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ABSTRACT

Many learning tasks in Artificial Intelligence (AI) require dealing with graph data, ranging from

biology and chemistry to finance and education. As powerful learning tools for graph inputs, graph

neural networks (GNNs) have demonstrated remarkable performance in various applications such as

recommender systems and drug discovery. Recent research has primarily focused on model-centric

approaches to enhance GNN performance by modifying model architectures while keeping the

dataset fixed. However, these approaches have limitations, particularly in terms of robustness and

scalability. For example, these approaches often yield suboptimal performance when confronted

with limited high-quality data. Moreover, training GNNs is often computationally expensive on

large-scale data; and such cost becomes even prohibitive when we need to train numerous models on

the same dataset, such as hyper-parameter and architecture search. Given the challenges arising from

data, a crucial question arises: Can we address these problems directly from a data perspective?

This dissertation presents a data-centric view that directly optimizes the given dataset to improve

the performance of imperfect GNN models. Instead of modifying the model architectures, the

data-centric view advocates for a set of techniques in graph dataset optimization to enhance the

effectiveness and efficiency of GNNs. First, we demonstrate the potential to improve the quality of a

graph dataset, enabling GNNs to exhibit robustness against severe noise and attacks. Furthermore,

we showcase the possibility of substantially reducing the size of a graph dataset while preserving its

information, thereby significantly decreasing the training cost. Unlike model-centric approaches

that are typically specific to a single model, data-centric approaches yield improved datasets that

benefit various existing models simultaneously. By embracing this data-centric perspective, this

dissertation not only addresses crucial challenges associated with data quality and efficiency but

also unlocks new opportunities for next-generation AI systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Graphs are ubiquitous data structures that describe pairwise relations between objects, ranging

from biology and chemistry to finance and education. Due to their prevalence, graphs play a key

role in various real-world applications for Artificial Intelligence (AI). For example, by exploiting

graph structural information, we can predict the chemical property of a given molecular graph [170],

detect fraud activities in a financial transaction graph [141], or recommend new friends to users

in a social network [39]. To capture the rich information in graph data, graph neural networks

(GNNs) [78, 139, 4, 156] have been developed and they have demonstrated remarkable performance

in various graph-related tasks including node classification [78, 97], graph classification [160], and

link prediction [193, 38].

Despite the promise of GNNs, they also face significant limitations, particularly in scalability

and robustness. For example, GNNs tend to yield less satisfying performance in the absence of

a sufficiently large amount of high-quality data, and their vulnerability to adversarial attacks can

further diminish their effectiveness, as observed in various studies [67, 208, 210]. Moreover,

training GNNs is often computationally expensive on large-scale data [57, 183, 54, 29]; and such

cost becomes even prohibitive when we need to train numerous models on the same dataset, e.g.,

searching for the best hyper-parameters and architectures [198]. In response to these challenges,

significant efforts have been made on developing new techniques from the modeling perspective, e.g.,

designing new architectures and modifying the training losses, while keeping the data unchanged.

However, this model-centric paradigm overlooks the potential of directly enhancing data quality

and efficiency, as both the data and model play critical roles in graph machine learning systems (as

shown in Figure 1.1). The presence of these issues raises a question at the heart of this dissertation:

Can we empower GNNs from a data perspective, thereby complementing the existing efforts in model

development?
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Figure 1.1: The pipeline of graph machine learning systems. Both model and data are important
aspects of the systems.

Addressing this question necessitates an exploration of data-centric methods for graph data,

which resides within the rising research field of Data-Centric AI [88, 180, 150, 179, 178, 116, 90].

Rather than devising new model architectures, we concentrate on refining the provided dataset

to serve the existing models more effectively and efficiently. This innovative learning approach

aims to deliver higher quality data, potentially leading to substantial improvements in AI system

performance. Furthermore, since data-centric methods produce an optimized dataset as their output,

they offer the advantage of enhancing a variety of existing models that utilize the improved dataset,

unlike model-centric approaches that typically cater to a specific model. Given these advantages,

the development of data-centric methodologies to augment GNNs holds promising potential.

1.2 Dissertation Contributions

To expand the horizon of GNN research beyond models and emphasize the significance of datasets,

we introduce a comprehensive set of techniques for optimizing graph datasets during model training

or inference. On the one hand, we present two methods for reducing the size of a graph dataset

while retaining its essential information, leading to substantial reductions in training costs. On the

other hand, we present two methods on enhancing the quality of a graph dataset to enable GNNs to

exhibit robustness against severe noise and attacks. The major contributions of this dissertation can

be summarized as follows:

• With the prevalence of large-scale graphs in real-world applications, concerns have been raised

2



regarding the storage and training time required for graph neural networks. To address these

concerns, we introduce the concept of graph condensation [72] for graph neural networks for the

first time. Graph condensation distills the original large graph into a smaller, synthetic graph that

retains high informativeness while achieving comparable performance to GNNs trained on the

original graph. To tackle the condensation problem, we propose GCond to learn synthetic graphs

that can lead to a similar model training trajectory to the one trained on the original graph. This is

accomplished by simultaneously condensing node features and structural information through the

optimization of a gradient matching loss.

• Despite the promise of the proposed GCond, it has two inherent limitations. First, the condensation

process is computationally expensive due to the involved nested optimization. Second, it does

not generate discrete graph structures that could provide additional benefits in terms of storage

efficiency. To address these limitations, we explore efficient dataset condensation and introduce

a method called DosCond [71]. In DosCond, we model the discrete graph structure as a

probabilistic model. Additionally, we propose a one-step gradient matching scheme that performs

gradient matching for a single step without training the network weights. Our theoretical analysis

demonstrates that this strategy can generate synthetic graphs that result in low classification loss

on real graphs.

• Recent research has revealed the vulnerability of graph neural networks (GNNs) to adversarial

attacks, which are carefully-crafted perturbations. This susceptibility to adversarial attacks

raises concerns regarding the application of GNNs in safety-critical domains. Consequently,

it is crucial to mitigate the negative impact of such attacks by purifying the data. We have

identified that adversarial attacks during the training phase undermine important properties of

graphs. For instance, real-world graphs often exhibit low-rank and sparse structures, with similar

features observed among adjacent nodes. Remarkably, adversarial attacks tend to violate these

intrinsic graph properties. Motivated by this observation, we propose a novel framework called

Pro-GNN [70] to learn a clean graph structure from the perturbed graph by recovering these

underlying graph properties. Extensive experiments demonstrate that the Pro-GNN achieves

3



significantly better performance compared with the state-of-the-art defense methods, even when

the graph is heavily perturbed.

• In contrast to Pro-GNN, which defends against training-time attacks, we introduce a new

data-centric approach called GTrans [73], which focuses on refining suboptimal test graphs to

enhance the performance of pre-trained models. GTrans involves a test-time graph transformation

framework that minimizes a parameter-free surrogate loss to improve the quality of the test graph

data. This framework can be combined with any pre-trained graph neural networks (GNNs),

and the refined graph data can be utilized with any model, thanks to its favorable transferability.

One notable aspect of GTrans is its ability to provide interpretability. By visualizing the data,

GTrans can reveal the types of graph modifications that lead to performance improvements. This

interpretability offers valuable insights into the factors affecting the model’s performance.

1.3 Dissertation Structure

The remainder of this dissertation is organized as follows. In Chapter 2, we formally define the

problem of graph condensation and introduce a framework to tackle this challenging problem,

which condenses a large-real graph into a small-synthetic one while preserving most of the original

information. In Chapter 3, we provide theoretical analysis on the effectiveness of graph condensation

framework and propose a highly efficient condensation approach by only performing one-step

gradient matching. In Chapter 4, we identified that training-time adversarial attack essentially

violates important graph properties. Based on this observation, we develop a framework to effectively

restore the clean graph structure from the perturbed graph data while learning the model parameters

at the same time. This framework is shown to be able to defend against various graph adversarial

attacks and learn cleaner graph structures. In Chapter 5, we investigate the test-time robustness of

graph neural networks under out-of-distribution data, abnormal features, and adversarial attacks. we

develop a test-time graph transformation framework that transforms the test graph data by minimizing

a parameter-free surrogate loss. Furthermore, we provide a rigorous theoretical understanding of

the framework and verify its effectiveness empirically. We conclude the dissertation and discuss the

broader impact and promising research directions in Chapter 6.
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CHAPTER 2

GRAPH CONDENSATION FOR GRAPH NEURAL NETWORKS

Given the prevalence of large-scale graphs in real-world applications, the storage and time for

training neural models have raised increasing concerns. To alleviate the concerns, we propose and

study the problem of graph condensation for graph neural networks (GNNs). Specifically, we aim

to condense the large, original graph into a small, synthetic and highly-informative graph, such that

GNNs trained on the small graph and large graph have comparable performance. We approach

the condensation problem by imitating the GNN training trajectory on the original graph through

the optimization of a gradient matching loss and design a strategy to condense node features and

structural information simultaneously. Extensive experiments have demonstrated the effectiveness

of the proposed framework in condensing different graph datasets into informative smaller graphs.

In particular, we are able to approximate the original test accuracy by 95.3% on Reddit, 99.8%

on Flickr and 99.0% on Citeseer, while reducing their graph size by more than 99.9%, and the

condensed graphs can be used to train various GNN architectures.

2.1 Introduction

Many real-world data can be naturally represented as graphs such as social networks, chemical

molecules, transportation networks, and recommender systems [4, 156, 196]. As a generalization of

deep neural networks for graph-structured data, graph neural networks (GNNs) have achieved great

success in capturing the abundant information residing in graphs and tackle various graph-related

applications [156, 196].

However, the prevalence of large-scale graphs in real-world scenarios, often on the scale of

millions of nodes and edges, poses significant computational challenges for training GNNs. More

dramatically, the computational cost continues to increase when we need to retrain the models

multiple times, e.g., under incremental learning settings, hyperparameter and neural architecture

search. To address this challenge, a natural idea is to properly simplify, or reduce the graph so that

we can not only speed up graph algorithms (including GNNs) but also facilitate storage, visualization
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and retrieval for associated graph data analysis tasks.

There are two main strategies to simplify graphs: graph sparsification [115, 129] and graph

coarsening [102, 101] . Graph sparsification approximates a graph with a sparse graph by reducing

the number of edges, while graph coarsening directly reduces the number of nodes by replacing the

original node set with its subset. However, these methods have some shortcomings: (1) sparsification

becomes much less promising in simplifying graphs when nodes are also associated with attributes

as sparsification does not reduce the node attributes; (2) the goal of sparsification and coarsening is

to preserve some graph properties such as principle eigenvalues [102] that could be not optimal for

the downstream performance of GNNs. In this work, we ask if it is possible to significantly reduce

the graph size while providing sufficient information to well train GNN models.

Motivated by dataset distillation [144] and dataset condensation [189] which generate a small

set of images to train deep neural networks on the downstream task, we aim to condense a given

graph through learning a synthetic graph structure and node attributes. Correspondingly, we propose

the task of graph condensation1. It aims to minimize the performance gap between GNN models

trained on a synthetic, simplified graph and the original training graph. In this work, we focus on

attributed graphs and the node classification task. We show that we are able to reduce the number of

graph nodes to as low as 0.1% while training various GNN architectures to reach surprisingly good

performance on the synthetic graph. For example, in Figure 4.2, we condense the graph of the Reddit

dataset with 153,932 training nodes into only 154 synthetic nodes together with their connections.

In essence, we face two challenges for graph condensation: (1) how to formulate the objective

for graph condensation tractable for learning; and (2) how to parameterize the to-be-learned node

features and graph structure. To address the above challenges, we adapt the gradient matching

scheme in [189] and match the gradients of GNN parameters w.r.t. the condensed graph and original

graph. In this way, the GNN trained on condensed graph can mimic the training trajectory of that on

real data. Further, we carefully design the strategy for parametrizations for the condensed graph. In

particular, we introduce the strategy of parameterizing the condensed features as free parameters and
1We aim to condense both graph structure and node attributes. A formal definition is given in Section 3.
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Test accuracies
GCN: 89.4%
SGC: 89.6%
APPNP: 87.8%
GraphSAGE: 89.1%

(𝑨! ,𝑿! , 𝒀′)
Condense

(𝑨,𝑿,𝒀)
Test accuracies
GCN: 93.9%
SGC: 93.5%
APPNP: 94.3%
GraphSAGE: 93.0%

153,932 training nodes 154 training nodes

Figure 2.1: We study the graph condensation problem, which seeks to learn a small, synthetic graph,
features and labels {A′,X′,Y′} from a large, original dataset {A,X,Y}, which can be used to train
GNN models that generalize comparably to the original. Shown: An illustration of our proposed
GCond graph condensation approach’s empirical performance, which exhibits 95.3% of original
graph test performance with 99.9% data reduction.

model the synthetic graph structure as a function of features, which takes advantage of the implicit

relationship between structure and node features, consumes less number of parameters and offers

better performance. Our contributions can be summarized as follows:

1. We make the first attempt to condense a large-real graph into a small-synthetic graph, such that

the GNN models trained on the large graph and small graph have comparable performance.

We introduce a proposed framework for graph condensation (GCond) which parameterizes the

condensed graph structure as a function of condensed node features, and leverages a gradient

matching loss as the condensation objective.

2. Through extensive experimentation, we show that GCond is able to condense different graph

datasets and achieve comparable performance to their larger counterparts. For instance, GCond

approximates the original test accuracy by 95.3% on Reddit, 99.8% on Flickr and 99.0% on

Citeseer, while reducing their graph size by more than 99.9%. Our approach consistently

outperforms coarsening, coreset and dataset condensation baselines.

3. We show that the condensed graphs can generalize well to different GNN test models. Additionally,

we observed reliable correlation of performances between condensed dataset training and whole-

dataset training in the neural architecture search (NAS) experiments.
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2.2 Related Work

Dataset Distillation & Condensation. Dataset distillation (DD) [144, 7, 110, 143, 15] aims to

distill knowledge of a large training dataset into a small synthetic dataset, such that a model trained

on the synthetic set is able to obtain the comparable performance to that of a model trained on

the original dataset. To improve the efficiency of DD, dataset condensation (DC) [189, 187] is

proposed to learn the small synthetic dataset by matching the gradients of the network parameters

w.r.t. large-real and small-synthetic training data. However, these methods are designed exclusively

for image data and are not applicable to non-Euclidean graph-structured data where samples (nodes)

are interdependent. In this work, we generalize the problem of dataset condensation to graph domain

and we seek to jointly learn the synthetic node features as well as graph structure. Additionally, our

work relates to coreset methods [148, 125, 118], which seek to find informative samples from the

original datasets. However, they rely on the presence of representative samples, and tend to give

suboptimal performance.

Graph Sparsification & Coarsening. Graph sparsification and coarsening are two means

of reducing the size of a graph. Sparsification reduces the number of edges while approximating

pairwise distances [115], cuts [74] or eigenvalues [129] while coarsening reduces the number of

nodes with similar constraints [102, 101, 26], typically by grouping original nodes into super-nodes,

and defining their connections. [12] proposes a GNN-based framework to learn these connections

to improve coarsening quality. [62] adopts coarsening as a preprocessing method to help scale up

GNNs. Graph condensation also aims to reduce the number of nodes, but aims to learn synthetic

nodes and connections in a supervised way, rather than unsupervised grouping as in these prior works.

Graph pooling is also related to our work, but it targets at improving graph-level representation

learning.

Graph Neural Networks. Graph neural networks (GNNs) are a modern way to capture the

intuition that inferences for individual samples (nodes) can be enhanced by utilizing graph-based

information from neighboring nodes [78, 57, 79, 139, 156, 151, 93, 97, 171, 197, 190]. Due to

their prevalence, various real-world applications have been tremendously facilitated including
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recommender systems [168, 39], computer vision [82] and drug discovery [33].

Graph Structure Learning. Our work is also related to graph structure learning, which explores

methods to learn graphs from data. One line of work [31, 35] learns graphs under certain structural

constraints (e.g. sparsity) based on graph signal processing. Recent efforts aim to learn graphs

by leveraging GNNs [45, 70, 18]. However, these methods are incapable of learning graphs with

smaller size, and are thus not applicable for graph condensation. For more related works on graph

structure learning and graph generation, we kindly refer the reader to recent surveys [28, 206].

2.3 Methodology

In this section, we present our proposed graph condensation framework, GCond. Consider that

we have a graph dataset T = {A,X,Y}, where A ∈ R𝑁×𝑁 is the adjacency matrix, 𝑁 is the number

of nodes, X ∈ R𝑁×𝑑 is the 𝑑-dimensional node feature matrix and Y ∈ {0, . . . , 𝐶 − 1}𝑁 denotes

the node labels over 𝐶 classes. Graph condensation aims to learn a small, synthetic graph dataset

S = {A′,X′,Y′} with A′ ∈ R𝑁 ′×𝑁 ′ , X′ ∈ R𝑁 ′×𝐷 , Y′ ∈ {0, . . . , 𝐶 − 1}𝑁 ′ and 𝑁′ ≪ 𝑁 , such that a

GNN trained on S can achieve comparable performance to one trained on the much larger T. Thus,

the objective can be formulated as the following bi-level problem,

min
S

L
(
GNN𝜽S (A,X),Y

)
s.t 𝜽S = arg min

𝜽
L(GNN𝜽 (A′,X′),Y′), (2.1)

where GNN𝜽 denotes the GNN model parameterized with 𝜽, 𝜽S denotes the parameters of the

model trained on S, and L denotes the loss function used to measure the difference between model

predictions and ground truth, i.e. cross-entropy loss. However, optimizing the above objective can

lead to overfitting on a specific model initialization. To generate condensed data that generalizes to

a distribution of random initializations 𝑃𝜽0 , we rewrite the objective as follows:

min
S

E𝜽0∼𝑃𝜽0

[
L

(
GNN𝜽S (A,X),Y

) ]
s.t. 𝜽S = arg min

𝜽
L(GNN𝜽 (𝜽0) (A′,X′),Y′). (2.2)

where 𝜽 (𝜽0) indicates that 𝜽 is a function acting on 𝜽0. Note that the setting discussed above is for

inductive learning where all the nodes are labeled and test nodes are unseen during training. We can

easily generalize graph condensation to transductive setting by assuming Y is partially labeled.
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2.3.1 Graph Condensation via Gradient Matching

To tackle the optimization problem in Eq. (2.2), one strategy is to compute the gradient of L

w.r.t S and optimize S via gradient descent, as in dataset distillation [144]. However, this requires

solving a nested loop optimization and unrolling the whole training trajectory of the inner problem,

which can be prohibitively expensive. To bypass the bi-level optimization, we follow the gradient

matching method proposed in [189] which aims to match the network parameters w.r.t. large-real

and small-synthetic training data by matching their gradients at each training step. In this way, the

training trajectory on small-synthetic data S can mimic that on the large-real data T, i.e., the models

trained on these two datasets converge to similar solutions (parameters). Concretely, the parameter

matching process for GNNs can be modeled as follows:

minS E𝜽0∼𝑃𝜽0

[∑𝑇−1
𝑡=0 𝐷

(
𝜽S𝑡 , 𝜽

T
𝑡

)]
with

𝜽S
𝑡+1 = opt𝜽

(
L

(
GNN𝜽S𝑡

(A′,X′),Y′
))

and 𝜽T
𝑡+1 = opt𝜽

(
L

(
GNN𝜽T𝑡

(A,X),Y
)) (2.3)

where 𝐷 (·, ·) is a distance function, 𝑇 is the number of steps of the whole training trajectory, opt𝜽 is

the update rule for model parameters, and 𝜽S𝑡 , 𝜽T𝑡 denote the model parameters trained on S and T at

time step 𝑡, respectively. Since our goal is to match the parameters step by step, we then consider

one-step gradient descent for the update rule opt𝜽 :

𝜽S𝑡+1 ← 𝜽S𝑡 − 𝜂∇𝜽L
(
GNN𝜽S𝑡

(A′,X′),Y′
)

and 𝜽T𝑡+1 ← 𝜽T𝑡 − 𝜂∇𝜽L
(
GNN𝜽T𝑡

(A,X),Y
)

(2.4)

where 𝜂 is the learning rate for the gradient descent. Based on the observation made in [189] that the

distance between 𝜽S𝑡 and 𝜽T𝑡 is typically small, we can simplify the objective as a gradient matching

process as follows,

min
S

E𝜽0∼𝑃𝜃0

[
𝑇−1∑︁
𝑡=0

𝐷
(
∇𝜽L

(
GNN𝜽 𝑡 (A′,X′),Y′

)
,∇𝜽L

(
GNN𝜽 𝑡 (A,X),Y

) ) ]
(2.5)

where 𝜽S𝑡 and 𝜽T𝑡 are replaced by 𝜽 𝑡 , which is trained on the small-synthetic graph. The distance 𝐷

is further defined as the sum of the distance 𝑑𝑖𝑠 at each layer. Given two gradients GS ∈ R𝑑1×𝑑2 and

GT ∈ R𝑑1×𝑑2 at a specific layer, the distance 𝑑𝑖𝑠(·, ·) used for condensation is defined as follows,

𝑑𝑖𝑠(GS,GT) =
𝑑2∑︁
𝑖=1

(
1 −

GS
i ·G

T
iGS

i

 GT
i


)

(2.6)
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where GS
i ,G

T
i are the 𝑖-th column vectors of the gradient matrices. With the above formulations, we

are able to achieve parameter matching through an efficient strategy of gradient matching.

We note that jointly learning the three variables A′,X′ and Y′ is highly challenging, as they are

interdependent. Hence, to simplify the problem, we fix the node labels Y′ while keeping the class

distribution the same as the original labels Y.

Graph Sampling. GNNs are often trained in a full-batch manner [78, 156]. However, as

suggested by previous works that reconstruct data from gradients [203], large batch size tends to

make reconstruction more difficult because more variables are involved during optimization. To

make things worse, the computation cost of GNNs gets expensive on large graphs as the forward

pass of GNNs involves the aggregation of enormous neighboring nodes. To address the above issues,

we sample a fixed-size set of neighbors on the original graph in each aggregation layer of GNNs and

adopt a mini-batch training strategy. To further reduce memory usage and ease optimization, we

calculate the gradient matching loss for nodes from different classes separately, as matching the

gradients w.r.t. the data from a single class is easier than that from all classes. Specifically, for a

given class 𝑐, we sample a batch of nodes of class 𝑐 together with a portion of their neighbors from

large-real data T. We denote the process as (A𝑐,X𝑐,Y𝑐) ∼ T. For the condensed graph A′, we

sample a batch of synthetic nodes of class 𝑐 but do not sample their neighbors. In other words, we

use all of their neighbors, i.e., all other nodes, during the aggregation process, since we need to

learn the connections with other nodes. We denote the process as (A′𝑐,X′𝑐,Y′𝑐) ∼ S.

2.3.2 Modeling Condensed Graph Data

One essential challenge in the graph condensation problem is how to model the condensed graph

data and resolve dependency among nodes. The most straightforward way is to treat both A′ and X′

as free parameters. However, the number of parameters in A′ grows quadratically as 𝑁′ increases.

The increased model complexity can pose challenges in optimizing the framework and increase the

risk of overfitting. Therefore, it is desired to parametrize the condensed adjacency matrix in a way

where the number of parameters does not grow too fast. On the other hand, treating A′ and X′ as

independent parameters overlooks the implicit correlations between graph structure and features,

11



which have been widely acknowledged in the literature [63, 126]; e.g., in social networks, users

interact with others based on their interests, while in e-commerce, users purchase products due to

certain product attributes. Hence, we propose to model the condensed graph structure as a function

of the condensed node features:

A′ = 𝑔Φ(X′), with A′𝑖 𝑗 = Sigmoid

(
MLPΦ( [x′𝑖; x′

𝑗
]) +MLPΦ( [x′𝑗 ; x′

𝑖
])

2

)
(2.7)

where MLPΦ is a multi-layer neural network parameterized with Φ and [·; ·] denotes concatenation.

In Eq. (2.7), we intentionally control A′
𝑖 𝑗
= A′

𝑗𝑖
to make the condensed graph structure symmetric

since we are mostly dealing with symmetric graphs. It can also adjust to asymmetric graphs by

setting A′
𝑖 𝑗
= Sigmoid(MLPΦ( [x𝑖; x′

𝑗
]). Then we rewrite our objective as

min
X′,Φ

E𝜽0∼𝑃𝜃0

[
𝑇−1∑︁
𝑡=0

𝐷
(
∇𝜽L

(
GNN𝜽 𝑡 (𝑔Φ(X′),X′),Y′

)
,∇𝜽L

(
GNN𝜽 𝑡 (A,X),Y

) ) ]
(2.8)

Note that there are two clear benefits of the above formulation over the naïve one (free parameters).

Firstly, the number of parameters for modeling graph structure no longer depends on the number

of nodes, hence avoiding jointly learning 𝑂 (𝑁′2) parameters; as a result, when 𝑁′ gets larger,

GCond suffers less risk of overfitting. Secondly, if we want to grow the synthetic graph by adding

more synthetic nodes condensed from real graph, the trained MLPΦ can be employed to infer the

connections of new synthetic nodes, and hence we only need to learn their features.

Alternating Optimization Schema. Jointly optimizing X′ and Φ is often challenging as they

are directly affecting each other. Instead, we propose to alternatively optimize X′ and Φ: we update

Φ for the first 𝜏1 epochs and then update X′ for 𝜏2 epochs; the process is repeated until the stopping

condition is met – we find empirically that this does better.

Sparsification. In the learned condensed adjacency matrix A′, there can exist some small values

which have little effect on the aggregation process in GNNs but still take up a certain amount of

storage (e.g. 4 bytes per float). Thus, we remove the entries whose values are smaller than a given

threshold 𝛿 to promote sparsity of the learned A′.

The detailed algorithm can be found in Algorithm 1 in Section C.2. In detail, we first set the

condensed label set Y′ to fixed values and initialize X′ as node features randomly selected from each

12



class. In each outer loop, we sample a GNN model initialization 𝜽 from a distribution 𝑃𝜽 . Then,

for each class we sample the corresponding node batches from T and S, and calculate the gradient

matching loss within each class. The sum of losses from different classes are used to update X′ or Φ.

After that we update the GNN parameters for 𝜏𝜽 epochs. When finishing the updating of condensed

graph parameters, we filter edge weights smaller than 𝛿 to obtain the final sparsified graph structure.

A “Graphless” Model Variant. We now explore another parameterization for the condensed

graph data. We provide a model variant named GCond-X that only learns the condensed node

features X′without learning the condensed structure A′. In other words, we use a fixed identity matrix

I as the condensed graph structure. Specifically, this model variant aims to match the gradients of

GNN parameters on the large-real data (A,X) and small-synthetic data (I,X′). Although GCond-X

is unable to learn the condensed graph structure which can be highly useful for downstream data

analysis, it still shows competitive performance in Table 3.1 in the experiments because the features

are learned to incorporate relevant information from the graph via the matching loss.

2.4 Experiment

In this section, we design experiments to validate the effectiveness of the proposed framework

GCond. We first introduce experimental settings, then compare GCond against representative

baselines with discussions and finally show some advantages of GCond.

2.4.1 Experimental setup

Datasets. We evaluate the condensation performance of the proposed framework on three

transductive datasets, i.e., Cora, Citeseer [78] and Ogbn-arxiv [60], and two inductive datasets, i.e.,

Flickr [177] and Reddit [57]. We use the public splits for all the datasets. For the inductive setting,

we follow the setup in [57] where the test graph is not available during training.

Baselines. We compare our proposed methods to five baselines: (i) one graph coarsening

method [101, 62], (ii-iv) three coreset methods (Random, Herding [148] and K-Center [40, 125]),

and (v) dataset condensation (DC). For the graph coarsening method, we adopt the variation

neighborhoods method implemented by [62]. For coreset methods, we first use them to select nodes
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from the original dataset and induce a subgraph from the selected nodes to serve as the reduced

graph. In Random, the nodes are randomly selected. The Herding method, which is often used in

continual learning [118, 14], picks samples that are closest to the cluster center. K-Center selects the

center samples to minimize the largest distance between a sample and its nearest center. We use the

implementations provided by [189] for Herding, K-Center and DC. As vanilla DC cannot leverage

any structure information, we develop a variant named DC-Graph, which additionally leverages

graph structure during test stage, to replace DC for the following experiments. A comparison

between DC, DC-Graph, GCond and GCond-X is shown in Table 2.1.

Evaluation. We first use the aforementioned baselines to obtain condensed graphs and then

evaluate them on GNNs for both transductive and inductive node classification tasks. For transductive

datasets, we condense the full graph with 𝑁 nodes into a synthetic graph with 𝑟𝑁 (0 < 𝑟 < 1) nodes,

where 𝑟 is the ratio of synthetic nodes to original nodes. For inductive datasets, we only condense

the training graph since the rest of the full graph is not available during training. The choices of 𝑟

are listed in Table 3.1. For each 𝑟 , we generate 5 condensed graphs with different seeds. To evaluate

the effectiveness of condensed graphs, we have two stages: (1) a training stage, where we train a

GNN model on the condensed graph, and (2) a test stage, where the trained GNN uses the test graph

(or full graph in transductive setting) to infer the labels for test nodes. The resulting test performance

is compared with that obtained when training on original datasets. All experiments are repeated 10

times, and we report average performance and variance.

Hyperparameter Settings. As our goal is to generate highly informative synthetic graphs which

can benefit GNNs, we choose one representative model, GCN [78], for performance evaluation.

For the GNN used in condensation, i.e., the GNN𝜃 (·) in Eq. (2.8), we adopt SGC [151] which

decouples the propagation and transformation process but still shares similar graph filtering behavior

as GCN. Unless otherwise stated, we use 2-layer models with 256 hidden units. The weight decay

and dropout for the models are set to 0 in condensation process.
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Table 2.1: Information comparison used during condensation, training and test for reduction methods.
A′,X′ and A,X are condensed (original) graph and features, respectively.

DC DC-Graph GCond-X GCond

Condensation Xtrain Xtrain Atrain,Xtrain Atrain,Xtrain

Training X′ X′ X′ A′,X′
Test Xtest Atest,Xtest Atest,Xtest Atest,Xtest

Table 2.2: GCond and GCond-X achieve promising performance in comparison to baselines
even with extremely large reduction rates. We report transductive performance on Citeseer, Cora,
Ogbn-arxiv; inductive performance on Flickr, Reddit. Performance is reported as test accuracy (%).

Baselines Proposed

Dataset Ratio (𝑟) Random
(A′,X′)

Herding
A′,X′

K-Center
A′,X′

Coarsening
A′,X′

DC-Graph
(X′)

GCond-X
(X′)

GCond
A′,X′

Whole
Dataset

Citeseer
0.9% 54.4±4.4 57.1±1.5 52.4±2.8 52.2±0.4 66.8±1.5 71.4±0.8 70.5±1.2

71.7±0.11.8% 64.2±1.7 66.7±1.0 64.3±1.0 59.0±0.5 66.9±0.9 69.8±1.1 70.6±0.9
3.6% 69.1±0.1 69.0±0.1 69.1±0.1 65.3±0.5 66.3±1.5 69.4±1.4 69.8±1.4

Cora
1.3% 63.6±3.7 67.0±1.3 64.0±2.3 31.2±0.2 67.3±1.9 75.9±1.2 79.8±1.3

81.2±0.22.6% 72.8±1.1 73.4±1.0 73.2±1.2 65.2±0.6 67.6±3.5 75.7±0.9 80.1±0.6
5.2% 76.8±0.1 76.8±0.1 76.7±0.1 70.6±0.1 67.7±2.2 76.0±0.9 79.3±0.3

Ogbn-arxiv
0.05% 47.1±3.9 52.4±1.8 47.2±3.0 35.4±0.3 58.6±0.4 61.3±0.5 59.2±1.1

71.4±0.10.25% 57.3±1.1 58.6±1.2 56.8±0.8 43.5±0.2 59.9±0.3 64.2±0.4 63.2±0.3
0.5% 60.0±0.9 60.4±0.8 60.3±0.4 50.4±0.1 59.5±0.3 63.1±0.5 64.0±0.4

Flickr
0.1% 41.8±2.0 42.5±1.8 42.0±0.7 41.9±0.2 46.3±0.2 45.9±0.1 46.5±0.4

47.2±0.10.5% 44.0±0.4 43.9±0.9 43.2±0.1 44.5±0.1 45.9±0.1 45.0±0.2 47.1±0.1
1% 44.6±0.2 44.4±0.6 44.1±0.4 44.6±0.1 45.8±0.1 45.0±0.1 47.1±0.1

Reddit
0.05% 46.1±4.4 53.1±2.5 46.6±2.3 40.9±0.5 88.2±0.2 88.4±0.4 88.0±1.8

93.9±0.00.1% 58.0±2.2 62.7±1.0 53.0±3.3 42.8±0.8 89.5±0.1 89.3±0.1 89.6±0.7
0.2% 66.3±1.9 71.0±1.6 58.5±2.1 47.4±0.9 90.5±1.2 88.8±0.4 90.1±0.5

2.4.2 Comparison with Baselines

In this subsection, we test the performance of a 2-layer GCN on the condensed graphs, and

compare the proposed GCond and GCond-X with baselines. Notably, all methods produce both

structure and node features, i.e. A′ and X′, except DC-Graph and GCond-X. Since DC-Graph and

GCond-X do not produce any structure, we simply use an identity matrix as the adjacency matrix

when training GNNs solely on condensed features. However, during inference, we use the full graph

(transductive setting) or test graph (inductive setting) to propagate information based on the trained

GNNs. This training paradigm is similar to the C&S model [61] which trains an MLP without the

graph information and performs label propagation based on MLP predictions. Table 3.1 reports

node classification performance; we make the following observations:
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Obs 1. Condensation methods achieve promising performance even with extremely large

reduction rates. Condensation methods, i.e., GCond, GCond-X and DC-Graph, outperform coreset

methods and graph coarsening significantly at the lowest ratio 𝑟 for each dataset. This shows the

importance of learning synthetic data using the guidance from downstream tasks. Notably, GCond

achieves 79.8%, 80.1% and 79.3% at 1.3%, 2.6% and 5.2% condensation ratios at Cora, while the

whole dataset performance is 81.2%. The GCond variants also show promising performance on

Cora, Flickr and Reddit at all coarsening ratios. Although the gap between whole-dataset Ogbn-arxiv

and our methods is larger, they still outperform baselines by a large margin.

Obs 2. Learning X′ instead of (A′,X′) as the condensed graph can also lead to good

results. GCond-X achieves close performance to GCond on 11 of 15 cases. Since our objective

in graph condensation is to achieve parameter matching through gradient matching, training a

GNN on the learned features X′ with identity adjacency matrix is also able to mimic the training

trajectory of GNN parameters. One reason could be that X′ has already encoded node features

and structural information of the original graph during the condensation process. However, there

are many scenarios where the graph structure is essential such as the generalization to other GNN

architectures (e.g., GAT) and visualizing the patterns in the data. More details are given in the

following subsections.

