
By

Chamila Malagoda Gamage

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mathematics—Doctor of Philosophy

2023

VARIANTS OF THE OPTIMAL TRANSPORT PROBLEM AND THEIR DUALITY



ABSTRACT

The classical Optimal Transport (OT) problem studies how to transport one distribution to

another in the most efficient way. In the past few decades it has emerged as a very powerful

tool in various fields, such as optimization theory, probability theory, partial differential

equations, machine learning and data analysis. In this thesis, we will discuss some existing

variants of the classical optimal transport problem, such as the capacity constrained OT

problem, multi-marginal OT problem, entropy-regularized OT problem and barycenters,

and we will introduce a couple of new variants by combining the existing versions. We will

also discuss their duality results and some characterizations.
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INTRODUCTION

The origin of the Optimal Transport (OT) Problem goes back to the year of 1781, where the

French Mathematician Gaspard Monge introduced a problem in his classic paper Memoire

sur la theorie des deblais et des remblais [41], which is about finding the most efficient way

of moving dirt from one place to another which was inspired due to military and economic

purposes. However, this problem remained unsolved for almost two centuries, until the

Russian Mathematician and economist Leonid Kantorovich’s involvement in this problem

([30]) who made some progress with the invention of Linear Programming.

To get an insight of this problem, we will consider an example in the discrete setting.

Suppose there is a large number of iron mines and the iron has to be transported to the

refining factories. The problem is to find where each unit of iron should be transported so

that the total transportation cost is minimized. Such an assignment from an initial position

to its final position, is known as an “optimal transport plan”.

Over the past few decades, the theory of OT has gained a lot of attention and it has been

applied in various fields such as optimization theory, probability theory partial differential

equations, machine learning, etc. In 1987, in [10] Yann Brenier showed that under certain

conditions, there exists a unique transport plan that minimizes the cost associated to the

Euclidian distance squared. In 1995, Wilfrid Gangbo and Robert McCann generalized this

result for cost functions which are strictly convex or concave ([22, 23]). In [6], Benamou

and Brenier presents a dynamical formulation of the OT problems which connects the OT

theory to many other fields such as fluid mechanics ([11]), image processing ([42]), data

analysis ([36]), etc. The field of Computational OT is another rapidly growing area as it

serves as a powerful tool to compare probability distributions. Object recognition ([25]),

label classification ([55]), and generative modelling ([50]) are few among many sub-fields in

machine learning that widely apply OT tools.

Viewing the OT problem as a linear programming problem enables us to construct dual-

ity theory for the OT problem. It plays a significant role in understanding and solving the
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OT problem. Furthermore, it helps to characterize optimal solutions which is often chal-

lenging to do without duality theory. For instance, in computation OT theory, the duality

theory enables to use efficient computational algorithms, such as Sinkhorn algorithm ([45])

to approximate the solutions to the OT problem.

In this thesis, we will discuss a few variants of the classical OT problem, namely, the ca-

pacity constrained OT problem, multi-marginal OT problem, entropy-regularized OT prob-

lem and barycenters, and their duality theory. We will also discuss a couple of new variants

by combining already existing versions, such as the capacity constrained multi-marginal OT

(CCMMOT) problem and capacity constrained barycenters. By combining the two notions

of the capacity constrained OT problem and the barycenter problem, we will introduce ca-

pacity constrained barycenters in Wasserstein space. Under certain assumptions, we will

prove that the problem attains a minimizer and present some duality results. The notion of

the CCMMOT problem already exists in the literature ([18]); however, a dual formulation for

this problem does not exist. We will present a dual formulation for this problem and prove

the strong duality result and the existence of dual maximizers. The entropy-regularized ver-

sion of Wasserstein barycenters and their dual formulation also exist in the literature ([38]).

The authors have proven that the strong duality holds and the existence of the primal prob-

lem via duality result. In this thesis, we will provide a direct proof for the existence of a

minimizer for the primal problem and the existence of dual maximizers.
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CHAPTER 1

PRELIMINARIES

Some standard symbols, definitions, and theorems used in this thesis are given below.

Notation

Let X be a Polish space (see Definition 1.0.1).

• B(X): The sigma algebra of Borel sets of X.

• P(X): The space of Borel probability measures on X.

• P2(X): The space of Borel probability measures with finite second moment.

• M(X): The space of finite Borel measures.

• M+(X): The space of positive, finite Borel measures.

• C(X) : Continuous functions on X.

• Cb(X): Bounded, continuous functions on X.

• L1(Rd): Functions integrable w.r.t. Lebesgue measure on Rd.

• L1(X, dµ): Functions integrable w.r.t. measure µ on X.

• L0(X, dµ): Measurable functions on the space (X,µ).

• [f ]+: Positive part of the function f (see Definition 1.0.16).

• [f ]−: Negative part of the function f (see Definition 1.0.17).

Definitions

Definition 1.0.1. (Polish Spaces) A Polish space is a separable completely metrizable topo-

logical space.
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Definition 1.0.2. (Push forward of a measure) Given two Polish spaces X, Y , a Borel map

T : X 7→ Y , and a probability measure µ ∈ P(X), we define the push forward of µ through

T , denoted by T#µ ∈ P(Y ), as

T#µ(E) = µ(T−1(E)), ∀E ⊂ Y, Borel.

Definition 1.0.3. (Convex set) A subset C of a vector space V is convex if (1−λ)x+λy ∈ C

whenever x, y ∈ C, and 0 ≤ λ ≤ 1.

Definition 1.0.4. (Weak Convergence) A sequence {µn}n∈N ⊆ P(X) converges weakly to

µ ∈ P(X), if for all f ∈ Cb(X),

lim
n→∞

∫
X

fdµn =

∫
X

fdµ.

Definition 1.0.5. (Tightness) A set A ⊆ P(X) is tight, if ∀ε > 0, there exists a compact

set Kε ⊂ X such that

µ(X \Kε) < ε, ∀µ ∈ A.

Definition 1.0.6. (Lower semi-continuity) Let (X, d) be a metric space. A function f :

X 7→ R ∪ {+∞} is lower semi-continuous, if for every sequence xn such that xn → x, we

have

f(x) ≤ lim inf
n→∞

f(xn).

Definition 1.0.7. (Support of a measure) Let X be a separable metric space. We define

the support of a measure γ, denoted by spt(γ), as the smallest closed set on which γ is

concentrated.

spt(γ) :=
⋂

{E:E is closed and γ(X\E)=0}

E.

Definition 1.0.8. (Finite pth moment) A measure µ ∈ P(Rd) has finite pth moment, if∫
Rd

|x|p dµ(x) < +∞.
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Definition 1.0.9. (Vanishing measures on small sets) A probability measure µ ∈ P(Rd)

is said to vanish on small sets if and only if µ(E) = 0, ∀E ⊂ B(Rd) having Hausdorff

dimension d− 1 or less.

Definition 1.0.10. (ω-continuity) A function f : X 7→ R is said to be ω-continuous, if there

exists a function ω : [0,∞] 7→ [0,∞] such that limt→0 ω(t) = ω(0) = 0 and

|f(x)− f(y)| ≤ ω(|x− y|), ∀x, y ∈ X.

Definition 1.0.11. (K-Convexity along curves) Given a metric space (X, d), a functional

ϕ : X 7→ (−∞,∞] is called K-convex on a curve γ : t ∈ [0, 1] 7→ γt ∈ X, for some K ∈ R, if

ϕ(γt) ≤ (1− t)ϕ(γ0) + tϕ(γ1)−
1

2
Kt(1− t)d2(γ0, γ1), ∀t ∈ [0, 1].

Definition 1.0.12. (Proper Convex function) A convex function f : X 7→ [−∞,∞] is called

proper, if f(x) <∞ for at least one x ∈ X and f(x) > −∞ for all x ∈ X.

Definition 1.0.13. (Infimal Convolution) Given two proper convex functions f, g on Rd, we

define their infimal convolution, denoted by f□g, as

(f□g)(x) = inf
y
{f(x− y) + g(y)}, ∀x ∈ Rd.

Definition 1.0.14. (L-Lipschitzness) Given two metric spaces (X, dX) and (Y, dY ), a func-

tion f : X 7→ Y is said to be L-Lipschitz, if there is a real constant L ≥ 0 such that, for all

x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ LdX(x1, x2).

Definition 1.0.15. (Legendre-Fenchel Transform) Let E be a normed vector space, and φ

a convex function on E with values in R ∪ {∞}. Then the Legendre-Fenchel transform of φ

is the function φ∗, defined on the dual space E∗ by the formula

φ∗(z∗) = sup
z∈E

{z∗ · z − φ(z)}.
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Definition 1.0.16. (Positive part) Given a function f : R 7→ R, we define its positive part,

denoted by [f ]+, as

[f(x)]+ = max{f(x), 0}.

Definition 1.0.17. (Negative part) Given a function f : R 7→ R, we define its negative part,

denoted by [f ]−, as

[f(x)]− = −min{f(x), 0}.

Theorems

Theorem 1.0.18. (Prokhorov) Let (X, d) be a Polish space. Then a family A ⊂ P(X) is

relatively compact w.r.t. the weak topology if and only if it is tight.

Theorem 1.0.19. (Fatou’s Lemma) Let fn : X 7→ [0,∞] be measurable, for each n ∈ N.

Then ∫
X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Theorem 1.0.20. (Monotone Convergence theorem) Let {fn} be a sequence of measurable

functions on X such that

(i) 0 ≤ fk(x) ≤ fk+1(x) ≤ ∞, for all k ∈ N and all x ∈ X,

(ii) limn→∞ fn(x) = f(x), for all x ∈ X.

Then,

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.
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CHAPTER 2

THE CLASSICAL OPTIMAL TRANSPORT PROBLEM

2.1 The Primal Problem

Let X and Y be two Polish Spaces, µ ∈ P(X) and ν ∈ P(Y ) be two Borel probability

measures, and c : X × Y 7→ R ∪ {∞} be a Borel measurable cost function. The Monge

Problem is the following:

Problem 2.1.1. Find a Borel map T : X 7→ Y , that minimizes the cost

M(S) :=

∫
X

c(x, S(x)) dµ(x) (2.1.1)

among all Borel maps S : X 7→ Y such that S#µ = ν.

Such maps are called transport maps from µ to ν. Maps that minimize the cost M(S)

are called optimal transport maps.

The push forward condition S#µ = ν can be characterized by∫
Y

f(y)dν(y) =

∫
Y

f(y) dS#µ(y) =

∫
X

f ◦ S(x) dµ(x), ∀f ∈ L1(Y, dν). (2.1.2)

There are few major drawbacks in the Monge formulation. For example:

• The constraint set could be empty.

Eg: For µ = δ0 and ν = 1
2
δ1+

1
2
δ−1, the condition (2.1.2) cannot hold for any S : X 7→ Y

that is µ-a.e. single-valued.

• The cost M(S) could be non-linear in S (depending on c), hence could be difficult to

solve.

• The constraint S#µ = ν may not be closed under weak convergence in general.

Eg: ([2], Chapter 1) Let µ = L|[0,1] and ν = 1
2
δ1 +

1
2
δ−1. Consider the sequence of

functions given by Sn(x) := S(nx) where S : R 7→ R is a 1-periodic function defined
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by

S(x) =


1 on [0, 1/2)

−1 on [1/2, 1)

(2.1.3)

Then, (Sn)#µ = ν,∀n ∈ N, but (Sn) weakly converges to S = 0 in Lp,∀1 ≤ p <∞, so

that S#µ = δ0 ̸= ν.

Due to these issues, we consider a relaxation of the Monge Problem, which is known as

the Kantorovich Problem.

Definition 2.1.2. For given two probability measures µ ∈ P(X) and ν ∈ P(Y ), we define

the set of all transport plans from µ to ν by

Π(µ, ν) := {γ ∈ P(X × Y ) : Projx(x, y)#γ = µ,Projy(x, y)#γ = ν}. (2.1.4)

The conditions on γ above, are known as the marginal conditions and they can also be defined

as

γ(A× Y ) = µ(A), ∀A ∈ B(X), and γ(X ×B) = ν(B), ∀B ∈ B(Y ).

Then, the Kantorovich Problem is defined as below:

Problem 2.1.3. Find a γ0 ∈ Π(µ, ν) that minimizes the cost

K(γ) =

∫
X×Y

c(x, y) dγ(x, y) (2.1.5)

among all transport plans γ ∈ Π(µ, ν).

Transport plans that minimize the cost K(γ) are called optimal transport plans.

When compared to the Monge formulation, there are many advantages in the Kantorovich

formulation, such as:

• The set Π(µ, ν) is always non-empty as it contains µ⊗ ν.

• The cost K(γ) is linear in γ (regardless of c), hence much easier to solve.
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• The set Π(µ, ν) is a convex set.

We can easily see that for any γ1, γ2 ∈ Π(µ, ν) and 0 ≤ λ ≤ 1, λγ1+(1−λ)γ2 ∈ Π(µ, ν).

• If T#µ = ν, then γ := (Id×T )#µ ∈ Π(µ, ν), hence the set of transport plans contains

all transport maps.

Now, we will discuss the existence of a minimizer for the Kantorovich problem.

Theorem 2.1.4. ([51], Theorem 1.7) Let X, Y be two Polish spaces and µ ∈ P(X) and

ν ∈ P(Y ). If c : X × Y 7→ [0,∞] is lower semi-continuous, then the Kantorovich problem

(2.1.3) has a minimizer.

The proof is based on the tightness of the set Π(µ, ν) and the Prokhorov theorem.

From here onwards, we will call the Kantorovich problem, the classical Optimal Transport

(OT) problem and we will denote it by

OTc := inf
γ∈Π(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)

}
. (2.1.6)

2.2 Duality

Let X, Y be two compact Polish spaces, µ ∈ P(X) and ν ∈ P(Y ) and c : X×Y 7→ [0,∞)

be continuous. We will define the dual formulation of the OT problem as the following

maximization problem:

ˆOT∗
c := sup

(ϕ,ψ)∈Φc

{∫
X

ϕ(x) dµ(x) +

∫
Y

ψ(y) dν(y)

}
(2.2.1)

where

Φc := {(ϕ, ψ) ∈ Cb(X)× Cb(Y ) : ϕ(x) + ψ(y) ≤ c(x, y)}. (2.2.2)

Due to the lack of compactness of the above class of admissible functions, we will consider

an alternative dual formulation.
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Definition 2.2.1. Given a function f : X 7→ R ∪ {±∞}, we define its c-transform, f c :

Y 7→ R ∪ {±∞} by

f c(y) := inf
x∈X

{c(x, y)− f(x)}. (2.2.3)

Similarly, given a function g : Y 7→ R ∪ {±∞}, we define its c∗-transform, gc∗ : X 7→

R ∪ {±∞} by

gc
∗
(x) := inf

y∈Y
{c(x, y)− g(y)}. (2.2.4)

Definition 2.2.2. A function f : X 7→ R ∪ {±∞} is called c-concave, if there exists a

function g : Y 7→ R ∪ {±∞} such that f = gc
∗. A function g : Y 7→ R ∪ {±∞} is called

c∗-concave, if there exists a function f : X 7→ R ∪ {±∞} such that g = f c.

We will denote the set of c-concave functions on X by c-conc(X) and the set of c∗-concave

functions on Y by c∗-conc(Y ).

Observe that, given an admissible pair (ϕ, ψ) in ˆOT∗, if we replace (ϕ, ψ) by (ϕ, ϕc) and

then again by (ϕcc
∗
, ϕc), the value will be increased while satisfying the constraints ([51],

Definition 1.10). Hence, we consider the following dual formulation.

OT∗
c := sup

ϕ∈c-conc(X)

{∫
X

ϕ(x) dµ(x) +

∫
Y

ϕc(y) dν(y)

}
. (2.2.5)

Functions that maximize OT∗
c are called Kantorovich potentials.

Now, we will present the existence of dual maximizers and strong duality results.

Theorem 2.2.3. ([51], Proposition 1.11) Let X, Y be compact subsets of Rd and c be a con-

tinuous function. Then OT∗
c has a solution (ϕ, ψ) such that ϕ ∈ c-conc(X), ψ ∈ c∗-conc(Y )

and ψ = ϕc.

In the proof, one starts with a maximizing sequence (ϕn, ψn) and take the c-transforms

so that it improves the dual formulation. This transformation will make (ϕn, ψn) equi-

continuous and equi-bounded, so that one can apply the Arzelà-Ascoli theorem to get the

existence result.
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Theorem 2.2.4. ([51], Theorem 1.39) Let X, Y be two Polish spaces and suppose that

c : X × Y 7→ R is uniformly continuous and bounded. Then,

OTc = OT∗
c .

The proof uses the concept of c-cyclical monotonicity, which we will discuss next.

2.3 Properties of the optimizers

Definition 2.3.1. Given a function c : X × Y 7→ R ∪ {∞}, we say a set Γ ⊂ X × Y is

c-cyclically monotone, if for any positive integer p, any permutation σ of {1, . . . , p}, and any

finite family of points (x1, y1), . . . , (xp, yp) ∈ Γ, we have
p∑
i=1

c(xi, yi) ≤
p∑
i=1

c(xi, yσ(i)).

Theorem 2.3.2. ([51], Theorem 1.38) Let γ be an optimal transport plan for OTc and let

c be a continuous function. Then, spt(γ) is a c-cyclically monotone set.

Now, we will present a more general theorem.

Theorem 2.3.3. ([53], Theorem 5.9) Let X, Y be two Polish spaces and µ ∈ P(X) and

ν ∈ P(Y ). Suppose that c : X×Y 7→ R∪{∞} is a lower semi-continuous function, such that

there exist some real-valued, upper semi-continuous functions u ∈ L1(X, dµ), v ∈ L1(Y, dν)

satisfying

c(x, y) ≥ u(x) + v(y), ∀(x, y) ∈ X × Y.

Then,

1. Duality holds:

OTc = sup
(ϕ,ψ)∈Cb(X)×Cb(Y )

ϕ+ψ≤c

{∫
X

ϕ(x) dµ(x) +

∫
Y

ψ(y) dν(y)

}

= sup
(ϕ,ψ)∈L1(X,dµ)×L1(Y,dν)

ϕ+ψ≤c

{∫
X

ϕ(x) dµ(x) +

∫
Y

ψ(y) dν(y)

}

= sup
ϕ∈L1(X,dµ)

{∫
X

ϕ(x) dµ(x) +

∫
Y

ϕc(y) dν(y)

}
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= sup
ψ∈L1(Y,dν)

{∫
X

ψc
∗
(x) dµ(x) +

∫
Y

ψ(y) dν(y)

}
.

Note that, in the above suprema, we may take ϕ ∈ c-conc(X) and ψ ∈ c∗-conc(Y ).

2. Suppose c is real-valued and the cost OTc is finite. Then there is a measurable c-

cyclically monotone set Γ ⊂ X × Y , such that for any γ ∈ Π(µ, ν), the following

statements are equivalent.

a) γ is optimal;

b) γ is c-cyclically monotone;

c) There exists a c-concave function ϕ : X 7→ R ∪ {−∞} such that ϕ(x) + ϕc(y) =

c(x, y), γ-a.e.;

d) There exist functions ϕ : X 7→ R ∪ {∞} and ψ : Y 7→ R ∪ {∞}, such that

ϕ(x) + ϕc(y) ≤ c(x, y), ∀(x, y), with equality γ-a.e.;

e) γ is concentrated on Γ.

Now, we will present a uniqueness result for the optimal transport plans. This is known

as the Brenier-McCann’s Theorem.

Theorem 2.3.4. ([54], Theorem 2.12) Let c(x, y) = |x − y|2 and µ ∈ P2(X), ν ∈ P2(Y ).

Suppose that µ vanishes on small sets. Then,

1. There exists a unique optimal transport plan, given by

γ = (Id×∇u)#µ,

where ∇u is uniquely determined µ-a.e. such that u is convex and ∇u#µ = ν.

Furthermore,

spt(ν) = ∇u(spt(µ)).

2. ∇u is the unique solution to the Monge problem given by (2.1.1).
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3. If ν also vanishes on smalls sets, then ∇u∗ is a ν-a.e. unique solution to the Monge

problem from ν to µ, such that u∗ is convex and

∇u(∇u∗(y)) = y ν-a.e. y and

∇u∗(∇u(x)) = x µ-a.e. x.

Finally, we will briefly discuss the notion of the Wasserstein distance.

Definition 2.3.5. Let (X, d) be a Polish metric space and µ, ν ∈ P(X). For a given p ∈

[1,∞), we define the Wasserstein distance of order p between µ and ν by

Wp(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫
X×X

d(x, y)p dγ(x, y)

)1/p

.

Proposition 2.3.6. ([3], Chapter 7.1) Wp defines a distance on Pp(X).

Proposition 2.3.7. ([53], Corollary 6.9) Wp is lower semi-continuous w.r.t. weak conver-

gence of measures.
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CHAPTER 3

CAPACITY CONSTRAINED OT PROBLEM

3.1 Introduction

In the capacity constrained OT problem, we impose capacity constraints which limit the

amount transported between any given source and corresponding target. As an example in

the discrete case, we can consider a large number of coal mines from which coal has to be

transported to refining factories and the problem is to find where each unit of coal should

go with a minimum transportation cost. In the unconstrained OT problem, we assume that

any amount of coal can be transported, whereas in the capacity constrained case, there is

a limit to the amount of coal that can be transported from one mine to the corresponding

factory.

Formally, given two probability measures µ, ν ∈ P(Rd), that represent the distributions

in source and target, respectively, and a finite Borel measure γ̃ on Rd × Rd, that represents

the capacity constraint for the transport plans, we minimize the cost:

inf
γ∈Πγ̃(µ,ν)

{∫
Rd×Rd

c(x, y) dγ(x, y)

}
(3.1.1)

Here, the set Πγ̃(µ, ν) represents the set of transport plans from µ to ν bounded by γ̃.

