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ABSTRACT

Wind turbines are one of the fastest-growing energy sources. Based on their axis of rotation

they fall into two basic categories: horizontal-axis wind turbines (HAWTs) and vertical-

axis wind turbines (VAWTs). Darrieus VAWTs exploit aerodynamic lift. This study entails

the vibration analysis of large vertical-axis Darrieus wind turbine blades. Very large wind

turbines are becoming more abundant due to their ability to harvest greater wind power.

VAWTs are less common than HAWTs for large wind applications, but have some favorable

characteristics, for example in offshore applications, and so further development of large

VAWTs is anticipated. However, VAWTs are known to have vibration issues. VAWT blade

vibration is the focus of this work.

The straight-bladed H-rotor/Giromill is the simplest type of VAWT. We first derive

the equations of motion of a H-rotor blade modeled as a uniform straight elastic Euler-

Bernoulli beam under transverse bending and twist deformation. The reduced-order model

suggests the existence of periodic damping, periodic stiffness, and direct excitation gener-

ated by a cyclic aeroelastic load. The model also indicates spin softening, which could be

detrimental as the turbines become large. Periodic damping and stiffness are examples of

parametric excitation and are likely to carry over to other types of VAWT blades. Systems

with parametric excitation have been studied with various methods. Floquet theory has

been classically used to study the stability characteristics of linear systems with periodic

coefficients, and has been commonly applied to Mathieu’s equation, which represents a

vibration system with periodic stiffness. We apply the Floquet theory combined with the

harmonic-balance method to a linear vibration system with a periodic damping coefficient.

Based on this theory, the approximated solution includes an exponential part, with an

unknown exponent, and a periodic part. Our analysis investigates the initial conditions

response, the boundaries of instability, and the characteristics of free response solution of

the system. The coexistence phenomenon, in which some of the transition curves overlap



so that the instability wedges disappear, is recovered in this approach, and is examined

closely.

An additional case of the parametric excitation is the combination of parametric damp-

ing and parametric stiffness. The Floquet-based analysis shows that the combined para-

metric excitation reshapes the stability characteristics, compared to the system with only

parametric damping or stiffness and disrupts the coexistence which is observed in the

parametric damping case.

The aeroelastic forces encountered by the wind turbines can cause self-excitation in

blades, the mechanism of which can be loosely modeled with van-der-Pol-type nonlinearity.

We seek to understand the combined effect of parametric excitation and van der Pol

nonlinearity, as both can induce instabilities and oscillations. The oscillator is studied under

nonresonant conditions and secondary resonances, with and without external excitation.

We analyze the system using the method of multiple scales and numerical solutions. For

the case without external excitation, the analysis reveals nonresonant phase drift (quasi-

periodic responses), and subharmonic resonance with possible phase drift or phase locking

(periodic responses). Hard excitation is treated for nonresonant conditions and secondary

resonances, and similar phenomena are uncovered.

Some Darrieus VAWTs consist of curved blades. We lastly study the modal analysis of

curved Darrieus wind-turbine blades and obtain the mode shapes and modal frequencies.

The governing equations are derived using the fundamental deformation mechanics, and

thin beam approximations are employed to express the strain and kinetic energies. The

assumed-modes method is applied to the energies, and the Euler-Lagrange equation is

used to discretize the equations of motion. Implementing these equations, mode shapes

are calculated and mapped back onto the curved beam for visualization. This analysis is

conducted for pinned-pinned and hinged-hinged blades. The results are compared with

Finite element analysis using Abaqus and with the literature.
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CHAPTER 1

INTRODUCTION

There exist several methods of absorbing wind power and converting it into a useful energy

form. Wind turbines are the most popular setups to accomplish this purpose and are

distinguished into two main classes depending on the orientation of the rotor: horizontal

axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). In this notation,

“axis” represents the axis of rotation of the rotor (Fig. 1.1). In this study, we focus on

Vertical axis wind turbine 
(VAWT )

Horizontal axis wind turbine  
(HAWT)

RotationRotation

Figure 1.1: Wind turbine categories.

the VAWTs. Figure 1.2 shows different types of VAWTs configurations. They are mainly

differentiated into two types based on the energy extraction from the wind: Savonius and

Darrieus. Savonius wind turbines generate power using drag over the rotor, while Darrieus

wind turbines use lift over the airfoil to extract energy (Fig. 1.3).

Savonius turbines are used in high-torque and low-speed applications, e.g., centrifugal

ventilators and water pumping [64, 103]. This design also has been used for harnessing

tidal power and for measuring ocean currents as low as 0.5 knots [31]. However they

suffer from low efficiency, reported as less than half of the Betz limit [98]. The maximum

power that can be extracted from the wind by a wind turbine, regardless of the design of

the turbine, is indicated by Betz’s law which states that wind turbines can absorb at most
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Figure 1.2: (a) “The Full-Darrieus”, (b) “H”, (c) “V”, (d) “Δ”, (e) “Diamond”, (f)
“Giromill”.

59.3% of the kinetic energy of the wind. This is known as Betz’s coefficient. In practice

wind turbines reach 75−80% of the Betz limit at their highest. The highest efficiency of the

Savonius happens at a rotational speed less than the wind speed. At higher rotational speeds

the efficiency of the rotor decreases drastically. The Darrieus configuration, however, has

been shown to have a much higher efficiency than the Savonius type. In some cases, the

efficiency can approach the Beltz limit. Moreover, they can operate at a high rotational

speed, which makes them a more desirable design candidate. The main focus of our

investigation in this research is to study VAWTs with Darrieus configurations.

Savonius

Lift force

Rotor air flow field

Lift force

Resultant airflow (red arrow) 
Forms positive angle of attack 
to wing

Air speed
due to rotation

Wind

Darrieus

Figure 1.3: Vertical axis wind turbine categories.
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1.1 Background
Extracting energy from the wind originated a very long time ago. Fleming and Probert

[31] and Eldridge [27] declared that the vertical axis wind turbines probably originated

around 200 BC in the east region of Iran, Sistan, Nashtifan, which is a sandy region and has

enduring high winds. These turbines (Fig. 1.4) were used for the purpose of grinding and

water pumping. However, Horwitz [41] suggested that wind turbines developed in Tibet

and were rotated by vertical axis waterwheels.

Figure 1.4: Vertical axis wind turbine in Nashtifan, Iran [27].

In 1925, in France, George Jean Marie Darrieus designed a configuration of vertical

axis wind turbines which was named after him as the “Darrieus configuration", and is also

often known as “eggbeater windmill” [103]. The development of Darrieus turbines started

in 1930s, but was stopped due to design complexity, manufacturing costs, several failures,

limited funds, and more importantly HAWT success. Decrease in fuel cost lessened the

interest in renewable energy and terminated the research on VAWTs, although studies on

developing HAWTs continued [93]. Nonetheless, investigations on VAWTs restarted in

1970s by focusing on optimizing the design in order to have a simpler design, reduce the

costs and decrease the failures. The VAWTs were under extensive development by the

National Research Council of Canada (NRC) [27] and Sandia National Laboratories (SNL)
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[103] in the 1970’s, and then later by FloWind1. Due to high efficiency, SNL was mainly

investigating Darrieus wind turbines, although they also studied other configurations such

as Savonius. The NRC developed an experimental Darrieus VAWT and a numerical

aerodynamic model [19]. At the same time the multi-megawatt VAWTs were introduced.

In 1980s, NRC and Hydro-Québec (a Canadian electric-utility company) designed and

constructed the world’s largest Darrieus type VAWT, Éole, shown in Fig. 1.5. Nevertheless,

the turbines encountered high maintenance costs and operated only from 1987 to 1993.

Figure 1.5: Éole, the largest VAWT, Québec, Canada [19].

Technical analyses accompanied these studies. NRC developed a numerical aerodynamic

model for their VAWT studies [19].

For the Sandia VAWT, using Finite Element Analysis (FEA), the modal frequencies

and shapes were determined for a single blade, and frequencies for the full system [10].

Flutter studies were also done [37]. In followup to the 17-m VAWT, a 34-m test bed

1Now out of business
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was developed, and modal characteristics were measured and predicted by FEA [14, 103].

Damping was also estimated [48].

Recently, renewable energies have come back into focus especially for the purpose of

electricity production. Wind turbines have been developed for offshore deployment due

to the availability of strong winds. The first offshore wind farm, consisting of 11450 kW

turbines, was created in Vindeby, Denmark, in 1991. Sandia National Laboratory and its

partners (TU Delft, University of Maine, Iowa State, and TPI Composites) believe that

VAWTs offer many advantages for the offshore farms [33]. For the purpose of improving

VAWTs for offshore applications, the Offshore Wind ENergy Simulation (OWENS) toolkit

has been developed as a design tool to analyze and determine optimized floating VAWT

configurations with the collaboration of SNL and Texas A&M University [33, 76].

The performance of a Darrieus wind-turbine was first studied by Rangi and South

[101] using wind tunnel measurements in the NRC of Canada. They discussed the

machine design and aerodynamic efficiency under a high relative velocity. In another study

Rangi and South [100] and their team investigated Darrieus turbine parameters including

spoilers and aero-brake effects on turbine performance and reliability, in addition to the

effect of efficiency related parameters like the number of blades and the rotor’s solidity.

In 1979 Kaza and Kvaternik [51] developed second-degree nonlinear aeroelastic partial

differential equations of motion for a slender, flexible, non-uniform, Darrieus vertical-axis

wind-turbine blade using Hamilton’s principle. In this analysis they considered a blade

undergoing combined flat-wise bending, edgewise bending, torsion, and extension. The

blade aerodynamic loading was developed based on a quasi-steady approximation of

two-dimensional incompressible unsteady airfoil theory.

Owens and Griffith [79] developed a structural dynamic design tool for large scale

VAWTs for studying the effect of geometry, configuration, blade material, and number

of blades on the aeroelastic stability of VAWTs. This tool can describe quantitatively
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the aeroelastic instabilities in a VAWT design. Their work has addressed the modeling

of aeroelastic loading and the vibration responses, ultimately for guiding the design and

manufacture of VAWT systems, and has involved the development of the finite-element-based

OWENS simulation toolkit, modal analysis of blade-tower systems, the potential for

resonances, and field tests on the Sandia 34-m VAWT test bed [77–79].

Studying wind farms and optimizing wind-farm layout has always been of significant

concern. The turbine positions and the effect of the vicinity of turbines, and therefore the

wake effect downstream of a wind farm alters the power coefficient of the wind turbines

[94]. Most wind farms are populated with HAWTs, for which the downstream flow is

influenced by the wake effect such that it reduces the power coefficient. However, Thomas,

in a US Patent study [106], indicated that in a wind farm of VAWTs (instead of HAWTs) the

coupled-vortex interaction between two wind turbines with opposite rotational directions

increased the aerodynamic efficiency. In a study of the wind farm layout optimization

problem, Whittlesey et al. [114] investigated how the power coefficient in a VAWT farm is

affected by turbine spacing. They suggested that optimally positioning the VAWTs showed

a significant increase in the power output compared to the HAWTs.

1.2 VAWs versus HAWTs
The offshore wind energy became of interest for clean renewable electricity production

in coastal regions because of the sources of wind with high speed. Furthermore, placing

the wind farm in the coastal zone facilitates the transmission of energy, compared with the

transmission distances from many land based farms [32, 71].

The design characteristics of the VAWTs are favorable for extracting energy from the

wind in offshore regions. A typical Darrieus turbine consists of a central vertical shaft,

curved or straight blades, a gearbox (speed transmission), and a generator, as shown in

Fig. 1.6. There are a variety of properties of vertical axis wind turbines that advocate

them for the use of offshore configurations. Figure 1.6 illustrates the characteristics of a

6



floating vertical axis wind turbine and compare it with the horizontal axis wind turbine.

As indicated, one of the primary feature is the height of the center of gravity (C.G.) in

VAWTs, compare to HAWTs. HAWTs have a high C.G. since the gearbox and generator

are elevated, while in VAWTs the gearbox and generator are mounted below the rotor,

lowering the C.G. This layout decreases the substructure costs [33, 103].

Figure 1.6: VAWT vs HAWT [63].

Another significant characteristic is the sensitivity of the wind turbines to the wind

direction. HAWTs are not omni-directional in regards to wind direction and need a yaw

system to extract energy from all wind directions. VAWTs are omni-directional and operate

with wind in all directions and do not require a yaw system. Large scale wind turbines

require large yaw systems. In consequence, the yaw of very large turbine rotors and their

drive-train components increase the cost of operation and maintenance [103]. In order

to produce a full Darrieus VAWT with equivalent rotor swept area as that of HAWT, the

dimensions of VAWTs are approximately twice that of the HAWTs. Therefore, the cost

of production of VAWTs notably increases. In order to decrease the cost there has been

some modifications in the design of VAWTs, like designing the blade with a uniform chord

length and using fiber-glass composites.
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1.3 Motivation and Overview
During the past decades different sources of renewable energy have thrived but the wind

power is the fastest developing form of renewable energy. Global Wind Energy Council

(GWEC) produces graphs showing the exciting growth of the wind power industry around

the world [24]. In Fig. 1.7, according to GWEC, by the end of 2017 the total global installed

wind capacity reached about 540 GW.

Figure 1.7: Global cumulative installed capacity 2001 − 2017[24].

At the end of 2010, the installations of global wind power was 197956 MW, which

is recorded as 2% of global energy supply. A GWEC report approximated an 160%

improvement in the global wind energy capacity from 2010 − 2015. However, Fig. 1.7

indicates an approximately 120% improvement in 2015 (the accumulated capacity reach

432680 MW) [102].

On the other hand, the cost of electricity generation by wind turbine can be compared

with other methods of energy production. Figure 1.8 compares the cost of electricity for

EU countries. The wind production cost is between 50 − 80 and 75 − 120 =C/MWh for

onshore and offshore, respectively [50].

The development of the offshore wind turbine, the potential to lessen the cost, increasing

the efficiency, and the limited available space onshore, made the offshore wind farms

become of more interest. Figure 1.9 suggests that by 2030, 400 GW (250 GW onshore

and 150 GW offshore) of wind power in the EU and 20% in the USA electricity demand

covered by wind power [50].
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Figure 1.8: Electricity generation production cost: 2020 estimation [50].

Figure 1.9: Future targets of wind energy in the EU [28, 50].

Figure 1.10 indicates that from 2011 to 2017 the world-wide offshore wind capacity

increases ≈ 4 times. As seen in 2016 there is a total value of 4334 MW increase while

4091 units, i.e. ≈ 94% corresponding to UK, Germany and China.

The environmental impact by fossil fuels compared with wind turbines shows that

although the wind power does not pollute the atmosphere, it comes with certain environmental

impacts. The visual and noise impact and bird fatalities are big concerns associated with

wind power. The life cycle of birds may be effected by wind turbines. but studies show

that the number of birds killed by turbines compared to other human activities such as

deforestation and urbanization is negligible (Fig. 1.11).
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Figure 1.10: Global cumulative and annual offshore wind capacity at the end of 2017 [24].

Figure 1.11: Cause of bird fatalities per 10000 fatalities [50].

1.4 Research Outline
One obstacle to VAWT development is the belief that VAWTs undergo large cyclic

loading and thereby suffer from vibration and fatigue issues [16, 23, 29, 111]. However,

not many vibration studies have been dedicated to VAWTs. Investigations suggest VAWTs

over HAWTs for offshore applications but the design challenges due to the complexity of the

structure should be resolved. VAWTs have a complicated 3-D dynamics which includes the

fluid-structure and solid interaction, material design, manufacturing challenges, dynamics

and kinematic analysis, fluid flow analysis, stable and accurate numerical solvers, parameter

estimation, time varying mathematical models etc. Here we accent attention on the

vertical-axis wind turbines, and simplifying the complicated dynamics to carry out analysis.
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In general a wind blade can endure bend-bend-twist deflections and axial deformations.

Here, we start with transverse bending and twist of a vertical, straight, uniform Euler blade.

In chapter 2, a blade vibration model for an H-rotor/Giromill type VAWT considering

bend and twist deflections, is formulated. An energy method is applied on an Eulerian

beam under transverse bend and twist deflections to obtain the governing equations. An

aero-elastic model is derived based on quasi steady airfoil theory. We formulated lift and

drag forces and moments for an airfoil with changing angle of attack, where stall effects

were neglected. The analysis suggested the existence of periodic damping and periodic

stiffness in the equations of motion generated by a cyclic angle of attack.

To follow up these observations in chapter 3 we study a linear differential equation with

parametric excitation when the excitation is through damping coefficient. For this purpose,

we use a Floquet solution combined with harmonic balance method and study the stability

and response characteristics of the system.

Since the study in chapter 2 also indicated small levels of parametric stiffness in

the example studied, in chapter 4, we address parametric excitation through stiffness. For

dynamical interest, we include two-harmonics. We use the Floquet solution combined with

harmonic balance, as done in chapter 3, to analyze the response and stability characteristics.

Superposition is not applicable in studying systems with parametric excitation. Therefore

various combinations of the cyclic excitation cannot be obtained from individual studies

of cyclic stiffness and cyclic damping, and must be analyzed specifically. In chapter 5

we focus on a system with a combination of parametric damping and stiffness. We study

this system using an analysis based on Floquet theory. We aim to uncover how the cyclic

stiffness and damping combine and together affect the initial conditions responses and

stability.

In chapter 6 we study the responses of an oscillator with van der Pol terms, parametric

damping and direct excitation. A potential application of this system is a vertical-axis

11



wind-turbine blade, which can endure direct excitation and parametric damping, as well

as aeroelastic self-excitation, the mechanism of which can be loosely modeled with

van-der-Pol-type nonlinearity. Here, the general behavior of this system is studied, rather

than the specific responses of a specific model of an application system. As both parametric

excitation and van-der-Pol nonlinearity can induce instabilities and oscillations, we seek

to understand the combined effect of such terms in this system. We apply the first-order

method of multiple scales to probe an unforced and externally forced van der Pol equation

with parametric damping. We study the sub-harmonic resonance of order 1/2 as well as

the nonresonant dynamics.

The study on straight blades indicated that vibration problems are inherent for large

blades under spinning conditions unless structural stiffening is added. Curved blades are

likely to have spin stiffening. As such, we are motivated to study the vibration modeling of

curved blades of Darrieus turbines. Modal analysis of vertical axis wind turbine blades is

studied in chapter 7, where the Darrieus wind turbine blade is modeled as a curved beam.

The blade experiences in-plane and out-of-plane bending, axial extension, and twist around

the shear center. The dynamics of the blade is derived from the fundamental mechanics

of strain, and is compared to a finite element model. Assumed-modes method is applied

to the differential equations and the modal frequencies and mode shapes for the associated

curved beam are obtained.

In the last chapter we aim to develop an analytical model for the vibration of a

generalized curved beam with a variable-curvature profile, symmetric or asymmetric

cross section with uniform or non-uniform cross sectional areas, and various boundary

conditions, with or without the external forces, under bend-bend-twist-extend deformations.

That is, deformation variables include flatwise (about the axis of minimum second moment

of cross sectional area) and edgewise (about the axis of maximum second moment of cross

sectional area) bending, torsion (about the centroidal axis), and axial extension. Lateral

12



shear (such as in a Timoshenko beam [66]) is neglected. The work starts by following [51],

but includes some features not included in this reference. Other work on curved slender

beams includes [118, 119], which focused on in-plane motion.

The differential equations of motion are discretized using the Rayleigh-Ritz method and

“assumed-mode" basis functions [66], and Euler-Lagrange equations are applied to obtain

a multi-degree-of-freedom model in terms of the assumed-modal coordinates. We linearize

the equations of motion and apply modal analysis to find the modal frequencies and mode

shapes. The structure of the curved beam imposes coupling between the deformations,

and hence the modes of vibration involve combinations of deformation variables. For

numerical studies, the specific case is examined where the beam is modeled as a curved

beam with half-circular profile and a symmetric uniform cross section.

After obtaining the modal frequencies and modal vectors from the assumed-modes

multi-degree-of-freedom approximation, the mode shapes are reconstructed in terms of the

original bend-bend-twist-extend variables to illustrate the modal deformations. The results

for the modal frequencies, normal modes and the deformed configurations of curved beam

with different boundary conditions (pin-pin and clamp-clamp) are obtained and compared

with the FE analysis performed in Abaqus and also those reported in literature.
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CHAPTER 2

VIBRATION ANALYSIS OF H-ROTOR/GIROMILL WIND TURBINE BLADES

VAWTs are designed such that the blades may be supported at the endpoints or interior

points (H-rotor/Giromill). We consider a blade supported at the endpoints. The strut

supports provide an axial and torsional stiffness to the blade at its connection points. As

such, the blade is modeled as a pin-and-spring supported beam at distance 𝑅 from the axis

of rotation under transverse displacement (𝑦(𝑥, 𝑡)) and twist (𝜓(𝑥, 𝑡)) where 𝑥 is a point

along the axis of the blade (Fig. 2.1).

Ry

x z r
y(x,t)

a

-a

y

x z

Ry

x z r
y(x,t)

a

-a

y

x z

Figure 2.1: H-rotor/Giromill wind turbine.

Kinetic and potential energies for an arbitrary point on the beam are expressed such that

the extended Hamilton’s principle can be used to obtain the partial differential equations

of motion. Alternatively, a Lagrange formulation based on assumed modes can be applied

to the energy terms. The position of point 𝑥 on the undeformed beam from an origin at the

center of the rotor and in line with the center of mass of the beam in the undeformed state

is

®𝑟 (𝑥, 𝑡) = (𝑥 − 𝑠(𝑥, 𝑡))®𝑖 + (𝑅 + 𝑦(𝑥, 𝑡)) ®̂𝑒𝑟 (2.1)

where 𝑠(𝑥, 𝑡) �
∫ 𝑥

0 ( 𝑦
′2
2 + 𝑦′4

8 )𝑑𝑧 is the foreshortening term for an Euler-Bernouli beam

[84].
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From Eqn. (2.1) the velocity is

®𝑣𝑏 = ®¤𝑟 = −¤𝑠®𝑖 + ¤𝑦 ®̂𝑒𝑟 +Ω(𝑦(𝑥, 𝑡) + 𝑅) ®𝑘, (2.2)

where Ω is the rotor speed. For steady rotor speed, Ω, and neglecting the effects of

transverse deflection in the circumferential direction on the energy, the kinetic energy of

the particles on the beam can be formulated as

𝑇 =

∫ +𝑎

−𝑎

1
2
𝑚(𝑥)𝑣𝑏 (𝑥, 𝑡)2𝑑𝑥 +

∫ +𝑎

−𝑎

1
2
𝐼𝑥𝑥 (𝑥) ( ¤𝜓 +Ω)2𝑑𝑥 + 1

2
𝐼0Ω

2, (2.3)

where 𝐼0 is mass moment of inertia of the rotor, 𝑚(𝑥) is mass per unit length of the

beam and 𝐼𝑥𝑥 is mass moment of inertia per unit length about the twist axis, 𝑥, through

the blade-section center of mass. Similarly, potential energy can be formulated as the

summation of the gravitational potential energy,𝑉𝑚𝑔, strain energy due to nonlinear bending

[21] and twist, 𝑉𝑠, and the elastic potential energy of the boundaries of the beam, 𝑉𝑏 as

𝑉𝑚𝑔 =

∫ +𝑎

−𝑎
𝑚(𝑥)𝑔(𝑥 − 𝑠(𝑥, 𝑡))𝑑𝑥, (2.4)

𝑉𝑠 =

∫ +𝑎

−𝑎

1
2
𝐸𝐼𝑧 (𝑥) [𝑦′′2(1 − 3𝑦′2)]𝑑𝑥 +

∫ +𝑎

−𝑎

1
2
𝐺𝐽𝑥𝑥 (𝑥)𝜓′2𝑑𝑥, (2.5)

𝑉𝑏 =
1
2
𝑘1(𝑢𝑔 − 𝑠(−𝑎, 𝑡))2 + 1

2
𝑘𝑇1 (𝑦

′(−𝑎, 𝑡))2 + 1
2
𝑘2(𝑢𝑔 − 𝑠(𝑎, 𝑡))2 + 1

2
𝑘𝑇2 (𝑦

′(𝑎, 𝑡))2.(2.6)

These energies accommodate nonlinear bending strain and nonlinear foreshortening up to

the cubic term.

2.1 Reduced Order Modeling
In this section, the bend and twist deformation of the blade (Fig. 2.2) is projected onto

the assumed modes based on hinged-hinged beam modes and results in the second-order

nonlinear ordinary differential equations. By considering assumed mode formulation [68],

we let
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Figure 2.2: Top view representation of transverse deflection on top and twist on bottom.

𝑦(𝑥, 𝑡) �
𝑁𝑏∑︁
𝑖=1

𝑞𝑖 (𝑡)𝜉𝑖 (𝑥), (2.7)

𝜓(𝑥, 𝑡) �
𝑁𝑡∑︁
𝑖=1

𝑏𝑖 (𝑡)𝜌𝑖 (𝑥), (2.8)

where 𝑁𝑏 is the number of modes in bending displacement, 𝑁𝑡 is the number of modes

in twist and 𝑁 = 𝑁𝑏 + 𝑁𝑡 is the total number of assumed modes. 𝜉𝑖 (𝑥) and 𝜌𝑖 (𝑥)

are respectively, the bend and twist assumed modal functions, and 𝑞𝑖 (𝑡) and 𝑏𝑖 (𝑡) are

the respective assumed modal coordinates. For a single assumed modes assumption,

𝑁𝑡 = 𝑁𝑏 = 1,

𝑦(𝑥, 𝑡) ≈ 𝑞(𝑡)𝜉 (𝑥), (2.9)

𝜓(𝑥, 𝑡) ≈ 𝑏(𝑡)𝜌(𝑥). (2.10)

Substituting Eqns. (2.9) and (2.10) into (2.3)-(2.6), the energy expressions are

𝑇 (𝑞, ¤𝑞, 𝑏, ¤𝑏, 𝑡) =

∫ +𝑎

−𝑎

1
2
𝐼𝑥𝑥 (𝑥)

( ¤𝑏(𝑡)𝜌(𝑥) +Ω
)2

𝑑𝑥 +
∫ +𝑎

−𝑎

1
2
𝑚(𝑥) ((−¤𝑠)2 + ( ¤𝑞(𝑡)𝜉 (𝑥))2

+ (Ω(𝑞(𝑡)𝜉 (𝑥) + 𝑅))2)𝑑𝑥 + 1
2
𝐼𝑜Ω

2, (2.11)
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𝑉𝑚𝑔 (𝑞, ¤𝑞, 𝑡) =
∫ +𝑎

−𝑎
𝑚(𝑥)𝑔(𝑥 − 𝑠(𝑞, ¤𝑞, 𝑡)𝑑𝑥, (2.12)

𝑉𝑠 (𝑞, ¤𝑞, 𝑏, ¤𝑏, 𝑡) =

∫ +𝑎

−𝑎

1
2
𝐸𝐼𝑧 (𝑥) [

(
𝑞(𝑡)𝜉′′(𝑥)

)2 +
(
1 − 3

(
𝑞(𝑡)𝜉′(𝑥)

)2
)
]𝑑𝑥

+
∫ +𝑎

−𝑎

1
2
𝐺𝐽𝑥𝑥 (𝑥)

(
𝑏(𝑡)𝜌′(𝑥)

)2
𝑑𝑥, (2.13)

𝑉𝑏 (𝑞, ¤𝑞, 𝑏, ¤𝑏, 𝑡) =
1
2
𝑘1

(
𝑢𝑔 − 𝑠(−𝑎, 𝑡)

)2 + 1
2
𝑘𝑇1

(
𝑞(𝑡)𝜉′(−𝑎)

)2 + 1
2
𝑘2

(
𝑢𝑔 − 𝑠(𝑎, 𝑡)

)2

+ 1
2
𝑘𝑇2

(
𝑞(𝑡)𝜉′(𝑎)

)2
. (2.14)

Lagrange’s equation is applied on the energy of the system in modal coordinates. The

generalized forces, 𝑄𝑞 and 𝑄𝑏 are obtained from the virtual work of the non-conservative

forces expressed as

𝛿𝑊𝑛𝑐 = 𝑄𝑞𝛿𝑞 +𝑄𝑏𝛿𝑏, (2.15)

where 𝑄𝑞 and 𝑄𝑏 accommodate the non-conservative aeroelastic forces. The resulting

equations of motion are

2𝑞 ¤𝑞2
∫ 𝑎

−𝑎
𝑚(𝑥)

[∫ 𝑥

0
(𝜉′)2𝑑𝑧

]2
𝑑𝑥 + 𝑞2 ¥𝑞

∫ 𝑎

−𝑎
𝑚(𝑥)

[∫ 𝑥

0
(𝜉′)2𝑑𝑧

]2
𝑑𝑥 + ¥𝑞

∫ 𝑎

−𝑎
𝑚(𝑥)𝜉2𝑑𝑥

− 𝑞 ¤𝑞2
∫ 𝑎

−𝑎
𝑚(𝑥)

[∫ 𝑥

0
(𝜉′)2𝑑𝑧

]2
𝑑𝑥 − 𝑞

∫ 𝑎

−𝑎
𝑚(𝑥)Ω2𝜉2𝑑𝑥 − 𝑞

∫ 𝑎

−𝑎
𝑔𝑚(𝑥)

[∫ 𝑥

0
(𝜉′)2𝑑𝑧

]
𝑑𝑥

− 𝑞3
∫ 𝑎

−𝑎
𝑔
𝑚(𝑥)

2

[∫ 𝑥

0
(𝜉′)4𝑑𝑧

]
𝑑𝑥 −

∫ 𝑎

−𝑎
𝑚(𝑥)Ω2𝑅𝜉𝑑𝑥 + 𝑞

∫ 𝑎

−𝑎
𝐸𝐼𝑧 (𝑥)𝜉′′2𝑑𝑥 (2.16)

− 𝑞3
∫ 𝑎

−𝑎
6𝐸𝐼𝑧 (𝑥)𝜉′′2𝜉′2𝑑𝑥 + 𝑞3 𝑘1 + 𝑘2

2

[∫ ±𝑎

0
(𝜉′)2𝑑𝑥

]2
+ 𝑞(𝑘𝑇1 + 𝑘𝑇2) (𝜉

′|±𝑎)2 = 𝑄𝑞 ,

¥𝑏
∫ 𝑎

−𝑎
𝐼𝑥𝑥𝜌

2𝑑𝑥 + 𝑏

∫ 𝑎

−𝑎
𝐽𝑥𝑥𝐺𝜌′2𝑑𝑥 = 𝑄𝑏 . (2.17)
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2.2 Aeroelastic Modeling
Under a constant rotation rate of the rotor and blades, the relative velocity and angle of

the wind hitting the blade is changing periodically and creates cyclic lift and drag forces

and moments on the blade. These forces are associated with the nonconservative work,

𝑊𝑛𝑐, in Hamilton’s or Lagrange’s principle.

In order to simplify the aeroelastic model, the assumption is a flow field with constant

direction and velocity. This assumption also neglects the effects of the blades on the fluid

particles. Blades have their own velocity due to rotation and deflection. Therefore the

relative flow velocity (to the airfoil) has a cyclic and displacement dependent behavior. For

now we apply a very simple “quasi steady” aeroelastic model. This approximation will not

capture some effects such as hysteresis and reduced frequency [49, 56]. In this method, lift

and drag are formulated using an instantaneous airfoil model.

R

y

z

er

eθ

Wind

u= - u j

θ

θ=0

G

Figure 2.3: Cross section of VAWT showing the coordinate axis.

Figure 2.3 shows a sketch of the turbine rotating under the effect of constant wind speed

𝑢, such that the wind velocity is u = −𝑢j, where j is a unit vector in 𝑦 direction. Note

that in Fig. 2.3, 𝑦 axis is fixed and is not to be confused with transverse deflection, 𝑦(𝑥, 𝑡),

which is in the e𝑟 direction that rotates with the turbine. e𝑟 and e𝜃 are radial and tangential
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unit vectors and 𝜃 is the coordinate that represents the orientation of the unit vector e𝜃 with

respect to the 𝑦-axis, therefore, j = e𝑟 sin 𝜃 + e𝜃 cos 𝜃. The constant ¤𝜃 = Ω gives ¤e𝑟 = ¤𝜃e𝜃

and ¤e𝜃 = − ¤𝜃e𝑟

The planar flow velocity relative to the blade (neglecting the 𝑥 component) is obtained

as v = u − v𝑏 = −𝑢j − v𝑏, and hence using Eqns. (2.1) and (2.2),

v = −[ ¤𝑦 + 𝑢 sin 𝜃]e𝑟 − [(𝑅 + 𝑦) ¤𝜃 + 𝑢 cos 𝜃]e𝜃 (2.18)

As shown in Fig. 2.4, 𝜙 denotes the angle between the relative flow velocity and

tangential axis e𝜃 , where

tan 𝜙 = v𝑟/v𝜃 =
¤𝑦 + 𝑢 sin 𝜃

(𝑅 + 𝑦) ¤𝜃 + 𝑢 cos 𝜃
(2.19)

So the angle of attack, 𝛼, is 𝛼 = 𝜓 + 𝛽 + 𝜙, where, 𝜓 is the twist deformation angle and

𝛽 is the pretwist angle which is considered to be zero.

er

eθ
GΨ

v=u-vb

Φ

D

L

Figure 2.4: Twist angle 𝜓 and relative wind angle 𝜙, for the case when the pretwist 𝛽 = 0.

