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ABSTRACT

There is an urgent need to address challenges with environmental degradation and climate
change in our agricultural landscapes, and the solution may lie with soil microbes. The soil microbes
living in close association with plant roots, in the rhizosphere, play a central role in nutrient cycling,
carbon sequestration, and plant growth and, therefore have significant promise for agriculture.
Compared to annual crops, perennial cropping systems, such as those used for cellulosic bioenergy, do
more for addressing carbon sequestration and soil health. However, to harness the benefits of microbes
in these systems, we need to first understand the primary factors impacting their assembly. Many
studies show microbial assembly is largely mediated by the plant host, but these studies often focus on
isolated plants, and do not consider how neighboring plant interactions may also alter microbiome
assembly. Furthermore, for soil biology to be an agricultural solution it is also essential that their
benefits are clear and align with farmers’ management goals. Studies show that farmers value soil
biology and soil health more broadly, but how this guides their management decisions is unknown. To
this end, in my dissertation, | use microbial ecology (Chapters 1-3) and social science (Chapter 4), to
investigate how plant-microbial interactions and farmer perspectives can be harnessed for sustainable
agriculture.

In my first three chapters | examine how switchgrass (Panicum virgatum L.), a candidate
bioenergy crop, mediates the assembly of its root and rhizosphere microbiome, considering two factors:
genotype and neighborhood context. In Chapter 1 | asked if, like plant species, plant genotypes also
associate with distinct microbiomes. Using an established field experiment with twelve mature
switchgrass cultivars, | found that genotypes have subtle, though significant effects on their rhizosphere
microbiomes, and that root traits contribute to this variation. Next, in Chapters 2 and 3, | asked if and
how a host plant’s microbiome changes with different neighbor plants. To do this, | used two different
greenhouse experiments where a focal switchgrass plant was neighbored by different species. In
Chapter 2, | show that neighbor identity explains 21% of the variation in the focal plant’s rhizosphere
community. Changes in the focal plant’s root exudates, as well as spillover of microbes from a larger,
more competitive neighbor, contributed to the microbiome shifts. In Chapter 3, | disentangle the
relative role of microbial spillover versus the host plant in mediating the previously observed
neighborhood effects by using specialized plant growth systems called rhizoboxes with root barriers.
Here, neighbor identity altered the root microbiomes, but not rhizosphere communities, which also did
not differ among the plant species. These results suggest that the host plant does play a role in

mediating neighborhood effects in the roots, but shifts in the rhizosphere depend upon each neighbor



species harboring a distinct microbiome in the first place. My first three chapters show that there is not
one switchgrass microbiome, and that microbial assembly is influenced by plant genotype and
neighborhood context. Both factors should be considered as we seek to understand plant-microbial
studies in natural settings.

Finally, in Chapter Four, | ask how farmers perceive, evaluate, and understand soil health. Using
surveys and interviews | found that Michigan farmers have a complex understanding of soil health, and
that soil biology is a top consideration, but that it is challenging for farmers to link this knowledge to
management decisions. The interviews also revealed several salient research and outreach
opportunities that could help farmers more intentionally fit soil health into their management decisions,
such as identifying faster-responding indicators of soil biological health or discussing soil health in terms
that resonate with farmers’ mental models. Altogether, my dissertation shows how mechanistic studies
and farmer perspectives each provide novel insights for the potential role of soil biology in sustainable

agriculture.
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INTRODUCTION
There is an urgent need to transform our agricultural landscape to reduce environmental harm

and mitigate climate change, and recent studies suggest that the solution lies with the soil (Lal, 2004;
Chaparro et al., 2012). The soil provides critical ecosystem services, such as nutrient cycling, carbon
sequestration, and water infiltration (Wall et al., 2012). However, these services vary across cropping
systems and recent studies suggest that, compared to annual row crop systems, perennial crops planted
for cellulosic bioenergy have greater potential for sequestering greenhouse gases and building soil
carbon (Gelfand et al., 2013; Robertson et al., 2017; McGowan et al., 2019). Studies suggest that the
positive effect of perennials on ecosystem services is in part due to their deep rooting systems (Lemus
and Lal, 2005), as well as associations with beneficial microbiomes (Hestrin et al., 2021). The soil
microbes living in close association with plant roots, in the rhizosphere, play a particularly important
role in nutrient cycling, carbon sequestration, and even plant growth (Philippot et al., 2009; Berendsen
et al., 2012; Chaparro et al., 2012). However, the ability to harness the potential of these microbes in
agricultural landscapes, demands an understanding of their assembly, as well as farmer perceptions of
their dynamics and role in agriculture.

Plant hosts play a primary role in the assembly of rhizosphere communities, in part through
secreting species-specific signals in the form of root exudates (Berg and Smalla, 2009), but many other
factors also impact the rhizosphere and it can be challenging to determine the relative role of the host
plant amidst this complexity. For instance, the initial pool of microbes in the bulk soil (Vieira et al.,
2019), changes in abiotic conditions (Fierer et al., 2007; Naylor, 2017), and even signals exchanged
between interacting plants (Chen et al., 2020) can alter microbial community structure. Because of this
complexity, many studies on plant-microbial interactions use simplified systems, whereby a single plant
species is grown in controlled conditions. Even when studies do move to the field, they often ignore
important factors that may influence microbial assembly, such as differences in neighborhood context.
Plant neighbors have been shown to alter a host plant’s microbial community (Mummey et al., 2005;
Hausmann and Hawkes, 2009; Hortal et al., 2017a; Mony et al., 2021), but the effect can be weak
compared to other factors (Horn et al., 2017; Vieira et al., 2019), and the role of the host plant in
mediating these changes is unknown. In agricultural systems, plants do not grow in isolation and,
therefore, investigating the processes that mediate microbial assembly in more complex environments,
like with different plant neighbors, is a critical step to being able to harness the benefits of soil microbes

on-farm.



Even though scientists may identify beneficial plant-microbial interactions that could increase
plant growth or resiliency, farmers have the ultimate power for deciding how soils are managed.
Farmers weigh many factors, such as economic risk and social pressure, when deciding how to manage
their land (Carlisle, 2016; Prokopy et al., 2019), but little is known about how their perspectives of the
soil itself informs their management decisions. Previous interviews with farmers show that many
identify as stewards of the soil (Roesch-McNally et al., 2018), and that they value soil biology (Romig et
al., 1995; Irvine et al., 2023), but that they are also skeptical of new microbial products (Doll et al.,
2020). Therefore, deeper studies of farmers’ perspectives on, as well as management of, soil health and
soil biology could help inform how scientific studies on plant-microbial interactions are already
implemented, or could be integrated, on-farm.

To fill these gaps, | address two broad questions in my dissertation. First, to what degree do
plant hosts mediate rhizosphere assembly in complex environments, including in those with different
plant neighbors? And second, how do farmers perceive and manage for soil health? | use an
interdisciplinary approach to address these questions, examining how plant-microbial interactions
(Chapters 1-3) and farmers perspectives (Chapter 4) can inform the potential role of soil biology in
sustainable agriculture.

In my first three chapters, | investigate the degree to which a host plant, switchgrass (Panicum
virgatum L.), mediates the assembly of its root and rhizosphere microbiomes. Switchgrass is a native
tallgrass prairie species, as well as a candidate cellulosic bioenergy crop (McLaughlin and Kszos, 2005).
Studies suggest that microbial communities contribute to its feasibility as a bioenergy crop (Hestrin et
al., 2021), including its ability to grow in less-fertile, drought-prone soils that do not compete for food
production (Gelfand et al., 2013). For instance, free-living nitrogen fixers may increase switchgrass’s
ability to access nutrients (Roley et al., 2018, 2019) and fungal endophytes can increase its resistance to
drought stress (Ghimire et al., 2009; Ghimire and Craven, 2011). It is also possible that these microbes
contribute to the wide genotypic variability observed in switchgrass yields and ability to tolerate stress
(Casler et al., 2017; Stahlheber et al., 2020). If so, then understanding their assembly could also help
inform genotype-specific breeding programs. Furthermore, microbial interactions are also suggested to
contribute to variation in soil carbon accrual in switchgrass cropping systems (Tiemann and Grandy,
2015; Kravchenko et al., 2019). For instance, carbon accumulation is often greater in diverse perennial
polycultures than in monocultures (Sprunger and Robertson, 2018; Yang et al., 2019), perhaps because
interplant carbon transfer, a process which can be mediated by microbial communities, differs among

different neighbor plants (Kravchenko et al., 2021). Switchgrass is cultivated in both monocultures and



diverse polycultures, but the degree to which plant neighbors influence switchgrass microbiome
assembly is unknown and needs elucidated.

Building on previous literature and gaps in our understanding of switchgrass microbiomes, |
examine how switchgrass mediates the assembly of its root and rhizosphere microbiome, considering
two factors: genotype and neighborhood context. In Chapter 1, | investigate the relative role of plant
genotype, as well as root traits, in structuring switchgrass rhizosphere and endosphere communities
using an established field experiment with twelve mature switchgrass cultivars (seven years
established). In Chapters 2 and 3, | examine how neighborhood context influences a host plant’s
microbiome assembly using two greenhouse experiments. In both studies, | explore how different
neighbor species impact a focal switchgrass plant’s microbiome and, if so, to what extent the host-plant
mediates these change through root exudates. In the second greenhouse study (Chapter 3), | used
rhizoboxes with root barriers and fine-scale sampling to more clearly differentiate the relative role of
the host- and neighbor-plants in mediating neighborhood effects. Together, the first three chapters
inform the degree to which switchgrass mediates the assembly of its microbiome and, furthermore if
plant-microbial studies on isolated plants can be used to predict assembly processes in more complex
growing contexts.

Finally, in Chapter 4, | work with Michigan row crop farmers to understand how their
perceptions of soil biology and, soil health more broadly, inform their management decisions. To do this,
| use surveys, interviews, and mental models to investigate how Michigan farmers perceive, evaluate,
and manage soil health. Though this work focuses on Michigan farmers, it provides broader
recommendations for research and outreach that could help farmers from many regions more
intentionally use soil health to guide management. In summary, my dissertation uses a novel,
interdisciplinary approach and reveals how mechanistic studies and farmer perceptions both play a role

in realizing the potential for soil biology to create a more sustainable agricultural landscape.



CHAPTER ONE: INTRASPECIFIC VARIABILITY IN ROOT TRATIS AND EDAPHIC CONDITIONS INFLUENCE
SOIL MICROBIOMES ACROSS 12 SWITCHGRASS CULTIVARS?!

ABSTRACT
Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are specific
to plant genotypes and, therefore, may contribute to intraspecific differences in plant growth and be a
promising target for plant breeding. Switchgrass (Panicum virgatum L.) is a potential bioenergy crop with
broad variation in yields and environmental responses; recent studies suggest that associations with
distinct microbiomes may contribute to variation in cultivar yields. We used a common garden
experiment to investigate variation in 12 mature switchgrass cultivar soil microbiomes and, further, to
examine how root traits and soil conditions influence microbiome structure. We found that average root
diameter varied up to 33% among cultivars and that they associated with distinct soil microbiomes.
Cultivar had a larger effect on the soil bacterial than fungal community, but both were strongly
influenced by soil properties. Root traits had a weaker effect on microbiome structure, but root length
contributed to variation in the fungal community. Unlike the soil communities, the root bacterial
communities did not group by cultivar, based on a subset of samples. Microbial biomass carbon and
nitrogen and the abundance of several dominant bacterial phyla varied between ecotypes, but overall
the differences in soil microbiomes were greater among cultivars than between ecotypes. Our findings
show that there is not one soil microbiome that applies to all switchgrass cultivars, or even to each
ecotype. These subtle but significant differences in root traits, microbial biomass, and the abundance of
certain soil bacteria could explain differences in cultivar yields and environmental responses.
INTRODUCTION

Plants associate with microbial communities that help them access resources and tolerate stress
(Pérez-Jaramillo et al., 2016; Jiang et al., 2017). Some microbial communities are associated with specific
plant genotypes (Emmett et al., 2017; Jiang et al., 2017; Pérez-Jaramillo et al., 2017; Adam et al., 2018)
and so have the potential to be targets of plant breeding programs and inform crop choices (Mueller
and Sachs, 2015; Busby et al., 2017). Switchgrass (Panicum virgatum L.), a leading candidate for low-
input bioenergy feedstock, exhibits broad phenotypic and genotypic variation that contribute to its

ability to tolerate a diverse range of environments (Yang et al., 2009; Casler et al., 2017). However,

! Originally published as: Ulbrich, T. C., Friesen, M. L., Roley, S. S., Tiemann, L. K., & Evans, S. E. (2021). Intraspecific
variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars.
Phytobiomes Journal, 5(1), 108-120. https://doi.org/10.1094/PBIOMES-12-19-0069-FI
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genotypic differences only explain roughly 30% of the variation in cultivar yield responses across
different regions, years, and fertilizer rates (Casler et al., 2019). Recent studies suggest that the
unexplained variability in cultivar yields and environmental responses may be driven in part by their
associations with distinct microbial communities (Rodrigues et al., 2017; Sawyer et al., 2019; Singer et
al., 2019a).

Switchgrass cultivars are broadly classified as upland and lowland ecotypes. Lowland ecotypes
originate from southern, warm and mesic regions, and upland ecotypes originate from northern, cold
and drier regions. Although there are distinct traits across ecotypes, such as earlier flowering and
senescence in upland cultivars (Casler, 2012), there is also physiological and phenotypic variation within
ecotypes, including in aboveground and belowground traits, drought tolerance, yields, and responses to
fertilizer (de Graaff et al., 2013; Aimar et al., 2014; Stahlheber et al., 2020). Multiple recent studies also
suggest that switchgrass cultivars belonging to upland and lowland ecotypes have distinct soil
microbiomes (Rodrigues et al., 2017; Emery et al., 2018; Revillini et al., 2019; Sawyer et al., 2019; Singer
et al., 2019a). However, most previous studies only focused on one or two of the most common
cultivars, making it hard to identify general patterns or to determine whether soil microbiomes vary
consistently by switchgrass ecotype. Further, with one notable exception (Emery et al. 2018), most
studies were conducted on young, immature plants even though switchgrass is a long-lived perennial
that reaches stand maturity and peak yields after three years. Given reported ontogenetic differences in
plants’ microbial communities (Chaparro et al., 2014; Zhalnina et al., 2018), it seems likely that young
and mature switchgrass plants will recruit distinct microbiomes that may have different effects on
growth or other aspects of plant health such as nutrient acquisition.

Root and soil microbiomes are influenced by plant traits and soil conditions (Fierer, 2017;
Saleem et al., 2018). Plants, particularly long-lived perennials, can also alter soil properties which then
lead to differences in microbial communities (Liang et al., 2012; DuPont et al., 2014; Zhang et al., 2017).
Switchgrass cultivars differ in their root exudate profiles (An et al., 2013), architecture, and tissue
chemistry (de Graaff et al., 2013; Stewart et al., 2017)), and these differences may lead to distinct
microbiomes. For instance, cultivars with high specific root length (SRL) have a greater relative
proportion of thin, high quality (low C:N) roots that provide more labile carbon (C) to microbes (de
Graaff et al., 2013; Adkins et al., 2016; Stewart et al., 2017). This influences microbial community C
acquisition, soil fungal:bacterial ratios (de Graaff et al., 2013; Roosendaal et al., 2016; Stewart et al.,
2017), and the amount of C allocated belowground (Adkins et al., 2016; Stewart et al., 2017). These

studies show that differences in root traits and consequent C-provisioning likely contributes to variation



in switchgrass cultivar microbiomes, but few studies have measured variation in switchgrass root traits
and microbial communities simultaneously (but see Roosendaal et al. 2016; Stewart et al. 2017).

While root traits and soil conditions drive microbial community structure, the strength of these
drivers may differ for root- and soil-associated microbial communities (Bulgarelli et al., 2013; Yu and
Hochholdinger, 2018). Plant signaling, exudation, and altered abiotic conditions filter and recruit bulk
soil microbes to different microhabitats, such as the rhizosphere (soils closely adhering to roots) and
endosphere (internal root tissues). Soil-associated microbes are influenced by changes in root exudates
and soil conditions, while root microbes are assembled through a two-step process whereby the
previously filtered rhizosphere microbes are recruited to the roots through genotype-specific signaling
(Bulgarelli et al., 2013). Therefore, although soil conditions affect both root and soil communities, root
communities are often a less diverse, but more host-associated subset of the surrounding soil microbes
(Bulgarelli et al. 2013). It is also predicted that root-associated communities have greater heritable
variation than soil communities (Reinhold-Hurek et al., 2015), but more research is needed to assert this
claim. Knowing how microbiomes differ among cultivars’ soils and roots as well as what influences
microbiome structure will help us understand how microbes may contribute to cultivar- and ecotype-
variation in the field and, further, how microbes could be incorporated into switchgrass production.

We hypothesize that root traits and microbial communities will differ among switchgrass
cultivars. Further, we expect that a combination of root traits and soil conditions will drive soil
microbiome structure, while root microbiome structure will be less diverse, but more distinct among
cultivars. We predict that root architectural traits known to increase belowground plant-derived C inputs
(e.g., SRL or root diameter) will be an important driver of microbial community structure and biomass. In
this study, we address these hypotheses by measuring root traits and microbiomes across 12 mature
switchgrass cultivars, asking two primary questions. First, does microbial biomass and community
structure vary across switchgrass cultivars? Second, what soil conditions and root traits influence
microbial community structure and biomass?

METHODS
SITE DESCRIPTION

We conducted this study in southwest Michigan, USA, at the Great Lake Bioenergy Research
Center’s Switchgrass Variety Experiment (https://Iter.kbs.msu.edu/research/long-term-
experiments/glbrc-switchgrass-variety-experiment/) located at the Kellogg Biological Station Long-term
Ecological Research Site (42°23'47" N, 85°22'26" W). Mean annual precipitation is 100 cm and soils are

moderately fertile sandy clay loam (https://Iter.kbs.msu.edu/research). In 2009, 12 switchgrass cultivars,



including eight upland and four lowland cultivars, were established in a complete randomized block
design (four cultivars with poor establishment were replanted in 2010) (Table 1.1 for details on seed
source and breeding history). Cultivars were planted at a rate of 9 kg live seed hal into 12 plots within
four uniformly treated replicate blocks, in the same soil type and within 80 m of one another (n = 48,
plots = 4.6 x 12.2 m). The blocks were not irrigated and urea fertilizer was applied annually in the spring
(78 kg N hal). Pre-emergence weeds were controlled with Quinclorac Drive (1.1 kg ha') and Atrazine
(0.6 kg ha') and post-emergence weeds were treated with herbicides (Glyphosate, 2,4-D, or Dicamba) as

needed.



Table 1.1. Details on cultivar origin, sampling date, and establishment year in the common garden
experiment. Seed source location and breeding history details from Stahlheber et al. (2020); ‘NA’
denotes not available.

Sampling  Establishment

Cultivar Ecotype Breeding history (Native seed source)

date year
N : —
Alamo Lowland July 27 5009 Seed increase from native remnant prairie
(Southern Texas)
EG1101 Lowland July 13 2010 Improved Alamo-type bred for biomass yield? (NA)
_ . . 2
£G1102 Lowland July 27 5010 zrlllw:)roved Kanlow-type bred for biomass yield
Seed collection from native remnant prairie,
Kanlow Lowland July 27 2009 selected for leafiness, vigor, late-season

greenness! (Northern Oklahoma)
Seed increase from native remnant prairie!
(Northern Oklahoma)
Cave-in- Seed increase from native remnant prairie!
Rock Upland July 20 2009 (Southern lllinois) °

Seed increase from native remnant prairie,
Dacotah Upland June 28 2009 selected for leafiness, color and winter hardiness?®
(Southern North Dakota)
Improved Cave-in-Rock bred for biomass yield?

Blackwell ~ Upland June 28 2009

EG2101 Upland July 13 2010

(NA)
Nebraska . . )
)8 Upland July 20 2009 Seed increase native remnant prairie’ (Nebraska)
Seed increase from native prairie, selected for
Shelter Upland July 13 2010 thick stems, less leafiness, early maturing® (West

Virginia)
Seed increase from local remnant native stands to
represent local germplasm? (Southwest Michigan)
Seed increase from natural grassland, selected for
Trailblazer Upland July 20 2009 high digestibility and forage?

(Kansas & Nebraska)

Southlow  Upland July 20 2009

'Alderson, J., and W. C. Sharp. 1994. Grass varieties in the United States. USDA, Agriculture Handbook
170. Washington,D.C.

2Ceres, Inc. Blade® seeds (www.bladeseeds.com)

3Release Brochure for Southlow Michigan Germplasm switchgrass (Panicum virgatum). USDA-Natural
Resources Conservation Service, Rose Lake Plant Materials Center, East Lansing, M| 48823. Published

September 2001, April 2014

SAMPLING AND SOIL ANALYSIS

In June and July 2016, we collected soil cores (2 cm diameter x 20 cm deep) from the rhizome
(within 10 cm from the rhizome center) of three randomly chosen switchgrass plants from either end
and the center of each block (3 replicate cores x 4 blocks = 12 cores per cultivar). All instruments were
sterilized with 70% ethanol in between sampling. Because plant phenological stage can affect microbial

communities (Chaparro et al., 2014; Zhalnina et al., 2018) we sampled each cultivar at the same



developmental stage — flowering (Emmett et al., 2017). The 12 cultivars flowered over a four-week
period and at each sampling date we sampled at least two cultivars (Table 1.1). This controlled for the
impact of phenology on microbiome structure, but microbiome differences may have also been affected
by variation in host residence time (Dombrowski et al., 2017) or soil conditions. We accounted for some
of this temporal variation by including soil moisture content, the edaphic factor that varied most among
dates, as a covariate in our analyses (see Analyses section).

After sampling, the soils were stored at 4°C and were frozen at -20°C within 48 hours after
sampling. Before freezing the soil cores, we sieved (1 mm) a 30 g subset of the collected soils to remove
roots and rocks and subsample for various assays, including chloroform fumigation and potassium
sulfate extractions for microbial biomass, soil nitrate and ammonium (12 g soil), volumetric soil moisture
content (5 g soils dried at 60°C), and downstream DNA extractions (2 g soil stored at -20°C). Microbial
biomass carbon (MBC) and nitrogen (MBN) were analyzed on a TOC analyzer (Shimadzu TOC-VCPH) and
calculated by subtracting the total carbon (C) and nitrogen (N) of unfumigated samples from fumigated
samples (Vance et al., 1987). Unfumigated potassium sulfate extracts were used to determine soil
inorganic ammonium (NH.*") and nitrate (NO5’) with colorimetric 96-well plate assays. Ammonium
concentration was analyzed using ammonia salicylate and ammonia cyanurate as described by
(Sinsabaugh et al., 2000). Nitrate reductase enzyme (E.C #1.7.1.1) was used to reduce NO5; to NO, and
concentrations of NO," were determined using sulfanilamide and N-(1-naphthyl)-ethylenediamine.
Absorbance for NH,*and NOs™ assays were read on a Synergy HTX plate reader (BioTek, Winooski,
Vermont, USA) at 610 nm and 540 nm, respectfully. All roots collected during initial sieving and
remaining soils were stored at -20°C until further root trait analysis and root DNA extractions.

ROOT STERILIZATION AND TRAIT ANALYSIS

The previously frozen sieved roots and undisturbed soils were wet-sieved (2 mm) with nanopure
(0.2 uM) water and all visible roots were separated with sterilized tweezers for an average of 30 minutes
per sample. These roots were stored at 4°C in nanopure water and scanned within 48 hours. To maintain
sterility and minimize microbial cross-contamination, we sterilized all equipment with 70% ethanol in
between scans. The roots were scanned (1200 dpi resolution with Epson perfection V600 scanner) in a
glass scanning bed with 200 mL nanopure water, exported as tiff files, manually edited to remove image
artifacts, and compressed before analyzing root traits with GiA Roots software (Galkovskyi et al., 2012).
Following scanning, 0.25 g of the scanned roots (< 2 mm in diameter to standardize for root age) were
subsampled and sterilized for root-associated (endophyte) microbial characterization (details below).

The remaining roots were weighed and dried at 60°C for one week to calculate the dry:wet root biomass



ratio. Predicted total dry root weight was back-calculated using the dry:wet ratio to estimate the dry
weight of the 0.25 g subset. This back-calculation of total dry root weight may underestimate actual root
weight values if root water content varies with root diameter; an underestimation of root weight could
contribute to miscalculations of other root traits, such as mass-weighted specific root length (total root
length/dry root biomass). Using GiA Roots, we calculated the following root traits: total root length (cm),
average root diameter (cm), total root system volume (cm?3), and specific root length (SRL). SRL was
calculated in two ways: 1) mass-weighted SRL which we calculated using the back-calculated dry:wet
root ratios (cm total root length/ g total dry root biomass ) and 2) volume-weighted SRL (cm total root
length/ cm3total root volume).

To prepare the root tissues for DNA extractions, we first sterilized the 0.25 g of subsampled
roots. Immediately after scanning, we sterilized the subset roots following (Sun et al., 2008): roots were
immersed in 70% ethanol for 3 minutes, sterilized with fresh household sodium hypochlorite solution
(2.5% available CI') for 5 minutes, rinsed with 70% ethanol for 30 seconds, rinsed ten times with sterile
autoclaved water, blotted dry with Kimwipes (Kimberly-Clark, Roswell GA, USA) and frozen at -20°C (Sun
et al., 2008). To test root-surface sterilization, the final water rinse was plated on Luria-Bertani agar and
incubated at 30°C for 7 days. A majority of the LB plates had bacterial growth after one week of
incubation. Although the bacterial growth may suggest incomplete sterilization of the rhizoplane,
because these samples were root segments, the cultured bacteria may have been endophytic bacteria
that dispersed from the interior of the roots. Due to the thorough sterilization procedure, we believe the
remaining microbes are strongly root-associated but cannot conclude they are obligate endophytes.
Before DNA extraction, the frozen, surface-sterilized root samples were submerged in liquid N and
ground with a tissue lyser (Qiagen Tissue Lyser Il, Valencia, California, USA). If any root pieces >2 mm
remained, sterilized scissors (10% bleach and 70% ethanol) were used to more finely cut the roots.

DNA EXTRACTION, SEQUENCING, AND BIOINFORMATICS

DNA was extracted similarly from soil and sterilized roots, but only a subset of cultivars were
processed for root-associated microbes. Soil DNA was extracted from 0.25 g of sieved and homogenized
sample from all 12 cultivars (n = 144 samples: 12 cultivars x 4 blocks x 3 replicate cores). Root DNA was
extracted from approximately 0.25 g of sterilized, ground root tissue from four commonly-planted
cultivars (Upland: Cave-in-Rock, Southlow; Lowland: Alamo, Kanlow; n = 48 samples: 4 cultivars x 4
blocks x 3 replicate cores, notated with ‘+’ in all figures). For both soils and roots, we used the MoBio
PowerSoil DNA extraction kit and followed all kit-suggested protocols, with an added 10-minute cell lysis

step at 65°C before the bead-beating step (MOBIO Laboratories, Carlsbad, California, USA). The purity
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and quantity of the extracted DNA was examined using a Nanodrop 2000 (Thermo Scientific, USA) and
via fluorometry with the Quanti-iT PicoGreen dsDNA kit (Thermo Fisher, USA). We targeted the bacterial
V4 region of the 16S rRNA gene (primers 515f/806r) and the fungal ITS1 region (primers ITS1-F/ITS2) for
library preparation. Bacterial communities were analyzed for all soil (12 cultivars) and root (4 cultivars)
DNA, while fungal communities were only analyzed from the soil DNA (12 cultivars).

Bacterial and fungal PCR and MiSeq lllumina (V2) paired-end sequencing was conducted by the
Research Technology Support Facility Genomics Core at Michigan State University (East Lansing,
Michigan, USA). Briefly, for both ITS and 16S sequences, reads were assembled, and quality filtered
(maxEE < 1.0 and base pairs < 250) using Usearch (version 10.0.240) (Edgar, 2010). Sequences were
dereplicated, clustered, chimera checked, filtered de novo, and clustered into unique operational
taxonomic units (OTUs) based on 97% identity using the default settings with Usearch UPARSE function.
Representative sequences were aligned and classified using the Silva (version 123) and Unite (7.2)
reference databases for bacterial and fungal sequences, respectively (Quast et al., 2012; Nilsson et al.,
2018). Soil and root-associated bacterial sequences were also aligned to Greengenes (version 13.8)
database using Usearch closed-reference (closed_ref) for downstream PICRUSt analysis (DeSantis et al.,
2006; Langille et al., 2013). Non-bacterial and non-fungal sequences, singleton OTUs, and samples with
poor-sequence coverage were removed from the reference-based OTU tables (Table 1.51). A bacterial
phylogenetic tree was generated using an iterative maximume-likelihood approach with PASTA R package
(Mirarab et al., 2015). Phylogenetic-based Weighted Unifrac distance was used for all bacterial
community composition analyses. It is challenging to map the variable ITS region to a trustworthy
phylogenetic tree (Nilsson et al., 2008), so we used a non-phylogenetic community metric, Bray-Curtis,
for the fungal community analyses.

Due to large variation (> 10-fold) in library sizes within and among the root and soil samples, we
rarefied our datasets using the “rarefy_even_depth” function in the Phyloseq R package (McMurdie and
Holmes, 2014) to control for sequencing depth differences and minimize false discovery rates (Weiss et
al., 2017; McKnight et al., 2019). The soil bacterial and fungal datasets for 12 cultivars were filtered and
rarefied to 4,694 and 4,153 reads respectively. We compared root and soil bacterial communities for
four cultivars on a combined dataset that was rarefied to 2,026 reads. We confirmed that our results
were robust to normalization techniques and not biased by rarefaction (McMurdie and Holmes, 2014)
by comparing community matrices normalized with rarefaction and Deseq2’s ‘variance stabilizing
transformation’ (Love et al., 2014) with a Protest analysis in the Vegan R package (Oksanen et al., 2018).

All Protest comparisons were significantly correlated (p < 0.001, Table 1.S1) but the combined root and
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soil dataset had the weakest correlation (r = 0.41) likely due to the 27-fold difference in the sample
library sizes. However, because rarefaction is the preferred method for normalizing for large variation in
library depth (Weiss et al. 2017), we used the bacterial (Silva-referenced) and fungal (Unite-referenced)
rarefied datasets for all community composition and diversity analyses. The rarefied Greengenes-
referenced bacterial dataset was used to predict metagenome functions with PICRUSt. Fasta files (NCBI
Sequence Read Archive, accession number PRINA577732) and sequencing pipeline
(https://github.com/TaylerUlbrich/SwitchgrassCultivarMicrobiomeStudy) are publicly available.
DATA ANALYSIS: UNIVARIATE STATISTICS

Prior to all data analysis, we assured that all univariate data met assumptions of normality (see
supplemental materials for details). Univariate statistics were conducted using one-factor analyses of
variance (ANOVA) models and type 3 sum of squares (Satterthwaite's method) with the Im4 and
ImerTest packages in R (Bates et al., 2015; Kuznetsova and Brockhoff, P.B., Christensen, 2017). To
differentiate the effect of cultivar and ecotype, all variables were analyzed with either cultivar or
ecotype as a fixed effect with a random, nested block factor. Since we sampled the cultivars across four
weeks to control for phenology-driven variation in microbiomes (Chaparro et al., 2014; Zhalnina et al.,
2018), date was confounded with cultivar and ecotype. Due to this collinearity, the model was rank-
deficient when both date and cultivar or ecotype were included. Therefore, instead of date, we included
soil moisture content, which varied up to 47% across sampling dates (ANOVA, p < 0.001; correlation with
Julian date p < 0.001, r = 0.52), as a covariate when it improved model fit (i.e. lower Akaike information
criteria evaluation, AIC). Soil moisture content also correlated with soil nitrate (r = 0.46, p < 0.002),
which varied by date (p < 0.001). However, we decided to include soil moisture content, not soil nitrate,
as a covariate because soil moisture content also varied across blocks (ANVOA, p < 0.001), allowing us to
account for both temporal and spatial heterogeneity. Two extreme outliers that were three times the
interquartile range were removed from the soil moisture data, so cultivars EG1102 and Blackwell had
only 11 replicates for any model that included soil moisture as a covariate. Several univariate models
were improved with soil moisture as a covariate — fungal community richness and evenness, soil and
root bacterial richness, microbial biomass nitrogen and carbon, root length — but soil moisture was only
a significant predictor variable (p < 0.05) for microbial biomass carbon. Post-hoc comparisons
(p values adjusted with Benjamini—Hochberg false discovery rate, FDR, a = 0.05) were conducted using
the multcomp and emmeans R packages (Hothorn et al., 2008; Lenth, 2019). Fungal Shannon diversity
and Pielou’s evenness did not meet normality assumptions, so we used non-parametric Kruskal-Wallis

and Wilcox tests (no block factor included). Pearson correlations were used to determine relationships
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between edaphic conditions, root traits, and microbial biomass carbon using the ‘cor.test’ in R (R Core
Team, 2018).
DATA ANALYSIS: MICROBIOME COMMUNITY COMPOSITION

Microbial community data were visualized and analyzed using the Vegan, Phyloseq, and ggplot2
R packages (McMurdie and Holmes, 2013; Wickham, 2016; Oksanen et al., 2018). We examined overall
variation in the cultivars’ microbiome composition using permutation-based ANOVA (PERMANOVA) and
betadispersion tests with type 1 sum of squares. PERMANOVAs, betadispersion, and post-hoc pairwise
comparisons (FDR-adjusted) were evaluated on the rarefied datasets using the previously described
one-factor, blocked model with soil moisture as a covariate with the PRIMER-e software (version 6 &
PERMANOVA +, (Anderson et al., 2008). After removing samples with poor sequence coverage and
samples with two extreme outliers for the soil moisture covariate, all cultivars had at least 9 replicates
for microbiome analyses (Table 1.52). As in the univariate models, date and cultivar were confounded,
so including sampling date in the model did not improve model fit (based on AIC evaluation). However,
because the permutational null model can still be calculated for a rank-deficient design, we used
supplemental PERMANOVAs with date as a covariate to evaluate the cultivar-level effects when
controlling for date. Models with date used instead of soil moisture content were qualitatively similar
but the significance was lower (Tables S3, S4). Within sampling date PERMANOVAs were used to further
evaluate cultivar-level differences not driven by confounding date effects (e.g., cultivars sampled on the
same date in one model, Table 1.1). All ordinations were made with the Phyloseq R package ‘ordinate’
function with set.seed = 2 for reproducibility (McMurdie and Holmes, 2013).

To further characterize differences in microbial community structure across cultivars, we
evaluated the proportion of shared and indicator taxa among the cultivars. We defined shared taxa as
those OTUs present in at least 75% of the samples within each cultivar (e.g., 9/12 sample units per
cultivar) and across all cultivars. Indicator taxa were identified (after removing singleton OTUs) using the
‘multiplatt’ function in the indicspecies R package (Caceres and Legendre, 2009) and defined as OTUs
present in at least 25% of the samples (3/12 sample units, or indicspecies specificity parameter = 0.25).
Rarefied datasets are biased against rare taxa, so it is possible that we identified fewer indicator taxa
because less dominant, rare taxa were lost during rarefaction (McMurdie and Holmes, 2014). We also
characterized phyla-level differences among cultivars and ecotypes using the ‘manyglm’ function in the
MVAbund R package and ANOVA post-hoc pairwise comparisons (FDR-adjusted) with either cultivar or
ecotype as a fixed effect and soil moisture content as a covariate when it improved model fit (based on

AIC) (see supplemental materials for details) (Wang et al., 2012; R Core Team, 2018; Ogle et al., 2019).

13



We were also interested in whether compositional differences based on 16S rRNA were likely to
lead to differences in cultivar N-fixation, a function recently identified in switchgrass soils and roots and
relevant to cultivar survival in low-nutrient environments (Roley et al., 2018, 2019, 2020). We assessed
this by 1) calculating variation in the relative abundance of common N-fixing orders Rhizobiales and
Burkholderiales and 2) using PICRUSt to predict the relative proportion of putative N-fixing taxa (Langille
et al., 2013) (see supplemental materials for details). Both approaches have limitations but we intended
for findings to generate further hypotheses, not to provide definitive assessments of N-fixing potential.
The same univariate statistics described above were used to analyze proxies of functional differences
among cultivars and ecotypes for the soil- and root-communities.

