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ABSTRACT

In this thesis we will analyze and enhance two schemes for kinetic equations. Namely the
discontinous Galerkin (DG) methods for solving the the Vlasov-Maxwell (VM) system
and a hybrid method for solving the time-dependent radiation transport equation (RTE).

In Chapter 2 we will consider the DG methods for solving the VM system, a funda-
mental model for collisionless magnetized plasma. The DG methods provide accurate
numerical description with conservation and stability properties. However, to resolve
the high dimensional probability distribution function, the computational cost is the main
bottleneck even for modern-day supercomputers. The first part of this thesis studies the
applicability of a post-processing technique to the DG solution to enhance its accuracy
and resolution for the VM system. This postprocessor is applied at the final time of the
simulation, and its cost is negligible, it succeeds by producing a high-resolution solution
with the same cost of computing a low-resolution one, thus saving computational time in
the process. In particular, we prove the superconvergence of order (2k + 1) in the neg-
ative order norm for the probability distribution function and the electromagnetic fields
when piecewise polynomial degree £ is used. Numerical tests including Landau damp-
ing, two-stream instability and streaming Weibel instabilities are considered showing the
performance of the post-processor. This is based on joint work with Yingda Cheng, Juntao
Huang and Jennyfer Ryan [1].

In Chapter 3, we prove rigorous error estimates for a hybrid method introduced in
[2] for solving the time-dependent RTE. The method relies on a splitting of the kinetic
distribution function for the radiation into uncollided and collided components. A high-
resolution method (in angle) is used to approximate the uncollided components and a
low-resolution method is used to approximate the the collided component. After each
time step, the kinetic distribution is reinitialized to be entirely uncollided. For this anal-
ysis, we consider a mono-energetic problem on a periodic domains, with constant ma-

terial cross-sections of arbitrary size. We assume the uncollided equation is solved ex-



actly and the collided part is approximated in angle via a spherical harmonic expansion
(Py method). Using a non-standard set of semi-norms, we obtain estimates of the form
C(e, 0, At)N~° where s > 1 denotes the regularity of the solution in angle, ¢ and ¢ are
scattering parameters, At is the time-step before reinitialization, and C' is a complicated
function of ¢, 0, and At. These estimates involve analysis of the multiscale RTE that
includes, but necessarily goes beyond, usual spectral analysis. We also compute error
estimates for the monolithic Py method with the same resolution as the collided part in
the hybrid. Our results highlight the benefits of the hybrid approach over the monolithic
discretization in both highly scattering and streaming regimes. This is based in a joint

work with Cory D. Hauck and Victor Decaria [3].
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“Las cosas solo son puras si uno las mira desde lejos, es muy importante conocer nuestras raices ,
saber de donde venimos, conocer nuestra historia , pero al mismo tiempo tan importante como
saber de donde somos, es entender que todos en el fondo somos de ningiin lado del todo y de todos
lados un poco.”

Jorge Drexler
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CHAPTER 1

INTRODUCTION

The evolution of a large particle system such as gases or plasmas at the microscopic level
is described by systems of ODE’s, however in general solving these systems numerically
is extremelly costly and brings little to no insight into the macroscopic behaviour of the
system. Thus we seek a reduced model of particle dynamics, that bridges the gap be-
tween the microscopic and macroscopic description of the physical phenomena and that
is also accurate. One of such models are the kinetic equations [4],[5]. Kinetic equations
intend to describe these particles systems by means of a distribution functions f in phase
space. This phase space includes macroscopic variables i.e the position in physical space,
but also microscopic variables which describe the state of the particle, in this thesis the
only microscopic variables that will be considered are the velocity components, other ex-
amples of microscopic variables are, internal energy and spin variables, etc. This object
[ represents a particle density in phase space i.e. fdxdv is the number of particles in
a small volume [4]. Kinetic equations have applications in different fields such as: gas
dynamics, plasma physics, biology, socieconomics, nuclear engineering, etc.

In the classical kinetic theory of rarified gases, the variation of a non-negative function,
f = f(z,v,t), characterizing the particle densities having velocity v € R? in position

r € R? at time ¢, is obtained via the equation

of B

The operator Q(f), on the right-hand side of equation (1), describes the effects of internal
forces due to particle interactions, and its form depends on the details of the microscopic
dynamic [5]. The most well-known examples are Boltzmann’s equation and the Vlasov
mean-field equation.

There are numerous challenges for numerical solvers for kinetic equations. The first

one coming from the intrinsic high-dimensionality of the problem, in general (z,v, ) € R.



There are additional difficulties and requirements specific to kinetic equations:

* Conservation properties We would like to preserve physicial laws, such as conserva-

tion. [5].

* Computational cost. Aside from the computational cost that comes from high-dimensions.
Computations using the operator Q( f) involve the computation of high-dimensional

integrals in velocity space at each point in physical space [5].

* Presence of multiple scales. Usually one have to deal with multiple space-time scales,

which span different regimes. [5].

In this work we will consider deterministic numerical methods for kinetic equations.
For a survey on these methods see [5].

In this thesis we intend to analyze two different schemes for kinetic equations. In the
rest of this chapter we would like introduce the reader to two schemes: Discontinuous
Galerkin method for the Vlasov-Maxwell equations and a hybrid method for radiation

transport.

1.1 Discontinuous Galerkin method for the Vlasov-Maxwell equations

In the first part of this thesis, we consider numerical solutions of the Vlasov-Maxwell
(VM) system, a fundamental model for collisionless magnetized plasma. The dimension-
less form of the equations that describes the evolution of a single species of non-relativistic
electrons under the self-consistent electromagnetic field while the ions are treated as uni-

form fixed background is given by

Of+v-Vxf+(E+vxB) - V,f=0, (1.1a)
OE 0B
E—VXXB—J, W——VXXE, (1.1b)
Vix-E=p—pi;, Vx-B=0, (1.1¢)
with
p(x,t)= [ f(x,v,t)dv, J(xt)= [ f(x,v,t)vdv,
Qv Qv



where the equations are defined on 2 = 2, x Q,, x € (2, denotes the position in physical
space, and v € (, in velocity space. Here f(x,v,t) > 0 is the distribution function of
electrons at position x with velocity v at time ¢, E(x, t) is the electric field, B(x, ¢) in the
magnetic field, p(x, t) is the electron charge density, and J(x, t) is the current density. The
charge density of background ions is denoted by p;, which is chosen to satisfy total charge
neutrality, fo (p(x,t) — p;) dx = 0. Periodic boundary conditions in €2, and compact sup-
port in 2, are assumed. The VM system has wide applications in plasma physics for
describing space and laboratory plasmas, with application to fusion devices, high-power
microwave generators, and large scale particle accelerators.

Much work has been carried out in the literature aiming at accurate deterministic de-
scription of the probability density function for nonlinear behavior of charged particles
in plasma. Califano et al. used a semi-Lagrangian approach to compute the streaming
Weibel instability [6], current filamentation instability [7], magnetic vortices [8], magnetic
reconnection [9]. Also, various methods have been proposed for the relativistic VM sys-
tem [10, 11, 12, 13]. This work concerns the discontinuous Galerkin (DG) method for solv-
ing the VM system. The DG method is a class of finite element method that uses discon-
tinuous polynomial spaces, and they have desirable properties for convection-dominated
problems [14]. In particular, DG methods have been used to simulate the Vlasov-Poisson
system in plasmas [15, 16, 17] and for a gravitational infinite homogeneous stellar system
[18]. They have been also used to solve VM system [19, 20] and the relativistic VM system
[21]. The DG methods have nice properties such as stability, charge and energy conserva-

tion and high order accuracy, which are highly desirable for long time simulations.

1.2 Accuracy enhanement and Superconvergence techniques for DG methods

The main computational challenge for any grid based solver for the VM system is
the high-dimensionality of the Vlasov equation. This makes the computation extremely
expensive even on modern-day exa-scale supercomputers. Post-processing techniques,

which can greatly enhance the resolution of the numerical solution at any given time,



are therefore desirable because it is only applied once at the end of the simulation with
negligible computational cost. Post-processing for finite element methods is a mature
technology. The post-processing technique presented here takes advantage of the infor-
mation contained in the negative-order norm and was originally developed by Bramble
and Schatz [22] in the context of continuous finite element methods for elliptic prob-
lems. It consists of a convolution of the finite element solution with a local averaging
operator. We can then establish the convergence in the negative order norm which is
higher than that one obtained in the usual L*-norm. In [23], Cockburn, Luskin, Shu and
Siili applied this technique to the DG methods for solving linear hyperbolic equations.
This technique was further extended to the DG methods for solving nonlinear conser-
vational laws [24, 25] and nonlinear symmetric systems of hyperbolic conservation laws
[26]. This method is currently part of a filtering family known as a Smoothness-Increasing
Accuracy-Conserving (SIAC) filters [27]. This chapter will demonstrate the performance
of post-processing by the SIAC filter for DG solutions to the VM system. In particular,
we consider benchmark numerical tests for Vlasov-Ampére (VA) and VM systems, and
study the numerical error for short and long time simulations with varying polynomial
order.

In order to validate the enhanced accuracy of the post-processed solution, an impor-
tant step is to establish the superconvergence of the negative order norm of the error and
its divided differences. In [23], Cockburn, Luskin, Shu and Siili established a framework
to prove negative-order estimates for the DG solutions to linear conservational laws of
order 2k + 1 using polynomials of degree k. After this, there have been important exten-
sions. L? and L* superconvergence estimates were established for DG solutions for lin-
ear constant coefficient hyperbolic systems with the position-dependent SIAC filter [28].
Ji, Meng et al [24, 25, 26] proved superconvergence for non-linear conservation laws and
nonlinear symmetric hyperbolic systems of the DG solutions of order at least (2k+1). Itis

highly nontrivial to establish superconvergence for nonlinear problems because a suitable



dual problem has to be identified, and additionally the divided difference of the solution
does not satisfy the PDE, which makes the proof highly technical [25, 26]. In Chapter 2,
we aim to prove negative-order estimates of DG solutions to the VM system. Since the
VM system is nonlinear, it is nontrivial to extend the proof in [23]. We identify a proper
dual problem, which aids the estimates of the consistency term. In the end, we proved
superconvergence of order (2k + 1) in the negative norm for the probability distribution

function and the electromagnetic fields.

1.3 A hybrid method for the radiation transport equation

The second part of this thesis will deal with the radiation transport equation (RTE)
[29, 30, 31]. This equation describes the movement of particles through a material medium
by means of a kinetic distribution function that gives the density of particles with respect
to the local phase space measure. In a general setting, the phase space is six dimen-
sional: three dimensions for particle position and three for particle momentum, the latter
of which is typically decomposed into energy and direction (or angle) of flight. Thus in
the time-dependent setting, the RTE is defined over a seven-dimensional domain.

The RTE describes two basic processes: particle advection and interactions with the
material medium. These interactions can be of various types and include scattering and
emission/absorption processes. The rate at which these processes occur is determined
by the properties of the material, expressed via cross-sections. Material cross-sections
may vary in space and depend on the particle energy and, in situations that the material
evolves, the cross-sections may evolve as well. When cross-sections vary significantly,
the RTE may exhibit multiscale behavior. It is the combination of this multiscale behavior
with the high-dimensional phase space that makes simulating the RTE a challenging task.

A well-known multi-scale feature of the RTE is the diffusion limit. In regions where
the scattering cross-section is large, the solution of the RTE can be accurately approxi-
mated by its angular average [32, 33]. Moreover this average is well-approximated by the

solution of a diffusion equation. This solution to diffusion equation has long been used



as a cheap approximation the solution to the RTE in scattering dominated regimes.

Another common limit is the absorption limit, which is characterized by a complete
lack of scattering. In this case, the RTE does not have a simple asymptotic approximation.
However, due the abscence of scattering, there is no coupling between the angles and
energies of the kinetic distribution. Thus, with a proper discretiation, the RTE solution
can be easily parallelized.

In problems for which the scattering cross-section varies dramatically, both of the lim-
its above can exist simultaneously, along with a range of transition regimes in between. A
consequence of this fact is that a monolithic numerical treat of the RTE will require many
degrees of freedom that are strongly coupled. In practice, the time-dependent RTE is of-
ten updated in time with an implicit scheme. In such cases, designing the linear solvers
can be a challenge.

A variety of approaches have been proposed for addressing the multiscale challenges
posed of the RTE. These include micro-macro decompositions [34], high order-low order
(HOLO) methods [35], diffusion-based acceleration [30, 36], and preconditioned Krylov
approaches [37]. In this thesis, we consider a hybrid formulation [2] that is based on
the notion of first-collision source [38]. In this hybrid formulation, the RTE is split into
two components: an uncollided component that tracks the particles up to point of their
tirst material interaction and a collided component that track the particles that remain.
The resulting system is then approximated with two different angular discretizations: a
high-resolution discretization for the uncollided equation and a low-resolution for the
collided equation. The intuition that drives this strategy is that scattering produces a
smoother solution; hence the collided equation should require less resolution to recover
an accurate solution. The uncollided equation, on the other, requires higher resolution;
however it takes the form of a purely absorbing RTE and can therefore be solved much
more efficiently the original RTE using the same number of degrees of freedom. The

efficiency of the hybrid approach for the RTE has been demonstrated in several papers



[39, 40, 41], including generalizations to hybrid energy discretizations [42] and hybrid
spatial discretizations [43].

A key component of the hybrid implementation for the time-dependent RTE is a rela-
beling procedure that, after a given time step, maps the collided numerical solution into
the space of the uncollided numerical solution and then uses the sum to re-initialize the
uncollided equation. Meanwhile, the collided equation is re-initialized to zero. This re-
labeling step is critical, since otherwise the hybrid numerical solution would eventually
convergence to a low-resolution numerical solution of the collided equation.

Despite the intuitive motivation of the hybrid and the success of the hybrid approach
in numerical simulations, the method still lacks rigorous justification. This is due in part
to complications introduced by the multiscale behavior of the RTE. For example, spec-
tral approximations of the RTE in angle are fairly straightforward to analyze [44], but a
multiscale analysis that takes into account the degree of scattering is significantly more
complicated [45]. The relabeling step of the hybrid formulation complicates the situation
even further.

In Chapter 3, we take a first step in analyzing the hybrid method for the time-dependent
mono-energetic version of the RTE with isotropic scattering. We focus only on the angu-
lar discretization of the RTE, comparing the standard spectral approximation (Py) for the
full system with a discretization of the hybrid that features a spectral approximation of
the same resolution for the collided equation but assumes an exact solution for the un-
collided equation. Clearly, the hybrid formulated in this way is more expensive than the
monolithic approach. Thus the goal of the analysis is determine what is gained from the
extra work involves in a high-resolution simulation of the uncollided equation, which
in practice is computed with a high-fidelity collocation method or with a Monte-Carlo
method.