Applying the Taylor series expansion for small values of v𝑟/v𝜃 to expand the angle 𝜙

we have

𝜙 = arctan
¤𝑦 + 𝑢 sin 𝜃

(𝑅 + 𝑦) ¤𝜃 + 𝑢 cos 𝜃
≈ ¤𝑦 + 𝑢 sin 𝜃

(𝑅 + 𝑦) ¤𝜃 + 𝑢 cos 𝜃
− 1

3

(
¤𝑦 + 𝑢 sin 𝜃

(𝑅 + 𝑦) ¤𝜃 + 𝑢 cos 𝜃

)3
. (2.20)
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The small 𝜙 assumption should be valid for typical operation condition; for which the

tip speed (𝑅 ¤𝜃) is larger than wind speed (u), (approximately 5 times). Equation (2.20) is

plugged into the lift and drag forces formula and the forces per unit length acting on the

blade are obtained,

®𝐿 =
1
2
𝐶𝐿 (𝛼)𝑐𝜌𝜈2(− cos 𝜙 ®𝑒𝑟 + sin 𝜙 ®𝑒𝜃) = 𝐿𝑟 ®𝑒𝑟 + 𝐿𝜃 ®𝑒𝜃 (2.21)

®𝐷 =
1
2
𝐶𝐷 (𝛼)𝑐𝜌𝜈2(− sin 𝜙 ®𝑒𝑟 − cos 𝜙 ®𝑒𝜃) = 𝐷𝑟 ®𝑒𝑟 + 𝐷𝜃 ®𝑒𝜃 , (2.22)

where 𝐶𝐿 and 𝐶𝐷 coefficients of lift and drag, respectively, are functions of 𝑦, ¤𝑦 and 𝜓,

through the angle of attack, as

𝐶𝐿 ≈ 𝑐1𝛼(𝑦, ¤𝑦, 𝜓) + 𝑐3𝛼(𝑦, ¤𝑦, 𝜓)3 (2.23)

𝐶𝐷 ≈ 𝑐0 + 𝑐2𝛼(𝑦, ¤𝑦, 𝜓)2 (2.24)

and coefficients 𝑐𝑖 are found by curve fitting. In the case of transverse deflection and twist,

the lift and drag forces and moments contribute to the 𝛿𝑊̂𝑛𝑐 terms as

𝛿𝑊̂𝑛𝑐 = 𝑓𝑦 (𝑦, ¤𝑦, 𝜓, 𝑡)𝛿𝑦 + 𝑀̂𝑦 (𝑦, ¤𝑦, 𝜓, 𝑡)𝛿𝜓 (2.25)

which define the radial forces as

𝑓 (𝑦, ¤𝑦, 𝜓, 𝑡) = 𝐿𝑟 (𝑦, ¤𝑦, 𝜓, 𝑡) + 𝐷𝑟 (𝑦, ¤𝑦, 𝜓, 𝑡) (2.26)

and a lift moment function 𝑀̂ as

𝑀̂ (𝑦, ¤𝑦, 𝜓, 𝑡) = (𝐿 cos𝛼 + 𝐷 sin𝛼) 𝑙𝑐 (2.27)

where 𝑙𝑐 is the distance between the aerodynamic center of the airfoil and its center

of gravity, while lift and drag are cyclic functions. Applying the multi-variable Taylor

series expansion up to cubic terms on the functions 𝑓 (𝑦, ¤𝑦, 𝜓, 𝑡) and 𝑀̂ (𝑦, ¤𝑦, 𝜓, 𝑡) around
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(𝑦, ¤𝑦,𝜓)=(0,0,0) yields

𝑓𝑦 (𝑦, ¤𝑦, 𝜓, 𝑡) = 𝑓000 + 𝑓100𝑦 + 𝑓010 ¤𝑦 + 𝑓001𝜓 + 𝑓200𝑦
2 + 𝑓020 ¤𝑦2 + 𝑓002𝜓

2

+ 𝑓110𝑦 ¤𝑦 + 𝑓101𝑦𝜓 + 𝑓011 ¤𝑦𝜓 + 𝑓300𝑦
3 + 𝑓030 ¤𝑦3 + 𝑓003𝜓

3 + 𝑓210𝑦
2 ¤𝑦 + 𝑓201𝑦

2𝜓

+ 𝑓021 ¤𝑦2𝜓 + 𝑓120𝑦 ¤𝑦2 + 𝑓102𝑦𝜓
2 + 𝑓012 ¤𝑦𝜓2 + 𝑓111𝑦 ¤𝑦𝜓 (2.28)

𝑀̂𝑦 (𝑦, ¤𝑦, 𝜓, 𝑡) = 𝑀̂000 + 𝑀̂100𝑦 + 𝑀̂010 ¤𝑦 + 𝑀̂001𝜓 + 𝑀̂200𝑦
2 + 𝑀̂020 ¤𝑦2 + 𝑀̂002𝜓

2

+ 𝑀̂110𝑦 ¤𝑦 + 𝑀̂101𝑦𝜓𝑀̂011 ¤𝑦𝜓 + 𝑀̂300𝑦
3 + 𝑀̂030 ¤𝑦3 + 𝑀̂003𝜓

3 + 𝑀̂210𝑦
2 ¤𝑦

+ 𝑀̂201𝑦
2𝜓 + 𝑀̂021 ¤𝑦2𝜓 + 𝑀̂120𝑦 ¤𝑦2 + 𝑀̂102𝑦𝜓

2 + 𝑀̂012 ¤𝑦𝜓2 + 𝑀̂111𝑦 ¤𝑦𝜓 (2.29)

When Ω is constant, coefficients 𝑓𝑖 𝑗 𝑘 (𝑥, 𝑡) and 𝑀̂𝑖 𝑗 𝑘 (𝑥, 𝑡) are time periodic and

functions of 𝑥. The virtual work terms in Hamilton’s principle are found by plugging

𝑦 = 𝑞(𝑡)𝜉 (𝑥) and 𝜓 = 𝑏(𝑡)𝜌(𝑥) in Eqns. (2.25), (2.28) and (2.29), to write

𝑓𝑦 (𝑦(𝑞, 𝜉 (𝑥)), ¤𝑦( ¤𝑞, 𝜉 (𝑥)), 𝜓(𝑏, 𝜌(𝑥)), 𝑡) = 𝑓𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥), and

𝑀̂𝑦 (𝑦(𝑞, 𝜉 (𝑥)), ¤𝑦( ¤𝑞, 𝜉 (𝑥)), 𝜓(𝑏, 𝜌(𝑥)), 𝑡) = 𝑀̂𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥). Then the coefficients in force

and moment terms are integrated along the length of the blade to derive∫ 𝑎

−𝑎
𝑓𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥)𝜉 (𝑥)𝑑𝑥 = 𝑓000 + 𝑓100𝑞 + 𝑓010 ¤𝑞 + 𝑓001𝑏 + 𝑓200𝑞

2 + 𝑓020 ¤𝑞2

+ 𝑓002𝑏
2 + 𝑓110𝑞 ¤𝑞 + 𝑓101𝑞𝑏 + 𝑓011 ¤𝑞𝑏 + 𝑓300𝑞

3 + 𝑓030 ¤𝑞3 + 𝑓003𝑏
3 + 𝑓210𝑞

2 ¤𝑞

+ 𝑓201𝑞
2𝑏 + 𝑓021 ¤𝑞2𝑏 + 𝑓120𝑞 ¤𝑞2 + 𝑓102𝑞𝑏

2 + 𝑓012 ¤𝑞𝑏2 + 𝑓111𝑞 ¤𝑞𝑏, (2.30)

and ∫ 𝑎

−𝑎
𝑀̂𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥)𝜌(𝑥)𝑑𝑥 = 𝑀000 + 𝑀100𝑞 + 𝑀010 ¤𝑞 + 𝑀001𝑏 + 𝑀200𝑞

2

+ 𝑀020 ¤𝑞2 + 𝑀002𝑏
2 + 𝑀110𝑞 ¤𝑞 + 𝑀101𝑞𝑏 + 𝑀011 ¤𝑞𝑏 + 𝑀300𝑞

3 + 𝑀030 ¤𝑞3

+ 𝑀003𝑏
3 + 𝑀210𝑞

2 ¤𝑞 + 𝑀201𝑞
2𝑏 + 𝑀021 ¤𝑞2𝑏 + 𝑀120𝑞 ¤𝑞2 + 𝑀102𝑞𝑏

2

+ 𝑀012 ¤𝑞𝑏2 + 𝑀111𝑞 ¤𝑞𝑏, (2.31)

where the coefficients 𝑓𝑖 𝑗 𝑘 (𝑡) and 𝑀𝑖 𝑗 𝑘 (𝑡) are cyclic in time and can be related to 𝑓𝑖 𝑗 𝑘

and 𝑀̂𝑖 𝑗 𝑘 . For example 𝑓111(𝑡) =
∫ 𝑎

−𝑎 𝑓111(𝑥, 𝑡) (𝜉 (𝑥))2(𝜌(𝑥))𝑑𝑥. Using Eqns. (2.9) and
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(2.10), 𝛿𝑦 = 𝜉 (𝑥)𝛿𝑞 and 𝛿𝜓 = 𝜌(𝑥)𝛿𝑏, the non-conservative work in Eqn. (2.25) can be

expressed as

𝛿𝑊̂𝑛𝑐 = 𝑓𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥)𝜉 (𝑥)𝛿𝑞 + 𝑀̂𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥)𝜌(𝑥)𝛿𝑏 (2.32)

Based on Eqn. (2.32) the generalized forces in Eqns. (2.16) and (2.17) in modal

coordinate system have the form

𝑄𝑞 =

∫ 𝑎

−𝑎
𝑓𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥)𝜉 (𝑥)𝑑𝑥, (2.33)

𝑄𝑏 =

∫ 𝑎

−𝑎
𝑀̂𝑞 (𝑞, ¤𝑞, 𝑏, 𝑡; 𝑥)𝜌(𝑥)𝑑𝑥, (2.34)

which are in terms of the expansions in Eqns.(2.30) and (2.31).

2.3 Linearization
We attained a formulation of equations of motion that accommodate cubic nonlinearity

and conduct a simple initial numerical analysis and simulate the linearized model. Several

linearization methods were discussed in order to decrease the complexity of the model.

Since the system of (2.16) and (2.17) has direct periodic excitation via 𝑓000(𝑡) and

𝑀000(𝑡), equilibria do not exist. To find the “unforced" equilibria, the direct excitation

is dropped. The resulting equations are nonlinear, with many terms, and with parametric

excitation. Considering the case that all cyclic time varying terms are omitted, the resulting

equations are still nonlinear with many terms, and so the equilibrium will be difficult to

express and use as a reference point. As such, the linearization is to be performed about

the equilibrium of the non rotating system, which is zero. Thus, the “linearized" model

is obtained by assuming small 𝑦 and 𝜓. Hence quadratic and cubic terms in 𝑞 and 𝑏 and

their derivatives are dropped. The resulting equations for small deflections of the rotating

system within direct and parametric excitations are

¥𝑞(𝑡) + 𝜔2
𝑞𝑞(𝑡) + 𝑎1(𝑡)𝑞(𝑡) + 𝑎2(𝑡) ¤𝑞(𝑡) + 𝑎3(𝑡)𝑏(𝑡) = 𝑎0 + 𝑓0(𝑡) (2.35)
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¥𝑏(𝑡) + 𝜔2
𝑏
𝑏(𝑡) + 𝑒1(𝑡)𝑞(𝑡) + 𝑒2(𝑡) ¤𝑞(𝑡) + 𝑒3(𝑡)𝑏(𝑡) = 𝑒0 + 𝑔0(𝑡) (2.36)

where

𝑎0 =

∫ 𝑎
−𝑎 𝑚Ω2𝜉𝑅𝑑𝑥∫ 𝑎
−𝑎 𝑚𝜉2𝑑𝑥

, 𝑎1(𝑡) =
∫ 𝑎
−𝑎 𝑓𝑞100𝜉

2 (𝑥)𝑑𝑥∫ 𝑎
−𝑎 𝑚𝜉2𝑑𝑥

, 𝑎2(𝑡) =
∫ 𝑎
−𝑎 𝑓𝑞010𝜉

2 (𝑥)𝑑𝑥∫ 𝑎
−𝑎 𝑚𝜉2𝑑𝑥

𝑎3(𝑡) =
∫ 𝑎
−𝑎 𝑓𝑞001𝜉 (𝑥)𝜌(𝑥)∫ 𝑎

−𝑎 𝑚𝜉2𝑑𝑥
, 𝑓0(𝑡) =

−
∫ 𝑎
−𝑎 𝑓𝑞000𝜉 (𝑥)𝑑𝑥∫ 𝑎
−𝑎 𝑚𝜉2𝑑𝑥

(2.37)

𝜔2
𝑞 =

−
∫ 𝑎

−𝑎 𝑚Ω2𝜉 (𝑥)2𝑑𝑥 −
∫ 𝑎

−𝑎 𝑔𝑚
(∫ 𝑥

0 𝜉 (𝑥)′2𝑑𝑧
)
𝑑𝑥∫ 𝑎

−𝑎 𝑚𝜉 (𝑥)2𝑑𝑥

+
∫ 𝑎

−𝑎 𝐸𝐼𝑧 (𝑥)𝜉 (𝑥)
′′2𝑑𝑥 + 𝑘𝑇

[
(𝜉 (𝑥)′|−𝑎)2 + (𝜉 (𝑥)′|𝑎)2

]∫ 𝑎

−𝑎 𝑚𝜉 (𝑥)2𝑑𝑥

and,

𝑒0 = 0 , 𝑒1(𝑡) =
−

∫ 𝑎
−𝑎 𝑀̂𝑞100𝜉 (𝑥)𝜌(𝑥)𝑑𝑥∫ 𝑎

−𝑎 𝐼𝑥𝑥 𝜌
2𝑑𝑥

, 𝑒2(𝑡) =
−

∫ 𝑎
−𝑎 𝑀̂𝑞010𝜉 (𝑥)𝜌(𝑥)𝑑𝑥∫ 𝑎

−𝑎 𝐼𝑥𝑥 𝜌
2𝑑𝑥

𝑒3(𝑡) =
−

∫ 𝑎
−𝑎 𝑀̂𝑞001𝜌(𝑥)

2∫ 𝑎
−𝑎 𝐼𝑥𝑥

, 𝑔0(𝑡) =
∫ 𝑎
−𝑎 𝑀̂𝑞000𝜌(𝑥)𝑑𝑥∫ 𝑎

−𝑎 𝐼𝑥𝑥 𝜌
2𝑑𝑥

, 𝜔2
𝑏
=

∫ 𝑎
−𝑎 𝐽𝑥𝑥𝐺 (𝜌′)2𝑑𝑥∫ 𝑎

−𝑎 𝐼𝑥𝑥 𝜌
2𝑑𝑥

2.3.1 Blade with Quasi-steady Aeroelastic Airfoil Model

The time varying lift and drag coefficients with varying angle of attack vary with the type

of blade used. Figure 2.5 indicates the lift and drag coefficients with angle of attack for a

NACA0012 airfoil. From Eqns. 2.23 and 2.24 and curve fitting the data points, the lift and

drag coefficients are approximated as

𝐶𝐿 (𝛼) ≈ 4.4287𝛼 − 2.9916𝛼3, (2.38)

𝐶𝐷 (𝛼) ≈ 0.0094 + 1.185𝛼2. (2.39)

These relations contribute to load coefficients 𝑓𝑖 𝑗 𝑘 in Eqns. (2.30) and (2.31) by means

of (2.19)-(2.24). As such, the coefficients shown in Eqns. (2.35) and (2.36) are listed for
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Figure 2.5: NACA0012 𝐶𝐿 and 𝐶𝐷 values with respect to angle of attack [47].

specified values of parameters, but for arbitrary Ω, 𝑢, and 𝑎. The coefficients 𝑎1(𝑡) through

𝑎3(𝑡) and 𝑒1(𝑡) through 𝑒3(𝑡) are complicated functions of time, each with fundamental

frequency Ω and harmonics representing parametric excitation terms. The terms 𝑎0 and

𝑓0(𝑡) and 𝑒0 and 𝑔0(𝑡) represent constant plus periodic direct excitation.

2.4 Numerical Analysis and Simulation
Formulating the energy equations and modeling the non-conservative forces, the

equations of motion were obtained. These equations are then used to make a vibration

simulation and numerical analysis for the blade. Instead of focusing on the effects of

different variables on VAWT blade vibration, the focus would be on simulating the behavior

of a selected type of blade and accommodate reliability of our models.
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2.4.1 Case Studies

Among the numerous existing configurations, we investigate the Giromill/H-rotors, which

are common types of Darrieus turbines, due to their simplicity. In this study, the energy

and aeroelastic models are based on Giromill style VAWTs, with straight blades parallel to

the axis of rotation [103] (Fig. 2.7). Since we do not have access to a benchmark Giromill

model, a set of parameters from the Sandia 17-m “egg-beater” style Darrieus turbine is

taken as a reference [116, 117].

Figure 2.6: Sandia 17-m front view(Darrieus turbine).

Experimental data obtained from Sandia 17-m indicates the maximum turbine performance

is obtained around a tip ratio, 𝑅Ω/𝑢, of 5 [116, 117]. According to Sandia’s performance

tests we can assume a constant rate of rotation of 37 revolutions per minute, or similarly

Ω = 3.875 rad/s, as a representative example for the numerical study which provides with

the velocity of wind 𝑢 ≈ 4.7 m/s.

For a half circle shape for the Sandia 17-m blade, one can calculate an average radius either

for the lift force, 𝐿, or effective torque by lift on rotor, 𝑇 . Our calculations offered an

average radius of 19.40 ft and 20.62 ft in order to obtain the same lift and the same torque

on rotor, respectively. Referring to the calculated values, 𝑅 = 20 ft (6m) is picked for our

25



Figure 2.7: Giromill (Our model).

reference Giromill turbine.

The cross section of a Sandia 17-m blade has a joint construction of extruded aluminium,

Nomex core, and fiberglass skin (See Fig. 2.8). The blade is a NACA 0012 airfoil an its

cross-sectional surface is described by the function

𝑦̂(𝑥) = ±0.53
0.12
0.2

(0.2969
√︂

𝑥

0.53
− 0.1260

(
𝑥

0.53

)
− (2.40)

0.3516
(

𝑥

0.53

)2
+ 0.2843

(
𝑥

0.53

)3
− 0.1015

(
𝑥

0.53

)4
),

where 𝑥 is the horizontal location along the chord line of the airfoil and 𝑦̂ defines the

surface of the airfoil as a function of 𝑥.

We will use information about the straight sections of the Sandia 17-m and approximate

the blades to be hollow and constructed only of extruded aluminum. Straight sections of

Sandia 17-m weigh 10.137 lb/ft and thus has a mass per unit length of 𝑚 = 15.09 kg/m

[117]. In order to have the same mass/length ratio, based on Eqn. (2.40) the wall thickness

of our extruded aluminum airfoil with density of 𝜌𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚 = 2700 kg/m3 should be 0.2

inches or rounded to 0.005 meters [55] (see Fig. 2.9).
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Figure 2.8: SANDIA 17m blade cross section showing aluminum spar and apine, nomax
core and fiberglass skin [115].

Figure 2.9: Blade dimensions for calculations.

Table 2.1: Selected aluminum alloy’s material properties [17].

Property Value
Density 2700 kg/m3

Young’s Modulus 70 GPa
Shear Modulus 26 Gpa

Using the NACA0012 with extruded aluminum of thickness 0.005 m and chord length

of 0.53 m, we can calculate the mass moment of inertia per unit length around centroid of

blade cross section as 𝐼𝑥𝑥 = 0.37 kg.m, and second moment of area around chord line as

𝐼𝑧 = 3.1034 × 10−6 m4. A summary of blade parameters is given in Tabs. 2.1 and 2.2.

2.4.2 Modal Frequency

In this section, the effects of varying blade length and rotation rate on the natural frequencies

of the blade are investigated. For this purpose, the blade is examined when rotating under

no aeroelastic forces, such that 𝑄𝑞 and 𝑄𝑏 are equal to zero. Assuming zero torsional

stiffness on struts, i.e. the strut connections are ideal pin connections, and also neglecting

the effect of gravity, Eqns. (2.35) and (2.36) will be
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Table 2.2: Specifications of the model created.

Blade NACA0012
Material and Construction Extruded Aluminum Shell
Radius 6 m
Cross sectional weight 15.09 kg/m
Second moment of area around chord line 3.1034x10−6 m4

Second moment of area around centroid 0.000137 m4

Tip Speed Ratio 5

¥𝑞
∫ 𝑎

−𝑎
𝑚𝜉2𝑑𝑥 − 𝑞

∫ 𝑎

−𝑎
𝑚Ω2𝜉2𝑑𝑥 −

∫ 𝑎

−𝑎
𝑚Ω2𝜉𝑅𝑑𝑥 + 𝑞

∫ 𝑎

−𝑎
𝐸𝐼𝑧𝜉

′′2𝑑𝑥 = 0,(2.41)

¥𝑏
∫ 𝑎

−𝑎
𝐼𝑥𝑥𝜌

2𝑑𝑥 − 𝑏

∫ 𝑎

−𝑎
𝐽𝑥𝑥𝐺𝜌′2𝑑𝑥 = 0 (2.42)

where 𝜉 (𝑥) and 𝜌(𝑥) are approximated by cos 𝜋𝑥/2𝑎 for the first mode shapes.

2.4.2.1 Reference Case

The approximate modal frequencies for bend and twist for a stationary blade (rotor speed

Ω = 0) are shown in Fig. 2.10 as functions of half length 𝑎. Note that the torsional

frequency is much higher than the transverse bending frequency. This is consistent with

individual models of bending and torsion of slender members[68]. Since the frequencies

are greatly separated, we focus on bending only, where Eqn. (2.41) simplifies to

𝑚𝑎 ¥𝑞 − 𝑚𝑎Ω2𝑞 + 𝐸𝐼𝑎( 𝜋
2𝑎

)4𝑞 = 𝑚𝑅Ω2(4𝑎
𝜋
) . (2.43)

The modal frequency 𝜔𝑛𝑞 =

√︃
𝐸𝐼
𝑚 ( 𝜋

2𝑎 )4 −Ω2 =

√︃
𝜔2

0 −Ω2 has the equation of a circle

(Fig. 2.11). In the steady-state case, the equilibrium solution for the modal coordinate,

𝑞𝑒𝑞 , is defined as

𝑞𝑒𝑞 =
𝑚𝑅Ω2( 4𝑎

𝜋 )
𝐸𝐼𝑎( 𝜋

2𝑎 )4 − 𝑚𝑎Ω2 . (2.44)
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Figure 2.10: Variation 𝑤𝑛𝑞 and 𝑤𝑛𝑏
with length “a” when Ω = 0.

By changing Ω, the magnitude of 𝑞𝑒𝑞 varies. As shown in Fig. 2.12, there exists a

critical value of Ω for which the undamped natural frequency of the system is zero. When

Ω is close to the critical value, Ω𝑐, the magnitude of 𝑞𝑒𝑞 takes a very large value, and

the system becomes unstable at Ω = Ω𝑐. Figure 2.11 indicates that as Ω increases, the

undamped natural frequency decreases. 𝜔0 is the natural frequency associated with Ω = 0.

The critical rotor speed Ω = Ω𝑐, 𝜔𝑛𝑞 = 0. For other values of 𝑎, 𝜔𝑛𝑞 = 0 and Ω = 0,

respectively, correspond to the critical values of the rotor speed and the natural frequency

of the system. Based on Fig. 2.11 the critical speed for the case when 𝑎 = 8.5 is close

to 4.2 rad/s. This is very close to the operating speed of the Sandia 17-m turbine. The

rotor may undergo a severe condition if it operates with a speed close to the critical rotor

speed. Therefore, the operating speed of the rotor, Ω𝑜𝑝𝑒𝑟𝑎𝑡𝑒, should not be close to the

critical rotational speed of rotor. To this end, the goal is to increase the natural frequency

of the system such that Ω𝑜𝑝𝑒𝑟𝑎𝑡𝑒 << 𝜔𝑛. As shown in the Fig. 2.11, increasing the natural

frequency brings an increase in the critical rotor speed and provides a wide safe range of

speed of rotation.
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Figure 2.11: Natural frequency with Ω for different length of the blade.
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Figure 2.12: 𝑞𝑒𝑞 with Ω for 𝑎 = 8.5 and 𝑎 = 4.25.

2.4.2.2 Effect of Blade Length

In order to increase the natural frequency of the system, we stiffen our Giromill by adding

a strut at the middle of the blade, with a pin joint. This shorten the length of the blade from

2𝑎 to 𝑎 and divide the blade into two similar parts. For the case that the length of the blade

is 𝑎, variation of the natural frequency and 𝑞𝑒𝑞 with Ω are shown in Figs. 2.11 and 2.12.

Fig. 2.11 illustrates how the natural frequency of the system varies with the rotor speed
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for different values of 𝑎. For example, when 𝑎 = 2 m, the natural frequency of the non

rotating system, 𝜔0, as well as the critical rotational speed of the rotor, Ω𝑐, increase to a

value near 16 rad/s. It denotes that for Ω < 10 the magnitude of 𝑞𝑒𝑞 does not diverge and

system stays stable in this range.

For a single degree of freedom reduced order model of a straight blade, the spin induces

centrifugal softening and elastic stiffening. Centrifugal softening is a result of the linear

behavior where 𝑞𝑒𝑞 ∼ Ω2 and the elastic stiffening comes from the nonlinearity in the

system, where 𝑞2
𝑒𝑞 ∼ Ω4 and also the nonlinear centrifugal softening.

To explain this, consider replacing the straight vertical blade with a mass on a tight

vertical string (and omit the effect of gravity) at a radius 𝑅 from the center of rotation, as

a single-mode approximation. For small deflections 𝑥 from the undeformed position, the

tension increases with the square of the deflection, such that the stiffness is 𝑘 (𝑥) ≈ 𝑘0+𝛽𝑥2,

with 𝛽 accommodating the leading nonlinear stiffening effect. The equation of motion is

𝑚 ¥𝑥 + (𝑘0 + 𝛽𝑥2 − 𝑚Ω2)𝑥 = 𝑚𝑅Ω2. To leading order, the equilibrium scales with Ω2 as

in Eqn. (2.44), such that 𝑥𝑒𝑞 ≈ 𝛼Ω2. Letting 𝑦 = 𝑥 − 𝑥𝑒𝑞 and linearizing leads to the

equation 𝑚 ¥𝑦 + (𝑘0 − 𝑚Ω2 + 3𝛽𝛼2Ω4)𝑦 ≈ 0. Thus the system is softening with Ω2, which

is a linear effect leading to behavior similar to Eqn. (2.43) and stiffening with 𝛽Ω4, which

is a nonlinear effect associated larger deflections.

2.4.2.3 Time Varying Parameters and Response

The equation of motion for the only transverse bending, with an aerodynamic force, is

¥𝑞 + 𝑐(𝑡) ¤𝑞 + 𝑘 (𝑡)𝑞 = 𝑓 (𝑡), (2.45)

where, 𝑓 (𝑡) = 𝑎0 + 𝑓0(𝑡), 𝑘 (𝑡) = 𝜔2
𝑞 + 𝑎1(𝑡) and 𝑐(𝑡) = 𝑐0 + 𝑎2(𝑡). The time varying

coefficients include an average value and a fluctuating part. Figures 2.13 ,2.14, 2.15 show

the relative contribution of the constant and cyclic root mean squared (RMS) components of

the direct excitation term, 𝑓 (𝑡), and the damping and stiffness terms for 𝑎 = 8.5m. Figures
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interpret the importance of the parametric effects through each terms of the equation.

Figures 2.16, 2.17 and 2.18 demonstrate the time traces of constant-plus-periodic direct

excitation, damping coefficient and the stiffness, for the specific rotor speed of Ω = 3.875

rad/s and illustrate the periodic behavior of each of the components in modal coordinate

system.
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Figure 2.13: Variation of two parts forcing function with Ω.
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Figure 2.14: Variation of damping coefficient Ω.

The 𝑄𝑞 term is substituted into the right hand side of the Eqn. (2.41) and the general

form of the equation due to bending takes the form
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(b) 𝑎 = 4.25 m

Figure 2.15: Stiffness components vs Ω.
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Figure 2.16: Periodic behavior 𝑓 (𝑡) for 𝑢 = 4.7𝑚/𝑠 and Ω = 3.8𝑟𝑎𝑑/𝑠𝑒𝑐.

¥𝑞
∫ 𝑎

−𝑎
𝑚𝜉2𝑑𝑥 − 𝑞

∫ 𝑎

−𝑎
𝑚Ω2𝜉2𝑑𝑥 −

∫ 𝑎

−𝑎
𝑚Ω2𝜉𝑅𝑑𝑥 (2.46)

+ 𝑞

∫ 𝑎

−𝑎
𝐸𝐼𝑧𝜉

′′2𝑑𝑥 =

∫ 𝑎

−𝑎
𝑚Ω2𝜉𝑅𝑑𝑥 −

∫ 𝑎

−𝑎
𝑓𝑞000𝜉 (𝑥)𝑑𝑥

The time history of 𝑞(𝑡) for two values of 𝑎, 𝑎 = 8.5 m and 𝑎 = 4.25 m, Ω = 3.875 rad/s,

𝑢 = 4.7 m/s are shown in Fig. 2.19. Equation. (2.46) includes constant plus cyclic direct

forcing, as well as parametric excitation, the degree to which depends on the parameters.

The response has the form 𝑞𝑡 (𝑡) = 𝑞ℎ (𝑡)+𝑞𝑝 (𝑡), the sum of the homogeneous and particular
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Figure 2.17: Periodic behavior of 𝑐(𝑡) for 𝑢 = 4.7𝑚/𝑠 and Ω = 3.8𝑟𝑎𝑑/𝑠𝑒𝑐.
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Figure 2.18: Periodic stiffness when 𝑢 = 4.7𝑚/𝑠, Ω = 3.8𝑟𝑎𝑑/𝑠.

solutions. The particular solution 𝑞𝑝 (𝑡) = 𝑞𝑒𝑞 + 𝑞(𝑡) includes the equilibrium solution and

a cyclic components of direct excitation. Figures 2.20a and 2.20b show the RMS values

of the cyclic solution terms, 𝑞, as a function of rotor speed, for the case of 𝑎 = 8.5 m and

𝑎 = 4.25 m, respectively, and 𝑢 = 4.7 m/s. As it is shown, there is a resonance in both

cases, which may happen when 𝜔𝑛𝑞 = Ω which indicates a primary resonance (Fig. 2.11).

Beyond resonance, the response continue to grow with increasing rotor speed because of

the growing strength of the excitation itself.
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Figure 2.19: Periodic response in modal coordinate 𝑞(𝑡) when 𝑢 = 4.7𝑚/𝑠, Ω = 3.8𝑟𝑎𝑑/𝑠.
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Figure 2.20: Frequency response amplitude when 𝑢 = 4.7𝑚/𝑠, Ω = 3.8𝑟𝑎𝑑/𝑠.

2.5 Conclusion
A blade vibration model for an H-rotor/Giromill type VAWT with bend and twist

deflections was formulated. Energy method was used to obtain the energy equations for an

Eulerian beam under transverse bend and twist deflections was obtained. The system was

discretized using reduced order modeling on first assumed modes. Lagrange’ss equation

was applied to the assumed modal coordinates, to obtain two equations of motion where

generalized force terms were due aeroelastic forces on blades. Next, an aeroelastic model

was derived based on quasi steady airfoil theory. Lift and drag forces and moments were

formulated for an airfoil with varying angle of attack, where stall effects were neglected.

The formulas were simplified to cubic order using Taylor series expansion. The resulting

system had parametric and direct excitation due to varying flow magnitude and direction
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relative to blade.

In order to conduct a simple numerical analysis, the system was linearized assuming

small deflections for bend and twist. Linearized equations of motion were derived for a

specific blade. Referring to Sandia 17m VAWT, a hypothetical Giromill blade was defined

for numerical analysis where natural frequencies of the blade for a non rotating system

were found.

