
DATA-CENTRIC PRIVACY-PRESERVING MACHINE LEARNING

By

Junyuan Hong

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science—Doctor of Philosophy

2023

ABSTRACT

With the rapid popularization of machine learning (ML), privacy emerges as a critical obsta-

cle for extracting knowledge from sensitive data into models. Traditional machine learning

methods industriously curate data from millions of clients (e.g., edge devices) and train

models upon the data, which causes tremendous risks of leaking data providers’ sensitive

information. In this thesis, we are devoted to exploiting learning algorithms that protect

data providers’ privacy based on three different ways of data use: from central to distributed

settings. First, we investigate private data-centralized learning (CL) in the rigorous notion

of differential privacy (DP), where we search for the iterative dynamic privacy allocation in

gradient descent toward higher model utility. Our theoretic work shows that optimal privacy

allocation can improve the sample efficiency of DP learning. Though data can be protected

in learning, CL has to make the assumption that the data management institute can be

trusted, which does not have technical guarantees, though. Rather than aggregating data,

federated learning (FL) coordinates clients to periodically share models trained on local data.

Confronting the great data and device heterogeneity from clients in FL, we propose novel

algorithms that can effectively train models from clients with heterogeneous data distribu-

tions and device capabilities. One of our methods enhances the knowledge transfer from one

supervised domain to an unsupervised domain, and can reduce the performance gap between

clients from different social groups. We also developed a hardware-adaptive learning algo-

rithm that makes FL inclusive for devices with various capabilities. Not only during training,

our algorithm also enables models to be customizable at test time for facilitating dynamic

computation budgets. Though FL mitigates the risks by distributed data, the local training

of large models could still be a significant burden for resource-limited edge devices. Last,

observing the limitations of CL in the privacy of data storage and FL in computation, we

propose a new computation paradigm, outsourcing training without uploading data (OT).

To learn effective knowledge about private data, we sample the proximal proxy dataset from

the open-source data for cloud training. Our method can efficiently and effectively spot sim-

ilar samples from privacy-free open-source data, and therefore can transfer the computation

costs of training to the cloud server.

This thesis is dedicated to my parents.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my profound gratitude towards my advisor, Dr.

Jiayu Zhou, whose invaluable counsel, motivation, and unwavering support have been indis-

pensable throughout my doctoral voyage. Dr. Zhou’s role in my academic journey transcends

that of a mere advisor, concurrently acting as a trusted confidante who imparts his exten-

sive knowledge and experience in various facets of my Ph.D. odyssey. My experience in

Dr. Zhou’s research laboratory has been nothing short of extraordinary, a consequence of a

fortunate decision taken years prior. The wealth of knowledge that I’ve accumulated under

his guidance is vast, ranging from efficacious research methodologies to the art of influen-

tial leadership. Ranked among the world’s most esteemed advisors, Dr. Zhou’s proclivity

towards nurturing the growth of his students, demonstrated by his constant support and

prompt responses, is unparalleled. His enduring support over the years has been a linchpin

in my academic accomplishments, and for that, I will remain forever appreciative.

I would like to express my deepest appreciation to my dissertation committee members,

Dr. Anil K. Jain, Dr. Sijia Liu, and Dr. Zhangyang Wang for their insightful comments

and helpful suggestions. Their expertise and feedback have played a pivotal role in shaping

both this dissertation and my job talk. I would like to extend my profound gratitude to Dr.

Zhangyang Wang, who has diligently co-supervised me alongside Dr. Zhou throughout my

doctoral journey. His unflagging zeal, remarkable intellect, and unwavering professionalism

have continuously served as the ideal I aspire to emulate in my future endeavors.

I was fortunate to work as an intern at Sony AI with amazing colleagues and mentors:

Dr. Lingjuan Lyu, Dr. Spranger Michael, Yuyang Deng, Yi Zeng, Dr. Nidham Gazagnadou,

Dr. Virat Shejwalkar, Jiahua Dong, Dr. Chen Chen, Dr. Weiming Zhuang, Dr. Jingtao Li,

Yubin Hu, and Ronghang Zhu. I enjoyed the wonderful and productive months with you.

I am grateful to have had the pleasure and fortune of having supportive and encouraging

colleagues during my Ph.D. I am thankful to all my colleagues from the Intelligent Data

Analytics (ILLIDAN) Lab: Zhuangdi Zhu, Mengying Sun, Kaixiang Lin, Boyang Liu, Qi

v

Wang, Inci Baytas, Ikechukwu Uchendu, Andy Tang, Liyang Xie, Jun Chen, Shuyang Yu,

Haobo Zhang, Siqi Liang, Yijiang Pang, and Hoang Cao Bao. I would love to extend my

deepest appreciations to my collaborators: Dr. Haotao Wang, Dr. Zhangyang Wang, Dr.

Ruoxi Jia, Dr. Hiroko Dodge, Dr. Xiaomin Ouyang, Dr. Mehrdad Mahdavi, Dr. Yang

Zhou, Dr. Vishnu Boddeti, Dr. Steve Drew, Dr. Aston Zhang, Dr. Zenglin Xu, and Dun

Zeng.

I would also like to extend my heartfelt appreciation to my dear friends at MSU who

provided unwavering support and encouragement during the moments when I felt frustrated

during my Ph.D. study. Dr. Wei Wang, Dr. Kaixiong Zhou, Meijun Gao, Tianxudong

Tang, Fei Zhang, Rundong Zhao, Xu Dong, Feiran Li, Xitong Zhang, Jingwen Shi, Wentao

Wang, Xinyu Lei, Wei Jin, Wentao Bao, Junwen Chen, Xinda Qi, Pengyu Chu, Xiaorui Liu,

Shaohua Yang, Qiaozi Gao, Dong Chen, Dr. Nan Du, Dr. Ding Wang, Mi Gong, Guangjing

Wang, Ze Zhang, Ruoze Su, Hao Wang, Ruoqiao Chen, Pai Li, Xuan Xie, Cathy Bing, Zeyu

Qin, Zhiyuan Ren, Shengjie Zhu, and Xinyi Wang, your friendship and belief in me have

been truly invaluable.

Finally, I would like to thank my family and my girlfrind, Zhujie Hong, Yafen Chen and

Han Meng, for their unconditional love and support.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Overview of Thesis Structure . 2
1.3 Defitinion of Privacy-Preserving Learning . 3
1.4 A Glance of Prior Arts . 4

CHAPTER 2 DYNAMIC PRIVACY BUDGET ALLOCATION FOR ENHANCED
CENTRALIZED PRIVATE LEARNING 7

2.1 Introduction . 7
2.2 Related Work . 9
2.3 Private Gradient Descent . 11
2.4 Dynamic Policies by Minimizing Utility Upper Bounds 14
2.5 Experiments . 27

CHAPTER 3 FEDERATEDADVERSARIAL DEBIASING FOR TRANSFERABLE
AND FAIR REPRESENTATIONS 29

3.1 Introduction . 29
3.2 Related Work . 32
3.3 Federated Adversarial Debiasing . 33
3.4 Optimality Analysis . 35
3.5 Experiments on Unsupervised Domain Adaptation 40
3.6 Experiments on Fair Federated Learning . 45

CHAPTER 4 EFFICIENT FEDERATED LEARNING FOR ON-DEMAND AND
IN-SITU CUSTOMIZATION . 49

4.1 Introduction . 49
4.2 Related Work . 52
4.3 Problem Setting . 54
4.4 Method . 55
4.5 Empirical Studies . 61

CHAPTER 5 OUTSOURCING TRAINING WITHOUT UPLOADING DATA . . . 67
5.1 Introduction . 67
5.2 Related Work . 70
5.3 Outsourcing Model Training With Open-Source Data 71
5.4 Empirical Results . 76

CHAPTER 6 OVERVIEW . 84

APPENDIX A DYNAMIC PRIVACY BUDGET ALLOCATION 101

APPENDIX B FEDERATED ADVERSARIAL DEBIASING FOR FAIR AND
TRANSFERABLE REPRESENTATIONS 104

vii

APPENDIX C EFFICIENT FEDERATED LEARNING FORON-DEMANDAND
IN-SITU CUSTOMIZATION . 111

APPENDIX D OUTSOURCING TRAINING WITHOUT UPLOADING DATA . . 121

viii

CHAPTER 1

INTRODUCTION

1.1 Motivation

When machine learning becomes the fundamental block in artificial intelligence, the recent

advances in deep machine learning hinge on a large amount of data. Such great demands

for massive data cast significant challenges on the broader applications of deep learning in

practical scenarios, where data are collected from the amount of distributed personal devices

containing private information and therefore cannot be freely collected without privacy,

communication, and computation costs. For example, the widely-used ImageNet dataset [26]

gathers millions of images from Internet, which are captured by camera sensors distributed

across the world. When human objects are involved in the system, the privacy of the personal

information (including identities, activities, and preferences) in the photos has to be carefully

protected.

In this thesis, we study privacy protection from a data-centric perspective: How data

are used in private learning?. We answer this question from three ways of data use. 1)

Centralize data. First, centralized learning has been a long-term topic, where all data are

gathered into an institute to conduct follow-up learning. For centralized data storage, the

institute responsible for data management is promised to protect the users’ data, where the

model delivered by centralized learning should not leak private information by any means.

2) Distributed data and training. However, the storage institute may break the trust

when the clients can not monitor the data use. For example, Facebook sells the users’ data

to Cambridge Analytics without acknowledging users [2]. The leakage strengthens people’s

doubts about the trustworthiness of big corporations. Therefore, in the last decades, many

countries or organizations have carried out laws to constrain the use of private data by any

institute, including General Data protection Regulation [1], and Health Insurance Portability

and Accountability Act (HIPPA) [4]. 3) Distributed data but centralized training.

1

Even if the data storage is trustworthy, the trained model may be inverse-engineered to leak

private information on publishing [45]. For distributed learning, private information can be

mined by exploring the transmitted gradients [166]. Meanwhile, the computation overhead

brought by local training calls for full cloud training without accessing private data.

Observing the risks of data privacy, we aim to protect privacy in machine learning from

a data-centric perspective and focus on efficient, effective, and flexible privacy-preserving

learning. First, we use the notion of differential privacy (DP) [38] to quantify the privacy

risks in centralized learning and design algorithms for sample-efficient DP learning. Second,

we consider distributed data and training based on a federated learning framework, where

data and computation tasks are distributed to clients with heterogeneous data, devices,

and demands. The heterogeneity of clients makes it difficult to accommodate the federated

learning to more data and clients and therefore calls for advanced learning algorithms that

are flexible with hardware and data biases. Third, in our ongoing work, we consider cloud

training where data are maintained locally by a client, and computation-intensive training

is done on the cloud. To train a model that is effective on local data, it is essential to find

proxy data that is privacy-free and consists of similar features as the private data, critically

via a privacy-preserving collaboration.

1.2 Overview of Thesis Structure

This section summarizes each of the chapters in this thesis.

Chapter 2 elaborates on the theoretical analysis of differentially-private gradient descent

to establish the utility-enhanced convergence bound. Chapter 3 discuss how to close the

domain or group biases in federated learning towards fair and transferable representations.

In Chapter 4, we study the heterogeneity of hardware and the split-mix principle for model-

customizable training and inference. In Chapter 5, we present our ongoing work for out-

sourcing training without uploading data by sampling a proximal dataset from open-source

data.

2

Abbreviation Definition
DP Differential Privacy
GD Gradient Descent
PGD Private Gradient Descent
FL Federated Learning

Table 1.1: Overview of Abbreviations.

1.3 Defitinion of Privacy-Preserving Learning

In this section, we present definitions of privacy-preserving learning (PPL) in three different

ways of data use.

1.3.1 Private Gradient Descent for Centralized Learning

We consider a learning task by empirical risk minimization (ERM) f(θ) = 1
N

∑N
n=1 f(θ;xn)

on a private dataset {xn}Nn=1 and θ ∈ RD. The gradient methods are defined as θt+1 =

θt − ηt∇t, where ∇t = ∇f(θt) = 1
N

∑
n∇f(θt;xn) denotes the non-private gradient at itera-

tion t, ηt is the step learning rate. ∇(n)
t = ∇f(θt;xn) denotes the gradient on a sample xn.

Ic denotes the indicator function that returns 1 if the condition c holds, otherwise 0.

Generally, we define the Private Gradient Descent (PGD) method as iterations for t =

1 . . . T :

θt+1 = θt − ηtφt = θt − ηt(∇t + σtGνt/N), (1.1)

where φt = gt is the gradient privatized from∇t as shown in Algorithm 2.1, G/N is the bound

of sensitivity of the gathered gradient excluding one sample gradient, and νt ∼ N (0, I) is a

vector element-wisely subject to Gaussian distribution. We use σt to denote the noise scale

at step t and use σ to collectively represents the schedule (σ1, . . . , σT) if not confusing. When

the Lipschitz constant is unknown, we can control the upper bound by scaling the gradient

if it is over some constant. The scaling operation is often called clipping in literature since it

clips the gradient norm at a threshold. After the gradient is noised, we apply a modification,

φ(·), to enhance its utility.

3

1.3.2 Data-Distributed Learning via Federated Learning

As centralizing data into an untrustworthy center causes uncontrollable risks, learning

with distributed data and computation could alleviate the issue accordingly. One extraor-

dinary example of this distributed learning is to federated learning (FL) strategy, which

yields a global model by aggregating models from many clients. Formally, FL minimizes the

objective

1∑
k |Dk|

K∑
k=1

∑
(x,y)∈Dk

L(f(x; θ), y)

where L is loss function (e.g., cross-entropy loss), f is a model parameterized by θ, and

{Dk}Kk=1 are the training datasets on K participants with the image-label pairs (x, y). Fol-

lowing the standard FL setting [96], only model parameters can be shared to protect privacy.

1.3.3 Outsourcing Training without Uploading Private Data

As FL requires intensive local training, it is less suitable for resource-constrained edge

devices. To transfer the computation overhead to cloud without using private data, the goal

of Outsourcing Training without Uploading Private Data (OT) is to train a model on a proxy

dataset proxy such that the model can transfer to the target private data distribution. The

training can be formulated as the empirical risk minimization on the cloud dataset. The loss

is defined as

L(θ;Dproxy) =
1

|Dproxy|
∑

(x,y)∈Dproxy

L(f(x; θ), y).

A good proxy dataset should make the trained model transferable to the private data, for

which purpose the proxy data should follow a similar distribution as the private data. To

circumvent the privacy risk, the proxy dataset should be constructed from a non-private

source and any interaction with the private data should be accounted for with privacy risks.

1.4 A Glance of Prior Arts

In this section, we briefly overview the recent advances of privacy-preserving learning ap-

proaches in three settings.

4

Centralized Private Learning. (1) Private Learning. Recent years witnessed increas-

ing attention to the privacy risk associated to learning from sensitive training data. For

example, an attacker could retrieve the training data from the models generated by the

widely-used empirical risk minimization (ERM) [45]. Many efforts have been devoted to

privacy-preserving learning. With the introduction of differential privacy (DP) [34], we are

now able to measure and defend the risk quantitatively [11, 70, 120, 128]. The main idea

is to introduce stochastic perturbations to the learning process, and the perturbations can

be done in any query operations [35], such as gradient computations [3] or objective evalu-

ation [20]. When proper noise is introduced before publishing the model, such as Gaussian

mechanism [39], one can no longer easily retrieve the training data by resampling [45]. (2)

Adaptive Privacy Perturbation. The key to achieving high utility in privacy-preserving learn-

ing is perturbation control. [162] improved the performance of models in a stochastically

private manner by selecting the gradient candidates. [75] proposed adaptively and privately

querying the effects of the noised gradient updates. Both mechanisms rely on querying the

model outputs several times via an exponential noise mechanism [34] which degrades the

effectiveness. Instead, [9] showed a simple adaptive scaling based on the noised value is

capable of reducing expectation error. Inspired by this idea, our gradient protector sequen-

tially predicts optimization updates based on current and previous protected gradients which

reduces both query times and privacy costs.

Federated Learning [96] is a distributed learning framework that allows users with

different capabilities to collaboratively train a model without sharing their own data. A

critical challenge in FL is the heterogeneity among users. Viewing the learning process of

FL as knowledge transfer among different users, heterogeneity in user data leads to nega-

tive transfer between users and compromises generalization [13]. One idea to alleviate the

negative effect of heterogeneity during the training is to find a consensus among users. For

example, in [49, 85, 77, 43], the consensus on task knowledge is achieved by distillation. In

this work, we seek an alternative and efficient approach by adversarial debiasing the users

5

of different groups.

Training Outsourcing. There are a series of efforts studying how to leverage the data

and computation resources on the cloud to assist client model training, especially when

client data cannot be shared [156, 142]. We categorize them as follows: 1) Feature sharing :

Methods like group knowledge transfer [49], split learning [136] and domain adaptation [32,

30] transfer edge knowledge by communicating features extracted by networks. To provide a

theoretical guarantee of privacy protection, [105] proposed an advanced information removal

to disentangle sensitive attributes from shared features. In the notion of rigorous privacy

definition, Liu et al. leverage public data to assist private information release [89]. Earlier,

data encryption was used for outsourcing which however is too computation-intensive for a

client and less applicable for large-scale data and deep networks [21, 76]. Federated Learning

(FL) considered the same constraint on data sharing but the private knowledge is shared

via models trained locally [97]. 2) Private labeling: PATE and its variants were proposed

to generate client-approximated labels for unlabeled public data, on which a model can be

trained [108, 109]. Without training multiple models by clients, Private kNN was a more

efficient alternative that explored the private neighborhood of public images for labeling [168].

These approaches are based on a strong assumption of the availability of public data that

is iid as the local data. This paper considers a more practical yet challenging setting where

public data are from multiple agnostic sources with heterogeneous features.

6

CHAPTER 2

DYNAMIC PRIVACY BUDGET ALLOCATION FOR ENHANCED
CENTRALIZED PRIVATE LEARNING

Protecting privacy in learning while maintaining the model performance has become in-

creasingly critical in many applications that involve sensitive data. Private Gradient De-

scent (PGD) is a commonly used private learning framework, which noises gradients based

on the Differential Privacy protocol. Recent studies show that dynamic privacy schedules

of decreasing noise magnitudes can improve loss at the final iteration, and yet theoretical

understandings of the effectiveness of such schedules and their connections to optimization

algorithms remain limited. In this paper, we provide comprehensive analysis of noise in-

fluence in dynamic privacy schedules to answer these critical questions. We first present

a dynamic noise schedule minimizing the utility upper bound of PGD, and show how the

noise influence from each optimization step collectively impacts utility of the final model.

Our study also reveals how impacts from dynamic noise influence change when momentum

is used. We empirically show the connection exists for general non-convex losses, and the

influence is greatly impacted by the loss curvature.

2.1 Introduction

In the era of big data, privacy protection in machine learning systems is becoming a cru-

cial topic as increasing personal data involved in training models [37] and the presence of

malicious attackers [126, 45]. In response to the growing demand, differential-private (DP)

machine learning [38] provides a computational framework for privacy protection and has

been widely studied in various settings, including both convex and non-convex optimiza-

tion [139, 138, 64].

One widely used procedure for privacy-preserving learning is the (Differentially) Private

Gradient Descent (PGD) [11, 3]. A typical gradient descent procedure updates its model by

gradients of the loss evaluated on a training dataset. When the data is sensitive, the gradients

should be privatized to prevent excess privacy leakage. The PGD privatizes a gradient by

7

adding controlled noise. As such, the models from PGD is expected to have a lower utility

as compared to those from unprotected algorithms. In the cases where strict privacy control

is exercised, or equivalently, a tight privacy budget, accumulating effects from highly-noised

gradients may lead to unacceptable model performance. It is thus critical to design effective

privatization procedures for PGD to maintain a great balance between utility and privacy.

Recent years witnessed a promising direction of privatization that dynamically allocate

a privacy budget for each iteration to boost utility, under the constraint of a specified total

privacy budget. One example is [75], which reduces the budget-bonded noise magnitude

when the loss does not decrease, due to the observation that gradients become very small

when approaching convergence, and a static noise scale will overwhelm these gradients. An-

other example is [159], which periodically decreases the magnitude following a predefined

strategy, e.g., exponential decaying or step decaying. Both approaches confirmed the em-

pirically advantages of decreasing noise magnitudes. Intuitively, the dynamic mechanism

may coordinate with certain properties of the learning task, e.g., training data and loss sur-

face. Following the work, improved allocation policies are proposed, e.g., policies transferred

from auxiliary datasets [57], policies with distributed budgets [22], and a combination with

adaptive learning rate [155]. Yet there is little theoretical analysis available and two impor-

tant questions remain unanswered: 1) What is the form of utility-preferred budget (or noise

equivalently) schedules? 2) When and to what extent such an allocation policy improves

utility?

Though there are theoretical studies of static-allocation policies, e.g., [139], the data

efficiency is not the focus as discussions usually assume an unlimited amount of data is

available. However, we argue that the data efficiency with limited data size is critical in

practice, especially when DP makes the learning more data-hungry [98]. One example is fed-

erated learning [96, 98], a distributed learning framework that aggregates many local models

to form a stronger global model, where each model is privately trained on a local client,

typically with very limited private data. Another example is biomedical applications, where

8

collecting samples involves expansive clinical trials or cohort studies, resulting the scarcity

of training set. To study biomarkers of Alzheimer’s, NIH has funded Alzheimer’s Disease

Neuroimaging Initiative for $40 million, which collected imaging and genetic biomarkers

from only 800 patients after 5 years’ extensive and collaborative efforts [145]. Therefore,

we believe data efficiency needs to be taken into account in developing a private learning

algorithm.

To answer these questions, in this paper we develop a principled approach to construct

dynamic schedules and quantify their utility bounds in different learning algorithms. Our

contributions are summarized as follows. 1) For the class of loss functions satisfying the

Polyak-Lojasiewicz condition [114], we show that dynamic schedules, that improve the utility

upper bound with high data-efficiency, are shaped by the changing influence of per-iteration

noise on the final loss. As the influence is tightly connected to the loss curvature, the

advantage of using dynamic schedules therefore depends on the loss function. 2) Beyond

vanilla gradient descent, our results show the gradient methods with momentum implicitly

introduce a dynamic schedule and result in an non-monotonous influence trend. 3) We

also show that our results are generalizable to population bounds in high probability or

based on uniform stability theorems. Though our major focus is on the theoretic study, we

empirically validate the results on a non-convex loss function formulated by a neural network.

The empirical results suggest that a preferred dynamic schedule admits the exponentially

decaying form, and works better when learning with high-curvature loss functions. Moreover,

dynamic schedules give higher utility under stricter privacy conditions (e.g., smaller sample

size and less privacy budget).

2.2 Related Work

Differentially Private Learning. Differential privacy (DP) characterizes the chance that

an algorithm output (e.g., a learned model) leaks private information of its training data

when the output distribution is known. Since outputs of many learning algorithms have

undetermined distributions, the probabilistic risk is hard to measure. A common approach

9

to tackle this issue is to inject randomness with known distribution to privatize the learning

procedures. Classical methods include output perturbation [20], objective perturbation [20]

and gradient perturbation [3, 11, 148]. Among these approaches, the Private Gradient De-

scent (PGD) has attracted extensive attention in recent years because it can be flexibly

integrated with variants of gradient-based iteration methods, e.g., stochastic gradient de-

scent, momentum methods [116], and Adam [71], for (non-)convex problems.

Dynamic Policies for Privacy Protection. [139] studied the empirical risk minimiza-

tion using dynamic variation reduction of perturbed gradients. They showed that the utility

upper bound can be achieved by gradient methods under uniform noise parameters. Instead

of enhancing the gradients, [159, 75] showed the benefits of using a dynamic schedule of pri-

vacy parameters or equivalently noise scales. Following [75], a series of work [22, 61, 152, 164]

adaptively allocate privacy budget towards better privacy-utility trade-off. Moreover, adap-

tive sensitivity control [113, 130] and dynamic batch sizes [42] are also shown to improve

convergence.

Utility Upper Bounds. Utility upper bounds are a critical metric for privacy schedules,

which characterizes the maximum utility that a schedule can deliver in theory. [139] is the

first to prove the utility bound under the PL condition. Recently, [165] proved the utility

bound by using the momentum of gradients [115, 71]. In this paper, we improve the upper

bound by a more accurate estimation of the dynamic influence of step noise. We show that

introducing a dynamic schedule further boosts the sample-efficiency of the upper bound.

Table 2.1 summarizes the upper bounds of a selection of state-of-the-art algorithms based

on private gradients (up block, see Section A.2 for the full list), and methods studied in this

paper (down block), showing the benefits of dynamic influence.

Especially, a closely-related work by Feldman et al. achieved a convergence rate similar

to ours in terms of generalization error bounds, by dynamically adjusting batch sizes [42].

However, the approach requires controllable batch sizes, which may not be feasible in many

applications. In federated learning, for example, where users update models locally and then

10

Table 2.1: Comparison of utility upper bound using different privacy schedules. The algorithms
are T -iteration 1

2R-zCDP under the PL condition (unless marked with * for convexity). The O
notation in this table drops other ln terms. Unless otherwise specified, all algorithms (including
non-private GD) terminate at step T = O(ln N2R

D). Assume loss functions are 1-smooth and 1-
Lipschitz continuous, and all parameters satisfy their numeric assumptions. Key notations: Op –
bound occurs in probability p; D – feature dimension; N – sample size; R – privacy budget where
Rε,δ is the equivalent budget accounted by (ε, δ)-DP; ci – constant.

Algorithm Schedule (σ2t) Utility Upper Bound

*GD+Adv [11] O
(
ln(N/δ)
Rε,δ

)
O
(
D ln3N
NRε,δ

)
GD+MA [139] O(T

Rε,δ
) O

(
D ln2N
N2Rε,δ

)
GD+MA (adjusted utility) [157] O(T

Rε,δ
) O

(
min

√
D

NRε,δ
, D lnN
N2R2

ε,δ

)
*GD+Adv+BBImp [24] O

(
n2 ln(n/δ)
Rε,δ

)
Op
(
D2 ln2(1/p)
Rε,δN1−c

)
Adam+MA [165] O(T

Rε,δ
) Op

(√
D ln(NDε/(1−p))

NRε,δ

)
GD, Non-Private 0 O

(
D
N2R

)
GD+zCDP, Static Schedule T

R O
(
D lnN
N2R

)
GD+zCDP, Dynamic Schedule O

(
γ(t−T)/2

R

)
O
(

D
N2R

)
Momentum+zCDP, Static Schedule T

R O
(

D
N2R

(c+ lnNIT>T̂)
)

Momentum+zCDP, Dynamic Schedule O
(
c1γT+t+c2γ(T−t)/2

R

)
O
(

D
N2R

(1 + cD
N2R

IT>T̂)
)

pass the parameters to server for aggregation, the server has no control over batch sizes, and

coordinating users to use varying batch sizes may not be realistic. On the other hand, our

proposed method can still be applied for enhancing utility, as the server can dynamically

allocate privacy budget for each round when the presence of a user in the global aggregation

is privatized [98].

2.3 Private Gradient Descent

Notations. We consider a learning task by empirical risk minimization (ERM) f(θ) =

1
N

∑N
n=1 f(θ;xn) on a private dataset {xn}Nn=1 and θ ∈ RD. The gradient methods are

defined as θt+1 = θt − ηt∇t, where ∇t = ∇f(θt) = 1
N

∑
n∇f(θt;xn) denotes the non-private

gradient at iteration t, ηt is the step learning rate. ∇(n)
t = ∇f(θt;xn) denotes the gradient

on a sample xn. Ic denotes the indicator function that returns 1 if the condition c holds,

otherwise 0.

11

Assumptions. (1) In this paper, we assume f(θ) is continuous and differentiable. Many

commonly used loss functions satisfy this assumption, e.g., the logistic function. (2) For

a learning task, only finite amount of privacy cost is allowed where the maximum cost is

called privacy budget and denoted as R. (3) Generally, we assume that loss functions f(θ;x)

(sample-wise loss) are G-Lipschitz continuous and f(θ) (the empirical loss) is M -smooth.

Definition 1 (G-Lipschitz continuity). A function f(·) is G-Lipschitz continuous if, for

G > 0 and all x, y in the domain of f(·), f(·) satisfies ‖f(y)− f(x)‖ ≤ G ‖y − x‖. .

Definition 2 (m-strongly convexity). A function f(·) is m-strongly convex if f(y) ≥ f(x)+

∇f(x)T (y − x) + m
2
‖y − x‖2, for some m > 0 and all x, y in the domain of f(·).

Definition 3 (M -smoothness). A function is M-smooth w.r.t. l2 norm if f(y) ≤ f(x) +

∇f(x)T (y − x) + M
2
‖y − x‖2, for some constant M > 0 and all x, y in the domain of f(·).

For a private algorithmM(d) which maps a dataset d to some output, the privacy cost is

measured by the bound of the output difference on the adjacent datasets. Adjacent datasets

are defined to be datasets that only differ in one sample. In this paper, we use the zero-

Concentrated Differential Privacy (zCDP, see Definition 4) as the privacy measurement,

because it provides the simplicity and possibility of adaptively composing privacy costs at

each iteration. Various privacy metrics are discussed or reviewed in [27]. A notable example

is Moment Accoutant (MA) [3], which adopts similar principle for composing privacy costs

while is less tight for a smaller privacy budget. We note that alternative metrics can be

adapted to our study without major impacts to the analysis.

Definition 4 (ρ-zCDP [18]). Let ρ > 0. A randomized algorithm M : Dn → R satisfies

ρ-zCDP if, for all adjacent datasets d, d′ ∈ Dn, Dα(M(d)‖M(d′)) ≤ ρα, ∀α ∈ (1,∞) where

Dα(·‖·) denotes the Rényi divergence [119] of order α.

The zCDP provides a linear composition of privacy costs of sub-route algorithms. When

the input vector is privatized by injecting Gaussian noise of N (0, σ2
t I) for the t-th iteration,

12

the composed privacy cost is proportional to
∑

t ρt where the step cost is ρt = 1
σ2
t
. For

simplicity, we absorb the constant coefficient into the (residual) privacy budget R. The

formal theorems for the privacy cost computation of composition and Gaussian noising is

included in Lemmas 2 and 3.

Algorithm 2.1: Privatizing Gradients
Input: Raw gradients [∇(1)

t , . . . ,∇(n)
t] (n = N by default), vt, residual privacy budget Rt

assuming the full budget is R and R1 = R.