In [46], Rachev and Rüschendorf introduced this problem on compact spaces where they

study bounded below, Borel measurable and lower semicontinuous cost functions and ob-

tained a dual formulation of the minimization problem. Recently, in a series of papers by

Korman, McCann and Seis, [33, 35, 34], the authors have considered this problem for con-

tinuous, bounded cost functions on Rd × Rd and for finite, bounded capacity constraints.

There, they have obtained the equivalence between the primal problem and a dual problem

with the existence of minimizers of the capacity constrained OT problem and existence of

dual maximizers. However, unlike in the classical case, any further information about dual

maximizers such as regularity or inheriting properties from the cost function is still unknown.

In this chapter, we will present the existing results regarding this Capacity Constrained
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OT problem and provide some characterization of the optimizers of the primal and dual

problems.

3.2 The Primal Problem

Similar to the work in [33], we will use functions to represent mass densities.

Let f and g be two non-negative, compactly supported density functions in L1(Rd) with

equal total masses, i.e.
∫
Rd f(x) dx =

∫
Rd g(y) dy, representing the source and the target

densities. Let c be a Borel measurable function on Rd×Rd representing the cost function. Let

h̃ ∈ L∞(Rd × Rd) be a compactly supported function representing the capacity constraint.

Denote by Πh̃(f, g), the set of all joint densities h ∈ L1(Rd × Rd) with marginals f and g,

and bounded by h̃, i.e.

f(x) =

∫
Rd
h(x, y) dy, g(y) =

∫
Rd
h(x, y) dx, and 0 ≤ h ≤ h̃.

We define the two-marginal Capacity Constrained Optimal Transport (CCOT) problem be-

tween f and g under the capacity h̃ as the following minimization problem:

OTCC := inf
h∈Πh̃(f,g)

Ic(h) (3.2.1)

where

Ic(h) :=

∫
Rd×Rd

c(x, y)h(x, y) dxdy.

Unlike in the unconstrained problem, it is not always guaranteed that the set Πh̃(f, g)

is non-empty. The necessary and sufficient conditions for Πh̃(f, g) to be non-empty are as

follows:

Proposition 3.2.1. ([46], Corollary 4.6.15) The set Πh̃(f, g) ̸= ∅ if and only if∫
A

f(x) dx+

∫
B

g(y) dy ≤ 1 +

∫
A×B

h̃(x, y) dxdy,

for any Borel measurable sets A,B ⊂ Rd.

The following theorem states that OTCC has a minimizer.
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Theorem 3.2.2. ([33], Theorem 3.1) Let c be a bounded, continuous function on Rd × Rd

and 0 ≤ h̃ ∈ L∞(Rd × Rd) be compactly supported. Take 0 ≤ f, g ∈ L1(Rd) compactly

supported functions such that the set Πh̃(f, g) is non-empty. Then, OTCC has a minimizer

in Πh̃(f, g).

In order to get uniqueness of the minimizers, we require the cost c to satisfy three con-

ditions.

(C1) c(x, y) is bounded,

(C2) there is a Lebesgue negligible closed set Z ⊂ Rd×Rd such that c(x, y) ∈ C2(Rd×Rd\Z)

and,

(C3) c(x, y) is non-degenerate: i.e. det∇2
xyc(x, y) ̸= 0 for all (x, y) ∈ Rd × Rd \ Z.

Theorem 3.2.3. ([33], Theorem 8.1) Suppose that the cost c(x, y) satisfies the conditions

(C1), (C2), and (C3). Let 0 ≤ h̃ ∈ L∞(Rd × Rd) be compactly supported. Take 0 ≤ f, g ∈

L1(Rd) compactly supported functions such that the set Πh̃(f, g) is non-empty. Then, OTCC

has a unique minimizer.

Now, we will give a characterization of the minimizers of OTCC.

Definition 3.2.4. Let h̃ ∈ L∞(Rd × Rd). A density h ∈ Πh̃(f, g) is called geometrically

extreme, if h(x, y) = 1W (x, y)h̃(x, y) for almost all (x, y) ∈ Rd × Rd, for some Lebesgue

measurable set W ⊂ Rd × Rd.

Theorem 3.2.5. ([33], Theorem 7.2) Suppose that the cost c(x, y) satisfies the conditions

(C1), (C2), and (C3). Let 0 ≤ h̃ ∈ L∞(Rd × Rd) be compactly supported. Take 0 ≤ f, g ∈

L1(Rd) compactly supported functions such that the set Πh̃(f, g) is non-empty. If h ∈ Πh̃(f, g)

minimizes OTCC, then h is geometrically extreme.
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3.3 Duality - Version I

For given f, g ∈ L1(Rd) and 0 ≤ h̃ ∈ L∞(Rd×Rd), we consider the following maximization

problem:

OT∗
CC := sup

(u,v,w)∈Lipc,h̃

J(u, v, w) (3.3.1)

where

J(u, v, w) :=

∫
Rd
u(x)f(x) dx+

∫
Rd
v(y)g(y) dy +

∫
Rd×Rd

w(x, y)h̃(x, y) dxdy, (3.3.2)

and

Lipc,h̃ :=

{
(u, v, w) : u ∈ L1(Rd, fdx), v ∈ L1(Rd, gdy), w ∈ L1(Rd × Rd, h̃dxdy),

u(x) + v(y) + w(x, y) ≤ c(x, y), and w(x, y) ≤ 0

}
.

(3.3.3)

Now, we will present the strong duality result for the CCOT problem.

Theorem 3.3.1. ([35], Theorem 1) Let f, g ∈ L1(Rd) be two probability densities such that

Πh̃(f, g) is non-empty and 0 ≤ h̃ ∈ L∞(Rd×Rd) be compactly supported. Let c ∈ L1(Rd×Rd).

Then,

OTCC = OT∗
CC .

Remark 3.3.2. In [35], the authors use an infinite dimensional linear programming duality

with a quadratic penalization to get this result.

In [34], the same authors prove the existence of dual maximizers for OT∗
CC.

Let X and Y be two compact subsets of Rd with unit volumes, f and g be probability

densities on X and Y , respectively, and 0 ≤ h̃ ∈ L∞(X × Y ).

Instead of the dual functional (3.3.2), we consider the functional

J ′(u, v) :=

∫
X

uf dx+

∫
Y

vg dy −
∫
X×Y

[−c+ u+ v]+ h̃ dxdy. (3.3.4)

and define

OT∗′
CC := sup

u∈L1(X,fdx),v∈L1(Y,gdy)

J ′(u, v). (3.3.5)
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Note that OT∗
CC = OT∗′

CC (see Appendix 1).

The existence result of dual maximizers is given below:

Theorem 3.3.3. ([34], Theorem 4.2) Let f, g and h̃ be continuous and strictly positive on

their compact supports X, Y , and X × Y , respectively. Let c ∈ L1(X × Y ). Fix an η > 1

and assume that Πh̃/η(f, g) is non-empty. Then, there exist functions (u, v) ∈ L1(X, fdx)×

L1(Y, gdy), such that

OT∗′
CC = J ′(u, v).

The authors also provide a characterization of the optimizers of the primal and the dual

problems as follows:

Corollary 3.3.4. ([34], Corollary 1.1) Under the assumptions of Theorem 3.3.3, any h ∈

Πh̃(f, g) is optimal if and only if there exist functions (u, v) ∈ L1(X, fdx)×L1(Y, gdy), such

that

c− u− v


≥ 0 where h = 0,

= 0 where 0 < h < h̃,

≤ 0 where h = h̃.

(3.3.6)

3.4 Duality - Version II

In [46], the authors consider the CCOT problem in a different setting.

Let X, Y be two compact subsets of Rd and let c : X×Y 7→ R∪{∞} be Borel measurable

and bounded below. Let µ ∈ P(X), ν ∈ P(Y ) and γ̃ be a finite Borel measure on X × Y .

Then, the CCOT is defined as the following minimization problem:

OTCC := inf
γ∈Πγ̃(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)

}
, (3.4.1)

where

Πγ̃(µ, ν) := {γ ∈ Π(µ, ν) : γ(A×B) ≤ γ̃(A×B),∀(A,B) ∈ B(X)×B(Y )}. (3.4.2)
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Its dual formulation is given by the following maximization problem:

OT∗
CC := sup

B

{∫
X

u(x) dµ(x) +

∫
Y

v(y) dν(y) +

∫
X×Y

w(x, y) dγ̃(x, y)

}
, (3.4.3)

where the supremum is taken over the set B of real-valued functions u, v, w satisfying u ∈

Cb(X), v ∈ Cb(Y ), w ∈ Cb(X×Y ) and w ≤ 0 with u(x)+v(y)+w(x, y) ≤ c(x, y) everywhere.

Now, we will present the duality theorem for this version.

Theorem 3.4.1. ([46], Theorem 4.6.14) Let c : X×Y 7→ R∪{∞} be Borel measurable and

bounded below. Then, the following statements are equivalent:

(a) c is lower semi-continuous on X × Y .

(b) The duality holds for all µ ∈ P(X), ν ∈ P(Y ) and γ̃ ∈ M+(X × Y ).

i.e. OTCC = OT∗
CC.

The proof is based on the abstract duality theorem (see [46], Theorem 4.6.1).

3.5 A further characterization on the optimizers

Even though the idea of the CCOT problem is quite as natural as the classical OT

problem, only a little is known about the optimizers when compared to other variants of

OT problem. In this section, we will present some characterization on the optimizers of the

primal and the dual problems for CCOT problem.

LetX, Y be compact subsets of Rd and c be a non-negative, bounded, continuous function

on X×Y . Let µ ∈ P(X), ν ∈ P(Y ) be probability measures which are absolutely continuous

w.r.t. Lebesgue measure with densities f ∈ L1(X) and g ∈ L1(Y ) and γ̃ be a compactly

supported finite measure on X × Y that is absolutely continuous w.r.t. Lebesgue measure

with a bounded density h̃ ∈ L∞(X × Y ).

We will redefine the primal and the dual problems as follows:

Icap := inf
γ∈Πγ̃(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)

}
. (3.5.1)
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I∗cap := sup
(u,v,w)∈Lipc,γ̃

J(u, v, w), (3.5.2)

where

J(u, v, w) =

∫
X

u(x) dµ(x) +

∫
Y

v(y) dν(y) +

∫
X×Y

w(x, y) dγ̃(x, y)

and

Lipc,γ̃ :=

{
(u, v, w) : u ∈ L1(X, dµ), v ∈ L1(Y, dν), w ∈ L1(X × Y, dγ̃),

u(x) + v(y) + w(x, y) ≤ c(x, y), and w(x, y) ≤ 0

}
.

(3.5.3)

Let γ ∈ Πγ̃(µ, ν) be a minimizer for Icap and (u, v, w) ∈ Lipc,γ̃ be a maximizer for I∗cap.

Let E ⊆ spt(γ̃) be the compact support of γ.

Then, by Theorem 3.2.5, we have that

γ =


γ̃ on E ⊂ X × Y,

0 elsewhere.
(3.5.4)

By duality (Theorem 3.3.1), we have that∫
X×Y

c dγ =

∫
X

u dµ+

∫
Y

v dν +

∫
X×Y

w dγ̃

=

∫
X

u dµ+

∫
Y

v dν +

∫
(X×Y )∩E

w dγ̃ +

∫
(X×Y )∩Ec

w dγ̃.

By (3.5.4) and w ≤ 0 on (X × Y ) ∩ Ec, we have that∫
X×Y

c dγ ≤
∫
X

u dµ+

∫
Y

v dν +

∫
X×Y

w dγ. (3.5.5)

On the other hand, since (u, v, w) ∈ Lipc,γ̃, we have that

u(x) + v(y) + w(x, y) ≤ c(x, y), ∀(x, y) ∈ X × Y.

By integrating both sides with respect to γ, we get∫
X

u dµ+

∫
Y

v dν +

∫
X×Y

w dγ ≤
∫
X×Y

c dγ. (3.5.6)
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By combining (3.5.5) and (3.5.6), we get∫
X×Y

c dγ =

∫
X

u dµ+

∫
Y

v dν +

∫
X×Y

w dγ. (3.5.7)

Thus, by using the marginal conditions, we can write∫
X×Y

(c− u− v − w) dγ = 0. (3.5.8)

Since we have the inequality c− u− v − w ≥ 0, we can conclude that

c(x, y)− u(x)− v(y)− w(x, y) = 0 γ-a.e. (3.5.9)

Now, let n ∈ N, σ be any permutation of {1, . . . , n} and pick an arbitrary collection of

points (x1, y1), . . . , (xn, yn) ∈ spt(γ). Then,

n∑
i=1

c(xi, yi)−
n∑
i=1

w(xi, yi) =
n∑
i=1

u(xi) + v(yi)

=
n∑
i=1

u(xi) + v(yσ(i))

≤
n∑
i=1

c(xi, yσ(i))− w(xi, yσ(i)).

This shows that spt(γ) is (c− w)-cyclical monotone (see Definition 2.3.1).

From here onwards, we will assume that the capacity γ̃ = κµ⊗ ν for some κ ≥ 1.

Let γ∗ ∈ Πγ̃(µ, ν) be a minimizer for Icap and (u, v, w) ∈ Lipc,γ̃ be a maximizer for I∗cap.

Thus, by (3.5.7), we have∫
X×Y

c dγ∗ =

∫
X

u dµ+

∫
Y

v dν +

∫
X×Y

w dγ∗. (3.5.10)

Again, consider the inequality

u(x) + v(y) + w(x, y) ≤ c(x, y).

By integrating both sides with respect to an arbitrary γ ∈ Π(µ, ν), we get∫
X

u dµ+

∫
Y

v dν +

∫
X×Y

w dγ ≤
∫
X×Y

c dγ.
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i.e. ∫
X

u dµ+

∫
Y

v dν ≤
∫
X×Y

(c− w) dγ.

Now, taking the infimum over γ ∈ Π(µ, ν) from both sides, we get∫
X

u dµ+

∫
Y

v dν ≤ inf
γ∈Π(µ,ν)

∫
X×Y

(c− w) dγ.

Observe that, since

Πγ̃(µ, ν) ⊆ Π(µ, ν),

we have

inf
γ∈Π(µ,ν)

∫
X×Y

(c− w) dγ ≤ inf
γ∈Πγ̃(µ,ν)

∫
X×Y

(c− w) dγ

≤
∫
X×Y

(c− w) dγ∗

=

∫
X

u dµ+

∫
Y

v dν, (by (3.5.10)).

(3.5.11)

Recall that the strong duality result holds for the classical OT problem with Borel mea-

surable and µ⊗ ν-a.e. finite costs (see [5], Theorem 2). Since c−w ≥ 0 is Borel measurable

and µ⊗ ν-a.e. finite, we have that

inf
γ∈Π(µ,ν)

∫
X×Y

(c− w) dγ = sup
u∈L1(X),v∈L1(Y )

u+v≤c

∫
X

u dµ+

∫
Y

v dν. (3.5.12)

Thus, by (3.5.11) and (3.5.12), we can conclude that (u, v) maximizes the dual of the

classical OT problem with cost (c− w).

Finally, we will list the above characterization in the following proposition.

Proposition 3.5.1. Let γ ∈ Πγ̃(µ, ν) be a minimizer for Icap and (u, v, w) ∈ Lipc,γ̃ be a

maximizer for I∗cap. Then,

1. c(x, y)− u(x)− v(y)− w(x, y) = 0 γ-a.e..

2. spt(γ) is (c− w)-cyclical monotone.

3. If γ̃ = κµ ⊗ ν for some κ ≥ 1, then (u, v) maximizes the dual of the classical OT

problem with cost (c− w).
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CHAPTER 4

MULTI-MARGINAL OT PROBLEM

4.1 The Multi-Marginal OT (MMOT) Problem

4.1.1 Introduction

As opposed to the classical OTP, which is a two-marginal problem, multi-marginal OTP

(also known as the multi-dimensional Monge-Kantorovich Problem) studies transporting

mass from a single source to multiple targets. More generally, given a p-tuple of probability

measures (ν1, . . . , νp) in Rd, the problem consists of finding an optimal way of successively

rearranging ν1 onto νi against a certain cost on Rpd where ν1 represents the mass distribution

at the source and (νj)j ̸=1 represent the mass distributions at the targets.

MMOT is a versatile framework that can be applied in various fields, including image

processing, computer vision, economics, machine learning, natural language processing, and

medical imaging, among others. For example, MMOT is used in economics to model and

solve problems involving the distribution of resources, such as the allocation of goods among

multiple buyers and sellers [13]. Also, MMOT is used in machine learning tasks such as

clustering, where it is used to group similar data points together based on their feature

similarities.

This was first discussed by Gangbo and Święch in [24], for a specific cost function. More

characterization of the optimal solutions and some applications have been discussed in [43,

44] and a few variants such as multi-marginal partial OTP [31] have been introduced later

on.

4.1.2 The Primal Problem (MMOT Problem)

Let p be a positive integer. For a given p-tuple of probability measures (ν1, . . . , νp) in

P(Rd), and a lower semi-continuous cost function c(x1, . . . , xp) : Rpd 7→ R, we consider the

minimization problem:

OTMM(ν1, . . . , νp) := inf
γ∈Π(ν1,...,νp)

∫
Rpd

c(x1, . . . , xp)dγ(x1, . . . , xp), (4.1.1)
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where

Π(ν1, . . . , νp) := {γ ∈ P(Rpd) : Projxi(x1, . . . , xp)#γ = νi,∀1 ≤ i ≤ p}. (4.1.2)

When p = 2, (4.1.1) becomes the classical OT problem.

Remark 4.1.1. In [24], the authors consider the cost

c(x1, . . . , xp) =

p∑
j ̸=k

|xj − xk|2 (4.1.3)

and the minimization problem

OT′
MM(T ) := inf

K

p∑
j ̸=k

∫
Rd

|Tj(x)− Tk(x)|2

2
dν1(x). (4.1.4)

where K is the set of all p-tuples of maps T = (T1, . . . , Tp) such that Ti : Rd 7→ Rd (i =

1, . . . , p) are Borel measurable and satisfy νi = Ti#ν1.

Theorem 4.1.2. Given νi ∈ P(Rd) for each i = {1, . . . , p}, and a lower semi-continuous

cost c : Rpd 7→ R, OTMM has a solution.

The proof of the existence of a minimizer for (4.1.1) is quite standard. Similar to the

proof of existence of solutions for the classical OT Problem, since the set Π(ν1, . . . , νp) is non-

empty, convex and compact with respect to the weak topology and the functional γ 7→
∫
c dγ

is linear with respect to γ, we can guarantee the existence of a minimizer for (4.1.1).

Remark 4.1.3. In [24], the authors have proven that if the measures ν1, . . . , νp are vanishing

on (d − 1)-rectifiable sets and have finite second moments, then the MMOT Problem with

cost
∑p

j ̸=k |xj − xk|2 has a unique solution (See [24], Corollary 2.2).

4.1.3 Duality

Similar to the dual formulation of the two-marginal OT problem, we define the dual

problem of the MMOT Problem as follows:
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Given probability measures (ν1, . . . , νp) in P(Rd), we consider the maximizing problem

OT∗
MM(u1, . . . , up) := sup

A

{
p∑
i=1

∫
Rd
ui(xi) dνi(xi)

}
. (4.1.5)

Here, A is the set of all p-tuples of functions (u1, . . . , up) such that ui ∈ L1(Rd, dνi) and

upper semi-continuous, and
∑p

i=1 ui(xi) ≤ c(x1, . . . , xp), ∀(x1, . . . , xp) ∈ Rpd.

The duality results between (4.1.1) and (4.1.5) have been discussed in the literature. How-

ever, in [24], the authors provide duality results with extensive characterization. Therefore,

we will present the duality results given in [24] for the cost given by (4.1.3).

Theorem 4.1.4. ([24], Theorem 2.1) Assume that ν1, . . . , νp are non-negative Borel proba-

bility measures vanishing on (d − 1)-rectifiable sets and having finite second moments. Set

Xi := spt(νi) for i = 1, . . . , p. Then:

(i) OT∗
MM admits a maximizer u = (u1, . . . , up) ∈ A.

(ii) There is a minimizer S = (S1, . . . , Sp) for (4.1.4) satisfying S1(x) = x (x ∈ Rd).

The Si are one-to-one νi-a.e., are uniquely determined, and have the form Si(x) =

∇f ∗
i (∇f1(x)) (x ∈ Rd), where

fi(x) =
|x|2

2
+ ϕi(x),

the ϕi are convex functions, and f ∗
i ∈ C1(Rd) where f ∗

i denotes the Legendre transform

of fi (see [47], Section 26).

(iii) Duality holds: the optimal values in (4.1.4) and (4.1.5) coincide.

(iv) If ū = (ū1, . . . , ūp) ∈ A is another maximizer for (4.1.5), we can modify the ūi’s on sets

of zero νi measure to obtain a maximizer, still denoted ū, such that ūi is differentiable

νi-a.e. Furthermore,

∇ui = ∇ūi νi-a.e.
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4.2 Capacity Constrained Multi-Marginal OT Problem

The notion of the capacity constrained multi-marginal OT Problem already has been

introduced in [18]. The Capacity Constrained Multi-Marginal Optimal Transport (CCM-

MOT) problem introduces capacities that limit the amount transported between the source

and the targets.

4.2.1 The Primal Problem

Suppose we are given a positive integer p, and p probability measures ν1, . . . , νp ∈ P(Rd).

Let γ̃ be a compactly supported finite measure on Rpd such that γ̃ ≪ ν1 ⊗ . . .⊗ νp.

Define

Πγ̃(ν1, . . . , νp) := {γ ∈ Π(ν1, . . . , νp) : γ(A1× . . .×Ap) ≤ γ̃(A1× . . .×Ap),∀Ai ∈ B(Rd),∀i}.

(4.2.1)

We assume that the set Πγ̃(ν1, . . . , νp) is non-empty.

Then, the CCMMOT problem is to minimize the cost:

OTCCMM := inf
γ∈Πγ̃(ν1,...,νp)

∫
Rpd

c(x1, . . . , xp) dγ(x1, . . . , xp). (4.2.2)

In [18], it has been shown that the CCMMOT problem has a solution and some char-

acterization of the optimal solution is given. We will present some of the results from [18]

below.

