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ABSTRACT
We study asymptotic properties of the Turaev—Viro invariants and build on their conjectured
connections to the geometry of 3-manifolds. Our focus is a conjecture of Chen and Yang [16]
asserting that the exponential growth rate of the Turaev—Viro invariants coincides with the
hyperbolic volume of the manifold.

We begin by studying the variation of the invariants of a manifold with toroidal boundary
under the operation of attaching a (p, ¢)-torus knot cable space, establishing that the Chen—
Yang conjecture is stable under this operation and generalizing results of Detcherry [21]. In
doing so, we make heavy use of the SO(3)-Reshetikhin—-Turaev TQFTs and their relationship
to the Turaev—Viro invariants.

Next we introduce an infinite family of link complements, constructed from gluings of
elementary hyperbolic manifolds inspired by work of Agol [4], satisfying the Chen—Yang vol-
ume conjecture. We show the asymptotics of the Turaev—Viro invariants of these manifolds
are additive under the gluings of the elementary pieces, giving the first examples satisfying
the conjecture which have an arbitrary number of hyperbolic pieces.

Lastly, we study a weak form of the Chen—Yang conjecture known as the Exponential
Growth Conjecture, which asserts that the exponential growth rate of the Turaev—-Viro in-
variants is positive. We construct the first infinite families of knots in S satisfying this
conjecture using Dehn surgery methods. Detcherry and Kalfagianni [22| show the Exponen-
tial Growth Conjecture implies a conjecture of Andersen, Masbaum, and Ueno [5]. Using
this, we construct an infinite family of mapping classes acting on surfaces of any genus and

one boundary component satisfying the conjecture of [5] which correspond to fibered knots

in S3.
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CHAPTER 1

INTRODUCTION
The field of quantum topology originated in the 1980s with work motivated by ideas from
quantum physics, beginning with the discovery of the Jones polynomial [42, 43| of knots
in S3 in 1984, establishing deep connections between physics, algebra, and low-dimensional
topology. Soon after its introduction, Kauffman gave a formulation of the Jones polynomial
in terms of combinatorial properties of knot and link diagrams [48].

This gave rise to the field of quantum topology and quantum invariants motivated simi-
larly by quantum physics to the Jones polynomial. In the late 1980s, Witten [81, 82] gave an
interpretation of the Jones polynomial in terms of path integrals, providing the first physical
example of a family of (2 + 1)-dimensional Topological Quantum Field Theories (TQFTs)
relating the Jones polynomial and Chern-Simons theory. These TQFTs were defined at a
physical level of rigor, but an axiomatic interpretation of them was given by Atiyah [6] soon
after their introduction. This family of TQFTs also provided a sequence of complex-valued
invariants of closed 3-manifolds. Witten’s work motivated predictions that quantum invari-
ants related to the Jones polynomial have deep connections with the geometric properties of
3-manifolds.

In the years following Witten'’s work, Reshetikhin and Turaev |70] constructed a sequence
of complex valued 3-manifold invariants with the same properties as those of Witten. Their
approach, which was based on the representation theory of quantum groups, was the first
mathematically rigorous construction of a (2 + 1)-dimensional TQFT consistent with the
axiomatic framework of [6], and it is widely considered to be the mathematical formulation
of Witten’s theory. The work of Reshetikhin and Turaev in |70] also gave rise to a general-
ization of the Jones polynomial, known as the colored Jones invariants, which are a family of
polynomial invariants of links in S® parameterized by a positive integer n. The construction
of Reshetikhin and Turaev’s 3-manifold invariants begins with a surgery presentation for the

manifold along a link in S3 [49], followed by an evaluation of the colored Jones polynomials



of the link at certain roots of unity. The resulting complex-valued invariants are known as
the Witten—Reshetikhin—-Turaev invariants.

While the constructions of Witten suggested connections between Jones-type invariants
and the geometry of 3-manifolds, this connection is more difficult to establish from perspec-
tive of representations of quantum groups taken by Reshetikhin and Turaev. Nevertheless,
interest in the relationship between the geometric properties, such as hyperbolic volume, and
quantum invariants, such as the colored Jones invariants, of 3-manifolds became a central
theme of quantum topology in the 1990s.

In 1997, Kashaev [45, 46| introduced an infinite family of complex-valued invariants of
links in 3-manifolds defined using the quantum dilogarithm function and the combinatorics of
a triangulation of the link complement. These invariants, like the colored Jones invariants,
are parameterized by a positive integer n € N. Kashaev observed that the n-asymptotic
growth of these invariants determined the hyperbolic volume of the complements of three
knots in S3: 4,55, and 6;, and conjectured in that this occurs for any hyperbolic knot [47].
In particular, Kashaev’s conjecture asserted that for a hyperbolic link in S3, the modulus
of the invariants grows exponentially as n — oo with growth rate given by the hyperbolic
volume of the link complement. Later, Murakami and Murakami built on the work of Kashev
by showing that Kashaev’s invariants coincide with evaluations of colored Jones polynomials
at a certain root of unity [63]. This allowed them to reformulate Kashev’s conjecture in terms
of the colored Jones polynomials, as well as generalize it to all inks in S® by considering the
simplicial volume, an invariant of all link complements which is closely related to hyperbolic
volume. This reformulated conjecture, known as the volume conjecture, is important to both
knot theory and a more widespread framework of connections conjectured to exist between
hyperbolic geometry and quantum invariants of 3-manifolds. Given the relationship between
the colored Jones invariants and other quantum invariants discussed in this work, we state

the conjecture here.

Conjecture 1.0.1. [47][63, Conjecture 5.1] For a link L C S3, let J,,(L; q) be its n-th colored



Jones polynomial evalued at q. Then

. 2 2m/=1
lim — log|Ju(Lye™ n )| = viet|| ML,
n—o00 N
where My, = S3\ n(L) is the complement of L in S3, || - || is the simplicial volume, and

Vet = 1.0149 is the volume of a reqular idea tetrahedron.

We refer the interested reader to the surveys of the volume conjecture given by Murakami
[62] and Dimofte and Gukov [26] for further details on the historical context and development
of this conjecture.

Analogous conjectures have been proposed which relate the growth rates of other quantum
invariants to hyperbolic and simplicial volume. Two such families of quantum invariants
which are studied throughout this work are the Reshetikhin-Turaev invariants, discussed
briefly above, and the Turaev—Viro invariants |79]. These 3-manifold invariants, defined
by Turaev and Viro using a triangulation of the manifold and certain building blocks from
the representation theory of quantum groups studied by Kirillov and Reshetikhin in [50],
turn out to coincide with the square of the modulus of the Reshetikhin—Turaev invariants
[10, 71, 78]. This also establishes a deep connection between the Turaev—Viro invariants and
the colored Jones invariants. Throughout this work, we will investigate a similar conjecture
to Conjecture 1.0.1, which was originally stated by Chen and Yang [16], and asserts that
the asymptotics of the Turaev—Viro invariants also capture hyperbolic data of a manifold.
Details of this conjecture can be found in Section 1.2.

A portion of this work concerns another conjecture relating hyperbolic geometry and
quantum invariants of 3-manifolds known as the Andersen-Masbaum-Ueno (AMU) con-
jecture [5]. The AMU conjecture asserts that the geometry of mapping tori associated to
elements of surface mapping class groups, which are governed by the Nielsen—Thurston clas-
sification |27, Theorem 13.2] are detected by projective representations, known as quantum
representations, arising from the Witten—Reshetikhin—Turaev TQFTs. We refer to Sub-

section 1.5.1 for the details, but briefly, the Nielsen—-Thurston classification partitions the



mapping class group of a surface into finite and infinite-order elements, and the mapping tori
associated to certain infinite-order mapping classes are known to be hyperbolic 3-manifolds.
The AMU conjecture asserts that for these mapping classes, there is an associated quantum
representation of infinite order.

Consideration of both the Turaev—Viro invariant volume conjecture and the AMU con-
jecture is a ntural direction for this work since the former was shown to imply the latter by

Detcherry and Kalfagianni [22].

1.1 Dissertation Organization

An introduction to the Turaev—Viro invariant volume conjecture is given in Section 1.2.
We then summarize the main results of Chapters 3, 4, and 5 in Sections 1.3, 1.4, and 1.5,
respectively. In addition, we discuss applications of the main results of Chapter 5 to the
AMU conjecture in Subsection 1.5.1.

In Chapter 2, we present the necessary background underlying this work. This includes
preliminaries on 3-manifolds, the Witten—Reshetikhin—Turaev invariants, the Turaev—Viro
invariants, and quantum representations of mapping class groups. We investigate the be-
havior of the Turaev—Viro invariants under torus knot cabling operations on manifolds with
torus boundary components in Chapter 3. Next, in Chapter 4, we introduce an infinite
family of 3-manifolds satisfying Chen and Yang’s Turaev—Viro invariant volume conjecture
[16]. Finally, in Chapter 5, we introduce the first infinite families of knots and links in S®

satisfying a weaker version of the Chen—Yang conjecture.

1.2 The Turaev—Viro Invariant Volume Conjecture

In this section, we introduce the Turaev—Viro invariant volume conjecture.

Originally constructed in the early 1990s by Turaev and Viro [79], the Turaev—Viro
invariants T'V,.(M;q) of a compact 3-manifold M are a family of real-valued invariants pa-
rameterized by an integer r > 3 and dependent on a 2r-th root of unity gq. The precise
definition of the r-th Turaev—Viro invariant is given in Section 2.3. Since their introduc-

tion, the Turaev—Viro invariants have been shown to be closely related to other quantum



invariants, including the Reshetikhin—Turaev and colored Jones invariants, and conjectured
to recover geometric data in their r-asymptotics.

Chen and Yang [16] conjectured that the exponential growth rate of the Turaev—Viro
invariants of hyperbolic 3-manifolds coincides with hyperbolic volume. They also provide
extensive computational evidence for the conjecture for both closed and cusped hyperbolic

manifolds in [16].

Conjecture 1.2.1 ([16], Conjecture 1.1). Let T'V,(M;q) be the r-th Turaev—Viro invariant
of a hyperbolic 3-manifold M, and let vol(M) be the hyperbolic volume of M. For r running

. 27y/—1
over odd integers and q = e r

2
lim —Wlog|TVr(M;q)] = vol(M).

r—oo T

Detcherry and Kalfagianni [23] restated this conjecture in terms of the simplicial volume
|| M| of a manifold which is not necessarily hyperbolic. The simplicial volume of a 3-manifold
M, roughly speaking, encodes the hyperbolic content of M. When M is hyperbolic, its

hyperbolic and simplicial volumes are related by
vol (M) = ver| | M]],

where vy &= 1.0149 is the volume of a regular ideal hyperbolic tetrahedron. We refer the
reader to Section 2.1.2 for details on simplicial volume. This leads to a natural extension of

Conjecture 1.2.1:

Conjecture 1.2.2 ([23]|, Conjecture 8.1). Let M be a compact orientable 3-manifold with

. 2my/—1
empty or toroidal boundary. Then for g =e

)

2
LTV(M) := limsup = log|TV, (M:q)| = v |M]],

r—o0, r odd

where vy ~ 1.0149 is the volume of a reqular ideal hyperbolic tetrahedron and || - || is the

simplicial volume.



Here the limit from Conjecture 1.2.1 is replaced by an upper limit since the Turaev—
Viro invariants are known to vanish for certain manifolds. We will colloquially refer to
both Conjectures 1.2.1 and 1.2.2 as the Turaev—Viro invariant volume conjecture since the
manifolds in much of this work are not necessarily hyperbolic, so only the extended version
of the conjecture applies. We also note that the full limit is obtained, rather than just the
upper limit, in multiple results presented in this work.

These conjectures, which are similar in spirit to Conjecture 1.0.1, may be contrasted
with conjectures associated to other roots of unity. Notably, Witten’s Asymptotic Expansion
Conjecture asserts that the asymptotics of the colored Jones invariants, and by extension

the Turaev—Viro invariants, are bounded polynomially when evaluated at the root of unity

Conjecture 1.2.2 has been verified for multiple examples and a few infinite families, though
it remains wide open currently. These examples include the figure-eight knot and Borromean
ring complements by Detcherry, Kalfagianni, and Yang [25]|, the Whitehead chains by Wong
[84], the fundamental shadow links by Belletti, Detcherry, Kalfagianni, and Yang [9], a family
of hyperbolic links in S? x S* by Belletti, and a large family of octahedral links in S* by
Kumar [51]. In addition, manifolds obtained by all but finitely-many Dehn-fillings on the
figure-eight knot complement in S® were shown to satisfy the conjecture by work of Ohtsuki
[64] as well as Wong and Yang [87].

The results presented in this work add to the growing body of progress toward Conjectures

1.2.1 and 1.2.2.

1.2.1 Asymptotic Additivity of the Turaev—Viro Invariants

An important property of a compact, irreducible, orientable 3-manifold is that it can
be decomposed along tori into a unique collection of manifolds, known as its JSJ decom-
position [40, 41|. Each of these manifolds are each either hyperbolic or Seifert fibered by
Thurston’s Geometrization Theorem [75|, which was famously established rigorously by the

work of Perelman [65, 66, 67]. We refer to Subsection 2.1.1 for further details of the JSJ



decompostion. For a 3-manifold M, the simplicial volume ||M|| coincides with the sum of
the volumes of the hyperbolic pieces in this toroidal decomposition, and we naturally expect
the asymptotics of the Turaev—Viro invariants to behave similarly due to Conjecture 1.2.2.

We say a manifold satisfies the asymptotic additivity property it the asymptotic growth
rates of the Turaev—Viro invariants of its JSJ pieces are additive under the JSJ decomposi-
tion. This property is primarily concerned with the behavior of the Turaev—Viro invariants
under gluing operations of 3-manifolds along surfaces such as tori, and it has been verified
in a few cases. In particular, for a manifold M satisfying Conjecture 1.2.2, the asymptotic
additivity property has been proven for the so-called invertible cablings of M by Detcherry
and Kalfagianni [23] and (2n + 1,2)-torus knot cablings of M by Detcherry [21|. Each of
these results involve gluing a Seifert fibered manifold to M, which does not change simplicial
volume. Additionally, the asymptotic additivity was verified by Wong for Whitehead chain
cablings of the figure-eight knot, providing the first examples involving gluings of pairs of
hyperbolic pieces.

The main results of Chapters 3 generalize the work of Detcherry [21] from (2n + 1,2)-
torus knot cables of a manifold to establish the asymptotic additivity property to general
(p, q)-torus knot cables of manifolds. In addition, the main results of Chapter 4 provide
the first construction which glues several hyperbolic pieces to produce an infinite family of

manifolds satisfying the asymptotic additivity property.

1.3 Cabling Operations and Main Results of Chapter 3

Here we summarize the main results of Chapter 3. We note that the results presented
here are joint with Kumar and can be found in the preprint [53].

In Chapter 3, we study the behavior of the Turaev—Viro invariants under the gluing
operation of attaching a (p, q)-torus knot cable space to a manifold with a nonempty torus
boundary component. We call a manifold M’ is obtained from M by attaching a cable space
to one of its torus boundary components a (p, ¢)-cable of M. These cable spaces are Seifert

fibered manifolds with two torus boundary components, so the cabling operation does not



increase the simplicial volume of the manifold, nor does it change the number of boundary
tori of the manifold.

A natural question which arises is how the Turaev—Viro invariants change under the (p, ¢)-
cabling operation. Detcherry [21] first explored the variation of the Turaev—Viro invariants
under the (2n + 1,2)-cabling operation, for n € N. He established that (2n + 1,2)-cabling
changes the invariants by a factor which is at most polynomial in r, which means that the
exponential growth rate of the invariants is unchanged under (2n + 1,2)-cabling and that
Conjecture 1.2.2 is stable under this cabling operation. This also provided some of the
earliest examples of the asymptotic additivity property discussed in Subsection 1.2.1.

The main result of Chapter 3 is the following, which generalizes Detcherry’s result for

(2n + 1, 2)-cablings |21, Theorem 1.5] to general (p, g)-cablings.

Theorem 1.3.1. Let M be a manifold with toroidal boundary, let p,q be coprime integers
with ¢ > 0, and let v > 3 be an odd integer coprime to q. Suppose M’ is a (p,q)-cable of M.

Then there exists a constant C' > 0 and natural number N such that

1
CrN

TV, (M) < TV,(M') < CrNTV,.(M).

Theorem 1.3.1, analogously to Detcherry’s bound in |21, Theorem 1.5, has applications
to Conjecture 1.2.2. To the author’s knowledge, in all of the proven examples of Conjecture
1.2.2, the stronger condition that the limit approaches the simplicial volume is verified, as

opposed to only the limit superior. Notably, we have the following corollaries.

Corollary 1.3.2. Suppose for M we have

. 27
lim  —log|TV, (M;q)| = viet|| M]].

r—oo, r odd T

Then M satisfies Congjecture 1.2.2 and, for any p and q coprime, any (p,q)-cable M' also

satisfies Conjecture 1.2.2.



Corollary 1.3.2 demonstrates a the stability of Conjecture 1.2.2 under general (p,q)-
cabling operations. Furthermore, in the case when ¢ = 2" for n € N, we recover the full limit

automatically, as shown in the following corollary.

Corollary 1.3.3. Suppose M satisfies Conjecture 1.2.2. Then for any odd p and n € N,

any (p,2™)-cable M" also satisfies Conjecture 1.2.2.

Corollaries 1.3.2 and 1.3.3 allow us to construct large families of manifolds satisfying
Conjecture 1.2.2 from manifolds with torus boundary components for which Conjecture
1.2.2. These include an infinite family of manifolds constructed by Kumar and the author
[52] introduced in Chapter 4.

The primary method we use to prove Theorem 1.3.1 follows the argument of Detcherry
[21], which utilizes the relationship between the SO(3)-Reshetikhin—Turaev TQFTs and the
Turaev—Viro invariants. We reserve the details for Chapter 3, but we briefly outline an
important supporting result used to prove Theorem 1.3.1.

The SO(3)-Witten—Reshetikhin—-Turaev TQFTs [11, 70] associate a linear operator on a
finite-dimensional vector space to the (p, ¢)-torus knot cable spaces C,,,, denoted RT,(C,,)
for each odd integer > 3. In [21], Detcherry proves that the linear operator RT,(Coy+1.2)
is nonsingular and that the operator norm of its inverse is bounded above polynomially in r.
He then uses this bound in conjunction with the relationship between the Turaev—Viro and
the Reshetikhin-turaev invariants to establish bounds on the Turaev-Viro invariants under
cabling. We prove the analogous result for operators associated to general (p, ¢)-torus knot

cable spaces.

Theorem 1.3.4. Let p be coprime to some positive integer q. Then RT,.(C,,) is invertible
if and only if  and q are coprime. Moreover, the operator norm |||RT.(Cp4) || grows at

most polynomially.

The argument for Theorem 1.3.4 is largely technical and comprises a majority of Chapter



1.4 Asymptotic Addititvity and Main Results of Chapter 4

Here we introduce the main result of Chapter 4. The results presented here are included
in joint work with Kumar published in the Journal of the London Mathematical Society [52].

The main theorem of Chapter 4 establishes the asymptotic additivity property for an
infinite family M of manifolds glued from several hyperbolic pieces. In particular, it implies
that Conjecture 1.2.2 is preserved under gluings of toroidal boundary components for a family
of 3-manifolds.

Our construction is inspired by a construction of Agol [4] of cusped 3-manifolds with well-
understood geometric properties. Agol begins with an oriented S!'-bundle over a surface and
systematically drills out curves to produce octahedral link complements. We refer to Section
4.2 for the details of Agol’s construction. For our purposes, we focus on two hyperbolic
manifolds which serve as elementary building blocks for the infite family M.

We begin with a trivial S'-bundle over the once-punctured torus ¥;; and use Agol’s
procedure to produce a hyperbolic link complement, which we call an S—piece, of volume
2Vpet, Where v, & 3.66 is the volume of the regular ideal hyperbolic octahedron. Then we
take a trivial S'-bundle over the four-punctured sphere Y4 and again use Agol’s procedure
to produce a hyperbolic link complement of volume 4v,.; which we call an A—piece. Gluing
k S—pieces and | A—pieces along their original torus boundary components produces a
compact manifold M (k,1) € M, where L is the union of the link components of the S—
and A—pieces.

The main result of Chapter 4 is the following.

2my/—1

Theorem 1.4.1. Let My (k,l) € M. Then for r running over odd integers and q = e~ r

. 2w
lim — IOg |TV:I‘(ML(]€7 l)7 Q)‘ = UtetHML(ka l)“ = Q(k + 2l)voct

r—oo T

where Vo & 3.66 s the volume of the reqular ideal hyperbolic octahedron.

Notably, Theorem 1.4.1 implies that the family M satisfies the asymptotic additivity

property as well as Conjecture 1.2.2. To the author’s knowledge, this is also the first family of

10



manifolds satisfying the volume conjecture which may have an arbitrary number of hyperbolic

pieces in their JSJ decomposition.

1.5 ¢-hyperbolic Knots in S? and Main Results of Chapter 5

Here we summarize the main results of Chapter 5. The results presented here are part
of ongoing joint work with Kalfagianni and will be included in a forthcoming preprint.

As discussed above, the Turaev—Viro invariant volume conjecture holds for multiple par-
ticular examples, as well as a few infinite families with well-understood hyperbolic geometry
[25, 64, 87, 86, 83, 51, 52, 53, 8, 9]. Despite this recent progress, Conjecture 1.2.2 is still
wide open.

In Chapter 5, we consider the following weaker conjecture studied by Detcherry and
Kalfagianni in [22, 23, 24], which asserts that the Turaev—Viro invariants of a manifold with
hyperbolic JSJ pieces grow at least exponentially.

Conjecture 1.5.1. (Exzponential Growth Conjecture) Let M be a compact orientable 3-

manifold with empty or toroidal boundary. Then for q = e

2
ITV(M) = liminf —log|TV, (M;q)| > 0

r—o0, r odd T

if and only if || M|| > 0.

A manifold M with TV (M) > 0 is called g-hyperbolic, and we will often refer to Con-
jecture 1.5.1 as the Fxponential Growth Conjecture. The only hyperbolic knot complement
in the 3-sphere for which the asymptotic behavior of the Turaev—Viro invariants has been
explicitly understood is the figure-eight knot complement [25]. As discussed in Section 1.2,
Conjecture 1.2.1 has been proved for all hyperbolic 3-manifolds that are obtained by Dehn-
filling the figure eight knot complement in S* [64, 87].

Chapter 5 is comprised of constructions of the first infinite families of g-hyperbolic knots
in the 3-sphere. Our contructions combine the results of |64, 87| with a result of [23] about
the behavior of the Turaev—Viro invariants under Dehn-filling, and with several Dehn surgery

techniques. We refer to Section 2.1.3 for the details on Dehn-filling, surgery presentations

11
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n

Figure 1.1 A double twist knot D(m,n) diagram with m vertical half-twists and n horizontal
half-twists.

of manifolds, and Kirby calculus on surgery diagrams, which are important to many of the
arguments of Chapter 5.

Briefly, a Dehn filling of the figure-eight knot complement, denoted My,, is determined
by a slope p/q € Q, where p, ¢ are coprime, associated to the homological generators of the
boundary torus of the knot complement. The result of Dehn-filling is a closed manifold,
denoted My, (p/q). In general for a knot K C S®, we denote its complement by M.

The families of knots corresponding to Dehn-fillings of My, we consider in Chapter 5
belong to a family of knots known as the double twist knots. For m,n € 7Z, let the double
twist knot D(m,n) with m vertical half-twists and n horizontal half-twists be as in Figure
1.1. For example, D(2,—2) is the figure-eight knot and D(2,2) is the left-handed trefoil.

The first main result of Chapter 5 is the following.
Theorem 1.5.2. For any integer n # 0, —1, the following are true:
1. The knots D,, := D(2n,—3) and D), := D(2n,—2) are q-hyperbolic.

2. The 3-manifolds M, = Mp, (4n + 1) and M) := Mp, (1) are hyperbolic and q-

hyperbolic.

3. We have
1TV (Mp,) > vol(M,), and ITV(Mp,) > vol(M)).

Using Theorem 1.5.2, we may conclude that many low-crossing knots are g-hyperbolic.

We refer to Tables 5.1 and 5.2 in Section 5.5.

12



For the other families constructed in Chapter 5, we consider a type of slope known as a
non-characterizing slope. This is a slope p/q for a knot K C S3 such that there is a knot K’
that is not equivalent to K and such that Mg (p/q) is homeomorphic to Mk (p/q). In [2, 1, 3],
the authors give constructions of knots that admit infinitely many non-characterizing slopes.
Combining their techniques and results with Theorem 1.5.2, we are able to construct new
infinite families of ¢-hyperbolic knots.

The first family is constructed from a particular knot, D_o = D(—4,—3), which is ¢-
hyperbolic by Theorem 1.5.2 since M_5(—7) is homeomorphic to My, (—7/2). Using Table
5.1 in Section 5.5, we see that D_, is identified as the knot 65. This knot admits a par-
ticular projection known as a good annulus presentation, defined in Section 3.3.1 of [1].
Knots admitting a good annulus presentation are shown in [1] to admit infinitely many non-
characterizing slopes, so we apply these methods to produce such an infinite set for the knot

6, in the following theorem. See Section 5.3 for the details.

Theorem 1.5.3. There is an an infinite set of knots IC such that:
1. Ewvery knot in KC is q-hyperbolic.
2. For every K € KK, Mk (=T) is homeomorphic to My, (—=7/2) and it is q-hyperbolic.
3. No two knots in IKC are equivalent.

These techniques apply to any g-hyperbolic knot admitting a good annulus presentation,

which allows use to state the following.

Theorem 1.5.4. Suppose that K is knot that admits a good annulus presentation and such
that My (n) is q-hyperbolic for some n € Z\ {0}. Then there is an infinite family {K;}ien

of distinct q-hyperbolic knots, such that My, (n) = Mg (n), for any i € N.

The techniques of [1] also apply to the family of knots D!, := D(2n,—2) to produce other

families of g-hyperbolic knots in S®. This is because they each admit a more general form
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of knot projection known as an annulus presentation. However, in this case we don’t know

whether the resulting knots are necessarily distinct. This gives us the following result.

Theorem 1.5.5. For any |n| > 1, let D!, := D(2n,—2). There is a sequence of q-hyperbolic

knots { K! }ien such that for any i € N we have the following:
1. The knot K! is q-hyperbolic.

2. The 3-manifold M; (1) is homeomorphic to Mp, (1) and it is q-hyperbolic.

1.5.1 Applications to the AMU Conjecture

Our results also have new applications to a conjecture of Andersen, Masbaum, and Ueno
[5].

In order to state the conjecture, we will give a brief introduction to mapping class groups
of surfaces and their associated quantum representations. For an oriented surface X, , of
genus g > 0 with n > 0 boundary components, we denote its mapping class group, the group
of orientation-preserving self-homeomorphisms of ¥, which fix its boundary pointwise, by
Mod(%,,,). The elements of Mod(3,,,) are called mapping classes. Further details are given
in Subsection 2.4.1.

There is a well-known classification of mapping class groups known as the Nielsen—
Thurston classification [27, Theorem 13.2], which states that for any mapping class ¢ €
Mod(X,,,), ¢ is either periodic, meaning it has finite order, pseudo-Anosov, meaning it is
irreducible and has infinite order, or it is reducible.

Now fix an odd integer r > 3 called the level, and let I, := {0,2,...,r — 3} be the set of
non-negative even integers less than r — 2. For a 2r-th root of unity A and a coloring ¢ of
the boundary components of ¥, ,, by elements of I,. The SO(3)-Reshetikhin-Turaev TQFTs

[11, 70, 78] give rise to a projective representation
prc : Mod(X,,,) = PAut(RT,(X,,)),
known as the SO(3)-quantum representation of Mod¥, ,, at level r.
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The AMU conjecture [5] asserts that the quantum representations detect the pseudo-

Anosov mapping classes in their asymptotics.

