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ABSTRACT

Quantum many-body systems provide a rich framework for exploring and
understanding the fundamental laws of physics. By studying the collective behavior and
emergent phenomena that arise from the intricate microscopic interactions among particles,
we can deepen our understanding of quantum mechanics and gain insight into its broader
implications for macroscopic observations. However, quantum many-body systems pose
significant computational challenges, as the information contained in the many-body wave
function grows exponentially with the size of the system. This exponential scaling, coupled
with the presence of strong interparticle correlations, makes the accurate description of
these systems difficult, if not impossible, for traditional analytical or perturbative
techniques. In this interdisciplinary approach, we aim to solve the quantum many-body
problem by representing the trial wave function of a variational Monte Carlo calculation by
a so-called neural-network quantum state. These states, as their name suggests, are rooted
in artificial neural networks and serve as a novel alternative to conventional
parameterizations of the trial wave function.

In addition to reviewing key concepts in quantum many-body theory and machine
learning, we investigate a diverse set of continuous-space systems with varying levels of
complexity. Starting from a pedagogical overview of an exactly solvable system of bosons
in one dimension, we work our way up to strongly-interacting fermionic systems in three
dimensions, including dilute neutron matter and ultra-cold Fermi gases. The highly
non-perturbative interactions featured in these systems motivate the development of
innovative neural-network quantum states, capable of discovering strong correlations while
maintaining required symmetries and boundary conditions. We accompany this study with

the description of two distinct implementations of neural-network quantum states, each



with their unique goals and strategies. Our findings indicate that neural-network quantum
states provide a powerful and flexible strategy for investigating a wide range of quantum
phenomena, without relying on prior assumptions about the underlying physics as in

traditional approaches.
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1 Introduction

1.1 Challenges of the Quantum Many-Body Problem

One of the fundamental challenges in addressing the quantum many-body problem lies in the
extensive amount of information required to fully characterize a quantum state. In contrast
to classical mechanics, where the focus is to determine the trajectories of the particles in the
system, in quantum mechanics, our objective is to determine the relative probabilities of all
potential states occurring for all particles. This distinction arises due to the probabilistic
nature of quantum mechanics, where particles can exist in multiple states simultaneously
and their behaviors are described by the evolution of wave functions.

All possible states of a quantum system can be represented as vectors in a many-body
Hilbert space. As the number of particles increases, the dimension of the Hilbert space grows
exponentially, resulting in a staggering number of possible states. This exponential growth
poses a formidable computational challenge, as the explicit representation and manipulation
of the wave function becomes intractable even for systems of modest size.

Consequently, quantum many-body theory is driven by the use of efficient and physically
motivated approximations. Specific strategies vary depending on the type of problem at
hand, but ideally, we want to encode as much relevant information about the system as
possible in the fewest number of free parameters or degrees of freedom. In continuous space,
the exponential scaling problem is magnified by an infinite basis. Nonetheless, resolving
the spatial distribution of a quantum system remains of utmost interest, as it is often more

intuitive to interpret physical phenomena in terms of position and spatial relationships.



1.2 Neural-Network Quantum States

In this study, we solve continuous-space quantum many-body problems by enhancing an
established computational approach, called variational Monte Carlo, through the
integration of machine learning—a category of models that learns from data rather than
relying on predefined instructions. More specifically, we parameterize the trial wave
function with artificial neural networks, computational models inspired by the structure of
the human brain, and optimize their parameters by minimizing the energy of the system.
Trial wave functions that involve these artificial neural networks are aptly named
"neural-network quantum states".

Since their initial application by Carleo and Troyer in 2017 [1], neural-network quantum
states have outperformed traditional variational Monte Carlo calculations in fields ranging
from condensed matter physics [2] to quantum chemistry [3] and nuclear physics [4].
Remarkably, in many instances |2, 5], they have even surpassed diffusion Monte Carlo, a
computational method widely regarded as the gold standard of quantum many-body
methods. The rapid growth of this field underscores the tremendous potential
demonstrated by neural-network quantum states. As we continue to develop and refine
these techniques, new and exciting opportunities emerge for further breakthroughs that

could reshape our understanding of complex quantum systems.



1.3 Algorithm Development Through the Lens of
Nuclear Theory

Advancements in neural-network quantum states often find inspiration from established
techniques in machine learning. While the prospect of adapting unexplored machine
learning methods sparks curiosity, it is equally intriguing to explore the advantages that a
background in physics can bring to overcoming these challenges.

In particular, the distinctive nature of nuclear interactions provides a compelling reason to
design neural-network quantum states with broader applicability compared to states tailored
for interactions commonly encountered in condensed matter systems. Nuclear Hamiltonians,
which describe the interactions between protons and neutrons in real space, offer profound
insights into the intricate mechanisms governing the universe—from the microscopic domain
of atomic nuclei to the expansive reaches of neutron stars.

With the intention of eventually applying our neural-network quantum states to nuclear
systems, we thoughtfully design the wave functions to ensure compatibility with the exchange
of spin and isospin. For instance, in our investigation of ultra-cold Fermi gases in Sec. [J] we
adopt a generalized approach to the Pfaffian wave function [6, 7], a type of wave function
used in the presence of strong pairing correlations. Even though ultra-cold Fermi gases
technically fall under the condensed matter category, our Pfaffian neural-network quantum
state can be applied immediately to nuclear systems as well. By embracing a more inclusive

approach, we discover a remarkably versatile and scalable ansatz.



1.4 Structure of Dissertation

This dissertation begins with a comprehensive overview of the quantum many-body
problem in Chapter 2, including the establishment of notation and vocabulary used in later
chapters. In Chapter [3] we discuss Quantum Monte Carlo methods, serving as a
foundational framework to facilitate the incorporation of machine learning techniques for
enhanced flexibility. Then in Chapter ] we provide a broad background on machine
learning, focusing on the mathematics of artificial neural networks. Chapter [5| presents two
distinct approaches for the implementation of neural-network quantum states: one in C++
and the other in Python. The former allows for a deeper understanding of how the
neural-network quantum states are trained, as gradients are computed analytically in terms
of the trainable parameters, while the latter affords greater freedom in design, as gradients
are computed numerically. Chapters provide illustrative examples of neural-network
quantum states employed in different quantum systems, with the latter three chapters
being a collection of articles. Each of these examples will provide discussion on the power
of neural-network quantum states as they are applied in the specific study. Finally,

Chapter [10] includes conclusions and perspectives on the field as a whole.



2 The Quantum Many-Body Problem

The collective behavior of a quantum many-body system often displays remarkable
deviations from the simple summation of the individual constituents. Strong correlations
and intricate interactions between particles lead to emergent phenomena that cannot be
adequately described by classical mechanics alone. These phenomena, such as phase
transitions and the formation of superfluid states, underscore the importance of quantum
mechanics in unraveling the complex behaviors and novel properties of quantum
many-body systems.

In this study, our objective is to solve the time-independent Schrodinger equation for a
nonrelativistic system of identical particles in continuous space. We will focus on
determining the ground state, which plays a pivotal role in understanding the system’s
stability, symmetries, and equilibrium properties. Furthermore, the ground state serves as
a reference point for all excited states, enabling meaningful comparisons to experimental
observations.

The purpose of this chapter is to establish the foundation for our investigation. We will
cover the essential aspects, significance, and challenges associated with quantum many-body
problems, as well as examples of commonly employed ab initio methods. This discussion will
help provide a comprehensive and contextualized understanding of the field and motivate

our subsequent efforts to enhance quantum Monte Carlo methods with neural networks.



2.1 Formalism

Dirac notation, also known as bra-ket notation, offers a concise and abstract representation
of quantum states, operators, and measurements. It is intimately linked to the concept of
Hilbert space, a complex inner product space denoted as H. A general quantum state is
represented as a ket vector that lives in Hilbert space |¥) € H. For each ket |¥), there exists
a corresponding linear map from Hilbert space to the field of complex numbers (¥| : H — C,
which we call a bra vector. One can interpret a bra vector as a measurement device or probing
tool that extracts useful information regarding a particular state. By applying a bra (V| to
the left-hand side of another ket |®), we define the inner product (V|®), a complex scalar
that characterizes the overlap between the states |¥) and |®). This inner product is essential
for computing probabilities and expectation values of observables, as it enables us to properly
define the notions of distance and orthogonality between states in Hilbert space.

Operators are linear transformations A : H — H that act on a state to produce another
state. While some operators, like time-evolution or rotation operators, do not correspond
directly to measurable quantities, they still have mathematical and physical significance for
describing the dynamics and symmetries of quantum states. Observables, such as position,
momentum, and spin, are represented by Hermitian operators. Formally, they satisfy

(AU|®) = (U|AD) for any |¥), |®) € H. Hermitian operators have two important features:

1. Real eigenvalues. All possible measurements are real, implying that all expectation
values (A) = (U|A|¥)/(T|¥) are also real. The denominator ensures that the average
is taken over a normalized probability distribution. These real expectation values play

a crucial role in making comparisons and predictions with experimental results.

2. Orthogonal eigenvectors. The eigenvectors corresponding to distinct eigenvalues form



a set of orthonormal basis vectors {|a)} that span the Hilbert space, yielding the

completeness relation

1= Ja)(al. (2.1)

Any state can be expanded as a linear combination of the eigenvectors

W) = <Z\a><al) ) =) (al¥)]a). (2:2)

If the states are continuous, we convert the sum into an integral

1= /da|a>(&], |W) :/da(&]@)]@. (2.3)

Since we will work with both continuous and discrete states, this distinction is of minor
significance. It will be left to the reader to convert sums into integrals or vice versa,

whenever they are not explicitly written.

Therefore, one should identify the observables which provide the most convenient set of
basis states {|a)} to represent the many-body state |W). Determining the coefficients (or
functions) («|¥) is equivalent to finding a representation of the abstract state |¥).

The best choice of basis for a many-body system depends on the specific nature of the
particles and the chosen method for solving the problem. In preparation for our later
treatment of N particles in d spatial dimensions, let us define our single-particle basis

states as

73), for bosons,
i) = (2:4)

|ri) ®|s;) = |7, s;), for fermions,



where 7; € R? are the coordinates of the ith particle, s; € R% contains the spin-like degrees

of freedom (if there are any), and ¢ = 1,2,..., N. The spatial parts are eigenstates of the

single-particle position operatOIH T,

ri|ri) = i),

(2.5)

where the inner product between any two eigenstates is a d-dimensional Dirac delta function

(rilri) = o(r; — 7)),
The spin parts are written as

|s7), for spin-1/2 fermions,

|s7,t7) = |s7) ® [t7), for nucleons,

where |s?) are the eigenstates of the single-particle spin-z operator 57,

§ZZ|SZZ> = sf|sf), <Sf|5"2l> = 55;55/7

and [t7) are the eigenstates of the single-particle isospin-z operator ff,

7gzz|tzz> = 17[t7), (tf|tf’> = 5tlztlz/a

(2.6)

(2.8)

(2.9)

IThe position operator for the ith particle is commonly denoted as Xi or €;, but we chose 7; to stay

consistent with our definition of x; and r;.



and 9;; denotes the Kronecker delta. The resulting single-particle Hilbert spaces are

(

L2(R%), for spin-0 bosons,

Hi= L?(R% @ C2, for spin-1/2 fermions, (2.10)

L2(R%) @ C2® C?, for nucleons,

\

and a many-body configuration can be written as the tensor product of the single-particle

basis states
|1 X) =|x1) @ |X2) @ -+ @ |xN) = |X1, T2, ..., TN) € H, (2.11)
living in a tensor product of single-particle Hilbert spaces
H=H1QH ®---QHp. (2.12)

Assuming the dimensions of all the single-particle Hilbert spaces are the same, it is
now clear that the dimension of the many-body Hilbert space scales exponentially with the
number of particles

N
dim(#) = [ [ dim(#;) = dim(#1)". (2.13)
i=1

This is the primary source of difficulty in quantum many-body problems. The exponential
scaling of the Hilbert space dimension applies for even the simplest spin systems in which
dim(#1) = 2. Our challenge is exacerbated by the fact that the particles in our systems of
interest have continuous spatial degrees of freedom, resulting in an infinite dim(Hq).

Accordingly, quantum many-body methods are often built around different ways of



mitigating this problem, such as truncating Hilbert space to a finite subspace or exploring
only relevant areas of Hilbert space stochastically.
Our many-body state |¥) can be expanded in terms of the many-body configurations

defined in Eq. ,
|W) :/dX<X\\IJ>\X> (2.14)

where our goal is to determine the wave function ¥(X) = (X |¥), the probability amplitude
of finding the system in a certain configuration |X). Since we may have a mixture of

continuous and discrete degrees of freedom, it is sometimes convenient to decompose | X) as

1 X) =|R)®|S), (2.15)
[R) =|r) ®|r2) @+ @ |ry) = [r1,72,..7N), (2.16)
|1S) =|s1) ®[s2) ®--- @ [s) = |s1,82,...8N), (2.17)

instead of how it was originally expressed in Eq. (2.11). Then we can easily convert the
integral over X into a discrete sum over the spin degrees of freedom and an integral over the

continuous spatial degrees of freedom

/dX — Z/dR: ZZ---Z/ddrlddm---ddrN, (2.18)
S

81 82 SN

with the latter omitted in the bosonic case.

The single-particle momentum operator

p; = —ihV;, (2.19)

10



where V,; = % is the gradient with respect to position the ith particle, acts on the wave
(3

function as

pilv) = [axX(xipnx) = [ ax (- mvi(xm) i) (2.20)

The single-particle eigenstates are
pilpi) = pilpi),  (pilp;) = (pi — pY), (2:21)
with the continuous momenta p; € R4 becoming discrete in the presence of periodicity.

Expressed in position space, the momentum eigenfunctions are plane waves

1

= ipyri/h
T € , (2.22)

op; (wi) = (@i|pi) =

which will become relevant in our studies of infinite matter.
Just as we can expand states in terms of our working basis, we can expand operators as

well,

A= (/dX\X><X|) A (/ dX’\X’>(X’|) = /dX/dX’(XM]X’HX)(X’], (2.23)

where the coefficients (X |A|X') are called matrix elements of the operator A, even though

our basis contains continuous components. If the operator is diagonal in our basis, we can

11



write

A= /dX/dX’<X|A|X’>|X><X’|

— /dX/dX’<X\AyX>5(X - X)X )(X']
(2.24)
_ / 4X (X |41 X)|X)(X]

- / X A(X)|X)(X|

with §(X — X') = 6(R — R/)dg g/ representing the product of a Dirac delta function over
the spatial degrees of freedom and a Kronecker delta over the spin degrees of freedom, if
it applies. It is common to leave off the explicit dependence on X in the the function

A

A(X) = (X|A|X), since this representation of A is particularly simple.
2.2 Indistinguishable Particles

The behavior of quantum systems exhibit fundamental differences from classical systems,
primarily due to the concept of particle indistinguishability. In classical mechanics,
particles are always distinguishable; even when they possess identical masses, charges, or
other properties, they can be assigned different labels to unambiguously describe and
predict their motion. As a result, classical systems feature well-defined trajectories for each
particle, albeit often involving highly nonlinear coupled differential equations.

When we established our mathematical framework in the previous section, we implicitly
assumed that the particles were distinguishable. This is evident in Eq. and
Eq. , for example, where each particle and single-particle Hilbert space was given an
index corresponding to their ordering. Now, let us consider what happens if we assume the

particles are indistinguishable. More specifically, we assume that the expectation value of

12



any observable A is invariant under any permutation PesS n of the N particle indices

(PA)  (PUAIPY) _ (W|PLAP|Y) (2.25)
UW) ~ (Pu|PY) (w[w) '

where we have used that P = P~1 in the last equality. The above equation implies that
[A, P] = 0.
Since any permutation in the symmetric group Sp can be written as a product of

A

transpositions, it is sufficient to investigate the action of the transposition operator F;;,
also known as the particle exchange operator, which trades the labeling of the ith and jth

particle.

sz|X> = Pij|ml7 <y Ly ...,acj, ,iBN> = |:1:1, ...,mj, <y Ly ,$N> (2.26)

Applying the same particle exchange operator twice restores the original ordering
“o .
PZJ|X> = Pij|a:1, ey a:j, vy Lgyanny ZIIN> = |£C1, vy Lgyanny ZBj, cery CEN> = |X>, (2.27)

implying the eigenvalues of Pij are +1. Thus, the possible effects of exchanging the particle

ordering

Pii|¥s) = Vs), for bosons, (2.28)
J%jl‘lfﬁ = —|U4), for fermions, (2.29)

give rise to two fundamentally different classes of identical particles: bosons, which have
purely symmetric states and obey Bose-Einstein statistics, and fermions, which have purely

antisymmetric states and obey Fermi-Dirac statistics. The subscripts S and A stand for

13



symmetric and antisymmetric, respectively. By the spin-statistics theorem, the difference
between the two categories is attributed to an intrinsic property called spin. Bosons, such as
photons and gluons, have integer values of spin, while fermions, such as electrons, protons,
and neutrons, have half-integer values. We will only consider spin-0 and spin-1/2 particles
in this work, as shown already in Eq. . In Sec. EL we will discover that the line
distinguishing bosons and fermions is sometimes less distinct than it initially appears.

It is straightforward to see how the action of the particle exchange operator can be
generalized to an arbitrary permutation Pes - The sign, or parity, of the permutation is
o(P) = (—=1)P, where p is the number of transpositions required to decompose the

permutation into a product of transpositionsﬂ. Then the permutation acts as

P|Ug) = |Ug), for bosons, (2.30)

P|U 1) = o(P)|T 4), for fermions, (2.31)

for the two cases. Our working basis states |X) are not eigenstates themselves, but we
can construct symmetric and antisymmetric states from them. In fact, we can define the

symmetrization operator

§- L > P, (2.32)

N!
PeSy
and the antisymmetrization operator
o 1 ~
A= Z o(P)P, (2.33)
PeSy

2There exists an infinite number of ways to decompose a permutation into a product of transpositions.
However, an odd permutation will invariably be decomposed into an odd number of transpositions, and an
even permutation will be decomposed into an even number of transpositions.

14



that will map any many-body state |¥) € H to the equivalent symmetric and antisymmetric

states

S|U) = |Tg),  AlT) =T y). (2.34)

Both of these operators are idempotent,

S?=8, A=A, (2.35)

meaning they project generic states in Hilbert space to symmetric and antisymmetric
subspaces, respectively,

Us) € Hs,  [Va) € Hy (2.36)

Applying the symmetrization operator after already applying the antisymmetrization

operator destroys any state, and vice versa

SA=AS =0, (2.37)

implying the subspaces Hg and H 4 are entirely distinct. Futhermore, any two states that

are related by a permutation

'y = P/|W), P! e Sy, (2.38)

will map to the same symmetric state

W) = S|¥') = S|W) = |Ug), (2.39)

15



and to the same antisymmetric state except for a possible sign flip

) = AJY') = o(P)A|T) = o(P)| ¥ 4). (2.40)

Therefore, the many-body Hilbert space H that we established in Eq. (2.12)) for
distinguishable particles is typically much larger than the direct sum of the subspaces for
indistinguishable particles

Hs®Hy CH. (2.41)

This is spectacular news! The physically realizable quantum states of our system will either
be in Hg or H 4, which is smaller than the entire Hilbert space H by a factor that scales as
NI, the order of the symmetric group Sp. While this does not alleviate the dimensionality
problem entirely because our Hilbert space is still infinite dimensional, it does help make
the many-body problem more tractable. Enforcing other symmetries, such as parity and
time-reversal, can similarly help reduce the effective size of our Hilbert space.

Now that we are able to construct both symmetric and antisymmetric states from a
generic one, let us consider what happens if two (or more) indistinguishable particles occupy
the same exact single-particle state. Then there exists a particle exchange operator ]51']' for

some i # j that generates a symmetry of the many-body state,

~

Pij|W5) = [¥y5). (2.42)

Here, we have denoted the state as |¥;;) to specify that it is invariant under i <> j. No
issues arise for the corresponding bosonic system according to Eq. (2.39)), so bosons are fine

with being on top of their identical neighbors. However, for the fermionic system, Eq. (2.40))

16



implies a contradiction

A A

AlU;5) = —A|;5). (2.43)

The above equation can only be possible if A|\IJZ]> = 0, leading to the well-known Pauli
exclusion principle. This fundamental principle asserts that no two identical fermions can
occupy the same quantum state simultaneously. As a result, fermions exhibit distinct

behavior from bosons, particularly at low temperatures.

2.3 The Schrodinger Equation

The behavior of a non-relativistic quantum system is governed by the Schrédinger equation
L0 ~
Zh&"m = H|V), (2.44)

where the Hamiltonian H is a Hermitian operator that represents the total energy of the
system. We will exclusively work with a time-independent Hamiltonian that is diagonal in

our working basis | X'), meaning
H= /dXﬁ[(X);X)(X\, (2.45)
where H(X) = (X|H|X) as defined in Eq. (2.24). Our Hamiltonian takes the form

H=K+V, (2.46)

17



where the non-relativistic kinetic energy is defined as

1 N 52 N
PA( § :AQ E : 2
1= 1=

and the potential energy V= V(X)) may include external potentials, two- or three-body
interactions, and spin- or isospin-dependence. While the above Hamiltonian is not dependent
on time, the state |¥) still could be. We have suppressed this time-dependence thus far, but

we will now make it explicit by writing

w(0) = [ aX(X|T©)1X), (249
where the time-dependent wave function can be decomposed as
(X[W(1) = (X, 1) = (X)), (2.49)

following the separation of variables method of solving partial differential equations. Then

the Schrodinger equation reads

ih%\P(X,t) - HX)U(X,t) = ihw(X)%gb(t) = ¢(t)H(X )y (X). (2.50)

Rearranging all of the t-dependent components on the left and the X-dependent components
on the right,

———o(t) = —=H(X)P(X) = E, (2.51)

18



we find that each side of the equation must be equal to some constant E. The left-hand side
can be solved immediately

Oo(0) = Bolt) = olr) = o(0)e 1" (2.52)

The right-hand side, however, is an eigenvalue problem

A

H(X)$(X) = Ey(X), (2.53)

also known as the time-independent Schrédinger equation.

Eigenvalue problems are challenging because they are inherently nonlinear. What’s
more, the eigenvectors in our situation are actually continuous eigenfunctions rather than
finite-dimensional vectors. However, once we identify the solutions of the time-independent
Schréodinger equation above, we will automatically obtain the solutions of the full
time-dependent Schrédinger equation as well. Let us index the possible solutions with «,
which can either label the discrete energy spectrum for a bound system or the continuous

spectrum for an unbound system. Then the so-called stationary states are
Vo (X, 1) = tho(X)e Eat/h (2.54)

where we omit writing the constant ¢(0) from Eq. (2.52)) because it can be absorbed into

the coefficients ¢, of the general solution, a linear combination of stationary states

(X, 1) =) caVa(X,1). (2.55)
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The stationary states are called "stationary" because their associated probability

distributions do not depend on time
W (X, )7 = v (X)ePat Mg (X)e ™ Falll = o (X) 2. (2.56)

Given that

WX )2 =30 chegva(X)wg(X)e o Bl (2.57)
@ B
the same cannot be said about the general solution.

2.4 The Variational Principle

While the solutions of the time-dependent Schrédinger equation are vital for understanding
the dynamics of the quantum system, it is a necessary step to first solve the
time-independent Schrodinger equation. However, the exact time-independent solutions
and their corresponding energies are still difficult, if not impossible, to obtain. One
valuable tool for finding approximate solutions is called the variational principle, which
states that the expectation value of the Hamiltonian is an upper bound for the true ground

state energy of the system FEj,

> Fp, (2.58)

for any state |¥). It is simple to prove. First, we write the eigenstates of the Hamiltonian
as |¥,) = |a) and their corresponding energies as E,. The eigenstates form a complete

orthonormal basis with (a|3) = d,5. If we assume |¥) is normalized, (¥|¥) = 1, then the
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expectation value of the energy can be expanded as

E[Y] = (V| H|v)

= 3> () alH|8) (3]9)
a B

(2.59)
=) (Tla)(B¥) Eadyg
a B

=Y Eal(a]®)]*.

The ground state energy E(, by definition, is smaller than all the other energy eigenvalues

{Ea}a0, leading to the result
E[W] =Y Eu|(c|¥)]* > Ey, (2.60)
(0%

where equality can only hold for the ground state |¥g).

Similar variational principles can be developed for the excited states. First, let us order
our energy eigenstates such that Ey < Fy < F»..., where Fj is the energy of the first excited
state |W1), E9 is the energy of the second excited state |Wo), and so on. Then the variational
principle for the nth excited state is given by

V|| W)

E[¥] = <<Mj> > Ep, (2.61)

if our state |¥) is orthogonal to all the lower-lying states,

(U |T) =0 for all m < n. (2.62)
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This statement can be proved by the same method as Eq. . We have used the Latin
indicies m and n in place of the Greek indicies a and [ to emphasize that our eigenstates
have been ordered according to their corresponding energies.

Another useful fact is that the variance of energy is only zero if and only if our state is

an eigenstate of the Hamiltonian

a% =0 < |V) = |¥,) for some a. (2.63)

The backward direction of the statement above is trivial to prove, so we will just prove
the forward direction here. Expanding the variance of the energy in terms of the energy

eigenstates, we obtain
o = ((H — (H))?) = (H?) — (H)?
_ZE2 (| )2 (ZEa (a] W) ) ZE5| (8|02
Z 2T =N " EoEgl(e|W)?[(8)0)[?
a g

= ZEal o|0)* | Ea - ZEﬁi (B1)[?

(2.64)

There are only two ways that the above can equal zero for all a: either |(a|¥)[? =0 or
Eo =) Esl{BIV)|* = Eal(a|V)]* = [(o V)] = 1. (2.65)
B

Therefore, the state |¥) must be an eigenstate of the Hamiltonian for some «. A nonzero

variance of the energy indicates that the system is not in a well-defined state, but rather, a
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superposition of eigenstates.

We must address an important caveat regarding the variational principle. Specifically,
the variational principle only holds true if the state adheres to the correct symmetries of the
system. The many-body Hamiltonian often does not provide information about whether the
system consists of bosons or fermions. For example, when describing a system of identical
charged particles, the Coulomb interaction only depends on the charge and distances between
the pairs. If one employs a state intended for bosons when computing the expectation value
of the energy for a fermionic system, it can lead to energies much lower than the true ground
state energy of the system. Such erroneous results are not violations of the variational

principle; instead, they arise due to incorrect implementation.

2.5 Ab Initio Methods

A many-body method is called ab initio (or "from first principles") if it only relies on
fundamental principles and established laws of nature. It involves solving the Schrodinger
equation starting from a microscopic Hamiltonian rather than a Hamiltonian derived from
empirical or experimental data. In this section, we will provide examples of common ab
initio methods. While some these methods are not explicitly formulated for real-space
systems, they can often be adapted and applied to such systems with the appropriate

modifications.

2.5.1 Configuration Interaction

Full Configuration Interaction is an exact method that aims to solve the time-independent
Schrodinger equation through diagonalization of the Hamiltonian in matrix form. We begin

by expanding the wave function as a linear combination of orthonormal many-body basis
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states {|a)},

) =3 cala), (2.66)

where ¢, are the coefficients of the expansion and the states |«) are usually taken to be all
possible antisymmetrized products of single-particle basis states, also known as Slater
determinants, for fermionic systems. By inserting this expansion and the completeness

relation into the Schrodinger equation, we obtain

H|U) = E|T), (2.67)

Zﬁca|a> :Ean|0z>, (2.68)

> > (BlH|a)calB) = EY " cala). (2.69)
@] /8 «

Since the basis states are orthogonal, multiplying on the left by (7| yields

> (Y Hla)ea = Ecy, (2.70)

(07

which can be written in a more convenient form by organizing the coefficients ¢, into a

vector and (y|H|a) into a matrix

WAL QH2) - QH) | e ct
@A) @H2) - @Hl) | [e &

—F|: (2.71)
(@B (ol2) - (alf]a) | |ca Ca
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Clearly, solving the eigenvalue problem above is only imaginable when the matrix is of finite
size. However, even in such cases, the dimensionality of the problem often poses significant
challenges and renders it computationally intractable.

One alternative approach is to truncate the many-body basis to a finite, manageable
subset {|aq),|a9),...,|an)}, leading to the more commonly-employed method called
Configuration Interaction. In truncating our many-body basis, it becomes important to
consider which states we include in our subset. Typically, the most relevant states are
constructed by identifying a suitable reference state, like the Hartree-Fock solution, and

constructing excitations or configurations around it.

2.5.2 Hartree-Fock Theory

Hartree-Fock theory is one of the simplest approximate methods for solving the many-body
Schrodinger equation. It provides a mean-field description of the system, where each particle
moves in an effective average field created by all other particles. This approach essentially
decouples the two-body interaction, resulting in a tractable computational scheme, but it
neglects correlation effects, which can be significant in systems with strong interactions.
Let us assume that the Hamiltonian of a fermionic system contains up to two-body

interactions

H(X) = Hy(X) 4+ V(X), (2.72)
N

Hy(X) = Zﬁo(%‘z‘), (2.73)
A Z;l

V(X) =) (), (2.74)
i<j
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where we have divided the terms in the Hamiltonian such that I;TO contains only one-body
contributions and V contains the pair-wise interactions. Accordingly they can be decomposed
into individual one-body and two-body operators. The notation x;; is meant to imply that
the two-body interactions are symmetric with respect to 7 and j.

To achieve the best mean-field description of the interacting problem, our goal is to find

an effective one-body Hamiltonian that approximates the original one. Namely,

N
H(X) ~ .Zf(mi)’ (2.75)

where f can be further decomposed as f(x;) = ho(x;) + 07F (a;), for some choice of HF

that is to be determined. Then eigenstates of this mysterious one-body Hamiltonian must

satisfy

~

f(@®)pa(m) = capale), (2.76)

with the corresponding single-particle energies ¢,.

In the Hartree-Fock approximation, the many-body wave function ®H¥ (X) is taken
to be a Slater determinant of these single-particle eigenstates. The Slater determinant is
a natural result of applying the antisymmetrization operator (Eq. ) to a product of

single-particle wave functions

oM (X) = VNU Ay (1) p2(z2) -+ on ()}

e1(x1)  p1(z2) - p1(TN)
N pa(x1)  pa(x2) -+ pa(xy) (2.77)
_m e

on(T1) en(T2) - pn(EN)|
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The above assumption only applies for fermions, but an equivalent assumption can be made
for bosons by applying the symmetrization operator (Eq. ) to the product, resulting
in a permanent instead of a determinant. To simplify the notation moving forward, let us
define ®(X) = ¢q(x1)p2(x2) - - - on () to mean the product of single-particle eigenstates
before they have been antisymmetrized. Then ®7F(X) = vV NIAD(X).