Theorem 4.2.1. ([18], Theorem 3.1) If c ∈ L∞(Rpd), then OTCCMM has a solution.

Next, we will provide a characterization of the optimal solutions of (4.2.2).

Definition 4.2.2. A measure γ ∈ Πγ̃(ν1, . . . , νp) is called an extreme point of the convex set

Πγ̃(ν1, . . . , νp) if γ is not the midpoint of a non-trivial line segment in Πγ̃(ν1, . . . , νp).

Theorem 4.2.3. ([18], Theorem 4.1) Suppose ν1, . . . , νp are non-atomic Borel probability

measures on Rd. Then, γ ∈ Πγ̃(ν1, . . . , νp) is an extreme point of the set Πγ̃(ν1, . . . , νp) if

and only if γ = 1W γ̃ for a γ-measurable set W ⊂ Rpd.
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To get the uniqueness of optimal solutions, we make the following two assumptions on

the cost function.

1. Assume that the function c ∈ L∞(Rpd) is such that the mixed partial derivative of

order p

∂i1,...,ipc =
∂pc

∂xi11 , . . . , x
ip
p

exists for each set of variables (xi11 , . . . , x
ip
p ), where 1 ≤ ik ≤ d for any k ≤ p.

2. Assume that for some fixed number N ∈ N∪{∞} there exist at most countably many

disjoint open sets {Gk}Nk=1, Gk ⊆ Rd, such that the following conditions are satisfied:

(C1) each set Gk has positive Lebesgue measure;

(C2) the union of all sets in {Gk}Nk=1 has full Lebesgue measure;

(C3) for every k ≤ N there exist a set of variables (xk11 , . . . , x
kp
p ) such that the functions

∂k1,...,kpc is either strictly positive or strictly negative on Gk.

Theorem 4.2.4. ([18], Theorem 6.1) Suppose we are given a cost function c on Rd satisfying

the conditions (C1), (C2), and (C3). Then, any γ ∈ P(Rpd) that is an optimal plan is an

extreme point of the set Πγ̃(ν1, . . . , νp).

Corollary 4.2.5. ([18], Corollary 6.1.1) If c on Rd satisfies the conditions (C1), (C2), and

(C3), then the optimal plan is unique.

4.2.2 Duality

To the best of our knowledge, a dual formulation for the CCMMOT problem does not exist

in the literature. Therefore, in this section we present a dual formulation for the CCMMOT

problem and prove the strong duality result and the existence of dual maximizers.

We will generalize the techniques used in [34, 35] for the two-marginal capacity con-

strained OT problem to get our results.
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Let νi be a probability measure in P(Rd) which is absolutely continuous w.r.t. Lebesgue

measure with density fi ∈ L1(Rd) for each 1 ≤ i ≤ p and γ̃ be a compactly supported finite

measure that is absolutely continuous w.r.t. Lebesgue measure with a bounded density h̃.

We denote by Πh̃(f1, . . . , fp) the set of all non-negative measurable joint densities on Rpd that

are bounded by h̃. i.e. for each 1 ≤ i ≤ p, fi(xi) =
∫
h(x1, . . . , xp) dx1 . . . dxi−1dxi+1 . . . dxp,

and 0 ≤ h ≤ h̃. As the dual formulation of the CCMMOT problem, we consider the following

maximization problem:

OT∗
CCMM := sup

(u1,...,up,w)∈Liph̃c

J(u1, . . . , up, w) (4.2.3)

where

J(u1, . . . , up, w) :=

p∑
i=1

∫
Rd
ui(xi)fi(xi) dxi +

∫
Rpd

w(x1, . . . , xp)h̃(x1, . . . , xp) dx1 . . . dxp

(4.2.4)

and

Liph̃c :=

{
(u1, . . . , up, w) : ui ∈ L1(Rd), w ∈ L1(Rpd),

p∑
i=1

ui(xi) + w(x1, . . . , xp) ≤ c(x1, . . . , xp), and w(x1, . . . , xp) ≤ 0

}
.

(4.2.5)

First, we will prove that the strong duality holds for the CCMMOT problem.

Theorem 4.2.6. Let νi be a probability measure in P(Rd) which is absolutely continuous

w.r.t. Lebesgue measure with density fi ∈ L1(Rd) for each 1 ≤ i ≤ p, γ̃ be a compactly

supported finite measure that is absolutely continuous w.r.t. Lebesgue measure on Rpd with

a bounded density h̃, c ∈ L1(Rpd) and assume Πh̃(f1, . . . , fp) ̸= ∅. Then,

OTCCMM = OT∗
CCMM .

Here, we will redefine OTCCMM as

OTCCMM = inf
h∈Πh̃(f1,...,fp)

Ic(h) :=

∫
Rpd

ch dx1 . . . dxp. (4.2.6)
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Proof. The proof of Theorem 4.2.6 is a consequence of the two propositions that we will be

proving below.

Proposition 4.2.7. Under the hypotheses of Theorem 4.2.6, we have

OTCCMM ≥ OT∗
CCMM (4.2.7)

Proposition 4.2.8. Under the hypotheses of Theorem 4.2.6, there exists a sequence

{(uε1, . . . , uεp, wε)}ε↓0 in Liph̃c such that

Ic(h0) = lim
ε↓0

J(uε1, . . . , u
ε
p, w

ε), (4.2.8)

where h0 is a minimizer of (4.2.6) of the form h0 = 1W h̃, for a Lebesgue measurable set

W ⊂ Rpd.

Proof of Proposition 4.2.7: Let h ∈ Πh̃(f1, . . . , fp) with Ic(h) finite and let

(u1, . . . , up, w) ∈ Liph̃c . Then we have

Ic(h) =

∫
Rpd

ch dx1 . . . dxp

=

p∑
i=1

∫
Rd
uifi dxi +

∫
Rpd

wh̃ dx1 . . . dxp +

∫
Rpd

(c−
p∑
i=1

ui − w)h dx1 . . . dxp

+

∫
Rpd

w(h− h̃) dx1 . . . dxp

≥ J(u1, . . . , up, w).

Note that, in the second line, we use the marginal conditions on h and in the last line, we

used the properties of the set Liph̃c along with the fact that h ≤ h̃. By taking the infimum

over h ∈ Πh̃(f1, . . . , fp) and supremum over (u1, . . . , up, w) ∈ Liph̃c from both sides, we get

the inequality (4.2.7).

Proof of Proposition 4.2.8: Similar to [35], we introduce a relaxed version of the MMOT

problem with capacity constraints. Let ε > 0 be a small number. Define

Iεc (h) :=

∫
Rpd

ch dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨h⟩xi − fi||22 (4.2.9)
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where ⟨g⟩xi denotes the ith marginal of g, for a given function g = g(x1, . . . , xp) defined on

Rpd, i.e. for each 1 ≤ i ≤ p, ⟨g⟩xi =
∫
g(x1, . . . , xp) dx1 . . . dxi−1dxi+1 . . . dxp.

For (u1, . . . , up, w) ∈ Liph̃c such that each ui ∈ L2(Rd), we define

Jε(u1, . . . , up, w) :=

p∑
i=1

∫
Rd
uifi dxi +

∫
Rpd

wh̃ dx1 . . . dxp −
ε

2

p∑
i=1

||ui||22. (4.2.10)

Note that, if ui /∈ L2(Rd) for some i ∈ {1, . . . , p}, we can extend Jε to a functional on the

entire set Liph̃c by setting Jε(u1, . . . , up, w) := −∞.

First, we will prove that the statement of Proposition 4.2.7 holds for the relaxed version.

Lemma 4.2.9. Let ε > 0 be given. Under the hypotheses of Theorem 4.2.6, we have

inf
0≤h≤h̃

Iεc (h) ≥ sup
(u1,...,up,w)∈Liph̃c

Jε(u1, . . . , up, w). (4.2.11)

Proof. Let 0 ≤ h ≤ h̃ and (u1, . . . , up, w) ∈ Liph̃c be such that Iεc (h) and Jε(u1, . . . , up, w) are

both finite. Then, observe that,

Iεc (h) =

∫
Rpd

ch dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨h⟩xi − fi||22

=

p∑
i=1

∫
Rd
uifi dxi +

∫
Rpd

wh̃ dx1 . . . dxp −
ε

2

p∑
i=1

||ui||22

+

∫
Rpd

(c−
p∑
i=1

ui − w)h dx1 . . . dxp +

∫
Rpd

w(h− h̃) dx1 . . . dxp

+
1

2ε

p∑
i=1

|| ⟨h⟩xi − fi + εui||22

≥ Jε(u1, . . . , up, w).

The last line holds true by the definition of the set Liph̃c , the fact that 0 ≤ h ≤ h̃ and the

non-negativity of the L2 norms.

Finally, by taking the infimum over h ∈ Πh̃(f1, . . . , fp) and supremum over (u1, . . . , up, w)

∈ Liph̃c from both sides, we get the inequality (4.2.11).

Next, we will prove that the relaxed problem (4.2.9) has a minimizer.
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Lemma 4.2.10. Let ε > 0 be given. Under the hypotheses of Theorem 4.2.6, there exists

a minimizer hε of Iεc , and hε can be chosen of the form hε = 1Wεh̃ for some Lebesgue

measurable set Wε ⊆ Rpd. Furthermore, if ĥε is another minimizer of Iεc , then for each

1 ≤ i ≤ p, ⟨hε⟩xi =
〈
ĥε

〉
xi

.

Proof. Let h0 be a minimizer of (4.2.6). Since it is admissible for Iεc , and h0 has marginals

f1, . . . , fp, we have that Iεc (h0) = Ic(h0). Thus, we have that, −||h̃||∞||c||L1(W̃ ) ≤ infh I
ε
c (h) ≤

Iεc (h0) = Ic(h0) < ∞, where W̃ is the support of h̃. So, we pick a minimizing sequence

{hn}n∈N of Iεc . Since we have 0 ≤ hn ≤ h̃, for each n, we can find a subsequence (without

relabeling) {hn}n∈N that converges weak-* in (L1(Rpd))∗ = L∞(Rpd) (see [48], Chapter 19)

to some L∞ function hε that satisfies 0 ≤ hε ≤ h̃.

Also note that for each 1 ≤ i ≤ p,

⟨hn⟩xi − fi =

∫
R(p−1)d

(hn − h0) dx1 . . . dxi−1dxi+1 . . . dxp.

Hence,∫
Rd

| ⟨hn⟩xi − fi|2 dxi ≤
∫
Rd

(∫
R(p−1)d

|hn − h0| dx1 . . . dxi−1dxi+1 . . . dxp

)2

dxi.

Since hn, h0 ≤ h̃ ∈ L∞(Rpd) with compact support, the sequence {⟨hn⟩xi − fi}n∈N is

bounded in L2. Hence, we can find a further subsequence (without relabeling) {hn}n∈N such

that the sequences {⟨hn⟩xi − fi}n∈N weakly converge to
(
⟨hε⟩xi − fi

)
in L2 for each i.

Now, fix an i ∈ {1, . . . , p} and let ξ = ξ(xi) be an arbitrary smooth and compactly

supported test function. Then,∫
Rd
[
(
⟨hn⟩xi − fi

)
−
(
⟨hε⟩xi − fi

)
]ξ dxi =

∫
Rd

(
⟨hn⟩xi − ⟨hε⟩xi

)
ξ dxi

=

∫
Rpd

(hn − hε)ξ dx1 . . . dxp.

Since hn converges to hε weak-*, we get that ⟨hn⟩xi − fi converges to ⟨hε⟩xi − fi.

Now, by the lower semi-continuity of the L2 norm with respect to weak L2 convergence,

for each i, we have that

|| ⟨hε⟩xi − fi||L2(Rd) ≤ lim inf
n→∞

|| ⟨hn⟩xi − fi||L2(Rd).
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Also, since c ∈ L1(Rpd), and hε, hn are supported in W̃ , by the weak-* convergence on

L∞(W̃ ), we get ∫
Rpd

chε dx1 . . . dxp = lim
n→∞

∫
Rpd

chn dx1 . . . dxp.

Thus, we have that

inf
h
Iεc (h) = lim inf

n→∞
Iεc (hn)

= lim inf
n→∞

{∫
Rpd

chn dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨hn⟩xi − fi||22

}

≥ lim inf
n→∞

∫
Rpd

chn dx1 . . . dxp +
1

2ε

p∑
i=1

lim inf
n→∞

|| ⟨hn⟩xi − fi||22

≥
∫
Rpd

chε dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨hε⟩xi − fi||22

= Iεc (hε).

This concludes that hε is a minimizer for Iεc . Since the relaxed problem is strictly convex

(see Appendix 2), it is clear that hε has unique marginals. Also, since hε is a minimizer for Ic

in the class Πh̃(⟨hε⟩x1 , . . . , ⟨hε⟩xp), we can choose hε such that hε = 1Wεh̃ for some Lebesgue

measurable set Wε ⊂ W̃ (see Theorem 4.2.3 and Theorem 4.2.4).

For the rest of the proof, we define the following functions.

uεi := −1

ε
(⟨hε⟩xi − fi) ∀1 ≤ i ≤ p, (4.2.12)

and

wε := min

{
c−

p∑
i=1

uεi , 0

}
. (4.2.13)

Note that, by the definition of wε, we get that wε ≤ 0 and
∑p

i=1 u
ε
i + wε ≤ c. Thus,

(uε1, . . . , u
ε
p, w

ε) ∈ Liph̃c defined in (4.2.5). Also note that for each i, uεi are determined inde-

pendently of the choice of hε in Πh̃(f1, . . . , fp). We will claim that (uε1, . . . , uεp, wε) maximizes

Jε in Liph̃c .
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Lemma 4.2.11. Let hε = 1Wεh̃ be a minimizer for Iεc . Then

c−
p∑
i=1

uεi


≤ 0 a.e. in Wε,

≥ 0 a.e. in W̃ \Wε.

(4.2.14)

Proof. Let ξ ≥ 0 be an arbitrary smooth test function. Define, for any σ ∈ R

hσε := hε + σξ(h̃− hε).

Since hε = 1Wεh̃, we have

hσε =


hε a.e. in Wε,

σξh̃ a.e. in W̃ \Wε.

(4.2.15)

Observe that, h0ε = hε and for 0 ≤ σ ≤ ||ξ||−1
∞ , 0 ≤ hσε ≤ h̃. Since hε minimizes Iεc , we

have Iεc (hε) = Iεc (h
0
ε) ≤ Iεc (h

σ
ε ).

Now observe that,

Iεc (h
σ
ε ) =

∫
Rpd

chσε dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨hσε ⟩xi − fi||22

=

∫
Rpd

c(hε + σξ(h̃− hε)) dx1 . . . dxp +
1

2ε

p∑
i=1

||
〈
(hε + σξ(h̃− hε))

〉
xi
− fi||22

=

∫
Rpd

chε dx1 . . . dxp +

∫
Rpd

cσξ(h̃− hε) dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨hε⟩xi − fi||22

+
1

2ε

p∑
i=1

∫
Rd

∣∣∣∣σξ 〈(h̃− hε)
〉
xi

∣∣∣∣2 dxi

+
1

ε

p∑
i=1

∫
Rd

(
σξ
〈
(h̃− hε)

〉
xi

)
·
(
⟨hε⟩xi − fi

)
dxi.

Then, the right derivative of Iεc at σ = 0 is given by

∂+I
ε
c (0) = lim

σ→0+

Iεc (σ)− Iεc (0)

σ

= lim
σ→0+

1

σ

{∫
Rpd

chε dx1 . . . dxp +

∫
Rpd

cσξ(h̃− hε) dx1 . . . dxp

+
1

2ε

p∑
i=1

|| ⟨hε⟩xi − fi||22 +
1

2ε

p∑
i=1

∫
Rd

∣∣∣∣σξ 〈(h̃− hε)
〉
xi

∣∣∣∣2 dxi
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+
1

ε

p∑
i=1

∫
Rd

(
σξ
〈
(h̃− hε)

〉
xi

)
·
(
⟨hε⟩xi − fi

)
dxi

−
∫
Rpd

chε dx1 . . . dxp −
1

2ε

p∑
i=1

|| ⟨hε⟩xi − fi||22

}

= lim
σ→0+

{∫
Rpd

cξ(h̃− hε) dx1 . . . dxp +
σ

2ε

p∑
i=1

∫
Rd

∣∣∣∣ξ 〈(h̃− hε)
〉
xi

∣∣∣∣2 dxi

+
1

ε

p∑
i=1

∫
Rd

(
ξ
〈
(h̃− hε)

〉
xi

)
·
(
⟨hε⟩xi − fi

)
dxi

}

=

∫
Rpd

cξ(h̃− hε) dx1 . . . dxp +
1

ε

p∑
i=1

∫
Rd

(
ξ
〈
(h̃− hε)

〉
xi

)
·
(
⟨hε⟩xi − fi

)
dxi

=

∫
Rpd

cξ(h̃− hε) dx1 . . . dxp +
1

ε

p∑
i=1

∫
Rpd

(
⟨hε⟩xi − fi

)
ξ(h̃− hε) dx1 . . . dxp

=

∫
Rpd

(
c−

p∑
i=1

uεi

)
ξ(h̃− hε) dx1 . . . dxp.

Since h0ε = hε minimizes Iεc , we have

0 ≤ ∂+I
ε
c (0) =

∫
Rpd

(
c−

p∑
i=1

uεi

)
ξ(h̃− hε) dx1 . . . dxp.

As this holds for any arbitrary test function ξ ≥ 0, we have that (c−
∑p

i=1 u
ε
i ) (h̃−hε) ≥ 0

a.e..

Since h̃ − hε ≥ 0 a.e. and h̃ − hε > 0 a.e in W̃ \ Wε, we get the second part of the

inequality in (4.2.14).

With a similar argument for hσε := hε−σξhε, we can prove the first inequality in (4.2.14).

Next, we will prove a duality result for the relaxed version.

Lemma 4.2.12. Let hε = 1Wεh̃ be a minimizer for Iεc and uεi , wε be defined by (4.2.12) and

(4.2.13). Then

Iεc (hε) = Jε(uε1, . . . , u
ε
p, w

ε). (4.2.16)

In particular, (uε1, . . . , uεp, wε) is a maximizer for Jε(u1, . . . , up, w) in Liph̃c .
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Proof. Observe that,

Jε(uε1, . . . , u
ε
p, w

ε) =

p∑
i=1

∫
Rd
uεifi dxi +

∫
Rpd

wεh̃ dx1 . . . dxp −
ε

2

p∑
i=1

||uεi ||22

=

∫
Rpd

chε dx1 . . . dxp −
∫
Rpd

chε dx1 . . . dxp +

∫
Rpd

wεhε dx1 . . . dxp

−
∫
Rpd

wεhε dx1 . . . dxp +

p∑
i=1

∫
Rd
uεi ⟨hε⟩xi dxi −

p∑
i=1

∫
Rd
uεi ⟨hε⟩xi dxi

+

p∑
i=1

∫
Rd
uεifi dxi +

∫
Rpd

wεh̃ dx1 . . . dxp −
ε

2

p∑
i=1

||uεi ||22

=

∫
Rpd

chε dx1 . . . dxp −
∫
Rpd

(
c−

p∑
i=1

uεi − wε

)
hε dx1 . . . dxp

+

∫
Rpd

wε(h̃− hε) dx1 . . . dxp +

p∑
i=1

∫
Rd
uεi (fi − ⟨hε⟩xi) dxi

− ε

2

p∑
i=1

||uεi ||22

=

∫
Rpd

chε dx1 . . . dxp +
1

2ε

p∑
i=1

|| ⟨hε⟩xi − fi||22

+

∫
Rpd

wε(h̃− hε) dx1 . . . dxp

−
∫
Rpd

(
c−

p∑
i=1

uεi − wε

)
hε dx1 . . . dxp

= Iεc (hε) +

∫
Rpd

wε(h̃− hε) dx1 . . . dxp

−
∫
Rpd

(
c−

p∑
i=1

uεi − wε

)
hε dx1 . . . dxp.

(4.2.17)

From (4.2.14) and (4.2.13), we observe that, on Wε, hε = h̃, hence wε(h̃ − hε) = 0 and

since c−
∑p

i=1 u
ε
i ≤ 0, wε = c−

∑p
i=1 u

ε
i , we obtain c−

∑p
i=1 u

ε
i −wε = 0. On the other hand,

on W̃ \Wε, hε = 0, hence (c−
∑p

i=1 u
ε
i − wε)hε = 0, and since c−

∑p
i=1 u

ε
i ≥ 0, wε = 0, we

obtain wε(h̃− hε) = 0.

Thus, (4.2.17) becomes

Jε(uε1, . . . , u
ε
p, w

ε) ≥ Iεc (hε).
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By (4.2.11) and the fact that (uε1, . . . , uεp, wε) ∈ Liph̃c , we can conclude that (uε1, . . . , uεp, wε)

is a maximizer for Jε(uε1, . . . , uεp, wε) in Liph̃c .

Now, we will prove that the minimizer of the relaxed problem (4.2.9) approximates the

original problem (4.2.6).

Lemma 4.2.13. Let {hε}ε↓0 be a sequence of minimizers for Iεc . Then, it is precompact in

the L∞-weak-* topology and every limit point h0 is a minimizer of Ic. Furthermore,

lim
ε↓0

Ic(hε) = Ic(h0), (4.2.18)

lim
ε↓0

ε||uεi ||22 = 0, ∀1 ≤ i ≤ p. (4.2.19)

Proof. Since we have 0 ≤ hε ≤ h̃, there exists a subsequence {hεn}n∈N that converges weakly-

* in L∞(W̃ ) to some function 0 ≤ h̄ ≤ h̃.