Obs 3. Condensing node features and structural information simultaneously can lead to

better performance. In most cases, GCond and GCond-X obtain much better performance than

DC-Graph. One key reason is that GCond and GCond-X can take advantage of both node features

and structural information in the condensation process. We notice that DC-Graph achieves a highly

comparable result (90.5%) on Reddit at 0.2% condensation ratio to the whole dataset performance

(93.9%). This may indicate that the original training graph structure might not be useful. To verify

this assumption, we train a GCN on the original Reddit dataset without using graph structure (i.e.,

setting Atrain = I), but allow using the test graph structure for inference using the trained model. The

obtained performance is 92.5%, which is very close to the original performance 93.9%, indicating

that training without graph structure can still achieve comparable performance. We also note that
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learning X′, 𝐴′ simultaneously creates opportunities to absorb information from graph structure

directly into learned features, lessening reliance on distilling graph properties reliably while still

achieving good generalization performance from features.

Obs 4. Larger condensed graph size does not strictly indicate better performance. Although

larger condensed graph sizes allow for more parameters which can potentially encapsulate more

information from original graph, it simultaneously becomes harder to optimize due to the increased

model complexity. We observe that once the condensation ratio reaches a certain threshold, the

performance becomes stable. However, the performance of coreset methods and graph coarsening is

much more sensitive to the reduction ratio. Coreset methods only select existing samples while

graph coarsening groups existing nodes into super nodes. When the reduction ratio is too low,

it becomes extremely difficult to select informative nodes or form representative super nodes by

grouping.

2.4.3 Generalizability of Condensed Graphs

Next, we illustrate the generalizability of condensed graphs from the following three perspectives.

Different Architectures. Next, we show the generalizability of the graph condensation

procedure. Specifically, we show test performance when using a graph condensed by one GNN

model to train different GNN architectures. Specifically, we choose APPNP [79], GCN, SGC [151],

GraphSAGE [57], Cheby [23] and GAT [139]. We also include MLP and report the results in Table 2.3.

From the table, we find that the condensed graphs generated by GCond show good generalization on

different architectures. We may attribute such transferability across different architectures to similar

filtering behaviors of those GNN models, which have been studied in [104, 204].

Versatility of GCond. The proposed GCond is highly composable in that we can adopt various

GNNs inside the condensation network. We investigate the performances of various GNNs when

using different GNN models in the condensation process, i.e., GNN𝜃 (·) in Eq. (2.8). We choose

APPNP, Cheby, GCN, GraphSAGE and SGC to serve as the models used in condensation and

evaluation. Note that we omit GAT due to its deterioration under large neighborhood sizes [103].

We choose Cora and Ogbn-arxiv to report the performance in Table 5.4 where C and T denote
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Table 2.3: Graph condensation can work well with different architectures. Avg. stands for the
average test accuracy of APPNP, Cheby, GCN, GraphSAGE and SGC. SAGE stands for GraphSAGE.

Methods Data MLP GAT APPNP Cheby GCN SAGE SGC Avg.

Citeseer
𝑟 = 1.8%

DC-Graph X′ 66.2 - 66.4 64.9 66.2 65.9 69.6 66.6
GCond-X X′ 69.6 - 69.7 70.6 69.7 69.2 71.6 70.2
GCond A′, 𝑋′ 63.9 55.4 69.6 68.3 70.5 66.2 70.3 69.0

Cora
𝑟 = 2.6%

DC-Graph X′ 67.2 - 67.1 67.7 67.9 66.2 72.8 68.3
GCond-X X′ 76.0 - 77.0 74.1 75.3 76.0 76.1 75.7
GCond A′, 𝑋′ 73.1 66.2 78.5 76.0 80.1 78.2 79.3 78.4

Ogbn-arxiv
𝑟 = 0.25%

DC-Graph X′ 59.9 - 60.0 55.7 59.8 60.0 60.4 59.2
GCond-X X′ 64.1 - 61.5 59.5 64.2 64.4 64.7 62.9
GCond A′, 𝑋′ 62.2 60.0 63.4 54.9 63.2 62.6 63.7 61.6

Flickr
𝑟 = 0.5%

DC-Graph X′ 43.1 - 45.7 43.8 45.9 45.8 45.6 45.4
GCond-X X′ 42.1 - 44.6 42.3 45.0 44.7 44.4 44.2
GCond A′, 𝑋′ 44.8 40.1 45.9 42.8 47.1 46.2 46.1 45.6

Reddit
𝑟 = 0.1%

DC-Graph X′ 50.3 - 81.2 77.5 89.5 89.7 90.5 85.7
GCond-X X′ 40.1 - 78.7 74.0 89.3 89.3 91.0 84.5
GCond A′, 𝑋′ 42.5 60.2 87.8 75.5 89.4 89.1 89.6 86.3

Table 2.4: Cross-architecture performance is shown in test accuracy (%). SAGE: GraphSAGE.
Graphs condensed by different GNNs all show strong transfer performance on other architectures.

(a) Cora, 𝑟=2.6%

C\T APPNP Cheby GCN SAGE SGC

APPNP 72.1±2.6 60.8±6.4 73.5±2.4 72.3±3.5 73.1±3.1
Cheby 75.3±2.9 71.8±1.1 76.8±2.1 76.4±2.0 75.5±3.5
GCN 69.8±4.0 53.2±3.4 70.6±3.7 60.2±1.9 68.7±5.4
SAGE 77.1±1.1 69.3±1.7 77.0±0.7 76.1±0.7 77.7±1.8
SGC 78.5±1.0 76.0±1.1 80.1±0.6 78.2±0.9 79.3±0.7

(b) Ogbn-arxiv, 𝑟=0.05%

C\T APPNP Cheby GCN SAGE SGC

APPNP 60.3±0.2 51.8±0.5 59.9±0.4 59.0±1.1 61.2±0.4
Cheby 57.4±0.4 53.5±0.5 57.4±0.8 57.1±0.8 58.2±0.6
GCN 59.3±0.4 51.8±0.7 60.3±0.3 60.2±0.4 59.2±0.7
SAGE 57.6±0.8 53.9±0.6 58.1±0.6 57.8±0.7 59.0±1.1
SGC 59.7±0.5 49.5±0.8 59.2±1.1 58.9±1.6 60.5±0.6

condensation and test models, respectively. The graphs condensed by different GNNs all show

strong transfer performance on other architectures.

Neural Architecture Search. We also perform experiments on neural architecture search.

We search 480 architectures of APPNP and perform the search process on Cora, Citeseer and

Ogbn-arxiv. Specifically, we train each architecture on the reduced graph for epochs on as the model

converges faster on the smaller graph. We observe reliable correlation of performances between

condensed dataset training and whole-dataset training as shown in Table A.4: 0.76/0.79/0.64 for

Cora/Citeseer/Ogbn-arxiv.

2.4.4 Analysis on Condensed Data

Statistics of Condensed Graphs. In Table 2.5, we compare several properties between

condensed graphs and original graphs. Note that a widely used homophily measure is defined
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Table 2.5: Comparison between condensed graphs and original graphs. The condensed graphs have
fewer nodes and are more dense.

Citeseer, 𝑟=0.9% Cora, 𝑟=1.3% Ogbn-arxiv, 𝑟=0.25% Flickr, 𝑟=0.5% Reddit, 𝑟=0.1%

Whole GCond Whole GCond Whole GCond Whole GCond Whole GCond

Accuracy 70.7 70.5 81.5 79.8 71.4 63.2 47.1 47.1 94.1 89.4
#Nodes 3,327 60 2,708 70 169,343 454 44,625 223 153,932 153
#Edges 4,732 1,454 5,429 2,128 1,166,243 3,354 218,140 3,788 10,753,238 301
Sparsity 0.09% 80.78% 0.15% 86.86% 0.01% 3.25% 0.02% 15.23% 0.09% 2.57%
Homophily 0.74 0.65 0.81 0.79 0.65 0.07 0.33 0.28 0.78 0.04
Storage 47.1 MB 0.9 MB 14.9 MB 0.4 MB 100.4 MB 0.3 MB 86.8 MB 0.5 MB 435.5 MB 0.4 MB

in [202] but it does not apply to weighted graphs. Hence, when computing homophily, we binarize the

graphs by removing edges whose weights are smaller than 0.5. We make the following observations.

First, while achieving similar performance for downstream tasks, the condensed graphs contain

fewer nodes and take much less storage. Second, the condensed graphs are less sparse than their

larger counterparts. Since the condensed graph is on extremely small scale, there would be almost

no connections between nodes if the condensed graph maintains the original sparsity. Third, for

Citeseer, Cora and Flickr, the homophily information are well preserved in the condensed graphs.

Visualization. We present the visualization results for all datasets in Figure A.2, where nodes

with the same color are from the same class. Notably, as the learned condensed graphs are weighted

graphs, we use black lines to denote the edges with weights larger than 0.5 and gray lines to

denote the edges with weights smaller than 0.5. From Figure A.2, we can observe some patterns

in the condensed graphs, e.g., the homophily patterns on Cora and Citeseer are well preserved.

Interestingly, the learned graph for Reddit is very close to a star graph where almost all the nodes

only have connections with very few center nodes. Such a structure can be meaningless for GNNs

because almost all the nodes receive the information from their neighbors. In this case, the learned

features X′ play a major role in training GNN parameters, indicating that the original training graph

of Reddit is not very informative, aligning with our observations in Section 4.2.

2.5 Conclusion

The prevalence of large-scale graphs poses great challenges in training graph neural networks. Thus,

we study a novel problem of graph condensation which targets at condensing a large-real graph
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(a) Cora, 𝑟=2.5% (b) Citeseer, 𝑟=1.8% (c) Arxiv, 𝑟=0.05% (d) Flickr, 𝑟=0.1% (e) Reddit, 𝑟=0.1%

Figure 2.2: Condensed graphs sometimes exhibit structure mimicking the original (a, b, d). Other
times (c, e), learned features absorb graph properties and create less explicit graph reliance.

into a small-synthetic one while maintaining the performances of GNNs. Through our proposed

framework, we are able to significantly reduce the graph size while approximating the original

performance. The condensed graphs take much less space of storage and can be used to efficiently

train various GNN architectures. Future work can be done on (1) improving the transferability of

condensed graphs for different GNNs, (2) studying graph condensation for other tasks such as graph

classification and (3) designing condensation framework for multi-label datasets.
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CHAPTER 3

CONDENSING GRAPHS VIA ONE-STEP GRADIENT MATCHING

In this chapter, we propose to solve the limitations in current graph condensation methods: (1) they

only produce continuous graph structures which can take more storage than discrete structures ; and

(2) the condensation process is computationally expensive due to the involved nested optimization.

To bridge the gap, we investigate efficient graph dataset condensation where we model the discrete

graph structure as a probabilistic model. We further propose a one-step gradient matching scheme,

which performs gradient matching for only one single step without training the network weights. Our

theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification

loss on real graphs. Extensive experiments on various graph datasets demonstrate the effectiveness

and efficiency of the proposed method. In particular, we are able to reduce the dataset size by 90%

while approximating up to 98% of the original performance and our method is significantly faster

than multi-step gradient matching (e.g. 15× in CIFAR10 for synthesizing 500 graphs).

3.1 Introduction

Graph-structured data plays a key role in various real-world applications. For example, by exploiting

graph structural information, we can predict the chemical property of a given molecular graph [170],

detect fraud activities in a financial transaction graph [141], or recommend new friends to users in a

social network [39]. Due to its prevalence, graph neural networks (GNNs) [78, 139, 4, 156] have been

developed to effectively extract meaningful patterns from graph data and thus tremendously facilitate

computational tasks on graphs. Despite their effectiveness, GNNs are notoriously data-hungry

like traditional deep neural networks: they usually require massive datasets to learn powerful

representations. Thus, training GNNs is often computationally expensive. Such cost even becomes

prohibitive when we need to repeatedly train GNNs, e.g., in neural architecture search [91] and

continual learning [87].

One potential solution to alleviate the aforementioned issue is dataset condensation or dataset

distillation. It targets at constructing a small-synthetic training set that can provide sufficient
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information to train neural networks [144, 189, 187, 110, 111, 15, 143]. In particular, one of the

representative methods, DC [189], formulates the condensation goal as matching the gradients of the

network parameters between small-synthetic and large-real training data. It has been demonstrated

that such a solution can greatly reduce the training set size of image datasets without significantly

sacrificing model performance. For example, using 100 images generated by DC can achieve 97.4%

test accuracy on MNIST compared with 99.6% on the original dataset (60, 000 images). These

condensed samples can significantly save space for storing datasets and speed up retraining neural

networks in many critical applications, e.g., continual learning and neural architecture search. In

spite of the recent advances in dataset distillation/condensation for images, limited attention has

been paid on domains involving graph structures.

To bridge this gap, we investigate the problem of condensing graphs such that GNNs trained

on condensed graphs can achieve comparable performance to those trained on the original dataset.

However, directly applying existing solutions for dataset condensation [144, 189, 187, 110] to graph

domain faces some challenges. First, existing solutions have been designed for images where the data

is continuous and they cannot output binary values to form the discrete graph structure. Thus, we

need to develop a strategy that can handle the discrete nature of graphs. Second, they usually involve

a complex bi-level problem that is computationally expensive to optimize: they require multiple

iterations (inner iterations) of updating neural network parameters before updating the synthetic data

for multiple iterations (outer iterations). It can be catastrophically inefficient for learning pairwise

relations for nodes, of which the complexity is quadratic to the number of nodes. While one recent

work targets at graph condensation for node classification [72], it does not overcome these challenges

because it does not produce discrete graph structures and its condensation process is costly.

To address the aforementioned challenges, we propose an efficient condensation method for

graphs, where we follow DC [189] to match the gradients of GNNs between synthetic graphs and

real graphs. In order to produce discrete values, we model the graph structure as a probabilistic

graph model and optimize the discrete structures in a differentiable manner. Based on this

formulation, we further propose a one-step gradient matching strategy which only performs gradient
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matching for one single step. Consequently, the advantages of the proposed strategy are twofold.

First, it significantly speeds up the condensation process while providing reasonable guidance for

synthesizing condensed graphs. Second, it removes the burden of tuning hyper-parameters such as

the number of outer/inner iterations of the bi-level optimization as required by DC. Furthermore, we

demonstrate the effectiveness of the proposed one-step gradient matching strategy both theoretically

and empirically. Our contributions can be summarized as follows:

1. We study a novel problem of learning discrete synthetic graphs for condensing graph datasets,

where the discrete structure is captured via a graph probabilistic model that can be learned in a

differentiable manner.

2. We propose a one-step gradient matching scheme that significantly accelerates the vanilla gradient

matching process.

3. Theoretical analysis is provided to understand the rationality of the proposed one-step gradient

matching. We show that learning with one-step matching produces synthetic graphs that lead to

a small classification loss on real graphs.

4. Extensive experiments have demonstrated the effectiveness and efficiency of the proposed method.

Particularly, we are able to reduce the dataset size by 90% while approximating up to 98% of the

original performance and our method is significantly faster than multi-step gradient matching

(e.g. 15× in CIFAR10 for synthesizing 500 graphs).

3.2 Related Work

Graph Neural Networks. As the generalization of deep neural network to graph data, graph neural

networks (GNNs) [78, 79, 139, 156, 151, 134, 70, 94, 146] have revolutionized the field of graph

representation learning through effectively exploiting graph structural information. GNNs have

achieved remarkable performances in basic graph-related tasks such as graph classification [161, 55],

link prediction [39] and node classification [78]. Recent years have also witnessed their great success

achieved in many real-world applications such as recommender systems [39], computer vision [82],

drug discovery [33], computational biology [149, 132], and etc. GNNs take both adjacency matrix

and node feature matrix as input and output node-level representations or graph-level representations.
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Essentially, they follow a message-passing scheme [49] where each node first aggregates the

information from its neighborhood and then transforms the aggregated information to update its

representation. Furthermore, there is significant progress in developing deeper GNNs [93, 68],

self-supervised GNNs [171, 173, 145, 65] and graph data augmentation [194, 28, 192].

Dataset Distillation & Dataset Condensation. It is widely received that training neural

networks on large datasets can be prohibitively costly. To alleviate this issue, dataset distillation

(DD) [144] aims to distill knowledge of a large training dataset into a small number of synthetic

samples. DD formulates the distillation process as a learning-to-learning problem and solves it

through bi-level optimization. To improve the efficiency of DD, dataset condensation (DC) [189, 187]

is proposed to learn the small synthetic dataset by matching the gradients of the network parameters

w.r.t. large-real and small-synthetic training data. It has been demonstrated that these condensed

samples can facilitate critical applications such as continual learning [189, 187, 76, 81, 188], neural

architecture search [110, 111, 165] and privacy-preserving scenarios [30] Recently, following the

gradient matching scheme in DC, the work [72] proposes a condensation method to condense a

large-scale graph to a small graph for node classification. Different from [72] which learns weighted

graph structure, we aim to solve the challenge of learning discrete structure and we majorly target at

graph classification. Moreover, our method avoids the costly bi-level optimization and is much more

efficient than the previous work. A detailed comparison is included in Section 3.4.4.

3.3 The Proposed Framework

Before detailing the framework, we first introduce the main notations used in this paper. We

majorly focus on the graph classification task where the goal is to predict the labels of given graphs.

Specifically, we denote a graph dataset as T = {𝐺1, . . . , 𝐺𝑁 } with ground-truth label set Y. Each

graph in T is associated with a discrete adjacency matrix and a node feature matrix. Let A(𝑖) , X(𝑖)

represent the adjacency matrix and the feature matrix of 𝑖-th real graph, respectively. Similarly, we

use S = {𝐺′1, . . . , 𝐺
′
𝑁 ′} and Y′ to indicate the synthetic graphs and their labels, respectively. Note

that the number of synthetic graphs 𝑁′ is essentially much smaller than that of real graphs 𝑁 . We

use 𝑑 and 𝑛 to denote the number of feature dimensions and number of nodes in each synthetic
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graph, respectively1. Let 𝐶 denote the number of classes and ℓ denote the cross entropy loss. The

goal of our work is to learn a set of synthetic graphs S such that a GNN trained on S can achieve

comparable performance to the one trained on the much larger dataset T.

In the following subsections, we first introduce how to apply the vanilla gradient matching to

condensing graphs for graph classification (Section 3.3.1). However, it cannot generate discrete

graph structure and is highly inefficient. To correspondingly address these two limitations, we

discuss the approach to handling the discrete nature of graphs (Section 3.3.2) and propose an

efficient solution, one-step gradient matching, which significantly accelerates the condensation

process (Section 3.3.3).

3.3.1 Gradient Matching as the Objective

Since we aim at learning synthetic graphs that are highly informative, one solution is to

allow GNNs trained on synthetic graphs to imitate the training trajectory on the original large

dataset. Dataset condensation [189, 187] introduces a gradient matching scheme to achieve this

goal. Concretely, it tries to reduce the difference of model gradients w.r.t. large-real data and

small-synthetic data for model parameters at every training epoch. Hence, the model parameters

trained on synthetic data will be close to these trained on real data at every training epoch. Let 𝜃𝑡

denote the network parameters at the 𝑡-th epoch and 𝑓𝜃𝑡 indicate the neural network parameterized

by 𝜃𝑡 . The condensation objective is expressed as:

min
S

𝑇−1∑︁
𝑡=0
𝐷 (∇𝜃ℓ( 𝑓𝜃𝑡 (S),Y′),∇𝜃ℓ( 𝑓𝜃𝑡 (T),Y)),

s.t. 𝜃𝑡+1 = opt𝜃 (𝜃𝑡 , S), (3.1)

where 𝐷 (·, ·) is a distance function, 𝑇 is the number of steps of the whole training trajectory and

opt𝜃 (·) is the optimization operator for updating parameter 𝜃. Note that Eq. (3.1) is a bi-level

problem where we need to learn the synthetic graphs S at the outer optimization and update model

parameters 𝜃𝑡 at the inner optimization. To learn synthetic graphs that generalize to a distribution of
1We set 𝑛 to the average number of nodes in original dataset.
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model parameters 𝑃𝜃0 , we sample 𝜃0 ∼ 𝑃𝜃0 and rewrite Eq. (3.1) as:

min
S
E

𝜃0∼𝑃𝜃0

[
𝑇−1∑︁
𝑡=0

𝐷
(
∇𝜃ℓ

(
𝑓𝜃𝑡 (S),Y′

)
,∇𝜃ℓ

(
𝑓𝜃𝑡 (T),Y

) ) ]
,

s.t. 𝜃𝑡+1 = opt𝜃 (𝜃𝑡 , S). (3.2)

Discussion. The aforementioned strategy has demonstrated promising performance on condens-

ing image datasets [189, 187]. However, it is not clear how to model the discrete graph structure.

Moreover, the inherent bi-level optimization inevitably hinders its scalability. To tackle these

shortcomings, we propose DosCond that models the structure as a probabilistic graph model and

is optimized through one-step gradient matching. In the following subsections, we introduce the

details of DosCond.

3.3.2 Learning Discrete Graph Structure

For graph classification, each graph in the dataset is composed of an adjacency matrix and a

feature matrix. For simplicity, we use X′ ∈ R𝑁 ′×𝑛×𝑑 to denote the node features in all synthetic

graphs S and A′ ∈ {0, 1}𝑁 ′×𝑛×𝑛 to indicate the graph structure information in S. Note that 𝑓𝜃𝑡 can be

instantiated as any graph neural network and it takes both graph structure and node features as input.

Then we rewrite the objective in Eq. (4.9) as follows:

min
A′,X′

E
𝜃0∼𝑃𝜃0

[
𝑇−1∑︁
𝑡=0

𝐷
(
∇𝜃ℓ

(
𝑓𝜃𝑡 (A′,X′),Y′

)
,∇𝜃ℓ

(
𝑓𝜃𝑡 (T),Y

) ) ]
,

s.t. 𝜃𝑡+1 = opt𝜃 (𝜃𝑡 , S), (3.3)

where we aim to learn both graph structure A′ and node features X′. However, Eq. (3.3) is challenging

to optimize as it requires a function that outputs binary values. To address this issue, we propose

to model the graph structure as a probabilistic graph model with Bernoulli distribution. Note

that in the following, we reshape A′ from 𝑁′ × 𝑛 × 𝑛 to 𝑁′ × 𝑛2 for the purpose of demonstration

only. Specifically, for each entry A′
𝑖 𝑗
∈ {0, 1} in the adjacency matrix A′, it follows a Bernoulli

distribution:

𝑃𝛀𝑖 𝑗 (A′𝑖 𝑗 ) = A′𝑖 𝑗𝜎(𝛀𝑖 𝑗 ) + (1 − A′𝑖 𝑗 )𝜎(−𝛀𝑖 𝑗 ), (3.4)
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where 𝜎(·) is the sigmoid function; 𝛀𝑖 𝑗 ∈ R is the success probability of the Bernoulli distribution

and also the parameter to be learned. Since A′
𝑖 𝑗

is independent of all other entries, the distribution

of A′ can be modeled as:

𝑃𝛀(A′) =
𝑁 ′∏
𝑖=1

𝑛2∏
𝑗=1

𝑃𝛀𝑖 𝑗

(
A′𝑖 𝑗

)
. (3.5)

Then, the objective in Eq. (4.9) needs to be modified to

min
A′,X′

E
𝜃0∼𝑃𝜃0

[
E

A′∼𝑃𝛀
[ℓ(A′(𝛀),X′, 𝜃0)]

]
. (3.6)

With the new parameterization, we obtain a function that outputs discrete values but it is not differen-

tiable due to the involved sampling process. Thus, we employ the reparameterization method [106],

binary concrete distribution, to refactor the discrete random variable into a differentiable function

of its parameters and a random variable with fixed distribution. Specifically, we first sample

𝛼 ∼ Uniform(0, 1), and edge weight A′
𝑖 𝑗
∈ [0, 1] is calculated by:

A′𝑖 𝑗 = 𝜎
( (

log𝛼 − log(1 − 𝛼) +𝛀𝑖 𝑗

)
/𝜏

)
, (3.7)

where 𝜏 ∈ (0,∞) is the temperature parameter that controls the continuous relaxation. As 𝜏 → 0,

the random variable A′
𝑖 𝑗

smoothly approaches the Bernoulli distribution. In other words, we have

lim𝜏→0 𝑃
(
A′
𝑖 𝑗
= 1

)
= 𝜎(𝛀𝑖 𝑗 ). While small 𝜏 is necessary for obtaining discrete samples, large

𝜏 is useful in getting large gradients as suggested by [106]. In practice, we employ an annealing

schedule [1] to gradually decrease the value of 𝜏 in training. With the reparameterization trick, the

objective function becomes differentiable w.r.t. 𝛀𝑖 𝑗 with well-defined gradients. Then we rewrite

our objective as:

min
𝛀,X′

E
𝜃0∼𝑃𝜃0

[
E

𝛼∼Uniform(0,1)
[ℓ(A′(𝛀),X′, 𝜃0)]

]
= (3.8)

E
𝜃0

[
E
𝛼

[
𝑇−1∑︁
𝑡=0

𝐷
(
∇𝜃ℓ

(
𝑓𝜃𝑡 (A′(𝛀),X′),Y′

)
,∇𝜃ℓ

(
𝑓𝜃𝑡 (T),Y

) ) ] ]
,

s.t. 𝜃𝑡+1 = opt𝜃 (𝜃𝑡 , S).
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3.3.3 One-Step Gradient Matching

The vanilla gradient matching scheme in Eq. (4.9) presents a bi-level optimization problem. To

solve this problem, we need to update the synthetic graphs S at the outer loop and then optimize

the network parameters 𝜃𝑡 at the inner loop. The nested loops heavily impede the scalability of

the condensation method, which motivates us to design a new strategy for efficient condensation.

In this work, we propose a one-step gradient matching scheme where we only match the network

gradients for the model initializations 𝜃0 while discarding the training trajectory of 𝜃𝑡 . Essentially,

this strategy approximates the overall gradient matching loss for 𝜃𝑡 with the initial matching loss at

the first epoch, which we term as one-step matching loss. The intuition is: the one-step matching

loss informs us about the direction to update the synthetic data, in which, we have empirically

observed a strong decrease in the cross-entropy loss (on real samples) obtained from the model

trained on synthetic data. Hence, we can drop the summation symbol
∑𝑇−1
𝑡=0 in Eq. (3.8) and simplify

Eq. (3.8) as follows:

min
𝛀,X′
E
𝜃0

[
E
𝛼

[
𝐷

(
∇𝜃ℓ

(
𝑓𝜃0 (A′(𝛀),X′),Y′

)
,∇𝜃ℓ

(
𝑓𝜃0 (T),Y

) ) ] ]
, (3.9)

where we sample 𝜃0 ∼ 𝑃𝜃0 and 𝛼 ∼ Uniform(0, 1). Compared with Eq. (3.8), one-step gradient

matching avoids the expensive nested-loop optimization and directly updates the synthetic graph

S. It greatly simplifies the condensation process. In practice, as shown in Section 4.5.4, we find

this strategy yields comparable performance to its bi-level counterpart while enabling much more

efficient condensation. Next, we provide theoretical analysis to understand the rationality of the

proposed one-step gradient matching scheme.

Theoretical Understanding. We denote the cross entropy loss on the real graphs as ℓT (𝜃) =∑
𝑖 ℓ𝑖 (A(𝑖) , X(𝑖) , 𝜃) and that on synthetic graphs as ℓS(𝜃) = ℓS(A′(𝑖) ,X

′
(𝑖) , 𝜃). Let 𝜃∗ denote the

optimal parameter and 𝜃𝑡 be the parameter trained on S at the 𝑡-th epoch by optimizing ℓS(𝜃). For

notation simplicity, we assume that A and A′ are already normalized. The matrix norm ∥ · ∥ is the

Frobenius norm. We focus on the GNN of Simple Graph Convolutions (SGC) [151] to study our

problem since SGC has a simpler architecture but shares a similar filtering pattern as GCN.
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Theorem 1. When we use a 𝐾-layer SGC as the GNN used in condensation, i.e., 𝑓𝜃 (A(𝑖) ,X(𝑖)) =

Pool(A𝐾
(𝑖)X(𝑖)W1)W2 with 𝜃 = [W1; W2] and assume that all network parameters satisfy ∥𝜃∥2 ≤

𝑀2(𝑀 > 0), we have

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡 ) − ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡 ) − ∇𝜃ℓS (𝜃𝑡 ) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁 ′

√︄∑︁
𝑖

𝛾𝑖 ∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2 (3.10)

where 𝛾𝑖 = 1 if we use sum pooling in 𝑓𝜃; 𝛾𝑖 = 1
𝑛𝑖

if we use mean pooling, with 𝑛𝑖 as the number of

nodes in the 𝑖-th synthetic graph.

We provide the proof of Theorem 1 in Appendix B.1.1. Theorem 1 suggests that the smallest

gap between the resulted loss (by training on synthetic graphs) and the optimal loss has an upper

bound. This upper bound depends on two terms: (1) the difference of gradients w.r.t. real data

and synthetic data and (2) the norm of input matrices. Thus, the theorem justifies that reducing

the gradient difference w.r.t real and synthetic graphs can help learn desirable synthetic data that

preserves sufficient information to train GNNs well. Based on Theorem 1, we have the following

proposition.

Proposition 1. Assume the largest gradient gap happens at 0-th epoch, i.e., ∥∇𝜃ℓT (𝜃0)−∇𝜃ℓ𝑆 (𝜃0) ∥ =

max
𝑡
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥ with 𝑡 = 0, 1, . . . , 𝑇 − 1, we have

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡 ) − ℓT (𝜃∗) ≤
√

2𝑀 ∥∇𝜃ℓT (𝜃0) − ∇𝜃ℓ𝑆 (𝜃0) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁 ′

√︄∑︁
𝑖

𝛾𝑖 ∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2. (3.11)

We omit the proof for the proposition since it is straightforward. The above proposition suggests

that the smallest gap between the ℓT (𝜃𝑡) and ℓT (𝜃∗) is bounded by the one-step matching loss and

the norm ∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥

2. As we will show in Section 3.4.3.4, when using mean pooling, the second

term tends to have a smaller scale than the first one and can be neglected; the second term matters

more when we use sum pooling. Hence, we solely optimize the one-step gradient matching loss for

GNNs with mean pooling and additionally include the second term (the norm of input matrices) as a
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regularization for GNNs with sum pooling. As such, if we consider the optimal loss ℓT (𝜃∗) as a

constant, reducing the one-step matching loss indeed learns synthetic graphs that lead to a small

classification loss on real graphs. This demonstrates the rationality of one-step gradient matching

from a theoretical perspective.

Remark 1. Note that the spectral analysis from [151] demonstrated that both GCN and SGC share

similar graph filtering behaviors. Thus practically, we extend the one-step gradient matching loss

from 𝐾-layer SGC to 𝐾-layer GCN and observe that the proposed framework works well under the

non-linear scenario.

Remark 2. While we focus on the graph classification task, it is straightforward to extend our

framework to node classification and we obtain similar conclusions for node classification as shown

in Theorem 2 in Appendix B.1.2.

3.3.4 Final Objective and Training Algorithm

In this subsection, we describe the final objective function and the detailed training algorithm.

We note that the objective in Eq. (3.8) involves two nested expectations, we adopt Monte Carlo to

approximately optimize the objective function. Together with one-step gradient matching, we have

min
𝛀,X′

E
𝜃0∼𝑃𝜃0

E
𝛼∼Uniform(0,1)

[[ℓ(A′(𝛀),X′, 𝜃0)]] (3.12)

≈
𝐾1∑︁
𝑘1=1

𝐾2∑︁
𝑘2=1

𝐷
(
∇𝜃ℓ

(
𝑓𝜃0 (A′(𝛀),X′),Y′

)
,∇𝜃ℓ

(
𝑓𝜃0 (T),Y

) )
where 𝐾1 is the number of sampled model initializations and 𝐾2 is the number of sampled graphs.

We find that 𝐾2 = 1 is able to yield good performance in our experiments.

Regularization. In addition to the one-step gradient matching loss, we note that the proposed

DosCond can be easily integrated with various priors as regularization terms. In this work, we focus

on exerting sparsity regularization on the adjacency matrix, since a denser adjacency matrix will

lead to higher cost for training graph neural networks. Specifically, we penalize the difference of the
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Table 3.1: The classification performance comparison to baselines. We report the ROC-AUC for the
first three datasets and accuracies (%) for others. Whole Dataset indicates the performance with
original dataset.