Conjecture 1.5.6 (AMU Conjecture, [5]). Let ¢ € Mod(X,,) be a pseudo-Anasov mapping
class. Then for any big enough level r, there is a choice of coloring ¢ of the components of

0%y, such that p,.(¢) has infinite order.

Conjecture 1.5.6 is closely related to conjectures stated earlier, namely the Exponential
Growth conjecture (Conjecture 1.5.1) and the Turaev—Viro invariant Volume Conjecture
(Conjecture 1.2.2). In particular, Detcherry and Kalfagianni [22] proved that if a mapping
torus M, with monodromy ¢ is g-hyperbolic, then ¢ satisfies the conclusion of the AMU
conjecture.

We will see in Section 5.4 that the knots D,, = D(2n,—3) are fibered when n < —1.
See Proposition 5.4.3 for the precise statement. In particular, for n < —1 and g := —n,
the knots D,, fiber over the surface ¥,; with monodromy ¢, € Mod(X,). We again refer
to Section 5.4 for the precise definition of ¢,. Since these knots D,, are g-hyperbolic, their

monodromies ¢, provide new examples of mapping classes satisfying Conjecture 1.5.6.

Theorem 1.5.7. For g > 1, the mapping classes ¢y, <;§; € Mod(¥,,) are pseudo-Anosov and

they satisfy the AMU conjecture.

These are the first examples known to satisfy the AMU conjecture that are constructed
as monodromies of fibered knots in S3. The examples of [22] are coming from monodromies
of fibered links of multiple components, while the examples [24] come from monodromies
of fibered knots in closed ¢-hyperbolic 3-manifolds. In fact, the constructions presented
here give rise to a framework for further examples to be discovered, as any fibered knot in
S3 which can be shown to share a surgery with 4; has a monodromy satisfying the AMU

conjecture.
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CHAPTER 2

PRELIMINARIES
In this chapter, we will introduce the necessary background underlying the work presented
in this dissertation. We begin with a discussion of 3-manifolds, their decompositions into
elementary building blocks along surfaces, important geometric properties of 3-manifolds
known as hyperbolic and simplicial volume, and the notion of surgery on a link in a 3-
manifold in Section 2.1. We then define the Witten—Reshetikhin-Turaev invariants and the
Witten—Reshetikhin—Turaev TQFTs 2.3. Finally, we discuss quantum representations of

mapping class groups of surfaces in Section 2.4.

2.1 Three-dimensional Manifolds

In this section, we will discuss 3-manifolds and some of their important characteristics.
For further background on 3-manifolds, we refer the reader to [73, 35, 38]. We will focus
on our attention on how 3-manifolds can be decomposed canonically along surfaces into
elementary pieces. In this context, studying the geometry and topology of a 3-manifold
involves studying properties of the elementary pieces that make up the manifold.

An n-manifold is an n-dimensional topological space X™ such that for any point z € X",
there is a neighborhood U C X" of x which is homeomorphic to R". We say that X" is
locally homeomorphic to R™ in this case.

Restricting our attention to dimension 3, we say a 3-manifold M with boundary M is
compact if it is locally homeomorphic to R? in its interior and locally homeomorphic to the
half space {(z,y,2) € R*|z > 0} on its boundary. If 9M = ), we say M is closed.

Every compact 3-manifold M has a double covering space called the orientable double
cover. This double cover is connected if and only if M is non-orientable. We say a 3-manifold
M is irreducible if every two-sphere S? C M bounds a three-ball B3> C M. The connected
sum of two 3-manifolds M; and M, denoted M = M;# M, is the 3-manifold constructed by
removing a three-ball B? from each of M; and M, and gluing the resulting pair of compact

manifolds (with boundary S?) along their boundary components. Note that M#S5% = M
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We call a 3-manifold prime if M = M;# M, implies that either M; = S% or M, = S3.
Throughout this work, we will be primarily concerned with compact irreducible 3-manifolds.

A link L with k components in a 3-manifold M is the image of an embedding LI¥_ St
M, and we call a link with a single component a knot. Given a link L C M, we can consider
the link complement

My, = M\ n(L),

where n(L) is a neighborhood of L in M. This is a compact 3-manifold bounded by a disjoint

union of tori corresponding to each of the link components.

2.1.1 Decompositions

Here we discuss how compact 3-manifolds can be decomposed into elementary pieces:
the prime decomposition, and the JSJ decomposition. We refer the reader to [35, 38| for
detailed accounts of these decompositions.

Let M be a 3-manifold, S C M be a properly embedded surface, and n(S) be an open
tubular neighborhood of S in M. We do not assume S is connected and note that n(S) is an
I-bundle over S that is trivial if and only if S is orientable. Define the 3-manifold obtained
by splitting M along S by M|S := M \ n(S). The following prime decomposition of Kneser

is one of the earliest general results on 3-manifolds.

Theorem 2.1.1. Let M be a compact, connected, orientable 3-manifold. Then there is a
decomposition M = My# - - - #M,,, where each M; is prime. Moreover, this decomposition s

unique up to the connect sums of copies of S3.

Kneser [39] established the existence of such a decomposition in 1928, and uniqueness
was formally completed by Milnor in 1962 [59]. This decomposition along spheres into prime
3-manifolds is related to classifying compact orientable 3-manifolds in terms of irreducible

ones, due to the following fact.

Proposition 2.1.2. The only orientable prime 3-manifold which is not irreducible is S* x S*.
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Later, in the 1970s, a canonical decomposition of orientable compact irreducible 3-
manifolds along embedded tori was introduced independently by Johannson [41] and Jaco-
Shalen [40].

Let M be a compact 3-manifold. We say a properly embedded surface S C M is 2-sided

if its normal I-bundle is trivial and 1-sided if its normal /-bundle is nontrivial.

Definition 2.1.3. A 2-sided surface S which contains no S? or D? components is incom-
pressible if for each disk D C M satisfying D NS = dD, there is another disk D’ C S with
oD' = dD.

If no such disk D’ C S exists, we refer to such a D C M as a compressing disk for S. The

following is an important characterization of incompressibility for surfaces in 3-manifolds.

Proposition 2.1.4. A connected surface S C M is incompressible if and only if the inclusion

map induces an injective homomorphism m(S) — m (M).

This leads to the following proposition, which characterizes incompressible tori in an

irreducible 3-manifold.

Proposition 2.1.5. An embedded torus T in an irreducible 3-manifold M is compressible if

and only if T is contained in a 3-ball in M or T bounds a solid torus.

A properly embedded surface S C M is O-parallel if it is isotopic to a subsurface of
OM, and we say an irreducible 3-manifold M is atoroidal if every embedded torus in M is
O-parallel.

The torus decomposition was introduced by Johannson [41] and Jaco-Shalen [40]. We

refer to Hatcher’s notes on 3-manifolds [35] for a proof of the following theorem.

Theorem 2.1.6. [41, 40] Let M be a compact irreducible 3-manifold. There exists a finite
collection of disjoint incompressible tori T =T, U ---UT, such that each component of M|T
is either atoroidal or Seifert fibered. Moverover, there is a minimal such collection T which

15 unique up to 1sotopy.
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This decomposition, known as the JSJ decomposition, is related to Thurston’s Ge-
ometrization Conjecture |75, which asserts that compact irreducible manifolds can be de-
composed into pieces which are either Seifert fibered or support a finite volume hyperbolic
structure. Thurston established the conjecture for manifolds containing a 2-sided incompress-
ible surface in |75], and the proof was famously completed following the work of Perelman
[65, 66, 67]. Further detail on the Geometrization Conjecture can be found in Chapter 12 of

Martelli’s book [58].

2.1.2 Simplicial and Hyperbolic Volume

Here we introduce the simplicial volume, originally defined by Gromov [34], and its
relationship to hyperbolic structures on 3-manifolds.

Gromov [34] originally defined simplicial volume as a homological invariant for manifolds
of any dimension n, but we restrict our attention to orientable 3-manifolds. Details can be
found in Section 6 of [74], though we provide relevant definitions and topological properties

here.

Definition 2.1.7. |34, 74| Let M be a compact orientable 3-manifold with empty or toroidal
boundary and let [M,0M] € Hs(M,0M,R) be the fundamental class in singular relative
homology. Consider a relative singular 3-cycle z = Y¢;0; € Z3(M,0M,R) representing the
fundamental class. Define its norm by ||z|| = X|¢;| € R. The simplicial volume ||M]]| is

defined as follows.

(1) If OM =0, then
||M]] = inf{||z] | [z] = [M]}

(2) if OM # 0, then [z] € H3(M,9M,R) determines a representative 9z of the class [0M] €
Hy(OM,R). Define

|| M| zliminf{||z||
a—0

(2] = [M,0M] and ||0z|| < oz}.
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This limit is shown to exist in Section 6.5 of [75], so ||M]| is well-defined.

Remark 2.1.8. Simplicial volume is related to the Gromov norm in the literature. Through-
out this dissertation, we take simplicial volume to be equivalent to the Gromov norm, but we
note that some sources (see [30], for example) differentiate Gromov’s original invariant from
simplicial volume by a fixed proportionality constant. This distinction does knot change any

of the results or arguments that follow.

Simplicial volume also encodes some of the hyperbolic content of a manifold through the
pieces in its JSJ decomposition. This is realized by the relationship between simplicial and
hyperbolic volume of 3-manifolds.

Let M be a compact irreducible 3-manifold and 7" C M be the collection of tori realizing
its minimal JSJ decomposition. By Theorem 2.1.6 and Thurston’s Geometrization Theorem,

each component of M|T is either
e a Seifert manifold which does not support a finite volume hyperbolic structure, or
e a manifold whose interior admits a unique finite volume hyperbolic structure.

The volume of a hyperbolic 3-manifold M, denoted vol(M), is a topological invariant of
M by Mostow-Prasad rigidity |61, 68|, and Corollary 6.6.2 in Thurston’s notes [74] implies
that there are at most finitely many isometry classes of hyperbolic 3-manifolds of a given
volume.

For example, the smallest volume closed orientable hyperbolic 3-manifold, known as the
Weeks manifold, has volume approximately 0.9427, and the smallest volume cusped ori-
entable hyperbolic 3-manifold, the figure-eight knot complement in S?, has volume approxi-
mately 2.0299. Throughout this work, we denote the volume of the regular ideal hyperbolic
tetrahedron by v, =~ 1.0149 and the volume of the regular ideal hyperbolic octahedron by
vg ~ 3.6638.

For more general manifolds with JSJ decompositions containing Seifert fibered pieces, the

simplicial volume corresponds to the sum of the volumes of the hyperbolic pieces in the JSJ
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decomposition. This means Seifert manifolds have simplicial volume zero while manifolds
with hyperbolic JSJ components have positive simplicial volume. Simplicial volume also

behaves well with respect to some topological operations.

Theorem 2.1.9. (/34, 74]) Let M be a compact orientable 3-manifold. The following are

true:
(1) ||M]| is additive under disjoint union and connected sums,

(2) If M has a self-map of degree d > 1, then ||M|| = 0. In particular, the simplicial volume

of a trivial circle bundle over a compact orientable surface vanishes.

(3) If T'C M is an embedded torus and M' is obtained from M by cutting along T, then
|M] < [|M]],
with equality if T is incompressible in M.
(4) If M is obtained from M’ by Dehn-filling along a torus boundary component of M', then
|| M| < [|M]].
(5) If M has a complete finite-volume hyperbolic structure, then
vol (M) = vyer| | M ]

(6) Let Hyy denote the union if the hyperbolic components in the JSJ decomposition of M.
Then

vol(Hyr) = vier| |[M ],

where vol(Hys) denotes the total volume of Hyy.
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Figure 2.1 Dehn twist 7, along the meridian p of a torus.

2.1.3 Surgery Presentations

In this subsection, we discuss a method for encoding 3-manifolds using framed knots and
links in S3. These representations will aid in defining various quantum invariants in Section
2.2. We begin by defining certain homeomorphisms of surfaces.

Let X be a closed oriented surface. We will define the simplest example of an orientation-
preserving homeomorphism of ¥ which is not isotopic to the indentity map. Let v C X be a
non-separating simple closed curve, and let v, and = be the two copies obtained by cutting
3 along . Fix v, and apply a full rotation by 27 to 5. Now since each point on 7, is in its
original position, we may glue v, and =, back together via the identity map. This operation
corresponds to a nontrivial self-homeomorphism of ¥ called a Dehn twist along ~, denoted
7,. For example, Figure 2.1 shows a Dehn twist along the meridian of a torus.

Dehn twists are particularly important to the classification of self-homeomorphisms of

oriented surfaces, as evidenced by the following theorem.

Theorem 2.1.10 (Dehn-Lickorish Theorem). Let ¥, be a closed oriented surface of genus
g > 0. Bvery orientation-preserving self-homeomorphism of X, can be presented as a com-

position of Dehn twists and homeomorphisms isotopic to the identity.

Theorem 2.1.10 was originally established by Dehn, and Lickorish [54] later gave a simpler
proof and an explicit set of generating curves along which the Dehn twists can be defined.
Isotopy classes of self-homeomorphisms of surfaces actually form a group, but we will discuss
the details of this group later in Section 2.4. For our purposes, we just note that the Dehn
twist along a curve has an inverse, which we call the negative Dehn twist 7.° L

This Dehn—Lickorish Theorem has important implications in the context of 3- and 4-
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manifolds. In order to state these results, we start with a way to represent 3-manifolds using
knots and links.

Consider the unknot U C S3. Tts neighborhood n(U) is a solid torus with on(U) = T2
As disussed in the beginning of this section, the complement of any knot in S? is a compact
3-manifold with a single torus boundary component. In the case of the unknot U, My
is homeomorphic to the solid tous. Rather than considering the complement obtained by
removing n(U) from S*, we may glue the solid torus back into along some homeomorphism
of its boundary 7. This operation, called Dehn surgery, results in a closed manifold which
is determined by the choice of homeomorphism of T2.

For example, consider the self-homeomorphism 7, : 7% — T2 corresonding to the Dehn
twist along the meridian p of On(U) = T?. The associated Dehn surgery is performed by
removing the solid torus n(U) = S!' x D? and replacing it with a copy of D? x S*. Tt is
encoded by labeling the knot diagram U with surgery coefficient 1, and is called the 1-surgery
on U. The resulting closed manifold is denoted My (1). Similarly, the manifold obtained by
Dehn surgery with the negative Dehn twist along the meridian corresponds to a —1-surgery
on U and is denoted My (—1). In this case, My (41) is homeomorphic to S?, but we will see
below that this is a special case.

In general, we can perform Dehn surgery on any n-component framed link L C S3. Since
the link complement M}, has boundary OM;, = U, T?, the surgery involves removing a solid
torus neighborhood of each component and gluing it back in via a specified homeomorphism
on each torus.

In particular, let  and A be the meridian and longitude of T2, respectively. Consider the
simple closed curve J,, := pu + g that wraps around the meridian p times and longitude
q times. It is known that the isotopy classes of homeomorphisms of T2 correspond to the
rational number » = p/q when p and ¢ are coprime. In particular, each homeomorphism
f : T? — T? is isotopic to a map of the form p +~ pu + gA. This means that Dehn

surgery on a link L C S® is determined by specifying a set of rational surgery coefficients
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{ry,...,rp} corresponding to the torus components of dMy. Performing Dehn surgery on

L C S3 produces another closed 3-manifold, denoted M (ry,...,7,).

Remark 2.1.11. We note that the r = p/q = 1/0 = oo surgery is allowed; this surgery
corresponds to the identity map on 7?2 sending the meridian to itself, so it does not change
the manifold. The surgery coefficient » = 0/1 = 0 corresponds to a torus switch, which

interchanges the meridian and longitude.

Example 2.1.12. Let U C S? be the unknot and My be its complement. The following

manifolds My (r) are examples of r = p/q surgeries on U.
(1) My(0) is homeomorphic to S* x S2.

(2) My(p/q) is homeomorphic to the lens space L(p,q).
(3) My (+1/n) is homeomorphic to S*

(4) Mg (1/0) is homeomorphic to S* for any knot K C S°.

(5) If L = Ly U Ly such that Ly and Ly are unlinked, then M (ry,r2) is homeomorphic to

the connect sum My, (r1)#My,(rs).

The following result is due independently to Lickorish [54] and Wallace [80] and is a

corollary of Theorem 2.1.10.

Theorem 2.1.13 ([54, 80]). Any closed orientable 3-manifold can be obtained by performing
Dehn surgery on a framed link in L C S® with surgery coefficients £1 on each component.

Moreover, each component of L can be assumed to be unknotted.

Theorem 2.1.13 allows us to present any 3-manifold M as a framed link in S3. We call
call this a surgery presentation of M. Surgery presentations are not unique; there is no
unique way of expressing a homeomorphism as a product of Dehn twists. A large volume of
work in low-dimensional topology is focused on the understanding the relationship between

the surgery presentations of a given manifold.
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Figure 2.2 Kirby move of Type II.

When surgery along two framed links in S® produce the same manifold, we say these
surgeries are equivalent. For example, we saw above that for any n € Z, the (1/n)-surgery
along the unknot in S? is homeomorphic to S3.

There is a systematic description of modifications of surgery on framed links which do
not change the resulting manifold. In particular, one may modify a surgery presentation
by certain combinatorial operations, known as Kirby calculus, to obtain another surgery
presentation which produces the same 3-manifold. The details of Kirby calculus can be

found in [72, 56, 69], but we state the main results used throughout this work here.

Theorem 2.1.14 ([49]). Surgery along two framed links in S® produces the same 3-manifold
if and only if they are related by a sequence of moves of two types. A move of Type I
involves adding/removing an (£1)-framed unknotted component which is unlinked from the
other components. In a move of Type II, any two components that are contained in a twice-

punctured disk Yoo can be modified as shown in Figure 2.2.

The moves of Type I and II are referred to as Kirby moves, and they are often described
by the terms blow up/blow down and handleslide, respectively. They apply to framed links
with integer surgery coefficients. Soon after Kirby’s result [49|, Fenn and Rourke [28] gave
an equivalent construction which uses a single move to modify surgery presentations. This
move, shown in Figure 2.3, turns out to be a combination of the Kirby moves.

Rolfsen [72] also gives a pair of similar surgery presentation modifications which do not
change the resulting manifold. In addition, these moves extend those of Kirby to framed

links with both integer and rational surgery coefficients. These moves are the following:

(1) Introduce or remove a component with surgery coefficient oo,
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Figure 2.3 Fenn—Rourke moves, which correspond to Rolfsen’s twist of the complement of
an unknotted component. The positive twist is given on the left, and the negative twist on
the right.

(2) Twist the complement of an unknotted component using a Fenn-Rourke move.

All combined, these operations on framed links consitute the Kirby—Rolfsen—Fenn—Rourke
calculus. In the remainder of this work, we will use both Kirby and Fenn-Rourke/Rolfsen
moves to modify surgery presentations, and we will leverage Theorems 2.1.10, 2.1.13 and
2.1.14 frequently to present homemorphisms and surgery descriptions of manifolds. This
will be especially important in Sections 2.2 and 2.3 to define various quantum invariants of

3-manifolds.

2.2 The Witten—Reshetikhin—Turaev Invariants

In this section, we discuss the Witten—Reshetikhin-Turaev invariants and the Topological
Quantum Field Theories (TQFTs) they are a part of. We begin in Subsection 2.2.1 by
introducing a version of these invariants for 3-manifolds containing framed links that is
computed relative to a coloring of the link components. We then introduce the SO(3)-
Witten—Reshetikhin—Turaev TQFTs and their relevant properties in Subsection 2.2.2. Both

the relative invariants and the TQFT properties will be useful throughout this work.

2.2.1 Relative Reshetikhin—Turaev Invariants

Here, we introduce the r-th relative Reshetikhin—Turaev invariants for manifolds contain-
ing framed links. We will follow the skein-theoretic framework given by Blanchet, Habegger,
Masbaum, and Vogel [11] and Lickorish [55].

For a compact orientable 3-manifold M, odd r > 3, and 2r-th root of unity ¢, we define
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the Kauffman bracket skein module K,(M) of M to be the C-module generated by the

isotopy classes of framed links in M modulo the following relations:

(I) Kauffman bracket skein relation: <X> = ¢2 <X> tq 2 <><>
(IT) Framing relation: <L L ©> = (—q—q¢H(L).

In the case when M = S3 the Kauffman bracket skein module K,(S?%) is 1-dimensional, and
we obtain an isomorphism

() K.(S*) = C

by sending the empty diagram to 1. For a link L C S3, we call the image (L) € C the
Kauffman bracket of L.

We now consider the Kauffman bracket skein module K,.(S* x [—1,1]?) of the solid torus.
For any framed link L C S? with k ordered components and by, by, . .., b, € K,.(S* x[-1,1]?),

we define the C-multilinear map
(o) Ko(ST x [-1,1) = C,

where (b1, bs,...,b;); is the cabling of the components of L by by,bs, ..., b; followed by
evaluating in K, (S®) using the Kauffman bracket. We refer to [11] for further details on
cabling by an element of the skein module and note that these details are not necessary to
the arguments that follow.

On K,.(S! x [—1,1]?), there is a commutative multiplication induced by juxtaposition of
annuli S* x [0,1] x {pt} making K,(S! x [~1,1]?) a C-algebra. By sending the core of the
annuli to the indeterminate z, we obtain the isomorphism K,.(S' x [—1,1]?) = C|z].

We now construct specific elements of K,.(S* x [—1,1]?) known as the Jones-Wenzl idem-

potents. For ¢ > 0, define e;(z) to be the i-th Chebychev polynomial, which is defined
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recursively by

Define the n-th quantum integer [n] by
qn o q—n
n)i=-————.
y q—qt
Let I, :=={0,1,...,r — 2}. We define the Kirby coloring w, € K,(S' x [-1,1]?) by
Wy =N, Z[z + 1]e;,
icl,
where

B 2 sin(2T)

Ny = \/;

The e; will correspond to colorings of our link by the (i — 1)-th Jones-Wenzl idempotent,
and the Kirby coloring w, will allow us to define an invariant for a framed link in any closed

oriented 3-manifold. We will now define the r-th relative Reshetikhin—Turaev invariants.

Definition 2.2.1. Let M be a closed oriented 3-manifold presented in S® by surgery along
the framed link L’ with n’ components, and let L be a framed link in S® with n components.
We consider the link L LU L' C S? with n + n/ components where the first n components
correspond to the components of L. For a coloring v = (y1,72,...,7) € I of components

of L, we define the r-th relative Reshetikhin—Turaev invariants as

—o(L’
RT.(M,L,7y) = ftr (€yys -y CrpyWry ooy W) <w7">U+( )

where Uy is the +1 framed unknot and o(L’) is the signature of the linking matrix of L.

Reshetikhin and Turaev proved that this is indeed an invariant of the pair (M, L) relative

to the coloring v [70].
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Theorem 2.2.2. [70] Let M be a closed oriented 3-manifold with surgery presentation along
a link L' C S3, and let L C S? be an n-component framed link colored by v € I". Then

RT,.(M, L,~) is an invariant of the pair (M, L) relative to the coloring ~y.

2.2.2 Witten—Reshetikhin—Turaev TQFTs

In this subsection, we introduce the Witten—Reshetikhin—Turaev TQFTs, which are func-
tors from the category of (2+1)-dimensional cobordisms to finite-dimensional C-vector spaces
originally defined by Reshetikhin and Turaev in [70]. For odd r, the skein-theoretic approach
of Blanchet, Habegger, Masbaum, and Vogel [11| and Lickorish [55] give rise this so-called
SO;-TQFT RT,.

Fix an odd integer » > 3 and primitive 2r-th root of unity A, and let ¥/, be a compact
oriented surface of genus ¢g with n boundary components. The SO(3)-Witten-Reshetikhin—
Turaev TQFTs associate a complex vector space RT,(X,,) to X, ,, and, for a 3-manifold M
with OM # 0, RT,.(M) € RT,.(OM) is a vector. For a closed 3-manifold M, RT,.(M) € C is
known as the r-th Witten—Reshetikhin-Turaev invariant and coincides with Witten’s original
3-manifold invariants [81, 82|. The main properties of the SO(3)-TQFT defined in [11]

relevant to this work are the following.

Theorem 2.2.3 ([11], Theorem 1.4). Let r > 3 be an odd integer and A be a primitive 2r-th
root of unity, and let €ob be the category of (2 + 1)-dimensional cobordisms. Then there is
a (24 1)-dimensional TQFT functor

RT, : €ob — Vect(C)
satisfying:

(1) For a closed oriented 3-manifold M, RT,.(M) € C is a topological invariant. Moreover,

if M is oppositely oriented to M, then RT,(M) = RT,(M).
(2) RT,(S?) =mn, and RT,(S* x S') = 1.
(3) RT, is multiplicative under disjoint unions.
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(4) For connect sums, we have

RT,(M#N) = n-'RT.(M)RT,(N).

(5) For a closed oriented surface X3, RT.(X) is a finite dimensional C-vector space, and there

18 a natural isomorphism

RT,(SUY) = RT.(S) ® RT,(X).

(6) For a compact oriented 3-manifold M, RT,.(M) € RT,.(OM) is a vector. Moreover, if
M = M1 L Mg, then

RT,(M) = RT,(M;) ® RT.(M,) € RT,(0M;) ® RT,(OM).

(7) For a cobordism (M,%q,%5), RT.(M) : RT,.(X1) — RT.(X3) is a linear map on C-vector

spaces.

We note that the use of notation RT, for both the relative invariant and the TQFT is
intentional. In particular, for closed M, if L = () or if the coloring v = (0,...,0), then
the relative invariant RT,.(M, L,~v) = RT,.(M) € C coincides with the Witten—-Reshetikhin—

Turaev invariant.

2.3 The Turaev—Viro Invariants

Turaev-Viro |79] defined a real-valued topological invariant on a triangulation of a com-
pact 3-manifold for fixed r and a root of unity ¢ using quantum 6j-symbols studied in [50].
We will define the SU(2)-version of the invariant for odd » > 3 and ¢ = e@, following the

conventions of [9]. We begin by introducing a building block for the Turaev-Viro invariant

known as the quantum 6;7-symbol.

2.3.1 Quantum 6j-symbols

Here we introduce the quantum integers, factorials, and quantum 6;-symbols.
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Recall the n-th quantum integer is given by [n] = q::qq, =, and define the quantum factorial

by
) =TT
k=1
where n is a positive integer. By convention, we also define [0]! = 1. Finally, let I, =
{0,1,2,...,r — 2}, to which we refer to as a coloring set. Throughout the paper, we use the

convention that ,/y = \/m v/—1 for any negative real number y.

Note that other than the use of [n] for the quantum integer rather than {n} := ¢* —¢7",
the definitions introduced in this subsection largely follow the conventions and notation of [9].
In particular, our coloring set I, is defined in terms of integers rather than the conventionally

chosen half-integers used in [16, 79.

Definition 2.3.1. A triple (aq, as, a3) of integers in I, is r-admissible if
(i) a1+ ag + ag is even,
(i) a1 + as + az < 2(r — 2),

(iii) a; +a; —ay > 0 for any i, 5,k € {1,2,3}.

We say a 6-tuple (ay,...,ag) is r-admissible if the triples (a1, as, a3), (a1, as, ag), (az, as, ag),

and (ag, as, as) are r-admissible.

For an r-admissible triple (a1, az, as), define

A(al a a3) _ \/[a1+a22a3}! [a1+a23*a2}! [a2+a237a1}!
) P |
[

ai1tag+as
2tas 4 ]!

Definition 2.3.2. The quantum 6j-symbol of an r-admissible 6-tuple (ai,...,aq) is the

complex number

ap az as -3 a
—V—1 = Alay, as, az)A(ay, as, ag) Aag, ag, ag)Alas, as, as)
g as Qg
min{Q;} k
—1)%k + 1]!
>, ( ),[;L] ; €C, (2.1)
k=max{T;} Hi:l [k - Ti]- Hj:l [Q] - k]
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__ ai1tas+a _ ai1tas+ta _ az+tas+a __ asztas+a _ ai1tas+taqs+ta
WhereT1—122 37T2_125 67T3_224 6’T4_324 57Q1_1224 57

— ai1tastastag — aztastas+ag
QQ_I 24 ;andQ3_2 2 .