1: ρt ← 1/σ2
t , ∇t ← 1

n

∑n
i=1∇

(i)
t (Budget request)

2: if ρt < Rt then
3: Rt+1 ← Rt − ρt
4: gt ← ∇t +Gσtνt/N , νt ∼ N (0, I) (Privacy noise)
5: mt+1 ← φ(mt, gt) or g1 if t = 1
6: return ηtmt+1, Rt+1 (Utility projection)
7: else
8: Terminate

Generally, we define the Private Gradient Descent (PGD) method as iterations for t =

1 . . . T :

θt+1 = θt − ηtφt = θt − ηt(∇t + σtGνt/N), (2.1)

where φt = gt is the gradient privatized from∇t as shown in Algorithm 2.1, G/N is the bound

of sensitivity of the gathered gradient excluding one sample gradient, and νt ∼ N (0, I) is a

vector element-wisely subject to Gaussian distribution. We use σt to denote the noise scale

at step t and use σ to collectively represents the schedule (σ1, . . . , σT) if not confusing. When

the Lipschitz constant is unknown, we can control the upper bound by scaling the gradient if

it is over some constant. The scaling operation is often called clipping in literatures since it

clips the gradient norm at a threshold. After the gradient is noised, we apply a modification,

φ(·), to enhance its utility. In this paper, we consider two types of φ(·):

φ(mt, gt) = gt (GD), (2.2)

φ(mt, gt) = [β(1− βt−1)mt + (1− β)gt]/(1− βt) (Momentum) (2.3)

13

We now show that the PGD using Algorithm 2.1 guarantees a privacy cost less than R:

Theorem 1. Suppose f(θ;x) is G-Lipschitz continuous and the PGD algorithm with priva-

tized gradients defined by Algorithm 2.1, stops at step T . The PGD algorithm outputs θT

and satisfies ρ-zCDP where ρ ≤ 1
2
R.

Note that Theorem 1 allows σt to be different throughout iterations. Next we present a

principled approach for deriving dynamic schedules optimized for the final loss f(θT).

2.4 Dynamic Policies by Minimizing Utility Upper Bounds

To characterize the utility of the PGD, we adopt the Expected Excess Risk (EER), which

notion is widely used for analyzing the convergence of random algorithms, e.g., [11, 139].

Due to the presence of the noise and the limitation of learning iterations, optimization

using private gradients is expected to reach a point with a higher loss (i.e., excess risk) as

compared to the optimal solution without private protection. Define θ∗ = arg minθ f(θ),

after Algorithm 2.1 is iterated for T times in total, the EER gives the expected utility

degradation:

EER = Eν [f(θT+1)]− f(θ∗).

Due to the variety of loss function and complexity of recursive iterations, an exact EER with

noise is intractable for most functions. Instead, we study the worst case scenario, i.e., the

upper bound of the EER, and our goal is to minimize the upper bound. For consistency, we

call the upper bound of EER divided by the initial error as ERUB. Since the analytical form

of EER is either intractable or complicated due to the recursive iterations of noise, studying

the ERUB is a convenient and tractable alternative. The upper bound often has convenient

functional forms which are (1) sufficiently simple, such that we can directly minimize it, and

(2) closely related to the landscape of the objective depending on both the training dataset

and the loss function. As a consequence, it is also used in previous PGD literature [113, 139]

for choosing proper parameters. Moreover, we let ERUBmin be the achievable optimal upper

bound by a specific choice of parameters, e.g., the σ and T .

14

As the EER is iteratively determined by Eq. (2.1), we define the influence of the dynamics

in noise magnitude σt as the derivative: q∗t = ∂ EER
∂σt

. Accordingly, we can approximate the

EER shift as q∗t∆σt when σt increases by ∆σt. However, because the EER is strongly data-

dependent, the derived q∗t on a given dataset may not generalize to another dataset. Instead,

we consider a more general term based on ERUB, i.e., qt = ∂ ERUB
∂σt

.

In this paper, we consider the class of loss functions satisfying the Polyak-Lojasiewicz

(PL) condition which bounds losses by corresponding gradient norms. It is more general than

the m-strongly convexity. If f is differentiable and M -smooth, then m-strongly convexity

implies the PL condition.

Definition 5 (Polyak-Lojasiewicz condition [114]). For f(θ), there exists µ > 0 and for

every θ, ‖∇f(θ)‖2 ≥ 2µ(f(θ)− f(θ∗)).

The PL condition helps us to reveal how the influence of step noise propagates to the

final excess error, i.e., EER. Though the assumption was also used previously in (author?)

[139, 165], neither did they discuss the propagated influence of noise. In the following

sections, we will show how the influence can tighten the upper bound in gradient descent

and its momentum variant.

2.4.1 Gradient Descent Methods and Noise Influences

For the brevity of variables, we first define the following summarized constants:

non-private ERUB : α ,
DG2

2RMN2(f(θ1)− f(θ∗))
≤ O

(
DG2

RMN2

)
, (2.4)

curvature : κ ,
M

µ
, (2.5)

convergence rate : γ , 1− 1

κ
, (2.6)

which satisfy κ ≥ 1 and γ ∈ [0, 1). Here, α is upper bounded by non-private ERUB within

T =
⌈
O(ln N2R(M−µ)

DG2)
⌉
iterations. Therefore, α provide a simple reference of an ideal con-

vergence bound, reaching which indicates a superior performance with privacy guarantee. κ

characterizes the curvature of f(·) which is the condition number of f(·) if f(·) is strongly

15

convex, and γ is the convergence rate for non-private SGD (c.f. Theorem 2 with σt = 0).

κ tends to be large if the function is sensitive to small differences in inputs, and 1/α tends

to be large if more samples are provided and with a less strict privacy budget. The con-

vergence of PGD under the PL condition has been studied for private [139] and non-private

[68, 101, 118] ERM. Below we extend the bound in [139] by considering dynamic influence

of noise and relax σt to be dynamic:

Theorem 2. Let α, κ and γ be defined in Eq. (2.6), and ηt = 1
M
. Suppose f(θ;xi) is G-

Lipschitz and f(θ) is M-smooth satisfying the Polyak-Lojasiewicz condition. For PGD, the

following holds:

ERUB = γT +R
∑T

t=1
qtσ

2
t , where qt , γT−tα. (2.7)

Theorem 2 degenerates to a non-private variant as no noise is applied, i.e., σt = 0 for all t.

In Eq. (2.7), the step noise magnitude σ2
t has an exponential influence, qt, on the EER. Note

we ignore the constant factor R in the influence. The Eq. (2.7) implies that the influence of

noise at step t increase quickly by an exponential rate. Importantly, the increasing rate is

the same as the convergence rate, i.e., the first term in Eq. (2.7). The dynamic characteristic

of the influence is the key to prove a tighter bound. Plus, on the presence of the dynamic

influence, it is natural to choose a dynamic σ2
t . When relaxing qt to a static 1, a static σ2

t

was studied by [139] They proved a bound which is nearly optimal except a ln2N factor. To

get the optimal bound, in the following sections, we look for the σ and T that minimize the

upper bound.

Uniform Schedule. The uniform setting of σt has been previously studied in [139].

Here, we show that the bound can be further tightened by considering the dynamic influence

of iterations and a proper T .

Theorem 3. Suppose conditions in Theorem 2 are satisfied. When σ2
t = T/R, let α, γ and

κ be defined in Eq. (2.6) and let T be: T =
⌈
O
(
κ ln

(
1 + 1

κα

))⌉
. Meanwhile, if κ ≥ 1

1−c > 1,

16

1/α > 1/α0 for some constant c ∈ (0, 1) and α0 > 0, the corresponding bound is:

ERUBuniform
min = Θ

(
κ2

κ+ 1/α
ln

(
1 +

1

κα

))
. (2.8)

Sketch of proof. The key of proof is to find a proper T to minimize

ERUB = E = γT +
∑T

t=1
γT−tαRσ2

= γT + αT
1− γT

1− γ
= γT + ακ(1− γT)T (2.9)

where we use σt =
√
T/R. Vanishing its gradient is to solve γT ln γ + ακ(1 − γT) −

ακTγT ln γ = 0, which however is intractable. In [139], T is chosen to be O(ln(1/α))

and ERUB is relaxed as γT + ακT 2. The approximation results in a less tight bound as

O(α(1 + κ ln2(1/α))) which explodes as κ→∞.

We observe that for a super sharp loss function, i.e., a large κ, any minor perturbation

may result in tremendously fluctuating loss values. In this case, not-stepping-forward will

be a good choice. Thus, we choose T = 1
ln(1/γ)

ln
(

1 + ln(1/γ)
α

)
≤ O

(
κ ln

(
1 + 1

κα

))
which

converges to 0 as κ→ +∞. The full proof is deferred to the appendix.

Dynamic Schedule. A dynamic schedule can improve the upper bound delivered by

the uniform schedule. First, we observe that the excess risk in Eq. (2.7) is upper bounded

by two terms: the first term characterizes the error due to the finite iterations of gradient

descents; the second term, a weighted sum, comes from error propagated from noise at each

iteration. Now we show for any {qt|qt > 0, t = 1, . . . , T} (not limited to the qt defined in

Eq. (2.7)), there is a unique σt minimizing the weighted sum:

Lemma 1 (Dynamic schedule). Suppose σt satisfy
∑T

t=1 σ
−2
t = R. Given a positive sequence

{qt}, the following equation holds:

min
σ
R
∑T

t=1
qtσ

2
t =

(∑T

t=1

√
qt

)2
, when σ2

t =
1

R

∑T

i=1

√
qi
qt
. (2.10)

Remarkably, the difference between the minimum and T
∑T

t=1 qt (uniform σt) monotonically

increases by the variance of √qt w.r.t. t.

17

We see that the dynamics in σt come from the non-uniform nature of the weight qt.

Since qt presents the impact of the σt on the final error, we denote it as influence. Given

the dynamic schedule in Eq. (2.10), it is of our interest to which extent the ERUB can be

improved. First, we present Theorem 4 to show the optimal T and ERUB.

Theorem 4. Suppose conditions in Theorem 2 are satisfied. Let α, κ and γ be defined

in Eq. (2.6). When ηt = 1
M
, σt (based on Eqs. (2.7) and (2.10)) and the T minimizing

ERUB are, i.e., σ2
t = 1

R

√
(1/γ)T−1
1−√γ

√
γt, T =

⌈(
2κ ln

(
1 + 1

κα

))⌉
. Meanwhile, when κ ≥ 1 and

1/α ≥ 1/α0 for some positive constant α0, the minimal bound is:

ERUBdynamic
min = Θ

(
κ2

κ2 + 1/α

)
. (2.11)

2.4.2 Discussion

In Theorems 3 and 4, we present the tightest bounds for functions satisfying the PL

condition, to our best knowledge. We further analyze the advantages of our bounds from

two aspects: sample efficiency and robustness to sharp losses.

Sample efficiency. Since dataset cannot be infinitely large, it is critical to know how

accurate the model can be trained privately with a limited number of samples. Formally, it

is of interest to study when κ is fixed and N is large enough such that α� 1. Then we have

the upper bound in Eq. (2.8) as

ERUBuniform
min ≤ O

(
κ2α ln

(
1

κα

))
≤ Õ

(
DG2 ln(N)

MN2R

)
, (2.12)

where we ignore κ and other logarithmic constants with Õ as done in (author?) [139].

As a result, we get a bound very similar to [139], except that R is replaced by RMA =

ε2/ ln(1/δ) using Moment Accountant. In comparison, based on Lemma 4, R = 2ρ = 2ε +

4 ln(1/δ) + 4
√

ln(1/δ)(ε+ ln(1/δ) if θT satisfies ρ-zCDP. Because ln(1/δ) > 1, it is easy to

see R = RzCDP > RMA when ε ≤ 2 ln(1/δ). As compared to the one reported in [139],

our bound saved a factor of lnN and thus require less sample to achieve the same accuracy.

18

Remarkably, the saving is due to the maintaining of the influence terms as shown in the

proof of Theorem 3.

Using the dynamic schedule, we have ERUBdynamic
min ≤ O(α) = O

(
DG2

MN2R

)
, which saved

another lnN factor in comparison to the one using the uniform schedule Eq. (2.12). As

shown in Table 2.1, such advantage maintains when comparing with other baselines and

reaches the ideal non-private case , recalling the meaning of α.

Stability on ill-conditioned loss. Besides sample efficiency, we are also interested in

robustness of the convergence under the presence of privacy noise. Because of the privacy

noise, the private gradient descent will be unable to converge to where a non-private al-

gorithm can reach. Specifically, when the samples are noisy or have noisy labels, the loss

curvature may be sharp. The sharpness also implies lower smoothness, i.e., a small M or

has a very small PL parameter. Thus, gradients may change tremendously at some steps

especially in the presence of privacy noise. Such changes have more critical impact when

only a less number of iterations can be executed due to the privacy constraint. Assume α is

some constant while κ� 1/α, we immediately get:

ERUBuniform
min = Θ

(
κ ln

(
1 +

1

κα

))
= Θ

(
1

α

)
≤ O

(
MN2R

DG2

)
,

ERUBdynamic
min = Θ(1).

Both are robust, but the dynamic schedule has a smaller factor since 1/α could be a large

number. In addition, the factor implies that when more samples are used, the dynamic

schedule is more robust.

2.4.3 Gradient Descent Methods with Momentum

Section 2.4.1 shows that the step noise has an exponentially increasing influence on the

final loss, and therefore a decreasing noise magnitude improves the utility upper bound

by a lnN factor. However, the proper schedule can be hard to find when the curvature

information, e.g., κ, is absent. A parameterized method that less depends on the curvature

information is preferred. On the other hand, long-term iterations will result in forgetting of

19

the initial iterations, since accumulated noise overwhelmed the propagated information from

the beginning. This effect will reduce the efficiency of the recursive learning frameworks.

Alternative to GD, the momentum method can mitigate the two issues. It was originally

proposed to stabilize the gradient estimation [115]. In this section, we show that momentum

(agnostic about the curvature) can flatten the dynamic influence and improve the utility

upper bound. Previously, (author?) used the momentum as an estimation of gradient

mean, without discussions of convergence improvements. (author?) gave a bound for the

Adam with DP. However, the derivation is based on gradient norm, which results in a looser

bound (see Table 2.1).

The momentum method stabilizes gradients by moving average history coordinate values

and thus greatly reduces the variance. The φ(mt, gt) can be rewritten as:

mt+1 = φ(mt, gt) =
vt+1

1− βt
,

vt+1 = βvt + (1− β)gt = (1− β)
∑t

i=1
βt−igt, v1 = 0, (2.13)

where β ∈ [0, 1]. Note vt+1 is a biased estimation of the gradient expectation while mt+1 is

unbiased.

Theorem 5 (Convergence under PL condition). Suppose f(θ;xi) is G-Lipschitz, and f(θ)

is M-smooth and satisfies the Polyak-Lojasiewicz condition. Assume β 6= γ and β ∈ (0, 1).

Let ηt = η0
2M

and η0 ≤ 8
(√

1 + 64βγ(γ − β)−2(1− β)−3 + 1
)−1

. Then the following holds:

EER ≤
(
γT + 2Rη0α U3(σ, T)︸ ︷︷ ︸

noise varinace

)
(f(θ1)− f(θ∗))

−ζ η0
2M

∑T

t=1
γT−tE ‖vt+1‖2︸ ︷︷ ︸

momentum effect

(2.14)

where γ = 1− η0
κ
, ζ = 1− 1

β(1−β)3η
2
0 − 1

4
η0 ≥ 0, and U3 =

∑T
t=1 γ

T−t (1−β)2
(1−βt)2

∑t
i=1 β

2(t−i)σ2
i .

The upper bound includes three parts that influence the bound differently: (1) Convergence.

The convergence term is mainly determined by η0 and κ. η0 should be in (0, κ) such that

20

the upper bound can converge. A large η0 will be preferred to speed up convergence if it

does not make the other two terms worse. (2) Noise Variance. The second term compressed

in U3 is the effect of the averaged noise,
∑t

i=1 β
2(t−i)σ2

i . One difference introduced by the

momentum is the factor (1−β)/(1−βt) which is less than γt at the beginning and converges

to a non-zero constant 1− β. Therefore, in U3, γT−t(1− β)/(1− βt) will be constantly less

than γT meanwhile. Furthermore, when t > T̂ , the moving average
∑t

i=1 β
2(t−i)σ2

i smooths

the influence of each σt. (3) Momentum Effect. The momentum effect term can improve the

upper bound when η0 is small. For example, when β = 0.9 and γ = 0.99, then η0 ≤ 0.98/M

which is a rational value. Following the analysis, when M is large which means the gradient

norms will significantly fluctuate, the momentum term may take the lead. Adjusting the

noise scale in this case may be less useful for improving utility.

To give an insight on the effect of dynamic schedule, we provide the following utility

bounds.

Theorem 6 (Uniform schedule). Suppose the assumptions in Theorem 5 are satisfied. Let

σ2
t = T/R, and let: T̂ = max t s.t. γt−1 ≥ 1−β

1−βt , T =
⌈
O
(
κ
η0

ln
(
1 + η0

κα

))⌉
. Given some

positive constant c and α0 > 0 with 1/α > 1/α0, the following inequality holds:

ERUBmin ≤ O
(

κ2

κ+ η0/α

[
IT≤T̂ + γT̂−1 ln

(
1 +

η0
κα

)
IT>T̂

])
.

Theorem 7 (Dynamic schedule). Suppose the assumptions in Theorem 5 are satisfied. Let

α′ = 2η0α
γ(1−γβ2)

, β < γ and T̂ = max t s.t. γt−1 ≥ 1−β
1−βt . Use the following schedule: σ2

t =

1
R

∑T
i=1

√
qi
qt
, T dyn =

⌈
O
(

2κ
η0

ln
(
1 + η0

κα

))⌉
, where qt = c1γ

T+tIT≤T̂ + γT̂−1c2γ
T−tIT>T̂ for

some positive constants c1 and c2. The following inequality holds:

ERUB ≤ γT + 2η0α
∑T

t=1
Rqtσ

2
t ,

ERUBmin ≤ O
(

κα

κα + η0

(
κα

κα + η0
IT≤T̂ + IT>T̂

))
.

Discussion. Theoretically, the dynamic schedule is more influential in vanilla gradient de-

scent methods than the momentum variant. The result is mainly attributed to the averaging

21

operation. The moving averaging, (1− β)
∑t

i=1 β
t−igi/(1− βt), increase the influence of the

under-presented initial steps and decrease the one of the over-sensitive last steps. Coun-

terintuitively, the preferred dynamic schedule should be increasing since qt decreases when

t ≤ T̂ .

2.4.4 Extension to Private Stochastic Gradient Descent

Though PGD provides a guarantee both for utility and privacy, computing gradients of

the whole dataset is impractical for large-scale problems. For this sake, studying the con-

vergence of Private Stochastic Gradient Descent (PSGD) is meaningful. The Algorithm 2.1

can be easily extended to PSGD by subsampling n gradients where the batch size n � N .

According to [159], when privacy is measured by zCDP, there are two ways to account for

the privacy cost of PSGD depending on the batch-sampling method: sub-sampling with or

without replacement. In this paper, we focus on the random subsampling with replacement

since it is widely used in deep learning in literature, e.g., [3, 42]. Accordingly, we replace

N in the definition of α by n because the term is from the sensitivity of batch data (see

Eq. (2.1)). For clarity, we assume that T is the number of iterations rather than epochs and

that ∇̃t is mean stochastic gradient.

When a batch of data are randomly sampled, the privacy cost of one iteration is cp2/σt

where c is some constant, p = n/N is the sample rate, and 1/σ2
t is the full-batch privacy

cost. Details of the sub-sampling theorems are referred to the Theorem 3 of [159] and

their empirical setting. Threfore, we can replace the privacy constraint
∑

t p
2/σ2

t = R by∑
t 1/σ2

t = R′ where R′ = R/p2 = N2

n2 R. Remarkably, we omit the constant c because it

will not affect the results regarding uniform or dynamic schedules. Notice N2R in the α is

replaced by n2R′ = N2R. Thus, the form of α is not changed which provides convenience

for the following derivations.

Now we study the utility bound of PSGD. To quantify the randomness of batch sampling,

we define a random vector ξt with E[ξt] = 0 and E ‖ξt‖2 ≤ D such that ∇̃t ≤ ∇t +σgξt/n for

some positive constant σg. Because ξt has similar property to the privacy noise νt, we can

22

easily extend the PGD bounds to PSGD bounds by following theories.

Theorem 8 (Utility bounds of PSGD). Let α, κ and γ be defined in Eq. (2.6), and ηt = 1
M
.

Suppose f(θ;xi) is G-Lipschitz and f(θ) is M-smooth satisfying the Polyak-Lojasiewicz

condition. For PSGD, when batch size satisfies n = max{N
√
R, 1}, the following holds:

ERUB = γT+αgσ
2
g+R

′∑T
t=1 qtσ

2
t , where qt , γT−tα,

∑
t 1/σ2

t = R′. where αg = D
2µN2R(f(θ1)−f(θ∗)) .

Theorem 9 (PSGD with momentum). Let αg = D
2µN2R(f(θ1)−f(θ∗)) . Suppose assumptions

in Theorem 5 holds. When batch size satisfies n = max{N
√
R, 1}, the U3(σ, T) has to be

replaced by Ũ3 = U g
3 + U3, with αR′U g

3 ≤ αgσ
2
g when PSGD is used.

See proof on page 104. As shown above, the utility bound of PSGD differs from the

PGD merely by αgσ2
g . Note αg = O(D

N2R
) which fits the order of dynamic-schedule bounds.

In addition, α and other variables are not changed. Hence, the conclusions w.r.t. the

dynamic/uniform schedules maintain the same.

2.4.5 Comaprison of generalization bounds

In addition to the empirical risk bounds in Table 2.1, in this section we study the true

risk bounds, or generalization error bounds. True risk bounds characterize how well the

learnt model can generalize to unseen samples subject to the inherent data distribution. By

leveraging the generic learning-theory tools, we extend our results to the True Excess Risk

(TER) for strongly convex functions as follows. For a model θ, its TER is defined as follows:

TER , Ex∼X [E[f(θ;x)]]−minθ̂ Ex∼X [f(θ̂;x)],

where the second expectation is over the randomness of generating θ (e.g., the noise and

stochastic batches). Assume a dataset d consist of N samples drawn i.i.d. from the distri-

bution X . Two approaches could be used to extend the empirical bounds to the true excess

risk: One is proposed by [124] where the true excess risk of PGD can be bounded in high

probability. For example, [11] achieved a ln2N
N

bound with N2 iterations. Alternatively,

instead of relying on the probabilistic bound, (author?) [12] used the uniform stability to

23

Table 2.2: Comparison of true excess risk bounds. The algorithms are T -iteration 1
2
R-zCDP

or equivalently (ε, δ)-DP under the µ-strongly-convex condition. The O notation in this
table drops other ln terms. Assume loss functions are 1-smooth and 1-Lipschitz continuous,
and all parameters satisfy their numeric assumptions. * marks the method with convex
assumption.

Algorithm Utility Upper Bd. T

GD+Adv [11] O1−p
(√

D ln2 N ln(1/p)
pµNRε,δ

)
O(N2)

SVRG+MA [139] O
(

D lnN
µN2Rε,δ

)
O(ln N2Rε,δ

D
)

SSGD+zCDP [42] O
((

1√
N

+ 2
√
D√
RN

)
lnN

)
O(N2

16D/R2+4N
)

* SGD+MA [12] O
(
max

{ √
D

N
√
Rε,δ

, 1√
N

})
O(min{N

8
,
N2Rε,δ
32D

})

True risk in high probability (1− p)

GD+zCDP, Static Schedule O1−p

(
G2

µN

(√
D ln(N) ln(1/p)

NR
+ 4
p

))
O(ln N2R

D
)

GD+zCDP, Dynamic Schedule O1−p

(
G2

µN

(√
D ln(1/p)
NR

+ 4
p

))
O(ln N2R

D
)

Momentum+zCDP, Static Sch. O1−p

(
G2

µN

(√
D ln(1/p)
NR

(c+ lnNIT>T̂) +
4
p

))
O(ln N2R

D
)

Momentum+zCDP, Dynamic Sch. O1−p

(
G2

µN

(√
D ln(1/p)
NR

(1 + cD
N2R

IT>T̂) +
4
p

))
O(ln N2R

D
)

True risk by uniform stability
GD, Non-Private O

(
D
N2R

)
O(ln N2R

D
)

GD+zCDP, Static Schedule O
(
D lnN
N2R

)
O(ln N2R

D
)

GD+zCDP, Dynamic Schedule O
(

D
N2R

)
O(ln N2R

D
)

Momentum+zCDP, Static Sch. O
(

D
N2R

(c+ lnNIT>T̂)
)

O(ln N2R
D

)

Momentum+zCDP, Dynamic Sch. O
(

D
N2R

(1 + cD
N2R

IT>T̂)
)

O(ln N2R
D

)

give a tighter bound. Later, (author?) [42] improve the efficiency of gradient computation

to achieve a similar bound. Both approaches introduce an additive term to the empirical

bounds. In this section, we adopt both approaches to investigate the two types of resulting

true risk bounds.

(1) True Risk in High Probability. First, we consider the high-probability true risk

bound. Based on Section 5.4 from [124] (restated in Theorem 10), we can relate the EER to

the TER.

Theorem 10. Let f(θ;x) be G-Lipschitz, and f(θ) be µ-strong convex loss function given

any x ∈ X . With probability at least 1− p over the randomness of sampling the data set d,

24

the following inequality holds:

TER(θ) ≤

√
2G2

µN

√
f(θ)− f(θ∗) +

4G2

pµN
, (2.15)

where θ∗ = arg minθ f(θ).

To apply the Eq. (2.15), we need to extend EER, the expectation bound, to a high-

probability bound. Following [11] (Section D), we repeat the PGD with privacy budget R/k

for k times. Note, the output of all repetitions is still of R budget. When k = 1, let the EER

of the algorithm be denoted as F (R). Then the EER of one execution of the k repetitions is

F (R/k) where privacy is accounted by zCDP. When k = log2(1/p) for p ∈ [0, 1], by Markov’s

inequality, there exists one repetition whose EER is F (R/ log2(1/p)) with probability at least

1 − 1/2k = 1 − p. Combined with Eq. (2.15), we use the bounds of uniform schedule and

dynamic schedules in Section 2.4.2 to obtain:

TERuniform ≤ Õ

(
G2

µN

(√
D ln(N) ln(1/p)

NR
+

4

p

))
, (2.16)

TERdynamic ≤ Õ

(
G2

µN

(√
D ln(1/p)

NR
+

4

p

))
, (2.17)

where we again ignore the κ and other constants. Similarly, we can extend the momentum

methods.

(2) True Risk by Uniform Stability. Following (author?) [12], we use the uniform

stability (defined in Definition 6) to extend the empirical bounds. We restate the related

definition and theorems as follows.

Definition 6 (Uniform stability). Let s > 0. A randomized algorithm M : DN → Θ is

s-uniformly stable w.r.t. the loss function f if for any neighbor datasets d and d′, we have:

supx∈X E[f(M(d);x)− f(M(d′);x)] ≤ s,

where the expectation is over the internal randomness ofM.

25

Theorem 11 (See, e.g., [123]). Suppose M : DN → Θ is a s-uniformly stable algorithm

w.r.t. the loss function f . Let D be any distribution over data space and let d ∼ DN . The

following holds true.

Ed∼DN [E[f(M(d);D)− f(M(d); d)]] ≤ s,

where the second expectation is over the internal randomness ofM. f(M(d);D) and f(M(d); d)

represent the true loss and the empirical loss, respectively.

Theorem 12 (Uniform stability of PGD from [12]). Suppose η < 2/M for M smooth,

G-Lipschitz f(θ;x). Then PGD is s-uniformly stable with s = G2Tη/N .

Combining Theorems 11 and 12, we obtain the following:

TER ≤ EER +G2ηT

N
.

Because EER in this paper compresses a γT or similar exponential terms, unlike [12], we

cannot directly minimize the TER upper bound w.r.t. T and η in the presence of a polynomial

form of γT and T . Therefore, we still use T = O(ln N2R
D

) and η for minimizing EER. Note

that

G2ηT

N
≤ O(

G2

MN
ln
N2R

D
) ≤ O

(
G2

M

)
where we assume N � D and use lnN ≤ N . Because the term O (G2/M) is constant and

independent from dimension, we follow [12] to drop the term when comparing the bounds.

After dropping the additive term, it is obvious to see that the advantage of dynamic schedules

still maintains since TER ≤ EER. A similar extension can be derived for [139].

We summarize the results and compare them to prior works in Table 2.2 where we include

an additional method: Snowball Stochastic Gradient Descent (SSGD). SSGD dynamically

schedule the batch size to achieve an optimal convergence rate in linear time.

Discussion. By using uniform stability, we successfully transfer the advantage of our

dynamic schedules from empirical bounds to true risk bounds. The inherent reason is that our

26

bounds only need lnN iterations to reach the preferred final loss. With uniform stability,

the logarithmic T reduce the gap caused by transferring. Compared to the [42, 12], our

method has remarkably improved efficiency in T from N or N2 to ln(N). That implies fewer

iterations are required for converging to the same generalization error.

2.5 Experiments

We empirically validate the properties of privacy schedules and their connections to learning

algorithms. In this section, we briefly review the schedule behavior on quadratic losses under

varying data sensitivity.

Dataset. We create a subset of the MNIST dataset [74] including 1000 handwritten

images of 10 digits (MNIST). We also construct a subset of the MNIST dataset with digit

3 and 5 only, denoted as MNIST35. Compared to the original dataset (70, 000 samples),

the small set will be more vulnerable to attack and the private learning will require larger

noise (see the 1/N factor in Eq. (2.1)). Following the preprocessing in [3], we project the

vectorized images into a 60-dimensional subspace extracted by PCA.

Setup. The samples are first normalized so that
∑N

n=1 xn = 0 and the standard deviation

is 1. Then the sample norms are scaled such that maxn ‖xn‖ = 10 (i.e., data scales). Upon

the scaled data, we train a 2-layer Deep Neural Network (DNN) with 1000 hidden units by

logistic regression. We fix the learning rate to 0.1 based on the corresponding experiments of

non-private training (same setting without noise). The total privacy budget is (4, 10−8)-DP,

equal to 0.1963-zCDP, which implies R = 0.3927. To control the sensitivity of the gradients,

we clip gradients by a clipping norm fixed at 4. Formally, we scale down the sample gradients

to length 4 if its norm is larger than 4. Because the schedule highly depends on the iteration

number T , we grid search the best T in range [50, 150] for compared methods. Therefore,

we ignore the privacy cost of such tuning in our experiments which protocol is also used in

previous work [3, 148]. All the experiments are repeated 100 times and metrics are averaged

afterwards.

