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ABSTRACT 

 Spatial and temporal variability in maize emergence causes a decrease in crop yield and 

resource use efficiency, impacting the environment and producers’ profit. The overarching goal of 

this dissertation was to evaluate the effect of the spatial and temporal variability of maize 

emergence on the crop growth, yield, nitrogen (N) uptake, and N use efficiency (Chapter 1).  

Chapter 2 aims to compare the timing of maize plant emergence across and within sub-

field yield stability zones, evaluate the impact of delayed emergence on crop yield and yield 

components by yield stability zone, and compare the effect of spatial and temporal variation of 

plant emergence on crop yield and yield components. Temporal variability has a higher impact 

than within-row plant spatial variability on crop yield and its components. The decrease in maize 

yield caused by the delay in emergence was not statistically related to yield stability zones but had 

a more negative impact in the low yield stability zones. 

Chapter 3 investigates maize biomass accumulation and variation in plants with temporal 

variability in the emergence by yield stability zones and evaluates the plant nitrogen 

concentration, uptake and use efficiency in plants with temporal variability in emergence. 

Emergence delay caused a reduction in grain per plant through a reduction in plant growth rate 

(PGR) around silking. Although the delay in emergence did not affect nitrogen concentration in 

the grain, it caused a decrease in plant biomass and consequently an increase in biomass nitrogen 

concentration, resulting in less nitrogen accumulated in late emerged plants compared with early 

emerged plants. late emerged plants set fewer grains than early emerged plants and this lack of 

sink caused a change in plant N partitioning. 

Chapter 4 presents an approach to determine maize plant emergence time by using plant 

height obtained from LIDAR images and Machine Learning (ML) techniques and uses the 

estimated emergence as an input in SALUS model to estimate yield accounting for spatial and 



 

temporal variation. LiDAR images provided an accurate plant height in the three evaluated plant 

growth stages (V6, V14, and R1). Emergence was adequately estimated with the ML model and 

an “accurate” yield map was obtained using SALUS model. The integration of several digital 

tools allowed us to adequately simulate the spatial and temporal effect of emergence on crop 

yield.  

Conclusions from the research projects and recommendations on managing fields with 

spatial and temporal variation in maize emergence are outlined in Chapter 5.  
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CHAPTER 1: INTRODUCTION TO THE DISSERTATION 

1.1. Rationale and Background 

Over the last two centuries, the global population has significantly increased and is 

projected to reach 9.7 billion by 2050 (Waqas et al., 2023). To meet the needs of this growing 

population, food production must increase by 60-110% before 2050 (Pradhan et al., 2015) 

without further incorporation of land. However, this increase must also consider consumption 

patterns and the impacts of climate change. Unfortunately, agricultural land is being converted 

into urban areas at an alarming rate, especially in lower-middle-income countries, which are 

projected to experience the fastest rates of urbanization (United Nations, 2018). This trend has 

resulted in the loss of critical ecosystems, such as rainforests, wetlands, and grasslands, which 

causes a significant reduction in biodiversity and depletion of water resources (Lark et al., 2020). 

Therefore, it is critical to adopt sustainable land-use practices that balance the demands of 

urbanization and food production while preserving natural resources. Maize has the highest 

global production rate, has a considerable potential yield (Tollenaar & Lee, 2002), is highly 

sensitive to the availability of resources and inputs (Mueller et al., 2019), improves resources and 

inputs use efficiency (Caviglia et al., 2013) increasing the sustainability of productive systems, 

and adds carbon inputs and residues to the soil, among other benefits. Consequently, maize plays 

a crucial role in enhancing both the amount and quality of food production while also reducing 

the environmental impact associated with agriculture (Andrade et al., 2023). 

Originally from southern Mexico, maize was introduced in the United States thousands of 

years ago, and native communities embraced it as a staple crop. Maize is produced in 141 

countries worldwide, totaling 1147 Mt in 2022 (Table 1). On a yearly basis, the US is the top 

global producer (392 Mt y-1), followed by China (257 Mt y-1), Brazil (88 Mt y-1), the European 
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Union (69 Mt y-1), and Argentina (51 Mt y-1). The continuous increase in US maize production 

during the last 60 years (Fig. 1a) is linked to the production area growth (Fig. 1b) and the steady 

increase in crop yield (Fig. 1c), which went from 3.9 Mg ha-1 to 11 Mg ha-1 in the 1961-2021 

period (UN FAO, 2023). Maize, along with wheat (Triticum aestivum L.) and rice (Oryza sativa 

L.), fulfills 30% of the total intake of food calories for over 4.5 billion individuals, playing a 

crucial role in current and future global food security (Shiferaw et al., 2011) and production 

system sustainability (Andrade et al., 2022; Otegui et al., 2020). In addition to being a source of 

nutrition for both humans and animals, maize serves as a fundamental component for producing 

various products such as starch, oil, protein, alcoholic beverages, food sweeteners, fuel, and is a 

highly traded agricultural commodity across nations (Wu & Guclu, 2013). 

Table 1. Maize main production areas production and cultivated land (FAO, 2023). 

Country 
Production Cultivated land Average yield 

(Mt y-1) (M ha) (Mg ha-1) 

USA 384 34.6 11.1 

China 273 43.4 6.3 

Brazil 88 19 4.6 

EU 69 9.2 7.5 

Argentina 61 8.1 7.4 

Ukraine 42 5.5 7.7 

India 32 9.9 3.2 

Mexico 28 7.1 3.9 

Indonesia 20 3.5 5.7 

South Africa 17 3.1 5.4 

Russia 15 2.9 5.3 

Rest of the world 454 103 5.0 

Total 1483 249 6.1  

EU: Austria, Belgium, Bulgaria, Croatia, Republic of Cyprus, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, 

Romania, Slovakia, Slovenia, Spain, and Sweden.  

 

The importance of maize in crop sequences is related to the large biomass productivity 

and high water and radiation use efficiencies of the crop system (Caviglia et al., 2013). Maize 

improves carbon balance and physical properties of the soil (i.e., infiltration and stability of 

aggregates) as its residues have a high C:N ratio (C:N ̴ 60) (Janssen, 1996). However, it can 

reduce N in the soil (high C:N residues), penalizing the following crop if non-fertilized and can 
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result in the following crop having a higher yield response to N fertilization (Semmartin et al., 

2023).  

 
Figure 1. Annual maize production statistics for USA, 1960-2021 for a) production, b) area 

cropped, and c) yield. Based on UN FAO (2023). 

 

The success in providing food security in the face of increasing global food demand is 

tightly related to narrowing the gap between actual farmer's yield and maximum attainable yield 

(yield gap). This yield gap is highly associated with the level of available labor, fertilizer, and 

plant protection inputs (Hoffmann et al., 2018). In recent decades, genetic improvements and 

newly developed technologies for better field management have contributed to reducing this gap 

and increasing potential yield limits (Cammarano et al., 2023). Increases in crop production have 

been related to the introduction of new cultivars with increased harvest index, greater use of 
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inputs (water, nutrients, and agrochemicals), and significant investment in irrigation areas. 

However, the current scenario differs in several critical aspects from that of 50 years ago and 

there are regions where yields have reached a plateau (Van Ittersum & Cassman, 2013). 

Additional improvements in genetic yield potential or water-limited yield are challenging, as the 

likelihood of significant advancements in genetic enhancement of photosynthesis or drought 

tolerance remains low (Hall & Richards, 2013) and the limited possibility to increase the harvest 

index (Alexandratos & Bruinsma, 2012). The improvement has also been related to social factors 

like governments supporting research, education, improvement in knowledge transference, 

subsidies to fertilizers, cooperative banks, and road network development, among others 

(Aggarwal et al., 2019).  

Nitrogen supply through synthetic fertilizers has been highly adopted and related to the 

steady increase in yield since 1970 (Robertson & Vitousek, 2009). The discovery of the direct 

synthesizing of ammonia from hydrogen and nitrogen (Haber-Bosch process) and its increased 

use after World War II offered an important N source for the world’s agriculture-increasing 

needs (Smil, 2004). By 1960 artificial fertilizer usage in the US was close to 7500 tons -nitrogen, 

phosphate, and potash- scaling up to 22,000 in 2015, being 10,400 tons used in maize 

fertilization (USDA, 2023). The inadequate management of nitrogen (N) in agriculture can have 

negative consequences on the environment and economy, which makes it increasingly important 

to improve the use of N fertilizer for sustainable agroecosystems (Smil, 1999). Generally, 

developed countries use N fertilizer rates that exceed crop demand, while developing countries, 

have a negative soil N balance, i.e., higher export of N from grain crops than N supplied by 

fertilizers (Liu et al., 2010). The excessive use of fertilizers has resulted in various environmental 

issues such as nitrate leaching to groundwater, phosphates causing eutrophication in surface 
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water, and an increase in greenhouse gas emissions from both fertilizer production and crop 

production (Novelli et al., 2023). To minimize the adverse impacts of fertilization on the 

environment, some countries (e.g., the European Union) have regulated the amount of organic 

and inorganic nitrogen that farmers can apply in certain areas (Cammarano et al., 2023; Moll et 

al., 1982). On the other hand, in the regions of the world where N application is below crops 

needs and the N balance in the soils is usually negative, there is a depletion of fertility with the 

consequent soil degradation associated with the decrease in organic matter, water retention, 

nutrients, and increased erosion risk (Vitousek et al., 2009). Therefore, the development of tools 

to evaluate crop N status is crucial for improving N fertilizer prescriptions and achieving higher 

crop yields with minimal environmental impact. 

 Precision agriculture involves the application of both technologies and principles to 

effectively manage the spatial and temporal variability that exists in agricultural fields to 

improve productivity while maintaining environmental quality (Pierce & Nowak, 1999). 

Common N fertilizer management uses uniform rates at a field-level, where soil N and crop 

requirements are spatially and temporally variable, causing mismatches between N supply and 

crop demand (Huggins & Pan, 1993), reducing the N use efficiency (NUE) and increasing the 

negative impacts on the environment and farmers profit (Lemaire & Gastal, 2019). Among the 

practices listed towards a more intensified and sustainable agriculture, the adoption of variable N 

rates is one of the most important to reduce the N emissions to the atmosphere in places where 

rates are higher than crop demand, and to increase soil N balances in places where rates are 

bellow crop requirements (Martinez-Feria et al., 2018). The use of N variable rates has been 

proven to increase NUE and reduce the environmental impacts, while improving farmer’s profit 

(Basso et al., 2011).  
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Spatial and temporal variability in both crop yield and N fertilizer requirements is related 

to natural variation in soil properties, climate, and different management practices, and the 

interactions between them (Wang, 2021). Moreover, this variation is responsible for the uneven 

emergence of maize crops, which leads to increased interplant competition and yield reduction 

(Andrade & Abbate, 2005). Early emerged plants become taller and develop a root system earlier 

in the growing season (Liu et al., 2004a), having an advantage in resource uptake when 

compared with late-emerged plants, which remain shaded and smaller and have lower yields 

(Fig. 2, Fig. 3a). In addition, the variable distance between emergent and growing plants is 

mainly caused during planting operations (Liu et al., 2004c) and can contribute to plant stand 

variability (plant m-2) (Fig. 2, Fig. 3b). Heterogeneity in the distance between plants may cause 

variable yield loss associated with very closely placed plants that is not compensated for by the 

additional yield of plants located in gaps, thereby decreasing overall yield (Novak & Ransom, 

2018). Even crops (Fig. 2, low spatial and temporal variability) can outyield uneven stands when 

growing conditions and management are favorable (Lawles et al., 2012).  

 
Figure 2. Even and Uneven crop stand schematic representation. 
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The literature is consistent in reporting the negative effect of delayed emergence on crop 

yield (Andrade & Abbate, 2005; Liu et al., 2004a, 2004b; Nafziger et al., 1991; Tollenaar & Wu, 

1999) with reported reductions ranging from 5 to 22% (Carter & Nafziger, 1991; Ford & Hicks, 

1992; Nemergut et al., 2021), highlighting that late-emerged plants could not compete with early 

emerged plants for resources. In contrast, the impact of within-row plant spatial variability has 

shown less consistent results, resulting in lower yield in some cases (Kolling et al., 2019; Sangoi 

et al., 2012) but not causing an effect in others ( Liu et al., 2004d).  

 

 
Figure 3. Spatial and temporal variation in a maize field. a) plant spatial variability and b) 

emergence variability. The numbers in the figures represent the number of days from planting to 

emergence. 

These contrasting results and the influence of complex temporal interactions throughout 

the growing season make crop yield evaluation a challenging task. Additionally, assessing soil, 

weather, and management aspects demands considerable time and resources. To address the 

temporal variation effects of management practices on crop yield, crop models offer a valuable 

solution. These models consider the intricate temporal interactions occurring during the growing 

season and provide insights into the impact of different management approaches (Albarenque et 
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al., 2016; Basso et al., 2007; Batchelor et al., 2002). Unfortunately, crop models do not account 

for the spatial and temporal variations that exist in the field related to unevenness in emergence, 

thus missing a yield-reduction effect. The mechanisms that explain the effects of spatial and 

temporal variation in delayed emergence on crop yield should be incorporated into simulation 

models to improve their accuracy in crop yield forecasting at small and large scales. 

Additionally, assessment of plant temporal variation associated with the emergence time is not 

possible to do at field scale. Currently, farmers can easily access remote sensing technologies , 

such as Unmanned Aerial Vehicles (UAV) images, which have been shown to be useful in 

determining plant density in maize and wheat (Gnädinger & Schmidhalter, 2017; Velumani et 

al., 2021), plant spacing (Shuai et al., 2019), and recently (Vong et al., 2022) used them in 

combination with Machine Learning (ML) techniques to detect corn emergence at early stages 

(V2). Guo et al. (2022) used plant height obtained using UAV to identify maize phenology. 

However, no studies have integrated the use of crop models, UAV images, and ML to accurately 

estimate crop yield while accounting for the simulation of the effect of the spatial and temporal 

variation of emergence. 

1.2. Objectives and Structure of the Dissertation  

 The overarching goal of this dissertation is to understand the effect of spatial and 

temporal variability of maize emergence on crop growth, yield, and nitrogen uptake and to 

incorporate this variation into crop models to improve their accuracy in crop yield forecasting at 

small and large scales. This dissertation consists of an introductory chapter, four research 

chapters, and a concluding chapter with summaries and recommendations. Chapter 2 presents the 

first study where maize emergence was studied across ten farmers’ fields to evaluate its effect on 

crop yield and yield components by yield stability zones. This chapter has been submitted to 
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Field Crops Research. Chapter 3 portrays the effect of the spatial and temporal variability that 

exists in maize crop stands caused by uneven plant emergence on plant biomass accumulation, N 

uptake and N use efficiency. Chapter 4 integrates the use of UAV, Machine Learning techniques 

and crop growth models to improve crop yield estimation in fields with spatial and temporal 

variation in the emergence.  
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CHAPTER 2: YIELD STABILITY ZONE AND PLANT EMERGENCE EFFECTS ON MAIZE 

(Zea mays L.) YIELD 

A version of this chapter has been submitted to a peer-review journal (Field Crops Research) 

2.1. Abstract 

Uneven crop stands result from natural variation in emergence time that is related to soil 

moisture and temperature, and variation of within-row plant-to-plant distance caused during 

planting operations. Understanding the effect of the spatial and temporal variation of plant 

emergence on crop yield can help farmers make more informed decisions about planting. The 

objectives of this work were to i) compare the timing of maize plant emergence across and 

within sub-field yield stability zones, ii) evaluate the impact of delayed emergence on crop yield 

and yield components by yield stability zone, and iii) compare the effect of spatial and temporal 

variation of plant emergence on crop yield and yield components. Ten experiments were 

conducted in farmers’ maize fields in Springport (Michigan, US) Portland (Michigan, US), and 

Parana (Entre Rios, Argentina). Several years of yield monitored data for each field were used to 

develop yield stability zones (YSZ). Individual plant emergence was recorded daily, across yield 

stability zones. Emerged plants were tagged and the distance between plants within the row was 

recorded and used to calculate plant growing space (cm2), and to classify them as uniform, 

double or skips. Marked plants were hand harvested to analyze the individual plant yield and 

number, weight of grains, and total crop yield. Individual plant emergence time ranged from 3 to 

31 days after planting (DAP). The variation in timing of plant emergence had a greater impact 

than the variation of within-row plant spacing on crop yield and yield components. In general, 

the impact was larger in low yield areas. On average, plant yield was reduced by 7%, grain 

number by 6%, and final crop yield by 8.5% per day of emergence delay after planting. The 
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greater variation in the days of emergence delay when compared to within-row plant spacing 

variation can be related to the small overall spatial variability within the rows. Temporal 

variability had a higher impact than within-row plant spatial variability on crop yield and its 

components. The decrease in maize yield caused by the delay in emergence was not statistically 

related to yield stability zones. However, a trend of a more negative impact in the low yield 

stability zones was evident. Understanding factors affecting the spatial and temporal emergence 

patterns of crops can help farmers manage their planting operation and may help them with 

decisions on using more precise and tailored inputs (such as nitrogen fertilizer) on different sub-

field yield stability zones. Incorporating emergence data and information into crop models will 

also help improve yield simulation results. 

2.2.  Introduction 

Uniform crop stands can outyield non-uniform stands when the growing conditions and 

management are favorable (Andrade & Abbate, 2005; Lawles et al., 2012). Unevenness might 

result from natural variation in emergence that is mainly related to soil moisture and soil 

temperature variability (Andrade & Abbate, 2005). Early emerging plants have an advantage in 

obtaining resources when compared to those emerging later. They become taller have a better-

developed root system earlier in the growing season (Liu et al., 2004a), which can lead to higher 

yields. There is evidence of an asymmetric competition for light, as the initially suppressed 

plants (dominated) exhibited the highest level of responsiveness to thinning (Pagano & 

Maddonni, 2007). The variable distance between emergent and growing plants is mainly caused 

during planting operations (Liu et al., 2004b) and can contribute to plant stand variability 

(emerged plants m-2) (Daynard & Muldoon, 1983).  Heterogeneity in the distance between plants 

may cause variable yield loss associated with very closely placed plants that is not compensated 
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for by the additional yield of plants located in gaps, thereby decreasing overall yield (Novak & 

Ransom, 2018).  