We remark that the value of the quantum 67-symbol is either real or purely imaginary.

A wuseful property of the quantum 6j-symbol is the following.

Proposition 2.3.3. For an r-admissible 6-tuple (i, j,k,l,m,n), the following symmetries

follow directly from the definition of the quantum 6;j-symbol at q = e

I m n m [ n I n m Il 5 k i ] n 1 m k
(2.2)
Deeper algebraic and geometric properties of the quantum 6j-symbols can be found in
Kirillov-Reshetikhin [50], Turaev-Viro [79], and Turaev [77, 78|, but properties relevant to
the results of this work that follow are established directly from the above definitions and

properties.

2.3.2 Invariant of a Triangulation

Here we define the r-th Turaev—Viro invariant as an invariant of a triangulation of a 3-
manifold. We also include a result of |9, 25] relating them to the relative Reshetikhin—Turaev
invariants.

We begin with a slightly generalized notion of a triangulation of a 3-manifold.

Definition 2.3.4. Let M be a compact orientable 3-manifold with boundary 0M. We say
T is a partially ideal triangulation of M if some vertices of the triangulation are truncated,

and the faces of the truncated vertices form a triangulation of OM.

Definition 2.3.5. An r-admissible coloring of a tetrahedron T is a map assigning an r-
admissible 6-tuple (ay,...,as) € I? to the edges of T. In particular, the triples (a;,a;, ax)
corresponding to each face of T" must be r-admissible triples satisfying Definition 2.3.1. We
say that a coloring of the edges of a triangulation 7 of a 3-manifold is r-admissible if each

tetrahedron 7' € 7 admits an r-admissible coloring.
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Figure 2.4 Left: A tetrahedron colored by a 6-tuple (i, j, k, 1, m,n). Right: One of the three
quadilaterals of a tetrahedron which separates pairs of vertices.

Let Adm(r, ) denote the set of r-admissible colorings of a partially ideal triangulation
7. Denote the set of interior vertices of 7 by V' and the set of interior edges of 7 by E. Given

a coloring v € Adm(r, ), and edge e € F, and a tetrahedron T' € 7, we define

lely = (=1)"“y(e) +1],

and
v(er) v(e2) (es)
|T|7 = )
v(es) ~v(es) ~(es)
where eq, ..., eg correspond to the edges of T'.

Within this setting of an admissible coloring of a triangulation, the quantities T;, i =
1,2, 3,4, in Definition 2.3.2 correspond to sums of colorings of the four faces of a tetrahedron
and the quantities @);, 7 = 1,2, 3, in Definition 2.3.2 correspond to sums of colorings of the
three normal quadrilaterals of a tetrahedron. See Figure 2.4 for an example of a colored
tetrahedron and a quadrilateral of a tetrahedron.

We are now ready to define the invariant.

2my/—1

Definition 2.3.6. Fix r > 3 be odd and ¢ = ¢ = Let M be a compact orientable 3-
manifold with boundary 0M, and let 7 be a partially ideal triangulation of M. Then the

r-th Turaev—Viro invariant at the root q is given by

ey 2V
TV,(M, ) = (%) > <H|e\mew>. 23

vyeAdm(r,r) \e€E Ter
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Turaev-Viro 79| proved that TV, (M, 7;q) is independent of the choice of partially ideal
triangulation 7, so we may write the invariant as TV, (M;q). One particular implication
of this for a link complement M, is that TV, (My;q) can be computed by summing over
I.-colorings of the link L C M.

Remark 2.3.7. For this dissertation, we will be concerned with the SU(2)-version of the
Turaev—Viro invariants defined above, but we note that our results hold for the SO(3)-
version, which was defined in [25] by Detcherry, Kalfagianni, and Yang. The distinction
between these two versions of the Turaev—Viro invariants arises from the construction of
the Reshetikhin—Turaev TQFTs by Blanchet, Habegger, Masbaum, and Vogel [11]. In the
authors’ work, the elements of the index set I, correspond to the irreducible representations of
SU(2). As SU(2) is a double-covering of SO(3), the authors remark that the SO(3) theory
can be obtained as the restriction of the elements of I, to elements with corresponding
representations that lift to SO(3). This means the Turaev—Viro invariants can be defined to
have an SU(2)-version and an SO(3)-version which are related to each other by Theorem
2.9 of [25]. For more details between these two versions of the Turaev—Viro invariants, we

refer to Sections 2 and 3 of [25].

This state sum formulation of the invariant is not the only way to compute the Turaev—
Viro invariants. These invariants are closely related to the Witten—Reshetikhin—Turaev
invariants. The following identity was originally proven for closed 3-manifolds by Roberts

[71] and then extended to compact manifolds with boundary by Benedetti and Petronio [10].

Theorem 2.3.8 (|10, 71]). Let r > 3 be an odd integer, and let q be a primitive 2r-th root

of unity. Then for a compact oriented manifold M with toroidal boundary,
2
TV, (M.q) = |RT, (M.q%) |
where || - || is the natural Hermitian norm on RT, (OM).

We note that this identity holds more generally, but we have restricted to manifolds with

toroidal boundary for simplicity.
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In addition, in [9] and [25], the authors prove that the r-th Turaev—Viro invariant of a
link complement M, can be computed via the r-th relative Reshetikhin—Turaev invariants

of (M, L) in terms of a sum over colorings of the components of L.

Proposition 2.3.9 (|9, 25|). Let M be a 3-manifold, L C M be a link with k components,

and RT,.(M, L,~) be the r-th relative Reshetikhin—Turaev invariant of (M, L) with the link

L colored by v € I*. Then the Turaev-Viro invariant of the complement My, at q¢ = e

s given by

TV.(Mp;q) = Y |RT.(M, L,7)[*. (2.4)

eI}

2.3.3 The Turaev—Viro Invariant Volume Conjecture

While the Turaev—Viro invariants are difficult to compute in general, there is interest in
the relationship between the r-asymptotic behavior and classical invariants of 3-manifolds
such as hyperbolic volume. Chen and Yang [16] conjectured that the exponential growth rate
of the Turaev—Viro invariants of hyperbolic 3-manifolds coincides with hyperbolic volume,
which we stated in Conjecture 1.2.1. They provide computational evidence for this conjecture
for multiple example manifolds, including the complements of the knots 41,55, and 64, as
well as closed manifolds obtained by some surgeries along 4, and 59, in [16].

Detcherry and Kalfagianni [23] restated this conjecture in terms of the simplicial volume
|| M| of a manifold which is not necessarily hyperbolic. This work is primarily concerned with
manifolds of this type. We define the following asymptotics of the Turaev-Viro invariants

in order to restate the conjectures introduced in Chapter 1.

Definition 2.3.10. Define the following two asymptotics of the Turaev—Viro invariants for

compact 3-manifolds as

ITV(M) = liminf 2—7Tlog‘TVT (M;q:e?ﬂ,

r—oo, rodd T
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and

2 e
LTV(M) = lmsup =" log|TV, (M;q = e%ﬂ.

r—oo, rodd T

This leads to a natural extension of Conjecture 1.2.1, which we restate here.

Conjecture 1.2.2. Let M be a compact orientable 3-manifold with empty or toroidal bound-

. . T/ —1
ary. For r running over the odd integers and q = e ,

LTV (M) = vie| | M]],

where vy ~ 1.0149 is the volume of a reqular ideal hyperbolic tetrahedron and || - || is the

simplicial volume.

We may also consider the following weaker conjecture studied by Detcherry and Kalfa-

gianni in [22, 23, 24]:

Conjecture 1.5.1. Let M be a compact orientable 3-manifold with empty or toroidal bound-
ary. Then ITV (M) > 0 if and only if || M|| > 0.

Recall from Section 1.5 that a manifold M with [TV (M) > 0 is called g-hyperbolic. We
note that the “if” direction of Conjecture 1.5.1 follows from the main result of [23].

In 23], Detcherry and Kalfagianni proved that the growth rate of the Turaev—Viro in-
variants has properties reminiscent of simplicial volume. We summarize their results in the

following theorem.

Theorem 2.3.11 (|23]). Let M be a compact oriented 3-manifold, with empty or toroidal

boundary.

1) If M is a Seifert manifold, then there exist constants B > 0 and N such that for any odd
r >3, we have TV,(M) < BrY and LTV (M) < 0.

2) If M is a Dehn-filling of M', then TV, (M) < TV, (M') and LTV (M) < LTV (M').
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3) If M = Mi|JMs is obtained by gluing two 3-manifolds along a torus boundary component,
T
then TV, (M) < TV,.(M)TV,(Ms) and LTV (M) < LTV (M) + LTV (My).

While Conjectures 1.2.1, 1.2.2, and 1.5.1 differ slightly in generality and scope, each
supports the notion that there is a deep relationship between the asymptotic behavior of the

Turaev—Viro invariants and hyperbolic geometry of 3-manifolds.

2.4 Quantum Representations of Mapping Class Groups

In this section, we introduce the notion of the mapping class group of a surface, a clas-
sification of the elements of this group, and its relationship with quantum invariants of
3-manifolds. Additionally, we describe a conjecture of Andersen, Masbaum, and Ueno [5]
relating this classification of elements of the mapping class group with its quantum repre-

sentations.

2.4.1 Mapping Class Groups of Surfaces
Here we continue with our discussion on homeomorphisms of surfaces begun in Subsection

2.1.3. Let X,,, be a compact oriented surface of genus g with n boundary components.

Definition 2.4.1. Let Homeo™ (3, ,,9%,,) be the group of orientation-preserving homeo-

morphisms of ¥, ,, fixing 03, ,, pointwise. The mapping class group Mod(2,,,) of 3, ,, is the

group
Mod(%,,,) = mo (Homeo™ (3., 0%,.,))
= Homeo™ (3, ,,, 0%, ) /Homeoy (2, ,, 0%, ),
where Homeog (3, 0%,,) is the connected component of the identity in the group of

orientation-preserving homeomorphisms, Homeo™ (%, ,,,9%,,), which fix the boundary of

>g.n, Pointwise.

The mapping class group of a compact oriented surface is the group of isotopy classes
of self-homeomorphisms of the surface which restrict to the identity on the boundary. Its

group operation corresponds to the composition of homeomorphisms, and we call its elements
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mapping classes. Theorem 2.1.10 implies that every mapping class of a closed oriented surface
can be presented as a composition of Dehn twists up to isotopy. We note that this still holds
for compact oriented surfaces with boundary, provided the boundary is fixed under the
homeomorphism. For example, the mapping class group Mod(Xg2) of the annulus ¥ is

generated by the standard Dehn twist about its core curve.

2.4.2 The Nielsen—Thurston Classification

The Nielsen—Thurston classification of mapping class groups provides a geometric charac-
terization of mapping classes of a given surface. Thurston completed the work of Nielsen four
decades after his work studying the geometry of mapping classes using Teichmuller theory.

We refer the reader to [27] for further details.

Definition 2.4.2. Let ,, be a compact oriented surface of genus g with n boundary

components, and let v € Mod(%,,) be a mapping class. We say
(i) ~ is periodic if some finite power of v is isotopic to the identity on X, ,,.

(ii) 7 is reducible if there there exists a nonempty set of simple closed curves in X, which
are fixed by 7. In such a case, we may cut >, , along this set of simple closed curves

and consider the induced self-homeomorphisms on the resulting pieces.
(ili) v is pseudo-Anosov if it has infinite order in Mod(X,,,) and is not reducible.

The Nielsen—Thurston classification establishes that these are the only possibilities for

elements of the mapping class group of a compact oriented surface:

Theorem 2.4.3. [27, Theorem 13.2](Nielsen—Thurston classification). For any g,n > 0,

each element v € Mod(X,,,) is either periodic, reducible, or pseudo-Anosov.

As discussed earlier, this classification is closely related to the geometric properties of
mapping classes. As such, a rich family of 3-manifolds is obtained by studying the mapping

tori of mapping classes of compact oriented surfaces.
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Definition 2.4.4. Let v € Mod(X,,,). Define the mapping torus of v, denoted M., to be

the 3-manifold

My = Xgn x [=1, 1]/ (2, 1) ~ (y(2), 1),

where v is called the monodromy of M.,

A well-known result of Thurston [76] establishes a deep connection between the Nielsen—

Thurston classification mapping classes and the geometry of their associated mapping tori.

Theorem 2.4.5 ([76]). A mapping class v € Mod(%,,,) is pseudo-Anosov if and only if its

associated mapping torus M, is a hyperbolic 3-manifold.

2.4.3 Quantum Representations and the AMU Conjecture

Quantum invariants of 3-manifolds such as the Witten—Reshetikhin—Turaev invariants
and the associated TQFT give rise to finite-dimensional representations of mapping class
groups of surfaces. A natural question is what relationship these representations have with
the Nielsen—Thurston classification of mapping classes.

Let Y ,, be the compact oriented surface of genus g with n boundary components. The
SO(3)-Witten—Reshetikhin—Turaev TQFTs provide finite-dimensional projective representa-
tions of Mod(3, ).

Fix an odd integer » > 3, which we refer to as a level, and let I, = {0,2,...,r — 3}
be the set of even integers less than r — 2. Let A be a primitive 2r-th root of unity, and
fix a coloring ¢ of the components of 0%, by elements of I,. Again following the skein-
theoretic framework of Blanchet, Habegger, Masbaum, and Vogel [11], the SO(3)-TQFTs
associate a finite-dimensional C-vector space RT,(%,,) to ¥,, and give rise to a projective

representation

pre : Mod(Sy.,) = PAut(RT(S,.)),

which we call the SO(3)-quantum representation of Mod(%,,,) at level .
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Andersen, Masbaum, and Ueno studied these representations for the sphere with four
punctures Xg4 in [5]. There they established that the Nielsen—Thurston classification of
mapping classes in Mod (X 4) are determined by the quantum representations p, .. This is
particularly useful for understanding pseudo-Anosov mapping classes of ¥y 4. They conjec-

tured that this is the case in general.

Conjecture 1.5.6. (AMU Conjecture, [5]) Let v € Mod(%,,) be a pseudo-Anosov mapping
class. Then for any big enough level r, there is a choice of coloring ¢ of the components of

0%, such that p,.(y) has infinite order.

We remark that the converse of Conjecture 1.5.6 is known: if p,.(7) has infinite order,
then ~ is either pseudo-Anosov or reducible and induces a pseudo-Anosov map after cutting
the surface along the curves fixed by the reducible map.

It is also worth noting that if a mapping class v € Mod(%,,,) satisfies the AMU conjec-
ture, then any mapping class which is a power of a conjugate of v also satisfies the conjecture.

Conjecture 1.5.6 is closely related to conjectures stated earlier, namely the Exponential
Growth conjecture (Conjecture 1.5.1) and the original Turaev—Viro invariant Volume Con-
jecture (Conjecture 1.2.1). In particular, Detcherry and Kalfagianni [22] proved the following

result.

Theorem 2.4.6. [22, Theorem 1.2] Let v € Mod(%,,) be a pseudo-Anosov mapping class
and let M., be its associated mapping torus. If ITV (M) > 0, then v satisfies the conclusion

of the AMU conjecture.

This means that for 3-manifolds realized as mapping tori, the Exponential Growth Con-
jecture implies the AMU conjecture. Since Chen and Yang’s original conjecture is a stronger

assertion, we reach a similar conclusion for the Turaev—Viro invariant Volume Conjecture.
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CHAPTER 3

TURAEV-VIRO INVARIANTS AND CABLING OPERATIONS
This chapter is based on joint work with Kumar in a paper published in the International
Journal of Mathematics [53].

In this chapter, we study the variation of the Turaev—Viro invariants for 3-manifolds
with toroidal boundary under the operation of attaching a (p, q)-cable space. We apply
our results to the Turaev—Viro invariant volume conjecture. For p and ¢ coprime, we show
that Conjecture 1.2.2 is stable under (p, ¢)-cabling. We achieve our results by studying the
linear operator RT, associated to the torus knot cable spaces by the SO3-Reshetikhin—Turaev
Topological Quantum Field Theories (TQFTs), where the TQFT is well-known to be closely
related to the desired Turaev—Viro invariants. In particular, our utilized method relies on
the invertibility of the linear operator RT, for which we provide necessary and sufficient

conditions.

3.1 Introduction

Recall from Section 2.3, for a compact 3-manifold M, its Turaev—Viro invariants are a
family of R-valued homeomorphism invariants parameterized by an integer » > 3 depending
on a 2r-th root of unity q. We are primarily interested in the behavior of the invariants when

27/ —1

ris odd and ¢ = e~ + under the attaching of a (p, ¢)-cable space.

Definition 3.1.1. Let V be the standardly embedded solid torus in S®, and let V' be a
closed neighborhood of V. For p, ¢ coprime integers with ¢ > 0, let 7}, , C 9V be the torus
knot of slope p/q. The (p, q)-cable space, denoted C, ,, is the complement of the torus knot
T,qin V'. Let M be a 3-manifold with toroidal boundary. A manifold M’ obtained from
gluing a (p, ¢)-cable space C,, to a boundary component of M along the exterior toroidal

boundary component of C,,, is called a (p, ¢)-cable of M.
The main theorem of this chapter is the following.

Theorem 1.3.1. Let M be a manifold with toroidal boundary, let p,q be coprime integers
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with ¢ > 0, and let r > 3 be an odd integer coprime to q. Suppose M' is a (p,q)-cable of M.
Then there exists a constant C' > 0 and natural number N such that

1
CrN

TV,.(M) < TV,(M') < CrNTV,(M).

Theorem 1.3.1 has notable applications to Conjecture 1.2.2. A key property of the (p, ¢)-
cable spaces is that they have simplicial volume zero. Theorem 1.3.1 provides a way to con-
struct new manifolds without changing the simplicial volume while controlling the growth of
the Turaev—Viro invariants. This leads to many examples of manifolds satisfying Conjecture
1.2.2.

To the authors” knowledge, in all of the proven examples of Conjecture 1.2.2, the stronger
condition that the limit approaches the simplicial volume is verified, as opposed to only the
limit superior. Theorem 1.3.1 implies the following corollaries. For more details, see Section

3.3.

Corollary 1.3.2. Suppose M satisfies Conjecture 1.2.2 and ITV (M) = viet||M||. Then for

any p and q coprime, any (p,q)-cable M" also satisfies Conjecture 1.2.2.

Some examples which satisfy the hypothesis of Corollary 1.3.2 include the figure-eight
knot and the Borromean rings by Detcherry-Kalfagianni-Yang [25], the Whitehead chains
by Wong [83], the fundamental shadow links by Belletti-Detcherry-Kalfagianni-Yang [9], a
family of hyperbolic links in S? x S* by Belletti [8], a large family of octahedral links in S by
Kumar [51], and a family of link complements in trivial S*-bundles over oriented connected
closed surfaces by Kumar and the author of this work [52].

For general p and ¢ coprime, Corollary 1.3.2 demonstrates that Conjecture 1.2.2 is pre-
served under the (p, g)-cabling operation. However, in the case when ¢ = 2" for n € N, we

recover the full limit as shown in the following corollary.

Corollary 1.3.3. Suppose M satisfies Conjecture 1.2.2. Then for any odd p and n € N,
any (p,2")-cable M’ also satisfies Conjecture 1.2.2. Moreover, if ITV (M) = vs||M||, then
ITV(M') = LTV (M') = vs|| M'||.
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As a direct result of Corollaries 1.3.2 and 1.3.3, we extend the work of Detcherry [21]
where the author considers the operation of attaching a (p,2)-cable space. This allows us
to construct manifolds satisfying Conjecture 1.2.2 from manifolds with toroidal boundary
where the conjecture is already known. This includes all previously mentioned examples.

The general method of proof for Theorem 1.3.1 follows from the work of Detcherry [21].
Considering the cable space (), as a cobordism between tori, recall from Section 2.2 the

Reshetikhin—Turaev SO3-TQFT at level r, denoted by RT,, associates to it a linear operator

RT,(C,,) : RT,(T?) — RT,(T?),

r—1

5~ which is a quotient of the Kauffman

where RT,(T%) is a C-vector space of dimension m =
bracket skein module K,.(S* x [—1,1]?) of the solid torus. As discussed in Subsection 2.2.1,
there exist elements ¢; € K,(S* x [—1,1]?) known as the Jones-Wenzl idempotents which,
under this quotient, correspond to basis elements for the vector space RT,(T%).

For p odd and ¢ = 2, Detcherry presents RT,(C,2) using the basis {ei,es,...,e2m_1},
which is equivalent to the orthonormal basis {ey, es, . .., €, } for RT,(T?) given in [11] under
the symmetry e,,_; = €1 for 0 < i < m — 1. More details of the construction are given
in Section 3.2. With this basis, RT,(C),2) can be presented as a product of two diagonal
matrices and one triangular matrix. This allows the author to directly write the inverse of
RT,(C,2). From the inverse of this linear operator, Detcherry establishes a lower bound of
the Turaev—Viro invariants under attaching a (p, 2)-cable space.

For general p and ¢ coprime, RT,(C,,) does not have as simple a presentation under
the same basis, making it more difficult to conclude that RT,(C,,) is invertible. In order
to resolve this, we present RT,(C,,) using a different basis for RT,(T?), defined in Section
3.4, that allows us to also show directly that RT,.(C,,) is invertible provided r and ¢ are
coprime. Following Detcherry’s argument, the invertibility of RT,(C,,) is integral to finding
the lower bound from Theorem 1.3.1; however, the invertibility of RT,.(C,,) is constrained

by the condition that r and ¢ are coprime, as outlined by Theorem 1.3.4.
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Theorem 1.3.4. Let p be coprime to some positive integer q. Then RT,.(C,,) is invertible
if and only if r and q are coprime. Moreover, the operator norm |||RT.(C, )7 || grows at

most polynomially.

the discrepancy between recovering the limit superior in Corollary 1.3.2 versus the full

limit in Corollary 1.3.3.

Remark 3.1.2. We can characterize the polynomial bound given in Theorem 1.3.4 on the
operator norm |||RT,(C,,)"||| more explicitly: we will see later in the proof of Proposition
3.4.2 that this operator norm is actually linearly bounded in r. Using the relationship
between the Turaev-Viro and Reshetikhin—Turaev invariants given by Theorem 2.3.8, this
means the degree N of the polynomial in the bound of Theorem 1.3.1 is actually bounded

above by N < 2.

As we will show in Section 3.3, the coprime condition between r and ¢ leads to The chapter
is organized as follows: We recall properties of the Reshetikhin—Turaev SO3-TQFTs, the RT,
torus knot cabling formula, and relevant properties of the Turaev—Viro invariants in Section
3.2. In Section 3.3, we prove Theorem 1.3.1 assuming Theorem 1.3.4. In Section 3.4, the
construction of the relevant basis for RT,(T?) and the proof of Theorem 1.3.4 are given.

Lastly, we consider future directions in Section 3.5.

3.2 The Witten—Reshetikhin—Turaev TQFTs and Cable Spaces

In this section, we will discuss the Witten—Reshetikhin—Turaev TQFTs in the context of
the torus knot cable spaces and introduce a formula of Morton [60] governing the invariants
associated to these spaces. For the remainder of this chapter, we fix odd r =2m +1 > 3
and 2r-th root of unity A.

We will focus on the m-dimensional C-vector space RT,(T?), which can be considered
as a quotient of the Kauffman skein module K,.(S' x [—1,1]?) of the genus 1 handlebody
St x [~1,1]* discussed in Subsection 2.2.1. We begin by coloring the core {0} x S* by the

(i — 1)-th Jones—Wenzl idempotent e; € K,.(S' x [-1,1]?). Under the quotient K,.(S' x
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[—1,1]*) — RT,(T?), the infinite family of idempotents {¢;[i € N U {0}} maps to a finite
family {ej, ..., 9,1} of vectors. Abusing notation slightly, we also refer to these vectors as

e;’s. These e;’s provide a basis for RT,(T?), as shown by the following result of [11].

Theorem 3.2.1 (|11], Theorem 4.10). Let r = 2m + 1 > 3. Then the family {e1, ..., ey} is
an orthonormal basis for RTT(TQ). Moreover, the relation e,,_; = €144 holds for 0 <1 <

m — 1.

The second part of the theorem implies that {ey, €3, ..., e, 1} is just a reordering of the
basis {e1,...,emn}.

We may now give an explicit description for the Reshetikhin—Turaev invariants of the
torus knot cable spaces.

Let p, ¢ be coprime integers where ¢ > 0, and let C,, be the (p, ¢)-cable space. These
spaces are Seifert-fibered and therefore have simplicial volume zero. For r =2m +1 > 3, we

extend the vectors ¢; € RT,.(T?) to all i € Z in the following way.
o Let e ; = —e¢; for any ¢ > 0, and
o let ejypr = (—1)Fe; for any k € Z.

Note this means that e, = eg = 0.
Regarding the cable space C,, as a cobordism between tori, by Theorem 2.2.3, the

Reshetikhin—Turaev SO3-TQFT gives a linear map
RT,(C,,) : RT,(T?) — RT,(T?).

The map RT,(C,,) sends the element e; to the element of RT,(T?) corresponding to a (p, q)-
torus knot embedded in the solid torus and colored by the (i —1)-th Jones-Wenzl idempotent.

Morton [60] gives the following formula for the image of the basis elements under RT,(C, ).
Theorem 3.2.2 (|60], Section 3, Cabling Formula).

RTT<Cp,q)(ei) — qu(i271)/2 Z A72pk(qk+1)62qk+l’
keS;
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where S; 1s the set

i—-1 i-3 i-3i-1
Sz_{_ 9 y 9 PRERE) 92 9 92 }

As we discussed in Section 2.3, the Witten—Reshetikhin—Turaev TQFTs are closely related
to the Turaev—Viro invariants of 3-manifolds. By using this relationship, the explicit formula
given in Theorem 3.2.2 will allow us to obtain a lower bound on the Turaev—Viro invariants

under the cabling operation.

3.3 Bounding the Invariant Under Cabling

In this section, we will prove Theorem 1.3.1 with the assumption of a key theorem, and
we reserve the technical details for Section 3.4. We remark that the major components of
our argument follow from the work of Detcherry [21] where the case when p is odd and g = 2

was proven. For convenience, we will restate the main theorem.

Theorem 1.3.1. Let M be a manifold with toroidal boundary, let p,q be coprime integers
with ¢ > 0, and let r > 3 be an odd integer coprime to q. Suppose M' is a (p,q)-cable of M.
Then there exists a constant C' > 0 and natural number N such that

1
CrN

TV, (M) < TV,(M') < Cr¥TV,(M).
We will now assume Theorem 1.3.4, which we also restate for convenience.

Theorem 1.3.4. Let p be coprime to some positive integer q. Then RT,.(C,,) is invertible
if and only if  and q are coprime. Moreover, the operator norm |||RT.(Cp4) || grows at

most polynomially.

Proof of Theorem 1.3.1. As mentioned previously, the case when p is odd and ¢ = 2 was
shown by Detcherry [21], and our approach follows closely in structure. We let M be a
manifold with toroidal boundary, p an integer, ¢ > 0 an integer coprime to p, r > 3 odd
and coprime to ¢, and M’ a (p, q)-cable of M. We will proceed to prove Theorem 1.3.1 by
showing the upper inequality of

1

S TVi(M) < TV,(M) < CrVTV,(M)
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followed by the lower inequality, where C' > 0 and N € N. To obtain the upper inequality,

we first remark that M’ = CMLTJM . By Theorem 2.3.11 , this implies that
TV.(M") < TV.(Cb )TV, (M).
Since C), 4 is a Seifert manifold, we have that
TV,.(C, ) < O™
for some C; > 0 and N; € N also by Theorem 2.3.11 . This leads to the upper inequality
TV,(M') < CyrM TV, (M),

For the lower inequality, we will use Theorem 1.3.4. From the properties of the Reshetikhin—

Turaev SO3-TQFT, we consider the linear map
RT,(C,,) : RT,(T?) — RT,(T?).
If M only has one boundary component, then
RT(M') = RT,(Cpq) RT, (M)

by the properties of a TQFT. If M has other boundary components, then the invariant

associated to any coloring ¢ of the other boundary components may be computed as
RT,.(M',i) = RT,(C,4)RT,(M,1).
By the invertibility of RT,(C,,) from Theorem 1.3.4, we have the inequality
IRT(M)|| < [[|RT(Cpg) || - [IRT (M)

where ||-|| is the norm induced by the Hermitian form of the TQFT and [||-||| is the operator
norm. Since the operator norm grows at most polynomially by Theorem 1.3.4, we obtain

the inequality
1

OQTN2

|RT. (M) < ||RT,.(M)]]
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for some Cy > 0 and N, € N. Lastly, by Theorem 2.3.8, the norm of the Reshetikhin-Turaev

invariant is related to the Turaev—Viro invariant such that we arrive to the desired inequality

1

Cg’/’N?’