We first show the estimated influence of step noise qt (by retraining the private learn-

27

0 20 40 60 80 100
t

0

20

40

60

80

100

120
q t

data scale=1
data scale=5
data scale=10
data scale=15

0 10000 20000 30000 40000
Train size

0.45

0.50

0.55

0.60

0.65

Tr
ai

n
lo

ss

uni
exp

0 10000 20000 30000 40000
Train size

80

82

84

86

Te
st

 a
cc

ur
ac

y

uni
exp

Figure 2.1: Comparison of dynamic schedule and uniform schedule on different data scale.
Left pane is the influence by iteration estimated by retraining. The rest two panes are
performance of DNN trained on the MNIST35 dataset with a varying total number of training
samples, when the exponential influence is estimated on a randomly-generated auxiliary
dataset.

ing algorithms) in Fig. 2.1 Left. We see the trends of influence are approximately in an

exponential form of t. By Eq. (2.10), the resultant schedule on noise scale σt will be a nor-

malized exponential decay. This observation motivates the use of exponential decay schedule

in practice.

To estimate the influence without extra privacy costs, we use an auxiliary set, which

is randomly sampled from Gaussian distribution, to pick the proper influence curvature

parameterized by an exponential function. We use auxiliary synthesized datasets of the

same size as the corresponding private datasets to tune the parameters. We vary the size of

training data to examine the data efficiency of the dynamic schedule denoted as exp. For a

fair comparison, we also choose the hyper-parameters of uniform schedule (uni) on the same

auxiliary dataset. We show that as the training size increases, exp outperforms uni both on

the training loss and the test accuracy. The result verifies our theoretic conclusion: dynamic

schedule is more data efficient than the static schedule.

28

CHAPTER 3

FEDERATED ADVERSARIAL DEBIASING FOR TRANSFERABLE AND
FAIR REPRESENTATIONS

Federated learning is a distributed learning framework that is communication efficient and

provides protection over participating users’ raw training data. One outstanding challenge of

federate learning comes from the users’ heterogeneity, and learning from such data may yield

biased and unfair models for minority groups. While adversarial learning is commonly used in

centralized learning for mitigating bias, there are significant barriers when extending it to the

federated framework. In this work, we study these barriers and address them by proposing

a novel approach Federated Adversarial DEbiasing (FADE). FADE does not require users’

sensitive group information for debiasing and offers users the freedom to opt-out from the

adversarial component when privacy or computational costs become a concern. We show

that ideally, FADE can attain the same global optimality as the one by the centralized

algorithm. We then analyze when its convergence may fail in practice and propose a simple

yet effective method to address the problem. Finally, we demonstrate the effectiveness of

the proposed framework through extensive empirical studies, including the problem settings

of unsupervised domain adaptation and fair learning.

3.1 Introduction

The last decade witnessed the surging adoption of personal devices such as smartphones,

smartwatches, and smart personal assistants. These devices directly interface with the users,

collect personal data, conduct light-weighted computations, and use machine learning models

to offer personalized services. The challenges from privacy concerns of sensitive personal

data, limited computational resources, performance issues of localized learning all together

lead to the federated learning (FL) paradigm [100, 16]. FedAvg [96], for example, provides

an efficient and privacy-aware FL framework. Users train models locally, upload them to a

central server iteratively aggregated to form a global model. FL greatly alleviated privacy

concerns because the server can only access model parameters from the users instead of the

29

raw data used for training.

One major challenge of FL comes from the user heterogeneity where users provide statis-

tically different data for training local models [29, 41]. Such heterogeneity may come from

different sources. For example, the users may collect data under various conditions according

to preferential or usages differences. Consider the learning of handwashing behavior from

accelerometers of smartwatches, where patterns can drastically change when using different

basins worldwide. Such domain shift [66] can lead to negative impacts during knowledge

transfer among users [106]. Another common source of heterogeneity comes from the sensi-

tive group information such as age, gender, and social groups, which are variables typically

not to be identified during learning. Heterogeneity from this source is often associated with

critical fairness issues [36] after deploying the models, where groups with less resource or

smaller computation capability may be biased or even ignored during the learning [93], and

the resulting global model may perform worse in minority groups.

Adversarial learning [47] has been a powerful approach to mitigate bias in centralized

learning, in which an adversarial objective minimizes the information extracted by an encoder

that can be maximally recovered by a parameterized model, discriminator. For example, it

has been applied to disentangle task-specific features that may cause negative transfer [88],

to perform unsupervised domain adaptation [46, 133], and recently to achieve fair learn-

ing [161]. However, there are significant barriers when applying adversarial techniques in

FL: 1) Most existing approaches follow a top-down principle. In the context of FL, the

adversarial objective requires the server to access the sensitive group variable (e.g., gender)

to construct an adversarial loss. This requirement directly violates the privacy consideration

design for FL, and users may not want to disclose their sensitive group variables. 2) adver-

sarial learning demands extra information from users for training the adversarial component

and imposes an additional computational burden on smart devices that may not be able to

afford. 3) besides, it remains unknown how the introduction of an adversarial component

would impact the distributed learning behavior (e.g., convergence property) of FL.

30

(a) Central
(b) Federated with shared embeddings
[111]

(c) Federated Adversarial Debiasing
(proposed)

Figure 3.1: Illustrations of different adversarial learning frameworks for debiasing. f , D and
G are classifier (task model), discriminator and encoder, respectively. C1, C2, C3 represents
the task supervisions, for example, ground-truth classes, in the corresponding users. g1 and
g2 represents the two groups of users. The encoders are adversarially trained such that
the embeddings are informative for distinguishing C1, C2, C3 but not g1, g2. The proposed
FADE tackles a more challenging problem than other two because of isolated and non-sharing
group/user data (or embeddings) and class-wise non-iid users within groups.

To address the challenges mentioned above, we propose a novel adversarial framework for

debiasing federated learning following a bottom-up principle, called Federated Adversarial

DEbiasing (FADE). Besides the benefits from typical FL on communication efficiency and

data privacy, FADE aims to achieve the following goals:

• Privacy-Protecting: The learning algorithm conforms to the privacy design of FL

and does not require users’ group variable to achieve debiasing w.r.t. the group variable.

• Autonomous: A user can choose to join and opt-out from the adversarial component

anytime (e.g., due to computational budget or privacy budget) while still participate

in the regular federated learning.

• Satisfiable: Under above restrictions, the distributed learning should output a debi-

ased and accurate model, despite the user heterogeneity and unpredictable user par-

ticipation.

To achieve these goals, we first propose a generic algorithm for FADE and show that ideally,

it can attain the same global optimality as the one by the central algorithm. We then show

how its convergence may fail in practice and propose a simple yet effective method to address

31

the problem. Finally, we demonstrate the effectiveness of the proposed framework through

extensive empirical studies on various applications.

3.2 Related Work

Federated Learning (FL) [96] is a distributed learning framework that allows users with

different capabilities to collaboratively train a model without sharing their own data. A

critical challenge in FL is the heterogeneity among users. Viewing the learning process of

FL as knowledge transfer among different users, heterogeneity in user data leads to negative

transfer between users and compromises generalization [13]. One idea to alleviate the nega-

tive effect from the heterogeneity during the training, is to find the consensus among users.

For example, in [49, 85, 77, 43], the consensus on task knowledge is achieved by distillation.

In this work, we seek an alternative and efficient approach by adversarial debiasing the users

of different groups.

Adversarial Learning has been widely applied in various domains, such as neural language

recognition [88], image-to-image (dense) prediction [95], image generation [47], and etc. Con-

ceptually, adversarial learning aims to solve a two-player (or multi-player) game between two

adversarial objectives, which typically leads to a min-max optimization problem. Existing

approaches can be briefly categorized as: 1) Sample-to-Sample (S2S) adversarial learning,

where the adversarial objective quantifies the difference between synthetic and real samples.

Examples include adversarial learning against adversarial attacks [94] and generative adver-

sarial networks [47]. 2) Group-to-Group (G2G) adversarial learning, which aims to reduce

the max discrepancy (bias) between group distributions, for example, adversarial domain

adaptation [46], adversarial fairness [161] and adversarial multi-task learning [88]. All these

variants assume the availability of adversarial groups in the same computation node, e.g.,

by aggregating data in Fig. 3.1a, and thus cannot be directly extended to federated learning

to the violation of privacy design (requiring access of the sensitive group information). A

recent effort is done by [111] where embeddings of different groups are shared (see Fig. 3.1b).

Nevertheless, both sharing data and embeddings could induce additional privacy risk and

32

communication costs. The proposed FADE eliminated these requirements, leading to private

and efficient distributed collaboration between users/groups.

3.3 Federated Adversarial Debiasing

In this section, we first formulate the proposed Federated Adversarial Debiasing (FADE)

framework. We work on the standard federated learning problem setting which learns one

model from a set of distributed participating users. Users conduct local learning based on

their own data and send the parameters of learning models to a server periodically. The

server aggregates the local models to form a global model. We assume the users have non-iid

data and each user belongs to one of the E user groups as indicated by a group variable

(e.g., age, gender, race) that is not to be shared outside of the local learning.

The model of each user consists of three components: a decoder f for the learning task

(e.g., classification target), an encoder G, and a group discriminator D, as illustrated in

Fig. 3.1c. In the two-group setting (a data point belongs to either group 0 and 1), D outputs

a scalar in (0, 1) approximating the probability of an input data point x belong to the group

0. More generally, for E groups, we use a softmax mapping in the last layer of D which

outputs an E-dimensional vector. The FADE objective learns f,D,G by:

min
f,G
L(f,G) =

∑E

g=1

∑mg

i=1
Li,g(f,G), (3.1)

Li,g(f,G) = Ltask
i (f,G) + λmax

D
Ladv
i,g (G,D), (3.2)

where Ltask
i (f,G) is the task loss for the i-th user, Ladv

i,g (G,D) is the adversarial loss, and

mg is the number of users in group g. Note that we absorb the variable model D into Li,g

in Eq. (3.2), and the objective is still an optimization over f,D,G. For classification tasks,

the task loss can be defined as Ltask
i (f,G) , E(x,y)∼pi(x,y)[E(f(G(x)), y)], where E denotes the

cross-entropy loss and pi is the data distribution of user i. The adversarial loss is defined

as Ladv
i,g (G,D) , Ex∼pi(x)[logDg(G(x))], where Dg(G(x)) is the g-th output of the softmax

vector. The optimal solution for the min-max problem is the adversarial balance when D is

unable to tell the difference of G(x) among groups. For the two-group case, the adversarial

33

loss can be modified as:

Ladv
i,g (G,D) = Ex∼pi(x)

[
I(g = 0) logD(G(x))

+ I(g = 1) log(1−D(G(x)))
]
, (3.3)

where I(·) is the indicator function.

One fundamental difference between traditional adversarial learning and FADE is that

FADE only has one group data in the loss function. Hence, users have no sense of what an

adversary (a user from other groups) looks like. Directly optimizing this objective may fail

in finding the right direction towards convergence. In the worst case, the optimal solution

may not be the adversarial balance. In the next section, we will provide principled analysis

to the adversarial balance that is achievable under appropriate conditions.

We summarize the server and user update strategies in Algorithms 3.1 and 3.2. The

server is responsible for aggregating users’ models and dispatching the global models to

users. Meanwhile, users train the received global model and the adversarial component

using local data. Note that we use the reversal gradient strategy to implement the min-max

optimization in Algorithm 3.1. Our algorithm enjoys the two nice properties:

Autonomous: Different from vanilla FL, FADE allows the users to decide whether or not to

join the learning of the discriminator D at each iteration. A user can opt-in the discriminator

learning at a low frequency or completely opt-out when privacy becomes a concern or learn

with restrictive computational resources. For example, in the adversarial domain adaptation

setting [111] where some users have supervision and some others not, some supervised user

may not want to help unsupervised users. FADE will significantly reduce the communication

cost and privacy risk overhead involved by cutting down the interactions form these users.

Privacy: In the proposed FADE framework, the group label g will be restricted to local

learning and the group debiasing is done through the discriminator model D. Thus, users

will not be able to obtain the other users’ sensitive attributes including the group variable.

Moreover, following [98], the privacy of FADE can be strictly protected by directly injecting

Differential-Privacy noise during the gradient descent procedure.

34

Algorithm 3.1: FADE User Update
Require: f , G, D received from server, learning rate η, adversarial parameter λ, user data

distribution pi
1: f0, D0, G0 = f,D,G
2: for t = 1, . . . , K do
3: Sample a batch by x ∼ pi(x) or (x, y) ∼ pi(x, y)
4: z ← G(x)

5: ∇f ← ∂Ltask
i

∂f
, ∇D ← ∂Ladv

i

∂D

6: if adversarial game D is accepted by user i then
7: ∇G ← ∂z

∂G

(
∂Ltask

i

∂z
+ λ

∂Ladv
i

∂z

)
8: Dt+1 ← Dt + η∇D

9: Gt+1 ← Gt − η∇G

10: else
11: ∇G ← ∂z

∂G

∂Ltask
i

∂z

12: Dt+1 ← Dt

13: Gt+1 ← Gt − η∇G

14: ft+1 ← ft − η∇f
return fK+1, GK+1, DK+1

Algorithm 3.2: FADE Server Aggregation
Require: Initial models f,D,G, momentum parameter β
1: for t ∈ 1, · · · , Tmax do
2: Select m active users uniformly at random into A
3: Broadcast θt = (ft, Gt, Dt) to m users
4: for user i in A in parallel do
5: User updates by Algorithm 3.1
6: Aggregate {θkt = (f it , G

i
t, D

i
t)}mi=1 and average

θt+1 ← β
∑m

i=1

ni
N
θit + (1− β)θt

return ft, Gt, Dt

3.4 Optimality Analysis

Despite the fact that FADE enables autonomous and improves privacy in learning, it is

critical to ask if the algorithm gives a satisfiable solution and what is the optimal solution

of Eq. (3.1). Remarkably, FADE differs from traditional adversarial learning by Eq. (3.3),

where only one group is used to evaluate the adversarial objective. This imposes a unique

challenge in learning as it may compromise the convergence of learning. Below we give

formal analysis of the optimality when Algorithm 3.2 is iterated with users from two groups

35

in non-zero probability. Since most of multi-group adversarial problems can be transformed

into two-group problems, we focus on discussing the two-group case for the ease of analysis.

Consider the case when each group only has one user. The data distributions for the two

users are p1 and p2, respectively. We single out the min-max optimization in Eq. (3.1) as:

min
G

max
D

Ep1 [logD(G(x))] + Ep2 [log(1−D(G(x)))].

For simplicity, we denote G(x) by z and slightly abuse p1(x) by p1(z) in our discussion.

Hence, we can define:

Dp1,p2 = max
D

Ep1 [logD(z)] + Ep2 [log(1−D(z))],

which is the maximal discrepancy between p1(z) and p2(z) that D can characterize. Now,

we can rewrite the min-max problem as minGDp1,p2(G) which minimizes the distribution

distance over z. Alternatively, we can formulate it by minp1,p2 Dp1,p2 since p1 and p2 are

parameterized by G.

Because users may participate federated learning at varying frequencies, we use an auxil-

iary random variable ξi ∈ {0, 1} for i = 0, 1 to denote whether the user is active for training.

We assume ξi is subject to the Bernoulli distribution, B(1, αi). Plug ξi into Dp1,p2 to obtain

Dp1,p2 = maxD Ep1 [ξ1 logD(z)] + Ep2 [ξ2 log(1−D(z))] and take expectation:

D̃p1,p2 , Eξ1,ξ2 [Dp1,p2]

= max
D

Ep1 [α1 logD(z)] + Ep2 [α2 log(1−D(z))]. (3.4)

Therefore, our problem is transformed as minimizing D̃p1,p2 .

Note that with p1 and p2 given, the solution of the maximization in D̃p1,p2 is:

D∗α1,α2
(z) =

α1p1(z)

α1p1(z) + α2p2(z)
, (3.5)

with which we can derive the optimality sufficiency as below.

Theorem 13. The condition p1(z) = p2(z) is a sufficient condition for minimizing D̃p1,p2

and the minimal value is α1 logα1 + α2 logα2 + (α1 + α2) log(α1 + α2).

36

Theorem 13 shows that even if some users are inactive, the distribution matching, p1 = p2,

remains a sufficient optimality condition. We remark that the above result can be generalized

to multiple users when all users are iid and ξi represent the ratio of group i in users. In

addition, we notice Theorem 13 does not guarantee a stable convergence or exclude other

undesired solutions. We discuss these issues in the following.

3.4.1 The effect of imbalanced groups

Although Theorem 13 shows the optimality of the matched distribution, the optimization

may still fail to converge especially when one group of users are relatively inactive, e.g.,

α1 � α2. When α1 � α2 or reverse, we call the situation as imbalanced groups. The

imbalanced groups happens because the users are free to quit or joint the training. From

Eq. (3.5), we observe that D∗(x) will be less sensitive to changes of p1(x) if α1 � α2, and

vice versa. Meanwhile, logD∗(x)→ −∞ and Dp1,p2 approaches the minimum even if p1 and

p2 are quite different.

Theorem 14. Let ε be a positive constant. Suppose | log p1(x)− log p2(x)| ≤ ε for any x in

the support of p1 and p2. Then we have D̃p1,p2 = O(α1ε/(α1 + α2)) when α1 � α2.

Theorem 14 reveals that the imbalance between groups could greatly reduce the sen-

sitivity of the discrepancy ε between p1 and p2. A less sensitive discriminator will ignore

the minor differences between groups. The importance of discrepancy sensitivity for the

adversarial convergence was also discussed in [8]. It is easy to see the negative impact of

the low sensitivity: 1) higher communication cost incurs due to more communication rounds

are required to check the discrepancy; 2) the optimization possibly fails to converge due to

vanished gradients (scaled by α1).

3.4.2 Squared adversarial loss

In Eq. (3.4), when α1 → 0 and α2 → 1, we notice that D̃p1,p2 approaches 0 while

Ep1 [logD(z)]→ −∞. In other words, the large value of Ep1 [logD(z)] is neglected due to its

coefficient α1. To re-emphasize the value, a heuristic method is to increase the weight when

37

|Ep1 [logD(z)]| is large. Thus, we propose to replace Ladv
i,g (G,D) by:

Ladv
i,g,2(D,G) = −1

2

(
Ladv
i,g (G,D)

)2
, (3.6)

which we call squared adversarial loss. We can write the corresponding discrepancy D̃
(2)
p1,p2

as:

min
D

α1E2
p1

[logD(z)] + α2E2
p2

[log(1−D(z))].

Though we derive the squared adversarial loss in a heuristic manner, the loss can be ex-

plained in the view of resource-fair federated learning [79]. Because the adversarial objective

pays more attention to the frequent group, we can interpret the problem as the unfairness

between groups. Following [79], we generalize our adversarial loss function as:

Ladv
i,g,2(D,G) , (−1)q−1

1

q
Ex [`qk(D,G;x)] , (3.7)

where q ≥ 1. If q = 1, the loss degrades to the vanilla one.

3.4.3 The effect of non-iid users

It is well-known that typical federated learning approaches suffer from very heterogeneous

users since they sample data from very different distributions. The adversarial objective

captured and decreases the group heterogeneity by design. Another kind of heterogeneity is

related to the users’ tasks. We argue that the heterogeneity is natural and could be essential

for the task discriminability but may be accidentally eliminated by adversarial learning. For

example, three users are non-iid by three classes. After FADE training, the non-iid users

collapse to the similar distributions due to the wrong sense of the group discrepancy.

To prove the existence of user-collapsed solution for FADE, we consider z ∼ p(z|T = t), or

simply z ∼ p(z|t), where t is a discrete hidden variable related to users’ tasks. For example,

each user has one class of samples in classification tasks. Then t is the corresponding class.

In addition, we define p̂1(z) = 1
m

∑m
t=1 p(z|t) which is a p.d.f. For simplicity, we assume all

users always participate the learning, i.e., αi = 1 for all users. Hence, we can obtain Dp1,p2

38

as

max
D

∑m

t=1
Ep(z|t)[logD(z)] + Ep2 [log(1−D(z))]

= max
D

mEp̂1(z)[logD(z)] + Ep2 [log(1−D(z))],

whose maximizer is given by: D∗(z) = mp̂1(z)
mp̂1(z)+p2(z)

. Use similar derivations as in Theorem 13,

we can show that p̂1(z) = p2(z) is a sufficient optimality condition, which implies:

∑m

t=1
p(z|t) = mp2(z). (3.8)

First, we can still obtain p1(z)
∑m

t=1 p(t|z)/p(t) = mp2(z) from Eq. (3.8) where we use

p(z|t) = p1(z)p(t|z)
p(t)

. If
∑m

t=1
p(t|z)
p(t)

= m, then we can get the vanilla solution, p1(z) = p2(z).

Except for the vanilla solution, a trivial solution to Eq. (3.8) is p(z|t) = p2(z). However,

the solution could hurt the task utility since it may eliminate the inherent difference be-

tween tasks. For instance, if t represents the classification label, the solution will vanish the

discriminability of the representation z. We call the scenario as the user collapse. It worth

noticing that user collapse could happen even if the p1 and p2 are matched.

3.4.4 Mitigate user collapse

Since there are arbitrarily many solutions to
∑m

t=1
p(t|z)
p(t)

= m, we need to constraint the

feasible solutions such that the collapsed solution will be eliminated. Notice p(t|z)
p(t)

= p(t,z)
p(z)p(t)

is related to the mutual information between t and z. Conceptually, we can modify the

adversarial loss to:

L̂adv
i,g,2(D,G) = Ladv

i,g,2(D,G) + I(G(x); t|i),

where I(G(x); t|i) is the mutual information conditioned on user i. Because mutual informa-

tion is hard to estimate in practice (especially given few samples), we provide some surrogate

solutions.

If the t represents the class labels and supervision is available, then I(G(x); t|i) is already

encouraged by Ltask. If supervision is not available, we may maximize the entropy of the

39

output of classifier f such that the correlation between user’s tasks and representations will

not disappear during training. Useful techniques were previously exploited for unsupervised

domain adaptation, e.g., [92], and we defer the technique details to Section 3.5.2.

3.4.5 Privacy risks from malicious FADE users

Our analysis suggests the feasibility of using adversarial training in the federated setting.

The distribution matching is achievable under variety of cases including imbalanced groups,

although the success rate may vary. But such power also implies potential privacy overhead

associated with FADE. Consider a malicious user i who wants to steal data from others,

FADE can match pi(x) with a victim’s data pj(x). The empirical study in [53] also discussed

the risk where a malicious attacker may take advantage of the discriminator to steal other

users’ data. Our results in Theorem 13 theoretically show that the attack is possible in

general. During the learning of the adversarial discriminator, injecting predefined noise is

known to be effective to defend such attacks [131]. Meanwhile, users could quit or frequently

opt-out the federated communication when the privacy budget (quantified by noise and

Differential Privacy metric [38]) is low. Based on Theorem 14, when more and more users

opt-out the communication, the adversary’s discriminator can hardly sense one victim’s

distribution.

3.5 Experiments on Unsupervised Domain Adaptation

In this section, we evaluate the FADE algorithms on Unsupervised Domain Adaptation

(UDA) [111, 82, 43]. UDA aims to mitigate the domain shift between supervised and unsu-

pervised data such that the trained classifiers can generalize to unlabeled data. We call the

supervised user (domain) as the source user (domain). Each domain may include multiple

users.

Related work. [111] is among the first to discuss the adversarial UDA under federated

constraint, through sharing the embedding of samples. However, we consider a more chal-

lenging problem, a federated adversarial learning without sharing data. Recently, learning

40

without access to the source data has gained increasing attention. [82] (SHOT) consid-

ered the domain adaptation only using the source-domain model which surprisingly outper-

formed most traditional UDA with source supervisions. However, its success relies on the

pre-matched representation distribution (but not well discriminated) by batch normalization

(BN) layers. In the FADE setting, the BN layers will fail to match representations since the

local estimate of their mean will be easily biased. In addition, in [43], distillation is used

to avoid directly passing data. Differing from [43], FADE is more efficient since it does not

need to upload all models from source domain to target domain. For example, if Ms users

(Mt) in source (target) domain take part in training, sending models will involves MsMt

communication. Instead, FADE only use Ms +Mt times to communicate between domains.

Figure 3.2: Comparison of vanilla adversarial loss versus the squared adversarial loss on
MNIST-to-USPS (top) and USPS-to-MNIST (bottom) UDA. We vary the probability of
target users. For both UDA experiments, the SOTA central methods [81] can achieve over
98% accuracies. From left to right, the columns are target domain accuracies, classification
losses and adversarial losses of target domain users.

Network architectures. We adopt the same network architecture as the state-of-the-

art of UDA [81]. As presented in Fig. B.1, we first use a backbone network to extract

sample features. Specifically, we use modified LeNet [92] for digit recognition, ResNet50

[51] for Office and Office-Home datasets, and ResNet101 for the VisDA-C dataset. We use

an one-layer bottleneck to reduce the feature dimension. After the bottleneck, we get a

representation of 256-dimension. A single fully-connected layer is used for classification at

41

Table 3.1: Averaged classification UDA accuracies (%) on Office and OfficeHome dataset with
3 non-iid target users and 1 source user. Underlines indicate the occurrence of non-converged
results. Standard deviations are included in brackets.

Method A→D A→W D→A D→W W→A W→D Re→Ar Re→Cl Re→Pr Avg.

Federated methods
Source only 79.5 73.4 59.6 91.6 58.2 95.8 67.0 46.5 78.2 72.2

non-iid target users w/ 20 (Office) or 45 (OfficeHome) classes per user
FADE-DANN 85.4 (1.9) 81.8(1.8) 43.1(33) 97.7(0.5) 64.8(0.5) 99.7(0.2) 46.4(37) 34.9(27) 78.8(0.1) 70.3
FADE-CDAN 92.3(1.2) 91.6(0.5) 65.9(9.3) 98.9(0.2) 70.2(0.8) 99.9(0.1) 70.3(1.6) 54.9(4.6) 82.2(0.1) 80.7
FedAvg-SHOT 83.6(0.5) 83.1(0.5) 64.7(1.4) 91.7(0.2) 64.7(2.2) 97.4(0.5) 70.7(0.5) 55.4(0.5) 80.1(0.3) 76.8

iid target users
FADE-DANN 84.2(1.5) 81.3(0.4) 66.3(0.3) 97.5(1.2) 59.4(10.6) 99.9(0.2) 67.3(0.9) 51.3(0.4) 79.0(0.6) 76.2
FADE-CDAN 93.6(0.8) 92.2(1.3) 71.2(1.0) 98.7(0.4) 71.3(0.7) 100(0.0) 70.6(1.3) 55.1(1.0) 82.3(0.2) 81.7
FedAvg-SHOT96.3(0.5) 94.3(1.1) 70.9(2.0) 98.4(0.4) 72.7(0.9) 99.8(0.0) 74.8(0.3) 60.0(0.1) 84.9(0.2) 83.6

Central methods
ResNet [51] 68.9 68.4 62.5 96.7 60.7 99.3 53.9 41.2 59.9 67.9
Source [81] 80.8 76.9 60.3 95.3 63.6 98.7 65.3 45.4 78.0 73.8
DANN [46] 79.7 82.0 68.2 96.9 67.4 99.1 63.2 51.8 76.8 76.1
CDAN [92] 92.9 94.1 71.0 98.6 69.3 100 70.9 56.7 81.6 81.7
SHOT [81] 94.0 90.1 74.7 98.4 74.3 99.9 73.3 58.8 84.3 83.1

the end. The discriminators are small-scale networks to match the capability of the classifiers.

The networks and algorithms are implemented using PyTorch 1.7. The ResNet backbones

pre-trained on ImageNet are retrieved from the torchvision 0.8 package.

3.5.1 Digit recognition with imbalanced groups

As discussed in Section 3.4.1, group imbalance could result in the mismatch of group dis-

tributions. Here, we empirically evaluate the effect of the imbalanced groups on convergence,

adversarial losses and utility performance.

Digit dataset is a standard UDA benchmark built on digit images collected from dif-

ferent environments. 10 digits, from 0 to 9, are included. We follow the UDA protocol

of [54] and use two subsets: MNIST and USPS. MNIST dataset contains 60, 000 training

images and 10, 000 testing 28 × 28 gray-scale images. USPS consists of 7291 training and

2007 testing 16× 16 gray-scale images. We augment the USPS training set by resizing and

random rotation.

Setup. We assume 2 users from source and target domain, respectively. In each round,

we select one user with predefined probability. For example, the case that source and target

users are of 0.05 and 0.95 probability implies severe imbalance. If a user/group has high

42

probability, that means the user/group will actively participate in the adversarial learning

and the other will activate less. The experiment can also be generalized to multiple users

in same frequency while one domain has more users. Both situations imply the imbalance

between two groups. In experiments, we fix the batch size to 32 and run one user per

communication round. In total, we train the users for global 8600 rounds. In each global

round, the users will train locally for 10 iterations. Experiments are repeated 3 times with

three fixed seeds. At the beginning, we train the models with adversarial coefficient λ = 0

when all source users are involved until the classification loss converges. Then, we follow

[46, 81] to use the decaying schedule of learning rates and schedule the adversarial coefficient

λ from 0 to 1.

Results are reported in Fig. 3.2. Left two figures show the negative impact of imbal-

anced groups. When the imbalance is severe (large or small target probability), the drop in

target accuracies is more obvious. In the middle pane, the convergence curves of imbalanced

groups fluctuate more significantly and fail to converge. In the last pane, the imbalanced

cases have large adversarial losses which barely decrease by federated iterations. It explains

why the corresponding classification tasks fail to converge. When using the squared adver-

sarial losses, the ignored adversarial losses of low-frequent users are reduced during federated

learning. Meanwhile, the convergence of utility losses are faster. Thus, the negative impact

of imbalanced groups is mitigated.

3.5.2 Object recognition with non-iid users

In Section 3.4.3, we prove that the non-iid distribution of users will lead to a trivial

solution which may lose the natural discrepancy between users. For federated classification

learning where each user only has a partial set of classes, the loss of user discrepancy will

make the representations non-discriminative to classes. Here, we conduct experiments to

reveal the impact of the non-iid users.

Dataset. We adopt three object recognition datasets, Office [121] (small size), Office-

Home [135] (medium size) and VisDA-C [112] (large size), including image of office products.

43

The former two are standard benchmarks widely used for UDA. The Office dataset contains

three domains: Amazon (A), DSLR (D) and Webcam (W) with 2817, 498, 795 images,

respectively. 31 object classes of images are taken under different office environments (corre-

sponding to domains). The Office-Home datasets have 65 categories and 4 domains: Artistic

images (Ar), Clip Art (Cl), Product images (Pr), and Real-World images (Re) with 2427,

4365, 4439 and 4357 images, respectively. The VisDA dataset is a challenging large-scale

benchmark. The source domain comprises 12-way synthetic classification data. In total,

1.5 × 105 images are synthesized by rendering 3D models and are adapted to 55, 000 unla-

beled real-world images.