In Chapter 4, we provide a brief conclusion and future work.



CHAPTER 2

SUPERCONVERGENCE AND ACCURACY ENHANCEMENT OF
DISCONTINUOUS GALERKIN SOLUTIONS FOR VLASOV-MAXWELL
EQUATIONS

In this chapter, we will provide the first step towards proving rigorously accuracy en-
hancement of the postprocessed DG solution to the VM system (1.1), by proving super-
convergence of the negative norm of the DG solution. The remainder of the chapter is
organized as follows. In Section 2.1, we introduce the DG method for the VM system
as well as relevant notations that will be required for the negative order estimates. In
Section 2.2 we introduce SIAC filtering. In Section 2.3 we prove the negative-order norm
estimates of the DG solutions to the VM system. The superconvergence results are con-

firmed numerically in Section 2.4.
2.1 Discontinuous Galerkin Numerical Scheme

2.1.1 Notations, Definitions and Projections

We begin by introducing the necessary notation used in the chapter. Without loss
of generality, we assume the spatial and velocity domain to be Q, = [-L,, L,]% and
Q, = [~ Ly, L,)%, where L, is chosen large enough so that f = 0 at 99,. Through out the
chapter, standard notations will be used for the Sobolev spaces. Given a bounded domain
D e R* (with x = d,,d,, or d, + d,) and any nonnegative integer m, H™ (D) denotes the
L*-Sobolev space of order m with the standard Sobolev norm ||-||,, p, W™ denotes the
L>-Sobolev space of order m with the standard Sobolev norm ||-||,, «p and the semi-norm
| |m.co.0- When m = 0, we also use H%(D) = L*(D) and W%>(D) = L*(D).

Let 7, = {K,}and 7, = { K, } be partitions of €2, and (,, respectively, with K, and K,
being Cartesian elements or simplices; then 7;, = {K : K = K, x K,,, VK, € T;*, VK, € T;/}
defines a partition of (). Let &, be the set of the edges of 7,* and &, the set of the edges of

s then the edges of 7, willbe £ = {K, x e, : VK, € T/%, Ve, € £,} U{e, x K, : Ve, €
E, VK, € TP}



Furthermore, &, = £ U & with £ and £ being the set of interior and boundary edges
of 7,0 respectively. In addition, we denote the mesh size of 7;, as h = max(h,, h,) =
maxge7, hx, where h, = maxg,err N, with hg, = diam(K,), h, = maxg, ety hr, with

hk, = diam(K,), and hx = max(hg,, hg,) for K = K, x K,. When the mesh is refined, we

: _and ;! are uniformly bounded from above by a positive constant .

h
hz,mm hv,mm

assume both
Here hy min = ming, hi,e7= and hy min = ming, e7v b, . It is further assumed that {7}, is
shape-regular with « = = or v. That is, if px, denotes the diameter of the largest sphere

included in K, there is
hg,

PK,

S 0*7 VK* e 777,*
for a positive constant o, independent of h,. Furthermore the inner products are defined
as

(g,h)gz/ghdxdv: > / ghdz dv, 2.1)
Q K

KeTy

(U,W)g, = | U-Wdz= U Wda. (2.2)

T

Now for g € L?(2), U, W € (L*(9,))%, we define the L?>-norm of (g, U, W) as

1(9, U, W)llo.a = \/Ilgllﬁ,g + Ul o, + IWIEe, (2.3)

This will be helpful in the error analysis of the negative-order norm. The negative order
norm of order [ is defined as: given [ > 0 and domain (2,

) + U,Z/{ . + W,W .
(g, U, W)|_1,0 = sup (g, 9)a + Ja, + ( )o
0 (Q) UWE[CE ()] \/||¢||l2’Q + UlFq, + IWFa,

Next we define the discrete spaces
Gr={9€L*(Q): glg_w.vx, € P"(K, x K,),VK, € T VK, € 7 VK, € T, }  (2.4)

={9€ L*(Q): glx € P"(K).VK € Th},

Uy = {U € [L2(Q)]" : U, € [P VK, € T} 2.5)



where P"(D) denotes the set of polynomials of total degree at most » on D, and k£ and r
are nonnegative integers.

For piecewise functions defined with respect to 7,* or 7,’, we further introduce the

+
T

jumps and averages as follows. For any edge e = {K NK_} € &, with n; as the
outward unit normal to K, g* = g|,+ and U* = U], the jump across e are defined

as
9le =g'n; +gn,, [U=U"ny+U 'n;, [U:=U"xn +U xn,
and the averages are
. 1 _
{9}. = 5(9 +97), {Ul= §(U +U7).

By replacing the subscript z with v, one can define [g],, [Ul., {g}., and {U}, for an interior
edge of 7,Y in £. For a boundary edge e € £’ with n, being the outward unit normal we

use

Go=gme, {oh=50 (Uh=3U. 2.6

This is consistent with the fact that the exact solution f is compactly supported in v.
For convenience, we introduce some shorthand notations, fQ* = fTh* => K.eT? f P
Jo =[5, = Xkern Jir Jo. = Zece, J., where again x is z or v. In addition, [|g[os =
) 1/2
(1911.2. 7 + 191187 xe,)'? with llglloe, <7y = (fgw e dvdsx) , and we have that
1/2
I9llo,rxe, = ( S Je, 9% dsy dx) . We will make use of the following equality, which
h v
can be easily verified using the definition of averages and jumps.
1, .
5[9 |« = g4]g]s, with x = x or v. (2.7)

2.1.2 The DG method for the Vlasov-Maxwell system
Now we review the DG method for the VM system proposed in [19]. The scheme

seeks a numerical solution f, € G and (E;, B) € UF x UF such that for any g € GF,

10



U, W cUuf,
/ Oy frng dxdv — / fuv - Vegdxdv — / fr(Ep+v xBy) - Vygdxdv
K K K

+ / / fmxg dsxdv + / / (fn(Ep —i-/V?Bh) ‘n,)gdsydx =0,
K, JoK, » JOK,

(2.8a)
/ 0E;, - Udx = / B, - V4 X de+/ n;<\Bh -Udsyx — / J, - Udx, (2.8b)
8tBh-de:—/ Eh-Vxdox—/ n, x Ej, - W ds, (2.8¢)
Ka z 0Ky
with
Jn(x,t) = fr(x, v, t)vdv. (2.9)
'7'}:,

Here n, and n, are outward unit normals of 0K, and 0K, respectively. All “hat” func-

tions are numerical fluxes that are determined by upwinding, i.e.,

—

th' n; = };‘// Ny = ({fhv}$ +

|v - ng|

2

[fh]x) -0, (2.10a)

fh(Eh + Vv X Bh) ‘n, = fh(Eh + v X Bh) - 1,
‘(Eh + v X Bh) . nv\

= ({fh(Eh + v X Bh)}v + [fh]v) * Iy, (Zlob)

2
— —~ 1
n, X Eh =n,; X Eh =1n, X ({Eh}x -+ § [Bh]f) (210C)
— — 1
n, X Bh =n, X Bh =1n, X ({Bh}z — 5 [Eh]-,—) (210d)

where these relations define the meaning of “tilde”. In [19], alternating and central fluxes
for the Maxwell’s equation are also considered. The discussions will be similar to what
will be presented in this chapter for the upwind flux, and thus are omitted.

Upon summing up (2.8a) with respect to K € 7, and similarly summing (2.8b) and
(2.8c) with respect to K, € 7,7, the scheme (2.8) becomes the following: look for f; €
Gr. Ep, By, € UF, such that

((fr)es9)a + an(fr, En,Bp;g) =0 (2.11a)

(En)e, U)a, + ((Br)e, W)g, + b, (Ey, By U W) = 1,(J),; U), (2.11b)
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forany g € GF, U,W € U}, where
an(fr, Bn, Bri g) = ani(fn; 9) + ana(fo, En,Brsg),  h(Jn;U) = —/ Jp - Udx,

h

bh(Eh,Bh;U,W):—/ Bh-vade—/ B, - [U]. ds,

+/ Eh-Vxdox—i—/ E, - [W]_ ds,,
T ’

and

an1(fni g) = —/ Jnv - Vxgdxdv —i—/ / fav - l9], dszdv
T v Je,
an2(fr EnsBrig) = — [ fo(Ep+v x By) - Vygdxdv
Th

+/ fr(Ep +v x By) - 9]y ds,dx
e

h

The semi-discrete formulation (2.8) can then be solved by a numerical ODE solver, see
the description in [19]. The L? and energy stability of (2.8) are established in [19]. The
main result in [19] for the semi-discrete L? error estimates of the approximations f;,, Ej,

B;, is as follows.

Theorem 2.1.1 ([19]). For k > 2 when d, = 3 and k > 1 when d, = 1,2, the semi-discrete DG
method of (2.11a)-(2.11b), for the Viasov-Maxwell equations with the upwind fluxes of (2.10a)-

(2.10d), has the following error estimate
I = OG0+ 1B = E)®) G0, + 1B =Bu)B)50, < Ch*H, Ve [0,T]. (212)

Here the constant C'is independent of h, but depends on the upper bounds of || 0 f ||k+1,0.1 || k+1.0,
|f|1m’Q, IE|1.00.0., |1Bll1.cos, IBEllri1.0., [|Bllet1a, over the time interval [0,T), and it also
depends on the polynomial degree k, mesh parameters oy, o, and o, and domain parameters L,

and L,,.

In this work, we also consider (1.1) when there is no magnetic field (i.e. when B = 0).
This reduced problem is called the VA system, and the DG discretizations would follow

a similar discussion by setting B;, = 0 in (2.8) at all times.
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2.2 Smoothness-Increasing Accuracy-Conserving Filters

We extract the higher-order accuracy of the DG method solved over a uniform mesh
contained in the negative-order norm by using the SIAC filter. This technique could also
be applied over nonuniform meshes, however this would force us to compute the post-
processing coefficients in each element in the mesh, increasing the computational com-
plexity of the implementation [46]. This filter improves the order of accuracy by reducing
the spurious oscillations in the error. This is done by convolving the numerical approxi-

mation with a specially chosen kernel,
(i 06, v) B (), By (%)) = K TMe (, B B (3, v), (213)

where (f;, E;, B;) is the filtered solution, (f5, E,, B),) is an approximated solution com-
puted at the final time, and K i(kﬂ)’kﬂ is the convolution kernel. The kernel is translation-
invariant and composed of a linear combination of B-splines of order k + 1 obtained by
convolving the characteristic function over the interval (—3, 1) with itself k times and
scaled by the uniform mesh size. Using B-splines makes this kernel computationally ef-

ficient, provided the mesh is uniform, as the kernel is translation invariant and is locally

supported in at most 2k + 2 elements. The one-dimensional convolution kernel is of the

form:
1 <& x
2(k+1),k+1 _ - 2(k+1),k+1,(k+1) [~
K’ (@)=1 > & b ( . ’y) . (2.14)
y=—Fk
The weights of the B-splines, ci“““)”““, are chosen so that accuracy is not destroyed (the

KZ(kJrl),kJrl wp=pforp =

kernel can reproduce polynomials of degree up to 2k), i.e.
1, z, -+ ,2?* see [23] for details.

For the general case, assume the mesh size is uniform in each direction, given arbitrary

(x,v) = (z1, -+ ,Ta,, V1, + ,vq,) € RETE we set
da do
G, v) = [T D) [[ o () (215)

i=1 Jj=1

13



The kernel for our case is of the form

FoRRHD AL 1

h (x,v) =
(1T ) (152 )
2(k1) k+1 ) (k41 xy Ld, U1 Vd,
<X (e ) ) @1

ye{—k,...,k}detdv dv

where h,, and h,, denote the mesh size in x; and v; direction, resp. The success of the filter

relies on the following results.

Theorem 2.2.1. (Bramble and Schatz [22]) For T > 0, let w = (f, E, B) be the exact solution
of the problem (1.1). Let Qy + 25upp(K}2L(k+1)’k+1(x, v)) CC Qand U = (fy, Ep, By,) is any

approximation to u, then

2k+2
HU(T) — KZ(kJrl),kJrl * UH&QO S m\ubng + CP Z H@,ﬁ(u — U)H—(k—i-l),Q' (217)
’ |\ <k+1

2(k+1),k+1

where Cp depends solely on Qy, Q, d,, d,, k, Cw( , and it is independent of h.

In (2.17), we used the notation of the divided differences. We define

1 1 1
On,, w(X, V) = . (w <X + §hmei,v) —w (x - §hxiei,v)> : (2.18)

here e; is the unit multi-index whose i-th component is 1 and all others 0. Analogously

for velocity space variables v;, the difference quotients are defined as

1 1 1
Oh, w(x,v) = — (w (x,v + —hvej) —w (x,v - —hv.ej)) ) (2.19)
j ha, 9 9
For any multi-index A = (v, , @4y, Buys -+ -, Ba,) We set A-th order difference quo-
tient to be
A — (9™ ... 9% (g ... 50
drw(x,v) = (6h;1 8th$ )(8,%1 8hvdv Jw(x, V). (2.20)

2.3 Superconvergent Error Estimates for the DG method

In this section, we prove the superconvergence error estimate in the negative norm of
the DG solution for the VM system. In Section 2.3.1, we review basic approximation and
regularity properties. Section 2.3.2 will construct the dual problem which is the key to

our estimates. The main result and the proof will be given in Section 2.3.3.
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2.3.1 Preliminaries

We summarize some of the standard approximation properties of the above discrete
spaces, as well as some inverse inequalities [47]. For any nonnegative integer k, Let IT* be
the L? projection onto GF, and IT" be the L? projection onto U;". We define ({ = I1*g — ¢

and (Y = ITI*U — U, as the Projection errors of g and U respectively.

Lemma 2.3.1. (Approximation properties) There exist a constant C' > 0, such that for any

g € H*1(Q) and U € [H*1(Q)]%, the following hold:

162 0.5¢ + el VaGElloc + Ril2[1GElloonc < CREF Ngllira, VK €T
16 N0k + R, 1V X o, + B2 NG loore, < CREENUllis i, VK. € T3

167 oo, < CREEMNUllks o0k, VK € T

where the constant C'is independent of the mesh sizes hyi and hy,, but depends on k and the shape

reqularity parameters o, and o, of the mesh. Here x = x or v.

Lemma 2.3.2 (Inverse inequality). There exists a constant C' > 0, such that for any g € P*(K)
or P*(K,) x P*(K,) with K = (K, x K,) € Ty, and for any U € [P*(K,)]%, the following
hold:

IVxgllo.x < Chitllgllox, [[Vvallox < Chitllgllos,

10locoi. < ChE [ Ulloes [Ulloare, < Chi*1Ullo k.

where the constant C' is independent of the mesh sizes hi,, hr,, but depends on k and the shape

regularity parameters o,, and o, of the mesh.

