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ABSTRACT

The present study investigates the response of turbulence in a non-equilibrium flows such as 

transient periodic channel flows and spatially developing boundary layers subjected to pressure 

gradients. Such a fundamental study is important to understand noise generation in complex 

wall-bounded turbulent flows. First, to understand the flow dynamics in transient 

accelerating flows, direct numerical simulations (DNS) of periodic channel flows responding to 

an impulse acceleration are carried out. The turbulent flow undergoes reverse transition toward a 

quasi-laminar state, followed by a retransition phase to the new equilibrium state. To reduced 

simulation cost, the minimal-span methodology is applied and evaluated for simulations of 

transient flows.

Next, to study non-equilibrium boundary layer flows in the presence of convex wall 

curvature, DNS simulations over an airfoil (suction side) and a flat plate are compared. 

Both cases are characterized by matching adverse pressure gradient (APG) along the streamwise 

direction. For the airfoil boundary layer, existing DNS data obtained by Wu et al. (2019) of flow 

around a controlled-diffusion (CD) airfoil is used. For the flat-plate boundary layer, a DNS 

simulation is carried out, with prescribed pressure gradient distribution that matches that of the 

airfoil case. Comparison between the two cases shows how wall curvature affects turbulence 

in an APG boundary layer. Overall, similar boundary layer development in both cases indicates 

that a flat-plate boundary layer can serve as a low-cost surrogate of an airfoil boundary layer.

Lastly, various existing analytical models are evaluated on their predictions of wall pressure 

fluctuations, which are essential for fan noise prediction. Limitations of the existing models are 

evaluated; new parameters that do not involve the ill-defined wall friction in a boundary layer 

under strong APG are proposed. The primary role of the mean velocity logarithmic layer in 

affecting the overlap range of the wall pressure spectrum is also demonstrated. A new wall 

pressure spectrum model is proposed and tested in a wide range of boundary layer flow 

scenarios. The new wall pressure spectrum model is the first generalized model designed for 

boundary layer flows with a wide range of pressure gradients and Reynolds numbers.
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CHAPTER 1

INTRODUCTION

With the advent of the industrial revolution, fast technological advancement in various sectors, not

only led humanity to a comfortable living but also an environment affected by its consequences;

one of the major consequences is “Noise". Research indicates that several serious health prob-

lems are associated with noise. Münzel et al. (2014) detailed its effects on the auditory system,

causing annoyance, disturbing sleep, and affecting cognitive functioning. Additionally, noise has

been associated with causing hypertension, increased blood pressure, etc. Annoyance and sleep

disturbances are usually found to be highest for aircraft noise, followed by road and rail traffic noise

(Miedema and Oudshoorn, 2001). WHO (World Health Organization) pointed out, that based on

the extrapolation of the US dataset (Hammer et al., 2014; Basner et al., 2015; Mahyar et al., 2023),

noise-related health problems probably affects one-third of the global population.

Noise as one of the “most important" pollutants and health hazards, drew attention as commercial

flights came into the picture. Federal Aviation Regulation (FAR), International Civil Aviation

Organization (ICAO), Advisory Council for Aeronautics research in Europe (ACARE), and several

other organizations set forward noise standards or certifications to check aircraft noise. National

Aeronautics and Space administrations (NASA) partnered with industries, to work on aircraft noise

reduction. And in parallel European agencies worked with Airbus, and Roll-Royce in their effort to

reduce noise levels. Besides the aircraft industry, noise reduction has become an important agenda

for several other industries as well, such as renewable (wind turbine noise), HVAC (fan noise),

automotive industry (engine cooling fan noise), electric vehicles (cooling fans), and recently to

unmanned air vehicles, micro air vehicles, electric vertical takeoff and landing vehicle, drones, etc.

There are several noise sources, our focus here is on one of the major ones: aeroacoustics. As

the name suggests, aeroacoustics refers to flow-induced noise, due to flow turbulence which may or

may not interact with surfaces. Hence, it is an area amalgamated out of turbulence and acoustics,

where the flow turbulence is the ‘source’ of noise generated that propagates to the far field. Hence,

1



understanding turbulence flow dynamics is paramount in predicting far-field noise.

In this work, our focus is on understanding noise generated in low-speed conditions (Mach<

0.3). In such cases, noise generated by the interaction of flow turbulence with the surface dominates.

The boundary layer developing over the wall involves turbulent structures with length scales ranging

from domain dimension to viscous length scales, leading to wall pressure fluctuations spanning

from low to high frequencies. These wall pressure fluctuations are the dominant noise sources in

such low-speed conditions. The noise generated here is termed as ‘self-noise’ (Brooks et al., 1989).

Some of the principal noise-generating mechanisms, affected by pressure gradients, flow conditions,

and curvature effects are 1) laminar boundary layer instability noise, 2) turbulent boundary layer

trailing edge (TE) noise, 3) TE bluntness noise, 4) separation and stall noise, 5) tip noise, and 6)

vortex-induced noise, etc.

As discussed briefly above, the noise sources originating due to wall-pressure fluctuations are

generated due to the interaction of the boundary layer with the surface. Perturbation to the boundary

layers, such as accelerations or de-acceleration affects the turbulence dynamics which may also lead

to laminar to turbulent transitions, flow separations, etc, leading to affecting wall pressure statistics.

To study these flow dynamics and their effect on noise sources (wall-pressure fluctuations), one

needs high-fidelity simulations such as direct numerical simulations (DNS), which resolve all scales

of fluid flow and wall-pressure statistics. And based on this knowledge, the wall-pressure spectra

model as well as other relevant closures will be developed to aid noise prediction.

In DNS simulations, all turbulence length scales i.e. from fluid domain scale, all the way down

to dissipation length scales need to be resolved. Therefore, the number of grid points in each

direction needs to be proportional to the ratio between the largest and the smallest eddies. This

ratio is proportional to 𝑅𝑒
3/4
𝐿

, where 𝑅𝑒𝐿 is the Reynolds number based on the integral length

scale. In three dimensions, the total number of grid points scales with 𝑅𝑒9/4
𝐿

. With the present

computational resources, using DNS is only limited to low-to-mid-Re applications.

Hence, in addition to understanding flow physics and noise sources (e.g. wall-pressure statistics),

another focus of this work is on DNS approaches used for extract physics from relevant flows
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efficiently. Two such approaches are using a minimal span channel to study turbulence response

under acceleration (Chapter 3) and using a flat plate to simulate flow development over airfoils

with matched freestream pressure gradient (Chapter 4). Aided by flow physics extracted from DNS

data, a generalized wall pressure spectrum model for boundary layers with a wide range of pressure

gradients is developed (Chapter 5).

A review on noise-prediction fundamentals, noise prediction approaches, existing wall-pressure

spectrum models, pressure gradient and curvature effects on boundary layers, and efficient simula-

tion approaches are discussed in Chapter 2.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, fundamental aspects of aeroacoustics, computational approaches for noise predic-

tion, aeroacoustics theories (analogies), and noise modeling approaches are described. Further-

more, an in-depth literature review on pressure gradient and curvature effects on boundary layers

is detailed. Additionally, efficient simulation approaches for DNS are discussed. Finally, the main

objectives are briefly described, with research gaps identified.

2.1 Fundamentals of aeroacoustics

Sir James Lighthill in 1952 (Lighthill, 1952), published his theory on noise generation via turbulent

fluid motions or its interaction with surfaces. He rearranged the equations of fluid motions

(continuity and momentum equations) into a non-homogeneous wave equation, where turbulence

acts as a source for the propagating acoustics waves in the far field.There is no complete theory for

the generation of aerodynamics noise, but Lighthill’s theory comes closest for the most practical

analysis of aeroacoustics.

The human ear is susceptible to pressure fluctuations of sound waves in the range of as low as

20𝜇𝑃𝑎 to as high as 200 Pa. Due to a wide relevant amplitude range, the sound is measured on a

logarithmic scale called decibel scale, also known as sound pressure levels (SPL, with units dB):

𝑆𝑃𝐿 = 20 log10

[
𝑝𝑟𝑚𝑠

𝑝𝑟𝑒 𝑓

]
. (2.1)

The root means square pressure fluctuations (𝑝𝑟𝑚𝑠) are the standard deviation of pressure

fluctuations of the time signal, and 𝑝𝑟𝑒 𝑓 for aeroacoustics application is the lower limit for human

ear’s susceptible range (20𝜇𝑃𝑎). Noise generated could be of frequencies from low to high

frequencies. The annoyance caused to the ear is different for different ranges of noise frequency,

as discussed (Glegg and Devenport, 2017). For instance, based on the dB(A) metric, mid-range
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frequencies ( 1000Hz) are more important than low and high-range frequencies, based on the

irritation caused.

In general, noise (characterized based on frequency), can be classified into two types: (i) tonal

and (ii) broadband noise. Tonal noise is referred to as discrete frequency noise, which means

a decibel spike in noise levels at a very small range of frequencies. It is typically generated in

rotating equipments such as fans, and compressors, at a frequency related to the rotating speed of

the machine. It is also observed in laminar-instability noise, flows with separation, etc. On the

other hand, broadband noise is associated with all turbulence scales interacting with each other and

with the surface, spreading over a wide frequency range.

This summarizes a summary of aeroacoustics, i.e. general theory (Lighthill’s analogy), quan-

tification method (dB scale), and broad classification (tonal and broadband). Strategies used by

researchers to compute aerodynamic noise are discussed as follows.

2.2 Approaches for noise computation and prediction

Computation of aerodynamics noise requires calculating accurately the noise sources, as well as

the propagation of the acoustic wave in the far field. Various approaches used for computational

aeroacousticsare summarized below, as well as challenges faced, assumptions are taken, and their

respective limitations.

2.2.1 Direct approaches: DNS and LES

Direct computations of aeroacoustics involve solving compressible Navier-Stokes equations or

equivalent (Lattice Boltzmann equations), which solve the aerodynamics (turbulence) as well as

the acoustics field, simultaneously. However, in addition to the high resolution required to resolve

all the turbulence length scales to compute noise sources accurately, the disparity of length scales

between turbulence eddies and acoustic wavelength makes the direct method very costly and time-

consuming.

In addition, since the amplitude of acoustic waves is orders of magnitude lower than that of the
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turbulence, the acoustic waves will be dampened while propagating in the far-field, if the numerical

scheme is dissipative. Another problem is numerical dispersion, which can cause non-physical

wave interference. Hence, to compute noise sources and acoustic wave propagation, schemes with

a higher order of accuracy in space and time need to be used, to limit dissipation and dispersion. In

addition to propagation, boundary conditions shall be set properly to avoid wave reflections at the

boundary, by either using sponge zones, for absorbing the waves or by transmitting them without

reflections.

Due to the disparity between length scales and amplitude of turbulence and acoustic fluctuations,

as well as the requirement of a higher order scheme to limit dissipation and dispersion, direct

approaches are mostly limited to low-mid Reynolds number academic cases. Hence a better

practical approach is by computing them separately, with so called the hybrid approach.

2.2.2 Hybrid approach

In this approach, the domain is split into two different regions: the source region and the propagation

region. The source region involves the interaction of flow turbulence and its interaction with surfaces

if any, while the propagation region, involves the radiation of acoustic waves. The main assumption

is the unidirectional coupling between turbulence and acoustics. This means turbulence (i.e. the

sources) has a direct effect on acoustics propagation and not vice-versa.

For the source part (i,e. turbulence), both high (DNS, LES) or low fidelity (unsteady-RANS

(Reynolds averaged Navier-stokes solutions), and XFOIL in conjunction with empirical models)

may be used. Depending on the acoustic solver used to compute acoustic propagation, the hybrid

approach can be majorly classified into:

• Integral methods (i.e. analogies: Lighthill, Curle, FFWH, Kirchoff’s integral), and

• Linearized Euler method

These approaches are detailed in the next section.
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2.3 Aeroacoustics analogies (integral methods)

Aero-acoustic analogies form the backbone for aerodynamic noise computation or prediction. It

not only provides a practical approach for noise computations in actual industrial applications, but

also helps us extracting the physics or noise sources behind aeroacoustics noise generation. These

analogies are also the main basis for most analytical or empirical models for noise prediction.

As discussed in the previous section, the domain is divided into source and propagation,

following a hybrid approach. The general solution of the wave equation in the far field is based on

the integral of all sources, hence the name ‘integral method’.

Lighthill (1952) recognized that the turbulent motions (i.e. noise sources) should not be

‘concerned’ with the acoustic fluctuations propagating in the flow (i.e. there is no ‘back-reaction’

of sound waves on the turbulence field). Lighthill reformulated the continuity and momentum

equations into a wave equation, without any assumptions given as:

𝜕𝜌′

𝜕𝑡2
− 𝑐∞

𝜕𝜌′

𝜕𝑥2
𝑖

=
𝜕2𝑇𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
. (2.2)

Here 𝜌′ is the density perturbation, 𝑐∞ is the speed of sound in propagation medium, and

𝑇𝑖 𝑗 = 𝜌𝑣𝑖𝑣 𝑗 + (𝑝 − 𝑝∞) − (𝜌 − 𝜌∞)𝑐2
∞𝛿𝑖 𝑗 − 𝜎𝑖 𝑗 is the Lighthill stress tensor. The right-hand

side constitutes sources from the fluctuations field in the form of Lighthill tensor- 𝑇𝑖 𝑗 , and the

propagation part on the left-hand side ‘describes’ acoustic wave perturbations in the far-field. This

is also called the ‘Lighthill wave equation’.

The solution to this non-homogeneous wave equation (2.2) can be obtained using Green-

function’s method. Next, Curle (1955) extended this theory for turbulence sources in presence of

fixed surfaces, and the new formulation was termed ’Curle’s analogy. And eventually, the solution

was further generalized for moving surfaces by Ffowcs Williams and Hawkings (1969), termed as

FFWH analogy, which is used in most applications.

The solution to FFWH equations using Green-function’s approach, considering impermeable

surfaces, far-field assumptions (observer position 𝑥), and evaluating surface and volume integrals
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in the moving coordinate system 𝑧 written as:

𝜌
′ (𝑥, 𝑡)𝑐2

∞ ≈
𝑥𝑖𝑥 𝑗

| 𝑥 |2
1
𝑐2
∞

𝜕2

𝜕𝑡2

∫
𝑉0

[
𝑇𝑖 𝑗

4𝜋 | 𝑥 | | 1 − 𝑀𝑟 |

]
𝑑𝑉 (𝑧) + (2.3)

𝑥𝑖

| 𝑥 |
1
𝑐∞

𝜕

𝜕𝑡

∫
𝑆𝑜

[
𝑝𝑖 𝑗𝑛 𝑗

4𝜋 | 𝑥 | | 1 − 𝑀𝑟 |

]
𝑑𝑆(𝑧) + (2.4)

𝜕

𝜕𝑡

∫
𝑆𝑜

[
𝜌∞𝑉 𝑗𝑛 𝑗

4𝜋 | 𝑥 | | 1 − 𝑀𝑟 |

]
𝑑𝑆(𝑧). (2.5)

Here the square brackets are evaluated at retarded time between source and observer, where

𝑀𝑟𝑐∞ is the source’s velocity in the direction of the observer. On the right-hand side, the first term

is called the quadrupole terms, accounting for noise generated by turbulence in the source volume.

The second is the dipole term, associated with surface loading. The last term is the monopole

term, also called thickness noise, associated with the volume of fluid displaced by the surface.

Considering low-speed cases as an example, the monopole and quadrupole terms are minimal in

comparison to the dipole term (i.e surface loading fluctuations), which is equivalent to Curle’s

analogy, in low Mach-number cases.

Since the focus is on low-speed cases, the modeling approaches in this research are based on

source terms defined in Curle’s analogy in low-Mach number cases i.e. surface loading term. Hence,

Curle’s analogy finds application in several industrial applications. One important application is in

’self-noise’ for airfoils, fans, wind blades, etc. In the next section, a brief review of ’self-noise’ is

described, followed by a far-field modeling approach based on Curle’s analogy is discussed.

2.4 Self-noise

Brooks et al. (1989) defined airfoil self-noise as the ‘interaction of airfoil blade with boundary layer

turbulence and near wake’. In their work, they classified this into the following categories:

• Laminar boundary layer vortex shedding noise, associated with laminar boundary layer

formed on either or both sides (suction/pressure) of the airfoil. Recent literature suggests

that, in such cases, discrete tonal peaks are observed, associated with an acoustic feedback
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mechanism between laminar flow instabilities, laminar separation bubble, and acoustic waves

generated at TE.

• TE bluntness vortex shedding noise, resultant of a large scale vortex shedding due to blunt TE.

Here the vortex shedding occurs due to the roll-up process in the near-wake. The interaction

of the TE with the large vortex leads to TE bluntness noise.

• Separation/stall-noise: Based on the incident angle of the flow, due to extreme adverse

pressure gradient applied along the chord, the boundary layer can separate on the suction

side. This could lead to the generation and shedding of large vortex structures shedding,

leading to significant low-frequency stall noise.

• Tip noise: This is associated with turbulence structures interacting with the tip region.

• Boundary layer TE noise is due to the interaction of turbulent structures in the boundary

layer with the TE. Due to the airfoil’s curvature, the boundary layer encounters a pressure

gradient, which modulates the turbulent structures along the chord, further modifying wall

pressure statistics (i.e. noise sources).

To employ Curle’s analogy to predict far-field noise in the types of flow discussed above,

high-fidelity data of unsteady surface loading of the entire wall are needed as inputs. However,

that would require DNS/LES simulations or experimental measurements which are not typically

feasible in industrial applications. Therefore, models for far-field noise prediction that requires

limited data were developed based on Curle’s analogy. An example of the required data is wall

pressure statistics near the trailing edge. One of these models is the Amiet’s model (Amiet, 1976a),

which is introduced in the next section.

2.5 Far-field noise prediction

In this section, a brief discussion is provided to explain computation of far-field noise from wall

pressure statistics. More details on the subject can be find in Amiet (1976a); Roger and Moreau
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(2005a). (Amiet, 1976a) exploited the fact that surface loading terms in low-speed conditions have

the dominating contribution, and came up with an analytical formulation for trailing edge (TE)

far-field noise prediction, with some assumptions. The main assumption is that the turbulence field

is unaffected as it traverses past the TE, i.e. turbulence is statistically stationary. Therefore, the

modifications in the pressure field that occur near TE, are an irrotational response of the flow to the

removal of the airfoil’s wall (no penetration condition) as well as imposing Kutta condition at TE.

Amiet considered an airfoil with no thickness and zero angles of attack and chord length ‘c’, with

an incident pressure gust at trailing edge’s upstream (𝑝′ = 𝑃(𝑥, 𝑧)𝑒𝑖𝜔𝑡). Each Fourier component

defines a sinusoidal pressure gust, which can be described by the chord-wise aerodynamic wave

number 𝑘1. The next step is to determine the airfoil’s response to the pressure gust near TE. Amiet

explained this by first considering airfoil infinite in both upstream and downstream directions.

Following Curle’s analogy, the flow field then can be represented by volume quadrupole and dipole

distribution. But, in reality, the airfoil is finite. Downstream of TE, there is only quadrupole volume

distributiondue to the absence of a wall. Hence, a second solution is needed which will cancel this

imaginary dipole distribution on the imaginary airfoil’s extension. This second solution can be

obtained using general Schwarzschild’s solution (Landahl and Landahl, 1989).

Furthermore, the pressure jump calculated using Schwartzchild’s solution is evaluated using

Curle’s analogy, followed by the Fourier transform of the acoustic pressure obtained to get far-field

sound pressure levels. To derive the pressure jump i.e. main scattering term using Schwartzchild’s

solution, further assumptions are taken such as infinite wall upstream and imposing Kutta condition

at TE. The details can be found in Amiet (1976a); Roger and Moreau (2005a) . Roger and Moreau

(2005a) further extended this approach to include a back-scattering effect due to limited chord

length and a 3-D incident gust to obtain far field noise formulation as:

𝑆𝑝𝑝 =
1
𝑏
( 𝜔𝑥3𝐿𝑏

2𝜋𝑐𝑜𝑆2
𝑜

)2
∫ ∞

−∞
Π𝑜 (𝜔/𝑈𝑐, 𝐾2)𝑠𝑖𝑛𝑐2(𝐿/2𝑏(𝐾2 − 𝑘𝑥2/𝑆𝑜)) | 𝐼 (

𝜔

𝑈𝑐
, 𝐾2) |2 𝑑𝐾2. (2.6)

This relation can be simplified by assuming the span is much larger in comparison to the chord,

to get (Amiet, 1976a; Roger and Moreau, 2005a):
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𝑆𝑝𝑝 =

(
𝜔𝑥3𝐿𝑏

2𝜋𝑐𝑜𝑆2
𝑜

)2
Π𝑜 (𝜔/𝑈𝑐, 𝑘𝑥2/𝑆𝑜)2𝜋𝐿 | 𝐼 ( 𝜔

𝑈𝑐
, 𝑘𝑥2/𝑠𝑜) |2 . (2.7)

Here 𝐿 is airfoil’s span, 𝑏 is semi-chord length, 𝑆𝑜 distance to observer, 𝑈𝑐 is convection

velocity, Π𝑜 is cross spectral density of wall pressure fluctuations:

Π𝑜 (𝜔/𝑈𝑐, 𝑘𝑥2/𝑆𝑜) =
1
𝜋
𝜙𝑝𝑝 (𝜔)𝑙𝑦 (𝑘𝑥2/𝑆𝑜, 𝜔). (2.8)

This analytical solution obtained for far-field prediction requires three inputs:

• Wall pressure fluctuations spectral density (PSD) near TE (𝜙𝑝𝑝),

• Spanwise coherence length of wall pressure fluctuations near TE (𝑙𝑦),

• Convection velocity of pressure gust (𝑈𝑐).

The focus of this research is to model the first input: Power spectral density of wall pressure

fluctuations. This will involve, how it is modulated with flow perturbations, followed by modeling

it with relevant boundary layer parameters. In the following subsection, modeling approaches for

wall-pressure spectrum modeling are discussed.

2.5.0.1 Wall pressure spectra models

There are different approaches to wall pressure spectra modeling, but here the focus is on semi-

empirical modeling. In this approach, boundary layer parameters are used to scale and model the

wall pressure fluctuations (𝜙𝑝𝑝). This is paramount to developing a fast far-field noise prediction

tool for industrial usage. Explained below are some empirical modeling approaches for wall

pressure fluctuations.

1. Amiet’s model:

Based on the experimental data measurement of wall pressure fluctuations, Amiet (1976a)

proposed an analytical model normalized using outer scales:
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𝜙𝑝𝑝 (𝜔)
𝜌2
𝑜𝛿

∗𝑈3
𝑒

= 2.1𝑒−5 (1 + 𝜔̃ + 0.217𝜔̃2 + 0.00562𝜔̃4)−1

2
, (2.9)

with 𝜔̃ = 𝜔𝛿∗/𝑈𝑒.