The literature is consistent in reporting the negative effect of delayed emergence on crop 

yield (Andrade & Abbate, 2005; Liu et al., 2004a, 2004b; Nafziger et al., 1991; Tollenaar & Wu, 

1999). Carter et al. (1990) planted maize at several dates to simulate delayed emergence and 

reported between 10 and 22% yield reduction in plants with a 21-day delay in the emergence, 

noting that late emerged plants could not compete with early emerged plants for resources. 

Nafziger et al. (1991), studied several hybrids in different environments in Illinois and 

Wisconsin, and reported a 0.69 Mg ha-1 yield loss when emergence was delayed between 10 and 

12 days, and up to 1.44 Mg ha-1 with 22-day delays. Moreover, grain yield has been shown to be 

lower in uneven emerged stands with increased density, where early emerging plants produced 

more grain per plant than late emerging plants (Ford & Hicks, 1992). Recently, Nemergut et al. 

(2021) reported per-plant yield reductions of 5.25% per day of delay in emergence when the 

plants emerged nearly 7 days after planting.  

Unlike emergence delay, the impact of within-row plant spatial variability has shown 

contrasting results. Liu et al. (2004c), evaluated different standard deviations of within-row plant 

spacing and reported no significant effect on yield, leaf number, plant height, leaf area index, and 

harvest index. Similarly, Lauer & Rankin (2004) reported that grain yield was rarely affected by 

plant spacing variability and that maize plants can compensate for plant spacing variability when 

plant density is adequate. In contrast, other authors observed significant yield decreases ranging 

from 83 to 128 kg ha-1 for every 10% increase in the plant spacing variation coefficient, mainly 

related to grain number decreases (Sangoi et al., 2012; Kolling et al. 2019). Contrasting results in 

within-row spatial variability might be related to variations in the procedures used to simulate 
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plant spacing variability, which range from the more basic hand planting and plant thinning once 

the plants emerged, to the more complex, including herbicide use in Roundup-ready and 

traditional seed mixtures  (Kolling et al., 2019; Liu et al., 2004c; Pommel et al., 2002). 

While these and other studies have added to our knowledge of emergence delay and spatial 

variability of planting, the conditions under which they were performed, the methods used to 

generate spatial and temporal variability, and the objectives of the studies still leave a number of 

further questions to be investigated. We are not aware of any studies that have been performed 

under commercial production conditions; a more complex scenario where many additional 

factors and interactions can affect yield. Similarly, while prior studies have analyzed emergence 

variation and within-row spatial variation, separately or together, the majority have been 

manipulative, i.e., the variation in emergence was obtained with different specified planting dates 

and the variation of within-row planting spacing through post emergence thinning. Likewise, 

while studies have explored the relationships between delayed emergence and individual plant 

yield, height, and growth rate, they have not explored the effect on yield components. Therefore, 

questions that remain unanswered include: Is emergence delay related to the spatial variability of 

the soil and prior yields? Which yield component is more affected by emergence delay? Our 

study aims to answer these questions. Thus, in this study, we i) compared the delay in plant 

emergence across sub-field yield stability zones under varying commercial operating conditions; 

ii) evaluate the impact of emergence delay on crop yield and yield components by yield stability 

zones, and iii) compare the effect of spatial and temporal variation of emergence on maize crop 

yield and yield components. 
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2.3. Methods 

2.3.1. Site description and general characteristics 

Field experiments were conducted in nine commercial maize producers’ fields located in 

Portland (MI) (42.8971°N, 84.9776°W) and Springport (MI) (42.3471°N, 84.7097°W), and in 

one commercial field located at the National Institute of Agricultural Technology Research 

Station in Parana (INTA EEA Parana, Argentina) (32.2336°S, 60.5338°W) (Table 2). According 

to the Köppen climate classification the Michigan study areas are characterized as cold, without 

dry season, hot summer (Dfb) with a mean average daily temperature of 7.9°C and precipitation 

averaging 895 mm annually in the, whereas the Parana study area is characterized as temperate, 

without dry season, hot summer (Cfa) with an average daily temperature of 18.9°C and 

precipitation averaging 1101 mm annually. Fields varied in soil properties and management 

practices, such as tillage system, plant density, row spacing, hybrid relative maturity, and 

planting date (Table 2). The Springport fields were planted with a White planter 9924VE, 

Portland fields with a John Deere 1770 NT and a pneumatic Giorgi Precisa 8000 was used in 

Parana field.  

2.3.2. Yield stability zones 

Yield stability zones (YSZ) in the Michigan fields were delineated from several years 

of yield monitor data collected from farmers in each studied field following (Basso et al., 2007; 

Maestrini & Basso, 2018). Briefly, standardized yield maps were used to calculate the mean (µ) 

and standard deviation (σ) of the yield for every pixel of the field, considering a pixel as stable 

when σ < 0.75 and as unstable when σ ≥ 0.75. Similarly, pixels with µ < 0 were classified as 

low-yielding and high-yielding when µ > 0. This methodology classifies field pixels as High 

Stable (HS), Low Stable (LS), Medium Stable (MS) and Unstable (UN). As Parana fields lacked 
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yield maps data, zones were determined based on detailed soil maps, soil productivity index 

maps, and using farmer experience (Hornung et al., 2006). It was therefore not possible to 

estimate the temporal variation in the productivity and the unstable zones in this field.    

2.3.3. Experimental design  

Three replicate plots were established in each field and in each identified yield stability 

zone shortly after corn planting (0-2 days after planting, DAP), covering an area of two meters 

by four-rows in 2016 (Field 222), 2017 (Field 222 and Field JS1), and 2018 (Field 105 and Field 

NC12) and five meters by two-rows in 2019 (Field 304 and Field MG1), 2020 (Field 308 and 

Field 11), and 2021 (Field 210). In each case plot size allowed for up to 60 plants per plot (Fig. 

1). Fields in Springport, except for 2019-F304, had cover crop coverage at planting, which were 

terminated one week after planting.  

2.3.4. Plant emergence measurements  

In 2016 and 2017, emergence dates were estimated from time-lapse images (one per 

hour) taken between dawn and dusk by ‘Stealth Cam’ cameras (16-22 MP resolution) that were 

attached to a post five rows in front of each replicate plot. The emergence dates were determined 

by analyzing the imagery using the ESRI ArcGIS Image Analysis toolbox, and the distance 

between the plants within each row was measured in the field. 

From 2018 to 2021, emergence was recorded by visiting each plot in each field once per 

day during the period of emergence. Each emerged plant was individually identified using white 

stakes labeled with permanent ink that indicated the number of days after planting to emerge 

(Fig.4), and the distance between the plants within the row was measured and recorded (Fig.4). 

In order to evaluate plant spatial variation (PSV), plant growing space (GS, cm2) was calculated 
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as the sum of the half distances between a plant and its two neighbors multiplied by the row 

spacing (Eq. 1; (Martin et al., 2005)): 

                             GSi=[(di-di-1)/2+(di+1-di)/2)xR]……………………………Equation 1 

 where GSi is the ith plant space available to grow, di, di-1, and di+1, are the distances to 

the I, i-1, and i+1 plant, and R is the row spacing. Additionally, each plant or space between 

plants was classified according to the distance within the row as a double, skip or uniform 

(Novak & Ransom, 2018). The classification was made based on the standard deviation of the 

distance between plants within the row and the theoretical distance between the plants i.e., 

expected distance between plants based on plant density and row spacing. According to plant 

density and row spacing in Table 1, the calculated theoretical distance was 18, 20 and 27 cm, for 

Springport, Portland, and Parana, respectively. Thus, doubles were identified as consecutive 

plants less than 5cm from each other. Skips were gaps greater than the theoretical distance 

between plants plus one standard deviation, and uniform were plants with distances between 5 

and the theoretical distance plus one standard deviation. At the end of the growing season, each 

labeled plant was individually harvested (n=4186 plants) to analyze the individual plant yield, 

grain number, grain weight, and cob weight. Additionally, the cob weight to grain weight ratio 

was calculated. 
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a b 

c 

Figure 4. Representative plot photos at Springport, MI in 2019 and 2021 (42.3471°N, 

84.7097°W): a) field 2019-304 no-till before emergence, b) field 2019-304 after emergence, and 

c) field 2021-210, no-till and cover crop, after emergence. The numbers in the white stakes 

indicate emergence in days after planting, from left to right: 23, 4, 11, and 6.  
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Table 2. Experimental sites and locations with soil and management data. 

Site Year-Field Predominant Soil Taxonomic class 
Tillage 

System† 

Plant 

density 

(plants ha-1) 

Row 

spacing 

(cm) 

Field 

Size 

(ha) 

Relative 

maturity 

Planting 

date 

Silking 

date 

Springport 

2016-222 
Fine-loamy, mixed, active, mesic Typic 

Hapludalfs  
NT 74131 76.2 35 96 21-May 26-Jul 

2017-222 
Fine-loamy, mixed, active, mesic Typic 

Hapludalfs 
NT 74131 76.2 35 96 25-May 30-Jul 

2018-105 
Fine-loamy, mixed, active, mesic Typic 

Hapludalfs 
NT 74131 76.2 106 96 4-Jun 5-Aug 

2019-304 
Very-fine, mixed, active, frigid Aquic 

Glossudalfs 
NT 74131 76.2 32 95 8-Jun 8-Aug 

2020-308 
Very-fine, mixed, active, frigid Aquic 

Glossudalfs 
NT 74131 76.2 29 102 11-May 23-Jul 

2021-210 
Very-fine, mixed, active, frigid Aquic 

Glossudalfs 
NT 74131 76.2 150 95 15-May 27-Jul 

Portland 

2017-JS1 
Coarse-loamy, mixed, semiactive, 

nonacid, frigid Mollic Endoaquepts 
C 93899 50.8 34 95 18-May 24-Jul 

2018-NC12 
Coarse-loamy, mixed, semiactive, 

nonacid, frigid Mollic Endoaquepts 
C 93899 50.8 28 95 1-May 17-Jul 

2019-MG1 
Fine, mixed, active, mesic Haplic 

Glossudalfs 
C 93899 50.8 25 104 8-Jun 12-Aug 

Parana 2020-11 
Fine, montmorillonitic, thermic Vertic 

Argiudolls 
NT 70000 52 17 122 29-Dec 5-Mar 

†NT: no-till, C: conventional 
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Table 3. Observed precipitation and temperatures at each experiment site and season for periods near emergence (May-June at 

Springport and Portland, December-January at Parana) and growing season (May-October at Springport and Portland, December-April 

at Parana) versus historical normal (1991-2020).  

Site 

 

Year-Field 

Cumulative precipitation (mm)  Temperature (°C) 

 -2wk† -1wk§ +1wkǂ +2wk‡ R1±2wk⁋ 
Total  Total  

 
Em Em Average Historical 

Average  in-season historical period Historical  in-season 

Springport 

 2016-222 25 0 2 12 58 414 447  18 15.5 20 17.7 

 2017-222 63 55 6 6 32 238 447  17 15.5 19 17.7 

 2018-105 34 26 16 16 84 407 447  19.5 15.5 20.5 17.7 

 2019-304 49 20 88 47 19 420 446  16.5 15.5 19.3 17.7 

 2020-308 32 10 63 103 84 418 446  17.5 15.5 19.3 17.7 

 2021-210 10 1 3 43 154 607 446  18 15.5 19.9 17.7 

Portland 

 2017-JS1 0 0 0 0 82 294 454  16.6 16.7 18.4 18.5 

 2018-NC12 6 2 19 64 44 425 454  18.8 16.7 19.9 18.5 

 2019-MG1 52 23 40 89 44 576 454  15.8 16.7 18.6 18.5 

Parana  2020-11 24 1 2 28 91 680 541  23.5 23.9 23 22.9 

†-2wk: two weeks before planting, §-1wk: one week before planting, ǂ+1wk: one week after planting, ‡+2wk: two weeks after planting, ⁋R1±2wk: 30-d period 

around flowering.  

Total in-season: cumulative precipitation during the growing season 

Total historical: cumulative precipitation during the growing season for 30-Year average (1991–2020). 

Em period: average temperature during the emergence period (May-June for Springport and Portland, and December-January for Parana) 

Em historical: average temperature during the emergence period for 30-Year average (1991–2020). 

Average in-season: average temperature during the growing season (May-October and December-April, for Michigan and Parana sites, respectively).  

Historical average: average temperature during the growing season period for the 30-Year average (1991–2020).
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2.3.5. Weather conditions 

A summary of long-term patterns of precipitation and temperature around planting and 

for the growing season are presented in Table 3. Rainfall during the growing season was closer 

(90 to 110%) to the average (1991-2020) for the same period in most evaluated fields, whereas, 

in 2017 (Field 222 and JS1) in-season precipitation was between 28 and 46% lower than the 

average. Temperatures were slightly higher than historical averages in Springport fields, while 

they were within the range of historical values for the other four fields. The average temperature 

during the emergence period (May-June) ranged from 14 to 22°C in Springport, around 14% 

higher than the 30 yr average for the same period. In contrast, temperatures in Portland were 

16% higher than average in May but 7% lower in June. In Parana, temperatures during the 

emergence period (Dec-Jan) were slightly lower (2%) than the 30-yr average. The average 

precipitation during the evaluated crop emergence period was slightly below the 30-yr average in 

May (4%) and above it in June (12%) in Springport, and in Portland, it was slightly below the 

30-yr average in May (6%) and June (3%). Parana showed below-average precipitation in 

December (21%) and above average in January (56%) (Table 3).  

2.3.6. Data analysis  

Data was analyzed using the GLIMMIX procedure in SAS version 9.4 (SAS Inst., Inc.), 

to test the effects of Year-Field and YSZ and their interaction (Year-Field x YSZ) on plant 

emergence and growing space, YSZ and Year-Field x YSZ were considered fixed effects and 

Year-Field random. Individual plants were nested within each plot and included as a random 

factor to identify them as subsamples. Additionally, emergence was described using the 10, 50, 

and 90 percentiles of the emergence distribution, emergence uniformity was calculated as the 

time between the 10% and 90% of emergence (Egli & Rucker, 2012). Plant yield, grain number, 
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grain weight, and crop yield were analyzed by field to test the effect of yield stability zone, 

considering DAP and GS as covariates. Mean separation between groups was analyzed using 

Tukey’s method, performing pairwise comparisons to identify differences greater than the 

expected standard error. In addition, to make results comparable among Year-Fields the relative 

to the maximum per Year-Field plant yield (RPY), grain number (RGN), and crop yield (RY) 

were calculated and a regression analysis was performed using the JMP® Pro Version 15.2.0 

(SAS Institute Inc., Cary, NC, 1989–2021) to determine relationships with DAP using the mean 

RPY, RGN, and RY per day of emergence per plot. Slopes and intercepts were compared by 

yield stability zones, when no differences among slopes were detected, multiple regressions were 

performed using YSZ as a dummy variable to select a model that best describes the relationship. 

Three models were compared: i) Full model, describe the relationship using four or three 

functions one per YSZ (8 or 6 parameters), ii) Simple model with YSZ, describes the 

relationship using a unique function (5 or 4 parameters) using dummy variables, and iii) Simple 

model that describes the relationships with a unique function (2 parameters) (Supplemental Table 

S3). Models were compared with a F test (Mead et al., 2003) selecting the simplest model (less 

parameters) that better described the relationships.  

2.4. Results 

2.4.1. Emergence by year-field and yield stability zones  

Across all fields, emergence ranged from 3 to 31 days after planting (DAP). The 

emergence range was highest in Springport (3 to 31 DAP), and narrower in Portland (5 to 25 

DAP) and Parana (6 to 25 DAP). All yield stability zones (YSZ) showed variability in 

emergence and emergence was significantly affected by YSZ in 7 out of 10 field site years 

(p<0.05) (Table 4). In Springport, the average DAP to emergence ranged from 5.5 to 14.4, 6.4 to 
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14.6, 5.2 to 14.7, and from 4.9 to 14.7 days, in the HS, LS, MS, and UN zones, respectively. In 

Portland, emergence ranged from 6.8 to 11.6, 6.8 to 10.5, 6.5 to 11.4, and from 6.9 to 10.7 days 

in the HS, LS, MS, and UN stability zones, respectively. The average time to emergence in 

Parana was 7.5, 6.9, and 7.1 days in the HS, LS, and MS stability zone, respectively.  

Table 4. Emergence statistics and emergence uniformity (T10-90) from ten year-fields by yield 

stability zone (YSZ). Variation coefficient in brackets. 

Site 
Year-

Field 

Emergence- days after planting†  
 Emergence uniformity (T10-

90)† 

HS MS LS UN  HS MS LS UN 

Springport 

2016-222 10.9b(11)§ 11.5a(13) 11.4a(12) 10.7b(6)  1.6 2.3 2.4 1.0 

2017-222 5.5b(32) 5.2b(41) 6.4a(47) 4.9b(26)  2.7bc 3.5ab 5.4a 1.0c 

2018-105 7.0(10) 7.2(13) --- 7.1(19)  3.0 3.0 --- 3.0 

2019-304 8.1(8) 8.0(8) --- 8.2(12)  1.4 1.5 --- 1.3 

2020-308 14.4(10) 14.7(9) 14.7(9) 14.7(15)  4.0a 1.6b 2.1b 1.5b 

2021-210 10.8c(17) 11.2cb(22) 13.2a(26) 11.8b(9)  2.6b 4.2ab 6.8a 4.3ab 

Portland 

2017-JS1 10.3a(11) 10.4a(15) 10.5a(8) 9.8b(11)  2.0 1.3 1.4 2.0 

2018-

NC12 
11.6a(14) 10.1b(12) --- 10.7b(13) 

 
3.0 3.0 --- 4.0 

2019-

MG1 
8.9c(10) 11.4a(16) 9.8b(6) 9.4bc(6) 

 
1.4b 3.4a 1.0b 1.0b 

Parana 2020-11 7.5ab(31) 7.1ab(12) 6.9b(27) ---  3.0 2.0 2.0 --- 

ANOVA 

Year-Field ns  ns 

YSZ ns  ns 

Year-Field x YSZ ***  * 

†Means not sharing the same letter within the same row are different (p<.05) from each other. HS: High and stable, 

LS: Low and stable, MS: Medium and stable, and UN: Unstable. 