According to the variational principle, the best set of orthogonal single-particle states
¢a(x) would minimize the energy using the Hartree-Fock ansatz ®(X). The expectation

value of the energy is
E[@"] = @"F|meft) = (a8 my|ofF) + (@ e, (2.78)

where we have assumed ®F(X) is normalized. Each of these terms can be evaluated by
using the known properties of the antisymmetrization operator and the orthogonality of the

single-particle states pq(x) = (x|a). The calculations for both are as follows:

(@1 F| Fo| @™ F)
= /dX(I)HF*(X)ﬁO(X)CDHF(X)
= N!/dX(I)*(X) [AH (X)) A®(X) = N!/chb*(X) [Ho(X) A AP (X)

- N!/dX@*(X)ﬁO(X) [AA]®(X) = N!/dXCD*(X)F[O(X)fld)(X) (2.79)

N
=3 ¥ a(P)/dX(I)*(X)hO(:cZ )PO(X Z/dXé* Yho(a;)®(X)

i=1 pesy

N N
= Z/dw%( Yho(@)pa(x) =Y (alhg|a),

a=1
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:/chbHF*(X)V(X)@HF(X)
= N!/dX(I)*(X) [AV (X)) A®(X) = N!/dXd)*(X) [V(X) A AD(X)

:N!/dXCD*(X) (X)[AA]9(X) = N!/chp*(X) (X)AD(X)

N A
=3 ) a(P)/dXCI)*(X) O(z;) PO(X Z/chb O@i5)(1 = Fij) (X)

1<J pGSN 1<J

=-—j£:u/ndw1dw2 po(@1)ez(@2)o(T12)0a(®1)pp(T2) — 0o (1) P5(22)0(T12)00(T2) P (21)

- Xﬁj [(aBlolas) — (aBlélfa)] = lijwlvaw
(2.80)
Now that we know
N N
BT = 3" {alhola) + 3 S {aBlilas), (281)
a=1 aﬁ

we can now vary the orbitals ¢ () in order to find the minimum F [CI)H F |. Alternatively, we
can perform a unitary transformation on our basis, expanding |a) as a linear combination of
well-known, orthogonal basis states |i), and vary the coefficients. We will choose the latter

method, specifically with the basis states coming from the non-interacting problem,

= Z Clil), (2.82)
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where

fla) = eala), (2.83)

holi) = e¥]i). (2.84)

In terms of these expansion coefficients, the expectation value of the energy becomes

E[oF] = ZZ j{ilhold) + ZZ 2iC3jCakCpeij|olkl) 4 (2.85)

a=1 ij OZB ijkt
Recognizing that what we really desire is Eq. (2.75]), we can then write

N

(I)HF Z CV|f|04 Z Z aj ’f|] (2.86)

a=1 a=1 1j
By comparing this equation with the one above it, we find
(iIf15) = (ilhold) + ) D CarCaelikldlil) a, (2.87)
a gl

which simplifies to

W1 =) + YD CokCarliklolil) 4, (2.88)

a kL
because the states |i) are eigenstates of hg. Next, by expanding Eq. (2.83)) in terms of |j)

and projecting on the left with (i|, we find that we can write

Z Coj (il f17) = €aClai. (2.89)

This means that if we organize Eq. (2.86)) into a matrix and the coefficients C,,; into a vector
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for each «a, the above can be written as a normal eigenvalue problem FCy = €,Cy.

The Hartree-Fock eigenvalue problem can be solved iteratively. First, we provide
guesses for the initial CC(YO), where the supercript indicates the iteration. Then for each
iteration, we construct the matrix F(), which has elements F;jt) = (i|f]j) using the
previous coefficients Cg_l). By solving the eigenvalue problem through diagonalization, we

(t) (t)

obtain new eigenvectors Cp’ and their corresponding eigenvalues €,’. We continue this

process until the eigenvalues converge.

2.5.3 Many-Body Perturbation Theory

Many-body perturbation theory offers a systematic framework for incorporating the effects
of interparticle correlations beyond the Hartree-Fock level. The Hamiltonian is assumed to

consist of two parts, an unperturbed Hamiltonian ]:IO and an interacting Hamiltonian H Is
H = Hy+ Hy, (2.90)
where the solutions for the unperturbed case are easy to find
I:_f0|<I>n> = Wn|®p). (2.91)

Let us split the completeness relation such that the projector onto the subspace spanned by

the ground state is separated from the rest,

1= Z|<Dn><¢)n| = [Po)(Po| + Z|¢n><¢n| =P+ Q (2.92)
n=0

n=1

30



Then we can expand the ground state | V) of the full Hamiltonian H as

oo

[Wo) = (P + Q)[Wo) = o) + Qo) = |Pg) + > _(Pp|Wp)|Dy), (2.93)

n=1

where we have made the assumption (®g|Wg) = 1. By applying the full Hamiltonian on the

above state and projecting with (®g|, we obtain
(o H[Wo) = (®o|Ho|®Po) + (Po| Hy| o) = Wo + (Pl H | ¥o), (2.94)

due to the orthogonality of the eigenstates |®,). In addition, by applying (®g| to the

Schrodinger equation for the full Hamiltonian, we obtain
(®o| H|Wo) = Eo(®o|¥o) = Ep, (2.95)

implying that Ey = Wy + AE, where AE = (®o|H7|¥). Through simple manipulations of

the Schrédinger equation, we find

H|Wo) = Ho|Wo) + H|Vo) = EgH|¥)
(Ho — Wo)| W) = (Eo — Wy — Hp)[ W) (2.96)

(Wo — Ho)|Wo) = (Hy — Ep)| o)
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Since Q is idempotent and commutes with the Hamiltonian, applying Q to both sides of the

above equation yields

Q(Hy — AE)|¥g) = Q(Wy — Ho)|Tp)
= QQ(Wy — Hy)|¥p)

= Q(Wy — Hp)Q|¥o)

m,n=1
00

= Z (Wo = Win)0mn|®m)(Pn|Vo)

m,n=1
= Z(WO — W) |®p) (Pn| Vo)

n=1

= (Wo — Hp)Q|Py).

Inserting this equation into Eq. (2.93)) yields

~

9@ (- ARy,

W) =
Vo) -

which can be recursively inserted into itself

n

vy =Y [Lwﬁf _AB)| [%).

n=0 Wo — Ho

Likewise, the implications for the correlation energy is as follows:

n

o0 Q R
AE = (D [—A(HI — AE)
D e
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(2.97)

(2.98)

(2.99)
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By organizing the terms in the above by order in H 7, the correlation energy can be written

as

00
AE = ZAE(")7
n=1

where the first few terms in the expansion are

ABW = (0| H7|®g)
AE®) = <<D0|[:IILAI:II|(DO>
Wy — Hy
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3  Quantum Monte Carlo

In this chapter, we introduce quantum Monte Carlo (QMC), a diverse family of ab initio
many-body methods based on simulating the quantum system and computing its properties
stochastically. We will cover two different flavors of QMC methods: variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC). The former will take center stage in this study, as
our neural-network quantum states are designed to push the limits of this method. The latter
consistently yields state-of-the-art results, so it serves as a benchmark for our neural-network
quantum states.

We will begin by establishing the basics of Monte Carlo sampling and integration. Both
VMC and DMC use these techniques extensively, as implied by their names. Then, we will
delve into the details of the conventional implementation of variational Monte Carlo. This
will not only include an extensive list of commonly employed trial wave functions, but also
the optimization algorithms used to update the parameters of the wave function. We will
use these same optimization methods to train our neural-network quantum states, discussed
throughout the remaining chapters of this thesis. We will end with a brief overview of
diffusion Monte Carlo. While these methods can be used to solve for excited states, we will

focus only on the ground state in our investigation.

3.1 Monte Carlo Methods
3.1.1 Markov Chain Monte Carlo Sampling

Monte Carlo sampling methods are used to generate random samples from a target

probability distribution. In our case, the target distribution P(X) is given by the square of
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the wave function |¥(X)|?, which is a function of continuous spatial degrees of freedom,
and possibly discrete spin degrees of freedom as well. However, our wave function is not

guaranteed to be normalized, so it is more precise to say
1 2
P(X) = |W(X)1, (31)

where Z = [dX|¥(X)|? is the normalization constant. It is impractical to compute Z
directly since it involves a high-dimensional integral over all the spatial degrees of freedom
and a sum over all the spin degrees of freedom. Luckily, there are clever tricks we can use
to avoid computing Z, leading to a style of sampling called Markov Chain Monte Carlo
(MCMC) sampling.

MCMC algorithms, in general, are designed to address the problem of sampling from
high-dimensional and nontrivial distributions. Instead of generating independent samples
from P(X), as done with a standard hit-or-miss algorithm for instance, we can produce a
discrete sequence of samples { X1, Xo, ..., X¢, ...}, where each sample is dependent only on
the previous one. Then the transition probability for the Markov process must have the
simple form

P(X¢| X1, X¢—2, ..., Xo) = P(X¢| X¢—1), (3.2)

for each t > 0. Our goal is to accurately approximate the target distribution P(X) by the

distribution of a finite number of samples

T
P(X) ~ % D (X - Xy), (3.3)

t=1

which is only possible if P(X) is invariant under the action of the transition probability. In

35



other words, P(X) is the stationary distribution for the Markov process characterized by
P(X'|X) if it satisfies

P(X") = / dX P(X'|X)P(X), (3.4)

for all X'.
In principle, the above stationary condition provides a way to evolve to P(X) starting
from any initial distribution P(X(). The distribution at a later time ¢ can be obtained by

repeatedly applying the transition probability on P(Xj),
P(Xy) = /dthdXtQ"'dXOP(Xt!Xt1)P(Xt1\Xt2)"'P(X1\X0)P(X0)- (3.5)
For large enough ¢, the Markov chain must converge to the stationary distribution
[lim P(Xy) = P(X), (3.6)

regardless of the initial state X(j. The algorithm for generating the samples is as follows:
1. Initialize. Draw the first sample X from any initial probability distribution P(Xj).

2. Iterate. For each iteration t = 1,...,T, draw the next sample X; from P(X}) in

Eq. .

While it is simple to state the algorithm, the second step is somewhat difficult to complete
without additional restrictions.

In order to treat the samples in a Markov chain as independent samples from the target
distribution, the chain should be fully equilibrated and the autocorrelation between samples

should be low. Let us define 7 as the number of steps required to sufficiently reach the
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stationary distribution, also known as the equilibration or burn-in time. In addition, let us
define v as the number of steps required to sufficiently reduce the autocorrelation between

samples

<Xt : Xt—l—’y> ~ 0. (3.7)

Then, our target distribution can be better approximated by

T
P(X) % 2 D7 6(X — Xriq0), 39

t=1
for some large, but finite value of T'. This approach allows us to faithfully treat each effective
sample X ¢ as independent samples from P(X), at the cost of throwing away 7+ (y—1)T
samples out of the total number of samples 7 4+ 7'

3.1.1.1 Metropolis-Hastings

The Metropolis-Hastings algorithm is a specific type of MCMC sampling algorithm that
enforces the detailed balance condition, a stricter restriction than the stationary condition

in Eq. (3.4). Namely, it assumes the Markov process is reversible
P(X'|X)P(X) = P(X|X")P(X"), (3.9)
for every pair of states X, X’. By integrating both sides of the detailed balance condition,

/ dXP(X'|X)P(X) = / dXP(X|X"P(X')=P(X") / dXP(X|X') = P(X"),
(3.10)

it automatically follows that P(X) is the stationary distribution.
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In addition, this approach involves decomposing the transition probability into two
components

P(X'IX) = Q(X'| X)A(X'|X), (3.11)

where the proposal probability density Q(X’| X)) suggests a candidate state X’ based on the
current state X, and the acceptance probability A(X’|X) determines if the proposed state

should be accepted or rejected. Plugging this into the detailed balance equation yields

AX'1X) _ QIXIX")P(X') (3.12)
AX|X) ~ QIX'IX)P(X) |

_ _ Qx| x")Px')
QX'|X)P(X)
QIXIX")P(X')’

Likewise, if A(X’|X) = 1 then
AX'IX) = Thus the choice of A(X’|X) that maximizes the acceptance

probability is

(3.13)

A(X'|X) = min {1, QUX| X)) P(X') } .

Q(X'|X)P(X)

In practice, the Metropolis-Hastings algorithm can be realized by separating the transition

step into two parts:
1. Initialize. Draw the first sample X from an initial probability distribution P(Xj).
2. Iterate. For each iterationt =1,...,7T"

(a) Propose. Draw a candidate state X’ based on the previous state X;_1 according
to the proposal probability density Q(X'|X;_1).
(b) Calculate. Calculate the acceptance probability of the transition A(X'|X;_1).

(c) Accept-or-reject. Draw a uniform random number r ~ (0, 1) between 0 and 1.

If r < A(X'|X;_1), accept the transition by setting Xy = X’. Otherwise, reject
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the transition by setting Xy = X;_1.

Since our states may involve discrete spin projections S in addition to the continuous

spatial coordinates R, we will further decompose all the probabilities as

P(X)=P(R)P(S), (3.14)
Q(X'|X) = Q(RIR)Q(S'|S), (3.15)
AX'|X) = A(R'|R)A(S'|S), (3.16)

and perform Metropolis steps in R and S separately. For a localized system of particles,

one can take the initial distribution of the spatial degrees of freedom as

P(Rg) ~ N(0,031), (3.17)

with a variance ag chosen to minimize the equilibration time 7. For an infinite system, one

can take the initial distribution as a uniform distribution

P(Ry) ~U(~L/2,L/2), (3.18)

ranging the entire size of the d-dimensional simulation box of side length L. The proposal
probability density for the spatial coordinates is commonly chosen to be a Gaussian

distribution

Q(R'|R) ~ N(R,5°I), (3.19)

with a variance o2 that balances a short autocorrelation time ~v with a high acceptance

probability A(R/|R). Since the proposal probability is symmetric, Q(R/|R) = Q(R|R/),
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the acceptance probability for the move simplifies to

A(R'|R) = min {1, P(R) } = min {1, M} : (3.20)

For the spin degrees of freedom S, it is possible to take a similar strategy as above by
initializing a random configuration of spins and proposing random spins to flip rather than
coordinates to perturb. However, the Hamiltonians we will use always commute with the

total spin projection operator on the z-axis

N
S*=> "%, (3.21)
i=1
N
meaning the total spin projection S* = Zsf is conserved. Similarly, the total isospin
1=1

projection on the z-axis T“ is also preserved for systems of nucleons, as the total isospin

projection operator
N
7=t (3.22)
1=1

commutes with the nuclear Hamiltonian. To avoid sampling unphysical spin configurations,
we can restrict our Metropolis walk to preserve the total spin (and isospin) projection as

follows:

1. Initialize. Generate any spin configuration S with the desired total spin projection S*
(and isospin projection T%). Spin-up particles are assigned a spin value of +1, while

the spin-down particles are assigned —1.
2. lterate. For each iteration t =1,2,...,7T"

(a) Propose. Choose a random pair of particles (7,7j) to exchange spin degrees of
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freedom. The proposal spin configuration S’ is the same as S;_1, except with the
spins of particle ¢ and j exchanged
/
8; = Sjt—1,

(3.23)

I

S] Sit—1-

A different pair can be chosen to exchange the isospin degrees of freedom, if

desired.

Compute. Compute the acceptance probability of the proposed configuration

/ o P(s) | _ . [U(R, 5"
A(S"|S;_1) = min {1, m} = min {1, m} : (3.24)

Accept-or-reject. Draw a uniform random number r ~ (0, 1) between 0 and 1. If
r < A(S’|S;_1), accept the spin exchange by setting Sy = S’. Otherwise, reject

the exchange by setting St = S;_1.

3.1.1.2 Importance Sampling

Importance sampling, a variant of the Metropolis-Hastings algorithm, draws inspiration from
the Fokker-Planck equation—a generalization of the diffusion equation. The basic idea of
importance sampling is to guide the proposal probability for the spatial degrees of freedom
Q(R'|R) towards regions with higher probability P(R). For a general, time-dependent

probability distribution function, the Fokker-Planck equation of a diffusion process reads

%P(R, t)=DV-(V - F(R)) P(R,t), (3.25)
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where V = (V1, Vo, ..., V) is the combination of all gradient operators for the N particles,

2
D = 2h—m is a constant diffusion coefficient, and F'(R) is the drift velocity due to an external

potential. Here, we have also suppressed all dependence on the spins S, as they remain

constant during these steps. Our goal is find the drift velocity F'(R) such that our probability

distribution converges to the stationary distribution determined by our wave function

P(R,t)= P(R) = |¥(R)|? = %P(R, t) =0. (3.26)

Under this condition, the Fokker-Planck equation simplifies to

V2P(R) =V -F(R)P(R) = F(R)-VP(R) + P(R)V - F(R) (3.27)

For the Laplacian to appear on the right-hand side, the drift force should have the form

F(R) = f(P(R))VP(R), (3.28)

where f is a scalar function to be determined. Then, Eq. (3.25)) can be written as

V?P(R) = f(P(R))VP(R) - VP(R)
+ P(R)f(P(R))V?P(R) (3.29)

+ P(R)Vf(P(R))-VP(R).

Matching the Laplacian terms, we find that

f(P(R)) = 5= (3.30)
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which also eliminates the gradient terms. Therefore, the drift velocity must have the form

F(R) %VP(R) _ zﬁv\p(R), (3.31)

where we have assumed V(R) is real-valued in the last equality.
The Fokker-Planck equation can be seen as a deterministic description of the stochastic

dynamics captured by the corresponding Langevin equation,

)
—R(t) = DF(R) +¢, (3.32)

a stochastic differential equation that describes the dynamics of a particle under the
influence of both deterministic forces and random noise. In the above, & € RV ig a
random perturbation drawn from a Gaussian distribution A (0,2DI) and F(R) is the drift
force evaluated at the initial configuration, defined in Eq. . Integrating the Langevin

equation over a short time interval At, we obtain
R(t+ At) = R(t) + DAtF(R) + VAtE. (3.33)

This proposal rule implies the normalized proposal density is given by

Q(R'|R,At) = N(R + DAtF(R),2D6tI)
(3.34)

1 (R-R-DAtF(R)?/4DAt
(4r DAt)Nd/2 ’
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which is no longer symmetric due to the drift term. Then the acceptance probability becomes

A(R'|R, At) = min {1, P(R)Q(R|R, At) }

P(R)Q(R/|R, At)
V(R S)|? o—(R—R'-DALF(R))?/4DAt (3.35)
=min ¢ 1 ’ .
{ |W(R,S)? e—(R’—R—DAtF(R))2/4DAt}

The additional weight appearing next to the original acceptance probability can be easily

simplified by defining the drift velocity v(R) = F(R)/2,

¢~ (R-R/-DAtF(R')?/ADAt  _ (v(R)-v(R))) ((R-R))+DAt(v(R)-v(R))))

= 3.36
o—(R'—~R—DAtF(R))2/ADAt (3.36)

This weight corrects for the sampling bias introduced by our proposal distribution
exploring more relevant regions of the probability distribution. An equivalent derivation
can be achieved by integrating the Fokker-Planck equation itself for a small time step At
and using the Green’s function method to solve for the time-dependent probability

distribution. The resulting Green’s function coincides with the proposal distribution in

Bo. (531).
3.1.2 Integration

Monte Carlo integration is a numerical technique that uses random sampling to efficiently
estimate the value of a high-dimensional integral. Recall that we can expand the expectation
value of operators A in our | X) basis as

(U|AY) [ dX (V] X)(X|A]Y)

W= TRy T T ) (X[

(3.37)
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Inserting 1 = (X |¥)/(X|V¥) into the numerator, we have

o JAX P (X)PAX)
(4) = XX (3.38)

where A(X) is the local quantity corresponding to the operator A

1) = 2 -
Notice that
_eXx)P
P(X) = [dX|U(X)2 (340)

is none other than the normalized probability distribution given by our wave function from

Eq. (3.1). Then the expectation value becomes
(A) = / dXP(X)A(X), (3.41)

where the integral over X can be appropriately decomposed into a sum over S and an
integral over R whenever necessary. Any integral with this form can be approximated as a

simple average over local quantities

T

(A) ~ % ; A(X}) = (A(X)), (3.42)

where the average is weighted over T" samples from the probability distribution Xy ~ P(X).
By the law of large numbers, the average of the local quantities (A(X)) will converge to the
expected value of the operator (/1) as T increases. Notice the notation we have chosen for

the expectation value of the operator versus the weighted sum over the local quantities, as it
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differs from other texts. We express both with angled brackets, but the explicit dependence
on X for the latter is meant to imply X is pulled from our probability distribution. We

choose this notation (A(X)) over the more common (Ay) to leave room for other subscripts.

3.2 Variational Monte Carlo

Variational Monte Carlo (VMC) is a direct application of the variational principle from
Sec. and Monte Carlo integration from Sec. The core idea is to take some
parameterized trial wave function Wg(X), and minimize the corresponding expectation

value of the energy with respect to the variational parameters 6

E[Ty] = % (3.43)
min B[Vg] > By, (3.44)

The variational principle guarantees that the variational energy E[Wg] establishes a strict
upperbound on the true ground state energy of the system. To find the optimal parameters,
we use gradient descent methods, a family of iterative optimization algorithms discussed in
more detail in Sec. [3.2.2] For now, we just compute the gradient of the variational energy

with respect to the parameters

VoIVl = i ((Voval W) + (¥ol1[Vo¥s))
- %((Vﬂoww + <‘110!V0‘I’0>> (3.45)
L [((WelH|VeVg) (Vg[Vg¥s)
‘2< Woltg) O wguy) )
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where we have assumed our trial wave function is real-valued in the last equality. To
approximate all the high-dimensional integrals above, we employ Monte Carlo integration.

For the variational energy, we simply write

T

FlWg] ~ 7= 3 Eg(X1) = (Fp(X), (3.16)
t=1

where the configurations X; are sampled from |Ug(X)|?, T is the number of samples, and

the local energy is defined as

~

(X|H|Vg) HYp(X)
(

Eo(X) = =

X[Ug) ~ Tg(X) (347)

For the gradient in Eq. (3.45]), we first define the local gradient of the wave function as

(X|Vglg) Vy¥y(X)

Q0 %)= "TXTwg) ~ We(xX)

= Vg log \IJQ(X), (3.48)

which allows us to write

(Ug|VoTg) [dX(Vg|X)(X|VeTg) [dX|Ve(X)?Op(X)

(TglTg)  [dX(Vg|X)(X[Tg) —  [dX|Vp(X)?
e (3.49)
~ TZOB(Xt) = (Op(X)),
t=1
(Vg|H|Volg)  [dX(Vg|H|X)(X|VgVg) [dX|Vg(X)[Eg(X)0p(X)
(Vg|Tp) JdX(Tg|X)(X|Tg) JdX|Vg(X)|2
T (3.50)
~ & Y Eg(X1)0g(Xy) = (Eg(X)0g(X)),
i=1
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[Sample X~ |‘I’(,,|2 HCompute (Ey(X)) and VH(EG(X))]—'[ Update parameters 0 ]

Figure 3.1: The cyclic workflow of the variational Monte Carlo algorithm. Starting with
a random set of variational parameters, the cycle is repeated until the variational energy
converges.

where we have once again assumed the wave function is real. Therefore, the gradient can be

approximated as
VoE[Vg] ~ Vo (Eg(X)) = 2((Eg(X)0p(X)) ~ (Eg(X)}0p(X))).  (351)

The variational Monte Carlo algorithm is a simple cyclic procedure; we sample
configurations from the square of the wave function, estimate the variational energy and its
gradient, and update the parameters. There are many ways we can complete the last step
of this cycle, which we will cover in Sec. More information about the implementation

will be discussed in Chapter [5

3.2.1 Trial Wave Functions

The choice of trial wave function, or ansatz, is the most crucial ingredient of a variational
Monte Carlo calculation. If chosen incorrectly, the upperbound on the ground state energy
provided by the variational principle is effectively meaningless. For this reason, traditional
VMC calculations rely on carefully curating a trial wave function to capture the essential
features and correlations of the system under study. This involves considering the
symmetries, boundary conditions, and known properties of the system, as well as
incorporating relevant physical insights and intuition. Consequently, these trial wave

functions are intricately tailored to the specific Hamiltonians, making them ill-suited for
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application to similar, albeit distinct, Hamiltonians without substantial structural
modifications.

In this section, we will showcase a diverse range of conventional trial wave functions
and analyze their suitability for different types of systems. Our objective is to identify the
limitations of these methods while appreciating their inherent strengths. Through this
exploration, we aim to develop a deeper understanding of the advantages offered by neural
networks and their potential to overcome the limitations commonly associated with

traditional strategies.

3.2.1.1 Kato’s Cusp Condition

In the presence of singularities in the potential V(X), Kato’s cusp condition asserts that
the local kinetic energy Kg(X) must precisely counterbalance the diverging potential such
that the total local energy remains finite as any two particles approach each other. More
formally, the cusp condition states

lim Eg(X)= lim (Kg(X)+ V(X)) < o0, (3.52)

TJ—)O TZJ*)O

for all pairs 4, j, where 1;; = |r; — ;| is defined as the Euclidean distance between particles

7 and j, and the local kinetic energy is given by

% 12 V20 (X) (3.53)

1 2777, \Ifg ) ' '
For strongly-correlated systems, it is especially important to design a trial wave function
that upholds the cusp condition throughout training. Even a finite, but hard interaction

potential may warrant a cusp condition to ensure stability throughout the optimization of

49



Ug(X). A "hard" potential is often used to describe an interaction potential that exhibits
abrupt changes in magnitude as the distance between particles varies. These potentials

typically have a large scattering length while being short-range in nature.

3.2.1.2 Jastrow Factor

Enforcement of Kato’s cusp condition usually comes in the form of a Jastrow factor, also
known as a Jastrow wave function. For a system of identical particles, it can be any
permutation-invariant function of the particles, as it preserves the symmetry of the overall
wave function. The goal of the Jastrow factor is to incorporate the effects of
particle-particle interactions into the trial wave function. The form of the Jastrow factor
depends on the specific system and the character of the interactions being considered.

For a system of bosons, the ground state wave function must be positive-definite and
symmetric with respect to particle exchange. Since we can ignore spin, the generic trial

wave function for bosons can be written as
Vo(R) = 0(R)e’ B, (3.54)

where the first term represents the ground state of the non-interacting problem and the
second term is the symmetric Jastrow factor containing the inter-particle correlations. By
writing

N
bo(R) = [ [ So(ra), (3.55)
=1

the non-interacting problem becomes simple to solve because it can be separated into N
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identical and independent parts

(K +1(R)) ®o(R) = EF"™ 0y (R),

2m

2
(_h_vg + 1 (rz)) §o(ri) = eoéo(r;), (3.56)

N
E(I)lonlnt _ 260 _ Nﬁo,
=1

which can often be solved analytically. Each of the N bosons occupy the lowest single-particle
state with energy €@, so the non-interacting energy is simply their sum.

Examples of exactly-solvable non-interacting systems include the free system
Hiee — i (3.57)
where the single-particle ground state is the trivial plane-wave orbital

e (ry) = 1, (3.58)

with zero energy 5(f)ree = 0, in which case, the trial wave function is just the Jastrow factor
on its own. Another common example is the non-interacting system of isotropic harmonic

oscillators
N

. . 1
=K+ §mw2r§, (3.59)
i=1

where w is the oscillation frequency. The single-particle ground state wave function is a

Gaussian

Pio(r;) = 2h i (3.60)
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with the corresponding energy

d
el = 5. (3.61)

Constructing the Jastrow factor is often much more difficult than the non-interacting
ground state. Nonetheless, there are some exactly-solvable interactions that serve as great
examples for demonstrating the general strategy. Consider the Calogero-Sutherland model

of bosons in a one-dimensional harmonic oscillator trap interacting with an inverse-squared

potential
]flcs _ ]f]ho + VCS(R) VCS(R) . FLQ % B(ﬁ - 1) (3 62)
= = Sl 2 |
i<j ij
where x;; = |z; — xj\ is the distance between the pair i and j, and  is an interaction

parameter. Say we look for an ansatz with the form

US(R) = 08°(R)e! (B (3.63)

where QBO(R) = ZZ\L 1 §8° is the ground state of the one-dimensional non-interacting

harmonic oscillators. Then according to Kato’s cusp condition, we need to find the
function J(R) that satisfies

lim Er(R) < oo, (3.64)

xij—>0

for all configurations R = (x1,x3,...,xy) and pairs 4, j. It is straightforward to show that

(3.65)

1 92 1 0%0h° 2 90l°9J(R) 0%J(R) [0J(R)\>
R 0 _— + + 7
Vg 8$Z2 (I)BO 8$22 @80 Or; Oz; ('91'12 Ox;

for any particular particle ¢. Since the ground state for the non-interacting system is @80 =
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_mw.,..
Hf\il e~ 2h "t in one dimension, the local kinetic energy then evaluates to

mw O0J(R) 0*J(R) (W (R)ﬂ , (3.66)

h i ox; 31*12 ox;

where K%O(R) = ﬁf( @80 is the local kinetic energy for the non-interacting harmonic
0

oscillators. In order to cancel the divergences coming from the interaction potential in

Eq. (3.62), the right-hand side must scale as ~ xLQ as z;; — oo for all pairs. The simplest
1]

Jastrow correlator with the proper scaling behavior is

J(R) =0 logz;j, (3.67)
i<j

for some constant b. By matching the coefficients in Eq. (3.66|), we find that b = (, and the

resulting ansatz is the exact solution for the ground state

N
v = o [[«7 (3.68)
i<j
with the corresponding energy
1
E§® = E}° + SIN(N = Dho. (3.69)

In this particular example, we were fortunate to uncover an exact solution, making the
choice of a parameterized wave function an obvious one. Specifically, we can use the
Jastrow factor as defined in Eq. , with a single variational parameter denoted as b.
However, by the time we have found the optimal design for J(R), we essentially solved the

entire problem, rendering the application of variational Monte Carlo pointless except for
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benchmarking purposes.

Although the cusp condition can be solved exactly in the aforementioned
Calogero-Sutherland model, this is not the case for the vast majority of interesting
systems. Furthermore, determining the appropriate form of the Jastrow factor necessitated
a specific choice for the interaction potential. This means that the knowledge we gained
throughout this process is not immediately applicable for other problems. We will see that
when utilizing neural networks as trial wave functions, it is possible to forgo manually
enforcing the cusp condition, as the neural networks can autonomously discover it, allowing

a single ansatz to be reused for a large class of problems.

3.2.1.3 Slater Determinant

For systems of fermions, the situation becomes more complicated because the ground state
wave function must be antisymmetric with respect to particle exchange, and we have to be
mindful of spins. We can still use a symmetric Jastrow factor to capture the correlations
in our trial wave function, but we need to replace the symmetric non-interacting ground
state in Eq. with an antisymmetric one. Hence, we reintroduce the spins and take our
ansatz to be

Vg(X) = Dy(X)e’ X, (3.70)
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where ®¢(X) is a Slater determinant involving the N single-particle spin-orbitals evaluated

for each of the N particles

o1(x1)

P (X) = det [‘Poz(mi)} _ det p2(x1)

o1(x2)

w2 (x2)

on(T1) en(x2)

p1(zN)
pa(z ) (3.71)

en(TN)

The quantum numbers of the single-particle states as labeled generically by «, while the

particles are labeled with the index 7. As with bosons, we obtain the single-particle states by

solving the non-interacting problem, but because of the Pauli exclusion principle, we must

find the spectrum rather than just the ground state. The fermions are filled in a way that

minimizes the total energy of the system, starting from the lowest energy state and moving

upwards. This filling continues until the highest-occupied state, often referred to as the

Fermi level, is reached. The Fermi level represents the boundary between filled and unfilled

states in a system of fermions, and its corresponding single-particle energy is denoted as €.

As another simple example, let us consider the circular quantum-dots system,

a9 = gho L yad(Rr), va(R) = 7
4dre i Tij

e2

S (3.72)

a two-dimensional system of electrons trapped in a harmonic oscillator well. For convenience,

we set e = 4meg = 1 and assume the system is unpolarized, meaning there is an equal number

of spin-up and spin-down electrons, Ny = N| = N/2. Then in two-dimensions, the single-
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Figure 3.2: The occupancy of single-particle states for bosons (left) and fermions (right)
at zero temperature. The two different colors (blue/orange) of fermions represent the two
possible spin states (up/down). While bosons can occupy the same single-particle state,
fermions are restricted to distinct states due to the Pauli exclusion principle. The energy of
the highest occupied single-particle state is commonly referred to as the Fermi energy .

particle wave functions for the non-interacting problem are

_mw .2 mw mw
va(r;) =e 2h i Hp,, (1 /7%) Hy,, ( ?yz> (siloa), (3.73)

where i = (7;,8;) = (2;,y;, s;) labels the single-particle degrees of freedom, oo = (mg, na, 0a)
labels the single-particle states with o, € {1,1}, and Hj,(z) are the Hermite polynomials of
degree n. By inserting the above expression into Eq. (3.71]), we can automatically constrain

the antisymmetry of the wave function.

