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ABSTRACT

Algebraic K-theory is an invariant of rings that relates to interesting questions in many

mathematical subfields including geometric topology, algebraic geometry, and number the-

ory. Although these connections have generated great interest in the study of algebraic

K-theory, computations are quite difficult. This prompted the development of trace meth-

ods for algebraic K-theory in which one studies more computable invariants of rings (and

their topological analogues) that receive maps from K-theory. One such approximation

called topological Hochschild homology (THH) has proven foundational to progress in com-

putations of K-theory via trace methods. The Bökstedt spectral sequence is one of the main

tools for computing THH.

Hesselholt and Madsen developed a C2-equivariant analogue of algebraic K-theory for

rings with anti-involution called Real algebraicK-theory. A Real version of the trace methods

story unfolds in this context by studying an approximation of Real K-theory called Real

topological Hochschild homology (THR). The main result of this thesis is the construction

of a Real Bökstedt spectral sequence which computes the equivariant homology of THR. We

then extend our techniques to the case of another equivariant Hochschild theory called G-

twisted topological Hochschild homology and construct a spectral sequence which computes

the G-equivariant homology of H-twisted THH when H ≤ G are finite subgroups of S1.

Finally, this thesis explores the algebraic structures present in Real topological Hochschild

homology. When the input is commutative, THH has the structure of a Hopf algebra in the

homotopy category. Work of Angeltveit-Rognes further shows that this structure lifts to the

Bökstedt spectral sequence. We show in this thesis that when the input is commutative,

THR has a Hopf algebroid structure in the C2-equivariant stable homotopy category.
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CHAPTER 1

INTRODUCTION

The motivation for the work undertaken in this thesis is rooted in the study of an important

invariant of rings called algebraic K-theory. To a ring R, we may associate a sequence of

abelian groups, denoted by Kn(R), called the algebraic K-theory groups. Building off of

work of Grothendieck for the case n = 0, Quillen [Qui73] defined the nth algebraic K-theory

group of R for n > 0 to be the homotopy group

Kn(R) ∶= πn(BGL(R)+).

Here, BGL(R)+ is the +-construction of the classifying space of the infinite general linear

group GL(R). Although K-theory is an invariant of algebraic objects, its definition uti-

lizes topological notions from homotopy theory, and algebraic K-theory demonstrates deep

connections between topology and algebra. Further details about historical developments in

K-theory, including other constructions, may be found in [Wei13].

The study of algebraic K-theory has uncovered deep, and often unexpected, connections

to many areas of mathematics including algebraic geometry, geometric topology, and number

theory. These connections relate to foundational theorems in these fields, such as the s-

cobordism theorem, which is relevant to the classification of manifolds [Bar64], and the

Kummer-Vandiver conjecture, a conjecture in algebraic number theory dating back to the

1800s [Kur92]. Although such connections prompted an interest in the study of algebraic

K-theory in the second half of the 20th century, progress was hindered by the incredible

difficulty of K-theory computations. Perhaps the open question that best illustrates just

how difficult K-theory computations are is that of Kn(Z); more than 50 years after Quillen

defined algebraic K-theory for rings, we still do not know all of the K-groups of the integers.

Seeking to gain a computational foothold, algebraic topologists developed a research pro-

gram known as trace methods in which other, more computationally accessible invariants of

rings (and their topological analogues) are studied as approximations of algebraic K-theory.
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One such approximation is an invariant of rings from classical algebra called Hochschild

homology. Hochschild homology receives a map from K-theory called the Dennis trace.

Although Hochschild homology, denoted by HH, is significantly more computable than K-

theory, the trace map is not an especially good approximation. One can understand this

as a failure of Hochschild homology to capture some of the topological information used to

define K-theory, given that HH is an entirely algebraic construction.

The development of so-called “brave new algebra” gave us another try at approximating

K-theory. In this setting, also referred to as higher algebra, one works with topological

objects that mimic the properties of objects from classical algebra. One example is that of

ring spectra, the topological analogue of rings. The construction of Hochschild homology

can be translated using this language of higher algebra to define a theory of topological

Hochschild homology, denoted by THH, which is an invariant of ring spectra. An examination

of the trace map between K-theory and THH provides a better approximation than our first

attempt and has proven enormously useful in the trace methods approach to understanding

K-theory.

Of particular relevance to our story is work of Bökstedt [BHM93], who constructed a

spectral sequence which takes input data from classical Hochschild homology groups and

produces information about the homology of THH:

E2
∗,∗ = HH∗(H∗(R);k) ⇒H∗(THH(R);k).

The Bökstedt spectral sequence is quite useful in THH calculations, leveraging the com-

putational accessibility of Hochschild homology to understand the better, higher algebra

approximation we have in THH.

A generalized retelling of this story where we consider inputs with group actions has been

a focus of homotopy theory in recent years. This led to definitions of equivariant algebraic

K-theories. One example is Real algebraic K-theory, denoted by KR, for rings with the

C2-action of involution. Real K-theory was originally defined by Hesselholt and Madsen in

[HM15], along with an equivariant version of topological Hochschild homology incorporating
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the involution action called Real topological Hochschild homology; we denote this invariant

by THR. A definition of THR via a simplicial bar construction which lends itself well to

computational work was given recently by Dotto, Moi, Patchkoria, and Reeh in [Dot+20].

Recently, work of Angelini-Knoll, Gerhardt, and Hill further filled in details of the Real

trace methods story. In [AGH21], the authors develop a theory of Real Hochschild homology,

denoted by HR, which takes inputs from equivariant algebra with an appropriate notion of

an involution.

Algebra Topology

Non-equivariant inputs HH THH

Inputs with involution HR THR

We may now ask a question in this Real setting which motivated the use of the Bökst-

edt spectral sequence in classical THH computations: can we use information about Real

Hochschild homology to better understand THR? The main result of this thesis answers this

question in the affirmative with the construction of a Real Bökstedt spectral sequence.

Classically, THH inherits an action of the circle group S1. Real topological Hochschild

homology is constructed similarly, but with additional structure encoding the C2-action of

the involution. This construction yields an S1 ⋊ C2 ≅ O(2)-action, and THR is an O(2)-

equivariant spectrum. As all dihedral groups D2m are subgroups of O(2), we may restrict

THR to a D2m-equivariant spectrum. Thus, our Real Bökstedt spectral sequence computes

theD2m-equivariant homology of THR using input data from RealD2m-Hochschild homology.

This result is restated as Theorem 5.2.4 in the text.

Theorem. Let A be a ring spectrum with anti-involution and let E be a commutative D2m-

ring spectrum. If E
⍟
(ND2m

D2
A) and E

⍟
(ND2m

e ι∗eA) are both flat as modules over E
⍟

and if

A has free (ι∗D2
E)- and ι∗eE-homology then there is a Real Bökstedt spectral sequence of the

form

E2
∗,⍟ = HRD2m

∗
((ι∗D2

E)
⍟

(A)) ⇒ E
⍟
(ι∗D2m

THR(A)).
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Here, E⍟ denotes an RO(D2m)-graded homology theory, which we review in Section 4.5.

The techniques used to construct the Real Bökstedt spectral sequence may be extended

to a different flavor of equivariant topological Hochschild homology. For G, a finite subgroup

of S1, the G-twisted topological Hochschild homology is an S1-spectrum which incorporates

an action of the cyclic group into the invariant constructions. In this twisted setting there

is an analogous algebraic theory called Hochschild homology for Green functors.

Algebra Topology

Non-equivariant inputs HH THH

Inputs with involution HR THR

Inputs with G-action HHG THHG

Work of Adamyk, Gerhardt, Hess, Klang, and Kong [Ada+22] constructs a twisted Bök-

stedt spectral sequence which computes the G-equivariant homology of THHG.

E2
s,⋆ = HHE⋆,G

s (E
⋆
(R)) ⇒ Es+⋆(ι∗GTHHG(R)).

In this thesis, we construct a spectral sequence which computes the G-equivariant homology

of H-twisted THH, for a subgroup H of G. This result is restated as Theorem 5.3.3 in

Chapter 5.

Theorem. Let H ≤ G be finite subgroups of S1 and let g = e2πi/∣G∣ be a generator of G. Let R

be an H-ring spectrum and E a commutative G-ring spectrum. Assume that g acts trivially

on E and that E
⍟
(NG

HR) is flat as a module over E
⍟
. If R has (ι∗HE)-free homology, then

there is a relative twisted Bökstedt spectral sequence

E2
s,⍟ = HHG

H((ι∗HE)
⍟

(R))s⇒ Es+⍟(ι∗GTHHH(R)).

Taking G = H in this theorem recovers the spectral sequence of [Ada+22]. In the case

of H = e, this result also gives a new spectral sequence converging to the G-equivariant

homology of ordinary THH.
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One way to gain computational traction in calculations involving the classical Bökstedt

spectral sequence is to utilize the algebraic structures present in THH and in the spectral

sequence itself. Angeltveit and Rognes show in [AR05] how to use simplicial constructions

to induce a Hopf algebra structure in the homotopy category on THH(R) when the ring

spectrum R is commutative. The authors further show that, under appropriate flatness

conditions, this Hopf algebra structure lifts to the Bökstedt spectral sequence. We take on

a similar exploration of algebraic structures for Real topological Hochschild homology with

the goal of lifting this structure to the Real Bökstedt spectral sequence in the future. We

find that when the input is commutative, THR has the structure of a Hopf algebroid, a

generalized notion of Hopf algebras, in the C2-equivariant stable homotopy category. This

result is restated as Theorem 6.2.10 in Chapter 6.

Theorem. Let A be a commutative C2-ring spectrum. The Real topological Hochschild ho-

mology of A is a Hopf algebroid in the C2-equivariant stable homotopy category.

1.1 Organization

We begin by recalling the classical constructions of Hochschild homology, topological

Hochschild homology, and the Bökstedt spectral sequence in Chapter 2. In Chapter 3, we

provide some necessary definitions from equivariant algebra including those of Mackey func-

tors, Green functors, and equivariant norms. Chapter 4 describes equivariant analogues of the

classical Hochschild invariants; here we recall definitions of Real topological Hochschild ho-

mology, Real Hochschild homology, twisted topological Hochschild homology, and Hochschild

homology for Green functors.

In Chapter 5, we construct a Bökstedt spectral sequence for Real topological Hochschild

homology and an equivariant Bökstedt spectral sequence for twisted topological Hochschild

homology. Finally, Chapter 6 recalls the algebraic structures present in THH and proves the

existence of a Hopf algebroid structure in the Real equivariant setting.
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CHAPTER 2

TOPOLOGICAL HOCHSCHILD HOMOLOGY

In the introduction we discussed the extraordinary difficulty but deep interest in computing

algebraic K-theory. The trace methods program arising from homotopy theory offers an

approach to K-theory computations by way of approximation. Rather than studying the

algebraic K-theory groups themselves, we instead investigate other, more computable invari-

ants and the maps they receive from K-theory. In this chapter we describe the construction

of some of these ring and ring spectra invariants. We begin by recalling a classical invariant

of rings (or, more generally, of unital, associative algebras) from algebra called Hochschild

homology. Following this, we describe the construction of the analogous topological version

of this theory. This topological version of Hochschild homology, denoted by THH, plays a

crucial role in the trace methods story; THH and a closely related invariant called topological

cyclic homology have proven to be good approximations of K-theory. Much of the progress

in K-theory computations relies on being able to compute THH. One tool which assists

in these computations is the Bökstedt spectral sequence, which bridges the algebraic and

topological Hochschild theories.

2.1 Hochschild homology

A first approximation of algebraic K-theory one might consider is Hochschild homology,

an invariant of rings and algebras from the world of classical algebra. Hochschild homology

is constructed as a simplicial abelian group so we begin by reviewing the definition of a

simplicial object. These simplicial objects generalize the notion of a simplicial set.

Definition 2.1.1. A simplicial object K● in a category C is a sequence of objects Kn in C

for n ≥ 0 with face maps dn ∶ Kn → Kn−1 and degeneracy maps sn ∶ Kn → Kn+1 obeying the

following relations:

didj = dj−1di if i < j

6



disj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sj−1di i < j

id i = j or i = j + 1

sjdi−1 i > j + 1

sisj = sj+1si if i ≤ j.

We now construct the simplicial object used to define Hochschild homology.

Definition 2.1.2. Let k be a commutative ring, A an associative, unital k-algebra and M an

A-bimodule. The cyclic bar construction on A with coefficients in M is a simplicial abelian

group, denoted by Bcy
● (A;M), and is defined as follows:

⋮

M ⊗A⊗A⊗A

M ⊗A⊗A

M ⊗A

M

d0 d1 d2 d3

d0 d1 d2

s2s1s0

d0 d1

s1s0

s0

The nth level of this simplicial object is the (n+1)-fold tensor product Bn(A;M) =M⊗A⊗n.

All of the tensor products are taken over k but we omit this from the notation. The face

maps di ∶M ⊗A⊗n →M ⊗A⊗(n−1) are defined by

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψR ⊗ id⊗(n−1) i = 0

idM ⊗ id⊗(i−1) ⊗ µ⊗ id ⊗(n−i−1) 0 < i < n

(ψL ⊗ id⊗(n−1)) ○ τ i = n

where ψL and ψR are the left and right A-module actions of M , respectively. The map

µ ∶ A ⊗ A → A is the multiplication on the algebra A and τ is the “twist map” which

permutes the last tensor copy of A to the left of M .
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The degeneracy maps si ∶ Bn(A;M) → Bn+1(A;M) are defined to be

si = idM ⊗ id⊗i ⊗ η ⊗ id⊗(n−i).

In the above notion, η denotes the unit map of the algebra, η ∶ k → A.

We define the Hochschild homology of A with coefficients in M to be the homotopy groups

of the geometric realization of the cyclic bar construction,

HHn(A;M) = πn(∣Bcy
●
(A;M)∣).

Alternatively, one may define Hochschild homology from a totally homological algebra

perspective by taking the homology of the chain complex constructed from tensor copies of

A.

Definition 2.1.3. Let k be a commutative ring, A an associative, unital k algebra, and M

an A-bimodule. The Hochschild complex is the chain complex (C●(A,M), b) with

Cn(A,M) =M ⊗A⊗n.

We define maps di on Cn(A,M) for 0 ≤ i ≤ n as in Definition 2.1.2. The sum

b =
n

∑
i=0

(−1)idi

defines a boundary; one may check that b2 = 0. The Hochschild homology of A with coeffi-

cients in M is the homology of this chain complex,

HHn(A;M) ∶=Hn(C●(A,M), b).

The Dold-Kan correspondence between the category of simplicial abelian groups and

the category of non-negatively graded chain complexes shows that these two definitions of

Hochschild homology are equivalent.

Convention. In the case of M = A where we take coefficients in the algebra as a bimodule

over itself, we denote the Hochschild homology by

HHn(A;A) = HHn(A),

omitting the coefficients from the notation.
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We now outline some results which are useful for computing Hochschild homology groups.

Definition 2.1.4. Let A be an algebra. The opposite algebra, denoted Aop, is an algebra

consisting of the same elements and additive structure as A but with a reversed multiplicative

structure so that the product is defined by

µop ∶ Aop ⊗Aop → Aop

a⊗ b↦ ba.

Definition 2.1.5. For a k-algebra A, the enveloping algebra Ae is the tensor product A⊗k

Aop. Multiplication is defined component-wise and we can consider A as a left Ae-module

via the multiplication (a⊗ b)c = acb.

Because the Hochschild complex is a resolution of A as an Ae-module ([Lod13], 1.1.12)

we can understand Hochschild homology as a Tor group.

Proposition 2.1.6 (see, for instance, [Lod13] 1.1.13). If A is projective as a module over

k, then for any A-bimodule M there is an isomorphism

HHn(A,M) ≅ TorA
e

n (M,A).

This relationship between Hochschild homology and Tor has analogous statements in

equivariant Hochschild settings and is an important tool for computing Hochschild groups

in both the equivariant and non-equivariant settings.

Returning to our trace methods motivation, we recall that there is a map called the

Dennis trace from the algebraic K-theory groups of a ring A to its Hochschild homology. By

this map, we consider HH(A) as a K-theory approximation,

Kn(A) HHn(A).Dennis trace

A natural follow up when presented with such an approximation is to ask how close we come

to capturing K-theory. This is akin to asking how close the Dennis trace comes to being

9



an isomorphism. Unfortunately, what we gained in computational traction with Hochschild

homology, we traded for accuracy; the Dennis trace is not a very good K-theory approxi-

mation. In part, we recognize this as the failure of Hochschild homology to incorporate the

homotopy theoretic information used to construct the algebraic K-theory groups. We now

consider another Hochschild invariant, this time one coming from topology, in an effort to

better approximate algebraic K-theory.

2.2 Topological Hochschild homology

The preceding construction of Hochschild homology can be translated to a topological

setting in order to define a theory of topological Hochschild homology, denoted by THH. To

do so, we appeal to the world of so-called “brave new algebra,” also known as higher algebra,

to find topological analogues which mimic important properties of classical algebraic objects.

This translation utilizes the following dictionary:

Classical Algebra Higher Algebra

Rings Ring spectra

Tensor product, ⊗ Smash product, ⋀

Integers, Z Sphere spectrum, S

HH THH

We begin this section by recalling some definitions in higher algebra one needs to understand

this dictionary. Following that, we describe the construction of THH and recount how it fits

into the story of trace methods for algebraic K-theory.

Definition 2.2.1. A ring spectrum is a monoid in a symmetric monoidal category of spectra.

