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ABSTRACT

The innovative technology of single-cell RNA sequencing (scRNAseq) allows us to extract gene
expression information from each cell of a tissue, resulting in data sets of tens of thousands to
millions of points (cells). Clustering of cells based on the similarity of their gene expression
enables the understanding of their functions and hence the characterization of cell types in a tissue.

This dissertation focuses on the most widely used clustering methodology for scRNAseq data
— clustering based on the graph representation of data points (cells as vertices on a graph). Firstly,
we showcase how existing methods can effectively identify an important group of tumor growth
related cells in the analysis of head and neck cancer scRNAseq data. The newly discovered marker
genes can potentially facilitate new therapy approaches. Secondly, we introduce a novel clustering
method that preserves both the global data geometry and cluster structure, via multidimensional
scaling based on power-weighted path metrics. The new method outperforms prevailing scRNAseq
clustering algorithms on a wide range of benchmarking data sets. Thirdly, we study spectral
clustering on shared nearest neighbors (SNN) graphs. In contrast to current ad-hoc methods for
number of neighbors selection, we develop a general cross-validation tuning algorithm to achieve
effective clustering. Moreover, we provide a comprehensive theoretical analysis of SNN based
spectral clustering in the nonparametric setting. Our theoretical results reveal an optimal range of
the number of neighbors for cluster identification and characterize the impact of data density on

spectral clustering.
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CHAPTER 1

INTRODUCTION

The pioneering technology of single-cell RNA sequencing (scRNAseq) enables the extraction of
gene expression information from individual cells within a tissue, yielding datasets comprising
tens of thousands to millions of cellular data points. Clustering cells based on the congruity of
their gene expression profiles facilitates the comprehension of their functional attributes, thereby
enabling the characterization of distinct cell types within a given tissue. Prevalent clustering
methodologies developed for scRNAseq data rely on the representation of data points (cells) as
vertices in a graph (Stuart et al., 2019; Wolf et al., 2018). The present dissertation primarily
focuses on graph-based clustering methods tailored for scRNAseq data analysis. Firstly, we present
the contribution of established approaches to the identification of Cancer Stem Cells (CSCs), a
cellular cohort characterized by their resistance to therapeutic interventions and their pivotal role
in tumor initiation and progression (Chen et al., 2021; Mroz et al., 2015). Secondly, we introduce
a novel clustering methodology denoted as Single-Cell Path Metrics Profiling (scPMP), which
concurrently upholds both local cluster structure and global data geometry. Thirdly, we undertake
an exploration of the performance of Spectral Clustering on Shared Nearest Neighbors (SNN)
graphs in relationship with the parameter of nearest neighbors used in the construction of the SNN
grpah. We finally suggest a general cross-validation method for the tuning of this parameter.

In Chapter 2, an in-depth analysis of scRNAseq data originating from cell cultures of head
and neck cancer lines, as well as 10 primary tumors, is conducted. The primary objective of this
analysis revolves around the identification of the most homogeneous cluster of CSCs within each
dataset, while simultaneously elucidating their dynamic states and plasticity via an extension of the
repertoire of CSC marker genes.

Chapter 3 presents the introduction of the scPMP algorithm, a novel clustering methodology
predicated upon path-metric distances among cells. Unlike conventional distance metrics, such as
the Euclidean distance, path metrics possess the capacity to discern density variations and faithfully

uphold the underlying data geometry. By integrating path metrics with multidimensional scaling



techniques, we obtain a low-dimensional representation of the data that faithfully encapsulates both
the global data geometry and cluster structure. The efficacy of the scPMP algorithm is evaluated
comprehensively in terms of clustering quality and geometric fidelity, ultimately establishing its
superiority over current scCRNAseq clustering algorithms across a diverse spectrum of benchmark
datasets.

Chapter 4 delves into Spectral Clustering on SNN graphs. SNN graphs are constructed based
on a k Nearest Neighbors (kNN) graph, thus rendering their properties contingent upon the choice
of the parameter k. Our findings indicate that, in both the absence of noise and the presence of
noise, it is imperative to select k of the magnitude cr in order to maximize the likelihood of cluster
identification. This contrasts with the literature on random geometric graphs, which suggests an
order of log n for k (Brito et al., 1997). Additionally, we propose a comprehensive cross-validation
tuning approach for fine-tuning the parameters of clustering algorithms. We employ this approach
to determine the optimal number of nearest neighbors, denoted as k, for the SNN spectral clustering

algorithm using various types of simulated data.
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CHAPTER 2
SINGLE-CELL ANALYSIS OF CANCER STEM CELLS IN HEAD AND NECK CANCER

2.1 Introduction

Head and neck cancer (HNC) is a major global health problem, with an estimated 880,000
new cases and 445,000 deaths annually worldwide (Sung et al., 2021). While human papilloma
(HPV)-associated HNC have improved outcomes, despite advances in comprehensive cancer care,
HPV-negative HNC remains a highly morbid disease with stagnant survival rates hovering at 50%.
This poor prognosis is due in part to the complex heterogeneity of HNC, which involves multiple
cell types, genetic alterations and transitional states that lead to treatment resistance and poor
outcomes (Chen et al., 2021; Puram et al., 2018; Mroz et al., 2015).

Tumoral heterogeneity is a well-established biomarker of poor prognosis, being associated
with aggressive cancer behavior and treatment resistance in various cancer types, including HNC.
Tumoral heterogeneity has been associated with worse outcomes, mediated by intrinsic and extrinsic
factors related to subpopulations with distinct molecular profiles. Tumoral plasticity has been
identified as a critical driver of tumoral heterogeneity, where clonal expansion and subclonal
selection are based on evolutionary progression with each clone arising from cells with high
propagation potential, plasticity, and self-renewal. Within the tumor microenvironment (TME),
there is a subpopulation of tumor initiating cells, or cancer stem cells (CSC), that have the capacity
to drive clonal and subclonal selection (O’Brien et al., 2007). Traditionally CSC were deemed
fixed cells with limited to no plasticity based on their original definitions. However, as the field has
advanced, the role of plasticity in CSC has expanded and the traditional view of CSCs has evolved.
While the term CSC has persisted, despite much controversy on their existence, a more nuanced
understanding of CSC is that their stem-like activity (CSC-state: self-renewal, tumorigenicity and
asymmetric division) is not fixed but a transient state dictated by tumoral and environmental cues
(Chaffer and Weinberg, 2011). When cells are in this CSC-state, they are associated with treatment
resistance, metastasis, and tumor recurrence. However, CSCs in HNC remains controversial and

the CSC-like state has been difficult to study as the mechanisms of CSC plasticity are poorly



understood.

Plasticity and heterogeneity are also critical components of epithelial to mesenchymal transition
(EMT) programs. Weinberg and others have shown EMT represent transient cancer cell states with
varying degrees of activities, strongly suggesting the EMT process enables cancer cells to acquire
CSC-like properties and enhance their ability to initiate and sustain tumors (Mani et al., 2008; Tam
and Weinberg, 2013). However, understanding the link between EMT and CSC remains elusive due
to their rarity and potentially transiet states. Analyzing this interaction is critical to understanding
the CSC-like state and defining potential mechanisms for plasticity and identify novel targets for
therapy.

Recent advances in single-cell RNA sequencing (scRNAseq) technology have enabled the
identification of distinct subpopulations of cells within tumors based on their gene expression
profiles, providing a powerful tool to study the heterogeneity and plasticity of CSCs in HNC (Wang
et al., 2019). Moreover, in vitro lineage tracing can be used to assess CSC’s capacity for plasticity
and evaluate their various states. In this study, we integrated scRNAseq and in vitro and in silico
lineage tracing to analyze these rare CSC subpopulations in cell culture and primary HNC tumors
to characterize their dynamic states and plasticity. Our study sheds new light on the dynamic nature
and plasticity of CSCs in HNC, and their potential involvement in EMT programs. Our findings
have important implications for the development of novel therapeutic strategies for HNC, as well

as other cancers, and for the broader understanding of CSC-states and plasticity.
2.2 Methods

2.2.1 Cell lines analysis

To better evaluate transcriptional differences and controlling for tumoral heterogeneity, we
subsequently performed single cell sequencing of two patient derived HNC cell lines (UMSCC-
122 and UMSCC-103).Both cell lines were sorted to select for CSC (CD44high ALDHhigh) and
non-CSC (CD44low/ ALDHlow) cells. After standard quality control filtering and integration of
the two cell line expression data sets, we found 26 clusters using Seurat (Stuart et al., 2019). We

observed that the clusters were not separated on the UMAP plot and suggesting that cells lie on a
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Figure 2.1 Cell line data results.

continuum but the distinction between non-CSC to CSC was weak since cell cycle phase affected
the clustering (Figure 2.1A). As a next step, we eliminated the cell-cycle effect and we performed
a trajectory analysis to capture both local and global nonlinear structure using an information-
geometric distance between cells (Moon et al., 2019). Given recent evidence suggesting an inherent

plasticity in cancer stem cells, we were interested in evaluating if there is a continuity between
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non-stem and stem cells in the tumor. Figure 2.1B demonstrates a spectrum of non-CSC to CSC,
with an overlapping region in the middle, suggesting cells can progress from a non-stem-like to
state to a stem-like state, supporting the hypothesis that CSC possesses plasticity-capacity and exist
in a transitional CSC-state (Intermediate cells).

Finally, we used cell line data to generate a model to predict the probability that a cancer cell is
a stem cell (or in a stem-like state) and develop a CSC-state gene expression signature. Using the
trajectory coordinates of the cell line cells, we constructed a logistic regression model that provides
the probability a cell is a cancer stem cell (Figure 2.1 right). We calculated the correlation of each
gene’s expression to the cells’ predictive probabilities and used these values to rank each gene and

to perform gene set enrichment analysis.



We found 29 enriched pathways in the C2 and Hallmark databases. The positively enriched
pathways and contributing genes are demonstrated in the leading-edge analysis (Figure 2.1D).
We tested which of the contributing genes are significantly expressed more in each predicted
group of cells (CSC, Intermediate, Non-CSC) to construct a signature genes matrix (Figure 2.2).
Together these data demonstrate a conserved cancer stem cell signature identified with single cell
sequencing and novel bioinformatic techniques. These data nominate a subset of genes (ACTB,
ANXA2, TPM1, MYLI2A, CD63, CCDNI1, CD59, ATOX1, LAMA3, LAMC2, L1CAM, KRTS,
ANXA3,CLTB and IL32) as drivers of the cancer stem cell phenotype. Despite these cells being
exclusively derived from epithelial cells, several of the CSC differentially expressed genes are
associated predominantly with CAFs (TPM1, MYL12A, KRTS8, CD63 and 1L.32), suggesting a
mesenchymal state of CSC. These clusters were selected to further define a pure epithelial CSC

signature in the primary tumor data of 10 patients.

2.2.2 Primary tumor data analysis

While patient-derived cell line data provides critical informatics and biologic data, it fails
to capture the complexity and heterogeneity of HNC. We leveraged our access to fresh tumor
specimens to perform scRNASeq techniques. Given the evidence of the tumor microenvironment
playing a large role in maintenance of the cancer stem cell niche, we hypothesized that the cancer
stem cell signature may differ between cell line and primary tumors, however cells in the CSC-state
will have conserved signatures. To evaluate CSC signatures in primary tumors we analyzed 10 HNC
harvested directly from the operative theatre. Tumors were then digested into single cell suspension
and sorted by FACS for standard CSC markers (ALDH and CD44). scRNASeq was then performed
on the enriched groups. Seurat clusters are shown in Figure 2.3A. Of the CD44/ALDH enriched
cells, the deconvoluted epithelial tumor population was found to make up only a small proportion
of the tumor bulk (5%) with the remaining cells representing the immune and stromal elements of
the TME. To confirm the identity of the epithelial cell cluster, the cell line CSC expression data was
normalized and mapped onto the primary tumor expression data. As seen in Figure 2.3A, the cell

line data, in black, overlap with the epithelial cluster (cluster 9) confirming an epithelial expression



pattern. We then used RNAscope to show co-localization of top expressed epithelial genes within
the tumor cell population to further confirm expression of the DEG genes in the primary tumor
(Figure 2.3C). We considered isolating not only the epithelial but also the fibroblast cluster since
CAF genes were found in the signature genes of CSC suggested by the cell line analysis. We also
observe that PTPRC is low in fibroblasts of the sample and that the epithelial annotated cells are
mapped on each fibroblast cluster (figure 2.3B). Hence, we proceed to investigate the expression
profile of CSCs in both epithelial and fibroblast cells. Following the steps suggested by the analysis

of the cell line data, we explore the trajectory of the epithelial and fibroblast cells.
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Figure 2.4 Epithelial and Fibroblast cells of primary tumor data.

Figure 2.4A demonstrates that there is a spectrum of CSCs, Intermediate and Non-CSCs on
with two branches. To understand the ordering of cells on the trajectory we used the trajectory
coordinates of each cell and their grouping based on ALDH and CD44 levels to extract their

pseudotime (Street et al., 2018). We observe that cells with the highest pseudotime are located
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Figure 2.5 GSEA of primary tumor data.

at the leftmost part of the trajectory and have high ALDH and CD44 (sorted as CSC). For this
reason, we assume that the purest of CSCs are located in the leftmost corner. To validate this
assumption a logistic regression model was generated to predict the probability that a cell in the
epithelial and fibroblast cluster is a CSC using the pseudotime information of the cell. Cells with
the highest probability are indeed located in the leftmost corner (figure 2.4B). Additionally, genes

of the fibroblast and epithelial cluster were ranked based on the correlation of their expression
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Core enrichment genes in epithelial and fibroblast cells
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Figure 2.6 Heatmap of core enrichment genes of 10 patient data.

level with the pseudotime assigned to each cell. This ranking was used to perform gene set en-
richment analysis. Positively enriched pathways are associated with the genes at the top of the list
namely those that are positively correlated to pseudotime and hence the CSC cells. A heatmap of
the expression of genes at the top and bottom of the ranked list shows a clustering of the tumor
and epithelia cells based on pseudotime and the gradual transition from Non-CSC to CSC cells
(figure 2.4C). The biologic behavior of the CSC subpopulation can be further described through
the results of the GSEA of cell line and primary data. Permutation-based analysis was performed
to calculate p-values and false discovery rates (FDR). Here we find that CSCs were enriched for
the HALLMARK EPITHELIAL MESENCHYMAL TRANSITION, HALLMARK ANGIOGEN-
ESIS, C2 ANASTASSIO MULTICANCER INVASIVENESS SIGNATURE, and C2 BOQUEST
STEM CELL UP compared to non-CSC. Interestingly, non-CSC were enriched for radiation re-
sponse pathways (SMIRNOV RESPONSE TO IR 2HR UP) as well as the well-established HNC
pathways, HALLMARK P53 PATHWAY, HALLMARK MYC TARGETS V1 and HALLMARK

12



Strata =~ CSC_clustering=High_CSC_score =+ CSC_clustering=Low_CSC_score

1.00

0.75

0.50

Survival Rate %

0.25
p = 0.0028

0.00

0 5 10 15 20
Time

Figure 2.7 Survival rate of TCGA patients based on estimated CSC proportion.
PI3K AKT MTOR SIGNALING pathways (figure 2.5). Taken together, these findings further
support that CSCs are critical components of EMT and play a crucial role in promoting tumor
invasion, metastasis, and treatment resistance.

