
SOLVING THE QUANTUM MANY-BODY PROBLEM
WITH NEURAL-NETWORK QUANTUM STATES

By

Jane Mee Kim

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Physics — Doctor of Philosophy
Computational Mathematics, Science and Engineering — Dual Major

2023

ABSTRACT

Quantum many-body systems provide a rich framework for exploring and

understanding the fundamental laws of physics. By studying the collective behavior and

emergent phenomena that arise from the intricate microscopic interactions among particles,

we can deepen our understanding of quantum mechanics and gain insight into its broader

implications for macroscopic observations. However, quantum many-body systems pose

significant computational challenges, as the information contained in the many-body wave

function grows exponentially with the size of the system. This exponential scaling, coupled

with the presence of strong interparticle correlations, makes the accurate description of

these systems difficult, if not impossible, for traditional analytical or perturbative

techniques. In this interdisciplinary approach, we aim to solve the quantum many-body

problem by representing the trial wave function of a variational Monte Carlo calculation by

a so-called neural-network quantum state. These states, as their name suggests, are rooted

in artificial neural networks and serve as a novel alternative to conventional

parameterizations of the trial wave function.

In addition to reviewing key concepts in quantum many-body theory and machine

learning, we investigate a diverse set of continuous-space systems with varying levels of

complexity. Starting from a pedagogical overview of an exactly solvable system of bosons

in one dimension, we work our way up to strongly-interacting fermionic systems in three

dimensions, including dilute neutron matter and ultra-cold Fermi gases. The highly

non-perturbative interactions featured in these systems motivate the development of

innovative neural-network quantum states, capable of discovering strong correlations while

maintaining required symmetries and boundary conditions. We accompany this study with

the description of two distinct implementations of neural-network quantum states, each

with their unique goals and strategies. Our findings indicate that neural-network quantum

states provide a powerful and flexible strategy for investigating a wide range of quantum

phenomena, without relying on prior assumptions about the underlying physics as in

traditional approaches.

This thesis is dedicated to my parents, who have been
a constant source of love and support despite their
distance, and to Elliot, my life partner and best friend,
who fills my days with joy and laughter.

iv

ACKNOWLEDGMENTS

Meeting Morten Hjorth-Jensen during my senior year at MSU was an incredibly fortunate

event that profoundly influenced my academic journey. Knowing he would make an excellent

mentor, he was a large part of the reason I decided to stay at MSU to pursue my PhD. His

expertise, patience, and dedication have played a pivotal role in fostering my passion and

shaping my scientific identity. Morten, I am forever grateful for your kindness, as well as

your ability to strike a delicate balance between providing steadfast support and encouraging

independent thinking. Please know that you have had an immense impact on my growth as

a researcher and a human being.

Scott Pratt, I distinctly remember approaching your office one day after encountering

the statement "x = x + 1" and thinking to myself, "Well, that’s simply not true!" It seems

trivial now, but this moment marked my very first introduction to coding. What’s more, I

knew nothing about research at the time, but you convinced me to give it a shot. Thank

you for taking a chance on me, and thank you for your many words of wisdom.

To my esteemed committee members, Filomena Nunes, Artemis Spyrou, Huey-Wen Lin,

Michael Murillo, and Stuart Tessmer (and a special mention to Matthew Hirn, who is no

longer at MSU), I am grateful for your support and guidance throughout the years. You have

not only fulfilled your roles as committee members but also served as invaluable role models

for me. I would also like to express my gratitude to the nuclear theory group, particularly

Dean Lee, Scott Bogner, and Heiko Hergert, for the countless stimulating discussions we

have had over the years. I hope that our paths will cross often in the future.

Alessandro Lovato and Bryce Fore, it has been an absolute delight collaborating with

both of you. I have learned so much during this past year and a half, and I eagerly look

forward to our continued collaborations in the future. Gabriel Pescia, Jannes Nys, and

v

Giuseppe Carleo, I am deeply appreciative of the opportunity to work alongside each of you

and to have had the unforgettable experience of meeting in person. The time spent together

in Lausanne holds a special place in my heart, and I hope to have the chance to visit again

in the future.

Throughout my nearly decade-long journey at MSU, my interests and career aspirations

have undergone complete transformations. In the face of these changes, I am deeply grateful

for the presence of Kim Crosslan in the P&A department. Kim, speaking not only for myself

but for all graduate students, you are an incredibly important source of stability, and your

impact is immeasurable. Thank you for the many times you have saved me.

My dearest Elliot, I can not imagine what graduate school would have been like if you had

not been there for every second of it. Thank you for being you, and for helping me through

stressful times. Umma and Appa, I am excited for you to finally see what I’ve been working

on for the past few years. Thank you for always encouraging me to work through tough

obstacles to strive towards my goals, hearing ’hwaiting!’ is often exactly what I needed.

Therese (Erin), thank you for your supportive words over the years. I miss you all deeply.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1 Introduction . 1
1.1 Challenges of the Quantum Many-Body Problem 1
1.2 Neural-Network Quantum States . 2
1.3 Algorithm Development Through the Lens of Nuclear Theory 3
1.4 Structure of Dissertation . 4

Chapter 2 The Quantum Many-Body Problem 5
2.1 Formalism . 6
2.2 Indistinguishable Particles . 12
2.3 The Schrödinger Equation . 17
2.4 The Variational Principle . 20
2.5 Ab Initio Methods . 23

Chapter 3 Quantum Monte Carlo . 34
3.1 Monte Carlo Methods . 34
3.2 Variational Monte Carlo . 46
3.3 Diffusion Monte Carlo . 69

Chapter 4 Machine Learning . 72
4.1 The Curse of Dimensionality . 72
4.2 Cost Functions . 74
4.3 Supervised Learning . 75
4.4 Unsupervised Learning . 77
4.5 Reinforcement Learning . 78
4.6 Transfer Learning . 81
4.7 Artificial Neural Networks . 81

Chapter 5 Implementation . 115
5.1 NeuralAnsatz: C++ Software for Localized Systems 115
5.2 Python Software for Periodic Systems . 149

Chapter 6 The Calogero-Sutherland Model 156
6.1 Hamiltonian . 156
6.2 Neural-Network Quantum States . 159
6.3 Results . 160
6.4 Conclusions . 167

Chapter 7 Dilute Neutron Matter . 169

vii

7.1 Introduction . 169
7.2 Method . 171
7.3 Results and Discussion . 174
7.4 Conclusion . 176

Chapter 8 Homogeneous Electron Gas . 181
8.1 Introduction . 181
8.2 Exact Backflow Transformations . 183
8.3 Message-Passing Neural-Network Quantum States 185
8.4 Hamiltonian . 187
8.5 Results . 189
8.6 Conclusions . 193

Chapter 9 Ultra-cold Fermi Gases . 196
9.1 Introduction . 196
9.2 Hamiltonian . 200
9.3 Neural-Network Quantum States . 201
9.4 Variational Monte Carlo and Training . 214
9.5 Diffusion Monte Carlo . 215
9.6 Results . 217
9.7 Conclusions and perspectives . 225

Chapter 10 Conclusions and Perspectives . 228

BIBLIOGRAPHY . 231

viii

LIST OF TABLES

Table 8.1: Total energy per particle in Hartree for unpolarized system of N = 14
particles. WAPNet and FermiNet are alternative NQS architectures
optimized via VMC. We include FCI and DCD results as benchmarks
from quantum chemistry. 194

Table 8.2: Total energy per particle in Hartree for the unpolarized system of N = 54
particles. 194

Table 9.1: The limiting cases of the overlap between two neural backflow spinors
inspired by spinors on the Bloch sphere. 209

Table 9.2: Energy per particle for various values of µ and the corresponding values
of re. The values with asterisks (∗) are extrapolations from the linear fits
shown in Fig. 9.4. The parameter v0 = 1 is fixed. 220

Table 9.3: Energies per particle and interaction parameters for the two-body potential
in Eq. (9.2) giving different scattering lengths with the same effective range
kF re = 0.2. 223

Table 9.4: Energies per particle for different numbers of particles, with kF re = 0.2.
Values with asterisks (∗) indicate translation-invariant calculations. . . . 225

Table 9.5: Energies per particle for different numbers of particles, with kF re = 0.2.
Values with asterisks (∗) indicate translation-invariant calculations. . . . 226

ix

LIST OF FIGURES

Figure 3.1: The cyclic workflow of the variational Monte Carlo algorithm. Starting
with a random set of variational parameters, the cycle is repeated until
the variational energy converges. 48

Figure 3.2: The occupancy of single-particle states for bosons (left) and fermions
(right) at zero temperature. The two different colors (blue/orange) of
fermions represent the two possible spin states (up/down). While bosons
can occupy the same single-particle state, fermions are restricted to
distinct states due to the Pauli exclusion principle. The energy of the
highest occupied single-particle state is commonly referred to as the
Fermi energy εF . 56

Figure 3.3: The effects of a symmetric Jastrow factor (left) and a backflow
transformation (right) on the nodes of a fermionic wave function. While
both the Jastrow factor and the backflow transformation maintain the
antisymmetry of the overall wave function and have the ability to modify
the wave function’s amplitude, only the backflow transformation is
capable of shifting the positions of the nodes. 57

Figure 3.4: This cartoon depicts trajectories of stochastic gradient descent, with
momentum (orange) and without (blue), near a narrow parameter space
minimum. Momentum smooths the path by counteracting noise in
opposing directions. 65

Figure 3.5: A visualization of the Stochastic Reconfiguration algorithm, a
second-order optimization method that stretches and squeezes the
energy landscape such that difficult minima (left) are more isotropic
(right). This method typically reduces the required number of
optimization steps by an order of magnitude compared to the simple
stochastic gradient descent method. 67

Figure 4.1: Cartoon of the curse of dimensionality; as the dimension of the data
increases (left to right), the density of a fixed number of data points
decreases exponentially. 73

Figure 4.2: Comparison of a random data set (left) with no information, a data set
with obvious clusters (middle), and a data set with an obvious lower-
dimensional manifold (right). The latter two are examples of real-life
data sets that contain information, i.e. they have structure. 74

x

Figure 4.3: A visualization of the two main types of supervised learning: regression
(left) and classification (right). The blue data points are the inputs, and
the orange data points are the target outputs. The goal of a supervised
machine learning problem is to learn and generalize the mapping (solid
black lines). 76

Figure 4.4: A depiction of principal component analysis (left) and cluster
identification (right), two common types of unsupervised learning. . . . 77

Figure 4.5: A depiction of the variational Monte Carlo algorithm in the context of
agent-based modeling, a commonly employed reinforcement learning
framework. 80

Figure 4.6: A general Boltzmann machine in which all visible (blue circles) and hidden
(gray circles) nodes are fully connected (solid black lines). 83

Figure 4.7: A standard restricted Boltzmann machine, where the hidden nodes (gray
circles) are binary and the visible nodes (blue circles) can be either binary
or Gaussian. There are no connections (solid black lines) between nodes
within the same layer. 84

Figure 4.8: A multivariate Gaussian-binary restricted Boltzmann machine, a step
between a standard Gaussian-binary restricted Boltzmann machine and
a general Boltzmann machine. In addition to the connections (solid
black lines) between the visible nodes (blue circles) and hidden nodes
(gray circles), there are connections (dotted black lines) among the
visible nodes. 92

Figure 4.9: The conditional probability of a single binary hidden node hj activating,
given the state of the visible nodes v, for a multivariate Gaussian-binary
restricted Boltzmann machine. The blue line represents the probability if
the hidden nodes are allowed to take values of 0 and 1 (Eq. (4.32)), while
the orange line represents the probability of the hidden nodes are allowed
to take values of -1 and 1 (Eq. (4.39)). The x-axis is a transformation of
the visible nodes given by Eq. (4.28). 96

xi

Figure 4.10: The conditional probability of a single uniform node hj activating, given
the state of the visible nodes v, for a multivariate Gaussian-uniform
restricted Boltzmann machine. The blue line represents the probability if
the uniform nodes are allowed to take values between 0 and 1
(Eq. (4.43)), while the orange line represents the probability of the
hidden nodes are allowed to take values of -1 and 1 (Eq. (4.46)). The
x-axis is a transformation of the visible nodes given by Eq. (4.28). We
also plot the softplus function (Eq. (4.17)) for comparison, as its exhibits
similar character. Probability values greater than 1 are assumed to mean
the hidden node hj is always activated. 100

Figure 4.11: Comparison of the four functions we called f(x) during our derivations
of the multivariate Gaussian-binary and Gaussian-uniform restricted
Boltzmann machines (Eqs. (4.17), (4.41), (4.44), (4.47)). These
functions appear in the log-likelihoods logP (v). 101

Figure 4.12: A deep feedforward neural network with six inputs (blue circles) and
three outputs (orange circles). There are two hidden layers with eight
nodes each (gray circles). Adjacent layers are connected by directed
connections, as information flows from left to right. Arrowheads for the
directed connections (solid black lines) are omitted for visual brevity. . . 103

Figure 4.13: An example of a permutation-invariant Jastrow wave function
constructed from the single output of a feedforward neural network. To
enforce permutation invariance, the input vectors xi can be sorted
according to a chosen rule before concatenating them into a single input
vector. The large gray triangle represents a standard feedforward neural
network with nine inputs and one output. 106

Figure 4.14: A depiction of a permutation-invariant Jastrow wave function
constructed from a Deep Set. First, each of the input vectors xi are
passed through identical copies of a standard feedforward neural network
ϕ (gray trapezoids). Then the pooling operation (gray rounded box)
generates a latent space representation of the set of inputs by destroying
the ordering. Finally, the latent space representation is passed through
another feedforward neural network ρ (gray triangle) with a single
output. The positive-definite Jastrow factor can be obtained by simply
exponentiating the single output. 108

Figure 4.15: One layer of a graph neural network that generates an output graph
with the same structure as the original input graph. Three types of
transformations can be considered: global (top), edge (middle), and
vertex (bottom) transformations. The nodes and edges highlighted in
orange show examples of the graph components that contribute to a
given transformation. 110

xii

Figure 4.16: A visualization of the attention scores between a single element of a query
vector and all the elements of a key vector. Larger attention scores are
depicted with darker, bolder lines. 113

Figure 5.1: The highest-level structure of the NeuralAnsatz code, an object-oriented
C++ software for neural-network quantum states. 116

Figure 5.2: A specific example of the hierarchical structure provided by abstract base
classes and derived classes. The classes that appear lower on this graph
inherit properties from the classes above it. 120

Figure 6.1: The regularized two-body potential for the Calogero-Sutherland model,
where x0 is the regularization parameter (Eq. (6.4)). The long-range
behavior of the original potential (black, dashed line) is preserved, but
the height of the potential decreases with larger values of x0. Here, we
have used an interaction parameter value of β = 2. 158

Figure 6.2: Training curves for feedforward neural networks with different activation
functions. In this initial pretraining stage, x0 = 0.5. 161

Figure 6.3: Training curves for the different variants of Gaussian-binary and Gaussian-
uniform restricted Boltzmann machines, with x0 = 0.5. 163

Figure 6.4: The converged energy as a function of the regularization parameter x0 for
feedforward neural networks with different activation functions. 164

Figure 6.5: The converged energy as a function of the regularization parameter x0 for
the various Gaussian-binary and Gaussian-uniform restricted Boltzmann
machines. 165

Figure 6.6: One-body densities during three different points during training: the
initial stage, after pretraining with x0 = 0.5, and after training with
x0 = 0.01. The black dashed line represents the one-body distribution
from the exact ground state wave function. 166

Figure 7.1: NQS training data in neutron matter at ρ = 0.04 fm−3 (data points)
compared with Hartree-Fock (dotted line), conventional VMC (dashed
line), constrained-path ADMC (dash-dotted line) and unconstrained-path
ADMC results (solid line). 178

xiii

Figure 7.2: Low-density neutron-matter /πEFT equation of state as obtained with
the hidden-nucleon NQS for /πEFT potential “o" (blue circles) and /πEFT
potential “a" (orange squares) compared with interactions which retain
pion-exchange terms (green band). We see that the “o" potential is in
excelent agreement with the π-full interactions while the “a" potential
has a slightly stiffer equations of state due primarily to a more repulsive
three-body force. 179

Figure 7.3: Spin-singlet and triplet two-body distribution functions at two different
densities: ρ = 0.01 fm−3 (panel a) and ρ = 0.04 fm−3 (panel b). The NQS
calculations (solid symbols) are compared with non-interacting Fermi Gas
results (solid lines). 180

Figure 8.1: Energy differences between ground-state energies, obtained with other
methods and with the MP-NQS, in units of the thermodynamic Hartree
Fock energy, for various densities, polarizations, and system sizes. (Top)
N = 14, 19, (Bottom): N = 54 particles. Error bars are too small to be
visible for most densities. The corresponding numerical data can be
found in the Supplemental Material. 191

Figure 8.2: Spin-averaged radial distribution function for the homogeneous electron
gas with N = 128 electrons at low densities (rs = 110, 200). Error bars
are smaller than the symbols. The unpolarized fluid is obtained from [113]
for rs = 110. 193

Figure 9.1: A cartoon of the BCS-BEC crossover. Moving from left to right, the
attractive interaction between opposite-spin fermions increases.
However, in the BEC regime, the attraction binds the pairs so tightly
that they behave as weakly repulsive bosons. The region between the
weakly attractive Cooper pairs and the weakly repulsive dimers is known
as the unitary limit. 197

Figure 9.2: Schematic representation of a message-passing neural network with T
iterations. Dashed lines represent the concatenation operations, while
solid lines represent the parameterized transformations (linear
transformations and nonlinear feedforward neural networks). Messages,
highlighted in pink, mediate the exchange of information between the
one- and two-body streams, in blue. A yellow box indicates a single
iteration of the network. 205

xiv

Figure 9.3: Ground-state energies per particle as a function of the MPNN depth T
for the SJ-PW (blue squares), SJ-BF (orange circles), and PJ-BF (green
triangles) ansätze. The interaction parameters are set to v0 = 1 and µ = 5,
corresponding to an effective range of rekF = 0.4. The DMC benchmark
energies with and without pairing are displayed as solid and dashed lines,
respectively. 218

Figure 9.4: Ground-state energies per particle as a function of the effective range.
The DMC-BCS benchmark energies (blue circles) and the Pfaffian-Jastrow
with backflow (PJ-BF) energies (orange triangles) are extrapolated to zero
effective range using linear fits (dashed lines). The shaded regions are the
error bands for the DMC-BCS and PJ-BF energies. 219

Figure 9.5: Opposite-spin pair densities as a function of small kF r at unitarity (v0 =
1) and µ = 5 (blue squares), µ = 10 (orange circles), and µ = 20 (green
triangles). 221

Figure 9.6: Opposite-spin pair densities in the crossover region for the BCS phase
1/akF = −0.5 (blue squares), unitarity 1/akF = 0 (orange circles), and
BEC phase 1/akF = 0.5 (green triangles). The effective range of all cases
are fixed kF re = 0.2. See Table 9.4 for the corresponding values of v0
and µ. 222

Figure 9.7: Upper panel: Energy per particle in the BCS-BEC crossover region as a
function of the scattering length a for a fixed effective range kF re = 0.2.
Lower panel: Difference between Pfaffian-Jastrow with backflow (PJ-BF)
and DMC-BCS benchmark energies. See Table 9.4 for the corresponding
values of v0 and µ. 224

xv

1 Introduction

1.1 Challenges of the Quantum Many-Body Problem

One of the fundamental challenges in addressing the quantum many-body problem lies in the

extensive amount of information required to fully characterize a quantum state. In contrast

to classical mechanics, where the focus is to determine the trajectories of the particles in the

system, in quantum mechanics, our objective is to determine the relative probabilities of all

potential states occurring for all particles. This distinction arises due to the probabilistic

nature of quantum mechanics, where particles can exist in multiple states simultaneously

and their behaviors are described by the evolution of wave functions.

All possible states of a quantum system can be represented as vectors in a many-body

Hilbert space. As the number of particles increases, the dimension of the Hilbert space grows

exponentially, resulting in a staggering number of possible states. This exponential growth

poses a formidable computational challenge, as the explicit representation and manipulation

of the wave function becomes intractable even for systems of modest size.

Consequently, quantum many-body theory is driven by the use of efficient and physically

motivated approximations. Specific strategies vary depending on the type of problem at

hand, but ideally, we want to encode as much relevant information about the system as

possible in the fewest number of free parameters or degrees of freedom. In continuous space,

the exponential scaling problem is magnified by an infinite basis. Nonetheless, resolving

the spatial distribution of a quantum system remains of utmost interest, as it is often more

intuitive to interpret physical phenomena in terms of position and spatial relationships.

1

1.2 Neural-Network Quantum States

In this study, we solve continuous-space quantum many-body problems by enhancing an

established computational approach, called variational Monte Carlo, through the

integration of machine learning—a category of models that learns from data rather than

relying on predefined instructions. More specifically, we parameterize the trial wave

function with artificial neural networks, computational models inspired by the structure of

the human brain, and optimize their parameters by minimizing the energy of the system.

Trial wave functions that involve these artificial neural networks are aptly named

"neural-network quantum states".

Since their initial application by Carleo and Troyer in 2017 [1], neural-network quantum

states have outperformed traditional variational Monte Carlo calculations in fields ranging

from condensed matter physics [2] to quantum chemistry [3] and nuclear physics [4].

Remarkably, in many instances [2, 5], they have even surpassed diffusion Monte Carlo, a

computational method widely regarded as the gold standard of quantum many-body

methods. The rapid growth of this field underscores the tremendous potential

demonstrated by neural-network quantum states. As we continue to develop and refine

these techniques, new and exciting opportunities emerge for further breakthroughs that

could reshape our understanding of complex quantum systems.

2

1.3 Algorithm Development Through the Lens of
Nuclear Theory

Advancements in neural-network quantum states often find inspiration from established

techniques in machine learning. While the prospect of adapting unexplored machine

learning methods sparks curiosity, it is equally intriguing to explore the advantages that a

background in physics can bring to overcoming these challenges.

In particular, the distinctive nature of nuclear interactions provides a compelling reason to

design neural-network quantum states with broader applicability compared to states tailored

for interactions commonly encountered in condensed matter systems. Nuclear Hamiltonians,

which describe the interactions between protons and neutrons in real space, offer profound

insights into the intricate mechanisms governing the universe—from the microscopic domain

of atomic nuclei to the expansive reaches of neutron stars.

With the intention of eventually applying our neural-network quantum states to nuclear

systems, we thoughtfully design the wave functions to ensure compatibility with the exchange

of spin and isospin. For instance, in our investigation of ultra-cold Fermi gases in Sec. 9, we

adopt a generalized approach to the Pfaffian wave function [6, 7], a type of wave function

used in the presence of strong pairing correlations. Even though ultra-cold Fermi gases

technically fall under the condensed matter category, our Pfaffian neural-network quantum

state can be applied immediately to nuclear systems as well. By embracing a more inclusive

approach, we discover a remarkably versatile and scalable ansatz.

3

1.4 Structure of Dissertation

This dissertation begins with a comprehensive overview of the quantum many-body

problem in Chapter 2, including the establishment of notation and vocabulary used in later

chapters. In Chapter 3, we discuss Quantum Monte Carlo methods, serving as a

foundational framework to facilitate the incorporation of machine learning techniques for

enhanced flexibility. Then in Chapter 4, we provide a broad background on machine

learning, focusing on the mathematics of artificial neural networks. Chapter 5 presents two

distinct approaches for the implementation of neural-network quantum states: one in C++

and the other in Python. The former allows for a deeper understanding of how the

neural-network quantum states are trained, as gradients are computed analytically in terms

of the trainable parameters, while the latter affords greater freedom in design, as gradients

are computed numerically. Chapters 6-9 provide illustrative examples of neural-network

quantum states employed in different quantum systems, with the latter three chapters

being a collection of articles. Each of these examples will provide discussion on the power

of neural-network quantum states as they are applied in the specific study. Finally,

Chapter 10 includes conclusions and perspectives on the field as a whole.

4

2 The Quantum Many-Body Problem

The collective behavior of a quantum many-body system often displays remarkable

deviations from the simple summation of the individual constituents. Strong correlations

and intricate interactions between particles lead to emergent phenomena that cannot be

adequately described by classical mechanics alone. These phenomena, such as phase

transitions and the formation of superfluid states, underscore the importance of quantum

mechanics in unraveling the complex behaviors and novel properties of quantum

many-body systems.

In this study, our objective is to solve the time-independent Schrödinger equation for a

nonrelativistic system of identical particles in continuous space. We will focus on

determining the ground state, which plays a pivotal role in understanding the system’s

stability, symmetries, and equilibrium properties. Furthermore, the ground state serves as

a reference point for all excited states, enabling meaningful comparisons to experimental

observations.

The purpose of this chapter is to establish the foundation for our investigation. We will

cover the essential aspects, significance, and challenges associated with quantum many-body

problems, as well as examples of commonly employed ab initio methods. This discussion will

help provide a comprehensive and contextualized understanding of the field and motivate

our subsequent efforts to enhance quantum Monte Carlo methods with neural networks.

5

2.1 Formalism

Dirac notation, also known as bra-ket notation, offers a concise and abstract representation

of quantum states, operators, and measurements. It is intimately linked to the concept of

Hilbert space, a complex inner product space denoted as H. A general quantum state is

represented as a ket vector that lives in Hilbert space |Ψ⟩ ∈ H. For each ket |Ψ⟩, there exists

a corresponding linear map from Hilbert space to the field of complex numbers ⟨Ψ| : H → C,

which we call a bra vector. One can interpret a bra vector as a measurement device or probing

tool that extracts useful information regarding a particular state. By applying a bra ⟨Ψ| to

the left-hand side of another ket |Φ⟩, we define the inner product ⟨Ψ|Φ⟩, a complex scalar

that characterizes the overlap between the states |Ψ⟩ and |Φ⟩. This inner product is essential

for computing probabilities and expectation values of observables, as it enables us to properly

define the notions of distance and orthogonality between states in Hilbert space.

Operators are linear transformations Â : H → H that act on a state to produce another

state. While some operators, like time-evolution or rotation operators, do not correspond

directly to measurable quantities, they still have mathematical and physical significance for

describing the dynamics and symmetries of quantum states. Observables, such as position,

momentum, and spin, are represented by Hermitian operators. Formally, they satisfy

⟨ÂΨ|Φ⟩ = ⟨Ψ|ÂΦ⟩ for any |Ψ⟩, |Φ⟩ ∈ H. Hermitian operators have two important features:

1. Real eigenvalues. All possible measurements are real, implying that all expectation

values ⟨Â⟩ ≡ ⟨Ψ|Â|Ψ⟩/⟨Ψ|Ψ⟩ are also real. The denominator ensures that the average

is taken over a normalized probability distribution. These real expectation values play

a crucial role in making comparisons and predictions with experimental results.

2. Orthogonal eigenvectors. The eigenvectors corresponding to distinct eigenvalues form

6

a set of orthonormal basis vectors {|α⟩} that span the Hilbert space, yielding the

completeness relation

1̂ =
∑
α

|α⟩⟨α|. (2.1)

Any state can be expanded as a linear combination of the eigenvectors

|Ψ⟩ =
(∑

α

|α⟩⟨α|
)
|Ψ⟩ =

∑
α

⟨α|Ψ⟩|α⟩. (2.2)

If the states are continuous, we convert the sum into an integral

1̂ =

∫
dα|α⟩⟨α|, |Ψ⟩ =

∫
dα⟨α|Ψ⟩|α⟩. (2.3)

Since we will work with both continuous and discrete states, this distinction is of minor

significance. It will be left to the reader to convert sums into integrals or vice versa,

whenever they are not explicitly written.

Therefore, one should identify the observables which provide the most convenient set of

basis states {|α⟩} to represent the many-body state |Ψ⟩. Determining the coefficients (or

functions) ⟨α|Ψ⟩ is equivalent to finding a representation of the abstract state |Ψ⟩.

The best choice of basis for a many-body system depends on the specific nature of the

particles and the chosen method for solving the problem. In preparation for our later

treatment of N particles in d spatial dimensions, let us define our single-particle basis

states as

|xi⟩ =


|ri⟩, for bosons,

|ri⟩ ⊗ |si⟩ ≡ |ri, si⟩, for fermions,

(2.4)

7

where ri ∈ Rd are the coordinates of the ith particle, si ∈ Rs contains the spin-like degrees

of freedom (if there are any), and i = 1, 2, ..., N . The spatial parts are eigenstates of the

single-particle position operator1 r̂i,

r̂i|ri⟩ = ri|ri⟩, (2.5)

where the inner product between any two eigenstates is a d-dimensional Dirac delta function

⟨ri|r′i⟩ = δ(ri − r′i). (2.6)

The spin parts are written as

|si⟩ =


|szi ⟩, for spin-1/2 fermions,

|szi , tzi ⟩ = |szi ⟩ ⊗ |tzi ⟩, for nucleons,

(2.7)

where |szi ⟩ are the eigenstates of the single-particle spin-z operator ŝzi ,

ŝzi |szi ⟩ = szi |szi ⟩, ⟨szi |sz′i ⟩ = δszi s
z′
i
, (2.8)

and |tzi ⟩ are the eigenstates of the single-particle isospin-z operator t̂zi ,

t̂zi |tzi ⟩ = tzi |tzi ⟩, ⟨tzi |tz′i ⟩ = δtzi t
z′
i
, (2.9)

1The position operator for the ith particle is commonly denoted as X̂i or x̂i, but we chose r̂i to stay
consistent with our definition of xi and ri.

8

and δij denotes the Kronecker delta. The resulting single-particle Hilbert spaces are

Hi =



L2(Rd), for spin-0 bosons,

L2(Rd)⊗ C2, for spin-1/2 fermions,

L2(Rd)⊗ C2 ⊗ C2, for nucleons,

(2.10)

and a many-body configuration can be written as the tensor product of the single-particle

basis states

|X⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xN ⟩ ≡ |x1,x2, ...,xN ⟩ ∈ H, (2.11)

living in a tensor product of single-particle Hilbert spaces

H = H1 ⊗H2 ⊗ · · · ⊗ HN . (2.12)

Assuming the dimensions of all the single-particle Hilbert spaces are the same, it is

now clear that the dimension of the many-body Hilbert space scales exponentially with the

number of particles

dim(H) =
N∏
i=1

dim(Hi) = dim(H1)
N . (2.13)

This is the primary source of difficulty in quantum many-body problems. The exponential

scaling of the Hilbert space dimension applies for even the simplest spin systems in which

dim(H1) = 2. Our challenge is exacerbated by the fact that the particles in our systems of

interest have continuous spatial degrees of freedom, resulting in an infinite dim(H1).

Accordingly, quantum many-body methods are often built around different ways of

9

mitigating this problem, such as truncating Hilbert space to a finite subspace or exploring

only relevant areas of Hilbert space stochastically.

Our many-body state |Ψ⟩ can be expanded in terms of the many-body configurations

defined in Eq. (2.11),

|Ψ⟩ =
∫
dX⟨X|Ψ⟩|X⟩ (2.14)

where our goal is to determine the wave function Ψ(X) ≡ ⟨X|Ψ⟩, the probability amplitude

of finding the system in a certain configuration |X⟩. Since we may have a mixture of

continuous and discrete degrees of freedom, it is sometimes convenient to decompose |X⟩ as

|X⟩ = |R⟩ ⊗ |S⟩, (2.15)

|R⟩ = |r1⟩ ⊗ |r2⟩ ⊗ · · · ⊗ |rN ⟩ ≡ |r1, r2, ...rN ⟩, (2.16)

|S⟩ = |s1⟩ ⊗ |s2⟩ ⊗ · · · ⊗ |sN ⟩ ≡ |s1, s2, ...sN ⟩, (2.17)

instead of how it was originally expressed in Eq. (2.11). Then we can easily convert the

integral over X into a discrete sum over the spin degrees of freedom and an integral over the

continuous spatial degrees of freedom

∫
dX −→

∑
S

∫
dR =

∑
s1

∑
s2

· · ·
∑
sN

∫
ddr1d

dr2 · · · ddrN , (2.18)

with the latter omitted in the bosonic case.

The single-particle momentum operator

p̂i = −iℏ∇i, (2.19)

10

where ∇i ≡ ∂
∂ri

is the gradient with respect to position the ith particle, acts on the wave

function as

p̂i|Ψ⟩ =
∫
dX⟨X|p̂i|Ψ⟩|X⟩ =

∫
dX
(
− iℏ∇i⟨X|Ψ⟩

)
|X⟩ (2.20)

The single-particle eigenstates are

p̂i|pi⟩ = pi|pi⟩, ⟨pi|p′i⟩ = δ(pi − p′i), (2.21)

with the continuous momenta pi ∈ Rd becoming discrete in the presence of periodicity.

Expressed in position space, the momentum eigenfunctions are plane waves

φpi(xi) ≡ ⟨xi|pi⟩ =
1

(2πℏ)d/2
eipi·ri/ℏ, (2.22)

which will become relevant in our studies of infinite matter.

Just as we can expand states in terms of our working basis, we can expand operators as

well,

Â =

(∫
dX|X⟩⟨X|

)
Â

(∫
dX ′|X ′⟩⟨X ′|

)
=

∫
dX

∫
dX ′⟨X|Â|X ′⟩|X⟩⟨X ′|, (2.23)

where the coefficients ⟨X|Â|X ′⟩ are called matrix elements of the operator Â, even though

our basis contains continuous components. If the operator is diagonal in our basis, we can

11

write

Â =

∫
dX

∫
dX ′⟨X|Â|X ′⟩|X⟩⟨X ′|

=

∫
dX

∫
dX ′⟨X|Â|X⟩δ(X −X ′)|X⟩⟨X ′|

=

∫
dX⟨X|Â|X⟩|X⟩⟨X|

=

∫
dXÂ(X)|X⟩⟨X|

(2.24)

with δ(X −X ′) ≡ δ(R −R′)δS,S′ representing the product of a Dirac delta function over

the spatial degrees of freedom and a Kronecker delta over the spin degrees of freedom, if

it applies. It is common to leave off the explicit dependence on X in the the function

Â(X) ≡ ⟨X|Â|X⟩, since this representation of Â is particularly simple.

2.2 Indistinguishable Particles

The behavior of quantum systems exhibit fundamental differences from classical systems,

primarily due to the concept of particle indistinguishability. In classical mechanics,

particles are always distinguishable; even when they possess identical masses, charges, or

other properties, they can be assigned different labels to unambiguously describe and

predict their motion. As a result, classical systems feature well-defined trajectories for each

particle, albeit often involving highly nonlinear coupled differential equations.

When we established our mathematical framework in the previous section, we implicitly

assumed that the particles were distinguishable. This is evident in Eq. (2.11) and

Eq. (2.12), for example, where each particle and single-particle Hilbert space was given an

index corresponding to their ordering. Now, let us consider what happens if we assume the

particles are indistinguishable. More specifically, we assume that the expectation value of

12

any observable Â is invariant under any permutation P̂ ∈ SN of the N particle indices

⟨Ψ|Â|Ψ⟩
⟨Ψ|Ψ⟩ =

⟨P̂Ψ|Â|P̂Ψ⟩
⟨P̂Ψ|P̂Ψ⟩

=
⟨Ψ|P̂−1ÂP̂ |Ψ⟩
⟨Ψ|Ψ⟩ , (2.25)

where we have used that P̂ † = P̂−1 in the last equality. The above equation implies that

[Â, P̂] = 0.

Since any permutation in the symmetric group SN can be written as a product of

transpositions, it is sufficient to investigate the action of the transposition operator P̂ij ,

also known as the particle exchange operator, which trades the labeling of the ith and jth

particle.

P̂ij |X⟩ = P̂ij |x1, ...,xi, ...,xj , ...,xN ⟩ = |x1, ...,xj , ...,xi, ...,xN ⟩. (2.26)

Applying the same particle exchange operator twice restores the original ordering

P̂ 2
ij |X⟩ = P̂ij |x1, ...,xj , ...,xi, ...,xN ⟩ = |x1, ...,xi, ...,xj , ...,xN ⟩ = |X⟩, (2.27)

implying the eigenvalues of P̂ij are ±1. Thus, the possible effects of exchanging the particle

ordering

P̂ij |ΨS⟩ = |ΨS⟩, for bosons, (2.28)

P̂ij |ΨA⟩ = −|ΨA⟩, for fermions, (2.29)

give rise to two fundamentally different classes of identical particles: bosons, which have

purely symmetric states and obey Bose-Einstein statistics, and fermions, which have purely

antisymmetric states and obey Fermi-Dirac statistics. The subscripts S and A stand for

13

symmetric and antisymmetric, respectively. By the spin-statistics theorem, the difference

between the two categories is attributed to an intrinsic property called spin. Bosons, such as

photons and gluons, have integer values of spin, while fermions, such as electrons, protons,

and neutrons, have half-integer values. We will only consider spin-0 and spin-1/2 particles

in this work, as shown already in Eq. (2.10). In Sec. 9, we will discover that the line

distinguishing bosons and fermions is sometimes less distinct than it initially appears.

It is straightforward to see how the action of the particle exchange operator can be

generalized to an arbitrary permutation P̂ ∈ SN . The sign, or parity, of the permutation is

σ(P) = (−1)p, where p is the number of transpositions required to decompose the

permutation into a product of transpositions2. Then the permutation acts as

P̂ |ΨS⟩ = |ΨS⟩, for bosons, (2.30)

P̂ |ΨA⟩ = σ(P)|ΨA⟩, for fermions, (2.31)

for the two cases. Our working basis states |X⟩ are not eigenstates themselves, but we

can construct symmetric and antisymmetric states from them. In fact, we can define the

symmetrization operator

Ŝ =
1

N !

∑
P̂∈SN

P̂ , (2.32)

and the antisymmetrization operator

Â =
1

N !

∑
P̂∈SN

σ(P)P̂ , (2.33)

2There exists an infinite number of ways to decompose a permutation into a product of transpositions.
However, an odd permutation will invariably be decomposed into an odd number of transpositions, and an
even permutation will be decomposed into an even number of transpositions.

14

that will map any many-body state |Ψ⟩ ∈ H to the equivalent symmetric and antisymmetric

states

Ŝ|Ψ⟩ ≡ |ΨS⟩, Â|Ψ⟩ ≡ |ΨA⟩. (2.34)

Both of these operators are idempotent,

Ŝ2 = Ŝ, Â2 = Â, (2.35)

meaning they project generic states in Hilbert space to symmetric and antisymmetric

subspaces, respectively,

|ΨS⟩ ∈ HS , |ΨA⟩ ∈ HA. (2.36)

Applying the symmetrization operator after already applying the antisymmetrization

operator destroys any state, and vice versa

ŜÂ = ÂŜ = 0, (2.37)

implying the subspaces HS and HA are entirely distinct. Futhermore, any two states that

are related by a permutation

|Ψ′⟩ = P̂ ′|Ψ⟩, P̂ ′ ∈ SN , (2.38)

will map to the same symmetric state

|Ψ′S⟩ = Ŝ|Ψ′⟩ = Ŝ|Ψ⟩ = |ΨS⟩, (2.39)

15

and to the same antisymmetric state except for a possible sign flip

|Ψ′A⟩ = Â|Ψ′⟩ = σ(P ′)Â|Ψ⟩ = σ(P ′)|ΨA⟩. (2.40)

Therefore, the many-body Hilbert space H that we established in Eq. (2.12) for

distinguishable particles is typically much larger than the direct sum of the subspaces for

indistinguishable particles

HS ⊕HA ⊆ H. (2.41)

This is spectacular news! The physically realizable quantum states of our system will either

be in HS or HA, which is smaller than the entire Hilbert space H by a factor that scales as

N !, the order of the symmetric group SN . While this does not alleviate the dimensionality

problem entirely because our Hilbert space is still infinite dimensional, it does help make

the many-body problem more tractable. Enforcing other symmetries, such as parity and

time-reversal, can similarly help reduce the effective size of our Hilbert space.

Now that we are able to construct both symmetric and antisymmetric states from a

generic one, let us consider what happens if two (or more) indistinguishable particles occupy

the same exact single-particle state. Then there exists a particle exchange operator P̂ij for

some i ̸= j that generates a symmetry of the many-body state,

P̂ij |Ψij⟩ = |Ψij⟩. (2.42)

Here, we have denoted the state as |Ψij⟩ to specify that it is invariant under i ↔ j. No

issues arise for the corresponding bosonic system according to Eq. (2.39), so bosons are fine

with being on top of their identical neighbors. However, for the fermionic system, Eq. (2.40)

16

implies a contradiction

Â|Ψij⟩ = −Â|Ψij⟩. (2.43)

The above equation can only be possible if Â|Ψij⟩ = 0, leading to the well-known Pauli

exclusion principle. This fundamental principle asserts that no two identical fermions can

occupy the same quantum state simultaneously. As a result, fermions exhibit distinct

behavior from bosons, particularly at low temperatures.