3.2.1.4 Backflow Transformations

The Slater determinant discussed in the preceding section relies on single-particle orbitals
derived from the non-interacting problem. Consequently, the nodal structure of the overall

wave function remains fixed during the training process, as the Slater determinant contains
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Figure 3.3: The effects of a symmetric Jastrow factor (left) and a backflow transformation
(right) on the nodes of a fermionic wave function. While both the Jastrow factor and the
backflow transformation maintain the antisymmetry of the overall wave function and have
the ability to modify the wave function’s amplitude, only the backflow transformation is
capable of shifting the positions of the nodes.

no variational parameters. To improve the nodal structure of the Slater determinant, we can
incorporate backflow transformations, which aim to capture the influence of all surrounding
particles on the state of an individual particle. While Jastrow factors technically encode some
backflow correlations as well, we only utilize positive definite Jastrows that are incapable
of changing the nodal structure. For the sake of clarity, we will specifically use the term
"backflow transformation" for the technique that facilitates alterations to the nodal structure
of the Slater determinant.

A backflow transformation typically alters the single-particle positions as
N
ri =i+ > n(rig)(r —rj), (3.74)
J#i
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where 7(r) is the backflow correlation function. Then the transformed coordinates, along
with the untransformed spin, serve as input to the non-interacting spin-orbitals yq(x;).
Determining the functional form of n(r), much like the Jastrow factor, necessitates the
imposition of known physical insights about the system. However, accomplishing this task
manually can be quite challenging in general.

Alternate forms for the backflow transformation can be chosen, as long as the
transformation is permutation equivariant, i.e. for a given particle ¢, the transformation is
invariant under any permutation of all the other particles j # ¢. With this constraint, the
antisymmetry of the Slater determinant is preserved. We write this arbitrary

transformation as

z; = (T, {Tj4}), (3.75)

which suggests a means to potentially incorporate the spins of all particles into the backflow

transformations, in addition to the spatial degrees of freedom.

3.2.1.5 Bardeen-Cooper-Schrieffer Wave Function

In fermionic systems with strong pairing correlations, it is often insufficient to construct an
antisymmetric ansatz from a Slater determinant of single-particle states. Even with the
utilization of multiple Slater determinants or the incorporation of backflow
transformations, the antisymmetric component of the wave function remains constrained
within the single-particle mean-field framework. Thus, we graduate to the
number-projected Bardeen-Cooper-Schrieffer (BCS) wave function, an antisymmetrized
product of singlet-pair orbitals. This ansatz is suitable for unpolarized systems of fermions

with an attractive interaction sufficiently strong enough in the s-wave channel to facilitate
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the formation of Cooper pairs. It can be written as the determinant of an N/2 x N/2

matrix,

Bo(X) = det [g(rj, rj.)] — det

T4
rj)

where (7},

)Ll ek,

) E(rhry) e (r),

TN/27TJ1() g(r:]r\/'/TTJQK) f(T:]rv/2,TN/2

. (3.76)

)

is the unique singlet-pairing orbital evaluated for each combination of spin-

up and spin-down fermions. It has been shown that the above BCS wave function can be

expanded to include single-particle orbitals ¢q(7) and remain antisymmetric. Define P =

min{ Ny, V| } as the number of pairs and U = [Ny — N| | as the number of unpaired particles.

Then the augmented BCS wave function becomes the determinant of a (P + U) x (P + U)

matrix,

(IDO(X) = det

(rlrh) erlrl) palr])

£(r), "”%:) p1(r)  pa(r])

Srhorh) pi(rh) a(rh)
<P1("“%a) 0 0
902(7“%3) 0 0
eu(rh) 0 0
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The BCS wave function provides a more accurate description of the system’s collective
behavior in the presence of strong pairing correlations, such as in fermionic superfluids.
However, it is limited in its ability to capture triplet correlations and is not applicable to

Hamiltonians that involve spin exchange.

3.2.1.6 Pfaffian Wave Function

To overcome some the limitations of the BCS wave function, alternative wave functions
based on the Pfaffian have been employed extensively in electronic structure as well as
nuclear applications. Similar to the determinant, the Pfaffian of a matrix is a scalar value
calculated by taking sums of products of permuted matrix elements. It is defined only for

even-dimensional, skew-symmetric matrices with the explicit formula

n

1
pflA] = oy > o(P) Hap(mq),p(%)a (3.78)

where we have assumed A is a 2n x 2n matrix. The Pfaffian allows us to write the most
generic antisymmetric wave function constructed from pairing orbitals rather than single-

particle ones. Assuming N is even, the Pfaffian wave function takes the form

B ¢(xy, @) - ¢(931»33N)-

00(X) ot [ote )] =t | 77T 0TI g
(N, z1) o(xN, ®2) - 0

where ¢(x;, ;) is an antisymmetric pairing spin-orbital, ¢(x;,x;) = —¢(xj, x;). If we

expand the matrix above to include unpaired single-particle spin-orbitals, mirroring the

60



approach we used for the BCS wave function, the wave function becomes the Pfaffian of an
(N 4+ U) x (N + U) matrix
¢
Do(X) = pf , (3.80)
—SOT 0
where ¢ is the same N x N matrix displayed in Eq. (3.79)), ¢ is an N x U matrix constructed

from the occupied single-particle orbitals

_901(5131) po(x1) - @U(wl)_
p1(x2)  wa(m2) - oy(z2)

p= : (3.81)
p1(ey) p2(en) - vu(EN)|

and U is the number of unpaired particles. The pairing spin-orbital is commonly decomposed
into explicit singlet and triplet contributions in order to write down the spatial dependence

more easily

dai, @) = E(ri, i) (51,55 (110) = [11)) /V2
+x ey e (s, 851 1)
(3.82)
M, my) (siy 551 (1) + [41) /v2

(i, m) (i, 55] L)

The singlet pairing orbital {(r;, ;) is the same as § (r;, rj) in the BCS wave function, and
must be even with respect to the spatial coordinates. The newly introduced triplet pairing
orbitals xT(r;, i), ¥ (r;, i), X”(ri,rj) must all be odd.

When the Hamiltonian does not exchange spin, in condensed matter problems for
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instance, we can further decompose the ¢ and ¢ matrices into separate blocks
corresponding to the singlet and triplet contributions, and the spin-up and spin-down
unpaired contributions, respectively. This singlet-triplet-unpaired (STU) Pfaffian ansatz,

developed in Ref. [6], is written as

yail e ol

Oo(X) =pf [—gNT  HH b, (3.83)

=T =t 0

where we have omitted the XT‘L(T‘Z', r;j) term in Eq. . The singlet block SN is an Ny X Ny
matrix constructed from applying the singlet pairing orbital £ (’I"ZT, rji) to all combinations of
the spin-up and spin-down particles. The triplet blocks XTT and XH have sizes Ny x Ny
and N| x N|, respectively. They are both skew-symmetric and constructed by applying
the triplet pairing orbitals XTT<’I‘ZT,’I"]T») and Xu(ri, rj) to the appropriate same-spin pairs.
Finally, the unpaired blocks goT and c,oi can be viewed as a reorganization of the rows in ¢
such that the spin-up particles and spin-down particles are placed into separate blocks.
The STU wave function is a convenient approach if the spins of the particles can be fixed
during the Monte Carlo simulation. Otherwise, the more general Pfaffian wave function can
be used to handle the exchange of spins. Either way, the pairing spin-orbital ¢(x;, x;) is
decomposed according to Eq. so that we can leverage our intuition in its design. In
our investigation of neural-network quantum states, we will find that such a decomposition
is not necessary. Instead, we can construct the most general antisymmetric pairing orbital

that allows the spatial and spin degrees of freedom to influence one another arbitrarily.
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3.2.2 Optimization

After selecting a specific parameterization of the trial wave function, we require methods by
which the variational parameters can be changed in order to minimize the energy. These
optimization methods operate iteratively, gradually refining the solution over time. The first-
order optimization methods we will discuss, known as gradient descent methods, coincide
with the very same techniques commonly employed in numerous machine learning problems.
However, we will also introduce one additional second-order optimization method, known
as Stochastic Reconfiguration, which is specifically tailored for the variational Monte Carlo
method. It is akin to the Natural Gradient method in the context of machine learning, but as
our application of neural networks will always involve minimizing the energy, as opposed to
a general objective function, we opt to explore all optimization methods within the context

of variational Monte Carlo rather than machine learning.

3.2.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple method that utilizes a single estimate of the
gradient Vg (Eg(X)) to update the parameters 8. At any given iteration of the optimization

procedure, the parameters are transformed following the opposite direction of the gradient

0 —0— nV0<E9(X)>, (3.84)

where 7 is a small learning rate and the gradient is defined in Eq. (3.51)). The learning rate
can be scheduled to decrease with the number of optimization steps, with typical values
between 107> and 1072.

Since our measures of the gradient are approximate, our trajectory through the energy
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landscape can be noisy. On one hand, this noise can sometimes prevent us from getting
trapped in a local minimum, as there is always a chance of a perturbation that propels
us out of it. On the other hand, the presence of this noise can make the overall training
procedure slow and inaccurate, as we may find ourselves frequently oscillating back and forth

in a particularly narrow or shallow valley.

3.2.2.2 Momentum

The simple SGD algorithm can be improved by including momentum, a moving average of
the gradients. Momentum is implemented by first defining a vector m that stores the moving

average of gradients, and initializing it to zero. Then parameter updates are performed as

m <« fm + (1 — )V (Eg(X)), (3.85)

0 <60 —nm, (3.86)

where 7 is the learning rate and g is a constant hyperparameter that controls the influence
of the previous gradients on the current update, usually set around g = 0.9. By averaging
over a history of gradients, the optimization trajectory becomes smoother as oscillations in
opposite directions tend to cancel out. This smoothing effect helps to stabilize the parameter
updates and prevent the algorithm from getting trapped in erratic behavior. Moreover, in
situations where the gradients become small, such as in plateaus or saddle points, momentum

helps the training process to persist in the "right" direction.
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Figure 3.4: This cartoon depicts trajectories of stochastic gradient descent, with momentum
(orange) and without (blue), near a narrow parameter space minimum. Momentum smooths
the path by counteracting noise in opposing directions.

3.2.2.3 Root Mean Squared Propagation

Root Mean Squared Propagation (RMSprop) adaptively adjusts the learning rate for each
parameter based on the magnitudes of the recent gradients. We begin by initializing a new

vector v = 0, and updating the parameters as

v Bo+ (1 - B)(Ve(Eg(X)))?, (3.87)

00— \/En+ Vg (Eg(X). (3.88)

where the square in Eq. and the square root in Eq. are both element-wise
operations. The hyperparameter [ is typically set to 0.9. The hyperparameter e provides
numerical stability and is set around 1078, Unlike the previous methods, RMSprop is less
sensitive to choices of the learning rate 1. By normalizing the gradients in this way, RMSprop
mitigates the problem of exploding gradients, as extreme fluctuations are alleviated, making
the optimization process more stable. At the opposite extreme, RMSprop also prevents

gradients from becoming too small, allowing training to continue effectively.
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3.2.2.4 Adaptive Moment Estimation

Adaptive Moment Estimation (ADAM) combines the concepts of RMSprop and momentum,
and it remains one of the most popular first-order optimization methods since its introduction
in 2015[8]. In addition to computing the moving averages of gradients and the squares of
gradients, the ADAM algorithm incorporates a learning rate correction to compensate for
the bias caused by initializing these averages to zero. This correction is dependent on the
optimization iteration ¢, so we begin by setting t = 0, m = 0, and v = 0. Then the

parameters are updated as

m i am + (1 — a)Vg(Eg(X)), (3.89)
v 1 o+ (1 - 5)(Vo(Eg(X)))”, (3.90)
9H9—n<i:§i) \/Em+e’ (3.91)
bt 41, (3.92)

The hyperparameters are usually set to a = 0.9, 8 = 0.999, and ¢ = 1078, ADAM has
gained popularity across diverse optimization problems, thanks to its efficient and robust

performance.

3.2.2.5 Stochastic Reconfiguration

Stochastic Reconfiguration [9] (SR) is a second-order optimization method specific to the
variational Monte Carlo (VMC) method. Instead of manipulating the gradients according
to their history, the SR algorithm manipulates the gradients according to the curvature of

the energy landscape. It can alternatively be viewed as stretching and squeezing the
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Figure 3.5: A visualization of the Stochastic Reconfiguration algorithm, a second-order
optimization method that stretches and squeezes the energy landscape such that difficult
minima (left) are more isotropic (right). This method typically reduces the required number
of optimization steps by an order of magnitude compared to the simple stochastic gradient
descent method.

landscape itself, making it smoother or more isotropic in certain areas. Stochastic
Reconfiguration provides a more favorable terrain for finding the global minimum and
improves the exploration of the parameter space.

The SR update is derived by determining the parameter change, denoted as 66, that best
reproduces a small step 7 in an imaginary-time evolution. The concept of imaginary-time
propagation, which will be further elaborated on in Sec. [9.5] involves applying the operator
6_57H to states non-orthogonal to the ground state, thereby driving them closer to the
ground state. We can approximate the imaginary-time propagator to first order in §7 and

apply it to our original state |Vg), resulting in a new state
1©) = e O TH|Wg) ~ (1 — 67H)|Tg) = |Ug) — 07 H|Typ). (3.93)

Our goal is to match this state to one obtained by changing the parameters 8. To do this,

we expand around our original state to first order in 00,

(Wois50) ~ [Vg) + (60) - Vg|Vp). (3.94)
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For |®) and |Wg,s9) to coincide, we need their projections onto the original state be the

same, keeping in mind it may not be normalized,

(Vg|Vgis0)  (Vg|D)
[UglUg) — (UglTg) (3.95)

(Wo|Vg) L (56). (¥o|VeVe) _ (VolVo)  (VolH|Vp) (3.96)

(Wg|Vg)

(TglUg)  (TglTg) * (Vgllg)

Similarly, the gradient with respect to the parameters must also coincide,

(Vg|VelVgis50) (Vg|Ve|P)

(WolVg)  (Wgl¥g) ° A 90

(Vg|VgVy) (Ve¥s|Ve¥s) _ (Y6lVeVe) , (VolelH|Ve)
Wolvg) 0 (Tl0) Woltg) T (Tgligy O
(3.99)

Combining Egs. (3.96) and (3.99)) reveals the following update rule for the parameters:

0 — ST 1Vg(Eg(X)), (3.100)

where S is the quantum geometric tensor [10] with the following matrix elements

_(0iV9|0;Wg)  (0;Vg|Vg)(Vg|T;Vg)
%0 = T Tg) (Tg|Tp) (3.101)

and 0; denotes a derivative with respect to the ith variational parameter 6;.
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3.3 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a virtually exact stochastic projector method based on
solving the imaginary-time many-body Schrédinger equation. By transforming ¢ — —iTh,

the Schrédinger equation becomes

—aﬁxy(x,f) — HU(X,7), (3.102)
-

and the originally oscillating stationary-state solutions are now convergent in the 7 — oo

limit
Vo (X,7) = ha(X)e EaT, (3.103)
where
ﬁsz(X) = ana(X)- (3-104)
Let us assume these energy eigenstates are ordered such that £y < EF1 < Fy < ---. By

expanding the general wave function in terms of the transformed stationary states,

V(X 7) = caWa(X,7) = catba(X)e FoT, (3.105)
a=0 a=0

we find that any state that is not orthogonal to the ground state, cg # 0, will evolve to the
ground state

lim U(X,7) = cop(X)e FoT, (3.106)

T—00

in the large 7 limit. By introducing a constant offset energy E7 to Eq. (3.102), where Ep is

as close to the ground state energy FE( as possible, the large 7 limit can be kept finite, while
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leaving the eigenstates themselves unchanged. Then by ignoring spin momentarily, X — R,
the shifted imaginary-time Schrodinger equation then reads

%\P(R, 7) = (DV -V — (V(R) — E)) U(R, 1), (3.107)

where we have again used the notation D = % and V = (V{,V2 ..., Vy). At this
point, the above equation should look familiar, as it has a similar form to the Fokker-
Planck equation we introduced in Eq. (3.25). In fact, if we make the substitution U(R, 7) =
f(R,7)/Yp(R), take all the necessary derivatives, and multiply by U7 (R), the equation we

obtain for f(R, ), has nearly identical form to the Fokker-Planck equation

a%f(R, 7) =DV -(V - F(R)) f(R,7) — (E(R) — E7)f(R,7), (3.108)

except for the last term, where

E(R) = #(R)H\IJT(R). (3.109)

This modified form of the Schrodinger equation can be solved for f(R, 7) through standard
Green’s function methods, but as we already mentioned before at the end of Sec. the
Green’s function solution to the Fokker-Planck equation coincides with the proposal density
Q(R'|R, At) we inferred from the corresponding Langevin equation. Without the extra

term in Eq. (3.108]), the Green’s function solution would be exactly the same as before, as

introduced in Eq. (3.34)),

/ _ 1 —(R'-R-DATF(R))2/ADAr
Gp(R|R,AT) = DAY , (3.110)
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for small A7. The subscript D stands for drift. However, the inclusion of the last term

modifies the Green’s function, which can be approximated by
Gp(R/|R, A7) = eAT(E(X/)+E(X)—2ET)/2’ (3.111)
where B standard for branching. Thus the total Green’s function is approximated as
G(R'|R,AT) ~ Gp(R'|R,AT)Gg(R/|R, AT). (3.112)

The factorization of the Green’s function suggests a way we can evolve to the ground
state in practice. First, we initialize an ensemble of MCMC walkers according to the
probability distribution of a good estimation of the wave function |Wp(R)[>. Next, by
using the importance sampling method we covered in Sec. [3.1.1] we move the walkers as
usual. Then, to account for the extra branching term in the Green’s function, we make

copies of the walkers with a probability given by Eq. (3.111]) . Proceeding in this way is the

spatial realization of the imaginary-time propagation operator e~ TUH-ET),

Unlike the variational Monte Carlo method, where walkers are sampled from a positive
semi-definite distribution given by |[Wg(X )|2, a diffusion Monte Carlo calculation employs
the walkers’ distribution itself to represent the wave function. For systems of bosons, this
poses no issue, but for fermions, it is difficult to maintain the antisymmetry of the wave
function. Therefore, when we reintroduce spin into our formulation, we must add the extra
step of killing the walkers if they attempt to cross a node. This solution is known as the fixed-
node approximation. The nodes themselves are determined by a previous VMC calculation,

and consequently, DMC calculations carry a residual dependence on the VMC calculation.
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4 Machine Learning

Machine learning encompasses a wide range of computational models and algorithms
designed to learn from data rather than rely on explicit programming. It is a subset of
artificial intelligence, a rapidly evolving field that aims to endow computers with
human-like cognition, such as the ability to interpret complicated data, adapt to new
situations, and make decisions autonomously. These ambitious goals have driven the
development of machine learning models and have transformed them into the highly
versatile tools we witness today.

In this chapter, we introduce fundamental concepts in machine learning, in the hopes
of building a broad perspective that extends beyond specific physics applications. We will
explore different approaches to learning, providing context for the artificial neural networks
we will cover afterwards. In particular, we place emphasis on the mathematical aspects
of artificial neural networks, aiming to clarify their relevance and utility as neural-network

quantum states.

4.1 The Curse of Dimensionality

When dealing with high-dimensional data, be it in machine learning or any data other
analysis endeavor, a recurring challenge arises. It is known as the "curse of dimensionality,"
wherein the performance of algorithms decreases as the number of dimensions increases. The
basis of the curse of dimensionality is geometric: given a fixed number of data points, the
density of those points in space decreases exponentially with the number of dimensions. To

counteract the sparsity of the data, is it common to focus considerable effort and resources on
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Figure 4.1: Cartoon of the curse of dimensionality; as the dimension of the data increases
(left to right), the density of a fixed number of data points decreases exponentially.

finding a lower-dimensional representation of the data before applying any given algorithm.

Is it reasonable to assume such a lower-dimensional representation exists? The short
answer is yes—pure geometric scaling only truly applies if our data set contains no
information at all, i.e. it is completely random. Real-life data sets, ones that actually
contain information, have structure. This is reminiscent of the exponential scaling of the
Hilbert space dimension with respect to the size of the quantum system. As we have
discussed in Sec. the effective Hilbert space dimension decreases if we restrict ourselves
only to states that accurately represent real, physical systems.

Despite the challenges posed by the curse of dimensionality, machine learning
algorithms have proven exceptional in discovering lower-dimensional representations of
data. Among them, artificial neural networks have emerged as unparalleled tools for
handling large and intricate datasets, where the underlying structure is difficult to predict
a priori.  Consequently, neural networks, particularly deep ones, have established
themselves as the dominant approach for tackling some of the most formidable problems
across various domains. Notably, they have been instrumental in solving complex tasks

such as protein folding, game strategizing, natural language processing, image and voice

73



Figure 4.2: Comparison of a random data set (left) with no information, a data set with
obvious clusters (middle), and a data set with an obvious lower-dimensional manifold (right).
The latter two are examples of real-life data sets that contain information, i.e. they have
structure.

recognition, and autonomous robotics.

4.2 Cost Functions

The goals of a machine learning problem are often narrow in scope, usually involving one
or two tasks that can be expressed mathematically through a so-called "cost function".
The terms "cost function" and "loss function" are often used interchangeably, but the cost
function typically refers to the overall measure of error across the entire dataset, while the
loss function calculates the error for individual data points. If the objective function needs
to be maximized rather than minimized, it is commonly called a "reward function" in the
context of machine learning.

While not all machine learning problems are explicitly framed as optimization problems,
many involve minimizing or maximizing certain quantities. In some cases, this optimization
can be achieved in a single step, leading to simple and highly efficient models, such as Kernel
Ridge Regression and Gaussian Processes. However, more generally, optimization problems

require iterative methods, as discussed in the Sec. [3.2.2] For the purposes of our discussion,
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we will assume that all machine learning problems have an underlying cost function, even if
it may not be obvious at first glance.

Determining the structure of a particular problem ultimately depends on the training data
that is, or can be made, available. In the following sections, we will aim to give an intuitive
understanding of machine learning and why exactly it has been proven to be so powerful
across a wide variety of applications. When faced with a brand new problem, the reader
should be able to zoom out, and quickly identify its core elements and interdependencies.
Most importantly, the reader should be able to break a large, complicated problem into

small, digestible components that are each suitable for a simple machine learning problem.
4.3 Supervised Learning

The goal of a supervised learning problem is to identify a mapping between two spaces,
where only examples of the endpoints in each space are known. If we denote x as the data
points in our input space, y as the data points in our output space, and y as the predictions
of our model in the output space, then the cost function of any supervised learning problem
can be written as C(y(x), y(x)), where C' measures the discrepancy between y and y. The
elements within the output space are often referred to as "labels." However, we will refrain
from using this terminology to prevent any potential misconception that the output space
must necessarily be discrete in nature.

Supervised learning problems can be separated into two major categories: regression
and classification. The former involves predicting a continuous numerical value, while the
latter involves predicting discrete values corresponding to distinct categories. Python
packages like scikit-learn and Keras provide a wide range of pre-implemented

supervised learning algorithms that are readily available for use "out-of-the-box," including
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Figure 4.3: A visualization of the two main types of supervised learning: regression (left)
and classification (right). The blue data points are the inputs, and the orange data points
are the target outputs. The goal of a supervised machine learning problem is to learn and
generalize the mapping (solid black lines).

decision trees, support vector machines, linear and logistic regression, and neural networks,
to name a few.

Choosing an appropriate model depends strongly on the desired task, the complexity of
the data, and the number of data points. If the number of data points is limited compared
to the flexibility of a certain model, it is likely to overfit the data, leading to poor predictive
power when new data is introduced. On the other hand, models that are too simple can
fail at the task all together. Balancing the risk of overfitting and underfitting is a reflection
of the bias-variance trade-off, the clash between a model’s sensitivity to fluctuations in the
input data and the model’s underlying assumptions about the mapping.

To manage these challenges, supervised learning techniques commonly involve dividing
a fixed dataset into three distinct parts: a training set, a validation set, and a test set. The
training set is utilized to optimize the model, as its name implies. The validation set is used
to estimate the bias and variance of the model throughout the training process, helping to
determine the ideal hyperparameters. Finally, the model’s performance is evaluated on the

test set once training is completed.
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Figure 4.4: A depiction of principal component analysis (left) and cluster identification
(right), two common types of unsupervised learning.

4.4 Unsupervised Learning

Unlike supervised learning, where the model learns a mapping from an input space to an
output space, unsupervised learning models aim to learn the underlying structure of the
input data set itself. Therefore, the associated cost functions solely depend on the inputs,
C(x). Unsupervised learning problems can be divided into three main categories: clustering,
dimensionality reduction, and anomaly detection. Each of these categories can be used as
a preprocessing step in conjunction with supervised or reinforcement learning problems to
improve their overall performance.

In unsupervised clustering tasks, the model assumes the input data can be mapped to
some latent space in which similar data points are physically closer together. Specifically, the
assumed structure of the points in the n-dimensional latent space are (roughly) n-spheres,
where n is at most the number of dimensions in the original input data. The key ingredient
of such models is the quantification of "distance" between points. In simple problems, the
input space itself can act as the latent space, as the data points may already exist in localized
groups.

Clustering and dimensionality reduction are not necessarily distinct tasks, as both aim
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to find some lower-dimensional representation of the data. However, the latter typically
refers to problems in which the underlying structure of the dataset consists of hyperplanes
rather than hyperspheres. Commonly used algorithms include Principal Component Analysis
and Singular Value Decomposition, both of which seek to find the most relevant degrees of
freedom in the data.

Dimensionality reduction problems may also include finding more abstract
representations of the data. For instance, autoencoders are neural networks with an
architecture that maps to a very small latent space before mapping back to the original
input space. After training the autoencoder to reproduce each element of the data set, the
latent space representation contains only the most essential and informative features of the
data. This style of dimensionality reduction is particularly useful for file or image
compression, as the relationships between data points can be highly non-intuitive.

Both clustering and dimensionality reduction go hand in hand with anomaly detection,
because it focuses on identifying data points that deviate significantly from the expected
behavior. Anomaly detection plays an important role in enhancing security in the digital
age by identifying fraudulent behavior and detecting malware at a pace that surpasses human
capabilities. Furthermore, anomaly detection finds practical utility in experimental sciences,
where it aids in discerning genuine events from background noise. This capability enables
efficient allocation of memory resources to statistically significant events, ensuring optimal

utilization of computational resources.

4.5 Reinforcement Learning

Reinforcement learning is a specific branch of machine learning in which datasets rely on

the model itself. If we let gy denote the state of the model at iteration ¢, and x¢(g;) denote
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the data collected based on that state, then the cost function of a reinforcement learning

problem may be written schematically as

Cle(ge(xr—1(G—1(- - (z0(Y0)) -+ +)))))- (4.1)

In other words, starting from some initial model g, the data xy(yg) are generated by letting
the model attempt the task at hand. Its performance is evaluated and used to updated the
model for the next iteration, continuing to collect new data based on its previous experiences.
This notation for the cost function is simply meant to reflect the inherent cyclic nature of
the problem; it is never explicitly written in this form in practice.

Reinforcement learning is commonly framed in terms of agent-based modeling, because
the model learns by interacting with its environment and receiving positive or negative
feedback, mirroring the way humans learn through trial and error in their everyday
experiences (outside of the classroom). This learning approach is widely employed to train
robots in game-playing and navigation tasks, which is impossible to accomplish through
supervised learning methods as it would require an immense amount of example data.

Let us now rephrase variational Monte Carlo explicitly in the agent-based modeling
framework. We begin by initializing the state of our agent, i.e. setting random parameters
in our wave function. Then we allow our agent to interact with the environment, collecting
data along the way. In VMC, the environment is the many-body Hilbert space and the
data are the sampled configurations X. Then we evaluate the performance of our agent, by
calculating the average local energy based on the samples. This process continues until

convergence is reached.
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Figure 4.5: A depiction of the variational Monte Carlo algorithm in the context of agent-
based modeling, a commonly employed reinforcement learning framework.
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4.6 Transfer Learning

Transfer learning is a powerful technique that applies the knowledge gained from solving
one problem to a more challenging and sometimes even unrelated problem. For example,
researchers [11] have found that pre-training a convolutional neural network on ImageNet
data provides immediate benefits for training the network on particle detection data.
Interestingly, a fixed, pretrained network can be appended with additional trainable layers,
while still achieving accelerated and stabilized training. This approach effectively reduces
the number of trainable parameters while preserving the entire network’s representation
power. Consequently, this finding suggests that all image recognition models rely on a
shared set of core capabilities.

When using neural-network quantum states for variational Monte Carlo, we will use
transfer learning to handle particularly challenging interaction potentials. Pre-training the
neural-network quantum states on softer potentials allows the training on harder potentials
to proceed in a smooth, controlled manner. These potentials may contain singularities,
which we renormalize according to some newly defined hyperparameter, or they may simply
be hard by nature. We will discuss transfer learning in these applications on a case-by-case

basis.
4.7 Artificial Neural Networks

We are now in a suitable position to discuss our primary focus: the mathematics of artificial
neural networks (ANNs). This class of machine learning models is inspired by the structure
of the human brain, consisting of interconnected nodes and nonlinear connections between

them. While the term is often used interchangeably with feedforward neural networks, it is
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important to note that the latter represents just one specific type within the broader ANN
framework. We will exclusively refer to the broader class as artificial neural networks to
ensure clarity.

In the following sections, we will formulate our artificial neural networks with the eventual
goal of applying them as trial wave functions for variational Monte Carlo. The networks
will be trained using the same optimization algorithms we use for traditional variational
Monte Carlo calculations, discussed in Sec.[3.2.2] Consequently, our discussion may prioritize
certain aspects that differ from those typically encountered in standard machine learning
applications. Nonetheless, we will strive to maintain a level of generality throughout our
discourse, ensuring that the concepts and techniques discussed herein can be applied to a

wide range of problems.

4.7.1 Boltzmann Machines

Boltzmann machines are generative stochastic artificial neural networks that are primarily
used for unsupervised learning tasks. They have two types of nodes: visible nodes, which
represent the inputs to the network, and hidden nodes, which serve as latent variables
capturing higher-level features or patterns in the data. In a general Boltzmann machine, all
the nodes are fully connected, regardless of type. Additionally, the connections are
undirected, unlike other well-known models such as feedforward neural networks.
Unconstrained Boltzmann machines have limited practical utility for machine learning and
inference. However, their optimization efficiency can be greatly enhanced by appropriately
restraining the connectivity. This improvement allows for better applicability in solving
real-world problems.

Restricted Boltzmann machines (RBMs) are a variant of Boltzmann machines that

82



Figure 4.6: A general Boltzmann machine in which all visible (blue circles) and hidden (gray
circles) nodes are fully connected (solid black lines).

organize the visible and hidden nodes into two parallel layers. The layers are joined by
undirected connections, but there are no connections between individual nodes in a given
layer, hence they are '"restricted". This architectural arrangement improves training
efficiency by leveraging highly optimized linear algebra operations.

The objective of an RBM is to reveal the underlying probability distribution of the
input data, enabling applications such as dimensionality reduction and the generation of
samples resembling the data. It is precisely their ability to model probability distributions
that makes them a natural choice for implementing them as neural-network quantum
states. Furthermore, RBMs can be stacked to construct deep belief networks, which excel
in capturing hierarchical representations of complex datasets. These networks have
exhibited remarkable success in addressing challenges in image and speech recognition

domains, but training deep belief networks can present greater challenges compared to
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Figure 4.7: A standard restricted Boltzmann machine, where the hidden nodes (gray circles)
are binary and the visible nodes (blue circles) can be either binary or Gaussian. There are
no connections (solid black lines) between nodes within the same layer.

deep feedforward neural networks, which will be introduced in Sec. [£.7.2]

The most common type of RBM is a binary-binary RBM, in which all the visible and
hidden nodes are discrete and constrained to the values of 0 or 1. Since we will exclusively
work with real-valued inputs, our visible nodes will be taken to be Gaussian units, each
with their own mean and variance. The hidden units will remain binary. The resulting
formulation is called a Gaussian-binary restricted Boltzmann machine, which we will delve
into shortly. In the subsequent sections, we will develop different variations of continuous

restricted Boltzmann machines.

