrum and bispectrum.
5: if Eta Known then
6: Recover the power spectrum via solving the convex optimization problem argmin𝑝 ∥(𝐼 −

𝑆𝐶0)𝑝 − 𝐶1𝑆𝐶2 𝑝data∥22.
7: else if Eta Unknown then
8: Estimate the power spectrum and 𝜂 via solving the nonconvex optimization problem

argmin𝑝,𝜂
∥
(
𝐼−𝑆𝐶0 ( 𝜂̃)

)
𝑝−𝐶1 (𝜂)𝑆𝐶2 ( 𝜂̃) 𝑝data∥22

𝜂2 .
9: end if

10: Recover the bispectrum via solving the convex optimization problem argmin𝑔̃∥(𝐼 − 𝐿𝐶0)𝑔̃ −
𝐶1𝐿𝐶2𝑑∥22.

11: Apply APS to recover the original signal using 𝑓 (0), the recovered power spectrum, and the
recovered bispectrum.

To illustrate the difficulty of this process, we provide a ground truth example for 𝑓5 in Figure

2.10 and four observations of 𝑓5 in Figure 2.11. One can see that the observations do not resemble

the actual signal, even at a low noise levels.

Figure 2.10 Ground Truth Signal for 𝑓5.
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(a) 𝑓3

Figure 2.11 Corrupted Samples for 𝑓5. The top row is 𝜎 = 0.5 and the bottom row is 𝜎 = 1.0.

We test our results on the signals from the previous section with 𝑀 = 220 samples with

𝜂 = 12−1/2. We start with an oracle 𝜂. The results for 𝜎 = 0.5 are given in Figure 2.12 and example

inversion plots are given in Figure 2.13.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.12 Relative error decay with standard error bars for bispectrum inversion using Model 2
under the assumption of oracle 𝜂 = 12−1/2 with 𝜎 = 0.5.

The blue lines are for inversion using additive noise centered versions of the average bispectrum

and average power spectrum, and the red lines are using our inversion unbiasing procedure. One

can see that there is a huge gain in performance for the first five signals. However, for 𝑓6, there is

no gain in performance. We hypothesize this occurs because the power spectrum and bispectrum

of 𝑓6 have a peak around the origin. Dilating the power spectrum and bispectrum will not have a

large effect on the shape of the signal, since their support is restricted to very low frequencies. This

behavior is observed in Figure 2.7 as well.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.13 Bispectrum inversion results using Model 2 under the assumption of oracle 𝜂 = 12−1/2

with 𝜎 = 0.5. "Rec" is using our inversion unbiasing procedure and "NO UB" is using the the
centered averages. "RE" stands for the relative error.

Note that while the relative error between the signals is similar in a few cases, such as 𝑓1 and

𝑓5, the quality of the recovery results cannot be fully judged by using relative error. For instance,

in 𝑓1 and 𝑓5, one can see that the general shape of the signals is incorrect without the inversion

unbiasing, but the relative error is low because the recovered signal is relatively smooth. On the

other hand, with the inversion unbiasing, the recovered signal has the right general shape, but is

not very smooth. Also, with regards to 𝑓5, the assumptions of the model are not met, so the drop

in performance is expected. For this specific run, for the high frequency signal ( 𝑓3), the recovery

error decreased from 0.45 without unbiasing to 0.09 with unbiasing. Additionally for 𝑓2 and 𝑓4,

the unbiasing procedure decreased the error error by over 50%. For 𝑓1 and 𝑓6 we do not see much

improvement, but that is as expected since they are supported in the low frequencies; for 𝑓5 there is a

moderate improvement, but the bispectrum estimation was less reliable because model assumptions

were not met.
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Now we consider the case where 𝜎 = 1.0. The error decay plots are given in Figure 2.14 and

corresponding inversion plots are given in Figure 2.15.

(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.14 Relative error decay with standard error bars for bispectrum inversion using Model 2
under the assumption of oracle 𝜂 = 12−1/2 with 𝜎 = 1.0.

Notice that the gap in relative error between not using the unbiasing procedure and using the

unbaising procedure has decreased. This suggests that the bispectrum inversion algorithm we have

used is sensitive to noise. This also explains the slight performance drop we have observed.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.15 Bispectrum inversion results using Model 2 under the assumption of oracle 𝜂 = 12−1/2

with 𝜎 = 1.0.

Surprisingly, our error has not increased too much except in 𝑓4. For 𝑓4, we notice that noise in

the signal is most notable around the discontinuities of the function. There is a similar phenomenon

in 𝑓6. At the end of each triangle and the peak of the triangle, we observe more noise. This suggests

that the bispectrum inversion algorithm has a hard time learning discontinuities of the signal, which

is expected.

Now, we consider the case where 𝜂 is unknown and estimated again. For 𝜎 = 0.5, the error

decay plots are in Figure 2.16 and the inversion results are in Figure 2.17. For 𝜎 = 1.0, the error

decay plots are in Figure 2.18 and the inversion results are in Figure 2.19. Surprisingly, the results

are similar to the corresponding oracle plots in many cases.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.16 Relative error decay with standard error bars for bispectrum inversion using Model 2
with 𝜎 = 0.5 and no prior knowledge of 𝜂.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.17 Bispectrum inversion results using Model 2 with 𝜎 = 0.5 and no prior knowledge of 𝜂.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.18 Relative error decay with standard error bars for bispectrum inversion using Model 2
with 𝜎 = 1.0 and no prior knowledge of 𝜂.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.19 Bispectrum inversion results using Model 2 with 𝜎 = 1.0 and no prior knowledge of 𝜂.
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Finally, here are error plots for the estimation of 𝜂 in the empirical case. Figure 2.20 is for

𝜎 = 0.5 and Figure 2.21 is for 𝜎 = 1.0. Note that the improvement tends to plateau once we have

more than 214 samples for most of our cases. Note that the 𝜂 estimation was subpar for 𝑓4. We

believe this is because the signal is not continuous, but we have not done rigorous tests to confirm

this. Nonetheless, the bispectrum recovery results were still adequate in the oracle case.

(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.20 Mean Relative Error in estimating 𝜂 with 𝜎 = 0.5.
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3

(d) 𝑓4 (e) 𝑓5 (f) 𝑓6

Figure 2.21 Mean Relative Error in estimating 𝜂 with 𝜎 = 1.0.
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2.10 Conclusions and Future Work

In this chapter, we have provided a solution for the dilation MRA model by recovering the

bispectrum of the noisy observations. After recovering the bispectrum, we perform full signal

inversion and observe competitive results compared to other methods without dilations.

One natural extension is to work in two dimensions. That is, we want to recover a signal

𝑓 : R2 → R from many noisy observations that have been randomly translated, dilated, rotated,

and corrupted by additive noise. Define the rotation matrix

𝑅𝜃 =
©­­«
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

ª®®¬ . (2.22)

A formal description is now given by

Model 4. Suppose we have 𝑀 independent observations of a function 𝑓 ∈ 𝐿2(R2) defined by

𝑦 𝑗 (𝑥) = 𝑓 (𝑅−1
𝜃 𝑗
(1 − 𝜏𝑗 )−1(𝑥 − 𝑡 𝑗 )) + 𝜀 𝑗 (𝑥) := 𝑓 𝑗 (𝑥) + 𝜀 𝑗 (𝑥), 1 ≤ 𝑗 ≤ 𝑀

Furthermore, assume that

• supp( 𝑓 𝑗 ) ⊂ [−1
2 ,

1
2 ]

2 for 1 ≤ 𝑗 ≤ 𝑀 .

• {𝑡 𝑗 }𝑀𝑗=1 are independent samples of a random variable 𝑡 ∈ R.

• {𝜃 𝑗 }𝑀𝑗=1 are independent samples of a uniformly distributed random variable 𝜃 ∈ [−𝜋, 𝜋).

• {𝜏𝑗 }𝑀𝑗=1 are independent samples of a uniformly distributed random variable 𝜏 ∈ R satisfying

E[𝜏] = 0 and Var(𝜏) = 𝜂2 ≤ 1
12 .

• {𝜀 𝑗 (𝑥)}𝑀𝑗=1 are independent white noise processes on [−1
2 ,

1
2 ]

2 with variance 𝜎2.

Can we recover 𝑓 ?

The main difficulty in this model comes from the addition of the rotations, like mentioned in

previous sections. Even the noiseless case itself is difficult because one cannot simply align the

signals anymore. Intuitively, one has to first rotate all the signals in place, but this is not very

feasible. The corresponding noiseless model is given by

Model 5. Suppose we have 𝑀 independent observations of a function 𝑓 ∈ 𝐿2(R2) defined by

𝑓 𝑗 (𝑥) = 𝑓 (𝑅−1
𝜃 𝑗
(1 − 𝜏𝑗 )−1(𝑥 − 𝑡 𝑗 )) 1 ≤ 𝑗 ≤ 𝑀
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Furthermore, assume that

• supp( 𝑓 𝑗 ) ⊂ [−1
2 ,

1
2 ]

2 for 1 ≤ 𝑗 ≤ 𝑀 .

• {𝑡 𝑗 }𝑀𝑗=1 are independent samples of a random variable 𝑡 ∈ R.

• {𝜃 𝑗 }𝑀𝑗=1 are independent samples of a uniformly distributed random variable 𝜃 ∈ [−𝜋, 𝜋).

• {𝜏𝑗 }𝑀𝑗=1 are independent samples of a uniformly distributed random variable 𝜏 ∈ R satisfying

E[𝜏] = 0 and Var(𝜏) = 𝜂2 ≤ 1
12 .

Can we recover 𝑓 ?

We will start with Model 4 and generalize our results to Model 5, like in the one dimensional

case.
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CHAPTER 3

NONLINEAR HEEGER-BERGEN TEXTURE SYNTHESIS

3.1 Background on Texture Synthesis

Texture synthesis is the process of generating an image from a reference image by taking

advantage of its statistical properties. The new texture should have similar qualities as the reference

texture, but look different. In other words, for example, the same reference texture, a rotation of

the reference texture, or a rearrangement of the reference texture should not be the result after

synthesis. An example of texture synthesis is given in Figure 3.1.

Figure 3.1 "Example" is the reference texture and "Generated" is the synthesized texture. Note that
the images have the same perceptual qualities, but are not the same image.

While this task can be phrased simply, one difficulty in this task is that traditional image metrics

do not lead to good synthesis results. For example, if one were to minimize the MSE loss between

a reference image 𝐼𝑅 and synthesized image 𝐼𝑆 via solving the optimization problem

𝐼𝑆 = argmin𝐼𝑆 ∥𝐼𝑆 − 𝐼𝑅∥
2
2,

the result would be same texture. To illustrate why such a metric is difficult, we will provide some

examples.

Consider Figure 3.2. The synthesis in the last two columns have similar quality compared to

the reference, and it’s clear that both textures are not simply repetitions of the reference texture.
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Figure 3.2 Left: Original Texture. Middle: Synthesis using [24]. Right: Synthesis using [20].

