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ABSTRACT

Given a𝐾3 surface 𝑆, the Kuga-Satake construction associates to 𝑆 an abelian variety𝐾𝑆(𝑆) known

as the Kuga-Satake variety. Many similarities between cubic fourfolds 𝑋 and 𝐾3 surfaces 𝑆 have

been studied, particularly via Hodge theory by Hassett and derived categories by Kuznetsov. We

study how the Kuga-Satake construction fits into this theory by studying the Kuga-Satake varieties

of cubic fourfolds and their associated 𝐾3 surfaces, endormorphism algebras of cubic fourfolds,

and the derived category 𝐷𝑏 (𝐾𝑆(𝑆)).
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CHAPTER 1

INTRODUCTION

Associating abelian varieties to complex projective varieties has often been an effective strategy

in algebraic geometry. Since many tools have been developed for studying abelian varieties, it

is advantageous to be able to transfer geometric questions about projective varieties to questions

about abelian varieties. A classic example of such an abelian variety is the Jacobian variety 𝐽 (𝐶)

associated to a complex projective curve 𝐶. In fact, the Torelli Theorem states that a nonsingular

complex projective curve 𝐶 is completely determined by its Jacobian 𝐽 (𝐶) and the theta divisor.

There have been several approaches to associating abelian varieties to higher dimensional varieties

including Albanese varieties, intermediate Jacobian varieties, and Kuga-Satake varieties. Our study

will focus on the Kuga-Satake construction, first developed in [KS67].

Kuga-Satake varieties have been traditionally used to study 𝐾3 surfaces. We say that a Hodge

structure is of 𝐾3-type if it a weight two, polarized Hodge structure𝑉 such that𝑉2,0 = 1. Of course,

given a 𝐾3 surface 𝑆, its middle cohomology 𝐻2(𝑆,Z) is an example of such a Hodge structure.

We will review the Kuga-Satake construction in Chapter 3. The construction takes a weight two

Hodge structure 𝑉 of 𝐾3-type and associates to it a Hodge structure of weight one. We will see

that this corresponds geometrically to inputting a 𝐾3 surface 𝑆 into the construction and getting

an abelian variety 𝐾𝑆(𝑆) out of it. It is known that the construction gives an inclusion of Hodge

structures

𝑉 ↩! 𝐻1(𝐾𝑆(𝑉),Q) ⊗ 𝐻1(𝐾𝑆(𝑉),Q),

so, in particular, it can be shown that the Hodge structure 𝑉 can be recovered from the Hodge

structure on 𝐾𝑆 and so the Kuga-Satake construction is injective! This motivates the potential for

transferring geometric questions on 𝑆 to questions on the abelian variety 𝐾𝑆(𝑆) instead. There is a

Torelli theorem for 𝐾3 surfaces as well. That is, two 𝐾3 surfaces 𝑆1 and 𝑆2 are isomorphic if and

only if there is a Hodge isometry 𝐻2(𝑆1,Z) � 𝐻2(𝑆2,Z) [PSS71]. In particular, the Kuga-Satake

variety 𝐾𝑆(𝑆) determines the 𝐾3 surface 𝑆.

1



Kuga-Satake varieties have proven useful in answering geometric questions about 𝐾3 surfaces.

For example, it is an important ingredient in Deligne’s proof of the Weil conjectures for 𝐾3 surfaces

[Del71]. More recently, the construction has been used in proving cases of the Hodge conjecture for

examples of self-products of 𝐾3 surfaces. We will discuss such an example of [Sch10] in Chapter

4.

The Kuga-Satake construction has been generalized to varieties other than 𝐾3 surfaces. In

[Mor85], Morrison studied the Kuga-Satake varieties associated to abelian surfaces. We detail this

example in Example 3.2.9. Further, work has been done by Voisin in [Voi05] to provide an alternate

viewpoint to the construction by putting a weight two Hodge structure on the exterior algebra
∧∗𝑉 .

In our study, we aim to investigate the Kuga-Satake variety 𝐾𝑆(𝑋) associated to a cubic fourfold

𝑋 .

It has been noted by many that the Hodge structure on the middle cohomology 𝐻4(𝑋,Z) of a

cubic fourfold 𝑋 looks similar to 𝐻2(𝑆,Z) of a 𝐾3 surface 𝑆. In fact, its Tate Twist 𝐻4(𝑋,Z) (1),

which we will define in Chapter 2, is actually a Hodge structure of 𝐾3-type. This observation was

first put on solid footing by Hassett in [Has00] where the notion of an associated 𝐾3 surface was

formalized. In particular, we say that a 𝐾3 surface 𝑆 is associated to a cubic fourfold 𝑋 if there is

a Hodge isometry

𝐻4(𝑋,Z) (1) ⊃ 𝐾⊥ ! 𝑓 ⊥ ⊂ 𝐻2(𝑆,Z) (1)

for appropriate sub-Hodge structures 𝐾⊥ and 𝑓 ⊥. Associated 𝐾3 surfaces have been studied

extensively by Hassett and others since then, and they play a role in rationality conjectures for cubic

fourfolds. In particular, it is conjectured that a cubic fourfold is rational if and only if it possesses

an associated 𝐾3 surface.

Our goal is to study the Kuga-Satake construction for cubic fourfolds within the framework of

associated 𝐾3 surfaces. In Chapter 3 we study the Kuga-Satake construction for cubic fourfolds.

This leads to our first main result relating the Kuga-Satake construction to the theory of associated

𝐾3 surfaces.
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Theorem 1.0.1. Suppose (𝑋, 𝐾) is a special cubic fourfold with associated 𝐾3 surface (𝑆, 𝑓 ) as

in (1). Then 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2, where ∼ denotes isogeny of abelian varieties.

We also show in Section 3.4 that these methods apply to other types of varieties. In particular

there is a notion of associated 𝐾3 surfaces for Gushel-Mukai fourfolds. As a corollary to Theorem

1.0.1, we show:

Corollary 1.0.2. Suppose 𝑋 is a Gushel-Mukai fourfold and 𝑆 is a 𝐾3 surface associated to 𝑋 .

Then 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)4.

Next, we turn our attention to endomorphism algebras in Chapter 4. Given a 𝐾3 surface 𝑆,

one can consider the set of Hodge endomorphisms 𝑇 (𝑆)Q ! 𝑇 (𝑆)Q on its transcendental lattice,

which we will denote by End(𝑇 (𝑆)). In his foundational paper in [Zar83], Zarhin studied this

endomorphism algebra and was able to show that End(𝑇 (𝑆)) is in fact a field. Further, Zarhin

shows that it is a number field that is either of totally real type or a CM-field. Our goal is to study

End(𝑇 (𝑋)) for a cubic fourfold 𝑋 .

In doing so, we must take a couple of important detours. First, we study Nikulin’s lattice

theory in [Nik80]. Most of this lattice theory is developed for even, unimodular lattices. However,

𝐻4(𝑋,Z) is an odd, unimodular lattice, so we spend time developing the appropriate lattice theory

for odd unimodular lattices. This results in:

Proposition 1.0.3. Suppose 𝑇 is an even lattice of signature (21− 𝜌, 2). If 13 ≤ 𝜌 ≤ 21, then there

exists a primitive embedding 𝑇 ↩! Λ𝐶4 such that 𝑇⊥ � 𝑁 is odd.

We also study the image of the period map for cubic fourfolds, which was developed by Laza and

Looĳenga in [Laz10] and [Loo09]. We prove the existence of a cubic fourfold 𝑋 with End(𝑇 (𝑋))

of totally real type. Further, we study how endomorphism algebras End(𝑇 (𝑋)) of cubic fourfolds

𝑋 are related to endomorphism algebras End(𝑇 (𝑆)) of their associated 𝐾3 surfaces 𝑆.

In the final chapter, we take a derived category approach to associated 𝐾3 surfaces that was

inspired by Kuznetsov in [Kuz16]. Kuznetsov studied the derived category 𝐷𝑏 (𝑋) of a cubic
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fourfold 𝑋 and noted that it contains a subcategory

A𝑋 := ⟨O𝑋 ,O𝑋 (1),O𝑋 (2)⟩⊥

that looks quite similar to the derived category 𝐷𝑏 (𝑆) of a 𝐾3 surface 𝑆. Kuznetsov conjectures

that a cubic fourfold 𝑋 is rational if and only if A𝑋 � 𝐷
𝑏 (𝑆) for a 𝐾3 surface 𝑆.

Addington and Thomas in [AT14] and others in [BLM+21] show that Kuznetsov’s conjecture

for the rationality of cubic fourfolds is actually equivalent to the conjecture inspired by Hassett’s

Hodge theoretic approach. This inspires us to study how the Kuga-Satake construction fits into

the derived picture by investigating 𝐷𝑏 (𝐾𝑆(𝑆)) and 𝐷𝑏 (𝐾𝑆(𝑋)). In doing so, we study the Kuga-

Satake Hodge conjecture, which is a special case of the Hodge conjecture itself. We show the

following:

Proposition 1.0.4. There exist examples of associated 𝐾3 surfaces that satisfy the Kuga-Satake

Hodge conjecture.

Assuming the Kuga-Satake Hodge conjecture, which by the previous proposition is a fact in

some cases, we are able to construct several functors involving the derived categories of Kuga-Satake

varieties. We construct various Fourier-Mukai functors that result in the following commutative

diagram in Chapter 5:

𝐷𝑏 (𝑆) 𝐷𝑏 (𝐾𝑆(𝑆)2)

𝐷𝑏 (𝑋) 𝐷𝑏 (𝐾𝑆(𝑋)2) 𝐷𝑏 (𝐾𝑆(𝑋))

Φ

ΦO𝑍𝑆

ΦOΓ 𝑓

ΦO𝑍𝑋
ΦOΓΔ

and end by outlining possible next directions for research.
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CHAPTER 2

BACKGROUND

In this chapter we provide the main background theory and definitions required for our study. This

chapter is outlined as follows:

§2.1 We introduce basic Hodge theory and standard definitions, including the Hodge decom-

position, Hodge diamond, and polarizations of Hodge structures. Important examples of

Hodge-theoretical constructions are given, morphisms of Hodge structures are discussed,

and we catalogue some basic facts that will be used later.

§2.2 We briefly recall basic definitions and lattice theory that will be sufficient to use throughout.

Discriminants of lattices and discriminant groups are discussed and the most important

examples of lattices that we use are constructed. More advanced lattice theory is developed

in Chapter 4 where it is primarily used in the context of endomorphism algebras.

§2.3 We discuss facts about abelian varieties which are crucial for us in the context of the Kuga-

Satake construction. In particular, we mainly approach complex tori and abelian varieties

with their Hodge theory kept in mind. The Hodge diamond of an abelian variety is discussed

in our context. The rest of the section is dedicated to showing a one-to-one correspondence

between abelian varieties and polarized, integral Hodge structures of weight one.

§2.4 In this section we define 𝐾3 surfaces and give basic examples. The Hodge diamond of a 𝐾3

surface is discussed.

§2.5 We discuss cubic fourfolds, the main objects of our consideration throughout the rest of

the dissertation. In particular, we point out important similarities between 𝐾3 surfaces and

cubic fourfolds, and introduce the notion of associated 𝐾3 surfaces in the sense of Hassett.

Motivating rationality questions are also discussed.
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2.1 Hodge Theory

In the following, suppose that 𝑉 is either a free Z−module of finite rank or a finite-dimensional

Q−vector space. A reference for additional background in this section is [Huy16].

Definition 2.1.1. For 𝑛 ∈ Z, a weight-𝑛 Hodge structure on 𝑉 is a direct sum decomposition of the

complexification 𝑉C B 𝑉 ⊗Z C as

𝑉C =
⊕
𝑝+𝑞=𝑛

𝑉 𝑝,𝑞

subject to the condition that 𝑉 𝑝,𝑞 = 𝑉𝑞,𝑝 where 𝑣 ⊗ 𝑧 B 𝑣 ⊗ 𝑧 for 𝑣 ∈ 𝑉 and 𝑧 ∈ C. We call the

Hodge structure integral if 𝑉 is a free Z−module and we call it rational if 𝑉 is a Q−vector space.

We say that a Hodge structure is of type (𝑘, 𝑘) if 𝑉 𝑝,𝑞 ≠ 0 only for (𝑝, 𝑞) = (𝑘, 𝑘).

Example 2.1.2. The most important examples of Hodge structures that we consider are provided

by cohomology of smooth projective varieties. Let 𝑋 be a smooth complex projective variety and

let 𝑉 = 𝐻𝑛 (𝑋,Q) denote singular cohomology. Then 𝑉C = 𝐻𝑛 (𝑋,Q) ⊗ C = 𝐻𝑛 (𝑋,C) by the

universal coefficient theorem. We can decompose 𝑉C as

𝐻𝑛 (𝑋,C) =
⊕
𝑝+𝑞=𝑛

𝐻𝑝,𝑞 (𝑋)

where 𝐻𝑝,𝑞 = 𝐻𝑞 (𝑋,Ω𝑝) and Ω𝑝 is the sheaf of differential 𝑝−forms on 𝑋 . This defines a weight-𝑛

Hodge structure on 𝑉 . Note that the same construction works when applied to the integral Hodge

structure with 𝑉Z = 𝐻𝑛 (𝑋,Z)/torsion.

Definition 2.1.3. Let 𝑋 be a smooth complex projective variety. The Hodge numbers of 𝑋 are

defined to be ℎ𝑝,𝑞 (𝑋) B dim(𝐻𝑝,𝑞 (𝑋)).

The Hodge numbers of a variety are often kept track of in the Hodge diamond. For example, in

dimension 2, the Hodge diamond of a surface looks like:

6



ℎ2,2

ℎ2,1 ℎ1,2

ℎ2,0 ℎ1,1 ℎ0,2

ℎ1,0 ℎ0,1

ℎ0,0

The Hodge diamond has several symmetries. In particular, ℎ𝑝,𝑞 = ℎ𝑞,𝑝 since 𝐻𝑝,𝑞 = 𝐻𝑞,𝑝 and

ℎ𝑝,𝑞 = ℎ𝑛−𝑝,𝑛−𝑞 due to Serre duality. These facts are often referred to as Hodge symmetry.

There are several standard Hodge-theoretical constructions that we will use throughout. The

following are all defined similarly for integral and rational Hodge structures:

Example 2.1.4. 1. Suppose𝑉 and𝑊 are both Hodge structures of weight 𝑛. Then we can define

the direct sum Hodge structure, which is again of weight 𝑛, by

(𝑉 ⊕𝑊)𝑝,𝑞 B 𝑉 𝑝,𝑞 ⊕𝑊 𝑝,𝑞 .

2. Suppose 𝑉 is a Hodge structure of weight 𝑛 and 𝑊 is a Hodge structure of weight 𝑚. Then

we can define the tensor product Hodge structure of weight 𝑛 + 𝑚 by

(𝑉 ⊗𝑊)𝑝,𝑞 B
⊕

𝑝+𝑞=𝑛+𝑚
(𝑉 𝑝1,𝑞1 ⊗𝑊 𝑝2,𝑞2),

where 𝑝1 + 𝑝2 = 𝑝 and 𝑞1 + 𝑞2 = 𝑞.

3. Suppose 𝑉 is a Hodge structure of weight 𝑛. Then we define the dual Hodge Structure 𝑉∨ of

weight-(−𝑛) by

(𝑉∨)−𝑝,−𝑞 B HomC(𝑉 𝑝,𝑞,C) (𝑝 + 𝑞 = 𝑛)

4. Define the Tate Hodge structure Z(𝑛) as the weight −2𝑛 Hodge structure on Z such that

Z(𝑛)−𝑛,−𝑛 is one-dimensional and Z(𝑛)𝑝,𝑞 = 0 if (𝑝, 𝑞) ≠ (−𝑛,−𝑛). This is a Hodge structure

of type (−𝑛,−𝑛). If we just say the Tate structure, we are referring to Z(1). The rational Tate

Hodge structures Q(𝑛) are defined similarly by replacing Z with Q everywhere
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5. Given an integral Hodge structure 𝑉 of weight 𝑛, we can increase or decrease its weight by

defining the Tate twist of 𝑉 by

𝑉 (𝑘) B 𝑉 ⊗ Z(𝑘).

This is a Hodge structure of weight 𝑛− 2𝑘 . The Tate twist is defined analogously for rational

Hodge structures.

Now that we have defined Hodge structures, we will need to be able to consider morphisms

between them.

Definition 2.1.5. Suppose 𝑉 and 𝑊 are Hodge structures of the same weight 𝑛. Then we define

a morphism of Hodge structures as a linear map 𝑓 : 𝑉 ! 𝑊 such that 𝑓C(𝑉 𝑝,𝑞) ⊂ 𝑊 𝑝,𝑞. If the

weights of 𝑉 and 𝑊 are different, the only morphism of Hodge structures is the zero map, called

the trivial morphism.

If the two Hodge structures do not have the same weight, then it is possible to define a morphism

of Hodge structures between certain Tate twists. Suppose 𝑉 has weight 𝑛 and𝑊 has weight 𝑛 + 2𝑘

and we have a linear map 𝑓 : 𝑉 ! 𝑊 satisfying 𝑓C(𝑉 𝑝,𝑞) ⊂ 𝑊 𝑝+𝑘,𝑞+𝑘 then we have a morphism of

Hodge structures 𝑓 : 𝑉 ! 𝑊 (𝑘).

We can also understand Hodge structures on 𝑉 through algebraic representations of C∗ on 𝑉 ,

i.e. morphisms of real algebraic groups 𝜌 : C∗ ! 𝐺𝐿 (𝑉R).

Proposition 2.1.6. Let 𝑉 be a finite-dimension Q−vector space. Then there is a bĳection

{Hodge structures of weight 𝑛 on 𝑉} ↔ {real algebraic representations 𝜌 : C∗ ! 𝐺𝐿 (𝑉R)}

such that 𝜌(𝑟) = 𝑟𝑛 for all 𝑟 ∈ R∗.

Proof. For a full proof see [VG00, Proposition 1.4]. We will sketch the idea of the proof here.

Given a rational Hodge structure of weight 𝑛, we can associate an algebraic representation by

𝜌 : C∗ ! 𝐺𝐿 (𝑉R), 𝑧 7! (𝜌(𝑧) : 𝑣 7! (𝑧𝑝𝑧𝑞)𝑣)

for 𝑣 ∈ 𝑉 𝑝,𝑞. In the other direction, an algebraic representation 𝜌 defines a Hodge structure that is

given by the decomposition 𝑉 𝑝,𝑞 = {𝑣 ∈ 𝑉C | 𝜌(𝑧)𝑣 = (𝑧𝑝𝑧𝑞)𝑣}. □
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We now interpret our previous constructions of Hodge structures in terms of this correspondence.

Example 2.1.7. 1. The Tate Hodge structure Z(𝑘) corresponds to the algebraic representation

given by 𝜌(𝑧) (𝑣) = (𝑧𝑧)−𝑘𝑣 for each 𝑣 ∈ 𝑉 (𝑘).

2. If 𝑉 and 𝑊 are two Hodge structures corresponding to algebraic representations 𝜌𝑉 and

𝜌𝑊 then 𝑉 ⊗ 𝑊 corresponds to the algebraic representation 𝜌𝑉 ⊗ 𝜌𝑊 . In particular, taking

𝑊 = Z(1) to be the Tate Hodge structure, the Tate twist 𝑉 (1) corresponds to the algebraic

representation 𝜌𝑉 (1) : 𝑧 7! (𝑧𝑧)−1𝜌𝑉 (𝑧).

3. A morphism of Hodge structures can be interpreted as a linear map 𝑓 : 𝑉 ! 𝑊 that satisfies

𝑓 (𝜌𝑉 (𝑧)𝑣) = 𝜌𝑊 (𝑧) ( 𝑓 (𝑣)) for 𝑣 ∈ 𝑉 .

4. If 𝑉 is a Hodge structure, then End(𝑉) also has a canonical Hodge structure. If 𝜌 is the

representation corresponding to the Hodge structure 𝑉 , then the representation

𝜌End(𝑧) (𝐴) = 𝜌(𝑧) (𝐴) (𝜌(𝑧))−1.

corresponds to the Hodge structure on End(𝑉).

For most of the following, we consider polarized Hodge structures. This is motivated by the fact

that the cohomology of varieties we are working with also come equipped with a lattice structure

given by the standard intersection form.

Definition 2.1.8. Let𝑉 be a rational Hodge structure of weight 𝑛 and suppose 𝜌𝑉 is its corresponding

algebraic representation. Then a polarization of a Hodge structure is a morphism of Hodge structures

𝑄 : 𝑉 ⊗ 𝑉 ! Q(−𝑛)

such that 𝑄(𝑣, 𝜌𝑉 (𝑖)𝑤) defines a positive definite symmetric form on 𝑉R. We call the pair (𝑉,𝑄) a

polarized Hodge structure.

Example 2.1.9. Let 𝑋 be a complex projective variety of dimension 𝑛. Let 𝜔 ∈ 𝐻2(𝑋,Q)

correspond to an ample divisor. Then for 𝑘 ≤ 𝑛 define a pairing by

𝑄(𝑣, 𝑤) B (−1)
𝑘 (𝑘−1)

2

∫
𝑋

𝑣 ∧ 𝑤 ∧ 𝜔𝑛−𝑘
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where ∧ denotes the standard wedge product on 𝐻∗(𝑋,Q). Then 𝑄 defines a polarization on the

primitive cohomology 𝐻𝑘 (𝑋,Q)0, which is defined as ⟨𝜔⟩⊥ ⊂ 𝐻𝑘 (𝑋,Q). This polarization 𝑄 is

sometimes called the Hodge-Riemann pairing.

In particular, we are interested in the case where 𝑛 = 𝑘 = 2, i.e. middle cohomology of a surface.

Example 2.1.10. If 𝑆 is a smooth projective surface then middle cohomology can be decomposed

as 𝐻2(𝑆,Q) = 𝐻2(𝑆,Q)0 ⊕Q ·𝜔, where 𝜔 corresponds to O𝑆 (1). In this case, the Hodge-Riemann

pairing gives

𝑄(𝑣, 𝑤) B −
∫
𝑋

𝑣 ∧ 𝑤.

Of course, this is just the standard intersection form up to a sign change. This provides a polarization

on 𝐻2(𝑆,Q)0. To provide a polarization on the full 𝐻2(𝑆,Q), modify 𝑄 to be positive on Q · 𝜔 (to

satisfy the positive-definite requirement of the definition).

We will often need to consider sub-Hodge structures or irreducible Hodge structures.

Definition 2.1.11. Let 𝑉 be a Hodge structure of weight-𝑛.

• A sub-Hodge structure𝑊 of a Hodge structure𝑉 is a sub-module or sub-vector space𝑊 ⊂ 𝑉

such that the Hodge structure on 𝑊 is completely induced by the Hodge structure on 𝑉 . In

other words,

𝑊 𝑝,𝑞 = 𝑊C ∩𝑉 𝑝,𝑞

defines the Hodge structure on𝑊 .

• In case of integral Hodge structures, a sub-Hodge structure𝑊 ⊂ 𝑉 is called primitive if𝑉/𝑊

is torsion-free.

• A Hodge structure is called irreducible if it contains no non-trivial, proper, primitive sub-

Hodge structures.

We compile some facts concerning polarizations and sub-Hodge structures.

Remark 2.1.12. Let (𝑉,𝑄) be a polarized Hodge structure of weight-𝑛.

• If the Hodge structure has even dimension 𝑛 = 2𝑘 , then 𝑄 defines a (−1)𝑘−𝑝−definite form

on the subspace 𝑉R ∩ (𝑉 𝑝,𝑞 ⊕ 𝑉𝑞,𝑝). If 𝜌 is the algebraic representation defining the Hodge
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structure on 𝑉 , then 𝜌(𝑖) acts as 𝑖𝑝−𝑞 on 𝑉 𝑝,𝑞 . Now, 𝑖𝑝−𝑞 = 𝑖2𝑝−2𝑘 = (−1)𝑘−𝑝. Now since 𝑄

is a polarization, we have that (−1)𝑘−𝑝𝑄(𝑣, 𝑣) = 𝑄(𝑣, 𝜌(𝑖)𝑣) > 0 by definition.

• The restriction of the polarization𝑄 to any sub-Hodge structure𝑊 ⊂ 𝑉 defines a polarization.

So, any sub-Hodge structure of a polarizable Hodge structure is also polarizable. We will

use this fact when defining polarizations on transcendental and primitive sub-lattices of

cohomology rather than full cohomology.

• If 𝑉 is a polarized rational Hodge structure, then any sub-Hodge structure 𝑊 ⊂ 𝑉 defines

a direct sum decomposition 𝑉 = 𝑊 ⊕𝑊⊥, where the orthogonal complement is taken with

respect to the polarization 𝑄. This is because the polarization defines a symmetric, positive

definite bilinear form on a finite dimensional vector space in the rational case. If 𝑉 is an

integral Hodge structure, then𝑊 ⊕𝑊⊥ is in general only a finite index Hodge sub-structure.

This distinction will be important for us to keep in mind in Chapter 3.

2.2 Lattice Theory

We will make use of lattices throughout. The basic notions are defined here, with more advanced

theory explored in Chapter 4.