To assist the proof, we also need a regularity result for a linear PDE system.
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Lemma 2.3.3. Consider the following system of equations with periodic boundary conditions in

x and zero boundary condition in v for all t € [0, T):

atgp + AI(X7 v, t) ’ vxgp + A2(X7 v, t) ’ vv(p + A3(Xa v, t) -F =0, (221&)
OF =V, xD +/ gVypdv, (2.21b)
Qy
oD =-Vy xF — / g(v x Vyp)dv, (2.21¢)
Qo

where the given functions Ay, Ay € W20(Q) satisfy the divergence free constraint V- Aq = 0
and V - Ay = 0. For any | > 0 and the fixed time t, the solution to (2.21) satisfy the following

estimate

(2.22)

Here C depends on || Ag|| Lo ((0,r):wio0()) 1A ||| Loo ((0,1)w141.00 (02)) -

Proof. See the appendix. O

2.3.2 The dual problem

In order to prove negative-order estimates for the system, the key is to find the dual
problem associated to (1.1). We note that, for the nonlinear problem, the dual problem
is not unique, see [48]. We construct the dual problem as follows: find functions (-, -, ),
F(-,t) and D(-,t) such that ¢(-,v,t) is periodic in all dimensions in space and ¢(x, -, t)

vanishes in the boundary of the velocity region for all ¢ € [0, 7] and

Op+v-Vyp+(E4+vxB)- Vyp—v-F=0 (2.23a)
OF =V, xD— / fVepdv, (2.23b)
Qy
0D =-VyxF+ f(v x Vyp)dv (2.23¢)
Qy

with final time conditions ¢(x,v,T) = ®(x), F(x,T) = §(x) and D(x,7) = D(x), €
C5°(Q) and D, § € [C5°(Q)] ™.
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Notice that by multiplying (¢, F,D) on both sides of (1.1a)-(1.1b), and multiplying
by (f, E,B) on both sides of (2.23a)-(2.23¢c), and then summing up and integrating over

velocity and physical space, we obtain

/8t(f<p)dxdv+/vx~(fgov)dxdv+/vv~(fgo(E—l—va)) dx dv
Q Q Q
—/fv~FdXdV:0,

Q

@(E-F%—B-D)dx%—/fv-Fdxdv
Q

Qg

:/ Vx- (B xF)dx+/ Vx~(E><D)dX—/f(E+V x B) - Vypdxdv,
Qu Qu Q
where we used the identities

V.(pU) = ¢V, -U+U-V,0o,

V., - (UxW)=W-(V,xU)=U-(V, x W),

for scalar functions ¢ and vector functions U and W and the fact that V, - (E+v xB) = 0.

By adding all equations above and using boundary conditions, we arrive at

SU(f9)a+ (B, F)o, + (B,D)o,] + F(/, 5, B o) =0, 229
where

F(f,E,B;p) = /Qf(E +v x B) - Vypdxdv. (2.25)

2.3.3 The main result

In this part, we give our main theorem on the negative-norm of the error for the DG
solutions. Note that superconvergence of the negative norm of the solution itself is not
sufficient in proving high order convergence of the post-processed solution according to
Theorem 2.2.1. However, it is a necessary first step. As shown in [25], it is highly non-
trivial to prove superconvergence of the divided difference of the solution for nonlinear

problems, we will leave this to explore in our future work.
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Theorem 2.3.1. If (fy, Ej,, B},) is a solution to (2.11a)-(2.11b) with the numerical initial condi-

tion f, = TI*f and By, = ILE, By, = ;B and k > (d, + d.)/2, then
|(f = fo, E=Ep, B = Bp)|—gt1),0 < C’h%“/?,

where C'is a constant independent of h and depends on the upper bounds of ||0: f ||k+2.0.|| || k+2.0,
[ so0r 1El1 00,0, IBllcoo. [Elkt2,0., IBllit2q, over the time interval [0,T], and it also
depends on the polynomial degree k, mesh parameters oy, o, and o, and domain parameters L,

and L,,.

Proof. We define e} = f — fi, = ¢ — ¢/, where ¢/ = IT*f — f, and (] is defined just as in
Section 2.3.1. Analogously & = IT*E—E;, ¢& = II*B—B,, then ¢£ = E—E;, = ¢£—(E and
¢B = B—B,, = & —(B. We follow the ideas in [23]. Forany ® € C°(Q),§,D € [C5°(Q)]%,
we estimate the term
(eh(T), ®)a + (ef(T), B)a, + (eR(T), D)a,
=(ef(T),¢(T))a + (e (T), F(T))a, + (e (T),D(T))a,
=(f(T),o(T))a + (E(T),F(T))a, + (B(T),D(T))q,
— [(/a(T), o(T))a + (Ex(T), F(T))a, + (Bu(T),D(T))q,]
(o 0 + (B, F(O))o, + (Bo. DO, ~ [ FU BB
— (/n(0),9(0))a — (Ex(0), F(0))o, — (Bx(0), D(0))q,
~ [ 1o+ (1o, + (B, D
—— (P @ (0)a + (G F(0)a, + (GF, D(O0))e,

_ /0 ((fa)es ) + (Ep), Fa, + ((Bh)s, D)q, dr

T
- / (fha SDt)Q + (Ehv Ft)QL + (Bh7 Dt)Q‘L + F(f) Ea B7 SD) dTa
0

where for the first equality we used (2.24), and the numerical initial condition is used in

the last equality.
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Notice that for any x € GF, £, n € Uf

/0 ((f)r- e + (Ba)en Fla, + (i) D)o, dr

- / (F)es o — Ve dr + / (F)ex)adr + / (E)e. F — E)a, + (B, D — )q, dr

+/0 (En)e; e, + ((Br), ), dr
= [ G =0ndr = [ B Buin) dr
+ [ (T = o, + (Ba)iD = o a7

T
—/ bn(Ep, By &, 1) —lh(th) dr
0

:/0 ((fr)es 0 = X)a + an(fn, En, Br; o — x) d7 + /0 (En)e, F = &)a, + ((Br)e, D —n)q, dr

T T
—I—/ bh(Eh,Bh;F—f,D—U)—lh(Jh,F—f)dT—/ an(fr, En, Bp; @) dr
0 0

T
—/ bh(Eh,Bh;F,D) - lh(Jh,F) dr.
0

After this calculation we can conclude that
(eh(T), ®)a + (5 (T), §)a, + (£ (T),D)a, = On + Ox + O,
where

O = = | (¢ 2(0)a + (. F(O))a, + (¢, D(O)a, |

T
On = — / ((fa)e» o = X)a + an(fr, Ens B — x) dr
0

(2.26)

T
- / (En)t, F = &)a, + ((Br)t, D = n)a, + bp(En, By, F —&,D —n) — (I, F = &) dr
0

T
Oc = —/ (frsot)a — an(fr, En, By @) dr
0

T T
—/ (En,Fi)a, + (Br,Dy)a, — bn(Ep, By F,D) + 1,,(Jp, F) dr —/ F(f.E,B;p)dr.
0 0

In the following we will estimate ©y;, O and O¢.
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Lemma 2.3.4 (Projection Estimate). O\, satisfies

O] < 042 (O + [FO)Z 10, + DO, 1, 229)
where C depends on || follk+1.0: | Eollg+1.0. and ||Bollk+1.0, -

Proof. By the definition of II*,

(fo = II% fo, 0(0))a = (fo — 1" fo, 0(0) — ITF(0))q
< |1 fo = " follll(0) — ¥ (0)]|

< CR* Y| follksr.0h* 1 0(0) | 1t1,0-

The last line was an application of the first part of Lemma 2.3.1. By the same lines we
obtain analogous results for the E and B parts. The conclusion follows by grouping them

all together and an application of Cauchy-Schwarz inequality. O

For the second term, we have the following result:

Lemma 2.3.5 (Residual). Let x = [1*f, ¢ = TI*F, n = TI*D, we have

T 1/2
O] < ORI { / 1012010 + IEIZ 10, + 1Dy, d
0

where C' depends on the upper bounds of || f[|c+2.0, [1fllLocs [Ellocos., IBllosos., IElkr20.,
|B||5+2,0, over the time interval [0,T], and it also depends on the polynomial degree k, mesh

parameters oy, o, and o, and domain parameters L, and L,.

Proof. Due to the definition of the projection operators, ((f4):,© — X)o = 0, ((Ep), F —
&), =0,and ((By);, D —n)q, =0,and [,(J; F — &) = —(Jy, F — §)q, = 0, we have

T
Oy = / —Clh(fh,Ehth; C;’f) — bh(EhaBlﬁ le‘>Ci]z:)) dr.
0
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From its definition,

bh<Eh,Bh;c,f,<,‘?>=/ Eh-vxxc,?dx—/ B), - Vi x ( dx
Ty f

+/gx]§—l/1[<}?}7d5x_/wﬁ;[<}f‘]7d3x

:—/ - Vx ><Q?dx+/ ep - Vi x (F dx

T

/ | dsx + / eB - [¢F ) dsx
Ex Ex

+/Tm <hdx—/z<vx><B>-<de-

h

By Lemma 2.3.1,

< Ch¥|lexllog. [Dllk+1.0.

/ (¢B) . Vi x (P dx

< Ch¥|leR llo.o. IFllks1.0.,

/ eP - Vi x (F dx

< CR*Y2 (D1, + [IFlls1.0.)

J G RGN

x (lexllog. +llerlloe. ) -

Now notice that

lerlloe. < llexlloe. + 116 lo.e.
< CIh e lloq, +BH?
< Ch Y2 eBllo, + h*+1)
Analogously

le lloe, < Ch™2[leFllog, + A1),

Therefore,

/ (eB) - [GP): — (eB) - [¢F- dsx| < CR* (IDlisr 0, + [Fllisi.)

% (lekllog, + ek llo, + A7)
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Now by the properties of the orthogonal projection IT*

< Ch* 2| D||ps1.005

/ (Vi x E) - (P dx / (Ve x E-TI¥(V, x E)) - (P dx
T T
where C depends on || E||;42,,. By an analogous procedure

< Ch* 2| F|ps1.0.s

/ (Vi x B) - ¢F dx

T

where C depends on ||B||;12,0, . Putting all the above calculations together, we arrive at,
|bn(En, Bi; G )1 < CBE (IDlkrrg, + [IFlesre,) (lerlloq, + ek oo, +25), (2.29)

where C depends on || E||y12.0,, [|Bllr+2.0.-

We will deal now with the term a;, which is

an(fr, En,Br, () = an1(fn, §) + ana(fo, En, Ba; (). (2.30)

First, we have

an1(fa; C) :/

elv - Vi (f dxdv + / / efv[CFadsxdy — [ Vif -vCF dxdv

Th

The first term can be easily bounded, by using Lemma 2.3.1.

< Chk||6£||0,f2’|90”k+1,9.

/ elv - V(¢ dxdv
77L

/ / el V(¢ dssdv
W JEs

Similarly,

< Cllep e 16 I xe.

< CHM2Ylef |l rowe, [@llk0
< CH Y2 (||l oxe, + 1l xe) I @lles.a
< Ch¥(lleflloq + h M) lellkri,o-
For the last term notice that by the properties of the projection IT* and the fact that
I[1*(Vyf - v) is a polynomial of degree £,

Vif - v dxdv = / (Vof - v —TIF(Vf - V) dxdv
Tr Tn

< CR* 2|l llks1,0,
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where C' depends on || f||;+2.0. By using all the calculations above, we can conclude that

lan1 (fn; ¢ < CR e loallellksio + CR*E o llkri0, (2.31)

where C depends on || f||;+2,0. To conclude our proof, we only need to bound ay, 5, this

time we will do things a little bit different, notice that

an2(fo En,Bp, () = anao(f. Epn, By, () — ah,2(€£7Ehtha 7).

We will get started by noting that f(E;, + v x By) = f{E, +v x B}, = f (E, + v X By,),
then
an2(f, En B, §f) = — | f(En+v x By) - Vi dxdv
Th
—i—/ f(En+v xBy) - [([], dxdv
Tz e,
= [ flef +vxep) Vy( dxdv — / / flef +v xe2) - [¢f], dxdv
T 7z Je,

+ Vof - (E+v x B)( dxdv.
Th

We obtained the last inequality by adding and subtracting fTh fE+vxB) -V dxdv,

integration by parts, and the fact that V, - (E + v x B) = 0. in this way

el +v xey) - Voo dxdv| < Ch*([lelog., + llei oo )ll¢ 10,

Tn

and

< CR Y2 (lleg o, + ller o) 2l

/ / flef +v xep)-[¢f], dvdx
o JE

Last but not least by the same arguments as previous estimates

va-(E+v><B)§,‘fdxdv:/ (Vof - (E4+v xB) —II*"V,f - (E+v x B))¢ dxdv

Th Th

< Ch**2[|olk110,
where C depends on || f||i+2.0, | Ellk+1.0. [|Blls+1,0.. We can conclude that
lan2(f, Bn, Bus )| < CRE(lleg llog. + lex log ) lellkrra + CR* | pllkro.  (232)
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Finally we just need to estimate

ah72<€£,Eh,Bh; ) = —/ e£ (En, +v x By) - Vi dxdv
Th

+/ / el (B, +v x By) - [¢Fy dsydx
ha: v

We have

/ el (Ej +v x By) - V(¢ dxdv| < Ch¥|le] lloo(|Enlloon. + [Bnlloson) l¢lliio
T

< Oh*leflloaller oo, + ller oo, + ITEE o0, + ITEBlocca)ll¢lie
< O =2 leploalle o, + e oo @l
+ Ch¥lleglloa(IEllo s, + IBlloc.) @l

< CH et lloaller]

0.0, + llePllog. + PN @llkrr0 + CR el llo.oll@llrie

< CW¥|leflloa(h™ " llegllog. + =" leR lo.q. + Dlelie.

Here we used the fact that whenever d, =1, 2, 3, k + 1 — d, /2 > 0, Lemma 2.3.2 and the

fact that II, is bounded in any LP-norm (1 < p < o0) [49, 50],

MElo.00.0, < C[[E

0,00, 9 HHJEBHO,OO,QI S CHB”O,OO,QI'

Finally

/ / el (By +v x By) - [(], ds,dx
h v

< CH*YV2(|Eplloceq, + IBallocc, el

0.7 x|l k1.9
< CH (| Bnllocc.o. + IBalloson )™ (lepllor, + 5 I fllerro)llellie

< Ch*(||Enlo,000, + |1 Bn

0.00.2.) (et llozn + B Flern)llellist0

< O (lepllom + R (42 llog, + e log, + Dllollee.