The initial simulations showed that the Giromill undergoes large static deflections if

the blade length 2𝑎 is too large (in the range of the egg-beater style Sandia 17-m reference

turbine) when operating at nominal speeds for the Sandia 17-m system. As such we

conducted a study of direct and parametric loads and static deflection components for a

variety of blade lengths. Sample cyclic responses were also included. Indeed, the natural

frequency is dependent on the rotor speed. Given the parameters, in the linearized model,

there is a critical rotor speed at which the natural frequency is reduced to zero, accompanied

by instability and unbounded static deflection. While this is a linearized behavior, it clearly

shows a range of unacceptable parameters, and designs should be made such that structural

behavior is sound when operating at typical rotor speeds. The Giromill turbine must have

a blade length, or a stiffening system, to keep the natural frequency sufficiently high during

rotation. Given a sufficiently stiff design, the next phase of study will be to look in more

detail at the vibration responses, and understand the circumstances for which parametric

excitation may be significant.
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CHAPTER 3

A FLOQUET-BASED ANALYSIS OF PARAMETRIC EXCITATION THROUGH
THE DAMPING COEFFICIENT

Parametric excitation occurs when a system has time varying coefficients that drive the

oscillation. Dynamical systems that are exposed to parametric excitation experience

notable behavior[26, 43, 62, 122]. Parametric excitation happens in various types of

systems. E.g. in electrical systems, an LC circuit with periodic time varying capacitance

represents Hill’s equation [53]. In ecological systems, the population dynamics in periodic

environments causes periodic variability in systems [52]. In mechanical systems, a

pendulum with periodic vertical base excitation [58, 96], gear whine with cyclic contact

points [81], and horizontal-axis wind-turbine blades with cyclic gravitational forces [3],

all have parametric stiffness.

Our previous study on vertical-axis wind-turbine blades (VAWTs) suggested the existence

of periodic damping in the equations of motion due to the aeroelastic forces involving a

cyclic angle of attack [5]. A simplified mechanism for this can be seen in the context of

an airfoil of chord length 𝑐. The lift force per unit length, 𝐹, is proportional to the speed 𝑣

squared through a coefficient which is assumed to be linear in the angle of attack 𝛼, such

that 𝐹 =
1
2
𝐶𝑑 (𝛼)𝜌𝑐𝑣2 = 𝑐𝑑𝛼𝑣

2. In a VAWT under ideal steady wind conditions with wind

speed 𝑢, the angle of attack varies with the cyclic angle 𝛼0(𝑡) � 𝑎0 + 𝑎1 cos𝜔𝑡 of ambient

wind, and also with the velocity ¤𝑥 of the blade deflection (Fig. 3.1). If 𝛼 � 𝛼0(𝑡) − ¤𝑥/𝑢 and

𝑣 � 𝑢 − 𝑏 ¤𝑥, then the force takes the form 𝐹 � 𝑐𝑑𝑎0𝑢
2 + 𝑐𝑑𝑢

2𝑎1 cos𝜔𝑡 − 𝑐0 ¤𝑥 − 𝑐1 cos𝜔𝑡 ¤𝑥.

𝑥

𝑢𝛼!(𝑡)

Figure 3.1: The angle of attack of the relative velocity of wind 𝑢 on an airfoil depends on
the cyclic angle of the wind and on the coordinate velocity ¤𝑥.
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The first terms are direct excitation and the latter terms involve cyclic damping. (In an

ideal VAWT, the magnitude of relative flow velocity also varies with the VAWT rotation.

Other aeroelastic effects might also affect the mean damping.)

Systems with parametric excitation have been studied broadly with various methods.

Cantero et. al [20] looked into the parametric excitation of mooring lines. They used the

method of harmonic balance to obtain an analytical expression of the unstable layout. Lilien

and Pinto da Costa [59] studied the vibration amplitudes caused by parametric excitation

of nonlinear cable-stayed structures. They defined the non-dimensional parameters for the

cable-stayed bridge and then used the harmonic balance method to find the limit-cycle

amplitude. Lenci et. al [57] applied a perturbation method to a parametrically driven

pendulum to determine the stability of the harmonic solution. Hsu [44] examined parametric

excitation of a dynamic system with multiple degrees of freedom. He combined the method

of variation of parameters and the series expansion of the perturbation method to derive

the instability criteria for the instability regions.

Besides all the declared methods, Floquet theory applies to the linear differential

equations with parametric coefficients and it is a very useful tool for studying the stability

of dynamic systems[22, 88]. However, Hsu explains that in Floquet theory, approximation

is often required to discover the stability characteristics. Furthermore, most of the

approximate methods are only valid when the magnitude of the excitation is small[42, 43].

The Mathieu equation is one of the most well known differential equations with

parametric excitation. There have been extensive studies on the damped and undamped

Mathieu equation using harmonic balance [88] and perturbation methods [18, 46, 72, 73,

85, 87, 91, 105, 107, 108, 120]. Ward [112] determined the region of stability of the

Mathieu equation by assuming the solution to be consist of only a periodic part. Acar

and Feeny [3] studied the Floquet-based analysis of the Mathieu equation’s responses and

assumed a Floquet solution including both exponential and periodic parts. They combined
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Floquet theory with the harmonic balance method and investigated the time response and

the stability of the equations of motion.

In some parametric systems a phenomenon called coexistence happens. Coexistence

occurs when the boundaries of an unstable region overlap and the instability wedge

disappears. Recktenwald and Rand [89] studied coexistence and obtained the conditions

for coexistence to occur in a generalized Ince’s equation.

In this work we study the response characteristics of a linear oscillator with parametric

damping. We first use Floquet theory to draw conclusions about the effects of cyclic

damping on the Floquet multipliers. We then use the original Floquet solution with

a non-zero exponential part and a periodic part which is approximated as a truncated

Fourier series. As in reference [3], the harmonic balance method is applied to obtain the

Floquet exponents and Fourier coefficients. This analysis provides not only the stability

information but also the general response of the system in each stability situation. We

uncover the coexistence phenomenon and study its characteristics, then observe the effects

of a specific perturbation in the damping.

3.1 Floquet Theory
In this section we follow a standard development of Floquet theory [88], and make

adaptions for our system. Floquet theory is applicable to a linear differential system of the

form

¤x = A(𝑡)x, (3.1)

where A(𝑡) = A(𝑡 + 𝑇) is an 𝑛 × 𝑛 periodic matrix of period 𝑇 and x ∈ 𝑅𝑛 is an 𝑛 × 1

column vector [88]. Suppose

x(1) (𝑡) : is the solution vector with I.C.s x(1)0 = [1 0 . . . 0]𝑇 ,
...

x(𝑛) (𝑡) : is the solution vector with I.C.s x(𝑛)0 = [0 0 . . . 1]𝑇
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(I.C. refers to initial condition). For a general initial condition, x0 = [𝑐1 𝑐2 . . . 𝑐𝑛]𝑇 , the

solution becomes

x(𝑡) =
[
x(1) (𝑡) x(2) (𝑡) . . . x(𝑛) (𝑡)

] ©­­­­­­­­«

𝑐1

𝑐2
...

𝑐𝑛

ª®®®®®®®®¬
= X(𝑡)x0. (3.2)

X(𝑡) is called the fundamental solution matrix (FSM). The FSM is the solution vectors of

Eqn. (3.1) when initial conditions are unity, such that X(0) = I. Any other solution matrix

Z(𝑡) may be written in the form

Z(𝑡) = X(𝑡)C, (3.3)

where C is a nonsingular 𝑛 × 𝑛 matrix. In that case, each of the columns of Z(𝑡) may be

written as a linear combination of the columns of X(𝑡). Note that Z(0) = X(0)C = IC = C.

Let Z(𝑡) = X(𝑡 + 𝑇). Then Z(0) = C = X(𝑇) ≠ I, and from Eqn. (3.3) we have

X(𝑡 + 𝑇) = X(𝑡)C. (3.4)

This implies that X(𝑡) and X(𝑡 + 𝑇) are related by the constant matrix C = X(𝑇). By

successively iterating we get

X(𝑡 + 𝑚𝑇) = X(𝑡)C𝑚 . (3.5)

Equation (3.4) is a difference equation. If 𝜆𝑖, the eigenvalues of C, are distinct, then

Eqn. (3.4) can be diagonalized via the transformation X = Y𝑃−1, where the columns of

matrix P are eigenvectors of C, and J = P−1C𝑃 is a diagonal matrix of eigenvalues. The

diagonalized difference equation becomes

𝑦𝑖 (𝑡 + 𝑇) = 𝜆𝑖𝑦𝑖 (𝑡), 𝑖 = 1, ..., 𝑛. (3.6)

In this setting, 𝑦𝑖 are diagonal elements of Y.
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Analysis Based on Floquet Theory A second-order linear differential equation with

time varying coefficients can be expressed in a general form as

¥𝑥 + 𝑔(𝑡) ¤𝑥 + ℎ(𝑡)𝑥 = 𝑓 (𝑡), (3.7)

where 𝑔(𝑡) and ℎ(𝑡) are periodic functions. If 𝑔(𝑡) = 0 and 𝑓 (𝑡) = 0, the equation reduces

to the Hill’s equation [61], ¥𝑥 + ℎ(𝑡)𝑥 = 0. If ℎ(𝑡) = 𝛿 + 𝜖 cos𝜔𝑡, where 𝜔 is the frequency

ratio (dimensionless frequency), and 𝛿 and 𝜖 are constants, Hill’s equation takes the form

of Mathieu’s equation as

¥𝑥 + (𝛿 + 𝜖 cos𝜔𝑡)𝑥 = 0. (3.8)

Figure 3.2: Locus of Floquet exponents for an equation with both parametric damping and
stiffness coefficients when 𝑐0 ≥ 0.

Here, we study the application of Floquet theory to the generalized homogeneous

differential equation with parametric damping and stiffness, i.e. Eqn. (3.7) when 𝑓 (𝑡) = 0.

In the state-space form, the equation with cyclic damping and cyclic stiffness appears as

¤x =
©­­«
¤𝑥

¥𝑥

ª®®¬ =


0 1

−ℎ(𝑡) −𝑔(𝑡)


©­­«
𝑥

¤𝑥

ª®®¬ = A(𝑡)x, (3.9)
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where A(𝑡) is a periodic matrix with period 𝑇 = 2𝜋
𝜔 . The fundamental matrix solution in

Eqn. (3.2) takes the form

X(𝑡) =


𝑥
(1)
1 (𝑡) 𝑥

(2)
1 (𝑡)

𝑥2
(1) (𝑡) 𝑥2

(2) (𝑡)


, (3.10)

where 𝑥1 = 𝑥 and 𝑥2 = ¤𝑥. 𝑊 (𝑡) = det X(𝑡) = 𝑥
(1)
1 (𝑡)𝑥 (2)2 (𝑡) − 𝑥

(2)
1 (𝑡)𝑥 (1)2 (𝑡) is defined as

the Wronskian. Taking the time derivative of 𝑊 and using Eqn. (5.7), ¤𝑊 (𝑡) in terms of

𝑥1(𝑡) and 𝑥2(𝑡) is, (for simplicity we drop (t))

(3.11)

¤𝑊 = ¤𝑥 (1)1 𝑥
(2)
2 + 𝑥

(1)
1 ¤𝑥 (2)2 − ¤𝑥 (2)1 𝑥

(1)
2 − 𝑥

(2)
1 ¤𝑥 (1)2

= −𝑥 (1)2 𝑥
(2)
2 + 𝑥

(1)
1 (−ℎ𝑥 (2)1 − 𝑔𝑥

(2)
2 )

+𝑥 (2)2 𝑥
(1)
2 − 𝑥

(2)
1 (−ℎ𝑥 (1)1 − 𝑔𝑥

(1)
2 )

= −ℎ(𝑥 (1)1 𝑥
(2)
1 − 𝑥

(2)
1 𝑥

(1)
1 ) − 𝑔(𝑥 (1)1 𝑥

(2)
2 − 𝑥

(2)
1 𝑥

(1)
2 ).

Unlike with Hill’s equation [88, 112], the above equation reduces to

¤𝑊 (𝑡) = −𝑔(𝑡)𝑊 (𝑡). (3.12)

By decomposing 𝑔(𝑡) into a mean and a time-varying part as 𝑔(𝑡) = 𝑐0 + 𝑔̃(𝑡) and then

solving Eqn. (3.12), we obtain 𝑊 (𝑡) = 𝑒−𝑐0𝑡−𝐺 (𝑡)+𝑘 , where 𝐺 (𝑡) =
∫
𝑔̃(𝑡)𝑑𝑡 and 𝑘 is

an integration constant. At 𝑡 = 0, 𝑊 (0) = 𝑒−𝐺 (0)+𝑘 = det X(0) = det I = 1. Therefore,

𝑘 = 𝐺 (0). By periodicity 𝐺 (𝑇) = 𝐺 (0) and therefore

𝑊 (𝑇) = 𝑒−2𝜋𝑐0/𝜔. (3.13)

We have observed that X(𝑇) = X(0)C = C. 𝜆𝑖, the eigenvalues of C, are the Floquet

multipliers and they satisfy |C − 𝜆I| = 0, i.e. the characteristic equation

𝜆2 − 𝑏𝜆 + 𝑑 = 0, (3.14)
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where 𝑏 = trace(C) and 𝑑 = det(C) = 𝑊 (𝑇). Different values of 𝑏 and 𝑑 lead to real and

complex eigenvalues. For the case that 𝜆 is real

𝜆 =
𝑏 ±

√
𝑏2 − 4𝑑
2

, (3.15)

and for the case that 𝜆 is complex,

𝜆 =
𝑏 ± 𝑖

√
4𝑑 − 𝑏2

2
, (3.16)

|𝜆 | = 1
2
(𝑏2 + 4𝑑 − 𝑏2)

1
2 =

√
𝑑.

Using Eqn. (3.13),

|𝜆 | =
√︁
𝑊 (𝑇) =

√︃
𝑒−2𝜋𝑐0/𝜔 = 𝑒−𝜋𝑐0/𝜔. (3.17)

Thus for complex 𝜆, Eqn. (3.16) describes a circle of radius 𝑟 = |𝜆 | = 𝑒−𝜋𝑐0/𝜔

(Fig. 3.2). This holds for any system of the form of Eqn. (3.7), including the damped

Mathieu equation, where the mean damping is 𝑐0. If 𝑐0 ≥ 0 the system stability depends

on 𝜆 as follows

• |𝜆𝑖 | ≤ 1 stable

• |𝜆1 | ≤ 1, 𝜆2 = ±1 stability transition

• |𝜆1 | < 1, |𝜆2 | > 1 unstable

When 𝜆 = 1, the system has an underlying periodicity of period 𝑇 , since

𝑦(𝑖) (𝑡 + 𝑇) = 𝜆𝑖𝑦
(𝑖) (𝑡) = 𝑦(𝑖) (𝑡), (3.18)

for one of the 𝑦(𝑖) . In such case Eqn. (3.14) implies 𝑏 = 1 + 𝑑 and from Eqns. (3.16) and

(3.17)

𝑏 = 1 + 𝑒−2𝜋𝑐0/𝜔. (3.19)

When 𝜆 = −1, the underlying periodic solution is associated with period 2𝑇 , since one

of the 𝑦(𝑖) obeys

𝑦(𝑖) (𝑡 + 𝑇) = −𝑦(𝑖) (𝑡). (3.20)
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Also 𝑏 = −(1 + 𝑒−2𝜋𝑐0/𝜔). When 𝑏 = 0, 𝜆 = ±𝑖𝑑.

Note that the transition between stable and unstable solutions of the differential equation

(Eqn. (3.7)) involves a solution with underlying periodicity 𝑇 (𝜆 = 1) or 2𝑇 (𝜆 = −1).

Equation (3.6) is a first order linear difference equation and if 𝜆𝑖 are distinct, we seek a

solution of the form

𝑦(𝑖) (𝑡) = 𝑦
(𝑖)
0 𝜆𝑠𝑡𝑖 , (3.21)

where 𝑠 is an unknown constant. Substituting Eqn. (3.21) into Eqn. (3.6)

𝑦(𝑖) (𝑡 + 𝑇) = 𝑦
(𝑖)
0 𝜆

𝑠(𝑡+𝑇)
𝑖

= 𝑦
(𝑖)
0 𝜆𝑠𝑡𝑖 𝜆

𝑠𝑇
𝑖 = 𝜆𝑖𝑦

(𝑖) (𝑡). (3.22)

Equation (3.22) is satisfied if 𝑠 = 1
𝑇

[88]. Then,

𝑦(𝑖) (𝑡) = 𝑦
(𝑖)
0 𝜆

𝑡
𝑇
𝑖

= 𝑦
(𝑖)
0 𝑒𝜇𝑖𝑡 , (3.23)

where 𝜇𝑖 =
ln𝜆𝑖
𝑇

. The 𝜆𝑖 were defined earlier as the Floquet multipliers, and 𝜇𝑖 are the

associated Floquet exponents. When all |𝜆𝑖 | ≤ 1, then all 𝑅𝑒(𝜇𝑖) ≤ 0, and as discussed

above, the system is stable. 𝑊 (𝑇) = det C indicates the growth of the state-space volume

associated with iterations of the Poincare map [13]. When 𝑐0 = 0, 𝑊 (𝑇) = 1, and the map

is area preserving. When 𝑐0 > 0, the map is contracting and dissipative. When 𝑐0 < 0

and both multipliers are complex with |𝜆𝑖 | > 1, the system is unstable. Furthermore, when

𝑐0 < 0, and the multipliers are real, at least one multiplier will be such that |𝜆𝑖 | > 1 and

the system is unstable. Thus, parametric excitation cannot stabilize a system with negative

mean damping.

Special Case when 𝑐0 = 0 When 𝑐0 = 0, the circle has radius 1. So when 𝜆 =

±1, the eigenvalues are repeated and the Jordan form is not diagonal. However, the

conclusions about stability transitions hold. Based on Eqn. (3.13), when 𝑐0 = 0,𝑊 (𝑇) = 1,

and accordingly the characteristic equation for the differential equation with parametric

damping found by Floquet theory is 𝜆2 − trace(C)𝜆 + 1 = 0. In such circumstances, the

44



Floquet circle of periodic damping appears to have the same form as that of Hill’s equation

when stiffness is periodic, namely:

𝜆 =
𝑎 ±

√
𝑎2 − 4
2

, 𝑎 = trace(C), (3.24)

although 𝑎 = trace(C) is not the same as in Hill’s equation.

3.2 Oscillator with Parametric Damping
The concern of this study is to inquire into a linear differential equation for which,

unlike Mathieu’s equation, stiffness is constant but damping is parametric, such that

𝑥′′ + (𝑑0 + 𝑑1 cos 𝜔̂𝜏)𝑥′ + 𝜔2
𝑛𝑥 = 0, (3.25)

where 𝑑0 and 𝑑1 are constants and ()′ = 𝑑 ()
𝑑𝜏

. By performing a change of variables, 𝑡 = 𝜔𝑛𝜏,

the alternative equation is

¥𝑥 + (𝑐0 + 𝑐1 cos𝜔𝑡) ¤𝑥 + 𝑥 = 0, (3.26)

where 𝜔 = 𝜔̂
𝜔𝑛

is a dimensionless frequency ratio, (¤)= 𝑑 ()
𝑑𝑡

, and 𝑐0 and 𝑐1 are constants.

Defining a state vector x = [𝑥 ¤𝑥]𝑇 , Eqn. (3.26) can be expressed in state-space form

as ¤x = A(𝑡)x. Therefore, the Floquet theory can be applied to the intended differential

equation [73, 88].

Hartono and Burgh [38] studied the equation with a time varying damping coefficient

with zero mean damping and investigated the stability. They transformed variables and

reduced the equation to a standard Hill’s equation ¥𝑦 + [Λ + 𝑄(𝑡)]𝑦 = 0, where 𝑄(𝑡) is a

periodic function with period 𝜋. They approximated Λs for which the stability transitions

occur. Later, we will discuss Hartono and Burgh’s results and compare with our observed

results.

3.2.1 Approximate Solution

Floquet theory is combined with harmonic balance to find an approximate solution to

Eqn. (3.26). Following the Floquet theory the solution consists of an exponential term and
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periodic term, 𝑥(𝑡) = 𝑒𝜇𝑡 𝑝(𝑡), where 𝑝(𝑡) is periodic with period 𝑇 . A truncated series

solution is assumed such that

𝑥(𝑡) = 𝑒𝜇𝑡
+𝑛∑︁
𝑗=−𝑛

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 , (3.27)

in which 𝜇 is the Floquet exponent and 𝑎 𝑗 s are Fourier coefficients. The assumed solution

is plugged into Eqn. (3.26) and harmonic balance is applied to find the coefficients of

𝑒𝑖 𝑗𝜔𝑡 . The harmonic balance leads to an equation of the form D(𝜇)a = 0, where D(𝜇)

is a (2𝑛 + 1) × (2𝑛 + 1) coefficient matrix and a is a (2𝑛 + 1) × (1) vector of the Fourier

coefficients (𝑎 𝑗 ’s) for the assumed solution. In order to have nontrivial and nonzero

𝑎 𝑗 ’s, the determinant of the coefficient matrix, D(𝜇), is required to be zero. Setting the

determinant to zero gives the characteristic equation with unknown 𝜇.

The characteristic equation of |D(𝜇) | = 0 is a (4𝑛 + 2) degree polynomial in terms of

𝜇 which yields (4𝑛 + 2) roots for 𝜇. From Floquet theory the number of 𝜇’s should be

equal to the dimension of the state space, 𝑁 = 2, so it turns out that some of the 𝜇’s of

the characteristic equation are spurious. Thus 𝑁 = 2 of the roots are independent, and

are called the principle roots. According to the Floquet theory [112] the characteristic

multipliers satisfy

𝜆1𝜆2...𝜆𝑁 = 𝑒𝑥𝑝(
∫ 𝑇

0
𝑇𝑟 (A(𝑠))𝑑𝑠), (3.28)

where 𝜆𝑘 = 𝑒𝜇𝑘𝑇 . For this problem two distinct Floquet exponents (𝜇’s) satisfy Eqn. (3.28)

such that

𝑒(𝜇1+𝜇2)𝑇 = 𝑒𝑥𝑝(
∫ 𝑇

0
𝑇𝑟 (A(𝑠))𝑑𝑠). (3.29)

In Eqn. (5.7), 𝑇𝑟 (A) = −𝑔(𝑡) = −(𝑐0 + 𝑐1 cos𝜔𝑡) and so
∫ 𝑇

0 𝑇𝑟 (A(𝑠))𝑑𝑠 = −𝑐0𝑇 .

Therefore, we can write 𝑒(𝜇1+𝜇2)𝑇 = 𝑒(−𝑐0𝑇±2𝜋𝑖𝑘) , since any multiple of 2𝜋𝑖 can be added

to an exponential argument. Using 𝑇 = 2𝜋
𝜔 , this implies

𝜇1 + 𝜇2 = −𝑐0 ± 𝑘𝜔𝑖. (3.30)
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Equation (3.30) specifies the relationship between the two principle Floquet exponents,

𝜇1 and 𝜇2, with the mean damping term 𝑐0, the time period, 𝑇 = 2𝜋
𝜔 , and an integer 𝑘 . The

solution to |D(𝜇) | = 0 results in 4𝑛 + 2 roots for 𝜇 and the two individual principal roots

for any pair of 𝑐0 and 𝜔 are selected to satisfy Eqn. (3.30).

In the assumed solution (Eqn. (3.27)), the imaginary part of the Floquet exponent,

𝐼𝑚(𝜇), combines with the frequencies of the harmonics of the periodic term to define the

frequencies of the response. The general response is a linear combination of principal

responses such that

𝑥(𝑡) = 𝐴1𝑒
𝜇1𝑡

+𝑛∑︁
𝑗=−𝑛

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 + 𝐴2𝑒

𝜇2𝑡
+𝑛∑︁
𝑗=−𝑛

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 , (3.31)

where 𝐴1 and 𝐴2 are determined by initial conditions. In the next section, the truncated

solution of Eqn. (3.26) is explained.

3.2.2 Truncated Series Solution

The truncated series solution of the parametric excited motion can be used to quantify

the stability domain and approximate the response to the initial conditions and response

frequencies. We consider the truncated solution in Eqn. (3.27) for 𝑛 = 2 as

𝑥(𝑡) = 𝑒𝜇𝑡
+2∑︁
𝑗=−2

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 . (3.32)

Previously, Acar and Feeny [3] showed that for 𝑛 = 2, the truncated solution of the

Mathieu equation converges well except when 𝜔 was small.

Substituting the approximate truncated solution into the governing equation (Eqn. (3.26))

and balancing coefficients of 𝑒𝑖 𝑗𝜔𝑡 lead to the following equation:

𝐵−2
𝑐1
2 0 0 0

𝑐1
2 𝐵−1

𝑐1
2 0 0

0 𝑐1
2 𝐵0

𝑐1
2 0

0 0 𝑐1
2 𝐵1

𝑐1
2

0 0 0 𝑐1
2 𝐵2



©­­­­­­­­­­­­«

𝑎−2

𝑎−1

𝑎0

𝑎1

𝑎2

ª®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­«

0

0

0

0

0

ª®®®®®®®®®®®®¬
, (3.33)
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where

𝐵−2 = 𝑖𝑐0𝜇 − 2𝑖𝑐0𝜔 − 𝜇2 + 4𝜇𝜔 − 4𝜔2 + 1, (3.34)

𝐵−1 = 𝑖𝑐0𝜇 − 𝑖𝑐0𝜔 − 𝜇2 + 2𝜇𝜔 − 𝜔2 + 1,

𝐵0 =
1
2

(
2𝑖𝑐0𝜇 − 2𝜇2 + 2

)
,

𝐵1 = 𝑖𝑐0𝜇 + 𝑖𝑐0𝜔 − 𝜇2 − 2𝜇𝜔 − 𝜔2 + 1,

𝐵2 = 𝑖𝑐0𝜇 + 2𝑖𝑐0𝜔 − 𝜇2 − 4𝜇𝜔 − 4𝜔2 + 1.

Equation (5.9) specifies an eigenvalue problem. The characteristic equation is obtained

by setting the determinant of the coefficient matrix to be zero. For a set of parameters,

when 𝑛 = 2, there will be ten 𝜇’s, yet there exist only two principle roots. The four 𝜇’s

with the smallest real parts are identified among all of the 𝜇’s. We choose one of these

as 𝜇1, and then apply Eqn. (3.30) with 𝑘 = 0 to select the second principle 𝜇, such that

𝜇2 = −𝑐0 − 𝜇1. Letting 𝜇 = 𝛼 + 𝑖𝛽,

(3.35)

𝑥1(𝑡) = 𝑒(𝛼1+𝑖𝛽1)𝑡
+2∑︁
𝑗=−2

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 = 𝑒𝛼1𝑡

+2∑︁
𝑗=−2

𝑎 𝑗 𝑒
𝑖( 𝑗𝜔+𝛽1)𝑡 ,

𝑥2(𝑡) = 𝑒(𝛼2+𝑖𝛽2)𝑡
+2∑︁
𝑗=−2

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 = 𝑒𝛼2𝑡

+2∑︁
𝑗=−2

𝑎 𝑗 𝑒
𝑖( 𝑗𝜔+𝛽2)𝑡 .

Then the total response is 𝑥(𝑡) = 𝐴1𝑥1(𝑡)+𝐴2𝑥2(𝑡). Real parts of 𝜇’s govern the exponential

growth or decay of the solution. If any 𝑅𝑒(𝜇) > 0, the solution grows exponentially

(unstable). The truncated response has terms of frequencies 𝑗𝜔 + 𝛽1 and 𝑗𝜔 + 𝛽2, 𝑗 =

−𝑛, . . . , 𝑛. If 𝛽1 and 𝛽2 are accurate, the full set of response frequencies will cover

𝑗 = −∞, . . . ,∞. Equation (3.30) with 𝑘 = 0 implies 𝛽2 = −𝛽1 for our chosen principal

roots.

3.3 Results
Analysis of the parametric excitation with periodic damping without and with the mean

damping term (when 𝑐0 = 0 and 𝑐0 ≠ 0, respectively) are presented in this section.
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Figure 3.3: Stability boundaries when 𝑐0 = 0 with the effect of the truncation order, 𝑛.
(Blue is stable and white is unstable zone).

3.3.1 Zero Mean Damping, 𝑐0 = 0

3.3.1.1 Stability Boundaries

As explained in the previous section, when the real parts of 𝜇1 and 𝜇2 are negative or

zero the solution is stable, whereas for any 𝜇 with a positive real part, the solution grows

exponentially. Figure 3.3 demonstrates the stable and unstable regions for three different

truncation orders, 𝑛 = 2, 𝑛 = 6 and 𝑛 = 10 in the (𝜔, 𝑐1) plane, where 𝜔 and 𝑐1 are the

frequency and amplitude of the harmonic damping. In this range, increasing the number

of terms in the Fourier expansion provides a more precise solution. Increasing 𝑛 = 2 to

𝑛 = 10 in the truncated solution enhances the transition curves. Inside the tongues of

instability (white zone) the response is unstable with underlying periodicity of period 2𝑇 ,

whereas outside of the tongues (blue zone) the response is quasi-periodic (to be discussed

in more detail below).

In Fig. 3.3 the truncated solution captures the subharmonic instability at 𝜔 = 2 and

superharmonic instability wedges based at 𝜔 = 2
3 and 𝜔 = 2

5 . The existence of the wedge

based at 𝜔 = 2
3 in Fig. 3.3 persists with increasing 𝑛. The wedge is not observed to

reach the 𝜔 axis because of limited resolution of the plot, which was generated by plotting

pixels. Other superharmonic tongues are not detected, and a wedge based at 𝜔 ≈ 0 and

its connection to the subharmonic wedge, is erroneous. An improved description for low

𝜔 and large 𝑐1 would require higher values of 𝑛. As shown in Fig. 3.3 when 𝑛 = 10 the
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higher truncation order reveals more and finer wedges of superharmonic instability.

Hortano and Burgh [38] studied a cyclically damped system (with 𝑐0 = 0) based on

a cyclic damping equation of the form 𝑥′′ + 𝜖 cos 2𝑡𝑥′ + Λ𝑥 = 0. They plotted transition

curves as 𝜖 versus Λ, the square of the non-dimensionalized natural frequency, when the

excitation frequency was fixed at 2. The relationships between the parameters in [38] and

those in our model are 𝜖 =
2𝑐1
𝜔 and Λ = 4

𝜔2 . The results in [38] for cyclic damping show

instability wedges based at Λ = 1 and 9 (and generally values of 𝑚2 for odd values of 𝑚).

The wedges based at Λ = 4, 16, . . . (generally 𝑚2 for even values of 𝑚), which are known

to occur in the Mathieu equation, are collapsed, such that the boundaries overlap into a

single curve and instability does not occur (associated with coexistence, discussed later).

All of these wedge base points correspond to 𝜔 = 2, 1, 2
3 , and 1

2 in Fig. 3.3, for which

wedges based at 2 and 2
3 are not coexistent and are observed in convergent plots of Fig. 3.3.

Thus the two studies are consistent.

3.3.1.2 Response Frequency Analysis

The classical Floquet-based analysis describes the properties of Eqn. (3.1) such as stability

boundaries [54], while the truncated solution method provides the characteristics of the

response in addition to the tongues of instability. The approximate solution contains

an exponential and a periodic part. A combination of Floquet exponents and excitation

harmonics comprises the frequency of the response. The response frequencies in the

truncated solution are 𝐼𝑚(𝜇) + 𝑗𝜔, where 𝑗 = ±1,±2, ...,±𝑛 and 𝑛 is the number of

assumed harmonics. Figure 3.4 shows the response frequencies of the truncated solution

as functions of 𝜔 for 𝑐0 = 0, 𝑐1 = 1, and the truncation orders 𝑛 = 2 and 𝑛 = 4. At the

instability wedges based at 𝜔 = 2
𝑚 , 𝑚 = 1, 3, 5, ..., the Fourier expansion of the periodic

part of the response has harmonics of 𝑚𝜔
2 , 𝑚 = 1, 3, 5, .... In instability wedges based

at 𝜔 = 2
𝑚 , 𝑚 = 2, 4, 6, ..., the Fourier expansion of the periodic part of the response has

harmonics of 𝑚𝜔
2 , 𝑚 = 2, 4, 6, .... For example near 𝜔 = 2 the response frequencies are
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Figure 3.4: Frequencies of the response when 𝑐0 = 0 and 𝑐1 = 1.
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Figure 3.5: Growth and decay factors as quantified by 𝑅𝑒(𝜇) when 𝑐0 = 0 and 𝑐1 = 1. (𝑎)
and (𝑏) show the effect of the truncation order, 𝑛.