Definition 2.2.1. 1. A lattice is a pair (Λ, 𝑏) where Λ is a free Z−module of finite rank and

𝑏 : Λ × Λ ! Z

is a non-degenerate symmetric bilinear form.

2. We call the lattice even if 𝑏(𝑥, 𝑥) ∈ 2Z for all 𝑥 ∈ Λ and odd otherwise. In particular, we

need only one element 𝑥 with 𝑏(𝑥, 𝑥) odd to be called an odd lattice.

3. The discriminant of a lattice is the determinant of the Gram matrix of 𝑏 with respect to any

arbitrary basis of Λ, simply denoted by disc(Λ).

Given any lattice, there is a natural injection into its dual lattice Λ∗ B Hom(Λ,Z) given by

𝑖Λ: Λ ↩! Λ∗

𝑥 7! 𝑏(𝑥, –)
The injectivity follows since the lattice is non-degenerate by definition.
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Definition 2.2.2. The discriminant group of a lattice is defined to be 𝐴Λ B Λ∗/Λ. This is a finite

group of order |disc(Λ) | by [Huy16]. The lattice Λ is called unimodular if 𝐴Λ is trivial, which

happens if and only if disc(Λ) = ±1. The minimal number of generators of 𝐴Λ is denoted by 𝑙 (Λ).

Definition 2.2.3. Given two lattices Λ1 and Λ2, we can define the direct sum lattice Λ1 ⊕ Λ2

naturally by (𝑥1 + 𝑥2, 𝑦1 + 𝑦2)Λ1⊕Λ2 B (𝑥1, 𝑦1)Λ1 + (𝑥2, 𝑦2)Λ2 where 𝑥1, 𝑦1 ∈ Λ1 and 𝑥2, 𝑦2 ∈ Λ2.

Note that the discriminant is multiplicative over direct sums, a fact that will be useful in later

sections. The following are the most common examples of lattices of interest to us.

Example 2.2.4. 1. 𝐼 denotes the lattice of rank one with Gram matrix simply (1). Its direct

sum of 𝑛-copies will be denoted by 𝐼𝑛. This is clearly a unimodular lattice of rank 𝑛.

2. The hyperbolic lattice𝑈 is the rank two lattice with Gram matrix

©«
0 1

1 0

ª®®¬ .
This is a unimodular lattice of discriminant disc(𝑈) = −1.

3. The 𝐸8−lattice is the unique positive definite, even, unimodular lattice of rank 8. It can be

described by the set of points

𝐸8 B
{
(𝑥𝑖) ∈ Z8 ∪ (Z + 1

2 )
8 | Σ𝑥𝑖 ∈ 2Z

}
.

4. The lattice 𝐴2 is the rank 2 lattice with Gram matrix

©«
2 −1

−1 2

ª®®¬ .
Note that this lattice is not unimodular. It has disc(𝐴2) = 3 and discriminant group 𝐴𝐴2 �

Z/3Z. One can more generally define lattices of type 𝐴𝑛 coming from root systems, but we

will only make use of 𝐴2.

We will often consider sub-lattices. If 𝐿 ↩! Λ is an injective morphism of free Z-modules,

then one can use the natural inclusions

𝐿 ↩! Λ ↩! Λ∗ ↩! 𝐿∗
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to show the relation disc(𝐿) = disc(Λ) · (Λ : 𝐿)2 [Huy16, 14.0.2], where (Λ : 𝐿) denotes the index

of the subgroup 𝐿 in Λ.

Definition 2.2.5. We call an embedding of lattices 𝐿 ↩! Λ primitive if its cokernel is torsion free.

As a word of caution, note that if 𝐿1 ↩! Λ is a primitive embedding and 𝐿2 B 𝐿⊥1 , where the

orthogonal complement is taken inside of Λ, then the inclusion 𝐿1 ⊕ 𝐿2 ↩! Λ is not necessarily

primitive, though it is of finite index.

We also consider the twists of lattices in the following sections.

Definition 2.2.6. Given a lattice (Λ, 𝑏), its twist Λ(𝑚) is defined by changing the form on Λ by

multiplication by 𝑚. In other words, 𝑏Λ(𝑚) B 𝑚 · 𝑏Λ.

The discriminant of a twisted lattice is related to the discriminant of the original lattice via

disc(Λ(𝑚)) = disc(Λ) · 𝑚𝑟𝑘 (Λ) .

where rk(Λ) denotes the rank of Λ.

2.3 Abelian Varieties

Abelian varieties will be important to us in the following, since the Kuga-Satake construction

results in an abelian variety 𝐾𝑆(𝑉). In this section, we collect basic facts about abelian varieties

that we will use later. A reference for additional background is [Mil86] or [BL04]. A similar

exposition of background is given in [Mac16].

Definition 2.3.1. Let 𝑉 be a complex vector space of dimension 𝑛 and let Λ ⊂ 𝑉 be a full lattice,

i.e. Λ has rank 2𝑛 and Λ ⊗Z R = 𝑉 . Then a complex torus is defined to be

𝑋 := 𝑉/Λ.

It is well known that if 𝑋 = 𝑉/Λ is a complex torus, then 𝜋1(𝑋) � 𝐻1(𝑋,Z) � Λ. Additionally,

it is a fact from algebraic topology that for complex tori, 𝐻1(𝑋,Z) = Hom(𝐻1(𝑋),Z). So for the

case of a complex torus, 𝐻1(𝑋,Z) = Hom(Λ,Z).

To compute cohomology of a complex torus, it is enough to make use of the Künneth formula

and note that as a real manifold, 𝑋 � (R/Z)2𝑛 � (𝑆1)2𝑛 where 𝑆1 denotes the unit circle [Mil86,
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Section 15]. This gives us that

dim𝐻𝑘 (𝑋,Z) =
(
2𝑛
𝑘

)
and if the complex torus is algebraic, it has Hodge numbers given by

ℎ𝑝,𝑞 (𝑋) =
(
𝑛

𝑝

)
·
(
𝑛

𝑞

)
.

So, if we have an algebraic complex torus of dimension 2 (which we will call an abelian surface

shortly), its Hodge diamond is as follows:

1

2 2

1 4 1

2 2

1

Now, we are working towards defining abelian varieties from complex tori. To do this, we first

need to discuss Chern classes and polarizations of complex tori.

Let X be a complex torus (or more generally, any complex manifold). Recall the exponential

sheaf sequence:

0 −! 2𝜋𝑖Z −! O𝑋
𝑒2𝜋𝑖
−! O∗

𝑋 −! 0

This induces the usual long exact sequence in cohomology:

· · · ! 𝐻1(𝑋,O𝑋) ! 𝐻1(𝑋,O∗
𝑋)

𝑐1! 𝐻2(𝑋,Z) ! · · · .

Definition 2.3.2. Identify 𝐻1(𝑋,O∗
𝑋
) � Pic(𝑋) and let a line bundle 𝐿 ∈ Pic(𝑋). Define the first

Chern class of the line bundle 𝐿 to be the image of 𝐿 under 𝑐1 as defined above, i.e. 𝑐1(𝐿) ∈

𝐻2(𝑋,Z).
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When 𝑋 := 𝑉/Λ is a complex torus, by Künneth formula, 𝐻2(𝑋,Z) � 𝐻1(𝑋,Z)∧𝐻1(𝑋,Z) �

Hom(Λ,Z)∧Hom(Λ,Z) � Hom(Λ ∧ Λ,Z), so the first Chern class 𝑐1(𝐿) can be identified with

a Z−valued alternating form on the lattice Λ. Further, we can identify exactly when an alternating

form on the lattice Λ is induced from the first Chern class of a line bundle.

Proposition 2.3.3. Let 𝐸 : 𝑉 ×𝑉 ! R be an alternating form. Then the following are equivalent:

• 𝐸 represents the first Chern class of a line bundle 𝐿.

• 𝐸 (Λ,Λ) ⊂ Z and 𝐸 (𝑖𝑣, 𝑖𝑤) = 𝐸 (𝑣, 𝑤) for all 𝑣, 𝑤 ∈ 𝑉 .

Proof. See [BL04, Proposition 2.1.6]. □

This motivates the definition of a polarization of a complex torus. We say that a line bundle 𝐿

is positive definite if 𝐸 (𝑣, 𝑖𝑣) > 0 for all 𝑣 ∈ 𝑉 where 𝐸 is the alternating form associated to the

line bundle 𝐿 as in Proposition 2.3.3.

Definition 2.3.4. A polarization of a complex torus 𝑋 is defined to be the first Chern class of a

positive definite line bundle 𝐿. This means that a polarization is given by an alternating form

𝐸 : Λ × Λ ! Z under the above correspondence such that the R−linear extension of 𝐸 satisfies

𝐸 (𝑖𝑣, 𝑖𝑤) = 𝐸 (𝑣, 𝑤) for all 𝑣, 𝑤 ∈ 𝑉 and 𝐸 (𝑣, 𝑖𝑣) > 0 for all 𝑣 ∈ 𝑉 (positive definite). Compare

this definition to the definition of a polarization of a Hodge structure given by 2.1.8.

The following is well known, due to Lefschetz.

Proposition 2.3.5. [Lef21] If 𝐿 is a positive definite line bundle on a complex torus 𝑋 , then 𝑋 is

an algebraic variety with 𝐿3 very ample. So, the map 𝜑𝐿3 : 𝑋 ! P𝑁 is an embedding.

We are finally ready to define an abelian variety.

Definition 2.3.6. An abelian variety is defined to be a complex torus equipped with a positive

definite line bundle. In particular, the above proposition implies that an abelian variety is a

complex, projective variety. In fact, it is also an algebraic group.

An important notion for us in Chapter 3 will be that of an isogeny of abelian varieties, as we

will often consider Kuga-Satake varieties up to isogeny.

Definition 2.3.7. A morphism of abelian varieties 𝑓 : 𝐴! 𝐵 is called an isogeny if it is surjective
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and has finite (zero-dimensional) kernel. The degree of the isogeny is the degree of the field

extension [𝑘 (𝐴) : 𝑓 ∗𝑘 (𝐵)]. Isogeny is typically denoted by 𝐴 ∼ 𝐵.

There are several equivalent notions of isogeny as seen in [Mil86].

Proposition 2.3.8. The following are equivalent:

• 𝑓 : 𝐴! 𝐵 is an isogeny.

• dim(𝐴) = 𝑑𝑖𝑚(𝐵) and 𝑓 is surjective.

• 𝑑𝑖𝑚(𝐴) = 𝑑𝑖𝑚(𝐵) and 𝑘𝑒𝑟 ( 𝑓 ) is finite.

• 𝑓 is finite, flat, and surjective.

It is often more appropriate to consider abelian varieties up to isogeny. For example, doing

so makes direct sums work well. For example, given an abelian subvariety 𝐴1 ⊂ 𝐴, there always

exists another abelian subvariety 𝐴2 ⊂ 𝐴 such that 𝐴 ∼ 𝐴1× 𝐴2. Therefore, every abelian variety is

isogenous to a direct sum of simple abelian varieties. Such statements do not hold when considering

abelian varieties up to isomorphism instead of abelian varieties up to isogeny.

Now that we have defined the necessary notions, we relate complex tori and abelian varieties

back to Hodge structures. The following proposition will be our key consideration.

Proposition 2.3.9. There is a one-to-one correspondence between the set of complex tori and the set

of integral Hodge structures of weight one. Additionally, abelian varieties correspond to polarized,

integral Hodge structures of weight one.

Proof. Let 𝑋 = 𝑉/Λ be a complex torus. Then by definition we have Λ ⊗Z R = 𝑉 is a complex

vector space, so it comes equipped with a complex structure 𝐽, i.e. 𝐽2 = −1. Set 𝐻1,0 to be the

𝑖−eigenspace under 𝐽. In other words, 𝐻1,0 = {𝑣 ∈ 𝑉 : 𝐽𝑣 = 𝑖𝑣}. Similarly, set 𝐻0,1 to be the

(−𝑖)−eigenspace under 𝐽. Then clearly 𝐻 = 𝐻1,0 ⊕ 𝐻0,1 defines a weight one Hodge structure.

On the other hand, given a weight one integral Hodge structure on 𝐻Z, write 𝐻C = 𝐻1,0 ⊕ 𝐻0,1.

Then 𝐻Z ↩! 𝐻1,0 and 𝐻1,0/𝐻Z is a complex torus.

Now, the definition of a polarization on a complex torus was carefully constructed to exactly

mirror that of a polarization of a Hodge structure, so abelian varieties correspond to polarized
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Hodge structures. □

Corollary 2.3.10. Further, there is a one-to-one correspondence between the set of abelian varieties

up to isogeny and the set of polarized, rational Hodge structures of weight one.

This consideration will be especially crucial for us when working with Kuga-Satake varieties

that are constructed from rational Hodge structures.

2.4 K3 Surfaces

In this section we recall relevant facts about 𝐾3 surfaces.

Definition 2.4.1. A 𝐾3 surface 𝑆 is a smooth projective variety of dimension 2 that has trivial

canonical bundle, i.e. 𝜔𝑆 � O𝑆, and zero irregularity, i.e. 𝐻1(𝑆,O𝑆) = 0.

Example 2.4.2. We list a few basic examples of 𝐾3 surfaces.

• A smooth quartic 𝑆 ⊂ P3
C

is a 𝐾3 surface. One of the more notable examples is that of the

Fermat quartic given by

𝑍 (𝑥4 + 𝑦4 + 𝑧4 + 𝑤4) ⊂ P3
C.

It is easy to see that such a smooth quartic is indeed 𝐾3. From the standard short exact

sequence

0 −! OP3 (−4) −! OP3 −! O𝑆 −! 0

we have that𝐻1(𝑆,O𝑆) = 0 since𝐻1(P3,OP3) = 0 = 𝐻2(P3,OP3 (−4)). The canonical bundle

is calculated directly from adjunction formula [Har13], giving 𝜔𝑆 � O𝑆 (−3 − 1 + 4) � O𝑆.

• A smooth double cover of P2
C

branched along a smooth sextic curve is a 𝐾3 surface 𝑆 of

degree 2. For example, one can use adjunction to see that 𝜔𝑆 is trivial.

• Let 𝐴 be an abelian surface over 𝑘 = C (any algebraically closed field 𝑘 where char(𝑘) ≠ 2

will also work). Then 𝐴 always comes equipped with a natural involution 𝜄(𝑎) = −𝑎 for all

𝑎 ∈ 𝐴. This involution has 16 fixed points and so 𝐴/𝜄 has 16 double point singularities. Its

minimal resolution 𝑆 ! 𝐴/𝜄 is a 𝐾3 surface that is called a Kummer surface.

Proposition 2.4.3. The Hodge diamond of any 𝐾3 surface has the following form:
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1

0 0

1 20 1

0 0

1

Proof. We have that 𝐻0,0 = 𝐻0(𝑆,O𝑆) = 1, so by Serre duality ℎ0,0 = ℎ2,2 = 1. By definition,

ℎ0,1 = 0 since 𝐻1(𝑆,O𝑆) = 0. By symmetry this gives ℎ1,0 = ℎ0,1 = ℎ2,1 = ℎ1,2 = 0, so all of

the interesting Hodge numbers appear in the middle of the diamond. Of course, we also have that

ℎ2,0 = 1 by definition since 𝐻0(𝑆,Ω2) � 𝐻0(𝑆,O𝑆) = 1. So, we only need to determine ℎ1,1.

The above gives us that the Euler characteristic 𝜒(𝑆,O𝑆) = 2. So the Noether formula

𝜒(𝑆,O𝑆) =
𝑐2

1 + 𝑐2

12

tells us that 𝑐2 = 24, where 𝑐𝑖 is the 𝑖−th Chern class of the tangent bundle. Note that 𝑐1 = 0 since

𝜔𝑆 is trivial. Now, 𝑐2 is equal to the topological Euler characteristic, and the above shows us that

𝑏1 = 𝑏4 = 1 and 𝑏2 = 𝑏3 = 0. So, we have 24 = 1 − 0 + 𝑏3 − 0 + 1. This implies 𝑏3 = 22, so we

must have ℎ1,1 = 20. This completes the Hodge diamond. □

Remark 2.4.4. Equipped with its intersection form, 𝐻2(𝑆,Z) has the structure of an even unimod-

ular lattice. This lattice is denoted by Λ𝐾3, and it can be proved that for any 𝐾3 surface 𝑆 it is

isomorphic to the lattice 𝐸8(−1)⊕2 ⊕ 𝑈⊕3, called the 𝐾3 lattice.

Sub-lattices of 𝐻2(𝑆,Z) will also be considered throughout. In particular, we will need the

Néron-Severi group and the transcendental lattice of 𝑆.

Definition 2.4.5. Given a 𝐾3 surface 𝑆, the Néron-Severi group is defined to be

𝑁𝑆(𝑆) B 𝐻2(𝑆,Z) ∩ 𝐻1,1(𝑆).
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𝑁𝑆(𝑆)Q can be defined similarly as 𝐻2(𝑆,Q) ∩ 𝐻1,1(𝑆). The transcendental lattice of 𝑆 is defined

to be the orthogonal complement to 𝑁𝑆(𝑆) with respect to the intersection form as

𝑇 (𝑆) B 𝑁𝑆(𝑆)⊥ ⊂ 𝐻2(𝑆,Z).

Note that when considered as rational Hodge structures, we have a direct sum decomposition

𝐻2(𝑆,Q) = 𝑁𝑆(𝑆)Q ⊕ 𝑇 (𝑆)Q, a fact that will be useful later.

The rank of 𝑁𝑆(𝑆) is called the Picard rank of 𝑆, denoted 𝜌(𝑆). For a projective 𝐾3 surface

𝑆 ⊂ P𝑛
C
, the Picard rank ranges between 1 ≤ 𝜌(𝑆) ≤ 20. A 𝐾3 surface of maximal Picard rank 20

is sometimes called a singular 𝐾3 surface.

We will often have to work with polarized 𝐾3 surfaces in the following.

Definition 2.4.6. A polarized 𝐾3 surface (of degree 2𝑑) is a pair (𝑆, 𝐿) where 𝑆 is a projective 𝐾3

surface and 𝐿 ∈ Pic(𝑆) is a primitive, ample line bundle with 𝐿2 = 2𝑑.

It is a well known fact that polarized 𝐾3 surfaces of degree 2𝑑 exist for arbitrary 𝑑 > 0, see for

example [Bea11]. We will denote the moduli space of polarized 𝐾3 surfaces of degree 𝑑 by N𝑑 .

2.5 Cubic Fourfolds

Throughout this section we work over 𝑘 = C.

Definition 2.5.1. A cubic fourfold is a smooth hypersurface 𝑋 ⊂ P5 of degree 3.

Remark 2.5.2. Cubic hypersurfaces (not necessarily smooth) in P5 are parametrized by

P(C[𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤]3), since they are given by a choice of a degree 3 homogenous polynomial in 6

variables. This space has dimension(
𝑛 + 𝑑
𝑑

)
− 1 =

(
8
3

)
− 1 = 55

so P(C[𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤]3) � P55.

The smooth cubic fourfolds correspond to a dense open set 𝑈 ⊂ P55. Therefore, the moduli

space of cubic fourfolds is

C = [𝑈/PGL6(C)] .
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Note that 𝑈 has dimension 55 since it is dense in P55 and PGL6(C) has dimension 62 − 1 = 35 so

that dim(C) = 55 − 35 = 20.

Cubic fourfolds are of great interest for rationality problems. That is, given a cubic fourfold

𝑋 , does there exist a birational map 𝜑 : P𝑛 d 𝑋? Rationality of cubic surfaces is long known by

classical methods. On the other hand, cubic threefolds are known to be irrational by methods of

[CG72] using the intermediate Jacobian. Through work of Hassett, cubic fourfolds are expected

to show more mixed behavior, though most cubic fourfolds are expected to be irrational. We will

explore this idea through Hodge theory in this section. Before seeing more general theory, we

briefly give a few examples of cubic fourfolds that are known to be rational. See [Has16, Section 1]

for additional details.

Example 2.5.3. 1. A cubic fourfold 𝑋 containing two disjoint planes 𝑃1 and 𝑃2 can be shown

to be rational. The map is constructed in the expected way, by taking a points 𝑝1 ∈ 𝑃1 and

𝑝2 ∈ 𝑃2 and joining them with a line to generally get a third point on 𝑋 . In this way one can

construct a birational map 𝜑 : 𝑃1 × 𝑃2 d 𝑋 .

2. Let 𝑋 be a cubic fourfold containing a plane 𝑃 and another projective surface𝑊 such that

deg(𝑊) − ⟨𝑃,𝑊⟩

is odd, where ⟨ , ⟩ denotes the intersection pairing. Then 𝑋 can be shown to be rational by

[Has99, Corollary 2.2]. We will revisit this example in Chapter 5.

3. If 𝑀 is a skew-symmetric 2𝑛 × 2𝑛 matrix then the determinant of 𝑀 can be written as

det(𝑀) = Pf (𝑀)2

where Pf (𝑀) is a homogenous form of degree 𝑛 known as the Pfaffian of 𝑀 . A Pfaffian

cubic fourfold is the zero locus of this form:

𝑋 = 𝑍 (Pf (𝑀)) ⊂ P5

It was shown in [Tre84] that Pfaffian cubic fourfolds are rational.
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Now we explore the Hodge theory of cubic fourfolds. Suppose 𝑋 ⊂ P5 is a cubic fourfold. The

Hodge diamond of 𝑋 is of the form:

1

0 0

0 1 0

0 0 0 0

0 1 21 1 0

0 0 0 0

0 1 0

0 0

1

Remark 2.5.4. Let 𝑋 be a cubic fourfold.

1. Equipped with its intersection form, 𝐻4(𝑋,Z) � 𝐼21 ⊕ 𝐼2(−1) by [Has00, Proposition 2.1.2].

Therefore, we can see that 𝐻4(𝑋,Z) is a unimodular lattice of signature (21, 2). It is an odd

lattice since (ℎ2)2 = 3 for a hyperplane class ℎ.

2. We also consider primitive cohomology 𝐻4(𝑋,Z)0 B {ℎ2}⊥. The signature of this lattice is

(20, 2) but it is no longer unimodular since𝐻4(𝑋,Z)0 � 𝐴2⊕𝑈2⊕𝐸2
8 where each component

is defined in 2.2.4. Since the discriminant is multiplicative, we have disc(𝐻4(𝑋,Z)0) = 3.

3. As was the case with 𝐾3 surfaces, we can define the Néron-Severi group and transcendental

lattice analogously. Since the Hodge conjecture holds for a cubic fourfold 𝑋 by [Zuc77], the

Néron-Severi group is given by 𝑁𝑆(𝑋) � 𝐻4(𝑋,Z) ∩ 𝐻2,2(𝑋), and 𝑇𝑆(𝑋) B 𝑁𝑆(𝑋)⊥ ⊂

𝐻4(𝑋,Z). The Picard rank 𝜌(𝑋) is the rank of 𝑁𝑆(𝑋) and 1 ≤ 𝜌(𝑋) ≤ 21.

This lattice structure looks very similar to that of a 𝐾3 surface, though the dimensions and

signatures are not quite the same. That leads us to our next set of definitions.
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Definition 2.5.5. 1. A cubic fourfold 𝑋 is called special if there exists an algebraic surface

𝑇 ⊂ 𝑋 that is not homologous to a complete intersection.

2. A labelling of a cubic fourfold is a choice of a rank two saturated sublattice 𝐾 ⊂ 𝐻2,2(𝑋,Z)

such that ℎ2 ∈ 𝐾 . We call a sublattice 𝐾 ⊂ 𝐿 saturated if for every 𝑙 ∈ 𝐿, if 𝑛𝑙 ∈ 𝐾 for some

𝑛 ∈ Z, then 𝑙 ∈ 𝐾 . We denote a labelled cubic fourfold by (𝑋, 𝐾). Note that a cubic fourfold

may have more than one labeling.

3. The discriminant 𝑑 of a labelled cubic fourfold is the determinant of the restriction of the

intersection form on 𝐻4(𝑋,Z) to the sublattice 𝐾 . We denote a cubic fourfold with a labeling

𝐾 of discriminant 𝑑 by (𝑋, 𝐾𝑑).

Remark 2.5.6. Note that a very general cubic fourfold is not special. Indeed by [Voi86], for a

very general cubic fourfold, 𝐻2,2(𝑋,Z) � Zℎ2. So for a very general cubic fourfold, any algebraic

surface 𝑇 ⊂ 𝑋 is homologous to a complete intersection. Therefore, the notion of a special cubic

fourfold really is special.

Note that 𝐾⊥
𝑑

now has signature (19, 2) just as the primitive cohomology 𝑓 ⊥ B 𝐻2(𝑆,Z)0 of a

polarized 𝐾3 surface (𝑆, 𝑓 ) does. This motivates the following important definition.

Definition 2.5.7. Let (𝑋, 𝐾) be a special cubic fourfold and (𝑆, 𝑓 ) a polarized 𝐾3 surface. We say

that 𝑆 is associated to 𝑋 if there is a Hodge isometry

𝐻4(𝑋,Z) (1) ⊃ 𝐾⊥(1) 𝜑
−! 𝑓 ⊥ ⊂ 𝐻2(𝑆,Z)

i.e. 𝜑 is an isomorphism of weight 2 Hodge structures that respects lattice structures.