4.7.1.1 Gaussian-Binary Restricted Boltzmann Machines

We will begin by presenting the most common type of Gaussian-binary restricted Boltzmann

machine (GB-RBM). The first step is to define an energy-like quantity £(v, h) that describes
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the interplay between the visible nodes v € RY and hidden nodes h € RH within the
network. This quantity should not be conflated with the physical energy of our quantum

system, which is why it has been assigned a distinct name & instead of E. The energy of the

GB-RBM is defined as

|4 2
22—; o7 o

i=1j=1

H V H v;
=Y bihy =y s Wishy, (4.2)
:1 7

where a; is the bias or mean of the ith visible node, 02.2

is the variance of the ith visible
node, b; is the bias for the jth hidden node, and W;; is the weight between the ith visible
node and jth hidden node. In many machine learning applications, it is sufficient to simply

2

treat the variances as a constant hyperparameter o7 = o2. However, training the variances

individually will be important in our application, so we reparameterize them as

1
— = exp(s). (4.3
1

which improves their training and ensures they are always positive. The trainable parameters
are collectively denoted as 8 = (a,s,b, W), where a € RV, se RV, beRE and W €
RVXH )

By taking the Boltzmann distribution, we can define a corresponding joint probability

distribution

Plo,h) = 2o E@M), (1.4)

where the normalization constant is

z=3" / dve €Wh), (4.5)

h
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This particular step justifies the inclusion of "Boltzmann" in the name of the model. We
are specifically interested in the marginal probability distribution of the visible nodes, so we

sum over the possible values of the hidden nodes

h
1 (vi — a;) 2 L Ui
_EZeXp - 52 +ijhJ+ZZ§Wmhy
i=1 i j=1 i=1j=1"1
1 \%4 (U CL')2 H 1 \%4
— 1t ™ 1
—Z P~ Z 252 H exp [ bjh; + Z s Wijh; (4.6)
i=1 i j=1hj=0 i=1 71
1 (wi—a)® | Ty g
=1 % j=1 i=1 %
\% 9 H
1 v; — a4
= 5 exp —Z( 12 21) 11 <1+exp(2j(’v))>,
i=1 o j=1
where we have defined a new vector z(v) € RY with the elements
v v
ZJ(’U) = bj + Z O_—ZW”, (4.7)
1=1

for convenience. One of the notable strengths of a GB-RBM lies in its foundation on intuitive
physical laws. Unlike various other neural network models, the GB-RBM avoids being labeled

as a "black-box,"

as it is fairly straightforward to understand how changes in the trainable
parameters 0 causes changes in the learned distributions. For example, we can interpret
the marginal probability distribution of the visible nodes in Eq. (4.6 as the product of a

non-interacting Gaussian part and a nonlinear interaction term.

We can similarly derive the marginal probability distribution of the hidden nodes by
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integrating over the visible nodes

P(h) = /va('v h) = %/d ~&(v,h)

1 ” vi
== /d’u exp z:: Z it ZZ W”hj (4.8)

lel

H
- %exp Z H/dvzexp — UZ Z 22
J=1 j=17

Defining another vector ¢(h) € RV with the elements

H
h)=a; + Z Wijhj7 (4.9)
J

and completing the square on the right-hand side of Eq. (4.8))

H

H

1
E —202 (Ui — CLZ')2 + E UiWijhj
j=1 7

J=1

2

sw|

H
1
2—2—2 (U?Q a; + E Wijhj Ui—i—alz
Z .:1

9 (4.10)
L<U2—20Z Uz—l—a)
2022 !
1 2 2
E ( +aj —ci(h) )
yields
H V 2
1 (v; — ci(h))" +a; —ci(h)
P(h) = — exp > bih; H/dv@- exp <_ i —Ci s :
=1 =1
/ ' Z (4.11)
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The marginal distribution of the hidden nodes is yet again another product of non-interacting
and interacting parts. From here, we can obtain the conditional probabilities of the visible
nodes P(v|h) and hidden nodes P(h|v) by dividing the joint probability distribution P(v, h)

by P(h) and P(v), respectively. For the former, we find a product of normalized Gaussian

distributions,
P(v, h)
P(vlh) =
2
[p— . H .
exp (=21 (%2;21) + i Sk g—éwijhj)
1 1

c;(h)?—a?

szzl exp (T) V27a;
(_ (vi — ¢i(h))* +a? — ¢;(h)?  ¢;(h)* — af) (4.12)
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with their individual means ¢;(h) and variances of 2. For the latter we have

H V. s H Y
exp (ij1 bihj+ 2 im1 2 j=1 ;?Wijhj) A (4.13)

Plv) [, (1 +ezj<v>> ROl

P(h|v) =

which implies that the conditional probability of the jth hidden node being active is given

by
( v) A ! (2j(v)) ( )
P(h; =1lv) = = =o(z;(v)), 4.14
’ 1—{—ezj(v) l+e i () ’

—Z
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where

1
1+e %

o(z) = (4.15)

is the sigmoid function. In a sense, the binary nodes act as mediators for the interaction,
switching between "on" and "off" states with a probability determined by the configuration
of the visible nodes.

In standard unsupervised learning problems, the parameters 6 of a Restricted
Boltzmann machine are trained by maximizing the log-likelihood log P(v). The gradients
of the log-likelihood with respect to the parameters can be approximated using the
Contrastive Divergence method and Gibbs sampling, increasing the efficiency of the
training process significantly. However, in our application, the parameters will be trained
by minimizing the expectation value of the physical energy of our quantum system, a
major departure from traditional machine learning problems. Nonetheless, it will be useful
to compute the gradients of the log-likelihood.

In terms of the parameters 8 = (a, s, b, W), the log-likelihood reads

H

exp(s;)(v; — a;)* + Y _ f(zj(v)) —log Z, (4.16)
=1

logP(v) = —

N | —
lMi‘

I
L

where z;(v) was defined in Eq. (4.7) and is dependent on s,b, and W, while f(z) is the

"softplus" function

f(z) =log (1 + exp(x))) . (4.17)

It will become clear why we write the log-likelihood in terms of f(z) when we develop

generalizations of the GB-RBM. The derivatives of the log-likelihood with respect to the
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parameters are then given by

% log P(v) = exp(s;)(v; — a;), (4.18)
) 1 ) 1
55, 108 P(v) = —5 exp(s;) (v — a;)” + exp(s;)v; > Wiif'(zj(v), (4.19)
1 =1
0 /
a—bjlogp(v) = ['(z(v)), (4.20)
o, log P(v) = exp(si)vi f'(2j(v)), (4.21)

where f’(z) is the same as the sigmoid function o(x) defined in Eq. (4.15).

4.7.1.2 Multivariate Gaussian-Binary Restricted Boltzmann Machines

We will now move beyond the standard formulation of the Gaussian-Binary restricted
Boltzmann machine, and introduce correlations among the Gaussian visible nodes. The
resulting network is a Multivariate Gaussian-Binary restricted Boltzmann machine
(mGB-RBM), which is halfway between the standard GB-RBM and a general RBM. We
will still label this network as "restricted" because there are no connections between the

hidden nodes. The energy of the mGB-RBM can be written as

E(v,h) = %(’U —a)'y ' w—a)-b"h—v'S"Wh, (4.22)
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where we have used the covariance matrix

0% 0109 -+ 010y
0901 a% S o0y VsV
¥ = Cov(v,v) = e RV Y, (4.23)
o L2
Vo1 Oyo2 O'V

in addition to the usual biases a € ]RV, b € RH and weights W € RV*H, Following the
previous reparameterizing of the variances in Eq. (4.3]), we write the diagonal elements of
the inverse covariance matrix as

St = exp(Sy), (4.24)

(2

and the offdiagonal elements as,

i, = Sij, for i # j, (4.25)

for some matrix S € RV >V This choice is intended to avoid explicitly computing inverses of
matrices and to guarantee the invertibility of the inverse covariance matrix 1. However,
there is still a small risk that the variances corresponding to this reparameterization become
negative, so we bias against this possibility by randomly initializing the diagonal elements
Sii to small positive values, and the off diagonal elements S;;, j # 7, to small negative
values. This initialization results in a covariance matrix ¥ close to a diagonal matrix with
positive covariances. The covariance matrix (and its inverse) are symmetric, so only the
upper triangular part of the matrix S, denoted as triu(.S), is required. Then the trainable

parameters are collectively represented as 6 = (a, triu(S), b, W).
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Figure 4.8: A multivariate Gaussian-binary restricted Boltzmann machine, a step between a
standard Gaussian-binary restricted Boltzmann machine and a general Boltzmann machine.
In addition to the connections (solid black lines) between the visible nodes (blue circles)
and hidden nodes (gray circles), there are connections (dotted black lines) among the visible
nodes.
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The calculations of the joint, marginal, and conditional probability distributions will
follow the same process as before. Having previously discussed the process extensively, we

will simply list the final results. The joint probability distribution corresponding to the

energy in Eq. (4.22)) is written as
1
P(v,h) = exp (—5(9 —a) s w—a)+b R+ sz—lvvh) . (4.26)

Summing over the hidden nodes yields the marginal probability distribution of the visible

nodes
1 1 =
T
Pl) = e (- a7 v -a) [[a+erE@). o
j:
where
z(w) =b+WIn v e R, (4.28)

Unlike the standard GB-RBM, the distribution above does not contain a non-interacting
part, as the Gaussian nodes are not independent (unless ¥ is diagonal). Integrating the joint

distribution over the visible nodes gives the marginal distribution over the hidden nodes
1 T, 1T 1 7 v
P(h) = Z exp (b'h+ 5e' e — sa'Ya | 1/ (2m)V[3], (4.29)

where

c(h) = a+ Wh. (4.30)
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The conditional probability distribution of the visible nodes is no longer a product of

independent Gaussians, but a V-dimensional multivariate Gaussian

= N (v;e(h),X). (4.31)

P(hj = 1|v) = o(2;(v)), (4.32)

as long as we use our new definition of z(v) from Eq. (4.28). Finally, the log-likelihood is

given by
H

log P(v) = —%(’u —a)!s M w—a)+ > f(zw)) —log 2, (4.33)
j=1

and its derivatives with respect to the parameters are

5% log P(v) =X (v —a), (4.34)
~1
% log P(v) = (- %('v —a)v—a)" + Wf (z(0)07 ) o agg o (@sm)
9 /
o5 08 P(v) = f'(z(v)), (4.36)
i1og73(v) — oS (F(z(0)" (4.37)

where f/(z(v)) denotes the element-wise application of the derivative of the softplus function
(Eq. (4.17)), also known as the sigmoid function, and o denotes element-wise multiplication.
In addition, ‘%;—1 is a matrix filled with ones except for the diagonal, which is filled with
exp(Sii)-

There are clearly many similarities between the standard GB-RBM and the
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multivariate GB-RBM. However, the inclusion of covariances in the latter enhances its
flexibility compared to the former, and makes computing and writing down the various
probabilities simpler. Additionally, the multivariate GB-RBM offers the advantage of
performing most computations through matrix-matrix multiplication or matrix-vector
multiplication, enabling more efficient implementations.

Before moving onto another step in generalization, let us consider one slight variation of
the Multivariate Gaussian-Binary restricted Boltzmann machine, in which the binary nodes
are allowed to take the values of -1 and 1, instead of 0 and 1. We can take the same energy
function as Eq. , so that our joint probability distribution P(wv, h) is also the same.
However, when we sum over the hidden nodes to compute the marginal distribution of the

visible nodes, we obtain

P(v) = %exp (—%(U ~—a)'s (v-a ) li_I[ (eXp zj(v)) + exp(—zj(v )))
= (4.38)

instead of Eq. (4.27). Then the conditional probability distribution for the hidden nodes

becomes

P(v) cosh( zj

7) exp(z;
P(h|v) = =5 H H oplz;(v)1) :
j=1 (4.39)

P(h; = 1|v) = %(tanh(z]-('v)) + 1).

In Figure , we compare the form of P(h; = 1|v) given above, with the one obtained in
Eq. (4.32). When the hidden nodes were allowed the take the values of 0 or 1, we found that

P(hj = 1|v) was given by the sigmoid function. When we instead allowed the hidden nodes
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Figure 4.9: The conditional probability of a single binary hidden node h; activating, given
the state of the visible nodes v, for a multivariate Gaussian-binary restricted Boltzmann
machine. The blue line represents the probability if the hidden nodes are allowed to take
values of 0 and 1 (Eq. ), while the orange line represents the probability of the hidden
nodes are allowed to take values of -1 and 1 (Eq. (#.39)). The x-axis is a transformation of

the visible nodes given by Eq. (4.28]).

to take the values of —1 or 1, we obtained the hyperbolic tangent function, normalized to
be between 0 and 1. The results are surprisingly intuitive.

To finish off our calculations, we write down the new log-likelihood

H

logP(v) = —%(v — a,)T exp(S)(v —a) + Z f(zj(v)) —log z (4.40)
j=1

where Z’ contains the extra factor of 2f from Eq. (#.38)), and f(z) from Eq. [£.17) is replaced
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f(z) = log(cosh(x)), (4.41)

which we call the "log-cosh" functionlﬂ. With this redefinition of f(z), the derivatives of the

log-likelihood take the same form as before, in Eq. (4.37)).

4.7.1.3 Multivariate Gaussian-Uniform Restricted Boltzmann Machines

Another variation of the continuous RBM involves allowing the hidden nodes to be
continuous rather than discrete. We will name this variation the multivariate
Gaussian-Uniform Restricted Boltzmann Machine (mGU-RBM), as we let the hidden
nodes take any between 0 and 1. Using the same form of the energy as Eq. , the

marginal distribution of the visible nodes becomes
1
P(v) = / dhe €(w:h)
0

1 1 ~ oo
= Z oxXp (—E(U —a)'s (w- a)) H /O dhj exp(zj(v)hy) (4.42)
j=1

—leX —lv—aT_lfv—a Hexp(zj(v))—l
- oo (5w -as >)er[1 Lo

L Just as the softplus function, Eq. , is a smoothly differentiable alternative to the Rectified Linear
Unit (ReLU), a non-continuously differentiable activation function commonly used for feedforward neural
networks, the log-cosh function, Eq. 7 is a smoothly differentiable alternative to the mean-absolute-error
(MAE), a non-continuously differentiable cost function that tends to prevent overfitting.
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while the marginal distribution of the hidden nodes remains the same as before. Then for

the conditional probabilities for the hidden units, we obtain

H
P(hjv) = H exp zj v)h;)

exp(z; -1 7
il (4.43)

Zj( )
1 —exp(—z;(v))’

P(hj = 1jv) =

The derivatives of the log-likelihood can remain in the same form as Eq. (4.37)) by redefining
f(x) as

f(z) =log (4.44)

which we will name the "leaky-softplus" function. Even though the limit of this function
exists mathematically as |r| — 0, we may encounter instabilities near z = 0 when
implemented computationally. Therefore, when |z| is small, we replace f(x) and f(z) with
their Taylor expansions up to first order in x.

Now for the final variation of the mGU-RBM, we allow the hidden nodes to take any

value between -1 and 1,

1
77(11):/ dhe €(W:h)
0

— éexp <—%(v —a)'e o - a)> ﬁ /1 dhj exp(zj(v)h;)

=171

H (4.45)
LU T ew(s) — ep(—x (@)
— o (5o -z >)]H1 o
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The conditional probabilities for the hidden units are given by

H
P(hjo) = 1 H PR

P(v smh (zj(v)) (4.46)

P(h; = 1lv) = %zj(v)(coth(z]-(m) +1),

where P(h; = 1|v) for the two variations of the mGU-RBM will be plotted alongside the
softplus function in Fig. [£.10f Notice that both variations of the mGU-RBM involve a
conditional probability that is unbounded from above, as opposed to the mGB-RBMs,
which produce a conditional probability that is bounded between 0 and 1. To interpret the
conditional probabilities we obtained for the mGU-RBMs as true probabilities, let us
assume all values are capped at 1.

Again, the derivatives of the log-likelihood can remain in the same form as Eq. by
redefining f(z) as

f(z) =log %, (4.47)

which we will name the "log-sinhc" function, inspired by the "sine cardinal" function defined
as sinc(z) = sin(z)/x. As before, we handle the singularity at = 0 by replacing f(z) and
f'(z) by their first-order Taylor expansions.

To end our discussion on the various continuous restricted Boltzmann machines, let us
compare the different definitions of f(z) that appear in the log-likelihood. In Fig. |4.11] we

plot the softplus, log-cosh, leaky-softplus, and log-sinhc functions, defined in

Eqgs. (4.17)), (4.41)), (4.44), and (4.47)). The leaky-softplus function is the only function that

permits negative values, hence the label "leaky". Both softplus and log-cosh scale as z for

large, positive x, while leaky-softplus and log-sinhc scale as = — log(z). Finally, log-cosh
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Figure 4.10: The conditional probability of a single uniform node h; activating, given
the state of the visible nodes v, for a multivariate Gaussian-uniform restricted Boltzmann
machine. The blue line represents the probability if the uniform nodes are allowed to take
values between 0 and 1 (Eq. (4.43)), while the orange line represents the probability of
the hidden nodes are allowed to take values of -1 and 1 (Eq. (4.46)). The x-axis is a
transformation of the visible nodes given by Eq. . We also plot the softplus function
(Eq. ) for comparison, as its exhibits similar character. Probability values greater than
1 are assumed to mean the hidden node h; is always activated.
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Figure 4.11: Comparison of the four functions we called f(x) during our derivations of the

multivariate Gaussian-binary and Gaussian-uniform restricted Boltzmann machines (Eqgs.
(4.17), (4.41), (4.44), (4.47)). These functions appear in the log-likelihoods log P(v).

and log-sinhc are both even functions, just like the interval for which the hidden nodes

were defined during their construction.

4.7.2 Feedforward Neural Networks

Feedforward neural networks (FNNs) are widely recognized as one of the most prominent
forms of artificial neural networks, primarily due to their training simplicity, scalability, and
generality. As a result, they have been used to solve a diverse set of complex problems within
all three branches of machine learning. However, in contrast to more interpretable models
like restricted Boltzmann machines, feedforward neural networks are often characterized as

black boxes, as their inner workings are difficult to interpret. Feedforward neural networks
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are so successful, in fact, that it is recommended to use them only when low-bias models
are required and a large data set is available. Otherwise, they can be prone to overfitting,
especially in supervised learning problems.

A deep feedforward neural network is constructed by alternating compositions of affine
transformations and simple, nonlinear transformations. It consists of an input layer, at
least one hidden layer, and an explicit output layer, all of which are densely-connected to
the adjacent layers only. As the name implies, the information flows only in one direction,
starting from the input layer, and ending at the output layer. For an FNN with L layers

(including the output layer, but excluding the input layer), we construct the nodes as

RO — . (4.48)

R0 — s (W(g)h(eq) 4 b(@) , for¢=1,.., L, (4.49)

where v are the visible nodes for the input layer h(O), h(©) are the hidden layers for ¢ =
1,....L—1, h(L) is the output layer, and f, represent the element-wise application of the
nonlinear activation function fy. Each of the hidden layers have dimension Hy, meaning w )
is an Hy x Hy_; weight matrix and b() is an H ¢-dimensional bias vector. The activation
functions f, introduce nonlinearity to the network, enabling it to learn and approximate
complex functions. Without at least one nonlinear activation function, the neural network
reduces to a simple linear model.

The output layer of an FNN is commonly distinguished from the hidden layers for two
main reasons. Firstly, the output dimension is typically determined by the problem’s
structure, rather than being a hyperparameter that can be freely chosen. Secondly, the

choice of activation function for the output layer is often different from that of the hidden
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Figure 4.12: A deep feedforward neural network with six inputs (blue circles) and three
outputs (orange circles). There are two hidden layers with eight nodes each (gray circles).
Adjacent layers are connected by directed connections, as information flows from left to right.
Arrowheads for the directed connections (solid black lines) are omitted for visual brevity.

layers. To maintain simplicity in notation, we adopt the indexing notation f,, where ¢
corresponds to the layer, to represent the activation functions rather than explicitly
singling out the output layer. In regression problems, the final activation function f is
typically linear, while binary-classification problems commonly employ sigmoid or
hyperbolic tangent functions. When it comes to the hidden layers, popular choices for
activation functions include the sigmoid function, hyperbolic tangent, and the Rectified
Linear Unit (ReLU). However, our specific applications require unbounded,
twice-continuously differentiable functions due to the evaluation of the local energy.
Consequently, we prefer activation functions such as the Gaussian Error Linear Unit

(GELU) and the Softplus function.
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4.7.2.1 Backpropagation

One of the most attractive features of a deep feedforward neural network is its remarkable ease
of training. Since we have written the forward propagation steps in Eq. (4.49) recursively,
we can write the backpropagation steps using the chain rule. The derivatives of the output

layer with respect to the weights and biases in layer ¢ are

ohL)  on(L) gn(L-1)  gpt+l) Hp0) 150
w0~ R oRED R0 WO’ (4.50)
orL)  onpL) gpL=1)  Hpt+l) op0) 51
0~ T R or® 6@ (4.51)
To simplify notation, we define the intermediate vector
g0 = WO 4 pO) (4.52)

which represents the linear transformation only. Then evaluating each term in Eqs. (4.50))

and (4.51)), we have

=R ACLER (4.53)

— @“) 5ih\ Y, (4.54)

5 =T (92(@) 0ij (4.55)

where 0;; is the Kronecker delta. Proceeding in this way, we can propagate the error from

the cost function 32&) all the way back to the input layer, updating all the weights and

biases along the way.
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4.7.2.2 Universal Approximation Theorem

Another contributing factor to the widespread adoption and success of feedforward neural
networks is the Universal Approximation Theorem. In simple terms, the theorem states that
a feedforward neural network with a single hidden layer, also known as a shallow neural
network, can approximate any continuous function on a compact subset of Euclidean space,
given there are a sufficient number of hidden nodes and the activation function satisfies
certain conditions. This theorem was originally proven for the sigmoid activation function,
and since then, there have been efforts to prove the theorem for a number of different
activation functions, network depths, and even different types of networks entirely.

We will accept the Universal Approximation Theorem as a foundational principle
without proof, although we should exercise caution in its application. While the theorem
establishes the existence of a satisfactory approximation for any continuous function using
a shallow neural network, it does not guarantee that the required number of hidden nodes
scales efficiently. Therefore, applying the theorem in practice is not as straightforward as
simply increasing the size of our network. We must also consider other factors that can
enhance training stability, capture additional correlations, and improve precision. While
the Universal Approximation Theorem has not been formally proven for more complex
network architectures, in practical applications, the effectiveness and versatility of these

architectures are widely acknowledged nonetheless.

4.7.3 Deep Sets

One of the limitations of a standard feedforward neural network is the requirement to

organize inputs into a single vector. This poses a challenge when dealing with inputs such
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Figure 4.13: An example of a permutation-invariant Jastrow wave function constructed from
the single output of a feedforward neural network. To enforce permutation invariance, the
input vectors x; can be sorted according to a chosen rule before concatenating them into a
single input vector. The large gray triangle represents a standard feedforward neural network
with nine inputs and one output.

as pixels in a 2D image, as flattening the image inherently compromises the spatial
structure of the dataE|. Similarly, standard feedforward neural networks encounter
challenges when attempting to effectively learn sets that exhibit permutation invariance.
Without special treatment, the network would require at least N! times more data points
to learn a set of N elements compared to learning on an equivalently sized data set without
permutation invariance, in order to effectively capture the inherent redundancies in the
data. Even after learning, the network’s representation of permutation invariance is only
approximate.  This becomes problematic when constructing neural-network quantum
states, as exact permutation invariance is often required in advance.

Approaches to address this issue can be categorized into two main strategies: data
preprocessing and architecture design. The former approach involves sorting the set

according to a specified rule, thereby transforming the set into a fixed-dimensional

2This challenge leads to the construction of convolutional neural networks (CNNs), a popular choice
of neural network that leverages spatial correlations in grid-like data. As CNNs are specifically designed
for grid-like data, we will not apply them as neural-network quantum states for continuous-space systems.
Consequently, we will not cover them in this chapter, but we will discuss their generalizations, graph neural
networks.
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sequence. However, this preprocessing step still results in an input vector size that scales
linearly with the number of elements in the set, making it challenging to handle large sets.
In this section, we focus on the architecture-level approach, where the inherent set
structure is ingrained within the neural network architecture. This approach is commonly
known as the Deep Set architecture, originally introduced by Zaheer et al. in Ref. [12].
Suppose we wish to learn on sets of N elements {vq, vo, ..., v}, where each element v;
is a v-dimensional vector. Formally, a function f : (]R”)N —-RYisa permutation-invariant

function of the set {v;} if it satisfies

f{vi}) = F(P{v;}), (4.56)

for any permutation Pes n. First, we recognize that the function f is permutation-

invariant if and only if it can be decomposed as
N
flvi}) =p D o) |, (4.57)
1=1

for some functions ¢ : RV — RE and p: RE — RO, The function ¢ maps each element of
the set to an L-dimensional latent space. Then, the summation destroys the ordering of the
set, resulting in an L-dimensional representation of the set. Then the function p maps the
set representation into an O-dimensional output space.

A Deep Set is realized by replacing each of the functions ¢ and p with feedforward neural
networks. Since feedforward neural networks are universal function approximators, the result
of this substitution is a universal approximator for permutation-invariant functions. The

summation operation in Eq. (4.57)) is the key ingredient in this construction, as it aggregates
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Figure 4.14: A depiction of a permutation-invariant Jastrow wave function constructed from
a Deep Set. First, each of the input vectors x; are passed through identical copies of a
standard feedforward neural network ¢ (gray trapezoids). Then the pooling operation (gray
rounded box) generates a latent space representation of the set of inputs by destroying the
ordering. Finally, the latent space representation is passed through another feedforward
neural network p (gray triangle) with a single output. The positive-definite Jastrow factor
can be obtained by simply exponentiating the single output.
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the latent space representations of the elements into a collective set representation. Since
other operations can play the same role, we often write our Deep Sets with the more generic

form

f({vi}) = p(pool({p(v)})). (4.58)

where pool can be any pooling operation that collects the set of vectors it acts upon, destroys
their ordering, and returns a vector of equal size to a single element in the set.
The general idea above can be extended to construct generic permutation-equivariant

functions as well. The function f : (RV)Y — (RO) is formally permutation-equivariant if

Pf({v;}) = F(P{vi}) (4.59)

holds for all permutations P € Sy, with f({v;}) = (fl({'vi}), fo{v;}), ..., fN({vi})>. One

of the simplest ways to satisfy this condition is to define

fi({v;}) = p(pool ({(v))lj # 1) ). (4.60)

where p and ¢ play the same role as before. Another option includes

£i{vi}) = (via({v;))). (4.61)

where g is a permutation-invariant function such as a standard Deep Set.
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Figure 4.15: One layer of a graph neural network that generates an output graph with
the same structure as the original input graph. Three types of transformations can be
considered: global (top), edge (middle), and vertex (bottom) transformations. The nodes
and edges highlighted in orange show examples of the graph components that contribute to
a given transformation.

4.7.4 Graph Neural Networks

Graph neural networks (GNNs) can be seen as a generalization of the popular convolutional
neural networks, as they extend the concept of convolutions from grid-like data, such as
images, to more general graph-structured data. A graph is a collection of nodes, or vertices,
connected by edges. The idea of a graph neural network, specifically the graph-to-graph
variant, is to take some input graph and iteratively embed correlations between the edges
and nodes to produce a new graph with the same connectivity.

For demonstration purposes, we will construct a generic version of a graph-to-graph

(t)

GNN acting on three different types of information: vertex features v;”’ € RV, edge features

ez(;) e RE, and global features g(t) € R, where t denotes the current iteration of the GNN.
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Then global features g(t) can be constructed by taking in all three types of information from

the previous graph,

gV = Gi(g" Y, oo, erltel ). (4.62)

where G is a feedforward neural network with an output dimension of GG, and p; and ¢¢ are
each Deep Sets acting on the set of all previous vertices and edges, respectively. To preserve
the original connectivity of the graph, the edge features can be updated as
(t) _ ( (t=1) _(@=1) _(t=1) (t))
6ij = FEy eij , U ) 'Uj y g ) (4'63)
where FE; is another feedforward neural network with output dimension F. Notice that
this update includes the global feature g(t) from the current step, rather than the previous
step. In addition, the update includes contributions from the two vertices connected by the
particular edge. Finally, we can update the vertex features as
t t—1 t . .

ol = Vi (ol ™V, g m({el) |7 eNG), (4.64)
where V4 is a feedforward neural network with output dimension V' and 7; is a Deep Set
acting on the set of the current edges connected to the particular node. In the notation
above, N (i) denotes the set of all nodes in the neighborhood of node i.

By updating the global, edge, and vertex features in this way, we can preserve the
original structure of the graph and embed highly non-linear correlations between all of the

features in only a few iterations of this procedure. In practice, there are many ways of

constructing a graph-to-graph GNN, but the overall concept remains the same. We
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leverage the permutation invariance of Deep Sets and the universal approximation
properties of feedforward neural networks to exchange information between the vertex,
edge, and global features. Consequently, neural-networks of this type are commonly called

"message-passing" neural networks.

4.7.5 Attention Mechanisms

Attention mechanisms are neural network components originally developed in the field of
natural language processing to help decipher the meaning of a sentence based on context.
More specifically, they were designed to address the challenge posed by word ambiguity.
Humans are able to interpret the meaning of a particular word by leveraging the surrounding
words in the sentence. For example, the word "lead" has many different possible definitions,
but if it appears alongside words like "metal", "towards", "musical", "dog", or "race", the
array of possibilities can be quickly refined.

In the context of quantum many-body problems, attention mechanisms can boost the
flexibility of a neural network and help efficiently allocate computational resources to
process the most relevant features in the data. To illustrate this concept, let us consider an
interaction potential that is only nonzero when a pair of particles have opposite spin. In
this scenario, the objective of the attention mechanism could include recognizing that the
distance information for a pair of particles is only relevant if their spins are opposite. Of
course, there could be other correlations that are non-intuitive for humans to interpret, but
the attention mechanism discovers them completely autonomously.

To build an attention mechanism, we begin by organizing our /N input sequences x; € R
column-wise into a matrix X € RN Then we define query W, key Wi, and value Wy,

weight matrices all with dimensions D x d. We apply each of these weight matrices to our
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Figure 4.16: A visualization of the attention scores between a single element of a query
vector and all the elements of a key vector. Larger attention scores are depicted with darker,
bolder lines.

data to obtain corresponding queries, keys, and values
Q=WoX, K=WgX, V=WyX, (4.65)

where ), K,V € RP*N Then the attention scores A, i.e. the normalized overlap between

the queries and keys, are commonly computed as

KT
A = softmax (%) e RPXD. (4.66)

with softmax denoting the row-wise application of the function

W
softmax(a); = - (4.67)

YD e’

where a denotes a D-dimensional vector. Scaling the denominator by /D helps prevent
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vanishing gradients. Finally, the attention scores are applied to the values as

Y = AV € RP*N, (4.68)

where Y is the output of the attention mechanism.

The attention mechanism above is specifically known as self-attention, since the queries,
keys, and values are all derived from the input data X. Other variations of attention include
cross-attention, in which the queries are either constructed from an entirely different external
data source X’ or treated as a completely trainable matrix. In addition, multiple attention-

mechanisms can be implemented in parallel, leading to multi-headed attention.
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5 Implementation

Throughout the rest of this dissertation, we will reference two different implementations of
neural-network quantum states for variational Monte Carlo, one in C++ and another in
Python. As their objectives and approaches significantly differ, we will organize this chapter

into two sections, each dedicated to its respective implementation.
5.1 NeuralAnsatz: C-+-+ Software for Localized Systems

The first implementation, named NeuralAnsatz, is an object-oriented C+-+ code that
leverages distributed-memory programming with Open MPI for efficient utilization of
multiple CPUs. The code is built from scratch using Eigen, a lightweight, header-only
linear algebra library, eliminating the need for separate linking during compilation. The
primary features and goals for this implementation include: modularity, reproducibility,
low memory costs, and exact gradient calculations. The source code can be found in this

Github repository or at this url: https://github.com/kim- jane/NeuralAnsatz.

5.1.1 Trainer

NeuralAnsatz consists of several components, called Objects, that are passed to a single
universal Trainer. The Object class is an abstract base class that simply contains relevant
names, abbreviations, and simulation information so that the Trainer can easily handle
files and compile reports. This way, it is straightforward to refer back to a past run, reset
the simulation parameters, and reproduce the results. In order to facilitate interdependence
between the Objects beyond the scope of the Trainer, each Object must be instantiated as

a std: :shared_ptr. This choice enables other Objects to assume ownership when necessary
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Figure 5.1: The highest-level structure of the NeuralAnsatz code, an object-oriented C++
software for neural-network quantum states.

and ensures safe deallocation of the pointers when the Objects go out of scope.