In this way we conclude that

lana(ens Ba Bri 7)) < CR(llef llom + R (A= log, + A" eFllog, + Dlielie

(2.33)
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Then by putting together (2.29), (2.31), (2.32), (2.33), and using Theorem 2.1.1, we have

lan(fu, En, Bu; ¢F) + bn(En, Br; ¢, (P
< CR*(|ID|rs1,0, + IFllerr.0. + lelliire) (lerlloo. + e log, + A*)
+ CR*(|le} oz, + R (™2l ef loq, + B 2||eR o0, + Dll@llk10

< CH*Y2 (| Dlisrg, + [Fllig, + ¢lliro) .

where we have used k + 1/2 — d,/2 > 0. An application of Cauchy-Schwarz inequality

concludes the proof. O

Lastly, we need to estimate the third term, Oc.

Lemma 2.3.6 (Consistency). We have

T 1/2
00| < Ch2+1 [ [ el dt] (2.34)
0

where C' depends on the upper bounds of |0, f k1.0l fllkr1.0 1f]1 so0r 1El100.00r [Bll10c.0.
|E|lk+1.0., [|Bllk+1.0, over the time interval [0, T, and it also depends on the polynomial degree

k, mesh parameters oy, o, and o, and domain parameters L, and L,.

Proof. The terms inside the integral of ©¢ can be splitin I + /1, where
I'=(fn, )0 — an(fn, En, Bp; @) + ln(In, F)

I = (Eha Ft)Qz + (Bh7 Dt)ﬂz - bh(Eha Bh; F7 D)+F(f7 Ea B; @)

since ¢ is a smooth function, [¢], = 0 and [¢], = 0, in this way, by using (2.23a), and the

definition of {;,, we conclude that,

I'=(fn,—Vv-Vxp— (E+vxB) - Vyp+v-Flg—an(fu, En,Br;¢) + n(Jn; F)

= —/ fuv - Vypdxdv — / fmE+v xB) - Vypdxdv — 1,(J,; F)
Th Q

+ fav - Vypdx + / frn(En +v X By) - Vypdxdv + 1,(J; F)
T Q

= - / fulel +v x e?) - Vypdxdv.
Q
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On the other hand, by using (2.23b) and (2.23c), since F and D are smooth functions
[F], = [D], = 0,we have that

IT = (Ep, Vx X D)7z — (B, Vi X F) 7 — by (Ep, By F, D) + F(f, E, B; ¢)
— / fEL - Vypdxdv + / fBp - (v X Vyp) dxdv
Q Q
= (Ehavx X D)Thz - (Bha Vi X F)Thl - (Ehavx X D)Thz + (Bhyvx X F)Thz
— / f(E,+v xBy) - vaodxdv+/ f(E+v x B) - Vypdxdv
Q Q
= / fleF +v xeP)  Vypdxdv.
Q
We obtain
I+11= / el (eF 4+ v x €B) - Vyp dxdv
Q
< Cletllallierllo, + leR o) Vvelloon
< Clepllaller o, + llegllo) 1 ellks10

where we used the Sobolev inequality [51], |Vy¢|lc.0 < C|l¢llk+1,0, which requires & >

(d; + d,)/2. Using Theorem 2.1.1, we conclude the proof. N

It is easy to transform the dual problem (2.23) to an initial value problem (2.21) by
changing time ¢’ = T — t. Then using Lemma 2.3.3, where A;(x,v,t) = —v, Aa(x, v, 1) =
—(E4+vxB),As(x,v,t)=v,g=fandl =k +1,

lelksrn + IR o, + 1Dk, < ClRIE 0+ I8Ene, + 1D 0.] (2.35)

where C depends on || f{| e ((0,7);w+2.0¢(2))- Then an application of Theorem 2.1.1 gives us

|(e](T), ®)a + (ef (T), §)a, + (ep(T), D)o, | < Ch2k+1/2\/l|<1>|li+1,g + 181710, + 1D17510,
(2.36)

Therefore the estimate for the zero-divided difference negative-order norm is given by

I(f = fu, E = En, B = Bl —x11).0
_ sup (f = fn, ®)a+ (E—Ep, o, + (B— By, D)

Qz S Ch2k+1/2. D
secr@grec=@it L J0l2,0+ 81200, + 1910,
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2.4 Numerical Experiments

In this section, we validate our theoretical results using several numerical tests. In
particular, we want to demonstrate the performance of the post-processing technique for
the VA system and the VM system. We heavily use the fact that the VM (VA) system
is time reversible to provide quantitative measurements of the errors. In particular, let
f(x,v,0), E(x,0), B(x,0) denote the initial conditions and f(x,v,T), E(x,T), B(x,T) be
the solution of the VM system at ¢t = 7'. If we choose f(x,—v,T), E(x,T), —B(x,T) as
the initial condition at ¢ = 0, then evolving the VM system to ¢t = T, we will recover
f(x,—v,0), E(x,0), —B(x,0).
24.1 Vlasov-Ampére examples

We consider two classical benchmark examples.
¢ Landau damping;:
f(z,v,0) = fa(v)(1+ Acos(kx)), =z €]0,L],vel[-V,Vl], (2.37)
where A = 0.5,k = 0.5, L = 4m, V, = 6w, and fy;(v) = —=e """/,
* Two-stream instability:
f(z,v,0) = frs(v)(1+ Acos(kx)), x€][0,L],ve[-V., V], (2.38)

where A = 0.05, k = 0.5, L = 4, V. = 67, and frs(v) = Z=v?e /2.

Notice that in both examples we have taken V, to be larger than the usual values in the
literature in order to completely eliminate the boundary effects and accurately reflect the
accuracy enhancement property.

In Tables 2.1, we run the VA system with initial condition from Landau damping to
T = 1 and then back to 7" = 0 and then we apply the SIAC filter, and compare it with
the initial conditions. We use the third order TVD-RK method as the time integrator [52].

To make sure the spatial error dominates, we take At = CFL/(V./Ax + Eyax/Av) for P?,
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E...x denotes the maximum value of E(-, T) in 2, for P? we take At = CFL/(V,/(Ax)%3 +
Epnaz/(A0)%3), and At = CFL/(V,/(Ax)3 + Ea2/(Av)7/3) for P2, For P! and P? we take
the CFL = 0.1, and we take the CFL = 0.2 for P2. From the table, we observe (k + 1)-th
order of convergence for the DG solution before post-processing for both f and E. We
can clearly see that we improve the order of the error to at least O(h?*1/2) after post-
processing.

In Figure 2.1 we plot the errors of the numerical solution before and after post-processing
for P! and using 128 x 128 elements. We can see that the errors before post-processing are
highly oscillatory, and that the post-processing smooths out the error and greatly reduces
its magnitude. In Figure 2.2, we plot the errors of the approximations for E obtained
when solving using a 128 x 128 mesh with P! and 32 x 32 mesh with P. We can clearly
see that the errors before post-processing are highly oscillatory, and the post-processing
gets rid of the oscillations and dramatically reduces the magnitude of the error.

Another point that we want to make is the following: if we look at Table 2.1, for k& = 2
and a mesh of 64 x 64, the L?-errors before and after post-processing are similar in magni-
tude. However, if we look at Figure 2.3 which plots the absolute value of the error in f in
this case, we can clearly see that the L>*-norm of the error of the filtered solution is much
smaller than the unfiltered solution. Therefore, by removing the spurious oscillations,
even if the L?-error is comparable, the L> error is further reduced by the post-processor.
This is probably due to the high oscillatory nature of the solution.

In Tables 2.2, we run the VA system with initial condition from two stream instability
to 7' = 1 and then back to 7" = 0 and then we apply the SIAC filter, and compare it with
the initial conditions. To integrate in time we used Fourth order Runge-Kutta for P! and
P? and third order TVD-RK method for P2. For P! and P? we take At just as in the Landau
damping example, and At = CFL/(V,./(Az)"* 4+ Epa/(Av)7/*) for P2. We use CFL = 0.2
for all cases. We can observe (k + 1/2)-order of convergence for the DG solution before

post-processing for both f and E. Just as in the Landau damping example we can see the
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Before post-processing After post-processing
mesh error f | order | error E | order | error f* | order | error E* | order
]P>1
16 x 16 | 1.42E-02 - 1.19E-02 - 2.28E-02 - 1.04E-02 -
32 x32 | 6.22E-03 | 1.19 | 3.16E-03 | 191 | 6.16E-03 | 1.89 | 2.84E-03 | 1.88
64 x 64 | 1.59E-03 | 1.97 | 5.65E-04 | 2.48 | 8.74E-04 | 2.82 | 4.36E-04 | 2.70
128 x 128 | 4.08E-04 | 1.96 | 1.12E-04 | 2.33 | 1.10E-04 | 2.99 | 6.31E-05 | 2.79
256 x 256 | 1.03E-04 | 1.98 | 2.51E-05 | 2.16 | 1.37E-05 | 3.00 | 9.01E-06 | 2.81
512 x 512 | 2.60E-05 | 1.99 | 6.14E-06 | 2.03 | 1.71E-06 | 3.00 | 1.71E-06 | 2.39
P2
16 x 16 | 7.08E-03 - 1.97E-03 - 2.09E-02 1.88E-03 -
32 x32 | 1.O8E-03 | 2.71 | 1.13E-04 | 4.12 | 2.87E-03 | 2.87 | 1.08E-04 | 4.12
64 x 64 | 1.35E-04 | 3.00 | 6.62E-06 | 4.10 | 1.20E-04 | 4.58 | 5.15E-06 | 4.39
128 x 128 | 1.63E-05 | 3.04 | 5.59E-07 | 3.57 | 2.70E-06 | 5.47 | 2.04E-07 | 4.66
256 x 256 | 2.01E-06 | 3.03 | 6.57E-08 | 3.09 | 5.29E-08 | 5.67 | 5.75E-09 | 5.15
P3
16 x 16 | 1.73E-03 - 2.19E-04 - 2.16E-02 - 9.71E-05 -
32 x 32 | 1.52E-04 | 351 | 7.18E-06 | 4.93 | 2.60E-03 | 3.05 | 3.09E-06 | 4.97
64 x 64 | 1.06E-05 | 3.84 | 1.30E-07 | 5.79 | 5.65E-05 | 5.52 | 7.52E-08 | 5.36
128 x 128 | 6.45E-07 | 4.04 | 3.42E-09 | 525 | 3.95E-07 | 7.16 | 8.24E-10 | 6.51

le-2

Error

Error

Table 2.1 L? errors for the numerical solution and the post-processed solution for Landau
Damping.

Figure 2.1 Errors for f before (on the left) and after post-processing (on the right) for
128 x 128 elements and P'. Landau damping.
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—— Before post-processing —— Before post-processing
--- After postprocessing -~ After postprocessing
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(a) 128 x 128 and P! (b) 32 x 32 and P?

Figure 2.2 Errors before (solid line) and after post-processing (dashed line) for E for dif-
ferent mesh sizes and P*. Landau damping. T = 2.

le-3

|Error|
|Error|

Figure 2.3 Absolute value of errors for f before (on the left) and after post-processing (on
the right) for 64 x 64 elements and P2. Landau damping.

improvement of the error to O(h?++1/2) after post-processing.

In Figure 2.4 we plot the errors of the numerical solution before and after post-processing
for P! and using 128 x 128 elements. We can arrrive to similar conclusions as in the Landau
damping case.

Figure 2.5, we plot the errors of the approximations for E obtained when solving using
a 16 x 16 mesh with P? and 32 x 32 mesh with P. We can clearly see how the SIAC filter,
gets rid of the spurious oscillations and dramatically reduce the magnitude of the error.

Now we provide plots comparing the solution profile before and after post-processing

30



Before post-processing After post-processing
mesh error f | order | error E | order | error f* | order | error E* | order
Pl
16 x 16 | 2.63E-02 - 3.24E-03 - 3.46E-02 - 3.12E-03 -
32 x 32 | 5.58E-03 | 2.23 | 2.13E-04 | 3.93 | 9.83E-03 | 1.82 | 1.50E-04 | 4.38
64 x 64 | 2.23E-03 | 1.32 | 4.54E-05 | 2.23 | 1.19E-03 | 3.05 | 2.45E-05 | 2.62
128 x 128 | 6.08E-04 | 1.88 | 1.04E-05 | 2.13 | 8.91E-05 | 3.74 | 3.66E-06 | 2.74
256 x 256 | 1.78E-04 | 1.77 | 249E-06 | 2.06 | 7.06E-06 | 3.66 | 5.15E-07 | 2.83
512 x 512 | 498E-05 | 1.84 | 6.13E-07 | 2.02 | 6.80E-07 | 3.38 | 6.30E-08 | 3.03
IP)Q
16 x 16 | 7.60E-03 - 1.07E-04 3.54E-02 3.91E-05 -
32 x32 | 236E-03 | 1.69 | 545E-06 | 4.30 | 9.81E-03 | 1.85 | 4.88E-06 | 3.00
64 x 64 | 296E-04 | 299 | 418E-07 | 3.70 | 5.48E-04 | 4.16 | 3.22E-07 | 3.92
128 x 128 | 4.69E-05 | 2.66 | 3.67E-08 | 3.51 | 1.28E-05 | 5.42 | 1.14E-08 | 4.81
256 x 256 | 7.15E-06 | 2.71 | 4.72E-09 | 296 | 2.23E-07 | 5.84 | 5.16E-10 | 4.47
IP)3
16 x 16 | 5.06E-03 - 2.31E-05 - 3.68E-02 - 1.88E-05 -
32 x32 | 1.09E-04 | 554 | 1.18E-06 | 4.29 | 1.02E-02 | 1.85 | 8.97E-08 | 7.71
64 x 64 | 2.69E-05 | 2.01 | 1.99E-08 | 5.89 | 3.47E-04 | 4.88 | 6.56E-09 | 3.77
128 x 128 | 2.01E-06 | 3.75 | 2.74E-10 | 6.18 | 2.83E-06 | 6.94 | 9.68E-11 | 6.08

le-3

Error

Error

Table 2.2 L? errors for the numerical solution and the post-processed solution. Two stream
instability.

Figure 2.4 Errors for f before (on the left) and after post-processing (on the right) for 128
elements and P!, using two-stream instability.
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Figure 2.5 Errors before (solid line) and after post-processing (dashed line) for E for dif-
ferent mesh sizes and P*. Two stream instability. T = 2.

for a longer computational time. To compute those plots, we use a third-order Runge-
Kutta method with At = CFL/(V./Az + E,,.,/Av)) and CFL = 0.1. In Figures 2.6 to 2.9,
we show a comparison of contour plots of the numerical solution for f before and after
post-processing with different mesh size and k£ = 1, 2. There is visible improvement of the

resolution of the solution, particularly for k& = 1.