TV, (M) < TV, (M)

for some C'5 > 0 and N3 € N. This leads to

1
CrN

TV,.(M) < TV.(M') < CrNTV,.(M)
where C' > 0 and N € N. [

As discussed in Section 3.1, the following corollaries follow from Theorem 1.3.1.

Corollary 1.3.2. Suppose M satisfies Conjecture 1.2.2 and ITV (M) = ve||M||. Then for

any p and q coprime, the (p,q)-cable M’ also satisfies Conjecture 1.2.2.

Proof. By Theorem 2.3.11 part (1), LTV (C,,) < 0, and thus by Theorem 2.3.11 part (3),
LTV(M') < LTV(M). Since ITV (M) = LTV (M) = v M]|, the limit exists, and any
subsequence also converges to vy||M||. By Theorem 1.3.1 along odd r,
. 2T , ) 2T
limsup —log|TV, (M')| = limsup —log|TV, (M)|= LTV (M) = vi||M]||,
r—oo, (rng)=1 T r—oo, (rg)=1 T
where

2
lim sup il log [TV, ()|

r—00, (qu)zl r

is the limit superior of the subsequence along which r and ¢ are coprime.

Since

2
Vget||M ]| = limsup Tﬂlog TV, (M")| < LTV(M') < LTV (M) = v || M,

r—o0, (r,q)=1
we have

LTV (M") = ver] [ M || = wgee| | M]],

where the final equality follows from the fact that the simplicial volume does not change

under (p, q)-cabling. ]
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Corollary 1.3.3. Suppose M satisfies Conjecture 1.2.2. Then for any odd p and n € N,
the (p,2™)-cable M' also satisfies Conjecture 1.2.2. Moreover, if ITV (M) = vy||M||, then
ITV(M'") = LTV (M) = v || M']].

Proof. Since r is odd, (r,2") = 1 for any n > 1, which means Theorem 1.3.1 holds for any

(p,2™)-cable of M provided p is odd. Since ||M || = ||M’]||, this implies that
LTV (M') = LTV (M) = vet || M| = veer| [ M]],

so M’ also satisfies Conjecture 1.2.2.
Theorem 1.3.1 also implies that [TV (M') = [TV (M). In the case where TV (M) =

vier||M ||, we recover the full limit

ITV (M) = ITV (M) = vr||M] = veed||M'|| = LTV (M),

3.4 Proof of the Supporting Theorem
In this section, we will provide a proof of Theorem 1.3.4, which we restate here for
convenience. The argument involves presenting RT,.(C,,) as a product of invertible matrices,

such that each of their inverses have polynomially bounded operator norm.

Theorem 1.3.4. Let p be coprime to some positive integer q. Then RT,.(C,,) is invertible
if and only if  and q are coprime. Moreover, the operator norm |||RT.(Cy4) " || grows at

most polynomially.

We will use the following supporting proposition for the proof of Theorem 1.3.4, which
is given in Subsection 3.4.1. The proof of this proposition is given in Subsection 3.4.2. We
also use a couple of technical lemmas which are subsequently proven in Subsection 3.4.3. We
begin by constructing a basis over which RT,(C,,) admits a simpler expression.

By the cabling formula given by Theorem 3.2.2,

RTT(Cp,q)(ei) € Span{ey, €ql+1, eqlfl}?izl
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where m = L. Let F,, := {fi}]",", where

fo =1

— 2pl o
fl =Cgl+1 — AP €ql—1 l = 1, oo, .

Define fl € Span{ey, ..., en} to be the reduction of f; under the quotient induced by the
symmetries e_; = —e; for any ¢ > 0 and e; 4, = (—1)"¢; for any n € Z. Note that for each
l, gl £1 = kr + j for some non-negative integers k, j where 0 < j < r. This means that up

to sign, these symmetries imply

Cql+1 = Cql—kr+1 = € for0<j<m (3.1)

€ql+1 = C(k+1)r—qlFl = Er—j form+1< j <T. (32)

Finally, define F,, := {f;}"5', and let R,, be the (m x m)-matrix with columns corre-
sponding to the reduced vectors fl, for I =0,...,m — 1. In particular, fl corresponds to
col(l+1) of R,,, and the rows of R,, correspond to the original orthonormal basis {eq, ..., e}

spanning RT,(T?).

Remark 3.4.1. We note that F,,, F,,, and R,, are also dependent on p and ¢, but these

dependencies are suppressed to avoid unwieldy notation.
The following proposition will be used to prove Theorem 1.3.4.

Proposition 3.4.2. Let r = 2m + 1 be coprime to q. Then R, is a change of basis from
E, = {e1,...,em} and the operator norm |||R;Y||| grows at most polynomially in m. More-

over, fori € {1,...,m},

RT,(Cpq)(e)) =A¥CD 3" 4723741 (3.3)

leT;

where T; = {0,2,...,i— 1} for odd i and T; = {1,3,...,i — 1} for even i.
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The idea of the proof is to leverage symmetric properties of the f; to give a presentation
of R;! and bound its operator norm. The assumption that (r,q) = 1 is necessary for

invertibility, as indicated by the following proposition.
Proposition 3.4.3. Suppose r > 3 is odd and not coprime to q. Then R,, is singular.

The proofs of Propositions 3.4.2 and 3.4.3 will be given in Subsection 3.4.2.

3.4.1 Proof of Theorem 1.3.4

We now can proceed with the proof of Theorem 1.3.4 assuming Proposition 3.4.2.

Proof of Theorem 1.3.4. We begin with the necessary condition. Suppose (r,q) = d > 1.
Then there are coprime ¢’,7" such that ¢ = d¢’ and r = dr’. We claim that row(nd) of
RT,.(C,,) consists of only zeros for each n. Suppose some egi1 = €y, where 0 < j < m,
reduces to e; = e,4. Then by Equation (3.1), g/ —kr+1 = nd, which means d(¢'l —7'k—n) =
F1, which is a contradiction. Similarly, if ey11 = exr4j, where m +1 < j < r, reduces to
e,—; = epq. Then by Equation (3.2), d((1+k)r’ —¢'l —n) = £1, which is also a contradiction.
This means that row(nd) = |0, ...,0], thus RT,(C,,) is singular.

For sufficiency, suppose (r,q) = 1. By Proposition 3.4.2, we can write RT,(C,,) as a
product of two diagonal matrices with an upper-triangular matrix and the change of basis

R,
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RT,(C,,) =R, x
0
0 0 Afp((mfl)+%(mfl)2)
10 1 01 0
01 0 10 1
1 0 0
1 01 0
0 AFE-D
1 0 1
0
1 0 .
0 0 A%m*-1)
0 0 1

Note that the columns of the middle upper triangular matrix correspond to the index sets

T; of the sum in Equation (3.3). Inverting this product, we have

10 -1 0 O ... O
o1 0 -1 0 ... O

RT.(C,q) ™" 1 0 -1 0
0
1 —1
0 0 ATI=mY
0
0 0 1
1 0 0
0 Ap((2—1)+%(2—1)2)
X RN
0
0 0 Ap((m=DF5(m-1)?)

By Proposition 3.4.2, ||| R;,}||| grows at most polynomially in m, so it is bounded polynomially

in r. For the total bound, observe that both of the diagonal matrices are isometries, and
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the upper triangular matrix has operator norm bounded above by a polynomial in r by the

Cauchy-Schwartz inequality. m

3.4.2 Proof of Propositions 3.4.2 and 3.4.3

We give proofs of Propositions 3.4.2 and 3.4.3 in this subsection. The following definitions
and lemmas will be useful in the proofs.

By the symmetries e_; = —e; for any i > 0 and e, = (—1)¥e; for any k € Z, we may

extend the definition of f; to all [ € Z using the following symmetries:
o fi=eiq+ A%e,  for any | € Z,
o fir=(—1)if; for any | € Z, and
o f;=AWf
The following Lemma will be used to present R .

Lemma 3.4.4. Let r = 2m + 1 > 3 be coprime to q, and let ¢* be the inverse of ¢ modulo

r. Then forl e {0,...,m — 1},

(

Jo ifl=0

Clt1 =\ for ifl =1 (3.4)

* _ k—1 i .
fq*l —|— Z;;Z?J A2pq (kl Zq‘,:g 2 )fq*(li2k) Zfl > 1
\
Moreover, fori,j € {0,...,r — 1}, ¢"i = ¢*j mod r if and only if i = j.

Proof. Since (r,q) = 1, there is a unique ¢* € Z, such that ¢¢* = 1 mod r. Using the

symmetries of f; and substituting in ¢*/, we have
€141 = fq*l — A2pq*l€1_l = fq*l + A2pq*l€l_1 = fq*l + Aqu*l61+(l,2). (35)

We can then apply Equation (3.5) iteratively to express the e;’s in terms of the f;’s.
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. . ior (/215211 o
e = fq*l +A2Pq lfq*(l—Q) _'_A2pq (2 2)fq*(l—4) 4+ +A2pq (L/QJ 2o 2>fq*(l—2[l/2j)

forl € {2,...,m—1}. When [ = 0, by definition, e¢; = fo. When [ = 1, Equation (3.5) yields
that e; = f;-. For any [ € {0,...,m — 1}, the iterative use of Equation (3.5) to express e;;;
terminates when the final term is a scalar multiple of either e; or e5, depending on the parity
of 1.

For the final statement, note that (¢*,7) = 1. This means there is a group isomorphism
between the cyclic groups {¢*k mod r|k € Z,} and Z, sending the indices ¢*k mod r in
Equation (3.4) to distinct j for j € {0,1,...,r—1}. Since ¢*k mod r are distinct for k € Z,,

this shows that ¢*i = ¢*j mod r if and only if ¢ = j. O]

In order to prove Proposition 3.4.2, we will use the following lemma. The proof of this

lemma is given in Subsection 3.4.3.
Lemma 3.4.5. Suppose r =2m + 1 > 3 is coprime to q. Then
m—1
fm - Z ijj7
=0
where C; € C such that |C;| =1 for j € {0,...,m — 1}.

Proof of Proposition 3.4.2. It suffices to show that R,, is nonsingular, in which case R,,
corresponds to the basis transformation £, — {e1,...,em}. To establish nonsingularity, we
will give a presentation of R,' by expressing e;, for i € {1,...,m}, in terms of f; where

je{0,...m—1}.

By Lemma 3.4.4, each e;, for i € {1,...,m}, can be written in terms of f; where j € Z.
These f;’s reduce to f;’s, where [ € {0,...,m}, using the above symmetries. This means
that Span{es,..., ey} of dimension m is contained in Span{fy,..., fm}, a vector space of

dimension at most m + 1.

Lemma 3.4.5 implies that f,, € Span{ fo,..., fm-1}, which means that
Span{ fo,..., fm—1} = Span{fo,..., fm} 2 Span{ey, ..., en}.
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Since {e1, ..., ey} is a basis for the m-dimensional vector space RT,.(T?), {fo,--., fm_1} 18

a set of m vectors, and Span{fy,..., fm-1} 2 Span{e,...,en}, then

Span{fo,..., fm_1} = Span{ey, ..., em} = RT.(T?).

From this, we conclude that {fo, ..., f,_1} is also a basis for RT,(T?). Since {fo,..., fr_1}
is a basis, this implies that R, ! is a change-of-basis matrix and is nonsingular, therefore, R,,
is nonsingular.

In order to bound the operator norm |||R!|||, we study the presentation of R, ! more

closely. By Lemma 3.4.4, we may express each e; as

r—1
€ = ijj7
Jj=0

where B; is either zero or a root of unity and the summands correspond to the reduction of
each index modulo r. We remark that since B} is either zero or a root of unity, |B}| < 1.
Now after applying the symmetry f; = A?P'f_; = A%!f,_, for any | > m, we may express e;
as

ei =Y (Bj+APCIB_f; =Y " Dif,
=0 =0

where D} = B! + AQP(”*j)Bi_j and |D}| < 2. Additionally, by Lemma 3.4.5, we know that
the coefficient of any summand of f,, in terms of the basis { fo, ..., fr—1} is C} with |C}] = 1.

This means we may write
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where E} = D;,C% + D%. Note that since |D}| < 2 and |C}| = 1, we have
|E;| = |D,,C; + Dj| < |D;,C5l +|D5| = |Dy,||Ci| + | Dj| < 4.

Hence every entry of R ! has modulus bounded above by 4. For any complex unit vector
v =[vg,...,Vm_1]" such that |v;] <1 fori € {0,...m — 1}, the Cauchy-Schwartz inequality

implies that

m—1 T
1Rl = | |3 B, .. Z

i=0

1 2 2\ 3
= ZEZUZ i

i=0

m—1 2 m l
(> lEélQ'“”) (Z )

,7=0 %]

m—1 3 m—1 3 )
< 242) = (Z 16) = (16m?)? = 4m.

i,j=0 i,j=0

This shows that
|R, vl| < O(m),

so the operator norm |||R;!||| is bounded polynomially.
Lastly, by the Cabling Formula in Theorem 3.2.2 and the definition of f;, the coefficient

of fi in RT,(C,4)(e;) is given by

RT,(Cpg)(er) =A% 03 Ar(GP40)
IET;
where T; = {0,2,...,i— 1} for odd i and T; = {1,3,...,i — 1} for even i. ]

In order to prove Proposition 3.4.3, we establish the following definitions.
For 1 <1 < m, define f° := ey41. Observe that f, = f;" — A% f;7 for 1 <[ <m. In
addition, define fli to be the quotient of fljE under the symmetries e_; = —e; for any ¢ > 0

and e; 1, = (—1)%¢; for any k € Z. We will use the convention that fi" = fo = e¢; and

fy =0.
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Recall that for each [, ql =1 = kr+ j for some non-negative integers k, j where 0 < j < 7.

This means that up to sign,
€j = €ql—kr+1 0<j<m

€r—j = €k4+1)r—ql¥1 M +1< j <7

We can now prove Proposition 3.4.3.

Proof of Proposition 3.4.3. We will repeat the argument given in the proof of Theorem 1.3.4.
Suppose (r,q) = d > 1, then there are coprime ¢’ and 7’ such that ¢ = d¢’ and r = dr’. We
claim that row(nd) of R,, consists of only zeros for each n. Suppose some fli = €; = €nq,
then gl — kr + 1 = nd. This implies that d(¢'l — "k —n) = F1 which is a contradiction.
Similarly, if f¥ = e,_; = epa, then d((1+ k)7’ — ¢'l —n) = £1 which is also a contradiction.

This means that row(nd) = [0, ...,0], thus R, is singular. O

3.4.3 Proofs of Technical Lemmas
In this subsection, we provide a proof for Lemma 3.4.5. We use the notation introduced

in Subsection 3.4.2.

Remark 3.4.6. For the following arguments, we use the convention that equalities between
vectors e; are necessarily taken up to sign. This ultimately has no effect on the arguments

for Proposition 3.4.2 and Theorem 1.3.4.

Recall R, is the (m x m)-matrix with columns corresponding to F, = {fo, ..., fm_1}-
We also define S,, to be the (m x (m + 1))-matrix obtained by appending the column
corresponding to fm to R,,. The following technical lemmas will be used in the proof of

Lemma 3.4.5.

Lemma 3.4.7. Suppose r = 2m + 1 > 3 is coprime to q, and let ¢* be the multiplicative

iwerse of q in the ring Z,.. Then

(i) Each column of S,, has at most two nonzero entries. Moreover, for each column with

two nonzero entries, their corresponding row indices differ by at most 2.
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(ii) Let
" q ifq-<m
| r—q° if ¢¢ > m.
Then in Sy, col(1) = [1,0,...,0]" and col(I* + 1) = [0, D;-,0,...,0]" where Dy is

a root of unity. Moreover, every other column of S,, has exactly two nonzero entries

which are roots of unity.

Proof. Part (i): Each column of S,, corresponds to the reduced vector f;, 0 <1 < m. Since
fi is a linear combination of at most two vectors in Span{er, eg 1, eql_l}le, there are at
most two nonzero entries in col(l + 1).

Now suppose the index of f;" is gl + 1 = kr + j, where 0 < j < r. Then the index of f,”
isql—1=kr+j—2=FKr+j, where either (£, )= (k—1,r+j —2) (for j € {0,1}) or

(K", ") = (k,j —2) (for j > 2). We split into cases:

If j =0, then 7/ =71 — 2, fl+:e[):O,andfl_:62.

e If j=1,then j=r—1, ffL = €gl—kr+1 = €1, and fl_ = €(k41)r—qi+1 = €1. This implies
that [ = %. Since [ € Z and r,q are coprime, k = ¢n, for some n > 0. However,
if n > 1, we have [ > 1+ r > m, which is a contradiction. Thus n = 0, so [ = 0,

corresponding to col(1).
° If2§j§m,thenfﬁ:ej;éej_ngf.
e Ifj=m+1,thenj=m—1and f;" =e, #em 1= f .
e If j =m + 2, then 7 = m and fl+:em_27éem:fl_.

If m+3 <7 <r, then ffr =€ F Crjio = f[_~

This implies that the row indices of the nonzero entries in each column differ by at most two
for every column except col(1). In particular, the only case where the row indices differ by

exactly 1 occurs when j = m + 1.
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Part (ii): Since e_; = —e;, we have f; = e1,q + A%'e;_y for 1 < 1 < m. Note that

col(l + 1) has exactly one nonzero entry if and only if one of the following occurs:
(1) Either 1+ ¢l and 1 — ¢l are equal or opposite modulo 7.
(2) Either 1+ gl or 1 — gl vanishes modulo 7.

Case (1) occurs if and only if I = 0, corresponding to fo = fo = eo. In this case,
col(1) = [1,0,...,0]T.

Case (2) occurs if and only if either [ = ¢* or | = —¢* modulo r. Define

q if ¢ <m

r—q° if ¢* > m.

Note that if gl £+ 1 vanishes, then |¢l F 1| = 2. Define D« to be the coefficient of the vector
ejqr1| = €2 obtained from Equation (3.3). This means that col({* 4 1) is the unique column
with exactly one nonzero entry except for col(1).

Finally, the conclusion follows from the uniqueness of [* and Part (7). O
The second technical lemma makes use of Lemma 3.4.7 in its proof.
Lemma 3.4.8. (i) Each row of S,, has exactly two nonzero entries.

(ii) There is a unique I', 1 < I' < m, such that col(l' + 1) = [0,...,0, Dy, Ep]T, where

Dy, Ey are roots of unity.
The following lemma will be useful in the proof of Lemma 3.4.8.

Lemma 3.4.9. Suppose v > 3 s coprime to q, and let gli = ql — kr £1 and hfE =
(1+k)r—qlF1. Then for 0 <ly,ls < m with l; # ls,

(i) gljf = gi, gli1 = h), and hljf = hi do not have integer solutions,

(i1) gljlE =95, gli1 = hi, and hi = h may each have integer solutions.
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Proof. Note gli and hfE encode the two families of indices of the reduced vectors fli given in

Equation (3.6). There are six equations relating pairs of expressions in {g;", g;", b/, b; }.
Part (i): This follows from the fact that (r,¢q) = 1 and the bounds on [; and l;. We

show each case separately.

Case 1: Suppose gli1 = gi for distinct ly,1ly € {0,...,m} and kq, ko € Z. By definition, we

have ql; — kir £ 1 = gly — kor = 1. This implies

q(h =)
T

ki — ko = € 7.

Since l; # Iy and (r,q) = 1, l; — I must have a nontrivial factor of r, which contradicts the
bounds on {; and [s.
Case 2: Suppose glf = hj for distinct [y,1, € {0,...,m} and ki, ky € Z. By definition, we

have qly — kyr =1 = (ks + 1)r — qlo & 1. This implies

q(ly +12)
r

ki+ky+1= e 7.

Since (r,q) = 1, l; + Iy must have a nontrivial factor of r, which similarly contradicts the
bounds on {; and Is.
Case 3: Suppose hf = h?; for distinct ly,ls € {0,...,m} and ki, ko € Z. By definition, we

have (k1 + 1)r — qly F1 = (ko + 1)r — glo F 1. This implies

Q(ll - lz)

r

kl—kgz EZ.

Since l; # Iy and (r,q) = 1, l; — I, must have a nontrivial factor of r, which contradicts the
bounds on {; and 5.

Thus, these three equations do not have any integer solutions (I,ls) satisfying I; €

{0,...,m}.
Part (ii): We have the following:

o gljf = gljg if and only if q(l; — lz) = (k1 — ko)r F 2,
° gli1 = hi if and only if ¢(I; + o) = (1 4+ k1 + ko)r F 2, and
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° hljt1 = hf if and only if q(l; — lo) = (k1 — k2)r F 2.
All three of these equations may have integer solutions for [y, 1y € {0,...,m}. O

Proof of Lemma 3.4.8. We will use the same notation as in the proof of Lemma 3.4.7 and
in Lemma 3.4.9.

Part (i): It is a corollary of Lemma 3.4.9 that every row of S,, has at most two nonzero
entries. In particular, let (I1,l3) be an integral solution to one of the equations of Lemma
3.4.9 Part (ii). Suppose I3 € {0,...,m — 1} is such that (I1,[3) and (I, [3) are both solutions
to equations in Lemma 3.4.9 Part (i7). Then by Lemma 3.4.9 Part (i), either I3 = [; or
I3 = ls.

Note that by Lemma 3.4.7, S,,, has exactly 2m nonzero entries since there are two in each
column other than col(1) and col(I* 4 1), which each have exactly 1. This means that every
row must have exactly 2 nonzero entries.

Part (ii): In the proof of Lemma 3.4.7 Part (i), we saw that the only value of j corre-
sponding to a column with the nonzero row entry indices differing by 1 is j = m + 1. By
Part (i), row(m) of S,, has exactly 2 nonzero entries. This implies that there are some Iy, [y
such that col(l; + 1) has nonzero entries in row(m) and row(m — 1) and col(ly + 1) has
nonzero entries in row(m) and row(m — 2). Take I’ = [;. Finally, define Dy and Ey to be

the coefficients of the vectors e,,_; and e,, defined by Equation (3.3), respectively. n
Lastly, we are ready to prove Lemma 3.4.5.

Proof of Lemma 3.4.5. The last column col(m + 1) of the matrix S,, represents the reduced
vector f,, written in terms of the basis {ey, ..., e, }. We will prove Lemma 3.4.5 by showing
that col(m + 1) can be written as a linear combination of the first m columns. From this
linear combination, we will see that the coefficients will have the required bounds from the
statement.

We claim that col(m + 1) of S,, can be written as a linear combination of elements in

{fo,--, fmm—1}. From Lemma 3.4.7 Part (iz), either the col(m + 1) has exactly one nonzero
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entry, corresponding to the case [* = m, or exactly two nonzero entries, corresponding to
when [* < m.
Case 1:

We first consider the case [* = m. Here, the nonzero entry of col(m + 1) lies in row(2).
This implies that fm € Span{ey, ..., e, } has a scalar of e; as a summand. By Lemma 3.4.8
Part (i), we know that there is exactly one other nonzero entry in row(2) in some column
j1. From the argument of Lemma 3.4.7 Part (i), there exists a nonzero entry in row(4) of
col(jy). Lemma 3.4.8 Part (i) implies there exists a nonzero entry in some column js and
row(4). From the argument of Lemma 3.4.7 Part (i), there exists a nonzero entry in row(6)
of col(ja). Again, we pick the other nonzero entry of row(6) which lies in some column j.
Note that col(j3) cannot be equal to any of the previous columns. If it were a previous
column, it would contradict our bound on the number of nonzero entries in a column. We
continue this iteration until we reach either row(m — 1) or row(m), depending on the parity
of m.

If m — 1 is even, by Lemma 3.4.8 Part (ii), the next corresponding row with a nonzero
entry will be row(m) where m is odd. Similarly, if m is even, by Lemma 3.4.8 Part (i7), the
next corresponding row with a nonzero entry will be row(m — 1) where m — 1 is odd. Now
when we continue the algorithm, our subsequent row indices will be odd and decrease by
2 until we reach row(1). By Lemma 3.4.8 Part (i) and Lemma 3.4.7 Part (ii), there exists
a nonzero entry in row(1) of col(1), and it is the only nonzero entry in col(1). Since every
entry of our matrix is a root of unity by Lemma 3.4.7 Part (i7) and terminates at row(1),
then scalars by roots of unity of the columns appearing in our sequence gives f,, as a linear
combination of elements of {fy, ..., f;n_1} where all coefficients are roots of unity.

Case 2:

Now suppose col(m + 1) has exactly two nonzero entries. We denote the row indices of

these entries by i; and i}, where i, < if. By Lemma 3.4.8 Part (i), row(i; ) has another

nonzero entry in some other column j; . Similarly, row(i]) has another nonzero entry in
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some column j;7. We make the following claim, which we prove at the end.
Claim: j; # j;.

We will proceed similarly to the first case. Consider the column col(j;"), which has exactly
two nonzero entries and cannot correspond to either col(1) or col(l* + 1) since if > 2. By
Lemma 3.4.8 Part (i) and the claim, there exists another nonzero entry in some row(iy)
of col(ji) such that (i —if) € {—1,1,2}. The case when (i — i) = —1 corresponds to
i7 = m, and the case when (i5 —i]) = 1 corresponds to i = m — 1. We now implement
the same argument as the case with one entry in col(m + 1). Note that, in this procedure,
we do not utilize any rows with index less than 7] with the same parity as 7;. If iy =m —1
and i = m, they will have different parities. In the other case, i; will have the same parity
of 4; until we have a k such that (if — 4} |) € {—1,1}. This implies that for all &' > k, i}/
will have opposite parity to 7] .

We now follow the same algorithm beginning with row(i;’). By the claim, the indices of
our subsequent rows ¢, must be decreasing. Otherwise, this would contradict Lemma 3.4.8
Part (i).

Since both cases in total utilize every row exactly once, f,, is given by a linear combination
of elements of {fo,..., fm—1} where, by Lemma 3.4.7 Part (ii), all coefficients are roots of
unity.

Proof of Claim:

It now suffices to prove that j;” # j; . By contradiction, let us assume that j;” = j;, and
we will denote i; = i} .

If 4, = m, then either iy =m — 1 or i] =m — 2. If iy =m — 1, then since j;” = j, we
will have two columns with nonzero entries in the last two rows. This contradicts Lemma
3.4.8 Part (ii), which states that there is a unique such column. If ;i = m —2, then there are
two distinct columns with nonzero entries in row(m — 2) and row(m). By Lemma 3.4.8 Part

(1), there must exist a different column with nonzero entries in row(m — 1) and row(m),

which contradicts there being at most 2 entries in row(m).
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If iy = m — 1, then 47 < m — 1, and there are no other columns with nonzero entries in
row(m — 1) besides col(j;") and col(m + 1). By Lemma 3.4.8 Part (i7), there must exist a
different column with nonzero entries in row(m — 1) and row(m), which contradicts there
being at most 2 entries in row(m — 1).