The overall prediction of the model is in good comparison with the published works for low

to mid-frequency ranges, but the data spreads out at high frequencies, which is mostly due to

scaling. The main advantage of this model, it does not require any input parameter and the

model is purely empirical based on the dataset of Willmarth and Roos (1965). And the main

disadvantage stems from this same fact that it does not have any input parameter, and hence

cannot capture the Reynolds number or pressure gradient effects, hence even for equilibrium

turbulent boundary layer. Also, it is scaled using outer variables, hence the mid-frequency

range and high-frequency range are not predicted well.

2. Chase-Howe’s model:

Based on the more comprehensive model developed by Chase (1980) for wavevector-

frequency pressure spectrum, Howe and Howe (1998) developed the following analytical

formulation:

𝜙𝑝𝑝 (𝜔)𝑈𝑒
𝜏2𝛿∗

= 2
𝜔̃2

[𝜔̃2 + 00.0144]1.5 . (2.10)

This model is scaled using both inner and outer scalings, i.e. mixed scaling. Also, it

is proportional to 𝜔2 at low frequencies and 𝜔−1 at higher frequencies. Therefore, the

performance at these frequency ranges is quite well, but fails at high frequency ranges. This

is again mostly due to the mixed scaling used for modeling the spectra. And hence the high-

frequency ranges are not captured. Also, again they can be mostly used for zero-pressure

gradient boundary layers.

3. Goody’s model:
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Based on the wall pressure spectrum profile with different scaling variables, Goody (2004)

developed further Chase-Howe’s model. The following considerations were taken (Goody,

2004):

• A term was added to the denominator so that spectral levels decay as 𝜔−5 as 𝜔 goes to

∞.

• The exponents in the denominator were changed to better agree with the measured p

spectral behavior at middle frequencies.

• A multiplicative constant was added to the model function to raise the spectral levels at

all frequencies so that they better agree with the experimental data.

• The Reynolds number trends shown by the data are accurately reflected.

The model reads

𝜙𝑝𝑝 (𝜔)𝑈𝑒
𝑢𝑣2

𝑚𝑎𝑥𝛿
=

3(𝜔𝛿/𝑈𝑒)2

[(𝜔𝛿/𝑈𝑒) (0.8+3.34𝑒−4 (Π)1.864𝑦0.7575
𝑤 ) + 0.7]3.7 + [𝑦−0.365

𝑤 (𝜔𝛿/𝑈𝑒)]7
, (2.11)

where 𝐶1 = 0.5, 𝐶2 = 3, and 𝐶3 = 1.1𝑅𝑒−0.57
𝑇

. The ratio of 𝐶1 and 𝐶3 defines the overlap

range. Though this model works well for zero pressure gradient flows, it does not work for

boundary layers with strong pressure gradients, as the scalings become invalid.

4. Rozenberg’s model:

In order to take APG effects into account, Rozenberg (Rozenberg et al., 2012) used Goody’s

model as a base and incorporated parameters that can capture APG effects,

𝜙𝑝𝑝 (𝜔)𝑈𝑒
𝜏2𝛿∗

=
0.78(1.8Π𝛽𝑐 + 6) (𝜔𝛿∗/𝑈𝑒)2

[(𝜔𝛿∗/𝑈𝑒)0.75 + 𝐶′
1]3.7 + [𝐶′

3(𝜔𝛿∗/𝑈𝑒)]7 , (2.12)

where 𝐶′
1=0.105 and 𝐶′

3=3.76𝑅−0.57
𝑇

. The wake parameter (Π) and Clauser parameter (𝛽)

were incorporated to capture APG effects. This model requires some input parameters

which can be obtained from RANS simulations, incorporating Reynolds number and adverse

pressure gradient effects. But since this model is designed for mostly low-Re adverse pressure
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gradient flow scenarios, it fails at high-Re and highly loaded cases. Also, it uses wall shear

as the pressure scaling, which is problematic in high APG conditions.

5. Kamruzamman’s model:

Similarly, Kamruzzaman et al. (2015) followed the approaches of Goody and Rozenberg and

employed different boundary layer parameters, based on experimental wall pressure spectrum

measurements on NACA airfoils and flat plates. However, in addition to its dependence on

local parameters such as 𝑅𝑡 and 𝛽, as well as using wall shear as a pressure scaling, which fails

at high APG scenarios, the model was developed based on low-fidelity XFOIL boundary layer

data. Hence, the model was shown to fail to predict accurately at mid-to-high frequency range

for most mid-to-high Re flows; the model also over-predicts the spectrum at low frequencies

for high APG datasets.

6. Hu’s model:

Hu and Herr (2016) demonstrated that the local pressure gradient should not be used as a

parameter to predict the local wall pressure statistics. They curve-fitted the model based on

flat-plate datasets at mid-to-high Re and high APG. Yet, literature showed that Hu’s model

under-predicts the spectrum in low-frequency range, due to its dependency on the shape

factor and its use of dynamic pressure as the pressure scaling. However, an advantage of the

model is that it can be used in high APG flow conditions.

7. Lee’s model:

Lee (2018) developed a improved version of Rozenberg’s model by modifying some of the

constants in the model. The constants were tuned to give better predictions at low and high

frequencies for low APG conditions, and at low frequencies for high APG flow conditions.

However, Lee’s model has the same issues as Rozenberg’s model, e.g. failing at high APG,

high Re conditions, and near separations.
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Most of these modeling approaches are curve-fitted to a limited number of flow scenarios,

with pressure scalings that are inappropriate for strong pressure gradients. So, the approach is

to consider different flow scenarios based on DNS simulations and experimental datasets and

understand their effect on wall pressure statistics for model development. These flow scenarios

include flow acceleration, deceleration, flow separation, and curvature effects. A detailed literature

review is provided in the next section.

2.6 Effect of longitudinal mean pressure gradient on wall turbulence

Flow acceleration or deceleration can be achieved in either a steady, spatially varying boundary layer

flow or a temporally varying, accelerating/deaccelerating periodic channel or pipe flow. The studies

on boundary layers can be divided into those on self-similar and those on non-self-similar flows. By

self-similar, it means that the flow statistics can be normalized such that they are independent of the

streamwise position. According to Mellor and Gibson (1966), self-similar boundary layer flows are

associated with constant Clauser parameters, 𝛽 = (𝛿∗/𝜏𝑤) (𝑑𝑝/𝑑𝑥) (where 𝛿∗ is the displacement

thickness, 𝜏𝑤 is the wall shear stress, 𝑑𝑝/𝑑𝑥 is the pressure gradient along the streamwise direction

), while a spatially varying 𝛽 indicates a non-self-similar, or ‘non-equilibrium’, boundary layer.

For non-equilibrium flows, it is not just the magnitude of local 𝛽 that matters to the flow, but the

streamwise variation of the 𝛽 magnitude upstream of that location is also important. This ‘non-

local’ dependence is called the ‘history effect’ (Bobke et al., 2017). Non-equilibrium boundary

layers and the effect of 𝛽 have been studied in detail by Bobke et al. (2017), Volino (2020), Monty

et al. (2011), Vila et al. (2017), and Vinuesa et al. (2017), to name a few. Based on the sign of 𝛽,

boundary layer flows can be classified into flow with zero-pressure gradient (ZPG, 𝛽 = 0), favorable

pressure gradient (FPG, 𝛽 < 0) and adverse pressure gradients (APG, 𝛽 > 0).

2.6.1 Acceleration (or favorable pressure gradients)

Strong flow accelerations are present in a wide range of engineering applications such as airfoils

and turbine blades. In these flows, although the mean kinetic energy increases as a result of the
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acceleration, turbulence may become less vigorous and the flow may revert to a quasi-laminar state

through a process called “quasi-laminarization” or “reverse transition” (Narasimha and Sreenivasan,

1973; Launder, 1964).

The mechanism of quasi-laminarization has been widely studied in turbulence on a smooth

wall, especially for spatial accelerating ones. McEligot and Eckelmann (2006) observed that the

burst frequency is very sensitive to acceleration, decreasing with the strength of acceleration.

Bourassa and Thomas (2009) related such reverse transition processes to the stabilizing effects of

acceleration on near-wall streaky structures caused by the decrease of the wall-normal and spanwise

fluctuations, which have been shown to be responsible for the instability of streaks and near-wall

vortices (Jiménez and Pinelli, 1999). Piomelli and Yuan (2013) and Yuan and Piomelli (2015a)

explained that such a process is the result of diminished redistribution of turbulence kinetic energy

(TKE) into wall-normal and spanwise fluctuations, as the pressure fluctuations rapidly decrease

with the mean-flow acceleration. On the other hand, prevention of quasi-laminarization has been

observed in flow over a rough wall, as the roughness augments the wall-normal and spanwise

fluctuations, acting to oppose the stabilizing effect of acceleration.

Temporal accelerations of channel flows were studied by He and Seddighi (2013), and He and

Seddighi (2015) in channel flows with and without wall roughness. In these studies, the flow was

accelerated by rapidly increasing the mass flow rate over a very short time period. Evidence of

stabilizing effects of acceleration was observed, including a decrease in friction coefficient and long

streaky structures near the wall. As the flow recovered, turbulence spots were formed near the wall,

which disturbed the stability of these long streaks, leading to their breakdown.

Next, the effects of adverse pressure gradient on boundary layer development will be discussed

in the next subsection.

2.6.2 Deceleration (or adverse pressure gradients)

The effects of adverse pressure gradient on turbulent boundary layers have been widely studied

theoretically, experimentally, or numerically (Townsend, 1980; Mellor and Gibson, 1966; Simpson
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et al., 1977; Harun et al., 2013; Spalart and Watmuff, 1993; Na and Moin, 1998a; Gungor et al.,

2012, 2016; Kitsios et al., 2016, 2017). For instance, Simpson et al. (1977) measured mean and

turbulent statistics for a separating two-dimensional turbulent boundary layer, with an airfoil-type

pressure distribution. Aubertine and Eaton (2005a) used a laser doppler anemometer to measure

boundary layer parameters and turbulent statistics with non-equilibrium adverse pressure gradients.

Harun et al. (2013) carried out experiments in the wind tunnel to understand the effect of pressure

gradients on large-scale structures in the boundary layer. One of the first DNS simulations for APG

turbulent boundary layers was carried out Na and Moin (1998a), to understand the flow behavior

and turbulent dynamics around a separation bubble.

Kitsios et al. (2016) and Kitsios et al. (2017) carried out DNS studies of self-similar boundary

layer flows with ZPG (𝛽 = 0), mild APG (𝛽 = 1), and very strong APG on the verge of separation

(𝛽 = 39). With increasing adverse pressure gradients, the integral thicknesses and the shape factor

increase while the skin friction decreases. Also, the streamwise velocity increases in the wake

region, and the outer peak magnitude of Reynolds stress increases, whereas the inner turbulence

peak reduces.

Lee and Sung (2008) carried out numerical experiments to understand the effect of adverse

pressure gradients on turbulent structures in boundary layers. They found that with stronger APG,

near-wall streaks are weakened and the distance between them increases. Also, the Reynolds

stresses and turbulence production in the outer layer are enhanced by the APG. This is associated

with the presence of large-scale streaky structures in the outer layer.

2.7 Effect of wall curvature on turbulent boundary layers

The curvature effects on turbulent boundary layers have been studied since the late 1930s (Watten-

dorf, 1935). Researchers have carried out experiments and numerical simulations to understand the

sensitivity of boundary layers to longitudinal convex or concave curvatures. Some of the notable

works are Bradshaw (1973), Ramaprian and Shivaprasad (1978), Gibson et al. (1984), Gillis and

Johnston (1983), Muck et al. (1985), Schwarz and Plesniak (1996), Patel and Sotiropoulos (1997),
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and Tulapurkara et al. (2001). Most of these works have been conducted at approximately zero

pressure gradients, to isolate curvature effects from the effect of the pressure gradient.

The strength of the curvature effect can be measured by the ratio between the local boundary

layer thickness (𝛿) and the radius (𝑅) of the curvature, 𝛿/𝑅. Bradshaw (1969) showed that even very

small curvatures (𝛿/𝑅 < 0.0033) have an effect on the turbulent length scale distribution. Bradshaw

(1973) further documented that turbulence diffusion to the outer layers is significantly diminished in

highly convex surfaces, whereas on concave surfaces the momentum transfer increases compared to

a flat-plate flow. So and Mellor (1973) carried out experiments with even higher convex curvatures

with 𝛿/𝑅 ≈ 0.1, and found that the Reynolds stresses decrease both near the wall and in the outer

layers. Ramaprian and Shivaprasad (1978) studied the effect of mild curvatures (𝛿/𝑅 ≈ 0.01)

on the turbulence structures, for both convex and concave walls. They showed that for a convex

curvature, (i) the turbulence diffusion to outer layers is suppressed, (ii) there is a redistribution

of turbulence kinetic energy to smaller scales, (iii) wall-normal turbulent fluctuations are affected

the most among various components, and (iv) the outer layer turbulence structures being reduced

significantly in their experiments. These results showed that even mild curvatures have considerable

effects on turbulent boundary layers. Similar results were shown by Gibson et al. (1984). Muck

et al. (1985) also carried out experiments on mild curvatures for both convex and concave walls, and

found that the stabilizing effect of a convex wall and the de-stabilizing effect of a concave one have

fundamentally different mechanisms involved. Gillis and Johnston (1983) conducted experiments

at medium and strong convex curvatures with 𝛿/𝑅 ≈ 0.05 and 0.1. They showed that the Reynolds

shear stress profiles are collapsed when plotted against wall normal distance normalized by 𝑅

instead of by 𝛿.

Patel and Sotiropoulos (1997) summarized the following widely accepted curvature effects: (i)

mild curvatures have disproportionately larger effects; (ii) the effect of convex and concave walls

are opposite; (iii) a turbulent flow responds to a convex curvature faster than a concave one; (iv)

turbulent flow recovers more slowly from a convex curvature than from a concave one. Patel and

Sotiropoulos (1997) further described that major effects of convex curvature include a departure
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from the semi-logarithmic velocity profile, a reduction in the wall shear and turbulent kinetic

energy, and uncoupling of the inner and outer layers.

In addition, the effect of curvatures in the presence of pressure gradients has been studied.

Bandyopadhyay et al. (1993) conducted experiments with convex and concave curvatures with

pressure gradients, and characterized the dominant effect of curvatures over pressure gradients.

Mukund et al. (2006) investigated the effect of convex curvatures on relaminarization and found

that, with curvature, the reduction in skin friction is steeper, and the relaminarization is faster

and more complete. Tulapurkara et al. (2001) experimented with mild adverse pressure gradients

and curvatures. They found that the combined effect of concave curvature and adverse-pressure

gradient (APG) causes higher turbulence intensities as compared to the effect of APG alone. They

also found that the amount of reduction of turbulence intensities due to a convex curvature is higher

than the amount of increase due to a concave curvature with the same curvature magnitude.

Based on the literature detailed in this section, a boundary layer can be affected significantly

by pressure gradients and their historical effects and wall curvature. This modifies flow statistics,

turbulent structure dynamics, wall pressure statistics, and consequently far-field noise.

2.8 Efficient DNS simulation using minimal domain size

To enable efficient studies of the effects of pressure gradients on wall-bounded turbulence, one

approach is to use the minimal span methodology, as described in this section. As discussed

previously, DNS simulations require much higher spatial resolution to capture the boundary layer

physics. In addition, ensemble averaging is necessary for calculating statistics for temporally

developing flows that require 𝑜(10) times of repetition of the transient simulation with different

initial conditions. Hence, using minimal span domains to capture near-wall phenomena, is an

attractive approach for cost efficiency. A minimal span concept of eddy-resolved turbulence

simulation aims to simulate a small domain (in streamwise and spanwise directions) that is of the

scale of near-wall self-sustaining motions of turbulence (Jiménez and Moin, 1991). At a much

smaller simulation cost compared to a full-span simulation, it provides the accurate calculation
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of near-wall turbulence statistics and structure at the sacrifice of accurate outer-layer predictions.

Chung et al. (2015) and MacDonald et al. (2017) carried out exhaustive analyses of small-span

simulations using DNS and showed that simulations with a minimal spanwise length can capture

near-wall dynamics, for both channels flows and half-height channel flows (termed “a half channel”

hereafter), with the following constraints to accommodate minimal-flow units near the wall: (1) the

spanwise domain length 𝐿+𝑧 > 100; and (2) the streamwise domain length 𝐿+𝑥 > max(1000, 3𝐿+𝑧 ).

Here, + represents normalization by 𝛿𝜈 and the friction velocity 𝑢𝜏. If the wall is rough, the two

additional constraints required to capture the essential flow structure in the vicinity of roughness:

(1) 𝐿𝑧 > 𝜆, where 𝜆 is the characteristic spanwise wavelength of the rough surface; and (2) the

roughness crest height 𝑘𝑐 < 0.4𝐿𝑧. These constraints are in agreement with discussions in previous

work (Jiménez and Moin, 1991; Hwang, 2013, 2015; Chin et al., 2010).

The cost-effectiveness of the minimal-span approach was analyzed by MacDonald et al. (2017),

who found that a pyramid roughness requires 20 times less CPU time in minimal-span simulations

when compared to full-span ones.

Although the use of minimal span methodology has been evaluated in fully-developed turbulent

flows, its usage in accelerating turbulence has not been tested. Chapter 3 is devoted to testing the

use of this concept in accelerating channel flows and applying it to fundamental studies.

2.9 Research objectives and outline

The main objective of this work is to characterize the effect of non-equilibrium flow conditions

such as pressure gradient and wall curvature on wall-bounded turbulent flows and noise sources

(e.g. wall pressure statistics). Based on these analyses, a generalized wall pressure spectra model

is developed. Detailed research questions are as follows.

1. How can one generate high-fidelity simulation data efficiently to characterize non-equilibrium

boundary layers under pressure gradients that are relevant in, for example, fan applications?

2. What are the effects of pressure gradients (or flow acceleration/deceleration) and wall curva-

ture on the boundary layer development and turbulence?
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3. How do these pressure gradients and wall curvature affect wall pressure statistics?

4. How well do the existing wall pressure spectrum (WPS) models perform in non-equilibrium

flow conditions?

5. How to develop a generalized WPS model for ZPG, APG, and FPG flows?

The outline of this report is as follows.

• In Chapter 3, the effects of transient accelerations on wall turbulence are studied using the

DNS of a periodic channel flow responding to an impulse acceleration. Additionally, the study

explores the use of the minimal-span channel, as a cost-effective means, to understand these

non-equilibrium flows. As a example of its usage in non-equilibrium flows, the minimal span

methodology is applied to characterize the development of a transient accelerating channel

flow over wall riblets (Appendix A).

• In Chapter 4, the combined effect of pressure gradient and convex curvature is studied by

comparing the DNS of a flow over an airfoil and that over a flat plate with matching pressure

gradients. This extracts the effect of the wall curvature on the boundary layer. The goal

is to investigate whether an equivalent flat-plate DNS simulation can be used in place of

a more costly DNS simulation of flow past an airfoil, to capture essential dynamics of the

non-equilibrium boundary layer for data generation and acoustics model development.

• In Chapter 5, a numerical and experimental database of flat-plate and airfoil flows are collected

and used to understand the effects of Reynolds number and pressure gradient on wall pressure

statistics. The new understanding is then used to develop a generalized WPS model, which

is shown to outperform existing models in flows with a wide range of Reynolds numbers and

pressure gradients.
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CHAPTER 3

TURBULENCE RESPONSE TO TRANSIENT ACCELERATION IN CHANNEL FLOWS

3.1 Abstract

This study explores the use of a small-span direct numerical simulation for a transient, smooth-wall

turbulent channel flow. A flow configuration similar to that of S. He and M. Seddighi, J. Fluid

Mech., 715, 60–102 (2013) is used to study the impulse response of a half-height channel flow

to an abrupt increase in bulk velocity (with a friction Reynolds number increasing from 180 to

418). A minimal domain span sufficient to include the near-wall quasi-streamwise vortices in the

‘healthy turbulence’ region is used. The turbulent flow undergoes a ‘reverse transition" toward a

quasi-laminar state, followed by a retransition phase to the new equilibrium state. The ‘reverse

transition" stage is defined as the viscous response to acceleration, where turbulence is ‘frozen"

or the domination of pressure forces over slowly responding turbulence as discussed in Narasimha

and Sreenivasan (1973). Also, they defined the quasi-laminar state is defined as the later part of

the reverse transition where the quasi-laminar calculations are valid. On a smooth wall, detailed

comparisons with a full-span case show that the small-span test case captures satisfactorily the

essential dynamics during the entire transition process, although it yields a slight delay in recovery

to the new equilibrium. This difference is attributed to a slower streak transient growth due to an

underestimation of near-wall spanwise fluctuations. This underestimation is associated with the

missing large attached eddies that are not contained in the small span of the simulation domain.
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Case Wall Span 𝑅𝑒𝑏1 𝑅𝑒𝑏2 𝑅𝑒𝜏1 𝑅𝑒𝜏2 𝐿𝑧/𝛿 Δ𝑥+ Δ𝑦+min Δ𝑦+max Δ𝑧+

SF Smooth Full 2825 7404 180 418 3.5 4.5-10.0 0.2-0.56 3.5-8.3 2.5-6.5
SS Smooth Small 2921 7581 180 418 1 4.5-10.0 0.2-0.56 3.5-8.3 2.5-6.5

Table 3.1: Simulation parameters. 𝐿𝑥/𝛿 = 12.8 and 𝐿𝑦/𝛿 = 1.0 for all cases.

3.2 Methodology

3.2.1 Governing equations

The incompressible flow of a Newtonian fluid is governed by the equations of conservation of mass

and momentum:

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (3.1)

𝜕𝑢 𝑗

𝜕𝑡
+
𝜕𝑢𝑖𝑢 𝑗

𝜕𝑥𝑖
= − 𝜕𝑃

𝜕𝑥 𝑗
+ 𝜈∇2𝑢 𝑗 + 𝐹𝑗 . (3.2)

Here, 𝑥1, 𝑥2 and 𝑥3 (or 𝑥, 𝑦 and 𝑧) are, respectively, the streamwise, wall-normal and spanwise

directions, and 𝑢 𝑗 (or 𝑢, 𝑣 and 𝑤) are the velocity components in those directions. 𝑡 is time,

𝑃 = 𝑝/𝜌 is the modified pressure, 𝜌 the density and 𝜈 the kinematic viscosity. The simulations

are performed using a well-validated code that solves the governing equations (3.1) and (3.2)

on a staggered grid using second-order, central differences for all spatial derivatives, second-order

accurate Adams-Bashforth semi-implicit time advancement, and MPI parallelization (Keating et al.,

2004).

To obtained turbulent statistics for the transient flow simulations, ensemble averaging is per-

formed at each point in time. For a given instantaneous variable 𝜃, 𝜃 is ensemble averaged variable

of transient simulations, and 𝜃′ = 𝜃 − 𝜃 is the instantaneous turbulent fluctuation.

3.2.2 Parameters

For the transient channel simulations, the setup is similar to the one used by He and Seddighi (2013).