To further define the genes of interest, common genes across the significantly enriched gene sets
were explored. Genes common to at least 2 significantly enriched pathways are SFRP4, ALDHI1B,
WNT5A, TIMP1, COL1A1, COL3A1, MFAPS, COL1A2, LUM, COL5A1, THBS2, COL5A2,
COL6A3, VCAN, LOX, MXRAS, COL6A2, FAP, CDH11, DCN, SPOCKI1. Given many of these
genes are established mesenchymal genes (COL6A3, FAP, VCAN), this suggests that CSC may

represent a critical subset of cells in a mesenchymal-state as part of the EMT.

2.2.3 Survival analysis of TCGA data

To test the significance of the CSC signature genes (figure 2.2) we utilized expression informa-
tion of those genes in HPV patients of the TCGA database. Specifically, the CSC signature genes
matrix was used to estimate the pure CSC, intermediate and pure Non-CSC proportion of cells in
each patient via least trimmed square gene-expression deconvolution technique (Hao et al., 2018).
Next, patients were grouped into two clusters via kmeans based on their estimated proportions. The

two clusters separated patients with low pure CSC proportion and high pure CSC proportion. The

13


https://www.cancer.gov/ccg/research/genome-sequencing/tcga

survival rate of patients in the cluster with low pure CSC proportion have a significanlty higher

survival rate (p-value = 0.0028, figure 2.7)

2.3 Discussion

Our study provides new insights into the dynamic nature and plasticity of CSCs in head and neck
cancer, and their potential involvement in the epithelial-to-mesenchymal transition (EMT) process.
We identified multiple dynamic states of CSCs within our primary cell cultures of UMSCC HNC
cell lines and 10 primary tumors, suggesting that CSCs exist in a state of dynamic equilibrium
with their non-CSC counterparts. Our in vitro lineage tracing experiments further confirmed the
plasticity of CSCs, and their ability to differentiate into non-CSCs and vice versa. Recent insight
into CSC biology has moved away from them representing a distinct entity and more of a dynamic
state. Our findings are consistent with previous studies that have shown the plasticity of CSCs
in various cancer types, including breast cancer, colorectal cancer, and glioblastoma (Chaffer and
Weinberg, 2011; Vermeulen et al., 2010; Wang et al., 2018). In addition, our study supports the
hypothesis that the EMT process may be involved in the acquisition of stem cell-like properties by
cancer cells and may enhance their ability to initiate and sustain tumors (Mani et al., 2008; Tam and
Weinberg, 2013). This hypothesis is supported by our gene set enrichment analysis (GSEA) results,
which identified enrichment of EMT-related gene sets in our CSC populations. Interestingly, as part
of this mesenchymal transition, we found cells in the CSC-state had similar canonical expression
patterns as CAFs. This was seen both in pure epithelial cell line data as well as in the primary
data. Furthermore, we found that the TIMP1/CD63 pathway was differentially expressed in our CSC
populations. TIMP1 and CD63 have both been characterized in CAFs, more so than epithelial cells.
TIMP1 is a member of the tissue inhibitor of metalloproteinase (TIMP) family, regulating matrix
metalloproteinases (MMPs), and have been critical mediators in cancer invasion and metastasis.
TIMP1 has been shown to be overexpressed in several solid organ cancers, including breast, lung,
prostate and ovarian. In addition to invasive characteristics, TIMP1 has been shown promote cancer
cell survival, thus critical for cancer maintenance. CD63 is a member of the tetraspanin family

of membrane proteins, thus associated with cell adhesion, migration, and signaling through the
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regulation of cell surface receptor trafficking and the regulation of extracellular vesicles, which
are important mediators of intercellular communication within the TME. Like TIMP1, CD63 has
been found to be overexpressed in various types of cancer, including breast, lung, and melanoma.
Together, both TIMP1 and CD63 are involved in several overlapping pathways that regulate EMT,
specifically AKT/mTOR, WNT/b-catenin, integrins and CD44. TIMP1/CD63 has been studied in
other cancers as part of the EMT as well as CSCs, suggesting that this pathway may play a role in
the maintenance and plasticity of CSCs in HNC. Our study provides new evidence for the potential
involvement of this pathway in HN CSC biology, and may open up new avenues for the development
of targeted therapies for HNC and other cancers. Taken together, our findings highlight the dynamic
and plastic nature of CSCs in HNC, and their potential involvement in the EMT process and the
TIMP1/CD63 pathway. Our study may have implications for the development of personalized
therapeutic strategies for this deadly disease. Further studies are needed to validate our findings in

larger patient cohorts and to explore the clinical relevance of our results.
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CHAPTER 3

CLUSTERING AND VISUALIZATION OF SINGLE-CELL RNA-SEQ DATA USING
PATH METRICS

3.1 Introduction

The advance in single-cell RNA-seq (scRNA-seq) technologies in recent years has enabled the
simultaneous measurement of gene expression at the single-cell level Saliba et al. (2014); Eberwine
et al. (1992); Tang et al. (2009). This opens up new possibilities to detect previously unknown cell
populations, study cellular development and dynamics, and characterize cell composition within
bulk tissues. Despite its similarity with bulk RNAseq data, scRNAseq data tends to have larger
variation and larger amounts of missing values due to the low abundance of initial mRNA per cell.
To address these challenges, numerous computational algorithms have been proposed focusing on
different aspects. Given a collection of single cell transcriptomes from scRNAseq, one of the most
common applications is to identify and characterize subpopulations, e.g., cell types or cell states.
Numerous clustering approaches have been developed such as k-means based methods SC3 Kiselev
etal. (2017), SIMLR Wang et al. (2017), and RacelD Herman et al. (2018); hierarchical clustering
based methods CIDR Lin et al. (2017), BackSPIN A et al. (2015), and pcaReduce Zurauskiene¢ and
Yau (2016); graph based methods Rphenograph CLevine et al. (2015), SNN-Cliq Xu and Su (2015),
SSNN-Louvain Zhu et al. (2020), Seurat Stuart et al. (2019), and scanpy Wolf et al. (2018); and
deep-learning based methods scGNN Wang et al. (2021), scVI Lopez et al. (2018), ScDeepCluster
Tian et al. (2019b), DANCE Ding et al. (2022). To visualize and characterize relationships between
cell types, it is important to represent them in a low-dimensional space. Many low-dimensional
embedding methods have been proposed including UMAP Mclnnes et al. (2018), -SNE Van der
Maaten and Hinton (2008), PHATE Moon et al. (2019), and LargeVis Tang et al. (2016). However, a
key challenge for embedding methods is to simultaneously reduce cluster variance and preserve the
global geometry, including the distances between clusters and cluster shapes. For example, Figure
3.4 illustrates the typical situation on a cell mixture dataset Tian et al. (2019a): the PCA embedding

preserves the global geometry but clusters have high variance; clusters are better separated in the
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UMAP and 7-SNE embeddings, but the global geometric structure of the clusters is lost.

When choosing a clustering algorithm, there is always an underlying tension between respecting
data density and data geometry. Density-based methods such as DBSCAN cluster data by connect-
ing together high-density regions, regardless of cluster shape. More traditional approaches such
as k-means require that clusters are convex and geometrically well separated. However, in many
real data, clusters tend to have both nonconvex/elongated geometry and a lack of robust density
separation as shown in Figure 3.2b which consists of three elongated Gaussian distributions and a
bridge connecting two of the distributions. The data set is challenging because it exhibits elongated
geometry, but methods relying only on density will fail due to the bridge. Such characteristics are
commonly observed in sScRNA-seq data, especially for cells sampled from a developmental process,
as cell types often trace out elongated structures and frequently lack robust density separation. This
elongated geometry phenomena is due to the fact that all the cell types originate from stem cells
through a trajectory-like differentiation process, and the bridge structures are created by the cells
in the transition states. For example, circulating monocytes in the Tabula Muris (TM) lung data
set Tabula Muris Consortium (2018) have an elongated cluster structure as illustrated by the PCA
plot in Figure 3.1a, as do the ductal cells in the TM pancreatic data set (see Figure 3.1c). The
UMAP plots of these same data sets illustrate the lack of robust density separation: for TM lung,
there is a bridge connecting the alveolar and lung cell types, and also an overlap/bridge between
the circulating and invading monocytes (see Figure 3.1b); for TM pancreatic, the pancreatic A
and pancreatic PP cells are not well separated. The combination of elongation and poor density
separation make clustering sCRNA-seq data sets a challenging task.

We propose an embedding method based on the power weighted path metric which is well
suited to this difficult regime. These metrics balance density and geometry considerations in the
data learning tasks such as clustering and semi-supervised learning Vincent and Bengio (2003);
Bousquet et al. (2004); Sajama and Orlitsky (2005); Chang and Yeung (2008); Bijral et al. (2011);
Moscovich et al. (2017); Mckenzie and Damelin (2019); Little et al. (2020a); Borghini et al. (2020).

They have performed well in applications such as imaging Fischer et al. (2001); Zhang and Murphy
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Figure 3.1 Tabula Muris data sets have elongated clusters in the PCA embedding and clusters
connected with a bridge of points in the UMAP embedding.
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Bridge

Figure 3.2 Toy Data Sets. 3.2a and 3.2b show the 2-dimensional data sets. 3.2c plots the first two
coordinates of the Swiss roll. 3.2d shows the 2-dimensional PCA plot of the SO(3) manifolds.

(2021); Little et al. (2020a); Mckenzie and Damelin (2019), but their usefulness for the analysis
of scRNAseq data remains unexplored. Because these metrics are density-sensitive, they reduce
cluster variance; in addition, these metrics also capture global distance information, and thus
preserve global geometry; see Figure 3.4b. Using the path metric embedding to cluster the data

thus yields a clustering method which balances density-based and geometric information.
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3.2 Materials and Methods
We first introduce our theoretical framework in Section 3.2.1; Section 3.2.2 then describes the

details of the proposed scPMP algorithm, and Section 3.2.3 describes metrics for assessment.

3.2.1 Path Metrics

We first define a family of power-weighted path metrics parametrized by 1 < p < co.

Definition 1
Given a discrete data set X, the discrete p-power weighted path metric between a, b € X is defined
1

as €p(a,b) :=1inf( (Zf:_ol ||x,-+1 - xl-”g) " where the infimum is taken over all sequences of

points xq, . .., Xg in X with xo = a and x5 = b.
Note as p — oo, £, converges to the “bottleneck edge" distance

loo(a,b) := inf max ||xi41 — X2,
(x0,0Xs) 1

which is well studied in the computer science literature Pollack (1960); Hu (1961); Camerini (1978);
Gabow and Tarjan (1988). Two points are close in ¢ if they are connected by a high-density path
through the data, regardless of how far apart the points are. On the other hand, when p = 1, {;
reduces to Euclidean distance. If path edges are furthermore restricted to lie in a nearest neighbor
graph, ¢; approximates the geodesic distance between the points, i.e. the length of the shortest
path lying on the underlying data structure, which is a highly useful metric for manifold learning
Tenenbaum et al. (2000). The parameter p governs a trade-off between these two extremes, i.e.
it determines how to balance density and geometry considerations when determining which data
points should be considered close. The relationship between £, and density can be made precise.
Assume n independent samples from a continuous, nonzero density function f supported on a
d-dimensional, compact Riemannian manifold M (a manifold is a smooth, locally linear surface;

see Lee (2018)). Then for p > 1, £,(a, b) converges (after appropriate normalization) to

£y(ab) = inf ( [ rowr sy o) G.1)
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as n — oo, where the infimum is taken over all smooth curves y : [0, 1] — M connecting a, b
Hwang et al. (2016); Groisman et al. (2022); Ferndndez et al. (2023). Note |y’(¢)| is simply the
arclength element on M, so £ reduces to the standard geodesic distance. When p # 1, one
obtains a density-weighted geodesic distance. The optimal L, path is not necessarily the most
direct: a detour may be worth it if it allows the path to stay in a high-density region; see Figure
3.3. Thus the metric is density-sensitive, in that distances across high-density regions are smaller
than distances across low-density regions; this is a desirable property for many machine learning
tasks Chu et al. (2017), including trajectory estimation for developmental cells and cancer cells.
However the metric is also geometry preserving, since it is computed by path integrals on M. The
parameter p controls the balance of these two properties: when p is small, £, depends mainly on
the geometry of the data, while for large p, £, is primarily determined by data density.

Although path metrics are defined in a complete graph, i.e. Definition 1 considers every path
in the data connecting a, b, recent work Little et al. (2020b); Groisman et al. (2018); Mckenzie and
Damelin (2019); Chu et al. (2020) has established that it is sufficient to only consider paths in a
K-nearest neighbors (KNN) graph, as long as K > Clogn for a constant C depending on p, d, f,
and the geometry of the data. By restricting to a KNN graph, all pairwise path distances can be

computed in O (Kn?) with Dijkstra’s algorithm.
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Figure 3.3 Optimal £, path between two points in a moon data set.
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Algorithm 3.1 scPMP.

Input: noisy data X e R4, parameter p, number of clusters k
Optional input: K, K3, "'min, "max> T

(Defaults: 12,n A 500, 3, 39, 0.01)
Output: scPMP embedding Y € R™, label vector £ € [k]"

% Denoise data:

1
Xi <= g7 LjeNi, Yi

R AR AR R

% Compute path metrics:

10: Gy« KoNN graph on X with edge weights |lx; — x;||”

11: ij « length of shortest path connecting x;, x; in Qﬁz

12: (DPM)l] — (Dg)%

13:

14: % Compute MDS embedding of path metrics:

15: B~ -1IDQJ

16: A = diag(Ay,...,A,) « eigenvalues of B in descending order
17: V = (vy,...,v,) « corresponding eigenvectors of B

18: r « index maximizing A;/A;4 for i satisfying ripin < i < rmax, 4;/A41 = T
19: Y «— (VA1vy, ..., VA4, v,) € R

20:

21: Y% Cluster the data:

22: { « constrained k-means(Y, k)

3.2.2 Algorithm

We consider a noisy data set of n data points x1,...,X, € R4, which form the rows of noisy
data matrix X € R We first denoise the data with a local averaging procedure, which has been
shown to be advantageous for manifold plus noise data models Garcia Trillos et al. (2019). More
specifically, we replace x; with its local average:

1 — .o~ —~
X = E Z X;j ., Nik,={j:xjisaKNNofx;},
JEN; K,

and let X € R denote the denoised data matrix.

We then fix p and compute the p-power weighted path distance between all points in X to
obtain pairwise distance matrix Dpy; € R™". More precisely, we let Qﬁz = (X, E) be the graph
on X where x;, x; are connected with edge weight E;; = ||x; — x;||” if x; is a K, NN of x; or x; is a

K,NN of x;. We then compute D,['} as the total length of the shortest path connecting x;, x; in QI’;Z,
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and define Dpy by (Dpm)ij = (ij)%.

