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ABSTRACT

The innovative technology of single-cell RNA sequencing (scRNAseq) allows us to extract gene

expression information from each cell of a tissue, resulting in data sets of tens of thousands to

millions of points (cells). Clustering of cells based on the similarity of their gene expression

enables the understanding of their functions and hence the characterization of cell types in a tissue.

This dissertation focuses on the most widely used clustering methodology for scRNAseq data

– clustering based on the graph representation of data points (cells as vertices on a graph). Firstly,

we showcase how existing methods can effectively identify an important group of tumor growth

related cells in the analysis of head and neck cancer scRNAseq data. The newly discovered marker

genes can potentially facilitate new therapy approaches. Secondly, we introduce a novel clustering

method that preserves both the global data geometry and cluster structure, via multidimensional

scaling based on power-weighted path metrics. The new method outperforms prevailing scRNAseq

clustering algorithms on a wide range of benchmarking data sets. Thirdly, we study spectral

clustering on shared nearest neighbors (SNN) graphs. In contrast to current ad-hoc methods for

number of neighbors selection, we develop a general cross-validation tuning algorithm to achieve

effective clustering. Moreover, we provide a comprehensive theoretical analysis of SNN based

spectral clustering in the nonparametric setting. Our theoretical results reveal an optimal range of

the number of neighbors for cluster identification and characterize the impact of data density on

spectral clustering.
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CHAPTER 1

INTRODUCTION

The pioneering technology of single-cell RNA sequencing (scRNAseq) enables the extraction of

gene expression information from individual cells within a tissue, yielding datasets comprising

tens of thousands to millions of cellular data points. Clustering cells based on the congruity of

their gene expression profiles facilitates the comprehension of their functional attributes, thereby

enabling the characterization of distinct cell types within a given tissue. Prevalent clustering

methodologies developed for scRNAseq data rely on the representation of data points (cells) as

vertices in a graph (Stuart et al., 2019; Wolf et al., 2018). The present dissertation primarily

focuses on graph-based clustering methods tailored for scRNAseq data analysis. Firstly, we present

the contribution of established approaches to the identification of Cancer Stem Cells (CSCs), a

cellular cohort characterized by their resistance to therapeutic interventions and their pivotal role

in tumor initiation and progression (Chen et al., 2021; Mroz et al., 2015). Secondly, we introduce

a novel clustering methodology denoted as Single-Cell Path Metrics Profiling (scPMP), which

concurrently upholds both local cluster structure and global data geometry. Thirdly, we undertake

an exploration of the performance of Spectral Clustering on Shared Nearest Neighbors (SNN)

graphs in relationship with the parameter of nearest neighbors used in the construction of the SNN

grpah. We finally suggest a general cross-validation method for the tuning of this parameter.

In Chapter 2, an in-depth analysis of scRNAseq data originating from cell cultures of head

and neck cancer lines, as well as 10 primary tumors, is conducted. The primary objective of this

analysis revolves around the identification of the most homogeneous cluster of CSCs within each

dataset, while simultaneously elucidating their dynamic states and plasticity via an extension of the

repertoire of CSC marker genes.

Chapter 3 presents the introduction of the scPMP algorithm, a novel clustering methodology

predicated upon path-metric distances among cells. Unlike conventional distance metrics, such as

the Euclidean distance, path metrics possess the capacity to discern density variations and faithfully

uphold the underlying data geometry. By integrating path metrics with multidimensional scaling
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techniques, we obtain a low-dimensional representation of the data that faithfully encapsulates both

the global data geometry and cluster structure. The efficacy of the scPMP algorithm is evaluated

comprehensively in terms of clustering quality and geometric fidelity, ultimately establishing its

superiority over current scRNAseq clustering algorithms across a diverse spectrum of benchmark

datasets.

Chapter 4 delves into Spectral Clustering on SNN graphs. SNN graphs are constructed based

on a 𝑘 Nearest Neighbors (𝑘NN) graph, thus rendering their properties contingent upon the choice

of the parameter 𝑘 . Our findings indicate that, in both the absence of noise and the presence of

noise, it is imperative to select 𝑘 of the magnitude 𝑐𝑛 in order to maximize the likelihood of cluster

identification. This contrasts with the literature on random geometric graphs, which suggests an

order of log 𝑛 for 𝑘 (Brito et al., 1997). Additionally, we propose a comprehensive cross-validation

tuning approach for fine-tuning the parameters of clustering algorithms. We employ this approach

to determine the optimal number of nearest neighbors, denoted as 𝑘 , for the SNN spectral clustering

algorithm using various types of simulated data.
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CHAPTER 2

SINGLE-CELL ANALYSIS OF CANCER STEM CELLS IN HEAD AND NECK CANCER

2.1 Introduction

Head and neck cancer (HNC) is a major global health problem, with an estimated 880,000

new cases and 445,000 deaths annually worldwide (Sung et al., 2021). While human papilloma

(HPV)-associated HNC have improved outcomes, despite advances in comprehensive cancer care,

HPV-negative HNC remains a highly morbid disease with stagnant survival rates hovering at 50%.

This poor prognosis is due in part to the complex heterogeneity of HNC, which involves multiple

cell types, genetic alterations and transitional states that lead to treatment resistance and poor

outcomes (Chen et al., 2021; Puram et al., 2018; Mroz et al., 2015).

Tumoral heterogeneity is a well-established biomarker of poor prognosis, being associated

with aggressive cancer behavior and treatment resistance in various cancer types, including HNC.

Tumoral heterogeneity has been associated with worse outcomes, mediated by intrinsic and extrinsic

factors related to subpopulations with distinct molecular profiles. Tumoral plasticity has been

identified as a critical driver of tumoral heterogeneity, where clonal expansion and subclonal

selection are based on evolutionary progression with each clone arising from cells with high

propagation potential, plasticity, and self-renewal. Within the tumor microenvironment (TME),

there is a subpopulation of tumor initiating cells, or cancer stem cells (CSC), that have the capacity

to drive clonal and subclonal selection (O’Brien et al., 2007). Traditionally CSC were deemed

fixed cells with limited to no plasticity based on their original definitions. However, as the field has

advanced, the role of plasticity in CSC has expanded and the traditional view of CSCs has evolved.

While the term CSC has persisted, despite much controversy on their existence, a more nuanced

understanding of CSC is that their stem-like activity (CSC-state: self-renewal, tumorigenicity and

asymmetric division) is not fixed but a transient state dictated by tumoral and environmental cues

(Chaffer and Weinberg, 2011). When cells are in this CSC-state, they are associated with treatment

resistance, metastasis, and tumor recurrence. However, CSCs in HNC remains controversial and

the CSC-like state has been difficult to study as the mechanisms of CSC plasticity are poorly
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understood.

Plasticity and heterogeneity are also critical components of epithelial to mesenchymal transition

(EMT) programs. Weinberg and others have shown EMT represent transient cancer cell states with

varying degrees of activities, strongly suggesting the EMT process enables cancer cells to acquire

CSC-like properties and enhance their ability to initiate and sustain tumors (Mani et al., 2008; Tam

and Weinberg, 2013). However, understanding the link between EMT and CSC remains elusive due

to their rarity and potentially transiet states. Analyzing this interaction is critical to understanding

the CSC-like state and defining potential mechanisms for plasticity and identify novel targets for

therapy.

Recent advances in single-cell RNA sequencing (scRNAseq) technology have enabled the

identification of distinct subpopulations of cells within tumors based on their gene expression

profiles, providing a powerful tool to study the heterogeneity and plasticity of CSCs in HNC (Wang

et al., 2019). Moreover, in vitro lineage tracing can be used to assess CSC’s capacity for plasticity

and evaluate their various states. In this study, we integrated scRNAseq and in vitro and in silico

lineage tracing to analyze these rare CSC subpopulations in cell culture and primary HNC tumors

to characterize their dynamic states and plasticity. Our study sheds new light on the dynamic nature

and plasticity of CSCs in HNC, and their potential involvement in EMT programs. Our findings

have important implications for the development of novel therapeutic strategies for HNC, as well

as other cancers, and for the broader understanding of CSC-states and plasticity.

2.2 Methods

2.2.1 Cell lines analysis

To better evaluate transcriptional differences and controlling for tumoral heterogeneity, we

subsequently performed single cell sequencing of two patient derived HNC cell lines (UMSCC-

122 and UMSCC-103).Both cell lines were sorted to select for CSC (CD44high ALDHhigh) and

non-CSC (CD44low/ ALDHlow) cells. After standard quality control filtering and integration of

the two cell line expression data sets, we found 26 clusters using Seurat (Stuart et al., 2019). We

observed that the clusters were not separated on the UMAP plot and suggesting that cells lie on a
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Figure 2.1 Cell line data results.

continuum but the distinction between non-CSC to CSC was weak since cell cycle phase affected

the clustering (Figure 2.1A). As a next step, we eliminated the cell-cycle effect and we performed

a trajectory analysis to capture both local and global nonlinear structure using an information-

geometric distance between cells (Moon et al., 2019). Given recent evidence suggesting an inherent

plasticity in cancer stem cells, we were interested in evaluating if there is a continuity between
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Figure 2.2 CSC signature genes matrix - Cell line data.

non-stem and stem cells in the tumor. Figure 2.1B demonstrates a spectrum of non-CSC to CSC,

with an overlapping region in the middle, suggesting cells can progress from a non-stem-like to

state to a stem-like state, supporting the hypothesis that CSC possesses plasticity-capacity and exist

in a transitional CSC-state (Intermediate cells).

Finally, we used cell line data to generate a model to predict the probability that a cancer cell is

a stem cell (or in a stem-like state) and develop a CSC-state gene expression signature. Using the

trajectory coordinates of the cell line cells, we constructed a logistic regression model that provides

the probability a cell is a cancer stem cell (Figure 2.1 right). We calculated the correlation of each

gene’s expression to the cells’ predictive probabilities and used these values to rank each gene and

to perform gene set enrichment analysis.
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We found 29 enriched pathways in the C2 and Hallmark databases. The positively enriched

pathways and contributing genes are demonstrated in the leading-edge analysis (Figure 2.1D).

We tested which of the contributing genes are significantly expressed more in each predicted

group of cells (CSC, Intermediate, Non-CSC) to construct a signature genes matrix (Figure 2.2).

Together these data demonstrate a conserved cancer stem cell signature identified with single cell

sequencing and novel bioinformatic techniques. These data nominate a subset of genes (ACTB,

ANXA2, TPM1, MYL12A, CD63, CCDN1, CD59, ATOX1, LAMA3, LAMC2, L1CAM, KRT8,

ANXA3,CLTB and IL32) as drivers of the cancer stem cell phenotype. Despite these cells being

exclusively derived from epithelial cells, several of the CSC differentially expressed genes are

associated predominantly with CAFs (TPM1, MYL12A, KRT8, CD63 and IL32), suggesting a

mesenchymal state of CSC. These clusters were selected to further define a pure epithelial CSC

signature in the primary tumor data of 10 patients.

2.2.2 Primary tumor data analysis

While patient-derived cell line data provides critical informatics and biologic data, it fails

to capture the complexity and heterogeneity of HNC. We leveraged our access to fresh tumor

specimens to perform scRNASeq techniques. Given the evidence of the tumor microenvironment

playing a large role in maintenance of the cancer stem cell niche, we hypothesized that the cancer

stem cell signature may differ between cell line and primary tumors, however cells in the CSC-state

will have conserved signatures. To evaluate CSC signatures in primary tumors we analyzed 10 HNC

harvested directly from the operative theatre. Tumors were then digested into single cell suspension

and sorted by FACS for standard CSC markers (ALDH and CD44). scRNASeq was then performed

on the enriched groups. Seurat clusters are shown in Figure 2.3A. Of the CD44/ALDH enriched

cells, the deconvoluted epithelial tumor population was found to make up only a small proportion

of the tumor bulk (5%) with the remaining cells representing the immune and stromal elements of

the TME. To confirm the identity of the epithelial cell cluster, the cell line CSC expression data was

normalized and mapped onto the primary tumor expression data. As seen in Figure 2.3A, the cell

line data, in black, overlap with the epithelial cluster (cluster 9) confirming an epithelial expression
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pattern. We then used RNAscope to show co-localization of top expressed epithelial genes within

the tumor cell population to further confirm expression of the DEG genes in the primary tumor

(Figure 2.3C). We considered isolating not only the epithelial but also the fibroblast cluster since

CAF genes were found in the signature genes of CSC suggested by the cell line analysis. We also

observe that PTPRC is low in fibroblasts of the sample and that the epithelial annotated cells are

mapped on each fibroblast cluster (figure 2.3B). Hence, we proceed to investigate the expression

profile of CSCs in both epithelial and fibroblast cells. Following the steps suggested by the analysis

of the cell line data, we explore the trajectory of the epithelial and fibroblast cells.

A

B

C

Figure 2.3 Primary tumor data analysis.
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PTGS2
AQP1
SLPI
CCL19
CCL11

TIMP1

200 GSEA ranked genes heatmap in epithelial and fibroblast cells

Epithelial and fibroblasts by state Epithelial and fibroblasts by pseudotime

Epithelial and fibroblasts by predicted 
status

Epithelial and fibroblasts by probability 
of CSC status

Figure 2.4 Epithelial and Fibroblast cells of primary tumor data.

Figure 2.4A demonstrates that there is a spectrum of CSCs, Intermediate and Non-CSCs on

with two branches. To understand the ordering of cells on the trajectory we used the trajectory

coordinates of each cell and their grouping based on ALDH and CD44 levels to extract their

pseudotime (Street et al., 2018). We observe that cells with the highest pseudotime are located
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Figure 2.5 GSEA of primary tumor data.

at the leftmost part of the trajectory and have high ALDH and CD44 (sorted as CSC). For this

reason, we assume that the purest of CSCs are located in the leftmost corner. To validate this

assumption a logistic regression model was generated to predict the probability that a cell in the

epithelial and fibroblast cluster is a CSC using the pseudotime information of the cell. Cells with

the highest probability are indeed located in the leftmost corner (figure 2.4B). Additionally, genes

of the fibroblast and epithelial cluster were ranked based on the correlation of their expression
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Core enrichment genes in epithelial and fibroblast cells

TIMP1
SFRP4
IGFBP3
ADH1B
TNC

Figure 2.6 Heatmap of core enrichment genes of 10 patient data.

level with the pseudotime assigned to each cell. This ranking was used to perform gene set en-

richment analysis. Positively enriched pathways are associated with the genes at the top of the list

namely those that are positively correlated to pseudotime and hence the CSC cells. A heatmap of

the expression of genes at the top and bottom of the ranked list shows a clustering of the tumor

and epithelia cells based on pseudotime and the gradual transition from Non-CSC to CSC cells

(figure 2.4C). The biologic behavior of the CSC subpopulation can be further described through

the results of the GSEA of cell line and primary data. Permutation-based analysis was performed

to calculate p-values and false discovery rates (FDR). Here we find that CSCs were enriched for

the HALLMARK EPITHELIAL MESENCHYMAL TRANSITION, HALLMARK ANGIOGEN-

ESIS, C2 ANASTASSIO MULTICANCER INVASIVENESS SIGNATURE, and C2 BOQUEST

STEM CELL UP compared to non-CSC. Interestingly, non-CSC were enriched for radiation re-

sponse pathways (SMIRNOV RESPONSE TO IR 2HR UP) as well as the well-established HNC

pathways, HALLMARK P53 PATHWAY, HALLMARK MYC TARGETS V1 and HALLMARK
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Figure 2.7 Survival rate of TCGA patients based on estimated CSC proportion.

PI3K AKT MTOR SIGNALING pathways (figure 2.5). Taken together, these findings further

support that CSCs are critical components of EMT and play a crucial role in promoting tumor

invasion, metastasis, and treatment resistance.

To further define the genes of interest, common genes across the significantly enriched gene sets

were explored. Genes common to at least 2 significantly enriched pathways are SFRP4, ALDH1B,

WNT5A, TIMP1, COL1A1, COL3A1, MFAP5, COL1A2, LUM, COL5A1, THBS2, COL5A2,

COL6A3, VCAN, LOX, MXRA5, COL6A2, FAP, CDH11, DCN, SPOCK1. Given many of these

genes are established mesenchymal genes (COL6A3, FAP, VCAN), this suggests that CSC may

represent a critical subset of cells in a mesenchymal-state as part of the EMT.

2.2.3 Survival analysis of TCGA data

To test the significance of the CSC signature genes (figure 2.2) we utilized expression informa-

tion of those genes in HPV patients of the TCGA database. Specifically, the CSC signature genes

matrix was used to estimate the pure CSC, intermediate and pure Non-CSC proportion of cells in

each patient via least trimmed square gene-expression deconvolution technique (Hao et al., 2018).

Next, patients were grouped into two clusters via kmeans based on their estimated proportions. The

two clusters separated patients with low pure CSC proportion and high pure CSC proportion. The

13

https://www.cancer.gov/ccg/research/genome-sequencing/tcga


survival rate of patients in the cluster with low pure CSC proportion have a significanlty higher

survival rate (p-value = 0.0028, figure 2.7)

2.3 Discussion

Our study provides new insights into the dynamic nature and plasticity of CSCs in head and neck

cancer, and their potential involvement in the epithelial-to-mesenchymal transition (EMT) process.

We identified multiple dynamic states of CSCs within our primary cell cultures of UMSCC HNC

cell lines and 10 primary tumors, suggesting that CSCs exist in a state of dynamic equilibrium

with their non-CSC counterparts. Our in vitro lineage tracing experiments further confirmed the

plasticity of CSCs, and their ability to differentiate into non-CSCs and vice versa. Recent insight

into CSC biology has moved away from them representing a distinct entity and more of a dynamic

state. Our findings are consistent with previous studies that have shown the plasticity of CSCs

in various cancer types, including breast cancer, colorectal cancer, and glioblastoma (Chaffer and

Weinberg, 2011; Vermeulen et al., 2010; Wang et al., 2018). In addition, our study supports the

hypothesis that the EMT process may be involved in the acquisition of stem cell-like properties by

cancer cells and may enhance their ability to initiate and sustain tumors (Mani et al., 2008; Tam and

Weinberg, 2013). This hypothesis is supported by our gene set enrichment analysis (GSEA) results,

which identified enrichment of EMT-related gene sets in our CSC populations. Interestingly, as part

of this mesenchymal transition, we found cells in the CSC-state had similar canonical expression

patterns as CAFs. This was seen both in pure epithelial cell line data as well as in the primary

data. Furthermore, we found that the TIMP1/CD63 pathway was differentially expressed in our CSC

populations. TIMP1 and CD63 have both been characterized in CAFs, more so than epithelial cells.

TIMP1 is a member of the tissue inhibitor of metalloproteinase (TIMP) family, regulating matrix

metalloproteinases (MMPs), and have been critical mediators in cancer invasion and metastasis.

TIMP1 has been shown to be overexpressed in several solid organ cancers, including breast, lung,

prostate and ovarian. In addition to invasive characteristics, TIMP1 has been shown promote cancer

cell survival, thus critical for cancer maintenance. CD63 is a member of the tetraspanin family

of membrane proteins, thus associated with cell adhesion, migration, and signaling through the
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regulation of cell surface receptor trafficking and the regulation of extracellular vesicles, which

are important mediators of intercellular communication within the TME. Like TIMP1, CD63 has

been found to be overexpressed in various types of cancer, including breast, lung, and melanoma.

Together, both TIMP1 and CD63 are involved in several overlapping pathways that regulate EMT,

specifically AKT/mTOR, WNT/b-catenin, integrins and CD44. TIMP1/CD63 has been studied in

other cancers as part of the EMT as well as CSCs, suggesting that this pathway may play a role in

the maintenance and plasticity of CSCs in HNC. Our study provides new evidence for the potential

involvement of this pathway in HN CSC biology, and may open up new avenues for the development

of targeted therapies for HNC and other cancers. Taken together, our findings highlight the dynamic

and plastic nature of CSCs in HNC, and their potential involvement in the EMT process and the

TIMP1/CD63 pathway. Our study may have implications for the development of personalized

therapeutic strategies for this deadly disease. Further studies are needed to validate our findings in

larger patient cohorts and to explore the clinical relevance of our results.
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CHAPTER 3

CLUSTERING AND VISUALIZATION OF SINGLE-CELL RNA-SEQ DATA USING
PATH METRICS

3.1 Introduction

The advance in single-cell RNA-seq (scRNA-seq) technologies in recent years has enabled the

simultaneous measurement of gene expression at the single-cell level Saliba et al. (2014); Eberwine

et al. (1992); Tang et al. (2009). This opens up new possibilities to detect previously unknown cell

populations, study cellular development and dynamics, and characterize cell composition within

bulk tissues. Despite its similarity with bulk RNAseq data, scRNAseq data tends to have larger

variation and larger amounts of missing values due to the low abundance of initial mRNA per cell.

To address these challenges, numerous computational algorithms have been proposed focusing on

different aspects. Given a collection of single cell transcriptomes from scRNAseq, one of the most

common applications is to identify and characterize subpopulations, e.g., cell types or cell states.