In the general case, we assume i; < m — 2, and we will define iy = #; + 2. Since j;” = j;,
col(j;7) and col(m + 1) already have two nonzero entries. Since 75 > 2, these entries cannot
be in either col(1) or col(l* + 1) since they only have entries in the first two rows. This
implies that the columns which correspond to nonzero entries in row(is) must have exactly
two nonzero entries in some columns col(j57) and col(j; ) such that ji, 55 & {j;i,m + 1}.
Since row(i;) has two nonzero entries in col(j;") and col(m + 1), the other nonzero entries

in col(j5) and col(j; ) must be in some row(is), where iz — iy € {—1,1,2}.

o Ifiz—iy, = —1, we have 15 = m and i3 = m — 1. Here, we reach the same contradiction

as when ¢y = m and i, =m — 1.

o If i3 — iy =1, then i, = m — 1 and 73 = m. This gives the same contradiction as when
17 =mand i, =m — L.

o If i3 — iy = 2 with 75 = m — 2 and i3 = m, then our argument is the same as when

11 =m and 1] =m — 2.

Finally, we consider when i3 — 75 = 2 and 73 # m. In this case, we can continue to iterate

the same algorithm until we reach the same contradictions.

3.5 Further Directions
The primary approach of this chapter utilizes the invertibility of the operator RT, on the
cable space C), , as well as a polynomial bound on its operator norm. The same methodology

could apply in the context for the operator RT, for other cable spaces.
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Although the technique may apply in the case when the cable space has positive simplicial
volume, a more natural approach would be to generalize our argument to other cable spaces
with simplicial volume zero. For example, we may consider the manifold defined as follows.
Let N = 3,5 x S* where X/, is a orientable compact genus ¢ surface with 2 boundary
components. Now let {z;}7, C 3,5 such that {z;}7, x S is a collection of m vertical fibers
in N. We define the Seifert cable space C (sy,...s,,) where s; = % € Q to be the manifold
obtained by performing s;-Dehn surgery along the i-th vertical fiber in N.

If an analogous result to Theorem 1.3.4 holds for the Seifert cable space C' (s1, ... sp,), the
corresponding Theorem 1.3.1 will also follow as well as its applications to Conjecture 1.2.2.
Similar to the constraint of Theorem 1.3.4 where r and ¢ must be coprime, the analogous
result for the Seifert cable space may require a related caveat. This leads to the following

concluding question.

Question 3.5.1. Is RT,.(C (s1,...Sy)) invertible when r is sufficiently large and coprime to

every q; ?
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CHAPTER 4

ASYMPTOTIC ADDITIVITY FOR AN INFINITE FAMILY
This chapter is based on joint work with Kumar published in the Journal of the London
Mathematical Society [52].

In this chapter, we introduce an infinite family of 3-manifolds with interesting geometric
and combinatorial characteristics that satisfy an extended version of the Turaev-Viro invari-
ant Volume Conjecture (Conjecture 1.2.2). In particular, we will show that the asymptotics
of the Turaev-Viro invariants are additive under gluings of elementary hyperbolic cusped
manifolds arising from a construction due to Agol [4]. These elementary hyperbolic cusped
manifolds correspond to JSJ pieces in the resulting manifold, so they are additive with

respect to the simplicial volume.

4.1 Introduction

For this chapter, we will be concerned with the SU(2)-version of the Turaev-Viro in-
variants, for which Conjecture 1.2.1 was originally stated; however, the results hold for the
SO(3)-version with minor changes.

In defining these two versions of the Turaev—Viro invariants, the distinction arises from
the construction of the topological quantum fields theories of the Reshetikhin—Turaev invari-
ants by Blanchet, Habegger, Masbaum, and Vogel [11]|. In the authors’ work, the elements
of the index set I, correspond to the irreducible representations of SU(2). As SU(2) is a
double-covering of SO(3), we remark that the SO(3) theory can be obtained as the restric-
tion of the elements of the index set to elements with corresponding representations that lift
to SO(3). In addition to considering different roots of unity, this is realized as requiring that
r is odd for SO(3) as opposed to any integer r for SU(2). By following the construction, the
Turaev—Viro invariants can also be defined to have an SU(2)-version and an SO(3)-version.
For more details between these two versions of the Turaev—Viro invariants, we refer to Sec-
tions 2 and 3 of [25] by Detcherry, Kalfagianni, and Yang where the SO(3) Turaev—Viro

invariants are defined.
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Recall that the simplicial volume of a manifold is the sum of the volumes of its hyperbolic
JSJ pieces, and we say a manifold satisfies the asymptotic additivity property if the asymp-
totics of its Turaev—Viro invariants behave analogously, i.e. the sum of the asymptotics of
the Turaev—Viro invariants of the JSJ pieces of a given manifold coincide with the asymp-
totics of the Turaev—Viro invariants of the manifold itself. This property has been proven
for a few families of manifolds, see Subsection 1.4, but our construction is the first which
glues several (> 2) hyperbolic pieces to produce infinite families of manifolds satisfying the
asymptotic additivity property.

As the main result of this chapter, we restate Theorem 1.4.1, which establishes the
asymptotic additivity property for an infinite family of manifolds glued from several hyper-
bolic pieces. Our construction is inspired by a construction of Agol [4] of cusped 3-manifolds
with well-understood geometric properties. Agol begins with an oriented S!'-bundle over a
surface and systematically drills out curves to produce octahedral link complements. This
procedure depends on a path on the 1-skeleton of the pants complex of the surface. The
hyperbolic building blocks for our family M of manifolds are obtained as follows: We begin
with a trivial S'-bundle over the once-punctured torus and use Agol’s procedure to drill out
a 2-component link. This produces a hyperbolic manifold, which we call an S—piece, of vol-
ume 2v,., where v, ~ 3.66 is the volume of the regular ideal hyperbolic octahedron. Then
we begin with a trivial S'-bundle over the four-punctured sphere and use Agol’s procedure
to drill out a 2-component link, producing a hyperbolic manifold of volume 4v,,; which we
call an A—piece. Gluing k S—pieces and | A—pieces along their original boundaries produces
a compact manifold My (k,l) € M, where L is the union of the link components of the S—
and A—pieces.

The main result of this chapter is the following.

27/ —1

Theorem 1.4.1. Let My (k,l) € M. Then for r running over odd integers and q =e~ r ,

.27
lim — log |T'V,.(Mp(k,1); q)| = viet| | ML (K, 1)|| = 2(k + 2]) V-

r—oo T
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In general, the asymptotic additivity property is difficult to prove. In order to simplify
the calculation, the family M was constructed to have several advantageous properties which
help make our argument more tractable. We first remark that the Turaev—Viro invariants
can be computed from the relative Reshetikhin—Turaev invariants by a result of Belletti,
Detcherry, Kalfagianni, and Yang in [9]. In addition, our family M can be described effec-
tively from Turaev’s shadow perspective [77, Section 3| which Turaev related to the relative
Reshetikhin—Turaev invariants in |78, Chapter X]. Additionally, manifolds in the family M
have relative Reshetikhin—Turaev invariants which are comparably simple to manage as well
as well-understood simplicial volumes.

We note that the consideration of the shadow perspective was taken from the following
works. In [18], Costantino extended the colored Jones invariants to links in S®#;, (S? x S*)
and used the formulation of the invariant to prove a version of the volume conjecture for
a family of links in S3#;, (S? x S') known as the fundamental shadow links. Furthermore
in [9], Belletti, Detcherry, Kalfagianni, and Yang represented the Turaev—Viro invariants in
terms of the relative Reshetikhin-Turaev invariants, which they used in combination with
Costantino’s formulation [17] to show the fundamental shadow links satisfy Conjecture 1.2.1.
In [85], Wong and Yang also use this shadow viewpoint to study a version of the volume
conjecture involving the relative Reshetikhin—Turaev invariants. In this chapter, we utilize
the same approach to prove Theorem 1.4.1; however, we note that the form of the relative
Reshetikhin—Turaev invariants we study here is more complicated.

Moreover, the Turaev—Viro invariants are related to a measure of complexity of a manifold
called the shadow complexity derived from Turaev’s shadow perspective for 3-manifolds. We
refer to Costantino and Thurston [19] or Turaev [78| for more details. The shadow complexity
¢ € N of a manifold gives a sharp upper bound for the growth rate of its Turaev—Viro

invariants as stated in the following.
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Corollary 4.1.1 ([9], Corollary 3.11). If M has shadow complezity c, then
ITV (M) < LTV (M) < 2¢000,

2 2
where TV (M) = liminf = log |TV,(M;q)| and LTV (M) = limsup = log |TV,.(M;q)|.
r r

r—00 r—00
Furthermore, we have equalities for fundamental shadow links.

In a similar way, the manifolds M (k,[) have a shadow complexity based on the ele-
mentary pieces used in their construction such that they satisfy the same equalities as the
fundamental shadow links as shown in Theorem 1.4.1. In terms of the shadow construction
described in Subsection 4.3.2, the shadow complexity is the number of the shadow’s vertices
c=k+2l.

The remainder of the chapter is organized as follows: We recall Agol’s construction
of cusped 3-manifolds and introduce the family of manifolds M in Section 4.2. In Sec-
tion 4.3, we introduce Turaev’s shadow invariant and discuss its relationship with the rela-
tive Reshetikhin—Turaev and Turaev—Viro invariants. The precise definitions of the relative
Reshetikhin—Turaev and Turaev—Viro invariants are not needed to understand the proof of
Theorem 1.4.1, just their relationships to Turaev’s shadow invariants, so we refer to Chapter

2 for those details. Finally, the proof of Theorem 1.4.1 comprises Section 4.4.

4.2 An Infinite Family of Octahedral Manifolds
In this section, we will construct the link family M. We begin by recalling a construction
of Agol [4] in Subsection 4.2.1. In Subsection 4.2.2, we use Agol’s algorithm to construct the

family of link complements M.

4.2.1 Agol’s construction of cusped 3-manifolds
Agol [4] introduced a method which uses the pants complex of a surface and links in
bundles over that surface to construct compact manifolds with well-understood geometric

characteristics. We outline the construction here.

Definition 4.2.1. Let ¥,, be a connected compact orientable surface of genus g with n

boundary components and Euler characteristic x(2,,) = 2(1 —g) —n. We denote the closed
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(a) An example of an S—move. (b) An example of an A—move.
Figure 4.1 Examples of the elementary moves.
surface of genus g by £,. For x(2,,) < 0, a pants decomposition is a maximal collection
of distinct smoothly embedded simple closed curves on Y, which have trivial intersection
pairwise. A pants decomposition {a1,...,ay} consists of N = 3(g — 1) + n curves, and

cutting 3, ,, along these curves produces —x(3,,) pairs of pants X .
We note that the pants decompositions of a given surface are not unique.

Definition 4.2.2. Two pants decompositions P = {ay,...,ay} and P' = {da},...,a/y} of
a surface X/, are said to differ by an elementary move if P’ can be obtained from P by
replacing one curve «; with another curve o such that a; and o intersect minimally in one

of the following ways:

o If a; lies on a X;; in the complement of the other curves in P, then o; is on a single

pair of pants and «; and «; must intersect exactly once.

o If a; lies on a ¥4 in the complement of the other curves in P, then «; is the boundary

between two pairs of pants and «; and «} must intersect exactly twice.
We call a curve switch on ¥, a simple move, or S—move, and a curve switch on ¥4 an

associativity move, or A—move. Examples of the elementary moves are given in Figure 4.1.

Definition 4.2.3. [36] The pants decomposition graph P(2,,)" of ¥,,, is the graph with
vertices corresponding to isotopy classes of pants decompositions of Y , and edges corre-

sponding to pairs of isotopy classes which differ by a single elementary move.
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The following theorem, originally stated at the end of [37], is proven by Hatcher, Lochak,

and Schneps in Theorem 2 of [36].

Theorem 4.2.4 ([36], Theorem 2). Let g,n € NU {0} and let ¥,,, be a connected com-
pact orientable surface with x(3,,) < 0. Then the pants decomposition graph P(3,,)" is

connected.

Definition 4.2.5. For a given homeomorphism f : ¥,, — X,,, define the associated

mapping torus by Ty = (X,, x [0,1])/((x,0) ~ (f(z),1)).

In [4], Agol constructed cusped 3-manifolds from the mapping torus 7y and a path P on

the pants decomposition graph P(Egm)(l). We outline the construction as follows:

o Let f:X,, = 3,, be a homeomorphism and P = {P;}", be a path such that each
P; is a vertex of the pants decomposition graph, each P; and P, ; are connected by an

edge, and P, = f(F).

e For i € {1,...,m}, let B; correspond to the simple closed curve in P; obtained from
performing a single elementary move on a simple closed curve in P;_;. We assume

there exists no curve j3; that is contained in all the pants decompositions F;.

e Let B = {B;}, be the link in T} such that B; = 8; x {-£} is a link component, and

we define the cusped 3-manifold Mp to be the complement of the link B in 7.

Agol proves the following lemma in [4].

Lemma 4.2.6 ([4], Lemma 2.3 and Corollary 2.4). Let Mp be the cusped 3-manifold obtained
from Agol’s construction for a homeomorphism f : ¥,, — Sy, and a path P on P(3,,,)L.
Then Mp has a complete hyperbolic metric such that vol(Mp) = (|S| + 2|A|)veet where
vol(Mp) is the hyperbolic volume, |S| and |A| are the number of S— and A—moves in P,

respectively, and Vo == 3.66 is the volume of a regqular ideal hyperbolic octahedron.
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4.2.2 Manifold construction

Here we will discuss a family of links with octahedral complements in S!-bundles over
connected closed orientable surfaces.

Let X, be a connected closed orientable surface of genus g constructed by gluing & copies
of ¥11 and [ copies of ¥4 along their boundary components. We glue each pair of S!
boundary components via identity maps. Since 3, has no boundary components, & must be
even.

Consider the closed orientable 3-manifold T;; = 3, x S*. Note each gluing circle of 3,
corresponds to a torus in Tjy. This manifold can be decomposed into elementary pieces by
cutting along these tori so that the resulting pieces are trivial S'-bundles over k copies of
Y11 and [ copies of ¥y 4. We perform a pair of S—moves in each copy of ¥, ; with Py = P»
on the pants complex of X;; to produce a two-component link Lg. By Lemma 4.2.6, the
complement of Lg in 317 x S* has a complete hyperbolic metric with hyperbolic volume
20,0 We call this complement an S—piece. Similarly, we perform a pair of A—moves in
each copy of g4 with Py = P, to produce a two-component link L4. By Lemma 4.2.6, the
complement of L4 in ¥g4 X S has a complete hyperbolic metric with hyperbolic volume
4v,c:. We call this complement an A—piece.

Let L = ||\, iU |_|§:1 L7, be the union of these two component links in $, x S™.
We denote the (2k + 2{)-component link complement (3, x S')\L by M (k,l). We remark
that My (k,[) is not hyperbolic since the gluing procedure produces essential tori. However,
by Lemma 4.2.6, each S—piece and A—piece of M (k,l) contributes 2v, and 4vyy to the
simplicial volume, respectively, so vge|| ML (k,1)|| = 2(k 4 2])voer. Two examples of manifolds
of type (2,2) are given in Figure 4.2. Figure 4.3 gives a decomposition of each example into
their respective S— and A—pieces.

Let M = {Mp(k,l)|L C X, xS', g>2, k,l €N, keven} be the family of compact
orientable 3-manifolds constructed from k S—pieces and [ A—pieces. In Section 4.4, we will

prove Theorem 1.4.1 for manifolds in this infinite family.
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Figure 4.2 The projections of M(2,2) and M/ (2,2) onto the base surface ¥4, where L and
L’ are 8-component links in ¥, x S*.

Figure 4.3 From cutting ¥, along the blue curves which lift to essential tori in M,(2,2) and
M (2,2), we obtain two S—pieces and two A—pieces.

Remark 4.2.7. Note that since we only require that Fy = P, in the construction of the S—
and A—pieces, we can take Py to be an arbitrary vertex on the pants decomposition graph
which gives rise to infinitely many choices for P;. This implies that we also have infinitely
many choices for the elementary pieces used in the construction of My (k,l). That being
said, because they are hyperbolic, Corollary 6.6.2 by Thurston [74| implies that there are at

most finitely many elementary pieces up to homeomorphism.

4.3 The Turaev-Viro Invariants from the Shadow Perspective

In this section, we introduce Turaev’s shadow theory of 3-manifolds. We begin by stating
some useful asymptotic properties of the quantum 6j-symbols. Then we introduce Turaev’s
shadow state sum invariant for links in S'-bundles over surfaces using quantum 6;5-symbols
and briefly discuss how Turaev’s shadow construction can be generalized to all 3-manifolds.
We then discuss the relationship between the relative Reshetikhin—Turaev invariants and
the shadow state sum invariant. This will allow us to use the results of Belletti, Detcherry,

Kalfagianni, and Yang [9] stated in Proposition 2.3.9 to compute the Turaev-Viro invariants
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using the shadow state sum invariant.

2nv/—1

For the rest of this chapter, let » > 3 be an odd integer and ¢ = e~

4.3.1 Properties of the Quantum 6j-symbols

In this subsection, we will give some relevant properties of the quantum 6;-symbols for the
integer r and root ¢ defined in Subsection 2.3.1 of Chapter 2. Deep algebraic and geometric
properties of the quantum 6j-symbols are studied in Kirillov and Reshetikhin [50], Turaev
and Viro [79], and Turaev [77, 78], but these particular results will be useful in the proof of
Theorem 1.4.1.

Belletti, Detcherry, Kalfagianni, and Yang [9] give an upper bound for the growth rate of
the quantum 6j-symbol, which we state in the following theorem. Related results on these

growth rates are also due to Costantino [17].

Theorem 4.3.1 (|9], Theorem 1.2 and Lemma 3.13). For any oddr > 3 and any r-admissible

6-tuple (ay,...,aq),

2 a; a a 1
—Wlog 1 ay ag <o+ O (&@”)) . (4.1)
r r

ay G5 Qg 2my/—1
q=e ™

Moreover, this bound is sharp. If the sign is chosen such that % 15 even, then

o r£l rEl rEl log(r)
R lOg 2 2 2 = Voct -+ O < g ) . (42)
r rEl okl ol r

2 2 2 q:e27\'\{jl

The authors of [9] also prove the following result of Costantino [17] for the root ¢ = e

Let the summand of Equation (2.1) be given by

(—=1)*[k +1]!
H?:1 [k - Ti]! H?:1 [QJ - k]!
where k € {max{T;},..., min{Q,}} fori=1,2,3,4and j =1,2,3.

k:

Theorem 4.3.2 (|9], Theorem A.1). Let (agr), . ,aér)) be a sequence of admissible 6-tuples

such that
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() 0<Q;—T; <52 fori=1,2,3,4 and j = 1,2,3, and

(b) % <T;<r—2fori=1,2,34.

Let 0; = lim, _, o, %il and let a; = |m — 0;]. Then

(1) for each r, and for k € {max{T;},..., min{Q;}}, the sign of Sy is independent of k,

(2) cu,...,q¢ are the dihedral angles of an ideal or a hyperideal hyperbolic tetrahedron A,
see Remark 4.3.3, and

(8) as r runs over the odd integers

2 a a a
lim —~ log|| S = vol(A) (4.3)
r—oo T (r) (r) (r)
Qg G5° Qg 2my/=T

Remark 4.3.3. We refer to |7] for details on hyperideal hyperbolic tetrahedra. In particular,
the numbers oy, . . ., ag correspond to the dihedral angles of an ideal or hyperideal hyperbolic

tetrahedron if and only if around each vertex, o; + o; + oy, < 7 for ¢, j,k € {1,...,6}.

The even integers can be written as the two sets {=* | r =3 mod 4} and {5 |r =1

mod 4} corresponding to the subsequences that achieve the sharp upper bound of Theorem

4.3.1 Equation (4.2). Another such pair of subsequences is (r;zg) and (%) The following

is analogous to Lemma 3.13 of [9].

Lemma 4.3.4. If the sign is chosen such that % 1s even, then

r—2+1 r—241 r—241

2 log(r
— log 2 2 2 = Vpet + O ( & )) . (4.4)
T r—24+1 r—24+1 r—241 r

2 2 2 27/~

g=e T

Proof. First note that the » = 1 mod 4 case is covered by Equation (4.2). When r = 3
mod 4, T; = @ for all ¢ = 1,2,3,4 and ); = r — 3 for j = 1,2,3, so the 6-tuple
(’";3, ey %) satisfies the assumptions of Theorem 4.3.2 for » > 5. Here the corresponding

hyperideal truncated tetrahedron A has dihedral angles «; = 0 for all 7, so A is a regular
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ideal hyperbolic octahedron and vol(A) = v,. We refer to [17], Definition 2.1 for details.

By part (3) of Theorem 4.3.2,

.
vl |
w
=
ol |
w
3
ol |
w

27
lim — log = Vet
r—oo T r—

w|
w
=
2ol |
w
=
vl |
w
N
3
B
-

4.3.2 Shadow state sum invariants

We now describe Turaev’s state sum invariants for two-dimensional polyhedra represent-
ing links in S!-bundles over surfaces. In an effort to construct analogous invariants to the
colored Jones polynomial of links in S3, Turaev |77, 78| introduces a technique to present
links in S*-fibrations over surfaces as loops on X, with additional topological data given by
the bundle. From this 2-dimensional presentation, we can build quantum invariants of the
colored link.

We begin by recalling the construction of Turaev’s shadow state sum invariant |77, 78]
for S'-bundles over surfaces, largely following the construction given in [77]. Let %,, be
a compact orientable surface of genus g with n boundary components. Consider a finite
collection of loops {/; : S* — Ygn} on X,, with only double transversal crossings ; N1, for
any ¢,7. Denote by I' the 1-dimensional CW-complex consisting of the collection of loops
{l;} and crossing points {/;N[;}, and let P denote the pair (X,,,I"). We define the connected

components X, of ¥, ,\I' to be the regions of P.

Definition 4.3.5. A shadow is a pair (P, gl) where gl : {X;} — %Z is a map that assigns
a half-integer to each region of P. This half-integer is called the gleam of the region. The
total gleam of a shadow is defined to be
total gleam =  (g1(X,)) — 24{l; N 1},
t

where #{l; N {;} is the number of crossing points of P.
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We will restrict our attention to shadows on closed surfaces. Suppose >, is a closed
orientable surface and p : M — ¥, is an oriented S'-bundle over X,. Let L C M be a
link. We say that L C M is generic if it is transverse to the fibers with respect to p and
the collection of immersed loops p(L) C 3,, only have double transversal crossings. In
[77], Turaev constructs a map which associates a shadow (P(L), gl) to L C M, where the
gleams of each region of P(L) are determined by the Euler number of the 2-dimensional
real vector bundle associated to the oriented circle bundle p. The construction of the map
gl : {X;} — LZ for general S'-bundles over ¥, will not be relevant to the arguments that
follow, so we refer to Section 3(a) of [77| for further details. The following theorem of Turaev

is a result of this construction.

Theorem 4.3.6 ([77], Theorem 3.2). Let p : M — X, be an oriented circle bundle over a
closed orientable surface Xg, and let L C M be a generic link with respect to p. Then there
is a shadow (P(L), gl) with total gleam —x(p) associated to L C M, where x(p) is the Euler

number of the bundle.

For our purposes, we restrict further to the special case where L C 3, x S' and p :

3, x St — 3, is the trivial bundle. We can embed 3, x [0,1] < X, x S* via the map
(z,t) —> <x, e%mt) :

Now consider L as a subset of ¥, x [0,1]. It is a generic link with well-defined over- and
under-crossings in the projection p|zg><[0,1](L> on Y,. This projection produces a shadow on
¥4 with gleams assigned as in Figure 4.4, where the gleam of each region is the sum of the
associated 1’s.

Note that L C 3, x [0,1] C ¥, x S is a generic link with respect to p. The projection
pls, xjo1](L) with gleams assigned using Figure 4.4 coincides with the shadow (P(L), gl)
constructed using Theorem 4.3.6 with total gleam —x(p) = 0. As an elementary example,

we consider the following example of Costantino and Thurston [19].
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Figure 4.4 Gleam assignment for shadows of links in trivial bundles X, x [0, 1].

Example 4.3.7 ([19], Example 3.5). Consider the shadow on Yo = S? with T' = 0 and total
gleam 0. This shadow corresponds to the empty link in the bundle p : S* x S* — S?, where

the triviality of the bundle is encoded by the zero gleam.

In order to define Turaev’s shadow state sum invariant, we need to consider colorings of

the link L € M.

Definition 4.3.8. Let M be a closed 3-manifold. An I,.-coloring of a link L C M assigns an
element of I, to each component of L. Similarly, an I,.-coloring of a shadow (P, gl) assigns

an element of I, to each loop of (P, gl).

If p: M — Y, is a circle bundle over a closed surface ¥,, an I,-coloring « of a link L
in M descends to an I,-coloring ~y of the loops of the shadow (P(L), gl) constructed using
Theorem 4.3.6.

Definition 4.3.9. Let (P, gl,~y) be an I,-colored shadow with gleams gl and loops colored

by 7. A surface-coloring n of (P, gl,~) assigns an element of I, to each region of (P, gl,~).

Suppose an edge e from a loop of (P, gl,v) is adjacent to two regions X, X’ of (P, gl,~).
This edge has a fixed color v(e), and the regions X and X’ are assigned colors n(X) and

n(X"), respectively, by 7.

Definition 4.3.10. A surface-coloring 1 of (P, gl,~) is called admissible if for any edge e
adjacent to two regions X, X' of (P, gl,7), the triple (y(e),n(X),n(X")) € I? is r-admissible

in the sense of Definition 2.3.1.

78



Figure 4.5 gives the local picture for admissibility. Let adm(P, gl,~) denote the set of

admissible surface-colorings of (P, gl, ).

Figure 4.5 An edge e contained in a loop [ of (P, gl,~) and its two adjacent regions X and X'.
An admissible surface-coloring assigns colors n(X) and n(X’) for which (y(e),n(X), n(X"))
an r-admissible triple.

Suppose c1, ..., ¢, are the crossing points of P, each an intersection of two distinct loops
or a self-crossing of a single loop of P. Suppose these loops have colors ¢ and [, respectively.
Then an admissible surface-coloring n € adm(P, gl,~y) assigns colors j, k,m,n to the four
regions incident at the crossing point ¢, so that (i,j, k,l,m,n) forms an r-admissible 6-
tuple. In particular, (,7, k), (i, m,n), (j,{,n), and (k,l,m) are r-admissible triples. Figure
4.6 illustrates an admissible surface-coloring (j, k, m,n) around a crossing point of loops

colored by ¢ and (.

Figure 4.6 Admissible surface-coloring at a crossing.

Using Definition 2.3.2 of the quantum 67-symbol, we let

i 7 k
=" 7 "lec
I m n

Let Xi,...,X, be the regions of (P, gl,v), and let x;, x;, and z be the gleam, Euler

characteristic, and number of corners of the region X, respectively. Define the modified
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gleam of X; by x}, = x; — z,/2. For j € I, let

w=r1(3) (1-252). w=lien

r

Then for each admissible surface-coloring 7, let

p q
(P, gl)|1 = H les|” H ((vn(xt))xt exp (2uyxyzy)) € C, (4.5)
s=1 t=1

where 7(X;) is the region color of X; assigned by 7.

Remark 4.3.11. Note that the gleams and the surface-colorings are independent of each
other. The gleams encode topological data from the S*-bundle p : M — 3, and do not affect
the quantum 6j-symbols in the first product of Equation (4.5), only the second product taken

over the regions of (P, gl).

Definition 4.3.12. The shadow state sum |(P, gl)|, is defined by the following sum over all
admissible surface-colorings n € adm(P, gl, 7).
(Pgl)ly= Y, [(PghleC. (4.6)
neadm(P,gl,y)

Turaev established the following theorem in [77] and generalized it in [78].

Theorem 4.3.13 ([77|, Theorem 5.1 and Corollary 5.2). Let (P, gl,v) be an I.-colored
shadow. Then the shadow state sum |(P, gl)|, is a complez-valued regular isotopy invari-
ant of colored shadows. Furthermore, this invariant gives rise to a complex-valued isotopy

invariant of colored links in S*-bundles over closed orientable surfaces.

