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ABSTRACT 

The human heart is a highly complex organ, and its primary function is to pump blood through the 

arteries, veins and to perfuse all other body tissues and organs, including itself. In the last decade, 

cardiac simulations have become increasingly crucial to gain clinical insight into cardiac function, 

treatment, and testing. Nowadays, multi-physics cardiovascular simulations applied to patient-

specific modeling can help in the diagnosis of cardiovascular diseases and in studying relevant 

clinical treatments. Hence, our central objective here is to develop a generalized multi-physics 

finite element (FE) framework that includes thermal-fluid structure interaction coupling to study 

cardiac function and treatments.   

First, we developed a stabilized FE based flow solver with heat transfer to study 

hemodynamics. A python based open-source FE library (FEniCS) is used from ground-up to 

custom-build the solver. We benchmark and validate the solver and study convergence for classical 

test cases at intermediate Reynolds and Peclet number. 

Second, we utilize the solver to investigate cryoballoon ablation (CBA), which is a 

minimally invasive surgery that uses freezing or cryoenergy to treat atrial fibrillation (AF). To 

begin with, we use a patient-specific left atrium (LA) geometry and realistic pulmonary vein (PV) 

blood flow boundary conditions to validate hemodynamics of the LA chamber. Next, we position 

a cryoballoon (CB) at the pulmonary vein ostium to simulate incomplete occlusion during 

cryotherapy and investigate the factors affecting lesion formation. We observe that lesion size is 

highly sensitive to the CB position and balloon tissue contact area. The threshold gap for lesion 

formation is 2.4 mm. We also note that as the balloon tissue contact area increases, the surgery is 

more effective, and the power absorbed across the CB reduces. 



Third, we extend our development to a fully coupled fluid-structure interaction (FSI) solver 

with heat transfer using FEniCS. The FSI solver (named vanDANA) that uses the immersed 

boundary (IB) method is based on the Distributed Lagrange Multiplier based Fictitious Domain 

method and the interpolation of variables is conducted using the smeared delta-functions. 

Additionally, the structure can be set as incompressible or compressible. We benchmark our solver 

and analyze the scalability on HPC. This builds a solid foundation for the future use of this solver. 
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1.1 Heart Anatomy and cardiac cycle diagram 

The human heart is a highly complex organ, and its primary function is to pump blood through the 

arteries, veins and to perfuse all other body tissues and organs, including itself. This process 

facilitates the exchange of gases, fluids, electrolytes and heat exchange between the cells and the 

ambient environment [1]. The cardiac anatomy mainly comprises of two atriums and two ventricles 

separated by atrio-ventricular (AV) valves, and other arteries and veins that deliver blood to and 

away from the heart chambers (see Figure 1.1a). The right heart comprises of the right atrium 

(RA) and right ventricle (RV) that are connected by a tricuspid AV valve and the left side comprises 

of the left atrium (LA) and the left ventricle (LV) that are connected by a mitral valve (MV). These 

valves function with the help of chordae tendineae and papillary muscles. Functionally, the heart 

 

Figure 1.1: a) Heart anatomy with four chambers, two atria and two ventricles, separated 
by AV valves. The red color on the left and blue color on the right side depicts the flow of 
oxygenated blood and deoxygenated blood respectively. b) The Wiggers diagram. It 
demonstrates pressure-volume relationship for different heart chambers in sync with a 
healthy electrocardiogram (ECG). Figure adopted from Klabunde [1]. 
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can be viewed as two pumps connected in series, one responsible for systemic circulation and the 

other one for pulmonary circulation. The systemic circulation comprises of the blood vessels inside 

and outside of all the organs excluding the lungs and the pulmonary circulation denotes blood flow 

within the lungs that allows the exchange of gases and oxygen in the alveoli. Deoxygenated blood 

collected from the body in the systemic circulation passes through the inferior and superior vena 

cava, and then enters the RA and the right ventricle (RV). The deoxygenated blood is then pumped 

by the RV into the pulmonary artery and lungs for oxygenation. The oxygenated blood from the 

lungs enters the LA through the pulmonary veins (PV’s) in the left heart. The oxygenated blood 

enters the LV, which then pumps the blood into the aorta and systemic circulation.  The pumping 

capacity of the heart is usually expressed by cardiac output = amount of blood pumped during 

each contraction (stroke volume) * heart rate (HR).  

In Figure 1.1b, the cardiac cycle diagram (aka. The Wiggers Diagram) illustrates the 

pressure and volume waveforms in the left heart, which is normally divided into two different 

phases, namely systole and diastole. Systole refers to ventricular contraction and ejection whereas 

diastole refers to ventricular relaxation and filling. In the left heart, the MV closes when pressure 

in the LV is higher than that in the LA, marking the beginning of systole. This onset of systole is 

denoted by the QRS complex which represents ventricular depolarization. Next, with all the valves 

closed, the intraventricular pressure begins to rise until there is a pressure difference across the LV 

and aorta. This pressure difference causes the aortic valve to open, and blood is then ejected out of 

the ventricles. About approximately 180 ms after the QRS complex, a T-wave initiates ventricular 

repolarization. The ventricle muscle starts to relax, and the intraventricular pressures start to drop. 

This marks the beginning of diastole and soon after, the aortic valve closes, and the LV volume 

remains constant (since all valves are closed). This volume is called End-Systolic Volume (ESV). 
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In healthy humans, the ESV is approximately 50 mL. Pressure in the LV continues to drop, and 

when the LV pressure falls below the LA pressure, the MV opens. This initiates ventricular filling 

which is mainly divided into two phases: passive filling without atria contraction and filling 

because of atria contraction. Passive filling occurs before the P-wave in the ECG, and this accounts 

for the bulk of LV filling. As the LV continues to fill up with blood, they become stiffer (less 

compliant) and the intraventricular pressures start to rise. The P-wave in the ECG is associated 

with electrical depolarization of the atria, which results in atrial contraction and an increase in LA 

pressure as marked by the a-wave in the LA pressure curve in Figure 1.1b. Atria contraction 

(sometimes known as atrial kick) forces more blood into the LV before the MV closes at the end 

of diastole. Filling due to atrial contraction accounts for only 10% of ventricular filling. This 

behavior is reflected in the spectral doppler MV velocity graph in Figure 1.2, wherein the E peak 

represents rapid filling during LV relaxation and A peak represents filling due to the atrial kick. In 

heathy human subjects, the average E/A ratio ranges between 0.75 to 1.5.  

 

Figure 1.2: Normal Mitral Valve (MV) inflow velocity measured for a healthy subject using 
spectral doppler echocardiography. Here Deceleration Time (DecT) is defined as the time 
taken for the maximum velocity at the E peak to drop to zero. Figure adopted from [2]. 
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1.2 Background of this dissertation 

1.2.1 Atrial Fibrillation 

Atrial fibrillation (AFib) is one of the most common chronic cardiac arrythmias where the upper 

chambers of the heart (atria) beat out of synchronization with the lower chambers i.e., the 

ventricles. This increases the risk of stroke and heart failure, and the cardiac output reduces by 

approximately 30%. In healthy humans, the ECG comprises of the P-wave, QRS complex and the 

T-wave. For patients suffering from AFib however, the P-waves are missing, and the heartbeat is 

highly erratic, see Figure 1.3. In these patients, electrical depolarization currents arise from 

multiple sites throughout the atria, resulting to quiver and uncoordinated beating with no 

discernable P-waves. The symptoms of AFib range from nothing to fatigue, shortness of breath, 

dizziness, palpitations, or chest pain. Although AFib is not life threatening by itself, it can be 

seriously uncomfortable, is associated with many cardiovascular diseases and requires medical 

treatment [3]. There are different classifications of AFib [4]: 

• Paroxysmal Atrial Fibrillation: Intermittent episodes occur and usually stop within 24 

hours, without any treatment. 

• Persistent Atrial Fibrillation: Last longer than seven days and may or may not cease on 

its own. 

• Long-standing Atrial Fibrillation: Last longer than a year and changes the cardiac 

structure. 

• Permanent Atrial Fibrillation: Permanent and can cannot be treated by medical practices 

and can severely diminish quality of life. 
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Depending on the patients’ symptoms, AFib is treated with medicine to control the heart rhythm 

and using blood thinners to prevent clotting. If medications do not help, the patient often undergo 

cardioversion or a cardiac ablation treatment.  

 

Figure 1.3: Pathway of electrical signals and ECG of (a) a healthy patient vs (b) an AFib 
patient. Note how irregular electrical impulses are generated at the PV opening in case of an 
AFib heart. 
 
1.2.2 Cryoballoon ablation 

In AFib patients, irregular electro-physiological signals usually begin where the PV is attached to 

the LA. In these patients, it becomes very important to cease the erratic beating and hence the 

transmission of irregular electrical activity from the PV to the rest of the cardiac muscle in the 

atria. There are non-invasive (e.g., cardioversion) and invasive AFib treatments that include 

catheter ablation or the maze procedure. Cardioversion supplies low-energy shocks to regulate a 

(a) (b) 
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patient’s heartbeat [5]. However, this is only a temporary solution and will not cure the underlying 

cause. There are two types of minimally invasive procedures for treating AFib, namely, 

radiofrequency ablation (RFA) and cryoballoon ablation (CBA). Radiofrequency ablation or point-

by point focal ablation is a more traditional approach that uses heat to destroy the heart tissue. 

Cryoballoon ablation, on the other hand, is a recent cryo-energy based technique. It has become 

one of the most prominent surgical procedures to treat AFib [6]. Medtronic, based out of 

Minneapolis MN, is the leading producer of devices used for CBA surgery. Since the release of 

CB2 (second-generation cryoballoon) by Medtronic [7, 8]: Arctic Front Advance in 2012 and 

Arctic Front Advance Pro in 2020, efficiency of CBA surgery has increased drastically.  

 
Figure 1.4: Cryoballoon Ablation catheter. For CBA, vascular access is obtained at the 
femoral vein and the LA is instrumented via a trans-septal puncture. Figure taken from Patel 
et al. [9]. 
 
Ideally, CBA is conducted stepwise, first for the left PV’s and then for the right PV’s. During CBA, 

the electrophysiologist positions the balloon and then keep a heavy forward pressure to occlude 

the PV ostium (see Figure 1.4) [8, 9]. Before ablation, the cryoballoon (CB) is manually flushed 

back and forth in the PV antrum to eliminate any trapped air-bubbles in the blood stream. An 8-

pole circular recording catheter attached to the frontal tip of the CB continuously monitors PV 
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potentials in real time. By exploiting the Joule-Thompson effect, liquid nitrous oxide is injected in 

the CB and a phase change from liquid-to-gas gradually absorbs heat from the LA. When the 

temperature in the cardiac tissue falls below  23!C, electrical dormancy is observed, and isolation 

is confirmed by the loss of PV potentials. A conduction delay (or a conduction block) is normally 

observed at the catheter [10] and the time taken to achieve this isolation is called time to isolation 

(TTI), which is normally between 30-60 sec.  

After TTI, the physiologist ideally holds the CB in place as per the recommended dosing 

protocol - about 2 to 4 minutes per freeze. Permanent cellular damage is detected at temperatures 

below −20!C, if held for 60 seconds. On the other hand, if the temperature is less than 

−40!C	(necrosis temperature), the hold duration is not important, and the cardiac tissue becomes 

irreversibly nonviable. At this stage, irreparable lesion formation is initiated at the balloon-tissue 

contact surface and for an optimal scar/lesion, temperature monitored at the CryoConsole normally 

ranges between −40!C to  −50!C [10]. However, this is only the return cryogenic gas temperature 

and not the actual temperature of the cryoballoon. Nadir temperatures at the CB surface can go as 

low as −60!C to −70!C. The most important factors controlling lesion thickness and depth for a 

successful CBA surgery is namely, balloon-tissue contact area (particularly no leakage at all), time 

of freeze and the source of cryo-energy. Overall, CBA surgery forms a contiguous lesion and is 

less time consuming (lower TTI) compared to RFA, which means that the patient is on general 

anesthesia for a shorter duration. This makes CBA safer than RFA. Cryoballoon ablation has also 

led to more predictable surgeries with less reliance on electrophysiologist skills and improved 

quality of life post-surgery. Due to its obvious advantages over RFA, CBA has become the 

preferred choice of ablation surgery to treat AFib patients. 
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1.2.3 Fluid Structure Interactions 

Fluid structure interaction (FSI) is the interaction of single or multiple flexible structures (bodies) 

in adjacent fluid media. Depending on the physical nature, geometry and the incompressibility of 

the media, the structural deformation can be insignificant or large. Such interactions between the 

fluid and structure can be found in many day-to-day applications such as aerodynamic flows, 

bioengineering, marine applications, and turbomachinery. Almost all bio-driven physics in the 

human body e.g., hemodynamics of aneurysms, arterial stenosis, blood flow in the heart chambers, 

circle of Willis, and the flow of urine in kidneys and the bladder involve FSI. Developing numerical 

models to study FSI is crucial and can be used as a practical tool to probe the physical behavior of 

biosystems. In problems involving FSI, one needs to solve the Navier-Stokes (NS) equations [11] 

for fluid flow as well as the structural mechanics equations describing deformation of the flexible 

body. The fluid and structure equations are coupled in both directions, meaning each medium 

exerts a force on the other and subsequently influences their temporal behavior. For example, in 

vortex induced vibrations (VIV) over bluff bodies, a condition is reached when the vortex shedding 

frequency is close enough to the body’s natural frequency and the body begins to oscillate 

naturally. The forces resulting from vortex shedding cause the body to oscillate and subsequently 

the body’s oscillation affects the nature of the flow around it. Hence to build a stable design, one 

needs to consider vortex shedding, forces acting on the body and the natural frequency and 

amplitude of the body’s oscillation at various flow speeds. Vortex induced vibrations is a very 

fundamental FSI phenomenon and is widely studied to investigate vibrations caused due to flow 

over cables, bridges, heat exchanger tubes, ocean drilling risers etc.  

Another widely studied FSI is the cyclic pumping of blood through arteries. Arteries are 

compliant and deformable, and the blood flow exerts pressure on the walls causing them to stretch 
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and deform. However, if the shear stress is too high or cyclic it can lead to endothelial dysfunction 

that may contribute to the development of atherosclerosis. This is because increased shear stress 

can cause damage to the endothelial cell lining, leading to the formation of plaque and narrowing 

of the blood vessel. Simulations assuming that the arterial wall is rigid usually overestimates the 

true wall shear stress [12]. To address this issue, simulations should consider FSI to accurately 

estimate the wall shear stress and help identify areas of the arterial system that are at a higher risk 

of developing endothelial damage. Figure 1.5 shows an idealized flow pattern over plaque in an 

artery. Here, on the distal side, the shear stress is oscillatory and this compounds to more plaque 

formation over time. Also in real practice, it is fundamentally imperative to include patient specific 

geometries for such simulations. Overall, understanding how shear stress affects arterial walls can 

help identify risk factors associated with diseases and help optimize the design of treatments.  

 

Figure 1.5: Ideal distribution of wall shear stress an arterial segment with atherosclerotic 
plaque formation. Figure adopted from Young Cho et al [13]. 
 
1.2.4 Coding in FEniCS 

The FEniCS project (https://fenicsproject.org [14]), initiated in 2003, is an open-source python 

platform to solve partial differential equations (PDE’s) using the finite element method (FEM). 

The backend of FEniCS mainly comprises of fundamental building blocks: DOLFIN, FIAT, FFC 

(FEniCS Form Compiler), UFL (Unified Form Language) and UFC (Unified Form Assembly 
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Code). FEniCS includes automated code generation capabilities, which generate C++ code for a 

variational weak form written in high level UFL language. This eliminates the need for manually 

coding complex subroutines and allows one to quickly generate code in just a few lines of python. 