// main.cpp
std: :shared_ptr<Object> pObject = std::make_shared<Object>(...);

It is essential to start every driver file (e.g., main.cpp) by initializing the MPI_COMM_WORLD
communicator and setting a unique seed on each parallel process, prior to instantiating any
Objects. These lines only need to be placed at the start of the file, in this particular order,

and there is no explicit need to finalize MPI.

// main.cpp
mpi::initialize();
rng::initialize();

Then after constructing all the desired Objects, the trainer can be created as follows:
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// main.cpp

Trainer T(pSystem, pWaveFunc, pSampler, pOptimizer, pCostFunc, pDensity,
filename) ;

T.train();

Notice that the Trainer accepts a pointer to a CostFunction rather than a Hamiltonian.
This design choice is deliberate because while variational Monte Carlo involves minimizing
the energy as a reinforcement learning problem, there are situations where supervised
learning can be valuable, in pretraining the WaveFunction for example. Our Trainer is
versatile enough to handle both supervised and reinforcement learning problems.

One of the main jobs of the Trainer is to handle all opening, closing, and writing of files.

For a given simulation, the Trainer sends four different outputs to the data/ folder:

e data/history/filename.txt: This file contains the entire history of the energy, the
error in the energy, the norm of the gradient, the norm of the parameter vector, the
average positions, the variance of the positions, the acceptance rates for the positions
and spins, and the time per iteration. If more than 10000 training epochs are requested,
the Trainer will skip printing some iterations to prevent the file from becoming too

large.

e data/log/filename.txt: This file contains snapshots of the contents in
data/history/filename.txt for a broad, easy-to-interpret overview of the training.
Any errors or additional print statements will be sent to this file, including the total

execution time of the program.

e data/params/filename.txt: This file contains snapshots of the variational

parameters throughout training. One can use this file to provide pretrained
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parameters for a wave function or a component of a wave function. If an error occurs,
one can revert back to a previous stage in the training by deleting the unwanted

variational parameters.

e data/density/filename.txt: This file contains snapshots of the density during
training, provided by the Density object. Monitoring the density is helpful for
debugging problems during training and, of course, to visualize the training of the

wave function.

All files will contain a summary of the simulation details at the top of the file. Because
the wave function tends to evolve the most near the beginning of the training process, the
iterations at which snapshots are taken follow the pattern 0, 10, 20, ..., 100, 200, ..., 1000,

2000, ..., until the specified number of total training epochs is reached.

5.1.2 Systems

The System abstract class is very simple; it contains only the most basic simulation details
that most other Objects depend on, such as the number of particles, the number of spatial
dimensions, the mass, the value of h, etc. The present version of NeuralAnsatz offers support
for localized, continuous-space systems of spin-0 bosons and spin-1/2 fermions in arbitrary
spatial dimensions. Although support for nucleons is present in the source code, it has
not undergone testing with a Hamiltonian that includes both spin and isospin dependence.
Ongoing development is underway to incorporate support for periodic systems, elements of
which will be discussed herein.

In order for all Objects to be compatible with both bosons and fermions, we store all

118



spatial and spin degrees of freedom in a single matrix,

T T T
1 ™ 5
T T T
xXr T S
2 D)
X = = e RNVx(d+s) (5.1)
T T T
[ TN | "N SN

where the d left-most columns represent the positions, the s right-most columns represent the
spins (and isospins), and the rows correspond to the particles. This construction is simply the
matrix form of the notation for X we introduced in Sec.[2.1l The bolded notation will be used
to denote vectors, while the unbolded notation will be used for matrices, but they should
be understood as interchangeable when used as inputs to functions, e.g. f(X) = f(X).
Objects that are designed specifically for Bosons, Fermions, or Nucleons will be specified
in the constructor. Otherwise, all Objects are functions of any System. Due to the heirarchy
of this group, functions that operate on a System will be compatible with any derived class,
and functions that operate on Fermions will be compatible with Nucleons. Derived classes
can override functions from their base classes by providing their own implementation of the
function with the same name and signature.

The Bosons class is the simplest derived System class, as it contains no special attributes
that are specific to bosons, other than their name. The Fermions class, on the other hand,
determines how many distinct spatial orbitals are needed in a Slater Determinant, given a
specific number of spin-up /spin-down particles. It also stores a convenient spin configuration
with the desired polarization for use during the Monte Carlo sampling of spins, as discussed
in Sec. and projects configurations onto the pre-determined spin components of the

single-particle spin-orbitals.
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Figure 5.2: A specific example of the hierarchical structure provided by abstract base classes
and derived classes. The classes that appear lower on this graph inherit properties from the
classes above it.

// fermions.cpp
mat Fermions::get_spin_projection(const mat& X)
{
s_ = X.col(n_dims_);
for(int i = 0; i < n_parts_; ++i)
{
S_.row(i) = 0.5 * (ones_ + spin_orbitals_(i,0) * s_ );
}
return S_;
}

This code snippet highlights a few additional points about our strategy. As we aim to
minimize our memory footprint, we declare known array sizes in the constructor of the class,
rather than dynamically allocating them on the fly. The names of all member variables are
followed by a trailing underscore. In the above example, S_ is a square matrix of dimension
N that holds the spin projections, and s_ is a vector that holds the spins from the larger
matrix X. The variable spin_orbitals_ is an N X s matrix that stores the spin and isospin
quantum numbers corresponding to each single-particle spin-orbital. The function above is

overridden in the Nucleons class to account for the isospin projections.
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5.1.3 Wave Functions

Classes derived from the abstract base class WaveFunction must provide definitions for the

following capabilities:

e Compute the logarithm of the trial wave function log W (X)), or more generally,

log [Wg(X)| and sgn (Vg (X)).

e Compute the local gradient of the trial wave function with respect to the coordinates
of all particles Vlog Ugy(X) = <V1 logWg(X),Valog¥g(X),---,Vylog \Ilg(X)>.

e Compute the sum of the local Laplacians with respect to the coordinates of each

V2Wy(X
particles f\il %)(()) This will allow the Hamiltonian class to compute the local

energy Fg(X) = %, as defined in Eq. (3.47).

e Compute the local gradient of the trial wave function with respect to the trainable

parameters Og(X) = Vg log Vg(X), as defined in Eq. (3.48).
e Flatten and unflatten the trainable parameters 6.

As implied by the requirements listed above, computations will be written in terms of
log Ug(X) instead of Wg(X), which helps to mitigate the risk of numerical overflow or
underflow. In addition, the abstract base class allows snapshots of the parameters to be
written to file during training, and conversely, allows pretrained parameters to be loaded
from file. All computations are written exactly in terms of the variational parameters 6
and the input data X, or more specifically, its matrix form X. We will first discuss the
various options for inputs to the neural networks, then the implementations of specific

neural-network quantum states.
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5.1.3.1 Inputs

The purpose of an Input object is to format the raw data X into a single vector v which
will be passed into an artificial neural network. The matrix X € RNV >(d+5) contains all the
spatial and spin degrees of freedom of all N particles, where d and s are the numbers of
spatial and spin degrees of freedom per particle, respectively. For instance, nucleons have
d =3 and s = 2, with x; = (1, s;,t;) containing the coordinates, spin projections on the
z-axis, and the isospin projections on the z-axis. Separating the Input object from the
WaveFunction object allows for increased modularity, as we can interchange the different
types of inputs to the network without affecting the source code of the neural-network

quantum states.

One-Body. If the one-body features are the inputs to the neural network, then the input

vector v can be divided into N equal parts

v = (v1,v9,...,0y) e RV (5.2)

with v; € RY, Nv = V. To compute the local kinetic energy, we will need the expression for
the gradient of v with respect to all of the particles R = (71, 79,...,7N) € RV which can

be written in block matrix form as

Vivy Vovy -+ Vv
Vivyg Vaovy -+ Vg

Vo = e RVvxNd (5.3)
Vivy Vaovy -+ Viyoy
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with the blocks
Gvi

— 27 cRVXA, 5.4
or; (5.4)

Vjv,-

The Laplacian of each visible node with respect to each particle can be organized into a

similar block matrix

V%’Ul V%’Ul s V%V’Ul
V2v2 VQ'UQ ce V2 (%)
Ve=| ! 2 N2 g gVoxN, (5.5)
_V%’UN V%’UN cet V%V'UN_
with
0 v
2 [ vx1
;= — - — € RV 5.6
V]’UZ 5'?]' 8rj < ( )

Writing the Laplacian in this way makes it possible to use the chain rule efficiently later on.

Unsorted, Nonperiodic. In the simplest case, we can take v to be the row-wise, flattened
form of X. This type of input vector is suitable for localized systems and Deep Sets, a neural
network that enforces permutation symmetry at the architecture level. Then we simply have

v=d+ s and

v; =z, (5.7)
Iixq

Vjvi = 5i,j ) (5.8)
Osxd

V5v; = 0. (5.9)
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Sorted, Nonperiodic. Another way to enforce permutation symmetry is to sort the particles
according to some scalar value. For example, one-dimensional particles can be sorted by their
position, while two- and three-dimensional particles can be sorted by their Euclidean distance
from the origin r; = ||7;||. Since permutation symmetry is enforced at the data-processing
level, this type of input vector is suitable for any neural network. Let Zy = {1,2,..., N}
denote the set of all integers from 1 and N, and m : Zy — Z)y denote the bijective map
that sorts the particles according to the chosen rule. Then the result is very similar to before,

with v = d + s and

Vi = T (5.10)
Iixq

Vjv@- = 5m(i),j s (5.11)
054

Viv; = 0. (5.12)

Unsorted, Periodic. For periodic systems, it is crucial to transform X so that v is explicitly
periodic, otherwise the neural networks can learn to break the symmetry, leading to erroneous

results. To enforce L-periodicity, we transform the coordinates as

2mr; 2mr;
T — 7 = <cos ( 7TLTZ> , sin (WTTZ)) e R%, (5.13)

such that the components of the input vector are

v; = (’Fi, Si) € RQdJrS, (5.14)
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implying v = 2d 4+ s. Then the derivatives are

—diag [sin (@)]
2m ,
Vj”i:fdi,j diag [cos(ZWLTZ)] ; (5.15)
i Osxq i
cos <27Zi)
2 2m 2 21 2m 2 T
Vivi=—=\T ) G |sin (FF) | == (T ) % N (5.16)
0

where diag [r| refers to a diagonal matrix with r on the diagonal, and the trigonometric

functions are applied element-wise.

Sorted, Periodic. While the inputs themselves must be periodic in this case, the sorting map
does not necessarily have to sort according to periodic positions or distances. We therefore
use the same sorting map m as the nonperiodic case. The resulting transformation is similar

to the previous case, except with the indicies permuted

v; = (fm(i), 3m(i)> € R2d+s, (5.17)
_—diag {sin <2Mm(i))] _
L
2 2rr, o
Vjv; = %5m(i)7j diag [cos <—£I(Z))] ) (5.18)
i 054 |
[ 2mr, o\ ]
COSs (—}Jn(l))
2 2 r .
9 2m 2 B 2T T'm(i)
V== () bnios | ()| =~ (%) o | ew
0
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with v = 2d + s.

Two-Body. If the inputs to the neural network are two-body features, then v can be divided

into P = N(N — 1)/2 equal parts

v = (v1,va,...,vp) € RV, (5.20)

where v € RV and Pv = V. The gradient of v with respect to all of the particles r =

(ri,ro,...,TN) € RYD can be written in block matrix form as

-Vlvl Vovy - VNvl-
Vo = Vivr Vavz e Vv e RPvxNd, (5.21)
_Vlvp Vovp --- VN'vp_
with the blocks
Vv = g—:: e RVX4, (5.22)

The Laplacian of each visible node with respect to each particle can also be organized into

a block matrix

V%’Ul V%’Ul cee V%V’Ul
V2’02 V2’02 ce V2 (%)

Vie=| ! 2 N2 e rPvxN, (5.23)
_V%'vp V%vp cee V%V’Up_
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with

Vv, = — - L e RV¥L (5.24)

In the following, we will assume that the two-body features are symmetric, meaning the
feature for the pair 7, j is the same as the feature for pair j,7. We store the mapping between
a particular pair (i,7) and their pair index p as i(p) and j(p), always assuming ¢ < j. To
simplify notation, we will use

(5.25)

_’r‘.

2Zp = Ti(p) — Tj(p)

to denote the separation vector between particles i(p) and j(p) corresponding to the pair p,
and

2p = Il (5.26)

to denote the distance between the pair.

Unsorted, Nonperiodic. The components of the input vector are
= ( vk si) € RIFS (5.27)
Yp = s Si(p) * Sji(p) ) '

where * denotes an element-wise product of the spin degrees of freedom and v =1+ s. The

corresponding derivatives are

) ) 1 4]:5
Vivp = ( ip).k j(p)ak> 2 ’ (528)
100xD
2o, = (6 ) 2 |!
Vivp = ( i(p).k T j(p),k> ) : (5.29)
0
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Sorted, Nonperiodic. Let m : Zp — Zp be the mapping that sorts the pairs according to

the distance between them 2. Then,

Up = (Zm(p): SiGm(p)) * Sj(m(p)))- (5.30)
[ T
Vivp = (5i<m<p>>,k —5j<m<p>>7k) PP P (5.31)
m(p) 00D
9 2 |1
Vk’vpz(5i<m<p>>,k+5j(m<p>>,k) iy || (5.32)
m\p O

Unsorted, Periodic. The distances between pairs are transformed to their periodic

counterparts,

~ 2
2p > 2p = H sin <7T—Lp> H, (5.33)

making the components of the input vector become
~ 1

where s; € R is a vector containing the spin degrees of freedom of the i-th particle and *

denotes an element-wise product.

2 W@p

T
sin
Vivp = <5i(p),k - 5j(p)’k> 2L7T’2p ( ) € R (5:35)

O0gxD
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c R1T€

2
Vivp = (52'(19),/6 T 5.7'(1?)7/6) o

- (5.36)
’Lp 0

Sorted, Periodic. Let m : Zp — Zp be the mapping that sorts the pairs according to the

periodic distance between them 2. Then,

Up = Gin(p)s Sim(p)) * Si(mp)) € R'TE, (5.37)
B T
~ |sin (_2”21@)) o
Vivp = (5¢(m(p)),k - 6j(m(p))7k) m eR (5.38)
i OQxl)
v%;:(& +0; ) 2 |t c RITC (5.39)
kP i(m(p)),k T %3 (m(p)).k (y) 0 :

To compute v, Vv, and V2w in terms of the inputs X inside a particular WaveFunction
class, we call the format function using a pointer to the Input object. There are three
versions of the same format function since v, Vv, and V2v are not necessary for every
computation. All derived classes, e.g. OneBodyInputs and TwoBodyInputs, must provide

definitions for these functions.

// input.hpp

virtual void format(const mat& X, vec& v) = 0;

virtual void format(const mat& X, vec& v,
virtual void format(const mat& X, vec& v,

mat& dv) = 0;
mat& dv, mat& d2v) = 0;
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5.1.3.2 Continuous Restricted Boltzmann Machines

The various versions of multivariate Gaussian-Binary and Gaussian-Uniform restricted
Boltzmann machines are implemented under a single class called ContinuousRBM. In
Sec. [1.7.1] we defined a new function called f(z) that allowed all the log-likelihoods and
their gradients with respect to the parameters to have the same form. Since we already
need to define activation functions to implement feedforward neural networks, we
implement f(x) as activation functions as well, in order to streamline the ContinuousRBM
class. More information on the implementation of activation functions will be provided in
the next section.

We will use ContinuousRBM as a symmetric, positive-definite Jastrow wave function for
bosons, or as a Jastrow correlator for fermions, combined with an antisymmetric Slater
determinant. Recall the form of the log-likelihood for a continuous RBM written in terms

of the trainable parameters 8 = (a, triu(S), b, W),

H

logP(v) = —%(v — a)T exp(S)(v —a) + Z f(zj(v)) +C, (5.40)
j=1

z(v) = b+ W7 exp(S)v. (5.41)

where C' is a constant. Since P(v) is the marginal probability distribution of the visible

nodes v, it is natural to define our trial wave function as
log Ug(X) = logP(v(X)). (5.42)
In fact, we could make the relationship between the probability amplitude Wg(X) and the
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probability distribution more exact by writing log |¥g(X)| = % log P(v(X)), but due to the
presence of all the trainable parameters, the two forms are practically equivalent.
Computing the local gradient with respect to R = (r1,...,7) becomes straightforward

because of the way the Input object organizes Vu(X) into blocks. Namely,
_ T / Tyi/T
Vg Ugp(X) = | — (v —a)T + f(z(v(X)))TW ] exp(S) Vo (X). (5.43)

To compute the sum of local Laplacians, first notice that

1
Vo (X)

VWg(X) = Vi og Ug(X) + (V;log Ug(X))*. (5.44)

If we again, organize our Laplacians into blocks, we can simplify the computation to be in

terms of matrix and array operations only, eliminating the need for any for-loops.
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// continuous_rbm.cpp
long double ContinuousRBM::get_local_laplacian(const mat& X)
{
pInput_->format(X, v_, dv_, d2v_);
K_ = exp(S_);
va_ = v_ - a_;
dA_ = - va_.transpose() * K_ * dv_;
d2A_ = - ( va_.transpose() * K_ * d2v_ ).sum()
+ - ( dv_.transpose() * K_ * dv_ ).trace();
Z_ = b_ + W_.transpose() * K_ * v_;
dz_ = W_.transpose() * K_ * dv_;
d2z_ = W_.transpose() * K_ * d2v_;
df_ = pFunc_->get_df(z_);
d2f_ = pFunc_->get_d2f(z_);
dB_ = df_.transpose() * dz_;
d2B_ = df_.dot( d2z_.rowwise().sum() )
+ d2f_.dot( dz_.rowwise() .squaredNorm() );
return d2A_ + d2B_ + (dA_ + dB_).squaredNorm() ;
}

In the above code snippet, pInput_ is the member pointer to the Input object and pFunc_
is the member pointer to the (activation) function f(z). Finally, because we defined our trial
wave function as the marginal probability distribution of the visible nodes, the derivatives
of the log-likelihood in Eq. coincide with the derivatives of log Wg(X).

In general, the variational parameters of any restricted Boltzmann machine can be
initialized to small random values near zero. However, because RBMs are highly
interpretable models, we can provide much better guesses for the initial parameters based
on our physical intuition. As a reminder, the variational parameters of an mGB-RBM and

an mGU-RBM are 0 = (a, triu(S), b, W), where a are the biases of the visible nodes, S is
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used to reparameterize the inverse covariance matrix

vl = exp(S;;), and Ei_jl = S;; for j # 1,

(24

b are the biases of the hidden nodes, and W is a weight matrix connecting the visible and
hidden nodes. If b and W are both identically zero, the marginal probability distribution of
both RBMs become a multivariate Gaussian. Thus setting b and W to small random values
near zero represents small deviations from the multivariate Gaussian. For small b and W,
the individual peaks of the Gaussian nearly coincide with the biases a. Therefore, we can
set the initial values of a based on our guesses for the most likely positions of the particles.

The initialization of the matrix S is the most important, as choosing convenient values
can prevent the multivariate Gaussian from becoming multi-modal early on during training,
leading to the collapse of the sampling process. In addition, the above reparametrization
guarantees the invertibility of =1 but it does not guarantee that the diagonals of ¥ are
positive. Since negative variances are unphysical, we bias our network to provide positive
variances at the beginning of training. Then the RBM naturally learns to maintain positive
variances on its own. This is accomplished by choosing the diagonal values of S as small

positive values, and the off diagonal values as small negative values.

5.1.3.3 Feedforward Neural Networks

Deep feedforward neural networks are implemented under a class called DeepFNN. This class

assumes the trial wave function is given by
log Vg (X) = p(v(X)), (5.45)
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where p is a feedforward neural network with a single output, and v(X) is constructed by the
format function belonging to the Input object. In addition, p is assumed to be rectangular
in structure, meaning all the hidden layers have the same number of nodes.

DeepFNN consists of a sequence of DenseLayer and ActivationLayer objects, which
represent the affine transformations and the nonlinear, element-wise transformations,
respectively. Both DenseLayer and ActivationLayer are derived from the abstract base
class Layer. In addition to simple functions that facilitate the flattening and unflattening

of the parameters, the Layer objects have the following key member functions:

// layer.hpp

virtual void forward(vec& h) = 0;

virtual void forward(vec& h, mat& dh) = 0;

virtual void forward(vec& h, mat& dh, mat& d2h) = 0;

virtual void backward(int& iter, vec& gradient, vec& du_dh) = O;

The forward functions are used during the computations of the (log of the) wave function,
the local gradient with respect to the coordinates, and the sum of local Laplacians. The
backward function is used during the computation of the local gradient of the trial wave
function with respect to the variational parameters.

Even though activation functions are not formally considered layers of the network
themselves, it is convenient to implement them as layers because the forward-passing and
backward-passing steps can be written extremely simply. More specifically, if we store all
the DenselLayer and ActivationLayer objects into a single std::vector of pointers to

each layer, we can write the wave function computation as the following:
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// deepfnn.cpp
long double DeepFNN::get_logpsi(const mat& X)

{
pInput_->format(X, h_);
for(int 1 = 0; 1 < n_layers_; ++1) pLayers_[1]->forward(h_);
return h_(0);

}

Similarly, the gradient with respect to the parameters is computed as the following:

// deepfnn.cpp
vec DeepFNN::get_param_gradient(const mat& x)
{
// forward pass to store intermediate values
pInput_->format(x, h_);
for(int 1 = 0; 1 < n_layers_; ++1) pLayers_[1]->forward(h_);
// backward pass to calculate gradient
iter_ = 0;
du_dh_ = vec::0nes(1);
for(int 1 = n_layers_-1; 1 >= 0; --1) pLayers_[1]->backward(iter_,
param_grad_,
du_dh_);
return param_grad_;
}

Notice that the above gradient calculation includes a forward pass. This is because the
gradient of the output depends on the input for both DenselLayer and ActivationLayer.
Thus, during the forward step, a copy of the input vector is stored for later use.

The forward pass for the DenseLayer object is exceptionally simple, as it consists of only

a linear transformation.
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// dense.cpp
void Denselayer: :forward(vec& h, mat& dh, mat& d2h)

{
h=W_x*xh+ b_;
dh = W_ * dh;
d2h = W_ * d2h;
}

Similarly, the backward pass can be written simply as well.

// dense.cpp
void Denselayer: :backward(int& iter, vec& gradient, vec& du_dh)
{

du_dW_ = du_dh * h_in_.transpose();

du_db_ = du_dh;

du_dh = W_.transpose() * du_dh;

gradient.segment (iter, n_params_) = concat(flatten(du_dW_), du_db_);
iter += n_params_;

In the above, the character u represents the single output of the entire network, written
as p in Eq. . The first three lines compute the gradient of the output with respect
to the weights and biases, as well as the gradient with respect to the hidden nodes. Then
the gradients with respect to the parameters are flattened and stored in their respective
locations in the incoming gradient vector, which stores the gradients with respect to all
weights and biases in the network. These weights and biases are initialized using the Glorot
normal scheme and the biases are initialized to zero.

On the other hand, the forward step for the ActivationLayer is slightly more
complicated because of the nonlinearity and the block organization of the gradient and

Laplacian.
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// activation.cpp
void Activation::forward(veck h, mat& dh, mat& d2h)
{
for(int i = 0; i < h.size(); ++i)
{
d2h.row(i) *= get_df(h(i));
for(int p = 0; p < n_parts_; ++p)
{
d2h(i,p) += get_d2f(h(i))
* dh.row(i).segment (p*n_dims_, n_dims_).squaredNorm() ;
}
dh.row(i) *= get_df(h(i));
h(i) = get_f(h(i));
+
}

Here, the functions get_f, get_df, and get_d2f are pure virtual functions representing
f(x), f'(x) and f”(x), respectively. They must be defined in each class derived from
ActivationLayer. Luckily, the backward step is even simpler than for the DenseLayer

because there are no trainable parameters.

// activation.cpp
void Activation::backward(int& iter, vec& gradient, vec& du_dh)
{
for(int i = 0; i < du_dh.size(); ++i) du_dh(i) *= get_df(h_in_(i));
}

Again, the backward pass involves the original input vector, which was saved in the member
h_in_.

As a final note, DeepFNN is often accompanied by an enveloping FixedGaussian, but we
will omit discussion on the latter as it is straightforward to implement and contains no

variational parameters. Products of DeepFNN and FixedGaussian are generated by

ProductWaveFunction, discussed in Sec. [5.1.3.6
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5.1.3.4 Deep Sets

The present version of NeuralAnsatz also provides a simple implementation of Deep Sets in

a class called DeepSet. In this case, the trial wave function is given by

log W(X) = p(pool ({¢(vi(X)})), (5.46)

where p is a feedforward neural network with a single output, ¢ is feedforward neural
network with a vector output, and pool is a pooling operation specified by a
Poolinglayer. Additionally, the index 7 in v;(X) may run over the total number of
particles N or the total number of pairs N(N — 1)/2, depending on which Input object is
chosen. The overall structure of DeepSet is very similar to DeepFNN except that there are
now two std::vector members of pointers to the Layer objects corresponding to p and ¢,
and an additional pointer to the PoolinglLayer. For example, the local laplacian is

implemented as the following:

// deepset.cpp

long double DeepSet::get_local_laplacian(const mat& X)

{
pInput_->format (X, h_, dh_, d2h_);
for(int 1 = 0; 1 < n_layersl_; ++1) plLayersi_[1l]->forward(h_, dh_, d2h_);
pPooling_->forward(h_, dh_, d2h_);
for(int 1 = 0; 1 < n_layers2_; ++1) plLayers2_[1]->forward(h_, dh_, d2h_);
return dh_.squaredNorm() + d2h_.sum();

}

As a side note, the elements of pLayersl_ include pointers to objects derived from
DenselLayer, called DenseSet, that passes elements of the set forward and backward in

parallel rather than the entire input at once.
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The more important change to discuss is the inclusion of the PoolinglLayer. As a simple

illustration, see the implementation of SumPooling below.

// sum.cpp

void SumPooling::forward(vec& h)

{
h_out_.setZero();
for(int s = 0; s < n_set_; ++s) h_out_ += h.segment(s * n_out_, n_out_);
h = h_out_;

Since the ordering of the set elements is destroyed in the forward process, and each set element
is given equal weight to the eventual output, the backward direction can be completed
by essentially creating n_set_ copies of the gradient and passing it back to the DenseSet
sequence. Then the DenseSet layers average the contributions to the gradient from each
element of the set. If the set elements have unequal weights in the eventual output, the

inputs need to be stored to compute the corresponding weights in the backward direction.

5.1.3.5 Slater Determinants

The implementation of SlaterDeterminant in NeuralAnsatz is limited by the fact that
our sampling procedure involves perturbing all particles in a single Monte Carlo step, rather
than perturbing one particle at a time. In addition, we include the option to sample spins
as well, where the number of spin-up and spin-down particles are not necessarily equal.
Consequently, we cannot take advantage of commonly-employed tricks involving updating a
single row or single column of the determinant matrix, nor is it straightforward to split the
determinant into a product of two determinants corresponding to the spin-up and spin-down

particles. Then, the analytical computations of the gradients and Laplacians of the Slater
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determinant with respect to the particle coordinates require taking the determinant and
the inverse of the matrix. According to Eigen’s documentation, both of these operations
are only guaranteed to be stable for at most 4 x 4 matrices. Nonetheless, we describe the
implementation of SlaterDeterminant here, but we will exercise caution for systems larger
that N = 4.

A Slater determinant is given by

_901(5131) pi(x2) - ¢i(xN) _
HX) = A1N!det [%(wiﬂ_\/%det 902('981) 902('982) 902(va)  an)
on(@1) en(®2) - en(Ey)

where ¢, are single-particle spin-orbitals indexed by «, and we have omitted the subscript
0 on the ansatz Wg(X) because we do not consider trainable spin-orbitals in this
implementation. As mentioned in Sec. 5.1.2] when a system of Fermions is constructed,
the number of distinct spatial orbitals that is required in the Slater determinant is
automatically stored. The member orbital_index_ acts as the mapping between orbital
index o and the quantum numbers of the spatial orbitals. At the same time, the spin
components of the spin-orbitals are determined and stored in the member
spin_orbitals_. Together, orbital_index_ and spin_orbitals_ determine each unique
spin-orbital.

The orbitals are computed by a Basis object which takes the quantum numbers of the
spatial orbitals stored in orbital_index_ and evaluates the orbitals for all particles. For the
spin components, the Fermions class computes the spin projections using the information

stored in spin_orbitals_. One can simply take the element-wise product to fill the elements
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of the matrix, and then take the determinant.

// slaterdeterminant.cpp
long double SlaterDeterminant::get_logpsi(const mat& X)
{
D_ = (pBasis_->get_states(X)).cwiseProduct(pFermions_->get_spin_projection
(X))
det_ = D_.determinant();
return logl(fabsl(det_)) + lognorm_;
}

Storing a copy of the determinant in det_ allows the Hamiltonian to access the sign of the
determinant if the interaction is spin dependent.
To write the local gradient with respect to a particle’s coordinates, we first define the

matrix

D(X) = [pa(x;)], (5.48)
for brevity, and use Jacobi’s formula,

1

mviqf@() —tr (D(X)_lviD(X)> , (5.49)

where V; D (X)) means to evaluate the derivative for each spatial dimension of particle i, and
the subsequent trace is taken separately for each direction. For the local Laplacian, we also
use that V;D(X)~! = —=D(X)~'v,D(X)D(X)~ 1,

1

@(X)quf(X) — tr (D(X)—lva(X)) 4t (D(X)_lvl-D(X)>

(5.50)
“tr (D(X)*lviD(X)D(X)*lviD(X)) .

The computation of the spatial parts of V;D(X) and VZZD(X) are handled by the Basis.
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5.1.3.6 Products

The wrapper class ProductWaveFunction, derived from WaveFunction, enables the creation

of products involving any desired number F' of WaveFunction factors,

F
To(X) =[] Vo, (X), (5.51)
f=1

where the parameters are concatenated together @ = (61,6, ...,0p). It is straightforward

to show that the local gradient with respect to a particle’s coordinates is given by

|

1 1
in‘l’e(X) = fZ::1 mviwof(X% (5.52)
and the local Laplacians are given by
1 G
_ 2
\IIO(X)Vl\IJG(X) - J; qj@f(*X)VZ qj@f(X)
a . (5.53)
+2)° <ﬁvixp9f()()> : (ﬁvi\ygg(xv .
=\ Yo, (X) 64(X)

The utilization of the ProductWaveFunction becomes necessary when working with a
SlaterDeterminant or when employing a FixedGaussian as an enveloping function.
Furthermore, different neural-network quantum states can be combined to achieve the best

of both (or all) worlds.

5.1.4 Hamiltonian

The Hamiltonian class is an abstract base class that takes System and WaveFunction objects

as input to its constructor. By default, it is the free Hamiltonian which just contains the
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kinetic energy operator. Its virtual member functions get_external and get_interaction

both return zero, unless they are overridden by derived classes.

// hamiltonian.cpp
long double Hamiltonian::get_local_energy(const mat& X)

{
return get_local_kinetic(X) + get_external(X) + get_interaction(X);
}
long double Hamiltonian::get_local_kinetic(const mat& X)
{
return -hbar2m_ * pWaveFunc_->get_local_laplacian(X);
¥

If the interaction potential contains a singularity, it is strongly-recommended to regularize
the singularity by introducing a hyperparameter ry and transforming as

F(r/ro)

; 5.54
g (5.54)

1
T_k —
where f(r) is a function that scales as ~ r for small r and approaches 1 for large r. By
doing so, the long-range behavior of the original interaction is preserved, but at » = 0, the
potential is finite, taking a value of (1/rg)*. We typically choose f(r) = tanh(r). Pretraining
the neural-network quantum states on a softer potential before lowering the value of rg to
tackle harder potentials has been found to significantly stabilize and accelerate performance.
In addition, this allows the neural-network quantum states to discover the cusp condition on
it’s own, rather than providing it from the very beginning, demonstrating their representation
power.
It should be noted that adding new Hamiltonian objects is extremely straightforward,

as one only needs to specify the external and interaction potentials for a single
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configuration sample X. Since the neural-network quantum states are entirely separate

from the Hamiltonian, one can swap different interactions without affecting the states.

