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ABSTRACT

The recent developments in 3D technology have profoundly impacted the digital world. Thus,

the geometric modeling of 3D shapes through surfaces and curves plays an ever more critical

role in society than before. Similarly, regularly sampled data on volumes (3D images) have

found a wide range of applications in various areas, such as medicine, biology, engineering,

military, entertainment, etc. Compared to 2D images, 3D images have one more dimension to store

information. Therefore, they can directly approximate the physical world without first slicing up

the object under investigation, which, however, leads to much more data complexity and technical

difficulty. To address the problem of increased dimensionality, one may often leverage the lower

dimensional geometric features abundant in various applications to facilitate computational tasks.

Thus, how geometry could assist in 3D image processing is an intriguing topic, which we explore

from three aspects in this dissertation.

With three real-world problems, we present novel geometry-aided 3D image processing al-

gorithms with contributions in several areas, including biology, computer vision, and computer

graphics. In these applications, we demonstrate how geometric structures are vital in guiding image

processing, improving accuracy, and facilitating downstream analyses.

First, we analyze the 3D location-dependent fluorescence data of plant cells. We showed that

with the volumetric diffusion using the 3D Laplacian matrix, we could produce an accurate adaptive

local threshold to segment cytoskeleton in 3D microscope images of plant cells. Moreover, we

propose several indices describing geometric and topological characteristics of cytoskeletons to

help biologists understand actin filament dynamics in plant cells.

Second, we employ 3D-direction-dependent lighting conditions and introduce shadow masks

to our face relighting pipeline generated from rough geometry to remove or add more accurate

shadows for human face images. In addition, with the assistance of geometric information, we may

generate relatively accurate spherical harmonics coefficients (a representation for low-frequency

3D-direction fields) to model the illumination for the relighting task.

Last, we explore how geometry shapes could help with a deep learning algorithm for a particular



field of both locations and directions, the dynamical neural radiance field for human heads. Given

a set of input images or a video of a talking human head, we first embed a geometric model of the

human head shape into the 3D implicit field. Then, one set of latent codes anchored on a morphable

3D surface mesh automatically turns the human face with any specific pose and expression into a

radiance field. With the radiance field, it is straightforward to assemble RGB values for rays from

arbitrary camera positions along chosen directions to form photorealistic rendering of novel views

of the same person with changing expressions. Thus, we may reanimate the human head with better

realism than a crude textured surface mesh. Furthermore, with the help of the radiance field, we

may refine the geometric surfaces to align better with the input videos if surface meshes are needed

for downstream applications.

Through the three examples of analyzing 3D spatial functions, 3D directional functions, and

functions of both position and direction, we show the promises of geometry-assisted processing tools

with concrete applications. Given the shape-dependent nature of most 3D images, we believe there

are ample opportunities for integrating geometric representations into their processing pipelines.
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CHAPTER 1

INTRODUCTION

With the advances of 3D imaging technology and the availability of affordable 3D scanners, the

amount of 3D data has increased tremendously. Compare to 2D images, 3D images provides us

with rich information about the full geometry of 3D objects since it could best approximate the real-

world objects without distortion. But the 3D image processing algorithms are usually expensive,

computationally costly and math heavy. Data size will grow exponentially in 3D space with high

resolution, therefore an efficient data structure and efficient processing algorithm are essential.

The geometric and topological characteristic of 3D shapes are complex. Unlike 2D images, 3D

data could have different representations, the geometric properties vary from one representation to

another. How to analyse geometric features of the object, how to utilize the geometric information

to render the shape into 2D image under different illumination, how to reconstruct the 3D mesh from

2D image, all of which are interesting topics with a lot of problems unsolved. In this document, we

will explore what role geometry plays in solving the questions mentioned above.

In biology, scientists takes 3D microscopy images of plant cells and observe the structure of

cytoskeleton to understand the dynamics of plant cells. Traditional ways of processing the 3D data

is to project the 3D images to a 2D plane, which ignores the filament growing in vertical direction.

To avoid information loss on Z axis, we propose a 3D algorithms to segregate cytoskeleton from

the background. Due to the imaging mechanism of microscopy sensor, the intensity distribution of

the filament is not globally consistent. We take the shape of filament into consideration, generate

adaptive local thresholds by solving a partial differential equation to segment the cytoskeleton from

the background as well as preserve all the geometric details on filament surface.

In computer vision, deep learning has gained notable success in 2D domain, but it is not fully

employed on 3D data due to the complex nature of the 3D shapes. We also explore how the 3D

geometric information could guide the learning of our network on face relighting task. It is a

challenging problem to modify shadows in portrait images given a target lighting, since shadows

are the result of interaction of 3D shapes and lighting condition in 3D space. With shadow maps
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generated based on the face mesh under source lighting and target lighting, we could train our

network to remove and add shadows in 2D portrait images.

View synthesis has been a long-standing and well-studied problem in Computer vision, with

applications ranging from animation, image editing to VR, AR. Recent works mostly focus on

learning the implicit representation for 3D objects. One big drawback is it requires dense input. We

think it is possible to learn the representation for dynamic human head with sparse input leveraging

the geometry of human head.

The rest of document is organized as follows. We first discuss the adaptive local thresholding

algorithm and quantitative analysis on cytoskeleton in plant cells Chapter 2. Then, we demonstrate

how shadow maps plays an important rule in face relighting task in Chapter 3. In Chapter 4, we

shows how geometry helps with view synthesis, and we also discuss future work briefly.
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CHAPTER 2

ILEE: AN ALGORITHM FOR QUANTITATIVE ANALYSIS OF CYTOSKELETAL
IMAGES

2.1 Introduction

The eukaryotic cytoskeleton plays essential roles in cell signaling, trafficking, and motion

in plant cells. Recent work towards defining the temporal and spatial dynamics of cytoskeletal

organization, including as a function of cell status, has utilized quantitative analysis of cytoskeletal

fluorescence images as a standard approach to defining cytoskeletal function. However, due to the

uneven spatial distribution of the cytoskeleton, including varied filament shape and unstable binding

efficiency to staining markers, these approaches may result in inaccurate cytoskeletal segmentation.

Additionally, quantitative approaches currently suffer from human bias, as well as information loss

caused by z-axis projection of raw images. To overcome these obstacles, we developed Implicit

Laplacian of Enhanced Edge (ILEE), a cytoskeletal component segmentation algorithm, which

uses a 2D/3D-compatible, unguided local thresholding approach, therefore providing less biased

and more stable and accurate results. Empowered by ILEE, we constructed a Python library

named ILEE_CSK, for automated quantitative analysis of cytoskeleton images, which computes

cytoskeletal indices that cover density, bundling, severing, branching, and directionality. Compared

to various classic approaches, the ILEE generates descriptive data with higher accuracy, stability,

robustness, and efficiency. In addition to the analysis described herein, we have released ILEE_CSK

as an open-source library for the community, together with Google Colab pipelines, as convenient

and user-friendly access for biologists that requires no programming knowledge or specific computer

configuration for usage.

2.1.1 Background

Higher eukaryotes have evolved complex mechanisms to organize and co-regulate a multitude

of cellular processes, including growth, development, movement, cell division, and response to

environmental stimuli. For example, plants coordinate growth with resistance against abiotic and

biotic stress by engaging numerous systemic signaling processes, among which the cytoskeleton
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plays an indispensable role [1]. To facilitate these processes and ensure robust and highly specific

responses to changes in cell status, plants utilize two types of cytoskeleton − microfilaments

and microtubules − to connect intercellular signaling to extracellular environments. Structurally,

both are chains dynamically assembled from monomeric subunits named global actin and tubulin,

respectively, and are involved in ceaseless events of polymerization/depolymerization, bundling,

severing, and branching [2, 3], which is commonly referred to as "cytoskeletal dynamic". Spatially,

the cytoskeleton forms a web-like matrix within the cytoplasm, and through its vast connectivity,

functionally links the plasma membrane, numerous organelles, vesicles, and cellular environments

− the sum of which serves as a cell surveillance and signaling platform that functions as a structural

and information network [4]. As a structural component of the cell, the cytoskeleton controls

numerous physical processes such as movement, shaping, cellular trafficking, and intercellular

communication [5]. It also provides the mechanical force required for chromosome separation

and plasma membrane division during mitosis and meiosis [6]. In addition to its role within the

cytoplasm, the cytoskeleton is also required for a variety of functions within the nucleus, including

RNA polymerase recruitment, transcription initiation, and chromosome scaffolding [7].