2.4.2 Vlasov-Maxwell example

In this part, we will test our post-processor for the VM system. Specifically we will use
the streaming Weibel (SW) instability as an example. This is a reduced version of the VM
equations with one spatial variable, x5, and two velocity variables v; and v,. The variables
under consideration are the distribution function f(xs, vy, v9,t), a 2D electric field E =
(E4(xa,t), Ea(x2,t),0) and a 1D magnetic field B = (0,0, Bs(x3,t)) and the reduced VM

system reads as

Ouf +vafu, + (EL +v2B3) fo, + (Ey — v1B3) fu, =0, (2.39a)
0B; O0E; oFE, 0Bs; . 0FEs

ot Or.’ ot o Y ot % (2.39b)
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Figure 2.6 Comparison of contour plots before (left) and after post-processing (right) for
different mesh-sizes. Landau damping, k = 1 and 7" = 10.
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(a) 16 x 16

(b) 32 x 32

‘i
|

(c) 64 x 64

Figure 2.7 Comparison of the definition of the contour plots before (left) and after post-
processing (right) for different mesh-sizes. Landau damping, £k = 2 and 7" = 10.



(a) 16 x 16

(b) 32 x 32

(c) 64 x 64

Figure 2.8 Comparison of contour plots before (left) and after post-processing (right) for
different mesh-sizes. Two stream instability, £ = 1 and 7" = 20.
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(@) 16 x 16

(b) 32 x 32

(c) 64 x 64

Figure 2.9 Comparison of the definition of the contour plots before (left) and after post-
processing (right) for different mesh-sizes. Two stream instability, k = 2 and 7" = 20.
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where

jlz/ / f(@2, 01,02, t)v1 dvrdos, j2:/ / f(@2, 01,02, )02 dvydv,. (2.40)

The initial conditions are given by

1
f(x2,v1,v9,0) = _ﬂe—vg/ﬁ[(ge—(m—wo,ﬂQ//B +(1— 5)6_(7]14‘0-1072)2/18]’ (2.41a)
™
El(l’g,vl,’l)g,O) = EQ(Z’Q,Ul,UQ,O) = O, Bg(l‘z,vl,vg,O) = bSin(lio.TQ), (241b)

which for b = 0 is an equilibrium state composed of counter-streaming beams propagat-
ing perpendicular to the direction of inhomogeneity. Following [6, 19], we trigger the
instability by taking 3 = 0.01 , b = 0.001 (the amplitude of the initial perturbation of the
magnetic field). Here, Q, = [0, L,] , where L, = 27/kq, and we set 2, = [—1.8,1.8]%. We

consider the following set of parameters,
0= 05, Wo,1 = Wo,2 = 03, Rg = 0.2.

In Table 2.3, we run the VM system with initial condition from SW instability to 7" = 5
and then back to 7" = 0, we then apply the SIAC filter and compare it with the initial
conditions. We use a third order TVD-RK method as the time integrator. To make sure
the spatial error dominates, we take At = O(Ax) for P! and At = O(Az/3) for P?, in both
cases we used CFL = 0.1. From the table we can observe (k + 1)-th order of convergence
for the DG solution before post-processing for f, E, Es and B;. After post-processing we
can see overall the order of convergence improves to O(h%*+1/2),

In Figure 2.10 we plot a cross-section of the errors of the numerical solution at z, ~
0.157 before and after post-processing for P! using 80 x 80 x 80 elements. We can see that
before post-processing that the errors are highly oscillatory, and after post-processing the
error surface is smooth out and the error is much smaller in magnitude. In Figure 2.11 we
plot the errors of E;, Ey and Bs, we used the same number of elements as in Figure 2.10,

We can clearly see similar conclusions.

37



Before post-processing

Mesh | Error f | Order | Error Bg | Order | Error E; | Order | Error E; | Order
Pl

20 x 20 x 20 2.20E-01 - 2.61E-06 - 2.12E-06 - 5.31E-06 -
40 x 40 x 40 7.17E-02 | 1.61 6.54E-07 | 2.00 | 7.06E-07 | 1.58 | 5.46E-07 | 3.28
80 x 80 x 80 1.92E-02 1.90 1.63E-07 | 2.00 1.96E-07 1.85 7.05E-08 2.95
160 x 160 x 160 | 4.89E-03 | 1.98 | 4.07E-08 | 2.00 | 5.13E-08 | 1.94 | 6.40E-09 | 3.46
P
20 x 20 x 20 1.07E-01 - 2.56E-07 - 2.49E-07 - 1.02E-06
40 x 40 x 40 1.64E-02 | 2.70 | 3.14E-08 | 3.03 | 293E-08 | 3.09 | 9.72E-08 | 3.40
80 x 80 x 80 2.23E-03 | 2.88 1.63E-09 | 427 | 1.90E-09 | 3.95 | 6.93E-09 | 3.81
160 x 160 x 160 | 2.92E-04 | 2.93 141E-10 | 3.52 | 1.72E-10 | 3.46 | 2.46E-10 | 4.81

After post-processing

Mesh | Error f* | Order | Error B; | Order | Error Ef | Order | Error E} | Order
Pl
20 x 20 x 20 2.95E-01 3.17E-07 1.08E-07 5.08E-06

40 x 40 x 40 6.13E-02 | 227 | 7.16E-08 | 2.14 | 149E-08 | 2.87 | 4.38E-07 | 3.54
80 x 80 x 80 5.87E-03 | 3.38 | 1.12E-08 | 2.68 | 3.11E-09 | 226 | 6.33E-08 | 2.79
160 x 160 x 160 | 4.19E-04 | 3.81 | 2.01E-09 | 248 | 747E-10 | 2.06 | 6.22E-09 | 3.35
P
20 x 20 x 20 2.89E-01 - 1.24E-08 - 9.06E-09 - 4.41E-07 -
40 x 40 x 40 4.58E-02 | 2.66 | 5.61E-10 | 446 | 297E-10 | 493 | 2.63E-08 | 4.07
80 x 80 x 80 2.03E-03 | 449 | 294E-11 | 425 | 1.31E-11 | 450 | 2.57E-09 | 3.36
160 x 160 x 160 | 4.43E-05 | 5.52 | 1.65E-12 | 4.15 | 5.55E-13 | 4.56 | 1.12E-10 | 4.53

Table 2.3 L? errors for the numerical solution (Above) and the post-processed solution
(Below). SW instability.

le-1

Error
Error

Figure 2.10 Cross-sectional plot of the error for f at z, ~ 0.157, before (on the left) and
after post-processing (on the right) for 80° elements and P'. SW instability.
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Figure 2.11 Errors before (solid line) and after post-processing (dashed line) for the differ-
ent fields using mesh size of 80 x 80 x 80 and P'. T" = 10. SW instability.
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CHAPTER 3

NUMERICAL ANALYSIS OF A HYBRID METHOD FOR
RADIATION TRANSPORT

In this Chapter we will analyze a Hybrid method for Radiation transport introduced in
[2]. The remaining of the chapter is organized as follows: In Section 3.1, we introduce the
RTE, reduce it to the purely scattering problem, recall the Py method, and then describe
the setup of the hybrid. Having established the setting of of the problem, we then sum-
marize the main results of this chapter . In Section 3.2, we derive error estimates for the
Py equations. In Section 3.3, we analyze the hybrid problem. In Section 3.4, we generalize
results back to the original RTE with non-zero absorption. The appendix contains some

generic results used for the estimates of this chapter.
3.1 Background

3.1.1 The radiation transport equation
We consider a time-dependent transport equation with periodic boundaries, isotropic

scattering, unit-speed particles, and diffusion scaling;:

- 1
0,0 + Q- v, 0 4 Ty — (ﬁ - 5Ja> T +eQ, Te=— [ w40, (3.1a)
€ € AT Js2

e, =g. (3.1b)

Here ¥¢ = ¥¢(x,Q, t) is a function of position z € X = [0,27)?, direction of flight Q) € S?,
and time ¢ > 0. It can be interpreted physically as the density of particles at time ¢ with
respect to the measure d2dz. Particles interact with a material background characterized
by an absorption cross-section o, > 0, total cross-section o, > ¢, (Which accounts for scat-
tering and absorption), and a known source ) = Q(z,,t). The quantity o, — e?0, is the
scaled scattering cross-section, where the non-dimensional parameter ¢ > 0 characterizes
the strength of the scattering as well as the relevant time scale. Indeed, it is well-known

[32] that in the limit e — 0, ¢ — ¥° where ¥° is independent of angle and satisfies the
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diffusion equation of the form

1 1
oV -V, - [ —V, ) +0,0° =0, v = —/ g ds). (3.2a)
3o =0 Ar Jg

For g € L*(X x §?), 0y,0, € L™(X), Q € L*(X x $? x [0,00)) (3.1), is known to have
a semi-group solution ¥¢ € C([0,00); L*(X x S?)) [53, Theorem XXI.2.3]. If in addition,
Q- V.9 € L*(X x $?), then ¥¢ € C*([0,00); L*(X x S?)). We assume this is the case for
remainder of the chapter.

In order to facilitate a clear stability and error analysis, we assume that the cross-
sections o, and o are constant in space. This assumption on o, allows us to convert (3.1)

to a purely scattering system for the function ¢ = %" ¥=:!

0+ Q- Vb + b = 20 + g, E:i/ b dQ, (3.3a)
g g s2

V0o = 9, (3.3b)

where ¢ = €°*'() and ¢ := 0. Henceforth, we focus our analysis on (3.3). The results can
then be translated back to the case of non-zero absorption by undoing the transformation,
which gives exponential decay if o, > 0. This assumption is made for simplicity, but it
does introduce a measure of regularity into the solution that is not typical in applications.
Indeed, a more reasonable assumption is that the cross-sections are piece-wise smooth
and that the boundaries are equipped with inflow data. Hence the analysis here can be
viewed as a localized proxy for a more realistic scenario. A more sophisticated analysis

to include boundary and interior layers is the subject of future work.

3.1.2 The Py approximation
Given N € N, the Py method is a spectral discretization of the transport equation
with respect to the angular variable Q. Let {m, }¢ be the real-valued, orthonormal basis

of spherical harmonics, where ¢ > 0 denotes the degree and k € {—/, ..., ¢} denotes the

'To reduce notation, we suppress the dependence of ¢ on .
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order. For any u € L*(S?), the angular moment u, , is given by

Ug e = my U df). (34)
S2
For convenience, we collect the basis elements of degree / into vectors m, = (my ¢, ..., mu,)7,
and we denote by u; = (uy o, . . ., uM)T the vector of corresponding moments. Let P ~N(S?) C

L*(S?) to be the span of all spherical harmonics with degree at most N. Then the orthog-
onal projections Py : L%(S2) — Py(S?) and Py : L2(S?) — Py (S?) are given by

N N
PNu:ngTug:ZngkuM and PNu—(I Prn)u = Z ngk, (3.5)
=0 =0 k=—t (=N+1k=—¢

where 7 is the identity operator.

The Py approximation of (3.3) seeks a function

N N l
PV (@, Q1) =) ml QU (z,6) = > mur(Qey(x,t) (3.6)
=0 =0 k=—¢
such that
0N+ Py (@ V) + T = TV ePye, Y= [ wVaa. 67a)
Vim0 = Pyg. (3.7)

When expressed in terms of the moments 1])év , the Py method yields the following linear,

symmetric hyperbolic system:

3 .
A + Z al?9, pN =¢eqp, forl =0, (3.8a)
edaby + Z NTo, ), Z ag ) 0u 0P+ ﬂ’z =eqq forl<(<N -1, (3.8b)

DN + Z(a?@)Tamw%_l +20Y = ey, forl=N. (3.80)

Formulas for the elements in the matrices a}” € R2~)*(2+1) can be found in the appendix
of [44]. In the current work, we rely only on the fact the they are bounded in the operator

norm, specifically that Ha;) |2 < 4.
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The exact moments ), = sz md(2 satisfy an infinite system of equations with a

structure similar to (3.8):

3
0, +> a0, = £qo, for (=0, (3.9)
=1
e+ 3 (0l 0, +> a0 b + b = ear, for ¢ > 1. (3.10)
i=1 1=1

In particular, the Py equations for {*" can be obtained by truncating (3.9) at / = N and

then neglecting the moment 1}, , that would otherwise appear in (3.8¢).

3.1.3 The hybrid method
The hybrid method is based on a separation of + into a collided component 1), and an

uncollided component 1,. These components satisfy the coupled system
20ba + Q- Vath + 20 = 24, (3.11a)
0o+ Q- Vit + T = e + 20, (3.11b)

where, as before, a bar denotes the angular average of S?. The idea of the hybrid is to solve
(3.11) using a high-resolution angular discretization for 1, and a low-resolution angular
discretization for v, over a time step At = T'/M, where M € N, and then perform a
reconstruction to reinitialize ¢, and . for the next time step. To formalize this procedure,
define a set of temporal grid points 0 =ty < t; < ... <ty =T, and form € {1,2,..., M},
let f(t,,) = lims_,o+ f(tn — 9) for any function f of ¢ that is continuous on [t,,_1,t,,). Then
form € {1,2,..., M}, ¢y, and ¢, satisfy the following system of equations over the

interval [t;,—1,1m)

gatwu,m + Q- vmwu,m + g¢u,m = £&q, (312&)
0o + 2+ Votbom + Zem = = B + Veam). (3.12b)
g, m = ]_,
¢u7m|t=tm,1 = (3.12¢)

Yemlyy, = 0. (3.12d)
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The intuition behind this splitting is that (3.12a) can be discretized with a high-resolution
angular discretization but solved more efficiently than (3.3) since angular unknowns are
no longer coupled. Although (3.12b) features the same type of angular coupling as (3.3), it
can be solved with fewer degrees of freedom because the source 1, ,, is, in general, more
regular than q. However, because v, ,,, decays exponentially whenever o > 0, the hybrid
is only solved for a time step At before the relabeling in (3.12d)- (3.12c) is implemented.

The enables the hybrid to capture more high-resolution features than (3.12b) can do alone.

3.1.4 Angular discretization of the hybrid

We focus now on the angular discretization of (3.12). The strategy of the hybrid is
to discretize (3.12a) in angle with a high-resolution method and (3.12b) in angle with a
low-resolution method. In practice, there are a variety of strategies and combinations
available to do so. For the purposes of analysis, we assume that (3.12a) is solved exactly
and that (3.12b) is discretized with a Py method. That is, we seek ¢ = ¢, + 1L, where

foreachm € {1,2,... M}

(Vs ¥00) € Clltm—1,tm); X x L*(S?)) X C([tm-1,tm); X x Pn(S?)) (3.13)
satisfies
0 + Q- Vb, + gwiv,m = eq, (3.14a)
(3.14c¢)
g7 m = 1,
] =0, .| = (3.14d)

tztm_ 1 t:tm— 1

IJJ.\,]m—l(t;’L—l) + @Dé\,/m—l(t;z—l) m > 1.