No difference was detected between Year-Field, YSZ, and no interaction (Year-Field x 

YSZ) was detected (APPENDIX A Table 20). In Springport the time taken for 10% of the plants 

to emerge (10% emergence) (Fig.5a-f) was 8.5 DAP for all YSZs, similarly in Parana it was 6.1 

DAP (Fig.5j), whereas in Portland it was 9.5 DAP (Fig.5g-i). The time to 50% emergence in 

Springport was 9.4 DAP for all the YSZs. Similarly, Portland time to 50% emergence was 10.2 

days. In Parana, the time to 50% emergence was 6.7 DAP. The time to 90% emergence in 
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Springport was 11 DAP. In Portland, the time to reach 90% emergence was 11.6, and in Parana 

was 8.8 DAP.  

 
Figure 5. Cumulative probability distributions of maize emergence by Year-Field and Yield 

Stability Zone at Springport (a, b, c, d, e, and f), Portland (g, h, and i), and Parana (j). For field a) 

2016-222, b) 2017-222, c) 2018-105, d) 2019-304, e) 2020-308, f) 2021-210, g) 2017-JS1, h) 

2018-NC12, i) 2019-MG1, and j) 2020-11 and for High and stable (HS), Low and stable (LS), 

Medium and Stable (MS), and Unstable (UN).  
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2.4.2. Plant spatial variability by yield stability zones  

The available space that plants had for growth (GS) calculated to evaluate the plant 

spatial variability, ranged from 998 to 1632 cm2 per plant. In Springport, three fields showed 

significant differences in GS (p<0.05) between YSZ (Table 5), ranging from 1217 to 1524, 1423 

to 1697, 1220 to 1570, and 1205 to 1923 cm2, in the HS, LS, MS, and UN YSZs, respectively. 

The GS in Portland fields ranged from 1042 to 1632, 998 to 1564, 1001 to 1622, and 1008 to 

1488 cm2, in the HS, LS, MS, and UN YSZs, respectively. In Parana, GS was 1578, 1617, and 

1601 cm2, in the HS, LS and MS YSZs, respectively.  

Table 5. Mean growing space (cm2 plant-1) by yield stability zone (YSZ) at three locations 

(Springport, Portland, and Parana) across fields and years (2016-2021). 

Location Year-Field 
YSZ 

P-value 

Growing space (cm2) † 

HS MS LS UN 

Springport 

2016-222 ns --- --- 1568 1528 

2017-222 <0.0001 1395b 1244b 1697a 1205b 

2018-105 ns 1313 1349 --- 1368 

2019-304 ns 1217 1220 --- 1269 

2020-308 0.0021 1524b 1570b 1649ab 1923a 

2021-210 <0.0001 1313b 1302b 1423a 1259b 

Portland 

2017-JS1 ns 1042 1001 998 1008 

2018-NC12 ns 1067 1068 --- --- 

2019-MG1 ns 1632 1622 1564 1488 

Parana 2020-11 ns 1578 1601 1617 --- 

ANOVA 

Year-Field ns 

YSZ ns 

Year-Field x YSZ * 

---: Not measured. † Means not sharing the same letter within the same row and Year-Field are different (p<0.05) 

from each other. 

Based on within row plant spacing, plant spatial variability was also evaluated by 

classifying individual plants as uniform, skip or double. In Springport, plots contained between 

76 and 96% uniform plants, between 4 and 23% skips, and between 0 and 3% doubles. In 

Portland uniform plants were between 81 and 91%, skips represented 4 to 17%, while doubles 
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were between 1 to 4%. Similarly, the Parana field had 87% uniform plants, 12% skips, and 1% 

doubles (Fig. 6). 

 

Figure 6. Plant spatial variability within the maize’s row as percentage of uniform, skip, and 

double plants by yield stability zones across fields and years. Uniform plants are defined as 

plants with distances between 5 cm and the theoretical distance plus one standard deviation; 

plants next to gaps greater than the theoretical distance between plants plus one standard 

deviation, and Doubles were consecutive plants with less than 5 cm from each other. Yield 

stability zones are HS: High stable, MS: Medium stable, LS: Low stable, and UN: Unstable. 

2.4.3. Plant yield, crop yield and yield components 

Mean individual plant yield at Springport ranged from 130 to 308, 109 to 150, 131 to 

202, and 108 to 308 g plant-1 in the HS, LS, MS, and UN YSZs, respectively. In Portland, the 

range was between 98 to 137 g plant-1 in the HS zone, 86 and 99 g plant-1 in the LS zone, 113 

and 167 g plant-1 in the MS zone, and between 117 and 120 g plant-1 in the UN zone. At Parana 

2016-222 2017-222 2018-105

2019-304 2020-308 2021-210

2017-JS1 2018-NC12 2019-MG1

2020-11

Uniform

Double

Skip
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there were lower individual plant yields, with 101, 71, and 113 g plant-1 averages for HS, LS, and 

MS, respectively (Table 4). The mean grain number per plant in Springport was 638 grain plant-1 

(465-638), 515 (403-657), 545 (470-644), 513 (415-713) grain plant-1, for HS, LS, MS, and UN 

YSZ. Portland had the lowest grain number, with 436 (414-462), 304 (278-329), 432 (377-525), 

and 406 (370-475) in the HS, LS, MS, and UN YSZs, respectively. Similarly, grain number in 

Parana were 447, 309 and 442, for the HS, LS, and MS YSZs, respectively. The crop yield 

ranged between 7.51 and 13.33 Mg ha-1 in Springport, 6.40 and 15.40 Mg ha-1 in Portland, and 

4.50 and 7.27 Mg ha-1 in Parana (Table 6).  
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Table 6. Average plant yield (g plant-1), grain number (grains plant-1), grain weight (g grain-1), 

and crop yield (Mg ha-1) by yield stability zone (YSZ) at three locations (Springport, Portland, 

and Parana) across fields and years (2016-2021). 

Site Year-Field YSZ 
Plant yield† Grain number† Grain weight†  Yield† 

g plant-1 grains plant-1 g grain-1  Mg ha-1 

Springport 

2016-222 

HS§ 163 553 0.294 11.83a 

MSǂ 162 536 0.304 10.50b 

LS¶ 150 496 0.306 10.70b 

UN‡ 160 506 0.318 11.60a 

2017-222 

HS 130a 465 0.280b 12.37b 

MS 150a 499 0.300a 13.33a 

LS 109b 403 0.271c 7.70d 

UN 116a 415 0.278bc 10.60c 

2018-105 

HS 141 480 0.293 10.83 

MS 133 470 0.285 10.1 

UN 146 496 0.296 10.8 

2019-304 

HS 173 572 0.302 12.95 

MS 142 511 0.275 10.62 

UN 150 510 0.291 10.81 

2020-308 

HS 208b 638b 0.328a 12.67 

MS 202b 644b 0.313b 11.85 

LS 143c 657ab 0.215c 7.51 

UN 238a 713a 0.336a 11.66 

2021-210 

HS 145a 557a 0.262 10.20a 

MS 131b 533ab 0.249 9.40b 

LS 126b 503b 0.251 8.44c 

UN 108c 437c 0.265 8.00c 

Portland 

2017-FJS1 

HS 131 414 0.315 9.31 

MS 118 393 0.301 8.91 

LS 86 278 0.312 6.39 

UN 117 370 0.318 8.64 

2018-FNC12 

HS 98 432 0.233 9.32 

MS 167 525 0.319 15.39 

UN 120 475 0.25 11.12 

HS 137 462 0.293 11.39 

2019-MG1 

MS 113 377 0.304 9.5 

LS 99 329 0.309 8.48 

UN 119 375 0.324 10.93 

Parana 2020-11 

HS 101a 447a 0.23 6.64a 

MS 113a 442a 0.253 7.30a 

LS 71b 309b 0.236 4.50b 

†Means not sharing the same letter within the same column and field-year are different (p<0.05) from each other. 

HS: High and stable, LS: Low and stable, MS: Medium and Stable, and UN: Unstable. 

 

2.4.4. Impact of emergence delay on plant yield, crop yield and yield components  

The relative individual plant yield across year-fields was negatively affected by 

emergence delay (Fig. 5 a, b, c). The average relative plant yield decrease per day of emergence 
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delay was 2 % in Springport and it did not show differences among YSZ (Table 7 and 

APPENDIX A Table 19). Although, there were no significant differences between YSZs (i.e., no 

significant difference in slopes, p>0.05) in the emergence effect, Portland and Parana relative 

plant yield was best explained with a model that included the zones as dummy variables (Table 7 

and APPENDIX A Table 19). Similarly, relative grain number was significantly reduced by the 

delay in emergence (Fig. 5 d, e, and f). In Springport the relationship was best explained with a 

simple model and the reduction in RGN was 2% per day of delay in emergence. In Portland and 

Parana, the model that included YSZs as dummy variables explained the best the reduction in 

RGN (Table 7 and APPENDIX A Table 19). In Springport, the relative crop yield relationship 

with emergence was best explained by a simple model, and the reduction was 3% per day of 

delay. In Portland and Parana, a model including YZS as dummy variables best explained the 

relationship with emergence, the reduction in RY were 7 and 5% per day of delay in the 

emergence in Portland, and Parana, respectively (Table 7 and APPENDIX Table 19). The effect 

of emergence delay on individual grain weight (APPENDIX A Table 19) was not significant 

(P>0.05).   
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Figure 7. Relative plant individual yield (a, b, c), relative grain number (d, e, f) and relative crop 

yield (g, h, i) versus time to emergence (days after planting) by yield stability zone for Springport, 

Portland, and Parana across all seasons. Each point represents the mean value per emergence day 

in each plot. HS: High and stable, LS: Low and stable, MS: Medium and Stable, and UN: Unstable. 
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Table 7. Statistical correlation between emergence (days after planting) with relative plant 

individual yield (RPY), relative grain number (RGN), and relative yield (RY), for Springport, 

Portland, and Parana site locations across fields and seasons. 

Site Variable Model R2 p 

Springport 

Relative Plant yield RPY = 0.97 -0.02DAP 0.24 <0.0001 

Relative grain 

number 
RGN = 1.01 -0.02DAP 0.25 <0.0001 

Relative crop yield RY = 0.98 -0.03DAP 0.27 <0.0001 

Portland 

Relative Plant yield RPY = 1.47 +0.04MS -0.15LS -0.08UN -0.07DAP 0.58 <0.0001 

Relative grain 

number 
RGN = 1.52 -0.02MS -0.21LS -0.09UN -0.06DAP 0.63 <0.0001 

Relative crop yield RY = 1.48 +0.05MS -0.14LS -0.06UN -0.07DAP 0.57 <0.0001 

Parana 

Relative Plant yield RPY = 1.02 -0.32MS -0.20LS -0.04DAP 0.84 <0.0001 

Relative grain 

number 
RGN = 1.25 -0.40MS -0.11LS -0.05DAP 0.83 <0.0001 

Relative crop yield RY = 1.29 -0.21MS -0.54LS -0.05DAP 0.85 <0.0001 

 

2.4.5. Impact of plant available growing space variation on plant yield, crop yield and yield 

components  

Although some fields showed a significant effect of growing space on individual plant 

yield, grain number, grain weight, and crop yield (APPENDIX A Table 18), none of the 

regressions were significant (APPENDIX A Fig.24). Plant yield was significantly (p<0.05) 

affected by within row plant separation (uniform, skip or double) in field 2017- FJS1 in favor of 

plants classified as skips (Table 7), and in 2018-FNC12 in favor of plants classified as uniform. 

The grain number was significantly affected by the within row plant separation in two fields 

(2017-FJS1 and 2020-F308) where the plants located in skips produced more grains. The 

individual grain weight was affected by the distance between plants in field 2017-F222, where 

plants located in skips reached higher individual grain weight. Similarly, crop yield showed a 

significant variation with the variation in the distance between plants in the three fields (2016-

F222, 2017- FJS1, and 2018-FNC12), and yield was higher in the uniform plants except in 2017-

FJS1 where yield was higher in the skips (Table 7).  
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Table 8. Average plant yield (g plant-1), grain number (grains plant-1), grain weight (g grain-1), crop yield (kg ha-1), by plant spatial 

variability class (Uniform, Skip, and Double) at three locations (Springport, Portland, and Parana) across fields. 

Location  Year-field 

Plant yield† 

(g plant-1) 

Grain number†  

(grain plant-1) 

Grain weight† 

(g grain-1) 

Yield†  

(kg ha-1) 

Uniform Skip Double Uniform Skip Double Uniform Skip Double Uniform Skip Double 

Springport 

2016-F222 155 148 156 501 484 507 0.313 0.307 0.312 11334a 9747b 11289ab 

2017-F222 127 131 109 447 441 405 0.282ab 0.292a 0.265b 11085 9894 9697 

2018-F105 141b 181a --- 494 552 ---- 0.290 0.328 ----- 11614 13155 ----- 

2019-F304 154 182 146 529 602 522 0.289 0.301 0.277 11408 13328 10896 

2020-F308 189 230 158 643b 734a 593b 0.294 0.314 0.265 10924 11915 9374 

2021-F210 126 142 145 503 546 546 0.256 0.266 0.264 8888 9831 10134 

Portland 

2017-FJS1 112b 137a 121ab 361b 430a 376ab 0.311 0.320 0.327 8230b 9737a 8949ab 

2018-FNC12 134a 103b 104ab 483 383 350 0.277 0.252 0.277 12491a 9307b 9837ab 

2019-FMG1 117 134 94 385 418 327 0.307 0.320 0.290 10004 11424 8230 

Parana 2020-F11 96 93 73 403 391 320 0.240 0.239 0.225 6224 5942 4848 

†Means not sharing the same letter within the same row are different (p<0.05) from each other. Uniform: plants with distances between 5cm and theoretical 

distance plus one standard deviation; Skip: plants located in gaps greater than theoretical distance plus one standard deviation, and Double: consecutive plants 

less than 5 cm from each other. 
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2.5.  Discussion  

The impacts of emergence time and spatial variability of within row planting are rarely 

studied outside the confines of small experimental research plots. In this study we worked almost 

exclusively on active, commercial farmer fields that experienced a range of management 

practices (e.g., seeding rate, soil type and conditions, cover crop, tillage, and crop hybrid) with 

single planting dates at each site to evaluate the spatial and temporal variation of corn emergence 

in the various sub-field yield stability zones. Our results showed that emergence delay has a 

greater impact than plant spatial variation on crop yield and its components, and in general the 

impact is larger in low yield stability zones. The greater impact in the low yield stability zones 

might be related to spatial variation in the conditions that promote emergence (Knappenberger & 

Köller, 2012) i.e., less plant available water and reduced soil fertility in the low yielding areas. It 

is noteworthy that the LS zones in Michigan sites were typically located in the header of the 

fields, where field operation transit is higher, likely leading to compaction and decreasing soil 

water retention. In Parana, the LS zone was in a severely eroded area that retains less water and 

has lower fertility. 

In our study, emergence across years and fields varied between 3 and 31 DAP, a broader 

range than reported by Nemergut et al. (2021), who evaluated in-field corn emergence in 

different soils and at different planting depths and reported emergence between 4 and 13 DAP. 

This narrower emergence range may be related to their observation period – results were 

reported over 14 consecutive DAP, so later emerging plants were not included in the analysis. 

Overall, emergence time variation was higher in Springport than in Portland and Parana (Fig.5a-

f). The difference in emergence between the Michigan sites might be explained by different 

tillage practices adopted; Springport fields were under no-till with cover crops in some years, 
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which may have resulted in colder and wetter soils than in Portland where conventional tillage 

was used. Differences in surface residue cover related to tillage systems have been shown to 

affect soil temperature and consequently corn emergence (Gupta, 1985). Even though the Parana 

field was under no-till, there was a higher uniformity in emergence time when compared with 

Springport and Portland. This could be related to the higher mean temperature at the Parana site 

along with the later planting date that can lead to higher soil and near soil surface air 

temperatures, major factors known to affect emergence (Knappenberger & Köller, 2012). 

Planting speed is an important contributing factor to plant emergence time and one that farmers 

can directly control. Planting speed is related to the depth that the seed is placed; greater speeds 

increase the variability in the seed depth placement, which in turn increases the variation in 

timing of plant emergence (Nielsen, 1993). Seeds planted in a shallower position with enough 

water and appropriate temperature for emergence will do so faster than seeds planted deeper. 

However, seeds that are planted at shallower depths and that do not have good soil-seed contact, 

or where the soil is dry (Cox & Cherney, 2015), will not emerge, leading to a greater stand 

variability with more exposure to bird and other animal predation. 

Our results showed a significant negative effect of the increasing delay of emergence on 

relative individual plant yield, relative grain number and relative crop yield (p<0.05, Fig.5). 

Although the degree of decrease per day of delay in the emergence (slopes) of the relationships 

for the variables (relative plant yield, relative grain number, and relative yield) and emergence 

did not significantly differ among YSZ, in Portland and Parana the models that best explained 

the relationship between the variables and emergence, included the YSZ as dummy variables 

(Table 7) generally penalizing LS zones. This penalization in relative yield and yield components 

of emergence delay likely caused a higher impact in the LS zone than in the other yield zones. 
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Consequently, by considering variable rate seeding based on YSZs, farmers have the opportunity 

to reduce their seeding rate in the LS zones, thereby reducing seed cost, a major portion of total 

planting costs. For each day of delay in emergence, individual plant yield was reduced on 

average by 7%, a similar magnitude to those found by Andrade & Abbate (2005), (Liu et al., 

2004b), and (Nafziger et al., 1991). Emergence delay appears to promote the formation of plant 

‘health’ hierarchies, where plants that emerge earlier have an advantage in that they have access 

to more readily available resources and can uptake their requirement, when compared to plants 

that emerge later that may not (Carter et al., 1990).  