Numerous clustering approaches have been developed such as 𝑘-means based methods SC3 Kiselev

et al. (2017), SIMLR Wang et al. (2017), and RaceID Herman et al. (2018); hierarchical clustering

based methods CIDR Lin et al. (2017), BackSPIN A et al. (2015), and pcaReduce žurauskienė and

Yau (2016); graph based methods Rphenograph CLevine et al. (2015), SNN-Cliq Xu and Su (2015),

SSNN-Louvain Zhu et al. (2020), Seurat Stuart et al. (2019), and scanpy Wolf et al. (2018); and

deep-learning based methods scGNN Wang et al. (2021), scVI Lopez et al. (2018), ScDeepCluster

Tian et al. (2019b), DANCE Ding et al. (2022). To visualize and characterize relationships between

cell types, it is important to represent them in a low-dimensional space. Many low-dimensional

embedding methods have been proposed including UMAP McInnes et al. (2018), 𝑡-SNE Van der

Maaten and Hinton (2008), PHATE Moon et al. (2019), and LargeVis Tang et al. (2016). However, a

key challenge for embedding methods is to simultaneously reduce cluster variance and preserve the

global geometry, including the distances between clusters and cluster shapes. For example, Figure

3.4 illustrates the typical situation on a cell mixture dataset Tian et al. (2019a): the PCA embedding

preserves the global geometry but clusters have high variance; clusters are better separated in the
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UMAP and 𝑡-SNE embeddings, but the global geometric structure of the clusters is lost.

When choosing a clustering algorithm, there is always an underlying tension between respecting

data density and data geometry. Density-based methods such as DBSCAN cluster data by connect-

ing together high-density regions, regardless of cluster shape. More traditional approaches such

as 𝑘-means require that clusters are convex and geometrically well separated. However, in many

real data, clusters tend to have both nonconvex/elongated geometry and a lack of robust density

separation as shown in Figure 3.2b which consists of three elongated Gaussian distributions and a

bridge connecting two of the distributions. The data set is challenging because it exhibits elongated

geometry, but methods relying only on density will fail due to the bridge. Such characteristics are

commonly observed in scRNA-seq data, especially for cells sampled from a developmental process,

as cell types often trace out elongated structures and frequently lack robust density separation. This

elongated geometry phenomena is due to the fact that all the cell types originate from stem cells

through a trajectory-like differentiation process, and the bridge structures are created by the cells

in the transition states. For example, circulating monocytes in the Tabula Muris (TM) lung data

set Tabula Muris Consortium (2018) have an elongated cluster structure as illustrated by the PCA

plot in Figure 3.1a, as do the ductal cells in the TM pancreatic data set (see Figure 3.1c). The

UMAP plots of these same data sets illustrate the lack of robust density separation: for TM lung,

there is a bridge connecting the alveolar and lung cell types, and also an overlap/bridge between

the circulating and invading monocytes (see Figure 3.1b); for TM pancreatic, the pancreatic A

and pancreatic PP cells are not well separated. The combination of elongation and poor density

separation make clustering scRNA-seq data sets a challenging task.

We propose an embedding method based on the power weighted path metric which is well

suited to this difficult regime. These metrics balance density and geometry considerations in the

data learning tasks such as clustering and semi-supervised learning Vincent and Bengio (2003);

Bousquet et al. (2004); Sajama and Orlitsky (2005); Chang and Yeung (2008); Bĳral et al. (2011);

Moscovich et al. (2017); Mckenzie and Damelin (2019); Little et al. (2020a); Borghini et al. (2020).

They have performed well in applications such as imaging Fischer et al. (2001); Zhang and Murphy
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(a) PCA TM Lung (b) UMAP TM Lung

(c) PCA TM Pancreatic (d) UMAP TM Pancreatic

Figure 3.1 Tabula Muris data sets have elongated clusters in the PCA embedding and clusters
connected with a bridge of points in the UMAP embedding.
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Figure 3.2 Toy Data Sets. 3.2a and 3.2b show the 2-dimensional data sets. 3.2c plots the first two
coordinates of the Swiss roll. 3.2d shows the 2-dimensional PCA plot of the SO(3) manifolds.

(2021); Little et al. (2020a); Mckenzie and Damelin (2019), but their usefulness for the analysis

of scRNAseq data remains unexplored. Because these metrics are density-sensitive, they reduce

cluster variance; in addition, these metrics also capture global distance information, and thus

preserve global geometry; see Figure 3.4b. Using the path metric embedding to cluster the data

thus yields a clustering method which balances density-based and geometric information.
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3.2 Materials and Methods

We first introduce our theoretical framework in Section 3.2.1; Section 3.2.2 then describes the

details of the proposed scPMP algorithm, and Section 3.2.3 describes metrics for assessment.

3.2.1 Path Metrics

We first define a family of power-weighted path metrics parametrized by 1 ≤ 𝑝 < ∞.

Definition 1

Given a discrete data set 𝑋 , the discrete 𝑝-power weighted path metric between 𝑎, 𝑏 ∈ 𝑋 is defined

as ℓ𝑝 (𝑎, 𝑏) := inf (𝑥0,...,𝑥𝑠)
(∑𝑠−1

𝑖=0


𝑥𝑖+1 − 𝑥𝑖

𝑝2 ) 1

𝑝

, where the infimum is taken over all sequences of

points 𝑥0, . . . , 𝑥𝑠 in 𝑋 with 𝑥0 = 𝑎 and 𝑥𝑠 = 𝑏.

Note as 𝑝 →∞, ℓ𝑝 converges to the “bottleneck edge" distance

ℓ∞(𝑎, 𝑏) := inf
(𝑥0,...,𝑥𝑠)

max
𝑖
∥𝑥𝑖+1 − 𝑥𝑖∥2,

which is well studied in the computer science literature Pollack (1960); Hu (1961); Camerini (1978);

Gabow and Tarjan (1988). Two points are close in ℓ∞ if they are connected by a high-density path

through the data, regardless of how far apart the points are. On the other hand, when 𝑝 = 1, ℓ1

reduces to Euclidean distance. If path edges are furthermore restricted to lie in a nearest neighbor

graph, ℓ1 approximates the geodesic distance between the points, i.e. the length of the shortest

path lying on the underlying data structure, which is a highly useful metric for manifold learning

Tenenbaum et al. (2000). The parameter 𝑝 governs a trade-off between these two extremes, i.e.

it determines how to balance density and geometry considerations when determining which data

points should be considered close. The relationship between ℓ𝑝 and density can be made precise.

Assume 𝑛 independent samples from a continuous, nonzero density function 𝑓 supported on a

𝑑-dimensional, compact Riemannian manifoldM (a manifold is a smooth, locally linear surface;

see Lee (2018)). Then for 𝑝 > 1, ℓ𝑝 (𝑎, 𝑏) converges (after appropriate normalization) to

L𝑝 (𝑎, 𝑏) := inf
𝛾

(∫
𝑓 (𝛾(𝑡))−

(𝑝−1)
𝑑 |𝛾′(𝑡) | 𝑑𝑡

) 1
𝑝

, (3.1)
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as 𝑛 → ∞, where the infimum is taken over all smooth curves 𝛾 : [0, 1] → M connecting 𝑎, 𝑏

Hwang et al. (2016); Groisman et al. (2022); Fernández et al. (2023). Note |𝛾′(𝑡) | is simply the

arclength element on M, so L1 reduces to the standard geodesic distance. When 𝑝 ≠ 1, one

obtains a density-weighted geodesic distance. The optimal L𝑝 path is not necessarily the most

direct: a detour may be worth it if it allows the path to stay in a high-density region; see Figure

3.3. Thus the metric is density-sensitive, in that distances across high-density regions are smaller

than distances across low-density regions; this is a desirable property for many machine learning

tasks Chu et al. (2017), including trajectory estimation for developmental cells and cancer cells.

However the metric is also geometry preserving, since it is computed by path integrals onM. The

parameter 𝑝 controls the balance of these two properties: when 𝑝 is small, L𝑝 depends mainly on

the geometry of the data, while for large 𝑝, L𝑝 is primarily determined by data density.

Although path metrics are defined in a complete graph, i.e. Definition 1 considers every path

in the data connecting 𝑎, 𝑏, recent work Little et al. (2020b); Groisman et al. (2018); Mckenzie and

Damelin (2019); Chu et al. (2020) has established that it is sufficient to only consider paths in a

𝐾-nearest neighbors (𝐾NN) graph, as long as 𝐾 ≥ 𝐶 log 𝑛 for a constant 𝐶 depending on 𝑝, 𝑑, 𝑓 ,

and the geometry of the data. By restricting to a 𝐾NN graph, all pairwise path distances can be

computed in 𝑂 (𝐾𝑛2) with Dĳkstra’s algorithm.

(a) 𝑝 = 1.1 (b) 𝑝 = 2

Figure 3.3 Optimal ℓ𝑝 path between two points in a moon data set.
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Algorithm 3.1 scPMP.

1: Input: noisy data 𝑋 ∈ R𝑛×𝑑 , parameter 𝑝, number of clusters 𝑘
2: Optional input: 𝐾1, 𝐾2, 𝑟min, 𝑟max, 𝜏
3: (Defaults: 12, 𝑛 ∧ 500, 3, 39, 0.01)
4: Output: scPMP embedding 𝑌 ∈ R𝑛×𝑟 , label vector ℓ̂ ∈ [𝑘]𝑛
5:
6: % Denoise data:
7: 𝑥𝑖 ← 1

𝐾1

∑
𝑗∈N𝑖,𝐾1

𝑥̃𝑖
8:
9: % Compute path metrics:

10: G𝑝
𝐾2
← 𝐾2NN graph on 𝑋 with edge weights ∥𝑥𝑖 − 𝑥 𝑗 ∥𝑝

11: 𝐷 𝑝

𝑖 𝑗
← length of shortest path connecting 𝑥𝑖, 𝑥 𝑗 in G𝑝

𝐾2

12: (𝐷PM)𝑖 𝑗 ← (𝐷 𝑝

𝑖 𝑗
)

1
𝑝

13:
14: % Compute MDS embedding of path metrics:
15: 𝐵← −1

2𝐽𝐷
(2)
PM𝐽

16: Λ = diag(𝜆1, . . . , 𝜆𝑛) ← eigenvalues of 𝐵 in descending order
17: 𝑉 = (𝑣1, . . . , 𝑣𝑛) ← corresponding eigenvectors of 𝐵
18: 𝑟 ← index maximizing 𝜆𝑖/𝜆𝑖+1 for 𝑖 satisfying 𝑟min ≤ 𝑖 ≤ 𝑟max, 𝜆𝑖/𝜆1 ≥ 𝜏
19: 𝑌 ← (

√
𝜆1𝑣1, . . . ,

√
𝜆𝑟𝑣𝑟) ∈ R𝑛×𝑟

20:
21: % Cluster the data:
22: ℓ̂ ← constrained 𝑘-means(𝑌, 𝑘)

3.2.2 Algorithm

We consider a noisy data set of 𝑛 data points 𝑥̃1, . . . , 𝑥̃𝑛 ∈ R𝑑 , which form the rows of noisy

data matrix 𝑋 ∈ R𝑛×𝑑 . We first denoise the data with a local averaging procedure, which has been

shown to be advantageous for manifold plus noise data models García Trillos et al. (2019). More

specifically, we replace 𝑥̃𝑖 with its local average:

𝑥𝑖 :=
1
𝐾1

∑︁
𝑗∈N𝑖,𝐾1

𝑥̃ 𝑗 , N𝑖,𝐾1 = { 𝑗 : 𝑥̃ 𝑗 is a 𝐾1NN of 𝑥̃𝑖} ,

and let 𝑋 ∈ R𝑛×𝑑 denote the denoised data matrix.

We then fix 𝑝 and compute the 𝑝-power weighted path distance between all points in 𝑋 to

obtain pairwise distance matrix 𝐷PM ∈ R𝑛×𝑛. More precisely, we let G𝑝
𝐾2

= (𝑋, 𝐸) be the graph

on 𝑋 where 𝑥𝑖, 𝑥 𝑗 are connected with edge weight 𝐸𝑖 𝑗 = ∥𝑥𝑖 − 𝑥 𝑗 ∥𝑝 if 𝑥𝑖 is a 𝐾2NN of 𝑥 𝑗 or 𝑥 𝑗 is a

𝐾2NN of 𝑥𝑖. We then compute 𝐷 𝑝

𝑖 𝑗
as the total length of the shortest path connecting 𝑥𝑖, 𝑥 𝑗 in G𝑝

𝐾2
,
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and define 𝐷PM by (𝐷PM)𝑖 𝑗 = (𝐷 𝑝

𝑖 𝑗
)

1
𝑝 .

We next apply classical multidimensional scaling Borg and Groenen (2005) to obtain a low-

dimensional embedding which preserves the path metrics. Specifically, we define the path metric

MDS matrix 𝐵 = −1
2𝐽𝐷

(2)
PM𝐽 where 𝐽 = 𝐼𝑛 − 1

𝑛
11𝑇 is the centering matrix, 1 ∈ R𝑛 is a vector of

all 1’s, and 𝐷 (2)PM is obtained from 𝐷PM by squaring all entries. We let the spectral decomposition

of 𝐵 be denoted by 𝐵 = 𝑉Λ𝑉𝑇 , where Λ = diag(𝜆1, . . . , 𝜆𝑛), 𝑉 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛×𝑛 contain the

eigenvalues and eigenvectors of 𝐵 in descending order. The embedding dimension 𝑟 is then chosen

as the index 𝑖 which maximizes the eigenratio 𝜆𝑖/𝜆𝑖+1 Lam and Yao (2012), with the following

restrictions: we constrain 3 ≤ 𝑖 ≤ 39 and only consider ratios 𝜆𝑖+1/𝜆𝑖 between “large" eigenvalues,

i.e. we require 𝜆𝑖/𝜆1 ≥ 0.01. The scPMP embedding is then defined by𝑌 = (
√
𝜆1𝑣1, . . . ,

√
𝜆𝑟𝑣𝑟) ∈

R𝑛×𝑟 .

Finally, we apply 𝑘-means to the scPMP embedding to obtain cluster labels. Specifically, we

let ℓ̂𝑖 ∈ [𝑘] = {1, . . . , 𝑘} be the cluster label of 𝑥𝑖 returned by running 𝑘-means on𝑌 with 𝑘 clusters

and 20 replicates. Since 𝑘-means may return highly imbalanced clusters, cluster sample sizes were

constrained to be at least
√
𝑛/2. Specifically, if 𝑘-means returned a tiny cluster, 𝑘 was increased

to 𝑘 + 1, and the tiny cluster merged with the closest non-trivial cluster. This entire procedure is

summarized in the pseudocode in Algorithm 3.1.

We note that the computational bottleneck for Algorithm 3.1 is the computation and storage

of all pairwise path distances, which has complexity 𝑂 (𝑛2 log 𝑛) when 𝐾2 = 𝑂 (log 𝑛). However

this quadratic cost can be avoided by utilizing a low rank approximation of the squared distance

matrix via the Nystrom method Williams and Seeger (2001); Ghojogh et al. (2020); Platt (2005);

Yu et al. (2012); Civril et al. (2006). For example, Shamai et al. (2020) propose a fast, quasi-linear

implementation of MDS which only requires the computation of path distances from a set of 𝑞

landmarks, so that the complexity of computing path distances is reduced to 𝑂 (𝑞𝑛 log 𝑛). Our

implementation of scPMP includes the option to use this landmark-based approximation and is thus

highly scalable.

We also note that an important consideration in the fully unsupervised setting is how to select
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the number of clusters 𝑘 . This is a rather ill-posed question with multiple reasonable answers due

to hierarchical cluster structure. We do not focus on this in the current article, and Algorithm 3.1

assumes the number of clusters is given. However we emphasize that when 𝑘 is unknown, the

scPMP embedding offers a useful tool for selecting a reasonable number of clusters. For example,

Line 21 of Algorithm 3.1 can be repeated for a range of candidate 𝑘 values to obtain candidate

clusterings ℓ̂𝑘 ; 𝑘̂ can then be chosen so that ℓ̂𝑘 optimizes a cluster validity criterion such as the

silhouette criterion Kaufman and Rousseeuw (2009); Maechler et al. (2021). Alternatively, one

could build a graph with distances computed in the scPMP embedding, and estimate 𝑘 as the

number of small eigenvalues of a corresponding graph Laplacian Von Luxburg (2007); Little et al.

(2020a).

3.2.3 Assessment

We evaluate the performance of Algorithm 3.1 with respect to (1) cluster quality and (2)

geometric fidelity on a collection of labeled benchmarking data sets with ground truth labels ℓ.

There are many helpful metrics for the quality of the estimated cluster labels ℓ̂, and we compute the

adjusted rand index (ARI), entropy of cluster accuracy (ECA), and entropy of cluster purity (ECP).

Definitions of ECA and ECP can be found in Appendix B. We compare our clustering results

with the output of 𝑘-means, DBSCAN Ester et al. (1996); Xu et al. (1998), 𝑘-means on 𝑡-SNE

embedding Van der Maaten and Hinton (2008), DBSCAN on UMAP embedding McInnes et al.

(2018) and for scRNAseq data sets additionally with the following scRNAseq clustering methods:

SC3 Kiselev et al. (2017), scanpy Wolf et al. (2018), RaceID3 Grün et al. (2018), SIMRL Wang

et al. (2017) and Seurat Stuart et al. (2019).

Assessing the geometric fidelity of the low-dimensional embedding 𝑌 is more delicate; we

want to assess whether the embedding procedure preserves the global relative distances between

clusters. We first compute the mean of each cluster as in Van der Maaten and Hinton (2008)

using the ground truth labels, i.e. 𝜇 𝑗 (𝑋) = 1
|I𝑗 |

∑
𝑖∈I𝑗 𝑥𝑖 where I𝑗 = {𝑖 : ℓ𝑖 = 𝑗}; we then define

𝐷𝜇,𝑋 (𝑖, 𝑗) = ∥𝜇ℓ𝑖 (𝑋)−𝜇ℓ 𝑗 (𝑋)∥2. Similarly, we compute the means 𝜇 𝑗 (𝑌 ) in the scPMP embedding,

and define 𝐷𝜇,𝑌 (𝑖, 𝑗) = ∥𝜇ℓ𝑖 (𝑌 ) − 𝜇ℓ 𝑗 (𝑌 )∥2; we then compare 𝐷𝜇,𝑋 and 𝐷𝜇,𝑌 . Specifically, we
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define the geometric perturbation 𝜋 by:

𝜋(𝑋,𝑌, ℓ) = min
𝑐



𝐷𝜇,𝑋 − 𝑐𝐷𝜇,𝑌



2
𝐹

𝐷𝜇,𝑋



2
𝐹

,

where ∥ · ∥𝐹 is the Frobenius norm. The 𝑐 achieving the minimum is easy to compute, and one

obtains

𝜋(𝑋,𝑌, ℓ) =


𝐷𝜇,𝑋 − 𝑐∗𝐷𝜇,𝑌



2
𝐹

𝐷𝜇,𝑋



2
𝐹

, 𝑐∗ =
⟨𝐷𝜇,𝑋 , 𝐷𝜇,𝑌 ⟩

𝐷𝜇,𝑌



2
𝐹

.

We compare 𝜋(𝑋,𝑌, ℓ) with the geometric perturbation of other embedding schemes for 𝑋 , i.e.

with 𝜋(𝑋,𝑈, ℓ) for 𝑈 equal to the UMAP McInnes et al. (2018) and 𝑡-SNE Van der Maaten

and Hinton (2008) embeddings. Note that 𝜋 is not always a useful measure: for example if 𝑋

consisted of concentric spheres sharing the same center, the metric would be meaningless, as the

distance between cluster means would be zero. Nevertheless, in most cases 𝜋 is a helpful metric

for quantifying the preservation of global cluster geometry.

3.3 Results

We apply Algorithm 3.1 to both a collection of toy manifold data sets and a collection of

scRNAseq data sets. Results are reported in Sections 3.3.1 and 3.3.2 respectively. The default

parameter values reported in Algorithm 3.1 were used on all data sets.

3.3.1 Manifold Data

We apply Algorithm 1 for 𝑝 = 1.5, 2, 4 to the following four manifold data sets:

Balls (𝑛 = 1200, 𝑑 = 2, 𝑘 = 3): Clusters were created by uniform sampling of 3 overlapping

balls in R2; see Figure 3.2a.

Elongated with bridge (denoted EWB, 𝑛 = 620, 𝑑 = 2, 𝑘 = 3): Clusters were created by

sampling from 3 elongated Gaussian distributions. A bridge was added connecting two of the

Gaussians; see Figure 3.2b.

Swiss roll (𝑛 = 1275, 𝑑 = 3, 𝑘 = 3): Clusters were created by uniform sampling from three

distinct regions of a Swiss roll; 3-dimensional isotropic Gaussian noise (𝜎 = 0.75) was then added

to the data. Figure 3.2c shows the first two data coordinates.
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Method Balls EWB Swiss SO(3)
𝑘-means 0.955 -0.001 0.373 0.010

DBSCAN 0.055 0.550 1 1
UMAP+DBSCAN 0.600 0.645 1 1
𝑡-SNE+𝑘-means 0.895 0.359 1 0.532

Seurat 0.777 0.837 1 1
PM1.5 0.921 0.489 1 0.501
PM2 0.907 0.990 1 1
PM4 0.781 0.584 1 1

Table 3.1 ARI for manifold data.