We further evaluated difference in cultivar microbiomes by determining how edaphic conditions
and root traits affect microbiome structure and individual OTU- and order-level abundances. Differences
in OTU- and order-level abundance with root traits were evaluated using the ‘manyglm’ and ‘anova’
functions in the MVAbund R-package (see supplemental materials for details) (Wang et al., 2012). At the
community level, we determined which variables (average root diameter, total root length, soil nitrate,
soil ammonium, soil moisture content) significantly contributed (a = 0.05) to microbiome structure
when controlling for spatial heterogeneity (block) with a partial distance-based redundancy analysis for
each dataset: soil bacterial (Weighted Unifrac) and fungal (Bray-Curtis) communities for 12 cultivars and
combined root and soil bacterial dataset for 4 cultivars (Weighted Unifrac). We used the ‘dbrda’ function
in Vegan with a conditional matrix for block to determine the relative contribution of block and

|”

predictor variables to community structure, as well as the independent, “marginal” effects of each term
(Oksanen et al., 2018). Specific root length (volume- and mass-weighted) and total dry root weight were
removed from all analyses as they significantly correlated with average root diameter and total root
length (-0.50 < r > 0.50, p < 0.05).
RESULTS
ROOT TRAITS

Total dry root biomass (estimated from dry:wet root calculations), total root length, and mass-
weighted SRL (total root length/root biomass) did not significantly differ by cultivar or ecotype (p > 0.05,
Table 1.55). Mass- and volume-weighted SRL were significantly correlated (r = 0.70, p < 0.001), and,
unlike mass-weighted SRL, volume-weighted SRL (total root length/root volume) significantly differed
among cultivars (p < 0.01) but not by ecotype (p > 0.05, Figure 1.1A, Table 1.S5).The cultivar differences

in volume-weighted SRL were likely driven by average root diameter which significantly differed by

cultivar (p < 0.001, Figure 1.1B), and was used to calculate root network volume. There was a 30%
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difference between the cultivars with the thickest (e.g., Cave-in-Rock and EG2101) and thinnest (e.g.,

Kanlow and NE28) roots.
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Figure 1.1. Variation in cultivar and ecotype A) volume-weighted specific root length (SRL), B) average
root diameter, C) microbial biomass carbon (MBC), D) microbial biomass nitrogen (MBN), E) soil
bacterial Shannon diversity, and F) predicted proportion of putative N-fixers in soil. The last two bars
represent means for lowland (n = 4; gray boxes) and upland (n = 8; white boxes) ecotypes. Central line is
the median value for each cultivar, vertical bars represent the first and third interquartiles of the data,
and points are outliers outside the interquartile range. ‘+’ denotes subset of cultivars analyzed for root-
associated bacterial communities. Different letters denote significant differences among cultivars (FDR,
p < 0.05). ANOVA results with fixed cultivar (C) or ecotype (E) term, nested block term and soil moisture
content (SMC) included as a covariate when it improved model fit (based on AlIC evaluation).
Significance values: ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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MICROBIAL BIOMASS

Microbial biomass carbon (MBC) and nitrogen (MBN) significantly differed among cultivars
(MBC: p <0.001, MBN: p < 0.001) and ecotypes (MBC: p < 0.01, MBN: p < 0.001) (Figure 1.1C, D), even
after controlling for soil moisture content which influenced MBC (soil moisture co-variate with MBC: p
< 0.001, with MBN: p > 0.05) and varied by date (p < 0.05). Lowland MBC and MBN were 25% and 65%
greater than upland ecotypes, respectively.

SOIL VS. ROOT ASSOCIATED BACTERIAL COMMUNITIES

For a subset of four commonly-planted cultivars (Cave-in-Rock, Southlow, Alamo, Kanlow), we
found that root and soil bacterial communities differed in diversity, composition, and the extent to
which they were affected by cultivar identity. Microhabitat (soil or root) explained 59% of the overall
variance in community composition (Table 1.2, Figure 1.2A), and the root community had five and three
times lower bacterial richness and Shannon diversity than the soil communities, respectively (Table
1.56). The differences in beta diversity between roots and soils were mirrored in their dominant phyla.
The most abundant bacterial phyla in the roots (n = 4 cultivars) were Proteobacteria (70%),
Actinobacteria (11%) and Bacteroidetes (5%), while the soil communities (n = 4 cultivars) were
dominated by Acidobacteria (30%), Proteobacteria (29%), and Verrucomicrobia (11%)(Figure 1.2B). The
same phyla were most abundant in the soil communities when analyzed across all 12 cultivars (data not
shown). Roots and soils also differed in the relative abundance of common N-fixing orders
(Burkholderiales and Rhizobiales), with roots having approximately three times greater relative
abundance than soils (Kruskal-Wallis: p < 0.001, data not shown).

The degree of cultivar-effect also differed for the root and soil bacterial communities (n = 4
cultivars). Cultivar explained 15% of the variation in the soil community but did not significantly
influence the root communities (Table 1.2). The two upland cultivars’ soil communities significantly
differed from the two lowland cultivars’ soil bacterial communities (data not shown), but this may have
been driven by differences in soil conditions across sampling dates, which differed for the subset of two
ecotypes (Table 1.54). There was also no cultivar-effect on root or soil bacterial alpha diversity (Table
1.56) and there were fewer differences in the relative abundance of dominant soil phyla for these four
cultivars (Figure 1.4), suggesting that there was less variation among these four commonly-planted

cultivars’ microbiomes compared to the remaining eight cultivars.
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Table 1.2. Percent variability (PERMANOVA R?) in bacterial community composition explained by
habitat (soil or root) and cultivar. Significance values: ns p > 0.05, *p < 0.05, ** p < 0.01, *** p < 0.001.
‘() signifies nested factors, ‘*’ signifies the interaction between factors, and ‘NA’ denotes not
applicable for the model.

Soil & root bacteria Soil bacteria Root bacteria
Factor . . .
(4 cultivars) (4 cultivars) (4 cultivars)
Habitat Effect %R?(p) %R?(p) %R?(p)
Cultivar 2.59 * 15.06** ns
Block (Cultivar) 6.56* 29.72%%* ns
Habitat 58.64*** NA NA
Cultivar*habitat ns NA NA
Habitat*Block(Cultivar) 6.73* NA NA
Soil moisture ns 4.41%* ns
A o 4 Soil B. 100  s— -— Bacterial phyla
W Alamo (L) = < 1% abund.
O Kanlow (L) 3~ Acidobacteria
Cave-in-Rock (U) ‘q'; 75 Actinobacteria
Southlow (U) 8 Alphaproteobacteria
_ Bacteroidetes )
Be° o, g ., Spprectters
> T Deltaprotecbacteria
= & ge] Firmicut
Zz o (p. 8 0 © © _ - GI;TnIr;uag:oteobacteria
o G timonadet
R 2 5| WS | [ Corioredes
% T — Nitrospirae
Planct t
o 2 | .. arctomscets
© Unclassified
® g 0 i Verrucomicrobia
NMDS1 Soil Root

Figure 1.2. A) NMDS ordination of combined soil and root bacterial community (n = 4 cultivars, Weighted
Unifrac, stress: 0.08). Soil (triangles) and roots (circles) represent two lowland cultivars (L, dark grey
points) and two upland cultivars (U, light grey points). B) Mean relative abundance (%) of bacterial phyla
and proteobacteria classes in roots or soils among four cultivars.

SOIL BACTERIAL COMMUNITIES

When evaluated across all 12 cultivars, we found that the soil-associated bacterial communities
significantly differed in composition and diversity. Soil bacterial richness, Shannon diversity, and Pielou’s
phylogenetic evenness differed among cultivars and was 1-3% higher for upland ecotypes for all
diversity metrics (p < 0.05, Figure 1.1E, Table 1.57). However, these differences were driven by Dacotah,
which had the highest bacterial richness and Shannon diversity (Table 1.58). Dacotah is a low-yielding
upland cultivar that had greater weed invasion which may have contributed to greater bacterial
diversity. Even when controlling for sampling date (Table 1.53) and soil moisture content (Table 1.3), soil
bacterial community composition differed among cultivars. When controlling for soil moisture content,
block (32%) and cultivar (21%) explained the most variation in community composition, while ecotype

only explained 3% of the variation (Figure 1.3A, Table 1.3). The bacterial communities of three cultivars
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— Alamo (lowland), EG1102 (lowland), and NE28 (upland) — were more dissimilar from all other cultivars

(pairwise comparisons, p < 0.10, Table 1.59). When assessed within sampling date, cultivar explained a

significant proportion of variation in the bacterial community composition within one date (16%, p <

0.05, Table 1.510): cultivar NE28 had a significantly different soil bacterial community than the other

three upland cultivars (Southlow, Cave-in-Rock, Trailblazer) sampled on the same date.

Table 1.3. Percent variability (PERMANOVA R?) in microbial community composition explained by
cultivar or ecotype. Significance values: ns p > 0.05, *p < 0.05, **p < 0.01, *** p < 0.001. ()’ signifies

nested factors and ‘*’ signifies the interaction between factors.

Factor

Soil fungi
(12 cultivars)

Soil bacteria
(12 cultivars)

Cultivar Effect
Cultivar

Block (Cultivar)
Soil moisture
Ecotype Effect
Ecotype

Plot (Ecotype)
Soil moisture

%R (p)
11.95*
32.71%**
1.85%**

1.34*
43,31 ***
1.85%**

%R (p)
21.20%**
31.94%**
3.49%**

3.43**
49.70***
3.49%***
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Figure 1.3. NMDS ordination of A) soil bacterial community (Weighted Unifrac, stress: 0.18) and B) soil
fungal community (Bray-Curtis, stress: 0.26) across 4 lowland (L, grey points) and 8 upland (U, white
points) cultivars. Numbers indicate centroid of sample replicates and horizontal and vertical bars

represent + 1 SE from the centroid. ‘+’ denotes subset of cultivars analyzed for root-associated bacterial

communities. See supplemental figure 1.51 for NMDS with all sample replicates.

The cultivars’ soil bacterial communities also differed at the phyla level and are comprised of

many shared and few unique taxa. Eight soil bacterial phyla (74.3% of all reads) significantly differed

among cultivars (Figure 1.4). Several of these phyla also differed by ecotype; specifically, Bacteroidetes,

Planctomycetes, and Verrucomicrobia are more abundant in lowland cultivars, while Actinobacteria,
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Deltaproteobacteria, and Gemmatimonadetes are more abundant in upland cultivars. At the OTU-level,
we found that 160 OTUs (out of 14,590 total) were shared across all cultivars (present in 75% of samples
units within and among cultivars). These shared OTUs make up 45% of the total sequences and are
dominated by three classes —Acidobacteria (39%), Alphaproteobacteria (17%) and Spartobacteria (12%).
In contrast, indicator bacterial OTUs of the 12 cultivars include 683 OTUs and make up 21% of the total
sequences dominated by classes Acidobacteria (33%), Alphaproteobacteria (10%) and
Deltaproteobacteria (7%).

We used PICRUSt to test whether cultivars’ soil and root bacterial communities might have
different abilities to fix N2. We first used NSTI scores to assess whether PICRUSt accurately approximated
bacterial function for our sequences. Larger NSTI scores (> 0.15) are expected for highly diverse and
largely uncharacterized environments like soils and indicate less phylogenetic relatedness between the
predicted OTUs and reference genomes (Langille et al. 2013). The average NSTI scores for the soil
samples was 0.23, which is within the typical range for soil samples (Langille et al. 2013) but indicates
results should be interpreted with caution due to weak phylogenetic relatedness. Root NTSI (0.32)
indicated low relatedness with reference genomes, and therefore were not analyzed. We found that
cultivar soil bacterial communities varied in the proportion of OTUs with putative N-fixation genes (p
< 0.001, Figure 1.1F). On average, upland ecotypes had a greater proportion of predicted soil N-fixers
than lowland ecotypes (p < 0.05). Predicted soil N-fixer abundance negatively correlated with soil nitrate
availability (r =-0.33, p < 0.001) but did not correlate with soil N-fixation rates (p > 0.05) that were
measured in a paired study (Roley et al., 2020, data not shown). We also compared the relative
abundance of common N-fixing orders (Burkholderiales and Rhizobiales) and found no differences

among cultivars (p > 0.05).
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Figure 1.4. Mean relative abundance of bacterial phyla (and proteobacteria classes) that significantly
vary among cultivars (MVabund by cultivar: MVabund Dev(11/126) = 1105.8, p = 0.001; each phyla p <
0.05). Bars represent standard error. Phyla are ordered by relative abundance (left = most abundant)
and, in each phyla, the bars are ordered by cultivar (1-12), followed by means for lowland (L; n = 4) and
upland (U; n = 8) ecotypes. ‘+’ denotes subset of cultivars analyzed for root-associated bacterial
communities; “*’ above ecotypes indicate statistically significant differences among ecotypes (ANOVA: *
p < 0.05, **p < 0.01, ***p < 0.001).

SOIL FUNGAL COMMUNITIES

When controlling for soil moisture content, the primary drivers of soil fungal community
composition were similar to the bacterial community: block explained the most variation (33%),
followed by cultivar (12%) and ecotype (1%) (Table 1.3, Figure 1.3B). However, unlike the bacterial
communities, the cultivar-level effects on fungal communities were not robust to variation across (Table
1.53) or within sampling dates (Table 1.510). Fungal community diversity (richness, Shannon, evenness)
also did not differ by cultivar or ecotype (p > 0.05, Table 1.57).

Only one fungal phylum, Rozellomycota, significantly differed in abundance among the cultivars
(MVabund 9, p < 0.01), and no phyla differed by ecotype (MVabund, p > 0.05). OTUs identified as
Rozellomycota only made up 0.73% of the reads, and therefore likely did not contribute much to
variation in cultivar microbiomes. The dominant fungal phyla were Ascomycota (32%), Basidiomycota
(17%), Mortierellomycota (14%) and Glomeromycota (9%), but 25% of the fungal OTUs were
unclassifiable at phyla level. Among fungal OTUs (4,064 total), 37 were shared across all cultivars
(present in 75% of samples units within and among cultivars). These shared OTUs made up 35% of the
total sequences and were dominated by classes Mortierellomycetes (28%), Sordariomycetes (23%), and
those Unclassified (29%). Indicator fungal OTUS of the 12 cultivars make up 25% of the total fungal
sequences and include 213 OTUs dominated by classes Sordariomycetes (19%), Dothideomycetes (17%),

and 27% were unclassified at class level.
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EFFECT OF EDAPHIC PROPERTIES AND ROOT TRAITS ON MICROBIOME

To further understand variation in cultivar microbiomes, we investigated how root traits and
edaphic conditions (N and water content) impact community structure. Across all 12 cultivars, the five
predictor variables (average root diameter, root length, soil moisture content, soil nitrate, soil
ammonium) explained more variation for the soil bacterial (10%) than the soil fungal (5%) communities
(Table 1.4). Mirroring the PERMAONVA results, spatial heterogeneity (conditional block variance)
explained a significant portion of community dissimilarity for the soil bacteria and fungi. While
controlling for variance due to spatial heterogeneity, variance in the bacterial community structure was
most explained by soil nitrate (6%) and soil moisture content (2%) while the fungal community was most
explained by soil nitrate (1%) and root length (1%). Within the four cultivars evaluated for soil and root
bacterial community composition, nitrate explained 6% of the variation in the soil community, but no
edaphic conditions or root traits contributed to variation in the root communities (Table 1.4).

We also investigated whether the relative abundance of bacteria or fungal taxa (at the order-
and OTU-level) or microbial biomass correlated with root traits (average root diameter, root length). We
did not identify any bacterial orders that correlated with root traits, but identified one fungal order,
Mortierellales, that negatively correlated with root length (MVabund p < 0.05, correlation: r =-0.41, p
< 0.001). Further, microbial biomass carbon negatively correlated with root length (r = -0.23, p < 0.01)

but not with average root diameter (p > 0.05).
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Table 1.4. Percent variability (R?) of microbiome structure explained by soil conditions and root traits
using db-RDA analysis. Percent explained partitioned by conditional (block), constrained (all predictor
variables), and unconstrained (residuals) factors; ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001.
‘NA’ denotes not-applicable for models that were not significant (p > 0.05).

Soil bacteria Soil fungi Soil bacteria Root bacteria

(12 cultivars) (12 cultivars) (4 cultivars) (4 cultivars)
Nitrate (ug N/ g dry soil g) 6.36%** 1.17%* §.72%%* NA
Ammonium (pg N/ g dry soil) ns ns ns NA

Soil Moisture Content (g/g dry
soil) 1.86** ns ns NA

Average Root Diameter (cm)

ns ns ns NA
Root Length (cm) ns 1.06* ns NA
Model significance *ok ok *k % *% ns
Conditional Variance 7.67 6.23 9.83 NA
Constrained Variance 10.12 5.03 15.31 NA
Unconstrained Variance 82.22 88.75 74.86 NA

DISCUSSION

We examined bacterial and fungal microbiomes, soil variables, and root traits across 12 mature
switchgrass cultivars grown in a common garden experiment. Overall, we found that cultivars vary in
their average root diameter, have different soil microbial biomass, and associate with distinct soil, but
not root, bacterial communities. Differences in the soil microbiomes were driven by variation in root
traits, phenology, and soil properties, and were more pronounced at the cultivar level than across
ecotypes. Still, cultivar was a weaker driver of soil communities than among-plot soil heterogeneity, and
we saw less overall variation in fungal communities. These subtle but significant differences in root traits
and soil bacterial communities that we observed may contribute to variation in cultivar yields,
environmental responses, or ability to provide beneficial ecosystem services (e.g., soil C sequestration).
CULTIVARS HAVE A GREATER EFFECT ON SOIL BACTERIAL THAN ROOT BACTERIAL OR SOIL FUNGAL
COMMUNITIES

Traditionally, ecotypes are used to classify differences among switchgrass cultivars, but we
found greater differences in switchgrass microbiomes across cultivars than between ecotypes. We found
that cultivar explained 10-20% of the variance in soil microbiome beta diversity, while ecotype explained
less than 5% of the variation; these stronger cultivar effects were also found in a previous study on
switchgrass cultivar soil bacterial and fungal communities (Singer et al., 2019a, 2019b), but Emery et al.

(2018) observed no cultivar effects on arbuscular mycorrhizal fungi (AMF) in the same common garden
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experiment. Our findings show that at this site, the weak effect of cultivar on AMF is true for a broader
assessment of fungi as well (assessed via the ITS region). Despite overall weak effects of ecotype on
OTU-level composition, ecotypes differed in the relative abundance of several dominant bacterial phyla.
This may suggest that higher-level taxonomic differences are conserved across ecotypes, while finer,
OTU-level differences occur among cultivars. Although we did not examine specific functions in this
study, OTU-level differences among cultivars could contribute to variation in their nutrient cycling or
yields. In fact, in the same common garden experiment, Stahlheber et al. (2020) found that aboveground
traits and yields varied more among cultivars than between ecotypes, a pattern that could have been
influenced by microbiome differences.

On a subset of four cultivars, we predicted that there would be a greater cultivar-effect on root-
associated than soil bacterial communities, but in fact the soil bacterial communities differed more
among cultivars. The weak cultivar-effect on the root communities could have been influenced by our
cultivar selection, such that the other eight cultivars — which had greater variation in soil communities —
may have also had more distinct root microbiomes. Further, it is also possible that we under-sampled
the root bacterial diversity, as many chloroplast and mitochondrial sequences reduced microbiome
sampling. Despite these potential caveats, other studies conducted on a similar number of cultivars also
report greater cultivar-level differences among soil than root microbiomes in switchgrass (Singer et al.
20193, n = 4 cultivars) and rice (Edwards et al., 2015a); therefore, we posit that our observation of
greater cultivar-effects on soil than root communities is biologically relevant. The soil communities also
had less within cultivar variation than the root communities. This has been observed previously
(Edwards et al. 2015) and may suggest that there is greater intraspecific variation in traits that affect
microbial recruitment to the rhizosphere (e.g., root structure, exudation, or diffuse signaling) than in
traits that regulate microbial entry into the root (e.g., physical and immune system interactions). In fact,
it may be that plant traits associated with root microbiome assembly are conserved at even higher
taxonomic levels, as Singer et al. (2019b) found that two Panicum species have similar endophyte
bacterial communities. The role of genotype on microbiome structure remains unclear, but it could be
clarified with surveys of microbiome variation across multiple genotypes and species. Additionally, it
seems that the proximity of the microbiome to the plant may not be a good predictor of the influence of
plant genotype on microbiome structure, but finer-scale sampling (e.g. soil, rhizosphere, rhizoplane, and

endosphere) would help confirm this (e.g., (Edwards et al., 2015a).
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EDAPHIC CONDITIONS AND PLANT TRAITS INFLUENCE SOIL COMMUNITY STRUCTURE

Soil water and nitrogen content influenced switchgrass cultivar soil, but not root microbiomes,
while root traits only affected the soil fungal community. Soil nitrate availability explained the most
variation in the cultivars’ soil microbiomes, but no edaphic or root traits influenced the root community
composition. Similar patterns were observed by Singer et al. (2019b) — Panicum species’ rhizosphere soil
communities were more affected by soil type than endosphere communities. These edaphic conditions
are considered to have larger effects on soil microbiomes than plant identity (Fierer, 2017), but the
observed differences in soil N in this study could be driven by the cultivars’ differential effects on N
cycling (Roley et al., 2020) which could in turn influence the microbiome (Revillini et al., 2019). Contrary
to our prediction, we did not observe any effect of root traits on bacterial community structure, but
found that fungal community structure was affected by root length. Root length may be a particularly
important trait for root colonizing-fungi (e.g., AMF), since root system size determines the amount of
niche space available for colonization. Few studies simultaneously evaluate fungal community structure
and root length, but in the same common garden experiment, AMF root colonization correlated with
root biomass (Emery et al., 2018). Our results supports this finding because root length significantly
correlated with root biomass (r = 0.75, p < 0.001). In these conclusions we are presuming that root traits
drive bacterial and fungal communities, but the observed correlation could also describe microbes
driving root traits (Verbon and Liberman, 2016; Petipas et al., 2020).

We found that spatial variability (block factor) also explained a surprisingly large percent (> 30%)
of variation in the soil microbiomes. Although our blocks were the same soil type and within 80 m of one
another, they differed in soil moisture and nitrogen content (also in paired study, Roley et al. 2020). Our
analysis of microbiome composition and edaphic conditions controlled for this block effect, yet it is
difficult to disentangle the relative contribution of cultivar traits, spatial heterogeneity, and sampling
date on these edaphic conditions and, in turn, microbiome structure. Further, it is possible that the
variation across blocks contributed to greater plasticity in the cultivars’ traits, thus making it more
challenging to identify correlations between traits and microbiome structure. Overall, although the
primary drivers of switchgrass microbiome structure are challenging to disentangle, our results suggest
that heterogeneous soil conditions, plant traits, and feedbacks between plant traits and soil conditions
all likely contribute to microbiome variability among switchgrass cultivars.

The strength of relationships between root traits and soil microbiomes can also be influenced by
soil fertility and sampling techniques. Our study was conducted on productive, annually fertilized soils,

and cultivar differences and plant-microbe associations may be stronger in less-fertile, marginal soils,
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when plants and microbes are more dependent on one another (Bell et al., 2014; Sawyer et al., 2017).
Sawyer et al. (2017) found that switchgrass cultivar microbiomes were more distinct in less fertile soils.
It is also possible that cultivars that were grown outside of their native range (e.g. not from the north-
central United States) had weaker effects on their microbiomes because they could not associate with
their native, potentially co-evolved microbial communities. Studies of cultivars in common gardens
across many sites could elucidate the contribution of native range or seed source on plant-microbial
interactions. Further, because we did not sample the soils directly adhering to the roots or use primers
to target root-colonizing microbes (e.g., AMF) we may not have captured the microbes most influenced
by root traits and exudates. Finally, we found that cultivars vary in average root diameter and,
therefore, soils beneath each cultivar likely differ in the amount of root turnover and development.
Microbial composition and function has been shown to vary with root age, type (e.g., seminal or nodal
root), and location (e.g., root branch or tip(Marschner and Baumann, 2003; de Graaff et al., 2013;
Kawasaki et al., 2016), but sampling with soil cores made it challenging to identify the effects of root
age, type, or location on soil microbial communities. Therefore, future studies should use methods that
standardize root age (e.g., use of root-in-growth cores) or root type and location (e.g., visualizing root
differences and sampling within rhizoboxes) to better understand how root traits influence microbiome
structure (Yu et al., 2018).

Plant developmental stage (e.g., phenology, maturity) also contributes to microbiome variability
(Edwards et al., 2018; Zhalnina et al., 2018; Na et al., 2019). We sampled cultivars at the same stage
(flowering) to control for this variation, but sampling on different dates may have increased differences
in edaphic conditions that influence the microbiome. Yet, when we controlled for variation among
sampling dates, cultivar still contributed to variation in the soil bacterial, but not fungal communities.
This suggests that the fungal communities were more influenced by variation in abiotic conditions across
dates, or that cultivars with different phenology and, thus, sampling dates, had more dissimilar fungal
communities. In contrast, bacterial community structure was more strongly influenced by cultivar
identity, which explained a significant percent (16%) of the variation in bacterial community structure
within one of the four sampling dates. We hypothesize that greater differences were not observed
within the other three sampling dates because cultivars with comparable phenology (e.g., flowering at
the same time) likely have other similar traits and, thus, more similar microbial communities than
cultivars with different phenology. However, to better understand the effect of similar phenology and
traits on cultivar microbiomes, future studies should evaluate the switchgrass cultivar microbiomes

across multiple phenological stages (e.g., Wagner et al., 2016; Qiao et al., 2017; Na et al., 2019) as both
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the microbiome structure and the magnitude of cultivar effects may change with phenological stage
(Inceoglu et al., 2010; Na et al., 2019).
FUNCTIONAL IMPLICATIONS AND CONCLUSIONS

Differences in cultivar root traits and microbial biomass could contribute to variability in the
cultivars’ soil C-cycling and C sequestration potential. We found differences in microbial biomass and
root diameter, but not root biomass, across cultivars. Another study conducted in the same common
garden experiment, however, did find differences in root biomass among cultivars (Emery et al. 2018).
These differences in average root diameter have the potential to drive variation in the cultivars’ C-
cycling and microbial community structure. Root systems with high SRL, corresponding to long, thin
roots, positively correlate with switchgrass-derived soil C (Adkins et al., 2016; Stewart et al., 2017),
decomposition (de Graaff et al., 2013, 2014), bacterial:fungal ratios (de Graaff et al. 2013), and microbial
biomass (PLFA-C) (Stewart et al. 2017). Greater rhizodeposition from thin roots can directly contribute
to soil C pools, as well as indirectly influence soil C by supporting the growth and turnover of microbial
communities which, in turn, contributes to greater soil C and aggregate stability (Grandy and Neff, 2008;
Tiemann et al., 2015). Therefore, the cultivars we identified with thinner roots (Kanlow and NE28) or
with higher microbial biomass C (many lowland cultivars) may have greater potential to increase soil Cin
marginal soils and improve C sequestration.

The observed differences in microbial communities and root traits could also influence cultivar
nutrient cycling and tolerance to different environmental conditions, in turn, affecting yield. We found
that the predicted N-fixer abundance in soil communities varied among cultivars and ecotypes. A paired
study (same location and sampling dates) found that the rate of soil N-fixation also varies among
cultivars (Roley et al. 2020), but our PICRUSt-inferred functional potentials did not correlate to the
measured rates (data not shown). Still, our results suggest that functional differences are likely, and
future studies should investigate N-fixation and other functions with more targeted approaches, as
microbiome function may influence the suitability of various cultivars for surviving under different soil
conditions.

In summary, we found that root traits, microbial biomass, and soil bacterial community
composition differs among switchgrass cultivars, and that this variation could contribute to differences
in their potential as bioenergy crops. Despite ecotype being the most common way to group cultivars,
soil microbiome structure and root traits differed more among cultivars than ecotype. Future research
on switchgrass-microbe interactions should examine multiple cultivars rather than relying on results

from one model cultivar to make ecotype-level assumptions. Understanding how cultivar traits influence

27



microbial communities can improve our ability to select and breed cultivars with optimal microbiome-
mediated traits, like high N-fixation or C sequestration. We also observed larger cultivar effects on
bacterial than fungal soil communities, suggesting that there may be greater heritable variation and,
thus breeding potential, for switchgrass bacterial than fungal microbiomes. This study shows that
differences in switchgrass cultivars that have been documented aboveground also exist belowground
and have the potential to influence the future success and ecosystem service provisioning of switchgrass
as a bioenergy crop.
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CHAPTER TWO: PLANT ROOT EXUDATES AND RHIZOSPHERE BACTERIAL COMMUNITIES SHIFT WITH
NEIGHBOR CONTEXT?

ABSTRACT
A plant’s neighborhood context can alter its interactions with other organisms, but little is known about
how these dynamics occur belowground, especially with soil microbes. Microbial communities in
rhizosphere soil are influenced by many factors, including abiotic conditions and root-derived signals. In
particular, root exudates have strong effects on rhizosphere assembly, respond to changes in abiotic
conditions, and help plants interact with neighbors. Therefore, we predicted that root exudates likely
play a central role in neighbor-induced shifts in rhizosphere communities. We conducted a greenhouse
experiment to test this and determine how the rhizosphere bacterial community of a focal plant,
Panicum virgatum, changed when beside different neighbors, and whether these shifts were mediated
by neighbor-induced changes in root exudation. We found that neighbor altered both focal plant
exudates and rhizosphere community, and that changes were largest when the focal plant was beside
the most competitive neighbor, Rudbeckia hirta, which reduced both focal plant growth and nitrogen
uptake. Several factors contributed to neighbor impacts on rhizosphere assembly, including neighbor-
induced changes in root exudates during nitrogen-limitation and microbial spillover from roots of larger
neighbors. Using an additional soil incubation, we also found that these changes in exudates can have
even greater effects on soil nutrients than on microbial assembly. Overall, we show that neighbors
influence one another’s microbiomes, and highlight neighbor-induced changes in root exudates as one
mechanism through which this may occur. This work suggests that rhizosphere assembly may differ in
mixed-species communities and thus emphasizes a need for microbiome studies that consider
neighborhood context.
INTRODUCTION

Decades of research show that a plant’s neighbors can alter its interactions with other
organisms. This ecological concept, referred to as “associational effects”, has been primarily studied in
aboveground, plant-insect interactions (Barbosa et al., 2009; Underwood et al., 2014). However,
increasing evidence suggests that plants’ belowground neighborhoods are also important (Li et al., 2016;

Huang et al., 2018; Kong et al., 2018; Chen et al., 2019). Similar mechanisms that drive aboveground

2 Originally published as: Ulbrich, T. C., Rivas-Ubach, A., Tiemann, L. K., Friesen, M. L., & Evans, S. E. (2022). Plant
root exudates and rhizosphere bacterial communities shift with neighbor context. Soil Biology and Biochemistry,
108753. https://doi.org/10.1016/j.s0ilbio.2022.108753
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associational effects may also occur belowground, including direct effects of neighbor plants on local
abiotic and biotic conditions, changes in plant physiology and chemistry, and interplant signaling. For
instance, root exudates transmitted between neighbors can serve as warning signals that stimulate
herbivore defenses in a focal plant (Glinwood et al., 2003; Babikova et al., 2013). Still, despite increasing
recognition of the role of neighborhood contexts, little is known about their broader role in shaping
plants’ interactions with soil microbial communities (Howard et al., 2021).

One challenge with identifying the role of neighbors on soil microbiomes is that many studies
either focus on isolated plants in pots or, in the case of field studies, ignore neighborhood context. Still,
these controlled studies show that plants assemble a species-specific soil microbiome near their roots,
the rhizosphere (Berg and Smalla, 2009; Philippot et al., 2013). Plants also host species-specific
rhizosphere communities in field settings (Rosenzweig et al., 2013; Schops et al., 2020), but in some
cases rhizosphere structure changes with neighborhood richness (Bakker et al., 2013; LeBlanc et al.,
2015). Therefore, it is unclear if the same mechanisms that mediate rhizosphere assembly in isolated
plants are maintained in diverse plant communities. In fact, in many cases, predictions of plant
community dynamics fail if they are based on greenhouse studies with isolated plants (Forero et al.,
2019), perhaps because the predictions assume that rhizosphere communities do not change with active
neighbor interactions.

Only a few studies have investigated how neighborhood context alters rhizosphere assembly
(Hausmann and Hawkes, 2009; Bakker et al., 2013; Morris et al., 2013; Hortal et al., 2017a; Cavalieri et
al., 2020; Mony et al., 2021), and the patterns and mechanisms driving these associational effects vary
widely. In some cases, plant neighbors have neutral effects on each other’s rhizospheres, such that they
maintain their species-specific communities while growing together (Hausmann and Hawkes, 2009).
Other times, a focal plant’s rhizosphere may begin to resemble that of its neighbor (Hawkes et al., 2006;
Hortal et al., 2017a). This can occur during strong neighbor competition for nutrients (Hortal et al.,
2017a), especially if the neighbor roots are overlapping, as occurs in dense grasslands (Vieira et al.,
2019). Dense, overlapping root systems may affect rhizosphere assembly through ‘microbial spillover’,
whereby microbes from a larger root system disperse to its neighbor through close root contact.
Because rhizosphere assembly is related to host phylogeny (Emmett et al., 2017), it is likely that spillover
of novel microbes from a distantly related neighbor would drive greater shifts in a focal plant
rhizosphere (Mony et al., 2021). Still, more competitive neighbors do not always overwhelm a focal

plant’s rhizosphere assembly (Cavalieri et al., 2020). Together, these studies show that diverse
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neighborhoods affect host rhizosphere assembly through many mechanisms, but that these mechanisms
may vary by plant species or other factors, and need to be elucidated.

Neighbor-induced shifts in root-derived metabolites, root exudates, may play a particularly
important role in belowground associational effects. Root exudates have been shown to recruit
particular microbes to a plant’s rhizosphere (De-la-Pefia et al., 2008; Zhalnina et al., 2018). In addition to
their role in rhizosphere assembly, root exudates also change in response to neighbors (Badri et al.,
2012; Herz et al., 2018; Kong et al., 2018; Weinhold et al., 2022). Abiotic conditions have similarly strong
effects on root exudates. Water and nutrient limitation, each of which may occur with a competitive
neighbor, have strong effects on root exudate profiles (Dakora and Phillips, 2017; Gargallo-Garriga et al.,
2018; Smercina et al., 2020). Therefore, because root exudates respond to neighbors and environmental
cues, and are central to rhizosphere assembly, we hypothesize that neighbor-induced shifts in root
exudates also contribute to belowground associational effects.

Here, we use a greenhouse experiment to investigate how plant neighbors alter rhizosphere
dynamics. We first hypothesize that the focal plant’s rhizosphere bacterial community composition will
change when beside different neighbors, consistent with a belowground associational effect. Second,
we hypothesize that the bacterial community changes will correlate with neighbor-induced shifts in root
exudate profiles. If this is true, we would expect to see an overall correlation between the exudate
composition and bacterial communities, as well as repeatable shifts in taxa with the manipulation of key
exudates. Third, we hypothesize that strongly competitive neighbors will induce larger shifts in focal
plant exudates and rhizosphere bacteria than less competitive neighbors. This is because strong
competitors are more likely to induce a physiological response in the focal plant and may also cause
greater spillover effects if their root systems are larger.