2.3 The Schrödinger Equation

The behavior of a non-relativistic quantum system is governed by the Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = Ĥ|Ψ⟩, (2.44)

where the Hamiltonian Ĥ is a Hermitian operator that represents the total energy of the

system. We will exclusively work with a time-independent Hamiltonian that is diagonal in

our working basis |X⟩, meaning

Ĥ =

∫
dXĤ(X)|X⟩⟨X|, (2.45)

where Ĥ(X) ≡ ⟨X|Ĥ|X⟩ as defined in Eq. (2.24). Our Hamiltonian takes the form

Ĥ = K̂ + V̂ , (2.46)

17

where the non-relativistic kinetic energy is defined as

K̂ =
1

2m

N∑
i=1

p̂2i = − ℏ2

2m

N∑
i=1

∇2
i (2.47)

and the potential energy V̂ = V (X) may include external potentials, two- or three-body

interactions, and spin- or isospin-dependence. While the above Hamiltonian is not dependent

on time, the state |Ψ⟩ still could be. We have suppressed this time-dependence thus far, but

we will now make it explicit by writing

|Ψ(t)⟩ =
∫
dX⟨X|Ψ(t)⟩|X⟩, (2.48)

where the time-dependent wave function can be decomposed as

⟨X|Ψ(t)⟩ ≡ Ψ(X, t) = ψ(X)ϕ(t), (2.49)

following the separation of variables method of solving partial differential equations. Then

the Schrödinger equation reads

iℏ
∂

∂t
Ψ(X, t) = Ĥ(X)Ψ(X, t) =⇒ iℏψ(X)

∂

∂t
ϕ(t) = ϕ(t)Ĥ(X)ψ(X). (2.50)

Rearranging all of the t-dependent components on the left and the X-dependent components

on the right,

iℏ
ϕ(t)

∂

∂t
ϕ(t) =

1

ψ(X)
Ĥ(X)ψ(X) = E, (2.51)

18

we find that each side of the equation must be equal to some constant E. The left-hand side

can be solved immediately

iℏ
∂

∂t
ϕ(t) = Eϕ(t) =⇒ ϕ(t) = ϕ(0)e−iEt/ℏ. (2.52)

The right-hand side, however, is an eigenvalue problem

Ĥ(X)ψ(X) = Eψ(X), (2.53)

also known as the time-independent Schrödinger equation.

Eigenvalue problems are challenging because they are inherently nonlinear. What’s

more, the eigenvectors in our situation are actually continuous eigenfunctions rather than

finite-dimensional vectors. However, once we identify the solutions of the time-independent

Schrödinger equation above, we will automatically obtain the solutions of the full

time-dependent Schrödinger equation as well. Let us index the possible solutions with α,

which can either label the discrete energy spectrum for a bound system or the continuous

spectrum for an unbound system. Then the so-called stationary states are

Ψα(X, t) = ψα(X)e−iEαt/ℏ, (2.54)

where we omit writing the constant ϕ(0) from Eq. (2.52) because it can be absorbed into

the coefficients cα of the general solution, a linear combination of stationary states

Ψ(X, t) =
∑
α

cαΨα(X, t). (2.55)

19

The stationary states are called "stationary" because their associated probability

distributions do not depend on time

|Ψα(X, t)|2 = ψ∗α(X)eiEαt/ℏψα(X)e−iEαt/ℏ = |ψα(X)|2. (2.56)

Given that

|Ψ(X, t)|2 =
∑
α

∑
β

c∗αcβψ
∗
α(X)ψβ(X)e

i(Eα−Eβ)t/ℏ, (2.57)

the same cannot be said about the general solution.

2.4 The Variational Principle

While the solutions of the time-dependent Schrödinger equation are vital for understanding

the dynamics of the quantum system, it is a necessary step to first solve the

time-independent Schrödinger equation. However, the exact time-independent solutions

and their corresponding energies are still difficult, if not impossible, to obtain. One

valuable tool for finding approximate solutions is called the variational principle, which

states that the expectation value of the Hamiltonian is an upper bound for the true ground

state energy of the system E0,

E[Ψ] ≡ ⟨Ĥ⟩ = ⟨Ψ|Ĥ|Ψ⟩⟨Ψ|Ψ⟩ ≥ E0, (2.58)

for any state |Ψ⟩. It is simple to prove. First, we write the eigenstates of the Hamiltonian

as |Ψα⟩ = |α⟩ and their corresponding energies as Eα. The eigenstates form a complete

orthonormal basis with ⟨α|β⟩ = δαβ . If we assume |Ψ⟩ is normalized, ⟨Ψ|Ψ⟩ = 1, then the

20

expectation value of the energy can be expanded as

E[Ψ] = ⟨Ψ|Ĥ|Ψ⟩

=
∑
α

∑
β

⟨Ψ|α⟩⟨α|Ĥ|β⟩⟨β|Ψ⟩

=
∑
α

∑
β

⟨Ψ|α⟩⟨β|Ψ⟩Eαδαβ

=
∑
α

Eα|⟨α|Ψ⟩|2.

(2.59)

The ground state energy E0, by definition, is smaller than all the other energy eigenvalues

{Eα}α ̸=0, leading to the result

E[Ψ] =
∑
α

Eα|⟨α|Ψ⟩|2 ≥ E0, (2.60)

where equality can only hold for the ground state |Ψ0⟩.

Similar variational principles can be developed for the excited states. First, let us order

our energy eigenstates such that E0 ≤ E1 ≤ E2..., where E1 is the energy of the first excited

state |Ψ1⟩, E2 is the energy of the second excited state |Ψ2⟩, and so on. Then the variational

principle for the nth excited state is given by

E[Ψ] =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ ≥ En, (2.61)

if our state |Ψ⟩ is orthogonal to all the lower-lying states,

⟨Ψm|Ψ⟩ = 0 for all m < n. (2.62)

21

This statement can be proved by the same method as Eq. (2.59). We have used the Latin

indicies m and n in place of the Greek indicies α and β to emphasize that our eigenstates

have been ordered according to their corresponding energies.

Another useful fact is that the variance of energy is only zero if and only if our state is

an eigenstate of the Hamiltonian

σ2E = 0 ⇐⇒ |Ψ⟩ = |Ψα⟩ for some α. (2.63)

The backward direction of the statement above is trivial to prove, so we will just prove

the forward direction here. Expanding the variance of the energy in terms of the energy

eigenstates, we obtain

σ2E = ⟨(Ĥ − ⟨Ĥ⟩)2⟩ = ⟨Ĥ2⟩ − ⟨Ĥ⟩2

=
∑
α

E2
α|⟨α|Ψ⟩|2 −

(∑
α

Eα|⟨α|Ψ⟩|2
)∑

β

Eβ |⟨β|Ψ⟩|2


=
∑
α

E2
α|⟨α|Ψ⟩|2 −

∑
α

∑
β

EαEβ |⟨α|Ψ⟩|2|⟨β|Ψ⟩|2

=
∑
α

Eα|⟨α|Ψ⟩|2
Eα −

∑
β

Eβ |⟨β|Ψ⟩|2
 .

(2.64)

There are only two ways that the above can equal zero for all α: either |⟨α|Ψ⟩|2 = 0 or

Eα =
∑
β

Eβ |⟨β|Ψ⟩|2 = Eα|⟨α|Ψ⟩|2 =⇒ |⟨α|Ψ⟩|2 = 1. (2.65)

Therefore, the state |Ψ⟩ must be an eigenstate of the Hamiltonian for some α. A nonzero

variance of the energy indicates that the system is not in a well-defined state, but rather, a

22

superposition of eigenstates.

We must address an important caveat regarding the variational principle. Specifically,

the variational principle only holds true if the state adheres to the correct symmetries of the

system. The many-body Hamiltonian often does not provide information about whether the

system consists of bosons or fermions. For example, when describing a system of identical

charged particles, the Coulomb interaction only depends on the charge and distances between

the pairs. If one employs a state intended for bosons when computing the expectation value

of the energy for a fermionic system, it can lead to energies much lower than the true ground

state energy of the system. Such erroneous results are not violations of the variational

principle; instead, they arise due to incorrect implementation.

2.5 Ab Initio Methods

A many-body method is called ab initio (or "from first principles") if it only relies on

fundamental principles and established laws of nature. It involves solving the Schrödinger

equation starting from a microscopic Hamiltonian rather than a Hamiltonian derived from

empirical or experimental data. In this section, we will provide examples of common ab

initio methods. While some these methods are not explicitly formulated for real-space

systems, they can often be adapted and applied to such systems with the appropriate

modifications.

2.5.1 Configuration Interaction

Full Configuration Interaction is an exact method that aims to solve the time-independent

Schrödinger equation through diagonalization of the Hamiltonian in matrix form. We begin

by expanding the wave function as a linear combination of orthonormal many-body basis

23

states {|α⟩},

|Ψ⟩ =
∑
α

cα|α⟩, (2.66)

where cα are the coefficients of the expansion and the states |α⟩ are usually taken to be all

possible antisymmetrized products of single-particle basis states, also known as Slater

determinants, for fermionic systems. By inserting this expansion and the completeness

relation into the Schrödinger equation, we obtain

Ĥ|Ψ⟩ = E|Ψ⟩, (2.67)∑
α

Ĥcα|α⟩ = E
∑
α

cα|α⟩, (2.68)

∑
α

∑
β

⟨β|Ĥ|α⟩cα|β⟩ = E
∑
α

cα|α⟩. (2.69)

Since the basis states are orthogonal, multiplying on the left by ⟨γ| yields

∑
α

⟨γ|Ĥ|α⟩cα = Ecγ , (2.70)

which can be written in a more convenient form by organizing the coefficients cα into a

vector and ⟨γ|Ĥ|α⟩ into a matrix



⟨1|Ĥ|1⟩ ⟨1|Ĥ|2⟩ · · · ⟨1|Ĥ|α⟩ · · ·

⟨2|Ĥ|1⟩ ⟨2|Ĥ|2⟩ · · · ⟨2|Ĥ|α⟩ · · ·
...

... · · ·

⟨α|Ĥ|1⟩ ⟨α|Ĥ|2⟩ · · · ⟨α|Ĥ|α⟩ · · ·
...

...
...

... . . .





c1

c2

...

cα

...


= E



c1

c2

...

cα

...


(2.71)

24

Clearly, solving the eigenvalue problem above is only imaginable when the matrix is of finite

size. However, even in such cases, the dimensionality of the problem often poses significant

challenges and renders it computationally intractable.

One alternative approach is to truncate the many-body basis to a finite, manageable

subset {|α1⟩, |α2⟩, ..., |αn⟩}, leading to the more commonly-employed method called

Configuration Interaction. In truncating our many-body basis, it becomes important to

consider which states we include in our subset. Typically, the most relevant states are

constructed by identifying a suitable reference state, like the Hartree-Fock solution, and

constructing excitations or configurations around it.

2.5.2 Hartree-Fock Theory

Hartree-Fock theory is one of the simplest approximate methods for solving the many-body

Schrödinger equation. It provides a mean-field description of the system, where each particle

moves in an effective average field created by all other particles. This approach essentially

decouples the two-body interaction, resulting in a tractable computational scheme, but it

neglects correlation effects, which can be significant in systems with strong interactions.

Let us assume that the Hamiltonian of a fermionic system contains up to two-body

interactions

Ĥ(X) = Ĥ0(X) + V̂ (X), (2.72)

Ĥ0(X) =
N∑
i=1

ĥ0(xi), (2.73)

V̂ (X) =
N∑
i<j

v̂(xij), (2.74)

25

where we have divided the terms in the Hamiltonian such that Ĥ0 contains only one-body

contributions and V̂ contains the pair-wise interactions. Accordingly they can be decomposed

into individual one-body and two-body operators. The notation xij is meant to imply that

the two-body interactions are symmetric with respect to i and j.

To achieve the best mean-field description of the interacting problem, our goal is to find

an effective one-body Hamiltonian that approximates the original one. Namely,

Ĥ(X) ≈
N∑
i=1

f̂(xi), (2.75)

where f̂ can be further decomposed as f̂(xi) = ĥ0(xi) + v̂HF (xi), for some choice of v̂HF

that is to be determined. Then eigenstates of this mysterious one-body Hamiltonian must

satisfy

f̂(x)φα(x) = εαφα(x), (2.76)

with the corresponding single-particle energies εα.

In the Hartree-Fock approximation, the many-body wave function ΦHF (X) is taken

to be a Slater determinant of these single-particle eigenstates. The Slater determinant is

a natural result of applying the antisymmetrization operator (Eq. (2.33)) to a product of

single-particle wave functions

ΦHF (X) =
√
N ! Â{φ1(x1)φ2(x2) · · ·φN (xN)}

=
1√
N !

det



φ1(x1) φ1(x2) · · · φ1(xN)

φ2(x1) φ2(x2) · · · φ2(xN)

...
...

φN (x1) φN (x2) · · · φN (xN)


.

(2.77)

26

The above assumption only applies for fermions, but an equivalent assumption can be made

for bosons by applying the symmetrization operator (Eq. (2.32)) to the product, resulting

in a permanent instead of a determinant. To simplify the notation moving forward, let us

define Φ(X) ≡ φ1(x1)φ2(x2) · · ·φN (xN) to mean the product of single-particle eigenstates

before they have been antisymmetrized. Then ΦHF (X) =
√
N !ÂΦ(X).

According to the variational principle, the best set of orthogonal single-particle states

φα(x) would minimize the energy using the Hartree-Fock ansatz ΦHF (X). The expectation

value of the energy is

E[ΦHF] = ⟨ΦHF |Ĥ|ΦHF ⟩ = ⟨ΦHF |Ĥ0|ΦHF ⟩+ ⟨ΦHF |V̂ |ΦHF ⟩, (2.78)

where we have assumed ΦHF (X) is normalized. Each of these terms can be evaluated by

using the known properties of the antisymmetrization operator and the orthogonality of the

single-particle states φα(x) = ⟨x|α⟩. The calculations for both are as follows:

⟨ΦHF |Ĥ0|ΦHF ⟩

=

∫
dXΦHF∗(X)Ĥ0(X)ΦHF (X)

= N !

∫
dXΦ∗(X)

[
ÂĤ0(X)

]
ÂΦ(X) = N !

∫
dXΦ∗(X)

[
Ĥ0(X)Â

]
ÂΦ(X)

= N !

∫
dXΦ∗(X)Ĥ0(X)

[
ÂÂ

]
Φ(X) = N !

∫
dXΦ∗(X)Ĥ0(X)ÂΦ(X)

=
N∑
i=1

∑
P̂∈SN

σ(P)

∫
dXΦ∗(X)ĥ0(xi)P̂Φ(X) =

N∑
i=1

∫
dXΦ∗(X)ĥ0(xi)Φ(X)

=
N∑

α=1

∫
dxφ∗α(x)ĥ0(x)φα(x) =

N∑
α=1

⟨α|ĥ0|α⟩,

(2.79)

27

⟨ΦHF |V̂ |ΦHF ⟩

=

∫
dXΦHF∗(X)V̂ (X)ΦHF (X)

= N !

∫
dXΦ∗(X)

[
ÂV̂ (X)

]
ÂΦ(X) = N !

∫
dXΦ∗(X)

[
V̂ (X)Â

]
ÂΦ(X)

= N !

∫
dXΦ∗(X)V̂ (X)

[
ÂÂ

]
Φ(X) = N !

∫
dXΦ∗(X)V̂ (X)ÂΦ(X)

=
N∑
i<j

∑
P̂∈SN

σ(P)

∫
dXΦ∗(X)v̂(xij)P̂Φ(X) =

N∑
i<j

∫
dXΦ∗(X)v̂(xij)(1− P̂ij)Φ(X)

=
1

2

N∑
αβ

∫
dx1dx2

[
φ∗α(x1)φ

∗
β(x2)v̂(x12)φα(x1)φβ(x2)− φ∗α(x1)φ

∗
β(x2)v̂(x12)φα(x2)φβ(x1)

]

=
1

2

N∑
αβ

[
⟨αβ|v̂|αβ⟩ − ⟨αβ|v̂|βα⟩

]
≡ 1

2

N∑
αβ

⟨αβ|v̂|αβ⟩A.

(2.80)

Now that we know

E[ΦHF] =
N∑

α=1

⟨α|ĥ0|α⟩+
1

2

N∑
αβ

⟨αβ|v̂|αβ⟩A, (2.81)

we can now vary the orbitals φα(x) in order to find the minimum E[ΦHF]. Alternatively, we

can perform a unitary transformation on our basis, expanding |α⟩ as a linear combination of

well-known, orthogonal basis states |i⟩, and vary the coefficients. We will choose the latter

method, specifically with the basis states coming from the non-interacting problem,

|α⟩ =
∑
i

Cαi|i⟩, (2.82)

28

where

f̂ |α⟩ = εα|α⟩, (2.83)

ĥ0|i⟩ = ε0i |i⟩. (2.84)

In terms of these expansion coefficients, the expectation value of the energy becomes

E[ΦHF] =
N∑

α=1

∑
ij

C∗αiCαj⟨i|ĥ0|j⟩+
1

2

N∑
αβ

∑
ijkℓ

C∗αiC
∗
βjCαkCβℓ⟨ij|v̂|kℓ⟩A (2.85)

Recognizing that what we really desire is Eq. (2.75), we can then write

E[ΦHF] =
N∑

α=1

⟨α|f̂ |α⟩ =
N∑

α=1

∑
ij

C∗αiCαj⟨i|f̂ |j⟩. (2.86)

By comparing this equation with the one above it, we find

⟨i|f̂ |j⟩ = ⟨i|ĥ0|j⟩+
∑
α

∑
kℓ

C∗αkCβℓ⟨ik|v̂|jl⟩A, (2.87)

which simplifies to

⟨i|f̂ |j⟩ = ε0i +
∑
α

∑
kℓ

C∗αkCβℓ⟨ik|v̂|jl⟩A, (2.88)

because the states |i⟩ are eigenstates of ĥ0. Next, by expanding Eq. (2.83) in terms of |j⟩

and projecting on the left with ⟨i|, we find that we can write

∑
j

Cαj⟨i|f̂ |j⟩ = εαCαi. (2.89)

This means that if we organize Eq. (2.86) into a matrix and the coefficients Cαi into a vector

29

for each α, the above can be written as a normal eigenvalue problem FCα = εαCα.

The Hartree-Fock eigenvalue problem can be solved iteratively. First, we provide

guesses for the initial C(0)
α , where the supercript indicates the iteration. Then for each

iteration, we construct the matrix F (t), which has elements F
(t)
ij = ⟨i|f̂ |j⟩ using the

previous coefficients C(t−1)
α . By solving the eigenvalue problem through diagonalization, we

obtain new eigenvectors C(t)
α and their corresponding eigenvalues ε(t)α . We continue this

process until the eigenvalues converge.

2.5.3 Many-Body Perturbation Theory

Many-body perturbation theory offers a systematic framework for incorporating the effects

of interparticle correlations beyond the Hartree-Fock level. The Hamiltonian is assumed to

consist of two parts, an unperturbed Hamiltonian Ĥ0 and an interacting Hamiltonian ĤI ,

Ĥ = Ĥ0 + ĤI , (2.90)

where the solutions for the unperturbed case are easy to find

Ĥ0|Φn⟩ = Wn|Φn⟩. (2.91)

Let us split the completeness relation such that the projector onto the subspace spanned by

the ground state is separated from the rest,

1̂ =
∞∑
n=0

|Φn⟩⟨Φn| = |Φ0⟩⟨Φ0|+
∞∑
n=1

|Φn⟩⟨Φn| = P̂ + Q̂. (2.92)

30

Then we can expand the ground state |Ψ0⟩ of the full Hamiltonian Ĥ as

|Ψ0⟩ = (P̂ + Q̂)|Ψ0⟩ = |Φ0⟩+ Q̂|Ψ0⟩ = |Φ0⟩+
∞∑
n=1

⟨Φn|Ψ0⟩|Φn⟩, (2.93)

where we have made the assumption ⟨Φ0|Ψ0⟩ = 1. By applying the full Hamiltonian on the

above state and projecting with ⟨Φ0|, we obtain

⟨Φ0|Ĥ|Ψ0⟩ = ⟨Φ0|Ĥ0|Φ0⟩+ ⟨Φ0|ĤI |Ψ0⟩ = W0 + ⟨Φ0|ĤI |Ψ0⟩, (2.94)

due to the orthogonality of the eigenstates |Φn⟩. In addition, by applying ⟨Φ0| to the

Schrödinger equation for the full Hamiltonian, we obtain

⟨Φ0|Ĥ|Ψ0⟩ = E0⟨Φ0|Ψ0⟩ = E0, (2.95)

implying that E0 = W0 +∆E, where ∆E ≡ ⟨Φ0|ĤI |Ψ0⟩. Through simple manipulations of

the Schrödinger equation, we find

Ĥ|Ψ0⟩ = Ĥ0|Ψ0⟩+ ĤI |Ψ0⟩ = E0Ĥ|Ψ0⟩

(Ĥ0 −W0)|Ψ0⟩ = (E0 −W0 − ĤI)|Ψ0⟩

(W0 − Ĥ0)|Ψ0⟩ = (ĤI − E0)|Ψ0⟩

(2.96)

31

Since Q̂ is idempotent and commutes with the Hamiltonian, applying Q̂ to both sides of the

above equation yields

Q̂(ĤI −∆E)|Ψ0⟩ = Q̂(W0 − Ĥ0)|Ψ0⟩

= Q̂Q̂(W0 − Ĥ0)|Ψ0⟩

= Q̂(W0 − Ĥ0)Q̂|Ψ0⟩

=
∞∑

m,n=1

|Φm⟩⟨Φm|(W0 − Ĥ0)|Φn⟩⟨Φn|Ψ0⟩

=
∞∑

m,n=1

(W0 −Wm)δmn|Φm⟩⟨Φn|Ψ0⟩

=
∞∑
n=1

(W0 −Wn)|Φn⟩⟨Φn|Ψ0⟩

= (W0 − Ĥ0)Q̂|Ψ0⟩.

(2.97)

Inserting this equation into Eq. (2.93) yields

|Ψ0⟩ =
Q̂

W0 − Ĥ0
(ĤI −∆E)|Ψ0⟩, (2.98)

which can be recursively inserted into itself

|Ψ0⟩ =
∞∑
n=0

[
Q̂

W0 − Ĥ0
(ĤI −∆E)

]n
|Φ0⟩. (2.99)

Likewise, the implications for the correlation energy is as follows:

∆E =
∞∑
n=0

⟨Φ0|
[

Q̂

W0 − Ĥ0
(ĤI −∆E)

]n
|Φ0⟩. (2.100)

32

By organizing the terms in the above by order in ĤI , the correlation energy can be written

as

∆E =
∞∑
n=1

∆E(n), (2.101)

where the first few terms in the expansion are

∆E(1) = ⟨Φ0|ĤI |Φ0⟩ (2.102)

∆E(2) = ⟨Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0⟩ (2.103)

∆E(3) = ⟨Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤI |Φ0⟩ (2.104)

− ⟨Φ0|ĤI
Q̂

W0 − Ĥ0
⟨Φ0|ĤI |Φ0⟩

Q̂

W0 − Ĥ0
ĤI |Φ0⟩ (2.105)

33

3 Quantum Monte Carlo

In this chapter, we introduce quantum Monte Carlo (QMC), a diverse family of ab initio

many-body methods based on simulating the quantum system and computing its properties

stochastically. We will cover two different flavors of QMC methods: variational Monte Carlo

(VMC) and diffusion Monte Carlo (DMC). The former will take center stage in this study, as

our neural-network quantum states are designed to push the limits of this method. The latter

consistently yields state-of-the-art results, so it serves as a benchmark for our neural-network

quantum states.

We will begin by establishing the basics of Monte Carlo sampling and integration. Both

VMC and DMC use these techniques extensively, as implied by their names. Then, we will

delve into the details of the conventional implementation of variational Monte Carlo. This

will not only include an extensive list of commonly employed trial wave functions, but also

the optimization algorithms used to update the parameters of the wave function. We will

use these same optimization methods to train our neural-network quantum states, discussed

throughout the remaining chapters of this thesis. We will end with a brief overview of

diffusion Monte Carlo. While these methods can be used to solve for excited states, we will

focus only on the ground state in our investigation.

3.1 Monte Carlo Methods

3.1.1 Markov Chain Monte Carlo Sampling

Monte Carlo sampling methods are used to generate random samples from a target

probability distribution. In our case, the target distribution P (X) is given by the square of

34

the wave function |Ψ(X)|2, which is a function of continuous spatial degrees of freedom,

and possibly discrete spin degrees of freedom as well. However, our wave function is not

guaranteed to be normalized, so it is more precise to say

P (X) =
1

Z
|Ψ(X)|2, (3.1)

where Z =
∫
dX|Ψ(X)|2 is the normalization constant. It is impractical to compute Z

directly since it involves a high-dimensional integral over all the spatial degrees of freedom

and a sum over all the spin degrees of freedom. Luckily, there are clever tricks we can use

to avoid computing Z, leading to a style of sampling called Markov Chain Monte Carlo

(MCMC) sampling.

MCMC algorithms, in general, are designed to address the problem of sampling from

high-dimensional and nontrivial distributions. Instead of generating independent samples

from P (X), as done with a standard hit-or-miss algorithm for instance, we can produce a

discrete sequence of samples {X1,X2, ...,Xt, ...}, where each sample is dependent only on

the previous one. Then the transition probability for the Markov process must have the

simple form

P (Xt|Xt−1,Xt−2, ...,X0) = P (Xt|Xt−1), (3.2)

for each t > 0. Our goal is to accurately approximate the target distribution P (X) by the

distribution of a finite number of samples

P (X) ≈ 1

T

T∑
t=1

δ(X −Xt), (3.3)

which is only possible if P (X) is invariant under the action of the transition probability. In

35

other words, P (X) is the stationary distribution for the Markov process characterized by

P (X ′|X) if it satisfies

P (X ′) =
∫
dXP (X ′|X)P (X), (3.4)

for all X ′.

In principle, the above stationary condition provides a way to evolve to P (X) starting

from any initial distribution P (X0). The distribution at a later time t can be obtained by

repeatedly applying the transition probability on P (X0),

P (Xt) =

∫
dXt−1dXt−2 · · · dX0P (Xt|Xt−1)P (Xt−1|Xt−2) · · ·P (X1|X0)P (X0). (3.5)

For large enough t, the Markov chain must converge to the stationary distribution

lim
t→∞

P (Xt) = P (X), (3.6)

regardless of the initial state X0. The algorithm for generating the samples is as follows:

1. Initialize. Draw the first sample X0 from any initial probability distribution P (X0).

2. Iterate. For each iteration t = 1, ..., T , draw the next sample Xt from P (Xt) in

Eq. (3.5).

While it is simple to state the algorithm, the second step is somewhat difficult to complete

without additional restrictions.

In order to treat the samples in a Markov chain as independent samples from the target

distribution, the chain should be fully equilibrated and the autocorrelation between samples

should be low. Let us define τ as the number of steps required to sufficiently reach the

36

stationary distribution, also known as the equilibration or burn-in time. In addition, let us

define γ as the number of steps required to sufficiently reduce the autocorrelation between

samples

⟨Xt ·Xt+γ⟩ ≈ 0. (3.7)

Then, our target distribution can be better approximated by

P (X) ≈ 1

T

T∑
t=1

δ(X −Xτ+γt), (3.8)

for some large, but finite value of T . This approach allows us to faithfully treat each effective

sample Xτ+γt as independent samples from P (X), at the cost of throwing away τ+(γ−1)T

samples out of the total number of samples τ + γT .

3.1.1.1 Metropolis-Hastings

The Metropolis-Hastings algorithm is a specific type of MCMC sampling algorithm that

enforces the detailed balance condition, a stricter restriction than the stationary condition

in Eq. (3.4). Namely, it assumes the Markov process is reversible

P (X ′|X)P (X) = P (X|X ′)P (X ′), (3.9)

for every pair of states X,X ′. By integrating both sides of the detailed balance condition,

∫
dXP (X ′|X)P (X) =

∫
dXP (X|X ′)P (X ′) = P (X ′)

∫
dXP (X|X ′) = P (X ′),

(3.10)

it automatically follows that P (X) is the stationary distribution.

37

In addition, this approach involves decomposing the transition probability into two

components

P (X ′|X) = Q(X ′|X)A(X ′|X), (3.11)

where the proposal probability density Q(X ′|X) suggests a candidate state X ′ based on the

current state X, and the acceptance probability A(X ′|X) determines if the proposed state

should be accepted or rejected. Plugging this into the detailed balance equation yields

A(X ′|X)

A(X|X ′) =
Q(X|X ′)P (X ′)
Q(X ′|X)P (X)

. (3.12)

If A(X|X ′) = 1, then A(X ′|X) =
Q(X|X′)P (X′)
Q(X′|X)P (X)

. Likewise, if A(X ′|X) = 1 then

A(X ′|X) =
Q(X′|X)P (X)
Q(X|X′)P (X′) . Thus the choice of A(X ′|X) that maximizes the acceptance

probability is

A(X ′|X) ≡ min

{
1,
Q(X|X ′)P (X ′)
Q(X ′|X)P (X)

}
. (3.13)

In practice, the Metropolis-Hastings algorithm can be realized by separating the transition

step into two parts:

1. Initialize. Draw the first sample X0 from an initial probability distribution P (X0).

2. Iterate. For each iteration t = 1, ..., T :

(a) Propose. Draw a candidate state X ′ based on the previous state Xt−1 according

to the proposal probability density Q(X ′|Xt−1).

(b) Calculate. Calculate the acceptance probability of the transition A(X ′|Xt−1).

(c) Accept-or-reject. Draw a uniform random number r ∼ U(0, 1) between 0 and 1.

If r < A(X ′|Xt−1), accept the transition by setting Xt = X ′. Otherwise, reject

38

the transition by setting Xt = Xt−1.

Since our states may involve discrete spin projections S in addition to the continuous

spatial coordinates R, we will further decompose all the probabilities as

P (X) = P (R)P (S), (3.14)

Q(X ′|X) = Q(R′|R)Q(S′|S), (3.15)

A(X ′|X) = A(R′|R)A(S′|S), (3.16)

and perform Metropolis steps in R and S separately. For a localized system of particles,

one can take the initial distribution of the spatial degrees of freedom as

P (R0) ∼ N (0, σ20I), (3.17)

with a variance σ20 chosen to minimize the equilibration time τ . For an infinite system, one

can take the initial distribution as a uniform distribution

P (R0) ∼ U(−L/2, L/2), (3.18)

ranging the entire size of the d-dimensional simulation box of side length L. The proposal

probability density for the spatial coordinates is commonly chosen to be a Gaussian

distribution

Q(R′|R) ∼ N (R, σ2I), (3.19)

with a variance σ2 that balances a short autocorrelation time γ with a high acceptance

probability A(R′|R). Since the proposal probability is symmetric, Q(R′|R) = Q(R|R′),

39

the acceptance probability for the move simplifies to

A(R′|R) = min

{
1,
P (R′)
P (R)

}
= min

{
1,
|Ψ(R′,S)|2
|Ψ(R,S)|2

}
. (3.20)

For the spin degrees of freedom S, it is possible to take a similar strategy as above by

initializing a random configuration of spins and proposing random spins to flip rather than

coordinates to perturb. However, the Hamiltonians we will use always commute with the

total spin projection operator on the z-axis

Ŝz =
N∑
i=1

ŝzi , (3.21)

meaning the total spin projection Sz =
N∑
i=1

szi is conserved. Similarly, the total isospin

projection on the z-axis T z is also preserved for systems of nucleons, as the total isospin

projection operator

T̂ z =
N∑
i=1

t̂zi (3.22)

commutes with the nuclear Hamiltonian. To avoid sampling unphysical spin configurations,

we can restrict our Metropolis walk to preserve the total spin (and isospin) projection as

follows:

1. Initialize. Generate any spin configuration S0 with the desired total spin projection Sz

(and isospin projection T z). Spin-up particles are assigned a spin value of +1, while

the spin-down particles are assigned −1.

2. Iterate. For each iteration t = 1, 2, ..., T :

(a) Propose. Choose a random pair of particles (i, j) to exchange spin degrees of

40

freedom. The proposal spin configuration S′ is the same as St−1, except with the

spins of particle i and j exchanged

s′i = sj,t−1,

s′j = si,t−1.
(3.23)

A different pair can be chosen to exchange the isospin degrees of freedom, if

desired.

(b) Compute. Compute the acceptance probability of the proposed configuration

A(S′|St−1) = min

{
1,

P (S′)
P (St−1)

}
= min

{
1,
|Ψ(R,S′)|2
|Ψ(R,St−1)|2

}
. (3.24)

(c) Accept-or-reject. Draw a uniform random number r ∼ U(0, 1) between 0 and 1. If

r < A(S′|St−1), accept the spin exchange by setting St = S′. Otherwise, reject

the exchange by setting St = St−1.

3.1.1.2 Importance Sampling

Importance sampling, a variant of the Metropolis-Hastings algorithm, draws inspiration from

the Fokker-Planck equation—a generalization of the diffusion equation. The basic idea of

importance sampling is to guide the proposal probability for the spatial degrees of freedom

Q(R′|R) towards regions with higher probability P (R). For a general, time-dependent

probability distribution function, the Fokker-Planck equation of a diffusion process reads

∂

∂t
P (R, t) = D∇ · (∇− F (R))P (R, t), (3.25)

41

where ∇ = (∇1,∇2, ...,∇N) is the combination of all gradient operators for the N particles,

D = ℏ2
2m is a constant diffusion coefficient, and F (R) is the drift velocity due to an external

potential. Here, we have also suppressed all dependence on the spins S, as they remain

constant during these steps. Our goal is find the drift velocity F (R) such that our probability

distribution converges to the stationary distribution determined by our wave function

P (R, t) = P (R) = |Ψ(R)|2 =⇒ ∂

∂t
P (R, t) = 0. (3.26)

Under this condition, the Fokker-Planck equation simplifies to

∇2P (R) = ∇ · F (R)P (R) = F (R) ·∇P (R) + P (R)∇ · F (R) (3.27)

For the Laplacian to appear on the right-hand side, the drift force should have the form

F (R) = f(P (R))∇P (R), (3.28)

where f is a scalar function to be determined. Then, Eq. (3.25) can be written as

∇2P (R) = f(P (R))∇P (R) ·∇P (R)

+ P (R)f(P (R))∇2P (R)

+ P (R)∇f(P (R)) ·∇P (R).

(3.29)

Matching the Laplacian terms, we find that

f(P (R)) =
1

P (R)
, (3.30)

42

which also eliminates the gradient terms. Therefore, the drift velocity must have the form

F (R) =
1

P (R)
∇P (R) = 2

1

Ψ(R)
∇Ψ(R), (3.31)

where we have assumed Ψ(R) is real-valued in the last equality.

The Fokker-Planck equation can be seen as a deterministic description of the stochastic

dynamics captured by the corresponding Langevin equation,

∂

∂t
R(t) = DF (R) + ξ, (3.32)

a stochastic differential equation that describes the dynamics of a particle under the

influence of both deterministic forces and random noise. In the above, ξ ∈ RNd is a

random perturbation drawn from a Gaussian distribution N (0, 2DI) and F (R) is the drift

force evaluated at the initial configuration, defined in Eq. (3.31). Integrating the Langevin

equation over a short time interval ∆t, we obtain

R(t+∆t) = R(t) +D∆tF (R) +
√
∆tξ. (3.33)

This proposal rule implies the normalized proposal density is given by

Q(R′|R,∆t) = N (R+D∆tF (R), 2DδtI)

=
1

(4πD∆t)Nd/2
e−(R

′−R−D∆tF (R))2/4D∆t,

(3.34)

43

which is no longer symmetric due to the drift term. Then the acceptance probability becomes

A(R′|R,∆t) = min

{
1,
P (R′)Q(R|R′,∆t)
P (R)Q(R′|R,∆t)

}
= min

{
1,
|Ψ(R′,S)|2
|Ψ(R,S)|2

e−(R−R
′−D∆tF (R′))2/4D∆t

e−(R′−R−D∆tF (R))2/4D∆t

}
.

(3.35)

The additional weight appearing next to the original acceptance probability can be easily

simplified by defining the drift velocity v(R) ≡ F (R)/2,

e−(R−R
′−D∆tF (R′))2/4D∆t

e−(R′−R−D∆tF (R))2/4D∆t
= e
−
(
v(R)−v(R′)

)(
(R−R′)+D∆t

(
v(R)−v(R′)

))
(3.36)

This weight corrects for the sampling bias introduced by our proposal distribution

exploring more relevant regions of the probability distribution. An equivalent derivation

can be achieved by integrating the Fokker-Planck equation itself for a small time step ∆t

and using the Green’s function method to solve for the time-dependent probability

distribution. The resulting Green’s function coincides with the proposal distribution in

Eq. (3.34).

3.1.2 Integration

Monte Carlo integration is a numerical technique that uses random sampling to efficiently

estimate the value of a high-dimensional integral. Recall that we can expand the expectation

value of operators Â in our |X⟩ basis as

⟨Â⟩ = ⟨Ψ|Â|Ψ⟩⟨Ψ|Ψ⟩ =

∫
dX⟨Ψ|X⟩⟨X|Â|Ψ⟩∫
dX⟨Ψ|X⟩⟨X|Ψ⟩ , (3.37)

44

Inserting 1 = ⟨X|Ψ⟩/⟨X|Ψ⟩ into the numerator, we have

⟨Â⟩ =
∫
dX|Ψ(X)|2A(X)∫
dX|Ψ(X)|2 , (3.38)

where A(X) is the local quantity corresponding to the operator Â

A(X) ≡ ⟨X|Â|Ψ⟩⟨X|Ψ⟩ . (3.39)

Notice that

P (X) =
|Ψ(X)|2∫
dX|Ψ(X)|2 (3.40)

is none other than the normalized probability distribution given by our wave function from

Eq. (3.1). Then the expectation value becomes

⟨Â⟩ =
∫
dXP (X)A(X), (3.41)

where the integral over X can be appropriately decomposed into a sum over S and an

integral over R whenever necessary. Any integral with this form can be approximated as a

simple average over local quantities

⟨Â⟩ ≈ 1

T

T∑
t=1

A(Xt) ≡ ⟨A(X)⟩, (3.42)

where the average is weighted over T samples from the probability distribution Xt ∼ P (X).

By the law of large numbers, the average of the local quantities ⟨A(X)⟩ will converge to the

expected value of the operator ⟨Â⟩ as T increases. Notice the notation we have chosen for

the expectation value of the operator versus the weighted sum over the local quantities, as it

45

differs from other texts. We express both with angled brackets, but the explicit dependence

on X for the latter is meant to imply X is pulled from our probability distribution. We

choose this notation ⟨A(X)⟩ over the more common ⟨AL⟩ to leave room for other subscripts.

3.2 Variational Monte Carlo

Variational Monte Carlo (VMC) is a direct application of the variational principle from

Sec. 2.4 and Monte Carlo integration from Sec. 3.1.2. The core idea is to take some

parameterized trial wave function Ψθ(X), and minimize the corresponding expectation

value of the energy with respect to the variational parameters θ

E[Ψθ] ≡
⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

, (3.43)

min
θ
E[Ψθ] ≥ E0. (3.44)

The variational principle guarantees that the variational energy E[Ψθ] establishes a strict

upperbound on the true ground state energy of the system. To find the optimal parameters,

we use gradient descent methods, a family of iterative optimization algorithms discussed in

more detail in Sec. 3.2.2. For now, we just compute the gradient of the variational energy

with respect to the parameters

∇θE[Ψθ] =
1

⟨Ψθ|Ψθ⟩
(
⟨∇θΨθ|Ĥ|Ψθ⟩+ ⟨Ψθ|Ĥ|∇θΨθ⟩

)
− ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩2

(
⟨∇θΨθ|Ψθ⟩+ ⟨Ψθ|∇θΨθ⟩

)
= 2

(
⟨Ψθ|Ĥ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

− E[Ψθ]
⟨Ψθ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

)
,

(3.45)

46

where we have assumed our trial wave function is real-valued in the last equality. To

approximate all the high-dimensional integrals above, we employ Monte Carlo integration.

For the variational energy, we simply write

E[Ψθ] ≈
1

T

T∑
t=1

Eθ(Xt) ≡ ⟨Eθ(X)⟩, (3.46)

where the configurations Xt are sampled from |Ψθ(X)|2, T is the number of samples, and

the local energy is defined as

Eθ(X) ≡ ⟨X|Ĥ|Ψθ⟩
⟨X|Ψθ⟩

=
ĤΨθ(X)

Ψθ(X)
. (3.47)

For the gradient in Eq. (3.45), we first define the local gradient of the wave function as

Oθ(X) ≡ ⟨X|∇θΨθ⟩
⟨X|Ψθ⟩

=
∇θΨθ(X)

Ψθ(X)
= ∇θ log Ψθ(X), (3.48)

which allows us to write

⟨Ψθ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

=

∫
dX⟨Ψθ|X⟩⟨X|∇θΨθ⟩∫
dX⟨Ψθ|X⟩⟨X|Ψθ⟩

=

∫
dX|Ψθ(X)|2Oθ(X)∫

dX|Ψθ(X)|2

≈ 1

T

T∑
t=1

Oθ(Xt) ≡ ⟨Oθ(X)⟩,
(3.49)

⟨Ψθ|Ĥ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

=

∫
dX⟨Ψθ|Ĥ|X⟩⟨X|∇θΨθ⟩∫

dX⟨Ψθ|X⟩⟨X|Ψθ⟩
=

∫
dX|Ψθ(X)|2Eθ(X)Oθ(X)∫

dX|Ψθ(X)|2

≈ 1

T

T∑
t=1

Eθ(Xt)Oθ(Xt) ≡ ⟨Eθ(X)Oθ(X)⟩,
(3.50)

47

Figure 3.1: The cyclic workflow of the variational Monte Carlo algorithm. Starting with
a random set of variational parameters, the cycle is repeated until the variational energy
converges.

where we have once again assumed the wave function is real. Therefore, the gradient can be

approximated as

∇θE[Ψθ] ≈∇θ⟨Eθ(X)⟩ = 2
(
⟨Eθ(X)Oθ(X)⟩ − ⟨Eθ(X)⟩⟨Oθ(X)⟩

)
. (3.51)

The variational Monte Carlo algorithm is a simple cyclic procedure; we sample

configurations from the square of the wave function, estimate the variational energy and its

gradient, and update the parameters. There are many ways we can complete the last step

of this cycle, which we will cover in Sec. 3.2.2. More information about the implementation

will be discussed in Chapter 5.

3.2.1 Trial Wave Functions

The choice of trial wave function, or ansatz, is the most crucial ingredient of a variational

Monte Carlo calculation. If chosen incorrectly, the upperbound on the ground state energy

provided by the variational principle is effectively meaningless. For this reason, traditional

VMC calculations rely on carefully curating a trial wave function to capture the essential

features and correlations of the system under study. This involves considering the

symmetries, boundary conditions, and known properties of the system, as well as

incorporating relevant physical insights and intuition. Consequently, these trial wave

functions are intricately tailored to the specific Hamiltonians, making them ill-suited for

48

application to similar, albeit distinct, Hamiltonians without substantial structural

modifications.