Specifically, the channel flow is forced by the streamwise pressure gradient, with periodic boundary

conditions applied in 𝑥 and 𝑧 directions, and symmetric boundary condition at the top boundary
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Figure 3.1: Prescribed 𝑅𝑒𝑏 variation in time for case SF; 𝑡∗ = 𝑡𝑢𝜏1/𝛿.

as only a half channel is simulated. The temporal flow acceleration is achieved by imposing a

temporally varying streamwise pressure gradient, which is adjusted at each time step to produce the

prescribed rapid linear increase of the bulk velocity from 𝑢𝑏1 to 𝑢𝑏2 over the transient time interval

𝑡∗ = 𝑡𝑢𝜏1/𝛿 = 0 to 𝑡∗ = 0.005, after which the bulk velocity is kept constant. Here 𝛿 is the channel

half height.

The simulation parameters are summarized in Table A.1 for all cases. For case SF (full span

simulation on the smooth wall), the initial and final bulk Reynolds numbers are 𝑅𝑒𝑏1 = 𝑈𝑏1𝛿/𝜈 =

2825 and 𝑅𝑒𝑏2 = 7404 ≈ 3𝑅𝑒𝑏1 and the time dependence of 𝑅𝑒𝑏 is shown in Figure A.1(a). The

friction Reynolds numbers 𝑅𝑒𝜏 are 180 and 420 for the initial and final states, respectively and Δ𝑥+
𝑖

(Δ𝑥𝑖𝑢𝜏/𝜈) is the grid size in the 𝑥𝑖 direction. The spanwise domain 𝐿𝑧 for both cases is given in the

table.

For the ensemble averaging, multiple transient simulations with uncorrelated initial conditions

were performed for each case. The procedure is detailed below. For each case, first the fully-

developed half-channel flows at 𝑅𝑒𝑏1 for the corresponding configurations (span and wall type)

were simulated. From these initial simulations, data were collected for a duration of 200 and 400

large-eddy turn-over time (LETOT or 𝛿/𝑢𝜏1), for the full- and small-span cases respectively, after
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the simulations had dynamically converged. Within these flow data at 𝑅𝑒𝑏1, 20 equally spaced

snapshots, for the smooth-wall cases, were used as different initial conditions for the transient

simulations. The transient simulations were then carried out until the new steady state is reached

for the first- and second-order velocity statistics. The convergence of ensemble averages was

demonstrated by the observation that using half the number of separate transient simulations for

ensemble averaging led to a change of up to 1% in𝑈 ≡ ⟨𝑢⟩ and 4% in ⟨𝑢′2⟩.

Previous studies of small-span simulations for fully-developed channels showed that the mean

flow and statistics of velocity fluctuations were reproduced accurately in the near-wall region

corresponding to 𝑦/𝐿𝑧 less than 0.3 to 0.4 (MacDonald et al., 2017; Flores and Jiménez, 2010;

Hwang, 2013)—the region of “healthy turbulence” as defined by Flores and Jiménez (2010). Above

this region the mean velocity profile in wall units, 𝑈+(𝑦), showed an upward shift compared to

full-span simulations and the streamwise and wall-normal velocity fluctuations were enhanced for

full-height channel flows. Changing to a half-height channel configuration for the minimal span

simulations had a negligibly small effect on statistical measures in the healthy turbulence region,

but was found to dampen streamwise fluctuations far from the wall (MacDonald et al., 2017). Most

of the changes caused by the reduced span were attributed to the absence of eddies larger than

0.4𝐿𝑧.

For the reason discussed above, in these steady-state small-span simulations the friction veloci-

ties were reproduced accurately, but the bulk velocities were systematically overpredicted. The flow

acceleration transient used herein was therefore a prescribed increase in 𝑅𝑒𝜏 = 𝑢𝜏𝛿/𝜈, rather than

𝑅𝑒𝑏. Specifically, separate small-span simulations of fully-developed half channels were carried

out at the two 𝑅𝑒𝜏 values to evaluate the corresponding “overpredicted” values of 𝑢𝑏1 and 𝑢𝑏2 to be

imposed in order to achieve the 𝑢𝜏1 and 𝑢𝜏2 values that matched the friction velocities in full-span

simulations. The corresponding “overpredicted” 𝑅𝑒𝑏1 and 𝑅𝑒𝑏2 values were then used to enforce

the desired acceleration transient in the small-span simulations.

For the small-span simulations, a spanwise domain length of 𝐿𝑧/𝛿 = 1 was used rather than the

full-span value of 3.5. The chosen length of 𝐿𝑧/𝛿 = 1 is equivalent to 180 < 𝐿+𝑧 < 418 in these
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simulations and is significantly larger than the smallest allowable value proposed in the literature for

equilibrium wall turbulence, of 𝐿+
𝑧,min = 100. The 𝐿𝑧/𝛿 value was selected for the following reason.

In a strongly accelerating flow, the near-wall cycle of turbulence generation involving low-speed

streaks and quasi-streamwise vortices is modified (discussed in Sec. 3.3.1.2). Therefore, if the

small-span simulation is to capture the variation of crucial aspects of the near-wall dynamic cycle,

it may be necessary to choose the value of 𝐿𝑧 such that the quasi-streamwise vortices are contained

(statistically speaking) inside the healthy turbulence region (i.e. 𝑦/𝐿𝑧 < 0.4). The wall-normal

extent of quasi-streamwise vortices are generally considered to be below 𝑦+ = 50 − 70 on average,

as, for example, shown by the velocity spectral analysis of Hwang (2015) and the eddy eduction of

Jeong et al. (1997). Enclosing the region of 𝑦+ < 70 inside the healthy turbulence region would

require 𝐿+𝑧 ≥ 175. This requirement is satisfied for both the initial and final equilibrium states

when 𝐿𝑧/𝛿 ≈ 1.

The streamwise domain size, 𝐿𝑥/𝛿 = 12.8, was chosen to be the same for both small- and full-

span simulations to accommodate near-wall streaky structures, which are known to be elongated

well past 1000 wall units during acceleration. In Sections 3.3.1.1, the elongation of flow structure

also occurs in the small-span cases. The 𝐿𝑥/𝛿 value is the same as used by He and Seddighi (2013).

The grid sizes were chosen based on the critical stage of the transient flows—the final state—

where 𝑅𝑒𝜏 is higher than the initial state. The grid spacing is uniform in 𝑥 and 𝑧, whereas, for 𝑦,

the grid is stretched with a finer resolution near the wall. For the smooth-wall cases, the numbers

of grid points are 512 × 300 × 256 in 𝑥, 𝑦 and 𝑧 for a full-span simulation and 512 × 300 × 64 for a

small-span one.

The full-span smooth-wall simulation has been validated against the results of Kim et al.

(1987). Figure 3.2 compares the flow statistics between the two smooth-wall cases with small and

full spans. The small-span simulation yields an upward shift in the𝑈+(𝑦) profile for 𝑦/𝐿𝑧 > 0.4 and

slightly lower ⟨𝑢′2⟩+ far from the wall. Values of ⟨𝑤′2⟩+ are also smaller throughout the channel.

These observations are consistent with those of MacDonald et al. (2017) from their half-channel

simulations with minimum spans. The weaker spanwise fluctuations near the wall appear to impact
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Figure 3.2: (a) Streamwise mean velocity and (b) rms velocity fluctuations normalized by wall
units in the initial steady state, for full- ( ) and small-span ( ) smooth-wall cases (SF and
SS). In (a), thin dashed lines are𝑈+ = 𝑦+ and𝑈+ = (1/4.0) log 𝑦+ + 5.0.

quantitatively the transient process, as will be discussed in Sec. 3.3.1.2. MacDonald et al. (2017)

observed that the minimal span augments ⟨𝑣′2⟩+ far from the wall for a half channel. This is,

however, not the case for the present small-span simulation, perhaps due to a significantly lower

Reynolds number (𝑅𝑒𝜏1 = 180, compared to 600 in the study of MacDonald et al. (2017)).

3.3 Results and Discussion

3.3.1 Transient flow in the smooth-wall channel

In the following, the smooth-wall cases with full and small spans (cases SF and SS) are compared, to

establish how effectively the small-span simulation is able to capture the main flow characteristics.

3.3.1.1 Turbulent statistics and structure

Figure 3.3 compares the variation of friction velocity between the full- and small-span cases. The

curves all start from 𝑢𝜏/𝑢𝜏1 = 1 at 𝑡∗ = 0 (though this data point is not seen in Fig. 3.3 as it is outside

the axis range), followed by a sudden increase in 𝑢𝜏/𝑢𝜏1 (to as high as 8.7 at the end of the impulse

acceleration) due to the increase in the bulk velocity. Following this, two stages of transition can
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Figure 3.3: Variation of friction velocity with time for full- (filled symbols) and small-span (open
symbols) smooth-wall cases. 𝑢𝜏 is normalized using initial friction velocity.

Figure 3.4: Streamwise mean velocity versus 𝑦 for full-span smooth case: (a) linear plot with
normalization in initial 𝑢𝜏 and 𝛿 and (b) semi-logarithmic plot with normalization in
instantaneous wall units. In (b), thin dashed lines are𝑈+ = 𝑦+ and𝑈+ = [1/4.0] log 𝑦+ + 5.0.
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be seen: (1) reverse transition toward the quasi-laminar state, with a decrease of friction coefficient

(or in our case a decrease of 𝑢𝜏/𝑢𝜏1), and (2) re-transition, the onset of which is defined as the start

of the increase in 𝑢𝜏/𝑢𝜏1, following He and Seddighi (2013). The main difference between the two

cases appears to be a delay in reaching the final equilibrium state in the small-span case. In the

reverse transition phase, only very slight differences are observed (up to 1.5%), which is possibly

due to data sampling. The onset of the re-transition does not appear to be affected by the use of the

small domain span.

Figures 3.4-3.6 show the time variation of the mean flow and Reynolds stresses. Since the main

flow features of the full- and small-span cases are very similar, for brevity Figures 3.4-3.5 contain

only results for the full-span case, while Figure 3.6 shows comparisons between the two.

The linear plot of the mean velocity 𝑈 in case SF, normalized by the initial 𝑢𝜏 (𝑢𝜏1), is shown

in Figure 3.4(a), compared to𝑈 normalized by the instantaneous 𝑢𝜏 (𝑡) against the logarithm of 𝑦+

in Figure 3.4(b). The 𝑈 magnitude undergoes a rapid increase immediately after 𝑡∗ = 0 to almost

three times of the original magnitude, with a much stronger mean shear, 𝜕𝑈/𝜕𝑦, near the wall

(shown at 𝑡∗ = 0.3), compared to the initial state at 𝑡∗ = 0. After the onset of retransition, the 𝑈

profile becomes flatter with slightly increased shear at the wall, as the flow starts to recover to a

new fully-turbulent state, which is achieved at 𝑡∗ = 1.5. Early in the transient, the near-wall 𝑈+(𝑦)

profile displays a thicker near-wall region in which a laminar law-of-the-wall (𝑈+ = 𝑦+) is followed,

indicating reverse transition of the near-wall flow.

Figure 3.5 shows the temporal development of turbulent fluctuations in case SF. In the reverse-

transition stage, the magnitude of streamwise fluctuations, normalize by 𝑢𝜏1, increases steadily

near the wall as a consequence of stronger shear production. At the same time, wall-normal (𝜎𝑣)

and spanwise (𝜎𝑤) rms fluctuations are slightly damped. It is also shown in Figure 3.6(a) by the

time-variation of rms peak values. Figure 3.6(b) shows the variation of rms peak elevations. During

much of the reverse transition stage, the peaks (especially for 𝜎𝑣) move farther from the wall as

the viscous sublayer thickens. During retransition, turbulent spots promote growth of 𝜎𝑣 and 𝜎𝑤

toward the new equilibrium and shift the rms peaks toward the wall due to the new, higher-Reynolds-
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Figure 3.5: Velocity rms fluctuations in (a) the streamwise, (b) wall-normal and (c) spanwise
directions for full-span smooth case.

Figure 3.6: Temporal variation of (a) peak values and (b) peak elevations of rms velocity
fluctuations for full- (filled symbols) and small-span (open symbols) smooth cases.

number turbulence (He and Seddighi, 2013). Specifically, the 𝜎𝑣 peak starts to move toward the

wall at 𝑡∗ ≈ 0.3, followed by the inward movements of 𝜎𝑤 peak at around 𝑡∗ ≈ 0.5, just before the

onset of retransition, as identified by the 𝑢𝜏 (𝑡) profile. The 𝜎𝑢 peak starts to move towards the wall

at 𝑡∗ ≈ 0.7. Also, Figure 3.6(a) shows overshoots in the peak values of all components before they

reach their final state.

The variations in small- and full-span cases in Figure 3.6 are very similar. The differences

between the two cases are: (i) slightly lower peak values of 𝜎𝑤 in the equilibrium states; (ii)
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Figure 3.7: Selective Reynolds stress budget terms for full- (black) and small-span (red) cases:
(a,d) Shear production of ⟨𝑢′2⟩𝑠, (b,e) pressure strain of ⟨𝑣′2⟩𝑠 and (c,f) pressure strain of ⟨𝑤′2⟩𝑠,
normalized by 𝑢4

𝜏1/𝜈, in (a-c) reverse-transition stage and (d-f) retransition stage.

slower increase of turbulence intensity in 𝑣′ and 𝑤′; and (iii) a delayed establishment of the new

equilibrium state, for the small span case. The shapes of the rms profiles are very similar during

the entire process for both cases. The wall-normal locations (Figure 3.6(b) of the peak-fluctuations

compare well too.

To explain the slower turbulence response in the small-span case, the Reynolds stress budgets

are discussed. The budget equation for the 𝛼𝛼 component of the Reynolds stress tensor for a

smooth-wall channel flow is (no summation over Greek indices)

𝜕

𝜕𝑡
⟨𝑢′𝛼𝑢′𝛼⟩𝑠 =−2⟨𝑢′𝛼𝑣′⟩

𝜕⟨𝑢𝛼⟩𝑠
𝜕𝑦︸               ︷︷               ︸

𝑃𝑠,𝛼𝛼

− 𝜕

𝜕𝑦
⟨𝑢′𝛼𝑢′𝛼𝑣′⟩𝑠 −2

〈
𝑃′
𝜕𝑢′𝛼
𝜕𝑥𝛼

〉
𝑠︸          ︷︷          ︸

Π𝛼𝛼

− 2
𝜕⟨𝑃′𝑢′𝛼⟩𝑠
𝜕𝑥𝛼

+ 𝜈 𝜕
2

𝜕𝑦2 ⟨𝑢
′
𝛼𝑢

′
𝛼⟩𝑠 − 𝜖𝛼𝛼 . (3.3)

The first and the third terms in Equation (3.3) are the shear production and the pressure strain term,

31



Figure 3.8: 𝑅𝑢𝑢 (𝑟𝑥 , 𝑟𝑦) in (a) reverse-transition stage, centered at 𝑦/𝛿𝜈1 ≈ 15, and (b) retransition
stage, centered at 𝑦/𝛿𝜈2 ≈ 15, for the full-span smooth case. (c) Variation of 𝑥-extent of 𝑅𝑢𝑢 = 0.3
isocontour in time, for both full- (filled symbols) and small-span (open symbols) smooth cases.

respectively. 𝑃𝑠,11 is the only source of TKE generation, while Π22 and Π33 redistribute TKE to

𝑣′ and 𝑤′ motions. The variations of these three terms are compared between the two cases in

Figure 3.7. For the full-span case, the peak of 𝑃𝑠,11 monotonically increases from the acceleration

at 𝑡∗ = 0 due to the constant, more intense mean shear at the wall, till the new equilibrium is

reached at 𝑡∗ ≈ 1.5. In contrast, Π22 and Π33 decrease significantly near the peak elevations for

𝑡∗ = 0 − 0.3, consistent with the findings for a spatially accelerating boundary layer (Piomelli and

Yuan, 2013). After the onset of retransition at 𝑡∗ ≈ 0.6, Π22 and Π33 rapidly increase and reach a

quasi-equilibrium state at 𝑡∗ ≈ 1.0 well before the new equilibrium state is reached (at 𝑡∗ ≈ 1.5).

Although progressively more TKE is produced, in the early stage it resides predominantly in

streamwise fluctuations, promoting a more one-dimensional turbulence. A rapid recovery of wall-

normal and spanwise pressure strain terms signifies the onset of retransition. In comparison, the

small-span case matches very well the development of 𝑃𝑠,11 and the initial decrease of pressure

strain terms. However, the recovery of pressure strain terms during the retransition is significantly

slower.

Structural characteristics are also compared. The two-point velocity auto-correlation 𝑅𝑢𝑢 with
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separation 𝑟𝑥𝑖 in 𝑥𝑖 direction is defined as

𝑅𝑢𝑢 (𝑟𝑥 , 𝑟𝑦) = ⟨𝑢′(𝑥, 𝑦ref, 𝑧, 𝑡)𝑢′(𝑥 + 𝑟𝑥 , 𝑦ref + 𝑟𝑦, 𝑧, 𝑡)⟩/⟨𝑢′2⟩(𝑦ref), (3.4)

where 𝑦ref is the elevation at which 𝑅𝑢𝑢 is centered. Figure 3.8(a,b) show the variation of isocontour

of 𝑅𝑢𝑢 (𝑟𝑥 , 𝑟𝑦) = 0.3 centered at an elevation near the wall throughout the transient. For the full-

span case, This elevation is chosen at 𝑦/𝛿𝜈1 = 15 (Figure 3.8(a)) and 𝑦/𝛿𝜈2 = 15 (Figure 3.8(b))

for the discussion of the reverse-transition and retransition processes, respectively. Times shown

include 𝑡∗ = 0 (initial equilibrium state), 0.5 (reverse-transition), 0.6 and 0.7 (around the onset of

retransition), 1.0 (during retransition) and 1.5 (new equilibrium state). The near-wall large-scale

𝑢′ motions are elongated in 𝑥 during the reverse-transition stage and are progressively shortened

during the retransition.

Figure 3.8(c) compares the temporal variation of the streamwise extents of the isocontour of

𝑅𝑢𝑢 = 0.3 centered at 𝑦/𝛿𝜈1 = 15, between the two cases. The overall variation of 𝑅𝑢𝑢 is well

captured by the small-span simulations, except for a delayed onset of reduced streamwise coherence

in the retransition process.

Figure 3.9 shows the 2D premultiplied power spectra of 𝑢′, 𝜅1𝜅3⟨|𝑢̂𝑢̂∗ |⟩ (normalized by 𝛿 and

𝑢𝜏1), at 𝑦/𝛿𝜈1 = 15. Here, 𝜅𝑖 and 𝜆𝑖 are the wavenumber and wavelength in 𝑥𝑖 direction, 𝑢̂ is the

Fourier transform of 𝑢′, and ∗ indicates complex conjugate. During the reverse transition, the peak

location of the power spectrum shifts toward a larger 𝜆1, indicating a higher fraction of total energy

residing in motions with very large 𝑥 extents, while the 𝑧 extent of these motions are not affected.

This phenomenon continues well into the retransition phase, despite the growth of energy residing

in much smaller motions associated with the higher Reynolds number. The very-large-wavelength

spectral peak disappears later (at 𝑡∗ ≈ 1), accompanied by a shift of 𝜎𝑢 peak elevation toward the

new elevation in the new equilibrium state as shown in Figure 3.6(b). The above variations are

well captured by the small-span case, except for a delay in the shift of the spectral maxima toward

smaller scales during retransition.

Figure 3.10 and Figure 3.11 show the 2D power spectra of 𝑣′ and 𝑤′, respectively, with the

same normalization as in Figure 3.9. A higher elevation of 𝑦/𝛿𝜈1 = 30 is evaluated, as it is close
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Figure 3.9: Premultiplied power spectra of 𝑢′ at 𝑦/𝛿𝜈1 = 15 for full- (a-d) and small-span (e-h)
smooth cases, normalized using 𝑢𝑏1 and 𝛿. 𝐿𝑧 of small-span case.

Figure 3.10: Premultiplied power spectra of 𝑣′ at 𝑦/𝛿𝜈1 = 30 for full- (a-d) and small-span (e-h)
smooth cases, normalized using 𝑢𝑏1 and 𝛿. 𝐿𝑧 of small-span case.
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Figure 3.11: Premultiplied power spectra of 𝑤′ at 𝑦/𝛿𝜈1 = 30 for full- (a-d) and small-span (e-h)
smooth cases, normalized using 𝑢𝑏1 and 𝛿. 𝐿𝑧 of small-span case.

to the peak elevations of 𝑣′ and 𝑤′. Initially, the 𝑣′ and 𝑤′ power spectra undergo a right shift

of the spectral peak similar to 𝑢′ spectra, but their peaks shift to smaller scales at the end of

reverse-transition stage (𝑡∗ ≈ 0.6), much earlier than 𝑢′ motions, and the equilibrium state recovers

much earlier. It is because most of the 𝑣′ and 𝑤′ energy resides in turbulent spots at the start of the

retransition. Throughout the transient, the small span captures the majority of the energetic scales

of 𝑣′ motions. This, however, is not the case for 𝑤′ motions. Figure 3.11(a-d) shows that a major

portion of the near-wall large-𝑧-scale (𝜆3/𝛿𝜈1 >180) 𝑤′ energy is not captured by 𝐿𝑧 in the small

span simulation, which explains the previous observation of underestimated span-wise fluctuations

throughout the transient (in Figures 3.2, 3.6).

3.3.1.2 Effect of a small span in near-wall dynamics

We now explain the differences observed previously. The near-wall turbulence production cycle

involves the interaction between low-speed streaks and quasi-streamwise vortices. Previous studies

proposed that: (1) quasi-streamwise vortices lead to the lift-up of streaks through 𝜔𝑥 (𝜕𝑢′/𝜕𝑦); and

(2) the streaks (which meander in the streamwise direction) in turn contribute to the generation of

35



Figure 3.12: (a) Measure of strength of quasi-streamwise vortices using Q(𝑡) defined in
Equation (3.5) for full- (filled symbols) and small-span (open symbols) smooth cases. Isosurfaces
of 𝑄𝛿2/𝑢2

𝑏1 = 3 for 𝑡∗ = 0.3 (reverse-transition, (b)), 0.6 (onset of retransition, (c)) and isosurface
of 𝑄𝛿2/𝑢2

𝑏1 = 90 for 𝑡∗ = 0.9 (retransition, (d)), in the full-span case. The three 𝑡∗ instances are
marked in (a).

quasi-streamwise vortices through vortex stretching and wall-normal advection. Here, we explore

what happens to this cycle during the transient and how a small span affects the change.

Figure 3.12(b-d) show the temporal evolution of vortical motions in case SF, visualized as

iso-surfaces of the second invariant of the velocity gradient tensor, 𝑄 = −𝑢𝑖, 𝑗𝑢 𝑗 ,𝑖/2. In the reverse-

transition phase (demonstrated by state I), the quasi-streamwise vortices are elongated and are fewer

compared to the initial equilibrium state. At the onset of retransition (near state II), smaller-scaled

vortical motions appear and grow during the retransition (state III).