In other words, a ring spectrum E admits a unit map η ∶ S → E and a product map

µ ∶ E ∧E → E subject to the unitality relation

S ∧E E ∧E E ∧ S

E

η∧id id∧η

µ
≅ ≅

10



and the associativity relation

E ∧E ∧E E ∧E

E ∧E E.

µ∧id

id∧µ µ

µ

Example 2.2.2 (Eilenberg-Mac Lane spectrum). Any ring A gives rise to a ring spectrum

HA called the Eilenberg-Mac Lane spectrum of A. These Eilenberg-Mac Lane spectra have

the property that

πn(HA) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A if n = 0

0 n > 0.
Since ring spectra are analogous to rings in higher algebra, we also wish to have an

analogous notion of a module.

Definition 2.2.3. Let A be a ring spectrum. We say that a spectrum M is a left A-module

spectrum if there is a map of spectra ψL ∶ A ∧M → M such that the following diagrams

commute:
S ∧M A ∧M

M

η∧id

≅ ψL

A ∧M ∧A A ∧M

A ∧M M.

µ∧id

id∧ψL ψL

ψL

The definition of a right A-module is analogous. If M is a left A-module via an action ψL

and a right A-module via ψR such that the following diagram commutes,

M ∧A ∧M M ∧A

A ∧M M,

id∧ψL

ψR∧id ψR

ψL

we say that M is an A-bimodule.

These constructions in higher algebra mimic the familiar ones of classical algebra with

the symmetric monoidal smash product playing the role of the tensor product. Akin to the

notion of a relative tensor, we also have relative smash product in spectra.

11



Definition 2.2.4. Let A be a ring spectrum. If M is a right A-module spectrum with action

ψ and N is a left A-module spectrum with action ϕ, the relative smash product M ∧A N is

the coequalizer in spectra:

M ∧A ∧N M ∧N M ∧AN.
ψ∧id

id∧ϕ

Remark 2.2.5. Following this definition, we may translate a classical isomorphism to the

setting of higher algebra. If A is a ring spectrum and M is a left A-module we can regard A

as a right module over itself. Then the relative smash product A ∧AM is the coequalizer

A ∧A ∧M A ∧M A ∧AM.
µ∧id

id∧ψL

But the associativity of a left module action ensures that ψL(µ∧ id) = ψL(id∧ψL) so we have

that

A ∧AM ≅M.

Topological Hochschild homology (THH) was first defined in the 1980s by Bökstedt

[Bök85b]. A more modern description of THH (including constructions utilizing the no-

tion of an associative smash product in a category of spectra that was not yet developed at

the time of Bökstedt’s original publication) is given in Chapter 9 of [Elm+97].

Definition 2.2.6. Let A be a ring spectrum and M an (A,A)-bimodule. The cyclic bar

construction on A with coefficients in M , denoted Bcy
● (A;M), is a simplicial spectrum whose

n-simplices are M ∧A∧n and which has the following face and degeneracy maps:

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψR ∧ id∧(n−1) i = 0

idM ∧ id∧(i−1) ∧ µ ∧ id∧(n−i−1) 0 < i < n

(ψL ∧ id∧(n−1)) ○ τ i = n

si = idM ∧ id∧i ∧ η ∧ id∧(n−i).
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As before, τ is the twist map that brings the right-most factor of A to the left position. We

can also encode this data into a simplicial diagram,

⋮

M ∧A ∧A ∧A

M ∧A ∧A ∧A

M ∧A ∧A

M ∧A

M.

d0 d1 d2 d3

d0 d1 d2 d3

d0 d1 d2

s2s1s0

d0 d1

s1s0

s0

The topological Hochschild homology of a ring spectrum A with coefficients in a bimodule M

is then defined to be the spectrum given by the geometric realization

THH(A;M) ∶= ∣Bcy
●
(A;M)∣.

Convention. If we take coefficients in the ring spectrum A as a bimodule over itself, we

call this simply the topological Hochschild homology of A and denote it by

THH(A) ∶= ∣Bcy
●
(A;A)∣.

At each level of the cyclic bar construction which defines THH(A), the twist map τ acts

as a cyclic operator, inducing an action of the cyclic group Cn+1 at simplicial level n. This

operator allows us to classify the cyclic bar construction as a special type of simplicial object.

Definition 2.2.7 ([Lod13], 6.1.2). A cyclic object C● in a category C is a simplicial object

which is further endowed with a map

tn ∶ Cn → Cn,

13



such that (tn)n+1 = id, and the map t interacts with the face and degeneracy maps in the

following ways:

ditn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dn i = 0

tn−1di−1 1 ≤ i ≤ n

sitn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(tn+1)2sn i = 0

tn+1si−1 1 ≤ i ≤ n.

Proposition 2.2.8 ([Lod13], Theorem 7.1.4). The geometric realization of a cyclic object

has an action of the circle group, S1.

Since Bcy
● (A) is a cyclic object, THH(A) has an S1-action. Further, THH(A) can be

constructed as a genuine S1-spectrum.

In the preceding section we discussed the failure of classical Hochschild homology to serve

as a good approximation of algebraic K-theory and sought to remedy this by considering an

invariant constructed in the world of topology. For a ring A, it was shown that topological

Hochschild homology also receives a Dennis trace map from K-theory:

Kn(A)
topological Dennis traceÐÐÐÐÐÐÐÐÐÐÐÐ→ πn(THH(HA)),

where HA is the Eilenberg-Mac Lane spectrum of the ring A. In fact, the classical Dennis

trace factors as a composition of the above map with a map

πn(THH(HA)) → HHn(A).

This is a particular case of a map which relates THH and HH called linearization.

Proposition 2.2.9. Let A be a (−1)-connected ring spectrum. There is a map

πnTHH(A) → HHn(π0A)

which is an isomorphism for n = 0.
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With this topological trace we do indeed get a better approximation of K-theory from

THH; in fact, much of the recent progress made in K-theory computations has involved

computing THH and a closely related invariant called topological cyclic homology.

The question now is how to compute topological Hochschild homology. Recall that the

motivation for trace methods was to find a computationally approachable approximation of

K-theory. We now describe a tool which bridges the algebraic and topological theories of

Hochschild homology to help us compute THH.

2.3 The Bökstedt spectral sequence

The Bökstedt spectral sequence is a computational tool that uses the classical, algebraic

Hochschild groups (which are computationally more approachable than their topological

counterparts) to determine the homology of THH. This work of Bökstedt originally appeared

in [Bök85b] at a time before many of the tools of higher algebra (including a symmetric

monoidal category of spectra with an associative smash product) were developed. Here we

recall a more modern construction of this spectral sequence as it appears in [Elm+97].

We begin with a result about the existence of spectral sequences for simplicial spectra.

Proposition 2.3.1 ([Elm+97], X.2.9). Let X● be a proper simplicial spectrum and let E be

any spectrum. There is a natural homological spectral sequence {Er
p,qX●} such that

E2
p,q =Hp(Eq(X●)) ⇒ Ep+q(∣X●∣) (2.1)

which converges strongly.

Recalling Definition 2.2.6, we see that topological Hochschild homology is a simplicial

spectrum, so by Proposition 2.3.1 the skeletal filtration gives rise to a spectral sequence

converging to the homology of THH. Here, for a commutative ring spectrum E, a general

E∗-homology theory is defined by setting E∗(A) = π∗(A∧E). Setting E =Hk (the Eilenberg-

Mac Lane spectrum of k) recovers ordinary homology with coefficients in a field k. Thus, to

compute H∗(THH(A);k) the E2-page has the form:

E2
p,∗ =Hp(H∗(Bcy

●
(A);k)).
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We would like to identify this E2-term as something familiar and computable; indeed we

shall see that this is Hochschild homology.

The notation H∗(X●;k) denotes applying the homology functor to the simplicial object

X● level-wise. For example, taking homology of the cyclic bar construction at level p we

have

H∗(
p+1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A ∧A ∧ ... ∧A;k) = π∗(

p+1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A ∧A ∧ ... ∧A∧Hk).

The isomorphism described in Remark 2.2.5 allows us to write this as

π∗(A ∧A ∧ ... ∧A ∧Hk) ≅ π∗(A ∧Hk ∧Hk A ∧Hk ∧Hk ... ∧Hk A ∧Hk).

Here, because π∗(Hk) = k is a field, all modules over it are flat including the module π∗(A∧

Hk). Thus the Künneth spectral sequence collapses and the homotopy of this product can

be written

π∗(A ∧Hk ∧Hk A ∧Hk ∧Hk ... ∧Hk A ∧Hk) ≅

π∗(A ∧Hk) ⊗π∗(Hk) π∗(A ∧Hk) ⊗π∗(Hk) ...⊗π∗(Hk) π∗(A ∧Hk) =

H∗(A;k) ⊗k H∗(A;k) ⊗k ...⊗k H∗(A;k)

A simplicial complex which is built from (n + 1)-tensor copies of a ring at the nth level is

precisely how we constructed the Hochschild complex. One can verify that the boundary

maps in the Hochschild complex coincide with the d1-differential in the spectral sequence,

thus we have the following result of Bökstedt:

Proposition 2.3.2. Let A be a ring spectrum and k a field. There is a spectral sequence

called the Bökstedt spectral sequence which has the form:

E2
∗,∗ = HH∗(H∗(A);k) ⇒H∗(THH(A);k).

This result has been foundational in many THH computations. For example, in [Bök85a]

Bökstedt uses this spectral sequence to compute THH(Fp) and THH(Z). These computa-

tions have been essential to many calculations in algebraic K-theory.
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CHAPTER 3

TOOLS FROM EQUIVARIANT ALGEBRA

The goal of the following chapters is to reconstruct much of the previously discussed ma-

chinery in an equivariant setting where the invariants we consider encode a group action on

the input. Before constructing these equivariant Hochschild theories, we take this chapter to

introduce some key objects of study in equivariant algebra and related notions in equivariant

topology.

Convention. In this thesis we use D2 to denote the group of two elements 1, ω such that

ω2 = 1. We elect to use this naming rather than the more common notation of C2 for cyclic

groups or Z/2 in anticipation of generalized results for dihedral D2m-equivariant objects.

3.1 Mackey and Green functors

We now recall the definition of Mackey functors which one may think of as the analogue of

abelian groups in the equivariant setting. We then give several examples of common Mackey

functors to illustrate what these objects look like and how one might use them.

Convention. In this section we always take G to be a finite group.

Definition 3.1.1. A G-Mackey functor M is a pair (M∗,M∗) of functors, one covariant

and one contravariant, from the category of finite G-sets to the category of abelian groups

M∗,M
∗ ∶ Setfin

G → Ab

with the following properties:

(a) M∗(X) =M∗(X) for all finite G-sets X. This group is denoted by M(X).

(b) M∗ and M∗ take disjoint unions of finite G-sets to direct sums of groups.

(c) A pullback diagram in Setfin
G of the form
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X Y

Z W

f

h k

g

is taken to a commutative diagram of abelian groups.

M(X) M(Y )

M(Z) M(W ).

M∗(f)

M∗(g)

M∗
(h) M∗

(k)

The fact that every finite G-set can be written as a disjoint union of orbits of the form

G/H in combination with property (b) above means that to completely describe a G-Mackey

functor M , it is sufficient to determine the structure on just the orbits. This yields a more

concrete description of M which we take to be our definition of a Mackey functor going

forward.

Definition 3.1.2. A G-Mackey functor M consists of the following data:

1. An abelian group M(G/H) associated to each subgroup H of G.

2. A transfer map trHK ∶M(G/K) →M(G/H) for each subgroup K <H ≤ G.

3. A restriction map resHK ∶M(G/H) →M(G/K) for each subgroup K <H ≤ G.

4. An action of the Weyl groupWG(H) = NG(H)/H onM(G/H) for all subgroupsH ≤ G.

This data is subject to the following relations:

(a) If J <K <H, then we have trHJ = trHKtrKJ and resHJ = resKJ resHK .

(b) If K <H ≤ G, then resHK(x) = γ ⋅ resHK(x) for all x ∈M(G/H) and γ ∈WH(K).

(c) If K <H ≤ G, then trHK(γ ⋅ x) = trHK(x) for all x ∈M(G/K) and γ ∈WH(K).

(d) For all subgroups K,J in H and x ∈M(G/(J ∩K)),

resHJ tr
H
K(x) = ∑

γ∈WH(J)

γ ⋅ trJJ∩K(x)
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M(Cpn/Cpn)

⋮

M(Cpn/Cp)

M(Cpn/e)
tr

Cp
eres

Cp
e

res
C
p2

Cp
tr

C
p2

Cp

res
Cpn

C
pn−1

tr
Cpn

C
pn−1

Figure 3.1 The Lewis diagram for a Cpn-Mackey functor.

Convention. For the remainder of this thesis, the underline notion will be used to denote

an object in equivariant algebra.

Remark 3.1.3. From this definition, we see that a trivial e-Mackey functor is just an abelian

group. We may thus think of Mackey functors as a generalization of abelian groups in the

world of equivariant algebra.

The collection of data which defines a Mackey functor may be organized visually into

what is referred to as a Lewis diagram, first introduced by Gaunce Lewis in [Lew88]. We

elect to omit the Weyl action in all Lewis diagrams presented in this thesis. In Figures 3.1

and 3.2 we provide two different examples of Lewis diagrams for Mackey functors to illustrate

this definition.

Example 3.1.4 (Lewis diagram for a Cpn-Mackey functor). We can describe a Cpn-Mackey

functor by the collection of abelian groups associated to the orbits Cpn/e,Cpn/Cp, ...,Cpn/Cpn ,

the transfer and restriction maps between them, and the Weyl actions at each orbit. The

Lewis diagram has a ladder-like structure, as seen in Figure 3.1.

Example 3.1.5 (Lewis diagram for a dihedral Mackey functor). For a dihedral group D2p,

where p is prime, we obtain a branched diagram from the cyclic rotation subgroup Cp and

the reflection subgroup D2. We depict this in Figure 3.2 for the case of D6.
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M(D6/D6)

M(D6/D2) M(D6/C3)

M(D6/e) tr
C3
e

res
C3
e

res
D6
C3

tr
D6
C3

res
D2
e

tr
D2
e

res
D6
D2

tr
D6
D2

Figure 3.2 The Lewis diagram for a D6-Mackey functor.

Definition 3.1.6. Let M and N be G-Mackey functors. A map of Mackey functors ϕ ∶M →

N is a homomorphism ϕH ∶ M(G/H) → N(G/H) for each subgroup H ≤ G, such that the

maps ϕH are WG(H)-equivariant and commute with the restriction and transfer.

Equipped with the definitions of objects and morphisms in the category of G-Mackey

functors (which we denote by MackG), we now turn to some important examples of Mackey

functors.

Definition 3.1.7. Let B be an abelian group with a trivial G-action. There is a G-Mackey

functor called the constant Mackey functor, which is denoted by B, consisting of the group

B = B(G/H) at each orbit. The restriction maps are the identity and the transfer maps trHK

are multiplication by the index ∣H/K ∣ for all subgroups K < H ≤ G. All the Weyl actions

are trivial.

Example 3.1.8. The case of a constant Mackey functor with B = Z arises often in equivariant

algebra. A diagram of this constant D2-Mackey functor is depicted below.

m Z 2n

m Z n

res
D2
e tr

D2
e

Example 3.1.9. Later in this section we explain how one takes the homotopy and homology

of a G-equivariant spectrum. In the case of G =D2, taking homology with coefficients in the

D2-Mackey functor F2 yields a widely studied equivariant homology theory. The constant

20



D2-Mackey functor F2 is given by:
F2

F2.

0id

We now recall a special object in the category of G-Mackey functors which will play the

role of a unit in this setting. We begin first with a definition needed to understand this

Mackey functor.

Definition 3.1.10. For a group G, the Burnside ring A(G) of G is the group completion

of the monoid of isomorphism classes of finite G-sets with disjoint union.

Example 3.1.11. The G-Burnside Mackey functor, denoted by A is the Burnside ring A(H) at

each orbit G/H with the trivial Weyl action. For K <H, the transfer map sends [X] ∈ A(K)

to the induction [H ×KX]. The restriction map sends an H-set [X] to its underlying K-set

[ι∗KX].

The category MackG has a symmetric monoidal product on it; for two G-Mackey functors

M and N , the box product is a G-Mackey functor denoted by M ◻ N . This product has

a categorical definition as a left Kan extension. More concrete formulas in the case of

G = Cpn may be found in Section 1 of [Lew88]. We will not reproduce these definitions

here, although we remark that these formulas underscore the computational complexity of

equivariant algebra. For instance, although the box product plays the role of a tensor product

in the world of Mackey functors, the box product of two Mackey functors is not simply their

level-wise tensor.

The Burnside Mackey functor given in Example 3.1.11 is the unit for this box product.

Thus, for any Mackey functor M we have that A ◻ M ≅M .

Definition 3.1.12. Let M be a group with G-action. The fixed point Mackey functor M

has at each orbit (G/H) the H-fixed points of M ,

M(G/H) =MH = {m ∈M ∣ hm =m,∀h ∈H}.
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Restriction maps are inclusions of fixed points and the transfer map trHK is given by a sum

over the Weyl actions

trHK(m) = ∑
γ∈WH(K)

γ ⋅m.

We have already seen an example of a fixed point Mackey functor; if we consider Z as

a group with a trivial G-action, we recover the constant Mackey functor Z. At each orbit

Z(G/H) we have ZH = Z since Z has a trivial G-action. All restriction maps are thus the

identity. The transfer maps

trHK(m) = ∑
γ∈WH(K)

γ ⋅m = ∑
γ∈WH(K)

m

send an integer m to ∣H/K ∣ ⋅m since all the Weyl group actions are trivial. This is precisely

the structure of the constant Mackey functor described in 3.1.7 and depicted in the D2-case

in Example 3.1.8. More generally, for an abelian group B, one could endow B with the trivial

G action. The fixed point Mackey functor coincides with the constant Mackey functor.