We compare the accuracy of the solution defined in (3.14) with the monolithic Py method
(3.7a), using the same value of N. To simplify the numerical analysis of these two models,

we keep the time and space variables continuous.
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Since (3.7a) and (3.14b) have the same computational complexity, the goal is to asses
the additional benefit of solving (3.14a). Clearly the additional cost of solving (3.14a)
involves both memory and run-time; both are fairly easy to quantify. However, assessing
the gains in accuracy is not as simple. Thus is important to understand these gains in
order to better quantify observed improvements in run-time efficiency provided by the

hybrid.

3.1.5 Preview of main results.

Let s > 1 be the number of angular L? derivatives in the solution ¢ and let N be an
integer such that N > s — 1. Let e’ = ¢ — ¢V be the error in the Py approximation
(3.7a), and let e}, = v — (¥, + ¥L),) be the error in the hybrid at the M-th time step.
The main results of the chapter are the P error estimate in Theorem 3.2.1 and the hybrid
error estimate in Theorem 3.3.2. We compare these errors for two different regimes: first,
when o =< 12 and € — 0 (the diffusion regime) and second, when ¢ =< (1) and o — 0 (the
purely absorbing regime).’

When ¢ < 1 and ¢ < 1, Theorem 3.2.1 implies that

s—1 s—1

T 5 T8 € 5

N —oT/e
2xxs2)(T) < —— / : (—)
lle™ [ z2xxs2) ( )NWH)S e §. :€z+1+ = TO

=0

. (3.15)

Thus with sufficient regularity, the Py approximation is spectrally accurate and grows
linearly in time for large 7. The first and third term in brackets depend on whether or not
q and g are isotropic (independent of angle). The first term is due to initial layers when
g is non-isotropic, and the third terms arises when ¢ is non-isotropic. When g and ¢ are

isotropic, the Py error reduces to (see Corollary 3.2.2)

es=1IT
leM |2 xs) (T) S o

ERESE (3.16)

For the hybrid method the initial condition and source are always isotropic. Thus

ZRecall that a < b if and only if a = O(b) and b = O(a)
3Technically, this is the streaming regime for ¥, since there is no absorption.
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Theorem 3.3.2 gives the following compact bound

s

m. (3.].7)

et 2 xxss) (T) <

Thus the hybrid method comes equipped with a better error estimate than the Py method,
and the estimates agree when the data is isotropic. This suggests that the hybrid method
is at least as accurate as the Py approximation when ¢ < 1 and ¢ =< 1. In addition, the
hybrid estimate is independent of the time step At used for re-initialization in this regime.

For both the hybrid method and Py approximation, the errors converge to zero as
¢ — 0 whenever s > 1 (modulo the initial layer in (3.15)). This fact is consistent with the
fact that the Py method recovers the diffusion limit (3.2a) whenever N > 1 [54].

For the second regime of interest, 0 < 1 and ¢ =< 1, Theorem 3.2.1 gives the Py error

estimate
ps(T'/e)
(N + 1)

where p,(w) = 32570 ¢;(T)w' is a polynomial of degree s+ 1 with non-negative coefficients

€™ r2(xxs2) (T) S (3.18)

¢(T) = a;T + b;, a;, b; > 0. Here the hybrid estimate provides a significant improvement:

AT ) Ato

||6ﬁHL2(X><S2)(T) 5 m mln(l, ?) (319)

In particular, |le};||z2(xxs2)(T) = 0, when o = 0. This result is expected since in that case
the uncollided solution and the transport solution agree. As expected, the error is mono-
tonic in At; however, small time steps require more evaluations of the uncollided equation

and more reintializions. In practice, this additional cost must be taken into account.
3.2 Py Analysis

3.2.1 Spherical harmonics preliminaries
A natural space to analyze the transport equation and the Py approximation is the
Sobolev space H:(S?). To describe this space, we recall some elementary facts about

spherical harmonics which can be found, for example, in [55, 56]. For u,v € L*(S?), let

(1, 0) 2(2) = Zum and  |[ulfa@) = > [lwl?, (3.20)
=0
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where
¢

¢
u;w = Z U,V k and HI,Ig||2 = u;ug = Z |Ug’k‘2. (321)
k=—¢ k=—¢

A standard way to define Sobolev spaces on the sphere is via the Laplace-Beltrami op-
erator A,, which is the spherical component of the Laplacian and for which the spherical

harmonics are eigenfunctions: —A.Y;; = ¢(¢ 4+ 1)Y; ;. For even integers s, the usual norm

s/2 00 1/2 2s
1 ) 1
‘ (Z + Ao) ul|l = (EZE - bg”llg” > s bg = (5 + 6) . (322)

The definition of this inner product extends naturally to all s € R, and the space H:(S?) is

is

[l s (s2) =

then the completion of smooth functions under the H*(S*) norm [55].
Rather than working directly with the H$(S?) norm in (3.22), it is convenient in the
analysis below to use an equivalent norm. For s > 0, define the H*(S*) semi-norm and

norm by

0o 1/2 12
|U‘Hs(§2) = <Z beHllgH2> and ||uHHs(S2) = (SHUH%Q(SQ) + |u %{s(gZ)) y (323)
l=s

respectively, where the sum in the semi-norm definition in (3.23) begins at s for technical
arguments that are used in the proof of Lemma (3.2.5) below. When s = 0, the norms
coincide: |[|ul|gos2) = [|ullgos2) = ||ullr2s2). More generally, the following equivalence

holds.

Lemma 3.2.1 (Norm equivalence). For any s > 0,

cr(s)lull =2y < llullmgszy < ca(s)ullmss2)- (3.24)

where

ci(s) = and cy(s) = . (3.25)
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Proof. When s = 0, the norms are equal, so (3.24) holds trivially. Thus assume that s > 1.

The first inequality in (3.24) follows from the fact that

2s
1
Hs(S?) — SZ HUEHQ + Z < + 6) |LIgH2 < 382 < + 6) |UgH2 = W”U’ %JS(SQ)'

7

(3.26)
To prove the second inequality in (3.24), we use the elementary inequality
1 2s
4_1<(8_§> . s>1, (3.27)
to conclude that
s—1 1 2s 1 1 2s
Hu! %JS(SQ) = (5 + £> HU-€H2 + ’U ?1[5(S2) < g (S - §> SHUH%z(Sz) + ]u ?115(S2)
(=0
1 1\* 1
B S (3 - 5) 3““”%2(82 S ( - 5) ulfs (S?) (3.28)
5 1 2s
<2 (s=3) (shullfae + lulie ) = lea(s) 2 lullfery.
O
Lemma 3.2.2 (Approximation property). For s > 0 and N > max{0,s — 1},
1 1
I(Z = Pr)ullrzs2) < m\(z — Pn)ulmssz) < mw H(52)- (3.29)
Proof. From the definition of the projection Py in (3.5),
1 = 1" 1 (1 )\
L —+/ B — —+/ 2
Sl < e 3 (340) bl s i (54¢)
(=N+1 ¢=N+1 (=s
—_——— P ~ ~ ~- 4
7”(:Z PN)u||L2(SQ) :‘(I_,PN)U@_IS(SQ) _‘u‘iI‘(SZ)
(3.30)
Taking square roots of each term above yields the desired result. O

For vector-valued functions of space, we define the usual L*(X) inner-product and

norm by
(V,W)L2(X):/ v(z)'w(z)dr and HVH%Q( = (V,V)r2(x /Hv )P dz.  (3.31)
X
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The space H**(X x S?) = L*(X; H*(S?)) is the space of measurable functions u: X x $* —
R with the semi-inner product
00 2s
(u U HO:5 (X xS?) / Z ( —|—€> Ug( Vg Z < ) Ug,Vg)Lz(X) (332)
Xy l=s

such that the semi-norm

2s
- Z( +e) () dx—z( +£) ey (333)

is bounded.
Forr € Nygand s > 0 we define H"*(X xS?) to be the space of functions u: X xS? — R

such that the semi-norms.

3
|U|H<v5(X><SQ) = Z |a$ilmi2mxi§U|HO,5(X><S2). (334)

1402, yic=1
are bounded for all positive integers ¢ < r. These semi-norms above are equivalent to the
standard semi-norms, but are more convenient in the context of the RTE since
3
Q0 Vol grs(xxs2) < Z |0z 0| s (x xs2) = | U] et (x <82y, (3.35)
i=1
which will be used in the analysis below. Henceforth, the domain of integration for H*

and H"* will be left off when there is no ambiguity, i.e.,

’U Hs «— ‘U, H5(S?) and |U|Hr,s = |U|H7‘,S(X><SQ) (336)

Finally, for p > 1 and measurable functions u: X x $? x [a, 3] — R, we denote the space-

time semi-norms by

B 1/p
|| o (o gsrmey = ( / Julgrs dT) and  [ul e (fa);me) = eSS[Su]Plule (3.37)
e} tela,B

3.2.2 Stability of the Py system
In this section, we derive estimates on high-order semi-norms that arise in the sub-

sequent error analysis. The analysis requires iterated inequalities of Gronwall type (see
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Lemma .0.1 in the Appendix), so we define the following notation to simplify integrals
thatarise. Let 0 < a < ¢ < 8 < 00, and for any function f € L'([«, 3]), define the bounded

linear operator A, : L'([a, 8]) = C°(|a, 8]) and its powers A% k € N=°, by
7, k=0

AJf](t) == = / te*f’(H)/EQ f(rydr and AX[f](t) = " (3.38)
: AJAS @), k> 1

In addition, let 1 € L*(]a, 3]) be the function that is identically one, and let
Fo(t) = e ot/ t e o, f). (3.39)

It is clear from the definition in (3.38) A, is monotonic; that is, if 0 < f(t) < ¢(¢) for a.e.

t € [a, 5], then A, [f](t) < A,lg](t) for all ¢ € [«, 5].

Lemma 3.2.3. Let F,, be given as in (3.39). Then for all t > o and every k € N>,

k —o(t—a)/e2
AE[1](t) < min (E%C‘—“)) and ALE) () = LT )

€ klek

Proof. We first prove the bound in (3.40). Since e=¢~7)/¢* < 1, a direct calculation gives

k L " ldr - d L (t=a) 41
Aa[ﬂ](t)_g—k/cy/a /a lrydn = () (3.41)

On the other hand, it follows directly from the definition of A, that

ALG=S0-RE)<E — AnH<s (3.42)

g

Together (3.41) and (3.42) yield (3.40).

Qo
e

We prove the second statement in (3.40) by induction on k. When k = 0, the statement

follows trivially,
(t _ 06)0670'@704)/52

AP () = Falt) = T (349

Now let us assume the statement is true for arbitrary &, and

k+1 k 1 ! —o(t—7)/e? (T — a)ke_U(T_a)/ i
AL E(t) = Ao [AL[FL]] () = o e o dr, (3.44)
direct integration leads to,
t — a)k+1670(t7a)/€2
FRUE(t) = ( 4

AR = (345
O
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3.2.2.1 Estimates for the Py system

We derive evolution equations for the H"* semi-norms, defined in (3.34). For r = 0,
we test each equation in (3.8) by b}, integrate by parts, and then sum over ¢ € {s,s +
1,...,N}. This gives

€ g
SO o + 210N o = (P, ) .

-SS ((3) (e 2) ) (o () ),

L2 (X)

(3.46)

where 5, = (1 — d54) is used to handle the first non-zero term in the sum over /. For the

special case s = 0, (3.46) recovers the usual L? energy equation:

ed

O’ —_—
§E’|wN||%2(X><S2) + g”"‘ﬁN - wNH%?(XxS?) = 5(PNQ7¢N)%2(XxS2)- (3.47)

To find a closed estimate with respect to the H* semi-norms, we focus on the summation

in (3.46).

Lemma 3.2.4. Let s > 1and ¢ > s. Then

1 2s 1 2s 1 s 1 s—1
) - ——) < - - .
(€ + 2) Vs, (f 2) < 2es (ﬁ + 2) <€ 2) (3.48)

Proof. We first establish an elementary inequality. Since ¢ > s,

1 1 1 1 1 1
Lo (yt <(,_1 < (p_ 1\ 172 _
l+5 <£ 2) (1+€_%)_(£ 2) <1+S_%)_(€ 2)e (3.49)

Therefore
1 s—1 1 1 s—1 1 s—1
- <es i (f—Z < - , ,
(6—1— 2) <e (€ 2) _e<€ 2) (3.50)

We use (3.50) to show (3.48). There are two cases:

Case 1 ({ = s): In this case, 75, = 0. Since 2s > s + 1/2 and by (3.50),
1 2s 1 1 s 1 s—1 1 s 1 s—1
- = - — - <2 = — = .
(€+2) (3+2> (€+2) (€+2) < 2es (€+2> (f 2) (3.51)
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Case 2 (/ > s): In this case, v, = 1. Applying a binomial expansion and then (3.50) gives
1 1" &2 1\ 1\* N (2 1\
N CHEMWICHRCHEMGICS
k=0 k=0
25—1 k 251 k
2s (2s5—1 1 2s — 1 1
B < B
Lol ) (e) =R () ()
k=0 k=0

k
1 1 s 1 s—1 1 s 1 s—1
= - —9 - - <9 = i
(E—i— 2) 3< 2) <€—|- 2) < 2es (€—|- 2) (€ 2)

(3.52)
O

Lemma 3.2.5 (Semi-norm recurrence). Let s > 1, ¢ € L'([0,T]; H"*) and g € H™*. Then for

all t € 0,77,
[ |17 (1) < CsAo[[™ [rrro-1)(t) + [Prvglans Fo(t) + Aol Prvalans] (1), (3.53)
where Fy is defined in (3.39) and C'is a constant independent of the data.

Proof. We assume first that r = 0 and focus on the last term in (3.46). It follows from (i)
the induced norm bound ||a§i) |2 < 4[44], (ii) the bounds in Lemma 3.2.4, (iii) the Cauchy-

Schwarz inequality, and (iv) the H™* semi-norm definitions in (3.33) and (3.34) that

N 1 2s 1 2s 0 T
g + - - /s g - = N, ! axl ]V_ )
; (( 2) ’Y’Z( 2) ) (ll)é (az > Wi L2(X)

N s s—1
1 1 .
<23 (+3) (6-3) 1ol oo 1002 e

= (3.54)
N 1\ 2 12/ N 1\ 26=D) 1/2
< Os (Z (e+5) hod |%2(X)) (Z (©-3) \amiwn%zm)
l=s l=s
< CS|¢N|H0,S 8%1/1N|Ho,571.

Applying the bound above to the right-hand side of (3.46) and applying Lemma .0.1 gives
(3.53). The case r > 1 can be handled by differentiating the Py equations in space and

then repeating the arguments above. O
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For a general function ¢ € LP([a, 8]; H™*), let |@|1r((a,o;m0+5) : [, B] — R be the map
defined

|¢|LP([Q,0};HT~9) (T) = |¢|Lp([a’ﬂ;Hr,s).