The strength of quasi-streamwise vortices can be measured using the volume-averaged instan-

taneous 𝑄 conditioned on an 𝑥-aligned vortical axis (identified using 𝜔2
𝑥/| ®𝜔|2 > 0.8, where ®𝜔 is

the fluctuation vorticity) and positive values of 𝑄. This conditional average is denoted as Q,

Q(𝑡) = 1
V𝑛

∫
V𝑛

𝑄(®𝑥, 𝑡) |𝜔2
𝑥/| ®𝜔|2>0.8;𝑄>0 d𝑥d𝑦d𝑧, (3.5)

where the averaging volume V𝑛 is the the volume of the near-wall layer below the peak elevation

of the 𝜔𝑥 rms at each time instance. V𝑛 varies in time. Such a dynamically adapting averaging

volume is used to ensure that the vortical motions contributing to Q are indeed predominantly quasi-

streamwise vortices, as well as to dynamically adjust to the variation of viscous sublayer thickness
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Figure 3.13: Visualization of near-wall low-speed streaks for (a) full- and (b) small-span smooth
cases at 𝑦+ = 15 and 𝑡∗ = 0. (𝑢′𝑤′)+ |𝑄3 = 1.5, (𝑢′𝑤′)+ |𝑄2 = −1.5. (c) Sketch of
distribution of 𝑢′𝑤′ quadrants along a meandering streak.

in time. Q is compared in Figure 3.12(a) between cases SF and SS. Both cases display roughly

constant vorticity strength during reverse transition and a rapid augmentation of the intensity during

retransition, attributed to the generation of smaller-scale new turbulence through the near-wall cycle.

A significant delay in the augmentation of the strength of quasi-streamwise vortices is seen for the

small-span case.

Next, we attribute the delay of the recovery of turbulent statistics and structure in the small-

span simulation to a weaker streak transient growth phenomenon. Other mechanisms may also

contribute to the delay but are beyond the scope of this work.

Schoppa and Hussain (2002) showed that a streak transient growth (STG) mechanism dom-

inates generation of near-wall quasi-streamwise vortices for canonical wall-bounded turbulence.

Such mechanics arises from the streamwise variation of 𝑤′ perturbations, with the second and

third quadrants (Q2 and Q3) of 𝑢′𝑤′ events being a critical trigger for turbulence production. Fig-
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Figure 3.14: Two-point auto-correlations of Q2 (a-b) and Q3 (c-d) contributions to 𝑢′𝑤′ at
𝑦+ = 15 and 𝑡∗ = 0 (a,c) and 0.3 (b,d), for the full-span smooth case. Contour levels are from 0.3
to 0.6 with step size 0.1; principal axis of a contour line. 𝑟𝑥𝑖 is separation in 𝑥𝑖.

ure 3.13(a,b) displays the near-wall low-speed streaks for full- and small-span cases at 𝑦+ = 15

and 𝑡∗ = 0, superimposed by isocontour lines of Q2 and Q3 quadrants of 𝑢′𝑤′. An association of

the distribution of these quadrant events with streak meandering is clear; this is due to the spatial

organization of low-speed streaks and quasi-streamwise vortices. According to the STG mechanism

of quasi-streamwise vorticity generation, the spanwise meandering of a low-speed streak is due to

the convection of the streak by x-dependent 𝑤′ perturbations and, in turn, generates 𝜔𝑥 through

vortex stretching by 𝜕𝑢/𝜕𝑥 as a result of the meandering. Different levels of meandering would

thus indicate different generation rates of quasi-streamwise vortices.

To quantitatively compare the characteristics of the meandering of low-speed streaks in cases SS

and SF, we calculate, for each case at various 𝑡∗: (1) the average tilting angle 𝜃 (in 𝑥− 𝑧 plane) of the

Q2 and Q3 regions, representing meandering magnitude; and (2) the average separation between

𝑥-alternating Q2 and Q3 events 𝐿𝑥,𝑢′𝑤′, representing (a half of) the meandering wavelength. These

two variables are sketched in Figure 3.13(c).

To calculate 𝜃 and 𝐿𝑥,𝑢′𝑤′, the two-dimensional auto-correlations (with separation in 𝑥 and 𝑧)

of 𝑢′𝑤′ in Q2 and Q3 quadrants are obtained for each 𝑡∗; they are compared at 𝑡∗ = 0 and 0.3 in

Figure 3.14. The tilting directions are consistent with the visualization and sketch in Figure 3.13.
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Figure 3.15: Characteristics of streak meandering at 𝑦+ = 15: (a) average tilting angle magnitude
and (b) average streamwise separation between alternating Q2 and Q3 regions, for full- ( )
and small-span ( ) smooth cases.

The principal axes of each contour level is obtained based on principal component analysis. 𝜃

is obtained as the tilting angle of the long axis of a contour line with respect to 𝑥; this angle is

then averaged among values obtained from contour levels from 0.3 to 0.6 with a step size of 0.1.

Next, the two-point cross-correlation of Q2 and Q3 events with separation in 𝑥 are calculated at

𝑦+ = 15 for each 𝑡∗. we define 𝐿𝑥,𝑢′𝑤′ as the 𝑥 separation associated with the maximum correlation

magnitude, roughly representing the average separation between the centers of neighboring Q2 and

Q3 regions.

The values of 𝜃 and 𝐿𝑥,𝑢′𝑤′ at representative values of 𝑡∗ are compared in Figure 3.15. In both

cases, the angle of meandering decreases during reverse transition and recovers during retransition.

At the same time, the wavelength of meandering first increases then decreases to the new equilibrium

value. It indicates a stabilization of streaks with significantly milder meandering both in terms

of lower magnitudes and longer wavelengths during reverse transition. Noticeable differences are

seen between the two cases. Before the transient (at 𝑡∗ = 0) the full-span case yields a significantly

higher meandering magnitude but a similar wavelength—probably a result of the missing 𝑤′

motions with large 𝜆𝑧 and broad-band 𝜆𝑥 in the small-span case (shown by Figure 3.11(a,e)). The

weaker meandering angle in case SS continues to the onset of retransition (𝑡∗ ≈ 0.6), and, through

a weaker STG mechanism, tends to generate fewer or weaker quasi-streamwise vortices. Thus
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slower turbulence generation and retransition processes follow. A change of 𝑦+ between 5 and 25

does not affect the overall comparison, despite that the value of 𝜃 varies with 𝑦+. We conclude

that the small-span simulations capture the variation of essential near-wall dynamics for turbulence

generation in a transient, accelerating flow, though quantitative differences in the speed of flow

recovery remain due to large-𝑧-scale 𝑤′ motions that are not captured.

3.4 Conclusions

Direct numerical simulations of turbulent half channel flows subjected to a step increase of the

bulk velocity are carried out on a smooth wall with different spanwise domain sizes to evaluate

simulations of non-equilibrium, strongly accelerating turbulence with the minimal-span methodol-

ogy. Comparison is made with a base case with a full span. Following the impulse acceleration,

the near-wall cycle of turbulence generation is modified due to increased stability of streaks. TKE

steadily increases, while reverse transition toward a quasi-laminar state occurs with a decrease of

𝑅𝑒𝜏 and elongated low-speed streaks, as the pressure-strain term of Reynolds stress budgets redis-

tributes most of the TKE to streamwise fluctuations. The flow then retransitions toward the final

equilibrium state as turbulent spots appear and the normal near-wall cycle of turbulence generation

resumes.

The small-span case captures the variation in turbulence statistics and structure, while displaying

a more persistent stabilized turbulence during the transient and a delayed establishment of the new

equilibrium state. A candidate mechanism underlying this different is linked to the missing near-wall

𝑤′ motions that are large-scale in 𝑧 and broad-band in 𝑥, due to the exclusion of large attached eddies

by the limited span. These missing 𝑤′ motions may explain the milder streak meandering, which is

then associated with a weaker streak-transient-growth mechanism that is important in generation of

quasi-streamwise vortices. A slower intensification in overall vortical strength of 𝑥-aligned vortical

motions is indeed observed and eventually leads to a later onset of streak destabilization at the start

of the retransition.

The small span methodology is applied to understand affect of riblets on turbulent flows during
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transient accelerations. Results and discussion can be found in appendix-A.

These results provide confidence in the use of small-span simulations for efficient extraction of

main physics in a wall turbulence subject to a strong acceleration of the bulk flow. Using this ap-

proach, we showed that previously observed streak-stabilization effect of riblets in fully-developed

wall turbulence is still present when the flow is strongly accelerating and serves to prolong the

transient process by delaying the retransition.
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CHAPTER 4

TURBULENT BOUNDARY LAYERS WITH ADVERSE PRESSURE GRADIENT AND
CONVEX CURVATURE

4.1 Introduction

The objective of the present work is to understand the effect of convex curvature in the presence

of APG that is relevant to low-speed fan applications (with Reynolds numbers based on the chord

length below 106) and other applications with radii of surface curvature higher than around 50 times

of the local boundary layer thickness, such as a highly cambered airfoil close to its separation point

in a turbomachinery. The purpose is two-fold: one is to enrich the fundamental understanding of

non-equilibrium turbulent boundary layers on a curved wall, which is present in many engineering

applications; the other is to gauge the suitability of using flat-plate simulations on individual

sides of the airfoil as low cost surrogates of airfoil-flow simulations for DNS data collection to

aid turbulence and aeroacoustics model (Amiet, 1976b; Roger and Moreau, 2005b; Moreau and

Roger, 2009; Rozenberg et al., 2012; Lee, 2018; Catlett et al., 2014; Hu, 2018; Grasso et al., 2019;

Jaiswal et al., 2020) development. To this end, DNS simulations of flow over the suction side

of a controlled-diffusion (CD) airfoil (Wu et al., 2019) and flow over a flat plate are compared.

Both flows are subjected to matching streamwise pressure gradient quantified by the acceleration

parameter, 𝐾 . Comparison between the two cases isolates the effect of wall curvature.

Data on the CD airfoil flow are available from Wu et al. (2019, 2020). The distribution of 𝐾 (𝑥)

of the boundary layer on the suction side is shown in Fig. 4.1(a). Along the streamwise direction,

the boundary layer first experiences FPG (𝐾 > 0), then ZPG (𝐾 ≈ 0) near the mid-chord location

and APG (𝐾 < 0) downstream. A separate DNS of a flat-plate boundary layer is conducted and is

described in this section. The simulation is designed to match the 𝐾 (𝑥) distribution of the airfoil

flow in the ZPG to APG region only (i.e. from around mid-chord, 𝑥/𝑐 = −0.6, to the trailing edge

𝑥/𝑐 = 0, where 𝑐 is the airfoil chord length). In the flat-plate simulation, an 𝑥 axis different from
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Figure 4.1: (a) Sketch of the useful streamwise domain of the flat-plate DNS designed to match
𝐾 (𝑥) of the airfoil boundary layer from 𝑥/𝑐 = −0.6 downstream. (b) Simulation domain and
boundary conditions used in the flat-plate simulation.

that in the airfoil simulation is used. The start of the useful region (𝑥𝑜) of the flat-plate simulation

corresponds to 𝑥/𝑐 = −0.6 location on the airfoil, as shown in Fig 4.1(a).

4.2 Methodology

4.2.1 Governing equations and boundary conditions

The incompressible fluid flow solver described in section 3.2 is also used herein.

For the flat-plate DNS, the freestream pressure gradient is imposed by prescribing the streamwise-

varying 𝑈∞(𝑥) at the top boundary of the domain (indicated in Fig. 4.1(b)); the wall-normal

freestream velocity 𝑉∞(𝑥) is obtained based on the conservation of mass (Yuan and Piomelli,

2015b). A fully turbulent boundary layer flow upstream of the useful domain is obtained using

the recycling/rescaling method of Lund et al. (1998). A convective outflow boundary condition

(Orlanski, 1976) is used at the outlet and periodic boundary conditions are used in the spanwise

direction.

The domain sizes in 𝑥, 𝑦 and 𝑧 are 930𝜃𝑜, 100𝜃𝑜 and 80𝜃𝑜, respectively. Here, 𝜃 (𝑥) =∫ 𝛿

0 𝑈 (𝑥, 𝑦) [𝑈∞(𝑥) −𝑈 (𝑥, 𝑦)]𝑑𝑦/𝑈∞(𝑥)2 is the momentum thickness and 𝜃𝑜 is the 𝜃 value at the 𝑥𝑜

location. 𝛿 is calculated based on the total pressure method (Wu et al., 2019). Specifically, the wall-

normal profile of mean total pressure at each streamwise location, 𝑃𝑡 (𝑥, 𝑦) = 0.5𝜌𝑈 (𝑥, 𝑦)2+𝑃𝑠 (𝑥, 𝑦)
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(where 𝑃𝑡 is the total pressure, 𝑃𝑠 is the mean static pressure, and𝑈 ≡ ⟨𝑢⟩) is calculated; the wall-

normal location at which 𝑃𝑡 reaches 95% of its maximum value is defined as the edge of the

boundary layer. The streamwise length of the recycling/rescaling region is 75𝜃𝑜. The 𝑥𝑜 is located

at 150𝜃𝑜 downstream from the most upstream location of the domain. The pressure gradient is

applied starting from 𝑥𝑜 for 400𝜃𝑜 downstream, up to the corresponding trailing-edge location of

the airfoil. Uniform grids are used in 𝑥 and 𝑧, while in 𝑦 the grid is refined near the wall. The 𝑥 and

𝑧 grid sizes in wall units are Δ𝑥+ ∈ [4, 10] and Δ𝑧+ ∈ [2, 5]. In 𝑦, the smallest grid size (at the wall)

for each 𝑥 is Δ𝑦+min ∈ [0.06, 0.15]. The 𝑢′ two-point correlation at a spanwise separation of half

the spanwise domain size is less than 0.1, indicating that the spanwise domain size is sufficiently

large. The total number of grid points are 1536, 200 and 256 in 𝑥, 𝑦 and 𝑧 directions, respectively.

The total averaging time for simulation is 𝑇 ≈ 3000𝜃𝑜/𝑈𝑜. The Reynolds numbers based on the

momentum thickness (𝑅𝑒𝜃) at the 𝑥𝑜 locations are 320 in both cases.

The fluid solver was validated by running a ZPG flat-plate boundary layer simulation and

comparing it with the results of Schlatter and Örlü (2010) with similar Reynolds numbers. The

comparison of skin friction𝐶 𝑓 (𝑥) = 2𝜏𝑤/𝜌𝑈2
∞ shows excellent agreement in Fig. 4.2(a). To validate

the prescription of the mean pressure gradient at the top boundary, another DNS was carried out

to reproduce the results of a separating boundary-layer flow conducted by Na and Moin (1998a).

Very good agreement in 𝐶 𝑓 is shown in Fig. 4.2(b), and in the mean velocity profiles before and

after the boundary layer separation, as shown in Figs. 4.2(c) and (d) respectively.

4.3 Results

4.3.1 Statistics at the inlet of flat-plate boundary layer

From here on, the 𝑥𝑜 location at the airfoil is set as 𝑥 = 0 (and called the “inlet”) for the flat-plate

simulation. Before comparing the developments of the flat-plate boundary layers and the airfoil

one in the APG region, the extent to which the flat-plate boundary layer inlet represents the airfoil

boundary at 𝑥/𝑐 = −0.6 is evaluated in this section. Both single-point and two-point statistics are

compared between the flow at 𝑥 = 0 for the flat-plate boundary layer and the flow at 𝑥/𝑐 = −0.6 for
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Figure 4.2: Validation of boundary layer simulations. (a) Skin friction coefficient comparison
between present test case ( ) and ZPG boundary layer DNS of Schlatter and Örlü (2010) (◦);
(b) Skin friction comparison between present test case ( ) and APG boundary layer DNS data
of Na and Moin (1998a) (◦). (c,d) Comparisons of streamwise mean velocity ( ) Na and
Moin (1998a) (◦): (c) before detachment (𝑥/𝛿∗ = 100, 115, 130 and 145 in arrow direction) and
(d) after reattachment (𝑥/𝛿∗ = 270, 285, 300 and 330 in arrow direction).
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Figure 4.3: Comparison between airfoil ( ) and flat-plate cases ( ) at the inlet of the
boundary layer flow (or 𝑥/𝑐 = −0.6 location on the airfoil): (a) streamwise mean velocity and (b)
Reynolds stresses normalized by inner units. ◦ Spalart (1988) data at a similar 𝑅𝑒𝜃 .

the airfoil boundary layer.

In Fig. 4.3, the comparisons of the streamwise mean velocity and the Reynolds stresses are

shown, together with the results of a ZPG boundary layer simulation by Spalart (1988) at a similar

Reynolds number of 𝑅𝑒𝜃 ≈ 300. The profiles of all cases match very well. The mean velocity

profile in the airfoil simulation is slightly lower in the outer region, which is probably due to the

FPG imposed upstream of this 𝑥 location because of the airfoil curvature. The friction coefficient

is approximately 5 percent higher in the airfoil case, consistent with the difference in the𝑈+
∞ value

shown in Fig. 4.3(a). For the root-mean-square (r.m.s.) velocities and Reynolds shear stress, the

differences between the three cases are within 5 percent.
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Figure 4.4: Comparison (at 𝑥𝑜) of two-point correlations of 𝑢′ in 𝑥-𝑦 plane centered at (a)
𝑦/𝛿 = 0.1 and (b) 𝑦/𝛿 = 0.8, at the inlet of the boundary layer flow: airfoil case;
flat-plate case. Contour levels are 0.05, 0.15, 0.25, and 0.35.
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Figure 4.5: Comparison (at 𝑥𝑜) of two-point correlations of (a,c) 𝑢′ and (b,d) 𝑣′ in 𝑥-𝑧 plane at
(a,b) 𝑦/𝛿 = 0.1 and (c,d) 𝑦/𝛿 = 0.8 for airfoil (top half) and flat-plate (bottom half) cases.
Positive contour levels from 0.05 to 0.9 with a step size of 0.05; negative contour levels of
-0.01,-0.05, -0.1 and -0.15.

Next, the structural characteristics of the two cases are compared using two point velocity

correlations, 𝑅𝑢𝑢, which is defined as

𝑅𝑢𝑢 (𝑟𝑥 , 𝑟𝑦, 𝑦ref) = ⟨𝑢′(𝑥, 𝑦ref, 𝑧, 𝑡)𝑢′(𝑥 + 𝑟𝑥 , 𝑦ref + 𝑟𝑦, 𝑧, 𝑡)⟩/⟨𝑢′2⟩(𝑦ref), (4.1)

where 𝑟𝑥𝑖 is the separation in 𝑥𝑖 direction and 𝑦ref is the elevation at which the correlation is

centered. In Figs. 4.4 and 4.5, the two-point correlations of 𝑢′ and 𝑣′ in 𝑥-𝑦 and 𝑥-𝑧 planes are

compared, centered near (𝑦/𝛿 = 0.1) and away (𝑦/𝛿 = 0.8) from the wall.

First, the 𝑥-𝑦 contour lines of the auto-correlations of 𝑢′ centered at a near-wall and an outer

elevations are shown in Figs. 4.4(a) and (b) respectively. In Fig. 4.4(a), the spatial extent and
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Figure 4.6: Developments of the acceleration parameter (a) and the mean wall pressure (b) along
the stream-wise direction: flat-plate case, airfoil case. 𝑃𝑜 and𝑈𝑜 are the mean wall
pressure and free stream velocity at 𝑥𝑜 location.

shape of the contour lines represent the size and shape of the coherent structures of 𝑢′. These

characteristics agree well across the cases. At a low correlation level of 0.05, the overall length

of structures vary between 6 to 8𝛿 for all cases. But at correlation levels higher than 0.15, all

of the cases lie in close proximity. The correlation centered at 𝑦 = 0.8𝛿 (Fig. 4.4(b)) shows

velocity correlation across the boundary layer. Some differences are observed in correlations

outside boundary layer (in the region 𝑦/𝛿 > 1), which could be due to the difference in the top

boundary condition between the two cases.

The correlations of 𝑢′ and 𝑣′ in the 𝑥-𝑧 plane at 𝑦 = 0.1𝛿 and 0.8𝛿 are shown next in Fig. 4.5.

The region of positive auto-correlation of 𝑢′ shows the extents in 𝑥 and 𝑧 of near-wall low-speed

streaks. The extent is larger on the airfoil than on the flat plate, which is due to the FPG region in

the airfoil boundary layer prior to 𝑥/𝑐 = −0.6. It is known that FPG stabilizes near-wall coherent

motions associated with a lower bursting frequency and, consequently, leads to elongated near-wall

streaks (Volino, 2020). Similar observations are made for the 𝑣′ auto-correlation. These results are

overall consistent with the observations made by Sillero et al. (2014) for a flat-plate ZPG boundary

layer with 𝑅𝑒𝜃 ranging from 2780 to 6680, indicating that velocity correlations are weakly sensitive

to the Reynolds number.

These results demonstrate that the boundary layer over the airfoil is fully turbulent at 𝑥/𝑐 = −0.6,

after the laminar separation bubble at the leading edge and the subsequent transition to turbulence.

The comparison also provides confidence that the inlet state of the flat-plate flow essentially matches
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Figure 4.7: Streamwise developments of the ratio between boundary layer thickness and radius of
curvature (a), Clauser parameter (b), displacement thickness (c), and skin friction coefficient
normalized by its value at 𝑥0 (d), for the airfoil ( ) and flat-plate ( ) cases.

that in the airfoil boundary layer at 𝑥/𝑐 = −0.6. The developments of the two boundary layers from

this streamwise location downstream are compared in the next section.

4.3.2 Boundary layer development

Figure 4.6(a) shows the distributions of the acceleration parameter 𝐾 (𝑥) that are designed to match

between the two cases. Note that 𝐾 (𝑥) is calculated at the edge of the boundary layer, 𝑦/𝛿(𝑥) = 1.

The streamwise variations of the mean pressure at the wall in the two cases also match very well, as

shown in Fig. 4.6(b). This justifies the setup of the present comparison; any significant difference

in the boundary layer development between the two cases would be a result of the additional wall

curvature in the airfoil case.
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First, the streamwise variations of the strengths of wall curvature and APG are evaluated. The

strength of wall curvature can be quantified by the ratio between the boundary layer thickness and the

radius of curvature; it is shown in Fig. 4.7(a). The increasing 𝛿/𝑅 along 𝑥 toward the trailing edge

indicates that curvature effects are strengthened along the streamwise direction(Bradshaw, 1969;

Gillis and Johnston, 1983; Muck et al., 1985; Patel and Sotiropoulos, 1997); this is predominantly

due to the growth of the boundary layer. The 𝛿/𝑅 ratios in the airfoil case fall in the range from

small (Bradshaw, 1969, 1973) to mild (Ramaprian and Shivaprasad, 1978; Gibson et al., 1984)

values (𝛿/𝑅 < 0.05) as discussed in Patel and Sotiropoulos (1997).