2.1.2 Related Work

Over the past several decades, confocal microscopy-based methods using fluorescence markers

have been developed to monitor changes in cytoskeletal organization [8]. While showing advan-

tages in real-time observation and intuitive visual presentation, these approaches possess critical

limitations. They are subject to interpretation from captured images, which potentially involves

human bias. As a step to remedy this limitation, the emergence of computational algorithm-based

analyses offers a solution to describe the quantitative features of the cytoskeletal architecture with

reduced human bias. However, while early studies introduced the concept of using generalizable

image processing pipelines [9, 10] to transfer the task of evaluation away from the user and into a

series of computer-based quantitative indices, several key bottlenecks emerged. First, most of the

quantitative algorithms described to date are limited to 2D images. As a result, these approaches

require the user to manually generate z-axis projections from raw data, resulting in an incredi-
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ble amount of information loss, especially within the perpendicular portion of the cytoskeleton.

Second, many approaches require users to manually set the threshold to segment cytoskeletal com-

ponents from the images, resulting in sampling bias. Lastly, the accuracy and robustness of current

algorithms greatly vary among different types of biological samples. This latter hurdle imposes a

considerable disparity in the algorithm performance for plants (usually with curvy and spherical

cytoskeleton) and animal (typically straight and complanate) samples, which compromises the per-

formance of some advanced cytoskeleton analysis algorithms [11, 12, 13] when directly applied

to plant cell images. In fact, while sample source dramatically impacts our ability to evaluate the

features of cytoskeletal function across all eukaryotes, the vast majority of current approaches are

developed based on cytoskeletal images from animal cells, which indicates potential systemic bias

when applied to other types of image samples.

Previous work described the development of a global-thresholding-based pipeline to define and

evaluate two key parameters of cytoskeleton filament organization in living plant cells: cytoskeletal

density, defined by occupancy, and bundling, defined by statistical skewness of fluorescence [14].

Interestingly, while it utilizes manual global thresholding (MGT), which can potentially introduce a

certain level of user bias, it still outperforms many standardized adaptive/automatic global or local

thresholding approaches such as Otsu [15] or Niblack [16]. As a further advance of this early work,

Higaki and colleagues developed the use of coefficient of variation (CV) of fluorescence to quantify

the level of filament bundling, which improved the robustness and utility of the algorithm [17].

However, not only does this pipeline consume a considerable amount of time and effort from users

for massive sample processing, but it also leaves unaddressed two key issues of rigor in image

processing and analysis: information loss and human bias.

2.1.3 Our contribution

In the current study, we developed implicit Laplacian of enhanced edge (ILEE), a 2D/3D

compatible unguided local thresholding algorithm for cytoskeletal segmentation and analysis, which

is based on the native value, first-order derivative (i.e., gradient), and second-order derivative (i.e.,

Laplacian) of the cytoskeleton image altogether (see Fig. 2.1). The research described herein
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supports ILEE as a superior quantitative imaging platform, one that overcomes current limitations

related to information loss through dimensional reduction, human bias, and inter-sample instability.

As shown, ILEE can accurately process cytoskeleton samples with a high dynamic range of

fluorescence brightness and thickness, such as live plant samples.

As a key advance in the development of ILEE, we further established an ILEE-based Python

library for the fully-automated quantitative analysis of 14 cytoskeletal indices within 5 primary

classes: density, bundling, connectivity, branching, and anisotropy. This platform not only en-

ables the acquisition and evaluation of key actin filament parameters with high accuracy from

both projected 2D and native 3D images, but also improves the accessibility to a broader range

of biologically-relevant states, including polymerization/depolymerization, bundling, severing,

branching, and directional regulation. Herein, we introduce the core ILEE algorithm and pro-

pose several novel indices reflecting cytoskeletal dynamics. Using a defined series of images from

multiple biological replicates of pathogen-infected plant cells, we demonstrate the performance

of this algorithm by multi-perspective comparative analysis. Further, we provide evidence that

supports the further advancement of 3D-based cytoskeletal computational approaches – a sig-

nificant enhancement over currently available 2D-based approaches. Our library, ILEE_CSK, is

publicly released at GitHub https://phylars.github.io/ILEE_CSK. In addition, we devel-

oped ILEE Google Colab pipelines for data processing, visualization, and statistical analysis, which

is a convenient and user-friendly interface that requires no programming experience or particular

computational device.

2.2 Implicit Laplacian of Enhanced Edge

2.2.1 Pipeline

Raw images generated by laser scanning confocal microscopy are typically obtained through

detecting in-focus photons by a sensor from each resolution unit on a given focal plane. Since the

cytoskeleton is a 3D structure that permeates throughout the cell, current approaches to capture

filament organization and architectural parameters rely on scanning of each plane along the z-

axis, independently, at regular intervals within a given depth, and reconstruction into 3D images.
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Figure 2.1 The pipeline of ILEE.

Figure 2.2 The input and output of ILEE.

However, due to limited computational biological resources, most studies have exclusively employed

the z-axis projected 2D image, which results in substantial information loss, as well as systemic

bias in downstream analyses.

In our newly developed algorithm, we integrated both 2D and 3D data structures into the same

processing pipeline to ameliorate the aforementioned conflict (Fig. 2.1). In short, this pipeline

enabled automatic processing and evaluation of both traditional 2D and native 3D z-stack image
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Figure 2.3 Cytoskeleton segmentation by ILEE (a) steps of ILEE, (b) how coefficient k influences
ILEE performance, (c) optimal 𝐾2 estimation.

analysis. As shown in Fig. 2.1, cytoskeleton segmentation using ILEE requires 3 inputs: an edge-

enhanced image, a global gradient threshold that recognizes the edges of potential cytoskeletal

components, and the Laplacian smoothing coefficient K (described below). With these inputs, a

local threshold image is generated via ILEE, and the pixels/voxels with values above the threshold

image at the same coordinates are classified as cytoskeletal components. The output of this

algorithm is a binary image (Fig. 2.2). Once acquired, the binary image is further skeletonized [18]

to enable the downstream calculation of numerous cytoskeleton indices, the sum of which comprises

the quantitative features of cytoskeletal dynamics (Fig. 2.2). Additionally, because the 2D and 3D

modes share a common workflow, all of the calculated cytoskeleton indices also share the definition

for both modes, regardless of the difference in dimensional spaces. This additional feature enables a

horizontal comparison of both modes by the user, which we assert will significantly contribute to the

community by providing massive image datasets for further examination, and comparison through

the open-source library. In general, the ultimate goal of this approach, and resultant algorithm, is
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Figure 2.4 NNES global thresholding.

to construct a pipeline that enables the automated detection of the eukaryotic cytoskeleton from

complex biological images in an accurate and unbiased manner.

2.2.2 ILEE

The pixel intensity of the cytoskeleton has a wide variation among samples, due to varied bundle

thickness, the concentration of fluorescent dye, and its binding efficiency. Therefore, it is a highly

challenging task to segment the cytoskeleton from the background. The pixel value generated by

the confocal telescope is mainly influenced by three factors: 1. the real fluorescence emitted by

the dye molecules. 2. the diffraction signal emitted by the actin filament in the neighboring space.

3. systematic error brought by the equipment. In our case, it is usually the ground noise generated

by the imaging sensor. Since the photon sensor has a fixed setting, the distribution of ground noise

is constant. But the diffraction signal varies when the thickness of the filament bundle in the local

area changes. Therefore, an adaptive local thresholding algorithm is necessary to obtain reasonable

cytoskeleton segregation results.

The key idea of ILEE is to solve a global partial differential equation (PDE) based on Laplacian
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to generate a locally adaptive threshold for the cytoskeleton. One advantage of the Laplacian

operator is that it could remove undesirable noise while still retaining desirable geometric features

[19], which really helps tackle our problem. As we observe, the cytoskeleton usually has a very

smooth surface and tubular shape. Therefore, ILEE could selectively filter out high-frequency

noise while preserving salient geometric features of individual actin filaments, in leveraging the

spectral characteristics of Laplace operators. We utilize the Laplacian function to build a global

linear system. This way, the final result would be impacted by both the global shape and the

local brightness level. Therefore we could avoid the drawback that local operators tend to restrict

performance at varying filament thicknesses. Additionally, the edge of the cytoskeletal component

is smoothed and elongated using a significant difference filter (SDF) and a Gaussian filter, the

sum of which serves to enhance the continuity of the edge and contributes to the accuracy of edge

detection (Fig. 2.1). Since we use an implicit method to solve the PDE function involving both the

current state of the system and the later one, we name our algorithm Implicit Laplacian of Enhanced

Edge (ILEE).