Remark 4.3.14. The notion of regular isotopy invariance of colored shadows will not be
relevant for our purposes since we only work with the projections arising from the construc-
tion of the links in Section 4.2. For details on the relationship between isotopy invariance of
colored shadows and colored links in S'-bundles over surfaces, we refer to [77] Sections 2, 3,

and 4.
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Turaev generalized the construction of colored shadows from the setting of colored links
in S'-bundles over closed surfaces [77] to colored links in closed 3-manifolds in [78]|, Chapters
IX and X. While this general characterization is not relevant to the arguments that follow, we
include a brief description. Turaev shows that any 3-manifold N which is the boundary of a
4-manifold W can be associated a shadow (P, gl). Roughly speaking, Turaev constructs the
polyhedron P using dual cell subdivisions of a triangulation of N and equips gleams which
encode the topology of the regular neighborhood of P in W. The details of this construction
can be found in IX.1 of [78]. Further, if NV contains a framed link 7" colored by ~, Turaev
extended this construction to a colored shadow (P, gl, ) associated to (N, T,~). In addition,
we note this construction can be generalized to colored framed trivalent graphs contained in
a 3-manifold N. We refer the reader to X.7.1 of [78] for details.

For simplicity, we consider the following alternative construction, which can be found in
[19], to further support this more general notion of a shadow of a 3-manifold. The framed
link L C S? has a shadow (P, gly) constructed by gluing a disk to L x [0, 1] along L x {0}.
Surgery along a component of L is equivalent to gluing the core of a 2-handle to F,, and
this gluing does not change the gleam of the capped region. Due independently to Lickorish
[54] and Wallace [80], any 3-manifold N can be obtained by performing integer surgery on a
link in S®, meaning that every 3-manifold N has a shadow with gleams related to its surgery
presentation. We refer the reader to Chapter 12 of [56] and Chapter 9 of [72] for more details

on knot and link surgery.

4.3.3 Relating the quantum invariants

In this subsection, we state a result of Turaev [78] which establishes the relationship
between the relative Reshetikhin—Turaev invariants and the shadow state sum invariant. We
then discuss its implications in computing the Turaev—Viro invariants of a link complement
using Proposition 2.3.9.

Turaev’s constructions in IX and X of [78] establish a deep relationship between the 7-

th relative Reshetikhin—Turaev invariants and the generalized shadow state sum invariant.
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Notably, one can study the r-th relative Reshetikhin-Turaev invariants of a colored framed
link in a closed 3-manifold from the perspective of colored shadows. In [18], Costantino used
this relationship to study the colored Jones invariants of links in S3#; (52 x S!) from the
shadow perspective. We include Costantino’s statement of Turaev’s result from X.7.1 of 78]

here.

Theorem 4.3.15 ([18], Theorem 3.3). Let N be a closed 3-manifold and T C N a colored
framed trivalent graph in N colored by . Let (P, gl,~y) be a colored shadow of (N, T). Then

RT,.(N,T,~) := C;|(P, gl)| is a complex-valued homeomorphism invariant of (N, T).

Remark 4.3.16. Theorem 4.3.15 is stated generally in terms of framed trivalent graphs
(which are a generalization of framed links) to be consistent with the literature [18, 78|.
The full generality of the result is not necessary for the arguments that follow since we only

consider manifolds containing framed links.

Remark 4.3.17. Here, the factor C, is considered a “normalization factor." See [18| for a
precise formulation. In the case Turaev [77] studies, where N is homeomorphic to an S'-
bundle over a closed surface and 7' is a link in /V, the factor C). does not depend on T'. It

can therefore be ignored for our purposes.

Theorem 4.3.15, in combination with Proposition 2.3.9, provides a method for computing
the Turaev—Viro invariants of manifolds in the family M using their shadow state sum
invariants. In particular, since My (k,1) € M the complement of a link in a trivial S*-bundle
over a closed oriented surface 3, we may compute TV, (M (k,1); q) by first coloring the link
L with a fixed color v, using Equation 4.6 to compute the r-th relative Reshetikhin—Turaev
invariant RT,(X x S1, L, ~), and leveraging Proposition 2.3.9. In Section 4.4, we will see that

this allows us to prove these manifolds satisfy the Turaev—Viro invariant volume conjecture.

4.4 Asymptotics of the Turaev-Viro Invariants for the Infinite Family

In this section, we prove Theorem 1.4.1 which we restate here.
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Theorem 1.4.1. Let My (k,l) € M. Then for r running over odd integers and q = e%F,

2w
lim = log TV (My (k. 1); )] = el Mz (K, 1)]] = 20k 4+ 20) v

r—oo T

where Vot &= 3.66 1s the volume of the regular ideal hyperbolic octahedron.

To do this, we first write a formula for the shadow state sum invariants |(P, gl)|, for the
family M of links in trivial S'-bundles over surfaces constructed in Subsection 4.2.2. We will
then state and prove Lemma 4.4.5 regarding the asymptotics of |(P, gl)|,. We complete the
proof of Theorem 1.4.1 using Lemma 4.4.5 and the formulation of the Turaev—Viro invariants

from Subsection 4.3.3 in terms of the r-th relative Reshetikhin—Turaev invariants.

Remark 4.4.1. Computing the relative Reshetikhin—Turaev invariants is difficult in general,
but the family M was constructed in order to simplify their calculation significantly from
the shadow state sum perspective. In particular, shadows of these manifolds have simple
gleams and topologically simple regions that allow us to reduce the proof of Theorem 1.4.1
to studying properties of quantum 6j-symbols. These manifolds also have well-understood

simplicial volumes determined by k£ and I.

Let My (k,1) € M be the complement of a link L in a 3-manifold M = ¥, x S* constructed
as in Subsection 4.2.2. By Theorem 4.3.6, My (k,1) has a shadow (P, gl) associated to it.
My (k,l) has an elementary decomposition into k& S—pieces and [ A—pieces. The shadow
(P, gl) has a corresponding decomposition, so we also refer to these shadows on ¥;; and
Yo,4 as S—pieces and A—pieces, respectively. An S—piece has two loops which intersect at a
single vertex. Let sy, ..., s, denote the intersection points on the k S—pieces. An A—piece
has two loops which intersect at two vertices. Let (a},a?), ..., (af,a?) denote the intersection

points on the | A—pieces.

We make the following observations about My (k,1):

e Each S—piece of (P, gl) has two curves, one vertex, and one region X with z = 4

corners as in Figure 4.7a. This region has gleam x = 2 since gleams are assigned to
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regions for trivial bundles as in Figure 4.4. Cutting X, ; along one of the two curves
produces a pair of pants such that the second curve becomes a simple arc connecting
the two new boundary components. Cutting along this arc produces an annulus, so
X has Euler characteristic y = 0. The modified gleam of the region of this shadow is

¥=x—2/2=0.

Each A—piece of (P, gl) has two curves, two vertices, and four regions X, t = 1,2, 3, 4,
each with z; = 2 corners, as in Figure 4.7b. Again, using the gleam assignment from
Figure 4.4, each of the four regions has gleam z, = 1. Cutting ¥4 along one of the two
curves separates Yo 4 into two pairs of pants such that the second curve is split into
a simple arc on each pair of pants with endpoints on a single boundary component.
Cutting the two pairs of pants along these arcs produces four annuli, so X; has Euler
characteristic x; = 0 for t = 1,2, 3,4. The modified gleam of each region of this shadow

is ) =y — 2,/2 = 0.

(a) Shadow corresponding to (b) Shadow corresponding to
a pair of S—moves. The single a pair of A—moves. Each re-
region has gleam 2. gion has gleam 1.

Figure 4.7 S— and A—pieces.

Remark 4.4.2. While the underlying surface of the shadow (P, gl) associated to My (k,[) is

closed, the underlying surfaces of the S— and A—pieces have boundary. By the construction

of My (k,l), the annular regions of the S— and A—pieces are glued along their boundaries

to form the regions of (P, gl). The gleam (resp. Euler characteristic) of a region X of (P, gl)

is the sum of the gleams (resp. Euler characteristic) of the regions in the S— and A—pieces

that are glued to form X.
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Let v € I2**2 be an I,-coloring of L C M. The loops of the associated shadow (P, gl)
inherit this I,-coloring 7. Let n € adm (P, gl, y) be an admissible surface-coloring of (P, gl, ).
The S— and A—piece observations imply that for the state |(P, gl)|? defined in Equation

(4.5), x¢ = x}, = 0 for all regions X;. This means

::1Q

((on(xn) ™ exp (2uyxpyh)) =1,
t=1

Using this and Equation (4.5), we reformulate the state sum invariant of the I,-colored

shadow associated to M, (k,[) in the following proposition.

Proposition 4.4.3. Let (P, gl,7) be a colored shadow associated to My(k,l). Then the
shadow state sum invariant is given by

(Pghl, = > (Pl

neadm(P,gl,7)

= > H ISZI”H |aj|"]a3]"- (4.7)

neadm(P,gl,y) =1
Since Equation (4.7) is a sum of products of quantum 6j-symbols, Proposition 4.4.3
allows us to use the explicit properties of quantum 6;j-symbols discussed in Subsection 2.3.1.

The following technical lemma will be used to prove Theorem 1.4.1.

Remark 4.4.4. We will use the abbreviation (n) := (n, ..., n) for tuples of colors throughout

the rest of the chapter.

Lemma 4.4.5. Let My (k,l) € M and v = (n,) € I?*, where n, := 5+ when r = 1

mod 4 and n, := % whenr =3 mod 4. Let (P, gl,v) be the I.-colored shadow representing
My (k,l). Then

. Ar
Jim “1og (P g0) | = vl ML, D), (49
where vyt || ML (k,1)|| = 2(k + 20)vper is the simplicial volume of My (k,1).

The following two lemmas give properties of quantum 6;j-symbols that will be leveraged

to establish a lower bound for the limit in Equation (4.8) of Lemma 4.4.5.
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Lemma 4.4.6. Let n, := % when r = 1 mod 4 and n, := ng when r = 3 mod 4.

Suppose my, ma, m3, my € I and the tuple (n,, my, ma,n,, mg, my) is r-admissible. Then the

quantum 63 -symbol

ne 1M1 My

ne. M3 My

1s real-valued.

Proof. Let

1 fr=1 mod4

% ifr=3 mod 4
Note that n, is always even. Consider the quantum 6j-symbol associated to the tuple
(n,, my, ma, np,mg,my). From Definition 2.3.2, the quantum 6j-symbol associated to the
6-tuple (aq, ..., aq) is either real or purely imaginary based on the value of the coefficient
\/—_1<_ ?:1ai>A(a1,a2,a3)A(a1,a5,a6)A(a2,a4,a6)A(a3,a4,a5), (4.9)
since the sum in Equation (2.1) is real-valued.

For (n,,my, mg, n,, ms, my), the first factor is given by
(\/__1)—(nr+m1+m2+nr+m3+m4) _ <\/__1)m1+m2+m3+m4 — +1.

The first equality holds because n, is even, so 2n, has a factor of 4. The second equality is
due to the admissibility conditions which require that each of the sums my + mg, ms + my,

my+my, and mg+ms are even. Notice in the case of (n,, m, m,n,, m, m), the factor becomes
(vV/—1)~@rotdm) —

For the other factors of Equation (4.9), suppose (n,,m, m’) is an r-admissible triple and
without loss of generality, assume m > m’. Then

Ay, m,m') = ¢ [t (2] (]
) ) |

(e 1)
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By the admissibility conditions, %_m' <n, < g, R SR
r—2—mn, < 5. Since [n] > 0 for 0 < n < 7, the numerator of A(n,,m,m’) is real-valued.
This implies the numerator of A(n,., my, ms)A(n,, ms, my) A(mq, n., mg)A(ms, n,., ms) is also

real-valued. In addition, the admissibility conditions imply that % <n,+1< %er/+1 <

r — 1, so the sign of [%er’ + 1]! is given by

/
nr+7;7,+m 41— r;l

(=1)

This means the denominator of A(n,, my, me)A(n,, ms, my)A(my, n., my)A(ms, n,, ms) is

some real-valued multiple of

\/(_1)2nr+4—2(r—1)+m1+m2+m3+m4 _ :l:]_,

where equality holds because 2n, +4 —2(r — 1) contains a factor of 4 and my +msg +msz+my
is even. Hence, the coefficient given by Equation (4.9) is real-valued. This implies that the
quantum 6j-symbol associated to the 6-tuple (n,, my, ms, n,., mg, my) is real-valued. Notice

in the case of (n,,m, m,n,,m, m), the coefficient given by Equation (4.9) is positive. ]

Lemma 4.4.7. Let n, := =% when r =1 mod 4 and n, = % when r = 3 mod 4. Let

m € I and suppose that the tuple (n,.,m,m,n,, m,m) is r-admissible. Then the sign of

n., m m

n. m m

15 independent of m. Moreover, it is positive when r = 3 mod 4 and negative when r = 1

mod 4.

Proof. Consider the quantum 6j-symbol associated to the 6-tuple (n,,m,m,n,.,m,m). By
Lemma 4.4.6, this quantum 6j-symbol is real-valued. The admissibility conditions imply

that 5 <m <r —2— %, By Definition 2.3.2,

min{m-+n,,2m}

= A (n,,m,m)"* Z Sk (4.10)

n, m m P—

n, m m
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where

. (=D*[k + 1]t
T = ()] I e — K] [2m — R

Suppose r = 1 mod 4. By the admissibility conditions, the 6-tuple (%,m,m, 5 L m,m)

satisfies assumptions (a) and (b) of Theorem 4.3.2. In the case that » = 3 mod 4, the

admissibility conditions of the 6-tuple (% m,m, 23, m,m) imply it satisfies assumptions
(a) and (b) of Theorem 4.3.2 for all admissible region colors except m = % = 3 and

3r—>5

- We will consider these cases separately.

m=r—2—49 =
General Case:
Suppose either r =1 mod 4 or r = 3 mod 4 with 72 <m < 3” 5 Then by part (1) of
Theorem 4.3.2, the sign of S, ) is independent of k. We now show that the sign of S, is

independent of the region color m. Without loss of generality, consider the case k = m + %

5, ()™ 4 4 1]
T R - !

Since the quantum integer [n] is real-valued, we only need to consider the signs of [m+ % +1]!

and [m — %] l. By assumption (a) of Theorem 4.3.2 and the assumption that m < r—2—"%,

we know 0 < m — & < %, SO [m — %}‘ > 0 for all region colors m. By assumption (b)

of Theorem 4.3.2 and the assumption that m > %, we know =2 < m + < r—2

27 2
o [m+ % + 1] < 0 for all region colors m. Note that [*5*]! > 0, so [m + % + 1]! =

[m %5 1] [5][57]! has sign

(—1y+ ¥

Then the sign of Sy, iz s

nr nr

(~1) T = (-7, (4.11)

which is independent of the region color m. By part (1) of Theorem 4.3.2 and Equation
(4.10), the sign of the quantum 6j-symbol associated to (n,, m,m,n,.,m,m) is independent

of the region color m, provided m # 3= 3 3’”4 % in the case r =3 mod 4.
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Special Cases:

If m= %, we have maxT; = % = min Q);, so
ot Sa(rpn r—3)4<<—1>’"f’ [%w) -0
r—3 r=3 r=3 B 2 7 4 ’ 4 3 12 ‘
2 1 1 7]
Positivity follows because n, = % is even and 0 < % +1<3.
If m = 35 we have max T; = r —2 and min Q; = r —2+ "33, However, since [k+1]! =0

for k >r —2,

=3 =5 b _ A (r=33r-53-5 =02 — 1) o
ST ) \meEEn ) 7t

Positivity follows because the denominator is positive and the numerator is given by the

@
w
g
|
S8
w
g
|
S

<

2 4 4

product (—1)"72[r — 1][r]--- [21] [552]!, which has sign

r—l) 3r—>5

(_l)r—2+(r—1— 5

Thus the sign of the quantum 6j-symbol associated to (n,, m, m,n,, m,m) is independent
of m. Moreover, by Equation (4.11), this 6j-symbol is negative when » = 1 mod 4 and

positive when r =3 mod 4. O
We now prove Lemma 4.4.5.

Proof of Lemma 4.4.5. From Subsection 4.2.2; the link complement M (k,[) is a compact
orientable 3-manifold with simplicial volume vye|| My (k,1)|| = 2(k + 20)voer. We proceed by

bounding the limit in Equation (4.8) above and below by vt || My (k,1)||.

Step 1: The upper bound

For the upper bound, note that each summand in Equation (4.7) is a product of k + 21
quantum 6j-symbols. By Theorem 4.3.1, the growth rate of a single summand of Equation
(4.7) is bounded above sharply by (k + 2l)vee. Let B, = #adm(P, gl,~) be the number of

r-admissible surface-colorings of (P, gl,7v). The term B, grows at most polynomially with
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r since B, is bounded above by the total number of r-admissible 6-tuples corresponding to

well-defined quantum 6j-symbols. Thus, we obtain the following upper bound:

4 4
lim sup il log [|(P, g1)|,| < limsup i log
r

r—00 r—oo I

B, a P, qgl)|?
neadgln(lgfglm)K g)|7

= 2lim sup il log
r—oo I

max P, qgl)|?
neadm(P,gl,y) |( g )|’Y

< 2(k + 20)voet,

where the last inequality is due to Theorem 4.3.1.
We remark that this upper bound holds for any I,.-coloring v, which implies the required

upper bound for the limit in Equation (4.8).

Step 2: The lower bound

Let n, := ”;21 when r =1 mod 4 and n, := % when » =3 mod 4. We will prove the
lower bound for the (n,.)-colored link.

For the lower bound, it suffices to show that summands of Equation (4.7) do not cancel
with each other when v = (n,.). In particular, we will show that, for fixed r, the sign of every
summand of Equation (4.7) is independent of the surface-coloring n € adm (P, gl, (n,)). This

means that the absolute value of any individual summand is a lower bound for ||(P, gl)|(n,)|-

We now make some observations about Hle | si]" Hé‘:1 |aj|"]aZ]".

e The surface-coloring of each S—piece is given by Figure 4.8a. This means each factor

|s;|" is the quantum 6j-symbol associated to the 6-tuple (n,., m, m,n,,m,m).

e The surface-coloring of each A—piece is given by Figure 4.8b. Using the symmetries of
the quantum 6;j-symbol in Equation (2.2), each factor \aé- |7, for i = 1,2, is the quantum

67-symbol associated to the 6-tuple (n,,my, mo, n,., ms,my).

Using these observations, we can re-formulate Equation (4.7) for the (n,.)-colored shadow:

2
i
b (4.12)

k % 7 !
[CYISED DI | | A | (I
mt |j=1| n

m
neadm(Pygly(ny)) i=1 | Ny M .omy o omy

90



5D

(a) A surface-coloring by m € (b) A surface-coloring by m; € I, of
I, of a shadow corresponding a shadow corresponding to a pair of
to a pair of S—moves. A—moves.

Figure 4.8 Surface-colored shadows.

We remark that the notation of Equation (4.12) is chosen out of convenience. The
construction of the invariant may introduce dependencies between surface-colors and hence
between entries of the quantum 6j-symbols. For example, if an S—piece with region colored
by m'® is glued to an A—piece along the boundary circle adjacent to a region colored by m/,
the regions combine to form a single region with color m? = m?. We choose to omit these
additional details since they do not change the overall result of Lemma 4.4.5.

By Lemma 4.4.6, the quantum 6j-symbols of the form (n,.,my, mg, n,, ms, my) are real-

valued. This means

n, m, mj

i=1| n, m} m
is non-negative and implies that the sign of the summand of Equation (4.12) is determined
by the quantum 6j-symbols associated to the S—pieces
n. m' m

(4.13)

7 7

k A %
1=

1l n m m

By Lemma 4.4.7, the sign of each factor in Expression (4.13) is independent of the surface-
colorings m®, for i € {1,...,k}, of the S—pieces.

Therefore, the sign of |(P, gl)]?ﬂr) is independent of the surface-coloring 1. From this, we
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can conclude

(P, g0)| )

=1 > Pl

neadm(P,gl,nr)

- ¥ ‘|(P,91) 7. (4.14)

neadm(P,gl,ny,)

In fact, since the number of S—pieces k is even, every summand of Equation (4.12) is non-
negative, though Equation (4.14) is sufficient for our purposes.

We can bound the sum in Equation (4.14) below by the absolute value of a single state
(P, g1)|(,,,y- In particular, we consider the bound obtained from the surface-coloring n = (n.).

This gives us the inequality
k+21

4 4 Ny My Ny
liminf—wlog H(P, gl)](m)‘ > lim —Wlog

r—soco T r—soco T

Ny Ny Ny

= 2(]€ + 2Z)Uoct,

where the equality is due to Equation (4.4) in Lemma 4.3.4. This means the growth rate of
the shadow state sum invariant is bounded below by the simplicial volume vy || My (k, 1)|| =

2(k + 20)voet, establishing the lemma. O

We can now prove Theorem 1.4.1.

2ny/—1

Proof of Theorem 1.4.1. Fix a root of unity ¢ = e~ r . Let M = X, x S’ be a trivial
S'-bundle over an orientable closed surface 3, and let L C M be a 2k + 21 component link
such that My (k,1) € M. Suppose L is colored by v € I?%2l and consider the I,-colored
shadow (P, gl, ) associated to M (k,1).

We begin by formulating T'V,.(My(k,[); q) in terms of the shadow state sum invariant.
By Proposition 2.3.9 and Theorem 4.3.15, the Turaev—Viro invariant of My (k,[) is given by

TV(My(k,1);q) = > |RT,(M,L,7)"

,yelgk-ﬁ-Ql

= Y Gl gDL[*

76[3k+2l
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We start with the upper bound, which is proven analogously to the upper bound in
Lemma 4.4.5. Let B!, := (#1,)***% be the number of link colorings. Both |C,.| and B! grow
at most polynomially with r, so we obtain the following bound. See Theorem 3.3 of [18§]
where C). is written as a product of terms which grow at most polynomially.

2w 2
hmsup—log|TV(ML(k l); )|:limsup77rlog Z (P, gl)|

r—00 r—00 12k+21

< 2lim sup max, —10g||(P I

r—oo eIkt
Since [(P, gl)|, is a product of k 4 2 quantum 6j-symbols, we obtain the following bound

using Theorem 4.3.1.

2
lim sup 7” log | TV, (My(k, 1): q)] < 2(k + 20) V.

r—00

We now focus on the lower bound. Since all summands are positive, we can bound
the absolute value of the sum below by the absolute value of an individual summand. In
particular, we consider the bound obtained from the summand corresponding to the I,.-

coloring v = (n,). This gives us the following inequality:

2
hm1nf—log|TV (Mp(k,1);q9)| > liminfjlog

700

‘Cr| P, gl)|(nr)

2 ‘

= lim —logH P, gl)|n,)

r—00

)

where equality holds since the limit exists, by Lemma 4.4.5, which is equal to the limit
inferior and because |C,.| grows at most polynomially. Applying Lemma 4.4.5, we obtain the

lower bound

lim 1nf — log TV, (Mp(k,1);q)] > 2(k + 21)voet-

r—00

Therefore, we can conclude that

.27
lim = log [TV, (M (k, 1); g)| = 2(k + 20)vees = vyeel | M (k, D).

r—oo T
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CHAPTER 5

¢-HYPERBOLIC KNOTS IN S3
This chapter is based on joint work with Kalfagianni in a preprint submitted for publication
[44].

In this chapter, we utilize Dehn surgery methods in combination with recent results
toward the Turaev-Viro invariant volume conjecture to construct the first known infinite
families of knots in S? satifying Conjecture 1.5.1. Due to the deep connection between the
Exponential Growth Conjecture and the AMU conjecture, these result in new families of
mapping classes acting on surfaces of any genus and one boundary component satisfying

Conjecture 1.5.6.

5.1 Introduction
As in Chapters 3 and 4, we consider the Turaev—Viro invariants T'V,.(M; q) of a compact

3-manifold M parameterized by an integer r > 3 depending on the 2r-th root of unity

Recall from Subsection 2.3.3, a compact 3-manifold M with empty or toroidal boundary
with [TV(M) > 0 is called g-hyperbolic. We will say that a knot K is g-hyperbolic if the
complement My := S3\ n(K) is ¢-hyperbolic, where n(K) is a tubular neighborhood of K.

The purpose of this chapter is to give constructions of the first infinite families of ¢-
hyperbolic knots in the 3-sphere. The only hyperbolic knot complement in the 3-sphere for
which the asymptotic behavior of the Turaev—Viro invariants has been explicitly understood
is the figure-eight knot complement [25]. On the other hand, the volume conjecture of [16]
has been proved for all hyperbolic 3-manifolds that are obtained by Dehn filling the figure
eight knot complement [64, 87|. Our constructions combine these results, with a result of
[23] about the behavior of the Turaev—Viro invariants under Dehn-filling, and with several
Dehn surgery techniques, to produce these families. These results also have new applications
to the conjecture of [5].

Given a knot K, let u, A\ denote a set of canonical generators for H;(0(n(K))). For a

94



D

n

Figure 5.1 A double twist knot D(m,n) diagram with m vertical half-twists and n horizontal
half-twists.

simple closed curve s on 9(n(K)), we denote by [s] = pu+gA its class in H(9(n(K))), where
p, q are relatively prime integers. Recall that s is completely determined, up to isotopy, by
the fraction p/q € Q U {oo}. We will use Mg(p/q) to denote the 3-manifold obtained by
Dehn-filling My along the slope s determined by p/q.

For m,n € Z, let the double twist knot D(m,n) with m vertical half-twists and n hor-
izontal half-twists be as in Figure 5.1. For example, D(2, —2) is the figure-eight knot and
D(2,2) is the left-handed trefoil.

Remark 5.1.1. We note that the notation for the double twist knots D(m,n) follows the
convention of Boden—Curtis [12]|. In particular, for m > 0, the associated vertical half-twists
correspond to over-crossings with slope +1, and for n > 0, the associated horizontal half-
twists correspond to over-crossings with slope —1. This convention is meant to be consistent
with the actual operation of applying a half-twist to either horizontal or vertical strands,
and we refer the reader to Section 2.5 of [12] for further details. In the two above examples,
under this convention, 4; = D(2, —2) is an alternating projection and 3; = D(2,2) is a non-
alternating projection which may be modified to a 3-crossing alternating projection under

Reidemeister moves and ambient isotopy.
The first result we establish is the following, which was initially stated in Chapter 1.
Theorem 1.5.2. For any integer n # 0, —1, the following are true:

1. The knots D,, := D(2n,—3) and D), := D(2n,—2) are q-hyperbolic.
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2. The 3-manifolds M, = Mp, (4n + 1) and M) := Mp, (1) are hyperbolic and q-

hyperbolic.

3. We have
ITV(Mp,) > vol(M,), and ITV(Mp,) > vol(M,).

Using Theorem 1.5.2, we may conclude that many low-crossing knots are g-hyperbolic.
We refer to Tables 5.1 and 5.2 in Section 5.5.

A slope p/q is called non-characterizing for a knot K C S? if there is a knot K’ that is
not equivalent to K and such that Mk (p/q) is homeomorphic to Mg/ (p/q). In the articles,
[2, 1, 3], the authors give constructions of knots that admit infinitely many non-characterizing
slopes. Combining their techniques and results with Theorem 1.5.2, we are able to construct

new infinite families of g-hyperbolic knots.

Theorem 1.5.3. There is an an infinite set of knots IC such that:
1. Every knot in K is q-hyperbolic.
2. For every K € KK, Mg (—T) is homeomorphic to My, (—7/2) and it is q-hyperbolic.
3. No two knots in K are equivalent.