𝜔
2 ,

3𝜔
2 and 5𝜔

2 and at the crossing near 𝜔 = 1 the response frequencies are 𝜔, 2𝜔 and 3𝜔.

With varying 𝜔, pairs of branches may merge into single branches or cross one

another at isolated points. Intervals where two frequency branches have merged into

one branch are associated with instability zones in the stability diagram and with the

stability transition points in the Floquet circle (Fig. 3.2, case of 𝑐0 = 0). In the intervals of

instability 𝑅𝑒(𝜇1,2) = ±𝛼 and 𝐼𝑚(𝜇1,2) = ±𝛽. Merging of two branches into one branch

indicates a stability transition and the interval of merging represents the instability tongues.

Branches crossing at one point indicate that there is no frequency-merging interval, such

that would-be wedge boundaries overlap and the periodic responses on the boundaries

coexist and therefore coexistence phenomena is happening.
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3.3.1.3 Growth/Decay Factor

In the approximate solution the real part of the Floquet exponent specifies the exponential

growth. Figure 3.5 shows 𝑅𝑒(𝜇) as a function of 𝜔 when 𝑐0 = 0. The graph shows two

intervals where the Floquet exponents have two different values for the real parts, forming

“bubbles" in the graph (a tiny bubble near 𝜔 ≈ 0.61, and a large bubble centered at 𝜔 = 2).

𝑅𝑒(𝜇) > 0 denotes growth in the truncated solution, and therefore yields instability. In the

case of stability, the least negative value governs the decay rate. Therefore, the diagram

indicates the growth and decay factors of the response. While Fig. 3.5a demonstrates an

instability near𝜔 = 2, 𝜔 = 0.61 and𝜔 < 0.38 for 𝑐0 = 0, numerical studies suggest that the

latter case is a truncation error, and there are indeed mostly stable solutions for 𝜔 < 0.38.

For low values of 𝜔 the lower truncation is not sufficient to describe the vibration solution

or stability. This erroneous range of 𝜔 is reduced with increasing truncation order 𝑛. In

Fig. 3.5, two different orders of truncation illustrate the benefit of higher values of 𝑛 in

approximating the solution for lower frequencies.

3.3.1.4 Coexistence when 𝑐0 = 0

Coexistence phenomenon occurs when stability transitions overlap and the tongues of

instability disappear (black lines in Fig. 3.6a). Figure 3.6a shows that stability tongues

collapse into lines based at 𝜔 ≈ 0.91 and 𝜔 ≈ 0.46. The thin instability tongue based at

𝜔 ≈ 0.61 is associated with the small bubble in the growth/decay factor diagram (Fig. 3.6a)

and the small frequency-merging interval in the response frequency plot (Fig. 3.6b).

Figure 3.6a shows the properties of the stable and unstable responses, transition boundaries

and coexistence curves, and whether the response is periodic or quasi-periodic. “Unstable

Periodic" means unstable exponential growth modulates an oscillation that is otherwise

periodic (not quasi-periodic). In the wedges, based at 𝜔 = 2
𝑚 , 𝑚 = 1, 3, 5, . . . , this periodic

part has period 2𝑇 . At coexistence the response is periodic with period 𝑇 .

In the growth/decay factor diagram of Fig. 3.6a the bubbles, normally associated
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(a) (b)

Figure 3.6: (𝑎) Coexistence in the stability diagrams with 𝑐0 = 0, and a plot of growth/decay
factors with 𝑐0 = 0 and 𝑐1 = 1. (𝑏) Zoomed-in response frequency diagram with 𝑐0 = 0
and 𝑐1 = 1.
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Figure 3.7: Stability boundaries when 𝑐1 = 1 for 𝑐0 = 0 and 𝑐0 = 0.05, using three different
truncation orders.

with the instability zones, collapse and thus no bubble appears at coexistence points. In

Fig. 3.6b, one can see that coexistence corresponds to the crossing points in the response

frequency plot, where periodic solutions cross one another at 𝜔 ≈ 0.91 and 𝜔 ≈ 0.46.

3.3.2 Non-zero Mean Damping 𝑐0 ≠ 0

For 𝑐0 ≠ 0 the stability boundaries and each of the response features are affected by mean

damping. In order to determine the effect of damping the previous analysis is repeated for

the case 𝑐0 ≠ 0.
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Figure 3.8: Response frequencies when 𝑐0 = 0.05 and 𝑐1 = 1. Note the small interval of
merged frequencies, as highlighted by the circle.

3.3.2.1 Stability Boundaries

Figure 3.7 shows the stability diagrams when 𝑐0 = 0.05 (red) for three different truncation

orders and compares with the stability boundaries when 𝑐0 = 0 (blue). As noted before, a

higher truncation number produces more accurate stability curves within lower frequency

ranges. It can be perceived how the stability boundaries are affected by damping. A small

addition of mean damping smoothens the wedge tips and shrinks the instability zones.

3.3.2.2 Response Frequency Analysis

Figure 3.8 zooms into the response frequency plot when 𝑐0 = 0.05. In Fig. 3.6b a frequency

crossing at 𝜔 ≈ 0.91 indicated the coexistence phenomenon for 𝑐0 = 0. However, for

𝑐0 ≠ 0 the crossing turns into an interval and the coexistence line disappears. For the lower

frequency, 𝜔 ≈ 0.46, at which we had coexistence with 𝑐0 = 0, the truncation order and

resolution are not sufficient to clearly distinguish whether 𝑐0 ≠ 0 produces an interval.

3.3.2.3 Growth/Decay Factor

Figure 3.9 illustrates that the added mean damping shifts the growth/decay diagram

downward and the shift is 𝑐0
2 , which is consistent with Eqn. (3.30). In Fig. 3.9 at 𝜔 ≈ 0.91

a small bubble pops up at the location where coexistence happens (no bubble for 𝑐0 = 0).

One might expect the coexistence line in Fig. 3.6a to separate and form an instability wedge

when the merging interval of 𝐼𝑚(𝜇) appears. But since the bubble occurs with values of
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Figure 3.9: Growth and decay factors when 𝑐0 = 0.05 and 𝑐1 = 1. On the left, 𝑛 = 2. On
the right, 𝑛 = 10.
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(a) 𝜔 = 1.3 (stable)
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(b) 𝜔 = 0.91 (near coexistence)
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(c) 𝜔 = 2 (unstable)

Figure 3.10: Time responses when 𝑐0 = 0, 𝑐1 = 1 and 𝑛 = 3.
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(b) 𝜔 = 0.91 (near coexistence)
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(c) 𝜔 = 2 (unstable)

Figure 3.11: Time responses when 𝑐0 = 0.05, 𝑐1 = 1 and 𝑛 = 3.

𝑅𝑒(𝜇1) < 𝑅𝑒(𝜇2) < 0 the response stays stable. Thus, no instability tongues appear near

𝜔 ≈ 0.91 in Fig. 3.7, although the crossing point has turned into an interval in Fig. 3.8.

By increasing the amplitude of the parametric damping (𝑐1) the bubble in 𝑅𝑒(𝜇) values in

Fig. 3.9 grows but does not cross zero and the system stays stable. As 𝜔 increases and the

small bubble is reached in Fig. 3.9, two complex multipliers 𝜆 (recall 𝜆 = 𝑒𝜇𝑇 ) on the circle
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in Fig. 3.2 collide on the positive real axis. As 𝜔 continues to increase, 𝜆1 and 𝜆2 split on

the real axis, and then come back together and collide again in Fig. 3.2, as the far end of

the bubble is reached in Fig. 3.9. When 𝜔 increases beyond the bubble, 𝜆1 and 𝜆2 are on

the circle and are complex. For values of 𝜔 in the bubble, 𝜆1 and 𝜆2 are real with |𝜆1 | < 1

and |𝜆2 | < 1 (Re(𝜇1) < 0 and Re(𝜇2) < 0)) and the system is stable (in this example). The

response has exponential decay that modulates an oscillation that is otherwise of period 𝑇 .

3.3.2.4 No Coexistence when 𝑐0 ≠ 0

The previous discussion indicates that by adding a mean damping to the system the

coexistence is disrupted. The frequency-branch crossings are perturbed into frequency-branch

mergers over small intervals. With the frequency branch interval a bubble forms in the

graph of the 𝑅𝑒(𝜇), which was not a characteristic of coexistence. However, the 𝑅𝑒(𝜇)

is pushed to be negative (in the example shown) and so the bubble may not generate an

instability although it is conceivable that instability could happen if 𝑐1 is increased enough.

The overlapping instability transition boundaries, which are seen in coexistence, separate

with the emergence of the frequency-branch interval, but are no longer serving as stability

boundaries since the 𝑅𝑒(𝜇) has been reduced by 𝑐0
2 .

While coexistence is disrupted by the addition of slight damping (or probably other

perturbations), it is important as a limiting case, since it points to a near description of

behavior for the case of very small mean damping.

The importance of studying coexistence comes into sight when the system parameters

are positioned on the coexistence line. It is possible that arbitrary perturbations may open

up the coexistence line and generate instabilities and the response may fall into unstable

zone. The shaded area in the stability diagrams, where the system parameters are located

in the “safe" stability zone indicates the best possible parameters for design. As such,

parameter values near the coexistence line may be avoided if instability is undesirable.
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(b) 𝜔 = 0.91 (near coexistence)
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(c) 𝜔 = 2 (unstable)

Figure 3.12: FFTs for 𝑐0 = 0, 𝑐1 = 1, 𝑛 = 3, where the axes are nondimensional.
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(c) 𝜔 = 2 (unstable)

Figure 3.13: FFTs for 𝑐0 = 0.05, 𝑐1 = 1, 𝑛 = 3, where the axes are nondimensional.

3.3.3 Response of Undamped and Damped Systems

Depending on the parameters, the system may be stable, neutrally stable or unstable. Three

sets of parameters, associated with three types of stability, are chosen from the stability

diagram to obtain the truncated solution of Eqn. (3.26). Figures 3.10 and 3.11 illustrate

both the numerical and the truncated solutions for the sets of parameters when 𝑐0 = 0 and

𝑐0 = 0.05, respectively. The truncated solution with 𝑛 = 3 truncation order agrees with the

numerical analysis for the chosen sets of parameters.

Figure 3.10a represents a quasi-periodic bounded response. In this case the quasi-periodic

drift occurs on a long time scale and is only slightly detectable in the plot. Figure 3.10b, for

which 𝜔 = 𝜔1 = 0.91 is very close to coexistence, and therefore looks periodic with period

𝑇1 = 2𝜋
𝜔1

≈ 6.904. Figure 3.10c shows a subharmonic unstable solution at a periodicity of
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2𝑇2 = 4𝜋
𝜔2

≈ 6.28 for which 𝜔 = 𝜔2 = 2 (𝑇2 is the period of excitation).

Figures 3.11a and 3.11b show exponentially stable solutions with frequency characteristics

similar to those in Fig. 3.10a and 3.10b and additional mean damping. Figure 3.11c is

unstable despite the mean damping. A very slight decrease in the growth rate compared to

Fig. 3.10c can be detected on careful inspection. Putting the mean damping into effect for

the same system parameters (𝑐0 ≠ 0) dampens the response with little effect on frequency

content.

The fast Fourier transforms (FFTs) of the truncated solutions are compared with those

of the numerical solutions in Figs. 3.12 and 3.13. The analytical truncation order is 𝑛 = 3.

The frequency content of analytical and numerical solutions for the chosen excitation

frequencies are consistent. However, for small values of 𝜔 the truncated and numerical

solutions do not agree. Increasing the truncation order improves the accuracy of the results

compared with the numerical solution.

3.4 Conclusion
We studied the dynamics of an oscillator with cyclic damping, which was motivated by

vertical-axis wind-turbine blade dynamics. Specifically, we sought approximate analytical

solution to a linear second-order differential equation with a periodic damping coefficient

and observed the characteristics of the response.

We sought a general Floquet solution in which the periodic part was approximated with

a truncated Fourier series. Applying harmonic balance led to a relationship between the

Floquet exponents, Fourier coefficients, and the parameters.

The exponents were then used to formulate the response to the initial conditions, the

response frequency content, and the stability characteristics. The theoretical responses of

the system and their FFTs were compared with the numerical solutions, and the consistency

of the responses for different sets of parameters was shown. The analysis is good if 𝜔 is

not too small and can be improved by increasing the analytical truncation order, 𝑛. Limits
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on the truncation order were not investigated.

For the case when there was zero mean damping we captured a phenomenon called

“coexistence”. Coexistence has been recognized to occur when stability boundaries overlap

such that the instability wedges disappear. This is accompanied by a crossing of response

frequencies as the frequency of excitation changes, and an absence of a “bubble" in the real

part of the Floquet exponents (meaning the real part of the Floquet exponents is repeated).

We found that the addition of mean damping disrupted the features of coexistence such

that the response frequencies merged over a parameter interval, in which the real parts of

the Floquet exponents became distinct (forming a bubble in the plot of 𝑅𝑒(𝜇) versus 𝜔).

In such case an unstable wedge may not appear in the parameter range at hand since the

mean damping can stabilize the responses in very slender wedges.

The results of this study may have relevance to VAWTs. The presence of cyclic damping

in VAWTs, especially if aeroelastic effects reduce the effective mean damping, suggests the

potential for instabilities of the same pattern as is familiar with cyclic stiffness, namely at

excitation frequencies near 2𝜔𝑛
𝑘

, 𝑘 = 1, 2, .... In the case of cyclic damping, the even values

of 𝑘 represent coexistence in the ideal model and the system does not actually destabilize.

However, perturbations of the model could destabilize the coexistence events and thus

designs should avoid these frequencies.
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CHAPTER 4

RESPONSE CHARACTERISTICS OF SYSTEMS WITH COMBINED
PARAMETRIC EXCITATION

Parametric excitation occurs in many mechanical, damped or undamped, systems of interest.

In some applications and structures, for example horizontal axis wind turbine (HAWTs)

blades, periodic stiffness induces parametric excitation to the system [3]. While in vertical

axis wind turbine (VAWTs) blades the structure experiences parametric damping [6, 9].

Sevin observe an auto-parametric excitation in a pendulum-type vibration absorber on the

basis of approximate nonlinear equations of motion. [97]. The investigation on a thin

cantilever beam under harmonic excitation by Dugundji and Mukhopadhyay concluded

in Mathieu equations coupled by symmetric, off-diagonal parametric excitation terms.

The equation shows combination resonance with primary instability and the steady limit

cycles developed at the instability region. The experimental results are also given for an

actual beam showing the existence of the primary instability regions and the associated

nonlinear limit cycles with good agreement[26]. Several methods have been used to study

parametrically excited systems. Floquet theory and perturbation methods have been applied

to the Mathieu equation to study the stability criteria and the solution for undamped and

damped, forced and unforced systems [3, 6, 45, 61, 72, 75, 86–89, 95, 112, 120]. Taylor

and Narendra studied the stability boundaries of the damped Mathieu equation by using

a perturbation method [105]. Yu and Mote Jr studied the parametric excitation, natural

frequencies and modes of transverse vibration in asymmetric circular plates having small

imperfections applying perturbation method[121]. Rand et al. approximated the stability

regions of systems with quasiperiodic stiffness using four different methods: numerical

integration, Lyapunov exponents, regular perturbation and harmonic balance[86]. In [61,

75, 86, 88] Rand and his colleagues discussed the phenomena called “coexistence" in

Ince’s equation, and Recktenwald and Rand studied the generalization of results obtained

previously when applied to the generalized Ince’s equation[89]. Sofroniou and Bishop
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investigated the dynamics of parametrically excited systems with two forcing terms[99].

The majority of the research on parametric excitation in frequency domain analysis have

been limited to a single harmonic approximation. It is conceivable that tower shadowing

in HAWTs or other aerodynamic effects in VAWTs may induce cyclic fluctuations with

multiple harmonics. These systems have a homogeneous plus particular solution. The

particular solution appears in the forced systems when an external force or a displacement

excitation is exerted to the system and it displays the steady-state response of the system.

While the homogeneous system is the “unforced” parametrically excited system (𝑔(𝑡) = 0)

and the solution represents the transient dynamics[30]. In this work we focus on the

transient dynamics of the parametrically excited systems. A linear differential equation

having periodic coefficients with multiple harmonics is called Hill’s equation,

(1 + 𝐴(𝑡))𝑑2𝑥 + 𝐵(𝑡)𝑑𝑥 + (𝑐 + 𝐷 (𝑡))𝑥 = 0. (4.1)

Hill’s equation is a generalized form of original Ince’s equation,

(1 + 𝑎 cos 2𝑡)𝑑2𝑥 + 𝑏 sin 𝑡𝑑𝑥 + (𝑐 + 𝑑 cos 2𝑡)𝑥 = 0, (4.2)

which occurs in a variety of mechanical systems[70, 88]. When 𝑎 = 𝑏 = 0, Hill’s

equation reduces to ¥𝑥 + 𝑓 (𝑡)𝑥 = 0, describes undamped system with cyclic stiffness

[88]. Acar and Feeny applied Floquet theory on Hill’s equation for the special case

where 𝐴(𝑡) = 𝐵(𝑡) = 0 and 𝑐 = 1. This is the generalization of the Mathieu’s equation

with harmonic stiffness term. Reduced-order models of the vibration of horizontal-axis

wind turbines have often made use of a forced Mathieu-Hill equation, which may include

damping, such that the equation has the form ¥𝑥 + 2𝜁 ¤𝑥 + 𝑓 (𝑡)𝑥 = 𝑔(𝑡) where 𝑓 (𝑡) and 𝑔(𝑡)

are periodic[3, 11, 46, 83]. Basic models of vertical-axis wind turbines with aeroelastic

force can be represented by oscillators with cyclic damping in nondimensional form [9]:

¥𝑥 + 2𝜁 𝑓 (𝑡) ¤𝑥 + 𝑥 = 𝑔(𝑡) (4.3)

61



Suppose the parametric excitation term is expressed with 𝑓 (𝑡) = 𝑐0 + 𝑐1 cos𝜔𝑡 +

𝑐2 cos(2𝜔𝑡 + 𝜙), where 𝑐 𝑗 s are the strength of harmonics, then the equations of interest

are,

• Parametrically damped system:

¥𝑥 + (𝑐0 + 𝑐1 cos𝜔𝑡 + 𝑐2 cos(2𝜔𝑡 + 𝜙)) ¤𝑥 + 𝑥 = 𝑔(𝑡), (4.4)

• Mathieu’s equation (when 𝑐0 = 1):

¥𝑥 + (1 + 𝑐1 cos𝜔𝑡 + 𝑐2 cos(2𝜔𝑡 + 𝜙))𝑥 = 0. (4.5)

and all the possible combinations of of Eqns (4.4) and (4.5).

Generally the Floquet theory can be applied to systems with the state-variable form

¤x = A(𝑡)x (4.6)

In which x is an 𝑁 × 1 state vector and A(𝑡) is 𝑁 × 𝑁 and periodic with period 𝑇 = 2𝜋
𝜔 .

Floquet properties imply that the characteristic exponents are not unique, since if

𝜌 𝑗 = 𝑒
𝜇 𝑗𝑇 , then 𝜌 𝑗 = 𝑒

(𝜇 𝑗+2𝜋𝑖
𝑇

)𝑇 . If 𝜌𝑘 = 𝑒𝜇𝑘 𝑡 , based on the Floquet properties the

charachteristics multipliers (eigenvalues) of 𝐴(𝑡) in Eqn. (5.4), when 𝐴(0) = 𝐼 satisfy:

𝜌1𝜌2...𝜌𝑛 = 𝑒𝑥𝑝(
∫ 𝑇

0
𝑡𝑟 (𝐴(𝑠))𝑑𝑠), (4.7)

In this work, for the purpose of increasing our understanding of the parametric excitation

with multiple harmonics, we study the parameterically damped system (Eqn. 4.4) and also

the unforced, undamped Mathieu equation (Eqn. 4.5), using an analysis based on Floquet

theory, both with two-harmonic parametric excitation and direct excitation 𝑔(𝑡) = 0.

4.1 Analysis
The Floquet analysis combined with harmonic balance will be applied on both Eqns (4.4)

and (4.5). However, in this section we will show details of the analysis of the damped
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and undamped Mathieu’s equation with two-harmonic parametric excitation of the form of

Eqn. (4.5) and skip the details about Eqn. (4.4)

We sought an approximate solution based on Floquet theory following the approach in

[3, 6]. The equation in state-space form is

¤x =
©­­«
¤𝑥

¥𝑥

ª®®¬ =


0 1

−(1 + 𝑐1 cos𝜔𝑡 + 𝑐2 cos(2𝜔𝑡 + 𝜙)) 0


©­­«
𝑥

¤𝑥

ª®®¬
= A(𝑡)x, (4.8)

where A(𝑡) is a periodic matrix with period 𝑇 = 2𝜋
𝜔 . We seek a solution of the form

𝑥 = 𝑒𝜇𝑡 𝑝(𝑡). Using a truncated series approximation, we write

𝑥(𝑡) � 𝑒𝜇𝑡
+𝑛∑︁
𝑗=−𝑛

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 . (4.9)

“𝜇” is the Floquet exponent and “𝑎 𝑗”’s are Fourier coefficients. A truncated approximated

series solution is extracted from the infinite series solution. The imaginary part of the

Floquet exponent unites with the excitation frequency to form the response frequency. The

approximated solution is substitute into Eqn. (4.5), and then harmonic balance is applied

on the coefficients of the 𝑒𝑖 𝑗𝜔𝑡 . The harmonic balance results in an equation of the form

K(𝜇)a = 0, which has the detailed form,



𝐵−𝑛
. . .

...
...

. . . 𝐵−2
𝑐1
2

𝑐2
2 0 0 . . .

𝑐1
2 𝐵−1

𝑐1
2

𝑐2
2 0

𝑐2
2

𝑐1
2 𝐵0

𝑐1
2

𝑐2
2

0 𝑐2
2

𝑐1
2 𝐵1

𝑐1
2

0 0 𝑐2
2

𝑐1
2 𝐵2

...
...

. . .

𝐵𝑛



©­­­­­­­­­­­­­­­­­­«

𝑎−𝑛
...

𝑎−1

𝑎0

𝑎1
...

𝑎𝑛

ª®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­«

0
...

0

0

0
...

0

ª®®®®®®®®®®®®®®®®®®¬

, (4.10)
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where 𝐵 𝑗 = 1 − (𝜇 + 𝑗𝜔)2 for 𝑗 = −𝑛, ..., 𝑛.

4.2 Application to Two-harmonic Mathieu

4.2.1 Analysis of the Truncated Solution

When 𝑛 = 2, Eqn. (4.10) takes the form

𝐵−2
𝑐1
2

𝑐2
2 0 0

𝑐1
2 𝐵−1

𝑐1
2

𝑐2
2 0

𝑐2
2

𝑐1
2 𝐵0

𝑐1
2

𝑐2
2

0 𝑐2
2

𝑐1
2 𝐵1

𝑐1
2

0 0 𝑐2
2

𝑐1
2 𝐵2



©­­­­­­­­­­­­«

𝑎−2

𝑎−1

𝑎0

𝑎1

𝑎2

ª®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­«

0

0

0

0

0

ª®®®®®®®®®®®®¬
. (4.11)

This is essentially an eigenvalue problem (EVP). Obtaining a nonzero solution for Fourier

coefficients, 𝑎 𝑗 s, requires that |K(𝜇) | = 0, which express the characteristic equation for 𝜇.

The characteristic equation is a (2𝑛 + 1)th degree polynomial in 𝜇2, which provides with

(4𝑛 + 2) solutions for 𝜇. However, since in this work the state space has two dimensions,

as stated by Floquet theory there exist two distinct roots, referred as principal roots. Based

on this theory [112],

𝑒(𝜇1+𝜇2)𝑇 = 𝑒𝑥𝑝(
∫ 𝑇

0
𝑡𝑟 (A(𝑠))𝑑𝑠. (4.12)

When the system is undamped the trace of the coefficient matrix in Eqn. (5.4) is zero.

Therefore, Eqn. (5.11) reduces to (𝜇1 + 𝜇2)𝑇 = ±2𝜋𝑖𝑘 , where 𝑘 is integer. 𝑇 = 2𝜋
𝜔 leads

to the criterion

𝜇1 + 𝜇2 = ±𝑘𝜔𝑖 (4.13)

Equation (4.13) expresses the relation between the proper principal roots. In this study

the strength of the second excitation harmonic is consider to be a scaling of the strength of

the first harmonic (𝑐2 = 𝛾𝑐1).
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4.3 Results
The generated polynomial for 𝜇 is a function of the set of parameters, 𝑐0, 𝑐1, 𝛾, 𝜔 and

𝜇.

𝑓 (𝑐0, 𝑐1, 𝛾, 𝜔, 𝜇) = 0 (4.14)

Set 𝑐0, 𝑐1 and 𝛾 constant and solve Eqn. (4.14) for varying 𝜔, Fig. 4.1 represents the locus

of (4𝑛 + 2) roots (principal and redundant) for varying 𝜔 when the truncation number is

two (𝑛 = 2). Note that here the real axis is the ordinate and the 𝐼𝑚 axis is the abscissa. The

smaller blue dots follow the locus of the roots for smaller values of 𝜔 while the larger red

dots indicate the 4𝑛 + 2 roots obtained when 𝛿 = 0.8 and 𝜔 = 2.2. The roots of our interest

(principal roots) are two of the inner-most roots which satisfy the Floquet criterion (4.13).

4.3.1 Growth and Decay Factor

Figure 4.2 illustrates the real parts of 𝜇 versus 𝜔. One positive real part results an unstable

solution. If 𝑅𝑒(𝜇) = 0 then the solution is bounded and quasi-periodic, while a non-zero

real part ends in an unbounded response, since 𝑘 = 0 in Eqn. (4.13) yields to 𝜇1 = −𝜇2.

Accordingly, the transition from zero to non-zero real part of the 𝜇s defines the stability

curves (section 5.3.2).

4.3.2 Stability Analysis

Most studies focus on stability regions by looking for transitional periodic responses.

In this work we use transitions in the generally computed Floquet exponents. Stability

diagrams describe the regions of stability for pairs of 𝛿 and 𝜔, and the boundaries express

the transition from Floquet exponents with zero real parts to those with a positive real part.

Figure 4.3a demonstrates the regions of stability for 𝛾 = 0.5 and 𝜙 = 0 when 𝑛 = 2 in the

truncated solutions. Blue (dark) and white zones in Fig. 5.5 stand for stable and unstable

regions, respectively. The values of (𝛿, 𝜔) pairs in the instability wedges are affirmed by

the positive real parts in Fig. 4.2, when 𝛿 = 0.8. For positive values of 𝑅𝑒(𝜇) the response

is unbounded.
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Figure 4.1: The locus of the roots for 𝛿 = 0.8 and 𝛾 = 0.5. 𝜔 is varying from 0 to 2.2.

Figure 4.2: Growth factor for 𝛿 = 0.8 and 𝛾 = 0.5.

In comparison with regular Mathieu equation (not shown), the subharmonic wedge (near

𝜔 = 2) is visibly unchanged, but the primary (𝜔 = 1) wedge has been clearly distorted.

Similar distortion was observed in [99]. The superharmonic and primary instability wedges

actually come down to the 𝜔 axis, but become so thin that they are lost in the resolution of

the plots.

Numerical studies show that there is a truncation error for lower values of frequencies.

This error reduces with increasing truncation order 𝑛 (Fig. 4.3b). Tiny tongues of stability
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(a) 𝑛 = 2 (b) 𝑛 = 6 (c) 𝑛 = 2 AND 𝜙 = 𝜋
2

Figure 4.3: Stability boundaries for 𝛾 = 0.5.

are captured in higher order analysis for lower values of frequencies. Generally the solution

deteriorates for small 𝜔 and large 𝛿, and increasing 𝑛 increases the range of accuracy of the

approximated solution. However, there may be limits on 𝑛, as the EVP involves the roots

of a polynomial of degree 2𝑛 + 1.

The relative parametric excitation phase 𝜙 can effect stability. A a phase shift of

𝜙 = 𝜋
2 turns the second harmonic from cos 2𝜔𝑡 to sin 2𝜔𝑡 and further investigations for

the stability criteria indicate that the region of subharmonic instability (based at 𝜔 = 2)

does not change noticeably, whereas the primary (near 𝜔 = 1) and superharmonic unstable

zones get wider in Fig. 4.3c compared to Figs. 4.3a and 4.3b, and also compared to the

regular Mathieu equation [3, 88]. The examples we have run (others not shown) show that

𝜙 can have a stabilizing or destabilizing affect relative to the single-harmonic undamped

Mathieu system.

4.3.3 Response Analysis

4.3.3.1 Time Response

The general solution to differential equations is

𝑥(𝑡) = 𝐶1𝑥1(𝑡) + 𝐶2𝑥2(𝑡) (4.15)

where 𝑥𝑘 (𝑡) is expressed in Egn. (4.9) as

𝑥𝑘 (𝑡) = 𝑒𝜇𝑘 𝑡 [𝑒−𝑛𝑖𝜔𝑡 , ..., 𝑒−𝑖𝜔𝑡 , 1, 𝑒𝑖𝜔𝑡 , ..., 𝑒𝑛𝑖𝜔𝑡]𝑇a𝑘 (4.16)
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(a) 𝜔 = 1.2 (b) 𝜔 = 1.56
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(c) 𝜔 = 1.6

Figure 4.4: Time responses for 𝑛 = 3, 𝛾 = 0.5 and 𝛿 = 0.8. (Three different frequencies,
𝜔 = 1.2,𝜔 = 1.56 and 𝜔 = 1.6).

for 𝑘 = 1, 2, where a𝑘s are determined in Eqn. (4.11). 𝐶1 and 𝐶2 are determined by the

initial conditions. Using Eqns. (4.9) and (5.13) the system has a general solution of the

form

𝑥(𝑡) = 𝐶1𝑒
𝜇1𝑡

(
𝑎−𝑛𝑒−𝑛𝑖𝑡𝜔... + 𝑎−1𝑒

−𝑖𝑡𝜔 + 𝑎0 + 𝑎1𝑒
𝑖𝑡𝜔... + 𝑎𝑛𝑒

𝑛𝑖𝑡𝜔
)
+

𝐶2𝑒
𝜇2𝑡

(
𝑎𝑛𝑒

−𝑛𝑖𝑡𝜔... + 𝑎1𝑒
−𝑖𝑡𝜔 + 𝑎0 + 𝑎−1𝑒

𝑖𝑡𝜔... + 𝑎−𝑛𝑒𝑛𝑖𝑡𝜔
)

(4.17)

For 𝑥(0) = 0 and ¤𝑥(0) = 1, coefficients 𝐶1 and 𝐶2 were determined. Inserting 𝜇1 and

𝜇2, extracted from the EVP, into Eqn. (5.14) leads to the time response, which we have

plotted for three sets of parameters corresponding to stable, nearly periodic transitional and

unstable responses, respectively. The responses were very well matched with the numerical

responses when we increased the truncation number to 𝑛 = 3. In Fig. 5.1, 𝜔 = 1.2 sits in a

stable region and shows a quasi-periodic motion with multiple harmonics, while 𝜔 = 1.56

is in the vicinity of the boundary of stability (see Fig. 5.3, near the frequency merger point,

where two branches meet as in the next section). Zooming on the response frequensies

plots detects that the frequencies of harmonics are slightly different such that the “beating

phenomenon" occurs. For 𝜔 = 1.6 the reponse is unstable and unbounded.

4.3.3.2 Response Frequencies

Seeing that the approximated general response is a combination of an exponential part and

a periodic part, the frequencies of the response are a formation of the ± 𝑗𝜔 combined with
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Figure 4.5: Response frequencies for 𝛿 = 0.8 and 𝛾 = 0.5. Blue is for 𝑛 = 2 and red dotted
line is for 𝑛 = 3.

the imaginary part of the exponents, i.e., 𝜔 𝑗 = 𝐼𝑚(𝜇) ± 𝑗𝜔, where 𝑗 = 0, 1, 2, ..., 𝑛.

In Fig. 5.3 the frequencies of the response for 𝛾 = 0.5 and 𝛿 = 0.8 are shown. Solid

lines indicate the frequency branches when 𝑛 = 2 and the dotted lines are for 𝑛 = 4. We

can increase the accuracy and choose any number of branches by increasing the truncation

order (Fig. 5.3). Agreement between the dotted and solid curves shows that, for 𝑛 = 2,

convergence has ocurred for 𝜔 ≥ 0.6, but the trend is consistent for lower values of 𝜔. In

regions of stability the truncated expansion represents 2𝑛 + 1 of the response frequencies.