One could argue that dots are more solid in the middle column, which matches with the reference

texture, so the synthesis is better. However, this is a subjective argument without any quantitative

backing.

Additionally, consider Figure 3.3. One can see that the middle column has worse alignment

compared to the reference texture on the left, so it’s clear that the synthesis on the right is higher

quality since there is no repetition.

Figure 3.3 Left: Original Texture. Middle: Synthesis using [24]. Right: Synthesis using [20].

The synthesis in the right column of Figure 3.3 captures what we will call "long range con-

straints" in an image. That is, it is able to capture macroscopic features that the middle column

of Figure 3.3 cannot capture. To approach this problem, there are two factors to consider. First,

can one find a representation that captures texture? If so, what is a good measure for measuring

similarity between textures? One needs to account for long range constraints without creating a
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texture too similar to the original reference texture.

One approach, which we will generalize in this chapter, is to update a white noise by matching

the histograms of wavelet coefficients between a reference image and the white noise. First, we will

need to introduce the filter bank we used and the wavelet transform.

3.2 Filter Construction

In this section we describe the filter bank used in the Heeger-Bergen algorithm. This is the

analytic description of the filters that does not rely on down sampling. We are following the

presentation in [10], but some of the notation is changed so care should be taken when comparing

the two. All filters are defined in frequency in the frequency box [−𝜋, 𝜋]2 := [−𝜋, 𝜋] × [−𝜋, 𝜋]

using polar coordinates.

Write 𝜔 = (𝜔1, 𝜔2) ∈ [−𝜋, 𝜋)2 as

𝜔 = (𝑟, 𝜃)

𝑟 :=
√︃
𝜔2

1 + 𝜔
2
2

𝜃 :=


𝜋 𝜔1 ≤ 0 and 𝜔2 = 0

2 arctan
(
𝜔2
𝜔1+𝑟

)
otherwise

.

We begin by defining some “building block” functions. The first is a low frequency radial function

𝐿 : [0,∞) → R defined as

∀ 𝑟 ≥ 0, 𝐿(𝑟) :=


1 𝑟 ≤ 𝜋/2

cos
(
𝜋
2 log2

(
2𝑟
𝜋

))
𝜋/2 < 𝑟 ≤ 𝜋

0 𝑟 ≥ 𝜋

.

The second is a high frequency function 𝐻 : [0,∞) → R defined as

∀ 𝑟 ≥ 0, 𝐻 (𝑟) :=


0 𝑟 ≤ 𝜋/2

cos
(
𝜋
2 log2

(
𝑟
𝜋

) )
𝜋/2 < 𝑟 ≤ 𝜋

1 𝑟 ≥ 𝜋

.

One can verify that 𝐿 and 𝐻 satisfy the following important property:

|𝐿 (𝑟) |2 + |𝐻 (𝑟) |2 = 1, ∀ 𝑟 ≥ 0. (3.1)
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Figure 3.4 Plot of 𝐿 (𝑟), 𝐻 (𝑟), and |𝐿 (𝑟) |2 + |𝐻 (𝑟) |2.

In fact, the cosine part for 𝐿 (𝑟) can be replaced with a different decreasing function, and the cosine

part of 𝐻 (𝑟) can be replaced with a different increasing function, so long as (3.1) holds. Figure 3.4

plots 𝐿 (𝑟) and 𝐻 (𝑟) and verifies, numerically, equation (3.1).

Remark 1. Looking at the plots in Figure 3.4, indeed we may want to use a different form for 𝐿 (𝑟)

and 𝐻 (𝑟), as they are not very smooth at the point where they equal zero.

We also define dilations of 𝐿 and 𝐻. They are given by:

∀ 𝑗 ∈ Z, 𝐿 𝑗 (𝑟) := 𝐿 (2 𝑗𝑟) =


1 𝑟 ≤ 𝜋/2 𝑗+1

cos
(
𝜋
2 log2

(
2 𝑗+1𝑟
𝜋

))
𝜋/2 𝑗+1 < 𝑟 ≤ 𝜋/2 𝑗

0 𝑟 ≥ 𝜋/2 𝑗

,

and

∀ 𝑗 ∈ Z, 𝐻 𝑗 (𝑟) := 𝐻 (2 𝑗𝑟) =


0 𝑟 ≤ 𝜋/2 𝑗+1

cos
(
𝜋
2 log2

(
2 𝑗𝑟
𝜋

))
𝜋/2 𝑗+1 < 𝑟 ≤ 𝜋/2 𝑗

1 𝑟 ≥ 𝜋/2 𝑗

.

We remark that it follows from (3.1) that

|𝐿 𝑗 (𝑟) |2 + |𝐻 𝑗 (𝑟) |2 = 1, ∀ 𝑟 ≥ 0, ∀ 𝑗 ∈ Z.

Now we define a family of functions for the angular variable 𝜃. Let 𝑄 be the number of such

functions, which will later correspond to the number of directional filters at each scale. We define
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Figure 3.5 Plots of 𝐺𝑞 (𝜃) and
∑𝑄−1
𝑞=0 |𝐺𝑞 (𝜃) |2 for 0 ≤ 𝑞 < 𝑄 = 4.

∀0 ≤ 𝑞 < 𝑄, ∀ 𝜃 ∈ (−𝜋, 𝜋],

𝐺𝑞 (𝜃) := 𝛼𝑄

(
cos

(
𝜃 − 𝜋𝑞

𝑄

)𝑄−1
1|𝜃−𝜋𝑞/𝑄 |≤𝜋/2 + cos

(
𝜃 − 𝜋(𝑞 −𝑄)

𝑄

)𝑄−1
1|𝜃−𝜋(𝑞−𝑄)/𝑄 |≤𝜋/2

)
,

where

𝛼𝑄 := 2𝑄−1 (𝑄 − 1)!√︁
𝑄(2(𝑄 − 1))!

.

One can verify that
𝑄−1∑︁
𝑞=0
|𝐺𝑞 (𝜃) |2 = 1, ∀ 𝜃 ∈ (−𝜋, 𝜋] . (3.2)

Figure 3.5 plots the functions 𝐺𝑞 (𝜃) and verifies (3.2) numerically. Similarly to the 𝐿 (𝑟) and 𝐻 (𝑟)

functions, the functions 𝐺𝑞 (𝜃) can be changed so long as (3.2) is satisfied.

Now we use the functions 𝐿 (𝑟), 𝐻 (𝑟), and 𝐺𝑞 (𝜃) to build our filters. We construct three types

of filters:

• A high frequency filter ℎ : R2 → R

• Directional wavelet filters 𝜓𝑞 : R2 → R

• A low frequency filter ℓ : R2 → R

The high pass filter ℎ(𝑢) is defined through its Fourier transform ℎ̂(𝑟, 𝜃) as

∀ 𝑟 ≥ 0, ∀ 𝜃 ∈ (−𝜋, 𝜋], ℎ̂(𝑟, 𝜃) := 𝐻 (𝑟),

and the low pass filter ℓ(𝑢) is defined analogously,

∀ 𝑟 ≥ 0, ∀ 𝜃 ∈ (−𝜋, 𝜋], ℓ̂(𝑟, 𝜃) := 𝐿 (𝑟).
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The directional filters 𝜓𝑞 (𝑢) are defined as

∀ 𝑟 ≥ 0, ∀ 𝜃 ∈ (−𝜋, 𝜋], 𝜓𝑞 (𝑟, 𝜃) := 𝐿0(𝑟)𝐻1(𝑟)𝐺𝑞 (𝜃).

One may verify that all the filters are symmetric through the origin (i.e., ℎ(−𝑢) = ℎ(𝑢), ℓ(−𝑢) =

ℓ(𝑢), and 𝜓𝑞 (−𝑢) = 𝜓𝑞 (𝑢)) and real valued in space.

We now define the wavelet transform of an image 𝑥 ∈ L2(R2) with its frequency support

contained in [−𝜋, 𝜋]2, i.e., supp(𝑥̂) ⊆ [−𝜋, 𝜋]2. Let 𝐽 ≥ 1 be the number of scales and let 𝑄 ≥ 1

be the number of orientations. A dilation of a filter 𝑓 : R2 → C is defined as

∀𝑢 ∈ R2, ∀ 𝑗 ∈ Z, 𝑓 𝑗 (𝑢) := 2−2 𝑗 𝑓 (2− 𝑗𝑢).

We remark that the Fourier transform of a dilated filter satisfies:

𝑓̂ 𝑗 (𝑟, 𝜃) = 𝑓̂ 𝑗 (𝜔) = 𝑓̂ (2 𝑗𝜔) = 𝑓̂ (2 𝑗𝑟, 𝜃), ∀𝜔 ∈ R2, ∀ 𝑗 ∈ Z.

Using this notation define the filter bank F𝐽,𝑄 as

F𝐽,𝑄 := {ℎ , ℓ𝐽 , 𝜓 𝑗 ,𝑞 : 0 ≤ 𝑗 < 𝐽, 0 ≤ 𝑞 < 𝑄},

where ℓ𝐽 (𝑢) is the dilation of the low pass filter ℓ(𝑢), which means:

ℓ𝐽 (𝑢) = 2−2𝐽ℓ(2−𝐽𝑢) =⇒ ℓ̂𝐽 (𝑟, 𝜃) = ℓ̂(2𝐽𝑟, 𝜃) = 𝐿 (2𝐽𝑟) = 𝐿𝐽 (𝑟),

and 𝜓 𝑗 ,𝑞 (𝑢) is the dilation of the directional filter 𝜓𝑞 (𝑢), meaning that:

𝜓 𝑗 ,𝑞 (𝑢) = 2−2 𝑗𝜓𝑞 (2− 𝑗𝑢) =⇒ 𝜓 𝑗 ,𝑞 (𝑟, 𝜃) = 𝜓𝑞 (2 𝑗𝑟, 𝜃) = 𝐿 𝑗 (𝑟)𝐻 𝑗+1(𝑟)𝐺𝑞 (𝜃).