Let h̄0 be a minimizer of Ic. Note that, h̄0 is admissible for the relaxed problem and since

hεn is a minimizer for the relaxed problem, we have

Iεnc (hεn) ≤ Iεnc (h̄0) = Ic(h̄0). (4.2.20)

By the weak-* convergence of {hεn} in L∞(W̃ ), we have that∫
Rpd

ch̄ dx1 . . . dxp = lim
εn↓0

∫
Rpd

chεn dx1 . . . dxp.

i.e.

Ic(h̄) = lim
εn↓0

Ic(hεn). (4.2.21)

Since Ic(hεn) ≤ Iεnc (hεn), we have

lim inf
εn↓0

Ic(hεn) ≤ lim inf
εn↓0

Iεnc (hεn). (4.2.22)

By taking the lim inf in (4.2.20), we have

lim inf
εn↓0

Iεnc (hεn) ≤ Ic(h̄0). (4.2.23)
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Thus, by combining (4.2.21), (4.2.22), and (4.2.23)

Ic(h̄) ≤ Ic(h̄0). (4.2.24)

Now, we will claim that h̄ has the marginals f1, . . . , fp.

From (4.2.20), we have∫
Rpd

chεn dx1 . . . dxp +
1

2εn

p∑
i=1

|| ⟨hεn⟩xi − fi||22 ≤
∫
Rpd

ch̄0 dx1 . . . dxp.

So,
p∑
i=1

|| ⟨hεn⟩xi − fi||22 ≤ 2εn

∫
Rpd

c(h̄0 − hεn) dx1 . . . dxp.

Note that, since h̄0, hεn ∈ L∞(Rpd) with 0 ≤ hεn ≤ h̃,∀εn, and c ∈ L1(Rpd), we have∫
Rpd c(h̄0 − hεn) dx1 . . . dxp ≤ 2||h̃||L∞(Rpd)||c||L1(Rpd).

Hence, supn
∫
Rpd c(h̄0 − hεn) dx1 . . . dxp <∞.

Therefore, as εn ↓ 0, for each i,

⟨hεn⟩xi → fi in L2. (4.2.25)

Now, fix an i ∈ {1, . . . , p} and let ξ = ξ(xi) be an arbitrary smooth and compactly

supported test function. Then,∫
Rd

(〈
h̄
〉
xi
− fi

)
ξ dxi =

∫
Rd

(
⟨hεn⟩xi − fi

)
ξ dxi +

∫
Rd

(〈
h̄
〉
xi
− ⟨hεn⟩xi

)
ξ dxi

=

∫
Rd

(
⟨hεn⟩xi − fi

)
ξ dxi +

∫
Rpd

(h̄− hεn)ξ dx1 . . . dxp

≤
∫
Rd

|
(
⟨hεn⟩xi − fi

)
ξ| dxi +

∫
Rpd

(h̄− hεn)ξ dx1 . . . dxp

≤ || ⟨hεn⟩xi − fi||L2(Rd)||ξ||L2(Rd) +

∫
Rpd

(h̄− hεn)ξ dx1 . . . dxp.

In the last line, the first integral on the right converges to zero by (4.2.25) and the second

integral converges to zero by the weak-* convergence of hεn . Since ξ is arbitrary, we get that

for each i,
〈
h̄
〉
xi
= fi. Thus, we have h̄ ∈ Πh̃(f1, . . . , fp). Hence, by (4.2.24), we have that

Ic(h̄) = Ic(h̄0) = min
h∈Πh̃(f1,...,fp)

Ic(h). (4.2.26)
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Thus, we have

min
h∈Πh̃(f1,...,fp)

Ic(h) = Ic(h̄) = lim inf
εn↓0

Ic(hεn) ≤ lim inf
εn↓0

Iεnc (hεn) ≤ Ic(h̄0) = min
h∈Πh̃(f1,...,fp)

Ic(h).

So, we can find a subsequence {hεn}n∈N (not relabeled), such that

min
h∈Πh̃(f1,...,fp)

Ic(h) = lim
εn↓0

Ic(hεn) = lim
εn↓0

Iεnc (hεn). (4.2.27)

Therefore,

Ic(h̄) = lim
εn↓0

{∫
Rpd

chεn dx1 . . . dxp +
1

2εn

p∑
i=1

|| ⟨hεn⟩xi − fi||22

}

= lim
εn↓0

{∫
Rpd

chεn dx1 . . . dxp

}
+ lim

εn↓0

{
1

2εn

p∑
i=1

|| ⟨hεn⟩xi − fi||22

}

= Ic(h̄) + lim
εn↓0

{
1

2εn

p∑
i=1

|| ⟨hεn⟩xi − fi||22

}
.

This gives us that

lim
εn↓0

{
1

εn

p∑
i=1

|| ⟨hεn⟩xi − fi||22

}
= 0.

Using the definition of uεni in (4.2.12), we get

lim
εn↓0

p∑
i=1

εn||uεni ||22 = 0.

Hence, for each 1 ≤ i ≤ p,

lim
εn↓0

εn||uεni ||22 = 0.

This completes the proof of Lemma 4.2.13.

Finally, rewriting (4.2.16) using J(uεn1 , . . . , uεnp , wεn) and Ic(hεn), we get that

J(uεn1 , . . . , u
εn
p , w

εn) = Ic(hεn) +

p∑
i=1

εn||uεni ||22.

Letting εn ↓ 0, we get

lim
εn↓0

J(uεn1 , . . . , u
εn
p , w

εn) = lim
εn↓0

Ic(hεn) = Ic(h0).

This completes the proof of Proposition 4.2.8, hence the proof of Theorem 4.2.6.
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Remark 4.2.14. Note that the assumption of h̃ being compactly supported, automatically

gives us that the densities fi’s are compactly supported.

Next, we will prove the existence of dual maximizers for the CCMMOT problem.

Recall that the CCMMOT problem is given by

OTCCMM := inf
γ∈Πγ̃(ν1,...,νp)

∫
Rpd

c(x1, . . . , xp) dγ(x1, . . . , xp)

and the dual problem is given by

OT∗
CCMM := sup

(u1,...,up,w)∈Liph̃c

J(u1, . . . , up, w),

where

J(u1, . . . , up, w) :=

p∑
i=1

∫
Rd
ui(xi)fi(xi) dxi +

∫
Rpd

w(x1, . . . , xp)h̃(x1, . . . , xp) dx1 . . . dxp.

Let h̃ ∈ L∞(X1 × . . .×Xp), and the probability densities fi ∈ L1(Xi), for each 1 ≤ i ≤ p

are compactly supported. We will assume that the sets Xi = spt(fi) have unit Lebesgue

measure.

In order to get the existence result, we will consider the following dual formulation:

OT∗′
CCMM := sup

ui∈L1(Xi),∀1≤i≤p
J ′(u1, . . . , up), (4.2.28)

where

J ′(u1, . . . , up) :=

p∑
i=1

∫
Xi

uifi dxi −
∫
X1×...×Xp

[
−c+

p∑
i=1

ui

]
+

h̃ dx1 . . . dxp. (4.2.29)

Note that, (see Appendix 1)

OT∗
CCMM = OT∗′

CCMM .

Now, we will show that (4.2.28) has a solution.

Theorem 4.2.15. Let fi and h̃ be continuous and strictly positive on their compact supports

Xi ⊆ Rd and X1 × . . . × Xp respectively. Let c ∈ L1(X1 × . . . × Xp). Fix an η > 1 and
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assume that Πh̃/η(f1, . . . , fp) is non-empty. Then, there exist functions (u1, . . . , up) where

ui ∈ L1(Xi) ∀i, such that

OT∗′
CCMM = J ′(u1, . . . , up).

As in [34], our main goal will be to get a coercivity estimate of maximizing sequences

which will guarantee L1-boundedness.

For each 1 ≤ i ≤ p, let

uifi :=

∫
Rd
ui(xi)fi(xi) dxi.

Note that for a p-tuple of constants (k1, . . . , kp) with
∑p

i=1 ki = 0, we have

J ′(u1, . . . , up) = J ′(u1 + k1, . . . , up + kp).

Hence, we can find a p-tuple of constants (k1, . . . , kp) with
∑p

i=1 ki = 0, so that

(ui + ki)fi = (uj + kj)fj, ∀i ̸= j.

First, we will find a bound on the means uifi.

Lemma 4.2.16. Fix ui ∈ L1(Xi), c ∈ L1(X1 × . . . × Xp) and a probability density h ∈

L∞(X1× . . .×Xp) with marginals (f1, . . . , fp). Suppose there is some η > 1 such that h ≤ h̃
η
.

Then,

J ′(u1, . . . , up) ≤
p∑
i=1

uifi ≤
||ηhc||L1(X1×...×Xp) − J ′(u1, . . . , up)

η − 1
. (4.2.30)

Proof. From definition (4.2.29), we have

J ′(u1, . . . , up) =

p∑
i=1

∫
Xi

uifi dxi −
∫
X1×...×Xp

[
−c+

p∑
i=1

ui

]
+

h̃ dx1 . . . dxp.

By the non-positivity of the second integral, we get one direction of the inequality:

J ′(u1, . . . , up) ≤
p∑
i=1

uifi. (4.2.31)

On the other hand, since 0 ≤ h ≤ h̃
η

and the fact that (−c+
∑p

i=1 ui) ≤ [−c+
∑p

i=1 ui]+,

we have

J ′(u1, . . . , up) =

p∑
i=1

uifi −
∫
X1×...×Xp

[
−c+

p∑
i=1

ui

]
+

h̃ dx1 . . . dxp
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≤
p∑
i=1

uifi − η

∫
X1×...×Xp

(
−c+

p∑
i=1

ui

)
h dx1 . . . dxp

=

p∑
i=1

uifi + η

∫
X1×...×Xp

ch dx1 . . . dxp − η

p∑
i=1

uifi

≤ −(η − 1)

p∑
i=1

uifi + ||ηch||L1(X1×...×Xp).

Thus, we have
p∑
i=1

uifi ≤
||ηch||L1(X1×...×Xp) − J ′(u1, . . . , up)

η − 1
. (4.2.32)

By combining (4.2.31) and (4.2.32), we get the inequality (4.2.30) we desired.

Remark 4.2.17. Note that, if we assume that (ui + ki)fi = (uj + kj)fj, ∀i ̸= j for some

constants (k1, . . . , kp), the bounds in (4.2.30) imply that uifi is also bounded ,∀1 ≤ i ≤ p.

Next, we will obtain a bound on the oscillation of uifi around its mean for each i.

Lemma 4.2.18. Let ui, fi ∈ L1(Xi) for each 1 ≤ i ≤ p, c ∈ L1(X1 × . . . × Xp) and

h̃ ∈ L∞(X1 × . . . × Xp). Suppose that there is some 0 < ε ≤ 1 such that εf1 . . . fp ≤ h̃ for

all (x1, . . . , xp) ∈ X1 × . . .×Xp. Then, for each 1 ≤ i ≤ p we have

ε

6
||uifi−uifi||L1(X1×...×Xp) ≤ −J ′(u1, . . . , up)+ ||cf1 . . . fp||L1(X1×...×Xp)+

p∑
i=1

|uifi|. (4.2.33)

Proof. Fix an i ∈ {1, . . . , p}. Define the oscillation around the mean as

σi :=

∫
Xi

|uifi − uifi| dxi.

Let

X±
i =

{
xi : ±(ui(xi)fi(xi)− uifi) >

σi
3

}
and

m±
i = |X±

i |

Also, let

A±
i = ±

∫
X±
i

(ui(xi)fi(xi)− uifi) dxi.
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Note that by definition, A±
i ≥ 0.

Now, observe that∫
{|uifi−uifi|≤

σi
3
}
(uifi − ui(xi)fi(xi)) dxi =

∫
Xi

(uifi − ui(xi)fi(xi)) dxi

−
∫
{uifi−uifi<−σi

3
}
(uifi − ui(xi)fi(xi)) dxi

−
∫
{uifi−uifi>

σi
3
}
(uifi − ui(xi)fi(xi)) dxi

= uifi|Xi| − uifi −
∫
X−
i

(uifi − ui(xi)fi(xi)) dxi

−
∫
X+
i

(uifi − ui(xi)fi(xi)) dxi

=

∫
X+
i

(ui(xi)fi(xi)− uifi) dxi

+

∫
X−
i

(ui(xi)fi(xi)− uifi) dxi

= A+
i − A−

i .

(4.2.34)

In the second line, first term, we used the fact that the sets Xi have unit Lebesgue measure.

Then, by the definition of σi,

σi =

∫
Xi

|uifi − uifi| dxi

=

∫
{|uifi−uifi|≤

σi
3
}
|uifi − uifi| dxi +

∫
{uifi−uifi<−σi

3
}
|uifi − uifi| dxi

+

∫
{uifi−uifi>

σi
3
}
|uifi − uifi| dxi

≤ σi
3

∣∣∣{|uifi − uifi| ≤
σi
3

}∣∣∣+ ∫
X−
i

|uifi − uifi| dxi +
∫
X+
i

|uifi − uifi| dxi

≤ σi
3

(
1−m+

i −m−
i

)
+ A+

i + A−
i .

Thus,

A+
i + A−

i ≥
(
2

3
+
m+
i

3
+
m−
i

3

)
σi ≥

2

3
σi. (4.2.35)
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On the other hand, by (4.2.34) we have

A+
i − A−

i =

∫
{|uifi−uifi|≤

σi
3
}
(uifi − ui(xi)fi(xi)) dxi

≥ −σi
3

∣∣∣{− σi
3

≤ uifi − uifi ≤
σi
3

}∣∣∣
= −σi

3

(
1−m+

i −m−
i

)
≥ −σi

3
.

(4.2.36)

Thus by (4.2.35) and (4.2.36), we get

A+
i ≥ σi

6
. (4.2.37)

Therefore, first we will find a bound on A+
i , so that we get a bound on σi.

Now, observe that

A+
i =

∫
X+
i

(uifi − uifi) dxi

= −
∫
X+
i

uifi dxi +

∫
X+
i

uifi dxi

= −(uifi)m
+
i +

∫
X1×...×Xi−1×X+

i ×Xi+1×...×Xp
uif1 . . . fp dx1 . . . dxp

= −(uifi)m
+
i +

∫
X1×...×Xi−1×X+

i ×Xi+1×...×Xp

(
−c+

p∑
k=1

uk

)
f1 . . . fp dx1 . . . dxp

+

∫
X1×...×Xi−1×X+

i ×Xi+1×...×Xp
cf1 . . . fp dx1 . . . dxp −

∑
j ̸=i

ujfj

∫
X+
i

fi dxi

≤ 1

ε

∫
X1×...×Xp

[
−c+

p∑
k=1

uk

]
+

h̃ dx1 . . . dxp −
1

ε

p∑
k=1

ukfk +
1

ε

p∑
k=1

ukfk

+

∫
X1×...×Xp

|c|f1 . . . fp dx1 . . . dxp −
∑
j ̸=i

ujfj

∫
X+
i

fi dxi − (uifi)m
+
i

≤ −1

ε
J ′(u1, . . . , up) + ||cf1 . . . fp||L1(X1×...×Xp) +

(
1

ε
−m+

i

)
uifi

+

(
1

ε
−
∫
X+
i

fi dxi

)∑
j ̸=i

ujfj.

(4.2.38)

Note that in the penultimate line, we used the fact that εf1 . . . fp ≤ h̃.
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So, from (4.2.38), we have that,

εA+
i ≤ −J ′(u1, . . . , up) + ε||cf1 . . . fp||L1(X1×...×Xp) +

(
1− εm+

i

)
uifi

+

(
1− ε

∫
X+
i

fi dxi

)∑
j ̸=i

ujfj.

Since each fi is a probability density and m+
i , ε ≤ 1, we have 0 ≤ 1 − εm+

i ≤ 1 and

0 ≤ 1− ε
∫
X+
i
fi dxi ≤ 1.

So, we get that

εA+
i ≤ −J ′(u1, . . . , up) + ||cf1 . . . fp||L1(X1×...×Xp) +

p∑
k=1

[
ukfk

]
+

(4.2.39)

Since we have A+
i ≥ σi

6
by (4.2.37), we get

ε

6
σi ≤ −J ′(u1, . . . , up) + ||cf1 . . . fp||L1(X1×...×Xp) +

p∑
k=1

∣∣ukfk∣∣ .
This is the desired inequality (4.2.33).

Now, we will obtain L1-bounds on the ui’s.

Proposition 4.2.19. Let c ∈ L1(X1× . . .×Xp) and h̃ ∈ L∞(X1× . . .×Xp). Let h be a prob-

ability density with marginals f1, . . . , fp such that h ≤ h̃
η

for some η > 1. Suppose that there

is some ε > 0 such that εf1(x1) . . . fp(xp) ≤ h̃(x1, . . . , xp) and ε ≤ min{f1(x1), . . . , fp(xp)}

for almost all (x1, . . . , xp) ∈ X1 × . . . × Xp and suppose that there exist some functions

ui ∈ L1(Xi), i ∈ {1, . . . , p} such that uifi = ujfj,∀i ̸= j. Then OT∗
CCMM −1 ≤ J ′(u1, . . . , up)

implies that ||ui||L1(Xi) is bounded for each 1 ≤ i ≤ p.

Remark 4.2.20. Note that the above bound depends only on OT∗
CCMM, ε, η, ||c||L1 and

||h̃||L∞.

Proof. Fix an i ∈ {1, . . . , p}. Observe that

||ui||L1(Xi) ≤ || 1
fi
||L∞(Xi)||uifi||L1(Xi) ≤

1

ε
||uifi||L1(Xi) ≤

1

ε
||uifi||L1(Xi) +

1

ε
||uifi − uifi||L1(Xi)

Using Lemma 4.2.16, Lemma 4.2.18 and the fact that OT∗
CCMM −1 ≤ J ′(u1, . . . , up), we

get a bound for ||ui||L1(Xi) for each i.
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Now, we will discuss the proof of the existence of maximizers.

By Proposition 4.2.19, we can pick a maximizing sequence (u1, . . . , up) with uniform

L1-bounds for OT∗
CCMM. However, since the L1-unit ball is not compact, an L1-bound is

not sufficient to get the convergence of a subsequence. Therefore, in order to get better

compactness properties, we extend the definition of J ′(u1, . . . , up) from L1 space to the

space of signed measures with finite total variation.

Let M(X) denote the space of signed Radon measures on X. Let C ∈M(X1 × . . .×Xp)

be such that dC(x1, . . . , xp) = c(x1, . . . , xp) dx1 . . . dxp and Ui ∈M(Xi) for each 1 ≤ i ≤ p.

Define

J̃ ′(U1, . . . , Up) :=

p∑
i=1

∫
Xi

fi dUi −
∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Ui ⊗ . . .⊗Hd

p

]
+

.

(4.2.40)

Here, dHd
i (x) = dxi denotes Lebesgue measure on Rd.

First, we will prove that the functional J̃ ′ is upper semi-continuous with respect to weak-*

convergence in M(X1)× . . .×M(Xp).

Lemma 4.2.21. Let c ∈ L1(X1 × . . . × Xp) be such that dC = c dHpd. Let f1, . . . , fp

and h̃ be continuous, non-negative functions on the compact sets X1, . . . , Xp and X1 × . . .×

Xp respectively. Then, the functional J̃ ′ is upper semi-continuous with respect to weak-*

convergence in M(X1)× . . .×M(Xp).

Proof. Let (Un
1 , . . . , U

n
p )

∞
n∈N be a bounded sequence in M(X1) × . . . × M(Xp) such that

(Un
1 , . . . , U

n
p ) converges to (U1, . . . , Up) when tested against functions in C(X1)× . . .×C(Xp).

We need to show that

lim sup
n→∞

J̃ ′(Un
1 , . . . , U

n
p ) ≤ J̃ ′(U1, . . . , Up).

Observe that,

lim sup
n→∞

{
p∑
i=1

∫
Xi

fi dU
n
i −

∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Un

i ⊗ . . .⊗Hd
p

]
+

}
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≤ lim sup
n→∞

p∑
i=1

∫
Xi

fi dU
n
i + lim sup

n→∞
−
∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Un

i ⊗ . . .⊗Hd
p

]
+

= lim sup
n→∞

p∑
i=1

∫
Xi

fi dU
n
i − lim inf

n→∞

∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Un

i ⊗ . . .⊗Hd
p

]
+

.

We already have that, for each 1 ≤ i ≤ p,∫
Xi

fi dUi = lim
n→∞

∫
Xi

fi dU
n
i . (4.2.41)

So, it remains to show that∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Ui ⊗ . . .⊗Hd

p

]
+

≤ lim inf
n→∞

∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Un

i ⊗ . . .⊗Hd
p

]
+

. (4.2.42)

Fix an i ∈ {1, . . . , p}. Let

dµni := h̃ d

(
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Un

i ⊗ . . .⊗Hd
p

)
and

dµi := h̃ d

(
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Ui ⊗ . . .⊗Hd

p

)
.

Then, we have that dµni converges weakly-* to dµi. i.e. given a function ϕ ∈ C(X1 ×

. . .×Xp), we have

∫
X1×...×Xp

ϕ dµni = −
∫
X1×...×Xp

ch̃ϕ dx1 . . . dxp

+

p∑
i=1

∫
Xi

(∫
X1×...×Xi−1×Xi+1×...×Xp

h̃ϕdx1 . . . dxi−1dxi+1 . . . dxp

)
dUn

i

n→∞−−−→ −
∫
X1×...×Xp

ch̃ϕ dx1 . . . dxp

+

p∑
i=1

∫
Xi

(∫
X1×...×Xi−1×Xi+1×...×Xp

h̃ϕdx1 . . . dxi−1dxi+1 . . . dxp

)
dUi
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=

∫
X1×...×Xp

ϕ dµi. (4.2.43)

Now, we will decompose the measures µni and µi into their positive and negative parts as

µni = µni + − µni − and µi = µi+ − µi+. Since µni converges to µi weak-*, by plugging ϕ ≡ 1 in

(4.2.43), we get

µni +(X1 × . . .×Xp)− µni −(X1 × . . .×Xp) = µni (X1 × . . .×Xp)

n→∞−−−→ µi(X1 × . . .×Xp) = µi+(X1 × . . .×Xp)− µi−(X1 × . . .×Xp). (4.2.44)

Let X̃ = X1 × . . .×Xp.