A significant reduction was found in the number of grains per plant (Fig. 5d, e, and f, 

Table 6), whereas the effect on grain weight per plant was less consistent (APPENDIX A Table 

18). This result is similar to Pommel et al. (2002), who evaluated heterogeneity in three 

emergence treatments (normal, late, and delayed) and found a more frequent negative effect of 

treatment on grain number than on individual grain weight as emergence time increased. When 

corn planting date is delayed, grain number is reduced due to a limitation in the availability of 

assimilates during grain filling (Bonelli et al., 2016); corn plants that emerge late experience this 

source limitation and a higher resource competition from the early emerged plants. Additionally, 

as the late emerged plants will have a phenological delay, postharvest damage and costs might 

increase due to grains from late emerging plants that will have higher grain moisture content at 

harvest.  

Although the individual grain weight was generally not significantly affected by the 

emergence delay (APPENDIX A Table 18), the reduction in the grain number was sufficient 

alone to significantly reduce the final crop yield, with reductions ranging from 416 to 903 kg ha-1 

per day of delay (3-14% decrease), higher than the 293 kg ha-1 reduction in yield per day of 
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delay reported by Liu et al. (2004a) and the 122 kg ha-1 per day found by Rutto et al. (2014). 

Differences probably related to the methodology; these authors used manipulative treatments to 

achieve the delayed emergence (i.e., planting at different dates) in contrast with our experiments 

where the natural variation of emergence was captured. The temporal variability in emergence 

affects resource capture and utilization by the plants, causing a decrease in grain yield through a 

reduction in harvest index (Tollenaar et al., 2006).  

The plant available growing space varied between site location (Table 4), an expected 

outcome due to the differences in plant density and row spacing between the fields (Table 1). We 

found that the plant spatial variability differs with YSZ in three of the ten fields, and in general 

plants in the low stable YSZ had a larger available space than in the other YSZs. This can be 

related to a higher percentage of skips in the low stable yielding zones. Although the GS had a 

significant effect in some fields, there was no significant relationship between growing space and 

yield and yield components (APPENDIX A Table 18). Tollenaar et al. (2006) demonstrated that 

plants located next to a gap (i.e., a ‘missing’ plant) increased their yield, but that this is 

insufficient to compensate for the gap. However, Liu et al. (2004b) does not cause plant 

competition, a range that includes the standard deviation in our experiments (6 to 10 cm). 

The availability of precision planting equipment has allowed producers to reduce the 

variability within the row and obtain a more consistent distance between the plants, as 

demonstrated by the small percentage of skips and doubles found in our fields (Fig 3), where for 

example, the pneumatic planter used in Parana – specially developed for the no-tillage system – 

will likely have contributed to a more uniform stand. Shuai et al. (2019) analyzed corn stand 

heterogeneity using unmanned aerial vehicles (UAVs) across YSZs and concluded that 

variability in plant spacing across YSZs was not a major cause of yield variability. This result 
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agrees with other studies that found that plants can partially compensate for grain yield penalties 

due to greater plant spatial variability if the plant density is adequate (Lauer & Rankin, 2004), 

which is likely the case in our experiments where fields are managed by their owners who have 

optimized the inputs.  

Variation in plant emergence time has a stronger effect than variation of within-row plant 

spacing (APPENDIX A Table 18), agreeing with previous studies (Lauer & Rankin, 2004; Liu et 

al., 2004a; Pommel et al., 2002a), and likely related to lower overall spatial variability when 

compared to temporal variability. In addition, the plants may have compensated for within row 

variations (i.e., missing plants or doubles), but were unable to do so for temporal variations 

where plant hierarchies developed due to resource availability and capture. 

2.6. Conclusions  

Temporal variability of crop emergence has a larger impact than within-row plant spatial 

variability on final crop yield and its components. The delay in emergence causes a decrease in 

maize total yield and yield components that was not statistically related to yield stability zone 

type but was more prevalent in low yield stability zones. The reduction in total crop yield could 

be explained by the reduction in the grain number per plant. 

Our findings can be incorporated into crop models that currently do not consider 

naturally occurring emergence variation, but rather assume uniform emergence that might lead to 

yield overestimation. Future work is needed to incorporate the relationship of emergence delay 

with plant individual yield, grain number and grain yield into crop models to improve model 

accuracy. 
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CHAPTER 3: EMERGENCE DELAY REDUCES MAIZE (Zea mays L.) NITROGEN 

UPTAKE AND USE EFFICIENCY 

3.1. Abstract 

Spatial and temporal variability in plant emergence may cause differences in N uptake by crops 

at field scale leading to a mismatch between plants requirements and nitrogen supply with 

negative environmental and economic impacts. We aimed to understand nitrogen uptake and 

concentration in unevenly emerged plants. We conducted four experiments in farmers’ fields 

with available data to determine yield stability zones (YSZ) and found that emergence ranged 

from 64 and 124.1 °C day-1, with significant variability between zones in three out of four fields. 

Plant biomass at R6 ranged from 54 to 736 g plant-1 and was significantly affected by YSZ 

(p<0.05), with a decrease in biomass variation from V6 to R1. We observed a curvilinear 

relationship between plant growth rate around R1 and grain number per plant, and a threshold in 

emergence (76°C day-1) beyond which plant growth rate was negatively impacted, resulting in 

lower yield. Late-emerging plants accumulated less nitrogen than early emerged plants and the 

plant nitrogen partition changed with the delay. Nitrogen concentration in the grains was not 

affected by the delay, whereas the concentration of nitrogen in biomass increased, related to a 

lower total biomass and a lack of sink (i.e. less grains per plant). The number of grains set by the 

plants was reduced due to a decreased plant growth rate during the period around R1. 

Understanding the impact of spatial and temporal variability in plants N uptake is important to 

improve nitrogen prescriptions, nitrogen use efficiency and reduce environmental losses. 

3.2. Introduction 

Nitrogen (N) is one of the most worldwide limiting factors in crop production (Andrade 

et al., 1996;Cassman & Dobermann, 2022). Over the past decades, the continuous increase in 
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maize yield has been mainly linked to an increase of mineral fertilizers utilization (Lemaire & 

Gastal, 2019) leading to serious environmental impacts (Vitousek et al., 2009). The application 

of uniform N rates, where requirements and nutrient availability varies spatially, generates 

mismatches between the supply and demand (Huggins & Pan, 1993). Nitrogen variable rates 

have been developed to match crop needs with fertilizer supply and prevent these consequences 

(Cassman & Dobermann, 2022). Although variable N rate considers spatial variability in crop 

demand and soil availability, it does not consider the temporal variability that exists in maize 

crop stands caused by uneven plant emergence. Uneven emergence can generate a variability in 

crop N demand and increase the disparity between plant requirements and nitrogen supply with 

the known negative impact for the environment and farmers’ profit. 

Soil N availability during the maize growing season varies according to the initial content 

of N in the soil, fertilization supply, and mineralization during the growing season. It has been 

reported that over 60% of soil-applied fertilizer-N can be lost (Kant et al., 2011; Raun & 

Johnson, 1999), and these losses are due to a combination of volatilization, denitrification, 

runoff, leaching, and consumption by microorganisms (i.e. immobilization). Crop yield is highly 

related with the N status at silking (R1), since close to 60% of the nitrogen that a maize crop 

needs is taken up during the pre-flowering period (Ciampitti & Vyn, 2013; Lemaire & Gastal, 

2019). Past studies evaluating N uptake in uneven plant stands reported differences in nitrogen 

uptake and use efficiency in plants that develop size hierarchies and compete differently for the 

use of resources (Caviglia & Melchiori, 2011; Mayer et al., 2012; Rossini et al., 2012, 2018). 

Under uneven crop stands, nitrogen is allocated preferentially to dominant plants and the lack of 

light interferes in the response of N supply of dominated plants (Lemaire and Gastal, 2019). A 

reported response of maize to the presence of neighbors is a change in the biomass partitioning 
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(Kasperbauer & Karlen, 1994) and shoot elongation (Maddonni et al., 2002). This reduction in 

assimilate allocation to roots might impact the dominated plants' competitive capabilities of 

resources capture from the soil. However, in areas of low resources availability dominant plants 

might develop larger root systems that allows them to reach more resources compared with 

dominated plants (Boomsma et al., 2009). Indeed, plants that compete for light also compete for 

nutrients (specifically nitrogen uptake). Moreover, the competition has been suggested as 

symmetric (Maltese et al., 2023), i.e. larger plants tend to capture more light and nutrients than 

smaller ones (Casper & Jackson, 1997).  

Studies evaluating plant-to-plant variability have shown that dominant plants outyield 

dominated plants, but the higher yield of the dominant plants does not compensate for the lower 

yield of dominated plants and the overall yield in a heterogeneous crop stand is reduced (Novak 

& Ransom, 2018; Parra et al., 2022). One of the causes of heterogeneous crop stand is the 

variability in crop emergence usually associated with soil moisture and temperature spatial 

variability. Effects of temporal variability (uneven emergence) have been widely studied 

(Andrade & Abbate, 2005; Carter et al., 1990; Carter et al., 2019; Liu et al., 2004; Tollenaar & 

Wu, 1999) but there is still a gap in knowledge of the impact of emergence delay on N uptake 

and use efficiency. Between 10 and 22% of yield reduction when emergence is delayed 21 days 

(Carter et al., 1990), and 5.25% reduction in per-plant yield per day of delay (Nemergut et al., 

2021) were reported impacts of emergence delays. Unlike the impact of emergence on yield, the 

impact of uneven emergence on N uptake has been less explored. The heterogeneity in N capture 

and use efficiency may contribute to a mismatch between N supply and N consumption, 

contributing to increased environmental risk, reduced N use efficiency, and decreased farmer’s 

profit. It is important to understand if plant N uptake is affected by the delay in emergence and if 
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the effect of the delay is related to the spatial variability in the fields, as well as to learn if plant 

hierarchies (dominant and dominated) are related to emergence delay. Our hypothesis is that 

plants that emerge late accumulate less nitrogen than early emerged plants and the nitrogen 

partitioning in the plant changes with the delay. Thus, the objectives of this research were to i) 

evaluate the biomass accumulation and variation in maize plants with temporal variability in 

emergence within yield stability zones, and ii) evaluate the nitrogen concentration, N uptake and 

N use efficiency in plant hierarchies with temporal emergence variability in four commercial 

fields.  

3.3. Methods 

3.3.1. Field experiments and Yield stability zones 

Field experiments were conducted in four corn commercial fields, located in Springport 

(MI) (42.3471°N, 84.7097°W), and in Portland (MI) (42.8971°N, 84.9776°W). Fields varied in 

soils and management practices, such as tillage system, row spacing, hybrid relative maturity, 

and planting date. Fields in Springport were planted with a White planter 9924VE, and a John 

Deere 1770 NT was used in Portland field. N fertilizer (46− 0− 0) was applied at planting and 

side dressed around V6 (V6 stage; Ritchie et al., 1997) (Table 1). 

Yield stability zones (YSZ) were delineated from several years of yield monitor data 

collected from farmers in each studied field (Basso et al., 2007; Maestrini & Basso, 2018; 

Maestrini & Basso, 2021). Briefly, standardized yield maps were used to calculate the mean (µ) 

and standard deviation (σ) of the yield for every pixel of the field, considering a pixel as stable 

when σ < 0.75 and as unstable when σ ≥ 0.75. Similarly, pixels with µ < 0 were classified as 

low-yielding and high-yielding when µ ≥ 0. This methodology classifies field pixels as High 

Stable (HS, consistently higher than the average), Low Stable (LS, consistently lower than the 
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average), Medium Stable (MS, consistently average) and Unstable (UN, yields fluctuate, high 

some years and low in others). 

The experiments consisted of five meters by two-row plots with three replicates in each 

yield stability zone (YSZ) established shortly after corn planting (one to two days after planting). 

Plots from all the experiments were outlined by orange marking stakes, and the plot size allowed 

for a maximum of up to 60 plants per plot (1648 total for the four fields). Emergence (DAP, days 

after planting) was recorded by visiting each plot from each field once a day during the period of 

emergence. Each emerged plant was individually labeled using white stakes marked with the day 

of emergence, and phenology was recorded bi-weekly on each tagged plant using the  (Ritchie et 

al., 1986) scale. At the end of the growing season tagged plants were individually harvested to 

determine the individual plant yield and grain number. Individual plant biomass at R6 was 

weighed wet and ground using a woodchipper, and a subsample was weighed before and after 

forced air oven drying (60°C) to get whole plant dry weight.  

For each Year-field, plants were classified as Early, when the emergence was ranked in 

the lowermost 33% of the data, Medium when they were within 34 and 66%, and Late, when 

they were within the uppermost 33% of the data set. 

3.3.2. In season plant biomass 

Plant biomass was estimated in three maize growing stages, V6, V14, and R1 (Ritchie et 

al., 1986) using allometric models such as in Maddonni & Otegui (2004). For this intent, plant 

height (H) from the ground to the ligule of the last fully expanded leaf, and stem diameter (D) at 

the base of the stalk from every tagged plant in every plot from every experiment (total of 1648 

plants) were measured. Between twenty and thirty plants per field (total of 360 plants) were 

harvested at every sampling stage (V6, V14, R1) and used to calibrate (280 plants) and validate 
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(82 plants) the allometric models. Harvested plants were also measured and oven dried at 70°C 

until constant weight to determine observed total plant biomass. The relationship between 

morphometric variables (H and D) and plant biomass was evaluated through regression models. 

Although, there were not significant differences in slopes and intercepts among models per stage, 

a single model per stage was used to describe biomass in all the evaluated fields (Table 2) since 

the lower RMSE (Equation 2) and RRMSE (Equation 3) compared with a general model to 

estimate biomass at all the stages.  

𝑅𝑀𝑆𝐸 =  √
∑ (𝐸𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
 ……………………………….…….. Equation 2 

𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

1

𝑛
∑ 𝑂𝑖

𝑛
𝑖=1

………………………………………….. Equation 3 

where Ei is the estimated plant emergence (°C day-1), Oi is the observed emergence, n is the total 

number of observations, and i is the ith observation.  

For each Year-field and YSZ, plants were classified in hierarchies according to its 

estimated plant biomass at V6 (Pagano & Maddonni, 2007). Plants were considered dominated 

when they were ranked in the lowermost 33%, dominant when they were in the uppermost 33%, 

and Uniform when their biomass was within the lowermost and uppermost 33%.  

.
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Table 9. Soil classification and management practices at Springport, MI and Portland, MI experimental sites, 2019-2021. 

Site Year-Field 
Predominant Soil  

Taxonomic class 

Tillage  

System* 

Row  

spacing (cm) 

Relative 

Maturity 

Planting 

Date 

Seeding rate  

(seeds ha-1) 

N fertilizer 

(kg ha-1) 

Side-dress 

date 

Springport 

2019-304 
Very-fine, mixed, active,  

frigid Aquic Glossudalfs 
NT 76.2 95 8-Jun 74132 184 30-Jul 

2020-308 
Very-fine, mixed, active,  

frigid Aquic Glossudalfs 
NT 76.2 102 11-May 74132 192 21-Jul 

2021-210 
Very-fine, mixed, active,  

frigid Aquic Glossudalfs 
NT 76.2 95 15-May  74132 192 28-Jul 

Portland 2019-MG1 
Fine, mixed, active, mesic 

Haplic Glossudalfs 
Conv 50.8 104 8-Jun 93900 186 11-Jul 

*NT: No-till, Conv: conventional 

 

Table 10. Allometric model parameters and model validation statistics for the estimation of plant biomass (g plant-1) at V6, V14, and 

R1 crop growth stages at Springport, MI and Portland, MI experimental sites, 2019-2021. 

Model Stage 
Model parameters 

n adj R2 
RMSE  

(g plant-1) 

RRMSE 

(%) a b 

 V6 0.172 0.09 90 0.88 1.2 24 

By stage V14 0.261 0.28 90 0.85 11.5 18 

 R1 0.272 4.03 100 0.88 24.0 24 

General Overall 0.272 -1.20 280 0.93 14.1 30 
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3.3.3. Plant Nitrogen uptake  

At harvest, ten (2019) or six (2020 and 2021) consecutive plants per plot (345 plants 

total) were selected from every plot trying to represent each emergence variability class, the 

grain and biomass were ground individually to analyze the nitrogen content per plant (%Ng and 

%Nb, nitrogen concentration in the grains and in the biomass, respectively) via dry combustion 

on a Perkin Elmer TN 2410. Total N uptake by the plants (Nupt) at maturity (R6) was calculated 

as the sum of the N uptake in the grain (Nupg) and the N uptake in the biomass (Nupb). The N 

uptake in the biomass and the grain was obtained by the product of the biomass (or grain) and its 

%N. Biomass, grain yield and N uptake were expressed in grams per plant. 

3.3.4. Calculations 

Thermal time was computed for emergence (GDDE, °C day-1) as: 

𝐺𝐷𝐷𝐸  (°C 𝑑𝑎𝑦−1) = ∑ (𝑇𝑚 − 𝑇𝑏)

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔

  

where Tm is the daily mean temperature and Tb is maize base temperature (Tb 10°C).  

Plant growth rate (PGR) was estimated as the weight difference between consecutive 

samplings expressed as a function of chronological days (g plant-1 day-1).  

Nitrogen use efficiency was calculated as the ratio between N uptake in the grain and the 

biomass (NUEg and NUEb) and N applied, and N fertilizer efficiency as the ratio between yield 

(grain and biomass) (NfUEg and NfUEb) and N applied. Nitrogen harvest index (NHI) was 

computed as the ratio between N uptake in the grains and total N uptake (Rossini et al., 2018). 

All the variables were calculated at the plant level.  
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3.3.5. Weather conditions 

The study areas are characterized as Cold, without dry season, hot summer (Dfb) with an 

average daily temperature of 7.9°C and rain totals averaging 880-910 mm annually. Rainfall 

during the growing season was closer (90 to 110%) to the average (1991-2020) for the same 

period in the evaluated fields. Temperatures were slightly higher than historical averages in 

Springport fields, while they were within the range of historical values for Portland. The average 

temperature during the emergence period (May-June) ranged from 14 to 22°C in Springport 

(Fig.8a, c, and d), around 14% higher than the 30 yr average for the same period. In contrast, 

temperatures in Portland (Fig.8b) were 16% higher than average in May but 7% lower in June. 