We next apply classical multidimensional scaling Borg and Groenen (2005) to obtain a low-
dimensional embedding which preserves the path metrics. Specifically, we define the path metric
MDS matrix B = —%JD%JIJ where J = I, — %IIT is the centering matrix, 1 € R" is a vector of
all 1’s, and Dl(j\}[ is obtained from Dpy; by squaring all entries. We let the spectral decomposition
of B be denoted by B = VAVT, where A = diag(11,...,1,), V = (vi,...,v,) € R contain the
eigenvalues and eigenvectors of B in descending order. The embedding dimension r is then chosen
as the index i which maximizes the eigenratio 4;/4;+; Lam and Yao (2012), with the following
restrictions: we constrain 3 < i < 39 and only consider ratios 4;;1/4; between “large" eigenvalues,
i.e. we require A;/4; > 0.01. The scPMP embedding is then defined by Y = (VA1vy,...,V4,v,) €
R™,

Finally, we apply k-means to the scPMP embedding to obtain cluster labels. Specifically, we
let /; € [k] = {1, ..., k} be the cluster label of x; returned by running k-means on Y with k clusters
and 20 replicates. Since k-means may return highly imbalanced clusters, cluster sample sizes were
constrained to be at least v/n/2. Specifically, if k-means returned a tiny cluster, k was increased
to k + 1, and the tiny cluster merged with the closest non-trivial cluster. This entire procedure is
summarized in the pseudocode in Algorithm 3.1.

We note that the computational bottleneck for Algorithm 3.1 is the computation and storage
of all pairwise path distances, which has complexity O(n?logn) when K» = O(logn). However
this quadratic cost can be avoided by utilizing a low rank approximation of the squared distance
matrix via the Nystrom method Williams and Seeger (2001); Ghojogh et al. (2020); Platt (2005);
Yu et al. (2012); Civril et al. (2006). For example, Shamai et al. (2020) propose a fast, quasi-linear
implementation of MDS which only requires the computation of path distances from a set of ¢
landmarks, so that the complexity of computing path distances is reduced to O(gnlogn). Our
implementation of sScPMP includes the option to use this landmark-based approximation and is thus
highly scalable.

We also note that an important consideration in the fully unsupervised setting is how to select
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the number of clusters k. This is a rather ill-posed question with multiple reasonable answers due
to hierarchical cluster structure. We do not focus on this in the current article, and Algorithm 3.1
assumes the number of clusters is given. However we emphasize that when k is unknown, the
scPMP embedding offers a useful tool for selecting a reasonable number of clusters. For example,
Line 21 of Algorithm 3.1 can be repeated for a range of candidate k values to obtain candidate
clusterings Zk; k can then be chosen so that Zk optimizes a cluster validity criterion such as the
silhouette criterion Kaufman and Rousseeuw (2009); Maechler et al. (2021). Alternatively, one
could build a graph with distances computed in the scPMP embedding, and estimate k as the
number of small eigenvalues of a corresponding graph Laplacian Von Luxburg (2007); Little et al.

(2020a).

3.2.3 Assessment

We evaluate the performance of Algorithm 3.1 with respect to (1) cluster quality and (2)
geometric fidelity on a collection of labeled benchmarking data sets with ground truth labels ¢.
There are many helpful metrics for the quality of the estimated cluster labels £, and we compute the
adjusted rand index (ARI), entropy of cluster accuracy (ECA), and entropy of cluster purity (ECP).
Definitions of ECA and ECP can be found in Appendix B. We compare our clustering results
with the output of k-means, DBSCAN Ester et al. (1996); Xu et al. (1998), k-means on -SNE
embedding Van der Maaten and Hinton (2008), DBSCAN on UMAP embedding Mclnnes et al.
(2018) and for scRNAseq data sets additionally with the following scRNAseq clustering methods:
SC3 Kiselev et al. (2017), scanpy Wolf et al. (2018), RacelD3 Griin et al. (2018), SIMRL Wang
et al. (2017) and Seurat Stuart et al. (2019).

Assessing the geometric fidelity of the low-dimensional embedding Y is more delicate; we
want to assess whether the embedding procedure preserves the global relative distances between
clusters. We first compute the mean of each cluster as in Van der Maaten and Hinton (2008)
using the ground truth labels, i.e. u;(X) = |IL]| 2ier; Xi Where I = {i : ¢; = j}; we then define
D, x(i, ) = |lpug; (X)—pe;(X)||2. Similarly, we compute the means () in the scPMP embedding,

and define D, y(i,j) = [[ug(Y) = pe; (Y)l2; we then compare Dy, x and D, y. Specifically, we
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define the geometric perturbation 7 by:

|Dyx = eyl

ﬂ(X,Y,f):mln : i
‘ ”DILX”F
where || - || is the Frobenius norm. The ¢ achieving the minimum is easy to compute, and one
obtains 2
D,y —c*D
- Ol DueD)
”D#»X”F ||D'“’Y”F

We compare n(X,Y,¢) with the geometric perturbation of other embedding schemes for X, i.e.
with (X, U,{) for U equal to the UMAP Mclnnes et al. (2018) and 7-SNE Van der Maaten
and Hinton (2008) embeddings. Note that 7 is not always a useful measure: for example if X
consisted of concentric spheres sharing the same center, the metric would be meaningless, as the
distance between cluster means would be zero. Nevertheless, in most cases 7 is a helpful metric

for quantifying the preservation of global cluster geometry.

3.3 Results
We apply Algorithm 3.1 to both a collection of toy manifold data sets and a collection of
scRNAseq data sets. Results are reported in Sections 3.3.1 and 3.3.2 respectively. The default

parameter values reported in Algorithm 3.1 were used on all data sets.

3.3.1 Manifold Data

We apply Algorithm 1 for p = 1.5, 2, 4 to the following four manifold data sets:

Balls (n = 1200, d = 2, k = 3): Clusters were created by uniform sampling of 3 overlapping
balls in R?; see Figure 3.2a.

Elongated with bridge (denoted EWB, n = 620, d = 2, k = 3): Clusters were created by
sampling from 3 elongated Gaussian distributions. A bridge was added connecting two of the
Gaussians; see Figure 3.2b.

Swiss roll (n = 1275, d = 3, k = 3): Clusters were created by uniform sampling from three
distinct regions of a Swiss roll; 3-dimensional isotropic Gaussian noise (o = 0.75) was then added

to the data. Figure 3.2c shows the first two data coordinates.
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Method Balls EWB Swiss SO(3)
k-means 0.955 -0.001 0.373 0.010
DBSCAN 0.055 0.550 1 1
UMAP+DBSCAN | 0.600 0.645 1 1
t-SNE+k-means | 0.895 0.359 1 0.532
Seurat 0.777 0.837 1 1
PM; 5 0.921 0.489 1 0.501
PM, 0.907 0.990 1 1
PMy 0.781 0.584 1 1

Table 3.1 ARI for manifold data.

SO(3) manifolds (n = 3000, d = 1000, £ = 3): For 1 < i < 3, the 3-dimensional manifold
M; € R? is defined by fixing three eigenvalues D; = diag(1;, 1>, 13) and then defining M; =
Uyeso3)VD VT, where SO(3) is the special orthogonal group. After fixing D;, we randomly sample
from M; by taking random orthonormal bases V of R?. A noisy, high-dimensional embedding
was then obtained by adding uniform random noise with standard deviation o = 0.0075 in 1000
dimensions. Figure 3.2d shows the first two principal components of the data, which exhibits no
cluster separation.

The data sets were chosen to illustrate various cluster separability characteristics. For the balls,
the clusters have good geometric separation but are not separable by density. For the Swiss roll
and SO(3), the clusters have a complex and inter-twined geometry but are well separated in terms
of density. For EWB, clusters are both elongated and lack robust density separability due to the
bridge, and one expects that methods which rely too heavily on either geometry or density will
fail. The ARIs achieved by Algorithm 3.1, k-means based methods, DBSCAN based methods,
and Seurat are reported in Table 3.1. See Tables B.1 and B.2 in Appendix B for ECP and ECA.
As expected, k-means out performs all methods on the balls but performs very poorly on all other
data sets. DBSCAN and Seurat achieve perfect accuracy on the Swiss roll and SO(3) but perform
rather poorly on the balls and EWB, although Seurat does noticeably better than DBSCAN. PM; is
the only method which achieves a high ARI (> 90%) and a low ECP and ECA (< 0.15) on all data
sets.

Table 3.2 reports the geometric perturbation of the embedding produced by Algorithm 3.1 and
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Method | Balls EWB Swiss SO(3)
2d UMAP | 0.001 0.006 0.305 0.071
rd UMAP 0 0.033 0.339 0.054

2d t-SNE 0 0.004 0.187 0.171
rd t+-SNE 0 0.042 0.074 0.157
2d PM; 5 0 0.033 0.002 0.103
rd PM; 5 0 0.023 0.011 0.154

2d PM, 0 0.146 0.025 0.156

rd PM, 0 0.068 0.025 0.179
2dPMy | 0.003 0.191 0.056 0.194
rdPMy | 0.004 0.157 0.056 0.194

Table 3.2 Geometric perturbation for manifold data. The rd UMAP embeddings were computed
with an embedding dimension of » = 5 for the balls, EWB, Swiss roll and r = 7 for SO(3), which
corresponded to the estimated dimension for both PM; 5 and PM,. For #-SNE, r = 3 for all data
sets.

compares with UMAP and #-SNE. Since Algorithm 3.1 generally selects an embedding dimension
r > 2, to ensure a fair comparison the geometric perturbation was computed in both the 2d and
r-dimensional (rd) embeddings for all methods, where for UMAP r is the dimension selected by
Algorithm 3.1 and for -SNE r = 3 (note r < 3 was required in Rtsne implementation). Overall
PM; 5 achieved the lowest geometric perturbation, although all methods had small perturbation on
the Balls data set and 7-SNE had the lowest perturbation on EWB. We point out however that for
both the Swiss roll and SO(3), the metric may not be meaningful due to the complicated cluster

geometry.

3.3.2 scRNAseq Data

We apply Algorithm 1 for p = 1.5, 2, 4 to the following synthetic sScRNAseq data sets:

RNA mixture: Benchmarking scRNAseq data set from Tian et al. (2019a). RNAmix1 was
processed with CEL-seq2 and has n = 296 cells and d = 14687 genes. RNAmix2 was processed
with Sort-seq and has n = 340 cells and d = 14224 genes. For the creation of the two data sets,
RNA was extracted in bulk for each of the following cell lines: H2228, H1975, HCC827. Then the
RNA was mixed in k = 7 different proportions (each defining a ground truth cluster label), diluted
to single cell equivalent amounts ranging from 3.75pg to 30pg, and processed using CEL-seq2 and

SORT-seq. See here for Supplemental info including ground truth geometric structure.

28


https://www.nature.com/articles/s41592-019-0425-8

Simulated beta: Simulated data set of n = 473 beta cells and d = 2279 genes, created based on
SAVER Huang et al. (2018) and scImpute Li and Li (2018). First, we subset the Baron’s Pancreatic
data set Baron et al. (2016) to include only Beta cells. As in Li and Li (2018), we randomly
choose 10% of the genes to operate as marker genes. Then, we split the cells to & = 3 clusters and
each cluster is assigned a different group of marker genes. For each cluster we scale up the mean
expression of its marker genes. Lastly, to simulate the drop out effect, as in Huang et al. (2018),
we multiply each cell by an efficiency loss constant drawn by Gamma(10, 100). Using S to refer to
the data matrix resulting from the above steps, the final simulated data X is obtained by letting X;;
be drawn from Poisson(S;;).

In addition to the synthetic data, we evaluate the performance of Algorithm 3.1 on the following
real scRNAseq data sets:

Cell mixture data set: Another benchmarking data set from Tian et al. (2019a) consisting of
a mixture of k =5 cell lines created with 10x sequencing platform. The cell line identity of a cell
is also its true cluster label. The data set consists of n = 3822 cells and d = 11786 genes; we
removed multiplets, based on the provided metadata file and kept 3000 most variable genes after
SCT tranformation Hafemeister and Satija (2019); Choudhary and Satija (2022).

Baron’s pancreatic: Human pancreatic data set generated by Baron et al. (2016). After quality
control and SAVER imputation, there are d = 14738 genes and n = 1844 cells. For analysis
purposes cells that belong in a group with less than 70 members were filtered out to reduce to k = 8
cell types. Also, we kept only the 3000 most variable genes after SCT tranformation Hafemeister
and Satija (2019); Choudhary and Satija (2022). The cell types associated with each cell were
obtained by an iterative hierarchical clustering method that restricts genes enriched in one cell type
from being used to separate other cell types. The enriched markers in every cluster defined the cell
type of the cells that belong in that cluster.

Tabula Muris data sets: Mouse scRNAseq data for different tissues and organs Tabula
Muris Consortium (2018). We select the pancreatic data (TM Panc) with n = 1444 cells and

d = 23433 genes and the lung data (TM Lung) with n = 453 cells and d = 23433 genes. Both
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Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4K CellMix

SC3 0.637 0.827 0.798 0969 0.894 0.767 0.889 1
scanpy 0.620 0.825 0.796  0.898  0.615 0.966 0.977 1
RacelID3 0.730  0.520 0.900 0.714 0.751 0.651 0.763 1
SIMLR 0.878 0.792 0.727 0969  0.599 0.698 0.705 1

Seurat 0.792  0.667 0.843 0901  0.547 0.941 0.889 0.993
Seurat_def 0.714  0.785 0.764 0907 0.798 0.971 0.975 1
k-means 0921 0.786 0.848  0.957 0.840 0.662 0.747 1
DBSCAN 0.952 0.826 0.587 0.541 0.734 0.724 0.889 1
UMAP+DBSCAN | 0926 0.892 0.619 0946 0.893 0.848 0.974 1

t-SNE+k-means | 0.943  0.915 0.753 0928 0.620 0.641 0.596 0.878
PM; 5 0.939 0.924 0.888  0.969  0.626 0.804 0.754 1
PM, 0.939 0.973 0.808  0.969  0.921 0.969 0.757 1
PM, 0.939 0.939 0.731 0975 0.775 0.853 0.978 1

Table 3.3 ARI for RNA data.

data sets have k = 7 different cell types which were characterized by an FACS-based full length
transcript analysis.

PBMC4k data set: This data set includes the gene expression of Peripheral Blood Mononuclear
Cells. The raw data are available from 10X Genomics. After quality control, saver imputation,
and removing the two smallest cell types, there are d = 16655 genes and n = 4316 cells in the
dataset. Also, we merge CD8+ T-cells and CD4+ T-cells in one type named T-cells resulting in
k = 4 cell types. The ground truth cell types are provided by SingleR annotation after marker gene
verification in github.com/SingleR.

Details about the pre-processing of data sets can be found in Appendix A. For the following
UMAP and #-SNE results, Linnorm normalization was applied without denoising, as this normal-
ization gave the best results. Note Seurat_def refers to the results of the entire Seurat pipeline,
whereas Seurat refers to the result of using Seurat clustering on data with the same processing and
normalization as for PM. The embedding dimension r selected by Algorithm 3.1 ranged from 3 to
7 for PM; 5 and PM>,, and from 3 to 11 for PMy.