Figure 3.6 plots the high frequency residual filter ℎ(𝑢) and the low frequency filter ℓ𝐽 (𝑢) for

𝐽 = 4, along with their Fourier transforms. Figure 3.7 plots the Fourier transforms 𝜓 𝑗 ,𝑞 (𝜔) of the

directional band-pass wavelets for 0 ≤ 𝑗 < 𝐽 = 4 and 0 ≤ 𝑞 < 𝑄 = 4, while Figure 3.8 plots

𝜓 𝑗 ,𝑞 (𝑢) in space for 0 ≤ 𝑗 < 𝐽 = 4 and 0 ≤ 𝑞 < 𝑄 = 4.
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(a) ℎ̂(𝜔) (b) ℎ(𝑢)

(c) ℓ̂𝐽 (𝜔) for 𝐽 = 4 (d) ℓ𝐽 (𝑢) for 𝐽 = 4

Figure 3.6 The high frequency residual filter ℎ(𝑢) and the low frequency filter ℓ𝐽 (𝑢) with 𝐽 = 4,
and their Fourier transforms ℎ̂(𝜔) and ℓ̂𝐽 (𝜔), respectively.
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Figure 3.7 The Fourier transforms 𝜓 𝑗 ,𝑞 (𝜔) of the directional wavelets for 0 ≤ 𝑗 < 𝐽 = 4 and
0 ≤ 𝑞 < 𝑄 = 4.
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Figure 3.8 The directional wavelets 𝜓 𝑗 ,𝑞 (𝑢) for 0 ≤ 𝑗 < 𝐽 = 4 and 0 ≤ 𝑞 < 𝑄 = 4.
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Define the wavelet transform of 𝑥(𝑢) as the map𝑊𝐽,𝑄 : L2(R2) → L2(R2)𝐽𝑄+2, where

𝑊𝐽,𝑄𝑥 := {𝑥 ∗ ℎ , 𝑥 ∗ ℓ𝐽 , 𝑥 ∗ 𝜓 𝑗 ,𝑞 : 0 ≤ 𝑗 < 𝐽, 0 ≤ 𝑞 < 𝑄}.

Notice that𝑊𝐽,𝑄 takes an image 𝑥(𝑢) and returns 𝐽𝑄 + 2 images, which we refer to as the wavelet

coefficients of 𝑥. Let ∥𝑥∥ denote the L2(R2) norm of 𝑥,

∥𝑥∥2 =

∫
R
|𝑥(𝑢) |2 𝑑𝑢.

The norm of𝑊𝐽,𝑄𝑥 is defined as

∥𝑊𝐽,𝑄𝑥∥2 := ∥𝑥 ∗ ℎ∥2 + ∥𝑥 ∗ ℓ𝐽 ∥2 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
∥𝑥 ∗ 𝜓 𝑗 ,𝑞 ∥2.

This particular wavelet transform has many nice properties due to the filter construction. We collect

them in the next theorem.

Theorem 8. The filter bank F𝐽,𝑄 satisfies the following Littlewood-Paley condition:

| ℎ̂(𝜔) |2 + |ℓ̂𝐽 (𝜔) |2 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
|𝜓 𝑗 ,𝑞 (𝜔) |2 = 1, ∀𝜔 ∈ [−𝜋, 𝜋]2. (3.3)

Therefore, for any 𝑥 ∈ L2(R2) with supp(𝑥̂) ⊆ [−𝜋, 𝜋]2, the wavelet transform𝑊𝐽,𝑄 is an isometry,

∥𝑊𝐽,𝑄𝑥∥ = ∥𝑥∥,

and furthermore has the following inverse:

𝑥 = 𝑥 ∗ ℎ ∗ ℎ + 𝑥 ∗ ℓ𝐽 ∗ ℓ𝐽 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

𝑥 ∗ 𝜓 𝑗 ,𝑞 ∗ 𝜓 𝑗 ,𝑞 . (3.4)

Proof. First, convert everything to polar coordinates. Use condition (3.2) to simplify the third

term, condition (3.1) for the other terms, and also use the definition of 𝐿 𝑗 (𝑟) to observe that
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𝐿 𝑗 (𝑟)𝐿 𝑗+1(𝑟) = 𝐿 𝑗+1(𝑟), which results in a telescoping sum:

| ℎ̂(𝜔) |2 + |ℓ̂𝐽 (𝜔) |2 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
|𝜓 𝑗 ,𝑞 (𝜔) |2

= |𝐻 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
|𝐿 𝑗 (𝑟) |2 |𝐻 𝑗+1(𝑟) |2 |𝐺𝑞 (𝜃) |2

= |𝐻 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 +
𝐽−1∑︁
𝑗=0
|𝐿 𝑗 (𝑟) |2 |𝐻 𝑗+1(𝑟) |2 |

©­«
𝑄−1∑︁
𝑞=0

𝐺𝑞 (𝜃) |2
ª®¬

= |𝐻 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 +
𝐽−1∑︁
𝑗=0
|𝐿 𝑗 (𝑟) |2 |𝐻 𝑗+1(𝑟) |2

= 1 − |𝐿 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 +
𝐽−1∑︁
𝑗=0
|𝐿 𝑗 (𝑟) |2(1 − |𝐿 𝑗+1(𝑟) |2)

= 1 − |𝐿 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 +
𝐽−1∑︁
𝑗=0
|𝐿 𝑗 (𝑟) |2 − |𝐿 𝑗 (𝑟) |2 |𝐿 𝑗+1(𝑟) |2

= 1 − |𝐿 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 +
𝐽−1∑︁
𝑗=0
|𝐿 𝑗 (𝑟) |2 − |𝐿 𝑗+1(𝑟) |2

= 1 − |𝐿 (𝑟) |2 + |𝐿𝐽 (𝑟) |2 + |𝐿 (𝑟) |2 − |𝐿𝐽 (𝑟) |2

= 1.

To prove the isometry property, multiply both sides of (3.3) by |𝑥(𝜔) |2, integrate, and apply

Plancherel formula.

To prove the inversion formula, take the Fourier Transform of

𝑔 = 𝑥 ∗ ℎ ∗ ℎ + 𝑥 ∗ ℓ𝐽 ∗ ℓ𝐽 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

𝑥 ∗ 𝜓 𝑗 ,𝑞 ∗ 𝜓 𝑗 ,𝑞 .
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Then

𝑔̂(𝜔) = 𝑥(𝜔) ℎ̂(𝜔) ℎ̂(𝜔) + 𝑥(𝜔)ℓ̂(𝜔)ℓ̂(𝜔) +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

𝑥(𝜔)𝜓̂ 𝑗 ,𝑞 (𝜔)𝜓̂ 𝑗 ,𝑞 (𝜔)

= 𝑥(𝜔)
| ℎ̂(𝜔) |2 + |ℓ̂(𝜔) |2 +

𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
|𝜓̂ 𝑗 ,𝑞 (𝜔) |2


= 𝑥(𝜔).

Taking inverse Fourier Transform gives result. □

It turns out that the inverse formula (3.4) is based on the adjoint of the wavelet transform. Let

us explain. For 𝑥, 𝑦 ∈ L2(R2) define their inner product as:

⟨𝑥, 𝑦⟩ :=
∫
R2
𝑥(𝑢)𝑦(𝑢) 𝑑𝑢, (3.5)

where 𝑥(𝑢) is the complex conjugate of 𝑥(𝑢). Using this inner product we can define an inner

product on L2(R2)𝐽𝑄+2. Write 𝐹 ∈ L2(R2)𝐽𝑄+2 as

𝐹 = { 𝑓ℎ , 𝑓𝐽 , 𝑓 𝑗 ,𝑞 : 0 ≤ 𝑗 < 𝐽, 0 ≤ 𝑞 < 𝑄},

where 𝑓ℎ ∈ L2(R2), 𝑓𝐽 ∈ L2(R2), and 𝑓 𝑗 ,𝑞 ∈ L2(R2) for each 𝑗 and 𝑞. Then for 𝐹, 𝐺 ∈ L2(R2)𝐽𝑄+2,

define their inner product as:

⟨𝐹, 𝐺⟩ := ⟨ 𝑓ℎ, 𝑔ℎ⟩ + ⟨ 𝑓𝐽 , 𝑔𝐽⟩ +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
⟨ 𝑓 𝑗 ,𝑞, 𝑔 𝑗 ,𝑞⟩,

where the inner products on the right hand side are defined using (3.5). Notice that with this inner

product we have

∥𝑊𝐽,𝑄𝑥∥2 = ⟨𝑊𝐽,𝑄𝑥,𝑊𝐽,𝑄𝑥⟩.

Now let us define the adjoint of the wavelet transform. The adjoint of𝑊𝐽,𝑄 : L2(R2) → L2(R2)𝐽𝑄+2

is the map𝑊∗
𝐽,𝑄

: L2(R2)𝐽𝑄+2 → L2(R2) such that the following relation holds:

∀ 𝑥 ∈ L2(R2), ∀𝐹 ∈ L2(R2)𝐽𝑄+2, ⟨𝑊𝐽,𝑄𝑥, 𝐹⟩ = ⟨𝑥,𝑊∗𝐽,𝑄𝐹⟩. (3.6)

Using (3.6) as the definition of𝑊∗
𝐽,𝑄

, one can prove the following theorem.
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Theorem 9. The adjoint of𝑊𝐽,𝑄 is

𝑊∗𝐽,𝑄𝐹 = 𝑓ℎ ∗ ℎ + 𝑓𝐽 ∗ ℓ𝐽 +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

𝑓 𝑗 ,𝑞 ∗ 𝜓 𝑗 ,𝑞, ∀𝐹 ∈ L2(R2)𝐽𝑄+2.

Proof. Let 𝑥 ∈ L2(R2) and 𝐹 ∈ L2(R2)𝐽𝑄+2. The filters are real symmetric. We can also use
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Fubini’s Theorem.

⟨𝑊𝐽,𝑄𝑥, 𝐹⟩

= ⟨(𝑥 ∗ ℎ), 𝑓ℎ⟩ + ⟨(𝑥 ∗ ℓ𝐽), 𝑓ℓ⟩ +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
⟨(𝑥 ∗ 𝜓 𝑗 ,𝑞), 𝑓 𝑗 ,𝑞⟩

=

∫
R2
(𝑥 ∗ ℎ) (𝑢) 𝑓ℎ (𝑢) 𝑑𝑢 +

∫
R2
(𝑥 ∗ ℓ𝐽) (𝑢) 𝑓ℓ (𝑢) 𝑑𝑢 +

𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

∫
R2
(𝑥 ∗ 𝜓 𝑗 ,𝑞) (𝑢) 𝑓 𝑗 ,𝑞 (𝑢) 𝑑𝑢

=

∫
R2

(∫
R2
𝑥(𝑡)ℎ(𝑢 − 𝑡) 𝑑𝑡

)
𝑓ℎ (𝑢) 𝑑𝑢 +

∫
R2

(∫
R2
𝑥(𝑡)ℓ𝐽 (𝑢 − 𝑡) 𝑑𝑡

)
𝑓ℓ (𝑢) 𝑑𝑢

+
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

∫
R2

(∫
R2
𝑥(𝑡)𝜓 𝑗 ,𝑞 (𝑢 − 𝑡) 𝑑𝑡

)
𝑓 𝑗 ,𝑞 (𝑢) 𝑑𝑢

=

∫
R2
𝑥(𝑡)

(∫
R2
𝑓ℎ (𝑢)ℎ(𝑢 − 𝑡) 𝑑𝑢

)
𝑑𝑡 +

∫
R2
𝑥(𝑡)