SO(3) manifolds (𝑛 = 3000, 𝑑 = 1000, 𝑘 = 3): For 1 ≤ 𝑖 ≤ 3, the 3-dimensional manifold

M𝑖 ⊆ R9 is defined by fixing three eigenvalues 𝐷𝑖 = diag(𝜆1, 𝜆2, 𝜆3) and then defining M𝑖 =

∪𝑉∈𝑆𝑂 (3)𝑉𝐷𝑖𝑉𝑇 , where SO(3) is the special orthogonal group. After fixing𝐷𝑖, we randomly sample

from M𝑖 by taking random orthonormal bases 𝑉 of R3. A noisy, high-dimensional embedding

was then obtained by adding uniform random noise with standard deviation 𝜎 = 0.0075 in 1000

dimensions. Figure 3.2d shows the first two principal components of the data, which exhibits no

cluster separation.

The data sets were chosen to illustrate various cluster separability characteristics. For the balls,

the clusters have good geometric separation but are not separable by density. For the Swiss roll

and SO(3), the clusters have a complex and inter-twined geometry but are well separated in terms

of density. For EWB, clusters are both elongated and lack robust density separability due to the

bridge, and one expects that methods which rely too heavily on either geometry or density will

fail. The ARIs achieved by Algorithm 3.1, 𝑘-means based methods, DBSCAN based methods,

and Seurat are reported in Table 3.1. See Tables B.1 and B.2 in Appendix B for ECP and ECA.

As expected, 𝑘-means out performs all methods on the balls but performs very poorly on all other

data sets. DBSCAN and Seurat achieve perfect accuracy on the Swiss roll and SO(3) but perform

rather poorly on the balls and EWB, although Seurat does noticeably better than DBSCAN. PM2 is

the only method which achieves a high ARI (> 90%) and a low ECP and ECA (< 0.15) on all data

sets.

Table 3.2 reports the geometric perturbation of the embedding produced by Algorithm 3.1 and
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Method Balls EWB Swiss SO(3)
2d UMAP 0.001 0.006 0.305 0.071
𝑟d UMAP 0 0.033 0.339 0.054
2d 𝑡-SNE 0 0.004 0.187 0.171
𝑟d 𝑡-SNE 0 0.042 0.074 0.157
2d PM1.5 0 0.033 0.002 0.103
𝑟d PM1.5 0 0.023 0.011 0.154
2d PM2 0 0.146 0.025 0.156
𝑟d PM2 0 0.068 0.025 0.179
2d PM4 0.003 0.191 0.056 0.194
𝑟d PM4 0.004 0.157 0.056 0.194

Table 3.2 Geometric perturbation for manifold data. The 𝑟d UMAP embeddings were computed
with an embedding dimension of 𝑟 = 5 for the balls, EWB, Swiss roll and 𝑟 = 7 for SO(3), which
corresponded to the estimated dimension for both PM1.5 and PM2. For 𝑡-SNE, 𝑟 = 3 for all data
sets.

compares with UMAP and 𝑡-SNE. Since Algorithm 3.1 generally selects an embedding dimension

𝑟 > 2, to ensure a fair comparison the geometric perturbation was computed in both the 2d and

𝑟-dimensional (𝑟d) embeddings for all methods, where for UMAP 𝑟 is the dimension selected by

Algorithm 3.1 and for 𝑡-SNE 𝑟 = 3 (note 𝑟 ≤ 3 was required in Rtsne implementation). Overall

PM1.5 achieved the lowest geometric perturbation, although all methods had small perturbation on

the Balls data set and 𝑡-SNE had the lowest perturbation on EWB. We point out however that for

both the Swiss roll and SO(3), the metric may not be meaningful due to the complicated cluster

geometry.

3.3.2 scRNAseq Data

We apply Algorithm 1 for 𝑝 = 1.5, 2, 4 to the following synthetic scRNAseq data sets:

RNA mixture: Benchmarking scRNAseq data set from Tian et al. (2019a). RNAmix1 was

processed with CEL-seq2 and has 𝑛 = 296 cells and 𝑑 = 14687 genes. RNAmix2 was processed

with Sort-seq and has 𝑛 = 340 cells and 𝑑 = 14224 genes. For the creation of the two data sets,

RNA was extracted in bulk for each of the following cell lines: H2228, H1975, HCC827. Then the

RNA was mixed in 𝑘 = 7 different proportions (each defining a ground truth cluster label), diluted

to single cell equivalent amounts ranging from 3.75pg to 30pg, and processed using CEL-seq2 and

SORT-seq. See here for Supplemental info including ground truth geometric structure.
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Simulated beta: Simulated data set of 𝑛 = 473 beta cells and 𝑑 = 2279 genes, created based on

SAVER Huang et al. (2018) and scImpute Li and Li (2018). First, we subset the Baron’s Pancreatic

data set Baron et al. (2016) to include only Beta cells. As in Li and Li (2018), we randomly

choose 10% of the genes to operate as marker genes. Then, we split the cells to 𝑘 = 3 clusters and

each cluster is assigned a different group of marker genes. For each cluster we scale up the mean

expression of its marker genes. Lastly, to simulate the drop out effect, as in Huang et al. (2018),

we multiply each cell by an efficiency loss constant drawn by Gamma(10, 100). Using 𝑆 to refer to

the data matrix resulting from the above steps, the final simulated data 𝑋 is obtained by letting 𝑋𝑖 𝑗

be drawn from Poisson(𝑆𝑖 𝑗 ).

In addition to the synthetic data, we evaluate the performance of Algorithm 3.1 on the following

real scRNAseq data sets:

Cell mixture data set: Another benchmarking data set from Tian et al. (2019a) consisting of

a mixture of 𝑘 = 5 cell lines created with 10x sequencing platform. The cell line identity of a cell

is also its true cluster label. The data set consists of 𝑛 = 3822 cells and 𝑑 = 11786 genes; we

removed multiplets, based on the provided metadata file and kept 3000 most variable genes after

SCT tranformation Hafemeister and Satĳa (2019); Choudhary and Satĳa (2022).

Baron’s pancreatic: Human pancreatic data set generated by Baron et al. (2016). After quality

control and SAVER imputation, there are 𝑑 = 14738 genes and 𝑛 = 1844 cells. For analysis

purposes cells that belong in a group with less than 70 members were filtered out to reduce to 𝑘 = 8

cell types. Also, we kept only the 3000 most variable genes after SCT tranformation Hafemeister

and Satĳa (2019); Choudhary and Satĳa (2022). The cell types associated with each cell were

obtained by an iterative hierarchical clustering method that restricts genes enriched in one cell type

from being used to separate other cell types. The enriched markers in every cluster defined the cell

type of the cells that belong in that cluster.

Tabula Muris data sets: Mouse scRNAseq data for different tissues and organs Tabula

Muris Consortium (2018). We select the pancreatic data (TM Panc) with 𝑛 = 1444 cells and

𝑑 = 23433 genes and the lung data (TM Lung) with 𝑛 = 453 cells and 𝑑 = 23433 genes. Both
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Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4K CellMix
SC3 0.637 0.827 0.798 0.969 0.894 0.767 0.889 1

scanpy 0.620 0.825 0.796 0.898 0.615 0.966 0.977 1
RaceID3 0.730 0.520 0.900 0.714 0.751 0.651 0.763 1
SIMLR 0.878 0.792 0.727 0.969 0.599 0.698 0.705 1
Seurat 0.792 0.667 0.843 0.901 0.547 0.941 0.889 0.993

Seurat_def 0.714 0.785 0.764 0.907 0.798 0.971 0.975 1
𝑘-means 0.921 0.786 0.848 0.957 0.840 0.662 0.747 1

DBSCAN 0.952 0.826 0.587 0.541 0.734 0.724 0.889 1
UMAP+DBSCAN 0.926 0.892 0.619 0.946 0.893 0.848 0.974 1
𝑡-SNE+𝑘-means 0.943 0.915 0.753 0.928 0.620 0.641 0.596 0.878

PM1.5 0.939 0.924 0.888 0.969 0.626 0.804 0.754 1
PM2 0.939 0.973 0.808 0.969 0.921 0.969 0.757 1
PM4 0.939 0.939 0.731 0.975 0.775 0.853 0.978 1

Table 3.3 ARI for RNA data.

data sets have 𝑘 = 7 different cell types which were characterized by an FACS-based full length

transcript analysis.

PBMC4k data set: This data set includes the gene expression of Peripheral Blood Mononuclear

Cells. The raw data are available from 10X Genomics. After quality control, saver imputation,

and removing the two smallest cell types, there are 𝑑 = 16655 genes and 𝑛 = 4316 cells in the

dataset. Also, we merge CD8+ T-cells and CD4+ T-cells in one type named T-cells resulting in

𝑘 = 4 cell types. The ground truth cell types are provided by SingleR annotation after marker gene

verification in github.com/SingleR.

Details about the pre-processing of data sets can be found in Appendix A. For the following

UMAP and 𝑡-SNE results, Linnorm normalization was applied without denoising, as this normal-

ization gave the best results. Note Seurat_def refers to the results of the entire Seurat pipeline,

whereas Seurat refers to the result of using Seurat clustering on data with the same processing and

normalization as for PM. The embedding dimension 𝑟 selected by Algorithm 3.1 ranged from 3 to

7 for PM1.5 and PM2, and from 3 to 11 for PM4.

Table 3.3 reports the ARI achieved by Algorithm 3.1 and other methods; see Tables B.6 and

B.5 in Appendix B for ECP and ECA. The path metric methods perform equally well or better

than the rest of the methods. Once again PM2 exhibits the best overall performance, with a high

ARI (≥ 90%) on all data sets except TM lung and PBMC4K; the next best method is PM4, which
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Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
2d UMAP 0.122 0.142 0.057 0.036 0.064 0.115 0.015 0.090
𝑟d UMAP 0.160 0.131 0.092 0.023 0.036 0.129 0.027 0.050
2d 𝑡-SNE 0.059 0.054 0.042 0.025 0.048 0.206 0.038 0.061
𝑟d 𝑡-SNE 0.035 0.054 0.027 0.010 0.040 0.229 0.050 0.033
2d PM1.5 0.010 0.013 0.046 0.003 0.076 0.067 0.028 0.098
𝑟d PM1.5 0.017 0.009 0.006 0 0.019 0.006 0.007 0.007
2d PM2 0.040 0.040 0.085 0.002 0.150 0.103 0.050 0.101
𝑟d PM2 0.048 0.036 0.029 0.002 0.051 0.010 0.013 0.008
2d PM4 0.108 0.135 0.246 0.007 0.265 0.193 0.069 0.107
𝑟d PM4 0.100 0.082 0.083 0.007 0.099 0.027 0.029 0.008

Table 3.4 Geometric perturbation for RNA data. For 𝑟d UMAP 𝑟 = 7, 6, 5, 3, 5, 9, 3, 4 for the
various data sets, which was the maximum of the PM1.5 dimension and the PM2 dimension. For
𝑟d 𝑡-SNE 𝑟 = 3.

achieves a high ARI on all but 3 data sets. SC3, RaceId3, and SIMLR had a low ARI (< 90%)

on 6 of the 8 data sets; scanpy, Seurat, 𝑘-means, and 𝑡-SNE+𝑘-means had a low ARI on 5 of the

8 data sets; Seurat_def, UMAP+DBSCAN, and PM1.5 had a low ARI for 4 of 8 data sets. These

results indicate that incorporating both density-based and geometric information when determining

similarity generally leads to more robust results for scRNA-seq data. Moreover, PM2 achieves the

best median ECP and median ECA values across all RNA data sets. Although the optimal balance

depends on the data set (for example PBMC4K does best with 𝑝 = 4, while TMLung does best

with 𝑝 = 1.5), path metrics with a moderate 𝑝 exhibit the best performance across a wide range of

data sets.

For BaronPanc we observe that Seurat_def achieves a slightly higher ARI than all the reported

path metric methods (𝑝 = 1.5, 2, 4). However, a significant advantage of Algorithm 3.1 over Seurat

is the high clustering performance on a wide range of sample sizes. To demonstrate our claim we

compare the ARI results in different down-sampled versions of BaronsPanc. We selected a stratified

sample of 50%, 25% and 10% of the cells of the BaronPanc data set. The results can be found in

Table B.4 of Appendix B. We observed no ARI deterioration for Algorithm 3.1 for the 50% and

25% down-sampled data set and only a moderate decrease for the 10% down-sampled dataset (ARI

of 0.67 at 10% downsampling for 𝑝 = 1.5). On the contrary, there is significant ARI deterioration

both for Seurat and Seurat_def; in particular, at 10% downsampling the ARI deteriorates to 0.405
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(a) PCA (b) PM2 (c) UMAP (d) 𝑡-SNE

(e) PCA (f) PM2 (g) UMAP (h) 𝑡-SNE

Figure 3.4 Top: embeddings colored by true cell type. Bottom: average linkage dendrograms of
cluster means.

for Seurat and to 0.185 for Seurat_def. Notice that in the 10% down-sampled data set, we use

regular 𝑘-means for PM2 to allow for the prediction of smaller sized clusters.

We also investigated whether we could learn the ground truth number of clusters by optimizing

the silhouette criterion in the scPMP embedding, and compared this with the number of clusters

obtained from Seurat using the default resolution; see Table B.3 in Appendix B. For 4 out of the

8 RNA data sets evaluated in this article (RNAMix1, RNAMix2, BaronPanc, and CellMix), this

procedure on PM2 yielded an estimate for 𝑘 which matched the number of distinct annotated labels.

On the other hand, Seurat correctly estimates the number of clusters for only 2 out of the 8 RNA

data sets (RNAMix1 and TMLung).

Table 3.4 reports the geometric perturbation. We see that increasing 𝑝 increases the geometric

perturbation, with PM1.5 yielding the smallest geometric perturbation on all data sets. Although

PM1.5 is the clear winner in terms of this metric, PM2 still performed favorably with respect to

UMAP and 𝑡-SNE. Indeed, 𝑟d PM2 had lower geometric perturbation than UMAP on all but one

data set (TMPanc), and lower geometric perturbation than 𝑡-SNE on the majority of data sets.

Figure 3.4 shows the PCA, PM2, UMAP, and 𝑡-SNE embeddings of the Cell Mix data set, as well
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Figure 3.5 Processing and clustering time for PBMC4K and Baron’s Pancreatic data sets.

as a tree structure on the clusters. The tree structure was obtained by first computing the cluster

means in the embedding and then applying hierarchical clustering with average linkage to the

means. The PCA tree (Figure 3.4(e)) was computed using 40 PCs so that it accurately reflects the

global geometry of the clusters. Interestingly path metrics recover the same hierarchical structure

on the clusters as PCA: the cell types HCC827 and H1975 are the most similar, and H838 is the

most distinct. This is what one would expect given more extensive biological information about

the cell types, since H838 is the only cell line here derived from metastatic site Lymph node on

a male patient, while both HCC827 and H1975 originated from the primary site of female lung

cancer patients. However, neither UMAP or 𝑡-SNE give the correct hierarchical representation of

the clusters, because both methods struggle to preserve global geometric structure as observed in

numerous studies Kobak and Berens (2019); Cooley et al. (2020).

Furthermore, Figure 3.5 records the runtime for processing and clustering (in minutes) of the
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Baron’s Pancreatic (𝑛 = 1844) and PBMC4K (𝑛 = 4316) data sets. For PBMC4k (our largest

data set), we use the landmark-based approximation of path distances for scalability. All the PM

methods run in less than a minute on BaronPanc and less than 6 minutes on PBMC4k; RaceID3,

scanpy, and Seurat were also fast. SC3 and SIMLR had long runtimes, requiring 37.9 and 91.1

minutes respectively for PBMC4k.

3.4 Discussion

This article applies a new theoretical framework to the analysis of single cell RNA-seq data

which is based on the computation of optimal paths. Path metrics encode both geometric and

density-based information, and the resulting low-dimensional embeddings simultaneously preserve

density-based cluster structure as well as global cluster orientation. The method exhibits competitive

performance when applied to numerous benchmarks, and the implementation is scalable to large

data sets. Although we investigated other choices of 𝑝, we found that 𝑝 = 2 performed well on a

wide range of RNA data sets, indicating that 𝑝 = 2 is an appropriate balance between density and

geometry for this application. Future research will explore ways to make the method more robust

to noise and adapting the method to the semi-supervised context.
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APPENDIX A

DATA PREPROCESSING

In this section the pre-processing of all RNA data sets is described. The main preprocessing steps

are quality control, imputation with SAVER Huang et al. (2018), and normalization. Below we

provide information about quality control and imputation and then we describe how we used those

steps according to the guidelines of each method.

A.1 Data availability

The raw data of Cellmix and RNAmix are downloaded from GEO under accession code

GSE118767, and the preprocessed data are available at their github repository. The PBMC4K data

is available at 10x Genomics’s website. The Baron’s pancreatic data is available in GEO with the

access code GSM2230757. The mouse tissue scRNAseq data sets are accessible on Figshare.

A.2 Main steps

Quality Control: Quality control is applied on RNAmix1, RNAmix2, Cellmix, BaronPanc,

PMC4K, Beta. Specifically, cells where at most 200 genes are expressed are filtered out. Also,

only genes that are expressed in more than 3 cells are included in the data set. In addition, cells

with percentage of expressed mitochondrial genes greater than 20% are excluded. The data sets

TMpanc and TMLung as found in Figshare have passed a quality control check with cutoffs of at

least 500 genes and 50,000 reads, so no additional filtering was applied.

Imputation: Imputation with SAVER Huang et al. (2018) was applied to all RNA seq data

sets apart from Cellmix. After removing multiplets the Cellmix data set included high quality data

and every clustering method achieved high ARI, suggesting no need for further processing and

imputation.

A.3 Preprocessing per method

Path metrics (PM), 𝑘-means, DBSCAN: After quality control and imputation, we normalize

the data. RNAmix1, RNAmix2, TMLung, Beta, TMPanc, PBMC4K were row normalized and

log transformed (data matrix had cells in rows and genes in columns). We then restrict to the top
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2000 high variance genes. For the BaronPanc and CellMix, which have large sample size, SCT

transformation was applied instead and the top 3000 variable genes were kept Hafemeister and

Satĳa (2019); Choudhary and Satĳa (2022). When needed, we rescale genes where variances were

extremely high. As a next step we apply PCA for dimension reduction, keeping the top 40 PC’s.

Finally, denoising is applied by replacing each point with the mean of its local neighborhood, using

a neighborhood size of 𝐾 = 12 points. For very large data sets, one may want to use a larger 𝐾 .

UMAP+DBSCAN, 𝑡-SNE+𝑘-means: After quality control and imputation, we apply Linnnorm

Yip et al. (2017) to all data sets. Then, we restrict to the top 2000 high variance genes. When

needed, we rescale genes with extremely high variance. Finally, we apply PCA for dimension

reduction, keeping the top 40 PC’s.

Seurat: For this method, we process the data as for PM and then use Seurat’sStuart et al. (2019)

functions to find neighboring points and cluster them. Notice that here we adjust the parameter

‘res’, to retrieve the correct number of clusters.

Seurat_def: We follow the suggested processing and clustering workflow of Seurat Stuart et al.

(2019) for all data sets. Notice that we normalize BaronPanc and CellMix with the SCT method

Hafemeister and Satĳa (2019); Choudhary and Satĳa (2022). Then data sets are clustered with

adjusted resolution parameter, to retrieve the correct number of clusters.

SC3: After quality control and imputation we normalize the information of every cell and

multiply by 10000. Then we use the log of the data for clustering with SC3 Kiselev et al. (2017).

Exception to this are the BaronPanc and CellMix data set, for which we use SCT normalization.

scanpy: After quality control and imputation we use the lognormalization of scanpy Wolf

et al. (2018). Exception to this are the BaronPanc and CellMix data set, for which we use SCT

normalization.

RaceID3: We apply quality control on the cells of the counts of the data set. RaceID3 Herman

et al. (2018); Grün et al. (2018) applies filtering and normalization in one step, which we adjust to

have about the same amount of cells and genes as with other methods. Notice that we do not apply

imputation because imputed data would not be counts, which are the required input of RaceID3.
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SIMLR: For SIMLR Wang et al. (2017) After quality control and imputation we normalize the

information of every cell and multiply by 10000 and use the log of those data. Exception to this are

the BaronPanc and CellMix data set, for which we use SCT normalization.

43



APPENDIX B

ADDITIONAL CLUSTERING RESULTS

Here we present more clustering evaluation results based on Entropy of Cluster Accuracy (ECA)

and Entropy of cluster Purity (ECP). The ECA can quantify the variety of true labels within a

predicted cluster and ECP can quantify the variety of predicted cluster labels within a true group.