This permits quick prototyping, debugging, and testing of the physical problem at hand. Moreover, 

DOLFIN also provides a set of preconditioned Krylov solvers and PETSc as a linear algebra 

backend, that support easy assembly and conversion to matrix-vector form before solving it 

iteratively. In addition, for experienced programmers, FEniCS offers straightforward compilation 

of custom-built C++ codes into their high-level coding structure. Due to all these advantages, we 

choose FEniCS to develop our FEM codes for modeling FSI. Figure 1.6 shows an example 

FEniCS script for solving a 3D elastic deformation problem in case of a hyper-elastic material. For 

post-processing, the results can be easily visualized on the opensource ParaView (Kitware Inc.) 

[15]. 
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Figure 1.6: Simple FEniCS script to solve a 3D elasticity problem for a hyper-elastic cube. 
This python code is copied from the FEniCS tutorial: demo hyperelasticity.py. 
 
 
 
 
 
 
 

from dolfin import * 
 
# Create mesh and define function space 
mesh = UnitCubeMesh(24, 16, 16) 
V = VectorFunctionSpace(mesh, "Lagrange", 1) 
 
# Define functions 
du = TrialFunction(V)            # Incremental displacement 
v  = TestFunction(V)             # Test function 
u  = Function(V)                 # Displacement from previous iteration 
B  = Constant((0.0, -0.5, 0.0))  # Body force per unit volume 
T  = Constant((0.1,  0.0, 0.0))  # Traction force on the boundary 
 
# Kinematics 
d = u.geometric_dimension() 
I = Identity(d)             # Identity tensor 
F = I + grad(u)             # Deformation gradient 
C = F.T*F                   # Right Cauchy-Green tensor 
 
# Invariants of deformation tensors 
Ic = tr(C) 
J  = det(F) 
 
# Elasticity parameters 
E, nu = 10.0, 0.3 
mu, lmbda = Constant(E/(2*(1 + nu))), Constant(E*nu/((1 + nu)*(1 - 
2*nu))) 
 
# Stored strain energy density (compressible neo-Hookean model) 
psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2 
 
# Total potential energy 
Pi = psi*dx - dot(B, u)*dx - dot(T, u)*ds 
 
# Compute first variation of Pi (directional derivative about u in the 
direction of v) 
F = derivative(Pi, u, v) 
 
# Solve variational problem 
solve(F == 0, u, bcs, form_compiler_parameters=ffc_options) 
 
# Save solution in VTK format 
file = File("displacement.pvd"); 
file << u; 
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1.3 Objectives of this dissertation 

This dissertation is organized as follows: 

1. Chapter 3: Develop a computational modeling framework in FEniCS to investigate flow and 

heat transfer to investigate cardiovascular flows.  

2. Chapter 4:  Simulate patient specific CBA surgery for pulmonary vein isolation. 

• Validate present computational framework for patient-specific left atrium hemodynamics. 

• Investigate the factors affecting CBA surgery.  

• Analyze temperature distribution and efficiency for various cryoballoon positions in the 

PV antrum. 

3. Chapter 5: Develop an immersed boundary (IB) distributed Lagrange multiplier (DLM) based 

fictitious domain (FD) method in FEniCS to model FSI for biophysical flows. 

• Create a user-friendly open-source solver and publish/document it on GitHub: vanDANA 

(https://github.com/patelte8/vanDANA). 

• Validate and measure HPC-scalability of vanDANA solver (IB-FSI algorithm) using 

classical benchmark problems. 
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2.1 Challenges, complications, and the need for cryotherapy simulations 

One of the major challenges in a CBA surgery is to achieve complete occlusion at the PV ostium. 

In case of a leakage at the PV ostium, energy (cold) is convected into the blood stream, and this 

hinders lesion formation. Another critical challenge is to monitor the real time evolution and 

distribution of temperature (cold) in the PV antrum. This is very critical in preventing 

complications like the phrenic nerve and esophageal injury. Phrenic nerve injury (PNI) is not a 

common occurrence in RFA. Due to the anatomical proximity of the phrenic nerve to the right 

PV’s and more contiguous lesions in CBA, however, many studies [16, 17, 18] have reported that 

the risks of PNI for CB2’s are increased up to 8% - 10%. On the other hand, esophageal injury is 

observed for both RFA and CBA due to proximity of the esophagus to the posterior LA wall (see 

Figure 2.1). Hence, it is very important for the electrophysiologist to monitor real time temperature 

in the esophagus by placing an esophageal probe near the CB [19]. If the balloon and tissues are 

not in proper contact, then TTI could be longer than 60 sec or there could be no-isolation at all. In 

such conditions, a better and safer strategy is to abort the freeze and reposition the CB at another 

position on the PV ostium. Considering all the risks involved, optimum CB positioning is very 

crucial for an effective CBA surgery [20]. 

 

Figure 2.1: Figure adopted from Sarairah S.Y. et al. [19]. 
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Today with the growth in computational modeling, these challenges to CBA can be addressed by 

conducting simulations of the temperature field for patient specific geometries prior to the surgery. 

Numerical models to simulate cryotherapy can be developed to investigate patient specific LA 

geometries. Some numerical studies have been conducted to investigate the thermal field in the 

PV antrum. Getman et. al. [7] studied the relationship between TTI and freeze duration where they 

modeled the temperature at various tissue depths using COMSOL. Their simulations for both the 

28 mm CB2’s: Arctic Front Advance and Arctic Front Advance Pro demonstrated similar TTI’s 

across various cardiac tissue depths up to 5 mm, where they observed a TTI of about 60 sec for a 

lesion depth of 3 mm. Similarly, Xia et al. [21] used a more simplistic 2D-axisymetric geometry 

for the balloon-PV contact surface and they compare their numerical findings with an in-house 

experimental balloon setup surrounded by a freshly cut porcine myocardium tissue. They 

conducted a thorough tissue damage analysis and found that if the temperature of the tissue drops 

below −40!C (necrosis temperature), the duration of hold is unimportant due to direct cell damage 

[22]. Whereas, for temperatures less than −20!C, they found that it is important to hold the CB 

for at least 60 sec to produce necrosis of the tissue. They observe that the necrosis −40!C isotherm 

only reaches a depth of about 2 mm after 240 sec of ablation. At depths greater than 2 mm, the 

hold time becomes decisive to lesion/scar formation. Both these studies [7, 21] model the cold by 

solving for the Pennes heat conduction (or energy) equation in time and accounting for convection 

due to blood flow in the LA antrum.  

Today, with the advent of CBA surgery and the diverse range of governing factors affecting 

the surgery, there is a need for patient-specific computational modeling within a LA geometry to 

simulate the coupling between blood flow and heat transfer during CBA. Our goal mainly lies in 
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investigating how the presence of a CB affects hemodynamics in the LA, and how incomplete 

occlusion (leakage) affects temperature distribution at the PV ostium and lesion formation. 

2.2 Fluid structure interactions: complexities, algorithms, and applications 

To simulate real-world FSI, requires a robust, accurate, and flexible algorithm that can handle 

complex 3D moving geometries. In such geometries, the implementation of boundary conditions 

and mesh generation are major challenges and also the fundamental reason that influence the 

accuracy of results. Mesh generation is critical especially when the objects are moving or 

deforming and if not done efficiently, can lead to high computational overheads [23]. Most FSI 

mesh-based algorithms can be classified into two families: boundary-fitted methods and non-

boundary-fitted methods, according to whether the boundary-fitted mesh is used for the solution 

of the flow field [24, 25]. The boundary fitted method is the traditional approach where the mesh 

conforms to the boundary of the domain and remeshing is required as the interface deforms with 

time. The classical boundary fitted method is Arbitrary-Lagrangian Eularian (ALE) method [26]. 

Besides a fine grid resolution at the FSI interface, the ALE method also requires discretization of 

the governing equations on grids aligned with the boundary. The other class of methods are the 

non-boundary fitted methods, where the flow field is computed on a stationary Eulerian grid and 

remeshing is not required for the fluid grid. This saves a considerable chuck of the computational 

cost in terms of remeshing the flow grid. Sometimes, remeshing might be required for the structural 

grid if the extent of deformation is large which is computationally less expensive as the solid grid 

is less in volume as compared to the fluid grid. The immersed boundary (IB) and fictitious domain 

(FD) algorithms are examples of non-boundary fitted methods.  

The IB method typically loses accuracy at the solid-fluid interface due to the numerical 

difficulty in constructing a conservative mapping function between the Eulerian (fluid) mesh and 
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the Lagrangian (solid) mesh. As a result, IB methods cannot resolve the fine details of boundary 

flow for accurate shear stress computation. Today, there are two different FD based schemes in the 

literature: non-body-force-based scheme and the body-force-based scheme. The method used by 

Farnell et al. [27] for the simulation of a filament in a flowing soap film belongs to the first 

category. The second, is the IB method proposed by Peskin [28] which is a body force based FD 

method that has been applied to a wide range of FSI problems (Zhu and Peskin [29], Eggleton and 

Popel [30]). In this method, the flexible body moves at the same velocity as the local fluid, and 

then affects the fluid motion through an elastic force that is calculated with the known deformation 

of the body and is introduced into the fluid momentum equation as a pseudo body force. Here the 

key idea is to virtually extend the exterior fluid domain into the solid where a distribution of pseudo 

body forces is employed to enforce the structural movement through Lagrange multipliers. Such 

methods have been implemented by Kamensky et al. [31], Kapada et al. [32] and Yu [33].  

Instead of using the macroscopic NS equations to solve for the fluid flow, one can flexibly 

combine particle based methods with the immersed boundary method. Particle-based methods 

model the fluid as a collection of discrete particles rather than as a continuous fluid. Two 

commonly used particle-based methods are Smoothed Particle Hydrodynamics (SPH) and Lattice 

Boltzmann Method (LBM). SPH [34] is a Lagrangian method that models the fluid as a collection 

of particles, where each particle is assigned a mass, velocity, and density. The fluid equations are 

solved by computing the forces between the particles using a kernel function that smooths out the 

interaction between neighboring particles. LBM [35, 36, 37, 38] is a mesh-free method that 

discretizes the fluid domain into a lattice of cells, where each cell represents a small volume of 

fluid. The fluid equations are solved by tracking the distribution of particles within each cell using 

a probabilistic approach [39]. LBM is well-suited for simulating complex fluid behavior such as 
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turbulence and multiphase flows. Recently, particle-based methods have become more and more 

popular because it offers advantages in terms of parallelization (to efficiently model large-scale 

simulations), simple implementation, and robustness for FSI applications.  

Models describing FSI in cardiovascular systems 

In the last two decades, the use of FSI modeling has increased in cardiovascular engineering, 

especially in the field of arterial blood flow and cardiac hemodynamics. Computational models of 

FSI are used to model the abdominal aorta [40], carotid bifurcation [41], heart valves [42] and 

cerebral aneurysm [43]. Torii, Wood et al. [44] has studied the effects of wall compliance on a 

patient-specific right coronary artery with severe stenosis and found noticeable differences in the 

instantaneous wall shear stress produced by the FSI and rigid wall models. Apart from the 

difference in patient geometries, mechanical properties of the vessel wall also vary significantly. 

The larger arteries are more elastic than the smaller ones. Deformations up to 10% of the vessel 

radius are common in large arteries. This elasticity gives rise to the Windkessel effect and provides 

a passive mechanism for smoothing the pulsatile blood flow from the heart. The Windkessel effect 

is mainly attributed to the distension of large arteries during systole, functioning as a buffering 

reservoir for blood [45]. Besides arteries, lately FSI models have also been used to simulate heart 

valve dynamics [46] and cardiac chamber flows [47]. The earliest coupled heart-valve FSI model 

was developed by Peskin and McQueen’s in the 1970s [48, 49, 50] using the classical IB approach. 

Chandran and Kim [51] reported a study with MV dynamics in a simplified LV chamber model 

during diastolic filling using an immersed interface-like approach. One of the main limitations of 

this coupled models is the simplified representation of the biomechanics of the LV wall. Recently, 

Gao et al. [47] have developed a MV–LV model which has full FSI and is based on a realistic 

geometry and an experimental model for soft tissue mechanics. Such complex FSI simulations 
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require a robust multiphysics coupling algorithm that allows large deformations and incorporates 

turbulence modeling and contact mechanics.  

Given the complexities and challenges, we aim to develop an open-source robust IB based 

FSI solver using the delta-functions which can simulate any complex 3D geometry. Moreover, we 

also intend to benchmark, document, and measure the scalability of our IB-FSI algorithm on HPC. 

This will enable us to create a solid foundation for the future use of this solver. 
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3.1 Methods 

3.1.1 Thermal-Hemodynamics coupling model 

Hemodynamics and heat transfer in the LA are described by solving the continuity, incompressible 

NS and energy conservation equations. To non-dimensionalize the governing equations [11], we 

introduce a characteristic length 𝐿"# 	and velocity 𝑉"# 	 to define the non-dimensional control 

parameters (ℂ): Reynolds number	𝑅𝑒 = $!"	&!"
'

 and Prandtl number 𝑃𝑟 = '
(
, where	𝜐 is the 

kinematic viscosity (m2/s) and 𝛼 is the thermal diffusivity (m2/s) of the fluid. We also define the 

non-dimensional Peclet number 𝑃𝑒 = 𝑅𝑒 ∙ 𝑃𝑟, which is a measure of the ratio of advective to 

diffusive transport of temperature. We restrict our modeling to moderate 𝑅𝑒 and assume laminar 

flow everywhere. Correspondingly, the complete non-dimensional governing equations is given as 

follows: 

In the fluid domain Ω:  
 
 

𝜕𝒖
𝜕𝜏 + 𝒖 ∙ ∇𝒖 − ∇ ∙ 𝛔 − 𝒇 = 𝟎, (3.1) 

 
 
 

∇ ∙ 𝒖 = 𝟎, (3.2) 

 
 
 

)*
)+
+ 𝒖 ∙ ∇Τ − ,#*

-.
− 𝑄 = 0,    (3.3) 

Constitutive model - Newtonian Fluid: 

 
 

𝝈(𝒖, 𝑝) = −𝑝𝑰 +
2
𝑅𝑒 𝑬

(𝒖), 

 

 
(3.4) 

 𝑬(𝒖) = /
0
(∇𝒖 + (∇𝒖)1), (3.5) 

On the boundaries: 

 𝒖 = 𝒖𝛚			𝑎𝑡			𝜕Ω3𝒖 ;            𝛁𝒖 ∙ 𝒏 = 𝒖𝛚			𝑎𝑡			𝜕Ω5𝒖 , (3.6) 
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 𝑝 = 𝑝6			𝑎𝑡			𝜕Ω3

7 ;            ∇𝑝 ∙ 𝒏 = 𝑝6			𝑎𝑡			𝜕Ω5
7 , (3.7) 

 
 Τ = Τ6			𝑎𝑡			𝜕Ω3* ;            ∇Τ ∙ 𝒏 = Τ6			𝑎𝑡			𝜕Ω5* .	   (3.8) 

In the above equations, 𝒖, 𝑝 and Τ are the primary unknown variables defining the fluid 

velocity, pressure, and temperature fields, respectively. The blood is assumed to behave as a 

Newtonian fluid. Correspondingly in Eqs. (3.4) and (3.5), 𝛔 and 𝑬 are, respectively, the stress and 

strain rate tensors. In Eq. (3.1), 𝒇 is the prescribed body force,  𝜏  is the non-dimensional time and 

∇(∙) is the gradient operator, whereas in Eq. (3.3), 𝑄 is a prescribed heat source. The Dirichlet and 

Neumann conditions are prescribed for the unknown variables 𝒖, 𝑝 and Τ at the boundary in Eqs. 

(3.6-3.8), with 𝒏 denoting the vector normal to the boundary and (𝒖𝛚, 𝒖𝛚	, 𝑝6, 𝑝6, Τ6,Τ6) 

denoting the prescribed values. In these equations, the boundary is denoted by 𝜕Ω𝝓 = 𝜕Ω3
𝝓 ∪ 𝜕Ω5

𝝓 

such that 𝜕Ω3
𝝓 ∩ 𝜕Ω5

𝝓 = {	}, where 𝝓 ⊆ {	𝒖, 𝑝, Τ	}. 