 
Figure 8. Daily precipitation (mm), and maximum, mean, and minimum temperatures (°C) at 

Springport, MI (42.3471°N, 84.7097°W) and Portland, MI sites (42.8971°N, 84.9776°W) for a) 

2019-F304, b) 2019-FMG1, c) 2020-F308, and d) 2021-210.  
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3.3.6. Data analysis 

Data was analyzed using the GLIMMIX procedure in SAS version 9.4 (SAS Inst., Inc.) to 

determine the yield stability zone effect, considering emergence (DAP) days after planting as a 

covariate. Individual plants variables were nested within each plot and included as a random 

factor to identify them as subsamples. Mean separation between groups was analyzed using 

Tukey’s method, performing pairwise comparisons to identify differences greater than the 

expected standard error. Plant biomass was analyzed considering crop growth stage as a repeated 

measure.  

Regression analysis was performed using the JMP® Pro Version 15.2.0 (SAS Institute 

Inc., Cary, NC, 1989–2021) to determine relationships between plant yield, grain number, plant 

biomass, Nupt, Nupg, Nupb, and crop yield with emergence (GDDE, °C day-1). Sigmoid functions 

(Gompertz equation, best fit) were fitted between plant biomass and thermal time. A non-linear 

model was fitted to plant grain number vs PGR. Models were fitted by Year-Field and yield 

stability zone, when models did not differ (p>0.05) among Year-Field, a single model was fitted 

to the whole dataset. Bi-linear models were fitted to evaluate the relationship of PGR, GN and 

NHI with emergence in thermal time (GDDE, °C day-1), using piecewise-regression in Python 

(Pilgrim, 2021).  

3.4. Results 

3.4.1. Emergence, plant biomass, and plant yield  

Emergence ranged from 8 to 14.7 days after planting (64 and 124.1 °C day-1). The 

emergence range was highest in field 2021-210 (9 to 27 DAP, and 87.8 to 259.8 °C day-1), and 

narrower in 2019-MG1 (8 to 17 DAP, and 61 to 135.8 °C day-1). All yield stability zones (YSZ) 
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showed variability in emergence (Table 11, variation coefficient in brackets) and emergence was 

significantly affected by YSZ in 3 out of 4 field site years (p<0.05) (Table 11). 

Table 11. Maize average emergence in days after planting and thermal time (°C day-1), from four 

year-fields by yield stability zone (YSZ). Variation coefficient in brackets. 

Year-Field 
YSZ Emergence- in days after planting (DAP)†  

P-value HS  LS MS UN 

2019-F304 0.3244 8.1 (8) ---- 8.2 (8) 8.2 (12) 

2020-F308 <.0001 14.4b (10) 14.7a (9) 14.7a (9) 14.7ab (15) 

2021-F210 <.0001 10.8b (17) 13.2a (26) 11.2b (22) 10.5b (9) 

2019-FMG1 <.0001 8.9c (10) 9.8b (6) 11.4a (16) 9.4b (6) 

Year-Field 
YSZ 

P-value 
Emergence- in thermal time (GDDE, °C day-1)†  

2019-F304 0.8607 73.2 (7) ---- 73.5 (7) 73.4 (11) 

2020-F308 <.0001 84.3b (23) 93.7a (17) 92.4a (21) 89.1ab (20) 

2021-F210 <.0001 109.4b (16)  124.1a (18) 110.3b (17) 105.1b (13) 

2019-FMG1 <.0001 64.0b (7) 67.3b (6) 87.0a (21) 66.1b (11) 

†Means not sharing the same letter within the same row are different (p<.05) from each other. HS: High and stable, 

LS: Low and stable, MS: Medium and stable, and UN: Unstable. 

 

Plant biomass ranged from 54 to 736 g plant-1 at R6 and was significantly affected by 

YSZ (p<0.05) (Fig.9). In general, higher biomass was accumulated in the HS YSZ, except in 

2021-F210 where final biomass did not differ among YSZs (Fig.9d). There were no differences 

among YSZs in early stages and R1, except in 2019-FMG1, where accumulated biomass at R1 

significantly differed among YSZ (Fig.9b).  
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Figure 9. Maize plant biomass accumulation at Springport, MI (42.3471°N, 84.7097°W) and 

Portland, MI sites (42.8971°N, 84.9776°W) for a) 2019-F304, b) 2019-FMG1, c) 2020-F308, 

and d) 2021-FF10 seasons and fields for High stable (HS), Low stable (LS), Medium stable 

(MS), and Unstable (UN) yield stability zones. Bars represent one standard deviation. 
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A decrease in the plant-to-plant variability in the biomass was associated with the 

progression in the growing season (i.e. higher CV in early stages). For all fields, plant biomass 

CV decreased from V6 (20-60%) to R1 (14-34%) (Fig.10) and remained similar until R6. In 

general, high yielding zones (HS) had consistently lower CVs compared to low, medium, and 

unstable yielding zones (LS, MS, UN, respectively). Even though no significant differences 

(p>0.05) among YSZ were found in Field 2019-F304, HS zone had a lower CV during all the 

evaluated stages (V6, V14, R1, and R6). Field 2019-MG1 showed significant differences 

(p<0.05) among YSZ in plant-to-plant variability at V6, as the HS zone had a CV of 18% and the 

other zones had 37% variation. The variation decreased as the season progressed, and by R6 

there were no significant differences among YSZ. Field 2020-F308 (Fig.10), had the highest 

variability in plant biomass, with non-significant (p>0.05) YSZ differences. However, the plant 

biomass CV in the HS zone was always lower compared to the others YSZs. In 2021 (Fig.10), 

plant biomass variability was significantly affected by the YSZ at V6 and R6, and the LS zone 

had a consistently higher CV (58%) compared with the other zones.  
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Figure 10. Coefficient of variation of maize plant biomass (CV) as function of thermal time at 

Springport, MI (42.3471°N, 84.7097°W) and Portland, MI sites (42.8971°N, 84.9776°W) for a) 

2019-F304, b) 2019-FMG1, c) 2020-F308, and d) 2021-FF10 seasons and fields for High stable 

(HS), Low stable (LS), Medium stable (MS), and Unstable (UN) yield stability zones. 

 

Plants in each hierarchy segregated into the emergence classes (early, medium, late) in 

different proportions in every Year-Field (Fig.11). Dominant plants in 2019-304 and 2019-MG1 

were mainly late (42-45%) and medium plants (33-42%), whereas early emerged plants 

represented a smaller proportion (13-25). In contrast, in 2020-F308 and 2021-F210, dominant 

plants were mainly early plants (60-64%), followed by medium (28-35%) and a small percentage 

of late (5-8%) emerged plants. The proportion of emergence classes in the dominated plants was 

similar in 2019-F304 and 2020-F308, where 21% of the dominated plants emerged Early, 

between 31 and 43% late, and between 36 and 49% medium. In 2019-FMG1 and 2021-F210, 
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dominated plants were in majority (90-97%) late and medium emerged plants, with a small 

proportion of early plants (3-10%). 

 

Figure 11. Percentage (%) of plants in each emergence class (Early, Late, and Medium) and 

plant hierarchy (Dominant, Dominated, and Uniform) at Springport, MI (42.3471°N, 

84.7097°W) and Portland, MI sites (42.8971°N, 84.9776°W) for 2019-F304, 2019-FMG1, 2020-

F308, and 2021-F210 season field combinations. 

Average individual plant yield (Table 12) ranged from 82 to 217 g plant-1. Fields in 2019 

showed significant differences between YSZ, with the highest plant yield in the HS zone. In 

2020 and 2021plant yield did not significantly differ among YSZ. Field 2019-F304 and 2020-

F308 showed a small variation in emergence, compared with Field 2019-FMG1 and 2021-F210 

where emergence had a higher variation (Fig.12). In general, plant yield decreased with the delay 

in the emergence. In Fig.12a, plants that were in gaps (i.a. 2020-F308) reached higher individual 

yields compared with those that were evenly distributed within the row; also, plants that emerged 

late next to plants emerged earlier, had lower yields.
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Figure 12. Yield plant-to-plant variability (g plant-1) (a) and total N uptake plant-to-plant variability (g N plant-1) (b) for sampled 

plants. The scheme denotes the distribution of the plants within the 5 m row (distance between the squares represent the distance 

between plants within the row in the field) for the 4 evaluated fields, 2019-F304, 2019-FMG1, 2020-F308, and 2021-F210. Filled 

squares represent each sampled plant, the size of the square refers to the emergence category (early, medium, late). Empty squares 

denote plants that were not selected for nitrogen analysis but were monitored during the growing season to estimate biomass. Edge 

color denotes High stable (blue), Low stable (yellow), Medium stable (green), and Unstable (red) yield stability zones. 

a b 
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3.4.2. Nitrogen concentration, Nitrogen uptake, and Nitrogen use efficiency  

Nitrogen concentration in the grain (%Ng) was significantly affected by YSZ in 2021-

F210, while nitrogen concentration in the biomass (%Nb) showed a significant effect of YSZ in 

2020-F308 and 2021-F210 (Table 12). Overall, %Ng ranged from 1.0 to 1.33%, and when 

affected by YSZ it was higher in the HS and lower in the LS zone. The %Nb had a wider range 

(0.53- 1.2%) than %Ng, showing higher values in HS and UN zone compared with MS and LS 

zones, when significantly affected by YSZ. 

 Plant nitrogen uptake in the grains (Nupg) was significantly affected by YSZ in 2019-304, 

2021-F210 and 2019-FMG1 fields. Plants took up less nitrogen in YSZ with less yield potential 

(LS<MS<UN <HS). Field 2020-308 showed higher nitrogen uptake in the grains compared with 

the other fields (Table 12). Plant nitrogen uptake in the biomass (Nupb) was significantly affected 

by the YSZ in 2019-F304. There was greater uptake in the HS and UN zones, higher N uptake 

than the LS zone. The total plant nitrogen uptake (Nupt) was affected by YSZ in 2019-F304, as 

Nupt was higher in the HS zone (Table 12). In general, plants located in gaps took up more 

nitrogen than those placed in evenly distributed rows (Fig.12b).  

 NUEg ranged from 0.41 to 0.81, showing significant differences among YSZ in 2019-

F304 and 2021-F210, and HS showed higher efficiency compared to the other zones. The NUEb 

did not show a YSZ significant effect and ranged from 0.14 to 0.44. The fertilizer efficiency 

ranged between 26 and 69 g grain g N-1, showing a significant effect of YSZ in three fields 

(Table 12). In 2019-F304 the plants in the HS reached higher NUEfg, in 2019-MG1, the LS 

NUEfg was 30% lower than the other zones fertilizer efficiency, and in field 2021-210 the LS 

and UN reached similar efficiency. The NUEfb ranged between 20 and 51 g biomass g N-1, and 

it was significantly affected by the YSZ in 2019-F304, 2019-FMG1, and 2021-F210, being in 
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general less efficient in the use of the fertilizer in the MS, UN and LS, in 2019-F304, 2019-

FMG1, and 2021-F210, respectively (Table 12). 
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Table 12. Average plant yield, nitrogen concentration in the grains (Ng), nitrogen concentration in the biomass (Nb), N uptake in the 

grains (Nupg), N uptake in the biomass (Nupb), total nitrogen uptake (Nupt), nitrogen use efficiency in the grains (NUEg), nitrogen 

use efficiency in the biomass (NUEb), nitrogen fertilizer efficiency in the grains (NfUEg), nitrogen fertilizer efficiency in the biomass 

(NfUEb) at R6 growth stage at Springport, MI (42.3471°N, 84.7097°W) and Portland, MI sites (42.8971°N, 84.9776°W) for 2019-

F304, 2019-FMG1, 2020-F308, and 2021-F210 season field combinations. 

Year-Field YSZ 
Plant yield  N concentration 

Plant N uptake  

NUEg NUEb 

NUEfg NUEfb 

(g N plant-1) (g grain  (g biomass  

(g plant-1) Grain (%) Biomass (%) Nupg Nupb Nupt g N-1) g N-1) 

2019-F304 

HS 169 1.15 0.64 2.04a 0.84a 2.88a 0.81a 0.32 69a 51a 

MS 144 1.14 0.62 1.62b 0.63b 2.26b 0.65b 0.25 56b 40b 

UN 151 1.14 0.60 1.81b 0.74ab 2.55b 0.67b 0.28 60b 47a 
 p-value  ns ns ** ** ** ** * ** ** 

2020-F308 

HS 216 1.13 0.74a 2.53 1.17 3.70 0.73 0.37 69 50 

LS 160 1.32 0.69ab 3.22 1.33 4.55 0.71 0.29 53 43 

MS 186 1.21 0.61b 2.52 0.92 3.44 0.77 0.28 63 45 

UN 217 1.26 0.62b 2.91 1.26 4.17 0.63 0.25 53 42 
 p-value  ns ** ns * ns ns ns ns ns 

2021-F210 

HS 139 1.13a 1.10ab 1.64a 1.25 2.89 0.58a 0.44a 49a 38a 

LS 120 0.99b 0.92c 1.28b 1.06 2.34 0.43b 0.35b 42ab 37a 

MS 134 1.12a 1.03bc 1.49ab 1.15 2.64 0.56a 0.43ab 50a 42a 

UN 126 1.14a 1.20a 1.27b 1.03 2.30 0.43b 0.36b 42b 29b 
 p-value  *** **** ** ns ns ** * *** *** 

2019-FMG1 

HS 137 1.26 0.60 1.59a 0.56 2.15 0.44 0.16 36a 27a 

LS 82 1.32 0.68 1.13b 0.47 1.60 0.34 0.14 26b 20b 

MS 114 1.22 0.60 1.55a 0.64 2.19 0.46 0.19 38a 31a 

UN 122 1.21 0.54 1.45ab 0.57 2.02 0.41 0.18 38a 32a 

 p-value  ns ns ** ns ns ns ns *** <.0001 

Differences significant at * p<0.10; **p<0.05; *** p<0.01; **** P<0.001 
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Table 13. ANOVA of nitrogen concentrations in the grains (Ng) and biomass (Nb), plant and crop N uptake in the grain (Nupg), 

biomass (Nupb) and total (Nupt), nitrogen use efficiency for grain (NUEg) and biomass (NUEb), and nitrogen fertilizer use efficiency 

for grain (NUEfg) and biomass (NUEfb) at R6 growth stage at Springport, MI (42.3471°N, 84.7097°W) and Portland, MI sites 

(42.8971°N, 84.9776°W) for 2019-F304, 2019-FMG1, 2020-F308, and 2021-F210 season field combinations. 

Site Year-Field Effect 
Plant yield  

%Ng %Nb 

Plant N uptake  Crop N uptake  

(g N plant-1) (kg N ha-1) 

g plant-1 Npg Npb Nptotal Ncg Ncb Nctotal 

Springport 

2019-F304 

YSZ *** ns ns ** ns *** *** ns ns 

DAP ns ns ns ns ns ns ns ns ns 

YSZxDAP ns ns ns ns ns ns ns ns ns 

2020-F308 

YSZ ns ns ** ns ns ns ns ns ns 

DAP *** ns ns *** ns *** *** ns ** 

YSZxDAP ** ns ns ** ns ns ** ns ns 

2021-F210 

YSZ ns **** *** ns ns ns ** ns ns 

DAP **** ns ns *** *** *** ** *** *** 

YSZxDAP ns ns ns ns ns ns ns ns ns 

Portland 2019-FMG1 

YSZ *** ns ns ** ns ns ns ns ns 

DAP ns ns ns ns ns ns ns ns ns 

YSZxDAP ns ns ns ns ns ns ns ns ns 

Differences significant at * p<0.10; **p<0.05; *** p<0.01; **** P<0.001 
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3.4.3. Nitrogen uptake relationship with plant growth rate and grain number 

The PGR during the critical period of maize (period around silking, R1 +/- 15 days) 

ranged from 0.17 and 10 g plant-1day-1. Nitrogen uptake, in the grains, biomass, and total, were 

significantly and positively related to PGR (p<0.001) in the period around silking (Fig.6a, b, and 

c). Generally, late emerging and dominated plants had very low PGR (<2 g plant-1 day-1) (Fig. 

13, green triangles). The number of grains per plant varied from 38 to 1019 and was significantly 

related to PGR (p<0.0001), showing a curvilinear response (Fig.14a). At similar PGR, Late and 

Dominated plants set less grains, compared with Early and Dominant ones (i.e. green points 

generally below the fitted curve and orange generally above). The number of grains per plant 

was positively related to the N uptake, and most plants with low grain number were Late and 

Dominated plants (Fig.14b).  
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Figure 13. Plant nitrogen uptake in the grains (a), biomass (b), and total (c) (g N plant-1) 

measured at R6 (following Ritchie et al, 1986), versus plant growth rate (g plant-1 day-1) in the 

period around R1 for 2019-F304, 2019-FMG1, 2020-F308, and 2021-F210 year-fields 

combinations. Colors denote Early, Medium, and Late emergence class and symbols denote 

Dominant, Uniform, and Dominated plant hierarchy. Each point represents an individual plant 

(n= 345). 
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Figure 14. Relationship between a) grain number per plant (GN, grain plant-1) and plant growth 

rate around R1 (g plant-1 day-1), and b) plant nitrogen uptake in grain (g N plant-1) and grain 

number per plant (grain plant-1) for 2019-F304, 2019-FMG1, 2020-F308, and 2021-F210 year-

fields combinations. Colors denote Early, Medium, and Late emergence class and symbols 

denote Dominant, Uniform, and Dominated plant hierarchy. Each point represents an individual 

plant (n= 345). 