Setup. In total, 4 users are generated from two domain datasets. First, we let the single

source domain user with all classes. Second, we generate 3 non-iid target domain users with

partial set of classes following the standard federated setting [96]. For Office dataset, each

user has 20 classes and adjacent users have consecutive classes with 10-class stride. For

instance, user 1 has class 0 to 20 and user 2 has class 10 to 30. For OfficeHome dataset, each

user has 45 classes with 20-class stride. For VisDA-C dataset, each user has 5 classes with

4-class stride. All users in the same domain will have the same number of samples. We select

2 users per communication round when training on OfficeHome. For VisDA-C dataset, we

adopt 1 user per round. In this case, the major difficulty comes from non-iid distributions of

users conditioned on the subset of classes. In experiments, the parameters for SHOT follows

[81]. Details of network architectures and learning setup are discussed in Section B.2.

Baselines. We compare different UDA methods extended by FADE upon the presence of

non-iid users. DANN [46] is the first work on adversarial domain adaptation based on which

many recent methods are developed. CDAN [92] is the first to condition the discriminator

prediction on the estimated classes, which aligns with our purpose to maximize the mutual

information between user (related to classes) and representation. SHOT [81] (extended by

FedAvg [96]) is the current state-of-the-art method in domain adaptation which does not use

source data, assuming approximately mitigated domain shift.

44

Table 3.2: Comparison of target accuracies on Visda-C dataset.

Methods Source only DANN SHOT CDAN

Central 46.6 57.6 82.9 73.9
FADE 54.3 56.4 69.2 73.1 (+SHOT)

Results. We summarize the results in Tables 3.1 and 3.2. Note that the straightforward

extension of DANN without constraints will suffer from the user heterogeneity. Therefore, we

observe catastrophic failures by DANN, for example, D→A with only a low accuracy. This

kind of failures happens when both D (498) is of less samples than A (2817). The possible

reason is that the discriminators fail to sense the position of target domain batches which is a

small ratio of all target-domain samples and changes frequently by iterations. In comparison,

when regulated by estimated classes, SHOT and methods combined with SHOT perform

better. Notably, because SHOT relies on BN states to mitigate domain shift, its accuracies

are much worse than its central version. Since SHOT can provide pseudo supervisions

which conditions on the estimated users’ local classes, DANN+SHOT outperforms DANN. In

reverse, DANN helps SHOT to mitigate the domain shift. We further explore CDAN+SHOT,

which conditions group discrimination on local classifier outputs (correlated to users’ classes).

As a result, CDAN+SHOT outperforms other methods and is close to the central version

of CDAN. Plus, CDAN+SHOT achieves the best average accuracies when the number of

users per round varies from 1 to 4. Remarkably, in the hardest case where only one user is

trained per round, CDAN+SHOT gains the best accuracies on 8 out of 9 tasks. In a more

challenging large-scale VisDA-C dataset, CDAN+SHOT also shows its advantage against

other baselines (see Table 3.2). We note that adversarial methods are more robust to the

non-iid users.

3.6 Experiments on Fair Federated Learning

The fair federated learning is motivated by the imbalanced groups in training. For example,

when vendor rallies people to use their software and train model with locally collected data,

the global model may be biased by the majority, e.g., male users. When a user from another

45

(a) Results on Adult by varying number of male
users.

(b) Results on MCI data by varying number of
users per round.

Figure 3.3: FADE with/without adversarial losses. In each subfigure, left is fairness measured
by ∆EO where smaller values indicates better fairness; right is the trade off between fairness
and utility where left-top is the preferred balance.

gender uses the software, she/he may find that the model performs poorly. As a result, the

minority group vanishes while majority continues to dominate. Thus, a method actively

debiasing w.r.t. the groups will be essential to defend the tendency.

Related work. The fairness in federated learning was first discussed in [79] where

users are thought to have different capability for computation. Fairness was enforced by

increasing the weights of large loss, which was less optimized. In this experiment, we consider

the unfairness brought by the difference of group distributions. With FADE, we use a

discriminator locally to justify whether the user’s representations are biased from the other

group. Related central algorithms have been exploited [93, 137?]. To the best of our

knowledge, we are the first to encourage such group-based fairness in federated setting.

Importantly, our method preserve the privacy of group variables. The concerns of the privacy

of group variables was previously discussed [48]. In [48], Hashimoto et al.assumes the group

membership and number of groups are unknown to the central learning server, when users

interact with the system and contribute data. Our FADE extends the setting to a distributed

framework where the private group information is still unknown to other parties including

the aggregation server.

We utilize the Equalized Odds (∆EO) to evaluate the degree of fairness. Consider a

binary classifier f : Z → {0, 1} predicting label variable y when representations (z ∈ Z) are

sampled from two groups. We denote the conditional p.d.f. p(z|g, y) as zg,y which shapes

46

the probability of z at group g and class y. An algorithm is said to be fair if the positive

∆EO (defined below) is close to 0.

∆EO ,
∣∣Ez0,0 [f(z)]− Ez1,0 [f(z)]

∣∣+
∣∣Ez0,1 [1− f(z)]− Ez1,1 [1− f(z)]

∣∣ (3.9)

which comprises the absolute difference in false positive rates and the absolute difference in

false negative rates.

3.6.1 Fair adult income prediction

Dataset. We evaluate our algorithm on the UCI Adult dataset1 which is a standard

benchmark for fair classification. The dataset consists of over 40,000 vector samples from

the 1994 US Census. Each sample includes 14 attributes predicting if his/her income is over

50,000 dollars.

Setup. We adversarially disentangle the unfair representations from the gender. When

keeping the total data size fixed, we construct one female user and vary the number of male

users. Each synthesized user evenly split the samples in the group. We run FADE for 8,000

communication rounds. In every round, 2 users are selected to train for 1 local iteration on a

batch of 64 samples. The accuracies and fairness are evaluated on the left-out 10% samples.

The network structure is in Fig. B.2. We set hyper-parameters as β = 0.5 and the initial

learning rate as 10−3.

Results are depicted in Fig. 3.3a. Without adversarial training, the unfairness is aggra-

vated when the imbalance between groups worsens. When more male users are involved, the

squared adversarial loss is able to further improve the fairness. Instead, the vanilla adver-

sarial learning performs better when the two groups are balanced. Both adversarial losses

will maintain the utility performance close to the non-adversarial method.

3.6.2 Fair MCI detection

Dataset. Mild Cognition Impairment (MCI) is the pre-symptom of Alzheimer’s Disease

(AD) which typically happens on elders. Early detection of MCI is important for prevention

1https://archive.ics.uci.edu/ml/datasets/adult

47

of AD occurrence and treatment [5, 134]. Details of the dataset is comprised in Section B.2.3

where females forms the majority group (over 94%). The prediction task here is to classify

the disease condition, Normal Cognition (NC) or MCI, based on the daily activities (walking

speed, etc.).

Setup. In the original dataset, there are 88 users with different number of samples. We

notice the imbalance between NC and MCI users will greatly degrade the model quality. To

focus on our fairness task, we manually select 26 users such that 13 users was diagnosed as

NC at least once and the other 13 ones are stable MCI patients. Because male users are much

fewer than female ones, we prefer to select male users when balancing the two classes. After

downsampling, users have 39 samples on average. Among the 26 users, there are 6 males and

20 females in total. Details of features, preprocessing and network architectures are deferred

to Section B.2.3. We set hyper-parameters as β = 0.5, the initial learning rate as 10−2 and

batch size as 16. In the 700 communication rounds, we first train without adversarial losses

for 400 rounds and then schedule the λ and learning rates as the Adult experiments.

Results. We compare the convergence of the training F1-score (utility) and ∆EO (fair-

ness) by varying the number of users per round. As shown in Fig. 3.3b, the unfairness is

obvious with ∆EO over 0.2 when no adversarial losses are used. We see that the vanilla ad-

versarial loss failed to debias in most cases. In contrast, the squared adversarial loss stably

debias the unfair performance in all cases. When the number of users per round is less than

10, even the non-adversarial loss is more fair. The natural debiasing could be attributed to

the random selection of users, which breaks the domination of one group in a short span.

48

CHAPTER 4

EFFICIENT FEDERATED LEARNING FOR ON-DEMAND AND IN-SITU
CUSTOMIZATION

Federated learning (FL) provides a distributed learning framework for multiple participants

to collaborate learning without sharing raw data. In many practical FL scenarios, partici-

pants have heterogeneous resources due to disparities in hardware and inference dynamics

that require quickly loading models of different sizes and levels of robustness. The hetero-

geneity and dynamics together impose significant challenges to existing FL approaches and

thus greatly limit FL’s applicability. In this paper, we propose a novel Split-Mix FL strategy

for heterogeneous participants that, once training is done, provides in-situ customization

of model sizes and robustness. Specifically, we achieve customization by learning a set of

base sub-networks of different sizes and robustness levels, which are later aggregated on-

demand according to inference requirements. This split-mix strategy achieves customization

with high efficiency in communication, storage, and inference. Extensive experiments demon-

strate that our method provides better in-situ customization than the existing heterogeneous-

architecture FL methods.

4.1 Introduction

Federated learning (FL) [72] is a distributed learning paradigm that leverages data from

remote participants and aggregates their knowledge without requiring their raw data to be

transferred to a central server, thereby largely reducing the concerns from data security and

privacy. FedAvg [96] is among the most popular federated instantiations, which aggregates

knowledge by averaging models uploaded from different participants.

When deploying federated learning, one challenge in real-world applications is the run-

time (i.e., test-time) dynamics : The requirements on model properties (e.g., inference ef-

ficiency, robustness, etc.) can be constantly changing during the run-time, depending on

the status of the devices or the outside environment. One common and specific type of

dynamics is resource dynamics : For each application, the allocated on-device resources (e.g.,

49

run-time memory, CPU bandwidth, etc.) may vary drastically during run-time, depending

on how the resource allocation of the running programs are prioritized on a participant’s de-

vice [153]. Another type of dynamics is the robustness dynamics : The constantly changing

outside environment can make different requirements on the safety (or robustness) level of

the model [140]. For instance, the quality of real-time videos captured by autonomous cars

can suddenly degrade, e.g., on entering a poor-lighted alley or tunnel from a well-lighted

avenue, on entering a section of bumpy road which leads to a sudden burst of blurring in the

videos, etc. In such cases, a more robust model should be quickly switch in and replace the

one used on benign conditions, in order to prevent catastrophic accidents caused by wrong

recognition under poor visual conditions. Such dynamic run-time requirements demand the

flexibility to customize the model. However, as illustrated in Fig. 4.1a, we show that conven-

tional static-model FL methods, represented FedAvg, cannot provide such customization. A

naive solution is to train multiple models with different desired properties and keep them

all on device. However, this leads to extra training and storage costs proportional to the

number of models. Moreover, since it is not practical to keep all models simultaneously in

run-time memory on a resource-limited device, it also introduces inference overhead to swap

the models into and out of the run-time memory [33].

To effectively and efficiently train models for on-demand an in-situ customization, new

challenges will be raised by the ubiquitous heterogeneity of federated learning participants.

Fist, the participants can have resource heterogeneity : Different participants have differ-

ent hardware resources available, such as memory, computing power, and network band-

width [63]. For example, in a learning task for face recognition, clients may use different

types of devices (e.g., computers, tablets or smartphones) to participate in learning. To ac-

commodate different hardware, one can turn to more resource-flexible architectures trained

by distillation from ensemble [85], partial model averaging [28], or directly combining predic-

tions [125]. Specifically, [28] is the first heterogeneous-width solution (HeteroFL) allowing

in-situ model-size switching. Nevertheless, it suffers from under-training in its large models

50

(a) Illustration of FedAvg [96] with a device-incompatible model and a heterogenous-architecture
variant (HeteroFL) [28] with under-trained wide models.

(b) The proposed Split-Mix framework provides in-situ customization of widths and adversarial
robustness to address heterogeneity and dynamics, enabling efficient training and inference. In this
example, we use a subnet with 1/4 channels (or widths) per layer as a base model for model-width
customization. For simplicity, we denote it ×0.25 net, and a ×1 net can be split into 4 ×0.25 base
models.

Figure 4.1: Comparison of traditional and proposed methods.

due to local budget constraints as shown in Fig. 4.1a. The degradation could be worsened as

facing data heterogeneity : The training datasets from participants are not independent and

identically distributed (non-i.i.d.) [80, 41, 59, 169]. When one device with a unique data

distribution cannot afford training a large model, the global large model may not transfer to

the unseen distribution [106]. Thus, HeteroFL may not provide effective customization such

that more parameters brings in higher accuracy and how to train an effectively customizable

model still remains unknown.

To address the aforementioned challenges from heterogeneity and dynamics, we study a

novel Split-Mix approach to enable FL on heterogeneous devices and achieve in-situ model

customization for resource efficiency and robustness: The size and robustness of the resultant

model can be efficiently customized at run-time. Specifically, we first split the complete

knowledge in a large model into several small base sub-networks (shards) according to model

51

widths and robustness levels. To complete the knowledge, we let the base models be fully

trained on all clients. To provide customized models, we mix selected base models to

construct the desired model size and robustness. We illustrate the main idea in Fig. 4.1b.

Overall, our contributions can be summarized in three folds:

• Within the domain of heterogeneous federated learning, we are the first to study training

a model with the capability of in-situ customization with heterogeneous local computation

budgets, which cannot be resolved by existing methods yet as shown in Fig. 4.1a.

• To address the challenge, we propose a novel Split-Mix framework that aggregates knowl-

edge from heterogeneous clients into a width- and robustness-adjustable model structure.

Remarkably, due to fewer parameters and modular nature, our framework is not only effi-

cient in federated communication and flexibly adaptable to various client budgets during

training, but also efficient and flexible in storage, model loading and execution during

inference.

• Empirically, we demonstrate that the performance of the proposed method is better than

other FL baselines under heterogeneous budget constraints. Moreover, we show its effec-

tiveness when facing the challenge of data heterogeneity.

4.2 Related Work

Heterogeneous Federated Learning. As increasing concerns have been gained on data

privacy leakage in machine learning [35, 147, 149, 57], federated learning (FL) protects data

privacy by training the model locally on users’ own devices without sharing data. In real-

world applications, FL with budget-insufficient devices (e.g., mobile devices) has attracted a

great amount of attention. For example, FedDistill [85] used logit averages to distill a network

of the same size or several prototypes, which will be communicated with users. FedDistill

made an assumption that the central server has access to a public dataset of the same learning

task, which is impractical for many applications. [49] introduced a distillation-based method

after aggregating private representations from all participants. The method closely resembles

centralized learning because all encoded samples are gathered, and however it is less efficient

52

when local clients have large data dimensions or sample sizes. Importantly, the method may

not transfer adversarial robustness knowledge through the intermediate representations due

to the decoupling of the input and prediction. On the other hand, HeteroFL [28] avoids dis-

tillation, allowing participants to train different prototypes and sharing parameters among

prototypes to reduce redundant parameters. However, HeteroFL also reduces the samples

available for training each prototype, which leads to degraded performance. Considering

the high cost of training robust models, [56] proposed an efficient way to transfer model ro-

bustness from budget-sufficient devices to insufficient ones. FedEnsemble [125] is technically

related to the proposed approach, which uses ensemble of diverse models to accommodate

non-i.i.d. heterogeneity. The authors showed that combining multiple base models trained

simultaneously in FL can outperform a single base model in testing. A critical difference be-

tween the proposed approach and FedEnsemble comes from the challenging problem setting

of constrained heterogeneous computation budgets. For the first time, we show that base

models can be trained adaptively under budget constraints and used to customize efficient

inference networks that can outperform a single model of the same width but trained in a

heterogeneous-architecture way.

Customizable Models. To our best knowledge, this is the first paper discussing in-situ

customization in federated learning and here we review similar concepts in central learning.

First, customization of robustness and accuracy was discussed by [140], where an adjustable-

conditional layer together with decoupled batch-normalization were used. The conditional

layer enables continuous trade-off but also brings in more parameters. In comparison, a

simple weighted combination without additional parameters is used in our method and is very

efficient in both communication and inference. In terms of model complexity, a series of work

on dynamic neural networks were proposed to provide instant, adaptive and efficient trade-

off between accuracy and latency (mainly related to model complexity) of neural networks

at the inference stage. Typically, sub-path networks of different complexity [87] or sub-

depth networks [60, 150, 143, 163] are trained together. However, due to the large memory

53

footprint brought by a constant number of channels per layer, the memory footprint at

inference is barely reduced. To address the challenge, slimmable neural network (SNN) [158]

was proposed to train networks with adaptive layer widths. Distinct from SNN, we consider

a more challenging scenario with distributed and non-sharable data and heterogeneous client

capabilities.

4.3 Problem Setting

The goal of this work is to develop a heterogeneous federated learning (FL) strategy, that

yields a global model, which can be efficiently customized for dynamic needs. Formally,

FL minimizes the objective 1∑
k |Dk|

∑K
k=1

∑
(x,y)∈Dk L(f(x;W), y), where L is loss function

(e.g., cross-entropy loss), f is a model parameterized by W , and {Dk}Kk=1 are the training

datasets on K participants with the image-label pairs (x, y). Following the standard FL

setting [96], only model parameters can be shared to protect privacy. We require efficient

run-time customization on model f for resource dynamics (Section 4.4.2) and robustness

dynamics (Section 4.4.3). 1

When training customizable/adjustable models, significant challenges arise from hetero-

geneity among clients. In this paper, we consider the following: 1) Heterogeneous com-

putational budgets during training of clients constrain the maximal complexity of local

models. The complexity of deep neural networks can be defined in multiple dimensions, like

depths or widths [160, 129]. In this paper, we consider the width of hidden channels, be-

cause it can significantly reduce not only the number of model parameters but also the layer

output cache. Thus, we assume clients have confined width capabilities {Rk ∈ (0, 1]}Kk=1,

defined by width ratios w.r.t. the original model, i.e., ×Rk net as presented in Fig. 4.1b.

Similar to FedAvg and HeteroFL, the same architecture is used by clients and therefore the

model width can be tailored according to local budgets. In many applications, there are

usually a significant number of devices with insufficient computational budgets [40]. For ex-

1Customization of other properties can also be applied within our framework. We consider model size
and robustness given their practical importance.

54

ample, we may assume exponentially distributed budgets in uniformly divided client groups:

Rk = (1/2)d4k/Ke, i.e., the first group with 1/4 clients is capable for a 1-width and the rest

are for 0.5, 0.25, 0.125-widths respectively. The budget distribution simulate a real scenario

where most federated mobile phones prefer a low-energy solution with smaller models for

training probably in the background and maintain more resources for major tasks. Other

budget distributions, e.g., log-normal distributions, are discussed in Section C.1.5. 2) Het-

erogeneous data distributions, e.g., non-i.i.d. features, Dk ∼ Di for ordered domain i,

induces additional challenges with a skewed budget distribution, since training a single model

on multiple domains [80] or models in a single domain (due to budget constraints) [59, 31]

are known to be suboptimal on transfer performance.

In summary, training various model sizes has challenges from 1) resource heterogeneity,

where disparity in computation budgets will significantly affect the training of large models

because they can only be trained on scarce budget-sufficient clients; 2) data heterogeneity,

where the under-trained large models may perform poorly on unseen in-domain or out-of-

domain samples.

4.4 Method

To provide efficient in-situ customization, we introduce a simple yet powerful principle, Split-

Mix: shatter complete knowledge into smaller pieces, and customize by flexible formations of

pieces. Based on the principle, we propose customizations of model size and robustness in

the following.

4.4.1 Case Study: Customizable Networks from Budget-Constrained FL

For motivation, we set up a standard non-i.i.d. FL benchmark [80] using DomainNet

dataset (refer to experimental details in Section 5.4) and study how the budget constraint

impedes effective training of customizable models.

Case 1: FL without budget constraint. First, we individually train networks of

different widths by FedAvg. We see that the slimmer networks converge slower and are less

55

0 100 200 300
communication round

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

va
lid

at
io

n
ac

cu
ra

cy

width
0.125
0.25
0.5
1.0

mode
FedAvg
SHeteroFL

Figure 4.2: Convergence of different-width models on DomainNet.

generalizable, even though they are trained on all clients (solid lines in Fig. 4.2). The results

justified the motivation of training wider networks than slimmer ones.

Case 2: FL with budget constraint. Following the above budget constraint, i.e.,

Rk = (1/2)d4k/Ke, we deploy HeteroFL to train budget-compatible prototype models locally.

Since HeteroFL was not designed for model customization, data are not fully used: each

model prototype is only trained by 1/4 of clients, when clients of the Rk = 1 budget can

actually afford all slimmer models. Therefore, we extend HeteroFL to a slimmable version

(SHeteroFL) by training all affordable prototypes locally. As shown in Fig. 4.2, wider models

(e.g., ×1 net) converge to validation accuracy lower than not only the FedAvg counterparts,

but also the slimmer ×0.25 net, showing that the widest model may not be a good candidate

model. Therefore, switching models to wider configurations lowers efficiency but does not

improve accuracy, which is not a valid customization.

From the perspective of data allocation, it is not surprising that SHeteroFL exhibits a

non-monotonous relation between the model width and accuracy. For ×1 nets, only 1/4

clients and data are accessible for training. In comparison, 3/4 data are accessible by ×0.25

nets and the more data empowers ×0.25 nets better generalization ability than ×1 nets.

56

4.4.2 Customize Model Size

Motivated by the above observations, we propose to increase accessible training data by

splitting wide networks into universally-budget-compatible sub-networks and re-mix after-

ward. The overall FL algorithm is summarized in Algorithm 4.1.

More accessible data by splitting wide networks. Since a wide network cannot

fit into budget-insufficient clients, we split it into budget-compatible sub-networks by chan-

nels (width) while maintaining the the total width. In terms of memory limitations, each

sub-network can be painlessly and individually trained in all clients. However, sequentially

training multiple slim base networks could be much slower than training a single integrated

one and increases blocking time on communication. Noticing that all base models can be

evaluated independently, we instead efficiently train ×r base models in parallel (see Algo-

rithm 4.3). Despite the benefit, a client’s budget constraint (R) will limit the number of

paralleled base models within bR/rc, as wider channels result in larger intermediate layer

cache (activations), and excludes the rest base models from the client. Fortunately, we can

select different sets of base models for a budget-limited client per round, which is inspired

by FedEnsemble [125] and is presented in Algorithm 4.2. Hence, all base models can be

ever trained on the client for multiple communication rounds, though not continuously ev-

ery round. Note that since the federated training processes of base models are independent

without interference, the training could be as stable as FedAvg with partial participants. In

addition, the combination of slimmer base models is flexible and can conform a variety of

client budgets.

Boost accuracy by mixture of subnet experts. To craft a wide model, we combine

the outputs of multiple ×r base models until the size of the ensemble reaches the same as the

number of channels, e.g., bR/rc bases for an ×R net. We randomly initialize base models

independently such that the diverse bases could extract different features from the same

image [6]. Therefore, the ensemble can predict based on a variety of features, resembling

an integrated wide network. We follow the common practice, Kaiming’s method [50], for

57

initializing base networks with ReLU layers. As Kaiming’s method is width-dependent, we

parameterize the initialization based on the width of ×1 net instead of the ×r one, which

leads to smaller initial convolutional weights. In Section C.1.3, intensive ablation studies

show that the rescaled initialization is critical for improving test accuracy of wider networks.

Algorithm 4.1: Federated Split-Mix Learning
Input: Client datasets {Dk}Kk=1, the number of total communication rounds T , M = b1/rc
randomly initialized base ×r nets parameterized by {wi,r}Mi=1, client budgets {Rk}Kk=1, the number
of local epochs E, learning rates {ηt}Tt=1

1: Initialize {w0
i,r}Mi=1, model indexes P = Shuffle([1, · · · ,M]) and current index p = 1

2: for round t ∈ {1, · · · , T} do
3: Initialize W t ← {wti,r ← 0}Mi=1 and aggregation weights ci = 0 for i ∈ {1, . . . ,M}
4: for k ∈ {1, · · · ,K} do
5: Sample base models W t−1

k , p← SampleBaseModels(P, p, bRk/rc,W t−1)

6: Send W t−1
k to client k and train Ŵ t

k ← LocalTrain(W t−1
k , Dk, E, ηt)

7: Aggregate ŵt,ki,r ∈ Ŵ t
k to the server: wti,r ← wti,r + ŵt,ki,r |Dk|, ci ← ci + |Dk|

8: Server update W t ← {wti,r ← wti,r/ci}Mi=1

9: (Optional) Sort W T = {wTi,r}Mi=1 by the descending order of the validation accuracy of wTi,r
10: Output the customizable model W T = {wTi,r}Mi=1

11: Customize an R-width model by F (x;W T) = 1
KR

∑KR
i=1 f(x;w

T
i,r) where KR = bR/rc

Algorithm 4.2: SampleBaseModels(P, p, n,W)
1: if p > |P | then Shuffle P and p← 1

2: Initialize W = {wP [p],r}
3: if n>1 then
4: Uniformly sample n− 1 values into S from P\{P [p]} without replacement
5: W ←W ∪ {wi,r,∀i ∈ S}
6: Return W,p+ 1

Algorithm 4.3: LocalTrain(Wk, Dk, E, η)

1: Initialize models Ŵk by Wk

2: for e ∈ 1, · · · , E do
3: for batch data (x, y) in Dk do
4: for ŵi,r ∈ Ŵk in parallel do
5: ŵi,r ← ŵi,r − η ∂L(f(x;ŵi,r),y)∂ŵi,r

6: Return Ŵk

58

DBN

BNn

𝑥

BNc

Loss

Attack

…

…

noisedclean

BNn

𝑥

BNc

𝑦$

…

…

Noised data flow
Clean data flow
Unseen data flow

+ 𝜆1 − 𝜆

Training Inference

DBN

Figure 4.3: Illustration of dual batch-normalization (DBN) in training and inference. The
BNc and BNn are for clean and noised samples.

4.4.3 Extension to Adversarial Robustness Customization

In this section, we extend the customization from one dimension to two dimensions,

by jointly customizing model size and model robustness under adversarial attacks [?].

Model robustness has gained increasing interest [? 141], especially in high-stakes federated

learning applications [?]. Adversarial training (AT) [94] is arguably the most popular

and effective defense strategy against adversarial attacks. Specifically, it uses on-the-fly

adversarial samples as augmentation to improve robustness. Formally, AT minimizes the

following augmented loss:

L(f) = (1− λn)LCE(f(x), y) + λn max‖δ‖∞≤ε LCE(f(x+ δ), y), (4.1)

where δ is a subtle ε-constrained adversarial noise and transfers a clean sample x into an

adversarial sample x + δ. In Eq. (4.1), LCE is the cross-entropy loss the hyper-parameter

and λn trades off accuracy (the 1st term) and robustness (the 2nd term). When λn = 0

or 1, the optimization yields a standard-training (ST) model or an AT model, respectively.

Since an AT model is commonly less accurate in predicting standard images [132], there is

usually no such a sweet point of λn simultaneously maximizing robustness and accuracy, and

one typically needs to carefully gauge the trade-off according to the demand of robustness

in specific application context.

Splitting and sharing parameters. Since standard performance and adversarial ro-

bustness are irreconcilable, we can directly use two separated ST and AT models to max-

imally capture the each property. But do we really need two totally separated models?

59

Intuitively, the two models share some common knowledge, given that an adversarial image

share a large part of common features with its original version. As introduced by [151],

sharing all parameters except the batch-normalization (BN) layers can maximize robustness

and accuracy by expertised BNs, respectively. Accordingly, we propose to split BN layers

(instead of the whole model) into two sub-components: one for standard performance and

the other for robustness. At training time, the first loss of Eq. (4.1) is computed with clean

BN (BNc) merely and the second adversarial loss is computed with noised BN (BNn). The

FL local training is elaborated in Algorithm C.1. As the two BNs are decoupled, there is no

more trade-off in loss Eq. (4.1) and thereby we choose λn = 0.5 to balance their effects on

parameter updates.

Customizable layer-wise mixing. After training, the problem is how to mix the two

models (with different BNs) for prediction. A straightforward solution is averaging their

outputs. However, forwarding memory footprint will be doubled in this way, as the two

models have to be both executed separately. To avoid the doubled intermediate outputs, a

gate function can be used to adaptively choose BNs like [86]. Inspired by the method, we

further propose a simple parameter-free method by weighted-averaging outputs of each BN

layer (see Fig. 4.3):

DBN(x) = (1− λ)BNc(x) + λBNn(x), (4.2)

given a BN-layer input x. We note that the averaging strategy is entirely training-free and

does not use extra parameters, and the customization weight λ is intuitive for trade-offs

between SA and RA.

Lastly, it is remarkable that the DBN structure is rather lightweight in terms of model

complexity. As investigated in [158] (Table 2), the parameters of BN is no more than 1%

in popular deep architectures, e.g., ResNet or MobileNet. Therefore, we can plug DBN into

base models in place of BN, replace Algorithm 4.3 with Algorithm C.1, and jointly customize

robustness and model widths.

60

4.5 Empirical Studies

We design experiments to compare the proposed method against FL classification bench-

marks. For class non-i.i.d configuration, we use CIFAR10 dataset [73] with preactivated

ResNet (PreResNet18) [51]. CIFAR10 contains over 50, 000 32×32 images of 10 classes. The

CIFAR10 data are uniformly split into 100 clients and distribute 3 classes per client. For (fea-

ture) non-i.i.d. configuration, we use Digits with a CNN defined and DomainNet datasets

[80] with AlexNet extended with BN layers after each convolutional or linear layer [80]. The

first dataset is a subset (30%) of Digits, a benchmark for domain adaption [111]. Digits

has 28 × 28 images and serves as a commonly used benchmark for FL [19, 96, 78]. The

dataset includes 5 different domains: MNIST [74], SVHN [102], USPS [62], SynthDigits

[46], and MNIST-M [46]. The second dataset is DomainNet [110] processed by [80], which

contains 6 distinct domains of large-size 256 × 256 real-world images: Clipart, Infograph,

Painting, Quickdraw, Real, Sketch. Each domain of Digits (or DomainNet) are split into

10 (or 5) clients, and therefore 50 (or 30) clients in total. We defer other details such as

hyper-parameters to Section D.2, and focus on discussing the results.

4.5.1 Customize model sizes

In this section, we evaluate the proposed Split-Mix on tasks of customizing model sizes

through adjusting model widths. Recall that in Section 4.3, we assume a specific hetero-

geneous training budget to facilitate our discussion, such that one client can only train

models within a maximal width, and the resource distribution is imbalance among clients:

Rk = (1/2)d4k/Ke. Following the common FL setting, we do not consider algorithms that use

public data or representation sharing in our baselines.