Graphs/Cls. Ratio Random Herding K-Center DCG DosCond Whole Dataset

ogbg-molbace
(ROC-AUC)

1 0.2% 0.580±0.067 0.548±0.034 0.548±0.034 0.623±0.046 0.657±0.034
0.714±0.00510 1.7% 0.598±0.073 0.639±0.039 0.591±0.056 0.655±0.033 0.674±0.035

50 8.3% 0.632±0.047 0.683±0.022 0.589±0.025 0.652±0.013 0.688±0.012

ogbg-molbbbp
(ROC-AUC)

1 0.1% 0.519±0.016 0.546±0.019 0.546±0.019 0.559±0.044 0.581±0.005
0.646±0.00410 1.2% 0.586±0.040 0.605±0.019 0.530±0.039 0.568±0.032 0.605±0.008

50 6.1% 0.606±0.020 0.617±0.003 0.576±0.019 0.579±0.032 0.620±0.007

ogbg-molhiv
(ROC-AUC)

1 0.01% 0.719±0.009 0.721±0.002 0.721±0.002 0.718±0.013 0.726±0.003
0.757±0.00710 0.06% 0.720±0.011 0.725±0.006 0.713±0.009 0.728±0.002 0.728±0.005

50 0.3% 0.721±0.014 0.725±0.003 0.725±0.006 0.726±0.010 0.731±0.004

DD
(Accuracy)

1 0.2% 57.69±4.92 61.97±1.32 61.97±1.32 58.81±2.90 70.42±2.21
78.92±0.6410 2.1% 64.69±2.55 69.79±2.30 63.46±2.38 61.84±1.44 73.53±1.13

50 10.6% 67.29±1.53 73.95±1.70 67.41±0.92 61.27±1.01 77.04±1.86

MUTAG
(Accuracy)

1 1.3% 67.47±9.74 70.84±7.71 70.84±7.71 75.00±8.16 82.21±1.61
88.63±1.4410 13.3% 77.89±7.55 80.42±1.89 81.00±2.51 82.66±0.68 82.76±2.31

20 26.7% 78.21±5.13 80.00±1.10 82.97±4.91 82.89±1.03 83.26±2.34

NCI1
(Accuracy)

1 0.1% 51.27±1.22 53.98±0.67 53.98±0.67 51.14±1.08 56.58±0.48
71.70±0.2010 0.6% 54.33±3.14 57.11±0.56 53.21±1.44 51.86±0.81 58.02±1.05

50 3.0% 58.51±1.73 58.94±0.83 56.58±3.08 52.17±1.90 60.07±1.58

CIFAR10
(Accuracy)

1 0.06% 15.61±0.52 22.38±0.49 22.37±0.50 21.60±0.42 24.70±0.70
50.75±0.1410 0.2% 23.07±0.76 28.81±0.35 20.93±0.62 29.27±0.77 30.70±0.23

50 1.1% 30.56±0.81 33.94±0.37 24.17±0.51 34.47±0.52 35.34±0.14

E-commerce
(Accuracy)

1 0.2% 51.31±2.89 52.18±0.25 52.36±0.38 57.14±1.72 60.82±1.23
69.25±0.5010 0.9% 54.99±2.74 56.83±0.87 56.49±0.36 61.03±1.32 64.73±1.34

20 3.6% 57.80±3.58 62.56±0.71 62.76±0.45 64.92±1.35 67.71±1.22

sparsity between 𝜎(Ω) and a given sparsity 𝜖 :

ℓreg = max( 1
|𝛀|

∑︁
𝑖, 𝑗

𝜎(𝛀𝑖 𝑗 ) − 𝜖, 0). (3.13)

We initialize 𝜎(𝛀) and X′ as randomly sampled training graphs2 and set 𝜖 to the average sparsity

of initialized 𝜎(𝛀) so as to maintain a low sparsity. On top of that, as we discussed earlier in

Section 3.3.3, we include the following regularization for GNNs with sum pooling:

ℓreg2 =
3

2
√

2𝑇
· 𝐶 − 1
𝐶𝑁′

√︄∑︁
𝑖

∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2 (3.14)

Training Algorithm. We provide the details of our proposed framework in Algorithm 4 in

Appendix B.2.1. Specifically, we sample 𝐾1 model initializations 𝜃0 to perform one-step gradient
2If an entry in the real adjacency matrix is 1, the corresponding value in 𝛀 is initialized as a large value, e.g.,5.
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matching. Following the convention in DC [189], we match gradients and update synthetic graphs

for each class separately in order to make matching easier. For class 𝑐, we first retrieve the synthetic

graphs of that class, denoted as (A′𝑐,X′𝑐,Y′𝑐) ∼ S, and sample a batch of real graphs (A𝑐,X𝑐,Y𝑐).

We then forward them to the graph neural network and calculate the one-step gradient matching loss

together with the regularization term. Afterwards, 𝛀 and X′ are updated via gradient descent. It is

worth noting that the training process for each class can be run in parallel since the graph updates

for one class is independent of another class.

Comparison with DC. Recall that the gradient matching scheme in DC involves a complex

bi-level optimization. If we denote the number of inner-iterations as 𝜏𝑖 and that of outer-iterations as

𝜏𝑜, its computational complexity can be 𝜏𝑖 × 𝜏𝑜 of our method. Thus DC is significantly slower than

DosCond. In addition to speeding up condensation, DosCond removes the burden of tuning some

hyper-parameters, i.e., the number of iterations for outer/inner optimization and learning rate for

updating 𝑓𝜃 , which can potentially save us enormous training time when learning larger synthetic

sets.

Comparison with Coreset Methods. Coreset methods [148, 125] select representative data

samples based on some heuristics calculated on the pre-trained embedding. Thus, it requires training

the model first. Given the cheap cost on calculating and ranking heuristics, the major computational

bottleneck for coreset method is on pre-training the neural network for a certain number of iterations.

Likewise, our proposed DosCond has comparable complexity because it also needs to forward

and backward the neural network for multiple iterations. Thus, their efficiency difference majorly

depends on how many epochs we run for learning synthetic graphs in DosCond and for pre-training

the model embedding in coreset methods. In practice, we find that DosCond even requires less

training cost than the coreset methods as shown in Section 3.4.2.2.

3.4 Experiment

In this section, we conduct experiments to evaluate DosCond. Particularly, we aim to answer the

following questions: (a) how well can we condense a graph dataset and (b) how efficient is DosCond.
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Our code can be found in the supplementary files.

3.4.1 Experimental Settings

Datasets. To evaluate the performance of our method, we use multiple molecular datasets

from Open Graph Benchmark (OGB) [60] and TU Datasets (DD, MUTAG and NCI1) [109] for

graph-level property classification, and one superpixel dataset CIFAR10 [34]. We also introduce a

real-world e-commerce dataset. In particular, we randomly sample 1,109 sub-graphs from a large,

anonymized internal knowledge graph. Each sub-graph is created from the ego network of a random

selected product on the e-commerce website. We form a binary classification problem aiming at

predicting the product category of the central product node in each sub-graph. We use the public

splits for OGB datasets and CIFAR10. For TU Datasets and the e-commerce dataset, we randomly

split the graphs into 80%/10%/10% for training/validation/test. Detailed dataset statistics are shown

in Appendix C.3.

Baselines. We compare our proposed methods with four baselines that produce discrete

structures: three coreset methods (Random, Herding [148] and K-Center [40, 125]), and a dataset

condensation method DCG [189]: (a) Random: it randomly picks graphs from the training dataset.

(b) Herding: it selects samples that are closest to the cluster center. Herding is often used in

replay-based methods for continual learning [118, 14]. (c) K-Center: it selects the center samples to

minimize the largest distance between a sample and its nearest center. (d) DCG: As vanilla DC [189]

cannot generate discrete structure, we randomly select graphs from training and apply DC to learn

the features for them, which we term as DCG. We use the implementations provided by [189] for

Herding, K-Center and DCG. Note that coreset methods only select existing samples from training

while DCG learns the node features.

Evaluation Protocol. To evaluate the effectiveness of the proposed method, we test the

classification performance of GNNs trained with condensed graphs on the aforementioned graph

datasets. Concretely, it involves three stages: (1) learning synthetic graphs, (2) training a GCN on

the synthetic graphs and (3) test the performance of GCN. We first generate the condensed graphs

following the procedure in Algorithm 1. Then we train a GCN classifier with the condensed graphs.
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Finally we evaluate its classification performance on the real graphs from test set. For baseline

methods, we first get the selected/condensed graphs and then follow the same procedure. We repeat

the generation process of condensed graphs 5 times with different random seeds and train GCN on

these graphs with 10 different random seeds. In all experiments, we report the mean and standard

deviation of these results.

Parameter Settings. When learning the synthetic graphs, we adopt 3-layer GCN with 128

hidden units as the model for gradient matching. The learning rates for structure and feature

parameters are set to 1.0 (0.01 for ogbg-molbace and CIFAR10) and 0.01, respectively. We set

𝐾1 to 1000 and 𝛽 to 0.1. Additionally, we use mean pooling to obtain graph representation for all

datasets except ogbg-molhiv. We use sum pooling for ogbg-molhiv as it achieves better classification

performance on the real dataset. During the test stage, we use GCN with the same architecture and

we train the model for 500 epochs (100 epochs for ogbg-molhiv) with an initial learning rate of

0.001.

3.4.2 Performance with Condensed Graphs

3.4.2.1 Classification Performance Comparison

To validate the effectiveness of the proposed framework, we measure the classification perfor-

mance of GCN trained on condensed graphs. Specifically, we vary the number of learned synthetic

graphs per class in the range of {1, 10, 50} ({1, 10, 20} for MUTAG and E-commerce) and train

a GCN on these graphs. Then we evaluate the classification performance of the trained GCN on

the original test graphs. Following the convention in OGB [60], we report the ROC-AUC metric

for ogbg-molbace, ogbg-molbbbp and ogbg-molhiv; for other datasets we report the classification

accuracy (%). The results are summarized in Table 3.1. Note that the Ratio column presents the

ratio of synthetic graphs to original graphs and we name it as condensation ratio; the Whole Dataset

column shows the GCN performance achieved by training on the original dataset. From the table,

we make the following observations:

(a) The proposed DosCond consistently achieves better performance than the baseline methods under

different condensation ratios and different datasets. Notably, when generating only 2 graphs on
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ogbg-molbace dataset (0.2%), we achieve an ROC-AUC of 0.657 while the performance on

full training set is 0.714, which means we approximate 92% of the original performance with

only 0.2% data. Likewise, we are able to approximate 96.5% of the original performance on

ogbg-molhiv with 0.3% data. By contrast, baselines underperform our method by a large margin.

Similar observations can be made on other datasets, which demonstrates the effectiveness of

learned synthetic graphs in preserving the information of the original dataset.

(b) Increasing the number of synthetic graphs can improve the classification performance. For

example, we can approximate the original performance by 89%/93%/98% with 0.2%/2.1%/10.6%

data on DD. More synthetic samples indicate more learnable parameters that can preserve the

information residing in the original dataset and present more diverse patterns that can help train

GNNs better. This observation is in line with our experimental results in Section 3.4.3.1.

(c) The performance on CIFAR10 is less promising due to the limit number of synthetic graphs.

We posit that the dataset has more complex topology and feature information and thus requires

more parameters to preserve sufficient information. However, we note that our method still

outperforms the baseline methods especially when producing only 1 sample per class, which

suggests that our method is much more data-efficient. Moreover, we are able to promote the

performance on CIFAR10 by learning a larger synthetic set as shown in Section 3.4.3.1.

(d) Learning both synthetic graph structure and node features is necessary for preserving the

information in original graph datasets. By checking the performance DCG, which only learns

node features based on randomly selected graph structure, we see that DCG underperforms

DosCond by a large margin in most cases. This indicates that learning node features solely is

sub-optimal for condensing graphs.

3.4.2.2 Efficiency Comparison

Since one of our goals is to enable scalable dataset condensation, we now evaluate the efficiency

of DosCond. We compare DosCond with the coreset method Herding, as it is less time-consuming

than DCG and generally achieves better performance than other baselines. We adopt the same

setting as in Table 3.1: 1000 iterations for DosCond, i.e., 𝐾1 = 1000, and 500 epochs (100 epochs
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Table 3.2: Comparison of running time (minutes).

CIFAR10 ogbg-molhiv DD

G./Cls. Herding DosCond Herding DosCond Herding DosCond
1 44.5m 4.7m 4.3m 0.66m 1.6m 1.5m
10 44.5m 4.9m 4.3m 0.67m 1.6m 1.5m
50 44.5m 5.7m 4.3m 0.68m 1.6m 2.0m

for ogbg-molhiv) for pre-training the graph convolutional network as required by Herding. We also

note that pre-training the neural network need to go over the whole dataset at every epoch while

DosCond only processes a batch of graphs. In Table A.5, we report the running time on an NVIDIA

V100 GPU for CIFAR10, ogbg-molhiv and DD. From the table, we make two observations:

(a) DosCond can be faster than Herding. In fact, DosCond requires less training time in all the

cases except in DD with 50 graphs per class. Herding needs to fully train the model on the

whole dataset to obtain good-quality embedding, which can be quite time-consuming. On the

contrary, DosCond only requires matching gradients for 𝐾1 initializations and does not need to

fully train the model on the large real dataset.

(b) The running time of DosCond increases with the increase of the number of synthetic graphs

𝑁′. It is because DosCond processes the condensed graphs at each iteration, of which the time

complexity is𝑂 (𝑁′𝐿 (𝑛2𝑑 + 𝑛𝑑2)) for an 𝐿-layer GCN. Thus, the additional complexity depends

on 𝑁′. By contrast, the increase of 𝑁′ has little impact on Herding since the process of selecting

samples based on pre-defined heuristic is very fast.

(c) The average nodes in synthetic graph 𝑛 also impacts the training cost of DosCond. For instance,

the training cost on ogbg-molhiv (𝑛=26) is much lower than that on DD (𝑛=285), and the gap

of cost between the two methods on ogbg-molhiv and DD is very different. As mentioned

earlier, it is because the complexity of the forward process in GCN is 𝑂 (𝑁′𝐿 (𝑛2𝑑 + 𝑛𝑑2)) for

𝑁′ condensed graphs with node size of 𝑛.

To summarize, the efficiency difference of Herding and DosCond depends on the number of

condensed/selected samples and the training iterations adopted in practice and we empirically found

that DosCond consumes less training cost.
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(d) Varying 𝛽 on NCI1

Figure 3.1: Algorithm analysis and parameter analysis w.r.t. the sparsity regularization.
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Figure 3.2: T-SNE visualizations of embedding learned with condensed graphs on DD.

3.4.3 Further Investigation

In this subsection, we perform further investigations to provide a better understanding of our

proposed method.

3.4.3.1 Increasing the Number of Synthetic Graphs

We study whether the classification performance can be further boosted when using larger

synthetic size. Concretely, we vary the size of the learned graphs from 1 to 300 and report the results

of absolute and relative accuracy w.r.t. whole dataset training accuracy for CIFAR10 in Figure 3.1a.

It is clear to see that both Random and DosCond achieve better performance when we increase

the number of samples used for training. Moreover, our method outperforms the random baseline

under different condensed dataset sizes. It is worth noting that the performance gap between the

two methods diminishes with the increase of the number of samples. This is because the random

baseline will finally approach the whole dataset training if we continue to enlarge the size of the

condensed set, in which the performance can be considered as the upper bound of DosCond.
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Table 3.3: Node classification accuracy (%) comparison. The numbers in parentheses indicate the
running time for 100 epochs and 𝑟 indicates the ratio of number of nodes in the condensed graph to
that in the original graph.

Cora, 𝑟=2.6% Citeseer, 𝑟=1.8% Pubmed, 𝑟=0.3% Arxiv, 𝑟=0.25% Flickr, 𝑟=0.1%

GCond 80.1 (75.9s) 70.6 (71.8s) 77.9 (51.7s) 59.2 (494.3s) 46.5 (51.9s)
DosCond 80.0 (3.5s) 71.0 (2.8s) 76.0 (1.3s) 59.0 (32.9s) 46.1 (14.3s)

Whole Dataset 81.5 71.7 79.3 71.4 47.2

3.4.3.2 Ablation Study

To examine how different model components affect the model performance, we perform ablation

study on the proposed one-step gradient matching and regularization terms. We create an ablation of

our method, namely DosCond-Bi, which adopts the vanilla gradient matching scheme that involves

a bi-level optimization. Without loss of generality, we compare the training time and classification

accuracy of DosCond and DosCond-Bi in the setting of learning 50 graphs/class synthetic graphs on

CIFAR10 dataset. The results are summarized in Figure 3.1b and we can see that DosCond needs

approximately 5 minutes to reach the performance of DosCond-Bi trained for 75 minutes, which

indicates that DosCond only requires 6.7% training cost. It further demonstrates the efficiency of

the proposed one-step gradient matching strategy.

Next we study the effect of sparsity regularization on DosCond. Specifically, we vary the sparsity

coefficient 𝛽 in the range of {0, 0.001, 0.01, 0.1, 1, 10} and report the classification accuracy and

graph sparsity on DD and NCI datasets in Figure 3.1c and 3.1d. Note that the graph sparsity is

defined as the ratio of the number of edges to the square of the number of nodes. As shown in

the figure, when 𝛽 gets larger, we exert a stronger regularization on the learned graphs and the

graphs become more sparse. Furthermore, the increased sparsity does not affect the classification

performance. This is a desired property since sparse graphs can save much space for storage and

reduce training cost for GNNs. We also remove the regularization of Eq. (3.14) for ogbg-molhiv, we

obtain the performance of 0.724/ 0.727/0.731 for 1/10/50 graphs per class, which is slightly worse

than the one with this regularization.
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Figure 3.3: Scale of the two terms in Eq. (11).

3.4.3.3 Visualization

We further investigate whether GCN can learn discriminative representations from the synthetic

graphs learned by DosCond. Specifically, we use t-SNE [137] to visualize the learned graph

representation from GCN trained on different condensed graphs. We train a GCN on graphs

produced by different methods and use it to extract the latent representation for real graphs from

test set. Without loss of generality, we provide the t-SNE plots on DD dataset with 50 graphs per

class in Figure A.2. It is observed that the graph representations learned with randomly selected

graphs are mixed for different classes. This suggests that using randomly selected graphs cannot

help GCN learn discriminative features. Similarly, DCG graphs also resulted in poorly trained

GCN that outputs indistinguishable graph representations. By contrast, the representations are well

separated for different classes when learned with DosCond graphs (Figure A.2c) and they are as

discriminative as those learned on the whole training dataset (Figure A.2d). This demonstrates

that the graphs learned by DosCond preserve sufficient information of the original dataset so as to

recover the original performance.

3.4.3.4 Scale of the Two Terms in Eq. (3.11)

As mentioned earlier in Section 3.3.3, the scale of the first term is essentially larger than the

second term in Eq. (3.11). We now perform empirical study to verify this statement. Since both

terms contain the factor 𝑀 , we simply drop it and focus on studying ℓ1 =
√

2∥∇𝜃ℓT (𝜃0) −∇𝜃ℓ𝑆 (𝜃0) ∥

and ℓ2 = 3
2
√
𝑇
· 𝐶−1
𝐶𝑁 ′

√︃∑
𝑖 𝛾𝑖∥1⊤A′𝐾(𝑖)X

′
(𝑖) ∥2. Specifically, we set 𝑇 to 500 and 𝑁′ to 50, and plot the
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changes of these two terms during the training process of DosCond. The results on DD (with mean

pooling) and ogbg-molhiv (with sum pooling) are shown in Figure 3.3. We can observe that the

scale of ℓ1 is much larger than ℓ2 at the first few epochs when using mean pooling as shown in

Figure 3.3a. By contrast, ℓ2 is not negligible when using sum pooling as shown in Figure 3.3b and it

is desired to include it as a regularization term in this case. These observations provide support for

ours discussion of theoretical analysis in Section 3.3.3.

3.4.4 Node Classification

Next, we investigate whether the proposed method works well in node classification so as

to support our analysis in Theorem 2 in Appendix B.1.2. Specifically, following GCond [72], a

condensation method for node classification, we use 5 node classification datasets: Cora, Citeseer,

Pubmed [78], ogbn-arxiv [60] and Flickr [177]. The dataset statistics are shown in B.2. We

follow the settings in GCond to generate one condensed graph for each dataset, train a GCN on the

condensed graph, and evaluate its classification performance on the original test nodes. To adopt

DosCond into node classification, we replace the bi-level gradient matching scheme in GCond with

our proposed one-step gradient matching. The results of classification accuracy and running time

per epoch are summarized in Table 3.3. From the table, we make the following observations:

(a) The proposed DosCond achieves similar performance as GCond and the performance is also

comparable to the original dataset. For example, we are able to approximate the original training

performance by 99% with only 2.6% data on Cora. It demonstrates the effectiveness of DosCond

in the node classification case and justifies Theorem 2 from an empirical perspective.

(b) The training cost of DosCond is essentially lower than GCond as DosCond avoids the expensive

bi-level optimization. By examining their running time, we can see that DosCond is up to 40

times faster than GCond.

We further note that GCond produces weighted graphs which require storing the edge weights in

float formats, while DosCond outputs discrete graph structure which can be stored as binary values.

Hence, the graphs learned by DosCond are more memory-efficient.
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3.5 Conclusion

Training graph neural networks on a large-scale graph dataset consumes high computational cost.

One solution to alleviate this issue is to condense the large graph dataset into a small synthetic

dataset. In this work, we propose a novel framework DosCond that adopts a one-step gradient

matching strategy to efficiently condenses real graphs into a small number of informative graphs

with discrete structures. We further justify the proposed method from both theoretical and empirical

perspectives. Notably, our experiments show that we are able to reduce the dataset size by 90%

while approximating up to 98% of the original performance. In the future, we plan to investigate

interpretable condensation methods and diverse applications of the condensed graphs.
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CHAPTER 4

GRAPH STRUCTURE LEARNING FOR ROBUST GRAPH NEURAL NETWORKS

In this chapter, we investigate the training-time robustness of Graph Neural Networks (GNNs).

Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial

attacks. Adversarial attacks can easily fool GNNs into making predictions for downstream tasks.

The vulnerability to adversarial attacks has raised increasing concerns about applying GNNs in

safety-critical applications. Therefore, developing robust algorithms to defend adversarial attacks is

of great significance. A natural idea to defend adversarial attacks is to clean the perturbed graph. It

is evident that real-world graphs share some intrinsic properties. For example, many real-world

graphs are low-rank and sparse, and the features of two adjacent nodes tend to be similar. In fact, we

find that adversarial attacks are likely to violate these graph properties. Therefore, in this paper, we

explore these properties to defend adversarial attacks on graphs. In particular, we propose a general

framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network

model from the perturbed graph guided by these properties. Extensive experiments on real-world

graphs demonstrate that the proposed framework achieves significantly better performance compared

with the state-of-the-art defense methods, even when the graph is heavily perturbed.

4.1 Introduction

Graphs are ubiquitous data structures in numerous domains, such as chemistry (molecules) [53],

finance (trading networks) [184] and social media (the Facebook friend network) [122]. With their

prevalence, it is particularly important to learn effective representations of graphs and then apply

them to solve downstream tasks. Recent years have witnessed great success from Graph Neural

Networks (GNNs) [86, 58, 78, 139] in representation learning of graphs. GNNs follow a message-

passing scheme [50], where the node embedding is obtained by aggregating and transforming the

embeddings of its neighbors. Due to the good performance, GNNs have been applied to various

analytical tasks including node classification [78], link prediction [77], and recommender systems

[168].
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Although promising results have been achieved, recent studies have shown that GNNs are

vulnerable to adversarial attacks [67, 209, 211, 22, 152]. In other words, the performance of GNNs

can greatly degrade under an unnoticeable perturbation in graphs. The lack of robustness of these

models can lead to severe consequences for critical applications pertaining to the safety and privacy.

For example, in credit card fraud detection, fraudsters can create several transactions with only a few

high-credit users to disguise themselves, thus escaping from the detection based on GNNs. Hence,

developing robust GNN models to resist adversarial attacks is of significant importance. Modifying

graph data can perturb either node features or graph structures. However, given the complexity of

structural information, the majority of existing adversarial attacks on graph data have focused on

modifying graph structure especially adding/deleting/rewiring edges [158]. Thus, in this work, we

aim to defend against the most common setting of adversarial attacks on graph data, i.e., poisoning

adversarial attacks on graph structure. Under this setting, the graph structure has already been

perturbed by modifying edges before training GNNs while node features are not changed.
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Figure 4.1: An illustrative example on the property changes of the adjacency matrix by adversarial
attacks.

One perspective to design an effective defense algorithm is to clean the perturbed graph such

as removing the adversarial edges and restoring the deleted edges [200, 133]. The key challenge

from this perspective is what criteria we should follow to clean the perturbed graph. It is well

known that real-world graphs often share certain properties. First, many real-world clean graphs

are low-rank and sparse [199]. For instance, in a social network, most individuals are connected

with only a small number of neighbors and there are only a few factors influencing the connections

among users [199, 44]. Second, connected nodes in a clean graph are likely to share similar features
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or attributes (or feature smoothness) [108]. For example, in a citation network, two connected

publications often share similar topics [78]. Figure 4.1 demonstrates these properties of clean and

poisoned graphs. Specifically, we apply the state-of-the-art graph poisoning attack, metattack [211],

to perturb the graph data and visualize the graph properties before and after mettack. As shown

in Figure 4.1a, metattack enlarges the singular values of the adjacency matrix and Figure 4.1b

illustrates that metattack quickly increases the rank of adjacency matrix. Moreover, when we

remove the adversarial and normal edges from the perturbed graph respectively, we observe that

removing adversarial edges reduces the rank faster than removing normal edges as demonstrated in

Figure 4.1c. In addition, we depict the density distribution of feature difference of connected nodes

of the attacked graph in Figure 4.1d. It is observed that metattack tends to connect nodes with large

feature difference. Observations from Figure 4.1 indicate that adversarial attacks could violate these

properties. Thus, these properties have the potential to serve as the guidance to clean the perturbed

graph. However, work of exploring these properties to build robust graph neural networks is rather

limited.

In this chapter, we target on exploring graph properties of sparsity, low rank and feature

smoothness to design robust graph neural networks. Note that there could be more properties to be

explored and we would like to leave it as future work. In essence, we are faced with two challenges:

(i) how to learn clean graph structure from poisoned graph data guided by these properties; and (ii)

how to jointly learn parameters for robust graph neural network and the clean structure. To solve these

two challenges, we propose a general framework Property GNN (Pro-GNN) to simultaneously learn

the clean graph structure from perturbed graph and GNN parameters to defend against adversarial

attacks. Extensive experiments on a variety of real-world graphs demonstrate that our proposed

model can effectively defend against different types of adversarial attacks and outperforms the

state-of-the-art defense methods.

4.2 Related Work

In line with the focus of our work, we briefly describe related work on GNNs, and adversarial attacks

and defense for graph data.
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4.2.1 Graph Neural Networks

Over the past few years, graph neural networks have achieved great success in solving machine

learning problems on graph data. To learn effective representation of graph data, two main families

of GNNs have been proposed, i.e., spectral methods and spatial methods. The first family learns

node representation based on graph spectral theory [78, 10, 24]. Bruna et al. [10] generalize the

convolution operation from Euclidean data to non-Euclidean data by using the Fourier basis of

a given graph. To simplify spectral GNNs, Defferrard et al. [24] propose ChebNet and utilize

Chebyshev polynomials as the convolution filter. Kipf et al. [78] propose GCN and simplify ChebNet

by using its first-order approximation. Further, Simple Graph Convolution (SGC) [151] reduces

the graph convolution to a linear model but still achieves competitive performance. The second

family of models define graph convolutions in the spatial domain as aggregating and transforming

local information [58, 50, 139]. For instance, DCNN [3] treats graph convolutions as a diffusion

process and assigns a certain transition probability for information transferred from one node to

the adjacent node. Hamilton et al. [58] propose to learn aggregators by sampling and aggregating

neighbor information. Veličković et al. [139] propose graph attention network (GAT) to learn

different attention scores for neighbors when aggregating information. To further improve the

training efficiency, FastGCN [16] interprets graph convolutions as integral transforms of embedding

functions under probability measures and performs importance sampling to sample a fixed number of

nodes for each layer. For a thorough review, we please refer the reader to recent surveys [195, 156, 5].

4.2.2 Adversarial Attacks and Defense for GNNs

Extensive studies have demonstrated that deep learning models are vulnerable to adversarial

attacks. In other words, slight or unnoticeable perturbations to the input can fool a neural network

to output a wrong prediction. GNNs also suffer this problem [67, 209, 22, 211, 105, 98, 8, 152].

Different from image data, the graph structure is discrete and the nodes are dependent on each other,

thus making it far more challenging. The nettack [209] generates unnoticeable perturbations by

preserving degree distribution and imposing constraints on feature co-occurrence. RL-S2V [22]

employs reinforcement learning to generate adversarial attacks. However, both of the two methods are
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designed for targeted attack and can only degrade the performance of GNN on target nodes. To perturb

the graph globally, metattack [211] is proposed to generate poisoning attacks based on meta-learning.

Although increasing efforts have been devoted to developing adversarial attacks on graph data, the

research about improving the robustness of GNNs has just started recently [200, 152, 133, 212].

One way to solve the problem is to learn a robust network by penalizing the attention scores of

adversarial edges. RGCN [200] is to model Gaussian distributions as hidden layers to absorb the

effects of adversarial attacks in the variances. PA-GNN [133] leverages supervision knowledge

from clean graphs and applies a meta-optimization way to learn attention scores for robust graph

neural networks. However, it requires additional graph data from similar domain. The other way is

to preprocess the perturbed graphs to get clean graphs and train GNNs on the clean ones. Wu et. al

[152] have found that attackers tend to connect to nodes with different features and they propose to

remove the links between dissimilar nodes. Entezari et al. [36] have observed that nettack results in

changes in high-rank spectrum of the graph and propose to preprocess the graph with its low-rank

approximations. However, due to the simplicity of two-stage preprocessing methods, they may fail

to counteract complex global attacks.

Different from the aforementioned defense methods, we aim to explore important graph properties

to recover the clean graph while learning the GNN parameters simultaneously, which enables the

proposed model to extract intrinsic structure from perturbed graph under different attacks.

4.3 Problem Statement

Before we present the problem statement, we first introduce some notations and basic concepts. The

Frobenius norm of a matrix S is defined by | |S| |2
𝐹
= Σ𝑖 𝑗S2

𝑖 𝑗
. The ℓ1 norm of a matrix S is given

by | |S| |1 = Σ𝑖 𝑗 |S𝑖 𝑗 | and the nuclear norm of a matrix S is defined as | |S| |∗ = Σ
𝑟𝑎𝑛𝑘 (S)
𝑖=1 𝜎𝑖 , where

𝜎𝑖 is the 𝑖-th singular value of S. (S)+ denotes the element-wise positive part of matrix S where

S𝑖 𝑗 = max{S𝑖 𝑗 , 0} and 𝑠𝑔𝑛(S) indicates the sign matrix of S where 𝑠𝑔𝑛(S)𝑖 𝑗 = 1, 0, or −1 if S𝑖 𝑗 >0,

=0, or <0, respectively. We use ⊙ to denote Hadamard product of matrices. Finally, we use 𝑡𝑟 (S) to

indicate the trace of matrix S, i.e., 𝑡𝑟 (S) = ∑
𝑖 S𝑖𝑖.

Let G = (V,E) be a graph, where V is the set of 𝑁 nodes {𝑣1, 𝑣2, ..., 𝑣𝑁 } and E is the set of
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edges. The edges describe the relations between nodes and can also be represented by an adjacency

matrix A ∈ R𝑁×𝑁 where A𝑖 𝑗 denotes the relation between nodes 𝑣𝑖 and 𝑣 𝑗 . Furthermore, we

use X = [x1, x2, . . . , x𝑁 ] ∈ R𝑁×𝑑 to denote the node feature matrix where x𝑖 is the feature vector

of the node 𝑣𝑖. Thus a graph can also be denoted as G = (A,X). Following the common node

classification setting, only a part of nodes V𝐿 = {𝑣1, 𝑣2, ..., 𝑣𝑙} are associated with corresponding

labels Y𝐿 = {𝑦1, 𝑦2, ..., 𝑦𝑙} where 𝑦𝑖 denotes the label of 𝑣𝑖.

Given a graph G = (A,X) and the partial labels Y𝐿 , the goal of node classification for GNN is to

learn a function 𝑓𝜃 : V𝐿 → Y𝐿 that maps the nodes to the set of labels so that 𝑓𝜃 can predict labels

of unlabeled nodes. The objective function can be formulated as

min
𝜃

L𝐺𝑁𝑁 (𝜃,A,X,Y𝐿) =
∑︁
𝑣𝑖∈V𝐿

ℓ ( 𝑓𝜃 (X,A)𝑖, 𝑦𝑖) , (4.1)

where 𝜃 is the parameters of 𝑓𝜃 , 𝑓𝜃 (X,A)𝑖 is the prediction of node 𝑣𝑖 and ℓ(·, ·) is to measure the

difference between prediction and true label such as cross entropy. Though there exist a number of

different GNN methods, in this work, we focus on Graph Convolution Network (GCN) in [78]. Note

that it is straightforward to extend the proposed framework to other GNN models. Specifically, a

two-layer GCN with 𝜃 = (W1,W2) implements 𝑓𝜃 as

𝑓𝜃 (X,A) = softmax
(
Â 𝜎

(
Â X W1

)
W2

)
, (4.2)

where Â = D̃−1/2(A + I)D̃−1/2 and D̃ is the diagonal matrix of A + I with D̃𝑖𝑖 = 1 +∑
𝑗 A𝑖 𝑗 . 𝜎 is the

activation function such as ReLU.

With aforementioned notations and definitions, the problem we aim to study in this work can be

formally stated as:

Given G = (A, 𝑋) and partial node label V𝐿 with A being poisoned by adversarial edges

and feature matrix X unperturbed, simultaneously learn a clean graph structure with the graph

adjacency matrix S ∈ S = [0, 1]𝑁×𝑁 and the GNN parameters 𝜃 to improve node classification

performance for unlabeled nodes.
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Figure 4.2: Overall framework of Pro-GNN. Dash lines indicate smaller weights.

4.4 The Proposed Framework

Adversarial attacks generate carefully-crafted perturbation on graph data. We refer to the carefully-

crafted perturbation as adversarial structure. Adversarial structure can cause the performance of

GNNs to drop rapidly. Thus, to defend adversarial attacks, one natural strategy is to eliminate

the crafted adversarial structure, while maintaining the intrinsic graph structure. In this work, we

aim to achieve the goal by exploring graph structure properties of low rank, sparsity and feature

smoothness. The illustration of the framework is shown in Figure 4.2, where edges in black are

normal edges and edges in red are adversarial edges introduced by an attacker to reduce the node

classification performance. To defend against the attacks, Pro-GNN iteratively reconstructs the clean

graph by preserving the low rank, sparsity, and feature smoothness properties of a graph so as to

reduce the negative effects of adversarial structure. Meanwhile, to make sure that the reconstructed

graph can help node classification, Pro-GNN simultaneously updates the GNN parameters on the

reconstructed graph by solving the optimization problem in an alternating schema. In the following

subsections, we will give the details of the proposed framework.

4.4.1 Exploring Low rank and Sparsity Properties

Many real-world graphs are naturally low-rank and sparse as the entities usually tend to form

communities and would only be connected with a small number of neighbors [199]. Adversarial

attacks on GCNs tend to add adversarial edges that link nodes of different communities as this is
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more efficient to reduce node classification performance of GCN. Introducing links connecting

nodes of different communities in a sparse graph can significantly increase the rank of the adjacency

matrix and enlarge the singular values, thus damaging the low rank and sparsity properties of graphs,

which is verified in Figure 4.1a and Figure 4.1b. Thus, to recover the clean graph structure from the

noisy and perturbed graph, one potential way is to learn a clean adjacency matrix S close to the

adjacency matrix of the poisoned graph by enforcing the new adjacency matrix with the properties of

low rank and sparsity. As demonstrated in Figure4.1c, the rank decreases much faster by removing

adversarial edges than by removing normal edges. This implies that the low rank and sparsity

constraint can remove the adversarial edges instead of normal edges. Given the adjacency matrix A

of a poisoned graph, we can formulate the above process as a structure learning problem [124, 64]:

arg min
S∈S

L0 = ∥A − S∥2𝐹 + 𝑅(S), 𝑠.𝑡., S = S⊤. (4.3)

Since adversarial attacks target on performing unnoticeable perturbations to graphs, the first term

∥A − S∥2
𝐹

ensures that the new adjacency matrix S should be close to A. As we assume that the

graph are undirected, the new adjacency matrix should be symmetric, i.e., S = S⊤. 𝑅(S) denotes

the constraints on S to enforce the properties of low rank and sparsity. According to [13, 80, 124],

minimizing the ℓ1 norm and the nuclear norm of a matrix can force the matrix to be sparse and

low-rank, respectively. Hence, to ensure a sparse and low-rank graph, we want to minimize the ℓ1

norm and the nuclear norm of S. Eq. (4.3) can be rewritten as:

arg min
S∈S

L0 = ∥A − S∥2𝐹 + 𝛼∥S∥1 + 𝛽∥S∥∗, 𝑠.𝑡., S = S⊤, (4.4)

where 𝛼 and 𝛽 are predefined parameters that control the contributions of the properties of sparsity

and low rank, respectively. One important benefit to minimize the nuclear norm ∥S∥∗ is that we can

reduce every singular value, thus alleviating the impact of enlarging singular values from adversarial

attacks.