5.1.5 Sampler

Metropolis and Importance are classes derived from the abstract Sampler class. The
Sampler class also provides the option to sample the spins as well. The implementations
follow the descriptions provided in Sec. [3.1.1]

In addition to pointers to the System and WaveFunction objects, the class constructor
takes n_eq_init, n_eq, n_void, sigma0, step as arguments. The integer n_void specifies
the number of samples to skip between each effective sample, constituting one Monte Carlo
cycle. At the very beginning of the simulation, initial positions are drawn from a Gaussian
with standard deviation sigmaO, and the sampler is equilibrated using n_eq_init Monte
Carlo cycles. Instead of equilibrating the sampler from scratch at the beginning of each
training epoch, we recover the last configuration and equilibrate using only n_eq cycles.
Typically, n_eq can be one or two orders of magnitude smaller than n_eq_init. This
construction assumes the learning rate is not so large that the wave function changes
significantly in a single epoch. The parameter step determines the size of the spatial

perturbations.

5.1.6 Optimizer

The abstract Optimizer class takes a pointer to the WaveFunction object, the initial learning
rate etal, and the total number of epochs n_epochs as input. Derived classes only need to

provide a definition for the following pure virtual function.

// optimizer.hpp
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virtual void update_params(vec gradient) = O;

This function simply takes a gradient vector and updates the parameters of the

WaveFunction object. The specific optimization algorithms were discussed in Sec. [3.2.2]

5.1.7 Cost Functions

The CostFunction computes both the cost and the gradient of the cost with respect to the
parameters. Derived classes can be designed for reinforcement learning or for supervised
learning. In variational Monte Carlo, we use the Energy as the cost, which has the following

constructor signature.

// energy.hpp
Energy(int n_samples,
long double epsilon,
std: :shared_ptr<System> pSystem,
std: :shared_ptr<WaveFunction> pWaveFunc,
std: :shared_ptr<Sampler> pSampler,
std: :shared_ptr<Hamiltonian> pHamiltonian);

If the parameter epsilon is larger than zero, stochastic reconfiguration is used to
precondition the gradient. To minimize the memory footprint of the program, samples are
taken on the fly and expectation values are computed as running averages. Once all
parallel processes have completed the computations of their local expectation values, Open
MPI is used communicate between processes and aggregate the results. Since the Energy
requires the Hamiltonian object as input, there is no need for the Trainer to have explicit

ties to the Hamiltonian. The gradient calculation for the Energy is shown below.

// energy.cpp
vec Energy::get_gradient()
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reset_gradient_estimator();
pSampler_->equilibrate();
for(int n = 0; n < n_samples_loc_; ++n)

{

pSampler_->get_next_config();

= pHamiltonian_->get_local_energy(X_);
pWaveFunc_->get_param_gradient(X_);
X_.leftCols(n_dims_);

T O M >
|

E_avg_loc_ += E_;

E2_avg loc_ += E_ x E_;
O_avg_loc_ += 0_;

E0_avg_loc_ += E_ * 0_;
r_avg_loc_ += R_.sum();
r2_avg_loc_ += R_.squaredNorm();

if (pSampler_->positions_accepted()) r_acc_loc_ += 1;
if (pSampler_->spins_accepted()) s_acc_loc_ += 1;

}

finalize_gradient_estimator();

return gradient_;

if (use_stochastic_reconfig_) 02_avg_loc_ += O_ * O_.transpose();

If supervised learning of the WaveFunction is desired, the CostFunction needs to take

a target WaveFunction object as input in place of the Hamiltonian.

For instance, the

constructor for the Overlap between two wave functions has the following signature.
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// overlap.hpp
Overlap(int n_samples,
long double sigma,
std: :shared_ptr<System> pSystem,
std: :shared_ptr<WaveFunction> pWaveFunc,
std: :shared_ptr<Sampler> pSampler,
std: :shared_ptr<WaveFunction> pTargetWaveFunc) ;

The parameter sigma specifies Gaussian probability distribution from which samples are

drawn.

5.1.8 Density

The Density object takes snapshots of the spatial distribution during training. If the
WaveFunction is a product, it is possible to take snapshots of each individual factor as

well. The constructor for the abstract class is given by the following.

// density.hpp
Density(int n_samples,
int n_bins,
long double bounds,
std: :shared_ptr<System> pSystem,
std: :shared_ptr<WaveFunction> pWaveFunc,
std: :shared_ptr<Sampler> pSampler,
bool sample_factors = false);

Since obtaining an accurate density requires a large number of samples compared to the
number of samples required to calculate the cost, the Density object takes its own n_samples
parameter. While taking these samples, the OneBodyDensity object bins them according
to their position in one-dimension, or their distance from the origin in two- and three-
dimensions. Alternatively, the TwoBodyDensity pair distribution functions can be computed

by binning the distances between all pairs.
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5.1.9 Running NeuralAnsatz

First, clone a copy of the Github repository at this url: https://github.com/kim-jane/
NeuralAnsatz. Ensure that both make and Open MPI are installed. On Ubuntu, this can be

accomplished by running the following commands in the terminal:

sudo apt-get update

sudo apt install build-essential
sudo apt install make

sudo apt install openmpi-bin

On MacOS, one can instead run the following;:

brew update

brew upgrade

brew install gcc
brew install make
brew install open-mpi

Alternatively, the appropriate modules can be loaded on a high-performance computing

cluster. Next, enter repository and compile the NeuralAnsatz library.

cd ~/NeuralAnsatz
make

Driver files in the examples/ folder will be compiled into corresponding executables in the
bin/ folder. For example, if there is a driver file named examples/myprogram. cpp, the code

can be run by typing the command below.

mpirun -np <number of parallel tasks> ./bin/myprogram
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Once completed, remove all binaries and build files.

make clean

5.2 Python Software for Periodic Systems

In this section, we introduce a different implementation of neural-network quantum states
that leverages the flexibility and high-performance computing capability of JAX. This code
was initially developed by Alessandro Lovato for nuclei and has subsequently been adapted
by Bryce Fore and myself for periodic systems. Since some of the over-arching details of the
simulation are similar to the NeuralAnsatz code, we will focus only on the key differences
here. In addition, we will discuss the basic ideas required to implement the neural-network

quantum states relevant to the work in Chapters [J] and [7]

5.2.1 JAX: High-Performance Array Computing

JAX is an open-source software that combines the flexibility and east of use of numpy with

the efficiency of compiled languages like C++-. The key features of JAX include:

e Compute gradients with grad: Easily compute gradients of arbitrary functions by

creating a new function.

e Just-in-time compilation with jit: Functions decorated with jit will be dynamically

compiled and cached upon first encounter.

e Vectorization with vmap: Apply functions elementwise to one or more arrays for efficient

batch operations.
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e Parallelization with pmap: Execute functions in parallel across multiple devices,

maximizing hardware resources.

5.2.1.1 Building Neural Networks

The functionalities provided by JAX allows for far more freedom in network structure, as
one only needs to worry about computing the forward direction. We begin by importing a

few required modules.

import jax
import jax.numpy as jnp
from jax.example_libraries import stax

All layer construction functions within stax return a pair of functions (init_func,
apply_func) that represent the initialization of a layer with random weights and the
application of a layer, respectively. All initialization functions, init_func, take the input
shape and a jax.random.key, and subsequently returns the new output shape and the
initialized parameters. All application functions, apply_func, take a set of parameters and
input data, then evaluates the forward direction of the layer. Multiply layers can be joined

together by using stax.serial.

init_func, apply_func = stax.serial(*layers)

If one defines the list layers as an alternating sequence of stax.Dense layers and activation
layers, e.g. stax.Gelu, then stax.serial generates the constructor functions of a standard
feedforward neural network.

The separation of the init_func from the apply_func is beneficial if many copies of
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identical neural network structures are needed, where each copy is initialized with different
parameters. For instance, the single-particle orbitals of a Slater determinant can have one
common apply_func, but N different sets of unique parameters by simply calling init_func
N times.

To construct a Deep Set, on the other hand, one must create two sets of constructor

functions, one that maps to the latent space and another that maps to the output space.

lat_init, lat_apply = stax.serial(stax.Dense(n), stax.Gelu, stax.Dense(n))
out_init, out_apply = stax.serial(stax.Dense(n), stax.Gelu, 1)

In the above, the integer n is the number of nodes in the layer. Computing the forward
direction of the Deep Set amounts to calling lat _apply and out apply with an appropriate
pooling function in between. Below is an example of a Deep Set used as a Jastrow factor,
where phi_params and rho_params refer to the variational parameters in the mappings to

and from the latent space.

phi = self.lat_apply(phi_params, X)
phi = jnp.sum(phi, axis=0)
logpsi = self.out_apply(rho_params, phi)

Virtually all artificial neural networks, no matter how complicated the connections, can be
constructed by appropriately combining feedforward neural networks, concatenation
operations, and pooling operations.

5.2.2 Symmetries and Boundary Conditions

Now that we have established the basics of building a network, we must discuss the specific

requirements the network must satisfy if it is to be treated as a wave function. If either of
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these elements are broken, the wave function provide erroneous results. For periodic systems,
we must transform the coordinate or distances such that obey strict periodicity at all times.

Some options for periodic inputs with L-periodicity include:

# periodic positions
cos_i = jonp.cos( 2 * jnp.pi * r / L)
sin_i = jonp.sin( 2 * jnp.pi * r / L )

# periodic separation vectors

r_ij = r[ iplk] 1 - r[ jplk] 1]

r_ij = r_ij - jop.rint( r_ij / self.L ) * self.L
cos_ij = jmp.cos( 2 * jnp.pi * r_ij / self.L )
cos_ij = jnp.sin( 2 * jonp.pi * r_ij / self.L )

# periodic distance
d_ij = jop.sin( jnp.pi * r_ij / self.L )
d_ij = jonp.sum( d_ij**2 )

In addition to the periodicity and the antisymmetry of the fermionic wave function, which
is constrained by a Slater determinant or a Pfaffian, discrete symmetries such as parity and
time-reversal can be enforced. Below is an example of parity and time-reversal enforcement

for a system with even parity and odd time-reversal symmetry.
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Qjit
def logsignpsi_PT(params, r, sz):

r_PT = jop.stack((r, -r, r, -r))
sz_PT = jnp.stack((sz, sz, -sz, -sz))

sign, logpsi = vmap(logsignpsi, in_axes=(None, 0, 0)) (params, r_PT, sz_PT)
sign = sign.at[2:].set( -sign[2:])

logpsi_PT, sign_PT = jax.scipy.special.logsumexp(a=logpsi,
b=sign,
return_sign=True)
return sign_PT, logpsi_PT

5.2.3 Computing the Pfaffian

Unfortunately, JAX does not provide built-in implementation of the Pfaffian of a matrix,
nor does it provide convenient decomposition schemes useful for the Pfaffian efficiently. For
our work on ultra-cold Fermi gases, we implemented the Pfaffian ourselves, complete with
pivoting. In the code below, we assume A is even dimensional and symmetric. The algorithm

is implemented according to Ref. [13].
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ejit
def pfaffian(self, A):

def pivot(kp, k, A, pf_A):

# exchange rows

temp = A.at[k+ 1, :].get(O

A=Aatlk +1, :J.set(A.at[kp, :1.get())
A = A.at[kp, :].set(temp)

# exchange columns

temp = A.at[:, k + 1].get()

A =A.at[:, k + 1].set(A.at[:, kpl.get())
A = A.at[:, kpl.set(temp)

# flip sign
pf_A *= -1.0
return A, pf_A

def no_pivot(kp, k, A, pf_A):
return A, pf_A

pf_A = 1.0
for k in range(0O, A.shape[0]-1, 2):

# find pivot index
kp = k + 1 + jnp.argmax(jnp.abs(A[k + 1:, k]))

# pivot if necessary
A, pf_A = cond(kp != k + 1, pivot, no_pivot, kp, k, A, pf_A)

# update pfaffian
pf_A *= Ak, k + 1]

# update matrix

mu = A.at[k, :].get() / Alk, k+1]

nu = A.at[:, k+1].get()

A = A + jnp.outer(mu, nu) - jnp.outer(nu, mu)

return jnp.sign(pf_A), jnp.log(jnp.abs(pf_A))
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5.2.4 Stochastic Reconfiguration with RMSprop Regularization

One of the unique components of the JAX-based VMC code is the alternative regularization
scheme used for the Fisher-information matrix. As discussed in Sec. the inversion
of the Fisher-information matrix S is typically stabilized by offsetting the diagonal elements
by a small ¢, usually chosen between 107 — 1072, However, by choosing a constant shift,
the relative magnitudes of the variational parameters are ignored, ultimately leading to an
inefficient optimization process. In the alternative scheme based on RMSprop, a running
average of the square of the gradients are stored to normalize the diagonal shift according
to each parameter. When the optimizer is initialized, v is set to zero. Then during each

parameter update,

v Bv+ (1= B)(Ve(Eg(X)))?, (5.55)

0 i 0—77(S+diag(\/5+e))fl Vo (Eg(X)). (5.56)
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6 The Calogero-Sutherland Model

To evaluate the performance of the C++ software discussed in Sec. we benchmark against
the Calogero-Sutherland model, an exactly-solvable model of interacting bosons trapped in a
one-dimensional harmonic oscillator well. This model provides an excellent basis to assess our
neural-network quantum states (NQS) for several reasons. Firstly, the interaction contains a
singularity. Because the bosons are trapped, the effects of the singularity will be particularly
important, as the likelihood of two bosons becoming close to one another is high. Learning
how to handle this singularity will prove to be great practice for more realistic systems.
Secondly, one-dimensional systems are easy to visualize, giving us the opportunity to gain
an intuitive understanding of the two types of neural-network quantum states we will test.
Lastly, the availability of exact analytical solutions enables us to validate the accuracy of

our implementation.
6.1 Hamiltonian

The Hamiltonian of the Calogero-Sutherland model is given by
N ) N
: 16 1 BB—1)
cS __ 2,2
1=

where /3 is an interaction parameter, z;; = [r; — x| is the distance between particles i and j,
and we have set h = m = 1 for convenience. During our discussion on Kato’s cusp condition

in Sec. [3.2.1.1] we showed that requiring the local energy to be finite as any two particles
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approach each other led us to the exact ground state of the system

N

L
V(X)) =exp _Z?‘mi Hmfj, (6.2)
i=1 i<j
with the corresponding energy
s 1 1 1
Eg® = oNw+ §/BN(N — 1w = 5Nw(l + B(N —1)). (6.3)

Throughout this work, we will set N = 6 and 3 = 2, resulting in an exact interacting energy
that is 11 times greater than the noninteracting harmonic oscillator ground state energy.
To prevent numerical instabilities caused by the singularity in Eq. (6.1]), we regularize

the two-body potential as
tanh?(z/zq)
72

% — : (6.4)
where g is a regularization hyperparameter that smoothly controls the height of the
potential, while preserving the long-range behavior. As xy — 0, the regularized potential
converges to the original potential containing the singularity. See Fig. to compare the
regularized potential using different values of xg and g = 2.

Our general strategy is to first train the neural-network quantum states using a fairly
large value of the regularization parameter xg. Then after the training has stabilized, we
progressively decrease the value of xg until the energy converges. Another possibility could
be to fix xg to a small value, then gradually increase 3 from a value slightly greater than 1

to our desired value of 2. Both of these strategies are examples of transfer learning, as they

involve pretraining the NQS on easier tasks before transitioning to more challenging ones.
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Figure 6.1: The regularized two-body potential for the Calogero-Sutherland model, where z(
is the regularization parameter (Eq. ) The long-range behavior of the original potential
(black, dashed line) is preserved, but the height of the potential decreases with larger values
of zg. Here, we have used an interaction parameter value of § = 2.
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6.2 Neural-Network Quantum States

This work focuses on a comparative analysis of two distinct types of neural-network quantum
states: feedforward neural networks and continuous restricted Boltzmann machines. The
inputs for both networks comprise the positions of all particles, with permutation invariance
guaranteed by sorting the positions. Sorting the inputs was discussed in depth in Sec.[5.1.3.1]
For brevity, we will use the notation v(X) to imply the positions X = (x1,x3,...,x) have

been sorted and serve as the visible nodes v of the networks.

6.2.1 Feedforward Neural Networks

Inspired by Saito in Ref. |14], we take our positive-definite Jastrow ansatz to be

2
V) = exp (o) exw (<35 ). (65

where p(v(X)) is the single output of a feedforward neural network, which takes sorted
positions as input. Since neural networks are initialized with small random values around
zero, p initially takes a value around zero as well. To ensure we sample from a localized
distribution rather than a uniform distribution of infinite range, our ansatz includes a
Gaussian envelope with a variance o2 large enough to not significantly affect the training of
the feedforward neural network. In this work with N = 6, we have set 02 = 162 = 256.
Alternatively, one could remove the Gaussian envelope and pretrain the ansatz to a
Gaussian instead, either by turning off the interaction entirely, leaving a harmonic
oscillator potential, or through supervised training of the wave function. We opt for the
Gaussian envelope as it removes the need for pretraining, but the boundary conditions

imposed by the alternative approaches are generally upheld by the network during the
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reinforcement learning process.

6.2.2 Continuous Restricted Boltzmann Machines

We also employ neural-network quantum states parameterized by the various types of
multivariate Gaussian-binary and Gaussian-uniform restricted Boltzmann machine,
discussed in Sec. and Sec. {.7.1.3] Since they are all positive-definite by default, we
can simply write

TP (X) = P(v(X)), (6.6)

where P(v(X)) denotes the marginal probability distribution of the visible nodes, with v(X)
representing the sorted positions. When the variational parameters are set to small random
values, the initial state of the RBMs are similar to a Gaussian. We can bias our initial state
to more closely resemble the eventual wave function we expect by initializing the visible
biases a across a much wider range. Moreover, we sort the visible biases in order to bring

them closer to the mean of the corresponding sorted positions.
6.3 Results

We begin our analysis by testing four commonly employed activation functions for a fixed
feedforward neural network (FNN) architecture. For N = 6, we choose to use a network
with two hidden layers and 12 hidden nodes each. The regularization parameter is initially
set to zg = 0.5 in order to guarantee fast and stable training. Additionally, we utilize
the stochastic reconfiguration (SR) algorithm, with a diagonal offset of ¢ = 0.001, which
accelerates training significantly. As the SR algorithm manipulates the gradient such that
the curvature of the energy landscape is encoded, we have found that a simple stochastic

gradient descent optimizer with a constant learning rate of = 0.001 provides the most

160



1.0

— tanh
0.8 - ——— sigmoid
— gelu
—— softplus
< 0.6
=
S
| 0.4
=
2 02
0.0 1
_0.2 T T T
0 50 100 150 200

Training Epoch

Figure 6.2: Training curves for feedforward neural networks with different activation
functions. In this initial pretraining stage, zo = 0.5.

stable training.

In Fig.[6.2, we validate the efficient training of the feedforward neural networks. For each
activation function, about 200 iterations were sufficient to reach convergence. Notice that
the converged value of the energy is well below 0, an artifact of the regularization of the
potential. At this initial stage, the performances of all activation functions are essentially
equal, with the sigmoid activation function yielding an energy slightly greater hyperbolic
tangent, the Gaussian error linear unit (gelu), and softplus.

We also validate the training of the Gaussian-binary and Gaussian-uniform restricted
Boltzmann machines, where we consider both non-symmetric and symmetric hidden node

values for each type. Since the computed marginal probability distribution of the visible
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nodes for each RBM type only differed by the definition of a function we simply called
"f(x)," one could interpret these functions as activation functions. In Fig. [6.3] we show the
training curves for all four variants, each with 6 hidden nodes. Similar to the FNN case, we
use the SR algorithm with € = 0.001 to compute the preconditioned gradient. However, for
the RBMs we use a smaller learning rate of n = 0.0005.

While the RBMs yield an initial energy that is much closer to the eventual converged
value, training still required about 3000 iterations, an order of magnitude more than the
FNNs. The converged value of the energy still did not reach quite as low as the FNNs,
reaching a minimum percent difference around (E(xg) — Eg)/Eg = —0.0941 for all RBM
types. Here, Ej is the exact ground state energy in the limit zg — 0. In constrast, the
FNNs reached a minimum between (E(xg)—Ep)/Eg = —0.113 ~ —0.119. In addition, notice
that the training curves for the RBMs with symmetrically-valued hidden nodes (shown in
orange and blue) show slight deviations from the nonsymmetrically-valued hidden nodes
(red and green) after about ~ 250 training iterations. This may suggest that both needed
to overcome a local minimum before proceeding further to the ground state. During this
initial pretraining stage, the multivariate Gaussian-Uniform restricted Boltzmann machine
with hidden node values between 0 and 1 had the most stable training curve.

In order to better predict the ground state of the full Calogero-Sutherland Hamiltonian,
we progressively decrease the value of the regularization parameter z( from a value of 0.5 to
0.01. In Figures[6.4] and [6.5] we show the converged energies as a function of xg, both the
FNNs and RBMs, respectively. For the FNNs, most of the activation functions exhibit similar
behavior as xq is decreased, except for the sigmoid activation function. This difference in
performance is somewhat expected, as the sigmoid activation function is known to be prone

to the vanishing-gradient problem. The other three activation functions perform similarly as
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Figure 6.3: Training curves for the different variants of Gaussian-binary and Gaussian-
uniform restricted Boltzmann machines, with zg = 0.5.
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Figure 6.4: The converged energy as a function of the regularization parameter z( for
feedforward neural networks with different activation functions.

xq is decreased, with the softplus function consistently producing the lowest energies. The
tanh, gelu, and softplus functions all seem to converge to the exact ground state as expected.

On the other hand, the different restricted Boltzmann machines exhibit almost identical
behavior as x( is decreased, with slight deviations occuring for the smallest values of zg. In
particular, both of the Gaussian-uniform RBMs perform slightly better than the Gaussian-
binary RBMs for g = 0.01. However, unlike the FNNs which usually converge to the exact
ground state

Finally, in Fig. [6.60f we plot the one-body densities for the symmetric multivariate
Gaussian-Uniform restricted Boltzmann machine and the feedforward neural network with

the softplus activation function. The top row shows the initial state for both networks.
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Figure 6.5: The converged energy as a function of the regularization parameter z for the
various Gaussian-binary and Gaussian-uniform restricted Boltzmann machines.
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Figure 6.6: One-body densities during three different points during training: the initial stage,
after pretraining with xg = 0.5, and after training with xg = 0.01. The black dashed line
represents the one-body distribution from the exact ground state wave function.
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The RBM naturally provides localized initial state with some distinguished peaks,
demonstrating the highly-biased nature of the ansatz. As xq is decreased, the location of
the peaks match well with the exact ground state, but there are small deviations in the
shape of the peaks and in the tails of the distribution. The FNN is a low-bias model, and
consequently, we used a Gaussian envelope to localize the distribution around 0. After the
initial pretraining stage using xg = 0.5 the wave function learned by the FNN has
significantly different shape to the one learned by the RBM, as the peaks are far less
distinguished in the former. After decreasing the regularization parameter to zg = 0.05,

the FNN ansatz matches the exact ground state almost perfectly.

6.4 Conclusions

In this illustrative example of neural-network quantum states, we demonstrate a transfer
learning technique beneficial for handling singularities in the potential. By comparing
different activation functions, we confirm that the sigmoid function suffers from a vanishing
gradient, but nevertheless, still performs better than all the RBMs tested near the zg — 0
limit.

The RBMs perform similarly to one another, with the Gaussian-uniform variants
performing slightly better as xq decreases. However, due to the high-biased nature of the
model, RBMs are limited in being able to accurately capture all behaviors in the wave
function. We visualize this fact by investigating the evolution of the one-body distributions
throughout the training process. Overall, a feedforward neural network proves to be the
more accurate model and is therefore recommended for use as a neural-network quantum
state, even if it requires comparatively more variational parameters.

Initial investigations of products of RBMs and FNNs show promise, as this eliminates

167



the need for a Gaussian envelope and reduced the overall number of parameters required in

the FNN. We leave a more thorough report on these products for future works.

168



7 Dilute Neutron Matter

The following article titled 'Dilute neutron star matter from neural-network
quantum states’ was published in Physical Review Research (Vol. 5, No. 3) on July 31,
2023 [15].

Low-density neutron matter is characterized by fascinating emergent quantum
phenomena, such as the formation of Cooper pairs and the onset of superfluidity. We
model this density regime by capitalizing on the expressivity of the hidden-nucleon
neural-network quantum states combined with variational Monte Carlo and stochastic
reconfiguration techniques. Our approach is competitive with the auxiliary-field diffusion
Monte Carlo method at a fraction of the computational cost. Using a leading-order
pionless effective field theory Hamiltonian, we compute the energy per particle of infinite
neutron matter and compare it with those obtained from highly realistic interactions. In
addition, a comparison between the spin-singlet and triplet two-body distribution functions

indicates the emergence of pairing in the 1Sy channel.
7.1 Introduction

Multi-messenger astronomy has opened new windows into the state of matter at densities and
isospin asymmetries that cannot be directly probed by terrestrial experiments |16, |17, (18],
19]. Concurrently, nuclear many-body theory has made considerable progress in computing
the nucleonic-matter equation of state at densities corresponding to the inner core of neutron
stars starting from realistic Hamiltonians |20} 21}, 22, 23|, 24, |24} 25]. Comparisons between

theoretical predictions and astrophysical observation pose stringent constraints on models of
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nuclear dynamics, particularly three-nucleon forces [26].

In this work, we focus on lower densities, p < 0.04 fm~3, which are relevant to the
phenomenology of the stellar inner crust and outer core. In this region, both conditions
for superfluidity — strong Fermi degeneracy and an attractive interaction between neutron
pairs in the 1Sy channel — are believed to be met 27, 28, [29]. In addition to lowering the
system’s energy, the formation of Cooper pairs plays a critical role in neutrino emission |30,
31|, and the phenomenology of glitches |32]. Pairing is also relevant in modeling neutron-rich
nuclei, which are the subject of intense experimental activities [33].

Quantum Monte Carlo approaches [34], and in particular the auxiliary-field diffusion
Monte Carlo (AFDMC) method |35] have been extensively applied to accurately compute
neutron-matter properties |22, 21}, 36]. In the low-density regime, AFDMC calculations
have convincingly shown a depletion of the superfluid gap with respect to the
Bardeen—Cooper—Schrieffer theory |37, [38]. However, because of the fermion sign problem,
AFDMC predictions depend upon the starting variational wave function. For instance, the
superfluid phase must be assumed a priori by using pfaffian wave functions [39].

Neural-network quantum states [1] (NQS) have gained popularity in solving the
Schrodinger equation of atomic nuclei both in real space [40, 41, 42, 43, 44| and in the
occupation-number formalism [45]. In this work, we introduce a periodic NQS suitable to
model both the normal and superfluid phases of neutron matter. The ansatz is based on
the “hidden-nucleon” architecture, which can model the ground-state wave functions of
nuclei up to 10 with high accuracy [43]. Inspired by chemistry applications |46} 47|, we
further improve the expressivity of the hidden-nucleon NQS using generalized backflow
correlations, which generalize both the pfaffian and the spin-dependent backflow of

Ref. |48].
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Our model of nuclear dynamics is the leading-order pionless effective field theory (#EFT)
Hamiltonian of Ref. [49], which qualitatively reproduces the binding energies of nuclei with
up to A = 90 nucleons. Arguments based on the expansion around the unitary limit [50],
and Brueckner-Hartree-Fock calculations of infinite nuclear matter [51|, indicate that #EFT
should provide accurate energies of dilute neutron matter. We quantitatively address this
point by carrying out variational Monte Carlo calculations based on NQS that are specifically
designed to model wavefunctions of nuclear systems in the presence of spatial periodicity.
We compare the #EFT energy per particle against the phenomenological Argonne v1g [52]
plus Urbana IX [53] (AV18+UIX) Hamiltonian used in the Akmal-Pandharipande-Ravenhall
(APR) [54] equation of state. We additionally consider the local, A-full chiral-EFT potentials
that include tritium [-decay in the fitting procedure and do not yield self-bound neutron
matter |21, 136].

To better quantify the role of dynamical correlations, we evaluate the two-body spatial
distribution functions, separating the spin-triplet and spin-singlet channels. We analyze
the self-emergence of pairing correlations, not explicitly included in the NQS ansatz, as a

function of neutron-matter density.

7.2 Method

We model the interactions among neutrons through the leading-order #EFT Hamiltonian
“o” of Ref. [49]. The two-body contact potential is designed to reproduce the np scattering
lengths and effective ranges in the S/T = 0/1 and 1/0 channels. Thus, it yields a neutron-
neutron scattering length of ay,, = —22.5 fm, slightly larger than the experimental value of
—18.9(4) fm, see [55] and references therein, while the effective range is well reproduced. The

Hamiltonian also contains a repulsive three-body force that ensures the stability of nuclei
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with A < 3 nucleons. As for the latter, we take the parameterization with Rg = 1.0 fm,
as it reproduces the binding energies of nuclei in the A < 90 mass range reasonably well.
For benchmarking purposes, we also consider the leading-order #EFT Hamiltonian “a” with
R3 = 1.0 fm, which describes the trend of binding energies of light and medium-mass nuclei.

We approximate the ground-state solution of the nuclear many-body problem with an
NQS ansatz that belongs to the hidden-fermion family [56], recently generalized to continuum
Hilbert spaces and applied to atomic nuclei in Ref. [43]. In addition to the visible spatial and
spin coordinates of the A neutrons, R = {r1...r4} and S = {s7...s%}, the Hilbert space
contains fictitious Ay, hidden-nucleon degrees of freedom. In this work we use Ay, = A = 14
so that the system is as flexible as possible, but in practice we have also found using as
few as 8 hidden nucleons gives very similar results. The wave function can be conveniently
expressed in a block matrix form as

Uy (R, S) = det (B 5) - GoBnSh)| - (7.1)

Xn(R,S) xn(Rp, Sp)
As in Ref. [43|, ¢y(R,S) is the A x A matrix representing visible single-particle orbitals
computed on the visible coordinates while the A; x Aj matrix x5, (Ry,Sy) vyields the
amplitudes of hidden orbitals evaluated on the coordinates of the Aj; hidden nucleons.
Finally, x1, (R, S) and ¢y (Ry, Sp) are Ap, x A and A x Ay, matrices giving the amplitudes of
hidden orbitals on visible coordinates and visible orbitals on hidden coordinates,
respectively. All the above matrices are expressed in terms of deep neural networks with
differentiable activation functions — see Ref. [43] for additional details. To respect the
Pauli principle, the coordinates of the hidden nucleons must be permutation-invariant

functions of the visible ones. We enforce this symmetry by using a Deep-Sets
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architecture |12, 57] with logsumexp pooling. Additionally, the discrete parity and time
reversal symmetries, are enforced in the same manner as Ref. [43].

Inspired by recent developments in quantum-chemistry NQS [58|, 46, 47|, we augment
the flexibility of the ansatz by performing a generalized backflow transformation to the
visible coordinates of the hidden-nucleon matrix: (R,S) — (R, S). We use the Deep-Sets

architecture again to enforce fermion anti-symmetry

(5i,57) = pos (xi. 57, 1oz ( 3 exp(ons(r,59)) ) (7.2)

J

To further augment the expressivity, separate pps and ¢p; neural networks are used for each
of the A visible orbitals.

We simulate infinite neutron matter using 14 particles in a box with periodic boundary
conditions. Following Ref. [59], the latter are imposed by mapping the spatial coordinates

onto periodic functions by

o (s (0 o (227) ns

which ensures the wave function is continuous and differentiable at the box boundary. Here
L is the size of the simulation periodic box, and the sin and cos functions are applied element-
wise to r;. Finite-size effects due to the tail corrections of two- and three-body potentials
are accounted for by summing the contributions given by neighboring cells to the simulation
box [60].