We explore conditions for when a cubic fourfold to have an associated𝐾3 surface. The following

is given in [Has16, Proposition 20]. First, a lemma is needed.

Lemma 2.5.8. Let 𝑑 > 0 be a positive integer such that 𝑑 ≡ 0 or 2 (mod 6). Then there exists an

isomorphism of lattices

𝐾⊥
𝑑 −! 𝑓 ⊥

if and only if 𝑑 is not divisible by 4, 9 or any odd prime 𝑝 ≡ 2 (mod 3).
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This motivates the following definition.

Definition 2.5.9. We call an even, positive integer 𝑑 admissible if 𝑑 is not divisible by 4, 9 or any

odd prime 𝑝 ≡ 2 (mod 3).

The first few admissible values are 𝑑 = 14, 26, 38, 42. Now, we are ready to state Hassett’s

theorem as the following.

Theorem 2.5.10. A labelled special cubic fourfold (𝑋, 𝐾𝑑) admits an associated 𝐾3 surface if and

only if 𝑑 is admissible.

Proof. See [Has16, Proposition 20]. □

We would like to understand how certain moduli spaces of cubic fourfolds relate to moduli

spaces of 𝐾3 surfaces. First we fix some notation.

As before, let C𝑑 ⊂ C denote special cubic fourfolds admitting a labeling of discriminant 𝑑. It

can be shown that C𝑑 ⊂ C is an irreducible divisor, and it is non-empty if and only if 𝑑 ≥ 8 and

𝑑 ≡ 0, 2 (mod 8) [Has16, Theorem 13]. These divisors are often referred to as "Hassett divisors".

Further, let C′

𝑑
denote cubic fourfolds 𝑋 together with a choice of saturated embedding of 𝐾𝑑 into

𝐻4(𝑋,Z). Let N𝑑 denote polarized 𝐾3 surfaces of degree 𝑑. Then Hassett proves the following

results.

Proposition 2.5.11. Let 𝑑 be an admissible value. Then C′

𝑑
is irreducible and there exists an open

immersion of C′

𝑑
into N𝑑 .

Further, we know when cubic fourfolds admit multiple associated 𝐾3 surfaces. We will use this

fact later.

Corollary 2.5.12. Let 𝑑 be an admissible value. If 𝑑 ≡ 2 (mod 6) then C𝑑 is birational to N𝑑 .

Otherwise C𝑑 is birational to a quotient of N𝑑 .

This possible ambiguity in having multiple associated 𝐾3 surfaces is addressed by Orlov’s

Theorem. We will discuss derived categories in much more detail in Chapter 5, but it is relevant to

mention this result here.

Theorem 2.5.13. [Orl97, Theorem 3.3] Let 𝑆1 and 𝑆2 be smooth projective 𝐾3 surfaces over C.
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Then 𝑆1 and 𝑆2 are derived equivalent, i.e. 𝐷𝑏 (𝑆1) � 𝐷𝑏 (𝑆2) if and only if there exists a Hodge

isometry 𝑇 (𝑆1) � 𝑇 (𝑆2) between transcendental lattices.

Now, if 𝑆1 and 𝑆2 are both associated to a labelled cubic fourfold (𝑋, 𝐾), then we have Hodge

isometries

𝐻2(𝑆1,Z)0 � 𝐾⊥ � 𝐻2(𝑆2,Z)0.

Hence 𝑇 (𝑆1) � 𝑇 (𝑆2) since the above are Hodge isometries. Therefore, by Orlov’s Theorem,

we conclude that if a cubic fourfold has multiple associated 𝐾3 surfaces then they are all derived

equivalent.

We end this section by giving a brief census of what is currently known about rationality of

cubic fourfolds in terms of Hassett divisors C𝑑:

1. Cubic fourfolds in C14 are known to be rational. Indeed, it can be shown that C14 is the

closure of the Pfaffian locus that we saw earlier in this section.

2. In [RS18] it is shown by Russo and Staglianò that all cubic fourfolds in C26 and C38 are

rational.

3. Further, Russo and Staglianò show in [RS19] that all cubic fourfolds in C42 are rational.

Note that 14, 25, 38, 42 are in fact the first few admissible values of discriminants 𝑑. Since this

is precisely when a cubic fourfold possesses an associated 𝐾3 surface 𝑆 by Theorem 2.5.10, this

gives some evidence towards the following conjecture.

Conjecture 2.5.14. A cubic fourfold 𝑋 is rational if and only if it possesses an associated 𝐾3

surface 𝑆.

Note, however, that there are no examples of irrational cubic fourfolds that are known to date,

even though the conjecture implies that most cubic fourfolds should be irrational. We take this

rationality conjecture as motivation to further exploring cubic fourfolds and their associated 𝐾3

surfaces in the following chapters.
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CHAPTER 3

KUGA-SATAKE VARIETIES

In this chapter we prove our first main result. Specifically, we aim to study the Kuga-Satake varieties

of cubic fourfolds and their associated 𝐾3 surfaces in the interest of finding a relationship between

them. The chapter is outlined as follows:

§3.1 We review Clifford algebras of quadratic forms. A Clifford algebra is a unital associative

algebra that is associated to a vector space or a Z−module equipped with a quadratic form 𝑞.

These special algebras are one of the main ingredients in the Kuga-Satake construction, so

we recall basic definitions and facts concerning them here, as well as briefly mentioning the

Clifford group.

§3.2 In this section, we recall the Kuga-Satake construction and show that it produces an abelian

variety. We show that the construction works for cubic fourfolds and provide an example of a

situation where the Kuga-Satake variety can be explicitly described in the case of an abelian

surface.

§3.3 We begin this section by proving an important lemma that is used to describe Kuga-Satake

varieties associated to direct sums of Hodge structures. Lemma 3.3.1 allows us to describe

additional types of Kuga-Satake varieties up to isogeny. We use this to prove one of our

main results: If a cubic fourfold 𝑋 has an associated 𝐾3 surface 𝑆, then 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2,

where ∼ denotes isogeny of abelian varieties. We also prove a lemma that allows us to show a

partial converse in the situation where we know more about the discriminants involved. This

relates the Kuga-Satake construction to the theory of associated 𝐾3 surfaces.

§3.4 In this section, we take an interesting interlude to show that our results can be applied to

a different class of varieties that are known as Gushel-Mukai fourfolds. We quickly define

these varieties and show that their Hodge theory is related to 𝐾3 surfaces in a similar way

to cubic fourfolds. In particular, concepts such as "special", "admissible discriminant", and

"associated 𝐾3 surface" are all generalized. We end with a couple of corollaries using our
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main theorem in Section 3.3 to show similar results for Gushel-Mukai fourfolds.

3.1 Clifford Algebras

One of the main ingredients in the Kuga-Satake construction is the Clifford algebra. This is a

type of algebra that can be associated to any free Z−module of finite rank equipped with a quadratic

form or finite dimensional vector space that is equipped with a quadratic form.

Suppose𝑉 is a free Z−module of finite rank attached with a quadratic form 𝑞. Recall the tensor

algebra associated to 𝑉 is given by

𝑇 (𝑉) B
⊕
𝑖≥0

𝑉⊗𝑖 .

There is a naturalZ/2Z-grading on𝑇 (𝑉) given by decomposing it into even and odd components

as

𝑇 (𝑉) = 𝑇+(𝑉) ⊕ 𝑇−(𝑉)

where 𝑇+(𝑉) B
⊕

𝑖≥0𝑉
⊗2𝑖 and 𝑇−(𝑉) B

⊕
𝑖≥0𝑉

⊗(2𝑖+1) .

Definition 3.1.1. The Clifford algebra associated to (𝑉, 𝑞) is defined to be

𝐶 (𝑉, 𝑞) B 𝑇 (𝑉)/⟨𝑣 ⊗ 𝑣 − 𝑞(𝑣) | 𝑣 ∈ 𝑉⟩ .

Also define 𝐶𝐾 (𝑉, 𝑞) B 𝐶 (𝑉, 𝑞) ⊗Z 𝐾 where we allow 𝐾 ∈ {Q,R,C}.

Note that the ideal defining 𝐶 (𝑉, 𝑞) is generated by even elements so the natural Z/2Z grading

on 𝑇 (𝑉) descends to a grading on 𝐶 (𝑉, 𝑞) giving

𝐶 (𝑉, 𝑞) = 𝐶+(𝑉, 𝑞) ⊕ 𝐶−(𝑉, 𝑞).

The even Clifford algebra 𝐶+(𝑉, 𝑞) will be of particular interest to us. Note that the even

Clifford algebra is again a sub-algebra of the Clifford algebra.

The tensor algebra𝑇 (𝑉) comes with a natural anti-involution 𝜄 : 𝑇 (𝑉) ! 𝑇 (𝑉), 𝑣1 ⊗ . . .⊗ 𝑣𝑛 7!

𝑣𝑛 ⊗ . . . ⊗ 𝑣1. This descends to an anti-automorphism on 𝐶 (𝑉) since the ideal defining 𝐶 (𝑉) is

invariant under 𝜄, which we also denote by 𝜄.
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Proposition 3.1.2. The dimension of the Clifford algebra is given by dim𝐾 (𝐶𝐾 (𝑉, 𝑞)) = 2𝑛 where

𝑛 = dim(𝑉).

Proof. By [Huy16, Section 4.1.1], one can define an isomorphism 𝐶𝐾 (𝑉, 𝑞) �
∧∗𝑉𝐾 between the

Clifford algebra and exterior algebra of𝑉 . Under this isomorphism, a choice of an orthogonal basis

𝑣1, . . . , 𝑣𝑛 of 𝑉 gives a basis of 𝐶𝐾 (𝑉, 𝑞) of the form 𝑣
𝑎1
1 · . . . · 𝑣𝑎𝑛𝑛 for 𝑎𝑖 ∈ {0, 1}. There are 2𝑛

such basis elements. □

Definition 3.1.3. The Clifford group associated to (𝑉, 𝑞) is defined to be

CSpin(𝑉) B {𝑔 ∈ 𝐶 (𝑉, 𝑞)∗ | 𝑔𝑉𝑔−1 ⊂ 𝑉}.

To study the Clifford group in the next section, we use the fact that there is a natural orthogonal

representation

𝜏 : CSpin(𝑉) ! 𝑂 (𝑉)

given by 𝑔 7! (𝑣 7! 𝑔 · 𝑣 · 𝑔−1). By orthogonal representation we mean 𝜏(𝑔) preserves 𝑞 for any 𝑔.

Since 𝑞(𝑤) = 𝑤2 for all𝑤 ∈ 𝑉 , we see that 𝑞(𝑔·𝑣·𝑔−1) = (𝑔·𝑣·𝑔−1) (𝑔·𝑣·𝑔−1) = 𝑞(𝑣) (𝑔·𝑔−1) = 𝑞(𝑣),

so the representation is orthogonal.

3.2 The Kuga-Satake Construction

The Kuga-Satake construction was first defined in [KS67]. The construction allows us to pass

from certain Hodge structures of weight two to Hodge structures of weight one. Geometrically,

this was first used in associating an abelian variety to a 𝐾3 surface. Since the original construction

was developed, the Kuga-Satake construction has been generalized further. In particular, [Voi05]

provides an alternative viewpoint to the construction, and [Mor85] applies the construction to

abelian surfaces.

We adapt the Kuga-Satake construction for cubic fourfolds 𝑋 and explore the relationship of

𝐾𝑆(𝑋) with 𝐾𝑆(𝑆) for associated 𝐾3 surfaces 𝑆.

Definition 3.2.1. A Hodge structure 𝑉 is said to be of 𝐾3−type if it is a Hodge structure of weight

two and 𝑣2,0 = 1, where 𝑣𝑝,𝑞 B dim(𝑉 𝑝,𝑞).
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Example 3.2.2. 𝐾3 surfaces and cubic fourfolds provide the most important examples of Hodge

structures of 𝐾3−type for our purposes.

1. Let 𝑆 be a 𝐾3 surface. Then 𝐻2(𝑆,Z) is of 𝐾3−type. We can also see that primitive coho-

mology 𝐻2(𝑆,Z)0 and the transcendental lattice 𝑇 (𝑆) are sub-Hodge structures of 𝐾3−type.

2. Let 𝑋 be a cubic fourfold. Then 𝐻4(𝑋,Z) is of weight 4. Consider its Tate twist 𝑉 =

𝐻4(𝑋,Z) (1). This is now a Hodge structure of weight 2 with 𝑣2,0 = 1, since ℎ3,1(𝑋,Z) = 1.

Now, let 𝑉 be a Hodge structure of 𝐾3-type and suppose that it has polarization −𝑞. The Kuga-

Satake construction takes this weight 2 Hodge structure and gives a Hodge structure of weight one.

The first step will be to endow 𝐶R(𝑉,−𝑞) with a complex structure.

Let 𝑉 be one of the polarized Hodge structures in the example above. By the Hodge index

theorem, if 𝑉 has rank 𝑛 then −𝑞 has signature (𝑛 − 2, 2). So, there is a choice of orthonormal

basis of 𝑉R such that −𝑞 can be written as −𝑞 = −𝐸2
1 − 𝐸2

2 + 𝐸2
3 + · · · + 𝐸2

𝑛 . Let 𝑒𝑖 correspond to

𝐸𝑖 in the Clifford algebra and set 𝐽 B 𝑒1 · 𝑒2 ∈ 𝐶𝑙R(𝑉,−𝑞). Since 𝑒1𝑒2 = −𝑒2𝑒1 we have that

𝐽2 = (𝑒1𝑒2) (𝑒1𝑒2) = −(𝑒1)2(𝑒2)2 = −1. Therefore multiplication by 𝐽 defines a complex structure

on 𝐶𝑙R(𝑉,−𝑞). Note that 𝐽 is independent of the choice of orthonormal basis (up to a sign).

Now, with the complex structure defined by 𝐽 in hand, we define the weight one Hodge structure

on 𝐶𝑙R(𝑉,−𝑞) by the algebraic representation:

𝜌 : C∗ −! GL(𝐶𝑙R(𝑉,−𝑞))

𝑥 + 𝑖𝑦 7−! (𝑣 7! (𝑥 + 𝐽𝑦) (𝑣))
for any 𝑣 ∈ 𝑉R. We perform the same construction to get a weight one Hodge structure on

𝐶𝑙+R(𝑉,−𝑞) and 𝐶𝑙−R (𝑉,−𝑞) as well.

Now, suppose 𝑉 is an integral Hodge structure. Then 𝐶𝑙+(𝑉,−𝑞) ⊂ 𝐶𝑙+R(𝑉,−𝑞) is a full lattice

so the quotient𝐶𝑙+R(𝑉,−𝑞)/𝐶𝑙
+(𝑉,−𝑞) defines a complex torus. We show below that this is indeed

an abelian variety.

Definition 3.2.3. The Kuga-Satake variety associated to the integral Hodge structure 𝑉 of 𝐾3-type
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is defined as

𝐾𝑆(𝑉) B 𝐶𝑙+R(𝑉,−𝑞)/𝐶𝑙
+(𝑉,−𝑞).

In order to show that this complex torus defines an abelian variety, it is sufficient to construct

a polarization by our discussion in Proposition 2.3.9. We first choose two orthogonal vectors

𝑣1, 𝑣2 ∈ 𝑉 such that 𝑞(𝑣𝑖) > 0. This is possible since the signature of 𝑞 is (2, 𝑛 − 2). Now define a

polarization by

𝑄 : 𝐶𝑙+(𝑉, 𝑞) × 𝐶𝑙+(𝑉, 𝑞) −! 𝑄(−1)

(𝑥, 𝑦) 7−! tr(𝑣1 · 𝑣2 · 𝜄(𝑥) · 𝑦)
(2)

where tr(𝐿) denotes the trace of an endormorphism 𝐿 on 𝐶𝑙+(𝑉, 𝑞) and 𝜄 denotes the anti-

automorphism of the Clifford algebra defined previously.

Lemma 3.2.4. Q defines a polarization for the weight one Hodge structure on𝐶𝑙+(𝑉, 𝑞). Therefore,

the Kuga-Satake variety 𝐾𝑆(𝑉) is an abelian variety.

Proof. [Huy16, Proposition 4.2.5] □

Now that we have defined the Kuga-Satake variety 𝐾𝑆(𝑉) associated to a Hodge structure 𝑉 of

𝐾3−type, and realized it as an abelian variety, we discuss basic properties of Kuga-Satake varieties.

In the following, we may drop the polarization 𝑞 in 𝐶𝑙 (𝑉, 𝑞) to simplify notation.

Lemma 3.2.5. If dimC(𝑉) = 𝑛, then dimC(𝐾𝑆(𝑉)) = 2𝑛−2.

Proof. We saw previously in Proposition 3.1.2 that dimC(𝐶𝑙 (𝑉)) = 2𝑛. Therefore dimR(𝐶𝑙+R(𝑉)) =

2𝑛−1. It follows that dimC(𝐾𝑆(𝑉)) = 2𝑛−2 □

So in general the dimension of Kuga-Satake varieties will be quite high. This creates a difficulty

in giving an explicit geometric description of 𝐾𝑆(𝑉) in many cases.

Definition 3.2.6. Let 𝑋 be a variety of dimension 𝑛 such that 𝐻𝑛 (𝑋,Z) (𝑘) is a Hodge structure of

𝐾3−type for some Tate twist of degree 𝑘 . Then we define the Kuga-Satake variety associated to 𝑋

to be the Kuga-Satake variety associated to the particular Hodge structure 𝑉 = 𝐻𝑛 (𝑋,Z) (𝑘), i.e.

𝐾𝑆(𝑋) B 𝐾𝑆(𝐻𝑛 (𝑋,Z) (𝑘)) with the polarization as defined in (2).
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One of the more important facts that comes from the construction is that we can recover the

Hodge structure on 𝑉 from the Hodge structure on 𝐾𝑆(𝑉). We provide a proof of this fact in the

case of a cubic fourfold.

Proposition 3.2.7. Suppose 𝑋 is a smooth cubic fourfold and 𝑉 = 𝐻4(𝑋,Z). Then there is an

inclusion of Hodge structures of weight four

𝑉 ↩−! 𝐶𝑙+(𝑉 (1)) ⊗ 𝐶𝑙+(𝑉 (1)) ⊗ Q(−1).

Furthermore, the Hodge structure of weight four on 𝑉 can be recovered from the Hodge structure

of weight one on 𝐾𝑆(𝑋).

Proof. The proof is similar to that of [Huy16, Proposition 4.2.6], adapted to our situation. Choose

an element 𝑣0 ∈ 𝑉 (1) with 𝑞(𝑣0) ≠ 0. Consider the map

𝜑 : 𝑉 (2) ↩−! End(𝐶𝑙+(𝑉 (1)))

𝑣 7−! (𝜑(𝑣) := 𝑓𝑣 : 𝑤 7! 𝑣 · 𝑤 · 𝑣0).

This is an embedding since 𝑓𝑣 (𝑣1 · 𝑣0) = 𝑞(𝑣0)𝑣 · 𝑣1 for all 𝑣1 ∈ 𝑉 . We must now show that 𝜑 is a

morphism of Hodge structures of weight zero.

Recall that a Hodge structure on 𝑉 corresponds to a representation 𝜌𝑉 of C∗ on 𝑉 . Let

the induced representations 𝜌𝑉 , 𝜌𝑉 (1) , 𝜌𝑉 (2) , 𝜌𝐶𝑙 , and 𝜌𝐸𝑛𝑑 correspond to the Hodge structures on

𝑉,𝑉 (1), 𝑉 (2), 𝐶𝑙+(𝑉 (1)), and End(𝐶𝑙+(𝑉 (1))) respectively. Then, to show that 𝜑 is a morphism

of Hodge structures we must show

𝑓𝜌𝑉 (2) (𝑧) (𝑣) = 𝜌𝐸𝑛𝑑 (𝑧) · 𝑓𝑣 (3)

for all 𝑧 ∈ C∗ and 𝑣 ∈ 𝑉 (2) by Example 2.1.7(3). By definition, the evaluation of the left hand side

for any 𝑤 ∈ 𝐶𝑙+(𝑉 (1)) is given by

𝑓𝜌𝑉 (2) (𝑧) (𝑣) (𝑤) = (𝜌𝑉 (2) (𝑧) (𝑣)) · 𝑤 · 𝑣0.

The evaluation of the right hand side of (3) for any 𝑤 ∈ 𝐶𝑙+(𝑉 (1)) is given by

(𝜌𝐸𝑛𝑑 (𝑧) · 𝑓𝑣) (𝑤) = 𝜌𝐶𝑙 (𝑧) 𝑓𝑣 (𝜌𝐶𝑙 (𝑧)−1(𝑤)) = 𝜌𝐶𝑙 (𝑧) (𝑣 · 𝜌𝐶𝑙 (𝑧)−1𝑤 · 𝑣0)
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by Example 2.1.7(4). So, it suffices to show the following identity holds:

𝜌𝑉 (2) (𝑧) (𝑣) = 𝜌𝐶𝑙 (𝑧) · 𝑣 · 𝜌𝐶𝑙 (𝑧)−1.

This computation is checked in [Huy16, Proposition 2.6]. Note that by definition, 𝜌𝐶𝑙 (𝑧)

acts via left multiplication by an element in 𝐶𝑙+(𝑉R). This follows since for 𝑧 = 𝑥 + 𝑖𝑦 ∈ C,

𝑥, 𝑦, 𝐽 ∈ 𝐶𝑙+(𝑉R), where 𝐽 = 𝑒1 · 𝑒2 as before. This identity shows that this element, which we

identify with 𝜌𝐶𝑙 (𝑧), is contained in the Clifford group CSpin(𝑉 (2)).

Now, use the fact that 𝐶𝑙+(𝑉 (1))∗ � 𝐶𝑙+(𝑉 (1)) ⊗ Q(1) to get

End(𝐶𝑙+(𝑉 (1))) � 𝐶𝑙+(𝑉 (1)) ⊗ 𝐶𝑙+(𝑉 (1))∗ � 𝐶𝑙+(𝑉 (1)) ⊗ 𝐶𝑙+(𝑉 (1)) ⊗ Q(1).

Combined with the above result, this gives

𝑉 (2) ↩! 𝐶𝑙+(𝑉 (1)) ⊗ 𝐶𝑙+(𝑉 (1)) ⊗ Q(1)

and tensoring with Q(−2) gives the desired embedding of Hodge structures

𝑉 ↩! 𝐶𝑙+(𝑉 (1)) ⊗ 𝐶𝑙+(𝑉 (1)) ⊗ Q(−1).

Next suppose we have a Hodge structure of weight four on 𝑉 as above. Then we get a weight

one Hodge structure on 𝐶𝑙+(𝑉 (1)). We claim that this Hodge structure can be used to recover the

Hodge structure on 𝑉 . Recall that we have constructed the map 𝜑 above of Hodge structures of

weight zero. Since 𝜌𝐶𝑙 (𝑧) ∈ CSpin(𝑉 (2)), so we apply the orthogonal representation

𝜏 : CSpin(𝑉 (2)) ! 𝑂 (𝑉 (2))

to get 𝜏(𝜌𝐶𝑙 (𝑧)) = 𝜌𝑉 (2) (𝑧). In this way we recover the Hodge structure of weight zero on 𝑉 (2).

Now, by definition, 𝜌𝑉 (2) (𝑧) = (𝑧𝑧)−2𝜌𝑉 (𝑧). This allows us recover the Hodge structure on 𝑉 by

𝜌𝑉 (𝑧) = (𝑧𝑧)2𝜌𝑉 (2) (𝑧). □

Corollary 3.2.8. The Kuga-Satake Construction is injective:

𝐾𝑆 :


polarized Hodge structures of

𝐾3 − type

 ↩−!


polarized Hodge structures of

weight one

 .
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Proof. By the previous proposition, we can recover the Hodge structure on 𝑉 directly from the

Hodge structure on 𝐾𝑆(𝑉) via the orthogonal representation 𝜏 : CSpin(𝑉 (𝑘)) ! 𝑂 (𝑉 (𝑘)) for the

appropriate Tate-Twist of degree 𝑘 . □

We now study an example of a Kuga-Satake variety that we can explicitly describe. The

following is due to Morrison in [Mor85], who first studied Kuga-Satake varieties associated to

abelian surfaces.

Example 3.2.9. Let 𝐴 be an abelian surface. Then 𝐾𝑆(𝐴) ∼ 𝐴8. We will outline a sketch of the

main ideas of the proof.

We saw previously that the Hodge diamond of an abelian surface looks like:

1

2 2

1 4 1

2 2

1

This implies that the Kuga-Satake variety 𝐾𝑆(𝐴) has dimension 26−2 = 16, so 𝐴8 is at least

a reasonable candidate. We also know from our discussion in Chapter 2 that an abelian variety

is completely determined by its weight one Hodge structure. Therefore, this problem reduces to

comparing 𝐻1(𝐴,Z) and 𝐻1(𝐾𝑆(𝐴),Z).

Recall from Chapter 2 that for an abelian surface, 𝐻2(𝐴,Z) � ∧2 𝐻1(𝐴,Z) as Hodge structures.