4.4.2 Exploring Feature Smoothness

It is evident that connected nodes in a graph are likely to share similar features. In fact, this

observation has been made on graphs from numerous domains. For example, two connected users
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in a social graph are likely to share similar attributes [108], two linked web pages in the webpage

graph tend to have similar contents [138] and two connected papers in the citation network usually

have similar topics [78]. Meanwhile, recently it is demonstrated that adversarial attacks on graphs

tend to connect nodes with distinct features [152]. Thus, we aim to ensure the feature smoothness in

the learned graph. The feature smoothness can be captured by the following term L𝑠:

L𝑠 =
1
2

𝑁∑︁
𝑖, 𝑗=1

S𝑖 𝑗 (x𝑖 − x 𝑗 )2, (4.5)

where S is the new adjacency matrix, S𝑖 𝑗 indicates the connection of 𝑣𝑖 and 𝑣 𝑗 in the learned graph

and (x𝑖 − x 𝑗 )2 measures the feature difference between 𝑣𝑖 and 𝑣 𝑗 . L𝑠 can be rewritten as:

L𝑠 = 𝑡𝑟 (X⊤LX), (4.6)

where L = D − S is the graph Laplacian matrix of S and D is the diagonal matrix of S. In this work,

we use normalized Laplacian matrix L̂ = D−1/2LD−1/2 instead of L to make feature smoothness

independent on the degrees of the graph nodes [2], i.e.,

L𝑠 = 𝑡𝑟 (X𝑇 L̂X) = 1
2

𝑁∑︁
𝑖, 𝑗=1

S𝑖 𝑗 (
x𝑖√
𝑑𝑖
−

x 𝑗√︁
𝑑 𝑗
)2, (4.7)

where 𝑑𝑖 denotes the degree of 𝑣𝑖 in the learned graph. In the learned graph, if 𝑣𝑖 and 𝑣 𝑗 are connected

(i.e., S𝑖 𝑗 ≠ 0), we expect that the feature difference (x𝑖 − x 𝑗 )2 should be small. In other words, if the

features between two connected node are quite different, L𝑠 would be very large. Therefore, the

smaller L𝑠 is, the smoother features X are on the graph S. Thus, to fulfill the feature smoothness in

the learned graph, we should minimize L𝑠. Therefore, we can add the feature smoothness term to

the objective function of Eq. (4.4) to penalize rapid changes in features between adjacent nodes as:

arg min
S∈S

L = L0 + 𝜆 · L𝑠 = L0 + 𝜆 𝑡𝑟 (X𝑇 L̂X), 𝑠.𝑡., S = S⊤, (4.8)

where 𝜆 is a predefined parameter to control the contribution from feature smoothness.

4.4.3 Objective Function of Pro-GNN

Intuitively, we can follow the preprocessing strategy [152, 36] to defend against adversarial

attacks – we first learn a graph from the poisoned graph via Eq. (4.8) and then train a GNN model
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based on the learned graph. However, with such a two-stage strategy, the learned graph may be

suboptimal for the GNN model on the given task. Thus, we propose a better strategy to jointly learn

the graph structure and the GNN model for a specific downstream task. We empirically show that

jointly learning GNN model and the adjacency matrix is better than two stage one in Sec 4.5.4.2.

The final objective function of Pro-GNN is given as

arg min
S∈S,𝜃

L = L0 + 𝜆L𝑠 + 𝛾L𝐺𝑁𝑁 (4.9)

= ∥A − S∥2𝐹 + 𝛼∥S∥1 + 𝛽∥S∥∗ + 𝛾L𝐺𝑁𝑁 (𝜃, S,X,Y𝐿) + 𝜆𝑡𝑟 (X𝑇 L̂X)

𝑠.𝑡. S = S⊤,

where L𝐺𝑁𝑁 is a loss function for the GNN model that is controlled by a predefined parameter 𝛾.

Another benefit of this formulation is that the information from L𝐺𝑁𝑁 can also guide the graph

learning process to defend against adversarial attacks since the goal of graph adversarial attacks is to

maximize L𝐺𝑁𝑁 .

4.4.4 An Optimization Algorithm

Jointly optimizing 𝜃 and S in Eq.(4.9) is challenging. The constraints on S further exacerbate

the difficulty. Thus, in this work, we use an alternating optimization schema to iteratively update 𝜃

and S.

Update 𝜽. To update 𝜃, we fix S and remove terms that are irrelevant to 𝜃, then the objective

function in Eq.(4.9) reduces to:

min
𝜃

L𝐺𝑁𝑁 (𝜃, S,X,Y𝐿) =
∑︁
𝑢∈V𝐿

ℓ ( 𝑓𝜃 (X, S)𝑢, 𝑦𝑢) , (4.10)

which is a typical GNN optimization problem and we can learn 𝜃 via stochastic gradient descent.

Update S. Similarly, to update S, we fix 𝜃 and arrive at

min
S

L(S, 𝐴) + 𝛼∥S∥1 + 𝛽∥S∥∗ 𝑠.𝑡., S = S⊤, S ∈ S, (4.11)

where L(S, 𝐴) is defined as

L(S, 𝐴) = ∥A − S∥2𝐹 + L𝐺𝑁𝑁 (𝜃, S,X, 𝑌 ) + 𝜆𝑡𝑟 (X𝑇 L̂X). (4.12)
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Note that both ℓ1 norm and nuclear norm are non-differentiable. For optimization problem with

only one non-diffiential regularizer 𝑅(𝑆), we can use Forward-Backward splitting methods [20].

The idea is to alternate a gradient descent step and a proximal step as:

S(𝑘)= prox𝜂𝑅
(
S(𝑘−1) − 𝜂∇𝑆L(𝑆, 𝐴)

)
, (4.13)

where 𝜂 is the learning rate, prox𝑅 is the proximal operator as:

prox𝑅 (Z) = arg min
S∈R𝑁×𝑁

1
2
∥S − Z| |2𝐹 + 𝑅(S). (4.14)

In particular, the proximal operator of ℓ1 norm and nuclear norm can be represented as [124, 6],

prox𝛼 | |.| |1 (Z) = 𝑠𝑔𝑛(Z) ⊙ (|Z| − 𝛼)+, (4.15)

prox𝛽 | |.| |∗ (Z) = U 𝑑𝑖𝑎𝑔((𝜎𝑖 − 𝛽)+)𝑖V𝑇 , (4.16)

where Z = U 𝑑𝑖𝑎𝑔(𝜎1, ..., 𝜎𝑛)V⊤ is the singular value decomposition of Z. To optimize objective

function with two non-differentiable regularizers, Richard et al. [117] introduce the Incremental

Proximal Descent method based on the introduced proximal operators. By iterating the updating

process in a cyclic manner, we can update S as follows,
S(𝑘) = S(𝑘−1) − 𝜂 · ∇S (L(S,A)),

S(𝑘) = prox𝜂𝛽∥·∥∗
(
S(𝑘)

)
,

S(𝑘) = prox𝜂𝛼∥·∥1
(
S(𝑘)

)
.

(4.17)

After we learn a relaxed S, we project S to satisfy the constraints. For the symmetric constraint,

we let S = S+S⊤
2 . For the constraint S𝑖 𝑗 ∈ [0, 1], we project S𝑖 𝑗 < 0 to 0 and S𝑖 𝑗 > 1 to 1. We denote

these projection operations as 𝑃S(S).

Training Algorithm. With these updating and projection rules, the optimization algorithm is

shown in Algorithm 1. In line 1, we first initialize the estimated graph S as the poisoned graph A.

In line 2, we randomly initialize the GNN parameters. From lines 3 to 10, we update S and the

GNN parameters 𝜃 alternatively and iteratively. Specifically, we train the GNN parameters in each

iteration while training the graph reconstruction model every 𝜏 iterations.
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Algorithm 1 Pro-GNN
Data: Adjacency matrix A, Attribute matrix X, Labels Y𝐿 , Hyper-parameters 𝛼, 𝛽, 𝛾, 𝜆, 𝜏, Learning

rate 𝜂, 𝜂′
Result: Learned adjacency S, GNN parameters 𝜃
Initialize S← A
Randomly initialize 𝜃
while Stopping condition is not met do

S← S − 𝜂∇𝑆 (∥S − A∥2
𝐹
+ 𝛾L𝐺𝑁𝑁 + 𝜆L𝑠)

S← prox𝜂𝛽 | |.| |∗ (S)
S← prox𝜂𝛼 | |.| |1 (S)
S← 𝑃S(S)
for i=1 to 𝜏 do
𝑔 ← 𝜕L𝐺𝑁𝑁 (𝜃,S,X,Y𝐿)

𝜕𝜃

𝜃 ← 𝜃 − 𝜂′𝑔
end

end
Return S, 𝜃

4.5 Experiments

In this section, we evaluate the effectiveness of Pro-GNN against different graph adversarial attacks.

In particular, we aim to answer the following questions:

• RQ1 How does Pro-GNN perform compared to the state-of-the-art defense methods under different

adversarial attacks?

• RQ2 Does the learned graph work as expected?

• RQ3 How do different properties affect the performance of Pro-GNN.

Before presenting our experimental results and observations, we first introduce the experimental

settings.

4.5.1 Experimental settings

4.5.1.1 Datasets

Following [209, 211], we validate the proposed approach on four benchmark datasets, including

three citation graphs, i.e., Cora, Citeseer and Pubmed, and one blog graph, i.e., Polblogs. The

statistics of the datasets are shown in Table 4.1. Note that in the Polblogs graph, node features are

not available. In this case, we set the attribute matrix to 𝑁 × 𝑁 identity matrix.
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Table 4.1: Dataset Statistics. Following [209, 211, 36], we only consider the largest connected
component (LCC).

NLCC ELCC Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 /
Pubmed 19,717 44,338 3 500

Table 4.2: Node classification performance (Accuracy±Std) under non-targeted attack (metattack ).

Dataset Ptb Rate (%) GCN GAT RGCN GCN-Jaccard1 GCN-SVD Pro-GNN-fs Pro-GNN2

Cora

0 83.50±0.44 83.97±0.65 83.09±0.44 82.05±0.51 80.63±0.45 83.42±0.52 82.98±0.23
5 76.55±0.79 80.44±0.74 77.42±0.39 79.13±0.59 78.39±0.54 82.78±0.39 82.27±0.45
10 70.39±1.28 75.61±0.59 72.22±0.38 75.16±0.76 71.47±0.83 77.91±0.86 79.03±0.59
15 65.10±0.71 69.78±1.28 66.82±0.39 71.03±0.64 66.69±1.18 76.01±1.12 76.40±1.27
20 59.56±2.72 59.94±0.92 59.27±0.37 65.71±0.89 58.94±1.13 68.78±5.84 73.32±1.56
25 47.53±1.96 54.78±0.74 50.51±0.78 60.82±1.08 52.06±1.19 56.54±2.58 69.72±1.69

Citeseer

0 71.96±0.55 73.26±0.83 71.20±0.83 72.10±0.63 70.65±0.32 73.26±0.38 73.28±0.69
5 70.88±0.62 72.89±0.83 70.50±0.43 70.51±0.97 68.84±0.72 73.09±0.34 72.93±0.57
10 67.55±0.89 70.63±0.48 67.71±0.30 69.54±0.56 68.87±0.62 72.43±0.52 72.51±0.75
15 64.52±1.11 69.02±1.09 65.69±0.37 65.95±0.94 63.26±0.96 70.82±0.87 72.03±1.11
20 62.03±3.49 61.04±1.52 62.49±1.22 59.30±1.40 58.55±1.09 66.19±2.38 70.02±2.28
25 56.94±2.09 61.85±1.12 55.35±0.66 59.89±1.47 57.18±1.87 66.40±2.57 68.95±2.78

Polblogs

0 95.69±0.38 95.35±0.20 95.22±0.14 - 95.31±0.18 93.20±0.64 -
5 73.07±0.80 83.69±1.45 74.34±0.19 - 89.09±0.22 93.29±0.18 -
10 70.72±1.13 76.32±0.85 71.04±0.34 - 81.24±0.49 89.42±1.09 -
15 64.96±1.91 68.80±1.14 67.28±0.38 - 68.10±3.73 86.04±2.21 -
20 51.27±1.23 51.50±1.63 59.89±0.34 - 57.33±3.15 79.56±5.68 -
25 49.23±1.36 51.19±1.49 56.02±0.56 - 48.66±9.93 63.18±4.40 -

Pubmed

0 87.19±0.09 83.73±0.40 86.16±0.18 87.06±0.06 83.44±0.21 87.33±0.18 87.26±0.23
5 83.09±0.13 78.00±0.44 81.08±0.20 86.39±0.06 83.41±0.15 87.25±0.09 87.23±0.13
10 81.21±0.09 74.93±0.38 77.51±0.27 85.70±0.07 83.27±0.21 87.25±0.09 87.21±0.13
15 78.66±0.12 71.13±0.51 73.91±0.25 84.76±0.08 83.10±0.18 87.20±0.09 87.20±0.15
20 77.35±0.19 68.21±0.96 71.18±0.31 83.88±0.05 83.01±0.22 87.09±0.10 87.15±0.15
25 75.50±0.17 65.41±0.77 67.95±0.15 83.66±0.06 82.72±0.18 86.71±0.09 86.76±0.19

1 2 JaccardGCN and Pro-GNN cannot be directly applied to datasets where node features are not available.

4.5.1.2 Baselines

To evaluate the effectiveness of Pro-GNN, we compare it with the state-of-the-art GNN and

defense models by using the adversarial attack repository DeepRobust [85]:

• GCN [78]: while there exist a number of different Graph Convolutional Networks (GCN) models,

we focus on the most representative one [78].

• GAT [139]: Graph Attention Netowork (GAT) is composed of attention layers which can learn

different weights to different nodes in the neighborhood. It is often used as a baseline to defend

against adversarial attacks.

54



• RGCN [200]: RGCN models node representations as gaussian distributions to absorb effects of

adversarial attacks. It also employs attention mechanism to penalize nodes with high variance.

• GCN-Jaccard [152]: Since attackers tend to connect nodes with dissimilar features or different

labels, GCN-Jaccard preprocesses the network by eliminating edges that connect nodes with

jaccard similarity of features smaller than threshold 𝜏. Note that this method only works when

node features are available.

• GCN-SVD [36]: This is another preprocessing method to resist adversarial attacks. It is noted

that nettack is a high-rank attack, thus GCN-SVD proposes to vaccinate GCN with the low-rank

approximation of the perturbed graph. Note that it originally targets at defending against nettack,

however, it is straightforward to extend it to non-targeted and random attacks.

In addition to representative baselines, we also include one variant of the proposed framework,

Pro-GNN-fs, which is the variant by eliminating the feature smoothness term (or setting 𝜆 = 0).

4.5.1.3 Parameter Settings

For each graph, we randomly choose 10% of nodes for training, 10% of nodes for validation and

the remaining 80% of nodes for testing. For each experiment, we report the average performance of 10

runs. The hyper-parameters of all the models are tuned based on the loss and accuracy on validation

set. For GCN and GAT, we adopt the default parameter setting in the author’s implementation. For

RGCN, the number of hidden units are tuned from {16, 32, 64, 128}. For GCN-Jaccard, the threshold

of similarity for removing dissimilar edges is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1}. For

GCN-SVD , the reduced rank of the perturbed graph is tuned from {5, 10, 15, 50, 100, 200}.

4.5.2 Defense Performance

To answer the first question, we evaluate the node classification performance of Pro-GNN against

three types of attacks, i.e., non-targeted attack, targeted attack and random attack:

• Targeted Attack: Targeted attack generates attacks on specific nodes and aims to fool GNNs

on these target nodes. We adopt nettack [209] for the targeted attack method, which is the

state-of-the-art targeted attack on graph data.

• Non-targeted Attack: Different from targeted attack, the goal of non-targeted attack is to degrade
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Figure 4.3: Results of different models under nettack

0 20 40 60 80 100
Perturbation Rate(%)

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

GCN
GAT
RGCN
GCN-Jaccard
GCN-SVD
Pro-GNN-fs
Pro-GNN

(a) Cora

0 20 40 60 80 100
Perturbation Rate(%)

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

GCN
GAT
RGCN
GCN-Jaccard
GCN-SVD
Pro-GNN-fs
Pro-GNN

(b) Citeseer

0 20 40 60 80 100
Perturbation Rate(%)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Te
st

 A
cc

ur
ac

y

GCN
GAT
RGCN
GCN-SVD
Pro-GNN-fs

(c) Polblogs

0 20 40 60 80 100
Perturbation Rate(%)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Te
st

 A
cc

ur
ac

y

GCN
GAT
RGCN
GCN-Jaccard
GCN-SVD
Pro-GNN-fs
Pro-GNN

(d) Pubmed

Figure 4.4: Results of different models under random attack

the overall performance of GNNs on the whole graph. We adopt one representative non-targeted

attack, metattack [211] .

• Random Attack: It randomly injects fake edges into the graph. It can also be viewed as adding

random noise to the clean graph.

We first use the attack method to poison the graph. We then train Pro-GNN and baselines on the

poisoned graph and evaluate the node classification performance achieved by these methods.

4.5.2.1 Against Non-targeted Adversarial Attacks

We first evaluate the node classification accuracy of different methods against non-targeted

adversarial attack. Specifically, we adopt metattack and keep all the default parameter settings

in the authors’ original implementation. The metattack has several variants. For Cora, Citeseer

and Polblogs datasets, we apply Meta-Self since it is the most destructive attack variant; while for

Pubmed, the approximate version of Meta-Self, A-Meta-Self is applied to save memory and time.

We vary the perturbation rate, i.e., the ratio of changed edges, from 0 to 25% with a step of 5%. As

mentioned before, all the experiments are conducted 10 times and we report the average accuracy

with standard deviation in Table 4.2. The best performance is highlighted in bold. From the table,
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we make the following observations:

• Our method consistently outperforms other methods under different perturbation rates. For

instance, on Polblogs dataset our model improves GCN over 20% at 5% perturbation rate. Even

under large perturbation, our method outperforms other baselines by a larger margin. Specifically,

under the 25% perturbation rate on the three datasets, vanilla GCN performs very poorly and our

model improves GCN by 22%, 12% and 14%, respectively.

• Although GCN-SVD also employs SVD to get low-rank approximation of the graph, the

performance of GCN-SVD drops rapidly. This is because GCN-SVD is designed for targeted

attack, it cannot adapt well to the non-targeted adversarial attack. Similarly, GCN-Jaccard does

not perform as well as Pro-GNN under different perturbation rates. This is because simply

preprocessing the perturbed graph once cannot recover the complex intrinsic graph structure

from the carefully-crafted adversarial noises. On the contrary, simultaneously updating the graph

structure and GNN parameters with the low rank, sparsity and feature smoothness constraints

helps recover better graph structure and learn robust GNN parameters.

• Pro-GNN achieves higher accuracy than Pro-GNN-fs especially when the perturbation rate is

large, which demonstrates the effectiveness of feature smoothing in removing adversarial edges.

4.5.2.2 Against Targeted Adversarial Attack

In this experiment, nettack is adopted as the targeted-attack method and we use the default

parameter settings in the authors’ original implementation. Following [200], we vary the number

of perturbations made on every targeted node from 1 to 5 with a step size of 1. The nodes in test

set with degree larger than 10 are set as target nodes. For Pubmed dataset, we only sample 10%

of them to reduce the running time of nettack while in other datasets we use all the target nodes.

The node classification accuracy on target nodes is shown in Figure 4.3. From the figure, we can

observe that when the number of perturbation increases, the performance of our method is better

than other methods on the attacked target nodes in most cases. For instance, on Citeseer dataset at 5

perturbation per targeted node, our model improves vanilla GCN by 23% and outperforms other

defense methods by 11%. It demonstrates that our method can also resist the targeted adversarial
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attack.

4.5.2.3 Against Random Attack

In this subsection, we evaluate how Pro-GNN behaves under different ratios of random noises

from 0% to 100% with a step size of 20%. The results are reported in Figure 4.4. The figure shows

that Pro-GNN consistently outperforms all other baselines and successfully resists random attack.

Together with observations from Sections 4.5.2.1 and 4.5.2.2, we can conclude that Pro-GNN is able

to defend various types of adversarial attacks. This is a desired property in practice since attackers

can adopt any kinds of attacks to fool the system.

4.5.3 Importance of Graph Structure Learning

In the previous subsection, we have demonstrated the effectiveness of the proposed framework.

In this section, we aim to understand the graph we learned and answer the second question.

4.5.3.1 Normal Edges Against Adversarial Edges

Based on the fact that adversary tends to add edges over delete edges [152, 211], if the model

tends to learn a clean graph structure, the impact of the adversarial edges should be mitigated from

the poisoned graph. Thus, we investigate the weights of normal and adversarial edges in the learned

adjacency matrix S. We visualize the weight density distribution of normal and perturbed edges of

S in Figure 4.5. Due to the limit of space, we only show results on Pubmed and Polblogs under

metattack. As we can see in the figure, in both datasets, the weights of adversarial edges are much

smaller than those of normal edges, which shows that Pro-GNN can alleviate the effect of adversarial
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Figure 4.5: Weight density distributions of normal and adversarial edges on the learned graph.
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Table 4.3: Node classification accuracy given the graph under 25% perturbation by metattack.

GCN GCN-NoGraph Pro-GNN

Cora 47.53±1.96 62.12±1.55 69.72±1.69
Citeseer 56.94±2.09 63.75±3.23 68.95±2.78
Polblogs 49.23±1.36 51.79±0.62 63.18±4.40
Pubmed 75.50±0.17 84.14±0.11 86.86±0.19

edges and thus learn robust GNN parameters.

4.5.3.2 Performance on Heavily Poisoned Graph

In this subsection, we study the performance when the graph is heavily poisoned. In particular,

we poison the graph with 25% perturbation by metattack . If a graph is heavily poisoned, the

performance of GCN will degrade a lot. One straightforward solution is to remove the poisoned

graph structure. Specifically, when removing the graph structure, the adjacency matrix will be all

zeros and GCN normalizes the zero matrix into identity matrix and then makes prediction totally by

node features. Under this circumstance, GCN actually becomes a feed-forward neural network. We

denote it as GCN-NoGraph. We report the performance of GCN, GCN-NoGraph and Pro-GNN

when the graph is heavily poisoned in Table 4.3.

From the table, we first observe that when the graph structure is heavily poisoned, by removing

the graph structure, GCN-NoGraph outperforms GCN. This observation suggests the necessity to

defend poisoning attacks on graphs because the poisoned graph structure are useless or even hurt the

prediction performance. We also note that Pro-GNN obtains much better results than GCN-NoGraph.

This observation suggests that Pro-GNN can learn useful graph structural information even when

the graph is heavily poisoned.

4.5.4 Ablation Study

To get a better understanding of how different components help our model defend against

adversarial attacks, we conduct ablation studies and answer the third question in this subsection.
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Table 4.4: Classification performance of Pro-GNN-two and Pro-GNN on Cora dataset

Ptb Rate (%) 0 5 10 15 20 25

Pro-GNN-two 73.31±0.71 73.70±1.02 73.69±0.81 75.38±1.10 73.22±1.08 70.57±0.61
Pro-GNN 82.98±0.23 82.27±0.45 79.03±0.59 76.40±1.27 73.32±1.56 69.72±1.69

4.5.4.1 Regularizers

There are four key predefined parameters, i.e., 𝛼, 𝛽, 𝛾 and 𝜆, which control the contributions for

sparsity, low rank, GNN loss and feature smoothness, respectively. To understand the impact of each

component, we vary the values of one parameter and set other parameters to zero, and then check

how the performance changes. Correspondingly, four model variants are created: Pro-GNN-𝛼,

Pro-GNN-𝛽, Pro-GNN-𝛾 and Pro-GNN-𝜆. For example, Pro-GNN-𝛼 denotes that we vary the

values of 𝛼 while setting 𝛽, 𝛾 and 𝜆 to zero. We only report results on Cora and Citeseer, since

similar patterns are observed in other cases, shown in Figure 4.6.

From the figure we can see Pro-GNN-𝛼 does not boost the model’s performance too much with

small perturbations. But when the perturbation becomes large, Pro-GNN-𝛼 outperforms vanilla

GCN because it can learn a graph structure better than a heavily poisoned adjacency graph as

shown in Section 4.5.3.2. Also, Pro-GNN-𝛽 and Pro-GNN-𝜆 perform much better than vanilla

GCN. It is worth noting that, Pro-GNN-𝛽 outperforms all other variants except Pro-GNN, indicating

that nuclear norm is of great significance in reducing the impact of adversarial attacks. It is

in line with our observation that adversarial attacks increase the rank of the graph and enlarge

the singular values. Another observation from the figure is that, Pro-GNN-𝛾 works better under

small perturbation and when the perturbation rate increases, its performance degrades. From the

above observations, different components play different roles in defending adversarial attacks. By

incorporating these components, Pro-GNN can explore the graph properties and thus consistently

outperform state-of-the-art baselines.

4.5.4.2 Two-Stage vs One-Stage

To study the contribution of jointly learning structure and GNN parameters, we conduct

experiments with the variant Pro-GNN-two under metattack . Pro-GNN-two is the two stage variant
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Figure 4.6: Classification performance of Pro-GNN variants.

of Pro-GNN where we first obtain the clean graph and then train a GNN model based on it. We

only show the results on Cora in Table 4.4 due to the page limitation. We can observe from the

results that although Pro-GNN-two can achieve good performance under large perturbation, it fails

to defend the attacks when the perturbation rate is relatively low. The results demonstrate that jointly

learning structure and GNN parameters can actually help defend attacks.

4.5.5 Parameter Analysis

In this subsection, we explore the sensitivity of hyper-parameters 𝛼, 𝛽, 𝛾 and 𝜆 for Pro-GNN. In

the experiments, we alter the value of 𝛼, 𝛽, 𝛾 and 𝜆 to see how they affect the performance of our

model. More specifically, we vary 𝛼 from 0.00025 to 0.064 in a log scale of base 2, 𝛽 from 0 to 5,

𝛾 from 0.0625 to 16 in a log scale of base 2 and 𝜆 from 1.25 to 320 in a log scale of base 2. We

only report the results on Cora dataset with the perturbation rate of 10% by metattack since similar

observations are made in other settings.

The performance change of Pro-GNN is illustrated in Figure 4.7. As we can see, the accuracy of

Pro-GNN can be boosted when choosing appropriate values for all the hyper-parameters. Different

from 𝛾, appropriate values of 𝛼 and 𝜆 can boost the performance but large values will greatly hurt the

performance. This is because focusing on sparsity and feature smoothness will result in inaccurate

estimation on the graph structure. For example, if we set 𝛼 and 𝜆 to +∞, we will get a trivial solution

of the new adjacency matrix, i.e, S = 0. It is worth noting that, appropriate value of 𝛽 can greatly

increase the model’s performance (more than 10%) compared with the variant without 𝛽, while too

large or too small value of 𝛽 will hurt the performance. This is also consistent with our observation
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Figure 4.7: Results of parameter analysis on Cora dataset

in Section 4.5.4.1 that the low rank property plays an important role in defending adversarial attacks.

4.6 Conclusion

Graph neural networks can be easily fooled by graph adversarial attacks. To defend against different

types of graph adversarial attacks, we introduced a novel defense approach Pro-GNN that learns the

graph structure and the GNN parameters simultaneously. Our experiments show that our model

consistently outperforms state-of-the-art baselines and improves the overall robustness under various

adversarial attacks. In the future, we aim to explore more properties to further improve the robustness

of GNNs.
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CHAPTER 5

EMPOWERING GRAPH REPRESENTATION LEARNING WITH TEST-TIME GRAPH
TRANSFORMATION

In this chapter, we study the test-time robustness of Graph Neural Networks (GNNs). The

effectiveness of GNNs is immensely challenged by issues related to test data quality, such as

distribution shifts, abnormal features and adversarial attacks. Recent efforts have been made on

tackling these issues from a modeling perspective which requires additional cost of changing model

architectures or re-training model parameters. In this work, we provide a data-centric view to

tackle these issues and propose a graph transformation framework named GTrans which adapts and

refines graph data at test time to achieve better performance. We provide theoretical analysis on the

design of the framework and discuss why adapting graph data works better than adapting the model.

Extensive experiments have demonstrated the effectiveness of GTrans on three distinct scenarios for

eight benchmark datasets where suboptimal data is presented. Remarkably, GTrans performs the

best in most cases with improvements up to 2.8%, 8.2% and 3.8% over the best baselines on three

experimental settings.

5.1 Introduction

Graph representation learning has been at the center of various real-world applications, such as

drug discovery [33, 53], recommender systems [169, 39, 123], forecasting [135, 27] and outlier

detection [191, 25]. In recent years, there has been a surge of interest in developing graph neural

networks (GNNs) as powerful tools for graph representation learning [78, 139, 57, 156]. Remarkably,

GNNs have achieved state-of-the-art performance on numerous graph-related tasks including node

classification, graph classification and link prediction [19, 171, 193].

Despite the enormous success of GNNs, recent studies have revealed that their generalization

and robustness are immensely challenged by the data quality [67, 83]. In particular, GNNs can

behave unreliably in scenarios where sub-optimal data is presented:

1. Distribution shift [154, 205]. GNNs tend to yield inferior performance when the distributions of

training and test data are not aligned (due to corruption or inconsistent collection procedure of
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test data).

2. Abnormal features [96]. GNNs suffer from high classification errors when data contains abnormal

features, e.g., incorrect user profile information in social networks.

3. Adversarial structure attack [208, 84]. GNNs are vulnerable to imperceptible perturbations on

the graph structure which can lead to severe performance degradation.

To tackle these problems, significant efforts have been made on developing new techniques

from the modeling perspective, e.g., designing new architectures and employing adversarial training

strategies [159, 154]. However, employing these methods in practice may be infeasible, as they

require additional cost of changing model architectures or re-training model parameters, especially

for well-trained large-scale models. The problem is further exacerbated when adopting these

techniques for multiple architectures. By contrast, this paper seeks to investigate approaches that

can be readily used with a wide variety of pre-trained models and test settings for improving model

generalization and robustness. Essentially, we provide a data-centric perspective to address the

aforementioned issues by modifying the graph data presented at test-time. Such modification aims

to bridge the gap between training data and test data, and thus enable GNNs to achieve better

generalization and robust performance on the new graph. Figure 5.1 visually describes this idea: we

are originally given with a test graph with abnormal features where multiple GNN architectures

yield poor performance; however, by transforming the graph prior to inference (at test-time), we

enable these GNNs to achieve much higher accuracy.

In this work, we aim to develop a data-centric framework that transforms the test graph to

enhance model generalization and robustness, without altering the pre-trained model. In essence, we

are faced with two challenges: (1) how to model and optimize the transformed graph data, and (2)

how to formulate an objective that can guide the transformation process. First, we model the graph

transformation as injecting perturbation on the node features and graph structure, and optimize them

alternatively via gradient descent. Second, inspired by the recent progress of contrastive learning,

we propose a parameter-free surrogate loss which does not affect the pre-training process while

effectively guiding the graph adaptation. Our contributions can be summarized as follows:
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Figure 5.1: We study the test-time graph transformation problem, which seeks to learn a refined
graph such that pre-trained GNNs can perform better on the new graph compared to the original.
Shown: An illustration of our proposed approach’s empirical performance on transforming a noisy
graph.

1. For the first time, we provide a data-centric perspective to improve the generalization and

robustness of GNNs with test-time graph transformation.

2. We establish a novel framework GTrans for test-time graph transformation by jointly learning the

features and adjacency structure to minimize a proposed surrogate loss.

3. Our theoretical analysis provides insights on what surrogate losses we should use during test-time

graph transformation and sheds light on the power of data-adaptation over model-adaptation.

4. Extensive experimental results on three settings (distribution shift, abnormal features and

adversarial structure attacks) have demonstrated the superiority of test-time graph transformation.

Particularly, GTrans performs the best in most cases with improvements up to 2.8%, 8.2% and

3.8% over the best baselines on three experimental settings.

Moreover, we note: (1) GTrans is flexible and versatile. It can be equipped with any pre-trained

GNNs and the outcome (the refined graph data) can be deployed with any model given its favorable

transferability. (2) GTrans provides a degree of interpretability, as it can show which kinds of graph

modifications can help improve performance by visualizing the data.

5.2 Related Work

Distribution Shift in GNNs. GNNs have revolutionized graph representation learning and achieved

state-of-the-art results on diverse graph-related tasks [78, 139, 57, 19, 79, 156]. However, recent

studies have demonstrated that GNNs yield sub-optimal performance on out-of-distribution data

for node classification [205, 154, 92, 107] and graph classification [17, 11, 52, 155]. These studies
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have introduced solutions to tackle distribution shifts. For example, EERM [154] attributes the

cause of distribution shifts to an unknown environmental variable, and trains GNNs under multiple

environments produced by a generator. For a thorough review, we refer the readers to a recent

survey [83]. Unlike existing works, we target modifying the inputs via test-time adaption.

Robustness of GNNs. Recent studies have demonstrated the vulnerability of GNNs to graph

adversarial attacks [208, 210, 159, 21, 48], i.e., small perturbations on the input graph can mislead

GNNs into making wrong predictions. Several works make efforts towards developing new GNNs

or adversarial training strategies to defend against attacks [159, 201, 66, 67]. Instead of altering

model training behavior, our work aims to modify the test graph to correct adversarial patterns.

Graph Structure Learning & Graph Data Augmentation. Graph structure learning and

graph data augmentation both aim to improve GNNs’ generalization performance by augmenting

the (training) graph data, either learning the graph from scratch [45, 70, 18, 194, 121, 56, 41] or

perturbing the graph in a rule-based way [119, 42, 28]. While our work also modifies the graph

data, we focus on modifying the test data and not impacting the model training process.