A key example of Mackey functors that will be used extensively in the following chapters

of this thesis is the equivariant homotopy Mackey functor. We want to recognize the full

equivariance present in a G-spectrum when we take its homotopy and the classical notion of

a group is insufficient in this regard. Instead, we need the additional equivariant structure of

a Mackey functor to capture the homotopy of a G-spectrum. Before recounting the definition

of equivariant homotopy, we first recall two notions of a graded Mackey functor, noting that

in the G-equivariant setting, we often take gradings in the real representation ring RO(G).

Definition 3.1.13. A Z-graded G-Mackey functor M
∗

is a set {Mn ∣ n ∈ Z} of G-Mackey

functors. A map of Z-graded G-Mackey functors is a set {Mk → Nk} of maps of G-Mackey

functors.

Definition 3.1.14. An RO(G)-graded Mackey functor M
⋆

is a set {Mα ∣ α ∈ RO(G)} of

G-Mackey functors. A map between two RO(G)-graded Mackey functors M
⋆

and N
⋆

is a

set of maps of Mackey functors {Mα → Nα}.
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In anticipation of the work conducted with graded Mackey functors in later chapters, we

also introduce the definition of a graded box product.

Definition 3.1.15 ([LM06], Definition 2.4). Let M
∗

and N
∗

be Z-graded Mackey functors

as defined in 3.1.13. The graded box product M
∗
◻ N

∗
is given by

(M
∗
◻ N

∗
)n ∶= ⊕

i+j=n

M i ◻ N j.

We can also define a box product for the RO(G)-graded Mackey functors of Definition 3.1.14.

Given two RO(G)-graded Mackey functors M
⋆

and N
⋆

we have

(M
⋆
◻ N

⋆
)α ∶= ⊕

β+γ=α

Mβ ◻ Nγ.

Using these conventions, we recall that one may consider the Z-graded or RO(G)-graded

homotopy of a G-spectrum.

Definition 3.1.16. Let X be a G-spectrum. The Z-graded homotopy of X is a graded

Mackey functor given by

πGn (X)(G/H) ∶= πn(XH).

To define the RO(G)-graded homotopy, let α = [β] − [γ] ∈ RO(G) where β and γ are finite

dimensional real representations of G. Then for H ≤ G,

πGα (X)(G/H) ∶= [Sβ ∧G/H+, Sγ ∧X]G

is defined to be the RO(G)-graded homotopy Mackey functor.

Convention. In this thesis we will use the notation ∗ to denote an integer grading. The

five-point star ⋆ will denote an RO(G)-grading.

Analogous to the case of abelian groups, we have an Eilenberg-Mac Lane functor which

takes a G-Mackey functor M to a G-spectrum HM . The spectrum HM has the property

that

πGn (HM) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M n = 0

0 n ≠ 0.
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As described above in the case of homotopy, we also wish to preserve the full equivariant

structure when considering an appropriate homology theory for a G-spectrum X. Again, the

structure that incorporates the equivariant structure is not a group, but a Mackey functor.

We can thus study the G-equivariant homology of a G-spectrum with the following definition.

This equivariant notion of homology will play an important role in our construction of the

Real Bökstedt spectral sequence in Chapter 5.

Definition 3.1.17. Let E be a commutative G-ring spectrum and let X be a G-spectrum.

We define the RO(G)-graded E-homology of X to be

E
⋆
(X) ∶= πG

⋆
(X ∧E).

In the case of E =HFp we this is homology with coefficients in the constant Mackey functor

Fp, H
G
⋆
(X;Fp).

Having presented Mackey functors as an equivariant analogue to abelian groups and

noted the symmetric monoidal product on this category, we now turn to the question of

what a ring looks like in the world of equivariant algebra.

Definition 3.1.18. A G-Green functor R is an associative monoid in the category MackG.

Explicitly, R is a G-Mackey functor with a product map µ ∶ R ◻ R → R and a unit map

η ∶ A→ R such that the follow associativity and unitality diagrams commute:

A ◻ R R ◻ R A ◻ R

R

η ◻ id

≅

µ

id ◻ η

≅

R ◻ R ◻ R R ◻ R

R ◻ R R.

id ◻ µ

µ ◻ id µ

µ

If we further require a commutative diagram

R ◻ R R ◻ R

R

τ

µ µ
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where τ is the switch map that permutes the two copies of R, we say that R is a commutative

G-Green functor.

Green functors serve as the analogue to rings in the world of equivariant homotopy theory;

we see this connection in numerous ways. For example, a G-Green functor R yields a G-ring

spectrum as its Eilenberg-Mac Lane spectrum HR. If we take the equivariant homotopy of

a G-ring spectrum X, πn(X) has the structure of a Green functor. Green functors will thus

serve as the input to the equivariant algebraic Hochschild theory considered in the following

chapters.

3.2 Equivariant norms

In the preceding section of this chapter we held a finite group G constant and described

what it means to be a G-equivariant version of an abelian group or a ring. We also considered

the equivariant topological notion of a G-spectrum. We now recall two change-of-group

functors that play an important role in equivariant homotopy theory. The first one allows

us to take a G-spectrum and create an H-spectrum when H ≤ G by remembering only the

H-equivariance.

ι∗H ∶ SpG → SpH .

We now recall a functor in the opposite direction which creates a G-spectrum from an

H-spectrum for a finite group G and subgroup H. The original construction of this functor,

called an equivariant norm is due to Hill, Hopkins, and Ravenel [HHR16]. For anH-spectrum

X, we denote its norm to G by NG
HX. The norm is symmetric monoidal meaning it enjoys

the property that

NG
H(X ∧ Y ) ≅ NG

HX ∧NG
HY.

In the commutative case, the norm is also left adjoint to the restriction functor we described

above. In particular, Corollary 2.28 of [HHR16] gives us that for a commutative G-ring
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spectrum X,

NG
H(ι∗HX) ≅X ⊗ (G/H).

Remark 3.2.1. A particular application of this isomorphism will be utilized in the following

chapters; if A is a D2-spectrum, then ND2
e ι∗eA is the D2-spectrum A ∧ A with the action

given by τ , the permutation of the two smash copies of A. We make use of this fact in the

Real Hochschild constructions in Chapter 4.

Hill and Hopkins show that this symmetric monoidal norm of spectra can be used to

define a norm functor for finite H ≤ G,

NG
H ∶MackH →MackG.

We now recall this definition of the norm in Mackey functors.

Definition 3.2.2 ([HH16], Definition 5.9). Let H ≤ G be finite groups and let M be an

H-Mackey functor. The norm from H to G of M is defined

NG
HM ∶= πG0 (NG

HHM)

where HM is the Eilenberg-Mac Lane spectrum of M .

Work of Mazur, Hill-Mazur, and Hoyer ([Maz13], [HM19], [Hoy14]) develop explicit for-

mulas for norms of Mackey functors without passing to spectra though we do not reproduce

these formulas here. This notion of a change-of-group functor in equivariant algebra also

appeared under a different guise in earlier work of Bouc [Bou00].

A restriction functor in the opposite direction may also be defined for Mackey functors.

Definition 3.2.3. [see [Hoy14], Section 2.3] LetM be a G-Mackey functor andH a subgroup

of G. There is a functor called the restriction,

ι∗H ∶MackG →MackH .

The restriction takes M to its underlying H-Mackey functor ι∗HM is given by

ι∗HM(H/K) ∶=M(G ×H (H/K)).
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In the cases relevant to us (when G is a cyclic group or dihedral group) we have that

ι∗HM(H/K) = M(G/K) and the transfer maps, restriction maps, and Weyl actions are

simply the H-restriction of those maps in M .

Remark 3.2.4. Although we focused on norms for finite groups in this section, the more

complex question of norms for compact Lie groups has been considered in [Ang+18] and

[BDS22] with a particular goal of constructing a norm to S1. That one can make sense of

such norms to groups which are not finite plays an important role in interpreting Hochschild

constructions as a norm. See [Ang+18] for further discussion in the case of THH and [AGH21]

in the case of THR.

In this chapter we developed the language of equivariant algebra, as summarized in the

dictionary below:

Classical Algebra Equivariant Algebra

Abelian groups Mackey functors

Tensor product, ⊗ Box product, ◻

Integers, Z Burnside Mackey functor, A

Rings Green functors.

In the following chapters we will use this dictionary to translate trace methods for alge-

braic K-theory, and in particular the construction of the Bökstedt spectral sequence, to an

equivariant setting where the inputs and their invariants have an action of involution.
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CHAPTER 4

EQUIVARIANT THEORIES OF TOPOLOGICAL HOCHSCHILD
HOMOLOGY

Equipped with the foundations of equivariant algebra, we now return to the story of trace

methods for algebraic K-theory that began in Chapter 2. This time we take an equivariant

perspective, studying an algebraic K-theory (and related approximations) that recognizes a

group action on the input. Hesselholt and Madsen defined such a D2-equivariant refinement

of K-theory called Real algebraic K-theory (KR) for rings with the action of involution

[HM15]. Real algebraic K-theory is a generalization of Hermitian K-theory. For a discrete

ring with anti-involution A in which 2 is invertible, taking the D2-fixed points of KR(A)

recovers Karoubi’s connective Hermitian K-theory [Kar73].

As we observed in the classical case, despite the interest in Real algebraic K-theory

computations, they are quite difficult. We again employ a trace methods approach to ap-

proximate KR with more computable equivariant invariants. In this chapter, we review

the constructions of these invariants, called Real Hochschild homology and Real topological

Hochschild homology.

A different equivariant perspective on Hochschild invariants one may wish to consider

is that of a Cn-action on the input. This produces a different theory called Hochschild

homology for Cn-Green functors (in the algebraic setting) and twisted topological Hochschild

homology (in the topological setting). In Chapter 5 we will extend some of the techniques

used to develop computational tools for Real topological Hochschild homology to this twisted

theory so we take the opportunity in this chapter to include relevant background on twisted

Hochschild constructions as well.

4.1 Equivariant simplicial objects

Recall that in Chapter 2 we defined Hochschild homology as a simplicial object in the

category of abelian groups. Analogously, THH was a simplicial spectrum. By defining a

cyclic operator at each simplicial level, we showed that the bar constructions which define
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HH and THH were in fact cyclic objects, giving their geometric realization an action of S1.

We now review some additional equivariant definitions of simplicial objects.

To set notation, let D2m denote the dihedral group generated by two elements

D2m =< ω, t ∣ ω2 = tm = 1, ωtω = t−1 > .

Note that when m = 1, this is the cyclic group on two elements typically denoted C2. In

anticipation of our discussion about dihedral-equivariant objects in algebra and topology, we

elect to use the notation D2 for this group instead.

Definition 4.1.1. A dihedral object L● in a category C is a simplicial object in C together

with a D2(n+1)-action on Ln specified by the action of the generators:

tn ∶ Ln → Ln and ωn ∶ Ln → Ln

such that:

1. ωntn = t−1n ωn

2. d0tn+1 = dn

3. ditn = tn−1di−1 if 1 ≤ i ≤ n

4. s0tn = t2n+1sn

5. sitn = tn+1si−1 if 1 ≤ i ≤ n

6. diωn = ωn−1dn−i if 0 ≤ i ≤ n

7. siωn = ωn+1sn−i if 0 ≤ i ≤ n

Definition 4.1.2. A Real simplicial object M● is a simplicial object together with maps

ωn ∶Mn →Mn for each n ≥ 0 which square to the identity (ω2
n = idMn) and obey relations 6

and 7 in Definition 4.1.1.

Remark 4.1.3. By Theorem 5.3 of [FL91], the geometric realization of a dihedral object has

an action of the orthogonal group O(2) and the geometric realization of a Real simplicial

object has a D2-action.

At times, it is useful to work with a subdivided simplicial object which supports a D2-

action. The appropriate subdivision in this case is attributed to Segal [Seg73] and Quillen.
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Definition 4.1.4. The Segal-Quillen subdivision of a simplicial object X●, denoted sqX●, is

the simplicial object with k-simplices

sqXk =X2k+1.

Let di and si denote the face and degeneracy maps of X●. The face and degeneracy maps d̃i

and s̃i of the subdivision sqX● are given by

d̃i = did2k+1−i

s̃i = s2k−isi.

The geometric realizations of a simplicial object and its Segal-Quillen subdivision are homeo-

morphic [Spa00]. Further, if X● is a dihedral or Real simplicial set then the homeomorphism

∣X●∣ ≅ ∣sqX●∣ is D2-equivariant (see [AGH21], Section 2.1).

4.2 Real topological Hochschild homology

In Section 2.2, we discussed topological Hochschild homology, an invariant of ring spectra.

We now wish to consider a Real notion of ring spectra. These are a particular kind of D2-

equivariant ring spectra called ring spectra with anti-involution. A genuinely equivariant

topological Hochschild homology theory for these ring spectra with anti-involution can be

constructed to encode this D2-action of involution. This invariant, called Real topological

Hochschild homology (THR), was first introduced by Hesselholt and Madsen in their work

on Real algebraic K-theory [HM15], given in the style of Bökstedt’s original construction of

THH [Bök85b]. Dotto, Moi, Patchkoria, and Reeh [Dot+20] subsequently gave a construction

of THR using a dihedral bar construction analogous to the definition of THH via the cyclic

bar construction which we recalled in Section 2.2. In this section, we recall the definition of

THR via the dihedral bar construction, beginning with a formal description of its input.

Definition 4.2.1. A ring spectrum with anti-involution is a pair (A,ω) consisting of a ring
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spectrum A and a map ω ∶ A→ A such that ω2 = id and the following diagram commutes

A ∧A A A

A ∧A A ∧A A ∧A A.ω∧ω τ µ

µ ω

Here, τ is the switch map that permutes the two copies of A and µ is the product on the

ring spectrum. Equivalently, one may define the anti-involution to be a map ω ∶ Aop → A

such that ω2 = id. We use these descriptions of the anti-involution interchangeably.

Example 4.2.2. Let A be a commutative D2-ring spectrum. Since A is commutative, Aop = A

and the D2-action on A defines an anti-involution.

Definition 4.2.3. A map of ring spectra with anti-involution f ∶ (A,ω) → (B, τ) is a mor-

phism of ring spectra f ∶ A→ B that commutes strictly with the involutions ω and τ .

Let (A,ω) be a ring spectrum with anti-involution and M an A-bimodule with left action

map ψL and right action map ϕR. We may define an A-bimodule M op via

A ∧M τÐ→M ∧A id∧ωÐÐ→M ∧A ψRÐ→M

M ∧A τÐ→ A ∧M ω∧idÐÐ→ A ∧M ψLÐ→M.

Definition 4.2.4. Let (A,ω) be a ring spectrum with anti-involution. An (A,ω)-bimodule

is a pair (M,σ) which consists of an A-bimodule M and a map of A-bimodules σ ∶M op →M

such that σ2 = id.

With this description of the inputs to Real topological Hochschild homology, we now

proceed to recall the dihedral bar construction.

Definition 4.2.5 ([Dot+20], Section 2.2). Let (A,ω) be a ring spectrum with anti-involution

and (M,σ) an (A,ω)-bimodule. The dihedral bar construction of (A,ω) with coefficients in

(M,σ) is a Real simplicial spectrum (in the sense of Definition 4.1.2) and is denoted by

Bdi
●
(A;M). This spectrum has k-simplices

Bdi
k (A;M) =M ∧A∧k.
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The simplicial structure maps in this spectrum are the same as those of the cyclic bar

construction of Definition 2.2.6.

Furthermore, the dihedral bar construction has a level-wise involution W . At level k, let

k be the D2-set of integers k = {1, ..., k} with a D2-action of γ(i) = k + 1− i for γ a generator

of D2. The involution is given by

W ∶M ∧A∧k
id∧Aγ(1)∧...∧Aγ(k)ÐÐÐÐÐÐÐÐÐ→M ∧A∧k σ∧ω∧kÐÐÐ→M ∧A∧k.

For example, at k = 3 the involution W is defined by

M ∧A1 ∧A2 ∧A3 M ∧A3 ∧A2 ∧A1 M ∧A3 ∧A2 ∧A1.
σ∧ω∧ω∧ω

Definition 4.2.6. The Real topological Hochschild homology of a ring spectrum with anti-

involution (A,ω) with coefficients in the bimodule (M,σ) is the D2-spectrum given by the

geometric realization of the dihedral bar construction,

THR(A;M) ∶= ∣Bdi
●
(A;M)∣.

Convention. Taking coefficients in A, we simplify notation and write

THR(A) ∶= THR(A,A).

Remark 4.2.7. Recall from Section 2.2 that the cyclic operators in the cyclic bar construction

realized to give THH(A) an S1-action. We note that the dihedral bar construction inherits

much of the same structure as the cyclic bar construction, including the cyclic operators.

The additional data present in the dihedral bar construction comes from the D2-action of

the anti-involution on each level. Thus, we see that each level Bdi
n (A) has a Cn ⋊D2 = D2n-

action on it. These actions assemble to an action of O(2) on the geometric realization, thus

THR(A) is an O(2)-spectrum.

4.3 Real Hochschild homology

Having recalled a Real-equivariant theory of topological Hochschild homology, we now

seek a Real algebraic Hochschild theory to complete the translation of the trace methods
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approach to the Real equivariant setting. A Hochschild homology theory for rings and

algebras equipped with an anti-involution called dihedral homology is described in Section

5.2 of [Lod13]. However, this theory is does not fully capture the Real equivariant structure

present. In particular, one sees this failure when attempting to construct a Real linearization

map. In Proposition 2.2.9, we recalled that a connective link between THH and HH was the

linearization map πn(THH(R)) → HHn(π0(R)) from the homotopy groups of THH to the

Hochschild homology of the ring π0(R).