2.2.2.1 Linear System

We build the linear system based on a global Laplace operator. We add boundary constraints to

our partial derivative equation to better preserve the geometric feature. First, we roughly estimate

the edge pixel of actin filament based on gradient, because edges usually have very high gradient

magnitude due to the dramatic change of the brightness. Then, we generate a selection set 𝑆 with

only points whose gradient is larger than the pre-estimated global threshold to mark the potential

boundary:

𝑆 = {(𝑥, 𝑦, 𝑧) |∇| 𝑓 (𝑥, 𝑦, 𝑧) | > 𝑐} (2.1)

where 𝑐 is the global threshold for edge pixels, 𝑓 (𝑥, 𝑦, 𝑧) is the original image function.

Our goal is to preserve the edge points with high gradients, which serve as a guide for local

thresholding:

𝑔(𝑥, 𝑦, 𝑧) |𝑠 = 𝑓 (𝑥, 𝑦, 𝑧) |𝑠 (2.2)
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After Laplacian processing, 𝑔(𝑥, 𝑦, 𝑧) should be harmonic. so we get:

∇2𝑔(𝑥, 𝑦, 𝑧) = 0 (2.3)

Putting these two equations together to build our linear system. The final equation can be

written as:

(𝐿 + 𝑘𝑆)𝑔 = 𝑘𝑆 𝑓 (2.4)

𝑔 =
𝑘𝑆

𝐿 + 𝑘𝑆 𝑓 (2.5)

where 𝑔 is the input image, 𝑓 denotes the output locally-adaptive threshold. 𝐿 is the global

Laplacian matrix, 𝑘 is the coefficient that adjusts the influence the Laplacian has on the final result.

𝑆 is the selection matrix, a diagonal matrix with the i-th diagonal entry being 1 if the i-th pixel has

a norm of the gradient above the global gradient threshold.

We use the implicit Euler scheme to construct this differential equation to ensure the Laplacian

operator behaves as a low-frequency filter to reduce high-frequency noise. The linear system could

be solved efficiently since 𝐴 = 𝐿 + 𝑘𝑆 is sparse. We use an off-the-shelf Matlab GPU linear solver

(conjugate gradient). However, any generic linear solver can be used instead.

2.2.2.2 Global threshold

In order to identify ground noise and locate the background for downstream analyses (e.g.,

adaptive local thresholding), we designed an algorithm that calculates a global threshold using

the morphological features of the ground noise, namely, non-connected negative element scanning

(NNES). In brief, NNES calculates the total number of non-connected negative elements at different

global thresholds, resulting in the identification of a representative value with a maximum non-

connected negative element count (Fig. 2.4b (i)). The global threshold for the coarse background

(Fig. 2.4b (iii)) will be determined using a linear model trained by the representative value

rendered by NNES and manual global thresholding (MGT), a global threshold determined by

operators experienced in cytoskeleton image analysis. NNES can maintain stability and accuracy

over different samples that vary in the distribution of native pixel value because ground noise is

the image component with the lowest value that is subject to a normal distribution and generally

does not interfere with the actual fluorescence signal. Another accessible method is to directly use
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Figure 2.5 Local anisotropy.

the peak-of-frequency brightness of the image as a representative value to train a model. However,

this approach is less accurate because the interval near the theoretical peak is always turbulent and

non-monotone, a limitation potentially due to the pollution of diffracted light.

2.2.2.3 Global Laplacian matrix

Laplace operator is a second-order differential operator in n-dimensional Euclidean space. It

is a measurement of how a point differs from its neighbor average. For each pixel, the Laplacian

value is based on its immediate neighbors. In 3D space, it is defined as:

Δ 𝑓 =
𝜕2 𝑓

𝜕𝑥2 + 𝜕
2 𝑓

𝜕𝑦2 + 𝜕
2 𝑓

𝜕𝑧2
= 𝑓𝑥 + 𝑓𝑦 + 𝑓𝑧 (2.6)

It is the sum of the second partial derivatives of the function with respect to each independent

variable. In 3D Cartesian space, there are three independent variables: x, y, z. The derivatives on

these three axes are defined as:
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𝑓𝑥 =
𝑓 (𝑥 + Δ𝑥, 𝑦, 𝑧) − 2 𝑓 (𝑥, 𝑦, 𝑧) + 𝑓 (𝑥 − Δ𝑥, 𝑦, 𝑧)

Δ𝑥2 (2.7)

𝑓𝑦 =
𝑓 (𝑥, 𝑦 + Δ𝑦, 𝑧) − 2 𝑓 (𝑥, 𝑦, 𝑧) + 𝑓 (𝑥, 𝑦 − Δ𝑦, 𝑧)

Δ𝑦2 (2.8)

𝑓𝑧 =
𝑓 (𝑥, 𝑦, 𝑧 + Δ𝑧) − 2 𝑓 (𝑥, 𝑦, 𝑧) + 𝑓 (𝑥, 𝑦, 𝑧 − Δ𝑧)

Δ𝑧2
(2.9)

If we discretize the continuous Laplacian function for 3D images, treat the whole 3D images as

a discrete grid, Δ𝑥, Δ𝑦, and Δ𝑧 are the sampling intervals along 𝑥, 𝑦, 𝑧 axis, respectively. For our

3D image data, Δ𝑥 and Δ𝑦 would be pixel length and width, Δ𝑧 is the gap between different image

planes. To build the global Laplacian matrix, we transformed the 3D images into one n-dimensional

vector 𝑣, and the corresponding Laplacian matrix is a large sparse 𝑛 × 𝑛 matrix written as (since

the size of L matrix grows rapidly with 3D images, we take the L matrix for a 3 × 3 2D image for

example):

𝐿 =



𝑐 − 2
Δ𝑥2 − 2

Δ𝑦2

− 1
Δ𝑥2 𝑐 − 1

Δ𝑥2 − 2
Δ𝑦2

− 2
Δ𝑥2 𝑐 − 2

Δ𝑦2

− 1
Δ𝑦2 𝑐 − 2

Δ𝑥2 − 1
Δ𝑦2

− 1
Δ𝑦2 − 1

Δ𝑥2 𝑐 − 1
Δ𝑥2 − 1

Δ𝑦2

− 1
Δ𝑦2 − 2

Δ𝑥2 𝑐 − 1
Δ𝑦2

− 2
Δ𝑦2 𝑐 − 2

Δ𝑥2

− 2
Δ𝑦2 − 1

Δ𝑥2 𝑐 − 1
Δ𝑥2

− 2
Δ𝑦2 − 2

Δ𝑥2 𝑐



(2.10)

where 𝑐 = ( 2
Δ𝑥2 + 2

Δ𝑦2 + 2
Δ𝑧2

). We use mirror technique to deal with boundary pixels.

2.2.2.4 Coefficient K

To determine the appropriate setting of K, we first tested how different K values influence the

result of the local threshold image. As shown in Figure 2.3b, a low value of K generated a binary

13



image that is highly consistent with the selected edge. When K increases, the total threshold image

shifted towards the average value of the selected edges with increasing loss of detail. A relatively

lower K enables the accurate recognition of thin and faint actin filament components, yet is unable

to cover the full width of thick filaments. Conversely, a high K value covers thick actin filaments

with improved accuracy, resulting in a binary image that is less noisy; however, thin and/or faint

filaments tend to be omitted as pseudo-negative pixels (Fig. 2.3b). To overcome this dilemma, we

applied a strategy using a lower and a higher to compute two different threshold images, as well

as binary images, that focuses on thin/faint components and thick components, respectively. Then,

we generated a full outer-join image that contains all cytoskeleton components in these two binary

images. This approach led to improved recognition of actin with varying morphologies (see Fig.

2.3b).

2.2.3 Analysis

Based on the binary image generated by ILEE, we developed an automatic tool to evaluate the

quantitative features of the cytoskeleton. We first extracted the filament skeleton from the binary

image, and then defined 12 indices to fully describe cytoskeleton from geometric, topological, and

statistical aspects.

The skeleton, which is usually the medial axis of the actin filament, plays a vital role in

cytoskeleton analysis. It indicates the growing direction and bundling density of the filament. It

also reflects the topological structure of the cytoskeleton in a straightforward way. An accurate

skeleton is also required to evaluate the filament thickness. To help with the downstream analysis,

we applied the parallel thinning algorithm proposed by [18] to generate the skeleton for our sample

data. The skeletonization algorithm takes a 3D binary image as input and builds an Euler table

to remove surface points in all eight directions simultaneously. So we could obtain reasonable

skeletons with desirable geometric and topological features preserved.