In the transition from the stable to unstable region, repeated frequencies occur when two

branches merge into one with repeated values of 𝜔/2, 3𝜔/2, ..., (2𝑛 + 1)𝜔/2 response

frequencies. In comparison to Fig. 4.3a and 4.3b, the primary instability wedge is very thin

for 𝛿 = 0.8. Likewise the frequency merger interval in Fig. 5.3 near 𝜔 = 1 is imperceptible.

4.4 A System with Two-harmonic Parametric Damping
A truncated expansion has been applied to a system with one-harmonic parametric

damping and the response has been studied[6]. As an extension, the Floquet expansion is
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Figure 4.6: Growth factor for 𝑐0 = 0, 𝑐1 = 0.8 and 𝛾 = 0.5 when 𝑛 = 6.

applied to the following system with two-harmonic periodic damping:

¥𝑥 + (𝑐0 + 𝑐1 cos𝜔𝑡 + 𝛾𝑐1 cos(2𝜔𝑡 + 𝜙)) ¤𝑥 + 𝑥 = 0. (4.18)

We perform the same steps as before for Eqn. (4.18), when 𝜙 = 0, 𝑐0 = 0 and 𝑐1 = 0.8.

Considering a similar truncated approximate solution as Eqn. (4.9) leads to matrix D(𝜇)a,

which D(𝜇) is obviously different than K(𝜇). We then find eigenvalues (𝜇), as well as

eigenvectors (a), and the principal roots as described before. Figure 4.6 indicates how

the real part of the principal root varies with 𝜔 and Fig. 4.7 shows the frequencies of the

response for 𝑛 = 6. In Fig. 4.8 the boundaries of stability for 𝛾 = 0.5 and 𝑛 = 6 are

plotted. This figure loses fidelity for 𝜔 < 0.5. The single-harmonic damping system is

known to demonstrate coexistence, for which the sides of a stability wedge overlap, closing

the wedge. This was captured previously near 𝜔 = 1 and 𝜔 = 1
2 [6, 39]. Two-harmonic

damping “opens up" the coexistence into finite instability wedges, most notably with the

prominent wedge at 𝜔 = 1 (see Fig. 4.7).

4.5 Conclusion
Parametric excitation has been of much interest in mechanical systems. In this work we

focused on the parametrically excited systems with two-harmonic parametric excitations.

The purpose of the work was to determine not only the stability regions but also the
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Figure 4.7: Response frequency for 𝑐0 = 0, 𝑐1 = 0.8 and 𝛾 = 0.5 when 𝑛 = 6.

Figure 4.8: Stability boundaries for 𝑐0 = 0 and 𝛾 = 0.5 when 𝑛 = 6.

characteristics of the responses.

We used the Floquet theory combined with harmonic balance to analyze our system.

The approximated solution is composed of an exponential part and a truncated Fourier

series. The Floquet exponents and the Fourier coefficients are unknown and determined

by solving an EVP derived from the second-order differential equation.

By extracting the Floquet exponents we obtained information about the stability criteria

and the relationship between the excitation frequency and the frequencies of the response.

71



Moreover, putting Fourier coefficients into the approximated solution for certain initial

conditions demonstrated the time response of the system, and theoretical results for initial

condition responses were evaluated favorably with the numerical analysis.

Comparing analysis of two-harmonic Mathieu with standard Mathieu showed that the

boundaries of the subharmonic instability do not change visibly. However, the primary

and superharmonic wedges can have a remarkable change, either shrinking or enlarging,

depending on the phase of the second harmonic of excitation. By increasing the truncation

order we captured more stability tongues for lower values of frequency. Stability diagrams

as well as the response frequencies for two different truncation numbers indicated the

influence of the order of truncation. The range of accuracy increases as the truncation 𝑛

increases. There may be a computational limit on 𝑛, however.

We applied the truncated Floquet series expansion to a system with two-harmonic

parametric damping and observed that the coexistence in single-harmonic parametric

damping turns into a tongue of instability when a second harmonic is added, for the

parameters studied.

Ongoing work includes more study of the effect of relative amplitude and phase of the

second harmonic, and more details on the effect of multiple harmonics in systems with

parametric damping. Studying a third harmonic (3𝜔) of excitation in place of the 2𝜔 term

may also make sense for physical applications.
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CHAPTER 5

RESPONSE CHARACTERISTICS OF SYSTEMS WITH PARAMETRIC
EXCITATION THROUGH DAMPING AND STIFFNESS

Reduced-order models of the vibration of horizontal-axis wind turbines (HAWTs) [11, 46,

83] have often made use of a forced Mathieu-Hill equation, which may include damping,

such that the equation has the form

¥𝑥 + 2𝜁 ¤𝑥 + 𝑓 (𝑡)𝑥 = 𝑔(𝑡), (5.1)

where 𝑓 (𝑡) and 𝑔(𝑡) are periodic. Basic models of vertical-axis wind turbines (VAWTs)

with aeroelastic force can be represented by oscillators with stiffness and cyclic damping

[9], such as

¥𝑥 + 2𝜁ℎ(𝑡) ¤𝑥 + 𝑥 = 𝑔(𝑡) (5.2)

in a nondimensional form. Ince’s equation describes systems with cyclic inertia, damping

and stiffness[88]:

(1 + 𝑎 cos𝜔𝑡) ¥𝑥 + 𝑏 sin𝜔𝑡 ¤𝑥 + (𝑐 + 𝑑 cos𝜔𝑡)𝑥 = 0. (5.3)

Tower shadowing in HAWTs or the aerodynamics in spinning VAWTs may induce cyclic

fluctuations in both damping and stiffness terms. Several methods have been used to study

parametrically excited systems. The damped and undamped Mathieu’s equation is the most

thoroughly studied parametrically excited system.

Taylor and Narendra studied the stability boundaries of the damped Mathieu equation

by using a perturbation method [105]. Rand et al. [86] approximated the stability regions

of systems with quasiperiodic stiffness using four different methods: numerical integration,

Lyapunov exponents, regular perturbation and harmonic balance. In [61, 75, 86, 88] Rand

and his colleagues discussed the phenomena called “coexistence" in Ince’s equation, and

Recktenwald and Rand [89] studied the generalization of results obtained previously when
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applied to the generalized Ince’s equation. Sofroniou and Bishop[99] investigated the

dynamics of parametrically excited systems with two forcing terms.

Superposition is not applicable in studying systems with parametric excitation. Therefore

various combinations of the cyclic excitation cannot be obtained from individual studies

of cyclic stiffness and cyclic damping, and must be analyzed specifically. In this work, we

focus on the Eq. (5.3), when 𝑎 = 0. In such case it becomes a system with a combination of

parametric damping and stiffness. We study this system using an analysis based on Floquet

theory. We aim to uncover how the cyclic stiffness and damping combine and together

affect the initial conditions responses and stability.

5.1 Analysis
Generally the Floquet theory can be applied on systems which have the state-variable

form

¤x = A(𝑡)x, (5.4)

in which x is an 𝑁 × 1 state vector and A(𝑡) is 𝑁 × 𝑁 and is periodic with period 𝑇 .

According to Floquet theory [112], solutions of Eq. (5.4) have the form x𝑖 (𝑡) = 𝑒𝜇𝑖𝑡p𝑖 (𝑡),

𝑖 = 1, ..., 𝑁 , where p𝑖 (𝑡) has period 𝑇 and the Floquet exponents, 𝜇𝑖, satisfy

𝑒𝜇1𝑇 𝑒𝜇2𝑇 · · · 𝑒𝜇𝑁𝑇 = 𝑒𝑥𝑝(
∫ 𝑇

0
𝑡𝑟 (A(𝑠))𝑑𝑠). (5.5)

Floquet properties imply that the characteristic exponents are not unique since, if

𝜌 𝑗 = 𝑒
𝜇 𝑗𝑇 , then 𝜌 𝑗 = 𝑒

(𝜇 𝑗+2𝜋𝑖
𝑇

)𝑇 . Floquet theory states that there exist 𝑁 number of

unique Floquet exponents, called principal roots, which 𝑁 is the number of the state space.

Floquet analysis also provides a relation between the principal roots.

We will show the details of the analysis for the case of Eq. (5.3) To this end, we consider

an equation with combined parametric excitation of the form

¥𝑥 + (𝑐0 + 𝑐1 cos(𝜔𝑡 + 𝜙)) ¤𝑥 + (𝑘0 + 𝑘1 cos𝜔𝑡)𝑥 = 0, (5.6)
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when the system experiences parametric excitation through both damping and stiffness

terms. We sought an approximate solution based on Floquet theory following the approach

in [3, 6]. The equation in state-space form is

¤x =
©­­«
¤𝑥

¥𝑥

ª®®¬ =


0 1

−(𝑘0 + 𝑘1 cos𝜔𝑡) −(𝑐0 + 𝑐1 cos(𝜔𝑡 + 𝜙))


©­­«
𝑥

¤𝑥

ª®®¬
= A(𝑡)x, (5.7)

where A(𝑡) is a periodic matrix with period 2𝜋
𝜔 . We seek a solution of the form 𝑥 = 𝑒𝜇𝑡 𝑝(𝑡).

Using a truncated series approximation, the approximate response is

𝑥(𝑡) � 𝑒𝜇𝑡
+𝑛∑︁
𝑗=−𝑛

𝑎 𝑗 𝑒
𝑖 𝑗𝜔𝑡 , (5.8)

where 𝜇 is the Floquet exponent and 𝑎 𝑗 ’s are Fourier coefficients. 𝐼𝑚(𝜇) is combined with

the excitation frequency to build the response frequency. Substituting the approximated

solution into Eq. (5.6), and then applying harmonic balance on the coefficients of the 𝑒𝑖 𝑗𝜔𝑡 ,

generates an equation of the form

K(𝜇)a = 0, (5.9)

where K is the matrix of the coefficients.

5.2 Application to System with Combined Parametric Excitation
5.2.1 Analysis of the Truncated Solution

When 𝑛 = 2, Eq. (5.9) takes the form

𝐵−2 𝐷−1 0 0 0

𝐸−2 𝐵−1 𝐷0 0 0

0 𝐸−1 𝐵0 𝐷1 0

0 0 𝐸0 𝐵1 𝐷2

0 0 0 𝐸1 𝐵2



©­­­­­­­­­­­­«

𝑎−2

𝑎−1

𝑎0

𝑎1

𝑎2

ª®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­«

0

0

0

0

0

ª®®®®®®®®®®®®¬
, (5.10)

where 𝐵𝑖, 𝐷𝑖, and 𝐸𝑖 are functions of the Floquet multiplier, damping and stiffness

parameters and frequency (Appendix A). Equation (5.10) is essentially an eigenvalue
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Figure 5.1: Time response when 𝑘0 = 1, 𝑘1 = 1, 𝑐0 = 0, 𝑐1 = 0.1, 𝜙 = 0 and 𝑛 = 4. (Three
different frequencies, 𝜔 = 1.1,𝜔 = 1.48 and 𝜔 = 2).

problem (EVP). Obtaining a nonzero solution for Fourier coefficients, 𝑎 𝑗 s, requires that

|K(𝜇) | = 0. Setting the determinant equals zero yields to the characteristic equation for

𝜇, a (2𝑛 + 1)th degree polynomial in 𝜇2 which provides (4𝑛 + 2) solutions for 𝜇. Based

on Floquet theory there exist only two distinct roots referred as principal roots. Following

this theory [112],

𝑒(𝜇1+𝜇2)𝑇 = 𝑒𝑥𝑝(
∫ 𝑇

0
𝑡𝑟 (A(𝑠))𝑑𝑠). (5.11)

From Eq. (5.7), 𝑇𝑟 (A) = −(𝑐0 + 𝑐1 cos𝜔𝑡). Therefore, Eq. (5.5) reduces to (𝜇1 + 𝜇2)𝑇 =

−𝑐0𝑇 ± 2𝜋𝑖𝑘 , where 𝑘 is integer. 𝑇 = 2𝜋
𝜔 leads to the criterion

𝜇1 + 𝜇2 = −𝑐0 ± 𝑘𝜔𝑖. (5.12)

This formula is applied to obtain the principal roots. Fourier coefficients, 𝑎𝑖
𝑗
, are associated

with the roots, 𝜇𝑖 (𝑖 = 1, 2), and are determined by Eq. (5.10).

5.3 Results

5.3.1 Response Analysis

5.3.1.1 Time Response.

𝜇 = 𝜇𝑖 and 𝑎 𝑗 = 𝑎
(𝑖)
𝑗

, 𝑖 = 1, 2 are inserted into Eq. (5.8), which produces two principal

independent solutions, 𝑥𝑖 (𝑡). The general solution to the second order differential equations

is

𝑥(𝑡) = 𝐶1𝑥1(𝑡) + 𝐶2𝑥2(𝑡). (5.13)
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Plugging Eq. (5.8) into Eq. (5.13), the system has a solution of the form

𝑥(𝑡) = (5.14)

𝐶1𝑒
𝜇1𝑡

(
𝑎−𝑛𝑒−𝑛𝑖𝑡𝜔... + 𝑎−1𝑒

−𝑖𝑡𝜔 + 𝑎0 + 𝑎1𝑒
𝑖𝑡𝜔... + 𝑎𝑛𝑒

𝑛𝑖𝑡𝜔
)

+𝐶2𝑒
𝜇2𝑡

(
𝑎𝑛𝑒

−𝑛𝑖𝑡𝜔... + 𝑎1𝑒
−𝑖𝑡𝜔 + 𝑎0 + 𝑎−1𝑒

𝑖𝑡𝜔... + 𝑎−𝑛𝑒𝑛𝑖𝑡𝜔
)

𝐶1 and 𝐶2 are determined by the initial conditions. In this example 𝑥(0) = 0 and ¤𝑥(0) = 1.

𝜇1 and 𝜇2 in Eq. (5.14) are the Floquet multipliers found by solving the EVP (Eq. 5.10).

We then are able to find the time response of the system by setting the parameters. For

different sets of parameters the response of the system is either stable with quasi-periodic

behavior, or unstable and unbounded. The system could also sit in the vicinity of the

stability boundaries where the response is floating between the stable and unstable zone.

Figure 5.1 shows the results of the system for different sets of parameters when Floquet

method combined with harmonic balance (Floquet-HB) is applied and the responses are

compared with the numerical time responses. For four number of truncation the responses

obtained by Floquet-HB are in agreement with the numerical results. Figure 5.1a shows

that the system is stable and has a quasi-periodic response for 𝜔 = 1.1, while in Fig. 5.1b,

𝜔 = 1.48 and response of the system is near a boundary of stability. In next section it can

be seen and explained that the frequencies of harmonics are slightly different such that the

“beating phenomenon" occurs. Figure 5.1c shows that the system is unstable where 𝜔 = 2.

Later we will see the stability boundaries and the zones of stability for varying frequencies

of excitation.

5.3.1.2 Response Frequencies.

Equation (5.14) provides significant information about the response of the system. The

equation indicates that the frequency of the response is a combination of the imaginary

part of the Floquet exponent (Fig. 5.2) and the oscillating part, 𝜔 𝑗 = 𝐼𝑚(𝜇) ± 𝑗𝜔, where
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Figure 5.2: Imaginary of growth/decay factor when 𝑘0 = 1, 𝑘1 = 1, 𝑐0 = 0, 𝑐1 = 0.1 and
𝑛 = 4.

𝑗 = 0, 1, 2, ..., 𝑛. In Fig. 5.3 the frequencies of the response for 𝑘0 = 1, 𝑘1 = 1, 𝑐0 = 0

and 𝑐1 = 0.1 are shown when the truncation order is 𝑛 = 4. Increasing the number of

truncation increases the accuracy and the number of branches in the frequency response

analysis.

5.3.1.3 Growth/Decay Factor.

As noted before equation (5.14) tells important feature of the response of the system.

Referring to Eq. (5.14), the response of the system is governed by the real part of the

Floquet exponent (𝑅𝑒(𝜇𝑖)). It is easily perceived that for 𝑅𝑒(𝜇𝑖) < 0 response stays stable

and for any 𝑅𝑒(𝜇𝑖) > 0 response goes unstable. Figure 5.4 demonstrates the growth or

decay factor of the response when 𝑘0 = 1, 𝑘1 = 1, 𝑐0 = 0 and 𝑐1 = 0.1. The unstable

zone is identified with the bubbles when the associated Floquet multipliers have at least

one positive 𝑅𝑒(𝜇).

5.3.2 Stability Analysis

As noted, stability diagrams describe the regions of stability where the system stays stable

with periodic or quasi-periodic response for pairs of parameters. Here the parameters

are 𝑐1, the damping amplitude, versus 𝜔, the excitation frequency (Fig. 5.5). Figure 5.5

represents the zones of stability for 𝑛 = 4, where the blue and white zones are associated

with the stable and unstable response, respectively. Comparing with the system with
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Figure 5.3: Response frequencies when 𝑘0 = 1, 𝑘1 = 1, 𝑐0 = 0, 𝑐1 = 0.1 and 𝑛 = 4.
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Figure 5.4: Real of growth/decay factor when 𝑘0 = 1, 𝑘1 = 1, 𝑐0 = 0, 𝑐1 = 0.1 and 𝑛 = 4.

parametric stiffness (Mathieu’s equation) (Fig. 5.5a) the subharmonic wedge (near 𝜔 = 2)

and the primary (𝜔 = 1) wedge has been clearly distorted. Figure 5.5b shows the stability

wedges and demonstrates how adding the parametric stiffness to the system affects the

subharmonic, superharmonic and primary instability wedges when the wedges open and

the boundaries of stability become smaller. Referring to Fig. 5.3, in regions of stability the

truncated expansion represents 2𝑛 + 1 of the response frequencies. In the transition from

the stable to unstable region, repeated frequencies occur which in the response frequency

analysis comes into sight when two branches merge into one with repeated values of

𝜔/2, 3𝜔/2, ..., (2𝑛 + 1)𝜔/2 response frequencies. The relative parametric excitation phase

𝜙 can affect stability. A phase shift of 𝜙 = 𝜋
2 in the damping turns the cos𝜔𝑡 to sin𝜔𝑡. In
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(a) Mathieu’s equation (𝑛 = 4)
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(b) 𝑐0 = 0, 𝑘0 = 1, 𝑘1 = 1,
𝑛 = 8 and 𝜙 = 0

(c) 𝑐0 = 0, 𝑘0 = 1, 𝑘1 = 1,
𝑛 = 8 and 𝜙 = 𝜋

2

Figure 5.5: Stability boundaries.

this case the Eq. (5.6) turns into

¥𝑥 + (𝑐0 + 𝑐1 sin𝜔𝑡) ¤𝑥 + (𝑘0 + 𝑘1 cos𝜔𝑡)𝑥 = 0 (5.15)

when 𝑐0 = 0, it represents a special case of the Ince’s equation (Eq. (5.3) for 𝑎 = 0).

Comparing Fig. 5.5b and Fig. 5.5c demonstrates the effect of the phase shift on the stability

diagrams and it can be shown that the boundaries of stability becomes narrower.

When 𝑐0 = 0, 𝑘0 = 1, 𝑐1 = 𝑘1 = 𝛿, Eq. (5.6) becomes

¥𝑥 + (𝛿 sin𝜔𝑡) ¤𝑥 + (1 + 𝛿 cos𝜔𝑡)𝑥 = 0 (5.16)

Figure 5.6a shows the stability wedges when system involves equivalent parametric stiffness

(a) 𝑐0 = 0, 𝑘0 = 1, 𝑘1 = 1
AND 𝜙 = 0

(b) 𝑐0 = 0, 𝑘0 = 1, 𝑘1 = 1
AND 𝜙 = 𝜋

2

Figure 5.6: Stability boundaries for 𝑐0 = 0, 𝑘0 = 1, 𝑐1 = 𝑘1 = 𝛿, and 𝑛 = 4.

and damping effect and there is not a phase shift (𝜙 = 0). Adding a 90 degrees phase shift

to the parametric damping effects the stability boundaries as shown in Fig. 5.6b.
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5.4 Conclusion
Parametric excitation has been of much interest in mechanical systems. In this work

we focused on the parametrically excited systems with a combination of the parametric

damping and parametric stiffness. The purpose of the work was to study the interaction of

the parametric terms in the dynamical system. We aimed to determine the characteristics

of the responses and their stability.

We use the Floquet theory combined with harmonic balance to analyze our system. The

approximated solution is composed of an exponential part and a truncated Fourier series.

The Floquet exponents and the Fourier coefficients are determined solving an eigenvalue

problem derived from the second-order differential equation.

By extracting the Floquet exponents we obtained the stability criteria and the relationship

between the excitation frequency and the frequencies of the response. Moreover, putting

Fourier coefficients into the approximated solution for certain initial conditions demonstrated

the time response of the system. Theoretical results for initial condition responses were

evaluated favorably with the numerical analysis.

Comparing analysis of combined parametric excitation with parametric damping excitation

showed that the boundaries of the subharmonic, primary and superharmonic wedges

experience a notable change, either shrinking or enlarging.

Studying the Ince’s equation with parametric damping and constant stiffness introduced

a phenomenon called “coexistence". We applied the truncated Floquet series expansion to a

system with combined parametric excitation in both damping and stiffness and observed that

the coexistence in parametric damping turns into a tongue of instability when parametric

stiffness harmonic is added to the equation.

Ongoing work includes more study of the effect of relative amplitude and phase of the

parametric terms, and details on the effect of increasing the order of truncation. Studying

different combination of the damping and stiffness for example constant mean damping
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with varying mean stiffness, may also make sense to be studied for physical applications.
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CHAPTER 6

RESONANCES OF A FORCED VAN DER POL EQUATION WITH
PARAMETRIC DAMPING

In this paper we study the responses of an oscillator with van der Pol terms, parametric

damping and direct excitation. A potential application of this system is a vertical-axis

wind-turbine blade, which can endure direct excitation and parametric damping [5, 7], as

well as aeroelastic self-excitation, the mechanism of which can be loosely modeled with

van-der-Pol-type nonlinearity [73, 88]. Here, the general behavior of this system is studied,

rather than the specific responses of a specific model of an application system. As both

parametric excitation and van-der-Pol nonlinearity can induce instabilities and oscillations,

we seek to understand the combined effect of such terms in this system.

The nonlinear damping in the van-der-Pol equation [73, 88], originally introduced

to model electrical oscillations [109], is well known to induce limit-cycle oscillations.

Holmes and Rand [40] studied the bifurcation of the variational equation of the forced van

der Pol oscillator. Barbosa et al. [15] studied the modified version of the classical van der

Pol oscillator containing derivatives of fractional order. They applied approximations

to fractional-order operators to show the dynamics of the model through numerical

simulations [15].

Parametric excitation generally induces significant behavior in dynamical systems. For

this reason studying systems with parametric excitation has been of keen interest, typically

in the context of parametric stiffness, specifically the Mathieu equation [73, 88, 112].

Parametric damping has been shown to generate instabilities [7, 38], similar to those

of the Mathieu equation [73, 88], with period-1 or period-2 oscillation, and to decay with

quasiperiodic dynamics when stable [7]. The study [7] used the Floquet solution combined

with harmonic balance [2, 8]. Studies on related systems, combining parametric and/or

direct excitation with nonlinearity, include parametric stiffness and damping [8], nonlinear

Mathieu systems [69, 74, 110] with forcing [36, 46, 85, 90], Mathieu-van-der-Pol [34], and
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a forced Mathieu-van-der-Pol-Duffing system [80].

Additionally, Rhoads et al. [92] studied the dynamic response of microelectromechanical

(MEM) oscillators. They focused on particular systems with parametric excitation that

arises from forces produced by fluctuating voltages applied across comb drives.

Szabelski and Warminski [104] performed an analytical examinations on the system

with three sources of vibration, parametric, self-excited and inertial. Warminski [113]

studied the nonlinear dynamics of a self, parametric, and externally excited oscillator with

time delay analytically applying the method of multiple scales. Warminski also discussed

the similarities and differences between the van der Pol and Rayleigh for regular, periodic,

quasi-periodic and chaotic oscillations.

Parametric excitation has also been studied in the context of wind turbine blades

[1, 12, 46, 85]. Luongo and Zulli [60] studied a self-excited tower under turbulent wind

flow. The tower was assumed to be a nonlinear system where the stationary wind imposed

the self excitation and the turbulent flow drove both parametric and external excitation.

Combining parametric damping with self-excitation of nonlinear damping as in a van der

Pol equation, with a particular choice of scaling and excitation frequencies, results in an

equation given as

¥𝑥 + 𝜖 (𝑐0 + 𝑐1 cos𝜔𝑡 + 𝑥2) ¤𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 + 𝑓1 sin(𝜔𝑡), (6.1)

where 𝜖 ≪ 1. The variables 𝑐0 and 𝑐1 are the mean damping and amplitude of the

parametric damping, respectively, and 𝑓0 and 𝑓1 are mean and cyclic direct excitation

amplitudes. The excitation frequency is 𝜔 and the natural frequency is 𝜔𝑛. We will refer to

this as the parametrically damped van der Pol (PDVDP) equation with external excitation.

In this work, we apply the first-order method of multiple scales [72, 73] to study an

unforced and externally forced van der Pol equation with parametric damping at frequency

𝜔. We study the sub-harmonic resonance of order 1/2 as well as the nonresonant dynamics.
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6.1 Perturbation Analysis: Method of Multiple-Scales
The core of this study is the approximation of the solution to Eqn. (6.1) based on the

method of multiple scale (MMS) [73, 88]. Therefore, we expand the displacement as

𝑥(𝑇0, 𝑇1, · · · ) = 𝑥0(𝑇0, 𝑇1, · · · ) + 𝜖𝑥1(𝑇0, 𝑇1, · · · ) + 𝜖2𝑥2(𝑇0, 𝑇1, · · · ) + · · · , (6.2)

where the time scales are 𝑇𝑖 = 𝜖 𝑖𝑡, and 𝜖 ≪ 1. By using the chain rule, we obtain the

derivatives for 𝑛 ∈ N as 𝑑𝑛

𝑑𝑡𝑛
(·) = (𝐷0 + 𝜖𝐷1 + 𝜖2𝐷2 + · · · )𝑛 (·) , where 𝐷𝑖 =

𝜕
𝜕𝑇𝑖

. Here,

we carry out the analysis up to the first order by considering the two time scales, 𝑇0 = 𝑡

and 𝑇1 = 𝜖𝑡, and therefore expand the displacement as

𝑥(𝑇0, 𝑇1) ≈ 𝑥0(𝑇0, 𝑇1) + 𝜖𝑥1(𝑇0, 𝑇1). (6.3)

By substituting the expansion (6.3) in Eqn. (6.1) and using the derivatives, coefficients of

similar powers of 𝜖 equate as

𝜖0 : 𝐷0
2𝑥0 + 𝑤𝑛

2𝑥0 = 𝑓0 + 𝑓1 sin(𝜔𝑡), (6.4)

𝜖1 : 𝐷0
2𝑥1 + 𝑤𝑛

2𝑥1 = −2𝐷0𝐷1𝑥0 − (𝑐0 + 𝑐1 cos𝜔𝑇0 + 𝑥0
2) (𝐷0𝑥0). (6.5)

The relationship between the excitation and the natural frequencies specifies different cases

of resonance:

1. Nonresonant: no specific relationship between 𝜔 and 𝜔𝑛

2. Primary resonance: 𝜔 ≈ 𝜔𝑛

3. Super-harmonic resonance: 𝜔 ≈ 𝜔𝑛/𝑚 (𝑚 ∈ N)

4. Sub-harmonic resonance: 𝜔 ≈ 𝑚𝜔𝑛 (𝑚 ∈ N)

In the next sections, we elaborate on this perturbation analysis for specific cases with and

without external excitation, and apply other tools, to examine the dynamics with emphasis

on secondary resonances.
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6.2 Parametric Excitation without External Excitation
We start with the case where there is no external forcing, i.e. 𝑓0 = 𝑓1 = 0. As a survey

of the possible dynamics, Fig. 6.1 shows a frequency sweep from𝜔 = 0 to beyond𝜔 = 2𝜔𝑛,

when 𝜔𝑛 = 1, 𝜖 = 0.1, 𝑐0 = −1, and 𝑐1 = 1 (these parameters are dimensionless). The

sweep, as a bifurcation diagram, is a plot of samples of the 𝑥 variable of the nonwandering

set in a Poincaré section [35] for various values of the frequency parameter. A Runge-Kutta

method (Matlab ode45) is used to obtain numerical solutions of several periods to achieve

steady state. As the responses are typically quasi-periodic, the plots are generated by

recording at each excitation frequency, 50 values of 𝑥 at the downward ¤𝑥 = 0 crossing in

the phase space.

The plot shows that significant quasi-periodic dynamics occur for a large range of

excitation frequencies, with a periodic window around 𝜔 ≈ 2𝜔𝑛. The largest responses

occur near this subharmonic range, as well as for low frequencies. Super harmonic and

primary resonances are not apparent, beyond a possible frequency interval of periodic or

nearly periodic dynamics. Figure 6.2 shows example of quasi-periodic responses for three

different excitation frequencies.

We appeal to perturbation analysis to explain these responses. The solution to the

leading order Eqn. (6.4) is

𝑥0(𝑇0, 𝑇1) = 𝐴(𝑇1)𝑒𝑖𝜔𝑛𝑇0 + c.c., (6.6)

where c.c. stands for the corresponding complex conjugate terms. We obtain the solvability

conditions by substituting Eqn. (6.6) into the right hand side of Eqn. (6.5) and eliminating

the “secular terms”. In MMS, the secular terms are defined as the terms that make the

solution to grow without bound in time, and thus should be eliminated. By plugging

Eqn. (6.6) into Eqn. (6.5), we obtain

𝐷0
2𝑥1 + 𝑤𝑛

2𝑥1 = (−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛𝐴

2 𝐴̄)𝑒𝑖𝜔𝑛𝑇0 (6.7)

−𝑐1
2

(
𝑖𝜔𝑛 𝐴̄𝑒

𝑖(𝜔−𝜔𝑛)𝑇0
)
+ N.S.T.,
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Figure 6.1: PDVDP with parametric excitation only. The response amplitude versus the
excitation frequency when 𝑓0 = 𝑓1 = 0, 𝜔𝑛 = 1, 𝜖 = 0.1, 𝑐0 = −1 and 𝑐1 = 1 . The
embedded sub-plot zooms in on the strong sub-harmonic resonance window. The circles
are amplitudes predicted by the perturbation analysis.

where N.S.T stands for non-secular terms and 𝐴′ = 𝐷1𝐴. The homogeneous solution of

Eqn. (6.7) is of the form 𝑒𝑖𝜔𝑛𝑇0 and therefore any right-hand-side term that is of the same

form will become secular and cause 𝑥1 to grow without bound. We seek the resonance

cases that lead to additional secular terms. The right-hand-side of Eqn. (6.7) merely shows

the sub-harmonic resonance case. However, as shown in Fig. 6.1 as well as Eqn. (6.7), the

system has significant oscillatory behavior at the nonresonant case, that is when there is no

specific relationship between the excitation frequency 𝜔 and the natural frequency 𝜔𝑛.

• Nonresonant: 2𝐴′ + 𝑐0𝐴 + 𝐴2 𝐴̄ = 0

• Sub-harmonic Resonance of Order 1/2 (𝜔 = 2𝜔𝑛):

2𝐴′ + 𝑐0𝐴 + 𝐴2 𝐴̄ − 𝑐1
2
𝐴̄𝑒𝑖𝜎𝑇1 = 0 (6.8)
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6.2.1 Nonresonant Case

We first consider the nonresonant case, where the solvability condition takes the form

2𝐴′ + 𝑐0𝐴 + 𝐴2 𝐴̄ = 0. We recall that 𝐴 is a complex function of 𝑇1. Writing it as

𝐴(𝑇1) = 1
2𝑎(𝑇1)𝑒𝑖𝛽(𝑇1) , the solvability condition becomes

𝑎′ + 𝑖𝑎𝛽′ + 1
2
𝑐0𝑎 + 1

8
𝑎3 = 0. (6.9)

By separating the real and imaginary parts, we obtain the following governing equations

of amplitude 𝑎 and phase 𝛽 as

𝑎′ + 1
2
𝑐0𝑎 + 1

8
𝑎3 = 0, 𝑎𝛽′ = 0. (6.10)

The response amplitude has steady-state values that depend on the parameter 𝑐0 and are

obtained by setting 𝑎′ = 0. When 𝑐0 < 0, there is a stable steady-state amplitude of

𝑎 = 2
√︁
|𝑐0 |. This amplitude, and the solvability condition that leads to it, are the same as

in the regular van der Pol equation when 𝑐0 = −1.