In this section, we will showcase a diverse range of conventional trial wave functions

and analyze their suitability for different types of systems. Our objective is to identify the

limitations of these methods while appreciating their inherent strengths. Through this

exploration, we aim to develop a deeper understanding of the advantages offered by neural

networks and their potential to overcome the limitations commonly associated with

traditional strategies.

3.2.1.1 Kato’s Cusp Condition

In the presence of singularities in the potential V (X), Kato’s cusp condition asserts that

the local kinetic energy Kθ(X) must precisely counterbalance the diverging potential such

that the total local energy remains finite as any two particles approach each other. More

formally, the cusp condition states

lim
rij→0

Eθ(X) = lim
rij→0

(Kθ(X) + V (X)) <∞, (3.52)

for all pairs i, j, where rij = |ri − rj | is defined as the Euclidean distance between particles

i and j, and the local kinetic energy is given by

Kθ(X) =
N∑
i=1

− ℏ2

2m

∇2
iΨθ(X)

Ψθ(X)
. (3.53)

For strongly-correlated systems, it is especially important to design a trial wave function

that upholds the cusp condition throughout training. Even a finite, but hard interaction

potential may warrant a cusp condition to ensure stability throughout the optimization of

49

Ψθ(X). A "hard" potential is often used to describe an interaction potential that exhibits

abrupt changes in magnitude as the distance between particles varies. These potentials

typically have a large scattering length while being short-range in nature.

3.2.1.2 Jastrow Factor

Enforcement of Kato’s cusp condition usually comes in the form of a Jastrow factor, also

known as a Jastrow wave function. For a system of identical particles, it can be any

permutation-invariant function of the particles, as it preserves the symmetry of the overall

wave function. The goal of the Jastrow factor is to incorporate the effects of

particle-particle interactions into the trial wave function. The form of the Jastrow factor

depends on the specific system and the character of the interactions being considered.

For a system of bosons, the ground state wave function must be positive-definite and

symmetric with respect to particle exchange. Since we can ignore spin, the generic trial

wave function for bosons can be written as

Ψθ(R) = Φ0(R)eJ(R), (3.54)

where the first term represents the ground state of the non-interacting problem and the

second term is the symmetric Jastrow factor containing the inter-particle correlations. By

writing

Φ0(R) =
N∏
i=1

ξ0(ri), (3.55)

the non-interacting problem becomes simple to solve because it can be separated into N

50

identical and independent parts

(
K̂ + V1(R)

)
Φ0(R) = Enonint

0 Φ0(R),(
− ℏ2

2m
∇2

i + v1(ri)

)
ξ0(ri) = ε0ξ0(ri),

Enonint
0 =

N∑
i=1

ε0 = Nε0,

(3.56)

which can often be solved analytically. Each of theN bosons occupy the lowest single-particle

state with energy ε0, so the non-interacting energy is simply their sum.

Examples of exactly-solvable non-interacting systems include the free system

Ĥ free = K̂, (3.57)

where the single-particle ground state is the trivial plane-wave orbital

ψfree0 (ri) = 1, (3.58)

with zero energy εfree0 = 0, in which case, the trial wave function is just the Jastrow factor

on its own. Another common example is the non-interacting system of isotropic harmonic

oscillators

Ĥho = K̂ +
N∑
i=1

1

2
mω2r2i , (3.59)

where ω is the oscillation frequency. The single-particle ground state wave function is a

Gaussian

ψho0 (ri) = e
−mω

2ℏ r2i (3.60)

51

with the corresponding energy

εho0 =
d

2
ℏω. (3.61)

Constructing the Jastrow factor is often much more difficult than the non-interacting

ground state. Nonetheless, there are some exactly-solvable interactions that serve as great

examples for demonstrating the general strategy. Consider the Calogero-Sutherland model

of bosons in a one-dimensional harmonic oscillator trap interacting with an inverse-squared

potential

Ĥcs = Ĥho + V cs(R), V cs(R) =
ℏ2

m

N∑
i<j

β(β − 1)

x2ij
, (3.62)

where xij = |xi − xj | is the distance between the pair i and j, and β is an interaction

parameter. Say we look for an ansatz with the form

Ψcs
θ (R) = Φho

0 (R)eJ(R), (3.63)

where Φho
0 (R) ≡ ∏N

i=1 ξ
ho
0 is the ground state of the one-dimensional non-interacting

harmonic oscillators. Then according to Kato’s cusp condition, we need to find the

function J(R) that satisfies

lim
xij→0

EL(R) <∞, (3.64)

for all configurations R = (x1, x2, ..., xN) and pairs i, j. It is straightforward to show that

1

Ψθ

∂2

∂x2i
Ψθ =

1

Φho
0

∂2Φho
0

∂x2i
+

2

Φho
0

∂Φho
0

∂xi

∂J(R)

∂xi
+
∂2J(R)

∂x2i
+

(
∂J(R)

∂xi

)2

, (3.65)

for any particular particle i. Since the ground state for the non-interacting system is Φho
0 =

52

∏N
i=1 e

−mω
2ℏ xi in one dimension, the local kinetic energy then evaluates to

KL(R) = Kho
L (R) +

ℏ2

2m

N∑
i=1

[
mω

ℏ
xi
∂J(R)

∂xi
− ∂2J(R)

∂x2i
−
(
∂J(R)

∂xi

)2
]
, (3.66)

where Kho
L (R) = 1

Φho0

K̂Φho
0 is the local kinetic energy for the non-interacting harmonic

oscillators. In order to cancel the divergences coming from the interaction potential in

Eq. (3.62), the right-hand side must scale as ∼ 1
x2ij

as xij → ∞ for all pairs. The simplest

Jastrow correlator with the proper scaling behavior is

J(R) = b
∑
i<j

log xij , (3.67)

for some constant b. By matching the coefficients in Eq. (3.66), we find that b = β, and the

resulting ansatz is the exact solution for the ground state

Ψcs
0 = Φho

0

N∏
i<j

x
β
ij , (3.68)

with the corresponding energy

Ecs
0 = Eho

0 +
1

2
βN(N − 1)ℏω. (3.69)

In this particular example, we were fortunate to uncover an exact solution, making the

choice of a parameterized wave function an obvious one. Specifically, we can use the

Jastrow factor as defined in Eq. (3.67), with a single variational parameter denoted as b.

However, by the time we have found the optimal design for J(R), we essentially solved the

entire problem, rendering the application of variational Monte Carlo pointless except for

53

benchmarking purposes.

Although the cusp condition can be solved exactly in the aforementioned

Calogero-Sutherland model, this is not the case for the vast majority of interesting

systems. Furthermore, determining the appropriate form of the Jastrow factor necessitated

a specific choice for the interaction potential. This means that the knowledge we gained

throughout this process is not immediately applicable for other problems. We will see that

when utilizing neural networks as trial wave functions, it is possible to forgo manually

enforcing the cusp condition, as the neural networks can autonomously discover it, allowing

a single ansatz to be reused for a large class of problems.

3.2.1.3 Slater Determinant

For systems of fermions, the situation becomes more complicated because the ground state

wave function must be antisymmetric with respect to particle exchange, and we have to be

mindful of spins. We can still use a symmetric Jastrow factor to capture the correlations

in our trial wave function, but we need to replace the symmetric non-interacting ground

state in Eq. (3.54) with an antisymmetric one. Hence, we reintroduce the spins and take our

ansatz to be

Ψθ(X) = Φ0(X)eJ(X), (3.70)

54

where Φ0(X) is a Slater determinant involving the N single-particle spin-orbitals evaluated

for each of the N particles

Φ0(X) = det
[
φα(xi)

]
= det



φ1(x1) φ1(x2) · · · φ1(xN)

φ2(x1) φ2(x2) · · · φ2(xN)

...
...

φN (x1) φN (x2) · · · φN (xN)


(3.71)

The quantum numbers of the single-particle states as labeled generically by α, while the

particles are labeled with the index i. As with bosons, we obtain the single-particle states by

solving the non-interacting problem, but because of the Pauli exclusion principle, we must

find the spectrum rather than just the ground state. The fermions are filled in a way that

minimizes the total energy of the system, starting from the lowest energy state and moving

upwards. This filling continues until the highest-occupied state, often referred to as the

Fermi level, is reached. The Fermi level represents the boundary between filled and unfilled

states in a system of fermions, and its corresponding single-particle energy is denoted as εF .

As another simple example, let us consider the circular quantum-dots system,

Ĥqd = Ĥho + V qd(R), V qd(R) =
e2

4πε0

∑
i<j

1

rij
, (3.72)

a two-dimensional system of electrons trapped in a harmonic oscillator well. For convenience,

we set e = 4πε0 = 1 and assume the system is unpolarized, meaning there is an equal number

of spin-up and spin-down electrons, N↑ = N↓ = N/2. Then in two-dimensions, the single-

55

Figure 3.2: The occupancy of single-particle states for bosons (left) and fermions (right)
at zero temperature. The two different colors (blue/orange) of fermions represent the two
possible spin states (up/down). While bosons can occupy the same single-particle state,
fermions are restricted to distinct states due to the Pauli exclusion principle. The energy of
the highest occupied single-particle state is commonly referred to as the Fermi energy εF .

particle wave functions for the non-interacting problem are

φα(ri) = e
−mω

2ℏ r2iHmα

(√
mω

ℏ
xi

)
Hnα

(√
mω

ℏ
yi

)
⟨si|σα⟩, (3.73)

where i = (ri, si) = (xi, yi, si) labels the single-particle degrees of freedom, α = (mα, nα, σα)

labels the single-particle states with σα ∈ {↑, ↓}, and Hn(x) are the Hermite polynomials of

degree n. By inserting the above expression into Eq. (3.71), we can automatically constrain

the antisymmetry of the wave function.

3.2.1.4 Backflow Transformations

The Slater determinant discussed in the preceding section relies on single-particle orbitals

derived from the non-interacting problem. Consequently, the nodal structure of the overall

wave function remains fixed during the training process, as the Slater determinant contains

56

Figure 3.3: The effects of a symmetric Jastrow factor (left) and a backflow transformation
(right) on the nodes of a fermionic wave function. While both the Jastrow factor and the
backflow transformation maintain the antisymmetry of the overall wave function and have
the ability to modify the wave function’s amplitude, only the backflow transformation is
capable of shifting the positions of the nodes.

no variational parameters. To improve the nodal structure of the Slater determinant, we can

incorporate backflow transformations, which aim to capture the influence of all surrounding

particles on the state of an individual particle. While Jastrow factors technically encode some

backflow correlations as well, we only utilize positive definite Jastrows that are incapable

of changing the nodal structure. For the sake of clarity, we will specifically use the term

"backflow transformation" for the technique that facilitates alterations to the nodal structure

of the Slater determinant.

A backflow transformation typically alters the single-particle positions as

ri 7→ ri +
N∑
j ̸=i

η(rij)(ri − rj), (3.74)

57

where η(r) is the backflow correlation function. Then the transformed coordinates, along

with the untransformed spin, serve as input to the non-interacting spin-orbitals φα(xi).

Determining the functional form of η(r), much like the Jastrow factor, necessitates the

imposition of known physical insights about the system. However, accomplishing this task

manually can be quite challenging in general.

Alternate forms for the backflow transformation can be chosen, as long as the

transformation is permutation equivariant, i.e. for a given particle i, the transformation is

invariant under any permutation of all the other particles j ̸= i. With this constraint, the

antisymmetry of the Slater determinant is preserved. We write this arbitrary

transformation as

xi 7→ η(xi, {xj ̸=i}), (3.75)

which suggests a means to potentially incorporate the spins of all particles into the backflow

transformations, in addition to the spatial degrees of freedom.

3.2.1.5 Bardeen-Cooper-Schrieffer Wave Function

In fermionic systems with strong pairing correlations, it is often insufficient to construct an

antisymmetric ansatz from a Slater determinant of single-particle states. Even with the

utilization of multiple Slater determinants or the incorporation of backflow

transformations, the antisymmetric component of the wave function remains constrained

within the single-particle mean-field framework. Thus, we graduate to the

number-projected Bardeen-Cooper-Schrieffer (BCS) wave function, an antisymmetrized

product of singlet-pair orbitals. This ansatz is suitable for unpolarized systems of fermions

with an attractive interaction sufficiently strong enough in the s-wave channel to facilitate

58

the formation of Cooper pairs. It can be written as the determinant of an N/2 × N/2

matrix,

Φ0(X) = det
[
ξ(r
↑
i , r
↓
j)
]
= det



ξ(r
↑
1, r
↓
1) ξ(r

↑
1, r
↓
2) · · · ξ(r

↑
1, r
↓
N/2

)

ξ(r
↑
2, r
↓
1) ξ(r

↑
2, r
↓
2) · · · ξ(r

↑
2, r
↓
N/2

)

...
...

ξ(r
↑
N/2

, r
↓
1) ξ(r

↑
N/2

, r
↓
2) · · · ξ(r

↑
N/2

, r
↓
N/2

)


, (3.76)

where ξ(r↑i , r
↓
j) is the unique singlet-pairing orbital evaluated for each combination of spin-

up and spin-down fermions. It has been shown that the above BCS wave function can be

expanded to include single-particle orbitals φα(r) and remain antisymmetric. Define P =

min{N↑, N↓} as the number of pairs and U = |N↑−N↓| as the number of unpaired particles.

Then the augmented BCS wave function becomes the determinant of a (P + U)× (P + U)

matrix,

Φ0(X) = det



ξ(r
↑
1, r
↓
1) ξ(r

↑
1, r
↓
2) · · · ξ(r

↑
1, r
↓
P) φ1(r

↑
1) φ2(r

↑
1) · · · φU (r

↑
1)

ξ(r
↑
2, r
↓
1) ξ(r

↑
2, r
↓
2) · · · ξ(r

↑
2, r
↓
P) φ1(r

↑
2) φ2(r

↑
2) · · · φU (r

↑
2)

...
...

...
...

ξ(r
↑
P , r

↓
1) ξ(r

↑
P , r

↓
2) · · · ξ(r

↑
P , r

↓
P) φ1(r

↑
P) φ2(r

↑
P) · · · φU (r

↑
P)

φ1(r
↓
1) φ1(r

↓
2) · · · φ1(r

↓
P) 0 0 · · · 0

φ2(r
↓
1) φ2(r

↓
2) · · · φ2(r

↓
P) 0 0 · · · 0

...
... · · · ...

...
...

φU (r
↓
1) φU (r

↓
2) · · · φU (r

↓
P) 0 0 · · · 0



.

(3.77)

59

The BCS wave function provides a more accurate description of the system’s collective

behavior in the presence of strong pairing correlations, such as in fermionic superfluids.

However, it is limited in its ability to capture triplet correlations and is not applicable to

Hamiltonians that involve spin exchange.

3.2.1.6 Pfaffian Wave Function

To overcome some the limitations of the BCS wave function, alternative wave functions

based on the Pfaffian have been employed extensively in electronic structure as well as

nuclear applications. Similar to the determinant, the Pfaffian of a matrix is a scalar value

calculated by taking sums of products of permuted matrix elements. It is defined only for

even-dimensional, skew-symmetric matrices with the explicit formula

pf[A] =
1

2nn!

∑
P̂∈S2n

σ(P)
n∏

i=1

ap(2i−1),p(2i), (3.78)

where we have assumed A is a 2n × 2n matrix. The Pfaffian allows us to write the most

generic antisymmetric wave function constructed from pairing orbitals rather than single-

particle ones. Assuming N is even, the Pfaffian wave function takes the form

Φ0(X) = pf
[
ϕ(xi,xj)

]
= pf



0 ϕ(x1,x2) · · · ϕ(x1,xN)

ϕ(x2,x1) 0 · · · ϕ(x2,xN)

...
...

ϕ(xN ,x1) ϕ(xN ,x2) · · · 0


, (3.79)

where ϕ(xi,xj) is an antisymmetric pairing spin-orbital, ϕ(xi,xj) = −ϕ(xj ,xi). If we

expand the matrix above to include unpaired single-particle spin-orbitals, mirroring the

60

approach we used for the BCS wave function, the wave function becomes the Pfaffian of an

(N + U)× (N + U) matrix

Φ0(X) = pf

 ϕ φ

−φT 0

 , (3.80)

where ϕ is the same N×N matrix displayed in Eq. (3.79), φ is an N×U matrix constructed

from the occupied single-particle orbitals

φ ≡



φ1(x1) φ2(x1) · · · φU (x1)

φ1(x2) φ2(x2) · · · φU (x2)

...
...

φ1(xN) φ2(xN) · · · φU (xN)


, (3.81)

and U is the number of unpaired particles. The pairing spin-orbital is commonly decomposed

into explicit singlet and triplet contributions in order to write down the spatial dependence

more easily

ϕ(xi,xj) = ξ(ri, rj)⟨si, sj | (|↑↓⟩ − |↓↑⟩) /
√
2

+ χ↑↑(ri, rj)⟨si, sj | ↑↑⟩

+ χ↑↓(ri, rj)⟨si, sj | (|↑↓⟩+ |↓↑⟩) /
√
2

+ χ↓↓(ri, rj)⟨si, sj | ↓↓⟩.

(3.82)

The singlet pairing orbital ξ(ri, rj) is the same as ξ(r↑i , r
↓
j) in the BCS wave function, and

must be even with respect to the spatial coordinates. The newly introduced triplet pairing

orbitals χ↑↑(ri, rj), χ↑↓(ri, rj), χ↓↓(ri, rj) must all be odd.

When the Hamiltonian does not exchange spin, in condensed matter problems for

61

instance, we can further decompose the ϕ and φ matrices into separate blocks

corresponding to the singlet and triplet contributions, and the spin-up and spin-down

unpaired contributions, respectively. This singlet-triplet-unpaired (STU) Pfaffian ansatz,

developed in Ref. [6], is written as

Φ0(X) = pf


χ↑↑ ξ↑↓ φ↑

−ξ↑↓T χ↓↓ φ↓

−φ↑T −φ↓T 0

 , (3.83)

where we have omitted the χ↑↓(ri, rj) term in Eq. (3.82). The singlet block ξ↑↓ is an N↑×N↓

matrix constructed from applying the singlet pairing orbital ξ(r↑i , r
↓
j) to all combinations of

the spin-up and spin-down particles. The triplet blocks χ↑↑ and χ↓↓ have sizes N↑ × N↑

and N↓ × N↓, respectively. They are both skew-symmetric and constructed by applying

the triplet pairing orbitals χ↑↑(r↑i , r
↑
j) and χ↓↓(r↓i , r

↓
j) to the appropriate same-spin pairs.

Finally, the unpaired blocks φ↑ and φ↓ can be viewed as a reorganization of the rows in φ

such that the spin-up particles and spin-down particles are placed into separate blocks.

The STU wave function is a convenient approach if the spins of the particles can be fixed

during the Monte Carlo simulation. Otherwise, the more general Pfaffian wave function can

be used to handle the exchange of spins. Either way, the pairing spin-orbital ϕ(xi,xj) is

decomposed according to Eq. (3.82) so that we can leverage our intuition in its design. In

our investigation of neural-network quantum states, we will find that such a decomposition

is not necessary. Instead, we can construct the most general antisymmetric pairing orbital

that allows the spatial and spin degrees of freedom to influence one another arbitrarily.

62

3.2.2 Optimization

After selecting a specific parameterization of the trial wave function, we require methods by

which the variational parameters can be changed in order to minimize the energy. These

optimization methods operate iteratively, gradually refining the solution over time. The first-

order optimization methods we will discuss, known as gradient descent methods, coincide

with the very same techniques commonly employed in numerous machine learning problems.

However, we will also introduce one additional second-order optimization method, known

as Stochastic Reconfiguration, which is specifically tailored for the variational Monte Carlo

method. It is akin to the Natural Gradient method in the context of machine learning, but as

our application of neural networks will always involve minimizing the energy, as opposed to

a general objective function, we opt to explore all optimization methods within the context

of variational Monte Carlo rather than machine learning.

3.2.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple method that utilizes a single estimate of the

gradient ∇θ⟨Eθ(X)⟩ to update the parameters θ. At any given iteration of the optimization

procedure, the parameters are transformed following the opposite direction of the gradient

θ 7→θ − η∇θ⟨Eθ(X)⟩, (3.84)

where η is a small learning rate and the gradient is defined in Eq. (3.51). The learning rate

can be scheduled to decrease with the number of optimization steps, with typical values

between 10−5 and 10−2.

Since our measures of the gradient are approximate, our trajectory through the energy

63

landscape can be noisy. On one hand, this noise can sometimes prevent us from getting

trapped in a local minimum, as there is always a chance of a perturbation that propels

us out of it. On the other hand, the presence of this noise can make the overall training

procedure slow and inaccurate, as we may find ourselves frequently oscillating back and forth

in a particularly narrow or shallow valley.

3.2.2.2 Momentum

The simple SGD algorithm can be improved by including momentum, a moving average of

the gradients. Momentum is implemented by first defining a vector m that stores the moving

average of gradients, and initializing it to zero. Then parameter updates are performed as

m 7→βm+ (1− β)∇θ⟨Eθ(X)⟩, (3.85)

θ 7→θ − ηm, (3.86)

where η is the learning rate and β is a constant hyperparameter that controls the influence

of the previous gradients on the current update, usually set around β = 0.9. By averaging

over a history of gradients, the optimization trajectory becomes smoother as oscillations in

opposite directions tend to cancel out. This smoothing effect helps to stabilize the parameter

updates and prevent the algorithm from getting trapped in erratic behavior. Moreover, in

situations where the gradients become small, such as in plateaus or saddle points, momentum

helps the training process to persist in the "right" direction.

64

Figure 3.4: This cartoon depicts trajectories of stochastic gradient descent, with momentum
(orange) and without (blue), near a narrow parameter space minimum. Momentum smooths
the path by counteracting noise in opposing directions.

3.2.2.3 Root Mean Squared Propagation

Root Mean Squared Propagation (RMSprop) adaptively adjusts the learning rate for each

parameter based on the magnitudes of the recent gradients. We begin by initializing a new

vector v = 0, and updating the parameters as

v 7→βv + (1− β)
(
∇θ⟨Eθ(X)⟩

)2
, (3.87)

θ 7→θ − η√
v + ϵ

∇θ⟨Eθ(X)⟩, (3.88)

where the square in Eq. (3.87) and the square root in Eq. (3.88) are both element-wise

operations. The hyperparameter β is typically set to 0.9. The hyperparameter ϵ provides

numerical stability and is set around 10−8. Unlike the previous methods, RMSprop is less

sensitive to choices of the learning rate η. By normalizing the gradients in this way, RMSprop

mitigates the problem of exploding gradients, as extreme fluctuations are alleviated, making

the optimization process more stable. At the opposite extreme, RMSprop also prevents

gradients from becoming too small, allowing training to continue effectively.

65

3.2.2.4 Adaptive Moment Estimation

Adaptive Moment Estimation (ADAM) combines the concepts of RMSprop and momentum,

and it remains one of the most popular first-order optimization methods since its introduction

in 2015[8]. In addition to computing the moving averages of gradients and the squares of

gradients, the ADAM algorithm incorporates a learning rate correction to compensate for

the bias caused by initializing these averages to zero. This correction is dependent on the

optimization iteration t, so we begin by setting t = 0, m = 0, and v = 0. Then the

parameters are updated as

m 7→αm+ (1− α)∇θ⟨Eθ(X)⟩, (3.89)

v 7→βv + (1− β)
(
∇θ⟨Eθ(X)⟩

)2
, (3.90)

θ 7→θ − η
(
1− βt
1− αt

)
m√
v + ϵ

, (3.91)

t 7→t+ 1. (3.92)

The hyperparameters are usually set to α = 0.9, β = 0.999, and ϵ = 10−8. ADAM has

gained popularity across diverse optimization problems, thanks to its efficient and robust

performance.

3.2.2.5 Stochastic Reconfiguration

Stochastic Reconfiguration [9] (SR) is a second-order optimization method specific to the

variational Monte Carlo (VMC) method. Instead of manipulating the gradients according

to their history, the SR algorithm manipulates the gradients according to the curvature of

the energy landscape. It can alternatively be viewed as stretching and squeezing the

66

Figure 3.5: A visualization of the Stochastic Reconfiguration algorithm, a second-order
optimization method that stretches and squeezes the energy landscape such that difficult
minima (left) are more isotropic (right). This method typically reduces the required number
of optimization steps by an order of magnitude compared to the simple stochastic gradient
descent method.

landscape itself, making it smoother or more isotropic in certain areas. Stochastic

Reconfiguration provides a more favorable terrain for finding the global minimum and

improves the exploration of the parameter space.

The SR update is derived by determining the parameter change, denoted as δθ, that best

reproduces a small step δτ in an imaginary-time evolution. The concept of imaginary-time

propagation, which will be further elaborated on in Sec. 9.5, involves applying the operator

e−δτĤ to states non-orthogonal to the ground state, thereby driving them closer to the

ground state. We can approximate the imaginary-time propagator to first order in δτ and

apply it to our original state |Ψθ⟩, resulting in a new state

|Φ⟩ = e−δτĤ |Ψθ⟩ ≈ (1− δτĤ)|Ψθ⟩ = |Ψθ⟩ − δτĤ|Ψθ⟩. (3.93)

Our goal is to match this state to one obtained by changing the parameters θ. To do this,

we expand around our original state to first order in δθ,

|Ψθ+δθ⟩ ≈ |Ψθ⟩+ (δθ) ·∇θ|Ψθ⟩. (3.94)

67

For |Φ⟩ and |Ψθ+δθ⟩ to coincide, we need their projections onto the original state be the

same, keeping in mind it may not be normalized,

⟨Ψθ|Ψθ+δθ⟩
⟨Ψθ|Ψθ⟩

=
⟨Ψθ|Φ⟩
⟨Ψθ|Ψθ⟩

, (3.95)

⟨Ψθ|Ψθ⟩
⟨Ψθ|Ψθ⟩

+ (δθ) · ⟨Ψθ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

=
⟨Ψθ|Ψθ⟩
⟨Ψθ|Ψθ⟩

− δτ ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

, (3.96)

Similarly, the gradient with respect to the parameters must also coincide,

⟨Ψθ|∇θ|Ψθ+δθ⟩
⟨Ψθ|Ψθ⟩

=
⟨Ψθ|∇θ|Φ⟩
⟨Ψθ|Ψθ⟩

, (3.97)

⟨Ψθ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

+ (δθ) · ⟨∇θΨθ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

=
⟨Ψθ|∇θΨθ⟩
⟨Ψθ|Ψθ⟩

− δτ ⟨∇θΨθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

, (3.98)

(3.99)

Combining Eqs. (3.96) and (3.99) reveals the following update rule for the parameters:

θ 7→ηS−1∇θ⟨Eθ(X)⟩, (3.100)

where S is the quantum geometric tensor [10] with the following matrix elements

Sij =
⟨∂iΨθ|∂jΨθ⟩
⟨Ψθ|Ψθ⟩

− ⟨∂iΨθ|Ψθ⟩⟨Ψθ|∂jΨθ⟩
⟨Ψθ|Ψθ⟩

(3.101)

and ∂i denotes a derivative with respect to the ith variational parameter θi.

68

3.3 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a virtually exact stochastic projector method based on

solving the imaginary-time many-body Schrödinger equation. By transforming t 7→ −iτℏ,

the Schrödinger equation becomes

− ∂

∂τ
Ψ(X, τ) = ĤΨ(X, τ), (3.102)

and the originally oscillating stationary-state solutions are now convergent in the τ → ∞

limit

Ψα(X, τ) = ψα(X)e−Eατ , (3.103)

where

Ĥψα(X) = Eαψα(X). (3.104)

Let us assume these energy eigenstates are ordered such that E0 ≤ E1 ≤ E2 ≤ · · · . By

expanding the general wave function in terms of the transformed stationary states,

Ψ(X, τ) =
∞∑
α=0

cαΨα(X, τ) =
∞∑
α=0

cαψα(X)e−Eατ , (3.105)

we find that any state that is not orthogonal to the ground state, c0 ̸= 0, will evolve to the

ground state

lim
τ→∞Ψ(X, τ) = c0ψ0(X)e−E0τ , (3.106)

in the large τ limit. By introducing a constant offset energy ET to Eq. (3.102), where ET is

as close to the ground state energy E0 as possible, the large τ limit can be kept finite, while

69

leaving the eigenstates themselves unchanged. Then by ignoring spin momentarily, X → R,

the shifted imaginary-time Schrödinger equation then reads

∂

∂τ
Ψ(R, τ) = (D∇ ·∇− (V (R)− ET))Ψ(R, τ), (3.107)

where we have again used the notation D = ℏ2
2m and ∇ ≡ (∇1,∇2, ...,∇N). At this

point, the above equation should look familiar, as it has a similar form to the Fokker-

Planck equation we introduced in Eq. (3.25). In fact, if we make the substitution Ψ(R, τ) =

f(R, τ)/ΨT (R), take all the necessary derivatives, and multiply by ΨT (R), the equation we

obtain for f(R, τ), has nearly identical form to the Fokker-Planck equation

∂

∂τ
f(R, τ) = D∇ · (∇− F (R)) f(R, τ)− (E(R)− ET)f(R, τ), (3.108)

except for the last term, where

E(R) =
1

ΨT (R)
ĤΨT (R). (3.109)

This modified form of the Schrödinger equation can be solved for f(R, τ) through standard

Green’s function methods, but as we already mentioned before at the end of Sec. 3.1.1, the

Green’s function solution to the Fokker-Planck equation coincides with the proposal density

Q(R′|R,∆t) we inferred from the corresponding Langevin equation. Without the extra

term in Eq. (3.108), the Green’s function solution would be exactly the same as before, as

introduced in Eq. (3.34),

GD(R′|R,∆τ) = 1

(4πD∆τ)Nd/2
e−(R

′−R−D∆τF (R))2/4D∆τ , (3.110)

70

for small ∆τ . The subscript D stands for drift. However, the inclusion of the last term

modifies the Green’s function, which can be approximated by

GB(R
′|R,∆τ) = e∆τ(E(X′)+E(X)−2ET)/2, (3.111)

where B standard for branching. Thus the total Green’s function is approximated as

G(R′|R,∆τ) ≈ GD(R′|R,∆τ)GB(R
′|R,∆τ). (3.112)

The factorization of the Green’s function suggests a way we can evolve to the ground

state in practice. First, we initialize an ensemble of MCMC walkers according to the

probability distribution of a good estimation of the wave function |ΨT (R)|2. Next, by

using the importance sampling method we covered in Sec. 3.1.1, we move the walkers as

usual. Then, to account for the extra branching term in the Green’s function, we make

copies of the walkers with a probability given by Eq. (3.111) . Proceeding in this way is the

spatial realization of the imaginary-time propagation operator e−τ(Ĥ−ET).

Unlike the variational Monte Carlo method, where walkers are sampled from a positive

semi-definite distribution given by |Ψθ(X)|2, a diffusion Monte Carlo calculation employs

the walkers’ distribution itself to represent the wave function. For systems of bosons, this

poses no issue, but for fermions, it is difficult to maintain the antisymmetry of the wave

function. Therefore, when we reintroduce spin into our formulation, we must add the extra

step of killing the walkers if they attempt to cross a node. This solution is known as the fixed-

node approximation. The nodes themselves are determined by a previous VMC calculation,

and consequently, DMC calculations carry a residual dependence on the VMC calculation.

71

4 Machine Learning

Machine learning encompasses a wide range of computational models and algorithms

designed to learn from data rather than rely on explicit programming. It is a subset of

artificial intelligence, a rapidly evolving field that aims to endow computers with

human-like cognition, such as the ability to interpret complicated data, adapt to new

situations, and make decisions autonomously. These ambitious goals have driven the

development of machine learning models and have transformed them into the highly

versatile tools we witness today.

In this chapter, we introduce fundamental concepts in machine learning, in the hopes

of building a broad perspective that extends beyond specific physics applications. We will

explore different approaches to learning, providing context for the artificial neural networks

we will cover afterwards. In particular, we place emphasis on the mathematical aspects

of artificial neural networks, aiming to clarify their relevance and utility as neural-network

quantum states.

4.1 The Curse of Dimensionality

When dealing with high-dimensional data, be it in machine learning or any data other

analysis endeavor, a recurring challenge arises. It is known as the "curse of dimensionality,"

wherein the performance of algorithms decreases as the number of dimensions increases. The

basis of the curse of dimensionality is geometric: given a fixed number of data points, the

density of those points in space decreases exponentially with the number of dimensions. To

counteract the sparsity of the data, is it common to focus considerable effort and resources on

72

Figure 4.1: Cartoon of the curse of dimensionality; as the dimension of the data increases
(left to right), the density of a fixed number of data points decreases exponentially.

finding a lower-dimensional representation of the data before applying any given algorithm.

Is it reasonable to assume such a lower-dimensional representation exists? The short

answer is yes—pure geometric scaling only truly applies if our data set contains no

information at all, i.e. it is completely random. Real-life data sets, ones that actually

contain information, have structure. This is reminiscent of the exponential scaling of the

Hilbert space dimension with respect to the size of the quantum system. As we have

discussed in Sec. 2.2, the effective Hilbert space dimension decreases if we restrict ourselves

only to states that accurately represent real, physical systems.

Despite the challenges posed by the curse of dimensionality, machine learning

algorithms have proven exceptional in discovering lower-dimensional representations of

data. Among them, artificial neural networks have emerged as unparalleled tools for

handling large and intricate datasets, where the underlying structure is difficult to predict

a priori. Consequently, neural networks, particularly deep ones, have established

themselves as the dominant approach for tackling some of the most formidable problems

across various domains. Notably, they have been instrumental in solving complex tasks

such as protein folding, game strategizing, natural language processing, image and voice

73

Figure 4.2: Comparison of a random data set (left) with no information, a data set with
obvious clusters (middle), and a data set with an obvious lower-dimensional manifold (right).
The latter two are examples of real-life data sets that contain information, i.e. they have
structure.

recognition, and autonomous robotics.

4.2 Cost Functions

The goals of a machine learning problem are often narrow in scope, usually involving one

or two tasks that can be expressed mathematically through a so-called "cost function".

The terms "cost function" and "loss function" are often used interchangeably, but the cost

function typically refers to the overall measure of error across the entire dataset, while the

loss function calculates the error for individual data points. If the objective function needs

to be maximized rather than minimized, it is commonly called a "reward function" in the

context of machine learning.

While not all machine learning problems are explicitly framed as optimization problems,

many involve minimizing or maximizing certain quantities. In some cases, this optimization

can be achieved in a single step, leading to simple and highly efficient models, such as Kernel

Ridge Regression and Gaussian Processes. However, more generally, optimization problems

require iterative methods, as discussed in the Sec. 3.2.2. For the purposes of our discussion,

74

we will assume that all machine learning problems have an underlying cost function, even if

it may not be obvious at first glance.

Determining the structure of a particular problem ultimately depends on the training data

that is, or can be made, available. In the following sections, we will aim to give an intuitive

understanding of machine learning and why exactly it has been proven to be so powerful

across a wide variety of applications. When faced with a brand new problem, the reader

should be able to zoom out, and quickly identify its core elements and interdependencies.

Most importantly, the reader should be able to break a large, complicated problem into

small, digestible components that are each suitable for a simple machine learning problem.

4.3 Supervised Learning

The goal of a supervised learning problem is to identify a mapping between two spaces,

where only examples of the endpoints in each space are known. If we denote x as the data

points in our input space, y as the data points in our output space, and ŷ as the predictions

of our model in the output space, then the cost function of any supervised learning problem

can be written as C(y(x), ŷ(x)), where C measures the discrepancy between ŷ and y. The

elements within the output space are often referred to as "labels." However, we will refrain

from using this terminology to prevent any potential misconception that the output space

must necessarily be discrete in nature.

Supervised learning problems can be separated into two major categories: regression

and classification. The former involves predicting a continuous numerical value, while the

latter involves predicting discrete values corresponding to distinct categories. Python

packages like scikit-learn and Keras provide a wide range of pre-implemented

supervised learning algorithms that are readily available for use "out-of-the-box," including

75

Figure 4.3: A visualization of the two main types of supervised learning: regression (left)
and classification (right). The blue data points are the inputs, and the orange data points
are the target outputs. The goal of a supervised machine learning problem is to learn and
generalize the mapping (solid black lines).

decision trees, support vector machines, linear and logistic regression, and neural networks,

to name a few.

Choosing an appropriate model depends strongly on the desired task, the complexity of

the data, and the number of data points. If the number of data points is limited compared

to the flexibility of a certain model, it is likely to overfit the data, leading to poor predictive

power when new data is introduced. On the other hand, models that are too simple can

fail at the task all together. Balancing the risk of overfitting and underfitting is a reflection

of the bias-variance trade-off, the clash between a model’s sensitivity to fluctuations in the

input data and the model’s underlying assumptions about the mapping.

To manage these challenges, supervised learning techniques commonly involve dividing

a fixed dataset into three distinct parts: a training set, a validation set, and a test set. The

training set is utilized to optimize the model, as its name implies. The validation set is used

to estimate the bias and variance of the model throughout the training process, helping to

determine the ideal hyperparameters. Finally, the model’s performance is evaluated on the

test set once training is completed.

76

Figure 4.4: A depiction of principal component analysis (left) and cluster identification
(right), two common types of unsupervised learning.

4.4 Unsupervised Learning

Unlike supervised learning, where the model learns a mapping from an input space to an

output space, unsupervised learning models aim to learn the underlying structure of the

input data set itself. Therefore, the associated cost functions solely depend on the inputs,

C(x). Unsupervised learning problems can be divided into three main categories: clustering,

dimensionality reduction, and anomaly detection. Each of these categories can be used as

a preprocessing step in conjunction with supervised or reinforcement learning problems to

improve their overall performance.

In unsupervised clustering tasks, the model assumes the input data can be mapped to

some latent space in which similar data points are physically closer together. Specifically, the

assumed structure of the points in the n-dimensional latent space are (roughly) n-spheres,

where n is at most the number of dimensions in the original input data. The key ingredient

of such models is the quantification of "distance" between points. In simple problems, the

input space itself can act as the latent space, as the data points may already exist in localized

groups.

Clustering and dimensionality reduction are not necessarily distinct tasks, as both aim

77

to find some lower-dimensional representation of the data. However, the latter typically

refers to problems in which the underlying structure of the dataset consists of hyperplanes

rather than hyperspheres. Commonly used algorithms include Principal Component Analysis

and Singular Value Decomposition, both of which seek to find the most relevant degrees of

freedom in the data.

Dimensionality reduction problems may also include finding more abstract

representations of the data. For instance, autoencoders are neural networks with an

architecture that maps to a very small latent space before mapping back to the original

input space. After training the autoencoder to reproduce each element of the data set, the

latent space representation contains only the most essential and informative features of the

data. This style of dimensionality reduction is particularly useful for file or image

compression, as the relationships between data points can be highly non-intuitive.

Both clustering and dimensionality reduction go hand in hand with anomaly detection,

because it focuses on identifying data points that deviate significantly from the expected

behavior. Anomaly detection plays an important role in enhancing security in the digital

age by identifying fraudulent behavior and detecting malware at a pace that surpasses human

capabilities. Furthermore, anomaly detection finds practical utility in experimental sciences,

where it aids in discerning genuine events from background noise. This capability enables

efficient allocation of memory resources to statistically significant events, ensuring optimal

utilization of computational resources.

4.5 Reinforcement Learning

Reinforcement learning is a specific branch of machine learning in which datasets rely on

the model itself. If we let ŷt denote the state of the model at iteration t, and xt(ŷt) denote

78

the data collected based on that state, then the cost function of a reinforcement learning

problem may be written schematically as

C(xt(ŷt(xt−1(ŷt−1(· · · (x0(ŷ0)) · · ·))))). (4.1)

In other words, starting from some initial model ŷ0, the data x0(ŷ0) are generated by letting

the model attempt the task at hand. Its performance is evaluated and used to updated the

model for the next iteration, continuing to collect new data based on its previous experiences.

This notation for the cost function is simply meant to reflect the inherent cyclic nature of

the problem; it is never explicitly written in this form in practice.

Reinforcement learning is commonly framed in terms of agent-based modeling, because

the model learns by interacting with its environment and receiving positive or negative

feedback, mirroring the way humans learn through trial and error in their everyday

experiences (outside of the classroom). This learning approach is widely employed to train

robots in game-playing and navigation tasks, which is impossible to accomplish through

supervised learning methods as it would require an immense amount of example data.

Let us now rephrase variational Monte Carlo explicitly in the agent-based modeling

framework. We begin by initializing the state of our agent, i.e. setting random parameters

in our wave function. Then we allow our agent to interact with the environment, collecting

data along the way. In VMC, the environment is the many-body Hilbert space and the

data are the sampled configurations X. Then we evaluate the performance of our agent, by

calculating the average local energy based on the samples. This process continues until

convergence is reached.

79

Figure 4.5: A depiction of the variational Monte Carlo algorithm in the context of agent-
based modeling, a commonly employed reinforcement learning framework.

80

4.6 Transfer Learning

Transfer learning is a powerful technique that applies the knowledge gained from solving

one problem to a more challenging and sometimes even unrelated problem. For example,

researchers [11] have found that pre-training a convolutional neural network on ImageNet

data provides immediate benefits for training the network on particle detection data.

Interestingly, a fixed, pretrained network can be appended with additional trainable layers,

while still achieving accelerated and stabilized training. This approach effectively reduces

the number of trainable parameters while preserving the entire network’s representation

power. Consequently, this finding suggests that all image recognition models rely on a

shared set of core capabilities.