As the last step of our pipeline, cytoskeletal indices are automatically calculated from the

binary image and skeleton generated by ILEE. As a substantial expansion from the previously

defined cytoskeletal indices (e.g., occupancy, skewness, and CV), we propose 12 novel indices
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within 5 classes. In short, these indices describe quantitative features of cytoskeletal morphology

and dynamics, and each of these is critical considerations within the context of complex biological

samples (Fig. 2.1a). It is worth noting that the accuracy of these indices could be enhanced with a

certain level of image post-processing (e.g., oversampling)

Figure 2.6 ILEE thresholding result.

Density: For the index class "density", we developed a novel set of metrics to evaluate linear

density, a feature that measures filament length per unit of 2D/3D space.
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• Occupancy: the frequency of the positive pixels in the binary image 𝐼𝑏 generated by ILEE.

We denote the number of pixels as 𝑁 , the occupancy is written as:

𝑂 (𝐼𝑏) =
∑
𝐼𝑏

𝑁
(2.11)

• Linear Density: the length of filament per unit. Since cytoskeleton in plant cells are shaped

like a cylinder, it is easier to estimate filament length on skeletonized image 𝐼𝑠𝑘 . We use the sum

of the Euclidean lengths of all (graph theory defined) branches obtained by the Skan library [20]

as the total length of the skeletonized filament and divide it by N.

Bundling: For "bundling", we developed two new, highly robust indices referred to as diameter-

by-total DT (diameter TDT) and diameter-by-skeleton DT (diameter SDT), both of which measure

the physical thickness of filament bundles, in addition to the indirect indices: skewness and CV,

which estimate the relative bundling level based on the statistical distribution of fluorescence

intensity.

• Skewness: the probability distribution of the filament pixel value with regarding its mean in

the raw image 𝐼𝑟 . Mathematically, it is defined as:

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1
𝑁 𝑓

∑︁
𝐼𝑏 (𝑥,𝑦)==1

( 𝐼𝑟 (𝑥, 𝑦) − 𝜇
𝜎

)3 (2.12)

where 𝑁 𝑓 is the number of filament pixel numbers, 𝜇 is the mean, and 𝜎 is the standard deviation.

• CV: the coefficient of variance of filament pixels. It could be defined as:

𝐶𝑉 =
𝜎

𝜇
(2.13)

• Diameter TDT: average filament diameter estimated by Euclidean Distance Transform of the

whole binary image. The Euclidean distance transformation map 𝐼𝑑𝑖𝑠 stores the distance from one

filament pixel to its nearest background pixel. For background pixel, its Euclidean distance would

be 0.

• Diameter SDT: average filament diameter estimated by Euclidean Distance Transform on only

filament pixels.
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Connectivity: For the class "connectivity", we proposed two indices: total connected element

and its derived index severing activity, which estimates the severing activities within per unit of

the cytoskeleton. This additional metric assumes that severing generates two visible cytoskeletal

filaments, which is distinguishable from filament depolymerization. This is an important con-

sideration in terms of the biological activity of the cytoskeleton, as it enables the decoupling of

the impact of filament depolymerization and filament severing, key activities of the eukaryotic

actin-depolymerizing factor (ADF) and cofilin family of proteins [21].

• Severing activity: the number of connected components in binary image per unit length of the

filament. So we get the number of connected components, then divide it by the total length of the

filament skeleton to evaluate the severing activity.

Branching: For the class "branching", our algorithm is based on Skan, a recently developed

Python library for the graph-theoretical analysis of the cytoskeleton [20]. To further explore the

relationship between filament morphology and the biological activity of branching, we specifically

designed an additional index, referred to as "branching activity", which we define as the total number

of additional branches emerging from any non-end-point node per unit length of the filament. In

total, this index measures the abundance/frequency of cytoskeletal branching.

• Branching activity: the number of branching point counts per unit length of filament skeleton.

We first classify different types of branches. Only T type with three branches at one node and X

type with four branches at one node is considered a non-end node. We only collect T-type nodes

and X-type nodes and then divide the number by the total length of the filament skeleton.

Local anisotropy: Finally, our library is capable of estimating the level of directional cytoskele-

tal growth by indexing local anisotropy, which measures how the directionality of local filaments.

We generate both numerical and visual output (Fig. 2.1c).

We performed a local averaging of filament alignment tensor, which is constructed as follows.

First, we calculate the unit direction vector for each straight filament segment 𝑑𝑖. Then, the

covariance matrix for each segment is obtained from the following equation:

𝑡𝑖 = 𝑑𝑖𝑑
𝑡
𝑖 (2.14)
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This rank-3 tensor is independent of the orientation of the filament segment, and can thus be

averaged over a region containing a collection or unoriented line segments. We weigh each filament

tensor in a circular/spherical local region by the length of every filament to produce a smoothed

tensor field. The tensor field is written:

𝑡 =

∑
𝑖∈𝑆 𝑤𝑖𝑡𝑖∑
𝑤𝑖

(2.15)

where t is the averaged tensor for the local region 𝑆. We calculate the eigenvectors and

eigenvalues of t to describe the anisotropy for region 𝑆. The eigenvector corresponding to the

largest eigenvalue indicated the primary orientation of filaments in this region as shown in Fig.

2.5. The difference between the maximum and the minimum eigenvalues is an indicator of the

anisotropy in this region. If all the eigenvalues are the same, the indicator is 0, which implies an

isotropic region with filaments growing towards random directions. If the eigenvalues other than

the maximum are all nearly 0, all the filaments in this region are parallel to each other. In this case,

they are all aligned with the maximum eigenvector, the dominant filament direction of this region.

2.3 Result

We designed a series of experiments to demonstrate the advantages of ILEE over traditional

methods. We showed that ILEE could achieve high accuracy and stability over various samples.

ILEE achieves high accuracy over actin images. we constructed a dataset of actin images

from Arabidopsis leaves with diverse morphology and compared ILEE with numerous traditional

global and local thresholding algorithms. We also followed the traditional MGT pipeline asking

some independent scientists with rich cytoskeleton analysis experience to manually set a global

threshold for each sample and compared ILEE with the MGT result.

To evaluate the accuracy of each algorithm in terms of filament segregation, we manually

generated the ground truth binary image from each sample, using a digital drawing monitor

(Fig. 2.6a, ground truth). We used each of the ground truth binary images as a reference and

compared the filament architecture obtained by ILEE, MGT, and 6 additional adaptive thresholding

algorithms. These additional thresholding algorithms include Otsu[22], Triangle[23], Li[24],

Yan[25], Niblack[16], and Sauvola[26] (Fig. 2.6). As an additional element of rigor, because
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Figure 2.7 Quantitative analysis of cytoskeleton.

pseudo-positive pixels can be obtained due to user bias during the generation of the ground truth

images (even when the operator is experienced in the actin imaging field), we further analyzed and

categorized each non-connected component of pseudo-positive pixel by its shape and connectivity

to matched elements, and identified the actin-like pseudo-positive pixels as possible real actin
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components.

As shown in Fig. 2.6a (visualized demonstration), 2.6b (quantitative analysis), and 2.6c (bias

analysis), ILEE offers superior performance, with the highest rate of accuracy with low pseudo-

positive and pseudo-negative rates, as well as the lowest bias over local filament thickness. It is

noteworthy, however, that the adaptive global thresholding approaches (from Otsu to Yan) tend to be

relatively accurate when judging the thick and bright bundles of the cytoskeleton. However, these

approaches are unable to capture faint filaments, and as a result, generate a high pseudo-negative

rate. Conversely, both adaptive local thresholding approaches, Niblack and Sauvola, generate

numerous block-shaped pseudo-positive elements and fail to capture the near-edge region of thick

filaments. For MGT and Li method, although they showed satisfactory match rate, as well as lower,

averaged pseudo-positive/negative rates, their performance is far less stable than ILEE (Fig. 2.6b).

As the next step in our analysis, we evaluated the accuracy and stability of cytoskeletal indices

using ILEE versus other commonly used imaging algorithms. To do this, we first evaluated the

ground truth indices from the manually generated binary images. In brief, quantitative measure-

ments were collected from all methods and normalized by the relative fold to the result generated

from the corresponding ground truth image. As shown in Fig. 2.6d, ILEE showed improved

stability compared to all other quantitative approaches and the highest accuracy for occupancy,

skewness, CV, and diameter.

However, we did observe that in terms of the morphology-sensitive indices (i.e., linear den-

sity, severing activity, and branching activity), the ILEE algorithm did not fully conform with

data collected from the ground truth binary images. ILEE generated stable yet dramatically lower

output compared to those derived from ground truth images (Fig. 2.6. Upon further inspection,

we determined that this is because the manually portrayed ground truth images and ILEE results

showed different tendencies in judging the pixels in the narrow areas between two bright filaments.

Theoretically, human eyes could "hallucination" imaginary filaments that do not statistically exist.