METHODS
STUDY SPECIES

The focal species (Panicum virgatum L. var. Southlow) is a C4, perennial grass native to tallgrass
prairies and is also a candidate bioenergy crop (McLaughlin and Kszos, 2005). P. virgatum is suggested to
associate with beneficial microbial communities that can improve its growth and tolerance of stressful
conditions (Hestrin et al., 2021). However, it is unknown if these microbial associations change with
shifts in P. virgatum’s growing context, for instance if it grows in diverse prairies or monocultures for
bioenergy. To this end, we studied the effect of neighborhood interactions on P. virgatum’s rhizosphere

community and root exudates. The neighbor species included three perennial prairie species known to
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co-occur with P. virgatum, including a Andropogon gerardii Vitman (C4 grass), Koeleria macrantha
Ledeb. (C3 grass), and Rudbeckia hirta L. (forb).
GREENHOUSE EXPERIMENT

We carried out a greenhouse experiment at Michigan State University’s W.K. Kellogg Biological
Station. The focal plant, P. virgatum, was exposed to five neighbor treatments: either no neighbor, or a
single neighbor conspecific, A. gerardii, R. hirta, or K. macrantha. Each plant species was also planted in
‘monoculture treatments’, consisting of each plant neighbored by its conspecific (two plants per pot).
Each treatment was replicated five times, with a total of 45 pots (9 treatments x 5 replicates = 45 total
pots, see Figure 2.51 for experimental design).

All seeds were sterilized and grown for five weeks in flats with a light layer of soil inocula before
transplanting into the experimental treatments (see supplemental for more details on seedling
preparation). After five weeks, we removed the seedlings, rinsed the roots with RO water, and planted
them into their neighborhood treatments. The plants were grown in 3.8 L pots (Elite Nursery Classic 300)
with a substrate mixture of autoclaved sand, autoclaved vermiculite and field soil inocula (45:45:10).
This substrate will be referred to as soil throughout the text, though we recognize that it is an artificial
soil mixture. The soil inocula, which was the same used in the germination flats, was collected from a
nearby mid-successional grassland at the W.K. Kellogg Biological Station Long-Term Ecological Research
Site in southwest Michigan. The soil is a sandy-loam and the field was dominated by Bromus sp. grasses.
The soil was sieved (4 mm) and kept at 4 °C for ten weeks prior to inoculating the pots. Although the
original field soil community likely changed after ten weeks, the purpose of the inoculum was to provide
an initial soil community that was not pre-conditioned by any species in the study, not to represent the
original field community.

The plants grew for eight weeks in their neighbor treatments with temperatures controlled at a
maximum of 26 °C during the day and minimum of 15 °C at night with 14 hours of artificial lighting. They
were watered with RO water as needed and fertilized twice with ammonium nitrate (equivalent of 46 kg
N ha? pot?) in 200 mL of half-strength Hoagland’s solution (2.5 mM KCl, 2.5 mM CaCl,, 0.5 mM KH;PQ,,
1.0 mM MgS04, 0.024 mM H3BOs, 0.004 mM MnCl;-4H,0, 0.102 uM CuS04-5H,0, 0.382 uM ZnS04-7H,0,
0.248 uM Na;Mo0042H,0, 5.4 uM NaFeEDTA).

PLANT HARVEST AND SOIL ANALYSES

After eight weeks of growth, we collected plant biomass, rhizosphere soil, homogenized pot-

level bulk soil, and focal plant root exudates. Rhizosphere was collected by carefully removing each

plant, untangling their roots, and collecting the closely-adhering soil that remained after multiple
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shakes; the rhizosphere soils were stored at -20 °C for DNA extractions. Though the rhizosphere soil was
attached to the focal roots, the fact that the neighbor and focal roots were intertwined likely led to
greater microbial spillover that we could not distinguish from neighborhood effects (see Discussion). All
non-focal plants’ roots and shoots were dried (55 °C) while the focal plants were left intact and
temporarily placed in sterile whirlpacks (Nasco, USA) with 0.05 mM calcium chloride buffer solution
prior to root exudate collection (details below). The remaining bulk soil from the pots was homogenized
for pot-level nutrient and microbial biomass analyses. Briefly, bulk soils were stored at 4 °C and
subsampled for gravimetric soil moisture content analysis (55 °C), and chloroform fumigation and
potassium sulfate extractions for microbial biomass and soil nitrate and ammonium analyses (see
supplemental for more details on soil analyses).
EXUDATE COLLECTION

We collected root exudates from the focal plants (n = 25) using a soil-hydroponic-hybrid method
(Oburger and Jones, 2018). The benefit of this method is that plants are grown in soil-like conditions
with active microbial communities so that exudates are not altered by artificial sterile conditions, but a
minor drawback is potential artifacts from root damage during washing (Williams et al., 2021a), as well
as microbial excretion and consumption of root exudates during collection. Despite these caveats, this
approach is still a common method used to study interactions between root exudates and rhizosphere
communities (Vieira et al., 2019; Brisson et al., 2021). After harvesting, the focal plants were placed in
buffer solution (0.05 mM calcium chloride, CaCly), left to recover for three to six hours, and then the
roots were cleaned of residual soil and detached, dead roots. Submerging the roots in fresh solutions
prior to exudate collection can help remove metabolites released from damaged tissues (Oburger and
Jones, 2018), but a recent study suggests that a recovery period of at least three days is preferred
(Williams et al., 2021a). Once all root systems were cleaned, we collected root exudates by submerging
the intact plants in flasks with 250 mL of fresh 0.05 mM CacCl; solution. Flasks were covered with
parafilm to reduce airborne contamination and kept in the dark with a foil covering. The flasks, including
three no plant controls, were placed on a shaker table with supplemental lights, and the exudate
solutions were filter sterilized (0.2 um) and frozen at -80 °C after six hours (17 hr to 23 hr). Over the six
hour collection period, it is possible that some metabolites were degraded or consumed by root
microbes, as a collection time of less than four hours is often recommended in non-sterile systems
(Oburger and Jones, 2018; Williams et al., 2021a). The focal plant shoots and roots were dried at 60 °C,
weighed, ground (Qiagen Tissue Lyser Il), and analyzed for total C and N (Costech Elemental Combustion

System 4010).
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EXUDATE ANALYSIS

We thawed and subset the frozen root exudate solutions into 50 mL centrifuge tubes for
downstream exudate analysis, including quantification of dissolved organic carbon (DOC) and metabolite
fingerprint analysis with liquid- and gas-chromatography mass-spectrometry (LC-MS, GC-MS). Thawed
exudate solutions were run on a Total Organic Carbon (TOC ) analyzer to determine total DOC per
sample (Shimadzu TOC-VCPH); two samples were missing from this analysis because there was not
enough excess exudate solution. Another 50 mL subset of extracts were lyophilized and sent for LC- and
GC-MS analysis. During lyophilization, several tubes cracked, so the initial exudate volumes vary
between samples and, therefore, normalized metabolite data are reported.
Lyophilized exudates were prepared for MS analysis by resuspending them in 2 mL of methanol:water
(80:20). Tubes were centrifuged and extracts were transferred into 2 mL glass vials, dried down with a
centrifugal vacuum evaporator, and resuspended into a final volume of 300 pL. Untargeted LC-MS
analyses were performed directly on the extracts. For GC-MS measurements, an aliquot of 200 pL from
each exudate sample was dried down into an HPLC vial and chemically derivatized to trimethylsilyl ester
before analyses (Kim et al., 2005). The LC-MS and GC-MS files were processed using MZmine 2.37
(Pluskal et al., 2010) and Metabolite Detector 2.5 (Hiller et al., 2009), respectively. LC-MS features were
identified using exact mass and retention time from an in-house library of metabolites, corresponding to
the second-level of putative identification (Sumner et al., 2007). GC-MS metabolites were identified
using a modified version of FiehnLib (Kind et al., 2009) and verified using NIST14 GCMS library. LC- and
GC-MS datasets were combined, filtered, and metabolic features within each sample were normalized
by the total intensity of chromatograms (details on MS analysis and data filtering described in
supplemental methods). Missing data (NAs) were imputed for downstream statistical analyses using the
‘MissForest’ R package (Stekhoven and Biihimann, 2012).
SOIL INCUBATION EXPERIMENT

Due to limitations with correlating omics datasets (Pang et al., 2021; Zancarini et al., 2021), an
additional soil incubation was performed to establish a more causal link between changes in root
exudates and rhizosphere assembly. We manipulated the relative concentration of malic acid in soil
incubations to determine if the bacteria enriched while neighboring R. hirta were driven by greater
malic acid exudation. Malic acid was exuded more when the focal plant neighbored R. hirta (see Results,
Figure 2.S5), and it was also the second most abundant metabolite in the exudate solutions, and

contributed to shifts in overall bacterial community structure (see Results, Figure 2.4B).
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We added two exudate solutions (100 pg C g dry soil) — high malic acid (75% malic acid, 8.33% citric
acid, 8.33% sucrose, 8.33% glucose) and low malic acid (25% malic acid, 25% citric acid, 25% sucrose,
25% glucose)— along with a water control to soil mesocosms daily over 24 days. Before additions, the
exudate solutions were brought to a neutral pH (6.0) with potassium hydroxide (pH probe: Mettler-
Toledo, Five Easy Plus), filter sterilized (0.22 uM), divided into weekly aliquots, frozen, and thawed for
weekly additions.

The soil mesocosms (237 mL mason jar) were filled with the equivalent of 30 g dry soil and
raised to 65% water holding capacity (WHC) with autoclaved milli-Q water (0.22 um). The soils were
collected from the same mid-successional grassland used for the greenhouse experiment, albeit two
years later, sieved (4 mm) and analyzed for WHC. The jars were wrapped with Breathe-Easy® (Sigma-
Aldrich) micropore film to allow gas exchange but prevent airborne contamination, maintained at 55%
WHC, and stored in the dark at room temperature (approximately 25 °C). After 24 days, the soils were
subsampled for DNA extractions, gravimetric soil moisture content, and chloroform fumigation and
potassium sulfate extractions for soil DOC, total extractable nitrogen (TN), and microbial biomass
analyses, following the same procedures detailed previously.

DNA EXTRACTION, ILLUMINA SEQUENCING, AND BIOINFORMATICS ANALYSIS

DNA was extracted from 0.25 g of homogenized soil from the initial soil inocula, greenhouse
experiment soils (focal, neighbor plants, and no-plant controls, n = 80) and soil incubation soils (n = 41)
using the MoBio PowerSoil DNA extraction kit (MOBIO Laboratories, Carlsbad, CA, USA). We targeted
the bacterial V4 region of the 16S rRNA gene (primers 515f/806r) with MiSeq Illumina (V2) paired-end
sequencing, conducted by the Research Technology Support Facility Genomics Core at Michigan State
University, East Lansing, Michigan. The reads were quality filtered and clustered into unique operational
taxonomic units (OTUs) based on 97% identity using the Silva (version 123) bacterial database at 80%
confidence (Quast et al., 2012), and a bacterial phylogenetic tree was created using an iterative
maximume-likelihood approach with the ‘PASTA’ R package (Mirarab et al., 2015).

The library sizes significantly differed by 2.5-fold among greenhouse treatments (all greenhouse
& focal samples ANOVA Fq 73 = 3.81, p < 0.001); therefore, we rarefied both the greenhouse and
incubation dataset to 16,224 reads. To reduce the effect of rare or spurious taxa, we removed any OTUs
not present in at least 10 samples, resulting in 6,221 taxa for the greenhouse dataset and 4,234 in the
soil incubation dataset. All bacterial beta- and alpha-diversity metrics were calculated on the rarefied
and filtered datasets. See Supplemental Information for more details on sequencing and bioinformatics

methods.
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UNIVARIATE DATA ANALYSIS

For either experiment, plant and soil characteristics, microbial biomass, and bacterial alpha
diversity data were confirmed to meet normality assumptions and analyzed using one-factor analyses of
variance (ANOVA) and type 3 sum of squares (Satterthwaite's method), followed by post-hoc pairwise
comparisons (Benjamini-Hochberg False Discovery Rate, FDR, a = 0.05(Lenth, 2019). Data that did not
meet normality assumptions were transformed (soil nitrate, square-root transformed). For the
greenhouse experiment, individual one-way ANOVAs were used to determine the effect of treatment on
either the focal plant, monoculture, or pot-level responses. Microbial biomass and soil chemistry data
were collected and analyzed at the pot-level, representing the shared conditions for both plants in the
pot.

We conducted additional ANOVAs with focal plant aboveground biomass as a covariate to
account for differences driven by neighbor competition. While the reduction of a focal plant’s biomass is
a classic definition of competition (Grace, 1995) we also calculated the relative strength of competition
using RIl for an alternative assessment of neighbor competition (Armas et al., 2004). We paired the five
replicates for each treatment for the calculation. Negative Rl values indicate that the focal plant is
suppressed by its neighbor through competition, with a more negative value indicating stronger
competition, while positive values indicate facilitation.

MULTIVARIATE DATA ANALYSIS

Multivariate analyses of the bacterial composition were performed on Weighted-Unifrac
distance matrices from the rarefied community and all multivariate analyses of the exudate data were
performed on Euclidean distance matrices. Because Weighted Unifrac analyses can bias against rare,
less-abundant taxa, we further partitioned the focal plants’ bacterial communities to determine if
dominant or non-dominant taxa were driving the treatment effects. We defined ‘dominant’ as the top
10% most abundant taxa across all focal plant samples and the non-dominant taxa as the remaining
90%. The dominant group included 571 taxa and made up 69.6% of the focal plant bacterial reads, while
the non-dominant taxa included 5,142 taxa and made up 30.4% of the focal plant bacterial reads.

We evaluated the effect of plant treatment on the bacterial communities and exudate profiles
using one-factor permutational multivariate ANOVA tests (PERMANOVAs, n = 9999 permutations),
followed by post-hoc pairwise comparisons with FDR adjustment (a = 0.05). Additional PERMANQOVAs
with focal plant biomass included as a covariate were used to control for the effect of neighbor plant
competition. We identified bacterial genera representative of each treatment in the greenhouse and soil

incubation experiments using indicator species and differential abundance analyses. The magnitude and
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direction of neighborhood effects on rhizosphere assembly was assessed with PERMANOVAs that
compared the community structure of the focal plant with that of its direct plant neighbor, its neighbor
species’ monoculture, and the focal plant P. virgatum monoculture. For this analysis, the OTU
abundance of the monoculture plant treatments were averaged into a single value using
‘merge_samples’ (fun = “mean”) in the ‘Phyloseq’ R package (McMurdie and Holmes, 2013).

To further partition variation in the focal plant root exudates, we used sparse Partial Least
Squares Discriminant Analysis (sPLS-DA) to determine which of the identified exudates contributed to
the greatest variation in treatments. We then determined how the top ten identified exudates
correlated to the soil and plant characteristics using p-adjusted Pearson correlations. We used variance
partitioning analysis to identify which of the plant and soil variables had the largest effect on the
complete root exudate profiles. We identified three extreme outliers (three times the interquartile
range) in the gravimetric soil moisture content data, so these samples were removed from analyses that
correlated soil conditions with microbial or exudate data.

Finally, we investigated the relationship between the bacterial and exudate datasets. Because
no single correlation technique yields the same result (Weiss et al., 2016), especially when comparing
two -omics datasets (Pang et al., 2021), we used multiple statistical approaches to determine if
neighbor-induced shifts in the root exudates were correlated with shifts in the bacterial community.
First, we performed a principal component analysis on the exudate dataset and Hellinger-transformed
bacterial dataset and then evaluated the similarity in the matrices with a Protest analysis. Second, we
used variance partitioning analysis to determine how the top ten most abundant identified exudates,
neighbor treatment (categorical), and focal plant C:N affected bacterial community composition. Third,
we evaluated the effect of the top ten identified exudates, as well as the focal soil and plant
characteristics, on bacterial community structure using distance-based redundancy analysis (dbRDA).

Lastly, we looked for specific relationships between bacterial genera and the 140 identified
exudates using the ‘CCREPE’ (Compositionality corrected by renormalization and permutation package)
R package (Schwager et al., 2020). This method outperforms traditional correlation techniques, such as
Pearson and Spearman, which are not suitable for compositional data and are known to have high false
positive rates for compositional data (Pang et al., 2021).

The statistical program R (version 4.0.5) was used for all analyses and all package and parameter
information is detailed in Supplemental Table 2.57. Sequencing pipeline and code are available at
https://github.com/TaylerUlbrich/NeighlD_Switchgrass; raw sequence fastq files can be found on the
NCBI repository (Accession number PRINA773254).
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RESULTS
NEIGHBOR IDENTITY ALTERED FOCAL PLANT BIOMASS AND SOIL PROPERTIES

Overall, plant neighbor altered focal plant biomass, root and shoot C:N, and soil conditions
(Table 2.1, Figure 2.1). These properties were most affected when R. hirta was a neighbor. R. hirta
decreased total switchgrass biomass by 70%, was larger than other neighbors (Figure 2.52A,
aboveground biomass: F3 16 = 78.39, p < 0.001; belowground biomass: F;1¢ = 16.70, p < 0.001), and was
classified as the strongest competitor by the relative strength of competition index (p = 0.064, Table 2.1,
Figure 2.52B). R. hirta maintained this large size in a monoculture, where it had 2.2 times greater total
biomass than all other species in monoculture (Table 2.1).

In addition to plant biomass, neighbor effect on focal plant C:N and soil moisture was also most
prominent with R. hirta (Table 2.1, Figure 2.1B and Figure 2.S3A). Focal plants neighbored by R. hirta had
66 and 65% higher root and shoot C:N (respectively) than focal plants in the other neighbor treatments
(Figure 2.1B). R. hirta also used more moisture, as R. hirta pots had lower soil moisture when present as
a neighbor, and in monoculture (Table 2.1, Figure 2.S3A). Neighbor treatment had a small effect on soil
nitrate (Table 2.1, Figure 2.S3B), though in monocultures, K. macrantha had four times greater soil
nitrate than any other plant monoculture (Table 2.1). There was also clear uptake of soil nitrate during

plant growth, as the no plant control had 8.5 times higher soil nitrate than all other treatments.
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Table 2.1. Effect of neighbor treatment on focal plant growth, soil conditions, bacterial community,
and root exudates, as well as differences among monoculture treatments in greenhouse experiment.
ANOVA and PERMANOVA results shown; PERMANOVAs conducted on bacterial community structure
(Weighted Unifrac) and root exudate profiles (Euclidean); significant p values bolded (p < 0.05).

Focal Treatments
(Focal plant)

Monoculture Treatments

F p F p
Plant and Soil Variables
Total Biomass (g) 4.01 0.015 23.54 <0.001
Aboveground biomass (g) 4.65 0.008 21.17 <0.001
Belowground biomass (g) 2.15 0.112 10.73 <0.001
Shoot C:N 10.95 <0.001 NA NA
Root C:N 6.13 0.002 NA NA
Soil Moisture (g water g dry soil) 6.99 0.001 4.35 0.020
Soil nitrate (ug NOs g dry soil ) 3.61 0.023 10.76 <0.001
Rii (aboveground biomass) 3.09 0.057 NA NA
Rii (belowground biomass) 0.53 0.667 NA NA
Rii (total biomass) 2.02 0.151 NA NA
Bacterial Community and Exudates
Shannon Diversity 6.16 0.002 2.99 0.044
Pileau’s Evenness 0.79 0.546 1.46 0.24
Chaol 9.96 <0.001 3.55 0.024
Microbial biomass carbon 2.19 0.107 2.61 0.087
Bacterial community structure 1.35 0.056;R2=0.21  5.40 <0.001; R?=0.31
(all taxa)
Bacte.nal community structure 1.29 0.099; R? = 0.21 NA NA
(dominant taxa)
Bacterial c‘ommunlty structure 132 0.014; R? = 0.21 NA NA
(non-dominant taxa)
Root Exudates (all) 4.92 <0.001; R?=0.50 NA NA
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Figure 2.1. Neighbor effect on focal plant A) aboveground biomass, B) shoot and root carbon:nitrogen
content, C) bacterial Shannon diversity, and D) microbial biomass carbon (collected at the pot-level). The
central line is the median value, vertical bars represent the first and third quartile, and dots represent
individual replicate values. Different letters denote significant differences among treatments (false
discovery rate, p < 0.05).

THE MOST COMPETITIVE NEIGHBOR HAD STRONGER EFFECTS ON FOCAL PLANT BACTERIAL COMMUNITY
The most dominant rhizosphere phyla across all plant species were Proteobacteria,
Acidobacteria, Verrucomicrobia, Plantomycetes, and Bacteriodetes (37%, 15%, 13%, 9%, 8% relative
abundance respectively). Each of the four plant species were associated with differently structured, but
not sized, bacterial communities (Table 2.1). Diversity also differed and was highest in the P. virgatum
monoculture and lowest in the K. macrantha monoculture (Table 2.1).
Neighbor identity did not affect the amount of microbial biomass, but significantly altered both the
diversity and structure of the focal plant’s bacterial community (Table 2.1, Figure 2.1C & 1D). Bacterial
Shannon and Chao1 diversity, but not evenness, differed by neighbor treatment; specifically, diversity
was lower when switchgrass neighbored K. macrantha. These patterns did not change when we
controlled for the effect of competition on focal plant aboveground biomass (Table 2.51). Neighbor also
affected community structure, explaining 20% of the variation in the focal plant’s bacterial community
(Table 2.1), and these shifts were more influenced by the non-dominant taxa than the dominant taxa
(PERMANOVA p = 0.014 for non-dominant taxa; PERMANOVA p = 0.099 for dominant taxa; Table 2.1).
The neighbor-induced shifts in microbial community structure were strongest with R. hirta,
which was also the most competitive neighbor (see above). Still, when we controlled for neighbor
competition (by including focal plant biomass as a covariate), the focal plants’ non-dominant taxa

differed by neighbor treatment (Table 2.51 & 2). Compared to the other neighbor treatments, R. hirta
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led to twice as many indicator genera (n = 15) in the focal plant rhizosphere, including
Sphingomicrobium, Zymomonas, Methylotenera, Caulobacter, Methylophilus, Flavobacterium (Table
2.53 for complete list of indicator genera). Interestingly, the relative abundances of these genera were
also greater in the R. hirta monoculture compared to the other neighbor monocultures (Figure 2.54).

We further evaluated how neighbors altered the focal rhizosphere by comparing the focal and
neighbor bacterial communities to those in their monocultures (Figure 2.2). A. gerardii and the focal
species (P.virgatum) rhizosphere communities were similar to one another when each was grown in
monoculture, and they did not alter each other’s rhizosphere communities when grown together in a
neighborhood, for both dominant and non-dominant communities (Figure 2.2A & 2D). K. macrantha and
the focal species, on the other hand, had more dissimilar rhizosphere communities, but when in a
shared neighborhood, their communities resembled the focal monoculture (Figure 2.2B & 2E). These
patterns observed with the A. gerardii and K. macrantha neighbors did not differ for the dominant
versus non-dominant taxa, but they did with R. hirta. When sharing a pot with R. hirta, the dominant
taxa resembled that of the R. hirta monoculture (Figure 2.2C), but the non-dominant taxa rhizospheres
were distinct from either monoculture species (Figure 2.2F). These comparisons also revealed that
despite the distinct effect of each neighbor on the focal rhizosphere, there was strong homogenization
between the interacting plants: the focal rhizosphere communities did not significantly differ from that
of their direct neighbor in a shared pot (PERMANOVA effect of treatment by plant position: Weighted
Unifrac; treatment effect: F330 = 2.21 p < 0.001, R?= 0.16; shared pot effect: F1 3= 0.63, p = 0.91;
treatment*pot Fs 35 = 0.58, p = 0.99).
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Figure 2.2. Nonmetric multidimensional scaling (NMDS) ordination comparing focal (P. virgatum) and
neighbor plant bacterial communities in shared pot neighborhoods to their respective monoculture
treatments (OTU abundance averaged at pot-level). A-C represent dominant taxa (top 10% most
abundant) and D-F represent non-dominant taxa (lower 90% abundant). Open squares represent
monocultures for either focal plant (dark blue) or neighbor species (A. gerardii — light blue, K. macrantha
— purple, R. hirta — yellow); closed circles represent the focal or neighbor species in a shared pot
neighborhood. Each centroid is the average of sample replicates (n = 5) and bars indicate + 1 standard
error from the centroid. PERMANOVA results presented in top left of each panel (R%, ns p >0.05, * p <
0.05; ** p<0.01, *** p < 0.001); Different letters denote significant differences among treatments (false
discovery rate, p < 0.05).

NEIGHBOR IDENTITY ALTERS FOCAL PLANT ROOT EXUDATES

We detected 14,648 unique metabolite features from the root exudates of the focal P. virgatum
plants (LC-MS and GC-MS), of which 140 of them were putatively identified. The top 10 most abundant
identified compounds from exudates samples were quinate, malic acid, gluconic acid,
hydropxypyruvate, myo-inositol, fructose, lyxose, shikimic acid, and azelaic acid (metabolite abundance
by treatment - Figure 2.S5). Of all unknown and identified exudates, quinate and malic acid were the top
two most abundant.

Neighbor identity had a strong effect on the focal plant root exudate profile, but not on the
amount of total carbon exuded (total organic carbon: F113=1.12, p = 0.379). This effect was even
stronger than the effect of neighbor on rhizosphere community structure, as neighbor treatment
explained 50% of the variation in the focal plant root exudates (Table 2.1) and 37% when we controlled
for variation in focal aboveground biomass (Table 2.51). When neighbored by R. hirta and conspecific P.
virgatum the exudates were most dissimilar from the no neighbor treatment (pairwise p-values Table
2.52).

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) further indicated that the R. hirta

and K. macrantha neighbor treatments had the most distinct exudate profiles (Figure 2.3A). The first
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component (C1) of the sPLS-DA explained 15% of the variation and separated the R. hirta neighbor
treatment from the other four treatments. Of the top 15 discriminant exudates for C1, eight of them
were most abundant in the R. hirta treatment, including fumaric acid, malic acid, stearic acid, cytosine,
1-methylguanosine, hypoxanthine, and sn-glycerol-3-phosphate (Figure 2.3B). Component two (C2)
explained 14% of the variation and separated the K. macrantha treatment, which had a greater
abundance for 12 of the top 15 discriminant exudates for C2 (Figure 2.3C).

We used variance partitioning to determine which factors had the largest effect on the root
exudate profiles. Neighbor treatment explained the most variation in the exudate profiles (41.3%),
followed by the focal plant’s aboveground biomass (16.5%), root C:N ratio (9%) and soil moisture
content (6.0%). All four variables cumulatively explained 51.5% of the variation in root exudates. The top
ten most abundant identified exudates also correlated with these plant and soil factors (Figure 2.S6A).
Malic acid was exuded significantly more with the R. hirta neighbor (14-fold greater peak area with R.
hirta, Figure 2.3B & Figure 2.55) and had the strongest correlations with these factors (Figure 2.S6A, but
the correlations were driven by the significantly lower C:N plant tissue and soil moisture in the R. hirta

focal treatment (Figure 2.S6B-E).
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Figure 2.3. A) Principal Coordinates Analysis (PCA) of focal plant identified exudates by treatment.
Loading vectors from sparse Partial Least Squares Discriminant Analysis (plsDA) for Component 1 (B) and
Component 2 (C). Bar colors in B & C indicate which treatment had the highest mean value for each
exudate.

EXUDATES AND BACTERIAL COMMUNITIES ARE CORRELATED AT WHOLE COMMUNITY-LEVEL

Overall, we found that the focal plant root exudates had stronger correlations with the entire
bacterial community than with individual genera. Protest analyses showed that the significant and
strong correlation observed with the whole community (Procrustes Protest test on PCA axes, r = 0.78,
m2 =0.47, p = 0.006), was similar for both the dominant and non-dominant taxa (Dominant taxa:
Protest test, r = 0.80, m2 = 0.45, p = 0.009; Non-dominant: Protest test, r =0.71, m2 = 0.54, p < 0.001).

The variance partitioning (Figure 2.4A) and db-RDA results (Figure 2.4B) suggested that the top ten most
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abundant exudates, specifically malic acid (dbRDA: R?= 0.08, p = 0.021) and stearic acid (dbRDA: R?=
0.06, p = 0.113), drove shifts in the community, and that focal shoot C:N (dbRDA: R?=0.06, p = 0.090)
also played a role. Similar to the Protest results, these two dominant exudates influenced both the
dominant and non-dominant taxa, but only the dominant taxa were impacted by focal shoot C:N (db-
RDA analyses, Table 2.54). Despite significant correlations at the whole community level, we identified
only six significant correlations between individual exudates and bacterial genera. The bacterial genera
Methylophilus had the most significant correlations with exudates, including malic acid, fumaric acid,

and pyruvic aldehyde (nc correlation metric > 0.50, p.adj < 0.02) (Table 2.S5 for complete list).
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Figure 2.4. Variance in the focal plant bacterial community composition (Weighted-Unifrac) explained by
exudates, plant and soil factors. A) Variance partitioning analysis depicting the proportions of variance in
bacterial community explained by the neighbor treatment (6%), top then most abundant identified
metabolites (3%), and focal shoot C:N (3%). All factors explain 11% of the total variation in bacterial
community. B) Distance-based Redundancy Analysis of focal plant rhizosphere bacterial communities by
neighbor treatment; arrows indicate environmental variables and identified exudates explaining
significant variation in the community structure (p < 0.10). These three variables account for 20% of the
variation in the community (constrained proportion); overall dbRDA model statistics: ANOVA F; 5= 1.64,
p = 0.008. Only four replicates shown for K. macrantha treatment after removing an extreme outlier
from soil moisture data.

MALIC ACID ALTERS BACTERIAL COMMUNITIES AND INCREASES SOIL CARBON AND NITROGEN

Malic acid was exuded more near R. hirta (Figure 2.3B and Figure 2.55) and had significant
impact on the overall community structure (Figure 2.4B), but not on particular bacterial genera.
Therefore, we used a soil incubation experiment to more causally link malic acid exudation with shifts in
bacterial community structure. We found that the concentration of malic acid has a strong effect on
bacterial community structure (PERMANOVA: F3 17 = 3.83, p = 0.04, R? = 0.32), with Brevundimonas,
Pedobacter, Pseudoxanthomonas, Pseudospirillum, Hirschia, Flavitalea, Chryseolinea genera enriched in

the high malic acid treatment (Table 2.56 for complete list). However, these same genera did not
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strongly correlate with malic acid in the greenhouse experiment and, similarly, were not enriched when
the focal plant neighbored R. hirta (Figure 2.57).

The malic acid additions also altered soil carbon, nitrogen, and microbial biomass. The high malic acid
soils had two times greater dissolved organic carbon (p < 0.001, Figure 2.5A) and extractable total
nitrogen (p < 0.001, Figure 2.5B) than the low malic acid soils. Microbial biomass C:N ratio was 55%
lower in the high malic acid soils (p = 0.011), and this was reflected in the microbial biomass N, which
was 18% greater in the high malic acid soils (p = 0.035, Figure 2.5D) while microbial biomass C was

marginally lower in the high malic acid soil (p = 0.087, Figure 2.5C).
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Figure 2.5. Effect of malic acid concentration on soil incubation A) dissolved organic carbon, B) total soil
extractable nitrogen, C) microbial biomass carbon, and D) microbial biomass nitrogen. The central line is
the median value, vertical bars represent the first and third quartile, and dots represent individual
replicate values. Different letters denote significant differences among treatments (false discovery rate,
p < 0.05).

DISCUSSION
NEIGHBORS INDUCED SPECIES-SPECIFIC CHANGES IN FOCAL PLANT RHIZOSPHERE BACTERIAL
COMMUNITY

We found that neighbor identity altered the composition of the focal plant rhizosphere
community, offering support for our first hypothesis that associational effects, widely observed
aboveground, also occur in soil. The functionally-similar C4 grass neighbor, A. gerardii, had a neutral
effect on the focal rhizosphere, while the forb neighbor, R. hirta, altered both the focal plant’s dominant
and rare bacterial taxa. These neighbor-specific effects on soil communities have been observed in
previous studies (Hausmann and Hawkes, 2009; Mony et al., 2021), and could have several explanations.

First, a more functionally-dissimilar neighbor, like R. hirta in our study, may introduce novel taxa to a
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focal plant’s existing microbiome. This was also previously observed with mycorrhizal fungal
communities (Mony et al. 2021). Differences in growth and competition for resources can also alter the
strength of associational effects. This was likely a strong contributing factor in our study, as R. hirta was
the fastest growing neighbor plant, both in monoculture and neighborhood. R. hirta’s root system was
larger than all other neighbor species, which likely led to greater microbial spillover to the focal
rhizosphere (discussed more below). Overall, we cannot distinguish the effect of neighbor growth and
competition for resources from their functional dissimilarity, but future studies might experimentally
investigate what predicts the strength of belowground associational effects, and why.

CHANGES IN ROOT EXUDATES CORRELATE WITH OVERALL BACTERIAL COMMUNITY BUT NOT
INDIVIDUAL GENERA

Overall root exudate and bacterial community profiles were strongly correlated, suggesting that
neighbor-induced changes in exudates may contribute to belowground associational effects, and should
be tested for causality in mechanistic studies. In contrast, we observed few strong correlations between
specific metabolites and bacterial genera. Thus, we found some support for our second hypothesis. Two
highly abundant exudates in particular, malic acid and stearic acid, correlated with overall shifts in the
focal plant’s rhizosphere communities, suggesting they play a role in shaping communities. Both
compounds are commonly reported root exudates (Aulakh et al., 2001; Liu et al., 2015), and malic acid
has been identified as a chemoattractant for beneficial rhizosphere bacteria (Rudrappa et al., 2008; Ling
et al., 2011; Jin et al., 2019).

We also cannot ignore several methodological factors that may have affected our ability to test
the linkage between exudates and neighbor-induced shifts in bacterial communities. First, because root
exudates are suggested to have the greatest influence on bacteria near root hairs (Riiger et al., 2021),
our sampling of the entire root system may have weakened our ability to detect strong correlations.
Second, microbial spillover from neighbor roots may have contributed to shifts in the rhizosphere
community. Lastly, it is possible that microbial excretion or consumption of metabolites altered the
exudate profiles. But thorough root washing, and the generally higher production of plant-derived
metabolites versus microbially-derived per unit volume probably made this only a small factor for
highly-abundant metabolites (Williams et al., 2021a). The abundance of malic acid, in particular, can
increase with root damage (Williams et al., 2021a), potentially elevating its statistical impact on the
microbial community.

When we added malic acid directly to soil in incubations, we also saw changes in microbial

communities, but the bacterial genera enriched in the high malic acid incubations were not the same
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genera correlated with malic acid in the greenhouse experiment. The observed inconsistencies in
bacterial enrichment with malic acid are likely driven by artifacts from distinct experimental conditions
in the greenhouse and laboratory, including the use of different soil substrates in either experiment.
These inconsistencies could also suggest that other factors beyond selection by malic acid are shaping
neighbor-induced changes in microbial communities. For instance, we found an unexpected correlation
between malic acid exudation and the abundance of the bacterial genera Methylophilus. This group
consists of facultative methylotrophs that would not utilize malic acid as a primary energy source
(Jenkins et al., 1987), and may indicate that other factors, such as shifts in soil nutrients, drove this
correlation.

The soil incubation further highlighted that neighbor-induced changes in root exudates may
have even more pronounced effects on nutrient cycling, than on bacterial assembly. We found that the
greater addition of malic acid increased soil DOC and TN and decreased microbial biomass C:N. While
these results may be influenced by differences in sugar content between the high- and low-malic acid
treatments, which could alter microbial growth and N-use (Schneckenberger et al., 2008; Cao et al.,
2021), our results are consistent with previous studies showing that organic acids stimulate greater
release of microbially-available N than sugars (Yuan et al., 2018). Organic acids can stimulate the release
of C and N from soil through two mechanismes: first, they can stimulate microbial enzyme production,
which then releases mineral-bound nutrients, and second, they can directly liberate organic compounds
from mineral soils, making them more available to microbes (Keiluweit et al., 2015; Jilling et al., 2021).
These studies used oxalic acid, another commonly exuded organic acid, but we show that malic acid
could play a similar role in nutrient mineralization in soils. In sum, the soil incubation suggests that
neighbor-induced changes in exudates play an important role in nutrient cycling, and that the
correlations between malic acid and bacterial community structure may be driven by the microbes’
response to soil N, rather than a direct chemotactic response to the exudate.