(∫
R2
𝑓ℓ (𝑢)ℓ𝐽 (𝑢 − 𝑡) 𝑑𝑢

)
𝑑𝑡

+
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

∫
R2
𝑥(𝑡)

(∫
R2
𝑓 𝑗 ,𝑞 (𝑢)𝜓 𝑗 ,𝑞 (𝑢 − 𝑡) 𝑑𝑢

)
𝑑𝑡

=

∫
R2
𝑥(𝑡)

(∫
R2
𝑓ℎ (𝑢)ℎ(𝑡 − 𝑢) 𝑑𝑢

)
𝑑𝑡 +

∫
R2
𝑥(𝑡)

(∫
R2
𝑓ℓ (𝑢)ℓ𝐽 (𝑡 − 𝑢) 𝑑𝑢

)
𝑑𝑡

+
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

∫
R2
𝑥(𝑡)

(∫
R2
𝑓 𝑗 ,𝑞 (𝑢)𝜓 𝑗 ,𝑞 (𝑡 − 𝑢) 𝑑𝑢

)
𝑑𝑡

=

∫
R2
𝑥(𝑡)

(∫
R2
𝑓ℎ (𝑢)ℎ(𝑡 − 𝑢) 𝑑𝑢

)
𝑑𝑡 +

∫
R2
𝑥(𝑡)

(∫
R2
𝑓ℓ (𝑢)ℓ𝐽 (𝑡 − 𝑢) 𝑑𝑢

)
𝑑𝑡

+
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

∫
R2
𝑥(𝑡)

(∫
R2
𝑓 𝑗 ,𝑞 (𝑢)𝜓 𝑗 ,𝑞 (𝑡 − 𝑢) 𝑑𝑢

)
𝑑𝑡

=

∫
R2
𝑥(𝑡) · 𝑓ℎ ∗ ℎ(𝑡) 𝑑𝑡 +

∫
R2
𝑥(𝑡) · 𝑓ℓ ∗ ℓ𝐽 (𝑡) 𝑑𝑡 +

𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0

∫
R2
𝑥(𝑡) · 𝑓 𝑗 ,𝑞 ∗ 𝜓 𝑗 ,𝑞 (𝑡) 𝑑𝑡

= ⟨𝑥, ( 𝑓ℎ ∗ ℎ)⟩ + ⟨𝑥, ( 𝑓ℓ ∗ ℓ𝐽)⟩ +
𝐽−1∑︁
𝑗=0

𝑄−1∑︁
𝑞=0
⟨𝑥, ( 𝑓 𝑗 ,𝑞 ∗ 𝜓 𝑗 ,𝑞)⟩

= ⟨𝑥,𝑊∗𝐽,𝑄𝐹⟩.

□

Looking back at (3.4) we see that the left inverse of𝑊𝐽,𝑄 is given by𝑊∗
𝐽,𝑄

, i.e.,

𝑥 = 𝑊∗𝐽,𝑄𝑊𝐽,𝑄𝑥.
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Having the adjoint of 𝑊𝐽,𝑄 and this relationship will be useful when we get to the Heeger-Bergen

texture synthesis algorithm.

3.3 Heeger Bergen Texture Synthesis

Using the filter bank from before, we can now state the Heeger-Bergen Texture Synthesis

algorithm. We will need an auxillary histogram matching algorithm taken from [10]:

Algorithm 3.1 Histogram Matching
1: Start with an input image 𝑢 and reference image 𝑣 both of size 𝑀 × 𝑁 .
2: Define 𝐿 = 𝑀𝑁 and assume that 𝑢 and 𝑣 are unraveled.
3: Determine the permutation 𝜏 such that 𝑣𝜏(1) ≤ 𝑣𝜏(2) ≤ . . . ≤ 𝑣𝜏(𝐿) .
4: Determine the permutation 𝜎 such that 𝑢𝜎(1) ≤ 𝑢𝜎(2) ≤ . . . ≤ 𝑢𝜎(𝐿) .
5: for 𝑖 = 1 to 𝐿 do
5: 𝑢𝜎(𝑖) ← 𝑣𝜏(𝑘)
6: end for

The general idea behind the Heeger Bergen Texture Synthesis algorithm is to match distributions

one wavelet coefficients. One starts with a 𝑀 × 𝑁 white noise, say 𝐼𝑊 , with pixels sampled from

a standard normal distribution and a reference image 𝐼𝑅. One then calculates𝑊𝐽,𝑄 𝐼𝑅 and𝑊𝐽,𝑄 𝐼𝑊 ,

histogram matches corresponding coefficients, and inverts the transform. The general idea is that

matching distributions of wavelet coefficients will turn the white noise into an image that is similar

to reference texture. Pseudocode for the algorithm is provided in Algorithm 3.2.

Algorithm 3.2 Heeger Bergen Texture Synthesis Algorithm
1: Start with an white noise 𝐼𝑊 ∈ R𝑀×𝑁 , reference image 𝐼𝑅 ∈ R𝑀×𝑁 , set of scales 𝐽, number of

rotations 𝑄, and number of iterations 𝑇 .
2: Calculate𝑊𝐽,𝑄 𝐼𝑅 ∈ L2(R2)𝐽𝑄+2.
3: for 𝑡 = 1 to 𝑇 do
4: Calculate𝑊𝐽,𝑄 𝐼𝑊 ∈ L2(R2)𝐽𝑄+2.
5: Update𝑊𝐽,𝑄 𝐼𝑊 by histogram matching each element of𝑊𝐽,𝑄 𝐼𝑊 with the corresponding filter

in𝑊𝐽,𝑄 𝐼𝑅 (using each filter in𝑊𝐽,𝑄 𝐼𝑅 as the reference histogram).
6: Update 𝐼𝑊 via the formula 𝐼𝑊 = 𝑊∗

𝐽,𝑄
𝑊𝐽,𝑄 𝐼𝑊 .

7: Histogram match 𝐼𝑊 with 𝐼𝑅 using 𝐼𝑅 as the reference histogram.
8: end for

Unfortunately, Algorithm 3.2 does not yield high quality texture synthesis. One possible reason

for this is that it does not use a nonlinear filter bank, so complex features in a texture cannot be
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effectively captured.

3.4 One Layer Nonlinear Heeger Bergen Texture Synthesis

To improve the synthesis quality of Algorithm 3.2, we propose a slight modification. Consider

the nonlinearity ReLU(𝑥) := max{0, 𝑥} and notice that we have the identities

|𝑥 | = ReLU(𝑥) + ReLU(−𝑥) (3.7)

and

𝑥 = ReLU(𝑥) − ReLU(−𝑥). (3.8)

Now define the nonlinear filter bank

𝑊𝐽,𝑄,𝜀𝑥 := {ReLU(𝑥 ∗ 𝜀ℎ) , ReLU(𝑥 ∗ 𝜀ℓ𝐽) , ReLU(𝑥 ∗ 𝜀𝜓 𝑗 ,𝑞) : 0 ≤ 𝑗 < 𝐽, 0 ≤ 𝑞 < 𝑄, 𝜀 = ±1}.

(3.9)

In particular, for any Ψ in𝑊𝐽,𝑄 , we see that

| 𝑓 ∗ Ψ| = ReLU( 𝑓 ∗ Ψ) + ReLU( 𝑓 ∗ −Ψ) (3.10)

and

𝑓 ∗ Ψ = ReLU( 𝑓 ∗ Ψ) − ReLU( 𝑓 ∗ −Ψ). (3.11)

Thus, it follows that

𝑊𝐽,𝑄𝑥 = 𝑊𝐽,𝑄,1𝑥 −𝑊𝐽,𝑄,−1𝑥, (3.12)

which means that

𝑥 = 𝑊∗𝐽,𝑄 (𝑊𝐽,𝑄,1𝑥 −𝑊𝐽,𝑄,−1𝑥). (3.13)

Using this inverse formula, we can create the following algorithm. Results using Algorithm 3.3

are given in Figure 3.9.
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Algorithm 3.3 ReLU Heeger Bergen Texture Synthesis Algorithm
1: Start with an white noise 𝐼𝑊 ∈ R𝑀×𝑁 , reference image 𝐼𝑅 ∈ R𝑀×𝑁 , set of scales 𝐽, number of

rotations 𝑄, and number of iterations 𝑇 .
2: Calculate𝑊𝐽,𝑄,𝜀 𝐼𝑅 ∈ L2(R2)2(𝐽𝑄+2) .
3: for 𝑡 = 1 to 𝑇 do
4: Calculate𝑊𝐽,𝑄,𝜀 𝐼𝑊 ∈ L2(R2)2(𝐽𝑄+2) .
5: Update 𝑊𝐽,𝑄,𝜀 𝐼𝑊 by histogram matching each element of 𝑊𝐽,𝑄,𝜀 𝐼𝑊 with the corresponding

filter in𝑊𝐽,𝑄,𝜀 𝐼𝑅 (using each filter in𝑊𝐽,𝑄,𝜀 𝐼𝑅 as the reference histogram).
6: Update 𝐼𝑊 via the formula 𝐼𝑊 = 𝑊∗

𝐽,𝑄
(𝑊𝐽,𝑄,1𝐼𝑊 −𝑊𝐽,𝑄,−1𝐼𝑊 ).

7: Histogram match 𝐼𝑊 with 𝐼𝑅 using 𝐼𝑅 as the reference histogram.
8: end for

Figure 3.9 Left: Reference Texture. Middle: No ReLU. Right: With ReLU. Ran with 𝐽 = 4 and
𝑄 = 6 for 50 iterations.

3.5 An Invertible Windowed Scattering Transform

Before we describe the next modification to the Heeger Bergen Texture Synthesis algorithm,

we need to motivate the usage of wavelet scattering transforms. We will use the following notation
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again:

𝐿𝑐 𝑓 (𝑥) = 𝑓 (𝑥 − 𝑐) (3.14)

𝐿𝜏 𝑓 (𝑥) = 𝑓 (𝑥 − 𝜏(𝑥)). (3.15)

The first operator, 𝐿𝑐, is a translation operator, and the second operator 𝐿𝜏 can be thought of as a

deformation operator. In particular, if

∥∇𝜏∥∞ = sup
𝑥∈R𝑛
|∇𝜏(𝑥) | < 1 (3.16)

and 𝜏 ∈ C2(R𝑛). Suppose thatH1,H2 are a Hilbert spaces and Φ : H1 → H2 is an operator for a

vision-related task, such as classification. We would like Φ to have the following properties:

• Local Translation Invariance: small translations of an object should not greatly affect the

output of Φ.

• Nonexpansiveness: for 𝑓 , 𝑔 ∈ H1,

∥Φ 𝑓 −Φ𝑔∥H2 ≤ ∥ 𝑓 − 𝑔∥H1 . (3.17)

In other words, the distance between Φ 𝑓 and Φ𝑔 should not be larger than the original

distance between 𝑓 and 𝑔 for stability reasons.