When using neural-network quantum states for variational Monte Carlo, we will use

transfer learning to handle particularly challenging interaction potentials. Pre-training the

neural-network quantum states on softer potentials allows the training on harder potentials

to proceed in a smooth, controlled manner. These potentials may contain singularities,

which we renormalize according to some newly defined hyperparameter, or they may simply

be hard by nature. We will discuss transfer learning in these applications on a case-by-case

basis.

4.7 Artificial Neural Networks

We are now in a suitable position to discuss our primary focus: the mathematics of artificial

neural networks (ANNs). This class of machine learning models is inspired by the structure

of the human brain, consisting of interconnected nodes and nonlinear connections between

them. While the term is often used interchangeably with feedforward neural networks, it is

81

important to note that the latter represents just one specific type within the broader ANN

framework. We will exclusively refer to the broader class as artificial neural networks to

ensure clarity.

In the following sections, we will formulate our artificial neural networks with the eventual

goal of applying them as trial wave functions for variational Monte Carlo. The networks

will be trained using the same optimization algorithms we use for traditional variational

Monte Carlo calculations, discussed in Sec. 3.2.2. Consequently, our discussion may prioritize

certain aspects that differ from those typically encountered in standard machine learning

applications. Nonetheless, we will strive to maintain a level of generality throughout our

discourse, ensuring that the concepts and techniques discussed herein can be applied to a

wide range of problems.

4.7.1 Boltzmann Machines

Boltzmann machines are generative stochastic artificial neural networks that are primarily

used for unsupervised learning tasks. They have two types of nodes: visible nodes, which

represent the inputs to the network, and hidden nodes, which serve as latent variables

capturing higher-level features or patterns in the data. In a general Boltzmann machine, all

the nodes are fully connected, regardless of type. Additionally, the connections are

undirected, unlike other well-known models such as feedforward neural networks.

Unconstrained Boltzmann machines have limited practical utility for machine learning and

inference. However, their optimization efficiency can be greatly enhanced by appropriately

restraining the connectivity. This improvement allows for better applicability in solving

real-world problems.

Restricted Boltzmann machines (RBMs) are a variant of Boltzmann machines that

82

Figure 4.6: A general Boltzmann machine in which all visible (blue circles) and hidden (gray
circles) nodes are fully connected (solid black lines).

organize the visible and hidden nodes into two parallel layers. The layers are joined by

undirected connections, but there are no connections between individual nodes in a given

layer, hence they are "restricted". This architectural arrangement improves training

efficiency by leveraging highly optimized linear algebra operations.

The objective of an RBM is to reveal the underlying probability distribution of the

input data, enabling applications such as dimensionality reduction and the generation of

samples resembling the data. It is precisely their ability to model probability distributions

that makes them a natural choice for implementing them as neural-network quantum

states. Furthermore, RBMs can be stacked to construct deep belief networks, which excel

in capturing hierarchical representations of complex datasets. These networks have

exhibited remarkable success in addressing challenges in image and speech recognition

domains, but training deep belief networks can present greater challenges compared to

83

Figure 4.7: A standard restricted Boltzmann machine, where the hidden nodes (gray circles)
are binary and the visible nodes (blue circles) can be either binary or Gaussian. There are
no connections (solid black lines) between nodes within the same layer.

deep feedforward neural networks, which will be introduced in Sec. 4.7.2.

The most common type of RBM is a binary-binary RBM, in which all the visible and

hidden nodes are discrete and constrained to the values of 0 or 1. Since we will exclusively

work with real-valued inputs, our visible nodes will be taken to be Gaussian units, each

with their own mean and variance. The hidden units will remain binary. The resulting

formulation is called a Gaussian-binary restricted Boltzmann machine, which we will delve

into shortly. In the subsequent sections, we will develop different variations of continuous

restricted Boltzmann machines.

4.7.1.1 Gaussian-Binary Restricted Boltzmann Machines

We will begin by presenting the most common type of Gaussian-binary restricted Boltzmann

machine (GB-RBM). The first step is to define an energy-like quantity E(v,h) that describes

84

the interplay between the visible nodes v ∈ RV and hidden nodes h ∈ RH within the

network. This quantity should not be conflated with the physical energy of our quantum

system, which is why it has been assigned a distinct name E instead of E. The energy of the

GB-RBM is defined as

E(v,h) =
V∑
i=1

(vi − ai)2
2σ2i

−
H∑
j=1

bjhj −
V∑
i=1

H∑
j=1

vi
σ2i
Wijhj , (4.2)

where ai is the bias or mean of the ith visible node, σ2i is the variance of the ith visible

node, bj is the bias for the jth hidden node, and Wij is the weight between the ith visible

node and jth hidden node. In many machine learning applications, it is sufficient to simply

treat the variances as a constant hyperparameter σ2i = σ2. However, training the variances

individually will be important in our application, so we reparameterize them as

1

σ2i
= exp(si), (4.3)

which improves their training and ensures they are always positive. The trainable parameters

are collectively denoted as θ = (a, s, b,W), where a ∈ RV , s ∈ RV , b ∈ RH , and W ∈

RV×H .

By taking the Boltzmann distribution, we can define a corresponding joint probability

distribution

P(v,h) = 1

Z e
−E(v,h), (4.4)

where the normalization constant is

Z =
∑
h

∫
dve−E(v,h). (4.5)

85

This particular step justifies the inclusion of "Boltzmann" in the name of the model. We

are specifically interested in the marginal probability distribution of the visible nodes, so we

sum over the possible values of the hidden nodes

P(v) =
∑
h

P(v,h) = 1

Z
∑
h

e−E(v,h)

=
1

Z
∑
h

exp

− V∑
i=1

(vi − ai)2
2σ2i

+
H∑
j=1

bjhj +
V∑
i=1

H∑
j=1

vi
σ2i
Wijhj


=

1

Z exp

− V∑
i=1

(vi − ai)2
2σ2i

 H∏
j=1

1∑
hj=0

exp

bjhj + V∑
i=1

vi
σ2i
Wijhj


=

1

Z exp

− V∑
i=1

(vi − ai)2
2σ2i

 H∏
j=1

1 + exp

bj + V∑
i=1

vi
σ2i
Wij


=

1

Z exp

− V∑
i=1

(vi − ai)2
2σ2i

 H∏
j=1

(
1 + exp(zj(v))

)
,

(4.6)

where we have defined a new vector z(v) ∈ RH with the elements

zj(v) = bj +
V∑
i=1

vi
σ2i
Wij , (4.7)

for convenience. One of the notable strengths of a GB-RBM lies in its foundation on intuitive

physical laws. Unlike various other neural network models, the GB-RBM avoids being labeled

as a "black-box," as it is fairly straightforward to understand how changes in the trainable

parameters θ causes changes in the learned distributions. For example, we can interpret

the marginal probability distribution of the visible nodes in Eq. (4.6) as the product of a

non-interacting Gaussian part and a nonlinear interaction term.

We can similarly derive the marginal probability distribution of the hidden nodes by

86

integrating over the visible nodes

P(h) =
∫
dvP(v,h) = 1

Z

∫
dve−E(v,h)

=
1

Z

∫
dv exp

− V∑
i=1

(vi − ai)2
2σ2i

+
H∑
j=1

bjhj +
V∑
i=1

H∑
j=1

vi
σ2i
Wijhj


=

1

Z exp

 H∑
j=1

bjhj

 V∏
i=1

∫
dvi exp

−(vi − ai)2
2σ2i

+
H∑
j=1

vi
σ2i
Wijhj

 .

(4.8)

Defining another vector c(h) ∈ RV with the elements

ci(h) = ai +
H∑
j

Wijhj , (4.9)

and completing the square on the right-hand side of Eq. (4.8)

−(vi − ai)2
2σ2i

+
H∑
j=1

vi
σ2i
Wijhj = −

1

2σ2i

(vi − ai)2 +
H∑
j=1

viWijhj


= − 1

2σ2i

v2i − 2

ai + H∑
j=1

Wijhj

 vi + a2i


= − 1

2σ2i

(
v2i − 2ci(h)vi + a2i

)
= − 1

2σ2i

(
(vi − ci(h))2 + a2i − ci(h)2

)
(4.10)

yields

P(h) = 1

Z exp

 H∑
j=1

bjhj

 V∏
i=1

∫
dvi exp

(
−(vi − ci(h))2 + a2i − ci(h)2

2σ2i

)

=
1

Z exp

 H∑
j=1

bjhj

 V∏
i=1

exp

(
ci(h)

2 − a2i
2σ2i

)
√
2πσi.

(4.11)

87

The marginal distribution of the hidden nodes is yet again another product of non-interacting

and interacting parts. From here, we can obtain the conditional probabilities of the visible

nodes P(v|h) and hidden nodes P(h|v) by dividing the joint probability distribution P(v,h)

by P(h) and P(v), respectively. For the former, we find a product of normalized Gaussian

distributions,

P(v|h) = P(v,h)P(h)

=

exp

(
−∑V

i=1
(vi−ai)2

2σ2i
+
∑V

i=1

∑H
j=1

vi
σ2i
Wijhj

)
∏V

i=1 exp

(
ci(h)

2−a2i
2σ2i

)√
2πσi

=
V∏
i=1

1√
2πσi

exp

(
−(vi − ci(h))2 + a2i − ci(h)2

2σ2i
− ci(h)

2 − a2i
2σ2i

)

=
V∏
i=1

1√
2πσi

exp

(
−(vi − ci(h))2

2σ2i

)

=
V∏
i=1

N (vi; ci(h), σ
2
i),

(4.12)

with their individual means ci(h) and variances of σ2i . For the latter we have

P(h|v) = P(v,h)P(v) =

exp

(∑H
j=1 bjhj +

∑V
i=1

∑H
j=1

vi
σ2i
Wijhj

)
∏H

j=1

(
1 + e

zj(v)
) =

H∏
j=1

e
zj(v)hj

1 + e
zj(v)

, (4.13)

which implies that the conditional probability of the jth hidden node being active is given

by

P(hj = 1|v) = e
zj(v)

1 + e
zj(v)

=
1

1 + e
−zj(v)

= σ(zj(v)), (4.14)

88

where

σ(x) ≡ 1

1 + e−x
(4.15)

is the sigmoid function. In a sense, the binary nodes act as mediators for the interaction,

switching between "on" and "off" states with a probability determined by the configuration

of the visible nodes.

In standard unsupervised learning problems, the parameters θ of a Restricted

Boltzmann machine are trained by maximizing the log-likelihood logP (v). The gradients

of the log-likelihood with respect to the parameters can be approximated using the

Contrastive Divergence method and Gibbs sampling, increasing the efficiency of the

training process significantly. However, in our application, the parameters will be trained

by minimizing the expectation value of the physical energy of our quantum system, a

major departure from traditional machine learning problems. Nonetheless, it will be useful

to compute the gradients of the log-likelihood.

In terms of the parameters θ = (a, s, b,W), the log-likelihood reads

logP(v) = −1

2

V∑
i=1

exp(si)(vi − ai)2 +
H∑
j=1

f(zj(v))− logZ, (4.16)

where zj(v) was defined in Eq. (4.7) and is dependent on s, b, and W, while f(x) is the

"softplus" function

f(x) = log (1 + exp(x))) . (4.17)

It will become clear why we write the log-likelihood in terms of f(x) when we develop

generalizations of the GB-RBM. The derivatives of the log-likelihood with respect to the

89

parameters are then given by

∂

∂ai
logP(v) = exp(si)(vi − ai), (4.18)

∂

∂si
logP(v) = −1

2
exp(si)(vi − ai)2 + exp(si)vi

H∑
j=1

Wijf
′(zj(v)), (4.19)

∂

∂bj
logP(v) = f ′(zj(v)), (4.20)

∂

∂Wij
logP(v) = exp(si)vif

′(zj(v)), (4.21)

where f ′(x) is the same as the sigmoid function σ(x) defined in Eq. (4.15).

4.7.1.2 Multivariate Gaussian-Binary Restricted Boltzmann Machines

We will now move beyond the standard formulation of the Gaussian-Binary restricted

Boltzmann machine, and introduce correlations among the Gaussian visible nodes. The

resulting network is a Multivariate Gaussian-Binary restricted Boltzmann machine

(mGB-RBM), which is halfway between the standard GB-RBM and a general RBM. We

will still label this network as "restricted" because there are no connections between the

hidden nodes. The energy of the mGB-RBM can be written as

E(v,h) = 1

2
(v − a)TΣ−1(v − a)− bTh− vTΣ−1Wh, (4.22)

90

where we have used the covariance matrix

Σ = Cov(v,v) =



σ21 σ1σ2 · · · σ1σV

σ2σ1 σ22 · · · σ2σV

...
...

σV σ1 σV σ2 · · · σ2V


∈ RV×V , (4.23)

in addition to the usual biases a ∈ RV , b ∈ RH and weights W ∈ RV×H . Following the

previous reparameterizing of the variances in Eq. (4.3), we write the diagonal elements of

the inverse covariance matrix as

Σ−1ii = exp(Sii), (4.24)

and the offdiagonal elements as,

Σ−1ij = Sij , for i ̸= j, (4.25)

for some matrix S ∈ RV×V . This choice is intended to avoid explicitly computing inverses of

matrices and to guarantee the invertibility of the inverse covariance matrix Σ−1. However,

there is still a small risk that the variances corresponding to this reparameterization become

negative, so we bias against this possibility by randomly initializing the diagonal elements

Sii to small positive values, and the off diagonal elements Sij , j ̸= i, to small negative

values. This initialization results in a covariance matrix Σ close to a diagonal matrix with

positive covariances. The covariance matrix (and its inverse) are symmetric, so only the

upper triangular part of the matrix S, denoted as triu(S), is required. Then the trainable

parameters are collectively represented as θ = (a, triu(S), b,W).

91

Figure 4.8: A multivariate Gaussian-binary restricted Boltzmann machine, a step between a
standard Gaussian-binary restricted Boltzmann machine and a general Boltzmann machine.
In addition to the connections (solid black lines) between the visible nodes (blue circles)
and hidden nodes (gray circles), there are connections (dotted black lines) among the visible
nodes.

92

The calculations of the joint, marginal, and conditional probability distributions will

follow the same process as before. Having previously discussed the process extensively, we

will simply list the final results. The joint probability distribution corresponding to the

energy in Eq. (4.22) is written as

P(v,h) = exp

(
−1

2
(v − a)TΣ−1(v − a) + bTh+ vTΣ−1Wh

)
. (4.26)

Summing over the hidden nodes yields the marginal probability distribution of the visible

nodes

P(v) = 1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

) H∏
j=1

(
1 + exp

(
zj(v)

))
, (4.27)

where

z(v) = b+WTΣ−1v ∈ RH . (4.28)

Unlike the standard GB-RBM, the distribution above does not contain a non-interacting

part, as the Gaussian nodes are not independent (unless Σ is diagonal). Integrating the joint

distribution over the visible nodes gives the marginal distribution over the hidden nodes

P(h) = 1

Z exp

(
bTh+

1

2
cTΣc− 1

2
aTΣa

)√
(2π)V |Σ|, (4.29)

where

c(h) = a+Wh. (4.30)

93

The conditional probability distribution of the visible nodes is no longer a product of

independent Gaussians, but a V -dimensional multivariate Gaussian

P(v|h) = P(v,h)P(h) = N (v; c(h),Σ). (4.31)

Meanwhile, the conditional probability distribution of the hidden nodes is the same

P(h|v) = P(v,h)P(v) =
H∏
j=1

e
zj(v)hj

1 + e
zj(v)

, P(hj = 1|v) = σ(zj(v)), (4.32)

as long as we use our new definition of z(v) from Eq. (4.28). Finally, the log-likelihood is

given by

logP(v) = −1

2
(v − a)TΣ−1(v − a) +

H∑
j=1

f(zj(v))− logZ, (4.33)

and its derivatives with respect to the parameters are

∂

∂a
logP(v) = Σ−1(v − a), (4.34)

∂

∂S
logP(v) =

(
− 1

2
(v − a)(v − a)T +Wf ′(z(v))vT

)
◦ ∂Σ

−1

∂S
, (4.35)

∂

∂b
logP(v) = f ′(z(v)), (4.36)

∂

∂W
logP(v) = vΣ−1

(
f ′(z(v))

)T
, (4.37)

where f ′(z(v)) denotes the element-wise application of the derivative of the softplus function

(Eq. (4.17)), also known as the sigmoid function, and ◦ denotes element-wise multiplication.

In addition, ∂Σ−1
∂S is a matrix filled with ones except for the diagonal, which is filled with

exp(Sii).

There are clearly many similarities between the standard GB-RBM and the

94

multivariate GB-RBM. However, the inclusion of covariances in the latter enhances its

flexibility compared to the former, and makes computing and writing down the various

probabilities simpler. Additionally, the multivariate GB-RBM offers the advantage of

performing most computations through matrix-matrix multiplication or matrix-vector

multiplication, enabling more efficient implementations.

Before moving onto another step in generalization, let us consider one slight variation of

the Multivariate Gaussian-Binary restricted Boltzmann machine, in which the binary nodes

are allowed to take the values of -1 and 1, instead of 0 and 1. We can take the same energy

function as Eq. (4.22), so that our joint probability distribution P(v,h) is also the same.

However, when we sum over the hidden nodes to compute the marginal distribution of the

visible nodes, we obtain

P(v) = 1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

) H∏
j=1

(
exp(zj(v)) + exp(−zj(v))

)

=
1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

)
2H

H∏
j=1

cosh
(
zj(v)

)
,

(4.38)

instead of Eq. (4.27). Then the conditional probability distribution for the hidden nodes

becomes

P(h|v) = P(v,h)P(v) =
1

2H

H∏
j=1

exp(zj(v)hj)

cosh(zj(v))
,

P(hj = 1|v) = 1

2

(
tanh(zj(v)) + 1

)
.

(4.39)

In Figure 4.9, we compare the form of P (hj = 1|v) given above, with the one obtained in

Eq. (4.32). When the hidden nodes were allowed the take the values of 0 or 1, we found that

P (hj = 1|v) was given by the sigmoid function. When we instead allowed the hidden nodes

95

Figure 4.9: The conditional probability of a single binary hidden node hj activating, given
the state of the visible nodes v, for a multivariate Gaussian-binary restricted Boltzmann
machine. The blue line represents the probability if the hidden nodes are allowed to take
values of 0 and 1 (Eq. (4.32)), while the orange line represents the probability of the hidden
nodes are allowed to take values of -1 and 1 (Eq. (4.39)). The x-axis is a transformation of
the visible nodes given by Eq. (4.28).

to take the values of −1 or 1, we obtained the hyperbolic tangent function, normalized to

be between 0 and 1. The results are surprisingly intuitive.

To finish off our calculations, we write down the new log-likelihood

logP(v) = −1

2
(v − a)T exp(S)(v − a) +

H∑
j=1

f(zj(v))− logZ ′, (4.40)

where Z ′ contains the extra factor of 2H from Eq. (4.38), and f(x) from Eq. (4.17) is replaced

96

by

f(x) = log(cosh(x)), (4.41)

which we call the "log-cosh" function1. With this redefinition of f(x), the derivatives of the

log-likelihood take the same form as before, in Eq. (4.37).

4.7.1.3 Multivariate Gaussian-Uniform Restricted Boltzmann Machines

Another variation of the continuous RBM involves allowing the hidden nodes to be

continuous rather than discrete. We will name this variation the multivariate

Gaussian-Uniform Restricted Boltzmann Machine (mGU-RBM), as we let the hidden

nodes take any between 0 and 1. Using the same form of the energy as Eq. (4.22), the

marginal distribution of the visible nodes becomes

P(v) =
∫ 1

0
dhe−E(v,h)

=
1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

) H∏
j=1

∫ 1

0
dhj exp(zj(v)hj)

=
1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

) H∏
j=1

exp(zj(v))− 1

zj(v)
,

(4.42)

1Just as the softplus function, Eq. (4.17), is a smoothly differentiable alternative to the Rectified Linear
Unit (ReLU), a non-continuously differentiable activation function commonly used for feedforward neural
networks, the log-cosh function, Eq. (4.41), is a smoothly differentiable alternative to the mean-absolute-error
(MAE), a non-continuously differentiable cost function that tends to prevent overfitting.

97

while the marginal distribution of the hidden nodes remains the same as before. Then for

the conditional probabilities for the hidden units, we obtain

P(h|v) = P(v,h)P(v) =
H∏
j=1

zj(v) exp(zj(v)hj)

exp(zj(v))− 1
,

P(hj = 1|v) = zj(v)

1− exp(−zj(v))
.

(4.43)

The derivatives of the log-likelihood can remain in the same form as Eq. (4.37) by redefining

f(x) as

f(x) = log
exp(x)− 1

x
, (4.44)

which we will name the "leaky-softplus" function. Even though the limit of this function

exists mathematically as |x| → 0, we may encounter instabilities near x = 0 when

implemented computationally. Therefore, when |x| is small, we replace f(x) and f ′(x) with

their Taylor expansions up to first order in x.

Now for the final variation of the mGU-RBM, we allow the hidden nodes to take any

value between -1 and 1,

P(v) =
∫ 1

0
dhe−E(v,h)

=
1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

) H∏
j=1

∫ 1

−1
dhj exp(zj(v)hj)

=
1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

) H∏
j=1

exp(zj(v))− exp(−zj(v))
zj(v)

=
1

Z exp

(
−1

2
(v − a)TΣ−1(v − a)

)
2H

H∏
j=1

sinh(zj(v))

zj(v)
.

(4.45)

98

The conditional probabilities for the hidden units are given by

P(h|v) = P(v,h)P(v) =
1

2H

H∏
j=1

zj(v)) exp(zj(v)hj)

sinh(zj(v))
,

P(hj = 1|v) = 1

2
zj(v)

(
coth(zj(v)) + 1

)
,

(4.46)

where P(hj = 1|v) for the two variations of the mGU-RBM will be plotted alongside the

softplus function in Fig. 4.10. Notice that both variations of the mGU-RBM involve a

conditional probability that is unbounded from above, as opposed to the mGB-RBMs,

which produce a conditional probability that is bounded between 0 and 1. To interpret the

conditional probabilities we obtained for the mGU-RBMs as true probabilities, let us

assume all values are capped at 1.

Again, the derivatives of the log-likelihood can remain in the same form as Eq. (4.37) by

redefining f(x) as

f(x) = log
sinh(x)

x
, (4.47)

which we will name the "log-sinhc" function, inspired by the "sine cardinal" function defined

as sinc(x) ≡ sin(x)/x. As before, we handle the singularity at x = 0 by replacing f(x) and

f ′(x) by their first-order Taylor expansions.

To end our discussion on the various continuous restricted Boltzmann machines, let us

compare the different definitions of f(x) that appear in the log-likelihood. In Fig. 4.11, we

plot the softplus, log-cosh, leaky-softplus, and log-sinhc functions, defined in

Eqs. (4.17), (4.41), (4.44), and (4.47). The leaky-softplus function is the only function that

permits negative values, hence the label "leaky". Both softplus and log-cosh scale as x for

large, positive x, while leaky-softplus and log-sinhc scale as x − log(x). Finally, log-cosh

99

Figure 4.10: The conditional probability of a single uniform node hj activating, given
the state of the visible nodes v, for a multivariate Gaussian-uniform restricted Boltzmann
machine. The blue line represents the probability if the uniform nodes are allowed to take
values between 0 and 1 (Eq. (4.43)), while the orange line represents the probability of
the hidden nodes are allowed to take values of -1 and 1 (Eq. (4.46)). The x-axis is a
transformation of the visible nodes given by Eq. (4.28). We also plot the softplus function
(Eq. (4.17)) for comparison, as its exhibits similar character. Probability values greater than
1 are assumed to mean the hidden node hj is always activated.

100

Figure 4.11: Comparison of the four functions we called f(x) during our derivations of the
multivariate Gaussian-binary and Gaussian-uniform restricted Boltzmann machines (Eqs.
(4.17), (4.41), (4.44), (4.47)). These functions appear in the log-likelihoods logP (v).

and log-sinhc are both even functions, just like the interval for which the hidden nodes

were defined during their construction.

4.7.2 Feedforward Neural Networks

Feedforward neural networks (FNNs) are widely recognized as one of the most prominent

forms of artificial neural networks, primarily due to their training simplicity, scalability, and

generality. As a result, they have been used to solve a diverse set of complex problems within

all three branches of machine learning. However, in contrast to more interpretable models

like restricted Boltzmann machines, feedforward neural networks are often characterized as

black boxes, as their inner workings are difficult to interpret. Feedforward neural networks

101

are so successful, in fact, that it is recommended to use them only when low-bias models

are required and a large data set is available. Otherwise, they can be prone to overfitting,

especially in supervised learning problems.

A deep feedforward neural network is constructed by alternating compositions of affine

transformations and simple, nonlinear transformations. It consists of an input layer, at

least one hidden layer, and an explicit output layer, all of which are densely-connected to

the adjacent layers only. As the name implies, the information flows only in one direction,

starting from the input layer, and ending at the output layer. For an FNN with L layers

(including the output layer, but excluding the input layer), we construct the nodes as

h(0) = v, (4.48)

h(ℓ) = fℓ

(
W (ℓ)h(ℓ−1) + b(ℓ)

)
, for ℓ = 1, ..., L, (4.49)

where v are the visible nodes for the input layer h(0), h(ℓ) are the hidden layers for ℓ =

1, ..., L − 1, h(L) is the output layer, and fℓ represent the element-wise application of the

nonlinear activation function fℓ. Each of the hidden layers have dimension Hℓ, meaning W (ℓ)

is an Hℓ × Hℓ−1 weight matrix and b(ℓ) is an Hℓ-dimensional bias vector. The activation

functions fℓ introduce nonlinearity to the network, enabling it to learn and approximate

complex functions. Without at least one nonlinear activation function, the neural network

reduces to a simple linear model.

The output layer of an FNN is commonly distinguished from the hidden layers for two

main reasons. Firstly, the output dimension is typically determined by the problem’s

structure, rather than being a hyperparameter that can be freely chosen. Secondly, the

choice of activation function for the output layer is often different from that of the hidden

102

Figure 4.12: A deep feedforward neural network with six inputs (blue circles) and three
outputs (orange circles). There are two hidden layers with eight nodes each (gray circles).
Adjacent layers are connected by directed connections, as information flows from left to right.
Arrowheads for the directed connections (solid black lines) are omitted for visual brevity.

layers. To maintain simplicity in notation, we adopt the indexing notation fℓ, where ℓ

corresponds to the layer, to represent the activation functions rather than explicitly

singling out the output layer. In regression problems, the final activation function fL is

typically linear, while binary-classification problems commonly employ sigmoid or

hyperbolic tangent functions. When it comes to the hidden layers, popular choices for

activation functions include the sigmoid function, hyperbolic tangent, and the Rectified

Linear Unit (ReLU). However, our specific applications require unbounded,

twice-continuously differentiable functions due to the evaluation of the local energy.

Consequently, we prefer activation functions such as the Gaussian Error Linear Unit

(GELU) and the Softplus function.

103

4.7.2.1 Backpropagation

One of the most attractive features of a deep feedforward neural network is its remarkable ease

of training. Since we have written the forward propagation steps in Eq. (4.49) recursively,

we can write the backpropagation steps using the chain rule. The derivatives of the output

layer with respect to the weights and biases in layer ℓ are

∂h(L)

∂W (ℓ)
=

∂h(L)

∂h(L−1)
∂h(L−1)

∂h(L−2) · · ·
∂h(ℓ+1)

∂h(ℓ)

∂h(ℓ)

∂W (ℓ)
, (4.50)

∂h(L)

∂b(ℓ)
=

∂h(L)

∂h(L−1)
∂h(L−1)

∂h(L−2) · · ·
∂h(ℓ+1)

∂h(ℓ)

∂h(ℓ)

∂b(ℓ)
. (4.51)

To simplify notation, we define the intermediate vector

g(ℓ) ≡ W (ℓ)h(ℓ−1) + b(ℓ), (4.52)

which represents the linear transformation only. Then evaluating each term in Eqs. (4.50)

and (4.51), we have

∂h
(ℓ)
i

∂h
(ℓ−1)
j

= f ′ℓ
(
g
(ℓ)
i

)
W

(ℓ)
ij , (4.53)

∂h
(ℓ)
i

W
(ℓ)
jk

= f ′ℓ
(
g
(ℓ)
i

)
δijh

(ℓ−1)
k , (4.54)

∂h
(ℓ)
i

b
(ℓ)
j

= f ′ℓ
(
g
(ℓ)
i

)
δij , (4.55)

where δij is the Kronecker delta. Proceeding in this way, we can propagate the error from

the cost function ∂C

∂h(L)
all the way back to the input layer, updating all the weights and

biases along the way.

104

4.7.2.2 Universal Approximation Theorem

Another contributing factor to the widespread adoption and success of feedforward neural

networks is the Universal Approximation Theorem. In simple terms, the theorem states that

a feedforward neural network with a single hidden layer, also known as a shallow neural

network, can approximate any continuous function on a compact subset of Euclidean space,

given there are a sufficient number of hidden nodes and the activation function satisfies

certain conditions. This theorem was originally proven for the sigmoid activation function,

and since then, there have been efforts to prove the theorem for a number of different

activation functions, network depths, and even different types of networks entirely.

We will accept the Universal Approximation Theorem as a foundational principle

without proof, although we should exercise caution in its application. While the theorem

establishes the existence of a satisfactory approximation for any continuous function using

a shallow neural network, it does not guarantee that the required number of hidden nodes

scales efficiently. Therefore, applying the theorem in practice is not as straightforward as

simply increasing the size of our network. We must also consider other factors that can

enhance training stability, capture additional correlations, and improve precision. While

the Universal Approximation Theorem has not been formally proven for more complex

network architectures, in practical applications, the effectiveness and versatility of these

architectures are widely acknowledged nonetheless.

4.7.3 Deep Sets

One of the limitations of a standard feedforward neural network is the requirement to

organize inputs into a single vector. This poses a challenge when dealing with inputs such

105

Figure 4.13: An example of a permutation-invariant Jastrow wave function constructed from
the single output of a feedforward neural network. To enforce permutation invariance, the
input vectors xi can be sorted according to a chosen rule before concatenating them into a
single input vector. The large gray triangle represents a standard feedforward neural network
with nine inputs and one output.

as pixels in a 2D image, as flattening the image inherently compromises the spatial

structure of the data2. Similarly, standard feedforward neural networks encounter

challenges when attempting to effectively learn sets that exhibit permutation invariance.

Without special treatment, the network would require at least N ! times more data points

to learn a set of N elements compared to learning on an equivalently sized data set without

permutation invariance, in order to effectively capture the inherent redundancies in the

data. Even after learning, the network’s representation of permutation invariance is only

approximate. This becomes problematic when constructing neural-network quantum

states, as exact permutation invariance is often required in advance.

Approaches to address this issue can be categorized into two main strategies: data

preprocessing and architecture design. The former approach involves sorting the set

according to a specified rule, thereby transforming the set into a fixed-dimensional

2This challenge leads to the construction of convolutional neural networks (CNNs), a popular choice
of neural network that leverages spatial correlations in grid-like data. As CNNs are specifically designed
for grid-like data, we will not apply them as neural-network quantum states for continuous-space systems.
Consequently, we will not cover them in this chapter, but we will discuss their generalizations, graph neural
networks.

106

sequence. However, this preprocessing step still results in an input vector size that scales

linearly with the number of elements in the set, making it challenging to handle large sets.

In this section, we focus on the architecture-level approach, where the inherent set

structure is ingrained within the neural network architecture. This approach is commonly

known as the Deep Set architecture, originally introduced by Zaheer et al. in Ref. [12].

Suppose we wish to learn on sets of N elements {v1,v2, ...,vN}, where each element vi

is a v-dimensional vector. Formally, a function f : (Rv)N → RO is a permutation-invariant

function of the set {vi} if it satisfies

f({vi}) = f(P̂{vi}), (4.56)

for any permutation P̂ ∈ SN . First, we recognize that the function f is permutation-

invariant if and only if it can be decomposed as

f
(
{vi}

)
= ρ

 N∑
i=1

ϕ(vi)

 , (4.57)

for some functions ϕ : Rv → RL and ρ : RL → RO. The function ϕ maps each element of

the set to an L-dimensional latent space. Then, the summation destroys the ordering of the

set, resulting in an L-dimensional representation of the set. Then the function ρ maps the

set representation into an O-dimensional output space.

A Deep Set is realized by replacing each of the functions ϕ and ρ with feedforward neural

networks. Since feedforward neural networks are universal function approximators, the result

of this substitution is a universal approximator for permutation-invariant functions. The

summation operation in Eq. (4.57) is the key ingredient in this construction, as it aggregates

107

Figure 4.14: A depiction of a permutation-invariant Jastrow wave function constructed from
a Deep Set. First, each of the input vectors xi are passed through identical copies of a
standard feedforward neural network ϕ (gray trapezoids). Then the pooling operation (gray
rounded box) generates a latent space representation of the set of inputs by destroying the
ordering. Finally, the latent space representation is passed through another feedforward
neural network ρ (gray triangle) with a single output. The positive-definite Jastrow factor
can be obtained by simply exponentiating the single output.

108

the latent space representations of the elements into a collective set representation. Since

other operations can play the same role, we often write our Deep Sets with the more generic

form

f
(
{vi}

)
= ρ

(
pool

(
{ϕ(vi)}

))
, (4.58)

where pool can be any pooling operation that collects the set of vectors it acts upon, destroys

their ordering, and returns a vector of equal size to a single element in the set.

The general idea above can be extended to construct generic permutation-equivariant

functions as well. The function f : (Rv)N → (RO)N is formally permutation-equivariant if

P̂f({vi}) = f(P̂{vi}) (4.59)

holds for all permutations P̂ ∈ SN , with f({vi}) ≡
(
f1({vi}),f2({vi}), ...,fN ({vi})

)
. One

of the simplest ways to satisfy this condition is to define

fi
(
{vj}

)
= ρ

(
pool

(
{ϕ(vj)|j ̸= i}

))
, (4.60)

where ρ and ϕ play the same role as before. Another option includes

fi
(
{vj}

)
=
(
vi, g

(
{vj}

))
, (4.61)

where g is a permutation-invariant function such as a standard Deep Set.

109

Figure 4.15: One layer of a graph neural network that generates an output graph with
the same structure as the original input graph. Three types of transformations can be
considered: global (top), edge (middle), and vertex (bottom) transformations. The nodes
and edges highlighted in orange show examples of the graph components that contribute to
a given transformation.

4.7.4 Graph Neural Networks

Graph neural networks (GNNs) can be seen as a generalization of the popular convolutional

neural networks, as they extend the concept of convolutions from grid-like data, such as

images, to more general graph-structured data. A graph is a collection of nodes, or vertices,

connected by edges. The idea of a graph neural network, specifically the graph-to-graph

variant, is to take some input graph and iteratively embed correlations between the edges

and nodes to produce a new graph with the same connectivity.

For demonstration purposes, we will construct a generic version of a graph-to-graph

GNN acting on three different types of information: vertex features v(t)i ∈ RV , edge features

e
(t)
ij ∈ RE , and global features g(t) ∈ RG, where t denotes the current iteration of the GNN.

110

Then global features g(t) can be constructed by taking in all three types of information from

the previous graph,

g(t) = Gt

(
g(t−1), ρt

(
{v(t−1)i }

)
, ϕt

(
{e(t−1)ij }

))
, (4.62)

where Gt is a feedforward neural network with an output dimension of G, and ρt and ϕt are

each Deep Sets acting on the set of all previous vertices and edges, respectively. To preserve

the original connectivity of the graph, the edge features can be updated as

e
(t)
ij = Et

(
e
(t−1)
ij , v

(t−1)
i , v

(t−1)
j , g(t)

)
, (4.63)

where Et is another feedforward neural network with output dimension E. Notice that

this update includes the global feature g(t) from the current step, rather than the previous

step. In addition, the update includes contributions from the two vertices connected by the

particular edge. Finally, we can update the vertex features as

v
(t)
i = Vt

(
v
(t−1)
i , g(t), ηt

(
{e(t)ij | j ∈ N (i)}

))
, (4.64)

where Vt is a feedforward neural network with output dimension V and ηt is a Deep Set

acting on the set of the current edges connected to the particular node. In the notation

above, N (i) denotes the set of all nodes in the neighborhood of node i.

By updating the global, edge, and vertex features in this way, we can preserve the

original structure of the graph and embed highly non-linear correlations between all of the

features in only a few iterations of this procedure. In practice, there are many ways of

constructing a graph-to-graph GNN, but the overall concept remains the same. We

111

leverage the permutation invariance of Deep Sets and the universal approximation

properties of feedforward neural networks to exchange information between the vertex,

edge, and global features. Consequently, neural-networks of this type are commonly called

"message-passing" neural networks.

4.7.5 Attention Mechanisms

Attention mechanisms are neural network components originally developed in the field of

natural language processing to help decipher the meaning of a sentence based on context.

More specifically, they were designed to address the challenge posed by word ambiguity.

Humans are able to interpret the meaning of a particular word by leveraging the surrounding

words in the sentence. For example, the word "lead" has many different possible definitions,

but if it appears alongside words like "metal", "towards", "musical", "dog", or "race", the

array of possibilities can be quickly refined.

In the context of quantum many-body problems, attention mechanisms can boost the

flexibility of a neural network and help efficiently allocate computational resources to

process the most relevant features in the data. To illustrate this concept, let us consider an

interaction potential that is only nonzero when a pair of particles have opposite spin. In

this scenario, the objective of the attention mechanism could include recognizing that the

distance information for a pair of particles is only relevant if their spins are opposite. Of

course, there could be other correlations that are non-intuitive for humans to interpret, but

the attention mechanism discovers them completely autonomously.

To build an attention mechanism, we begin by organizing our N input sequences xi ∈ Rd

column-wise into a matrix X ∈ Rd×N . Then we define query WQ, key WK , and value WV

weight matrices all with dimensions D × d. We apply each of these weight matrices to our

112

Figure 4.16: A visualization of the attention scores between a single element of a query
vector and all the elements of a key vector. Larger attention scores are depicted with darker,
bolder lines.

data to obtain corresponding queries, keys, and values

Q = WQX, K = WKX, V = WVX, (4.65)

where Q,K, V ∈ RD×N . Then the attention scores A, i.e. the normalized overlap between

the queries and keys, are commonly computed as

A = softmax

(
QKT
√
D

)
∈ RD×D, (4.66)

with softmax denoting the row-wise application of the function

softmax(a)i =
eai∑D
a=1 e

ai
, (4.67)

where a denotes a D-dimensional vector. Scaling the denominator by
√
D helps prevent

113

vanishing gradients. Finally, the attention scores are applied to the values as

Y = AV ∈ RD×N , (4.68)

where Y is the output of the attention mechanism.

The attention mechanism above is specifically known as self-attention, since the queries,

keys, and values are all derived from the input data X. Other variations of attention include

cross-attention, in which the queries are either constructed from an entirely different external

data source X ′ or treated as a completely trainable matrix. In addition, multiple attention-

mechanisms can be implemented in parallel, leading to multi-headed attention.

114

5 Implementation

Throughout the rest of this dissertation, we will reference two different implementations of

neural-network quantum states for variational Monte Carlo, one in C++ and another in

Python. As their objectives and approaches significantly differ, we will organize this chapter

into two sections, each dedicated to its respective implementation.

5.1 NeuralAnsatz: C++ Software for Localized Systems

The first implementation, named NeuralAnsatz, is an object-oriented C++ code that

leverages distributed-memory programming with Open MPI for efficient utilization of

multiple CPUs. The code is built from scratch using Eigen, a lightweight, header-only

linear algebra library, eliminating the need for separate linking during compilation. The

primary features and goals for this implementation include: modularity, reproducibility,

low memory costs, and exact gradient calculations. The source code can be found in this

Github repository or at this url: https://github.com/kim-jane/NeuralAnsatz.

5.1.1 Trainer

NeuralAnsatz consists of several components, called Objects, that are passed to a single

universal Trainer. The Object class is an abstract base class that simply contains relevant

names, abbreviations, and simulation information so that the Trainer can easily handle

files and compile reports. This way, it is straightforward to refer back to a past run, reset

the simulation parameters, and reproduce the results. In order to facilitate interdependence

between the Objects beyond the scope of the Trainer, each Object must be instantiated as

a std::shared_ptr. This choice enables other Objects to assume ownership when necessary

115

https://github.com/kim-jane/NeuralAnsatz
https://github.com/kim-jane/NeuralAnsatz
https://github.com/kim-jane/NeuralAnsatz

Figure 5.1: The highest-level structure of the NeuralAnsatz code, an object-oriented C++
software for neural-network quantum states.

and ensures safe deallocation of the pointers when the Objects go out of scope.

// main.cpp
std::shared_ptr<Object> pObject = std::make_shared<Object>(...);

It is essential to start every driver file (e.g., main.cpp) by initializing the MPI_COMM_WORLD

communicator and setting a unique seed on each parallel process, prior to instantiating any

Objects. These lines only need to be placed at the start of the file, in this particular order,

and there is no explicit need to finalize MPI.

// main.cpp
mpi::initialize();
rng::initialize();

Then after constructing all the desired Objects, the trainer can be created as follows:

116

// main.cpp
Trainer T(pSystem, pWaveFunc, pSampler, pOptimizer, pCostFunc, pDensity,

filename);
T.train();

Notice that the Trainer accepts a pointer to a CostFunction rather than a Hamiltonian.

This design choice is deliberate because while variational Monte Carlo involves minimizing

the energy as a reinforcement learning problem, there are situations where supervised

learning can be valuable, in pretraining the WaveFunction for example. Our Trainer is

versatile enough to handle both supervised and reinforcement learning problems.

One of the main jobs of the Trainer is to handle all opening, closing, and writing of files.