3.1.2 Stabilized Finite element method  

The FE method is used for spatial discretization of the governing equations. Denoting 𝒗, 𝑞 and 𝑤 

as the respective test functions for 𝒖, 𝑝 and Τ, the resultant Galerkin weak formulation is given as 

follows: 

 〈
𝝏𝒖
𝝏𝝉 , 𝒗

〉 + 〈𝒖 ∙ 𝛁𝒖, 𝒗〉 + 〈𝛔, 𝛁𝒗〉−〈𝛔 ∙ 𝒏, 𝒗〉𝝏𝛀 − 〈𝒇, 𝒗〉 = 𝟎, (3.9) 

 
 〈𝛁 ∙ 𝒖, 𝑞〉 = 0, (3.10) 

 
 

 

〈
𝜕Τ
𝜕𝜏 , 𝑤

〉 + 〈𝒖 ∙ ∇Τ,𝑤〉 +
1
𝑃𝑒 \

〈∇Τ, ∇𝑤〉 − 〈Τ6	, 𝑤〉);$% ] − 〈𝑄,𝑤〉 = 0, 
(3.11) 
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where	{𝒖 ∈ 𝐻/(Ω), 𝒖 = 𝒖𝛚	𝑎𝑡	𝜕Ω3𝒖}; `𝑝 ∈ 𝐻/(Ω), 𝑝 = 𝑝6	𝑎𝑡	𝜕Ω3
7 a; {Τ ∈ 𝐻/(Ω), Τ =

Τ6	𝑎𝑡	𝜕Ω3*}; {𝒗 ∈ 𝐻/(Ω), 𝒗 = 𝟎	𝑎𝑡	𝜕Ω3𝒖 }; `𝑞 ∈ 𝐻/(Ω), 𝑞 = 0	𝑎𝑡	𝜕Ω3
7 a	and	{𝑤 ∈ 𝐻/(Ω), 𝑤 =

0	𝑎𝑡	𝜕Ω3*}. In the above equations, 〈∙	,∙	〉 and 〈∙	,∙	〉𝝏𝛀 denote the inner product of two functions 

i.e.,	〈𝑧/	, 𝑧0〉 = ∫ 𝑧/𝑧0 ∙ 𝑑Ω𝛀  and 〈𝑧/	, 𝑧0〉); = ∫ 𝑧/𝑧0 ∙ 𝑑s);  for functions	𝑧/ and 𝑧0.  

Because of the high 𝑅𝑒	(~10<), 𝑃𝑒(~10=) and velocities, hemodynamics in the heart 

chambers is dominated by advection. As such, it is necessary to incorporate appropriate 

stabilization schemes to the Galerkin weak formulation to ensure numerical stability [52]. To do 

so, we applied the well-established Streamline-Upwind Petrov Galerkin (SUPG) [53, 54] and the 

crosswind stabilization scheme developed by Codina [55]. The SUPG stabilization scheme is 

applied by introducing the following to Eqs. (3.9) and (3.11): 

 
∫ 𝛾>?-@(𝒖)		𝑃(𝒖,𝒎) ∙ 𝑹𝝓; 𝑑Ω, (3.12) 

where, 
 

𝛾>?-@(𝒖) = 𝛼	 jk
2
∆𝜏m

0

+ n
2	o|𝒖|o
ℎ r

0

+ 9	 k
4
ℂ	ℎ0m

0

t
A&#

, (3.13) 

 𝑃(𝒖,𝒎) = 𝒖 ∙ ∇𝒎 .  (3.14) 

In the above, ℎ denotes the cell diameter,	ℂ denotes the respective control parameter (i.e., 𝑅𝑒 or 

𝑃𝑒) and the coefficient 𝛼 is prescribed with a value of 0.85. 

Next, we introduce another residual pressure-based stabilization term to Eq. (3.9), namely 

the pressure stabilizing Petrov Galerkin (PSPG) scheme [19] that is given as: 

 
u 𝛾->-@(𝒖)	∇𝑞 ∙ k

𝜕𝒖
𝜕𝜏 + 𝒖 ∙ ∇𝒖 − ∇ ∙ 𝛔 − 𝒇

m
;

𝑑Ω, (3.15) 
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where 𝛾->-@ = 𝛾>?-@ . The crosswind stabilization scheme adopted from Codina [18] is also 

applied by introducing the following as additional term to the weak formulation into Eqs. (3.9) and 

(3.11): 

 
 u v𝛾BC(𝝓)		Λ(𝒖,𝝓)x ∶ 𝛁𝒎

;
𝑑Ω, (3.16) 

where 

 	Λ(𝒖,𝝓) = 𝚪(𝒖) ∙ ∇𝝓,	 (3.17) 

 
𝛾BC(𝝓) =

1
2𝛽#ℎ

|o𝑹𝝓o|

o|∇𝝓|o
 (3.18) 

In the above, 𝚪(𝒖) = }
𝑰 − 𝒖⨂𝒖

|𝒖|𝟐
𝑖𝑓	𝒖 ≠ 𝟎

𝟎 𝑖𝑓	𝒖 = 𝟎
�, 𝝓 is the unknown variable, and 𝛽# = max k0, 𝜁 −

0	F|𝛁𝝓|F

ℂ	I	JF𝑹𝝓FJm [17]. In both Eqs. (3.12) and (3.16),	𝑹𝝓 and 𝒎 are the residual and test function. The 

crosswind stabilization scheme works in such a way that a non-linear numerical dissipation 

proportional to the element residual is added in the crosswind direction in regions where the 

convective effects are dominant. It should be noted that SUPG, PSPG and crosswind stabilizations 

are highly consistent because they are all residual based terms and vanish as the residual 

approaches to zero.  

Next, we note that when the control parameters (𝑅𝑒, 𝑃𝑒) are large, applying only the SUPG, 

PSPG and crosswind stabilization schemes is not sufficient to prevent non-physical oscillations. 

Hence, to further increase stability and accuracy of the flow solver, we also include two additional 

stabilization terms to Eq. (3.9). Specifically, the Least-Squares on Incompressibility Constraint 

(LSIC) stabilization is used to improve the accuracy and conditioning of mass balance in the LA. 

This stabilization scheme is implemented by adding the following to Eq. (3.9): 
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 ∫ 𝛾&>LB 	(∇ ∙ 𝒖)	(∇ ∙ 𝒗); 𝑑Ω, (3.19) 

where 𝛾&>LB =
0

<	M.
. To address the numerical instability arising from flow reversal at the 

boundaries with high 𝑅𝑒 that is common in biological flow problems [20], we include the following 

penalty-based backflow stabilization term as: 

 𝐾7 	u v(𝑰 − 𝒏⨂𝒏)	𝒖x ∙ 𝒗	𝑑𝑠
N;)

*
, 

    
(3.20) 

which is active only on the boundaries ∂Ω3
7  into Eq. (3.9). The addition of this term is to confine 

the flow to be in the normal direction at the boundary where pressure is imposed. In the above 

equation, 𝑰 is the Identity matrix, ⨂ is the cartesian outer product on vectors and	𝐾7 is a penalty 

factor, which we prescribed a value of 10O.  

3.1.3 Time discretization 

We use the standard first order forward Euler scheme for time-discretization of the inertia term in 

Eq. (3.9). Because of the high 𝑅𝑒 and 𝑃𝑒, and to avoid any strict time step restriction [56], we use 

the unconditionally stable Crank Nicolson time-discretization scheme for terms associated with 

the advection of velocity and temperature, as well as the temperature diffusion and (elliptic) 

viscous terms.  

In the non-linear advection, crosswind, SUPG and PSPG stabilization terms, the convective 

velocities, and constants 𝛾>?-@ , 𝛾BC,	𝛾->-@  are discretized using an explicit time-integration 

scheme. The convective velocity in the backflow stabilization and LSIC terms, however, are 

discretized using an implicit time-integration scheme. The complete time discretized weak form 

with all the stabilization terms is given below: 
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〈
𝒖𝜽Q𝟏 − 𝒖𝜽

∆𝜏 , 𝒗〉 + 〈𝒖𝜽 ∙ ∇𝒖𝒄𝒌𝜽Q𝟏, 𝒗〉 + 〈𝝈v𝒖𝒄𝒌𝜽Q𝟏, 𝑝Ux, ∇𝒗〉−〈𝛔v𝒖𝒄𝒌𝜽Q𝟏, 𝑝Ux ∙ 𝒏, 𝒗〉𝝏𝛀
− 〈𝒇, 𝒗〉

+ u 𝛾>?-@v𝒖𝜽x	v𝑃v𝒖𝜽, 𝒗x +	∇𝑞x
;

∙ k
𝒖𝜽Q𝟏 − 𝒖𝜽

∆𝜏 + 𝒖𝜽 ∙ ∇𝒖𝒄𝒌𝜽Q𝟏 − ∇ ∙ 𝛔v𝒖𝒄𝒌𝜽Q𝟏, 𝑝Ux − 𝒇m𝑑𝑥

+ u �𝛾BCv𝒖𝜽x		Λv𝒖𝜽, 𝒖𝜽Q𝟏x� ∶ 𝛁𝒗
;

𝑑𝑥

+ u 𝛾&>LB 	v∇ ∙ 𝒖𝜽Q𝟏x	(∇ ∙ 𝒗)
;

𝑑𝑥 + 〈10O	(𝑰 − 𝒏⨂𝒏)	𝒖𝜽Q𝟏, 𝒗〉N;)* = 𝟎 (3.21) 
 

〈∇ ∙ 𝒖𝜽Q𝟏, 𝑞〉 = 𝟎 (3.22) 

〈
ΤUQ/ − ΤU

∆𝜏 , 𝑤〉 + 〈𝒖𝜽Q𝟏 ∙ ∇Τ#V , 𝑤〉 +
1
𝑃𝑒 \

〈∇Τ#V , ∇𝑤〉 − 〈Τ6	, 𝑤〉);$% ] − 〈𝑄,𝑤〉

+ u 𝛾>?-@v𝒖𝜽Q𝟏x	𝑃v𝒖𝜽Q𝟏, 𝑤x
;

∙ k
𝜕ΤUQ/

𝜕𝜏 + 𝒖𝜽Q𝟏 ∙ ∇Τ#V −
𝛻0Τ#V
𝑃𝑒 − 𝑄m𝑑𝑥

+u �𝛾BCvΤUx		Λv𝒖𝜽Q𝟏, ΤUQ/x� ∶ ∇𝑤
;

𝑑𝑥 = 0. 
(3.23) 

 

In the above equation, 𝒖𝒄𝒌𝜽Q𝟏 =	
𝒖𝜽,𝟏Q𝒖𝜽

𝟐
 and Τ#V =

*.,&Q*.

𝟐
 are the Crank-Nicolson velocity and 

temperature, respectively. Quantities with superscripts 𝜃 + 1 and 𝜃 denote the current and 

previous timesteps, respectively.  

The time-discretized equations with the stabilization terms can be solved either using a 

coupled scheme or a decoupled fractional stepping algorithm. Here, we use the fractional stepping 

algorithm that is computationally more efficient [57]. In a traditional fractional stepping algorithm 

(Table 3.1), the computation is split into two separate steps where Eq. (3.21) is decoupled from 

Eq. (3.22) and solved separately for 𝒖, 𝑝. 
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Table 3.1: Algorithm of the fractional stepping scheme 
 
Predictor step : Solve for intermediate velocity (𝒖∗) by ignoring the pressure gradient 

(∇𝑝,) in Eq. (3.9). 

Projection step : 
 

a. Project the pressure field onto a divergence free velocity space 
(using the intermediate velocity) i.e., 𝛁 ∙ 𝒖∗ = 0. Solve 
iteratively and minimize pressure residual. 

b. Perform velocity correction to accommodate for the pressure 
gradient. 

 

 
 

 

In our problem setting, we adopted the Incremental Pressure Correction Scheme (IPCS) 

which uses pressure gradient from the previous time step at the predictor step, along with semi-

implicit formulations for the advection terms as we found that the scheme is robust, accurate and 

can accommodate larger time steps that reduces the overall simulation time [58]. The two step - 

IPCS scheme is given as follows: 

Step 1 - Velocity prediction: 

〈
𝒖∗ − 𝒖𝜽

∆𝜏 , 𝒗〉 + 〈𝒖𝜽 ∙ ∇𝒖𝒄𝒌∗ , 𝒗〉 + 〈𝝈v𝒖𝒄𝒌∗ , 𝑝Ux, ∇𝒗〉−〈𝛔v𝒖𝒄𝒌∗ , 𝑝Ux ∙ 𝒏, 𝒗〉𝝏𝛀 − 〈𝒇, 𝒗〉

+ u 𝛾>?-@v𝒖𝜽x	𝑃v𝒖𝜽, 𝒗x
;

∙ k
𝒖∗ − 𝒖𝜽

∆𝜏 + 𝒖𝜽 ∙ ∇𝒖𝒄𝒌∗ − ∇ ∙ 𝛔v𝒖𝒄𝒌∗ , 𝑝Ux − 𝒇m𝑑𝑥

+ u �𝛾BCv𝒖𝜽x		Λv𝒖𝜽, 𝒖∗x� ∶ ∇𝒗
;

𝑑𝑥 +u 𝛾&>LB 	(∇ ∙ 𝒖∗)	(∇ ∙ 𝒗)
;

𝑑𝑥

+ 〈10O	(𝑰 − 𝒏⨂𝒏)	𝒖∗, 𝒗〉N;)* = 𝟎 
  

(3.24) 
 

Step 2 - Pressure projection & velocity correction:  

〈∇v𝑝UQ/ − 𝑝Ux, ∇𝑞〉 +
1
∆𝜏
〈∇ ∙ 𝒖∗, 𝑞〉

+ u 𝛾->-@(𝒖∗)∇𝑞 n
𝒖𝜽 − 𝒖𝜽A𝟏

∆𝜏 + 𝒖𝜽 ∙ ∇𝒖𝒄𝒌𝜽 − ∇ ∙ 𝛔v𝒖𝒄𝒌𝜽 , 𝑝Uxr
;

𝑑𝑥 = 0 (3.25) 
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〈
𝒖𝜽Q𝟏 − 𝒖∗

∆𝜏 , 𝒗〉 + 〈∇v𝑝UQ/ − 𝑝Ux, 𝒗	〉 = 0. (3.26) 

In the above equations, 𝒖∗ is the intermediate velocity and 𝒖𝒄𝒌∗ = 𝒖∗Q	𝒖𝜽

0
 is the Crank-

Nicolson velocity. We used (P2-P1) discretization for the flow velocity field 𝒖 and pressure field 

𝑝, and P2 discretization for the temperature field Τ. Correspondingly, we select 𝜁 = 0.7 in the 

crosswind stabilization constant 𝛾BC [55]. The system of equations given in Eq. (3.24-2.26) and 

Eq. (3.23) are solved using the high-level open-source FE library FEniCS [14]. The code can be 

found in https://github.com/patelte8/vanDANA.  

3.2 Numerical details 

We chose to make use of a modified fractional time-stepping scheme to solve for the pressure-

velocity coupling instead of a coupled scheme. The coupled scheme is fully implicit, where Eq’s. 

(3.9) and (3.10) are solved simultaneously. Compared to the IPCS fractional time-stepping scheme, 

the coupled scheme is more stable and can accommodate larger time steps. However, the coupled 

scheme is computationally more expensive because of larger matrix sizes and requires stable pairs 

of FE discretization that satisfy the inf-sup or Ladyzhenskaya-Babuska-Breezi (LBB) condition 

[59, 60]. The Taylor-Hood (TH) element is one such pair, in which the velocity field 𝒖 and pressure 

field 𝑝	are, respectively, discretized using quadratic (P2) and linear (P1) Lagrange-type elements. 