Given a ring spectrum with anti-involution A, a Real linearization map should take

THR(A) to the Hochschild homology of π0(A). This is not, however, simply a ring with in-

volution; since A is a D2-spectrum, its homotopy forms a graded D2-Mackey functor πD2
n (A).

Thus, a true algebraic analogue of THR should be constructed using the language of equivari-

ant algebra we developed in Chapter 3 and take inputs in a D2-Mackey functor that encodes

the action of involution.

In this section, we recall Angelini-Knoll, Gerhardt, and Hill’s [AGH21] construction of

the algebraic analogue of THR, Real Hochschild homology. We begin with a definition of the

appropriate input for this Real Hochschild theory, a particular kind of D2-Mackey functor

called a discrete Eσ-ring.

Definition 4.3.1. A discrete Eσ-ring consists of the following:

1. A D2-Mackey functor M such that there is an associative product on M(D2/e) for

which the Weyl action is an anti-homomorphism.

2. An ND2
e ι∗eM -bimodule structure on M with right action ψL ∶ ND2

e ι∗eM ◻ M →M and

left action ψR ∶M ◻ ND2
e ι∗eM →M . We further require that ψ restricts to the usual

module action over the enveloping algebra (see 2.1.5) on M(D2/e).

3. A unit element 1 ∈M(D2/D2) such that res(1) = 1 ∈M(D2/e).
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Remark 4.3.2. The data of a discrete Eσ-ring is essentially that of a Hermitian Mackey

functor plus the unit condition in (3) above. The definition of Hermitian Mackey functors

is due to Dotto and Ogle; for further details see [DO19].

Example 4.3.3. LetA be a ring spectrum with anti-involution. Then πD2
0 (A) has the structure

of a discrete Eσ-ring.

Remark 4.3.4. A discrete Eσ-ring can also be described as an algebra in D2-Mackey functors

over an Eσ-operad (see [AGH21], 6.3).

Before introducing the definition of Real Hochschild homology, we recall the notion of a

two-sided bar construction in Mackey functors.

Definition 4.3.5. Let R be an associative G-Green functor with right module M and left

module N . The two-sided bar construction B●(M,R,N) is a simplicial Mackey functor with

k-simplices

Bk(M,R,N) =M ◻ R◻k ◻ N.

The face maps are defined by

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψR ◻ id
◻(k−1)
R ◻ idN i = 0

idM ◻ id
◻(i−1)
R ◻ µ ◻ id

◻(k−i−1)
R ◻ idN 0 < i < k

idM ◻ id
◻(k−1)
R ◻ ψL i = k

where ψ represents the left and right module actions of N and M respectively and µ is the

Green functor multiplication. The degeneracy maps are given by

si = idM ◻ id◻iR ◻ η ◻ id
◻(k−i)
R ◻ idN ,

where η is the unit map from the Burnside Mackey functor AG → R.

We now define the left and right module action maps needed to describe the coefficients

of the two-sided bar construction which defines Real Hochschild homology.
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Definition 4.3.6. Recall from Definition 4.3.1 that the data of a discrete Eσ-ringM includes

a right module structure ψR ∶M ◻ ND2
e ι∗eM →M . This action can be lifted to view ND2m

D2
M

as a right ND2m
e ι∗eM -module. We define this module structure via the induced action map

ND2m

D2
M ◻ ND2m

e ι∗eM
≅Ð→ ND2m

D2
(M ◻ ND2

e ι∗eM)
N

D2m
D2

(ψR)

ÐÐÐÐÐÐ→ ND2m

D2
M,

where the isomorphism on the left arises from the fact that the norm is symmetric monoidal.

We have another way to consider D2 sitting inside D2m as a subgroup. Let ζ = e2πi/2m.

Then ζD2ζ−1 is a distinct order 2 subgroup of D2m. However, since these groups are distinct

only up to a change of generator, we have an equivalence of categories,

cζ ∶MackD2 →Mack ζD2ζ
−1
.

This equivalence may similarly be defined in spectra and we will use the same notation

to denote it. In our bar construction we will wish to take right coefficients in the norm

ND2m

ζD2ζ−1
cζM . The left module structure ψL ∶ ND2

e ι∗eM ◻ M → M defines a left ND2
e ι∗eM -

module structure on ND2m

ζD2ζ−1
cζM by composing the isomorphism given by the symmetric

monoidal property of the norm,

ND2
e ι∗eM ◻ ND2m

ζD2ζ−1
cζM ≅ ND2m

ζD2ζ−1
(N ζD2ζ

−1
e ι∗eM ◻ cζM)

with the induced left action,

ND2m

ζD2ζ−1
(N ζD2ζ

−1
e ι∗eM ◻ cζM)

N
D2m
ζD2ζ

−1(cζ(ψL))

ÐÐÐÐÐÐÐÐÐ→ ND2m

ζD2ζ−1
cζM.

Equipped with the necessary information to define left and right module action maps

for our coefficients, we now recall Angelini-Knoll, Gerhardt, and Hill’s definition of Real

Hochschild homology as a two-sided bar construction.

Definition 4.3.7 ([AGH21], Definition 6.15). Let M be a discrete Eσ-ring. Let HRD2m
●
(M)

denote the two-sided bar construction

B●(ND2m

D2
M,ND2m

e ι∗eM,ND2m

ζD2ζ−1
cζM)
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and define the Real D2m-Hochschild homology of M to be the Z-graded D2m-Mackey functor

HRD2m
∗
(M) ∶=H∗(HRD2m

●
(M)),

where H∗ denotes taking the homology of the dg Mackey functor associated to HRD2m
●
(M).

Remark 4.3.8. Theorem 6.20 of [AGH21] gives a Real linearization map

πD2m
n THR(A) → HRD2m

n (πD2
0 A),

which is one piece of evidence justifying that HR is the algebraic analogue of THR. The

construction of the Real Bökstedt spectral sequence in the following chapter relates HR to

the equivariant homology of THR, further justifying that this is the correct definition of an

algebraic analogue for THR.

A useful relationship in Hochschild computations is that between Hochschild homology

and the Tor functor - we noted this relationship in the classical setting in Lemma 2.1.6.

In their work defining HR, the authors also prove an analogous result for Real Hochschild

homology.

Lemma 4.3.9 ([AGH21], Proposition 6.19). Let M be a discrete Eσ-ring. If M is flat as

a module over the D2m-Burnside Mackey functor there is an isomorphism of D2m-Mackey

functors

HRD2m
∗
(M) ≅ TorN

D2m
e ι∗eM
∗

(ND2m

D2
M,ND2m

ζD2ζ−1
cζM).

4.4 Twisted topological Hochschild homology

Rather than considering equivariant inputs with a involution action, we could also con-

sider a set of Hochschild invariants which capture the equivariance of a cyclic group Cn-action.

We begin by taking inputs in Cn-equivariant ring spectra and recall here the theory of Cn-

twisted topological Hochschild homology, denoted by THHCn , first defined by the authors in

[Ang+18].
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Definition 4.4.1 ([Ang+18], Definition 8.1). Let R be an associative orthogonal Cn-ring

spectrum indexed on the trivial universe R∞. The Cn-twisted cyclic bar construction on R,

denoted by Bcy,Cn
● (R), is a simplicial spectrum which has k-simplices

Bcy,Cn

k (R) = R∧(k+1).

For g a generator of Cn, let αk denote the composition that wraps the last factor of R around

to the front then acts,

αk ∶ R ∧
k

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
R ∧ ... ∧R → R ∧R ∧

k−1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
R ∧ ... ∧R → gR ∧R ∧

k−1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
R ∧ ... ∧R,

where gR denotes the action of g on R. We define the face maps of Bcy,Cn

k (R) by

di =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

id∧i ∧ µ ∧ id∧(k−i−1) 0 ≤ i < k

(µ ∧ id∧(k−1)) ○ αk i = k.

Let η denote the unit map of the ring spectrum R. The degeneracy maps in this simplicial

object are

si = id∧(i+1) ∧ η ∧ id∧(k−i).

We then define the Cn-twisted topological Hochschild homology of R to be the geometric

realization of this simplicial construction.

Definition 4.4.2. Let U be a complete S1-universe and let Ũ = ι∗Cn
U be the pullback of

U to Cn. For R an associative orthogonal Cn-ring spectrum indexed on Ũ , the Cn-twisted

topological Hochschild homology of R is defined

THHCn(R) = NS1

Cn
(R) = IUR∞ ∣Bcy,Cn

●
(IR∞

Ũ
R)∣.

Here, I denotes a change of universe functor.

There is an algebraic theory associated to Cn-twisted THH, which takes inputs in Cn-

Green functors. The theory of Hochschild homology for Green functors was first defined by

Blumberg, Gerhardt, Hill, and Lawson. We first recall the definition of G-twisted Hochschild

homology for a G-Green functor R, denoted by HHG
∗
(R) (see [Blu+19] Section 2.3).
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Definition 4.4.3. Let G < S1 be a finite subgroup and let g ∈ G. For a G-Green functor

R and a left module ψ ∶ R ◻M → M , we can define a g-twisted module structure on M ,

denoted gM , where the action map is the composition

R ◻M

R ◻M M.

g◻1
gψ

ψ

Definition 4.4.4. Let G < S1 be a finite subgroup and let g = e2πi/∣G∣ be a generator of G.

For a G-Green functor R and an R-bimodule M , we denote the G-twisted cyclic nerve by

Bcy,G
●
(R; gM). This is a simplicial Mackey functor which has k simplices

Bcy,G
k (R; gM) = gM ◻R◻k,

and face maps

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψR ∧ id∧(k−1) i = 0

idM ∧ id∧i−1 ∧ µ ∧ id∧(k−i−1) 0 < i < k

(gψL ∧ id∧(k−1)) ○ τ i = k.

Here, τ is the map which wraps the last factor R around to the front. The degeneracy maps

are given by

si = idM ∧ id∧i ∧ η ∧ id∧(k−i−1).

We now recall a relative version of G-twisted Hochschild homology where the input is an

H-spectrum for H ≤ G.

Definition 4.4.5 ([Blu+19], 3.2.6). Let H < G be a finite subgroup of S1 and let g = e2πi/∣G∣

be a generator of G as above. For an associative H-Green functor R we define the G-twisted

Hochschild homology of R as the homology of the simplicial Mackey functor

HHG
H(R)∗ =H∗(Bcy,G

●
(NG

HR;
gNG

HR)).

We will utilize these twisted Hochschild homology definitions in the construction of a

spectral sequence computing the equivariant homology of THHCn in Section 5.3.
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4.5 Equivariant Hochschild homology for graded inputs

In the following chapter, our construction of the Real Bökstedt spectral sequence requires

us to make sense of Real Hochschild homology for a graded discrete Eσ-ring; recall from our

discussion of the classical Bökstedt spectral sequence for a ring A in Section 2.3 that the E2-

page was the Hochschild homology of the graded ring H∗(A;k). In the classical case we only

consider Z-graded inputs. In the construction of equivariant Bökstedt spectral sequences,

the necessary flatness conditions that arise when one does not restrict to field coefficients

are more likely to hold if one uses an equivariant grading. For example, the equivariant

Bökstedt spectral sequence for Cn-twisted THH constructed in [Ada+22] takes inputs in

RO(Cn)-graded Green functors.

As we saw in Definition 4.3.7, however, HR is defined with a two-sided bar construction

that involves taking equivariant norms and restrictions of the input. This complicates the

question of gradings; although discrete Eσ-rings areD2-Mackey functors, if one only considers

the RO(D2)-graded homology, it is unclear how to restrict to the trivial group and then

norm back to D2 while preserving the RO(D2)-grading. We therefore need a grading which

contains representations of other groups; the appropriate grading in this equivariant setting

with norms is in RO(G), as considered in [HHR17], [AB18], and [Hil22].

Let G be a finite group. An element in RO(G) is a pair (H,α) where H is a subgroup of

G and α is a virtual H-representation. Note the contrast with an element of RO(G) which

is only a virtual G-representation. We see that in our case, an RO(D2)-grading will allow

us to grade on representations of e and D2, as desired.

We have the following definition of the RO(G)-graded homotopy of a G-spectrum due

to Hill, Hopkins, and Ravenel.

Definition 4.5.1 ([HHR17], Definition 2.7). Let X be a G-spectrum. For each pair (H,α)

consisting of a subgroup H ≤ G and a virtual orthogonal representation α of H, define the

RO(G)-graded homotopy Mackey functor to be the G-Mackey functor π
⍟
(X) where, for
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⍟ = (H,α), we set

πH,α(X)(T ) ∶= [(G+ ∧H Sα) ∧ T+,X]G ≅ [Sα ∧ ι∗HT+, ι∗HX]H = πHα (ι∗HX)(ι∗HT )

for each finite G-set T .

Convention. We will use ⍟ to denote an RO(G)-grading. We continue to denote an RO(G)-

grading by ⋆.

Definition 4.5.2. For a G-spectrum X and a commutative G-ring spectrum E, the RO(G)-

graded E-homology of X is defined to be

E
⍟
(X) ∶= π

⍟
(X ∧E).

Remark 4.5.3. The RO(G)-graded homotopy and homology Mackey functors are both ex-

amples of a more general construction called an RO(G)-graded Mackey functor due to An-

geltveit and Bohmann [AB18].

In Chapter 3 we noted that the category of G-Mackey functors is equipped with a sym-

metric monoidal product. Similarly, this category of RO(G)-graded Mackey functors has a

symmetric monoidal product (see, for instance [Hil22]). For RO(G)-graded Mackey functors

M
⍟

and N
⍟

we denote this product, which we refer to as the RO(G)-graded box product,

by M
⍟
◻ N

⍟
. The notion of a product allows to consider monoids in this category.

Definition 4.5.4. An RO(G)-graded Green functor is an associative monoid in the category

of RO(G)-graded Mackey functors with respect to the graded box product.

Definition 4.5.5. Let R
⍟

be an RO(G)-graded G-Green functor. A left R
⍟
-module is an

RO(G)-graded Mackey functor M
⍟

with an action map

ψL ∶ R⍟ ◻ M
⍟
→M

⍟
,

such that diagrams analogous to those in Definition 2.2.3 commute. A right R
⍟
-module is

defined similarly.
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Definition 4.5.6. Let R
⍟

be an RO(G)-graded G-Green functor. We say that an RO(G)-

graded R
⍟
-module M

⍟
is flat if the functor (−)◻R⍟M⍟

is exact.

Our motivation for the use of these RO(G)-graded objects was to define an appropriately

graded input to Real Hochschild homology, the construction of which includes equivariant

norms. A grading in RO(G) is the appropriate setting for constructions which involve an

equivariant norm as demonstrated by work of Angeltveit and Bohmann on RO(G)-graded

Tambara functors which takes a more categorical perspective [AB18]. The interplay of norms

with RO(G)-graded objects in equivariant homotopy is also considered by Hill in [Hil22].

In the case of an ungraded input, discussed in Section 4.3, HR took inputs in discrete

Eσ-rings. We now define a notion of RO(D2)-graded discrete Eσ-rings.

Definition 4.5.7. An RO(D2)-graded discrete Eσ-ring M
⍟

is the following data:

1. An D2-Mackey functor M
(H,α) for each subgroup H ≤D2 and virtual H-representation

α such that M
⍟
(D2/e) forms a graded ring with anti-involution. That is, we have an

associative product,

M
⍟
(D2/e) ⊗M⍟

(D2/e) →M
⍟
(D2/e)

where the domain has the action of swapping the two copies of M
⍟
(D2/e).

2. An ND2
e ι∗eM⍟

-bimodule structure on M
⍟
. We further require that the action restricts

to the standard action of M
⍟
(D2/e) ⊗M⍟

(D2/e)op on M
⍟
(D2/e).

3. A designated unit 1 ∈M
⍟
(D2/D2) which restricts to 1 ∈M

⍟
(D2/e).

We claim that the RO(D2)-graded homotopy Mackey functor of a ring spectrum with

anti-involution forms an RO(D2)-graded discrete Eσ-ring. A useful perspective in proving

this statement is the view of ring spectra with anti-involution as algebras in D2-spectra over

an Eσ-operad. It is this interpretation which motivates the name and definition of a discrete

Eσ-ring in equivariant algebra. Formally, this gives the following definition.
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Definition 4.5.8 ([AGH21], Corollary 3.10). An Eσ-ring A is a D2-spectrum such that

1. the spectrum ι∗eA is an E1-ring with anti-involution, denoted τ ∶ ι∗eAop → ι∗eA and given

by the action of the generator of the Weyl group.

2. the spectrum A is an E0−ND2
e ι∗eA-algebra and applying the restriction functor ι∗e to the

ND2
e ι∗eA-module structure map gives ι∗eA the standard ι∗eA ∧ ι∗eAop-module structure.

Proposition 4.5.9. The RO(D2)-graded homotopy of a ring spectrum with anti-involution

(equivalently, an Eσ-ring) A forms an RO(D2)-graded discrete Eσ-ring.

Proof. By Definition 4.5.1 we see that each π
(H,α)(A) is a D2-Mackey functor. Further, we

see by this definition that the restriction to the orbit (D2/e) recovers the non-equivariant

homotopy of ι∗eA. This is clear in the case of H = e. When H =D2 we have that

π
(D2,α)

(A)(D2/e) = [Sα,A]e = π∣α∣(ι∗eA).