Table 3.3 reports the ARI achieved by Algorithm 3.1 and other methods; see Tables B.6 and
B.5 in Appendix B for ECP and ECA. The path metric methods perform equally well or better
than the rest of the methods. Once again PM, exhibits the best overall performance, with a high

ARI (= 90%) on all data sets except TM lung and PBMC4K; the next best method is PMy, which
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Method | RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
2d UMAP | 0.122 0.142 0.057 0.036 0.064 0.115 0.015 0.090
rd UMAP | 0.160 0.131 0.092  0.023  0.036 0.129 0.027 0.050
2d +-SNE | 0.059 0.054 0.042  0.025 0.048 0.206 0.038 0.061
rdt-SNE | 0.035 0.054 0.027  0.010 0.040 0.229 0.050 0.033
2dPM;s | 0.010 0.013 0.046  0.003 0.076 0.067 0.028 0.098
rdPM;s | 0.017 0.009 0.006 0 0.019 0.006 0.007 0.007

2d PM, | 0.040 0.040 0.085 0.002 0.150 0.103 0.050 0.101

rdPM; | 0.048 0.036 0.029  0.002 0.051 0.010 0.013 0.008

2dPMy | 0.108 0.135 0.246  0.007  0.265 0.193 0.069 0.107

rdPMy | 0.100 0.082 0.083  0.007  0.099 0.027 0.029 0.008

Table 3.4 Geometric perturbation for RNA data. For rd UMAP r = 7,6,5,3,5,9,3,4 for the
various data sets, which was the maximum of the PM; 5 dimension and the PM, dimension. For
rd t-SNE r = 3.

achieves a high ARI on all but 3 data sets. SC3, Raceld3, and SIMLR had a low ARI (< 90%)
on 6 of the 8 data sets; scanpy, Seurat, k-means, and 7-SNE+k-means had a low ARI on 5 of the
8 data sets; Seurat_def, UMAP+DBSCAN, and PM; 5 had a low ARI for 4 of 8 data sets. These
results indicate that incorporating both density-based and geometric information when determining
similarity generally leads to more robust results for sScRNA-seq data. Moreover, PM; achieves the
best median ECP and median ECA values across all RNA data sets. Although the optimal balance
depends on the data set (for example PBMC4K does best with p = 4, while TMLung does best
with p = 1.5), path metrics with a moderate p exhibit the best performance across a wide range of
data sets.

For BaronPanc we observe that Seurat_def achieves a slightly higher ARI than all the reported
path metric methods (p = 1.5, 2,4). However, a significant advantage of Algorithm 3.1 over Seurat
is the high clustering performance on a wide range of sample sizes. To demonstrate our claim we
compare the ARI results in different down-sampled versions of BaronsPanc. We selected a stratified
sample of 50%, 25% and 10% of the cells of the BaronPanc data set. The results can be found in
Table B.4 of Appendix B. We observed no ARI deterioration for Algorithm 3.1 for the 50% and
25% down-sampled data set and only a moderate decrease for the 10% down-sampled dataset (ARI
of 0.67 at 10% downsampling for p = 1.5). On the contrary, there is significant ARI deterioration

both for Seurat and Seurat_def; in particular, at 10% downsampling the ARI deteriorates to 0.405

31



[
5
51 \ ’ true_labels / true_labels 10- true_labels 20 true_labels
~ HCC827 v HCcCe27 & Hees2r - Hces27
O 0 H1975 =0 H1975 < H1975 z 0 " H1975
o ® H83s o ® Hs38 = 0 ® Hs38 2 ® H838
-5 H2228 5 H2228 2 H2228 = 20 | H2228
10 ® A549 B ® A549 r 2 ® A549 t ® A549
A5 ‘ ‘ | ‘ | | O ] -40- =
20 -10 0 10 -10 0 10 10 0 10 20 30 50 25 0 25
PC1 PM1 UMAP1 TSNE1
(a) PCA (b) PM, (c) UMAP (d) +-SNE

38 42

L N &
R * & ] [
< _o - |0 N
N T g -~ T S % 0 ©
- oS ] & 3 N
o < N ~ 8 T 2 g
= o3 T —
8 T 3 8 T
" < © o T ) o
] -~ N ~ © = =
~ 7o) N N~ [Te) N~ [} [ ™ (] 0
N ~ I} N ~ o < © @ = <
© o T © ) o] 0 © T I
O = &) = Q < 0O
o T O T @] =
T = T
(e) PCA (f) PM, (2) UMAP (h) -SNE

Figure 3.4 Top: embeddings colored by true cell type. Bottom: average linkage dendrograms of
cluster means.

for Seurat and to 0.185 for Seurat_def. Notice that in the 10% down-sampled data set, we use
regular k-means for PM, to allow for the prediction of smaller sized clusters.

We also investigated whether we could learn the ground truth number of clusters by optimizing
the silhouette criterion in the scPMP embedding, and compared this with the number of clusters
obtained from Seurat using the default resolution; see Table B.3 in Appendix B. For 4 out of the
8 RNA data sets evaluated in this article (RNAMix1, RNAMix2, BaronPanc, and CellMix), this
procedure on PM; yielded an estimate for £ which matched the number of distinct annotated labels.
On the other hand, Seurat correctly estimates the number of clusters for only 2 out of the 8 RNA
data sets (RNAMix1 and TMLung).

Table 3.4 reports the geometric perturbation. We see that increasing p increases the geometric
perturbation, with PM; 5 yielding the smallest geometric perturbation on all data sets. Although
PM; 5 is the clear winner in terms of this metric, PM; still performed favorably with respect to
UMAP and #-SNE. Indeed, rd PM, had lower geometric perturbation than UMAP on all but one
data set (TMPanc), and lower geometric perturbation than #-SNE on the majority of data sets.

Figure 3.4 shows the PCA, PM,, UMAP, and 7-SNE embeddings of the Cell Mix data set, as well
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Figure 3.5 Processing and clustering time for PBMC4K and Baron’s Pancreatic data sets.

as a tree structure on the clusters. The tree structure was obtained by first computing the cluster
means in the embedding and then applying hierarchical clustering with average linkage to the
means. The PCA tree (Figure 3.4(e)) was computed using 40 PCs so that it accurately reflects the
global geometry of the clusters. Interestingly path metrics recover the same hierarchical structure
on the clusters as PCA: the cell types HCC827 and H1975 are the most similar, and H838 is the
most distinct. This is what one would expect given more extensive biological information about
the cell types, since H838 is the only cell line here derived from metastatic site Lymph node on
a male patient, while both HCC827 and H1975 originated from the primary site of female lung
cancer patients. However, neither UMAP or #-SNE give the correct hierarchical representation of
the clusters, because both methods struggle to preserve global geometric structure as observed in
numerous studies Kobak and Berens (2019); Cooley et al. (2020).

Furthermore, Figure 3.5 records the runtime for processing and clustering (in minutes) of the
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Baron’s Pancreatic (n = 1844) and PBMC4K (n = 4316) data sets. For PBMC4k (our largest
data set), we use the landmark-based approximation of path distances for scalability. All the PM
methods run in less than a minute on BaronPanc and less than 6 minutes on PBMC4k; RacelD3,
scanpy, and Seurat were also fast. SC3 and SIMLR had long runtimes, requiring 37.9 and 91.1

minutes respectively for PBMC4k.

3.4 Discussion

This article applies a new theoretical framework to the analysis of single cell RNA-seq data
which is based on the computation of optimal paths. Path metrics encode both geometric and
density-based information, and the resulting low-dimensional embeddings simultaneously preserve
density-based cluster structure as well as global cluster orientation. The method exhibits competitive
performance when applied to numerous benchmarks, and the implementation is scalable to large
data sets. Although we investigated other choices of p, we found that p = 2 performed well on a
wide range of RNA data sets, indicating that p = 2 is an appropriate balance between density and
geometry for this application. Future research will explore ways to make the method more robust

to noise and adapting the method to the semi-supervised context.
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APPENDIX A

DATA PREPROCESSING
In this section the pre-processing of all RNA data sets is described. The main preprocessing steps
are quality control, imputation with SAVER Huang et al. (2018), and normalization. Below we
provide information about quality control and imputation and then we describe how we used those

steps according to the guidelines of each method.

A.1 Data availability

The raw data of Cellmix and RNAmix are downloaded from GEO under accession code
GSE118767, and the preprocessed data are available at their github repository. The PBMC4K data
is available at 10x Genomics’s website. The Baron’s pancreatic data is available in GEO with the

access code GSM2230757. The mouse tissue scRNAseq data sets are accessible on Figshare.

A.2 Main steps

Quality Control: Quality control is applied on RNAmix1, RNAmix2, Cellmix, BaronPanc,
PMC4K, Beta. Specifically, cells where at most 200 genes are expressed are filtered out. Also,
only genes that are expressed in more than 3 cells are included in the data set. In addition, cells
with percentage of expressed mitochondrial genes greater than 20% are excluded. The data sets
TMpanc and TMLung as found in Figshare have passed a quality control check with cutoffs of at
least 500 genes and 50,000 reads, so no additional filtering was applied.

Imputation: Imputation with SAVER Huang et al. (2018) was applied to all RNA seq data
sets apart from Cellmix. After removing multiplets the Cellmix data set included high quality data
and every clustering method achieved high ARI, suggesting no need for further processing and

imputation.

A.3 Preprocessing per method
Path metrics (PM), k-means, DBSCAN: After quality control and imputation, we normalize
the data. RNAmix1, RNAmix2, TMLung, Beta, TMPanc, PBMC4K were row normalized and

log transformed (data matrix had cells in rows and genes in columns). We then restrict to the top
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2000 high variance genes. For the BaronPanc and CellMix, which have large sample size, SCT
transformation was applied instead and the top 3000 variable genes were kept Hafemeister and
Satija (2019); Choudhary and Satija (2022). When needed, we rescale genes where variances were
extremely high. As a next step we apply PCA for dimension reduction, keeping the top 40 PC’s.
Finally, denoising is applied by replacing each point with the mean of its local neighborhood, using
a neighborhood size of K = 12 points. For very large data sets, one may want to use a larger K.

UMAP+DBSCAN, t-SNE+k-means: After quality control and imputation, we apply Linnnorm
Yip et al. (2017) to all data sets. Then, we restrict to the top 2000 high variance genes. When
needed, we rescale genes with extremely high variance. Finally, we apply PCA for dimension
reduction, keeping the top 40 PC’s.

Seurat: For this method, we process the data as for PM and then use Seurat’sStuart et al. (2019)
functions to find neighboring points and cluster them. Notice that here we adjust the parameter
‘res’, to retrieve the correct number of clusters.

Seurat_def: We follow the suggested processing and clustering workflow of Seurat Stuart et al.
(2019) for all data sets. Notice that we normalize BaronPanc and CellMix with the SCT method
Hafemeister and Satija (2019); Choudhary and Satija (2022). Then data sets are clustered with
adjusted resolution parameter, to retrieve the correct number of clusters.

SC3: After quality control and imputation we normalize the information of every cell and
multiply by 10000. Then we use the log of the data for clustering with SC3 Kiselev et al. (2017).
Exception to this are the BaronPanc and CellMix data set, for which we use SCT normalization.

scanpy: After quality control and imputation we use the lognormalization of scanpy Wolf
et al. (2018). Exception to this are the BaronPanc and CellMix data set, for which we use SCT
normalization.

RacelD3: We apply quality control on the cells of the counts of the data set. RaceID3 Herman
et al. (2018); Griin et al. (2018) applies filtering and normalization in one step, which we adjust to
have about the same amount of cells and genes as with other methods. Notice that we do not apply

imputation because imputed data would not be counts, which are the required input of RacelD3.

42



SIMLR: For SIMLR Wang et al. (2017) After quality control and imputation we normalize the
information of every cell and multiply by 10000 and use the log of those data. Exception to this are

the BaronPanc and CellMix data set, for which we use SCT normalization.
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APPENDIX B

ADDITIONAL CLUSTERING RESULTS
Here we present more clustering evaluation results based on Entropy of Cluster Accuracy (ECA)
and Entropy of cluster Purity (ECP). The ECA can quantify the variety of true labels within a

predicted cluster and ECP can quantify the variety of predicted cluster labels within a true group.

Definition 2

Let N represent the number of true groups and M the number of predicted clusters. Let N; be the

number of true groups with data points within the j™ predicted cluster and similarly let M ; be the

number of predicted clusters with data points within the j™ true group. Finally let p(x ;) denote

the proportion of data points belonging to the j™ true group that are within a given j™ predicted
-th

cluster and let p;(y ;) denote the proportion of data points of j™ predicted cluster that are within a

given i true group. Then:

1 M N;

ECA = Y Z Zpi(xj)log(l?(xj))
i=1 =1
1 N M;

ECP =+ Z pi(y)log(p(y;))

1

I
—_
~.
I
—_

For a given clustering, low ECA means that data points in a predicted cluster originate from
the same true group. On the other hand, low ECP indicates that almost all the data points in a true
group were assigned the same clustering label. Use of ECP and ECA in clustering of scRNAseq

data was also found in Tian et al. (2019a).

Method Balls EWB Swiss SO(3)
k-means 0.082 1.050 0.588 1.084
DBSCAN 0.385 0.114 0 0
UMAP+DBSCAN | 0.941 0.695 0 0
t-SNE+ k-means | 0.153 0.630 0 0.440
Seurat 0.255 0.193 0 0
PM; 5 0.123 0.447 0 0.460
PM, 0.142  0.020 0 0
PMy 0.253 0.268 0 0

Table B.1 ECP for manifold data.

44



Method Balls EWB Swiss SO(3)
k-means 0.082 1.096 0.633 1.089
DBSCAN 0.362 0.231 0 0
UMAP+DBSCAN | 0.200 0.014 0 0
t-SNE+ k-means | 0.147 0.582 0 0.440
Seurat 0.250 0.183 0 0
PM; 5 0.120 0.461 0 0.462
PM, 0.138 0.020 0 0
PMy 0.248 0.291 0 0

Table B.2 ECA for manifold data.

Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
Seurat_res=0.8 7 8 7 7 11 12 13 14
PM; 5 12 11 8 4 15 9 4 5
PM, 7 7 9 4 5 8 5 5
PM4 8 8 16 4 5 7 4 5
True k 7 7 7 3 7 8 4 5

Table B.3 Predicted number of clusters for Seurat and Path metrics for RNA data (k is the true
number of clusters).

Dataset Seurat Seurat_def PM;s PM, PM,4
100% of Baron’s Pancreatic | 0.941 0.971 0.804 0969 0.853
50% of Baron’s Pancreatic | 0.880 0.844 0969 0969 0.969
25% of Baron’s Pancreatic | 0.973 0.705 0973 0973 00973
10% of Baron’s Pancreatic | 0.410 0.185 0.674 0.939* 0.804

Table B.4 Downsampling results.

Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix

SC3 0.289 0.114 0.228  0.058 0.132 0.368 0.328 0
Scanpy 0.481 0.242 0.314  0.147  0.309 0.093 0.054 0

RacelD3 0.336 0.621 0.168 0342  0.122 0.181 0.207 0.000
SIMLR 0.163 0.294 0.263  0.057  0.407 0.104 0.190 0
Seurat 0.319 0.230 0.193  0.146  0.290 0.097 0.265 0
Seurat_def 0.256 0.270 0423 0.128  0.289 0.112 0.106 0
k-means 0.147  0.268 0.221  0.080 0.194 0.164 0.193 0
DBSCAN 0.090 0.188 0.368  0.440  0.202 0.146 0.262 0
UMAP+db 0.078 0.151 0449  0.019 0.124 0.076 0.163 0

t-SNE+ k-means | 0.104 0.137 0426 0.085 0.259 0.171 0.187 0.126
PM; 5 0.110 0.146 0.180  0.061  0.305 0.147 0.196 0
PM, 0.110 0.071 0.362 0.061 0.279 0.077 0.195 0
PMy 0.110 0.123 0.230 0.048 0.156 0.159 0.096 0

Table B.5 ECA for RNA data.
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Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix

SC3 0.328 0.114 0.294  0.058 0.070 0.301 0.062 0
Scanpy 0.517 0.183 0322 0.146 0.516 0.088 0.057 0
RacelD3 0.381 0.665 0.182 0351 0.268 0.413 0.310 0
SIMLR 0.151 0.267 0.275  0.057 0.543 0.380 0.360 0

Seurat 0.292 0.282 0.230  0.150  0.540 0.122 0.053 0.027
Seurat_def 0.320 0.258 0436  0.133  0.284 0.089 0.062 0
k-means 0.131 0.255 0.244  0.079 0.215 0.395 0.316 0
DBSCAN 0.075 0.141 0404 0.135 0.138 0.109 0.051 0
UMAP-+db 0.151 0.226 0413  0.126  0.061 0.248 0.087 0

t-SNE+ k-means | 0.102  0.133 0.437  0.089  0.494 0.402 0.451 0.147
PM; 5 0.096 0.136 0.197  0.061  0.482 0.273 0.312 0
PM, 0.096  0.062 0.323  0.061  0.158 0.081 0.308 0
PMy 0.096 0.114 0.184  0.048 0.260 0.226 0.055 0

Table B.6 ECP for RNA data.
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CHAPTER 4
SHARED NEAREST NEIGHBORS GRAPH BASED SPECTRAL CLUSTERING

4.1 Introduction

The exploration of the theoretical properties of spectral clustering on finite sample data started
more than twenty years ago (Spielman and Teng, 1996; Guattery and Miller, 1998; Ng et al., 2001;
Meild and Shi, 2001) along with theoretical properties for increasing sample size (Luxburg et al.,
2004). One of the advantages of spectral clustering is the interpretability of its performance on
data points represented as vertices on graphs (kKNN, e-neighbor graph) that are connected with
edges based on their similarity to other data points (von Luxburg, 2007). Although theoretical
results of kNN graph-based clustering methods have been explored by Maier et al. (2009), the
theoretical properties of SNN graph-based clustering combined with spectral clustering haven’t
been investigated yet. In the following sections, we use a similar framework as of Maier et al.
(2009) to provide a range for the number of neighbors used for the construction of the SNN graph,

such that exact cluster identification is achieved.

4.2 Framework
Our aim is to cluster a set of n points, X1, . . ., X,,, which have been drawn from some underlying
density, p, of R™. For this task, we build the SNN graph of those points and use its Laplacian for

spectral clustering. The number of true clusters is known and denoted as K.

4.2.1 The SNN graph

For the construction of the SNN graph, we first find the k nearest neighbors of each point X;. Let
kNN(X;) be the set of the first k nearest neighbors of X;. Then, we connect two vertices X; and X,
if X; € kNN(X;) orif X; € kNN(X;). The weight, W, ;, of their edge is the Jaccard similarity of

kKNN(X,), kNN(X)), i.e.
_ [kNN(X;) N kNN(X;)|
" KNN(X;) UKNN(X))|

4.1)

The SNN graph is a symmetric graph denote as Gsyy (k).
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4.2.2 The SNN Spectral Clustering Algorithm

Algorithm 4.1 SNN Spectral Clustering Algorithm.

1:

I T S e S Y

._.
*®

19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

R A

. W,

Input: X € R number of clusters K, nearest neighbors k, bandwidth 4, density bound 7,
Denoise = (TRUE, FALSE), Laplacian= (D — W, D_%WD_% - D_IW), t,0, €,

Output: Predicted clustering labels ¢ € R"
% k-nearest neighbors:

for i=1tondo
kNN; « {X; : X; is one of the kNN of X;, based on Euclidean distance}

% Shared Nearest Neighbors graph:

) |kNNiﬂkNNj|
i.j <~ TkNN;UKNN,]

: Ggyn(k) « graph with adjacency matrix W
: % Kernel estimation of density p:

. for i=1tondo

R n X;—X,;
pn(Xi)%ﬁ ZIK( 7 L)
J:

% Denoising:

if Denoising = TRUE then
Remove vertices and edges of X s.t.p,(X) <t —2¢,
Remove components with size less than on
Gy (k) < denoised Gsyy (k)

W, n « adjacency of G¥,, (k), number of vertices in G, (k)

% Eigendecomposition of SNN graph Laplacian:
Dij X0 Wi

D « diagonal(D; ;)

L < Laplacian

V « K eigenvector matrix ofL

% Clustering of X, ..., X);:

{ «— k-means_plusplus(V, K)
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Algorithm 4.2 Eigenvector matrix of L.
. Input: L, K, Laplacian = (D - W, D":WD~2,1 — D"'W)

: Output: K eigenvector matrix of L

1

2

3

4:

5. if L =D WD~ then
6: {41, A2, ..., Ak, ...} « eigenvalues of L such that 1; > A, > A3...
7 V = [V, Va,...,Vkg] « V; eigenvector of 4;

8 % Row normalization of V

9

: v; « i-throw of V
10: q < (q1,-..,qn) where q,-:(zjvzj)
11: V< D'V, where D, = diagonal(q)
12: £ — k—means_plusplus(V, K)
13: else
14: {41, 2, ..., Ak, ...} « eigenvalues of L such that 1; < A, < A3...
15: V = [V, Va,...,Vk] « V; eigenvector of 4;

1/2

4.3 Theoretical results

The theoretical results presented in section 4.3 are divided into two cases; the noise-free case
and the noisy case, based on Maier et al. (2009).
Noise-free case. In this case, we consider a probability distribution p, whose support consists
of several high-density regions separated by a positive distance from each other. We consider
that successful cluster identification means that each high-density region corresponds to a unique
predicted cluster. Since there is no overlap between high-density regions, every point will belong
to one cluster only. Hence, the denoising step of 4.1 will not remove any points from the SNN
graph.
Noisy case. In this case, the high-density regions of p are connected by low-density regions.
For a t+ > 0 we define the z-level set, L(¢), as the closure of all points x € R™ with p(x) > ¢,
1.e. m We denote those components as C1, ..., C%). In the following results, we
explore two approaches to the noisy case.

In the first approach, the true clusters are the sets 'V, ..., C®)_ Points in low-density regions
do not belong to any cluster and are removed. We consider that clusters are identified exactly by

our algorithm when each connected component of L(7) is included in a unique predicted cluster
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pf?ax supremum of density attained by points of C¥)
p(i?n infimum of density attained by points of C¥)
u% lower bound on distance of cluster C) to other clusters
u'/ distance between cluster C) and cluster C(/)
p(u'?) | probability of balls of radius «® in C¥
B probability mass of cluster C”
G'syy (k) | the SNN graph after denoising

Table 4.1 Notations.

and the ratio of noisy points to cluster points goes to zero. We also consider rough identification
of clusters, when the clustering algorithm predicts components that contain points of a unique C'”
plus some noisy points that do not belong to any cluster. The following table includes notation
used in sections . In the second approach, noisy points are not removed. Instead, they are defined
as cluster points of the L(¢) component closest to them. For this approach, there are connections
between subgraphs that correspond to true clusters and spectral clustering might mis-cluster points
that are equidistant from two clusters. We provide results regarding the mis-clustering error.

Let the sets C(V, ..., C®) be K disjoint, compact and connected subsets of R”. The boundary
ACD of every C® is a smooth (m — 1)-dimensional submanifold in R”. We will denote with ) the
minimal curvature radius of C¥), which is equal to the inverse of the largest principal curvature
of C™. Also we will denote with B(; = u(CW) = [, pda, the probability mass of C”), where
A is the Lebesgue measure in R".

The following results about within cluster connectivity of a predicted cluster and isolation
(disconnectivity) of each cluster will be proven using the collar set of each cluster. Specifically, the
collar of C is defined as Col® (v) = {x € C® | dist(x,0C?) < v}, with v < . Furthermore,
we define the maximal covering radius to be v,(,,’;)ax = max, i {V | C . Col®(y) is connected }
and we denote with ) a lower bound of the distance of C¥) from C® with j # i. In the noise-free
case, u'Y) will be considered strictly greater than 0. Finally, the kNN radius of a point X; is the

(@)

min’®

maximum distance of X; to a point in kNN(X;). The minimal kNN radius of a cluster cO R

is the minimal kNN radius of the points in C?.
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4.3.1 Noise-free case
Lemma 1 (Within cluster connectedness in Gsyn(k))

Let ﬂ,gi) denote the event that the points of cluster C' are connected in Gsyn(k). For z €

(0, 2min{u([),v,gii,x )
(Dye (@) mam (n=1) myam (. (i) (@)
P((ﬂn ) ) < n,B(,-)P(M > k)+N(1—pminnmz /4 ) =247 (p) —np@) |, 42)
for M ~ Bin(n — l,pfﬁéxnmzm).

Proof. Observe that if R}E;fn > z, for some z > 0 and if for two points of X;, X; € C () holds that
d(X;, X;) < z, then we have that X; € kNN(X;) and X; € kNN(X;) . Furthermore, if we can find a
covering of C\¥) . Col') (z/4) of a finite number of balls of radius z/4, where every ball contains at
least two points of C(?, then points in neighboring balls have distance less than z. Hence they are
in the list of k nearest neighbors of each other and every pair of points will have a shared neighbor.
This implies that every point in C¥) ~. Col”)(z/4) will be connected in Ggyn (k). Notice that
points in Col”) (z/4) will have at most distance 3z/4 from the balls of the covering and since every
ball includes at least two points of the cluster, we conclude that the points of Col”)(z/4) will be
connected to C) < Col)(z/4). As aresult, the points of C) will be connected in Gsyy (k). Let
ﬁ(i) be the event that, given a covering of C) \. Col (z/4), there exists a ball that doesn’t contain

(@)

at least two points of C(), Based on the above observation, {R,:, > 2kN (ﬁ(i))c implies the points

of C® will be connected on Gsnyn (k). Therefore,

P(A)) < P({R), < 23) + P(727) 43)

For P({Rf:m < z}): We define Ny = |{j # 5|X; € B(X,,2)}], for 1 < s < n. Then,

if the event {R,(ﬁn < z}istrue =
X, € CY s.t. max{d(y,X;) | y € kNN(X,)} < z =

ax, e st N, > k.
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Therefore, RY <z;C Ny >k}n{X;eC 11 and then we have:
min

s=1

P({R0, <2}) < 3" P(Ny 2 k| X, € CV)P(X, € CO) < npyP(M = k).
s=1

Here N, | {X; € CY} ~ Bin(n — 1,u(B(Xs,z)) and u(B(Xy,2)) < sup,cco 4(B(x,2)) <
pr(f;)zlxnmzm. Hence, P(Ns > k) < P(M > k), for M ~ Bin(n — l,pl(r?axnmzm) and n,, the volume
of the m-dimensional unit ball.

For P(ﬁ(i)): Since CY is compact and connected, we can find a covering of C 0 Col® (z/4)
with N balls, B1(z/4), ..., Bn(z/4) of radius z/4. Let us denote, Px, p, = P(X; € Bs(z/4) | X; €

C(i))P(Xj e C9)) the probability that the point X;isin C and in the ball By(z/4). Then,

P(ﬁ(i)) = P({Els’l < s < N, s.t. B;(z/4) has less than two points of C(i)})
P

{Bs(z/4) has less than two points of C(i)})

M=

I
I
—_

N
P({Bs(z/4) has no points of C(i)}) + Z P({BS(Z/4) has exactly one point of C(i)})
1 s=1

M=

N
n n

N
ﬂ(l =P )+ >, > P | (1= Prs)

M=

s=1 j=1 s=1 j=1 q#j
4.4)
Now we notice that,
Px, 5, = i(Bs(z/4)) < sup u(By(z/4) < pineiimz™ /4™ and, (4.5)
BycC®)
Px,p, = H(By(z/4) > inf u(By(2/4)) 2 pyiiine" 14" (4.6)
gCCY

where pI(I?aX is the supremum of density attained by points of C) and pr(gn the infimum of the

density attained by points of C'¥) . From inequalities 4.5, 4.6, we can write 4.4 as,

p(® 1= p@ o mygm\” D) o mygm (g _ @ o m g
Fo ) < N1 =pimz”/ + 1N praxtim?” /| Poinltm?"/

N(1 - @) mjgm (n—1) 1— @) myqm (@ myqm
Poinltm? | P M2 [4" + npadim?” |
. (n-1) . .
T (1 (0 np;a;x>)
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()
For the covering we will use a standard %—packing. Also, since i < V’”%, balls of radius z/8
around the packing centers are disjoint subsets of C¥). Consequently, the total volume of the N
balls will be bounded by the volume of cluster C”) and hence N nmg—z < Vol(C®). Finally we get

the following bound for the number of covering balls, N,

()
N < w 4.7)

N g
O

Now we will explore the connectivity of points from different clusters in G gy (k). We say that

CY is isolated on Gsyy(k), if there is no edge between sample points of C(?) and any other cluster.

Lemma 2 (Between clusters connectivity in Ggyn(k))
Let In(i) be the event that C% is isolated from all other clusters in Ggyy(k), then for k <
p(uMn/2 - 2log(Bn)

P((I,f"))") < Ze_%(m#_k_}) (4.8)

Proof. For the construction of the Ggyn(k), we practically start with constructing a symmetric
kNN graph, G yn, and then we remove the edges of points that do not have common neighbors in
their k-nearest neighbors lists. This implies that points that aren’t connected on the G yx will not

be connected on the Ggyn (k). Hence,
(I,q(i))c — {C(i) is not isolated in Gy }

P((J',l(i))c) < P({C(i) not isolated in GkNN})

P({Ri = u®})+ 3 P({RU = u™})

J#L

P({Ri = u®}) + > P({R = u'})

J#

IA

IA

K _n__l(p(u(o)_u)
< Z e 2 2 n-1
i=1
where we get the final bound for k < p(u'?)n/2 —21log(B”n) and using Preposition 6 and Lemma

7 from Maier et al. (2009). Here, u” < '/ and p(u?) is the probability of balls of radius «”) in
c. O
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Lemma 3 (Range of k for within-cluster connectedness)
Ifk > 4m+1 10g(2np,(12,xV01(C("))8m) and k < (n — 1)p,(,21x77m min{ (u®)™, (v,(,zlx)m} then,

min

; 1 n? ——(k_l)p(f)
P(A)) < (24 g Je i (4.9)

Proof. Our overall goal is to find appropriate values for k such that P((?{,(f))c ) has an upper bound
that goes to zero as n goes to infinity. We will find upper bounds for the two terms of the inequality
4.2.