Equal order (P1-P1) discretization that does not obey the LBB condition can be used only with 

pressure stabilization PSPG [61, 62] - Eq. (3.15), to circumvent pressure instabilities arising due 

to the unstable LBB pairs. Here, it is crucial to understand that the SUPG stabilization (Eq. (3.12)) 

is responsible to stabilize the node-to-node oscillations present due to the high advective nature of 

the flow and is inherently required regardless of whether TH elements or PSPG stabilization are 

used. We mainly introduce the PSPG stabilization because we observe that it improves the 
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convergence rate of pressure projection equation (Eq. (3.25)) [62]. On the other hand, the fractional 

time-stepping scheme theoretically allows one to circumvent the LBB condition and use equal 

order (P1-P1) discretization without the need for PSPG stabilization. Hence, we can also use P1-

P1-P1 discretization for 𝒖, 𝑝 and Τ. Furthermore, we also introduce crosswind stabilization into 

our weak formulation. The crosswind stabilizing operator is introduced to prevent 

undershooting/overshooting of the field variables in the presence of sharp gradients, especially in 

the vicinity of boundary layers [63]. The crosswind stabilization operator adds a non-linear 

numerical dissipation proportional to the element residual in the direction perpendicular to 

streamlines in regions where the convective effects are dominant. To better understand the effects 

of crosswind, LSIC and PSPG stabilizations, we also conducted additional numerical tests (see 

Appendix). 

3.2.1 Implementation in FEniCS 

FEniCS allows us to write the weak form in the high level UFL format and later assemble it into 

matrix-vector form to solve it iteratively. However, for a large problem size, using the naive weak 

form for assembly can be computationally expensive. Hence it is good practice to split the weak 

form into constant time-independent matrices and vectors wherever possible and perform a pre-

assembly before solving for a transient problem. For the discretization in Eq. (3.24), we consider 

the velocity field 𝒖 as piecewise quadratic (P2): 𝒖 = ∑ 𝜓�Y(𝑥)𝒖𝒊
[0
/  and the pressure field 𝑝 

piecewise linear (P1):  𝑝 = ∑ 𝜓Y(𝑥)𝑝Y
[*
/ . Here, 𝜓� and 𝜓 are quadratic and linear FE basis 

functions, 𝐾\ and 𝐾7 are the Degrees of Freedom (DOF), and 𝒖𝒊 and 𝑝Y are the nodal values for 

velocity and pressure respectively. To decompose the weak form, we predefine the following set 

of constant matrices: 
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𝐴Y] =�u 𝜓�Y 	∙ 𝜓�] ∙ 𝑑𝑥
;1

[0

/

																																	𝐾Y] =�
2
𝑅𝑒u

n∇𝜓�Y + ∇𝜓�Y
1

2
r : ∇𝜓�] ∙ 𝑑𝑥

;1

[0

/

 

𝑂Y] =�u 𝑰: ∇𝜓�] ∙ 𝑑𝑥
;1

[0

/

																																		𝐹Y] =�u 𝒇 ∙ 𝜓�] ∙ 𝑑𝑥
;1

[0

/

 

𝐵Y] =�u (𝜓	𝒏) ∙ 𝜓�] ∙ 𝑑𝑠
N;1

																								𝑀Y] =�	
2
𝑅𝑒u

n∇𝜓�Y + ∇𝜓�Y
1

2
r𝒏 ∙ 𝜓�] ∙ 𝑑𝑠

N;1
 

𝐿𝑆Y] =�u 𝛾&>LB 	v𝛁	∙ 𝜓�]x	v𝛁 ∙ 𝜓�]x
;1

∙ 𝑑𝑥
[0

/

		𝐵𝑆Y] =�10Ou (𝑰 − 𝒏⨂𝒏)
N;)

*1
𝜓�Y 	∙ 𝜓�] ∙ 𝑑𝑠 

 
(3.27) 

 
Other terms that depend on the evolving solution are assembled separately in the temporal loop. 

Their corresponding matrices are,   

Convective term: 𝒗𝒋	𝑌Y]v𝜓�, 𝒖𝜽x
v𝒖𝒊∗ + 𝒖𝒊𝜽x

2  

 
SUPG stabilization: 𝒗𝒋	�𝑈𝑆Y]v𝜓, 𝜓�, 𝒖𝜽x	𝒖𝒊∗ − 𝜒]v𝜓, 𝜓�, 𝒖𝜽x� 

 
Crosswind stabilization: 𝒗𝒋	𝐶𝑊Y]v𝜓�, 𝒖𝜽x	𝒖𝒊∗	. 

(3.28) 
 
In the above equation, 𝜒] is a vector of size 𝐾\. Next, we use all the matrices in Eq. (3.27) 

and (3.28) to rewrite the weak form:    

𝒗𝒋 ¡
𝐴Y]
∆𝜏 v𝒖𝒊

∗ − 𝒖𝒊𝜽x + 𝑌Y]v𝜓�, 𝒖𝜽x
v𝒖𝒊∗ + 𝒖𝒊𝜽x

2 − 𝑂Y]𝑝YU + 𝐾Y]
v𝒖𝒊∗ + 𝒖𝒊𝜽x

2 +	𝐵Y]𝑝YU

−𝑀Y]
v𝒖𝒊∗ + 𝒖𝒊𝜽x

2 + 𝐹Y] + 𝑈𝑆Y]v𝜓, 𝜓�, 𝒖𝜽x	𝒖𝒊∗ − 𝜒]v𝜓, 𝜓�, 𝒖𝜽x

+ 𝐶𝑊Y]v𝜓�, 𝒖𝜽x	𝒖𝒊∗ + 𝐿𝑆Y] 	𝒖𝒊∗ + 𝐵𝑆Y] 	𝒖𝒊∗¢ = 0 
(3.29) 
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On further simplification, 

£¡
𝐴Y]
∆𝜏 +

𝐾Y]
2 −

𝑀Y]

2 +
𝑌Y]
2
¢ + 𝑈𝑆Y] + 𝐶𝑊Y] 	+ 𝐿𝑆Y] 	+ 𝐵𝑆Y]¤ 𝒖𝒊∗

= £¡
𝐴Y]
∆𝜏 −

𝐾Y]
2 +

𝑀Y]

2
¢ −

𝑌Y]
2 	
¤ 𝒖𝒊𝜽 + [𝑂Y] − 𝐵Y]]	𝑝YU + 𝜒] (3.30) 

 
An efficient algorithm can be constructed for Eq. (3.30) as follows: 

• Pre-set sparsity pattern of all the matrices (since mesh is stationary). 

• Preassemble the following matrix calculations: (𝐿𝑆Y] + 𝐵𝑆Y]), (𝑂Y] − 𝐵Y]), 
_23
∆+

 and 

�_23
∆+
− [23

0
+ a23

0
�. 

Time loop: t < total time: 

• Assemble matrices:  𝑈𝑆Y], 𝐶𝑊Y] and − b23
0

  and vector 𝜒]. 

• Evaluate  𝑌Y] ← − b23
0
+ �_23

∆+
− [23

0
+ a23

0
�  

      𝜆] = 𝑌Y]𝒖𝒊𝜽 + [𝑂Y] − 𝐵Y]]	𝑝YU + 𝜒] 

• Evaluate  𝑌Y] ← −𝑌Y] + 2
_23
∆+
+ 𝐶𝑊Y] + 𝑈𝑆Y] + v𝐿𝑆Y] +	𝐵𝑆Y]x 

• Solve  𝑌Y]𝒖𝒊∗ = 𝜆] using BICGSTAB with a jacobi preconditioner and appropriate 

boundary conditions. 

• Solve Eq. (3.25), (3.26) and (3.23) and repeat. 

The above optimized algorithm is implemented in FEniCS, and it is highly efficient. The matrices 

that depend on the evolving solution (Eq. (3.28), 1st step in time loop) are assembled using the 

naive approach in FEniCS. This is very straight-forward, since one can use the lhs( ) and rhs( ) 

functions in conjunction with the assemble( ) function call. Note that we use a constant time step 

∆𝜏 for our solver. A similar optimization is used for the weak form of energy equation Eq. (3.23) 
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and is not explained here for the sake of simplicity. FEniCS makes it easy to implement the above 

optimized algorithm in a few lines of high-level python code. The accuracy and convergence of 

our algorithm has been well tested, and a few benchmark results are presented in the next section. 

The code’s performance shows good strong scalability up to 84 cores on Michigan State 

University’s - AMD EPYC 7H12 cluster.  

3.3 Benchmarks 

3.3.1 2D Lid-driven cavity  

We solve the standard 2D lid-driven cavity case for 𝑅𝑒 = 1000 and 𝑅𝑒 = 2500. Our domain size 

is (1,1) and the mesh resolution and time step are 200 x 200 and 0.005 respectively. The mesh is 

uniform throughout and is composed of triangular elements. The top boundary has a velocity 𝑈 =

1 in the positive x-direction and the other boundaries are no-slip. We use wall boundary condition 

for pressure at all the four walls. For this setup, we do not solve for the energy equation. Figure 

3.1 shows the center line velocity (Ux, Uy) for 𝑅𝑒 = 1000 and 2500 respectively. These are an 

excellent match with Botella and Peyret [64].                  

 
Figure 3.1: A comparison of velocity profiles at the center line of the domain with Botella and 
Peyret [64] for (a) 𝐑𝐞 = 𝟏𝟎𝟎𝟎 (b) 𝐑𝐞 = 𝟐𝟓𝟎𝟎. 
 

(a.) (b.) 
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3.3.2 3D flow over a heated sphere 

We simulate flow over a 3D heated sphere in a cylindrical domain with dimensions: 𝐿 = 31 and 

𝑟 = 10. The 𝑅𝑒 is defined with respect to the sphere diameter and inlet velocity and is set as 𝑅𝑒 =

100, 300 and 1000. The size of the cylindrical domain is considered such that it has negligible 

effect on the simulation results. We run all the 𝑅𝑒 cases for 𝑃𝑟 = 0.7 and compare our results with 

Gao et al. [65] and Rodriguez et al. [66]. Note that we do not consider backflow stabilization for 

this flow problem. 

The boundary conditions at the inflow and circumferential boundaries are uniform velocity 𝑈 =

(1, 0, 0) and at the sphere surface is no-slip. An outflow boundary condition is applied at the outlet. 

For temperature: at the inflow Τ = 0, at the sphere surface Τ = 1 and for the outlet and 

circumferential boundaries a Neumann condition is used. We use a non-uniform tetrahedral mesh 

which is fine at the sphere surface, and it gets coarse as we move downstream and at the far 

circumferential boundaries. The time step is calculated such that the maximum runtime courant 

number stays below 0.3. A comparison of our drag coefficient and Nusselt number, with the 

existing literature is given in Table 3.2. Our results showcase a good match at all the 𝑅𝑒.  

Table 3.2: Drag coefficient and Nusselt number at Re = 100, 300, 1000 and Pr = 0.7. 
 

Re 
Cd Nu (Pr = 0.7) 

 present Benchmark [65, 66] present Benchmark [66] 
100 1.1 1.09 6.91 - 
300 0.667 0.659  10.84 10.63 
1000 0.468 0.466 17.78 17.4 

Next, we also perform a convergence study for the case of 𝑅𝑒 = 1000, and the code is run for a 

range of mesh sizes. Table 3.3 shows order of convergence and error norm with respect to the 

benchmark values for all the tetrahedral mesh sizes simulated. Here ℎ is the average cell size of 
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the elements close to the sphere and the order of convergence 𝒑, is calculated as 𝑙𝑛 �c&
c#
� /𝑙𝑛 �I&

I#
�. 

We observe that our solver achieves fourth and second order accuracy for velocity and temperature 

respectively. 

Table 3.3: Error norm and order of convergence for different mesh sizes. The velocity and 
temperature are both quadratic (P2). 
 

ℎ 
Cd error p Nu error p 

3.75 × 10A0 1.61 × 10A/ --- 1.23 × 10A/ --- 

3 × 10A0 6.83 × 10A0 3.84 8.32 × 10A0 1.75 

2.25 × 10A0 2.18 × 10A0 3.97 4.83 × 10A0 1.89 

1.5 × 10A0 4.30 × 10A< 4.00 2.18 × 10A0 1.96 
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4.1 Patient specific geometry and physical setup 

To investigate CBA, simulations are performed on a patient specific LA geometry reconstructed 

from the computed tomographic images of a 54-year-old female patient (Patient III in [67]) 

suffering from paroxysmal atrial fibrillation (Figure 4.1). The model dimensions given in Table 

4.1.  

Table 4.1: LA patient specific model dimensions 
 

 LSPV LIPV RSPV RIPV MV 

Area (mm2) 322.5 209.9 188.35 437.6 2061.1 

Av. Dia. (mm) 20.26 16.34 15.48 23.6 51.24 

 

 

Figure 4.1: (a) Schematic of LA geometry with an ellipsoidal CB at the RIPV; the four PV’s 
and MV serve as inlets and outlet for blood flow in the LA respectively. (b) Close up view of 
the CB; LAA: LA appendage. 
 
Flow rate measurements (at a HR - 63 bpm) of 4 PVs acquired in healthy patients over 1 cardiac 

cycle [68] are imposed as boundary conditions at the 4 PV ostium serving as inlets to the LA 

(Figure 4.2a). No-slip boundary condition is applied on the LA walls. Pressure is set as 0 at the 

outlet of the LA (i.e., MV annulus), whereas for all the other boundaries, we prescribed )7
)𝒏
= 0. A 

temperature of 37°C is prescribed as Dirichlet boundary condition at the four PV ostia. Neumann 
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boundary condition with zero heat flux (i.e., Τ6 = 0) is applied at the MV outlet. Initial 

temperature in the problem domain is set as 37°C. The diameter and velocity of the LSPV inlet is 

taken as the characteristic length and velocity scales, respectively (i.e., 𝐿"# = 20.26	mm and 𝑉"# =

9.3	𝑐𝑚/𝑠). The corresponding control parameters are 𝑅𝑒 ≈ 628 and 𝑃𝑟 = 27 for this problem. 

Values of the parameters are given in Table 4.2.  

Table 4.2: Physical properties of blood at 370C. 
 

Density (kg/m3) 
Kinematic 

viscosity (m2/s) 

Thermal  

conductivity (W/m0C) 

Specific heat 

(J/kg0C) 

1060 3 × 10Ae 0.52 3800 

 

We consider two baseline cases, one without the CB (LA-only case) and the other with a 

CB to simulate CBA (LA+CB case). In the latter, the cryoballoon (Medtronic CB2) geometry is 

idealized as an ellipsoid with major/minor diameter = 23/19.85 mm located in the right inferior 

pulmonary vein (RIPV) [7]. The CB is prescribed a constant minimum temperature of -70°C. At 

the LA wall, we prescribed a temperature dependent heat source 𝑄 = 𝛽(1 − Τ) to describe heat 

transfer due to blood perfusion in the LA wall. Here, 𝛽 is the coefficient proportional to the 

perfusion rate and its quadratic dependence on non-dimensional temperature Τ is given as follows:  

 

 

𝛽 = ·6.18	Τ
0 − 7.39	Τ + 2.21 𝑓𝑜𝑟		Τ ≥ 0.725

0.1 𝑓𝑜𝑟		Τ < 0.725». (4.1) 

The maximum value of 𝛽 at 37°C is taken as 14% (mass fraction of LA) of the rate of coronary 

perfusion: 0.85 ml/gm/min. At lower temperatures, we assume that perfusion remains constant and 

reduces to 10% of its original baseline value. While the dependence of vascular perfusion 𝛽 with 

temperature Τ is not patient-specific, the reduction of β with Τ should hold in general for every 

patient. Note that the non-dimensional temperature Τ used above is different from the actual 
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temperature Τf#g, which is dimensional. So, Τf#g	lies between the temperature ΤhYi = −70°C		and 

Τhfj = 37°C, and is given by: 

 Τf#g = ΤhYi + (Τhfj − ΤhYi) ∙ Τ. (4.2) 

 

Figure 4.2: Prescribed patient-specific blood flow velocity waveforms for the (a) PV inlets 
and mitral regurgitation (MR) [69]. (b) Perfusion constant 𝜷 as a function of temperature 
𝚻𝒂𝒄𝒕.  
 
The behavior of perfusion coefficient 𝛽 given in Eq. (4.1) with actual temperature (Τf#g) is shown 

in Figure 4.2b. We note that a similar vascular perfusion-temperature relationship was also 

employed by Pennes [70] and Getman et. al. [7]. Moreover, we note that Eq. (3.3) reduces to the 

Pennes heat conduction equation [70] at the LA wall boundary because the conductivity and 

density of cardiac tissue is very close to that of blood (Table 4.2) and the velocity at the LA wall 

boundaries is zero here. Therefore, the inclusion of a heat source at the boundary is more physical 

than prescribing a Neumann boundary condition. We neglect metabolic heat generation of the 

cardiac tissue and assume it to be negligible when compared to the cryogenic heat flux across the 

CB. 