Definition 2

Let 𝑁 represent the number of true groups and 𝑀 the number of predicted clusters. Let 𝑁 𝑗 be the

number of true groups with data points within the 𝑗 th predicted cluster and similarly let 𝑀 𝑗 be the

number of predicted clusters with data points within the 𝑗 th true group. Finally let 𝑝(𝑥 𝑗 ) denote

the proportion of data points belonging to the 𝑗 th true group that are within a given 𝑗 th predicted

cluster and let 𝑝𝑖 (𝑦 𝑗 ) denote the proportion of data points of 𝑗 th predicted cluster that are within a

given 𝑖th true group. Then:

𝐸𝐶𝐴 = − 1
𝑀

𝑀∑︁
𝑖=1

𝑁𝑖∑︁
𝑗=1

𝑝𝑖 (𝑥 𝑗 )𝑙𝑜𝑔(𝑝(𝑥 𝑗 ))

𝐸𝐶𝑃 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑀𝑖∑︁
𝑗=1

𝑝𝑖 (𝑦 𝑗 )𝑙𝑜𝑔(𝑝(𝑦 𝑗 ))

For a given clustering, low ECA means that data points in a predicted cluster originate from

the same true group. On the other hand, low ECP indicates that almost all the data points in a true

group were assigned the same clustering label. Use of ECP and ECA in clustering of scRNAseq

data was also found in Tian et al. (2019a).

Method Balls EWB Swiss SO(3)
𝑘-means 0.082 1.050 0.588 1.084

DBSCAN 0.385 0.114 0 0
UMAP+DBSCAN 0.941 0.695 0 0
𝑡-SNE+ 𝑘-means 0.153 0.630 0 0.440

Seurat 0.255 0.193 0 0
PM1.5 0.123 0.447 0 0.460
PM2 0.142 0.020 0 0
PM4 0.253 0.268 0 0

Table B.1 ECP for manifold data.
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Method Balls EWB Swiss SO(3)
𝑘-means 0.082 1.096 0.633 1.089

DBSCAN 0.362 0.231 0 0
UMAP+DBSCAN 0.200 0.014 0 0
𝑡-SNE+ 𝑘-means 0.147 0.582 0 0.440

Seurat 0.250 0.183 0 0
PM1.5 0.120 0.461 0 0.462
PM2 0.138 0.020 0 0
PM4 0.248 0.291 0 0

Table B.2 ECA for manifold data.

Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
Seurat_res=0.8 7 8 7 7 11 12 13 14

PM1.5 12 11 8 4 15 9 4 5
PM2 7 7 9 4 5 8 5 5
PM4 8 8 16 4 5 7 4 5

True 𝑘 7 7 7 3 7 8 4 5

Table B.3 Predicted number of clusters for Seurat and Path metrics for RNA data (𝑘 is the true
number of clusters).

Dataset Seurat Seurat_def PM1.5 PM2 PM4
100% of Baron’s Pancreatic 0.941 0.971 0.804 0.969 0.853
50% of Baron’s Pancreatic 0.880 0.844 0.969 0.969 0.969
25% of Baron’s Pancreatic 0.973 0.705 0.973 0.973 0.973
10% of Baron’s Pancreatic 0.410 0.185 0.674 0.939* 0.804

Table B.4 Downsampling results.

Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
SC3 0.289 0.114 0.228 0.058 0.132 0.368 0.328 0

Scanpy 0.481 0.242 0.314 0.147 0.309 0.093 0.054 0
RaceID3 0.336 0.621 0.168 0.342 0.122 0.181 0.207 0.000
SIMLR 0.163 0.294 0.263 0.057 0.407 0.104 0.190 0
Seurat 0.319 0.230 0.193 0.146 0.290 0.097 0.265 0

Seurat_def 0.256 0.270 0.423 0.128 0.289 0.112 0.106 0
𝑘-means 0.147 0.268 0.221 0.080 0.194 0.164 0.193 0

DBSCAN 0.090 0.188 0.368 0.440 0.202 0.146 0.262 0
UMAP+db 0.078 0.151 0.449 0.019 0.124 0.076 0.163 0

𝑡-SNE+ 𝑘-means 0.104 0.137 0.426 0.085 0.259 0.171 0.187 0.126
PM1.5 0.110 0.146 0.180 0.061 0.305 0.147 0.196 0
PM2 0.110 0.071 0.362 0.061 0.279 0.077 0.195 0
PM4 0.110 0.123 0.230 0.048 0.156 0.159 0.096 0

Table B.5 ECA for RNA data.
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Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
SC3 0.328 0.114 0.294 0.058 0.070 0.301 0.062 0

Scanpy 0.517 0.183 0.322 0.146 0.516 0.088 0.057 0
RaceID3 0.381 0.665 0.182 0.351 0.268 0.413 0.310 0
SIMLR 0.151 0.267 0.275 0.057 0.543 0.380 0.360 0
Seurat 0.292 0.282 0.230 0.150 0.540 0.122 0.053 0.027

Seurat_def 0.320 0.258 0.436 0.133 0.284 0.089 0.062 0
𝑘-means 0.131 0.255 0.244 0.079 0.215 0.395 0.316 0

DBSCAN 0.075 0.141 0.404 0.135 0.138 0.109 0.051 0
UMAP+db 0.151 0.226 0.413 0.126 0.061 0.248 0.087 0

𝑡-SNE+ 𝑘-means 0.102 0.133 0.437 0.089 0.494 0.402 0.451 0.147
PM1.5 0.096 0.136 0.197 0.061 0.482 0.273 0.312 0
PM2 0.096 0.062 0.323 0.061 0.158 0.081 0.308 0
PM4 0.096 0.114 0.184 0.048 0.260 0.226 0.055 0

Table B.6 ECP for RNA data.
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CHAPTER 4

SHARED NEAREST NEIGHBORS GRAPH BASED SPECTRAL CLUSTERING

4.1 Introduction

The exploration of the theoretical properties of spectral clustering on finite sample data started

more than twenty years ago (Spielman and Teng, 1996; Guattery and Miller, 1998; Ng et al., 2001;

Meilă and Shi, 2001) along with theoretical properties for increasing sample size (Luxburg et al.,

2004). One of the advantages of spectral clustering is the interpretability of its performance on

data points represented as vertices on graphs (𝑘NN, 𝜖-neighbor graph) that are connected with

edges based on their similarity to other data points (von Luxburg, 2007). Although theoretical

results of 𝑘NN graph-based clustering methods have been explored by Maier et al. (2009), the

theoretical properties of SNN graph-based clustering combined with spectral clustering haven’t

been investigated yet. In the following sections, we use a similar framework as of Maier et al.

(2009) to provide a range for the number of neighbors used for the construction of the SNN graph,

such that exact cluster identification is achieved.

4.2 Framework

Our aim is to cluster a set of 𝑛 points, 𝑋1, . . . , 𝑋𝑛, which have been drawn from some underlying

density, 𝑝, of R𝑚. For this task, we build the SNN graph of those points and use its Laplacian for

spectral clustering. The number of true clusters is known and denoted as 𝐾 .

4.2.1 The SNN graph

For the construction of the SNN graph, we first find the 𝑘 nearest neighbors of each point 𝑋𝑖. Let

𝑘NN(𝑋𝑖) be the set of the first 𝑘 nearest neighbors of 𝑋𝑖. Then, we connect two vertices 𝑋𝑖 and 𝑋 𝑗 ,

if 𝑋𝑖 ∈ 𝑘𝑁𝑁 (𝑋 𝑗 ) or if 𝑋 𝑗 ∈ 𝑘𝑁𝑁 (𝑋𝑖). The weight, 𝑊𝑖, 𝑗 , of their edge is the Jaccard similarity of

𝑘NN(𝑋𝑖), 𝑘NN(𝑋 𝑗 ), i.e.

𝑊𝑖, 𝑗 =
|𝑘𝑁𝑁 (𝑋𝑖) ∩ 𝑘𝑁𝑁 (𝑋 𝑗 ) |
|𝑘𝑁𝑁 (𝑋𝑖) ∪ 𝑘𝑁𝑁 (𝑋 𝑗 ) |

. (4.1)

The SNN graph is a symmetric graph denote as 𝐺𝑆𝑁𝑁 (𝑘).
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4.2.2 The SNN Spectral Clustering Algorithm

Algorithm 4.1 SNN Spectral Clustering Algorithm.
1: Input: 𝑋 ∈ R𝑛×𝑚, number of clusters 𝐾 , nearest neighbors 𝑘 , bandwidth ℎ, density bound 𝑡,

Denoise = (TRUE, FALSE), Laplacian = (𝐷 −𝑊 , 𝐷− 1
2𝑊𝐷−

1
2 , 𝐼 − 𝐷−1𝑊), 𝑡, 𝛿, 𝜖𝑛

2:
3: Output: Predicted clustering labels ℓ ∈ R𝑛
4:
5: % 𝑘-nearest neighbors:
6:
7: for i=1 to n do
8: 𝑘𝑁𝑁𝑖 ← {𝑋 𝑗 : 𝑋 𝑗 is one of the 𝑘𝑁𝑁 of 𝑋𝑖, based on Euclidean distance}
9:

10: % Shared Nearest Neighbors graph:
11:
12: 𝑊𝑖, 𝑗 ←

|𝑘𝑁𝑁𝑖∩𝑘𝑁𝑁 𝑗 |
|𝑘𝑁𝑁𝑖∪𝑘𝑁𝑁 𝑗 |

13: 𝐺𝑆𝑁𝑁 (𝑘) ← graph with adjacency matrix𝑊
14:
15: % Kernel estimation of density 𝑝:
16:
17: for i=1 to n do
18: 𝑝𝑛 (𝑋𝑖) ← 1

𝑛ℎ

𝑛∑
𝑗=1
𝐾 ( 𝑋𝑖−𝑋 𝑗

ℎ
)

19:
20: % Denoising:
21:
22: if Denoising = TRUE then
23: Remove vertices and edges of X s.t.𝑝𝑛 (𝑋) < 𝑡 − 2𝜖𝑛
24: Remove components with size less than 𝛿𝑛
25: 𝐺′

𝑆𝑁𝑁
(𝑘) ← denoised 𝐺𝑆𝑁𝑁 (𝑘)

26: 𝑊, 𝑛← adjacency of 𝐺′
𝑆𝑁𝑁
(𝑘), number of vertices in 𝐺′

𝑆𝑁𝑁
(𝑘)

27:
28: % Eigendecomposition of SNN graph Laplacian:
29:
30: 𝐷𝑖,𝑖 ←

∑𝑛
𝑗=1𝑊𝑖, 𝑗

31: 𝐷 ← diagonal(𝐷𝑖,𝑖)
32: 𝐿 ← Laplacian
33: 𝑉 ← 𝐾 eigenvector matrix of𝐿
34:
35: % Clustering of 𝑋1, . . . , 𝑋𝑛:
36:
37: ℓ ← 𝑘-means_plusplus(𝑉, 𝐾)
38:
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Algorithm 4.2 Eigenvector matrix of 𝐿.

1: Input: 𝐿, 𝐾 , Laplacian = (𝐷 −𝑊, 𝐷− 1
2𝑊𝐷−

1
2 , 𝐼 − 𝐷−1𝑊)

2:
3: Output: 𝐾 eigenvector matrix of 𝐿
4:
5: if 𝐿 = 𝐷−

1
2𝑊𝐷−

1
2 then

6: {𝜆1, 𝜆2, ..., 𝜆𝐾 , ...} ← eigenvalues of 𝐿 such that 𝜆1 > 𝜆2 > 𝜆3...
7: 𝑉 = [𝑉1, 𝑉2, ..., 𝑉𝐾] ← 𝑉𝑖 eigenvector of 𝜆𝑖
8: % Row normalization of 𝑉
9: 𝑣𝑖 ← 𝑖-th row of 𝑉

10: 𝑞 ← (𝑞1, . . . , 𝑞𝑛) where 𝑞𝑖 = (
∑
𝑗 𝑣

2
𝑖, 𝑗
)1/2

11: 𝑉̃ ← 𝐷−1
𝑞 𝑉 , where 𝐷𝑞 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (𝑞)

12: ℓ ← 𝑘-means_plusplus(𝑉̃ , 𝐾)
13: else
14: {𝜆1, 𝜆2, ..., 𝜆𝐾 , ...} ← eigenvalues of 𝐿 such that 𝜆1 < 𝜆2 < 𝜆3...
15: 𝑉 = [𝑉1, 𝑉2, ..., 𝑉𝐾] ← 𝑉𝑖 eigenvector of 𝜆𝑖

4.3 Theoretical results

The theoretical results presented in section 4.3 are divided into two cases; the noise-free case

and the noisy case, based on Maier et al. (2009).

Noise-free case. In this case, we consider a probability distribution 𝑝, whose support consists

of several high-density regions separated by a positive distance from each other. We consider

that successful cluster identification means that each high-density region corresponds to a unique

predicted cluster. Since there is no overlap between high-density regions, every point will belong

to one cluster only. Hence, the denoising step of 4.1 will not remove any points from the SNN

graph.

Noisy case. In this case, the high-density regions of 𝑝 are connected by low-density regions.

For a 𝑡 > 0 we define the 𝑡-level set, 𝐿 (𝑡), as the closure of all points 𝑥 ∈ R𝑚 with 𝑝(𝑥) ≥ 𝑡,

i.e. {𝑥 : 𝑝(𝑥) ≥ 𝑡}. We denote those components as 𝐶 (1) , . . . , 𝐶 (𝐾) . In the following results, we

explore two approaches to the noisy case.

In the first approach, the true clusters are the sets 𝐶 (1) , . . . , 𝐶 (𝐾) . Points in low-density regions

do not belong to any cluster and are removed. We consider that clusters are identified exactly by

our algorithm when each connected component of 𝐿 (𝑡) is included in a unique predicted cluster
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𝑝
(𝑖)
max supremum of density attained by points of 𝐶 (𝑖)

𝑝
(𝑖)
min infimum of density attained by points of 𝐶 (𝑖)
𝑢(𝑖) lower bound on distance of cluster 𝐶 (𝑖) to other clusters
𝑢𝑖 𝑗 distance between cluster 𝐶 (𝑖) and cluster 𝐶 ( 𝑗)

𝜌(𝑢(𝑖)) probability of balls of radius 𝑢(𝑖) in 𝐶 (𝑖)
𝛽(𝑖) probability mass of cluster 𝐶 (𝑖)

𝐺′
𝑆𝑁𝑁
(𝑘) the SNN graph after denoising

Table 4.1 Notations.

and the ratio of noisy points to cluster points goes to zero. We also consider rough identification

of clusters, when the clustering algorithm predicts components that contain points of a unique 𝐶 (𝑖)

plus some noisy points that do not belong to any cluster. The following table includes notation

used in sections . In the second approach, noisy points are not removed. Instead, they are defined

as cluster points of the 𝐿 (𝑡) component closest to them. For this approach, there are connections

between subgraphs that correspond to true clusters and spectral clustering might mis-cluster points

that are equidistant from two clusters. We provide results regarding the mis-clustering error.

Let the sets 𝐶 (1) , . . . , 𝐶 (𝐾) be 𝐾 disjoint, compact and connected subsets of R𝑚. The boundary

𝜕𝐶 (𝑖) of every𝐶 (𝑖) is a smooth (𝑚−1)-dimensional submanifold inR𝑚. We will denote with 𝜅 (𝑖) the

minimal curvature radius of 𝜕𝐶 (𝑖) , which is equal to the inverse of the largest principal curvature

of 𝜕𝐶 (𝑖) . Also we will denote with 𝛽(𝑖) = 𝜇(𝐶 (𝑖)) =
∫
𝐶 (𝑖)

𝑝𝑑𝜆, the probability mass of 𝐶 (𝑖) , where

𝜆 is the Lebesgue measure in R𝑚.

The following results about within cluster connectivity of a predicted cluster and isolation

(disconnectivity) of each cluster will be proven using the collar set of each cluster. Specifically, the

collar of 𝐶 (𝑖) is defined as 𝐶𝑜𝑙 (𝑖) (𝜈) = {𝑥 ∈ 𝐶 (𝑖) | 𝑑𝑖𝑠𝑡 (𝑥, 𝜕𝐶 (𝑖)) ≤ 𝜈}, with 𝜈 < 𝜅 (𝑖) . Furthermore,

we define the maximal covering radius to be 𝜈(𝑖)𝑚𝑎𝑥 = max𝜈≤𝜅 (𝑖) {𝜈 | 𝐶 (𝑖) ∖ 𝐶𝑜𝑙 (𝑖) (𝜈) is connected }

and we denote with 𝑢(𝑖) a lower bound of the distance of 𝐶 (𝑖) from 𝐶 (𝑖) with 𝑗 ≠ 𝑖. In the noise-free

case, 𝑢(𝑖) will be considered strictly greater than 0. Finally, the 𝑘NN radius of a point 𝑋𝑖 is the

maximum distance of 𝑋𝑖 to a point in 𝑘NN(𝑋𝑖). The minimal 𝑘NN radius of a cluster 𝐶 (𝑖) , 𝑅(𝑖)
𝑚𝑖𝑛

,

is the minimal 𝑘NN radius of the points in 𝐶 (𝑖) .
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4.3.1 Noise-free case

Lemma 1 (Within cluster connectedness in 𝐺𝑆𝑁𝑁 (𝑘))

Let A (𝑖)𝑛 denote the event that the points of cluster 𝐶𝑖 are connected in 𝐺𝑆𝑁𝑁 (𝑘). For 𝑧 ∈(
0, 2𝑚𝑖𝑛{𝑢(𝑖) , 𝜈(𝑖)𝑚𝑎𝑥}

)
,

𝑃

(
(A (𝑖)𝑛 )𝑐

)
≤ 𝑛𝛽(𝑖)𝑃

(
𝑀 ≥ 𝑘

)
+ 𝑁

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
) (𝑛−1)

(
1 − 𝜂𝑚𝑧𝑚/4𝑚

(
𝑝
(𝑖)
min − 𝑛𝑝

(𝑖)
max

))
, (4.2)

for 𝑀 ∼ 𝐵𝑖𝑛(𝑛 − 1, 𝑝 (𝑖)max𝜂𝑚𝑧
𝑚).

Proof. Observe that if 𝑅(𝑖)
𝑚𝑖𝑛

> 𝑧, for some 𝑧 > 0 and if for two points of 𝑋𝑖, 𝑋 𝑗 ∈ 𝐶 (𝑖) holds that

𝑑 (𝑋𝑖, 𝑋 𝑗 ) ≤ 𝑧, then we have that 𝑋𝑖 ∈ 𝑘NN(𝑋 𝑗 ) and 𝑋 𝑗 ∈ 𝑘NN(𝑋𝑖) . Furthermore, if we can find a

covering of𝐶 (𝑖)∖𝐶𝑜𝑙 (𝑖) (𝑧/4) of a finite number of balls of radius 𝑧/4, where every ball contains at

least two points of 𝐶 (𝑖) , then points in neighboring balls have distance less than 𝑧. Hence they are

in the list of 𝑘 nearest neighbors of each other and every pair of points will have a shared neighbor.

This implies that every point in 𝐶 (𝑖) ∖ 𝐶𝑜𝑙 (𝑖) (𝑧/4) will be connected in 𝐺𝑆𝑁𝑁 (𝑘). Notice that

points in 𝐶𝑜𝑙 (𝑖) (𝑧/4) will have at most distance 3𝑧/4 from the balls of the covering and since every

ball includes at least two points of the cluster, we conclude that the points of 𝐶𝑜𝑙 (𝑖) (𝑧/4) will be

connected to 𝐶 (𝑖) ∖𝐶𝑜𝑙 (𝑖) (𝑧/4). As a result, the points of 𝐶 (𝑖) will be connected in 𝐺𝑆𝑁𝑁 (𝑘). Let

F (𝑖)𝑧 be the event that, given a covering of 𝐶 (𝑖)∖𝐶𝑜𝑙 (𝑖) (𝑧/4), there exists a ball that doesn’t contain

at least two points of 𝐶 (𝑖) . Based on the above observation, {𝑅(𝑖)
𝑚𝑖𝑛

> 𝑧} ∩ (F (𝑖)𝑧 )𝑐 implies the points

of 𝐶 (𝑖) will be connected on 𝐺𝑆𝑁𝑁 (𝑘). Therefore,

𝑃

(
(A (𝑖)𝑛 )𝑐

)
≤ 𝑃

(
{𝑅(𝑖)

𝑚𝑖𝑛
≤ 𝑧}

)
+ 𝑃

(
F (𝑖)𝑧

)
(4.3)

For P
(
{R(i)min ≤ z}

)
: We define 𝑁𝑠 = |{ 𝑗 ≠ 𝑠 |𝑋 𝑗 ∈ 𝐵(𝑋𝑠, 𝑧)}|, for 1 ≤ 𝑠 ≤ 𝑛. Then,

if the event {𝑅(𝑖)
𝑚𝑖𝑛
≤ 𝑧} is true =⇒

∃𝑋𝑠 ∈ 𝐶 (𝑖) s.t. 𝑚𝑎𝑥{𝑑 (𝑦, 𝑋𝑠) | 𝑦 ∈ 𝑘𝑁𝑁 (𝑋𝑠)} ≤ 𝑧 =⇒

∃𝑋𝑠 ∈ 𝐶 (𝑖) s.t. 𝑁𝑠 ≥ 𝑘.
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Therefore, {𝑅(𝑖)
𝑚𝑖𝑛
≤ 𝑧} ⊆

𝑛⋃
𝑠=1

{
{𝑁𝑠 ≥ 𝑘} ∩ {𝑋𝑠 ∈ 𝐶 (𝑖)}

}
and then we have:

𝑃

(
{𝑅(𝑖)

𝑚𝑖𝑛
≤ 𝑧}

)
≤

𝑛∑︁
𝑠=1

𝑃

(
𝑁𝑠 ≥ 𝑘 | 𝑋𝑠 ∈ 𝐶 (𝑖)

)
𝑃

(
𝑋𝑠 ∈ 𝐶 (𝑖)

)
≤ 𝑛𝛽(𝑖)𝑃

(
𝑀 ≥ 𝑘

)
.