We will use the following inequalities in the proof:

. . . _ _k
(Hoeffding’s inequality). Let M ~ Bin(n, p) and define & = . Then,

a > p,P(M > k) < ¢7K(allp) (4.10)
where K (a||p) = a log(%) +(1-a) log(}_;;”) is the Kullback-Leibler divergence of (a, 1 —a) and
(p,1-p).

(1st logarithmic inequality.)
-1
log(x) > ==, forx > 0 @.11)
x
(2nd logarithmic inequality.)
log(1 —x) <x, forx < 1. (4.12)

For the first term of 4.2, we use inequality 4.10 for p = pﬁ,?axnmzm and @ = nkj Now, assuming

that p < @ and that k < n — 1 we get,

) < e—(n—l)(alog(%)+(1—w)log(}:—g)) < e—(n—l)(wlog(%)ﬂ)—a))

nBP(M = k . by 4.11.

Let 0 = n,,z™ /a then we have,

-k (log( Hpiig,x )+6p,(31x—1))

nﬁ(i)P(M > k) < nPge

(0)
OPmax

—%(log( L )+9pf,ﬁ)ax—1))

(1)
Pmax

log(nﬁm)—k(bg( ' )+9p£121)(_1)) (4.13)
e

<e

b
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for k such that log(nf;) < %(log( 0 ) + opl) 1). That way we attain a lower bound for k:

mux

2log(nB;
‘= ) lB(l)(?) (4.14)
log( p(t) ) + gpmax -1
For the second term of 4.2 we have,
(n-1)
N (1= Dl 147) (1= mn" 47 (P, = o)) =
(1 _77mZm/4m(pI(3n npflfl) ))e(”—l)10g(1—p$fnnmz'”/4m)+1og(zv) <
(n=1)log(1-p!8) e [4") g (Y2470
(1 - anm/4m( I(Tllin — npr(;lllx))e m g , by 4.7.
Now we use the substitution 7,z = fa = nGTk]
(n=1)
W1 ) (1= 147 05, =)
ok @ ) \) 20 g (Yot o)
( +m( pmax_pmm) 4 og( ok )S e
() . ( 1 )
o () _ (@) ) - oin slog (YeUC D"
(1 s (npt = pl) o s (5722)
0
on (0 (i) _k 917'r21n
(1 ¥ m(ﬂpmx _pmin))e 27,

(Vol(C(i))Smn) < _ k Pr(,;)n
6

where the last step of the inequality 4.15 holds if — Zluin 4 1o og < —5—® or equiva-

lently if,
4m2 Vol(C)gm
k> — log( ol - )87 (4.16)
mell’l
To bound inequality 4.13 with the upper bound of 4.15 we need,
(i) ()
911 ( ) ( ) ap_rr,n/lm (IOg( ( ) )+6pmux 1))
(1 o) ol

(i) .

for which it suffices to have, ggi,mni“ < (log( ) + Hp,(?;)ax - 1)) or equivalently —log(y) >
(i)
I1+y— gn p(",’;" for y = Hp,%x. The above is satisfied for values of y that —log(y) > 1 +vy — 3—y,
pmax
(i)
since ﬂ"ﬁ < 4 Such values of y could be 167 E and others. We will use y = %, which will result
tof = (l) and the probability inequality in Lemma 1 can be rewritten as:
2 max
1 kpr(rl;t}n 1 2 (k= l)pr(riz)n
(l) c n (l) (l) - m+1 () n m+l1 (l)
P(@) <2(1+ = a0 ("Pms =P Je s < (24 e
max
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Now we return to the range of k. We substitute the chosen value for 6 in 4.14 and 4.16
and we observe that the largest of the two lower bounds is the one in 4.16. This is because
Biiy = w(C) < plaa Vol (CD).

Hence, we conclude that an appropriate lower bound for k is k > gm+l log(2n p,(j;)axVOZ (e (i))Sm).

From the assumption 7,,z2" = fa and that z < 2min{u?, v,(,iz,x} we get an upper bound for k.

k < (n=Dpjuin & k < (1= 1)pjutin min{ )™, (Vi)™ O
The theoretical results we derived so far provide us with probabilities of having connected
components in the graph Ggyy(k), isolated from other components that each correspond to a

specific cluster. Now, we want to explore the probability that the step of spectral clustering on

Gsnyn (k) of algorithm 4.1 will yield exact identification of clusters.

Theorem 1 (Optimal k for exact identification of clusters)

Fork =c(1+ dlog(m)+(n—1)pmin ), where c such that k will satisfy k > 4™ 10g(2npf,iLxV01(C(i))8m)

2+ Pmin
4" pmax

and k < min{p(u?)n/2=210g(Bon), (n=1)ppmaxtm min{ )™, (v )"}}, fori € {1,.... K},

the algorithm 4.1 achieves exact cluster identification with probability

1 n? _k=Dpmin _u(m_u)
P(Q) 21~ K (24 gt )e o - g T
4mp — 1

K .
Proof. We will start our proof with some notation. Let A, = ﬂ,(,l), the event that for each cluster
i=1

its points are connected on the graph. Correspondingly, let 7, = (I% .Z,,(i) be the event that every
cluster is isolated from the other clusters on the graph Gsyy (k). lillhen, we denote with @, the
intersection of ‘A, and 7,,.

If Q,, is true, then with an appropriate permutation of rows, the adjacency matrix W of G gy (k)
will be block-diagonal and each block will correspond to a cluster. The first step of our proof will
be, to explain how each of the Laplacian option will utilize the block structure of W to achieve exact
clustering. The second step of our proof is to find an optimal choice for k and an upper bound for
the probability of event (Q,)°.

ForL =D - WandL =I—- D !'W : According to Propositions 2 and 4 of von Luxburg (2007),

the unnormalized Laplacian and the random walk Laplacian have eigenvalue zero with multiplicity
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equal to the number of connected components on the graph. Furthermore, the eigenspace of
eigenvalue zero is spanned by indicator vectors 1), fori € {1,...,K}.

If Ggyn (k) has a connected component for all the points that belong to a unique cluster, and
the components are isolated from components that correspond to different clusters, the matrix W
will have a block structure and every block will include all the points of one cluster.

The matrix V with columns the eigenvectors of L will hence be of the form V = BM, where M
is an orthogonal matrix and B is a block diagonal matrix with columns the indicator eigenvectors
Lcw, fori € {1,...,K}. Now, notice that V will also have a block diagonal structure and the rows
of every block will be equal. On the other hand, due to the block structure of V, columns of V of
different blocks will be perpendicular to each other. Hence, kmeans on V will choose one row from
each block as the centroid of a cluster, and as a result points of the same block will be clustered
together.

For L = D-2WD~2 : We observe that L = D"2WD~> and Lsym =1 — D WD~ have the
same eigenvectors but different eigenvalues. Specifically, if v is an eigenvector for the eigenvalue
A of Ly, then v is an eigenvector for the eigenvalue —A of L.

According to Proposition 4 of von Luxburg (2007), Ly, has eigenvalue zero with multiplicity
equal to the number of connected components in the graph and the eigenspace of zero is spanned
by the vectors {D‘% Tewy,. .., D~z Tew )

In this case, the matrix V of eigenvectors of L will be of the form V = D™ BM , where M is
an orthogonal matrix, and B is a block diagonal matrix with columns the indicator eigenvectors
L1cw, fori e {1,...,K}. This time the rows of V that correspond to points of the same component
can be seen as vectors that aren’t identical, but, interestingly, have the same direction and different
lengths. For this reason in algorithm 4.1 we do not apply kmeans on V, but instead on V which is
equal to V after row-normalization. We observe that the rows of V that correspond to points of the
same component will be equal. The columns of V of different blocks will be perpendicular to each
other. Hence, kmeans on V will choose one row from each block as the centroid of a cluster, and

as a result points of the same block will be clustered together.
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Moving on to the second step of the proof, we will calculate an upper bound for P ((Qn)c). Let

Pmin = rlninK p(u(i)) DPmin = rlnm p,(nz L, and pgy = r{lax pﬁn)ax We notice that by Lemma 3, for
i=1,...,

k > 4m+] 1og(2np,§2,xv(;z(c<l>)8m) andk < (n=1)p") p, min{(u®)", (v Yy fori=1,...,K,

we have that,

S (0) X |2y~
i m+1 (l)
P((A)) < . P(AD)) < D24 g )e b
i=1 i=1
N (2 1 n? )e‘—ifmll),fﬁfi (4.17)
= 4my—1
i=1
1 n? _ (k=D ppmin
:K(2 47”_ 1)6 4+ pax

If we additionally have that k < p(u®)n/2 -2 log(B(;n) foreveryiin {1, ..., K}, then by Lemma

2
K o K _n_—l(/)(u(l))_ﬂ)
((I) ) ZP((In(l))c) < KZe 7 -l
i=1 i=1
K n— min _ k-1
SKZe_TI(pT n_i) (4.18)
i=1
_n_—l(fm_u)
— K2€ 2 n—1
Hence,

P((@¢) < P((A)¢) + P(T)) < K2+ 4imn”_2 e TR E )

Now we want to choose k such that the bounds of 4.17, 4.18 will be of the same order.

Equivalently we want,
_(k_l)ﬁmin —%(%_E)

gl Pmax — e

ne

; 41 —1)pmi . . 41 Do, :
which holds for k = 1 + H&WHDowin 1 conclusion, choosing k = (1 + H08WHA-Domin) o
Z+ Pmax 2+4m;,n#

a constant ¢ such that k will satisfy the conditions for inequalities 4.17, 4.18, will let P((Qn)c) go

to zero exponentially with n. OJ
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4.3.2 Noisy case

4.3.2.1 First approach to noisy case: Remove low-density points
We now explore the connectedness and isolation properties of clusters predicted by 4.1 when

there are noise points in our sample - points that do not belong to any cluster and have low density.

’

In this case, we apply spectral clustering on G,

(k), the graph that doesn’t include any points with
P(x) < t—2¢, and their edges. The clusters of the L( —2¢,) are denoted as C)(2¢,). The value ¢,

is the error in density estimation. We choose to work with clusters of the L(t — 2¢,) to ensure that

’

the points of the L(#) set will not be removed from the G,

(k). Additionally, €, has the property
that dist(CY (2¢,), CY)(2€,)) > u® forevery i, j € {1,...,K}. We denote with ﬁgzn,ﬁ%){ the
minimal and maximal kNN radius of C¥)(2¢,) and with B(i) the mass of C)(2¢,), u(C9(2¢,)).
Finally, 5(u”) is the probability of balls of radius ¥ in C)(2¢,). The aim of this section is to
illustrate how to extend the connectedness and isolation results for the clusters C®) i = 1,...,K in
the noisy case. In more detail, we prove that G, (k) will have so many connected components
as the number of clusters K and each component on the graph G%, \ (k) will correspond to a
unique topological component of the L(¢ — 2¢,) set. Furthermore, the component of G%,, (k)
corresponding to C¥(2¢,) will include all the points of C) and some additional points, but it
will be isolated from all other components. Hence the adjacency matrix of G, (k) will again be
block-diagonal and spectral clustering will predict clusters that include the points of C¥) plus some
boundary points. We further prove that as the sample size n increases, the ratio of boundary to
cluster points will go to zero and allow spectral clustering to yield a grouping only of true cluster
points achieving that way exact clustering. Let Z),Ei) be the event that |p,(X;) — p.(X))| < €, for

every X;,i=1,...,n.

Lemma 4 (Range of k for within-cluster connectedness in noisy case 1)

Let ﬂ,(,i) denote the event that the points of cluster C% are connected in Goun(k). If k >

4 log (2npys Vol (CO)8™) and k < (n = 1) pyytitn min{ (@)™, (viya)™} then,

(k-1)t

. 1 2 - :
p((ﬂ,?)f) < (z+4—m””_ l)e RO +P(z>,§)
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Proof. We assume that Z),Si) holds, and we use the steps of the proof of Lemma 1. There are no
difference in the bounds for P({R,(,i?n < z}) < nBiHP(M > k). We recall that ﬁ(i) is the event
that, given a covering of C\(2¢,) ~. Col”)(z/4), there exists a ball that doesn’t contain at least
two points of C)(2¢,). In the noisy case, this event can happen either if some ball in the covering
contains less than two points or if some points of C) were discarded. If the event D,(,i) holds for a
point x then p(x) > t — €,, then x will not be removed at the denoising step. Additionally, pi, = ¢

in . Consequently,
() mqm (n=1) mqm (@) c
P(?‘—'Z )SN(l—mmz /4 ) 1= 72" 4" (1 = nplid) +P(Z)n) (4.19)

We find the final bound of P((ﬂ,(f))c ) by following the proof of Lemma 3 and using the inequality
4.19. 0J

Lemma 5 (Cluster size probability)
Let B,gi) denote the event that there are more than 5n sample points from cluster CV. If By >0

then,

, Log (P =%)?
P((Br(zl))c) < e_énﬁ(’)( B )

Proof Same as in Maier et al. (2009) Lemma 4. [l

Lemma 6 (Density estimation error)

Let 8,?) denote the event that there are less than én points in all the boundary points sets

. . K . . .
CY(2€,) \ CD together. If Y. u(CY)(2¢,) \ CY)) < §/2, we have P((S,(f))c) < e /8
j=1

Proof Same as in Maier et al. (2009) Lemma 5. ]

Proposition 1 (Cluster connectedness in Gy, (k))

Let C,Ei) be the event that in the denoised graph G’ (k) it holds that:
- all sample points of C,(,i) are contained in the graph
-the sample points of C,Ei) are connected in the graph

-there is no component of the graph that consists only of points outside the L(t) set.
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Then under the conditions that

1. By > 26

2. €, sufficiently small such that ,u(CJ C(2e,)\ CV) <6/2
3. k > 4l 1og(2mp£,?wyol(C@)g;)l and

4.k < (n = D)pjuiin min{ ()", ()"}

and for sufficiently large n we obtain

k-1
1 n2 __(k=Dr

P(C)) < (24 3 e i +2e7 1 2P (D) (4.20)
Proof. We observe that:
P((C")) < P((A)) + P((87)) + P((617)°) + P(DS")°) and use 4,5 and 6. O

Lemma 7 (Between clusters connectivity in G\ (k))

Let In(i) be the event that C\)(2¢,) is isolated from all other clusters in G,

sy (K), then for k <
p(un/2 = 2log(Bn)

n-l (p(u(i)) k=1

P((In(l))C) < ie_T 2 -l

7 n—l) ¢
> + P(Z)n). @.21)

Proof. We follow the proofs of Proposition 6 and Lemma 7 from Maier et al. (2009). 0

Proposition 1 and Lemma 7 will now be used to find a range for k for the rough identification
of clusters C)(2¢,) with spectral clustering on G’y (k). With the term rough identification, we
mean that all points of each true cluster C) belong to the same predicted cluster, which may also
have some additional points that do not belong to any cluster. Two important conditions for the
results of exact cluster identification are the following:
Condition I:

a) k > 4™ log(2npl) Vol (C1D)8™) and

b) k < min{p(u®)n/2 = 210g(Bin), (n = 1) Pyt min{ (@)™, (Vi )"},
Condition 2:

a) By > 20

b) p is three times continuously differentiable with uniformly bounded derivatives
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K . .
¢) €, sufficiently small such that u(|J CY)(2¢,) \ CV)) < §/2.
i=1

Theorem 2 (Rough cluster identification in noisy case 1)

If condition 2 holds, an optimal choice of k for the identification of clusters C® is k = c(l +

4 10g(n)+(n— 1 )pmin

), for a constant ¢ such that k will satisfy condition 1 for every i € {1,...,K}.