Test-time Training. Our work is also related to test-time training [130, 142, 100, 181, 185],

which has raised a surge of interest in computer vision recently. To handle out-of-distribution data,

[130] propose the pioneer work of test-time training (TTT) by optimizing feature extractor via an

auxiliary task loss. However, TTT alters training to jointly optimize the supervised loss and auxiliary

task loss. To remove the need for training an auxiliary task, Tent [142] proposes to minimize the

prediction entropy at test-time. It is worth noting that Tent works by adapting the statistics and

parameters in batch normalization (BN) layers, which may not always be employed by modern

GNNs. In this work, we focus on a novel perspective of adapting the test graph data instead of the

model, which makes no assumptions about the particular training procedure or architecture.

5.3 The Proposed Framework

We start by introducing the general problem of test-time graph transformation (TTGT). While our

discussion mainly focuses on the node classification task where the goal is to predict the labels

of nodes in the graph, it can be easily extended to other tasks. Consider that we have a training
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graph 𝐺Tr and a test graph 𝐺Te, and the corresponding set of node labels are denoted as YTr and YTe,

respectively. Note that the node sets in 𝐺Tr and 𝐺Te can either be disjoint or overlapping, and they

are not necessarily drawn from the same distribution. Further, let 𝑓𝜃 (·) denote the mapping function

of a GNN model parameterized by 𝜃, which maps a graph into the space of node labels.

Definition 1 (Test-Time Graph Transformation (TTGT)). TTGT requires to learn a graph transfor-

mation function 𝑔(·) which refines the test graph 𝐺Te such that the pre-trained 𝑓𝜃 can yield better

test performance on 𝑔(𝐺Te) than that on 𝐺Te:

arg min
𝑔

L ( 𝑓𝜃∗ (𝑔(𝐺Te)),YTe) s.t. 𝑔(𝐺Te) ∈ P(𝐺Te),

with 𝜃∗ = arg min
𝜃

L ( 𝑓𝜃 (𝐺Tr),YTr) ,
(5.1)

where L denotes the loss function measuring downstream performance; P(𝐺Te) is the space of the

modified graph, e.g., we may constrain the change on the graph to be small.

To optimize the TTGT problem, we are faced with two critical challenges: (1) how to parameterize

and optimize the graph transformation function 𝑔(·); and (2) how to formulate a surrogate loss to

guide the learning process, since we do not have access to the ground-truth labels of test nodes.

Therefore, we propose GTrans and elaborate on how it addresses these challenges as follows.

5.3.1 Constructing Graph Transformation

In this subsection, we introduce how to construct the graph transformation function and detail

its optimization process. Let 𝐺Te = {A,X} denote the test graph, where A ∈ {0, 1}𝑁×𝑁 is the

adjacency matrix, 𝑁 is the number of nodes, and X ∈ R𝑁×𝑑 is the 𝑑-dimensional node feature

matrix. Since the pre-trained GNN parameters are fixed at test time and we only care about the test

graph, we drop the subscript in 𝐺Te and YTe to simplify notations in the rest of the paper.

Construction. We are interested in obtaining the transformed test graph 𝐺′Te = 𝑔(A,X) =

(A′,X′). Specifically, we model feature modification as an additive function which injects

perturbation to node features, i.e., X′ = X+ΔX; we model the structure modification as A′ = A⊕ΔA 1,

where ⊕ stands for an element-wise exclusive OR operation and ΔA ∈ {0, 1}𝑁×𝑁 is a binary matrix.
1 (A ⊕ ΔA)𝑖 𝑗 can be implemented as 2 − (A + ΔA)𝑖 𝑗 if (A + ΔA)𝑖 𝑗 ≥ 1, otherwise (A + ΔA)𝑖 𝑗 .
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In other words, (ΔA)𝑖 𝑗 = 1 indicates an edge flip. Formally, we seek to find ΔA and ΔX that can

minimize the objective function:

arg min
ΔA,ΔX

L ( 𝑓𝜃 (A ⊕ ΔA,X + ΔX),Y) s.t. (A ⊕ ΔA,X + ΔX) ∈ P(A,X), (5.2)

where ΔA ∈ {0, 1}𝑁×𝑁 and ΔX ∈ R𝑁×𝑑 are treated as free parameters. Further, to ensure we do

not heavily violate the original graph structure, we constrain the number of changed entries in the

adjacency matrix to be smaller than a budget 𝐵 on the graph structure, i.e., ∥ΔA∥𝐹 ≤ 𝐵. We do not

impose constraints on the node features to ease optimization. In this context, P can be viewed as

constraining ΔA to a binary space as well as restricting the number of changes.

Optimization. Jointly optimizing ΔX and ΔA is often challenging as they depend on each other.

In practice, we alternatively optimize ΔX and ΔA. Notably, the optimization for ΔX is easy since

the node features are continuous. The optimization for ΔA is particularly difficult in that (1) ΔA is

binary and constrained; and (2) the search space of 𝑁2 entries is too large especially when we are

learning on large-scale graphs.

To cope with the first challenge, we relax the binary space to [0, 1]𝑁×𝑁 and then we can employ

projected gradient descent (PGD) [159, 48] to update ΔA:

ΔA ← ΠP

(
ΔA − 𝜂∇ΔAL(ΔA)

)
(5.3)

where we first perform gradient descent with step size 𝜂 and call a projection ΠP to project the

variable to the space P. Specifically, given an input vector p, ΠP(·) is expressed as:

ΠP(p) ←


Π[0,1] (p), If 1⊤Π[0,1] (p) ≤ 𝐵;

Π[0,1] (p − 𝛾1) with 1⊤Π[0,1] (p − 𝛾1) = 𝐵, otherwise,
(5.4)

where Π[0.1] (·) clamps the input values to [0, 1], 1 stands for a vector of all ones, and 𝛾 is obtained

by solving the equation 1⊤Π[0,1] (p− 𝛾1) = 𝐵 with the bisection method [95]. To keep the adjacency

structure discrete and sparse, we view each entry in A ⊕ ΔA as a Bernoulli distribution and sample

the learned graph as A′ ∼ Bernoulli(A ⊕ ΔA).

Furthermore, to enable efficient graph structure learning, it is desired to reduce the search space

of updated adjacency matrix. One recent approach of graph adversarial attack [48] proposes to
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sample a small block of possible entries from the adjacency matrix and update them at each iteration.

This solution is still computationally intensive as it requires hundreds of steps to achieve a good

performance. Instead, we constrain the search space to only the existing edges of the graph, which

is typically sparse. Empirically, we observe that this simpler strategy still learns useful structure

information when combined with feature modification.

5.3.2 Parameter-Free Surrogate Loss

As discussed earlier, the proposed framework GTrans aims to improve the model generalization

and robustness by learning to transform the test graph. Ideally, when we have test ground-truth

labels, the problem can be readily solved by adapting the graph to result in the minimum cross

entropy loss on test samples. However, as we do not have such information at test-time, it motivates

us to investigate feasible surrogate losses to guide the graph transformation process. In the absence

of labeled data, recently emerging self-supervised learning techniques [157, 99] have paved the way

for providing self-supervision for TTGT. However, not every surrogate self-supervised task and loss

is suitable for our transformation process, as some tasks are more powerful and some are weaker. To

choose a suitable surrogate loss, we provide the following theorem.

Theorem 3. Let L𝑐 denote the classification loss and L𝑠 denote the surrogate loss, respectively.

Let 𝜌(𝐺) denote the correlation between ∇𝐺L𝑐 (𝐺,Y) and ∇𝐺L𝑠 (𝐺), and let 𝜖 denote the learning

rate for gradient descent. Assume that L𝑐 is twice-differentiable and its Hessian matrix satisfies

∥H(𝐺,Y)∥2 ≤ 𝑀 for all 𝐺. When 𝜌(𝐺) > 0 and 𝜖 < 2𝜌(𝐺)∥∇𝐺L𝑐 (𝐺,Y)∥2
𝑀 ∥∇𝐺L𝑠 (𝐺)∥2 , we have

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) < L𝑐 (𝐺,Y) . (5.5)

The proof can be found in Section C.1.1. Theorem 3 suggests that when the gradients from

classification loss and surrogate loss have a positive correlation, i.e., 𝜌 (𝐺) > 0, we can update

the test graph by performing gradient descent with a sufficiently small learning rate such that the

classification loss on the test samples is reduced. Hence, it is imperative to find a surrogate task that

shares relevant information with the classification task. To empirically verify the effectiveness of

Theorem 1, we adopt the surrogate loss in Equation (5.6) as L𝑠 and plot the values of 𝜌(𝐺) and
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Figure 5.2: Positive 𝜌(𝐺) can help reduce test loss.

L𝑐 on one test graph in Cora in Figure 5.2. We can observe that a positive 𝜌(𝐺) generally reduces

the test classification loss. More results on different surrogate losses can be found in Figure C.4 in

Section C.4.9 and similar patterns are exhibited.

Parameter-Free Surrogate Loss. As one popular self-supervised paradigm, graph contrastive

learning has achieved promising performance in various graph-related tasks [59, 171, 207], which

indicates that graph contrastive learning tasks are often highly correlated with downstream tasks.

This property is desirable for guiding TTGT as suggested by Theorem 1. At its core lies the

contrasting scheme, where the similarity between two augmented views from the same sample is

maximized, while the similarity between views from two different samples is minimized.

However, the majority of existing graph contrastive learning methods cannot be directly applied to

our scenario, as they often require a parameterized projection head to map augmented representations

to another latent space, which inevitably alters the model architecture. To address this issue, we

propose a parameter-free surrogate loss. Specifically, we apply an augmentation function A(·) on

input graph 𝐺 and obtain an augmented graph A(𝐺). The node representations obtained from the

two graphs are denoted as 𝑍 and �̂� , respectively; z𝑖 and ẑ𝑖 stand for the 𝑖-th node representation

taken from 𝑍 and �̂� , respectively. We adopt DropEdge [119] as the augmentation function A(·), and

the hidden presentations z𝑖 and ẑ𝑖 are taken from the output of the second last layer of the pre-trained

model. Essentially, we maximize the cosine similarity between original nodes and their augmented
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view while penalizing the similarity between the nodes and their negative samples:

minL𝑠 =
𝑁∑︁
𝑖=1
(1 −

ẑ⊤
𝑖

z𝑖
∥ẑ𝑖∥∥z𝑖∥

) −
𝑁∑︁
𝑖=1
(1 −

z̃⊤
𝑖

z𝑖
∥z̃𝑖∥∥z𝑖∥

), (5.6)

where {z̃𝑖 |𝑖 = 1, . . . , 𝑁} are the negative samples for corresponding nodes, which are generated by

shuffling node features [140]. In Eq. (5.6), the first term encourages each node to be close while the

second term pushes each node away from the corresponding negative sample. Note that (1) L𝑠 is

parameter-free and does not require modification of the model architecture, or affect the pre-training

process; (2) there could be other self-supervised signals for guiding the graph transformation, and

we empirically compare them with the contrastive loss in Section C.4.9. We also highlight that our

unique contribution is not the loss in Eq. (5.6) but the proposed TTGT framework and the theoretical

and empirical insights on how to choose a suitable surrogate loss. Furthermore, the algorithm of

GTrans is provided in Section C.2.

5.3.3 Further Analysis

In this subsection, we study the theoretical property of the proposed surrogate loss and compare

the strategy of adapting data versus that of adapting model. We first demonstrate the rationality of

the proposed surrogate loss through the following theorem.

Theorem 4. Assume that the augmentation function A(·) generates a data view of the same class

for the test nodes and the node classes are balanced. Assume for each class, the mean of the

representations obtained from 𝑍 and �̂� are the same. Minimizing the first term in Eq. (5.6) is

approximately minimizing the class-conditional entropy 𝐻 (𝑍 |𝑌 ) between features 𝑍 and labels 𝑌 .

The proof can be found in Section C.1.2. Theorem 4 indicates that minimizing the first term in

Eq. (5.6) will approximately minimize 𝐻 (𝑍 |𝑌 ), which encourages high intra-class compactness,

i.e., learning a low-entropy cluster in the embedded space for each class. Notably, 𝐻 (𝑍 |𝑌 ) can be

rewritten as 𝐻 (𝑍 |𝑌 ) = 𝐻 (𝑍) − 𝐼 (𝑍,𝑌 ). It indicates that minimizing Eq. (5.6) can also help promote

𝐼 (𝑍,𝑌 ), the mutual information between the hidden representation and downstream class. However,

we note that only optimizing this term can result in collapse (mapping all data points to a single

point in the embedded space), which stresses the necessity of the second term in Eq. (5.6).
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Next, we use an illustrative example to show that adapting data at test-time can be more useful

than adapting model in some cases. Given test samples {x𝑖 |𝑖 = 1, . . . , 𝐾}, we consider a linearized

GNN 𝑓𝜃 which first performs aggregation through a function Agg(·, ·) and then transforms the

aggregated features via a function Trans(·). Hence, only the function Trans(·) is parameterized by 𝜃.

Example. Let N𝑖 denote the neighbors for node x𝑖. If there exist two nodes with the same

aggregated features but different labels, i.e., Agg(x1, {x𝑖 |𝑖 ∈ N1}) = Agg(x2, {x 𝑗 | 𝑗 ∈ N2}), 𝑦1 ≠ 𝑦2,

adapting the data {x𝑖 |𝑖 = 1, . . . , 𝐾} can achieve lower classification error than adapting the model

𝑓𝜃 at test stage.

Illustration. Let x̄1 = Agg(x1, {x𝑖 |𝑖 ∈ N1}) and x̄2 = Agg(x2, {x 𝑗 | 𝑗 ∈ N2}). For simplicity, we

consider the following mean square loss as the classification error:

ℓ =
1
2

(
Trans(x̄1)) − 𝑦1)2 + (Trans(x̄2) − 𝑦2)2

)
. (5.7)

It is easy to see that ℓ reaches its minimum when Trans(x̄1) = 𝑦1 and Trans(x̄2) = 𝑦2. In this

context, it is impossible to find 𝜃 such that Trans(·) can map x1, x2 to different labels since it is not

a one-to-many function. However, since 𝑦1 and 𝑦2 are in the label space of training data, we can

always modify the test graph to obtain newly aggregated features x̄′1, x̄
′
2 such that Trans(x̄′1) = 𝑦1

and Trans(x̄′2) = 𝑦2, which minimizes ℓ. In the extreme case, we may drop all node connections for

the two nodes, and let x1 ← x̄′1 and x2 ← x̄′2 where x̄′1 and x̄′2 are the aggregated features taken from

the training set. Hence, adapting data can achieve lower classification loss.

Remark 1. Note that the existence of two nodes with the same aggregated features but different

labels is not rare when considering adversarial attack or abnormal features. We provide a figurative

example in Figure C.1 in Section C.1.3: the attacker injects one adversarial edge into the graph and

changes the aggregated features x̄1 and x̄2 to be the same.

Remark 2. When we consider x̄1 ≠ x̄2, 𝑦1 ≠ 𝑦2, whether we can find 𝜃 satisfying Trans(x̄1) = 𝑦1

and Trans(x̄2) = 𝑦2 depends on the expressiveness of the the transformation function. If it is not

powerful enough (e.g., an under-parameterized neural network), it could fail to map different data

points to different labels. On the contrary, adapting the data does not suffer this problem as we can

always modify the test graph to satisfy Trans(x̄′1) = 𝑦1 and Trans(x̄′2) = 𝑦2.
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Remark 3. The above discussion can be easily extended to nonlinear GNN by considering x̄1, x̄2

as the output before the last linear layer of GNN.

5.4 Experiment

5.4.1 Generalization on Out-of-distribution Data

Setup. Following the settings in EERM [154], which is designed for node-level tasks on OOD

data, we validate GTrans on three types of distribution shifts with six benchmark datasets: (1)

artificial transformation for Cora [166] and Amazon-Photo [127], (2) cross-domain transfers for

Twitch-E and FB-100 [120] [89], and (3) temporal evolution for Elliptic [114] and Ogbn-arxiv [60].

Moreoever, Cora and Amazon-Photo have 1/1/8 graphs for training/validation/test sets. The splits

are 1/1/5 on Twitch-E, 3/2/3 on FB-100, 5/5/33 on Elliptic, and 1/1/3 on Ogbn-arxiv. We compare

GTrans with four baselines: empirical risk minimization (ERM, i.e., standard training), data

augmentation technique DropEdge [119], test-time-training method Tent [142], and the recent SOTA

method EERM [154] which is exclusively developed for graph OOD issue. Note that SR-GNN [205]

is not included as a baseline because it specifically targets distribution shifts between the selection

of training and testing nodes instead of the general OOD issue. By contrast, both Tent and EERM

are designed to handle general distribution shifts. Further, we evaluate all the methods with four

popular GNN backbones including GCN [78], GraphSAGE [57], GAT [139], and GPR [19]. Their

default setup follows that in EERM2. Notably, all experiments in this paper are repeated 10 times

with different random seeds.

Results. Table 5.1 reports the averaged performance over the test graphs for each dataset as well

as the averaged rank of each algorithm. From the table, we make the following observations:

(a) Overall Performance. The proposed framework consistently achieves strong performance

across the datasets: GTrans achieves average ranks of 1.0, 1.7, 2.0 and 1.7 with GCN, SAGE, GAT

and GPR, respectively, while the corresponding ranks for the best baseline EERM are 2.9, 3.4,

3.0 and 2.0. Furthermore, in most of the cases, GTrans significantly improves the vanilla baseline
2We note that the GCN used in the experiments of EERM does not normalize the adjacency matrix according to its

open-source code. Here we normalize the adjacency matrix to make it consistent with the original GCN.
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Table 5.1: Average classification performance (%) on the test graphs. Rank indicates the average
rank of each algorithm for each backbone. OOM indicates out-of-memory error on 32 GB GPU
memory. The proposed GTrans consistently ranks the best compared with the baselines. ∗/∗∗
indicates that GTrans outperforms ERM at the confidence level 0.1/0.05 from paired t-test.

Backbone Method Amz-Photo Cora Elliptic FB-100 Ogbn-arxiv Twitch-E Rank

GCN ERM 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50 3.8
DropEdge 92.11±0.31 81.01±1.33 53.96±4.91 53.00±0.50 41.26±0.92 59.95±0.39 3.6
Tent 94.03±1.07 91.87±1.36 51.71±2.00 54.16±1.00 39.33±1.40 59.46±0.55 3.3
EERM 94.05±0.40 87.21±0.53 53.96±0.65 54.24±0.55 OOM 59.85±0.85 2.9
GTrans 94.13±0.77∗ 94.66±0.63∗∗ 55.88±3.10∗∗ 54.32±0.60 41.59±1.20∗∗ 60.42±0.86∗ 1.0

SAGE ERM 95.09±0.60 99.67±0.14 56.12±4.47 54.70±0.47 39.56±1.66 62.06±0.09 3.2
DropEdge 92.61±0.56 95.85±0.30 52.38±3.11 54.51±0.69 38.89±1.74 62.14±0.12 4.2
Tent 95.72±0.43 99.80±0.10 55.89±4.87 54.86±0.34 39.58±1.26 62.09±0.09 2.3
EERM 95.57±0.13 98.77±0.14 58.20±3.55 54.28±0.97 OOM 62.11±0.12 3.4
GTrans 96.91±0.68∗∗ 99.45±0.13 60.81±5.19∗∗ 54.64±0.62 40.39±1.45∗∗ 62.15±0.13∗ 1.7

GAT ERM 96.30±0.79 94.81±1.28 65.36±2.70 51.77±1.41 40.63±1.57 58.53±1.00 3.0
DropEdge 90.70±0.29 76.91±1.55 63.78±2.39 52.65±0.88 42.48±0.93 58.89±1.01 3.3
Tent 95.99±0.46 95.91±1.14 66.07±1.66 51.47±1.70 40.06±1.19 58.33±1.18 3.3
EERM 95.57±1.32 85.00±0.96 58.14±4.71 53.30±0.77 OOM 59.84±0.71 3.0
GTrans 96.67±0.74∗∗ 96.37±1.00∗∗ 66.43±2.57∗∗ 51.16±1.72 43.76±1.25∗∗ 58.59±1.07 2.0

GPR ERM 91.87±0.65 93.00±2.17 64.59±3.52 54.51±0.33 44.38±0.59 59.72±0.40 2.7
DropEdge 88.81±1.48 79.27±1.39 61.02±1.78 55.04±0.33 43.65±0.77 59.89±0.05 3.3
Tent3 - - - - - - -
EERM 90.78±0.52 88.82±3.10 67.27±0.98 55.95±0.03 OOM 61.57±0.12 2.0
GTrans 91.93±0.73 93.05±2.02 69.03±2.33∗∗ 54.38±0.31 46.00±0.46∗∗ 60.11±0.53∗∗ 1.7

3 Tent cannot be applied to models which do not contain batch normalization layers.

(ERM) by a large margin. Particularly, when using GCN as backbone, GTrans outperforms ERM by

3.1%, 5.0% and 2.0% on Cora, Elliptic and Ogbn-arxiv, respectively. These results demonstrate the

effectiveness of GTrans in tackling diverse types of distribution shifts.

(b) Comparison to other baselines. Both DropEdge and EERM modify the training process to

improve model generalization. Nonetheless, they are less effective than GTrans, as GTrans takes

advantage of the information from test graphs. As a test-time training method, Tent also performs

well in some cases, but Tent only adapts the parameters in batch normalization layers and cannot be

applied to models without batch normalization.

We further show the performance on each test graph on Cora with GCN in Figure 5.3. We

observe that GTrans generally improves over individual test graphs within each dataset, which

validates the effectiveness of GTrans.

Efficiency Comparison. Since EERM performs the best among baselines, Table 5.2 showcases
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Figure 5.3: Results on Cora under OOD. GTrans improves GCN on most test graphs.

Table 5.2: Efficiency comparison. GTrans is more time- and memory-efficient than EERM.

Extra Running Time (s) Total GPU Memory (GB)
Cora Photo Ellip. Arxiv Cora Photo Ellip. Arxiv

EERM 25.9 396.4 607.9 - 2.5 10.5 12.8 >32
GTrans 0.3 0.5 0.6 2.6 1.4 1.5 1.3 3.9

the efficiency comparison between our proposed GTrans and EERM on the largest test graph in each

dataset. The additional running time of GTrans majorly depends on the number of gradient descent

steps. As we only use a small number (5 or 10) throughout all the experiments, the time overhead

brought by GTrans is negligible. Compared with the re-training method EERM, GTrans avoids the

complex bilevel optimization and thus is significantly more efficient. Furthermore, EERM imposes

a considerably heavier memory burden.

5.4.2 Robustness to Abnormal Features

Setup. Following the setup in AirGNN [96], we evaluate the robustness in the case of abnormal

features. Specifically, we simulate abnormal features by assigning random features taken from a

multivariate standard Gaussian distribution to a portion of randomly selected test nodes. Note that

the abnormal features are injected after model training (at test time) and we vary the ratio of noisy

nodes from 0.1 to 0.4 with a step size of 0.05. This process is performed for four datasets: the

original version of Cora, Citeseer, Pubmed, and Ogbn-arxiv. In these four datasets, the training

graph and the test graph have the same graph structure but the node features are different. Hence,

we use the training classification loss combined with the proposed contrastive loss to optimize
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Figure 5.4: Node classification accuracy on abnormal (noisy) nodes.

GTrans. We use GCN as the backbone model and adopt four GNNs as the baselines including

GAT [139], APPNP [79], AirGNN and AirGNN-t. Note that AirGNN-t tunes the message-passing

hyper-parameter in AirGNN at test time. For a fair comparison, we tune AirGNN-t based on the

performance on both training and validation nodes.

Results. For each model, we present the node classification accuracy on both abnormal nodes and

all test nodes (i.e., both normal and abnormal ones) in Figure 5.4 and Figure C.3 (See Section C.4.5),

respectively. From these figures, we have two observations. First, GTrans significantly improves

GCN in terms of the performance on abnormal nodes and all test nodes for all datasets across all

noise ratios. For example, on Cora with 30% noisy nodes, GTrans improves GCN by 48.2% on

abnormal nodes and 31.0% on overall test accuracy. This demonstrates the effectiveness of the

graph transformation process in GTrans in alleviating the effect of abnormal features. Second,

GTrans shows comparable or better performance with AirGNNs, which are the SOTA defense

methods for tackling abnormal features. It is worth mentioning that AirGNN-t improves AirGNN

by tuning its hyper-parameter at test time, which aligns with our motivation that test-time adaptation

can enhance model test performance. To further understand the effect of graph transformation, we

provide the visualization of the test node embeddings obtained from abnormal graph (0.3 noise

ratio) and transformed graph for Cora in Figures 5.5a and 5.5b, respectively. We observe that the

transformed graph results in well-clustered node representations, which indicates that GTrans can

promote intra-class compactness and counteract the effect of abnormal patterns.
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Figure 5.5: (a)(b) T-SNE visualizations of embedding obtained from abnormal graph and transformed
graph on Cora. (c)(d) Comparison between adapting data and adapting model at test time.

Table 5.3: Node classification accuracy (%) under different perturbation (Ptb.) rates of structure
attack.

Ptb. Rate GCN GAT RobustGCN SimPGCN GCNJaccard GTrans

5% 57.47±0.54 64.56±0.43 61.55±1.20 61.30±0.42 65.01±0.26 66.29±0.25
10% 47.97±0.65 61.20±0.70 58.15±1.55 57.01±0.70 63.25±0.30 65.16±0.52
15% 38.04±1.22 58.96±0.59 55.91±1.27 54.13±0.73 61.83±0.29 64.40±0.38
20% 29.05±0.73 57.29±0.49 54.39±1.09 52.26±0.87 60.57±0.34 63.44±0.50
25% 19.58±2.32 55.86±0.53 52.76±1.44 50.46±0.85 59.17±0.39 62.95±0.67

5.4.3 Robustness to Adversarial Attack

Setup. We further evaluate GTrans under the setting of adversarial attack where we perturb the

test graph, i.e., evasion attack. Specifically, we use PR-BCD [48], a scalable attack method, to attack

the test graph in Ogbn-arxiv. We focus on structural attacks, and vary the perturbation rate, i.e., the

ratio of changed edges, from 5% to 25% with a step of 5%. Similar to Section 5.4.2, we adopt the

training classification loss together with the proposed contrastive loss to optimize GTrans. We use

GCN as the backbone and employ four robust baselines including GAT [139], RobustGCN [201],

SimPGCN [66] and GCNJaccard [159] as comparisons. Among them, GCNJaccard pre-processes

the attacked graph by removing edges where the similarities of connected nodes are less than

a threshold; we tune this threshold at test time based on the performance on both training and

validation nodes.

Results. Table 5.3 reports the performances under structural evasion attack. We observe

that GTrans consistently improves the performance of GCN under different perturbation rates of

adversarial attack. Particularly, GTrans improves GCN by a larger margin when the perturbation

rate is higher. For example, GTrans outperforms GCN by over 40% under the 25% perturbation
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rate. Such observation suggests that GTrans can counteract the devastating effect of adversarial

attacks. In addition, the best performing baseline GCNJaccard also modifies the graph at test time,

which demonstrates the importance of test-time graph adaptation. Nonetheless, it consistently

underperforms our proposed GTrans, indicating that a learnable transformation function is needed

to achieve better robustness under adversarial attacks, which GCNJaccard does not employ.

Interpretation. To understand the modifications made on the graph, we compare several

properties among clean graph, attacked graph (20% perturbation rate), graph obtained by GCNJaccard,

and graph obtained by GTrans in Table C.9 in Appendix C.4.6. First, adversarial attack decreases

homophily and feature similarity, but GTrans and GCNJaccard promote such information to alleivate

the adversarial patterns. Our experiment also shows that GTrans removes 77% adversarial edges

while removing 30% existing edges from the attacked graph. Second, both GTrans and GCNJaccard

focus on deleting edges from the attacked graph, but GCNJaccard removes a substantially larger

amount of edges, which may destroy clean graph structure and lead to sub-optimal performance.

5.4.4 Further Analysis

Cross-Architecture Transferability. Since the outcome of GTrans is a refined graph, it can

conceptually be employed by any GNN model. In other words, we can transform the graph based on

one pre-trained GNN and test the transformed graph on another pre-trained GNN. To examine such

transferability, we perform experiments on four GNNs including GCN, APPNP, AirGNN and GAT

under the abnormal feature setting with 30% noisy nodes on Cora. The results on all test nodes

in Table 5.4. Note that “Tr" stands for GNNs used in TTGT while “Te” denotes GNNs used for

obtaining final predictions on the transformed graph; “Noisy" indicates the performance on the noisy

Table 5.4: Cross-Architecture Analysis.

Tr\Te GCN APPNP AirGNN GAT

GCN 67.36 70.65 70.84 58.62
APPNP 67.87 70.39 69.59 64.46
AirGNN 68.00 70.37 72.68 64.93
GAT 54.85 60.37 65.22 54.60

Noisy 44.29 48.26 58.51 21.23
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graph. We observe that the transformed graph yields good performance even outside the scope it

was optimized for. We anticipate that such transferability can alleviate the need for costly re-training

on new GNNs.

Adapting Model vs. Adapting Data. We empirically compare the performance between

adapting data and adapting model and consider the OOD and abnormal feature settings. Specifically,

we use GCN as the backbone and adapt the model parameters by optimizing the same loss function

as used in GTrans. The results are shown in Figures 5.5c and 5.5d. In OOD setting, both adapting

model and adapting data can generally improve GCN’s performance. Since their performances

are still close, it is hard to give a definite answer on which strategy is better. However, we can

observe significant performance differences when the graph contains abnormal features: adapting

data outperforms adapting model on 3 out of 4 datasets. This suggests that adapting data can be

more powerful when the data is perturbed, which aligns with our analysis in Section 5.3.3.

Effect of Surrogate Loss. Recall that we used a combined loss of contrastive loss and training

loss in the settings of abnormal features and adversarial attack. We now examine the effect of using

them alone and show the results in Tables C.10 and C.11 in Section C.4.7. We observe that (1) both

of them bring improvement over vanilla GCN, while optimizing the training loss alone improves

more than optimizing the other; and (2) combining them always yields a better or comparable

performance.

Learning Features v.s. Learning Structure. Since our framework learns both node features

and graph structure, we investigate when one component plays a more important role than the other.

Our results are shown in Tables C.12 and C.13 in Section C.4.8. From the tables, we observe that

(1) while each component can improve the vanilla performance, feature learning is more crucial for

counteracting feature corruption and structure learning is more important for defending structure

corruption; and (2) combining them generally yields a better or comparable performance.

5.5 Conclusion

GNNs tend to yield unsatisfying performance when the presented data is sub-optimal. To tackle this

issue, we seek to enhance GNNs from a data-centric perspective by transforming the graph data
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at test time. We propose GTrans which optimizes a contrastive surrogate loss to transform graph

structure and node features, and provide theoretical analysis with deeper discussion to understand this

framework. Experimental results on distribution shift, abnormal features and adversarial attack have

demonstrated the effectiveness of our method. In the future, we plan to explore more applications of

our framework such as mitigating degree bias and long-range dependency.

80



CHAPTER 6

CONCLUSION

In this chapter, we summarize the research results of this dissertation, discuss their broader impact,

and highlight promising research directions.

6.1 Summary

Graphs are pivotal data structures describing the relationships between entities in various domains

such as social media, biology, transportation and financial systems [156, 4]. Due to their prevalence

and rich descriptive capacity, graph machine learning is a prominent research area with powerful

implications. As the generalization of deep neural networks on graph data, graph neural networks

(GNNs) have proved to be powerful in learning representations for graphs and associated entities

(nodes, edges, subgraphs), and they have been employed in various applications such as node

classification [78, 139], node clustering [113, 69], computational biology [149], recommender

systems [168, 38] and drug discovery [33]. Despite the tremendous success achieved by GNNs,

recent studies have revealed that they are vulnerable to adversarial attacks and it is computationally

expensive to train them on large-scale graph datasets [67, 57]. To address these concerns, the

focus of many recent advances has been on the development of novel techniques from a modeling

perspective, i.e., model-centric approaches [57, 66, 97], which revolve around changing the model

while holding the dataset fixed. By contrast, despite its immense potential, the exploration of a

data-centric approach remains significantly underdeveloped in GNN research. In this dissertation,

we study the data-centric approaches to enhance the scalability and robustness of GNNs: (1) graph

condensation for graph neural networks, (2) condensing graphs via one-step gradient matching,

(3) graph structure learning for robust graph neural networks, and (4) empowering graph neural

networks via test-time graph transformation.

As the application of large-scale graphs proliferates in real-world scenarios, concerns have

emerged regarding the storage requirements and training times for graph neural networks. To mitigate

these concerns, we introduce the novel concept of graph condensation [72] in the context of graph
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neural networks. Graph condensation distills a large original graph into a more compact, synthetic

graph, maintaining high levels of informativeness while delivering performance comparable to

GNNs trained on the original graph. To solve the condensation problem, we introduce GCond, a

method for learning synthetic graphs that replicate the model training trajectory of the original

graph. This is achieved by simultaneously condensing both node features and structural information

through the optimization of a gradient matching loss.

Despite GCond’s promising performance, it suffers from two inherent limitations. First, the con-

densation process proves to be computationally demanding due to nested optimization requirements.

Second, it fails to produce discrete graph structures, which could offer additional storage efficiency

benefits. In response to these challenges, we delve into efficient dataset condensation, introducing

a method called DosCond [71]. DosCond models the discrete graph structure as a probabilistic

model and employs a one-step gradient matching scheme that conducts gradient matching in a single

step without requiring the training of network weights. Our theoretical analysis illustrates that this

approach can generate synthetic graphs that result in low classification loss on real graphs.

On a separate note, recent studies have highlighted the vulnerability of graph neural networks

(GNNs) to adversarial attacks, which are deliberate perturbations. Such susceptibility raises

significant concerns for the deployment of GNNs in safety-critical domains, making it imperative to

mitigate the adverse effects of these attacks by purifying the data. We have observed that adversarial

attacks during the training phase distort essential graph properties, such as low-rank and sparse

structures and feature similarity among neighboring nodes. Notably, these intrinsic graph properties

are often violated by adversarial attacks. Inspired by this observation, we put forward a unique

framework, Pro-GNN [70], designed to learn a clean graph structure from a perturbed graph by

recovering these inherent properties. Extensive experiments indicate that Pro-GNN outperforms

contemporary defense methods significantly, even in scenarios with heavy perturbations.

In contrast to Pro-GNN, which aims to defend against training-time attacks, we propose a

fresh data-centric approach, GTrans, focused on refining suboptimal test graphs to enhance the

performance of pre-trained models. GTrans employs a test-time graph transformation framework
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that minimizes a parameter-free surrogate loss, thereby improving the quality of the test graph data.

This framework can be integrated with any pre-existing graph neural network (GNN) and, thanks

to its excellent transferability, the refined graph data can be used with any model. An important

characteristic of GTrans is its interpretability. By visualizing the data, GTrans can elucidate the

types of graph modifications that lead to performance enhancements, providing valuable insights

into the factors that influence the model’s performance.