Thus, restricting to the orbit (D2/e) in both cases recovers the non-equivariant homotopy

of the underlying spectrum. From Definition 4.5.8, we know that ι∗eA is an E1-ring with

anti-involution. Thus we have a map ι∗eA∧ ι∗eA→ A with a swap action on the domain. This

induces the desired map on homotopy.

To define the module structure specified in condition 2 of Definition 4.5.7, we recall that

since A is an Eσ-ring, it has an ND2
e ι∗eA-bimodule structure. We denote these module action

maps by ψ′R and ψ′L. We use these maps to induce module action maps on RO(D2)-graded

homotopy,

ψ′R ∶ π⍟(A ∧ND2
e ι∗eA) → π

⍟
(A),

and similarly for ψ′L. Since the RO(D2)-graded homotopy functor is D2-lax monoidal there

is a map

π
⍟
(A) ◻ ND2

e ι∗eπ⍟(A) → π
⍟
(A ∧ND2

e ι∗eA).

Precomposing this map with ψ′R yields the desired right-module structure,

ψR ∶ π⍟(A) ◻ ND2
e ι∗eπ⍟(A) → π

⍟
(A).
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The left module action ψL is defined analogously. Thus π
⍟
(A) is an ND2

e ι∗eπ⍟(A)-bimodule.

Above, we argued that restriction to the orbit (D2/e) recovers the non-equivariant homotopy

of ι∗eA. By Definition 4.5.8, ι∗e -restriction of the module structure map recovers the standard

action. Thus the induced map on homotopy is also the standard action of π
⍟
(A)(D2/e) ⊗

π
⍟
(A)(D2/e)op.

The RO(D2)-graded equivariant homology of a ring spectrum with anti-involution will be

the input of Real Hochschild homology in the Real Bökstedt spectral sequence constructed

in Chapter 5. We now define HR for RO(D2)-graded discrete Eσ-rings. To make sense of

the Real Hochschild homology two-sided bar construction in the graded setting, we use the

ND2
e π

⍟
(A)-module structure of π

⍟
(A) to give the necessary module structures which define

the coefficients in the two-sided bar construction.

Proposition 4.5.10. Let M
⍟

be an RO(D2)-graded discrete Eσ-ring. Then ND2m

D2
M
⍟

is a

right ND2m
e ι∗eM⍟

-module and ND2m

ζD2ζ−1
cζM⍟

is a left ND2m
e ι∗eM⍟

-module.

Proof. SinceM
⍟

is anRO(D2)-graded discrete Eσ-ring there is anND2
e ι∗eM⍟

-bimodule struc-

ture on M
⍟
,

ψ′R ∶ ND2
e ι∗eM⍟

◻ M
⍟
→M

⍟

ψ′L ∶M⍟
◻ ND2

e ι∗eM⍟
→M

⍟
.

We then define the desired module structures over the RO(D2)-graded box product to be

the same composites as specified in the ungraded case by Definition 4.3.6.

With these module actions in hand, we define a two-sided bar construction for an

RO(D2)-graded discrete Eσ-ring M
⍟
,

HRD2m
●
(M

⍟
) ∶= B●(ND2m

D2
M
⍟
,ND2m

e ι∗eM⍟
,ND2m

ζD2ζ−1
cζM⍟

)

with the same face and degeneracy maps as in Definition 4.3.7, taken here over the RO(D2)-

graded box product. The Real Hochschild homology of the RO(D2)-graded discrete Eσ-ring

M
⍟

is the homology of this two-sided bar construction.
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In Section 5.3, we also wish to consider a notion of Hochschild homology for RO(G)-

graded Green functors. Recall from Definition 4.4.4 that Hochschild homology for Green

functors is defined using a cyclic bar construction, rather than the kind of two-sided bar

construction we have been discussing for Real Hochschild homology. The final face map of

the cyclic bar construction picks up an additional sign in the graded case - see Section 4.1

of [Ada+22] for a discussion of this point in the Z- and RO(G)-graded settings. Before

defining a notion of RO(G)-graded Hochschild homology for G-Green functors, we address

the question of signs in the final face map of the twisted cyclic bar construction in the

RO(G)-graded case.

Let G be a finite subgroup of S1 and let β and γ be two finite dimensional real represen-

tations of G. The switch map on the representation spheres, Sβ ∧Sγ → Sγ ∧Sβ, specifies an

element in the Burnside ring A(G), which we denote by σ(β, γ). The rotating isomorphism

of RO(G)-graded Mackey functors is a map

τ ∶M
⍟
◻ N

⍟
→ N

⍟
◻ M

⍟
.

We restrict to working one subgroup at a time in the RO(G)-graded box product, so at level

(H,α), the rotating isomorphism is as defined in [Ada+22], Definition 4.1.4 with the sign in

the switch map coming from the Burnside ring A(H).

Definition 4.5.11. We say an RO(G)-graded Green functor R
⍟

is commutative if µτ = µ

where µ is the multiplication on R
⍟

and τ is the rotating isomorphism R
⍟
◻ R

⍟
→ R

⍟
.

With this description of how RO(G)-graded Green functors commute past each other,

we are ready to define an RO(G)-graded notion of the twisted cyclic nerve.

Definition 4.5.12. Let G be a finite subgroup of S1 and let g = e2πi/∣G∣ ∈ G be a generator.

For R
⍟
, an RO(G)-graded G-Green functor and M

⍟
an R

⍟
-module, we define the G-twisted

cyclic nerve of R
⍟

with coefficients in gM
⍟

to be the simplicial RO(G)-graded Mackey

functor which has k-simplices

Bcy,G
k (R

⍟
, gM

⍟
) = gM

⍟
◻ R◻k

⍟
.
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The face map d0 applies the right module action of R
⍟

to gM
⍟
. For 1 ≤ i ≤ k, the face

map di multiplies the ith and (i + 1)st copies of R
⍟
. The final face map dk incorporates the

rotating isomorphism by rotating the last factor around to the front and then applying the

left module action of R
⍟

to gM
⍟
. Explicitly, this is given by

gM
⍟
◻ R◻k

⍟

τkÐ→ R
⍟
◻ gM

⍟
◻ R

◻(k−1)
⍟

gψ◻idÐÐÐ→ gM
⍟
◻ R

◻(k−1)
⍟

.

where τk denotes iterating the rotating isomorphism k times in order to bring the last factor to

the front. Recall from Definition 4.4.3 that gψ denotes the g-twisted module action on gM
⍟
.

This twisted action is defined analogously in the RO(G)-graded setting. The degeneracy

maps in this simplicial object are the usual maps induced by inclusion via the unit.

In Section 5.3, we consider the case of relative Hochschild homology for RO(G)-graded

Green functors. With our definition of the graded twisted cyclic nerve, we can now define a

relative equivariant Hochschild homology for these graded inputs.

Definition 4.5.13. Let H ≤ G be finite subgroups of S1 and let R
⍟

be an RO(G)-graded

associative Green functor for H. The G-twisted Hochschild homology of R
⍟

is

HHG
H(R⍟)∗ ∶=H∗(Bcy,G

●
(NG

HR⍟)).
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CHAPTER 5

SPECTRAL SEQUENCE CONSTRUCTIONS

In this chapter we describe the construction of a Bökstedt spectral sequence relating the

theories of Real Hochschild homology and Real topological Hochschild homology. This con-

struction parallels the one we described for the classical Bökstedt spectral sequence in Section

2.3, however the presence of equivariant norms in the Real equivariant case is a notable dif-

ference. These norms require us to place additional hypotheses on the ring spectra inputs

to ensure that we may recognize the E2-page of the spectral sequence is Real Hochschild

homology. The existence of norms on this E2-page also necessitates the use of a more com-

plicated grading convention, as discussed in Section 4.5. We begin this chapter by recalling

Hill’s notion of free homology in an equivariant setting, particularly as it relates to this ques-

tion of how to treat equivariant norms in the Real Bökstedt spectral sequence construction.

Following this, in Section 5.2 we construct the Real Bökstedt spectral sequence converging

to the RO(D2m)-graded equivariant homology of THR. Finally, we extend our techniques

to the setting of twisted THH, generalizing the results of [Ada+22].

5.1 Free homology

In contrast with the classical Bökstedt spectral sequence, the equivariant norms present

in the two-sided bar construction defining Real Hochschild homology necessitate additional

freeness conditions on the input in order to construct a Bökstedt spectral sequence. Be-

fore the construction, we take this opportunity to recall Hill’s notion of free homology in

an equivariant setting and a related lemma describing the interaction of the norm functor

with free homology. Finally, we prove a corollary of the lemma which will be used in the

construction of the spectral sequence.

Convention. For a G spectrum E, we let E
⍟

denote the RO(G)-graded equivariant homo-

topy Mackey functor of E, πG
⍟
(E).

Definition 5.1.1 ([Hil22]). Let A be a G-spectrum and let E be a commutative G-ring
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spectrum. We say A has free E-homology if E ∧ A splits as a wedge of E-modules of the

form

E ∧ (G+ ∧H Sα)

where α is a virtual representation of H, a subgroup of G.

Hill shows that this class of spectra with E-free homology is closed under operations

such taking coproducts, restriction, and the norm. Of particular relevance to our work con-

structing the Real Bökstedt spectral sequence is a description of how the homology functor

interacts with the equivariant norm under freeness hypotheses.

Lemma 5.1.2 ([Hil22], Corollary 3.30). Let A be an H-spectrum for H ≤ G and let E

be a commutative G-ring spectrum. If A has free (ι∗HE)-homology, then there is a natural

isomorphism

E
⍟
(NG

HA) ≅ NG
H((ι∗HE)

⍟

(A)).

This result, which allows us to permute the norm functor and the homology functor, will

be important in our construction of the Real Bökstedt spectral sequence. In particular, we

make use of the following consequence of this lemma.

Corollary 5.1.3. Let A be a ring spectrum with anti-involution and E be a commutative

D2m-ring spectrum such that ι∗eA has free ι∗eE-homology. Then there is an isomorphism

E
⍟
(ND2m

e ι∗eA) ≅ ND2m
e ι∗e((ι∗D2

E)
⍟

(A))

Proof. The assumption that ι∗eA has free ι∗eE-homology allows us to apply the result in 5.1.2.

We have

E
⍟
(ND2m

e ι∗eA) ≅ ND2m
e (ι∗eE

⍟

(ι∗eA)).

The restriction functor commutes with homology so we on the right hand side we can write

ND2m
e (ι∗eE

⍟

(ι∗eA)) ≅ ND2m
e ι∗e((ι∗D2

E)
⍟

(A)).

which gives us the desired isomorphism.
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Remark 5.1.4. This freeness condition is always satisfied for equivariant-HFp homology since

ι∗eHFp is considered by [Rav03] Theorem 3.1.2.g.

5.2 Construction of the spectral sequence

In Definition 4.2.6, we presented THR as a dihderal bar construction but Corollary 2.12

of [Dot+20] shows that we could also think of the D2-spectrum THR as a two-sided bar con-

struction using a multiplicative double coset formula. This result was extended by Angelini-

Knoll, Gerhardt, and Hill in [AGH21] to a multiplicative double coset formula for THR as

a D2m-spectrum. In this section, we use these results to construct a Real Bökstedt spectral

sequence converging to the D2m-equivariant homology of THR as a D2m-spectrum.

Definition 5.2.1. Let R be a unital ring spectrum with a right module M and left module

N . The two-sided bar construction B●(M,R,N) is a simplicial spectrum with k-simplices

Bk(M,R,N) =M ∧R∧k ∧N.

The face and degeneracy maps are given by

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ ∧ id∧(k−1)R ∧ idN i = 0

idM ∧ id∧(i−1)R ∧ µ ∧ id∧(k−i−1)R ∧ idN 0 < i < k

idM ∧ id∧(k−1)R ∧ ψ i = k.

si = idM ∧ id∧iR ∧ η ∧ id
∧(k−i)
R ∧ idN .

Here, ϕ and ψ denotes the right and left module actions of M and N respectively. The map

µ is the ring spectrum product and η is the unit map S→ R.

Recall that a ring spectrum with anti-involution is an Eσ-ring as in Definition 4.5.8.

This interpretation yields a right ND2m
e ι∗eA-module structure on ND2m

D2
A and a left module

structure on ND2m

ζD2ζ−1
cζA in spectra via the same compositions of maps which we saw for

Mackey functors in Definition 4.3.6. The following lemma gives us a characterization of the

D2m-spectrum THR via a two-sided bar construction.

48



Lemma 5.2.2 ([AGH21], Theorem 5.9). Let A be a flat ring spectrum with anti-involution.

There is a stable equivalence of D2m-spectra

ι∗D2m
N
O(2)
D2

A ≃ ND2m

D2
A ∧L

N
D2m
e ι∗eA

ND2m

ζD2ζ−1
cζA.

In particular, this gives an equivalence

ι∗D2m
THR(A) ≃ ∣B●(ND2m

D2
A,ND2m

e ι∗eA,N
D2m

ζD2ζ−1
cζA)∣.

This result generalizes Corollary 2.12 of Dotto, Moi, Patchkoria, and Reeh in [Dot+20],

which proves the stable equivalence of spectra in the case of m = 1.

Remark 5.2.3. In Proposition 4.5.9 we showed that the RO(D2)-graded homotopy of a ring

spectrum with anti-involution A forms an RO(D2)-graded discrete Eσ-ring. Note that the

equivariant E⍟-homology of a ring spectrum with anti-involution is also an an RO(D2)-

graded discrete Eσ-ring. This is because the E⍟-homology is defined by taking the RO(D2)-

graded homotopy of the spectrum A ∧ E and this product is also a ring spectrum with

anti-involution.

The main result of this chapter is the following theorem.

Theorem 5.2.4. Let A be a ring spectrum with anti-involution and let E be a commutative

D2m-ring spectrum. If E
⍟
(ND2m

D2
A) and E

⍟
(ND2m

e ι∗eA) are both flat as modules over E
⍟

and

if A has free (ι∗D2
E)- and ι∗eE-homology then there is a Real Bökstedt spectral sequence of

the form

E2
∗,⍟ = HRD2m

∗
((ι∗D2

E)
⍟

(A)) ⇒ E
⍟
(ι∗D2m

THR(A)).

In the above, we let E
⍟

denote the RO(D2m)-graded homotopy Mackey functor π
⍟
(E).

Before presenting a proof, we recall Theorem 2.3.1 which gave a general construction of a

spectral sequence associated to a simplicial spectrum, X●. We note that proof of this result

also goes through equivariantly.
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Proposition 5.2.5. Let E be a commutative G-spectrum and X● be a proper simplicial

G-spectrum. There exists a strongly convergent spectral sequence

E2
∗,⍟ =H∗(E⍟(X●)) ⇒ E∗+⍟(∣X●∣).

As in the non-equivariant case, the simplicial filtration

...Fp−1 ⊂ Fp ⊂ Fp+1 ⊂ ... ⊂X●

gives rise to such a spectral sequence. Here, the E1-page is given by

E1
p,⍟ = E⍟(Fp/Fp−1).

Since the multiplicative double coset formula for THR is a simplicial spectrum, we can

apply this result to construct the Real Bökstedt spectral sequence.

Proof of Theorem 5.2.4. We begin by taking E-homology of the double bar construction

from the multiplicative double coset formula for ι∗D2m
THR(A). At the pth level we see that

E1
p,⍟ takes the form

E
⍟
(ND2m

D2
A ∧

p
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ND2m
e ι∗eA ∧ ... ∧ND2m

e ι∗eA∧ND2m

ζD2ζ−1
cζA) =

π
⍟
(ND2m

D2
A ∧ND2m

e ι∗eA ∧ ... ∧ND2m
e ι∗eA ∧ND2m

ζD2ζ−1
cζA ∧E) ≅

π
⍟
(ND2m

D2
A ∧E ∧E ND2m

e ι∗eA ∧E ∧E ... ∧E ND2m
e ι∗eA ∧E ∧E ND2m

ζD2ζ−1
cζA ∧E)

where the final isomorphism is that of Remark 2.2.5.

By Corollary 3.20 of [Hil22] and the flatness of E
⍟
(ND2m

D2
A) and E

⍟
(ND2m

e ι∗eA) there

is a Künneth isomorphism which allows us to split this as a product of homotopy Mackey

functors,

π
⍟
(ND2m

D2
A ∧E ∧E ND2m

e ι∗eA ∧E ∧E ... ∧E ND2m
e ι∗eA ∧E ∧E ND2m

ζD2ζ−1
cζA ∧E) ≅

π
⍟
(ND2m

D2
A ∧E) ◻

E⍟
π
⍟
(ND2m

e ι∗eA ∧E) ◻
E⍟
... ◻

E⍟
π
⍟
(ND2m

e ι∗eA ∧E) ◻
E⍟
π
⍟
(ND2m

ζD2ζ−1
cζA ∧E) =

E
⍟
(ND2m

D2
A) ◻

E⍟
E
⍟
(ND2m

e ι∗eA) ◻
E⍟
... ◻

E⍟
E
⍟
(ND2m

e ι∗eA) ◻
E⍟
E
⍟
(ND2m

ζD2ζ−1
cζA).
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Recall from Corollary 5.1.3 that when A has free ι∗eE-homology as we assumed, there is an

isomorphism

E
⍟
(ND2m

e ι∗eA) ≅ ND2m
e ι∗e((ι∗D2

E)
⍟

(A)) (5.1)

Furthermore, the hypothesis that A has free (ι∗D2
E)-homology in conjunction with Lemma

5.1.2, yields an isomorphism

E
⍟
(ND2m

D2
A) ≅ ND2m

D2
((ι∗D2

E)
⍟

(A)). (5.2)

Finally, since cζA is just viewing A as a D2-spectrum with a different generator for D2, if A

has free (ι∗D2
E)-homology, then cζA has free (ι∗

ζD2ζ−1
E)-homology under this equivalence of

categories in spectra. Thus we have an isomorphism,

E
⍟
(ND2m

ζD2ζ−1
cζA) ≅ ND2m

ζD2ζ−1
cζ((ι∗D2

E)
⍟

(A)) (5.3)

The isomorphisms in 5.1, 5.2, and 5.3 allow us to conclude that at level p, the E2-page

of the spectral sequence is isomorphic to

ND2m

D2
((ι∗D2

E)
⍟

(A)) ◻
E⍟
ND2m
e ι∗e((ι∗D2

E)
⍟

(A))◻E⍟ p ◻
E⍟
ND2m

ζD2ζ−1
cζ((ι∗D2

E)
⍟

(A)).