Having eliminated the solvability condition, we keep the remaining terms in Eqn. (6.7),

and find the particular solution to be

𝑥1 = 𝑄1𝑒
3𝑖𝜔𝑛𝑇0 +𝑄2𝑒

𝑖(𝜔+𝜔𝑛)𝑇0 +𝑄3𝑒
𝑖(𝜔𝑛−𝜔)𝑇0 , (6.11)

where

𝑄1 =
𝑖𝐴3

8𝜔𝑛
, 𝑄2 =

𝑐1𝑖𝜔𝑛𝐴

2𝜔(𝜔 + 2𝜔𝑛)
, 𝑄3 =

𝑐1𝑖𝜔𝑛𝐴

2𝜔(𝜔 − 2𝜔𝑛)
, (6.12)

and where 𝐴 =
1
2
𝑎𝑒𝑖𝛽. Eqn. (6.11) is valid if𝜔 ≠ 2𝜔𝑛. Then the leading-order nonresonant

solution is

𝑥 = 𝑥0 + 𝜖𝑥1 (6.13)

= 𝑎 cos(𝜔𝑛𝑇0 + 𝛽) + 𝜖 (2𝑄1 cos(3𝜔𝑛𝑇0) + 2𝑄2 cos(𝜔 + 𝜔𝑛)𝑇0 + 2𝑄3 cos(𝜔 − 𝜔𝑛)𝑇0).

This demonstrates, for the nonresonant case, a uniformly present oscillation term at the

amplitude 𝑎, which comes from the van der Pol element, plus small oscillatory parametric
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Figure 6.2: PDVDP with parametric excitation only: Time response (top row) and phase
portrait (bottom row) at different excitation frequencies where 𝑓0 = 𝑓1 = 0, 𝜔𝑛 = 1, 𝜖 =

0.1, 𝑐0 = −1 and 𝑐1 = 1.

terms with frequency-dependent amplitudes, and with two independent frequencies, such

that in typical cases the result is quasi-periodic.

The numerical solutions in Fig. 6.2 have features described by the nonresonant case.

When 𝜔 = 0.12, the response looks like classic beating that can arise with the sum of

two incommenserate, simple harmonics. This is consistent with the approximate solution

in Eqn. (6.13). The cases of 𝜔 = 1.93 and 𝜔 = 2.055 provide bookends around the

subharmonic resonance formulated in the next section. While the two latter cases seem

to have features of the nonresonant solution, we will see that the subharmonic resonance

analysis describes them more accurately.

6.2.2 Sub-harmonic Resonance of Order 1/2.

Here, we focus on the sub-harmonic resonance case, where the excitation frequency is tuned

to be close to the double natural frequency, i.e. 𝜔 = 2𝜔𝑛+𝜖𝜎. In this setting, the solvability

condition is comprised of more terms and is given as 2𝐴′ + 𝑐0𝐴 + 𝐴2 𝐴̄ − 𝑐1
2 𝐴̄𝑒𝑖𝜎𝑇1 = 0.
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By letting 𝐴(𝑇1) = 1
2𝑎(𝑇1)𝑒𝑖𝛽(𝑇1) , we obtain

𝑎′ + 𝑖𝑎𝛽′ + 1
2
𝑐0𝑎 + 1

8
𝑎3 − 1

4
𝑐1𝑎𝑒

𝑖(𝜎𝑇1−2𝛽) = 0. (6.14)

We separate the real and imaginary parts and then make the system autonomous via the

change of variables 𝛾 = 𝜎𝑇1−2𝛽 to obtain the following governing equations of amplitude

𝑎 and phase 𝛾 as

Re : 𝑎′ + 1
2
𝑐0𝑎 + 1

8
𝑎3 − 1

4
𝑐1𝑎 cos(𝜎𝑇1 − 2𝛽) = 0,

(6.15)

Im : 𝑎𝛽′ − 1
4
𝑐1𝑎 sin(𝜎𝑇1 − 2𝛽) = 0.

To investigate the dynamics of Eqn. (6.15), we first make the system autonomous via the

change of variable 𝛾 = 𝜎𝑇1 − 2𝛽 to obtain

𝑎′ + 1
2
𝑐0𝑎 + 1

8
𝑎3 − 1

4
𝑐1𝑎 cos 𝛾 = 0, 𝑎𝛾′ + 1

2
𝑐1𝑎 sin 𝛾 − 𝜎𝑎 = 0. (6.16)

The response amplitude has steady-state values that depend on the parameters 𝑐0 and

𝑐1 and are obtained by setting 𝑎′ = 𝛾′ = 0. By using the trigonometric identities, we

remove 𝛾 and finally obtain the response amplitude as

𝑎 = 0, or 𝑎2 = −4𝑐0 ± 4

√︄
𝑐2

1
4

− 𝜎2. (6.17)

If
𝑐2
1
4 −𝜎2 > 0, then Eqn. (6.17) indicates that there are both zero and non-zero real-valued

response amplitudes. Otherwise, the only steady-state amplitude is zero. Stability of these

solutions is determined from the Jacobian of Eqns. (6.16).

Figure 6.3 shows the steady-state amplitude versus the excitation frequency 𝜔 = 2𝜔𝑛 +

𝜖𝜎 for different values of 𝑐0 and 𝑐1 where 𝜖 = 0.1 and 𝜔𝑛 = 1. By slightly sweeping

the detuning parameter 𝜎, we keep the excitation frequency 𝜔 close to 2𝜔𝑛. We observe

the emergence of a limit cycle at 𝜔 ≈ 1.95, whose amplitude grows and then disappears

at 𝜔 ≈ 2.05. When 𝑐0 = −1, a larger amplitude of parametric damping 𝑐1 leads to a
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Figure 6.3: PDVDP with parametric excitation only: nonzero steady-State response
amplitude versus the excitation frequency in the case of sub-harmonic resonance.
Left: 𝑐0 = −1 and 𝑐1 = {0.2, 0.4, 0.6, 0.8, 1}. Right: 𝑐1 = 1 and 𝑐0 =

{−1,−0.7,−0.4,−0.1, 0.2, 0.5, 0.8}. Solid and dotted curves are stable and unstable
branches.

larger response amplitude; see the left panel in Fig. 6.3 where the inner and outer ellipses

are associated with 𝑐1 = 0.2 and 𝑐1 = 1, respectively. An increase in the mean value of

damping 𝑐0, however, decreases the response amplitude by moving down the ellipse till the

horizontal axis 𝑎 = 0, beyond which the lower branch of ellipse disappears; see the right

panel in Fig. 6.3.

6.2.2.1 Stability Analysis.

To investigate the stability of the obtained fixed point, we study the corresponding eigenvalues

of the linear system at the fixed points. We obtain the linear system as
𝑎′

𝛾′

 =


−1

4𝑎
2 1

2𝑎𝜎

0 −(𝑐0 + 1
4𝑎

2)



𝑎

𝛾

 , (6.18)

where [F ] is the Jacobian matrix given as

[
F

]
=


−1

4𝑎
2 1

2𝑎𝜎

0 −(𝑐0 + 1
4𝑎

2)

 (6.19)

for which the Jacobian matrix has trace 𝑇 = −𝑐0 − 𝑎2
2 and determinant 𝐷 = 1

4𝑎
2(𝑐0 + 𝑎2

4 ).

A fixed point (steady-state amplitude 𝑎) is stable if 𝐷 > 0, i.e. 𝑎2 + 4𝑐0 > 0, and 𝑇 < 0,
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i.e. 𝑎2 + 2𝑐0 > 0. Thus, based on Eqn. (6.17), if
𝑐2
1
4 −𝜎2 > 0, then the nonzero fixed point

exists and the 𝐷 > 0 criterion implied that the positive (upper) branch is stable, while the

lower branch is unstable. The 𝑎 = 0 solution is neutrally stable if 𝑐0 > 0.

And, if
𝑐2
1
4 − 𝜎2 > 0, then the fixed point 𝑎2 = −4𝑐0 + 4

√︂
𝑐2
1
4 − 𝜎2 is stable.

6.2.2.2 Dynamics of the Amplitude and Phase.

Figure 6.4 shows the stable and unstable branches of steady-state amplitude response

(top panel) and the amplitude-phase trajectories (bottom panel) at different frequencies

𝜔 = {1.95, 1.98, 2, 2.04, 2.05, 2.055}. The parameters are set to be 𝜖 = 0.1, 𝜔𝑛 = 1,

𝑐0 = −1, and 𝑐1 = 1. The upper panel shows that between frequencies of 𝜔 = 1.95

and 𝜔 = 2.05, there exist two steady-state response amplitudes 𝑎, one on each branch of

the oval-shaped curve. For 𝜔 < 1.95 and 𝜔 > 2.05, there are no nonzero fixed points.

However, note that Eqns. (6.16) exist on a cylindrical state space, and for these frequency

ranges they admit a periodic “whirling” solution, whose mean is approximated in the figure.

Examples are depicted in the the lower panels for 𝜔 = 1.93 for which the periodic solution

travels from right to left, and for 𝜔 = 2.055, for which the periodic solution travels to the

right. As such, the amplitude 𝑎 of the leading order solution has a periodic fluctuation, and

the oscillator is quasi-periodic, as labeled in the top panel of Figure 6.4.

As 𝜔 increases, the two fixed points in (𝑎, 𝛾) are created in a saddle-node bifurcation

at 𝜔 = 1.95. Likewise, when the frequency reaches 𝜔 = 2.05, the two fixed points in (𝑎, 𝛾)

collide and disappear in another saddle-node bifurcation. Lower panel 2 shows the two

fixed points after the first saddle-node bifurcation. With increasing frequency, the saddle

moves to the left, while the stable node moves to the right. In panel 3, at 𝜔 = 2.0, the stable

node has 𝛾 = 0 while the saddle has 𝛾 = ±𝜋/2, indicated at both slices of the cylindrical

phase space. In panel 4, the saddle and node have continued their trek to the left and right,

respectively, and they are approaching each other. In panel 5, at 𝜔 = 2.05, the second

saddle-node bifurcation has been reached, and the two fixed points coalesce. Panel 6 then
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shows the trajectories after the second saddle-node bifurcation.

Some information about the periodic whirling orbits can be gleaned from Eqns. (6.16).

These equations have a rectangular “trapping region” [35] bounded by 𝑎2
𝑚𝑖𝑛

= −4𝑐0 − 2𝑐1

and 𝑎2
𝑚𝑎𝑥 = −4𝑐0 + 2𝑐1. This is shown as the gray shaded area in the top panel. When

𝜔 = 1.93 and 𝜔 = 2.055 (before and after the saddle-node bifurcations), there are no

fixed points in the trapping region, and therefore the trapping region contains a periodic

(whirling) orbit bounded by 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 . This is consistent with Fig. 6.2 and Fig. 6.4,

where the response amplitudes are trapped in the range [
√

2,
√

6].

Let us examine the temporal characteristics of the whirling orbit. The second term of

Eqns. (6.16) is a differential equation for 𝛾 which is independent of 𝑎. Depending on 𝑐1

and 𝜎, there can be a range of 𝛾 for which its phase flow is fast, and a range that is slow. In

the lower part of Fig. 6.4, in panel 1 (negative 𝜎) the slow interval is −𝜋 < 𝛾 < 0, while in

panel 2 (positive 𝜎) the slow interval is 0 < 𝛾 < 𝜋. In both cases, the 𝛾 flow is fast to 𝑎𝑚𝑎𝑥

and slow to 𝑎𝑚𝑖𝑛, somewhat like a relaxation oscillation. This can be seen in Fig. 6.2, for

the cases of 𝜔 = 1.93 and 𝜔 = 2.055, where the response amplitudes decrease slowly to

𝑎 =
√

2, and increase quickly to the maximum amplitude near 𝑎 =
√

6.

The second term of Eqns. (6.16) is independent of 𝑎 and is separable. It can be

integrated to obtain 𝑇1 as a function of 𝛾. For example, when 𝜎 > 0, a cycle is completed

from 𝛾 = −𝜋 to 𝛾 = 𝜋. These conditions can be used to determine the integration constants.

As a result, and accounting for 𝑇1 = 𝜖𝑡, the period of whirling is

𝑇𝑒𝑠𝑡 =
2𝜋𝜖

𝜎
√︁

1 − (𝑐1/2𝜎)2
, (6.20)

which is an estimate, since the slow flow (6.16) was obtained through an asymptotic

perturbation expansion. Using this expression, the period of beating of the solutions

depicted in Fig. 6.2 is 𝑇𝑒𝑠𝑡 = 128 s compared to the observed 𝑇 = 135 s for the case of

𝜔 = 1.93, and 𝑇𝑒𝑠𝑡 = 225 s compared to the observed 𝑇 = 274 s for the case of 𝜔 = 2.055.
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Since 2𝛽 = 𝜎𝑇1 − 𝛾, the leading-order solution is

𝑥0 = 𝑎(𝑇1) cos(𝜔𝑛𝑇0 + 𝛽(𝑇1)) = 𝑎(𝑇1) cos(1
2
(𝜔𝑇0 − 𝛾(𝑇1)). (6.21)

Thus, at subharmonic resonance, the response has a reference frequency at half the forcing

frequency, with amplitude and phase fluctuations. When 1.95 < 𝜔 < 2.05 and there is a

stable fixed point in (𝑎, 𝛾), the steady-state solution has a fixed amplitude and phase, and

is phase locked. Otherwise the oscillator is in phase drift: when 𝜔 < 1.95 the decreasing

phase whirl decreases the mean frequency, and when 𝜔 > 2.05 the increasing phase

whirl increases the mean frequency, by an estimated amount 2𝜋/𝑇𝑒𝑠𝑡 , while the amplitude

fluctuates.

6.2.3 Comments

We have only detected a subharmonic resonance with the perturbation analysis of the

system with no external forcing. The first-order perturbation analysis does not reveal a

primary or superharmonic resonance. Similarly, the frequency sweep (Fig. 6.1) does not

indicate such resonant activity for the simulated parameters.

6.3 Parametric and External Excitation
In this case, the external forcing terms 𝑓0 and 𝑓1 are nonzero. Similar to the previous

case, as a survey of the possible dynamics, Fig. 6.5 shows a frequency sweep from 𝜔 = 0

to beyond 𝜔 = 3𝜔𝑛, with parameters 𝜔𝑛 = 1, 𝑐0 = −1, 𝑐1 = 1, 𝑓0 = 0.2, and 𝑓1 = 1.

The sweep is based on numerical simulations and the steady-state response amplitudes are

plotted. The plot shows that significant quasi-periodic dynamics occur for a large range of

excitation frequencies with periodic windows around 𝜔 ≈ 𝜔𝑛, 𝜔 ≈ 2𝜔𝑛, and 𝜔 ≈ 3𝜔𝑛.

The largest responses occur near the primary resonance range and then for subharmonic

ones. Super harmonic resonances are not apparent.

In this case, the particular solution to the leading order Eqn. (6.4) is

𝑥0(𝑇0, 𝑇1) = Γ + 𝑖Λ 𝑒𝑖𝜔𝑇0 + 𝐴(𝑇1)𝑒𝑖𝜔𝑛𝑇0 − 𝑖Λ 𝑒−𝑖𝜔𝑇0 + 𝐴̄(𝑇1)𝑒−𝑖𝜔𝑛𝑇0 , (6.22)
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Figure 6.4: PDVDP with parametric excitation only. Top panel: steady-state
amplitude response versus excitation frequency close to the sub-harmonic resonance.
Bottom panel: amplitude-phase trajectories at different corresponding frequencies 𝜔 =

{1.93, 1.98, 2, 2.04, 2.05, 2.055}. The simulation parameters are 𝜖 = 0.1, 𝜔𝑛 = 1, 𝑐0 = −1,
and 𝑐1 = 1.

where Γ =
𝑓0
𝜔2
𝑛

and Λ =
𝑓1

2(𝜔2−𝜔2
𝑛)

. By plugging Eqn. (6.22) in Eqn. (6.5), we obtain

𝐷0
2𝑥1 + 𝑤𝑛

2𝑥1 = (−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Γ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛Λ

2𝐴)𝑒𝑖𝜔𝑛𝑇0

+(𝑐0𝜔Λ + 𝜔Γ2Λ + 𝜔Λ3 + 2𝜔𝐴𝐴̄Λ)𝑒𝑖𝜔𝑇0 + ( 𝑐1
2
𝜔Λ + 2𝑖𝜔ΓΛ2)𝑒2𝑖𝜔𝑇0

−𝜔Λ3 𝑒3𝑖𝜔𝑇0 + (𝑖 𝑐1
2
𝜔𝑛 𝐴̄ − 2𝜔𝑛ΛΓ 𝐴̄ + 2𝜔ΛΓ 𝐴̄)𝑒𝑖(𝜔−𝜔𝑛)𝑇0 (6.23)

+𝑖(2𝜔 − 𝜔𝑛)Λ2 𝐴̄𝑒𝑖(2𝜔−𝜔𝑛)𝑇0 + (𝜔 − 2𝜔𝑛)Λ𝐴̄2𝑒𝑖(𝜔−2𝜔𝑛)𝑇0 + c.c. + N.S.T..
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Figure 6.5: PDVDP with parametric and external excitation. The response amplitude
versus the excitation frequency 𝜔 where 𝑓0 = 0.2, 𝑓1 = 1, 𝜔𝑛 = 1, 𝜖 = 0.1, 𝑐0 = −1 and
𝑐1 = 1.

The right-hand-side of Eqn. (6.23) shows different cases of resonance; each can produce

different secular terms. The cases are nonresonant, subharmonic resonance of orders 1/2

and 1/3, and superharmonic resonance or order 2. Here we study the first two cases. The

third case (superharmonic of order 1/3) does not involve the parametric term, and others

turn out to be of minimal significance. For the first two cases, we obtain the following

solvability conditions.

• Non-Resonant:

−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Λ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛ΓΓ̄𝐴 = 0 (6.24)

• Primary Resonance (𝜔 = 𝜔𝑛):

−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Λ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛ΓΓ̄𝐴

−(𝑖𝑐0𝜔Γ + 𝑖𝜔Λ2Γ + 𝑖𝜔Γ2 Γ̄ + 2𝑖𝜔𝐴𝐴̄Γ + 𝑖(2𝜔 − 𝜔𝑛)Γ2 𝐴̄)𝑒𝑖𝜎𝑇1 = 0 (6.25)
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• Sub-harmonic Resonance of Order 1/2 (𝜔 = 2𝜔𝑛):

−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Λ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛ΓΓ̄𝐴

+(𝑖 𝑐1
2
𝜔𝑛 𝐴̄ + 2𝑖𝜔𝑛ΛΓ 𝐴̄ − 2𝑖𝜔Λ𝐴̄Γ)𝑒𝑖𝜎𝑇1 = 0 (6.26)

• Sub-harmonic Resonance of Order 1/3 (𝜔 = 3𝜔𝑛):

−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Λ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛ΓΓ̄𝐴

−𝑖(𝜔 − 2𝜔𝑛)Γ 𝐴̄2𝑒𝑖𝜎𝑇1 = 0 (6.27)

• Super-harmonic Resonance of Order 2 (𝜔 = 𝜔𝑛/2):

−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Λ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛ΓΓ̄𝐴

−(𝑖 𝑐1
2
𝜔Γ + 2𝑖𝜔ΛΓ2)𝑒𝑖𝜎𝑇1 = 0 (6.28)

• Super-harmonic Resonance of Order 3 (𝜔 = 𝜔𝑛/3):

−2𝑖𝜔𝑛𝐴
′ − 𝑖𝑐0𝜔𝑛𝐴 − 𝑖𝜔𝑛Λ

2𝐴 − 𝑖𝜔𝑛𝐴
2 𝐴̄ − 2𝑖𝜔𝑛ΓΓ̄𝐴 − 𝑖𝜔Γ3𝑒𝑖𝜎𝑇1 = 0 (6.29)

We do not treat primary resonance since, in such case, Γ becomes large and contradicts

the multiple-scales bookkeeping strategy. Primary resonance is to be analyzed with weak

excitation. The nonresonant case, subharmonic of order 1/3, and superharmonic of order

3 do not involve the parametric damping term. Thus, the behavior should be similar to the

forced van der Pol system. However, the subharmonic of order 1/2 and the superharmonic

of order 2 involve both van der Pol and parametric damping terms together. We first study

the nonresonant case and then focus on the case of sub-harmonic resonance of order 1/2.

Although Fig. 6.5 indicates the primary resonance as a prominent case when 𝜔 ≈ 𝜔𝑛,

the coefficient Λ becomes singular and would contradict the multiple-scales bookkeeping

strategy. The analysis of primary resonance case requires weak excitation, as well as a

second-order perturbation analysis to capture the parametric term, as in [82]. This will be

analyzed in a separate study.
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6.3.1 Nonresonant Case

The solvability condition in Eqn. (6.24) is not affected by the parametric damping term and

hence the behavior is similar to the forced van der Pol equation [73, 88]. In this case, the

phase equation becomes 𝛽′ = 0, and hence the phase 𝛽 is constant and does not influence the

oscillation frequency. The amplitude equation yields the following steady-state solutions

𝑎 = 0, 𝑎 = 2
√︃
−𝑐0 − Γ2 − 2Λ2, (6.30)

where the zero solution is unstable and the nonzero solution exists and is stable when

Γ2 + 2Λ2 < −𝑐0. Since Γ2 + 2Λ2 > 0, a negative value of 𝑐0 is necessary (but not

sufficient) for nonzero 𝑎. If the above condition is not satisfied, then the trivial solution

𝑎 = 0 is stable.

Since the leading-order solution has the form

𝑥0 = Γ − 2Λ sin𝜔𝑇0 + 𝑎 cos(𝜔𝑛𝑇0 + 𝛽) (6.31)

when the condition Γ2 + 2Λ2 < −𝑐0 is satisfied, 𝑎 ≠ 0 and the response becomes

quasiperiodic. Otherwise, with sufficient increase in the excitation (Λ and Γ), 𝑎 is

suppressed and the response becomes periodic; known as quenching [73, 88].

The parametric terms affect the first-order correction, 𝑥1, in the approximate solution

𝑥(𝑡) = 𝑥0(𝑡0, 𝑇1) + 𝜖𝑥1(𝑇0, 𝑇1). In eliminating the secular terms, there are several

contributions of different frequency components, including 2𝜔, 𝜔 − 𝜔𝑛, 𝜔 + 𝜔𝑛, from

parametric excitation and van der Pol terms, and 2𝜔𝑛, 3𝜔𝑛, 3𝜔, 2𝜔−𝜔𝑛, 2𝜔+𝜔𝑛, 𝜔−2𝜔𝑛,

and 𝜔 + 2𝜔𝑛, from the van der Pol terms. Thus the first-order solution can contribute

two-frequency quasiperiodic effects, as the content of the total response has a linear

combination of two frequencies.

6.3.2 Sub-harmonic Resonance of Order 1/2

In this case, the excitation and natural frequency form the relation 𝜔 = 2𝜔𝑛 + 𝜖𝜎. We

see from the solvability condition in Eqn. (6.26) that in addition to the non-resonant
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secular terms in Eqn. (6.24), the parametric damping and forcing appear. We substitute

𝐴(𝑇1) = 1
2𝑎(𝑇1)𝑒𝑖𝛽(𝑇1) into the equation and let 𝛾 = 𝜎𝑇1 − 2𝛽. Then, the autonomous

coupled system of governing equations of the amplitude 𝑎 and phase 𝛾 becomes

𝑎′ + 1
8
𝑎3 + ( 𝑐0

2
+ 𝜔𝑛Γ

2

2
+ Λ2 − 𝑐1

4
cos 𝛾 + ΓΛ(1 − 𝜔

𝜔𝑛
) sin 𝛾)𝑎 = 0,

(6.32)
𝑎𝛾′ − 𝑎𝜎 + 𝑐1

2
𝑎 sin 𝛾 + 2𝑎ΓΛ(1 − 𝜔

𝜔𝑛
) cos 𝛾 = 0.

The fixed points of Eqn. (6.32) are obtained in the steady-state case when 𝑎′ = 𝛾′ = 0,

which admits 𝑎 = 0 and a nontrivial solution. The equations for the nontrivial solution

take the form

𝐴1 sin 𝛾 + 𝐵1 cos 𝛾 = 𝐶1, 𝐴2 sin 𝛾 + 𝐵2 cos 𝛾 = 𝐶2,

where the coefficients 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, and 𝐶2 are functions of the parameters and the

amplitude 𝑎. By solving for sin 𝛾 and cos 𝛾, and using the trigonometric identities, we

remove the variable 𝛾 and form a parametric algebraic equation to obtain the steady-state

amplitude 𝑎 as,

𝑎4 + 8𝑎2(𝑐0 + 2Λ2 + Γ2) + 4
(
4𝑐0

2 + 16𝑐0Λ
2 − 𝑐1

2 + 16Λ4 + 4𝜎2
)

(6.33)

+16Γ2
(
2𝑐0 − 4Λ2 𝜔

𝜔𝑛
( 𝜔
𝜔𝑛

− 2) + Γ2
)
= 0.

Solving for 𝑎2 yields the steady-state response amplitude,

𝑎2 = −2
(
2Γ2𝜔𝑛 + 2𝑐0𝜔𝑛 + 4Λ2𝜔𝑛 ± ΓΛ

√︄
𝑐12 − 4𝜎2

Γ2Λ2 + 16(𝜔 − 𝜔𝑛)2
𝜔𝑛

2

)
(6.34)

which is valid if the square root in the solution is real, and if 𝑎2 ≥ 0. The first criterion

reduces to 4𝜎2 < 𝑐2
1 + 16Γ2Λ2, when using 𝜔 − 𝜔𝑛 ≈ 𝜔𝑛. Thus the frequency range of

fixed amplitude solutions increases with 𝑐1, 𝑓0, and 𝑓1.

Based on Eqn. (6.22) and the definition of 𝛾, the leading order solution takes the form

𝑥0 = Γ − 2Λ sin(𝜔𝑇0) + 𝑎 cos(𝜔
2
𝑇0 − 𝛾

2
). (6.35)
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𝑓0 = 0.2 𝑓0 = 0.4 𝑓0 = 0.6

Figure 6.6: PDVDP with parametric and external excitation in the case of sub-harmonic
resonance where 𝑐0 = −1 and 𝑓1 = 1. The three plotted curves correspond to 𝑐1 =

{0.2, 0.5, 1}, and the panels are for 𝑓0 = {0.2, 0.4, 0.6}. Solid and dotted curves are stable
and unstable branches.

For the case when 𝑎 and 𝛾 are fixed and stable, there is a periodic (phase locked) response

of fundamental frequency 𝜔/2. When a steady-state solution 𝑎 does not exist, the response

is in phase drift, and is quasiperiodic.

Figure 6.6 shows the steady-state response amplitude versus the excitation frequency

for small values of detuning parameter, when 𝜖 = 0.1 and −𝜎0 < 𝜎 < 𝜎0. Note that

these figures show the amplitude 𝑎 of one term in Eqn. (6.35). The phase 𝛾 would affect

peak-to-peak amplitudes. The mean damping and periodic forcing are set to be constant,

𝑐0 = −1 and 𝑓1 = 1, while different values of 𝑐1 = {0.2, 0.5, 1} produce different ellipses.

The larger values of 𝑐1 are associated with the larger ellipses. We see that as the constant

forcing term 𝑓0 is varying between {0.2, 0.4, 0.6}, the ellipses are expanding and the limit

cycle amplitude increases. Note that the upper curves represent the stable response and the

lower curves are the unstable response. The numerical solutions in Fig. 6.7 demonstrate

that when 𝜔 = 0.12, the response is quasi-periodic. This is consistent with the leading

order solution presented in Eqn. (6.35). Like the unforced case, 𝜔 = 1.93 and 𝜔 = 2.055

are the edge points around the subharmonic resonance. These two cases are expected to

have the nonresonant solutions.

Figure 8 shows the dynamics of the amplitude and phase for the forced excitation,

represented by equations (6.32). The behavior is similar to the unforced case. For 𝜎 < 𝜎0,

a periodic whirling solution traveling from right to left, and for 𝜎 > 𝜎0 the whirling
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Figure 6.7: PDVDP with parametric and direct excitation: Time response (top row)
and phase portrait (bottom row) at different excitation frequencies where 𝑓0 = 0.2 and
𝑓1 = 1, 𝜔𝑛 = 1, 𝜖 = 0.1, 𝑐0 = −1 and 𝑐1 = 1.

solution travels to the right. Therefore, in the leading order solution the amplitude 𝑎 has a

periodic fluctuation, and the oscillator is quasi-periodic. If 4𝜎2 < 𝑐2
1+16Γ2Λ2 there exists

nonzero response amplitude and the amplitude falls into a trapping region [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥],

where solving for 𝑎′ ≤ 0 from the first term of Eqns.(6.32), 𝑎𝑚𝑖𝑛 = 1.27 and 𝑎𝑚𝑎𝑥 = 2.38.

These values are consistent with Fig. 6.8 and Fig. 6.7. The second term of Eqns. (6.16) is

used to find the time characteristics of the whirling orbit of the system with the external

excitation. For a complete cycle, from 𝛾 = −𝜋 to 𝛾 = 𝜋, 𝑇𝑒𝑠𝑡 is calculated. Considering

𝑇1 = 𝜖𝑡, the estimated period of whirling for the case of panel 6 in Fig. 6.8 is 𝑇𝑒𝑠𝑡 = 286.1

s compared to the observed 𝑇 = 241 s in Fig. 6.8.

By considering Eqn. (6.32), we can argue that if there are no fixed points in (𝑎, 𝛾),

we can expect a periodic whirling, where the leading order solution (6.4) includes a time

varying amplitude 𝑎 and phase 𝛾, and as such the response will be quasiperiodic. In

contrast, when there is a stable fixed point in (𝑎, 𝛾), the response becomes phase locked

and periodic. The subharmonic behavior of the parametric plus direct excitation is thus
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Figure 6.8: PDVDP with parametric and direct excitation. Amplitude-phase trajectories at
different corresponding frequencies 𝜔 = {1.93, 1.98, 2, 2.04, 2.05, 2.055}. The simulation
parameters are 𝜖 = 0.1, 𝜔𝑛 = 1, 𝑐0 = −1, and 𝑐1 = 1.

similar to that of the parametric excitation only, except that the solutions for the steady

amplitudes are complicated and distorted by the direct excitation terms 𝑓0 and 𝑓1.

6.3.3 Super-harmonic Resonance of Order 2

In this case, the excitation and natural frequency form the relation 2𝜔 ≈ 𝜔𝑛. Similar to

the sub-harmonic resonance, we see from the solvability condition in Eqn. (6.28) that in

addition to the non-resonant secular terms in Eqn. (6.24), the parametric damping and

forcing appear again. We substitute 𝐴(𝑇1) = 1
2𝑎(𝑇1)𝑒𝑖𝛽(𝑇1) into the equation and let

𝛾 = 𝜎𝑇1 − 𝛽. Then, the coupled system of governing equations of the amplitude 𝑎 and

phase 𝛾 becomes

−𝑎′ − 𝑎3

8
− 1

2
𝑎Γ2 − 𝑎𝑐0

2
− 𝑎Λ2 + 2ΓΛ2 𝜔

𝜔𝑛
cos(𝛾) + 1

2
𝑐1Λ

𝜔

𝜔𝑛
sin(𝛾) = 0,

(6.36)
−𝑎𝛾′ + 𝑎𝜎 − 2ΓΛ2 𝜔

𝜔𝑛
sin(𝛾) + 1

2
𝑐1Λ

𝜔

𝜔𝑛
cos(𝛾) = 0.
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Figure 6.9: PDVDP with parametric and external excitation. Steady-State response
amplitude versus the excitation frequency in the case of super-harmonic resonance where
𝑐0 = −1 and 𝑓1 = 1. The three plotted curves correspond to 𝑐1 = {0.2, 0.5, 1}, and the
panels are for 𝑓0 = {0, 0.4, 0.8}.

For the super-harmonic case the fixed points are found by setting 𝑎′ = 𝛾′ = 0 in Eqn. (6.37).

By taking the similar approach as in the sub-harmonic case, the parametric algebraic relation

can be obtained to solve for steady-state amplitude 𝑎,

𝑎2𝜔𝑛
2
(
𝑎2ΓΛ + 4Γ3Λ + 8ΓΛ3 + 4Γ𝑐0Λ − 2𝑐1𝜎

)2

Λ2Ω2 (
16Γ2Λ2 + 𝑐12)2 + (6.37)

𝑎2𝜔𝑛
2
(
𝑎2𝑐1 + 4

(
8ΓΛ𝜎 + 𝑐0𝑐1 + Γ2𝑐1 + 2𝑐1Λ

2
))2

16Λ2Ω2 (
16Γ2Λ2 + 𝑐12)2 − 1 = 0.

Figure 6.9 demonstrates the steady-state response amplitude for varying values of excitation

frequencies where 𝑐0 = −1, 𝑐1 = {0.2, 0.5, 1}, and 𝑓0 = {0, 0.4, 0.8}. Marching from the

outer curve to the inner curve the value of 𝑐1 is descending. Increasing 𝑓0 increases the

amplitude of the response such that the curves with lower values of 𝑐1 are expanded more.