To apply the methods of [1] one needs to start with a knot K that admits an “annulus
presentation”. Then, for any non-zero n € N, one applies a certain operation called an
“n-fold annulus twist” repeatedly to generate a family of knots K, so that for any K € K
we have Mg (n) = Mg,(n). The method of the proof of Theorem 1.5.3 is as follows: First
we show that the six-crossing knot 65 = D_y = D(—4,—3) is g-hyperbolic and that the
3-manifold Mg, (—7), obtained by (—7)-surgery on 62, is homeomorphic to My, (—7/2) and
is g-hyperbolic. Then we verify that the knot 6, has an “annulus presentation” to which
we apply a “—7-fold annulus twist” inductively, to generate a family of knots . In this
case, the annulus presentation of 65 is nice in a certain sense, and we are able to argue that

the resulting knots have mutually distinct Alexander polynomials. We refer the reader to
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Section 5.3 and, in particular, to Remark 5.3.7, for details. The annulus twisting technique
also applies to each of the knots D/, := D(2n, —2) to produce families of ¢-hyperbolic knots.
However, in this case we don’t know whether the resulting knots are necessarily distinct. We

have the following:

Theorem 1.5.5. For any |n| > 1, let D!, := D(2n,—2). There is a sequence of q-hyperbolic

knots { K' }ien such that for any i € N we have the following:

1. The knot K! is q-hyperbolic.
2. The 3-manifold M; (1) is homeomorphic to Mp, (1) and it is q-hyperbolic.

Finally, the knots D(2n, —3) are fibered when n < —1 and the monodromies of their fibra-
tions provide explicit families of mapping classes acting on surfaces with a single boundary
component that satisfy the AMU conjecture, as we will see in Theorem 1.5.7. These are
the first examples known to satisfy this conjecture that are constructed as monodromies of
fibered knots in S®. The examples of [22| are coming from monodromies of fibered links of
multiple components, while the examples [24]| come from monodromies of fibered knots in
closed g-hyperbolic 3-manifolds. In fact, the constructions presented here provide a frame-
work for further examples to be discovered, as any fibered knot in S® which can be shown
to share a surgery with 4; has a monodromy satisfying the AMU conjecture.

The chapter is organized as follows: We give a proof of Theorem 1.5.2 in Section 5.2. In
Section 5.3, first we recall the definitions and results from [2, 1, 3| relevant here, and then
we prove Theorems 1.5.3 and 1.5.5. We apply our results to the conjecture of [5] in Section
5.4. Finally, Section 5.5 we summarize knots up to 15 crossings that can be shown to be
g-hyperbolic using Theorem 1.5.2, as well as a non-ehaustive list of manifolds which can be

shown experimentally to share surgeries with the figure-eight knot complement.

5.2 g¢-hyperbolic double twist knots
In this section, we will show the g-hyperbolicity of two families of knots in S® which share

hyperbolic Dehn surgeries with the figure-eight knot.
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Suppose M is a compact 3-manifold with empty or toroidal boundary. If M is hyperbolic,
by Mostow rigidity the volume of a hyperbolic metric is a topological invariant of M denoted
by vol(M). If M is disconnected, the total volume is the sum of volumes over all connected
components. Recall from Subsection 2.1.1 that M admits a unique decomposition along tori
into manifolds with toroidal boundary that are Seifert fibered spaces or hyperbolic. Also
recall that by Theorem 2.1.9, the simplicial volume of a 3-manifold with toroidal boundary
decreases under Dehn-filling. That is, if M is a 3-manifold with toroidal boundary, and M’
is obtained by Dehn-filling some components of OM, then ||M'|| < ||M||.

The asymptotics of the Turaev—Viro invariants have an analogous property, as shown by

Detcherry-Kalfagianni 23].

Theorem 5.2.1 (|23], Corollary 5.3). Let M be a compact oriented 3-manifold with toroidal
boundary OM = U T? and let M’ be a manifold obtained from M by Dehn-filling some of

the boundary components. Then
1TV (M") <ITV(M).
In particular, if M’ is g-hyperbolic then M is q-hyperbolic.

Let K be a knot in the 3-sphere with complement M. Recall that isotopy classes of
simple closed curves on My are in one to one correspondence with slopes p/q € QU {1/0}.
Slopes of the form p/1 will be denoted by p. Given a slope p/q, let Mg (p/q) denote the
3-manifold obtained by p/g-surgery along K (i.e. Mg (p/q) is obtained by a Dehn-filling of
My along the simple closed curve of slope p/q on OMf). If K is hyperbolic and Mk (p/q) is
not hyperbolic, we say that p/q is an exceptional slope of K.

Let My, denote the complement of figure-eight knot 4;. The following is well known:

Proposition 5.2.2. The set of the exceptional slopes of the knot figure-eight knot is Ey, 1=
{0,1/0,£1, 42, £3,+4}. Thus for any p/q ¢ E4, the 3-manifold My, (p/q) is hyperbolic.

The asymptotics of the Turaev—Viro invariants of hyperbolic manifolds obtained by

surgery on the figure eight knot are well understood. Ohtsuki [64] proved that hyperbolic
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manifolds obtained by integral surgeries on 4; satisfy the volume conjecture, and the result

was extended to rational surgeries by Wong and Yang [87].

Theorem 5.2.3 (|64, 87|). For any non-exceptional slope p/q of the knot 41 we have

ITV (My, (p/q)) = vol(My, (p/q)),

and hence, in particular, My, (p/q) is q-hyperbolic.

Next we construct two families of ¢-hyperbolic double twist knots parametrized by an

integer n, which we denote by D,, := D(2n,—3) and D/, := D(2n, —2).
Theorem 1.5.2. For any integer n # 0, —1, the following are true:
1. The knots D,, := D(2n,—3) and D), := D(2n,—2) are q-hyperbolic.

2. The 3-manifolds M, := Mp,(4n + 1) and M, = Mp, (1) are hyperbolic and q-

hyperbolic.

3. We have
ITV(Mp,) > vol(M,), and ITV(Mp,) > vol(M,).

We will need the following lemma.

Lemma 5.2.4. For any n € Z we have the following:
1. The 3-manifold My, ((—4n — 1)/n) is homeomporphic to Mp, (4n + 1).
2. The 3-manifold My, (—1/n) is homeomorphic to Mp, (1).

Proof. For n = 0 both (1) and (2) are trivially true: For, both Dy, D{ are the trivial knot
and we have: My, (1/0) = Mp,(1) = Mp, (1) = S°.

Next suppose that n # 0. Part (1) follows from the fact that the 3-manifold My, (—(4n +
1)/n) is related to Mp, (4n + 1) by the sequence of Kirby-Rolfsen-Rourke calculus which is

well known to preserve 3-manifolds up to homeomorphism. See for example [72, Chapter
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1+ 4n

2n
(\/\\>
Figure 5.2 Kirby-Rolfsen-Rourke calculus moves showing that My, ((—4n — 1)/n) is homeo-
morphic to Mp,_ (4n + 1).

9]. The sequence of moves required is shown in Figure 5.2. To describe the moves required,
let us recall that, as is customary in the Kirby-Rolfsen-Rourke calculus, one indicates the
3-manifold M obtained by Dehn-filling along a link L in S® by a diagram of L with each
component labeled by the surgery slope used for the component known as a surgery presen-
tation. For components where the surgery coefficient is 1/0, we will omit the label (such

surgery is called oo-surgery and it produces back S3).

e The 3-manifold My, (—(4n+ 1)/n) has a surgery diagram consisting of a knot diagram
for 4, labeled by (—4n — 1)/n = —4 — 1/n. In the leftmost panel of Figure 5.2,
we have inserted an unknotted component U, shown in blue, on which the surgery
coefficient is 1/0 = oo and such that it has linking number +2 with the figure-eight
knot component. That is [Ik(U,4;)] = 2. A —1-twist along U produces produces
the second surgery diagram in the sequence. Note that the surgery coefficient of the
component corresponding to 4; has now changed to —(4n+1)/n+ (1k(U,4,))* = —1/n.

This operation is also known as a blow up.

e The surgery diagram shown in the third panel of Figure 5.2 is obtained by that of
the second panel by ambient isotopy that interchanges the two components of the

underlying link.

e Finally, performing n-twists on the component labelled by —1/n gives the rightmost
panel of Figure 5.2, which represents a surgery diagram of Mp_(4n+1). The operation
of performing this (—1/n)-surgery on an unknotted component is also known as a blow

down.
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Figure 5.3 Kirby-Rolfsen-Rourke calculus moves showing that My, (—1/n) is homeomorphic
to M D!, (1)

A similar sequence of Kirby-Rolfsen-Rourke calculus moves, shown in Figure 5.3, in
proves that My, (—1/n) is homeomorphic Mp, (1). Note that this time the inserted unknotted
component U, drawn in blue in the leftmost panel of Figure 5.3, has zero linking number with
4;. That is, Ik(U, 4;) = 0. In this case, the surgery coefficient of the component corresponding

to 4, is unchanged under the blow up operation since —1/n + (1k(U,4;))* = —1/n. O
We are now ready to give the proof of Theorem 1.5.2:

Proof of Theorem 1.5.2. By Lemma 5.2.4, for any n € Z, the 3-manifolds M,, := Mp,_ (4n+1)
is obtained by (—(4n + 1)/n)-surgery along the knot 4;. Since n # 0,—1, by Proposition
5.2.2, the slope —(4n + 1)/n is not exceptional for 4;. Hence M, is hyperbolic. Similarly,
since NN, := Mp, (1) is also obtained by a (—1/n)-surgery along 4, it is hyperbolic for
n # 0,%1. By Theorem 5.2.3, we conclude that the manifolds Mp, (4n + 1) and Mp, (1) are
g-hyperbolic for n # +1.

Theorem 5.2.1 implies that the growth rates of the Turaev—Viro invariants of the unfilled
twist knot complements Mp, and Mp, are bounded below by the growth rates of M, and

N, respectively. That is we have
0 <ITV(M,) <ITV(Mp,) and 0 <ITV(M,) <ITV(Mp,).

Hence, by their definitions, the double twist knots D,, and D) are also ¢-hyperbolic, con-

cluding the proof. m
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5.3 Non-characterizing slopes and g-hyperbolicity

A slope p/q is called non-characterizing for a knot K C S® if there is a knot K’ that is not
equivalent to K and such that Mg (p/q) is homeomorphic to Mg/ (p/q). For the viewpoint
of this chapter, non-characteristic slopes are useful in the following sense: If we know that

My (p/q) is g-hyperbolic then, arguing as in the proof Theorem 1.5.2, we conclude that
0 <ITV(Mk(p/q)) = 1TV (M (p/q)) <ITV (M),

and hence K’ is a g-hyperbolic knot.

In the articles, |2, 1, 3], the authors provide constructions of knots that admit many
non-characterizing slopes. The techniques of these papers apply to many double twist knots
to conclude that they admit non-characterizing slopes. On the other hand, these knots can
be seen to be g-hyperbolic by Theorem 1.5.2. Using this approach, one starts with a double
twist knot, say K, to which both the techniques of |2, 1, 3] and Theorem 1.5.2 apply and
builds a family of ¢-hyperbolic knots that have a common surgery with K.

To illustrate this, we note that the knot 6, is isotopic to the double twist knot D(—4, —3);
we will write 6o = D(—4,—3). See Section 5.5 for more details. By Theorem 1.5.2,
Me,(—7) = My, (—7/2) and 65 is g-hyperbolic. We will use the approach discussed above to

prove the following theorem stated in Section 1.5:

Theorem 1.5.3. There is an an infinite set of knots IC with the following properties:
1. Fvery knot in K is q-hyperbolic.
2. For every K € K, Mk (—T7) is homeomorphic to Mg,(—7) and it is q-hyperbolic.
3. No two knots in IC are equivalent.

In order to prove Theorem 1.5.3 and to discuss further applications of the techniques of

[2, 1, 3] in constructions of g-hyperbolic knots, we need some preparation.
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5.3.1 Annulus presentations and twists

We begin by recalling the notion of an annulus presentation of a knot and the operation
of an annulus twist for knots admitting annulus presentations. The latter operation takes a
surgery presentation along a particular class of knots and returns a possibly different knot

which shares a surgery with the original knot.

Definition 5.3.1. We will say that a knot K C S* admits an annulus presentation if it can

be constructed in the following way:

e Start with standardly embedded annulus A C R? U {oo} C S together with an an
unknotted curve c that is disjoint from A that bounds a disc ¥ whose interior intersects

0A twice; once for each component of JA. Consider ¢ as a framed knot with framing

+1.
e Consider an embedded band b: I x I — S® such that
(i) b(I x I)NOA=10b(0I x I),
(ii) b(I x I)N intA consists of ribbon singularities,
(iii) AUb(I x I) is an immersed orientable surface, and
(iv) b(I x I)Nec =10,

where I = [0,1]. See the right hand side panel of Figure 5.4 for an illustration of an

annulus presentation (A4, b, ¢).

e Performing the £1 surgery on ¢ (i.e blowing down along ¢) transforms the curve (0A \

b(OI x I))Ub(I x dI) into a knot that is isotopic to K in S3.

Remark 5.3.2. We note that the definition of annulus presentation differs slightly across the
literature. Namely, in [3], the authors use a more general defintion of annulus presentation
that allows the annulus A to be any embedding. They define a special annulus presentation

equivalently to the above definition except that the presentation includes the single full
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Figure 5.4 Annulus presentation of the knot 6, in S®.
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Figure 5.5 Left: One of the two connected components, D, of R* U {occ} \ intA. Middle:
Simple annulus presentation of the knot 65. Right: Non-simple annulus presentation of the
knot 5,.

crossing (either positive or negative) in the Hopf band resulting from surgery along the
(£1)-framed unknotted component c. Here we use the definition given by Abe-Jong—Omae—
Takeuchi [2] and Abe-Jong—Luecke-Osoinach [1]. Note that in 2], the authors use the term

band presentation rather than annulus presentation.

To continue, note that given an annulus presentation (A,b,c), the complement of the
annulus A C R?U{oo} consists of two disk components D and D’. Take D to the component
corresponding to the finite region in R? (see leftmost panel of Figure 5.5) and assume that

oo e D).

Definition 5.3.3. The annulus presentation (A, b, ¢) is called simple if we have b(I x I) N
intD = ().

The middle panel of Figure 5.5 illustrates a simple annulus presentation of the knot 6,
while the rightmost panel illustrates a non-simple annulus presentation for the knot 5,.

The following lemma of [2] gives a family of knots which admit annulus presentations.
In particular, the double twist knots D!, = D(2n,—2), including those listed in Table 5.2,

satisfy the assumpions of Lemma 5.3.4.
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Pl = [ [l

Figure 5.6 Top row: Simple annulus presentation of 6, and the annulus twist (A). Bottom
row: Introduction of (—1/n)-framed component and blow down.

Lemma 5.3.4 ([2|, Lemma 2.2). If K is a knot with unknotting number one, then K admits

an annulus presentation.

Abe and Tagami [3] give a tabluation of all prime knots with 8 or fewer crossings admitting
an annulus presentation (see Table 1 of [3]).

We now define an operation known as an n-fold annulus twist. We refer the reader
to [1, 2| for further details of this construction. This operation can be applied to a knot
K with an annulus presentation (A,b,c), and surgery slope given by an integer n € Z,
to produce another knot K’, with annulus presentation (A,¥,c), so that the 3-manifold

MK(TL) = MK/(TL)

Definition 5.3.5. Let K be a knot with annulus presentation (A,b, c) with 0A = [ U Iy,

and let n € Z. We define the n-fold annulus twist operation, denoted by (xn), as follows:

1. First apply an annulus twist (A). This involves performing Dehn surgery on [; and
Iy along slopes 1 and —1, respectively, and gives rise to a homeomorphism of the
complement M;, ;. An example is illustrated in the top row of Figure 5.6. Note that
in the leftmost panel we have two vertical arcs aq, @y C 0A that intersect the interior

of a disk ¥ bounded by the —1 framed unknot ¢ exactly twice. After the operation (A)
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is applied, the disk X is intersected by four vertical arcs, two of which are between a4

and as.
2. Apply the operation (7,), which is defined by

(i) adding another (—1/n)-framed unknot engulfing all but a; of the vertical arcs
going through c¢. An illustration is given in the rightmost panel of the second row

of Figure 5.6.

(ii) blowing down along the (—1/n)-framed component, as shown in the leftmost

panel of the second row of Figure 5.6.

An important property of the n-fold annulus twist operation is the following result of

Abe-Jong-Luecke-Osoinach [1].

Theorem 5.3.6 ([1], Theorem 3.10). Let K be a knot with an annulus presentation and K’
be the knot obtained by the n-fold twist (xn). Then the 3-manifold My (n) is homeomorphic
to My:(n). That is we have

MK(H) = MK/(H).

A proof of Theorem 5.3.6 for the knot K = 6, is given in Figure 5.7, which is summarized

as follows:

(i) First we blow up around the n-framed component, which changes its framing to 0 and

introduces a (—1/n)-framed component as shown in the middle panel of the first row.

(ii) After introducing 1 and —1-framed components (in red) in the right most panel of the
first row, we slide the 1-framed component across the —1-framed component to get the
right most panel of the second row. Note that the 1 and —1-framed components (in
red) in the right most panel of the second row correspond to the boundary components

of the annulus A and give the surgery description for the move (A).
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Figure 5.7 A proof that Mg (n) = Mg/(n) for K = 6, starting with an annulus presentation
of K in the top-left and ending with an annulus presentation of K’ = (xn)K in the bottom-
right.

|

(iii) Next we slide the (—1/n)-framed component across both the 1-framed component (in
red) and the —I1-framed component (in green) to get the left most panel of the third

TOW.

(iv) To get from the left most panel to the middle panel of the third row, we perform surgery
on the red 1 and —1-framed components, corresponding to the annulus twist (A), and
isotope the (—1/n)-framed component. Finally, we blow down, which introduces n
full positive twists and changes the framing from 0 to n. This isotopy and blow down
correspond to the operation (7},). Hence in the sequence of operations in third row

contains an (A) move and a (7;,) move.

Remark 5.3.7. If a knot K admits an annulus presentation and a knot K’ is obtained from
K by an n-fold annulus twist (*n), then, in general, K’ can be far more complicated than

K. However, if K admits a simple annulus presentation, then the annulus presentation of
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K’ is also simple and is not quite as complicated.

Since the n-fold annulus twist operation on a knot produces another knot which also
admits an annulus presentation, this operation can be iterated. Indeed, Theorem 5.3.6
implies that for any knot K which admits an annulus presentation and any integer n # 0,

there is a set K = { K, };en of knots such that

k3

(n) = My, (n) -+ = My, (n) = My(n).

In general, we don’t know that the knots K; are necessarily distinct, so the set I may
be finite. However, we will see in the proof of Theorem 1.5.3 that in the case of 65, iterating

the twist operation produces an infinite sequence of mutually distinct knots.

5.3.2 Applications to ¢g-hyperbolicity

In order to prove Theorem 1.5.3, we recall some definitions from Section 3.3.1 of [1].
There the authors use the surgery description of the infinite cyclic covering E(K ) of the
exterior E(K) of a knot K to dinstinguish knots obtained by applying the operation (xn)
iteratively, provided that the annulus presentation of the knot to begin with is “good” in the
sense of Definition 5.3.8 below.

Let K be a knot with a simple annulus presentation (A, b, ¢). If we ignore the (—1)-framed
loop ¢, the knot U := (A \ b(dI x I))Ub(I x OI) is trivial in S3. Consider the link U U ¢ in
S3. Let D be the disk bounded by U and let ¥ be the disk bounded by ¢. We may isotope
U Uc so that D is a flat disk contained in R? C (R? U {oo}) by shrinking the band b(I x I);
denote this isotopy by ¢. Fix orientations on U and ¢ and cut along and cut the complement
of U in S% along D. This gives a solid cylinder D x [—1,1]. We will denote the two copies
of D resulting from this cutting by D_; and D;. The cutting separates the oriented loop
¢ into a set A oriented arcs with endpoints on Dy, and the endpoints of each arc o € A
may be labelled by “+47 (resp. “—") according to whether the algebraic intersection number

of a with the disk it lies on is positive (resp. negative). This categorizes « as one of four
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Figure 5.8 The isotopy ¢ applied to the simple annulus presentation of 6,. In the collar
D x [-1,1], the (+—) arc (in pink) and the (—+) arc (in green) have linking number —1
relative to D_; U D;.

(=)

Isotopy

(=+)

Figure 5.9 Left: The isotopy ¢ applied to the simple annulus presentation of (A)6,. In this
form, Part (2) of Definition 5.3.8 fails. Right: Good annulus presentation of (A)6,.

types: (+4),(——), (+—), and (—+). An illustration of the process for the 65 knot is shown
in Figure 5.8. We refer the reader to |1, Section 3.3.1| for further details of this construction.

We need the following definition of [1].

Definition 5.3.8. (|1, Definition 3.14]) A simple annulus presentation (A, b, c) is good if
b(I x OI) NintA # () and the set of arcs A in D x [—1,1] obtained by cutting along D

satisfies the following up to isotopy.

(1) A contains exactly one (+—) arc and exactly one (—+) arc, and the linking number of

these arcs rel(D_; U Dy) is +1.

(2) For a € A, if aNinty # (), then « is of type (++) (resp. (——)) and the sign of each

intersection point in N ¥ is + (resp. —).

To illustrate and motivate Definition 5.3.8, we apply the isotopy ¢ shown in Figure 5.8
for the simple annulus presentation of 65 to the simple annulus presentation obtained by

applying the annulus twist (A) shown in the top row of Figure 5.6. The left panel of Figure
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5.9 shows the result of applying ¢ to (A)62. However, since there is a (+—) arc intersecting
the interior of 3, it does not satisfy Part (2) of Definition 5.3.8.

To remedy this, we apply an isotopy to move the (—) intersection point between the disk
D and the (+—) and (——) arcs, as shown in the right panel of Figure 5.9. This isotopy
moves this intersection through ¥ and results in a diagram satisfying Part (2) of Defintion
5.3.8. In particular, since the only arcs intersecting int: are of type (++) and (——), the
diagram in the right panel of Figure 5.9 corresponds to a good annulus presentation. After
this isotopy, further applications of the annulus twist (A) leave the (+—) and (—+) arcs
fixed since they are now disjoint from int3.

The importance of having a good annulus presentation for a knot K lies in the fact that,
as shown in [1], the number of intersection points between (++) arcs and intY determines the
degree of its Alexander polynomial. As Figure 5.9 illustrates, each annulus twist increases
the number of such intersections with intX, hence increasing the degree of the Alexander
polynomial.

The following lemma of [1] will be used in the proof of Theorem 1.5.3.

Lemma 5.3.9 ([1|, Lemma 3.12). Let n € Z and suppose the knot K admits a good annulus
presentation. Let K' be the knot obtained by applying the operation (xn) to K. Then, we

have the following:
1. The knot K' also admits a good annulus presentation.

2. If Ak (t) and Ak (t) denotes the Alexander polynomial of K and K' respectively , then

degA K (t) < degAg(t).

Remark 5.3.10. As shown in [1], if a knot K admits a good annulus presentation, then its

Alexander polynomial Ak (¢) is monic.

We may now prove Theorem 1.5.3.
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Proof of Theorem 1.5.3. As noted earlier the knot Ky := 65 admits a simple annulus presen-
tation. We will consider Ky with framing —7 and apply the sequence of moves in Figure 5.7
to obtain a knot K7 with simple annulus presentation and such that My, (—=7) = M, (—7) =
My, (—7/2). See Theorem 5.3.6. Since as discussed earlier Mg, (—7) is g-hyperbolic, we ob-
tain that K7 is g-hyperbolic and My, (—7) is ¢-hyperbolic. Now we can repeat the process
for the knot K7, and apply Theorem 5.3.6 again to obtain a knot K5 with simple annulus
presentation and such that Mg, (—7) = Mg, (—7). Inductively, we create a set K = { K, }ien

of knots with simple annulus presentations such that

M (=T) & My, ((=T) = -+ = M, (=7) = M, (=7) = My, (=7/2).

7

By construction, each K; and Mg, (—7) are g-hyperbolic, hence the collection K satisfies
parts (1)-(2) of the statement of the theorem.

We now claim that the knots K; € K are distinct. Let U be the trivial knot in S® obtained
by ignoring the (—1)-framed loop ¢ in the simple annulus presentation of K (see the middle
panel of Figure 5.5). Let D be the disk bounded by U, and let ¥ be the disk bounded by
c. Figure 5.8 gives the isotopy that flattens D so that it is contained in R?* C (R? U {oc}).
Let Dy = D x {—1} and D; = D? x {1} be copies of D in the bundle D? x [—1,1]
obtained by cutting along D. Note that the resulting set of oriented arcs A shown in the
right panel of Figure 5.8 contains exactly one (+—) arc and exactly one (—+) arc. Relative
to D_yUD; C D x [—1,1], the (+—) arc (in pink) links with the (—+) arc (in green) with
linking number £1. Moreover, a MY = () for any arc a € A. By Definition 5.3.8, K admits
a good annulus presentation.

By Lemma 5.3.9, every K; € K admits a good annulus presentation, and the Alexander

polynomials of this family satisfy
degAk, (1) < degAk, (t) <--- < degAg, ,(t) < degAg,(t) <---

This establishes part (3) of the statement of the theorem. O
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The above argument applies to any g¢-hyperbolic knot which admits a good annulus
presentation and an integer g-hyperbolic Dehn-filling. For any such knot, analogously to
62, one may apply the same procedure to produce an infinite family of distinct ¢-hyperbolic
knots with homeomorphic n-surgeries. For instance, the method can be applied to the knot

820. See section 5.5 for more details. Hence we have the following:

Theorem 1.5.4. Suppose that K s knot that admits a good annulus presentation and such
that Mg (n) is q-hyperbolic for some n € Z \ {0}. Then there is an infinite family {K;}ien

of distinct q-hyperbolic knots, such that M, (n) = Mg (n), for any i € N.

We now turn our attention to the g-hyperbolic knots D!, = D(2n,—2) and their ¢-
hyperbolic fillings D/ (1). It is known that these double twist knots have unknotting number
1, hence admit an annulus presentation by Lemma 5.3.4. This gives rise to the following

theorem.

Theorem 1.5.5. For any |n| > 1 let D), := D(2n,—2). There is a sequence of q-hyperbolic

knots {K! }ien such that for any i € N we have the following:
1. The knot K' is q-hyperbolic.
2. The 3-manifold M:; (1) is homeomorphic to Mp, (1) and it is q-hyperbolic.

Proof. Fix |n| > 1. The double twist knot D, := D(2n,—2) has unknotting number 1 and
hence by Lemma 5.3.4, it admits an annulus presentation. Let K° := D! . By Theorem 5.3.6

there is a sequence { K" };cy such that
MK%(l) = MKﬁfl(l) ... = MK%(l) =~ MD;(D-

Since D! (1) is g-hyperbolic, by Theorem 1.5.2, each manifold K (1) is g-hyperbolic. Fur-

thermore, by Theorem 5.2.1, each knot K is also g-hyperbolic. O

Remark 5.3.11. We note that the knots considered in Theorem 1.5.5 are obtained by iter-

atively applying 1-fold annulus twists. While each knot D! admits an annulus presentation,
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they do not have monic Alexander polynomials. Indeed, for n € Z, we have
Ap (t) =nt—(2n+1)+nt, (5.1)

where = is taken up to multiplication by +t*. By Remark 5.3.10, for |n| > 1, the knot D/,
does not admit a good annulus presentation. This means the knots resulting from 1-fold
annulus twists may not be distinct from D!, so the resulting sequence { K'};cny may only be

a finite family of distinct g-hyperbolic knots.

5.4 An application to quantum representations

In this section, we discuss an application to a conjecture of Andersen, Masbaum, and
Ueno known as the AMU conjecture [5] on quantum representations of mapping class groups
of surfaces.

Let >, , be a compact oriented surface of genus g with n boundary components, and
let Mod(X,,) denote its mapping class group, the group of orientation-preserving homeo-
morphisms of ¥, ,, fixing the boundary pointwise defined in Subsection 2.4.1. The SO(3)-
Witten—Reshetikhin—Turaev TQFTs [70, 78| provide families of finite dimensional projective
representations of Mod(%,,,).

Fix an odd integer r > 3, which we refer to as the level, and let I, = {0,2,...,r — 3}
be the set of non-negative even integers less than r — 2. Fix a primitive 2rth root of unity
Cor and a coloring c of the components of 9%,,, by elements of I,. Using the skein-theoretic
framework of Blanchet, Habegger, Masbaum, and Vogel [11], this gives a finite dimensional

C-vector space RT,(3,,,c) and a respresentation
prc: Mod(2,,,) = PAut(RT,(X,,, ¢)),

called the SO(3)-quantum representation of Mod(%,,,) at level r.