(a) (b) 
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4.2 Validation for Left Atrium hemodynamics 

To validate the model for LA hemodynamics, a simulation was performed for 25 heart cycles in 

the LA-only case until the MV flow reaches periodic steady state. In this simulation, the FE 

tetrahedral mesh has 1.16 million degrees of freedom (DOF) and is graded so that it is fine close 

to the LA wall. The time step is selected so that the maximum Courant number throughout the 

simulation runtime is less than 0.12. Note that here, we do not solve for the energy Eq. (3.3). 

For this case, Figure 4.3a shows the velocity field vectors at the MV plane. Figure 4.3b shows a 

comparison of our instantaneous MV velocity (averaged over the MV surface area given in Table 

4.1) obtained from the LA-only simulation case with that measured from a healthy patient using 

spectral doppler echocardiography [71]. The simulated MV velocity waveform is close to the 

measurement, showing an E peak associated with the passive LV filling and an A peak associated 

with the contraction of the atria (i.e., atrial kick) during LV filling. The model-predicted E/A ratio 

and deceleration time (DT) are 1.4 and 240 ms, respectively. The greatest difference between the 

simulated MV velocity waveform and measurement occurs during systole (0.76 – 0.95ms), where 

the model predicted some (negative) backflow when the MV is closed during systole. This 

behavior is attributed to the pressure boundary conditions imposed and the assumption of a rigid 

LA wall geometry.  
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Figure 4.3: Simulation results from LA-only case (a) Velocity vectors at the MV plane. 
Vectors are scaled in (iv) to illustrate the presence of back/reverse flow. Comparison of (b) 
simulated MV velocity with measurements from spectral doppler images [71]; and (c) 
simulated pulmonary vein (PV) pressure waveforms with that measured based on the 
ultrasound transit time by Smiseth, Otto et. al. [72]. Note: measurements are scaled 
uniformly based on the prescribed heart rate, velocity, and pressure.  

 
Figure 4.3c shows a comparison between the simulated PV pressure waveforms with that 

measured from a healthy patient based on the ultrasound transit time by Smiseth et. al. [72]. Similar 

to the MV velocity waveform, the simulated PV pressure waveform is consistent with the 

measurements during diastole. The largest difference between the model prediction and 

measurement occurs during systole, where the simulated result shows a slight pressure rise (small 

peak during systole in Figure 4.3c) that is not found in the measurements.  
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In Table 4.3, we compare the simulated results with the measurement, during diastole and 

systole using a standard Welch t-Test. We note that the mean for both MV velocity and PV pressure 

match more closely during diastole as compared to systole. The same is reflected by the higher p-

values in case of diastole. Also, despite the deviation of simulated results during systole, the 

absolute t-value is still less than t-critical which implies a good statistical match. 

Table 4.3: Comparison of MV velocity and PV pressure for LA-only case during diastole and 
systole using a standard Welch t-Test. Note: for p-values < 0.05, the comparison is statistically 
different. 

 

4.3 LA+CB results 

Having validated the model, CBA was simulated in the LA+CB case where the CB was positioned 

at a fixed position that is close to the lower end of the RIPV ostium (Figure 4.1b). The simulation 

was performed for 40 heart cycles until a periodic steady state for the power absorbed across the 

 Mean Variance t-value (t-critical) p-value 

                MV velocity 

Diastole present 70.81 1000.79 
0.285  (1.98) 0.78 

 measured [71] 68.83 1098.01 

Systole present -10.45 97.59 
-2.05  (2.14) 0.06 

 measured [71] -4.19 8.18 

               PV pressure 

Diastole present 0.16 0.09 
0.43  (1.99) 0.67 

 measured [72] 0.13 0.06 

Systole Present -0.23 0.013 
1.67  (2.16) 0.11 

 measured [72] -0.31 0.010 
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CB is obtained. Because a graded fine mesh is necessary to resolve the gap between the CB and 

the LV wall, the FE tetrahedral mesh for this case has 1.88 million DOF (Figure 4.1b). The time 

step for this simulation case is selected such that the maximum Courant number throughout the 

runtime is less than 0.25. The computing wall time is approximately 46 hours for simulation of the 

LA+CB case. 

Figure 4.4a shows the temperature distribution at the RIPV ostium after periodic steady 

state is reached after about 20 seconds in the LA+CB case. By defining the scar/lesion as the 

region in the LA wall with temperature less than −20!C [21], the model predicted the lesion area 

𝑨𝒍 to be 296.63	𝑚𝑚0. The maximum lesion width along the flow direction is 6.8 mm. To 

determine a relationship between the local gap 𝑔	(defined as the minimum distance to the LA wall 

for any given point on the CB) and the local LA wall temperature 𝑇, we project both the local 𝑔 

and 𝑇 onto the CB surface (𝜕Ω	Bn) (Figure 4.4b and c) and plot out their distribution (i.e., 𝑔 –  𝑇 

distribution) in Figure 4.4d. The distribution shows that the temperature plateau when the gap 𝑔 

is above approximately 6mm. On the other hand, the gap threshold at which the temperature falls 

below that associated with the lesion formation (i.e., −20!C) is approximately 2.5	mm. By 

defining the balloon-tissue contact area 𝐴# 	as the area where the gap 𝑔 < 3mm and an efficiency 

factor 𝒆 given by the ratio between 𝐴o and	𝐴# , we find that	𝐴𝒄 = 422.8	mm0 and 𝒆 = 0.7	in the 

LA+CB case. Figure 4.4e shows the rate of energy transfer (power)	across the CB with time. At 

the initiation of CBA, the power is high, then it drops and flattens after about 24s once a periodic 

steady state is reached. The average value of power absorbed across the CB is approximately 94 

W in the LA+CB case.  
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Figure 4.4: Simulation results from LA+CB case (a) Periodic steady state temperature profile 
at the RIPV ostium. (b) Gap distribution projected onto the CB. (c) Temperature at 
neighboring RIPV ostium wall (corresponding to the gap) projected onto the CB. (d) Plot for 
local temperature vs local gap distribution; extracted from Figure 4.4c and 4.4b respectively. 
(e) Power absorbed across the CB vs time during the cryoablation therapy. 
 
Using the LA+CB case as baseline, we then perform simulations with: 

1) 12 distinct CB positions where the RIPV ostium is not completely occluded,  

2) 4 different PV blood velocities (for healthy patients) at 120%, 90%, 75% and 60% of that given 

in the Figure 4.2a. This flow rate measurement is applied to all inlets associated with the PVs. 

3) Flow reversal at the MV to investigate whether mitral regurgitation (MR) affects the formation 

of lesion in CBA. To simulate flow reversal at the MV, we use the blood flow rate measurements 

in a PV of a patient suffering from severe MR [69] (Figure 4.2a).  

Similar temperature boundary conditions are applied in all the simulations. 

 

(a) (b) (c) 

(d) 

(e) 
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4.3.1 Effects of CB position on lesion formation 

Figure 4.5 shows the local 𝑔 –  𝑇 distribution for 3 CB positions out of the 12 simulated CB 

positions. Here P1, P8 and P11 are notably different in terms of the CB position and therefore, 

form lesions at different locations at the RIPV ostium. The results show that the temperature fall 

below that for lesion formation (−20!C) at locations where the gap is less than 2.5	mm at the 

RIPV ostium irrespective of the CB position. At locations with 𝑔 > 5 − 6	mm, the temperature 

plateaued at approximately the blood temperature (37!C).  

 

 
Figure 4.5: CB position, P1 to P11 characterized by gap distribution (projected on the CB) 
and its effect on corresponding temperature distribution at RIPV ostium. The lesion area 𝑨𝒍, 
is the total area on either side of the RIPV ostium where 𝚻𝒂𝒄𝒕 < −𝟐𝟎𝟎𝐂. Also, a plot for local 
temperature vs gap shows that lesion formation starts if g < 2.5 mm. 
 
 
 

CB 
position 

Gap distribution 
(mm) 

 

Temperature  
distribution (0C) 

 

Temperature vs gap 

a. P1 

   

b. P2 
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Figure 4.5 (cont’d) 
 

 
 
 
 
 
 

c. P3 

   

d. P4 

   

e. P5 

   

f. P6 
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Figure 4.5 (cont’d) 
 

 
 
 
 
 
 
 

g. P7 

   

h. P8 

   

i. P9 

   

j. P10 
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Figure 4.5 (cont’d) 
 

 
Figure 4.6 shows the efficiency factor 𝒆 and average rate of energy transfer (power 

absorbed in watts)	across the CB for all the 12 simulated positions arranged with increasing 𝑨𝒄. 

The figure shows that the lesion area 𝑨𝒍 and 𝒆 are increased with increasing 𝑨𝒄. There is also 

considerable decrease in power as the efficiency factor increases. These results imply that less 

energy per unit area is required to maintain the low nadir temperatures of the CB if it is positioned 

in such a manner that 𝑨𝒄 is high.  

 
Figure 4.6: Efficiency factor 𝒆 and average power absorbed across the CB surface (watts) 
with increasing balloon-tissue contact area 𝑨𝒄 for 12 different CB positions in the RIPV 
ostium.  

k. P11 
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Figure 4.7 shows the scatter plot between the LA wall temperature Τf#g (see Eq. (4.3)) with 

the local gap 𝑔 and the balloon-tissue contact area 𝑨𝒄. The results show that the LA wall 

temperature is less sensitive to 𝑨𝒄 than 𝑔. The non-linear relationship between Τf#g with 𝑔 and 𝑨𝒄 

can be described by the fitted equation: 

Τf#g =
k
−4268.6 + 1971.47𝑔 − 4.82𝐴#

3666.34𝑔 + 2.44𝐴#
m ∙ 100 	𝑓𝑜𝑟		1.25	𝑚𝑚 ≤ 𝑔 ≤ 9.75	𝑚𝑚

			&	115	𝑚𝑚0 ≤ 𝐴# ≤ 450	𝑚𝑚0.
	 (4.3) 

The coefficient of determination (R2) for the fit is 0.79.  

  
Figure 4.7: Non-linear regression fit of the LA wall temperature 𝚻𝒂𝒄𝒕 with the local gap 𝒈 and 
the balloon-tissue contact area 𝑨𝒄.  
 
4.3.2 Effects of PV blood velocity and mitral regurgitation on lesion formation 

Compared to the position of CB, the effects of PV blood velocity and MR are less substantial. 

Specifically, when the velocity magnitude in the PV is halved, the power absorbed changes by 

only up to 6%, and the efficiency factor 𝑒 (or lesion area 𝑨𝒍) increases anywhere between 5% to 

38% depending on the CB position. The changes in 𝑒 and 𝑨𝒍 are larger when 𝑨𝒄 is low. For 
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example, in the case of P3 (Figure 4.8), power drops only by 3.2% and 𝑨𝒍 increases by only 8.5% 

when the velocity magnitude is halved. In the presence of MR, we observe only a 2% change in 

lesion size and approximately 3.9% change in power absorbed across the CB. 

 
 
P3 

 
 
 
Figure 4.8: Temperature distribution and lesion area 𝑨𝒍 at the RIPV ostium for CB position 
P3 when the PV blood flow velocity magnitude is (a) 120 % (b) 60 % of that given in Figure 
4.2a.  
 
4.4 Discussion 

We investigated 3 main factors that can affect the lesion size for CBA, i.e., catheter balloon 

position, PV blood velocity and MR. By prescribing PV inlet flow boundary conditions measured 

in human subjects, our model can predict MV velocity profile that agrees with those measured in 

humans [71], especially during diastole. The framework also predicts both the E and A peak (E/A 

ratio = 1.4) and the deceleration time (DT = 240 ms) that are within the normal value range (0.75 

< E/A < 1.5 and DT > 140 ms) found in healthy subjects.  

4.4.1 Patient-specific model calibration for cryoablation simulations 

To simulate patient-specific cryotherapy, the governing parameters in Eq. (3.1-3.8) can be made 

patient-specific by prescribing the 𝑅𝑒, 𝑃𝑟, flow and temperature boundary conditions based on 

measurements obtained in each patient. Specifically, the blood flow velocity at the PV ostia can 

be measured using doppler ultrasound or patient specific segmentation can be performed using a 

(a) (b) 

120 % 60 % 
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4D (3D - time resolved) MRI or CT imaging scan [68]. Moreover, the pressure and temperature in 

the LA can in principle, be measured using a catheter. In previous studies, Gonzalo et al. [73] and 

Morales et al. [74] have used in-vivo 4D-CT and 4D-MRI measurements to segment and resolve 

the LA geometry and flow for their hemodynamic simulations. Using such imaging, it can be very 

difficult to precisely model areas with less flow for e.g., the LAA, however, to measure flow 

velocities at major vessels like the PV’s, a set of planes perpendicular to the vessel of interest can 

be placed to extract the normal projection of the velocity. For medical imaging and segmentation 

one can utilize tools like MeVisLab [75] or 3D Slicer [76]. Thereafter, these images can also be 

used to calculate the average diameter of the PV’s and MV. 

4.4.2 Factors affecting cryoablation 

Of the 3 factors that may affect the effectiveness of CBA, namely, CB position, PV inlets velocity 

and MR, we found that the lesion size is most sensitive to CB position, which in turn, depends on 

the patient specific PV anatomy. The lesion size depends directly on the size of the balloon-tissue 

contact area (defined as per area where gap less than 3 mm) and the power absorbed by the CB. 

Correspondingly, we find that a gap less than 2.5 mm is a threshold to produce a temperature < 

−20!C for lesion formation. This supports the hypothesis that lesion formation is largely 

influenced by balloon-tissue contact area	𝐴# and time of freeze [10]. 

In the LA+CB case that has a high 𝐴#, the average lesion width of 6.8 mm for a 10 cm/s RIPV 

velocity is comparable with experimental observations in a porcine heart by Parvez et. al. [77]. 

Their experiments revealed similar lesion widths for a vertical orientation of the CB at 6g contact 

force and 40 cm/s PV velocity. They noted an increase in lesion size with a decrease in PV velocity. 

For instance, lesion width increased by 39% from 10.4 mm to 14.5 mm when the PV velocity is 
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halved (from 40 cm/s to 20 cm/s). The same quantitative behavior is observed for other CB 

positions simulated in Figure 4.5. 

4.4.3 Comparison with previous models of cryoablation and LA flow 

Computational models simulating cryoablation in the LA are limited. Most models [7, 21, 78] are 

based on idealized geometries as well as boundary conditions and consider only heat transfer 

across the LA wall to analyze transmural lesion depth. Specifically, a numerical simulation 

performed by Mussig et al. [78] with the electromagnetic and thermal simulation software CST 

Darmstadt, ignores the convective effects of blood flow in the PV antrum. The CB geometry in 

that model, however, is realistic and replicates the model used by Medtronic [7]. For a 23 mm CB 

set at −50!C, they observed that after 20 sec of ablation the temperature is −50!C and −24!C at 

a depth of 0.5 and 1 mm respectively. Instead of prescribing a constant CB temperature, Xia et al. 

[21] applied a constant heat source of −30	W to the CB contact area of a segment of the PV antrum 

wall. They predicted about 45 s for the temperature to reach −20!C at a depth of 0.5 mm. Also, at 

depths greater than 2 mm, temperature remains between −20!C to −40!C and does not drop below 

−40!C, suggesting that the hold time becomes important for lesion/scar formation at that depth. 