NEIGHBOR EFFECTS ARE GREATEST DURING COMPETITION AND NUTRIENT-LIMITATION

In support of our third hypothesis, we found that neighbor-induced changes in bacterial
communities were greatest during strong competition. All neighbors had a competitive effect on focal
plant biomass (negative RIl), but the forb R. hirta caused the greatest reduction in focal plant biomass
and had the strongest effect on the rhizosphere community. Patterns in focal plant exudates were
similar, but also responded to the less competitive K. macrantha neighbor. This suggests that while
microbiomes are strongly influenced by characteristics of strong competition, such as nutrient stress and

reduction in biomass, other mechanisms contributed to shifts in the exudates, such as aboveground
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signaling (Li et al., 2020; Kong et al., 2021) or neighbor detection (Biedrzycki and Bais, 2010; Kong et al.,
2018). Still, we cannot, distinguish how the observed effects on rhizosphere structure are impacted by
neighbor identity and competition. R. hirta was both the only forb neighbor and the largest neighbor,
and caused the greatest reduction in focal plant biomass, tissue N content and soil moisture, and each
mechanism may have contributed to its greater effect on focal plants.

Abiotic factors in particular can directly affect microbial community structure (Fierer, 2017;
Naylor and Coleman-Derr, 2018) and may also drive indirect, host-mediated shifts in microbiomes by
altering root exudates (Weidenhamer et al., 2019; Williams and de Vries, 2019; Smercina et al., 2020).
We saw that focal plant C:N explained variation in both the bacterial community and root exudates,
suggesting that N competition was particularly important to R. hirta’s strong effect on the focal plant.
Surprisingly, soil nitrate levels did not differ by treatment, but the drier soil of the R. hirta treatment
may have reduced focal plant N uptake (Gonzalez-Dugo et al., 2012; Bista et al., 2018). This N and water
limitation likely increased exudation of compounds related to plant stress response. For instance,
glycerol 3-phosphate (G3P), which was exuded more next to R. hirta, is shown to increase in both plants
(Shen et al., 2006) and microbes (Albertyn et al., 1994) during osmotic stress. There may even be a link
between G3P and the recruitment of beneficial, drought-tolerant microbes (Xu et al., 2018), as well as
host immunity against pathogens (Chanda et al., 2011; Mandal et al., 2011). In this study we did not find
strong correlations between G3P and bacterial taxa, suggesting that more studies are needed to
elucidate the role that G3P exudation plays under stress and, specifically, if it influences microbial
assembly.

P. virgatum also exuded more organic acids (fumaric acid, malic acid, and saccharic acid) while
neighboring R. hirta, likely due to nutrient limitation. Plants release more organic acids under a variety
of nutrient stresses (K+, P, N, Ca?*, Zn?*) (Jones, 1998; Panchal et al., 2021), so though we know that N
was limited, other nutrients may have also triggered this response. Several recent studies show that our
focal plant, P. virgatum, exudes more organic acids and fewer carbohydrates in N-limited, sterile,
conditions (Smercina et al., 2020), and that these organic acids increase soil DON and N-mineralization,
but not biological N-fixation (Liu et al., 2022). Accompanied with our soil incubation results, this shows
that organic acids may do more to alleviate plant N stress through physical liberation of minerally-bound
N, rather than through recruitment of beneficial microbes, such as free-living N-fixers.

Finally, in addition to R. hirta’s distinct effect on soil resources, it was also the largest neighbor plant,
which may have contributed to its strong effects on the focal plant’s rhizosphere community. With a

root system that was ten times larger than the other neighbors, R. hirta’s roots likely had greater
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overlap and microbial spillover with the focal plant rhizosphere. In fact, the bacterial genera that were
more prevalent in the focal plant’s rhizosphere near R. hirta were also most abundant in the R. hirta
monoculture (Figure 2.54), suggesting a role of microbial spillover. Higher exudation rates in grassland
forbs than grasses (Williams et al., 2021b) may have also strengthened its effect on the focal plant’s
rhizosphere. R. hirta’s effect on the focal plant’s non-dominant taxa, however, was not driven by
microbial spillover, as the non-dominant taxa represented a novel community distinct from either the R.
hirta or P. virgatum monoculture. This result indicates that mechanisms other than microbial spillover,
perhaps shifts in neighbor signaling, drive changes in non-dominant rhizosphere taxa. Lastly, these
subtle, but clear shifts in non-dominant taxa may also help explain why neighborhood effects are
seldom noticed, yet why some plant pairings have non-additive effects on microbial functions, such as
nutrient cycling (Betencourt et al., 2012; Li et al., 2016; Sekaran et al., 2020).
CONCLUSION

In summary, we show that neighbor plants influence one another’s rhizosphere assembly,
especially during strong neighbor competition. This suggests that studies on isolated plants may not be
predictive of rhizosphere assembly in natural conditions. We found evidence for multiple mechanisms
contributing to neighbor-induced changes in the rhizosphere bacterial communities. While the exudate
profile was strongly correlated to the overall microbiome, suggesting that exudates may play a role, we
could not repeat the same taxonomic shifts by manipulating a dominant exudate, and did not identify a
causal link between these factors. In fact, the dominant exudate also increased soil N, suggesting that
neighbor-induced changes in exudates may have even stronger effects on soil nutrients than microbial
assembly. Still, future studies should explore the spatial and temporal scales at which neighbors affect
exudates and rhizosphere taxa, as this likely influenced our ability to correlate shifts in taxa and
exudates. Overlapping roots and microbial spillover also contributed to the strong neighborhood effects.
Future studies with root barriers will help elucidate the relative role of microbial spillover and exudate-
mediated microbial assembly on associational effects. Overall, this study highlights that exploring plant-
microbial dynamics in mixed-species neighborhoods can help increase our understanding of the
mechanisms that drive rhizosphere assembly in nature, as well as improve our ability predict and
manage for beneficial microbial interactions.
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CHAPTER THREE: NEIGHBORHOOD EFFECTS, AND THE FACTORS MEDIATING THEM, DIFFER FOR
RHIZOSPHERE AND ROOT MICROBIOME ASSEMBLY

ABSTRACT
Root and soil microbes provide many beneficial functions for plant hosts and being able to capitalize on
these benefits demands an understanding of microbiome assembly. Studies show beyond the host
plant, neighbor plants can also impact one another’s microbiome assembly, but the patterns and
mechanisms vary, and controlled studies are needed to elucidate the relative role of the host- and
neighbor-plant. To this end, we used a controlled rhizobox experiment that manipulated the neighbors
of a focal plant, Panicum virgatum. We used root barriers that reduced the ‘spillover’ of novel neighbor
microbes, as well as fine-scale sampling of root exudates and microbiomes to isolate the relative role of
the host- and neighbor-plant in microbiome assembly within and on the root, as well as in the soil near
the root, ‘rhizosphere soil’. We found that neighbors impacted the focal plant root-associated
microbiomes, but not the rhizosphere soil microbiomes or root exudates. This pattern was true for fungi
and bacteria. The neighbor-induced shifts in the focal plant root-associated microbiomes occurred even
in the absence of overlapping roots, suggesting that the host plant plays a strong role in mediating
neighbor effects on root microbiome assembly. In contrast, the rhizosphere soil microbiomes were not
affected by neighbor, likely because there were no neighbor effects on the focal root exudates, and the
neighbors also did not assemble distinct microbiomes, so could not introduce novel taxa during root
overlap. Overall, this study shows that the neighborhood effects on root-associated and rhizosphere soil
microbiomes differ, and while the host plant plays a role in mediating root assembly, neighbor-effects
on rhizosphere communities depend on the introduction of novel taxa from species-specific
rhizospheres.
INTRODUCTION

Plant hosts associate with soil and root microbiomes that influence their growth and resistance
to stress (Berendsen et al., 2012; de Vries et al., 2020). Capitalizing on microbiome benefits to enhance
plant growth and resilience demands an understanding of microbiome assembly (Quiza et al., 2015;
Munoz-Ucros et al., 2021). It is broadly accepted that microbiomes are influenced by soil conditions as
well as host-specific factors (Berg and Smalla, 2009). Root-derived metabolites play a primary role in
filtering microbes in a gradient of decreasing diversity and increasing plant-association, from the
surrounding bulk soil to soil near the plant root, the “rhizosphere”, and finally inside the root, the
“endosphere” (Bulgarelli et al., 2013; Reinhold-Hurek et al., 2015). Beyond the host plant, it is also

possible that microbiome assembly is influenced by neighboring plants. Indeed, neighborhood effects,
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defined as the influence of neighbors on a focal plant’s fitness or interactions with other organisms,
have been extensively studied for pathogens and herbivores (Barbosa et al., 2009; Underwood et al.,
2014) and, more recently, have also been shown to affect belowground microbiome assembly. This can
occur in many settings, including in native plant communities (Bakker et al., 2013; Morris et al., 2013;
Horn et al., 2017; Vieira et al., 2019), during plant invasions (Mummey et al., 2005; Hawkes et al., 2006;
Broz et al., 2007), and in agricultural landscapes (Song et al., 2007; Zhang et al., 2010; Gelfand et al.,
2011; Li et al., 2016). However, controlled studies are needed to decipher the dominant mechanisms
that underlie this pattern (Li et al., 2016; Chen et al., 2020; Kong et al., 2021).

Patterns of neighbor-induced changes in microbiome assembly vary widely, suggesting that
there are several mechanisms at play. In some cases, a neighbor plant that is more competitive for
nutrients can alter local abiotic conditions, such as soil nutrients or water availability, which then
impacts the focal plant microbiome (Hortal et al., 2017a; Ulbrich et al., 2022). Changes in abiotic
conditions can have direct effects on microbial communities (Fierer et al., 2007; Naylor, 2017), but can
also drive host-mediated shifts in microbiomes, such as when abiotic conditions alter root exudates or
plant immune responses (Fitzpatrick et al., 2020). Other times, neighborhood effects may be the result
of “microbial spillover”, or the introduction of novel neighbor microbes into a focal plant rhizosphere.
This could occur through several mechanisms, such as dispersal through fungal hyphae that extend
between neighbor roots (Yang and van Elsas, 2018), or when neighbor roots overlap and, therefore, are
more likely to share rhizosphere microbes (Hausmann and Hawkes, 2009; Ulbrich et al., 2022). Spillover
may result in the focal plant’s rhizosphere microbiome resembling that of its neighbor (Hausmann and
Hawkes, 2009; Hortal et al., 2017a; Ulbrich et al., 2022). Finally, it is also possible that signals involved in
species-specific plant recognition drive changes in the plants’ microbial communities. For instance,
cyanide production from a neighboring Cassava plant (Manihot esculenta) has been shown to stimulate
ethylene production from neighbor peanut plants (Arachis hypogaea) with subsequent shifts in the
peanut rhizosphere soil microbiome (Chen et al., 2020). Altogether, these studies show that plant
neighbors affect host microbiome assembly through many mechanisms, but the relative impact of the
host plant versus external factors (e.g., spillover, abiotic conditions) on neighborhood effects needs to
be elucidated.

Neighborhood effects have been observed in plant roots and rhizosphere soils, as well as for
fungi and bacteria, but it is plausible that the mechanisms driving neighbor-induced changes in these
groups may differ. For instance, mycorrhizal fungi are a common group of fungi that respond to shifts in

plant neighborhoods (Mummey et al., 2005; Hausmann and Hawkes, 2009; Horn et al., 2017), possibly
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because their hyphal networks can connect neighboring root systems, exchanging nutrients and signals
between neighboring plants (He et al., 2003; Babikova et al., 2013). Therefore, it is possible that
neighbor plant mycorrhizae may alter a focal plant’s microbiome even at a distance, via hyphae. Hyphal
networks have also been shown to facilitate the migration of more dispersal limited soil microbes, like
bacteria and yeasts (Yang and van Elsas, 2018). In these cases, bacteria and yeasts could also be
introduced to a focal plant’s microbiome via hyphae, but because the likelihood of hyphal dispersal
varies among species and soil moisture conditions (Kohlmeier et al., 2005; Worrich et al., 2016), one
may expect microbial spillover via root overlap to have a stronger effect on assembly.

There are also known differences in the assembly of root and rhizosphere soil microbiomes that
may be reflected in neighborhood effects. Rhizosphere soil microbiome composition is controlled by the
initial composition of the bulk soil community (Vieira et al., 2019), root exudate composition (Badri et
al., 2012; Lebeis et al., 2015; Zhalnina et al., 2018), by edaphic factors (Nuccio et al., 2016; Ulbrich et al.,
2021), and via complex cross-kindom biochemical dialogues (Venturi and Keel, 2016). In contrast,
endophytes, or microbes that live within the root, may originate from the seed (Truyens et al., 2015)
and are also filtered from rhizosphere soil through species-specific signaling and immune system
responses (Reinhold-Hurek and Hurek, 2011; Edwards et al., 2015b). Therefore, while spillover from
neighbor plants or shifts in abiotic conditions can affect the recruitment pool for endophytes (neighbor-
mediated mechanisms), the host plant is likely the ultimate regulator of which microbes colonize root
interiors. For these reasons, we predict that neighborhood effects on root microbes will be mediated
mostly by the host plant, for instance through changes in host physiology or signaling, while the
assembly of microbes in rhizosphere soil will be influenced by both host- and neighbor-mediated
mechanisms. In fact, in our previous study, we found that neighborhood effects on rhizosphere bacteria
were mediated by changes in root exudates (host-mediated) and soil moisture (neighbor-mediated), as
well as spillover of neighboring soil microbes (neighbor-mediated) (Ulbrich et al. 2022).

To determine the relative role of host- and neighbor-mediated mechanisms in neighborhood
effects, studies need to address several challenges. A first challenge is the need to identify if novel taxa
are introduced to a focal plant rhizosphere primarily through microbial spillover, or through host-
mediated avenues, such as via recruitment with changes in root exudates. A second challenge is with
the scale in which most studies sample microbial communities and root exudates. Often, microbiome
samples and root exudates are collected from the entire root system, but this pooling approach
homogenizes potentially meaningful spatial variation in microbiomes (Munoz-Ucros et al., 2021) and

root exudates (Canarini et al., 2019). For instance, nitrate additions to one side of a root system can
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stimulate localized increases in exudation rates and bacterial colonization (Paterson et al., 2006). It is
plausible that similarly localized shifts in microbiome assembly could occur in mixed plant
neighborhoods, but that they would only be detected with spatially-explicit, fine-scale sampling efforts.

Here, we attempted to overcome challenges to understanding the mechanisms driving
neighborhood effects on rhizosphere microbiomes. We manipulated a focal plant’s neighbor and used
root barriers to reduce the effect of microbial spillover (primarily reducing spillover from root overlap),
as well as fine-scale sampling of root exudates and microbiomes in two rhizosphere compartments to
look for localized neighborhood effects. We assess the microbiomes within the rhizosphere soil
compartment, defined as soil that was adhering to or within 2 mm of a root, as well as the microbiomes
of the rhizoplane and endosphere compartments together, which we call the root-associated
microbiome. Finally, unlike most greenhouse studies on neighborhood effects that inoculate potting
media or sand with a small percent of field soil (Hausmann and Hawkes, 2009; Cavalieri et al., 2020;
Mony et al., 2021; Ulbrich et al., 2022), we used 100% field soil to ensure that outcomes were more
representative of what may occur in natural settings.

Using this design, we asked three main questions: 1) To what extent is rhizosphere microbiome
assembly (soil and root-associated) distinct among host species?, 2) Do neighbor interactions alter a
focal plant’s microbiome assembly? And, 3) what is the relative role of the host plant versus microbial
spillover in mediating neighbor-induced changes in microbial assembly? First, we hypothesized that both
rhizosphere compartments would have distinct microbiomes among plant species, but that the species-
effects would be stronger for the root-associated communities. Second, we hypothesized that neighbor
identity would alter the composition of a focal plant’s microbiomes, but that the mechanisms driving
these shifts would differ by plant compartment. Specifically, we hypothesized that neighbor-induced
shifts in the root-associated compartment would be driven primarily by the host plant, such that the
effect would be present even in the absence of microbial spillover during active root interactions
(barrier between plants). In contrast, we predicted that neighbor-induced shifts in the rhizosphere
compartment would be most strongly influenced by microbial spillover during active root interactions,
and that neighbor-induced changes in abiotic conditions and focal plant root exudates would also play
significant, though more minor roles. If this is true, and microbial spillover is the prominent mechanism
mediating neighborhood effects in the assembly of rhizosphere soil microbiomes, then we would expect
to see a stronger neighborhood effect when there are active root interactions (no barrier between

plants), compared to when there are not.
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METHODS
STUDY SPECIES

The focal species used in this study was switchgrass (Panicum virgatum L. var. Cave-in-rock),
which is a C4 perennial grass native to tallgrass prairies and is also a candidate bioenergy crop
(McLaughlin and Kszos, 2005). Recent studies suggest that P. virgatum’s root exudates and rhizosphere
microbiomes vary depending on the identity of its neighbor (Ulbrich et al., 2022). Neighbor plants can
also alter a focal switchgrass plant’s belowground carbon inputs, perhaps because neighbor identity
impacts the potential for interplant carbon transfer (Kravchenko et al., 2021). In this study, we seek to
isolate the mechanisms mediating previously-observed neighbor-effects on P. virgatum’s rhizosphere
microbiome. The neighbor species used in this study were conspecific P. virgatum (hereafter, PV), as
well as two perennial prairie species known to co-occur with PV: Rudbeckia hirta L. (RH, a forb) and
Lespedeza capitata Michx (LC, a legume).
RHIZOBOX DESIGN & SOIL PROPERTIES

Rhizoboxes were designed to manipulate a focal plant’s neighbor context (described below in
‘Plant Neighbor Treatments’), as well as the capacity for the neighboring roots to interact (described
below in ‘Barrier Treatment’). The boxes had three sections with a focal plant in the center and
neighbors on either side (Figure 3.1). The boxes (54 cm wide x 30 cm tall x 4 cm deep) were made of
acrylic and polycarbonate and the transparent sides were placed at 60° angle to encourage root growth
towards the front, facilitating easier sampling (Supplementary Figure 3.1 for design; See Supplemental
Methods for additional details).

Soil for the experiment was collected from the Great Lakes Bioenergy Research Center Marginal
Land Experiment site in Escanaba, Michigan, USA (45°45'49”N, 87°11'14”W). These soils are
characterized as a sandy loam (Inceptic Hapludalf Alifsol) with approximately 1.73% organic carbon
(Kasmerchak and Schaetzl, 2018). Wheat was growing at the time of soil collection. Soil was sampled to
a depth of 20 cm. The soil was then air dried and sieved (2 mm) before filling into rhizoboxes at a
consistent bulk soil density and soil moisture (1.28 g cm™ and 20% volumetric water content).
After filling the rhizoboxes, one week old seedlings were transplanted into each of the three sections.
Plants were replaced for up to two weeks, if mortality occurred, and grown for 14 weeks in their
neighbor treatments. The rhizoboxes were positioned in the greenhouse in a complete randomized
blocked design to control for heterogeneity in greenhouse, with temperatures controlled at a maximum

of 29 °C during the day and minimum of 20 °C at night with 16 hours of artificial lighting. They were
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watered with RO water as needed and fertilized twice during the experiment to adjust for potassium

deficiency in the soil (KH2PO4 to the equivalent of 56.04 Kg P Ha™l).

56



No Barrier Barrier

Treatment 1
Same-PV

Add

Treatment 2
Same-LC

Same
neighbor
treatments ‘ ‘

Plant Species Key

§ g ‘ %\ OPamcum virgatum (PV)

Treatment 3 :
Lespedeza capitata (LC
Same-RH go P P (Lo
- - - N
’%ﬁ % %§ %2 Rudbeckia hirta (RH)
‘ — A= - ‘ Sampling Locations

Treatment 4
Mixed O Focal plant

ST ST M

Mixed
. Treatment 5
neighbor Mixed N
treatments

A2 b

Figure 3.1. Experimental design showing five plant treatments that manipulated neighbor identity
surrounding a focal plant (Panicum virgatum) and two barrier treatments that either allowed active root
interactions (No Barrier) or prevented active root interactions (Barrier; 35 uM mesh barrier). Circles
represent sampling locations, color coded by neighbor identity (green = Panicum virgatum, purple =
Lespedeza capitata, yellow = Rudbeckia hirta) and gray circles in the center represent two samples taken
from either side of the focal plant. Treatment numbers, labels, and colors are consistent in other figures
(light gray = focal plant, filled in colors = neighbors).

BARRIER TREATMENT
Root interactions between the focal plant and neighboring species were manipulated with two
barrier treatments. The “No Barrier” treatment had no mesh barrier and allowed active root and

mycorrhizal interactions between the plants (Figure 3.1, first column). The “Barrier” treatment
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prevented active root interactions with a 2 cm soil gap and mesh barrier (35 uM, ELKO Filtering Co.), but
still allowed mycorrhizal hyphal exchanges (hyphae 2-20 uM; Friese and Allen, 1991) (Figure 3.1, second
column). Within each barrier treatment, there were five neighbor treatments, described below. See
Supplementary Figure 3.1 for detailed picture of barriers.

PLANT NEIGHBOR TREATMENTS

The focal plant, PV, was surrounded by five different neighbor combinations. Three treatments,
hereafter referred to as “same neighbor treatments”, included two plants of the same species — P.
virgatum (PV), R. hirta (RH), or L. capitata (LC) — on either side of the focal plant (Figure 3.1, first three
rows). The other two treatments, hereafter referred to as “mixed-neighbor treatments” varied the
neighbor conditions on either side of the focal plant (Figure 3.1, last two rows). In the first mixed-
neighbor treatment, the focal was neighbored by RH and LC; this allowed us to determine if neighbor
identity has neighbor-specific, localized effects on the focal plant. The second mixed-neighbor treatment
(treatment 5) included RH as a neighbor on either side, but one of the neighbors was enriched with
nitrogen (N) in their tissues (RH+N). For two weeks, N (100 ppm N —NH4NOs) was added to the RH+N
plant through scintillation vials attached to their leaves, following methods of (Rasmussen et al., 2019),
and then for three weeks after, the plant received the same N solution directly to the crown of the plant
weekly. This allowed us to evaluate how neighbor N status, separate from neighbor identity, influences
neighborhood effects. Each treatment was replicated five times in either barrier treatment, with a total
of 50 rhizoboxes (5 treatments x 2 barriers x 5 replicates = 50 total, Figure 3.1).

To address questions pertaining to a separate part of this study, the focal plants were subject to
1>N-NH;NO; additions to the leaves (Rasmussen et al., 2019), as well as 3C-CO; pulses (8000 ppm CO,,
three 6-hour pulses total, occurring every 7 days for 3 weeks) following methods of (Kravchenko et al.,
2021) . These conditions may have played a role in neighbor interactions and microbiome assembly,
though most previous literature highlights the effect of elevated CO, on root exudates and microbiome
assembly over extended periods (months), not single pulse events (Drigo et al., 2008; Phillips et al.,
2009).

PLANT HARVEST AND SOIL ANALYSES

The rhizoboxes were harvested when the plants were 14 weeks old. The harvest took five days
and the boxes were sampled according to their experimental blocks. First, the rhizosphere soil (see
Microbiome Collection below) and root exudates were collected (see Exudation Collection below),
followed by root segments for root-associated microbiome analyses. Prior to the root exudate

collection, soil samples were collected from every sampling point in the rhizobox (see shaded circles in
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Figure 3.1) and used for gravimetric soil moisture analyses. Each plant’s aboveground and belowground
biomass was collected, dried (60 °C temp for 3 days) and weighed; a subsample of the tissue was used
for carbon and nitrogen analyses (Costech Analytical ECS 4010 CHNSO Analyzer).
MICROBIOME COLLECTION

Rhizosphere soil and root-associated microbiome samples were collected from two intact roots
from either side of the focal plant, as well as a single root from either neighbor plant (see sampling
points, Figure 3.1). The roots were carefully excavated and the rhizosphere soil within approximately 2
mm of the roots was collected with sterile brushes, flash frozen in liquid nitrogen, and stored at -80 °C
for DNA extractions. The flash-frozen rhizosphere soil samples were freeze-dried (Harvest Right
Scientific Freeze Dryer; following protocol (WeiBbecker et al., 2017) and stored at 4 °C prior to DNA
extractions, described below. From the focal plant, the same four roots used for rhizosphere soil
collection (two focal left and 2 focal right) were also used for collecting root exudates. This sampling
creates a tightly coupled, paired dataset for the rhizosphere soil microbiome and root exudate data.
We also collected roots for root-associated microbiome analyses, which were not surface-sterilized and
so represent the plant endosphere and rhizoplane communities. Following root exudate collection
(detailed below), a root segment with visible root hairs (< 2 mm in diameter and approximately 2.5
inches long) was clipped from similar sampling locations as the rhizosphere soil samples, though not
always from the same root as the rhizosphere soil samples and root exudates. The roots were rinsed
with a 0.05% Tween 20 wash to remove soil debris and then rinsed with sterile water, flash-frozen with
liquid N, and then vacuum dried (speedvac, Thermo Fisher) for four hours before grinding with
TissuelLyser Il (Qiagen). Despite attempts to standardize root size, there was still some variation in root
segment sizes, especially among plant species, which may have influenced downstream sequencing. We
controlled for this sample variation by rarefying the microbial dataset, as described below.
ROOT EXUDATE COLLECTION

Soluble root exudates were collected using a modified in situ soil-hydroponic method from
(Phillips et al., 2008). We collected root exudates from only the focal plant in all treatments. Two intact
roots from either side of the focal plant (gray sampling points, Figure 3.1) were carefully excavated from
the soil, removed of adhering soil for rhizosphere soil samples (described previously), rinsed with a weak
salt buffer solution (10 ml 10 mM KH;PQg4, 10 ml 20 mM K,S04, 10 ml 30 mM CaCl,), and ‘incubated’ for
four hours in 15 mL tubes (syringes with the plunger removed) with the same buffer solution and acid
washed glass beads (0.5-2 mm). It is possible that the roots experienced minor damage during

excavating and rhizosphere soil collection, but likely far less than occurs in other common soil-
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hydroponic collection methods (Williams et al., 2021a). The four-hour root exudate collection period is
recommended to limit microbial degradation and consumption of metabolites in non-sterile systems
(Oburger and Jones, 2018). Throughout the exudate collection, the open side of the rhizobox was
covered with damp paper towels to limit light exposure, as well as prevent the roots from drying out. At
the end of the incubation, the roots were cut from the plant, and the exudates were flushed with an
additional 20 mL of the salt solution. Exudates from the two roots on either side of the focal plant were
combined (n = 2 exudate samples per focal plant), filtered (0.45 pM and 0.22 uM PVDF filters),
separated into two replicates (10 mL used for LCMS analysis), flash-frozen in liquid N, and subsequently
lyophilized (Harvest Right Scientific Freeze Dryer; following protocol WeilRbecker et al., 2017). Each day
we also collected a methodological blank, which involved the same incubation process but without a
root, thus allowing us to account for any metabolite contamination from the tubes, filters, and collection
process. Each root segment used for exudate collection was stored in 50% EtOH and then weighed to
standardize the root exudate data, described below.

ROOT EXUDATE PREPARATION, LC-MS, AND NORMALIZATION

The freeze-dried root exudates were prepared for untargeted analysis with liquid
chromatography mass spectrometry (LC-MS) by resuspending them in 80% methanol, drying with a
speedvac (Thermo Savant DNA 120), and reconstituting them in 50% methanol containing 100 nM
telmisartan (internal standard). The samples (5 pL) were processed using a Waters Acquity UPLC
interfaced with a Waters Xevo G2-XS QTof mass spectrometer and a Waters Acquity UPLC HSS-T3
column (2.1x100 mm). Compounds were ionized with electrospray ionization operating in either positive
or negative ion mode. Peak alignment and picking were performed using Progenesis Ql software
(Nonlinear Dynamics, Waters) with a pooled sample used as the alighment reference. Unique
metabolite features identified from the positive and negative LC-MS modes were merged into a single
database. Though this may result in some redundancy in features, it provides a more complete
representation of the plants’ exudate profile. Additional details about LC-MS protocol and peak-picking
are described in the supplemental methods.

Statistical analysis (described below) revealed that the composition of the root exudates varied
across the five sampling days throughout the harvest (PERMANOVA sampling day as main effect, F =
7.91, p < 0.001, R? = 0.26, Figure 3.53). Though the buffer was stored in a sterilized, plastic carboy and
efforts were taken to keep the solution sterile, it is plausible that it became contaminated throughout
the week and, therefore, that microbial metabolites were captured in our analyses, contributing to the

sampling day effect. We tried to control for this by removing any metabolite features that were three
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times more abundant in the blanks than in the samples (maximum intensity in samples/maximum
intensity in blank = 3) (Weinhold et al., 2022) or only present in less than 10% of the samples. This
resulted in a total of 2,040 metabolic features. The peak intensity of these features was standardized by
the dry weight of the root segments used for the exudate collection and then log10 transformed to
meet normality requirements with Euclidean-based statistics.

DNA EXTRACTION, ILLUMINA SEQUENCING, AND BIOINFORMATICS

DNA was extracted from ~ 0.1 g of the freeze-dried rhizosphere soil using the MagAttract
PowerSoil Pro DNA Kit (Qiagen) and from the freeze-dried root samples with the Omega Mag-Bind Plant
DNA Plus kit (Omega Bio-Tek). The KingFischer Flex purification system platform (Thermo Fisher) was
used with both extraction kits. Each 96-well plate included negative-control blank extractions to remove
contaminants, as described below (Davis et al., 2018). We characterized the bacterial communities by
targeting the bacterial V4 region of the 16S rRNA gene (primers 515f/806r) (Caporaso et al., 2011) and
the fungal communities by targeting the ITS2 rRNA region (Taylor et al., 2016). Bacterial and fungal
multiplexed libraries were prepared with a three-step PCR protocol as previously described (Lundberg et
al., 2013b; da Costa et al., 2022) and then sequenced on an MiSeq lllumina analyzer (v3 600 cycle kit,
Illumina, USA) by the Research Technology Support Facility Genomics Core at Michigan State University
(East Lansing, Michigan, USA). See Supplemental Methods for additional details the protocol used for
library preparation.

The raw sequences were demultiplexed with default setting of lllumina Bcl2Fastq. The forward
and reverse reads were merged for the rhizosphere soil bacterial dataset, as well as thefungal datasets
(root-associated and rhizosphere soil). However, due to low quality reverse reads for the root-associated
bacterial samples, we only used the forward reads for a combined rhizosphere soil and root-associated
bacterial dataset (described in more detail below). Quality filtering (maxEE = 5, truncQ = 2), chimera
removal, and taxonomic assignment using silva 138 for bacteria and UNITE 8.2 for fungi was conducted
with the R package “dada2” (Quast et al., 2012; Callahan et al., 2016; Nilsson et al., 2018). The ASVs
were clustered into operational taxonomic units (OTUs) with 99% similarity with packages DECIPHER and
Biostrings in R (Wright, 2016; Pagés et al., 2021).

The library preparation and sequencing runs were separate for the root-associated and
rhizosphere soil microbiomes, so sequences were filtered individually before merging into a combined
dataset. For each, we removed contaminants (R package decomtam, method = “prevalence”, threshold
=0.1), rare OTUs (present in < 5 samples), low-coverage samples and, for bacteria, non-bacterial reads

(archaea, chloroplast, mitochondria). Rarefaction curves obtained from the bacterial and fungal datasets
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approached saturation, indicating that sequencing depths were sufficient (Supplementary Figure 3.S52A,
B). Still, to account for read depth differences among the neighbor treatments and rhizosphere
compartments (rhizosphere soil and root-associated), we rarefied the datasets using the
“rarefy_even_depth” function in the Vegan R package (Oksanen et al., 2018). The combined fungal
dataset (root and soil) was rarefied to 22,547 reads. The root-associated bacterial dataset (forward
reads only) had lower read depth due to loss of reads from chloroplasts and mitochondria. To avoid
losing too many samples, while still accounting for differences in reads between the two rhizosphere
compartments, , the combined bacterial dataset (root-associated and rhizosphere soil)) was rarefied to
1,444 reads (lost 22 root-associated and 1 rhizosphere soil samples), which likely reduced the diversity
of the bacterial microbiomes(Supplementary Figure 3.2C). The rhizosphere soil bacterial samples did
have adequate read coverage, so we rarefied this separate dataset to 4,814 reads. The phyloseq
(McMurdie and Holmes, 2013) and dplyr (Wickham et al., 2022) R packages were used for data filtering
and organization. Additional details about microbiome filtering provided in Supplemental methods
“Microbiome Bioinformatics and Filtering”.

STATISTICAL ANALYSES

First, we analyzed data collected from the neighbor plants to test whether different plant
species varied in size, nutritional status (shoot CN), or if they assembled distinct microbiomes (species-
effects). Second, we analyzed the focal plant (PV) within each neighbor treatment to evaluate neighbor-
effects on the focal plant biomass, nutritional status, root exudates, and microbiomes. For Mixed
treatments, in which samples were collected from either side of the focal plant and a different neighbor
(microbiome and root exudate data, gravimetric water content and root CN), we evaluated the effect of
either side of the Mixed treatment using a combined term for plant treatment and neighbor identity
(e.g. Treatment 4 Mixed becomes Mixed,RH or Mixed,LC). In contrast, in the Same treatments, because
the focal plant was exposed to the same neighbors on either side, both focal plant samples were
considered replicates of a single treatment.

For univariate data (plant and soil data, alpha diversity metrics), comparisons among plant
treatments and barriers were assessed using a mixed-model analysis of variance (ANOVA) that included
plant treatment, barrier, and their interaction as fixed effects, and block as a random, nested factor.
Shannon diversity models also included read depth as a covariate, and were analyzed on unfiltered (no
removal of low-read OTUs) and unrarefied datasets because removal of sparse OTUs is problematic for
alpha-diversity metrics (Willis, 2019; Kleine Bardenhorst et al., 2022). Root exudate alpha diversity

metrics were calculated with sampling day, rather than replicate as a random factor. The Ime4 and

62



emmeans R packages were used for the univariate mixed-model fitting, ANOVA (function emmeans
joint_tests) and post-hoc pairwise comparisons (Benjamini-Hochberg False Discovery Rate, FDR, a =
0.05)(Bates et al., 2015; Lenth, 2019). If the data did not meet model assumptions, it was transformed
(log or square root) and, in some cases, factors were weighted for unequal variance using the “weights”
function in the R package Ime4 (Bates et al., 2015).

All multivariate analyses of the microbiomes were performed on Bray-Curtis dissimilarity
matrices from the rarefied datasets, and all multivariate analyses of the exudate data were performed
on the logl0-transfomed, Euclidean distance matrices. Plant and Barrier treatment effects were
evaluated using permutational multivariate ANOVA tests (PERMANOVA, n = 999) and permutational
multivariate Levene’s test for homogeneity of variances (PERMDISP, n = 999), followed by post-hoc
pairwise comparisons with Monte-Carlo adjustment with Primer (version 6 with PERMANOVA +)
(Anderson et al., 2008). The models included plant treatment, barrier, and their interaction as fixed
effects, and experimental replicate as a random, nested factor. For the root exudates, because the
effect of sampling day was greater than that of replicate (PERMANOVA, replicate as a main effect, F =
3.184, p < 0.001, R=0.13), we used sampling day rather than replicate as the random factor. To further
investigate the degree of species-effects within root and rhizosphere microbiomes (Question 1), as well
as if there are localized neighborhood effects within the focal plant (Question 2), we calculated the Bray-
Curtis dissimilarity between all sampling points within a sampling box (see shaded circles in Figure 3.1).
These comparisons were then categorized as Intra-Plant (two samples collected within the same focal
plant), Intra-Species (two samples collected from different plants of the same species), or Inter-Species
(two samples collected from different species). We also compared the two rhizosphere compartments
by calculating the percent of reads and OTUs that were present in both the root-associated and the
rhizosphere soil microbiomes within a single sampling point.