These methods pave the way for more efficient data handling and robust defenses against

adversarial threats, leading to enhanced model performance with transferable outcomes. Furthermore,

these contributions have deepened our understanding of Data-Centric AI in the graph domain. They

demonstrate the considerable potential this approach holds in propelling GNN research and its

applications forward, particularly in large-scale, safety-critical scenarios.

6.2 Future Work

In the future, we plan to further unleash the power of data-centric approaches in graph machine

learning from the following perspectives:

• Data-centric approaches for privacy protection. Recent studies have shown that AI algorithms

can carry the risk of disclosing users’ private and sensitive information, such as medical records

and financial transactions, etc [32, 186]. Thus, we hope to make GNNs privacy-preserving and

we aim to develop data-centric approaches to encrypt the dataset to prevent user information

leakage while not affecting the performance of models trained on it. To fulfill this need, we can

inject small perturbations into the input graph dataset such that the users’ privacy cannot be easily

inferred by the attackers while the input data is not heavily modified so that downstream models

can still effectively perform particular tasks.

• Data-centric approaches for model explanation. The interpretability of machine learning models

has drawn increasing attention from both academic researchers and industrial practitioners [51, 175].

We aim to build graph machine learning systems that produce interpretable results such that users

can fully trust them and take advantage of them. My prior work on graph condensation has shed

light on learning synthetic graphs that can preserve sufficient information to train GNNs. These
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synthetic graphs can serve as the model-level explanation for GNNs [112]. In addition, it is desired

to incorporate graph rules (or prior knowledge) to encourage the graph explanation to be valid.

• Graph dataset creation. We also plan to investigate methodologies for graph dataset creation.

As previously stated, data quality is crucial to the success of graph neural networks. However,

existing benchmark datasets are often noisy, biased, and overly simplified, which may not be

extended to the practical scenario and can hinder the evaluation of GNNs. Thus, to address these

issues, we plan to construct real-world benchmark datasets that are large-scale and collected

from diverse resources to ensure fairness. In fact, we are currently collaborating with Amazon

researchers to build such real-world benchmark datasets from industry data. Furthermore, to make

dataset creation more efficient, we will develop human-in-the-loop approaches, such as active

learning algorithms, to prioritize the most valuable data for humans to annotate.

84



BIBLIOGRAPHY

[1] Abubakar Abid, Muhammad Fatih Balin, and James Zou. Concrete autoencoders for
differentiable feature selection and reconstruction. ArXiv preprint, 2019.

[2] Rie Kubota Ando and Tong Zhang. Learning on graph with laplacian regularization. In
Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006, 2006.

[3] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, 2016.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. ArXiv preprint,
2018.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. ArXiv preprint,
2018.

[6] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2009.

[7] Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn
labels instead of images. ArXiv preprint, 2020.

[8] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via
graph poisoning. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning
Research, 2019.

[9] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo
Piantanida, and Ismail Ben Ayed. A unifying mutual information view of metric learning:
cross-entropy vs. pairwise losses. In European conference on computer vision. Springer,
2020.

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

85



[11] Davide Buffelli, Pietro Liò, and Fabio Vandin. Sizeshiftreg: a regularization method for
improving size-generalization in graph neural networks. Advances in Neural Information
Processing Systems, 2022.

[12] Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021.

[13] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, (6), 2009.

[14] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European conference on
computer vision (ECCV), 2018.

[15] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[16] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks
via importance sampling. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[17] Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han,
and James Cheng. Invariance principle meets out-of-distribution generalization on graphs.
ArXiv preprint, 2022.

[18] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[19] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

[20] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and engineering. 2011.

[21] Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. Towards robust graph neural networks
for noisy graphs with sparse labels. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 181–191, 2022.

[22] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial

86



attack on graph structured data. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
Proceedings of Machine Learning Research, 2018.

[23] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, 2016.

[24] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, 2016.

[25] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate
time series. In Proceedings of the AAAI Conference on Artificial Intelligence, number 5,
2021.

[26] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A
multi-level spectral approach for accurate and scalable graph embedding. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, 2020.

[27] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph
neural networks in google maps. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021.

[28] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph
learning: A survey. ArXiv preprint, 2022.

[29] Mucong Ding, Tahseen Rabbani, Bang An, Evan Z Wang, and Furong Huang. Sketch-GNN:
Scalable graph neural networks with sublinear training complexity. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[30] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation
help privacy? In ICML, 2022.

[31] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning
laplacian matrix in smooth graph signal representations. IEEE Transactions on Signal
Processing, (23), 2016.

[32] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying privacy leakage in
graph embedding. In MobiQuitous 2020-17th EAI International Conference on Mobile and

87



Ubiquitous Systems: Computing, Networking and Services, 2020.

[33] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, 2015.

[34] Vĳay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. ArXiv preprint, 2020.

[35] Hilmi E Egilmez, Eduardo Pavez, and Antonio Ortega. Graph learning from data under
laplacian and structural constraints. IEEE Journal of Selected Topics in Signal Processing,
(6), 2017.

[36] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis.
All you need is low (rank): Defending against adversarial attacks on graphs. In WSDM ’20:
The Thirteenth ACM International Conference on Web Search and Data Mining, Houston,
TX, USA, February 3-7, 2020, 2020.

[37] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis.
All you need is low (rank): Defending against adversarial attacks on graphs. In WSDM ’20:
The Thirteenth ACM International Conference on Web Search and Data Mining, Houston,
TX, USA, February 3-7, 2020, 2020.

[38] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. Graph trend
filtering networks for recommendation. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2022.

[39] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin.
Graph neural networks for social recommendation. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, 2019.

[40] Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models,
algorithms and case studies. 2009.

[41] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves
structure learning for graph neural networks. Advances in Neural Information Processing
Systems, 2021.

[42] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

88



[43] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
ArXiv preprint, 2019.

[44] Santo Fortunato. Community detection in graphs. Physics reports, 2010.

[45] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings
of Machine Learning Research, 2019.

[46] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, (1), 2016.

[47] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, Proceedings of Machine Learning Research, 2019.

[48] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. Advances in Neural
Information Processing Systems, 2021.

[49] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
Proceedings of Machine Learning Research, 2017.

[50] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
Proceedings of Machine Learning Research, 2017.

[51] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA). IEEE, 2018.

[52] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution
benchmark. ArXiv preprint, 2022.

[53] Zhichun Guo, Bozhao Nan, Yĳun Tian, Olaf Wiest, Chuxu Zhang, and Nitesh V Chawla.
Graph-based molecular representation learning. ArXiv preprint, 2022.

[54] Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh Chawla, Neil Shah, and Tong
Zhao. Linkless link prediction via relational distillation. arXiv preprint arXiv:2210.05801,
2022.

89



[55] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. In Proceedings of the
Web Conference 2021, 2021.

[56] Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. Grale: Designing
networks for graph learning. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, 2020.

[57] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
2017.

[58] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
2017.

[59] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation
learning on graphs. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, Proceedings of Machine Learning
Research, 2020.

[60] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[61] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining
label propagation and simple models out-performs graph neural networks. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

[62] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up
graph neural networks via graph coarsening. In In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), 2021.

[63] Joseph J. Pfeiffer III, Sebastián Moreno, Timothy La Fond, Jennifer Neville, and Brian
Gallagher. Attributed graph models: modeling network structure with correlated attributes.
In 23rd International World Wide Web Conference, WWW ’14, Seoul, Republic of Korea,
April 7-11, 2014, 2014.

[64] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with
graph learning-convolutional networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, 2019.

90



[65] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang.
Self-supervised learning on graphs: Deep insights and new direction. ArXiv preprint, 2020.

[66] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node similarity
preserving graph convolutional networks. In Proceedings of the 14th ACM international
conference on web search and data mining, 2021.

[67] Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang.
Adversarial attacks and defenses on graphs. ACM SIGKDD Explorations Newsletter, (2),
2021.

[68] Wei Jin, Xiaorui Liu, Yao Ma, Charu Aggarwal, and Jiliang Tang. Feature overcorrelation in
deep graph neural networks: A new perspective. In KDD, 2022.

[69] Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, and Jiliang Tang. Automated
self-supervised learning for graphs. In International Conference on Learning Representations,
2022.

[70] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, 2020.

[71] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing
Yin. Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.

[72] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. In ICLR 2022, 2022.

[73] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In The Eleventh International
Conference on Learning Representations, 2023.

[74] David R Karger. Random sampling in cut, flow, and network design problems. Mathematics
of Operations Research, (2), 1999.

[75] KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and
Rishabh K. Iyer. GRAD-MATCH: gradient matching based data subset selection for efficient
deep model training. In Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, Proceedings of Machine Learning
Research, 2021.

[76] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun
Jeong, Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data

91



parameterization. ArXiv preprint, 2022.

[77] Thomas N Kipf and Max Welling. Variational graph auto-encoders. ArXiv preprint, 2016.

[78] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[79] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[80] Vladimir Koltchinskii, Karim Lounici, Alexandre B Tsybakov, et al. Nuclear-norm penaliza-
tion and optimal rates for noisy low-rank matrix completion. The Annals of Statistics, (5),
2011.

[81] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. In ICML, 2022.

[82] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Deepgcns: Can gcns go
as deep as cnns? In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, 2019.

[83] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. ArXiv preprint, 2022.

[84] Jintang Li, Tao Xie, Chen Liang, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial
attack on large scale graph. IEEE Transactions on Knowledge and Data Engineering, 2021.

[85] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses, 2020.

[86] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence
neural networks. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[87] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, (12), 2017.

[88] Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, L Fei-Fei, Matei Zaharia, Ce Zhang,
and James Zou. Advances, challenges and opportunities in creating data for trustworthy ai.
Nature Machine Intelligence, (8), 2022.

[89] Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on
non-homophilous graphs. ArXiv preprint, 2021.

92



[90] Gang Liu, Eric Inae, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Data-centric
learning from unlabeled graphs with diffusion model. arXiv preprint arXiv:2303.10108,
2023.

[91] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[92] Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, and Jun Zhou. Confidence
may cheat: Self-training on graph neural networks under distribution shift. In Proceedings of
the ACM Web Conference 2022, 2022.

[93] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In KDD
’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, CA, USA, August 23-27, 2020, 2020.

[94] Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d
molecules for target protein binding. In ICML, 2022.

[95] Sĳia Liu, Swarnendu Kar, Makan Fardad, and Pramod K Varshney. Sparsity-aware sensor
collaboration for linear coherent estimation. IEEE Transactions on Signal Processing, (10),
2015.

[96] Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang. Graph
neural networks with adaptive residual. In Advances in Neural Information Processing
Systems, 2021.

[97] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang.
Elastic graph neural networks. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, Proceedings of Machine
Learning Research, 2021.

[98] Xuanqing Liu, Si Si, Jerry Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework for data
poisoning attack to graph-based semi-supervised learning. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

[99] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip Yu. Graph
self-supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering,
2022.

[100] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan,
and Alexandre Alahi. Ttt++: When does self-supervised test-time training fail or thrive?
Advances in Neural Information Processing Systems, 2021.

93



[101] Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res.,
(116), 2019.

[102] Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with
smaller graphs. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Proceedings of
Machine Learning Research, 2018.

[103] Xiaojun Ma, Ziyao Li, Lingjun Xu, Guojie Song, Yi Li, and Chuan Shi. Learning discrete
adaptive receptive fields for graph convolutional networks, 2021.

[104] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on
graph neural networks as graph signal denoising. ArXiv preprint, 2020.

[105] Yao Ma, Suhang Wang, Lingfei Wu, and Jiliang Tang. Attacking graph convolutional networks
via rewiring. ArXiv preprint, 2019.

[106] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

[107] Haitao Mao, Lun Du, Yujia Zheng, Qiang Fu, Zelin Li, Xu Chen, Shi Han, and Dongmei
Zhang. Source free unsupervised graph domain adaptation. arXiv preprint arXiv:2112.00955,
2021.

[108] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, (1), 2001.

[109] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and
Marion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs.
ArXiv preprint, 2020.

[110] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel
ridge-regression. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021, 2021.

[111] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. NeurIPS, 2021.

[112] Yi Nian, Wei Jin, and Lu Lin. In-process global interpretation for graph learning via
distribution matching. arXiv preprint arXiv:2306.10447, 2023.

[113] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In Proceedings of the Twenty-Seventh

94



International Joint Conference on Artificial Intelligence, ĲCAI 2018, July 13-19, 2018,
Stockholm, Sweden, 2018.

[114] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving
graph convolutional networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2020.

[115] David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory, (1), 1989.

[116] Neoklis Polyzotis and Matei Zaharia. What can data-centric ai learn from data and ml
engineering? arXiv preprint arXiv:2112.06439, 2021.

[117] Hugo Raguet, Jalal Fadili, and Gabriel Peyré. A generalized forward-backward splitting.
SIAM Journal on Imaging Sciences, (3), 2013.

[118] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert.
icarl: Incremental classifier and representation learning. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
2017.

[119] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[120] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, (2), 2021.

[121] Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais, and Bryan Perozzi.
Pathfinder discovery networks for neural message passing. In Proceedings of the Web
Conference 2021, 2021.

[122] Alan Said, Ernesto W De Luca, and Sahin Albayrak. How social relationships affect user
similarities.

[123] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking
in large-scale social platforms. In Proceedings of the Web Conference 2021, 2021.

[124] Pierre-André Savalle, Emile Richard, and Nicolas Vayatis. Estimation of simultaneously
sparse and low rank matrices. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

[125] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A

95



core-set approach. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[126] Cosma Rohilla Shalizi and Andrew C Thomas. Homophily and contagion are generically
confounded in observational social network studies. Sociological methods & research, (2),
2011.

[127] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. ArXiv preprint, 2018.

[128] Xiao Shen, Quanyu Dai, Fu-Lai Chung, Wei Lu, and Kup-Sze Choi. Adversarial deep network
embedding for cross-network node classification. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2020.

[129] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, (4), 2011.

[130] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-
time training with self-supervision for generalization under distribution shifts. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, Proceedings of Machine Learning Research, 2020.

[131] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. Advances in Neural Information Processing Systems,
2021.

[132] Wenzhuo Tang, Hongzhi Wen, Renming Liu, Jiayuan Ding, Wei Jin, Yuying Xie, Hui
Liu, and Jiliang Tang. Single-cell multimodal prediction via transformers. arXiv preprint
arXiv:2303.00233, 2023.

[133] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang Wang.
Robust graph neural network against poisoning attacks via transfer learning. ArXiv preprint,
2019.

[134] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang Wang.
Transferring robustness for graph neural network against poisoning attacks. In WSDM ’20:
The Thirteenth ACM International Conference on Web Search and Data Mining, Houston,
TX, USA, February 3-7, 2020, 2020.

[135] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang.
Knowing your FATE: friendship, action and temporal explanations for user engagement
prediction on social apps. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, 2020.

96



[136] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, (16), 2012.

[137] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, (11), 2008.

[138] Liwen Vaughan, Margaret EI Kipp, and Yĳun Gao. Why are websites co-linked? the case of
canadian universities. Scientometrics, (1), 2007.

[139] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, 2018.

[140] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and
R. Devon Hjelm. Deep graph infomax. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[141] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun
Zhou, Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial
fraud detection. In ICDM, 2019.

[142] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell.
Tent: Fully test-time adaptation by entropy minimization. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

[143] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang,
Hakan Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning
features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[144] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
ArXiv preprint, 2018.

[145] Yu Wang, Wei Jin, and Tyler Derr. Graph neural networks: Self-supervised learning. In
Graph Neural Networks: Foundations, Frontiers, and Applications. 2022.

[146] Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler Derr. Improving
fairness in graph neural networks via mitigating sensitive attribute leakage. In KDD, 2022.

[147] Jeremy Watt, Reza Borhani, and Aggelos K Katsaggelos. Machine learning refined: Founda-
tions, algorithms, and applications. 2020.

[148] Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada,

97



June 14-18, 2009, ACM International Conference Proceeding Series, 2009.

[149] Hongzhi Wen, Jiayuan Ding, Wei Jin, Yiqi Wang, Yuying Xie, and Jiliang Tang. Graph
neural networks for multimodal single-cell data integration. In Proceedings of the 28th ACM
SIGKDD conference on knowledge discovery and data mining, pages 4153–4163, 2022.

[150] Steven Euĳong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and
quality challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 2023.

[151] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, Proceedings of Machine Learning Research, 2019.

[152] Huĳun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu.
Adversarial examples for graph data: Deep insights into attack and defense. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, ĲCAI 2019,
Macao, China, August 10-16, 2019, 2019.

[153] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, 2020.

[154] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on
graphs: An invariance perspective. In International Conference on Learning Representations,
2022.

[155] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering
invariant rationales for graph neural networks. In International Conference on Learning
Representations, 2022.

[156] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu.
A comprehensive survey on graph neural networks. ArXiv preprint, 2019.

[157] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised
learning of graph neural networks: A unified review. ArXiv preprint, 2021.

[158] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil Jain.
Adversarial attacks and defenses in images, graphs and text: A review. ArXiv preprint, 2019.

[159] Kaidi Xu, Hongge Chen, Sĳia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue
Lin. Topology attack and defense for graph neural networks: An optimization perspective. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
ĲCAI 2019, Macao, China, August 10-16, 2019, 2019.

98



[160] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019.

[161] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019.

[162] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. ArXiv preprint, 2021.

[163] Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot learning: Distribution calibration.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

[164] Shuo Yang, Songhua Wu, Tongliang Liu, and Min Xu. Bridging the gap between few-shot
and many-shot learning via distribution calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, (12), 2021.

[165] Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:
Reducing training data by examining generalization influence. ArXiv preprint, 2022.

[166] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, JMLR Workshop
and Conference Proceedings, 2016.

[167] Rahul Yedida, Snehanshu Saha, and Tejas Prashanth. Lipschitzlr: Using theoretically
computed adaptive learning rates for fast convergence. Applied Intelligence, (3), 2021.

[168] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23, 2018, 2018.

[169] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23, 2018, 2018.

[170] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, 2018.

99



[171] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, Proceedings of Machine Learning Research, 2021.

[172] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[173] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, Proceedings of Machine
Learning Research, 2020.

[174] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation
via theory-grounded spectral regularization. In International Conference on Learning
Representations, 2023.

[175] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[176] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne
Saminger-Platz. Central moment discrepancy (CMD) for domain-invariant representation
learning. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[177] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[178] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, and Xia Hu. Data-centric ai:
Perspectives and challenges. In Proceedings of the 2023 SIAM International Conference on
Data Mining (SDM), pages 945–948. SIAM, 2023.

[179] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong,
and Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158,
2023.

[180] Angela Zhang, Lei Xing, James Zou, and Joseph C Wu. Shifting machine learning for
healthcare from development to deployment and from models to data. Nature Biomedical
Engineering, 2022.

[181] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation
and augmentation. ArXiv preprint, 2021.

100



[182] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, 2018.

[183] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks:
Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021.

[184] Yanci Zhang, Yutong Lu, Haitao Mao, Jiawei Huang, Cien Zhang, Xinyi Li, and Rui Dai.
Company competition graph. arXiv preprint arXiv:2304.00323, 2023.

[185] Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. Self-supervised aggregation of
diverse experts for test-agnostic long-tailed recognition. In Advances in Neural Information
Processing Systems, 2022.

[186] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. Inference attacks
against graph neural networks. In Proceedings of the 31th USENIX Security Symposium,
2022.

[187] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation.
In Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, Proceedings of Machine Learning Research, 2021.

[188] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. ArXiv preprint,
2021.

[189] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient
matching. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, 2021.

[190] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

[191] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. A synergistic approach for graph
anomaly detection with pattern mining and feature learning. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[192] Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. Graph data augmentation for
graph machine learning: A survey. ArXiv preprint, 2022.

[193] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from
counterfactual links for link prediction. In International Conference on Machine Learning.
PMLR, 2022.

101



[194] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In AAAI, 2021.

[195] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. ArXiv preprint, 2018.

[196] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. ArXiv
preprint, 2018.

[197] Kaixiong Zhou, Ninghao Liu, Fan Yang, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, and Xia
Hu. Adaptive label smoothing to regularize large-scale graph training. ArXiv preprint, 2021.

[198] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture
search of graph neural networks. ArXiv preprint, 2019.

[199] Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks
using multi-dimensional hawkes processes. In Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA,
April 29 - May 1, 2013, JMLR Workshop and Conference Proceedings, 2013.

[200] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional
networks against adversarial attacks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019, 2019.

[201] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional
networks against adversarial attacks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019, 2019.

[202] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[203] Ligeng Zhu, Zhĳian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

[204] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph
neural networks with an optimization framework. In Proceedings of the Web Conference
2021, 2021.

[205] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming

102



the limitations of localized graph training data. Advances in Neural Information Processing
Systems, 2021.

[206] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph
structure learning for robust representations: A survey. ArXiv preprint, 2021.

[207] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the Web Conference 2021, 2021.

[208] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018,
2018.

[209] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018,
2018.

[210] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via
meta learning. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

[211] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via
meta learning. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

[212] Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019, 2019.

103



APPENDIX A

GRAPH CONDENSATION FOR GRAPH NEURAL NETWORKS

A.1 Datasets and Hyper-Parameters

A.1.1 Datasets

We evaluate the proposed framework on three transductive datasets, i.e., Cora, Citeseer [78] and

Ogbn-arxiv [60], and two inductive datasets, i.e., Flickr [177] and Reddit [57]. Since all the datasets

have public splits, we download them from PyTorch Geometric [43] and use those splits throughout

the experiments. Dataset statistics are shown in Table A.1.

Table A.1: Dataset statistics. The first three are transductive datasets and the last two are inductive
datasets.

Dataset #Nodes #Edges #Classes #Features Training/Validation/Test

Cora 2,708 5,429 7 1,433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000
Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603

Flickr 89,250 899,756 7 500 44,625/22312/22313
Reddit 232,965 57,307,946 210 602 15,3932/23,699/55,334

A.1.2 Hyper-Parameter Setting

Condensation Process. For DC, we tune the number of hidden layers in a range of {1, 2, 3} and

fix the number of hidden units to 256. We further tune the number of epochs for training DC in

a range of {100, 200, 400}. For GCond, without specific mention, we adopt a 2-layer SGC [151]

with 256 hidden units as the GNN used for gradient matching. The function 𝑔Φ that models the

relationship between A′ and X′ is implemented as a multi-layer perceptron (MLP). Specifically, we

adopt a 3-layer MLP with 128 hidden units for small graphs (Cora and Citeseer) and 256 hidden

units for large graphs (Flickr, Reddit and Ogbn-arxiv). We tune the training epoch for GCond

in a range of {400, 600, 1000}. For GCond-X, we tune the number of hidden layers in a range

of {1, 2, 3} and fix the number of hidden units to 256. We further tune the number of epochs for

training GCond-X in a range of {100, 200, 400}. We tune the learning rate for all the methods in
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a range of {0.1, 0.01, 0.001, 0.0001}. Furthermore, we set 𝛿 to be 0.05, 0.05, 0.01, 0.01, 0.01 for

Citeseer, Cora, Ogbn-arxiv, Flickr and Reddit, respectively.

For the choices of condensation ratio 𝑟, we divide the discussion into two parts. The first part

is about transductive datasets. For Cora and Citeseer, since their labeling rates are very small

(5.2% and 3.6%, respectively), we choose 𝑟 to be {25%, 50%, 100%} of the labeling rate. Thus, we

finally choose {1.3%, 2.6%, 5.2%} for Cora and {0.9%, 1.8%, 3.6%} for Citeseer. For Ogbn-arxiv,

we choose 𝑟 to be {0.1%, 0.5%, 1%} of its labeling rate (53%), thus being {0.05%, 0.25%, 0.5%}.

The second part is about inductive datasets. As the nodes in the training graphs are all labeled

in inductive datasets, we simply choose {0.1%, 0.5%, 0.1%} for Flickr and 0.05%, 0.1%, 0.2% for

Reddit.

Evaluation Process. During the evaluation process, we set dropout rate to be 0 and weight

decay to be 0.0005 when training various GNNs. The number of epochs is set to 3000 for GAT

while it is set to 600 for other models. The initial learning rate is set to 0.01.

Settings for Table 3 and Table 4. In both condensation stage and evaluation stage, we set the

depth of GNNs to 2. During condensation stage, we set weight decay to 0, dropout to 0 and training

epochs to 1000. During evaluation stage, we set weight decay to 0.0005, dropout to 0 and training

epochs to 600.

A.1.3 Training Details of DC-Graph, GCond-X and GCond

DC-Graph: During the condensation stage, DC-Graph only leverages the node features to

produce condensed node features X′. During the training stage of evaluation, DC-Graph takes the

condensed features X′ together with an identity matrix as the graph structure to train a GNN. In the

later test stage of evaluation, the GNN takes both test node features and test graph structure as input

to make predictions for test nodes.

GCond-X: During the condensation stage, GCond-X leverages both the graph structure and

node features to produce condensed node features X′. During the training stage of evaluation,

GCond-X takes the condensed features X′ together with an identity matrix as the graph structure to

train a GNN. In the later test stage of evaluation, the GNN takes both test node features and test
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graph structure as input to make predictions for test nodes.

GCond: During the condensation stage, GCond leverages both the graph structure and node

features to produce condensed graph data (A′,X′). During the training stage of evaluation, GCond

takes the condensed data (A′,X′) to train a GNN. In the later test stage of evaluation, the GNN takes

both test node features and test graph structure as input to make predictions for test nodes.

A.2 Algorithm

We show the detailed algorithm of GCond in Algorithm 1. In detail, we first set the condensed label

set Y′ to fixed values and initialize X′ as node features randomly selected from each class. In each

outer loop, we sample a GNN model initialization 𝜽 from a distribution 𝑃𝜽 . Then, for each class

we sample the corresponding node batches from T and S, and calculate the gradient matching loss

within each class. The sum of losses from different classes are used to update X′ or Φ. After that

we update the GNN parameters for 𝜏𝜽 epochs. When finishing the updating of condensed graph

parameters, we use A′ = ReLU(𝑔Φ(X′) − 𝛿) to obtain the final sparsified graph structure.

A.3 More Related Work

Graph pooling. Graph pooling [182, 170, 47] also generates a coarsened graph with a smaller

size. The work [182] is one the first to propose an end-to-end architecture for graph classification

by incorporating graph pooling. Later, DiffPool [170] proposes to use GNNs to parameterize the

process of node grouping. However, those methods are majorly tailored for the graph classification

task and the coarsened graphs are a byproduct graph during the representation learning process.

A.4 More Experiments

A.4.1 Ablation Study

Different Parameterization. We study the effect of different parameterizations for modeling A′

and compare GCond with modeling A′ as free parameters in Table A.2. From the table, we observe

a significant improvement by taking into account the relationship between A′ and X′. This suggests

that directly modeling the structure as a function of features can ease the optimization and lead to

better condensed graph data.
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Algorithm 2 GCond for Graph Condensation
Input: Training data T = (A,X,Y), pre-defined condensed labels Y′
Initialize X′ as node features randomly selected from each class
for 𝑘 = 0, . . . , 𝐾 − 1 do

Initialize 𝜽0 ∼ 𝑃𝜽0

for 𝑡 = 0, . . . , 𝑇 − 1 do
𝐷′ = 0
for 𝑐 = 0, . . . , 𝐶 − 1 do

Compute A′ = 𝑔Φ(X′); then S = {A′,X′,Y′}
Sample (A𝑐,X𝑐,Y𝑐) ∼ T and (A′𝑐,X′𝑐,Y′𝑐) ∼ S ▷ detailed in Section 3.1
Compute LT = L

(
GNN𝜽𝑡 (A𝑐,X𝑐),Y𝑐

)
and LS = L

(
GNN𝜽𝑡 (A′𝑐,X′𝑐),Y′𝑐

)
𝐷′ ← 𝐷′ + 𝐷 (∇𝜽𝑡LT ,∇𝜽𝑡LS)

end
if 𝑡%(𝜏1 + 𝜏2) < 𝜏1 then

Update X′ ← X′ − 𝜂1∇X′𝐷
′

end
else

Update Φ← Φ − 𝜂2∇Φ𝐷′

end
Update 𝜽 𝑡+1 ← opt𝜽 (𝜽 𝑡 , S, 𝜏𝜽) ▷ 𝜏𝜽 is the number of steps for updating 𝜽

end
end
A′ = 𝑔Φ(X′)
A′
𝑖 𝑗
= A′

𝑖 𝑗
if A′

𝑖 𝑗
> 𝛿, otherwise 0

Return: (A′,X′,Y′)

Table A.2: Ablation study on different parametrizations.

Parameters Citeseer, 𝑟=1.8% Cora, 𝑟=2.6% Ogbn-arxiv, 𝑟=0.25%

A′, X′ 62.2±4.8 75.5±0.6 63.0±0.5
Φ, X′ 70.6±0.9 80.1±0.6 63.2±0.3

Joint optimization versus alternate optimization. We perform the ablation study on joint

optimization and alternate optimization when updating Φ and X′. The results are shown in Table A.3.

From the table, we can observe that joint optimization always gives worse performance and the

standard deviation is much higher than alternate optimization.

A.4.2 Neural Architecture Search

We focus on APPNP instead of GCN since the architecture of APPNP involves more hyper-

parameters regarding its architecture setup. The detailed search space is shown as follows:
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Table A.3: Ablation study on different optimization strategies.

Citeseer, 𝑟=1.8% Cora, 𝑟=2.6% Ogbn-arxiv, 𝑟=0.25% Flickr, 𝑟=0.5% Reddit, 𝑟=0.1%

Joint 68.2±3.0 79.9±1.6 62.8±1.1 45.4±0.4 87.5±1.8
Alternate 70.6±0.9 80.1±0.6 63.2±0.3 47.1±0.1 89.5±0.8

(a) Number of propagation 𝐾: we search the number of propagation 𝐾 in the range of

{2, 4, 6, 8, 10}.

(b) Residual coefficient 𝛼: for the residual coefficient in APPNP, we search it in the range of

{0.1, 0.2}.

(c) Hidden dimension: We collect the set of dimensions that are widely adopted by existing work

as the candidates, i.e., {16,32,64,128,256,512}.

(d) Activation function: The set of available activation functions is listed as follows: {Sigmoid,

Tanh, ReLU, Linear, Softplus, LeakyReLU, ReLU6, ELU}

In total, for each dataset we search 480 architectures of APPNP and we perform the search process

on Cora, Citeseer and Ogbn-arxiv. Specifically, we train each architecture on the reduced graph for

epochs on as the model converges faster on the smaller graph. We use the best validation accuracy

to choose the final architecture. We report (1) the Pearson correlation between validation accuracies

obtained by architectures trained on condensed graphs and those trained on original graphs, and (2)

the average test accuracy of the searched architecture over 20 runs.

Table A.4: Neural Architecture Search. Methods are compared in validation accuracy correlation
and test accuracy obtained by searched architecture. Whole means the architecture is searched using
whole dataset.

Pearson Correlation Test Accuracy

Random Herding GCond Random Herding GCond Whole

Cora 0.40 0.21 0.76 82.9 82.9 83.1 82.6
Citeseer 0.56 0.29 0.79 71.4 71.3 71.3 71.6

Ogbn-arxiv 0.63 0.60 0.64 71.1 71.2 71.2 71.9

A.4.3 Time Complexity and Running Time

Time Complexity. We start from analyzing the time complexity of calculating gradient matching

loss, i.e., line 8 to line 11 in Algorithm 1. Let the number of MLP layers in 𝑔Φ be 𝐿 and 𝑟 be the

108



number of sampled neighbors per node. For simplicity, we assume all the hidden units are 𝑑 for all

layers and we use 𝐿-layer GCN for the analysis. The forward process of 𝑔Φ has a complexity of

𝑂 (𝑁′2𝑑2). The forward process of GCN on the original graph has a complexity of 𝑂 (𝑟𝐿𝑁𝑑2) and

that on condensed graph has a complexity of 𝑂 (𝐿𝑁′2𝑑 + 𝐿𝑁′𝑑). The complexity of calculating the

second-order derivatives in backward propagation has an additional factor of 𝑂 ( |𝜽 𝑡 | |A′| + |𝜽 𝑡 | |X′|),

which can be reduced to 𝑂 ( |𝜽 𝑡 | + |A′| + |X′|) with finite difference approximation. Although there

are 𝐶 iterations in line 7-11, we note that the process is easily parallelizable. Furthermore, the

process of updating 𝜽 𝒕 in line 16 has a complexity of 𝜏𝜽 (𝐿𝑁′2𝑑 + 𝐿𝑁′𝑑). Considering there are 𝑇

iterations and 𝐾 different initializations, we multiply the aforementioned complexity by 𝐾𝑇 . To

sum up, we can see that the time complexity linearly increases with number of nodes in the original

graph.

Running Time. We now report the running time of the proposed GCond for different

condensation rates. Specifically, we vary the condensation rates in the range of {0.1%, 0.5%, 1%} on

Ogbn-arxiv and {1%, 5%, 10%} on Cora. The running time of 50 epochs on one single A100-SXM4

GPU is reported in Table A.5.The whole condensation process (1000 epochs) for generating 0.5%

condensed graph of Ogbn-arxiv takes around 2.4 hours, which is an acceptable cost given the huge

benefits of the condensed graph.

Table A.5: Running time of GCond for 50 epochs.

𝑟 0.1% 0.5% 1% 𝑟 1% 5% 10%

Ogbn-arxiv 348.6s 428.2s 609.8s Cora 37.4s 43.9s 64.8s

A.4.4 Sparsification

In this subsection, we investigate the effect of threshold 𝛿 on the test accuracy and sparsity.

In detail, we vary the values of the threshold 𝛿 used for truncating adjacency matrix in a range

of {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}, and report the corresponding test accuracy and sparsity in

Figure A.1. From the figure, we can see that increasing 𝛿 can effectively increase the sparsity of the

obtained adjacency matrix without affecting the performance too much.
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Table A.6: Test accuracy on different numbers of hidden units (H) and layers (L). When L=1, there
is no hidden layer so the number of hidden units is meaningless.

(a) Cora, 𝑟=2.6%

H\L 1 2 3 4

16 74.8±0.5 76.8±1.0 68.0±3.0 50.9±9.5
32 - 79.2±0.7 70.4±3.2 61.1±7.2
64 - 79.2±1.0 72.0±3.3 64.5±2.2
128 - 79.9±0.3 76.6±1.8 61.8±3.8
256 - 80.1±0.6 75.9±1.6 65.6±2.9

(b) Citeseer, 𝑟=1.8%

H\L 1 2 3 4

16 58.6±12.1 69.2±1.3 56.9±8.4 40.4±1.2
32 - 69.4±1.3 59.9±10.2 42.6±3.6
64 - 69.7±1.5 62.3±10.3 43.6±3.7
128 - 70.2±1.4 63.3±9.7 51.6±1.8
256 - 70.6±0.9 63.5±10.0 52.9±5.5
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(a) Cora, 𝑟=2.5%
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(b) Citeseer, 𝑟=1.8%
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(c) Ogbn-arxiv, 𝑟=0.05%
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(d) Flickr, 𝑟=0.1%
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(e) Reddit, 𝑟=0.1%

Figure A.1: Test accuracy and sparsity under different values of 𝛿.