Also for a kernel density estimator p, with bandwidth h there are constants Cy,Cy such that if

h? < Cien:

1 2 __ (k=Dt _n_—l(fm_k_:l
P(Qn) 21—K(2+— ! )e P Tomar 4 K2 2\ 2 "

o) 2
) +2e7"8 4 3¢ C"6n
4mn -1

where Q, is the event that the algorithm 4.1 roughly identifies all clusters C.

Proof. If In(i) is true for all clusters C”)(2¢,) then for every i such that 1 < i < K, there will be
no connections between the subgraph of G¥,, (k) containing points of cluster CY) and any other
cluster. Furthermore, if c,f” holds, then all points that belong to C? are connected on Gyn (k)
and points outside C¥) are discarded or connected to points of C). If In(i) and C,Ei) hold for
every cluster, then the adjacency matrix W of this graph will be block diagonal. Each block will
correspond to a cluster C)(2¢,) and spectral clustering will roughly identify all C‘). To prove
that, we follow the same argument regarding the different types of Laplacians as in the proof of
Theorem 1.

K .
Let Q, be the event that that clusters are roughly identified by algorithm 4.1, C, = N C,gl) and
i=1

K .
I, =N In(l). Then using Proposition 1 and Lemma 7 we obtain,
i=1

@) = (G or{inr) = Ko e e

Wherepmin: min p(u(i)) andpmax: max pﬁf?ax'
i=1,...K P

According to Lemma 9 of Maier et al. (2009) if p € C%(R™) with ||p||co = Pmax and p’(x) £ 0

for x in the neighborhood of {p = ¢} then for sufficiently small €,

K K
p( e @e)\ D) <€ 3 vol(0CD) paren.
izl l:1
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for some constant C. Under those conditions for p and Theorem 3.1.7 of Prakasa Rao (1983),
there exist constants Cy, C; such that when we choose bandwidth /4 for the estimation of density p
that satisfies h? < Cje€, we get that P((Z)n)c) < eConh™e; Hence, under the conditions for k of

Proposition 1 and Lemma 7,

2

(k=D ( - ) 5 oo
Je T Toner 4 k2T T UE T o g 3emCne 420

) skl

To find an appropriate value of k so that 4.22 holds, we follow the same argument as in the

proof of Theorem 1 and noticing that last term of the bound of P((Q,)¢) is independent of k. We

41 D)o
Ogéi)Jr(", )Omin ), for a constant ¢ such that
AMpmax

find that an appropriate value for k will be k = ¢(1 +
condition 1 is satisfied. Again P((Qn)c) goes to zero exponentially with n. O

It is important to notice that as n increases the boundary points found in C® (2¢,) \ CV),i =
I,...,K will decrease and will be significantly less than the points of the L(t) set, leading to
cleaner predicted clusters. Actually C(2¢,) will collapse to C)). We will refer to the term exact
identification when rough identification of clusters is achieved and the ratio of number of points

that do not belong to any cluster to number of cluster points goes to zero.

Theorem 3 (Exact cluster identification in noisy case 1)

Let p be three times continuously differentiable with uniformly bounded derivatives and let p,, be
a kernel density estimator with bandwidth h, = ho(logn/n)ﬁ Jor some hy > 0. For a suitable
€ > 0 set g = eo(logn/n)ﬁ. Then there exist constants ci,cy such that for n — oo and

cilogn < k < can we obtain cluster CY is exactly identified by algorithm 4.1 almost surely.

Proof. According to Proposition 8 of von Luxburg (2007) if N.j,szer 1S the number of cluster points
and Nnocruster 1S the number of points that do not belong to any cluster, then for €, that goes to

K _
zero as n goes to infinity and S = 3. f;), there exist a constant D such that for large n,
=

D 5 .
P(NNUCluster/Ncluster > 4E6n | Cn) < e—}lDe,,n t+e— l’l§ + P((@n)c) (423)

We can choose ¢y such that h,% < Cg, for a suitable constant C. Then there exist C; > 0 with

m . m_ _4
P((Z)n)c) < e~Cnhilel  Notice that nhe? = hg’eon(lo%)””“(l(’%)m+4 = h{'eologn. Hence,
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> P((Dn)c) < oo. Furthermore by inequality 4.23 we have ), P(NNocms,er/Ncluste, > 4%6,1 |
i=1 i=1

Cn) < oo. Following similar proof as of Theorem 2 we can find constants ¢y, ¢, such that for
cilogn < k < con cluster C @) will be roughly identified almost surely, and as a result the event C,

will also occur almost surely. Consequently, Ny,ciuster/ Neiuster — 0 alomost surely.

4.3.2.2 Second approach to noisy case - No removal of points
As before we denote the connected components of the ¢-level of the density p by C\V, ..., C\K).

For the rest in the support of p (i.e. B = supp{p} Ufi 1C(i)), we denote:
CO={xeB:i= argminlsjst(x,C(j))}, forl <i<K.

The ith cluster consists of C and C¥) and no point is removed. Let cluster i be denoted as the
set C) = C y C®, We describe the noisy case as the event that the minimal distance of points
between C) and C® is zero. For this reason, for the minimum density of points in C\¥, p,i, , will
hold that p,,;, > 0. Consequently, C¥) is connected topologically. The following results correspond
to clustering with algorithm 4.1 and the choice of graph Laplacian to be the unnormalized, i.e.
L =D —W. Let us denote the “ideal" version by L = D — W, namely; W is the revised version
of W by removing all connections between different clusters. So W is a block diagonal matrix (up
to permutation of the nodes), with each block corresponding to a true cluster. Table 4.2 provides

notations for this case.

Lemma 8 (Connectedness of C%))
Let C,gi) be the event that the sample points in C®) are connected. Then under the conditions:
1. k> 4m+llog(2np,(,i)6,xVol(C_’(i))8m) and

2. k<2(n- l)p,(,i)axnm4m min{(d,(,i))m, (v,(,lex)m}, we obtain

. 1 n2 _ (kfl)pr(rit}n
P(C)) < (2 g ——p)e e, (4.24)
Proof. We find a covering of C") (p}SZn +€,) of N < Vf]Lfrf:)) balls with radius z/4, where
m gm
z € 4(0, min{d,(l’), v,(,’llx}). If each of the covering balls contains at least two points of C\) and
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o0 c U Ao
p supremum of density attained by points of C(*)
p(’?n infimum of density attained by points of C¥
ur?’ lower bound on distance of C®) to all C'/) with j # i
u'/ distance between r C) and C/)
p(u®) probability mass of balls of radius u in C”
Pmin . min p(u(l))
) i=1,...K ‘ o
A(u®) probability mass of balls of radius u® in C®
ﬁmin i:rlr,l.i.IEKﬁ(u(l)/z) .
B probability mass of C®
ﬁmax li?aXK ﬁ(i) »
A probability mass of C®
lam'ax 1in1f1,§1<’&(")
Ié}gﬁn minimal kNN radius of C®)
RY RY | maximal kNN radius of @, C®
d\ minimum distance of C ( p,(qzn +€,) from C
k@ the minimal curvature radius of C®
v,%x ma(x){v | C®\ Col(v)is connected} and Col'? is the collar of C”
y<k!t
Table 4.2 Notations.

{Ié}g;zn > 7z} then neighboring covering balls will contain points that share common neighbors and

hence they will be connected. We follow the arguments of the proofs of Lemma 1 and Lemma 3 to

obtain '
5 k-Dpll)

_ min
i
)e gqm+l P;(nsz

; 1 n
P((C)) < 2+ p—
under the stated conditions and with pf&x, pfgn to be the supremum and the infimum of density

attained by points of C(®), 0

Lemma 9 (Isolation of every C from all C\V))
Let 1, denote the event that every point in any CY is not connected to points in any CY) for j # i.

Then for k < ﬁ’”%n —2max{log(fmaxn), log(Bmaxn)} we obtain

(4.25)
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Proof. Let jn(i) denote the event that every point of C) is not connected to points in any C/) for

j # i. Then CY is connected to some C') for j # i, if either the event {R,(,’,Lx > u®} occurs
or J {R,(,{C),x > u(1) |2} occurs. Following the steps of the proof of Lemma 2 we obtain under the
Jj#i
5(u® /2
conditions that k < p(”2 ) — 2log(fi(yn) and for every j # i that k < p(” )

—2log(B(jyn). We
reach the stated results observing that 5(u;y) > p(uiy/2) = Pmin, p(u(j)) > p(ujy/2) = Pmin and

- K .
that P((Z,)°) < 3 P((£")°). 0
i=1

Proposition 2 (Distance between the eigenspaces of L and L)

Under the conditions,
1. k> 4’”+llog(2np%xV01(C_‘("))8’")for everyi,1 <i < K and
2. k<2(n- 1)p,(,;)ax77m4m min{(d,(,i))m, (v,(,zlx)m}for everyi,1 <i < K and
3. k < Lo — 2 max{10g(fimaxn), 108 (Brmaxn) },

there exists an orthogonal matrix O € RX*K sych that

5
i 22VK 3K 7
w0 - o))y < X2 2=
A*(L)
2 (k=1)Pimin _n_l(pmzn+f’mtn_2(k 1)) 5
with probability at least 1 — K(2 + g -"5)e T omay + K2e : "), where U,U are

eigenvector matrices of the K smallest eigenvalues of L, L, respectively, fi; is the size of C? and

A (L) is the K + 1 smallest eigenvalue of L.

Proof. Let C, be the event that every cluster C® is connected on Gsnyn (k). Then if k satisfies the

the conditions of Lemma 8 for every cluster we obtain

2 (k=1)Pmin

P((C))°) < K2+ im . D) T oman, (4.26)
p

where pin = rlmn p,(nz o and ppgy = rlmn p,(n)ax Removing any edges that connect subgraphs of

different clusters will result in a block diagonal adjacency matrix W. As we explored in proof of
Theorem 1 this is equivalent with exact cluster identification by spectral clustering.
Furthermore, let 7, be the event that every set C(?) is isolated from other sets C\/) for j # i we

obtain following the proof of Lemma 2 that if k < £zn" "“"” —2log(Bmaxn) then

P((Z)°) < K?e _Tl(me_k_:) 4.27)



Since 2222 — 210g(Bmaxn) > ’M 2max{log(fimaxn), 0g(Bmaxn)} we observe that the if
k < M 2 max{log(fimaxn), 0g(Bmaxn)} the upper bounds of inequality 4.27 and inequality
4.25 will hold. Now let us denote with S,, the event that the only connections between any pair of

clusters C9, C) are from the samples in CY and C). Then,
P((Sn)°) < P((C)°) + P((Z)°) + P((£,)°) (4.28)

and if k satisfies the condition for the upper bounds of those probabilities we obtain that,

2 (k=1)pynin _n_l(/)mm‘*‘f’mm_z(k 1))
)e 4m+lpmax +K2 n—1

c I n
P((S))) <K+ T (4.29)

Additionally, Theorem 2 in YU et al. (2015) we have that there exists an orthogonal matrix

O € REXK guch that

3 ~
o - o)) <« 2RI HE
A (O

where U, U are the eigenvector matrices of the K smallest eigenvalues of L, L, respectively, | [L-L||»
is the spectral norm, and A*(L) is the smallest non-zero eigenvalue of L (i.e. the K + 1 smallest

eigenvalues of L). Now we would like to bound ||L — L||». First of all,
IL = Lll2 < [|D = D|l2 + [|W = W|[2,

and ||W — W||, is determined by the between-cluster connections. So if the event S, occurs and

because Jaccard similarity < 1 we notice that

K
W - Wil < Z

and

where 7i; is the sample size of C¥. Hence, under the condition for k we conclude that

5
- 23VK K 7
100 Oy < 2K 27
A+(L)
_ k=D Pmin __l(/)mm"'ﬁmm_Z(k 1))
with probability at least 1 — K(2 + 4K . 1) ¢ T pmax + K2e 2 5 e -
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Definition 3

The mis-clustering error is defined as

1 n
M, = min — g 1(o (g ;
n = min 2 (o (Gi) # qi)»

where q; is the true cluster label of ith data, §; is the estimated one and Sk is the set of all possible

permutations of {1, . .. K}.

Theorem 4 (Mis-clustering error bound)

Under the conditions,
1. k> 4"”“log(2np,(,i)c,xVol(C_’(i))8m)for everyi,1 <i < K and
2. k<2(n- 1)p,(,?axnm4m min{(d,(li))m, (v,(,lex)m}for everyi,1 <i < K and
3.k < L — 2 max{10g(fiman), 108 (Buaxn) },

we obtain
256n*K (XX, i;)?
n A*(L)?

| 2 _ (k=D Pmin 5 _n=l (F’min*z'ﬁmin _2(k—ll) )
. “7 . n 1 n—
with probability at least 1 — K (2 + 4—mm)€ e + K2e

Here, n* = 1max n; for the size of clusters é(i), ni,1 <i<K.
<i<K

Proof. We notice that {g;}_, are obtained by running k-means on U € R™K Let us define their

associated centroids by {fz,-};?zl. Note also that {fz,-}:?zl have K unique vectors. Further define

. 2
H = argmingegnxk. pas k unique rowsl |U - H| |F'

i
hy
| L

It is clear that H = e R™K_ We define the set A = {1 <i<n:||h- el.TUOTHz > \/;7} ,

hy
where {e;}_, is the standard basis of R" and n* = lma);( n; where n; is the sample size from the ith

= <i<
cluster C) U C. Then,
|hi — el O, < ,fori ¢ A. (4.30)
n*
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Also,

o
o

()
Il
.5k
e}
n

]
(]
[

with P being orthogonal. By 4.31

. . 2
llef TOT - 00" ||, > /=
n

Combining 4.30 and 4.32

1

|hi =00 |2 2 ||e] U0 —eLTO |2~ || hi—e] TOT||2 > ||e] TOT €S TO" ||, -

Consequently,

2n*
n

1 1 1 A 7
M, < —|A] < - E 1< -2n" § 1h: — ] O[3 <
n n n
i€A i€A

I|A - 007| )%

*

<

n
8n*

n

8n* ~2
lUO - Ul

n
: 2

< U - TOT||5

8n*
<

n A*(L)
_ 256n°K (XK, 7i;)?
- oon ax(L)?

b

2

>
2n*

(4.31)

(4.32)

1
2n*

n ~ - 2
(1 = Ul + 10 = GO 1

(k=1)pynin n=1 | PmintPmin _ 2(k-1)
Tml 2 n—1

using Proposition 2 with probability at least 1 — K (2+ 4%, n”—_zl)e_‘*’"”pmax +K%e

4.4 A general algorithm for tuning of clustering method parameters

O

To construct an SNN graph as we described in section 4.2.1 one must first construct a kNN

graph and then remove edges between kNN neighbors that do not share any of their neighbors. The

parameter k affects the structure of the SNN graph and hence any other method that is based on
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it, as for example the algorithm 4.1. A lot of SNN graph-based clustering methods (Stuart et al.,
2019; Xu and Su, 2015) do not use data-driven ways to decide on the value of k.