Here 𝑁𝑠 | {𝑋𝑠 ∈ 𝐶 (𝑖)} ∼ 𝐵𝑖𝑛(𝑛 − 1, 𝜇(𝐵(𝑋𝑠, 𝑧)) and 𝜇(𝐵(𝑋𝑠, 𝑧)) ≤ sup𝑥∈𝐶 (𝑖) 𝜇(𝐵(𝑥, 𝑧)) ≤

𝑝
(𝑖)
max𝜂𝑚𝑧

𝑚. Hence, 𝑃
(
𝑁𝑠 ≥ 𝑘

)
< 𝑃

(
𝑀 ≥ 𝑘

)
, for 𝑀 ∼ 𝐵𝑖𝑛(𝑛 − 1, 𝑝 (𝑖)max𝜂𝑚𝑧

𝑚) and 𝜂𝑚 the volume

of the 𝑚-dimensional unit ball.

For P
(
F (i)z

)
: Since𝐶 (𝑖) is compact and connected, we can find a covering of𝐶 (𝑖)∖𝐶𝑜𝑙 (𝑖) (𝑧/4)

with 𝑁 balls, 𝐵1(𝑧/4), . . . , 𝐵𝑁 (𝑧/4) of radius 𝑧/4. Let us denote, 𝑃𝑋 𝑗 ,𝐵𝑠 = 𝑃(𝑋 𝑗 ∈ 𝐵𝑠 (𝑧/4) | 𝑋 𝑗 ∈

𝐶 (𝑖))𝑃(𝑋 𝑗 ∈ 𝐶 (𝑖))) the probability that the point 𝑋 𝑗 is in 𝐶 (𝑖) and in the ball 𝐵𝑠 (𝑧/4). Then,

𝑃

(
F (𝑖)𝑧

)
= 𝑃

(
{∃𝑠, 1 ≤ 𝑠 ≤ 𝑁, s.t. 𝐵𝑠 (𝑧/4) has less than two points of 𝐶 (𝑖)}

)
≤

𝑁∑︁
𝑠=1

𝑃

(
{𝐵𝑠 (𝑧/4) has less than two points of 𝐶 (𝑖)}

)
=

𝑁∑︁
𝑠=1

𝑃

(
{𝐵𝑠 (𝑧/4) has no points of 𝐶 (𝑖)}

)
+

𝑁∑︁
𝑠=1

𝑃

(
{𝐵𝑠 (𝑧/4) has exactly one point of 𝐶 (𝑖)}

)
=

𝑁∑︁
𝑠=1

𝑛∏
𝑗=1

(
1 − 𝑃𝑋 𝑗 ,𝐵𝑠

)
+

𝑁∑︁
𝑠=1

𝑛∑︁
𝑗=1

𝑃𝑋 𝑗 ,𝐵𝑠

∏
𝑞≠ 𝑗

(
1 − 𝑃𝑋𝑞 ,𝐵𝑠

)
(4.4)

Now we notice that,

𝑃𝑋 𝑗 ,𝐵𝑠 = 𝜇(𝐵𝑠 (𝑧/4)) ≤ sup
𝐵𝑞⊂𝐶 (𝑖)

𝜇(𝐵𝑞 (𝑧/4)) ≤ 𝑝 (𝑖)max𝜂𝑚𝑧
𝑚/4𝑚 and, (4.5)

𝑃𝑋 𝑗 ,𝐵𝑠 = 𝜇(𝐵𝑠 (𝑧/4)) ≥ inf
𝐵𝑞⊂𝐶 (𝑖)

𝜇(𝐵𝑞 (𝑧/4)) ≥ 𝑝 (𝑖)min𝜂𝑚𝑧
𝑚/4𝑚 (4.6)

where 𝑝 (𝑖)max is the supremum of density attained by points of 𝐶 (𝑖) and 𝑝
(𝑖)
min the infimum of the

density attained by points of 𝐶 (𝑖) . From inequalities 4.5, 4.6, we can write 4.4 as,

𝑃

(
F (𝑖)𝑧

)
≤ 𝑁

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
)𝑛
+ 𝑛𝑁𝑝 (𝑖)max𝜂𝑚𝑧

𝑚/4𝑚
(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
) (𝑛−1)

= 𝑁

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
) (𝑛−1)

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚 + 𝑛𝑝 (𝑖)max𝜂𝑚𝑧
𝑚/4𝑚

)
= 𝑁

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
) (𝑛−1)

(
1 − 𝜂𝑚𝑧𝑚/4𝑚

(
𝑝
(𝑖)
min − 𝑛𝑝

(𝑖)
max

))
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For the covering we will use a standard 𝑧
4−packing. Also, since 𝑧

4 ≤
𝜈
(𝑖)
𝑚𝑎𝑥

2 , balls of radius 𝑧/8

around the packing centers are disjoint subsets of 𝐶 (𝑖) . Consequently, the total volume of the 𝑁

balls will be bounded by the volume of cluster 𝐶 (𝑖) and hence 𝑁𝜂𝑚 𝑧𝑚

8𝑚 ≤ 𝑉𝑜𝑙 (𝐶
(𝑖)). Finally we get

the following bound for the number of covering balls, 𝑁 ,

𝑁 ≤ 𝑉𝑜𝑙 (𝐶
(𝑖))

𝜂𝑚
𝑧𝑚

8𝑚
(4.7)

□

Now we will explore the connectivity of points from different clusters in 𝐺𝑆𝑁𝑁 (𝑘). We say that

𝐶 (𝑖) is isolated on𝐺𝑆𝑁𝑁 (𝑘), if there is no edge between sample points of 𝐶 (𝑖) and any other cluster.

Lemma 2 (Between clusters connectivity in 𝐺𝑆𝑁𝑁 (𝑘))

Let I (𝑖)𝑛 be the event that 𝐶 (𝑖) is isolated from all other clusters in 𝐺𝑆𝑁𝑁 (𝑘), then for 𝑘 ≤

𝜌(𝑢(𝑖))𝑛/2 − 2 log(𝛽(𝑖)𝑛)

𝑃

( (
I (𝑖)𝑛

)𝑐) ≤ 𝐾∑︁
𝑖=1

𝑒
− 𝑛−1

2

(
𝜌(𝑢(𝑖) )

2 − 𝑘−1
𝑛−1

)
. (4.8)

Proof. For the construction of the 𝐺𝑆𝑁𝑁 (𝑘), we practically start with constructing a symmetric

𝑘NN graph, 𝐺𝑘𝑁𝑁 , and then we remove the edges of points that do not have common neighbors in

their 𝑘-nearest neighbors lists. This implies that points that aren’t connected on the 𝐺𝑘𝑁𝑁 will not

be connected on the 𝐺𝑆𝑁𝑁 (𝑘). Hence,

(I (𝑖)𝑛
)𝑐

=⇒
{
𝐶 (𝑖) is not isolated in 𝐺𝑘𝑁𝑁

}
𝑃

( (
I (𝑖)𝑛

)𝑐) ≤ 𝑃({
𝐶 (𝑖) not isolated in 𝐺𝑘𝑁𝑁

})
≤ 𝑃

({
𝑅
(𝑖)
max ≥ 𝑢(𝑖)

})
+

∑︁
𝑗≠𝑖

𝑃

({
𝑅
( 𝑗)
max ≥ 𝑢(𝑖 𝑗)

})
≤ 𝑃

({
𝑅
(𝑖)
max ≥ 𝑢(𝑖)

})
+

∑︁
𝑗≠𝑖

𝑃

({
𝑅
( 𝑗)
max ≥ 𝑢( 𝑗)

})
≤

𝐾∑︁
𝑖=1

𝑒
− 𝑛−1

2

(
𝜌(𝑢(𝑖) )

2 − 𝑘−1
𝑛−1

)
where we get the final bound for 𝑘 < 𝜌(𝑢(𝑖))𝑛/2− 2 log(𝛽(𝑖)𝑛) and using Preposition 6 and Lemma

7 from Maier et al. (2009). Here, 𝑢(𝑖) ≤ 𝑢𝑖 𝑗 and 𝜌(𝑢(𝑖)) is the probability of balls of radius 𝑢(𝑖) in

𝐶 (𝑖) . □
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Lemma 3 (Range of 𝑘 for within-cluster connectedness)

If 𝑘 ≥ 4𝑚+1 log
(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
and 𝑘 ≤ (𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚} then,

𝑃

(
(A (𝑖)𝑛 )𝑐

)
≤

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
−
(𝑘−1) 𝑝 (𝑖)

𝑚𝑖𝑛

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥 (4.9)

Proof. Our overall goal is to find appropriate values for 𝑘 such that 𝑃
(
(A (𝑖)𝑛 )𝑐

)
has an upper bound

that goes to zero as n goes to infinity. We will find upper bounds for the two terms of the inequality

4.2.

We will use the following inequalities in the proof:

(Hoeffding’s inequality). Let 𝑀 ∼ 𝐵𝑖𝑛(𝑛, 𝑝) and define 𝛼 = 𝑘
𝑛−1 . Then,

𝛼 ≥ 𝑝, 𝑃
(
𝑀 ≥ 𝑘

)
≤ 𝑒−𝑛𝐾 (𝛼 | |𝑝) , (4.10)

where 𝐾 (𝛼 | |𝑝) = 𝛼 log
(
𝑎
𝑝

)
+ (1− 𝛼) log

( 1−𝑎
1−𝑝

)
is the Kullback-Leibler divergence of (𝛼, 1− 𝛼) and

(𝑝, 1 − 𝑝).

(1st logarithmic inequality.)

log(𝑥) ≥ 𝑥 − 1
𝑥

, for 𝑥 > 0 (4.11)

(2nd logarithmic inequality.)

log(1 − 𝑥) ≤ 𝑥, for 𝑥 ≤ 1. (4.12)

For the first term of 4.2, we use inequality 4.10 for 𝑝 = 𝑝
(𝑖)
𝑚𝑎𝑥𝜂𝑚𝑧

𝑚 and 𝛼 = 𝑘
𝑛−1 . Now, assuming

that 𝑝 < 𝛼 and that 𝑘 ≤ 𝑛 − 1 we get,

𝑛𝛽(𝑖)𝑃
(
𝑀 ≥ 𝑘

)
≤ 𝑒
−(𝑛−1)

(
𝛼 log

(
𝑎
𝑝

)
+(1−𝛼) log

(
1−𝑎
1−𝑝

) )
≤ 𝑒
−(𝑛−1)

(
𝛼 log

(
𝑎
𝑝

)
+𝑝−𝛼

) )
, by 4.11.

Let 𝜃 = 𝜂𝑚𝑧𝑚/𝛼 then we have,

𝑛𝛽(𝑖)𝑃
(
𝑀 ≥ 𝑘

)
≤ 𝑛𝛽(𝑖)𝑒

−𝑘
(

log
(

1
𝜃 𝑝
(𝑖)
𝑚𝑎𝑥

)
+𝜃𝑝 (𝑖)𝑚𝑎𝑥−1

) )
= 𝑒

log(𝑛𝛽(𝑖) )−𝑘
(

log
(

1
𝜃 𝑝
(𝑖)
𝑚𝑎𝑥

)
+𝜃𝑝 (𝑖)𝑚𝑎𝑥−1

) )
≤ 𝑒
− 𝑘2

(
log

(
1

𝜃 𝑝
(𝑖)
𝑚𝑎𝑥

)
+𝜃𝑝 (𝑖)𝑚𝑎𝑥−1

) )
,

(4.13)
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for 𝑘 such that log(𝑛𝛽(𝑖)) ≤ 𝑘
2
(
log

( 1
𝜃𝑝
(𝑖)
𝑚𝑎𝑥

)
+ 𝜃𝑝 (𝑖)𝑚𝑎𝑥 − 1

)
. That way we attain a lower bound for 𝑘:

𝑘 ≥
2 log(𝑛𝛽(𝑖))

log
( 1
𝜃𝑝
(𝑖)
𝑚𝑎𝑥

)
+ 𝜃𝑝 (𝑖)𝑚𝑎𝑥 − 1

(4.14)

For the second term of 4.2 we have,

𝑁

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
) (𝑛−1) (

1 − 𝜂𝑚𝑧𝑚/4𝑚
(
𝑝
(𝑖)
min − 𝑛𝑝

(𝑖)
max

) )
=(

1 − 𝜂𝑚𝑧𝑚/4𝑚
(
𝑝
(𝑖)
min − 𝑛𝑝

(𝑖)
max

) )
𝑒(𝑛−1) log(1−𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚)+log(𝑁) ≤(
1 − 𝜂𝑚𝑧𝑚/4𝑚

(
𝑝
(𝑖)
min − 𝑛𝑝

(𝑖)
max

) )
𝑒
(𝑛−1) log(1−𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚)+log
(
𝑉𝑜𝑙 (𝐶 (𝑖) )
𝜂𝑚

𝑧𝑚

8𝑚

)
, by 4.7.

Now we use the substitution 𝜂𝑚𝑧𝑚 = 𝜃𝛼 = 𝜃𝑘
𝑛−1

𝑁

(
1 − 𝑝 (𝑖)min𝜂𝑚𝑧

𝑚/4𝑚
) (𝑛−1) (

1 − 𝜂𝑚𝑧𝑚/4𝑚
(
𝑝
(𝑖)
min − 𝑛𝑝

(𝑖)
max

) )
≤(

1 + 𝜃𝑘

4𝑚 (𝑛 − 1)
(
𝑛𝑝
(𝑖)
max − 𝑝 (𝑖)min

) )
𝑒−

𝜃𝑘𝑝
(𝑖)
min

4𝑚 +log
(
𝑉𝑜𝑙 (𝐶 (𝑖) )8𝑚 (𝑛−1)

𝜃𝑘

)
≤(

1 + 𝜃𝑛

4𝑚 (𝑛 − 1)
(
𝑛𝑝
(𝑖)
max − 𝑝 (𝑖)min

) )
𝑒−

𝜃𝑘𝑝
(𝑖)
min

4𝑚 +log
(
𝑉𝑜𝑙 (𝐶 (𝑖) )8𝑚𝑛

𝜃

)
≤(

1 + 𝜃𝑛

4𝑚 (𝑛 − 1)
(
𝑛𝑝
(𝑖)
max − 𝑝 (𝑖)min

) )
𝑒−

𝑘
2
𝜃 𝑝
(𝑖)
min

4𝑚 ,

(4.15)

where the last step of the inequality 4.15 holds if − 𝜃𝑘 𝑝
(𝑖)
min

4𝑚 + log
(𝑉𝑜𝑙 (𝐶 (𝑖) )8𝑚𝑛

𝜃

)
≤ − 𝑘2

𝜃𝑝
(𝑖)
min

4𝑚 or equiva-

lently if,

𝑘 ≥ 4𝑚2
𝜃𝑝
(𝑖)
𝑚𝑖𝑛

log
(𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚𝑛

𝜃

)
(4.16)

To bound inequality 4.13 with the upper bound of 4.15 we need,(
1 + 𝜃𝑛

4𝑚 (𝑛 − 1)
(
𝑛𝑝
(𝑖)
max − 𝑝 (𝑖)min

) )
𝑒−

𝑘
2
𝜃 𝑝
(𝑖)
min

4𝑚 ≥ 𝑒
− 𝑘2

(
log

(
1

𝜃 𝑝
(𝑖)
𝑚𝑎𝑥

)
+𝜃𝑝 (𝑖)𝑚𝑎𝑥−1

) )
for which it suffices to have, 𝑘

2
𝜃𝑝
(𝑖)
min

4𝑚 ≤ 𝑘
2

(
log

( 1
𝜃𝑝
(𝑖)
𝑚𝑎𝑥

)
+ 𝜃𝑝 (𝑖)𝑚𝑎𝑥 − 1

) )
or equivalently − log(𝛾) ≥

1 + 𝛾 − 𝛾

4𝑚
𝑝
(𝑖)
𝑚𝑖𝑛

𝑝
(𝑖)
𝑚𝑎𝑥

for 𝛾 = 𝜃𝑝
(𝑖)
𝑚𝑎𝑥 . The above is satisfied for values of 𝛾 that − log(𝛾) ≥ 1 + 𝛾 − 3𝛾

4 ,

since 𝑝
(𝑖)
𝑚𝑖𝑛

4𝑚𝑝 (𝑖)𝑚𝑎𝑥
≤ 1

4 . Such values of 𝛾 could be 1
10 ,

1
2 and others. We will use 𝛾 = 1

2 , which will result

to 𝜃 = 1
2𝑝 (𝑖)𝑚𝑎𝑥

and the probability inequality in Lemma 1 can be rewritten as:

𝑃

(
(A (𝑖)𝑛 )𝑐

)
≤ 2

(
1 + 𝑛

𝑛 − 1
1

4𝑚2𝑝 (𝑖)𝑚𝑎𝑥

(
𝑛𝑝
(𝑖)
max − 𝑝 (𝑖)min

) )
𝑒
−

𝑘𝑝
(𝑖)
𝑚𝑖𝑛

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥 ≤
(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
−
(𝑘−1) 𝑝 (𝑖)

𝑚𝑖𝑛

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥
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Now we return to the range of 𝑘 . We substitute the chosen value for 𝜃 in 4.14 and 4.16

and we observe that the largest of the two lower bounds is the one in 4.16. This is because

𝛽(𝑖) = 𝜇(𝐶 (𝑖)) ≤ 𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖)).

Hence, we conclude that an appropriate lower bound for 𝑘 is 𝑘 ≥ 4𝑚+1 log
(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
.

From the assumption 𝜂𝑚𝑧𝑚 = 𝜃𝛼 and that 𝑧 ≤ 2 min{𝑢(𝑖) , 𝜈(𝑖)𝑚𝑎𝑥} we get an upper bound for 𝑘 .

𝑘 < (𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚𝑧𝑚 ⇔ 𝑘 < (𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚}. □

The theoretical results we derived so far provide us with probabilities of having connected

components in the graph 𝐺𝑆𝑁𝑁 (𝑘), isolated from other components that each correspond to a

specific cluster. Now, we want to explore the probability that the step of spectral clustering on

𝐺𝑆𝑁𝑁 (𝑘) of algorithm 4.1 will yield exact identification of clusters.

Theorem 1 (Optimal k for exact identification of clusters)

For 𝑘 = 𝑐
(
1+ 4 log(𝑛)+(𝑛−1)𝜌𝑚𝑖𝑛

2+ 𝑝𝑚𝑖𝑛
4𝑚𝑝𝑚𝑎𝑥

)
, where 𝑐 such that 𝑘 will satisfy 𝑘 ≥ 4𝑚+1 log

(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
and 𝑘 ≤ min

{
𝜌(𝑢(𝑖))𝑛/2−2 log(𝛽(𝑖)𝑛), (𝑛−1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚}

}
, for 𝑖 ∈ {1, . . . , 𝐾},

the algorithm 4.1 achieves exact cluster identification with probability

𝑃

(
Q𝑛

)
≥ 1 − 𝐾

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 − 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
Proof. We will start our proof with some notation. LetA𝑛 =

𝐾⋂
𝑖=1
A (𝑖)𝑛 , the event that for each cluster

its points are connected on the graph. Correspondingly, let I𝑛 =
𝐾⋂
𝑖=1
I (𝑖)𝑛 be the event that every

cluster is isolated from the other clusters on the graph 𝐺𝑆𝑁𝑁 (𝑘). Then, we denote with Q𝑛 the

intersection of A𝑛 and I𝑛.

If Q𝑛 is true, then with an appropriate permutation of rows, the adjacency matrix𝑊 of𝐺𝑆𝑁𝑁 (𝑘)

will be block-diagonal and each block will correspond to a cluster. The first step of our proof will

be, to explain how each of the Laplacian option will utilize the block structure of𝑊 to achieve exact

clustering. The second step of our proof is to find an optimal choice for 𝑘 and an upper bound for

the probability of event (Q𝑛)𝑐 .

For L = D −W and L = I − D−1W : According to Propositions 2 and 4 of von Luxburg (2007),

the unnormalized Laplacian and the random walk Laplacian have eigenvalue zero with multiplicity
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equal to the number of connected components on the graph. Furthermore, the eigenspace of

eigenvalue zero is spanned by indicator vectors 1𝐶 (𝑖) , for 𝑖 ∈ {1, . . . , 𝐾}.

If 𝐺𝑆𝑁𝑁 (𝑘) has a connected component for all the points that belong to a unique cluster, and

the components are isolated from components that correspond to different clusters, the matrix 𝑊

will have a block structure and every block will include all the points of one cluster.

The matrix 𝑉 with columns the eigenvectors of L will hence be of the form 𝑉 = 𝐵𝑀 , where 𝑀

is an orthogonal matrix and B is a block diagonal matrix with columns the indicator eigenvectors

1𝐶 (𝑖) , for 𝑖 ∈ {1, . . . , 𝐾}. Now, notice that 𝑉 will also have a block diagonal structure and the rows

of every block will be equal. On the other hand, due to the block structure of 𝑉 , columns of 𝑉 of

different blocks will be perpendicular to each other. Hence, kmeans on V will choose one row from

each block as the centroid of a cluster, and as a result points of the same block will be clustered

together.