 To the best of our knowledge, there is only one computational model [7] that consider blood 

flow and heat transfer in modeling CBA. That model, however, is based on an idealized geometry 

of a PV ostium and does not consider flow leakage across the CB. In that study, Getman et al. [7] 

modelled the temperature at various tissue depths using the non-isothermal flow module in 

COMSOL. They considered balloon-tissue interactions with the CB set at −60!C. For tissue 

depths less than 0.5 mm, they predicted TTI (Τf#g < 23!C) and the time required for optimal lesion 

(Τf#g < −20!C) are 33 and 40 s, respectively. In comparison to these studies, we predicted a 

shorter time of (~ 24 sec) to steady state lesion formation in the LA+CB case. This difference may 
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be due to (a) A lower nadir CB temperature; (b) Zero thickness of the PV ostium; (c) Difference 

in boundary conditions at the PV inlets. We also note that accounting for LA wall thickness will 

increase the power absorbed by the CB and increase the duration required for lesion formation.  

For power absorbed by the CB during the procedure, the model predicted it to be 

approximately 165 W for most of the CB positions considered (Figure 4.6). This value is 

approximately half of that measured in a recent study that uses an ex-vivo calorimetric assessment 

on a bovine epicardial tissue [79]. That study revealed an ablative power of more than 325 W to 

generate 2 cm diameter freeze zones in less than 120 s. In the case of excess leakage past the CB, 

our model also predicts a substantial increase in the ablative power. Similar behavior was observed 

by Ghosh and McGuire [80]. Data for cooling power, however, is typically not reported for 

cryoablation probes. Nevertheless, most nitrous oxide probes provide approximately 8.5 W/mm 

with a range of 50 – 130 W depending on the size/length of the cryocatheter [79, 81]. We also note 

that for a fixed ablative power, nadir CB temperatures is inversely proportional to the amount of 

leakage past the CB.  

4.5 Conclusion 

We show that our framework can reproduce measurements of MV velocity and PV pressure 

waveforms measured in human subjects. The modeling framework predicts that the effectiveness 

of cryoablation therapy based on the lesion size is very sensitive to the CB position, while PV inlet 

velocity and MR do not have substantial effects on the lesion size. The framework can be applied 

in future clinical investigations to optimize cryoablation therapy in patient specific LA-PV 

geometries. 
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5.1 Methods 

5.1.1 Mathematical formulation 

We use a Eulerian description to solve for the fluid motion and a Lagrangian description to solve 

for the solid deformation and stresses in the Immersed Boundary (IB) method. We employ the 

governing continuity, momentum, and energy equations along with kinematic constraints in each 

domain. A schematic is given in Figure 5.1 and the corresponding boundary value problem (b.v.p.) 

in dimensional form is given as:  

For the fluid domain: 𝛺/𝑃(𝑡) 

	 𝜌q
r𝒖𝒇
rg
= 𝛻. 𝝈𝒇 + 𝜌q𝒇𝒇																		   	 (5.1) 

	 𝛻. 𝒖𝑓	 = 𝟎																																			     	 (5.2) 

	 𝜌q𝐶7q
r*𝒇
rg
= 𝑘q𝛻0Τq + 𝑄𝒇           	 (5.3) 

 
For the solid domain: 𝑃(𝑡) 
 
	 𝜌"

r𝒖𝒔
rg
= 𝛻. 𝝈𝒔 + 𝜌"𝒇𝒔                     	 (5.4) 

	 𝐽𝜌"	 = 𝜌!	                                        	 (5.5) 

	 𝜌"𝐶7"
r*𝒔
rg
= 𝑘"𝛻0Τ" + 𝑄𝒔               	 (5.6) 

	 𝝈𝒔	 = −𝑝"𝑰 + 𝐺(𝑩 − 𝑰)																				 (5.7) 

Kinematic constraints: 𝑃(𝑡) 
 
	

	

𝑑𝒙
𝑑𝑡 = 𝒖𝒔	 (5.8) 
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Figure 5.1: A schematic showing the FSI domain and respective boundaries along with the 
reference and current configuration for the solid. 
 
In the above equations we use the constitutive law for a Newtonian fluid (Eq. (3.4)) and a hyper-

elastic solid (Eq. (5.6)) and Ω is the overall fluid domain including the fictitious fluid and 𝑃(𝑡) is 

the solid current configuration. In Eqs. (5.1-5.3), 𝒖𝒇, 𝑝q , Τ𝒇, 𝜌q, 𝒇q, 𝝈𝒇 are the fluid velocity, 

pressure, temperature, density, body force and stress tensor respectively. In Eqs. (5.4-5.7), 

𝒖𝒔, 𝑝", Τ𝒔, 𝜌", 𝒇", 𝝈𝒔 denotes the solid velocity, pressure, temperature, density, body force and 

Cauchy stress tensor at the current configuration 𝒙𝜽Q𝟏. Also, 𝐽 is the determinant of deformation 

(gradient) tensor 𝐹 which describes the material deformation with respect to the reference 

configuration and is given as 𝐹 = )𝒙
)𝑿
= 𝛁𝒙. In the solid constitutive law Eq. (5.7), 𝑩 = 𝑭 ∙ 𝑭𝑻 is 

the finger tensor and G is the shear modulus of the solid material. Additionally, in the energy Eqs. 

(5.3) and (5.6), 𝑘q, 𝑘" are the thermal conductivity, 𝐶7q, 𝐶7" are the specific heats, 𝑄𝒇,	𝑄𝒔 are the 

heat sources for the fluid and solid domain respectively. 

On the boundaries: 
 𝒖𝒇 = 𝒖𝜞	; 			Τ𝒇 = Τ𝜞								𝑜𝑛		 𝜞               (5.9) 
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On the FSI interface: 
 
 

𝒖𝒇 = 𝒖s	; 									𝝈𝒔. 𝒏 = 𝝈𝒇. 𝒏 + 𝑭𝒆	; 							Τ𝒇 = Τ𝒔	; 								𝑘q
)*𝒇
)𝒏
	=	𝑘"

)*𝒔
)𝒏
	    𝑜𝑛			𝜕𝑃            (5.10) 

Here, 𝒏 denotes the vector normal to the FSI interface and 𝑭𝒆 is the non-hydrodynamic forces at 

the fluid-solid interface, like external contact forces. Note that in Eq. (5.5), 𝜌! is the solid density 

in the reference configuration and if the solid is incompressible i.e., 𝐽 = 1, we also need to compute 

the solid pressure 𝑝". For a compressible hyper-elastic solid, however, we can replace 𝑝" by {6oi|
|

, 

where 𝜆!	is related to the bulk compressibility of the solid, and compute only the solid deformation. 

In our model, we implement both the incompressible and compressible formulations for the solid 

constitutive law. We also note that at high values of 𝜆!~100𝐺, the solid becomes close to 

incompressible (𝐽~1).  

5.1.2 Finite element discretization 

The FEM is used for spatial discretization of the governing equations in both the fluid and solid 

domain. Let 𝒗, ω be the test functions for the momentum, q be the test function for the continuity, 

and γ,	 𝛾!	 be the test functions for the energy equations - for the fluid and solid domains 

respectively; then the Galerkin weak formulation is given as: 

Momentum: 〈𝜌q
𝑑𝒖𝒇
𝑑𝑡 − 𝜌q𝒇𝒇	, 𝒗〉;/- + 〈𝝈𝒇	, 𝛻𝒗〉;/- + 〈𝜌"

𝑑𝒖𝒔
𝑑𝑡 − 𝜌"𝒇𝒔	, 𝝎

〉-

+ 〈𝝈𝒔	, 𝛻𝝎〉- = u 𝑭𝒆 ∙ 𝝎	𝒅𝒙
)-

 
(5.11) 

Continuity: 〈𝑞	, ∇ ∙ 𝒖𝒇〉;/- = 0 (5.12) 

Energy: 〈𝜌q𝐶7q
𝑑Τq
𝑑𝑡 − 𝑄q	, 𝛾

〉;/- + 〈𝑘q𝛻Τq , 𝛻𝛾〉;/- + 〈𝜌"𝐶"
𝑑Τ"
𝑑𝑡 − 𝑄"	, 𝛾"

〉-

+ 〈𝑘"𝛻Τ", 𝛻𝛾"〉- = 0 
(5.13) 
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where	`𝒖𝒇, 𝒖𝒔, Τ𝒇, Τ𝒔, 𝑝", 𝑝q ∈ 𝐻/(Ω)a and `𝒗, 𝑞,𝝎,𝛾, 𝛾𝑠 ∈ 𝐻/(Ω)a. In the above 

equations, 〈∙	,∙	〉 denotes the Euclidean inner product of two functions in their respective domains.  

Fictitious Domain (FD) / Distributed Lagrange Multiplier (DLM) formulation 

Next, using the fictitious domain (FD) formulation (initially proposed by Yu [33]), we extend the 

fluid domain into the immersed solid and assume that the interior of the solid is filled with a 

fictitious fluid (see Figure 5.2). This fictitious fluid is constrained to move with the same velocity 

as the solid by enforcing a distributed Lagrange multiplier 𝜆 which acts as a pseudo volumetric 

force. For coupling between both the domains we use the Dirac-delta function kernels to calculate 

the pseudo forces. 

 
Figure 5.2: Fictitious domain formulation where the fluid is extended into the solid domain 
and 𝒖𝒇 = 𝒖𝒔 in the overlapping region. 
 
Using the FD/DLM formulation, we get,  

Fluid: 〈𝜌q
𝑑𝒖𝒇
𝑑𝑡 − 𝜌q𝒇𝒇	, 𝒗	〉; + 〈𝝈𝒇	, 𝛻𝒗〉; + 〈𝑞	, ∇ ∙ 𝒖𝒇〉; = 〈𝝀	, 𝒗〉- (5.14) 

 
Fluid temperature: 〈

𝜕Τ𝒇
𝜕𝑡 − 𝒖𝒇 ∙ ∇Τ𝒇 − 𝑄q , 𝛾

〉; +
1

𝑅𝑒𝑃𝑟
〈∇Τ𝒇	, ∇𝛾〉; = 〈𝜆1 	, 𝛾〉- (5.15) 

Solid: 〈v𝜌" − 𝜌qx
𝑑𝒖𝒔
𝑑𝑡 − (𝜌"𝒇𝒔 − 𝜌q𝒇𝒇), 𝝎

〉- + 〈𝝈𝒔 − 𝝈𝒇	, 𝛻𝝎〉-

= u 𝑭𝒆 ∙ 𝝎	𝒅𝒙
)-

− 〈𝝀	, 𝝎〉-	
(5.16) 

Lagrange multiplier constraint: 〈𝒖𝒇 − 𝒖𝒔, 𝝃〉- = 0 (5.17) 
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Solid temperature Lagrange 

multiplier: 

〈(𝜌𝑟𝐶7~ − 1)
r*𝒔
rg
− (𝑄" − 𝑄q), 𝛾"〉- +

〈V7A/
-.

∇Τ", ∇𝛾"〉- = −〈𝜆1 	, 𝛾"〉-	  (5.18) 
 

where 𝜉 and 𝛾" are the test functions on the Lagrange multiplier space. Here, the distributed 

Lagrange multiplier (DLM), is introduced in the FD formulation to separate the fluid and solid 

equations from Eq. (5.11) and relax the velocity constraint. Note that, 𝜆1 	is the temperature-based 

Lagrange multiplier, which acts as a pseudo heat source [82], besides 𝜆 is the momentum based 

Langrange multiplier which acts as a pseudo body force in the momentum equation. To impose 

incompressibility constraint for the solid, we solve for solid pressure and explicitly add the 

following to Eq. (5.16): 

 u (𝐽 − 1). 𝜁𝑑𝑥 = 0
-

 (5.19) 

It is worth pointing out that considering the system as a whole, in the pair of Eqs. (5.14, 5.16) and 

Eqs. (5.15, 5.18), the fictitious Lagrange multiplier terms cancel out.  

5.1.3 Numerical scheme 

To solve for the fluid velocity-pressure coupling in Eq. (5.14), we use the optimized algorithm for 

incremental pressure correction scheme (IPCS) described in section 3.1.3 and 3.2.1 and also 

introduce stabilization schemes, namely: SUPG (Eq. (3.12)), PSPG (Eq. (3.15)) and crosswind 

stabilization (Eq. (3.16)). Detailed information on the need for stabilization schemes is provided 

in section 3.2. Further, to non-dimensionalize the governing equations, we introduce the following 

characteristic length  𝐿"# 		and velocity  𝑉"# 	 scales, which changes the variable unknowns to 𝒖𝒇××× =

𝒖𝒇
$!"	
	, 𝒖𝒔××× =

𝒖𝒔
$!"	

, 𝑝q××× =
78

�8$!"#	
, 𝑝"Ø = 7!

�8$!"#	
 and 𝒙Ø = 𝒙

𝑳𝒔𝒄
. The subsequent non-dimensional solid 

parameters are 𝜌~ =
�!
�8

 , 𝐶7~ =
B*!
B*8

, 𝑘~ =
V!
V8
,	 𝜆!××× =

{6
�8$!"#

 and 𝐺̅ = @
�8$!"#

. To summarize, we have 
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a set of four independent control parameters for our IB-FSI formulation: 𝑅𝑒 = $!"	&!"
�

, 𝐹𝑟 = $!"	
√�&!"

, 

𝑃𝑟 = �
(
, 𝐸𝑐 = $!"#

B*8(*:A*;)
, where 𝜈 is the kinematic viscosity given as 𝜈 = �

�8
, 𝑔 is the acceleration 

due to gravity, 𝛼 is the thermal diffusivity and we introduce 𝐸𝑐, that accounts for heat generation 

due to viscous dissipation of the fluid. Another important control parameter that appears in the 

energy equation is the Peclet number; 𝑃𝑒 = 𝑅𝑒 ∙ 𝑃𝑟. This completes the dimensionless FD/DLM 

formulation with FE stabilizations. The numerical algorithm in order of solving the equations and 

its corresponding numerical discretization is given below: 

 
Fluid: 〈

𝒖𝒇∗ − 𝒖𝒇𝜽

∆𝝉 +
𝟑𝒖𝒇𝜽 − 𝒖𝒇𝜽A𝟏

𝟐 ∙ 𝛁𝒖𝒄𝒌∗ 	, 𝒗	〉;

+ 〈−𝑝qU𝑰 +
𝛁𝒖𝒄𝒌∗ + (𝛁𝒖𝒄𝒌∗ )1

𝑅𝑒 , ∇𝒗	〉;

+ 〈𝑝qU ∙ 𝒏, 𝒗	〉N;− 〈
𝒈Ý
𝐹𝑟0 , 𝒗	

〉;
+ 〈γ>?-@(𝒖𝒇𝜽)	𝑃(𝒖𝒇𝜽, 𝒗), 𝑅U 	〉;
+ 〈γBC(𝒖𝒇𝜽)	Λ(𝒖𝒇𝜽, 𝒖𝒇∗), ∇𝒗	〉; = 〈𝝀𝜽, 𝒗	〉- 

 

(5.20) 

 〈∇v𝑝qUQ/ − 𝑝qUx, ∇𝑞〉𝛀 +
1
∆𝜏
〈∇ ∙ 𝒖𝒇∗, 𝑞〉𝛀 + 〈𝛾->-@v𝒖𝒇∗x∇𝑞, 𝑅U〉𝛀 = 0 (5.21) 

 
〈
𝒖𝒇𝜽Q𝟏 − 𝒖𝒇∗

∆𝜏 , 𝒗〉 + 〈∇v𝑝qUQ/ − 𝑝qUx, 𝒗	〉𝛀 = 0. (5.22) 

Fluid 
temperature: 〈

Τ𝒇UQ/ − Τ𝒇U

∆𝜏 , 𝛾〉𝛀 + 〈𝒖𝒇𝜽Q𝟏 ∙ ∇Τ#V , 𝛾〉𝛀 +
1
𝑃𝑒
〈∇Τ#V , ∇𝛾〉𝛀

− 〈
2𝐸𝑐
𝑅𝑒

〈𝑬(𝒖𝒇), ∇𝒖𝒇〉𝜽Q𝟏, 𝛾〉;