Baselines. As an ideal upper bound but a memory-incompatible baseline, we (re-)train

networks from scratch by FedAvg to obtain individual models with different widths. The

state-of-the-art heterogeneous-architecture FL method is HeteroFL [28], which trains dif-

ferent slim models in different clients. For a fair comparison, we extend HeteroFL with

bounded-slimmable training in clients who can afford the larger models, named SHeteroFL.

61

For example, if a client in HeteroFL can afford ×0.5 net, then the client meanwhile trains

×0.25 net and other smaller subnets in slimmable training manner [158] by SHeteroFL.

0 100 200 300 400
communication round

0.2

0.3

0.4

0.5

0.6

va
lid

at
io

n
ac

cu
ra

cy

CIFAR10 class non-i.i.d

mode
FedAvg
SHeteroFL
Split-Mix

0 50 100 150 200
communication round

0.5

0.6

0.7

0.8

0.9

va
lid

at
io

n
ac

cu
ra

cy

Digits

mode
FedAvg
SHeteroFL
Split-Mix

0 100 200 300 400
communication round

0.2

0.3

0.4

0.5

0.6

0.7

va
lid

at
io

n
ac

cu
ra

cy

DomainNet

mode
FedAvg
SHeteroFL
Split-Mix

Figure 4.4: Validation accuracy of budget-compatible full-wdith nets by iterations.

Convergence. In Fig. 4.4, we compare the convergence curves of full-width models on

three datasets. For FedAvg, the budget-compatible width is ×0.125. Both for SHeteroFL

and Split-Mix, the full-width is ×1. Compared to baselines, the proposed Split-Mix con-

verges faster, largely due to the splitting strategy. Specifically, because all base models are

independently trained, the convergence of each base model mainly depends on how frequently

they are trained. When enough clients participate FL, the training frequency of the ×1 net

is more than one, as all bases will be selected at least once in a communication round.

Performance. In Table 4.1, we compare the test accuracy of different model widths. We

measure the latency in terms of MACs (number of multiplication-and-addition operations)

and model size in parameter numbers. With the same width, our method outperforms

SHeteroFL, using much fewer parameters and thus conducts inference in much lower latency.

Remarkably, compared to the best model by SHeteroFL, e.g., 81.8% ×1 net in CIFAR10,

Split-Mix uses only 1.8% parameters and 1.6% MACs (×0.125 net) to reach a similar level

of test accuracy. We notice that SHeteroFL has a much lower test accuracy with ×0.125

net on the CIFAR10 dataset. By investigating the loss curves, we find that the inference

between parameter-shared different prototypes results in unstable convergence of the ×0.125

net. Attributed to the independent splitting, our method is more stable on convergence

with different widths. Remarkably, Split-Mix only requires 12.7% parameters and 19.8%

MACs (by ×1 ensemble) to achieve the comparable accuracy as the ×1 individual network

62

Table 4.1: Test results of customizing model width. MACs and the number of parameters
are counted at inference time. Grey texts indicate that the training cannot conform the
predefined budget constraint. The ‘M’ after metric values means ×106.

Individual FedAvg SHeteroFL Split-Mix (ours)

width Acc MACs #Params Acc MACs #Params Acc MACs #Params

CIFAR10 class non-i.i.d FL
×0.125 43.4% 0.9M 0.2M 49.1% 0.9M 0.2M 48.0% 0.9M 0.2M
×0.25 45.7% 3.5M 0.7M 51.4% 3.5M 0.7M 51.1% 1.8M 0.4M
×0.5 50.3% 14.0M 2.8M 51.5% 14.0M 2.8M 52.1% 3.6M 0.7M
×1 53.3% 55.7M 11.2M 49.9% 55.7M 11.2M 52.7% 7.2M 1.4M

Digits feature non-i.i.d FL
×0.125 86.1% 0.1M 0.2M 86.8% 0.1M 0.2M 84.6% 0.1M 0.2M
×0.25 87.3% 0.4M 0.9M 87.9% 0.4M 0.9M 87.5% 0.2M 0.4M
×0.5 88.7% 1.3M 3.6M 86.9% 1.3M 3.6M 89.0% 0.5M 0.9M
×1 89.6% 4.8M 14.2M 81.3% 4.8M 14.2M 89.8% 0.9M 1.8M

DomainNet feature non-i.i.d FL
×0.125 67.2% 2.5M 0.9M 66.9% 2.5M 0.9M 68.4% 2.5M 0.9M
×0.25 69.8% 7.5M 3.6M 67.8% 7.5M 3.6M 71.9% 5.0M 1.8M
×0.5 72.6% 25.5M 14.3M 66.9% 25.5M 14.3M 73.0% 9.9M 3.6M
×1 72.9% 92.5M 57.1M 58.7% 92.5M 57.1M 74.2% 19.8M 7.2M

on Digits. Results on CIFAR10 and DomainNet show a potential limitation of our method.

The accuracy of Split-Mix is not comparable with the wider individual models due to the

locally limited complexity. However, the limitation is more from the problem setting itself,

and will not undermine our advantage in budget-limited FL, since wide individual models

cannot be trained in this case.

Client-wise evaluation. In addition to comparisons of inference on average, we also

demonstrate the statistics of test accuracy and the training and communication efficiency

in Fig. 4.5. Conforming the budget constraints, our method outputs more accurate full-

width models, transfer fewer parameters per round and execute fewer multiplication-and-

add operations for gradient descent than SHeteroFL, either in terms of average or variance.

Because only the individual ×0.125 net can fit into the budget constraint, FedAvg requires

the least MACs and parameters, which however significantly sacrifices the final accuracy.

Domain-wise evaluation. To understand why Split-Mix outperforms SHeteroFL, we

63

Cifar10_cniid Digits DomainNet

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

mode
FedAvg
SHeteroFL
Split-Mix

Cifar10_cniid Digits DomainNet
108

109

1010

1011

M
AC

s/
ba

tc
h

Cifar10_cniid Digits DomainNet

106

107

#p
ar

am
et

er
s/

ro
un

d

Figure 4.5: Client-wise statistics of test accuracy, training and communication efficiency by
budget constraints. The MACs quantify the complexity of one batch optimization in a client,
and the number of parameters per round round are the ones uploaded to (or downloaded
from) a server. Test accuracy is by the full-width networks. The results of FedAvg are from
budget-compatible ×0.125 nets.

clip
art

infograph
painting

quickdraw real
sketch

0

20

40

60

80

100
percentage of trained parameters

mode
FedAvg
SHeteroFL
SplitMix

clip
art

infograph
painting

quickdraw real
sketch

0.
12

5
0.

25
0.

5
1.

0
wi

dt
h

2.0 -3.6 -1.1 1.0 0.7 2.5

10.8 4.6 0.3 -1.5 0.5 -2.9

15.1 12.2 6.7 -1.3 0.8 0.7

22.5 19.6 16.9 19.4 4.8 1.8

SHeteroFL

clip
art

infograph
painting

quickdraw real
sketch

0.
12

5
0.

25
0.

5
1.

0
wi

dt
h

1.0 -2.7 -1.4 -1.9 -0.8 -1.3

0.7 0.2 -0.9 -4.8 -1.3 -6.1

-1.1 0.8 -1.2 -1.5 0.1 0.4

-1.2 1.0 -4.0 -0.8 -0.7 -2.3

SplitMix

Figure 4.6: Per domain in DomainNet, the total percentage of parameters that are locally
trained (the left figure) and the accuracy (%) drops compared to FedAvg individual models
(right two figures).

investigate the total percentage of parameters that can be trained in each domain, in Fig. 4.6

(Left). We count the total parameters that were ever trained in clients of a domain during

the learning. Thanks to the base-model sampling strategy (i.e., Algorithm 4.2), Split-Mix

allows all base models, rather than a subset, to be trained on all clients. On the other

hand, varying client budgets greatly impacted SHeteroFL by limiting the width of models

trained in budget-insufficient clients, e.g., in the clipart, infograph and painting domains.

Hence, SHeteroFL leaves a large amount of parameters under-trained and suffers from larger

accuracy losses in the three domains and wider models. In comparison, Split-Mix not only

has less accuracy drop but is also more stable in all domains.

64

4.5.2 Customize robustness

Training and evaluation. For local AT, we use an n-step projected gradient de-

scent (PGD) attack [94] with a constant noise magnitude ε. Following [94], we set (ε, n) =

(8/255, 7), and attack inner-loop step size 2/255, for training, validation, and test. For

simplicity, we temporarily relax the budget constraint Rk and let the base model be ×1 net.

For comparison, we extend FedAvg with AT which yields individual models optimized with

different trade-off variables, i.e., λn ∈ {0, 0.1, 0.2, 0.3, 0.5, 1}. Also, we extend FedAvg with

state-of-the-art in-situ trade-off method, OAT [140], as a baseline. Split-Mix+DAT is an

extension of Split-Mix by the proposed DBN-based AT in Algorithm C.1. We evaluate and

contrast models in two metrics: standard accuracy (SA) on the clean test samples and ro-

bust accuracy (RA) on adversarial images generated from the clean test set by the PGD

attack. Both metric values are averaged by users. We evaluate the trade-off effectiveness

by comparing the RA-SA curves, which is better approaching the right-upper corner. To

plot the curves for FedAvg+OAT and Split-Mix+DAT, we vary their condition variable λ in

{0, 0.2, 0.5, 0.8, 1}.

0.75 0.80 0.85 0.90
SA

0.0

0.1

0.2

0.3

0.4

RA

(a) CIFAR10

0.82 0.84 0.86 0.88
SA

0.45

0.50

0.55

0.60

0.65

mode
FedAvg+AT
FedAvg+OAT
Split-Mix+DAT

(b) Digits

0.70 0.75 0.80 0.85
SA

0.0

0.1

0.2

0.3

0.4

(c) CIFAR10

0.45 0.50 0.55 0.60
SA

0.05

0.25
0.30
0.35
0.40
0.45

width
0.125
0.25
0.5
1.0

mode
FedAvg
SplitMixDAT

(d) DomainNet

Figure 4.7: Trade-off between robust accuracy (RA) and standard accuracy (SA) with full
width (a,b) and customizable widths (c,d).

Trade-off curves are presented in Fig. 4.7 (a) and (b). Since the naive extension of OAT

with FedAvg adopts heterogeneous objectives and over-parameterization of conditional layers

which suffers from convergence issues, its adversarial training does not converge and RA is

incredibly poor in some cases. As a result, the trade-off curve is not smooth. Instead, the

proposed Split-Mix+DAT method has a smoother trade-off curve without heavy conditional

65

training or over-parameterization. By training in one pass, Split-Mix+DAT even outperforms

and is more efficient than the FedAvg+AT baselines.

Joint customization of width and robustness under budget constraints. Now

we consider the width customization and the training budgets as Section 4.5.1. Due to the

constraint, FedAvg can only train ×0.125 net. We omit OAT for its unstable convergence

and use SplitMixDAT as a short name of Split-Mix+DAT. In Fig. 4.7 (c) and (d), the trade-

off curves with different widths are depicted. As the width increases, both RA and SA of

SplitMixDAT are improved, when they are smoothly traded off. The results demonstrate

the flexibility and the modular nature of our method.

66

CHAPTER 5

OUTSOURCING TRAINING WITHOUT UPLOADING DATA

As deep learning blooms with growing demand for computation and data resources, outsourc-

ing model training to a powerful cloud server becomes an attractive alternative to training at

a low-power and cost-effective end device. Traditional outsourcing requires uploading device

data to the cloud server, which can be infeasible in many real-world applications due to the

often sensitive nature of the collected data and the limited communication bandwidth. To

tackle these challenges, we propose to leverage widely available open-source data, which is

a massive dataset collected from public and heterogeneous sources (e.g., Internet images).

We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to

construct a proximal proxy dataset from open-source data for cloud training, in lieu of client

data. ECOS probes open-source data on the cloud server to sense the distribution of client

data via a communication- and computation-efficient sampling process, which only commu-

nicates a few compressed public features and client scalar responses. Extensive empirical

studies show that the proposed ECOS improves the quality of automated client labeling,

model compression, and label outsourcing when applied in various learning scenarios.

5.1 Introduction

Nowadays, powerful machine learning services are essential in many devices that supports

our daily routines. Delivering such services is typically done through client devices that

are power-efficient and thus very restricted in computing capacity. The client devices can

collect data through built-in sensors and make predictions by machine learning models.

However, their stringent computing power often makes the local training prohibitive, es-

pecially for high-capacity deep models. One widely adopted solution is to outsource the

cumbersome training to cloud servers equipped with massive computational power, using

machine-learning-as-a-service (MLaaS). Amazon Sagemaker [83], Google ML Engine [15],

and Microsoft Azure ML Studio [10] are among the most successful industrial adoptions,

67

where users upload training data to designated cloud storage, and the optimized machine

learning engines then handle the training. One major challenge of the outsourcing solution in

many applications is that the local data collected are sensitive and protected by regulations,

therefore prohibiting data sharing. Notable examples include General Data Protection Reg-

ulation (GDPR) [1] and Health Insurance Portability and Accountability Act (HIPPA) [4].

On the other hand, recent years witnessed a surging amount of general-purpose and mas-

sive datasets authorized for public use, such as ImageNet [26], CelebA [90], and MIMIC [67].

Moreover, many task-specific datasets used by local clients can be well considered as biased

subsets of these large public datasets [110, 80]. Therefore, the availability of these datasets

allows us to use them to model confidential local data, facilitating training outsourcing

without directly sharing the local data. One approach is to use the private client dataset to

craft pseudo labels for a public dataset in a confidential manner [168, 109], assuming that

the public and local data are identically-and-independently-distributed (iid). In addition,

Alon et al. showed that an iid public data can strongly supplement client learning, which

greatly reduces the private sample complexity [7]. However, the iid assumption can often

be too strong for general-purpose open-source datasets, since they are usually collected from

heterogeneous sources with distributional biases from varying environments. For example,

a search of ‘digits’ online yields digits images from handwriting scans, photos, to artwork of

digits.

In this paper, we relax the iid assumption in training outsourcing and instead consider the

availability of an open-source dataset. We first study the gap between the iid data and the

heterogeneous open-source data in training outsourcing, and show the low sample efficiency

of open-source data. We show that in order to effectively train a model from open-source

data that is transferable to the client data, the open-source data needs to communicate more

samples than those of iid data. The main reason behind such low sample efficiency is that

we accidentally included out-of-distribution (OoD) samples, which poison the training and

significantly degrade accuracy at the target (client) data distribution [14]. We propose a

68

Figure 5.1: Illustration of the proposed ECOS framework. Instead of uploading local data
for cloud training, ECOS downloads the centroids of clustered open-source features to effi-
ciently sense the client distribution, where the client counts the local neighbor samples of the
centroids as the coverage score. Based on the the scores of centroids, the server adaptively
samples proximal and diverse data for training a transferable model on the cloud.

novel framework called Efficient Collaborative Open-source Sampling (ECOS) to tackle this

challenge, which filters the open-source dataset through an efficient collaboration between

the client and server and does not require client data to be shared. During the collaboration,

the server sends compressed representative features (centroids) of the open-source dataset

to the client. The client then identifies and excludes OoD centroids and returns their pri-

vately computed categorical scores to the server. The server then adaptively and diversely

decompresses the neighbors of the selected centroids. The main idea is illustrated in Fig. 5.1.

Our major contributions are summarized as follows:

• New problem and insight : Motivated by the strong demands for efficient and confidential

outsourcing, using public data in place of the client data is an attractive solution. However,

the impact of heterogeneous sources of the public data, namely open-source data, is rarely

studied in existing works. Our empirical study shows the potential challenges due to such

heterogeneity.

• New sampling paradigm: We propose a new unified sampling paradigm, where the server

only sends very few query data to the client and requests very few responses that efficiently

and privately guide the cloud for various learning settings on open-source data. To our

best knowledge, our method enables efficient cloud outsourcing under the most practical

69

assumption of open-source public data, and does not require accessing raw client data or

executing cumbersome local training.

• Compelling results : In all three practical learning scenarios, our method improves the

model accuracy with pseudo, manual or pre-trained supervisions. Besides, our method shows

competitive efficiency in terms of both communication and computation.

5.2 Related Work

There are a series of efforts studying how to leverage the data and computation resources

on the cloud to assist client model training, especially when client data cannot be shared

[156, 142]. We categorize them as follows: 1) Feature sharing : Methods like group knowledge

transfer [49], split learning [136] and domain adaptation [32, 30] transfer edge knowledge

by communicating features extracted by networks. To provide a theoretical guarantee of

privacy protection, [105] proposed an advanced information removal to disentangle sensitive

attributes from shared features. In the notion of rigorous privacy definition, Liu et al. leverage

public data to assist private information release [89]. Earlier, data encryption was used for

outsourcing which however is too computation-intensive for a client and less applicable for

large-scale data and deep networks [21, 76]. Federated Learning (FL) considered the same

constraint on data sharing but the private knowledge is shared via models trained locally [97].

2) Private labeling: PATE and its variants were proposed to generate client-approximated

labels for unlabeled public data, on which a model can be trained [108, 109]. Without training

multiple models by clients, Private kNN was a more efficient alternative which explored the

private neighborhood of public images for labeling [168]. These approaches are based on

a strong assumption of the availability of public data that is iid as the local data. This

paper considers a more practical yet challenging setting where public data are from multiple

agnostic sources with heterogeneous features.

Sampling from public data has been explored in central settings. For example, Xu et

al. [154] used a few target-domain samples as a seed dataset to filter the open-domain

datasets by positive-unlabeled learning [91]. In self-supervised contrastive learning, model-

70

aware K-center (MAK) used a model pre-trained on the seed dataset to find desired-class

samples from open-world dataset [65]. Though these methods provided effective sampling,

they are less applicable when the seed dataset is placed at the low-energy edge, because the

private seed data at the edge cannot be shared with the cloud for filtering and the edge device

is incapable of computation-intensive training. To address these challenges, we develop a

new sampling strategy requiring only light-weight computation at the edge.

5.3 Outsourcing Model Training With Open-Source Data

5.3.1 Problem Setting and Challenges

Motivated in Section 5.1, we aim to outsource the training process from computation-

constrained devices to the powerful cloud server, where a proxy public dataset without

privacy concerns is used in place of the client dataset for cloud training. One solution

is (private) client labeling by k-nearest-neighbors (kNN) [168], where the client and cloud

server communicate the pseudo-label of a public dataset privately and the server trains a

classifier by the labeled and unlabeled samples in a semi-supervised manner. The success

of this strategy depends on the key assumption that public data in the cloud and private

data in the client are iid, which is rather strong in practice and thus prevents it from many

real-world applications. In this work, we make a more realistic assumption that the public

Table 5.1: Test accuracy (%) with different client domains (columns). Cloud data are
identically distributed as the client data (ID) or including more data from 5 distinct domains
(ID+OoD) without overlapped samples. We first label a number of randomly selected cloud
examples (i.e., sampling budget) privately by client data [168], and then train a classifier
to recognize digit images. The privacy cost ε is accounted for in the notion of differential
privacy. Larger budgets imply more privacy and communication costs. More results on
different settings are enclosed in Section D.2.3.

Cloud Sampling MNIST SVHN USPS SynthDigits MNIST-M Average
Data Budget Acc (%) ↑ ε ↓ Acc (%) ↑ ε ↓ Acc (%) ↑ ε ↓ Acc (%) ↑ ε ↓ Acc (%) ↑ ε ↓ Acc (%) ↑ ε ↓

ID 1000 84.3±2.4 4.48 51.6±1.4 4.08 87.1±0.5 4.51 73.2±1.5 4.57 55.5±1.0 4.46 70.4 4.42

ID+OoD

1000 78.0±3.5 4.30 40.6±1.6 3.75 82.2±2.7 4.32 62.1±1.6 4.41 49.1±1.0 4.27 62.4 4.21
8000 82.2±4.1 5.89 47.9±1.8 5.89 85.4±0.5 5.89 64.4±3.6 5.89 53.3±2.2 5.89 66.6 5.89
16000 82.6±1.4 7.17 48.5±1.7 7.17 86.7±1.9 7.17 67.5±2.3 7.17 52.0±3.0 7.17 67.4 7.17
32000 84.1±1.6 9.32 49.4±0.2 9.32 86.8±2.0 9.32 68.5±0.1 9.32 53.0±2.7 9.32 68.4 9.32

71

datasets are as accessible as open-source data. The open-source data consists of biased

features from multiple heterogeneous sources (feature domains), and therefore includes not

only in-distribution (ID) samples similar to the client data but also multi-domain OoD

samples.

The immediate question is how the OoD samples affect the outsourced training. In

Table 5.1, we empirically study the problem by using a 5-domain dataset, Digits, where 50%

of one domain is used on the client and the remained 50% together with the other 4 domains

serve as the public dataset on the cloud. To conduct the cloud training, we leverage the client

data to generate pseudo labels for the unlabeled public samples, following [168]. It turns out

that the presence of OoD samples in the cloud greatly degrades the model accuracy. The

inherent reason for the degradation is that the distributional shift of data [117] compromised

the transferability of the model to the client data [146].

Problem formulation by sampling principles. Given a client dataset Dp and an

open-source dataset Dq, the goal of open-source sampling is to find a proper subset S from

Dq, whose distribution matches Dp. In [65], Model-Aware K-center (MAK) formulated the

sampling as a principled optimization:

minS⊂Dq ∆(S,Dp)−H(S ∪Dp;Dq), (5.1)

where ∆(S,Dp) := Ex′∈Dp [minx∈S ‖x− x′‖2] measures proximity as the set difference between

S and Dp, and the latter H(S∪Dp;Dq) := maxx′∈Dq minx∈S∪Dp ‖x− x′‖2 measures diversity

by contradicting S ∪ Dp and Dq (suppose Dq is the most diverse set). Solving Eq. (5.1)

results in an NP-hard problem that is intractable [23], and MAK provides an approximated

solution by a coordinate-wise greedy strategy. It first pre-trains the model representations

on Dp and finds a large candidate set with the best proximity to extracted features. Then,

it incrementally selects the most diverse samples from the candidate set until the sampling

budget is used up.

Though MAK is successful in the central setting, it is not applicable when Dp is isolated

from cloud open-source data and is located at a resource-constrained client for two reasons:

72

1) Communication inefficiency. Uploading client data may result in privacy leakage, sending

public data to the client is a direct alternative but the cost can be prohibitive. 2) Compu-

tation inefficiency. Pre-training a model on Dp or proximal sampling (which computes the

distances between paired samples from Dq and Dp) induces unaffordable computation over-

heads for the low-energy client.

5.3.2 Proposed Solution: Efficient Collaborative Open-Source Sampling (ECOS)

To address the above challenges, we design a new strategy that 1) uses compressed queries

to reduce the communication and computation overhead and 2) uses a novel principled objec-

tive to effectively sample from open-source data with the client responses of the compressed

queries.

Construct communication-efficient and an informative query set D̂q at cloud.

Let d be the number of pixels of an image, the communication overhead of transmitting Dq

to the client is given by O(d|Dq|). For communication efficiency, we optimize the following

two factors:

i) Data dimension d. First, we transmit extracted features instead of images to reduce the

communication overhead to O(de|Dq|) where de is a much smaller embedding dimension. For

accurate estimation of the distance ∆, a discriminative feature space is essential. Depending

on resources, one may consider hand-crafted features such as HOG [25], or an off-the-shelf

pre-trained model such as ResNet pre-trained on ImageNet.

ii) Data size |Dq|. Even with compression, sending all data for querying is inefficient due to

the large size of open-source data |Dq|. Meanwhile, too many queries would cast unacceptable

privacy costs to the client. As querying on similar samples leads to redundant information

in querying, we propose to reduce such redundancy by selecting informative samples. We

use the classic clustering method KMeans [44] for compressing similar samples by clustering

them, and collect the R mean vectors or centroids into D̂q = {cr}Rr=1. We denote R as the

compression size. The selected centroids can be decompressed by the cluster assignment into

corresponding original samples with rich features.

73

New sampling objective. We propose to optimize a communication-efficient surrogate

loss:

minŜ⊂D̂q ,S⊂Dq ∆(Ŝ, D̂p) + ∆(Ŝ, S)︸ ︷︷ ︸
proximity

−H(S;Dq)︸ ︷︷ ︸
diversity

, (5.2)

where Ŝ (or D̂q) is the compressed centroid substitute of S (or Dq). D̂p consists of the

features of Dp. Different from Eq. (5.1), we decompose the proximity term into two in order

to facilitate communication efficiency leveraging D̂q. We solve the optimization problem in

a greedy manner by two steps at the client and the cloud, respectively:

i) At the client step, we optimize ∆(Ŝ, D̂p) to find a set of centroids (Ŝ ⊂ D̂q) that are

proximal to the client set D̂p. Noticing that D̂q contains the cluster centroids, we take

advantage of the property to define a novel proximity measure of the cluster r: Centroid

Coverage (CC), denoted as vr. Upon receiving centroids from the cloud, the client use them

to partition the local data into {Cpr}Rr=1 where Cpr denotes the r-th cluster partition of local

data. We compute the CC score by the cardinality of the neighbor samples of the centroid

r, i.e., vr = |Cpr |. To augment the sensitivity to the proximal clusters, we scale the CC score

by a non-linear function v′r = ψs(|Cpr |), where the scale function ψs(x) = xs is parameterized

by s.

ii) At the cloud step, we optimize the proximity of S w.r.t. the proxy set Ŝ, i.e., ∆(Ŝ, S),

and remove redundant and irrelevant samples from the candidate set to encourage diversity,

i.e., −H(S;Dq). As samples among clusters are already diversified by KMeans, we only

need to promote the in-cluster diversity. To this end, we reduce the sample redundancy per

cluster at cloud by K-Center [122], which heuristically find the most diverse samples. Such

design transfers the diversity operation to cloud and thus reduces the local computation

overhead. To maintain the proximity, the K-Center is applied within each cloud cluster

and the sampling budget per cluster is proportional to their vote numbers and the original

cluster sizes. With the normalized scores, we compute the sampling budget per cluster which

is upper bounded by the ratio of the cluster in the cloud set.

74

Algorithm 5.1: Efficient collaborative open-source sampling (ECOS)
Require: Client dataset Dp, cloud query dataset Dq, sampling budget B, compression size

R, distance function ∆(x, S) = miny∈S ‖x− y‖, feature extractor φ(·), initial sample set
S = ∅, score scale function ψs(x) = xs.

1: Cloud creates a compressed dataset D̂q = KMeansR({φ(x)|x ∈ Dq}); . Compress R
Centroids

2: . . . Client End . . .
3: Download the feature extractor φ and D̂q;
4: Use centroids D̂q to partition D̂p = {φ(x)|x ∈ Dp} into clusters {Cpr}Rr=1;
5: Compute the Centroid Coverage (CC) scores: vr = |Cpr |, ∀r ∈ {1, . . . , R};
6: Upload scaled cluster scores {v′r = ψs(vr)}Rr=1; . Proximity
7: / / / Cloud End / / /
8: Partition Dq into clusters {Cqr}Rr=1 by centroids D̂q;
9: Compute per-cluster sampling budget br = min

{
|Cqr |∑
j |C

q
j |
, v′r∑

j v
′
j

}
·B;

10: for r in {1, . . . , R} do . Decompress Centroids
11: Initialize S ′ = {x} by a random sample from Cr;
12: while |S ′| < br do . Diverse Sampling
13: u = arg maxx∈Cqr ∆(x, S ′);
14: S ′ = {u} ∪ S ′;
15: S = S ′ ∪ S;
16: return S

We summarize our algorithm in Algorithm 5.1, which enables the clients to enjoy bet-

ter computation efficiency than local training and better communication efficiency than the

centralized sampling (e.g., MAK). 1) Computation efficiency. Since our method only re-

quires inference operations on the client device, which should be efficiently designed for the

standard predictive functions of the device, and is training-free for the client, the major com-

plexity of ECOS is on computing centroid coverage and is much lower than gradient-based

algorithms whose complexity scales with the model size and training iterations. As comput-

ing the CC scores only requires the nearest centroid estimation and ranking, the filtering can

be efficiently done. The total time complexity is O(Cφ|Dp| + (de + 1)R|Dp|), dominated by

the first term, where Cφ is the complexity of extracting features depending on the specific

method. The second term (de + 1)R|Dp| is for computing the pair-wise distances between

D̂p and D̂q and estimating the nearest centroids per sample (or partitioning client data).

In a brief comparison, the complexity of local T -iteration gradient-descent training could be

75

approximately O(TCφ|Dp|) which is much more expensive since typically TCφ � de. To

complete the analysis, the space complexity is O(C ′φ + (d + de)|Dp| + deR + |Dp|R) for the

memory footprint of φ, the images (d) or features (de) of client and cloud centroid data,

and the distance matrix. 2) Communication efficiency. The downloading complexity

will be O(deR) for R de-dimensional centroid features and the uploading complexity is O(R)

including indexes of samples. Thus, the data that will be communicated between the client

and cloud is approximately of O(deR + R) complexity in total. In comparison, download-

ing the whole open-source dataset by central sampling (e.g., MAK) requires O(d|Dq| + B)

complexity. As R < deR � de|Dq| � d|Dq|, our method can significantly scale down the

computation cost.

Privacy protection and accountant. When the cloud server is compromised by an

attacker, uploading CC scores leak private information of the local data samples, for example,

the presence of an identity [126]. To mitigate the privacy risk, we protect the uploaded scores

by a Gaussian noise mechanism, i.e., ṽr = vr + N (0, σ2), and account for the privacy cost

in the notion of differential privacy (DP) [38]. DP quantifies the numerical influence of the

absence of a private sample on [v1, · · · , vR], which is connected to the chance of exposing

the sample to the attacker. To obtain a tight bound on the privacy cost, we utilize the

tool of Rényi Differential Privacy (RDP) [99] and leverage the Poisson sampling to further

amplify the privacy [167]. With the noise mechanism governed by σ, the resultant privacy

cost in the sense of (ε, δ)-DP can be accounted as ε = O(γ
√

log(1/δ)/σ) where γ is the

Poisson subsampling rate and δ is a user-specified parameter. A larger ε implies higher risks

of privacy leakage in the probability of δ. Formal proofs can be found in Section D.1.3.

5.4 Empirical Results

Datasets. We use datasets from two tasks: digit recognition and object recognition. Dis-

tinct from prior work [168], in our work, the open-source data contains samples out of the

client’s distribution. With the same classes as the client dataset, we assume open-source data

are from different environments and therefore include different feature distributions, for ex-

76

ample, DomainNet [110] and Digits [80]. DomainNet includes large-sized 244×244 everyday

images on 6 domains and Digits consists of 28 × 28 digit images on 5 domains. Instead of

using an overly large volume of data from a single domain like [168], we tailor each-domain

subset to contain fewer images than standard digit datasets, for instance, MNIST with 7438

images, which was previously adopted in the distributed learning setting [80] and mitigates

the hardness of collecting enormous data. In practice, collecting tens of thousands of images

by a single client, e.g., 50000 images from MNIST domain, will be unrealistic. Similarly,

DomainNet will be tailored to only include 10 classes with 2000-5000 images per domain.