• Stability to Diffeomorphisms: there exists 𝐶 > 0 such that

∥Φ 𝑓 −Φ𝐿𝜏 𝑓 ∥H2 ≤ 𝐶∥ 𝑓 ∥H1 (∥𝜏∥∞ + ∥∇𝜏∥∞ + ∥𝐻𝜏∥∞). (3.18)

for all 𝜏 ∈ C2(R𝑛). That is, the operator "linearizes" small deformations.

As shown in [34], the Fourier modulus is not stable to small dilations, which are a simple class

of diffeomorphisms. A natural next step is to use wavelets, which produce a representation that is

well localized in space and frequency.

Let 𝐺+ be the set of "positive" rotations and define

Λ𝐽 =


{𝜆 = 2 𝑗𝑟 : 𝑟 ∈ 𝐺+, 𝑗 < 𝐽} if 𝐽 < ∞

{𝜆 = 2 𝑗𝑟 : 𝑟 ∈ 𝐺+, 𝑗 ∈ Z} if 𝐽 = ∞.
(3.19)
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Let 𝜓 be a wavelet. For 𝑥 ∈ 𝐿2(R𝑛), let 𝜆 ∈ Λ𝐽 and define

𝑈 [𝜆]𝑥 = |𝑥 ∗ 𝜓𝜆 | (3.20)

A path 𝑝 is an ordered tuple 𝑝 = (𝜆1, . . . 𝜆ℓ) with 𝜆𝑖 ∈ Λ∞ for 𝑖 = 1 . . . , ℓ, and 𝑃𝐽 where each

element of the path is from Λ𝐽 . For paths, define the operator

𝑈 [𝑝]𝑥 = 𝑈 [𝜆ℓ] . . . 𝑈 [𝜆2]𝑈 [𝜆1]𝑥

= | | |𝑥 ∗ 𝜓𝜆1 | ∗ 𝜓𝜆2 | . . . | ∗ 𝜓𝜆ℓ |. (3.21)

Let 𝜙𝐽 (𝑢) be a low pass filter. For 𝑝 ∈ 𝑃𝐽 , define the windowed scattering operator

𝑆𝐽 [𝑝]𝑥(𝑢) = (𝑈 [𝑝]𝑥 ∗ 𝜙𝐽) (𝑢) (3.22)

For any set of paths, say Ω, define the path set 𝑆𝐽 [Ω] = {𝑆𝐽 [𝑝]}𝑝∈Ω. We now define the windowed

scattering transform as the set 𝑆𝐽 [𝑃𝐽]𝑥 and use the following Hilbert Space norm

∥𝑆𝐽 [Ω]𝑥∥2 =
∑︁
𝑝∈Ω
∥𝑆𝐽 [𝑝]𝑥∥22. (3.23)

Notably, the windowed scattering transform has many properties we would like in a feature extractor.

Theorem 10 (The Windowed Scattering Norm is Well-defined). Suppose that 𝜓 is a wavelet such

that there 𝜂 ∈ R𝑛, 𝜌 ≥ 0, | 𝜌̂(𝜔) | ≤ |𝜙(2𝜔) |, 𝜌̂(0) = 1, and

Ψ̂(𝜔) = | 𝜌̂(𝜔 − 𝜂) |2 −
∞∑︁
𝑘=1

𝑘

(
1 − | 𝜌̂(2−𝑘𝜔 − 𝜂) |2

)
(3.24)

satisfies

𝛼 − inf
1≤𝜔≤2

∞∑︁
𝑗=−∞

∑︁
𝑟∈𝐺

Ψ̂(2− 𝑗𝑟−1𝜔) |𝜓̂(2− 𝑗𝑟−1𝜔) |2 > 0. (3.25)

We will call this the admissibility condition. Under the admissibility condition, for all 𝑥 ∈ L2(R𝑛),

we have the isometry

∥𝑆𝐽 [𝑃𝐽]𝑥∥ = ∥𝑥∥. (3.26)

Theorem 11 (Nonexpansive Property of the Windowed Scattering Transform). For all 𝑥, 𝑦 ∈

𝐿2(R𝑛),

∥𝑆𝐽 [𝑃𝐽]𝑥 − 𝑆𝐻 [𝑃𝐽]𝑦∥ ≤ ∥𝑥 − 𝑦∥2. (3.27)
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Theorem 12 (Local Translation Invariance of the Windowed Scattering Transform). For all 𝑐 ∈ R𝑛,

𝑥 ∈ 𝐿2(R𝑛), and an admissible wavelet,

lim
𝐽→∞
∥𝑆𝐽 [𝑃𝐽]𝑥 − 𝑆𝐽 [𝑃𝐽]𝐿𝑐𝑥∥ = 0. (3.28)

Theorem 13 (Diffeomorphism Stability). Let 𝜏 ∈ 𝐶2(R𝑛) with ∥𝐷𝜏∥∞ < 1
2𝑛 . For an admissible

wavelet and any 𝑥 ∈ 𝐿2(R𝑛), there exists a constant 𝐶 such that

∥𝑆𝐽 [𝑃𝐽]𝐿𝜏𝑥 − 𝑆𝐽 [𝑃𝐽]𝑥∥ ≤ 𝐶𝐾 (𝜏)∥𝑥∥, (3.29)

where 𝐾 (𝜏) → 0 as

∥𝜏∥∞ + ∥∇𝜏∥∞ + ∥𝐻𝜏∥∞ → 0.

That is to say, a windowed scattering operator is a good feature extractor. In practice, it is not

able to compute an infinite cascade of wavelet transforms, but empirical studies have shown that

two layers is enough [33].

We will now construct a two layer modification of the scattering transform, which we will

denote as the "Two Layer Scattering Pyramid," using the operators𝑊𝐽,𝑄 and𝑊𝐽,𝑄,𝜀:

𝑆2𝑥 := {𝑥 ∗ 𝜙𝐽 , 𝑥 ∗ ℎ,𝑊𝐽,𝑄ReLU(𝑥 ∗ 𝜀𝜓 𝑗 ,𝑞) : 0 ≤ 𝑗 ≤ 𝐽 − 1 , 0 ≤ 𝑞 ≤ 𝑄 − 1 , 𝜀 = ±1}. (3.30)

The algorithm is provided in Algorithm 3.4. Note that this can be generalized to multiple layers, but

the computational cost is infeasible; additionally, most of energy should be in the first two layers.
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Algorithm 3.4 Two Layer Scattering Pyramid
1: INPUTS: An image 𝑥 and operators𝑊𝐽,𝑄 ,𝑊𝐽,𝑄,−1,𝑊𝐽,𝑄,1.
2: OUTPUT: 𝑆2𝑥, a modification of the Two Layer Scattering Pyramid.
3: Initialize a set of functions 𝑆2𝑥.
4: Calculate𝑊𝐽,𝑄,−1𝑥 and𝑊𝐽,𝑄,1𝑥 and add

𝑥 ∗ 𝜙𝐽 = ReLU(𝑥 ∗ 𝜙𝐽) − ReLU(𝑥 ∗ −𝜙𝐽)

and
𝑥 ∗ ℎ = ReLU(𝑥 ∗ ℎ) − ReLU(𝑥 ∗ −ℎ).

5: for 𝑗 = 0 to 𝐽 − 1 do
6: for 𝑞 = 0 to 𝑄 − 1 do
7: for 𝜀 = ±1 do
8: Calculate𝑊𝐽,𝑄,𝜖 (𝑥 ∗ 𝜓 𝑗 ,𝑞) and add to 𝑆2𝑥.
9: end for

10: end for
11: end for
12: Return 𝑆2𝑥.

Algorithm 3.5 Two Layer Scattering Pyramid Inverse
1: INPUTS: The two layer pyramid 𝑆2𝑥.
2: OUTPUT: The original image 𝑥.
3: for 𝑗 = 0 to 𝐽 − 1 do
4: for 𝑞 = 0 to 𝑄 − 1 do
5: Calculate 𝑊∗

𝐽,𝑄
(𝑊𝐽,𝑄,1(𝑥 ∗ 𝜓 𝑗 ,𝑞) − 𝑊𝐽,𝑄,−1(𝑥 ∗ 𝜓 𝑗 ,𝑞)), where corresponding filters are

subtracted in the subtraction operation.
6: end for
7: end for
8: Note that this recovers all the bandpass filters in𝑊𝐽,𝑄𝑥, and the high and low pass residuals are

already in 𝑆2𝑥.
9: 𝑥 = 𝑊∗

𝐽,𝑄
𝑊𝐽,𝑄𝑥.

10: Return 𝑥.

For the next section, we will use the algorithms above to formulate a modified texture synthesis

algorithm.

3.6 Two Layer Nonlinear Heeger Bergen Texture Synthesis

Using Algorithm 3.4, we can formulate a Heeger Bergen Texture Synthesis algorithm motivated

by the scattering transform.
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Algorithm 3.6 Heeger Bergen Scattering Texture Synthesis
1: Start with an white noise 𝐼𝑊 ∈ R𝑀×𝑁 , reference image 𝐼𝑅 ∈ R𝑀×𝑁 , set of scales 𝐽, number of

rotations 𝑄, and number of iterations 𝑇 .
2: Calculate 𝑆2𝐼𝑅 and save it.
3: for 𝑡 = 1 to 𝑇 do
4: Calculate𝑊𝐽,𝑄,1𝐼𝑊 and𝑊𝐽,𝑄,−1𝐼𝑊 .
5:
6: Update 𝑊𝐽,𝑄,1𝐼𝑊 by histogram matching each element of 𝑊𝐽,𝑄,1𝐼𝑊 with the corresponding

filter in 𝑊𝐽,𝑄,1𝐼𝑅 (using each filter in 𝑊𝐽,𝑄,1𝐼𝑅 as the reference histogram) and update
𝑊𝐽,𝑄,−1𝐼𝑊 by histogram matching each element of 𝑊𝐽,𝑄,−1𝐼𝑊 with the corresponding filter
in𝑊𝐽,𝑄,−1𝐼𝑅 (using each filter in𝑊𝐽,𝑄,−1𝐼𝑅 as the reference histogram).