6.4 Summary and Conclusion
In this paper we studied the resonance of a forced and unforced van der Pol equation with

parametric damping. Applications can include vertical-axis wind turbine blade vibration,

which can have parametric damping and van-der-pol type terms in simplified models. The

first-order method of multiple scales and numerical solutions were used.

The parametric damping with no external excitation demonstrated nonresonant and

subharmonic resonance cases, where the system shows an oscillatory quasi-periodic
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behavior in the former case. In the latter resonance case, we found the steady-state

amplitude versus the excitation frequency for different damping parameters. When 𝑐0 = −1

(negative linear damping as with the van der Pol oscillator), the resonant response amplitude

increases with the parametric damping 𝑐1. An increase in the mean value of damping 𝑐0,

however, decreases the response amplitude. The dynamics of the amplitude and phase

showed saddle-node bifurcations coinciding with phase locking, in which periodically

whirling amplitude and phase (quasiperiodic oscillations) were replaced with a fixed

steady-state amplitude and phase (periodic oscillations).

We then studied van der Pol with parametric and direct excitation. In the nonresonant

case the parametric damping term does not contribute in the solvability condition and

therefore it showed the same behavior as the forced van der Pol. The nonresonant system

can exhibit the quenching phenomenon when the excitation through the direct forcing is

sufficiently large.

The subharmonic resonance behavior was similar to that of the parametric excitation

without direct excitation, except that the direct excitation terms complicate and distort

the steady solutions. Increasing the parametric damping parameter, 𝑐1, increases the

steady-state amplitude, and the direct forcing, 𝑓0 and 𝑓1 deformed the ellipse.

In addition to the nonresonant and subharmonic resonance van der Pol with parametric

and direct excitation experienced superharmonic resonance. It was shown that the amplitude

of the response increases with 𝑐1, 𝑓0, and 𝑓1.

Our numerical studies showed the primary resonance as a dominant forced response

case. The analysis of this case requires further investigation that will be done as a subsequent

study with weak excitation. Based on previous studies on the cases with forcing and cyclic

stiffness [82], we expect that a second-order multiple-scales analysis should be considered

to correctly pull out the contribution of the parametric damping to the different resonance

cases.
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CHAPTER 7

MODAL ANALYSIS OF CURVED VERTICAL-AXIS DARRIEUS WIND
TURBINE BLADE

An assumed modes method is presented to analyse the curved beam with the simplified

equations of motion. The governing equations are presented in the line integral format,

therefore a numerical solution based on the curvilinear integral along the neutral line of

the curvilinear beam are carried out to solve the governing equations. The results for the

modal frequencies, normal modes and the deformed configurations of curved beam with

different boundary conditions (pin-pin and clamp-clamp) are obtained and compared with

the FE analysis performed in Abaqus and also those reported in literature.

7.1 Analysis
A Darrieus vertical axis wind turbine blade is modeled as a curved beam of length 2𝑆

and symmetric cross section. Figure 7.1 [51] shows, on the left, a schematic diagram of a

curved beam attached at both ends to the top and bottom of the tower, which is assumed to

be rigid. On the right of the figure is the magnified symmetric cross section. A coordinate

𝑠 is defined along the shear center of the beam, and has values of 𝑠 = −𝑆 at the base of

the tower, and 𝑠 = 𝑆 at the top of the tower. At the apex of the curved beam, we have

𝑠 = 0. The concentration of this study is the structural modal dynamics of the curved

beam with in-plane and out-of-plane vibration, where the blade experiences four coupled

deformations: 𝑢(𝑠, 𝑡) and 𝑣(𝑠, 𝑡) are flat-wise and edge-wise bending, respectively; 𝑤(𝑠, 𝑡)

is axial extension; and 𝜙(𝑠, 𝑡) is twist about the centroidal axis. Flatwise bending involves

deflections 𝑢 in the 𝑥3 direction shown in the right-hand figure, edgewise deflections 𝑣 are

in the 𝑦3 direction, and axial deformation 𝑤 is in the 𝑠 direction. (Coordinate 𝑠 coincides

with 𝑧3 not labeled in the figure.) Eight different coordinate systems are introduced to

describe the deformations of the curved beam. Figure 7.1 [51] illustrates some of these

coordinate systems attached to the blade before and after deformation. We will explain the
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Figure 7.1: Darrieus curved blade configuration and the cross section with the coordinate
systems [51].

dynamics of the curved beam extensively.

Undeformed Blade Let x𝐼 = (𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼 ) be the inertial coordinates where the

origin is at the midpoint of the tower. 𝑍𝐼 is attached to the rotor axis, 𝑋𝐼 is radial,

and 𝑌𝐼 is orthogonal to 𝑋𝐼 and 𝑍𝐼 to form a right-handed system, with the unit vectors

{e𝐼 } = (e𝑋𝐼 , e𝑌𝐼 , e𝑍𝐼 ). The coordinate system x0 = (𝑥0, 𝑦0, 𝑧0), with unit vectors

{e0} = (e𝑥0 , e𝑦0 , e𝑧0), is attached to the rotor and rotates with the rotor at the constant

rotational speed Ω. For example, the shear center of the midpoint of the undeformed,

rotating blade has coordinates (𝑥0, 𝑦0, 𝑧0) = (𝑅, 0, 0), where 𝑅 is the distance from the

origin to the apex of the blade. Then x0 = 𝑇3(𝜒)x𝐼 , where 𝑇3(𝜒) indicates a rotational

transformation about the third axis (𝑍𝐼 here) through and angle 𝜒 = Ω𝑡. (The subscript

“3" refers to the third axis.) Specifically,
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𝑇3(𝜒) =


cos 𝜒 − sin 𝜒 0

sin 𝜒 cos 𝜒 0

0 0 1


(7.1)

Let x1 = (𝑥1, 𝑦1, 𝑧1) be parallel to x0 but translated (in the rotating frame) to the shear

center of the undeformed blade at 𝑠, by the vector R0(𝑠). That is, R0 is the position of the

shear center of the cross section with relative to the rotor. The frame x1 has rotating unit

vectors e𝑥1 , e𝑦1 , e𝑧1 . Then we have x0 = x1 + R0.

We seek a coordinate system that aligns with the principle axes of the blade cross

section. We set (𝑥2, 𝑦2, 𝑧2) as the blade coordinate system after the (𝑥1, 𝑦1, 𝑧1) frame has

been rotated by an angle 𝜃 (𝑠) (of the undeformed blade arc) around the −𝑦1 axis. Then as

in Fig. 7.1, 𝑥2 and 𝑦2 sit at the blade cross section and 𝑧2 is tangent to the blade profile and

perpendicular to the blade cross section. The unit vectors are {e2} = (e𝑥2 , e𝑦2 , e𝑧2). Then

x2 = 𝑇2(−𝜃 (𝑠))x1. 𝑇2 also applies to orienting the basis vectors. Following a pre-twist 𝛾

in the blade (Fig. 7.1),

x3 = (𝑥3, 𝑦3, 𝑧3) is the coordinate system aligned with the principal axis of the blade

cross section. Then x3 = 𝑇3(𝛾(𝑠))x2 and the unit vectors are {e3} = (e𝑥3 , e𝑦3 , e𝑧3). If the

pre-twist angle (𝛾) is zero, the vector basis set {e3} is the same as {e2}.

The transformation from x1 to x3 is then x3 = 𝑇𝑢x1 = 𝑇3(𝛾(𝑠))𝑇2(−𝜃 (𝑠))x1. The

composite undeformed geometric transformation matrix 𝑇𝑢 has direction cosines, 𝑐𝑖 𝑗 , and

we could write

𝑇𝑢 (𝑠) =


𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33


=


cos 𝛾 sin 𝛾 0

− sin 𝛾 cos 𝛾 0

0 0 1




cos 𝜃 0 sin 𝜃

0 1 0

− sin 𝜃 0 cos 𝜃


(7.2)

Deformed Blade The configuration of the deformed blade is defined in new sets of

coordinate systems. Let (𝑥4, 𝑦4, 𝑧4), (𝑥5, 𝑦5, 𝑧5) and (𝑥6, 𝑦6, 𝑧6) be the coordinate systems
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in the deformed blade with a sequence of Euler rotations, which progress with 𝑠 along the

shear-center axis. From frames 3 to 6 we have x6 = 𝑇3(𝛽𝑧 (𝑠))𝑇1(𝛽𝑥 (𝑠))𝑇2(𝛽𝑦 (𝑠))x3 =

𝑇𝑑 (𝑠)x3. We can write

𝑇𝑑 (𝑠) =


cos 𝛽𝑧 sin 𝛽𝑧 0

− sin 𝛽𝑧 cos 𝛽𝑧 0

0 0 1




1 0 0

0 cos 𝛽𝑥 − sin 𝛽𝑥

0 sin 𝛽𝑥 cos 𝛽𝑥




cos 𝛽𝑦 0 − sin 𝛽𝑦

0 1 0

sin 𝛽𝑦 0 cos 𝛽𝑦


(7.3)

The net direction cosines of elements of 𝑇𝑑 depend on sines and cosines of the

deformation angles. The angles 𝛽𝑦 and 𝛽𝑥 are the rotation angles, around axes 𝑦3 and 𝑥4,

respectively, due to deformation. The torsion angle 𝛽𝑧 = ℵ + 𝜙 about 𝑧5 is the summation

of the “natural” torsion angle (ℵ) that occurs with bending, plus the shear-strain torsion

angle (𝜙). (Analogous to the contribution of bending and shear to the deflection angle in

a Timoshenko beam [66].) The natural torsion angle occurs when the shear stresses are

absent and the deformation coordinates are geometrically related. It can be shown that, for

small deflections,

sin 𝛽𝑥 (𝑠) ≈
𝜕𝑣(𝑠, 𝑡)

𝜕𝑠
, sin 𝛽𝑦 (𝑠) ≈

𝜕𝑢(𝑠, 𝑡)
𝜕𝑠

− 𝜕𝜃 (𝑠)
𝜕𝑠

𝑤(𝑠, 𝑡) (7.4)

cos 𝛽𝑥 (𝑠) ≈ 1 − 1
2

(
𝜕𝑣(𝑠, 𝑡)

𝜕𝑠

)2
, cos 𝛽𝑦 (𝑠) ≈ 1 − 1

2

(
𝜕𝑢(𝑠, 𝑡)

𝜕𝑠
− 𝜕𝜃 (𝑠)

𝜕𝑠
𝑤(𝑠, 𝑡)

)2

These and sin(𝛽𝑧 (𝑠, 𝑡)) ≈ 𝛽𝑧 (𝑠, 𝑡) ≈ ℵ+𝜙 and cos(𝛽𝑧 (𝑠, 𝑡)) ≈ 1− 1
2 𝛽𝑧 (𝑠, 𝑡)

2 ≈ 1− 1
2 (ℵ+𝜙)

2

contribute to matrix ( 7.3).

Figure 7.2 illustrates a curved beam with length 2𝑆 and an airfoil cross section. 𝑃0 and

𝑃1 locate material points in the cross section before and after deformation. The positions

to these points are r0 = R0 + 𝑥3e𝑥3 + 𝑦3e𝑦3 and r1 = R1 + 𝑥3e𝑥6 + 𝑦3e𝑦6 . The blade

cross section is assumed to be rigid and thus planar deformations are neglected. Therefore,

the warping effect will be excluded and 𝑥3 and 𝑦3 remain constant in the deformed blade

cross section. Recall that R0 is the vector from the origin to the elastic axis (shear center)

of the cross section before deformation and is defined as R0 = 𝑥0e𝑋0 + 𝑧0e𝑍0 . The
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(a) (b)

Figure 7.2: (𝑎) Curved beam model. Black is undeformed and blue is deformed beam.
(𝑏) Airfoil cross section. Left is the cross section of the undeformed and right is the cross
section of the deformed beam. Note that r0 = R0 + ®𝐶𝑃0 (not shown in part (b)).

position of the elastic axis of the cross section after deformation is R1 = R0 + ΔR, where

ΔR = 𝑢e𝑥3 + 𝑣e𝑦3 + 𝑤e𝑧3 is the deformation of the elastic axis, and is dependent on the

displacement variables. (Fig. 7.2 schematically shows the vectors in the undeformed and

deformed configurations of the blade).

Using the relationships between the different coordinate frames and the Euler angles

with the displacements (Eqn. (7.4)), we can write r0 and r1 terms of a single set of basis

vectors. We choose (e𝑥3 , e𝑦3 , e𝑧3). As such, following Kaza and Kvaternik [51], these
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vectors have the form,

r0 = R0 + 𝑥3e𝑥3 + 𝑦3e𝑦3 (7.5)

r1 = R0 + 𝑢e𝑥3 + 𝑣e𝑦3 + 𝑤e𝑧3 + 𝑥3e𝑥6 + 𝑦3e𝑦6 = 𝑟1𝑥e𝑥3 + 𝑟1𝑦e𝑦3 + 𝑟1𝑧e𝑧3

= R0 +
(
𝑥3 + +𝑢(𝑠, 𝑡) − 𝑦3

(
𝜙(𝑠, 𝑡) + 𝑣(𝑠, 𝑡)𝜃′(𝑠)

)
+ 𝑥3

(
− 1

2
(
𝜙(𝑠, 𝑡) + 𝑣(𝑠, 𝑡)𝜃′(𝑠)

)2

−1
2
(
− 𝑤(𝑠, 𝑡)𝜃′(𝑠) + 𝑢′(𝑠, 𝑡)

)2
)
+ 𝑦3(𝑤(𝑠, 𝑡)𝜃′(𝑠) − 𝑢′(𝑠, 𝑡))𝑣′(𝑠, 𝑡)

)
e𝑥3 +

(
𝑣(𝑠, 𝑡)

+𝑦3 + 𝑥3
(
𝜃′(𝑠)𝑣(𝑠, 𝑡) + 𝜙(𝑠, 𝑡)

)
+ 𝑦3

(
− 1

2
𝑣′(𝑠, 𝑡)2 − 1

2
(
𝜃′(𝑠)𝑣(𝑠, 𝑡) + 𝜙(𝑠, 𝑡)

)2 ) )
e𝑦3

+
(
𝑤(𝑠, 𝑡) + 𝑥3𝜃

′(𝑠)𝑤(𝑠, 𝑡) − 𝑥3𝑢
′(𝑠, 𝑡) − 𝑦3𝑣

′(𝑠, 𝑡) − 𝑥3𝑣
′(𝑠, 𝑡)

(
𝜃′(𝑠)𝑣(𝑠, 𝑡) + 𝜙(𝑠, 𝑡)

)
+𝑦3

(
𝑢′(𝑠, 𝑡) − 𝜃′(𝑠)𝑤(𝑠, 𝑡)

) (
𝜃′(𝑠)𝑣(𝑠, 𝑡) + 𝜙(𝑠, 𝑡)

) )
e𝑧3 (7.6)

Kaza and Kvaternik [51] had derived the equations of motion by transforming all the

coordinate systems to the coordinate system 6, (𝑥6, 𝑦6, 𝑧6), which introduced complicated

expressions in their derivations. In this work, however, we express r0 and r1 and the

subsequent quantities in the coordinate system 3, i.e., (𝑥3, 𝑦3, 𝑧3), by using the previously

defined transformation matrices. We approximated the trigonometric terms in Eqn. (7.3) up

to quadratic nonlinearity. Therefore, we obtain relatively non-complicated expressions to

describe the position vectors in coordinate system 3 (Eqns. (7.5) and (7.6)). For simplicity

we are henceforth dropping the subscript “3” on 𝑥3, 𝑦3, 𝑧3 terms and basis vectors in the

equations.

Energy Derivations We apply an energy method to derive the governing equations

of a curved beam under arbitrary deformations. r0 and r1 are the positions of an arbitrary

point in the airfoil cross section before and after deformation, respectively,

The strain and kinetic energies are defined in terms of deformations and their derivatives

with respect to the axis “𝑠" along the blade. The strain energy of the blade is described in

terms of Lagrangian strain terms. To calculate the Lagrangian strain components, Green’s
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strain formula [4, 25, 65] is applied using the differentials of r0 and r1, with respect to 𝑥, 𝑦,

and 𝑧, using equations (7.5) and (7.6), noting that 𝑑R0 = 0, leading to

𝑑r1 · 𝑑r1 − 𝑑r0 · 𝑑r0 = 2
[
𝑑𝑥 𝑑𝑦 𝑑𝑧

] [
𝜖𝑖 𝑗

] 
𝑑𝑥

𝑑𝑦

𝑑𝑧


, (7.7)

where [𝜖𝑖 𝑗 ] is the Lagrangian strain tensor consisting of Green’s strains. Using Eqns. (7.5)

and (7.6),

𝑑r0 =

(𝑑𝑟0𝑥 (𝑠)
𝑑𝑠

e𝑥 +
𝑑𝑟0𝑦 (𝑠)

𝑑𝑠
e𝑦 +

𝑑𝑟0𝑧 (𝑠)
𝑑𝑠

e𝑧
)
𝑑𝑠 + (7.8)(

𝑟0𝑥 (𝑠)
𝑑e𝑥
𝑑𝑠

+ 𝑟0𝑦 (𝑠)
𝑑e𝑦
𝑑𝑠

+ 𝑟0𝑧 (𝑠)
𝑑e𝑧
𝑑𝑠

)
𝑑𝑠 + 𝑑𝑥e𝑥 + 𝑑𝑦e𝑦

𝑑r1 =

(𝑑𝑟1𝑥 (𝑠)
𝑑𝑥

e𝑥 +
𝑑𝑟1𝑦 (𝑠)

𝑑𝑥
e𝑦 +

𝑑𝑟1𝑧 (𝑠)
𝑑𝑥

e𝑧
)
𝑑𝑥 +(𝑑𝑟1𝑥 (𝑠)

𝑑𝑦
e𝑥 +

𝑑𝑟1𝑦 (𝑠)
𝑑𝑦

e𝑦 +
𝑑𝑟1𝑧 (𝑠)

𝑑𝑦
e𝑧

)
𝑑𝑦 +(𝑑𝑟1𝑥 (𝑠)

𝑑𝑠
e𝑥 +

𝑑𝑟1𝑦 (𝑠)
𝑑𝑠

e𝑦 +
𝑑𝑟1𝑧 (𝑠)

𝑑𝑠
e𝑧 + 𝑟1𝑥 (𝑠)

𝑑e𝑥
𝑑𝑠

+ 𝑟1𝑦 (𝑠)
𝑑e𝑦
𝑑𝑠

+ 𝑟1𝑧 (𝑠)
𝑑e𝑧
𝑑𝑠

+ e𝑧
)
𝑑𝑠.

Here 𝑧 is for 𝑧3, and is locally aligned with 𝑠, such that 𝑑𝑧 = 𝑑𝑠. Also, since the cross

section is considered to be rigid, we have 𝑑𝑥 = 𝑑𝑦 = 0. In taking derivatives of the unit

vectors with respect to space, we use Ω𝑠 = (−𝜃′0 sin 𝛾)e𝑥 + (−𝜃′0 cos 𝛾)e𝑦 + (𝛾′)e𝑧, where

()′ = 𝑑 ()/𝑑𝑠. Then

𝑑e𝑥
𝑑𝑠

= Ω𝑠 × e𝑥 = 𝜃′ cos 𝛾𝑒𝑧 + 𝛾′e𝑦 (7.9)

𝑑e𝑦
𝑑𝑠

= Ω𝑠 × e𝑦 = −𝜃′ sin 𝛾e𝑧 − 𝛾′e𝑥
𝑑e𝑧
𝑑𝑠

= Ω𝑠 × e𝑧 = 𝜃′ sin 𝛾e𝑦 − 𝜃′ cos 𝛾e𝑥 .

We find the Lagrangian strain elements by applying Eqns. (7.8) and (7.9) to Eqn. (7.7).

On approximation, for the case that pretwist is zero (𝛾 = 0 and 𝛾′ = 0), when the torsional

shear strain is zero, 𝜖𝑧𝑥 = 𝜖𝑧𝑦 = 0, and 𝜙 ≡ 0 (thus 𝜙′ = 0) by definition. Then from
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Eqn. (7.10) we have ℵ′ = 𝑣′𝜃′, which defines the shearless natural torsion angle (implying

ℵ = ℵ0 +
∫
𝑣′(𝑠)𝜃′(𝑠)𝑑𝑠). ℵ is thus eliminated, and finally, the Lagrangian strains are

𝜖𝑧𝑥 = −1
2
𝑦𝜙′(𝑠, 𝑡) (7.10)

𝜖𝑧𝑦 =
1
2
𝑥𝜙′(𝑠, 𝑡)

𝜖𝑧𝑧 = (1 + 𝑥𝜃′(𝑠)) (𝑢(𝑠, 𝑡)𝜃′(𝑠) − 𝑦𝜙(𝑠, 𝑡)𝜃′(𝑠) − 𝑦𝑣(𝑠, 𝑡)𝜃′(𝑠2) + 𝑥𝑤(𝑠, 𝑡)𝜃′′(𝑠) +

𝑤′(𝑠, 𝑡) + 𝑥𝜃′(𝑠)𝑤′(𝑠, 𝑡) − 𝑥𝑢′′(𝑠, 𝑡) − 𝑦𝑣′′(𝑠, 𝑡)).

For a rigid cross section in the 𝑥, 𝑦 plane, a “lower-order" modeling assumption, 𝜖𝑥𝑥 =

𝜖𝑦𝑦 = 𝜖𝑥𝑦 = 0. The strain energy is obtained using

𝑉𝑠 =
1
2

∫ 𝑆

−𝑆

∫
𝐴
𝜎𝜖𝑑𝐴𝑑𝑠, (7.11)

where

𝜎 =

[
𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜏𝑦𝑧

]
𝜖𝑇 =

[
𝜖𝑥𝑥 𝜖𝑦𝑦 𝜖𝑧𝑧 𝛾𝑥𝑦 𝛾𝑥𝑧 𝛾𝑦𝑧

]
contain stress and strain elements, where 𝛾𝑖 𝑗 = 2𝜖𝑖 𝑗 . The 𝜖𝑖 𝑗 are the “Lagrangian strains”

and 𝛾𝑖 𝑗 are the “engineering shear strains” [51, 65].

For an isotropic material with linear elasticity, Hooke’s law states that 𝜎𝑖 𝑗 = 𝐸𝜖𝑖 𝑗 and

𝜏𝑖 𝑗 = 𝐺𝛾𝑖 𝑗 . Then

𝑉𝑠 =
1
2

∫ 𝑆

−𝑆

∫
𝐴
(𝐸𝜖2

𝑧𝑧 + 4𝐺 (𝜖2
𝑥𝑧 + 𝜖2

𝑧𝑦))𝑑𝐴𝑑𝑠, (7.12)

where 𝐸 is the Young’s modulus and 𝐺 is the shear modulus. We substituted Eq. (7.10)

into Eq. (7.12), and then used thin beam approximations to eliminate the 𝑑𝐴 integration.

For example the integration term
∫ 𝑆

−𝑆
∫
𝐴
𝑦2𝑧2

0𝜃
′(𝑠)6𝑑𝐴𝑑𝑠 =

∫ 𝑆

−𝑆 𝐼𝑥𝑧
2
0𝜃

′(𝑠)6𝑑𝑠 since 𝐼𝑥 =∫
𝐴
𝑦2𝑑𝐴. This is also part of the low-order modeling approximation.

The kinetic energy is

𝑇 =
1
2

∫ 𝑆

−𝑆

∫
𝐴
𝜌
𝑑r1
𝑑𝑡

· 𝑑r1
𝑑𝑡

𝑑𝐴𝑑𝑠, (7.13)
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where 𝑑r1/𝑑𝑡 is obtained from Eq. (7.6), ¤e 𝑗3 = 𝜔𝑇 ×e 𝑗3 , for 𝑗 = 𝑥, 𝑦, 𝑧, and ¤R0 = 𝜔𝑇 ×R0,

where R0 = (𝑥0 cos 𝜃 + 𝑧0 sin 𝜃)e𝑥3 + (𝑧0 cos 𝜃 − 𝑥0 sin 𝜃)e𝑧3 in the e3 system, and where

𝜔𝑇 is the total angular velocity vector of the rotor due to spin and other dynamic rotations

if applicable. For the special case of 𝜔𝑇 = Ωe𝑧0 , i.e. spin on a fixed platform, we have

¤R0 = 𝑥0Ωe𝑦0 .

Again using thin beam (“low-order") approximations eliminated the integration on 𝑑𝐴.

Writing r1 in terms of the displacement variables and using the beam cross sectional

properties leads to kinetic energy integrals in 𝑑𝑠 in terms of the displacement variables

and their derivatives. Thus we have the form 𝑉𝑠 =
∫ 𝑆

−𝑆 𝑉̂𝑠𝑑𝑠 and 𝑇𝑠 =
∫ 𝑆

−𝑆 𝑇𝑠𝑑𝑠, where the

strain energy density (𝑉̂𝑠) and kinetic energy density (𝑇𝑠) for the case of a fixed platform

(where 𝜔𝑇 = Ωe𝑧0) are expressed in Appendix 8.3 where we have kept expressions only

up to quadratic terms.

The distributed nonconservative force vector per unit length is denoted by f (𝑠, 𝑡), and

can accommodate damping and aeroelasticity. The nonconservative virtual work density

can be written as 𝛿𝑊̂ (𝑠, 𝑡) = f (𝑠, 𝑡) · 𝛿r1 where 𝛿r1 is the generalized virtual displacement

of any point in the domain.

Euler-Lagrange Equation for Continuous Systems, Boundary Value Problem

Hamilton’s principle is performed to obtain the governing equations of motion which

can be express in the form [67] ∫ 𝑡2

𝑡1
(𝛿𝑇 + 𝛿𝑊)𝑑𝑡 = 0, (7.14)

where 𝛿𝑦 = 0,−𝑆 ≤ 𝑠 ≤ 𝑆, at 𝑡 = 𝑡1, 𝑡2 and 𝑡1 and 𝑡2 are arbitrary times. Introducing the

energy densities into Eqn. (7.14) we obtain∫ 𝑡2

𝑡1

∫ 𝑆

−𝑆
(𝛿𝐿̂ + 𝛿𝑊̂𝑛𝑐)𝑑𝑠𝑑𝑡 = 0. (7.15)
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If the Lagrangian density has the form 𝐿̂ = 𝑇−𝑉̂ = 𝐿̂ (𝑦, 𝑦′, 𝑦′′, ¤𝑦, ¤𝑦′), then from Eqn. (7.15),

the Lagrange differential equation of motion for continuous systems [67] is obtained as

𝜕𝐿̂

𝜕𝑦
− 𝑑

𝑑𝑡

(𝜕𝐿̂
𝜕 ¤𝑦

)
− 𝑑

𝑑𝑠

( 𝜕𝐿̂
𝜕𝑦′

)
+ 𝑑2

𝑑𝑠2

( 𝜕𝐿̂
𝜕𝑦′′

)
+ 𝑑2

𝑑𝑠2

( 𝜕𝐿̂
𝜕 ¤𝑦′

)
+ 𝑓 = 0, (7.16)

where dots denote partial derivatives with respect to time and primes denote partial

derivatives with respect to 𝑠. We use 𝑢, 𝑣, 𝑤 and 𝜙 in place of 𝑦 in Eqn. (7.16) to

obtain the four partial differential equations.

In our problem the Lagrangian density is a function of 𝑢, 𝑣, 𝑤, and 𝜙, and their

temporal and spatial derivatives. As such, using the Euler-Lagrange equations for the

partial differential equations the resulting PDEs represent a uniform curved blade for

which the centroid and shear center coincide, in the absence of gravity and spin.

Discretization and Modal Analysis From this point we can apply the extended

Hamilton’s principal or the Lagrangian equations for continuous systems [67] to obtain

partial differential equations of motion, and the discretize the PDEs using a Galerkin

projection on “assumed odes” or chosen basis functions. Alternatively, we apply “assumed

modes” to the energy expressions. The continuous displacement variables are approximated

as linear combinations of admissible functions, 𝜓 𝑗 (𝑠), as

𝑢(𝑠, 𝑡) ≈
𝑁∑︁
𝑖=1

𝜓𝑢𝑖 (𝑠)𝑞𝑢𝑖 (𝑡), 𝑣(𝑠, 𝑡) ≈
𝑁∑︁
𝑖=1

𝜓𝑣𝑖 (𝑠)𝑞𝑣𝑖 (𝑡),

𝑤(𝑠, 𝑡) ≈
𝑁∑︁
𝑖=1

𝜓𝑤𝑖 (𝑠)𝑞𝑤𝑖 (𝑡), 𝜙(𝑠, 𝑡) ≈
𝑁∑︁
𝑖=1

𝜓𝜙𝑖 (𝑠)𝑞𝜙𝑖 (𝑡). (7.17)
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For the case where we use 𝑁 basis functions for each variable. In matrix form we have

y(𝑠, 𝑡) =



𝑢(𝑠, 𝑡)

𝑣(𝑠, 𝑡)

𝑤(𝑠, 𝑡)

𝜙(𝑠, 𝑡)


�



𝜓𝑇𝑢 q𝑢 (𝑡)

𝜓𝑇𝑣 q𝑣 (𝑡)

𝜓𝑇𝑤q𝑤 (𝑡)

𝜓𝑇
𝜙

q𝜙 (𝑡)


�



𝜓𝑇𝑢 0 0 0

0 𝜓𝑇𝑣 0 0

0 0 𝜓𝑇𝑤 0

0 0 0 𝜓𝑇
𝜙



©­­­­­­­­«

q𝑢 (𝑡)

q𝑣 (𝑡)

q𝑤 (𝑡)

q𝜙 (𝑡)

ª®®®®®®®®¬
= 𝜓q(𝑡).

(7.18)

where 𝜓 𝑗 are 1× 𝑁 matrices, and 𝚿(𝑠) is an 𝑀 ×𝑀𝑁 matrix, where 𝑀 = 4 is number

of continuous variables, and q is an 𝑀𝑁-vector of assumed modal coordinates.

Using Eqn. (7.18) in the energy expressions, the kinetic and potential energies have

the form 𝑇 = 1
2
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑚𝑖 𝑗 ¤𝑞𝑖 ¤𝑞 𝑗 and𝑉 = 1

2𝜆
2 ∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑘𝑖 𝑗𝑞𝑖𝑞 𝑗 . Standard Lagrange’s

equations are applied on these generalized coordinates. For nonconservative forces, the

generalized forces 𝑄𝑖 can be obtained from 𝛿𝑞𝑖 as 𝛿𝑊 =
∑
𝑖 𝛿𝑞𝑖

∫ 𝑆

−𝑆 𝑓 (𝑠, 𝑡)𝜓𝑖 (𝑠)𝑑𝑠 =∑
𝑖 𝛿𝑞𝑖𝑄𝑖. We apply the Lagrange’s equation to find the differential equations of motion in

modal coordinates 𝑞𝑢, 𝑞𝑣 , 𝑞𝑤 and 𝑞𝜙, which represent 𝑢, 𝑣, 𝑤 and 𝜙, as

(7.19)
M𝑢𝑢 M𝑢𝑣 M𝑢𝑤 M𝑢𝜙

M𝑣𝑢 M𝑣𝑣 M𝑣𝑤 M𝑣𝜙

M𝑤𝑢 M𝑤𝑣 M𝑤𝑤 M𝑤𝜙

M𝜙𝑢 M𝜙𝑣 M𝜙𝑤 M𝜙𝜙




¥q𝑢
¥q𝑣
¥q𝑤
¥q𝜙


+


K𝑢𝑢 K𝑢𝑣 K𝑢𝑤 K𝑢𝜙

K𝑣𝑢 K𝑣𝑣 K𝑣𝑤 K𝑣𝜙

K𝑤𝑢 K𝑤𝑣 K𝑤𝑤 K𝑤𝜙

K𝜙𝑢 K𝜙𝑣 K𝜙𝑤 K𝜙𝜙




q𝑢
q𝑣
q𝑤
q𝜙


=


Q𝑢

Q𝑣

Q𝑤

Q𝜙


or M¥q + K𝑞 = 0 for the case of stationary (non rotating) blade and small oscillations.

Matrices M and K are symmetric and have block-coupling properties. If we include rotation

we expect gyroscopic terms G ¤𝑞 from the kinetic energy and the addition of centripetal

terms in K. Nonlinear and parametric aeroelastic terms would be formulated through the

Q vector. For the case of large-strain nonlinearity, the strain expressions become very

complicated.

With these equations, analyses (linear modal, state-variable modal, nonlinear response)

can be conducted for the problem of interest (stationary, spinning, wind-excite, etc.).
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Figure 7.3: Half-circular slender beam with a rectangular cross section.