3.4.4. Emergence delay impact on PGR, GN, and N uptake  

General linear and bi-linear relationships were fitted for PGR vs GDDE, GN vs GDDE, 

and NHI vs GDDE, as there were no significant differences between Year-Field in the fitted 

models (Fig.15 and Fig.16). Plant growth rate was positively affected by emergence (GDDE) up 

to a threshold (76 °C day-1) above which, delayed emergence caused a decrease in PGR of 0.05 g 

per plant per °C day-1 of delay (Fig.15a). Similarly, the number of grains per plant showed a 

significant increase of 2.7 grains per plant in relation to emergence delay up to a threshold (96.7 

°C day-1) beyond which, the delay in the emergence caused a decrease of 6 grain per plant °C 

day-1 of delay.  
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Figure 15. Relationship between plant growth rate around R1 (g plant-1 day-1) (a), and grain 

number per plant (grain plant-1) (b) with emergence in thermal time (°C day-1) for 2019-F304, 

2019-FMG1, 2020-F308, and 2021-F210 year-fields combinations. Colors denote Early, 

Medium, and Late emergence classes and symbols denote Dominant, Uniform, and Dominated 

plant hierarchy. Each point represents an individual plant (n= 345). 

Nitrogen concentration in the grain (%Ng) was not significantly related to emergence 

(Fig.16a, red symbols), whereas nitrogen concentration in the biomass (Fig.16a, green symbols) 

was positively affected (p<0.0001) by the delay in emergence. Emergence delay caused an 

increase of 0.01% in the %Nb per °C day-1 of delay. Even though %Ng was not affected by 

emergence, the negative impact of the emergence delay on GN (Fig.16b) and the increase in the 

%Nb, caused a decrease in the NHI (Fig.16b, blue symbols) when the delay went beyond 73.4 

°C day-1. 
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Figure 16. Relationship between a) nitrogen concentration in the grain and biomass (%) and b) 

nitrogen harvest index (nitrogen uptake in the grain-total nitrogen uptake ratio) versus emergence 

in thermal time (°C day-1) for 2019-F304 (squares), 2019-FMG1 (triangles), 2020-F308 

(diamonds) and 2021-F210 (circles) year-fields combinations. Colors denote Early, Medium, and 

Late emergence classes and symbols denote Dominant, Uniform, and Dominated plant hierarchy. 

Each point represents an individual plant (n= 345). 

3.5. Discussion 

This study provides novel results on the understanding of nitrogen uptake and use 

efficiency of plants with spatial and temporal variation in emergence in different yield stability 

zones on commercial farmer fields with a wide range of management practices. Maize 

emergence was significantly affected by the YSZ. Emergence was mostly slower in the LS 

(Table 11), and this higher delay in LS zones can be related to the less favorable conditions for 
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emergence in the low yielding areas (Knappenberger & Köller, 2012), i.e. less plant available 

water and reduced soil fertility.  

Although plant emergence showed variations across YSZ, plant biomass did not show 

significant differences among YSZ in early stages (V6 and V14), whereas the biomass at R6 was 

significantly affected by the YSZ and was usually higher in the HS zone (Fig.9a, b, and d). Plant 

biomass variability was greater at early stages, decreased by R1, and remained consistent from 

R1 to R6. Plants growing in low yielding zones generally reached lower biomass and showed 

higher variability (Fig.10) throughout the growing season, suggesting a higher competition for 

resources between plants in those zones. Rossini et al. (2012), examined the effects of inter-plant 

competition in maize grown under contrasting nitrogen supply and plant density, and reported 

differences in accumulated biomass from V8 onwards due to N and from V12 on due to 

increased plant density. They also reported a decrease in plant biomass CV from V3 to V8, 

stabilizing around 27%, and mention that fertilization at V6 promoted an increase in biomass and 

decreased the CV. Similarly, (O’Brien & Hatfield, 2021) reported a decrease in plant-to-plant 

variability from 16 at V6 to 26% at R6. In contrast with previous research (Maddonni & Otegui, 

2004) reported an increase in plant biomass CV from V3 to V9 and the magnitude of the 

variability persisted to R6. Our results align with the idea that early stressful environmental 

conditions (i.e. given by different resources supply by YSZ) have greater late impact on plant 

growth with low resources supply (i.e. LS zones) (Rossini et al., 2011).  

Plant nitrogen uptake was related to the PGR around silking, and the relationship of Nupg 

was stronger compared with Nupb and Nupt (R
2 0.24 vs 0.03 and 0.17) (Fig.13), which may be 

linked to the fact that grain number set is closely associated with the PGR around R1 (Fig.14a), 

and the grain number and weight per grain determine the amount of nitrogen that can be taken up 
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by the grains (Fig.14b). The relationship between grain number and PGR around R1 has been 

widely reported (Andrade et al., 1999; Maddonni & Otegui, 2004; Echarte et al., 2004; Borrás & 

Vitantonio-Mazzini, 2018; Parra et al., 2022). In fact, in several crops, grain number per plant is 

highly dependent on the accumulation of ear biomass, which depends on the PGR around R1 and 

how much of that biomass is allocated to ear growth (Borrás & Vitantonio-Mazzini, 2018; 

Fischer, 1985; Rotundo et al., 2012). However, the relationship between PGR around silking and 

emergence delay has not been reported yet. We found that there is a threshold in emergence 

beyond which PGR is negatively affected (Fig.15a). Likely, a late emerged and dominated plant 

will be shorter than its neighbors and will be at a greater disadvantage as the competition for 

sunlight becomes more intense (Edmeades & Daynard, 1979), particularly during the critical 

period for grain set (i.e. R1 +/- 15 days) which is the crop’s most sensitive period to any stress 

(Westgate et al., 2004). This may reduce the PGR of the late emerged and dominated plants 

compared with early emerged and dominant plants affecting their capability to set grains. Grain 

number decreased by 2.7 grains per growing degree day when emergence went beyond 96°C 

day-1 (Fig.15b). A similar relationship of relative per plant grain weight and soil accumulated 

growing degree days has been reported (Nemergut et al., 2021). These authors found that relative 

per plant grain weight was maintained at 103.9% when emergence was within 86.4 °C day-1, and 

after that the threshold for the relative plant yield was reduced by 0.6%. In this study, most of the 

plants that showed very low PGR were Late emerged and Dominated plants, and they set less 

grain compared with medium or early emerged plants (Fig.14a). Maddonni & Otegui (2004), 

stated that Dominated plants biomass allocation to reproductive structures is already affected at 

the beginning of active ear growth (ca. V13 ). Borrás & Vitantonio-Mazzini (2018) mentioned 

that the proportion of PGR that is allocated to the ear growth during the flowering period is non-
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constant. At a low plant growth rate the proportion of assimilates allocated to the ear growth is 

reduced. In conditions of high plant growth, the consequences of having spatial and temporal 

variable canopies are relatively insignificant, whereas in reduced growth environments the effect 

is noticeable. 

Plant hierarchy affected plant nitrogen use efficiency (APPENDIX B Fig.27-30), early 

emerged and dominant plants were more efficient in the use of nitrogen compared with late 

emerged and dominated plants. These results contrast with those reported by Rossini et al. 

(2018), as they evaluated the contribution of early-established plant hierarchies to the response of 

two hybrids to nitrogen fertilization (0 and 200 kg ha-1) and plant density (9 and 12 plant m-2) 

and found that the dominated and Uniform plants had an increased NUE (grain and biomass) 

compared with the dominant plants. The reduced response of the dominant plants was attributed 

to a high leaf-to-stem ratio and leaf N concentration in these plants. Even though %Ng was not 

affected by the delay in emergence (Fig.16a), the negative impact of the emergence delay on the 

grain number (Fig.7b) and the increase in the %Nb with emergence delay (Fig.9a), caused a 

decrease in the NHI (Fig.9b) when emergence went beyond 73.4 °C day-1. We hypothesized that 

plants that emerge late accumulate less nitrogen than early emerged plants, which is partially 

true. Even though that %Ng was not affected by the delay in the emergence, late emerged and 

dominated plants accumulated less nitrogen in the grains due to the reduction in grain number 

and grain weight per plant (Albarenque et al., 2023, submitted).  Late emerged and dominated 

plants experienced a decrease in total biomass accumulated compared with early and dominant 

plants, and %Nb increased as a consequence of the reduced accumulation of biomass i.e. no 

dilution. Apparently, late and dominated plants were able to capture the N from the soil, but they 

were not able to compete for light and produce enough photo assimilates, their NUE was reduced 
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compared with early emerged and dominant plants (Table 4). When emergence is delayed, late 

plants had a reduction in PGR in the period around silking and they set less grains. As such, the 

N accumulated in the biomass is not remobilized to the grains (i.e. lack of sink not source), 

increasing the %Nb with the delay. 

3.6. Conclusions  

 Results agreed with our hypothesis, which stated that plants that emerge late accumulate 

less nitrogen than early emerged plants and the plant nitrogen partition changes with the delay. 

Nitrogen uptake at the plant level decreased with delayed emergence and was affected by plant 

hierarchy (dominant>dominated). Although the %Ng remained the same with delayed 

emergence, there was an increase in %Nb related to lower total biomass which caused a change 

in N partition related to a lack of sink. The reduction in PGR caused by the delay of emergence 

was related to a reduction in the number of grains set by the plants. Consequently, nitrogen use 

efficiency was reduced in the late emerged and dominated plants. Understanding the impact of 

temporal variation of emergence and plant hierarchies on N uptake and use efficiency can help 

farmers prescribe N fertilizer on different sub-field yield stability zones.  
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CHAPTER 4: MAIZE (Zea Mays L.) EMERGENCE DERIVED FROM PLANT HEIGHT 

OBTAINED FROM HIGH-RESOLUTION DRONE IMAGES 

4.1. Abstract 

Incorporating the spatial and temporal variability of crop emergence into crop models has 

the potential to enhance field-scale yield prediction. This might provide farmers with a valuable 

decision-making tool during the growing season and may reduce their economic and 

environmental risks associated with applying fertilizer inputs at a uniform rate. Our objectives 

were to i) estimate the spatial and temporal variation in plant emergence using plant height 

derived from UAV images and Machine learning (ML) techniques, and ii) simulate maize 

growth and yield incorporating the spatial and temporal variation in crop emergence. We used 

maize emergence data from six field experiments to train, test, and validate ML to estimate 

maize emergence. LiDAR images were used to extract plant height at V6, V14, and R1 and 

estimate spatial variability plant emergence at field-scale. We then simulated maize with uneven 

emergence (Early, Medium, and Late emergence) and compared the simulation with an even 

emergence. Observed emergence ranged between 64 and 133 °C day-1 and varied among YSZ in 

four of six fields. The features that most contributed to plant emergence estimation were planting 

date, plant height at R1 and plant height at V6. The ML was able to accurately predict plant 

emergence, with RMSE of 9.9, 11.2, and 22.4 °C day-1 for the training, testing, and validation 

dataset. We then developed a map showing the spatial and temporal variation of crop emergence. 

The Salus model was used to simulate maize under even and uneven emergence conditions. 

Maize yield was simulated adequately under even and uneven emergence, however, the 

incorporation of the temporal variability in the simulation improved the late emerged plants 

simulation, as well as the simulation of the LS and MS zones. Incorporating the spatial and 
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temporal variation of crop emergence into crop models has the potential to enhance yield 

prediction at the field scale. This improvement can provide farmers with valuable within-season 

decision-making tools and reduce economic and environmental risks associated with uniform 

fertilizer rates across field sites. 

4.2. Introduction 

Uniformity of maize (Zea mays L.) emergence is essential for minimizing plant-to-plant 

competition for light, water, and nutrients (Andrade & Abbate, 2005). Emergence variability is 

associated with variation in soil temperature and moisture (Pommel et al., 2002), and 

management practices such as planting depth, tillage system, planting speed, and the planter 

(Knappenberger & Köller, 2012). Plants growing in a stand with temporal variation in the 

emergence will have a higher variability in plant height, ear size, grain number, and ultimately 

crop yield. This variability arises from delayed emergence and the impact of interplant 

competition for resources (D’Andrea et al., 2008; Pagano & Maddonni, 2007; Rossini et al., 

2011). Numerous studies have reported the negative effect that uneven emergence of maize 

causes on crop yield (Carter & Nafziger, 1991; Kolling et al., 2019; Nemergut et al., 2021). The 

underlying cause of this detrimental effect can be associated with a diminished plant growth rate 

during the critical period (i.e. 15 days before and after flowering), leading to a reduced number 

of grains being set by the plants and consequently resulting in a decline in grain yield 

(Albarenque et al., 2023, Chapter 3).  

 Although, satellite imagery is an important tool to governmental agencies to monitor 

agricultural production (Allen, 1990), its adoption at farm-scale applications has been limited 

due to challenges associated with coarse spatial resolution, variable temporal resolution, cloud 

cover, and delayed delivery of the information to end users (Mulla, 2013). The advancements in 
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unmanned aerial vehicle (UAV)-based imaging and image processing technologies have given 

the possibility of high-resolution crop images collection on a field scale, enabling efficient 

assessment of crop growth conditions (Zhang & Kovacs, 2012), fulfilling the long-standing 

demands of farm managers for data acquisition (Hunt & Daughtry, 2017). Additionally, these 

images can be used to detect diseases, phenotyping, weed mapping, and to prescribe variable 

input rates (Pajares, 2015). Recent research has demonstrated the effectiveness of utilizing high-

resolution UAV equipped with various sensors to assess crop emergence through high-resolution 

images in several staple crops including corn, wheat, potato, and cotton (Feng et al., 2020; Li et 

al., 2019; Liu et al., 2017; Shirzadifar et al., 2020; Shuai et al., 2019b; Vong et al., 2022). Vong 

et al. (2022) estimated plant emergence and produced emergence uniformity field maps using 

deep learning models and UAV imagery in early growth stages, highlighting the challenge of 

assessing small plants with a complex background. The availability of high spatial and temporal 

resolution of plant height data is crucial in obtaining accurate results. 

Accurate yield forecasting is important to improve farmers’ management and operation 

decision making (Basso & Liu, 2019). Machine learning (ML) and simulation crop modeling 

have individually made noteworthy contributions to the accuracy of yield predictions. It has been 

demonstrated that the combination of the techniques enhances the precision of yield estimation 

(Shahhosseini et al., 2021). Crop models have demonstrated their capability and versatility to 

accurately predict crop yield in a wide range of scenarios (Fabbri et al., 2023; Martinez-Feria et 

al., 2018; Puntel et al., 2016). However, the assumption of uniform spatial and temporal 

conditions might lead to a biases and inaccurate simulation, in real field conditions of non-

uniformity in the crop stand (Batchelor et al., 2002) related to uneven crop emergence. Some 

efforts have been made to assess the spatial and temporal variation in crop yields using crop 
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models (Albarenque et al., 2016; Basso et al., 2007, 2011; Sadler et al., 2000), but as pointed out 

by Batchelor et al. (2002) it is necessary to economically measure inputs to running crop models 

at several scales.  

Capturing and incorporating the spatial and temporal variation of crop emergence into 

crop models might improve yield prediction at field scale, giving additional within season 

decision making tools for farmers, reducing their economic risk, as well as the environmental 

risk associated with uniform fertilizer input rates. In this study we addressed the following 

research questions: 1) Can we estimate maize emergence using crop height at several stages? 2) 

Can we simulate the effect of crop emergence spatial and temporal variation on crop yield? Our 

hypothesis is that incorporating the spatial and temporal variation in the emergence into crop 

simulation model improves the understanding of yield spatial variability. Through a field-level 

analysis, we aimed to i) estimate the spatial and temporal variation in plant emergence using 

plant height derived from UAV images and ML techniques, and ii) simulate maize growth and 

yield incorporating the spatial and temporal variation in crop emergence. 

4.3. Methods 

4.3.1. Site description and general characteristics 

Field experiments were conducted in six corn commercial fields, located in Springport 

(MI) (42.3471°N, 84.7097°W), Portland (MI) (42.8971°N, 84.9776°W), and Parana (Argentina) 

(32.2336°S, 60.5338°W). Fields varied in soils and management practices, such as tillage 

system, row spacing, hybrid relative maturity, and planting date (Table 14). Fields in Springport 

were planted with a White planter 9924VE, a John Deere 1770 NT was used in Portland field, 

and a pneumatic Giorgi Precisa 8000 was used in Parana fields. Yield stability zones (YSZ) 

delineation was performed as described in the methods section “Yield stability zones” of Chapter 
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2. Table 2 shows in-season and 30 years average cumulative precipitation (May-October and 

December-April, for Michigan and Parana sites, respectively) and in season average temperature 

as well as the 30-yr normal (1991-2020) for the same period. Rainfall during the growing season 

was closer (90 to 110%) to the normal average (1991-2020) for the same period. Temperatures 

were slightly higher than historical averages in Springport fields, while they were within the 

range of historical values for Portland and Parana fields (Table 15).  

Table 14. Experimental sites and locations with soil and management data. 