For a given simulation, the Trainer sends four different outputs to the data/ folder:

• data/history/filename.txt: This file contains the entire history of the energy, the

error in the energy, the norm of the gradient, the norm of the parameter vector, the

average positions, the variance of the positions, the acceptance rates for the positions

and spins, and the time per iteration. If more than 10000 training epochs are requested,

the Trainer will skip printing some iterations to prevent the file from becoming too

large.

• data/log/filename.txt: This file contains snapshots of the contents in

data/history/filename.txt for a broad, easy-to-interpret overview of the training.

Any errors or additional print statements will be sent to this file, including the total

execution time of the program.

• data/params/filename.txt: This file contains snapshots of the variational

parameters throughout training. One can use this file to provide pretrained

117

parameters for a wave function or a component of a wave function. If an error occurs,

one can revert back to a previous stage in the training by deleting the unwanted

variational parameters.

• data/density/filename.txt: This file contains snapshots of the density during

training, provided by the Density object. Monitoring the density is helpful for

debugging problems during training and, of course, to visualize the training of the

wave function.

All files will contain a summary of the simulation details at the top of the file. Because

the wave function tends to evolve the most near the beginning of the training process, the

iterations at which snapshots are taken follow the pattern 0, 10, 20, ..., 100, 200, ..., 1000,

2000, ..., until the specified number of total training epochs is reached.

5.1.2 Systems

The System abstract class is very simple; it contains only the most basic simulation details

that most other Objects depend on, such as the number of particles, the number of spatial

dimensions, the mass, the value of ℏ, etc. The present version of NeuralAnsatz offers support

for localized, continuous-space systems of spin-0 bosons and spin-1/2 fermions in arbitrary

spatial dimensions. Although support for nucleons is present in the source code, it has

not undergone testing with a Hamiltonian that includes both spin and isospin dependence.

Ongoing development is underway to incorporate support for periodic systems, elements of

which will be discussed herein.

In order for all Objects to be compatible with both bosons and fermions, we store all

118

spatial and spin degrees of freedom in a single matrix,

X ≡



xT
1

xT
2

...

xT
N


=



rT1 sT1

rT2 sT2

...
...

rTN sTN


∈ RN×(d+s) (5.1)

where the d left-most columns represent the positions, the s right-most columns represent the

spins (and isospins), and the rows correspond to the particles. This construction is simply the

matrix form of the notation for X we introduced in Sec. 2.1. The bolded notation will be used

to denote vectors, while the unbolded notation will be used for matrices, but they should

be understood as interchangeable when used as inputs to functions, e.g. f(X) = f(X).

Objects that are designed specifically for Bosons, Fermions, or Nucleons will be specified

in the constructor. Otherwise, all Objects are functions of any System. Due to the heirarchy

of this group, functions that operate on a System will be compatible with any derived class,

and functions that operate on Fermions will be compatible with Nucleons. Derived classes

can override functions from their base classes by providing their own implementation of the

function with the same name and signature.

The Bosons class is the simplest derived System class, as it contains no special attributes

that are specific to bosons, other than their name. The Fermions class, on the other hand,

determines how many distinct spatial orbitals are needed in a Slater Determinant, given a

specific number of spin-up/spin-down particles. It also stores a convenient spin configuration

with the desired polarization for use during the Monte Carlo sampling of spins, as discussed

in Sec. 3.1.1, and projects configurations onto the pre-determined spin components of the

single-particle spin-orbitals.

119

Figure 5.2: A specific example of the hierarchical structure provided by abstract base classes
and derived classes. The classes that appear lower on this graph inherit properties from the
classes above it.

// fermions.cpp
mat Fermions::get_spin_projection(const mat& X)
{

s_ = X.col(n_dims_);
for(int i = 0; i < n_parts_; ++i)
{

S_.row(i) = 0.5 * (ones_ + spin_orbitals_(i,0) * s_);
}
return S_;

}

This code snippet highlights a few additional points about our strategy. As we aim to

minimize our memory footprint, we declare known array sizes in the constructor of the class,

rather than dynamically allocating them on the fly. The names of all member variables are

followed by a trailing underscore. In the above example, S_ is a square matrix of dimension

N that holds the spin projections, and s_ is a vector that holds the spins from the larger

matrix X. The variable spin_orbitals_ is an N × s matrix that stores the spin and isospin

quantum numbers corresponding to each single-particle spin-orbital. The function above is

overridden in the Nucleons class to account for the isospin projections.

120

5.1.3 Wave Functions

Classes derived from the abstract base class WaveFunction must provide definitions for the

following capabilities:

• Compute the logarithm of the trial wave function log Ψθ(X), or more generally,

log |Ψθ(X)| and sgn (Ψθ(X)).

• Compute the local gradient of the trial wave function with respect to the coordinates

of all particles ∇ log Ψθ(X) ≡
(
∇1 log Ψθ(X),∇2 log Ψθ(X), · · · ,∇N log Ψθ(X)

)
.

• Compute the sum of the local Laplacians with respect to the coordinates of each

particles
∑N

i=1
∇2iΨθ(X)

Ψθ(X)
. This will allow the Hamiltonian class to compute the local

energy Eθ(X) =
ĤΨθ(X)
Ψθ(X)

, as defined in Eq. (3.47).

• Compute the local gradient of the trial wave function with respect to the trainable

parameters Oθ(X) = ∇θ log Ψθ(X), as defined in Eq. (3.48).

• Flatten and unflatten the trainable parameters θ.

As implied by the requirements listed above, computations will be written in terms of

log Ψθ(X) instead of Ψθ(X), which helps to mitigate the risk of numerical overflow or

underflow. In addition, the abstract base class allows snapshots of the parameters to be

written to file during training, and conversely, allows pretrained parameters to be loaded

from file. All computations are written exactly in terms of the variational parameters θ

and the input data X, or more specifically, its matrix form X. We will first discuss the

various options for inputs to the neural networks, then the implementations of specific

neural-network quantum states.

121

5.1.3.1 Inputs

The purpose of an Input object is to format the raw data X into a single vector v which

will be passed into an artificial neural network. The matrix X ∈ RN×(d+s) contains all the

spatial and spin degrees of freedom of all N particles, where d and s are the numbers of

spatial and spin degrees of freedom per particle, respectively. For instance, nucleons have

d = 3 and s = 2, with xi = (ri, si, ti) containing the coordinates, spin projections on the

z-axis, and the isospin projections on the z-axis. Separating the Input object from the

WaveFunction object allows for increased modularity, as we can interchange the different

types of inputs to the network without affecting the source code of the neural-network

quantum states.

One-Body. If the one-body features are the inputs to the neural network, then the input

vector v can be divided into N equal parts

v = (v1,v2, ...,vN) ∈ RV (5.2)

with vi ∈ Rv, Nv ≡ V . To compute the local kinetic energy, we will need the expression for

the gradient of v with respect to all of the particles R = (r1, r2, ..., rN) ∈ RNd, which can

be written in block matrix form as

∇v =



∇1v1 ∇2v1 · · · ∇Nv1

∇1v2 ∇2v2 · · · ∇Nv2

...
...

∇1vN ∇2vN · · · ∇NvN


∈ RNv×Nd, (5.3)

122

with the blocks

∇jvi =
∂vi
∂rj
∈ Rv×d. (5.4)

The Laplacian of each visible node with respect to each particle can be organized into a

similar block matrix

∇2v =



∇2
1v1 ∇2

2v1 · · · ∇2
Nv1

∇2
1v2 ∇2

2v2 · · · ∇2
Nv2

...
...

∇2
1vN ∇2

2vN · · · ∇2
NvN


∈ RNv×N , (5.5)

with

∇2
jvi =

∂

∂rj
· ∂vi
∂rj
∈ Rv×1. (5.6)

Writing the Laplacian in this way makes it possible to use the chain rule efficiently later on.

Unsorted, Nonperiodic. In the simplest case, we can take v to be the row-wise, flattened

form of X. This type of input vector is suitable for localized systems and Deep Sets, a neural

network that enforces permutation symmetry at the architecture level. Then we simply have

v = d+ s and

vi = xi, (5.7)

∇jvi = δi,j

Id×d
0s×d

 , (5.8)

∇2
jvi = 0. (5.9)

123

Sorted, Nonperiodic. Another way to enforce permutation symmetry is to sort the particles

according to some scalar value. For example, one-dimensional particles can be sorted by their

position, while two- and three-dimensional particles can be sorted by their Euclidean distance

from the origin ri = ∥ri∥. Since permutation symmetry is enforced at the data-processing

level, this type of input vector is suitable for any neural network. Let ZN = {1, 2, ..., N}

denote the set of all integers from 1 and N , and m : ZN −→ ZN denote the bijective map

that sorts the particles according to the chosen rule. Then the result is very similar to before,

with v = d+ s and

vi = xm(i), (5.10)

∇jvi = δm(i),j

Id×d
0s×d

 , (5.11)

∇2
jvi = 0. (5.12)

Unsorted, Periodic. For periodic systems, it is crucial to transform X so that v is explicitly

periodic, otherwise the neural networks can learn to break the symmetry, leading to erroneous

results. To enforce L-periodicity, we transform the coordinates as

ri 7−→ r̃i =

(
cos

(
2πri
L

)
, sin

(
2πri
L

))
∈ R2d, (5.13)

such that the components of the input vector are

vi = (r̃i, si) ∈ R2d+s, (5.14)

124

implying v = 2d+ s. Then the derivatives are

∇jvi =
2π

L
δi,j


−diag

[
sin
(
2πri
L

)]
diag

[
cos
(
2πri
L

)]
0s×d

 , (5.15)

∇2
jvi = −

(
2π

L

)2

δi,j


cos
(
2πri
L

)
sin
(
2πri
L

)
0

 = −
(
2π

L

)2

δi,j

r̃i
0

 , (5.16)

where diag [r] refers to a diagonal matrix with r on the diagonal, and the trigonometric

functions are applied element-wise.

Sorted, Periodic. While the inputs themselves must be periodic in this case, the sorting map

does not necessarily have to sort according to periodic positions or distances. We therefore

use the same sorting map m as the nonperiodic case. The resulting transformation is similar

to the previous case, except with the indicies permuted

vi =
(
r̃m(i), sm(i)

)
∈ R2d+s, (5.17)

∇jvi =
2π

L
δm(i),j


−diag

[
sin

(
2πrm(i)

L

)]
diag

[
cos

(
2πrm(i)

L

)]
0s×d

 , (5.18)

∇2
jvi = −

(
2π

L

)2

δm(i),j


cos

(
2πrm(i)

L

)
sin

(
2πrm(i)

L

)
0

 = −
(
2π

L

)2

δm(i),j

r̃m(i)

0

 , (5.19)

125

with v = 2d+ s.

Two-Body. If the inputs to the neural network are two-body features, then v can be divided

into P = N(N − 1)/2 equal parts

v = (v1,v2, ...,vP) ∈ RV , (5.20)

where v ∈ Rv and Pv ≡ V . The gradient of v with respect to all of the particles r =

(r1, r2, ..., rN) ∈ RND can be written in block matrix form as

∇v =



∇1v1 ∇2v1 · · · ∇Nv1

∇1v2 ∇2v2 · · · ∇Nv2

...
...

∇1vP ∇2vP · · · ∇NvP


∈ RPv×Nd, (5.21)

with the blocks

∇kvp =
∂vp
∂rk
∈ Rv×d. (5.22)

The Laplacian of each visible node with respect to each particle can also be organized into

a block matrix

∇2v =



∇2
1v1 ∇2

2v1 · · · ∇2
Nv1

∇2
1v2 ∇2

2v2 · · · ∇2
Nv2

...
...

∇2
1vP ∇2

2vP · · · ∇2
NvP


∈ RPv×N , (5.23)

126

with

∇2
kvp =

∂

∂rk
· ∂vp
∂rk
∈ Rv×1. (5.24)

In the following, we will assume that the two-body features are symmetric, meaning the

feature for the pair i, j is the same as the feature for pair j, i. We store the mapping between

a particular pair (i, j) and their pair index p as i(p) and j(p), always assuming i < j. To

simplify notation, we will use

p = ri(p) − rj(p) (5.25)

to denote the separation vector between particles i(p) and j(p) corresponding to the pair p,

and

p = ∥ p∥ (5.26)

to denote the distance between the pair.

Unsorted, Nonperiodic. The components of the input vector are

vp = (p, si(p) ∗ sj(p)) ∈ R1+s, (5.27)

where ∗ denotes an element-wise product of the spin degrees of freedom and v = 1+ s. The

corresponding derivatives are

∇kvp =
(
δi(p),k − δj(p),k

) 1

p

 T
p

0Q×D

 , (5.28)

∇2
kvp =

(
δi(p),k + δj(p),k

) 2

p

1
0

 . (5.29)

127

Sorted, Nonperiodic. Let m : ZP −→ ZP be the mapping that sorts the pairs according to

the distance between them p. Then,

vp = (m(p), si(m(p)) ∗ sj(m(p))), (5.30)

∇kvp =
(
δi(m(p)),k − δj(m(p)),k

) 1

m(p)

 T
m(p)

0Q×D

 , (5.31)

∇2
kvp =

(
δi(m(p)),k + δj(m(p)),k

) 2

m(p)

1
0

 . (5.32)

Unsorted, Periodic. The distances between pairs are transformed to their periodic

counterparts,

p 7−→ ˜p =
∥∥∥ sin(π p

L

)∥∥∥, (5.33)

making the components of the input vector become

vp = (˜p, si(p) ∗ sj(p)) ∈ R1+Q, (5.34)

where si ∈ RQ is a vector containing the spin degrees of freedom of the i-th particle and ∗

denotes an element-wise product.

∇kvp =
(
δi(p),k − δj(p),k

) π

2L˜p

sin
(
2π p
L

)T
0Q×D

 ∈ R(1+Q)×D (5.35)

128

∇2
kvp =

(
δi(p),k + δj(p),k

) 2

˜p

1
0

 ∈ R1+Q (5.36)

Sorted, Periodic. Let m : ZP −→ ZP be the mapping that sorts the pairs according to the

periodic distance between them ˜k. Then,

vp = (˜m(p), si(m(p)) ∗ sj(m(p))) ∈ R1+Q, (5.37)

∇kvp =
(
δi(m(p)),k − δj(m(p)),k

) π

2L˜m(p)

sin
(

2π m(p)
L

)T

0Q×D

 ∈ R(1+Q)×D (5.38)

∇2
kvp =

(
δi(m(p)),k + δj(m(p)),k

) 2

˜m(p)

1
0

 ∈ R1+Q (5.39)

To compute v, ∇v, and ∇2v in terms of the inputs X inside a particular WaveFunction

class, we call the format function using a pointer to the Input object. There are three

versions of the same format function since v, ∇v, and ∇2v are not necessary for every

computation. All derived classes, e.g. OneBodyInputs and TwoBodyInputs, must provide

definitions for these functions.

// input.hpp
virtual void format(const mat& X, vec& v) = 0;
virtual void format(const mat& X, vec& v, mat& dv) = 0;
virtual void format(const mat& X, vec& v, mat& dv, mat& d2v) = 0;

129

5.1.3.2 Continuous Restricted Boltzmann Machines

The various versions of multivariate Gaussian-Binary and Gaussian-Uniform restricted

Boltzmann machines are implemented under a single class called ContinuousRBM. In

Sec. 4.7.1, we defined a new function called f(x) that allowed all the log-likelihoods and

their gradients with respect to the parameters to have the same form. Since we already

need to define activation functions to implement feedforward neural networks, we

implement f(x) as activation functions as well, in order to streamline the ContinuousRBM

class. More information on the implementation of activation functions will be provided in

the next section.

We will use ContinuousRBM as a symmetric, positive-definite Jastrow wave function for

bosons, or as a Jastrow correlator for fermions, combined with an antisymmetric Slater

determinant. Recall the form of the log-likelihood for a continuous RBM written in terms

of the trainable parameters θ = (a, triu(S), b,W),

logP(v) = −1

2
(v − a)T exp(S)(v − a) +

H∑
j=1

f(zj(v)) + C, (5.40)

z(v) = b+WT exp(S)v. (5.41)

where C is a constant. Since P(v) is the marginal probability distribution of the visible

nodes v, it is natural to define our trial wave function as

log Ψθ(X) ≡ logP(v(X)). (5.42)

In fact, we could make the relationship between the probability amplitude Ψθ(X) and the

130

probability distribution more exact by writing log |Ψθ(X)| ≡ 1
2 logP(v(X)), but due to the

presence of all the trainable parameters, the two forms are practically equivalent.

Computing the local gradient with respect to R = (r1, ..., rN) becomes straightforward

because of the way the Input object organizes ∇v(X) into blocks. Namely,

∇ log Ψθ(X) =
[
− (v − a)T + f ′(z(v(X)))TWT

]
exp(S)∇v(X). (5.43)

To compute the sum of local Laplacians, first notice that

1

Ψθ(X)
∇2
iΨθ(X) = ∇2

i log Ψθ(X) +
(
∇i log Ψθ(X)

)2
. (5.44)

If we again, organize our Laplacians into blocks, we can simplify the computation to be in

terms of matrix and array operations only, eliminating the need for any for-loops.

131

// continuous_rbm.cpp
long double ContinuousRBM::get_local_laplacian(const mat& X)
{

pInput_->format(X, v_, dv_, d2v_);

K_ = exp(S_);
va_ = v_ - a_;
dA_ = - va_.transpose() * K_ * dv_;
d2A_ = - (va_.transpose() * K_ * d2v_).sum()

+ - (dv_.transpose() * K_ * dv_).trace();

z_ = b_ + W_.transpose() * K_ * v_;
dz_ = W_.transpose() * K_ * dv_;
d2z_ = W_.transpose() * K_ * d2v_;

df_ = pFunc_->get_df(z_);
d2f_ = pFunc_->get_d2f(z_);

dB_ = df_.transpose() * dz_;
d2B_ = df_.dot(d2z_.rowwise().sum())

+ d2f_.dot(dz_.rowwise().squaredNorm());

return d2A_ + d2B_ + (dA_ + dB_).squaredNorm();
}

In the above code snippet, pInput_ is the member pointer to the Input object and pFunc_

is the member pointer to the (activation) function f(x). Finally, because we defined our trial

wave function as the marginal probability distribution of the visible nodes, the derivatives

of the log-likelihood in Eq. (4.37) coincide with the derivatives of log Ψθ(X).

In general, the variational parameters of any restricted Boltzmann machine can be

initialized to small random values near zero. However, because RBMs are highly

interpretable models, we can provide much better guesses for the initial parameters based

on our physical intuition. As a reminder, the variational parameters of an mGB-RBM and

an mGU-RBM are θ = (a, triu(S), b,W), where a are the biases of the visible nodes, S is

132

used to reparameterize the inverse covariance matrix

Σ−1ii = exp(Sii), and Σ−1ij = Sij for j ̸= i,

b are the biases of the hidden nodes, and W is a weight matrix connecting the visible and

hidden nodes. If b and W are both identically zero, the marginal probability distribution of

both RBMs become a multivariate Gaussian. Thus setting b and W to small random values

near zero represents small deviations from the multivariate Gaussian. For small b and W ,

the individual peaks of the Gaussian nearly coincide with the biases a. Therefore, we can

set the initial values of a based on our guesses for the most likely positions of the particles.

The initialization of the matrix S is the most important, as choosing convenient values

can prevent the multivariate Gaussian from becoming multi-modal early on during training,

leading to the collapse of the sampling process. In addition, the above reparametrization

guarantees the invertibility of Σ−1 but it does not guarantee that the diagonals of Σ are

positive. Since negative variances are unphysical, we bias our network to provide positive

variances at the beginning of training. Then the RBM naturally learns to maintain positive

variances on its own. This is accomplished by choosing the diagonal values of S as small

positive values, and the off diagonal values as small negative values.

5.1.3.3 Feedforward Neural Networks

Deep feedforward neural networks are implemented under a class called DeepFNN. This class

assumes the trial wave function is given by

log Ψθ(X) ≡ ρ(v(X)), (5.45)

133

where ρ is a feedforward neural network with a single output, and v(X) is constructed by the

format function belonging to the Input object. In addition, ρ is assumed to be rectangular

in structure, meaning all the hidden layers have the same number of nodes.

DeepFNN consists of a sequence of DenseLayer and ActivationLayer objects, which

represent the affine transformations and the nonlinear, element-wise transformations,

respectively. Both DenseLayer and ActivationLayer are derived from the abstract base

class Layer. In addition to simple functions that facilitate the flattening and unflattening

of the parameters, the Layer objects have the following key member functions:

// layer.hpp
virtual void forward(vec& h) = 0;
virtual void forward(vec& h, mat& dh) = 0;
virtual void forward(vec& h, mat& dh, mat& d2h) = 0;
virtual void backward(int& iter, vec& gradient, vec& du_dh) = 0;

The forward functions are used during the computations of the (log of the) wave function,

the local gradient with respect to the coordinates, and the sum of local Laplacians. The

backward function is used during the computation of the local gradient of the trial wave

function with respect to the variational parameters.

Even though activation functions are not formally considered layers of the network

themselves, it is convenient to implement them as layers because the forward-passing and

backward-passing steps can be written extremely simply. More specifically, if we store all

the DenseLayer and ActivationLayer objects into a single std::vector of pointers to

each layer, we can write the wave function computation as the following:

134

// deepfnn.cpp
long double DeepFNN::get_logpsi(const mat& X)
{

pInput_->format(X, h_);
for(int l = 0; l < n_layers_; ++l) pLayers_[l]->forward(h_);
return h_(0);

}

Similarly, the gradient with respect to the parameters is computed as the following:

// deepfnn.cpp
vec DeepFNN::get_param_gradient(const mat& x)
{

// forward pass to store intermediate values
pInput_->format(x, h_);
for(int l = 0; l < n_layers_; ++l) pLayers_[l]->forward(h_);

// backward pass to calculate gradient
iter_ = 0;
du_dh_ = vec::Ones(1);
for(int l = n_layers_-1; l >= 0; --l) pLayers_[l]->backward(iter_,

param_grad_,
du_dh_);

return param_grad_;
}

Notice that the above gradient calculation includes a forward pass. This is because the

gradient of the output depends on the input for both DenseLayer and ActivationLayer.

Thus, during the forward step, a copy of the input vector is stored for later use.

The forward pass for the DenseLayer object is exceptionally simple, as it consists of only

a linear transformation.

135

// dense.cpp
void DenseLayer::forward(vec& h, mat& dh, mat& d2h)
{

h = W_ * h + b_;
dh = W_ * dh;
d2h = W_ * d2h;

}

Similarly, the backward pass can be written simply as well.

// dense.cpp
void DenseLayer::backward(int& iter, vec& gradient, vec& du_dh)
{

du_dW_ = du_dh * h_in_.transpose();
du_db_ = du_dh;
du_dh = W_.transpose() * du_dh;

gradient.segment(iter, n_params_) = concat(flatten(du_dW_), du_db_);
iter += n_params_;

}

In the above, the character u represents the single output of the entire network, written

as ρ in Eq. (5.45). The first three lines compute the gradient of the output with respect

to the weights and biases, as well as the gradient with respect to the hidden nodes. Then

the gradients with respect to the parameters are flattened and stored in their respective

locations in the incoming gradient vector, which stores the gradients with respect to all

weights and biases in the network. These weights and biases are initialized using the Glorot

normal scheme and the biases are initialized to zero.

On the other hand, the forward step for the ActivationLayer is slightly more

complicated because of the nonlinearity and the block organization of the gradient and

Laplacian.

136

// activation.cpp
void Activation::forward(vec& h, mat& dh, mat& d2h)
{

for(int i = 0; i < h.size(); ++i)
{

d2h.row(i) *= get_df(h(i));
for(int p = 0; p < n_parts_; ++p)
{

d2h(i,p) += get_d2f(h(i))
* dh.row(i).segment(p*n_dims_, n_dims_).squaredNorm();

}
dh.row(i) *= get_df(h(i));
h(i) = get_f(h(i));

}
}

Here, the functions get_f, get_df, and get_d2f are pure virtual functions representing

f(x), f ′(x) and f ′′(x), respectively. They must be defined in each class derived from

ActivationLayer. Luckily, the backward step is even simpler than for the DenseLayer

because there are no trainable parameters.

// activation.cpp
void Activation::backward(int& iter, vec& gradient, vec& du_dh)
{

for(int i = 0; i < du_dh.size(); ++i) du_dh(i) *= get_df(h_in_(i));
}

Again, the backward pass involves the original input vector, which was saved in the member

h_in_.

As a final note, DeepFNN is often accompanied by an enveloping FixedGaussian, but we

will omit discussion on the latter as it is straightforward to implement and contains no

variational parameters. Products of DeepFNN and FixedGaussian are generated by

ProductWaveFunction, discussed in Sec. 5.1.3.6.

137

5.1.3.4 Deep Sets

The present version of NeuralAnsatz also provides a simple implementation of Deep Sets in

a class called DeepSet. In this case, the trial wave function is given by

log Ψθ(X) ≡ ρ
(
pool

(
{ϕ(vi(X))}

))
, (5.46)

where ρ is a feedforward neural network with a single output, ϕ is feedforward neural

network with a vector output, and pool is a pooling operation specified by a

PoolingLayer. Additionally, the index i in vi(X) may run over the total number of

particles N or the total number of pairs N(N − 1)/2, depending on which Input object is

chosen. The overall structure of DeepSet is very similar to DeepFNN except that there are

now two std::vector members of pointers to the Layer objects corresponding to ρ and ϕ,

and an additional pointer to the PoolingLayer. For example, the local laplacian is

implemented as the following:

// deepset.cpp
long double DeepSet::get_local_laplacian(const mat& X)
{

pInput_->format(X, h_, dh_, d2h_);
for(int l = 0; l < n_layers1_; ++l) pLayers1_[l]->forward(h_, dh_, d2h_);
pPooling_->forward(h_, dh_, d2h_);
for(int l = 0; l < n_layers2_; ++l) pLayers2_[l]->forward(h_, dh_, d2h_);
return dh_.squaredNorm() + d2h_.sum();

}

As a side note, the elements of pLayers1_ include pointers to objects derived from

DenseLayer, called DenseSet, that passes elements of the set forward and backward in

parallel rather than the entire input at once.

138

The more important change to discuss is the inclusion of the PoolingLayer. As a simple

illustration, see the implementation of SumPooling below.

// sum.cpp
void SumPooling::forward(vec& h)
{

h_out_.setZero();
for(int s = 0; s < n_set_; ++s) h_out_ += h.segment(s * n_out_, n_out_);
h = h_out_;

}

Since the ordering of the set elements is destroyed in the forward process, and each set element

is given equal weight to the eventual output, the backward direction can be completed

by essentially creating n_set_ copies of the gradient and passing it back to the DenseSet

sequence. Then the DenseSet layers average the contributions to the gradient from each

element of the set. If the set elements have unequal weights in the eventual output, the

inputs need to be stored to compute the corresponding weights in the backward direction.

5.1.3.5 Slater Determinants

The implementation of SlaterDeterminant in NeuralAnsatz is limited by the fact that

our sampling procedure involves perturbing all particles in a single Monte Carlo step, rather

than perturbing one particle at a time. In addition, we include the option to sample spins

as well, where the number of spin-up and spin-down particles are not necessarily equal.

Consequently, we cannot take advantage of commonly-employed tricks involving updating a

single row or single column of the determinant matrix, nor is it straightforward to split the

determinant into a product of two determinants corresponding to the spin-up and spin-down

particles. Then, the analytical computations of the gradients and Laplacians of the Slater

139

determinant with respect to the particle coordinates require taking the determinant and

the inverse of the matrix. According to Eigen’s documentation, both of these operations

are only guaranteed to be stable for at most 4 × 4 matrices. Nonetheless, we describe the

implementation of SlaterDeterminant here, but we will exercise caution for systems larger

that N = 4.

A Slater determinant is given by

Ψ(X) ≡ 1√
N !

det
[
φα(xi)

]
=

1√
N !

det



φ1(x1) φ1(x2) · · · φ1(xN)

φ2(x1) φ2(x2) · · · φ2(xN)

...
...

φN (x1) φN (x2) · · · φN (xN)


, (5.47)

where φα are single-particle spin-orbitals indexed by α, and we have omitted the subscript

θ on the ansatz Ψθ(X) because we do not consider trainable spin-orbitals in this

implementation. As mentioned in Sec. 5.1.2, when a system of Fermions is constructed,

the number of distinct spatial orbitals that is required in the Slater determinant is

automatically stored. The member orbital_index_ acts as the mapping between orbital

index α and the quantum numbers of the spatial orbitals. At the same time, the spin

components of the spin-orbitals are determined and stored in the member

spin_orbitals_. Together, orbital_index_ and spin_orbitals_ determine each unique

spin-orbital.

The orbitals are computed by a Basis object which takes the quantum numbers of the

spatial orbitals stored in orbital_index_ and evaluates the orbitals for all particles. For the

spin components, the Fermions class computes the spin projections using the information

stored in spin_orbitals_. One can simply take the element-wise product to fill the elements

140

of the matrix, and then take the determinant.

// slaterdeterminant.cpp
long double SlaterDeterminant::get_logpsi(const mat& X)
{

D_ = (pBasis_->get_states(X)).cwiseProduct(pFermions_->get_spin_projection
(X));

det_ = D_.determinant();
return logl(fabsl(det_)) + lognorm_;

}

Storing a copy of the determinant in det_ allows the Hamiltonian to access the sign of the

determinant if the interaction is spin dependent.

To write the local gradient with respect to a particle’s coordinates, we first define the

matrix

D(X) ≡
[
φα(xi)

]
, (5.48)

for brevity, and use Jacobi’s formula,

1

Ψ(X)
∇iΨ(X) = tr

(
D(X)−1∇iD(X)

)
, (5.49)

where ∇iD(X) means to evaluate the derivative for each spatial dimension of particle i, and

the subsequent trace is taken separately for each direction. For the local Laplacian, we also

use that ∇iD(X)−1 = −D(X)−1∇iD(X)D(X)−1,

1

Ψ(X)
∇2

iΨ(X) = tr
(
D(X)−1∇2

iD(X)
)
+ tr2

(
D(X)−1∇iD(X)

)
− tr

(
D(X)−1∇iD(X)D(X)−1∇iD(X)

)
.

(5.50)

The computation of the spatial parts of ∇iD(X) and ∇2
iD(X) are handled by the Basis.

141

5.1.3.6 Products

The wrapper class ProductWaveFunction, derived from WaveFunction, enables the creation

of products involving any desired number F of WaveFunction factors,

Ψθ(X) ≡
F∏

f=1

Ψθf
(X), (5.51)

where the parameters are concatenated together θ = (θ1,θ2, ...,θF). It is straightforward

to show that the local gradient with respect to a particle’s coordinates is given by

1

Ψθ(X)
∇iΨθ(X) =

F∑
f=1

1

Ψθf
(X)
∇iΨθf

(X), (5.52)

and the local Laplacians are given by

1

Ψθ(X)
∇iΨθ(X) =

F∑
f=1

1

Ψθf
(X)
∇2
iΨθf

(X)

+ 2
F∑

f<g

(
1

Ψθf
(X)
∇iΨθf

(X)

)
·
(

1

Ψθg(X)
∇iΨθg(X)

)
.

(5.53)

The utilization of the ProductWaveFunction becomes necessary when working with a

SlaterDeterminant or when employing a FixedGaussian as an enveloping function.

Furthermore, different neural-network quantum states can be combined to achieve the best

of both (or all) worlds.

5.1.4 Hamiltonian

The Hamiltonian class is an abstract base class that takes System and WaveFunction objects

as input to its constructor. By default, it is the free Hamiltonian which just contains the

142

kinetic energy operator. Its virtual member functions get_external and get_interaction

both return zero, unless they are overridden by derived classes.

// hamiltonian.cpp
long double Hamiltonian::get_local_energy(const mat& X)
{

return get_local_kinetic(X) + get_external(X) + get_interaction(X);
}

long double Hamiltonian::get_local_kinetic(const mat& X)
{

return -hbar2m_ * pWaveFunc_->get_local_laplacian(X);
}

If the interaction potential contains a singularity, it is strongly-recommended to regularize

the singularity by introducing a hyperparameter r0 and transforming as

1

rk
7→ fk(r/r0)

rk
, (5.54)

where f(r) is a function that scales as ∼ r for small r and approaches 1 for large r. By

doing so, the long-range behavior of the original interaction is preserved, but at r = 0, the

potential is finite, taking a value of (1/r0)k. We typically choose f(r) ≡ tanh(r). Pretraining

the neural-network quantum states on a softer potential before lowering the value of r0 to

tackle harder potentials has been found to significantly stabilize and accelerate performance.

In addition, this allows the neural-network quantum states to discover the cusp condition on

it’s own, rather than providing it from the very beginning, demonstrating their representation

power.

It should be noted that adding new Hamiltonian objects is extremely straightforward,

as one only needs to specify the external and interaction potentials for a single

143

configuration sample X. Since the neural-network quantum states are entirely separate

from the Hamiltonian, one can swap different interactions without affecting the states.

5.1.5 Sampler

Metropolis and Importance are classes derived from the abstract Sampler class. The

Sampler class also provides the option to sample the spins as well. The implementations

follow the descriptions provided in Sec. 3.1.1.

In addition to pointers to the System and WaveFunction objects, the class constructor

takes n_eq_init, n_eq, n_void, sigma0, step as arguments. The integer n_void specifies

the number of samples to skip between each effective sample, constituting one Monte Carlo

cycle. At the very beginning of the simulation, initial positions are drawn from a Gaussian

with standard deviation sigma0, and the sampler is equilibrated using n_eq_init Monte

Carlo cycles. Instead of equilibrating the sampler from scratch at the beginning of each

training epoch, we recover the last configuration and equilibrate using only n_eq cycles.

Typically, n_eq can be one or two orders of magnitude smaller than n_eq_init. This

construction assumes the learning rate is not so large that the wave function changes

significantly in a single epoch. The parameter step determines the size of the spatial

perturbations.

5.1.6 Optimizer

The abstract Optimizer class takes a pointer to the WaveFunction object, the initial learning

rate eta0, and the total number of epochs n_epochs as input. Derived classes only need to

provide a definition for the following pure virtual function.

// optimizer.hpp

144

virtual void update_params(vec gradient) = 0;

This function simply takes a gradient vector and updates the parameters of the

WaveFunction object. The specific optimization algorithms were discussed in Sec. 3.2.2.

5.1.7 Cost Functions

The CostFunction computes both the cost and the gradient of the cost with respect to the

parameters. Derived classes can be designed for reinforcement learning or for supervised

learning. In variational Monte Carlo, we use the Energy as the cost, which has the following

constructor signature.

// energy.hpp
Energy(int n_samples,

long double epsilon,
std::shared_ptr<System> pSystem,
std::shared_ptr<WaveFunction> pWaveFunc,
std::shared_ptr<Sampler> pSampler,
std::shared_ptr<Hamiltonian> pHamiltonian);

If the parameter epsilon is larger than zero, stochastic reconfiguration is used to

precondition the gradient. To minimize the memory footprint of the program, samples are

taken on the fly and expectation values are computed as running averages. Once all

parallel processes have completed the computations of their local expectation values, Open

MPI is used communicate between processes and aggregate the results. Since the Energy

requires the Hamiltonian object as input, there is no need for the Trainer to have explicit

ties to the Hamiltonian. The gradient calculation for the Energy is shown below.

// energy.cpp
vec Energy::get_gradient()

145

{
reset_gradient_estimator();
pSampler_->equilibrate();
for(int n = 0; n < n_samples_loc_; ++n)
{

X_ = pSampler_->get_next_config();
E_ = pHamiltonian_->get_local_energy(X_);
O_ = pWaveFunc_->get_param_gradient(X_);
R_ = X_.leftCols(n_dims_);

E_avg_loc_ += E_;
E2_avg_loc_ += E_ * E_;
O_avg_loc_ += O_;
EO_avg_loc_ += E_ * O_;
r_avg_loc_ += R_.sum();
r2_avg_loc_ += R_.squaredNorm();

if(use_stochastic_reconfig_) O2_avg_loc_ += O_ * O_.transpose();
if(pSampler_->positions_accepted()) r_acc_loc_ += 1;
if(pSampler_->spins_accepted()) s_acc_loc_ += 1;

}
finalize_gradient_estimator();
return gradient_;

}

If supervised learning of the WaveFunction is desired, the CostFunction needs to take

a target WaveFunction object as input in place of the Hamiltonian. For instance, the

constructor for the Overlap between two wave functions has the following signature.

146

// overlap.hpp
Overlap(int n_samples,

long double sigma,
std::shared_ptr<System> pSystem,
std::shared_ptr<WaveFunction> pWaveFunc,
std::shared_ptr<Sampler> pSampler,
std::shared_ptr<WaveFunction> pTargetWaveFunc);

The parameter sigma specifies Gaussian probability distribution from which samples are

drawn.

5.1.8 Density

The Density object takes snapshots of the spatial distribution during training. If the

WaveFunction is a product, it is possible to take snapshots of each individual factor as

well. The constructor for the abstract class is given by the following.

// density.hpp
Density(int n_samples,

int n_bins,
long double bounds,
std::shared_ptr<System> pSystem,
std::shared_ptr<WaveFunction> pWaveFunc,
std::shared_ptr<Sampler> pSampler,
bool sample_factors = false);

Since obtaining an accurate density requires a large number of samples compared to the

number of samples required to calculate the cost, the Density object takes its own n_samples

parameter. While taking these samples, the OneBodyDensity object bins them according

to their position in one-dimension, or their distance from the origin in two- and three-

dimensions. Alternatively, the TwoBodyDensity pair distribution functions can be computed

by binning the distances between all pairs.

147

5.1.9 Running NeuralAnsatz

First, clone a copy of the Github repository at this url: https://github.com/kim-jane/

NeuralAnsatz. Ensure that both make and Open MPI are installed. On Ubuntu, this can be

accomplished by running the following commands in the terminal:

sudo apt-get update
sudo apt install build-essential
sudo apt install make
sudo apt install openmpi-bin

On MacOS, one can instead run the following:

brew update
brew upgrade
brew install gcc
brew install make
brew install open-mpi

Alternatively, the appropriate modules can be loaded on a high-performance computing

cluster. Next, enter repository and compile the NeuralAnsatz library.

cd ~/NeuralAnsatz
make

Driver files in the examples/ folder will be compiled into corresponding executables in the

bin/ folder. For example, if there is a driver file named examples/myprogram.cpp, the code

can be run by typing the command below.

mpirun -np <number of parallel tasks> ./bin/myprogram

148

https://github.com/kim-jane/NeuralAnsatz
https://github.com/kim-jane/NeuralAnsatz
https://github.com/kim-jane/NeuralAnsatz

Once completed, remove all binaries and build files.

make clean

5.2 Python Software for Periodic Systems

In this section, we introduce a different implementation of neural-network quantum states

that leverages the flexibility and high-performance computing capability of JAX. This code

was initially developed by Alessandro Lovato for nuclei and has subsequently been adapted

by Bryce Fore and myself for periodic systems. Since some of the over-arching details of the

simulation are similar to the NeuralAnsatz code, we will focus only on the key differences

here. In addition, we will discuss the basic ideas required to implement the neural-network

quantum states relevant to the work in Chapters 9 and 7.

5.2.1 JAX: High-Performance Array Computing

JAX is an open-source software that combines the flexibility and east of use of numpy with

the efficiency of compiled languages like C++. The key features of JAX include:

• Compute gradients with grad: Easily compute gradients of arbitrary functions by

creating a new function.

• Just-in-time compilation with jit: Functions decorated with jit will be dynamically

compiled and cached upon first encounter.

• Vectorization with vmap: Apply functions elementwise to one or more arrays for efficient

batch operations.

149

• Parallelization with pmap: Execute functions in parallel across multiple devices,

maximizing hardware resources.

5.2.1.1 Building Neural Networks

The functionalities provided by JAX allows for far more freedom in network structure, as

one only needs to worry about computing the forward direction. We begin by importing a

few required modules.

import jax
import jax.numpy as jnp
from jax.example_libraries import stax

All layer construction functions within stax return a pair of functions (init_func,

apply_func) that represent the initialization of a layer with random weights and the

application of a layer, respectively. All initialization functions, init_func, take the input

shape and a jax.random.key, and subsequently returns the new output shape and the

initialized parameters. All application functions, apply_func, take a set of parameters and

input data, then evaluates the forward direction of the layer. Multiply layers can be joined

together by using stax.serial.

init_func, apply_func = stax.serial(*layers)

If one defines the list layers as an alternating sequence of stax.Dense layers and activation

layers, e.g. stax.Gelu, then stax.serial generates the constructor functions of a standard

feedforward neural network.

The separation of the init_func from the apply_func is beneficial if many copies of

150

identical neural network structures are needed, where each copy is initialized with different

parameters. For instance, the single-particle orbitals of a Slater determinant can have one

common apply_func, but N different sets of unique parameters by simply calling init_func

N times.

To construct a Deep Set, on the other hand, one must create two sets of constructor

functions, one that maps to the latent space and another that maps to the output space.

lat_init, lat_apply = stax.serial(stax.Dense(n), stax.Gelu, stax.Dense(n))
out_init, out_apply = stax.serial(stax.Dense(n), stax.Gelu, 1)

In the above, the integer n is the number of nodes in the layer. Computing the forward

direction of the Deep Set amounts to calling lat_apply and out_apply with an appropriate

pooling function in between. Below is an example of a Deep Set used as a Jastrow factor,

where phi_params and rho_params refer to the variational parameters in the mappings to

and from the latent space.

phi = self.lat_apply(phi_params, X)
phi = jnp.sum(phi, axis=0)
logpsi = self.out_apply(rho_params, phi)

Virtually all artificial neural networks, no matter how complicated the connections, can be

constructed by appropriately combining feedforward neural networks, concatenation

operations, and pooling operations.

5.2.2 Symmetries and Boundary Conditions

Now that we have established the basics of building a network, we must discuss the specific

requirements the network must satisfy if it is to be treated as a wave function. If either of

151

these elements are broken, the wave function provide erroneous results. For periodic systems,

we must transform the coordinate or distances such that obey strict periodicity at all times.