Table 7.1: Natural frequencies of a uniform half-circular curved beam with the pin-pin
boundary conditions (𝑟𝑎𝑑𝑠 ).

Mode Assumed modes method† Yang et al. 𝑎 Finite Element 𝑏

1 0.3414 0.134 0.2344
2 0.6877 − 0.6054
3 0.8381 0.645 0.7157
4 1.6082 1.403 1.4447
5 2.05353 − 1.7795
6 2.5548 2.344 2.3575
7 3.7489 3.5317 3.5042
8 4.4338 − 3.8138
9 5.1266 4.8998 4.8295

10 6.7522 6.515 6.3876

†Present Result. aRef. [118]. bAbaqus.

7.2 Modal Analysis and Behavior
We sketch the modal analysis process. For the fixed rotor, we take Q = 0 and seek

harmonic solutions of the form q 𝑗 = 𝑒
𝑖𝜔 𝑗 𝑡p 𝑗 which results in an eigenvalue problem (EVP)

of the form

(K − 𝜔2M)p = 0, (7.20)

where p is the eigenvector and P =
[
p1 p2 . . . p4𝑁

]
is the matrix of the eigenvectors.

Letting q = Pa(𝑡), then a(𝑡) is the modal coordinate vector that decouples the discretized
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q system. Substituting q into Eqn. (7.18), the deformation variables are represented as

y(𝑠, 𝑡) = 𝚿(𝑠)Pa(𝑡) in the new decoupled modal coordinates, a. So, the approximated

modal function vectors are the columns of the W(𝑠) = 𝚿(𝑠)P, which is an 𝑀 × 𝑀𝑁

matrix representing the normal modes of vibration (the approximated mode shapes). Each

column of W(𝑠) is a vector whose elements are functions representing the mode shapes of

the associated displacement variables, 𝑢, 𝑣, 𝑤, and 𝜙.

The assumed modes method is applied to a slender beam with a half circular profile

and a rectangular cross section. The 3D configuration and properties of the blade are

shown in Fig. 7.3. For a limited number of assumed modes the modal functions and modal

frequencies are obtained. A finite-element analysis (FEA) is performed using Abaqus. The

analyses are conducted for two different boundary conditions, pin-pin and clamp-clamp,

and the results are compared with Abaqus and with Yang et al. [118], the latter of which

only included in-plane deflections.

7.2.1 Modal Analysis of the Curved Beam with Pin-Pin Boundary Condition

The assumed modes method is applied to a uniform slender beam with circular geometry,

and both hinged-hinged and clamped-clamped boundary conditions. (“Hinged-hinged"

means that the in-plane flatwise flexure is pinned, but the out-of-plane edgewise flexure

has a clamped boundary condition, such as a single-axis hinge.) The axial and torsional

deformations are not considered “clamped", but rather “pinned", due to the lower order of

the associated PDEs. The trial functions are assumed to be a uniform straight beam mode

as follows

𝜓𝑢𝑖 = 𝜓𝑤𝑖 = 𝜓𝜙𝑖 = sin(𝑛𝜋
𝐿
)𝑠. (7.21)

𝜓𝑣𝑖 = − cos
(
𝜆𝑛

𝐿
𝑠

)
+ cosh

(
𝜆𝑛

𝐿
𝑠

)
+ (7.22)

(cosh𝜆𝑛 − cos𝜆𝑛) sin
(
𝜆𝑛
𝐿
𝑠

)
sinh𝜆𝑛 − sin𝜆𝑛

−
(cosh𝜆𝑛 − cos𝜆𝑛) sinh

(
𝜆𝑛
𝐿
𝑠

)
sinh𝜆𝑛 − sin𝜆𝑛
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(a) Mode one, flatwise. (b) Mode two, edgewise.

(c) Mode three, flatwise. (d) Mode four, flatwise.

Figure 7.4: The first four vibration mode shapes of a uniform circular curved beam with
pinned-pinned boundary conditions. Each mode is represented with three plots: the
slender-beam mode shape as a function of 𝑠 on the vertical axis, the slender-beam mode
shape shown about the undeformed curved-beam configuration, and the mode-shape about
the undeformed beam generated using Abaqus. Mode two is shown with an angled view
of the out-of-plane edgewise deflection.

The first 10 natural frequencies were obtained and compared with the FEA numerical

results, and results from Yang et al. [118] on the in-plane vibrations of a general curved

beam, in which they provided the partial differential equations (PDEs) of motion, and made

estimations of modal frequencies Comparing both models shows that although the PDEs

in Appendix D have a few extra terms compared to those of Yang et al. [118], the results

from models confirm one another. Table 7.1 shows the first 10 modal frequencies from

our modeling approach on the pinned-pinned case, results obtained by Ref. [118], and

numerical results by FEA. As shown in the table, the first modal frequency has significant

deviation among the three methods, and agreement improves as the modal frequencies

increase. For higher modes the modal frequencies of both methods converge and they have

an error < 3%.

118



The associated mode shapes for the first four modal frequencies are illustrated in

Fig. 7.4. The mode shapes are computed using W(𝑠) = 𝚿(𝑠)P as functions of the axial

variable 𝑠, and then are mapped onto the curved beam for visualization. Panels present the

modal functions versus the 𝑠 coordinate on the vertical axis (left plots), the mode shapes

mapped onto the curved beam (middle plots), and the FEA (Abaqus) results (right plots)

for the validation. The plots demonstrate close agreement between the assumed modes

method and the FEA results. Modes 1, 3, and 4 involve the flatwise bending and axial

extension, and mode 2 involves the edgewise bending and twist.

7.2.2 Modal Analysis of the Curved Beam with Clamped-Clamped Boundary Con-
dition

The assumed modes method is applied on a beam with clamped-clamped boundary

conditions where the trial function are assumed to be uniform straight beam mode, as

follows:

𝜓𝑤𝑖 = 𝜓𝜙𝑖 = sin(𝑛𝜋
𝐿
)𝑠. (7.23)

𝜓𝑢𝑖 = 𝜓𝑣𝑖 = − cos
(
𝜆𝑛

𝐿
𝑠

)
+ cosh

(
𝜆𝑛

𝐿
𝑠

)
+ (7.24)

(cosh𝜆𝑛 − cos𝜆𝑛) sin
(
𝜆𝑛
𝐿
𝑠

)
sinh𝜆𝑛 − sin𝜆𝑛

−
(cosh𝜆𝑛 − cos𝜆𝑛) sinh

(
𝜆𝑛
𝐿
𝑠

)
sinh𝜆𝑛 − sin𝜆𝑛

Application of basis functions with hyperbolic functions can be problematic and sensitive

to numerical instabilities, especially for higher modes. If such problems are encountered,

it is useful to use numerically stable representations of the functions.

Table 7.2 presents the first 10 modal frequencies using assumed modes method applied

to the thin-beam model and compares them with the frequencies acquired by results

published in Ref. [118] and the numerical results from FEA. Once again the three sets of

results are in good agreement. It also restates that for lower modal frequencies the assumed

modes method is more accurate.
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Table 7.2: Natural frequencies of a uniform half-circular curved beam with the
clamp-clamp boundary conditions (𝑟𝑎𝑑𝑠 ).

Mode Assumed modes method† Yang et al. 𝑎 Finite Element 𝑏

1 0.4615 0.3882 0.4504
2 0.6877 − 0.6167
3 1.0165 0.9353 0.9911
4 1.8884 1.8142 1.8114
5 2.0535 − 1.8404
6 2.899 2.8342 2.8235
7 4.1948 4.142 3.8791
8 4.4338 − 4.0817
9 5.6385 5.599 5.4771

10 7.3671 7.3456 6.8423

†Present Result. aRef. [118]. bAbaqus.

Figure 7.5 shows the first four mode shapes for the curved beam with clamped-clamped

boundary condition. The panels are comparing the original mode shapes, the mode shapes

mapped on the curved beam, and the FEA results and representing that the results confirms

each other. In modes 1, 3 and 4 the flatwise bending coupled with the axial extension are

dominant and in modes 2 the edgewise bending and twist are substantial.

7.3 Summary
In the interest of curved Darrieus wind-turbine blades, the governing equations of the

vibration of a curved slender beam were derived using fundamental deformation mechanics

under four coupled deformation variables: flatwise and edgewise bending, axial extension,

and twist about the shear center. In the curved configuration we described the position of

an arbitrary point on the cross section of the blade before and after deformation as r0 and

r1, respectively. Green’s strain formula was applied to the differential of r0 and r1 and the

Lagrangian strains were found. Thin beam approximations were employed to express the

strain and kinetic energies per unit length.

The assumed-modes method was applied to the energies, and the energy terms were
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(a) Mode one, flatwise. (b) Mode two, edgewise.

(c) Mode three, flatwise. (d) Mode four, flatwise.

Figure 7.5: The first four vibration mode shapes of a uniform circular curved beam with
clamped-clamped boundary condition. Each mode is represented with three plots: the
slender-beam mode shape as a function of 𝑠 on the vertical axis, the slender-beam mode
shape shown about the undeformed curved-beam configuration, and the mode-shape about
the undeformed beam generated using Abaqus. Mode two is shown with an angled view
of the out-of-plane edgewise deflection.

expressed in terms of the assumed modal coordinates. The Euler-Lagrange equation was

used to discretize the equations of motion. Implementing the modal analysis to these

equations, modal frequencies and mode shapes were found. This analysis was conducted

for pinned-pinned and clamped-clamped boundary conditions.

In order to uphold the developed thin-beam and assumed-modes method, a finite-element

analysis was applied on the beam with the same properties. The results obtained from the

assumed modes method were in agreement with those from FEA drawn by Abaqus.

The low-order (thin-beam) model and results of modal analysis will be helpful when

nonlinearities or applied loads are added, in which modal projections will facilitate dynamic

response analysis and parameter studies. The next studies will examine the effects of
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aeroelastic forces, gravitational loading, and spin loading and stiffening on the dynamic

responses and resonances of the system. Moreover, we will be poised to carry out the

analysis on different profile geometries, and expand to floating offshore Darrieus VAWTs.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion
In this research, we studied the vibration analysis of Darrieus wind turbine blades, a

vertical axis wind turbine with curved or straight blades. We examined the parametric

stability and response characteristics of the structure by solving its equations of motion.

We investigated the modal analysis of the curved beam and obtained the mode shapes and

modal frequencies. In chapter 2 a vibration model for an H-rotor/Giromill type VAWT

under bend and twist deflections was formulated and energy equations for an Eulerian beam

under transverse bend and twist deflections was obtained. The system was discretized using

reduced order modeling with single assumed mode for each deformation variable. We then

applied Lagrange’s equation on the assumed modal coordinates to obtain two coupled

differential equations of motion. The equations of motion involved external forces due

to aero-dynamic forces on blades. The aero-dynamic model was derived based on quasi

steady airfoil theory. Lift and drag forces and moments were formulated for an airfoil with

changing angle of attack, where stall effects were neglected. The formulas were simplified

to cubic order using Taylor series expansion. The resulting system had parametric and

direct excitation due to varying flow magnitude and direction relative to blade.

In order to conduct a simple numerical analysis, the system was linearized assuming

small deflections for bend and twist. Linearized equations of motion were derived for a

specific blade. Referring to Sandia 17m VAWT, a hypothetical Giromill blade was defined

for numerical analysis where natural frequencies of the blade for a non rotating system

were found. The initial simulations showed that Giromill undergoes large static deflections

if the blade length is too large (in the range of the egg-beater style Sandia 17-m reference

turbine) when operating at nominal speeds for the Sandia 17-m system. As such we

conducted a study of direct and parametric loads and static deflection components for a
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variety of blade lengths. Sample cyclic responses were also included. Indeed, the natural

frequency is dependent on the rotor speed. Given the parameters, the linearized model

has a critical rotor speed at which the natural frequency is reduced to zero, accompanied

by instability and unbounded static deflection. While this is linearized behavior, it clearly

shows a range of unacceptable parameters, and designs should be made such that structural

behavior is sound when operating at typical rotor speeds. The Giromill turbine must have

a blade length, or a stiffening system, to keep the natural frequency sufficiently high during

rotation.

In chapter 3, we followed up on chapter 2 to learn about the parametric excitation

in the system, through damping coefficient. The harmonic balance method combined

with Floquet theory was used to attain an analytical approximation to the response of the

system. We assumed a truncated Floquet solution and applied the harmonic balance, which

led to a relationship between Floquet exponents and the parameters. The exponents were

then used to formulate the initial condition responses and their frequency content. The

theoretical response of the system and the stability characteristics and their FFT plots were

compared with the numerical results and the consistency of the responses for different sets

of parameters were shown.

For the case when there was zero mean damping we captured a phenomenon called

“coexistence”. Coexistence has been recognized to occur when stability boundaries overlap

such that the instability wedge disappears. We looked at additional features of coexistence

and considered the effect of mean damping on coexistence. Addition of mean damping

disrupted the coexistence features, and we quantified how this happens.

In chapter 4, we focused on parametrically excited systems with two-harmonic parametric

excitation. The purpose of the work was to determine not only the stability regions but

also the characteristics of the responses. We used the Floquet theory combined with

harmonic balance to analyze our system. By extracting the Floquet exponents we obtained
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information about the stability criteria and the relationship between the excitation frequency

and the frequencies of the response.

Comparing analyses of ta wo-harmonic Mathieu equation with a standard Mathieu

equation showed that the boundaries of the subharmonic instability do not change visibly.

However, the primary and superharmonic wedges can have a remarkable change, either

shrinking or enlarging, depending on the phase of the second harmonic of excitation.

By increasing the truncation order we captured more stability tongues for lower values

of frequency. Stability diagrams as well as the response frequencies for two different

truncation numbers indicated the influence of the order of truncation. The range of

accuracy increases as the truncation 𝑛 increases. There may be a computational limit

on 𝑛, however. We applied the truncated Floquet series expansion to a system with

two-harmonic parametric damping and observed that the coexistence in single-harmonic

parametric damping turns into a tongue of instability when a second harmonic is added,

for the parameters studied.

In addition to aeroelastically induced parametric damping, it is known that aeroelastic

effects can cause self-excitation in blades. To represent this in a simplified way, the

aeroelastic self excitation was modeled with van-der-Pol-type nonlinearity. We studied the

combined effect of parametric excitation and van der Pol nonlinearity, as both can induce

instabilities and oscillations.

We studied the resonance of both a forced and unforced van der Pol equation with

parametric damping. The first-order method of multiple scales and numerical solutions

were used. The parametric damping with no external excitation demonstrated nonresonant

and subharmonic resonance cases, where the system shows an oscillatory quasi-periodic

behavior in the former case. In the latter resonance case, we found the steady-state

amplitude versus the excitation frequency for different damping parameters. When 𝑐0 = −1

(negative linear damping as with the van der Pol oscillator), the resonant response amplitude
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increases with the parametric damping 𝑐1. An increase in the mean value of damping 𝑐0,

however, decreases the response amplitude.

The dynamics of the amplitude and phase showed saddle-node bifurcations coinciding

with phase locking, in which periodically whirling amplitude and phase (quasiperiodic

oscillations) were replaced with a fixed steady-state amplitude and phase (periodic oscillations).

We then studied the van der Pol oscillator with both parametric and direct excitation.

In the nonresonant case the parametric damping term does not contribute in the solvability

condition and therefore it showed the same behavior as the forced van der Pol. The

nonresonant system can exhibit the quenching phenomenon when the excitation through

the direct forcing is sufficiently large.

The subharmonic resonance behavior was similar to that of the parametric excitation

without direct excitation, except that the direct excitation terms complicate and distort

the steady solutions. Increasing the parametric damping parameter, 𝑐1, increases the

steady-state amplitude, and the mean and cyclic direct forcing, 𝑓0 and 𝑓1, deformed the

ellipse.

In addition to the nonresonant and subharmonic resonance, van der Pol oscillator with

parametric and direct excitation experienced superharmonic resonance. It was shown that

the amplitude of the response increases with parametric damping and direct forcing.

We studied the modal analysis of a half-circular curved Darrieus VAWT. Assumed-modes

analysis was applied to find the modal frequencies and the mode shapes of the curved beam

with desired boundary conditions at both ends attached to a rigid tower. For a pin-pin

boundary condition, we used straight uniform beam modes as the assumed-modes. We

performed a numerical simulation in Abaqus for the curved blade to achieve the numerical

modal analysis. The theoretical frequency were compared with the numerical results

attained by the Abaqus. Yang et al. [118] derived the equations of motion of a half-circular

curved beam. Although our equations of motion have a few extra terms compared to Yang’s
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analysis, our assumed-modes analysis was consistent with their modal frequencies.

The analysis was repeated for the clamp-clamp boundary condition assuming straight

beam model as the assumed-modes. The modal frequencies and modes shapes where

obtained and verified by numerical results and also Yang’s model.

For both boundary conditions, our model provided more accurate modal frequencies

for lower frequencies, although for higher frequencies the results stayed quite close to the

numerical results. The animated mode shapes demonstrate node points which moves along

the blade. The lateral deflection united with the axial deflection could cause the periodic

shifting of the “node points” in the node points. The modal frequencies converged as

the number of assumed-modes increased and indicated that the higher frequencies require

greater number of assumed-modes.

8.2 Research Contribution
In the study on the straight bladed Giromill, we will show that spin softening effects

may be dangerous to the structure, and that aerodynamic effects may produce parametric

damping and stiffness. These findings prompt subsequent studies in this work.

Our work on parametric damping is one of few such studies. It provides an application

of the Floquet harmonic balance analysis method. We show effects of parametric damping

on free vibration and stability. We also encounter “coexistence”, and add some insight into

this phenomenon.

The studies on combined parametric damping and parametric stiffness are also new. The

analysis shows how these effects combine to influence stability and response characteristics.

The work on curved slender Darrieus blades is one few studies that analyze such

structures using a low-order beam-based modeling approach. The work is grounded in

fundamental mechanics of strain, and leads expressions of strain energy and kinetic energy,

which then generate either a partial differential equation model, or a assumed-mode set

of ordinary differential equations. Modal analysis of this model provides modes that can
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be used in reduced-order models for the eventual study of the system with spin effects,

aeroelastic excitation and floating-platform dynamics.

8.3 Ongoing and Future Work
Following the modal analysis in chapter 7, we will expand the analysis and will inquire

into implementation of aeroelastic and gravitational loading on the curved structure and

analyze the blade’s dynamics. We will then proceed from the stationary rotor to a spinning

rotor. Eventually the goal is to apply the assumed-modes beam-based method to a floating

VAWT with the complex dynamics, considering tipping, spinning and rotation of the

rotor. The model can be extended and investigate different blade profiles, either parabola,

troposkien, straight-circular-straight, etc. It is expected that the blade shape will contribute

to the stiffness of the structure and effect the modal responses.

Ongoing work includes more investigation on the dynamical systems with parametric

excitation, in both stiffness and damping terms, with single and higher harmonics. The

effect of relative amplitude and phase of the second harmonic, and more details on the

effect of multiple harmonics in systems with parametric damping is examined. Studying a

third harmonic (3𝜔) of excitation in place of the 2𝜔 term may also make sense for physical

applications.

For future work, vibration experiment could be designed to construct a system having

parametric stiffness. For this purpose a concentrated mass will be attached to a string.

One end of the string is clamped and the other end is attached to a shaker. The parametric

excitation by a shaker causes a parametric term in stiffness term (as with the very well

known second order differential equation, Mathieu’s equation). The response of the system

can be extracted and parametric estimation can be applied in order to obtain the parameters

in the system, e.g., the amplitude of the parametric stiffness.

Our numerical studies on the van der Pol oscillator with parametric damping showed the

primary resonance as a dominant forced response case. The analysis of this case requires
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further investigation that will be done as a subsequent study with weak excitation. Based on

previous studies on the cases with forcing and cyclic stiffness, we expect that a second-order

multiple-scales analysis should be considered to correctly pull out the contribution of the

parametric damping to the different resonance cases.
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APPENDIX

Euler Angles:

sin 𝛽𝑥 (𝑠) =
𝜕𝑣(𝑠, 𝑡)

𝜕𝑠
(8.1)

sin 𝛽𝑦 (𝑠) =
𝜕𝑢(𝑠, 𝑡)

𝜕𝑠
− 𝜕𝜃 (𝑠)

𝜕𝑠
𝑤(𝑠, 𝑡)

cos 𝛽𝑥 (𝑠) = 1 − 1
2

(
𝜕𝑣(𝑠, 𝑡)

𝜕𝑠

)2

cos 𝛽𝑦 (𝑠) = 1 − 1
2

(
𝜕𝑢(𝑠, 𝑡)

𝜕𝑠
− 𝜕𝜃 (𝑠)

𝜕𝑠
𝑤(𝑠, 𝑡)

)2

sin(𝛽𝑧 (𝑠, 𝑡)) = 𝛽𝑧 (𝑠, 𝑡)

cos(𝛽𝑧 (𝑠, 𝑡)) = 1 − 1
2
𝛽𝑧 (𝑠, 𝑡)2

Strain Components:

𝜖𝑧𝑥 =
1
2

(
−𝑦ℵ′(𝑠, 𝑡) + 𝑦𝜃′(𝑠)𝑣′(𝑠, 𝑡) − 𝑦𝜙′(𝑠, 𝑡)

)
(8.2)

𝜖𝑧𝑦 =
1
2

(
𝑥ℵ′(𝑠, 𝑡) − 𝑥𝜃′(𝑠)𝑣′(𝑠, 𝑡) + 𝑥𝜙′(𝑠, 𝑡)

)
𝜖𝑧𝑧 = (1 + 𝑥𝜃′(𝑠)) (−𝑦ℵ(𝑠, 𝑡)𝜃′(𝑠) + 𝑢(𝑠, 𝑡)𝜃′(𝑠) − 𝑦𝜙(𝑠, 𝑡)𝜃′(𝑠) + 𝑥𝑤(𝑠, 𝑡)𝜃′′(𝑠) +

𝑤′(𝑠, 𝑡) + 𝑥𝜃′(𝑠)𝑤′(𝑠, 𝑡) − 𝑥𝑢′′(𝑠, 𝑡) − 𝑦𝑣′′(𝑠, 𝑡))

The Expressions for Potential and Kinetic Energies:

𝑉̂ = 𝐴E
(
𝜃′(𝑠)𝑢(𝑠, 𝑡) + 𝑤′(𝑠, 𝑡)

)2
+ 𝐼𝑥 (E𝜃′(𝑠)2𝜙(𝑠, 𝑡)2

+2E𝜃′(𝑠)𝜙(𝑠, 𝑡)
(
𝑣′′(𝑠, 𝑡) + 𝜃′(𝑠)2𝑣(𝑠, 𝑡)

)
+2E𝜃′(𝑠)2𝑣(𝑠, 𝑡)𝑣′′(𝑠, 𝑡) + E𝑣′′(𝑠, 𝑡)2 + E𝜃′(𝑠)4𝑣(𝑠, 𝑡)2 + 𝐺𝜙′(𝑠, 𝑡)2)
+𝐼𝑦

(
− 6E𝜃′(𝑠)𝑢′′(𝑠, 𝑡)𝑤′(𝑠, 𝑡) + 2E𝜃′(𝑠)2𝑢(𝑠, 𝑡) (−2𝑢′′(𝑠, 𝑡) + 3𝜃′(𝑠)𝑤′(𝑠, 𝑡)

+2𝜃′′(𝑠)𝑤(𝑠, 𝑡)) + 2E𝜃′′(𝑠)𝑤(𝑠, 𝑡)
(
3𝜃′(𝑠)𝑤′(𝑠, 𝑡) − 𝑢′′(𝑠, 𝑡)

)
+ 𝐺𝜙′(𝑠, 𝑡)2

+E𝑢′′(𝑠, 𝑡)2 + E𝜃′(𝑠)4𝑢(𝑠, 𝑡)2 + 6E𝜃′(𝑠)2𝑤′(𝑠, 𝑡)2 + E𝜃′′(𝑠)2𝑤(𝑠, 𝑡)2
)

+E𝑝2𝜃
′(𝑠)2

(
− 𝑢′′(𝑠, 𝑡) + 𝜃′(𝑠)𝑤′(𝑠, 𝑡) + 𝜃′′(𝑠)𝑤(𝑠, 𝑡)

)2
(8.3)

+E𝑝7𝜃
′(𝑠)2

(
𝜃′(𝑠)𝜙(𝑠, 𝑡) + 𝑣′′(𝑠, 𝑡) + 𝜃′(𝑠)2𝑣(𝑠, 𝑡)

)2
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𝑇 = 𝑚

(
𝑥2

0Ω
2 + 2𝑥0

(
Ω cos(𝜃 (𝑠))𝑢(𝑠, 𝑡) −Ω sin(𝜃 (𝑠))𝑤(𝑠, 𝑡) + ¤𝑣(𝑠, 𝑡)

)
Ω

+
(
Ω cos(𝜃 (𝑠))𝑢(𝑠, 𝑡) −Ω sin(𝜃 (𝑠))𝑤(𝑠, 𝑡) + ¤𝑣(𝑠, 𝑡)

)2

+
(
Ω sin(𝜃 (𝑠))𝑣(𝑠, 𝑡) + ¤𝑤(𝑠, 𝑡)

)2
+

(
¤𝑢(𝑠, 𝑡) −Ω cos(𝜃 (𝑠))𝑣(𝑠, 𝑡)

)2
)

(8.4)

+𝐽𝑦

(
sin2(𝜃 (𝑠))𝜙(𝑠, 𝑡)2Ω2 + 1

2
𝑣(𝑠, 𝑡)2𝜃′(𝑠)2Ω2 − 1

2
cos(2𝜃 (𝑠))𝑣(𝑠, 𝑡)2𝜃′(𝑠)2Ω2

− cos(2𝜃 (𝑠))𝑤(𝑠, 𝑡)2𝜃′(𝑠)2Ω2 − cos(2𝜃 (𝑠))𝑢′(𝑠, 𝑡)2Ω2 + 1
2

cos(2𝜃 (𝑠))Ω2 + Ω2

2
+ sin(2𝜃 (𝑠))𝑢′(𝑠, 𝑡)Ω2 + sin(2𝜃 (𝑠))𝑣(𝑠, 𝑡)𝜃′(𝑠)𝑣′(𝑠, 𝑡)Ω2 + 2 sin(𝜃 (𝑠))𝜙′(𝑠, 𝑡)𝑢′(𝑠, 𝑡)Ω
+2 cos(𝜃 (𝑠))𝜃′(𝑠) ¤𝑣(𝑠, 𝑡)Ω + 2 sin(𝜃 (𝑠))𝑣(𝑠, 𝑡)𝜃′(𝑠)2 ¤𝑤(𝑠, 𝑡)Ω + 2 cos(𝜃 (𝑠))𝜙′(𝑠, 𝑡)Ω
+2 sin(𝜃 (𝑠))𝜃′(𝑠) ¤𝑣(𝑠, 𝑡)𝑢′(𝑠, 𝑡)Ω − 𝑤(𝑠, 𝑡)𝜃′(𝑠)

(
2 sin(𝜃 (𝑠))𝜙′(𝑠, 𝑡)

+2 sin(𝜃 (𝑠))𝜃′(𝑠) ¤𝑣(𝑠, 𝑡) +Ω

(
sin(2𝜃 (𝑠)) − 2 cos(2𝜃 (𝑠))𝑢′(𝑠, 𝑡)

))
Ω

+2 sin(𝜃 (𝑠))𝜙(𝑠, 𝑡)
(
Ω sin(𝜃 (𝑠))𝑣(𝑠, 𝑡)𝜃′(𝑠) + ¤𝑤(𝑠, 𝑡)𝜃′(𝑠) − ¤𝑢′(𝑠, 𝑡)

+Ω cos(𝜃 (𝑠))𝑣′(𝑠, 𝑡)
)
Ω − 2 sin(𝜃 (𝑠))𝑣(𝑠, 𝑡)𝜃′(𝑠) ¤𝑢′(𝑠, 𝑡)Ω + 𝜃′(𝑠)2 ¤𝑣(𝑠, 𝑡)2

+𝜃′(𝑠)2 ¤𝑤(𝑠, 𝑡)2 + 𝜙′(𝑠, 𝑡)2 + ¤𝑢′(𝑠, 𝑡)2 + 2𝜃′(𝑠) ¤𝑣(𝑠, 𝑡)𝜙′(𝑠, 𝑡) − 2𝜃′(𝑠) ¤𝑤(𝑠, 𝑡) ¤𝑢′(𝑠, 𝑡)
)

+𝐽𝑥

(
Ω2 cos2(𝜃 (𝑠)) −Ω2𝑣′(𝑠, 𝑡)2 cos2(𝜃 (𝑠)) + 2Ω𝜃′(𝑠) ¤𝑣(𝑠, 𝑡) cos(𝜃 (𝑠))

+2Ω𝜙′(𝑠, 𝑡) cos(𝜃 (𝑠)) − 2Ω𝜃′(𝑠) ¤𝑤(𝑠, 𝑡)𝑣′(𝑠, 𝑡) cos(𝜃 (𝑠)) + 2Ω𝑣′(𝑠, 𝑡) ¤𝑢′(𝑠, 𝑡) cos(𝜃 (𝑠))
−2Ω𝑤(𝑠, 𝑡)𝜃′(𝑠) ¤𝑣′(𝑠, 𝑡) cos(𝜃 (𝑠)) + 2Ω𝑢′(𝑠, 𝑡) ¤𝑣′(𝑠, 𝑡) cos(𝜃 (𝑠)) +Ω2 sin2(𝜃 (𝑠))
−Ω2 sin2(𝜃 (𝑠))𝜙(𝑠, 𝑡)2 −Ω2 sin2(𝜃 (𝑠))𝑣(𝑠, 𝑡)2𝜃′(𝑠)2 + 𝜃′(𝑠)2 ¤𝑣(𝑠, 𝑡)2 + 𝜙′(𝑠, 𝑡)2

+¤𝑣′(𝑠, 𝑡)2 − 2Ω sin(𝜃 (𝑠))𝑤(𝑠, 𝑡)𝜃′(𝑠)2 ¤𝑣(𝑠, 𝑡) − 2Ω sin(𝜃 (𝑠))𝑤(𝑠, 𝑡)𝜃′(𝑠)𝜙′(𝑠, 𝑡)
+2𝜃′(𝑠) ¤𝑣(𝑠, 𝑡)𝜙′(𝑠, 𝑡) + 2Ω sin(𝜃 (𝑠))𝜃′(𝑠) ¤𝑣(𝑠, 𝑡)𝑢′(𝑠, 𝑡) + 2Ω sin(𝜃 (𝑠))𝜙′(𝑠, 𝑡)𝑢′(𝑠, 𝑡)
−2Ω sin(𝜃 (𝑠))𝑣(𝑠, 𝑡)𝜃′(𝑠)

(
𝜃′(𝑠) ¤𝑤(𝑠, 𝑡) +Ω cos(𝜃 (𝑠))𝑣′(𝑠, 𝑡) − ¤𝑢′(𝑠, 𝑡)

)
−2Ω sin(𝜃 (𝑠))𝜙(𝑠, 𝑡)

(
Ω sin(𝜃 (𝑠))𝑣(𝑠, 𝑡)𝜃′(𝑠) + ¤𝑤′(𝑠, 𝑡)𝜃′(𝑠)

+Ω cos(𝜃 (𝑠))𝑣′(𝑠, 𝑡) − ¤𝑢′(𝑠, 𝑡)
)
− 2Ω sin(𝜃 (𝑠)) ¤𝑣′(𝑠, 𝑡)

)

140


	Introduction
	Background
	VAWs versus HAWTs
	Motivation and Overview
	Research Outline

	VIBRATION ANALYSIS OF H-Rotor/Giromill WIND TURBINE BLADES
	Reduced Order Modeling
	Aeroelastic Modeling
	Linearization
	Numerical Analysis and Simulation
	Conclusion

	A Floquet-based analysis of parametric excitation through the damping coefficient
	Floquet Theory
	Oscillator with Parametric Damping
	Results
	Conclusion

	Response characteristics of systems with combined parametric excitation
	Analysis
	Application to Two-harmonic Mathieu
	Results
	A System with Two-harmonic Parametric Damping
	Conclusion

	Response characteristics of systems with parametric excitation through damping and stiffness
	Analysis
	Application to System with Combined Parametric Excitation
	Results
	Conclusion

	Resonances of a Forced van der Pol Equation with Parametric Damping
	Perturbation Analysis: Method of Multiple-Scales
	Parametric Excitation without External Excitation
	Parametric and External Excitation
	Summary and Conclusion

	MODAL ANALYSIS OF CURVED VERTICAL-AXIS DARRIEUS WIND TURBINE BLADE
	Analysis
	Modal Analysis and Behavior
	Summary

	Conclusion and Future Work
	Conclusion
	Research Contribution
	Ongoing and Future Work

	Bibliography
	Appendix