So, we have

µi+(X̃)− µi+(X̃) ≤ lim inf
n→∞

{µni +(X̃)− µni −(X̃)}. (4.2.45)

On the other hand, since the total variation norm ||µi||TV given by |µi| = µi+ + µi− is

lower semi-continuous w.r.t. weak-* convergence, we have

µi+(X̃) + µi−(X̃) ≤ lim inf
n→∞

||µni ||TV

= lim inf
n→∞

{µni +(X̃) + µni −(X̃)}.
(4.2.46)

i.e.

µi+(X̃) + µi−(X̃) ≤ lim inf
n→∞

{µni +(X̃) + µni −(X̃)}. (4.2.47)

Now, by combining (4.2.45) and (4.2.47), we get

µi+(X̃) ≤ lim inf
n→∞

µni +(X̃).

Note that, since we only have the positive part of the measures in (4.2.42), it is enough to

get lower semi-continuity of µni +(X̃) only.

This completes the proof of Lemma 4.2.21.

Finally, we will present the main result for existence of dual maximizers.

Theorem 4.2.22. Let fi and h̃ be continuous and strictly positive on their compact supports

Xi ⊆ Rd and X1 × . . . × Xp respectively. Let c ∈ L1(X1 × . . . × Xp). Fix an η > 1 and
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assume that Πh̃/η(f1, . . . , fp) is non-empty. Then, there exist functions (u1, . . . , up) where

ui ∈ L1(Xi) ∀i, such that

OT∗′
CCMM = J ′(u1, . . . , up).

Proof. Let (un1 , . . . , u
n
p )n∈N be a maximizing sequence for OT∗

CCMM,

i.e. for each i ∈ {1, . . . , p}, uni ∈ L1(Xi) and

OT∗′
CCMM = lim

n→∞
J ′(un1 , . . . , u

n
p ).

Fix ε ≤ minx1,...,xp∈X̃{f1(x1), . . . , fp(xp)}. Since h̃ is bounded away from zero, we may pick ε

sufficiently small so that we have εf1(x1) . . . fp(xp) ≤ h̃ for all (x1, . . . , xp) ∈ X1 × . . .×Xp.

We can find a p-tuple of constants (kn1 , . . . , k
n
p ) with

∑p
i=1 k

n
i = 0 such that adding kni to

each uni ensures that uni fi = unj fj for each i ̸= j.

Now, by Proposition 4.2.19, for each i, we get a bound for ||uni ||L1(Xi) independent from

n. For each i, let Un
i ∈ M(Xi) be such that dUn

i (xi) = duni (xi) dxi. Then, we have that

||Un
i ||TV = ||uni ||L1(Xi) is bounded. Thus, by Alaoglu’s theorem, we can get a subsequence

(without relabelling) (Un
1 , . . . , U

n
p ) that converges weakly-* to some (U1, . . . , Up) ∈M(X1)×

. . .×M(Xp).

So, we have that J̃ ′(Un
1 , . . . , U

n
p ) = J ′(un1 , . . . , u

n
p )

n→∞−−−→ OT∗
CCMM. By Lemma 4.2.21, we

have that

OT∗
CCMM ≤ J̃ ′(U1, . . . , Up).

Next, we will prove that OT∗
CCMM ≥ J̃ ′(U1, . . . , Up).

Let C = cHd
1 ⊗ . . .⊗Hd

p . By Lebesgue’s decomposition theorem, for each i, the measures

Ui can be written as Ui = Uac
i +U s

i , where Uac
i ≪ Hd and U s

i ⊥ Hd. On the other hand, by the

Hahn-Jordan decomposition theorem, we can write Ui = Ui+ −Ui−. Since the Hahn-Jordan

decomposition and the Lebesgue decomposition commute, we have

Ui+ = [Uac
i ]+ + [U s

i ]+ ,

and

Ui− = [Uac
i ]− + [U s

i ]− .
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Now, observe that[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Ui ⊗ . . .⊗Hd

p

]
+

=

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Uac

i ⊗ . . .⊗Hd
p

]
+

+

[
p∑
i=1

Hd
1 ⊗ . . .⊗ U s

i ⊗ . . .⊗Hd
p

]
+

.

Thus,

J̃ ′(U1, . . . , Up) =

p∑
i=1

∫
Xi

fi dUi −
∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Ui ⊗ . . .⊗Hd

p

]
+

=

p∑
i=1

∫
Xi

fi dU
ac
i +

p∑
i=1

∫
Xi

fi dU
s
i

−
∫
X1×...×Xp

h̃ d

[
−C +

p∑
i=1

Hd
1 ⊗ . . .⊗ Uac

i ⊗ . . .⊗Hd
p

]
+

−
∫
X1×...×Xp

h̃ d

[
p∑
i=1

Hd
1 ⊗ . . .⊗ U s

i ⊗ . . .⊗Hd
p

]
+

= J̃ ′(Uac
1 , . . . , U

ac
p ) +

p∑
i=1

∫
Xi

fi dU
s
i

−
∫
X1×...×Xp

h̃ d

[
p∑
i=1

Hd
1 ⊗ . . .⊗ U s

i ⊗ . . .⊗Hd
p

]
+

≤ J ′(u1, . . . , up) +

p∑
i=1

∫
Xi

fi dU
s
i

−
∫
X1×...×Xp

h d

[
p∑
i=1

Hd
1 ⊗ . . .⊗ U s

i ⊗ . . .⊗Hd
p

]

= J ′(u1, . . . , up)

≤ OT∗′
CCMM .

Here, for each i, ui represents the Radon-Nikodym derivative of Uac
i such that ui dxi = dUac

i

and h ∈ Πh̃/η(f1, . . . , fp).

So, we have proven that

OT∗′
CCMM ≤ J̃ ′(U1, . . . , Up) ≤ J ′(u1, . . . , up) ≤ OT∗′

CCMM .

Thus, (u1, . . . , up) is the desired maximizer.
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CHAPTER 5

BARYCENTERS

5.1 Barycenters in the Wasserstein Space

5.1.1 Introduction

The problem of finding a barycenter in the Wasserstine space is a nonlinear interpolation

between several probability measures. As an example in the discrete case, consider several

coal mines, and the coal extracted has to be sent to a factory that is located centrally. The

problem is to find the location to construct such a factory so that total transportation cost

is minimized.

This notion of barycenters in Wasserstein space was first introduced by Agueh and Carlier

in [1] and they have provided existence, uniqueness, characterizations of the minimizer and

regularity of the barycenter, and relate it to the multi-marginal OT problem considered

by Gangbo and Święch in [24]. This problem has a wide range of applications including

economics [13] and data science [4, 8].

To elaborate a few applications of Wasserstein Barycenters; in image processing, Wasser-

stein barycenters have been used to generate “averaged” images from a set of input images.

This technique is particularly useful for denoising and image reconstruction. “Image morph-

ing” or “image interpolation” is such an application ([52, 56]). In Machine Learning, it can

be used to generate representative data points from a set of input data, which can then be

used to train machine learning models. This can be particularly useful in cases where the

input data is noisy or incomplete.

Overall, Wasserstein barycenters are a powerful mathematical tool that have found many

applications in different fields. Their properties and computational efficiency make them a

popular choice for solving optimization problems involving probability measures.

To provide some background on the Wasserstein Barycenters, we will present some ex-

isting results in [1] in the next few sections.

50



5.1.2 The Primal Problem

Recall that we define the squared 2-Wasserstein distance between two probability mea-

sures µ, ν ∈ P2(Rd) by

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2dγ(x, y).

Let p ≥ 2 be an integer. Given a p-tuple of probability measures (ν1, . . . νp) with each

νi ∈ P2(Rd) and a p-tuple of positive real numbers (λ1, . . . λp) with
∑p

i=1 λi = 1, we define

the following minimization problem:

OTBC = inf
ν∈P2(Rd)

{
p∑
i=1

λiW
2
2 (νi, ν)

}
. (5.1.1)

A solution of (5.1.1) is called the barycenter of the probabilities νi with weights λi.

Remark 5.1.1. For p = 2 with λ1 = λ2 = 1
2
, this problem means finding the midpoint be-

tween the two measures ν1 and ν2 and such an interpolation is already known as the McCann’s

interpolation [40].

Theorem 5.1.2. ([1], Proposition 2.3) Given an integer p ≥ 2, a p-tuple of probability

measures (ν1, . . . νp) with each νi ∈ P2(Rd) and a p-tuple of positive real numbers (λ1, . . . λp)

with
∑p

i=1 λi = 1, the Barycenter Problem given by (5.1.1) has a solution.

The proof is given in [1] and it uses the direct method in Calculus of Variations.

To study the uniqueness and other properties of the barycenters, we require a dual

formulation.

5.1.3 Duality

Define the space of continuous functions with at most quadratic growth,

Y := (1 + | . |2)Cb(Rd) =

{
f ∈ C(Rd) :

f

1 + | .|2
is bounded

}
that is equipped with the norm

||f ||Y := sup
x∈Rd

|f(x)|
1 + |x|2

. (5.1.2)
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We define the dual of (5.1.1) as

OT∗
BC := sup

fi∈Cb(Y ),
∑p
i=1 fi=0

p∑
i=1

∫
Rd

inf
y∈Rd

{
λi
2
|x− y|2 − fi(y)

}
dνi(x). (5.1.3)

In [1], the authors have proven that the strong duality holds for the barycenter problem

and dual maximizers for (5.1.3) exist.

Theorem 5.1.3. ([1], Proposition 2.2 & Proposition 2.3)

OTBC = OT∗
BC ,

and OT∗
BC given by (5.1.3) has a solution.

With the duality results, we can characterize the barycenters in several ways. Given

below are few results from [1].

Proposition 5.1.4. ([1], Proposition 3.5) Assume that there is an index i ∈ {1, . . . , p} such

that νi vanishes on small sets. Then OTBC admits a unique solution ν which is given by

ν = ∇ϕi#νi, where given a solution (f1, . . . , fp) of OT∗
BC, ϕi is the convex potential defined

by

λiϕi(x) :=
λi
2
|x|2 − inf

y∈Rd

{
λi
2
|x− y|2 − fi(y)

}
. (5.1.4)

Proposition 5.1.5. ([1], Proposition 3.8) Assume that νi vanishes on small sets for every

i ∈ {1, . . . , p}, and let ν ∈ P2(Rd). Then the following conditions are equivalent:

1. ν solves OTBC.

2. ν = ∇ϕi#νi for every i, where ϕi is defined by (5.1.4).

3. There exist convex potentials ψi such that ∇ψi is the Brenier’s map transporting νi to

ν, and a constant C such that

p∑
i=1

λiψ
∗
i (y) ≤ C +

|y|2

2
, ∀y ∈ Rd,with equality ν-a.e. (5.1.5)
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Remark 5.1.6. If ν and the potentials ψi satisfy the third statement of Proposition 5.1.5,

then the support of ν is included in the contact set where the convex function ϕ :=
∑p

i=1 λiψ
∗
i

agrees with its quadratic majorant C + |.|2
2

. Note that, at such a point, we have

p∑
i=1

λi∂ψ
∗
i (x) ⊂ ∂ϕ(x) ⊂ {x},

so that each potential ψ∗
i is differentiable at x. The potentials ψ∗

i are therefore differentiable

on the support of ν and satisfy the relation

p∑
i=1

λi∇ψ∗
i = id. (5.1.6)

Remark 5.1.7. If (5.1.6) holds everywhere for the Brenier’s maps ∇ψi transporting νi to

ν, then ν is optimal for OTBC.

In [1], the authors also have shown that OTBC is equivalent to a linear programming

problem of multi-marginal optimal transport type similar to the problem solved by Gangbo

and Święch in [24]. Now we will list two main Theorems which describe this relation.

Theorem 5.1.8. ([1], Theorem 4.1) Assume that νi vanishes on small sets for i = 1, . . . , p.

Then the multi-marginal problem given by

sup

{∫
(Rd)p

( ∑
1≤i≤j≤p

λiλjxi · xj
)
dγ(x1, . . . , xp), γ ∈ Π(ν1, . . . , νp)

}
. (5.1.7)

admits a unique solution γ ∈ Π(ν1, . . . , νp). Moreover, γ is of the form γ = (T 1
1 , . . . , T

1
p )#ν1

with T 1
i = ∇u∗i ◦ ∇u1 for i = 1, . . . , p where ui are the strictly convex potentials defined by

ui(x) :=
λi
2
|x|2 + gi(x)

λi
, ∀x ∈ Rd, (5.1.8)

and (g1, . . . , gp) are the convex potentials that solve the dual of (5.1.7) given by

inf

{
p∑
i=1

∫
Rd
gi dνi,

p∑
i=1

gi(xi) ≥
∑

1≤i≤j≤p

λiλjxi · xj, ∀x ∈ (Rd)p

}
. (5.1.9)
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Proposition 5.1.9. ([1], Proposition 4.2) Assume that νi vanishes on small set for i =

1, . . . , p. Then the solution of OTBC given by (5.1.1) is given by ν = T#γ, where γ is the

solution of (5.1.7) and T is defined by

T (x) :=

p∑
i=1

λixi, ∀x := (x1, . . . , xp) ∈ (Rd)p. (5.1.10)

Remark 5.1.10. Note that the Euclidean barycenter T (x) defined in (5.1.10) is characterized

by the property
p∑
i=1

λi|xi − T (x)|2 = inf
y∈Rd

{
λi|xi − y|2

}
. (5.1.11)

5.2 Capacity Constrained Barycenter Problem

In this section, we introduce the notion of capacity constrained barycenters in Wasserstein

space which is a generalization of the barycenter problem (5.1.1). As the name suggests, the

capacity constrained barycenter problem introduces capacities to each of the two marginal

problems associated. Under certain assumptions on the capacities, we have proven that the

problem attains a minimizer and obtained duality results.

5.2.1 The Primal Problem

Given an integer p ≥ 2, a p-tuple of probability measures (ν1,...,νp) each in P2(Rd) and

a p-tuple of positive real numbers (λ1,...,λp) with
∑p

i=1 λi = 1, we define the following

minimizing problem:

OTCCBC := inf
ν∈P′

{
J(ν) :=

p∑
i=1

λiW̃
2
2 (νi, ν)

}
(5.2.1)

where

P′ = P2(Rd) ∩
{
ν ′ : Πγ̃i(νi, ν

′) ̸= ∅, ∀i ∈ {1, 2, . . . p}
}
, (5.2.2)

and

W̃ 2
2 (νi, ν) = inf

γi∈Πγ̃i (νi,ν)

{∫
Rd×Rd

1

2
|x− y|2 dγi(x, y)

}
. (5.2.3)

Here, {γ̃i}pi=1 ⊆ M+(Rd × Rd) is the set of capacities of the two marginal problems and

Πγ̃i(νi, ν) is the set of transport plans from νi to ν bounded by γ̃i (see Definition 3.4.2).
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We call the problem (5.2.1), the Capacity Constrained Barycenter (CCBC) problem

between the measures ν1, . . . , νp.

We will consider this minimization problem under two assumptions.

• Assumption 1: We assume that {γ̃i}pi=1 are compactly supported finite measures that

are absolutely continuous w.r.t. Lebesgue measure with bounded densities for all i ∈

{1, 2, . . . p}.

• Assumption 2: We assume that the set P′ is non-empty.

Recall that the non-empty condition of the set Πγ̃i(νi, ν) is given by the following theorem.

Theorem 5.2.1. ([46], Corollary 4.6.15) Let X, Y be compact sets and for given Borel

probability measures µ ∈ P(X), ν ∈ P(Y ) and a finite Borel measure γ̃ on X × Y , we have

that Πγ̃(µ, ν) ̸= ∅ if and only if

µ(A) + ν(B) ≤ γ̃(A×B) + 1, ∀A ∈ B(X) and ∀B ∈ B(Y ).

Remark 5.2.2. Note that the assumption 2 is not a very restrictive assumption. For in-

stance, we could pick the capacities γ̃i such that γ̃i = νi ⊗ ξ for some probability measure

ξ ∈ P2(Rd) so that the set P′ becomes non-empty.

Lemma 5.2.3. W̃ 2
2 is weakly lower semi-continuous.

Proof. Let {µn}n∈N and {ν̃n}n∈N be two sequences of probability measures in P′ such that

µn ⇀ µ∗ and ν̃n ⇀ ν∗.

Since {µn} and {ν̃n} are tight
⋃

Π(µn, ν̃n) is also tight (see [53], Lemma 4.4).

Now, let γ∗n ∈ Π(µn, ν̃n) be optimal such that γ∗n ≤ γ̃. Since {γ∗n} is also tight, there exists

a γ∗ ∈ P(Rd × Rd) such that γ∗n ⇀ γ∗ and γ∗ ∈ Π(µ∗, ν∗). We also get that γ∗ ≤ γ̃ (see the

proof of (5.2.8) in Theorem 5.2.4 below).

Now,

W̃ 2
2 (µ

∗, ν∗) = inf
γ∈Πγ̃(µ∗,ν∗)

{∫
Rd×Rd

1

2
|x− y|2 dγ(x, y)

}
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≤
∫
Rd×Rd

1

2
|x− y|2 dγ∗(x, y)

≤ lim inf
n

∫
Rd×Rd

1

2
|x− y|2 dγ∗n(x, y) (see [53], Lemma 4.3)

= lim inf
n

inf
γn∈Πγ̃(µn,νn)

{∫
Rd×Rd

1

2
|x− y|2 dγn(x, y)

}

= lim inf
n

W̃ 2
2 (µn, ν̃n).

This proves that W̃ 2
2 is weakly lower semi-continuous.

Now, we will show that the CCBC problem has a solution.

Theorem 5.2.4. Under the assumptions 1 and 2, the CCBC problem given by (5.2.1) has

a solution.

Proof. Let {ν̃n}n∈N ⊆ P′ be a minimizing sequence of OTCCBC.

i.e. limn→∞ J(ν̃n) = infν J(ν). Then, we can find an M > 0 such that J(ν̃n) ≤ M for all n.

Thus, for each 1 ≤ i ≤ p and for each n ∈ N, λiW̃2

2
(νi, ν̃n) ≤M .

Using the duality and the assumption that νi’s have finite second moments, we can show

that (see Appendix 3)

sup
n

∫
|x|2 dν̃n ≤ C, for some constant C.

Hence, {ν̃n} is tight (see Appendix 4).

Then, by Prokhorov’s theorem, there exists a subsquence {ν̃n} (not relabeled), that

converges weakly to some ν∗ ∈ P(Y ).

Since,
∫
|x|2 dν∗ ≤ lim infn

∫
|x|2 dν̃n ≤ C (see [53], Lemma 4.3), we have that ν∗ ∈

P2(Y ).

Now, we will prove that ∀1 ≤ i ≤ p, there exists a γi ∈ Πγ̃i(ν̃n, ν
∗), so that ν∗ ∈ P′.

Fix an i ∈ {1, . . . , p} and n ∈ N. By assumption 2, there exists some γi,n ∈ Π(νi, ν̃n)

such that γi,n ≤ γ̃i. Since {γi,n} is tight, there exists a subsequence {γi,n} (not relabeled),

that weakly converges to some γ∗i ∈ P(X × Y ).
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Let E ⊂ Rd be an open set and {ϕl}∞l=1 ⊂ Cb(Rd) be a sequence of functions such that

0 ≤ ϕl ≤ 1E and ϕl ↗ 1E pointwise.

Then, ∫
Rd
ϕl dν̃n =

∫
Rd
ϕl d(Projy(x, y)#γi,n) =

∫
Rd
ϕl ◦ Projy(x, y) dγi,n.

Letting n→ ∞, we get ∫
Rd
ϕl dν

∗ =

∫
Rd
ϕl ◦ Projy(x, y) dγ

∗
i . (5.2.4)

In (5.2.4), on the left hand side, we used the fact that ν̃n ⇀ ν∗ and on the right hand

side, we used the fact that γi,n ⇀ γ∗i . Now, letting l → ∞ in 5.2.4, by monotone convergence

theorem, we get ∫
Rd
1E dν∗ =

∫
Rd
1E ◦ Projy(x, y) dγ

∗
i .

i.e. ν∗(E) = Projy(x, y)#γ
∗
i (E). (5.2.5)

Now, let B ⊂ Rd be any Borel set. Since Borel measures are outer regular, we have that

ν∗(B) = Projy(x, y)#γ
∗
i (B). (5.2.6)

Similarly, we can prove that, for any Borel set A ∈ Rd,

νi(A) = Projx(x, y)#γ
∗
i (A). (5.2.7)

By (5.2.6) and (5.2.7), we can conclude that γ∗i ∈ Π(νi, ν
∗).

Now, let E,F ⊂ Rd be two open sets and {ϕl}∞l=1 ⊂ Cb(Rd × Rd) be a sequence of

functions such that 0 ≤ ϕl ≤ 1E×F and ϕl ↗ 1E×F pointwise.

Since γi,n ≤ γ̃i, we have ∫
Rd×Rd

ϕl dγi,n ≤
∫
Rd×Rd

ϕl dγ̃i.

Now, letting n→ ∞, gives us ∫
Rd×Rd

ϕl dγ
∗
i ≤

∫
Rd×Rd

ϕl dγ̃i.
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Letting l → ∞, the monotone convergence theorem gives us∫
Rd×Rd

1E×F dγ∗i ≤
∫
Rd×Rd

1E×F dγ̃i,

i.e. γ∗i (E × F ) ≤ γ̃i(E × F ).

Hence, for given two Borel sets A,B ⊂ Rd, we have that

γ∗i (A×B) ≤ γ̃i(A×B). (5.2.8)

Thus, γ∗i ∈ Πγ̃i(νi, ν
∗), i.e. ν∗ ∈ P′.

Now, we will claim that ν∗ is the desired minimizer.