Finally, to investigate the mechanisms contributing to neighborhood effects (Question 3), we
explored how the focal plant microbiomes were impacted by microbial spillover during active root
overlap, abiotic soil properties, and root exudates. The potential for microbial spillover was calculated
by comparing the proportion of focal plant OTUs and reads that were shared with its neighbor on either
side in the same rhizobox. If spillover occurred, and was mediated by root overlap, we would expect to
see a higher percentage of shared reads and OTUs when there were active root interactions (No
Barrier). Second, we used distance-based redundancy analysis (dbRDA) to determine how plant and soil
characteristics — including focal plant aboveground and belowground biomass, focal root and shoot CN,

and GWC — contributed to variation in the focal plant microbiomes. All variables were centered, scaled,
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and forward-step selection was used to identify the most parsimonious models, and replicate was
included as a conditional factor. A similar approach, using redundancy analysis (RDA, Euclidean Distance)
with sampling day as a conditional factor, was used to evaluate what soil and plant properties
influenced the focal plant root exudates. Lastly, to evaluate the relationship between focal plant
microbiomes and root exudates we looked for correlations between ordinations of the microbiomes
(Bray-Curtis, PCoA) and root exudates (Euclidean Distance, PCA) using the function “Protest” in the
Vegan R package (Oksanen et al., 2018). All figures were made with the R package ggplot2 (Wickham,
2016).
RESULTS
RH IS THE LARGEST NEIGHBOR AND DECREASES FOCAL PLANT SOIL MOISTURE, BUT NOT BIOMASS

Both neighbor and barrier affected the focal plant’s soil moisture (gravimetric water content;
Figure 3.2A), but neither impacted focal plant biomass (Figure 3.2B,C). Focal plant soil moisture was
lower across all treatments when there was no barrier. When neighbored by two RH plants (Same-RH
and Mixed-N) the focal plant had, on average, 26% lower soil moisture than when neighbored by the
other neighbor species (Figure 3.2A). Neighbor did not affect focal root or shoot CN (Supplementary
Figure 3.5C,D; neighbor effect focal shoot CN F =0.720, p = 0.586; focal root CN F = 1.25, p = 0.318).
There were also no localized differences in focal plant CN or soil moisture in response to different
neighbors in the Mixed treatments (pairwise p between either side of the focal plant in Mixed-N
treatment 5: GWC p = 0.841, root CN p = 0.993; Mixed treatment 4: GWC p = 0.994, Root CN = 0.965).

Among the neighboring plants, the RH neighbor had the lowest soil moisture (Figure 3.2D), as
well as the largest aboveground and belowground biomass (Figure 3.2E,F). Visually, RH was also the only
neighbor to have consistent root growth into the focal plant section in the no barrier treatment, while
this occurred only seldomly with PV neighbors and rarely with LC neighbors. RH neighbors had lower
shoot CN, but root CN did not differ among the neighbor species (Supplementary Figure 3.4A,B; species
effect shoot CN F = 16.91, p < 0.0001; species effect root CN F = 1.90, p = 0.122).Even within the Mixed-
N treatment (treatment 5), where N was added to one RH plant, we did not observe any significant

differences in tissue CN or biomass (Figure 3.2E,F; Supplementary Figure 3.5A,B).
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Figure 3.2. Variation in gravimetric water content (GWC, A & D), aboveground biomass (B & E), and
belowground biomass (C & F) for the focal plant, P. virgatum (first column, ABC) and neighbor plant
species (second column). Color and number denote neighbor treatment. Vertical gray lines separate
samples present within a single treatment.. Striped boxes represent barrier treatment (no root
interactions) and solid boxes represent the no barrier treatment (active root interactions). The central
line is the median value for each plant, vertical bars represent the first and third quartiles of the data,
raw data shown in points. Different letters denote significant differences among all plants and barriers
(false discovery rate, p < 0.05). ANOVA results in upper right corner of each panel denote significant p-
value for Neighbor (N), Barrier (B), Neighbor by Barrier interaction (NxB) for focal plants (Panels A-C) and
Species (S), Barrier (B), and Species by Barrier (SxB) interaction for neighbor plants (Panels D-F);
significance values: ns p >0.10, + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.

FOCAL ROOT EXUDATES NOT IMPACTED BY NEIGHBOR IDENTITY
Neighbor identity and presence of barrier did not significantly alter the focal plant root exudate

richness (Neighbor: p = 0.087, Barrier: p = 0.802), Shannon diversity (Neighbor: p = 0.428; Barrier: p =
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0.647), or composition (Table 3.2, Supplementary Figure 3.3B). Soil moisture, as well as the
aboveground biomass and shoot CN of the focal plant explained a small, but significant, portion of the
variation in the root exudate profiles (RDA, overall model significance F = 3.49, p = 0.001; constrained
proportion = 0.084, GWC p = 0.050, Shoot CN p = 0.002, aboveground biomass p = 0.045). Variation
among the sampling days, which was treated as a conditional variable in the model, explained most of
the variation in the root exudates (RDA; conditional proportion = 0.269; PERMANOVA: sampling day
effect R?=0.18; p < 0.001). This may have masked any treatment effects, if present.
ROOT AND RHIZOSPHERE NICHES HOST DISTINCT MICROBIOMES

The rhizosphere compartment (root-associated or rhizosphere soil) had a significant effect on
the beta diversity, beta dispersion, and alpha diversity of both the fungal and bacterial microbiomes. In
both instances, the root-associated communities were more variable (Beta dispersion by compartment:
Fungi F = 815.2, p < 0.001; Bacteria F = 720.58, p < 0.001) and had lower Shannon diversity compared to
the rhizosphere soil communities (compartment effect: Fungi F = 803.9, p < 0.0001; Bacteria F=961.7, p
< 0.0001). Even though the communities varied in diversity and composition, there was substantial
overlap in the taxa that dominated each rhizosphere compartment. The fungal compartments were both
dominated by the phylum Ascomycota (35% of root-associated reads; 40% of rhizosphere soil reads) and
Glomeromycota were also dominant in the root-associated samples (4% of reads), while Basidiomycota
(2% of reads) and Mortierellomycota (2% of reads) were more prevalent in the rhizosphere soil. On
average, 85% of the fungal reads and 31% of the fungal OTUs found in the roots were present in the
rhizosphere soils. For the bacteria, the most abundant phyla for both rhizosphere compartments were
Proteobacteria (22% of root-associated reads; 25% of rhizosphere soil reads) and Actinobacteria (13% of
root-associated reads; 25% of rhizosphere soil reads). On average, 40% of the bacterial reads and 42% of
the bacterial OTUs found in the roots-associated microbiomes were also present in the rhizosphere soils.
SPECIES-SPECIFIC EFFECTS STRONG FOR ROOT, BUT NOT RHIZOSPHERE, MICROBIOMES

We found that the neighbor species associated with distinct root-associated microbiomes, but
had only weak effects on the rhizosphere soil communities. This was true for both alpha diversity, where
only the root-associated communities differed in alpha diversity (Supplementary Figure 3.5A,C; species
effect: fungal root F = 14.83, p < 0.0001; fungal rhizosphere soil F = 1.49, p = 0.25; bacterial root F = 3.42,
p = 0.02; bacterial rhizosphere soil F=0.17, p =0.98), as well as beta diversity (Table 3.1, Figure 3.3).
Plant species explained 60% and 23% of the variation in the root-associated fungal and bacterial
communities, but only 8.6% of the variation in the rhizosphere soil fungal communities and none of the

variation in the rhizosphere soil bacteria (Table 3.1, Figure 3.3). Due to previous observations of
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Glomeromycota in neighborhood studies (Mummey et al., 2005; Hausmann and Hawkes, 2009; Horn et
al., 2017), and the known importance of arbuscular mycorrhizal fungi on plant communities, we
evaluated if their composition and relative abundance responded to species and neighbor effects
(reported below). Host species did significantly affect the abundance and composition of
Glomeromycota found in the root-associated communities (relative abundance ANOVA: F=4.03, p =
0.006; composition PERMANOVA Species effect: p < 0.001, R? = 0.072), with an overall higher abundance
in the roots of the RH neighbor species than in the roots of the LC and PV neighbor species(17% of reads
in RH vs. 5% of reads in LC and PV).

For a more detailed comparison of the species-specific effects on microbiome assembly, we
investigated the microbiomes’ Bray-Curtis distance within and among all species in the same rhizobox
(see sampling design, Figure 3.1). We found that root-associated communities were most dissimilar
when collected from two different host species (inter-species), followed by samples from different
plants of the same species (intra-species), and samples from within the same plant (intra-pant) were the
most similar (Figure 3.4A,C). This pattern was generally consistent for the root-associated bacteria and
fungi, but there was greater intra-species variation for the fungal than bacterial root communities (light
gray bars in Figure 3.4A vs. 4C). Comparing the two rhizosphere compartments, we found that within a
single plant (intra-plant) the rhizosphere soil microbiomes were more variable than the root-associated
microbiomes. In fact, rhizosphere soil microbial communities collected within the same focal plant (n =
2) were as different from each other as two rhizosphere soil communities collected from different plant
species (n = 2, intra-plant versus inter-species, Figure 3.4B & 4D).

Table 3.1. PERMANOVA results showing effect of plant species and barrier effect on root-associated
and rhizosphere soil microbiomes. Significant effects bolded (p < 0.05) and R? value only reported for
significant effects.

Neighbor Plant Responses (Species-Effect)

Root-associated Rhizosphere Soil Root-associated Rhizosphere
Fungi Fungi Bacteria soil Bacteria
F p, R? F p, R? F p, R? F p, R?
Species-effect 19.35 0.001,0.60 1.21 0.025,0.09 4.02 0.001,0.24 0.99 0.47
Barrier 1.79 0.01,0.01 1.04 0.39 1.06 0.33 0.97 0.52
Species*Barrier 0.80 0.96 0.87 0.95 0.77 1 0.89 0.95

67



Root-associated Rhizosphere soil

A 10 B o4
"
0.5 02
T - 2 Plant Treatment
00 i —y
2 2 » z o i [ 1:Same-PV
05 ' [ 2:same-LC
. [ 3:Same-RH
‘o
-0 0.5 0.0 05 10 02 0.0 0z 0.4 D 4ZM\'X€CI, RH
NMDS1 NMDS1
O 4: Mixed, LC
C ox D
0 [ 5: Mixed-N, RH
] s5: Mixed-N, RH+N

NMDS2
g
NMDS2
s
|
i

Bacteria
m
|

o E‘ONIL-'IDS1 ” " o o ornslMDSO1‘ * ”
Figure 3.3. NMDS ordinations (Bray-Curtis) of neighbor plant microbiomes for root-associated fungi (A),
rhizosphere soil fungi (B), root-associated bacteria (C), and rhizosphere soil bacteria (D). Neighbor plants
are colored by their species and treatments. Barrier and No Barrier samples are combined within each
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Figure 3.4. Microbiome community dissimilarity (Bray-Curtis) between plants in a single rhizobox for
root-associated fungi (A), rhizosphere soil fungi (B), root-associated bacteria (C), and rhizosphere soil
bacteria (D). Shaded bars represent comparisons among the sampling points (see shaded circles in Fig. 1
for sampling points); Intra-plant compares two samples within the same focal plant; Intra-Species
compares samples collected from different plants of the same species; Inter-Species compares two
samples collected from different species. Lower dissimilarity values indicate the communities are more
similar, larger values indicate they are more different. The central line is the median value for each
plant, vertical bars represent the first and third quartiles of the data, raw data shown in points. Barrier
and No Barrier treatments are combined because they did not significantly differ in the models. ANOVA
results in upper right corner for Plant Treatment (P) and sampling point comparisons (C); significance
values: ns p >0.10, + p<0.10, * p < 0.05, ** p < 0.01, *** p < 0.001. Different letters denote significant
differences among Comparisons within each Plant Treatment (false discovery rate, p < 0.05).

NEIGHBOR PLANTS IMPACT FOCAL PLANT ROOT-ASSOCIATED BUT NOT RHIZOSPHERE SOIL
MICROBIOMES

Consistent with the microbiome responses to plant species, we found that plant neighbors
altered the composition and diversity of the focal plant root-associated, but not rhizosphere soil,
microbiomes. Neighbors had significant, though subtle, effects on the Shannon diversity of the focal
plant’s root-associated fungal community, but not on the root-associated bacterial or either rhizosphere
soil community (Supplementary Figure 3.5B,D; Neighbor effect: root fungi F = 8.83, p < 0.0001;
rhizosphere soil fungi F = 1.34, p = 0.30; root bacteria F = 6.14, p = 0.16, rhizosphere soil bacteria F =

1.63, p =0.21). The composition of the focal plant’s root-associated microbiomes was also impacted by
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neighbor (Table 3.2, Supplementary Figure 3.6), and this neighborhood effect was influenced by
differences in beta dispersion (Neighbor effect Betadispersion: root fungi F = 3.39, p = 0.002; root
bacteria F = 4.51, p = 0.006), as well as by the presence of barrier for the fungal communities (significant
neighbor * barrier interaction, Table 3.2). The focal plant root-associated fungal communities were most
different from each other when grown next to the Same-RH and Same-PV neighbor treatments, but only
when there was no barrier (pairwise PERMANOVA, p = 0.004). Several fungal genera contributed to this
difference, including enrichment of Paraglomus (Phylum: Glomeromycota) and reduction of Hannaella
(Phylum: Basidiomycota) when the focal plant neighbored PV versus RH (AncomBC results, p < 1.2 ™).
Unlike the overall fungal community, neighbor did not impact the composition of Glomeromycota within
the focal plant (PERMANOVA F = 0.94, p = 0.76), but did influence the relative abundance (neighbor
effect F = 3.95, p = 0.007). On average, Glomeromycota made up 4.3% of reads in the focal root
microbiome, but this was slightly higher when neighbored by PV (treatment 1) or RH in the mixed
treatment (treatment 4) (Figure 3.57).

Table 3.2. PERMANOVA results showing effect of neighbor treatments (merged value based on neighbor
treatment and species identity) on focal plant root-associated and rhizosphere soil microbiomes and
root exudates. Significant effects bolded (p < 0.05) and R? value only reported for significant effects.

Focal Plant Responses (Neighbor-Effect)

ROOt_. Rhizosphere soil Root-associated Rhizosphere Root
associated . . . .
. Fungi Bacteria soil Bacteria exudates
Fungi
F p, R? F p, R? F p, R? F p, R? F p, R?
. 0.01, 0.007,
Neighbor-effect 1.47 0.10 1.01 0.44 1.62 0.09 0.94 0.83 1.39 0.10
. 0.033, 0.067,
Barrier 1.83 0.02 1.35 0.02 1.09 0.27 1.17 0.13 0.41 0.74
. . 0.001,
Neighbor*Barrier 1.29 0.09 0.92 0.806 0.89 0.92 0.96 0.68 0.84 0.68

HOST PLANT GROWTH, SOIL CONDITIONS, AND ROOT OVERLAP CONTRIBUTE TO NEIGHBOR-EFFECTS

The barrier treatment, which prevented active root interactions, had insignificant to weak
effects on microbiome composition for the focal and neighbor plants (neighbors: Table 3.1; focal: Table
3.2). There was a weak, though significant interaction between barrier and neighbor on the focal root-
associated fungal communities (Table 3.1), but there were no significant pairwise interactions for barrier
across treatments. For all microbiomes, the presence of a root barrier also did not affect the percentage
of reads shared between the focal and neighbor plants (Supplementary Figure 3.8). In fact, averaged

across all treatments, over half of the reads from the focal plant’s root-associated and rhizosphere soil

70



communities were shared with the direct plant neighbor, regardless of barrier treatment (root fungi:
64%; rhizosphere soil fungi: 86%; root bacteria: 50%; rhizosphere soil bacteria: 80%).

We also found that host plant growth and nutritional status, and soil factors contributed to the
composition of the focal plant’s microbiomes. The structure of the fungal, but not bacterial,
communities was correlated with the composition of the focal plant root exudates (Protest analysis;
rhizosphere soil fungi p < 0.001, r = 0.288, root fungi p = 0.042, r = 0.197; rhizosphere soil bacteria p =
0.30, root bacteria p =0.08, r = 0.19). A small, but significant, proportion of variation in the focal plant’s
rhizosphere soil communities was also explained by soil moisture, while plant aboveground biomass and
shoot CN contributed to variation in the root-associated microbiomes (Table 3.3).

Table 3.3 Distance-based Redundancy Analysis Results (Bray-Curtis) for microbiomes, showing
contribution of abiotic and plant factors on microbiome structure. Replicate included as a conditional
factor in analysis. ‘NA’ is used when the factor was not included in the model after model selection.
Constrained proportion of variance signifies how much variance in the community composition can be
explained by the factors.

Root-associated Rhizosphere soil  Root-associated Rhizosphere

Fungi Fungi Bacteria soil Bacteria
Gravimetric Water NA p =0.003, p =0.028; p=0.01;
Content R?=0.02 R2=0.02 R?=0.02

. p=0.012; p =0.021;

Aboveground Biomass R= 0.03 NA R2= 0.02 NA

p =0.007;
Shoot CN R2= 0.04 NA NA NA
Constrained Proportion , ;. 0.020 0.038 0.016
of Variance

DISCUSSION

PLANT SPECIES AND NEIGHBORS AFFECT ROOT-ASSOCIATED MICROBIOMES, BUT HAVE LIMITED EFFECT
ON RHIZOSPHERE SOIL MICROBIOMES

In support of our first hypothesis, we observed stronger species effects for the root-associated
than rhizosphere soil microbiome communities. The root-associated communities were also less diverse
and, together, these results support previous studies demonstrating that the root is a more selective
niche compared to the rhizosphere (Berg et al., 2014; Edwards et al., 2015b; Qian et al., 2019). These
species-effects on the root-associated microbiomes were stronger for the fungal than bacterial
communities, which is also consistent with what we observed for the rhizosphere soil communities. The
bacterial soil communities did not differ among plant species, and because the rhizosphere soil is the

primary recruitment pool for the root microbiome, this likely contributed to the weaker species-effect
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on the bacterial root communities. Other studies also report that soil fungi respond more strongly to
their host plant than soil bacteria, perhaps because bacteria are more sensitive to changes in abiotic
conditions that are unrelated to their host plant (Urbanova et al., 2015; Emilia Hannula et al., 2019).

Similar to the stronger species-effects on the root-associated microbiomes, and in partial
support of our second hypothesis, we only observed neighborhood effects on the focal plant’s root
microbiomes (but not rhizosphere soil), and the overall effect was weak. Previous work supports that
mycorrhizal taxa are particularly responsive to changes in plant neighborhoods (Mummey et al., 2005;
Hausmann and Hawkes, 2009; Morris et al., 2013) and while one arbuscular mycorrhizal fungal (AMF)
genus (Paraglomus) differed among the neighbor treatments, the overall AMF composition did not.
Even though we found that the AMF communities differed among plant species (explaining 7% of the
variation), studies show that most AMF taxa are often plant generalists (Klironomos, 2000; Opik et al.,
2010), so perhaps less influenced by neighborhood, as shown in another field study (Horn et al., 2017).
The lack of neighborhood effect on the rhizosphere soil communities is surprising, as these have been
reported previously (Hortal et al., 2017b; Cavalieri et al., 2020; Chen et al., 2020), including in our
previous study that used the same plant species (Ulbrich et al., 2022). However, in those studies, the
neighbor and focal plant species had distinct rhizosphere soil communities, and it is plausible that the
limited species-effects we observed on the rhizosphere soil communities may have influenced the
potential for neighborhood effects to occur (discussed more below).

We suggest that unique properties of our experiment, including our use of field soil and fine-
scale sampling, likely contributed to the weak species and neighborhood effects on rhizosphere soil
communities. The use of field soil in the rhizoboxes brought our experiment one step closer to natural
conditions, but subtle shifts in active taxa may have been masked by DNA from dead or dormant cells
(Valyi et al., 2016; Carini et al., 2017; Gkarmiri et al., 2017; Runte et al., 2021). Other neighborhood
studies that use DNA-based methods may not encounter this challenge because they either focus on a
specific group of taxa in field settings, such as AMF (Mummey et al., 2005; Morris et al., 2013; Horn et
al., 2017) or, in greenhouse settings, use only a small percent of field soil to inoculate potting soil
(Hausmann and Hawkes, 2009; Cavalieri et al., 2020; Mony et al., 2021; Ulbrich et al., 2022). It is also
possible that species-specific conditioning of rhizosphere soil communities takes longer to appear in
field soils than in inoculated substrates. In fact, a recent study found that seedlings transplanted into a
mature grassland did not assemble distinct fungal or bacterial soil communities even after six months
(Schops et al., 2018), while in inoculated greenhouse soils this can occur after only several months

(Cavalieri et al., 2020; Ulbrich et al., 2022). Together, these studies suggest that the use of 100% field
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soil and three-month growing period contributed to the weak species- and neighborhood-effects
observed here.

A second factor that may have contributed to the extreme heterogeneity in the rhizosphere soil
microbiomes is our fine-scale sampling approach. We used this approach to improve our ability to
detect localized neighbor responses, which we did not observe, and it may have inflated the microbial
beta diversity within a single plant. Previous studies show that rhizosphere soil bacterial and fungal
communities can vary along a single root, as well as across different types of roots (Kawasaki et al.,
2016; Yu et al., 2018; Riger et al., 2021). Although we targeted similar looking roots in the focal plant, it
is possible that subtle differences in roots contributed to the high heterogeneity. In fact, consistent with
the patterns we observed, microbiomes from different root types (e.g. perhaps the two root samples
collected from the focal plant) can be more dissimilar than communities from different plant species
(Figure 3.4) (Wei et al., 2021). This may suggest that stochastic processes play a large role in fine-scale
assembly of rhizosphere soil microbiomes, but similarly could also indicate that the host plant has fine-
scale, localized control on microbiome assembly. While there are benefits to this fine-scale sampling
approach, such as detecting changes in particular OTUs (e.g. after localized inoculation), sampling from
the entire root system results in a more consistent representation of a plant’s microbiome (Wei et al.,
2021). Therefore, it may not be surprising that we did not observe neighborhood or species effects with
our fine-scale sampling, especially when dealing with a diverse soil community and relatively low sample
sizes.

MECHANISMS MEDIATING NEIGHBORHOOD EFFECTS ON MICROBIOME ASSEMBLY DIFFER FOR ROOT
AND RHIZOSPHERE

We hypothesized that neighborhood effects on the root-associated microbiomes would be
mediated primarily by the host-plant, while the rhizosphere soil communities would be more strongly
impacted by the spillover of novel neighbor microbes during active root interactions. However, because
the plant species did not assemble distinct rhizosphere soil communities, it is unlikely that active root
interactions would lead to compositional shifts, even if spillover did occur. Therefore, the observed
neighbor-induced shifts in the focal plant’s root-associated microbiomes — even in the absence of
neighbor effects on the rhizosphere soil communities— indicates that the host plant played a strong role
in mediating neighbor effects on the root-associated communities. We did not observe neighborhood
effects on the focal plant biomass, tissue CN, or root exudates, suggesting that other mechanisms, such
as neighbor-induced changes in focal plant gene expression (Bowsher et al., 2017; Liao et al., 2021) or

volatile signaling (Li et al., 2020; Kong et al., 2021) may have altered the focal plant’s root-associated
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microbiome. Unlike the root-associated microbiomes, the plant neighbors did not impact the focal plant
rhizosphere soil communities. However, we predict this is due to the lack of variation in the species’
microbiomes, rather than the absence of microbial spillover. In fact, in our previous study, a focal plant
(also PV) and an RH neighbor assembled distinct rhizosphere soil bacterial communities when grown
alone, but when grown together there was evidence of taxa specific to RH increasing in abundance in
the focal plant rhizosphere soil (Ulbrich et al. 2022). Together, these results suggest that the
introduction of novel microbes during active root interactions plays a large role in mediating
neighborhood effects on rhizosphere soil communities, but that these effects are contingent upon the
plant species harboring distinct microbiomes in the first place. A second mechanism influencing
rhizosphere soil community assembly in this study was neighbor-induced changes in soil moisture.

Across all treatments, focal plant soil moisture was lower when there were active root
interactions (no barrier), and this was exacerbated when there were two RH neighbors. This variation in
soil moisture had a small, though significant, effect on the fungal and bacterial rhizosphere soil
communities, the bacterial root community, and root exudates. It was still not enough to drive
treatment effects, perhaps because the soil moisture differences did not affect focal plant biomass.
Overall, it is clear that soil moisture contributed to shifts in microbiome assembly, and in a longer study
may have contributed to stronger neighborhood effects, but it is unclear if these changes were
mediated by the host-plant, such as through changes in root exudates (Gargallo-Garriga et al., 2018), or
through direct responses to soil moisture (Kaisermann et al., 2015; Naylor and Coleman-Derr, 2018).

Finally, though we did not observe neighbor-induced shifts in root exudates, which further
corroborates the lack of neighbor-effect on the rhizosphere soil communities, we did observe significant
correlations between the focal plant root exudates and the fungal communities. This supports previous
studies showing that root exudates impact microbiome assembly (Steinkellner et al., 2007; Broeckling et
al., 2008; Hugoni et al., 2018), but it is also possible that these correlations are not reflective of the root
exudates mediating fungal assembly, but rather of the fungal communities altering the plant’s root
exudates (Vos et al., 2012; Guo et al., 2015) or of fungal-derived metabolites present during our non-
sterile root exudate collection . We were surprised that the bacterial communities did not correlate with
the root exudates, as bacterial rhizosphere assembly has previously been shown to be regulated by root
exudates (Zhalnina et al., 2018). It may be that variation in the root exudates across sampling days
masked any potential relationship between the root exudates and soil bacteria. Overall, these data
reveal that while root exudates and microbiomes may be correlated, neighbor-induced shifts in

exudates are not the primary driver of neighbor-effects on microbiome assembly.
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CONCLUSION

In summary, we found neighbor-induced changes in root-associated but not rhizosphere soil
microbiomes, and that these neighbor effects are mediated by the host-plant, at least in the absence of
neighbor effects on rhizosphere soil microbiomes, which could alter root recruitment. We saw
surprisingly little plant species-specific effects on rhizosphere soil microbiomes, and no significant
neighbor effects, but neighbor-induced shifts in soil moisture had significant but subtle effects on
rhizosphere soil community assembly. Together, these results may indicate that neighborhood effects
on rhizosphere soil microbiomes occur first through subtle shifts in abiotic conditions, but that larger
compositional shifts depends on the introduction of novel neighbor microbes during active root
interactions. Lastly, we observed substantial heterogeneity among rhizosphere soil samples collected on
individual roots, even within the same plant. This may indicate some localized control from the host
plant, but also suggests that samples collected from the entire root system may be more representative
of overall neighborhood effects on rhizosphere assembly. Overall we show that host-plants play a role in
mediating neighborhood effects on root microbiomes, but neighborhood effects on rhizosphere
microbiomes depend upon each species harboring a distinct microbiome in the first place.
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CHAPTER FOUR: PERSPECTIVES AND INSIGHTS ON SOIL HEALTH FROM MICHIGAN FARMERS
ABSTRACT
The potential for healthy soils to address goals of productivity and sustainability has motivated a global
soil health movement. Though there are many interested groups, understanding farmers’ perceptions of
soil health is essential for making research and outreach efforts applicable on-farm. Most studies
investigating farmers’ perceptions either focus on a specific practice, rather than soil health more
broadly, or use a single method, which makes it challenging to describe both the breadth and depth of
farmers’ engagement with soil health. To address this gap, we use surveys, interviews, and mental
models to describe how Michigan farmers understand, evaluate, and manage for soil health. We found
that Michigan farmers believe in the benefits of soil health and identify many properties that impact it,
but they also describe challenges with evaluating and managing for soil health. Farmers primarily used
traditional agronomic soil tests, yield, and qualitative indicators (e.g., yield, crop coloration, soil texture)
to evaluate differences in soil health. However, several farmers also described how comparisons across
soil types can be problematic and, thus, that there is a need for regionally-defined soil health
benchmarks. Regarding management, we found that water stress and pest pressure are top concerns
and that describing the potential for soil health to mitigate these concerns could help farmers relate soil
health to their management decisions. Finally, we show that many Michigan farmers believe they are
taking steps to improve the health of the soils they farm, which was reflected in their use of no-till and
cover crops, as well as other practices. Overall, this study emphasizes that Michigan farmers have a deep
understanding of soil health and that they are taking steps to improve it, but that there are still many
research and outreach efforts which could help farmers more intentionally fit soil health into their
management decisions.
INTRODUCTION

“I'm trying to do everything | can to make this ground produce what it can for me and my kids and my
grandkids. Soil health is obviously a big part of that. So | try to actively do what | can to maintain or
improve where | can. But to say that I've exhausted every effort to improve just soil health, | haven't

gotten there yet.” [MI3W104]
Farmers across the globe work to balance goals of productivity and sustainability, and soils are often at
the center of this balancing act. Healthy soils can support farmers’ economic and environmental goals
(Oldfield et al., 2019), as well as aid in their ability to respond to and mitigate climate change (Lal, 2004;
Hewitt et al., 2021). This potential power of soils has given rise to a global soil health movement, with

increased interest and investment from academic institutions, governments, and private businesses.

Defined broadly as “the continued capacity of soil to function as a vital living ecosystem that sustains
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plants, animals, and humans” (USDA-NRCS), soil health has been able to unite many groups (Lehmann et
al., 2020; Powlson, 2020), but it also has its challenges (Janzen et al., 2021). For instance, groups develop
their own definition and perception of soil health, challenging communication across relevant groups.
Farmers have the ultimate power to improve the health of agricultural soils and, therefore, it is essential
that their perceptions of soil health are both acknowledged and used to inform research and outreach
efforts.

Most previous work describing farmers’ views on soil focus on their use of conservation
practices (e.g., no-till, cover crops) (Carlisle, 2016; Prokopy et al., 2019; Ranjan et al., 2019), rather than
how they conceptualize soil health itself. While these studies show that soil health is often central to
farmers’ decisions to adopt conservation practices, understanding how farmers perceive soil health may
inform what soil properties are more likely to guide farmers’ management priorities. The few studies
that have done this describe farmers’ soil health knowledge as holistic, practical, and informed by years
of experience. For instance, farmers often relate soil health to their yield goals (Andrews et al., 2003;
Roesch-McNally et al., 2018; Bagnall et al., 2020) and evaluate their soils in qualitative terms, like how it
smells or how well it works up with a tractor (Romig et al., 1995).

Connecting farmers’ soil health knowledge to their management decisions can be challenging,
but multiple methods can help describe the complexity (Jick, 1979; Olsen, 2004). For instance, a study
that used qualitative interviews coupled with quantitative lab-based assessments found farmers’
identification of their “best” and “worst” fields correlated with several quantitative indicators of soil
health (O’Neill et al., 2021). By using two methods, this study found that farmers’ intuitive sense of soil
health could be used to guide management, as well as the development of more practical, farmer-
informed indicators. Another example of this mixed-method approach, referred to as triangulation,
includes the use of surveys and interviews, whereby researchers can broadly characterize a populations’
knowledge or behaviors, and then, through interviews, inform how and why individuals make certain
decisions. In agricultural research, there is ample data about farmers’ management decisions (e.g.,
USDA-NASS Census of Agriculture; USDA-ARMS), but only more in-depth, qualitative studies can reveal
the nuances of farmers’ actions and how they relate to soil health (Bagnall et al., 2020; Friedrichsen et
al., 2021; Irvine et al., 2023).

Another less common, though effective way to more deeply understand farmers’ perceptions is
through mental models (Halbrendt et al., 2014; Hoffman et al., 2014; Bardenhagen et al., 2020;
Friedrichsen et al., 2021). Mental models represent an individual’s unique experiences, values, and

beliefs that inform their decisions and actions (Johnson-Laird, 1983; Jones et al., 2011), and provide a
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unique framework to identify what priorities and values guide farmers’ thought processes and decisions.
For instance, previous studies found that when farmers’ mental models included more conservation-
related concepts, they were also more likely to use conservation-friendly management practices (Vuillot
et al., 2016; Bardenhagen et al., 2020). It is probable, then, that farmers’ mental models of soil health
may also reflect their preferred soil health management practices, as well as what indicators of soil
health they are most comfortable using (Lobry De Bruyn and Abbey, 2003). In fact, outreach programs
that consider farmers’ mental models in their communication efforts are more likely to have their advice
implemented on-farm (Eckert and Bell, 2005; Hoffman et al., 2014). Therefore, by coupling analyses of
farmers’ mental models with in-depth interviews, we can get a better sense of how farmers currently
understand and manage for soil health, as well as how their insights can inform soil health research and
outreach efforts.

To this end, we use a mixed-methods approach that includes surveys, interviews, and mental
models, to answer three primary questions: 1) How do farmers understand soil health?, 2) How do
farmers evaluate soil health? And 3), How do farmers’ perceptions of soil health inform their
management decisions?

METHODS
STUDY CONTEXT

Farmers’ knowledge and management decisions are informed by local context, so this study
focuses specifically on row crop farmers in Michigan, a state in the northcentral region of the United
States. Row crops make up 68% of Michigan’s harvested land, and include corn (31%), soy (29%) and
wheat (8%) (2021 USDA-NASS Michigan Agriculture Overview). Several factors make farming unique in
Michigan compared to other Midwestern states (e.g. lllinois, Indiana, lowa), including the diversity of
other crops planted in the region, shorter growing seasons and close proximity to the Great Lakes
(USDA-NASS Census of Agriculture). Michigan soils are less fertile than those in other midwestern states,
and have more varied soil types (Staff, n.d.). Across the state, there are initiatives to help farmers
improve their soil health(e.g. Michigan Agriculture Environmental Assurance Program, MAEAP). This
context likely contributes’ to farmers’ management decisions and their understanding of soil health.
DATA COLLECTION & ANALYSIS

We used survey and mental model approaches to evaluate how Michigan farmers understand,
evaluate, and mange for soil health. First, we conducted a survey across the state to assess trends in

farmers’ knowledge about soil health, as well as their adoption of soil health practices. Then, using a
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nested-design, we contacted a subset of these farmers to participate in follow-up mental modeling
activities and interviews.
SURVEY

The Panel Farmer Survey is a self-administered mail survey targeted at row crop farmers in the
Midwest, and has been conducted annually since 2017, with repeated and new participants surveyed
each year.? The survey questionnaire was developed by a multidisciplinary group of scientists and
included 20 pages of questions on a range of topics including demographics, farm operation
characteristics, management practices, soil health, and challenges facing agriculture. In this paper, we
use only responses from the 2019 survey of Michigan farmers (response rate 46.8%), focusing
specifically on their use of conservation practices, as well as their perceived knowledge about and
confidence in soil health. Each question was asked with a 5-point Likert scale rating. Several questions
regarding farmers’ perceptions of soil health, including whether they had “taken steps to improve the
health of soils they farm” were adopted from the 2015 lowa Farm Poll Survey (Arbuckle, 2016).
Demographic data (age, sex, education, farm size) were collected in each year of the survey, though
these data were coalesced from previous years if there was no response in the 2019 survey.

Survey responses were analyzed for farmers operating at least 100 acres (40.5 ha), which
included 353 total responses. Data were cleaned, sorted, analyzed, and plotted using R statistical
software (Team, 2022) and the following packages: dplyr (Wickham et al., 2022), reshape2 (Wickham,
2007), ggplot2 (Wickham, 2016), likert (Bryer and Speerschneider, 2016). Data about the participants’
use of management practices were coalesced from survey and interviews, but in cases where the survey
and interview responses differed (likely because they were conducted two years apart), we relied on the
more recently collected interview data. Relationships between the farmers’ knowledge of soil health
and their use of cover crops was determined using a Spearman’s Correlation with the “cor.test” function
in R.

INTERVIEWS & MENTAL MODEL ACTIVITY
We used mental modeling activities and interviews to gain deeper insight into farmers’

perceptions of soil health. Using a geospatial, purposive sampling strategy, we identified a subset of

3 The survey was mailed to corn and soybean farmers with operations over 100 acres (40 ha) in four Midwestern
states, including lllinois, Indiana, Ohio, and Michigan. USDA-NASS Census of Agriculture was referenced to ensure
representative sampling based on farm size (operations less than or greater than 500 acres (204 ha). It has been
mailed annually since 2017 using a modified Dillman Tailored Design Method (Dillman et al., 2014) with grower
addresses purchased from a private vendor. To account for attrition, we used two-part panel design.
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interview participants within ten southwest Michigan counties (Allegan, Berry, Van Buren, Kalamazoo,
Cass, Branch, Calhoun, Kent, lonia, Eaton, Ottawa). Individuals from these counties were contacted if
they provided their email address and agreed to further contact in the survey (n = 47). Potential
interviewees were then called and emailed invitations to participate in the study. We designed our
interview pool to be representative of the region and, specifically, to represent a range of soil health
practices (e.g. cover crops and tillage).