+ 〈𝛾>?-@v𝒖𝒇𝜽Q𝟏x	𝑃v𝒖𝒇𝜽Q𝟏, 𝛾x, 𝑅U〉;
+ 〈𝛾BCvΤ𝒇Ux		Λv𝒖𝒇𝜽Q𝟏, Τ𝒇UQ/x, ∇𝛾〉; = 〈𝜆1

U , 𝛾〉- 

(5.23) 
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Solid: 〈𝜌𝑟

∆𝒙𝒔𝜽Q𝟏

∆𝝉𝟐 , 𝝎	〉-6 + 〈(∇!𝝎)
1 , −𝑝"𝑭A𝟏 + 𝐺(𝑭𝑻 − 𝑭A𝟏)〉-6

UQ/

= 〈
𝒖𝒇𝜽Q𝟏

∆𝝉 + (𝜌𝑟 − 1)
∆𝒙𝒔𝜽

∆𝝉𝟐 , 𝝎	
〉-6 + 〈𝐽

UQ/ − 1, 𝜁〉-6

+ 〈(𝜌𝑟 − 1)
𝒈Ý
𝐹𝑟0 , 𝝎	

〉-6 − 〈𝝀
𝜽, 𝝎〉-6 

(5.24) 

DLM 
Constraint: 〈𝒖𝒔𝜽Q𝟏 −

∆𝒙𝒔𝜽Q𝟏

∆𝝉 , 𝝃	〉- = 𝟎 

 
(5.25) 

 
〈
𝒖𝒔𝜽Q𝟏 − 𝒖𝒇𝜽Q𝟏

∆𝝉 ,𝝎𝒔〉- = 〈𝜆UQ/ − 𝜆U , 𝝎𝒔〉- (5.26) 

Solid 
temperature 
Lagrange 
multiplier: 

〈𝜌𝑟𝐶7~ − 1
Τ𝒔UQ/ − Τ𝒔U

∆𝜏 , 𝛾"	〉- + 〈
2𝐸𝑐
𝑅𝑒

〈𝑬(𝒖𝒇), ∇𝒖𝒇〉𝜽Q𝟏, 𝛾"〉-

+ 〈
𝑘~ − 1
𝑃𝑒 ∇Τ",#V , ∇𝛾"〉- = −〈𝜆1

UQ/, 𝛾"〉- 
(5.27) 

 
In the above equations, 𝒖𝒄𝒌∗  and Τ#V 	is the Crank-Nicolson velocity and temperature given as 

𝛁𝒖𝒄𝒌∗ = 0.5v𝒖𝒇∗ + 𝒖𝒇𝜽x and Τ#V = 0.5	(Τ𝒇
UQ/ + Τ𝒇U)	and ∆𝒙𝒔 is the incremental solid 

displacement. Also, Eq. (5.22) is solved in the reference configuration 𝑃! and the gradients in both 

the current and reference configuration are related as 𝛁 = 𝛁!(𝑭A/). Note that in the above 

equations we drop the bar on top of the non-dimensional variables and neglect any external 

hydrodynamic forces at the fluid-structure interface i.e., 𝑭𝒆 = 𝟎 for the sake of simplicity. Also, 

one needs to keep in mind that Eq. (5.22) applies to a perfectly incompressible solid and we 

compute both the solid pressure 𝑝" and displacement 𝒙𝒔. However, if the solid is compressible, we 

replace the solid pressure by  {6oi|
|

 and remove 〈𝐽 − 1, 𝜁〉-6 term from Eq. (5.24) and solve only 

for the incremental solid displacement ∆𝒙𝒔. 

To solve Eq. (5.20) and Eq. (5.23), we use the stabilized biconjugate gradient iterative method 

with hypre-amg preconditioners at an absolute tolerance value of 10-8. To solve the solid problem 
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Eq. (5.24), we use the non-linear Newton’s iteration for a relative tolerance value of 10−6. The ∆𝒙𝒔 

from the previous time step is provided as initial guess to the Newton solver and we observe that 

it takes about 3-4 iterations to converge. 

5.1.4 Interpolation functions 

To interpolate fictitious forces, heat source, velocity, or temperature from the Eulerian mesh to the 

Lagrangian mesh or vice-versa, we use the 4-point conservative piecewise-delta function [83] 

given below: 

 𝑢�(𝑋) = ∫ 𝑢�(𝑥)𝛿(𝑥 − 𝑋)� 𝑑𝑥	;													 𝜆(𝑥) = ∫ 𝜆(𝑋)𝛿(𝑥 − 𝑋)- 𝑑𝑥	; 

	Τ𝒔(𝑋) = ∫ Τ𝒔(𝑥)𝛿(𝑥 − 𝑋)� 𝑑𝑥;														𝜆1(𝑥) = ∫ 𝜆(𝑋)𝛿(𝑥 − 𝑋)- 𝑑𝑥	
(5.28) 

 𝛿(𝒙 − 𝑿) =
1
ℎ< ∅

k
𝑥 − 𝑋
ℎ

m∅k
𝑦 − 𝑌
ℎ

m∅ k
𝑧 − 𝑍
ℎ

m 

 
(5.29) 

 

∅(𝑟) =

⎩
⎪
⎨

⎪
⎧

1
8 (3 − 2

|𝑟| − ê1 + 4|𝑟| − 4|𝑟|0)
1
8
(5 − 2|𝑟| − ê−7 + 12|𝑟| − 4|𝑟|0)

0

							
|𝑟| ≤ 1

1 ≤ |𝑟| ≤ 2
2 ≤ |𝑟|

⎭
⎪
⎬

⎪
⎫

 (5.30) 

  
In the IB-FSI solver, the delta functions essentially determine the order of accuracy of the IB 

method. Due to the inherent nature of the delta functions, it is obligatory that the fluid grid 

surrounding the solid is structured and for good accuracy, we recommend that the solid mesh size 

stays between 0.8h - 1.5h at all times where h is the uniform fluid grid size [33, 84]. Here, note 

that the solid grid can be unstructured and non-uniform. Also, the delta functions utilize piecewise 

functions ∅ with different support areas and continuity properties which directly dictate their 

behavior in terms of numerical stability and accuracy [85]. We use the 4-point piecewise function 

(Eq. (5.30)) since we observe that it provides a good balance between stability and accuracy. 
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5.2 vanDANA solver  

Our code is open-source and available to use in the form a GitHub repository: 

https://github.com/patelte8/vanDANA. vanDANA is an efficient FEM Immersed Boundary (IB) 

based Flow-thermal FSI solver utilizing the FEniCS library and it is a python package with main 

executable (vanDANA.py) and three submodules (common, utilities, user_inputs). The directory 

tree for vanDANA code is given below in Figure 5.3. 

 

Figure 5.3: Directory tree for vanDANA IB-FSI code. 
 
1. The common module is the heart of the solver and mainly comprises of different variational 

problems: flow_variational_problem.py, flow_temperature_variational_problem.py, 

solid_variational_problem.py, lagrange_variational_problem.py. Each of these files contain 

separate class definitions and subroutines for pre-assembly, run-time assembly, solvers, and 

post-processing for their respective variational problems. We also include some basic post-

processing subroutines for calculation of drag, lift, Nusselt number, Jacobian, and vorticity. 



64 
 

Hence, the user need not require making any changes to the common module unless one needs 

to implement a custom user-defined subroutine. 

2. The utilities module deals with the handling of background functions for the code and 

comprises of the files: utils.py, read.py and write.py. Almost all the functionality for read, write, 

restart, MPI, counters, memory usage and timing of different modules is initialized and carried 

out using this module. 

3. Next, the user_inputs module provides input to the code mainly in terms of control 

parameters, time step, meshes, initial and boundary conditions for any given physical problem. 

Here, we allow user control from two main files namely: user_parameters.py and 

boundary_initial_conditions.py. A sample example of user parameters.py is given below in 

Figure 5.4. All parameters are grouped in the form of python dictionaries which makes them 

easy to append during runtime.  

restart = False   # Restart parameter 
 
# Physics of the problem 
# --------------------------------------------------------------------- 
problem_physics = dict( 
      solve_temperature = True,   
      solve_FSI = True,      
      compressible_solid = True,  
      viscous_dissipation = False,  
      body_force = False,          
    ) 

 
def f_dir(dim):   # Body force direction  
 n = -1*tensors.unit_vector(1, dim)  
 return n 
 
interpolation_fx = 'phi4'  # Delta-function interpolation  
 
# FEM stabilization and constants 
# --------------------------------------------------------------------- 
stabilization_parameters = dict(  

 
Figure 5.4: All control parameters are provided as input to the vanDANA code from 
user_parameters.py.   
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Figure 5.4 (cont’d) 
 
 # Navier-stokes 
 SUPG_NS = False,   # explicit 
 PSPG_NS = False,   # explicit   
 crosswind_NS = False,  # implicit 
 
 # Energy-equation 
 SUPG_HT = False,   # explicit 
 crosswind_HT = False  # implicit 
) 
 
alpha = Constant(0.85)                    # SUPG/PSPG stabilization constant  
C_cw = Constant(0.7)                       # Crosswind stabilization constant 
 
# Physical parameters     
# --------------------------------------------------------------------- 
physical_parameters = dict( 
  
 g = 9.81,    # Gravity (m/s2)    
    
 # Fluid  
 rho_f = 1,   # Density (kg/m3) 
 nu = 1,    # Dynamic viscosity (kg/m.s) 
 Spht_f = 1,           # Specific heat (J/kg.C) 
 K_f = 1,    # Thermal conductivity (W/m.C) 
 
 # Solid 
 rho_s = 10,   # Density (kg/m3) 
 Sm = 0,    # Shear modulus (N/m2) 
 Ld = 0,    # Compressibility (N/m2) 
 Spht_s = 0.11,   # Specific heat (J/kg.C) 
 K_s = 1.2    # Thermal conductivity (W/m.C) 
) 
 
def calc_non_dimensional_solid_properties(g, rho_f, nu, Spht_f, K_f, rho_s, Sm, Ld, 
Spht_s, K_s, Lsc, Vsc, T0, Tm, Tsc): 
 
 rho = rho_s/rho_f 
 Spht = Spht_s/Spht_f 
 K = K_s/K_f 
 Ld = 2000 # Ld/(rho_f*Vsc*Vsc) 
 Sm = 500 # Sm/(rho_f*Vsc*Vsc) 
  
 return rho, Spht, K, Ld, Sm 
 
# Characteristic scales 
# --------------------------------------------------------------------- 
characteristic_scales = dict( 
  
 Lsc = 1,            # m           
 Vsc = 1,                 # m/s 
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Figure 5.4 (cont’d) 
 
 T0 = -1*52,   # lower_temp (C) 
 Tm = 37    # higher_temp (c) 
) 
 
# Temporal control 
# --------------------------------------------------------------------- 
time_control = dict( 
   C_no = 0.35,  # Maximum possible Courant number 
   dt = 0.0025,   # Time-step 
   T = 100,  # Total runtime 
   adjustable_timestep = True   
   ) 
 
# FEM degree of variables 
# --------------------------------------------------------------------- 
fem_degree = dict( 
   velocity_degree = 2, 
   pressure_degree = 1, 
   temperature_degree = 2,  
   displacement_degree = 2, 
   lagrange_degree = 1 
  ) 
 
# Non-dimensional numbers 
# --------------------------------------------------------------------- 
def calc_non_dimensional_numbers(g, rho_f, nu, Spht_f, K_f, rho_s, Sm, Ld, Spht_s, K_s, 
Lsc, Vsc, T0, Tm, Tsc): 
 
 Re = rho_f*(Vsc*Lsc)/nu             
 Pr = Spht_f*nu/K_f  
 Ec = (Vsc*Vsc)/(Spht_f*(Tm-T0)) 
 Fr = Vsc/sqrt(g*Lsc)  
 
 return Re, Pr, Ec, Fr 
 
# Enter "True" if you want to post-process data 
# --------------------------------------------------------------------- 
post_process = True 
 
# File printing / solid-remeshing control 
# --------------------------------------------------------------------- 
print_control = dict( 
                  a = 40,    # for printing variables and restart files 
                  b = 20,   # for post processing data 
                  c = 20,  # for simulation_wall_time text file 
                  d = 5,    # for remeshing solid current-configuration mesh  
                  e = 20     # for runtime_tsp_courant_no_stats text file  
                ) 

 



67 
 

In user_parameters.py, we have provided the following important features, namely: 

• The restart parameter, if "True" will restart the simulation from the last saved time step.  

• The order of finite-element basis functions for all variables can be specified using 

the fem_degree dictionary. 

• In the time_control dictionary if adjustable_timestep is set as True, the code will 

automatically calculate the time step during run-time by limiting the maximum Courant 

number to time_control['C_no']. Otherwise, if adjustable_timestep is set as False, it will 

use time_control['dt'] as a constant time step. 

• The calc_stream_function flag if True, enables calculation of vorticity and stream function 

only for a 2D problem setup. This is because the steam function is defined only in 2D, 

using ∇0𝜓 = −𝜔, where 𝜔	is the vorticity. 

• The effect of stabilization schemes can also be tuned using stabilization 

constants: alpha and C_cw.  

To execute the code, vanDANA.py is the main executable file that pulls information from all the 

three modules and runs the main function vanDANA_solver (args). This sets the entire workflow 

defined in Eqs. (5.20-5.27). Overall, vanDANA code is aimed to be user-friendly and hence to 

gain more user-control for ease of testing and restarting, we use the argparse library [86] to add 

keywords from the command line, for e.g.: mpirun.mpich -n 64 python3 vanDANA.py -

restart=True -T=20.  

5.3 Benchmarks 

In this section we validate four different FSI benchmarks. In all these benchmark cases, we used 

second order (quadratic) elements for velocity and solid displacement and linear elements for 

pressure and Lagrange multiplier. 
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5.3.1 Transverse flow over a flexible beam 

This problem was introduced by Baaijens [34] and later also studied by Yu [33]. A thin flexible 

leaflet is located transverse to the flow direction at the center of the 2D channel as shown in Figure 

5.5.  For velocity boundary conditions, a no-slip at Γ0, free slip at ΓO and a parabolic time varying 

velocity profile given as 𝑈 = 1.5𝑦(2 − 𝑦)sin	(0�
1
𝑡) is provided at Γ/ and Γ<, where the origin is 

defined as the bottom left corner and the total runtime is 𝑇 = 10. For pressure we provide wall 

boundary conditions on all the sides. The channel length is 10 and height 𝐻 = 1. The density ratio 

is set as 𝜌~ = 1 and the solid is considered incompressible with stiffness 𝐺 = 10<. Note that since 

this is an incompressible leaflet i.e., 𝐽 = 1, we also solve for the solid pressure. 

 

Figure 5.5:  Schematic geometry for transverse flow over a flexible plate.  
 
The leaflet is held stationary at its bottom end and its length and height are 0.8 and 0.0212 

respectively. All body forces are neglected. The Reynolds number considered here is 100 and the 

fluid mesh is uniform with a mesh size of ℎq = 1/128. The solid mesh size is ℎ" = 1/100 along 

the length of the leaflet and it has 3 grid cells along its thickness. The time step is set as 0.005. 

Figure 5.6 shows our leaflet position in the channel at 8 different time instants over one cycle of 

oscillation. These results depict and an excellent qualitative match with those of Yu [33]. 
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 Figure 5.6: Transverse flow over a flexible leaflet: Re 100, 𝝆𝒓 = 𝟏, 𝑮 = 𝟏𝟎𝟑.	A comparison 
of present results with Yu [33] for leaflet positions in the channel over one periodic cycle.  
 
5.3.2 Turek and Hron (FSI2)  

Next, we consider the classical FSI2 benchmark by Turek and Hron [87] - flow over an elastic 

beam attached behind a rigid cylinder. The schematic is given in Figure 5.7. Here 𝐷, the diameter 

of the rigid cylinder is defined as the characteristic length scale 𝐿"# and is chosen as 𝐷 = 1. In 

Figure 5.7, other model dimensions are given as 𝐻 = 4.1, 𝐿 = 11 and 𝑙 = 3.5, ℎ = 0.2. The center 

of the rigid cylinder is (2,2) and at time 𝑡 = 0, the flexible beam is symmetric with respect to the 

cylinder center. The boundary conditions for the top and bottom boundary are no-slip, left 

boundary is a constant inlet velocity profile 𝑈 = e?6�(�A�)
�#

 and the right boundary is outflow. Here, 

𝑈! = 1 is defined as the characteristic velocity scale 𝑉"#. For pressure, we apply wall boundary 
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condition at all the boundaries, except the at the right boundary the pressure is set as 0. The 𝑅𝑒 is 

defined with respect to 𝐷 and 𝑈!, and is set as 100.  