Splits of client and cloud datasets. For Digits, we use one domain for the client and

the rest domains for the cloud as open-source set. For DomainNet, we randomly select 50%

samples from one domain for the client and leave the rest samples together with all other

domains to the cloud. The difference of configurations for the two datasets is caused by

their different domain gaps. Even without ID data, it is possible for Digits to transfer the

knowledge across domains.

Baselines. For a fair comparison, we compare our method to baselines with the same

sampling budget. Each experiment case is repeated for three times with seed {1, 2, 3}. We

account for the privacy cost by Poisson-subsampling RDP [167] and translate the cost to

the general privacy notion, (ε, δ)-DP when δ = 10−5. Here, we use the random sampling

as a naive baseline. We also adopt a coreset selection method, K-Center [122], to select

informative samples within the limited budget. Both baselines are perfectly private with-

out accessing private information from clients. Details of hyper-parameters are deferred to

Section D.2.1.

5.4.1 Evaluations on Training Outsourcing

To demonstrate the general applicability of ECOS, we present three practical use case

of outsourcing, categorized by the form of supervisions. The conceptual illustrations are

in Fig. 5.2. Per use case, we train a model on partially labeled cloud data (outsourced

training) and accuracy on the client test set are reported together with standard deviations.

77

Proximal Data

Unlabaled
client data

ECOS

Outsource
Labeling

Labeled
proximal data

Unlabaled
cloud data

Semi-supervised
Learning

(a) Selective manual labeling.

Small model 𝑓!Large model 𝑓"

Selected
proximal data

Unlabaled
client data

ECOS

Labaled
cloud data

Adapt

(b) Adaptive model compression.
Unlabaled

proximal data
Semi-supervised

learning
Labeled

proximal data

Private kNNECOS

Unlabaled
cloud data

Labaled
client data

(c) Automated client labeling.

Figure 5.2: Our method is applicable to various cloud training cases, where ECOS filters
the open-source samples to improve the model performance trained on (a) manual, (b) pre-
trained model (teacher), and (c) pseudo supervisions.

Table 5.2: Test accuracy (%) by selective labeling on Digits (top) and DomainNet (bottom).

Sampling MNIST SVHN USPS SynthDigits MNIST-M Average
Budget Method Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑

2000
Ours 97.3±0.1 0.22 68.7±0.3 0.22 90.8±0.1 0.22 84.4±0.6 0.22 70.4±0.6 0.22 82.3

K-Center 96.7±0.3 0.00 65.1±1.3 0.00 90.1±0.7 0.00 80.2±1.1 0.00 70.1±0.3 0.00 80.4
Random 96.5±0.3 0.00 64.0±0.3 0.00 91.6±1.0 0.00 83.8±0.3 0.00 70.9±0.6 0.00 81.4

5000
Ours 98.1±0.2 0.22 74.6±1.0 0.22 93.5±0.3 0.22 91.2±0.4 0.22 74.5±0.5 0.22 86.4

K-Center 97.9±0.2 0.00 72.3±0.6 0.00 92.7±0.9 0.00 89.6±0.3 0.00 74.0±0.5 0.00 85.3
Random 97.6±0.3 0.00 70.0±0.3 0.00 93.0±0.6 0.00 89.7±0.4 0.00 73.9±0.7 0.00 84.8

Sampling Clipart Infograph Painting Quickdraw Real Sketch Average
Budget Method Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑

1000
Ours 88.4±1.5 0.58 52.6±0.9 0.58 90.4±1.7 0.58 84.3±1.6 0.58 92.1±1.2 0.58 87.2±0.5 0.58 82.5

K-Center 86.8±0.3 0.00 50.5±0.9 0.00 89.1±1.4 0.00 27.2±1.8 0.00 92.5±0.1 0.00 85.6±1.4 0.00 72.0
Random 86.9±0.8 0.00 47.4±2.7 0.00 88.6±0.1 0.00 77.9±2.4 0.00 91.4±0.3 0.00 86.9±0.5 0.00 79.9

3000
Ours 93.2±0.4 0.58 58.1±0.6 0.58 92.5±1.1 0.58 89.2±0.9 0.58 94.4±0.2 0.58 92.8±0.2 0.58 86.7

K-Center 93.5±1.1 0.00 56.3±0.3 0.00 92.9±0.3 0.00 60.5±8.7 0.00 94.1±0.2 0.00 92.1±0.7 0.00 81.6
Random 92.5±0.6 0.00 53.6±1.4 0.00 91.7±0.8 0.00 86.1±0.4 0.00 93.5±0.3 0.00 93.0±0.2 0.00 85.1

We present the results in Tables 5.2 to 5.4 case by case, where we vary the domain of the

client by columns. In each column, we highlight the best result unless the difference is not

statistically significant.

Case 1: Selective manual labeling. We assume that the cloud will label the filtered

in-domain samples by using a third-party label service, e.g., Amazon Mechanical Turk [107],

or by asking the end clients for manual labeling. As the selected samples are non-private,

they can be freely shared with a third parity. But the high cost of manual labeling or service

78

is the pain point, which should be carefully constrained within a finite budget of demanded

labels.

Given a specified sampling budget, we compare the test accuracy of semi-supervised learn-

ing (FixMatch) on sampled data in Table 5.2. Since the ECOS tends to select in-distribution

samples, it ease the transfer of cloud-trained model to the client data. On the Digits dataset,

we find that our method attains more accuracy gains as budget increases, demonstrating that

more effective labels are selected. On the DomainNet dataset, our method outperforms base-

lines on 5 out of 6 domains and is stable in most domains given a small budget (1000) and

is superior on average. Given more budgets, the accuracy of all methods is improved, when

our method is outstanding on Infograph and Quickdraw domains and is comparable to the

baselines on other domains.

Table 5.3: Evaluate adaptive model compression on DomainNet by test accuracy, Acc (%)
and differential-privacy cost ε.

Sampling Clipart Infograph Painting Quickdraw Real Sketch Average
Budget Method Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑

1000
Ours 82.9±0.7 0.58 48.5±2.7 0.58 85.4±1.0 0.58 81.3±2.5 0.58 91.4±0.6 0.58 82.4±1.1 0.58 78.6

K-Center 81.2±0.9 0.00 44.6±0.9 0.00 84.5±2.2 0.00 41.7±1.9 0.00 92.4±0.5 0.00 80.1±2.1 0.00 70.8
Random 83.8±0.7 0.00 44.4±2.1 0.00 83.8±1.6 0.00 76.3±2.2 0.00 90.1±0.6 0.00 80.1±0.7 0.00 76.4

3000
Ours 90.6±0.6 0.58 51.4±1.9 0.58 89.6±1.2 0.58 87.6±0.3 0.58 93.6±0.7 0.58 88.4±1.5 0.58 83.5

K-Center 88.9±2.3 0.00 51.2±0.4 0.00 89.4±0.9 0.00 57.6±4.4 0.00 94.5±0.5 0.00 86.9±0.6 0.00 78.1
Random 88.4±0.8 0.00 47.6±1.9 0.00 89.4±1.0 0.00 84.7±0.2 0.00 93.0±1.0 0.00 86.3±1.2 0.00 81.6

Case 2: Adaptive model compression. Due to the large volume of the open-source

dataset, a larger model is desired for better capturing the various features, which however

is so inefficient to fit into the resource-constrained client devices or specialize for the data

distribution of the client. Confronting this challenge, model compression [17] is a conven-

tional idea to forge a memory-efficient model by transferring knowledge from large models to

small ones. Specifically, we first pre-train a large teacher model ft on all cloud data by the

supervised learning, assuming labels are available in advance. Still, we use an ImageNet-pre-

trained model to initialize the feature extractor φ(·) of a student model fs. Then the client

will use the downloaded feature extractor φ to filter samples. Here, we utilize knowledge

79

distillation [52] to finetune the fs with an additional classifier head upon the φ. On the

selected samples, we train a linear classifier head for 30 epochs under the supervision of true

labels and the teacher model ft, and then fine-tune the full network fs for 500 epochs. The

major challenge comes from distributional biases between the multi-source open-source data

and the client data. Leveraging ECOS, we may sample data near the client distribution and

reduce the bias in the follow-up compression process.

We simulate the case on the large-sized image dataset, DomainNet, which is demanding

for large-scale networks, e.g., ResNet50 here, to effectively learn the complicated features.

Here, we compress ResNet50 into a smaller network, ResNet18, by using an adaptively

selected subset of the cloud dataset. We omit the experiment for digit images where a large

model may not be necessary for such a small image size. In Table 5.3, we present the test

accuracy of compressed ResNet18 using 3000 samples from DomainNet in finetuning. With

a small portion of privacy cost (ε < 0.6), our method improves the accuracy on Clipart and

Real domains against the baselines. Note that the model accuracy here is lower than label

outsourcing in Table 5.2, and reason is that the supervisions from the larger models are just

an approximation of the full dataset. Without using the full dataset for compression, the

training can be completed fast and responsively on the demand of a client.

Table 5.4: Test accuracy (%) and privacy cost epsilon of client labeling on two datasets:
Digits (top) and DomainNet (bottom).

Sampling MNIST SVHN USPS SynthDigits MNIST-M Average
Budget Method Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑

5000
Ours 84.2±2.3 5.35 47.9±3.1 5.32 86.1±1.0 5.35 68.6±1.6 5.35 58.4±1.9 5.35 69.0

K-Center 81.9±3.4 5.34 48.4±1.2 5.33 82.1±1.2 5.34 69.4±1.9 5.34 55.4±2.0 5.34 67.4
Random 81.8±4.1 5.34 45.3±3.0 5.29 81.2±2.3 5.34 65.9±2.7 5.34 55.5±2.6 5.34 65.9

Sampling Clipart Infograph Painting Quickdraw Real Sketch Average
Budget Method Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑ ε ↓ Acc ↑

3000
Ours 33.2±5.9 4.46 23.8±2.2 3.50 47.4±3.3 4.51 39.8±7.7 4.87 62.9±1.9 4.92 51.7±1.2 4.94 43.2

K-Center 39.3±3.6 4.57 18.2±2.7 3.61 46.6±2.5 4.52 36.1±2.9 4.94 63.8±1.9 4.96 47.7±2.8 4.96 42.0
Random 30.7±2.2 4.41 21.6±4.9 3.43 44.0±3.1 4.53 39.0±5.6 4.82 59.9±3.6 4.75 47.2±3.4 4.94 40.4

Case 3: Automated client labeling. When the client obtained labeled samples, for

example, photos labeled by phone users, the cloud only needs to collect an unlabeled public

80

dataset. Therefore, we may automate the labeling process leveraging the client supervision

knowledge to reduce cost or users’ efforts on manual labeling. To be specific, we let the

client generate pseudo labels for the cloud data based on their neighbor relation, as previ-

ously studied by [168] (private kNN). However, the private kNN assumes that the client and

the cloud follow the same distribution, which weakens its applicability confronting the het-

erogeneity and the large scale of open-source data. Thus, we utilize ECOS as a pre-processing

of open-source data before being labeled by private kNN. Therefore, we have two rounds of

communication for transferring client knowledge: proximal-data sampling by the ECOS and

client labeling by the private kNN [168]. To compose the privacy costs from these two steps,

we utilize the analytical moment accountant technique to get a tight privacy bound [144].

Interested readers can refer to Section D.1.1 for a brief introduction to private kNN and our

implementations.

In experiments, we use the state-of-the-art private pseudo-labeling method, private kNN [168],

to label the subsampled open-source data with the assistance from the labeled client dataset.

To reduce the sensitivity of private kNN w.r.t. the threshold, we instead enforce the number

of the selected labels to be 600 and balance the sizes by selecting the top-60 samples with the

highest confidence per class. Then, we adopt the popular semi-supervised learning method,

FixMatch [127], to train the classifier. In Table 5.4, we report the results when cloud features

are distributionally biased from the client ones but they share the same class set. For each

domain choice of client data, we will use the other domains as the cloud dataset. Distinct

from prior studies, e.g., in [168] or [109], we assume 80-90% of the cloud data are out of

the client distribution and are heterogeneously aggregated from different domains, casting

greater challenges in learning. On the Digits, we eliminate all ID data from the cloud set to

harden the task. Both on Digits and DomainNet datasets, our method consistently outper-

forms the two sampling baselines under the similar privacy costs. The variance of privacy

costs is mainly resulted from the actual sampling sizes. Though simply adopting K-Center

outperforms the random sampling, it still presents larger gaps compared to our method in

81

Figure 5.3: Demonstration of the centroids qualified by private CC. We use blue dots to
represent the client data from Real domain of DomainNet. For the data of the cloud do-
mains, larger circles represent centroids with higher CC and orange crosses are rejected OoD
centroids.

multiple domains. For instance, in Quickdraw domain, given 5000 sampling budget, the

K-Center method performs poorly and is even worse than a random sampling.

5.4.2 Qualitative Study

To better understand the proposed method, we conduct a series of qualitative studies

on client labeling. We use two DomainNet datasets as a representative benchmark in the

studies. 1) Ablation study. In Table 5.5, we conduct ablation studies to evaluate the effect

of different objectives introduced by ECOS, following the client labeling benchmark with a

3000 sample budget. Without proximity and diversity objectives, we let the baseline be the

naive random sampling. We first include the proximity objective, where we greedily select

samples from top-scored clusters until the budget is fulfilled. However, we find that the naive

proximity objective results in a quite negative effect compared to the random baseline. The

failure can be attributed to the nature of clustering that will include more similar samples,

namely lacking diversity. When diversity is encouraged and combined with the proximal

votes, we find the performance is improved significantly in multiple domains and on average.

Now with diversity, the proximity objective can further improve the sampling in Painting,

Quickdraw, and Sketch domains significantly. 2) Visualize cluster selection. In Fig. 5.3,

we demonstrate that the CC can effectively reject OoD centroids. Also, it is interesting to

82

observe that when multiple centroids are distributed closely, then they will compete with

each other and reject the redundant ones consequently. 3) Efficiency. In Section 5.3, we

studied the communication efficiency theoretically. Empirically, ECOS only need to upload

100 bytes of the CC scores in all experiments, while traditional outsourcing needs to upload

the dataset, which is about 198MB for the lowest load in DomainNet (50% of Sketch domain

data for client). Even counting the download load, ECOS only need to download 45MB of

the pre-trained ResNet18 feature extractor together with 51KB data of centroid features,

which is much less than data uploading. More detailed evaluation of the efficiency is placed

at Section D.2.4.

Table 5.5: Ablation study of the proposed method on DomainNet. Test accuracy of the
client labeling case is reported.

Proximity Diversity Clipart Infograph Painting Quickdraw Real Sketch Average

7 7 30.7±2.2 21.6±4.9 44.0±3.1 39.0±5.6 59.9±3.6 47.2±3.4 40.4
3 7 25.5 ±5.7 21.1±0.5 41.4±5.3 31.3±1.3 60.3±2.3 31.9±2.9 35.2
7 3 39.3±3.6 18.2±2.7 46.6±2.5 36.1±2.9 63.8±1.9 47.7±2.8 42.0
3 3 33.2±5.9 23.8±2.2 47.4±3.3 39.8±7.7 62.9±1.9 51.7±1.2 43.2

83

CHAPTER 6

OVERVIEW

In this chapter, we summarize our contributions to data-centric privacy-preserving learning.

Centralized learning. When a privacy budget is provided for a certain learning task,

one has to carefully schedule the privacy usage throughout the learning process. Uniformly

scheduling the budget has been widely used in literature whereas increasing evidence suggests

that dynamical schedules could empirically outperform uniform ones. Our theoretical work

on dynamic differentially-private learning provided a principled analysis of the problem of

optimal budget allocation and connected the advantages of dynamic schedules to both the

loss structure and the learning behavior. We further validated our results through empirical

studies.

Federated learning with heterogeneous devices. In this work, we proposed a novel

federated learning approach for in-situ and on-demand customization to address challenges

arising from resource heterogeneity and inference dynamics. We proposed a Split-Mix strat-

egy that efficiently transfer clients’ knowledge to collaboratively learn a customizable model.

Extensive experiments demonstrate the effectiveness of the principle in adjusting model

widths and robustness when much fewer parameters are used compared to baselines.

Outsourcing training without uploading data. In this work, we explore the pos-

sibility of outsourcing model training without access to client data. To reconcile the data

shortage from the target domain, we propose to find a surrogate dataset from the source-

agnostic public dataset. We find that the heterogeneity of the open-source data greatly

compromises the performance of trained models. To tackle this practical challenge, we

propose a collaborative sampling solution, ECOS, that can efficiently and effectively filter

open-source samples and thus benefits follow-up learning tasks. We envision this work as a

milestone for private and efficient outsourcing from low-power and cost-effective end devices.

We also recognize open questions of the proposed solution for future studies. For example,

the public dataset may require additional data processing, e.g., aligning and cropping for

84

improved prediction accuracy. In our empirical studies, we only consider the computer vision

tasks, though no assumption was made on the data structures. We expect the principles to

be adapted to other data types with minimal effort. More data types, including tabular and

natural-language data, will be considered in the follow-up works.

85

BIBLIOGRAPHY

[1] General data protection regulation.

[2] Facebook–cambridge analytica data scandal. Wikipedia, October 2022.

[3] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In CCS: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 308–318, New York, NY, USA, 2016. ACM.

[4] Accountability Act. Health insurance portability and accountability act of 1996. Public
law, 104:191, 1996.

[5] P. S. Aisen, S. Andrieu, C. Sampaio, M. Carrillo, Z. S. Khachaturian, B. Dubois, H. H.
Feldman, R. C. Petersen, E. Siemers, R. S. Doody, S. B. Hendrix, M. Grundman,
L. S. Schneider, R. J. Schindler, E. Salmon, W. Z. Potter, R. G. Thomas, D. Salmon,
M. Donohue, M. M. Bednar, J. Touchon, and B. Vellas. Report of the task force on
designing clinical trials in early (predementia) ad. Neurology, 76(3):280–286, January
2011.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Zeyuan Allen-Zhu. Towards understanding en-
semble, knowledge distillation and self-distillation in deep learning. arXiv:2012.09816
[cs.LG], December 2020.

[7] Noga Alon, Raef Bassily, and Shay Moran. Limits of private learning with access to
public data. Advances in neural information processing systems, 32, 2019.

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. January 2017.

[9] Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential
privacy: Analytical calibration and optimal denoising. In International Conference on
Machine Learning, pages 394–403, July 2018.

[10] Jeff Barnes. Azure machine learning. Microsoft Azure Essentials. 1st ed, Microsoft,
2015.

[11] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Effi-
cient algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 464–473, October 2014.

[12] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private
stochastic convex optimization with optimal rates. In Advances in Neural Information
Processing Systems 32, pages 11282–11291. Curran Associates, Inc., 2019.

86

[13] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. A theory of learning from different domains. Machine
Language, 79(1-2):151–175, May 2010.

[14] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support
vector machines. In ICML, 2012.

[15] Ekaba Bisong. Google cloud machine learning engine (cloud mle). In Building machine
learning and deep learning models on google cloud platform, pages 545–579. Springer,
2019.

[16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving machine learning. In CCS: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
’17, pages 1175–1191, New York, NY, USA, 2017. ACM.

[17] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’06, pages 535–541, New York, NY, USA, August 2006.
Association for Computing Machinery.

[18] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Theory of Cryptography, volume 9985, pages 635–
658. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[19] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings. arXiv:1812.01097 [cs, stat], December 2019.

[20] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private
empirical risk minimization. Journal of Machine Learning Research, 12(Mar):1069–
1109, 2011.

[21] Fei Chen, Tao Xiang, Xinyu Lei, and Jianyong Chen. Highly efficient linear regression
outsourcing to a cloud. IEEE transactions on cloud computing, 2(4):499–508, 2014.

[22] Junhong Cheng, Wenyan Liu, Xiaoling Wang, Xingjian Lu, Jing Feng, Yi Li, and Chao-
fan Duan. Adaptive distributed differential privacy with sgd. Workshop on Privacy-
Preserving Artificial Intelligence, page 6, 2020.

[23] William J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combi-
natorial optimization. Oberwolfach Reports, 5(4):2875–2942, 2009.

[24] Rachel Cummings, Sara Krehbiel, Kevin A Lai, and Uthaipon Tantipongpipat. Dif-

87

ferential privacy for growing databases. In Advances in Neural Information Processing
Systems 31, pages 8864–8873. Curran Associates, Inc., 2018.

[25] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, June 2009.

[27] Damien Desfontaines and Balázs Pejó. Sok: Differential privacies. arXiv:1906.01337
[cs], June 2019.

[28] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication
efficient federated learning for heterogeneous clients. In International Conference on
Learning Representations, 2021.

[29] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learn-
ing with moreau envelopes. In Advances in Neural Information Processing Systems,
June 2020.

[30] Jiahua Dong, Yang Cong, Gan Sun, Zhen Fang, and Zhengming Ding. Where and how
to transfer: Knowledge aggregation-induced transferability perception for unsupervised
domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 1–1, 2021.

[31] Jiahua Dong, Yang Cong, Gan Sun, Zhen Fang, and Zhengming Ding. Where and how
to transfer: Knowledge aggregation-induced transferability perception for unsupervised
domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 1–1, 2021.

[32] Jiahua Dong, Yang Cong, Gan Sun, Bineng Zhong, and Xiaowei Xu. What can be
transferred: Unsupervised domain adaptation for endoscopic lesions segmentation. In
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pages
4022–4031, June 2020.

[33] Alexey Dosovitskiy and Josip Djolonga. You only train once: Loss-conditional training
of deep networks. In International Conference on Learning Representations, September
2019.

[34] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming,
Lecture Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2006.

[35] Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applications

88

of Models of Computation, Lecture Notes in Computer Science, pages 1–19. Springer
Berlin Heidelberg, 2008.

[36] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel.
Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference, ITCS ’12, pages 214–226, Cambridge, Massachusetts, Jan-
uary 2012. Association for Computing Machinery.

[37] Cynthia Dwork, Alan Karr, Kobbi Nissim, and Lars Vilhuber. On privacy in the age
of covid-19. Journal of Privacy and Confidentiality, 10(2), June 2020.

[38] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography, Lecture Notes in
Computer Science, pages 265–284. Springer Berlin Heidelberg, 2006.

[39] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3-4):211–407, 2013.

[40] Eric Enge. Mobile vs. desktop usage in 2020.
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage, March
2021.

[41] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learn-
ing: A meta-learning approach. In Advances in Neural Information Processing Systems,
June 2020.

[42] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimiza-
tion: optimal rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 439–449, New York, NY,
USA, June 2020. Association for Computing Machinery.

[43] Hao-Zhe Feng, Zhaoyang You, Minghao Chen, Tianye Zhang, Minfeng Zhu, Fei Wu,
Chao Wu, and Wei Chen. Kd3a: Unsupervised multi-source decentralized domain
adaptation via knowledge distillation. arXiv:2011.09757, 2021.

[44] Edward W Forgy. Cluster analysis of multivariate data: efficiency versus interpretabil-
ity of classifications. Biometrics. Journal of the International Biometric Society,
21:768–769, 1965.

[45] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In CCS: Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS
’15, pages 1322–1333, New York, NY, USA, 2015. ACM.

[46] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backprop-

89

agation. In International Conference on Machine Learning, pages 1180–1189. PMLR,
June 2015.

[47] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
arXiv:1406.2661 [cs, stat], June 2014.

[48] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fair-
ness without demographics in repeated loss minimization. In International Conference
on Machine Learning, pages 1929–1938. PMLR, July 2018.

[49] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge trans-
fer: Federated learning of large cnns at the edge. Advances in Neural Information
Processing Systems, November 2020.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1026–1034, 2015.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. Computer Vision and Pattern Recognition, 2016.

[52] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv:1503.02531 [cs, stat], March 2015.

[53] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the
gan: Information leakage from collaborative deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pages
603–618, New York, NY, USA, 2017. ACM.

[54] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adap-
tation. In International Conference on Machine Learning, pages 1989–1998. PMLR,
July 2018.

[55] Junyuan Hong, Jeffrey Kaye, Hiroko H. Dodge, and Jiayu Zhou. Detecting mci using
real-time, ecologically valid data capture methodology: How to improve scientific rigor
in digital biomarker analyses. Alzheimer’s & Dementia, 16(S5):e044371, 2020.

[56] Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. Feder-
ated robustness propagation: Sharing adversarial robustness in federated learning.
arXiv:2106.10196 [cs, stat], June 2021.

[57] Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. Learning model-
based privacy protection under budget constraints. In AAAI, page 9, 2021.

90

[58] Junyuan Hong, Zhangyang Wang, and Jiayu Zhou. Dynamic privacy budget alloca-
tion improves data efficiency of differentially private gradient descent. In 2022 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’22, pages 11–35,
New York, NY, USA, June 2022. Association for Computing Machinery.

[59] Junyuan Hong, Zhuangdi Zhu, Shuyang Yu, Zhangyang Wang, Hiroko H. Dodge, and
Jiayu Zhou. Federated adversarial debiasing for fair and transferable representations.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, KDD ’21, pages 617–627, New York, NY, USA, August 2021. Association for
Computing Machinery.

[60] Gao Huang, Danlu Chen, Tianhong Li, and Felix Wu. Multi-scale dense networks for
resource efficient image classification. International Conference on Learning Represen-
tations, page 14, 2018.

[61] Xixi Huang, Jian Guan, Bin Zhang, Shuhan Qi, Xuan Wang, and Qing Liao. Differ-
entially private convolutional neural networks with adaptive gradient descent. In 2019
IEEE Fourth International Conference on Data Science in Cyberspace (DSC), pages
642–648, June 2019.

[62] Jonathan J. Hull. A database for handwritten text recognition research. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(5):550–554, May 1994.

[63] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and
Luc Van Gool. Ai benchmark: Running deep neural networks on android smartphones.
In Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
pages 0–0, 2018.

[64] Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Making the last iterate of
sgd information theoretically optimal. In Conference on Learning Theory, pages 1752–
1755, June 2019.

[65] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Improving contrastive
learning on imbalanced data via open-world sampling. In Advances in Neural Infor-
mation Processing Systems, May 2021.

[66] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning | The MIT Press. MIT Press, 2008.

[67] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mo-
hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G
Mark. Mimic-iii, a freely accessible critical care database. Scientific data, 3(1):1–9,
2016.

[68] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and

91

proximal-gradient methods under the polyak-łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases, Lecture Notes in Computer Science, pages
795–811, Cham, 2016. Springer International Publishing.

[69] Jeffrey A. Kaye, Shoshana A. Maxwell, Nora Mattek, Tamara L. Hayes, Hiroko
Dodge, Misha Pavel, Holly B. Jimison, Katherine Wild, Linda Boise, and Tracy A.
Zitzelberger. Intelligent systems for assessing aging changes: Home-based, unobtru-
sive, and continuous assessment of aging. The Journals of Gerontology: Series B,
66B(suppl_1):i180–i190, July 2011.

[70] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk
minimization and high-dimensional regression. In Proceedings of the 25th Annual Con-
ference on Learning Theory, COLT ’12, page 40, 2012.

[71] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
the 3rd International Conference for Learning Representations, San Diego, CA, 2015.

[72] Jakub Konečný, Brendan McMahan, and Daniel Ramage. Federated optimiza-
tion:distributed optimization beyond the datacenter. arXiv:1511.03575 [cs, math],
November 2015.

[73] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[74] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[75] Jaewoo Lee and Daniel Kifer. Concentrated differentially private gradient descent
with adaptive per-iteration privacy budget. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’18, pages
1656–1665, New York, NY, USA, 2018. ACM.

[76] Xinyu Lei, Xiaofeng Liao, Tingwen Huang, Huaqing Li, and Chunqiang Hu. Outsourc-
ing large matrix inversion computation to a public cloud. IEEE Transactions on cloud
computing, 1(1):1–1, 2013.

[77] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model
distillation. arXiv:1910.03581 [cs, stat], October 2019.

[78] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. In Conference on
Systems and Machine Learning Foundation (MLSys), April 2020.

[79] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource alloca-
tion in federated learning. In International Conference on Learning Representations,

92

September 2019.

[80] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Fed-
erated learning on non-iid features via local batch normalization. In International
Conference on Learning Representations, September 2020.

[81] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. ICML, October 2020.

[82] Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. Source data-absent
unsupervised domain adaptation through hypothesis transfer and labeling transfer.
ArXiv, 2020.

[83] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. Elastic
machine learning algorithms in amazon sagemaker. In Proceedings of the 2020 ACM
SIGMOD international conference on management of data, pages 731–737, 2020.

[84] Ming Lin, Pinghua Gong, Tao Yang, Jieping Ye, Roger L. Albin, and Hiroko H. Dodge.
Big data analytical approaches to the nacc dataset: Aiding preclinical trial enrichment.
Alzheimer Disease & Associated Disorders, 32(1):18–27, 2018.

[85] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation
for robust model fusion in federated learning. In Advances in Neural Information
Processing Systems, June 2020.

[86] Aishan Liu, Shiyu Tang, Xianglong Liu, Xinyun Chen, Lei Huang, Zhuozhuo Tu,
Dawn Song, and Dacheng Tao. Towards defending multiple adversarial perturbations
via gated batch normalization. arXiv:2012.01654 [cs], December 2020.

[87] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-
efficiency trade-offs by selective execution. arXiv:1701.00299 [cs, stat], March 2018.

[88] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for
text classification. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1–10, Vancouver, Canada,
July 2017. Association for Computational Linguistics.

[89] Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Steven Wu.
Leveraging public data for practical private query release. In International conference
on machine learning, pages 6968–6977. PMLR, 2021.

[90] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of international conference on computer vision (ICCV),
December 2015.

93

[91] Mohammad Reza Loghmani, Markus Vincze, and Tatiana Tommasi. Positive-
unlabeled learning for open set domain adaptation. Pattern Recognition Letters, 136,
June 2020.

[92] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional
adversarial domain adaptation. arXiv:1705.10667 [cs], December 2018.

[93] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adver-
sarially fair and transferable representations. In Proceedings of the 35th International
Conference on Machine Learning, pages 3384–3393. PMLR, July 2018.

[94] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In-
ternational Conference on Learning Representations, 2018.

[95] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-
tasking of multiple tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1851–1860, 2019.

[96] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273–1282, April 2017.

[97] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[98] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differ-
entially private recurrent language models. In International Conference on Learning
Representations, February 2018.

[99] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foun-
dations Symposium (CSF), pages 263–275, Santa Barbara, CA, USA, August 2017.
IEEE.