7: Keep
𝐼𝑊 ∗ 𝜙𝐽 = ReLU(𝐼𝑊 ∗ 𝜙𝐽) − ReLU(𝐼𝑊 ∗ −𝜙𝐽)

and
𝐼𝑊 ∗ ℎ = ReLU(𝐼𝑊 ∗ ℎ) − ReLU(𝐼𝑊 ∗ −ℎ)

for inversion.
8: for 𝑗 = 0 to 𝐽 − 1 do
9: for 𝑞 = 0 to 𝑄 − 1 do

10: for 𝜀 = ±1 do
11: Calculate𝑊𝐽,𝑄,𝜖 (𝐼𝑊 ∗ 𝜀𝜓 𝑗 ,𝑞) and histogram match with corresponding filter in 𝑆2𝐼𝑅.
12: end for
13: end for
14: end for
15: Invert the scattering pyramid 𝑆2𝐼𝑊 via 3.5.
16: end for
17: Histogram match 𝐼𝑊 with 𝐼𝑅 using 𝐼𝑅 as the reference histogram.
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Figure 3.10 Left: Reference Texture. Middle: One Layer ReLU Synthesis for 50 iterations. Right:
Two Layer Synthesis for 10 iterations. Ran with 𝐽 = 4 and 𝑄 = 6.
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3.7 Conclusions and Future Work

Based on our current experiments, we believe there are multiple reasons why our approach

fails. First, matching wavelet coefficients is an approximation of optimal transport. However, this

approximation seems to get stuck in local minimums quickly. There are two possible reasons

• Histogram matching wavelet coefficients is bad approximation of optimal transport.

• Matching each coefficient works, but they "interfere" each other. That is, matches in one

coefficiens might lead to better synthesis, but a match in a different coefficient leads to worse

synthesis.

The second point leads to an interesting question. Two representations can have close to the same

histogram for each component, but their structure does not necessarily look the same; what else do

we need to match to obtain structure such as edges and lines?

One approach, which we will consider for deep neural networks in the next chapter, is to match

𝑛-dimensional histograms. We can regard the set of wavelet coefficients as a 𝐻×𝑊 ×𝐶 tensor with

each 𝐻 ×𝑊 slice of the last dimension being a wavelet coefficient. If we unroll the vector into a

𝐻𝑊 ×𝐶 matrix and match 𝐻𝑊 dimension histograms for each pixel, it is a good approximation of

an optimal transport problem. Will this problem yield good results for synthesis? Our preliminary

experiments suggest yes. If this is the case, can we study what type of frames yield good texture

synthesis? Is invertibility/pseudoinvertibility really a necessary requirement?
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CHAPTER 4

LONG RANGE CONSTRAINTS FOR NEURAL TEXTURE
SYNTHESIS USING SLICED WASSERSTEIN LOSS

This work is based on [51], which has been submitted to IEEE ICIP 2023. We introduce an

algorithm for texture synthesis using a modified form of Sliced Wasserstein Loss. The main idea of

both methods is similar: we match 1D histograms between feature maps. However, our approach

for this chapter will use deep convolutional neural networks (CNNs) instead of an invertible wavelet

frame.

4.1 Background on Convolutional Neural Networks

The contents of this section is based on [21]. A CNN is neural network using series of

convolutions to learn features from data. The general steps of the network for an image classification

task are the following:

• Initialize random weights for a set of filters and put in an input image 𝑥.

• Apply a cascade of convolutional layers and nonlinearities using the filters.

• Subsample the result using a subsampling operation such as max pooling, min pooling, or

average pooling.

• Repeat this process multiple times.

• Use a classifier (usually feedforward neural network) to classify the image.

• Apply backpropogation to update the filters via gradient descent.

• Repeat the steps till one reaches desired performance on the desired task.

An example of a convolutional architecture, LeNet, is given in Figure 4.1.

First, consider the discrete convolution of functions 𝑥(𝑡) and 𝑤(𝑡), which are only defined for

integer 𝑡:

𝑠(𝑡) = (𝑥 ∗ 𝑤) (𝑡) =
∞∑︁

𝑎=−∞
𝑥(𝑎)𝑤(𝑡 − 𝑎). (4.1)

Convolutions are done over more than one dimension at a time. In particular, for two dimensions,
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Figure 4.1 LeNet Architecture demonstrating the procedure for the forward pass of a CNN.

for an image two-dimensional image 𝐼 and two dimensional kernel 𝐾 , the convolution is

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼) (𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼 (𝑖 − 𝑚, 𝑗 − 𝑛)𝐾 (𝑚, 𝑛), (4.2)

which is a commutative operation.

However, neural network libraries usually use the cross-correlation function

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼) (𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼 (𝑖 + 𝑚, 𝑗 + 𝑛)𝐾 (𝑚, 𝑛). (4.3)

due to ease of implementation. While the operation is not commutative, this does not affect the

accuracy of a network because the kernel 𝐾 is learned from the data anyway. In practice, when

ones uses a convolutional neural network, we regard an image or feature map as an 3-tensor. For

example, an 𝑀 × 𝑁 RGB image is an 𝑀 × 𝑁 × 3 tensor, where the last dimension is known as the

channel dimension. Each channel of a the three tensor (i.e. each 𝑀 × 𝑁 matrix) is known as a

feature map.

We can now provide a mathematical formulation for a convolutional layer of a network. Assume

we have an 𝑀 × 𝑁 ×𝐶1 input. In other words, there are 𝐶1 feature maps in the channel dimension.

If we would like to output 𝐶2 feature maps from our convolutional layer, define the set of filters

{𝐹𝑖, 𝑗 } with 1 ≤ 𝑖 ≤ 𝐶1 and 1 ≤ 𝑗 ≤ 𝐶2. A the "convolution" step of convolutional layer is

𝐶 (𝑥) =
𝐶1∑︁
𝑖=1

𝐹𝑖, 𝑗 ∗ 𝑥, (4.4)

which has channel dimension 𝐶2. After the application of the convolution step above, one applies
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a pointwise nonlinearity, 𝜎 to get

𝜎(𝐶 (𝑥)) = 𝜎
(
𝐶1∑︁
𝑖=1

𝐹𝑖, 𝑗 ∗ 𝑥
)
. (4.5)

Common choices are the sigmoid function, tanh, ReLU, and so on.

After a convolutional layer, CNNs usually have a subsampling operation to decrease the size

of the feature maps. This makes training networks less computationally intensive and helps with

extracting features such as edges. Usually, a pooling operation, such as max pooling, which involves

sliding a kernel and taking the maximum along a window, is used.

The reason CNNs work better than, such as feedfoward neural networks, for vision tasks is

that they encode information in a more relevant manner. Specifically, the convolution step of a

convolutional layer is translation equivariant (e.g. applying a translation to an image before and

after the convolution step yields the same result); convolutions are a local operation, and local

information is more relevant for images; a feature map shares parameters with other feature maps,

which captures interaction between different feature maps and lowers the total number of learned

parameters. Parameter sharing and more capacity for larger networks are some of the reasons one

would suspect a deep CNN to work better than a scattering transform for classification tasks.

Regarding deep CNNs, we are interested in a specific architecture which is commonly used for

neural texture synthesis tasks, VGG19 [45]. See Figures 4.2 and 4.3.

Figure 4.2 Schematic of VGG19 architecture. The blocks "Conv" are a convolution block and
ReLU, "MaxPooling" is a max pooling operation, and "FC+relu" is a linear layer and ReLU.

4.2 Image Quality Metrics

To evaluate the effectiveness of our texture synthesis algorithms, discuss a few image quality

metrics that we will use to compare the quality of images we generated. Traditional image metrics,
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Figure 4.3 VGG19 schematic showing how feature map size decreases as the number of filters
increase.

like PSNR and SSIM, are not perfect image metrics. Consider the following example:

Figure 4.4 Two examples where human perception does not match with common image metrics.

In the example, one can clearly see that Patch 1 looks similar to the reference, and is slightly

deformed. However, common image metrics like MSE would not be able to handle the distortions

properly. Additionally, Patch 0, which is a low pass filtering of the reference, would be recognized

as similar by traditional metrics. Note that these metrics we will discuss are not optimal either. In

all cases, if we calculate the similarity between two of the same image, the image metric would
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yield the best score. Like we mentioned previously, this is not ideal for texture synthesis.

The first metric we consider is LPIPS [52], which measures the perceptual similarity between

two images. The idea is to use MSE between feature maps of a deep convolutional neural network.

Figure 4.5 LPIPS calculation between an image 𝑥 and 𝑥0.

Suppose we have ℓ = 1, . . . , 𝐿 layers of a neural network. We extract feature stacks from layer

ℓ and unit-normalize in the channel dimension, which we designate 𝑦ℓ, 𝑦̂ℓ ∈ R𝐻ℓ×𝑊ℓ×𝐶ℓ . We do a

channel-wise scaling of the activiations by vector 𝑤ℓ ∈ R𝐶ℓ Finally, we average spatially and over

the channels. This can be represented as

𝑑 (𝑥, 𝑥0) =
𝐿∑︁
ℓ=1

1
𝐻ℓ𝑊ℓ

𝐻ℓ∑︁
𝑖=1

𝑊ℓ∑︁
𝑗=1
∥𝑤ℓ ◦ (𝑦ℓ − 𝑦̂ℓ)∥22 (4.6)

Usually, a deep network like VGG or AlexNet are used for feature map extraction.

The second metric we use is Frechet Inception distance (FID) [25]. The 2-Wasserstein Distance,

or Frechet Distance, is given by

𝑑2
𝐹 (𝜇, 𝜈) = inf

𝛾∈Γ(𝜇,𝜈)

∫
R𝑛×R𝑛

∥𝑥 − 𝑦∥2𝑑𝛾(𝑥, 𝑦) (4.7)

where Γ(𝜇, 𝜈) is the set of joint probability measures such that{
𝛾 :

∫
R𝑛
𝛾(𝑥, 𝑦) = 𝑑𝑦 = 𝜇(𝑥) and R𝑛}𝛾(𝑥, 𝑦) = 𝑑𝑥 = 𝜈(𝑦)

}
.

For FID, one assumes that the model fits to a Gaussian distribution. Then for two Gaussian

distributions 𝑝1 with distributionN(𝜇1, Σ1) and 𝑝2 with distributionN(𝜇2, Σ2), one can write the
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FID as

𝑑2
𝐹 (𝑝1, 𝑝2) = ∥𝜇1 − 𝜇2∥22 + tr

[
Σ1 + Σ′1 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
]
. (4.8)

Usually, the function to estimate the distribution is a specific layer of a deep convolutional neural

network, similar to LPIPS.

KID score [8] is similar to FID score, but relaxes the assumption that both distributions are

Gaussian and is defined as

KID(𝑝1, 𝑝2) = MMD(𝑝1, 𝑝2)2. (4.9)

More detail is given in [8], but it will be omitted from this thesis.

4.3 Texture Synthesis Using VGG19 and Gram Matrices

The contents of this section are adapted from [19], which has made led to remarkable improve-

ments in the field of texture synthesis since its publication. For notation, assume we have an 𝐿 + 1

layer convolutional neural network; for ℓ = 0, . . . , 𝐿, layer ℓ has 𝑁ℓ distinct feature maps. Each of

these feature maps is a 𝑀ℓ vector after flattening. We reshape feature maps in layer ℓ into a matrix

𝐹ℓ ∈ R𝑁ℓ×𝑀ℓ , where each row of the matrix is a feature map.