Evaluating the expectation values of quantum mechanical operators, including the

Hamiltonian, requires carrying out multi-dimensional integration over the spatial and spin
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coordinates of the neutrons. To this aim, we exploit Monte Carlo quadrature and sample R
and S from |Vgy(R, S)]2 using the Metropolis-Hastings algorithm [61] — additional
details can be found in the supplemental material of Ref. [41]. The best variational
parameters defining the NQS are found by minimizing the system’s energy, which we carry
out using the R(oot)M(ean)S(quared)Prop(agation)-enhanced version of the

stochastic-reconfiguration optimization method introduced in Ref. [43].

7.3 Results and Discussion

We first benchmark the expressivity of the hidden-nucleon NQS for periodic systems by
comparing the energy per particle of infinite neutron matter against “conventional”
variational Monte Carlo (VMC), and both constrained-path and AFDMC results. The
variational wave function used in state-of-the-art neutron-matter studies, see for example
[22, 36], contains a spin-independent Jastrow factor that multiplies a Slater determinant
augmented by spin-dependent backflow correlations. The constrained-path approximation,
commonly employed to alleviate the AFDMC fermion-sign problem [34], brings about a
bias in the ground-state energy estimate [21, [36]. Exact results can be obtained by
performing unconstrained propagations, but the statistical error grows exponentially with
the imaginary time.

As shown in Fig. for p = 0.04 fm™3, after ~ 2000 stochastic-reconfiguration steps,
the NQS ansatz converges to the wvirtually eract unconstrained AFDMC energy, using a
fraction of its computing time: about 100 hours on NVIDIA-A100 GPUs vs approximately
1.2 million hours on Intel-KNL CPUs. Notice that the constrained-path approximation
violates the variational principle. In contrast, variational Monte Carlo calculations based

on the NQS never yield energies below that of the Hamiltonian’s ground state. Comparing
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with the Hartree-Fock approximation, it appears that the hidden-nucleon ansatz captures
the overwhelming majority of the correlation energy.

In Fig. [7.2] we compare the #EFT energies obtained with the NQS ansatz against
AFDMC calculations of 14 particles with periodic-box boundary conditions, so that
finite-size effects are the same in both approaches. The AFDMC takes as input the
AV18+UIX Hamiltonian used in the celebrated APR equation of state [54], and the local,
A-full chiral-EFT potentials that include tritium S-decay in the fitting procedure and do
not make neutron-matter collapse, i.e. models NV2+3-Ia*/b*, and NV2-+3-IIb* |21} 36].
Since for all the densities we consider, the AV18+UIX, NV2+3-Ia*/b* and NV2+3-IIb*
are in excellent agreement, they are collectively displayed by the “m-full” band, stressing
that all these interactions explicitly retain pion-exchange terms.

The #EFT Hamiltonian “o” is in excellent agreement with the 7-full models — both
providing energies much below the non-interacting Fermi gas (not shown in the Figure).
These minor differences are likely because model “0” yields a slightly larger nn scattering
length than the experimental value and, therefore, more attraction in neutron matter. For
benchmark purposes, we also consider the #EFT model “a” of Ref. [49], which provides a
slightly stiffer equation of state than model “0”. By checking the individual expectation
value of the two and three-body potentials, we find that this behavior is primarily due to
the three-body force contribution that is more repulsive in model “a” than model “0”, which
arises from a more bound 3H when the two-body force alone is employed.

Once trained on the system’s energy, the NQS can be used to accurately evaluate a
variety of quantum-mechanical observables, such as the spin-singlet and triplet two-body
distribution functions defined in Ref. [62]. Figure shows these distributions at p = 0.01

fm ™3 (panel a) and p = 0.04 fm™3 (panel b). The significant increase in the spin-singlet
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channel compared to the non-interacting Fermi Gas indicates that the NQS wave function
can capture the emergence of the 150 neutron pairing, despite not being explicitly encoded
in the ansatz. Consistent with the behavior of the pairing gap [37, 28|, the enhancement
is more prominent at p = 0.01 fm™3 than p = 0.04 fm™3. On the other hand, at these

densities, no pairing correlations are present in the spin-triplet channel.

7.4 Conclusion

In this work, we have put forward an NQS suitable to model the normal and superfluid phases
of infinite neutron matter in a unified fashion. We improve the expressivity of the hidden-
nucleon ansatz of Ref. [43] by adding state-dependent generalized backflow correlations,
whose inclusion has proven beneficial in condensed-matter applications [46, 47|. Periodic-
box boundary conditions are imposed by mapping the spatial coordinates of the neutrons
onto periodic functions.

Combined with Monte Carlo techniques to sample the Hilbert space and the
stochastic-reconfiguration algorithm to optimize the variational parameters, the NQS yields
energies per particle of low-density neutron matter that are in excellent agreement with
unconstrained AFDMC calculations at a fraction of the computational cost. In contrast,
the computationally-inexpensive AFDMC constrained-path approximation brings about
appreciable violations of the variational principle.

We have shown that #EFT yields a low-density neutron matter equation of state that
is remarkably close to those obtained from AFDMC calculations that take as input highly-
realistic phenomenological and chiral-EFT interactions |54, |21} [36]. This finding paves the
way for more systematic comparisons between dilute neutron matter and Fermi gas around

the unitary limit. In addition, it enables studies of phenomena relevant to understand the
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inner crust and the outer core of neutron stars, such as pairing and superfluidity, using
relatively simple models of nuclear dynamics.

Finally, we have analyzed the possible onset of Cooper pairing in the neutron medium.
Specifically, the NQS two-body distribution functions corresponding to pairs of neutrons in
the spin-singlet 1Sy channel exhibit a clear enhancement at small inter-particle distances
with respect to the non-interacting case, which is absent in the spin-triplet channel.
Consistent with pairing-gap calculations |37, [28| 38|, this behavior is more prominent at
smaller densities. Note that this feature has not been encoded in the NQS; rather, it is a
self-emerging quantum mechanical phenomenon.

As a future development, we plan on including more sophisticated interactions, including
highly-realistic phenomenological ones, including AV18+UIX and the local, A-full chiral-
EFT potentials of Ref. |63, 21, |36]. The flexibility of the NQS ansatz will also be tested in
isospin-asymmetric nucleonic matter at low densities, where strong clustering is expected to

occur [64].
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Figure 7.1: NQS training data in neutron matter at p = 0.04 fm ™3 (data points) compared
with Hartree-Fock (dotted line), conventional VMC (dashed line), constrained-path ADMC
(dash-dotted line) and unconstrained-path ADMC results (solid line).
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Figure 7.2: Low-density neutron-matter fEFT equation of state as obtained with the hidden-
nucleon NQS for #EFT potential “o" (blue circles) and #EFT potential “a" (orange squares)
compared with interactions which retain pion-exchange terms (green band). We see that the
“o" potential is in excelent agreement with the 7-full interactions while the “a" potential has
a slightly stiffer equations of state due primarily to a more repulsive three-body force.
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Figure 7.3: Spin-singlet and triplet two-body distribution functions at two different densities:
p=0.01 fm™3 (panel a) and p = 0.04 fm =3 (panel b). The NQS calculations (solid symbols)
are compared with non-interacting Fermi Gas results (solid lines).
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8 Homogeneous Electron Gas

The following article titled 'Message-Passing Neural Quantum States for the
Homogeneous Electron Gas’ is currently under review [2].

We introduce a message-passing-neural-network-based wave function Ansatz to simulate
extended, strongly interacting fermions in continuous space. Symmetry constraints, such as
continuous translation symmetries, can be readily embedded in the model. We demonstrate
its accuracy by simulating the ground state of the homogeneous electron gas in three
spatial dimensions at different densities and system sizes. With orders of magnitude fewer
parameters than state-of-the-art neural-network wave functions, we demonstrate better or
comparable ground-state energies. Reducing the parameter complexity allows scaling to
N = 128 electrons, previously inaccessible to neural-network wave functions in continuous
space, enabling future work on finite-size extrapolations to the thermodynamic limit. We

also show the Ansatz’s capability of representing qualitative different phases of matter.
8.1 Introduction

Predicting emergent physical phenomena and system properties from the ab-initio
description of the system’s constituents is notoriously difficult |65, |66]. Fermionic systems,
in particular, can exhibit strong correlations among the particles, leading to collective
phenomena in the form of exotic phases of matter, e.g. superconductivity and
superfluidity [67, 68]. In recent years, progress in numerical simulations of strongly
correlated systems was triggered by the development of increasingly precise

machine-learning approximation techniques. Most notably, artificial neural network (NN)

181



architectures, in combination with Variational Monte Carlo (VMC), have shown great
promise to represent ground states of quantum spin systems, especially in more than one
spatial dimension [1], |69, 70, 71}, [72, 73, |74, [75]. Due to the universal approximation
property of NNs, neural-network quantum states (NQS) can, in theory, accurately
represent any quantum many-body state |76, 77]. NQS have been extended to fermionic
degrees of freedom in a discrete basis |78, |79, 80|, by incorporating the indistinguishability
of quantum particles. More recently, advancements to ground and excited state searches for
fermionic and bosonic continuous degrees of freedom with open |3 |81, |82] and periodic
boundary conditions (PBCs) [83] 84}, 85|, have been introduced.

The flexibility of NQS, compared to more traditional models, allows representing multiple
phases of matter and even different physical systems with a single Ansatz. To exemplify this
point, we refer to NQS studies on the ground-state of molecular systems [3, 81|, solutions
to effective field theory Hamiltonians describing atomic nuclei [86, [87, 4], bulk studies of
fermionic and bosonic extended systems [83, |88} 85|, 89|, as well as NQS simulations of low-
density neutron matter found in neutron stars [15]. The downside of this flexibility, especially
in continuous space, is that NQS typically need a significant amount of variational parameters
to reach a given accuracy. This makes optimization challenging and costly, preventing the
usage of refined optimization schemes, e.g. second order optimization procedures [90, 91.
As a result, the accessible system sizes are limited to a few tens of particles. However,
studying larger system sizes is of utmost importance to estimate physical properties in the
thermodynamic limit |92, 93, |94, 95]. To remedy the situation, novel NQS architectures
must be developed that significantly reduce the parameter complexity while retaining high
accuracy.

This work introduces a neural-network wave function suitable for simulating strongly
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interacting fermionic quantum systems in continuous space with one to two orders of
magnitude fewer parameters than current state-of-the-art NQS. The general form of the
Ansatz is motivated by an analytical argument, relating the exact ground-state wave
function to a many-body coordinate transformation of the electronic coordinates. It uses a
permutation-equivariant message-passing architecture on a graph, inherently implementing
the indistinguishability of same-species quantum particles [96]. As an application, we study
the Homogeneous Electron Gas (HEG) in three spatial dimensions without explicitly
breaking any of the fundamental symmetries of the system, such as translations and
spin-inversion symmetry. This allows characterizing, from first principles, the onset of

Wigner crystallization at low densities.
8.2 Exact Backflow Transformations

Throughout this work, we consider a non-relativistic Hamiltonian of identical particles with

mass m in d spatial dimensions:
2L,
H= _%ZV" +V(X), (8.1)
1

where the potential and interaction energy, V', is assumed to be diagonal in position
representation, defined by the particle coordinates X = (ry,...,7y), 7; € R, In the
following, we derive an analytic functional form of the ground-state wave function and
relate it to our variational Ansatz.

We use a suitable reference state |®g), as initial condition for the imaginary-time (7)
evolution induced by the Hamiltonian: ®,(X) = (X|e ™ |®g). The exact ground-state

is obtained in the large imaginary-time limit: lim; o ®+(X) o Uy(X), provided |®g) is
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non-orthogonal to the exact ground state, |(¥g|®g)| > 0. For fermions, non-orthogonality
implies that the wave function must be antisymmetric w.r.t. the exchange of two particles i.e.
®o(P;(X)) = —Po(X) (P;; permutes particles ¢ and j). Applying the mean-value theorem

to the imaginary-time evolved state, yields:

P (X) = /Q dX'G+ (X, X" ®g(X) (8.2)

= Vol(Q) x G (X, Y (X)) Po(Y (X)), (8.3)

where ) is the integration domain for the positional degrees of freedom, and G, (X, X’) =
(X]e_TH |X’) is the matrix element of the imaginary-time propagator. In (8.3)), we introduced
the mean-value point Y (X) = (y1(X),...,yn(X)) € Q, depending parametrically on the
coordinates X.

For non-relativistic Hamiltonians, Eq. (8.1)), we have G-(X,X’) > 0, for all X,X'.
Moreover, G,(X,X’) is invariant under the exchange of particle coordinates:
Gr(Pij(X),Pij(X) = G7(X,X'). In the fermionic case, the latter implies that Y (X)
must be equivariant under particle exchange, Y(P;;(X)) = P;;(Y(X)), to ensure
antisymmetry of the total wave-function. Eq. therefore yields the product between a
permutation symmetric, positive semi-definite function J(X) = G-(X, Y (X)) x Vol(£2) and

a reference state computed at modified coordinates Y (X):
Q- (X) = J(X) x (Y (X)). (8.4)

Identification of the mean-value point Y (X) with a many-body coordinate transformation

gives an alternative justification for the backflow transformations [97] of single-particle
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coordinates. With a Slater determinant of given spin orbitals ¢,(r;) as initial state,
do(X) = detpy(r;)/VN!, Eq. (8.4) is structurally related to the heuristic
Jastrow-Backflow variational form [98, 99]. We remark that the symmetric contribution,

J(X), can be incorporated to the determinant:
0,(X) = K x det i, (y;(X)), (5.5)

with ¢, (y;(X)) = ¢u(yi(X)) x W, and K a normalization constant.

The functional form , is exact, provided that the symmetric factor J(X) and the
mean-value coordinates Y (X) satisfy Eq. ((8.3))), and the reference state is not orthogonal to
the exact ground state. An approximate but explicit form for the coordinate transformation
Y (X) can be obtained by repeatedly applying the imaginary-time propagator to the reference
state in the limit of small 7. This process gives rise to the iterative backflow transformation,

as introduced in Ref. [100] [101].
8.3 Message-Passing Neural-Network Quantum States

Motivated by Eq. (8.5), we use single-particle orbitals, {gzﬁu}ﬁ[:l, evaluated at many-body

backflow coordinates, Y (X), to construct the variational Ansatz. The backflow
transformation is parameterized with permutation-equivariant message-passing NNs
(MPNN) [96], hence we name it Message-Passing Neural Quantum State (MP-NQS).
In the MPNN, an all-to-all connected graph, encoding effective particle positions
(nodes) xz(.t) = [XEO),hEt)] € RP1 and their interactions (edges) XZ(;) = [xgg),hg)} e RP2, is
0) (0

updated iteratively (we have introduced a time-step ¢ > 0, an initial graph (x;’, x,.),

. . : . (t) Dl . (t) Db
successively updated auxiliary variables known as hidden states (h;”” € R™1, h; j € R™2),
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suitably chosen feature dimensions Dgh) and Déh), and we denoted concatenation with

(Xgo), 0 ) is system dependent and will be

[,-]).  Construction of the initial graph ij

discussed in detail later.
The hidden states are updated using equivariant messages, obtained from an attention
mechanism [102]. The messages are given by weighted transformations of the edges XZ(-?:
(t+1) _ (t)( )@q’)( ) here ® represents element-wise multiplication along th
m;; = W /), where ® represents element-wise multiplication along the
(t)

feature dimension, and w, ;€ RDP2 are weight vectors. The weights are obtained using

query / key matrices given by Qgt.) = Wg ) -xl( 2 and K( ) W[(;) XS) ,

with weight matrices
wt ), W( ) e RP2xD2 Applying an element-wise GELU non-linearity [103] to the overlap

between queries and keys along the particle dimension (as opposed to the feature

dimension 102, |104]), results in permutation-equivariant weights

wi) = GELU <Z QE?K?) . (8.6)
l

This attention mechanism compares environments of particles ¢ and j, and effectively
increases the order of correlations that can be embedded in a single iteration of the
network. This is crucial to reduce the total number of network iterations (parameters) and
capture many-body effects. The hidden states are updated using the current graph and

messages:

hz(tH Z m (t+1) (8.7)
JFi
b =g (xf).m{™) (53

where the functions ¢, f, and g are parameterized by Multilayer Perceptrons (MLPs).
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The updated graph has then the same strucutre as the former: XZ(-H_I) = [xgo),thl)],

Z(-;+1) = [Xg.)), thrl)]. Inclusion of the initial inputs, referred to as a “skip connection" in

X
ML literature [105], mitigates the vanishing gradient problem and allows a more efficient
capture of correlations.

The final backflow coordinates are constructed as y;(X) = 7; + or;(X), where the
displacements, dr; (X), are obtained via a linear transformation of the final node states to
d dimensions, i.e. or; (X) = W - XZ(T) with W e CP1. The complex-valued backflow
transformation allows changing the degree of localization, determined by the chosen
single-particle orbitals, and representing complex-valued wave functions in general.

Following (8.5)), we further augment the orbitals with a permutation-invariant factor J,

yielding:
V(X) = det n(yi(X)), (8.9)

with ou(y;) = exp [J(Y, p)] ¥ du(y;)-
8.4 Hamiltonian

We now study the case of the homogeneous electron gas (HEG) in d = 3 spatial dimensions,
a prototypical model for the electronic structure in solids. It includes Coulomb interactions
among the solids’ electrons while treating its positively charged ions as uniform, static,
positive background [106]. Despite this simplification, the HEG exhibits different phases of

matter and captures properties of real solids, particularly of Alkali metals. The Hamiltonian
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in units of Hartree), for a system of IV electrons with uniform density n = ﬂ, is given by:
y yn=qy,isg y

1 , 1 1
H = __s ZVZ. + —ZHTZ— + const. (8.10)
2

where we introduced the Wigner-Seitz radius ry = W , and a constant arising from
the electron-background interaction [98]. The conditionally convergent series of pairwise
Coulomb interactions is evaluated using the Ewald summation technique, as is standard
for extended systems in QMC [107, (108, [109]. We’'ll assume a fixed spin-polarization with
N = N4+ N, where Nyjy denotes the number of up/down spins. s; € {1, |} denotes the i-th
electron’s spin. We equip the cubic simulation cell of side length L with periodic boundary
conditions (PBCs) in all spatial directions to access the bulk of the system.

As in (8.5)), we use a single Slater determinant as a reference state, ®y(X). For the
translation-invariant HEG, plane-wave orbitals are a natural and physically-motivated

choice:

op(r) = exp (ik - r) (8.11)

with k = Q%n, where n € Z%. To account for the spin s of a particle located at r, we use
spin-orbitals ¢, (7, s) = ¢ i (1r)ds 11,5+ Where each spin-orbital is characterized by the quantum
numbers p = (ky, s;;). These orbitals allow modeling of translation invariant systems at fixed
total momentum kot = sz\il k;. Furthermore, the determinant factorizes into a product
of determinants of up and down spin orbitals.

We further specialize the MP-NQS to the HEG by defining initial feature vectors.
Respecting the spin inversion and translation symmetries of the HEG requires us to ignore

single-particle positions and spins. We, therefore, initialize the nodes to a learnable
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embedding vector e € R 1, that does not depend on the particle index ¢. For the edge
features, we use the translation invariant particle-distances r;; = r; — r; and their norm.
Same- and opposite-spin pairs are distinguished using products of the form s; - s; = +1 in

the edge features. Overall, we obtain the following initial features:
X, =e, X, = (rijanrinvSi Sj) . (8.12)

Notice that this choice preserves the spin quantum number of each particle.

The PBCs of the simulation box are incorporated by mapping the components of
vectors r € R? (where 7 = 7 or r = r;j) to a Fourier basis
r o— sin(%ﬂ’r),cos(%ﬁfr)] € R2 and the norm of the distance between two particles,
|7i;ll, to a periodic surrogate ||r;;|| = | sin(F7;;)[|, as in Ref. [83]. In sum, our Ansatz is
translation- and spin-inversion- invariant and possesses fixed total momentum, Kto¢. Its
number of parameters is system-size independent (here ~ 19000) and, using Stochastic

Reconfiguration (SR) [91], only O(103) optimization steps are needed to reach convergence.

A comparison to other NQS approaches is given in the Supplemental Material.
8.5 Results

We study the fully spin-polarized and unpolarized HEG in different density regimes
rs € [1,200] and up to system sizes of N = 128 electrons. We benchmark our ground-state
energies against a variety of methods, including transcorrelation augmented full
configuration interaction method (FCI), distinguishable clusters with doubles (DCD)
method [94] for large densities, and Diffusion Monte Carlo (DMC) with backflow

(BF-DMC) [110, 111] for small densities. We also compare to state-of-the-art NQS
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architectures — FermiNet [85] and WAPNet [84] — available for small system sizes
N € {14,19}. The effect of our backflow transformation on the nodal surface is studied by
comparing it to fixed-node DMC (FN-DMC) results (see Supplemental Material). We use
an energy of 1.5 mHa per particle (chemical accuracy) to assess the significance of energy
differences between the different methods. An overview of our results and benchmarks for

the various system sizes and densities is provided in the Supplemental Material.

8.5.1 Energy Benchmarks for Small Systems

For N = 14, FCI provides the lowest available ground-state energy for the HEG for rg <
5. The energy difference between the MP-NQS and FCI results is lower than 1.5 mHa
per particle. State-of-the-art NQS architectures perform comparably to the MP-NQS: The
unrestricted FermiNet performs slightly better (O (10_5) Ha/N) than both MP-NQS and
WAPNet for rg < 2, while the MP-NQS and WAPNet improve over this version of FermiNet
for r¢ = 5. The restricted FermiNet yields worse ground-state energies than the MP-NQS
over all probed densities [85] (see Fig. [8.1). For rg > 5 we compare to results obtained with
WAPNet and DCD. We find slightly better performance than WAPNet for all of the reported
densities. Furthermore, both neural-network-based methods outperform the DCD method.
Nevertheless, all results lie within a range of 1.5 mHa per particle. A similar pattern is seen
for N = 19: the MP-NQS obtains slightly higher energies than WAPNet for large densities
(rs < 5) and marginally lower ones at smaller densities (rs > 5). The differences are lower

than 1.5 mHa per particle.
8.5.2 Energy Benchmarks for Large Systems

For N = 54 particles, we compare to FCI at high density r¢ = 1, where our method

achieves the same accuracy. The difference between our results and FCI decreases with
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Figure 8.1: Energy differences between ground-state energies, obtained with other methods
and with the MP-NQS, in units of the thermodynamic Hartree Fock energy, for various
densities, polarizations, and system sizes. (Top) N = 14,19, (Bottom): N = 54 particles.

Error bars are too small to be visible for most densities. The corresponding numerical data
can be found in the Supplemental Material.

increasing system size, yielding statistically indistinguishable results for N = 54. We obtain
significantly better ground-state energies than BF-DMC, especially at high densities. This
is in stark contrast to the (FermiNet-based) architecture of [88] (dubbed LiNet in the
following), which does not improve upon BF-DMC energies over the whole density regime
(see Figure [B.1 bottom). Comparison to DCD data shows that the MP-NQS can
consistently improve the ground-state energies for all examined densities, with energy
differences exceeding 1.5 mHa per particle. This indicates a deterioration of DCD’s
accuracy with increasing system size, while our method appears to maintain its precision
independent of system size. As expected, we reach higher accuracy compared to FN-DMC

due to the optimization of the nodal surface. The difference is ~ 1 mHa per particle at the
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largest density. Still, it decreases with decreasing density because the nodal surface does
not contribute as much to the ground-state energy in this regime.

A liquid-crystal phase transition is expected for the HEG, as a function of the density
n. The dominating kinetic energy in Eq. (~ 1 /rg) for large n leads to the well-
known Fermi liquid behavior. For small n the potential energy (~ 1/rs) dominates and
enforces a crystalline structure among the electrons, known as Wigner crystal. The Wigner
crystal, expected to be of BCC type [112], is translation invariant, and the resulting crystal
structure is called a floating crystal. A homogeneous single-particle density distribution and
a crystalline two-body radial distribution function characterize the latter. Detection of the
translation invariant transition has not been realized up to now, to the best of our knowledge.
In previous QMC simulations of the Wigner crystal phase (e.g., in the works of Refs. [113,|95]
85]), the transition is investigated by comparison of energies obtained with a crystalline and
liquid variational Ansatz, explicitly breaking translation symmetry. Consequently, these
works find a pinned BCC lattice. Crystallization is further favored by Gaussian orbitals
centered around BCC lattice sites, a primitive BCC simulation cell, or both. We use the
MP-NQS as unbiased, translation invariant variational Ansatz to investigate the transition
in a conventional BCC cell, i.e., a simple cubic simulation cell. We study a system size
of N = 128 particles at r4 = 110,200. We display the radial distribution functions for
different densities in Figure [8.2] We compare results from a liquid FN-DMC and BF-DMC
calculation to results obtained with the MP-NQS at the predicted transition density around
rs = 110 [113]. We observe remarkable agreement between the three correlators, implying
that the MP-NQS favors the fluid behavior at this density. For the lower density of rs = 200,
we observe increasing oscillations up to larger distances, departing from the liquid FN-DMC

result. This shows the capability of the MP-NQS to describe qualitatively different phases.
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Figure 8.2: Spin-averaged radial distribution function for the homogeneous electron gas with

N = 128 electrons at low densities (rg = 110,200). Error bars are smaller than the symbols.
The unpolarized fluid is obtained from [113] for r5 = 110.

8.6 Conclusions

We have introduced MP-NQS, a novel NQS architecture, leveraging MPNNs to build highly
expressive backflow coordinates. We demonstrate its power on the HEG system, reducing
the number of parameters by orders of magnitudes compared to state-of-the-art NQS in
continuous space while reaching at par or better accuracy. We also show improvement
upon state-of-the-art BF-DMC results on large systems. The favorable scaling allows us to
accurately simulate large periodic electronic systems, previously inaccessible to state-of-the-
art NQS models. We increase the available system sizes from N = 27 and N = 54 electrons
in periodic systems [88, 85, [84] to N = 128 electrons in this work. We hence open the door

to extrapolation methods to the thermodynamic limit for extended systems.
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N r, MP-NQS WAP [84] FermiNet [85] FCI*/DCD*™ [94]

4] 1 0.568967(6) 0.568965(1) 0.568904(1) 0.56861(1)*
2 —0.008391(1)  —0.0083310(3) —0.008427(1)  —0.00868(2)*
5 —0.0798544(4)  —0.0798360(1)  —0.079821(1)  —0.08002(2)*
10 —0.0552126(6)  —0.05520380(3) N/A —0.05509**
20 —0.0324553(2)  —0.0324434(1) N/A —0.03201**
50 —0.01462631(6) —0.01462211(4) N/A —0.01384**
100 —0.00773018(3) —0.007729980(2) N/A N/A

Table 8.1: Total energy per particle in Hartree for unpolarized system of N = 14 particles.
WAPNet and FermiNet are alternative NQS architectures optimized via VMC. We include
FCI and DCD results as benchmarks from quantum chemistry.

N [ rs MP-NQS LiNet [8§] FN-DMC  BF-DMC [110}[111]
54 | 1 0.52973(1) 0.530019(1) 0.53094(2) 0.52989(4)
—0.014046(8)  —0.013840(1)  —0.01326(2) —0.013966(2)
5 —0.079090(2) —0.0788354(2) —0.07867(1) —0.079036(3)
10 —0.054448(1)  —0.0542785(1) —0.054269(8) —0.054443(2)
20 —0.0320524(5) —0.0316886(1) —0.031976(8) —0.032047(2)
50  —0.0145015(1) N/A —0.01387(2) —0.0144877(1)
100 —0.0076793(1) N/A —0.007674(3) N/A

Table 8.2: Total energy per particle in Hartree for the unpolarized system of N = 54 particles.

The simulation of the HEG phase transition using a translation invariant Ansatz in an
unbiased simulation cell shows the MP-NQS’ capability to represent different phases of
matter. We reproduce the liquid phase of the HEG up to around rg = 110, while observing
pronounced density fluctuations, potentially compatible with Wigner crystallization, at
around rg = 200. We leave it to further, more specialized, investigation to study the nature
of the floating phase found at small densities, potentially resolving the tension with
existing predictions [113, 95| (based on translation-symmetry breaking wave function
states), on the location and nature of the phase transition.

In addition to the numerical results, we introduced an analytical argument, justifying
commonly adopted backflow transformations. Our argument shows that a backflow

transformation over a reference state is sufficient to obtain the exact ground-state wave
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function. It will be of particular interest to characterize the geometrical properties of these
transformations and understand in what cases neural-network parameterizations can

efficiently describe them.
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9 Ultra-cold Fermi Gases

The following article titled 'Neural-network quantum states for ultra-cold Fermi
gases’ is currently under review [5].

Ultra-cold Fermi gases exhibit a rich array of quantum mechanical properties, including
the transition from a fermionic superfluid BCS state to a bosonic superfluid BEC state,
which can be precisely probed experimentally. However, accurately describing these
properties poses significant theoretical challenges due to strong pairing correlations and the
non-perturbative nature of particle interactions. Here, we introduce a Pfaffian-Jastrow
neural-network quantum state with a message-passing architecture to encode pairing and
other quantum correlations efficiently. Our novel approach surpasses existing
Slater-Jastrow frameworks and outperforms state-of-the-art diffusion Monte Carlo
methods, as evidenced by lower ground-state energies. We observe the emergence of strong
pairing correlations by analyzing the opposite-spin pair distribution functions.
Additionally, we demonstrate that transfer learning enhances the training of
neural-network wave functions, facilitating the exploration of the BCS-BEC crossover
region near unitarity. Our findings highlight the potential of neural-network quantum

states as a promising strategy for investigating ultra-cold Fermi gases.

9.1 Introduction

The study of ultra-cold Fermi gases has received considerable experimental and theoretical
attention in recent years due to their unique properties and potential applications in fields

ranging from condensed matter physics to astrophysics. These systems can be created and
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manipulated in the laboratory with high precision, providing a versatile platform for
investigating a wide variety of phenomena. By tuning the s-wave scattering length a via
external magnetic fields near a Feshbach resonance, one can smoothly crossover from a
fermionic superfluid BCS state (a < 0) of long-range Cooper pairs to a bosonic superfluid
BEC state (a > 0) of tightly-bound, repulsive dimers. Given their diluteness, the behavior
of these systems is mainly governed by a and the effective range of the potential r., with
natural units provided by the Fermi momentum kp and the Fermi gas energy per particle

2
in the thermodynamic limit Fpg = %g—mk% (see Ref. [114] and references therein).

BCS Unitary BEC
< —t—t > 1/ka
-1 0 1
——

Crossover region

Figure 9.1: A cartoon of the BCS-BEC crossover. Moving from left to right, the attractive
interaction between opposite-spin fermions increases. However, in the BEC regime, the
attraction binds the pairs so tightly that they behave as weakly repulsive bosons. The
region between the weakly attractive Cooper pairs and the weakly repulsive dimers is known
as the unitary limit.

The region between the BCS and BEC states, known as the “unitary limit,” is particularly

interesting as a diverges and r. approaches zero. The unitary Fermi gas (UFG) is a strongly-
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interacting system that exhibits surprisingly stable superfluid behavior. Studying the BCS-
BEC crossover near the unitary limit can reveal critical aspects of the underlying mechanism
behind superfluidity in fermionic matter. The UFG is also universal, meaning its properties
are independent of the details of the two-body potential. This universality allows for robust
comparisons and predictions between seemingly disparate quantum systems. For instance,
the UFG is relevant for neutron stars, as they provide a means to study superfluid low-
density neutron matter |115, |116], whose properties are crucial for the phenomenology of
glitches [32] and the cooling of these stars via neutrino emission [30} |31} |117].