This is precisely the pth simplicial level of the two-sided bar construction which defines the

Real D2m-Hochschild homology of the RO(D2)-graded equivariant E-homology of A:

HRD2m
●
((ι∗D2

E)
⍟

(A)).

At each simplicial level, we have identified the E1-page of the spectral sequence with the

complex that computed Real Hochschild homology. A diagram chase in the style of the one

on p. 111 of [May06] shows that the d1 differential of the spectral sequence agrees with the

differential in HR and hence on the E2-page we get Real Hochschild homology as in the

statement.

A particular case of interest occurs when E =HF2 and m = 1; the Real Bökstedt spectral

sequence allows us to compute the D2-equivariant homology of THR(A) as a D2-spectrum.
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Note that in this case we do not need an additional flatness assumption about E
⍟
(ND2

D2
A)

since this norm is trivial. Similarly, we do not require freeness assumptions since we are in

the case described by Remark 5.1.4. Thus we have the following corollary:

Corollary 5.2.6. Let A be a ring spectrum with anti-involution and such that HD2
⍟
(A;F2)

and HD2
⍟
(ND2

e ι∗eA;F2) are flat as modules over HF2⍟. Then there is a Real Bökstedt spectral

sequence

E2
∗,⍟ = HRD2

∗
(HD2
⍟
(A;F2)) ⇒HD2

⍟
(ι∗D2

THR(A);F2).

Finally, we remark that there are interesting equivariant spectra for which these flatness

conditions will hold. One example is the Real bordism spectrum, MUR. This is a D2-

equivariant ring spectrum first studied by Landweber [Lan68] and Fuji [Fuj76] which played

an important role in work of Hill, Hopkins, and Ravenel on the Kervaire invariant one problem

[HHR16]. In particular, we have that the HF2-homology of MUR is polynomial over HF2 and

hence satisfies the flatness condition required to use the Real Bökstedt spectral sequence.

5.3 Extensions to twisted topological Hochschild homology

In [Ada+22], the authors construct a Bökstedt spectral sequence for a different flavor of

equivariant topological Hochschild homology which takes inputs in G-ring spectra for G a

finite subgroup of S1. Adamyk, Gerhardt, Hess, Klang, and Kong proved the existence of the

following Bökstedt spectral sequence which converges to the RO(G)-graded G-equivariant

homology of G-twisted THH:

Lemma 5.3.1 ([Ada+22], Theorem 4.2.7). Let G < S1 be a finite subgroup and g = e2πi/∣G∣

a generator of G. Let R be a G-ring spectrum and E a commutative G-ring spectrum such

that g acts trivially on E. If E
⋆
(R) is flat over E

⋆
then there is a twisted Bökstedt spectral

sequence

E2
s,⋆ = HHE⋆,G

s (E
⋆
(R)) ⇒ Es+⋆(ι∗GTHHG(R)).

Remark 5.3.2. If g acts trivially on E, Lemma 4.2.5 of [Ada+22] shows that there is an

isomorphism of left E
⋆
(R)-modules, gE

⋆
(R) ≅ E

⋆
(gR). The proof of this lemma shows
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there is an isomorphism at the level of spectra, E ∧ gR ≅ g(E ∧R), hence the result also goes

through when passing to RO(G)-graded homotopy.

We note that G-twisted THH is an S1-spectrum. In the preceding result, the authors

considered the equivariant homology of the G-restriction of THHG. However we could also

consider the spectrum given by taking the G-restriction of H-twisted THH when H is a

subgroup of G. In doing so, we find there is an equivariant Bökstedt spectral sequence

which computes the G-equivariant homology of ι∗GTHHH(R) and it has on its E2-page the

relative theory of Hochschild homology for Green functors given in Definition 4.4.5. Recall

that the relative construction of the twisted cyclic nerve involved taking equivariant norms

NG
H . Thus once again, we require the use of an RO(G)-grading to ensure that our grading

scheme respects the norm.

Theorem 5.3.3. Let H ≤ G be finite subgroups of S1 and let g = e2πi/∣G∣ be a generator of

G. Let R be an H-ring spectrum and E a commutative G-ring spectrum. Assume that g

acts trivially on E and that E
⍟
(NG

HR) is flat as a module over E
⍟
. If R has (ι∗HE)-free

homology, then there is a relative twisted Bökstedt spectral sequence

E2
s,⍟ = HHG

H((ι∗HE)
⍟

(R))s⇒ Es+⍟(ι∗GTHHH(R)).

Proof. By Proposition 5.2.5 we have a spectral sequence

E2
∗,⍟ =H∗(E⍟(Bcy

●
(NG

HR;
gNG

HR))) ⇒ Es+⍟(∣Bcy
●
(NG

HR;
gNG

HR)∣).

On the right hand side, this is the twisted cyclic bar construction which defines ι∗GTHHH(R).

We wish to identify the E2-page with RO(G)-graded relative Hochschild homology for Green

functors.

We apply the homology functor E
⍟
(−) level-wise to the relative twisted cyclic bar con-
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struction. At the nth level this gives

E
⍟
(gNG

HR ∧
n

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
NG
HR ∧ ... ∧NG

HR) =

πG
⍟
(gNG

HR ∧NG
HR ∧ ... ∧NG

HR ∧E) ≅

πG
⍟
(gNG

HR ∧E ∧E NG
HR ∧E ∧E ... ∧E ∧E NG

HR ∧E) ≅

πG
⍟
(gNG

HR ∧E) ◻
E⍟
πG
⍟
(NG

HR ∧E) ◻
E⍟
... ◻

E⍟
πG
⍟
(NG

HR ∧E) =

E
⍟
(gNG

HR) ◻
E⍟
E
⍟
(NG

HR) ◻
E⍟
... ◻

E⍟
E
⍟
(NG

HR).

Here the first isomorphism is that given by 2.2.5. The flatness of E
⍟
(NG

HR) as a module

over E
⍟

and an application of the Künneth theorem yields the second isomorphism in the

above.

By the freeness assumption in the statement of the theorem and by Lemma 5.1.2, we get

an isomorphism

E
⍟
(NG

HR) ≅ NG
H((ι∗HE)

⍟

R). (5.4)

Combining this isomorphism with the equivalence in Remark 5.3.2 further yields

E
⍟
(gNG

HR) ≅ gE⍟(NG
HR) ≅ gNG

H((ι∗HE)⍟R). (5.5)

The isomorphisms in 5.4 and 5.5 allow us to conclude that E1
n,⍟ is isomorphic to the following:

gNG
H((ι∗HE)⍟R) ◻

E⍟

n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
NG
H((ι∗HE)⍟R) ◻

E⍟
... ◻

E⍟
NG
H((ι∗HE)⍟R) .

Term-wise, this is precisely the nth level of the twisted cyclic bar construction which defines

HHG
H((ι∗HE)

⍟

(R)) as given in Definition 4.5.12. A diagram chase in the style of the one on p.

111 of [May06] shows that d1 differential of the spectral sequence agrees with the differential

in HHG
H .

We thus conclude that the relative twisted Bökstedt spectral sequence takes the form

E2
s,⍟ = HHG

H((ι∗HE)
⍟

(R))s⇒ Es+⍟(ι∗GTHHH(R)).

54



CHAPTER 6

REAL ALGEBRAIC STRUCTURES

Bökstedt spectral sequence calculations are often quite complex, therefore identifying any

additional algebraic structures present in the spectral sequence can provide a computational

foothold. An exploration of the algebraic structure in topological Hochschild homology was

undertaken by McClure, Swanzel, and Vogt (see [MSV97]) and by Angeltveit and Rognes,

who showed in [AR05] that for A a commutative ring spectrum, THH(A) is an A-Hopf

algebra in the stable homotopy category by constructing simplicial algebraic structure maps.

Since the spectral sequence construction we recalled in Theorem 2.3.2 utilized the simplicial

filtration on THH, they showed that this Hopf algebra structure lifts to the Bökstedt spectral

sequence. In this chapter, we utilize techniques analogous to those of Angeltveit and Rognes

to show that THR(A) is a Hopf algebroid in the D2-equivariant stable homotopy category

whenA is a commutative ring spectrum with anti-involution. Section 6.1 recalls the argument

that there is a Hopf algebra structure on THH, beginning with a characterization of THH

as the tensor of a ring spectrum with a simplicial circle in the commutative case. In Section

6.2, we translate this argument to the Real equivariant setting to show that THR(A) has a

Hopf algebroid structure.

Since our aim is to recall the existence of a Hopf algebra structure in THH and identify a

similar structure in THR, we begin this chapter by recalling the definition of a Hopf algebra

in spectra.

Definition 6.0.1. Let R be a commutative ring spectrum. A unital, associative R-algebra is

an R-module spectrum A which has a unit map η ∶ R → A and a product map µ ∶ A∧RA→ A,

subject to the condition that the following unitality and associativity diagrams commute.

All smash products are taken over R, though we omit this from the notation.

R ∧A A ∧A A ∧R

A

η∧id id∧η

µ
≅ ≅

(6.1)
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A ∧A ∧A A ∧A

A ∧A A

µid∧µ

µ

µ∧id

(6.2)

If A is further endowed with a counit map ε ∶ A → R and a coassociative, counital

coproduct δ ∶ A → A ∧ A subject to the compatibility relations depicted in the diagrams

below, we say that A is an R-bialgebra.

A ∧A A A ∧A

R ∧A ≅ A ≅ A ∧R

δ δ

id
ε∧id id∧ε

(6.3)

A A ∧A

A ∧A A ∧A ∧A
δ

δ

δ∧id

id∧δ (6.4)

R R

A

id

η ε
(6.5)

R R ∧R

A A ∧A

η η∧η

δ

≅

(6.6)

A ∧A A

R ∧R R

ε∧ε

≅

µ

ε (6.7)

A ∧A A A ∧A

A ∧A ∧A ∧A A ∧A ∧A ∧A
δ∧δ

µ δ

id∧τ∧id

µ∧µ (6.8)

Here, τ denotes the flip map which permutes two factors.

Finally, if a bialgebra A is equipped with an antipode χ ∶ A → A such that the following

diagram commutes, A is called an R-Hopf algebra.
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A ∧A A ∧A

A R A

A ∧A A ∧A

δ

δ

ε

χ∧id

id∧χ

η

µ

µ

(6.9)

These are the types of structures we wish to identify in THR and in the Real Bökstedt

spectral sequence. We begin in Section 6.1 by recalling how one endows classical topological

Hochschild homology with a Hopf algebra structure.

6.1 Topological Hochschild homology is a Hopf algebra

In Definition 2.2.6, we presented topological Hochschild homology as the geometric real-

ization of a cyclic bar construction. To define algebraic structure maps on THH, a different

perspective proves useful in which THH(A) may be thought of as the tensor of A with the

simplicial circle when A is a commutative ring spectrum. The strategy for endowing THH(A)

with a Hopf algebra structure is to first define structure maps on simplicial circles and then

lift those to THH. We take a very similar approach to produce the algebraic structure maps

on THR in Section 6.2, so we take the opportunity in this section to reproduce the arguments

for classical THH with detail in order to illustrate the proof technique.

To begin, recall that the standard n-simplex ∆n consists of the convex hull of points

(0, ...,0,1,0, ...,0) ∈ Rn+1.

Definition 6.1.1 ([Lod13]). The standard model for the simplicial circle S1
●

is a quotient of

the 1-simplex ∆1/∂∆1. Here, ∆1 is the simplicial object ∆1
n = {x0, ..., xn+1}, with face maps

defined by

dj(xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi if i ≤ j

xi−1 if i > j
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and degeneracy maps defined by

sj(xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi if i ≤ j

xi+1 if i > j.

The quotient ∆1/∂∆1 identifies x0 with xn+1.

Remark 6.1.2. By examining the images of the degeneracy maps si, we see that the only

non-degenerate simplices are x0 ∈ ∆1
0 and x1 ∈ ∆1

1. Thus, upon geometric realization we

recognize the familiar model of a circle with a single 0-cell and a single 1-cell. This model is

depicted in Figure 6.1.

Figure 6.1 The simplicial circle S1
●
.

For a commutative ring spectrum A, a direct, level-wise association of the cyclic bar

construction on A with the tensor product of A with S1
●

yields the following isomorphism.

For an explanation of what it means to tensor a spectrum with a simplicial object we direct

the reader to Section 3 of [AR05].

Proposition 6.1.3 ([AR05]). Let A be commutative ring spectrum. There is an isomorphism

of simplicial ring spectra

THH(A) ≅ A⊗ S1
●
.

Remark 6.1.4. The above isomorphism was also proven in the topological (non-simplicial)

case in Theorem B of [MSV97]. In this chapter we follow the proof techniques of Angeltveit

and Rognes [AR05] so that in future work we may lift the algebraic structure of THR(A) to

the Real Bökstedt spectral sequence.
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To endow THH(A) with an A-Hopf algebra structure one starts by constructing maps

on simplicial circles and then tensoring those simplicial maps with A to obtain maps on

THH(A). We present this argument contained in [AR05] in three steps, beginning with the

existence of an A-algebra structure on THH(A).

Lemma 6.1.5. Let A be a commutative ring spectrum. The topological Hochschild homology

of A, THH(A), is an associative, unital A-algebra.

Proof. The algebraic structure maps arise from maps of simplicial circles. We have a unit

map

η ∶ A→ THH(A)

induced by the map to the basepoint, η ∶ ∗ → S1
●
. Applying the functor A⊗ (−) to the map

depicted in Figure 6.2 yields the desired map η.

Figure 6.2 The simplicial map inducing a unit on THH.

In a similar fashion we obtain a product map

µ ∶ THH(A) ∧A THH(A) → THH(A)

from the simplicial map which folds one copy of S1
●

onto the other, as shown in Figure 6.3.

Figure 6.3 The simplicial map inducing a product on THH.

To verify unitality and associativity we check that diagrams of simplicial circles in the style of

Diagrams 6.1 and 6.2 in Definition 6.0.1 commute. The diagram demonstrating associativity

is given in Figure 6.4.
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In this chapter we will not include all simplicial commutative diagrams but we provide

some as illustrative examples. In Figure 6.4, we denote the association of the blue and green

copies of S1
●

via the fold along the top by a thickened circle colored with green and blue.

We use a similar color coding in the remaining figures of this chapter to keep track of which

simplicial objects are associated in the diagrams.

Figure 6.4 Simplicial commutative associativity diagram for THH.

If we tensor Figure 6.4 with A, we obtain a commutative diagram

THH(A) ∧A THH(A) ∧A THH(A) THH(A) ∧A THH(A)

THH(A) ∧A THH(A) THH(A)

µ∧id

µ

µid∧µ

demonstrating that THH(A) is an associative algebra. A similar check shows that η satisfies

the unitality diagram hence THH(A) is a unital, associative A-algebra.

Topological Hochschild homology can also be endowed with a coalgebra structure, how-

ever the definition of a simplicial coproduct map is not as straightforward as the one used
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to define the product. A coproduct on THH(A) is a map THH(A) → THH(A) ∧A THH(A).

The natural topological map which creates two copies of S1 from one is a pinch map; how-

ever, this map is not simplicial when we use our standard simplicial model of the circle.

To remedy this, we instead define a coproduct on a different model of the simplicial circle,

which, upon tensoring with A, yields a model of THH which is homotopy equivalent to the

model presented above.

Definition 6.1.6 ([AR05], Section 3). The double model of S1
●
, denoted by dS1

●
is the

simplicial set

dS1
●
= (∆1 ⊔∆1) ⊔∂∆1⊔∂∆1 ∂∆1

and is depicted in Figure 6.5. We denote the tensor product with this model, A ⊗ dS1
●

by

dTHH.

Figure 6.5 The double circle dS1
●
.

In order to make use of this double model in the construction of a coproduct on THH,

we must demonstrate that there is a homotopy equivalence dTHH(A) ≃ THH(A). We now

recall the proof of this fact by Angeltveit-Rognes.

Lemma 6.1.7 ([AR05], Lemma 3.8). Let A be a commutative ring spectrum which is cofi-

brant as an S-module. The double model dTHH(A) is weakly equivalent to THH(A) via the

simplicial collapse map π ∶ dS1
●
→ S1

●
which crushes the second copy of ∆1 in the double circle.

Proof. Consider the pushout diagram of simplicial sets given in Figure 6.6. In this diagram,

the top map associates the two points and the left map includes them as the boundary of

the 1-simplex.
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Figure 6.6 A pushout diagram which gives S1
●
.

Since the tensor product preserves pushouts, tensoring this diagram with A gives

A ∧A A

B(A) THH(A)

⌟

where B(A) is the two-sided bar construction B(A,A,A) = A⊗∆1.

We could similarly consider the diagram in Figure 6.7 which shows dS1
●

as a pushout.