Next, the Clauser parameter (Fig. 4.7(b)) shows an increase along 𝑥 in both cases. As 𝛽 is

obtained as the pressure gradient normalized using 𝑢𝜏, an increase of 𝛽(𝑥) along 𝑥 suggests that the

mean pressure force relative to near-wall forces becomes stronger with increasing 𝑥. The 𝛽 values

are similar between the two cases throughout most part of the boundary layer. Near the trailing

edge, however, 𝛽 is higher in the airfoil case, despite matching 𝐾 (𝑥) and wall-pressure gradient

between the two cases; this is due to the lower wall friction in the airfoil case near the trailing edge

as discussed next.

The displacement thickness normalized by the momentum thickness at the inlet, 𝛿∗(𝑥)/𝜃𝑜, and

the wall friction coefficient are compared in Figs. 4.7(c) and 4.7(d), respectively. The overall

variation of 𝛿∗(𝑥) matches well between the two cases, except for the region near the trailing edge

where it increases faster in the airfoil case, which is most likely an APG effect due to the augmented

𝛽 values along 𝑥. The comparison of 𝐶 𝑓 (𝑥) normalized by their respective values at 𝑥𝑜 shows a

faster reduction of wall friction in the airfoil flow than the flat-plate one in two regions: 𝑥/𝜃0 < 150

(where 𝛽 < 1, i.e., weak-APG region) and 𝑥/𝜃0 > 290 (where 𝛽 > 6, i.e., strong-APG region). In

the weak-APG region, the lower 𝐶 𝑓 in the airfoil case is probably a manifestation of the effect of

wall curvature observed in the past for ZPG flows (Bradshaw, 1969; Gillis and Johnston, 1983;

Muck et al., 1985; Patel and Sotiropoulos, 1997). In the strong-APG region near the trailing edge

the lower𝐶 𝑓 in the airfoil case may be due to the strengthened curvature effect (i.e., high 𝛿/𝑅 ratio)

in this region with a thickened boundary layer. The higher displacement thickness and lower 𝐶 𝑓 in
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Figure 4.8: Variation of (a) Clauser parameter showing streamwise locations at which
comparisons are made. Flow statistics comparisons between the airfoil ( ) and flat-plate
( ) cases at these locations: (b) velocity profile, (c) streamwise r.m.s. velocity, (d)
wall-normal r.m.s. velocity, and (e) Reynolds shear stress, all normalized in wall units.
Comparison is shown at five streamwise locations: 𝑥/𝜃𝑜 = 25, 75, 175, 250, 325, and 350,
represented by lines with increasing thickness.

the airfoil trailing edge region compared to the flat-plate case may also be due to the abrupt change

in boundary conditions at the trailing edge and the airfoil wake generation downstream, affecting

boundary layer growth immediately upstream of the trailing edge. Yet, for most part the flow 𝛿∗

and 𝐶 𝑓 are similar between the two cases.
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4.3.3 Mean streamwise velocity and turbulent statistics

Figure 4.8 compares wall-normal profiles of the streamwise mean velocity and turbulent statistics

at different stations along the streamwise direction. These locations are marked alongside the

streamwise variation of 𝛽 in Fig. 4.8(a). The flow statistics are normalized by 𝑢𝜏. The variations

of the mean velocities (Fig. 4.8(b)) and Reynolds stresses (Fig. 4.8(c,d,e)) are overall similar

throughout the boundary layer development between the two cases. Specifically, the wake of the

mean velocity becomes intensified due to the imposed APG. The Reynolds stresses normalized by

𝑢𝜏 are augmented throughout the boundary layer, associated with the decrease of wall friction. For

the r.m.s. velocity 𝑢𝑟𝑚𝑠, a prominent outer peak appears at the most downstream station due to the

strong APG. The augmentations of the r.m.s. velocity 𝑣𝑟𝑚𝑠 and the Reynolds shear stress in the

outer layer are also evident.

The overall agreement between the profiles in both cases up to around 𝑥/𝜃𝑜 = 325 suggests

that for the majority part of the flow the curvature effect (though increasingly strengthened as the

boundary layer develops) is masked by the APG effect without significant modification of turbulence

statistics. In the low-APG region (𝑥/𝜃𝑜 < 175), A slightly lower outer-layer Reynolds shear stress

magnitude is observed in the airfoil case than in the flat-plate case as shown in Fig. 4.8(e). This

is consistent with previously observed effect of curvature in ZPG flows (Bradshaw, 1969, 1973;

Ramaprian and Shivaprasad, 1978; Gibson et al., 1984; Gillis and Johnston, 1983; Muck et al., 1985;

So and Mellor, 1973; Schwarz and Plesniak, 1996; Patel and Sotiropoulos, 1997; Tulapurkara et al.,

2001; Aubertine and Eaton, 2005b). The main differences between the two cases are seen in the

strong APG region at 𝑥/𝜃𝑜 = 350. Specifically, the airfoil case yields a noticeably stronger velocity

wake, as well as higher outer-layer turbulence intensities and Reynolds shear stress magnitude,

compared to the flat-plate case. These phenomena suggest an effectively stronger APG present in

the airfoil flow, consistent with the higher 𝛽 at 𝑥/𝜃𝑜 = 350 than in the flat-plate case as shown in

Fig 4.8(a). It is therefore inferred that 𝛽 is more appropriate than 𝐾 as an indicator for the extent

to which the turbulence statistics are affected by freestream pressure gradients.

These results above indicate that the airfoil boundary layer is overall similar to a flat-plate
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boundary layer subjected to the same pressure gradients. The increased airfoil curvature or trailing

edge effects for 𝑥/𝜃𝑜 > 300, appears to quantitatively modify the boundary layer turbulence statistics

by modulating 𝛽.

4.3.4 Wall-pressure statistics

In aeroacoustics models used to predict far-field noise generated by the flow past an airfoil, the

wall-pressure statistics (such as the power spectral density (PSD) and the streamwise and spanwise

correlations of wall-pressure fluctuations) provide the main input parameters to predict far-field

noise generated by the boundary layer. In this section, wall-pressure statistics between the airfoil

and flat-plate cases are compared to pinpoint the curvature effects on wall-pressure statistics.

Figure 4.9(a) compares the streamwise variation of the wall-pressure r.m.s. An overall match

is seen between the cases till 𝑥/𝜃𝑜 ≈ 300. Further downstream, more intense wall-pressure

fluctuations are observed for the airfoil case, again consistent with the effect of an effectively

stronger APG (Cohen and Gloerfelt, 2018; Na and Moin, 1998b).

The power spectral densities of wall-pressure fluctuations,Φ𝑃𝑃, are calculated using fast Fourier

transform with the Welch periodogram technique and Hanning window with zero padding, at three

streamwise locations of the flat-plate case: 𝑥/𝜃𝑜 = 0, 290 and 340. These 𝑥 locations correspond

to the following sensor locations in the airfoil case(Wu et al., 2019), respectively: sensor 7 (in

the ZPG region) and sensors 21 and 24 (both in the APG region). Figure 4.9(b) compares the

airfoil and flat-plate cases at 𝑥/𝜃𝑜 = 0. At very high frequencies 𝑓 (i.e., 10 kHz), the PSD levels

are slightly lower in the flat-plate case, but an overall match is observed for the majority of the

frequency range. This suggests that any effect of the history of airfoil boundary layer prior to the

flat-plate inlet location is minimal on the wall-pressure spectrum.

In Fig. 4.9(c), the PSDs are compared at 𝑥/𝜃𝑜 = 290. At this 𝑥 location the 𝛽 values are

similar between the two cases (Fig. 4.7(b)). The PSD levels in both cases overlap in the low- and

mid-frequency ranges. But for frequency higher than 7000 Hz, a faster drop of PSD level with

increasing frequencies is observed for the flat-plate case. Thus the effect of convex curvature on
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Figure 4.9: (a) Variation of r.m.s. wall-pressure fluctuations in airfoil ( ) and flat-plate ( )
cases. Vertical dotted lines indicate 𝑥 locations used for comparison in (b,c,d), associated with
sensors 7, 21, 24 on airfoil(Wu et al., 2019). Power spectral density of wall-pressure fluctuations
at (b) 𝑥/𝜃𝑜 = 0, (c) 𝑥/𝜃𝑜 = 290, and (d) 𝑥/𝜃𝑜 = 340. In (b-d), vertical lines indicate the frequency
at which the difference between both cases is at around 5 percent.

wall-pressure PSD appears to be an augmentation of high-frequency contents.

At 𝑥/𝜃𝑜 = 340 near the trailing edge shown in Fig. 4.9(d), a faster drop in high-frequency levels

with increasing frequency is again seen for the flat-plate case, for a wider range of frequencies

starting from 4000 Hz. Such a difference in a wider range of the frequency spectrum than at

upstream 𝑥 locations is expected as the wall-pressure r.m.s. are significantly different, higher in

the airfoil case, at this location (Fig. 4.9(a)). In addition, the spectrum in the airfoil case displays a

local peak at high frequencies between 10 kHz and 20 kHz, which is likely acoustic and caused by

the extra noise source in the airfoil wake. Such an acoustic hump at high frequency is not observed

in the flat-plate case for which an incompressible solver is used.
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Figure 4.10: (a) Variation of Clauser parameter showing two 𝑥 locations for comparison in (b-e).
Spanwise coherence function for airfoil (b,d) and flat-plate (c,e) cases at 𝑥/𝜃𝑜 = 0 (b,c) and 290
(d,e).

The spanwise coherence of wall-pressure fluctuations at each frequency can be quantified using

the spanwise coherence function, 𝛾2, defined as:

𝛾2(𝑥, 𝑟𝑧; 𝑓 ) =
|Ψ𝑃𝑃 (𝑥, 𝑟𝑧; 𝑓 ) |2
Φ𝑃𝑃 (𝑥, 𝑓 )2 , (4.2)

where Ψ𝑃𝑃 is the cross spectral density of wall-pressure fluctuations at any two spanwise locations

at a given 𝑥:

Ψ𝑃𝑃 (𝑥, 𝑟𝑧; 𝑓 ) =
1

2𝜋

〈∫ ∞

−∞
𝑃′(𝑥, 0, 𝑧, 𝑡)𝑃′(𝑥, 0, 𝑧 + 𝑟𝑧, 𝑡 + 𝜏) − 𝑖2𝜋 𝑓 𝜏)𝑑𝜏

〉
, (4.3)

𝜏 is a time separation, and 𝑟𝑧 is the spanwise separation between the two points.
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Figure 4.11: Zoomed-in plots showing spanwise coherence function at 𝑥/𝜃𝑜 = 0 (a) and 290 (b)
in airfoil (top) and flat-plate (bottom) cases. Vertical lines indicate the frequencies (1500 Hz and
4500 Hz) at which the coherence function is plotted in (c,d). Variation of spanwise coherence
function with spanwise separation at 𝑥/𝜃𝑜 = 0 (c) and 290 (d) for 1500 Hz ( ) and 4500 Hz
( ), in airfoil (red) and flat-plate (black) cases.

Figure 4.10 compares the spanwise coherence of wall-pressure fluctuations at 𝑥/𝜃𝑜 = 0 and

290 on the airfoil. At 𝑥/𝜃𝑜 = 0 (Fig. 4.10(a,b)), the coherence distribution is approximately

uniform at all frequency levels. This is seen for both flat-plate and airfoil cases. At 𝑥/𝜃𝑜 = 290

(Fig. 4.10(c,d)), the spanwise coherence is significantly widened at frequencies lower than 3000

Hz for both cases. This increase in coherence for wall-pressure statistics due to APG is consistent

with previous observations of Na and Moin (1998a,b).

The spanwise coherence at two specific frequencies of 1500 Hz and 4500 Hz are quantitatively

compared in Fig. 4.11 at the two 𝑥 locations. For both cases, a faster decrease in coherence with

a larger spanwise separation is observed for 1500 Hz than for 4500 Hz, at both 𝑥 locations. This

is consistent with the overall shorter spanwise coherence extent at the lower frequency as shown in
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Fig. 4.10. One difference between the two cases is the consistently shorter spanwise coherence for

different frequencies in the airfoil case at the ZPG location of the airfoil (𝑥/𝜃𝑜 = 0). This is thought

to be an history effect of the upstream FPG in this case. Na and Moin (1998a,b) also observed

that FPG leads to a decrease in wall-pressure correlations with spanwise separations. In addition,

a shorter coherence is seen for the airfoil case than the flat-plate one for the lower frequency at

𝑥/𝜃𝑜 = 290. This could indicate that the convex wall curvature reduces the spanwise coherence of

wall-pressure fluctuations at low frequencies. Another possible explanation is that the difference

seen in the ZPG region is inherited by the flow and still present at this downstream location.

4.4 Conclusions

This study characterizes the effect of wall curvature in the presence of APG, in a setup designed

to approximate typical flows on the suction side of a fan blade with a CD airfoil. To this end,

flow statistics are compared between two DNS simulations of turbulent boundary layers over a

flat plate and an airfoil with matching acceleration parameter, 𝐾 (𝑥), in the ZPG to APG region of

the boundary layer. At the “inlet” of the flat-plate simulation (located in the ZPG region of the

boundary layer), the single-point statistics of velocity and wall pressure match well between the

two cases. However, two-point statistics display quantitative differences in the extents of spatial

coherences of velocity and wall pressure that are attributed to the history of upstream FPG flow in

the airfoil case, absent in the flat-plate simulation.

As the boundary layer develops, the strength of pressure gradient relative to near-wall forces

(measured by the Clauser parameter, 𝛽) and the strength of wall curvature (measured by 𝛿/𝑅) are

both intensified. In the majority part of the boundary layer development, curvature effect on the

flow appears to be masked by that of the APG. A few exceptions include the following. Far from

the trailing edge (where the pressure gradient is relatively weak), the skin friction is lower in the

airfoil case, consistent with the curvature effect observed in ZPG flows in the literature. In addition,

near the trailing edge the outer-layer Reynolds stresses in the airfoil case is stronger than those

in the flat-plate case, opposite from the expectation in a ZPG flow as found in past studies. This
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suggests that, there, the APG effect (on augmenting outer-layer Reynolds stresses) is amplified and

it dominates that of the curvature. Such an amplified APG effect in the airfoil case is consistent

with the higher local 𝛽 values than in the flat-plate case, suggesting that 𝛽 is more appropriate than

𝐾 as an indicator for the extent to which the turbulence statistics are affected by the mean pressure

gradients. This higher 𝛽 in the airfoil case may be attributed to the effect of curvature in reducing

wall friction. As a result, one may conclude that in flows where pressure gradients are present the

convex wall curvature indirectly augments the effect of pressure gradients on the boundary layer.

The statistical differences in wall-pressure fluctuations between the two cases are also quantified.

The wall-pressure r.m.s. are more intense in the airfoil case approaching the trailing edge, which

could be attributed to the higher 𝛽. In addition, the wall curvature appears to augment high-

frequency fluctuations of the wall pressure. Thirdly, at the ZPG location the airfoil case gives

more limited spanwise coherence of wall-pressure fluctuations at a wide range of frequencies due

to the upstream FPG flow. Such a difference in coherence persists throughout the boundary layer

development.

Other factors beside the wall curvature are also expected to contribute to the differences between

the results of the two DNS simulations, mainly in the region close to the trailing edge. First, the

lower wall friction and thicker boundary layer near the trailing edge in the airfoil case may also (at

least partially) be attributed to trailing-edge effects, which are absent in the flat-plate simulation as

the trailing edge is not simulated. In addition, the incompressible solver in the flat-plate simulation

do not resolve acoustic fluctuations. This is probably the reason of the lack of a high-frequency

hump in the wall-pressure spectra near the trailing edge, which is believed to originate from noise

source in the airfoil wake.

The results demonstrate the modulation of APG effects on the flow by a convex wall. Overall,

the boundary layer development, turbulence statistics and wall-pressure statistics are qualitatively

similar with and without the wall curvature. This indicates that incompressible flat-plate boundary

layer simulations similar to the present one can serve as low-cost surrogates of flows past an airfoil

or other objects with mild curvatures to capture essential features of the developing boundary
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layer, for the purpose of turbulence and aeroacoustics models development. In other words,

incompressible flat-plate boundary layers may be used to construct numerical databases used for

modeling development, instead of using more expensive airfoil boundary layer simulations, as they

reproduce key flow dynamics in a boundary layer developing on a curved airfoil blade.
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CHAPTER 5

WALL PRESSURE SPECTRUM MODELING FOR EQUILIBRIUM AND
NON-EQUILIBRIUM BOUNDARY LAYERS

5.1 Introduction

The goal of this chapter is to characterize and model the effect of pressure gradient, boundary

layer separations and reattachment, as well as the Reynolds number, on wall pressure statistics.

To this end, high-fidelity DNS simulations of different types of boundary layers at a wide range

of Reynolds numbers are carried out. An experimental and numerical database of wall pressure

spectrum (WPS) in different flow scenarios is compiled. Various predictive models of WPS in the

literature as introduced in Section 2.5.0.1 are evaluated for these flow scenarios. Most of these

models were developed for a specific type of flow based on limited datasets. One example is

Goody’s model, which was developed for zero pressure gradient flows only, while Rozenberg’s

model, Lee’s model, and Kamruzamman’s model, among others, were intended for flows with

adverse pressure gradients only. The Thomson-Rocha model was developed for favorable pressure

gradient flows. All of these models were curve-fitted to a small dataset and hence are not applied

universally for boundary layers with arbitrary departure from equilibrium, which may be caused by

wall curvature, unsteadiness, free-stream pressure gradients, etc. Hence, the shortcoming of these

models is pointed out in regards to the pressure scaling as well as their model parameters failing

in such flow scenarios. Based on the physical insights extracted from the present comprehensive

datasets, a new, generalized WPS model for both FPG and APG flows, with or without separation, is

developed. New parameters which gauge the local status of the boundary layer flow are integrated

into the model, which is shown to predict accurately the WPS in various flow scenarios .

The chapter is organized as follows: Firstly, in the following section, the numerical methodology

to collect data using DNS is discussed, followed by a brief description of experimental datasets

supplemented from the literature. Then in Section 5.3, boundary layer development along the
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streamwise direction for all numerical cases is discussed in detail. In section 5.4, variation of wall

pressure statistics with pressure gradient, flow separation, and reattachment is discussed, followed

by the proposition of an optimal scaling for WPS model development. The performance of existing

WPS models in the literature is evaluated in section 5.5. And finally, a generalized WPS model is

developed in section 5.6, with its performance evaluated in the following section.

5.2 Collection of numerical and experimental datasets for model develop-
ment

To develop a generalized model of the wall pressure spectrum for boundary layers with arbitrary

pressure gradients, one needs a comprehensive database that encompasses several flow scenarios

encountered in industrial applications. These include flows with favorable or adverse pressure

gradients, flow separation and reattachment, and a wide range of Reynolds numbers. Both numerical

and experimental datasets in existing studies are included in the database.

Flat-plate DNS simulations (Pargal et al., 2021) with varying streamwise velocity imposed on

the top boundary are used to simulate some of these flow scenarios, with 𝑅𝑒𝜃 ranging from 300 to

6,000 approximately. These DNS simulations include flat-plate (APG) and airfoil data, discussed

in Chapter 4. To include flow scenarios such as separation and reattachment, DNS simulations

conducted by Na and Moin (1998b) and Wu and Piomelli (2018) are recomputed to collect wall

pressure spectra data at different streamwise locations. Experimental datasets are added to increase

the Reynolds number range covered in the database, with 𝑅𝑒𝜃 up to 23,400. Details of the numerical

and experimental datasets are discussed next.

5.2.1 DNS datasets

Two existing DNS cases with APG: Na-Moin (1998) and Wu Piomelli (2018) were rerun to collect

wall pressure data. The same top-boundary conditions of vertical velocity profiles𝑉∞(𝑥) as in these

studies were imposed, to induce a separation bubble at low (𝑅𝑒𝜃𝑜 = 300) and high Reynolds number

(𝑅𝑒𝜃𝑜 = 2500) at 𝑥𝑜. The same incompressible fluid flow solver and boundary conditions as those
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Figure 5.1: (a) Sketch of DNS domain with boundary conditions applied. (b) Prescribed top
boundary conditions for DNS simulations: flat-plate with matched adverse pressure
gradient as the airfoil case, ( ) Na and Moin (1998b), ( ) Wu and Piomelli (2018), ( )
Pargal et al. (2022a).

Cases 𝑅𝑒𝜃𝑜 𝑅𝑒𝜏𝑜 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 Δ𝑥+ × Δ𝑦+
𝑚𝑖𝑛

× Δ𝑧+

Pargal et al. (2022a) 320 180 1536 × 200 × 384 6.6 × 0.08 × 5
Na and Moin (1998b) 300 180 768 ×200 × 256 21 × 0.08 × 5
Wu and Piomelli (2018) 2500 850 2560 × 384 × 384 30 × 0.4 × 15

Table 5.1: DNS Simulation parameters.

described in Sections 4 were used for the simulations. The varying streamwise freestream velocity

𝑈∞(𝑥) imposed on the top boundary of the domain for different cases are shown in Figure 5.1.

The details on domain lengths, grid resolutions, and Reynolds numbers are given in table 5.1. The

variation of skin friction 𝐶 𝑓 and pressure coefficient 𝐶𝑝 are plotted in Figure 5.3 against the results

from Na and Moin (1998b) and Wu and Piomelli (2018). The very good collapse validates the

present simulations. In addition to the DNS cases discussed above, the numerical datasets also

include DNS simulation over an airfoil (Wu et al. (2019)), as discussed in the previous chapter.

The collection of numerical data described above covers both attached and separated boundary

layers. But it is limited in the 𝑅𝑒𝜃𝑜 range for a generalized wall-pressure spectra model (WPS) model

development. Additional existing experimental datasets are also used for model development; they

are discussed next.
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Figure 5.2: Contours of mean streamwise velocity normalized by𝑈𝑜. Streamlines at
stream-function values of 𝜓𝑜 = (0.5, 1, 1.5, 2) (Wu and Piomelli, 2018).

Figure 5.3: Streamwise variations of (a) 𝐶𝑝 and (b) 𝐶 𝑓 . Pargal et al. (2022a), Wu et al.
(2019), recomputed DNS results of Wu and Piomelli (2018), recomputed DNS results of
Na and Moin (1998a), 𝑜 Wu and Piomelli (2018) and 𝑜 Na and Moin (1998a).

5.2.2 Experimental datasets

The main objective to include experimental datasets is to enrich the database with high Reynolds 

number flows with either zero or non-zero pressure g radients. The datasets are listed in Table 5.2, 

with boundary layer parameters provided. Details of each study are described below.