Site Year-Field Tillage System Cover crop Planting date no plants 

Springport 

2019-304 No-Till No 8-Jun 1210 

2020-308 No-Till Yes 11-May 669 

2021-210 No-Till Yes 15-May 535 

Portland 2019-MG1 Conventional No 8-Jun 597 

Parana 
2020-4 No-Till No 18-Dec 270 

2020-11 No-Till No 29-Dec 202 

    Total 3483 

 

4.3.2. Experimental design and measurements  

Emergence was recorded daily by visiting each 5m x 2 rows plot from each field once a 

day during the period of emergence. Emergence was expressed in thermal time (GDDE, °C day-1), 

which was calculated as described in 3.2.4. Calculations section. Each emerged plant was 

individually labeled using white stakes. At the stages of V6, V14, and R1, the plant height 

(H_V6, H_V14, and H_R1, respectively) from ground level to the last fully expanded leaf 

(visible collar) of tagged plants was measured and recorded. At the end of the growing season, 

each labeled plant was individually harvested (n=3484 plants) to analyze the individual plant 

grain yield and grain number. Crop yield was estimated using the achieved plant density in every 

plot.  
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Table 15. Monthly observed average air temperature (°C) and total precipitation (mm) and 30-

year means (1991-2020) during the growing season at Springport, Portland, and Parana sites. 
 Springport 
 Temperature Precipitation 

Month 2019 2020 2021 30-yr 2019 2020 2021 30-yr 

May 14.0 14.0 14.0 12.9 91.2 121.7 53.3 97.7 

Jun  19.0 21.0 22.0 18.0 124.7 117.9 224.8 84.3 

Jul  23.0 24.0 22.0 22.2 65.8 45.7 119.9 92.2 

Aug  21.0 22.0 23.0 20.2 36.3 57.9 98.0 89.2 

Sep  19.0 16.0 19.0 15.4 101.9 74.9 110.5 83.1 

Oct  11.0 9.0 14.0 7.7 115.8 61.5 136.6 78.3 
 Portland Parana 
 Temperature Precipitation Temperature Precipitation 

Month 2019 30-yr 2019 30-yr 2020 30-yr 2020 30-yr 

May 13.1 12.4 115.0 95.8 15.2 15.8 66.6 66.0 

Jun 18.6 21.0 132.6 89.8 12.4 13.0 19.8 36.0 

Jul 22.9 22.4 72.9 82.6 10.9 12.1 8.0 27.0 

Aug 20.0 21.7 68.8 97.4 15.5 14.1 4.5 35.0 

Sep 18.3 15.1 186.4 88.7 16.0 16.0 32.6 51.0 

Oct 9.9 7.0 155.5 87.6 19.6 19.0 84.2 119.0 

 

4.3.3. UAV flight and field data collection 

 The UAV LiDAR system used was a SICK LD-MRS400001 (Fig.17a) mounted on a DJI 

Matrice 600 Pro drone with a take-off weight of about 10 kg (Fig.17b). The position of the UAV 

was provided by GPS (or GLONASS, Global Navigation Satellite System) and a magnetic 

compass to maintain the flight direction. Images were collected at the same date that plant height 

was measured at crop stages V6, V14, and R1 in field 2021-210. Flights were conducted 50 m 

above the ground at a 2.7 m s-1 speed. Images were stitched with Pix4D (Pix4D, 2021) creating 

an orthomosaic image. The UAV LiDAR point cloud images were processed using LAS-Tools 

(Version: 210, 720, rapidlasso GmbH, Gilching, Germany) in ArcGIS (Environmental Systems 

Research Institute, 2021) to obtain the digital elevation models (DEM) that were used to extract 

individual plants height. Additionally, to assess the accuracy of the plant height obtained with 

LiDAR images, plant height of all the plants in 6 rows 300m long in 2020-308 field (n=8073 

plants) (Fig. 18) was measured at R1 stage. This was evaluated using the R2 of the LiDAR versus 

observed plant height and the RMSE (Equation 2).  
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Figure 17. a) Lidar system SICK LD-MRS400001, b) DJI Matrice 600 Pro drone, c) Plot 

locations in 2021-210 field and plot (2 rows x 5m) details. Each yellow dot represents a plant. 

The images in a) were taken on July 14th, 2021. 
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Figure 18. Plot locations in 2020-308 field site with rows measured to assess plant height 

obtained with LiDAR images. The inset shows the detail of the 6 rows x 300 m where plant 

heights were measured (n = 8073 plants). 

4.3.4. Random forest model  

The Random Forest (RF) model was fitted and used to estimate maize emergence in 

thermal time (°C day-1) at a field level. The RF is a machine learning method that belongs to the 

supervised learning category, specifically to the ensemble learning method (James et al., 2021). 

It works by constructing a multitude of decision trees at training time and outputting the class 

that is the mode of the classes (classification) or mean prediction (regression) of individual trees. 

Each decision tree is constructed by taking a random subset of the training data and a random 

subset of the input features (Schonlau & Zou, 2020). The model was developed using the dataset 
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collected for the six fields (n=3483) described in section 4.2.1 Site description and general 

characteristics, with maize emergence (°C day-1) as response variable and five features: Planting 

date (PD), Yield Stability Zone (YSZ), Cover crop (CC), Tillage system (TS), and plant height at 

V6 (H_V6), V14 (H_V14), and R1 (H_R1). The dataset was split 70% training (n= 2439), 15% 

testing (n=522), and 15% validation (n=522). We used Sklearn package in Python v3 to train, 

test, and validate the RF model. We then performed a hyperparameter tuning using 

RandomizedSearchCV class provided by the Sklearn package to find the hyperparameter values 

that result in the best model performance for emergence estimation. By fine-tuning the 

hyperparameters, the model's ability to generalize to unseen data could be improved, increasing 

its predictive accuracy, and reducing the likelihood of overfitting or underfitting (Probst & 

Bischl, 2019). 

The model was evaluated using three accuracy indicators. We regressed the estimated 

emergence versus the observed and used the coefficient of determination (R2) to assess the 

overall agreement between estimated and observed maize emergence. Additionally, we 

calculated root mean square error (RMSE) (Equation 2) and the mean absolute error (MAE) 

(Equation 3). 

𝑅𝑀𝑆𝐸 (°C 𝑑𝑎𝑦−1) =  √
∑ (𝐸𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
 ……………………………….…….. Equation 2 

𝑀𝐴𝐸 (°C 𝑑𝑎𝑦−1) =  
1

𝑛
 ∑ |𝐸𝑖 − 𝑂𝑖|

𝑛
𝑖=1  …………………………………… Equation 3 

where Ei is the estimated plant emergence (°C day-1), Oi is the observed emergence, n is the total 

number of observations, and i is the ith observation.  

 Estimated emergence was classified in Early, Medium, and Late as described in Chapter 

3 section 3.2.1. Field experiments and Yield stability zones. 
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4.3.5. SALUS model description 

 The Systems Approach to Land Use Sustainability (SALUS) simple crop model was used 

to simulate maize grain yield in field with uneven crop emergence. The SALUS model is a 

process-based crop model (Basso et al., 2006) adapted from the CERES (Crop Environment 

Resource Synthesis) model with soil nutrient and water simulations updates (Basso & Ritchie, 

2015). The model is designed to simulate continuous crops, soil, water, and nutrient conditions 

under different management strategies over multiple years. The model uses daily weather 

information (solar radiation, maximum and minimum temperature, and rainfall), crop parameters 

(specie, cultivar/hybrid), soil layer properties (soil water limits, soil texture, bulk density, soil 

organic carbon, and nitrogen), and management (planting date, planting depth, seeding rate, row 

spacing, and fertilization). The Salus model has been used and evaluated on several sites 

(Albarenque et al., 2016; Basso et al., 2006; Basso & Ritchie, 2015; Liu et al., 2021; Liu & 

Basso, 2017; Shuai et al., 2019).  

The SALUS model was calibrated from runs with contrasting emergence dates from 

experiments 2019-304, 2019-MG1, and 2020-308 (APPENDIX C Fig.32a) to develop three 

different Subspecies within Maize to account for variation in emergence, namely: Early, 

Medium, and Late subspecies. Validation was made with data from the year-fields described in 

Table 14 (APPENDIX C Fig.32b). The simulations were run under non-limited nitrogen and 

rain-fed conditions. Harvest dates were set to be as measured. The results of uneven emergence 

simulations were validated against the yield monitor data for the 2021-210 year-field. Model 

performance was evaluated through RMSE (Equation 2), MAE (Equation 3), and RRMSE 

(Equation 4).  

𝑅𝑅𝑀𝑆𝐸 (%) =  
𝑅𝑀𝑆𝐸

1

𝑛
∑ 𝑂𝑖

𝑛
𝑖=1

………………………………………….. Equation 4 
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where Ei is the estimated plant emergence (°C day-1), Oi is the observed emergence, n is the total 

number of observations, and i is the ith observation.  

4.3.6. Data analysis  

For each Yield-Field, data was statistically analyzed using the GLIMMIX procedure in 

SAS version 9.4 (SAS Inst., Inc.) to determine the yield stability zone effect on emergence and 

plant height. Individual plants were nested within the plot and included as a random factor to 

identify them as subsamples. Mean separation between groups was analyzed using Tukey’s 

method, performing pairwise comparisons to identify differences greater than the expected 

standard error.  

4.4. Results 

4.4.1. Maize emergence and plant height 

 Plant emergence ranged between 64 to 133 °C day-1 and was significantly affected by the 

YSZ in four out of six evaluated fields (Table 16). Average emergence range was highest in 

2020-308 reaching 100 °C day-1, whereas the lowest range was 24 °C day-1 observed in 2019-

304 (Appendix C Table 20). In general, the MS and LS zones showed the highest range in GDDE 

being between 13 and 144 °C day-1. Plant height ranged from 9 to 19 cm, 48 to 135 cm, and 136 

to 232 cm, in V6, V14, and R1, respectively. Even though plant height showed significant 

differences in one out of the six Year-Field, plants where generally 20-30% shorter and showed 

an increased variation (i.e. higher CV) in the LS zone, except for 2019-MG1 where the MS zone 

plants were 30% shorter that plants in the other YSZ.   
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Table 16. Average plant emergence (°C day-1) and plant height (cm) at V6, V14, and R1 crop 

growth stages at Springport, MI (42.3471°N, 84.7097°W) and Portland, MI sites (42.8971°N, 

84.9776°W) for 2019-F304, 2019-FMG1, 2020-F308, and 2021-F210 season field combinations 

for High stable (HS), Medium Stable (MS), Low Stable (LS), and Unstable (UN) Yield Stability 

Zones (YSZ). 

Site Year-Field YSZ 
GDDE † Plant height (cm) 

(°C day-1) V6 V14 R1 

 

2019-304 

HS 73 (7) ¶ 14 (12) 92 (13) 219 (9) 

Springport 

MS 73 (7) 13 (13) 80 (22) 196 (15) 

UN 73 (11) 14 (13) 99 (14) 224 (14) 

2020-308 

HS 84b (23) 19 (17) 135 (17) 232 (10) 

MS 92a (21) 17 (18) 121 (22) 211 (14) 

LS 94a (17) 15 (26) 96 (32) 185 (15) 

UN 89ab (20) 19 (16) 136 (19) 232 (10) 

2021-210 

HS 109b (16) 13a (14) 119 (16) 182 (14) 

MS 110b (17) 13a (15) 117 (17) 179 (15) 

LS 124a (18) 9b (23) 86 (23) 136 (21) 

UN 105b (13) 13a (13) 123 (13) 184 (11) 

Portland 2019-MG1 

HS 64c (7) 19 (14) 88 (13) 221 (11) 

MS 87a (21) 13 (19) 48 (24) 186 (22) 

LS 67b (6) 17 (18) 62 (25) 195 (12) 

UN 66bc (11) 19 (12) 82 (13) 219 (8) 

Parana 

2020-11 

HS 132ab (11) 15 (12) 124 (7) 183 (7) 

MS 121b (13) 14 (13) 95 (15) 152 (8) 

LS 133ab (17) 13 (15) 93 (16) 145 (12) 

2020-4 
HS 107 (13) 11 (16) 87 (14) 187 (11) 

LS 109 (13) 13 (16) 101 (16) 200 (10) 

† Means not sharing the same letter within the same column and Year-Field are different (p<0.05) from each other. 
¶Values in brackets are the variation coefficient. 

 

4.4.2. Machine learning model  

 The relative importance of each feature in the model’s prediction accuracy is represented 

in Fig.19a. According to this, the feature that contributed the most to the emergence estimation is 

planting date, followed by plant height at R1 (H_R1) and V6 (H_V6), whereas plant height at 

V14 (H_V14), yield stability zone (YSZ), cover crop, and tillage system, contributed to 

emergence estimation in less proportion. However, the feature importance plot does not imply 

causation it reflects the model’s learned associations.  

The adjusted ML model was able to accurately estimate plant emergence. The 

relationship between the predicted values for the training and testing data sets with their 

corresponding residuals is displayed in Fig.19b. The residuals are well distributed around the 
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zero line and suggests there is not an evident under or over estimation of the emergence. Even 

though the model showed a good performance there are some very late emergence values that the 

model underestimated (residuals < -50 °C day-1) (Fig.19b). The model provided an acceptable 

estimation of the emergence, with R2 values of 0.82 and 0.72 for the observed vs estimated 

training and testing data sets (Fig.19b). Additionally, the RMSE for the training was 9.9 °C day-1 

and the MAE was 6.7 °C day-1 (APPENDIX C Fig. 31a), whereas for the testing the RMSE was 

11.2 °C day-1and the MAE was 7.4 °C day-1 (APPENDIX C Fig.31b).  

 The RMSE between estimated and observed plant emergence for the validation dataset 

(Fig.19c) was 22.4 °C day-1 and the MAE was 19.4 °C day-1. 

 
Figure 19. Machine learning feature importance distribution (a), residuals for the ML regressor 

model (b), and comparison between estimated emergence (°C day-1) and observed emergence 

(°C day-1) using validation data set (c). 
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4.4.3. LiDAR plant height 

 Plant height derived from LiDAR images obtained with UAVs was within the range of 

observed values and the RMSE was 22.5 cm and MAE 14.5 cm (Fig.20). Even though the 

overall error was acceptable, when analyzed by stage the RMSE was 4.8, 16.4, and 23.5 cm for 

H_V6, HV14, and H_R1, respectively (APPENDIX C Fig.32) and the MAE was 4.4, 12, and 

20.5 cm which represents a 38, 12, and 10% of error for H_V6, HV14, and H_R1, respectively.  

 
Figure 20. Comparison between observed plant height (cm) and plant height (cm) extracted from 

LiDAR images at V6, V14, and R1 growth stages at fields 2020-308 and 2021-210 in Springport, 

MI during the 2020 and 2021 growing seasons. 

 

4.4.4. Emergence estimation with ML  

 Plant emergence was estimated using the developed ML model, using plant height (at V6, 

V14, and R1), planting date, tillage system, cover crop, and yield stability zone as features. A 

map of estimated emergence is shown in Fig.22. As the LiDAR images were obtained in portions 

of the fields were the plots were located, the map is in patches. The estimated emergence ranged 

from 77 to 135.5 °C day-1 (Fig.22), with an average value of 116.8 °C day-1 and standard 
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deviation of 10.1 °C day-1. The ML model was able to capture the YSZ variation in emergence 

(Fig.21 and Fig.22), being the average estimated emergence 111.6, 119.3, 123.5, and 114.1 °C 

day-1, for the HS, MS, LS, and UN zones, respectively. It can be noted that the estimated 

emergence in the LS zone (Fig.22 and Fig.23 yellow) shows higher values (i.e. more delay) 

compared with the other zones.   

 
Figure 21. Estimated emergence (°C day-1) using ML model and Yield Stability Zone for field 

2021-210 in Springport, MI in 2021. 

 
Figure 22. Cumulative frequency of the estimated emergence by Yield Stability Zone in year-

field 2021-210. HS: High stable, MS: Medium stable, LS: Low stable, and UN: Unstable. Every 

point represents a pixel from the generated emergence map. 
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4.4.5. Simulation of spatial and temporal variable emergence  

 After the estimation of plant emergence using ML, we simulated maize for even 

emergence conditions by YSZ and uneven emergence, with three emergence classes: Early, 

Medium, and Late emergence by YSZ (Fig.23, Table 17). Observed maize yield ranged from 6.5 

to 11.9 Mg ha-1, with an average value of 10.1 Mg ha-1 and standard deviation of 1.2 Mg ha-1.  

The average observed yield per emergence class was 10.3, 10.1, and 9.9 Mg ha-1, for the Early, 

Medium, and Late emergence classes, respectively.  

Maize yield using Salus model with even emergence was adequately simulated. The 

overall RMSE was 1.6 Mg ha-1, whereas RMSE per emergence class was 0.4, 0.8, and 2.7 Mg 

ha-1 for the Early, Medium, and Late emergence class, respectively. The RMSE by YSZ was 1.4, 

2.7, 1.7, and 1.2 Mg ha-1, for the HS, MS, LS, and UN zones, respectively (Table 17). The 

simulation with the temporal variation in maize emergence incorporated into the model (i.e. 

using three subspecies with different time to emerge within Salus model) gave an adequate yield 

result. The overall RMSE was 1.5 Mg ha-1, whereas the RMSE per emergence class was 2.2, 0.8, 

and 1.1 Mg ha-1, for the Early, Medium, and Late emergence class, respectively. The RMSE by 

YSZ was 1.7, 1.7, 1.4, and 1.1 Mg ha-1 for the HS, MS, LS, and UN zones, respectively (Table 

17).  
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Figure 23. Map of maize emergence classes obtained from the ML estimated emergence for 

field 2021-210 in Springport, MI (42.3471°N, 84.7097°W).  

 The incorporation of the temporal variability in the Salus simulation improved the Late 

emerged class yield estimation by a 25% (Table 17), whereas it decreased the accuracy in the 

estimation of the early emerged class (uneven emergence 22% RRMSE vs even emergence 3% 

RRMSE, Table 17). Including the temporal variation in the emergence improved the yield 

simulation of the LS (uneven emergence 15% error vs even emergence 17% error, Table 17) and 

the MS (variable emergence 14% error vs uniform emergence 18% error, Table 17) zones. 

Table 17. Accuracy metrics to evaluate Salus model performance in simulating the maize under 

uniform emergence and with spatial and temporal effects of maize emergence on crop yield for 

early, medium, and late emergence categories and High stable (HS), Medium Stable (MS), Low 

Stable (LS), and Unstable (UN) Yield Stability Zones. 
 Even emergence  Uneven emergence 
 RMSE MAE %RRMSE  RMSE MAE %RRMSE 

Overall 1.6 1.2 13%  1.5 1.3 13% 

Early 0.4 0.3 3%  2.2 2.2 22% 

Medium 0.8 0.6 6%  0.8 0.6 6% 

Late 2.7 2.7 35%  1.1 1.0 10% 

HS 1.4 0.9 9%  1.7 1.3 13% 

MS 2.1 1.6 18%  1.7 1.4 14% 

LS 1.7 1.4 17%  1.4 1.3 15% 

UN 1.2 1.0 10%  1.1 1.1 10% 

HS: High stable, MS: medium stable, LS: Low stable, and UN: Unstable.  
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4.5. Discussion 

Assuming uniform spatial and temporal maize emergence can result in biased simulated 

crop yield under uneven crop emergence conditions. Crop models have been used to assess the 

spatial and temporal variation in crop yields (Basso et al., 2007, 2011; Sadler et al., 2000), but 

the temporal variation of crop emergence still needs to be incorporated into crop models to 

improve crop yield prediction accuracy. This study is believed to be the first attempt to integrate 

spatial and temporal variation in crop emergence, ML, UAV images, and crop modeling. 