Lemma 3.2.6 (Stability of higher-order semi-norms). Let ¢ € L'([0,T]; H™") and g € H™.
Ift €10, T, then

T

Hr0 (t) S |PNg

g0 + |PNq|L1([0’t];HT‘,O). (3.55)

If, in addition, s > 1, ¢ € L*([0,T); H*) and g € H" for each i,j such that 0 < i < r,

0<j<sandi+j=r+s,

yiﬂN’Hns (t) S C 3'./48 UPNg’HT+s,O + ’PquLl([07.];HT+S,O):| (t)
s—1

+C, Z Al [Fo| Py gl greis—i](t) + Cue Z —)AZ+1[|7>Nq|HT+ZS (),
(3.56)
where Fy is given in (3.39) where C is a constant depending only on s.
Proof. First we will prove (3.55) for s = 0, in which case H™® = L*(X x S?). From (3.47)

and the Cauchy-Schwarz inequality,

I e < <(Pra V)i < Pl 16V lsoeey  G57)

an application of Lemma .0.1, gives

1™ | z2x xs2) (1) < | Pngllz2xxs2) + Pl L o,:02(x xs2)) - (3.58)

Forr > 0, oV = O, wiy ...z, Y¥ satisfies (3.7a), with initial condition given by the following

Repeating the argument above gives, in analogy with (3.58),

||8£Bi1a71;2...$ir¢N||L2(X><S2)<t> S ||al‘i1$i2...$ir7)Ng||L2(X><S2) + ||a$i1a7i2...CBirPNq||L1([O,t];L2(X><S2))7

(3.59)
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Summing (3.59) over each permutation of the r derivatives 9,, 0, ---0,, and using the
definitions in (3.34) recovers (3.55).

We next prove (3.56). Let
brs(t) = [Pnglurs Fo(t) + eAo[|Pngla-<](t) and ¢, 4(t) = [N (D), (3.60)
where Fj is defined in (3.39). Then Lemma 3.2.5 gives the following recursion relation:
Crs(t) < CsAg[erirs—1)(t) + by s(2), s>1. (3.61)

Unrolling this recursion in s gives

s—1

Crs(t) < SIC°Ad[erasn] () + D

— (s —)!

s!

CZ'AE) [bT‘+7;,Sf’L'] (t)v (362)
and translating back to the semi-norms with (3.60) gives

[WN | grs (1) < 81O AS[[0N | grss0] ()
_l’_

i

—_

s—1

i . s!
C*[Pnglarsis—i Ag[Fo](t) + € Z (s — i)
- !

s!

i+l gitl o
(S — Z)' C AO [|PNq|HT+1,sfz](t).

Il
=)

(3.63)
We then apply (3.55) (with r replaced with r + s) to the first term on the right hand side
of (3.63).

3.2.2.2 Estimates for continuous system

In this section we extend the stability results for [/ |yr.s to |¢|yrs, using the infinite
moment hierarchy in (3.9). These estimates will be useful in deriving consistency esti-
mates. For the case r = 0, as in the previous section, we test each equation in (3.9) by b,

integrate by parts, and sum over ¢ > s. The result is analogous to (3.46), namely

19 ag
§8t|¢|?{o,s + EW@O» = e(q, V) go.s

3 o 1\ 28 1\ 28 N (3.64)
—ZZ<<€+§) — Yo, (6—5) ><1|)e, (") amwl> ,

i=1 ¢=s L3(X)
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As before, when s = 0, (3.64) recovers the usual L? stability result:

ed o —
5@”@/}”%2()@52) + E‘W - ¢||%2(X><SQ) = 5(Q7¢)%2(X><SQ) (3.65)

The following results are continuous analogues to Lemmas 3.2.5 and 3.2.6. Their proofs

are nearly identical, so we only give a brief summary.

Lemma 3.2.7 (Semi-norm recurrence for the continuous system). Let s > 1, ¢ € L*([0, t]; H™*)

and g € H™*. Then forall t € [0,T],
[l ra (t) < CsAol|¢]prers—] () + gl Fo(t) + e Aolla] rrs](F), (3.66)
where C' is a constant independent of the data.

Summary of Proof. The proof follows the same lines and with same constants as in Lemma
3.2.5 after changing 1}’ by ), and then taking all the sums to infinity. To generalize the

proof for r > 1, we differentiate the system (3.9) in space and repeat the process. O

Lemma 3.2.8 (Stability of higher order semi-norms for the continuous system). If ¢ €

LY[0,T); H®) and g € H™®, then forall t € [0,T),

[Wlamo (t) < [glmro + |alLi(o,g;m0)- (3.67)

If, in addition, ¢ € L'([0,T]; H*7) and g € H"I for each i, j such that 0 < i <r,0 < j < s, and

1+7=r+s,

[@lams (1) < CoslAG [[glareso + |glnao.e) 0] (2)

SR =S (3.68)
+ C Z (S _ Z)|A6[FO|9|H7"+“*_’](t) + Cse Z mA6+ [|Q|Hr+i,s—i](t),
=0 ' i=0 '

where C is a constant depending only on s.

Corollary 3.2.1 (Isotropic data and zero initial condition for the continuous systems). Let

s > 1. In the special case that g = 0 and q is isotropic, then if t € [0,T],
‘¢‘HT,S (t) < CSS'.AS [‘q’Ll([07.};HT+S,O)] (t) (3.69)

55



Proof of Lemma 3.2.8. With the obvious changes, the proof is the same line by line as proof
in Lemma 3.2.6, with some key steps replace by their continuous counterparts, namely,
in the initial step we use (3.65) instead of (3.47) and we invoke Lemma 3.2.7 instead of

Lemma 3.2.5. O

3.2.3 Py error analysis
In this section we will analyze the error produced by the solution of (3.3) when the Py

approximation is used.
Definition 3.2.1 (P Error). The Py error is
eN(t) = v(t) =N (t) =V (1) + £V (1), (3.70)
where n™ = 1) — Py is the consistency error and £V = Py1p — ¢V is the stability error.
Lemma 3.2.9. Forall t € [0,T), £~ is controlled by n™ via the following estimate:
€ () < £ | Pa (- Va2 (7) G71)

Proof. Applying the projection Py to (3.3) and subtracting (3.7a) yields a Py equation for

&N with a source that depends on 7:
0" + Pu(Q- Vo) + 26V = 2 - Py(Q- V), |, =0 (72

Thus (3.72) follows immediately from the bound (3.58), replacing g by zero and ¢ by
87173]\7(9 . VxT]N) ]

Lemma 3.2.10. Let t € [a, ) C [0, T, then

o(t—a) ~
1™ [ 2xxse) () < e I || z2xxs2) (@) + eAa[l|Prall n2(x xs2)] (£) (3.73)

+-Aa [H,]SN(Q : wa) HL2(X><SQ)] (t)

Proof. Applying the projection Py to (3.3), and subtracting it from (3.3), we see that

satisfies

1 ~ 1
o™ = —Pn(Q- V™) + %nN = Prng =< [Q- Vot = Pu(Q- Vo Pry)] (3.74)
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Since for any ¢ € L*(S?), (Pn¢,n™)12(s2) = 0, testing the equation above against " gives

1d o ~ 1
thHnNHm X xS2) ;HUNH%?(Xxs?) = (PN(1777N)L2(X><82 - E(Q Vb, n )L? (X xS2?)
D N _1 Q N
= (Png:1 ) 12(xx82) 6(PN( Vo), ) L2 (x xs2)
~ 1 ~
< (IPvallz2xxsy + ZIPw (€ Vel 2 xexs) 1™ L2 (x xs2)
(3.75)
The conclusion then follows from Lemma .0.1. O

An immediate corollary of Lemma 3.2.10 is the following;:

Lemma 3.2.11. Let s > 0and N > max{0,s — 1}. If g € H** and q € L>([0,T]; H**). Then
we have

1 fUT/s T
(N +1)° 9] ro.s 4 €lq| Lo o,17,m04) Ao [1](T') + . Til[él,)T} 9] 1.5 ()
(3.76)

1™ | 2 xs2)(T) <
Proof. We apply Lemma 3.2.10 with a = 0. In this case ||| 12(xxs2) (@) = |Pngll. Mean-
while, by Lemma 3.2.2,

~ 1
|g|#os  and ||PNQ||L2(X><S2)§< |q|rro.s. (3.77)

N +1)s

~ 1
P < -
IPrglle2(xxs2) < (N +1)s

Thus since A, [f](t) < e (t — @) sup, ¢, f(7) (cf. (3.40) with k = 1), another application

of Lemma 3.2.2 gives

Ao[[IPn (€ - Vo) [ 22| (T) < L sup Py (€ Vo))l 2 (7)

€ refo,1) (3.78)
< ———— sup |- Vyh|gos(7) < ———= su Ls (T
— S(N + 1)8 TE[O%] ‘ w‘HO ( ) €<N + 1)5 TG[OI,DT] ‘¢’H ( )
Plugging the preceding bound into Lemma 3.2.10 gives the result. O

Lemma 3.2.12 (a priori estimate). Let s > 1and N > s — 1. Let ¢ € L>([0,T]; H*) and

g € H" foreachi,jsuchthat 0 <i <r,0<j <s,andi+j=r+s. Thenforallt € [0,T),
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o fe8s) (t\°
|| s () < CS{ [ glarss, + tg] oo (0,6):7+5)] mm( 5 <_> )

t’L
701;/5 Z |g|HT+Z s ( ) (3.79)

s—1 . i1
E : s! . (et 1 ¢

+e ‘QILOO(Ot - rti,s— z)m min (F’ m (g> ) }
1=0

Proof. Recall the stability estimate from Lemma 3.2.8:

|1/}|H'r,s (t) S OSS'A(S) |:|g|Hr+s,0 + |q|L1([0’.];H7‘+5,0):| (t)

o1 (3.80)

+c§j Ai[Folgleseni](1) +ce§}——7wﬂmmmgmw

Substituting the bounds for Ay[1] and the formula for Ay[F,| from Lemma 3.2.3 into the

above estimate yields the stated result. O

Theorem 3.2.1 (Py error). Let s > 1and N > s — 1. Let ¢ € L>([0,T]; H*) and g € H" for

each i, jsuchthat 0 < j <s,i+j < s+ 1. Then

e e (T) < e lglagon + g min (.7
€ ||L2(X xS?) _(N+1)59H0’S (N + 1) q| Lo ([0,T];HO#) o

N 20, <‘ +Tlql ) (et T\
P — s ) [e'e) . s N mln 9 I
(N + D | oo & 2l o) = 2
s—1 ;
. 2 S T2+1
+e T/e § |g|H1+'LSZ(Z) 5i+1
=0

1 s (e 1 T
T Z |l (o my a1+ (s —1i)! P (i 4 1)! ettt

1=0

(3.81)
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Proof. By the triangle inequality, Lemma 3.2.9,

1™ r2xxs2) (T) < 0™ r2cexs2) (T) + 1€ |2 xxs2) (T)
N 1 T N
<ln HLQ(XxS?)(T)Jrg PN (2 - Vo )| z2(xxs2) (T) dT
0

1 T
< HnNHL2(X><S2)(T) + g/o‘ HVITINHLQ(XXS2)(T) dr
1T (3.82)
< H77N||L2(X><SQ)(T) + mg Sl[épT] |’¢|H1,s (T)
T€|0,
e—O'T/€2 c

S T s T T |q| Lo 0.5 (T
- (N_'_ 1)S|g|HO + (N_|_1)5|q|L ([O)TLHO )AO[ ]( )

2T

+ ———— sup |Y|g1s(T
e(N+1) TG[O,T]| r(7)

In the last two lines, we applied spectral estimate in Lemma 3.2.2. Inthe last line we used

Lemma 3.2.11. Applying Lemma 3.2.12 with r = 1 yields the result. O

Corollary 3.2.2 (P error for Isotropic data). Let s > 1and N > s—1. Let ¢ € L>=([0,T]; H*™?)

and g € H™YO. If g and q are isotropic, then

(et (TN
Hs+1,0 + T‘q‘Loo([()’T];Hs-&-l,O)) min , (—)

o’ £
(3.83)

2C,
™| r2(x xs2) (T) < N+1)r (\9

3.3 Hybrid error analysis

3.3.1 A priori estimates of the uncollided component
Since our goal is to derive error estimates which only depend on data, and v, ,,, ap-
pears as a source in the collided equation, we require the following a priori estimates on

tu,m to bound | | g1 in the proof of Theorem 3.3.2.

Lemma 3.3.1 (Stability of the uncollided component). Let 1 < m < M, g € L*>([0,T]; H™"),

and g € H™" for some r > 0. Then for all t € [ty,—1,tm),

—o(t— _ 2 —o(t— _ 2

Wl gro(t) < e 7m0/ gl o + et/ gl ooy + A, [lal o] (t), (3.84a)
o

[Yuml o (tm) + 3 [Yuml L (1 tmsm0) < 19lmro + 1al (o tm)sr0), (3.84b)

[Vum| L1 ([t 170) (8) < €(|glEm0 + tq] Loo (0,4 7:0) ) Aty 1 [1](2)- (3.84c)
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Proof. We prove the result only for » = 0 since the other cases are obtained by applying
the same techniques to (3.12a) differentiated r times in space. Testing (3.12a) with ),
and applying Cauchy-Schwarz inequality, we obtain the following differential inequality

Ld

o
Wl Sl < gl (5.8

An application of (.4) in Lemma .0.1, and the fact that v, ,,(t,m—1) = ¥(t;—1) gives

||7/)u,m||L2(X><S2)(t) < 6—o(t—tm—1)/52 ||'(7Z)||L2(X><S2)(tm_1) + E.Atm_l [HqHLz(XXSQ)](t). (386)

Using Lemma 3.2.8 on ||¢||r2(xxs2)(tm—1) gives the first result (3.84a). An application of
g ( ) & ppP

(.3) in Lemma .0.1 over [t,,_1, %) gives

o
H%,mHL2(XxSZ)(tm)+€—2Wu,mHLl([tm_l,tm],LZ(XxsZ)) <G 21 ([t ] 2 x52)) F €| L2 (x x82) (Em—1),
(3.87)
and then another application of Lemma 3.2.8 to bound ||¢||12(x xs2)(tm—1) gives (3.84b).

Estimate (3.84c) is obtained from integrating the first estimate (3.84a) from ¢,,_; to¢. [J

3.3.2 Hybrid error analysis
In this section we will analyze the error in the hybrid method using the formulation

in (3.14).