Hu and Herr (2016) carried out experiments in an open-jet anechoic test section of Acoustic 

Windtunnel Braunschweig (AWB). Adverse and favorable pressure gradients on a flat plate were 

achieved by placing a rotatable NACA 0012 airfoil above the flat p late. Wall pressure statistics were 

measured with subminiature pressure transducers and boundary layer velocity profiles using hot 

wires. Reynolds number range reaches 𝑅𝑒𝜃𝑜 = 11000, with pressure gradient 𝛽 = −0.9 to 16. The
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Cases 𝑈𝑜 (𝑚/𝑠) 𝛿(𝑚𝑚) 𝛿∗(𝑚𝑚) 𝜃(mm) 𝐻 𝐶 𝑓 𝛽

(Hu, 2018) ZPG 30.2 19.7 3.51 2.49 1.41 0.0025 0
(Hu, 2018) APG (-6 deg.) 30.8 24.4 5.61 3.49 1.61 0.00167 3.8
(Hu, 2018) APG (-10 deg.) 30.4 28.7 7.68 4.39 1.75 0.0012 6
(Hu, 2018) APG (-14 deg.) 29.9 35 12.07 5.69 2.12 0.00058 12.5
(Hu, 2018) FPG (14 deg.) 31.1 13.8 1.28 1.01 1.26 0.0068 -0.5
(Fritsch et al., 2022b) ZPG
(Re=2M, 2 deg.,x=2.47 m.) 33 66.1 9.12 7.07 1.29 0.00256 -0.02
(Fritsch et al., 2022b) APG
(Re=2M, 12 deg.,x=2.47 m.) 31.4 72.2 10.7 8.14 1.31 0.00242 0.58
(Fritsch et al., 2022b) FPG
(Re=2M, -10 deg.,x=2.47 m.) 35.43 60.8 7.51 5.95 1.26 0.00276 -0.47
(Goody and Simpson, 2000)
ZPG (7000) 27.1 39.1 6.2 4.8 1.29 0.0026 0
(Goody and Simpson, 2000)
ZPG (23400) 31.3 134 15.8 12.2 1.29 0.00215 0

Table 5.2: List of experimental boundary layer datasets. For Hu (2018); Fritsch et al. (2022b)
datasets, ’deg.’ indicates the airfoil’s angle of attack to generate pressure gradient at the flat-plate
beneath it.

very wide ranges of pressure gradient and Reynolds number make it among very few experiments

in decades to capture wall pressure statistics across such different flow scenarios.

Fritsch et al. (2022b) carried out experiments in a subsonic wind tunnel with a NACA 0012

airfoil installed in the geometrical center of the test section. With the rotation of the airfoil, the

pressure gradient is applied to the test section. The boundary layer is tripped at the upstream

section, to ensure a fully turbulent boundary layer in the test section. Wall pressure statistics were

measured for non-equilibrium varying pressure gradient ranging from 𝛽 of −0.5 to 0.5, with 𝑅𝑒𝜃𝑜

reaching 15000.

Goody and Simpson (2000) carried out measurements in the boundary layer tunnel of the

Aerospace and Ocean Engineering department of Virginia Tech. Wall pressure statistics measure-

ment is limited to zero-pressure gradients but reaches Reynolds number as high as 𝑅𝑒𝜃𝑜 = 23, 400.

This is one of the highest Reynolds number cases in the literature for which WPS measurements

were carried out.
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Figure 5.4: Boundary layer development. Pargal et al. (2022a), Wu et al. (2019),
recomputed DNS results of Wu and Piomelli (2018), recomputed DNS results of Na and
Moin (1998a).

5.3 Boundary layer developments in DNS cases

In this section, boundary layer development for DNS cases with separation bubbles is discussed (Na

and Moin, 1998b; Wu et al., 2019). Focus is given to the variations of boundary layer parameters,

which provide important insights for the scaling of wall pressure statistics and are thus essential for

WPS modeling. Detailed studies of other flow statistics can be found in the cited studies.

In Figures 5.2 and 5.4, variations of skin friction (𝐶 𝑓 ), mean pressure coefficient (𝐶𝑝), and

boundary layer thicknesses are shown for all three DNS cases carried out. As expected, with

increasing APG 𝐶 𝑓 decreases monotonically. The boundary layer thicknesses are thickened with
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Figure 5.5: Variations of (a) the friction Reynolds number (𝑅𝑒𝜏) and (b) the Reynolds number
based on momentum thickness (𝑅𝑒𝜃). For labels refer to Figure 5.4.

deceleration, especially near flow detachment.

For the APG cases, 𝐶 𝑓 decreases to zero at the separation point due to the zero wall shear

stress at this location. In this region, boundary layer thickness increases exponentially, faster for

the displacement thickness than the momentum thickness. Downstream of the APG region, as

the FPG is applied, the flow reattaches and 𝐶 𝑓 starts increasing before it recovers the ZPG value.

Meanwhile, the boundary layer thicknesses decrease before recovering the ZPG state. The variation

of the shape factor in Figure 5.4(d) shows that the increase in displacement thickness is much faster

than that in momentum thickness. The shape factor’s variation is accelerated in the separation

region, as seen for boundary layer thicknesses. The observed decrease in 𝐶 𝑓 , thickening of the

boundary layer, and increase in shape factor are hallmarks of APG boundary layer flows.

In Figure 5.5, the variation of Reynolds numbers in all DNS cases is compared. The variation

of the friction Reynolds number (𝑅𝑒𝜏) displays a similar trend to that of 𝐶 𝑓 . As the wall shear

stress decreases to zero at the separation point, 𝑅𝑒𝜏 reaches zero also. The 𝑅𝑒𝜃 variation shares

similarity with that of momentum thickness. Under APG, 𝑅𝑒𝜃 increases monotonically, reaching

its maxima shortly after separation. Then it again increases near reattachment and decreases with

downstream FPG applied. Knowledge of the variations of boundary layer parameters with pressure
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Figure 5.6: (a) Streamwise variation of the wall pressure r.m.s, normalized by its value at 𝑥𝑜. (b)
Streamwise variation of the local peak magnitude of Reynolds shear stress, normalized by its
value at 𝑥𝑜. Pargal et al. (2022a), Wu et al. (2019), recomputed DNS results of Wu
and Piomelli (2018), recomputed DNS results of Na and Moin (1998a). Arrows indicate the
flow separation region.

gradient provides guidance in scaling wall pressure spectra, which is discussed in the next section.

5.4 Wall pressure statistics in DNS cases

In this section, the effects of the pressure gradient on wall pressure statistics are examined. The

variation of wall pressure r.m.s normalized by its value at 𝑥𝑜 (𝑥/𝜃𝑜 = 0) is compared among the

flat-plate DNS cases in Figure 5.6 (a). Even with the strongly non-equilibrium adverse pressure

gradients, the intensity of wall pressure fluctuations is seen to increase by a limited extent (< 20%)

before separation. Similarly, for a high Reynolds number APG boundary layer (Wu et al., 2019),

the 𝑝𝑟𝑚𝑠 does not significantly vary before separation. However, following the separation, 𝑝𝑟𝑚𝑠

displays a significant dip in all cases with separation. This is due to the separated shear layer

bringing energy-containing turbulent motions away from the wall, leading to reduced wall pressure

fluctuations inside the separation bubble. Further downstream, as the separated shear layer is re-

attached, the re-emergence of intense turbulent motions near the wall leads to an augmentation of

wall pressure fluctuations, which reach a maximum shortly after the reattachment. The magnitude

of the maxima appears to increase with Reynolds number, as seen in Figure 5.6(a), when comparing
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Figure 5.7: Wall pressure fluctuation (r.m.s) variations normalized by (a) local dynamic pressure
(𝑞𝑒), (b) local wall shear stress (𝜏𝑤), and (c) local peak magnitude of Reynolds shear stress.
Pargal et al. (2022a), Wu et al. (2019), recomputed DNS results of Wu and Piomelli
(2018), recomputed DNS results of Na and Moin (1998a). Arrows shown designate the flow
separation region.

Na and Moin (1998b) at 𝑅𝑒𝜃,𝑜 = 300 with Wu and Piomelli (2018) at 𝑅𝑒𝜃,𝑜 = 2500. With a further

increase in favorable pressure gradient, as the flow stabilizes, wall pressure fluctuations reduce to

the ZPG magnitude for both cases.

Next, in Figure 5.6 (b) the streamwise variation of the wall-normal peak magnitude of the

Reynolds shear stress |𝑢′𝑣′|𝑚𝑎𝑥 (𝑥) normalized by its value at 𝑥𝑜 is plotted. In the attached flow

region, the variation of |𝑢′𝑣′|𝑚𝑎𝑥 is very similar to that of 𝑝𝑟𝑚𝑠 (𝑥). This is consistent with

observations in previous studies (Na and Moin, 1998b), suggesting that 𝑝𝑟𝑚𝑠 scales with the
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local maximum Reynolds shear stress as far as the boundary layer flow is attached.

For wall pressure spectra model development, it is essential to find the appropriate wall pressure

scaling. In Figure 5.7, the scaling on |𝑢′𝑣′|𝑚𝑎𝑥 is demonstrated and compared with other choices

of normalization used in existing WSP models. In Figure 5.7 (a), 𝑝𝑟𝑚𝑠 normalized by the dynamic

pressure displays a significant increase in the APG zone before the separation. This is because the

edge velocity (𝑈𝑒 (𝑥)) decreases under APG, while the dynamic pressure (which scales on𝑈𝑒 (𝑥)2)

decreases even faster. Next, wall pressure fluctuations normalized by wall shear stress are shown

in Figure 5.7 (b) to increase toward infinity at the separation point, because the wall shear stress

decreases with APG and reaches zero at the separation point. This is therefore an inappropriate

scaling for wall pressure fluctuations in strong APG boundary layers. Yet, most existing wall

pressure spectra models use it as the pressure scaling. Finally, in Figure 5.7(c) the wall pressure

r.m.s. is normalized by the peak Reynolds shear stress magnitude. For all the DNS cases, even

with high APG, the normalized value stays overall constant in attached flow regions (upstream and

downstream of the separation bubble). Inside the separation bubble, however, a dip and then a peak

are observed. This is expected, due to faster damping of 𝑝𝑟𝑚𝑠 than that of Reynolds stress, before

the Reynolds shear stress augments rapidly in the separated shear layer, as shown in Figure 5.6. A

better wall pressure scaling for the region inside the separation bubble remains to be found (and is

out of the scope of the present work).

The power spectral density (PSD, 𝜙𝑝𝑝) of the wall pressure fluctuations is computed for each

case. Figure 5.8 compares the PSD of wall pressure fluctuations at various streamwise locations

among all DNS and experimental datasets considered, based on different normalizations. All

datasets considered in these figures are attached boundary layers with pressure gradients. Recall

that the cases vary in the range of Reynolds number (𝑅𝑒𝜃 = 300 to 23, 400) and the strength of

the adverse pressure gradient (𝛽 = 0 to 200, before the flow separates). When using 𝑢′𝑣′𝑚𝑎𝑥 as the

pressure scale, 𝛿 the length scale, and𝑈𝑒 the velocity scale, an approximate low-frequency collapse

is obtained. This is expected as the low-frequency contents represent the main contribution to 𝑝𝑟𝑚𝑠,

which is shown to scale on 𝑢′𝑣′𝑚𝑎𝑥 . In comparison, normalization based on inner velocity and
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Figure 5.8: Power spectral density (PSD) of wall pressure fluctuations normalized by (a) inner
scales (𝜏𝑤, 𝛿𝑛𝑢, 𝑢𝜏) as the pressure, length and velocity scalings, (b) mixed scales (𝜏𝑤, 𝛿,𝑈𝑒), and
four different sets of outer scales: (c) 𝑄𝑒, 𝛿,𝑈𝑒, (d) 𝑢′𝑣′𝑚𝑎𝑥 , 𝛿,𝑈𝑒, (e) 𝑢′𝑣′𝑚𝑎𝑥 , 𝛿∗,𝑈𝑒 and (f)
𝑢′𝑣′𝑚𝑎𝑥 , 𝜃,𝑈𝑒. Pargal et al. (2022a)], Wu et al. (2019), recomputed DNS of Na
and Moin (1998a), recomputed DNS of Wu et al. (2019), and experimental datasets of
Fritsch et al. (2022b), 𝑜 Hu and Herr (2016) and Goody (2004). The increase in the thickness
of lines reflects an increase in local strength of the adverse pressure gradient.

length scales (i.e. using 𝜏𝑤, 𝛿𝜈, and 𝑢𝜏) gives a high-frequency collapse for ZPG cases, but large

scatter for APG cases. Similarly, mixed scaling (i.e. using 𝜏𝑤, 𝛿, and 𝑈𝑒) shows a low-frequency

collapse for ZPG cases but fails to collapse the data for APG cases. This is also reflected by the

fact that wall pressure r.m.s. does not scale on the wall shear stress.

The most appropriate pressure scaling is thus identified. Next, the performances of existing

wall pressure models are evaluated against the datasets. The discrepancies are explained, and

modifications are proposed for boundary layers with strong pressure gradients.
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Figure 5.9: Streamwise variation of model parameters used the existing WPS models: (a) 𝑅𝑡 and
(b) 𝛽. Pargal et al. (2022a), Wu et al. (2019), recomputed DNS results of Wu and
Piomelli (2018), recomputed DNS results of Na and Moin (1998a).

Figure 5.10: (a) Power spectral densities of wall pressure fluctuations for low-Re (𝑅𝑒𝜃 = 300 to
1000) DNS cases (Pargal et al. (2022a), Na and Moin (1998b),Wu et al. (2019)). See labels in
Figure 5.8. Model predictions of these profiles: (b) Goody’s model, (c) Kamruzamman’s model,
(d) Hu’s model, (e) Rozenberg’s model and (f) Lee’s model. Labels for model results: Pargal
et al. (2022a), Na and Moin (1998b) and Wu et al. (2019). An increase in APG is reflected
in an increase of line thickness.
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5.5 Performance of existing wall pressure spectra models in the literature

To evaluate the wall pressure spectra models in detail, the cases are separated into three types:

low Reynolds number (𝑅𝑒𝜃 < 600), medium Reynolds number (2000 < 𝑅𝑒𝜃 < 8000) and high

Reynolds number (𝑅𝑒𝜃 > 10, 000) cases. This will also provide insight into the individual effects

of pressure gradients and Reynolds number, which can guide model development. Before look-

ing at the performances of different empirical models, the variation of main parameters used in

these modelling approaches are shown in Figure 5.9. Reynolds number effect is quantified using

𝑅𝑡 (𝛿/𝑈𝑒/𝜈/𝑢2
𝜏) and pressure gradient effects using 𝛽. And as reflected in these figures, 𝑅𝑡 tends

to go towards 0 and 𝛽 towards infinity, as the flow reaches towards flow separation. This indicates

both parameters tends to fail in such high APG flow scenarios. This will be reflected in model’s

performance as discussed in detail below. In Figure 5.10, DNS results for the low-Re cases are

compared in (a), and the performance of models is shown in (b-f). The DNS cases cover zero

pressure gradient to adverse pressure gradient as high as 𝛽 > 150. Figure 5.10(a) shows that, with

the chosen normalization (as identified based on Figure 5.8), all cases approximately collapse. In

this category, 𝜙𝑝𝑝 is shown to depend only weakly on the pressure gradient due to the low Reynolds

numbers.

Next, Figure 5.10(b) shows that Goody’s model appears to under-predict 𝜙𝑝𝑝 in the whole fre-

quency range under a strong APG. This is because Goody’s model was designed for ZPG boundary

layers and uses wall shear stress as the pressure scaling. Kamruzamann’s model (Figure 5.10(c))

appears to over-predict 𝜙𝑝𝑝 at low frequencies and under-predict it at high frequencies under APG.

These errors are because, in addition to the use of wall shear as a pressure scaling, they use 𝛽

and 𝑅𝑡 as a parameter, which yields singularities at separation points and extreme predicted values

near them. For Hu’s model (Figure 5.10(d)), the predictions appear bounded but are lower at low

frequencies. Lastly, in (e) and (f), Rozenberg’s and Lee’s models are shown. Both models predict

𝜙𝑝𝑝 for ZPG and weak-APG regions, while at high APG (𝛽 > 90, 𝑅𝑡 ≈ 0) near separation both

models yield unrealistic imaginary values. For instance, as you can see in Rozenberg’s empirical

model below:
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Figure 5.11: (a) Power spectral densities of wall pressure fluctuations for Mid-Re (𝑅𝑒𝜃 = 2500 to
8000) (Wu et al. (2019), Hu and Herr (2016), and Wu et al. (2019)); see labels in Figure 5.8. (b-f)
Model predictions; for labels refer to Figure 5.10.

𝜙𝑝𝑝 (𝜔)𝑈𝑒
𝜏2𝛿∗

=
0.78(1.8Π𝛽𝑐 + 6) (𝜔𝛿∗/𝑈𝑒)2

[(𝜔𝛿∗/𝑈𝑒)0.75 + 𝐶′
1]3.7 + [𝐶′

3(𝜔𝛿∗/𝑈𝑒)]7 , (5.1)

where 𝐶′
3=3.76𝑅−0.57

𝑇
, as 𝛽 tends to infinity and 𝑅𝑡 tends to 0, the model tends to go towards

undefined values. The use of these parameters is practically same in all empirical models, leading

to model failure at high APG flow conditions.

The medium Reynolds number 𝜙𝑝𝑝 profiles are compared in Figure 5.11. The DNS results (a)

show that the profiles do not collapse. The ZPG cases show that, with an increase in Re, the overlap

range is longer. This has been shown previously by Farabee and Casarella (1991). The results also

indicate that as the strength of APG is increased, not only the overlap range reduces, but its shape

at mid-to-high frequencies is also modified. Goody’s model appears to work for the ZPG profiles,

but fails for the APG profiles, for reasons discussed in the previous paragraph. The Kamruzamman

model over-predicts at high frequency, even for ZPG cases. The large errors of this model for ZPG

74



Figure 5.12: (a) Power spectral densities of wall pressure fluctuations for high-Re (𝑅𝑒𝜃 = 10000
to 23400) (Fritsch et al. (2022b), Goody (2004)); see labels in Figure 5.8. (b-f) Model predictions.
Labels for model results: Fritsch et al. (2022b) and Goody (2004). An increase in
APG is reflected in an increase in line thickness.

profiles are probably because it was curve-fitted for low-Re airfoil cases only. Hu’s model works

well for Hu’s cases, which were used for its calibration. But it fails for Wu and Piomelli’s case,

showing over-prediction at low frequencies. Rozenberg’s model over-predicts the ZPG profiles and

under-predicts the high-APG ones, whereas Lee’s model seems to work for the ZPG profiles, but

over-predicts at low frequencies and under-predicts at high frequencies for high-APG profiles.

Lastly, the high-Re profiles are compared in Figure 5.12. These profiles were obtained in

either ZPG or low-APG (𝛽 < 1) regions of boundary layers. The wide overlap region seen in

(a) reflects the high Reynolds numbers. As the APG is applied, the overlap’s region width, as

well as magnitude, decreases a bit reflected by a slight variation in the overlap range’s shape and

slope, due to the low 𝛽 magnitudes. Goody’s model appears to work nicely for these weak-APG

cases, despite slightly higher 𝜙𝑝𝑝 in the overlap range. Kamruzmann’s model developed for low-Re

airfoil boundary layers is shown to fail in these high-Re flat-plate cases. Other models (i.e. Hu’s,

Rozenberg’s, and Lee’s models) appear to give reasonable predictions for these low-APG, high-Re
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flows.

The limitations of existing models discussed above are summarized as follows. (i) Most of

these models were developed or curve-fitted on datasets limited to particular flow conditions.

Kamruzamman’s model was developed based on airfoil cases, in which boundary layer parameters

were calculated using XFOIL results. Rozenberg-Lee’s model was developed for APG not exceeding

𝛽 < 20. Also, their datasets include mostly low-Re APG cases. Goody’s model was developed

for ZPG cases only, while Hu’s model was developed based on a few experimental APG flat-plate

datasets. (ii) Most of these models were developed using wall shear stress as a pressure scale, which

is shown to yield large values toward infinity in strong APG flows near separation and cannot be

used to predict separated flows. (iii) These models were developed using 𝑅𝑡 and 𝛽 as parameters to

model Reynolds number and pressure gradient effects, which as discussed, fails in high-APG flow

conditions. The model errors in flows with strong pressure gradients are either because the models

were developed for ZPG flows only, or because the local values of these parameters do not account

for the historical effects of the freestream pressure gradient on wall pressure statistics.

5.6 A generalized WPS model for boundary layers with or without pressure
gradients

Wall pressure fluctuations are generated due to the presence of turbulent eddies above the wall.

Therefore, to develop a generalized model, model parameters are needed that describe the local

state of turbulent motions above the wall. Most parameters (𝛽, 𝑅𝑡 , etc.) used by existing WPS

models are locally calculated parameters that record either the pressure gradient strength or the

Reynolds number but do not directly reflect the local status of turbulent motions. In addition,

the selected parameters need to be easily calculated in RANS simulation, so that the model is of

practical use in industrial applications.

A new model is proposed as an extension of Goody’s model, which was shown to capture the

effect of Reynolds number in zero pressure gradient boundary layers quite accurately. Goody’s

model uses 𝑅𝑡 as the Reynolds number parameter, defined as (𝛿/𝑈𝑒) (𝜈/𝑢2
𝜏) to approximate the
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Figure 5.13: (a) Variation of wall pressure r.m.s. normalized by 𝜏𝑤 (ZPG datasets): ^Wu et al.
(2019), ^ Pargal et al. (2022a), ^Wu and Piomelli (2018),△ Blake (1970), △ Simpson et al.
(1987), ◦ Farabee and Casarella (1991), □ Bull and Thomas (1976). (b) Goody’s model
predictions with an increase in Reynolds number.

dependence of model scaling by outer scales at low frequency and inner scales at high frequency.

For ZPG flows, the increase of Reynolds number is shown to widen the overlap region in the

spectrum of wall pressure fluctuations (Figure 5.13(b)). Based on the above ideas, Goody modeled

WPS as:

𝜙𝑝𝑝 (𝜔)𝑈𝑒
𝜏2
𝑤𝛿

=
3(𝜔𝛿/𝑈𝑒)2

[(𝜔𝛿/𝑈𝑒)0.75 + 0.7]3.7 + [1.1𝑅−0.57
𝑡 (𝜔𝛿/𝑈𝑒)]7

. (5.2)

For ZPG flows, an increase in Reynolds number leads to a thickening of the mean-velocity loga-

rithmic layer, which has been shown to correspond to a wider overlap region of the wall pressure

spectrum (Farabee and Casarella, 1991). They demonstrated the existence of a high-wavenumber

range of the spectrum that scales with the similarity variable associated with the turbulent motions

in the logarithmic layer in ZPG boundary layers. Based on the data, they proposed correlations for

𝑝𝑟𝑚𝑠 as

𝑝2
𝑟𝑚𝑠

𝜏2
𝑤

= 6.5 + 1.86 ln(𝑅𝑒𝜏/333), (5.3)

for 𝑅𝑒𝜏 > 333, and 𝑝2
𝑟𝑚𝑠𝜏

2
𝑤 = 6.5 for 𝑅𝑒𝜏 < 333. The contribution of the overlap region of the

spectra to 𝑝𝑟𝑚𝑠 is therefore around 1.86 ln(𝑅𝑒𝜏/333). This indicates that the increase in significance
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of the 𝜙𝑝𝑝 overlap range is brought by an increase in Reynolds number, connected to the widening

of the velocity logarithmic layer. This relation is also observed in current ZPG DNS data and those

of previous studies shown in Figure 5.6(a). Additional evidence of this relation is provided by

Jaiswal et al. (2020), who evaluated the contribution of different regions in TBL to 𝜙𝑝𝑝 in different

wavenumber ranges, by comparing the contributions from the Poisson’s equation right-hand-side

in different layers to the wall pressure fluctuations using experimental datasets. Results showed

that the logarithmic layer yields the highest contribution to the overlap range 𝜙𝑝𝑝 at 𝑅𝑒𝜏 = 200,

consistent with the observations of Farabee and Casarella (1991).