There are no criteria to assess which one is more accurate so far. Compare to other approaches,

many displayed obvious, somewhat predictable, inaccuracies, the MGT and Li methods still gen-
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erated satisfactory results, which echoes their performance in actin segmentation. However, the

performance of these two algorithms among diverse and complex biological samples was not as

stable as ILEE.

In order to further evaluate the stability and robustness of ILEE performance, we continued

to analyze the variance coefficient of all groups (Supplemental Fig. 10), uncovering that ILEE

is the only approach that simultaneously maintained high accuracy and stability. Next, we tested

the robustness of ILEE and other approaches against noise signal disturbance by adding different

levels of Gaussian noise to the image dataset (Supplemental Figs. 11-13). Using this approach, we

observed that ILEE is still the best performing algorithm, maintaining stable and accurate results of

image binarization and cytoskeleton indices against increasing noise. Taken together, these results

demonstrate that ILEE has superior accuracy, stability, and robustness over MGT and other classic

automated image thresholding approaches in terms of both cytoskeleton segmentation and index

computation.

ILEE helps discover new features in response to bacterial infection. Our primary impetus

for the creation of the ILEE algorithm was to develop a method to define cytoskeleton organization

from complex samples, including those during key transitions in cellular status. For example,

our previous research has demonstrated that the activation of immune signaling is associated

with specific changes in cytoskeletal organization[27, 28]. Complementary to these studies, other

research identified the temporal and spatial induction of changes in the cytoskeletal organization as

a function of the pathogen (e.g., Pseudomonas syringae) infection and disease development[29, 30].

The sum of these studies, which broadly applied MGT-based quantitative analysis of cytoskeleton

architecture, concluded that virulent bacterial infection triggers elevated density (by occupancy) yet

induced no changes in filament bundling (by skewness) in the early stages of infection. Since one of

our major motivations herein was to develop an ILEE-based toolkit supported by novel cytoskeletal

indices to investigate the process of pathogen infection and immune signaling activation, we

collected raw data from a previous study[31] describing a bacterial infection experiment using

Arabidopsis expressing an actin fluorescence marker (i.e., GFP-fABD2), followed by confocal
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imaging and data analysis by ILEE as well as MGT conducted by three independent operators

with rich experience in actin quantificational analysis (Fig. 2.7). Additionally, because researchers

sometimes apply a universal global threshold to all images from a batch of biological experiments

to avoid tremendous labor consumption, we included this approach and aimed to observe its

performance as well. In this experiment, the only categorical variant is whether sampled plants

are treated with bacteria (EV) or not (mock). In total, nine indices that cover features of density,

bundling, severing, branching, and directional order are measured and compared.

Our first concern is whether bias generated by MGT will influence the result and conclusion

generalized from raw image samples of the experiment. We thereby analyzed the correlation of

individual MGT values set by the three operators and found only a weak correlation between

different operators (Fig. 2.7b), which indicates MGT bias indeed has the potential to impact

quantitative results. Interestingly, while minor statistical discrepancies between MGTs by different

operators are found in some indices (i.e., skewness and severing activity), most of the MGT results

(both adaptive or fixed) shows the same trend as 2D ILEE, yet with far higher standard deviation, or

lower stability (Supplemental Fig. 14a) over a certain biological treatment. This indicates that the

historical data based on MGT should be majorly trustworthy despite the biased single data points,

but an accurate conclusion must be based on a high sampling number that balances the deviation of

individuals. Since ILEE provides more stable results over biological repeats, we are also interested

in whether it renders higher statistical power to identify potential significant differences. Therefore,

we compared the p-values of t-tests conducted for each index (Supplemental Fig. 14b) and found

that ILEE indeed has the superior statistical power to distinguish numerical differences over datasets.

We believe this demonstrates ILEE as a better choice for actin segregation.

Next, we attempted to understand whether different indices of the same class, particularly

density and bundling, can reflect the quantitative level of the class in accordance, or instead show

inconsistency. For density, we correlated the occupancy and linear density values of all methods

over actin images of both mock and EV groups and found that occupancy and linear density

measurements are in high conformity, with a Pearson coefficient at 0.98 (Supplemental Fig. 15).

22



Interestingly, while both demonstrate a high positive correlation, 2D ILEE and MGT do not share the

same numeric relationship. Moreover, 3D ILEE has a weaker correlation, potentially due to cavities

introduced by the skeleton image involved in linear density calculation. For bundling indices, we

were interested in their level of conformity because direct indices (based on binary shape) and

indirect indices (based on relative fluorescence intensity) are completely different strategies to

measure bundling. Using the same approach of correlating analysis, we found that diameter_TDT

and diameter_SDT indeed display strong positive correlation, while skewness and CV have merely

medium-low correlation, which echoes the previous report demonstrating skewness and CV have

different performance on the bundling evaluation. Unexpectedly, we also found that CV (as a

representative of indirect indices) and diameter-SDT (as a representative of direct indices) have a

striking correlation of zero. This is perplexing, as it raises the question of whether skewness or CV

should be regarded as an accurate measurement of bundling (see Discussion). This discrepancy is

also reflected by the result of 3D ILEE, whose CV and diameter-SDT over mock versus EV reveals

the converse results at the significant difference. In general, we believe the biological conclusion

that DC3000 treatment renders increased actin bundling level should be reconsidered with further

inspection.

Last but not least, we sought to learn if additional features of plant actin cytoskeletal dynamics

in response to virulent bacterial infection can be identified by the newly introduced indices and

enhanced performance of ILEE. As shown in Fig. 2.7d, we observed significantly increased

severing activity, local anisotropy, and decreased branching activity triggered by EV compared

to the mock. At a minimum, these discoveries potentially lead to new biological interpretations,

and as a result, may contribute to the identification of additional immune-regulated processes as

a function of actin dynamics. However, while most of the 2D approaches were consistent and in

agreement with the other indices, the severing activity estimated by 3D ILEE indicates a significant,

but opposite, conclusion. After diagnosing the difference of each 2D ILEE and 3D ILEE sample,

we concluded this is potentially due to information loss and misinterpretation by z-axis projection

in the 2D-based approach. Therefore, we do not recommend totally depending on the 2D model
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for the analysis of filament severing at the current stage and wish to gather more insight from the

community in the future.

ILEE is compatible with various sample types. Cytoskeleton imaging from live plant samples

is arguably one of the most difficult types of images to evaluate due to the dynamic topology and

uneven brightness of actin filaments. While we demonstrated that ILEE shows superior performance

over plant actin samples, ILEE and the ILEE_CSK library are generally designed for non-specific

confocal images of the cytoskeleton and are therefore applicable to other types of samples. To

investigate the compatibility of ILEE to other types of image samples, we tested ILEE on both plant

microtubules35 and animal cell actin images (Supplemental Fig. 16). Importantly, we found ILEE

can process, with high fidelity and accuracy, both plant and animal cytoskeletal features. This is

encouraging, as animal cells generally possess a high volume of straight actin filament bundles,

and therefore Hough transform-based feature detection is commonly applied to facilitate and/or

enhance the performance of cytoskeleton segregation accuracy. However, this approach has certain

limitations; specifically, they neglect and/or miscalculate curvy cytoskeleton fractions11,12. With

the advancement of ILEE, Hough transform will not be absolutely necessary, and the potential

cytoskeleton indices that rigorously require Hough transform can still utilize ILEE as a provider of

binary image input for more accurate results.

In addition, we found that images of a single animal cell sometimes contain "void background"

areas that are truly blank without any cellular component. This is different from plant tissue whose

total image field is sample area, which may negatively influence the accuracy of the computed

indices. To solve this issue and further support the animal cell sample, we developed a single-cell

mode in the ILEE_CSK, which identifies the effective cell area using the statistical features of the

brightness histogram and hence secures accurate index output. While ILEE was already tested on

both plant and animal image samples, we would like to encourage researchers in the community

to report issues (https://phylars.github.io/ILEE\_CSK/Help\%20needed/) where ILEE

cannot segregate cytoskeleton correctly to help us improve the compatibility of ILEE and the

ILEE_CSK library.
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2.4 Conclusion and Future work

While ILEE has already remedied many disadvantages of traditional methods such as MGT,

we are still working to further advance the ILEE approaches presented herein. Our goal is to

ultimately arrive at a method that not only improves upon our currently described actin segmentation

algorithms but also integrates time and space to describe a 4D model of cytoskeleton dynamics, as

well as general cellular processes tractable by microscopy. As such, we offer the following as an

initial list of potential upgrades and applications to be integrated into our library:

ILEE compatibility to x-y-t and x-y-z-t data, where t represents time. We are in the process of

developing a 4D-compatible analysis of cytoskeletal dynamics that tracks filament organization over

time. This approach will provide a temporal evaluation of supported indices with high accuracy

and robustness.