Observe that,

J(ν∗) =

p∑
i=1

λiW̃
2
2 (νi, ν

∗)

≤
p∑
i=1

λi lim inf
n

W̃ 2
2 (νi, ν̃n) (By Lemma 5.2.3)

≤ lim inf
n

p∑
i=1

λiW̃
2
2 (νi, ν̃n)

= lim inf
n

J(ν̃n)

= OTCCBC .

This concludes that ν∗ is a minimizer for CCBC Problem.

5.2.2 Duality

For the dual formulation, we will be adopting the duality results for two-marginal capacity

constrained OT problem by Rachev and Rüschendorf in [46].

Let K ×K be a compact subset of Rd × Rd containing supports of the capacities γ̃i for

all i. For an integer p ≥ 2 consider the dual problem:

OT∗
CCBC = sup

A

{
p∑
i=1

∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x)

+

p∑
i=1

∫
K×K

wi(x, y) dγ̃i(x, y)

}
.

(5.2.9)
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Here, the supremum is taken over the set A of functions fi and wi satisfying fi ∈

Cb(K), wi ∈ Cb(K ×K) , wi ≤ 0, ∀i ∈ {1, 2, . . . p} and
p∑
i=1

fi = 0.

In the Theorem below, we will show that the strong duality result holds for the CCBC

Problem. We will be using some similar arguments as in [1], Proposition 2.2.

Theorem 5.2.5. Under the assumptions 1 and 2, the strong duality holds,

i.e. OTCCBC = OT∗
CCBC .

Proof. Let ν ∈ P′ ∩ P(K), γi ∈ Π(νi, ν) such that γi ≤ γ̃i and (f1, . . . , fp, w1, . . . , wp) such

that
∑p

i=1 fi = 0 and wi ≤ 0.

Then, for each (x, y) ∈ K ×K, we have

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
≤ λi

2
|x− y|2 − fi(y)− wi(x, y).

Hence,

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
+ fi(y) + wi(x, y) ≤

λi
2
|x− y|2.

Now, by integrating w.r.t. γi over K ×K, we get

∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x) +

∫
K

fi(y) dν(y) +

∫
K×K

wi(x, y) dγi(x, y)

≤
∫
K×K

λi
2
|x− y|2 dγi(x, y). (5.2.10)

Since γi ≤ γ̃i and wi ≤ 0, we have∫
K×K

wi(x, y) dγ̃i(x, y) ≤
∫
K×K

wi(x, y) dγi(x, y). (5.2.11)

By combining (5.2.10) and (5.2.11), we get

∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x) +

∫
K

fi(y) dν(y) +

∫
K×K

wi(x, y) dγ̃i(x, y)

≤
∫
K×K

λi
2
|x− y|2 dγi(x, y). (5.2.12)
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Now, we take the summation over i to get

p∑
i=1

∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x) +

p∑
i=1

∫
K×K

wi(x, y) dγ̃i(x, y)

≤
p∑
i=1

∫
K×K

λi
2
|x− y|2 dγi(x, y). (5.2.13)

Note that, in (5.2.13), we used the fact that
∑p

i=1 fi = 0.

Now, by taking the infimum over γi ∈ Πγ̃i(νi, ν), infimum over ν ∈ P′ and supremum

over (fi, wi) ∈ A from both sides, we get

OT∗
CCBC ≤ OTCCBC . (5.2.14)

Next, we will prove that

OT∗
CCBC ≥ OTCCBC .

For i ∈ {1, . . . , p}, define Hi : Cb(K)× Cb(K ×K) 7→ R ∪ {∞} by

Hi(fi, wi) =



−
∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x)

−
∫
K×K wi(x, y) dγ̃i(x, y) if wi ≤ 0

∞ otherwise

. (5.2.15)

Now, we take the Legendre transform of Hi(fi, wi) in both variables to get

H∗
i (ν, ξ) = sup

fi∈Cb(K),wi≤0

{∫
K

fi dν +

∫
K×K

wi dξ −Hi(fi, wi)

}
. (5.2.16)

Here, ν ∈ M(K) and ξ ∈ M(K ×K).

Letting ξ = 0 in (5.2.16), we get

H∗
i (ν, 0) = sup

fi∈Cb(K),wi≤0

{∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x) +

∫
K

fi(y) dν(y)

+

∫
K×K

wi(x, y) dγ̃i(x, y)

}
. (5.2.17)

First, we will show that if ν ∈ M(K) \ P(K), then H∗
i (ν, 0) = ∞.
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Case 1: Suppose ∃A ∈ B(K) such that ν(A) < 0.

Then, there exists a function f ∈ Cb(K) such that f ≤ 0 and
∫
K
fdν > 0. Let t ≥ 0 be

arbitrary and choose fi = tf and wi = 0. Then,

H∗
i (ν, 0) ≥

∫
K

inf
y∈K

{λi
2
|x− y|2 − tf(y)

}
dνi +

∫
K

tf dν

≥ t

∫
K

f dν, ∀t ≥ 0.

Hence, H∗
i (ν, 0) = ∞.

Case 2: Suppose ν(K) < 1.

Let t > 0 be arbitrary and choose fi = −t and wi = 0. Then,

H∗
i (ν, 0) ≥

∫
K

inf
y∈K

{λi
2
|x− y|2 + t

}
dνi −

∫
K

t dν

≥ t

(∫
K

dνi −
∫
K

dν

)
, ∀t ≥ 0

= (1− ν(K))t, ∀t ≥ 0.

Hence, H∗
i (ν, 0) = ∞.

Case 3: Suppose ν(K) > 1.

Let t > 0 be arbitrary and choose fi = t and wi = 0. Then,

H∗
i (ν, 0) ≥

∫
K

inf
y∈K

{λi
2
|x− y|2 − t

}
dνi +

∫
K

t dν

≥ t

(
−
∫
K

dνi +

∫
K

dν

)
, ∀t ≥ 0

= (−1 + ν(K))t, ∀t ≥ 0.

Hence, H∗
i (ν, 0) = ∞.

Therefore, whenever ν ∈ M(K) \ P(K), we have H∗
i (ν, 0) = ∞.

Now, let ν ∈ P(K). By the duality of the two-marginal CCOT Problem (Theorem 3.4.1),

we get

H∗
i (ν, 0) = λiW̃

2
2 (νi, ν). (5.2.18)
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Hence, we have

OTCCBC = inf
ν

p∑
i=1

λiW̃
2
2 (νi, ν) = inf

ν

p∑
i=1

H∗
i (ν, 0). (5.2.19)

Now, consider the Legendre transform of
∑p

i=1H
∗
i (·, 0), restricted to Cb(K) viewed as a

subspace of Cb(K)∗∗.(
p∑
i=1

H∗
i (·, 0)

)∗

(f) = sup
ν

{∫
K

f dν −
p∑
i=1

H∗
i (ν, 0)

}
.

where f ∈ Cb(K) and ν ∈ M(K).

Letting f = 0, we get(
p∑
i=1

H∗
i (·, 0)

)∗

(0) = sup
ν

{
−

p∑
i=1

H∗
i (ν, 0)

}
.

Hence,

−

(
p∑
i=1

H∗
i (·, 0)

)∗

(0) = inf
ν

{
p∑
i=1

H∗
i (ν, 0)

}
. (5.2.20)

By combining (5.2.19) and (5.2.20), we get

OTCCBC = −

(
p∑
i=1

H∗
i (·, 0)

)∗

(0). (5.2.21)

Now, we define the infimal convolution of H ′
is as

H(f) = inf

{
p∑
i=1

Hi(fi, wi) :

p∑
i=1

fi = f, wi ≤ 0

}
. (5.2.22)

Then,

H(0) = inf

{
p∑
i=1

Hi(fi, wi) :

p∑
i=1

fi = 0, wi ≤ 0

}
.

So,

−H(0) = sup

{
−

p∑
i=1

Hi(fi, wi) :

p∑
i=1

fi = 0, wi ≤ 0

}
.

= sup∑p
i=1 fi=0,
wi≤0

{
p∑
i=1

∫
K

inf
z∈K

{λi
2
|x− z|2 − fi(z)− wi(x, z)

}
dνi(x)

+

p∑
i=1

∫
K×K

wi(x, y) dγ̃i(x, y)

}
.
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Thus, we have

−H(0) = OT∗
CCBC . (5.2.23)

Also note that,

H∗(ν) = sup
f

{∫
K

f dν −H(f)

}

= sup
f

{∫
K

f dν − inf

{
p∑
i=1

Hi(fi, wi) :

p∑
i=1

fi = f, wi ≤ 0

}}

= sup
f

{∫
K

f dν + sup

{
−

p∑
i=1

Hi(fi, wi) :

p∑
i=1

fi = f, wi ≤ 0

}}

= sup
f

{
p∑
i=1

∫
K

fi dν + sup
fi∈Cb(K),wi≤0

{
−

p∑
i=1

Hi(fi, wi)

}}

= sup
fi∈Cb(K),wi≤0

{
p∑
i=1

∫
K

fi dν −
p∑
i=1

Hi(fi, wi)

}

=

p∑
i=1

sup
fi∈Cb(K),wi≤0

{∫
K

fi dν −Hi(fi, wi)

}

=

p∑
i=1

H∗
i (ν, 0).

Hence, we have

H∗(ν) =

p∑
i=1

H∗
i (ν, 0). (5.2.24)

Now, by combining (5.2.21) and (5.2.24), we get

OTCCBC = −H∗∗(0). (5.2.25)

Since we have (5.2.23), it only remains to show that

H∗∗(0) = H(0). (5.2.26)

Since H is convex, it is sufficient (see [20]) to show that H is continuous at 0 for the norm

topology given by (5.1.2). To prove that, we rewrite Hi defined in (5.2.15) as

Hi(fi, wi) =

∫
K

sup
z∈K

{
fi(z) + wi(x, z)−

λi
2
|x− z|2

}
dνi(x)−

∫
K×K

wi(x, y) dγ̃i(x, y).

63



Plugging in z = 0, we get

Hi(fi, wi) ≥ fi(0)+

∫
K

wi(x, 0) dνi(x)−
λi
2

∫
K

|x|2 dνi(x)−
∫
K×K

wi(x, y) dγ̃i(x, y). (5.2.27)

Since ∀1 ≤ i ≤ p, wi ∈ Cb(K ×K), there exist some negative real numbers mi such that

mi ≤ wi(x, 0) ≤ 0, for all x ∈ K.

Thus, (5.2.27) becomes

Hi(fi, wi) ≥ fi(0) +mi −
λi
2

∫
K

|x|2 dνi(x). (5.2.28)

Note that, in (5.2.28), the last integral is non-negative since wi ≤ 0.

Now, taking the summation over i, we get
p∑
i=1

Hi(fi, wi) ≥
p∑
i=1

fi(0) +

p∑
i=1

mi −
λi
2

p∑
i=1

∫
K

|x|2 dνi(x).

Now, for all f ∈ Cb(K) such that
∑p

i=1 fi = f , we have

H(f) ≥ f(0) +

p∑
i=1

mi −
λi
2

p∑
i=1

∫
K

|x|2 dνi(x). (5.2.29)

By the finite second moment condition of each of the νi’s, we get that,

H(f) > −∞. (5.2.30)

Now, let f be such that ||f ||Y ≤ p
4
min{λ1, . . . , λp}. Choosing fi = f

p
and wi = 0 in H(fi, wi),

we have

H(f) ≤
p∑
i=1

Hi

(
f

p
, 0

)

≤
p∑
i=1

∫
K

sup
y∈K

{f(y)
p

− λi
2
|x− y|2

}
dνi

≤
p∑
i=1

∫
K

sup
y∈K

{λi
4
(1 + |y|2)− λi

2
|x− y|2

}
dνi

=

p∑
i=1

∫
K

(
λi
4
+
λi
2
|x|2
)
dνi

=
1

4
+

p∑
i=1

λi
2

∫
K

|x|2 dνi.

64



Again, by the finite second moment condition of each of the νi’s, we get that,

H(f) <∞. (5.2.31)

Thus, by (5.2.30) and (5.2.31), we have shown that the convex function H never takes the

value −∞ and is bounded from above in a neighborhood of 0. Thus, by a standard convex

analysis result (see [20], Proposition 2.5), H is continuous at 0. Hence, H∗∗(0) = H(0).

Thus, by combining (5.2.23) and (5.2.25), we get

OTCCBC = OT∗
CCBC . (5.2.32)
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CHAPTER 6

ENTROPY REGULARIZATION

6.1 Entropy Regularized Optimal Transport (EROT) Problem

6.1.1 Introduction

Optimal transport offers an elegant solution to many theoretical and practical prob-

lems at the interface between probability, partial differential equations, and optimization.

This success however comes at a high computational price, and the computation becomes

prohibitive whenever the dimension exceeds a few hundred, since it requires the solution of

a linear program over distributions on a product space. Entropic regularization provides us

with an approximation of optimal transport, with lower computational complexity and easy

implementation. It operates by adding an entropic regularization penalty to the original

problem making it a strictly convex problem, hence guaranteeing a unique minimizer.

In this section, we explore the EROT problem and its duality.

The idea of smoothing the classical OTP with an entropic regularization term was first

introduced by Cuturi in [16] and it has been shown that the resulting optimum can be

computed through Sinkhorn’s matrix scaling algorithm at a speed that is several orders of

magnitude faster than that of transport solvers. Duality results and a characterization of

the dual maximizers have been presented by Marino and Gerolin in [39, 17]. Some of the

main results, definitions and remarks mentioned in this section are taken from [39, 45] .

6.1.2 The Primal Problem

Let (X, dX) and (Y, dY ) be Polish Spaces, c : X × Y → R be a cost function, µ ∈ P(X)

and ν ∈ P(Y ) be probability measures and ε > 0. We consider the following minimization

problem:

OTε = inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) + εKL(γ|µ⊗ ν). (6.1.1)
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The function KL(γ|ξ) in (6.1.1) is the Kullback-Leibler divergence between the probability

measures γ and ξ in P(X × Y ) which is defined as

KL(γ|ξ) =


∫
X×Y

γ log(γ)d(ξ) if γ ≪ ξ

+∞ otherwise
.

Here, γ denotes the Radon-Nikodym derivative of γ with respect to the measure ξ.

The problem (6.1.1) can also be represented as

OTε = inf
γ∈Π(µ,ν)

εKL(γ|K) (6.1.2)

where K represents the Gibbs Kernel for the cost c, given by:

K = k(x, y)µ⊗ ν = e−
c(x,y)
ε µ⊗ ν. (6.1.3)

The existence of a minimizer in (6.1.1) and its characterizations have been discussed by

several authors under different settings ([9], [15], [29] [49]).

Under the definition (6.1.3) of K ([37], Proposition 2.3), a necessary and sufficient con-

dition for a minimizer, γε, of (6.1.1) to be unique is given by:

γε = fε(x)gε(y)K, where fε, gε solve


fε(x)

∫
Y
gε(y)k(x, y)dν(y) = 1

gε(y)
∫
X
fε(y)k(x, y)dµ(x) = 1

. (6.1.4)

Here, the functions fε(x) and gε(y) are known as the Entropic potentials and they are

unique up to the trivial transformation f 7→ f/λ, g 7→ λg for some λ > 0. The system solved

by the Entropic potentials is called the Schrödinger system. The following theorem states

that if we assume that µ and ν are positive everywhere and their entropy w.r.t. K is finite,

then the minimizer of (6.1.1) takes a special form.

Theorem 6.1.1. ([9], Corollary 3,9) Let (X, dX) and (Y, dY ) be two Polish spaces, and

c : X × Y → [0,∞) be a bounded cost function. Suppose that µ ∈ P(X), ν ∈ P(Y ) are
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two probability measures that are absolutely continuous w.r.t. Lebesgue measure, such that

µ(x), ν(y) > 0,∀x ∈ X, y ∈ Y , and KL(µ ⊗ ν|K) < +∞ for K = e−
c(x,y)
ε µ ⊗ ν. Then, OTε

has a unique minimizer of the form

γε(x, y) = fε(x)gε(y)K(x, y).

6.1.3 Duality

We define a dual functional for (6.2.1) as follows:

Dε(u, v) =

∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)− ε

∫
X×Y

e
u(x)+v(y)−c(x,y)

ε d(µ⊗ ν).

Then, the dual formulation of (6.2.1) is the following maximization problem:

OT∗
ε = sup

u∈Cb(X),v∈Cb(Y )

Dε(u, v). (6.1.5)

Now, we will present the duality result for the EROT problem. This has been discussed

in several articles, such as [14, 21, 28, 27, 39].

Theorem 6.1.2. ([39], Proposition 2.11) Let (X, dX), (Y, dY ) be two Polish metric space,

c : X × Y 7→ R be a bounded function and let ε > 0. Suppose that µ ∈ P(X) and ν ∈ P(Y )

are two probability measures that are absolutely continuous w.r.t. Lebesgue measure. Then,

OTε = OT∗
ε +ε.

In [39], the authors also provide a direct proof of existence of maximizers in (6.1.5)

following the direct method of Calculus of Variations. The main idea in the proof is to define

a generalized version of c-transform (see Definition (2.2.1)), called the (c, ε)-transform.

6.1.3.1 Entropy-Transform and its properties

In this section, we will consider functions c : X × Y → R which are bounded.

First, we will define the space Lexpε , in which the functions admissible for the dual problem

will lie.
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Definition 6.1.3. Given an ε > 0, a Polish space (X, dX), and a probability measure µ ∈

P(X), we define the set Lexp
ε (X, dµ) by

Lexp
ε (X, dµ) :=

{
u : X → [−∞,∞) : u is a measurable function in (X, dµ)

and 0 <

∫
X

eu/ε dµ <∞
}
.

For u ∈ Lexp
ε (X, dµ) we also define σu := ε log

(∫
X
eu/ε dµ

)
.

Observe that u ∈ Lexp
ε (X, dµ) may take the value −∞ on a set of positive measure, but

not µ-a.e., since we have a condition
∫
X
eu/ε dµ > 0.

Definition 6.1.4. Given an ε > 0, two Polish spaces (X, dX), (Y, dY ), two probability mea-

sures µ ∈ P(X), ν ∈ P(Y ), and a bounded function c : X × Y 7→ R, we define the (c, ε)-

transform F(c,ε) : Lexp
ε (X, dµ) → L0(Y, dν) by

F(c,ε)(u)(y) := −ε log
(∫

X

e
u(x)−c(x,y)

ε dµ(x)

)
. (6.1.6)

Similarly, we define the (c∗, ε)-transform F(c∗,ε) : Lexp
ε (Y, dν) → L0(X, dµ) by

F(c∗,ε)(v)(x) := −ε log
(∫

Y

e
v(y)−c(x,y)

ε dν(y)

)
. (6.1.7)

For simplicity, we will use the notation u(c,ε) = F(c,ε)(u).

Remark 6.1.5. Note that the definition of (c, ε)-transform is consistent with the definition

of c-transform in the sense that as ε→ 0, u(c,ε) → uc ([26], Lemma 4.2).

Now we will list some results about the (c, ε)-transform mentioned in [39] without proof.

Lemma 6.1.6. ( [39], Lemma 2.3) Let (X, dX), (Y, dY ) be Polish spaces, u ∈ Lexp
ε (X, dµ),

v ∈ Lexp
ε (Y, dν) and ε > 0. Then,

(i) u(c,ε) ∈ L∞(Y, dν) and v(c,ε) ∈ L∞(X, dµ), satisfying the inequality

−∥c∥∞ − ε log
(∫

X
e
u(x)
ε dµ

)
≤ u(c,ε)(y) ≤ ∥c∥∞ − ε log

(∫
X
e
u(x)
ε dµ

)
.
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(ii) u(c,ε) ∈ Lexp
ε (Y, dν) and v(c,ε) ∈ Lexp

ε (X, dµ).

Furthermore, |σu(c,ε) + σu| ≤ ∥c∥∞.

Given below are some more properties of the (c, ε)-transform.

Proposition 6.1.7. ([39], Prop 2.4) Let (X, dX) and (Y, dY ) be Polish metric spaces, c :

X × Y → [0,∞] be a bounded function, µ ∈ P(X), ν ∈ P(Y ) be probability measures,

u ∈ Lexp
ε (X, dµ) and ε > 0. Then,

(i) if c is L-Lipschitz, then u(c,ε) is L-Lipschitz;

(ii) if c is ω-continuous, then u(c,ε) is ω-continuous;

(iii) if |c| ≤M , then |u(c,ε) + σu| ≤M ;

(iv) if |c| ≤M , then F(c,ε) : L∞(X, dµ) → Lp(Y, dν) is a 1-Lipschitz compact operator.

(v) if c is K-concave with respect to y, then u(c,ε) is K-concave.

6.1.3.2 Dual Problem

Recall that the dual functional of the EROT problem is given by

Dε(u, v) =

∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)− ε

∫
X×Y

e
u(x)+v(y)−c(x,y)

ε d(µ⊗ ν). (6.1.8)

Now, we will state some results used to get the existence of dual maximizers.

Lemma 6.1.8. ([39], Lemma 2.6) Consider the functional Dε : L
exp
ε (X, dµ)×Lexp

ε (Y, dν) →

R defined by (6.1.8). Then,

Dε(u, u
(c,ε)) ≥ Dε(u, v) ∀v ∈ Lexp

ε (Y, dν), (6.1.9)

Dε(u, u
(c,ε)) = Dε(u, v) if and only if v = u(c,ε). (6.1.10)

In particular, u(c,ε) ∈ argmax{Dε(u, v) : v ∈ Lexp
ε (Y, dν)}.
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Lemma 6.1.9. ([39], Lemma 2.7) Given u ∈ Lexp
ε (X, dµ) and v ∈ Lexp

ε (Y, dν), there exist

u∗ ∈ Lexp
ε (X, dµ) and v∗ ∈ Lexp

ε (Y, dν) such that

• Dε(u, v) ≤ Dε(u
∗, v∗),

• ∥v∗∥∞ ≤ 3∥c∥∞/2,

• ∥u∗∥∞ ≤ 3∥c∥∞/2.

Moreover we can choose a ∈ R such that u∗ = (v + a)(c,ε) and v∗ = (u∗)(c,ε).