Assuming that each row of 𝐹ℓ (i.e. each feature map in layer ℓ) is mean centered, we define the

Gram matrix 𝐺ℓ ∈ R𝑛 × R𝑛 as

𝐺ℓ
𝑖 𝑗 =

∑︁
𝑘

𝐹ℓ𝑖𝑘𝐹
ℓ
𝑗 𝑘 . (4.10)

In matrix form, we have 𝐺ℓ = 𝐹ℓ (𝐹ℓ)𝑇 .

To generate a new texture from a reference texture, we update a white noise image using

gradient descent by optimizing over the mean-squared error (MSE) between the Gram matrices of

the reference image and the white noise. More formally, let ®𝑥 be a reference image and ®̂𝑥 be the

generated image. Also let the gram matrices for ®𝑥 be 𝐺ℓ and the gram matrices for ®̂𝑥 be 𝑔̂ℓ. Define

𝐸ℓ =
1

4𝑁2
ℓ
𝑀2
ℓ

∑︁
𝑖, 𝑗

(𝐺ℓ
𝑖 𝑗 − 𝐺̂ℓ

𝑖 𝑗 )2, (4.11)

which is the MSE between the gram matrices of ®𝑥 and ®̂𝑥 in layer ℓ. The full loss function is given
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by

L(®𝑥, ®̂𝑥) =
𝐿∑︁
ℓ=0

𝑤ℓ𝐸ℓ, (4.12)

where 𝑤ℓ are user-defined weights.

For updating the image, one uses gradient descent. In particular, the following identity holds:

𝜕𝐸ℓ

𝜕𝐹̂ℓ
𝑖 𝑗

=


1

𝑁2
ℓ
𝑀2
ℓ

(
(𝐹̂ℓ)𝑇

(
𝐺ℓ − 𝐺̂ℓ

)
𝑗𝑖

)
, 𝐹̂ℓ𝑖 𝑗 > 0

0, otherwise.
(4.13)

In practice, one does not implement the gradient manually. Instead, one can use open-source deep

learning packages, like PyTorch or Tensorflow, with a built in optimizer (L-BFGS) to update the

white noise image.

Before we provide a unified workflow, we discuss the specific CNN architecture, which is a

modified version of VGG-19, used for texture synthesis. The following changes were made to the

original version of VGG-19:

• The max pooling layers are switched to average pooling layers. No retraining of the network

is done. The authors noticed that this change improved image quality.

• The weights of the network are transformed so that the mean of each feature map is 1.

Additionally, during the synthesis process the feature maps from the layers ’conv1_1’, ’pool1’,

’pool2’, ’pool3’, and ’pool4’ are used to make Gram matrices. The other convolutional layers and

the fully connected part of the network are not used.A schematic of the general workflow is given

in Figure 4.6 and some synthesis results are given in Figure 4.7.
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Figure 4.6 The general synthesis method is given below. The images ®𝑥 and ®̂𝑥 are both passed through
the network. Gram matrices are created from specific feature maps, and the loss is calculated. Using
a backpropogation engine, the ®̂𝑥 is updated. Picture reference: [19].
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Figure 4.7 Results for textures synthesis after each gram matrix is added for synthesis. "Original"
denotes the reference image and "Portilla and Simoncelli" are results from [40]. Picture reference:
[19].

One notable issue with the results above is that long range constraints are not captured by this

algorithm. In other words, the alignment of objects isn’t capture by this algorithm. This is expected

because CNNs aggregate local information.
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4.4 Improvements Via Regularization

To ameliorate the lack of long range information captured by [19], [31] propose adding regu-

larization (4.12). For an image 𝐼, let

E𝐼 = {𝐼 : |F (𝐼) | = |F (𝐼) |}. (4.14)

That is, (4.14) is the set of images with the same power spectrum as 𝐼. We can find the projection

of an image 𝐼 onto E𝐼 via

𝐼 := F
(
F (𝐼) · F (𝐼)∗

|F (𝐼) · F (𝐼)∗ |
· F (𝐼)

)
. (4.15)

Let 𝑑 (𝐼, E𝐼) be the distance of 𝐼 to E𝐼 . If we denote LCNN to be the loss from (4.12), then our new

loss function between images is

L = LCNN +
𝛽

2
𝑑 (𝐼, E𝐼)2, (4.16)

where 𝛽 is a hyperparameter.

In Figure 4.8, some examples of synthesis using the spectrum constraint are given. As shown

in Figure 4.8, there is notable improvement in alignment for these textures. However, it is difficult

to find a value for 𝛽 that works on a variety of images. This would require time-consuming

hyperparameter tuning. Additionally, if one required high quality synthesis for multiple textures,

one may have to tune 𝛽 depending on each texture. It would be ideal if one could find a method

that did not require hyperparameter tuning for high quality synthesis results.
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Figure 4.8 Results for textures synthesis using a spectrum constraint. The hyperparameter 𝛽 is
105. Left: Reference Texture. Middle: Without Spectrum Constraint. Right: With Spectrum
Constraint.

4.5 Texture Synthesis Using Sliced Wasserstein Loss

Before we discuss the method from [51], we will provide some background information about

texture synthesis using Sliced Wasserstein Loss from [24]. Suppose that layer ℓ of an 𝐿 layer

convolutional neural network has 𝑁ℓ channels and 𝑀ℓ pixels in each channel. We denote the

feature vector located at pixel 𝑚 as 𝐹ℓ𝑚 ∈ R𝑁ℓ , which is a change in notation from previous sections.

The authors of [24] propose using a different set of statistics instead of the mean squared error

between gram matrices. In a manner similar to [23, 48], the authors match the distributions between

feature maps, but these feature maps used in [24] are feature maps of VGG19 [45].

With respect a network architecture, let 𝑝ℓ and 𝑝ℓ be the probability density functions associated
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with the set of feature vectors {𝐹ℓ𝑚} and {𝐹̂ℓ𝑚}. Since our network is discrete, we assume that the

probability density functions are always an average of Dirac delta distributions of the form

𝑝ℓ (𝑥) = 1
𝑀ℓ

𝑀ℓ∑︁
𝑚=1

𝛿𝐹ℓ
𝑚
(𝑥). (4.17)

Let 𝑉 ∈ S𝑁ℓ be a random direction on the unit sphere of dimension 𝑁ℓ. For the purpose of this

paper, the Sliced Wasserstein Distance between two distributions of features is of the form

LSW,ℓ (𝑝ℓ, 𝑝ℓ) = E𝑉 [LSW1D(𝑝ℓ𝑉 , 𝑝
ℓ
𝑉 )], (4.18)

where

𝑝ℓ𝑉 := {⟨𝐹ℓ𝑚, 𝑉⟩} (4.19)

is a set consisting of batched projections of the feature maps 𝐹ℓ𝑚 onto the directions𝑉 ; if we make a

vector 𝑃ℓ
𝑉

consisting of the elements of 𝑝ℓ
𝑉
, the 1𝐷 Sliced Wasserstein Loss is the 2-norm between

sets of sorted projections:

LSW1D(𝑝ℓ𝑉 , 𝑝
ℓ
𝑉 ) =

1
len(𝑃ℓ

𝑉
)


sort(𝑃ℓ𝑉 ) − sort(𝑃̂ℓ𝑉 )



2
2 (4.20)

and the full Sliced Wasserstein loss over all the layers is

LSW(𝐼1, 𝐼2) =
𝐿∑︁
ℓ=1
LSW,ℓ (𝑝ℓ𝑉,𝐼1 , 𝑝

ℓ
𝑉,𝐼2
), (4.21)

for images 𝐼1 and 𝐼2, respectively. For practical applications, one uses a loss of the form

LSW(𝐼1, 𝐼2) =
𝐿∑︁
ℓ=1

𝑤𝑖LSW,ℓ (𝑝ℓ𝑉,𝐼1 , 𝑝
ℓ
𝑉,𝐼2
), (4.22)

where 𝑤𝑖 are weight terms that set to zero for layers that are not used. We will use this formulation

for the rest of the paper.

An implementation of 4.20 is provided below in pseudocode:

92



Algorithm 4.1 Implementation of 4.20
1: Set 𝐼WN as variable to be updated by optimizer.
2: for 𝑘 = 1, . . . , 𝑀 do
3: Calculate Extract(𝐼WN).
4: Calculate Extract(𝐼ref).
5: Calculate LSlicing(𝐼WN, 𝐼ref).
6: Backpropogate and update 𝐼WN.
7: end for
8: Return updated 𝐼WN as synthesized texture.

Pitie et al. [39] showed that Sliced Wasserstein Distance satisfies:

LSW(𝑝, 𝑝) = 0 =⇒ 𝑝 = 𝑝.

The same does not hold for other losses used for texture synthesis, such as the gram matrix loss.

Thus, using a Sliced Wasserstein-based loss should capture more stationary statistics compared to

the traditional Gram Loss.

Figure 4.9 Synthesis results using the gram matrix loss, denoted LGram and using LSW.

In Figure 4.9, some examples of synthesis using sliced wasserstein loss are given above. While

the alignment is better for the synthesis, the algorithm still has trouble capturing long range
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constraints, like alignment. The authors propose adding a spatial tag as fourth channel in an RGB

image to guide synthesis, which is shown in Figure 4.10.

Figure 4.10 Synthesis results with and without a spatial tag.

While adding a spatial tag creates visually appealing textures, one needs a spatial tag for each

constraint they wish to impose. However, it’s unlikely to have a prepared spatial tag for each texture

one would like to generate, especially if the texture is highly irregular. Thus, it would be ideal if

there was an algorithm that could capture long range constraints without user guidance and without

tedious hyperparameter tuning.

4.6 New Texture Synthesis Algorithm

The method proposed in [24] cannot effectively capture long range constraints unless a user-

added spatial tag is added to guide synthesis. This is most likely Sliced Wasserstein Loss does

not fully capture nonstationary statistics in an image. Thus we propose a new set of statistics for

texture synthesis based on Sliced Wasserstein Loss to capture long range constraints without any
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supervision or hyperparameter tuning. Our experiments show that our proposed set of statistics

provides competitive results with current approaches. Additionally, we augment our synthesis

results via a coarse-to-fine multi-scale procedure, which yield state-of-the-art results.

Instead of just matching distributions via slicing over the channel dimension of the feature

maps, we purpose matching more statistics in a very simple way. Consider a set of feature maps

𝐹ℓ ∈ R𝐻ℓ×𝑊ℓ×𝑁ℓ . In the original algorithm, we unravel each 𝐻ℓ ×𝑊ℓ feature map, consider each

pixel 𝑚 to get feature vectors of length 𝑁ℓ, and project onto direction 𝑉 in Eq. (4.21). Another

way to reshape the feature maps is to unravel them into 𝐻ℓ different 𝑊ℓ × 𝑁ℓ feature maps, 𝐹ℓ
𝐻

(with 𝐹ℓ
𝐻,𝑛

being a vector of all 𝑛th pixels of each feature vector), and project them onto 𝑉𝐻ℓ
∈ S𝐻ℓ .