With this in mind, identify 𝐻2(𝐴,Z) as the subspace of Hom(𝐻1(𝐴,Z)∗, 𝐻1(𝐴,Z)) given by alter-

nating morphisms. Similarly, identify 𝐻2(𝐴,Z)∗ with a subspace of Hom(𝐻1(𝐴,Z), 𝐻1(𝐴,Z)∗).
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With these identifications, one can define a map:

∧2𝐻1(𝐴,Z) −! End(𝐻1(𝐴,Z) ⊕ 𝐻1(𝐴,Z)∗)

𝑣 7−!
©«

0 𝑣

−𝑣∗ 0

ª®¬ .
Now, this morphism induces a bĳective map on the Clifford algebra as

𝐶𝑙+(∧2𝐻1(𝐴,Z)) ! End(𝐻1(𝐴,Z)) ⊕ End(𝐻1(𝐴,Z)∗).

It is possible to show by direct computation that End(𝐻1(𝐴,Z)) ⊕ End(𝐻1(𝐴,Z)∗) is isomorphic

as a Hodge structure to (𝐻1(𝐴,Z) ⊕ 𝐻1(𝐴,Z)∗)4, for example [Huy16, Proposition 4.3.1].

Since an abelian variety is always isogenous to its dual [Mil86, Chapter 7], it follows that for

abelian surfaces we have

𝐾𝑆(𝐴) ∼ (𝐴 × �̂�)4 ∼ 𝐴8.

In the next section, we develop more theory and look at additional examples of Kuga-Satake

varieties.

3.3 Kuga-Satake Varieties & Associated K3 Surfaces

Before proving our main result, we need a lemma that allows us to analyze the Kuga-Satake

variety of a direct sum of Hodge structures.

Lemma 3.3.1. Suppose 𝑉 is a Hodge structure of 𝐾3 type and 𝑉 can be written as a direct sum

of Hodge structures 𝑉 = 𝑉1 ⊕ 𝑉2. Without loss of generality, suppose 𝑉2 is of type (1, 1) and

𝑉1 is of 𝐾3−type. Then 𝐶𝑙+(𝑉) is isomorphic to 2dim𝑉2−1 copies of 𝐶𝑙+(𝑉1) × 𝐶𝑙−(𝑉1). Thus

𝐾𝑆(𝑉) � 𝐾𝑆(𝑉1 ⊕ 𝑉2) ∼ 𝐾𝑆(𝑉1)2dim𝑉2 .

Proof. The even Clifford algebra decomposes as

𝐶𝑙+(𝑉) = 𝐶𝑙+(𝑉1 ⊕ 𝑉2) � (𝐶𝑙+(𝑉1) ⊗ 𝐶𝑙+(𝑉2)) ⊕ (𝐶𝑙−(𝑉1) ⊗ 𝐶𝑙−(𝑉2)).

Since𝑉 is of 𝐾3−type, we must have that either𝑉1 or𝑉2 are also of 𝐾3−type and so the other must

be pure of type (1, 1). Since 𝑉2 is of type (1, 1), this means that the representation defined by 𝑉2 is
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trivial, so by [Poz13, Remark 3.2.6] we have that 𝐶𝑙+(𝑉1) ⊗ 𝐶𝑙+(𝑉2) � 𝐶𝑙+(𝑉1)2dim(𝑉2 )−1 as Hodge

structures and similarly 𝐶𝑙−(𝑉1) ⊗𝐶𝑙−(𝑉2) � 𝐶𝑙−(𝑉1)2dim(𝑉2 )−1 as Hodge structures. So we have an

isomorphism of Hodge structures:

𝐶𝑙+(𝑉) � (𝐶𝑙+(𝑉1) ⊕ 𝐶𝑙−(𝑉1))2dim(𝑉2 )−1
.

Now, since the Kuga-Satake variety defined by 𝐶𝑙+(𝑉) and the Kuga-Satake variety defined by

𝐶𝑙−(𝑉) are isogenous by [Huy16, Remark 4.2.3], we have that 𝐾𝑆(𝑉) ∼ 𝐾𝑆(𝑉1)2dim(𝑉2 ) . □

Remark 3.3.2. The above lemma is very useful for switching between different Hodge structures

coming from the cohomology of a variety used to define Kuga-Satake varieties.

• Let 𝑋 be a variety of dimension 𝑛 and let 𝐻𝑛 (𝑋,Z) (𝑘) be of 𝐾3−type for some Tate twist.

Then the transcendental lattice 𝑇 (𝑋) is also of 𝐾3−type so we can define the Kuga-Satake

variety associated to 𝑇 (𝑋) as 𝐾𝑆(𝑇 (𝑋)) (up to appropriate Tate Twist if necessary). This is

now an abelian variety of dimension 2dim(𝑇 (𝑋))−2 = 2dim(𝐻𝑛 (𝑋,Z))−𝜌(𝑋)−2 where 𝜌(𝑋) is the

Picard rank of 𝑋 . For a 𝐾3 surface 𝑆, for example, the dimension of 𝐾𝑆(𝑇 (𝑆)) is 220−𝜌(𝑆) .

It is natural to ask if there is a relationship between 𝐾𝑆(𝑋) B 𝐾𝑆(𝐻𝑛 (𝑋,Z) (𝑘)) and

𝐾𝑆(𝑇 (𝑋)). Lemma 3.3.1 implies that 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑇 (𝑋))2𝜌(𝑋) , a rather useful fact to keep

on hand.

An interesting example occurs when the Picard rank is maximal. For example, if a 𝐾3 surface

has Picard rank 𝜌(𝑆) = 20, then dim(𝐾𝑆(𝑇 (𝑆))) = 1, i.e. it is an elliptic curve. This shows

that in the case of maximal Picard rank, 𝐾𝑆(𝑆) is isogenous to a product of elliptic curves.

• If 𝑋 is a projective variety and ℎ is an ample class, then one can consider primitive coho-

mology ℎ⊥ B 𝐻𝑛 (𝑋,Z)0(𝑘) with respect to the ample class. Then 𝐻𝑛 (𝑋,Z)0(𝑘) is again

a Hodge structure of 𝐾3−type, so we can define a Kuga-Satake variety by 𝐾𝑆(𝑉, ℎ) B

𝐾𝑆(𝐻𝑛 (𝑋,Z)0(𝑘)). By again using Lemma 3.3.1 we have that 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑋, ℎ)2.

• Putting the above together, we have the following relations between Kuga-Satake varieties up
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to isogeny:

𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑋, ℎ)2 ∼ 𝐾𝑆(𝑇 (𝑋))2𝜌 .

So we can easily translate between different Kuga-Satake varieties that are natural in our

context.

With these new facts we can explore some new important examples of Kuga-Satake varieties.

We will use the example of a Kummer surface again in Chapter 5.

Example 3.3.3. Recall the construction of a Kummer surface outlined in Example 2.4.2. Given an

abelian surface 𝐴, one can associate to it a Kummer surface 𝑆 which is always a 𝐾3 surface. Since

we know 𝐾𝑆(𝐴) ∼ 𝐴8 for an abelian surface by Example 3.2.9, a Kummer surface is a natural next

choice to understand the Kuga-Satake construction.

The Hodge structure on 𝐻2(𝑆,Q) of a Kummer surface 𝑆 is isomorphic to 𝐻2(𝐴,Q) ⊕Q(−1)16

by [Huy16, Example 3.2.5]. Essentially, the cohomology of the Kummer surface is given by

the cohomology of the abelian surface plus cohomology coming from the 16 exceptional divisors

coming from the blowup. In particular, this also implies that 𝜌(𝑆) = 𝜌(𝐴) + 16.

By the same argument, it is also known that 𝑇 (𝑆)Q � 𝑇 (𝐴)Q is an isomorphism of Hodge

structures. Therefore, we have that

𝐾𝑆(𝑇 (𝑆)) ∼ 𝐾𝑆(𝑇 (𝐴)).

Now, using the remarks following Lemma 3.3.1, we have a sequence of isogenies

𝐾𝑆(𝑆) ∼ 𝐾𝑆(𝑇 (𝑋))2𝜌(𝑆) ∼ 𝐾𝑆(𝑇 (𝐴))2𝜌(𝑆) ∼ 𝐾𝑆(𝐴)216

since 𝜌(𝑆) = 𝜌(𝐴) + 16. Since 𝐾𝑆(𝐴) ∼ 𝐴8, we can conclude

𝐾𝑆(𝑆) ∼ 𝐴219
.

We also mention the following example of Paranjape in [Par88, Main Theorem] since we will

refer to it in the following chapters. The proof is quite involved, so we only state the result here.
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Example 3.3.4. Let 𝑆 ! P2 be a double cover that is ramified over 6 lines in general position. We

saw in Example 2.4.2 that such an 𝑆 must be a 𝐾3 surface. Paranjape computes that

𝐾𝑆(𝑇 (𝑆)) ∼ 𝑃218

where 𝑃 is a certain abelian fourfold that is known as a Prym variety. It is constructed geometrically

as a cover of a certain genus 5 curve. See [Par88, Section 2] for more background and explicit

details.

Combined with Lemma 3.3.1, we have that for 𝐾3 surfaces 𝑆 which are realized as double

covers of P2 ramified over six lines

𝐾𝑆(𝑆) ∼ 𝐾𝑆(𝑇 (𝑆))2 ∼ (𝑃218)2 ∼ 𝑃219
,

so the Kuga-Satake variety in this case can be explicitly described as a product of specially

constructed abelian fourfolds up to isogeny.

We now come to our first main result in which we relate the Kuga-Satake variety of a cubic

fourfold 𝑋 and its associated 𝐾3 surface 𝑆.

Theorem 3.3.5. Suppose (𝑋, 𝐾) is a special cubic fourfold with associated 𝐾3 surface (𝑆, 𝑓 ).

Then 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2.

Proof. Since 𝑆 is associated to 𝑋 , 𝐾⊥ � 𝑓 ⊥. Let 𝑉 = 𝐻4(𝑋,Z). Then 𝑉Q � 𝐾⊥
Q
⊕ 𝐾Q and

𝑉 (1)Q is a weight two rational Hodge structure of 𝐾3 type. Additionally, 𝑉 (1)Q � 𝑓 ⊥
Q

⊕ 𝐾 (1)Q

where 𝑓 ⊥
Q

is of 𝐾3 type and 𝐾 (1)Q is of type (1, 1). Apply Lemma 3.3.1 with 𝑉1 = 𝑓 ⊥
Q

and

𝑉2 = 𝐾 (1)Q. Then dim𝑉2 = 2 and 𝐾𝑆(𝑋) ∼ 𝐾𝑆( 𝑓 ⊥)2dim𝑉2
= 𝐾𝑆( 𝑓 ⊥)4. Finally, by Remark 3.3.2,

there is an isogeny 𝐾𝑆(𝑆) ∼ 𝐾𝑆( 𝑓 ⊥)2. Combined with the above, we arrive at the desired result

𝐾𝑆(𝑋) ∼ 𝐾𝑆( 𝑓 ⊥)4 ∼ 𝐾𝑆(𝑆)2. □

We can also prove a partial converse to the above theorem. To do that, we need the following

lemma.
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Lemma 3.3.6. Suppose 𝐴, 𝐵 are Hodge structures of 𝐾3−type of the same rank and 𝐶 is a Hodge

structure that is pure of type (1, 1). Suppose further that 𝐴 ⊕ 𝐶 � 𝐵 ⊕ 𝐶. Then 𝐴 � 𝐵 as Hodge

structures.

Proof. First observe that 𝐴1,1 � 𝐵1,1 since both of these are trivial Hodge structures of the same

rank. Further, we have that (𝐴 ⊕ 𝐶)2,0 = 𝐴2,0 and (𝐵 ⊕ 𝐶)2,0 = 𝐵2,0 since 𝐶 is pure of type (1, 1).

Let 𝜑 : 𝐴 ⊕ 𝐶 ! 𝐵 ⊕ 𝐶 be the Hodge isomorphism in the statement. Then we must have

𝜑C((𝐴2,0) = 𝜑C((𝐴 ⊕ 𝐶)2,0) = (𝐵 ⊕ 𝐶)2,0 = 𝐵2,0.

Since 𝜑 is a Hodge morphism, 𝜑C(𝐴0,2) = 𝐵0,2 as well. It follows that 𝐴 � 𝐵. □

Theorem 3.3.7. Suppose 𝑑 is an admissible value, (𝑋, 𝐾𝑑) is a labelled cubic fourfold of discrim-

inant 𝑑 and (𝑆, 𝑓 ) is a polarized 𝐾3 surface of degree 𝑑. Suppose 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2. Then 𝑆 is

associated to 𝑋 .

Proof. Since 𝑑 is an admissible value, we have that 𝑓 ⊥ � 𝐾⊥
𝑑

as lattices by Lemma 2.5.8. To show

that 𝑆 is associated to 𝑋 , it suffices to show that 𝑓 ⊥ � 𝐾⊥
𝑑

as Hodge structures.

Note that 𝐾𝑆(𝐾⊥
𝑑
⊕ 𝐾𝑑) ∼ 𝐾𝑆(𝑋) and 𝐾𝑆( 𝑓 ⊥ ⊕ 𝐾𝑑) ∼ 𝐾𝑆(𝑆)2 since 𝐾𝑑 is pure of type (1, 1)

and 𝐾𝑆(𝑆)2 ∼ 𝐾𝑆( 𝑓 ⊥)4. Since 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2, injectivity of the Kuga-Satake construction

implies 𝐾⊥
𝑑
⊕ 𝐾𝑑 � 𝑓 ⊥ ⊕ 𝐾𝑑 as Hodge structures. Lemma 3.3.6 implies that 𝐾⊥

𝑑
� 𝑓 ⊥ as Hodge

structures. □

The additional assumption that we begin with an admissible value of 𝑑 is necessary. Consider

the following where 𝑑 = 2 is not admissible.

Example 3.3.8. Consider Example 19 of [Has16]. A cubic fourfold 𝑋 containing a plane 𝑃 gives a

𝐾3 surface (𝑆, 𝑓 ) of degree 2. However, if 𝐾 is the rank two labelling of 𝑋 then [VG05, 9.7] shows

that 𝐾⊥ ⊂ 𝑓 ⊥ as an index 2 sublattice. In particular, there is no lattice isomorphism 𝐾⊥ � 𝑓 ⊥ and

𝑆 is not associated to 𝑋 .

However, we still have an embedding 𝐾⊥ ↩! 𝑓 ⊥ of lattices of rank 21. Therefore rk( 𝑓 ⊥/𝐾⊥) =

0, so by [Huy16, Remark 2.5] there is an isogeny 𝐾𝑆(𝐾⊥) ∼ 𝐾𝑆( 𝑓 ⊥). So, 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝐾⊥)4 ∼
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𝐾𝑆( 𝑓 ⊥)4 ∼ 𝐾𝑆(𝑆)2.

In particular, 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2, but 𝑆 is not associated to 𝑋 under this choice of labeling

and polarization. However, it is unclear if 𝑋 may be associated to 𝑆 under a different choice of

polarization (of admissible degree).

3.4 Gushel-Mukai Varieties

Our result can be applied to other types of varieties. We provide an aside on one such example

here, that of Gushel-Mukai varieties. These varieties are studied in [DIM15] and [Deb20] where

basic definitions and properties are given. We will focus on Gushel-Mukai fourfolds as our previous

results are applicable to them.

Definition 3.4.1. A Gushel-Mukai fourfold 𝑋 is a smooth complex Fano variety of dimension 4 and

Picard rank 1, so that Pic(𝑋) = Z𝐻, such that 𝑋 is of index 2 and degree 10. That is, −𝐾𝑋 ≡ 2𝐻

and 𝐻4 = 10.

The following proposition gives further geometric attributes of Gushel-Mukai fourfolds, these

are sometimes taken as a definition.

Proposition 3.4.2. [Deb20, Theorem 1.1] A smooth Gushel-Mukai fourfold 𝑋 as given by the above

definition can be described as

𝑋 = Gr(2, 𝑉5) ∩ P(𝑊9) ∩𝑄 ⊂ P(∧2𝑉5)

where 𝑄 is a quadric and𝑊9 ⊂ ∧2𝑉5 is a vector subspace of dimension 9 and 𝑉5 is a vector space

of dimension 5.

These varieties are studied because they have interesting properties similar to those of cubic

fourfolds. In particular, questions about their rationality are open and they have interesting period

maps and derived categories (as studied in [KP18] in particular).

The Hodge diamond of a Gushel-Mukai fourfold looks similar to that of a cubic fourfold. A full

computation is provided by [IM11, Lemma 4.1] and the Hodge diamond looks like the following:
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1

0 0

0 1 0

0 0 0 0

0 1 22 1 0

0 0 0 0

0 1 0

0 0

1

As was the case with cubic fourfolds, all of the interesting structure comes from the middle

cohomology. We will refer to middle cohomology Λ𝑋 B 𝐻4(𝑋,Z) as the Gushel-Mukai lattice.

Equipped with the standard intersection form, it is a unimodular lattice of signature (22, 2) [DIM15,

Proposition 5.1], i.e. Λ𝑋 � (1)22 ⊕ (−1)2. By the classification of unimodular lattices, 22− 2 = 20

is not divisible by 8. So, in particular, Λ𝑋 is an odd, unimodular lattice as in the case of the cubic

fourfold lattice.

We would like to establish the notion of a "special" Gushel-Mukai fourfold as was done with

cubic fourfolds. Using the description in 3.4.2, set 𝐺 B Gr(2, 𝑉5). Then 𝐻4(𝐺,Z) embeds

into 𝐻4(𝑋,Z) as a rank 2 sub-lattice. Its orthogonal complement is sometimes referred to as

the "vanishing cohomology" of X, i.e. 𝐻4(𝑋,Z)van B 𝐻4(𝐺,Z)⊥ ⊂ 𝐻4(𝑋,Z). The vanishing

cohomology is an even lattice of signature (20, 2) and it is isomorphic to 𝐻4(𝑋,Z)van � 2𝐸8 ⊕

2𝑈 ⊕ 2𝐴2, where all of the components are as defined in Chapter 2. 𝐻4(𝑋,Z)van always contains a

special rank 2 sublattice Λ2 as defined in [DIM15, Proposition 5.1].

Definition 3.4.3. We call a Gushel-Mukai fourfold 𝑋 special if it contains a surface 𝑇 that does not

come from Gr(2, 𝑉5). This is equivalent to the condition that the rank of 𝐻2,2(𝑋) ∩ 𝐻4(𝑋,Z) is at
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least 3.

Note that a very general Gushel-Mukai fourfold is not special by [DIM15, Corollary 4.6]. Recall

that for special cubic fourfolds, we had to choose a rank 2 sublattice 𝐾 . Since the dimension of

𝐻4(𝑋,Z) for Gushel-Mukai fourfolds is one higher, we must choose a special rank 3 sublattice. A

labeling of a Gushel-Mukai fourfold is a choice of a primitive, positive-definite rank 3 sublattice

𝐾 ⊂ 𝐻4(𝑋,Z) that contains Λ2. We define the discriminant of (𝑋, 𝐾) to be the determinant of the

intersection form on 𝐾 .

Proposition 3.4.4. [Deb20, Proposition 4.11] Let (𝑋, 𝐾) be a special, labelled Gushel-Mukai

fourfold of discriminant 𝑑. Then 𝐾⊥ is isomorphic to 𝐻2(𝑆,Z)0 for a polarized 𝐾3 surface (𝑆, 𝑓 )

of degree 𝑑 if and only if 𝑑 ≡ 2, 4 (mod 8) and the only primes that divide 𝑑 are 𝑝 ≡ 1 (mod 4).

As with cubic fourfolds, the proposition motivates the following definitions.

Definition 3.4.5. 1. An integer satisfying the conditions of Proposition 3.4.4 is called an ad-

missible discriminant.

2. We say that the 𝐾3 surface (𝑆, 𝑓 ) satisfying the condition of Proposition 3.4.4 is associated

to the Gushel-Mukai fourfold 𝑋 .

The first admissible values of 𝑑 are 10, 20, 26. There is a conjecture relating the existence of

associated 𝐾3 surfaces to rationality similar to the conjecture for cubic fourfolds.

Conjecture 3.4.6. A Gushel-Mukai fourfold 𝑋 is rational if and only if there is an associated 𝐾3

surface.

Now that we have set up the theory of Gushel-Mukai fourfolds similarly to that of cubic

fourfolds, we can apply the proof of Theorem 3.3.5 to get:

Corollary 3.4.7. Suppose 𝑋 is a Gushel-Mukai fourfold and 𝑆 is a 𝐾3 surface associated to 𝑋 .

Then 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)4.

It is natural to ask if these concepts for Gushel-Mukai fourfolds and cubic fourfolds are inter-

twined. There is a notion of an "associated cubic fourfold" for Gushel-Mukai fourfolds. This is

addressed in the following proposition.
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Proposition 3.4.8. [DIM15, Proposition 6.6] Let (𝑋, 𝐾𝑋) be a labelled Gushel-Mukai fourfold of

discriminant d. Then 𝐾⊥
𝑋

is isomorphic to 𝐾⊥
𝑌

for a special, labelled cubic fourfold (𝑌, 𝐾𝑌 ) (also

of discriminant 𝑑) if and only if either:

1. 𝑑 ≡ 2, 20 (mod 24) and the only odd primes that divide 𝑑 are 𝑝 ≡ ±1 (mod 12) or

2. 𝑑 ≡ 12, 66 (mod 72) and the only primes 𝑝 ≥ 5 that divide 𝑑 are 𝑝 ≡ ±1 (mod 12).

In particular, the first values of such a 𝑑 are 2, 12, 26, 44. Again, we can apply 3.3.5 to get:

Corollary 3.4.9. Let 𝑌 be a cubic fourfold associated to a Gushel-Mukai fourfold 𝑋 . Then

𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑌 )2.

In particular, note that the values of 𝑑 for which Gushel-Mukai fourfolds and cubic fourfolds

possess an associated 𝐾3 surface 𝑆 are not disjoint. Consider the following intriguing example.

Example 3.4.10. For 𝑑 = 26, a labelled cubic fourfold (𝑌, 𝐾𝑌 ) of discriminant 26 possesses a

unique associated 𝐾3 surface 𝑆 by Corollary 2.5.12 since 26 ≡ 2 (mod 4). Combining our above

results, we get that (𝑌, 𝐾𝑌 ) is associated to a Gushel-Mukai fourfold (𝑋, 𝐾𝑋) also of discriminant

26 and so we have 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑌 )2 ∼ 𝐾𝑆(𝑆)4.
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CHAPTER 4

ENDOMORPHISM ALGEBRAS

In this chapter, we study endomorphism algebras of cubic fourfolds. Endomorphism algebras of

𝐾3 surfaces have been extensively studied and used to answer Hodge conjecture type questions.

This chapter is outlined as follows:

§4.1 Given a rational Hodge structure 𝑉 , one can study its endormorphism algebra EndHod(𝑉)

given by all homomorphisms of Hodge structures 𝑉 ! 𝑉 . This was studied in detail by

Zarhin in [Zar83] which we outline. In particular, Zarhin showed that for an irreducible

Hodge structure 𝑉 of 𝐾3-type, EndHod(𝑉) is a field and furthermore, it is a number field that

is either totally real or a CM field. We explore how these results are useful for answering

Hodge conjecture type questions. Next, we discuss known results for the transcendental lattice

𝑇 (𝑆) of 𝐾3 surfaces in both cases, and finish by outlining Van Geemen’s proof in [VG08]

that there exists 𝐾3 surfaces 𝑆 with transcendental lattice 𝑇 (𝑆) such that EndHod(𝑇 (𝑆)) = 𝐹

for any given totally real number field 𝐹.

§4.2 In this section, we outline Nikulin’s lattice theory for even, unimodular lattices in [Nik80].

We modify this theory for odd, unimodular lattices with applications to Λ𝐶4 for a cubic

fourfold 𝑋 .

§4.3 We study the period map for cubic fourfolds through work of Laza and Looĳenga. In

particular, we work towards understanding the image of the period map.

§4.4 In this section we prove our result for the existence of cubic fourfolds with endomorphism

algebras of totally real type.

§4.5 We explore some applications of endomorphism algebras in the case of𝐾3 surfaces associated

to cubic fourfolds in the sense of Section 2.5. We prove a few results as corollaries to the

previous sections, and in the vein of [Sch10], we explore connections between Kuga-Satake

varieties and endomorphism algebras of totally real type in the associated 𝐾3 framework.
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4.1 Endomorphism Algebras of K3 Surfaces

We begin this chapter by examining known results about endomorphism algebras for 𝐾3 sur-

faces. These results inspire our approach for studying endomorphism algebras for cubic fourfolds.

Most of the following results are found in [Zar83] and [VG08].

Let 𝑆 denote a𝐾3 surface. In this section, we consider the Hodge structure for the transcendental

lattice 𝑇 (𝑆) instead of the full middle cohomology 𝐻2(𝑆,Z). Recall the definition as follows.

Definition 4.1.1. Let 𝑉 be a Hodge structure of 𝐾3−type. The transcendental lattice 𝑇 of 𝑉 is the

minimal primitive sub-Hodge structure 𝑇 ⊂ 𝑉 with 𝑉2,0 = 𝑇2,0 ⊂ 𝑇C.

Note that the transcendental lattice is clearly still of 𝐾3−type since ℎ2,0(𝑇) = ℎ2,0(𝑉) = 1. In

the case of a 𝐾3 surface, 𝑇 (𝑆) will denote the transcendental lattice of 𝐻2(𝑆,Z).