Deep learning-based cytoskeleton segmentation algorithm with "foreign object" removal. As

presented herein, ILEE enables the generation of trustworthy binary images on a large scale,

which enables the construction of deep learning models to identify cytoskeleton components from

confocal images with potentially better performance. The deep learning-based approach is also the

key to solving the ultimate problem of all current cytoskeleton segmentation algorithms (including

ILEE), which is the inability to detect and erase non-cytoskeleton objects with high fluorescence,

such as the nucleus and cytoplasm. As one approach to circumvent this limitation
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CHAPTER 3

SPHERICAL HARMONICS AND SHADOW MAPS FOR FACE RELIGHTING

3.1 Introduction

Face relighting is the problem of turning a source image of a human face into a new image

of the same face under the desired illumination different from the original lighting. It has long

been studied in computer vision and computer graphics and has a wide range of applications in

face-related problems such as face recognition [32] as well as in entertainment. With the everlasting

interest in consumer photography and photo editing, the ability to produce realistic relit face images

will remain an important problem.

Many existing face relighting models utilize intrinsic decomposition of the image into face

geometry, lighting, and reflectance [33, 34, 35, 36, 37, 32, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

The source image is then relit by rendering with a novel illumination. Other relighting methods

employ image-to-image translation [48, 49, 34] or style transfer [50, 51, 52, 53].

For most face relighting applications, one important requirement is the preservation of the

subject’s local facial details during relighting. Intrinsic decomposition methods often compromise

high-frequency details and can leave artifacts in the relit face images due to geometry or reflectance

estimation errors. Another essential feature of a desirable face relighting model is proper shadow

handling. For entertainment, in particular, adding and removing shadows accurately is crucial in

producing photorealistic results. Most existing relighting methods, however, do not model hard

self-cast shadows caused by directional lights.

Our proposed method uses an hourglass network to formulate the relighting problem as a ratio

(quotient) image [54] estimation problem. In particular, the ratio image estimated by our model can

be multiplied with the source image to generate the target image under the new illumination. Such

an approach allows our relighting model to maintain the local facial details of the subject while

adjusting the intensity of each pixel during relighting. Thus, we employ a ratio image estimation

loss to enable ratio image learning, as well as a structural dissimilarity (DSSIM) loss based on the

structural similarity metric (SSIM) [55] to enhance the perceptual quality of relit faces. In addition,
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we incorporate PatchGAN [56] to further improve the plausibility.

During training, we generate and leverage shadow masks, which indicate estimated shadow

regions for each image using the lighting direction and 3D shape from 3D Morphable Models

(3DMM) [57] fitting. The shadow masks enable us to handle shadow through weighted ratio image

estimation loss. We place a higher emphasis on the pixels close to shadow borders in the source

and target relighting images, with larger weights placed on borders of high-contrast cast shadows

over soft ones. This simple strategy allows learning how to accurately add and remove both hard

and soft shadows under various relighting scenarios.

Our training process can leverage images with both diffuse and directional lighting across

multiple datasets, which improves our ability to handle diverse lighting and generalize to unseen

data over methods that only train on a single dataset [48, 34, 49]. To enable this, we use our shadow

masks to estimate the ambient lighting intensity in each image and modify our lighting to account

for differences in ambient lighting across images and datasets. Thus, our model accommodates

differences in the environment between images in controlled and in-the-wild settings.

Our proposed method has three main contributions:

⋄ We propose a novel face relighting method that models both high-contrast cast shadows and

soft shadows, while preserving the local facial details.

⋄ Our technical approach involves single image-based ratio image estimation to better preserve

local details, shadow border reweighting to handle hard shadows, and ambient light compensation

to account for dataset differences.

⋄Our approach achieves the state-of-the-art relighting results on two benchmarks quantitatively

and qualitatively.

3.2 Related Work

Face Relighting Among prior face relighting work, many conduct relighting via intrinsic de-

composition and rendering [33, 34, 35, 36, 37, 32, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]: the source

image is decomposed into face geometry, reflectance, and lighting, and recombined with modified

lighting to render relit images. As the decomposition generally relies heavily on single image
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Figure 3.1 Overview of our proposed method.

face reconstruction, which remains largely an open problem, these methods tend to produce results

that lack high-frequency detail found in the source image and contain artifacts from geometry and

reflectance estimation error. Our method bypasses this issue by avoiding intrinsic decomposition

entirely and estimating a ratio image instead. The ratio image only affects the intensity of each

pixel in the source image in a smooth way aside from shadow borders, thus preserving the local

facial details of the subject.

Other relighting methods do not perform explicit intrinsic decomposition. Sun et al. [48] use

image-to-image translation to produce high-quality relighting. However, their results deteriorate

when the input image contains hard shadows or sharp specularities, or when presented with strong

directional light. Zhou et al. [49] assume a spherical harmonics (SH) lighting model and estimate

the target luminance from the source luminance and a target lighting. However, their model is

trained on images with primarily diffuse lighting and thus only handles soft shadows. We train

our model on a mixture of images with diffuse and strong directional light. We also assign a

larger emphasis on learning the ratio image near the shadow borders of high-contrast cast shadows.

Hence, our model handles shadows effectively.

Some methods relight using a style transfer approach [50, 51, 52, 53] by transferring the

lighting conditions of a reference image as a style to a source image. However, since they require a
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reference image for each unique target lighting, they are less flexible to use in practice. Our model

only requires a source image and a target lighting as input.

Ratio Images in Face Relighting Prior face relighting methods that incorporated ratio images

often require multiple images per subject as input [54, 58] or both the source and target images [59],

limiting their real-world applicability. Wen et al. [60] propose the first work on single image face

relighting with ratio images, by estimating the ratio between the radiance environment maps.

But they use a fixed face geometry with manually labeled feature correspondences while only

considering diffuse reflections. We instead estimate the ratio image between the source and target

images and thus can directly produce non-diffuse relighting without resorting to a face mesh.

Zhou et al. [49] use a ratio image-based algorithm to synthesize their Deep Portrait Relighting

(DPR) training data. Our work is the first ratio image-based face relighting method that can model

non-diffuse relighting effects, including shadows caused by strong directional lights while requiring

only one source image and a target lighting as input.

3.3 Method

3.3.1 Pipeline

Our model takes a source image and a target lighting as input and outputs the relit image under

the target lighting along with the estimated source lighting. We represent the source and target

lighting as the first 9 Spherical Harmonics (SH) coefficients. We adopt the hourglass network

structure [49], but rather than directly estimating the target luminance, we instead estimate the

ratio image between the input and target luminance. Similar to [49], our model only modifies

the luminance channel: they use the Lab color space and estimate the target luminance before

recombining with the source image’s a and b channels to generate the relit image, whereas we

estimate the ratio image for the 𝑌 channel of the YUV color space. The 𝑌 channel of the target

image is then computed by multiplying the estimated ratio image with the 𝑌 channel of the source

image, which is then recombined with the U and V channels of the source image and converted to

RGB to produce the final relit image.
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3.3.2 Training Losses

We employ several loss functions to estimate ratio images that preserve high-frequency details

while capturing significant changes around shadow borders.

To directly supervise the ratio image learning, we employ the following ratio image estimation

loss 𝐿ratio:

𝐿ratio =
1
𝑁
∥ log10(R𝑝) − log10(R𝑡)∥1. (3.1)

Here, R𝑝 and R𝑡 are the predicted and ground truth ratio images, respectively, and 𝑁 is the number

of pixels in the image. Defining the loss in the log space ensures that ratio image values of 𝑟 and 1
𝑟

receive equal weight in the loss.

We have two additional loss functions that place a higher emphasis on the ratio image estimation

near the shadow borders of the source and target images. The shadow border ratio image loss 𝐿i,border

is defined as:

𝐿i,border =
1
𝑁i

∥W𝑖 ⊙ (log10(R𝑝) − log10(R𝑡))∥1, (3.2)

where 𝑖 is 𝑠 or 𝑡 denoting the source or target respectively, and ⊙ is element multiplication. W𝑠

and W𝑡 are per-pixel weights that are element-wise multiplied with the per-pixel ratio image error,

enabling our model to emphasize the ratio image estimation at or near shadow borders. 𝑁s and 𝑁t

are the number of pixels with nonzero weights in W𝑠 and W𝑡 respectively. See Sec. ?? for details

on W𝑠 and W𝑡 .

We also supervise the source lighting estimation using the loss term 𝐿lighting defined as:

𝐿lighting = ∥ℓ𝑝 − ℓ𝑠∥2, (3.3)

where ℓ𝑝 and ℓ𝑠 are the predicted and ground truth source lighting, represented as the first 9 SH

coefficients.