The LiDAR images showed their usefulness in accurately obtaining plant height in 

several stages, with lower accuracy in the V6 stage, probably related to the plant size and lower 

soil coverage increasing the chances to mismatch the coordinate point to extract the data from 

the actual plant position. LiDAR images have been successfully used to estimate several crop’s 

height (Wang et al., 2023; Zhang et al., 2021). One disadvantage of LiDAR technology that 

gathers extensive datasets is the high level of analysis and interpretation required and the sensors 

are highly power-consuming (Debangshi, 2022).  

We demonstrated that maize emergence can be adequately estimated using ML and plant 

height derived from LiDAR images to develop maps with the spatial variability of emergence. 

Recent studies by Liu et al. (2023) and Vong et al. (2022) have explored maize emergence 

estimation by combining ML and UAV images with accurate results. The former developed a 

system to estimate maize emergence uniformity considering seedling count, size, uniformity, and 

plant distribution with accuracies around 90%. They highlighted the negative effects of shadows 

and plant density on the estimation accuracy. However, their research was conducted in small 

plots and lacked a comprehensive investigation of time to emerge and the impact of temporal 

variability on crop yield. Vong et al. (2022) developed maps of spatial and temporal variability 
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of maize emergence as well as plant density and plant spatial variability. They estimated plant 

emergence for several planting depths and showed that with shallower planting depths plants 

emerge earlier. Even though their studies were made at the field scale, they did not analyze the 

impact of emergence variability on crop yield. In our study, we estimated emergence spatial and 

temporal variability and we incorporated this into a crop model to better understand the impact 

of delayed emergence in crop yield spatial variation. 

We conclude from our research that accounting for emergence temporal variation 

improves Salus maize yield simulation. Although the overall RMSE did not change with the 

incorporation of variability in emergence, accounting for the delay in emergence improved the 

estimation of Late emerged plants, which went from 35% RRMSE when simulated with a unique 

emergence to a 10% RRMSE when emergence delay was considered in the simulation. Previous 

research has demonstrated the improvement in simulation results when accounting for crop 

heterogeneity (spatial and temporal) (Pommel et al., 2002), but different planting dates were 

simulated to generate the temporal variation in emergence. An accurate assessment of crop 

emergence variability may help farmers make timely field management decisions to increase 

maize yield and by adjusting spatial fertilizer inputs and potentially reduce environmental 

impacts of fertilizer applications.  

4.6. Conclusions 

In this study we have presented a novel approach that integrates UAV imagery, machine 

learning, and crop model simulations to estimate the spatial and temporal variability of maize 

emergence and enhance yield simulation. We successfully estimated maize emergence using 

crop height derived from UAV’s images at several stages and incorporated the variation in 

emergence into the crop model. Incorporating the temporal variation of emergence enhanced 
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maize yield simulation in the MS and LS yield stability zones. This accurate assessment of crop 

emergence variability has the potential to provide farmers with valuable information for making 

timely field management decisions, thereby increasing their profitability while mitigating 

environmental risks. 
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CHAPTER 5: CONCLUSIONS 

 This dissertation has presented the effect of maize plant emergence across commercial 

fields and within sub-field yield stability zones on crop yield and yield components (Chapter 2), 

and nitrogen uptake and nitrogen use efficiency (Chapter 3). The data generated on emergence 

variability was incorporated into crop models through the integration of UAV’s images and ML 

(Chapter 4). 

Chapter 1 established the context and significance of this dissertation. It included an 

overview of maize’s importance in the world’s agricultural systems and the current state of 

knowledge about maize emergence spatial and temporal variability.  

Chapter 2 presented a comparison of maize plant emergence in several commercial fields 

and within sub-field YSZ. The analysis evaluated the effect of delayed emergence on crop yield 

and yield components. Our findings indicate that temporal variability has a greater impact on 

crop yield and its components compared to spatial variability within rows. The reduction in 

maize yield resulting from delayed emergence did not show a statistically significant correlation 

with yield stability zones, but delayed emergence had a more detrimental effect in the low yield 

stability zones. 

Chapter 3 assessed the variability in biomass accumulation, nitrogen concentration, 

nitrogen uptake, and nitrogen use efficiency in plants with spatial and temporal variability in 

emergence across YSZ. Maize plants emerging later had a reduction in grain per plant possibly 

caused by a reduction in PGR around silking (R1) and exhibit lower nitrogen accumulation 

compared to those plants that emerged earlier, leading to changes in the partitioning of nitrogen 

within the maize plants. Although the percentage of nitrogen in the grain remained unchanged 

with delayed emergence, there was an increase in the percentage of nitrogen in the biomass due 
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to reduced total biomass and altered partitioning possibly due to a lack of sink. As a result, 

nitrogen use efficiency was diminished in the late-emerging and dominated maize plants.  

Chapter 4 assessed the impact of incorporating spatial and temporal variability of maize 

emergence into crop model simulation on crop yield estimation. We used an innovative 

methodology combining UAV imagery, machine learning, and crop model simulations to 

estimate the spatial and temporal variation in maize emergence to improve yield prediction. We 

successfully estimated maize emergence by analyzing crop height and integrated the variation in 

emergence into the crop model. We demonstrated that incorporating the temporal variation of 

emergence has a positive impact on the simulation of maize yield, particularly in the MS and LS 

yield stability zones.  
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APPENDIX A: CHAPTER 2 SUPPLEMENTAL TABLES AND FIGURES 

Table 18. Analysis of variance of emergence (DAP, days after planting), growing space (GS), and yield stability zone (YSZ) on corn 

plant yield (g plant-1), grain number (grain plant-1), grain weight (g grain-1), and crop yield (Mg ha-1) at 10 field experiments.  
Location Springport  Portland Parana 

Year-Field  2016-222 2017-222 2018-105 2019-304 2020-308 2021-210 2017-JS1 2018-NC12 2019-MG1 2020-11 

Source Plant yield (g plant-1) 

YSZ 0.0528 0.0046 0.6771 0.6644 0.0003 <.0001 0.1813 0.26 0.2999 0.037 

DAP 0.4588 <.0001 0.0001 0.3845 <.0001 <.0001 <.0001 0.066 0.0072 0.0026 

DAP*YSZ 0.3663 0.7201 0.1928 0.6161 0.1275 0.0371 0.9189 0.6829 0.6651 0.3033 

GS 0.8299 0.0946 0.5646 0.004 <.0001 <.0001 0.0001 0.967 0.0155 0.1271 

GS*YSZ 0.0684 0.0313 0.6534 0.9818 0.1895 0.0002 0.3784 0.7024 0.3308 0.6496 

  Grain number (grain plant-1) 

YSZ 0.0636 0.1741 0.7875 0.2409 0.0442 <.0001 0.1318 0.8005 0.1583 0.0338 

DAP 0.4122 <.0001 <.0001 0.9668 <.0001 <.0001 <.0001 0.0605 0.0373 0.0014 

DAP*YSZ 0.5309 0.4361 0.0806 0.34 0.4342 0.0007 0.962 0.6581 0.7182 0.1163 

GS 0.9999 0.2159 0.9875 0.0632 <.0001 <.0001 0.0004 0.5438 0.7612 0.4498 

GS*YSZ 0.0428 0.2737 0.2921 0.7823 0.0008 <.0001 0.4384 0.7351 0.4306 0.6749 

  Grain weight (g grain-1) 

YSZ 0.9852 0.0291 0.6431 0.6804 <.0001 0.1591 0.8508 0.0832 0.1558 0.7214 

DAP 0.5973 0.1138 0.0655 0.2941 0.0415 0.0583 0.1228 0.3982 0.3055 0.8448 

DAP*YSZ 0.7009 0.9846 0.4362 0.1129 0.1812 0.0012 0.1137 0.2238 0.5706 0.6787 

GS 0.7302 0.2744 0.3943 0.0014 <.0001 0.8159 0.4155 0.3349 0.3353 0.376 

GS*YSZ 0.6378 0.0603 0.445 0.6756 0.105 0.0071 0.8557 0.3537 0.4338 0.8999 

  Yield (kg ha-1) 

YSZ 0.0324 <.0001 0.8799 0.3229 0.0555 0.0005 0.1681 0.3358 0.2242 0.0494 

DAP 0.0499 <.0001 0.0003 0.4943 <.0001 <.0001 <.0001 0.1061 0.0023 0.004 

DAP*YSZ 0.0652 0.7887 0.4559 0.646 0.7047 0.0118 0.804 0.7131 0.5509 0.2182 

GS 0.0368 0.697 0.4996 0.0248 0.0001 0.0011 0.005 0.9325 0.0179 0.2632 

GS*YSZ 0.03 0.517 0.3866 0.9402 0.5347 <.0001 0.2539 0.7831 0.2564 0.784 
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Table 19. Compared models for Springport, Portlan and Parana Sites. Full model, describe resuts using one function per yield stability 

zone (YSZ) (8 parameters); Simple YSZ model, describes the relationship between variables with one function (5 parameters); Simple 

model, describes the relationship between variables with one function (2 parameters). 
Site Variable Model 

Springport 

Relative Plant yield 

Full RPY= 1.06 -0.07MS -0.14LS -0.23UN -0.03DAPHS -0.02DAPMS -0.02DAPLS -0.02DAPUN 

Simple YSZ RPY = 0.96 -0.004MS -0.06LS -0.04UN -0.02DAP 

Simple  RPY = 0.97 -0.02DAP 

Relative grain number 

Full RGN= 1.14 -0.10MS -0.16LS -0.23UN -0.04DAPHS -0.03DAPMS -0.02DAPLS -0.02DAPUN 

Simple YSZ RGN = 1.02 +0.02MS -0.02LS -0.05UN -0.02DAP 

Simple  RGN = 1.01 -0.02DAP 

Relative crop yield 

Full RY= 1.18 -0.12MS -0.43LS - 0.280UN -0.04DAPHS -0.03DAPMS -0.01DAPLS -0.02DAPUN 

Simple YSZ RY = 1.04 -0.04MS -0.17LS -0.08UN -0.02DAP 

Simple  RY = 0.98 -0.03DAP 

Portland 

Relative Plant yield 

Full RPY= 1.13 +0.33MS +0.48LS +0.08UN -0.05DAPHS -0.08DAPMS -0.11DAPLS -0.06DAPUN 

Simple YSZ RPY = 1.47 +0.04MS -0.15LS -0.08UN -0.07DAP 

Simple  RPY = 1.38 -0.06DAP 

Relative grain number 

Full RGN = 1.14 +0.15MS + 0.34LS -0.24UN -0.06DAPHS -0.07DAPMS -0.11DAPLS -0.04DAPUN 

Simple YSZ RGN = 1.52 -0.02MS -0.21LS -0.09UN -0.06DAP 

Simple  RGN = 1.42 -0.06DAP 

Relative crop yield 

Full RY = 1.25 +0.40MS + 0.50LS +0.17UN -0.05DAPHS -0.08DAPMS -0.11DAPLS -0.07DAPUN 

Simple YSZ RY = 1.48 +0.05MS -0.14LS -0.06UN -0.07DAP 

Simple  RY = 1.41 -0.06DAP 

Parana 

Relative Plant yield 

Full RPY = 0.61 +0.58MS + 0.05LS +0.03DAPHS -0.06DAPMS -0.04DAPLS  

Simple YSZ RPY = 1.02 -0.32MS - 0.20LS -0.04DAP 

Simple  PRY= 1.10 -0.06DAP 

Relative grain number 

Full RGN = 0.80 +0.62MS + 0.001LS +0.01DAPHS -0.07DAPMS -0.05DAPLS  

Simple YSZ RGN = 1.25 -0.40MS - 0.11LS -0.05DAP 

Simple  RGN = 1.26 -0.07DAP 

Relative crop yield 

Full RY = 1.31 -0.05MS -1.32LS -0.12DAPHS -0.07DAPMS +0.06DAPLS  

Simple YSZ RY = 0.59 +0.06MS -0.29LS -0.0007DAP 

Simple  RY = 1.15 - 0.06DAP 

HS: High and stable, MS: Medium stable, LS: Low stable, and UN: Unstable, DAPHS: emergence in the High stable YSZ, DAPMS: emergence in the Medium 

stable YSZ, DAPLS: emergence in the Low stable YSZ, DAPUN: emergence in the Unstable YSZ. 
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Table 20. Mean time (days) to reach 10, 50, and 90% emergence by Year-Field and YSZ in the 

three evaluated sites. 

Site Year-Field DAPQ10† DAPQ50
§ DAPQ90

‡ 

Springport 

2016-222 10.2 11.0 12.1 

2017-222 4.1 5.1 7.2 

2018-105 6.3 7.0 8.2 

2019-304 7.5 7.9 8.9 

2020-308 13.4 14.3 15.7 

2021-210 9.7 11.0 14.2 

Portland 

2017-JS1 9.7 10.4 11.4 

2018-NC12 9.6 10.7 12.6 

2019-MG1 9.1 9.6 11.0 

Parana 2020-11 6.1 6.7 8.8 

YSZ¶ DAPQ10 DAPQ50 DAPQ90 

HS 8.3 9.3 10.8 

MS 9.0 9.5 11.3 

LS 8.5 9.9 11.8 

UN 8.8 9.5 10.7 

ANOVA 

Year-Field 0.1165 0.1166 0.1236 

YSZ 0.1995 0.5578 0.6069 

Year-Field x YSZ 0.3188 0.1019 0.084 
†Time to reach 10% of emergence, §time to reach 50% of emergence, ‡time to reach 90% of emergence. ¶Yield 

stability zone. HS: High stable, MS: Medium stable, LS: Low stable, and UN: Unstable. 
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Figure 24. Plant spatial variability within the row as percentage of uniform, skip, and double 

plants across locations (Springport, Portland, and Parana). Uniform: plants with distances 

between 5 and 30 cm; Skip: gaps greater than 30 cm, and Double: consecutive plants less than 5 

cm from each other.   
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Figure 25. Crop yield (kg ha-1) as affected by growing space (cm2 plant-1) and yield stability 

zone by location a) Springport, b) Portland, and c) Parana. HS: High and stable, LS: Low and 

stable, MS: Medium and Stable, and UN: Unstable. 
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APPENDIX B: CHAPTER 3 SUPPLEMENTAL FIGURES 

 

Figure 26. Allometric model validation results a) general model overall, b) general model for V6 

stage, c) general model V14 stage, and d) general model R1 stage. 
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Figure 27. Box plots showing distribution of biomass nitrogen use efficiency (g) in four Year-

Fields (2019-304, 2019-MG1, 2021-308, and 2021-210) for three plant emergence classes, Early, 

Medium, and Late, and three plant hierarchies, Dominant, Dominated, and Uniform.  

 

Figure 28. Box plots showing distribution of grain nitrogen use efficiency (g) in four Year-

Fields ((2019-304, 2019-MG1, 2021-308, and 2021-210)) for three plant emergence classes, 

Early, Medium, and Late, and three plant hierarchies, Dominant, Dominated, and Uniform.  
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Figure 29. Box plots showing distribution of biomass nitrogen fertilizer use efficiency (g) in 

four Year-Fields (2019-304, 2019-MG1, 2021-308, and 2021-210) for three plant emergence 

classes, Early, Medium, and Late, and three plant hierarchies, Dominant, Dominated, and 

Uniform.  

 

Figure 30. Box plots showing distribution of grain nitrogen fertilizer use efficiency (g) in four 

Year-Fields (2019-304, 2019-MG1, 2021-308, and 2021-210) for three plant emergence classes, 

Early, Medium, and Late, and three plant hierarchies, Dominant, Dominated, and Uniform.  
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APPENDIX C: CHAPTER 4 SUPPLEMENTAL TABLES AND FIGURES 

 

 

Figure 31. Features pair plot for the maize emergence dataset, which comprises 3483 samples 

and includes 7 features, 3 being shown. H_V6: plant height (cm) at V6, H_V14: plant height 

(cm) at V14, and H_R1: plant height (cm) at R1. HS: High stable, MS: Medium stable, LS: Low 

stable, and UN: Unstable.   
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Figure 32. Salus model biomass evolution calibration and validation results (a), comparisons 

between estimated and observed biomass (b) and yield (c). 
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Table 21. Emergence descriptive statistics for the evaluated Year-Field by YSZ.  

Site Year-Field YSZ 
Emergence- in thermal time (GDDE, °C day-1)† 

n Min Max Range SD 

Springport 

2019-304 

HS 244 64.6 87.7 23.1 5.1 

MS 239 65.5 87.6 22.1 5.4 

UN 727 66.9 94.4 27.4 7.8 

2020-308 

HS 220 53.7 125.1 95.1 71.4 

MS 275 63.8 135.8 143.9 72.0 

LS 50 73.5 123.0 80.8 49.5 

UN 124 64.5 129.9 80.8 65.4 

2021-210 

HS 150 91.8 172.5 80.7 17.0 

MS 153 87.8 186.5 98.7 19.2 

LS 132 95.8 203.7 107.9 22.5 

UN 100 87.8 144.1 56.3 13.7 

Portland 2019-MG1 

HS 203 61.4b 76.4b 15.1b 4.3 

MS 193 70.4a 125.7a 55.2a 18.0 

LS 43 62.9ab 75.7b 12.8b 4.2 

UN 158 62.7b 84.3b 21.6b 7.1 

Parana 

2020-11 

HS 96 112.0 176.3 64.3 22.6 

MS 77 112.0 171.4 59.4 15.3 

LS 97 112.0 219.3 107.3 14.8 

2020-4 
HS 102 91.2 140.5 49.3 14.0 

LS 100 91.2 149.1 57.9 14.2 

†means not sharing the same letter within the same Year-Field and column are significantly different (p<0.05).  

 

 

Figure 33. Comparisons between estimated and observed emergence (C day-1) for the training 

(a) and testing (b) data sets. Data randomly split from six year-field described in 4.2.1. Site 

description and general characteristics.   
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Figure 34. Comparison between observed plant height (cm) and plant height (cm) extracted from 

LiDAR images obtained at three stages V6 (a), V14 (b), and R1 (c), in two fields 2020-308 and 

2021-210. 

 