The above discussions show that the width of the velocity logarithmic layer should be integrated

into the model of 𝜙𝑝𝑝, as it has a direct effect on the width of the overlap range of 𝜙𝑝𝑝. It is proposed

to model the Reynolds number effect based on the logarithmic layer width, replacing 𝑅𝑡 , which is

an indirect indicator of the overlap range width and poses issues when it reduces to near zero for

strong-APG boundary layer near separation.

Next, the APG effect on the logarithmic layer of the boundary layer is characterized. In

Figure 5.14(a), the velocity profiles from Wu and Piomelli (2018) DNS and Hu and Herr (2016)

experiments are shown. The diagnostic function (𝐼 = 𝑦+ 𝜕𝑈+

𝜕𝑦+ ) is used to identify the location of the

logarithmic layer and calculate the local values of von Kármán constant 𝜅 and log-law intercept 𝐵

for each 𝑥. Specifically, the value of 1/𝜅 is measured as the local minima of 1/𝐼, as shown in (b),

and the value of 𝐵 is determined based on the 𝜅 value. The values of 𝜅 and 𝐵 are compared with

those of Nagib and Chauhan (2008). in Figure 5.15 and are found to be roughly consistent with

the relation between 𝜅𝐵 and 𝐵 proposed therein based on a large collection of data with or without

pressure gradients.

Here, the length of the log region is defined as the layer with 𝑈+ − [(1/𝜅) log 𝑦+ + 𝐵] ≈ 0,

shown in Figure 5.14(c) as the plateau region. At higher 𝑦+, the positive values of this difference

correspond to the outer layer. It shows that, with an increase in APG strength, the log layer becomes

thinner and the outer layer thickens, even though the Reynolds number (based on outer scalings)

increases with APG. The depletion of the log layer with APG is shown to reduce the width of the
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Figure 5.14: (a) Mean velocity profiles in inner units: Wu et al. (2019), ◦ Hu and Herr
(2016). (b) Diagnostic function calculated as 𝑦+ 𝜕𝑈+

𝜕𝑦+ : Wu et al. (2019), Hu and Herr
(2016). (c) Velocity profiles with the logarithmic relation subtracted Wu et al. (2019), ◦ Hu
and Herr (2016). An increase in APG is reflected in thickness for the DNS datasets and in color
(grey to black) for the experimental datasets.

overlap range of 𝜙𝑝𝑝 (Figure 5.8(d)), in line with the phenomenon in zero pressure gradient flows.

Hence, the proposed modification of Goody’s model (by replacing 𝑅𝑡 with the velocity log-layer

width) can describe the effects of both Reynolds number and adverse pressure gradients.

This new parameter is denoted as 𝑦𝑤, which is defined as the 𝑦+ location where 𝑈+ −

[𝜅−1(log(𝑦+) + 𝐵)] departs from 0 at the upper limit of the logarithmic region. It is thus a

measure of the total thickness of both the inner and logarithmic layers.

Another parameter is required to capture the effect of outer-layer turbulent motions on wall

pressure fluctuations, which is shown, for example, in Figure 5.8(d) by the variation of 𝜙𝑝𝑝 shape
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Figure 5.15: Variations of 𝜅𝐵 with 𝐵 calculated based on DNS and experimental datasets,
compared to Nagib and Chauhan (2008) empirical relation ( ). ◦ Wu and Piomelli (2018), ×
Fritsch et al. (2022b), + Goody and Simpson (2000), ◦ reattachment locations for Wu and
Piomelli (2018).

with the pressure gradient. The variation is because the contribution to PSD from the outer layer

varies with the pressure gradient. An APG leads to a reduction of mid-to-high-frequency contents

and an increase of those at low frequencies. This is also reflected in turbulence fluctuations, with

the augmentation of the outer peak magnitude of 𝑢′
𝑖
𝑢′
𝑗

and reduction in that of the inner peak, as

large structures are energized. In the velocity profile, this is reflected in an augmentation of the

wake parameter.

To describe the change in the contribution of outer-layer flow to the wall pressure fluctuations,

Cole’s parameter (Π) is added to the new 𝜙𝑝𝑝 model. Here, Π is evaluated based on the mean

velocity profile𝑈+, by measuring the peak value of𝑈+ − [𝜅−1(log(𝑦+) + 𝐵)] in Figure 5.14(c) and

dividing it by 2/𝜅. As APG is strengthened, the log layer becomes thinner and its contribution to

wall pressure r.m.s. is reduced, reflected by a narrower overlap range, whereas the contribution

from the outer layer increases, modifying the shape of wall pressure PSD.

A few advantages of using the newly proposed parameters (i.e. 𝑦𝑤 and Π) are as follows. (i)

These parameters are not only easily quantifiable from the RANS calculation of the mean velocity,

but they also carry information on the local state of the boundary layer flow. This is a more direct
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approach to model the change in contributions of wall-layer and outer-layer turbulence to the wall

pressure spectrum as a function of pressure gradient and Reynolds number, compared to existing

approaches based on 𝛽 and/or Reynolds number (𝑅𝑡). (ii) 𝑦𝑤 andΠ also capture exactly the ‘history’

effect of non-equilibrium pressure gradients as recorded in the RANS velocity predictions, which

is not directly represented by 𝛽.

The new model (Pargal et al., 2022b) of 𝜙𝑝𝑝 is proposed to be

𝜙𝑝𝑝 (𝜔)𝑈𝑒
𝑢𝑣2

𝑚𝑎𝑥𝛿
=

3(𝜔𝛿/𝑈𝑒)2

[(𝜔𝛿/𝑈𝑒) (0.8+3.34𝑒−4 (Π)1.864𝑦0.7575
𝑤 ) + 0.7]3.7 + [𝑦−0.365

𝑤 (𝜔𝛿/𝑈𝑒)]7
. (5.4)

It is obtained by modifying Goody’s model in the following ways: (i) the optimal scalings of 𝜙𝑝𝑝

discussed earlier (i.e. |𝑢′𝑣′|𝑚𝑎𝑥 , 𝛿, and𝑈𝑒) are used, (ii) 𝑅𝑡 was replaced with 𝑦𝑤 to capture the width

variation of the overlap range, and (iii) the constant 0.75 is replaced with a non-linear expression

based on Π and 𝑦𝑤, curve fitted on APG profiles in the datasets, which models the change of 𝜙𝑝𝑝

slope in the overlap range.

In addition, the following treatments are employed for a few special scenarios. For low Reynolds

number portions of the flows (where 𝑅𝑒𝜃 < 600), the parameters 𝑦𝑤 and Π are set to constant values

(𝑦+𝑤 = 15 and Π = 0) to reflect the insensitivity of 𝜙𝑝𝑝 to either 𝑅𝑒𝜏 and pressure gradients as

shown by the datasets in Figure 5.10(a). With the presence of flow separation, modification of the

model is needed inside the separation bubble as the peak magnitude of the Reynolds stress is no

longer the appropriate wall pressure scale. Instead, inside the separation bubble, 𝑦𝑤 and Π are

kept as constants equal to their values at the 𝑥 associated with the separation point. The separation

region is detected as regions where 𝐶 𝑓 (𝑥) is zero or negative, where the separation modification

is then activated. In the following section, the model’s performance is evaluated in various flow

scenarios.

5.7 Performance of the generalized WPS model

The prediction of the new model is evaluated against all DNS and experimental datasets. Recall

that 𝑅𝑒𝜏 spans from 300 to 23, 400 and 𝛽 ranges from 0 to around 200. Flows under favorable
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Figure 5.16: Power spectral densities of (a) low-Re DNS cases, (b) mid-Re cases, and (c) high-Re
cases. For labels refer to Figure 5.8. Predictions of the proposed model (d,e) ( ) (f) ( ),
shown to match well the datasets. The top (a,b,c) shows the DNS/experimental datasets for
respective Reynolds number ranges, and at bottom (d,e,f) model’s prediction for same cases.

and adverse pressure gradients (including attached or separated and reattached boundary layers),

on flat-plate or airfoils, are included.

Figure 5.16 compares the model results with DNS/experimental measurements for zero- and

adverse-pressure-gradient flows. The flows are categorized into three groups —low-Re (𝑅𝑒𝜃 <

600), mid-Re (𝑅𝑒𝜃 = 5000 to 10000), and high-Re flows (𝑅𝑒𝜃 > 10000)—for clarification.

Subplots (a-c) show the measurements, while (d-f) compare the measurements to predictions.

For the low-Re cases (a,d), all cases collapse when using the optimal 𝜙𝑝𝑝 scalings, as discussed

previously. The model is shown to predict the spectra very well. Next, at the mid-Re range (b,e),

a significant log-layer portion of the mean velocity profile is present in a ZPG flow (corresponding

to the existence of an overlap spectral range with a −1 slope. However, as an APG is applied, the

overlap range becomes narrower, with decreasing slope. The model is shown to predict well both

of these changes in the overlay range with the modifications based on 𝑦𝑤 and Π. Finally, for the

high-Re cases (c,f), a prominent overlap range exists, with a weak variation of its slope depending
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Figure 5.17: (a) Power spectral densities of wall pressure fluctuations for all cases, including
regions inside separation bubbleL: Wu and Piomelli (2018), Na and Moin (1998b). For
labels see previous figure 5.8. (b) Prediction of the proposed model ( ).

on the current pressure gradients. The model captures the change in width of both the overlap and

high-frequency ranges.

The model predictions for flows downstream the separation point and inside the separation

bubble are analyzed in Figure 5.17. Since the shear layer detaches from the wall, both overlap and

high-frequency contents of wall pressure are reduced, as shown in (a). The DNS data show that

the 𝜙𝑝𝑝 (𝜔) distributions are overall similar for the 𝑥 locations inside the separation bubble. The

present treatment used in the model (by keeping 𝑦𝑤 and Π as constants equal to their values at the

𝑥 associated with the separation point) is shown to give overall good predictions throughout the

separation bubble.

As the separated flow reattaches, the local mean velocity field is two-dimensional and departs

significantly from a canonical boundary layer. There is no clear log layer of velocity profile in

the vicinity of the reattachment. After some streamwise distance, the log layer begins to recover

toward the equilibrium ZPG state, as shown in Figure 5.18(a). In Figure 5.18(b), the wall pressure

PSDs are compared among these 𝑥 locations with significantly varying velocity profile shapes.

Although the log layer is not recovered at these 𝑥 locations, the performance of the model is tested

in Figure 5.19. Results show that the shape and magnitude of the PSDs are still overall captured by
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Figure 5.18: (a) Mean velocity with the logarithmic relation subtracted. (b) Power spectral
densities of wall pressure fluctuations in the reattachment region of Wu and Piomelli (2018).
Increasing thickness indicates increase in 𝑥.

Figure 5.19: Prediction of the proposed model of wall pressure PSD in the reattachment region
( ). Increasing thickness indicates an increase in 𝑥.
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Figure 5.20: (a) Mean velocity with the logarithmic relation subtracted and (b) power spectral
densities of wall pressure fluctuations in the FPG region.◦ Hu (2018) FPG, ◦ Hu (2018) ZPG,
Fritsch et al. (2022b) FPG, Fritsch et al. (2022b) ZPG.

Figure 5.21: Prediction of the proposed model in the FPG region.◦ Hu (2018) FPG, Fritsch
et al. (2022b) FPG, model results for Hu’s FPG case, model results for Fritsch’s FPG
case.

the model.

Lastly, the model is tested in FPG flows to explore its extendibility to more universal appli-

cations, although the model is developed based on ZPG and APG boundary layer data only. The

measurement data (Figure 5.20(a)) show that, under a FPG (−2 < 𝛽 < 0), 𝑦𝑤 increases slightly

and Π becomes negative. A wider overlap range of wall pressure PSD and an increase in its slope
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are shown in (b), suggesting a relation between 𝜙𝑝𝑝 and 𝑈+ that is similar to that found for ZPG

and APG flows as discussed earlier. Indeed, Figure 5.18 shows that the model predicts the wall

pressure spectra for these FPG cases surprisingly well, although the model is not developed based

on FPG flow data. Yet, the direct applicability of the model in its present form to FPG flows in

general needs to be examined with more data, especially from flows with stronger FPGs and a wider

Reynolds number range.

5.8 Conclusions

In this study, datasets collected using direct numerical simulations (DNS) and experimental studies

are used to characterize the variation of wall pressure statistics in various flow scenarios: adverse

and favorable pressure gradients, flow separation, and reattachment, as well as different ranges

of Reynolds number. Next, by comparing different sets of variables used to normalize the wall

pressure spectrum, 𝜙𝑝𝑝, the optimal set of scaling is identified and used for wall pressure spectrum

model development.

The performances of various existing wall pressure spectrum models are evaluated in these

flow scenarios. These models are shown to fail to capture the streamwise variation of wall pressure

r.m.s. due to the use of inappropriate pressure scaling, being curve-fitted to limited datasets, and

the dependencies on model parameters that are based directly on 𝑢𝜏, which reduces to zero at the

detachment point.

Next, new model parameters (𝑦𝑤 and Π) are proposed and used to modify Goody’s model.

These two parameters carry information on the local state of the non-equilibrium boundary layer.

They replace 𝑅𝑡 in the original Goody’s model, which serves to gauge indirectly the effects of

pressure gradient and Reynolds number on the local flow. In addition, 𝑦𝑤 and Π contain the

‘history effects’ of pressure gradients as captured in the mean velocity profile.

Comparison with available numerical and experimental measurements shows that the model

gives good predictions for ZPG, APG, and FPG flow. For strong-APG flows with boundary layer

separation and reattachment, the wall-pressure spectra are shown to display similar shapes and
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magnitudes across the separation bubble. There, the model is shown to give overall good predictions,

if 𝑦𝑤 and Π are kept constants equal to their values at the detachment point. A qualitatively good

prediction is also obtained immediately after flow reattachment when the boundary layer departs

significantly from its equilibrium state. Hence, the new model is a generalized WPS model for a

wider range of non-equilibrium boundary layers, as opposed to existing models designed for limited

types of flows.
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CHAPTER 6

CONCLUSIONS AND FUTURE PERSPECTIVE

This work first evaluates several methodologies for efficient direct numerical simulations of steady

and unsteady non-equilibrium wall-bounded turbulent flows. Then, simulations are carried out to

understand the effects of favorable and adverse pressure gradients on wall turbulence and particularly

on wall-pressure statistics that are the main noise sources for fan self-noise. Based on the new

physical insights, a wall pressure model is developed for boundary layer flows under wide ranges

of Reynolds number and free-stream pressure gradients.

Firstly, to study non-equilibrium accelerating flows, a transient periodic channel is used as an

example. A temporally varying pressure gradient is imposed to prescribe the acceleration. The

results indicate that following acceleration, the near wall turbulence generation cycle, is modified

due to the stabilization of low-speed streaks. Eventually, turbulent spots appear, destabilizing

stabilized streaks and reactivating the canonical near-wall cycle. Small-span simulations are shown

to capture the overall dynamics and, therefore, is a cost-efficient tool for fundamental studies of

non-equilibrium turbulence. The limitation of the small-span approach is found to be a slight

delay of flow recovery after the acceleration, due to slower streak transient growth brought by an

underestimation of near-wall velocity fluctuations.

Next, to study non-equilibrium decelerating flows, DNS of a flat-plate boundary layer under

adverse pressure gradient is carried out. Specifically, the goal is to identify the effect of APG-

inducing wall curvature on the flow. To this end, the results are compared with those of an

existing study of flow around a controlled-diffusion airfoil. For the majority of the boundary layer

development, the curvature effect is shown to be masked by the adverse pressure gradient effects.

Exceptions are the region with weak pressure gradient and the vicinity of the trailing edge, where

the convex wall curvature indirectly augments the effect of pressure gradients on the boundary

layer. The wall curvature appears to augment high-frequency fluctuations of the wall pressure.

Results demonstrate the modulation of APG effects on the flow by a the wall curvature. Overall, the
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boundary layer parameters, turbulence statistics, and wall-pressure statistics are qualitatively similar

with and without wall curvature. This indicates that flat-plate flows can serve as low-cost surrogates

of flows over an airfoil (or other objects with mild curvatures) for simulation data generation used

to aid turbulence and aeroacoustics model development. Future effort in this direction may involve

cases with smaller radius of curvature i.e. higher curvature effects such as turbine blades, to

characterize the effect of such strong curvatures in the presence of pressure gradient.

Lastly, using flat-plate boundary layer DNS and existing experimental measurements, a database

of flows with a wide range of Reynolds numbers (𝑅𝑒𝜃 = 300 to 23,400) and pressure gradients

(𝛽 = −1 to 200) is collected. The datasets include flows with boundary layer separation and

reattachment. Based on the datasets, the effects of Reynolds number and pressure gradients on wall

pressure statistics are characterized and the optimal set of scaling parameters for the wall pressure

spectrum is identified. Next, the performance of various existing wall pressure spectrum models

are tested, highlighting their limitations, especially under strong APG near and after separation.

The Rozenberg/Lee model is found to perform well for most attached boundary layer cases at

low Reynolds numbers but fails close to separation. Whereas Hu’s model seems to be stable for

flows near separations but underpredicts at low frequencies for other different flow conditions.

A generalized version of this model is proposed, with two main parameters (𝑦𝑤 and Π) used to

describe the local state of a non-equilibrium boundary layer. The new model is shown to perform

well not only in ZPG and attached APG flows (as the previous Rozenberg/Lee model), but also in

strong-APG flows with or without separation and in FPG flows.

Aspects of future work include the following. Wall-normal contributions of turbulent structures

in different regions such as buffer layer, log layer, outer layer, etc. to wall pressure spectra,

similar to that done by Jaiswal et al. (2020), shall be carried out which may further support the

ideology of new WPS model developed and may even help improve it. The generalized wall

pressure model needs to be tested in more complex flows, such as flow through a low-speed fan, to

evaluate its improvements of far-field noise prediction over existing models. In addition, the model

can be improved to include better scaling parameters near flow separation, inside the separation
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bubble, and near reattachment. Also testing the model for cases at even higher Reynolds numbers

(𝑅𝑒𝜃 > 20000 and higher favourable pressure gradients 𝛽 < −5, can help refine constants used

in the model. Next, RANS simulations will be carried out to evaluate if they can model velocity

and Reynolds stresses wall-normal profiles to good approximations for WPS-model predictions,

in a range of case scenarios as discussed in this thesis. Further improvements may be obtained

by using artificial neural networks to model directly the wall pressure spectrum based on one- or

two-dimensional inputs (e.g. distributions of mean velocity and pressure), other than scalars such

as 𝑦𝑤 and Π.

Also, the model shall be further extended flow in the presence of roughness. Recently Fritsch

et al. (2022a) measured wall pressure fluctuations over cylindrical roughness in the presence of low-

pressure gradients. They found that roughness exhibit a more simplified dependence on pressure

gradient history as compared to smooth-wall. In light of these findings, DNS simulations of TBL in

the presence of roughness will be carried out with high-pressure gradient flow scenarios including

separation and re-attachments. And with new data generated and gathered for flows in the presence

of roughness, the model can be further extended to include the effect of roughness.

Finally, with a plethora of data generated and gathered, more rigorous approaches based on

Panton and Linebarger (1974) wall pressure spectra modeling, shall be carried out.
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APPENDIX A

APPLICATION OF MINIMAL-SPAN DNS FOR FUNDAMENTAL STUDY OF A
RIBLET-WALL TRANSIENT CHANNEL

A.1 Introduction

The objective of this work is to characterize the effect of drag-reducing riblets on a turbulent flow

under acceleration, using the minimal-span approach discussed in Chapter 3. A short review on

turbulent flow over riblets is provided below, followed by the limitation of understanding of this

type of flows that motivated this study.

Manipulating near-wall turbulent flows using active or passive control technique for drag re-

duction has been an intensive area of research in recent decades. As one example of passive flow

control device, riblets are motivated by skin (dermal denticles) of fast-swimming sharks (Dean

and Bhushan, 2010). Drag reduction by riblets of up to 10% compared to a smooth wall has been

widely demonstrated numerically and experimentally by, for examples, Walsh (1983), Bechert and

Bartenwerfer (1989), Bechert et al. (1997), Choi et al. (1993), Lee and Choi (2008), Goldstein

et al. (1995), and García-Mayoral and Jiménez (2011). Riblets have been shown to provide a 2%

drag reduction during flight tests of an Airbus 320 when covering 70% of the aircraft surface (Szo-

druch, 1991). Riblets have also been deployed on high speed trains (GEC-Alstom, 1991), racing

swimsuits (Krieger, 2004) and pipeline surfaces (Weiss, 1993).

Mechanisms of drag reduction have been studied for riblets with various two- or three-

dimensional geometries (such as sawtooth, scalloped, trapezoidal, thin-blade shapes and shark

skin moulding replicas), with the goal of optimizing drag reduction over a large Reynolds-number

range. Bacher and Smith (1985), using flow visualization, observed that the transverse oscillation of

low-speed streaks was reduced and the spanwise spacing between low-speed streaks was increased

in the vicinity of riblets. This was hypothesized to reduce the effect of the local adverse pressure

gradients induced by the hairpin vortices in provoking ejections near the wall. Robinson (1988) also
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observed that riblets impede the transverse motion of streaks; Using direct numerical simulations

(DNS), Choi et al. (1993) found that the velocity fluctuations (in wall units) were weakened in

drag-reducing riblet flows and proposed that the viscous drag is reduced by limiting the contact sur-

face area of streamwise vortices, such that a smaller area is exposed to high-velocity fluid. Bechert

and Bartenwerfer (1989) proposed the “protrusion height” concept, which was further improved by

Luchini et al. (1991) and Bechert et al. (1997). It states that the virtual origin of the longitudinal

flow is near the valley whereas that of the cross flow is lifted to around the riblet tip elevation,

leading to increased shear stress of the cross flow, while hampering cross flow fluctuations and the

spanwise transport. In addition, García-Mayoral and Jiménez (2011) noted that streamwise slip at

the riblet tip augments velocity in the free stream and consequently leads to decrease of the friction

coefficient.

While the mechanism leading to drag modification was well discussed, most studies of flows

over riblets have been carried out in equilibrium turbulent flows such as fully-developed channels

and zero-pressure-gradient (ZPG) boundary layers. However, practical turbulent wall flows are

usually characterized by non-equilibrium temporal and/or spatial variations of the bulk flow. The

objective of this work is to compare the results of small-span simulations of transient half channel

flows bounded by a smooth wall and a riblet-covered wall, to identify the riblet effect under transient

acceleration.