Some options for periodic inputs with L-periodicity include:

periodic positions
cos_i = jnp.cos(2 * jnp.pi * r / L)
sin_i = jnp.sin(2 * jnp.pi * r / L)

periodic separation vectors
r_ij = r[ip[k]] - r[jp[k]]
r_ij = r_ij - jnp.rint(r_ij / self.L) * self.L
cos_ij = jnp.cos(2 * jnp.pi * r_ij / self.L)
cos_ij = jnp.sin(2 * jnp.pi * r_ij / self.L)

periodic distance
d_ij = jnp.sin(jnp.pi * r_ij / self.L)
d_ij = jnp.sum(d_ij**2)

In addition to the periodicity and the antisymmetry of the fermionic wave function, which

is constrained by a Slater determinant or a Pfaffian, discrete symmetries such as parity and

time-reversal can be enforced. Below is an example of parity and time-reversal enforcement

for a system with even parity and odd time-reversal symmetry.

152

@jit
def logsignpsi_PT(params, r, sz):

r_PT = jnp.stack((r, -r, r, -r))
sz_PT = jnp.stack((sz, sz, -sz, -sz))

sign, logpsi = vmap(logsignpsi, in_axes=(None, 0, 0))(params, r_PT, sz_PT)
sign = sign.at[2:].set(-sign[2:])

logpsi_PT, sign_PT = jax.scipy.special.logsumexp(a=logpsi,
b=sign,
return_sign=True)

return sign_PT, logpsi_PT

5.2.3 Computing the Pfaffian

Unfortunately, JAX does not provide built-in implementation of the Pfaffian of a matrix,

nor does it provide convenient decomposition schemes useful for the Pfaffian efficiently. For

our work on ultra-cold Fermi gases, we implemented the Pfaffian ourselves, complete with

pivoting. In the code below, we assume A is even dimensional and symmetric. The algorithm

is implemented according to Ref. [13].

153

@jit
def pfaffian(self, A):

def pivot(kp, k, A, pf_A):

exchange rows
temp = A.at[k+ 1, :].get()
A = A.at[k + 1, :].set(A.at[kp, :].get())
A = A.at[kp, :].set(temp)

exchange columns
temp = A.at[:, k + 1].get()
A = A.at[:, k + 1].set(A.at[:, kp].get())
A = A.at[:, kp].set(temp)

flip sign
pf_A *= -1.0
return A, pf_A

def no_pivot(kp, k, A, pf_A):
return A, pf_A

pf_A = 1.0
for k in range(0, A.shape[0]-1, 2):

find pivot index
kp = k + 1 + jnp.argmax(jnp.abs(A[k + 1:, k]))

pivot if necessary
A, pf_A = cond(kp != k + 1, pivot, no_pivot, kp, k, A, pf_A)

update pfaffian
pf_A *= A[k, k + 1]

update matrix
mu = A.at[k, :].get() / A[k, k+1]
nu = A.at[:, k+1].get()
A = A + jnp.outer(mu, nu) - jnp.outer(nu, mu)

return jnp.sign(pf_A), jnp.log(jnp.abs(pf_A))

154

5.2.4 Stochastic Reconfiguration with RMSprop Regularization

One of the unique components of the JAX-based VMC code is the alternative regularization

scheme used for the Fisher-information matrix. As discussed in Sec. 3.2.2.5, the inversion

of the Fisher-information matrix S is typically stabilized by offsetting the diagonal elements

by a small ϵ, usually chosen between 10−5 − 10−2. However, by choosing a constant shift,

the relative magnitudes of the variational parameters are ignored, ultimately leading to an

inefficient optimization process. In the alternative scheme based on RMSprop, a running

average of the square of the gradients are stored to normalize the diagonal shift according

to each parameter. When the optimizer is initialized, v is set to zero. Then during each

parameter update,

v 7→βv + (1− β)
(
∇θ⟨Eθ(X)⟩

)2
, (5.55)

θ 7→θ − η
(
S + diag(

√
v + ϵ)

)−1∇θ⟨Eθ(X)⟩. (5.56)

155

6 The Calogero-Sutherland Model

To evaluate the performance of the C++ software discussed in Sec. 5.1, we benchmark against

the Calogero-Sutherland model, an exactly-solvable model of interacting bosons trapped in a

one-dimensional harmonic oscillator well. This model provides an excellent basis to assess our

neural-network quantum states (NQS) for several reasons. Firstly, the interaction contains a

singularity. Because the bosons are trapped, the effects of the singularity will be particularly

important, as the likelihood of two bosons becoming close to one another is high. Learning

how to handle this singularity will prove to be great practice for more realistic systems.

Secondly, one-dimensional systems are easy to visualize, giving us the opportunity to gain

an intuitive understanding of the two types of neural-network quantum states we will test.

Lastly, the availability of exact analytical solutions enables us to validate the accuracy of

our implementation.

6.1 Hamiltonian

The Hamiltonian of the Calogero-Sutherland model is given by

Ĥcs =
N∑
i=1

(
−1

2

∂2

∂x2i
+

1

2
ω2x2i

)
+

N∑
i<j

β(β − 1)

x2ij
, (6.1)

where β is an interaction parameter, xij = |xi−xj | is the distance between particles i and j,

and we have set ℏ = m = 1 for convenience. During our discussion on Kato’s cusp condition

in Sec. 3.2.1.1, we showed that requiring the local energy to be finite as any two particles

156

approach each other led us to the exact ground state of the system

Ψcs
0 (X) = exp

− N∑
i=1

1

2
ωx2i

∏
i<j

x
β
ij , (6.2)

with the corresponding energy

Ecs
0 =

1

2
Nω +

1

2
βN(N − 1)ω =

1

2
Nω
(
1 + β(N − 1)

)
. (6.3)

Throughout this work, we will set N = 6 and β = 2, resulting in an exact interacting energy

that is 11 times greater than the noninteracting harmonic oscillator ground state energy.

To prevent numerical instabilities caused by the singularity in Eq. (6.1), we regularize

the two-body potential as

1

x2
7→ tanh2(x/x0)

x2
, (6.4)

where x0 is a regularization hyperparameter that smoothly controls the height of the

potential, while preserving the long-range behavior. As x0 → 0, the regularized potential

converges to the original potential containing the singularity. See Fig. 6.1 to compare the

regularized potential using different values of x0 and β = 2.

Our general strategy is to first train the neural-network quantum states using a fairly

large value of the regularization parameter x0. Then after the training has stabilized, we

progressively decrease the value of x0 until the energy converges. Another possibility could

be to fix x0 to a small value, then gradually increase β from a value slightly greater than 1

to our desired value of 2. Both of these strategies are examples of transfer learning, as they

involve pretraining the NQS on easier tasks before transitioning to more challenging ones.

157

Figure 6.1: The regularized two-body potential for the Calogero-Sutherland model, where x0
is the regularization parameter (Eq. (6.4)). The long-range behavior of the original potential
(black, dashed line) is preserved, but the height of the potential decreases with larger values
of x0. Here, we have used an interaction parameter value of β = 2.

158

6.2 Neural-Network Quantum States

This work focuses on a comparative analysis of two distinct types of neural-network quantum

states: feedforward neural networks and continuous restricted Boltzmann machines. The

inputs for both networks comprise the positions of all particles, with permutation invariance

guaranteed by sorting the positions. Sorting the inputs was discussed in depth in Sec. 5.1.3.1.

For brevity, we will use the notation v(X) to imply the positions X = (x1, x2, ..., xN) have

been sorted and serve as the visible nodes v of the networks.

6.2.1 Feedforward Neural Networks

Inspired by Saito in Ref. [14], we take our positive-definite Jastrow ansatz to be

Ψfnn
θ (X) = exp

(
ρ(v(X))

)
exp

(
−X2

2σ2

)
, (6.5)

where ρ(v(X)) is the single output of a feedforward neural network, which takes sorted

positions as input. Since neural networks are initialized with small random values around

zero, ρ initially takes a value around zero as well. To ensure we sample from a localized

distribution rather than a uniform distribution of infinite range, our ansatz includes a

Gaussian envelope with a variance σ2 large enough to not significantly affect the training of

the feedforward neural network. In this work with N = 6, we have set σ2 = 162 = 256.

Alternatively, one could remove the Gaussian envelope and pretrain the ansatz to a

Gaussian instead, either by turning off the interaction entirely, leaving a harmonic

oscillator potential, or through supervised training of the wave function. We opt for the

Gaussian envelope as it removes the need for pretraining, but the boundary conditions

imposed by the alternative approaches are generally upheld by the network during the

159

reinforcement learning process.

6.2.2 Continuous Restricted Boltzmann Machines

We also employ neural-network quantum states parameterized by the various types of

multivariate Gaussian-binary and Gaussian-uniform restricted Boltzmann machine,

discussed in Sec. 4.7.1.2 and Sec. 4.7.1.3. Since they are all positive-definite by default, we

can simply write

Ψrbm
θ (X) = P(v(X)), (6.6)

where P(v(X)) denotes the marginal probability distribution of the visible nodes, with v(X)

representing the sorted positions. When the variational parameters are set to small random

values, the initial state of the RBMs are similar to a Gaussian. We can bias our initial state

to more closely resemble the eventual wave function we expect by initializing the visible

biases a across a much wider range. Moreover, we sort the visible biases in order to bring

them closer to the mean of the corresponding sorted positions.

6.3 Results

We begin our analysis by testing four commonly employed activation functions for a fixed

feedforward neural network (FNN) architecture. For N = 6, we choose to use a network

with two hidden layers and 12 hidden nodes each. The regularization parameter is initially

set to x0 = 0.5 in order to guarantee fast and stable training. Additionally, we utilize

the stochastic reconfiguration (SR) algorithm, with a diagonal offset of ϵ = 0.001, which

accelerates training significantly. As the SR algorithm manipulates the gradient such that

the curvature of the energy landscape is encoded, we have found that a simple stochastic

gradient descent optimizer with a constant learning rate of η = 0.001 provides the most

160

Figure 6.2: Training curves for feedforward neural networks with different activation
functions. In this initial pretraining stage, x0 = 0.5.

stable training.

In Fig. 6.2, we validate the efficient training of the feedforward neural networks. For each

activation function, about 200 iterations were sufficient to reach convergence. Notice that

the converged value of the energy is well below 0, an artifact of the regularization of the

potential. At this initial stage, the performances of all activation functions are essentially

equal, with the sigmoid activation function yielding an energy slightly greater hyperbolic

tangent, the Gaussian error linear unit (gelu), and softplus.

We also validate the training of the Gaussian-binary and Gaussian-uniform restricted

Boltzmann machines, where we consider both non-symmetric and symmetric hidden node

values for each type. Since the computed marginal probability distribution of the visible

161

nodes for each RBM type only differed by the definition of a function we simply called

"f(x)," one could interpret these functions as activation functions. In Fig. 6.3, we show the

training curves for all four variants, each with 6 hidden nodes. Similar to the FNN case, we

use the SR algorithm with ϵ = 0.001 to compute the preconditioned gradient. However, for

the RBMs we use a smaller learning rate of η = 0.0005.

While the RBMs yield an initial energy that is much closer to the eventual converged

value, training still required about 3000 iterations, an order of magnitude more than the

FNNs. The converged value of the energy still did not reach quite as low as the FNNs,

reaching a minimum percent difference around (E(x0) − E0)/E0 = −0.0941 for all RBM

types. Here, E0 is the exact ground state energy in the limit x0 → 0. In constrast, the

FNNs reached a minimum between (E(x0)−E0)/E0 = −0.113 ∼ −0.119. In addition, notice

that the training curves for the RBMs with symmetrically-valued hidden nodes (shown in

orange and blue) show slight deviations from the nonsymmetrically-valued hidden nodes

(red and green) after about ∼ 250 training iterations. This may suggest that both needed

to overcome a local minimum before proceeding further to the ground state. During this

initial pretraining stage, the multivariate Gaussian-Uniform restricted Boltzmann machine

with hidden node values between 0 and 1 had the most stable training curve.

In order to better predict the ground state of the full Calogero-Sutherland Hamiltonian,

we progressively decrease the value of the regularization parameter x0 from a value of 0.5 to

0.01. In Figures 6.4 and 6.5, we show the converged energies as a function of x0, both the

FNNs and RBMs, respectively. For the FNNs, most of the activation functions exhibit similar

behavior as x0 is decreased, except for the sigmoid activation function. This difference in

performance is somewhat expected, as the sigmoid activation function is known to be prone

to the vanishing-gradient problem. The other three activation functions perform similarly as

162

Figure 6.3: Training curves for the different variants of Gaussian-binary and Gaussian-
uniform restricted Boltzmann machines, with x0 = 0.5.

163

Figure 6.4: The converged energy as a function of the regularization parameter x0 for
feedforward neural networks with different activation functions.

x0 is decreased, with the softplus function consistently producing the lowest energies. The

tanh, gelu, and softplus functions all seem to converge to the exact ground state as expected.

On the other hand, the different restricted Boltzmann machines exhibit almost identical

behavior as x0 is decreased, with slight deviations occuring for the smallest values of x0. In

particular, both of the Gaussian-uniform RBMs perform slightly better than the Gaussian-

binary RBMs for x0 = 0.01. However, unlike the FNNs which usually converge to the exact

ground state

Finally, in Fig. 6.6, we plot the one-body densities for the symmetric multivariate

Gaussian-Uniform restricted Boltzmann machine and the feedforward neural network with

the softplus activation function. The top row shows the initial state for both networks.

164

Figure 6.5: The converged energy as a function of the regularization parameter x0 for the
various Gaussian-binary and Gaussian-uniform restricted Boltzmann machines.

165

Figure 6.6: One-body densities during three different points during training: the initial stage,
after pretraining with x0 = 0.5, and after training with x0 = 0.01. The black dashed line
represents the one-body distribution from the exact ground state wave function.

166

The RBM naturally provides localized initial state with some distinguished peaks,

demonstrating the highly-biased nature of the ansatz. As x0 is decreased, the location of

the peaks match well with the exact ground state, but there are small deviations in the

shape of the peaks and in the tails of the distribution. The FNN is a low-bias model, and

consequently, we used a Gaussian envelope to localize the distribution around 0. After the

initial pretraining stage using x0 = 0.5 the wave function learned by the FNN has

significantly different shape to the one learned by the RBM, as the peaks are far less

distinguished in the former. After decreasing the regularization parameter to x0 = 0.05,

the FNN ansatz matches the exact ground state almost perfectly.

6.4 Conclusions

In this illustrative example of neural-network quantum states, we demonstrate a transfer

learning technique beneficial for handling singularities in the potential. By comparing

different activation functions, we confirm that the sigmoid function suffers from a vanishing

gradient, but nevertheless, still performs better than all the RBMs tested near the x0 → 0

limit.

The RBMs perform similarly to one another, with the Gaussian-uniform variants

performing slightly better as x0 decreases. However, due to the high-biased nature of the

model, RBMs are limited in being able to accurately capture all behaviors in the wave

function. We visualize this fact by investigating the evolution of the one-body distributions

throughout the training process. Overall, a feedforward neural network proves to be the

more accurate model and is therefore recommended for use as a neural-network quantum

state, even if it requires comparatively more variational parameters.

Initial investigations of products of RBMs and FNNs show promise, as this eliminates

167

the need for a Gaussian envelope and reduced the overall number of parameters required in

the FNN. We leave a more thorough report on these products for future works.

168

7 Dilute Neutron Matter

The following article titled ’Dilute neutron star matter from neural-network

quantum states’ was published in Physical Review Research (Vol. 5, No. 3) on July 31,

2023 [15].

Low-density neutron matter is characterized by fascinating emergent quantum

phenomena, such as the formation of Cooper pairs and the onset of superfluidity. We

model this density regime by capitalizing on the expressivity of the hidden-nucleon

neural-network quantum states combined with variational Monte Carlo and stochastic

reconfiguration techniques. Our approach is competitive with the auxiliary-field diffusion

Monte Carlo method at a fraction of the computational cost. Using a leading-order

pionless effective field theory Hamiltonian, we compute the energy per particle of infinite

neutron matter and compare it with those obtained from highly realistic interactions. In

addition, a comparison between the spin-singlet and triplet two-body distribution functions

indicates the emergence of pairing in the 1S0 channel.

7.1 Introduction

Multi-messenger astronomy has opened new windows into the state of matter at densities and

isospin asymmetries that cannot be directly probed by terrestrial experiments [16, 17, 18,

19]. Concurrently, nuclear many-body theory has made considerable progress in computing

the nucleonic-matter equation of state at densities corresponding to the inner core of neutron

stars starting from realistic Hamiltonians [20, 21, 22, 23, 24, 24, 25]. Comparisons between

theoretical predictions and astrophysical observation pose stringent constraints on models of

169

nuclear dynamics, particularly three-nucleon forces [26].

In this work, we focus on lower densities, ρ ≲ 0.04 fm−3, which are relevant to the

phenomenology of the stellar inner crust and outer core. In this region, both conditions

for superfluidity — strong Fermi degeneracy and an attractive interaction between neutron

pairs in the 1S0 channel — are believed to be met [27, 28, 29]. In addition to lowering the

system’s energy, the formation of Cooper pairs plays a critical role in neutrino emission [30,

31], and the phenomenology of glitches [32]. Pairing is also relevant in modeling neutron-rich

nuclei, which are the subject of intense experimental activities [33].

Quantum Monte Carlo approaches [34], and in particular the auxiliary-field diffusion

Monte Carlo (AFDMC) method [35] have been extensively applied to accurately compute

neutron-matter properties [22, 21, 36]. In the low-density regime, AFDMC calculations

have convincingly shown a depletion of the superfluid gap with respect to the

Bardeen–Cooper–Schrieffer theory [37, 38]. However, because of the fermion sign problem,

AFDMC predictions depend upon the starting variational wave function. For instance, the

superfluid phase must be assumed a priori by using pfaffian wave functions [39].

Neural-network quantum states [1] (NQS) have gained popularity in solving the

Schrödinger equation of atomic nuclei both in real space [40, 41, 42, 43, 44] and in the

occupation-number formalism [45]. In this work, we introduce a periodic NQS suitable to

model both the normal and superfluid phases of neutron matter. The ansatz is based on

the “hidden-nucleon” architecture, which can model the ground-state wave functions of

nuclei up to 16O with high accuracy [43]. Inspired by chemistry applications [46, 47], we

further improve the expressivity of the hidden-nucleon NQS using generalized backflow

correlations, which generalize both the pfaffian and the spin-dependent backflow of

Ref. [48].

170

Our model of nuclear dynamics is the leading-order pionless effective field theory (/πEFT)

Hamiltonian of Ref. [49], which qualitatively reproduces the binding energies of nuclei with

up to A = 90 nucleons. Arguments based on the expansion around the unitary limit [50],

and Brueckner-Hartree-Fock calculations of infinite nuclear matter [51], indicate that /πEFT

should provide accurate energies of dilute neutron matter. We quantitatively address this

point by carrying out variational Monte Carlo calculations based on NQS that are specifically

designed to model wavefunctions of nuclear systems in the presence of spatial periodicity.

We compare the /πEFT energy per particle against the phenomenological Argonne v18 [52]

plus Urbana IX [53] (AV18+UIX) Hamiltonian used in the Akmal-Pandharipande-Ravenhall

(APR) [54] equation of state. We additionally consider the local, ∆-full chiral-EFT potentials

that include tritium β-decay in the fitting procedure and do not yield self-bound neutron

matter [21, 36].

To better quantify the role of dynamical correlations, we evaluate the two-body spatial

distribution functions, separating the spin-triplet and spin-singlet channels. We analyze

the self-emergence of pairing correlations, not explicitly included in the NQS ansatz, as a

function of neutron-matter density.

7.2 Method

We model the interactions among neutrons through the leading-order /πEFT Hamiltonian

“o” of Ref. [49]. The two-body contact potential is designed to reproduce the np scattering

lengths and effective ranges in the S/T = 0/1 and 1/0 channels. Thus, it yields a neutron-

neutron scattering length of ann = −22.5 fm, slightly larger than the experimental value of

−18.9(4) fm, see [55] and references therein, while the effective range is well reproduced. The

Hamiltonian also contains a repulsive three-body force that ensures the stability of nuclei

171

with A ≤ 3 nucleons. As for the latter, we take the parameterization with R3 = 1.0 fm,

as it reproduces the binding energies of nuclei in the A ≤ 90 mass range reasonably well.

For benchmarking purposes, we also consider the leading-order /πEFT Hamiltonian “a” with

R3 = 1.0 fm, which describes the trend of binding energies of light and medium-mass nuclei.

We approximate the ground-state solution of the nuclear many-body problem with an

NQS ansatz that belongs to the hidden-fermion family [56], recently generalized to continuum

Hilbert spaces and applied to atomic nuclei in Ref. [43]. In addition to the visible spatial and

spin coordinates of the A neutrons, R = {r1 . . . rA} and S = {sz1 . . . szA}, the Hilbert space

contains fictitious Ah hidden-nucleon degrees of freedom. In this work we use Ah = A = 14

so that the system is as flexible as possible, but in practice we have also found using as

few as 8 hidden nucleons gives very similar results. The wave function can be conveniently

expressed in a block matrix form as

ΨHN (R, S) ≡ det

ϕv(R, S) ϕv(Rh, Sh)

χh(R, S) χh(Rh, Sh)

 . (7.1)

As in Ref. [43], ϕv(R, S) is the A × A matrix representing visible single-particle orbitals

computed on the visible coordinates while the Ah × Ah matrix χh(Rh, Sh) yields the

amplitudes of hidden orbitals evaluated on the coordinates of the Ah hidden nucleons.

Finally, χh(R, S) and ϕv(Rh, Sh) are Ah ×A and A×Ah matrices giving the amplitudes of

hidden orbitals on visible coordinates and visible orbitals on hidden coordinates,

respectively. All the above matrices are expressed in terms of deep neural networks with

differentiable activation functions — see Ref. [43] for additional details. To respect the

Pauli principle, the coordinates of the hidden nucleons must be permutation-invariant

functions of the visible ones. We enforce this symmetry by using a Deep-Sets

172

architecture [12, 57] with logsumexp pooling. Additionally, the discrete parity and time

reversal symmetries, are enforced in the same manner as Ref. [43].

Inspired by recent developments in quantum-chemistry NQS [58, 46, 47], we augment

the flexibility of the ansatz by performing a generalized backflow transformation to the

visible coordinates of the hidden-nucleon matrix: (R, S) → (R̃, S̃). We use the Deep-Sets

architecture again to enforce fermion anti-symmetry

(r̃i, s̃
z
i) = ρbf

(
ri, s

z
i , log

(∑
j

exp(ϕbf(rj , s
z
j)
))

. (7.2)

To further augment the expressivity, separate ρbf and ϕbf neural networks are used for each

of the A visible orbitals.

We simulate infinite neutron matter using 14 particles in a box with periodic boundary

conditions. Following Ref. [59], the latter are imposed by mapping the spatial coordinates

onto periodic functions by

ri →
(
sin

(
2πri
L

)
, cos

(
2πri
L

))
(7.3)

which ensures the wave function is continuous and differentiable at the box boundary. Here

L is the size of the simulation periodic box, and the sin and cos functions are applied element-

wise to ri. Finite-size effects due to the tail corrections of two- and three-body potentials

are accounted for by summing the contributions given by neighboring cells to the simulation

box [60].

Evaluating the expectation values of quantum mechanical operators, including the

Hamiltonian, requires carrying out multi-dimensional integration over the spatial and spin

173

coordinates of the neutrons. To this aim, we exploit Monte Carlo quadrature and sample R

and S from |ΨHN (R, S)|2 using the Metropolis-Hastings algorithm [61] — additional

details can be found in the supplemental material of Ref. [41]. The best variational

parameters defining the NQS are found by minimizing the system’s energy, which we carry

out using the R(oot)M(ean)S(quared)Prop(agation)-enhanced version of the

stochastic-reconfiguration optimization method introduced in Ref. [43].

7.3 Results and Discussion

We first benchmark the expressivity of the hidden-nucleon NQS for periodic systems by

comparing the energy per particle of infinite neutron matter against “conventional”

variational Monte Carlo (VMC), and both constrained-path and AFDMC results. The

variational wave function used in state-of-the-art neutron-matter studies, see for example

[22, 36], contains a spin-independent Jastrow factor that multiplies a Slater determinant

augmented by spin-dependent backflow correlations. The constrained-path approximation,

commonly employed to alleviate the AFDMC fermion-sign problem [34], brings about a

bias in the ground-state energy estimate [21, 36]. Exact results can be obtained by

performing unconstrained propagations, but the statistical error grows exponentially with

the imaginary time.

As shown in Fig. 7.1 for ρ = 0.04 fm−3, after ≃ 2000 stochastic-reconfiguration steps,

the NQS ansatz converges to the virtually exact unconstrained AFDMC energy, using a

fraction of its computing time: about 100 hours on NVIDIA-A100 GPUs vs approximately

1.2 million hours on Intel-KNL CPUs. Notice that the constrained-path approximation

violates the variational principle. In contrast, variational Monte Carlo calculations based

on the NQS never yield energies below that of the Hamiltonian’s ground state. Comparing

174

with the Hartree-Fock approximation, it appears that the hidden-nucleon ansatz captures

the overwhelming majority of the correlation energy.

In Fig. 7.2, we compare the /πEFT energies obtained with the NQS ansatz against

AFDMC calculations of 14 particles with periodic-box boundary conditions, so that

finite-size effects are the same in both approaches. The AFDMC takes as input the

AV18+UIX Hamiltonian used in the celebrated APR equation of state [54], and the local,

∆-full chiral-EFT potentials that include tritium β-decay in the fitting procedure and do

not make neutron-matter collapse, i.e. models NV2+3-Ia*/b*, and NV2+3-IIb* [21, 36].

Since for all the densities we consider, the AV18+UIX, NV2+3-Ia*/b*, and NV2+3-IIb*

are in excellent agreement, they are collectively displayed by the “π-full” band, stressing

that all these interactions explicitly retain pion-exchange terms.

The /πEFT Hamiltonian “o” is in excellent agreement with the π-full models — both

providing energies much below the non-interacting Fermi gas (not shown in the Figure).

These minor differences are likely because model “o” yields a slightly larger nn scattering

length than the experimental value and, therefore, more attraction in neutron matter. For

benchmark purposes, we also consider the /πEFT model “a” of Ref. [49], which provides a

slightly stiffer equation of state than model “o”. By checking the individual expectation

value of the two and three-body potentials, we find that this behavior is primarily due to

the three-body force contribution that is more repulsive in model “a” than model “o”, which

arises from a more bound 3H when the two-body force alone is employed.

Once trained on the system’s energy, the NQS can be used to accurately evaluate a

variety of quantum-mechanical observables, such as the spin-singlet and triplet two-body

distribution functions defined in Ref. [62]. Figure 7.3 shows these distributions at ρ = 0.01

fm−3 (panel a) and ρ = 0.04 fm−3 (panel b). The significant increase in the spin-singlet

175

channel compared to the non-interacting Fermi Gas indicates that the NQS wave function

can capture the emergence of the 1S0 neutron pairing, despite not being explicitly encoded

in the ansatz. Consistent with the behavior of the pairing gap [37, 28], the enhancement

is more prominent at ρ = 0.01 fm−3 than ρ = 0.04 fm−3. On the other hand, at these

densities, no pairing correlations are present in the spin-triplet channel.

7.4 Conclusion

In this work, we have put forward an NQS suitable to model the normal and superfluid phases

of infinite neutron matter in a unified fashion. We improve the expressivity of the hidden-

nucleon ansatz of Ref. [43] by adding state-dependent generalized backflow correlations,

whose inclusion has proven beneficial in condensed-matter applications [46, 47]. Periodic-

box boundary conditions are imposed by mapping the spatial coordinates of the neutrons

onto periodic functions.

Combined with Monte Carlo techniques to sample the Hilbert space and the

stochastic-reconfiguration algorithm to optimize the variational parameters, the NQS yields

energies per particle of low-density neutron matter that are in excellent agreement with

unconstrained AFDMC calculations at a fraction of the computational cost. In contrast,

the computationally-inexpensive AFDMC constrained-path approximation brings about

appreciable violations of the variational principle.

We have shown that /πEFT yields a low-density neutron matter equation of state that

is remarkably close to those obtained from AFDMC calculations that take as input highly-

realistic phenomenological and chiral-EFT interactions [54, 21, 36]. This finding paves the

way for more systematic comparisons between dilute neutron matter and Fermi gas around

the unitary limit. In addition, it enables studies of phenomena relevant to understand the

176

inner crust and the outer core of neutron stars, such as pairing and superfluidity, using

relatively simple models of nuclear dynamics.

Finally, we have analyzed the possible onset of Cooper pairing in the neutron medium.

Specifically, the NQS two-body distribution functions corresponding to pairs of neutrons in

the spin-singlet 1S0 channel exhibit a clear enhancement at small inter-particle distances

with respect to the non-interacting case, which is absent in the spin-triplet channel.

Consistent with pairing-gap calculations [37, 28, 38], this behavior is more prominent at

smaller densities. Note that this feature has not been encoded in the NQS; rather, it is a

self-emerging quantum mechanical phenomenon.

As a future development, we plan on including more sophisticated interactions, including

highly-realistic phenomenological ones, including AV18+UIX and the local, ∆-full chiral-

EFT potentials of Ref. [63, 21, 36]. The flexibility of the NQS ansatz will also be tested in

isospin-asymmetric nucleonic matter at low densities, where strong clustering is expected to

occur [64].

177

0 1000 2000 3000 4000
Optimization Steps

6.4

6.5

6.6

6.7

6.8

6.9

7.0

E
ne

rg
y

p
er

pa
rt

ic
le

(M
eV

)

NQS

AFDMC (unconstrained)

AFDMC (constrained)

VMC

Hartree-Fock

Figure 7.1: NQS training data in neutron matter at ρ = 0.04 fm−3 (data points) compared
with Hartree-Fock (dotted line), conventional VMC (dashed line), constrained-path ADMC
(dash-dotted line) and unconstrained-path ADMC results (solid line).

178

0.02 0.04 0.06 0.08

ρ (fm−3)

4

6

8

10

E
ne

rg
y

p
er

pa
rt

ic
le

(M
eV

)

/πEFT model o

/πEFT model a

π-full

Figure 7.2: Low-density neutron-matter /πEFT equation of state as obtained with the hidden-
nucleon NQS for /πEFT potential “o" (blue circles) and /πEFT potential “a" (orange squares)
compared with interactions which retain pion-exchange terms (green band). We see that the
“o" potential is in excelent agreement with the π-full interactions while the “a" potential has
a slightly stiffer equations of state due primarily to a more repulsive three-body force.

179

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r/rs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g(
r)

(a)
Singlet Fermi Gas

Triplet Fermi Gas

Singlet NQS

Triplet NQS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r/rs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g(
r)

(b)
Singlet Fermi Gas

Triplet Fermi Gas

Singlet NQS

Triplet NQS

Figure 7.3: Spin-singlet and triplet two-body distribution functions at two different densities:
ρ = 0.01 fm−3 (panel a) and ρ = 0.04 fm−3 (panel b). The NQS calculations (solid symbols)
are compared with non-interacting Fermi Gas results (solid lines).

180

8 Homogeneous Electron Gas

The following article titled ’Message-Passing Neural Quantum States for the

Homogeneous Electron Gas’ is currently under review [2].

We introduce a message-passing-neural-network-based wave function Ansatz to simulate

extended, strongly interacting fermions in continuous space. Symmetry constraints, such as

continuous translation symmetries, can be readily embedded in the model. We demonstrate

its accuracy by simulating the ground state of the homogeneous electron gas in three

spatial dimensions at different densities and system sizes. With orders of magnitude fewer

parameters than state-of-the-art neural-network wave functions, we demonstrate better or

comparable ground-state energies. Reducing the parameter complexity allows scaling to

N = 128 electrons, previously inaccessible to neural-network wave functions in continuous

space, enabling future work on finite-size extrapolations to the thermodynamic limit. We

also show the Ansatz’s capability of representing qualitative different phases of matter.

8.1 Introduction

Predicting emergent physical phenomena and system properties from the ab-initio

description of the system’s constituents is notoriously difficult [65, 66]. Fermionic systems,

in particular, can exhibit strong correlations among the particles, leading to collective

phenomena in the form of exotic phases of matter, e.g. superconductivity and

superfluidity [67, 68]. In recent years, progress in numerical simulations of strongly

correlated systems was triggered by the development of increasingly precise

machine-learning approximation techniques. Most notably, artificial neural network (NN)

181

architectures, in combination with Variational Monte Carlo (VMC), have shown great

promise to represent ground states of quantum spin systems, especially in more than one

spatial dimension [1, 69, 70, 71, 72, 73, 74, 75]. Due to the universal approximation

property of NNs, neural-network quantum states (NQS) can, in theory, accurately

represent any quantum many-body state [76, 77]. NQS have been extended to fermionic

degrees of freedom in a discrete basis [78, 79, 80], by incorporating the indistinguishability

of quantum particles. More recently, advancements to ground and excited state searches for

fermionic and bosonic continuous degrees of freedom with open [3, 81, 82] and periodic

boundary conditions (PBCs) [83, 84, 85], have been introduced.

The flexibility of NQS, compared to more traditional models, allows representing multiple

phases of matter and even different physical systems with a single Ansatz. To exemplify this

point, we refer to NQS studies on the ground-state of molecular systems [3, 81], solutions

to effective field theory Hamiltonians describing atomic nuclei [86, 87, 4], bulk studies of

fermionic and bosonic extended systems [83, 88, 85, 89], as well as NQS simulations of low-

density neutron matter found in neutron stars [15]. The downside of this flexibility, especially

in continuous space, is that NQS typically need a significant amount of variational parameters

to reach a given accuracy. This makes optimization challenging and costly, preventing the

usage of refined optimization schemes, e.g. second order optimization procedures [90, 91].

As a result, the accessible system sizes are limited to a few tens of particles. However,

studying larger system sizes is of utmost importance to estimate physical properties in the

thermodynamic limit [92, 93, 94, 95]. To remedy the situation, novel NQS architectures

must be developed that significantly reduce the parameter complexity while retaining high

accuracy.

This work introduces a neural-network wave function suitable for simulating strongly

182

interacting fermionic quantum systems in continuous space with one to two orders of

magnitude fewer parameters than current state-of-the-art NQS. The general form of the

Ansatz is motivated by an analytical argument, relating the exact ground-state wave

function to a many-body coordinate transformation of the electronic coordinates. It uses a

permutation-equivariant message-passing architecture on a graph, inherently implementing

the indistinguishability of same-species quantum particles [96]. As an application, we study

the Homogeneous Electron Gas (HEG) in three spatial dimensions without explicitly

breaking any of the fundamental symmetries of the system, such as translations and

spin-inversion symmetry. This allows characterizing, from first principles, the onset of

Wigner crystallization at low densities.

8.2 Exact Backflow Transformations

Throughout this work, we consider a non-relativistic Hamiltonian of identical particles with

mass m in d spatial dimensions:

H = − ℏ2

2m

N∑
i

∇2
i + V (X), (8.1)

where the potential and interaction energy, V , is assumed to be diagonal in position

representation, defined by the particle coordinates X = (r1, ..., rN), ri ∈ Rd. In the

following, we derive an analytic functional form of the ground-state wave function and

relate it to our variational Ansatz.

We use a suitable reference state |Φ0⟩, as initial condition for the imaginary-time (τ)

evolution induced by the Hamiltonian: Φτ (X) = ⟨X|e−τH |Φ0⟩. The exact ground-state

is obtained in the large imaginary-time limit: limτ→∞Φτ (X) ∝ Ψ0(X), provided |Φ0⟩ is

183

non-orthogonal to the exact ground state, |⟨Ψ0|Φ0⟩| > 0. For fermions, non-orthogonality

implies that the wave function must be antisymmetric w.r.t. the exchange of two particles i.e.

Φ0(Pij(X)) = −Φ0(X) (Pij permutes particles i and j). Applying the mean-value theorem

to the imaginary-time evolved state, yields:

Φτ (X) =

∫
Ω
dX′Gτ (X,X

′)Φ0(X
′) (8.2)

= Vol(Ω)×Gτ (X,Y(X)) Φ0(Y(X)), (8.3)

where Ω is the integration domain for the positional degrees of freedom, and Gτ (X,X
′) =

⟨X|e−τH |X′⟩ is the matrix element of the imaginary-time propagator. In (8.3), we introduced

the mean-value point Y(X) = (y1(X), ...,yN (X)) ∈ Ω, depending parametrically on the

coordinates X.

For non-relativistic Hamiltonians, Eq. (8.1), we have Gτ (X,X
′) ≥ 0, for all X,X′.

Moreover, Gτ (X,X
′) is invariant under the exchange of particle coordinates:

Gτ (Pij(X),Pij(X′)) = Gτ (X,X
′). In the fermionic case, the latter implies that Y(X)

must be equivariant under particle exchange, Y(Pij(X)) = Pij(Y(X)), to ensure

antisymmetry of the total wave-function. Eq. (8.3) therefore yields the product between a

permutation symmetric, positive semi-definite function J(X) = Gτ (X,Y(X))×Vol(Ω) and

a reference state computed at modified coordinates Y(X):

Φτ (X) = J(X)× Φ0(Y(X)). (8.4)

Identification of the mean-value point Y (X) with a many-body coordinate transformation

gives an alternative justification for the backflow transformations [97] of single-particle

184

coordinates. With a Slater determinant of given spin orbitals ϕµ(ri) as initial state,

Φ0(X) = detϕµ(ri)/
√
N !, Eq. (8.4) is structurally related to the heuristic

Jastrow-Backflow variational form [98, 99]. We remark that the symmetric contribution,

J(X), can be incorporated to the determinant:

Φτ (X) = K × detφµ(yi(X)), (8.5)

with φµ(yi(X)) = ϕµ(yi(X))× N
√
J(X), and K a normalization constant.

The functional form (8.4),(8.5) is exact, provided that the symmetric factor J(X) and the

mean-value coordinates Y(X) satisfy Eq. ((8.3)), and the reference state is not orthogonal to

the exact ground state. An approximate but explicit form for the coordinate transformation

Y(X) can be obtained by repeatedly applying the imaginary-time propagator to the reference

state in the limit of small τ . This process gives rise to the iterative backflow transformation,

as introduced in Ref. [100, 101].

8.3 Message-Passing Neural-Network Quantum States

Motivated by Eq. (8.5), we use single-particle orbitals, {ϕµ}Nµ=1, evaluated at many-body

backflow coordinates, Y(X), to construct the variational Ansatz. The backflow

transformation is parameterized with permutation-equivariant message-passing NNs

(MPNN) [96], hence we name it Message-Passing Neural Quantum State (MP-NQS).

In the MPNN, an all-to-all connected graph, encoding effective particle positions

(nodes) x
(t)
i = [x

(0)
i ,h

(t)
i] ∈ RD1 and their interactions (edges) x

(t)
ij = [x

(0)
ij ,h

(t)
ij] ∈ RD2 , is

updated iteratively (we have introduced a time-step t ≥ 0, an initial graph (x(0)i , x
(0)
ij),

successively updated auxiliary variables known as hidden states (h(t)i ∈ RDh
1 , h(t)ij ∈ RDh

2),

185

suitably chosen feature dimensions D
(h)
1 and D

(h)
2 , and we denoted concatenation with

[·, ·]). Construction of the initial graph (x(0)i , x
(0)
ij) is system dependent and will be

discussed in detail later.

The hidden states are updated using equivariant messages, obtained from an attention

mechanism [102]. The messages are given by weighted transformations of the edges x
(t)
ij :

m
(t+1)
ij = ω

(t)
ij (x

(t)
ij) ⊙ ϕ(x

(t)
ij), where ⊙ represents element-wise multiplication along the

feature dimension, and ω
(t)
ij ∈ RD2 are weight vectors. The weights are obtained using

query/key matrices given by Q
(t)
ij = W

(t)
Q · x

(t)
ij and K

(t)
ij = W

(t)
K · x

(t)
ij , with weight matrices

W
(t)
Q ,W

(t)
K ∈ RD2×D2 . Applying an element-wise GELU non-linearity [103] to the overlap

between queries and keys along the particle dimension (as opposed to the feature

dimension [102, 104]), results in permutation-equivariant weights

ω
(t)
ij = GELU

(∑
l

Q
(t)
il K

(t)
lj

)
. (8.6)

This attention mechanism compares environments of particles i and j, and effectively

increases the order of correlations that can be embedded in a single iteration of the

network. This is crucial to reduce the total number of network iterations (parameters) and

capture many-body effects. The hidden states are updated using the current graph and

messages:

h
(t+1)
i = f

x
(t)
i ,
∑
j ̸=i

m
(t+1)
ij

 (8.7)

h
(t+1)
ij = g

(
x
(t)
ij ,m

(t+1)
ij

)
(8.8)

where the functions ϕ, f , and g are parameterized by Multilayer Perceptrons (MLPs).

186

The updated graph has then the same strucutre as the former: x
(t+1)
i = [x

(0)
i ,h

(t+1)
i],

x
(t+1)
ij = [x

(0)
ij ,h

(t+1)
ij]. Inclusion of the initial inputs, referred to as a “skip connection" in

ML literature [105], mitigates the vanishing gradient problem and allows a more efficient

capture of correlations.

The final backflow coordinates are constructed as yi(X) = ri + δri(X), where the

displacements, δri (X), are obtained via a linear transformation of the final node states to

d dimensions, i.e. δri (X) = W · x(T)i with W ∈ Cd×D1 . The complex-valued backflow

transformation allows changing the degree of localization, determined by the chosen

single-particle orbitals, and representing complex-valued wave functions in general.

Following (8.5), we further augment the orbitals with a permutation-invariant factor J ,

yielding:

Ψ(X) = detφµ(yi(X)), (8.9)

with φµ(yi) = exp [J(Y, µ)]× ϕµ(yi).