It is important to note that the transcendental lattice is an irreducible Hodge structure. The

following result is well-known, we include a proof for the sake of completeness.

Proposition 4.1.2. The transcendental lattice 𝑇 (𝑉) of a Hodge structure 𝑉 of 𝐾3−type is an

irreducible Hodge structure of 𝐾3−type.

Proof. Let 𝑆 ⊂ 𝑇 be a nontrivial sub-Hodge structure of the transcendental lattice. If 𝑆 is pure of

type (1, 1) then (𝑆⊥) (2,0) ⊂ 𝑉2,0 ⊂ 𝑆⊥
C

where the ⊥ is taken inside 𝑇 . So 𝑆⊥ ⊂ 𝑇 is a nontrivial

Hodge structure of 𝐾3−type. This contradicts minimality of 𝑇 . If 𝑆 is not pure of type (1, 1), then

𝑉2,0 ⊂ 𝑆C so minimality and primitivity of 𝑇 again implies that 𝑆 = 𝑇 . So, 𝑇 contains no nontrivial

sub-Hodge structures and by the discussion above, 𝑇 is a Hodge structure of 𝐾3−type. Therefore

the transcendental lattice is an irreducible Hodge structure of 𝐾3−type. □

Recall the definition of a homomorphism of Hodge structures from Definition 2.1.5. We use

the following notation for the main object of study in this chapter.

Remark 4.1.3. Let 𝑉,𝑊 be (rational) Hodge structures. Let Hom(𝑉,𝑊) denote the Q−vector

space of homomorphisms of Hodge structures from 𝑉 to𝑊 . Then the endomorphism algebra of 𝑉

is defined to be End(𝑉) B Hom(𝑉,𝑉). Note that End(𝑉) naturally has the structure of aQ−algebra

with the product given by composition of endomorphisms.
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Lemma 4.1.4. If 𝑉 is an irreducible Hodge structure then End(𝑉) is a division algebra.

Proof. Note that kernels and images of homomorphisms of Hodge structures are sub-Hodge struc-

tures. Therefore, if 𝑉 is irreducible, then for any nonzero 𝑓 ∈ End(𝑉), its kernel must be zero and

the image must be 𝑉 by Proposition 4.1.2. This means it must be an isomorphism. In particular, 𝑓

has an inverse and so End(𝑉) is a division algebra. □

In particular, the above implies that End(𝑇 (𝑆)) is a division algebra for the transcendental lattice

of a 𝐾3 surface 𝑆. Zarhin shows that much more holds in this case:

Theorem 4.1.5. [Zar83, Theorem 1.6] Let 𝑆 be a 𝐾3 surface. Then End(𝑇 (𝑆)) is a commutative

field.

Proof. There is a natural homomorphism 𝑖 : End(𝑇 (𝑆)) ! 𝐻𝑜𝑚C𝐻
2,0(𝑆) = C. Since End(𝑇 (𝑆))

is a division algebra by Lemma 4.1.4, 𝑖 : End(𝑇 (𝑆)) ↩! C must be an embedding and so it is a

commutative field. □

The same proof works for End(𝑇 (𝑋)) of a cubic fourfold. Note that since 𝑇 (𝑆) is finite

dimensional, End(𝑇 (𝑆)) is necessarily a number field. We will consider two main types of number

fields in the following theory, totally real number fields and CM fields.

Definition 4.1.6. Let 𝐾 be a number field.

1. A number field 𝐾 is a totally real number field if every embedding 𝑖 : 𝐾 ↩! C satisfies

𝑖(𝐾) ⊂ R.

2. A number field 𝐾 is a totally imaginary field if there is no embedding 𝑖 : 𝐾 ↩! R.

3. 𝐾 is a CM-field if it is totally imaginary and if it is a quadratic extension 𝐾/𝐹 of a totally

real number field 𝐹.

The most basic examples are provided by quadratic fields 𝐾 = Q(
√
𝑑) for 𝑑 ∈ Z square-free.

If 𝑑 > 0, the field is totally real. If 𝑑 < 0, the field is totally imaginary and it is a CM-field with

𝐹 = Q.

This leads us to the following important result of Zarhin. We will use it frequently in the

remainder of the chapter.
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Theorem 4.1.7. Let 𝑉 be a Hodge structure of 𝐾3−type and suppose End(𝑉) is a commutative

field (for example, consider End(𝑇 (𝑆)) for a 𝐾3 surface 𝑆). Then either

1. End(𝑉) is a totally real number field or

2. End(𝑉) is a CM-field.

Proof. See [Zar83, Theorem 1.5.1]. □

Endomorphism algebras have proven to be useful tools for studying the Hodge conjecture for

products. Given a smooth projective variety 𝑋 , recall that the Hodge conjecture states that the

space of Hodge classes Hod𝑘 (𝑋) of degree 2𝑘 given by

Hod𝑘 (𝑋) B 𝐻2𝑘 (𝑋,Q) ∩ 𝐻𝑘,𝑘 (𝑋)

is spanned by algebraic 𝑘-cycles. The conjecture is of course still open for 𝑘 ≠ 0, 1, dim(𝑋) −

1, dim(𝑋).

Now, we explore how endomorphism algebras naturally appear in the Hodge conjecture for

self-products. For smooth projective varieties 𝑋,𝑌 , the Künneth formula and linear algebra give

𝐻𝑠 (𝑋 × 𝑌,Q) �
⊕
𝑙+𝑚=𝑠

𝐻𝑙 (𝑋,Q) ⊗ 𝐻𝑚 (𝑌,Q)

�
⊕
𝑙+𝑚=𝑠

Hom(𝐻2 dim(𝑋)−𝑙 (𝑋,Q), 𝐻𝑚 (𝑌,Q)).

Note that each summand is a Hodge substructure of the left side. It is easy to see that under this

correspondence, Hodge cycles of degree 2𝑘 correspond to homomorphisms of Hodge structures.

Now, apply the above to 𝑋 = 𝑌 = 𝑆 for a 𝐾3 surface 𝑆. Note that the Hodge conjecture is not

known in general for the self-product 𝑆 × 𝑆. The only nontrivial case in the Hodge conjecture in

this case is that of 𝐻4(𝑆 × 𝑆,Q).

We know that 𝐻1(𝑆,Q) = 0 and 𝐻3(𝑆,Z) = 0 by Proposition 2.4.3. We can also see that

𝐻4(𝑋,Q) ⊗ 𝐻0(𝑌,Q) � Hom(𝐻0(𝑆,Q), 𝐻0(𝑆,Q))

and

𝐻0(𝑋,Q) ⊗ 𝐻4(𝑌,Q) � Hom(𝐻4(𝑆,Q), 𝐻4(𝑆,Q))
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are spanned by the classes {𝑝} × 𝑆 and 𝑆 × {𝑝} respectively for a point 𝑝, so they are algebraic.

The only remaining case is HomHod(𝐻2(𝑆,Q), 𝐻2(𝑆,Q)).

𝐻2(𝑆,Q) splits as a direct sum of Hodge structures as

𝐻2(𝑆,Q) = 𝑁𝑆(𝑆)Q ⊕ 𝑇 (𝑆)Q.

Now, since 𝑁𝑆(𝑆)Q is pure of type (1, 1) and 𝑇 (𝑆)Q is irreducible by Proposition 4.1.2, we have

that HomHod(𝑁𝑆(𝑆)Q, 𝑇 (𝑆)Q) = 0 and HomHod(𝑇 (𝑆)Q, 𝑁𝑆(𝑆)Q) = 0. In the first case, observe

that the image of such a Hodge morphism would define a Hodge sub-structure of 𝑇 (𝑆)Q. In the

second case, the fact that 𝑁𝑆(𝑆)2,0
Q

= 0 implies that the kernel of such a Hodge morphism would

define a Hodge sub-structure of 𝑇 (𝑆)Q. The Neron-Severi part 𝑁𝑆(𝑆)Q is algebraic by definition

and HomHod(𝑁𝑆(𝑆)Q, 𝑁𝑆(𝑆)Q) is spanned by classes of curves 𝐶1 × 𝐶2 ⊂ 𝑆 × 𝑆.

Therefore, we have reduced the problem of the Hodge conjecture for self-products of 𝐾3

surfaces 𝑆 × 𝑆 to considering

HomHod(𝑇 (𝑆)Q, 𝑇 (𝑆)Q)

and this is of course just End(𝑇 (𝑆)Q) by definition. So, the Hodge conjecture for 𝑆×𝑆 is equivalent

to the condition that End(𝑇 (𝑆)Q) be generated by algebraic classes. This is the main motivation

for studying endomorphism algebras of Hodge structures.

By Theorem 4.1.7, studying End(𝑇 (𝑆)) reduces to two cases. The CM case is well understood

due to a result of Mukai.

Theorem 4.1.8. If 𝑓 ∈ End(𝑇 (𝑆)) is a Hodge isometry, then 𝑓 corresponds to the class of an

algebraic cycle in 𝐻4(𝑆 × 𝑆,Q).

Proof. See [Muk03, Theorem 2]. □

However, in [RM08, Theorem 5.4], the author uses Mukai’s theorem and shows the following:

Theorem 4.1.9. If End(𝑇 (𝑆)) is a CM field, then it is spanned by Hodge isometries. In particular,

the Hodge conjecture holds for self-products of 𝐾3 surfaces 𝑆 × 𝑆 if End(𝑇 (𝑆)) is of CM type.
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On the other hand, if End(𝑇 (𝑆)) is totally real, then the problem of the Hodge conjecture for

self products is much more open. In the totally real case, it is easy to show that the only Hodge

isometries in End(𝑇 (𝑆)) are ±id. So Mukai’s result no longer helps. We will note some examples

and results about the Hodge conjecture in the totally real case in Section 4.5.

For the remainder of this section, we will outline Van Geemen’s proof for the existence of 𝐾3

surfaces 𝑆 with End(𝑇 (𝑆)) totally real. We will point out where details of Van Geemen’s proof will

no longer work in the case of cubic fourfolds, which will lead to our focus in the next two sections.

First, a Hodge-theoretic lemma is needed.

Lemma 4.1.10. Let 𝐹 be a totally real field and let 𝑚 ∈ Z, 𝑚 ≥ 3. Then there exists an irreducible,

polarized Hodge structure (𝑉, 𝜌, 𝜓) of 𝐾3−type with End(𝑉) = 𝐹 and dim𝐹 (𝑉) = 𝑚, where 𝜌

denotes the algebraic representation defining the Hodge structure and 𝜓 denotes the polarization.

Proof. See [VG08, Lemma 3.2]. □

Now, Van Geemen shows that such a Hodge structure can be realized as the transcendental

lattice of a 𝐾3 surface. We reproduce the proof here directly to illustrate the changes needed in our

study of cubic fourfolds.

Proposition 4.1.11. [VG08, Proposition 3.3] Given a totally real number field 𝐹 and integer𝑚 ≥ 3

such that 𝑚 [𝐹 : Q] ≤ 10, there exists an (𝑚 − 2)−dimensional family of 𝐾3 surfaces such that

End(𝑇 (𝑆)) = 𝐹 for a general member of that family.

Proof. Let (𝑉, 𝜌, 𝜓) be a polarized, irreducible Hodge structure of 𝐾3−type with End(𝑉) = 𝐹 and

period 𝜔 by Lemma 4.1.10. Choose a free Z−module 𝑇 ⊂ 𝑉 of rank 𝑑 = dimQ(𝑉) such that 𝜓 is

integer valued on 𝑇 × 𝑇 . Then by [Nik80, Theorem 1.10.1], there is a primitive embedding of 𝑇

into the 𝐾3 lattice Λ𝐾3, 𝑇 ↩! Λ𝐾3. The surjectivity of the period map for 𝐾3 surfaces implies the

existence of a polarized 𝐾3 surface 𝑆 with End(𝑇 (𝑆)) � 𝑇 corresponding to the period 𝜔. The

proof of [VG08, Lemma 3.2] shows that there are (𝑚 − 2) moduli. □

So, if we want to work towards a similar result for cubic fourfolds, there are two main difficulties

in following a similar process.
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First, the lattice theory used by Van Geemen was developed by Nikulin in [Nik80] for even,

unimodular lattices. While the 𝐾3 lattice Λ𝐾3 is an even, unimodular lattice, the cubic fourfold

lattice Λ𝐶4 is odd and unimodular, and the lattice Λ𝐶4,0 is even and non-unimodular. Odd,

unimodular lattices are easier to understand than even, non-unimodular lattices. We study odd,

unimodular lattices in Section 4.2 and apply the results to Λ𝐶4 instead of Λ𝐶4,0.

Second, the proof uses surjectivity of the period map for 𝐾3 surfaces. It is well known that

the period map for cubic fourfolds is not surjective. However, by work of Laza and Looĳenga, we

understand the image of the period map for cubic fourfolds explicitly. We dedicate Section 4.3 to

the study of this period map.

4.2 Odd Unimodular Lattices

In [Nik80, Theorem 1.12.2], Nikulin proves an important result about the existence of embed-

dings of sub-lattices into even, unimodular lattices. The goal of this section is to work through

Nikulin’s lattice theory to prove a similar result for odd unimodular lattices.

Recall that a lattice is a pair (𝐿, 𝑏) where 𝐿 is a free Z−module of finite rank and 𝑏 : 𝐿× 𝐿 ! Z

is a non-degenerate, integral, symmetric, bilinear form on 𝐿. We saw the following examples in

Chapter 2, but we compile them here as they will be the most important examples for this chapter.

Example 4.2.1. Given an algebraic variety 𝑉 of dimension 𝑛, the intersection form on the variety

endows its middle cohomology 𝐻𝑛 (𝑉,Z) with the structure of a lattice.

1. For a 𝐾3 surface 𝑆, 𝐻2(𝑆,Z) is isomorphic to the lattice Λ𝐾3 = 𝐸8(−1)⊕2 ⊕𝑈⊕3. This lattice

is even and unimodular.

2. For a cubic fourfold 𝑋 , 𝐻4(𝑋,Z) is isomorphic to the lattice Λ𝐶4 = ⟨1⟩21 ⊕ ⟨−1⟩2 [Has16].

This is an odd, unimodular lattice since 𝑏(ℎ2, ℎ2)𝐶4 = 3 ∉ 2Z for a hyperplane section ℎ, and

disc(Λ𝐶4) = 1.

3. Denote the orthogonal complement of ℎ2 in Λ𝐶4 by Λ𝐶4,0 = {ℎ2}⊥. This is an even lattice

and Λ𝐶4,0 ⊂ Λ𝐶4. However, Λ𝐶4,0 ⊂ Λ𝐶4 is not unimodular. Λ𝐶4,0 � 𝐴2 ⊕ 𝑈⊕2 ⊕ 𝐸⊕2
8 by
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[Has16] where

𝐴2 =
©«
2 1

1 2

ª®®¬ .
Hence disc(𝐴2) = 3. Since the discriminant is multiplicative across direct sums, Λ𝐶4,0 is not

unimodular.

We need several numerical facts in this section. Most of the following are found in [Huy16,

Chapter 14] or [Zar83]. We provide proofs when it was not available in literature.

For a lattice 𝐿, we denote its dual free lattice HomZ(𝐿,Z) by 𝐿∗. For any integral lattice 𝐿,

there is a canonical finite index inclusion 𝑖𝐿 : 𝐿 ↩! 𝐿∗ of order |disc(𝐿) |, given by 𝑙 7! 𝑏(𝑙, –).

This is well-defined since 𝐿 is an integral lattice.

Lemma 4.2.2. If an embedding of lattices 𝑆 ↩! 𝐿 has finite index, then

disc(𝑆) = disc(𝐿) · (𝐿 : 𝑆)2.

Proof. We have the chain of inclusions

𝑆 ↩! 𝐿 ↩! 𝐿∗ ↩! 𝑆∗

so that

|𝑆∗/𝑆 | = |𝐿/𝑆 | · |𝐿∗/𝐿 | · |𝑆∗/𝐿∗ |.

This gives

disc(𝑆) = disc(𝐿) · (𝐿 : 𝑆) · |𝑆∗/𝐿∗ |.

Now, it is easy to show that 𝑆∗/𝐿∗ and 𝐿/𝑆 are isomorphic, so |𝑆∗/𝐿∗ | = |𝐿/𝑆 | = (𝐿 : 𝑆), giving

the result. □

Recall the following definition.

Definition 4.2.3. Define the discriminant group of 𝑆 to be 𝐴𝑆 = 𝑆∗/𝑆, which is a finite abelian

group of order |disc(𝑆) |.
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We extend the bilinear form on 𝑆 naturally to a bilinear form on 𝑆∗ as follows: Since 𝑆∗/𝑆 is a

finite group, given 𝑠1, 𝑠2 ∈ 𝑆∗ we have 𝑛 · 𝑠1, 𝑚 · 𝑠2 ∈ 𝑆 for some 𝑛, 𝑚 ∈ Z. Define

𝑏(𝑠1, 𝑠2)𝑆∗ =
1
𝑛𝑚

𝑏(𝑛 · 𝑠1, 𝑚 · 𝑠2)𝑆 .

It is easy to see that this is well-defined. Note that the form on 𝑆∗ restricts to the original form on

𝑆, and the form on 𝑆∗ is now Q-valued. The following description of 𝑏( , )𝑆∗ will be useful.

Lemma 4.2.4. If 𝑠∗ ∈ 𝑆∗ and 𝑙 ∈ 𝑆 then 𝑏(𝑠∗, 𝑙)𝑆∗ = 𝑠∗(𝑙).

Proof. Since 𝑆 has finite index in 𝑆∗, 𝑑𝑠∗ ∈ 𝑆 for some 𝑑. That is, some multiple of 𝑠∗ can be

described as 𝑑𝑠∗ = 𝑏(𝑥, )𝑆 for some 𝑥 ∈ 𝑆, 𝑑 ∈ Z. Therefore

𝑏(𝑠∗, 𝑙)𝑆∗ =
1
𝑑
𝑏(𝑥, 𝑙)𝑆 =

1
𝑑
𝑏(𝑥,−)𝑆 (𝑙) =

1
𝑑
· 𝑑𝑠∗(𝑙) = 𝑠∗(𝑙).

□

Definition 4.2.5. Given an abelian group 𝐴, we will use 𝑙 (𝐴) throughout to denote the minimal

number of generators of 𝐴. This may be referred to as the length of 𝐴.

Example 4.2.6. By [Huy16, Example 14.0.3], for Λ = Λ𝐶4,0, 𝐴Λ = Z/3Z . Since 𝐴Λ is a cyclic

group, 𝑙 (𝐴) = 1.

Remark 4.2.7. If 𝐴 is a finite abelian group then we can decompose 𝐴 into its 𝑝−components 𝐴𝑝.

If 𝑏 is a bilinear form on 𝐴 then its restriction to 𝐴𝑝 will be denoted 𝑏𝑝. Note that 𝑏 =
⊕

𝑝 𝑏𝑝.

Definition 4.2.8. Define the discriminant bilinear form 𝑏𝑆 : 𝐴𝑆 × 𝐴𝑆 ! Q/Z to be

𝑏𝑆 (𝑠1 + 𝑆, 𝑠2 + 𝑆) = ⟨𝑠1, 𝑠2⟩𝑆∗ + Z,

where 𝑠1, 𝑠2 ∈ 𝑆∗. We will be primarily concerned with odd lattices. However, if a lattice 𝐿 is even

then one can further define the discriminant quadratic form similarly by 𝑞𝐿 : 𝐴𝐿 ! Q/2Z.

It will be useful to decompose the discriminant form as follows:

Lemma 4.2.9. If 𝑆 is an integral lattice then its discriminant bilinear form decomposes as (𝑏𝑆)𝑝 =

𝑏𝑆⊗Z𝑝 .
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Proof. See [Nik80, Proposition 1.7.1]. □

The discriminant form is an important tool in studying the classification of lattices.

Definition 4.2.10. We say two lattices 𝑆 and 𝐿 have the same genus if 𝐿 ⊗ Z𝑝 � 𝑆 ⊗ Z𝑝 for all

primes 𝑝 and 𝐿 ⊗ R � 𝑆 ⊗ R.

Note that all equivalent forms have the same genus, but not all forms of the same genus are

equivalent. Consider the following result of Nikulin.

Theorem 4.2.11. The genus of an even lattice 𝐿 is determined by its signature (𝑙+, 𝑙−) and discrim-

inant form 𝑞𝐿 .

Proof. [Nik80, Corollary 1.9.4] □

Now we will begin to explore embeddings of lattices in more detail.

Definition 4.2.12. Fix a lattice 𝑆. A lattice 𝐿 such that 𝑆 ↩! 𝐿 is an embedding and 𝐿/𝑆 is a finite

abelian group will be called an overlattice of 𝑆.

Given an overlattice 𝐿 of 𝑆, we have a series of embeddings

𝑆 ↩! 𝐿 ↩! 𝐿∗ ↩! 𝑆∗

where each embedding is of finite index.

Define 𝐻𝐿 := 𝐿/𝑆. Taking quotients by S, we have a chain

𝐻𝐿 := 𝐿/𝑆 ⊂ 𝐿∗/𝑆 ⊂ 𝑆∗/𝑆 = 𝐴𝑆

where 𝐴𝑆 is the discriminant group. We would like to understand subgroups of the discriminant

group 𝐴𝑆. To do that, we need a few lemmas.

Definition 4.2.13. Let 𝑏𝑆 be the discriminant bilinear form on 𝐴𝑆. We say a subgroup 𝐻 ⊂ 𝐴𝑆 is

𝑏𝑆−isotropic if 𝑏𝑆 |𝐻×𝐻 = 0.

The following lemma was presented in [Nik80, Proposition 1.4.1] for even overlattices. We

adapt the lemma for all overlattices. In doing so, we consider 𝑏𝑆−isotropic subgroups instead of

𝑞𝑆−isotropic subgroups as Nikulin does, since discriminant quadratic forms are only defined for

even lattices.
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Lemma 4.2.14. Fix a lattice 𝑆. There is a bĳective correspondence between finite index overlattices

𝑆 ⊂ 𝐿 and 𝑏𝑆−isotropic subgroups 𝐻 ⊂ 𝐴𝑆.

Proof. Let 𝐿 be a finite index overlattice of 𝑆. Then the corresponding 𝑏𝑆−isotropic subgroup of

𝐴𝑆 is given by 𝐻𝐿 = 𝐿/𝑆. This is clearly a subgroup of 𝐴𝑆. To see why it is isotropic, choose

𝑙1, 𝑙2 ∈ 𝐿. Then 𝑏𝑆 (𝑙1, 𝑙2) = ⟨𝑙1, 𝑙2⟩𝐿 + Z = 0̄ + Z, where ⟨𝑙1, 𝑙2⟩𝐿 ∈ Z since 𝐿 is an integral lattice.

In the other direction, let 𝐻 ⊂ 𝐴𝑆 = 𝑆∗/𝑆 be a 𝑏𝑆−isotropic subgroup. Consider the quotient

map 𝑞 : 𝑆∗ ! 𝐴𝑆 . and the preimage 𝐿 := 𝑞−1(𝐻) of 𝐻. 𝐿 contains 𝑆 since 𝐻 ⊂ 𝑆∗/𝑆 and

𝑆 ↩! 𝐿 is of finite index since 𝑆 ⊂ 𝐿 ⊂ 𝑆∗ and 𝑆 ↩! 𝑆∗ is of finite index. 𝐿 is integral since 𝐻

being 𝑏𝑆−isotropic implies ⟨ , ⟩𝑆∗ restricts to an integral form on 𝐿. These constructions are clearly

inverses of each other which gives the bĳection in the statement. □

The following technical lemma is necessary for studying subgroups of 𝐴𝑆.

Lemma 4.2.15. Suppose 𝐿 is a finite index overlattice of 𝑆. Then the following all hold.

1. 𝐿∗/𝑆 = 𝐻⊥
𝐿

in 𝐴𝑆

2. 𝐻⊥
𝐿
/𝐻𝐿 � 𝐿∗/𝐿 = 𝐴𝐿

3. (𝑏𝑆 |𝐻⊥
𝐿
)/𝐻𝐿 = 𝑏𝐿

Proof.

1. Let 𝑙∗ ∈ 𝐿∗ and 𝑚 ∈ 𝐿. Then 𝑏𝑆 (𝑙∗, �̄�) = ⟨𝑙∗, 𝑚⟩𝑆 + Z = 𝑙∗(𝑚) + Z = 0̄ + Z since

𝑙∗ ∈ 𝐿∗ = 𝐻𝑜𝑚(𝐿,Z). So 𝐿∗/𝑆 ⊂ 𝐻⊥
𝐿

.

Let 𝑠∗ ∈ 𝐻⊥
𝐿
. Then 𝑏𝑆 (𝑠, 𝑙) = 0 for all 𝑙 ∈ 𝐿.

=⇒ ⟨𝑠∗, 𝑙⟩𝑆∗ ∈ Z, for all 𝑙 ∈ 𝐿

=⇒ 𝑠∗(𝑙) ∈ 𝑍 for all 𝑙 ∈ 𝐿 by Lemma 4.2.4

=⇒ 𝑠∗ ∈ 𝐿∗

=⇒ 𝑠∗ ∈ 𝐿∗/𝑆.

Therefore 𝐿∗/𝑆 = 𝐻⊥
𝐿

.