For L = D− 1
2 WD− 1

2 : We observe that 𝐿 = 𝐷−
1
2𝑊𝐷−

1
2 and 𝐿𝑠𝑦𝑚 = 𝐼 − 𝐷− 1

2𝑊𝐷−
1
2 have the

same eigenvectors but different eigenvalues. Specifically, if 𝑣 is an eigenvector for the eigenvalue

𝜆 of 𝐿𝑠𝑦𝑚 then 𝑣 is an eigenvector for the eigenvalue −𝜆 of 𝐿.

According to Proposition 4 of von Luxburg (2007), 𝐿𝑠𝑦𝑚 has eigenvalue zero with multiplicity

equal to the number of connected components in the graph and the eigenspace of zero is spanned

by the vectors {𝐷− 1
21𝐶 (1) , . . . , 𝐷

− 1
21𝐶 (𝐾 ) }.

In this case, the matrix 𝑉 of eigenvectors of 𝐿 will be of the form 𝑉 = 𝐷−
1
2𝐵𝑀 , where 𝑀 is

an orthogonal matrix, and B is a block diagonal matrix with columns the indicator eigenvectors

1𝐶 (𝑖) , for 𝑖 ∈ {1, . . . , 𝐾}. This time the rows of V that correspond to points of the same component

can be seen as vectors that aren’t identical, but, interestingly, have the same direction and different

lengths. For this reason in algorithm 4.1 we do not apply kmeans on 𝑉 , but instead on 𝑉̃ which is

equal to V after row-normalization. We observe that the rows of 𝑉̃ that correspond to points of the

same component will be equal. The columns of 𝑉̃ of different blocks will be perpendicular to each

other. Hence, kmeans on 𝑉̃ will choose one row from each block as the centroid of a cluster, and

as a result points of the same block will be clustered together.
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Moving on to the second step of the proof, we will calculate an upper bound for 𝑃
(
(Q𝑛)𝑐

)
. Let

𝜌𝑚𝑖𝑛 = min
𝑖=1,...,𝐾

𝜌(𝑢(𝑖)), 𝑝𝑚𝑖𝑛 = min
𝑖=1,...,𝐾

𝑝
(𝑖)
𝑚𝑖𝑛

and 𝑝𝑚𝑎𝑥 = max
𝑖=1,...,𝐾

𝑝
(𝑖)
𝑚𝑎𝑥 . We notice that by Lemma 3, for

𝑘 ≥ 4𝑚+1 log
(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
and 𝑘 ≤ (𝑛−1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚} for 𝑖 = 1, . . . , 𝐾 ,

we have that,

𝑃

(
(A𝑛)𝑐

)
≤

𝐾∑︁
𝑖=1

𝑃

(
(A (𝑖)𝑛 )𝑐

)
≤

𝐾∑︁
𝑖=1

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
−
(𝑘−1) 𝑝 (𝑖)

𝑚𝑖𝑛

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥

≤
𝐾∑︁
𝑖=1

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥

= 𝐾

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥

(4.17)

If we additionally have that 𝑘 ≤ 𝜌(𝑢(𝑖))𝑛/2−2 log(𝛽(𝑖)𝑛) for every 𝑖 in {1, . . . , 𝐾}, then by Lemma

2

𝑃

(
(I𝑛)𝑐

)
≤

𝐾∑︁
𝑖=1

𝑃

( (
I (𝑖)𝑛

)𝑐) ≤ 𝐾 𝐾∑︁
𝑖=1

𝑒
− 𝑛−1

2

(
𝜌(𝑢(𝑖) )

2 − 𝑘−1
𝑛−1

)
≤ 𝐾

𝐾∑︁
𝑖=1

𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
= 𝐾2𝑒

− 𝑛−1
2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
.

(4.18)

Hence,

𝑃

(
(Q𝑛)𝑐

)
≤ 𝑃

(
(A𝑛)𝑐

)
+ 𝑃

(
(I𝑛)𝑐

)
≤ 𝐾

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
Now we want to choose k such that the bounds of 4.17, 4.18 will be of the same order.

Equivalently we want,

𝑛𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 = 𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
,

which holds for 𝑘 = 1 + 4 log(𝑛)+(𝑛−1)𝜌𝑚𝑖𝑛
2+ 𝑝𝑚𝑖𝑛

4𝑚𝑝𝑚𝑎𝑥
. In conclusion, choosing 𝑘 = 𝑐

(
1 + 4 log(𝑛)+(𝑛−1)𝜌𝑚𝑖𝑛

2+ 𝑝𝑚𝑖𝑛
4𝑚𝑝𝑚𝑎𝑥

)
, for

a constant c such that 𝑘 will satisfy the conditions for inequalities 4.17, 4.18, will let 𝑃
(
(Q𝑛)𝑐

)
go

to zero exponentially with n. □
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4.3.2 Noisy case

4.3.2.1 First approach to noisy case: Remove low-density points

We now explore the connectedness and isolation properties of clusters predicted by 4.1 when

there are noise points in our sample - points that do not belong to any cluster and have low density.

In this case, we apply spectral clustering on𝐺′
𝑆𝑁𝑁
(𝑘), the graph that doesn’t include any points with

𝑝(𝑥) < 𝑡−2𝜖𝑛 and their edges. The clusters of the 𝐿 (𝑡−2𝜖𝑛) are denoted as𝐶 (𝑖) (2𝜖𝑛). The value 𝜖𝑛

is the error in density estimation. We choose to work with clusters of the 𝐿 (𝑡 − 2𝜖𝑛) to ensure that

the points of the 𝐿 (𝑡) set will not be removed from the 𝐺′
𝑆𝑁𝑁
(𝑘). Additionally, 𝜖𝑛 has the property

that 𝑑𝑖𝑠𝑡 (𝐶 (𝑖) (2𝜖𝑛), 𝐶 ( 𝑗) (2𝜖𝑛)) ≥ 𝑢(𝑖) for every 𝑖, 𝑗 ∈ {1, . . . , 𝐾}. We denote with 𝑅̃(𝑖)
𝑚𝑖𝑛
, 𝑅̃
(𝑖)
𝑚𝑎𝑥 the

minimal and maximal 𝑘NN radius of 𝐶 (𝑖) (2𝜖𝑛) and with 𝛽(𝑖) the mass of 𝐶 (𝑖) (2𝜖𝑛), 𝜇(𝐶 (𝑖) (2𝜖𝑛)).

Finally, 𝜌̃(𝑢(𝑖)) is the probability of balls of radius 𝑢(𝑖) in 𝐶 (𝑖) (2𝜖𝑛). The aim of this section is to

illustrate how to extend the connectedness and isolation results for the clusters 𝐶 (𝑖) 𝑖 = 1, . . . , 𝐾 in

the noisy case. In more detail, we prove that 𝐺′
𝑆𝑁𝑁
(𝑘) will have so many connected components

as the number of clusters 𝐾 and each component on the graph 𝐺′
𝑆𝑁𝑁
(𝑘) will correspond to a

unique topological component of the 𝐿 (𝑡 − 2𝜖𝑛) set. Furthermore, the component of 𝐺′
𝑆𝑁𝑁
(𝑘)

corresponding to 𝐶 (𝑖) (2𝜖𝑛) will include all the points of 𝐶 (𝑖) and some additional points, but it

will be isolated from all other components. Hence the adjacency matrix of 𝐺′
𝑆𝑁𝑁
(𝑘) will again be

block-diagonal and spectral clustering will predict clusters that include the points of 𝐶 (𝑖) plus some

boundary points. We further prove that as the sample size n increases, the ratio of boundary to

cluster points will go to zero and allow spectral clustering to yield a grouping only of true cluster

points achieving that way exact clustering. Let D (𝑖)𝑛 be the event that |𝑝𝑛 (𝑋𝑖) − 𝑝𝑛 (𝑋𝑖) | ≤ 𝜖𝑛 for

every 𝑋𝑖, 𝑖 = 1, . . . , 𝑛.

Lemma 4 (Range of 𝑘 for within-cluster connectedness in noisy case 1)

Let A (𝑖)𝑛 denote the event that the points of cluster 𝐶 (𝑖) are connected in 𝐺′
𝑆𝑁𝑁
(𝑘). If 𝑘 ≥

4𝑚+1 log
(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
and 𝑘 ≤ (𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚} then,

𝑃

(
(A (𝑖)𝑛 )𝑐

)
≤

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1)𝑡

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥 + 𝑃
(
D𝑐
𝑛

)
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Proof. We assume that D (𝑖)𝑛 holds, and we use the steps of the proof of Lemma 1. There are no

difference in the bounds for 𝑃
(
{𝑅(𝑖)

𝑚𝑖𝑛
≤ 𝑧}

)
≤ 𝑛𝛽(𝑖)𝑃(𝑀 ≥ 𝑘). We recall that F (𝑖)𝑧 is the event

that, given a covering of 𝐶 (𝑖) (2𝜖𝑛) ∖ 𝐶𝑜𝑙 (𝑖) (𝑧/4), there exists a ball that doesn’t contain at least

two points of 𝐶 (𝑖) (2𝜖𝑛). In the noisy case, this event can happen either if some ball in the covering

contains less than two points or if some points of 𝐶 (𝑖) were discarded. If the event D (𝑖)𝑛 holds for a

point x then 𝑝(𝑥) > 𝑡 − 𝜖𝑛, then x will not be removed at the denoising step. Additionally, 𝑝𝑚𝑖𝑛 = 𝑡

in 𝐶 (𝑖) . Consequently,

P
(
F (i)z

)
≤ 𝑁

(
1 − 𝑡𝜂𝑚𝑧𝑚/4𝑚

) (𝑛−1)
(
1 − 𝜂𝑚𝑧𝑚/4𝑚

(
𝑡 − 𝑛𝑝 (𝑖)max

))
+ 𝑃

(
D𝑐
𝑛

)
(4.19)

We find the final bound of 𝑃
(
(A (𝑖)𝑛 )𝑐

)
by following the proof of Lemma 3 and using the inequality

4.19. □

Lemma 5 (Cluster size probability)

Let B (𝑖)𝑛 denote the event that there are more than 𝛿𝑛 sample points from cluster 𝐶 (𝑖) . If 𝛽(𝑖) > 𝛿

then,

𝑃
( (
B (𝑖)𝑛

)𝑐) ≤ 𝑒− 1
2𝑛𝛽(𝑖)

( 𝛽(𝑖) −𝛿
𝛽(𝑖)

)2

Proof Same as in Maier et al. (2009) Lemma 4. □

Lemma 6 (Density estimation error)

Let E (𝑖)𝑛 denote the event that there are less than 𝛿𝑛 points in all the boundary points sets

𝐶 ( 𝑗) (2𝜖𝑛) \ 𝐶 ( 𝑗) together. If
𝐾∑
𝑗=1
𝜇(𝐶 ( 𝑗) (2𝜖𝑛) \ 𝐶 ( 𝑗)) < 𝛿/2, we have 𝑃

( (
E (𝑖)𝑛

)𝑐) ≤ 𝑒−𝛿𝑛/8
Proof Same as in Maier et al. (2009) Lemma 5. □

Proposition 1 (Cluster connectedness in 𝐺′
𝑆𝑁𝑁
(𝑘))

Let C (𝑖)𝑛 be the event that in the denoised graph 𝐺′
𝑆𝑁𝑁
(𝑘) it holds that:

- all sample points of 𝐶 (𝑖)𝑛 are contained in the graph

-the sample points of 𝐶 (𝑖)𝑛 are connected in the graph

-there is no component of the graph that consists only of points outside the 𝐿 (𝑡) set.
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Then under the conditions that

1. 𝛽(𝑖) > 2𝛿

2. 𝜖𝑛 sufficiently small such that 𝜇(
𝐾⋃
𝑖=1
𝐶 ( 𝑗) (2𝜖𝑛) \ 𝐶 ( 𝑗)) ≤ 𝛿/2

3. 𝑘 ≥ 4𝑚+1 log
(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
and

4. 𝑘 ≤ (𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚}

and for sufficiently large n we obtain

𝑃

( (
C (𝑖)𝑛

)𝑐) ≤ (
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1)𝑡

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥 + 2𝑒
−𝛿𝑛

8 + 2𝑃
(
D𝑐
𝑛

)
(4.20)

Proof. We observe that:

𝑃

( (
C (𝑖)𝑛

)𝑐) ≤ 𝑃( (
A (𝑖)𝑛

)𝑐) + 𝑃( (
B (𝑖)𝑛

)𝑐) + 𝑃( (
E (𝑖)𝑛

)𝑐) + 𝑃( (
D (𝑖)𝑛

)𝑐) and use 4,5 and 6. □

Lemma 7 (Between clusters connectivity in 𝐺′
𝑆𝑁𝑁
(𝑘))

Let I (𝑖)𝑛 be the event that 𝐶 (𝑖) (2𝜖𝑛) is isolated from all other clusters in 𝐺′
𝑆𝑁𝑁
(𝑘), then for 𝑘 ≤

𝜌(𝑢(𝑖))𝑛/2 − 2 log(𝛽(𝑖)𝑛)

𝑃

( (
I (𝑖)𝑛

)𝑐) ≤ 𝐾∑︁
𝑖=1

𝑒
− 𝑛−1

2

(
𝜌(𝑢(𝑖) )

2 − 𝑘−1
𝑛−1

)
+ 𝑃

(
D𝑐
𝑛

)
. (4.21)

Proof. We follow the proofs of Proposition 6 and Lemma 7 from Maier et al. (2009). □

Proposition 1 and Lemma 7 will now be used to find a range for k for the rough identification

of clusters 𝐶 (𝑖) (2𝜖𝑛) with spectral clustering on 𝐺′
𝑆𝑁𝑁
(𝑘). With the term rough identification, we

mean that all points of each true cluster 𝐶 (𝑖) belong to the same predicted cluster, which may also

have some additional points that do not belong to any cluster. Two important conditions for the

results of exact cluster identification are the following:

Condition 1:

a) 𝑘 ≥ 4𝑚+1 log
(
2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶 (𝑖))8𝑚

)
and

b) 𝑘 ≤ min
{
𝜌(𝑢(𝑖))𝑛/2 − 2 log(𝛽(𝑖)𝑛), (𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚 min{(𝑢(𝑖))𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚}

}
,

Condition 2:

a) 𝛽(𝑖) > 2𝛿

b) 𝑝 is three times continuously differentiable with uniformly bounded derivatives
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c) 𝜖𝑛 sufficiently small such that 𝜇(
𝐾⋃
𝑖=1
𝐶 ( 𝑗) (2𝜖𝑛) \ 𝐶 ( 𝑗)) ≤ 𝛿/2.

Theorem 2 (Rough cluster identification in noisy case 1)

If condition 2 holds, an optimal choice of 𝑘 for the identification of clusters 𝐶 (𝑖) is 𝑘 = 𝑐
(
1 +

4 log(𝑛)+(𝑛−1)𝜌𝑚𝑖𝑛
2+ 𝑡

4𝑚𝑝𝑚𝑎𝑥

)
, for a constant c such that 𝑘 will satisfy condition 1 for every 𝑖 ∈ {1, . . . , 𝐾}.

Also for a kernel density estimator 𝑝𝑛 with bandwidth ℎ there are constants 𝐶1, 𝐶2 such that if

ℎ2 ≤ 𝐶1𝜖𝑛:

𝑃

(
Q𝑛

)
≥ 1 − 𝐾

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1)𝑡

4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
+ 2𝑒−𝑛

𝛿
8 + 3𝑒−𝐶2𝑛ℎ

𝑚𝜖2
𝑛 ,

where Q𝑛 is the event that the algorithm 4.1 roughly identifies all clusters 𝐶 (𝑖) .

Proof. If I (𝑖)𝑛 is true for all clusters 𝐶 (𝑖) (2𝜖𝑛) then for every 𝑖 such that 1 ≤ 𝑖 ≤ 𝐾 , there will be

no connections between the subgraph of 𝐺′
𝑆𝑁𝑁
(𝑘) containing points of cluster 𝐶 (𝑖) and any other

cluster. Furthermore, if C (𝑖)𝑛 holds, then all points that belong to 𝐶 (𝑖) are connected on 𝐺′
𝑆𝑁𝑁
(𝑘)

and points outside 𝐶 (𝑖) are discarded or connected to points of 𝐶 (𝑖) . If I (𝑖)𝑛 and C (𝑖)𝑛 hold for

every cluster, then the adjacency matrix 𝑊 of this graph will be block diagonal. Each block will

correspond to a cluster 𝐶 (𝑖) (2𝜖𝑛) and spectral clustering will roughly identify all 𝐶 (𝑖) . To prove

that, we follow the same argument regarding the different types of Laplacians as in the proof of

Theorem 1.

Let Q𝑛 be the event that that clusters are roughly identified by algorithm 4.1, C𝑛 =
𝐾⋂
𝑖=1
C (𝑖)𝑛 and

I𝑛 =
𝐾⋂
𝑖=1
I (𝑖)𝑛 . Then using Proposition 1 and Lemma 7 we obtain,

𝑃

(
(Q𝑛)𝑐

)
≤ 𝑃

(
(C𝑛)𝑐

)
+𝑃

(
(I𝑛)𝑐

)
≤ 𝐾

(
2+ 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1)𝑡

4𝑚+1 𝑝𝑚𝑎𝑥 +𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
+2𝑒 −𝑛𝛿8 +3𝑃

(
(D𝑛)𝑐

)
,

where 𝜌𝑚𝑖𝑛 = min
𝑖=1,...,𝐾

𝜌(𝑢(𝑖)) and 𝑝𝑚𝑎𝑥 = max
𝑖=1,...,𝐾

𝑝
(𝑖)
𝑚𝑎𝑥 .

According to Lemma 9 of Maier et al. (2009) if 𝑝 ∈ 𝐶2(R𝑚) with | |𝑝 | |∞ = 𝑝𝑚𝑎𝑥 and 𝑝′(𝑥) ≠ 0

for 𝑥 in the neighborhood of {𝑝 = 𝑡} then for sufficiently small 𝜖𝑛

𝜇(
𝐾⋃
𝑖=1
𝐶 ( 𝑗) (2𝜖𝑛) \ 𝐶 ( 𝑗)) ≤ 𝐶

𝐾∑︁
𝑖=1

𝑣𝑜𝑙 (𝜕𝐶 (𝑖))𝑝𝑚𝑎𝑥𝜖𝑛,
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for some constant 𝐶. Under those conditions for 𝑝 and Theorem 3.1.7 of Prakasa Rao (1983),

there exist constants 𝐶1, 𝐶2 such that when we choose bandwidth ℎ for the estimation of density 𝑝

that satisfies ℎ2 ≤ 𝐶1𝜖𝑛 we get that 𝑃
(
(D𝑛)𝑐

)
≤ 𝑒𝐶2𝑛ℎ

𝑚𝜖2
𝑛 . Hence, under the conditions for 𝑘 of

Proposition 1 and Lemma 7,

𝑃

(
(Q𝑛)𝑐

)
≤ 𝐾

(
2 + 1

4𝑚
𝑛2

𝑛 − 1

)
𝑒
− (𝑘−1)𝑡

4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
+ 2𝑒−𝑛

𝛿
8 + 3𝑒−𝐶2𝑛ℎ

𝑚𝜖2
𝑛 . (4.22)

To find an appropriate value of 𝑘 so that 4.22 holds, we follow the same argument as in the

proof of Theorem 1 and noticing that last term of the bound of 𝑃((Q𝑛)𝑐) is independent of 𝑘 . We

find that an appropriate value for 𝑘 will be 𝑘 = 𝑐
(
1 + 4 log(𝑛)+(𝑛−1)𝜌𝑚𝑖𝑛

2+ 𝑡
4𝑚𝑝𝑚𝑎𝑥

)
, for a constant c such that

condition 1 is satisfied. Again 𝑃
(
(Q𝑛)𝑐

)
goes to zero exponentially with n. □

It is important to notice that as 𝑛 increases the boundary points found in 𝐶 (𝑖) (2𝜖𝑛) \ 𝐶 ( 𝑗) , 𝑖 =

1, . . . , 𝐾 will decrease and will be significantly less than the points of the L(t) set, leading to

cleaner predicted clusters. Actually 𝐶 (𝑖) (2𝜖𝑛) will collapse to 𝐶 (𝑖) . We will refer to the term exact

identification when rough identification of clusters is achieved and the ratio of number of points

that do not belong to any cluster to number of cluster points goes to zero.

Theorem 3 (Exact cluster identification in noisy case 1)

Let 𝑝 be three times continuously differentiable with uniformly bounded derivatives and let 𝑝𝑛 be

a kernel density estimator with bandwidth ℎ𝑛 = ℎ0(𝑙𝑜𝑔𝑛/𝑛)
1
𝑚+4 for some ℎ0 > 0. For a suitable

𝜖0 > 0 set 𝜖𝑛 = 𝜖0(𝑙𝑜𝑔𝑛/𝑛)
2
𝑚+4 . Then there exist constants 𝑐1, 𝑐2 such that for 𝑛 → ∞ and

𝑐1𝑙𝑜𝑔𝑛 ≤ 𝑘 ≤ 𝑐2𝑛 we obtain cluster 𝐶 (𝑖) is exactly identified by algorithm 4.1 almost surely.