Similar to [49], we define a gradient consistency loss 𝐿gradient to enforce that the image gradients

of the predicted and target ratio images (R𝑝 and R𝑡) are similar, and a face feature consistency loss

𝐿face to ensure that images of the same subject under different lighting conditions have the same
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face features. 𝐿gradient preserves the image edges and avoids producing blurry relit images. 𝐿face

further preserves the local facial details of the subject during relighting.

To enhance the perceptual quality of our relit images, we employ two PatchGAN [56] discrim-

inators: one operates on 70 × 70 and the other on 140 × 140 patches. We train the discriminators

jointly with the hourglass network using the predicted luminance as fake samples and the target

luminance as real samples. We denote this loss as 𝐿adversarial.

Finally, similar to [34], we define a structural dissimilarity (DSSIM) loss 𝐿DSSIM between R𝑝

and R𝑡 as:

𝐿DSSIM =
1 − SSIM(R𝑝,R𝑡)

2
. (3.4)

Our final loss function 𝐿 is the sum:

𝐿 = 𝐿ratio + 𝐿sborder + 𝐿tborder + 𝐿lighting + 𝐿gradient + 𝐿face + 𝐿adversarial + 𝐿DSSIM. (3.5)

We use coefficients to balance all the terms in the loss function.

3.3.3 Shadow maps

Spherical harmonics has long been used for diffuse and ambient lighting in Computer Graphics.

SH lighting is a way to calculate the illumination on 3D models from image-based lighting sources

in order to enable you to catch, relight and display global illumination style images. Spherical

harmonics are camera-independent and require relatively low computational effort.

Spherical harmonics are the specific function defined on a unit sphere. They could be obtained

by solving partial differential equations specifically Laplace’s equation in the spherical domains.

Since spherical harmonics form a complete set of orthogonal functions, any function defined on the

surface of a sphere could be represented as the linear combination of spherical harmonics. All SH

lighting techniques involve representing lighting equations with spherical functions that have been

projected into frequency space using the spherical harmonics as a basis. Spherical harmonics have

been commonly used in modeling illumination for Lambertian reflectance. Previous work [49]

uses SFS network to estimate the SH coefficients. Since we are aware of either the light direction

or the point light position for our datasets, we could calculate SH coefficient numerically to avoid
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Figure 3.2 Shadow Masks and Weights. (a) input image, (b) shadow mask, (c) shadow border
weights (intensity proportional to weights).

the estimation error produced by the neural network. We propose a method to estimate precise

SH coefficients. We first create an environment map on a unit sphere according to the lighting

condition, and then we project the environment map to SH basis to generate the SH coefficients for

our dataset. The environment map is reduced to the first nine SH coefficients since high-frequency

lighting details are not required in our case.

SH basis: The spherical harmonics𝑌𝑚
𝑙
(𝜃, 𝜙) are the angular portion of the solution to Laplace’s

equation in spherical coordinates. Spherical harmonics take their simplest form in the Cartesian

coordinate system. They can be defined as homogeneous polynomials of degree 𝑙, order 𝑚 at
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(𝑥, 𝑦, 𝑧) that satisfy Laplace’s equation. The set of real spherical harmonics are written as:

𝑌0
0 =

1
2

1
√
𝜋

𝑌−1
1 =

1
2

√︂
3
𝜋

𝑥√︁
𝑥2 + 𝑦2 + 𝑧2

𝑌0
1 =

1
2

√︂
3
𝜋

𝑧√︁
𝑥2 + 𝑦2 + 𝑧2

𝑌1
1 =

1
2

√︂
3
𝜋

𝑦√︁
𝑥2 + 𝑦2 + 𝑧2

𝑌−2
2 =

1
2

√︂
15
𝜋

𝑥𝑦

𝑥2 + 𝑦2 + 𝑧2

𝑌−1
2 =

1
2

√︂
15
𝜋

𝑦𝑧

𝑥2 + 𝑦2 + 𝑧2

𝑌0
2 =

1
4

√︂
5
𝜋

−𝑥2 − 𝑦2 + 2𝑧2

𝑥2 + 𝑦2 + 𝑧2

𝑌1
2 =

1
2

√︂
15
𝜋

𝑧𝑥

𝑥2 + 𝑦2 + 𝑧2

𝑌2
2 =

1
2

√︂
15
𝜋

𝑥2 − 𝑦2

𝑥2 + 𝑦2 + 𝑧2

(3.6)

where (x,y,z) is the unit vector on the unit sphere.

Environment map: Similar to [61], we model our light as a Gaussian light (where mean

position 𝜇 is the light position in camera coordinates and standard deviation 𝜎 = 8◦). Then we

project the light to a unit sphere centering at origin to generate a 256 × 128 environment map. The

pixel intensity of the environment map is defined as:

𝐼 (𝜃, 𝜙) =


0 𝜃 > 90◦

𝑒
− 𝛼2

2𝜎2 0◦ ≤ 𝛼 ≤ 90◦
(3.7)

where 𝛼 is the angle between the light direction and the unit vector of inclination 𝜃 and azimuth

𝜙. 𝜎 is 8◦ for the Gaussian lighting distribution.

We discretize the SH basis to the same size as our environment map. To get the SH coefficients,

we project the environment map onto the basis function and integrate it over the surface of the unit
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sphere. The formula of 𝑖-th coefficient is written as:

𝛼𝑖 =

∫ 2𝜋

0

∫ 𝜋

0
𝑌𝑖 (𝜃, 𝜙)𝐼 (𝜃, 𝜙)𝑠𝑖𝑛𝜙 𝑑𝜙 𝑑𝜃 (3.8)

where𝑌𝑖 (𝜃, 𝜙) is the 𝑖-th SH basis function at the element of (𝜃, 𝜙), 𝐼 (𝜃, 𝜙) is the corresponding

intensity value on environment map.

The discrete form is:

𝛼𝑖 =
∑︁∑︁

𝑌𝑖 (𝜃, 𝜙)𝐼 (𝜃, 𝜙)𝑠𝑖𝑛𝜙 (3.9)

Ambient light: Since ambient light is inconsistent across images, especially between light

stage and in-the-wild images, we introduce a method to estimate ambient light using the shadow

mask. Since only ambient light contributes to shadowed regions, we use the average intensity of the

shadow pixels as an estimate of the ambient light intensity in the image. To sum the contributions

of directional and ambient light, we first model each image’s directional light as a point light and

estimate the corresponding 9 SH coefficients. We then add the estimated ambient light intensity to

the 0th SH coefficient, which represents overall light intensity.

Since SH coefficients provide us with the overall global illumination without high-frequency

details. Shadow mask is a necessary step to incorporate 3D geometric information and guide the

neural network to learn how to remove and add shadows. We create shadow masks for all training

images using the lighting direction and the 3D face mesh offered by 3DMM fitting. We estimate

the 3D mesh, transformation matrix, and camera matrix for each face. To generate the shadow

mask, we utilize ray tracing algorithm to cast parallel rays along the z-axis towards the mesh. If

the ray hits the face, we check for two kinds of shadows at the intersection point: self shadows and

cast shadows. Portions of the face between the light source and the intersection point will block the

light and cast a shadow. To determine if the point lies in a cast shadow, we cast a ’́shadow feeler”

ray from the intersection point to the light source [62]. If the ray hits the surface, the intersection

point is in a cast shadow. To determine if the point lies in self shadow, we compute the angle

between the light source’s direction and the surface normal of the intersection point. If the angle

is obtuse, the light hits the back of the surface and the kind of shadow is considered self shadow.
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Method Si-MSE MSE DSSIM
SfSNet [33] 0.0545 0.1330 0.3151
DPR [49] 0.0282 0.0702 0.1818
Our model 0.0220 0.0292 0.1605

Table 3.1 Relighting Performance Using Target Lighting on Multi-PIE. We compare our relighting
performance against prior methods that take a source image and a target Spherical Harmonics
lighting as input. Our method is able to outperform previous work across all three metrics.

Method Si-MSE MSE DSSIM
Shih et al. [50] 0.0374 0.0455 0.2260
Shu et al. [53] 0.0162 0.0243 0.1383

Our model 0.0148 0.0204 0.1150

Table 3.2 Lighting Transfer Evaluation on Multi-PIE. We compare our lighting transfer performance
against two existing lighting transfer algorithms. Each input image is assigned a random reference
image. Our model outperforms both approaches across all three metrics.

If the intersection point is either in a cast shadow or self shadow, we assign 0 to the corresponding

pixel. Otherwise, the pixel is illuminated and is 1 in the shadow mask.