 

Figure 5.7: A schematic diagram for the FSI2 benchmark [87]: Flow past a flexible beam 
(compressible) attached behind a rigid cylinder. 
 

For the properties of the flexible beam, the non-dimensional shear modulus is 𝐺 = 500, 

density ratio is 𝜌~ = 10, and the solid is considered compressible with non-dimensional 

compressibility as 𝜆! = 2000. The fluid mesh is 575 x 215, and the flexible beam has a resolution 

of 175 x 10. The time step is set such that the average courant number during runtime is around 

0.35 and the total non-dimensional run time is T = 100 sec. The total DOF’s for the case setup is 

1.15 million.   

 

Figure 5.8: Comparison of present y-displacement of trailing tip of the flexible beam with 
Turek and Hron [87].    
 
Our results showcase an excellent match for the y-displacement of the trailing tip of the flexible 

beam (Figure 5.8), strouhal number and average drag coefficient (Table 5.1) with results from the 
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literature. The drag coefficient is calculated as 𝐶3 =
�<

!.=�8?6#3
	, where 𝐹j = 𝝈𝒇 ∙ 𝒏𝟏 and 𝑛/ is the 

unit vector along the flow direction. Figure 5.9 illustrates the instantaneous beam position and 

velocity and pressure contours at a particular time instant during the simulation. 

Table 5.1: Comparison of present average drag coefficient, Strouhal number and trailing tip 
displacement amplitude. 

 present Turek and Hron [87] Tian et al. [88] 

CD 4.10 4.13 4.11 

Amplitude 0.82 0.83 0.78 

Strouhal no. 0.19 0.19 0.19 

 

  

 

Figure 5.9 (a) Velocity and (b) pressure contours for flow over a flexible beam attached 
behind a rigid cylinder at T = 71. 
 

(a) 

(b) 
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5.3.3 Flapping of a 3D flexible plate in uniform flow 

Next, we consider the self-sustained flapping of a 3D thin elastic plate in uniform viscous flow 

and compare our simulation results with Yu et al. [89]. The computational domain is a cuboid 

domain of size (4, 2, 1) and the flexible plate has dimensions (1, 2/3, 1/30). The plate density ratio 

is 𝜌~ =	16, and the shear modulus is set as 𝐺 = 50. The plate is treated incompressible by providing 

a high value of 𝜆! = 100𝐺. The fluid mesh is 200 x 100 x 50 and is uniform in all three directions, 

whereas the plate mesh is 50 x 30 x 4 and the initial configuration of the plate is inclined with the 

streamwise direction by an angle tan-1 (0.2). A problem schematic is given in Figure 5.10 where 

the flow in the streamwise direction (+ve x-direction) at a 𝑅𝑒 = 500 and the plate is clamped at 

its leading edge. The flow boundary conditions are uniform flow at the inlet (x=0), top and bottom 

boundaries. On the spanwise boundaries (z=0 and z=1) we impose periodic boundary conditions 

and at the outlet we specific outflow or Neumann boundary condition. We use a variable time step 

during runtime such the convection CFL number stays below 0.25. Figure 5.11 shows the time 

development of point y1 on the elastic plate. Our present results showcase an excellent match with 

Yu et al. [89]. Here we note that the simulation is stable only if the SUPG stabilization (Eq. (5.20)) 

is enabled for the flow solver. 
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Figure 5.10: Problem schematic for the flapping of a 3D flexible plate in uniform flow. The 
plate is positioned equidistant from the front/back and top/bottom faces of the fluid domain 
and its initial configuration is at an angle of tan-10.2 with respect to the x-direction. 
 

                
Figure 5.11: A comparison of the present time development of point y1 on the elastic plate 
with Yu et al. [89].  
 
Moreover, we also increase the plate shear modulus to 𝐺 = 100 and 250 and Table 5.2 shows the 

oscillation amplitude and Strouhal number comparison with Yu et al [89] and we observe that the 

plate becomes almost stationary as the shear modulus is increased up to 𝐺 = 250. 
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Table 5.2: Comparison of y1 displacement amplitude and Strouhal number at two different 
shear moduli of the elastic plate. 

 present Yu et al. [89] 

					𝑮 = 100 

y1 amplitude 0.26 0.27 

Strouhal no. 0.44 0.44 

					𝑮 = 250 

y1 amplitude 0.02 0 

 
5.3.4 Hagen-Poiseuille flow 

Next, we consider an internal pipe flow problem using an immersed boundary setup. For a standard 

3-D pipe flow problem the analytical fully developed velocity profile is given by  

 
 

𝑣(𝑟) = 2𝑈 n1 −
𝑟0

𝑅0r (5.31) 

Moreover, at steady state, the pressure drop in the pipe is given as 

 ∆𝑃 =
8𝜇𝐿𝑄
𝜋𝑅O  (5.32) 

In the above equations, 𝑣 is the velocity at any given radius 𝑟, 𝑈 is the mean velocity and 𝑄 is the 

flow rate through the pipe cross-section, 𝜇 is the dynamic viscosity in 𝑃𝑎 ∙ 𝑠 and 𝐿 and 𝑅 are the 

length and radius of the pipe. On converting Eq. (5.32) into non-dimensional form the pressure 

drop is   

 ∆𝑃× =
16
𝑅𝑒 k

𝐿
𝑅m (5.33) 
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where 𝑃× = -
�?#

 is the non-dimensional pressure and 𝑅𝑒 = �?(0M)
�

. For the computational setup, we 

consider the fluid domain to be a cuboid of dimensions (3.2, 2, 2) with a uniform mesh of 84 X 56 

X 56. To model the solid pipe, we consider a hollow cylinder with an inner radius of 𝑅 = 0.5, 

thickness 0.1 and length 3.2. The pipe material is a compressible neo-Hookean solid (Eq. (5.7)) 

with 𝐺 = 1000 and  𝜆! = 100𝐺. For boundary conditions, the two pipe ends are clamped and are 

prescribed with the fully developed analytic velocity profile using Eq. (5.31). The remaining parts 

of the boundary are prescribed zero-velocity boundary condition. The solid pipe is meshed using 

3-D tetrahedral elements and the shear-modulus is increased to model the pipe as a stiff hollow-

cylinder. We simulate Hagen-Poiseuille flow at three different 𝑅𝑒 and benchmark the simulated 

pressure drop across the length of the pipe. Figure 5.12 shows the cross-sectional steady state 

velocity contours in the fluid domain for 𝑅𝑒 = 100. Table 5.3 shows the comparison of simulated 

pressure drop vs. the analytical pressure drop across the pipe length along with the percentage error 

at different 𝑅𝑒. The percentage error is less than 8% for all the 𝑅𝑒 considered. 

Table 5.3: A comparison of simulated pressure drop with the analytical pressure drop and 
the percentage error for Re = 10, 100, 1000. 
 

𝑹𝒆 Present ∆𝑷  Analytical ∆𝑷 Percentage error (%) 

10 10.98 10.24 7.22 

100 1.028 1.024 0.4 

1000 0.1101 0.1024 7.52 
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Figure 5.12: Velocity contours for Hagen-Poiseuille flow using an immersed boundary setup 
at Re=100. 
 
5.4 HPC performance 

To test the HPC performance of vanDANA solver we have performed a strong scaling test for the 

2D Turek and Hron benchmark using a relatively large number of parallel MPI tasks for varying 

Degrees of Freedom (DOF's). The test runs are conducted on Michigan State University’s - AMD 

EPYC 7H12 node and the wall timings are shown in Figure 5.13 for four different degrees of 

freedom. At present, the delta-interpolation is the bottleneck for the vanDANA solver since the 

interpolation operation is conducted four times during each time step. 
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Figure 5.13: Strong scaling results for the Turek and Hron FSI2 benchmark. The legends 
showcase the timings for the 7 steps in sequence i.e., Eqs. (5.18-5.25). The timers in 
utilities/utils.py are used to measure each module.  
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6.1 Limitations 

Despite our successful attempt to simulate CBA surgery for PV isolation, and to develop a fully 

coupled FSI framework along with heat transfer, our study still faces a few limitations. 

• Limitations for the patient specific CBA simulation 

First, the LA wall is considered rigid, and its contraction and relaxation are not considered. 

Second, we only consider laminar flow and do not consider the transition from laminar to 

turbulence that may occur in the LA [90, 91]. To capture flow turbulence and its effects on 

hemodynamics and temperature, one can augment our current algorithm with other readily 

available turbulence models (LES-Smagorinsky or LES-Kinetic energy SGS). Third, we 

neglected the thickness of the LA wall and the metabolic heat generation within the wall. 

Metabolic heat generation for cardiac tissue is, however, estimated to be 1 W/cm3 [92] for 𝑨𝒄 <

5	𝑐𝑚0 and a LA wall thickness < 0.4	𝑐𝑚 [63]. This value is insignificant in comparison to the 

power absorbed across the CB (Figure 4.6). Fourth, we prescribed a temperature boundary 

condition on the CB for simplicity. In practice, however, a system controls the delivery of 

refrigerant (liquid N2O) to the CB and the temperature may drop depending on the degree of 

occlusion (or leak) [93]. Fifth, we do not consider phase changes arising from the formation 

of stable ice caps on the CB [94, 95]. Ice formation can contribute to PV occlusion and change 

the effective geometry of the CB, which in turn, can affect the hemodynamics. Last, the 

forward manual force applied on the catheter up to freezing will make the CB position and 

contact static. This would change the PV ostium geometry and significantly affect above-

mentioned factors. Such effects, however, would be very difficult to quantify in clinical 

measurements and simulation models.  
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• Limitations for the development of coupled FSI-thermal framework 

First, our implementation of the delta-function interpolation kernel is the computational 

bottleneck of the vanDANA solver, and it takes about 10 seconds or longer for DOF’s > 12 

million. Second, while vanDANA using FEniCS, both the fluid and solid mesh are split into 

N-MPI partitions each. However, in such IB-FSI simulations in most cases the solid mesh is 

smaller in volume than the fluid mesh and such a partitioning strategy retards the scalability of 

the solver as a whole. Third, the present Lagrange multiplier based heat transfer algorithm is 

unstable at higher values of 𝜌~𝐶7~ − 1 and needs implicit treatment of the unsteady term in 

Eq. (5.25) [82]. Fourth, solving for physical problem cases with large values of 𝑘~ , can be 

unstable. However, this can be tackled by using a smaller time step. Last, the IB algorithm in 

conjunction with the delta-function interpolation kernel requires the fluid cartesian mesh to be 

uniform in all three directions at least in the region overlapping the solid. In case of an internal 

flow problem, this uses a larger fluid mesh volume. Here, one needs to judiciously provide 

physical flow boundary conditions since it can instigate solver divergence.  

6.2 Concluding remarks 

This thesis can mainly be summarized in two parts: 

• Patient specific CBA modeling: We have developed a computational stabilized FE framework 

to simulate the dynamic thermal-fluid coupling in a realistic LA geometry during cryoablation 

therapy. We show that the framework can reproduce measurements of MV velocity and PV 

pressure waveforms measured in healthy human subjects. The modeling framework predicts 

that the effectiveness of cryoablation therapy based on the lesion size is very sensitive to the 

CB position, while PV inlet velocity and MR do not have substantial effects on the lesion size. 
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The framework can be applied in future clinical investigations to optimize cryoablation therapy 

in patient specific LA-PV geometries. 

• Development of vanDANA IB-FSI solver: We have developed a fully coupled FE based 

immersed boundary FSI code using the Distributed Lagrange Multiplier based fictitious 

domain method and have extended it to deal with heat transfer. We have used FEniCS, and our 

code is open source, documented, user-friendly and is available to use in the form of a GitHub 

repository: vanDANA. The vanDANA code is benchmarked against complex FSI problem 

cases and its scalability has been well tested on HPC. In future, our computational framework 

can be used to simulate fully coupled FSI physics (including heat transfer) for complex 

cardiovascular flows. 

The future direction for this project should be focused on addressing the limitations and improving 

the computational speed and scalability of the vanDANA solver.  Other computational models (or 

subroutines) that incorporate turbulence modeling, active strain, contact mechanics, and non-

Newtonian models for blood flow can be implemented into the vanDANA solver. This will be of 

use to capture complex flow physics and investigate cardiovascular diseases in patient specific 

geometries more accurately.  
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APPENDIX A :  EFFECTS OF STABILIZATION SCHEMES 
 
First, we consider the LA+CB case without the LSIC and PSPG stabilization schemes for the 

momentum equation. The results for both lesion area (Figure A.1a) and power absorbed across 

the CB are similar to that shown in Figure 4.4a and e.  Subsequently, the case without LSIC and 

PSPG stabilization for the momentum equation is utilized to investigate the isolated effects of 

crosswind stabilization on the energy equation (Figure A.1b) and the momentum equation (Figure 

A.1c). When the crosswind stabilization is disabled for the energy equation, localized undershoots 

(−132!C) /overshoots (216!C)  are observed in the temperature field in the vicinity of the CB that 

is outside the problem’s temperature range (between −70!C	to	37!C, see Figure A.1b). On the 

other hand, when crosswind stabilization is disabled for the momentum equation, we observe an 

unsteady lesion, and the position of the lesion oscillates in way that is non-physical even though 

temperature gradients downstream of the CB are better captured without 

undershooting/overshooting of the temperature (Figure A.1c). Based on these simulations, we 

conclude that the crosswind stabilizing operator (Eq. (3.16)) is necessary and serves mainly to 

capture sharp gradients in the field variable. 

  

Figure A.1 Effect of crosswind stabilization: (a) LA+CB case without PSPG and LSIC 
stabilization for the momentum equation (b) LA+CB case without PSPG and LSIC 
stabilization for the momentum equation and without crosswind stabilization for the energy 
equation (c) LA+CB case without PSPG, LSIC and crosswind stabilization for the 
momentum equation. 

(a) (b) (c) 
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APPENDIX B :  CRYOBALLOON POSITIONING 
 
Under identical simulation conditions (section 4.1), a total of 12 CB positions (LA+CB case + P1 

- P11) are simulated to study the effects of CB position on lesion formation. The exact positions 

of the CB (center O) with respect to 3 constant points A, B and C on the LA surface are given in 

Table B.1. Here, we also introduce 𝛼 which is the angle between the CB’s minor axis and OA (see 

Figure B.1). Note that point A is located centrally at the RIPV opening, and point B and C are 

selected arbitrary at the top and side of the RIPV where it merges with the LA. Positioning the CB 

in this manner provides a range of different balloon-tissue contact areas 𝑨𝒄 to analyze incomplete 

occlusion in case of cryotherapy.  

 

Figure B.1: Geometrical positioning of the CB (center O) in the RIPV ostium. Point A is 
located centrally at the RIPV opening. n is normal to the plane passing through the two major 
axes of the CB and the angle between n and OA is defined as 𝜶. Point B and C are selected 
arbitrary at the top and side of the RIPV where it merges with the LA.  
 
Table B.1: The distance OA, OB, OC, angle 𝜶 and balloon tissue contact area 𝑨𝒄 for all CB 
positions. 
 

CB position OA (mm) OB (mm) OC (mm) 𝜶 (deg) 𝑨𝒄 (mm2) 
P1 31.69 16.25 15.36 7.37 252.9 
P2 33.95 18.67 16.66 20.16 116.7 
P3 30.67 21.88 16.31 14.27 207 
P4 30.11 17.43 14.81 9.18 223.4 
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Table B.1 (cont’d) 
 

P5 29.67 21.30 15.72 14.30 213.4 
P6 28.45 23.40 16.52 16.26 444.8 
P7 29.71 19.74 14.94 19.85 193.2 
P8 30.14 20.74 15.82 10.94 187 
P9 31.14 23.18 16.66 11.79 259 
P10 30.52 20.54 16.10 4.21 167.4 
P11 31.09 19.67 14.81 14.52 176 

 