Analogous to Eq. (4.19), for the distribution 𝑝ℓ
𝐻

associated to feature vectors {𝐹ℓ
𝐻,𝑛
} we can define

another set of batched projections given by

𝑝ℓ𝑉𝐻ℓ
= {⟨𝐹ℓ𝐻,𝑛, 𝑉𝐻ℓ

⟩}. (4.23)

The corresponding additional loss term is

LSW,𝐻 (𝐼1, 𝐼2) =
𝐿∑︁
ℓ=1

𝑤𝑖LSW,ℓ

(
𝑝ℓ𝑉𝐻ℓ

,𝐼1
, 𝑝ℓ𝑉𝐻ℓ

,𝐼2

)
. (4.24)

Intuitively, this loss term accounts for alignment in an image by slicing over the dimension for

the height of the feature maps rather than the dimension for the channel of the feature maps. The

new loss function we consider is

LSlicing(𝐼1, 𝐼2) = LSW(𝐼1, 𝐼2) + LSW,𝐻 (𝐼1, 𝐼2), (4.25)

which is the sum of Eq. (4.21) and Eq. (4.24).

Denote the feature map extraction from VGG19 as Extract(𝐼). For our algorithm, we start with

a reference image 𝐼ref and a white noise 𝐼WN and run for 𝑀 epochs. Our implementation for slicing

synthesis is the same as in [24] for Eq. (4.21) where we perform a batch projection on 𝑁ℓ directions

and sort. For our additional loss term in equation Eq. (4.24), the number of batched projections we

make is 𝐻ℓ. In our next algorithm, assume that the goal is to synthesize an image the same size as

the reference image without any loss of generality.
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Algorithm 4.2 Synthesis Algorithm
1: Set 𝐼WN as variable to be updated by optimizer.
2: for 𝑘 = 1, . . . , 𝑀 do
3: Calculate Extract(𝐼WN).
4: Calculate Extract(𝐼ref).
5: Calculate LSlicing(𝐼WN, 𝐼ref).
6: Backpropogate and update 𝐼WN.
7: end for
8: Return updated 𝐼WN as synthesized texture.

The settings for the slicing loss are to use the first 12 layers of VGG19 for calculating LSW and

the first two convolutions (after the ReLU) in each convolution block for for calculating LSW,𝐻 .

The L-BFGS optimizer [30] is used for optimization with a learning rate of 𝜂 = 1.

We start by comparing results with [24]. We use the author’s TensorFlow implementation,

which is a previous commit in https://github.com/tchambon/A-Sliced-Wasserstein-Loss-for-Neural-

Texture-Synthesis. without their spatial tag on some relatively periodic textures. For all the

experiments in this paper, our texture sources were the following:

• https://github.com/omrysendik/DCor/tree/master/Data

• https://www.robots.ox.ac.uk/ vgg/data/dtd

for generating 256 × 256 textures. The results are given in Fig. 4.11.
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Figure 4.11 Original SW loss vs. Eq. (4.25). Left: Reference. Mid: SW Loss. Right: Eq. (4.25)
Loss (Ours).

However, there are still some textures that are not generated perfectly. See Fig. 4.12 for some

examples.

Figure 4.12 Less successful cases. Left: Reference. Mid: SW Loss. Right: Eq. (4.25) Loss
(Ours).

Now the results of using Eq. (4.25) is compared to [31]. Note that we use the implementation

from [20] for this comparison. as an additional point of comparison. There is no comparison

with [43] because experiments from [43, 20] have shown the algorithm does not yield much
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improvement for nonperiodic textures. Take note of the top row of Figure 4.13 in particular. The

Figure 4.13 Gram Matrix + Spectrum vs. Eq. (4.25) Loss. Left: Reference. Mid: Spectrum
Constraint. Right: Eq. (4.25) Loss (Ours).

spectrum constraint produces better results, which suggests that there could be improvement in our

proposed synthesis method.

Quantitative comparisons between the original SW loss, the spectrum constraint, and our

proposed method using a set of 34 images are provided in this section. The LPIPS [52], FID [25],

crop-based FID. This is done by taking sixty-four 128 × 128 crops of the reference texture and

synthesized texture for each exemplar (the FID/KID score is calculated between these two sets of

images. For the ground truth case, a different set of crops of the reference is used) like [32], KID

[8], and crop-based KID (c-KID) score are provided in Table 4.1. For FID and KID based scores,

the implementation from [37] is used. In Table 4.1, SW stands for the method using the original

SW Loss, Spec. stands for using a spectrum constraint, and GT stands for the Ground Truth.
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Table 4.1 Quantitative Comparison

Method LPIPS FID c-FID KID c-KID
Ours 0.437 107.220 71.938 −0.014 0.073
SW 0.454 101.768 78.683 −0.016 0.083

Spec. 0.447 99.615 78.250 −0.016 0.083
GT 0 0 18.069 −0.025 0

From the table, our results are competitive and our proposed set of statistics did not require

searching for a proper hyperparameter to get competitive results. Note that our results for FID and

c-FID vary compared to [32] because FID is a biased estimate [14] and our sample count is very

low.

4.7 Improvements via a Multi-scale Approach

Since there is room for improvement in our synthesis, we augment our algorithm with a multi-

scale procedure in a manner identical to [20, 49]. For the multi-scale algorithm at 𝐾 scales, let

𝐼ref,𝑖 be the reference image downsampled by a scale factor of 2𝑖 with 𝑖 = 0, . . . , 𝐾 , and define the

upsampling operator as Upsample(𝐼). Lastly, define the output of Algorithm 4.2 using the notation

𝐼Synthesis = SWSynthesis(𝐼input, 𝐼ref), where 𝐼input is the input to be optimized via backpropogation,

𝐼ref is the reference texture, and 𝐼Synthesis is the output after synthesis using Algorithm 1. The results

are given in Figure 4.14.

Algorithm 4.3 Multi-scale Synthesis Algorithm
1: Initialize 𝐼Synthesis as a white noise that is the same size as the reference texture downsampled

by 2𝐾 .
2: for 𝑖 = 0, . . . , 𝐾 do
3: 𝐼Synthesis ← SWSynthesis(𝐼Synthesis, 𝐼ref,𝐾−𝑖).
4: 𝐼Synthesis ← Upsample(𝐼Synthesis).
5: end for
6: Return 𝐼Synthesis as the synthesized texture.

In Figure 4.14, note the small improvements in edge generation and general structure when

using 𝐾 = 1 compared to 𝐾 = 0.
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Figure 4.14 Multi-scale procedure at different scales. Left: Reference. Mid Left: 𝐾 = 0. Mid
Right: 𝐾 = 1. Right: 𝐾 = 2.

The intuition for why it works is that it generates the details of the texture in a coarse-to-fine

way; the initial scale generates the general color and macro-scale features and additional scales add

on fine-grain details in an image.

Figure 4.15 Progression of synthesis that lead to repetitions. Left: Reference Texture. Middle
Left: 𝐾 = 0. Middle Right: 𝐾 = 1. Right: 𝐾 = 2.

However, it is possible to create replica textures for larger values of 𝐾 . Of the 34 images
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generated for the experiments, there were four repetitions when 𝐾 = 2. See Figure 4.15 for

examples.

Additionally, a quantitative comparison using the same image quality metrics from before is

provided. Unlike in previous comparisons, it would be better to have a higher LPIPS score at a

comparable generative metric; this would mean that our textures are less likely to be replicas, but

still have similar qualities. The results are given in Table 4.2.

Table 4.2 Quantitative Score for 𝐾 = 0, 1, 2

Scale LPIPS FID c-FID KID c-KID
𝐾 = 0 0.437 107.220 71.938 −0.014 0.073
𝐾 = 1 0.381 67.118 53.908 −0.018 0.044
𝐾 = 2 0.250 38.304 40.220 −0.022 0.027

Based on the scores and Fig. 5, 𝐾 = 1 provides a nice mix between diversity and image quality at

our fixed image size.

In the Figure 4.16, the multi-scale approach is applied without the additional loss term in

Eq. (4.25).

Figure 4.16 Results with SW Loss. Left: Reference. Mid Left: 𝐾 = 0. Mid Right: 𝐾 = 1.
Right: 𝐾 = 2.
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From our results, the multi-scale approach by itself is not enough to fully capture nonstationary

statistics or enforce long range constraints. That is to say, the loss term added in Eq. (4.25) is

absolutely necessary to capture long-range constraints in textures.

Figure 4.17 Comparison of results. Left: Reference. Mid Left: SW Loss. Mid Right: Gonthier.
Right: 𝐾 = 1 (Ours).

Lastly, the results using 𝐾 = 1 are compared with [20] using the default settings from their

experiments (𝐾 = 2) to show the effectiveness our mutli-scale results relative to another multi-scale

algorithm. The results from [24] again for an additional point of reference. Some results are shown
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in Figure 4.17 and a quantitative study is given in Table 4.3.

Table 4.3 Comparison of 𝐾 = 1, SW Loss, Gonthier

Method LPIPS FID c-FID KID c-KID
𝐾 = 1 0.381 67.118 53.908 −0.018 0.044
SW 0.454 101.768 78.683 −0.016 0.083

Gonthier 0.415 77.569 67.728 −0.018 0.067
GT 0 0 18.069 −0.025 0

4.8 Conclusions

We present a modification of texture synthesis via Sliced Wasserstein Loss that has the ability to

add long range constraints without user-added spatial tags (supervision). Our additional loss term

can be thought of as a regularization term, but unlike traditional regularization terms, one does not

need to hyperparameter tune to enforce long range constraints. That is to say, the proposed method

requires less user supervision for competitive results. One thing we have not tested is whether the

number of scales is dependent on image size. We believe this is true, and it is probable that one

would need to choose the number of scales based on the size of the image.
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CHAPTER 5

CONCLUDING REMARKS

We have addressed two important problems in statistical signal processing: mtuli-reference align-

ment and texture synthesis. For multi-reference alignment, like we mentioned in chapter 2, many

open problems remain. In one dimension, one question to consider is how we can approach general

diffeomorphisms. While considering a specific set of group actions seems to be the most viable

approach, one wonders whether it would be possible to consider limiting the size of ∥𝜏′∥∞ and

∥𝜏′′∥∞, which would make 𝜏 "close" to a translation. Additionally, is it possible to generalize all

our results to two and three dimensions? Both these cases would be more relevant to practitioners

in cryo-EM.

Regarding texture synthesis, one wonders whether a deep representation is actually needed.

That is, could we use a wavelet transform or scattering transform with sliced wasserstein loss to

generate textures? Our preliminary experiments, which are not available in this thesis, suggest this

is possible. However, the synthesis quality is not as strong. This suggests that we could use a

different filter bank for better synthesis. VGG models have omnidirectional filters and all the filters

are not necessarily positive, which we believe is responsible for strong synthesis. Future work will

focus on testing our hypotheses.
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