The Nielsen-Thurston classification implies that mapping classes v € Mod(X,,,) are either
periodic, reducible, or pseudo-Anosov, and the geometry of the mapping torus M, = %, ,, x
I/(xz ~ ~(z)) of v is determined by this classification. The AMU conjecture [5] relates the

Nielsen-Thurston classification of mapping classes to their quantum representations.
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Figure 5.10 The curves ¢, ay, by, -+ ,by_1, a4 on Xy ;.

Conjecture 1.5.6 (AMU Conjecture, [5]). Let ¢ € Mod(X,,) be a pseudo-Anasov mapping
class. Then for any big enough level r, there is a choice of coloring ¢ of the components of

0%, such that p,.(¢) has infinite order.

Remark 5.4.1. Note that if a mapping class ¢ € Mod(%,,,) satisfies the AMU conjecture,

then any mapping class that is conjugate of a power of ¢ also satifies the conjecture

For a simple closed curve a C ¥/, let 7, € Mod(%,,) denote the mapping class repre-
sented by a Dehn twist along a and 7, ! denote the inverse mapping class.

On the surface of genus g and with one boundary component ¥, ;, consider the simple
closed curves ¢, a, by, -+ ,by,—1,a, shown in Figure 5.10 and the mapping classes

1, -1 -1 -1
Tal Tb17—a2 "'Tbg717-ag .

by = 7'07',117';117',12 . -Tb_g:Tag, and gb; =7
Theorem 1.5.7. For g > 1, the mapping classes ¢y, gb; € Mod(¥,,) are pseudo-Anosov and

they satisfy the AMU conjecture.
Given ¢ € Mod(X, 1), the mapping torus

Ts = Zg1 X [=1,1]/ (@, 1)m(6(2),-1)

is a 3-manifold which fibers over S with fiber £, and monodromy ¢. By Theorem 2.4.6,
if T} is g-hyperbolic, then ¢ satisfies the AMU conjecture. To prove Theorem 1.5.7, we will
show that each of T, and T, is homeomorphic to the complement of a g-hyperbolic double

twist knot.

5.4.1 Fibered double twist knots
. The knot D(m,n) is the two-bridge knot associated with the rational number

n [ ] 1
= |m,—n| = .
mn — 1 ’ m—%
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In general, we define the continued fraction expansion (CFE) by

[a1,as, ... a;] =

L
ay
We note that a CFE for a rational number is not unique, hence a two-bridge knot can have

multiple associated CFEs. The following properties of double twist knots will useful:
e D(m,n) = D(n,m) are equivalent knots.

e Suppose D(m,n) has an associated CFE [ay,...,a;]. Its mirror image D*(m,n) is

equivalent to D(—m, —n), and the CFE of the mirror image is [—a; ..., —ag].
We recall the following well known lemma that can be found, for example, in [33].

Lemma 5.4.2. A two-bridge knot is fibered if and only if it has a CFE of the form [ay, . .., ag]

such that |a;| =2 for i =1,...,k and k is even.

As shown in [33], every fibered two-bridge knot can be identified with the boundary of
the Murasugi sum of a sequence of right and left Hopf bands determined by the entries in
its CFE. The monodromy of the left (resp. right) Hopf band is the left (resp. right) Dehn
twist, and the monodromy of a fibered two-bridge knot with CFE [ay, ..., ax] (with |a;| = 2)
is given by the product of k Dehn twists corresponding to each Hopf band in the Murasugi

sum. In this case, the resulting fiber is the surface of genus % with one boundary component.

Proposition 5.4.3. For any integer g > 0, the double twist knot D(3,2g) C S® is fibered

with monodromy ¢, € Mod(X,1).

Proof. Let n < —1 be an integer, and set g := —n. By the properties of twist knots, we have

D(2n,—3) = D*(3,2g). The knot D(3,2g) is the two-bridge knot associated to [3, —2g] =
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_ggzil. By Lemma 5.4.2, D(2n,—3) is fibered if and only if D(3,2g) has a CFE of the form
lai,...,a;] with |a;| = 2. We will show that D(3,2g) has a CFE [2,2,-2,2,...,—2,2] of
length 2g.

We note this CFE alternates sign beginning with the second term. We assume

—2g 2g—1 2 !
— 2 =102,2,-2,2,...,(=1)¥12,(-1)%2] = :
—6g +1 2+ A,

(5.2)

where A, := [2,-2,2,...,(=1)%"12,(—1)%2] of length 29 — 1, and proceed by induction.
For D(3,2(g + 1)), we have

2,2,-2,...,(=1)%722] =

2+
1

2+ A,
—2(g+1)
—6(g+1)+1

=3 -2(¢g+ 1],

2+

where the second line follows from the identity A, = [3, —2¢] — 2. This establishes the claim,
which implies that the double twist knot D(2n, —3) is fibered for n < —1.

Following [33], the knot D(3,2g) can be identified with the boundary of the Murasugi
sum of 2¢g Hopf bands. The monodromy is then a product of left and right Dehn twists
corresponding to the sign of each entry of the CFE [2,2,—2,2, ... (=1)%712,(—1)292]. These
Dehn twists correspond to the collection of curves on ¥,; shown in Figure 5.10, and the

monodromy ¢, = TcTalTb_llTal . -Tb_gilTag. O

5.4.2 Proof of Theorem 1.5.7
By Proposition 5.4.3, the knot D(3,2g), for g > 0, is fibered. Since the knots D(3,2g)
are hyperbolic (see for example [29]), by the work of Thurston the mapping class ¢, is

pseudo-Anosov [74]. By Theorem 1.5.2; these knots are g-hyperbolic. The mirror image
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Figure 5.11 Alternating diagram of D(—2n,—3) realizing the even crossing knots of Table
5.1.

n 4 |-3|-2|-1|1]2]|3
Dn 102 82 62 41 52 73 93

Table 5.1 Low-crossing knots D,, = D(2n, —3).

D(—2g,—3) = D*(3,2g) is also hyperbolic, g-hyperbolic and fibers with monodromy ¢ =

T T o Tt T, Ta, - Hence, by [22, Theorem 1.2], ¢, and ¢}, satisfy the conclusion of

the AMU conjecture. m
5.5 Low crossing knots and low volume 3-manifolds

Tables 5.1 and 5.2 give the twist knots D,, = D(2n,—3) and D!, = D(2n,—2) up to 10
crossings, respectively. By Lemma 5.2.4, all of these share surgeries with 4;.

We identify these knots by giving an alternating projection realizing the crossing numbers
in conjunction with Rolfsen’s tabulation of low-crossing knots [72]. We note that for the
knot D(2n,—3), the resulting diagram with 2n + 3 crossings corresponding to Figure 5.1
is alternating when n > 1, allowing us to identify the odd crossing knots of Table 5.1.
To identify the even crossing knots of Table 5.1, we see in Figure 5.11 that, after applying
Reidemeister moves, we obtain an alternating diagram for D(—2n, —3) with 2n+2 crossings.

Similarly, the original diagram for D(2n, —2) is also alternating with 2n + 2 crossings for
n > 1, allowing us to identify the even crossing knots of Table 5.2. Figure 5.12 gives an
alternating diagram for D(—2n, —2) with 2n + 1 crossings, realizing the odd crossing knots
of Table 5.2.

By Proposition 5.4.3, for n < —1 the knot D(2n,—3) is fibered with genus |n|. By

Table 5.1, for n = —4,—-3, -2, —1, the knot D(2n,—3) is identified as the corresponding
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Figure 5.12 Alternating diagram of D(—2n,—2) realizing the odd crossing knots of Table
5.2.

n |-4|-3/-2|-1|1[2]3] 4
D) | 92| Ty | 5o | 31 | 41|61 |8 | 104

Table 5.2 Low-crossing knots D!, = D(2n, —2).

knot shown in the table. Indeed the knots 105, 85, 65, and 41 are well known to be fibered of

genus, 4,3,2, and 1, respectively [57].

Remark 5.5.1. The manifold My, (—5), which is homeomorphic to Mj,(5) by Lemma 5.2.4
and Table 5.1, is known as the Meyerhoff manifold. It is the second-smallest volume closed

orientable hyperbolic 3-manifold, with volume approximately 0.9814.

Futer, Purcell, and Schleimer recently wrote a software package [31], in conjunction with
forthcoming work [32], for testing the cosmetic surgery conjecture. At our request, they
extended the code to allow for testing whether pairs of cusped 3-manifolds have common
Dehn fillings as well as identifying those fillings. Running the code for knots up to 12
crossings, as well as on SnapPy’s census of the 1267 hyperbolic knot complements that can
be triangulated with fewer than 10 tetrahedra [20], he verified the data given in Tables 5.1
and 5.2 and identified many additional knots which share surgeries with 4.

Tables 5.3 and 5.4 list all the knot complements from the SnapPy census of hyperbolic
cusped 3-manifolds that admit triangulations with at most nine tetrahedra and have shared
Dehn fillings with the complement of 4. The information on the tables is recorded as follows:
Column 1 presents the knot K with the notation used in the SnapPy census while Column

2 gives the approximate volume of M. Column 3 gives the surgery slopes a/b, p/q, with
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Table 5.3 Knots in the SnapPy census of cusped hyperbolic 3-manifolds that share surgeries

K | vol(Mg) | Slopes a/b, p/q | vol(Mg(a/b)) | Knot
K2, | 2.029883 - - 4,
K3, | 2.828122 5,-5 0.981369 59

1,1/2 1.398509
K4, | 3.163963 1, —1/2 1.398509 61
K4, | 3.331744 1,1/3 1.731983 7o
Kby | 3.427205 1, —1/3 1.731983 81
K53 | 3.486660 1, 1/4 1.858138 99
K5y | 4.056860 —2,2/3 1.737124 10432
K55 | 4.124903 3,3/2 1.440699 840
K515 | 4.124903 1,1/3 1.731983 111
K59 | 4.400833 —7,=7/2 1.649610 62
K5y | 4.592126 9, —9/2 1.752092 73
K6, | 3.526196 1, —1/4 1.858138 10,
K6y | 3.553820 1,1/5 1.918602 1lagyr
K6g | 4.293750 —3,3/5 1.921026
K6y | 4.307917 —2,2/5 1.919520
K693 | 4935243 | —11, —11/3 1.876053 82
K69y | 4.994856 13, —13/3 1.903695 95
K637 5.413307 7, 7/3 1.805827 157141127
K7, | 3.573883 1, —1/5 1.918602 12asg03
K7, | 3.588914 1,1/6 1.952062 13a3143
KTy | 4.354670 —4,4/7 1.973762
KTy, | 4.359783 -3, 3/7 1.973161
K74 | 4933530 —5,5/4 1.873482
KTy | 4.993457 7,7/5 1.932061
K745 | 5.114841 —15, —15/4 1.946574 10,
K74 | 5.140207 17, —17/4 1.957888 1lages
KTg5 | 5.860539 11, 11/2 1.822675 10128
KTy | 5.860539 13, 13/3 1.903695 11ns;
KTos | 5.904086 14, 14/3 1.015331 120923
K199 | 6.922634 —7,7/3 1.805827
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Mg(a/b) = My, (p/q) and Column 4 gives the approximate volume of that manifold. All of
these knots, many of which are twisted torus knots, have known diagrams, but they may
be complicated and require hundreds of crossings. Using the tables of [13, 15, 14|, we may
identify some of the examples from the knot tables. Note that since since 4, is amphicheiral,
we have My, (—p/q) = My, (p/q). Hence the slopes p/q in the tables can be, equivalently, be
replaced with its negative.

The following applies to all the knots in Tables 5.3 and 5.4:

Proposition 5.5.2. Suppose that K is a hyperbolic knot in S* such that My admits a
triangulation with t tetrahedra. Suppose, moreover, that Mg (a/b) = My, (p/q), for some

slopes a/b,p/q € Q, where p/q is a non-exceptional slope of 41. Then we have

vol(Mg(a/b)) < ITV(Mgk) < Vgt - T,

where Voo = 3.6638 is the volume of the ideal reqular octahedron.

Proof. The upper bound follows at once from [9, Corollary 3.9].
By Theorem 5.2.3, vol(My,(p/q)) = ITV(My4,(p/q)) and, by assumption, Mg (a/b) =
My, (p/q). Combining these with Theorem 5.2.1, leads to the lower bound of ITV(Mg). O

Remark 5.5.3. It is known that the lowest volume hyperbolic knots are 4, 55, 6, and the
(=2, 3, 7)-pretzel knot. In [16], Chen and Yang give computational evidence for the Turaev—
Viro invariant volume conjecture for each of these knots. By Lemma 5.2.4, 55 and 6, share
surgeries with 4;, hence are ¢-hyperbolic by Theorem 1.5.2. However, the (—2, 3, 7)-pretzel
knot was shown not to share any surgeries with 4; using the code of Futer—Purcell-Schleimer
[31]. Similarly the knot 63 was shown not to share any surgeries with 4;, making it the only
hyperbolic knot with up to six crossings for which g-hyperbolicity cannot be decided with

the methods of this paper.

Remark 5.5.4. As we see in Table 5.3, the knot K55 = 85 shares a surgery with 4;.

In particular, My, (3/2) = Ms,,(3). This is a closed manifold of volume ~ 1.440699. In
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addition, as shown in [1], 8¢ admits a good annulus presentation. This means an analogous

version of Theorem 1.5.3 also holds for 8.

Remark 5.5.5. Table 5.3 includes the knots 859, 10139, 11n3g, and 11ns;. According to
Knotlnfo [57], the complements Msg,,, Mig,4, Mi1nss, and My, are also fibered, so their

associated monodromies (as well as powers of conjugates of those mapping classes) satisfy

he AMU conjecture.
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K vol(Mf) Slopes a/b, p/q | vol(Mk(a/b)) Knot
K8, | 3.60046726278 1, -1/6 1.9520620754135 14a19741
K8y | 3.6095391745 1, 1/7 1.9724601973306 15as54894
K8y | 4.3790606712 —5,5/9 1.9957717794010
K8y | 4.38145643736 —4,4/9 1.9954776244141
K8 | 5.07001608898 9,9/7 1.9788631982608
K8 | 5.0827080657 11, 11/8 1.9914466741922
K84 | 5.1955903246 —19,19/5 1.9776430099735 12a799
K85 | 5.2086109485 —21,21/5 1.983357467405 13a4874
K8 | 5.75222662008 11, 11/5 1.9478817102192
K805 | 5.8281487245 —16, 16/7 1.9891579197851
K833 | 6.1411744018 22,22/5 1.9859441335531
K835 | 6.1504206159 23, 23/5 1.9883610027459 | 7'(7,9,6,—6,5, —1)
K843 | 6.2597017011 —13, 13/4 1.9334036965515
K845 | 6.27237250941 1,1/2 1.3985088841508 14n18210
K845 | 7.26711903086 9,9/4 1.9026876676640
K9, | 3.61679304740 -1, —-1/7 1.9724601973306
K9, | 3.62268440821 1,1/8 1.9857927453641
K9 | 4.3912243457 -6, 6/11 2.0069885249369
K99 | 4.39253386353 5, 5/11 2.0068241855029
K9g3 | 5.1043901461 13, 13/10 2.004926648441
K9g5 | 5.1089909300 —15, 15/11 2.0095023855854
K993 | 5.23864536794 23, —23/6 1.9940644235057 14a12197
K9g4 | 524618858374 25, —25/6 1.9973474789782 15ag59258
K950 | 5.8653629974 20, 20/9 2.004886373798
K955 | 5.8812168764 —25, 25/11 2.0133867882020
K995 | 6.2152290434 31, 31/7 2.007727892627
K994y | 6.21858163948 —32, 32/7 2.0085996110216
K9985 | 6.5328202770 —21,21/4 1.9754820965797
K999 | 6.6272713527 27, 27/5 1.9965186652378
K999 | 6.6445653099 19, 19/3 1.9565702867106
K9435 | 7.2356793751 -3, 3/4 1.8634426716184

Table 5.4 Knots in the SnapPy census of cusped hyperbolic 3-manifolds that share surgeries
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APPENDIX: FURTHER DETAILS ON LINEAR OPERATORS OF
CHAPTER 3

In this appendix we provide further details regarding the matrices R,, and S,, which are
ultimately unnecessary to the argument for Theorem 1.3.1 in Chapter 3. That being said,
the following analysis provides a more explicit picture of the behavior of the linear operators
RT,(C,,), and we feel it may be of use to someone studying Question 3.5.1 stated in Section
3.5. Here we use much of the notation introduced in Section 3.4, especially from Lemmas
3.4.7 and 3.4.8.

Let R,, be the matrix defined in Section 3.4, that is, the (m x m)-matrix with columns
corresponding to the vectors {fi|l = 0,...,m — 1}, and let S,, be the (m x m 4 1)-matrix
obtained by appending the vector fm to Ryy,.

As we saw in Lemmas 3.4.7 and 3.4.8 and the proof of Lemma 3.4.5, col(m + 1) of
Sm, corresponding to fm, either corresponds to col(I* + 1), in which case it has a single
nonzero entry, or it has exactly two nonzero entries. The following lemmas give an explicit

characterization of this column.

Lemma .0.6. Suppose r = 2m + 1 is coprime to q and r > q+ 6. Define

» 1£1 if q is even
iy = (3)
m—# if q is odd.
Then rows row(ix) of R, have exactly one nonzero entry and all other rows have exactly two
nonzero entries. Furthermore, suppose these nonzero entries lie in col(ly) of Ry, respectively.
Then 1_ # 14 and for ¢ > 8, col(ly) # col(I* + 1). Finally, col(l-) = col(1) if and only if
q=4 and col(l_) = col(I* + 1) if and only if ¢ = 6.

Proof. Assume r > q 4+ 6. We first assume [* < m and consider the cases where ¢ is even
and odd separately. Both cases make heavy use of the gli, hljE notation introduced in Lemma

3.4.9, arguing that there can be at most one solution to each equation in Lemma 3.4.9 Part

(id).
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Case 1:
Suppose ¢ is even. Let i_ = £—1and i, = £+1. Each case uses a nearly identical argument,

so we will limit ourselves to Case (1). Here,

q—i—(k:l—}-kg)r—Q_1+(k31—|—k2)r—2

q q

htly=

which is integral if and only if (k; + k2)r — 2 = gn for some n € Z, n > 0. Similarly,

. (k?l—]{?2>7’:|:2
h=ly=——"7"—",
q

which is integral if and only if (k1 — ko)r F 2 = gn’ for some n’ € Z, n’ > 0. So

2kor — 2+ 2
. .

l1+l2:l1—l2+2l2:n/—|—1+

Taking the top sign, we have that

2k
Li+l=n+1+ ;T,

which is integral if an only if 2ky = ¢n” for some integral n” > 0. However, n” = 0 implies

ly ¢ Z,son” > 1. This means l; +1ls > 3+r > 2m, which is a contradiction. For the bottom

"

sign, Iy + Iy € Z if and only if 2(ker — 2) = gn”” for some integral n"” > 0. However, n” =0

implies Iy ¢ Z, so n” > 1. Then
1 _|_ n///

l2:1+ 9 )

so n” must be odd. Since kir + kor — 2 = gn, we have 2k;r = ¢(2n — n’”) and thus k; is
some nontrivial multiple of Z. This implies that /; > m — 1, which is a contradiction.
Cases (2) — (6) follow similarly. Thus row(i_) and row(i,) each have exactly one nonzero
entry. Let [+ be the corresponding column index of the nonzero entry in row(iy). If ¢ > 6,
row(1) and row(2) must each have two nonzero entries, so neither of col(l+) coincide with
col(1) or col(I* + 1).
Now suppose that i = g*. One checks that this implies that i, ¢ {g", g7, hi", hj }.

Similarly, if i_ = A", this implies that i, ¢ {g", g;", h;", hi }. Thus [_ # [,
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Finally, note that ¢ = 4 if and only if i = 1 and 7y = 3, and by Lemma 3.4.7 Part (i),
col(l_) = col(1). Similarly, ¢ = 6 if and only if i_ = 2 and i, = 4, and by uniqueness of [*
in Lemma 3.4.7 Part (i) and since [_ # , col(l_) = col(I* + 1).

Case 2:

1 . _ . .
% and i, = m — 3. Each case uses a nearly identical

Suppose ¢ is odd. Let i = m — 5

argument, so we will again limit ourselves to Case (1). Here

2m+3 —q+ (b +ko)r (L4 kg + ko)r + 2
L+l= . = p —

1

Y

which is integral if and only if (k1 + k2)r — 2 = gn for some n € Z, n > 0. Similarly,

. (k‘l—k‘2>7’q:2
h—=ly=——"7""—",

q
which is integral if and only if (k1 — ko)r F 2 = gn’ for some n’ € Z, n’ > 0. So

(2kor + 1)r +2+2
. :

l1+12:l1—12+2l2:n/—1+

Taking the bottom sign, we have that

2k
l1+12:n,+1+ q2,r,

which is integral if an only if 2ko+1 = gn” for some integral n” > 1. This means [y +1y > 2m,
which is a contradiction. For the top sign, iy + ls € Z if an only if (2ky + 1)r + 4 = gn”” for

some integral n” > 1. Then

so n” must be odd. Since (1 + ki + ka)r + 2 = gn, we have (1 + 2k;)r = ¢(2n —n"") and
thus 1 + 2k; is some nontrivial multiple of ¢. This implies that {; > m — 1, which is a
contradiction.

Cases (2) — (6) follow similarly. Thus row(i_) and row(i, ) each have exactly one nonzero
entry. Let [1 be the corresponding column index of the nonzero entry in row(ix). By the
same argument as part (i), [ # [,. Finally, since m > %5, i_ > 2. By Lemma 3.4.7 part

(17), neither of col(l1) coincide with col(1) or col(l* + 1).
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Finally, we must address the case where [* = m. We see in the argument of Lemma 3.4.5
that this case corresponds to when col(1) is the only column of R,, with exactly one nonzero
entry. This means that, by Lemma 3.4.7, R,, has 2m — 1 nonzero entries in total. However,
since r > ¢+ 6 implies that there exists row(iy), each with a single nonzero entry, and every
other row has no more than two nonzero entries, there are at most 2m — 2 nonzero entries

in R,,, giving us a contradiction. O
Lemma .0.6, along with Lemmas 3.4.7 and 3.4.8, imply the following.

Corollary .0.7. Suppose r = 2m + 1 is coprime to q and r > q+ 6. Then there are exactly

two nonzero entries in col(m + 1) of S,,. Moreover, they lie in rows row(iy).

Proof. Since the first m columns of S, are identical to R,,, and r > g+ 6, col(m + 1) of S,,
must have exactly two nonzero entries. Otherwise, we reach the same contradiction as the
case [* = m addressed in the argument of Lemma .0.6.

These nonzero entries must lie in rows row(ix). This is because every other row of R,
has exactly two nonzero entries by Lemma .0.6 and, by Lemma 3.4.8 Part (), none of these

corresponding rows of .S, can have a third nonzero entry in col(m + 1). O

The proof of Theorem 1.3.1 utilized the inveritibity of RT,(C,,) established in Theorem
1.3.4, which in turn used the fact that R, is a change of basis (see Proposition 3.4.2). It
was important to the argument to presentat the matrix R-! in order to bound its operator
norm polynomially.

That being said, Lemma .0.6 and Corollary .0.7, in combination with Lemmas 3.4.7 and
3.4.8, provide a method for algorithmically verifying the nonsingularity of R,, directly using
a procedure reminiscent of the argument of Lemma 3.4.5. We state an alternative proof
of the first part of Proposition 3.4.2 for the interested reader, noting importantly that the
following does not establish any sort of bound on the operator norm |||R;!|||. The primary
benefit of this argument is its explicit algorithmic verification of the nonsingularity of R,,,

rather than the more abstract argument given in Subsection 3.4.2.

132



Proposition .0.8. Let r = 2m + 1 be coprime to q, and suppose v > q + 6. Then R, s

nonsingular.

Proof. 1t suffices to show that for m > %5, R,, is nonsingular, as R,, corresponds to the
basis transformation F,, — {e1,...,em}. To establish nonsingularity, we will show that
detR,, # 0. Note that by Lemma 3.4.7 Part (iz), every nonzero entry of R,, is a root of
unity.

Let R := R,,. Consider the following cofactor expansion procedures for computing det R.
Here, we abuse notation slightly by referring to row/column indices of the original matrix R
when expanding along rows of minors of R.

The following procedures depend on both the parity of m and on the value of ¢ mod 4.
In particular, if ¢ = 0 mod 4, then i+ are odd, and if ¢ = 2 mod 4, then i1 are even.
Analogously, if ¢ =1 mod 4, the iy have the opposite parity than m, and if ¢ =3 mod 4,
the 7+ have the same parity as m. We consider each case separately.

Case: ¢ =0 mod 4:
(1) Expand along row(i_) to obtain the R; -minor.

(2) Expand along row(i— — 2) to obtain the (R; ); _o-minor. Continue iteratively by ex-

panding along rows i_ —4,7_ —6,...,3, 1.

(3) Expand iteratively along rows iy,iy +2,...,m — 1 if m is even and along rows i, ,i, +
2,...,mif m is odd.
(4) Expand iteratively along rows m,m —2,...,4,2 if m is even and along rows m — 1, m —

3,...,4,2if m is odd.
Case: ¢ =1 mod 4:

(1) Expand along row(i_) to obtain the R; -minor.
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Expand along row(i_ — 2) to obtain the (R; ); _o-minor. Continue iteratively by ex-

panding along rows i —4,i_—6,...,4,2if m is odd and along rows i_ —4,7_—6,...,3,1

if m is even.

Expand iteratively along rows i, ,i, +2,...,m —1
Expand iteratively along rows m,...,4,2 if m is even and along rows m,...,3,1 if m is
odd.

Case: ¢ =2 mod 4:
Expand along row(i_) to obtain the R; -minor.

Expand along row(i_ — 2) to obtain the (R;_);_ _s-minor. Continue iteratively by ex-

panding along rows i_ —4,7_ —6,...,4,2.

Expand iteratively along rows i,,i, 4+ 2,...,m if m is even and along rows 7,7, +

2,...,m—1if m is odd.

Expand iteratively along rows m — 1,m — 3,...,3,1 if m is even and along rows m —

2,m—4,...,3,1if m is odd.
Case: ¢ =3 mod 4:
Expand along row(i_) to obtain the R; -minor.

Expand along row(i_ — 2) to obtain the (R; ); _o-minor. Continue iteratively by ex-
panding along rows i —4,i_—6,...,3,1if mis odd and along rows i_ —4,7_—6,...,4,2

if m is even.
Expand iteratively along rows i, ,i, +2,...,m

Expand iteratively along rows m — 1,...,4,2 if m is odd and along rows m —1,...,3,1

if m is even.
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We argue that each row expansion in these procedures contributes a single nonzero factor
to the total determinant of R. We include the argument for ¢ = 0 mod 4. The other three
cases are analogous.

Indeed, Lemma .0.6 implies that Step (1) contributes a nonzero factor to detR and
subsequently, the clearing of row(i_) and col(l_) clears one of the two nonzero entries in
row(i— — 2). By Lemma .0.6, row(i_ — 2) is now one of two rows with a single nonzero
entry. By the same argument, each iteration of Step (2) contributes a nonzero factor to the
determinant and clears one of the two nonzero entries two rows up. Since ¢_ is odd, all rows
cleared have odd index in R, and Step (2) terminates when we expand along row(1).

In a similar way, Lemma .0.6 and Lemma 3.4.8 Part (ii) imply that each iteration in Step
(3) contributes a nonzero factor to the determinant and terminates at row(m — 1) if m is
even and row(m) if m is odd. All odd-index rows of R have been cleared in Steps (1) — (3),
and Lemma 3.4.8 Part (ii) implies that Step (4) iterates across every even-index row of R.
Each iteration of Step (4) contributes a nonzero factor to the determinant and clears one of
the two nonzero entries two rows up. Step (4) terminates when we expand along the unique
row (corresponding to row(2) of R) in the (1 X 1)-minor [D;:], due to Lemma 3.4.7 Part (i).

Thus R = R,, has nonzero determinant, hence nonsingular. O]
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