2. Since 𝐿∗/𝑆 = 𝐻⊥
𝐿

and 𝐻𝐿 = 𝐿/𝑆, we can see that 𝐴𝐿 := 𝐿∗/𝐿 � (𝐿∗/𝑆)/(𝐿/𝑆) = 𝐻⊥
𝐿
/𝐻𝐿

as claimed.
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3. Note that 𝐻𝐿 is 𝑏𝑆−isotropic. Also ⟨ , ⟩𝑆∗ |𝐿∗ = ⟨ , ⟩𝐿∗ since 𝐿∗ ↩! 𝑆∗. The discriminant-

bilinear form 𝑏𝐿 : 𝐴𝐿×𝐴𝐿 ! Q/Z is given by ⟨ , ⟩𝐿∗+Z. By the previous part, 𝐴𝐿 = 𝐻⊥
𝐿
/𝐻𝐿 .

So, 𝑏𝑆 induces a bilinear form 𝐻⊥
𝐿
/𝐻𝐿 × 𝐻⊥

𝐿
/𝐻𝐿 ! Q/Z by ⟨ , ⟩𝑆∗ + Z. In other words,

(𝑏𝑆 |𝐻⊥
𝐿
)/𝐻𝐿 = 𝑏𝐿 .

This completes the proof. □

Definition 4.2.16. We say two lattices 𝑆 and𝐾 are orthogonal, denoted 𝑆 ⊥ 𝐾 , if there is a primitive

embedding of 𝑆 into a unimodular lattice 𝐿 such that (𝑆)⊥
𝐿
� 𝐾 .

The following proposition relates the discriminant forms of orthogonal lattices. Our argument

is similar to [Nik80, Proposition 1.5.1], but we do not require 𝐿 to be an even lattice and we consider

discriminant-bilinear forms instead of discriminant-quadratic forms. Note that 𝑆 ⊕ 𝐾 ↩! 𝐿 is of

finite index. We will apply the lemmas above for this embedding.

Proposition 4.2.17. Two lattices 𝑆 and 𝐾 are orthogonal if and only if (𝐴𝑆, 𝑏𝑆) � (𝐴𝐾 ,−𝑏𝐾).

Proof. We first prove the forward direction. So, let 𝑆 and 𝐾 be two lattices that are primitively

embedded in a unimodular lattice 𝐿. In particular, we have a primitive embedding 𝑆 ↩! 𝐿 where

𝐿 is unimodular with 𝑆⊥ = 𝐾 and 𝑆 ⊕ 𝐾 ↩! 𝐿 is of finite index. So, we have the following chain

of inclusions

𝑆 ⊕ 𝐾 ↩! 𝐿 ↩! 𝐿∗ ↩! (𝑆 ⊕ 𝐾)∗.

Taking quotients, this gives a map 𝜙 as a composition:

𝜙 : 𝐻𝐿 := 𝐿/(𝑆 ⊕ 𝐾) ! 𝐿∗/(𝑆 ⊕ 𝐾) ! (𝑆 ⊕ 𝐾)∗/(𝑆 ⊕ 𝐾) � 𝐴𝑆 ⊕ 𝐴𝐾 .

Composing with either projection to 𝐴𝑆 or 𝐴𝐾 , this composition gives two maps 𝜙𝑆 : 𝐻𝐿 ! 𝐴𝑆

and 𝜙𝐾 : 𝐻𝐿 ! 𝐴𝐾 . We claim that both maps are isomorphisms which would show that 𝐴𝑆 � 𝐴𝐾

as groups.

First, note that since 𝑆 is primitive in 𝐿, we have that 𝐿 � 𝑆 ⊕ (𝐿/𝑆). Now 𝐿∗ � 𝑆∗ ⊕ (𝐿/𝑆)∗

and so projection gives us a surjective map 𝑓 ∗ : 𝐿∗ ! 𝑆∗. Now, the key point to note is that 𝐿 is

unimodular, so 𝐿 � 𝐿∗. This gives us a surjection 𝑓 ∗ : 𝐿 � 𝐿∗ ! 𝑆∗. Given 𝑠∗ ∈ 𝑆∗, let 𝑙𝑠 ∈ 𝐿 be
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an element such that 𝑓 ∗(𝑙𝑠) = 𝑠∗. Since 𝐾 is also primitive in 𝐿, we can apply the same argument

to 𝐾∗. So we have elements 𝑙𝑠 ∈ 𝐿, 𝑙𝐾 ∈ 𝐾 such that 𝜙𝑆 (𝑙𝑠) = 𝑠∗ and 𝜙𝐾 (𝑙𝑘 ) = 𝑘∗. This shows that

each map is surjective.

Next, we see that that 𝜙𝑆 and 𝜙𝐾 are embeddings since 𝑆 and 𝐾 are primitive in 𝐿: Suppose

𝜙𝑆 (𝑙) = 0 for some 𝑙 ∈ 𝐿. Write 𝑙 = 𝑠∗
𝑙
+ 𝑘∗

𝑙
where 𝑠∗

𝑙
∈ 𝑆∗ and 𝑘∗

𝑙
∈ 𝐾∗ since 𝐿 ⊂ 𝑆∗ ⊕ 𝐾∗. Then

𝑠∗
𝑙
∈ 𝑆 since 𝜙𝑆 (𝑙) = 𝑠∗

𝑙
= 0, so 𝑙 = 𝑠𝑙 + 𝑘∗𝑙 where 𝑠𝑙 ∈ 𝑆. Now, 𝑆 ⊕ 𝐾 ⊂ 𝐿 is of finite index, so

𝑛 · 𝑙 = 𝑛 · 𝑠𝑙 + 𝑛 · 𝑘∗𝑙 ∈ 𝑆 ⊕ 𝐾 for some 𝑛 ∈ Z. This implies that 𝑛 · 𝑘∗
𝑙
∈ 𝐾 . But 𝐿/𝐾 is torsion-free

since 𝐾 is primitive in 𝐿. Therefore 𝑘∗
𝑙
∈ 𝐾 . So 𝑙 ∈ 𝑆 ⊕ 𝐾 , which means 𝑙 = 0. Injectivity of 𝜙𝐾

can be seen similarly.

We now have isomorphisms 𝐴𝑆 � 𝐴𝐾 . To see why 𝑏𝑆 � −𝑏𝐾 under this isomorphism, apply

Lemma 4.2.15 to 𝑏𝑆⊕𝐾 = 𝑏𝑆 ⊕ 𝑏𝐾 and 𝑏𝐿 . Setting 𝐿/(𝑆 ⊕ 𝐾) = 𝐻𝐿 , by proof of Lemma 4.2.14,

we see that 𝐻𝐿 is 𝑏𝑆⊕𝐾−isotropic, 𝐻⊥
𝐿
= 𝐿∗/(𝑆 ⊕ 𝐾), and 𝑏𝐿 = ((𝑏𝑆 ⊕ 𝑏𝐾) |𝐻⊥

𝐿
/𝐻𝐿 . But, 𝐿 � 𝐿∗,

so 𝐻⊥
𝐿
= 𝐻𝐿 . This means 𝐻⊥

𝐿
is 𝑏𝑆⊕𝐾−isotropic and so 𝑏𝐿 = ((𝑏𝑆 ⊕ 𝑏𝐾) |𝐻⊥

𝐿
/𝐻𝐿 = 0, giving

𝑏𝑆 = −𝑏𝐾 . So, we have (𝐴𝑆, 𝑏𝑆) � (𝐴𝐾 ,−𝑏𝐾). This completes the proof of the forward direction.

Now we suppose 𝑆 and 𝐾 are two lattices, and there exists an isomorphism (𝐴𝑆, 𝑏𝑆) �

(𝐴𝐾 ,−𝑏𝐾). Since 𝐴𝑆⊕𝐾 � 𝐴𝑆 ⊕ 𝐴𝐾 , we consider the graph of this isomorphism Γ in 𝐴𝑆⊕𝐾 .

Observe that Γ is 𝑏𝑆⊕𝐾-isotropic since 𝑏𝑆 = −𝑏𝐾 . So, by Lemma 4.2.14, Γ corresponds to an

overlattice 𝐿. The unimodularity follows from the last part of Lemma 4.2.15. This proves the

backward direction. □

The following lemma is adapted from [Nik80, Proposition 1.12.1], again by replacing even

lattices with arbitrary lattices, and 𝑞𝑆 with 𝑏𝑆.

Lemma 4.2.18. A lattice with signature (𝑠+, 𝑠−) and bilinear-discriminant form 𝑏𝑆 exists if and

only if a lattice with signature (𝑠−, 𝑠+) and bilinear-discriminant form −𝑏𝑆 exists.

Proof. If a lattice 𝑆 has signature (𝑠+, 𝑠−) and bilinear form ⟨ , ⟩𝑆, then by multiplying the form by

−1 we get a lattice 𝑇 with signature (𝑠−, 𝑠+) and bilinear form ⟨ , ⟩𝑇 = −⟨ , ⟩𝑆. Extending ⟨ , ⟩𝑇 to

𝑇∗ we have ⟨ , ⟩𝑇∗ = −⟨ , ⟩𝑆∗ . Therefore, 𝑏𝑇 = ⟨ , ⟩𝑇∗ + Z = −⟨ , ⟩𝑆∗ + Z = −𝑏𝑆, so 𝑇 has signature
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(𝑠−, 𝑠+) and bilinear-discriminant form −𝑏𝑆 as required. The other direction is implied as well. □

Before discussing the embedding theorem for odd unimodular lattices, we need a result of

Nikulin. In particular, we need the corollary to [Nik80, Theorem 1.16.5]. In the following, by

an invariant (𝑡+, 𝑡−, 𝑏𝑆) of a lattice 𝐿, we mean a lattice 𝐿 with signature (𝑡+, 𝑡−) and discriminant

bilinear form 𝑏𝑆.

Theorem 4.2.19. An odd lattice 𝑆 with invariants (𝑡+, 𝑡−, 𝑏𝑆) exists if the following conditions are

satisfied simultaneously:

1. 𝑡+ ≥ 0

2. 𝑡− ≥ 0

3. 𝑡+ + 𝑡− > 𝑙 (𝐴𝑆)

4. 𝑡+ + 𝑡− > 𝑙 (𝐴𝑆2) + 2.

Proof. See [Nik80, Corollary 1.16.6]. □

Now, we can put everything together to state the embedding theorem for odd unimodular lattices.

Applying Theorem 4.2.19 we have the following useful statement:

Corollary 4.2.20. There exists a primitive embedding of an even lattice 𝑆with invariants (𝑡+, 𝑡−, 𝑏𝑆)

into an odd unimodular lattice 𝐿 of signature (𝑙+, 𝑙−) with odd orthogonal complement 𝐾 if the

following conditions are satisfied:

1. 𝑙+ − 𝑡+ ≥ 0

2. 𝑙− − 𝑡− ≥ 0

3. 𝑙+ + 𝑙− − 𝑡+ − 𝑡− ≥ 𝑙 (𝐴𝑆)

4. 𝑙+ + 𝑙− − 𝑡+ − 𝑡− > 𝑙 (𝐴𝑆) + 2.

Proof. Assuming the conditions above, Theorem 4.2.19 implies the existence of an odd lattice 𝐾

with invariants (𝑙+− 𝑡+, 𝑙−− 𝑡−,−𝑏𝑆). In particular, note that 𝑆 and 𝐾 are orthogonal by Proposition

4.2.17. In particular, it implies that there exists a primitive embedding of an even lattice 𝑆 with

invariants (𝑡+, 𝑡−, 𝑏𝑆) into some odd unimodular lattice 𝐿 of signature (𝑙+, 𝑙−). □

We will explore how the above embedding results apply in the case of a cubic fourfold. Recall
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that for a cubic fourfold 𝑋 , 𝐻4(𝑋,Z) � Λ𝐶4 is an odd unimodular lattice of signature (21, 2).

Proposition 4.2.21. Suppose 𝑇 is an even lattice of signature (21 − 𝜌, 2). If 13 ≤ 𝜌 ≤ 21, then

there exists a primitive embedding 𝑇 ↩! Λ𝐶4 such that 𝑇⊥ � 𝑁 is odd.

Proof. Conditions 1 and 2 of Corollary 4.2.20 are automatically satisfied since 𝜌 ≥ 0. Now,

denoting (𝑙+, 𝑙−) = (21, 2) and (𝑡+, 𝑡−) = (21 − 𝜌, 2) we have

𝑙+ + 𝑙− − 𝑡+ − 𝑡− = 21 + 2 − (21 − 𝜌) − 2 = 𝜌.

Next the conditions 3 and 4 of Corollary 4.2.20 are satisfied if 𝜌 ≥ 𝑙 (𝐴𝑇 ) and 𝜌 > 𝑙 (𝐴𝑇2) + 2.

Note that 𝑇 is a free Z−module so 𝑇 � Z23−𝜌. So

𝑇∗ = Hom(𝑇,Z) � Hom(Z23−𝜌,Z) �
⊕
23−𝜌

Hom(Z,Z) � Z23−𝜌 .

So 𝑙 (𝑇∗) = 23 − 𝜌. Hence the quotient 𝐴𝐿 = 𝐿∗/𝐿 satisfies 𝑙 (𝐴𝐿) ≤ 23 − 𝜌 since the image of the

generators of 𝐿∗ under the quotient map form a (not necessarily minimal) generating set of 𝐴𝐿 .

Now, 𝜌 ≥ 23 − 𝜌 ≥ 𝑙 (𝐴𝑇 ) for 𝜌 > 12, so condition 3 is satisfied for 𝜌 > 12. For condition 4,

note that 𝑙 (𝐴𝑇 ) = max𝑝𝑙 (𝐴𝑇𝑝 ). So, 𝜌 > 25− 𝜌 ≥ 𝑙 (𝐴𝑇 ) + 2 ≥ 𝑙 (𝐴𝑇2) + 2 for 𝜌 ≥ 13. Therefore, all

conditions of 4.2.20 are satisfied for 13 ≤ 𝜌 ≤ 21 and the required embedding𝑇 ↩! Λ𝐶4 exists. □

We use this result in Section 4.4.

4.3 Period Maps

In this section, we will first recall the period map for 𝐾3 surfaces. In particular, it is well known

that the period map is surjective. A similar result for cubic fourfolds is false. In particular the

works of Voisin, Laza, and Looĳenga shows that, unlike the situation for 𝐾3 surfaces, the period

map for cubic fourfolds is not surjective. However, we know the exact image of the map.

Definition 4.3.1. Define the moduli space of marked 𝐾3 surfaces to be

𝑁 B {(𝑆, 𝜑)}/∼

where 𝑆 is a 𝐾3 surface and 𝜑 is a marking of 𝑆, i.e. an isomorphism of lattices

𝜑 : 𝐻2(𝑆,Z) ! Λ𝐾3.

56



Two marked 𝐾3 surfaces (𝑆1, 𝜑1) and (𝑆2, 𝜑2) are considered to be equivalent under ∼ if there

is an isomorphism 𝑓 : 𝑆1 ! 𝑆2 preserving the marking.

Definition 4.3.2. Consider the C−linear extension of the bilinear form ⟨ , ⟩ on the complex vector

space Λ𝐾3,C B Λ𝐾3 ⊗Z C. The period domain associated with Λ𝐾3 is defined to be

𝐷 B {𝑥 ∈ P(Λ𝐾3,C) | ⟨𝑥, 𝑥⟩ = 0, ⟨𝑥, 𝑥⟩ > 0}

The period domain 𝐷 is naturally related to Hodge structures of 𝐾3−type by the following

observation.

Proposition 4.3.3. There exists a bĳection between 𝐷 and the set of Hodge structures of 𝐾3−type

on Λ𝐾3 such that for all non-zero (2, 0)−classes 𝜎:

1. ⟨𝜎, 𝜎⟩ = 0

2. ⟨𝜎, �̄�⟩ > 0

3. 𝜎 is perpendicular to Λ
1,1
𝐾3.

Proof. See [Huy16, Proposition 6.1.2]. □

Definition 4.3.4. The period map for 𝐾3 surfaces is the map 𝑁 ! 𝐷 defined by sending a marked

𝐾3 surface (𝑆, 𝜑) to the complex line 𝐻0(𝑆,Ω2) ⊂ 𝐻2(𝑆,C)
𝜑
� Λ𝐾3,C. By the above proposition,

this line determines a point in the period domain 𝐷.

Now, we state the Torelli theorem for𝐾3 surfaces, which implies that a𝐾3 surface is determined

by its Hodge structure.

Theorem 4.3.5. The period map for 𝐾3 surfaces 𝑁 ! 𝐷 is surjective.

Proof. See [Tod80, Theorem 1]. □

With the period map for 𝐾3 surfaces as motivation, we also consider the period map for cubic

fourfolds. We have seen previously that the Hodge structure of cohomology of cubic fourfolds is

similar to that of 𝐾3 surfaces, so it is reasonable to expect that some similar results may hold.

Definition 4.3.6. Define the period domain for cubic fourfolds as

D = {𝜔 ∈ P(Λ𝐶4,0 ⊗Z C) | ⟨𝜔, 𝜔⟩ = 0, ⟨𝜔, �̄�⟩ < 0}0
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where the final subscript denotes a choice of a connected component.

Let M0 denote the space of marked, smooth cubic fourfolds where a marking means an

isomorphism 𝐻4(𝑋,Z) � Λ𝐶4. Then the period map is given by M0 ! D/Γ by sending 𝑋 to

𝐻1(𝑋,Ω3). Note that here Γ represents the monodromy group.

Proposition 4.3.7. The period map for cubic fourfolds is injective.

Proof. See [Voi86]. □

The map is not surjective, we now discuss the image of the period map for cubic fourfolds. We

have the following definitions from [Laz10].

Definition 4.3.8. 1. Let Λ𝐶4 denote the cubic fourfold lattice and fix ℎ ∈ Λ𝐶4 such that ℎ2 = 3.

For any rank two sublattice 𝑀 ↩! Λ𝐶4 primitively embedded in Λ𝐶4 with ℎ ∈ 𝑀 , define a

hyperplane D𝑀 to be

D𝑀 = {𝜔 ∈ D |𝜔 ⊥ 𝑀}.

Note that D𝑀 is the restriction of a hyperplane 𝐻𝑀 ⊂ P(Λ𝐶4,0 ⊗Z C) to D.

2. We say D𝑀 is a hyperplane of determinant 𝑑 = det(𝑀).

3. The hyperplanes of a given determinant form an arrangement of hyperplanes in the period

domain D and the arrangements of determinant 2 and 6 are denoted by H2 and H6.

Remark 4.3.9. The motivation for consideringH2 andH6 comes from [Has00], where Hassett notes

that the period map for cubic fourfolds misses this hyperplane arrangement. Laza and Looĳenga

showed that in fact, the period map is surjective onto the complement of this arrangement. The

image of this arrangement in D/Γ coincides with the image of the union of two hypersurfaces

H2 ∪H6 by [Has00, Proposition 3.2.2, Proposition 3.2.4].

Theorem 4.3.10. The image of the period map for cubic fourfolds is the complement of the

hyperplane arrangements H2 ∪H6.

Proof. See [Laz10, Theorem 1.1]. □

We use this result in the next section. We now discuss endomorphism algebras of Hodge

structures of cubic fourfolds.
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4.4 Endomorphism Algebras of Cubic Fourfolds

In this section, we prove the result for the existence of cubic fourfolds 𝑋 with End(𝑇 (𝑋)) of

totally real type.

Lemma 4.4.1. Let (𝑉, ℎ, 𝜓) be a polarized weight 2 Hodge structure with 𝑣2,0 = 1 and denote

𝑉2,0 = C𝜔 for an element 𝜔 ∈ 𝑉C. Then (𝑉, ℎ, 𝜓) is an irreducible Hodge structure of 𝐾3-type if

and only if 𝜓C(𝜔, 𝑣) = 0 for 𝑣 ∈ 𝑉 implies 𝑣 = 0.

Proof. See [VG08, Lemma 1.7]. □

In Proposition 4.2.21, we showed that there exists a primitive embedding of an even lattice 𝑇

into Λ𝐶4 under certain conditions. We interpret this in geometric situations for cubic fourfolds.

In the following statement, let D𝑇 denote the period domain associated to 𝑇C, i.e.

D𝑇 = {𝜔 ∈ P(𝑇 ⊗Z C) | ⟨𝜔, 𝜔⟩ = 0, ⟨𝜔, �̄�⟩ < 0} ⊂ P(𝑇C).

Additionally, let H2,H6 ⊂ DΛ𝐶4,0 ⊂ P(Λ𝐶4,0,C) be the (open subsets of) hyperplanes as in

Definition 4.3.8. Note that if 𝑇C ⊂ Λ𝐶4,0,C, then D𝑇 = DΛ𝐶4,0 ∩ P(𝑇C).

Theorem 4.4.2. Let 𝑇 be an even lattice of signature (21 − 𝜌, 2) with 13 ≤ 𝜌 ≤ 21. Then

there exists a primitive embedding 𝑖 : 𝑇 ↩! Λ𝐶4. Further, assume that D𝑇 is not contained in

(H2 ∩ P(𝑇C)) ∪ (H6 ∩ P(𝑇C)). Then there exists cubic fourfold 𝑋 such that under this embedding

𝑇 (𝑋) � 𝑇 .

Proof. By Proposition 4.2.21, there exists a primitive embedding 𝑇 ↩! Λ𝐶4. Let 𝑁 = 𝑇⊥. To

define a Hodge structure on 𝑇 , we need to choose a period 𝜔 ∈ 𝑇C so that the Hodge structure on 𝑇

is of 𝐾3-type and such that 𝜔 is in the image of the period map for cubic fourfolds. This will then

show that 𝑇 can be realized as the transcendental lattice of a cubic fourfold 𝑋 .

Since 𝑇 is a lattice, it comes equipped with a bilinear form 𝜓. Our goal is to a find period in D𝑇

so that (𝑇, 𝜔, 𝜓) is a polarized Hodge structure of weight 2. Moreover, by Lemma 4.4.1, the Hodge

structure corresponding to a period 𝜔 ∈ D𝑇 is an irreducible Hodge structure if 𝜓C(𝜔, 𝑡) ≠ 0 for
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all nonzero 𝑡 ∈ 𝑇 . For any nonzero 𝑡 ∈ 𝑇 , define a hyperplane

𝐻𝑡 := {[𝜔] | 𝜓C(𝜔, 𝑡) = 0} ⊂ P(𝑇C).

Now since the period domain D𝑇 associated to 𝑇C is a nonempty open subset in a quadric in

P(𝑇C), we have that 𝐻𝑡 ∩ D𝑇 is of codimension ≥ 1 in D𝑇 by [VG08, Lemma 3.2]. This

implies that D𝑇 ≠
⋃
𝑡 (𝐻𝑡 ∩ D𝑇 ). This together with our hypothesis on D𝑇 implies that D𝑇 ≠⋃

𝑡 (𝐻𝑡 ∩D𝑇 ) ∪ (H2 ∩D𝑇 ) ∪ (H6 ∩D𝑇 ). Choosing 𝜔 corresponding to a point in the complement

gives 𝜔 ∈ 𝑇C ⊂ Λ𝐶4,0,C. Since 𝜔 is in the image of the period map, this defines a cubic fourfold 𝑋

with 𝐻4(𝑋,Z) � Λ𝐶4. Now the transcendental lattice 𝑇 (𝑋) and the lattice 𝑇 are both irreducible

Hodge substructures of 𝐾3 type in 𝐻4(𝑋,Z) (1) with nontrivial intersection. This follows by

Proposition 4.1.2 and by our hypothesis on 𝑇 . By definition of irreducibility of Hodge structures,

this implies that 𝑇 = 𝑇 (𝑋). This finishes the proof. □

Remark 4.4.3. A similar embedding result to the above is shown in [May11, Corollary 5.2] in

terms of roots of lattices.

We use the following lemma in what comes next:

Lemma 4.4.4. Let 𝐹 be a totally real field. Then for any integer 𝑚 ≥ 3 there exist rational Hodge

structures of 𝐾3-type (𝑉, 𝜔, 𝜓) with End𝐻𝑜𝑑 (𝑉) = 𝐹 and 𝑑𝑖𝑚𝐹𝑉 = 𝑚.

Proof. See [VG08, Lemma 3.2]. □

Remark 4.4.5. The signature of 𝜓 that is constructed in the proof of [VG08, Lemma 3.2] is given

by (𝑚 [𝐹 : Q] − 2, 2).

We have the following proposition towards proving the existence of cubic fourfolds 𝑋 with

End(𝑇 (𝑋)) a totally real field:

Proposition 4.4.6. Let 𝐹 be a totally real field, 𝑚 ≥ 3 an integer, and (𝑉, 𝜔, 𝜓) a rational 𝐾3-

type Hodge structure of signature (𝑚 [𝐹 : Q] − 2, 2) with End𝐻𝑜𝑑 (𝑉) = 𝐹 and 𝑑𝑖𝑚𝐹𝑉 = 𝑚. If

3 ≤ 𝑚 [𝐹 : Q] ≤ 10, then 𝑉C ⊂ Λ𝐶4,0,C.

Further, if 𝜔 ∉ (H2 ∩ P(𝑉C)) ∪ (H6 ∩ P(𝑉C)), then there exists a cubic fourfold 𝑋 such that
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End(𝑇 (𝑋)) = 𝐹 and dim𝐹 (𝑇 (𝑋)) = 𝑚.