The onset of strong pairing correlations and the non-perturbative nature of the interaction
makes the theoretical study of these systems particularly challenging for quantum many-
body methods. Among them, quantum Monte Carlo (QMC) has proven to be exceptionally
efficient in calculating various properties with high accuracy, including the energy [118|,
pairing gap [119]|, and other quantities related to the so-called contact parameter [120].
Diffusion Monte Carlo (DMC), in particular, is an accurate tool for calculating the properties
of quantum many-body systems [121]. The fixed-node approximation typically employed in
DMC calculations to control the fermion-sign problem provides a rigorous upper bound
to the ground-state energy that agrees well with other methods and experiments [122] 123].
Moreover, unlike the Auxiliary Field Quantum Monte Carlo method, DMC can handle broad
classes of local interactions, which provides exact results that are sign-problem free but is
limited only to unpolarized systems with a purely attractive interaction [118]. However, the
fixed-node approximation limits the accuracy of DMC energies, which induces a residual
dependence on the starting variational wave function. The latter has a critical role in DMC
calculations of expectation values of operators that do not commute with the Hamiltonian,

such as spatial and momentum distributions. The analytical form of the variational ansatz
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is usually tailored to specific problems of interest and biased by the physical intuition of the
researchers.

In this work, we overcome these limitations by performing variational Monte Carlo
(VMC) calculations of ultra-cold Fermi gases with neural-network quantum states
(NQS) [1] that incorporate only the most essential symmetries and boundary conditions.
After their initial application to quantum-chemistry problems [46, |124], continuous-space
NQS have been successfully employed to study quantum many-body systems in the
presence of spatial periodicities, such as interacting quantum gases of bosons [125], the
homogeneous electron gas [126] 127], and dilute neutron matter [15|. Recent works have
also used NQS to solve the nuclear Schrodinger equation in both real spacel40, (128, |129,
130, |131] and the occupation number formalism [132]. When dealing with fermions, the
antisymmetry is usually enforced using generalized Slater determinants, the expressivity of
which can be augmented with either backflow transformations [133] or by adding “hidden”
degrees of freedom [56].

Strong pairing correlations in fermionic systems motivate adopting an antisymmetrized
wave function constructed from pairing orbitals rather than single-particle orbitals. One
such construction, often called the geminal wave function [134} 135], considers determinants
of spin-singlet pairs, while other more general wave functions based on the Pfaffian |136, 6]
7, 1137], consider both singlet and triplet contributions. Pfaffian wave functions combined
with neural-network Jastrow correlators [138] have successfully modeled lattice fermions,
even revealing the existence of a quantum spin liquid phase in the J1-J2 models on two-
dimensional lattices [139].

We propose a novel NQS that extends the conventional Pfaffian-Jastrow [6] ansatz by

incorporating neural backflow transformations into a fully trainable pairing orbital. The
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backflow transformations are generated by a message-passing architecture recently
introduced to model the homogeneous electron gas |2|. In addition to being a significant
departure from generalized Slater determinants, our Pfaffian-Jastrow NQS naturally
encodes pairing in the singlet and triplet channels, without stipulating a particular form for
the pairing orbital. In view of this, it is broadly applicable to other strongly-interacting
systems with the same symmetries and boundary conditions. @~ We demonstrate the
representative power of our NQS by computing ground-state properties of ultra-cold Fermi
gases in the BCS-BEC crossover. Our Pfaffian-Jastrow NQS outperforms Slater-Jastrow
NQS by a large margin, even when generalized backflow transformations are included in
the latter. Most notably, we find lower energies than those obtained with state-of-the-art
DMC methods, which start from highly-accurate BCS-like trial wave functions.

The rest of the paper is organized as follows. In Section 77, we introduce the Hamiltonian
used to model ultra-cold atomic gases near the unitary limit and the many-body techniques
used to solve the Schrodinger equation. In Section we compare the Pfaffian-Jastrow
NQS with other NQS ansétze and state-of-the-art DMC results. Finally, in Section [0.7, we

draw our conclusion and provide future perspectives of this work.

9.2 Hamiltonian

As customary in QMC approaches, we simulate the infinite system using a finite number of
fermions N in a cubic simulation cell with side length L, equipped with periodic boundary
conditions (PBCs) in all d = 3 spatial dimensions. We use r; € R and s; € {1,J} to denote
the positions and spin projections on the z-axis of the i-th particle, and the length L can be

determined from the uniform density of the system N/L3 = k‘% /(372). The dynamics of the
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unpolarized gas is governed by the non-relativistic Hamiltonian

52 N N
2
where the attractive two-body interaction

2h2 ,UQ
m cosh? (prij)

Uij = ((551.,53. - 1)2)0 s (92)

acts only between opposite-spin pairs, making the interaction mainly in s-wave for small
values of re. In the above equations, VZZ is the Laplacian with respect to r; and 1;; = |[r;—7;]|
is the Euclidean distance between particles ¢ and j. The Pdschl-Teller interaction potential
of Eq. provides an analytic solution of the two-body problem and has been employed
in several previous QMC calculations [140, 141, 142, 120|. The parameters vy and p tune
the scattering length a and effective range r¢, respectively. In the unitary limit |a] — oo,
the zero-energy ground state between two particles corresponds to vg = 1 and re = 2/pu.
In order to analyze the crossover between the BCS and BEC phases, we will use different
combinations of vy and u that correspond to the same effective range. In addition, we will
consider various values of p with fixed vy = 1 to extrapolate the zero effective range behavior

at unitarity.

9.3 Neural-Network Quantum States

We solve the Schrodinger equation associated with the Hamiltonian of Eq. (9.1)) using two

different families of NQS. All ansétze have the general form

U(X) =’ M (x), (9.3)



where the Jastrow correlator J(X) is symmetric under particle exchange and ®(X) is
antisymmetric. Here, we have introduced X = {xq,...,xy}, with x; = (r;,s;), to
represent the set of all single-particle positions and spins compactly.

In addition to the antisymmetry of fermionic wave functions, the periodic boundary
conditions, and the translational symmetry (which will be discussed in Sec. ?77), we also
enforce the discrete parity and time-reversal symmetries as prescribed in Ref. [130]. More

specifically, we carry out the VMC calculations for the unpolarized gas using gP T(R, S)

given by
UP(R,S) = U(R,S) + U(—R,S), (9.4)
\IIPT(R> S) = \IJP(R> S) + (_1)n\IJP(R> _S)a (95)
where n = N/2 and we have used the notation R = {r{,...,ry} and S = {s1,...,sy} for

the set of all positions and spins, respectively. Enforcing these symmetries has been shown
to accelerate the convergence of ground-state energies for both atomic nuclei [130] and dilute

neutron matter [15].

9.3.1 Pfaffian-Jastrow-Backflow

The antisymmetric part of the wave function employed in QMC studies of ultra-cold Fermi
gases is typically constructed as an antisymmetrized product of BCS spin-singlet
pairs |143] (140, |115] (141, 144]. It goes by a variety of names, such as the geminal wave
function 134} |135|, the singlet pairing wave function [6], and the (number-projected) BCS
wave function [144], just to name a few. Although geminal wave functions have

demonstrated significant improvements over single-determinant wave functions of
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single-particle orbitals, the energy gains are typically smaller for partially spin-polarized
systems [135], as contributions from the spin-triplet channel are missing. This naturally
leads to the singlet-triplet-unpaired (STU) Pfaffian wave function [136] 6], in which the
pairing orbitals are explicitly decomposed into singlet and triplet channels. Then, the STU
ansatz is expressed as the Pfaffian of a block matrix, with the singlet, triplet, and unpaired
contributions partitioned into separate blocks. When the triplet blocks are zero, the STU
wave function reduces to the geminal wave function.

Both the geminal and the STU wave functions rely on fixing the spin ordering of the
interacting fermions. Consequently, they are not amenable to potentials that exchange
spin, such as those used to model the interaction among nucleons [145]. In neutron-matter
calculations, for instance, the pairing orbital for the Pfaffian wave function can be taken as
a product of a radial part and a spin-singlet part [7, [137]. The spin-triplet pairing has so
far been neglected in neutron-matter calculations, but they can be treated similarly
without requiring spin ordering.

To address the limitations of the works mentioned above, we take the most general form

of the Pfaffian wave function 136} 6] as the antisymmetric part of our ansatz

0 oz, 22) -+ o1, TN)
: 0 . 7
®ps(X) = pf cb(wz. x1) | ¢(932. xN) | 06)
_gb(iL‘N, wl) ¢(wN7 112) e 0 i

where we assume the unpolarized case for this initial investigation. We do not keep the
spins fixed, nor do we mandate a specific form for the pairing orbital ¢(x;, ;). Instead, we

capitalize on the universal approximation property of feed-forward neural networks
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(FNN) [146| by defining the pairing orbital as

o(xi, x;) = vz, xj) — v(zj, =), (9.7)

where v is a dense FNN. The above expression ensures that the Pfaffian is mathematically
well-defined, as the matrix is skew-symmetric by construction ¢(x;, ¢;) = —¢(x;, z;). Since
v takes all the degrees of freedom of a given pair of particles as input, including the spins,
our pairing orbital has the capacity to discover the spin-singlet and spin-triplet correlations
on its own.

This design leaves our Pfaffian-Jastrow (PJ) ansatz agnostic to any particular form of
the interaction and systematically improvable by simply increasing the size of v. The input
dimension of v only depends on the spatial dimension d and not the total number of particles
N, leading to an exceptionally scalable ansatz. Given the generality of our formulation, the
Pfaffian ansatz calculation cannot be reduced to a determinant of singlet pairing orbitals as
in the geminal wave function. Thus, the efficient computation of the Pfaffian is crucial to the
scalability of our approach. To this aim, we implement the Pfaffian computation according
to Ref. [13].

We further improve the nodal structure of our PJ ansatz through backflow (BF)
transformations [97]. To our knowledge, this is the first time neural BF transformations
have been used in a Pfaffian wave function, although they have demonstrated their
superiority over traditional BF transformations within the Slater-Jastrow formalism in
numerous applications [133, 46, |124]. We replace the original single-particle coordinates x;
by new ones &;(X), such that correlations generated by the presence of all particles are

incorporated into the pairing orbital. To ensure that the Pfaffian remains antisymmetric,
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the backflow transformation must be permutation equivariant with respect to the original
x;, i.e. x; depends on x; and is invariant with respect to the set {a:j}j#. In Sec. 77, we
discuss in detail how the backflow correlations are encoded via a permutation-equivariant
message-passing neural network. All calculations labeled as PJ-BF assume that we apply

the transformation v(x;, ;) — v(&;, ;) to the FNN in Eq. (9.7).
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Figure 9.2: Schematic representation of a message-passing neural network with T iterations.
Dashed lines represent the concatenation operations, while solid lines represent the
parameterized transformations (linear transformations and nonlinear feedforward neural
networks). Messages, highlighted in pink, mediate the exchange of information between
the one- and two-body streams, in blue. A yellow box indicates a single iteration of the
network.

9.3.2 Fixed-Node Slater-Jastrow

For comparison, we will report results obtained using a Slater-Jastrow (SJ) ansatz, which

amounts to taking the antisymmetric part of the wave function to be a Slater determinant
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of single-particle states

¢1(x1)  d1(x2) -+ 91(zTN)
B4 (X) = det p2(x1)  Pa(x2) -+ P2(xN) | 08)

on(x1) on(x2) -+ On(TN)

In the fixed-node approximation, the single-particle states are the products of spin eigenstates
with definite spin projection on the z-axis s, and plane wave (PW) orbitals with discrete

momenta ko = 2mny /L, ng € VA3

balx;) = eika'TiXMSi) ) (9.9)

where xq(s;) = Ose,s;- Here, a = (Kq, Sq) denotes the quantum numbers characterizing

the state. We will label Slater-Jastrow NQS calculations using above plane wave orbitals as

SJ-PW.

9.3.3 Slater-Jastrow-Backflow

As in the Pfaffian case, we improve the nodal structure of the above Slater determinant

using backflow transformations generated by the message-passing neural network discussed

in Sec. 7?7. We modify the spatial coordinates of Eq. as

r, =T+ ’U,Z(X) , (910)

where the complex backflow displacement u;(X) € C? allows for changes in both the phases

and amplitudes of the spatial part of the single-particle states. We also map the single-
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particle spinors onto the Bloch sphere as

Xa(&;) = cos (92'(2)()) Jsy,s; + sin (92'(2)()) (1 Gsans;): (9.11)

where 6;(X) € R is the polar angle on the sphere. Both u;(X) and 6;(X) are permutation-
equivariant functions of the original coordinates x;, the functional form of which will be

discussed in Sec. [0.3.4]
To motivate the form of the backflow transformation in Eqs. (9.10)) and (9.11]), let us first

revisit the original plane wave orbitals in Eq. . We simulate our system in the basis
|ZEZ> = |’I"l> & |SZ'>, (9.12)

where |r;) are eigenstates of the position operator, with r; € R?, and |s;) are eigenspinors of
the S, operator, with s; € {1, ]}. In the fixed-node approximation, we take the single-particle
states to be products of momentum eigenstates with definite wave vector ko = 2mng/L,

ne € 24, and eigenspinors with definite spin projection s,

[9a) = ka) ® [sa). (9.13)

Omitting overall normalization constants, the probability amplitude of measuring particle ¢

in state « is

ba(xi) = (@ilda) = (rilka) (silsa) = FTib50,s;. (9.14)

which we call the plane wave orbitals.
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Now, let us transform to a new basis with modified position eigenstates and a
superposition of eigenspinors

;) = [75) ® [xi)- (9.15)

While permutation equivariance is the sole essential property required for the backflow
transformation |x;) — |&;) to preserve the antisymmetry of the fermionic wave function,
an additional property is desirable for computational convenience. Specifically, when the
transformation depends on certain parameters, we aim to have |Z;) = |z;) when the
parameters are identically zero. Then, nonzero parameters signify deviations from the
original plane wave orbitals, such that less training is required compared to completely
trainable orbitals.

An appropriate spatial transformation is trivial. We simply define new parameters u,; €
C?, called the backflow displacement, and shift the coordinates as rg = r; + u;. The
backflow displacement is complex, allowing for changes in both the phases and amplitudes
of the original plane wave orbitals.

For the spin part of the transformation, we look to spinors on the Bloch sphere for
inspiration,

) = cos (5 ) s+ sin () ol (9.16)

In the above, we have introduced another backflow variable #; € R akin to the polar angle of
a Bloch spinor, and we have excluded the relative phase in favor of a completely real-valued
wave function. We also write the superposition in terms of |s;) and the Pauli X-operator

of, which flips the spin of the i-th particle, rather than | 1) and | |). This way, it is obvious
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Table 9.1: The limiting cases of the overlap between two neural backflow spinors inspired by
spinors on the Bloch sphere.

that |x;) = |s;) when 6; = 0, as desired. The overlap of two spinors is given by

9]’) (silo?to]s;) (9.17)

where the limiting cases are summarized in the following table.

Finally, we can compute the backflow orbitals with the transformed degrees of freedom

¢a<53i) = <53i|¢oz>

= (7ilka)(Xilsa)

— ctkaT; (cos (%) (si]sa) +sin (%) <5i|0ﬁ|sa>>
— eika'(ri—"ui) (COS (%) 58@;32‘ + sin <%) (1 - 680[,81')) .

In Egs. (9.10) and (9.11), we use the notation u;(X) and 6;(X) to emphasize that the

(9.18)
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backflow “parameters" we define here are not variational parameters, but a function of all
other particles. More specifically, they are permutation-equivariant functions of the original
x;, whose functional forms depend on the outputs of the permutation-equivariant message-
passing neural network (MPNN) described in Sec.

In addition to omitting the relative phase in Eq. so that the spinors remain real,
we map the spatial components of the plane wave and backflow orbitals to the equivalent
real ones. For the unpolarized system of fermions, the latter mapping is

etka(ri+u;) eka (W) o (kg - (r; + Re(u;)))
— . (9.19)
e~ tha(ritu;) ekatm(ug) i) (ko - (7 + Re(uy)))
Remember that the spatial inputs to the MPNN are L-periodic, which guarantees that u; is
as well. Therefore it is less redundant to compute

eIm(ui) cos (ka T+ Re(“’l))
| (9.20)

™ (i) sin (kg - 7; + Re(u;))

instead of the right-hand side of Eq. (9.19). Then the modified phase Re(u;) and amplitude

Im(u;)

e still have the correct periodicity, but they do not reduce to the trivial case when

ko = 0. In the end, this last step is a small detail and does not affect the final result.

9.3.4 Message-Passing Neural Network

Implementing the aforementioned neural-network quantum states is possible using X as
direct inputs to the appropriate FNNs and Deep-Sets [12|. Still, it is advantageous to
devise new inputs that already capture a large portion of the correlations. As in Ref. 2],

we employ a permutation-equivariant message-passing neural network (MPNN) to
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iteratively build correlations into new one-body and two-body features from the original

“visible” features. The visible features are chosen to be

V; = (Sz) ; (9.21)

vij = (rij, [Irizll, sij) (9.22)

with the separation vectors r;; = r; — r; and distances ||7;;|| = 7;; replaced by their L-
periodic surrogates

Tij (COS(QWrij/L),sin(27rrij/L)) , (9.23)

75l = |l sin(rs /L), (9.24)

and the quantity s;; = 2(551.,6;]. — 1 assigned a value of +1 for aligned spins and —1 for anti-
aligned spins. Note that we have excluded explicit dependence on the particle positions r; in
the visible one-body features, thereby enforcing translational invariance in the new features.
Linear transformations are applied to and concatenated with each feature to obtain the

initial hidden features

0)

R = (v;, Avy), (9.25)
hg)) = (’Ul'j, B'vij). (9.26)

The main purpose of the linear transformations is to preprocess the input data. Still, they
also help simplify the implementation by keeping the dimension of the hidden features hZ(-t),

hg? constant for all ¢. In each iteration, t = 1,...,T of the MPNN, information is exchanged
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between the one- and two-body streams through a so-called “message”

ml(-;-) — M, (hf‘”, hg.t‘”, hl(.;._l)). (9.27)

For a given particle i, relevant messages are collected and pooled together to destroy the

ordering with respect to all other particles 5 # i,
t t . .
mg ) = pool ({mgj) | j # z}) : (9.28)

The pooling operation pool collapses the order of the elements in the set it acts upon and
produces a vector with the same dimension as an individual element. Throughout this work,

we use logsumexp-pooling, the smooth variation of max-pooling.

®) (t)

The pairwise messages m;.’ and the implied particle messages m;’ are then used to

ij i

update the hidden features
B = (v, B (R, m")), (9.29)
By = (vij, Gi (R, mlY))). (9.30)

The functions My, F;, and G; are all unique FNNs with the same output dimension as the
linear preprocessors A and B. By incorporating concatenated skip connections to the visible

features, we guarantee that the signal originating from the raw data remains discernible even

as the MPNN depth T increases. Finally, we combine the resulting outputs hl(-T) and hg)
into pairwise feature vectors
T T T
gij = (" 1" n0) (9.31)
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to feed into subsequent networks. The flow of information through the MPNN can be
visualized in Fig.[9.2] Notice how the hidden features in a given layer depend on the hidden
features of the previous layer and the original visible features.

For all our NQS, we use a Jastrow correlator based on a Deep-Set [12] to enforce

permutation invariance over the set of all pairwise features

J(X) = p(pool ({¢(gy) | i # j}) ) (9.32)

Here, p and ¢ are FNNs, and the pooling operation is the same as in Eq. . While many
Jastrow functions are typically designed to satisfy Kato’s cusp condition [147] for specific
systems, we take a different approach and allow our neural networks to learn the cusp fully.
The short-range behavior of the ground state is particularly important for the UFG, so
leaving our NQS completely unbiased serves as an important test for evaluating the overall
capabilities of NQS.

The Slater-Jastrow ansatz with plane wave orbitals (SJ-PW) does not require any
additional neural networks beyond p and ¢, so it establishes a baseline for the number of
trainable parameters in this work. On the other hand, the backflow variables u; and 6; for
the Slater-Jastrow ansatz with backflow orbitals (SJ-BF) are the outputs of another

Deep-Set

(Re(u;), Im(w;), 0;) = pyy <P00l<{be(g¢j) | J # i}>)7 (9.33)

which is permutation invariant with respect to all j # i by construction. The size of py¢
and (¢ determines the number of extra variational parameters present in the SJ-BF ansatz
compared to the SJ-PW ansatz. For the PJ-BF ansatz, the pairing orbital v in Eq. (9.7)

simply takes g;; as input in place of (x;, ;). Therefore, the number of additional variational
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parameters in the PJ-BF ansatz relative to the SJ-PW ansatz is determined by the size of
v.

All of the feedforward neural networks mentioned throughout this section have at least
two hidden layers with 16 nodes each. The activation function is GELU [148| and the
weights /biases are initialized with glorot normal/zeros unless pretrained parameters are used.

It is worth highlighting that the individual feedforward neural networks within our NQS
are solely dependent on the spatial dimension d and not the system size N. Therefore,
even though this study focuses on benchmarking the N = 14 case, the trained NQS can
be used as starting points for larger even-N, unpolarized systems without requiring any
modifications to the network structure. This is an example of transfer learning, a powerful
strategy that involves applying knowledge gained from solving one problem to another, often

more challenging problem.

9.4 Variational Monte Carlo and Training

We train our NQS by minimizing the energy

(V(p)|H|¥(p))
(¥ (p)|[¥(p))

E(p) = (9.34)

with respect to the variational parameters p. To compute the energy and its gradient VpF
using Monte Carlo integration, we sample positions R and spins S from |¥(R, S)|? in a way
that preserves periodicity and total spin projection on the z-axis, as in Refs. [125, [130].
Since the ordering of the spins is not fixed, our ansétze can be immediately applied to any
continuous-space Hamiltonian that exchange spin, such as Ref. [149).

A sophisticated optimization technique is critical for achieving an ansatz that is both
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compact and expressive. In this work, we employ the stochastic reconfiguration [9] (SR)
algorithm with regularization based on the RMSprop method, introduced in Ref. |130]. The
parameters are updated as

p <« p—nG V,E, (9.35)

where 7 is a constant learning rate and G is the quantum geometric tensor [10].

Due to the strong and short-range nature of the interaction in Eq. , it is likely for
the optimization process to get trapped in a local minimum when initialized with random
parameters. To avoid this problem, we use transfer learning by pretraining the NQS on
a softer interaction (u = 5) before proceeding to harder ones (u = 10,20,40). Not only
does this approach improve the final converged energy, but the efficiency of the optimization
process overall. The training for lower values of u can handle a more aggressive learning rate
0 and fewer samples. As a general guideline, we reduce 0 by a factor of 10 and double the
number of samples each time the value of i is doubled. The number of optimization steps
required for training ranges from O(103) to @(104), depending on whether the NQS were

pretrained or initialized with random parameters.

9.5 Diffusion Monte Carlo

The fixed-node DMC calculations are performed as described in Ref. [150]. The initial state
is prepared using VMC methods with a variational wave function with the same general
form as Eq. . Note that, within the fixed-node approximation, DMC provides a strict
upperbound to the energy of the system. While DMC is a precise method, its accuracy

relies on the choice of nodal surface and the quality of the preceding VMC calculation. The
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symmetric Jastrow factor is given by

J(X) = ZU(Q’Z’/)’ (9.36)

u(r) = K tanh(uyr) cosh(yr)/r, (9.37)

where n = N/2 and the unprimed and primed indicies denote the spin-up and spin-down
particles, respectively. The parameters K and 7 are adjusted so that u(d) = 0 and v/(d) = 0,
and py and d are variational parameters. Considering that the s-wave channel dominates

the interaction, the antisymmetric part is given by the number-projected BCS wave function

¢("“11/) ¢("°12/> ¢(r1n/)

®pog(X) = det Hrar) ryy) o Alryy) , (9.38)

with the pairing orbitals

o(r) = B(r) + 3 alk7)e™i, (9.39)

B(r) = B(r) + B(L —r) = 28(L/2), (9.40)
efbr

B(r)=(1+cbr) (1 - e_de)W (9.41)

The parameters a(k;zz), b and d are obtained by minimizing the energy, and c is chosen so
that the function 8 has zero slope at the origin. If we instead let § = 0 and restrict the sum

in Eq. (9.39) to momentum states filled up to kg, the antisymmetric part is equivalent to
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the Slater determinant with single-particle plane waves as in Egs. and . Since this
approach does not involve pairing, we will refer to the related DMC results as DMC-PW.
Conversely, the approach that accounts for pairing will be identified as DMC-BCS.

It should be emphasized that the BCS wave function of Eq. is a special case of the
generalized Pfaffian of Eq. (9.6)). In fact, it can be easily shown [6] that by only retaining the

spin-singlet blocks, the calculation of the Pfaffian reduces to the determinant of spin-singlet

block.

9.6 Results
9.6.1 Energy

We first compare the performance of the various neural-network quantum states outlined in
Sec. as the message-passing neural network (MPNN) depth T is varied. As shown in
Fig. 0.3 the final converged energies per particle for the Slater-Jastrow ansatz with plane
wave orbitals (SJ-PW) decreases monotonically towards the corresponding DMC-PW
benchmark, with remarkable agreement at 7" = 5. This behavior echoes the findings of
Ref. [151], and demonstrates the impact of the MPNN on the flexibility of our Jastrow.
Incorporating backflow correlations into the Slater-Jastrow ansatz (SJ-BF) significantly
improves results compared to the fixed-node approach with PW, but more than half of the
discrepancy between the two DMC energies remains. Due to the observed weak
dependence on T', it is unlikely that further increasing 7" would yield a substantial
improvement in energy. The SJ-BF ansatz may be able to achieve energies more similar to
the DMC-BCS benchmark by increasing the width of the feedforward neural networks.
Still, the associated computational expenses are expected to be prohibitively high.

Therefore, we turn our attention to the Pfaffian-Jastrow-Backflow (PJ-BF) ansatz. Even
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Figure 9.3: Ground-state energies per particle as a function of the MPNN depth T for the
SJ-PW (blue squares), SJ-BF (orange circles), and PJ-BF (green triangles) ansidtze. The
interaction parameters are set to vg = 1 and g = 5, corresponding to an effective range of
rekp = 0.4. The DMC benchmark energies with and without pairing are displayed as solid
and dashed lines, respectively.

218



0454 @® DMC-BCS ]
PJ-BF vy
. . 7
0444 ~°°° Linear Fit /,/’
Error -7
P4
//
©0.43 1 7
S o
= i
,/
0.42 1 ) ’ <7
‘/
041 -7
0.40 . . . .
0.0 0.1 0.2 0.3 0.4
kpre

Figure 9.4: Ground-state energies per particle as a function of the effective range. The
DMC-BCS benchmark energies (blue circles) and the Pfaffian-Jastrow with backflow (PJ-BF)
energies (orange triangles) are extrapolated to zero effective range using linear fits (dashed
lines). The shaded regions are the error bands for the DMC-BCS and PJ-BF energies.

with a single MPNN layer, the PJ-BF ansatz easily outperforms DMC-BCS while also
possessing fewer parameters (~5600 v.s. ~6200) than the single-layer SJ-BF ansatz. The
overall dependence on the MPNN depth is weak, with T" = 2 giving slightly lower energy
and variance than T = 5. For the remainder of our analysis, we will use the PJ-BF ansatz
with 7' = 2, which contains about 8500 variational parameters.

As the unitary limit is characterized by a vanishing effective range, we study how the
ground-state energy responds to changing kpre in Fig.|9.4, The PJ-BF ansatz gives energies
~1-2% lower than DMC-BCS as the effective range is decreased from kpre = 0.4 to kpre =

0.1. At kpre = 0.05, our energy falls below the range of the DMC-BCS error band, suggesting
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| i | kpre | DMC-BCS | PJ-BF |
5] 04 [ 0.446(1) |0.4366(3)
10| 0.2 | 0.428(1) | 0.4208(3)
20| 0.1 || 0.418(1) |0.4131(8)
40 | 0.05 || 0.412(1) | 0.408(1)
oo | 0.0 || 0.408(1)* | 0.405(1)*

Table 9.2: Energy per particle for various values of p and the corresponding values of re.
The values with asterisks (*) are extrapolations from the linear fits shown in Fig. The
parameter vy = 1 is fixed.

our approach is likely to maintain its superior performance as r¢ is decreased further. To
estimate the energy at zero effective range, we also perform simple linear fits — See Table[9.2
for the extrapolated values. Note that our results have been obtained by simulating a system
of N = 14 particles for benchmark purposes. In order to obtain energies closer to the

thermodynamic limit, further simulations with more particles will be needed [122, [152].

9.6.2 Pair Distribution Functions

In Fig.[9.5] we show the opposite-spin pair distribution functions at unitarity for = 5, 10,
and 20. Notice how the peaks of the distributions at kpr = 0 grow roughly quadratically
with u, demonstrating the presence of strong pairing correlations as we approach the unitary
limit y — oco. Clearly, the short-range character of the distributions are important to capture
at unitarity, as they begin to converge around kpr 2 0.4.

Fig. presents a complementary set of opposite-spin pair distribution functions in the
crossover region with fixed effective range of kpr. = 0.2. When we lean towards the BCS
phase 1/akp = —0.5, the long-range tail of the density is enhanced compared to the unitary
case 1/akp = 0. On the other hand, the tail is diminished in the BEC phase 1/akp = —0.5,
suggesting the initiation of dimer formation. The differences in the peaks of the distributions

are not as dramatic as in Fig. [0.5] but they are consistent with the expected behavior in the
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Figure 9.5: Opposite-spin pair densities as a function of small kpr at unitarity (vg = 1) and
i =5 (blue squares), ;= 10 (orange circles), and p = 20 (green triangles).
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Figure 9.6: Opposite-spin pair densities in the crossover region for the BCS phase 1/akp =
—0.5 (blue squares), unitarity 1/akp = 0 (orange circles), and BEC phase 1/akp = 0.5

(green triangles). The effective range of all cases are fixed kpre = 0.2. See Table for the
corresponding values of vy and pu.
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| 1jakp | w | pu | DMC-BCS| PJ-BF |

1 [ 0.879214 | 11.06247 || 0.801(1) | 0.7930(2)
0.5 | 0.933216 | 10.55715 || 0.705(1) | 0.6937(3)
0.2 | 0.971423 | 10.23012 || 0.578(1) | 0.5671(3)
0.1 | 0.985366 | 10.11637 || 0.510(1) | 0.5014(4)
0 1.0 10.0 0.428(1) | 0.4208(3)
0.1 || 1.015388 | 9.880801 | 0.328(1) | 0.3218(3)
0.2 || 1.031602 | 9.758564 | 0.208(1) | 0.2017(3)
0.5 || 1.086081 | 9.371025 | -0.319(1) | -0.3244(4)
1| 1.204354 | 8.632898 || -2.053(1) | -2.0566(6)

Table 9.3: Energies per particle and interaction parameters for the two-body potential in
Eq. (9.2) giving different scattering lengths with the same effective range kpre = 0.2.

BCS and BEC regimes near unitarity.

Finally, we explore the BCS-BEC crossover region for a fixed effective range kpr, = 0.2
in Fig. [0.7 See Table for the values of the interaction parameters vy and p, as well as
the corresponding DMC-BCS benchmarks and the PJ-BF ansatz results. The cases closer to
unitarity were used to pretrain the cases further away. In the BCS regime, our PJ-BF ansatz
consistently yields energies ~ 0.01Ep lower than those obtained from DMC-BCS, albeit
with slightly inferior performance in the BEC regime. We attribute this effect to the need
for increased flexibility in capturing the short-range behavior of pairs in the BEC regime.
Simply increasing the size of feedforward neural network v that defines the pairing orbital
should alleviate this discrepancy. In any case, the PJ-BF ansatz gives lower energies than

DMC-BCS for all scattering lengths tested.

9.6.3 Pairing Gap

The pairing gap can be evaluated using

A(N) = E(N) — = (E(N +1)+ E(N — 1)), (9.42)
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Figure 9.7: Upper panel: Energy per particle in the BCS-BEC crossover region as a function
of the scattering length a for a fixed effective range kpre = 0.2. Lower panel: Difference
between Pfaffian-Jastrow with backflow (PJ-BF) and DMC-BCS benchmark energies. See
Table for the corresponding values of vy and pu.
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| N | DMC-BCS | PJ-BF |
14 0.428(1) | 0.4208(3)
15 || 0.4900(2) | 0.4766(5)
15 || 0.5357(2)* | 0.5209(5)*
16 | 0.4240(2) | 0.4177(4)

Table 9.4: Energies per particle f