After initial phone conversations — in which farmers were made aware of the research goals and
a $100 cash incentive for their involvement — they were mailed a packet of materials to complete
independently and return. The packet included a description of the research project, a mental model
activity workbook, and a pre-stamped return envelope. In the workbook, farmers were asked to
articulate three goals for their farm in the next ten years, define “cash crop productivity” and “soil
health”, read an example mental model diagram*, and then complete their own mental model diagrams
for “cash crop productivity” and “soil health”. Each mental model diagram included a key term — either
“cash crop productivity” or “soil health” — surrounded by eight numbered boxes, in which participants
wrote the factor they believe to impact either key term (Figure 4.52). Using a modified Fuzzy Cognitive
Mapping approach (Gray et al., 2014), participants indicated how the factors impact the focal concept
(positive impact ‘+’, negative impact ‘-‘), and if there were relationships between the factors (drew
arrows connecting factors). The main benefit to this approach is that it allows farmers to illustrate and
interact with their own representation of their mental model, which is in contrast to approaches that
extract mental models from texts and interviews (Halbrendt et al., 2014; Hoffman et al., 2014) (see
Methodological Considerations in Supplemental Materials for more details). Furthermore, due to
Covid19 restrictions the interviews and mental models were conducted remotely, and though this had
the benefit of farmers engaging with their own mental models without researcher bias, this approach

may have had several limitations.>

4 The example mental model diagram was about “car longevity” and served to illustrate the activity without biasing
farmers’ views on the research topics. See Figure 4.51.

5 Another difference between our study and many other FCM studies is that, due to regulations during the Covid19
pandemic, participants were asked to depict their mental models independently, rather than in front of a
researcher. Potential limitations of this method include making it more challenging to quickly identify converging
themes among participants, as well as more time for the participants to work on their mental models. With more
time, it is possible that the mental models may not represent the immediate, intuitive thoughts they have about
soil health. Further, interviewing the participants several weeks after completing their mental models meant that
they did not always remember their reasons for including a concept in their mental model.
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The workbooks were returned to the main researcher, scanned, and then mailed back to
farmers to guide the follow-up phone interviews. One researcher conducted all one-on-one phone
interviews, which took place within 2-3 weeks of receiving the workbook, from March to June 2021, and
the interviews lasted an average of 74 minutes. A semi-structured interview instrument guided each
conversation and included questions about farm characteristics and management practices, knowledge
of soil health, and detailed descriptions of their previously completed “cash crop productivity” and “soil
health” mental model diagrams. One farmer that completed the workbook did not partake in the
interview, resulting in 19 total interviews and 20 mental models.

All interviews were audio-recorded, transcribed using Otter.ai software (“Otter.ai,” 2022) and
edited by hand, and thematically and structurally coded based upon responses to the interview
guestions using NVivo software (v. 1.6.1) (QSR International Pty Ltd, 2020). The factors included in each
mental model were organized in Excel (Microsoft Corporation, 2018) and then thematically coded at two
levels by the same researcher that conducted the interviews. First, the factors were coded into a
common, unifying topic. For instance, multiple factors, including organic material, carbon content, and
humus were coded into a single topic ‘organic matter’. Second, the topics were coded into four groups,

n i n u

including “soil property”, “crop”, “management practice”, and “externa

|II

. These groups were primarily
used to visualize differences in the frequency of topics in the figures, as well as to discuss if farmers
were more likely to include soil properties or management practices in their mental models. In the crop
productivity mental model, the topic “diseases and pests”, which include fungal pathogens, weeds, and
insects pests, was categorized as a soil property because many crop pests, including fungal pathogens
and insects often originate from or spend at least part of their life cycle in soil (Adesemoye, 2018;
Tooker and Hodgson, 2020). Tables 4.51 and 4.52 show how the factors were coded and categorized at
each level.

In comparison to studies that have participants populate their mental model from a select word
bank, the more free-form process used here may have greater bias from the researchers’ subjective
categorization and aggregation, but it is less likely to limit the participants’ perceptions or stifle
potentially interesting heterogeneity in their responses (Gray et al., 2014), so we believe it was the best
approach for our objectives. The coded topics were summarized (frequency of times a term was
mentioned at least once by an individual farmer) and plotted using the R statistical program (Team,
2022) with the following packages: dplyr (Wickham et al., 2022), tidyr (Wickham and Girlich, 2022),

ggplot2 (Wickham, 2016). We also evaluated if the topics included in farmers’ soil health mental models
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differed depending on their use of cover crops (n = 12 used cover crops on at least some fields, n = 8 did
not use).

RESULTS AND DISCUSSION

SURVEY SAMPLE DEMOGRAPHICS AND LAND MANAGEMENT

The survey sample (n = 353) was broadly representative of row crop farmers in Michigan. The
average respondent age was 62 years and 98% of the respondents were male and 2% were female.
According to the USDA-NASS Census of Agriculture (2017), Michigan farmers that operate greater than
100 acres are, on average, 55 years old 73% male. Nearly half (47%) of respondents had at least a high
school diploma, 29% had at least some college, 21% had a bachelor’s degree or higher and 3% did not
have a high school diploma. As of 2018, the respondents managed an average of 1,184 acres, with 31%
farming 100-500 acres and 69% farming over 500 acres (this number includes the land they own and
rent from others).

The survey findings revealed that in 2018 over half (56%) of Michigan farmers used conservation
tillage (defined as at least 30% residue) and no-till (64%) practices and almost half (46%) used winter
cover crops on at least some of their fields (Figure 4.1). The practice use and demographics of the
interview subset (n = 19) was representative of all Michigan row crop farmers (n = 353), except the
subset did tend to have higher education and were more likely to use cover crops.

Overall, the adoption of no-till and use of cover crops in Michigan is comparable to other Midwestern
states (Guo and Marquart-Pyatt, Sandra T., Robertson In Review). Furthermore, though cover crops and
no-till practices are the most commonly discussed conservation practices, the interviews and survey
data showed that Michigan farmers use a variety of practices that could impact soil health, such as
applying manure, using biological soil amendments, adopting extended crop rotations (67% do this
sometimes), or putting perennial vegetation in unstable areas (29% do this sometimes) (also see Table

4.1).
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To what extent practices were used in 2018

Conservation Tillage No-till Planted winter cover crops

100

~
[9)]

!eid not usef_ ”
. o es, some fields
45% 46% Yes, all/most same crop fields

359 27% Yes, all/most of operation

29%

25%

Percent of farmers surveyed
(4]
o

25 16% 12%
10%
13% 17% 11%
0
No Yes No Yes No Yes

Use of practice

Figure 4.1. Survey responses (n ~ 320) showing percent of Michigan farmers that used soil health
practices in in 2018, including A) conservation tillage (defined as > 30% residue), B) No-till, and C) winter
cover crops. Five-scale likert responses to the question “To what extent did youuse __ onyour farm
in 2018?”. Numbers do not add to 100% because the “does not reply” responses were removed.

1) HOW DO MICHIGAN FARMERS THINK ABOUT SOIL HEALTH?
1.1) FARMERS FEEL KNOWLEDGEABLE ABOUT AND BELIEVE IN THE POTENTIAL BENEFITS OF SOIL
HEALTH

Our results show that Michigan farmers feel knowledgeable about soil health and believe in the
benefits it can offer, but that that their past experiences do not necessarily reflect these feelings. In the
survey, over half of Michigan farmers reported that they feel they know at least something about
building soil health (57%) and soil organic matter (61%), and most feel knowledgeable about using soil
health practices, like cover crops (44%) and no-till (51%) (Figure 4.2). Nearly all farmers reported that
they believe in capacity of soil health to increase yields (98% of total sample) and drought resilience
(93%) (Figure 4.3). This includes those that reported being “unsure” about their soil health knowledge
(38%).6

6 Of the 38% of farmers reported feeling “not sure” about their knowledge of soil health (n = 130), 98% believed
that soil health increases yields, and 91% believed that soil health can increase drought resilience.
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Important nuances of this seemingly-unanimous belief in the benefits of soil health were revealed
through interviews. For instance, one farmer who, in the survey, shared he believed “a great deal” that
healthy soils increase yields, later voiced his skepticism about this relationship: “that's my reading and
research [that soil health increases crop productivity]. I'm a little bit of a skeptic. | don't necessarily
believe anything ‘til we do it. But I'm also not gonna say it's not true.” [MI3W106]. If this sentiment is
shared by other Michigan farmers, then it is likely that most Michigan farmers believe in the potential
for healthy soils to increase yields and drought resilience, but that they will only be convinced when
they see it themselves, and that surveys overestimate their belief in the potential. Other studies also
show that hands-on experience is the most effective way for farmers to gain knowledge and confidence
in soil health practices (Long et al., 2013; Ranjan et al., 2019). Furthermore, it has been suggested that
believing that soil health can increase yields helps farmers cognitively connect their short-term
productivist goals with their long-term conservation goals, perhaps even if they have not observed it

themselves (Roesch-McNally et al., 2018).

How much do you feel you know about...

|
Building Soil Health (340)| 5% 38% . 57%
1
Building Soil Organic Matter (340) | 4% ‘ ‘ 35% ’ . 61%
I
Using No-till (338) | 22% I ‘ 26% . 51%
1 —
Using Cover Crops (339) | 23% 34% 44% . Nothing at all
| Alittle
f Not Sure
Using Rotati to M Weeds & | ts (341 4% 21% 76% Some
sing Rotations to Manage Weeds & Insects (341) o o Agreat deal
. —
Using Perennial Vegetation on Operation (338) | 50% l 32% I 18%
r I
Using Biological Seed Treatments (163)| 33% I 41% ’ I 26%
T
Using Biological Soil Amendments (339)| 52% . 33% I 15%
I
100 50 0 50 100
Percentage

Figure 2. Survey responses for Michigan farmers’ perceived knowledge about soil health and practices.
Five-scale likert responses to the question “How much do you feel you know about...?”. Number in
parentheses indicates the response sample size for each variable. The question about “using biological
seed treatments” was only sent to half of survey participants, which is reflected by its lower sample size.
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To what extent do you agree that...

|
Healthy soils increase yields (338)| 0% 1_ 98%

Healthy soils increase drought resilience (339)| 2% Y 93%

Strongly disagree
| Disagree
68% Not Sure

n Al
| would like to learn more about how to improve o o,
soil health (337)| 2% 18% u 82%
50 10

Healthy soils reduce chemical input needs (334)| 7% 26%

Strongly Agree
| have taken steps to improve the health of soils 1% 14%

| farm (339) 86%

|
100 50 0

Percentage

0

Figure 4.3. Survey responses for Michigan farmers’ perceived knowledge about soil health and practices.
Five-scale likert responses to the question “To what extent do you agree that...”. Number in parentheses
indicates the response sample size for each variable.

1.2) FARMERS HAVE A SYSTEMS-LEVEL UNDERSTANDING OF SOIL HEALTH, GUIDED BY SOIL PROPERTIES

The mental model activity and interviews revealed that farmers have a complex, systems-level
understanding of soil health. We identified 30 topics that farmers think impact soil health and found
that, overall, there was more agreement on which soil properties impact soil health than which
management practices lead to healthy soil (Figure 4.4). In the interviews, farmers frequently described
the relationships between different soil properties, as well as how the soil properties are influenced by
management (Table 4.1).

The most frequently mentioned topics included organic matter (75%), compaction (65%), and
soil biology (55%) (Figure 4.4, no “crop” terms mentioned in soil health mental models). Consistent with
this, other studies show that farmers view increased organic matter and reduced compaction as the
primary benefits of soil health practices (reviewed by (Carlisle, 2016). Soil biology has also long been
valued by farmers (Romig et al., 1995). Similar to our findings, a recent study that interviewed 91
Midwestern row crop farmers found that over two-thirds of farmers discussed the importance for
biological activity for soil health (Irvine et al., 2023). It could be that farmers’ have a renewed focus on
soil biology, as there is also increased interest in the role of soil biology for agriculture from scientists
(Chaparro et al., 2012; Fierer et al., 2021), as well as private industry (Ellis, 2022). In fact, several farmers
in our interviews (36%) said they are trying out new products that stimulate microbial activity in their

soils, and three directly mentioned these products as a strategy to bolster the soil biology in their soils

85



(Table 4.1). But despite this interest, they were also uncertain about how the products work and
skeptical that they might be “snake oil”, a sentiment that is consistent our survey results (Figure 4.2) and
previous findings (Doll et al., 2020).

When discussing the relationships between soil health and these top three topics, farmers often
described their importance for managing water, as well as how they can be impacted by cover crops and
tillage (Table 4.1). They described that higher organic matter can increase water holding capacity, and
that earthworms can increase water infiltration while compaction leads to ponding. Farmers also
frequently discussed how cover crops and tillage play a role in managing these soil properties, as well as
water-related risks. For instance, one farmer shared that: “We try to manage too much rain with [tile]
drainage, [but during] the drought, the less tillage and cover crops actually helped us.” [MI3W111].
Other studies report that experiencing extreme weather events can motivate farmers to adopt
conservation practices (Ding et al., 2009; Roesch-McNally et al., 2018). Farmers generally agreed that
cover crops have a positive impact on soil health, and this was even true of farmers that do not currently
use cover crops’ (discussed more in section 3.2), but there was more variation in how tillage impacts

soil health (Table 4.1).

7n =2/7 farmers did not use cover crops but included it in their soil health mental model, Figure 4.4; n =5/13
farmers did not use cover crops but play a role in increasing organic matter, see Table 4.1
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Figure 4.4. Topics included in Michigan farmers’ soil health mental models, each topic consisted of
several terms aggregated (Table 4.51). Colors reflect the category of the term, as defined by the lead
researcher. Gray-dashed lines indicate 25%, 50%, and 75% of farmers. The term “drainage” sometimes
referred to the natural ability of the soil to hold water (soil property), but also tile drainage
(management practice).



Table 4.1. Details about the most frequently mentioned topics included in farmers mental models of soil health (See Figure 4.4). Plus and
minus signs indicate if farmers described the management to have a positive (+) or negative (-) impact on soil health. Numbers indicate how
many farmers mentioned the concept in the interview (niotal = 20).

Factor Its impact on soil health How farmers manage it Example Quotes: Connecting soil properties and
management practices

Organic Feeds soil biology (9) + Cover Crops (13) “The idea is to leave as much residue on top as

Matter Increases water holding + Leave residue on top (no-till, minimum you can. And that will help promote earthwormes,
capacity (5) and drought till)(8) and try to build your organic matter. But if you till
resilience (2) + Manure (2) it.... in which a lot of farmers are still doing all the
Reduces soil crusting and + Incorporate residue (chisel plow) (1) tillage, their organic matter is probably dropping
hardening (2) + Bio-solids (1) and they’re also losing carbon.” [MI3W112]
Increases crop production
(1) “Yeah, the healthier soil is, the better the crops
Helps other pesticide and are gonna do. So yeah, and one of the things that
fertilizer applications work that really keeps soil healthy is your organic
right (1) matter. And that's where cover crops help you out
Reduces erosion (1) alot.” [MI3W102]
Increases fertility (1)

Compaction | Prevents deep root growth + Cover crops (6) “Get a cover crop down there and get your roots

(4)

Reduces soil drainage (4)
Inconsistent seed depth (2)
Prevents the soil from
“breathing” (1)

+ Not driving when the field is wet (difficult
with lots of ground to cover) (5)

+ Chisel-plowing/minimum till (4)

+ Equipment considerations (larger boom,
larger tires, tracks on combine) (4)

+ Sub-soiling (2)

down and loosen the soil up...it's kind of a cure for
[compaction] maybe...[cover crops] will make it
pretty mellow when you work it the next year.”
[MI3W118]

“Soil compaction is becoming a big deal with this
bigger equipment, heavier equipment, people
working more and more ground and want to get
in when it's too wet. You know, all that is just
really starting to have an effect. That's why | tried
to plant the radishes” [MI3W116]
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Table 4.1 (cont’d)

Factor Its impact on soil health How farmers manage it Example Quotes: Connecting soil properties and
management practices
Soil Biology | Release nutrients and - Tillage (destroys earthworms, creates a “Well the little microbes are helping with your

increase soil fertility (5)
Build organic matter (4)
Increase water infiltration
(4)

Reduce soil crusting (1)
Worms loosen the soil (1)
Help plants grow (1)

hardpan, removes surface residue) (5)
+ Cover crops (provide food, aeration,
macropores) (4)

+ Adding biologicals and soil amendments
to stimulate microbial activity (3)

- Fertilizers kill bacteria (Anhydrous
ammonia, nitrification inhibitors) (2)
+ Drainage tile prevents worms and
microbes from flooding out (1)

+ Chicken litter (1)

+ Crop rotation reduces pests (1)

+ Fumigation reduces pests (1)

percolation, with your water coming
throughl...]They're keeping your soil alive. The soil
is living and it's microbes that give it the life and
the vitality. Without them you have dead soil. And
that's why the cover crops come in handy, to keep
things aerated. And those microbes live and die
down there. They contribute your soil health and
the organic matter.” [MI3W113]

“The less tillage you can do the more the
earthworms like it as well. They don't like their
homes disturbed.” [MI3W111]
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2) HOW DO MICHIGAN FARMERS EVALUATE THE HEALTH OF THEIR SOIL?
2.1) MOST FARMERS USE SOIL TESTS, BUT FEW ASSESS MORE THAN THE CHEMICAL COMPONENTS OF
SOIL

Most of the Michigan farmers we surveyed (77%) reported using tests to measure soil health at
least sometimes. In interviews, most farmers described using traditional agronomic soil tests (e.g., pH,
organic matter, and extractable nutrients), not tests that assess a broader array of ‘soil health metrics’.
Many of the interview participants (47%) reported using soil tests based on grid-sampling every one to
three years to inform their fertility programs and, in some cases, their variable rate fertilizer applications
(n =31%). Despite their frequent use, there was still some confusion about the agronomic tests, such as
why phosphorous levels do not always reflect fertilization recommendations, or what is available to the
plant.

Only two farmers in the interviews used alternative soil health tests that also assess the
biological properties of soil. One used the Haney test (Ward Laboratories, Kearney, Nebraska), which
measures nutrient availability and biological activity through soil respiration, because it was part of a
government funded program. The other partnered with a university to evaluate soil health metrics,
including active carbon, water holding capacity and aggregate stability. Our results support other studies
that also report low use of soil health tests by farmers (De Bruyn and Andrews, 2016; Mann et al., 2021;
Wade et al., 2021).

Conversations with farmers also indicated that there is a need for improved translation of soil
test results. For instance, the farmer that worked with a university to test his soil health shared that
“[the soil health test] was great, because it was interesting, but I'm not sure what | learned, is the
problem.” [MI3W104] This quote emphasizes that, even if soil health tests become more accessible, that
there is also a need to ensure that soil health tests move beyond “interesting”. One way to do this, as
discussed in a recently proposed framework for soil health assessments, may be to ensure that soil
health indicators relate to management outcomes that are most interesting to farmers, such as yield
and water quality (Wade et al., 2022). Doing this could also help farmers connect their understanding of
soil health (mental models) with their management goals. For instance, changes in organic matter and
soil biology, two of the top factors in farmers’ soil health mental models, cannot be assessed easily, or
even within a single season, which limit the extent to which they can inform management. Efforts to
develop faster-responding indicators of organic matter (e.g., Permanganate Oxidizable Carbon) (Culman

et al., 2012; Awale et al., 2017) or to determine how organic matter or soil biology impact yield (Oldfield
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et al., 2019)could help farmers relate their understanding of soil health to their crop productivity goals,
and, in turn, increase their confidence in soil health practices.

2.2) FARMERS USE VISUAL INDICATORS TO ASSESS SOIL HEALTH DIFFERENCES ACROSS FIELDS, AND
ATTRIBUTE DIFFERENCES IN SOIL TYPE TO SOIL HEALTH

In addition to using quantitative tests, we found that farmers define and evaluate soil health
based on visual indicators of the soil and crops, as well as knowledge of field topography and soil types
(Table 4.2). This is consistent with previous studies (Romig et al., 1995; Lobry De Bruyn and Abbey, 2003;
Bagnall et al., 2020). Farmers often used visual differences in crops as indicators of soil properties, such
as lower yields in the headlands as an indicator of soil compaction.

Farmers frequently mentioned differences in soil type when describing differences in soil health
and yield across their farms. Heterogeneous soil types may be particularly prevalent in Michigan farms,
as described by a farmer in our interviews: “you have so many different types of soil on one field [...]
from high to low to dark to light. It's just the way it is around here [...] not like lllinois, where it's black
from one end to the other.” [MI3W102]. Often these inherent differences in soil types were discussed in
terms of soil health. Farmers described some soils in their fields as “just tough” or “like sandbox sand”
and other soils, like loams, were described as “more alive”. Another farmer noticed that differences in
the soil’s ability to hold water correlated with yield outcomes, but also questioned whether this reflects
differences in soil health:

“You can see the differences in productivity across the field. Is it soil health? Well, you know, a

lot of it traces back to what areas hold water and which ones don't. You know, typically the

areas that hold the water the best, are the areas that produce better.” [MI3W113]
This quote emphasizes how differences in soil types within a field can make it challenging for farmers to
identify if yield differences emerge from variation in soil health, or from differences in yield potential,
which may not be changeable within soil types.
Challenges with evaluating soil health across soil types also exists across larger boundaries, and, when
used to compare yields, may unnecessarily make some farmers feel like “failures”, as described by a
farmer that compared Michigan soils to the more naturally fertile soils in lowa:

“What’s good soil in one place, is maybe not considered good in another. The soil in our neck of

the woods probably would not be considered very healthy to somebody from lowa or lllinois [...]

If they raise raise 220 bushel an acre corn, that's considered a failure, [while] here [in Michigan],

that's about the best we can do.” [MI3W101]
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The same farmer went on to describe how the term “health”, itself, may be problematic when used to
describe differences across soil types:
“The use of the word ‘health’ kind of implies that some soil is not productive — is not healthy.
And I'm not sure that’s it. It's a different kind of soil...it's not intended to be as productive, you
know, it's just not going to be as productive. You know, that's not to say it's unhealthy.”
[MI3W101]
This farmer is recognizing previously described challenges with soil health, namely that there are no
universal benchmarks (Janzen et al., 2021). It might be useful to distinguish a definition of soil health
that is based not on a number of absolute productivity but as a potential based on local comparisons to
similar soil types. To this end, efforts should be made to create local databases that would allow farmers
to compare their soil properties to other fields with similar soil types, historic land use and climates.
Additionally, because previous studies suggest that farmers in different regions identify different
indicators of soil health (Lobry De Bruyn and Abbey, 2003), locally-informed databases may also be more
useful if they are reflective of the farmers’ preferred soil indicators, calling for studies similar to this in

other states.
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Table 4.2. Thematic coding for interview responses to “Do you think that soil health varies across your fields? And, if so, how can you tell?” 17
of the 19 farmers were asked this direction question; responses often included several indicators, so sample size varies.

Indicator of soil
health

Indicator descriptions

Example Quotes

Crop visuals (9)

Yield;

Leaf color (greenness,
variegated purple
leaves);

Stress (dry leaves);
Height

“You're looking at your neighbor's and you look at yours and my crops might not be showing
as much stress as theirs are. And | think okay, we're heading the right direction.” [MI3W114]

“Well, ultimately, the yield usually will bear that out. You can tell sometimes there's a
discoloration. But usually, if there's a discoloration if there's going to be a yield indication at
the end of it.” [MI3W115]

Soil visuals (9)

Soil color;

Standing water;
Compaction;
Ability to work (e.g.
mellow)

“We've got some [fields] [...] that's kind of a black, sandy soil sand underneath. And it's very
nice to work. It's very mellow.” [MI3W117]

“Yeah, and | think probably a lot of the visual is more so compaction and the ability for water
to percolate or, or pool, you know, in a low spot are a compacted spot that holds water, that
the corn is short, it's yellow, it just is not as thrifty.” [MI3W110]

Field position (6)

High vs. low areas;
Headlands;

Buried stones in the
fields;

Irrigated soils are
healthier;

Proximity to fence rows
and trees

“Our end rows, those are going to be gravelly and hard and compacted. So those always yield
less. Once you get to the middle of the field. It's gonna be better.” [MI3W102]

“Yeah, the non-irrigated ground will be more of a yellowish sand than what the irrigated is.
Like | said, I've got the irrigated down to where it's almost dark brown or almost black at the
top.” [MI3W116]

“When | work [...] the soil around the fence rows [...] near the trees, the soil is always...it looks
better.” [MI3W101]

Soil type (6)

Sandy, loamy, mucky;
Ability to hold water

“Well, you know, a lot of it traces back to what areas hold water and which ones don't [...]
typically the areas that hold the water the best, are the areas that produce better” [MI3W113]

“Just by soil type...our farms range anywhere from sand, which is very light soil to...and you go
down into lower areas too muck. So the soil health in the lower areas is much better than up
on the sand hills.” [MI3W105]

“You get in some of the sandy soils and just like, sandbox sand. That you grab some of the
lower, like, lower loamy ground and so it's, it's like it's more alive.” [MI3W111]
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3) HOW DOES SOIL HEALTH INFORM FARMERS’ MANAGEMENT DECISIONS?
3.1) FARMERS’ TOP MANAGEMENT CONCERNS AND HOW THEY RELATE TO SOIL HEALTH

Many farmers’ mental models of crop productivity included soil properties (12 out of 35 topics),
but crop characteristics (n = 3), management practices (n = 9), and external factors (n = 10), like weather
and markets also were well-represented (Figure 4.5). The topics “weather”, primarily described as
precipitation (both too little and too much), and “diseases and pests” were the most frequently
mentioned factors to impact crop productivity, potentially suggesting that these are also farmers’
greatest concerns for management. Data from survey and interviews suggest that farmers see a role for
soil health in buffering crop productivity from water stress. In interviews, farmers frequently discussed
how organic matter and soil biology play a role in water management (discussed previously, Table 4.1).
Similarly, in the survey nearly all farmers (93%) reported that they believe healthy soils can increase
drought resilience (Figure 4.2), as supported by recent literature (Hewitt et al., 2021; Renwick et al.,
2021)

“Diseases and pests” was the second most common topic in the farmers’ crop productivity
mental models (n = 12/20, Figure 4.5). This topic was broad, and included a variety of pests, including
weeds, fungi, and insects. In the interviews few farmers described a relationship between soils and pest
pressure, consistent with discussions during a recent soil health workshop (personal communication,
June 29, 2022). Highlighting the opportunity for soil health to reduce pest pressure (Janvier et al., 2007;
Larkin, 2015) could be an additional strategy for soil health educators to align efforts with farmers

existing management priorities.
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Figure 4.5. Topics included in Michigan farmers’ crop productivity mental models, each topic consisted
of several terms aggregated (Table 4.52). Colors reflect the category of the term, as defined by the lead
researcher. Gray-dashed lines indicate 25%, 50%, and 75% of farmers. The term “drainage” sometimes
referred to the natural ability of the soil to hold water (soil property), but also tile drainage
(management practice).

3.2) FARMERS USE A VARIETY OF PRACTICES TO TARGET SOIL HEALTH, BUT CLAIM THERE IS MUCH
MORE TO BE DONE

We investigated how farmers’ understanding of soil health influences management in two ways:
first, we evaluated if the topics included in the soil health mental models differed for farmers that use or
do not use cover crops. We found that farmers that used cover crops included more topics, especially
those other than organic matter and compaction, suggesting that they may have broader understanding
of soil health (Figure 4.53). Second, we examined differences in farmers’ perceived knowledge and use
of cover crops, using survey data. We found that farmers’ use of cover crops only weakly correlated with
their perceived knowledge of soil health (r = 0.10, p = 0.056), but more strongly correlated with their
perceived knowledge of using cover crops (r = 0.46, p < 0.001). These data suggest that farmers’
management decisions are more likely to be informed by knowledge of specific practices, rather than by
the more general topic of soil health. Other studies also show that farmers’ knowledge of and

experience with cover crops correlates with their adoption (Singer et al., 2007; Arbuckle and Ferrell,
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2012), but that knowledge is not the only barrier to adoption (Bergtold et al., 2012; Reimer et al., 2012;
Burnett et al., 2018). We also identified other barriers; several farmers discussed the important role of
cover crops for soil health but were not using the practice, in part because they were nearing the end of
their farming careers.®

To further study drivers of adoption, we tested whether farmers that are “taking steps to
improve the health of soils they farm” are also using soil health practices. Most farmers (86%) say they
are taking steps to improve the health of soils (Figure 4.3), and a similarly high percentage (78%) are
using either no-till or cover crops on at least some fields in their operation.® This suggests that cover
crops and no-till are practices that farmers use to manage for soil health, consistent with what was
shared in the interviews (Table 4.1). A smaller percent of farmers (11%) said they have taken steps to
improve soil health but do not use cover crops or no-till. In the interviews, farmers shared that try to
improve soil through a wide variety of practices other than those listed in our survey, such as manure,
biological products and soil amendments, or even bio-solids (Table 4.1). It is also possible that farmers’
self-reported “steps for improving soil health” may include practices that are not often attributed to
building soil health, like deeper tillage practices. Indeed, while most farmers described how no-till helps
build soil health, one farmer said chisel plowing puts “stuff down in the ground” [MI3W107] which is
good for building organic matter (Table 4.1). This farmer’s perception may exemplify a previously
observed pattern whereby farmers’ use their identify as stewards of the land to justify that their
practices are good for the soil (Roesch-McNally et al., 2018; Irvine et al., 2023). Consistent with most
farmers’ efforts to improve soil health, we found that farmers view caring for the soil as part of the job,
and that there are always things that can be done:

“I'm trying to do everything | can to make this ground produce what it can for me and my kids

and my grandkids. Soil health is obviously a big part of that. So | try to actively do what | can to

8 Even farmers that did not use cover crops included them as an important practice in their soil health mental
models (n = 2/8, Figure 4.4), and multiple farmers that discussed the role of cover crops for building organic matter
also did not use the practice (n = 5/13, Table 4.1). One farmer that recognized the benefits of cover crops shared
that he is unlikely to use them because he is nearing the end of his farming career: “[Other farmers] claim they're
getting more organic matter in the soil by doing that [planting cover crops]. It kind of makes sense, but at this
point in our careers, we're going to wait for the next team to take over and do whatever they think is best.”
[MI3W103]

9 47% of farmers use either no-till or cover crops on at least some fields and 31% use both practices on at least
some fields
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maintain or improve where | can. But to say that I've exhausted every effort to improve just soil
health, | haven't gotten there yet.” [MI3W104]
Farmers may not have a specific plan for improving soil health, but they find it to be an unquestionable
part of their lives, comparing it to living a healthy life, or as their personal mission statement:
“Yeah, | think [l try to build soil health]. It's, you know, do you have a real plan to keep you
healthy, or do you just kinda live right. You know, | don't know if | have a real plan to keep me
healthy, but | don't smoke. | don't drink much. And | you know, | exercise. It's kind of the same
way with the farm things. | try not to do anything that | know is, is bad. | don't know, | don't
have a real scientific plan.” [MI3W117]
“So it's like, some people have to have a mission statement to get out of bed. | don't need one
of those. | know what my mission is. So that is just how | operate. So it would be nice to have a
soil management plan, like a PDF somewhere on the wall. But that hasn't become priority one
yet.” [MI3W104]
These quotes support previous literature showing that soil health is an important part of farmers’
stewardship ethic (Roesch-McNally et al., 2018; Bagnall et al., 2020). Given this, it is not surprising that
Michigan farmers are taking steps to improve soil health on their farms. The bigger question, then, is:
are their management efforts working? To get at this question, future studies should focus on mixed-
method approaches, such as first using qualitative research to assess the breadth of soil health practices
and evaluation techniques that farmers are using, followed by quantitative methods to assess the
effectiveness of the practices over time, as well as what soil health indicators respond most quickly to
management (e.g. O’Neill et al., 2021).
SUMMARY AND CONCLUSIONS
Using survey, mental modeling and interview methods, we investigated how Michigan farmers
understand, evaluate, and manage for soil health. There were three primary conclusions from this study:
1) Michigan farmers believe in the benefits of soil health and have a complex, systems-level
understanding of it, but that it can be challenging to apply this knowledge to management.
Nearly all farmers reported that they believe healthy soils have the potential to increase yields and
drought resilience. Using mental models, we found that organic matter and soil biology were central to
farmers’ soil health mental models, and that they identified many mechanisms and management
practices that affect these properties. However, these properties were less commonly used to guide
management, likely because they cannot be easily measured or related to outcomes that are most of

interest to farmers.
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2) Farmers primarily assess soil health with agronomic nutrient tests and visual indicators, such as yield
and leaf coloration, but soil type can make yield a misleading indicator.

In Michigan, soil types are very heterogenous, and because differences in yield can be attributed to soil
type, it can be a problematic indicator of soil health. Regionally-specific benchmarks could help farmers
differentiate the effects of soil health and soil type on crop yields.

3) Many Michigan farmers have adopted no-till and cover crops to improve soil health, and express that
soil health is a top priority, though it may not always be reflected in their management concerns.

In the survey, most farmer said they have taken steps to improve soil health, and this was generally
supported by their use of cover crops and no-till. Still, soil health and conservation practices were not
frequently included in farmers’ crop productivity mental models even though, in interviews, farmers
described caring for the soil as part of their personal mission statement. In mental models, weather and
pest pressure were identified as top management concerns. Because soil health has the potential to
mitigate drought stress and pest pressure, focusing on these relationships could help farmers relate soil
health to their management priorities.

Overall, we found that Michigan farmers have deep knowledge and appreciation for soil health and that
there are many research and outreach opportunities that could help farmers more intentionally fit soil
health into their management decisions (Box 1).
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APPENDIX A: CHAPTER ONE SUPPLEMENTAL METHODS AND RESULTS

ROOT MORPHOLOGY WITH GIA ROOTS

Root morphologies were quantified using a skeletonization algorithm applied to images of roots
produced using an Epson perfection V600 scanner. After scanning roots at 1200 DPI, the images were
edited manually with Adobe Photoshop Elements 16 to remove image artifacts and then resized to 300
DPI. GiA Roots (Galkovskyi et al. 2012) software algorithm masked roots against the image background
using the adaptive image thresholding feature and a set of manually evaluated parameters (mean shift,
minimum component size, block size). After masking and identifying roots in the image, GiA Roots
trimmed imaged roots down to a diameter of a single pixel and measured root length by dividing total
skeleton pixels by a known conversion factor established by a ruler image.
UNIVARIATE DATA ANALYSIS

Prior to all data analysis, we assured that all univariate data met assumptions of normality;
transformations for normality included: predicted dry root biomass (square-root), root length density
(square-root), GiA Roots specific root length (log), soil moisture content (log), and soil ammonium and
nitrate (log +1), and root-bacterial evenness (squared). Soil fungal Shannon diversity and evenness
indices were not able to be normalized, so we used non-parametric Kruskal-Wallis and Wilcox-tests with
cultivar or ecotype as fixed effects (no block effect). However, although the data was non-normal, we
confirmed that fungal Shannon diversity had the same results with a the mixed-effects model with a
block factor included. Two extreme outliers that were three times the interquartile range were removed
from soil moisture data and these two datapoints were also removed from soil nitrate and ammonium
data, as soil moisture content data was used to normalize nitrogen values per unit of dry soil. Several
datapoints for microbial biomass carbon were negative, likely because carbon values were lower than
the instrument’s standard error. These negative values were omitted from the analysis.
MVABUND ANALYSIS OF TAXA GROUPING AND CORRELATIONS WITH ROOT TRAITS

The ‘manyglm’ function in the MVAbund R-package was used to identify bacterial and fungal
taxa that had significantly different relative abundance among cultivars, ecotypes, or plant
compartments (Wang et al. 2012). Cultivar, ecotype, or soil type (root or soil) were treated as fixed

III

effects in a “negative-binomial”-fit model. Block could not be included as a random factor due to
unequal replication across blocks (because of samples removed for poor-sequence coverage). Taxa that
significantly differed among groups (p < 0.05) were then analyzed with ANOVA tests (FDR adjustment to
correct for multiple testing, a = 0.05) with either cultivar or ecotype as a fixed effect. Soil moisture

content was included as a covariate to account for variation across sample dates. Relative abundance
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data was log-transformed when it did not meet assumptions of normality. Further, we used the
manyglm model to identify if the abundance of any fungal or bacterial groups (classes or orders) or
individual OTUs (OTUs present in at least 80% of the samples) correlated with root length or diameter.
Continuous root length and average root diameter data were fit with the negative-binomial manyglm
model. Significant relationships between root traits and microbial orders or OTUs found with MVAbund
were confirmed with a linear regression analysis.
NITROGEN-FIXATION CAPACITY ESTIMATES

The mean relative abundances of Burkholderiales and Rhizobiales were calculated using the
rarefied soil (12 cultivars) and combined root and soil (4 cultivars) bacterial datasets, then analyzed with
the non-parametric Kruskal-Wallis tests (R Core Team, 2018) with either cultivar, ecotype, or sample
type as main effects. We also approximated the N-fixation capacity of the soil (12 cultivars) and root (4
cultivars) bacterial communities using PICRUSt (Langille et al. 2013). PICRUSt infers function based on
phylogenetic relatedness to a database of reference genomes, so is only an approximation due to the
tenuous and highly variable relationship between 16S rRNA sequence and function. We first calculated
nearest sequenced taxon index (NSTI) scores, which provides a measure of phylogenetical distance
between each OTU and the referenced metagenome and describes the confidence in functional
assignment (Langille et al. 2013). We normalized all OTUs by their predicted 16S rRNA gene copy
number, which provides a pseudo-abundance estimate for each OTU and then used
‘metagenome_predictions’ to obtain OTU-specific gene counts for N-fixation using the following KEGG
pathway orthologs: K02588, K02586, K02591, KO0531. We calculated each samples’ predicted
proportion of N-fixation genes by dividing the number of OTUs with at least one predicted N-fixation
pathway for each sample by the normalized abundance of OTUS (e.g., the total 16S-gene normalized

OTU counts).
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Figure 1.51. NMDS ordination of A) soil bacterial community (Weighted Unifrac, stress = 0.18) and B) soil
fungal community (Bray-Curtis, stress = 0.26). Each point is a replicate soil core; final replicate number
for each cultivar after removing poor sequence coverage samples in Table S2. Warm colors and triangles
represent lowland ecotypes (n = 4), cool colors and circles represent upland ecotypes (n = 8). ‘+’ denotes
subset of cultivars analyzed for root-associated bacterial communities.
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Table 1.S1. Bioinformatics filtering details for bacterial (16S) and fungal (ITS) samples.