8.4 Hamiltonian

We now study the case of the homogeneous electron gas (HEG) in d = 3 spatial dimensions,

a prototypical model for the electronic structure in solids. It includes Coulomb interactions

among the solids’ electrons while treating its positively charged ions as uniform, static,

positive background [106]. Despite this simplification, the HEG exhibits different phases of

matter and captures properties of real solids, particularly of Alkali metals. The Hamiltonian

187

(in units of Hartree), for a system of N electrons with uniform density n = N
V , is given by:

H = − 1

2r2s

N∑
i

∇2
i +

1

rs

N∑
i<j

1

∥ri − rj∥
+ const. (8.10)

where we introduced the Wigner-Seitz radius rs = 3
√

3/(4πn), and a constant arising from

the electron-background interaction [98]. The conditionally convergent series of pairwise

Coulomb interactions is evaluated using the Ewald summation technique, as is standard

for extended systems in QMC [107, 108, 109]. We’ll assume a fixed spin-polarization with

N = N↑+N↓, where N↑/↓ denotes the number of up/down spins. si ∈ {↑, ↓} denotes the i-th

electron’s spin. We equip the cubic simulation cell of side length L with periodic boundary

conditions (PBCs) in all spatial directions to access the bulk of the system.

As in (8.5), we use a single Slater determinant as a reference state, Φ0(X). For the

translation-invariant HEG, plane-wave orbitals are a natural and physically-motivated

choice:

ϕk(r) = exp (ik · r) (8.11)

with k = 2π
L n, where n ∈ Zd. To account for the spin s of a particle located at r, we use

spin-orbitals ϕµ(r, s) = ϕkµ(r)δsµ,s, where each spin-orbital is characterized by the quantum

numbers µ = (kµ, sµ). These orbitals allow modeling of translation invariant systems at fixed

total momentum ktot =
∑N

i=1 ki. Furthermore, the determinant factorizes into a product

of determinants of up and down spin orbitals.

We further specialize the MP-NQS to the HEG by defining initial feature vectors.

Respecting the spin inversion and translation symmetries of the HEG requires us to ignore

single-particle positions and spins. We, therefore, initialize the nodes to a learnable

188

embedding vector e ∈ RD1 , that does not depend on the particle index i. For the edge

features, we use the translation invariant particle-distances rij = ri − rj and their norm.

Same- and opposite-spin pairs are distinguished using products of the form si · sj = ±1 in

the edge features. Overall, we obtain the following initial features:

x
(0)
i = e, x

(0)
ij =

(
rij , ∥rij∥, si · sj

)
. (8.12)

Notice that this choice preserves the spin quantum number of each particle.

The PBCs of the simulation box are incorporated by mapping the components of

vectors r ∈ Rd (where r = ri or r = rij) to a Fourier basis

r 7→
[
sin(2πL r), cos(2πL r)

]
∈ R2d, and the norm of the distance between two particles,

∥rij∥, to a periodic surrogate ∥rij∥ 7→ ∥ sin(πLrij)∥, as in Ref. [83]. In sum, our Ansatz is

translation- and spin-inversion- invariant and possesses fixed total momentum, ktot. Its

number of parameters is system-size independent (here ∼ 19000) and, using Stochastic

Reconfiguration (SR) [91], only O(103) optimization steps are needed to reach convergence.

A comparison to other NQS approaches is given in the Supplemental Material.

8.5 Results

We study the fully spin-polarized and unpolarized HEG in different density regimes

rs ∈ [1, 200] and up to system sizes of N = 128 electrons. We benchmark our ground-state

energies against a variety of methods, including transcorrelation augmented full

configuration interaction method (FCI), distinguishable clusters with doubles (DCD)

method [94] for large densities, and Diffusion Monte Carlo (DMC) with backflow

(BF-DMC) [110, 111] for small densities. We also compare to state-of-the-art NQS

189

architectures – FermiNet [85] and WAPNet [84] – available for small system sizes

N ∈ {14, 19}. The effect of our backflow transformation on the nodal surface is studied by

comparing it to fixed-node DMC (FN-DMC) results (see Supplemental Material). We use

an energy of 1.5 mHa per particle (chemical accuracy) to assess the significance of energy

differences between the different methods. An overview of our results and benchmarks for

the various system sizes and densities is provided in the Supplemental Material.

8.5.1 Energy Benchmarks for Small Systems

For N = 14, FCI provides the lowest available ground-state energy for the HEG for rs ≤

5. The energy difference between the MP-NQS and FCI results is lower than 1.5 mHa

per particle. State-of-the-art NQS architectures perform comparably to the MP-NQS: The

unrestricted FermiNet performs slightly better (O
(
10−5

)
Ha/N) than both MP-NQS and

WAPNet for rs ≤ 2, while the MP-NQS and WAPNet improve over this version of FermiNet

for rs = 5. The restricted FermiNet yields worse ground-state energies than the MP-NQS

over all probed densities [85] (see Fig. 8.1). For rs ≥ 5 we compare to results obtained with

WAPNet and DCD. We find slightly better performance than WAPNet for all of the reported

densities. Furthermore, both neural-network-based methods outperform the DCD method.

Nevertheless, all results lie within a range of 1.5 mHa per particle. A similar pattern is seen

for N = 19: the MP-NQS obtains slightly higher energies than WAPNet for large densities

(rs ≤ 5) and marginally lower ones at smaller densities (rs ≥ 5). The differences are lower

than 1.5 mHa per particle.
8.5.2 Energy Benchmarks for Large Systems

For N = 54 particles, we compare to FCI at high density rs = 1, where our method

achieves the same accuracy. The difference between our results and FCI decreases with

190

0.00

0.05

0.10 WAP (N=14)
FermiNet (N=14, unrestricted)
FermiNet (N=14, restricted)
WAP (N=19)

1 2 5 10 20 50 100
Density−1 rs

0.0

0.1

0.2

0.3

LiNet (N=54)
BF-DMC (N=54)

(E
−

E M
PN

N
)

|E
H

F
|

[%
]

Figure 8.1: Energy differences between ground-state energies, obtained with other methods
and with the MP-NQS, in units of the thermodynamic Hartree Fock energy, for various
densities, polarizations, and system sizes. (Top) N = 14, 19, (Bottom): N = 54 particles.
Error bars are too small to be visible for most densities. The corresponding numerical data
can be found in the Supplemental Material.

increasing system size, yielding statistically indistinguishable results for N = 54. We obtain

significantly better ground-state energies than BF-DMC, especially at high densities. This

is in stark contrast to the (FermiNet-based) architecture of [88] (dubbed LiNet in the

following), which does not improve upon BF-DMC energies over the whole density regime

(see Figure 8.1, bottom). Comparison to DCD data shows that the MP-NQS can

consistently improve the ground-state energies for all examined densities, with energy

differences exceeding 1.5 mHa per particle. This indicates a deterioration of DCD’s

accuracy with increasing system size, while our method appears to maintain its precision

independent of system size. As expected, we reach higher accuracy compared to FN-DMC

due to the optimization of the nodal surface. The difference is ∼ 1 mHa per particle at the

191

largest density. Still, it decreases with decreasing density because the nodal surface does

not contribute as much to the ground-state energy in this regime.

A liquid-crystal phase transition is expected for the HEG, as a function of the density

n. The dominating kinetic energy in Eq. (8.10) (∼ 1/r2s) for large n leads to the well-

known Fermi liquid behavior. For small n the potential energy (∼ 1/rs) dominates and

enforces a crystalline structure among the electrons, known as Wigner crystal. The Wigner

crystal, expected to be of BCC type [112], is translation invariant, and the resulting crystal

structure is called a floating crystal. A homogeneous single-particle density distribution and

a crystalline two-body radial distribution function characterize the latter. Detection of the

translation invariant transition has not been realized up to now, to the best of our knowledge.

In previous QMC simulations of the Wigner crystal phase (e.g., in the works of Refs. [113, 95,

85]), the transition is investigated by comparison of energies obtained with a crystalline and

liquid variational Ansatz, explicitly breaking translation symmetry. Consequently, these

works find a pinned BCC lattice. Crystallization is further favored by Gaussian orbitals

centered around BCC lattice sites, a primitive BCC simulation cell, or both. We use the

MP-NQS as unbiased, translation invariant variational Ansatz to investigate the transition

in a conventional BCC cell, i.e., a simple cubic simulation cell. We study a system size

of N = 128 particles at rs = 110, 200. We display the radial distribution functions for

different densities in Figure 8.2. We compare results from a liquid FN-DMC and BF-DMC

calculation to results obtained with the MP-NQS at the predicted transition density around

rs = 110 [113]. We observe remarkable agreement between the three correlators, implying

that the MP-NQS favors the fluid behavior at this density. For the lower density of rs = 200,

we observe increasing oscillations up to larger distances, departing from the liquid FN-DMC

result. This shows the capability of the MP-NQS to describe qualitatively different phases.

192

0 1 2 3 4
r/rs

0.0

0.5

1.0

1.5
g 2

(r
)

rs = 110
rs = 200
FNDMC rs = 110
FNDMC rs = 200
Unpolarized fluid

Figure 8.2: Spin-averaged radial distribution function for the homogeneous electron gas with
N = 128 electrons at low densities (rs = 110, 200). Error bars are smaller than the symbols.
The unpolarized fluid is obtained from [113] for rs = 110.

8.6 Conclusions

We have introduced MP-NQS, a novel NQS architecture, leveraging MPNNs to build highly

expressive backflow coordinates. We demonstrate its power on the HEG system, reducing

the number of parameters by orders of magnitudes compared to state-of-the-art NQS in

continuous space while reaching at par or better accuracy. We also show improvement

upon state-of-the-art BF-DMC results on large systems. The favorable scaling allows us to

accurately simulate large periodic electronic systems, previously inaccessible to state-of-the-

art NQS models. We increase the available system sizes from N = 27 and N = 54 electrons

in periodic systems [88, 85, 84] to N = 128 electrons in this work. We hence open the door

to extrapolation methods to the thermodynamic limit for extended systems.

193

N rs MP-NQS WAP [84] FermiNet [85] FCI∗/DCD∗∗ [94]
14 1 0.568967(6) 0.568965(1) 0.568904(1) 0.56861(1)∗

2 −0.008391(1) −0.0083310(3) −0.008427(1) −0.00868(2)∗
5 −0.0798544(4) −0.0798360(1) −0.079821(1) −0.08002(2)∗
10 −0.0552126(6) −0.05520380(3) N/A −0.05509∗∗
20 −0.0324553(2) −0.0324434(1) N/A −0.03201∗∗
50 −0.01462631(6) −0.01462211(4) N/A −0.01384∗∗
100 −0.00773018(3) −0.007729980(2) N/A N/A

Table 8.1: Total energy per particle in Hartree for unpolarized system of N = 14 particles.
WAPNet and FermiNet are alternative NQS architectures optimized via VMC. We include
FCI and DCD results as benchmarks from quantum chemistry.

N rs MP-NQS LiNet [88] FN-DMC BF-DMC [110, 111]
54 1 0.52973(1) 0.530019(1) 0.53094(2) 0.52989(4)

2 −0.014046(8) −0.013840(1) −0.01326(2) −0.013966(2)
5 −0.079090(2) −0.0788354(2) −0.07867(1) −0.079036(3)
10 −0.054448(1) −0.0542785(1) −0.054269(8) −0.054443(2)
20 −0.0320524(5) −0.0316886(1) −0.031976(8) −0.032047(2)
50 −0.0145015(1) N/A −0.01387(2) −0.0144877(1)
100 −0.0076793(1) N/A −0.007674(3) N/A

Table 8.2: Total energy per particle in Hartree for the unpolarized system ofN = 54 particles.

The simulation of the HEG phase transition using a translation invariant Ansatz in an

unbiased simulation cell shows the MP-NQS’ capability to represent different phases of

matter. We reproduce the liquid phase of the HEG up to around rs = 110, while observing

pronounced density fluctuations, potentially compatible with Wigner crystallization, at

around rs = 200. We leave it to further, more specialized, investigation to study the nature

of the floating phase found at small densities, potentially resolving the tension with

existing predictions [113, 95] (based on translation-symmetry breaking wave function

states), on the location and nature of the phase transition.

In addition to the numerical results, we introduced an analytical argument, justifying

commonly adopted backflow transformations. Our argument shows that a backflow

transformation over a reference state is sufficient to obtain the exact ground-state wave

194

function. It will be of particular interest to characterize the geometrical properties of these

transformations and understand in what cases neural-network parameterizations can

efficiently describe them.

195

9 Ultra-cold Fermi Gases

The following article titled ’Neural-network quantum states for ultra-cold Fermi

gases’ is currently under review [5].

Ultra-cold Fermi gases exhibit a rich array of quantum mechanical properties, including

the transition from a fermionic superfluid BCS state to a bosonic superfluid BEC state,

which can be precisely probed experimentally. However, accurately describing these

properties poses significant theoretical challenges due to strong pairing correlations and the

non-perturbative nature of particle interactions. Here, we introduce a Pfaffian-Jastrow

neural-network quantum state with a message-passing architecture to encode pairing and

other quantum correlations efficiently. Our novel approach surpasses existing

Slater-Jastrow frameworks and outperforms state-of-the-art diffusion Monte Carlo

methods, as evidenced by lower ground-state energies. We observe the emergence of strong

pairing correlations by analyzing the opposite-spin pair distribution functions.

Additionally, we demonstrate that transfer learning enhances the training of

neural-network wave functions, facilitating the exploration of the BCS-BEC crossover

region near unitarity. Our findings highlight the potential of neural-network quantum

states as a promising strategy for investigating ultra-cold Fermi gases.

9.1 Introduction

The study of ultra-cold Fermi gases has received considerable experimental and theoretical

attention in recent years due to their unique properties and potential applications in fields

ranging from condensed matter physics to astrophysics. These systems can be created and

196

manipulated in the laboratory with high precision, providing a versatile platform for

investigating a wide variety of phenomena. By tuning the s-wave scattering length a via

external magnetic fields near a Feshbach resonance, one can smoothly crossover from a

fermionic superfluid BCS state (a < 0) of long-range Cooper pairs to a bosonic superfluid

BEC state (a > 0) of tightly-bound, repulsive dimers. Given their diluteness, the behavior

of these systems is mainly governed by a and the effective range of the potential re, with

natural units provided by the Fermi momentum kF and the Fermi gas energy per particle

in the thermodynamic limit EFG = 3
5
ℏ2
2mk

2
F (see Ref. [114] and references therein).

Figure 9.1: A cartoon of the BCS-BEC crossover. Moving from left to right, the attractive
interaction between opposite-spin fermions increases. However, in the BEC regime, the
attraction binds the pairs so tightly that they behave as weakly repulsive bosons. The
region between the weakly attractive Cooper pairs and the weakly repulsive dimers is known
as the unitary limit.

The region between the BCS and BEC states, known as the “unitary limit,” is particularly

interesting as a diverges and re approaches zero. The unitary Fermi gas (UFG) is a strongly-

197

interacting system that exhibits surprisingly stable superfluid behavior. Studying the BCS-

BEC crossover near the unitary limit can reveal critical aspects of the underlying mechanism

behind superfluidity in fermionic matter. The UFG is also universal, meaning its properties

are independent of the details of the two-body potential. This universality allows for robust

comparisons and predictions between seemingly disparate quantum systems. For instance,

the UFG is relevant for neutron stars, as they provide a means to study superfluid low-

density neutron matter [115, 116], whose properties are crucial for the phenomenology of

glitches [32] and the cooling of these stars via neutrino emission [30, 31, 117].

The onset of strong pairing correlations and the non-perturbative nature of the interaction

makes the theoretical study of these systems particularly challenging for quantum many-

body methods. Among them, quantum Monte Carlo (QMC) has proven to be exceptionally

efficient in calculating various properties with high accuracy, including the energy [118],

pairing gap [119], and other quantities related to the so-called contact parameter [120].

Diffusion Monte Carlo (DMC), in particular, is an accurate tool for calculating the properties

of quantum many-body systems [121]. The fixed-node approximation typically employed in

DMC calculations to control the fermion-sign problem provides a rigorous upper bound

to the ground-state energy that agrees well with other methods and experiments [122, 123].

Moreover, unlike the Auxiliary Field Quantum Monte Carlo method, DMC can handle broad

classes of local interactions, which provides exact results that are sign-problem free but is

limited only to unpolarized systems with a purely attractive interaction [118]. However, the

fixed-node approximation limits the accuracy of DMC energies, which induces a residual

dependence on the starting variational wave function. The latter has a critical role in DMC

calculations of expectation values of operators that do not commute with the Hamiltonian,

such as spatial and momentum distributions. The analytical form of the variational ansatz

198

is usually tailored to specific problems of interest and biased by the physical intuition of the

researchers.

In this work, we overcome these limitations by performing variational Monte Carlo

(VMC) calculations of ultra-cold Fermi gases with neural-network quantum states

(NQS) [1] that incorporate only the most essential symmetries and boundary conditions.

After their initial application to quantum-chemistry problems [46, 124], continuous-space

NQS have been successfully employed to study quantum many-body systems in the

presence of spatial periodicities, such as interacting quantum gases of bosons [125], the

homogeneous electron gas [126, 127], and dilute neutron matter [15]. Recent works have

also used NQS to solve the nuclear Schrödinger equation in both real space[40, 128, 129,

130, 131] and the occupation number formalism [132]. When dealing with fermions, the

antisymmetry is usually enforced using generalized Slater determinants, the expressivity of

which can be augmented with either backflow transformations [133] or by adding “hidden”

degrees of freedom [56].

Strong pairing correlations in fermionic systems motivate adopting an antisymmetrized

wave function constructed from pairing orbitals rather than single-particle orbitals. One

such construction, often called the geminal wave function [134, 135], considers determinants

of spin-singlet pairs, while other more general wave functions based on the Pfaffian [136, 6,

7, 137], consider both singlet and triplet contributions. Pfaffian wave functions combined

with neural-network Jastrow correlators [138] have successfully modeled lattice fermions,

even revealing the existence of a quantum spin liquid phase in the J1-J2 models on two-

dimensional lattices [139].

We propose a novel NQS that extends the conventional Pfaffian-Jastrow [6] ansatz by

incorporating neural backflow transformations into a fully trainable pairing orbital. The

199

backflow transformations are generated by a message-passing architecture recently

introduced to model the homogeneous electron gas [2]. In addition to being a significant

departure from generalized Slater determinants, our Pfaffian-Jastrow NQS naturally

encodes pairing in the singlet and triplet channels, without stipulating a particular form for

the pairing orbital. In view of this, it is broadly applicable to other strongly-interacting

systems with the same symmetries and boundary conditions. We demonstrate the

representative power of our NQS by computing ground-state properties of ultra-cold Fermi

gases in the BCS-BEC crossover. Our Pfaffian-Jastrow NQS outperforms Slater-Jastrow

NQS by a large margin, even when generalized backflow transformations are included in

the latter. Most notably, we find lower energies than those obtained with state-of-the-art

DMC methods, which start from highly-accurate BCS-like trial wave functions.

The rest of the paper is organized as follows. In Section ??, we introduce the Hamiltonian

used to model ultra-cold atomic gases near the unitary limit and the many-body techniques

used to solve the Schrödinger equation. In Section 9.6, we compare the Pfaffian-Jastrow

NQS with other NQS ansätze and state-of-the-art DMC results. Finally, in Section 9.7, we

draw our conclusion and provide future perspectives of this work.

9.2 Hamiltonian

As customary in QMC approaches, we simulate the infinite system using a finite number of

fermions N in a cubic simulation cell with side length L, equipped with periodic boundary

conditions (PBCs) in all d = 3 spatial dimensions. We use ri ∈ Rd and si ∈ {↑, ↓} to denote

the positions and spin projections on the z-axis of the i-th particle, and the length L can be

determined from the uniform density of the system N/L3 = k3F /(3π
2). The dynamics of the

200

unpolarized gas is governed by the non-relativistic Hamiltonian

H = − ℏ2

2m

N∑
i

∇2
i +

N∑
ij

vij , (9.1)

where the attractive two-body interaction

vij = (δsi,sj − 1)v0
2ℏ2

m

µ2

cosh2(µrij)
, (9.2)

acts only between opposite-spin pairs, making the interaction mainly in s-wave for small

values of re. In the above equations,∇2
i is the Laplacian with respect to ri and rij = ∥ri−rj∥

is the Euclidean distance between particles i and j. The Pöschl-Teller interaction potential

of Eq. (9.2) provides an analytic solution of the two-body problem and has been employed

in several previous QMC calculations [140, 141, 142, 120]. The parameters v0 and µ tune

the scattering length a and effective range re, respectively. In the unitary limit |a| → ∞,

the zero-energy ground state between two particles corresponds to v0 = 1 and re = 2/µ.

In order to analyze the crossover between the BCS and BEC phases, we will use different

combinations of v0 and µ that correspond to the same effective range. In addition, we will

consider various values of µ with fixed v0 = 1 to extrapolate the zero effective range behavior

at unitarity.

9.3 Neural-Network Quantum States

We solve the Schrödinger equation associated with the Hamiltonian of Eq. (9.1) using two

different families of NQS. All ansätze have the general form

Ψ(X) = eJ(X)Φ(X), (9.3)

201

where the Jastrow correlator J(X) is symmetric under particle exchange and Φ(X) is

antisymmetric. Here, we have introduced X = {x1, . . . ,xN}, with xi = (ri, si), to

represent the set of all single-particle positions and spins compactly.

In addition to the antisymmetry of fermionic wave functions, the periodic boundary

conditions, and the translational symmetry (which will be discussed in Sec. ??), we also

enforce the discrete parity and time-reversal symmetries as prescribed in Ref. [130]. More

specifically, we carry out the VMC calculations for the unpolarized gas using ΨPT (R, S)

given by

ΨP (R, S) = Ψ(R, S) + Ψ(−R, S), (9.4)

ΨPT (R, S) = ΨP (R, S) + (−1)nΨP (R,−S), (9.5)

where n = N/2 and we have used the notation R = {r1, . . . , rN} and S = {s1, . . . , sN} for

the set of all positions and spins, respectively. Enforcing these symmetries has been shown

to accelerate the convergence of ground-state energies for both atomic nuclei [130] and dilute

neutron matter [15].

9.3.1 Pfaffian-Jastrow-Backflow

The antisymmetric part of the wave function employed in QMC studies of ultra-cold Fermi

gases is typically constructed as an antisymmetrized product of BCS spin-singlet

pairs [143, 140, 115, 141, 144]. It goes by a variety of names, such as the geminal wave

function [134, 135], the singlet pairing wave function [6], and the (number-projected) BCS

wave function [144], just to name a few. Although geminal wave functions have

demonstrated significant improvements over single-determinant wave functions of

202

single-particle orbitals, the energy gains are typically smaller for partially spin-polarized

systems [135], as contributions from the spin-triplet channel are missing. This naturally

leads to the singlet-triplet-unpaired (STU) Pfaffian wave function [136, 6], in which the

pairing orbitals are explicitly decomposed into singlet and triplet channels. Then, the STU

ansatz is expressed as the Pfaffian of a block matrix, with the singlet, triplet, and unpaired

contributions partitioned into separate blocks. When the triplet blocks are zero, the STU

wave function reduces to the geminal wave function.

Both the geminal and the STU wave functions rely on fixing the spin ordering of the

interacting fermions. Consequently, they are not amenable to potentials that exchange

spin, such as those used to model the interaction among nucleons [145]. In neutron-matter

calculations, for instance, the pairing orbital for the Pfaffian wave function can be taken as

a product of a radial part and a spin-singlet part [7, 137]. The spin-triplet pairing has so

far been neglected in neutron-matter calculations, but they can be treated similarly

without requiring spin ordering.

To address the limitations of the works mentioned above, we take the most general form

of the Pfaffian wave function [136, 6] as the antisymmetric part of our ansatz

ΦPJ (X) = pf



0 ϕ(x1,x2) · · · ϕ(x1,xN)

ϕ(x2,x1) 0 · · · ϕ(x2,xN)

...
...

ϕ(xN ,x1) ϕ(xN ,x2) · · · 0


, (9.6)

where we assume the unpolarized case for this initial investigation. We do not keep the

spins fixed, nor do we mandate a specific form for the pairing orbital ϕ(xi,xj). Instead, we

capitalize on the universal approximation property of feed-forward neural networks

203

(FNN) [146] by defining the pairing orbital as

ϕ(xi,xj) = ν(xi,xj)− ν(xj ,xi), (9.7)

where ν is a dense FNN. The above expression ensures that the Pfaffian is mathematically

well-defined, as the matrix is skew-symmetric by construction ϕ(xi,xj) = −ϕ(xj ,xi). Since

ν takes all the degrees of freedom of a given pair of particles as input, including the spins,

our pairing orbital has the capacity to discover the spin-singlet and spin-triplet correlations

on its own.

This design leaves our Pfaffian-Jastrow (PJ) ansatz agnostic to any particular form of

the interaction and systematically improvable by simply increasing the size of ν. The input

dimension of ν only depends on the spatial dimension d and not the total number of particles

N , leading to an exceptionally scalable ansatz. Given the generality of our formulation, the

Pfaffian ansatz calculation cannot be reduced to a determinant of singlet pairing orbitals as

in the geminal wave function. Thus, the efficient computation of the Pfaffian is crucial to the

scalability of our approach. To this aim, we implement the Pfaffian computation according

to Ref. [13].

We further improve the nodal structure of our PJ ansatz through backflow (BF)

transformations [97]. To our knowledge, this is the first time neural BF transformations

have been used in a Pfaffian wave function, although they have demonstrated their

superiority over traditional BF transformations within the Slater-Jastrow formalism in

numerous applications [133, 46, 124]. We replace the original single-particle coordinates xi

by new ones x̃i(X), such that correlations generated by the presence of all particles are

incorporated into the pairing orbital. To ensure that the Pfaffian remains antisymmetric,

204

the backflow transformation must be permutation equivariant with respect to the original

xi, i.e. x̃i depends on xi and is invariant with respect to the set {xj}j ̸=i. In Sec. ??, we

discuss in detail how the backflow correlations are encoded via a permutation-equivariant

message-passing neural network. All calculations labeled as PJ-BF assume that we apply

the transformation ν(xi,xj)→ ν(x̃i, x̃j) to the FNN in Eq. (9.7).

Figure 9.2: Schematic representation of a message-passing neural network with T iterations.
Dashed lines represent the concatenation operations, while solid lines represent the
parameterized transformations (linear transformations and nonlinear feedforward neural
networks). Messages, highlighted in pink, mediate the exchange of information between
the one- and two-body streams, in blue. A yellow box indicates a single iteration of the
network.

9.3.2 Fixed-Node Slater-Jastrow

For comparison, we will report results obtained using a Slater-Jastrow (SJ) ansatz, which

amounts to taking the antisymmetric part of the wave function to be a Slater determinant

205

of single-particle states

ΦSJ (X) = det



ϕ1(x1) ϕ1(x2) · · · ϕ1(xN)

ϕ2(x1) ϕ2(x2) · · · ϕ2(xN)

...
...

ϕN (x1) ϕN (x2) · · · ϕN (xN)


. (9.8)

In the fixed-node approximation, the single-particle states are the products of spin eigenstates

with definite spin projection on the z-axis sα and plane wave (PW) orbitals with discrete

momenta kα = 2πnα/L, nα ∈ Zd,

ϕα(xi) = eikα·riχα(si) , (9.9)

where χα(si) = δsα,si . Here, α = (kα, sα) denotes the quantum numbers characterizing

the state. We will label Slater-Jastrow NQS calculations using above plane wave orbitals as

SJ-PW.

9.3.3 Slater-Jastrow-Backflow

As in the Pfaffian case, we improve the nodal structure of the above Slater determinant

using backflow transformations generated by the message-passing neural network discussed

in Sec. ??. We modify the spatial coordinates of Eq. (9.9) as

ri → ri + ui(X) , (9.10)

where the complex backflow displacement ui(X) ∈ Cd allows for changes in both the phases

and amplitudes of the spatial part of the single-particle states. We also map the single-

206

particle spinors onto the Bloch sphere as

χα(x̃i) = cos

(
θi(X)

2

)
δsα,si + sin

(
θi(X)

2

)
(1− δsα,si), (9.11)

where θi(X) ∈ R is the polar angle on the sphere. Both ui(X) and θi(X) are permutation-

equivariant functions of the original coordinates xi, the functional form of which will be

discussed in Sec. 9.3.4.

To motivate the form of the backflow transformation in Eqs. (9.10) and (9.11), let us first

revisit the original plane wave orbitals in Eq. (9.9). We simulate our system in the basis

|xi⟩ = |ri⟩ ⊗ |si⟩, (9.12)

where |ri⟩ are eigenstates of the position operator, with ri ∈ Rd, and |si⟩ are eigenspinors of

the Sz operator, with si ∈ {↑, ↓}. In the fixed-node approximation, we take the single-particle

states to be products of momentum eigenstates with definite wave vector kα = 2πnα/L,

nα ∈ Zd, and eigenspinors with definite spin projection sα,

|ϕα⟩ = |kα⟩ ⊗ |sα⟩. (9.13)

Omitting overall normalization constants, the probability amplitude of measuring particle i

in state α is

ϕα(xi) = ⟨xi|ϕα⟩ = ⟨ri|kα⟩⟨si|sα⟩ = eikα·riδsα,si , (9.14)

which we call the plane wave orbitals.

207

Now, let us transform to a new basis with modified position eigenstates and a

superposition of eigenspinors

|x̃i⟩ = |r̃i⟩ ⊗ |χi⟩. (9.15)

While permutation equivariance is the sole essential property required for the backflow

transformation |xi⟩ 7→ |x̃i⟩ to preserve the antisymmetry of the fermionic wave function,

an additional property is desirable for computational convenience. Specifically, when the

transformation depends on certain parameters, we aim to have |x̃i⟩ = |xi⟩ when the

parameters are identically zero. Then, nonzero parameters signify deviations from the

original plane wave orbitals, such that less training is required compared to completely

trainable orbitals.

An appropriate spatial transformation is trivial. We simply define new parameters ui ∈

Cd, called the backflow displacement, and shift the coordinates as r′i = ri + ui. The

backflow displacement is complex, allowing for changes in both the phases and amplitudes

of the original plane wave orbitals.

For the spin part of the transformation, we look to spinors on the Bloch sphere for

inspiration,

|χi⟩ = cos

(
θi
2

)
|si⟩+ sin

(
θi
2

)
σxi |si⟩. (9.16)

In the above, we have introduced another backflow variable θi ∈ R akin to the polar angle of

a Bloch spinor, and we have excluded the relative phase in favor of a completely real-valued

wave function. We also write the superposition in terms of |si⟩ and the Pauli X-operator

σxi , which flips the spin of the i-th particle, rather than | ↑⟩ and | ↓⟩. This way, it is obvious

208

⟨χi|χj⟩ θi = θj θi − θj = ±π
si = sj 1 0
si ̸= sj 0 ±1

Table 9.1: The limiting cases of the overlap between two neural backflow spinors inspired by
spinors on the Bloch sphere.

that |χi⟩ = |si⟩ when θi = 0, as desired. The overlap of two spinors is given by

⟨χi|χj⟩ = cos

(
θi
2

)
cos

(
θj
2

)
⟨si|sj⟩

+ sin

(
θi
2

)
cos

(
θj
2

)
⟨si|σx†i |sj⟩

+ cos

(
θi
2

)
sin

(
θj
2

)
⟨si|σxj |sj⟩

+ sin

(
θi
2

)
sin

(
θj
2

)
⟨si|σx†i σxj |sj⟩

=
[
cos
(χi
2

)
cos
(χj
2

)
+ sin

(χi
2

)
sin
(χj
2

)]
δsi,sj[

sin

(
θi
2

)
cos

(
θj
2

)
− cos

(
θi
2

)
sin

(
θj
2

)]
(1− δsi,sj)

= cos

(
θi − θj

2

)
δsi,sj + sin

(
θi − θj

2

)
(1− δsi,sj),

(9.17)

where the limiting cases are summarized in the following table.

Finally, we can compute the backflow orbitals with the transformed degrees of freedom

ϕα(x̃i) = ⟨x̃i|ϕα⟩

= ⟨r̃i|kα⟩⟨χi|sα⟩

= eikα·r̃i
(
cos

(
θi
2

)
⟨si|sα⟩+ sin

(
θi
2

)
⟨si|σx†i |sα⟩

)
= eikα·(ri+ui)

(
cos

(
θi
2

)
δsα,si + sin

(
θi
2

)
(1− δsα,si)

)
.

(9.18)

In Eqs. (9.10) and (9.11), we use the notation ui(X) and θi(X) to emphasize that the

209

backflow “parameters" we define here are not variational parameters, but a function of all

other particles. More specifically, they are permutation-equivariant functions of the original

xi, whose functional forms depend on the outputs of the permutation-equivariant message-

passing neural network (MPNN) described in Sec. 9.3.4.

In addition to omitting the relative phase in Eq. (9.16) so that the spinors remain real,

we map the spatial components of the plane wave and backflow orbitals to the equivalent

real ones. For the unpolarized system of fermions, the latter mapping is


eikα·(ri+ui)

e−ikα·(ri+ui)

 7→

ekα·Im(ui) cos (kα · (ri + Re(ui)))

ekα·Im(ui) sin (kα · (ri + Re(ui)))

 . (9.19)

Remember that the spatial inputs to the MPNN are L-periodic, which guarantees that ui is

as well. Therefore it is less redundant to compute


eIm(ui) cos (kα · ri + Re(ui))

eIm(ui) sin (kα · ri + Re(ui))

 , (9.20)

instead of the right-hand side of Eq. (9.19). Then the modified phase Re(ui) and amplitude

eIm(ui) still have the correct periodicity, but they do not reduce to the trivial case when

kα = 0. In the end, this last step is a small detail and does not affect the final result.

9.3.4 Message-Passing Neural Network

Implementing the aforementioned neural-network quantum states is possible using X as

direct inputs to the appropriate FNNs and Deep-Sets [12]. Still, it is advantageous to

devise new inputs that already capture a large portion of the correlations. As in Ref. [2],

we employ a permutation-equivariant message-passing neural network (MPNN) to

210

iteratively build correlations into new one-body and two-body features from the original

“visible” features. The visible features are chosen to be

vi = (si) , (9.21)

vij =
(
rij , ∥rij∥, sij

)
, (9.22)

with the separation vectors rij = ri − rj and distances ∥rij∥ = rij replaced by their L-

periodic surrogates

rij 7→
(
cos(2πrij/L), sin(2πrij/L)

)
, (9.23)

∥rij∥ 7→ ∥ sin(πrij/L)∥, (9.24)

and the quantity sij ≡ 2δsi,sj − 1 assigned a value of +1 for aligned spins and −1 for anti-

aligned spins. Note that we have excluded explicit dependence on the particle positions ri in

the visible one-body features, thereby enforcing translational invariance in the new features.

Linear transformations are applied to and concatenated with each feature to obtain the

initial hidden features

h
(0)
i = (vi, Avi), (9.25)

h
(0)
ij = (vij , Bvij). (9.26)

The main purpose of the linear transformations is to preprocess the input data. Still, they

also help simplify the implementation by keeping the dimension of the hidden features h(t)
i ,

h
(t)
ij constant for all t. In each iteration, t = 1, . . . , T of the MPNN, information is exchanged

211

between the one- and two-body streams through a so-called “message”

m
(t)
ij = Mt

(
h
(t−1)
i , h

(t−1)
j , h

(t−1)
ij

)
. (9.27)

For a given particle i, relevant messages are collected and pooled together to destroy the

ordering with respect to all other particles j ̸= i,

m
(t)
i = pool

(
{m(t)

ij | j ̸= i}
)
. (9.28)

The pooling operation pool collapses the order of the elements in the set it acts upon and

produces a vector with the same dimension as an individual element. Throughout this work,

we use logsumexp-pooling, the smooth variation of max-pooling.

The pairwise messages m
(t)
ij and the implied particle messages m

(t)
i are then used to

update the hidden features

h
(t)
i =

(
vi, Ft

(
h
(t−1)
i , m

(t)
i

))
, (9.29)

h
(t)
ij =

(
vij , Gt

(
h
(t−1)
ij , m

(t)
ij

))
. (9.30)

The functions Mt, Ft, and Gt are all unique FNNs with the same output dimension as the

linear preprocessors A and B. By incorporating concatenated skip connections to the visible

features, we guarantee that the signal originating from the raw data remains discernible even

as the MPNN depth T increases. Finally, we combine the resulting outputs h
(T)
i and h

(T)
ij

into pairwise feature vectors

gij =
(
h
(T)
i ,h

(T)
j ,h

(T)
ij

)
(9.31)

212

to feed into subsequent networks. The flow of information through the MPNN can be

visualized in Fig. 9.2. Notice how the hidden features in a given layer depend on the hidden

features of the previous layer and the original visible features.

For all our NQS, we use a Jastrow correlator based on a Deep-Set [12] to enforce

permutation invariance over the set of all pairwise features

J(X) = ρ
(
pool

(
{ζ(gij) | i ̸= j}

))
. (9.32)

Here, ρ and ζ are FNNs, and the pooling operation is the same as in Eq. (9.28). While many

Jastrow functions are typically designed to satisfy Kato’s cusp condition [147] for specific

systems, we take a different approach and allow our neural networks to learn the cusp fully.

The short-range behavior of the ground state is particularly important for the UFG, so

leaving our NQS completely unbiased serves as an important test for evaluating the overall

capabilities of NQS.

The Slater-Jastrow ansatz with plane wave orbitals (SJ-PW) does not require any

additional neural networks beyond ρ and ζ, so it establishes a baseline for the number of

trainable parameters in this work. On the other hand, the backflow variables ui and θi for

the Slater-Jastrow ansatz with backflow orbitals (SJ-BF) are the outputs of another

Deep-Set

(Re(ui), Im(ui), θi) = ρbf

(
pool

(
{ζbf (gij) | j ̸= i}

))
, (9.33)

which is permutation invariant with respect to all j ̸= i by construction. The size of ρbf

and ζbf determines the number of extra variational parameters present in the SJ-BF ansatz

compared to the SJ-PW ansatz. For the PJ-BF ansatz, the pairing orbital ν in Eq. (9.7)

simply takes gij as input in place of (xi,xj). Therefore, the number of additional variational

213

parameters in the PJ-BF ansatz relative to the SJ-PW ansatz is determined by the size of

ν.

All of the feedforward neural networks mentioned throughout this section have at least

two hidden layers with 16 nodes each. The activation function is GELU [148] and the

weights/biases are initialized with glorot normal/zeros unless pretrained parameters are used.

It is worth highlighting that the individual feedforward neural networks within our NQS

are solely dependent on the spatial dimension d and not the system size N . Therefore,

even though this study focuses on benchmarking the N = 14 case, the trained NQS can

be used as starting points for larger even-N , unpolarized systems without requiring any

modifications to the network structure. This is an example of transfer learning, a powerful

strategy that involves applying knowledge gained from solving one problem to another, often

more challenging problem.

9.4 Variational Monte Carlo and Training

We train our NQS by minimizing the energy

E(p) ≡ ⟨Ψ(p)|H|Ψ(p)⟩
⟨Ψ(p)|Ψ(p)⟩ (9.34)

with respect to the variational parameters p. To compute the energy and its gradient ∇pE

using Monte Carlo integration, we sample positions R and spins S from |Ψ(R, S)|2 in a way

that preserves periodicity and total spin projection on the z-axis, as in Refs. [125, 130].

Since the ordering of the spins is not fixed, our ansätze can be immediately applied to any

continuous-space Hamiltonian that exchange spin, such as Ref. [149].

A sophisticated optimization technique is critical for achieving an ansatz that is both

214

compact and expressive. In this work, we employ the stochastic reconfiguration [9] (SR)

algorithm with regularization based on the RMSprop method, introduced in Ref. [130]. The

parameters are updated as

p← p− ηG−1∇pE, (9.35)

where η is a constant learning rate and G is the quantum geometric tensor [10].

Due to the strong and short-range nature of the interaction in Eq. (9.2), it is likely for

the optimization process to get trapped in a local minimum when initialized with random

parameters. To avoid this problem, we use transfer learning by pretraining the NQS on

a softer interaction (µ = 5) before proceeding to harder ones (µ = 10, 20, 40). Not only

does this approach improve the final converged energy, but the efficiency of the optimization

process overall. The training for lower values of µ can handle a more aggressive learning rate

δ and fewer samples. As a general guideline, we reduce δ by a factor of 10 and double the

number of samples each time the value of µ is doubled. The number of optimization steps

required for training ranges from O(103) to O(104), depending on whether the NQS were

pretrained or initialized with random parameters.

9.5 Diffusion Monte Carlo

The fixed-node DMC calculations are performed as described in Ref. [150]. The initial state

is prepared using VMC methods with a variational wave function with the same general

form as Eq. (9.3). Note that, within the fixed-node approximation, DMC provides a strict

upperbound to the energy of the system. While DMC is a precise method, its accuracy

relies on the choice of nodal surface and the quality of the preceding VMC calculation. The

215

symmetric Jastrow factor is given by

J(X) =
n∑
ii′

u(rii′), (9.36)

u(r) = K tanh(µJr) cosh(γr)/r , (9.37)

where n = N/2 and the unprimed and primed indicies denote the spin-up and spin-down

particles, respectively. The parameters K and γ are adjusted so that u(d) = 0 and u′(d) = 0,

and µJ and d are variational parameters. Considering that the s-wave channel dominates

the interaction, the antisymmetric part is given by the number-projected BCS wave function

ΦBCS(X) = det



ϕ(r11′) ϕ(r12′) · · · ϕ(r1n′)

ϕ(r21′) ϕ(r22′) · · · ϕ(r2n′)

...
...