Proof. According to Proposition 8 of von Luxburg (2007) if 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the number of cluster points

and 𝑁𝑁𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟 is the number of points that do not belong to any cluster, then for 𝜖𝑛 that goes to

zero as n goes to infinity and 𝛽 =
𝐾∑
𝑖=1
𝛽(𝑖) , there exist a constant 𝐷̄ such that for large 𝑛,

𝑃

(
𝑁𝑁𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟/𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 > 4

𝐷̄

𝛽
𝜖𝑛 | C𝑛

)
≤ 𝑒− 1

4 𝐷̄𝜖𝑛𝑛 + 𝑒 − 𝑛 𝛽
8
+ 𝑃

(
(D𝑛)𝑐

)
. (4.23)

We can choose 𝜖0 such that ℎ2
𝑛 ≤ 𝐶𝜖𝑛 for a suitable constant 𝐶. Then there exist 𝐶2 > 0 with

𝑃

(
(D𝑛)𝑐

)
≤ 𝑒−𝐶2𝑛ℎ

𝑚
𝑛 𝜖

2
𝑛 . Notice that 𝑛ℎ𝑚𝑛 𝜖2

𝑛 = ℎ𝑚0 𝜖0𝑛
( 𝑙𝑜𝑔𝑛
𝑛

) 𝑚
𝑚+4

( 𝑙𝑜𝑔𝑛
𝑛

) 4
𝑚+4 = ℎ𝑚0 𝜖0𝑙𝑜𝑔𝑛. Hence,
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∞∑
𝑖=1
𝑃

(
(D𝑛)𝑐

)
< ∞. Furthermore by inequality 4.23 we have

∞∑
𝑖=1
𝑃

(
𝑁𝑁𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟/𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 > 4 𝐷̄

𝛽
𝜖𝑛 |

C𝑛
)
< ∞. Following similar proof as of Theorem 2 we can find constants 𝑐1, 𝑐2 such that for

𝑐1𝑙𝑜𝑔𝑛 ≤ 𝑘 ≤ 𝑐2𝑛 cluster 𝐶 (𝑖) will be roughly identified almost surely, and as a result the event C𝑛

will also occur almost surely. Consequently, 𝑁𝑁𝑜𝐶𝑙𝑢𝑠𝑡𝑒𝑟/𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 → 0 alomost surely.

4.3.2.2 Second approach to noisy case - No removal of points

As before we denote the connected components of the 𝑡-level of the density 𝑝 by 𝐶 (1) , ..., 𝐶 (𝐾) .

For the rest in the support of 𝑝 (i.e. 𝐵 = supp{𝑝} ∖ ∪𝐾
𝑖=1𝐶

(𝑖)), we denote:

𝐶̃ (𝑖) = {𝑥 ∈ 𝐵 : 𝑖 = argmin1≤ 𝑗≤𝐾𝑑 (𝑥, 𝐶 ( 𝑗))}, for 1 ≤ 𝑖 ≤ 𝐾.

The ith cluster consists of 𝐶 (𝑖) and 𝐶̃ (𝑖) and no point is removed. Let cluster 𝑖 be denoted as the

set 𝐶̄ (𝑖) = 𝐶 (𝑖) ∪ 𝐶̃ (𝑖) . We describe the noisy case as the event that the minimal distance of points

between 𝐶 (𝑖) and 𝐶̃ (𝑖) is zero. For this reason, for the minimum density of points in 𝐶̄ (𝑖) , 𝑝𝑚𝑖𝑛 , will

hold that 𝑝𝑚𝑖𝑛 > 0. Consequently, 𝐶̄ (𝑖) is connected topologically. The following results correspond

to clustering with algorithm 4.1 and the choice of graph Laplacian to be the unnormalized, i.e.

𝐿 = 𝐷 −𝑊 . Let us denote the “ideal" version by 𝐿̃ = 𝐷̃ − 𝑊̃ , namely; 𝑊̃ is the revised version

of𝑊 by removing all connections between different clusters. So 𝑊̃ is a block diagonal matrix (up

to permutation of the nodes), with each block corresponding to a true cluster. Table 4.2 provides

notations for this case.

Lemma 8 (Connectedness of 𝐶̄ (𝑖))

Let C (𝑖)𝑛 be the event that the sample points in 𝐶̄ (𝑖) are connected. Then under the conditions:

1. 𝑘 ≥ 4𝑚+1𝑙𝑜𝑔(2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶̄ (𝑖))8𝑚) and

2. 𝑘 < 2(𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚4𝑚 min{(𝑑 (𝑖)𝑛 )𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚}, we obtain

𝑃
(
(C (𝑖)𝑛 )𝑐

)
≤ (2 + 1

4𝑚
𝑛2

𝑛 − 1
)𝑒
−
(𝑘−1) 𝑝 (𝑖)

𝑚𝑖𝑛

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥 . (4.24)

Proof. We find a covering of 𝐶̄ (𝑖) (𝑝 (𝑖)
𝑚𝑖𝑛
+ 𝜖𝑛) of 𝑁 ≤ 𝑉𝑜𝑙 (𝐶̄ (𝑖) )

𝜂𝑚
𝑧𝑚

8𝑚
balls with radius 𝑧/4, where

𝑧 ∈ 4(0,min{𝑑 (𝑖)𝑛 , 𝜈(𝑖)𝑚𝑎𝑥}). If each of the covering balls contains at least two points of 𝐶̄ (𝑖) and
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𝐶̄ (𝑖) 𝐶 (𝑖) ∪ 𝐶̃ (𝑖)
𝑝
(𝑖)
max supremum of density attained by points of 𝐶̄ (𝑖)

𝑝
(𝑖)
min infimum of density attained by points of 𝐶̄ (𝑖)
𝑢(𝑖) lower bound on distance of 𝐶 (𝑖) to all 𝐶 ( 𝑗) with 𝑗 ≠ 𝑖
𝑢𝑖 𝑗 distance between r 𝐶 (𝑖) and 𝐶 ( 𝑗)

𝜌(𝑢(𝑖)) probability mass of balls of radius 𝑢(𝑖) in 𝐶 (𝑖)
𝜌𝑚𝑖𝑛 min

𝑖=1,...,𝐾
𝜌(𝑢(𝑖))

𝜌̃(𝑢(𝑖)) probability mass of balls of radius 𝑢(𝑖) in 𝐶̃ (𝑖)
𝜌̃𝑚𝑖𝑛 min

𝑖=1,...,𝐾
𝜌̃(𝑢(𝑖)/2)

𝛽(𝑖) probability mass of 𝐶 (𝑖)
𝛽𝑚𝑎𝑥 max

1=1,...,𝐾
𝛽(𝑖)

𝜇̃(𝑖) probability mass of 𝐶̃ (𝑖)
𝜇̃𝑚𝑎𝑥 max

1=1,...,𝐾
𝜇̃(𝑖)

𝑅̂
(𝑖)
𝑚𝑖𝑛

minimal 𝑘NN radius of 𝐶̄ (𝑖)

𝑅̃
(𝑖)
𝑚𝑎𝑥 , 𝑅

(𝑖)
𝑚𝑎𝑥 maximal 𝑘NN radius of 𝐶̃ (𝑖) , 𝐶 (𝑖)

𝑑
(𝑖)
𝑛 minimum distance of 𝐶̄ (𝑖) (𝑝 (𝑖)

𝑚𝑖𝑛
+ 𝜖𝑛) from 𝜕𝐶̄ (𝑖)

𝜅 (𝑖) the minimal curvature radius of 𝜕𝐶̄ (𝑖)

𝜈
(𝑖)
𝑚𝑎𝑥 max

𝜈<𝜅 (𝑖)
{𝜈 | 𝐶̄ (𝑖) \ 𝐶𝑜𝑙 (𝑖) (𝜈)is connected} and 𝐶𝑜𝑙 (𝑖) is the collar of 𝐶̄ (𝑖)

Table 4.2 Notations.

{𝑅̂(𝑖)
𝑚𝑖𝑛

> 𝑧} then neighboring covering balls will contain points that share common neighbors and

hence they will be connected. We follow the arguments of the proofs of Lemma 1 and Lemma 3 to

obtain

𝑃
(
(C (𝑖)𝑛 )𝑐

)
≤ (2 + 1

4𝑚
𝑛2

𝑛 − 1
)𝑒
−
(𝑘−1) 𝑝 (𝑖)

𝑚𝑖𝑛

4𝑚+1 𝑝 (𝑖)𝑚𝑎𝑥

under the stated conditions and with 𝑝 (𝑖)max, 𝑝
(𝑖)
min to be the supremum and the infimum of density

attained by points of 𝐶̄ (𝑖) . □

Lemma 9 (Isolation of every 𝐶̃ (𝑖) from all 𝐶 ( 𝑗))

Let Ĩ𝑛 denote the event that every point in any 𝐶̃ (𝑖) is not connected to points in any 𝐶 ( 𝑗) for 𝑗 ≠ 𝑖.

Then for 𝑘 < 𝜌̃𝑚𝑖𝑛𝑛

2 − 2 max{𝑙𝑜𝑔( 𝜇̃𝑚𝑎𝑥𝑛), 𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛)} we obtain

𝑃
(
(Ĩ𝑛)𝑐

)
≤ 𝐾2𝑒−

𝑛−1
2

(
𝜌̃𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
(4.25)
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Proof. Let Ĩ (𝑖)𝑛 denote the event that every point of 𝐶̃ (𝑖) is not connected to points in any 𝐶 ( 𝑗) for

𝑗 ≠ 𝑖. Then 𝐶̃ (𝑖) is connected to some 𝐶 ( 𝑗) for 𝑗 ≠ 𝑖, if either the event {𝑅̃(𝑖)𝑚𝑎𝑥 > 𝑢(𝑖)} occurs

or
⋃
𝑗≠𝑖

{𝑅( 𝑗)𝑚𝑎𝑥 > 𝑢(𝑖 𝑗)/2} occurs. Following the steps of the proof of Lemma 2 we obtain under the

conditions that 𝑘 < 𝜌̃(𝑢 (𝑖) )
2 − 2𝑙𝑜𝑔( 𝜇̃(𝑖)𝑛) and for every 𝑗 ≠ 𝑖 that 𝑘 < 𝜌(𝑢 ( 𝑗 )/2)

2 − 2𝑙𝑜𝑔(𝛽( 𝑗)𝑛). We

reach the stated results observing that 𝜌̃(𝑢(𝑖)) > 𝜌̃(𝑢(𝑖)/2) ≥ 𝜌̃𝑚𝑖𝑛, 𝜌(𝑢( 𝑗)) > 𝜌̃(𝑢( 𝑗)/2) ≥ 𝜌̃𝑚𝑖𝑛 and

that 𝑃
(
(Ĩ𝑛)𝑐

)
≤

𝐾∑
𝑖=1
𝑃
(
(Ĩ (𝑖)𝑛 )𝑐

)
. □

Proposition 2 (Distance between the eigenspaces of 𝐿 and 𝐿̃)

Under the conditions,

1. 𝑘 ≥ 4𝑚+1𝑙𝑜𝑔(2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶̄ (𝑖))8𝑚) for every 𝑖, 1 ≤ 𝑖 ≤ 𝐾 and

2. 𝑘 < 2(𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚4𝑚 min{(𝑑 (𝑖)𝑛 )𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚} for every 𝑖, 1 ≤ 𝑖 ≤ 𝐾 and

3. 𝑘 < 𝜌̃𝑚𝑖𝑛𝑛

2 − 2 max{𝑙𝑜𝑔( 𝜇̃𝑚𝑎𝑥𝑛), 𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛)},

there exists an orthogonal matrix 𝑂 ∈ R𝐾×𝐾 such that

| |𝑈𝑂 − 𝑈̃ | |𝐹 ≤
2 5

2
√
𝐾

∑𝐾
𝑖=1 𝑛̃𝑖

𝜆+( 𝐿̃)
,

with probability at least 1 − 𝐾 (2 + 1
4𝑚

𝑛2

𝑛−1 )𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛+𝜌̃𝑚𝑖𝑛

2 − 2(𝑘−1)
𝑛−1

)
, where 𝑈, 𝑈̃ are

eigenvector matrices of the 𝐾 smallest eigenvalues of 𝐿, 𝐿̃, respectively, 𝑛̃𝑖 is the size of 𝐶̃ (𝑖) and

𝜆+( 𝐿̃) is the 𝐾 + 1 smallest eigenvalue of 𝐿̃.

Proof. Let C𝑛 be the event that every cluster 𝐶̄ (𝑖) is connected on 𝐺𝑆𝑁𝑁 (𝑘). Then if 𝑘 satisfies the

the conditions of Lemma 8 for every cluster we obtain

𝑃
(
(C𝑛)𝑐

)
≤ 𝐾 (2 + 1

4𝑚
𝑛2

𝑛 − 1
)𝑒−

(𝑘−1) 𝑝𝑚𝑖𝑛
4𝑚+1 𝑝𝑚𝑎𝑥 , (4.26)

where 𝑝𝑚𝑖𝑛 = min
𝑖=1,...,𝐾

𝑝
(𝑖)
𝑚𝑖𝑛

and 𝑝𝑚𝑎𝑥 = min
𝑖=1,...,𝐾

𝑝
(𝑖)
𝑚𝑎𝑥 . Removing any edges that connect subgraphs of

different clusters will result in a block diagonal adjacency matrix 𝑊̃ . As we explored in proof of

Theorem 1 this is equivalent with exact cluster identification by spectral clustering.

Furthermore, let I𝑛 be the event that every set 𝐶 (𝑖) is isolated from other sets 𝐶 ( 𝑗) for 𝑗 ≠ 𝑖 we

obtain following the proof of Lemma 2 that if 𝑘 < 𝜌𝑚𝑖𝑛𝑛

2 − 2𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛) then

𝑃
(
(I𝑛)𝑐

)
≤ 𝐾2𝑒

− 𝑛−1
2

(
𝜌𝑚𝑖𝑛

2 −
𝑘−1
𝑛−1

)
. (4.27)
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Since 𝜌𝑚𝑖𝑛𝑛

2 − 2𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛) ≥ 𝜌̃𝑚𝑖𝑛𝑛

2 − 2 max{𝑙𝑜𝑔( 𝜇̃𝑚𝑎𝑥𝑛), 𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛)} we observe that the if

𝑘 <
𝜌̃𝑚𝑖𝑛𝑛

2 − 2 max{𝑙𝑜𝑔( 𝜇̃𝑚𝑎𝑥𝑛), 𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛)} the upper bounds of inequality 4.27 and inequality

4.25 will hold. Now let us denote with 𝑆𝑛 the event that the only connections between any pair of

clusters 𝐶 (𝑖) , 𝐶 ( 𝑗) are from the samples in 𝐶̃ (𝑖) and 𝐶̃ ( 𝑗) . Then,

𝑃
(
(S𝑛)𝑐

)
≤ 𝑃

(
(C𝑛)𝑐

)
+ 𝑃

(
(I𝑛)𝑐

)
+ 𝑃

(
(Ĩ𝑛)𝑐

)
(4.28)

and if 𝑘 satisfies the condition for the upper bounds of those probabilities we obtain that,

𝑃
(
(S𝑛)𝑐

)
≤ 𝐾 (2 + 1

4𝑚
𝑛2

𝑛 − 1
)𝑒−

(𝑘−1) 𝑝𝑚𝑖𝑛
4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒

− 𝑛−1
2

(
𝜌𝑚𝑖𝑛+𝜌̃𝑚𝑖𝑛

2 − 2(𝑘−1)
𝑛−1

)
(4.29)

Additionally, Theorem 2 in YU et al. (2015) we have that there exists an orthogonal matrix

𝑂 ∈ R𝐾×𝐾 such that

| |𝑈𝑂 − 𝑈̃ | |𝐹 ≤
2 3

2
√
𝐾 | |𝐿 − 𝐿̃ | |2
𝜆+( 𝐿̃)

,

where𝑈, 𝑈̃ are the eigenvector matrices of the𝐾 smallest eigenvalues of 𝐿, 𝐿̃, respectively, | |𝐿−𝐿̃ | |2

is the spectral norm, and 𝜆+( 𝐿̃) is the smallest non-zero eigenvalue of 𝐿̃ (i.e. the 𝐾 + 1 smallest

eigenvalues of 𝐿̃). Now we would like to bound | |𝐿 − 𝐿̃ | |2. First of all,

| |𝐿 − 𝐿̃ | |2 ≤ ||𝐷 − 𝐷̃ | |2 + ||𝑊 − 𝑊̃ | |2,

and | |𝑊 − 𝑊̃ | |2 is determined by the between-cluster connections. So if the event S𝑛 occurs and

because Jaccard similarity ≤ 1 we notice that

| |𝑊 − 𝑊̃ | |2 ≤
𝐾∑︁
𝑖=1

𝑛̃𝑖

and

| |𝐿 − 𝐿̃ | |2 ≤ 2
𝐾∑︁
𝑖=1

𝑛̃𝑖,

where 𝑛̃𝑖 is the sample size of 𝐶̃ (𝑖) . Hence, under the condition for 𝑘 we conclude that

| |𝑈𝑂 − 𝑈̃ | |𝐹 ≤
2 5

2
√
𝐾

∑𝐾
𝑖=1 𝑛̃𝑖

𝜆+( 𝐿̃)
,

with probability at least 1 − 𝐾 (2 + 1
4𝐾

𝑛2

𝑛−1 )𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛+𝜌̃𝑚𝑖𝑛

2 − 2(𝑘−1)
𝑛−1

)
. □
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Definition 3

The mis-clustering error is defined as

𝑀𝑛 = min
𝜎∈𝑆𝐾

1
𝑛

𝑛∑︁
𝑖=1

1(𝜎(𝑞𝑖) ≠ 𝑞𝑖),

where 𝑞𝑖 is the true cluster label of ith data, 𝑞𝑖 is the estimated one and 𝑆𝐾 is the set of all possible

permutations of {1, . . . K}.

Theorem 4 (Mis-clustering error bound)

Under the conditions,

1. 𝑘 ≥ 4𝑚+1𝑙𝑜𝑔(2𝑛𝑝 (𝑖)𝑚𝑎𝑥𝑉𝑜𝑙 (𝐶̄ (𝑖))8𝑚) for every 𝑖, 1 ≤ 𝑖 ≤ 𝐾 and

2. 𝑘 < 2(𝑛 − 1)𝑝 (𝑖)𝑚𝑎𝑥𝜂𝑚4𝑚 min{(𝑑 (𝑖)𝑛 )𝑚, (𝜈(𝑖)𝑚𝑎𝑥)𝑚} for every 𝑖, 1 ≤ 𝑖 ≤ 𝐾 and

3. 𝑘 < 𝜌̃𝑚𝑖𝑛𝑛

2 − 2 max{𝑙𝑜𝑔( 𝜇̃𝑚𝑎𝑥𝑛), 𝑙𝑜𝑔(𝛽𝑚𝑎𝑥𝑛)},

we obtain

𝑀𝑛 ≤
256𝑛∗𝐾
𝑛

(∑𝐾
𝑖=1 𝑛̃𝑖)2

𝜆+( 𝐿̃)2

with probability at least 1 − 𝐾 (2 + 1
4𝑚

𝑛2

𝑛−1 )𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 + 𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛+𝜌̃𝑚𝑖𝑛

2 − 2(𝑘−1)
𝑛−1

)
.

Here, 𝑛∗ = max
1≤𝑖≤𝐾

𝑛𝑖 for the size of clusters 𝐶̄ (𝑖) , 𝑛𝑖, 1 ≤ 𝑖 ≤ 𝐾.

Proof. We notice that {𝑞𝑖}𝑛𝑖=1 are obtained by running 𝑘-means on 𝑈 ∈ R𝑛×𝐾 . Let us define their

associated centroids by {ℎ̃𝑖}𝑛𝑖=1. Note also that {ℎ̃𝑖}𝑛𝑖=1 have 𝐾 unique vectors. Further define

𝐻̃ = argmin𝐻∈R𝑛×𝐾 : has 𝐾 unique rows | |𝑈 − 𝐻 | |2𝐹 .

It is clear that 𝐻̃ =

©­­­­­­­­«

ℎ̃𝑇1

ℎ̃𝑇2
...

ℎ̃𝑇𝑛

ª®®®®®®®®¬
∈ R𝑛×𝐾 . We define the set 𝐴 =

{
1 ≤ 𝑖 ≤ 𝑛 : | | ℎ̃𝑖 − 𝑒𝑇𝑖 𝑈̃𝑂𝑇 | |2 ≥

1√
2𝑛∗

}
,

where {𝑒𝑖}𝑛𝑖=1 is the standard basis of R𝑛 and 𝑛∗ = max
1≤𝑖≤𝐾

𝑛𝑖 where 𝑛𝑖 is the sample size from the ith

cluster 𝐶 (𝑖) ∪ 𝐶̃ (𝑖) . Then,

| | ℎ̃𝑖 − 𝑒𝑇𝑖 𝑈̃𝑂𝑇 | |2 <
1
√

2𝑛∗
, for 𝑖 ∉ 𝐴. (4.30)
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Also,

𝑈̃ =

©­­­­­­­­«

1√
𝑛1

1𝑛1 0 · · · 0

0 1√
𝑛2

1𝑛2 · · · 0
...