Figure 6.7 A pushout diagram which gives dS1
●
.

The tensor of the diagram in Figure 6.7 with A gives a commutative diagram

A ∧A B(A)

B(A) dTHH(A).

⌟

There is a map of pushout diagrams

B(A) A ∧A A

B(A) A ∧A B(A)

≃
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where the weak equivalence on the right is the augmentation from the two-sided bar con-

struction to its right hand coefficients as in [Elm+97], IV.7.2. Since pushouts preserve weak

equivalences, we have dTHH(A) ≃ THH(A) as desired. We note that geometrically, this

weak equivalence is induced by the map π ∶ dS1
●
→ S1

●
which collapses the second copy of

∆1 in the double circle to a point. We will refer to the homotopy between dTHH(A) and

THH(A) by π also.

We can now use the double model to define a coalgebra structure on THH. In contrast to

the algebra structure, we only have a coalgebra structure on THH(A) in the stable homotopy

category since the coproduct map must factor through the weak equivalence described above.

Lemma 6.1.8 ([AR05]). Let A be a commutative ring spectrum. Then THH(A) is a counital

A-coalgebra in the stable homotopy category. Further, this coalgebra structure is compatible

with the algebra structure so that THH(A) is in fact an A-bialgebra in the homotopy category.

Proof. The counit

ϵ ∶ THH(A) → A

is induced by the simplicial collapse map from S1
●

to a point, as shown in Figure 6.8.

Figure 6.8 The simplicial map inducing a counit on THH.

To define the simplicial pinch map which induces the coproduct

δ ∶ THH(A) → THH(A) ∧A THH(A),

we use the double model of the circle. This map is shown in Figure 6.9. The map δ is thus

induced by a composition of a simplicial coproduct δ′ ∶ dS1
●
→ S1

●
∨ S1

●
and the homotopy

equivalence π−1,

THH(A) π−1ÐÐ→ dTHH(A) δ′Ð→ THH(A) ∧A THH(A).
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Figure 6.9 The simplicial map inducing a coproduct on THH.

A check that these maps of simplicial circles satisfy the bialgebra compatibility diagrams

given in Definition 6.0.1 completes the proof. We omit this.

Lemma 6.1.9 ([AR05], Theorem 3.9). If A is a commutative ring spectrum, then THH(A)

is an A-Hopf algebra in the stable homotopy category.

Proof. The double circle has an antipode map χ′, depicted in Figure 6.10, which induces an

antipodal map on THH via the composition

χ ∶ THH(A) π−1ÐÐ→ dTHH(A) χ′Ð→ dTHH(A) πÐ→ THH(A).

Figure 6.10 The simplicial map inducing an antipode on THH.

Equipped with this map and the results of Lemmas 6.1.5 and 6.1.8, all that remains to check

is that the Hopf compatibility diagram in 6.9 commutes. We omit this part of the proof but

direct the reader to the diagram in 3.10 of [AR05] for further details.

6.2 Real topological Hochschild homology is a Hopf algebroid

In this section, we follow the technique of the proofs presented earlier in this chapter

to determine the algebraic structure of THR(A) when A is a commutative ring spectrum

64



with anti-involution. In particular, we define all algebraic structure maps as ones induced

by maps of simplicial objects in anticipation of lifting the structure to the Real Bökstedt

spectral sequence in future work.

The Hopf algebra structure on THH was induced by maps on simplicial circles since THH

is a tensor product with S1. Recall from Remark 4.2.7 that THR(A) is an O(2)-spectrum.

For a nice class of ring spectra with anti-involution, we can recognize THR as a tensor with

O(2).

Definition 6.2.1. An orthogonal D2-spectrum A indexed on a complete universe U is

well-pointed if A(V ) is well pointed in TopD2 for all finite dimensional orthogonal D2-

representations V . Further, we say a D2-spectrum A is very well-pointed if it is well-pointed

and the unit map S0 → A(R0) is a Hurewicz cofibration in TopD2 .

Proposition 6.2.2 ([AGH21], Proposition 4.9). Let A be a commutative D2-ring spectrum

which is very well pointed. Then there is a weak equivalence of D2-spectra

N
O(2)
D2

A ≃ A⊗D2 O(2).

Note that in the Real equivariant setting, our tensor product defining THR occurs over

D2. In our case, we utilize the fact that the category of commutative monoids in the category

of orthogonalD2-spectra is tensored over the category ofD2-sets (see Section 4.1 of [AGH21]).

More generally, we have that G-spectra are tensored in G-sets which allows us to define the

tensor product of a G-spectrum over G as a coequalizer.

Definition 6.2.3. Let A be a commutative G-ring spectrum and X● a simplicial G-set. The

tensor product over G of A with X is the coequalizer

A⊗G⊗X● A⊗X● A⊗GX●
γ1⊗id

id⊗γ2

where γ1 is the G-action applied to A and γ2 is the G-action on X●.

The standard simplicial model on O(2) (see 6.3 of [Lod13], for instance) is the geometric

realization of a simplicial complex of dihedral groups:
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⋯D8 D6 D4 D2.

Let the group D2m be generated by an element ω of order 2 and by t, an element of order

m with the usual dihedral relations. The face maps at simplicial level n, di ∶ D2(n+1) → D2n

are defined on the generator t by

di(tj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tj j ≤ i

tj−1 j > i

dn(tj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tj j < n

1 j = n

The degeneracy maps on t, si ∶D2(n+1) →D2(n+2), are given by

si(tj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tj j ≤ i

tj+1 j > i.

We further specify that these are D2-equivariant maps so di(ωtj) = ωdi(tj) and si(ωtj) =

ωsi(tj) which defines the face and degeneracy maps on the entire simplicial object.

To view THR(A) as the D2-tensor product of A with O(2), we actually require a different

simplicial model of O(2). We take the standard simplicial model and apply a Segal-Quillen

subdivision as in Definition 4.1.4. In keeping with the conventions of [AGH21], we denote

this subdivided O(2) by O(2)●, regarded as a simplicial D2-set.

One can check that most of the cells in this simplicial object are degenerate, thus upon

geometric realization our model of O(2)● can be depicted as two subdivided circles. Explic-

itly, the simplicial structure of O(2)● at levels 0 and 1 is as follows. At simplicial level 0 it

is the group

D4 = ⟨t0, ω ∣ t20 = 1 = ω2, t0ω = ωt0⟩ = {1, t0, ω, ωt0}.

To emphasize that t is the generator of the group at the 0th level, we denote it by a subscript

0. At simplicial level 1 we have

D8 = ⟨t1, ω ∣ t41 = 1 = ω2, t1ω = ωt31⟩ = {1, t1, t21, t31, ω, ωt1, ωt21, ωt31}.
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The elements 1, t21, ω, and ωt21 in simplicial level 1 are in the image of the degeneracy maps.

Thus, upon geometric realization to O(2)●, we only retain 1-cells indexed by t1, t31, ωt1, and

ωt31. This simplicial model O(2)● is depicted in Figure 6.11. For ease of notion, we will cease

Figure 6.11 The simplicial model O(2)●.

to label every cell in the remaining figures of this chapter.

We obtain a D4-action on O(2)● where ω swaps the two circles (as seen in Figure 6.12)

and t reflects within each circle (see Figure 6.13).

Figure 6.12 The action of ω on O(2)●.

Figure 6.13 The action of t on O(2)●.

We now use this simplicial structure to define algebraic structure maps on THR.

Lemma 6.2.4. Let A be a commutative D2-ring spectrum. The Real topological Hochschild

homology of A is a commutative A-algebra in D2-spectra.

Proof. As in the proof of Lemma 6.1.5, we define algebraic structure maps on THR(A) by

defining maps on simplicial O(2)●. Note that in addition to constructing all maps so that

they are simplicial, we must also ensure that the maps are D2-equivariant.

We can define a unit map

η ∶ A→ THR(A)
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which is induced by the inclusion of D2 into O(2)●, as shown in Figure 6.14.

Figure 6.14 The simplicial map inducing a unit on THR.

Applying the functor A⊗D2 (−) to the diagram yields our desired map.

We now wish to define a product map µ ∶ THR(A) ∧A THR(A) → THR(A). Since we

want this product to arise from a simplicial product, we must first recognize this smash

product as a tensor of A with simplicial sets over D2.

Figure 6.15 The simplicial wedge from which THR(A) ∧A THR(A) arises.

We claim that A ⊗D2 (O(2)● ∨D2 O(2)●) (depicted in Figure 6.15) is the smash product

THR(A) ∧A THR(A). To see this, note that the relative wedge O(2)● ∨D2 O(2)● is defined

to be the pushout of the diagram

O(2)● D2 O(2)●.

The tensor product in D2-spectra preserves pushouts so upon applying the functor A⊗D2 (−)

we obtain a diagram

A⊗D2 O(2)● A⊗D2 D2 A⊗D2 O(2)●
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whose pushout is A ⊗D2 (O(2)● ∨D2 O(2)●). By identifying A ⊗D2 O(2)● as THR(A) and

A⊗D2 D2 as A, we see this is the diagram

THR(A) A THR(A).

The pushout of this diagram defines the relative smash product THR(A) ∧A THR(A) so we

have identified A⊗D2 (O(2)● ∨D2 O(2)●).

Now we may define a product map

µ ∶ THR(A) ∧A THR(A) → THR(A)

which is induced by the map on simplicial copies of O(2) that folds one copy of O(2) onto

the other, as depicted in Figure 6.16.

Figure 6.16 The simplicial map inducing a product on THR.

We note that both the product and unit are equivariant with respect to the swapping action

on the circles and the action which reflects within each circle. We omit the pictures, but one

can check that these maps satisfy commutative diagrams of simplicial sets for unitality and

associativity analogous to those presented in Definition 6.0.1 in order to show that THR(A)

is a unital, associative A-algebra.

In the preceding proof we defined a unit map on O(2)● by including D2 as the points 1

and ω of O(2)●. However, our simplicial model of O(2) also includes another pair of points

that one could consider as the base points. The presence of two possible non-equivalent
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unit maps suggests that rather than inheriting a Hopf algebra structure like THH, Real

topological Hochschild homology has the structure of a more general object called a Hopf

algebroid. We now recall the definition of a Hopf algebroid from algebra.

Definition 6.2.5 ([Rav03], Definition A1.1.1). A Hopf algebroid over a commutative ring k

is a pair of commutative k-algebras (A,R) together with:

• a left unit map ηL ∶ A→ R

• a right unit map ηR ∶ A→ R

• a coproduct map δ ∶ R → R⊗A R

• a counit map ε ∶ R → A

• an antipode map χ ∶ R → R which squares to the identity

such that all of the following diagrams commute,

R A R

A

ηL

ε

ηR

ε
id (6.10)

R⊗A R R R⊗A R

R

δ

id⊗ε

δ

ε⊗id
id (6.11)

R R⊗A R

R⊗A R R⊗A R⊗A R

δ

id⊗δδ

δ⊗id

(6.12)

A R

R

ηL

χ
ηR

(6.13)

A R

R

ηR

χ
ηL

(6.14)
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and such that there exist maps µR and µL such that the following diagram commutes.

R⊗k R R⊗k R R⊗k R

R R⊗A R R

A R Aεε

δ

id⊗χ

φ

µL

ηL

χ⊗id

φ

ηR

µR (6.15)

Here, the map φ is the multiplication map on R⊗R as a k-algebra.

As Ravenel explains in Appendix A of [Rav03], Hopf algebroids were named suggestively

since one is to think of them as as generalization of Hopf algebras in the way that a groupoid

generalizes the notion of a group. When the left and right units coincide, ηL = ηR, R is

simply an A-Hopf algebra.

We claim that THR(A) has a Hopf algebroid structure in the D2-homotopy category. To

show the existence of this structure requires us to define a coproduct map on O(2)●. Recall

from the proof of Lemma 6.1.9, that in the case of THH, a double model of the simplicial

circle was needed in order to define a simplicial coproduct. Similarly, we must use a double

model of O(2)●,

dO(2)● ∶= sq(O(2)●) = sq(sq(D2(●+1))).

This model is depicted in Figure 6.17.

Figure 6.17 The double model dO(2)●.

We now demonstrate the D2-equivalence between the model of THR given by A⊗D2O(2)●

and the double model dTHR(A) = A⊗D2 dO(2)●, following the structure of Angeltveit and

Rognes’ argument presented in Lemma 6.1.7. To begin, we argue that THR and dTHR can

be understood as pushouts by taking the D2-tensor of a diagram of simplicial objects.
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Definition 6.2.6. For a ring spectrum R, we let B(R) denote the double bar construction

B(R,R,R).

For clarity, we label copies of the ring spectrum R as Ri. A Segal-Quillen subdivision of

the bar construction B(R) has n-simplices given by the product R0 ∧R1 ∧ ...∧R2n+1 ∧R2n+2.

There is a level-wise D2-action on sqB(R) given by swapping Ri ↔ R2n+2−i. Thus the

coefficients R0 and R2n+2 are exchanged by the D2-action on sqB(R).

Proposition 6.2.7. Let A be a commutative D2-ring spectrum. Then the Real topological

Hochschild homology of A is represented as a pushout diagram in D2-spectra given by,

A ∧A A

sqB(A) THR(A)

⌟

where A ∧ A has a swap action and sqB(A) has the D2-action induced by Segal-Quillen

subdivision. The map along the top is given by multiplication and the left hand map is the

inclusion of A ∧A as the coefficients in the subdivided bar construction.

Proof. We wish to recognize this pushout diagram as one which arises from a diagram of

simplicial objects whose pushout is O(2)●. We claim that the appropriate diagram is the

following,
D4 D2

D2 ⊗ sq∆1 O(2)●

(6.16)

where the top map associates the points 1 and t in D4 and the map on the left includes

D4 as the boundaries of the two subdivided 1-simplices. Figure 6.18 provides a geometric

visualization of this diagram.

Applying the functor A ⊗D2 (−) to this entire diagram, it is clear that in the top right

corner we have A ⊗D2 D2 = A. To see that A ⊗D2 D4 is the smash product A ∧A endowed

with a swap action, consider the coequalizer

A⊗D2 ⊗D4 A⊗D4 A⊗D2 D4.
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Figure 6.18 A pushout diagram which gives O(2)●.

The term on the left is a smash product of eight copies of A, indexed on pairs of elements

(α,β) ∈ D2 ×D4 and the term on the right is four copies of A, indexed by the elements of

D4. One map in the coequalizer associates the copies of A via the following association:

A1,1 ∧Aω,1 → A1

A1,t ∧Aω,t → At

A1,ω ∧Aω,ω → Aω

A1,ωt ∧Aω,ωt → Aωt.

The other map multiplies to associate these eight copies of A in a different way,

A1,1 ∧Aω,ω → A1

A1,t ∧Aω,ωt → At

Aω,1 ∧A1,ω → Aω

Aω,t ∧A1,ωt → Aωt.

In the coequalizer, we have A1∧At which retains a D2-action of t that swaps the copies. Thus

we’ve identified the term in the top left corner of the pushout diagram that gives THR(A)

as a tensor with a simplicial set.

Finally, we wish to identify A ⊗D2 (D2 ⊗ sq∆1) with sqB(A). To begin, we consider

the Segal-Quillen subdivision of the 1-simplex ∆1, whose simplicial structure was described

in Definition 6.1.1. In the subdivision, (sq∆1)n = ∆1
2n+1 = {x0, x1, ..., x2(n+1)} and has

the structure maps given by compositions of the fact and degeneracy maps in ∆1 as de-

scribed in Definition 4.1.4. Furthermore, the subdivided 1-simplex has a D2-action given

by xi ↔ x2(n+1)−i. Tensoring over the D2 action of ω, we see that A ⊗D2 (D2 ⊗ sqB(A))

is sqB(A) which retains the D2-action given by the subdivision. A level-wise comparison
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shows that A⊗(sq∆1)n = (sqB(A))n and one may check that the face and degeneracy maps

agree. Thus, we find that applying the functor A⊗D2 (−) to the diagram in 6.16 yields the

diagram in the statement of the proposition. The map A ∧A → A is multiplication and the

map A ∧ A → sqB(A) is the inclusion of the two copies of A as the coefficients in the bar

construction. These maps are D2-equivariant and so, since the equivariant tensor product

preserves pushouts, we have a pushout diagram in D2-spectra which gives THR(A).

We now employ a similar technique to recognize the double model of THR, which is

defined as the tensor over D2 with the double model dO(2)● depicted in Figure 6.17, also

arises from a simplicial pushout.

Proposition 6.2.8. Let A be a commutative D2-ring spectrum. Then dTHR(A) is the

pushout in D2-spectra given by the diagram

A ∧A sqB(A)

sqB(A) dTHR(A)
⌟

where A∧A and sqB(A) have the same D2-actions as specified in the statement of Proposition

6.2.7.

Proof. Consider the pushout diagram of simplicial objects,

D4 D2 ⊗ sq∆1

D2 ⊗ sq∆1 dO(2)●.

⌟

(6.17)

Here, both maps included D4 as the boundary of D2 ⊗ sq∆1. This diagram is depicted

geometrically in Figure 6.19.

We can make the same identifications of A⊗D2 D4 and A⊗D2 D2 ⊗ sq∆1 as in the proof

of Proposition 6.2.7. Since the equivariant tensor preserves pushouts, we see that applying

the functor A ⊗D2 (−) to the diagram in 6.17 yields the pushout in the statement of the

proposition.
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Figure 6.19 A pushout diagram which gives dO(2)●.

We now demonstrate that THR(A) and dTHR(A) are D2-weakly equivalent by giving a

weak equivalence of pushout diagrams.