The theorem given below states that the dual functional (6.1.8) attains a maximizer.

Theorem 6.1.10. ([39], Theorem 2.8) Let (X, dX), (Y, dY ) be Polish spaces, c : X×Y → R

be a bounded function, µ ∈ P(X), ν ∈ P(Y ) be probability measures and ε > 0. Then, the

dual problem given by

sup {Dε(u, v) : u ∈ Lexp
ε (X, dµ), v ∈ Lexp

ε (Y, dν)} (6.1.11)

attains the supremum for a unique couple (u0, v0) (up to the trivial tranformation (u, v) 7→

(u+ a, v − a)). In particular we have

u0 ∈ L∞(X, dµ) and v0 ∈ L∞(Y, dν);

moreover, we can choose the maximizers such that ∥u0∥∞, ∥v0∥∞ ≤ 3
2
∥c∥∞.

The proof mainly uses Lemma 6.1.8 and Lemma 6.1.9 along with Banach-Alaoglu theo-

rem.

6.2 Entropy Regularized Barycenter Problem

6.2.1 Introduction

Similar to finding optimizers of the classical OT problem, finding the Wasserstein

barycenter is also not an easy task. By introducing the entropy regularization to the classical

Wasserstein Barycenter problem, it becomes more tractable and flexible.
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Two different notions of regularization exist in the literature. In [7, 12], the authors

introduce a penalization term which is a function of the barycenter. On the other hand, in

[38], the authors add a penalty term which is a function of the transport plans between the

barycenter and the target measures. The main difference between these two approaches is the

reference point that is used to regularize the resulting measure. The choice of regularization

approach depends on the specific application and the desired properties of the resulting

measure. However, the similarities or the differences of these approaches have not been

discussed widely in the literature. In this section, as in [38] we will be considering the latter

approach.

In [38], the authors introduce the regularized Wasserstein barycenter problem and its

dual formulation. They prove that the strong duality holds and the existence of the primal

problem via duality result. However, they do not discuss the existence of the maximizers of

the dual functional.

In this section, we will provide a direct proof for the existence of a minimizer for the

primal problem and the existence of dual maximizers.

6.2.2 The Primal Problem

Throughout this section, we will be working with compact subsets of Rd and symmetric,

bounded cost functions. Recall that the entropy regularized OT problem is defined as

OTε(µ, ν) = inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) + εKL(γ|µ⊗ ν). (6.2.1)

By the duality result, we have

OTε(µ, ν) = sup
u∈Cb(X),v∈Cb(Y )

∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)− ε

∫
X×Y

e
u(x)+v(y)−c(x,y)

ε d(µ⊗ ν).

Also recall that given an integer p ≥ 2, X1, . . . , Xp, Y compact subsets of Rd, a p-tuple of

probability measures (ν1,...,νp) each in P(Xi), a p-tuple of positive real numbers (λ1,...,λp)

with
p∑
i=1

λi=1, and cost functions ci : Xi × Y 7→ R, we define the Wasserstein Barycenter

problem as

OTBC(ν1, . . . , νp) = inf
ν∈P(Y )

p∑
i=1

λiOTci(νi, ν) (6.2.2)
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where OTci(νi, ν) is the optimal transport cost between νi and ν with cost ci given in (2.1.6).

In [1], Proposition 2.2, gives us the following duality result for the case ci(x, y) = 1
2
|x−y|2.

OTBC(ν1, . . . , νp) = sup
fi∈Cb(Y ),

∑p
i=1 fi=0

p∑
i=1

∫
Xi

inf
y∈Rd

{
λici(xi, y)− fi(y)

}
dνi(xi). (6.2.3)

Now we will introduce the Entropy Regularized Barycenter (ERBC) problem.

Given an integer p ≥ 2, X1, . . . , Xp, Y compact subsets of Rd, a p-tuple of probability

measures (ν1,...,νp) each in P(Xi), a p-tuple of positive real numbers (λ1,...,λp) with
p∑
i=1

λi=1,

and ε > 0, we define the ERBC problem as

OTε
BC(ν1, . . . , νp) = inf

ν∈P(Y )

p∑
i=1

λiOTε(νi, ν). (6.2.4)

Now we will prove that the minimization problem (6.2.4) has a minimizer. For simplicity we

will assume that ci(x, y) = 1
2
|x− y|2 for each 1 ≤ i ≤ p in this proof, but we can prove that

this result holds for more general costs. Also note that in [38], the authors have provided a

proof for the existence of a minimizer via duality and here we provide a direct proof without

assuming the duality result.

Lemma 6.2.1. OTε is weakly lower semi-continuous.

Proof. Let {µn}n∈N and {νn}n∈N be two sequences such that µn ⇀ µ∗ and νn ⇀ ν∗. We can

pick subsequences (not relabeled) {µn}n∈N and {νn}n∈N such that

lim
n→∞

OTε(µn, νn) = lim inf
n→∞

OTε(µn, νn).

Since {µn}n∈N and {νn}n∈N are tight
⋃
n∈NΠ(µn, νn) is also tight (see [53], Lemma 4.4). Now

let {γn}n∈N be a sequence with marginals µn and νn which is "close" to the optimal value of

OTε(µn, νn),

i.e. given δ > 0,∫
|x− y|2 dγn + εKL(γn|µn ⊗ νn) ≤ OTε(µn, νn) + δ.

Since {γn}n∈N is also tight, we can pick a subsequence (not relabeled) {γn}n∈N such that

γn ⇀ γ∗ and γ∗ ∈ Π(µ∗, ν∗).
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Now, observe that,

OTε(µ
∗, ν∗) ≤

∫
|x− y|2 dγ∗ + εKL(γ∗|µ∗ ⊗ ν∗)

≤ lim inf
n

∫
|x− y|2 dγn + ε lim inf

n
KL(γn|µn ⊗ νn)

≤ lim inf
n

{∫
|x− y|2 dγn + εKL(γn|µn ⊗ νn)

}

≤ lim inf
n

OTε(µn, νn) + δ

= lim
n

OTε(µn, νn) + δ.

In the second inequality, we get the first term due to weak lower semi-continuity of the total

cost (see [53], Lemma 4.3), and the second term due to the lower semi-continuity of the

relative entropy, which is a well-known result (see [19], Lemma 1.4.3).

Finally, letting δ → 0, we get the lower semi-continuity result.

Theorem 6.2.2. Let X1, . . . , Xp, Y be compact subsets of Rd. Given an integer p > 0, a

p-tuple of probability measures (ν1,...,νp) each in P2(Xi), a p-tuple of positive real numbers

(λ1,...,λp) with
p∑
i=1

λi=1, and ε > 0, there exists a minimizer for the ERBC problem given

by (6.2.4).

Proof. Let

I(ν) :=

p∑
i=1

λiOTε(νi, ν) =

p∑
i=1

inf
γi∈Π(νi,ν)

λi

∫
Xi×Y

1

2
|x− y|2dγi(x, y) + εKL(γi|νi ⊗ ν).

Also, we will denote the squared 2 - Wasserstein distance by

W 2
2 (νi, ν) := inf

γi∈Π(νi,ν)

∫
Xi×Y

1

2
|x− y|2dγi(x, y).

Then, (6.2.4) becomes

OTε
BC(ν1, . . . , νp) = inf

ν∈P(Y )
I(ν).

Now, let {νn}n∈N be a minimizing sequence of OTε
BC , i.e. limn→∞ I(νn) = infν I(ν).

Then, we can find an M > 0 such that I(νn) ≤ M for all n. Since εKL(γi|νi ⊗ ν) ≥ 0, we
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have for each n,
p∑
i=1

λiW
2
2 (νi, νn) ≤ I(νn) ≤M.

Thus, for each 1 ≤ i ≤ p and for each n ∈ N, λiW 2
2 (νi, νn) ≤M .

Using the duality of the Kantorovich problem and the assumption that νi’s have finite second

moments, we can show that (see Appendix 3)

sup
n

∫
|x|2 dνn ≤ C, for some constant C.

Hence, {νn} is tight (see Appendix 4).

Then, by Prokhorov’s theorem, there exists a subsquence {νn} (not relabeled), that

converges weakly to some ν∗ ∈ P(Y ). Since,
∫
|x|2 dν∗ ≤ lim infn

∫
|x|2 dνn ≤ C, we

have that ν∗ ∈ P2(Y ). Here, the first inequality is again due to the weak convergence of

measures for lower semi-continuous bounded below costs ([19], Theorem A.3.12). Note that∫
X
|x|2 dν = W 2

2 (ν, δ0) for any ν ∈ P2(Y ).

Now, we will prove that ν∗ is the desired minimizer.

Observe that,

inf
ν
I(ν) = lim inf

n
I(νn)

= lim inf
n

p∑
i=1

λiOTε(νi, νn)

≥
p∑
i=1

lim inf
n

λiOTε(νi, νn)

≥
p∑
i=1

λiOTε(νi, ν
∗) (By Lemma 6.2.1)

= I(ν∗).

This proves that (6.2.4) has a minimizer.

Remark 6.2.3. Note that we assumed that X1, . . . , Xp, Y are compact only to be consistent

with the assumptions on the ERBC Problem in the original paper [38]. However, we do
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not require the compactness of the spaces in the proof, hence the Theorem 6.2.2 holds for

X1 = . . . = Xp = Y = Rd.

6.2.3 Duality

We define the dual functional of the ERBC problem as

JεBC(ϕ1, . . . , ϕp, ψ1, . . . , ψp) =

p∑
i=1

λi

(∫
Xi

ϕidνi − ε

∫
Xi×Y

e
(ϕi(xi)+ψi(y)−ci(xi,y))

ε dνi ⊗ ν∗(xi, y)

)
.

(6.2.5)

Since we already know the existence of a barycenter of the minimization problem (6.2.4),

say ν∗, we will use ν∗ for the following duality results.

Now we will present the duality result for the ERBC problem discussed in [38].

Theorem 6.2.4. ([38], Theorem 3.1) The dual formulation of (6.2.4) is

sup
{(ϕi∈Cb(Xi),ψi∈Cb(Y ))}pi=1∑p

i=1 λiψi=0

p∑
i=1

λi

(∫
Xi

ϕi(xi)dνi(xi)− ε

∫
Xi×Y

e
(ϕi(xi)+ψi(y)−ci(xi,y))

ε dνi ⊗ ν∗(xi, y)

)
.

(6.2.6)

Moreover, strong duality holds in the sense that the infimum of (6.2.4) equals the supremum

of (6.2.6), and a solution to (6.2.4) exists. If {(ϕi, ψi)}pi=1 solves (6.2.6), then each (ϕi, ψi)

is a solution to the dual formulation (6.1.5) of OTε(νi, ν
∗).

The proof relies on the convex duality theory of locally convex topological spaces.

Now, we will prove that dual maximizers for (6.2.6) exist.

Theorem 6.2.5. Given an integer p > 2, let X1, . . . , Xp, Y be compact subsets of Rd, ci :

Xi × Y 7→ R+ be symmetric, bounded cost functions such that for each 1 ≤ i ≤ p, ci

is Li-Lipschitz, (ν1,...,νp) be a p-tuple of probability measures each in P(Xi), (λ1,...,λp) be

a p-tuple of positive real numbers with
p∑
i=1

λi=1, and ε > 0. Then, there exist functions

{(ϕi ∈ L1(Xi, νi), ψi ∈ L1(Y, ν∗))}pi=1 that solve (6.2.6).
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Proof. We will redefine the dual formulation as

J∗
BC := sup

{(ϕi∈Cb(Xi),ψi∈Cb(Y ))}pi=1∑p
i=1 λiψi=0

p∑
i=1

λiD(ϕi, ψi), (6.2.7)

where

D(ϕi, ψi) :=

∫
Xi

ϕidνi +

∫
Y

ψidν
∗ − ε

∫
Xi×Y

e
(ϕi+ψi−ci)

ε dνi ⊗ ν∗.

Let (ϕ1,n, . . . , ϕp,n, ψ1,n, . . . , ψp,n)n∈N be a maximizing sequence. i.e. we have that for each

i = 1, . . . , p, ϕi,n ∈ Cb(Xi), ψi,n ∈ Cb(Y ) with
∑p

i=1 λiψi,n = 0 and lim
n→∞

p∑
i=1

λiD(ϕi,n, ψi,n) =

J∗
BC .

For each 1 ≤ i ≤ p define ϕ̃i,n = ψci,εi,n . By Lemma 6.1.8, we have that

D(ϕi,n, ψi,n) ≤ D(ϕ̃i,n, ψi,n). (6.2.8)

Now for each 1 ≤ i ≤ p − 1, define ki,n = −σψi,n and kp,n = −
∑p−1
i=1 λiki,n
λp

(the definition of

the softmax operator σψi,n is given in definition 6.1.3). Note that, we have
∑p

i=1 λiki,n = 0.

By Proposition 6.1.7 part (iii), we have that |ψci,εi,n +σψi,n| ≤ ||ci||∞. A simple calculation

gives us that |ψci,εi,n − ki,n| ≤ ||ci||∞ for each 1 ≤ i ≤ p− 1.

Now, for each 1 ≤ i ≤ p, we define

ϕ∗
i,n = ϕ̃i,n − ki,n and ψ∗

i,n = ψi,n + ki,n.

Then for each 1 ≤ i ≤ p− 1, we have that ||ϕ∗
i,n||∞ ≤ ||ci||∞. i.e.

sup
n

||ϕ∗
i,n||∞ <∞. (6.2.9)

Observe that,
p∑
i=1

λiψ
∗
i,n =

p∑
i=1

λi(ψi,n + ki,n) = 0.

Since for each 1 ≤ i ≤ p, ci is Li-Lipschitz, by Proposition 6.1.7 part (i), for each 1 ≤ i ≤ p

and n ∈ N, ψci,εi,n is Li-Lipschitz. Hence for each 1 ≤ i ≤ p− 1, ϕ∗
i,n = ψci,εi,n − ki,n is Lipschitz

continuous with the same Lipschitz constant maxi Li.

Now, we will prove that for each 1 ≤ i ≤ p, supn ||ψ∗
i,n||L1(Y,dν∗) <∞.
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Let 1 ≤ i ≤ p− 1 be arbitrary. Then,∫
Y

e
ψ∗
i,n
ε dν∗ =

∫
Y

e
ψi,n+ki,n

ε dν∗

=

∫
Y

e
ψi,n−σψi,n

ε dν∗

=

∫
Y

e

ψi,n−ε log

∫
Y

e
ψi,n
ε dν∗

ε dν∗

=

∫
Y

e
ψi,n
ε e

log

∫
Y

e
ψi,n
ε dν∗

−1

dν∗

=

∫
Y

e
ψi,n
ε

(∫
Y

e
ψi,n
ε dν∗

)−1

dν∗

= 1.

Since for a given 1 ≤ q <∞, there is a constant c such that ctq ≤ et, for each t > 0, we have

that for each 1 ≤ q <∞, ∫
Y

[
ψ∗
i,n

ε

]q
+

dν∗ ≤ 1

c

∫
Y

e
ψ∗
i,n
ε dν∗.

Thus, ∫
Y

[
ψ∗
i,n

]q
+
dν∗ ≤ εq

c
for some constant c.

So, supn ||
[
ψ∗
i,n

]
+
||Lq(Y,dν∗) <∞ for each 1 ≤ q <∞ and for each 1 ≤ i ≤ p− 1.

In particular,

sup
n

||
[
ψ∗
i,n

]
+
||L1(Y,dν∗) <∞, ∀1 ≤ i ≤ p− 1. (6.2.10)

Now, since (ϕ∗
i,n, ψ

∗
i,n)1≤i≤p,n∈N is a maximizing sequence, there is some constant c1 such

that

−c1 ≤
p∑
i=1

λiD(ϕ∗
i,n, ψ

∗
i,n)

=

p∑
i=1

λi

∫
Xi

ϕ∗
i,ndνi − ε

p∑
i=1

λi

∫
Xi×Y

e
ϕ∗i,n+ψ∗

i,n−ci
ε dνi ⊗ ν∗

=

p−1∑
i=1

λi

∫
Xi

ϕ∗
i,ndνi + λp

∫
Xp

ϕ∗
p,ndνp − ε

p−1∑
i=1

λi

∫
Xi×Y

e
ϕ∗i,n+ψ∗

i,n−ci
ε dνi ⊗ ν∗

− ελp

∫
Xp×Y

e
ϕ∗p,n+ψ∗

p,n−cp
ε dνp ⊗ ν∗.

(6.2.11)
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Recall that, for each 1 ≤ i ≤ p, ϕ∗
i,n = ψci,εi,n − ki,n and ψ∗

i,n = ψi,n + ki,n.

Hence, ∫
Xi×Y

e
ϕ∗i,n+ψ∗

i,n−ci
ε dνi ⊗ ν∗ =

∫
Xi×Y

e
ψ
ci,ε
i,n

−ki,n+ψi,n+ki,n−ci
ε dνi ⊗ ν∗

=

∫
Xi×Y

e
ψ
ci,ε
i,n

+ψi,n−ci
ε dνi ⊗ ν∗

=

∫
Xi

e
ψ
ci,ε
i,n
ε

(∫
Y

e
ψi,n−ci

ε dν∗
)
dνi

=

∫
Xi

e
ψ
ci,ε
i,n
ε · e−

ψ
ci,ε
i,n
ε dνi

= 1.

(6.2.12)

The penultimate equality holds since,

ψci,εi,n = −ε log
∫
Y

e
ψi,n−ci

ε dν∗ =⇒ e−
ψ
ci,ε
i,n
ε =

∫
Y

e
ψi,n−ci

ε dν∗.

Also, since ||ϕ∗
i,n||∞ ≤ ||ci||∞ for each 1 ≤ i ≤ p−1,

∑p−1
i=1 λi

∫
Xi
ϕ∗
i,ndνi ≤ maxi ||ci||∞(1−λp).

Now, the inequality (6.2.11) becomes

−c1 ≤ max
i

||ci||∞(1− λp) + λp

∫
Xp

ϕ∗
p,ndνp − ε(1− λp)− ελp

∫
Xp×Y

e
ϕ∗p,n+ψ∗

p,n−cp
ε dνp ⊗ ν∗.

Hence, there exists a constant c2 such that

c2
λp

≤
∫
Xp

ϕ∗
p,ndνp − ε

∫
Xp×Y

e
ϕ∗p,n+ψ∗

p,n−cp
ε dνp ⊗ ν∗. (6.2.13)

Now, consider ∫
Xp

ϕ∗
p,ndνp − ε

∫
Xp×Y

e
ϕ∗p,n+ψ∗

p,n−cp
ε dνp ⊗ ν∗.

Since f(t) = t− εe
t−a
ε is concave and it attains its maximum at t = a,∫

Xp

ϕ∗
p,ndνp − ε

∫
Xp×Y

e
ϕ∗p,n+ψ∗

p,n−cp
ε dνp ⊗ ν∗ =

∫
Xp×Y

(
ϕ∗
p,n − εe

ϕ∗p,n−(cp−ψ∗
p,n)

ε

)
dνp ⊗ ν∗

≤
∫
Xp×Y

(cp − ψ∗
p,n − ε) dνp ⊗ ν∗

≤ −
∫
Y

ψ∗
p,n dν

∗ + ||cp||∞ − ε.
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Thus, by (6.2.13), there exists a constant c3 such that

c3 ≤ −
∫
Y

ψ∗
p,n dν

∗. (6.2.14)

Since
∑p

i=1 λiψ
∗
i,n = 0, we get that

c3 ≤
1

λp

p−1∑
i=1

λi

∫
Y

ψ∗
i,n dν

∗.

Hence,

λpc3 ≤
p−1∑
i=1

λi

∫
Y

[
ψ∗
i,n

]
+
dν∗ −

p−1∑
i=1

λi

∫
Y

[
ψ∗
i,n

]
− dν∗.

Thus, by (6.2.10), there is some constant c4 such that

p−1∑
i=1

λi

∫
Y

[
ψ∗
i,n

]
− dν∗ ≤ c4.

Since λi
∫
Y

[
ψ∗
i,n

]
− dν∗ ≥ 0, we have that λi

∫
Y

[
ψ∗
i,n

]
− dν∗ ≤ c4 for each 1 ≤ i ≤ p− 1. This

gives us that

supn ||
[
ψ∗
i,n

]
− ||L1(Y,dν∗) <∞ for each 1 ≤ i ≤ p− 1.

Hence, for each 1 ≤ i ≤ p− 1,∫
Y

|ψ∗
i,n| dν∗ =

∫
Y

[
ψ∗
i,n

]
+
dν∗ +

∫
Y

[
ψ∗
i,n

]
− dν∗ <∞.

Thus we have for each 1 ≤ i ≤ p− 1, supn ||ψ∗
i,n||L1 <∞.

Now observe that,

||ψ∗
p,n||L1(Y,dν∗) = || − 1

λp

p−1∑
i=1

λiψ
∗
i,n||L1(Y,dν∗)

≤ 1

λp

p−1∑
i=1

λi||ψ∗
i,n||L1(Y,dν∗)

≤ max
i

||ψ∗
i,n||L1(Y,dν∗)

1

λp

p−1∑
i=1

λi

=
1− λp
λp

max
i

||ψ∗
i,n||L1(Y,dν∗)

<∞.
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Hence,

sup
n

||ψ∗
i,n||L1(Y,dν∗) <∞, ∀1 ≤ i ≤ p. (6.2.15)

Now we will prove that supn ||ϕ∗
p,n||L1(Xp,dνp) <∞.

Observe that, for a given 1 ≤ i ≤ p,

ϕ∗
i,n = (ψ∗

i,n)
ci,ε

= −ε log
∫
Y

e
ϕ∗i,n−ci

ε dν∗

≤ −ε
∫
Y

ϕ∗
i,n − ci

ε
dν∗ (by Jensen’s inequality)

=

∫
Y

(
ci − ψ∗

i,n

)
dν∗

≤ max
1≤i≤p

||ci||∞ −
∫
Y

ψ∗
i,n dν

∗

≤ c5, for some constant c5.