Bacterial Bacterial Bacterial soil Fungal
root and soil soil (PICRUSt analyses)  Soail
Greengenes

Reference Database Silva (v.123) Silva (v.123) (v.13.8) Unite (v.7.2)
Total Read # 3,323,839 2,294,871 2,031,361 2,202,804
Total OTU # (97%
similarity threshold) 20,972 20,278 11,931 4,736
% non-bacterial or fungal
reads 19.07% 0.79% 0.72% 0%
# samples after removing 182 (removed 10 138 (removed 5 138 (removed 6 135 (removed
poor-sequence coverage  samples) samples) samples) 9 samples)
Post-filtering Read # 2,680,275 2,267,356 2,009,262 2,196,278
Post-filtering OTU# 18,535 17,878 8,878 4,639
Rarefaction Read # cut-off 2,026 4,694 4,117 4,153
Post-Rarefaction Read # 368,732 647,772 568,146 560,655
Post-Rarefaction OTU# 12,197 14,590 7,905 4,064
Protest results
(comparing rarefaction
and Deseq2 VST p <0.001, p <0.001, p <0.001,
normalization) r=041 r=091 NA r=0.82
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Table 1.52. Fungal and bacterial sequencing final replicate number (out of 12 replicates; 4 blocks with
3 replicate soil cores) after removing samples with poor sequence coverage and samples with
extreme outliers for soil moisture content covariate (n = 1 from EG1101 and n = 1 from Blackwell).
‘NA’ denotes not applicable; only 4 cultivars analyzed for root bacterial community.

s 8§ 8 = ¢ £ § g . & B
E = 2 £ 3 ¢¥ 8 & 8 3 3T =
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Soil

Bacterial 12 12 12 12 12 10 11 11 12 10 12 10

Community

Combined

Soil, Root

bacterial 12,9 NA NA ﬁ' NA 18' NA NA NA NA 1;' NA

community

Fungal

Bacterial 11 12 12 12 11 9 10 10 12 11 12 11

Community
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Table 1.53. Percent variability (PERMANOVA R2) in microbial community composition explained by
cultivar or ecotype. Cultivar or ecotype treated as main effects with sampling date as a covariate
and a nested block term. Significance values: ns p > 0.05, *p <0.05, ** p < 0.01, *** p <0.001. ()’
signifies nested factors and ‘*’ signifies the interaction between factors.

Soil fungi Soil bacteria
Factor (12 cultivars) (12 cultivars)
Cultivar Effect %R? (p) %R? (p)
Cultivar ns 13.03**
Block (Cultivar) 34.23%** 33.77%**
Sampling Date 1.56%* 9.13***
Ecotype Effect
Ecotype ns ns
Plot (Ecotype) 43 31*** 45 79***
Sampling Date 1. 56%% g.13%%*

Table 1.54. Percent variability (PERMANOVA R2) in bacterial community composition explained by
habitat (soil or root) and cultivar. Cultivar and habitat treated as main effects with sampling date as
a covariate and a nested block term. Cultivar-effect for a subset of soil and root communities also
presented; NA indicates not applicable for the model. Significance values: ns p > 0.05, *p < 0.05, **
p <0.01, *** p <0.001. ()’ signifies nested factors and ‘*’ signifies the interaction between factors.

Eactor Soil & root bacteria Soil bacteria Root bacteria
(4 cultivars) (4 cultivars) (4 cultivars)

Habitat Effect %R? (p) %R?(p) %R?(p)
Cultivar ns ns ns

Block (Cultivar) 6.42 * 32.9 *¥** ns

Habitat 58.72 *** NA NA
Cultivar*habitat ns NA NA
Habitat*Block(Cultivar) 6.71 * NA NA

Sampling Date 1.67 ** 10.34 *** ns
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Table 1.S5. Root trait differences among switchgrass cultivars and ecotypes. ANOVA results with fixed
cultivar or ecotype term, nested block term, and soil moisture content as a covariate when it
improved model fit (based on Akaike information criteria). F-statistic and significance values: ns p >
0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ‘NA’ denotes not-applicable for the model.

Average Root Volume- Mass-
Root Network Root weighted weighted
Dry Root Diameter Volume Network SRL SRL
Mass (g) (cm) (cm3) Length (cm) (cm/cm3) (cm/g)
Cultivar Effect
Cultivar 1.61 (ns) 4.43*** 1.99 (ns) 1.21 (ns) 3.61%* 1.62 (ns)
Soil Moisture NA NA NA 0.73 (ns) NA NA
Ecotype Effect
Ecotype 2.47 (ns) 0.001(ns) 1.49 (ns) 3.32 (ns) 0.288 (ns) 2.43 (ns)
Soil Moisture NA NA NA 0.99 (ns) NA NA

Table 1.S6. Bacterial alpha diversity among root and soil habitats. ANOVA results with habitat and
cultivar (n = 4) as fixed terms, a nested block term, and soil moisture content as a covariate when it
improved model fit (lower Akaike information evaluation). Wilcox test with compartment as a fixed
effect was used for non-parametric Pielou’s evenness. F-statistic and significance values: ns p > 0.05,
*p <0.05, **p <0.01, ***p < 0.001, ‘NA’ denotes not-applicable for the model.

Richness Shannon Diversity Pileou’s Evenness
Habitat 3509.8 *** 1178.1 *** W = 1 *%%*
Cultivar 0.16 (ns) 1.73 (ns) NA
Habitat * Variety 1.06 (ns) 1.74 (ns) NA
Soil Moisture 2.15 (ns) NA NA
Habitat Means (Soil, Root) 889, 171 38.1,14.2 0.91,0.73
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Table 1.57. Alpha diversity statistics for soil bacterial and fungal communities. ANOVA results with
either fixed cultivar or ecotype term, nested block term, and soil moisture content as a covariate when
it improved model fit (lower Akaike information evaluation). Fungal Shannon diversity was analyzed
with non-parametric Kruskal-Wallis and Wilcox Tests. F-statistic and significance values: ns p > 0.05,

*p <0.05, **p <0.01, ***p <0.001, ‘NA’ denotes not-applicable for the model.

Bacterial Soil Community Fungal soil community
Community (n =12 cultivars) (n =12 cultivars)
Diversity Metric Shannon Pielou’s Shannon Pielou’s
Richness Diversity Evenness Richness Diversity Evenness
Cultivar Effect
Cultivar 2.17* 4 4%** 4.71*** 0.63(ns) X2=7.22(ns) X2=28.98(ns)
Soil Moisture 0.65 (ns) NA NA 1.40 (ns) NA NA
Ecotype Effect
Ecotype 2.18* 6.15* 5.41%* 0.04 (ns) W =2177 (ns) W =2109 (ns)
Soil Moisture 0.65 (ns) NA NA 0.10(ns) NA NA
Ecotype Means
(Upland,
Lowland) 1460,1416 6.49,6.41 0.89,0.88 6.70,9.26 4.47,4.42 0.76,0.75

Table 1.58. Alpha diversity statistics without Dacotah cultivar for soil bacterial community (n = 11).
ANOVA results with either fixed cultivar or ecotype term, nested block term, and soil moisture
content as a covariate when it improved model fit (lower Akaike information evaluation). Fungal
Shannon diversity was analyzed with non-parametric Kruskal-Wallis and Wilcox Tests. F-statistic and
significance values: ns p > 0.05 *p < 0.05, **p< 0.01, ***p< 0.001, ‘NA’ denotes not-applicable for the
model.

Diversity Metric Richness Shannon Diversity Pielou’s Evenness
Cultivar Effect

Cultivar 2.08 (ns) 2.14 (ns) 2.06 (ns)

Soil moisture 0.27 (ns) NA NA

Ecotype Effect

Ecotype 2.47 (ns) 3.72 (ns) 2.96 (ns)

Soil moisture 418 * NA NA

Ecotype means (Upland,

Lowland) 1448,1416 6.47,6.41 0.89,0.88
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Table 1.59. Pairwise p-values (FDR adjusted) for soil bacterial community composition among
lowland (L) and upland (U) cultivars. Model included cultivar as a fixed effect with a nested block
term and soil moisture content as a covariate. Shading represents p-value < 0.1 Final column

denotes how many of the 11 comparisons for each cultivar were significant at p < 0.10.

Alamo (L)
EG1101 (L)

EG1102 (L)
Kanlow (L)
Blackwell
(V)
Cave-in-
Rock (U)
Dacotah
(V)
EG2101 (U)
NE28

(V)
Shelter (U)
Southlow
(V)
Trailblazer
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0.61 | 0.09 6
0.92 | 0.09 | 0.32 4
0.09 | 0.13 | 0.09 | 0.17 3
0.09 | 0.25 | 0.09 | 0.09 | 0.22 4
0.09 | 0.15 | 0.09 | 0.09 | 0.82 | 0.19 4
0.09 | 0.18 | 0.09 | 0.13 | 0.19 | 0.63 | 0.19 3
0.92 | 0.09 | 0.57 | 0.79 | 0.09 | 0.09 | 0.09 | 0.09 6
0.09 | 093 | 0.15 | 0.09 | 0.15 | 0.44 | 0.18 | 0.61 | 0.09 3
0.16 | 0.57 | 0.09 | 0.17 | 0.21 | 0.9 0.21 | 0.92 | 0.13 | 0.64 1
0.09 | 0.52 | 0.15 | 0.13 | 0.19 | 0.57 | 0.19 | 0.57 | 0.12 | 0.64 | 0.75 1

Table 1.510. Percent variability (PERMANOVA R2) for cultivar effect on soil bacterial and fungal
communities within sampling dates. Significance values: ns p > 0.05, *p < 0.05, ** p < 0.01, *** p<
0.001; R? = Factor SS/Total SS.

Sampling Date June 28" July 13t July 20t July 27t
Soil bacterial community %R?(p) %R?(p) %R? (p) %R?(p)
Cultivar ns ns 0.16** ns
Block(Cultivar) 4gx** 36** 33wk 4 E**
Soil fungal community R2(p) R2(p) R2(p) R2(p)
Cultivar ns ns ns ns
Block(Cultivar) 37*** 3p*** 33** 3p***

# cultivars sampled 2 3 4 3
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APPENDIX B: CHAPTER TWO SUPPLEMENTAL METHODS AND RESULTS
SEEDLING PREPARATION

We sterilized all species’ seeds by submerging them for 15 minutes in 5% NaHCI, followed by
three five-minute rinses with sterile water. To improve germination, P.virgatum seeds were imbibed in
for 5 days at 4 °C prior to sterilization. The sterilized seeds were planted into germination flats that
contained a sterile base soil (autoclaved sand, vermiculite and sphagnum peatmoss) with a light layer of
field soil inocula to provide the plants with an initial microbial community. The soil inocula was the same
used in the greenhouse experiment (described in main text). The seedlings grew for five weeks and were
fertilized with half-strength Hoaglands’ micronutrient solution throughout this period (total equivalent
of 79 kg N ha* flat?).

MICROBIAL BIOMASS AND NITROGEN ANALYSES

We used unfumigated potassium sulfate extractions to determine the total dissolved organic
carbon (DOC) and total extractable soil nitrogen (TN) in each pot (Shimadzu TOC-VCPH). Microbial
biomass carbon (MBC) and microbial biomass nitrogen (MBN) were calculated by subtracting total C or
N of the unfumigated samples from the fumigated sample and dividing the difference by previously
calibrated extraction efficiencies (Kec: 0.45; Ken: 0.54) (Joergensen, 1996; Joergensen and Mueller, 1996).
Unfumigated potassium sulfate extracts were also used to determine the amount of soil inorganic
nitrate (NOs’) with a colorimetric 96-well plate assay using nitrate reductase (adapted from (Sinsabaugh
et al., 2000). Absorbance values were read on a BioTek plate reader and negative values for DOC, TN,
NOs’, NHs* were converted to zeros for all statistical analyses.

ROOT EXUDATE ANALYSIS: LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS)

For LC-MS, each exudate sample (100 uL of extract) was added into a high-resolution LTQ
Orbitrap Velos mass spectrometer (HRMS) with a heated electrospray ionization (HESI) source (Thermo
Fisher Scientific, Waltham, Massachusetts, USA) coupled to a Vanquish ultra-high pressure liquid
chromatography (UHPLC) system (Thermo Fisher Scientific). Chromatography was performed on a C18
Hypersil gold reversed-phase column (150 x 2.1 mm, 3 particle size; Thermo Scientific) operating at
30 °C. Mobile phases consisted in 0.1% formic acid in water (A) and acetonitrile/0.1% formic acid in
water (90:10; B), with a consistent ejection volume (5 uL) and flow rate (0.3 mL minute™). For each
sample, the elution gradient initiated at 90% A (10% B) gradient ramped to 10% A (90% B) after five
minutes, and remained for the 15 minutes; these conditions were maintained for two minutes before
the initial proportions (90% A; 10% B) were linearly recovered. The column was washed and stabilized

for 11 minutes at the initial conditions before the injection of the next sample. The HRMS operated in
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Fourier Transform Mass Spectrometry (FTMS) tandem MS, obtaining MS1 and MS2, and full-scan mode
at a resolution of 60,000 acquiring masses between 50-1000 m/z. Experimental blanks (methanol:water,
80:20) were run every ~10 samples for noise level determination.

The chromatograms (HRMS RAW files) were baseline corrected, deconvoluted, and aligned in MZmine
2.37 (MZ tolerance of 6ppm & RT error of 0.3 min) (Pluskal et al., 2010), followed by a second-level of
metabolic feature annotation (Sumner et al., 2007) using the exact mass (MS1) and retention time (RT)
of over 600 standard compounds included in EMSL’s LC-MS library.

ROOT EXUDATE ANALYSIS: GAS CHROMATOGRAPHY MASS SPECTROMETRY (GC-MS)

For GC-MS analyses, each exudate sample (200 uL of extract) was dried and posteriorly
derivatized. The dried extracted metabolites were first derivatized to trimethylsilyl ester form (Kim et
al., 2005) by adding 20 pl of methoxyamine in pyridine solution (30 mg/mL) to each sample and
incubating them in a Thermomixer at 1,200 rpm for 90 min at 37 °C. After the first incubation, each vial
received 80 pl of MSTFA (N-Methyl-N-(trimethylsilyl) trifluoroacetamide) and incubated at 1,200 rpm for
30 min at 37 °C to derivatize amine, carboxyl and hydroxyl groups. Finally, vials were vortexed for 10
seconds and centrifuged for 1 min at 8,000 rpm. Supernatants were thus transferred into a new set of
glass vials.

We analyzed the derivatized samples with an Agilent GC 7890A coupled to a MSD 5975C mass
spectrometer (Agilent Technologies, Santa Clara, CA) and a HP-5MS column (30 m x 0.25 mm x 0.25 um;
Agilent Technologies). We maintained a consistent injection volume (10 pL) and the injection port
temperature was maintained at 250 °C. The column oven was held for one minute at 60 °C before
increasing the temperature to 325 °C at a rate of 10 °C/min and holding for an additional ten minutes. A
mixture of fatty acid methyl esters (FAMEs; C8-C28) were analyzed at the beginning of the sequence to
calculate the retention indices of the detected compounds.

The GC-MS chromatograms (RAW files) were deconvoluted, aligned and metabolites were identified
with Metabolite Detector 2.5 (Hiller et al., 2009). Initial metabolite identification was performed by
matching MS spectra and RT, calculated through the analyzed FAMEs mixture, to an updated in-house
version of FiehnlLib (Kind et al., 2009) which contains over 850 metabolites with validated spectra and
Rls. Assigned metabolites were subsequently validated by matching fragmented spectra from the

NIST14 GC-MS library.
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ROOT EXUDATE ANALYSIS: DATA PROCESSING
All putative compound assignments were filtered following a series of conditions based on differences
between the matched metabolite and the RT and m/z values of real standards. If features met the
following criteria, they were identified as ‘unknown’:

e Features assigned with m/z error >= 6 ppm after mass calibration

e Features eluting between 2 and 10 minutes with RT error > 0.3 min respect to the elution time

of standards

e Features eluting before 2 minutes with RT error > 0.25 minutes

e Late eluting features (> 10 min) with RT error between 0.3 - 0.5 min and m/z error >= 4
We combined the LC-MS and GC-MS databases by checking for duplicate feature name assignments
between the two databases. If features were identified to have the same feature name, then we
summed the peak areas from either dataset.

With the merged LC- and GC-MS dataset, we filtered out biologically relevant zeros from
instrument detection issues by determining the proportion of samples in each treatment (n =5 per
treatment) that detected each metabolic feature. If 60% of the samples (3/5) detected the feature, then
the samples with zero were given the average intensity of the other samples in the same treatment.
However, if more than 60% of the samples were zeros, then the other samples also were made to zero.
Because the initial exudate volume varied among samples and the amount of total carbon in the
exudates did not significantly differ among treatments (total organic carbon: F115=1.12, p = 0.379) we
normalized the remaining metabolic features by the relative abundance of metabolic features within
each sample (peak intensity of each compound divided by the total ion chromatogram intensity).

DNA SEQUENCING AND BIOINFORMATICS

All DNA extraction kit-suggested protocols were followed, except for an added 10-minute cell
lysis step at 65 °C before the bead-beating step. The purity and quantity of the extracted DNA was
examined using nanodrop (Nanodrop 2000) and PicoGreen Fluoremetry (Quant-iT PicoGreen),
respectively. We targeted the bacterial V4 region of the 16S rRNA gene (primers 515f/806r) and MiSeq
Illumina (V2) paired-end sequencing was conducted by the Research Technology Support Facility
Genomics Core at Michigan State University, East Lansing, Michigan. Briefly, the 16S reads were
assembled, and quality filtered (discarded reads with quality filter maxEE < 1.0 and base pairs < 250)
using Usearch (version 10.0.240) (Edgar, 2010). Sequences were dereplicated, clustered, chimera
checked, filtered de novo, and clustered into unique operational taxonomic unites (OTUs) based on 97%

identity using the default settings with Usearch UPARSE function (Edgar, 2013). Representative
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sequences were aligned and classified using the Silva (version 123) bacterial database at 80% confidence
(Quast et al., 2012). We removed non-bacterial sequences (e.g. archaea, mitochondria, chloroplasts,
consisting of 2.3% of sequences) and singleton OTUs, resulting in 11,690 bacterial OTUs (2,148,296
sequences).

We rarefied all samples to 16,224 reads (losing 495 OTUS during rarefaction) to control for
community differences due to variation in sampling effort. We confirmed that our results were robust to
normalization strategies by comparing multiple normalization methods (rarefied dataset,
untransformed, compositional data, and data normalizehortd with Deseq2’s Variance Stabilizing
Transformation) with Protest (p <0.001, r > 0.97). We removed any taxa that were not present at least
10 times across either the greenhouse or incubation datasets, which resulted in 6,221 taxa for the
greenhouse dataset (5,713 in the focal treatments alone) and 4,234 taxa in the soil incubation dataset.
DATA ANALYSIS

For all statistical models, no blocking structure was included, as there were only five replicates
and no blocking design in the treatments. Neighbor-induced variation in the bacterial communities and
root exudates were determined using PERMANOVAs with the Vegan R package Adonis2 function. We
controlled for the effect of neighbor plant competition by including focal plant biomass as a covariate in
the model. The term ‘by’ was set to ‘margin’ in the model so that the order of the fixed variable and
covariate did not affect the results.

Indicator genera were determined for both the focal plant treatments and soil incubation
treatments by merging samples by Genus with the ‘tax_glom’ function in the Phyloseq R package
followed by indicator species analyses with the ‘multiplatt’ function in the indicspecies R package, and
an additional FDR p-adjustment using the ‘p.adjust’ function (Caceres and Legendre, 2009). For the soil
incubations, we used differential abundance analysis with the ANCOM R package to determine which
bacterial taxa were enriched in the high malic acid soil treatment, and then evaluated if the abundance
of these genera also differed for the greenhouse experiment.

To further partition variation in the focal plant root exudates, we used sparse Partial Least
Squares Discriminant Analysis (sPLS-DA) to determine which of the identified metabolites contributed to
the greatest variation in treatments using the MixOmics R package (Gonzalez-Dugo et al., 2012; Rohart
et al., 2017). The sPLS-DA models were tuned and optimized using the ‘tune.splsda’ and ‘perf’ functions:
model selection determined that four components with 50, 40, 20, and 40 features for each
compartment were needed. The maximum distance error rate for four components was 0.12, and the

error rates were highest for the no neighbor control and A. gerardii neighbor treatment.
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Distance-based Redundancy Analysis (dbRDA) was used to evaluate how the top ten most
abundant identified exudates, as well as the focal plant soil and plant characteristics, influenced
bacterial community structure. Before the analysis, the metadata were scaled by their Z-score and we
identified the most parsimonious model with the ‘ordistep’ function (forward selection). Only two
metabolites, malic acid and stearic acid, and one plant characteristic, focal plant shoot CN, were
identified as significant drivers of the bacterial community.

We looked for correlations between bacterial genera and the identified metabolites using the
CCREPE R package. This new package improves upon traditional correlation techniques, such as Pearson
and Spearman, by providing permutationally-based p-values and g-values (equivalent to FDR-adjusted p-
values), and a novel similarity measurement of co-occurrence (nc.score) that is more suitable for
compositional data. The nc.score is analogous to values typical of standard correlation measurements;

we defined significant and strong correlations as those with q < 0.05 and nc > 0.40.
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Table 2.51. Effect of neighbor treatment on focal plant bacterial community and root exudates, as
well as differences among monoculture treatments in greenhouse experiment. ANOVA and
PERMANOVA results show main effect of neighbor treatment with focal plant aboveground biomass
included as a covariate. PERMANOVAs conducted on bacterial community structure (Weighted
Unifrac) and root exudate profiles (Euclidean); significant p-values bolded (p < 0.05).

F p
L Treatment 571 0.003
Shannon Diversity Focal Aboveground biomass 0.32 0.578
L Treatment 0.59 0.675
Pileau’s Evenness Focal Aboveground biomass 0.82 0.377
Treatment 9.72 <0.001
Chaol .
Focal Aboveground biomass 3.58 0.074
Bacterial community structure ~ Treatment 1.20 0.155
(all taxa) Focal Aboveground biomass 0.72 0.802
Bacterial community structure ~ Treatment 1.08 0.32
(dominant taxa) Focal Aboveground biomass 0.63 0.867
Bacterial community structure ~ Treatment 1.25 0.041; R*=0.20
(non-dominant taxa) Focal Aboveground biomass 1.08 0.315
Treatment 4.32 <0.001, R?=0.38
Root Exudates .
Focal Aboveground biomass 3.84 0.006, R = 0.08

Table 2.52. PERMANOVA post-hoc pairwise p-values (FDR adjusted) for focal plant non-dominant
bacterial community (lower 90% abundant) and all root exudates. ns denotes p-value > 0.10.

Non-dominant Bacterial Community

No neighbor A. gerardii K. macrantha R. hirta
A. gerardii ns - - -
K. macrantha ns ns - -
R. hirta 0.075 0.098 0.09 -
P. virgatum ns ns 0.42 0.09
Root Exudates

No neighbor A. gerardii K. macrantha R. hirta
A. gerardii 0.076 - - -
K. macrantha ns 0.036 - -
R. hirta 0.026 0.026 0.026 -
P. virgatum 0.030 0.153 0.026 0.026
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Table 2.53: Focal plant indicator bacterial genera by neighbor treatment. ‘A’ indicates the probability
that the sample belongs to the identified treatment given the species in the sample (specificity); ‘B’ is
the probability of finding the species in the sample belonging to that treatment (sensitivity). p-values
are adjusted for false-discovery-rate. OTUs organized by stat value; a higher stat value means that the
genera is more highly associated or enriched in that treatment.

Treatment OoTuU Taxonomy A B stat p

Bacteria; Planctomycetes;
OTU3645 Phycisphaerae; Phycisphaerales; 0.667 1 0.816 0.027
Phycisphaeraceae; AKYG587
Bacteria; Chloroflexi; KD4-96;
OTU1289  bacterium_Ellin6529; unclassified; 0.889 0.6 0.73 0.039
unclassified
Bacteria; Planctomycetes;
OTU6331  Phycisphaerae; Phycisphaerales; 0.571 0.8 0.676 0.027
unclassified; unclassified
No neighbor Bacteria; Proteobacteria;
OTU1062  Alphaproteobacteria; Rhizobiales; 0.384 1 0.619 0.035
Hyphomicrobiaceae; Rhodomicrobium
Bacteria; Actinobacteria;
0oTuU188 Actinobacteria; Streptomycetales; 0374 1 0.611 0.035
Streptomycetaceae; Streptomyces
Bacteria; Proteobacteria;
Alphaproteobacteria;
Sphingomonadales;
Sphingomonadaceae; Sphingobium
Bacteria; Proteobacteria;
OTU7558 Gammaproteobacteria; Legionellales;  0.415 1 0.644 0.046
unclassified; unclassified
Bacteria; Acidobacteria;
OTU7030 Acidobacteria; Subgroup_3; 0364 1 0.603 0.045
unclassified; unclassified
Bacteria; Proteobacteria;
Deltaproteobacteria;
Bdellovibrionales; Bdellovibrionaceae;
OM27_clade
Bacteria; Proteobacteria;
Gammaproteobacteria;
Cellvibrionales; Cellvibrionaceae;
Cellvibrio
K. Bacteria; Proteobacteria;
macrantha OTU1936  Betaproteobacteria; Burkholderiales; 0.42 1 0.648 0.035
Burkholderiaceae; Chitinimonas
Bacteria; Proteobacteria;
0TU432 Alphaproteobacteria; Rhizobiales; 0395 1 0.628 0.027
Rhizobiaceae; Rhizobium

0OTU266 0.298 1 0.545 0.035

A. gerardii

0OTU2136 0362 1 0.601 0.005

0TuU434 049 1 0.704 0.005
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Table 2.53 (cont’d)

K.
macrantha

R. hirta

OTU146

OTU163

OTU180

0TU183

OTU1799
6

0TU1973

0OTU425

OTU716

0TU2325
4

OTU1l67

0TU207

OTU1l62

OTU3016

0OTU2908
2

Bacteria; Proteobacteria;
Alphaproteobacteria; Rhizobiales;
Hyphomicrobiaceae; Devosia
Bacteria; Proteobacteria;
Betaproteobacteria; Burkholderiales;
Oxalobacteraceae; unclassified
Bacteria; Proteobacteria;
Betaproteobacteria; Burkholderiales;
Comamonadaceae; unclassified
Bacteria; Actinobacteria;
Actinobacteria; Frankiales;
unclassified; unclassified

Bacteria; Proteobacteria;
Alphaproteobacteria;
Sphingomonadales;
Sphingomonadaceae;
Sphingomicrobium

Bacteria; Proteobacteria;
Alphaproteobacteria;
Sphingomonadales;
Sphingomonadaceae; Zymomonas
Bacteria; Proteobacteria;
Betaproteobacteria; Methylophilales;
Methylophilaceae; Methylotenera
Bacteria; Proteobacteria;
Alphaproteobacteria; Caulobacterales;
Caulobacteraceae; Caulobacter
Bacteria; Proteobacteria;
Betaproteobacteria; Methylophilales;
Methylophilaceae; Methylophilus
Bacteria; Bacteroidetes;
Flavobacteriia; Flavobacteriales;
Flavobacteriaceae; Flavobacterium
Bacteria; Actinobacteria;
Actinobacteria; Corynebacteriales;
Nocardiaceae; Williamsia

Bacteria; Actinobacteria;
Actinobacteria; Micrococcales;
Micrococcaceae; Kocuria

Bacteria; Proteobacteria;
Gammaproteobacteria;
Pseudomonadales; Moraxellaceae;
unclassified

Bacteria; Proteobacteria;
Alphaproteobacteria; Rhodospirillales;
Acetobacteraceae; Acidiphilium

138

0.376

0.351

0.297

0.605

0.947

0.552

0.543

0.534

0.525

0.632

0.493

0.479

0.462

0.6

0.6

0.8

0.613

0.593

0.545

0.778

0.775

0.754

0.743

0.737

0.731

0.724

0.711

0.702

0.692

0.679

0.035

0.008

0.039

0.008

0.027

0.017

0.012

0.039

0.005

0.039

0.027

0.048

0.013

0.045



Table 2.53 (cont’d)

R. hirta

P. virgatum

0TU1432

OTU3327
9

0OTU1029

0TU629

0TU1819

oTu47

0OTU4888

0OTU1821

0OTU4965

OTU1561
2

OTUl161

OTU1251

Bacteria; Proteobacteria;
Alphaproteobacteria; Rhodospirillales;
Rhodospirillaceae; Defluviicoccus
Bacteria; Proteobacteria;
Betaproteobacteria; Methylophilales;
Methylophilaceae; unclassified
Bacteria; Planctomycetes;
Phycisphaerae; WD2101_soil_group;
unclassified; unclassified

Bacteria; Planctomycetes;
Planctomycetacia; Planctomycetales;
Planctomycetaceae; Pirellula
Bacteria; Planctomycetes;
Planctomycetacia; Planctomycetales;
Planctomycetaceae; Gemmata
Bacteria; Planctomycetes;
Planctomycetacia; Planctomycetales;
Planctomycetaceae; Planctomyces
Bacteria; Proteobacteria;
Deltaproteobacteria;
Desulfuromonadales; GR-WP33-58;
unclassified

Bacteria; Cyanobacteria;
Cyanobacteria; unclassified;
unclassified; unclassified

Bacteria; Armatimonadetes;
Armatimonadia; Armatimonadales;
unclassified; unclassified

Bacteria; Actinobacteria;
Actinobacteria; Kineosporiales;
Kineosporiaceae; unclassified
Bacteria; Actinobacteria;
Actinobacteria; Micromonosporales;
Micromonosporaceae; unclassified
Bacteria; Proteobacteria;
Gammaproteobacteria; Legionellales;
Coxiellaceae; Aquicella

0.448

0.425

0.303

0.292

0.286

0.259

0.625

0.616

0.539

0.448

0.336

0.286

0.669

0.652

0.55

0.54

0.535

0.508

0.791

0.785

0.734

0.67

0.58

0.534

0.039

0.039

0.008

0.039

0.025

0.017

0.045

0.017

0.008

0.027

0.04

0.046
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Table 2.54. Distance-based Redundancy Analysis (Weighted Unifrac) results for the dominant taxa
(top 10% most abundant OTUs) and non-dominant-taxa (lower 90% of OTUs). Significant p-values are
bolded (p < 0.05).

Dominant bacterial taxa

Non-dominant bacterial taxa

P R p R?
Malic Acid 0.026 0.087 0.016 0.072
Mean Shoot CN 0.029 0.075 0.682 0.036
Stearic Acid 0.116 0.058 0.098 0.057

Overall model significance

Fs20=1.81, p =0.005

F320=1.32, p=0.041

Table 2.S5. Significant correlations between exudates and bacterial genera using the nc.score of co-
occurrence. Q-value is equivalent to FDR corrected p-values.

OTU Metabolite nc q Phylum Class Order Family Genus

. CPla-
oTu 4-Pyridoxate 0.54 0.047 Planctomyc  Phycisphae 3_termite_  unclassified unclassified
1850 etes rae

group
OoTuU Fumaric 054 0012 Proteobact Betaproteo Methylophi Methylophi Methylophi
23254  Acid ' ’ eria bacteria lales laceae lus
OoTuU Malic Acid 050 0.016 Prpteobact Betapr.oteo Methylophi  Methylophi  Methylophi
23254 eria bacteria lales laceae lus
oTuU Pyruvic 058  0.001 Proteobact Betaproteo Methylophi Methylophi Methylophi
23254  Aldehyde ' ) eria bacteria lales laceae lus
oTuU Clt.ramallc 057  0.022 Pr.oteobact Alphapr'ote Rickettsiale SM2D12 unclassified
2415 Acid eria obacteria s
OTUGO  Inosine 054  0.013 Pr.oteobact Betapr'oteo Nitrosomon  Nitrosomon unclassified
eria bacteria adales adaceae

140



Table 2.S6. Indicator bacterial genera by soil incubation treatment. A indicates the probability that the

sample belongs to the identified treatment given the species in the sample (specificity); B is the

probability of finding the species in the sample belonging to that treatment (sensitivity). p-values are
adjusted for false-discovery-rate. OTUs organized by stat value; a higher stat value means that the
genera is more highly associated or enriched in that treatment.