Bellow we introduce a general cross-validation tuning algorithm called kcv tuning that provides
an optimal choice of a clustering parameter based on the data information. We apply this algorithm
to find an optimal choice for the parameter k of the number of nearest neighbors used in the SNN
spectral clustering algorithm 4.1 in simulated data of different signal-to-noise levels and data feature
structure.

The simulated data are described in section 4.4.2 and the tools used to assess the performance of
algorithm 4.3 are introduced in section 4.4.3. The performance results are summarized in section

4.44.

4.4.1 kcv tuning algorithm

The introduced cross-validation method suggests a tuning of a parameter k of a clustering
method, based on the idea that when the clustering is optimal, points in the same cluster can predict
with high accuracy features of points in the same cluster. A similar methodology has been used for
the tuning of model parameters in Li et al. (2020).

The kcv tuning algorithm works in N folds.

- Given a dataset X, in every fold a version of X is created by randomly removing 10% of the
entries of X.

- Then, Singular Value Thresholding is applied to each version to extract its low rank approxi-
mation and hence a completed matrix, A.

- The chosen clustering algorithm is applied on A for multiple values of k.

- Next, the missing entries of X are predicted. Specifically, a missing feature of a data point
in the predicted cluster ¢, associated with a specific value k, is predicted by data points of X that
belong also to cluster c.

- The optimal k is chosen to be the one that attained the lowest average prediction error across
the N folds.

Notice that for the completion of A7, we first find its SVD, i.e A = UD VT and then we use SVD
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thresholding to obtain the final result Al = %UD,;VT, D; =diag(D1,1,D2p, ..., Dt 0,..,0).

Algorithm 4.3 kcv_tuning.

1: Input: X € R™ number of clusters K, clustering function G, nearest neighbors k, number
of folds N, prediction method (mean, ols, lasso), low-rank approximation threshold &, training
percentage p

2: Output: Optimal number of nearest neighbors, kqptimal
3:
4: for g=1to N do
5: A? « X with (1-p)% of entries randomly replaced by 0
6: I, < {(i, j) : x;j replaced with 0 in A}
7:
8: % A9 completion via Singular Value Thresholding
9: A% « SVD on X with threshold &
10:
11: % Evaluation of the performance of k
12: for k =10to [%], by 20 do
13: b = G(Aq ,K, k) « predicted membership
14: for {i,j} €1, do
15: C; < points in the same cluster as point i
16: Y=[X,]forr € G
17: Z=|[Xy]forr e Ciandt # j
18:
19: % Prediction of missing values
20: if prediction_method = mean then
21: R 4
22: else if prediction_method = ols then
23: B — argming{||Y — BZ|I*}
24 )Ei j — ,BAZ
25: else if prediction_method = lasso then
26 o, B — argminyg{|1Y = BZII* + AllBlI1}
27: X i< BZ
28:
29: % Mean prediction error of k in fold q
30: Lig = 117 Zipyero (ij = %))
31:

32: Y% Mean prediction error of k
33: Ly = % Zi]vzl Lk,q

34:

35: Y% Optimal k

36: koptimal = argmink(Lk)
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4.4.2 Simulations

We test the performance of the algorithm 4.3 when used for the tuning of parameter k of
algorithm 4.1, on various Multivariate Gaussian (MG) data. We consider a simulated data set of n
data points xy, x2, . . ., X, € R™, that are grouped in K clusters. The data are independently sampled

from a Multivariate Gaussian mixture model:
K
Z N (i, Z).
i=1

The coordinates of the centers of the Gaussian mixture follow the standard normal distribution,
wi NO ) fori=1,.. . K, j=1,....m,

and the clusters have equal sizes, i.e 711 = --- = 7 = 1/K. We consider three types of covariance

matrices Xy:

1. the simple case where Xj = --- =2 =ms - [

2.the case where the £; = --- = Zx = ms - £ and the corresponding precision matrix Q = X!
is tridiagonal. This case simulates a chain dependency between features of the data. Specifically,
T = {0y}, with oy ; = 0.5/,

3. the case where the £| = - -- = ¢ = ms - X, the corresponding precision matrix Q = 7! is
sparse and simulates a network dependency between features of the data. For the construction of
Q we follow the simulation procedure of Li and Gui (2005).

For the assessment of the kcv tuning algorithm, we simulated Multivariate Gaussian data of
n=1000 points and m = 10 or 50 features. The tables below represent the data setting considered

based on the type of covariance matrix used.

4.4.3 Assessment methods

We introduce the Normalized Prediction Accuracy function that measures the performance of a
value k for the clustering of a data set, utilizing the average prediction loss. Additionally, we define
the ARI Relative Ratio that measures how close the choice of the value k suggested by 4.3 is from

the value that achieves maximum ARI.
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m s=0.1 s=0.3 s=0.5 m s=0.1 s=0.2 s=0.3

10 | setting 1 setting 2  setting 3 10 | setting 7  setting 8  setting 9

50 | setting 4 setting 5 setting 6 50 | setting 10 settingl1 setting 12
(a) Simple MG data (b) MG data with tridiagonal precision matrix

m| s=006 s=016 s=0.23
10 | setting 13 settingl4 setting 15
50 | setting 16 settingl7 setting 18

(c) MG data with network feature dependency
Table 4.3 Settings of simulated data.
Definition 4 (Normalized Prediction Accuracy - NPA)
: i
Let K to be the set of values for the parameter k of the number of nearest neighbors. Let L be
the the mean prediction error of k associated with the prediction of the held out entries of the
data matrix X, for the simulation iteration i. The Normalized Prediction Accuracy, F, of k for the

iteration i is :

L, — min jeW(Lj.)

F(k,i)=1- i : l.
maxjegc(L}) —minjegc (L))

Definition 5 (ARI Relative Ratio)
Let k = argmaxyey(ARI), when running the Snn_Spectral_Clustering algorithm. Let k be the

optimal k based on the kcv_tuning algorithm. The ARI Relative Ratio for iteration i, R(i), is:

_ ARI(k); — ARI(k);

R(i =
© ARI (k);
where ARI(k); is the Adjusted Rand Index for the clustering produced using k nearest neighbors

in iteration i.

4.4.4 Simulation Results
The simulated data were used to tune the parameter k of the SNN spectral clustering algorithm
introduced in section 4.2.2. Below we describe the performance results of the kcv tuning algorithm.
To summarize the NPA results of a particular value of k, we use the mean NPA of this value
over a round of 1000 simulations. The maximum mean NPA is achieved for the value of k that

the kcv tuning algorithm suggests as optimal. It is interesting to observe whether the mean NPA
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is maximized for the same value of k that would achieve the maximum mean ARI over a round of
simulations. We notice that this depends on the prediction method used along with the structure of
feature dependency.

For data settings 1-6 (figures A.2, A.4) we observe that the ARI of SNN spectral algorithm
is increasing for 10 < k < 50 and for larger values of k, the ARI remains about the same. The
maximum ARI is achieved for k£ = 330, i.e. the largest kK we consider during tuning. The NPA
curve is also maximized at k = 330 for mean, ols, and lasso prediction. Mean and lasso perform
better than ols and achieve lower values of ARI ratios. This is because ols uses information from
all features introducing more variance in the prediction, since those settings simulate data sets with
independent features. Mean uses information only from one feature and lasso selects a few of the
features and hence performs better than ols.

For data settings 7-9 and 13-15 the maximum ARI achieved by the SNN spectral clustering
algorithm is within the range of [10,90] (figures B.2, B.4, C.2). Applying prediction with ols or
mean, fails to tune k& within this range, in contrast to lasso. This is because simulated data of
type 7-15 do not have independent features, every feature depends on 2-5 other features. The ols
prediction will utilize information of every feature and will introduce more error in the prediction
and the mean prediction takes into consideration only the information of one feature, whereas lasso
will use information only of the features correlated to the one of interest. For this reason, lasso
performs better for types 7-9 and 13-15.

In settings 10-12 and 16-18, although feature selection methods like lasso are expected to
perform better than ols and mean, it is observed that they have similar performance. Here the
simulated data have low signal-to-noise ratio and hence a ridge regression prediction or elastic net
might perform better.

The mean and median ARI Relative Ratios provide an estimate of the proportion of the difference
between the maximum ARI and the ARI achieved by clustering using the tuned k. The settings
with larger variance factor s as shown in table 4.3 have higher mean and median ARI Relative

Ratios than settings with lower s. In more detail, we observe that for settings 1-6, the ARI of
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SNN spectral clustering after tuning is about 1% to 10% less than the optimum ARI when using
mean and lasso prediction for tuning (tables A.1, A.2). For settings 7-9, lasso achieves the best
tuning results with ARI that is 3% to 14% smaller than the optimum ARI (table B.1). The chain
dependency of a higher number of features makes settings 10-12 harder to tune for k. The tuned
k obtains an ARI difference from the optimum between 3% to 20% (tables B.2). However, for the
final set of simulations (settings 13-18) the features of each dataset can be represented as a network
and every feature will depend on 5 (setting 13-15) or 12 other features (settings 16-18). In this
case, the ARI of SNN spectral clustering after tuning is only 0.6% to 10% lower than the optimum

(tables C.1, C.2).

4.5 Conclusions

In this chapter, we conducted an investigation into the clustering performance of an SNN graph-
based method. For this method, we build the SNN graph as a subgraph of a kNN graph based on
the Jaccard similarity of knn neighbors of vertices. The parameter k affects the structure of the
SNN graph and hence the clustering performance. Our goal was to determine for which values of &,
the SNN spectral clustering algorithm can achieve true cluster identification with high probability.
Our results suggest that in both the noise-free and the noisy case, one needs to select k of the order
cn to maximize the probability of cluster identification, in contrast to random geometric graph
literature that suggests k of order logn (Brito et al., 1997). Furthermore, we introduce a general
cross-validation tuning method for parameters of clustering algorithms. We use this method to
tune the number of nearest neighbors k of the SNN spectral clustering algorithm for a variety of
simulated data types and find that the accuracy of clustering results after using the tuned value is 1%
to 20% lower than the accuracy achieved by the optimum k and depends on the feature dependency

of the data.
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APPENDIX A

PERFORMANCE ON GAUSSIAN DATA WITH DIAGONAL COVARIANCE MATRIX

prediction | setting | Median Mean Sd.Error

1 0.007 0.010 0.001

mean 2 0.021 0.042  0.004

3 0.053 0.099 0.010

1 0.006 0.011  0.001

ols 2 0.024 0.053  0.005

3 0.055 0.109 0.010

1 0.007 0.012  0.001

lasso 2 0.023 0.044 0.004

3 0.051 0.102  0.010

Table A.1 ARI ratios summary for settings 1, 2 and 3.

prediction | setting | Median Mean Sd.Error

4 0.009 0.012  0.001

mean 5 0.030 0.074  0.008

6 0.114 0.280 0.023

4 0.009 0.019 0.002

ols 5 0.049 0.151 0.016

6 0.132 0309 0.024

4 0.009 0.011  0.001

lasso 5 0.030 0.078 0.010

6 0.100 0.249 0.021

Table A.2 ARI ratios summary for settings 4, 5 and 6.
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Figure A.1 ARI ratios comparisons for 1, 2, 3.
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79



setting 4 setting 5 setting 6

ols

. =5 ° o
t eog ® : S e €
e : e e
setting 4 setting 5 setting 6

lasso
lasso
lasso

D) °
o'. P e® o o
[ ]
0 0.04 006 000 025 050 075 000 025 050
mean mean mean

setting 4 setting 5 setting 6

lasso
lasso

ols

Figure A.3 ARI ratios comparisons for 4, 5, 6.
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Figure A.4 ARI and NPA vs k for settings 4, 5 and 6.
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APPENDIX B

PERFORMANCE ON GAUSSIAN DATA WITH TRIDIAGONAL PRECISION MATRIX

prediction | setting | Median Mean Sd.Error

7 0.029 0.046  0.004

mean 8 0.094 0.116  0.008

9 0.118 0.158  0.011

7 0.023 0.036  0.003

ols 8 0.067 0.101  0.008

9 0.102 0.143  0.011

7 0.015 0.030 0.003

lasso 8 0.060 0.094  0.007

9 0.099 0.141 0.010

Table B.1 ARI ratios summary for settings 7, 8 and 9.

prediction | setting | Median Mean Sd.Error
10 0.038 0.048 0.003
mean 11 0.171 0.201  0.012
12 0.243 0281 0.015
10 0.025 0.040 0.003
ols 11 0.163 0.198 0.012
12 0.102 0.143 0.011
10 0.027 0.038  0.002
lasso 11 0.147 0.202 0.013
12 0.219 0271  0.016

Table B.2 ARI ratios summary for settings 10, 11 and 12.

82



ols

lasso

lasso

setting 7

mean

setting 7

mean

setting 7

ols

setting 8

ols
ols

setting 8

lasso
lasso

lasso
lasso

ols

Figure B.1 ARI ratios comparisons for 7, 8, 9.
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Figure B.4 ARI and NPA vs k for settings 10, 11 and 12.
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APPENDIX C

PERFORMANCE ON GAUSSIAN DATA WITH NETWORK OF FEATURES

prediction | setting | Median Mean Sd.Error
13 0.015 0.026  0.003
mean 14 0.058 0.078  0.006
15 0.088 0.121  0.009
13 0.012 0.020 0.002
ols 14 0.048 0.071  0.005
15 0.077 0.105  0.008
13 0.009 0.017 0.001
lasso 14 0.047 0.072  0.006
15 0.072  0.104  0.008

Table C.1 ARI ratios summary for settings 13, 14 and 15.

prediction | setting | Median Mean Sd.Error
16 0.006 0.006  0.000
mean 17 0.027 0.036  0.003
18 0.050 0.107 0.012
16 0.006 0.008  0.001
ols 17 0.029 0.056  0.006
18 0.057 0.147 0.014
16 0.006  0.007  0.000
lasso 17 0.027 0.053  0.006
18 0.061 0.164 0.015

Table C.2 ARI ratios summary for settings 16, 17 and 18.
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Figure C.1 ARI ratio comparisons for settings 13, 14 and 15.
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Figure C.2 ARI and NPA vs k for settings 13, 14 and 15.
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Figure C.4 ARI and NPA vs k for settings 16, 17 and 18.
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