A.2 Methodology

The same incompressible flow solver is used. The no-slip velocity boundary condition on the riblet

surfaces are imposed using an immersed boundary method (IBM). The term 𝐹𝑗 in Equation (3.2)

is a body force per unit mass prescribed by the IBM. The riblet geometry is well-resolved by the

grid. The IBM method is based on the volume-of-fluid approach; its detailed implementation and

validation are provided in Yuan and Piomelli (2014b,a). The values of 𝐹𝑖 are either negligibly small

or zero except in the fluid-solid interface cells.

In the presence of riblets, ensemble-averaged variables at a given 𝑦 are spatially heterogeneous
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near the wall. These spatial fluctuations of the mean fields (also termed form-induced fluctua-

tions) are separated from turbulent fluctuations using the double-averaging (DA) decomposition

introduced by Raupach and Shaw (1982),

𝜃 (®𝑥, 𝑡) = ⟨𝜃⟩(𝑦, 𝑡) + 𝜃′′(®𝑥, 𝑡) + 𝜃′(®𝑥, 𝑡), (A.1)

where 𝜃 is an instantaneous flow variable, ⟨𝜃⟩ is the intrinsic spatial average in the (𝑥, 𝑧)-plane,

⟨⟩ = [1/𝐴 𝑓 ]
∫
𝐴 𝑓
() 𝑑𝐴 (where 𝐴 𝑓 is the area occupied by the fluid), 𝜃 is the ensemble average

and 𝜃′′ = 𝜃 − ⟨𝜃⟩ is the form-induced fluctuation. In addition, the area averaging carried out in

the total (𝑥, 𝑧)-plane area of fluid and solid, 𝐴𝑜 = 𝐿𝑥𝐿𝑧, is termed superficial area averaging,

denoted by ⟨⟩𝑠 = [1/𝐴𝑜]
∫
𝐴 𝑓
() 𝑑𝐴 and 𝐿𝑥𝑖 is the domain size in the 𝑥𝑖 direction. The two area

averaging approaches satisfy the relation ⟨⟩𝑠 = Φ(𝑦)⟨⟩, where Φ(𝑦) is the area fraction of fluid in

the (𝑥, 𝑧)-plane at elevation 𝑦, or the “roughness geometry function” (Nikora et al., 2007),

Φ(𝑦) =
𝐴 𝑓 (𝑦)
𝐴𝑜

. (A.2)

Here, for the quantities that are defined in fluids only—such as velocities, pressure, stresses—either

intrinsic or superficial averaging is carried out. Note also that, for smooth-wall simulations, the 𝜃′′

component is zero. It is worth noting that the triple decomposition shown in equation (A.1) differs

from the decomposition of Hussain and Reynolds (1970) in that here it is not the organized motions

in time, but the time-mean fluctuations in space, that is subtracted from the total fluctuations. The

wall shear stress is determined by integrating the ensemble-averaged streamwise IBM body force

𝐹1,

𝜏𝑤 (𝑡) =
𝜌

𝐿𝑥𝐿𝑧

∫
V
𝐹1(®𝑥, 𝑡) d𝑥d𝑦d𝑧, (A.3)

where V represents the total simulation domain. For a detailed explanation of this method, see

Yuan and Piomelli (2014a). The method in Eq. (A.3) was validated by Yuan and Piomelli (2014b)

in the case of a fully developed channel flow with sandgrain roughness; the same simulation

methodology was employed therein. The validation was carried out by comparing 𝜏𝑤 from Eq.

(2.5) to the total shear stress at 𝑦 = 0 (valley of roughness) obtained from mean momentum balance.
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Very good agreement was obtained. As another validation specifically for the use of this method

in riblet-wall flows, the roughness function in the final steady state is shown to compare very well

with the experimental measurements of Bechert et al. (1997).

The sawtooth-type riblet is studied herein, as it is among the most widely studied geometries in

the literature. The riblet wall simulated is shown in Figure A.1(b) and parameters are summarized

in Table A.1 for both the smooth-wall (SS) and riblet-wall (RS) small-span cases. ℎ and 𝑠 represent

the height and width (or spacing) of a riblet unit, respectively. For this type of riblet, existing

studies showed that (1) a height-width ratio of ℎ/𝑠 ≈ 1 give higher drag reduction in comparison

to other ratios and (2) a drag-reducing regime requires ℎ+ ≤ 25. In this work, ℎ/𝑠 is set to 1. As

the flows are intended to be drag-reducing, we set ℎ/𝛿 = 0.042, which yields ℎ+ values of 7.5 and

17.5 in the initial and final equilibrium states, respectively.

Small-span simulations are carried out for the flow over riblets with a 𝐿𝑧 containing 24 riblets,

each resolved by 16 grid points in the 𝑧 direction. In existing DNS studies of flows over riblets,

between 8 and 32 grid points per riblet in 𝑧 were used (Choi et al., 1993; Goldstein et al., 1995;

Goldstein and Tuan, 1998). Note that in the work of Choi et al. (1993) a body-fitted mesh was

used, while in the present study an immersed boundary method was employed. As such, the

spatial resolution quantified by the number of grid points per riblet are not directly comparable.

Nevertheless, the present resolution falls in the range used in the literature. We have also validated

the resolution by comparing single-point velocity statistics with the benchmark case of Choi et al.

(1993) for a fully-developed riblet-wall channel flow simulation (not shown herein). The origin of

the 𝑦 axis is imposed at the trough of each riblet. Below the riblet tip (at 𝑦 = ℎ), a uniform 𝑦 grid

is used with Δ𝑦/ℎ = 0.0032 or Δ𝑦+ = 0.24 and 0.56 in the initial and final states respectively. The

total number of grid points for case RS is 512 × 300 × 384 in 𝑥, 𝑦, and 𝑧. In next subsection, it is

shown that the present calculated drag reduction in the new equilibrium state compares very well

with the experimental measurement of Bechert et al. (1997) with the same riblet configuration,

serving as a validation for the riblet simulations.

The following additional conditions apply for small-span simulations with riblets: (1) ℎ/𝐿𝑧 <

103



Case Wall Span 𝑅𝑒𝑏1 𝑅𝑒𝑏2 𝑅𝑒𝜏1 𝑅𝑒𝜏2 𝐿𝑧/𝛿 Δ𝑥+ Δ𝑦+min Δ𝑦+max Δ𝑧+

SS Smooth Small 2921 7581 180 418 1 4.5-10.0 0.2-0.56 3.5-8.3 2.5-6.5
RS Riblet Small 2833 7383 180 418 1 4.5-10.0 0.2-0.56 3.5-8.3 0.47-1.0

Table A.1: Simulation parameters. 𝐿𝑥/𝛿 = 12.8 and 𝐿𝑦/𝛿 = 1.0 for the smooth-wall (SS) and
riblet-wall(RS) cases.

Figure A.1: (a) Prescribed 𝑅𝑒𝑏 variation in time for case SF; 𝑡∗ = 𝑡𝑢𝜏1/𝛿. (b) Sawtooth riblets
with ℎ/𝛿 = 0.042 and ℎ/𝑠 = 1, where ℎ and 𝑠 are riblet height and spacing; a fraction of the
domain is shown (1/8 in 𝑥 and 1/2 in 𝑧).

0.4 since essential flow physics is resolved only for 𝑦 < 0.4𝐿+𝑧 , according to Chung et al. (2015);

and (2) ℎ/𝛿 < 0.15, i.e. riblet tips do not protrude into the outer layer, to ensure the existence of

a logarithmic region in the equilibrium states. Since the riblets are very small compared to 𝛿 to

achieve drag reduction for both 𝑅𝑒𝜏1 and 𝑅𝑒𝜏2, these requirements were both satisfied.

A.3 Results

In this section, the effect of riblets on statistics and dynamics will be described by comparing

cases SS and RS. As one will see, the overall dynamics of turbulent flow during the transient is

not modified by riblets; this is shown by similar time-variations of the wall friction, the mean

velocity profiles, the Reynolds stresses and characteristics of streak meandering, as compared to

the smooth-wall case. The main effect of riblets appears to be a reduction of streak meandering and

consequently a delay in the start of the retransition process due to a slower streak-transient growth.

First, Figure A.2(a) compares the variation of 𝑅𝑒𝜏 (𝑡). The main differences include a slight
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Figure A.2: (a) Variations of 𝑅𝑒𝜏 with time for smooth (empty symbols) and riblet (filled symbols)
cases. (b) Variation of virtual origin 𝑦𝑜 defined in Equation (A.4) with time. 𝑦𝑜/ℎ = 1.

delay in the onset of retransition and a lack of overshoot for the riblet case. Previously, the

experimental study of Grek et al. (1996) showed that the presence of riblets delayed the formation

of turbulence spots in the laminar-to-turbulent transition in a boundary layer. The parametric study

of He and Seddighi (2015) for flow configurations similar to this work showed that a lower initial

turbulence intensity delays the onset of retransition, reminiscent of the dependence of the critical

Reynolds number for a by-pass transition in a boundary-layer flow on the freestream turbulence.

Similarly, the delay of retransition in the present riblet case is probably due to a lower initial

turbulence intensity. At 𝑡∗ = 0, the peak values of the 𝑦 profiles of 𝜎𝑢𝑖/𝑢𝜏2 are 2%, 5% and 3%, for

𝑢′, 𝑣′ and 𝑤′ components respectively, lower than the values in the smooth case.

Another observation from Figure A.2(a) is that, early in the transient, 𝑅𝑒𝜏 is higher on the

riblets than on the smooth wall. Given that the Reynolds shear stress is roughly 7% lower for the

riblet case at this time (in peak value, shown later in Figure A.5), a plausible explanation may be

that the higher surface area on the riblet surface leads to higher total viscous shear stress early in

the transient.

To compare the flow statistics between cases with or without riblets, one needs to quantify the

virtual 𝑦 origin for case RS to align the logarithmic region (if present) between the two cases.
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Various definitions of the virtual origin were used in the literature, including but not limited to the

riblet tip elevation, valley elevation, and the midpoint between the two. Here, we compare two

definitions. The first is the midpoint between the tip and valley, 𝑦 = 0.5ℎ. The second, denoted as

𝑦𝑜, is an extension from the definition used by Choi et al. (1993) for equilibrium flows. Here, 𝑦𝑜

is defined dynamically such that the elevations of maximum 𝑢′ rms in the cases with and without

riblets are aligned on the 𝑦+ axis offset by 𝑦𝑜, at any given time. In other words,

𝑦𝑜 (𝑡) = 𝑦max(𝑡) −
𝑦+max,𝑆𝑆 (𝑡)𝜈
𝑢𝜏 (𝑡)

. (A.4)

Here, 𝑦max is the peak elevation of𝜎𝑢 in any of the two cases, 𝑦+max,𝑆𝑆 is the 𝑦+ value corresponding to

the 𝜎𝑢 peak in case SS. The reason for this definition is that the logarithmic region is closely related

to the region of balance between the TKE production and dissipation, which moves upward during

the transient flow due to the thickening of the viscous sublayer. By matching the peak elevation

of 𝑢′ rms—which is also the peak location of TKE production—the definition in Equation (A.4)

thereby aligns the logarithmic regions on the offset 𝑦+ axis. For case SS, 𝑦𝑜 = 0, while for case

RS Figure A.2(b) shows the variation of 𝑦𝑜/ℎ. It is evident that the virtual origin defined in

Equation (A.4) lies in the vicinity of the riblet tip during most of the transient process, except

immediately after the 𝑢𝑏 step jump.

Figure A.3 compares the variation of𝑈 against the 𝑦 offset by the virtual origin, defined either

in Equation (A.4) or as 0.5ℎ. Regardless of the virtual origin definition, the change of profile shape

in the riblet case is similar to that of a smooth wall, with a thickening of the linear velocity region,

a increase of log-law intercept and a slight decrease of log-law slope. The difference of the 𝑈

values in the logarithmic region in the riblet case from the smooth-wall profile (Δ𝑈+ = 𝑈+
𝑆𝑆
−𝑈+

𝑅𝑆
),

however, depends slightly on the virtual origin definition used. Specifically, the upper shift of 𝑈+

(or Δ𝑈+ < 0) representing the drag-reduction effect of riblets in the equilibrium states is less when

using the offset of 0.5ℎ.

Next, the effect of the riblet on the drag during the transient is analyzed. We use Δ𝑈+ in the

logarithmic region to quantify the change of drag as it is independent from the shape of outer-layer

𝑈 profile. It is noted that, in previous studies of equilibrium flows on riblets, the drag reduction is
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Figure A.3: Double-averaged velocity for smooth ( ) and riblet ( ) cases, with 𝑦 shifted by
(a) 𝑦𝑜 defined in Equation (A.4) and (b) mean height (0.5ℎ).

often quantified differently, as the relative difference in the friction coefficient between two cases

at the same 𝑅𝑒𝜏, i.e. 1 − 𝐶 𝑓 ,𝑟/𝐶 𝑓 ,𝑠 ≈
√︁

2𝐶 𝑓 ,𝑠 (𝑈+
𝑐,𝑠 −𝑈+

𝑐,𝑟) (Spalart and McLean, 2011), where 𝐶 𝑓

is the friction coefficient, 𝑈𝑐 is the centerline velocity of the channel, and subscripts “r” and “s”

represent riblet and smooth-wall cases. Such quantification, however, requires knowledge of the

ratio of 𝑢𝜏/𝑈𝑐, which is not available herein due to the overpredicted value of𝑈𝑐 obtained from the

small spanwise domain size. Second, this definition of drag reduction assumes that the 𝑈 profile

shape far from the wall is similar between the riblet and the smooth-wall cases. In non-equilibrium

flows, however, the 𝑈+ profile shape undergoes significant changes over time and this assumption

may not apply. Third, 𝑅𝑒𝜏 values are not matched for both cases for all time. For these reasons, we

use Δ𝑈+, instead of 1−𝐶 𝑓 ,𝑟/𝐶 𝑓 ,𝑠, to quantify the drag change due to riblets. Another advantage of

using Δ𝑈+ is that it is not Reynolds number dependent.

To identify the logarithmic region in a non-equilibrium flow, we use a diagnostic function based

on the 𝑈+ profile, Ξ(𝑦) = (𝑦 − 𝑦𝑜)+𝜕𝑈+/𝜕𝑦+. Figure A.4(a) compares Ξ at representative 𝑡∗

instances of 0.0 (initial steady state), 0.3 (reverse transition), 0.6 (onset of retransition), and 1.9

(final steady state). The logarithmic region, when it exists, would be located between two bounds:

(1) (𝑦− 𝑦𝑜)+ = 30, considered as the upper limit of the buffer layer; and (2) 𝑦/𝛿 = 0.35, considered
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Figure A.4: (a) Diagnostic function, (𝑦 − 𝑦𝑜)+𝜕𝑈+/𝜕𝑦+, for smooth ( ) and riblet ( ) cases,
compared with law-of-the-wall ( ) in equilibrium flows. Filled squares: elevation of
logarithmic region (if present); ◦ 𝑦+ = 30; ⋄ 𝑦/𝛿 = 0.35. (b) Drag change due to riblets. Δ𝑈+

in new equilibrium; ∗ Bechert et al. (1997) experiment.

as the lower limit of the outer layer. A plateau region or a local minima of Ξ is observed for the

two steady states and for 𝑡∗ = 0.3, indicating the existence of logarithmic profiles at these times.

The location and the logarithmic slope (obtained as the Ξ value in the logarithmic region) appear

to match roughly for these two cases. For 𝑡∗ in the range of 0.4 to 1.1, the logarithmic region does

not exist for either flow, as shown in Figure A.4(a) at 𝑡∗ = 0.6.

Figure A.4(b) shows the variation of Δ𝑈+ in the 𝑡∗ range for which a logarithmic layer is present.

The 𝑡∗ duration between 0.4 and 1.1 is blocked out to indicate the absence of the logarithmic profile

and, consequently, an ill-defined Δ𝑈+. It is shown that the riblets increase the drag in the reverse-

transition phase, while decreasing the drag in the retransition phase. This is in part due to the

higher viscous stress early in the reverse-transition phase and also in some degree due to the

delayed response of wall friction in the reverse-transition phase, as shown in Figure A.2(a). In

the final equilibrium state the riblet is drag-reducing (by design), with a Δ𝑈+ comparing well with

the drag-reduction measurement by Bechert et al. (1997) (converted to Δ𝑈+ by MacDonald et al.

(2017) based on the assumption of an equilibrium flow) for matching riblet geometry, 𝑅𝑒𝜏 and ℎ+.

The Reynolds stress profiles in the riblet case take similar shapes to those over a smooth wall. To
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Figure A.5: Temporal variations of peak values of velocity rms fluctuations and Reynolds shear
stress, normalized by initial 𝑢𝜏, for smooth (open symbols) and riblet (filled symbols) cases.

quantitatively compare them, Figure A.5 shows the variation of the peak values of rms fluctuations

and Reynold shear stress for both cases, normalized by the initial 𝑢𝜏. One difference is the lower

𝜎𝑢 peak magnitude on riblets in both the initial and final equilibrium states, as well as before the

retransition. The 𝜎𝑣 peak magnitude is also noticeably lower on riblets throughout the transient,

yielding a weaker Reynolds shear stress as a consequence. For equilibrium flows, it has typically

been observed that drag-reducing riblets lead to reduced fluctuation magnitudes. Here we show

that it is also true for strongly accelerating flows.

To compare the characteristics of streaks between the two cases, the 𝑥 extent of the 𝑅𝑢𝑢 isocontour

(𝐿𝑥,𝑢′𝑢′) is shown in Figure A.6(a). 𝐿𝑥,𝑢′𝑢′ is calculated from 𝑅𝑢𝑢 (𝑟𝑥 , 𝑟𝑦) centered at 𝑦/𝛿𝜈1 = 15.

Although the elongation of low-speed streaks during the riblet-flow reverse-transition phase and

smooth cases are similar, such elongation lasts significantly longer in the presence of riblets (with

the onset of streak breakdown at 𝑡∗ ≈ 0.9, a 0.2 delay from the smooth case). Figure A.6(b)

shows that throughout the transient the mean streak tilting angle, |𝜃 |, is consistently 25% to 30%

lower in the riblet case. The experimental visualizations of Bacher and Smith (1985) also showed

that drag-reducing riblets attenuate streak oscillation for a ZPG boundary layer. A weaker streak
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Figure A.6: Temporal variations of (a) 𝑥 extent of 𝑅𝑢𝑢 = 0.3 isocontour centered at 𝑦/𝛿𝜈1 = 15
and (b) average streak tilting angle magnitude (calculated at 𝑦/𝛿𝜈1 = 15), for smooth (open
symbols) and riblet (filled symbols) cases.

meandering, together with a slightly weaker 𝑤′ magnitude, suggests that weaker or fewer quasi-

streamwise vortices are generated for all 𝑡∗ through the STG mechanism and consequently the

retransition is delayed. Longer 𝑢′ correlation lengths and lower turbulence intensities during the

transient appear to be manifestations of such a delayed response.

The small-span simulation in characterizing the effects of wall riblets (drag-reducing in equilib-

rium states) is applied in non-equilibrium, accelerating transient channel. Results are compared to

the small-span smooth-wall data. The location of the virtual origin defined based on the dynamic

argument (Choi et al., 1993) is shown consistently around the riblet tip throughout the transient.

In addition, the riblets weaken the turbulence intensity at all time, similar to past observations on

fully-developed flows. The presence of riblets does not fundamentally alter the dynamics. The main

difference is a delayed onset of retransition and delayed flow recovery which may, again, be due to

weaker streak transient growth, as the streak meandering (quantified by the mean tilting angle) is

significantly milder than the smooth case at all time. Interestingly, instantaneous comparison with

the smooth case shows that the riblets are drag-increasing during the reverse transition; this may be

due partially to the larger wetted area of the riblets which yields larger amount of viscous drag. In

the retransition stage, however, the riblets are drag-reducing, partially due to the later retransition
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onset.

A.4 Conclusions

Having shown that a small-span simulation captures the essential near-wall dynamics (despite

quantitative differences) in a non-equilibrium accelerating wall-bounded turbulent flow in Chapter 3,

this section applies the approach to characterize the effects of wall riblets in a non-equilibrium,

accelerating transient channel. Results are compared to the small-span smooth-wall data.

The location of the virtual origin defined based on the dynamic argument (Choi et al., 1993) is

shown be around the riblet tip throughout the transient. The riblets weaken the turbulence intensity

at all time, similar to observations on fully-developed flows. The presence of riblets does not

fundamentally alter the dynamics. The main difference from a smooth-wall flow is a delayed onset

of retransition and delayed flow recovery which may be due to weaker streak transient growth, as

the streak meandering (quantified by the mean tilting angle) is significantly milder than the smooth

case at all time. Interestingly, instantaneous comparison with the smooth case shows that the riblets

are drag-increasing during the reverse transition. This may be due partially to the larger wetted

area of the riblets which yields larger amount of viscous drag. In the retransition stage, however,

the riblets are drag-reducing, partially due to the later retransition onset.
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APPENDIX B

QUANTIFYING CURVATURE EFFECTS USING DEAN’S NUMBER

In Chapter 4, the effect of airfoil curvature on the boundary layer turbulence is quantified using

𝛿/𝑅, following previous experimental studies (Bradshaw, 1973; So and Mellor, 1973; Ramaprian

and Shivaprasad, 1978; Muck et al., 1985; Gillis and Johnston, 1983), which were reviewed in

detail by Patel and Sotiropoulos (1997). For channel and pipe flows, there is another parameter that

has been used to quantify the curvature effects on turbulence. Dean (1928) quantified the curvature

effect in pipe flows by introducing the ‘Dean’s number’, defined as 𝑈𝑑/𝜈
√︁
𝑑/𝑅 (where 𝑈 is the

bulk velocity, 𝑑 is the pipe diameter and 𝑅 is the radius of curvature). Therefore, Dean’s number

quantifies the combined effect of the Reynolds number and the wall curvature for channel or pipe

flows. For high values of Dean’s numbers, the wall curvature has been shown to lead to ‘Dean’s

vortices’, instead of Taylor-Goertler vortices seen in boundary layers.

Figure B.1: Variation of Dean’s number along the airfoil chord, based on airfoil DNS data in
Chapter 4.
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For turbulent boundary layers, as discussed by Bandyopadhyay et al. (1993) and Patel and

Sotiropoulos (1997), data are limited to a narrow range of Reynolds numbers. Hence 𝛿/𝑅 parameter

may not be the single parameter to quantify curvature effects for boundary layers. In figure B.1,

the Dean’s number is calculated based on the simulated turbulent boundary layers presented in

Chapter 4, with 𝛿 replacing the channel height, and plotted along the streamwise direction. It

is seen that the Dean’s number varies in the between 200 and 1100, which is much higher than

the instability threshold (≈36) due to curvature instability as discussed for channel or pipe flows.

However, as observed in Chapter 4, curvature effects are small, when comparing mean-flow and

turbulent statistics between flat-plate and airfoil boundary layers. Therefore, the condition of the

occurrence of Dean’s vortices as discussed by Dean (1928) does not apply for boundary layer flows.

Another generalized curvature parameter may be needed to quantify the curvature strength in the

presence of varying Re and pressure gradients for boundary layer flow.
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