ϕ(rn1′) ϕ(rn2′) · · · ϕ(rnn′)


, (9.38)

with the pairing orbitals

ϕ(r) = β̃(r) +
∑
i

a(k2i)e
iki·r , (9.39)

β̃(r) = β(r) + β(L− r)− 2β(L/2) , (9.40)

β(r) = (1 + cbr) (1− e−dbr)e
−br

dbr
. (9.41)

The parameters a(k2i), b and d are obtained by minimizing the energy, and c is chosen so

that the function β has zero slope at the origin. If we instead let β = 0 and restrict the sum

in Eq. (9.39) to momentum states filled up to kF , the antisymmetric part is equivalent to

216

the Slater determinant with single-particle plane waves as in Eqs. (9.8) and (9.9). Since this

approach does not involve pairing, we will refer to the related DMC results as DMC-PW.

Conversely, the approach that accounts for pairing will be identified as DMC-BCS.

It should be emphasized that the BCS wave function of Eq. (9.38) is a special case of the

generalized Pfaffian of Eq. (9.6). In fact, it can be easily shown [6] that by only retaining the

spin-singlet blocks, the calculation of the Pfaffian reduces to the determinant of spin-singlet

block.

9.6 Results

9.6.1 Energy

We first compare the performance of the various neural-network quantum states outlined in

Sec. 9.3 as the message-passing neural network (MPNN) depth T is varied. As shown in

Fig. 9.3, the final converged energies per particle for the Slater-Jastrow ansatz with plane

wave orbitals (SJ-PW) decreases monotonically towards the corresponding DMC-PW

benchmark, with remarkable agreement at T = 5. This behavior echoes the findings of

Ref. [151], and demonstrates the impact of the MPNN on the flexibility of our Jastrow.

Incorporating backflow correlations into the Slater-Jastrow ansatz (SJ-BF) significantly

improves results compared to the fixed-node approach with PW, but more than half of the

discrepancy between the two DMC energies remains. Due to the observed weak

dependence on T , it is unlikely that further increasing T would yield a substantial

improvement in energy. The SJ-BF ansatz may be able to achieve energies more similar to

the DMC-BCS benchmark by increasing the width of the feedforward neural networks.

Still, the associated computational expenses are expected to be prohibitively high.

Therefore, we turn our attention to the Pfaffian-Jastrow-Backflow (PJ-BF) ansatz. Even

217

Figure 9.3: Ground-state energies per particle as a function of the MPNN depth T for the
SJ-PW (blue squares), SJ-BF (orange circles), and PJ-BF (green triangles) ansätze. The
interaction parameters are set to v0 = 1 and µ = 5, corresponding to an effective range of
rekF = 0.4. The DMC benchmark energies with and without pairing are displayed as solid
and dashed lines, respectively.

218

Figure 9.4: Ground-state energies per particle as a function of the effective range. The
DMC-BCS benchmark energies (blue circles) and the Pfaffian-Jastrow with backflow (PJ-BF)
energies (orange triangles) are extrapolated to zero effective range using linear fits (dashed
lines). The shaded regions are the error bands for the DMC-BCS and PJ-BF energies.

with a single MPNN layer, the PJ-BF ansatz easily outperforms DMC-BCS while also

possessing fewer parameters (∼5600 v.s. ∼6200) than the single-layer SJ-BF ansatz. The

overall dependence on the MPNN depth is weak, with T = 2 giving slightly lower energy

and variance than T = 5. For the remainder of our analysis, we will use the PJ-BF ansatz

with T = 2, which contains about 8500 variational parameters.

As the unitary limit is characterized by a vanishing effective range, we study how the

ground-state energy responds to changing kF re in Fig. 9.4. The PJ-BF ansatz gives energies

∼1-2% lower than DMC-BCS as the effective range is decreased from kF re = 0.4 to kF re =

0.1. At kF re = 0.05, our energy falls below the range of the DMC-BCS error band, suggesting

219

µ kF re DMC-BCS PJ-BF
5 0.4 0.446(1) 0.4366(3)
10 0.2 0.428(1) 0.4208(3)
20 0.1 0.418(1) 0.4131(8)
40 0.05 0.412(1) 0.408(1)
∞ 0.0 0.408(1)∗ 0.405(1)∗

Table 9.2: Energy per particle for various values of µ and the corresponding values of re.
The values with asterisks (∗) are extrapolations from the linear fits shown in Fig. 9.4. The
parameter v0 = 1 is fixed.

our approach is likely to maintain its superior performance as re is decreased further. To

estimate the energy at zero effective range, we also perform simple linear fits — See Table 9.2

for the extrapolated values. Note that our results have been obtained by simulating a system

of N = 14 particles for benchmark purposes. In order to obtain energies closer to the

thermodynamic limit, further simulations with more particles will be needed [122, 152].

9.6.2 Pair Distribution Functions

In Fig. 9.5, we show the opposite-spin pair distribution functions at unitarity for µ = 5, 10,

and 20. Notice how the peaks of the distributions at kF r = 0 grow roughly quadratically

with µ, demonstrating the presence of strong pairing correlations as we approach the unitary

limit µ→∞. Clearly, the short-range character of the distributions are important to capture

at unitarity, as they begin to converge around kF r ≳ 0.4.

Fig. 9.6 presents a complementary set of opposite-spin pair distribution functions in the

crossover region with fixed effective range of kF re = 0.2. When we lean towards the BCS

phase 1/akF = −0.5, the long-range tail of the density is enhanced compared to the unitary

case 1/akF = 0. On the other hand, the tail is diminished in the BEC phase 1/akF = −0.5,

suggesting the initiation of dimer formation. The differences in the peaks of the distributions

are not as dramatic as in Fig. 9.5, but they are consistent with the expected behavior in the

220

Figure 9.5: Opposite-spin pair densities as a function of small kF r at unitarity (v0 = 1) and
µ = 5 (blue squares), µ = 10 (orange circles), and µ = 20 (green triangles).

221

Figure 9.6: Opposite-spin pair densities in the crossover region for the BCS phase 1/akF =
−0.5 (blue squares), unitarity 1/akF = 0 (orange circles), and BEC phase 1/akF = 0.5
(green triangles). The effective range of all cases are fixed kF re = 0.2. See Table 9.4 for the
corresponding values of v0 and µ.

222

1/akF v0 µ DMC-BCS PJ-BF
-1 0.879214 11.06247 0.801(1) 0.7930(2)

-0.5 0.933216 10.55715 0.705(1) 0.6937(3)
-0.2 0.971423 10.23012 0.578(1) 0.5671(3)
-0.1 0.985366 10.11637 0.510(1) 0.5014(4)
0 1.0 10.0 0.428(1) 0.4208(3)

0.1 1.015388 9.880801 0.328(1) 0.3218(3)
0.2 1.031602 9.758564 0.208(1) 0.2017(3)
0.5 1.086081 9.371025 -0.319(1) -0.3244(4)
1 1.204354 8.632898 -2.053(1) -2.0566(6)

Table 9.3: Energies per particle and interaction parameters for the two-body potential in
Eq. (9.2) giving different scattering lengths with the same effective range kF re = 0.2.

BCS and BEC regimes near unitarity.

Finally, we explore the BCS-BEC crossover region for a fixed effective range kF re = 0.2

in Fig. 9.7. See Table 9.4 for the values of the interaction parameters v0 and µ, as well as

the corresponding DMC-BCS benchmarks and the PJ-BF ansatz results. The cases closer to

unitarity were used to pretrain the cases further away. In the BCS regime, our PJ-BF ansatz

consistently yields energies ∼ 0.01EFG lower than those obtained from DMC-BCS, albeit

with slightly inferior performance in the BEC regime. We attribute this effect to the need

for increased flexibility in capturing the short-range behavior of pairs in the BEC regime.

Simply increasing the size of feedforward neural network ν that defines the pairing orbital

should alleviate this discrepancy. In any case, the PJ-BF ansatz gives lower energies than

DMC-BCS for all scattering lengths tested.

9.6.3 Pairing Gap

The pairing gap can be evaluated using

∆(N) = E(N)− 1

2

(
E(N + 1) + E(N − 1)

)
, (9.42)

223

Figure 9.7: Upper panel: Energy per particle in the BCS-BEC crossover region as a function
of the scattering length a for a fixed effective range kF re = 0.2. Lower panel: Difference
between Pfaffian-Jastrow with backflow (PJ-BF) and DMC-BCS benchmark energies. See
Table 9.4 for the corresponding values of v0 and µ.

224

N DMC-BCS PJ-BF
14 0.428(1) 0.4208(3)
15 0.4900(2) 0.4766(5)
15 0.5357(2)∗ 0.5209(5)∗
16 0.4240(2) 0.4177(4)

Table 9.4: Energies per particle for different numbers of particles, with kF re = 0.2. Values
with asterisks (∗) indicate translation-invariant calculations.

where N is taken to be odd and E(N) denotes the total energy for N particles. Since our

construction of the Pfaffian-Jastrow-Backflow ansatz remains independent of the system size

N (assuming N is even), the trained ansatz for N = 14 serves as the initial state for the

N = 16 calculation. To accommodate odd-N cases, we incorporated an additional neural

network to represent the unpaired single-particle orbital. Furthermore, for the N = 15

calculation, the pairing orbital from the N = 16 calculation was utilized as the starting

point.

In Table 9.5, we present two different evaluations of the pairing gap, corresponding to

the DMC-BCS results using a single-particle orbital with and without translation invariance.

To enforce translation invariance in our odd-N PJ-BF ansatz, we simply take the one-body

output of the message-passing neural network h
(T)
i as input to the single-particle pairing

orbital. To break translation invariance, we concatenate the positions
(
ri,h

(T)
i

)
with the

MPNN output, keeping in mind the spins have already been included in the latter. Due

to our lower energies for N = 15 compared to DMC-BCS, we predict a pairing gap that

is ∼ 0.10EFG smaller in the non-translation invariant case and ∼ 0.12EFG smaller in the

translation invariant case.
9.7 Conclusions and perspectives

In this study, we propose a novel neural-network quantum state based on the Pfaffian-Jastrow

(PJ) framework that utilizes a message-passing neural network (MPNN) to encode pairing

225

∆(15)/EFG DMC-BCS PJ-BF
Non-translation invariant 0.9620 0.8618

Translation invariant 1.6475 1.5263

Table 9.5: Energies per particle for different numbers of particles, with kF re = 0.2. Values
with asterisks (∗) indicate translation-invariant calculations.

and backflow (BF) correlations. We evaluate its performance against comparable Slater-

Jastrow (SJ) ansätze with identical MPNN architectures. Our results indicate that increasing

the depth of the MPNN systematically improves the performance of the SJ ansätze, but

backflow correlations within the single-particle picture are still insufficient in capturing all

pairing correlations. However, we demonstrate that a simple and compact PJ-BF ansatz

surpasses the DMC-BCS benchmark with ease.

Transfer learning has proven to be an essential tool in this work. It enables the realization

of the unitary limit in a controlled manner, mitigating the risk of becoming trapped in local

minima. It also allows for the efficient exploration of regions beyond unitarity, unlocking

new avenues for studying the BCS-BEC crossover. Transfer learning will remain a crucial

part of our training procedure as we move to larger systems. All unpolarized systems can

be treated with a single architecture, while the N ± 1 systems can be treated by introducing

one additional FNN to represent the unpaired single-particle orbital. This modification is

straightforward to implement, making the calculation of the gap in the thermodynamic limit

more accessible and enabling further advancements in our work.

Besides calculating the gap for larger systems, our next steps include a direct comparison

with the STU Pfaffian wave function of Ref. [6]. We also plan to perform a more careful

extrapolation to the re → 0 limit since we have used relatively large values of kF re for this

initial investigation. However, more hyperparameter tuning will be needed, especially about

the width of the hidden layers, since the smaller values of re will require more flexibility.

226

Our Pfaffian-Jastrow-Backflow NQS displays immense potential in the study of ultra-

cold Fermi gases. Unlike conventional methods, our PJ-BF ansatz is not subject to biases

arising from physical intuition or a lack thereof, as it does not require specifying a particular

form for the pairing orbitals. For this reason, it can be readily applied to other strongly-

correlated systems, including molecules and other strongly-correlated quantum systems. In

stark contrast to the commonly used geminal wave function, our ansatz does not rely on

ordering the spin of the interacting fermions, and it is therefore amenable to Hamiltonians

that exchange spin, such as those modeling nuclear dynamics. In this regard, we anticipate

calculations of atomic nuclei and low-density isospin-asymmetric nucleonic matter and carry

out detailed investigations on the nature of nuclear pairing [153].

When the stochastic reconfiguration algorithm and transfer learning techniques are

combined with the enforcement of translational, parity, and time-reversal symmetries,

highly non-perturbative correlations can be encoded in a small number of parameters by

modern standards. This approach will pave the way for future developments in the study

of many-body systems, as it offers a powerful tool for encoding correlations in a compact

and computationally feasible manner.

Note Added: A work very recently appeared in pre-print [154] introduces neural backflow

transformations in a geminal wave function and studies the unitary Fermi gas. We leave

systematic comparisons between the two approaches to future works while already observing

that the Pfaffian wave function is a strict generalization of the geminal wave function [155,

6].

227

10 Conclusions and Perspectives

The emergence of neural-network quantum states has ushered in a transformative era in

our exploration of complex quantum many-body systems. These novel models, which draw

inspiration from the interdisciplinary marriage of machine learning and quantum physics,

demonstrate an unprecedented capacity to capture nonlinear correlations in the many-body

wave function while maintaining flexibility in adapting to a variety of Hamiltonians. By

omitting the cusp condition and constraining only the most essential symmetries and

boundary conditions, we prove that neural-network quantum states have the

representational power to reproduce state-of-the-art results without imposing biased

physical intuition.

Before neural-network quantum states, the diffusion Monte Carlo (DMC) method

unequivocally outperformed the variational Monte Carlo (VMC) method, with the former

treated as the gold standard. The difference in performance between the two methods can

be attributed to imperfections in the parameterization of the trial wave function in the

variational Monte Carlo calculation. However, the diffusion Monte Carlo method, while

extremely accurate, still relies on the fixed-node approximation to handle the fermion sign

problem. With the adoption of neural-network quantum states, we find that the VMC

method often surpasses the DMC method, implying that the errors in the DMC calculation

are due to the fixed-node approximation.

In addition to avoiding the fermion sign problem, a neural-network quantum state

trained with the VMC algorithm produces a closed form expression for the ground state

wave function. This is in contrast to the DMC method, which produces a final distribution

228

of Markov chain Monte Carlo walkers rather than an analytical formula. Though the

variational parameters of the neural-network quantum state are harder to interpret

compared to traditional VMC methods, they can be used to reproduce the wave function

and extract observables.

The universal approximation property of feedforward neural networks endows them with

an impressive capacity to handle a wide range of Hamiltonians. This generality comes at

a cost, as neural-network quantum states often require many orders of magnitude more

variational parameters than conventional trial wave functions. Throughout this work, we

prioritize a compact ansatz by improving upon other aspects of the calculation, such as the

optimization scheme and sampling algorithm, in addition to increasing the flexibility of the

wave function through imposing discrete symmetries, attention mechanisms, and message-

passing neural networks. As a result, our neural-network quantum states utilize substantially

fewer parameters than related networks applied to similar challenges.

Gazing ahead, this young field will continue to develop as cutting-edge neural-network

architectures are adapted into neural-network quantum states. The most compact designs

will prevail as the most scalable solutions, allowing us to tackle larger systems than ever

before. This is particularly significant for infinite matter, as finite-size errors can hide crucial

information about phase transitions, in which long-range correlations dominate.

Besides addressing stationary problems, neural-network quantum states offer the

potential to describe the dynamic evolution of quantum many-body systems in real time.

While this feat has been achieved for spin systems, its application to continuous-space

systems remains unexplored. In the context of the unitary Fermi gas (as discussed in

Sec. 9), investigating real-time dynamics could provide irrefutable evidence of superfluidity,

manifested through the formation of quantum vortices. Moreover, neural-network quantum

229

states hold promise for applications to the finite-temperature variational Monte Carlo

method. This avenue may allow for the prediction of the critical temperature of

superfluidity for the unitary Fermi gas—a parameter speculated to be among the highest

across all known systems. The implications are far-reaching, resonating with the pursuit of

room-temperature superconductivity, which is arises from the same pairing mechanism. As

neural-network quantum states continue to unravel the complex behaviors of quantum

systems, they open doors to a more comprehensive understanding of phenomena that have

the potential to revolutionize materials science and technology.

All of the periodic systems discussed in this work (neutron matter, electron gas,

ultra-cold Fermi gases) are relevant to the description of neutron stars. Adding asymmetric

nuclear matter into the list of systems would further broaden the scope of our

understanding and enable a more comprehensive exploration of the intricate physics

governing these astrophysical phenomena. The ground state wave function could reveal the

formation of nuclear clusters in their various possible shapes depending on the density and

proton fraction. The real-time evolution of asymmetric nuclear matter could shed light on

the nuclear reactions that can occur in neutron stars, like the fusion of alpha particles.

In conclusion, neural-network quantum states have achieved impressive milestones in

their relatively short lifespan. Looking forward, their potential remains substantial and

encouraging. Yet, there’s still much ground to cover, inviting ongoing research and

exploration in this evolving field.

230

BIBLIOGRAPHY

[1] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body problem
with artificial neural networks”. Science. 2017.

[2] Gabriel Pescia et al. “Message-Passing Neural Quantum States for the Homogeneous
Electron Gas”. arXiv: 2305.07240 (quant-ph). 2023.

[3] David Pfau et al. “Ab initio solution of the many-electron Schrödinger equation with
deep neural networks”. Phys. Rev. Res. 2020.

[4] Alessandro Lovato et al. “Hidden-nucleons neural-network quantum states for the
nuclear many-body problem”. Phys. Rev. Res. 2022.

[5] Jane Kim et al. “Neural-network quantum states for ultra-cold Fermi gases”. arXiv:
2305.08831 (cond-mat.quant-gas). 2023.

[6] M. Bajdich et al. “Pfaffian pairing and backflow wavefunctions for electronic structure
quantum Monte Carlo methods”. Phys. Rev. B. 2008.

[7] S. Gandolfi et al. “Equation of state of low-density neutron matter, and the 1S0 pairing
gap”. Phys. Rev. C. 2009.

[8] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.

[9] Sandro Sorella. “Wave function optimization in the variational Monte Carlo method”.
Phys. Rev. B. 2005.

[10] James Stokes et al. “Quantum Natural Gradient”. Quantum. 2020.

[11] M. P. Kuchera et al. “Machine Learning Methods for Track Classification in the AT-
TPC”. Nucl. Instrum. Meth. Phys. Res. A. 2019.

[12] Manzil Zaheer et al. “Deep sets”. Advances in neural information processing systems.
2017.

[13] M. Wimmer. “Algorithm 923: Efficient Numerical Computation of the Pfaffian for
Dense and Banded Skew-Symmetric Matrices”. ACM Trans. Math. Softw. 2012.

[14] Hiroki Saito. “Method to Solve Quantum Few-Body Problems with Artificial Neural
Networks”. J. Phys. Soc. Jpn. 2018.

[15] Bryce Fore et al. “Dilute neutron star matter from neural-network quantum states”.
Phys. Rev. Res. 2023.

231

2305.07240
2305.08831

[16] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary
Neutron Star Inspiral”. Phys. Rev. Lett. 2017.

[17] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron Star Merger”.
Astrophys. J. 2017.

[18] Andrea Sabatucci and Omar Benhar. “Tidal Deformation of Neutron Stars from
Microscopic Models of Nuclear Dynamics”. Phys. Rev. C. 2020.

[19] Peter Senger. “Probing Dense Nuclear Matter in the Laboratory: Experiments at
FAIR and NICA”. Universe. 2021.

[20] C. Drischler et al. “Neutron matter from chiral two- and three-nucleon calculations
up to N3LO”. Phys. Rev. C. 2016.

[21] M. Piarulli et al. “Benchmark calculations of pure neutron matter with realistic
nucleon-nucleon interactions”. Phys. Rev. C. 2020.

[22] D. Lonardoni et al. “Nuclear and neutron-star matter from local chiral interactions”.
Phys. Rev. Res. 2020.

[23] W. G. Jiang et al. “Accurate bulk properties of nuclei from A = 2 to∞ from potentials
with ∆ isobars”. Phys. Rev. C. 2020.

[24] Francesca Sammarruca and Randy Millerson. “Overview of symmetric nuclear matter
properties from chiral interactions up to fourth order of the chiral expansion”. Phys.
Rev. C. 2021.

[25] H. Heiselberg and M. Hjorth-Jensen. “Phases of dense matter in neutron stars”. Phys.
Rep. 2000.

[26] Andrea Sabatucci et al. “Sensitivity of neutron star observations to three-nucleon
forces”. Phys. Rev. D. 2022.

[27] Armen Sedrakian, John W Clark, and Mark Alford. “Pairing in Fermionic Systems”.
2006.

[28] Omar Benhar and Giulia De Rosi. “Superfluid Gap in Neutron Matter from a
Microscopic Effective Interaction”. J. Low Temp. Phys. 2017.

[29] D. J. Dean and M. Hjorth-Jensen. “Pairing in nuclear systems: from neutron stars to
finite nuclei”. Rev. Mod. Phys. 2003.

[30] Dima G. Yakovlev and C. J. Pethick. “Neutron star cooling”. Ann. Rev. Astron.
Astrophys. 2004.

232

[31] Dany Page et al. “Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by
Neutron Superfluidity in Dense Matter”. Phys. Rev. Lett. 2011.

[32] C. Monrozeau, J. Margueron, and N. Sandulescu. “Nuclear superfluidity and cooling
time of neutron-star crust”. Phys. Rev. C. 2007.

[33] Frédéric Nowacki, Alexandre Obertelli, and Alfredo Poves. “The neutron-rich edge of
the nuclear landscape: Experiment and theory.” Prog. Part. Nucl. Phys. 2021.

[34] J. Carlson et al. “Quantum Monte Carlo methods for nuclear physics”. Rev. Mod.
Phys. 2015.

[35] K. E. Schmidt and S. Fantoni. “A quantum Monte Carlo method for nucleon systems”.
Phys. Lett. B. 1999.

[36] A. Lovato et al. “Benchmark calculations of infinite neutron matter with realistic two-
and three-nucleon potentials”. Phys. Rev. C. 2022.

[37] S. Gandolfi et al. “Equation of state of superfluid neutron matter and the calculation
of S(0)-1 pairing gap”. Phys. Rev. Lett. 2008.

[38] Stefano Gandolfi et al. “The 1S0 Pairing Gap in Neutron Matter”. Condens. Mat.
2022.

[39] M. Bajdich et al. “Pfaffian pairing wave functions in electronic structure quantum
Monte Carlo”. Phys. Rev. Lett. 2006.

[40] J. W. T. Keeble and A. Rios. “Machine learning the deuteron”. Phys. Lett. B. 2020.

[41] Corey Adams et al. “Variational Monte Carlo Calculations of A≤4 Nuclei with an
Artificial Neural-Network Correlator Ansatz”. Phys. Rev. Lett. 2021.

[42] Alex Gnech et al. “Nuclei with up to A = 6 nucleons with artificial neural network
wave functions”. Few Body Syst. 2022.

[43] A. Lovato et al. “Hidden-nucleons neural-network quantum states for the nuclear
many-body problem”. 2022.

[44] Y. L. Yang and P. W. Zhao. “A consistent description of the relativistic effects and
three-body interactions in atomic nuclei”. Phys. Lett. B. 2022.

[45] Mauro Rigo et al. “Solving the nuclear pairing model with neural network quantum
states”. 2022.

[46] Jan Hermann, Zeno Schätzle, and Frank Noé. “Deep-neural-network solution of the
electronic Schrödinger equation”. Nature Chemistry. 2020.

233

[47] David Pfau et al. “Ab initio solution of the many-electron Schrödinger equation with
deep neural networks”. Phys. Rev. Res. 2020.

[48] L. Brualla et al. “Spin orbit induced backflow in neutron matter with auxiliary field
diffusion Monte Carlo”. Phys. Rev. C. 2003.

[49] R. Schiavilla et al. “Two- and three-nucleon contact interactions and ground-state
energies of light- and medium-mass nuclei”. Phys. Rev. C. 2021.

[50] Sebastian König et al. “Nuclear Physics Around the Unitarity Limit”. Phys. Rev. Lett.
2017.

[51] A. Kievsky et al. “Correlations imposed by the unitary limit between few-nucleon
systems, nuclear matter and neutron stars”. Phys. Rev. Lett. 2018.

[52] Robert B. Wiringa, V. G. J. Stoks, and R. Schiavilla. “An Accurate nucleon-nucleon
potential with charge independence breaking”. Phys. Rev. C. 1995.

[53] B. S. Pudliner et al. “Quantum Monte Carlo calculations of A <= 6 nuclei”. Phys.
Rev. Lett. 1995.

[54] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall. “The Equation of state of
nucleon matter and neutron star structure”. Phys. Rev. C. 1998.

[55] R. Machleidt and D.R. Entem. “Chiral effective field theory and nuclear forces”. Phys.
Rep. 2011.

[56] Javier Robledo Moreno et al. “Fermionic wave functions from neural-network
constrained hidden states”. Proceedings of the National Academy of Sciences of the
United States of America. 2022.

[57] Edward Wagstaff et al. “On the Limitations of Representing Functions on Sets”. arXiv
e-prints. 2019.

[58] Di Luo and Bryan K. Clark. “Backflow Transformations via Neural Networks for
Quantum Many-Body Wave Functions”. Phys. Rev. Lett. 2019.

[59] Gabriel Pescia et al. “Neural-network quantum states for periodic systems in
continuous space”. Phys. Rev. Res. 2022.

[60] A. Sarsa et al. “Neutron matter at zero temperature with auxiliary field diffusion
Monte Carlo”. Phys. Rev. 2003.

[61] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing
Machines”. J. Chem. Phys. 1953.

234

[62] S. Gandolfi et al. “Equation of state of low-density neutron matter, and the 1S0 pairing
gap”. Phys. Rev. C - Nuclear Physics. 2009.

[63] M. Piarulli et al. “Light-nuclei spectra from chiral dynamics”. Phys. Rev. Lett. 2018.

[64] John W. Negele and D. Vautherin. “Neutron star matter at subnuclear densities”.
Nucl. Phys. A. 1973.

[65] Brian M Austin, Dmitry Yu Zubarev, and William A Lester Jr. “Quantum Monte
Carlo and related approaches”. Chemical reviews. 2012.

[66] J Carlson et al. “Quantum Monte Carlo methods for nuclear physics”. Reviews of
Modern Physics. 2015.

[67] Anthony J. Leggett. “A theoretical description of the new phases of liquid 3He”. Rev.
Mod. Phys. 1975.

[68] Michael Tinkham. “Introduction to superconductivity”. 2004.

[69] Juan Carrasquilla. “Machine learning for quantum matter”. Advances in Physics: X.
2020.

[70] Kenny Choo et al. “Symmetries and Many-Body Excitations with Neural-Network
Quantum States”. Phys. Rev. Lett. 2018.

[71] Francesco Ferrari, Federico Becca, and Juan Carrasquilla. “Neural
Gutzwiller-projected variational wave functions”. Phys. Rev. B. 2019.

[72] Mohamed Hibat-Allah et al. “Recurrent neural network wave functions”. Phys. Rev.
Res. 2020.

[73] Marin Bukov, Markus Schmitt, and Maxime Dupont. “Learning the ground state of a
non-stoquastic quantum Hamiltonian in a rugged neural network landscape”. SciPost
Phys. 2021.

[74] Yusuke Nomura and Masatoshi Imada. “Dirac-Type Nodal Spin Liquid Revealed by
Refined Quantum Many-Body Solver Using Neural-Network Wave Function,
Correlation Ratio, and Level Spectroscopy”. Phys. Rev. X. 2021.

[75] Nikita Astrakhantsev et al. “Broken-Symmetry Ground States of the Heisenberg
Model on the Pyrochlore Lattice”. Phys. Rev. X. 2021.

[76] Dong-Ling Deng, Xiaopeng Li, and S Das Sarma. “Quantum entanglement in neural
network states”. Phys. Rev. X. 2017.

[77] Yoav Levine et al. “Quantum Entanglement in Deep Learning Architectures”. Phys.
Rev. Lett. 2019.

235

[78] Di Luo and Bryan K. Clark. “Backflow Transformations via Neural Networks for
Quantum Many-Body Wave Functions”. Phys. Rev. Lett. 2019.

[79] Kenny Choo, Antonio Mezzacapo, and Giuseppe Carleo. “Fermionic neural-network
states for ab-initio electronic structure”. Nature communications. 2020.

[80] Javier Robledo Moreno et al. “Fermionic wave functions from neural-network
constrained hidden states”. Proceedings of the National Academy of Sciences. 2022.

[81] Jan Hermann, Zeno Schätzle, and Frank Noé. “Deep-neural-network solution of the
electronic Schrödinger equation”. Nature Chemistry. 2020.

[82] MT Entwistle et al. “Electronic excited states in deep variational Monte Carlo”. Nature
Communications. 2023.

[83] Gabriel Pescia et al. “Neural-network quantum states for periodic systems in
continuous space”. Phys. Rev. Res. 2022.

[84] Max Wilson et al. “Wave function Ansatz (but Periodic) Networks and the
Homogeneous Electron Gas”. arXiv preprint arXiv:2202.04622. 2022.

[85] Gino Cassella et al. “Discovering Quantum Phase Transitions with Fermionic Neural
Networks”. Phys. Rev. Lett. 2023.

[86] Corey Adams et al. “Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an
Artificial Neural-Network Correlator Ansatz”. Phys. Rev. Lett. 2021.

[87] Alex Gnech et al. “Nuclei with Up to \ {A= 6}A = 6 Nucleons with Artificial Neural
Network Wave Functions”. Few-Body Systems. 2022.

[88] Xiang Li, Zhe Li, and Ji Chen. “Ab initio calculation of real solids via neural network
ansatz”. Nature Communications. 2022.

[89] Hao Xie, Linfeng Zhang, and Lei Wang. “m^\ast of two-dimensional electron gas:
a neural canonical transformation study”. 2022.

[90] Julien Toulouse and C. J. Umrigar. “Optimization of quantum Monte Carlo wave
functions by energy minimization”. J. Chem. Phys. 2007.

[91] Sandro Sorella. “Green Function Monte Carlo with Stochastic Reconfiguration”.
Phys. Rev. Lett. 1998.

[92] C Lin, FH Zong, and David M Ceperley. “Twist-averaged boundary conditions in
continuum quantum Monte Carlo algorithms”. Phys. Rev. E. 2001.

236

[93] ND Drummond and RJ Needs. “Diffusion quantum Monte Carlo calculation of the
quasiparticle effective mass of the two-dimensional homogeneous electron gas”. Phys.
Rev. B. 2013.

[94] Ke Liao et al. “Towards efficient and accurate ab initio solutions to periodic systems
via transcorrelation and coupled cluster theory”. Phys. Rev. Research. 2021.

[95] Sam Azadi, ND Drummond, and SM Vinko. “Correlation energy of the paramagnetic
electron gas at the thermodynamic limit”. arXiv preprint arXiv:2209.10227. 2022.

[96] Justin Gilmer et al. “Neural message passing for quantum chemistry”. International
conference on machine learning. 2017.

[97] R. P. Feynman and Michael Cohen. “Energy Spectrum of the Excitations in Liquid
Helium”. Phys. Rev. 1956.

[98] Yongkyung Kwon, D. M. Ceperley, and Richard M. Martin. “Effects of backflow
correlation in the three-dimensional electron gas: Quantum Monte Carlo study”.
Phys. Rev. B. 1998.

[99] Yongkyung Kwon, DM Ceperley, and Richard M Martin. “Effects of three-body and
backflow correlations in the two-dimensional electron gas”. Phys. Rev. B. 1993.

[100] Michele Taddei et al. “Iterative backflow renormalization procedure for many-body
ground-state wave functions of strongly interacting normal Fermi liquids”. Phys. Rev.
B. 2015.

[101] Michele Ruggeri, Saverio Moroni, and Markus Holzmann. “Nonlinear Network
Description for Many-Body Quantum Systems in Continuous Space”. Phys. Rev.
Lett. 2018.

[102] Ashish Vaswani et al. “Attention is all you need”. Advances in neural information
processing systems. 2017.

[103] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (gelus)”. arXiv
preprint arXiv:1606.08415. 2016.

[104] Ingrid von Glehn, James S Spencer, and David Pfau. “A Self-Attention Ansatz for
Ab-initio Quantum Chemistry”. arXiv preprint arXiv:2211.13672. 2022.

[105] Kaiming He et al. “Deep residual learning for image recognition”. Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016.

[106] D Pines. “Elementary Excitations In Solids, edited by JD Jackson and D. Pines”.
1963.

237

[107] Paul P Ewald. “Die Berechnung optischer und elektrostatischer Gitterpotentiale”.
Annalen der physik. 1921.

[108] Louisa M. Fraser et al. “Finite-size effects and Coulomb interactions in quantum Monte
Carlo calculations for homogeneous systems with periodic boundary conditions”. Phys.
Rev. B. 1996.

[109] Abdulnour Y Toukmaji and John A Board Jr. “Ewald summation techniques in
perspective: a survey”. Computer physics communications. 1996.

[110] P. LPópez Ríos et al. “Inhomogeneous backflow transformations in quantum Monte
Carlo calculations”. Phys. Rev. E. 2006.

[111] Sam Azadi and N. D. Drummond. “Low-density phase diagram of the
three-dimensional electron gas”. Phys. Rev. B. 2022.

[112] E. Wigner. “On the Interaction of Electrons in Metals”. Phys. Rev. 1934.

[113] ND Drummond et al. “Diffusion quantum Monte Carlo study of three-dimensional
Wigner crystals”. Phys. Rev. B. 2004.

[114] S Gandolfi. “Quantum Monte Carlo study of strongly interacting Fermi gases”. Journal
of Physics: Conference Series. 2014.

[115] Alexandros Gezerlis and J. Carlson. “Strongly paired fermions: Cold atoms and
neutron matter”. Phys. Rev. C. 2008.

[116] Stefano Gandolfi, Alexandros Gezerlis, and J. Carlson. “Neutron Matter from Low to
High Density”. Annual Review of Nuclear and Particle Science. 2015.

[117] Wynn C. G. Ho et al. “Tests of the nuclear equation of state and superfluid and
superconducting gaps using the Cassiopeia A neutron star”. Phys. Rev. C. 2015.

[118] J. Carlson et al. “Auxiliary-field quantum Monte Carlo method for strongly paired
fermions”. Phys. Rev. A. 2011.

[119] J. Carlson and Sanjay Reddy. “Superfluid Pairing Gap in Strong Coupling”. Phys.
Rev. Lett. 2008.

[120] S. Gandolfi, K. E. Schmidt, and J. Carlson. “BEC-BCS crossover and universal
relations in unitary Fermi gases”. Phys. Rev. A. 2011.

[121] W. M. C. Foulkes et al. “Quantum Monte Carlo simulations of solids”. Rev. Mod.
Phys. 2001.

[122] Michael McNeil Forbes, Stefano Gandolfi, and Alexandros Gezerlis. “Resonantly
Interacting Fermions in a Box”. Phys. Rev. Lett. 2011.

238

[123] M. J. H. Ku et al. “Revealing the Superfluid Lambda Transition in the Universal
Thermodynamics of a Unitary Fermi Gas”. Science. 2012.

[124] David Pfau et al. “Ab initio solution of the many-electron Schrödinger equation with
deep neural networks”. Phys. Rev. Res. 2020.

[125] Gabriel Pescia et al. “Neural-network quantum states for periodic systems in
continuous space”. Phys. Rev. Res. 2022.

[126] Max Wilson et al. “Wave function Ansatz (but Periodic) Networks and the
Homogeneous Electron Gas”. arXiv e-prints. 2022.

[127] Gino Cassella et al. “Discovering Quantum Phase Transitions with Fermionic Neural
Networks”. Phys. Rev. Lett. 2023.

[128] C. Adams et al. “Variational Monte Carlo calculations of A ≤ 4 nuclei with an artificial
neural-network correlator ansatz”. Phys. Rev. Lett. 2021.

[129] Alex Gnech et al. “Nuclei with up to A = 6 nucleons with artificial neural network
wave functions”. Few-Body Systems. 2021.

[130] Alessandro Lovato et al. “Hidden-nucleons neural-network quantum states for the
nuclear many-body problem”. Phys. Rev. Res. 2022.

[131] Y. L. Yang and P. W. Zhao. “A consistent description of the relativistic effects and
three-body interactions in atomic nuclei”. Phys. Lett. B. 2022.

[132] Mauro Rigo et al. “Solving the nuclear pairing model with neural network quantum
states”. Phys. Rev. E. 2023.

[133] Di Luo and Bryan K. Clark. “Backflow Transformations via Neural Networks for
Quantum Many-Body Wave Functions”. Phys. Rev. Lett. 2019.

[134] Michele Casula and Sandro Sorella. “Geminal wave functions with Jastrow correlation:
A first application to atoms”. J. Chem. Phys. 2003.

[135] Michele Casula, Claudio Attaccalite, and Sandro Sorella. “Correlated geminal wave
function for molecules: An efficient resonating valence bond approach”. J. Comput.
Phys. 2004.

[136] M. Bajdich et al. “Pfaffian Pairing Wave Functions in Electronic-Structure Quantum
MonteCarlo Simulations”. Phys. Rev. Lett. 2006.

[137] Stefano Gandolfi et al. “Atomic nuclei from quantum Monte Carlo calculations with
chiral EFT interactions”. Front. in Phys. 2020.

239

[138] Yusuke Nomura et al. “Restricted Boltzmann machine learning for solving strongly
correlated quantum systems”. Phys. Rev. B. 2017.

[139] Yusuke Nomura and Masatoshi Imada. “Dirac-type nodal spin liquid revealed by
refined quantum many-body solver using neural-network wave function, correlation
ratio, and level spectroscopy”. Phys. Rev. X. 2021.

[140] S. Y. Chang et al. “Quantum Monte Carlo studies of superfluid Fermi gases”. Phys.
Rev. A. 2004.

[141] Alexandros Gezerlis et al. “Heavy-Light Fermion Mixtures at Unitarity”. Phys. Rev.
Lett. 2009.

[142] Andrew J. Morris, P. López Ríos, and R. J. Needs. “Ultracold atoms at unitarity
within quantum Monte Carlo methods”. Phys. Rev. A. 2010.

[143] J. Carlson et al. “Superfluid Fermi Gases with Large Scattering Length”. Phys. Rev.
Lett. 2003.

[144] Alexander Galea et al. “Diffusion Monte Carlo study of strongly interacting two-
dimensional Fermi gases”. Phys. Rev. A. 2016.

[145] Maria Piarulli and Ingo Tews. “Local Nucleon-Nucleon and Three-Nucleon
Interactions Within Chiral Effective Field Theory”. Front. in Phys. 2020.

[146] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. Neural
Networks. 1991.

[147] Tosio Kato. “On the eigenfunctions of many-particle systems in quantum mechanics”.
Communications on Pure and Applied Mathematics. 1957.

[148] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (gelus)”. arXiv
preprint arXiv:1606.08415. 2016.

[149] R. Schiavilla et al. “Two- and three-nucleon contact interactions and ground-state
energies of light- and medium-mass nuclei”. Phys. Rev. C. 2021.

[150] Renato Pessoa et al. “Contact interaction in a unitary ultracold Fermi gas”. Phys.
Rev. A. 2015.

[151] Z. Schätzle, J. Hermann, and F. Noé. “Convergence to the fixed-node limit in deep
variational Monte Carlo”. J. Chem. Phys. 2021.

[152] Michael McNeil Forbes, Stefano Gandolfi, and Alexandros Gezerlis. “Effective-range
dependence of resonantly interacting fermions”. Phys. Rev. A. 2012.

240

[153] D. J. Dean and M. Hjorth-Jensen. “Pairing in nuclear systems: From neutron stars
to finite nuclei”. Rev. Mod. Phys. 2003.

[154] Wan Tong Lou et al. “Neural Wave Functions for Superfluids”. arXiv: 2305.06989
(cond-mat.quant-gas). 2023.

[155] Claudio Genovese et al. “General Correlated Geminal Ansatz for Electronic Structure
Calculations: Exploiting Pfaffians in Place of Determinants”. Journal of Chemical
Theory and Computation. 2020.

241

2305.06989

	List of Tables
	List of Figures
	Chapter 1Introduction
	Challenges of the Quantum Many-Body Problem
	Neural-Network Quantum States
	Algorithm Development Through the Lens of Nuclear Theory
	Structure of Dissertation

	Chapter 2The Quantum Many-Body Problem
	Formalism
	Indistinguishable Particles
	The Schrödinger Equation
	The Variational Principle
	Ab Initio Methods

	Chapter 3Quantum Monte Carlo
	Monte Carlo Methods
	Variational Monte Carlo
	Diffusion Monte Carlo

	Chapter 4Machine Learning
	The Curse of Dimensionality
	Cost Functions
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Transfer Learning
	Artificial Neural Networks

	Chapter 5Implementation
	NeuralAnsatz: C++ Software for Localized Systems
	Python Software for Periodic Systems

	Chapter 6The Calogero-Sutherland Model
	Hamiltonian
	Neural-Network Quantum States
	Results
	Conclusions

	Chapter 7Dilute Neutron Matter
	Introduction
	Method
	Results and Discussion
	Conclusion

	Chapter 8Homogeneous Electron Gas
	Introduction
	Exact Backflow Transformations
	Message-Passing Neural-Network Quantum States
	Hamiltonian
	Results
	Conclusions

	Chapter 9Ultra-cold Fermi Gases
	Introduction
	Hamiltonian
	Neural-Network Quantum States
	Variational Monte Carlo and Training
	Diffusion Monte Carlo
	Results
	Conclusions and perspectives

	Chapter 10Conclusions and Perspectives
	Bibliography