A.4.5 Different Depth and Hidden Units

Depth Versus Hidden Units. We vary the number of model layers (GCN) in a range of

{1, 2, 3, 4} and the number of hidden units in a range of {16, 32, 64, 128, 256}, and test them on the

condensed graphs of Cora and Citeseer. The results are reported in Table A.6. From the table, we

can observe that changing the number of layers impacts the model performance a lot while changing

the number of units does not.

Propagation Versus Transformation. We further study the effect of propagation and transfor-

mation on the condensed graph. We use Cora as an example and use SGC as the test model due to its

decoupled architecture. Specifically, we vary both the propagation layers and transformation layers

of SGC in the range of {1, 2, 3, 4, 5}, and report the performance in Table A.7. As can be seen, the
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condensed graph still achieves good performance with 3 and 4 layers of propagation. Although the

condensed graph is generated under 2-layer SGC, it is able to generalize to 3-layer and 4-layer SGC.

When increasing the propagation to 5, the performance degrades a lot which could be the cause of

the oversmoothing issue. On the other hand, stacking more transformation layers can first help boost

the performance but then hurt. Given the small scale of the graph, SGC suffers the overfitting issue

in this case.

Table A.7: Test accuracy of SGC on different transformations and propagations for Cora, 𝑟=2.6%

Trans\Prop 1 2 3 4 5

1 77.09±0.43 79.02±1.17 78.12±2.13 74.04±3.60 61.19±7.73
2 76.94±0.50 79.01±0.57 79.11±1.15 77.57±1.03 72.37±4.25
3 75.28±0.58 77.95±0.67 74.16±1.50 70.58±3.71 58.28±8.90
4 66.87±0.73 66.54±0.82 59.24±1.60 43.94±6.33 30.45±9.67
5 46.44±0.91 37.29±3.23 16.05±2.74 15.33±2.79 15.33±2.79

Table A.8: Cross-depth accuracy on Cora, 𝑟=2.6%

C\T 2 3 4 5 6

2 80.30 80.70 79.46 76.06 71.23
3 40.62 72.37 40.14 67.19 35.02
4 74.24 72.56 76.26 71.70 65.12
5 71.31 75.73 70.95 73.13 67.12
6 75.20 75.18 75.67 76.16 75.00

Cross-depth Performance. We show the cross-depth performance in Table A.8. Specifically,

we use SGC of different depth in the condensation to generate condensed graphs and then use them

to test on SGC of different depth. Note that in this table, we set weight decay to 0 and dropout to

0.5. We can observe that using a deeper GNN is not always helpful. Stacking more layers do not

necessarily mean we can learn better condensed graphs since more nodes are involved during the

optimization, and this makes optimization more difficult.

A.4.6 Performances on Original Graphs

We show the performances of various GNNs on original graphs in Table A.9 as references.

Particularly, we report the performances of five GNN models including GAT, Cheby, SAGE, SGC,

APPNP, and GCN, on the five datasets including Cora, Citeseer, Ogbn-arxiv, Flickr, and Reddit.
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(a) Cora, 𝑟=2.5% (b) Citeseer, 𝑟=1.8% (c) Arxiv, 𝑟=0.05%

(d) Flickr, 𝑟=0.1% (e) Reddit, 𝑟=0.1%

Figure A.2: The t-SNE plots of node features in condensed graphs.

Table A.9: Performances of various GNNs on original graphs. SAGE: GraphSAGE.

GAT Cheby SAGE SGC APPNP GCN

Cora 83.1 81.4 81.2 81.4 83.1 81.2
Citeseer 70.8 70.2 70.1 71.3 71.8 71.7

Ogbn-arxiv 71.5 71.4 71.5 71.4 71.2 71.7
Flickr 44.3 47.0 46.1 46.2 47.3 47.1
Reddit 91.0 93.1 93.0 93.5 94.3 93.9

A.4.7 Visualization of Node Features

In addition, we provide the t-SNE [137] plots of condensed node features to further understand

the condensed graphs. In Cora and Citeseer, the condensed node features are well clustered. For

Ogbn-arxiv and Reddit, we also observe some clustered pattern for the nodes within the same

class. In contrast, the condensed features are less discriminative in Flickr, which indicates that the

condensed structure information can be essential in training GNN.

A.4.8 Experiments on Pubmed

We also show the experiments for Pubmed with a condensation ratio of 0.3% in Table A.10.

From the table, we can observe that GCond approximates the original performance very well

(77.92% vs. 79.32% on GCN). It also generalizes well to different architectures including APPNP,

Cheby, GCN, GraphSage, and SGC. Furthermore, it outperforms DC-Graph, indicating that it is
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important to leverage the graph structure information; it outperforms GCond-X, indicating that

learning a condensed structure is necessary.

Table A.10: Performance of different GNNs on Pubmed (𝑟=0.3%).

APPNP Cheby GCN GraphSage SGC

DC-Graph 72.76±1.39 72.66±0.59 72.44±2.90 71.96±2.50 75.43±0.65
GCond-X 73.91±0.41 74.57±1.00 71.81±0.94 73.10±2.08 76.72±0.65
GCond 76.77±1.17 75.48±0.82 77.92±0.42 71.12±3.10 75.91±1.38
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APPENDIX B

CONDENSING GRAPHS VIA ONE-STEP GRADIENT MATCHING

B.1 Proofs

B.1.1 Proof of Theorem 1

Let A(𝑖) , X(𝑖) denote the adjacency matrix and the feature matrix of 𝑖-th real graph, respectively.

We denote the cross entropy loss on the real samples as ℓT (𝜃) =
∑
𝑖 ℓ𝑖 (A(𝑖) , X(𝑖) , 𝜃) and denote

that on synthetic samples as ℓ𝑆 (𝜃) = ℓ𝑆 (A′(𝑖) ,X
′
(𝑖) , 𝜃). Let 𝜃∗ denote the optimal parameter and let

𝜃𝑡 be the parameter trained on condensed data at 𝑡-th epoch by optimizing ℓ𝑆 (𝜃). For simplicity

of notations, we assume A and A′ are already normalized. Part of the proof is inspired from the

work [75].

Theorem 1. When we use a linearized 𝐾-layer SGC as the GNN used in condensation, i.e.,

𝑓𝜃 (A(𝑖) ,X(𝑖)) = Pool(A𝐾
(𝑖)X(𝑖)W1)W2 with 𝜃 = [W1; W2] and assume that all network parameters

satisfy ∥𝜃∥2 ≤ 𝑀2(𝑀 > 0), we have

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) − ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁′

√︄∑︁
𝑖

𝛾𝑖∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2 (B.1)

where 𝛾𝑖 = 1 if we use sum pooling in 𝑓𝜃; 𝛾𝑖 = 1
𝑛𝑖

if we use mean pooling, with 𝑛𝑖 being the number

of nodes in 𝑖-th synthetic graph.

Proof. We start by proving that ℓT (𝜃) is convex and ℓ𝑆 (𝜃) is lipschitz continuous when we use

𝑓𝜃 (A(𝑖) ,X(𝑖)) = Pool(A𝐾
(𝑖)X(𝑖)W1)W2 as the mapping function. Before proving these two properties,

we first rewrite 𝑓𝜃 (A(𝑖) ,X(𝑖)) as:

𝑓𝜃 (A(𝑖) ,X(𝑖)) =


1⊤A𝐾

(𝑖)X(𝑖)W1W2 if use sum pooling,

1
𝑛𝑖

1⊤A𝐾
(𝑖)X(𝑖)W1W2 if use mean pooling,

(B.2)
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where 𝑛 is the number of nodes in A(𝑖) and 1 is an 𝑛𝑖 × 1 matrix filled with constant one. From the

above equation we can see that 𝑓𝜃 with different pooling methods only differ in a multiplication

factor 1
𝑛𝑖

. Thus, in the following we focus on 𝑓𝜃 with sum pooling to derive the major proof.

I. For 𝑓𝜃 with sum pooling:

Substitute W for W1W2 and we have 𝑓𝜃 (A(𝑖) ,X(𝑖)) = 1⊤A𝐾
(𝑖)X(𝑖)W for the case with sum pooling.

Next we show that ℓT (𝜃) is convex and ℓ𝑆 (𝜃) is lipschitz continuous when we use 𝑓𝜃 (A(𝑖) ,X(𝑖)) =

1⊤A𝐾
(𝑖)X(𝑖)W with 𝜃 = W.

(a) Convexity of ℓT (𝜃). From chapter 4 of the book [147], we know that softmax classification

𝑓 (W) = X𝑊 with cross entropy loss is convex w.r.t. the parameters W. In our case, the mapping

function 𝑓𝜃 (A(𝑖) ,X(𝑖)) = 1⊤A𝐾
(𝑖)X(𝑖)W applies an affine function on X𝑊 . Given that applying affine

function does not change the convexity, we know that ℓT (𝜃) is convex.

(b) Lipschitz continuity of ℓ𝑆 (𝜃). In [167], it shows that the lipschitz constant of softmax regression

with cross entropy loss is 𝐶−1
𝐶𝑚
∥X∥, where X is the input feature matrix, 𝐶 is the number of classes

and 𝑚 is the number of samples. Since ℓ𝑆 (𝜃) is cross entropy loss and 𝑓𝜃 is linear, we know that the

𝑓𝜃 is lipschitz continuous and it satisfies:

∇𝜃ℓ𝑆 (𝜃) ≤
𝐶 − 1
𝐶𝑁′

√︄∑︁
𝑖

∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2 (B.3)

With (a) and (b), we are able to proceed our proof. First, from the convexity of ℓT (𝜃) we have

ℓT (𝜃𝑡) − ℓT (𝜃∗) ≤ ∇𝜃ℓT (𝜃𝑡)𝑇 (𝜃𝑡 − 𝜃∗) (B.4)

We can rewrite ∇𝜃ℓT (𝜃𝑡)𝑇 (𝜃𝑡 − 𝜃∗) as follows:

∇𝜃ℓT (𝜃𝑡 )𝑇 (𝜃𝑡 − 𝜃∗) = (∇𝜃ℓT (𝜃𝑡 )𝑇 − ∇𝜃ℓ𝑆 (𝜃𝑡 )𝑇 + ∇𝜃ℓ𝑆 (𝜃𝑡 )𝑇 ) (𝜃𝑡 − 𝜃∗)

= (∇𝜃ℓT (𝜃𝑡 )𝑇 − ∇𝜃ℓ𝑆 (𝜃𝑡 )𝑇 ) (𝜃𝑡 − 𝜃∗) + ∇𝜃ℓ𝑆 (𝜃𝑡 )𝑇 (𝜃𝑡 − 𝜃∗) (B.5)

Given that we use gradient descent to update network parameters, we have ∇𝜃ℓ𝑆 (𝜃𝑡) =
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1
𝜂
(𝜃𝑡 − 𝜃𝑡+1) where 𝜂 is the learning rate. Then we have,

∇𝜃ℓ𝑆 (𝜃𝑡)𝑇 (𝜃𝑡 − 𝜃∗) =
1
𝜂
(𝜃𝑡 − 𝜃𝑡+1)𝑇 (𝜃𝑡 − 𝜃∗)

=
1

2𝜂

(
∥𝜃𝑡 − 𝜃𝑡+1∥2 + ∥𝜃𝑡 − 𝜃∗∥2 − ∥𝜃𝑡+1 − 𝜃∗∥2

)
=

1
2𝜂

(
∥𝜂∇𝜃ℓ𝑆 (𝜃𝑡)∥2 + ∥𝜃𝑡 − 𝜃∗∥2 − ∥𝜃𝑡+1 − 𝜃∗∥2

)
(B.6)

Combining Eq. (B.4) and Eq. (B.6) we have,

ℓT (𝜃𝑡) −ℓT (𝜃∗) ≤ (∇𝜃ℓT (𝜃𝑡)𝑇 − ∇𝜃ℓ𝑆 (𝜃𝑡)𝑇 ) (𝜃𝑡 − 𝜃∗)

+ 1
2𝜂

(
∥𝜂∇𝜃ℓ𝑆 (𝜃𝑡)∥2 + ∥𝜃𝑡 − 𝜃∗∥2 − ∥𝜃𝑡+1 − 𝜃∗∥2

)
(B.7)

We sum up the two sides of the above inequality for different values of 𝑡 ∈ [0, 𝑇 − 1]:

𝑇−1∑︁
𝑡=0

ℓT (𝜃𝑡) − ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0
(∇𝜃ℓT (𝜃𝑡)𝑇 − ∇𝜃ℓ𝑆 (𝜃𝑡)𝑇 ) (𝜃𝑡 − 𝜃∗)

+ 1
2𝜂

𝑇−1∑︁
𝑡=0
∥𝜂∇𝜃ℓ𝑆 (𝜃𝑡)∥2 +

1
2𝜂
∥𝜃0 − 𝜃∗∥2 −

1
2𝜂
∥𝜃𝑇 − 𝜃∗∥2 (B.8)

Since 1
2𝜂 ∥𝜃𝑇 − 𝜃

∗∥2 ≥ 0, we have

𝑇−1∑︁
𝑡=0

ℓT (𝜃𝑡) −ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0
(∇𝜃ℓT (𝜃𝑡)𝑇 − ∇𝜃ℓ𝑆 (𝜃𝑡)𝑇 ) (𝜃𝑡 − 𝜃∗)

+ 1
2𝜂

𝑇−1∑︁
𝑡=0
∥𝜂∇𝜃ℓ𝑆 (𝜃𝑡)∥2 +

1
2𝜂
∥𝜃0 − 𝜃∗∥2 (B.9)

As we assume that ∥𝜃∥2 ≤ 𝑀2, we have ∥𝜃 − 𝜃∗∥2 ≤ 2∥𝜃∥2 = 2𝑀2. Then Eq. (B.9) can be rewritten

as,

𝑇−1∑︁
𝑡=0

ℓ𝑇 (𝜃𝑡) − ℓ𝑇 (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀 ∥∇𝜃ℓ𝑇 (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 1
2𝜂

𝑇−1∑︁
𝑡=0
∥𝜂∇𝜃ℓ𝑆 (𝜃𝑡)∥2 +

𝑀2

𝜂
(B.10)
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Recall that ℓ𝑆 (𝜃) is lipschitz continuous as shown in Eq. (B.3), and combine the inequality

min
𝑡=0,1,...,𝑇−1

(ℓT (𝜃𝑡) − ℓT (𝜃∗)) ≤
∑𝑇−1
𝑡=0 ℓT (𝜃𝑡 )−ℓT (𝜃∗)

𝑇
:

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) −ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 𝜂(𝐶 − 1)2

2𝐶2𝑁′2

∑︁
𝑖

∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥

2 + 𝑀
2

𝑇𝜂
(B.11)

Then we choose 𝜂 = 𝑀√
𝑇
√︃∑

𝑖 ∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2

and we can get:

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) −ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁′

√︄∑︁
𝑖

∥1⊤A′𝐾(𝑖)X
′
(𝑖) ∥2 (B.12)

II. For 𝑓𝜃 with mean pooling:

Following similar derivation as in the case of sum pooling, we have

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) −ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁′

√︄∑︁
𝑖

1
𝑛𝑖
∥1⊤A′𝐾(𝑖)X

′
(𝑖) ∥2 (B.13)

where 𝑛𝑖 is the number of nodes in 𝑖-th synthetic graph. □

B.1.2 Theorem for Node Classification Case

We adopt similar notations for representing the data in node classification but note that there

is only one graph for node classification task. Let A ∈ {0, 1}𝑁×𝑁 , A′ ∈ {0, 1}𝑁 ′×𝑁 ′ denote the

adjacency matrix for real graph and synthetic graph, respectively. Let X ∈ R𝑁×𝑑 , X′ ∈ R𝑁 ′×𝑑 denote

the feature matrix for real graph and synthetic graph, respectively. We denote the cross entropy loss

on the real samples as ℓT (𝜃) and denote that on synthetic samples as ℓ𝑆 (𝜃).

Theorem 2. When we use a 𝐾-layer SGC as the model used in condensation, i.e., 𝑓𝜃 (A,X, 𝜃) =
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A𝐾XW with 𝜃 = W and assume that all network parameters satisfy ∥𝜃∥2 ≤ 𝑀2(𝑀 > 0), we have

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) −ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁′

∥A′𝐾X′∥ (B.14)

Proof. We start by proving that ℓT (𝜃) is convex and ℓ𝑆 (𝜃) is lipschitz continuous when 𝑓𝜃 (A,X, 𝜃) =

A𝐾XW.

(a) Convexity of ℓT (𝜃): Similar to the graph classification case, the Hessian matrix of ℓT (𝜃) in node

classification is positive semidefinite and thus ℓT (𝜃) is convex.

(b) Lipschitz continuity of ℓ𝑆 (𝜃): As shown in [167], the lipschitz constant of softmax regression

with cross entropy loss is 𝐶−1
𝐶𝑚
∥X∥ with 𝐶 being the number of classes and 𝑚 being the number

of samples. Thus, we know that the lipschitz constant of ℓ𝑆 (𝜃) is 𝐶−1
𝐶𝑁 ′ ∥A

′𝐾X′∥, which indicates

∇𝜃ℓ𝑆 (𝜃) ≤ 𝐶−1
𝐶𝑁 ′ ∥A

′𝐾X′∥.

From the convexity of ℓT (𝜃), we still have the following inequality (see Eq. (B.10)). Then recall

that ℓ𝑆 (𝜃) is lipschitz continuous and∇𝜃ℓ𝑆 (𝜃) ≤ 𝐶−1
𝐶𝑁 ′ ∥A

′𝐾X′∥, and combine min
𝑡
(ℓT (𝜃𝑡) − ℓT (𝜃∗)) ≤∑𝑇−1

𝑡=0 ℓT (𝜃𝑡 )−ℓT (𝜃∗)
𝑇

:

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) − ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 𝜂(𝐶 − 1)2

2𝐶2𝑁′2
∥A′𝐾X′∥2 + 𝑀

2

𝑇𝜂
(B.15)

Then we choose 𝜂 = 𝑀√
𝑇 ∥A′𝐾X′∥

and we can get:

min
𝑡=0,1,...,𝑇−1

ℓT (𝜃𝑡) − ℓT (𝜃∗) ≤
𝑇−1∑︁
𝑡=0

√
2𝑀
𝑇
∥∇𝜃ℓT (𝜃𝑡) − ∇𝜃ℓ𝑆 (𝜃𝑡) ∥

+ 3𝑀
2
√
𝑇
· 𝐶 − 1
𝐶𝑁′

∥A′𝐾X′∥ (B.16)

□

B.2 Experimental Setup

B.2.1 Algorithm

In the following, we show the algorithm of the proposed DosCond for condensing graphs.
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Algorithm 3 DosCond for Condensing Graphs
1: Input: Training data T = (A,X,Y)
2: Required: Pre-defined condensed labels Y′, graph neural network 𝑓𝜃 , temperature 𝜏, desired sparsity 𝜖 ,

regularization coefficient 𝛽, learning rates 𝜂1, 𝜂2, number of epochs 𝐾1.
3: Initialize 𝛀,X′
4: for 𝑘 = 0, . . . , 𝐾1 − 1 do
5: Sample 𝜃0 ∼ 𝑃𝜃0 , Sample 𝛼 ∼ Uniform(0, 1)
6: Compute A′ = 𝜎 ((log𝛼 − log(1 − 𝛼) +𝛀) /𝜏)
7: for 𝑐 = 0, . . . , 𝐶 − 1 do
8: Sample (A𝑐,X𝑐,Y𝑐) ∼ T and (A′𝑐,X′𝑐,Y′𝑐) ∼ S

9: Compute ℓ𝑇 = ℓ
(
𝑓𝜃0 (A𝑐,X𝑐),Y𝑐

)
10: Compute ℓ𝑆 = ℓ

(
𝑓𝜃0 (A′𝑐,X′𝑐),Y′𝑐

)
11: Compute ℓreg = max(∑𝑖, 𝑗 𝜎(𝛀𝑖 𝑗) − 𝜖, 0)
12: Update 𝛀← 𝛀 − 𝜂1∇𝛀(𝐷 (∇𝜽0ℓ𝑇 ,∇𝜽0ℓ𝑆) + 𝛽ℓreg)
13: Update X′ ← X′ − 𝜂2∇X′ (𝐷 (∇𝜽0ℓ𝑇 ,∇𝜽0ℓ𝑆) + 𝛽ℓreg)
14: end for
15: end for
16: Return: (𝛀,X′,Y′)

B.2.2 Dataset Statistics and Code

Dataset statistics are shown in Table 4 and 5.

Table B.1: Graph classification dataset statistics.

Dataset Type #Clases #Graphs Avg. Nodes Avg. Edges

CIFAR10 Superpixel 10 60,000 117.6 941.07
ogbg-molhiv Molecule 2 41,127 25.5 54.9
ogbg-molbace Molecule 2 1,513 34.1 36.9
ogbg-molbbbp Molecule 2 2,039 24.1 26.0
MUTAG Molecule 2 188 17.93 19.79
NCI1 Molecule 2 4,110 29.87 32.30
DD Molecule 2 1,178 284.32 715.66
E-commerce Transaction 2 1,109 33.7 56.3

Table B.2: Node classification dataset statistics.

Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
Arxiv 169,343 1,166,243 40 128
Flickr 89,250 899,756 7 500
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APPENDIX C

EMPOWERING GRAPH NEURAL NETWORKS WITH TEST-TIME GRAPH
TRANSFORMATION

C.1 Proofs

C.1.1 Thereom 3

Theorem 3. Let L𝑐 denote the classification loss and L𝑠 denote the surrogate loss, respectively.

Let 𝜌(𝐺) denote the correlation between ∇𝐺L𝑐 (𝐺,Y) and ∇𝐺L𝑠 (𝐺), and let 𝜖 denote the learning

rate for gradient descent. Assume that L𝑐 is twice-differentiable and its Hessian matrix satisfies

∥H(𝐺,Y)∥2 ≤ 𝑀 for all 𝐺. When 𝜌(𝐺) > 0 and 𝜖 < 2𝜌(𝐺)∥∇𝐺L𝑐 (𝐺,Y)∥2
𝑀 ∥∇𝐺L𝑠 (𝐺)∥2 , we have

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) < L𝑐 (𝐺,Y) . (C.1)

Proof. Given that L𝑐 is differentiable and twice-differentiable, we perform first-order Taylor

expansion with Lagrange form of remainder at 𝐺 − 𝜖∇𝐺L𝑠 (𝐺):

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) (C.2)

= L𝑐 (𝐺,Y) − 𝜖 𝜌 (𝐺) ∥∇𝐺L𝑐 (𝐺,Y)∥2 ∥∇𝐺L𝑠 (𝐺)∥2 +
𝜖2

2
∇𝐺L𝑠 (𝐺)⊤H(𝐺 − 𝜖𝜃∇𝐺L𝑠 (𝐺),Y)∇𝐺L𝑠 (𝐺),

where 𝜃 ∈ (0, 1) is a constant given by Lagrange form of the Taylor’s remainder (here we slightly

abuse the notation), and 𝜌 (𝐺) is the correlation between ∇𝐺L𝑐 (𝐺,Y) and ∇𝐺L𝑠 (𝐺):

𝜌 (𝐺) = ∇𝐺L𝑐 (𝐺,Y)𝑇 ∇𝐺L𝑠 (𝐺)
∥∇𝐺L𝑐 (𝐺,Y)∥2 ∥∇𝐺L𝑠 (𝐺)∥2

. (C.3)

Before we proceed to the next steps, we first show that given a vector p and a symmetric matrix A,

the inequality p⊤Ap ≤ ∥p∥22∥A∥2 holds:

p⊤Ap =
∑︁

𝜎𝑖p⊤u𝑖u⊤𝑖 p (Performing SVD on A, i.e., A =
∑︁

𝜎𝑖u𝑖u⊤𝑖 )

=
∑︁

𝜎𝑖v⊤𝑖 v𝑖 (Let v = U⊤𝑝, where U = [u1; u2; . . . ; u𝑛])

≤
∑︁

𝜎maxv⊤𝑖 v𝑖 = 𝜎max∥v∥22 = 𝜎max∥U⊤𝑝∥22

= 𝜎max∥p∥22 (U is an orthogonal matrix)

= ∥p∥22∥A∥2 (C.4)
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Since the Hessian matrix is symmetric, we can use the above inequality to derive:

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) (C.5)

≤ L𝑐 (𝐺,Y) − 𝜖 𝜌 (𝐺) ∥∇𝐺L𝑐 (𝐺,Y)∥2 ∥∇𝐺L𝑠 (𝐺)∥2 +
𝜖2

2
∥∇𝐺L𝑠 (𝐺)∥22∥H(𝐺 − 𝜖𝜃∇𝐺L𝑠 (𝐺),Y)∥2.

Then we rewrite Eq. (C.5) as:

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) − L𝑐 (𝐺,Y)

≤ − 𝜖 𝜌 (𝐺) ∥∇𝐺L𝑐 (𝐺,Y)∥2 ∥∇𝐺L𝑠 (𝐺)∥2 +
𝜖2

2
∥∇𝐺L𝑠 (𝐺)∥22∥H(𝐺 − 𝜖𝜃∇𝐺L𝑠 (𝐺),Y)∥2.

(C.6)

Given ∥H(𝐺,Y)∥2 ≤ 𝑀 , we know

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) − L𝑐 (𝐺,Y)

≤ − 𝜖 𝜌 (𝐺) ∥∇𝐺L𝑐 (𝐺,Y)∥2 ∥∇𝐺L𝑠 (𝐺)∥2 +
𝜖2𝑀

2
∥∇𝐺L𝑠 (𝐺)∥22.

(C.7)

By setting 𝜖 = 2𝜌(𝐺)∥∇𝐺L𝑐 (𝐺,Y)∥2
𝑀 ∥∇𝐺L𝑠 (𝐺)∥2 , we have

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) − L𝑐 (𝐺,Y) = 0. (C.8)

Therefore, when 𝜖 < 2𝜌(𝐺)∥∇𝐺L𝑐 (𝐺,Y)∥2
𝑀 ∥∇𝐺L𝑠 (𝐺)∥2 and 𝜌(𝐺) > 0, we have

L𝑐 (𝐺 − 𝜖∇𝐺L𝑠 (𝐺) ,Y) < L𝑐 (𝐺,Y) . (C.9)

□

C.1.2 Thereom 4

Theorem 4. Assume that the augmentation function A(·) generates a data view of the same class

for the test nodes and the node classes are balanced. Assume for each class, the mean of the

representations obtained from 𝑍 and �̂� are the same. Minimizing the first term in Eq. (5.6) is

approximately minimizing the class-conditional entropy 𝐻 (𝑍 |𝑌 ) between features 𝑍 and labels 𝑌 .

Proof. For convenience, we slightly abuse the notations to replace z𝑖
∥z𝑖 ∥ and ẑ𝑖

∥ẑ𝑖 ∥ with z𝑖 and ẑ𝑖,

respectively. Then we have ∥z𝑖∥ = ∥ẑ𝑖∥ = 1. Let 𝑍𝑘 denote the set of test samples from class 𝑘; thus
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|𝑍𝑘 | = 𝑁
𝐾

. Let 𝑐= denote equality up to a multiplicative and/or additive constant. Then the first term

in Eq. (5.6) can be rewritten as:
𝑁∑︁
𝑖=1
(1 − ẑ⊤𝑖 z𝑖) =

𝑁∑︁
𝑖=1

(
1 − ẑ⊤𝑖 z𝑖

) 𝑐
=

𝐾∑︁
𝑘=1

1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

(
−ẑ⊤𝑖 z𝑖

)
(C.10)

Let c𝑘 be the mean of hidden representations from class 𝑘; then we have c𝑘 = 1
|𝑍𝑘 |

∑
z𝑖∈𝑍𝑘 z𝑖 =

1
|𝑍𝑘 |

∑
ẑ𝑖∈�̂�𝑘 ẑ𝑖. Now we build the connection between Eq. (C.10) and

∑𝐾
𝑖=1

∑
z𝑖∈𝑍𝑘 ∥z𝑖 − c𝑘 ∥2:

𝐾∑︁
𝑖=1

∑︁
z𝑖∈𝑍𝑘
∥z𝑖 − c𝑘 ∥2 (C.11)

=

𝐾∑︁
𝑖=1

( ∑︁
z𝑖∈𝑍𝑘
∥z𝑖∥2 − 2

∑︁
z𝑖∈𝑍𝑘

z⊤𝑖 c𝑘 + |𝑍𝑘 |∥c𝑘 ∥2
)

=

𝐾∑︁
𝑖=1

©«
∑︁

z𝑖∈𝑍𝑘
∥z𝑖∥2 − 2

1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈�̂�𝑘

ẑ⊤𝑖 z𝑖 +
1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈�̂�𝑘

ẑ⊤𝑖 z𝑖
ª®¬

=

𝐾∑︁
𝑖=1

( ∑︁
z𝑖∈𝑍𝑘
∥z𝑖∥2 −

1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈𝑍𝑘

ẑ⊤𝑖 z𝑖

)
𝑐
=

𝐾∑︁
𝑖=1

©« 1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈�̂�𝑘

∥z𝑖∥2 −
1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈𝑍𝑘

ẑ⊤𝑖 z𝑖
ª®¬

=

𝐾∑︁
𝑖=1

©« 1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈�̂�𝑘

(
∥z𝑖∥2 − ẑ⊤𝑖 z𝑖

)ª®¬
𝑐
=

𝐾∑︁
𝑖=1

©« 1
|𝑍𝑘 |

∑︁
z𝑖∈𝑍𝑘

∑︁
ẑ𝑖∈�̂�𝑘

(
−ẑ⊤𝑖 z𝑖

)ª®¬ (C.12)

By comparing Eq. (C.10) and Eq. (C.12), the only difference is that Eq. (C.12) includes more

positive pairs for loss calculation. Hence, minimizing Eq. (C.10) can be viewed as approximately

minimizing Eq. (C.12) or Eq. (C.11) through sampling positive pairs. As demonstrated in the

work [9], Eq. (C.11) can be interpreted as a conditional cross-entropy between 𝑍 and another

random variable �̄� , whose conditional distribution given 𝑌 is a standard Gaussian centered around

c𝑌 : 𝑍 | 𝑌 ∼ N (c𝑌 , I):∑︁
z𝑖∈𝑍𝑘
∥z𝑖 − c𝑘 ∥2 = H(𝑍 | 𝑌 ) +D𝐾𝐿 (𝑍 | |�̄� | 𝑌 ) ≥ H(𝑍 | 𝑌 ) (C.13)

Hence, minimizing the first term in Eq. (5.6) is approximately minimizing 𝐻 (𝑍 |𝑌 ). □
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Discussion: We note that the assumption “the mean of the representations obtained from 𝑍 and

�̂� are the same” can be inferred by the first assumption about data augmentation. Let 𝑝𝑘 (𝑋) denote

the distribution of samples with class 𝑘 and let 𝑥 ∼ 𝑝𝑘 (𝑋) denote the sample with class 𝑘 . Recall

that we assume the data augmentation function A(·) is strong enough to generate a data view that

can simulate the test data from the same class. In this regard, the new data view can be regarded as

an independent sample from the same class, i.e., A(𝑥) ∼ 𝑝𝑘 (𝑋). Hence, the expectation of 𝑍 and �̂�

is the same and we would approximately have that “the mean of 𝑍 and �̂� is the same for each class”.

Particularly, when the number of samples is relatively large, the mean of 𝑍 (�̂�) would be close to the

true distribution mean. For example, on one graph of Cora, the mean absolute difference between

the two mean representations of 𝑍 and �̂� are [0.018, 0.009, 0.021, 0.024, 0.016, 0.014, 0.0, 0.016,

0.023] for each class, which are actually very small.

C.1.3 A Figurative Example

In Figure C.1, we show an example of adversarial attack which causes the aggregated features

for two nodes to be the same. Given two nodes x1 and x2 and their connections, we are interested

in predicting their labels. Assume a mean aggregator is used for aggregating features from the

neighbors. Before attack, the aggregated features for them are x̄1 = [0.45] and x̄2 = [0.53] while

after attack the aggregated features become the same x̄1 = x̄2 = [0.45]. In this context, it is

impossible to learn a classifier that can distinguish the two nodes.

Attack

[0.3]

[0.3]

[0.8]

[0.2] [0.7]
[0.7]

[0]

[0.2]

𝒙𝟏 𝒙𝟐

[0.3]

[0.3]

[0.8]

[0.2] [0.7]
[0.7]

[0.2]

𝒙𝟏 𝒙𝟐

	𝒙#𝟏 = 0.45 , 𝒙#𝟐 = 0.53 𝒙#𝟏 = 0.45 , 𝒙#𝟐 = 0.45

[0]

Figure C.1: Given two nodes x1 and x2 and their connections, we are interested in predicting their
labels. The color indicates the node label and “[0.3]" suggests that the associated node feature is 0.3.
Assume a mean aggregator is used for aggregating features from the neighbors. Left: we show
the clean graph without adversarial attack. The aggregated features for the two center nodes are
x̄1 = [0.45] and x̄2 = [0.53]. Right: we show the attacked graph where the red edge indicates the
adversarial edge injected by the attacker. The aggregated features for the two center nodes become
x̄1 = [0.45] and x̄2 = [0.45].
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C.2 Algorithm

We show the detailed algorithm of GCond in Algorithm 4. In detail, we first initialize ΔA and ΔX′

as zero matrices and calculate L𝑠 based on Eq. (5.6). Since we alternatively optimize ΔA and ΔX′ ,

we update ΔX′ every 𝜏1 epochs and update ΔA every 𝜏2 epochs. When the optimization is done, we

sample the discrete graph structure for 𝐾 times and select the one that results in the smallest L𝑠 as

the final adjacency matrix.