Treatment OTU Taxonomy A B stat p

OTU3377 Bacteria; Proteobacteria; Deltaproteobacteria; 0.92 1 0.957 0.028
Bdellovibrionales; Bacteriovoracaceae;
Peredibacter

OTU1369 Bacteria; Proteobacteria; Gammaproteobacteria; 0.86 1 0.926 0.028
Legionellales; Legionellaceae; unclassified

OTU756 Bacteria; Planctomycetes; Phycisphaerae; 0.83 1 0.913 0.039
WD2101_soil_group;
Planctomycetales_bacterium_Ellin7244;
unclassified

OTU1781 Bacteria; Proteobacteria; Deltaproteobacteria; 0.83 1 0.913 0.028
Myxococcales; Sandaracinaceae; Sandaracinus

OTU3188 Bacteria; Proteobacteria; Gammaproteobacteria; 0.82 1 0.905 0.049
Chromatiales; Ectothiorhodospiraceae;
Acidiferrobacter

OTU2054 Bacteria; Proteobacteria; Alphaproteobacteria; 0.81 1 0.901 0.05
Rhizobiales; Beijerinckiaceae; unclassified

OTU2100 Bacteria; Proteobacteria; Alphaproteobacteria; 0.79 1 0.89 0.028

;‘Z\Ilé Malic Rhodobacterales; Rhodobacteraceae;

Rhodobacter

OTU2931 Bacteria; Acidobacteria; Acidobacteria; 0.79 1 0.889 0.042
Subgroup_4; unclassified; unclassified

OTU1062 Bacteria; Proteobacteria; Alphaproteobacteria; 0.79 1 0.889 0.028
Rhizobiales; Hyphomicrobiaceae;
Rhodomicrobium

OTU1190 Bacteria; Proteobacteria; Deltaproteobacteria; 0.77 1 0.875 0.049
Myxococcales; Polyangiaceae; Polyangium

0OTU609 Bacteria; Chloroflexi; Ktedonobacteria; JG30-KF- 0.94 0 0.869 0.045
AS9; unclassified; unclassified

8
OTU1694 Bacteria; Proteobacteria; Deltaproteobacteria; 0.75 1 0.866 0.05

Myxococcales; Polyangiaceae; unclassified
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Table 2.56 (cont’d)

Treatment OTU Taxonomy A stat p

OTU2908 Bacteria; Proteobacteria; Alphaproteobacteria; 0.75 0.866 0.049

2 Rhodospirillales; Acetobacteraceae; Acidiphilium

OTU3041 Bacteria; Proteobacteria; Alphaproteobacteria; 0.74 0.859 0.028

4 Rhizobiales; MNG7; unclassified

0oTuU103 Bacteria; Proteobacteria; Deltaproteobacteria; 0.74 0.858 0.028
Myxococcales; unclassified; unclassified

OTU1357 Bacteria; Proteobacteria; Alphaproteobacteria; 0.73 0.857 0.042
Rickettsiales; SM2D12; unclassified

OTU5959 Bacteria; Proteobacteria; Gammaproteobacteria; 0.73 0.855 0.045
NKBS5; unclassified; unclassified

OTUS5275 Bacteria; Bacteroidetes; Sphingobacteriia; 0.9 0.851 0.042
unclassified; unclassified; unclassified

OTU1364 Bacteria; Acidobacteria; Holophagae; 0.72 0.849 0.042

Low Malic
unclassified; unclassified; unclassified
Acid

OTU3731 Bacteria; Proteobacteria; Alphaproteobacteria; 0.71 0.84 0.028
Rhizobiales; Hyphomicrobiaceae; Devosia

0oTuU412 Bacteria; Proteobacteria; Alphaproteobacteria; 0.68 0.828 0.042
Rhizobiales; JG34-KF-361; unclassified

OTU1368 Bacteria; Proteobacteria; Deltaproteobacteria; 0.69 0.828 0.028
Myxococcales; Polyangiaceae; Sorangium

OTU6765 Bacteria; Proteobacteria; Deltaproteobacteria; 0.68 0.822 0.045
Myxococcales; KD3-10; unclassified

OTU9%6 Bacteria; Proteobacteria; Alphaproteobacteria; 0.68 0.822 0.028
Rhizobiales; KF-JG30-B3; unclassified

0OTU80 Bacteria; Acidobacteria; Holophagae; 0.66 0.815 0.028
Subgroup_10; ABS-19; unclassified

OTuU310 Bacteria; Proteobacteria; Alphaproteobacteria; 0.66 0.813 0.028

Rhodospirillales; Rhodospirillaceae; Dongia
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Table 2.56 (cont’d)

Treatment

OoTU

Taxonomy

stat

p

Low Malic

Acid

0TU92

0OTU3131

0OTU730

0OTU723

OTU195

0OTU193

OTU1311

OTU113

0OTU325

OTU8999

OTU19

Bacteria; Proteobacteria; Deltaproteobacteria;
Myxococcales; Haliangiaceae; Haliangium
Bacteria; Proteobacteria; Deltaproteobacteria;
Bdellovibrionales; Bdellovibrionaceae;
Bdellovibrio

Bacteria; Planctomycetes; OM190; unclassified;
unclassified; unclassified

Bacteria; Planctomycetes; Pla4_lineage;
unclassified; unclassified; unclassified
Bacteria; Acidobacteria; Holophagae;
Subgroup_7; unclassified; unclassified
Bacteria; Acidobacteria; Acidobacteria;
Subgroup_3; Unknown_Family;
Candidatus_Solibacter

Bacteria; Acidobacteria; Acidobacteria;
Acidobacteriales;
Acidobacteriaceae_[Subgroup_1];
Candidatus_Koribacter

Bacteria; Acidobacteria; Subgroup_22;
unclassified; unclassified; unclassified
Bacteria; Latescibacteria; unclassified;
unclassified; unclassified; unclassified
Bacteria; Acidobacteria; Acidobacteria;
Acidobacteriales;
Acidobacteriaceae_[Subgroup_1]; unclassified
Bacteria; Acidobacteria; Acidobacteria;

Subgroup_4; RB41; unclassified
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0.65

0.64

0.62

0.62

0.62

0.61

0.61

0.6

0.6

0.59

0.58

0.808

0.798

0.79

0.788

0.784

0.781

0.781

0.776

0.774

0.769

0.76

0.042

0.028

0.049

0.042

0.028

0.049

0.042

0.045

0.042

0.049

0.039



Table 2.56 (cont’d)

Treatment OTU Taxonomy A stat p
0oTu327 Bacteria; Proteobacteria; Alphaproteobacteria; 1 1 0.039
Caulobacterales; Caulobacteraceae;
Brevundimonas
0OTU959 Bacteria; Bacteroidetes; Sphingobacteriia; 0.99 0.993 0.05
Sphingobacteriales; Sphingobacteriaceae;
Pedobacter
OTU1937 Bacteria; Proteobacteria; Gammaproteobacteria; 0.94 0.97 0.039
Xanthomonadales; Xanthomonadaceae;
Pseudoxanthomonas
OTU1169 Bacteria; Proteobacteria; Gammaproteobacteria; 0.92 0.957 0.042
0 Oceanospirillales; Oceanospirillaceae;
Pseudospirillum
0OTU911 Bacteria; Proteobacteria; Alphaproteobacteria; 0.88 0.938 0.045
High Malic
_ Caulobacterales; Hyphomonadaceae; Hirschia
Acid 0OTU1414 Bacteria; Acidobacteria; Acidobacteria; 0.81 0.901 0.05
Subgroup_3; Unknown_Family; unclassified
OTU2822 Bacteria; Bacteroidetes; Sphingobacteriia; 0.8 0.894 0.045
Sphingobacteriales; Chitinophagaceae; Flavitalea
OTU520 Bacteria; Bacteroidetes; Cytophagia; 0.79 0.89 0.039
Cytophagales; Cytophagaceae; Chryseolinea
0OTU3374 Bacteria; Bacteroidetes; Sphingobacteriia; 0.79 0.886 0.028
3 Sphingobacteriales; Chitinophagaceae;
Parasegetibacter
OoTU467 Bacteria; Acidobacteria; Acidobacteria; 0.72 0.847 0.05
Subgroup_3; SJA-149; unclassified
0OTU40 Bacteria; Proteobacteria; Betaproteobacteria; 0.71 0.843 0.05

Burkholderiales; Comamonadaceae; unclassified
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Table 2.56 (cont’d)

Treatment OTU Taxonomy A stat p
High Malic OTU2074 Bacteria; Bacteroidetes; Sphingobacteriia; 0.7 0.836 0.045
Acid Sphingobacteriales; Sphingobacteriaceae;
unclassified
OTU1142 Bacteria; Fibrobacteres; Fibrobacteria; 0.64 0.8 0.045
Fibrobacterales; Fibrobacteraceae; unclassified
OTU34 Bacteria; Proteobacteria; Gammaproteobacteria; 0.64 0.798 0.039
Xanthomonadales;
Xanthomonadales_Incertae_Sedis;
Steroidobacter
OTU2060 Bacteria; Bacteroidetes; Sphingobacteriia; 0.63 0.795 0.028
Sphingobacteriales; NS11-12_marine_group;
unclassified
0oTU93 Bacteria; Proteobacteria; Betaproteobacteria; SC- 0.63 0.791 0.045
I-84; unclassified; unclassified
OTU2556 Bacteria; Proteobacteria; Alphaproteobacteria; 0.62 0.788 0.049
Low Malic Rhodospirillales; Rhodospirillales_Incertae_Sedis;
Acid Reyranella
0OTU280 Bacteria; Actinobacteria; Acidimicrobiia; 0.61 0.782 0.049
Acidimicrobiales; unclassified; unclassified
OTU31 Bacteria; Proteobacteria; Alphaproteobacteria; 0.59 0.77 0.039
Rhizobiales; Xanthobacteraceae; Variibacter
0OTU171 Bacteria; Proteobacteria; Alphaproteobacteria; 0.58 0.762 0.039
Rhizobiales; unclassified; unclassified
OTU1382 Bacteria; Bacteroidetes; Sphingobacteriia; 0.58 0.76  0.028
7 Sphingobacteriales; Chitinophagaceae;
Parafilimonas
oTu47 Bacteria; Planctomycetes; Planctomycetacia; 0.58 0.759 0.028

Planctomycetales; Planctomycetaceae;

Planctomyces
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Table 2.56 (cont’d)

Treatment OTU Taxonomy A B stat p
Low Malic 0OTU837 Bacteria; Proteobacteria; Betaproteobacteria; 057 1 0.752 0.028
Acid unclassified; unclassified; unclassified
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Table 2.57. Statistical packages used in R for analyses. * Indicates that more information on statistical
parameters or analysis is provided below the table.

Dataset Analysis Package Function Citation
Univariate Analyses
Plant, soil, bacterial (Fox and
’ ! 1-factor ANOVA C |
alpha diversity actor ANO ar m Weisberg, 2011)
. . 1-factor ANOVA
Plant, soil, bacterial
. . post-hoc Emmeans Emmeans (Lenth, 2019)
alpha diversity .
comparisons
Al All visualization Ggplot2 Ggplot2 (Wickham, 2016)
graphics Ep Ep !
Multivariate Analyses
Several, including
Bacterial communit Microbial data Phylose tax_glom, (McMurdie and
¥ filtering ylosed merge_samples, Holmes, 2013)
etc.
. . Taxa differential (Lin and Peddada,
Bacterial community abundance ANCOMBC Ancombc 2020)
Indi .
Bacterial community ::;lc;:iZiSpeaes Indicspecise Multiplatt I(_S;::jr'se?;gw)
Distance-based dbrda, ordistep
. . (Oksanen et al.,
Bacterial community Redundancy Vegan (for model
- % ) 2018)
Analysis selection)
B ial i k I
acterial community & PERMANOVA* Vegan Adonis2 (Oksanen et al.,
root exudates 2018)
Bacterial community & PERMANOVA post- Pairwise.perm.man

root exudates

Bacterial community &
root exudates

Bacterial community &
root exudates

Bacterial community &
root exudates

Root exudates

Root exudates

Root exudates

hoc comparisons

Matrix Similarity
Analysis

Variance Partitioning
Analysis

Correlation among
bacterial genera and
identified
metabolites*

sPLS-DA*

Pearson Correlations

Correlation heatmap
visualization

RVAideMemoire

Vegan

Vegan

CCREPE

MixOmics

Hmisc

Superheat

ova

Protest

Varpart

ccrepe

tune.splsda, perf

Rcorr

superheat

(Hervé, 2015)

(Oksanen et al.,
2018)

(Oksanen et al.,
2018)

(Schwager et al.,
2014)

(Rohart et al.,
2017)

(Harrell and
Dupont, 2021)

(Barter and Yu,
2018)
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No neighbor P virgatum K. macrantha A. gerardii R hirta
Monoculture + +
Treatments
P. virgatum K. macrantha A. gerardii R. hirta

Figure 2.S1. Experimental design showing five focal plant treatments and four monoculture treatments.
P. virgatum is always the focal plant, and the P. virgatum neighbor treatment was also used for
statistical comparisons among monocultures. Asterix symbol (*) denotes plants used for root exudate
collection; Plus sign (+) indicates roots sampled for rhizosphere bacterial community analysis.
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Figure 2.52. A) neighbor plant aboveground (gray boxes) and belowground (white boxes) biomass in
focal plant treatments; B) Relative strength of competition index for focal plant aboveground biomass.
The central line is the median value, vertical bars represent the first and third quartile, and dots
represent individual replicate values. Different letters denote significant differences among treatments
(false discovery rate, p < 0.05); for Figure A, the letters are grouped within biomass type.

Gravimetric Soil Moisture Content
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O K. macrantha
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Figure 2.53. Focal plant treatment A) gravimetric soil moisture content (g water gl dry soil) and b) soil
nitrate (ug nitrate g* dry soil) at the pot-level. The central line is the median value, vertical bars
represent the first and third quartile, and dots represent individual replicate values. Different letters

denote significant differences among treatments (false discovery rate, p < 0.05).
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Figure 2.54. Relative abundance of bacterial genera identified as indicators when the focal neighbored R.
hirta grouped by their presence in monoculture treatments. The central line is the median value, vertical
bars represent the first and third quartile, and dots represent outliers. p-value from 1-way ANOVA
presented; different letters denote significant differences among treatments (false discovery rate, p <
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Figure 2.S5. Relative abundance (peak area scaled) of top 10 most abundant identified exudates by focal
plant treatment. The central line is the median value, vertical bars represent the first and third quartile,
and dots represent individual replicate values. p-value from 1-way ANOVA presented; different letters

denote significant differences among treatments (false discovery rate, p < 0.05).
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Figure 2.56. A) Significant Pearson correlation (p < 0.05) between plant and soil factors and top 10 most

abundant identified exudates. Color scale indicates strength of correlation (r, purple = negative; yellow =
positive). Blank spaces indicate no significant correlation. B-E) Scatterplot showing relationship between
malic acid and plant and soil factors, colored by neighbor treatment.
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Figure 2.57. Relative abundance of bacterial genera enriched in high malic acid soil incubation
(ANCOMBC differential abundance analysis), plotted by their relative abundance in greenhouse focal
treatments. The central line is the median value, vertical bars represent the first and third quartile, and
dots represent individual replicate values. p-value from 1-way ANOVA presented.
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APPENDIX C: CHAPTER THREE SUPPLEMENTAL METHODS AND RESULTS
RHIZOBOX DESIGN, SOIL, AND PLANTING

The boxes (54 cm wide x 30 cm tall x 4 cm deep) were made of white High-Density Polyethylene
(HDPE, back of box) and clear polycarbonate resin (front of box), fastened together with metal nuts and
bolts and all-purpose cement (Figure 3.51). The boxes were split into three sections with hollow, acrylic
square columns that provided additional structural support. Foam was glued around all edges of the
rhizobox to form a tight, waterproof seal between the box edges and the front cover. The boxes were
placed at a 60° angle from the ground in the greenhouse to encourage root growth along the clear side
of the box for easier sampling. White HDPE was chosen for the back of boxes to minimize increasing the
temperature of the soil; clear polycarbonate was chosen as the front panel to allow root tracking
throughout the course of the experiment without opening the rhizobox, but this was covered with black
plastic throughout the experiment to avoid light exposure to the roots.

Each rhizobox was filled to a consistent bulk soil density and water content (1.28 g/cm3 and 20%
volumetric water content). To do so, the fronts of the rhizoboxes were removed and dry, sieved soil and
water were incrementally added to each compartment to ensure even moisture distribution. The two
hollow columns in each rhizobox were also filled to the equivalent soil moisture and bulk density.

After filling the rhizoboxes, one week old seedlings were transplanted into each of the three sections.
The seedlings were established in potting media (Suremix) with 5% dry field soil by volume (seed source:
Native Connections, Kalamazoo, Michigan, USA). They were continually replaced for up to two weeks if
they died, and then grew for 14 weeks in their neighbor treatments with temperatures controlled at a
maximum of 29 °C during the day and minimum of 20 °C at night with 16 hours of artificial lighting. They
were watered with RO water as needed and fertilized twice during the experiment to adjust for
potassium deficiency in the soil (Monopotassium phosphate to the equivalent of 56.04 Kg P Ha™).

ROOT EXUDATES LC-MS

The reconstituted (80% methanol) root exudate samples were injected into a Waters Acquity
UPLC HSS-T3 column (2.1x100 mm) and compounds were separated using the following gradient: initial
conditions were 100% mobile phase A (10 mM ammonium formate in water, pH 3) and 0% mobile phase
B (acetonitrile), hold at 0% B until 1.0 min, linear ramp to 99% B at 7.0 min, hold at 99% B until 8.0 min,
return to 0% B at 8.01 min and hold until 10 min. The flow rate was 0.3 ml/min and the column
temperature was held at 40°C. Compounds were ionized with electrospray ionization operating in either
positive (capillary voltage 3.0 kV) or negative ion mode (capillary voltage 2.0 kV). Cone voltage was set

to 30V, source temperature was 100°C, desolvation temperature was 350°C, cone gas flow was 40 L/hr,
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and desolvation gas flow was 600 L/hr. Mass spectra were acquired using a data-independent MSE
method over a mass range of m/z 50-1500 with separate acquisition functions for scans (0.2
seconds/scan) with no collision energy and scans (0.2 seconds/scan) with a collision energy ramp of 20-
80V. Lockmass correction was performed using leucine enkephalin as the reference compound. Peak
alignment and picking were performed using Progenesis Ql software (Nonlinear Dynamics, Waters) with
a pooled sample used as the alignment reference.
DNA LIBRARY PREPARATION

For library preparation, the fungal (ITS) DNA was amplified with DreamTaq Green DNA
polymerase (Thermo Scientific) and the bacterial DNA (16S) was amplified with Platinum Tag DNA
polymerase (Thermo Scientific). We used a modified version of a three-step PCR protocol, which was
previously described (Lundberg et al., 2013a) and used (Benucci et al., 2020; da Costa et al., 2022). First,
the genomic DNA was amplified with generic primers (step 1, 10 PCR cycles) to enrich for the fungal
rDNA template, and then the PCR products were amplified with primers incorporating 1- to 6-nucleotide
frameshifts to increase diversity between samples (step 2, 10 PCR cycles). Finally, we incorporated 10-
nucleotide indexing barcodes and lllumina adapters to the PCR products (step 3, 15 PCR cycles). We
assessed the PCR size and concentration of the PCR products with a QlAxcel Advanced machine with a
DNA Fast Analysis kit (Qiagen). Sample libraries were then normalized with a SequalPrep normalization
plate kit (Thermo Fisher Scientific) and pooled. The generated amplicon library was then concentrated at
approximately 20:1 with Amicon Ultra 0.5-mL 50K filters (EMDmillipore, Germany) and purified from
primer dimers with Agencourt AMPure XP magnetic beads (Beckman Coulter, USA). The final
multiplexed libraries were sequenced on an Illumina MiSeq analyzer using the v3 600 cycle kit (lllumina,

USA) by the MSU Research Technology Support Facility.
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Figure 3.51. Design and dimension of rhizoboxes. A) shows rhizobox with Barrier that prevented active
root interactions, while allowing mycorrhizal interactions (35 UM mesh barrier); B) shows rhizobox with
No Barrier that allowed active root interactions. Columns in the center were hollow, filled with soil, and
used to separate each of the three sections and provide structural stability. Roots could grow through
the column in the No Barrier boxes (B), but not in the boxes with mesh covering the opening (A).
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Figure 3.52. Microbiome rarefaction curves for three datasets used for analyses: combined fungal root-
associated and rhizosphere soil (A), bacterial rhizosphere soil only(B), and combined bacterial root-
associated and rhizosphere soil communities(C). Each line represents a unique sample; the red-dashed
line represents the minimum sample read depth used for rarefying in each dataset. All fungal analyses
were conducted on the combined dataset (A), which was rarefied to 22,547 reads. The rhizosphere soil
bacterial dataset (B) was rarefied to 4,814 reads and used for all rhizosphere soil bacterial analyses. The
combined bacterial dataset (C), which was rarefied to 1,444 reads, was used for the root-associated
bacterial analyses and analyses that looked at differences between the two rhizosphere compartments.
Rarefaction plots were made after filtering contaminants, low-read OTUs and low-coverage samples.
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Figure 3.S3. Focal plant root exudates plotted by sampling day (A) and by neighbor treatment (B),
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Figure 3.54. Variation in neighbor plant shoot and root CN (A,B) and focal plant shoot and root CN (C,D).
Color and number denote neighbor treatment. Vertical gray lines separate samples present within a
single treatment. Striped boxes represent barrier treatment (no root interactions) and solid boxes
represent the no barrier treatment (active root interactions). The central line is the median value for
each plant, vertical bars represent the first and third quartiles of the data, raw data shown in points.
Different letters denote significant differences among all plants and barriers (false discovery rate, p <
0.05). ANOVA results in upper right corner of each panel denote significant p-value for Neighbor (N),
Barrier (B), Neighbor by Barrier interaction (NxB) for focal plants(Panels A-C) and Species (S), Barrier (B),
and Species by Barrier (SxB) interaction for neighbor plants (Panels D-F) ; significance values: ns p > 0.10,
+p<0.10, *p<0.05, ** p<0.01, *** p<0.001.
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Figure 3.S5. Root-associated microbiome Shannon diversity for neighbor plant fungi (A), focal plant fungi
(B), neighbor plant bacteria (C), and focal plant bacteria (D). Color and number denote neighbor
treatment; neighbor plant boxplots are filled with the treatment color; focal plant boxplots are gray and
outlined in neighbor treatment color. Vertical gray lines separate samples present within a single
treatment. Striped boxes represent barrier treatment (no root interactions) and solid boxes represent
the no barrier treatment (active root interactions). The central line is the median value for each plant,
vertical bars represent the first and third quartiles of the data, raw data shown in points. Different
letters denote significant differences among all plants and barriers (false discovery rate, p < 0.05).
ANOVA results in lower right corner of each panel denote significant p-value for Neighbor (N), Barrier
(B), Neighbor by Barrier interaction (NxB) for focal plants (Panels A-C) and Species (S), Barrier (B), and
Species by Barrier (SxB) interaction for neighbor plants (Panels D-F) ; significance values: ns p >0.10, + p
<0.10, * p<0.05, ** p<0.01, *** p <0.001.
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Figure 3.56. NMDS ordinations (Bray-Curtis) of focal plant microbiomes for root-associated fungi (A),
rhizosphere soil fungi (B), root-associated bacteria (C), and rhizosphere soil bacteria(D). Focal plants are
filled with gray and border color represents their neighbor. Barrier and No Barrier samples are combined
within each treatment. Large squares represent centroid of all sample points and bars represent + 1 SD
from the centroid mean. See Table 3.2 for statistical results.
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Figure 3.57. Percentage of the focal plant’s microbiome reads that are shared with its direct neighbor for
fungal root-associated community (A), fungal rhizosphere soil community (B), bacterial root-associated
community (C) and bacterial rhizosphere soil community (D). Colored border represent neighbor
treatment. Vertical gray lines separate samples present within a single treatment. Striped boxes
represent barrier treatment (no root interactions) and solid boxes represent the no barrier treatment
(active root interactions). The central line is the median value for each plant, vertical bars represent the
first and third quartiles of the data, raw data shown in points. Different letters denote significant
differences among all plants and barriers (false discovery rate, p < 0.05). ANOVA within the lower right
of each panel denote significant p-value for Neighbor Treatment (N), Barrier (B), Neighbor by Barrier
interaction (NxB); significance values: ns p >0.10, + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 3.S8. Percentage of the focal plant’s microbiome reads that are shared with its direct neighbor for
the root-associated fungi (A), rhizosphere soil fungi (B), root-associated bacteria (C) and rhizosphere soil
bacteria (D). Colored border represent neighbor treatment. Vertical gray lines separate samples present
within a single treatment. Striped boxes represent barrier treatment (no root interactions) and solid
boxes represent the no barrier treatment (active root interactions). The central line is the median value
for each plant, vertical bars represent the first and third quartiles of the data, raw data shown in points.
Different letters denote significant differences among all plants and barriers (false discovery rate, p <
0.05). ANOVA results within the lower right of each panel denote significant p-value for Neighbor
Treatment (N), Barrier (B), Neighbor by Barrier interaction (NxB); significance values: ns p>0.10, + p <
0.10, * p<0.05, ** p<0.01, *** p <0.001.
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APPENDIX D: CHAPTER FOUR SUPPLEMENTAL METHODS AND RESULTS

METHODOLOGICAL CONSIDERATIONS

Mental models have been studied through many different approaches and each have their
advantages and disadvantages (Jones et al., 2011). The mental modelling approach we used is most
similar to fuzzy cognitive mapping (FCM) methods, whereby participants identify variables that influence
a system or concept (e.g. soil health) and then depict connections between those factors using visual
methods (Gray et al., 2014). The benefit of this approach is that participants can illustrate and interact
with their own representation of their mental model (Bardenhagen et al., 2020), which is in contrast to
indirect elicitation approaches that extract mental models from texts and interviews (Halbrendt et al.,
2014; Hoffman et al., 2014). FCM methods often gather quantitative data by asking participants to
numerically rank relationships between factors (e.g. +1 to -1) (Ozesmi and Ozesmi, 2004), but we did not
do this because our main objective was to identify the terms central to farmers’ understanding of soil
health, rather than the degree to which the terms influence one another. We also chose to allow
participants to populate their mental models with freely chosen concepts, rather than using the same
standardized concepts for all participants. While a more free-form approach can be biased by the
researchers’ subjective categorization and aggregation during analysis, it is less likely to limit
participants perceptions and to stifle potentially interesting heterogeneity in their responses (Gray et al.,

2014).
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Table 4.51. Terms included in farmers’ soil health mental models, which were aggregated at two-
levels, by topic and category. Topics are sorted in order of frequency (see Figure 4.4). No topics
categorized as “crop” were included in the soil health mental models.

Topic Category Terms Aggregated
Organic Matter Soil "organic matter", "humus", "organic material", "carbon content",
"soil doesn't crust over on top with sunshine (higher OM don't crust
as easy, more forgiving to machine abuse)", "low CEC and organic
matter levels (least productive too much large sand particles to hold
onto nutrients, less particles to hold onto nutrients vs. clay)", "high
CEC levels and organic levels",

Compaction Soil "compaction", "compaction (big contributor to bad health)",
"compaction (tillage?)"
Soil Biology Soil "high microbial activity and root decaying matts (more air and food

to feed roots) ", "earth worms", "microorganisms", "microbe
availability ", "biologicals", "good bugs", "microorganisms
(pollution?)", "soil microbes at work ", "microbe activity", "biological
activity"

Tillage Practice  "tillage", "overuse of tillage (also breaking down soil particles)",
till", "Tillage timing and method", "type of tillage", "tillage (double
edged sword)"

Fertility/Nutrients  Soil "available nutrients", "fertility", "preC|5|on nutrient management",

"nutrients", "sufficient nutrients", "micro-nutrients", "fertility (good
balance needed for good soil health)", "good nutrient levels
(fertilize?)", "good fertility"

Drainage Soil "drainage", "good drainage", "drainage (very important to soil
health)", "well drained (prevents flooding and ponding)", "water
infiltration", "tile"

pH Soil "ph", "ph 6.6 to 7", "proper pH", "soil pH", "pH level", "pH for crop
belng grown", "pH factor"

Cover Crops Practice  "cover crops", "cover crops/no-till", "cover crops (good to practice)"

Crop Rotation Practice  "crop rotation"

Chemical Inputs Practice  "insecticides (GMO crops help us use less insecticide)", "chemical
carry-over", "amount of weed killer chemicals (overuse)",

"pesticides"
Soil Structure Soil "soil texture", "large air to soil particle size (warms up faster in

spring)", "soil structure (this can have a positive or negative effect on
soil health)", "stones and rocks probably was not overworked
(usually has a history of being in pasture due to expensive repairs to
farm mechanically, created better soil over time) ", "soil structure"

Fertilizer Practice  "fertility fertilizer", "synthetic fertilizer (using some is beneficial, too
much can be a negative) ", "amount of fertilizer needed to produce a
profit and protect environment", "overuse amounts of nitrate

fertilizers"

Disease & Pests Soil "insects", "bad bugs", "pests/disease", "disease carry-over", "soil
borne pests (e.g. nematodes)"

Weather External  "rain and sun", "weather"

Residue Practice  "cover provided", "amount of compost (residue)", "crop residue"
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Table 4.51 (cont’d)

Topic Category Terms Aggregated

Production Practice  "producing in optimum conditions", "farming practices (probably too

Practices broad but | don't know how to split it up...)", "production practices",
"management”

Water Holding Soil "water holding capacity", "water holding"

Capacity

Erosion Practice  "erosion (wind/water)", "reduced erosion", "erosion (top soil
depth?)"

Soil Type Soil "top soil", "soil type", "type of soil", "sub-soil"

Weeds External "excessive weed pressure", "weed pressures"

Soil Moisture Soil "moisture held", "moisture (excessive or too little moisture is a
negative, adequate is positive)"

Soil Tests Practice  "soil testing", "soil sample"

Continuing External  "continuing education"

Education

Manure Practice  "manure"

Soil Mapping Practice  "soil mapping"

Overuse Practice  "overuse"

Plant Diversity Practice  "plant diversity (idle cropland? trees?)"

Irrigation Practice  "water retention (irrigation?)"

Topography External  "topography too hilly and uneven (soil erosion, hard to get soil and
nutrients from washing away to another location)"

Bare Soil Practice  "leaving bare soil exposed to the elements of weather"
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Table 4.52. Terms included in farmers’ crop productivity mental models, which were aggregated at
two-levels, by topic and category. Topics are sorted in order of frequency (see Figure 4.5).

Topic

Category

Aggregated Terms

Weather

Disease & Pests

Seed Genetics

Fertilizer

Weed Control
Fertility
Drainage

Compaction
Timeliness

Planting Date

Soil Moisture

Soil Type

External

Soil

Crop

Practice

Practice
Soil
Soil

Soil
Practice

Crop

Soil

Soil

"weather (can't control this very big factor)",
"weather", "rain", "climate and weather (poor

weather is a negative, good is a positive)", "storms",

"Weather (rain/sun timing)", "water/weather",
"good rain", "fall weather", "sunlight"

"disease", "Fungus pressure", "pest and diseases",

"Insect Pressure", "pest pressure (insects, fungus,

animals, etc.)", "fungus control", "pest control

(insects, animals)", "insects", "pressure from

herbicide and insecticide weeds and insects", "

insects, weeds, disease", "pests", "i

"disease/pests"

"seed attributes ", "seed", "seed/genetics", "seed
selection", "seed quallty" "seed quality and variety",
"kind of seed (reg/gmo, day of maturity of crop)",
"good seed", "crop tolerance to drought", "Hybrid
Used", "good seed genetics"

"fertilizer", "fertilizer program", "Fertilization",
"manure", "sufficient added fertilizer/nutrients",
"proper fertilizer rates and timing", "applied

nutrients"

"weed contro

to herbicide"

"soil fertility", "fertility", "good soil",
fertility"

"drainage", "drainage tile", "drainage (affects

product|V|ty greatly)", "good drainage"

pests:
insect control",

weed pressure”, "weed resistance

good soil

"compaction", "soil conditions (compaction)"
"timeliness", "timing of events (bad timing example:
planting too wet, compacting soils, applying
nutrients at the wrong time)", "timely harvest",
"timeliness of harvest"

planting early", "drain well in the
planting date", "early

"plant date",
spring (early planting)",
planting"

"sufficient water", "adequate moisture", "moisture",

"too wet", "droughty top soil (added manure helps)"

"soil type", "soil productivity (type)", "good subsoil
composition (can't change)", "sand and silt or clay
particles too high (not enough ions to attach
nutrients) ", "type of soil"
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Table 4.52 (cont’d)

Topic Category Aggregated Terms

Pesticides Practice "herbicide application", "herbicides", "herbicide
program", "pesticides"

Plant Population & Health Crop "planting effectiveness", "easy to make good seed to

soil contact (better germination, more even stands)",
"plant health", "plant population"

Crop Rotation Practice "crop rotation", "rotation of crops"

Growing Degree Days External "growing degree days for season", "adequate heat
units", "degree days", "heat units"

Input Costs & Availability External "availability of inputs", "input costs", "affordability of
inputs"

Market External "marketing", "strong demand (global weather?
global politics?)", "market prices", "Market prices"

Soil Health Soil "soil health"

Machinery External "equipment problems", "excessive and abrasive
wear on machinery (too much sand) ", "machinery
prep"

Irrigation Practice "irrigation"

Field Conditions External "field conditions", "planting and harvest conditions
(soil type, wet spots tiled)"

Management External "management”

Field Obstacles External "infrastructure, roads, electric", "tree lines"

Labor External "labor, man hours", "availability of labor"

Tillage Practice "tillage practices", "proper tillage and planting"

pH Soil "soil pH", "correct ph"

Soil Texture Soil "stones and rocks (history of less abused tough to
work, more skips when seeding)", "soil texture"

Organic Matter Soil "organic matter", "CEC levels and organic levels too
low (less capacity to hold water, nutrients, air)"

Soil Tests Practice "soil test"

Regulation External "regulation (some regulations help others hurt,
usually they hurt)"

Soil Condition Soil "soil condition"

Topography Soil "slope"

Crop Loss Crop "crop loss at harvest"

Soil Preparation Practice "soil preparation"
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PART 1: Example Mental Model Diagram — Follow Steps 1-3

Write in the BIG BOXES Put plus or minus in the SMALL BOXES Draw additional ARROWS
What three things do you think have the biggest Does what you wrote in the large boxes increase or Do any of the words you listed influence each other?
impact on car longevity? decrease car longevity? Draw lines connecting any big boxes that you think
Fill the big boxes with the 3 things that impact car Fill the small box with a plus sign (+) if the word in the big influence each other.
longevity. Start with box 1. There is no right answer, as box increases/benefits car longevity. Draw the arrow in the direction of the affect. In some
you can imagine, there can be a lot of things that Fill the small box with a minus sign (=) if the word in the cases, there could be a two-headed arrow if both things
influence how long your car lasts. Try to be as specific as big box decreases/harms car longevity. equally affect each other.
possible, since this will make things easier later! m
Winter ? Mam{-enmca * Potholes 1 winter 2Maintenance| |3 potholes 1 winter 2“"‘“"1*3“4‘455 * potholes
oil thamaes, oil chamges, ol chanqe
weather frere +:?1 . weather e retabe weather tire rotation
R | / _ s } | /
Car Longevlty Car Longevity Car Longewty
The first three things | think of are winter weather, For example, does more winter weather increase or decrease In this example, | think that winter weather might create
maintenance (such as oil changes or tire rotations), and car longevity? more potholes, so | drew an arrow from winter weather to
potholes, so | wrote these three things in the big boxes. Overall, | would think decrease, so | will put a minus sign (=) potholes. | also think that both winter weather and potholes
Notice that | list ‘winter weather’, which is more specific in this box. Potholes will also decrease my car longevity, so | could lead to more maintenance, so | also drew arrows from
and has more predictable effects on car longevity than also put a minus sign (=) in this small box. Maintenance, winter weather and potholes to maintenance.
simply ‘weather’. however, should increase car longevity, so | put a plus sign
Page | 4
{+) in this box. e |

Figure 4.51. Mental model example provided in farmers’ activity workbook. Participants were asked to read this example before depicting their
own mental models for crop productivity and soil health.
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Figure 4.52. Soil health mental model diagram that was mailed to all interview participants (n = 20). The
farmers were instructed to 1) write in the big boxes to answer “what eight things do you think have the
largest effect on soil health on your farm?”, 2) use plus or minus signs in the small boxes to answer
“does what you wrote in the large boxes increase or decrease soil health?” and 3) draw additional
arrows between the factors to answer “do any of the words you listed influence one another?” This
activity was first done for the crop productivity mental model and then the soil health mental model.
Only the factors in the big boxes, not the plus/minus signs or arrows, were used for the analyses in this
manuscript.

168



Organic Matter

Compaction

“1

Soil Biology
Tillage

Fertility/Nutrients

Drainage

pH

Cover Crops
Crop Rotation
Weather

Soil Structure

Farmer Cover Crop Use

B Use Cover Crops
[ Do Not Use Cover Crops
Fertilizer

Disease & Pests
Chemical Inputs

|

Water Holding Capacity

Topics in soil health mental models

Soil Type - :
Residue H
Production Practices F
Erosion| s |
Weeds ' !
0 25 50 75 100

Percentage of farmers by group

Figure 4.S3. Topics included in Michigan farmers’ soil health mental models spilt by farmers’ cover
crop use (green: n = 12 use cover crops, brown: n = 8 do not use cover crops). Each topic consisted
of several terms aggregated (Table 4.51). Figure only includes topics that were mentioned at least
one time by either group. Gray-dashed lines indicate 25%, 50%, and 75% of farmers.
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