[100] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38, May
2017.

[101] Yurii Nesterov and B.T. Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, August 2006.

[102] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y.
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

94

[103] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug
& play generative networks: Conditional iterative generation of images in latent space.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4467–4477, 2017.

[104] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Syn-
thesizing the preferred inputs for neurons in neural networks via deep generator net-
works. In Advances in Neural Information Processing Systems 29, pages 3387–3395.
Curran Associates, Inc., 2016.

[105] Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Had-
dadi, and Hamid R. Rabiee. Deep private-feature extraction. IEEE Transactions on
Knowledge and Data Engineering, 32(1):54–66, January 2020.

[106] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, October 2010.

[107] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experiments
on amazon mechanical turk. Judgment and Decision making, 5(5):411–419, 2010.

[108] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. In
International conference on learning representations, 2016.

[109] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Úlfar Erlingsson. Scalable private learning with pate. International Conference
on Learning Representations, February 2018.

[110] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Mo-
ment matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1406–1415, 2019.

[111] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial do-
main adaptation. In International Conference on Learning Representations, September
2019.

[112] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate
Saenko. Visda: The visual domain adaptation challenge. arXiv:1710.06924 [cs],
November 2017.

[113] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X. Yu, Sashank J. Reddi,
and Sanjiv Kumar. Adaclip: Adaptive clipping for private sgd. arXiv:1908.07643 [cs,
stat], October 2019.

[114] B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Computa-

95

tional Mathematics and Mathematical Physics, 3(4):864–878, January 1963.

[115] B. T. Polyak. Some methods of speeding up the convergence of iteration meth-
ods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, January
1964.

[116] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
Networks, 12(1):145–151, January 1999.

[117] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D
Lawrence. Dataset shift in machine learning. Mit Press, 2008.

[118] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola.
Stochastic variance reduction for nonconvex optimization. In International Confer-
ence on Machine Learning, pages 314–323, June 2016.

[119] Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contribu-
tions to the Theory of Statistics. The Regents of the University of California, 1961.

[120] Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning
in a large function space: Privacy-preserving mechanisms for svm learning. Journal of
Privacy and Confidentiality, 2012.

[121] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category
models to new domains. In Proceedings of the 11th European conference on Com-
puter vision: Part IV, ECCV’10, pages 213–226, Berlin, Heidelberg, September 2010.
Springer-Verlag.

[122] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. In International conference on learning representations, 2018.

[123] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, May 2014.

[124] Shai Shalev-Shwartz, Nathan Srebro, and Karthik Sridharan. Stochastic convex opti-
mization. In Proceedings of the 22nd Annual Conference on Learning Theory, COLT
’09, page 11, 2009.

[125] Naichen Shi, Fan Lai, Raed Al Kontar, and Mosharaf Chowdhury. Fed-
ensemble: Improving generalization through model ensembling in federated learning.
arXiv:2107.10663 [cs, stat], July 2021.

[126] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy

96

(SP), pages 3–18, May 2017.

[127] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D.
Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. Advances in Neural Information
Processing Systems, November 2020.

[128] Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang. Nearly optimal private lasso.
In Advances in Neural Information Processing Systems 28, pages 3025–3033. Curran
Associates, Inc., 2015.

[129] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In Proceedings of the 36th International Conference on Machine
Learning, pages 6105–6114. PMLR, May 2019.

[130] Om Thakkar, Galen Andrew, and H. Brendan McMahan. Differentially private learning
with adaptive clipping. arXiv:1905.03871 [cs, stat], May 2019.

[131] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differen-
tially private synthetic data and label generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[132] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. International Conference
on Learning Representations, September 2019.

[133] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discrimina-
tive domain adaptation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7167–7176, 2017.

[134] B. Vellas, R. Bateman, K. Blennow, G. Frisoni, K. Johnson, R. Katz, J. Langbaum,
D. Marson, R. Sperling, A. Wessels, S. Salloway, R. Doody, and P. Aisen. Endpoints
for pre-dementia ad trials: A report from the eu/us/ctad task force. The journal of
prevention of Alzheimer’s disease, 2(2):128–135, June 2015.

[135] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5018–5027, 2017.

[136] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split
learning for health: Distributed deep learning without sharing raw patient data. ICLR
2019 Workshop on AI for social good, December 2018.

[137] Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through

97

adversarial learning: an application to recidivism prediction. arXiv:1807.00199 [cs,
stat], June 2018.

[138] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk min-
imization with non-convex loss functions. In International Conference on Machine
Learning, pages 6526–6535, May 2019.

[139] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization
revisited: Faster and more general. In Advances in Neural Information Processing
Systems 30, pages 2722–2731. Curran Associates, Inc., 2017.

[140] Haotao Wang, Tianlong Chen, Shupeng Gui, Ting-Kuei Hu, Ji Liu, and Zhangyang
Wang. Once-for-all adversarial training: In-situ tradeoff between robustness and ac-
curacy for free. Advances in Neural Information Processing Systems, November 2020.

[141] Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, and
Zhangyang Wang. Augmax: Adversarial composition of random augmentations for
robust training. arXiv:2110.13771 [cs], October 2021.

[142] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen.
In-edge ai: Intelligentizing mobile edge computing, caching and communication by
federated learning. IEEE Network, 33(5):156–165, 2019.

[143] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. ECCV, July 2018.

[144] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled renyi
differential privacy and analytical moments accountant. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1226–1235, April 2019.

[145] Michael W. Weiner, Dallas P. Veitch, Paul S. Aisen, Laurel A. Beckett, Nigel J. Cairns,
Robert C. Green, Danielle Harvey, Clifford R. Jack, William Jagust, Enchi Liu, John C.
Morris, Ronald C. Petersen, Andrew J. Saykin, Mark E. Schmidt, Leslie Shaw, Li Shen,
Judith A. Siuciak, Holly Soares, Arthur W. Toga, and John Q. Trojanowski. The
alzheimer’s disease neuroimaging initiative: A review of papers published since its
inception. Alzheimer’s & Dementia, 9(5):e111–e194, September 2013.

[146] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big data, 3(1):1–40, 2016.

[147] Martin A Weiss and Kristin Archick. US-EU data privacy: from safe harbor to privacy
shield, 2016.

[148] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey
Naughton. Bolt-on differential privacy for scalable stochastic gradient descent-based

98

analytics. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD ’17, pages 1307–1322, New York, NY, USA, 2017. ACM.

[149] Zhenyu Wu, Haotao Wang, Zhaowen Wang, Hailin Jin, and Zhangyang Wang. Privacy-
preserving deep action recognition: An adversarial learning framework and a new
dataset. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[150] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis,
Kristen Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in residual
networks. arXiv:1711.08393 [cs], January 2019.

[151] Cihang Xie and Alan Yuille. Intriguing properties of adversarial training at scale.
International Conference on Learning Representations, December 2019.

[152] Yun Xie, Peng Li, Chao Wu, and Qiuling Wu. Differential privacy stochastic gradient
descent with adaptive privacy budget allocation. In 2021 IEEE International Confer-
ence on Consumer Electronics and Computer Engineering (ICCECE), pages 227–231,
January 2021.

[153] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe
Liu. A first look at deep learning apps on smartphones. arXiv:1812.05448 [cs], January
2021.

[154] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing XU, Dacheng Tao, and
Chang Xu. Positive-unlabeled compression on the cloud. In Advances in Neural In-
formation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[155] Zhiying Xu, Shuyu Shi, Alex X. Liu, Jun Zhao, and Lin Chen. An adaptive and fast
convergent approach to differentially private deep learning. the Proceedings of IEEE
International Conference on Computer Communications, 2020.

[156] Jiangchao Yao, Shengyu Zhang, Yang Yao, Feng Wang, Jianxin Ma, Jianwei Zhang,
Yunfei Chu, Luo Ji, Kunyang Jia, Tao Shen, Anpeng Wu, Fengda Zhang, Ziqi Tan, Kun
Kuang, Chao Wu, Fei Wu, Jingren Zhou, and Hongxia Yang. Edge-cloud polarization
and collaboration: A comprehensive survey. arXiv:2111.06061 [cs], November 2021.

[157] Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Gradient pertur-
bation is underrated for differentially private convex optimization. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pages
3117–3123, Yokohama, Japan, July 2020. International Joint Conferences on Artificial
Intelligence Organization.

[158] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable
neural networks. arXiv:1812.08928 [cs], December 2018.

99

[159] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially
private model publishing for deep learning. proceedings of 40th IEEE Symposium on
Security and Privacy, April 2019.

[160] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146
[cs], June 2017.

[161] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases
with adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, AIES ’18, pages 335–340, New York, NY, USA, December 2018.
Association for Computing Machinery.

[162] Jun Zhang, Xiaokui Xiao, Yin Yang, Zhenjie Zhang, and Marianne Winslett. Privgene:
Differentially private model fitting using genetic algorithms. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, pages
665–676, New York, NY, USA, 2013. ACM.

[163] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient
and compact neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2021.

[164] Xinyue Zhang, Jiahao Ding, Maoqiang Wu, Stephen T. C. Wong, Hien Van Nguyen,
and Miao Pan. Adaptive privacy preserving deep learning algorithms for medical data.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1169–1178, 2021.

[165] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Arindam Banerjee.
Private stochastic non-convex optimization: Adaptive algorithms and tighter general-
ization bounds. arXiv:2006.13501 [cs, stat], August 2020.

[166] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances
in Neural Information Processing Systems 32, pages 14774–14784. Curran Associates,
Inc., 2019.

[167] Yuqing Zhu and Yu-Xiang Wang. Poission subsampled rényi differential privacy. In
International Conference on Machine Learning, pages 7634–7642. PMLR, May 2019.

[168] Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. Private-knn:
Practical differential privacy for computer vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11854–11862, 2020.

[169] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for
heterogeneous federated learning. In Proceedings of the 38th International Conference
on Machine Learning, June 2021.

100

APPENDIX A

DYNAMIC PRIVACY BUDGET ALLOCATION

A.1 Social Impact

The wide usage of personal data in training machine learning has led to huge successes in

many application domains but is also accompanied by rising concerns on privacy protec-

tion due to the sensitive information in the data. The development of privacy-preserving

algorithms has become one of critical research areas of machine learning, in which the key

challenge is to train high performance models under the constraint of a given privacy budget,

or how much sensitive information can be accessed during the training phase. Differential

privacy provided a principled framework to quantify the privacy budget, under which re-

searchers proposed various schemes to schedule the budget usage during a learning process,

yet there is a lack of systematical studies on when and why some schedules are better than

other. Our efforts in this paper are among the first to study and compare the effectiveness of

these schedules from a rigorous optimization perspective. Our theoretical results can benefit

any privacy-preserving machine learning practitioners to efficiently and effectively choose

proper privacy schedules tailored to their learning tasks.

A.2 Comparison of algorithms

Here we elaborate the meaning of algorithm names in Table 2.1. Asymptotic upper bounds

are achieved when sample size N approaches infinity. Both R and Rε,δ with Rε,δ < R are

the privacy budgets of corresponding algorithms. Specifically, Rε,δ = ε2/ ln(1/δ) < R when

the private algorithm is (ε, δ)-DP with ε ≤ 2 ln(1/δ).

PGD+Adv. Adv denotes the Advanced Composition method [11]. The method assumes

that loss function is 1-strongly convex which implies the PL condition and optimized variable

is in a convex set of diameter 1 w.r.t. l2 norm.

PGD+MA and the adjusted-utility version. MA denotes the Moment Accountant [3]

which improve the composed privacy bound versus the Advanced Composition. The im-

101

provement on privacy bound lead to a enhanced utility bound, as a result.

PGD+Adv+BBImp. The dynamic method assumes that the loss is 1-strongly convex

and data comes in stream with n ≤ N samples at each round. Their utility upper bound is

achieved at some probability p with any positive c.

Adam+MA. The authors prove a convergence bound for the gradient norms which is

extended to loss bound by using PL condition. They also presents the results for AdaGrad

and GD which are basically of the same upper bound. Out theorems improve their bound

by using the recursive derivation based on the PL condition, while their bound is a simple

application of the condition on the gradient norm bound.

GD, Non-Private. This method does not inject noise into gradients but limit the

number of iterations. With the bound, we can see that our utility bound are optimal with

dynamic schedule.

GD+zCDP. We discussed the static and dynamic schedule for the gradient descent

method where the dynamic noise influence is the key to tighten the bound.

Momentum+zCDP. Different from the GD+zCDP, momentum methods will have two

phase of utility upper bound. When T is small than some positive constant T̂ , the bound

is as tight as the non-private one. Afterwards, the momentum has a bound degraded as the

GD bound.

A.3 Preliminaries

A.3.1 Privacy

Lemma 2 (Composition & Post-processing). Let two mechanisms be M : Dn → Y and

M ′ : Dn × Y → Z. Suppose M satisfies (ρ1, a)-zCDP and M ′(·, y) satisfies (ρ2, a)-zCDP

for ∀y ∈ Y. Then, mechanism M ′′ : Dn → Z (defined by M ′′(x) = M ′(x,M(x))) satisfies

(ρ1 + ρ2)-zCDP.

102

Definition 7 (Sensitivity). The sensitivity of a gradient query ∇t to the dataset {xi}Ni=1 is

∆2(∇t) = max
n

∥∥∥∥ 1

N

∑N

j=1,j 6=n
∇(j)
t −

1

N

∑N

j=1
∇(j)
t

∥∥∥∥
2

=
1

N
max
n

∥∥∥∇(n)
t

∥∥∥
2

(A.1)

where ∇(n)
t denotes the gradient of the n-th sample.

Lemma 3 (Gaussian mechanism [18]). Let f : Dn → Z have sensitivity ∆. Define a

randomized algorithm M : Dn → Z by M(x) ← f(x) + N (0,∆2σ2I). Then M satisfies

1
2σ2 -zCDP.

Lemma 4 ([18]). IfM is a mechanism satisfying ρ-zCDP, thenM is (ρ+2
√
ρ ln(1/δ), δ)-DP

for any δ > 0.

By solving ρ+ 2
√
ρ ln(1/δ) = ε, we can get ρ = ε+ 2 ln(1/δ) + 2

√
ln(1/δ)(ε+ ln(1/δ).

A.4 Proofs

Detailed proofs please refer to [58].

103

APPENDIX B

FEDERATED ADVERSARIAL DEBIASING FOR FAIR AND
TRANSFERABLE REPRESENTATIONS

B.1 Proofs

Proof of Theorem 9. Without loss of generality, we can write σgξt + Gσtνt as σ̃tζt where

σ̃t ,
√
σ2
g + (Gσt)2 and ζt is a random vector with Eζt = 0 and E ‖ζt‖2 ≤ D. Therefore, we

replace νt by ζt and σ2
t by σ̃2

t /G
2 = σ2

g/G
2 + σ2

t . Now, we only need to update U3(σ, T) as

Ũ3 =
1

G2

∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)σ̃2

i

=
∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)(

1

G2
σ2
g + σ2

t)

= U g
3 + U3

where we define

U g
3 ,

1

G2
σ2
g

∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i).

We can upper bound U g
3 by

U g
3 =

1

G2
σ2
g

∑T

t=1
γT−t

(1− β)2

(1− βt)2
1− β2t

1− β2

=
1

G2
σ2
g

∑T

t=1
γT−t

1− β
1− βt

1 + βt

1 + β

≤ 1

G2
σ2
g

∑T

t=1
γT−t

≤ 1

G2
σ2
g

1

1− γ

=
1

G2
κσ2

g .

Combine with the factors of U3 in the PGD bounds:

αR′U g
3 ≤

αR′

G2
κσ2

g =
αR′

G2
κσ2

g =
Dσ2

g

2µn2(f(θ1)− f(θ∗))
≤

Dσ2
g

2µN2R(f(θ1)− f(θ∗))
.

104

Proof of Theorem 13. Substitute D∗α1,α2
(z) into Eq. (3.4):

D̃p1,p2 = Ep1 [α1 log
α1p1(z)

α1p1(z) + α2p2(z)
]

+ Ep2 [α2 log
α2p2(z)

α1p1(z) + α2p2(z)
]

= α1KL
[
p1

∣∣∣∣α1p1 + α2p2
α1 + α2

]
+ α2KL

[
p2

∣∣∣∣α1p1 + α2p2
α1 + α2

]
+ α1 logα1 + α2 logα2

+ (α1 + α2) log(α1 + α2)

≥ α1 logα1 + α2 logα2

+ (α1 + α2) log(α1 + α2)

where the last inequality is from the non-negative property of KL divergence.

Note when p1 = p2, both KL divergence is 0. Thus, we can conclude that p1 = p2 is the

sufficient condition.

Proof of Theorem 14. For the ease of derivation, we assume α1 and α2 are normalized s.t.

α1 + α2 = 1. From | log p1(x)− log p2(x)| ≤ ε, we can get

e−ε ≤ p1(x)/p2(x) ≤ eε,

e−ε ≤ p2(x)/p1(x) ≤ eε.

Thus,

KL [p1 |α1p1 + α2p2] =

∫
x

p1 log

(
p1

α1p1 + α2p2

)
≤
∫
x

p1 log

(
1

α1 + α2e−ε

)
= ε− log(α1e

ε + α2).

105

Similarly,

KL [p2 |α1p1 + α2p2] =

∫
x

p2 log

(
p2

α1p1 + α2p2

)
≤
∫
x

p2 log

(
1

α1e−ε + α2

)
= ε− log(α1 + α2e

ε).

Therefore,

D̃p1,p2 = α1[ε− log(α1e
ε + α2)]

+ α2[ε− log(α1 + α2e
ε)]

+ α1 logα1 + α2 logα2

= ε− α1 log(eε + α2/α1)

− α2 log(eε + α1/α2)

≤ O((1− α2)ε)

= O(α1ε/(α1 + α2))

where we manually add (α1 + α2) to normalize α1.

B.2 Experiment Details

B.2.1 Dynamic schedules

We use dynamic schedules for learning rates and the adversarial parameter λ following

previous work [46]. Specifically,

ηt =
1

(1 + 10 t
TmaxK

)0.75

λt =
2

1 + exp(−10t/Tmax)
− 1

where K is the number of local iterations and Tmax is the number of global rounds. Notably,

ηt is schedule locally and λt is scheduled globally.

106

backbone

dropout

FC
WN

classifier

encoder

FC 256

bottleneck
FC 50
ReLU

discriminator
(digit data)

ReLU
FC 20

FC 1

GRL

FC 256
ReLU

discriminator
(object data)

FC 1
dropout

Figure B.1: Network architectures for digit and object datasets. WN denotes the weight-
norm layer [81] and FC 256 denotes fully-connected layer with 256 units. GRL is the gradient
reversal layer [46].

B.2.2 Network architectures

Federated UDA. The network architectures are presented in Fig. B.1.

Batch normalization in FADE. During training, we share the parameters of ResNet

between users. Notably, in ResNet, batch normalization (BN) layer is densely embedded in

different depth. The BN layer is known to be important for transferring between distinct

domains, because the hidden representations will be normalized with mean and variance

estimated from a batch. Because such estimation could be easily biased by a small batch,

running estimation by accumulating results from previous batches is a common practice.

Thus, it is also important for all users to get the global estimate of the mean and variance

by communication. However, sharing such a running estimate of representation mean and

standard variance may leak the private information [103, 104]. For example, given a feature

vector at a specific layer, the input image can be reverted using a conditional generative

network [103, 104]. Instead of sharing the mean and variance (BN states), we keep the

values the same as values pre-trained on ImageNet.

Fair federated learning. We depict the network architectures for Adult and MCI

107

datasets in Fig. B.2. For the Adult dataset, we aim to evaluate the performance of deep

networks. Thus, we use a deeper network other than a shallow one for central algorithms

[93]. Because of the small size of the MCI dataset, we adopt a small network architecture

where only two layers of LSTM are used for feature extraction and one layer for classification

or group identifying.

dropout

classifier

encoder

FC 100

bottleneck

FC 32
ReLU

discriminator

FC
dropout

FC 1

GRL

FC 100
ReLU

dropout

FC 32
ReLU

FC
dropout

FC 2

FC 1

discriminator

GRL
FC 2
WN

classifier

encoder

Average
FC 32

dropout
LeakyReLU

FC 64

dropout
LeakyReLU

FC 100

Figure B.2: Network architectures for Adult and MCI datasets. LSTM 100 indicates a Long
Short-Term Memory (LSTM) cell with 100 hidden units.

B.2.3 Details of MCI datasets

Dataset Due to the mild symptoms and expansive cost of clinic diagnosis, early detection

of MCI is a hard task. To address the challenge, MCI detection models is built on a MCI

dataset, which is collected with Intelligent Systems for Assessing Aging Change (ISAAC),

a longitudinal cohort study [69, 55]. A total of 152 participants were enrolled beginning in

2017. 12 variables are extracted from the participants’ sensor data and clinical diagnoses

was done once a year. Meanwhile, four kinds of demographic information are also recorded,

including age, gender, education, and ethnicity, which are potentially unfair features for each

patient.

108

Though prior work has shown the effectiveness of machine learning methods in diagnosis

prediction [84, 55], the possibility of training such a model fairly in a distributed framework

remains unknown. We assume the sensor data can be immediately trained locally and only

the trained models are sent to the server. The distributed framework brings in several new

challenges. First, users’ data are kept locally and many users only have one-class data which

makes the local model less discriminative. For example, 13 users are always diagnosed as

MCI during his/her recording. Second, it is difficult to do adversarial learning like Fig. 3.1b.

Because the users’ group information, e.g., gender, can not be revealed to others, the server

has no idea who will be the adversarial group. Therefore, we utilize the FADE framework to

tackle these issues as illustrated in Fig. 3.1c. As far as privacy is concerned, in the ISAAC

protocol, the sensor data were collected periodically by engineers such that the user data

are kept away from others. But we argue that our extension to federated setting is practical

because the data are not directly shared.

Preprocessing. Since the records of some patients are missing due to occasionally

off-line of sensor systems, and these incomplete samples can introduce uncertainty in our

experiments, we choose to remove some samples according to a certain missing value. To

generate samples, hundreds of days of records for each patient will then be sliced by a moving

window, and each slice is used as a sample for training or to be predicted. The slicing is

done inside each person’s sequence without overlap. The time window is moved in a step

of 7 days. Only a subsequence of a small enough ratio of missing values will be maintained

for the current study. The number of sequences for each patient is related to the amount of

data the patient has. For some of the patients, they have only a small number of records.

We also remove the samples of those patients to avoid inaccurate prediction.

We have 12 varaibles in total, including gender (Rsex), years of education (Ryrschool),

race/ethnicity (Rethnic), age at each date (ageyrs), total computer use (compuse), com-

puter sessions (numcsess), track sensor line (linenum), walks (numwalks), mean walking

speed (meanws), upper quartile of walking speed (wsq3), coefficient of var of walking speed

109

(wscv) and std deviation of walking speed (wsstddev). We preprocess special variables in the

following specified methods. For linenum which is a sensor metric identity value, its integer

values are transformed into a one-hot encoding form that uses the position of a single one to

indicate the ID value. RSex and Rethic variables are encoded in the same way. The ages are

transformed by 3-bin discretization. All continuous variables are normalized within [−1, 1]

by min-max scaling such that no significant variance will occur between different variables

and their coefficients could be trained in a numerically robust way.

All the data features are collected in a relatively redundant way, for which they should

be carefully selected for better prediction performance. We select features using mutual

information, which measures the dependency between the variables. It is equal to zero

if and only if two random variables are independent, and the higher value means higher

dependency. A special case is the linenum variable which only makes sense when other

walking speed features are used. As a result, when a walking feature is selected according

to the above metrics, the linenum variable is automatically included.

110

APPENDIX C

EFFICIENT FEDERATED LEARNING FOR ON-DEMAND AND IN-SITU
CUSTOMIZATION

C.1 Experiments

In this section, we provide more details about our experiments and additional evaluation

results.

C.1.1 Parallel implementation of Split-Mix and convergence

In this section, we elaborate on the implementation and efficiency of Split-Mix. In

Fig. C.1, we conceptually compare the training by three methods, when two clients capable

of training ×1 and ×0.5 are considered. FedAvg can train the ×1 net on the ×1-capable

client but not on the ×0.5-capable client. Through parameter sharing among different model

widths, SHeteroFL can train multiple widths in a sequential manner and can fit into ×0.5-

capable clients. Unlike SHeteroFL, Split-Mix trains four base models in one parallel pass and

therefore is the most efficient and flexible method. Remarkably, in the worst case, training

×1 net of Split-Mix is as efficient as FedAvg and more efficient than SHeteroFL, if all the

base weights, wl0,r, . . . , wl3,r ∈ Rr×r (where r = 0.25 here), are embedded into a 4r×4r weight

matrix1. When base models are embedded into a full net, non-trainable parameters can be

masked out (grey areas) to avoid interference between base models.

With the aforementioned implementation, we compare the convergence versus the wall-

clock time in Fig. C.2. We implement all algorithms in PyTorch 1.4.1 run on a single

NVIDIA RTX A5000 GPU and a 104-thread CPU. Fig. C.2 shows the elapsed computation

time from the initialization to a maximal number of iterations. The maximal number of

iterations is set to be the same for all methods, such that it is easier to compare the stopping

time. In Fig. C.2, Split-Mix is much more efficient than the SheteroFL. Note that FedAvg can

only train the ×0.125 net which includes much fewer parameters, For this reason, Split-Mix

1For the simplicity of notations, we assume the width of layer l is r, though the width could vary by
layer in general.

111

(a) FedAvg

(b) SHeteroFL

(c) Split-Mix

Figure C.1: Illustration of training weight matrices on a ×1-net-capable or ×0.5-net-capable
client. (1) Download the global weight matrix W l of layer l or a selected subset W l

k. (2)
Train weights on a batch data (x, y). (3) Upload trained weight matrix Ŵ l

k.

is slightly slower than FedAvg, but the degradation of efficiency trades in better accuracy

than FedAvg.

0 10 20 30 40
wall time (min)

0.5

0.6

0.7

0.8

0.9

va
lid

at
io

n
ac

cu
ra

cy

Digits

mode
FedAvg
SHeteroFL
SplitMix

Figure C.2: Validation accuracy of the budget-compatibly-widest nets by wall-clock time.
All algorithms are run with the same number of iterations (200).

112

C.1.2 Experimental configurations

In Algorithm C.1, we elaborate the local training of DBN. Specifically, each BN is trained

independent with different input samples. The maximization problem in Algorithm C.1

can be solved by an n-step projected gradient descent, and is commonly known as PGD

attack [94].

Algorithm C.1: LocalTrain(Wk, Dk, E, η) with DBN and adversarial training

1: Initialize models Ŵk by Wk

2: for e ∈ {1, · · · , E} do
3: for mini-batch B = {(x, y)} in Dk do
4: for ŵi,r ∈ Ŵk in parallel do
5: Set f to use clean BN
6: L← 1

|B|
∑

(x,y)∈B LCE(f(x; ŵi,r), y)
7: Set f to use noise BN
8: B̃ = ∅
9: for x ∈ B do

10: Perturb x̃ = x+ δ with δ ← argmax‖δ‖∞≤ε LCE(f(x+ δ; ŵi,r)), y)

11: B̃ ← B̃ ∪ {(x̃, y)}
12: L← 1

2

{
L+ 1

|B̃|
∑

(x̃,y)∈B̃[LCE(f(x̃; ŵi,r), y)]
}

13: ŵi,r ← ŵi,r − η ∂L
∂ŵi,r

14: Return Ŵk

Data. Both CIFAR10 and Digits are 10-way classification tasks. We follow the non-

i.i.d benchmark of [80] to extract 10 classes from DomainNet, which is publicly available in

FedBN codes. To illustrate the multiple-domain datasets, we sample several images from

Digits and DomainNet datasets in Fig. C.3.

mnist svhn usps syn mnistm

clipart infograph painting quickdraw real sketch

Figure C.3: Sample images from multiple domain datasets.

113

Table C.1: Network architecture for Digits dataset.

Layer Details

feature extractor

conv1 Conv2D(64, kernel size=5, stride=1, padding=2)
bn1 DBN2D, RELU, MaxPool2D(kernel size=2, stride=2)
conv2 Conv2D(64, kernel size=5, stride=1, padding=2)
bn2 DBN2D, ReLU, MaxPool2D(kernel size=2, stride=2)
conv3 Conv2D(128, kernel size=5, stride=1, padding=2)
bn3 DBN2D, ReLU

classifier

fc1 FC(2048)
bn4 DBN2D, ReLU
fc2 FC(512)
bn5 DBN1D, ReLU
fc3 FC(10)

Hyper-parameters. In general, for local optimization we use stochastic gradient de-

scent (SGD) with 0.9 momentum and 5 × 10−4 weight decay. Dataset specific settings are

stated as follows. CIFAR10: Following HeteroFL [28], we train with 5 local epochs and 400

global communication rounds. Globally, we initialize the learning rate as 0.01 and adjust

the learning rate at 150, 250 communication rounds with a scale rate of 0.1. Locally, we use

a larger batch size of 128, to speed up the training in simulation. Digits: We use a cosine

annealing learning rate decaying from 0.1 to 0 across 400 global communication rounds. SGD

is executed with one epoch for each local client. DomainNet: We use a constant learning

rate 0.01 and run 400 communication rounds in total. Similar to Digits, SGD is executed

with one epoch for each local client.

Network architectures. Architectures of modified AlexNet (for DomaiNet) and CNN

(for Digits) can be found in [80] and public codes 2. For reader’s reference, we provide the

layer details in in Tables C.1 and C.2. For the convolutional layer (Conv2D or Conv1D), the

first argument is the number channel. For a fully connected layer (FC), we list the number

of hidden units as the first argument. The implementation of the preactivated ResNet can

2https://github.com/med-air/FedBN

114

Table C.2: Network architecture for DomainNet dataset.

Layer Details

feature extractor

conv1 Conv2D(64, kernel size=11, stride=4, padding=2)
bn1 DBN2D, ReLU, MaxPool2d(kernel size=3, stride=2)
conv2 Conv2D(192, kernel size=5, stride=1, padding=2)
bn2 DBN2D, ReLU, MaxPool2d(kernel size=3, stride=2)
conv3 Conv2D(384, kernel size=3, stride=1, padding=1)
bn3 DBN2D, ReLU
conv4 Conv2D(256, kernel size=3, stride=1, padding=1)
bn4 DBN2D, ReLU
conv5 Conv2D(256, kernel size=3, stride=1, padding=1)
bn5 DBN2D, ReLU, MaxPool2d(kernel size=3, stride=2)

avgpool AdaptiveAvgPool2d(6, 6)

classifier

fc1 FC(4096)
bn6 DBN1D, ReLU
fc2 FC(4096)
bn7 DBN1D, ReLU
fc3 FC(10)

be found in the repository of HeteroFL [28].