Proof. Choose a free Z-module𝑇 ⊂ 𝑉 of rank dimQ𝑉 such that 𝜓 is integer valued on𝑇×𝑇 . This is

possible: Otherwise, we can choose a new𝑇 by multiplying the basis elements by appropriate scalars

to clear denominators. Now, apply Proposition 4.2.21 to get a primitive embedding 𝑇 ↩! Λ𝐶4,0.

This gives 𝑇C = 𝑉C ↩! Λ𝐶4,0,C. The hypothesis of Proposition 4.2.21 are satisfied since the

signature of 𝜓 is given by (𝑚 [𝐹 : Q] −2, 2). Since the corresponding period𝜔 ∈ 𝑇C is in the image

of the period map, apply Theorem 4.4.2 to find a cubic fourfold 𝑋 such that 𝑇 (𝑋) � 𝑇 . Such an 𝑋

gives the result, i.e. End(𝑇 (𝑋)) = 𝐹. □

The above proposition illustrates the difficulty in proving an analogue of Van Geemen’s Propo-

sition 4.1.11 for cubic fourfolds. In particular, 𝜔may be contained in (H2∩P(𝑉C)) ∪ (H6∩P(𝑉C)).

If this happens, then 𝜔 is not in the image of the period map. However, we show below that there

exist examples of cubic fourfolds 𝑋 with End(𝑇 (𝑋)) of totally real type, though we do not have

any control on 𝐹.

Lemma 4.4.7. Let 𝑇 be an irreducible, rational Hodge structure of 𝐾3−type. If dimQ(𝑇) is odd

then 𝐹 = End(𝑇) is totally real.

Proof. The proof is taken from [Huy16, Remark 3.3.14]. We have that

dim𝑄 (𝑇) = dim𝐹 (𝑇) · [𝐹 : Q] .

So, [𝐹 : Q] divides dim𝑄 (𝑇). But [𝐹 : Q] is even for any CM-field. Therefore, if dimQ(𝑇) is odd,

then 𝐹 is totally real. □

Proposition 4.4.8. For a cubic fourfold 𝑋 with even Picard rank 𝜌(𝑋), End(𝑇 (𝑋)) is of totally

real type.

Proof. The proof is immediate: Since dimQ(𝑇 (𝑋)) = 23 − 𝜌(𝑋), we can see that End(𝑇 (𝑋)) is

totally real by Lemma 4.4.7. □

Corollary 4.4.9. There exist cubic fourfolds for any even Picard rank 2 ≤ 𝜌 ≤ 20 with End(𝑇 (𝑋))

a totally real field.
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Proof. By [Laz21, Section 1], there exists cubic fourfolds of any Picard rank 1 ≤ 𝜌(𝑋) ≤ 21.

Apply Proposition 4.4.8 to complete the proof. □

4.5 Endomorphism Algebras and Associated K3 Surfaces

Now that we have shown that cubic fourfolds of real type exist, we relate endomorphism algebras

of cubic fourfolds to those of associated 𝐾3 surfaces when this makes sense and to the Kuga-Satake

construction.

We now know that there exist 𝐾3 surfaces and cubic fourfolds that are of real type. However,

it is a priori unclear if there exists associated 𝐾3 surfaces such that the 𝐾3 surface and the cubic

fourfold are both of real type. We prove that such examples do exist.

Lemma 4.5.1. If a 𝐾3 surface 𝑆 is associated to a cubic fourfold 𝑋 , then either both End(𝑇 (𝑆))

and End(𝑇 (𝑋)) are CM fields or both are totally real fields. Additionally, the Picard ranks are

related by 𝜌(𝑋) = 𝜌(𝑆) + 1.

Proof. By definition, 𝑆 being associated to 𝑋 means that there is a Hodge isometry 𝑔 : 𝐾⊥(1) !

𝐻2(𝑆,Z)0 for some labeling 𝐾 (1) ⊂ 𝐻4(𝑋, 𝑍) (1). In particular, note that 𝑇 (𝑋) ⊂ 𝐾⊥ and

𝑇 (𝑆) ⊂ 𝐻2(𝑆,Z)0. Since the map 𝑔 is a Hodge isometry, it must respect both the Hodge structures

and the lattice structures. So, we have that 𝑇 (𝑋)2,0 = 𝐾⊥(1)2,0 � 𝐻2(𝑆,Z)2,0
0 = 𝑇 (𝑆)2,0. So,

𝑇 (𝑋) ⊂ 𝐾⊥(1) � 𝐻2(𝑆,Z)0 with 𝑇 (𝑋)2,0 = 𝑇 (𝑆)2,0. By irreducibility of 𝑇 (𝑆) and 𝑇 (𝑋) from

Proposition 4.1.2, we have that 𝑇 (𝑋) � 𝑇 (𝑆). This gives the first part of the statement. This also

implies that 𝜌(𝑋) = 𝜌(𝑆) + 1 □

We need an additional statement in order to prove the main result in the subsection.

Theorem 4.5.2. There exists associated 𝐾3 surfaces of any Picard rank 1 ≤ 𝜌(𝑆) ≤ 20.

Proof. See [ABP20, Theorem 1.1]. The authors use intersections of Hassett divisors to prove their

result. □

Now, we prove the following proposition.

Proposition 4.5.3. There exists 𝐾3 surfaces 𝑆 associated to cubic fourfolds 𝑋 such that End(𝑇 (𝑆))

and End(𝑇 (𝑋)) are both totally real.
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Proof. Choose a cubic fourfold 𝑋 and associated 𝐾3 surface 𝑆 such that the Picard rank 𝜌(𝑋) of

𝑋 is even. This is possible by Theorem 4.5.2. Now, by Corollary 4.4.9 we have that End(𝑇 (𝑋)) is

totally real. By Lemma 4.5.1, End(𝑇 (𝑆)) must be totally real as well. This concludes the proof. □

The remainder of this section is motivated by [Sch10]. In that paper, the author proves the

following result for 𝐾3 surfaces.

Theorem 4.5.4. Let 𝑆 be a 𝐾3 surface and let End(𝑇 (𝑆)) be totally real of degree 𝑑 over Q. Let

𝐾𝑆(𝑆) denote the Kuga-Satake variety of 𝑆. Then there exists another abelian variety 𝐵 such that

𝐾𝑆(𝑇 (𝑆)) ∼ 𝐵2𝑑−1 and the endomorphism algebra of 𝐵 can be described by

EndQ(𝐵) = 𝐶𝑜𝑟𝑒𝑠𝐸/Q𝐶+(Φ)

where Φ : 𝑇 (𝑆) × 𝑇 (𝑆) ! End(𝑇 (𝑆)) is the symmetric bilinear form from [Zar83], 𝐶+ is the

associated even Clifford algebra, and 𝐶𝑜𝑟𝑒𝑠 is the corestriction of algebras.

Proof. See [Sch10, Theorem 1]. □

Schlickewei uses this theorem to prove an interesting result, namely that the Hodge conjecture

holds for 𝑆 × 𝑆 where 𝑆 is a 𝐾3 surface that is realized as a double cover of P2 ramified over six

lines.

Since the proof of Theorem 4.5.4 only requires that 𝑇 is an irreducible Hodge structure of

𝐾3−type and End(𝑇 (𝑆)) is of totally real type (see Section 3.3 of [Sch10]), the same result holds

for the Kuga-Satake varieties of cubic fourfolds. Using our result in Theorem 3.3.5, we have the

following corollary.

Corollary 4.5.5. Let 𝑆 be a 𝐾3 surface associated to a cubic fourfold 𝑋 such that End(𝑇 (𝑆)) and

End(𝑇 (𝑋)) are totally real of degree 𝑑 over Q. Then there exists another abelian variety 𝐵 such

that 𝐾𝑆(𝑋) ∼ 𝐵2𝜌(𝑋)+𝑑−1 and the endomorphism algebra of 𝐵 can be described by

EndQ(𝐵) = 𝐶𝑜𝑟𝑒𝑠𝐸/Q𝐶+(Φ)

as in Theorem 4.5.4.

63



Proof. By Theorem 3.3.5, we have 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2. We also saw in Chapter 3 that 𝐾𝑆(𝑆) ∼

𝐾𝑆(𝑇 (𝑆))2𝜌(𝑆) . In Lemma 4.5.1, we showed that 𝜌(𝑋) = 𝜌(𝑆) + 1. Putting this together, we have

a string of isogenies:

𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2 ∼ (𝐾𝑆(𝑇 (𝑆)))2𝜌(𝑆)+1 ∼ (𝐵2𝑑−1)2𝜌(𝑋) ∼ 𝐵2𝜌(𝑋)+𝑑−1
.

The description of the endomorphism algebra of 𝐵 is direct from Theorem 4.5.4. □
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CHAPTER 5

DERIVED CATEGORIES AND FUTURE WORK

In this chapter, we explore Kuznetsov’s derived categorical approach to studying cubic fourfolds.

In particular, we work towards trying to understand the relationship between 𝐷𝑏 (𝐾𝑆(𝑋)) and

𝐷𝑏 (𝐾𝑆(𝑆)) when 𝑆 is a 𝐾3 surface associated to 𝑋 . The goal is to examine how the derived

category of Kuga-Satake varieties may fit into the general framework. The chapter is outlined as

follows:

§5.1 We discuss the background material on derived categories with a particular focus on excep-

tional objects, semiorthogonal decompositions, Fourier-Mukai transforms, and Hochschild

homology. The section ends with an explicit calculation for 𝐷𝑏 (𝑆) of a 𝐾3 surface.

§5.2 In this section, we outline Kuznetsov’s approach to studying the derived categories of cubic

fourfolds. In particular we define the Kuznetsov componentA𝑋 , prove facts about the derived

category 𝐷𝑏 (𝑋) of a cubic fourfold 𝑋 such as its Hochschild homology and semiorthogonal

decompositions, and note similarities between Kuznetsov’s approach using derived categories

and Hassett’s approach using Hodge theory. We end the section with a few important

examples, including Pfaffian cubic fourfolds and cubic fourfolds containing a plane.

§5.3 We discuss recent works which show that the derived categorical and Hodge theoretic ap-

proaches to studying cubic fourfolds and associated 𝐾3 surfaces are the same. In particular,

we mention the important results of [AT14] and [BLM+21]. These results, along with our

result in Theorem 3.3.5 motivate our attempt to relate derived categories of Kuga-Satake

varieties into the general framework.

§5.4 In this section, we study the Kuga-Satake Hodge Conjecture, which is a special case of the

standard Hodge conjecture. We use this conjecture to obtain an algebraic cycle used in the

construction of Fourier-Mukai transforms. We prove that the Kuga-Satake Conjecture holds

for at least some associated 𝐾3 surfaces.

§5.5 We use the Kuga-Satake Hodge conjecture result of the previous section to construct Fourier-
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Mukai transforms involving the derived category of the Kuga-Satake variety.

§5.6 In our final section, we sketch potential future directions of research using the Fourier-Mukai

functors.

5.1 Background: Derived Categories

Throughout this section, T will denote a triangulated category. We assume basic familiarity

with abelian and triangulated categories. For a reference, see [Huy06, Chapter 1].

Definition 5.1.1. Suppose T1, . . . ,T𝑛 is a sequence of full triangulated subcategories of T such

that for all 𝑖 < 𝑗 ,HomT (T𝑗 ,T𝑖) = 0 and T1, . . . ,T𝑛 generate T . (That is, T is the smallest full

triangulated subcategory containing all of T1, . . . ,T𝑛.) Then we say T1, . . . ,T𝑛 is a semiorthogonal

decomposition of T and we write T = ⟨T1, . . . ,T𝑛⟩.

Much of our focus will be on semiorthogonal decompositions. A standard method for con-

structing semiorthogonal decompositions is using exceptional collections.

Definition 5.1.2. An object 𝐸 ∈ T is called exceptional if Hom(𝐸, 𝐸) = 𝑘 and Ext𝑚 (𝐸, 𝐸) = 0

for all 𝑚 ≠ 0. In addition, we call a collection of exceptional objects {𝐸1, . . . , 𝐸𝑛} an exceptional

collection if Ext𝑚 (𝐸𝑖, 𝐸 𝑗 ) = 0 for all 𝑖 > 𝑗 .

Recall that 𝐷𝑏 (𝑋) B 𝐷𝑏 (Coh(𝑋)) denotes the bounded derived category of coherent sheaves

on a variety 𝑋 . The next proposition allows us to use exceptional collections to construct

semiorthogonal decompositions of 𝐷𝑏 (𝑋).

Proposition 5.1.3. [BO95, Theorem 3.5] Let 𝑋 be a smooth projective variety and suppose

{𝐸1, . . . , 𝐸𝑛} is an exceptional collection in 𝐷𝑏 (𝑋). Define its orthogonal complement to be

A B ⟨𝐸1, . . . , 𝐸𝑛⟩⊥ B
{
𝐹 ∈ 𝐷𝑏 (𝑋) : Ext•(𝐸𝑖, 𝐹) = 0 ∀𝑖 = 1, . . . , 𝑛

}
.

Then there is a semiorthogonal decomposition:

𝐷𝑏 (𝑋) = ⟨A, 𝐸1, . . . , 𝐸𝑛⟩.

We also consider maps between derived categories. The most natural way to do so is using

Fourier-Mukai transforms, defined as follows.
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Definition 5.1.4. Let 𝑋,𝑌 be smooth projective varieties and let 𝐾 ∈ 𝐷𝑏 (𝑋 × 𝑌 ). Denote the two

natural projections by 𝑝1 : 𝑋 × 𝑌 ! 𝑋 and 𝑝2 : 𝑋 × 𝑌 ! 𝑌 . Then the Fourier-Mukai transform

with kernel 𝐾 is defined to be
Φ𝐾 : 𝐷𝑏 (𝑋) −! 𝐷𝑏 (𝑌 )

F 7−! 𝑅𝑝2∗(𝐿𝑝∗1F ⊗𝐿 𝐾)
where 𝑅–∗ denotes the derived direct image, 𝐿–∗ denotes the derived pullback, and ⊗𝐿 denotes the

derived tensor product.

In the following, we only consider Fourier-Mukai functors between derived categories.

Example 5.1.5. We list a few examples of Fourier-Mukai kernels:

• Consider the structure sheaf of the diagonal OΔ ∈ 𝐷𝑏 (𝑋 × 𝑋). Then the Fourier-Mukai

transform with kernel 𝐾 = OΔ gives the identity on 𝐷𝑏 (𝑋), since 𝑅𝑝2∗(𝑝∗1F ⊗𝐿 OΔ) = F .

So ΦOΔ
� id.

• If 𝑓 : 𝑋 ! 𝑌 is a morphism of varieties, consider the structure sheaf of the graph OΓ 𝑓
of

𝑓 . Then the Fourier-Mukai transform with kernel 𝐾 = OΓ 𝑓
is isomorphic to the derived

pushforward ΦOΓ 𝑓
: 𝐷𝑏 (𝑋) ! 𝐷𝑏 (𝑌 ).

• If 𝐴 is an abelian variety and �̂� is its dual, then 𝐴 × �̂� comes equipped with a special line

bundle called the Poincaré bundle P, see [Mil86] for reference. The Fourier-Mukai functor

ΦP : 𝐷𝑏 (𝐴) ! 𝐷𝑏 ( �̂�) gives an equivalence of categories. This is an important example

since 𝐴 and �̂� are in general not isomorphic varieties, so it illustrates that non-isomorphic

varieties may be derived equivalent.

An important invariant of a triangulated category T is its Hochschild homology 𝐻𝐻•(T ). The

following facts and additional background can be found in [Kuz09]. We are primarily interested in

Hochschild homology of derived categories and their admissible subcategories. In this context, we

use 𝐻𝐻•(𝑋) to denote 𝐻𝐻•(𝐷𝑏 (Coh(𝑋)). It is an invariant in the sense that a derived equivalence

𝐷𝑏 (𝑋) � 𝐷𝑏 (𝑌 ) induces an isomorphism 𝐻𝐻•(𝑋) � 𝐻𝐻•(𝑌 ).

Hochschild homology is directly related to Hodge theory through the Hochschild-Kostant-
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Rosenberg Theorem, which is useful for explicitly describing 𝐻𝐻•(𝑋):

Theorem 5.1.6 (HKR Isomorphism Theorem). Let 𝑋 be a smooth projective variety and let𝐻𝑝,𝑞 (𝑋)

denote its standard Hodge decomposition as in Chapter 2. Then there is an isomorphism of graded

𝑘−vector spaces

𝐻𝐻𝑖 (𝑋) �
⊕
𝑞−𝑝=𝑖

𝐻𝑝,𝑞 (𝑋).

With this theorem we can compute Hochschild homology of many varieties of interest since

we know their Hodge diamonds. For example, this applies to 𝐾3 surfaces, cubic fourfolds, abelian

varieties, and Gushel-Mukai varieties.

Hochschild homology also works nicely with semiorthogonal decompositions.

Proposition 5.1.7. [Kuz09, Theorem 7.3] Let 𝑋 be a smooth projective variety and suppose there

is a semiorthogonal decomposition of its derived category as 𝐷𝑏 (𝑋) = ⟨A1, . . . ,A𝑛⟩. Then its

Hochschild homology decomposes as a direct sum:

𝐻𝐻•(𝑋) �
𝑛⊕
𝑖=1

𝐻𝐻•(A𝑖).

The following is also useful in combination with the above proposition:

Lemma 5.1.8. [Kuz10, Lemma 2.5] If 𝐸 is an exceptional object in 𝐷𝑏 (𝑋), then the sub-

triangulated category ⟨𝐸⟩ is equivalent to the derived category of a vector spaces 𝐷𝑏 (𝑘). In

particular, its Hochschild homology is 𝑘 [0].

Proof. The functor 𝐷𝑏 (𝑘) ! 𝐷𝑏 (𝑋), 𝑉 7! 𝑉 ⊗ 𝐸 is fully faithful since 𝐸 is an exceptional object,

so 𝐷𝑏 (𝑘) � ⟨𝐸⟩. □

We briefly mention yet another useful tool, called the Serre functor.

Definition 5.1.9. Let 𝑘 be a field and T be a 𝑘-linear triangulated category. A Serre functor on T

is an exact functor ST : 𝑇 ! 𝑇 such that

Hom(F ,ST (G)) � Hom(G.F )∧

for all F ,G ∈ T and the dual is taken in the category of 𝑘-vector spaces.
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For a smooth projective variety 𝑋 , there exists a Serre Functor given by S𝐷𝑏 (𝑋) (F ) = F ⊗

𝜔𝑋 [𝑑𝑖𝑚(𝑋)], where 𝜔𝑋 is the canonical sheaf of 𝑋 . By the Serre Functor of 𝑋 , we mean this

functor. We apply these tools to a 𝐾3 surface now.

Example 5.1.10. Let 𝑆 be a 𝐾3 surface. Recall that its Hodge diamond has the form:

1

0 0

1 20 1

0 0

1

We use the HKR Theorem to compute the Hochschild homology of 𝐷𝑏 (𝑆) by reading off the

columns of the Hodge diamond as

𝐻𝐻•(𝑆) � 𝑘 [2] ⊕ 𝑘22 [0] ⊕ 𝑘 [−2] .

The canonical sheaf 𝜔𝑆 of a 𝐾3 surface is trivial, so its Serre functor is the shift by 2 functor,

S𝐷𝑏 (𝑆) � [2].

5.2 The Kuznetsov Viewpoint

In Chapter 2, we saw a conjecture motivated by the framework of associated 𝐾3 surfaces via

a Hodge theoretical approach: A cubic fourfold is rational if and only if it possesses an associated

𝐾3 surface. In [Kuz10], Kuznetsov provides an alternative approach to establishing a criterion for

rationality via derived categories. We summarize the main ideas here.

In the following, let 𝑋 denote a cubic fourfold and 𝐷𝑏 (𝑋) its derived category of coherent

sheaves. Consider the line bundles O𝑋 ,O𝑋 (−1),O𝑋 (−2) on 𝑋 . Computing their cohomology is a

direct application of the Kodaira Vanishing Theorem. Recall that the Kodaira Vanishing Theorem

says that if L is an ample invertible sheaf on 𝑋 , then 𝐻𝑖 (𝑋,L−1) = 0 for 𝑖 ≤ 4. We have that

69



dim(𝐻0(𝑋,O𝑋)) = 1 and

dim(𝐻𝑛 (𝑋,O𝑋 (𝑘))) = 0 for − 2 ≤ 𝑘 ≤ 0, (𝑛, 𝑘) ≠ (0, 0).

Now, the basic properties of Ext imply that {O𝑋 ,O𝑋 (1),O𝑋 (2)} form an exceptional collection in

𝐷𝑏 (𝑋).

Definition 5.2.1. Let 𝑋 be a cubic fourfold and consider the exceptional collection

{O𝑋 ,O𝑋 (1),O𝑋 (2)}

in 𝐷𝑏 (𝑋) as shown above. Then the Kuznetsov component A𝑋 of 𝑋 is the orthogonal complement

of this exceptional collection:

A𝑋 := ⟨O𝑋 ,O𝑋 (1),O𝑋 (2)⟩⊥.

The Kuznetsov component appears in the semiorthogonal decomposition:

Lemma 5.2.2. Let 𝑋 be a cubic fourfold and let A𝑋 be the Kuznetsov component as defined above.

Then there is a semiorthogonal decomposition of 𝐷𝑏 (𝑋) as

𝐷𝑏 (𝑋) = ⟨A𝑋 ,O𝑋 ,O𝑋 (1),O𝑋 (2)⟩ .

Proof. Apply Proposition 5.1.3. □

The sub-category A𝑋 has interesting properties. We compute its Hochschild homology as

follows.

Example 5.2.3. We use the HKR Theorem and the Hodge diamond of the cubic fourfold 𝑋 ,

reproduced here for reference:
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1

0 0

0 1 0

0 0 0 0

0 1 21 1 0

0 0 0 0

0 1 0

0 0

1

Recall by Lemma 5.1.7 that

𝐻𝐻•(𝑋) � (
2⊕
𝑖=0

𝐻𝐻•(O𝑋 (𝑖)))
⊕

𝐻𝐻•(A𝑋).

By Lemma 5.1.8, {O𝑋 ,O𝑋 (1),O𝑋 (2)} form an exceptional collection, so each of them has

Hochschild homology � 𝑘 [0]. Therefore, using the above decomposition and tallying the middle

column of the Hodge diamond via the HKR Theorem, we have that 𝐻𝐻0(𝑋) � 𝑘25, and therefore

𝐻𝐻0(A𝑋) � 𝑘22. The exceptional objects do not contribute to Hochschild homology outside of

the degree 0 part, so we have that

𝐻𝐻•(A𝑋) � 𝑘 [2] ⊕ 𝑘22 [0] ⊕ 𝑘 [−2] .

It is also possible to prove that the Serre functor on A𝑋 is shifting by 2, i.e. SA𝑋
� [2].

Comparing with Example 5.1.10, the resemblance between the triangulated category A𝑋 and the

derived category 𝐷𝑏 (𝑆) for a 𝐾3 surface 𝑆 is striking! This observation leads to Kuznetsov’s

conjecture in [Kuz10, Conjecture 1.1].
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Conjecture 5.2.4. A cubic fourfold 𝑋 is rational if and only if the triangulated subcategory

A𝑋 ⊂ 𝐷𝑏 (𝑋) is equivalent to the derived category of a 𝐾3 surface, i.e. A𝑋 � 𝐷
𝑏 (𝑆) for some 𝐾3

surface 𝑆.

There are several known examples of rational cubic fourfolds 𝑋 such that A𝑋 � 𝐷
𝑏 (𝑆) for a

𝐾3 surface 𝑆. We mention two such well known examples here (and compare to the examples seen

in Chapter 2).

Pfaffian cubics provide the most explicit examples where the Kuznetsov component of 𝑋 is

realized as the derived category of a 𝐾3 surface. The following is proved in [Kuz06]:

Theorem 5.2.5. Let 𝑋 be a Pfaffian cubic fourfold. Then there exists a smooth 𝐾3 surface 𝑆 such

that A𝑋 � 𝐷
𝑏 (𝑆).

Let𝑊 be a 6−dimensional vector space and consider P(∧2𝑊∗), the space of skew forms on𝑊 .

Define the Pfaffian space as

Pf(𝑊) B
{
𝜔 ∈ P(∧2𝑊∗) |𝜔 is degenerate

}
.

Recall that a Pfaffian cubic fourfold is given by 𝑋 = P(𝑉) ∩ Pf(𝑊∗) for some 6−dimensional

vector space𝑊 and 6−dimensional vector subspace 𝑉 ⊂ ∧2𝑊∗. In [Kuz10, Section 3], Kuznetsov

constructs the 𝐾3 surface explicitly as the zero locus of a global section on 𝑉∗ ⊗ OGr(2,𝑊) (1) on

the Grassmanian Gr(2,𝑊). Here OGr(2,𝑊) (1) is the very ample class corresponding to the Plücker

embedding. In other words, 𝑆 = 𝑍 (𝑠) ⊂ Gr(2,𝑊) for a global section 𝑠.