Algorithm 4 GCond for Test-Time Graph Transformation
Input: Pre-trained model 𝑓𝜃 and test graph dataset 𝐺Te = (A,X′).
Output: Model prediction Ŷ and transformed graph 𝐺′ = (A′,X′′).
Initialize ΔA and ΔX as zero matrices
for 𝑡 = 0, . . . , 𝑇 − 1 do

Compute A′ = A ⊕ ΔA and X′ = X + ΔX
Compute L𝑠 (ΔA,ΔX) as shown in Eq. (5.6)
if 𝑡%(𝜏1 + 𝜏2) < 𝜏1 then

Update ΔX ← ΔX − 𝜂1∇ΔXL𝑠

else
Update ΔA ← ΠP

(
ΔA − 𝜂∇ΔAL𝑠

)
ℓbest = ∞ # store the best loss
for 𝑘 = 0, . . . , 𝐾 − 1 do

Sample A′0 ∼ Bernoulli(A ⊕ ΔA)
Calculate L𝑠 with A′0 as input
if L𝑠 < ℓbest then

ℓbest = L𝑠
A′ = A′0

X′ = X + ΔX
Ŷ = 𝑓𝜃 (A′,X′)
Return: Ŷ, (A′,X′)

C.3 Datasets and Hyper-Parameters

In this section, we reveal the details of reproducing the results in the experiments. We will release

the source code upon acceptance.

C.3.1 Out-of-Distribution (OOD) Setting

The out-of-distribution (OOD) problem indicates that the model does not generalize well to the

test data due to the distribution gap between training data and test data [162], which is also referred
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Table C.1: Summary of the experimental datasets that entail diverse distribution shifts.

Distribution Shift Dataset #Nodes #Edges #Classes Train/Val/Test Split Metric Adapted From

Artificial Transformation Cora 2,703 5,278 10 Domain-Level Accuracy [166]
Amz-Photo 7,650 119,081 10 Domain-Level Accuracy [127]

Cross-Domain Transfers Twitch-E 1,912 9,498 31,299 - 153,138 2 Domain-Level ROC-AUC [120]
FB100 769 41,536 16,656 - 1,590,655 2 Domain-Level Accuracy [136]

Temporal Evolution Elliptic 203,769 234,355 2 Time-Aware F1 Score [114]
OGB-Arxiv 169,343 1,166,243 40 Time-Aware Accuracy [60]

to as distribution shifts. Numerous research studies have been conducted to explore this problem

and propose potential solutions [46, 205, 163, 164, 154, 92, 17, 11, 52, 155, 174]. In the following,

we introduce the datasets used for evaluating the methods that tackle the OOD issue in the graph

domain.

Dataset Statistics. For the evaluation on OOD data, we use the datasets provided by [154]. The

dataset statistics are shown in Table C.1, which includes three distinct type of distribution shifts: (1)

artificial transformation which indicates the node features are replaced by synthetic spurious features;

(2) cross-domain transfers which means that graphs in the dataset are from different domains and

(3) temporal evolution where the dataset is a dynamic one with evolving nature. Notably, we

use the datasets provided by [154], which were adopted from the aforementioned references with

manually created distribution shifts. Note that there can be multiple training/validaiton/test graphs.

Specifically, Cora and Amazon-Photo have 1/1/8 graphs for training/validation/test sets. Similarly,

the splits are 1/1/5 on Twitch-E, 3/2/3 on FB-100, 5/5/33 on Elliptic, and 1/1/3 on Ogbn-arxiv.

Hyper-Parameter Setting. For the setup of backbone GNNs, we majorly followed [154]:

(a) GCN: the architecture setup is 5 layers with 32 hidden units for Elliptic and Ogbn-arxiv, and 2

layers with 32 hidden units for other datasets, and with batch normalization for all datasets. The

learning rate is set to 0.001 for Cora and Amz-Photo, 0.01 for other datasets; the weight decay

is set to 0 for Elliptic and Ogbn-arxiv, and 0.001 for other datasets.

(b) GraphSAGE: the architecture setup is 5 layers with 32 hidden units for Elliptic and Ogbn-arxiv,

and 2 layers with 32 hidden units for other datasets, and with batch normalization for all datasets.

The learning rate is set to 0.01 for all datasets; the weight decay is set to 0 for Elliptic and

Ogbn-arxiv, and 0.001 for other datasets.
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(c) GAT: the architecture setup is 5 layers for Elliptic and Ogbn-arxiv, and 2 layers for other datasets,

and with batch normalization for all datasets. Each layer contains 4 attention heads and each

head is associated with 32 hidden units. The learning rate is set to 0.01 for all datasets; the

weight decay is set to 0 for Elliptic and Ogbn-arxiv, and 0.001 for other datasets.

(d) GPR: We use 10 propagation layers and 2 transformation layers with 32 hidden units. The

learning rate is set to 0.01 for all datasets; the weight decay is set to 0 for Elliptic and Ogbn-arxiv,

and 0.001 for other datasets. Note that GPR does not contain batch normalization layers.

For the baseline methods, we tuned their hyper-parameters based on the validation performance. For

DropEdge, we search the drop ratio in the range of [0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7]. For Tent,

we search the learning rate in the range of [1e-2, 1e-3, 1e-4, 1e-5, 1e-6] and the running epochs in

[1, 10, 20, 30]. For EERM, we followed the instruction provided by the original paper. For 𝐺𝐶𝑜𝑛𝑑,

we alternatively optimize node features for 𝜏1 = 4 epochs and optimize graph structure 𝜏2 = 1 epoch.

We adopt DropEdge as the augmentation function A(·) and set the drop ratio to 0.5. We use Adam

optimizer for both feature learning and structure learning. We further search the learning rate of

feature adaptation 𝜂1 in [5e-3, 1e-3, 1e-4, 1e-5, 1e-6], learning rate of structure adaptation 𝜂2 in

[0.5, 0.1, 0.01], the modification budget 𝐵 in [0.5%, 1%, 5%] of the original edges, total epochs 𝑇

in [5, 10]. We note that the process of tuning hyper-parameters is quick due to the high efficiency of

test-time adaptation as we demonstrated in Section 5.4.1.

Evaluation Protocol. For ERM (standard training), we train all the GNN backbones using the

common cross entropy loss. For DropEdge, we drop a certain amount of edges at each training

epoch. For EERM, it optimizes a bi-level problem to obtain a trained classifier. Note that the

aforementioned three methods do not perform any test-time adaptation and their model parameters

are fixed during test. For the two test-time adaptation methods, Tent and GCond, we first obtain the

GNN backbones pre-trained from ERM and adapt the model parameters or graph data at test time,

respectively. Furthermore, Tent minimizes the entropy loss while GCond minimizes the contrastive

surrogate loss.

Quantifying Distribution Shifts. Following SR-GNN [205], we adopt central moment
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discrepancy (CMD) [176] as the measurement to quantify the distribution shifts in different graphs.

Specifically, given a pre-trained model, we obtain its hidden representation on the training graph

and test graphs, denoted as 𝑍tr and 𝑍te. Then we calculate their distance by the CMD metric, i.e.,

CMD(𝑍tr), 𝑍te. We show the results in Table C.2 and we can observe certain distribution shifts

as these values are not small. Let’s take the Ogbn-arxiv dataset as an example, where we select

papers published before 2011 for training, 2011-2014 for validation, and within 2014-2016/2016-

2018/2018-2020 for test. In this context, the distribution shift is from the temporal change. In

Table C.3, we show the CMD values, ERM performance and GCond performance. From the table,

we can find that (1) the CMD value on the validation graph is essentially smaller than those on test

graphs; and (2) GCN performances on test graphs (with larger shifts) are lower than that on the

validation graph.

Table C.2: CMD values on each individual graph based on the pre-trained GCN.

GraphID 𝐺0 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 𝐺7 𝐺8

Amz-Photo 6.4 5.1 5.5 3.7 2.8 3.7 3.9 6.6 -
Cora 5.4 4.2 4.8 6.3 5.5 4.8 4.6 5.4 -
Elliptic 80.2 90.8 114.3 86.5 789.3 781.6 99.4 100.4 150.6
Ogbn-arxiv 14.7 20.6 10.4 - - - - - -
FB-100 29.7 16.9 32.9 - - - - - -
Twitch-E 8.6 6.1 9.0 8.4 9.7 - - - -

Table C.3: CMD values and the performances of ERM and GCond on Ogbn-arxiv

Method 2011-2014 (Val) 2014-2016 2014-2016 2016-2018 2018-2020

CMD 2.5 14.7 14.7 20.6 10.4

ERM 45.32±0.50 41.29±1.13 41.29±1.13 38.69±1.33 35.78±1.81
GCond 45.82±0.38 44.03±0.95 44.03±0.95 41.90±1.28 38.81±1.47

C.3.2 Abnormal Features

Dataset Statistics. In these two settings, we choose the original version of popular benchmark

datasets Cora, Citeseer, Pubmed and Ogbn-arxiv. The statistics for these datasets are shown in

Table C.4. Note that we only have one test graph, and the injection of abnormal features or adversarial

attack happens after the training process of backbone model, which can be viewed as evasion attack.
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Table C.4: Dataset statistics for experiments on abnormal features and adversarial attack.

Dataset Classes Nodes Edges Features Training Nodes Validation Nodes Test Nodes

Cora 7 2708 5278 1433 20 per class 500 1000
Citeseer 6 3327 4552 3703 20 per class 500 1000
Pubmed 3 19717 44324 500 20 per class 500 1000
Ogbn-arxiv 40 169343 1166243 128 54% 18% 28%

Hyper-Parameter Settings. We closely followed AirGNN [96] to set up the hyper-parameters

for the baselines:

(a) GCN: the architecture setup is 2 layers with 64 hidden units without batch normalization for

Cora, Citeseer and Pubmed, and 3 layers with 256 hidden units with batch normalization for

Ogbn-arxiv. The learning rate is set to 0.01.

(b) GAT: the architecture setup is 2 layers with 8 hidden units in each of the 8 heads without batch

normalization for Cora, Citeseer and Pubmed, and 3 layers with 32 hidden units in each of the 8

heads with batch normalization for Ogbn-arxiv. The learning rate is set to 0.005.

(c) APPNP: the architecture setup is 2-layer transformation with 64 hidden units and 10-layer

propagation without batch normalization for Cora, Citeseer and Pubmed; the architecture is set to

3-layer transformation with 256 hidden units and 10-layer propagation with batch normalization

for Ogbn-arxiv. The learning rate is set to 0.01.

(d) AirGNN: The architecture setup is the same as APPNP and the hyper-parameter 𝜆 is set to 0.3

for Ogbn-arxiv and 0.5 for other datasets.

(e) AirGNN-t: The architecture setup is the same as AirGNN but we tune the hyper-parameter 𝜆 in

AirGNN based on performance on the combination of training and validation nodes at test stage.

This is because the test graph has the same graph structure as the training graph; thus we can

take advantage of the label information of training nodes (as well as validation nodes) to tune

the hyper-parameters. Specifically, we search 𝜆 in the range of [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9] for each noise ratio.

For the setup of 𝐺𝐶𝑜𝑛𝑑, we alternatively optimize node features for 𝜏1 = 4 epochs and optimize

graph structure 𝜏2 = 1 epoch. We adopt DropEdge as the augmentation function A(·) and set the
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drop ratio to 0.5. We use Adam optimizer for both feature learning and structure learning. We

further search the learning rate of feature adaptation 𝜂1 in [1, 1e-1, 1e-2], total epochs 𝑇 in [10, 20].

The modification budget 𝐵 to 5% of the original edges and the learning rate of structure adaptation

𝜂2 is set to 0.1. It is worth noting that we use a weighted combination of contrastive loss and training

classification loss, i.e., Ltrain + 𝜆L𝑠, instead of optimizing the contrastive loss alone. We adaopt this

strategy because that the training graph and the test graph were the same graph before the injection

of abnormal features. Here the 𝜆 is tuned in the range of [1e-2, 1e-3, 1e-4]. We study the effects of

contrastive loss and training classification loss in Appendix C.4.7.

C.3.3 Adversarial Attack

Dataset Statistics. We used Ogbn-arxiv for the adversarial attack experiments and the dataset

statistics can be found in Table C.4. Again, we only have one test graph for this dataset.

Hyper-Parameter Settings. The setup of GCN and GAT is the same as that in the setting of

abnormal features. For the defense methods including SimPGCN, RobustGCN and GCNJaccard,

we use the DeepRobust [85] library to implement them. For GCNJaccard, we tune its threshold

hyper-parameter in the range of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The hyper-parameter is

also tuned based on the performance of training and validation nodes (same as Appendix C.3.2).

Note that the popular defenses ProGNN [70] and GCNSVD [37] were not included because they

throw OOM error due to the expensive eigen-decomposition operation.

We use the official implementation of the scalable attack PR-BCD [48] to attack the test graph.

We note that when performing adversarial attacks, the setting is more like transductive setting

where the training graph and test graph are the same. However, the test graph becomes different

from the training graph after the attack. Since the training graph and test graph were originally

the same graph, we use a weighted combination of contrastive loss and training classification loss,

i.e., Ltrain + 𝜆L𝑠, instead of optimizing the contrastive loss alone. For the setup of 𝐺𝐶𝑜𝑛𝑑, we

alternatively optimize node features for 𝜏1 = 1 epoch and optimize graph structure 𝜏2 = 4 epochs.

We fix the learning rate of feature adaptation 𝜂1 to 1e-3, learning rate of structure adaptation 𝜂2 to

0.1, 𝜆 to 1, total epochs 𝑇 to 50 and modification budget 𝐵 to 30% of the original edges.
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C.3.4 Hardware and Software Configurations.

We perform experiments on NVIDIA Tesla V100 GPUs. The GPU memory and running time

reported in Table 5.2 are measured on one single V100 GPU. Additionally, we use eight CPUs, with

the model name as Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz. The operating system we

use is CentOS Linux 7 (Core).

C.4 More Experimental Results

C.4.1 Comparison to Graph Domain Adaptation

Our work is related to graph domain adaptation (GraphDA) [128, 153, 205], but they are also

highly different. In Table C.5, we summarize the differences between GraphDA and GCond. In

detail, there are the following differences:

(a) Data and losses: GraphDA methods optimize the loss function based on both labeled source

data (training data) and unlabeled target data (test data), while GCond only requires target data

during inference. Hence, GraphDA methods are infeasible when access to the source data is

prohibited such as online service.

(b) Parameter: To our best knowledge, existing GraphDA methods are model-centric approaches

while GCond is a data-centric approach. GCond adapts the data instead of the model, which

can be more useful in some settings as we showed in the Example of Section 5.3.3.

(c) Efficiency: GraphDA is indeed a training-time adaptation and for each given test graph, it would

require training the model on the source and target data. Thus, it is much less efficient than

GCond, especially when we have multiple test graphs (e.g., 33 test graphs for Elliptic).

Table C.5: Comparison between GraphDA and GCond. They differ by their data and losses.

Setting Source Target Train Loss Test Loss Parameter Efficiency

GraphDA 𝐺 tr 𝐺 te L(𝐺 tr,Ytr) + L(𝐺 tr, 𝐺 te) - 𝑓𝜃 Low
GCond - 𝐺 te - L(𝐺 te) 𝐺 te High

To compare their empirical performance, we include two GraphDA methods (SR-GNN [205] and

UDA-GCN [153]) and one general domain adaptation method (DANN [46]). SR-GNN regularizes
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the model’s performance on the source and target domains. Note that SR-GNN is originally

developed under the transductive setting where the training graph and test graph are the same. To

apply SR-GNN in our OOD setting, we assume the test graph is available during the training stage of

SR-GNN, as typically done in domain adaptation methods. UDA-GCN is another work that tackles

graph data domain adaptation, which exploits local and global information for different domains.

In addition, we also include DANN, which adopts an adversarial domain classifier to promote the

similarity of feature distributions between different domains. We followed the authors’ suggestions

in their paper to tune the hyper-parameters and the results are shown in Table C.6. On the one

hand, we can observe that GraphDA methods generally improve the performance of GCN under

distribution shift and SRGNN is the best performing baseline. On the other hand, GCond performs

the best on all datasets except Amz-Photo. On Amz-Photo, GCond does not improve as much as

SR-GNN, which indicates that joint optimization over source and target is necessary for this dataset.

However, recall that domain adaptation methods are less efficient due to the joint optimization on

source and target: the adaptation time of SR-GNN on the 8 graphs of Amz-Photo is 83.5s while that

of GCond is 4.9s (plus pre-training time 10.1s). Overall, test-time graph transformation exhibits

strong advantages of effectiveness and efficiency.

Table C.6: Performance comparison between GCond and graph domain adaptation methods.

Method Amz-Photo Cora Elliptic FB-100 Ogbn-arxiv Twitch-E

ERM 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50
UDA-GCN 91.70±0.35 92.65±0.46 51.57±1.31 54.11±0.54 39.43±0.71 52.12±0.38
DANN 94.08±0.21 92.89±0.64 53.00±0.97 51.53±1.47 36.60±1.26 60.13±0.53
SRGNN 94.64±0.17 94.08±0.28 51.94±0.81 54.08±1.10 38.92±0.65 59.21±0.51

GCond 94.13±0.77 94.66±0.63 55.88±3.10 54.32±0.60 41.59±1.20 60.42±0.86

C.4.2 Comparison to Graph Structure Learning

Our work is also relevant to graph structure learning (GSL) [45, 70, 18, 194, 121, 56, 41] which

learns the graph structure during the training time while not adapting the graph structure at test

stage. Our proposed test-time graph transform is essentially different from these works as we do

not modify the training data but only the test data. It can be of interest to adopt GSL method at
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test time by also adapting the test graph structure. However, most existing GSL methods optimize

the cross entropy loss defined on the labels to update graph structure, thus not applicable in the

absence of test labels. One exception is SLAPS [41] which utilizes a self-supervised loss together

with the cross entropy loss to optimize the graph structure. However, the default setting in SLAPS

is generating structure for raw data points (with no given graph structure). Hence, using SLAPS

for our settings requires considerable changes. Furthermore, we highlight two more weaknesses of

SLAPS compared to GCond.

(a) Introducing additional parameters. SLAPS uses a denoising loss as self-supervision. In

detail, it first injects noise into node features and trains a denoising autoencoder to denoise

the noisy features. This introduces additional parameters from the denoising autoencoder and

inevitably changes the model architecture.

(b) Not learning features. As other GSL methods, SLAPS does not learn node features. We

argue that feature learning is highly important under the abnormal feature setting as shown in

Table C.12. For example, structure learning only improves GCN by 2% on Ogbn-arxiv while

feature learning can improve GCN by 20%. Thus, without the feature learning component, the

performance will significantly drop when encountering noisy features.

Since GCond is highly versatile and we can use any self-supervised loss as the surrogate loss,

we can simply replace the contrastive loss in Eq. (5.6) with the denoising loss of SLAPS instead of

paying considerable efforts in adjusting SLAPS. We refer to the loss used for denoising as SLAPS

loss and adopt it for TTGT. Note that we first train the parameters of the DAE used for denoising

while keeping the pre-trained model fixed. Then we fix both DAE and the pre-trained model and

optimize the test graph for TTGT. The results are shown in Table C.7. From the table, we can

observe that the SLAPS loss (or feature denoising loss) does not work as well as the contrastive loss.

Table C.7: Comparison between SLAPS loss and our contrastive loss.

Amz-Photo Cora Elliptic FB-100 Ogbn-arxiv Twitch-E

None 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50
SLAPS 93.97±1.04 91.41±1.23 50.54±1.81 54.08±0.76 41.38±1.35 59.85±0.68
L𝑠 in Eq. (5.6) 94.13±0.77 94.66±0.63 55.88±3.10 54.32±0.60 41.59±1.20 60.42±0.86
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Table C.8: Comparison between GCond and AD-GCL under the TTGT framework.

Amz-Photo Cora Elliptic FB-100 Ogbn-arxiv Twitch-E

ERM 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50
TTGT+AD-GCL 94.96±0.52 92.38±1.35 54.38±2.77 53.81±0.87 39.16±0.98 59.78±0.65
𝐺𝐶𝑜𝑛𝑑 94.13±0.77 94.66±0.63 55.88±3.10 54.32±0.60 41.59±1.20 60.42±0.86

C.4.3 Comparison to AD-GCL

Next, we compare our method with a graph contrastive learning method with learnable

augmentation AD-GCL [131]. Since AD-GCL is originally designed for graph classification as a

pre-training strategy, the direct empirical comparison between AD-GCL and GCond is not easy.

However, due to the flexibility of GCond, we can integrate AD-GCL into our TTGT framework,

denoted as TTGT+AD-GCL. We present the empirical results in Table C.8. We can observe that

TTGT+AD-GCL generally performs worse than GCond except on Amz-Photo, which indicates that

GCond is a stronger realization of TTGT. Furthermore, we highlight some key differences between

it and GCond.

(a) AD-GCL requires optimization of a min-max problem which involves parameters of graph

structure and model. Thus, adopting it for TTGT would change the pre-trained model architecture.

(b) AD-GCL only augments the graph structure while not learning the features. We argue that

feature learning is highly important under the abnormal feature setting as shown in Table C.12.

For example, structure learning only improves GCN by 2% on Ogbn-arxiv while feature learning

can improve GCN by 20%. Thus, without the feature learning component, the performance will

significantly drop when encountering noisy features.

(c) According to Eq. (9) in the AD-GCL paper, it calculates the similarities between all samples

within each mini-batch. When we increase the batch size, we would easily get the out-of-

memory issue while a small mini-batch will slow down the learning process. As a consequence,

TTGT+AD-GCL is less efficient than GCond: the adaptation time of TTGT+AD-GCL on

Ogbn-arxiv is 12.7s while that of GCond is 2.6s.
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C.4.4 Out-of-Distribution (OOD) Setting

To show the performance on individual test graphs, we choose GCN as the backbone model and

include the box plot on all test graphs within each dataset in Figure C.2. We observe that GCond

generally improves over each test graph within each dataset, which validates the effectiveness of

test-time graph transformation.
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Figure C.2: Classification performance on individual test graphs within each dataset for OOD
setting.

C.4.5 Abnormal Features

For each model, we present the node classification accuracy on all test nodes (i.e., both normal

and abnormal ones) in Figure C.3. GCond significantly improves GCN in terms of the performance

on all test nodes for all datasets across all noise ratios. For example, on Cora with 30% noisy nodes,

GCond improves GCN by 31.0% on overall test accuracy. These results further validate that the

proposed GCond can produce expressive and generalizable representations.

C.4.6 Interpretation on the Refined Graph for Adversarial Attack Setting

To understand the modifications made on the graph, we compare several properties among

clean graph, attacked graph (20% perturbation rate), graph obtained by GCNJaccard, and graph

obtained by GCond in Table C.9. We follow the definition in [202] to measure homophily; “Pairwise
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Figure C.3: Overall node classification accuracy under the setting of abnormal features. GCond
significantly improves the performance of GCN on both abnormal nodes and overall nodes.

Feature Similarity" is the averaged feature similarity among all pairs of connected nodes; “#Edge+/-”

indicates the number of edges that the modified graph adds/deletes compared to the clean graph. From

Table C.9, we observe that first, adversarial attack decreases homophily and feature similarity, but

GCond and GCNJaccard promote such information to defend against adversarial patterns. Second,

both GCond and GCNJaccard focus on deleting edges from the attacked graph, but GCNJaccard

removes a substantially larger amount of edges, which may destroy clean graph structure and lead to

suboptimal performance.

Table C.9: Statistics of modified graphs. GCond promotes homophily and feature similarity.

GCond GCNJaccard Attacked Clean

Homophily 0.689 0.636 0.548 0.654
Pairwise Feature Similarity 0.825 0.863 0.809 0.827
#Edges 1,945k 1,754k 2,778k 2,316k
#Edge+ 108k 118k 463k -
#Edge- 479k 679k 0.6k -

C.4.7 Ablation Study on Surrogate Loss

Since we optimized a combined loss in the settings of abnormal features and adversarial attack,

we now perform ablation study to examine the effect of each component. We choose GCN as

the backbone model and choose 0.3 noise ratio for abnormal features. The results for abnormal

features and adversarial attack are shown in Tables C.10 and C.11, respectively. “None” indicates

the vanilla GCN without any test-time adaptation and “Combined” indicates jointly optimizing a

combination of the two losses. From the two tables, we can conclude that (1) both L𝑠 and Ltrain help
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counteract abnormal features and adversarial attack; and (2) optimizing the combined loss generally

outperforms optimizing L𝑠 or Ltrain alone.

Table C.10: Performance comparison when optimizing different losses for abnormal feature setting.
Both L𝑠 and Ltrain help counteract abnormal features; optimizing the combined loss generally
outperforms optimizing L𝑠 or Ltrain alone.

All Test Nodes Abnormal Nodes
Dataset None L𝑠 Ltrain Combined None L𝑠 Ltrain Combined

Ogbn-arxiv 44.29±1.20 46.70±1.20 64.60±0.22 64.64±0.24 31.50±1.12 35.22±1.17 57.54±0.93 57.69±0.93
Citeseer 39.26±2.02 45.41±2.71 54.97±1.55 52.54±1.08 17.30±1.86 32.93±2.81 42.67±2.78 44.10±2.97
Cora 36.35±1.87 48.71±3.02 66.77±2.54 67.29±1.44 15.80±2.33 35.40±4.05 61.67±3.64 63.90±2.55
Pubmed 62.72±1.20 65.49±1.65 66.56±0.64 70.55±1.55 36.47±1.85 56.77±3.60 60.20±1.97 67.93±2.11

Table C.11: Performance comparison when optimizing different losses for adversarial attack setting.
Both L𝑠 and Ltrain help counteract adversarial attack; optimizing the combined loss generally
outperforms optimizing L𝑠 or Ltrain alone. 𝑟 denotes the perturbation rate.

Loss 𝑟=5% 𝑟=10% 𝑟=15% 𝑟=20% 𝑟=25%

None 57.47±0.54 47.97±0.65 38.04±1.22 29.05±0.73 19.58±2.32
L𝑠 62.40±0.45 59.76±0.93 57.85±1.03 55.26±1.35 52.64±2.35
Ltrain 65.54±0.25 64.00±0.31 62.99±0.34 61.95±0.40 61.55±0.58
Combined 66.29±0.25 65.16±0.52 64.40±0.38 63.44±0.50 62.95±0.67

C.4.8 Ablation Study on Feature Learning and Structure Learning

In this subsection, we investigate the effects of the feature learning component and structure

learning component. We show results for abnormal features and adversarial attack in Tables C.12

and C.13, respectively. Note that “None" indicates the vanilla GCN without any test-time adaptation;

“A′" or “X′" is the variants of GCond which solely learns structure or node features; “Both” indicates

the method GCond that learn both structure and node features. From Table C.12, we observe that

(1) while both feature learning and structure learning can improve the vanilla performance, feature

learning is more powerful than structure learning; (2) combining them does not seem to further

improve the performance but it achieves a comparable performance to sole feature learning. From

Table C.13, we observe that (1) while both feature learning and structure learning can improve the

vanilla performance, structure learning is more powerful than feature learning; and (2) combining

them can further improve the performance. From these observations, we conclude that (1) feature
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learning is more crucial for counteracting feature corruption and structure learning is more important

for defending structure corruption; and (2) combining them always yields a better or comparable

performance.

Table C.12: Ablation study on feature learning and structure learning for abnormal feature setting.
While both feature learning and structure learning can improve the vanilla performance, feature
learning is more powerful than structure learning. Combining them does not seem to further improve
the performance but it achieves a comparable performance to sole feature learning.

All Test Nodes Abnormal Nodes
Dataset None A′ X′ Both None A′ X′ Both

Ogbn-arxiv 44.29±1.20 46.02±1.09 64.88±0.23 64.64±0.24 31.50±1.12 31.96±1.05 58.12±0.83 57.69±0.93
Citeseer 39.26±2.02 39.67±1.96 54.99±1.55 54.97±1.55 17.30±1.86 17.13±1.81 42.73±2.81 42.67±2.78
Cora 36.35±1.87 37.02±1.82 67.40±1.62 67.29±1.44 15.80±2.33 15.67±2.15 64.17±3.18 63.90±2.55
Pubmed 62.72±1.20 62.50±1.21 70.53±1.52 70.55±1.55 36.47±1.85 36.57±1.96 67.90±2.07 67.93±2.11

Table C.13: Ablation study on feature learning and structure learning for adversarial structural attack
setting. While both feature learning and structure learning can improve the vanilla performance,
structure learning is more powerful than feature learning. Combining them can further improve the
performance.

Param 𝑟=5% 𝑟=10% 𝑟=15% 𝑟=20% 𝑟=25%

None 57.47±0.54 47.97±0.65 38.04±1.22 29.05±0.73 19.58±2.32
X′ 64.16±0.24 61.59±0.29 60.07±0.32 59.04±0.49 58.82±0.68
A′ 65.93±0.32 64.31±0.71 63.14±0.39 61.42±0.58 60.18±1.53
Both 66.29±0.25 65.16±0.52 64.40±0.38 63.44±0.50 62.95±0.67

C.4.9 Comparing Different Self-Supervised Signals

As there can be other choices to guide our test-time graph transformation process, we examine

the effects of other self-supervised signals. We choose the OOD setting to perform experiments and

consider the following two parameter-free self-supervised loss:

(a) Reconstruction Loss. Data reconstruction is considered as a good self-supervised signal and

we can adopt link reconstruction [77] as the guidance. Minimizing the reconstruction loss is

equivalent to maximizing the similarity for connected nodes, which encourages the connected

nodes to have similar representations.

(b) Entropy Loss. Entropy loss calculates the entropy of the model prediction. Minimizing the

entropy can force the model to be certain about the prediction. It has been demonstrated effective
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in Tent [142] when adapting batch normalization parameters.

(c) SLAPS Loss. SLAPS [41] utilizes self-supervision to guide the graph structure learning process.

Specifically, it injects random noise into node features and employs a denoising autoencoder

(DAE) to denoise the node features. We refer to the loss used for denoising as SLAPS loss and

adopt it for TTGT. Note that we first train the parameters of the DAE used for denoising while

keeping the pre-trained model fixed. Then we fix both DAE and the pre-trained model and

optimize the test graph for TTGT.

We summarize the results in Table C.14. From the table, we observe that in most of the cases,

the above three losses underperform our proposed surrogate loss and even degrade the vanilla

performance. It validates the effectiveness of our contrastive loss in guiding the test-time graph

transformation.

Table C.14: Comparison of different self-supervised signals for OOD setting. The reconstruction
loss and entropy loss generally underperform our proposed loss.

Amz-Photo Cora Elliptic FB-100 Ogbn-arxiv Twitch-E

None 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50
Recon 93.77±1.01 91.37±1.41 49.33±1.37 53.94±1.03 44.93±4.06 59.17±0.77
Entropy 93.67±0.98 91.54±1.14 49.93±1.56 54.29±0.97 41.11±2.19 59.48±0.64
SLAPS 93.97±1.04 91.41±1.23 50.54±1.81 54.08±0.76 41.38±1.35 59.85±0.68
L𝑠 in Eq. (5.6) 94.13±0.77 94.66±0.63 55.88±3.10 54.32±0.60 41.59±1.20 60.42±0.86

Gradient Correlation. In Figure 5.2, we have empirically verified the effectiveness of Theorem 1

when adopting the surrogate loss in Eq. (5.6) as L𝑠. We further plot the values of 𝜌(𝐺) with different

surrogate losses (i.e., entropy, reconstruction and SLAPS) and L𝑐 on one test graph in Cora in

Figure C.4. We can observe that a positive 𝜌(𝐺) generally reduces the test classification loss. For

example, when using entropy loss, the test loss generally reduces when 𝜌(𝐺) is positive and starts

to increase after 𝜌(𝐺) becomes negative.

C.4.10 Sensitivity to Hyper-Parameter 𝐵

In this subsection, we examine the sensitivity of GCond’ performance with respect to the

perturbation budget, i.e., hyper-parameter 𝐵. Specifically, we vary the value of 𝐵 in the range of

{0.5%, 1%, 5%, 10%, 20%, 30%} and perform experiments on the Ogbn-arxiv dataset for the three

138



10 20 30 40 50
Epoch

0.4

0.2

0.0

0.2

0.4

0.6
C

or
re

la
tio

n/
Te

st
 L

os
s

Test loss c

Correlation (G)

(a) Entropy Loss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

C
or

re
la

tio
n/

Te
st

 L
os

s

Test loss c

Correlation (G)

(b) Reconstruction Loss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

C
or

re
la

tio
n/

Te
st

 L
os

s

Test loss c

Correlation (G)

(c) SLAPS Loss

Figure C.4: The relationship between 𝜌(𝐺) and L𝑐 when adopting different surrogate losses.

settings in Table C.15. Specifically, “Abn. Feat” stands for abnormal feature setting with 30% noisy

feature while “Adv. Attack” stands for the adversarial attack setting with 20% perturbation rate.

From the table, we can observe budget 𝐵 has a smaller effect on OOD and abnormal feature settings

while highly impacting the performance under structural adversarial attack. This is because most of

the changes made by adversarial attack are edge injections as shown in Table C.9, and we need to

use a large budget 𝐵 to remove adversarial patterns. By contrast, GCond is much less sensitive to

the value of 𝐵 in the other two settings.

Table C.15: The change of model performance when varying budget 𝐵 on Ogbn-arxiv.

Setting 𝐵=0.5% 𝐵=1% 𝐵=5% 𝐵=10% 𝐵=20% 𝐵=30%

OOD 40.52 40.69 41.32 41.40 41.70 41.65
Abn. Feat. 64.78 64.80 64.64 64.60 64.57 64.57
Adv. Attack 56.66 56.89 58.30 59.93 62.31 63.47

C.4.11 Different Augmentations Used in Contrastive Loss

In Eq. (5.6), we used DropEdge as the augmentation function A(·) to obtain the augmented view.

In practice, the choice of augmentation can be flexible and here we explore two other choices: node

dropping [172] and subgraph sampling [207]. We perform experiments on OOD setting with GCN

as the backbone model and report the results in Table C.16. Specifically, we adopt a ratio of 0.05 for

node dropping, and ratios of 0.05 and 0.5 for DropEdge. From the table, we can observe that (1)

GCond with any of the three augmentations can greatly improve the performance of GCN under

distribution shift, and (2) different augmentations lead to slightly different performance on different
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datasets.

Table C.16: Performance of GCond with different augmentation used in contrastive loss.

Augmentation Amz-Photo Cora Elliptic FB-100 Ogbn-arxiv Twitch-E

Node Dropping 94.45±0.70 95.00±0.65 56.57±2.99 54.15±0.60 39.95±1.11 60.38±0.74
Subgraph Sampling 94.18±0.75 94.95±0.64 55.40±3.00 54.51±0.56 41.44±1.17 60.52±0.80
DropEdge (0.05) 94.43±0.68 95.10±0.66 56.78±2.86 54.17±0.60 40.19±1.08 60.31±0.74
DropEdge (0.5) 94.13±0.77 94.66±0.63 55.88±3.10 54.32±0.60 41.59±1.20 60.42±0.86

ERM 93.79±0.97 91.59±1.44 50.90±1.51 54.04±0.94 38.59±1.35 59.89±0.50
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