Lemma 6.2.9. Let A be a commutative D2-ring spectrum which is cofibrant as a D2-

spectrum. Then there is a D2-weak equivalence

π ∶ dTHR(A) ≃Ð→ THR(A)

which is induced by the simplicial homotopy collapsing one half of each circle in O(2)● to a

point. This simplicial homotopy is depicted in Figure 6.20.

Figure 6.20 The simplicial homotopy inducing π on dTHR.

Proof. There is a commutative diagram of commutative D2-spectra constructed from the

pushout diagrams given in Proposition 6.2.7 and Proposition 6.2.8 of the form

sqB(A) A ∧A sqB(A)

sqB(A) A ∧A A.

≃ (6.18)
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Classically, there is a homotopy equivalence B(A,A,A) → A (see [Elm+97], IV. 7.3 and

XII.1.2) defined level-wise on the bar construction by treating A as a constant simplicial

object. Since the bar construction we are considering here is a subdivision of B(A), the map

inducing the equivalence B(A,A,A) → A at level 2n+1 induces the equivalence sqB(A) → A

at level n. The homotopy is given by an iterated composite of unit and multiplication maps,

which are all D2-equivariant maps. Since pushouts preserve weak equivalences by [Elm+97]

III.8.2 we obtain a weak equivalence between the pushout along the top row and the pushout

along the bottom, dTHR(A) ≃Ð→ THR(A).

Finally, we verify that this is a D2-weak equivalence by checking that the map is a weak

equivalence on the geometric fixed points, ΦD2 . The geometric fixed points functor commutes

with colimits and since THR(A) and dTHR(A) are both colimits by Propositions 6.2.7 and

6.2.8, we have that

ΦD2(dTHR(A)) ≅ colim(ΦD2(sqB(A)) ← ΦD2(A ∧A) → ΦD2(sqB(A))

ΦD2(THR(A)) ≅ colim(ΦD2(sqB(A)) ← ΦD2(A ∧A) → ΦD2(A).

To compare the terms on the right, we recall that ΦD2 commutes with the smash product

and that this functor is applied level-wise to a simplicial object. Hence ΦD2(sqB(A)) ≅

sqB(ΦD2A) We then apply the same equivalence between a two-sided bar construction and

its right coefficients described above to see that sqB(ΦD2A) ≃ ΦD2A and conclude that the

equivalence dTHR(A) ≃ A induced by the homotopy in 6.18 is a D2-weak equivalence of

spectra.

Equipped with this homotopy equivalence between our two models of THR, we are now

able to describe a coproduct structure and thus show that THR has the structure of a Hopf

algebroid.

Theorem 6.2.10. For a commutative D2-ring spectrum A, THR(A) is a Hopf algebroid in

the D2-equivariant stable homotopy category.
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Proof. Here we consider the pair ofD2-spectraA and THR(A). Recall that the data of a Hopf

algebroid includes both a left and right unit map. We will induce these maps A→ THR(A)

by tensoring simplicial diagrams with A over D2. The left and right units are given by the

two possible inclusion maps depicted in Figures 6.21 and 6.22. Note that ηL is the map

previously called η in Lemma 6.2.4.

Figure 6.21 The simplicial map inducing the left unit on THR.

Figure 6.22 The simplicial map inducing the right unit on THR.

We also define a counit map

ε ∶ THR(A) → A

by taking the D2-tensor with A of the map which collapses each of the two circles in O(2)●

to a point. This is depicted in Figure 6.23.

Figure 6.23 The simplicial map inducing a counit on THR.

Utilizing the double model of O(2)●, we define

δ′ ∶ dTHR(A) → THR(A)

induced by the tensor over D2 of the simplicial map in Figure 6.24 with A.
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Figure 6.24 The simplicial map inducing a coproduct on THR.

A coproduct on THR is then given by the composition

δ ∶ THR(A) π−1ÐÐ→ dTHR(A) δ′Ð→ THR(A) ∧A THR(A),

where π is the equivalence from Lemma 6.2.9.

Finally, we define an antipodal map on THR induced by the map on O(2)● which reflects

each circle across an axis so that the base points swap. The action of this antipodal map,

which we will call χ, is depicted in Figure 6.25.

Figure 6.25 The action of the map χ which induces an antipode on THR.

To verify that these structure maps satisfy the commutativity relations of a Hopf algebroid

as stated in Definition 6.2.5, we check that the relations hold for the simplicial maps of O(2)●.

From a visual inspection it is clear that the antipodal map swaps the units. That the units

and counit obey the relations depicted in Diagram 6.10 of Definition 6.2.5 is also clear.

To verify counitality, consider the diagram in Figure 6.26. For the sake of clarity in

the diagram, we have not color-coded any of the cells in the second circle of O(2)● but the

identifications are precisely the same as shown in the first copy of the circle.

The simplicial homotopy from π ∶ dO(2)● → O(2)● we described (and depicted in Figure 6.20)

collapses the two copies of ∆1 on the right hand side of each circle to a point. In Figure

6.26 above, this is represented by the diagonal arrow which collapses the yellow, orange,
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Figure 6.26 Simplicial counitality diagram for THR.

teal, blue, and green cells to a single point. This homotopy equivalence is the composition

of (id ∨ ε) ○ δ′ along the right hand side of the diagram.

Equivalently, there is a simplicial homotopy from σ ∶ dO(2)● → O(2)● which collapses the

two copies of ∆1 on the left hand side of each circle. In Figure 6.26, this homotopy collapses

the green, pink, red, and maroon cells to one point. We see such a collapse occurring in the

composite along the left hand side of the diagram. Thus we have the homotopy equivalence

along the bottom of the diagram given by π ○ σ−1 and we see that the counitality diagram

commutes up to homotopy. We omit the diagram, but one may similarly check that the

coassociativity relation holds.

Finally, we show the existence of two maps (denoted by µL and µR so as to suggest a

left and right multiplication) which make Diagram 6.15 in Definition 6.2.5 commute. Once

again, we will not label or color-code the second circle in O(2)● in this diagram, but the

associations are the same.

In Figure 6.27, the map µL is given by folding the orange-teal-navy circle onto the other
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Figure 6.27 Simplicial Hopf algebroid compatibility diagram.

circle (a fold to the left). The map µR is a fold to the right, folding the pink-red-maroon

circle on top of the other one. The map φ slides the copies of O(2)● on top of each other.

We claim composites µL ○ δ′ and µR ○ δ′ both factor through the map

∆̄2 ⊔ ∆̄2 ↪ ∂∆̄2 ⊔ ∂∆̄2 → ∆̄1 ⊔ ∆̄1 → O(2)●,

which is shown below in Figure 6.28. Again, this figure depicts the contraction in one of the

O(2)● circles but the maps in the other disjoint copy of the circle are defined to be the same.

Here we take ∆̄2 to be the subdivided Real 2-simplex which has a D2-action that reflects

across the vertical axis. We include the boundary of the subdivided Real 2-simplex into ∆̄2

and then collapse through the 2-cells down to edge adc. The map f is given by folding the

subdivided 1-simplex to the left and gluing a to c. This produces a copy of O(2)● where

the unit is included via ηL. If instead we fold the subdivided 1-simplex to the right along

map g and glue c to a we produce O(2)● where the unit has been included via ηR. Since the

1-simplex is contractible, both of these composites are null homotopic. We recover the wedge

80



Figure 6.28 Simplicial contractibility factorization.

O(2)● ∧D2 O(2)● at the center of the Hopf algebroid compatibility diagram in Figure 6.27

by gluing a to c in the boundary ∂∆̄2. Therefore we have that the maps µL ○ δ′ and µR ○ δ′

are null homotopic since they factor through the contractible 1-simplex and the verification

that the diagram in Figure 6.27 is D2-commutative up to homotopy is complete. We apply

the functor A⊗D2 (−) to the entire diagram and obtain the following diagram:

A dTHR(A) A

THR(A) THR(A) ∧A THR(A) THR(A)

THR(A) ∧S THR(A) THR(A) ∧S THR(A) THR(A) ∧S THR(A)
id∧χ

µL

φ

χ∧id

φ

µR

δ′

ε○π

ηR

ε○π

ηL

We note that A ⊗D2 (O(2)● ⊔O(2)●) is the smash product of two copies of THR(A) as

algebras over the sphere spectrum. Because the simplicial diagram was D2-commutative up

to homotopy, so too is the diagram in spectra and the proof that THR(A) is a Hopf algebroid

in the D2-homotopy category when A is commutative is complete.

Although THR(A) has an A-algebra structure (the one given in Lemma 6.2.4), it is

not compatible with the coproduct. Specifically, the issue arises from the fact that the A-

bimodule structure on THR is given by these two different unit maps that we defined. Hence

we get a Hopf algebroid structure rather than a Hopf algebra structure.

In the classical case of topological Hochschild homology, the Hopf algebra structure on

THH descends to a Hopf algebra structure on the spectral sequence. Specifically, the follow-
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ing theorem of Angeltveit and Rognes in the THH case motivated the work undertaken in

this chapter for THR.

Theorem 6.2.11 ([AR05], Theorem 4.5). Let R be a commutative ring spectrum and con-

sider the Bökstedt spectral sequence

E2
∗,∗ = HH∗(H∗(R;Fp)) ⇒H∗(THH(R);Fp).

If each term Er
∗,∗ for r ≥ 2 is flat over H∗(R;Fp) then the Bökstedt spectral sequence is a

spectral sequence of H∗(R;Fp)-Hopf algebras.

Though we do not recall the full proof of this theorem, we remark that the key step

involves using the simplicial Hopf algebra structure maps on THH to define maps on the

spectral sequence. Such an approach is made possible because the Bökstedt spectral sequence

arises from a simplicial filtration of THH. For this reason, we were careful to construct all of

the Hopf algebroid structure maps simplicially in this section. Although we do not consider

whether this structure lifts to the Real Bökstedt spectral sequence in this thesis, we will

return to this in future work.

82



BIBLIOGRAPHY

[AB18] Vigleik Angeltveit and Anna Marie Bohmann. “Graded Tambara functors”.
Journal of Pure and Applied Algebra 222.12 (2018), pp. 4126–4150.

[Ada+22] Katharine Adamyk, Teena Gerhardt, Kathryn Hess, Inbar Klang, and Hana Jia
Kong. “Computational tools for twisted topological Hochschild homology of
equivariant spectra”. Topology and its Applications 316 (2022), p. 108102.

[AGH21] Gabriel Angelini-Knoll, Teena Gerhardt, and Michael A Hill. “Real topological
Hochschild homology via the norm and Real Witt vectors”. arXiv 2111.06970.
pre-print. 2021.

[Ang+18] Vigleik Angeltveit, Andrew J Blumberg, Teena Gerhardt, Michael A. Hill, Tyler
Lawson, and Michael A. Mandell. “Topological cyclic homology via the norm”.
Documenta mathematica 23 (2018), pp. 2101–2163.

[AR05] Vigleik Angeltveit and John Rognes. “Hopf algebra structure on topological
Hochschild homology”. Algebraic & Geometric Topology 5.3 (2005), pp. 1223–
1290.

[Bar64] Dennis Barden. On the structure and classification of differential manifolds.
Thesis (Ph.D.)–University of Cambridge. Apollo - University of Cambridge
Repository, 1964.

[BDS22] Morten Brun, Bjørn Ian Dundas, and Martin Stolz. “Equivariant Structure on
Smash Powers”. arXiv:1604.05939. pre-print. 2022.

[BHM93] Marcel Bökstedt, Wu Chung Hsiang, and Ib Madsen. “The cyclotomic trace and
algebraic K-theory of spaces”. Inventiones mathematicae 111.1 (1993), pp. 465–
539.

[Blu+19] Andrew J Blumberg, Teena Gerhardt, Michael A. Hill, and Tyler Lawson. “The
Witt vectors for Green functors”. Journal of Algebra 537 (2019), pp. 197–244.

[Bök85a] Marcel Bökstedt. The topological Hochschild homology of Z and Z/p. Universität
Bielefeld, Fakultät für Mathematik, 1985.

[Bök85b] Marcel Bökstedt. “Topological Hochschild homology”. preprint, Bielefeld 3
(1985).

[Bou00] Serge Bouc. Non-additive exact functors and tensor induction for Mackey func-
tors. Vol. 683. American Mathematical Society, 2000.

[DO19] Emanuele Dotto and Crichton Ogle. “K-theory of Hermitian Mackey functors,

83



real traces, and assembly”. Annals of K-Theory 4.2 (2019), pp. 243–316.

[Dot+20] Emanuele Dotto, Kristian Moi, Irakli Patchkoria, and Sune Precht Reeh. “Real
topological Hochschild homology”. Journal of the European Mathematical Society
23.1 (2020), pp. 63–152.

[Elm+97] A.D. Elmendorf, I. Kriz, M.A. Mandell, and J.P. May. Rings, modules, and
algebras in stable homotopy theory. 47. American Mathematical Soc., 1997.

[FL91] Zbigniew Fiedorowicz and Jean-Louis Loday. “Crossed simplicial groups and
their associated homology”. Transactions of the American Mathematical Society
326.1 (1991), pp. 57–87.

[Fuj76] Michikazu Fujii. “Cobordism theory with reality”. Mathematical Journal of
Okayama University 18.2 (1976), pp. 171–188.

[HH16] Michael A Hill and Michael J Hopkins. “Equivariant symmetric monoidal struc-
tures”. arXiv 1610.03114. pre-print. 2016.

[HHR16] Michael A Hill, Michael J Hopkins, and Douglas C Ravenel. “On the nonexistence
of elements of Kervaire invariant one”. Annals of Mathematics (2016), pp. 1–262.

[HHR17] Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel. “The slice spectral
sequence for the C4 analog of real K-theory”. Forum Mathematicum 29.2 (2017),
pp. 383–447.

[Hil22] Michael A. Hill. “Freeness and equivariant stable homotopy”. Journal of Topol-
ogy 15.2 (2022), pp. 359–397.

[HM15] Lars Hesselholt and Ib Madsen. “Real algebraic K-theory”. to appear. 2015.

[HM19] Michael A Hill and Kristen Mazur. “An equivariant tensor product on Mackey
functors”. Journal of Pure and Applied Algebra 223.12 (2019), pp. 5310–5345.

[Hoy14] Rolf Hoyer. Two topics in stable homotopy theory. Thesis (Ph.D.)–The Univer-
sity of Chicago. ProQuest LLC, Ann Arbor, MI, 2014, p. 93. isbn: 978-1321-
03338-0.

[Kar73] Max Karoubi. “Périodicité de la K—Théorie hermitienne”. Algebraic K-Theory,
III: Hermitian K-Theory and Geometric Applications (Proceedings of the Conf.,
Battelle Memorial Inst., Seattle, Wash., 1972). Vol. 343. Springer. 1973,
pp. 301–411.

[Kur92] Masato Kurihara. “Some remarks on conjectures about cyclotomic fields and
K-groups of Z”. Compositio Mathematica 81.2 (1992), pp. 223–236.

84



[Lan68] Peter S Landweber. “Conjugations on complex manifolds and equivariant ho-
motopy of MU ”. Bulletin of the American Mathematical Society 74.2 (1968),
pp. 271–274.

[Lew88] L. Gaunce Lewis. “The RO (G)-graded equivariant ordinary cohomology of com-
plex projective spaces with linear Z/p actions”. Algebraic topology and transfor-
mation groups. Springer, 1988, pp. 53–122.

[LM06] L Gaunce Lewis and Michael A Mandell. “Equivariant universal coefficient and
Künneth spectral sequences”. Proceedings of the London Mathematical Society
92.2 (2006), pp. 505–544.

[Lod13] Jean-Louis Loday. Cyclic Homology. Vol. 301. Springer Science & Business
Media, 2013.

[May06] J. Peter May. The geometry of iterated loop spaces. Vol. 271. Springer, 2006.

[Maz13] Kristen Luise Mazur. On the Structure of Mackey Functors and Tambara Func-
tors. Thesis (Ph.D.)–University of Virginia. ProQuest LLC, Ann Arbor, MI,
2013, p. 106. isbn: 978-1303-45882-8.

[MSV97] James McClure, Roland Schwänzl, and Rainer Vogt. “THH(R) ≅ R⊗S1 for E∞
ring spectra”. Journal of Pure and Applied Algebra 121.2 (1997), pp. 137–159.

[Qui73] Daniel Quillen. “Higher algebraic K-theory: I”. Higher K-Theories (1973), pp. 85–
147.

[Rav03] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres.
Vol. 347. American Mathematical Society, 2003.

[Seg73] Graeme Segal. “Configuration-spaces and iterated loop-spaces”. Inventiones
mathematicae 21 (1973), pp. 213–221.

[Spa00] Jan Spaliński. “Homotopy theory of dihedral and quaternionic sets”. Topology
39.3 (2000), pp. 557–572.

[Wei13] Charles A Weibel. The K-book: An Introduction to Algebraic K-theory. Vol. 145.
American Mathematical Soc., 2013.

85


	Introduction
	Organization

	Topological Hochschild homology
	Hochschild homology
	Topological Hochschild homology
	The Bökstedt spectral sequence

	Tools from equivariant algebra
	Mackey and Green functors
	Equivariant norms

	Equivariant theories of topological Hochschild homology
	Equivariant simplicial objects
	Real topological Hochschild homology
	Real Hochschild homology
	Twisted topological Hochschild homology
	Equivariant Hochschild homology for graded inputs

	Spectral sequence constructions
	Free homology
	Construction of the spectral sequence
	Extensions to twisted topological Hochschild homology

	Real Algebraic Structures
	Topological Hochschild homology is a Hopf algebra
	Real topological Hochschild homology is a Hopf algebroid

	Bibliography