Before discussing cubic fourfolds that contain a plane, we take a brief detour into twisted 𝐾3

surfaces. We recall the basic terminology here and refer the reader to [Huy16, Chapter 18] for more

detailed background.

Definition 5.2.6. Let 𝑋 be any scheme.

1. An Azumaya algebra A over 𝑋 is defined to be an O𝑋−algebra that is coherent as an

O𝑋−module and étale locally isomorphic to 𝑀𝑛 (O𝑋).

2. An Azumaya algebra A is called trivial if A � End(𝐸) for a locally free sheaf 𝐸 .
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3. Two Azumaya algebras are defined to be equivalent, i.e. A1 ∼ A2 if there exists locally free

sheaves E1, E2 such that A1 ⊗ End(E1) � A2 ⊗ End(E2).

4. The Brauer group Br(𝑋) is defined to be the set of equivalence classes of Azumaya algebras

on 𝑋 where the equivalence relation is given above and the group operation is tensor product

⊗:

Br(𝑋) B {Azumaya algebras A}/∼ .

With the definition of a Brauer class, we can define a twisted 𝐾3 surface as follows.

Definition 5.2.7. A twisted 𝐾3 surface is a pair (𝑆, 𝛼) where 𝛼 ∈ Br(𝑆).

Now, let 𝑋 be a cubic fourfold containing a plane 𝑃. Then Kuznetsov relates the theory of such

cubic fourfolds to twisted 𝐾3 surfaces.

Theorem 5.2.8. [Kuz10, Theorem 4.3] If 𝑋 is a cubic fourfold containing a plane, then its Kuznetsov

component can be realized as the derived category of a twisted 𝐾3 surface. That is, there exists a

𝐾3 surface 𝑆 and a Brauer class 𝛽 ∈ Br(𝑆) such that A𝑋 � 𝐷
𝑏 (𝑆, 𝛽).

In particular, to prove that the Kuznetsov component of a cubic fourfold containing a plane is

equivalent to the derived category of a 𝐾3 surface, it is sufficient to prove that the Brauer class 𝛽

that appears in the above theorem is trivial.

Example 5.2.9. Let 𝑋 be a cubic fourfold containing a plane 𝑃 and a projective surface 𝑇 not

homologous to 𝑃. Consider the intersection index given by

𝛿(𝑇) B deg(𝑇) − ⟨𝑃,𝑇⟩.

We saw in Chapter 2 that such a cubic fourfold is rational if 𝛿(𝑇) is odd by a result of Hassett.

Furthermore, such examples exist by [Has99]. Kuznetsov shows in [Kuz10, Proposition 4.7] that

such a cubic fourfold with odd intersection index has trivial Azumaya class 𝛽. Therefore, this

provides an example of a rational cubic fourfold such that A𝑋 � 𝐷
𝑏 (𝑆).

The above examples illustrate why one may expect there to be a direct relationship between

Kuznetsov’s conjecture for the rationality of cubic fourfolds and the conjecture using Hassett’s
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Hodge theoretical approach which we will explore in the next section.

It is worth mentioning that there is an analogous derived categorical approach for Gushel-Mukai

fourfolds as well. As we explored in Section 3.4, there is a notion of associated 𝐾3 surface for

Gushel-Mukai fourfolds 𝑌 . As in the case of cubic fourfolds, we can define a subcategory A𝑌 ⊂

𝐷𝑏 (𝑌 ) and it is conjectured that a Gushel-Mukai fourfold is rational if and only if A𝑌 � 𝐷
𝑏 (𝑆) for

a 𝐾3 surface 𝑆. See [KP18] for more details.

5.3 Connecting Hodge Theory and Derived Categories

In [AT14], Addington and Thomas showed that Kuznetsov’s derived category criterion for ratio-

nality coincides with Hasset’s associated 𝐾3 notion. This is summarized in [AT14, Theorem 1.1].

Theorem 5.3.1. If A𝑋 � 𝐷
𝑏 (𝑆) for some 𝐾3 surface 𝑆, then 𝑋 ∈ C𝑑 for some admissible value of

𝑑. Conversely, for each admissible value of 𝑑, the set of cubics 𝑋 ∈ C𝑑 satisfying A𝑋 � 𝐷
𝑏 (𝑆) for

some 𝐾3 surface 𝑆 is a Zariski open dense subset of C𝑑 .

In light of the above theorem, Kuznetsov’s conjecture would therefore imply that generic 𝑋 ∈ C𝑑

for admissible 𝑑 is rational. The proof is involved, but we mention some ingredients of their strategy

here since the approach uses theory relevant to our study.

The authors begin by defining a weight two Hodge structure on the Kuznetsov component A𝑋 .

They show that there is a Hodge isometry with the usual Mukai lattice𝐻∗(𝑆,Z) when A𝑋 � 𝐷
𝑏 (𝑆),

and interpret the relationship between this lattice and𝐻4(𝑋,Z). Next, they consider the intersection

C𝑑 ∩ C8 for admissible 𝑑, which they show to be a non-empty intersection. The motivation for

considering C8 comes from Theorem 5.2.8: Since every cubic fourfold in C8 contains a plane by

[Voi86], we already know that A𝑋 � 𝐷
𝑏 (𝑆, 𝛼) for some twisted 𝐾3 surface for every 𝑋 ∈ C8. They

then use lattice theory to show that there must be cubic fourfolds 𝑋 ∈ C𝑑 ∩ C8 where 𝛼 is trivial,

hence A𝑋 � 𝐷𝑏 (𝑆) for a 𝐾3 surface 𝑆 for these cubic fourfolds. Finally they use Deformation

theory to show that A𝑋 � 𝐷
𝑏 (𝑆) for a Zariski open subset of C𝑑 .

The authors mention in [AT14, Section 7.4] that it may be possible to use stability conditions

of some kind to pass from a Zariski open subset of C𝑑 to all of C𝑑 . Indeed, using this approach the
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authors in [BLM+21, Part VI] show that "generic" can be replaced with "every". In other words,

the two notions of associated 𝐾3 surfaces entirely coincide.

Theorem 5.3.2. [BLM+21, Corollary 29.7] Let 𝑋 be a cubic fourfold. Then 𝑋 has an associated

𝐾3 surface in the sense of Hassett if and only if there exists a smooth projective 𝐾3 surface 𝑆 such

that A𝑋 � 𝐷
𝑏 (𝑆) in the sense of Kuznetsov.

Addington and Thomas proved another interesting result about how the Hodge isometry that

realizes a 𝐾3 surface as an associated 𝐾3 surface is induced by a certain algebraic cycle.

Theorem 5.3.3. [AT14, Theorem 1.2] Let 𝑋 ∈ C𝑑 be a special cubic fourfold of admissible

discriminant. Then there exists a polarized 𝐾3 surface 𝑆 of degree 𝑑 and an algebraic cycle

𝑍 ∈ 𝐴3(𝑋 × 𝑆)Q that realizes the Hodge isometry 𝐾⊥(1)Q ! 𝐻2(𝑆,Q)0. In other words, the

associated condition can be realized by an algebraic cycle on 𝑋 × 𝑆.

In the following, we proceed in a similar fashion for the Kuga-Satake construction. This

motivates the next section.

5.4 Kuga-Satake Hodge Conjecture

Our initial goal is to construct a functor 𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝐾 (𝑆)2). Of course, the natural approach

is to construct a Fourier-Mukai transform using a kernel 𝐾 ∈ 𝐷𝑏 (𝑆 × 𝐾𝑆(𝑆)2). Our idea is to

use an algebraic cycle 𝑍 ⊂ 𝑆 × 𝐾𝑆(𝑆)2 in the kernel 𝐾 . The Fourier-Mukai transform is most

meaningful when the class 𝑍 depends on the Kuga-Satake construction itself. This brings us to the

Kuga-Satake Hodge Conjecture.

By the Kuga-Satake construction, there is an inclusion

𝐻2(𝑆,Q) ⊂ 𝐻1(𝐾𝑆(𝑆),Q) ⊗ 𝐻1(𝐾𝑆(𝑆),Q).

By application of Künneth formula on 𝐻2(𝐾𝑆(𝑆) × 𝐾𝑆(𝑆),Q) we have that

𝐻1(𝐾𝑆(𝑆),Q) ⊗ 𝐻1(𝐾𝑆(𝑆),Q) ⊂ 𝐻2(𝐾𝑆(𝑆) × 𝐾𝑆(𝑆),Q).

Composing these inclusions gives us an injective map 𝑖 : 𝐻2(𝑆,Q) ↩! 𝐻2(𝐾𝑆(𝑆)2,Q)).

75



Recall that by the Künneth formula, there is a chain of isomorphisms

𝐻4(𝑆 × 𝐾𝑆(𝑆)2,Q) �
⊕
𝑙+𝑚=4

𝐻𝑙 (𝑆,Q) ⊗ 𝐻𝑚 (𝐾𝑆(𝑆)2,Q)

�
⊕
𝑙+𝑚=4

Hom(𝐻4−𝑙 (𝑆,Q), 𝐻𝑚 (𝐾𝑆(𝑆)2,Q)).

Therefore, the injection 𝑖 corresponds to an element

𝜅𝑆 ∈ 𝐻4(𝑆 × 𝐾𝑆(𝑆)2,Q)

that is known as the Kuga-Satake class. This leads us to a special case of the standard Hodge

Conjecture.

Conjecture 5.4.1. (Kuga-Satake Hodge Conjecture) The Kuga-Satake class 𝜅𝑆 constructed above

is algebraic.

The Kuga-Satake Hodge Conjecture was developed for surfaces, but we can make a similar

conjecture for cubic fourfolds with some quick alterations. If 𝑋 is a cubic fourfold, then our

formulation of Proposition 3.2.7 gives an inclusion

𝐻4(𝑋,Q) (1) ⊂ 𝐻1(𝐾𝑆(𝑋),Q) ⊗ 𝐻1(𝐾𝑆(𝑋),Q).

We can ignore the Tate twist if we are only concerned with cohomology. Now, by applying the

Künneth formula in the same way we get an injective map 𝑖 : 𝐻4(𝑋,Q) ↩! 𝐻2(𝐾𝑆(𝑋)2,Q)). We

now get a chain of isomorphisms

𝐻6(𝑋 × 𝐾𝑆(𝑋)2,Q) �
⊕
𝑙+𝑚=6

𝐻𝑙 (𝑋,Q) ⊗ 𝐻𝑚 (𝐾𝑆(𝑋)2,Q)

�
⊕
𝑙+𝑚=6

Hom(𝐻6−𝑙 (𝑋,Q), 𝐻𝑚 (𝐾𝑆(𝑋)2,Q)).

So the inclusion corresponds to an element

𝜅𝑋 ∈ 𝐻6(𝑋 × 𝐾𝑆(𝑋)2,Q).

Conjecture 5.4.2. (Kuga-Satake Hodge Conjecture for Cubic Fourfolds) The Kuga-Satake class

𝜅𝑋 constructed above is algebraic.
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The conjecture is still open even for K3 surfaces and a few cases are known. In the next section,

we assume that the Kuga-Satake Hodge conjecture holds in order to construct the Fourier-Mukai

functors. Since this is a significant assumption, we provide an example of an associated 𝐾3 surface

for which the conjecture holds.

We briefly survey currently known results for the Kuga-Satake Hodge Conjecture. As mentioned

earlier, the conjecture is still open for all but a few special varieties.

Recall in Example 3.3.3 it was shown that for a Kummer surface 𝑆 associated to an abelian

surface 𝑆, 𝐾𝑆(𝑆) can be explicitly described as 𝐾𝑆(𝑆) ∼ 𝐴219 . It is known that the Kuga-Satake

Hodge conjecture holds for Kummer surfaces. To show this, first consider the following result of

[MZ99, Theorem 0.1] and [RM08, Theorem 3.15].

Theorem 5.4.3. Let 𝐴 be an abelian surface. Then the Hodge conjecture holds for products 𝐴𝑛 for

arbitrary 𝑛 ∈ Z+.

Now, one can show:

Proposition 5.4.4. The Kuga-Satake Hodge conjecture holds for Kummer surfaces.

Proof. See [Huy16, Example 4.3.4] or [VV22, Remark 2.15]. The following facts give the proof: 1)

If 𝑆 is a Kummer surface associated to an abelian surface 𝐴, then we have shown that 𝐾𝑆(𝑆) ∼ 𝐴219

in Example 3.3.3. 2) The Hodge conjecture holds for 𝐴219 by Theorem 5.4.3. 3) The correspondence

𝑇 (𝑆)Q � 𝑇 (𝐴)Q is algebraic (given by the graph of the rational map 𝐴 d 𝑆). □

Before proceeding with our main construction, we need one more result:

Lemma 5.4.5. The set of complex projective Kummer surfaces are dense in the image of the period

map for 𝐾3 surfaces. In other words, if (𝑆, 𝜑) denotes a marked 𝐾3 surface, then

P : {(𝑆, 𝜑) | 𝑆 is Kummer} ! D

has dense image. Furthermore, this also holds for polarized 𝐾3 surfaces: For any 𝑑 > 0, Kummer

surfaces are dense in N𝑑 , the moduli space of polarized 𝐾3 surfaces with polarization of degree 𝑑.

Proof. See [Huy16, Remark 3.24]. □
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Proposition 5.4.6. There exist examples of associated 𝐾3 surfaces that satisfy the Kuga-Satake

Hodge conjecture.

Proof. By Lemma 5.4.5, Kummer surfaces are dense in N𝑑 for all admissible discriminants 𝑑.

Choose an admissible 𝑑 satisfying 𝑑 ≡ 2 (mod 6), for example, 𝑑 = 14. By Corollary 2.5.12, a

dense open subset of N𝑑 for a degree 𝑑 are associated 𝐾3 surfaces. So, by density of Kummer

surfaces in N𝑑 , there must exist Kummer surfaces that are associated 𝐾3 surfaces in N𝑑 for such

a 𝑑. Now, applying Proposition 5.4.4 we get examples of associated 𝐾3 surfaces for which the

Kuga-Satake Hodge Conjecture holds. □

Corollary 5.4.7. Let 𝑋 be a cubic fourfold with an associated 𝐾3 Kummer surface 𝑆. Then 𝑋

satisfies the Kuga-Satake Hodge Conjecture for cubic fourfolds.

Proof. By Theorem 3.3.5, we have that 𝐾𝑆(𝑋) ∼ 𝐾𝑆(𝑆)2 ∼ (𝐴219)2 ∼ 𝐴220 . We also have that

𝑇 (𝑋)Q(1) � 𝑇 (𝑆)Q is a Hodge isometry by the proof of Lemma 4.5.1. So, 𝑇 (𝑋)Q(1) � 𝑇 (𝑆)Q �

𝑇 (𝐴)Q where the second isometry is algebraic. Applying Theorem 5.3.3, we see that 𝑇 (𝑋)Q(1) �

𝑇 (𝑆)Q is induced by an algebraic cycle. Therefore, the correspondence 𝑇 (𝑋)Q(1) � 𝑇 (𝐴)Q is

algebraic as well. The result follows from by Theorem 5.4.3. □

The Kuga-Satake Hodge Conjecture is known in a few other cases as well. We mention these

results and their applications:

Example 5.4.8. 1. The Kuga-Satake Hodge Conjecture holds for abelian surfaces by Theorem

5.4.3 together with Example 3.2.9.

2. In [Par88], Paranjape uses his description of the transcendental lattice of 𝐾3 surfaces that

are realized as double covers of P2 ramified over 6 lines to show that the Kuga-Satake Hodge

Conjecture holds for such 𝐾3 surfaces.

3. In [Sch10, Theorem 2], the author uses Paranjape’s result and a study of the endomorphism

algebra of 𝐾3 surfaces with real multiplication to show that the full Hodge conjecture holds

for self-products 𝑆 × 𝑆 of 𝐾3 surfaces 𝑆 that are double covers of P2 ramified over 6 lines.

4. Inspired by results of [Sch10], the author of [Var22] shows that if the Kuga-Satake Hodge
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Conjecture holds for a family of 𝐾3 surfaces of generic Picard rank 16, then the Hodge

conjecture holds for all powers of 𝐾3 surfaces in that family. In particular, this generalizes

the results of [Sch10].

5.5 Derived Categories of Kuga-Satake Varieties

In this section, we assume that the Kuga-Satake Hodge conjecture for both 𝐾3 surfaces 𝑆 and

cubic fourfolds 𝑋 holds.

We want to relate 𝐷𝑏 (𝐾𝑆(𝑆)) and 𝐷𝑏 (𝐾𝑆(𝑋)) when 𝑆 is an associated 𝐾3 surface to 𝑋 in

an effort to examine how they fit into Kuznetsov’s derived categorical viewpoint. We focus on

𝐷𝑏 (𝐾𝑆(𝑆)) since the approaches are similar. First, recall that 𝐾𝑆(𝑆) is an abelian variety, so we

have some basic facts that hold for 𝐷𝑏 (𝐴) for any abelian variety 𝐴.

Example 5.5.1. Let 𝐴 be an abelian variety and �̂� denote its dual abelian variety.

1. Recall that the Poincaré bundle P on 𝐴 × �̂� induces an equivalence of categories by the

Fourier-Mukai transform with kernel P, 𝐷𝑏 (𝐴) � 𝐷𝑏 ( �̂�).

2. We can use Theorem 5.1.6 to compute Hochschild homology for an abelian variety since

𝐻𝐻𝑘 (𝐴) =
⊕
𝑝−𝑞=𝑘

𝐻𝑝,𝑞 (𝐴)

and we know from Chapter 2 that the Hodge numbers of any abelian variety of dimension 𝑛

are given by

ℎ𝑝,𝑞 (𝐴) =
(
𝑛

𝑝

)
·
(
𝑛

𝑞

)
.

For example, if 𝐴 is an abelian surface, then we have 𝐻𝐻0 � 𝑘
6.

3. If 𝐴 is an abelian variety, then its canonical bundle 𝜔𝐴 is trivial. This is easily seen as the

tangent bundle of any group variety is trivial, so the cotangent bundle is trivial and so the

canonical bundle is trivial. It is a fact that for any variety 𝑋 with trivial canonical bundle

𝜔𝑋 , its derived category 𝐷𝑏 (𝑋) has no nontrivial semiorthogonal decompositions [KO15,

Theorem 1.4].
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We want to construct Fourier-Mukai functors 𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝐾𝑆(𝑆)) (or to 𝐷𝑏 (𝐾𝑆(𝑆)2).

Unfortunately, there is in general no geometric description of 𝐾𝑆(𝑆). However, the Kuga-Satake

Hodge Conjecture provides us with a potential algebraic cycle on 𝑆 × 𝐾𝑆(𝑆)2.

Assuming the Kuga-Satake Hodge conjecture, let 𝜅𝑆 ⊂ 𝑆 × 𝐾𝑆(𝑆)2 be the codimension 2

algebraic Kuga-Satake class. Taking Poincaré duals we get an algebraic surface 𝑍𝑆
𝑖⊂ 𝑆 × 𝐾𝑆(𝑆)2.

In [VG00, 10.2], Van Geemen shows that the Kuga-Satake Hodge conjecture is equivalent to the

following condition: 𝑍𝑆 induces an isomorphism 𝑇 (𝑆) � 𝑇 (𝑆) via

𝑇 (𝑆) ↩−! 𝐻2(𝑆,Q) ↩−! 𝐻2(𝐾𝑆(𝑆)2,Q) 𝜋∗𝜙∗−! 𝐻2(𝑆,Q)

where 𝜋, 𝜙 are defined by the following diagram:

𝑍𝑆 𝐾𝑆(𝑆)2

𝑆

𝜋

𝜙

Now, consider the sheaf 𝑖∗O𝑍𝑆 , we refer to it as simply O𝑍𝑆 to simplify the notation. We construct

the Fourier-Mukai transform with kernel 𝐾 = O𝑍𝑆 to get a functor

ΦO𝑍𝑆
: 𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝐾𝑆(𝑆)2).

We outline a possible approach to understanding properties of this functor in the next section.

Now, recall the basic examples of Fourier-Mukai functors given in Example 5.1.5. Let 𝑆

be associated to a cubic fourfold 𝑋 . Then by our result in Theorem 3.3.5, we have an isogeny

𝑓 : 𝐾𝑆(𝑆)2 ! 𝐾𝑆(𝑋). The Fourier-Mukai functor with kernel given by the structure sheaf of the

graph of 𝑓 gives a pushforward functor:

ΦOΓ 𝑓
: 𝐷𝑏 (𝐾𝑆(𝑆)2) ! 𝐷𝑏 (𝐾𝑆(𝑋)).

So this far we have constructed functors
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𝐷𝑏 (𝑆) 𝐷𝑏 (𝐾𝑆(𝑆)2)

𝐷𝑏 (𝐾𝑆(𝑋))

ΦO𝑍𝑆

ΦOΓ 𝑓

Now, we make similar constructions for𝐷𝑏 (𝑋). We construct a functor𝐷𝑏 (𝐾𝑆(𝑋)2) ! 𝐷𝑏 (𝑋)

in the same way as for the 𝐾3 surface. Let 𝑍𝑋 ⊂ 𝐾𝑆(𝑋)2 × 𝑋 be the Kuga-Satake Hodge cycle and

consider O𝑍𝑋 ∈ 𝐷𝑏 (𝐾𝑆(𝑋)2) × 𝑋). This gives a functor

ΦO𝑍𝑋
: 𝐷𝑏 (𝐾𝑆(𝑋)2) ! 𝐷𝑏 (𝑋).

Finally we construct a functor 𝐷𝑏 (𝐾𝑆(𝑋)) ! 𝐷𝑏 (𝐾𝑆(𝑋)2) using the kernel given by the graph

of the diagonal morphism Δ : 𝐾𝑆(𝑋) ! 𝐾𝑆(𝑋)2 Considering OΓΔ ∈ 𝐷𝑏 (𝐾𝑆(𝑋) × 𝐾𝑆(𝑋)2) we

get a functor:

ΦOΓΔ
: 𝐷𝑏 (𝐾𝑆(𝑋)) ! 𝐷𝑏 (𝐾𝑆(𝑋)2).

Putting this all together, we get the following diagram:

𝐷𝑏 (𝑆) 𝐷𝑏 (𝐾𝑆(𝑆)2)

𝐷𝑏 (𝑋) 𝐷𝑏 (𝐾𝑆(𝑋)2) 𝐷𝑏 (𝐾𝑆(𝑋))

Φ

ΦO𝑍𝑆

ΦOΓ 𝑓

ΦO𝑍𝑋
ΦOΓΔ

where Φ : 𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝑋) is simply the composition. Note that this functor Φ is Fourier-Mukai

since it is the composition of Fourier-Mukai functors. So, for a 𝐾3 surface 𝑆 associated to a cubic

fourfold 𝑋 , we have constructed a functor 𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝑋) using the Kuga-Satake construction.

5.6 Future Work

The construction above raises some questions: What are the properties of the functor Φ :

𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝑋)? What is the image of Φ? What is the relationship between 𝐷𝑏 (𝑆) and A𝑋?
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A key obstacle in answering these questions is a lack of understanding of the functors ΦO𝑍𝑆
:

𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝐾𝑆(𝑆)2). A possible approach to prove that ΦO𝑍𝑆
is fully faithful is to consider its

right adjoint, which we will denote by Φ𝑅. It is well known that the functor ΦO𝑍𝑆
fully faithful if

and only if Φ𝑅 ◦ΦO𝑍𝑆
� Id. The right adjoint has a description as follows:

Proposition 5.6.1. Let 𝑋,𝑌 be smooth projective varieties. Let Φ𝐾 : 𝐷𝑏 (𝑋) ! 𝐷𝑏 (𝑌 ) be a

Fourier-Mukai functor with kernel 𝐾 ∈ 𝐷𝑏 (𝑋 × 𝑌 ). Then Φ𝐾 has a right adjoint given by Φ𝐾𝑅
,

where the kernel 𝐾𝑅 is given by

𝐾𝑅 B 𝐾∨ ⊗𝐿 𝐿𝑞∗𝜔𝑋 [dim(𝑋)]

where 𝑞 : 𝑋 × 𝑌 ! 𝑋 is projection.

Proof. See [Muk81, Theorem 2.2]. □

Note that this simplifies in our case since 𝜔𝑆 is trivial and dim(𝑆) = 2. So, we focus on the

dual (𝑖∗O𝑍𝑆 )∨. In the case that 𝑍𝑆 ⊂ 𝑆 × 𝐾𝑆(𝑆)2 is smooth, we have the following:

Proposition 5.6.2. If 𝑖 : 𝑋 ↩! 𝑌 is a smooth closed subvariety of codimension 𝑐 then

(𝑖∗O𝑋)∨ � 𝑅𝑖∗𝜔𝑋 ⊗𝐿 𝜔∗
𝑌 [−𝑐] .

Proof. See [Huy06, Corollary 3.40]. □

If the algebraic cycle 𝑍𝑆 is smooth, the above proposition gives (𝑖∗O𝑍𝑆 )∨ � 𝑖∗𝜔𝑍𝑆 [−2]. This

reduces the Fourier-Mukai kernel of the adjoint to 𝐾𝑅 = 𝑖∗𝜔𝑍𝑆 . Using this to compute the

composition Φ𝑅 ◦ ΦO𝑍𝑆
is a possible approach to studying properties of Φ : 𝐷𝑏 (𝑆) ! 𝐷𝑏 (𝑋) in

future work.
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