... · · · ...

0 0 · · · 1√
𝑛𝐾

1𝑛𝐾

ª®®®®®®®®¬
𝑃, (4.31)

with 𝑃 being orthogonal. By 4.31

| |𝑒𝑇𝑖 𝑈̃𝑂𝑇 − 𝑒𝑇𝑗 𝑈̃𝑂𝑇 | |2 ≥
√︂

2
𝑛∗

(4.32)

Combining 4.30 and 4.32

| | ℎ̃𝑖−𝑒𝑇𝑗 𝑈̃𝑂𝑇 | |2 ≥ ||𝑒𝑇𝑖 𝑈̃𝑂𝑇 −𝑒𝑇𝑗 𝑈̃𝑂𝑇 | |2− || ℎ̃𝑖−𝑒𝑇𝑖 𝑈̃𝑂𝑇 | |2 > | |𝑒𝑇𝑖 𝑈̃𝑂𝑇 −𝑒𝑇𝑗 𝑈̃𝑂𝑇 | |2−
1
√

2𝑛∗
>

1
√

2𝑛∗

Consequently,

𝑀𝑛 ≤
1
𝑛
|𝐴| ≤ 1

𝑛

∑︁
𝑖∈𝐴

1 ≤ 1
𝑛

2𝑛∗
∑︁
𝑖∈𝐴
| | ℎ̃𝑖 − 𝑒𝑇𝑖 𝑈̃𝑂𝑇 | |22 ≤

2𝑛∗

𝑛
| |𝐻̃ − 𝑈̃𝑂𝑇 | |2𝐹

≤ 2𝑛∗

𝑛

(
| |𝐻̃ −𝑈 | |𝐹 + ||𝑈 − 𝑈̃𝑂𝑇 | |𝐹

)2

≤ 8𝑛∗

𝑛
| |𝑈 − 𝑈̃𝑂𝑇 | |2𝐹

=
8𝑛∗

𝑛
| |𝑈𝑂 − 𝑈̃ | |2𝐹

≤ 8𝑛∗

𝑛

(
2 5

2
√
𝐾

∑𝐾
𝑖=1 𝑛̃𝑖

𝜆+( 𝐿̃)

)2

≤ 256𝑛∗𝐾
𝑛

(∑𝐾
𝑖=1 𝑛̃𝑖)2

𝜆+( 𝐿̃)2
,

using Proposition 2 with probability at least 1−𝐾 (2+ 1
4𝑚

𝑛2

𝑛−1 )𝑒
− (𝑘−1) 𝑝𝑚𝑖𝑛

4𝑚+1 𝑝𝑚𝑎𝑥 +𝐾2𝑒
− 𝑛−1

2

(
𝜌𝑚𝑖𝑛+𝜌̃𝑚𝑖𝑛

2 − 2(𝑘−1)
𝑛−1

)
.

□

4.4 A general algorithm for tuning of clustering method parameters

To construct an SNN graph as we described in section 4.2.1 one must first construct a 𝑘NN

graph and then remove edges between 𝑘NN neighbors that do not share any of their neighbors. The

parameter 𝑘 affects the structure of the SNN graph and hence any other method that is based on
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it, as for example the algorithm 4.1. A lot of SNN graph-based clustering methods (Stuart et al.,

2019; Xu and Su, 2015) do not use data-driven ways to decide on the value of 𝑘 .

Bellow we introduce a general cross-validation tuning algorithm called 𝑘cv tuning that provides

an optimal choice of a clustering parameter based on the data information. We apply this algorithm

to find an optimal choice for the parameter 𝑘 of the number of nearest neighbors used in the SNN

spectral clustering algorithm 4.1 in simulated data of different signal-to-noise levels and data feature

structure.

The simulated data are described in section 4.4.2 and the tools used to assess the performance of

algorithm 4.3 are introduced in section 4.4.3. The performance results are summarized in section

4.4.4.

4.4.1 𝑘cv tuning algorithm

The introduced cross-validation method suggests a tuning of a parameter 𝑘 of a clustering

method, based on the idea that when the clustering is optimal, points in the same cluster can predict

with high accuracy features of points in the same cluster. A similar methodology has been used for

the tuning of model parameters in Li et al. (2020).

The 𝑘cv tuning algorithm works in 𝑁 folds.

- Given a dataset 𝑋 , in every fold a version of 𝑋 is created by randomly removing 10% of the

entries of X.

- Then, Singular Value Thresholding is applied to each version to extract its low rank approxi-

mation and hence a completed matrix, 𝐴̂.

- The chosen clustering algorithm is applied on 𝐴̂ for multiple values of k.

- Next, the missing entries of 𝑋 are predicted. Specifically, a missing feature of a data point

in the predicted cluster 𝑐, associated with a specific value 𝑘 , is predicted by data points of 𝑋 that

belong also to cluster 𝑐.

- The optimal k is chosen to be the one that attained the lowest average prediction error across

the 𝑁 folds.

Notice that for the completion of 𝐴𝑞, we first find its SVD, i.e 𝐴𝑞 = 𝑈𝐷𝑉𝑇 and then we use 𝑆𝑉𝐷
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thresholding to obtain the final result 𝐴̂𝑞 = 1
𝑚
𝑈𝐷 𝑘̂𝑉

𝑇 , 𝐷 𝑘̂ = 𝑑𝑖𝑎𝑔(𝐷1,1, 𝐷2,2, ..., 𝐷 𝑘̂ ,𝑘̂ , 0, .., 0).

Algorithm 4.3 kcv_tuning.
1: Input: 𝑋 ∈ R𝑛×𝑚, number of clusters 𝐾 , clustering function 𝐺, nearest neighbors 𝑘 , number

of folds N, prediction method (mean, ols, lasso), low-rank approximation threshold 𝑘̂ , training
percentage 𝑝

2: Output: Optimal number of nearest neighbors, 𝑘optimal
3:
4: for 𝑞 = 1 to 𝑁 do
5: 𝐴𝑞 ← 𝑋 with (1-p)% of entries randomly replaced by 0
6: 𝐼𝑞 ← {(𝑖, 𝑗) : 𝑥𝑖, 𝑗 replaced with 0 in 𝐴𝑞}
7:
8: % 𝐴𝑞 completion via Singular Value Thresholding
9: 𝐴̂𝑞 ← SVD on 𝑋 with threshold 𝑘̂

10:
11: % Evaluation of the performance of 𝑘
12: for 𝑘 = 10 to ⌈𝑛3⌉, by 20 do
13: ℓ𝑘 = 𝐺 (𝐴𝑞, 𝐾, 𝑘) ← predicted membership
14: for {𝑖, 𝑗} ∈ 𝐼𝑞 do
15: 𝐶𝑖 ← points in the same cluster as point i
16: 𝑌 = [𝑋𝑟 𝑗 ] for r ∈ 𝐶𝑖
17: 𝑍 = [𝑋𝑟𝑡] for r ∈ 𝐶𝑖 and 𝑡 ≠ 𝑗

18:
19: % Prediction of missing values
20: if prediction_method = mean then
21: 𝑥𝑖, 𝑗 ← 𝑌

22: else if prediction_method = ols then
23: 𝛽← 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{| |𝑌 − 𝛽𝑍 | |2}
24: 𝑥𝑖 𝑗 ← 𝛽𝑍

25: else if prediction_method = lasso then
26: 𝜆0, 𝛽← 𝑎𝑟𝑔𝑚𝑖𝑛𝜆,𝛽{| |𝑌 − 𝛽𝑍 | |2 + 𝜆 | |𝛽 | |1}
27: 𝑥𝑖 𝑗 ← 𝛽𝑍

28:
29: % Mean prediction error of k in fold q
30: 𝐿𝑘,𝑞 =

1
|𝐼𝑞 |

∑
(𝑖, 𝑗)∈𝐼𝑄 (𝑥𝑖 𝑗 − 𝑥𝑖 𝑗 )2

31:
32: % Mean prediction error of k
33: 𝐿𝑘 = 1

𝑁

∑𝑁
𝑞=1 𝐿𝑘,𝑞

34:
35: % Optimal k
36: 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 (𝐿𝑘 )
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4.4.2 Simulations

We test the performance of the algorithm 4.3 when used for the tuning of parameter 𝑘 of

algorithm 4.1, on various Multivariate Gaussian (MG) data. We consider a simulated data set of 𝑛

data points 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R𝑚, that are grouped in 𝐾 clusters. The data are independently sampled

from a Multivariate Gaussian mixture model:

𝐾∑︁
𝑖=1

𝜋𝑖𝑁 (𝜇𝑖, Σ𝑖).

The coordinates of the centers of the Gaussian mixture follow the standard normal distribution,

𝜇𝑖 𝑗
𝑖.𝑖.𝑑.∼ 𝑁 (0, 1) for 𝑖 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑚,

and the clusters have equal sizes, i.e 𝜋1 = · · · = 𝜋𝐾 = 1/𝐾 . We consider three types of covariance

matrices Σ𝑘 :

1. the simple case where Σ1 = · · · = Σ𝐾 = 𝑚𝑠 · 𝐼

2.the case where the Σ1 = · · · = Σ𝐾 = 𝑚𝑠 · Σ and the corresponding precision matrix Ω = Σ−1

is tridiagonal. This case simulates a chain dependency between features of the data. Specifically,

Σ = {𝜎𝑖, 𝑗 }, with 𝜎𝑖, 𝑗 = 0.5|𝑖− 𝑗 |.

3. the case where the Σ1 = · · · = Σ𝐾 = 𝑚𝑠 · Σ, the corresponding precision matrix Ω = Σ−1 is

sparse and simulates a network dependency between features of the data. For the construction of

Ω we follow the simulation procedure of Li and Gui (2005).

For the assessment of the 𝑘cv tuning algorithm, we simulated Multivariate Gaussian data of

n=1000 points and 𝑚 = 10 or 50 features. The tables below represent the data setting considered

based on the type of covariance matrix used.

4.4.3 Assessment methods

We introduce the Normalized Prediction Accuracy function that measures the performance of a

value 𝑘 for the clustering of a data set, utilizing the average prediction loss. Additionally, we define

the ARI Relative Ratio that measures how close the choice of the value 𝑘 suggested by 4.3 is from

the value that achieves maximum ARI.
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m s=0.1 s=0.3 s=0.5
10 setting 1 setting 2 setting 3
50 setting 4 setting 5 setting 6

(a) Simple MG data

m s=0.1 s=0.2 s=0.3
10 setting 7 setting 8 setting 9
50 setting 10 setting11 setting 12
(b) MG data with tridiagonal precision matrix

m s = 0.06 s = 0.16 s = 0.23
10 setting 13 setting14 setting 15
50 setting 16 setting17 setting 18
(c) MG data with network feature dependency

Table 4.3 Settings of simulated data.

Definition 4 (Normalized Prediction Accuracy - NPA)

Let K to be the set of values for the parameter k of the number of nearest neighbors. Let 𝐿𝑖
𝑘

be

the the mean prediction error of 𝑘 associated with the prediction of the held out entries of the

data matrix 𝑋 , for the simulation iteration 𝑖. The Normalized Prediction Accuracy, F, of 𝑘 for the

iteration 𝑖 is :

𝐹 (𝑘, 𝑖) = 1 −
𝐿𝑖
𝑘
− 𝑚𝑖𝑛 𝑗∈K (𝐿𝑖𝑗 )

𝑚𝑎𝑥 𝑗∈K (𝐿𝑖𝑗 ) − 𝑚𝑖𝑛 𝑗∈K (𝐿𝑖𝑗 )

Definition 5 (ARI Relative Ratio)

Let 𝑘̃ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈K (ARI), when running the Snn_Spectral_Clustering algorithm. Let 𝑘̂ be the

optimal k based on the kcv_tuning algorithm. The ARI Relative Ratio for iteration i, 𝑅(𝑖), is:

𝑅(𝑖) = 𝐴𝑅𝐼 ( 𝑘̃)𝑖 − 𝐴𝑅𝐼 ( 𝑘̂)𝑖
𝐴𝑅𝐼 ( 𝑘̃)𝑖

,

where 𝐴𝑅𝐼 (𝑘)𝑖 is the Adjusted Rand Index for the clustering produced using k nearest neighbors

in iteration i.

4.4.4 Simulation Results

The simulated data were used to tune the parameter 𝑘 of the SNN spectral clustering algorithm

introduced in section 4.2.2. Below we describe the performance results of the 𝑘cv tuning algorithm.

To summarize the NPA results of a particular value of 𝑘 , we use the mean NPA of this value

over a round of 1000 simulations. The maximum mean NPA is achieved for the value of 𝑘 that

the 𝑘cv tuning algorithm suggests as optimal. It is interesting to observe whether the mean NPA
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is maximized for the same value of 𝑘 that would achieve the maximum mean ARI over a round of

simulations. We notice that this depends on the prediction method used along with the structure of

feature dependency.

For data settings 1-6 (figures A.2, A.4) we observe that the ARI of SNN spectral algorithm

is increasing for 10 ≤ 𝑘 ≤ 50 and for larger values of 𝑘 , the ARI remains about the same. The

maximum ARI is achieved for 𝑘 = 330, i.e. the largest 𝑘 we consider during tuning. The NPA

curve is also maximized at 𝑘 = 330 for mean, ols, and lasso prediction. Mean and lasso perform

better than ols and achieve lower values of ARI ratios. This is because ols uses information from

all features introducing more variance in the prediction, since those settings simulate data sets with

independent features. Mean uses information only from one feature and lasso selects a few of the

features and hence performs better than ols.

For data settings 7-9 and 13-15 the maximum ARI achieved by the SNN spectral clustering

algorithm is within the range of [10,90] (figures B.2, B.4, C.2). Applying prediction with ols or

mean, fails to tune 𝑘 within this range, in contrast to lasso. This is because simulated data of

type 7-15 do not have independent features, every feature depends on 2-5 other features. The ols

prediction will utilize information of every feature and will introduce more error in the prediction

and the mean prediction takes into consideration only the information of one feature, whereas lasso

will use information only of the features correlated to the one of interest. For this reason, lasso

performs better for types 7-9 and 13-15.

In settings 10-12 and 16-18, although feature selection methods like lasso are expected to

perform better than ols and mean, it is observed that they have similar performance. Here the

simulated data have low signal-to-noise ratio and hence a ridge regression prediction or elastic net

might perform better.

The mean and median ARI Relative Ratios provide an estimate of the proportion of the difference

between the maximum ARI and the ARI achieved by clustering using the tuned 𝑘 . The settings

with larger variance factor 𝑠 as shown in table 4.3 have higher mean and median ARI Relative

Ratios than settings with lower 𝑠. In more detail, we observe that for settings 1-6, the ARI of
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SNN spectral clustering after tuning is about 1% to 10% less than the optimum ARI when using

mean and lasso prediction for tuning (tables A.1, A.2). For settings 7-9, lasso achieves the best

tuning results with ARI that is 3% to 14% smaller than the optimum ARI (table B.1). The chain

dependency of a higher number of features makes settings 10-12 harder to tune for 𝑘 . The tuned

𝑘 obtains an ARI difference from the optimum between 3% to 20% (tables B.2). However, for the

final set of simulations (settings 13-18) the features of each dataset can be represented as a network

and every feature will depend on 5 (setting 13-15) or 12 other features (settings 16-18). In this

case, the ARI of SNN spectral clustering after tuning is only 0.6% to 10% lower than the optimum

(tables C.1, C.2).

4.5 Conclusions

In this chapter, we conducted an investigation into the clustering performance of an SNN graph-

based method. For this method, we build the SNN graph as a subgraph of a 𝑘NN graph based on

the Jaccard similarity of 𝑘nn neighbors of vertices. The parameter 𝑘 affects the structure of the

SNN graph and hence the clustering performance. Our goal was to determine for which values of 𝑘 ,

the SNN spectral clustering algorithm can achieve true cluster identification with high probability.

Our results suggest that in both the noise-free and the noisy case, one needs to select 𝑘 of the order

𝑐𝑛 to maximize the probability of cluster identification, in contrast to random geometric graph

literature that suggests 𝑘 of order log 𝑛 (Brito et al., 1997). Furthermore, we introduce a general

cross-validation tuning method for parameters of clustering algorithms. We use this method to

tune the number of nearest neighbors 𝑘 of the SNN spectral clustering algorithm for a variety of

simulated data types and find that the accuracy of clustering results after using the tuned value is 1%

to 20% lower than the accuracy achieved by the optimum 𝑘 and depends on the feature dependency

of the data.
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APPENDIX A

PERFORMANCE ON GAUSSIAN DATA WITH DIAGONAL COVARIANCE MATRIX

prediction setting Median Mean Sd.Error
1 0.007 0.010 0.001

mean 2 0.021 0.042 0.004
3 0.053 0.099 0.010
1 0.006 0.011 0.001

ols 2 0.024 0.053 0.005
3 0.055 0.109 0.010
1 0.007 0.012 0.001

lasso 2 0.023 0.044 0.004
3 0.051 0.102 0.010

Table A.1 ARI ratios summary for settings 1, 2 and 3.

prediction setting Median Mean Sd.Error
4 0.009 0.012 0.001

mean 5 0.030 0.074 0.008
6 0.114 0.280 0.023
4 0.009 0.019 0.002

ols 5 0.049 0.151 0.016
6 0.132 0.309 0.024
4 0.009 0.011 0.001

lasso 5 0.030 0.078 0.010
6 0.100 0.249 0.021

Table A.2 ARI ratios summary for settings 4, 5 and 6.
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Figure A.1 ARI ratios comparisons for 1, 2, 3.
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Figure A.2 ARI and NPA vs k for settings 1, 2 and 3.
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Figure A.3 ARI ratios comparisons for 4, 5, 6.
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Figure A.4 ARI and NPA vs k for settings 4, 5 and 6.

81



APPENDIX B

PERFORMANCE ON GAUSSIAN DATA WITH TRIDIAGONAL PRECISION MATRIX

prediction setting Median Mean Sd.Error
7 0.029 0.046 0.004

mean 8 0.094 0.116 0.008
9 0.118 0.158 0.011
7 0.023 0.036 0.003

ols 8 0.067 0.101 0.008
9 0.102 0.143 0.011
7 0.015 0.030 0.003

lasso 8 0.060 0.094 0.007
9 0.099 0.141 0.010

Table B.1 ARI ratios summary for settings 7, 8 and 9.

prediction setting Median Mean Sd.Error
10 0.038 0.048 0.003

mean 11 0.171 0.201 0.012
12 0.243 0.281 0.015
10 0.025 0.040 0.003

ols 11 0.163 0.198 0.012
12 0.102 0.143 0.011
10 0.027 0.038 0.002

lasso 11 0.147 0.202 0.013
12 0.219 0.271 0.016

Table B.2 ARI ratios summary for settings 10, 11 and 12.
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Figure B.1 ARI ratios comparisons for 7, 8, 9.
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Figure B.2 ARI and NPA vs k for settings 7, 8 and 9.
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Figure B.3 ARI ratio comparisons for settings 10, 11 and 12.
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Figure B.4 ARI and NPA vs k for settings 10, 11 and 12.
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APPENDIX C

PERFORMANCE ON GAUSSIAN DATA WITH NETWORK OF FEATURES

prediction setting Median Mean Sd.Error
13 0.015 0.026 0.003

mean 14 0.058 0.078 0.006
15 0.088 0.121 0.009
13 0.012 0.020 0.002

ols 14 0.048 0.071 0.005
15 0.077 0.105 0.008
13 0.009 0.017 0.001

lasso 14 0.047 0.072 0.006
15 0.072 0.104 0.008

Table C.1 ARI ratios summary for settings 13, 14 and 15.

prediction setting Median Mean Sd.Error
16 0.006 0.006 0.000

mean 17 0.027 0.036 0.003
18 0.050 0.107 0.012
16 0.006 0.008 0.001

ols 17 0.029 0.056 0.006
18 0.057 0.147 0.014
16 0.006 0.007 0.000

lasso 17 0.027 0.053 0.006
18 0.061 0.164 0.015

Table C.2 ARI ratios summary for settings 16, 17 and 18.
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Figure C.1 ARI ratio comparisons for settings 13, 14 and 15.
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Figure C.2 ARI and NPA vs k for settings 13, 14 and 15.

89



0.000

0.025

0.050

0.075

0.100

0.000 0.025 0.050 0.075 0.100

mean

ol
s

setting 16

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

mean

ol
s

setting 17

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

mean

ol
s

setting 18

0.00

0.01

0.02

0.03

0.00 0.01 0.02 0.03

mean

la
ss

o

setting 16

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

mean

la
ss

o

setting 17

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

mean

la
ss

o

setting 18

0.000

0.025

0.050

0.075

0.100

0.000 0.025 0.050 0.075 0.100

ols

la
ss

o

setting 16

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

ols

la
ss

o

setting 17

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

ols

la
ss

o

setting 18

Figure C.3 ARI ratio comparisons for settings 16, 17 and 18.
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Figure C.4 ARI and NPA vs k for settings 16, 17 and 18.
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