Batch-normalization for customizable model sizes. As pointed out by [28], Het-

eroFL relies on mini-batch batch-normalization to stabilize the training with multiple model

widths and compute the statistics afterwards. Another advantage of such strategy is on

federation of multi-domain clients. [80] showed that using local batch-normalization helps

model personalization for non-i.i.d local features. As min-batch BN statistics simulate the

local BN idea, it should enjoy the similar benefit. To eliminate the potential biases in per-

sonalization or convergence caused by different estimation methods of BN statistic, we let

all compared algorithms using the same mini-batch strategy. To reveal the effect of differ-

ent BN statistic solutions for Split-Mix, we provide a detailed ablation study regarding the

estimation of BN statistics in Section C.1.3.

Loss function for class non-i.i.d FL. As some classes are missing locally in non-

i.i.d setting, class-specific parameters in the classifier head may be updated without proper

115

supervision and results in random updates. To mitigate the effect of missing classes locally,

we use the same masked cross-entropy loss as introduced by HeteroFL, where absent classes

are masked out.

C.1.3 Ablation study of network scaling and BN statistics

In this section, we evaluate how the network rescaling and BN statistics affect the per-

formance. For rescaling, we consider the parameter initialization (rescale init) and layer

outputs (rescale layer). For BN statistics, we consider four options. The batch average one

will estimate the statistics by one batch of data. The post average one will use the batch

average strategy during training but re-estimate the statistics using client data afterward,

which was adopted by HeteroFL. To gain better BN statistics, we run the model on a train-

ing set for 20 epochs. The tracked one will track statistics during training. The locally

tracked one will also track statistics but the statistics will not be shared with the server for

averaging, which can benefit clients’ privacy and personalization [80].

We report full ablation results in Table C.3. 1) First we compare the use of BNs without

in-training tracking. The post-average BN performs best compared to other BN choices.

With similar performance, the batch average BN does not need multiple rounds of evaluation

of BN statistics, which is more efficient for inference. 2) Then we compare the use of BNs

tracked during training. Consistent with the prior study [80], locally tracked BN performs

better than the globally averaged one. 3) Rescaling layer outputs barely affect the accuracy,

but it could be poisonous for tracked BN statistics. 4) The initialization rescaling greatly

improves the performance regardless of the choice of BN statistics.

In conclusion, either locally tracked or batch averaged BN statistics can yield both ef-

ficient and accurate performance. Post-averaged BN statistics may be preferred if post

averaging is bearable for efficiency, especially for large-scale datasets. Rescaled initialization

is an essential ingredient for Split-Max to perform well. Layer rescale is not recommended

if batch average or tracked BN statistics are utilized.

116

Table C.3: Ablation study of network scaling and BN statistics on Digits dataset. Accuracy
of different customized widths are presented.

BN stat rescale init rescale layer ×0.125 ×0.25 ×0.5 ×1

batch average

7 7 81.1% 84.3% 86.2% 87.3%
7 3 81.1% 84.2% 86.2% 87.2%
3 7 84.5% 87.5% 88.9% 89.8%
3 3 84.6% 87.5% 89.0% 89.8%

post average

7 7 81.2% 84.5% 86.2% 87.4%
7 3 81.2% 84.4% 86.2% 87.3%
3 7 84.5% 87.5% 89.0% 89.9%
3 3 84.9% 87.8% 89.3% 90.2%

tracked

7 7 79.6% 82.8% 84.8% 85.7%
7 3 9.4% 10.6% 10.6% 10.6%
3 7 83.5% 86.4% 87.9% 88.7%
3 3 8.8% 8.8% 8.8% 10.6%

locally tracked

7 7 81.1% 84.3% 86.3% 87.3%
7 3 9.8% 10.6% 10.1% 11.7%
3 7 84.9% 87.7% 89.1% 90.0%
3 3 10.5% 10.6% 12.1% 11.1%

C.1.4 Experiments with i.i.d FL

In addition to non-i.i.d FL settings, we experiment with i.i.d FL where each client will

own data of 10 classes from the CIFAR10 dataset. Results using 100% and 50% training

data are included in Table C.4. We observe a great increase in the accuracy compared to the

non-i.i.d experiments, which is a common phenomenon that non-iid FL will perform worse

globally. The similar performance degradation was observed in [28], as well. In Table C.4,

our method performs better in larger widths with fewer training data, whose performance

approaches that of unconstrained individual FedAvg. Our method provide a monotonous

relation between model size and accuracy (larger models are more accurate) and uses fewer

parameters and MACs even compared to wider baseline networks, though performs worse

in smaller widths because the slimmest networks are updated less frequently in budget-

insufficient clients compared to the SHeteroFL or FedAvg. Worth to mention, our method

uses much fewer parameters and operation counts for the same accuracy. For example, Split-

Mix requires 7.2M MACs and 1.4M parameters for 81.1% accuracy while SHeteroFL needs

117

twice of the complexity, given the 50% CIFAR10 i.i.d configuration.

Table C.4: Test results of customizing model width on the class non-i.i.d CIFAR10 dataset.

Individual FedAvg SHeteroFL Split-Mix (ours)

width Acc MACs #Params Acc MACs #Params Acc MACs #Params

CIFAR10 i.i.d FL (100%)
×0.125 82.2% 0.9M 0.2M 81.9% 0.9M 0.2M 80.9% 0.9M 0.2M
×0.25 86.1% 3.5M 0.7M 85.2% 3.5M 0.7M 83.4% 1.8M 0.4M
×0.5 89.8% 14.0M 2.8M 86.5% 14.0M 2.8M 85.2% 3.6M 0.7M
×1 91.0% 55.7M 11.2M 85.9% 55.7M 11.2M 86.0% 7.2M 1.4M

CIFAR10 i.i.d FL (50%)
×0.125 77.3% 0.9M 0.2M 77.2% 0.9M 0.2M 74.2% 0.9M 0.2M
×0.25 79.9% 3.5M 0.7M 79.7% 3.5M 0.7M 77.9% 1.8M 0.4M
×0.5 83.2% 14.0M 2.8M 80.1% 14.0M 2.8M 79.5% 3.6M 0.7M
×1 84.6% 55.7M 11.2M 75.5% 55.7M 11.2M 81.1% 7.2M 1.4M

C.1.5 More budget distributions

In our experiments, we generally use an exponential budget distribution: Rk = (1/2)d4k/Ke.

Though the distribution represents the imbalance between the budget-sufficient and budget-

insufficient clients, real-world applications may encounter a wider variety of budget dis-

tributions. Thus, we extend our problem assumption to budget distributions with more

budget-sufficient clients where we let more groups to have ×1 or ×0.5 net training capabil-

ity and with step-increase budgets where we increase budgets by a fixed step (e.g., ×0.25).

In addition, we consider a log normal distribution which concentrate around 0.45 budget

with few wider or extremely budget-insufficient clients. We partition the budget distribution

into 0.125-width bins and each client will only train the maximal compatible width vary-

ing from 0.125 to 1, which greatly increases the number of slimmable subnetworks (8 now

compared to previous 4). To reduce the overhead of slimmable training, we use HeteroFL

instead of SHeteroFL. Fig. C.4 reports the per-width accuracy for Split-Mix and SHeteorFL

on the Digits dataset. For SHeteroFL, we only report the evaluated performance on trained

widths. In other words, if the maximal width is ×0.5, we will not report results of the

×1 net. For Individually-trained FedAvg (Ind. FedAvg), models individually trained for

118

each width are reported, which ignores the width constraints by users and therefore only

serves as reference upper bounds. Regardless of the budget distributions, for instance, more

budget-sufficient clients (Fig. C.4a) or non-exponential distributions (Fig. C.4b), Split-Mix

outperforms SHeteroFL with larger widths.

C.1.6 Effect of lower contact rates

Because of varying communication conditions in deployment, the times that clients ac-

tively and successfully upload their models could be fewer than expected. To evaluate the

robustness of customization federated algorithms, we conduct federated experiments with

a varying number of active clients per round in Fig. C.5. Because of the limited number

of communication rounds (within 300 rounds), the test accuracy decreases by fewer contact

clients. This is a common phenomenon because lower contact rates requires more commu-

nication rounds to reach the same performance as the full-contact competitors do. Though

global performance generally decreases, we find that the wider networks are more accurate

if trained by SplitMix. One source for the advantage is the modular base models in Split-

Mix, which can be easily distributed into different rounds for training. Rather, the wider

integrated networks in SHeteroFL lower their chance to be aggregated globally and therefore

their global performance declines.

C.1.7 Negative impact of constrained budgets on wider networks

In Fig. 4.2, we show how the SHeteroFL fails to train wider networks with budget-

constrained clients. To show the generality of such a problem, we extend the experiments

to Digits and CIFAR10 datasets in Fig. C.6. Though wider networks converges faster at the

beginning, they meanwhile overfit limited data in a few clients and therefore their validation

accuracy no longer improves.

119

1 2 3 4
group

0.0

0.2

0.4

0.6

0.8

1.0

wi
dt

h
co

ns
tra

in
t

budgets
8-4-2-1
8-4-4-1
8-2-2-1
8-2-1-1
8-1-1-1

100.050.025.012.5
width (%)

82

84

86

88

90

av
er

ag
e

te
st

 a
cc

ur
ac

y
(%

) budgets
w/o constraint
8-4-2-1
8-4-4-1
8-2-2-1
8-2-1-1
8-1-1-1
method
Ind. FedAvg
SplitMix
SHeteroFL

(a) More budget-sufficient clients

1 2 3 4
group

0.0

0.2

0.4

0.6

0.8

1.0

wi
dt

h
co

ns
tra

in
t

budgets
4-2-4d3-1
8-4-8d3-2

100.050.025.012.5
width (%)

78

80

82

84

86

88

90

av
er

ag
e

te
st

 a
cc

ur
ac

y
(%

)

budgets
w/o constraint
4-2-4/3-1
8-4-8/3-2
method
Ind. FedAvg
SplitMix
SHeteroFL

(b) Step-increase budget distribu-
tions

0.1250.250.375 0.5 0.6250.750.875 1.0
budget (maximal compatible width)

0

2

4

6

8

10

12

14

#c
lie

nt

100.050.025.012.5
width (%)

65

70

75

80

85

90

av
er

ag
e

te
st

 a
cc

ur
ac

y
(%

)

method
Ind. FedAvg
SplitMix
HeteroFL

(c) Log-normal distribu-
tions

Figure C.4: Vary the budget distribution. The training budgets, i.e., width constraints, are
depicted in the upper figures by group. The budget distribution name, for example, 8-4-2-1,
means ×1/8, ×1/4, ×1/2 and ×1 width constraints for each group, respectively. The lower
figures compare the performance of trained models with customized withs.

100.050.025.012.5
width (%)

77.5

80.0

82.5

85.0

87.5

90.0

av
er

ag
e

te
st

 a
cc

ur
ac

y
(%

)

#user/round
2
5
20
50
method
SplitMix
SHeteroFL

Figure C.5: Vary the number of
clients uploading models per round.

0 50 100 150 200
communication round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

va
lid

at
io

n
ac

cu
ra

cy

Digits

width
0.125
0.25
0.5
1.0

mode
FedAvg
SHeteroFL

0 100 200 300
communication round

0.25

0.30

0.35

0.40

0.45

0.50

0.55

va
lid

at
io

n
ac

cu
ra

cy

CIFAR10 100%

width
0.125
0.25
0.5
1.0

mode
FedAvg
SHeteroFL

Figure C.6: Convergence of different-width models.

120

APPENDIX D

OUTSOURCING TRAINING WITHOUT UPLOADING DATA

D.1 More Method Details

In this section, we elaborate on additional technical details of our paper.

D.1.1 Automated client labeling via private kNN

Here, we briefly introduce the main idea of client labeling by private kNN. Given C

classes, labeling is done by nearest neighbor voting:

f(x) = arg maxc∈[C]Aε(vc), vc = |{(x′, y′) ∈ NK(x)|y′ = c}|,

where NK(x) is a set including the K-nearest neighbors of x in the client dataset. Aε is a

privatization mechanism complying with the notion of ε-Differential Privacy (DP) [38]. In

brief, privatization is done by adding Gaussian noise to a value with finite sensitivity. To

filter out potential wrong labels, the client only returns high-confident samples by screening.

Let the confidence of a pseudo label be s(x) = maxc∈[C]Aε(vc) which is also privatized by the

Gaussian noise mechanism. We find that the original version of screening may suffer from

a large imbalance of pseudo labels. Per class, we screen the pseudo labels by selecting the

top-60 confident samples given 600 labeling budget.

D.1.2 Improving client labeling

Because of the noise mechanism for privacy protection, the client labeling may be quite

random if the selected samples are hard to discriminate. Thus, we propose to improve the

discrimination of selected samples in advance, when the ECOS selects samples for labeling.

First, we estimate the discrimination by the confidence in the ECOS. The ECOS confidence is

defined by the vote count of the highest-voted class subtracting the one of the second highest

one, denoted as vconfr . To merit the balancedness of samples, we filter the clusters to keep the

top-70% samples with the highest confidence per class. When decompressing the clusters on

the cloud, we incorporate the confidence into the sampling score by v′r = ψ
[
(vconfr + vr)/2

]
121

where vr is the original score.

D.1.3 Privacy Accountant for ECOS

To understand the privacy cost of ECOS, we review the techniques that are essential to

establish the privacy bound.

Definition 8 (Differential Privacy [38]). Suppose ε and δ are two positive constants. A

randomized algorithm M : X → Y is (ε, δ)-DP if for every pair of neighboring datasets

X,X ′ ∈ X , and every possible measurable output set Y ⊂ Y the following inequality holds:

Pr[M(X) ∈ Y] ≤ eεPr[M(X ′) ∈ Y] + δ,

where Pr[·] denotes the probability of a given event.

DP provides a way to quantify the privacy risk (termed as the difference between two

probability given a pair of similar but different inputs) in the probability of δ. Though DP

is a simple notion for risks, the estimation of a tight privacy bound is still challenging. For

this reason, RDP is proposed an alternative tool.

Definition 9. (Rényi Differential Privacy (RDP) [99]) A randomized algorithmM : X → Y

is (α, ε)-RDP with order α > 1 if for all neighboring datasets X,X ′ the following holds

Dα(M(X)||M(X ′)) ≤ ε,

where Dα(·||·) is the Rényi divergence between two distributions.

The RDP and DP can be connected by Lemma 5.

Lemma 5. If a mechanismM satisfies (α, ε)-RDP, then it also satisfies (ε+log 1/δ
α−1,δ) -DP.

To reveal the potential privacy risks, we give a theoretical bound on the privacy cost

based on DP in Lemma 6. The proof of Lemma 6 is similar to Theorem 8 in [168] without

confidence screening.

122

Lemma 6. Suppose the subsampling rate γ and noise magnitude σ of the ECOS are positive

values such that γ ≤ min
{

0.1, σ
√

log(1/δ)/6
}

and σ ≥ 2
√

5. The total privacy bound of

the ECOS scoring m = |D̂q| query samples with n = |D̂p| private client samples is (ε, δ)-DP

with δ > 0 and

ε = O(
γ

σ

√
log(1/δ)), (D.1)

if vr in Algorithm 5.1 is estimated by using dγne samples randomly subsampled from D̂p with

replacement and is processed by ṽr = vr +N (0, σ2I).

Proof. When one sample is absent from the private client dataset, the scores [v1, . . . , vR]

will differ by 2 if without subsampling. By Lemma 11 of [168], the subsampled Gaussian

mechanism accounted by the RDP is

ε(α) ≤ 24γ2α

σ2

for all 0 < α ≤ σ2 log(1/γ)
2

, γ ≤ 0.1 and σ ≥ 2
√

5. By Lemma 5, we can convert the RDP

inequality to the standard (ε, δ)-DP as

ε =
24γ2α

σ2
+

log(1/δ)

α− 1
.

Let α be 1 +

√
log(1/δ)√

24γ2

σ2

. Thus,

ε =
24γ2

σ2
+ 4

γ

σ

√
6 log(1/δ) ≤ 8

γ

σ

√
6 log(1/δ),

where the last inequality is derived by the given range of γ. This thus completes the proof.

The above bound implies that the privacy cost for our method is invariant w.r.t. the scale

of the query dataset D̂q, and only depends on the DP parameters. Note that the Lemma 6 is

an asymptotic bound which requires some strict conditions on γ or other variables. In prac-

tice, we leverage the tool of analytic privacy accountant through a numerical method [144],

with which we can relax the strict conditions.

123

D.1.4 Social Impacts and Limitations

The conflict between the concerns on data privacy and demands for intensive computa-

tion resources for machine learning has composed the main challenge in training outsourcing.

In this work, we devote our efforts to outsourcing with uploading data by leveraging autho-

rized or public datasets. As the public datasets commonly available in many applications

are collected from multiple data sources and thus tend to be non-identically distributed

as the client data, it casts new challenges to use the public in place of the client dataset.

Our method addresses this problem with accountable privacy cost and low communication

and computation complexity. Therefore, the proposed ECOS provides a promising solution

to mitigate the aforementioned conflict between the privacy and computation desiderata.

Therefore, users from a broader spectrum can benefit from such a method to confidentially

conduct cloud training.

We also recognize open questions of the proposed solution for future studies. For example,

the public dataset may require additional data processing, e.g., aligning and cropping for

better prediction accuracy. In our empirical studies, we only consider the tasks in the

computer vision area, though no assumption was made on the data structures, though we

expect the principles can be adapted to other data types with minimal efforts. More data

types, including tabular and text data, will be considered in the follow-up works.

D.1.5 Connection to Federated Learning

Both our method and federated learning (FL) [97] consider protecting data privacy via

not sharing data with the cloud. The key difference between FL and our concerned problem

(training outsourcing) is that FL requires clients to do training while ECOS outsource the

training to the cloud server. Since ECOS does not require local training, ECOS can be ad-

hocly plugged into FL to obtain an auxiliary open-source dataset for enhancing the federated

training. The ECOS can be used either before federated training (when a pre-trained model

is required) or during federated training (when the pre-trained model can be replaced by the

on-training model).

124

D.2 Experimental Details and More Experiments

Complementary to the main content, we provide the details of the experiment configurations

to merit the reproducibility. We also conduct more qualitative experiments to understand

the efficiency and effectiveness of the proposed method.

D.2.1 Experimental Details

We organize the case-specified configurations into three cases and discuss the general

setups first.

For Digits, we train the model for 150 epochs. We adopt a convolutional neural network

for Digits in Table D.1 and ResNet18 for DomainNet. To solve the learning problems includ-

ing FixMatch and distillation-based compression, we use stochastic gradient descent with

the momentum of 0.9 and the weight decay of 5× 10−4. We use s = 5 for the scale function

ψs on DomainNet and s = 1 on Digits. When not specified, we noise the ECOS query with

the magnitude as 25. In Case 1 and 2, we reduce the noise magnitude to 10 for DomainNet,

since the two queries can bear more privacy costs to trade for higher accuracy.

Case 1: Selective manual labeling. We make use of the off-the-shelf ResNet18 is

pre-trained on the ImageNet, which is widely accessible online. We adopt FixMatch for

semi-supervised learning with the coefficient of 0.1 on the pseudo-labeled loss, the moving

average factor of 0.9, and the batch size of 64 for DomainNet and 128 for Digits. To avoid

feature distorting, we warm up the fine-tuning by freezing all layers except the last linear

layer with a learning rate of 0.01. After 30 epochs, we fine-tune the model end to end until

80 epochs to avoid overfitting biased data distributions.

Case 3: Adaptive model compression. We first pre-train a ResNet50 using all

labeled open-source data for 100 epochs with a cosine-annealed learning rate from 0.1. The

same warm-up strategy as Case 1 is used here. To extract the knowledge from ResNet50,

we combine the knowledge-distillation (KD) loss LKD and cross-entropy loss LCE by 0.1 ×

LKD + 0.9× LCE and calculate the losses on the selected samples only. The temperature in

the KD loss is set to be 10.

125

Case 2: Automated client labeling. For the cloud training, we adopt the same

configuration as the selective manual labeling. For private kNN, we let the client release

600 labels with class-wise confidence thresholds described in the last section. We noise the

labeling in the magnitude of 25 and the confidence in the magnitude of 75. For both datasets,

we subsample 80% client data per labeling query to reduce the privacy cost.

Table D.1: The structure of the conventional neural network for the Digits dataset.

Layer name PyTorch pseudo code

conv1 Conv2d(1, 64, kernel_size=(5, 5), stride=(1, 1))
bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1)

conv1_drop Dropout2d(p=0.5, inplace=False)
conv2 Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1))
bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1)

conv2_drop Dropout2d(p=0.5, inplace=False)
fc1 Linear(in_features=2048, out_features=384, bias=True)
fc2 Linear(in_features=384, out_features=192, bias=True)
fc3 Linear(in_features=192, out_features=11, bias=True)

We conduct our experiments on the Amazon Web Service platform with 4 Tesla T4 GPUs

with 16GB memory and a 48-thread Intel CPU. All the code is implemented with PyTorch

1.11. To account for the privacy cost, we utilize the open-sourced autodp package following

the private kNN.

D.2.2 Effect of Parameters

To better understand the proposed method, we study the effect of the important hyper-

parameters. To this end, we consider the selective labeling task with Digits, keeping 50%

of the SVHN dataset at the client end. Both the ID+OoD and OoD cases are evaluated

to reveal the method’s effectiveness under circumstances with various hardness. Also, we

study how the score scale s affects the ID ratios (denoted as the ID TPR) in the selected

set and the number of effective samples. We only examine the ID TPR corresponding to the

proximity objective in Eq. (5.2) if known ID samples are present on the cloud, namely in

the ID+OoD case. In the middle panes of Figs. D.1 and D.2, we show that our method can

effectively improve the ID TPR against the inherent ratio of ID samples on the cloud.

Effect of the compression size R. In Fig. D.1, we evaluate R in terms of the test

126

0 100 200 300
Compression size R

55

60

65

70

75

80

85
Te

st
 a

cc
ur

ac
y

(%
) Budget

1000
2000
5000
8000
Cloud data
OoD
ID+OoD

0 50 100 150 200 250 300
Compression size R

10

12

14

16

18

20

22

24

26

ID
 T

PR

Budget
1000
2000
5000
8000

0 50 100 150 200 250 300
Compression size R

1000

2000

3000

4000

5000

6000

7000

8000

of

 e
ffe

ct
iv

e
sa

m
pl

es

Budget
1000
2000
5000
8000

Figure D.1: Vary the compression size R and evaluate the test accuracy, ID ratios (%) in
selected samples and the number of effectively selected samples. The red horizontal line
indicates the ratio of ID samples in the whole cloud dataset.

accuracy. When the budget is small (1k and 2k budgets in the ID+OoD case), it is essential

for the cloud server to sense the client distribution with higher accuracy via more queries.

Therefore, a larger R is desired, which can increase the portion of ID samples in the selected

set, as shown in the middle pane of Fig. D.1. Considering that a higher burden on commu-

nication comes with a larger R, the value of 100 leads to a fair trade-off to the accuracy in

which case the ID TPR reaches a peak.

Given a larger budget, e.g., 8000, increasing R may lower the ID TPR. We attribute

the decline to the limited size of the client dataset and privacy constraints. Given more

clusters (i.e., R), the expected number of votes (proportional to the score) for each cluster

will be reduced and is badly blurred by the DP noise. Thus, the ID TPR will decrease

simultaneously, regardless of which the test accuracy is not significantly affected.

For the OoD case which is relatively harder for sampling due to the lack of true ID data,

the parameter sensitivity is weakened, though the compression size of 100 is still a fair choice,

for example, bringing in 1− 2% gains in the 5k, 8k cases comparing the worst cases.

Effect of the score scale s. The score scale s decides the sensitivity of the sampling in

the sense of proximity. A larger s means that the ECOS will prioritize the proximity more

during sampling. In Fig. D.2, we present the ablation study of s. A larger s is preferred

when the budget becomes limited because it increases the ID TPR effectively. Though

not significantly, an overly large s has a significantly negative influence on the accuracy,

127

2 4 6 8 10
Score scale s

60

65

70

75

80

85
Te

st
 a

cc
ur

ac
y

(%
) Budget

1000
2000
5000
8000
Cloud data
OoD
ID+OoD

2 4 6 8 10
Score scale s

10

20

30

40

50

60

ID
 T

PR

Budget
1000
2000
5000
8000

2 4 6 8 10
Score scale s

1000

2000

3000

4000

5000

6000

7000

8000

of

 e
ffe

ct
iv

e
sa

m
pl

es

Budget
1000
2000
5000
8000

Figure D.2: Vary the score scale s in terms of test accuracy, ID ratios (%) in selected samples
and the number of effectively selected samples (which could be smaller than the budget).
The red horizontal line indicates the ratio of ID samples in the whole cloud dataset.

especially for the OoD case. The reason for the negative impact of s on a large budget can

be understood by probing the number of effective samples. For budgets larger than 2000,

the effectively selected samples are reduced with heavily scaled scores (e.g., s ≥ 3) where

the ECOS will concentrate its selection into very few clusters and eliminate the rest clusters

strictly.

D.2.3 Evaluation of Sample and Privacy Efficiency

In Fig. D.3, we compare the sample efficiency in the selective labeling task with Digits,

keeping 50% of the SVHN dataset at the client end. We obtain the upper-bound accuracy in

the ideal case via random sampling when the cloud dataset distributes identically (ID) as the

client dataset. When OoD data are included in the open-source cloud dataset (ID+OoD), the

training becomes more demanding for the labeled samples. If none of the iid samples presents

in the cloud set (OoD), the accuracy decreases quickly with the same labeled samples. In

comparison, informative sampling by K-Center slightly improves the accuracy by different

budgets and the proposed ECOS significantly promotes the sample efficiency. With ECOS,

8×103 labeled samples in the ID+OoD case achieves comparable accuracy as the ideal case,

while baselines remain large gaps. Both in ID+OoD and OoD cases, our method yields

competitive accuracy (at the 4× 103 budget) versus the best baseline results using only half

of the labeled data (at the 1× 104 budget), dramatically cutting down the cost for manual

labeling.

128

2 4 6 8 10
Sampling budget (×103)

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

) Cloud data
OoD
ID+OoD
ID
Method
Ours
Random
K-Center

Figure D.3: Evaluation of the sample efficiency on selective labeling. The green horizontal
line implies the ideal case when all ID cloud data are labeled.

On observing the gains in sample efficiency, readers may also notice that our method

induces additional costs at privacy, as compared to the baselines. We point out that the

cost is constant w.r.t. the sampling budget and is as neglectable as (0.22, 10−5)-DP. It is

worth noticing that the cost is independent of the hyper-parameters of the ECOS because the

ECOS communication is a single query for each private sample (so as for the private dataset),

even if we increase the size of the query set (i.e., the compression size R). In practice, the

client can control the privacy risk (namely, the privacy cost) flexibly by adjusting the noise

magnitude and the subsampling rate.

D.2.4 Evaluation of Communication and Computation Efficiency

When improving the sample efficiency, we also need to take care of the communication

and computation overheads brought by the ECOS. We examine the two kinds of efficiency

by the same experiment configurations as in the last section.

Computation efficiency. In Fig. D.4, we compare the computation efficiency of our

method to the local training (LT). We utilize the multiplication-and-addition counts (MACs)

as the metric of computation (time) complexity, which is hardware-agnostic and therefore

is preferred here. For a fair comparison, we tune the learning rate in {0.1, 0.01, 0.001} with

the cosine annealing during training and the number of epochs in {20, 50, 100} of the LT to

achieve a fair trade-off between the computation cost and test accuracy. For ECOS, since

the computation cost linearly increases by the compression size (as shown in Fig. D.5), we

129

100 101 102 103 104 105 106 107

Client MACs (×106)

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
(%

) Method
ECOS (ours)
LT
Cloud data
OoD
ID+OoD

(a) Digits

102 103

Client MACs (×106)

60

65

70

75

80

85

90

Te
st

 a
cc

ur
ac

y
(%

)

Method
ECOS (ours)
LT (fine-tune)

(b) DomainNet

Figure D.4: With the 5000 budget, we evaluate the computation efficiency. The efficiency
of LT on the DomainNet is enhanced by linear fine-tuning.

0 50 100 150 200 250 300
Compression size R

0

10

20

30

40

50

60

Cl
ie

nt
 M

AC
s (

×1
06)

Figure D.5: The linearly growing computation cost by increasing the compression size on
the Digits dataset.

vary the compression size to check the performance when increasing computation costs. On

Digits, we observe a large computation save by our method, even if the cost of our method

will gradually increase by the size R of the compressed query set.

Similar experiments are also run on the large-sized images using the DomainNet dataset

(ID+OoD case), where the cost for extracting features is steeply increased by using a deep

network (ResNet18). Recently, the most popular strategy for cloud training is two-phase

learning: pre-training a model on the cloud using ImageNet and fine-tuning the linear clas-

sifier head on the client. Considering the large cost of feature extraction, we only let the

client pre-extract features once only. Thus, the local training is as efficient as training a

linear layer on extracted features. In Fig. D.4, our method outperforms the local training

a lot using much fewer MACs for data matching. Because all training is outsourced to the

130

cloud, our method enables the end-to-end fine-tuning of the model resulting in better test

accuracy. Even if the LT trains longer with higher computation costs, the test accuracy of

the ECOS with the least MACs is comparable to the best performance of LT at around 109

MACs, where the ECOS only utilizes the 10% of MACs by LT.

Upload client data Download cloud data ECOS

105

106

107

108

109

1010

Co
m

m
un

ica
te

d
by

te
s

Data
Digits
DomainNet

Figure D.6: Evaluate the communication efficiency.

Communication efficiency. We also compare the communication efficiency to the

full cloud training (via uploading the whole client dataset) and fully client training (via

downloading cloud dataset) in Fig. D.6. For the ECOS, we let the size of the query set be 100,

which is the default configuration in our experiments. Because the ECOS only communicates

a few low-dimensional features (for example, 512-dimensional ResNet-extracted features for

DomainNet and 72-dimensional HOG features for Digits), it costs much fewer bytes compared

to traditional outsourcing by uploading the client data. To be concrete, we also present the

cost of downloading the cloud data and it is way more expensive than the rest two methods.

131

	Introduction
	Dynamic Privacy Budget Allocation for Enhanced Centralized Private Learning
	Federated Adversarial Debiasing for Transferable and Fair Representations
	Efficient Federated Learning for On-Demand and In-Situ Customization
	Outsourcing Training without Uploading Data
	Overview
	Dynamic Privacy Budget Allocation
	Federated Adversarial Debiasing for Fair and Transferable Representations
	Efficient Federated Learning for On-Demand and In-Situ Customization
	Outsourcing Training without Uploading Data