The last inequality above holds by (6.2.15).

Hence, ∀1 ≤ i ≤ p,

ϕ∗
i,n(x) ≤ c5, ∀x ∈ Xi. (6.2.16)

In particular, ∫
Xp

ϕ∗
p,n dνp ≤ c5, (6.2.17)

and ∫
Xp

[
ϕ∗
p,n

]
+
dνp ≤ max{0, c5}. (6.2.18)

In (6.2.13), since −ε
∫
Xp×Y e

ϕ∗p,n+ψ∗
p,n−cp
ε dνp ⊗ ν∗ ≤ 0, we have that

c2
λp

≤
∫
Xp

ϕ∗
p,ndνp. (6.2.19)

Combining (6.2.17) and (6.2.19), we get

c2
λp

≤
∫
Xp

ϕ∗
p,ndνp ≤ c5.

81



i.e.
c2
λp

≤
∫
Xp

[
ϕ∗
p,n

]
+
dνp −

∫
Xp

[
ϕ∗
p,n

]
− dνp ≤ c5.

Thus, by (6.2.18), there is some constant c6 such that∫
Xp

[
ϕ∗
p,n

]
− dνp ≤ c6. (6.2.20)

Thus, we have that∫
Xp

|ϕ∗
p,n| dνp =

∫
Xp

[
ϕ∗
p,n

]
+
dνp +

∫
Xp

[
ϕ∗
p,n

]
− dνp ≤ max{0, c5}+ c6.

Hence, supn ||ϕ∗
p,n||L1(Xp,dνp) <∞.

For simplicity of the proof, we will just use the uniform L1-boundedness of ϕ∗
i,n for each

1 ≤ i ≤ p− 1. Later, we will improve this proof using the uniform boundedness of them.

Now, since for each 1 ≤ i ≤ p, (ϕ∗
i,n)n∈N is a sequence with supn ||ϕ∗

i,n||L1(Xi,dνi) < ∞,

by Komlós theorem ([32]), there is a subsequence (ϕ∗
i,nm)m∈N such that

(
1
N

∑N
m=1 ϕ

∗
i,nm

)
converges pointwise νi-a.e. to some ϕ∗

i as N → ∞ and the same is true for any further

subsequence of (ϕ∗
i,nm).

Similarly, since for each 1 ≤ i ≤ p, supn ||ψ∗
i,n||L1(Y,dν∗) < ∞, for each 1 ≤ i ≤ p, we

can find a subsequence (ψ∗
i,nm)m∈N such that

(
1
N

∑N
m=1 ψ

∗
i,nm

)
converges pointwise ν∗-a.e. to

some ψ∗
i as N → ∞ and the same is true for any further subsequence of (ψ∗

i,nm).

Recall that we have

sup
ϕi,ψi

p∑
i=1

λiD(ϕi, ψi) = lim
n→∞

p∑
i=1

λiD(ϕi,n, ψi,n) = lim
m→∞

p∑
i=1

λiD(ϕi,nm , ψi,nm).

Now, fix δ > 0. Then, there exists an integer N0 such that for each m > N0,

sup
ϕi,ψi

p∑
i=1

λiD(ϕi, ψi)− δ ≤
p∑
i=1

λiD(ϕi,nm , ψi,nm)

≤
p∑
i=1

λiD(ϕ̃i,nm , ψi,nm) (By (6.2.8))

=

p∑
i=1

λiD(ϕ∗
i,nm , ψ

∗
i,nm).
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Now, consider the subsequences {ϕ∗
i,nN0+m

}m∈N and {ψ∗
i,nN0+m

}m∈N. Note that, the av-

erages { 1
N

∑N
m=1 ϕ

∗
i,nN0+m

}m∈N and { 1
N

∑N
m=1 ψ

∗
i,nN0+m

}m∈N also converge to ϕ∗, νi-a.e. and

ψ∗, ν∗-a.e. respectively.

Then, for any N ≥ 1,

sup
ϕi,ψi

p∑
i=1

λiD(ϕi, ψi)− δ ≤
p∑
i=1

1

N

N∑
m=1

λiD(ϕ∗
i,nN0+m

, ψ∗
i,nN0+m

)

≤
p∑
i=1

λiD

(
1

N

N∑
m=1

ϕ∗
i,nN0+m

,
1

N

N∑
m=1

ψ∗
i,nN0+m

)

=

p∑
i=1

λi

∫
Xi

1

N

N∑
m=1

ϕ∗
i,nN0+m

dνi

− ε

p∑
i=1

λi

∫
Xi×Y

e

1
N

∑N
m=1 ϕ

∗
i,nN0+m

+ 1
N

∑N
m=1 ψ

∗
i,nN0+m

−ci
ε dνi ⊗ ν∗.

(6.2.21)

Note that, on the first line above, we take the sum over m from 1 to N and divide by N on

both sides, and on the second line, we use the concavity of the functional D (see Appendix

5).

Then,

sup
ϕi,ψi

p∑
i=1

λiD(ϕi, ψi)− δ ≤ lim sup
N→∞

{
p∑
i=1

λi

∫
Xi

1

N

N∑
m=1

ϕ∗
i,nN0+m

dνi

− ε

p∑
i=1

λi

∫
Xi×Y

e

1
N

∑N
m=1 ϕ

∗
i,nN0+m

+ 1
N

∑N
m=1 ψ

∗
i,nN0+m

−ci
ε dνi ⊗ ν∗

}

≤
p∑
i=1

λi lim sup
N→∞

∫
Xi

1

N

N∑
m=1

ϕ∗
i,nN0+m

dνi

− ε

p∑
i=1

λi lim inf
N→∞

∫
Xi×Y

e

1
N

∑N
m=1 ϕ

∗
i,nN0+m

+ 1
N

∑N
m=1 ψ

∗
i,nN0+m

−ci
ε dνi ⊗ ν∗.

(6.2.22)

Now, we will consider each of the limits in (6.2.22) above.

Note that by (6.2.16), we have supm supx∈Xi ϕ
∗
i,nN0+m

(x) <∞. Hence, by Fatou’s Lemma
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(lim sup version),

lim sup
N→∞

∫
Xi

1

N

N∑
m=1

ϕ∗
i,nN0+m

dνi ≤
∫
Xi

lim sup
N→∞

1

N

N∑
m=1

ϕ∗
i,nN0+m

dνi

=

∫
Xi

ϕ∗
i dνi.

(6.2.23)

Since ∀1 ≤ i ≤ p,
(

1
N

∑N
m=1 ϕ

∗
i,nN0+m

+ 1
N

∑N
m=1 ψ

∗
i,nN0+m

− ci

)
converges pointwise νi ⊗

ν∗-a.e. to (ϕ∗
i + ψ∗

i − ci), by Fatou’s Lemma,∫
Xi×Y

e
ϕ∗i+ψ

∗
i −ci
ε dνi ⊗ ν∗ ≤ lim inf

N→∞

∫
Xi×Y

e

1
N

∑N
m=1 ϕ

∗
i,nN0+m

+ 1
N

∑N
m=1 ψ

∗
i,nN0+m

−ci
ε dνi ⊗ ν∗. (6.2.24)

Thus, by combining (6.2.22), (6.2.23) and (6.2.24), we get

sup
ϕi,ψi

p∑
i=1

λiD(ϕi, ψi)− δ ≤
p∑
i=1

λi

∫
Xi

ϕ∗
i dνi − ε

p∑
i=1

λi

∫
Xi×Y

e
ϕ∗i+ψ

∗
i −ci
ε dνi ⊗ ν∗

=

p∑
i=1

λiD(ϕ∗
i , ψ

∗
i ).

(6.2.25)

Since δ > 0 is arbitrary, letting δ → 0, we get that

sup
ϕi,ψi

p∑
i=1

λiD(ϕi, ψi) ≤
p∑
i=1

λiD(ϕ∗
i , ψ

∗
i ).

Also, since
∑p

i=1 λiψ
∗
i,nm = 0, we have that

lim
N→∞

p∑
i=1

λi
1

N

N∑
m=1

ψ∗
i,nm =

p∑
i=1

λiψ
∗
i = 0 ν∗-a.e.

Thus we can conclude that {ϕ∗
i , ψ

∗
i }

p
i=1 is a maximizer for (6.2.6).

Remark 6.2.6. Note that, since N0 depends on δ, ∀1 ≤ i ≤ p, the sets

Aϕi =
{
xi ∈ Xi : {ϕ∗

i,nN0+m
} does not converge to ϕ∗

i

}
and

Aψi =
{
y ∈ Y : {ψ∗

i,nN0+m
} does not converge to ψ∗

i

}
depend on the choice of δ. However, since we only consider integrals against νi’s and ν∗,

these sets do not affect our calculations.
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Remark 6.2.7. Also observe that, even though we have strong duality results for {(ϕi ∈

Cb(Xi, νi), ψi ∈ Cb(Y, ν
∗))}pi=1, we get existence for {(ϕi ∈ L1(Xi, νi), ψi ∈ L1(Y, ν∗))}pi=1.

We may get a better regularity for ϕ∗
i , ∀1 ≤ i ≤ p− 1, due to the uniform boundedness of the

ϕ∗
i,n,∀1 ≤ i ≤ p− 1 (see (6.2.9)).
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APPENDIX

1 Alternative dual functional for CCOT Problem:
Let X, Y ⊆ Rd. For given f ∈ L1(X), g ∈ L1(Y ) and 0 ≤ h̃ ∈ L∞(X × Y ), consider

OT∗
CC := sup

(u,v,w)∈Lipc,h̃

J(u, v, w) (1.1)

where

J(u, v, w) :=

∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy +

∫
X×Y

w(x, y)h̃(x, y) dxdy, (1.2)

Lipc,h̃ :=

{
(u, v, w) : u ∈ L1(X, fdx), v ∈ L1(Y, gdy), w ∈ L1(X × Y, h̃dxdy),

u(x) + v(y) + w(x, y) ≤ c(x, y), and w(x, y) ≤ 0

}
,

(1.3)

and
OT∗′

CC := sup
u∈L1(X),v∈L1(Y )

J ′(u, v), (1.4)

where
J ′(u, v) :=

∫
X

uf dx+

∫
Y

vg dy −
∫
X×Y

[−c+ u+ v]+ h̃ dxdy. (1.5)

Proposition 1.1. OT∗
CC = OT∗′

CC.

Proof. Define A =
{
(u, v, w) : u ∈ L1(X, fdx), v ∈ L1(Y, gdy), and w = − [−c+ u+ v]+

}
.

Then,
OT∗′

CC := sup
(u,v,w)∈A

J(u, v, w).

First, let (u, v, w) ∈ A be arbitrary. Then w ≤ 0, w = − [−c+ u+ v]+ ≤ − [−c+ u+ v],
which gives u + v + w ≤ c, and w ∈ L1(X × Y, h̃dxdy). Hence, (u, v, w) ∈ Lipc,h̃. Thus,
A ⊆ Lipc,h̃. So, we have

sup
(u,v,w)∈A

J(u, v, w) ≤ sup
(u,v,w)∈Lipc,h̃

J(u, v, w), (1.6)

i.e.
OT∗′

CC ≤ OT∗
CC . (1.7)

Now observe that,

OT∗
CC = sup

(u,v,w)∈Lipc,h̃

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy +

∫
X×Y

w(x, y)h̃(x, y) dxdy

}
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= sup
(u,v,w)∈Lipc,h̃

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy

+

∫
{(x,y):−c(x,y)+u(x)+v(y)≥0}

w(x, y)h̃(x, y) dxdy

}

+

∫
{(x,y):−c(x,y)+u(x)+v(y)<0}

w(x, y)h̃(x, y) dxdy

}

≤ sup
(u,v)∈L1(X)×L1(Y )

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy

+

∫
{(x,y):−c(x,y)+u(x)+v(y)≥0}

[c(x, y)− u(x)− v(y)]h̃(x, y) dxdy

}
. (1.8)

In the last line above, we used the fact that w ≤ c− u− v, and w ≤ 0.
On the other hand,

OT∗′
CC = sup

(u,v)∈L1(X)×L1(Y )

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy −
∫
X×Y

[−c+ u+ v]+ h̃ dxdy

}

= sup
(u,v)∈L1(X)×L1(Y )

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy

−
∫
{(x,y):−c(x,y)+u(x)+v(y)≥0}

[−c+ u+ v]+ h̃(x, y) dxdy

−
∫
{(x,y):−c(x,y)+u(x)+v(y)<0}

[−c+ u+ v]+ h̃(x, y) dxdy

}

= sup
(u,v)∈L1(X)×L1(Y )

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy

−
∫
{(x,y):−c(x,y)+u(x)+v(y)≥0}

[−c+ u+ v] h̃(x, y) dxdy

}

= sup
(u,v)∈L1(X)×L1(Y )

{∫
X

u(x)f(x) dx+

∫
Y

v(y)g(y) dy

+

∫
{(x,y):−c(x,y)+u(x)+v(y)≥0}

[c(x, y)− u(x)− v(y)] h̃(x, y) dxdy

}
. (1.9)

By combining (1.8) and (1.9), we get

OT∗
CC ≤ OT∗′

CC . (1.10)

The inequalities (1.7) and (1.10) conclude that

OT∗
CC = OT∗′

CC .
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2 The relaxed CCOT Problem is strictly convex.
Given an integer p > 2, a lower semi-continuous function c : Rpd 7→ R, f ∈ L1(Rd) and

h ∈ L1(Rd × Rd), consider the functional

Iεc (h) :=

∫
Rpd

ch dx̂+
1

2ε

p∑
i=1

|| ⟨h⟩xi − fi||22, (2.1)

where dx̂ = dx1 . . . dxp.

Proposition 2.1. Iεc is strictly convex.

Proof. Let 0 ≤ h1, h2 ≤ h̃ be such that h1 ̸= h2 and let 0 < λ < 1.
Then, observe that

Iεc (λh1 + (1− λ)h2) =

∫
Rpd

c(λh1 + (1− λ)h2)dx̂+
1

2ε

p∑
i=1

|| ⟨(λh1 + (1− λ)h2)⟩xi − fi||22

= λ

∫
Rpd

ch1 dx̂+ (1− λ)

∫
Rpd

ch2 dx̂

+
1

2ε

p∑
i=1

|| ⟨(λh1 + (1− λ)h2)⟩xi − (λ+ (1− λ))fi||22

= λ

∫
Rpd

ch1 dx̂+ (1− λ)

∫
Rpd

ch2 dx̂

+
1

2ε

p∑
i=1

||λ(⟨h1⟩xi − fi) + (1− λ)(⟨h2⟩xi − fi)||22

< λ

∫
Rpd

ch1 dx̂+ (1− λ)

∫
Rpd

ch2 dx̂

+
λ

2ε

p∑
i=1

|| ⟨h1⟩xi − fi||22 +
(1− λ)

2ε

p∑
i=1

|| ⟨h2⟩xi − fi||22

= λIεc (h1) + (1− λ)Iεc (h2).

Note that in the penultimate line, the strict inequality holds due to the strict convexity of
the L2 norm.

3 Uniform boundedness for probability measures with finite moment.
Proposition 3.1. Given capacities {γ̃i}pi=1 ⊆ M+(Rd × Rd), p probability measures
ν1, . . . , νp in P2(Rd), and a sequence of probability measures {ν̃n}n∈N ∈ P2(Rd) such that
Πγ̃i(νi, ν̃n) ̸= ∅,∀1 ≤ i ≤ p, if there is an M > 0 such that W̃2

2
(νi, ν̃n) ≤ M, ∀i and n, we

have
sup
n

∫
|x|2 dν̃n ≤ C, for some constant C.

Proof. Fix i ∈ {1, . . . , p} and n ∈ N. Consider the two-marginal capacity constrained OT
problem between the measures νi and ν̃n with capacity γ̃i given by (5.2.3).
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By the duality,

W̃2

2
(νi, ν̃n) = sup

Bi,n

{∫
Rd
u(x) dνi(x) +

∫
Rd
v(y) dν̃n(y) +

∫
Rd×Rd

w(x, y) dγ̃i(x, y)

}
, (3.1)

where the supremum is taken over the set Bi,n of real-valued functions u, v, w satisfying
u ∈ L1(νi), v ∈ L1(ν̃n), w ∈ L1(γ̃i) and w ≤ 0 with u(x) + v(y) + w(x, y) ≤ 1

2
|x− y|2.

Choose u(x) = infy∈Rd{1
2
|x|2 + 1

4
|y|2 − x · y}, v(y) = 1

4
|y|2, w(x, y) = 0.

Then,
u(x) + v(y) + w(x, y) ≤ 1

2
|x|2 + 1

4
|y|2 − x · y + 1

4
|y|2 = 1

2
|x− y|2 for all (x, y) ∈ Rd × Rd.

By plugging this choice of u, v, w in (3.1), we get∫
Rd

inf
y∈Rd

{1
2
|x|2 + 1

4
|y|2 − x · y

}
dνi(x) +

∫
Rd

1

4
|y|2 dν̃n(y) ≤ W̃2

2
(νi, ν̃n). (3.2)

Since ∇y

{
1
2
|x|2 + 1

4
|y|2 − x · y

}
= 1

2
y − x, we have

infy∈Rd
{

1
2
|x|2 + 1

4
|y|2 − x · y

}
= −1

2
|x|2.

Thus, (3.2) gives us,∫
Rd

1

4
|y|2 dν̃n(y) ≤ W̃2

2
(νi, ν̃n) +

∫
Rd

1

2
|x|2 dνi(x).

Since W̃2

2
(νi, ν̃n) ≤M and νi ∈ P2(Rd), there is a constant C > 0, independent from n such

that ∫
Rd

1

4
|y|2 dν̃n(y) ≤ C.

4 An integral condition for tightness:
Proposition 4.1. ([3], Remark 5.1.5) Let X ⊆ Rd and {νn}n∈N ∈ P2(X) be a sequence of
probability measures. Then, if supn

∫
|x|2 dνn < +∞, then {νn}n∈N is tight.

Proof. Let δ > 0 be arbitrary and fix n ∈ N. Suppose supn
∫
|x|2 dνn < M . Let Rδ be a real

number such that Rδ >
√

M
δ
. Define the compact set Kδ = {x ∈ Rd : |x| ≤ Rδ}. Then,

νn({x ∈ Rd : |x| > Rδ}) ≤
1

R2
δ

∫
Rd

|x|2 dνn ≤ M

R2
δ

< δ. (4.1)

This proves that {νn}n∈N is tight.
Note that we get the first inequality in (4.1) by the Chebychev’s inequality.
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5 The entropic dual functional is strictly concave.
Given two Polish spaces X, Y , a bounded cost function c : X × Y 7→ R, two probability

measures µ ∈ P(X), ν ∈ P(ν), and two functions ϕ ∈ Lexp
ε (X, dµ), ψ ∈ Lexp

ε (Y, dν), consider
the functional

D(ϕ, ψ) :=

∫
X

ϕdµ+

∫
Y

ψdν − ε

∫
X×Y

e
(ϕ+ψ−c)

ε dµ⊗ ν. (5.1)

Proposition 5.1. The functional D is strictly concave.

Proof. Let ϕ1, ϕ2 ∈ Lexp
ε (X, dµ), ψ1, ψ2 ∈ Lexp

ε (Y, dν) and 0 < λ < 1 be a real number. We
need to show that

D(λϕ1 + (1− λ)ϕ2, λψ1 + (1− λ)ψ2) > λD(ϕ1, ψ1) + (1− λ)D(ϕ2, ψ2).

i.e.

λ

∫
X

ϕ1 dµ+ (1− λ)

∫
X

ϕ2 dµ+ λ

∫
Y

ψ1 dν + (1− λ)

∫
Y

ψ2 dν

− ε

∫
X×Y

e
(λϕ1+(1−λ)ϕ2+λψ1+(1−λ)ψ2−c)

ε dµ⊗ ν

> λ

∫
X

ϕ1 dµ+ λ

∫
Y

ψ1 dν − ελ

∫
X×Y

e
(ϕ1+ψ1−c)

ε dµ⊗ ν

+ (1− λ)

∫
X

ϕ2 dµ+ (1− λ)

∫
Y

ψ2 dν − ε(1− λ)

∫
X×Y

e
(ϕ2+ψ2−c)

ε dµ⊗ ν.

So, it is sufficient to show that

− ε

∫
X×Y

e
(λϕ1+(1−λ)ϕ2+λψ1+(1−λ)ψ2−c)

ε dµ⊗ ν

> −ελ
∫
X×Y

e
(ϕ1+ψ1−c)

ε dµ⊗ ν − ε(1− λ)

∫
X×Y

e
(ϕ2+ψ2−c)

ε dµ⊗ ν.

i.e.∫
X×Y

e
(λϕ1+(1−λ)ϕ2+λψ1+(1−λ)ψ2−c)

ε dµ⊗ ν

< λ

∫
X×Y

e
(ϕ1+ψ1−c)

ε dµ⊗ ν + (1− λ)

∫
X×Y

e
(ϕ2+ψ2−c)

ε dµ⊗ ν. (5.2)

First, we will prove that

e
(λϕ1+(1−λ)ϕ2+λψ1+(1−λ)ψ2−c)

ε < λe
(ϕ1+ψ1−c)

ε + (1− λ)e
(ϕ2+ψ2−c)

ε . (5.3)

Observe that

e
(λϕ1+(1−λ)ϕ2+λψ1+(1−λ)ψ2−c)

ε = e
(λϕ1+(1−λ)ϕ2+λψ1+(1−λ)ψ2−λc−(1−λ)c)

ε

= eλ
(ϕ1+ψ1−c)

ε
+(1−λ) (ϕ2+ψ2−c)

ε
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< λe
(ϕ1+ψ1−c)

ε + (1− λ)e
(ϕ2+ψ2−c)

ε .

Note that the last line above holds due to the strict convexity of the exponential function.
Now, by integrating both sides of (5.3) with respect to dµ⊗ν on X×Y , we get the inequality
(5.2).

This completes the proof.
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