Definition 3.3.1 (Hybrid errors). Let 1 < m < M and t € [t,,_1,t,). The m-th hybrid error
is

eTNn(t) = euN’m(t) +eN (1), (3.88)

c,m

where e, (t) = Yum(t) — VY, (t) and el (t) = Yem(t) — V2, (t) are the m-th errors in the

u,m c,m

uncollided and collided components. The collided error can be further decomposed as

ng(t) = ¢c,m(t) - PNwC,m(t) (an (]:\,[m = PNwC,m(t) - (]:\,fm(t) (389)

so that el (t) = nl,.(t) + &X,,(t). Here nlY, is the m-th collided consistency error and £, is

the m-th collided stability error. The error €} is simply called the hybrid error.
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This next lemma gives a one-step analysis of the growth of the error in the uncollided

and collided components from ¢,,_; to ¢,,.

Lemma 3.3.2. Let 1 < m < M, then if t € [t;,—1,tm), the m-th uncollided and collided errors

satisfy, respectively,

e llz2xxs) (1) < e7Utm=n/E N 1o wse) (t ), (3.90a)
||€é\,/mHL2(Xxs2)(t) < (1 — efg(tftm_l)/g) Her]X—luL?(XxS?)(t;%l)

1
+ 10l 2 xszy (£) + Z 12 - Va2 (e 22 (X x52))- (3.90b)

N

u,m’

Proof. Subtracting (3.14a) from (3.12a), yields the following evolution equation for e

sategm+ﬂ-vxeﬁm+ TN =0, e

Eeu,m - Ijxm‘t:tm_l = 6%—1@7}—1)7 (391)
where e} (t;) = 0. Thus applying (3.84a) from Lemma 3.3.1, with r = 0 and a zero source
term yields (3.90a). To prove (3.90b), we subtract from (3.14b) the projection applied to

(3.12b). This gives the following Py equation for é\fm

e, + Py (- V. + ggN - g(ﬂ +el,) = Pa(- Vol ), (3.92a)

c,m

Eomliey, =0 (3.92b)

We apply Lemma 3.2.6 to (3.92a) with zero initial data and source 5_20% — e Py (-

Vanl,). Combined with bound (3.90a), the estimate on £, becomes
o t 1 t
el ® < 5 [ leduliooon(yr+2 [ 19 Vo (7) dr
tm—1 tm—1

= 22

g t ,
< Gl ) [ e ar

tm—1

1 t
e 19 Tl (1) dr

tm—1

= (1= e ) e s ()
1 t
+-/ 192 Vo N 2 ey (7) dr.
€ tm—1
(3.93)

Adding |92, || 22(x xs2)(t) to the both sides recovers (3.90b). O
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Now we can state an error for all time that only depends on the approximation prop-

erties of the spherical harmonic discretization on the solution.

Theorem 3.3.1. The hybrid error e} satisfies

M
_ _ 1
led 2 xsry () < (||77é,vm||L2(Xxs2)(tm) + -l Vmﬁé,VmHLl([tm1,tm};L2(XxS2))) . (3.94)

m=1
Proof. Adding the inequalities in Lemma 3.3.2 and taking the limit ¢ — ¢, ,, gives

learllzacexs) () < Nlear-illzzoexs2) (Ear—a) + 1l 2 cexs) ()

(3.95)

+ EHQ Va1 (s tari22(x x52))

Exhausting this recursion until ¢} (¢, ) = 0 yields the result. O

c,m s . M
nc,m L2(X xS?) tm (N ])s sup mlpts \7 3.96

TEtm—1,tm]
Proof. An application of Lemma 3.2.10 with a = t,,_1, 8 = t,, ngm(tm_l) = 0, an isotropic
source ¢ = %y, along with the fact that A, [f](t) < e7'(t — a)sup, ¢, f(7) (cf. (3.40)

with k£ = 1)) and the spectral estimate in Lemma 3.2.2, gives

B At ~
||77(]:\,[mHL2(X><S2)(tm)§? sup  [|Pn(Q2 - Vatem))l L2 (x xs2) (T) dT

TE[tm—1,tm]

At At

< —— sup Q- Vietem|gos (T)dT < ————— sup  |[Yem|prs (7).
€<N+1>S TE[tm71,tm}| ‘HO ( ) €(N+ 1)8 TG[tm71,tm]‘ |H1 ( )

(3.97)

O]

3.3.3 Estimating hybrid error in terms of the data
Finally, we will apply the approximation properties and stability estimates to the es-
timate in Theorem 3.3.1 to obtain an estimate that depends only on the regularity of the

data.
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Theorem 3.3.2. Let s > 1and N > s — 1. If ¢ € L*([0,T]; H**1°) and g € H**'O, then

_ 20,
Heﬁ\v/[HLQ(XXSQ)(T ) < m <’g|Hs+1,0 +T ’q’Loo([O’T};Hs+l,0)> (398)
ST AT At
X min (5 aj o min <1, 8—20)) . (3.99)

Proof. Using |2 - Votemlr2(xxs?) < ||Vatbemllz2(xxs2), and applying Lemma 3.2.2 and
Lemma 3.3.3 to Theorem 3.3.1 yields, for N > s — 1,

M
_ 1 At 1
||eﬁ||Lz<Xxgz><tM>s—<N+1)3§j(— sup wc,mrm,s<T>+g|wc,m|L1<[tmmml;ms))

21\ € TEltmo1tm]

ont X
< —_— 1,s
< £(N+ 1>S Z sup W}c,m‘H’ <T>

m—1 TE[tm—1,tm]
Applying Corollary 3.2.1 with ¢ = Z¢, , and r = 1,
M

N /,— o At
et 2 S2 SQCSS!—— E sup .AS 1 wu’m L([tp—1,]; Hs+1.0 T).
H M( M)HL (D o (N+ 1)8 m—=1 TE[tm—1,tm] - U ‘L . ok )} ( )
(3.100)

For the summand above, it follows from (3.84b), the monotonicity of A,, and Lemma

3.2.3 that

sup }Afm,l [um| (s oiir=rr0y ] (T) < sup [ L2t tfsi+10) AL (1] (7)

TE[tmfl,tm TE[tmfl’tm]

g2 .
S ; <|g Hs+1,0 + |Q|L1([07T];Hs+1,0)> ‘A'tm—l [:H'] (tm)
g2 (e 1 [At\®
< ; <|g Hs+1,0 + |q|L1([0,T];HS+1’0)> min ;7 g ? .
(3.101)
Pluggin the above bound into (3.100) yields (since 7' = M At)
_ AtM . [ At
H‘e%HL?(XXSQ)(tM) < QCSS!M <‘g‘Hs+1,0 + ’q|L1([0,T};HS+170)> min (;7 8'65)
' 3.102
20, . (eI T AT ( )
- —(N 1) <’9 g0+ |Q|L1([O,T};Hs+1,0)) min JEPR
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On the other hand, it follows from (3.84c) that

sup AL [[Wuml Lt (s esmet10)] (7)

’TE[tm,htm]

< e(lglgsrro + Tlal g o ppmerroy)  sup AT [1](7) (3.103)

TE [tm—l 7tm]

) <,:‘S+1 1 At s+1
Hs+1,0 + T |q’L°°([0,T];HS+1vU)) min F’ m <?) .

Plugging this into (3.100) yields,

<e(lg

s~ LgIT Ats+1aT)

_ 20, :
||€J\N/[||L2(X><S2)(tM) < (— <|g ps+10 1 T |q|Loo([O7T);Hs+1,O)> min ( e

N +1)s
(3.104)

Taking a minimum of the right hand sides of (3.102) and (3.104) yields the result. O

3.4 Return to the original transport model

In this section we will show error estimates for the model (3.1). The analogous dis-
cretizations for the models are the following. For the non-splitting Py discretization we
seek U=V € C([0,T); X x Pn(S?)), satisfying

VN 1 Py (- W, U5Y) 4 %\IJE’N _ (% _ €Ua> TN 1 Py, (3.105a)

U=y = Png (3.105b)

and for the hybrid, we seek W&V = sV + WV where for each m € {1,2,..., M}

,m

(TN WY € O[tts tim); X % LA(S?)) X Cl[tn-1,tm); X % Py(S?)) (3.106)
satifies
QU +Q -V, Uo + %‘If% = £Q, (3.107a)
D UN 4+ Py (Q- V,00N) 4 ThgeN - (ﬁ - 6oa> TN o, (3.107b)
’ ’ e 7 €

(3.107¢)

g, m = ]_,
\Ili:% t=tm—1 = 07 \Iji:]’l’\lfl t=tm—_1 = (3.107d)

‘Pi’,ﬁ—l(t;@—ﬁ + ‘1127];[—1@;—1) m > 1.
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We define the correspondent Py error and m-th hybrid error respectively as,

e, N __ 1€ e,N eN _ \ye _ e N
et =0 - and e =W, — U

Since Y = %N and ¢ = e’ VN, applying Theorems 3.2.1 and 3.3.2 gives the

following estimate for the Py error for the original transport model (3.1).

Theorem 3.4.1. Let s > land N > s —1,Q € L>([0,T]; H*) and g € H" for each i, j such

that 0 < j<s,i+j < s+ 1. Then

N T 6—(Ut+820a)T/62 1 52 T
’ < e — ,8 se—— oo . S 1 -,
||6 ||L2(X><S2)( ) > (N+ 1)8 |9|H0 + (N—l— 1)$|Q|L ([0,7];H0-5) MIN (Ut )
1 s=Llr T\
+%LGVITF(PfﬁﬂgHHm%JﬂQhw@zwn%%ﬁmn(8Cg ,(g> )

(3.108)

s—1 i1
_ 2 S ,_Z—'ZJr
+e (o1+€20a)T § : ]g|H1+¢,57¢ . .
7 51—1—1
=0

s—1 it+1 i+2
5 . (e T 1 T
* 2l <) o ( o i+ Dl e ) )

Meanwhile for the hybrid approximation.

Theorem 3.4.2. Let s > 1and N > s—1,Q € L'([0,T]; H**'%) and g € H**1°, we have

2C,
(N +1)s

||e§\’4N||L2(X><SQ)<T_) <

(6_”*T|g

sTLIT AT A
X min (6 i t min (1, tm)) . (3.109)
€

)
Uf €s+1 2

Hs+1,0 + T |Q|Loo([07T];Hs+1,O)>
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CHAPTER 4

SUMMARY AND CONCLUSION

In this thesis, we studied two numerical schemes for kinetic equations. In Chapter 2, we
proved theoretically and demonstrated computationally the effectiveness of the SIAC fil-
ter to the DG solutions of the nonlinear VM system. We proved the superconvergence
of order (2k + 1) in the negative norm of the DG solutions. This is nontrivial for non-
linear systems, and is achieved by identifying a suitable dual problem. The numerical
experiments verify the performance of the filter in reducing spurious oscillations in the
numerical errors. For low order k, the resolution of the numerical solution is greatly en-
hanced, which is highly desirable for long time kinetic simulations. In the future, we plan
to prove superconvergence for the divided difference of the numerical solution to fully
justify the enhanced resolution of the post-processed solution. Another interesting project
will be to apply this post-processing technique to different kinetic equations that use the
DG method.

In Chapter 3, we derived multiscale error estimates for the Py approximation of the
RTE and for a hybrid approximation for the RTE that is built using the Py approximation.
By construction, the hybrid is is more expensive; we use these error estimates to under-
stand the benefits of the additional expense for different parameter regimes. At each time
step in the hybrid approximation, the collided equation is equipped with isotropic ini-
tial conditions and zero initial condition. In scattering dominating regimes, this property
is key to improved estimates over the monolithic Py approach. Meanwhile, in purely
absorbing regimes, the hybrid captures the RTE solution exactly. In the future, we in-
tend to revisit the current analysis for more general problems on non-periodic domains,
with non-constant cross-sections and inflow boundary conditions. In addition, we intend
to explicitly examine the effects of angular discretization errors in the treatment of the
uncollided equation, which for the purposes of the current chapter was assumed to be

solved exactly.
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APPENDIX

Proof of Lemma 2.3.3
By using equation (2.21a), the divergence free properties of A;, A, and the boundary

conditions, we have the following

L ll? = /(As -F)pdxdv < C([|gl* + IF]*),
2dt o

where C' depends on ||Ag|| L ((0,1);z(0))- On the other hand using equations (2.21b) and
(2.21c), Gauss theorem on the physical space integrals and integration by parts on the

velocity space variables,

Lip)? = [2<vxxD~F—vxxF.D>dx_/ oV Fdxdy

Q0

2dt“ I*+ th

+/ o(v x Vyg)D dxdv
Qy

—/wva-Fdxdv—l—/go(vx Vv9)D dxdv
Q Q
< C(IFI* + IDI* + llell?) ,

where C' depends on ||g|| zoo ((0,17);w1. ()

Now we add the tow inequalities above, to obtain

1d 1d

F 2
th” 1"+ 2dt

g2 + —|DI* < C (IF[* + DI + ll¢l?) . (1)

2 dt
where C' depends on || Ag|| (0,12 (0)) and || g Lo (01w ). An application of Gron-
wall’s inequality allow us to conclude. Now since we are considering the full Sobolev
norm, we still need to estimate the L? norms of the higher order derivatives 9297, to do
so we apply 9207 to the system (2.21) and then we repeat the same steps that we took

above.

Fundamental ODE result
If | - | denotes either one of the semi-norms and norms defined throughout the chap-

ter, one of the usual procedures is finding a bound for |¢|, by analyzing a differential
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inequality, that looks like

th\solz + klp]* < x(t)|gl,

where k > 0 is a constant and x(¢) > 0 for all times ¢. Formally one would divide by |¢|
and integrate in time. However this computation is not rigorous if there exists some time

t*, for which |p|(t*) = 0. The following lemma makes the formal calculation rigorous.

Lemma .0.1. Assume y is a non-negative continuous function on |, 3]. Assume ¢ € C*(|a, 3]),
¢ > 0, and satisfies the following differential inequality
1

(60 + £6(t) <x()d(1),  d(a) = o 2 0. (:2)
Then for all t € [a, 3],
t) + li/atqb(T) dr < do + /atx(f) dr. (.3)
Furthermore
o(t) < e =g, + /a t e =\ (1) dr. (4)

Proof. We prove first (.3). Since ¢ and x are non-negative functions, it follows that for any

arbitrary ¢ > 0, the following differential inequality holds

S(1)¢'(t) + ko(t)* < x(t)(6(t) +9), (:5)

dividing both sides of the inequality by ¢ + ¢, and integrating in time, we arrive at

t t
t)+/£/ ¢(T)d7§¢a+/ X(7)dr +d1n ‘QS ' K ¢(T)T+5
t
§¢a—|—/a X(T)dT + d1n ¢¢(a)+5 '+/{5(t—a),

the conclusion follows taking 6 — 07.

We next prove (.4). When « = 0 the result follows immediately from (.3):

t
o) < 6u+ [ x(rdr (6)
For the general case we multiply (.2) by e**, obtaining
1 /
5 [P < e"x(t)2(®), )
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where ®(t) = e"¢(t). Applying (.6) to ® and undoing the transformation yields (.4). O
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