Border weights: We reweight our ratio image estimation loss to assign larger weights to pixels

near the shadow border. Higher-contrast hard shadows should have a higher weight than lower-

contrast soft shadows, which pushes the neural network to put more emphasis on learning the

shadow boundary accurately.

3.4 Result

3.4.1 Dataset

We train our model using images from two datasets, one with mostly diffuse lighting and one

with strong directional lights. Our diffuse lighting dataset is the Deep Portrait Relighting (DPR)

dataset, where we use the same training images as [49]. Our dataset with strong directional lighting

is the Extended Yale Face Database B [63], which contains 16, 380 images of 28 subjects with 9

poses and 65 illumination conditions (64 distinct lighting directions and one ambient lighting).
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(a) Source Image (b) Target Image (c) Our model (d) DPR [49] (e) SIPR [48] (f) SfSNet [33]

Figure 3.3 Qualitative Relighting Results on Multi-PIE Using Target Lighting. Here, we compare
our relighting results on Multi-PIE with prior work that takes a source image and a target lighting
as input. Images for SIPR [48] are provided by the authors. Notice that our model produces
significantly better cast shadows, especially around the nose than previous methods.

(a) Source Image (b) Reference Image (c) Target Image (d) Our model (e) Shih et al. [50] (f) Shu et al.[53]

Figure 3.4 Qualitative Lighting Transfer Results on Multi-PIE. Here, we compare our lighting
transfer results with two baselines by estimating the target lighting from the reference image.
Images [53] are provided by the authors. Notice that our model is able to produce the correct
lighting, whereas [50] produces the wrong lighting. Both baselines also strongly alter the skin tone
of the subjects, whereas our method is able to maintain their skin tone reasonably well.

3.4.2 Quantitative Evaluation

We compare our model’s relighting performance with prior face relighting work on the Multi-

PIE dataset [64], where each subject is illuminated under 19 different lighting conditions (18 images

with known directional lights, one image with no directional lighting).

Relighting Evaluation Using Target Lightings. We compare against prior relighting methods
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(a) Source Image (b) Target Lighting (c) Our model (d) DPR [49] (e) SIPR [48] (f) SfSNet [33]

Figure 3.5 Qualitative Relighting Results on FFHQ Using Target Lighting. We compare our
relighting results on FFHQ subjects with prior work. Images for SIPR [48] are provided by the
authors. Across all lighting conditions, our model produces better cast shadows than prior work,
especially around the nose and eyes.

[49, 33] that take a source image and a target lighting as input. For each subject and each session,

we randomly select one of the 19 images as the source image and one image as the target image,

which serves as the relighting groundtruth. The target image’s lighting is then used to relight the

source image. This leads to a total of 921 relit images. We evaluate the relighting performance

using three error metrics: Si-MSE [49], MSE, and DSSIM. The results are shown in Table 3.1.

Relighting Evaluation Using Reference Images. We also compare our model’s performance

against relighting methods that require both a source and a reference image as input [50, 53]. These
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methods relight the source image by transferring the reference image’s lighting to the source. For

each Multi-PIE image, we randomly select a reference image across all subjects from the dataset

and estimate the target lighting from the reference image. We then relight the source image using

the estimated target lighting. The results are shown in Table 3.2.

Facial Detail Preservation Evaluation. To compare our model’s ability to preserve the subject’s

local and global facial details during relighting with prior work, we compute the average cosine

similarity of the VGG-Face [65] features of the relit and groundtruth Multi-PIE images across

different layers of VGG-Face. In particular, we use the layer before each max-pooling layer in

VGG-Face. The results of the evaluation are shown in Fig. 3.6. Our model achieves noticeably

higher cosine similarity than prior work in earlier layers and is comparable or slightly better than

prior work in later layers, indicating that our model is better at preserving local facial features than

previous methods.

3.4.3 Qualitative Evaluations

Figure 3.6 Facial Detail Preservation Evaluation on Multi-PIE. We compute the cosine similarity
between the VGG-Face [65] features of each method’s relit images and the ground truth target
images as a measure of their ability to preserve the subject’s local and global facial details during
relighting. Notice that our method is consistently the best at preserving local features based on the
cosine similarity in the earlier layers.
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We demonstrate qualitative relighting results on the Multi-PIE [64] dataset and the FFHQ

dataset [66] and compare them with prior work.

On Multi-PIE, we include relit images using target lighting (See Fig. 3.3) as well as relit images

produced from lighting transfer (See Fig. 3.4). When applying target lighting, our model is able to

produce noticeably better cast shadows than DPR [49], SIPR [48], and SfSNet [33]. Our model also

avoids overlighting the image, whereas [49] often produces images that appear overexposed. When

performing lighting transfer, Shih et al. [50] is unable to produce the correct lighting whereas our

model is able to estimate and transfer the correct target lighting.

On FFHQ, we perform relighting using target lighting and compare it with previous approaches

(See Fig. 3.5). Our approach handles cast shadows better than prior work, as seen by the shadows

around the nose, eyes, and other regions, while also maintaining similar or better visual quality in

the relit images.
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CHAPTER 4

NERF HEAD

4.1 Introduction

Building free-view human head avatars is a long-standing research topic in the computer

vision, computer graphics, and machine learning communities. Such avatars are crucial in various

VR/AR applications, in particular, in facial animation for teleconferencing, social media apps,

movie/animation production, and game industry. One common approach in previous methods is

to use 3D morphable models (3DMM) to approximate the human head geometry and thus provide

access to head poses and facial expressions. The deformation of the 3DMM is often driven by a

low dimensional parameter space such as PCA-based features. By changing the parameters of the

expression/pose/identity in this space, we could articulate the 3D template shape with characteristics

of specific individuals.

However, the 3D reconstruction based on 3DMM usually lacks details even with the appearance

modeled through texture mapping, due to the limitation in resolution and the restriction in feature

space dimension for template-based 3D explicit representations that are efficient enough for real-

time rendering. The model is typically merely capable of building a head mesh without hair or more

often just a face mesh. It could not model hair and head accessories with complex geometric and

topological features, like glasses and earrings, which are typically present in real life. Moreover,

it remains a challenging problem to separately generate photorealistic view-dependent textures for

3DMM shapes, leading to difficulties in realistic rendering of human head images using simple

illumination models. A concurrent work, Neural Head[67], creates a relatively accurate dynamic

mesh including the explicit geometric modeling of hair and accessories along with the corresponding

textures. However, rendering quality of the resulting model-based images seems still lower than

that of implicit models with image-based rendering when sufficient input images are provided for

training.

Image-based rendering is another major approach for rendering generic digital scenes, including

human heads, which can be carried out without any explicit mesh-based geometric models. For
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instance, implicit volumetric representations such as Neural Radiance Fields (NeRF)[68], have

been successfully employed for rendering various scenes with increasing popularity. Radiance

fields can sample the radiance value at an arbitrary spatial point along an arbitrary direction within

a certain range, thus allowing assembly output images from any camera location with any view

direction within the range. In particular, NeRF learns an implicit volumetric density and RGB color

field by fitting the rendered output to given input images from different views. With the implicit

neural radiance field, one may directly generate photo-realistic renderings by assembling rays from

the projection center to the image plane of any virtual camera, without any geometric modeling

of object surface or a texture mapping. The perceived geometric and appearance details of NeRF

results are hard to match for explicit methods like 3DMM. Moreover, some NeRF models also

offers realistic relighting.

There are a number of existing works that investigated the possibility of applying NeRF to

render humans. For instance, EG3D[69] used three orthogonal planes to create an efficient NeRF

representation, but it is not straightforward to generalize the model to handle the dynamic case when

the face is deforming. Some approaches [70, 71] tried to combine NeRF with 3DMM parameters,

but without the 3D shape guidance, they require a relatively large number of input images to learn

the 3D neural field.

Inspired by Neural Body[72] (which use NeRF to model full-body animation under the guidance

of a deforming mesh) we propose a hybrid approach that combines the mesh representation with

an implicit volumetric rendering to create photo-realistic results. This is done through a latent

code stored on a dynamic mesh driven by expression and pose parameters, with the deformable

shape embedded in an ambient volume. In contrast to Neural Body input, which has multiple views

(although sparse), we present a method for face avatar that may take single view input and is able

to reduce the input frames required for training significantly.

Our main contributions include:

• a 3DMM mesh-based NeRF pipeline for faces;
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• a NeRF-based 3DMM mesh perturbation for refined NeRF; and

• a double-layer mesh method for better code diffusion for model-guided NeRF.

4.2 Related Work

4.2.1 View synthesis and neural scene representation

Traditional image-based rendering methods [73, 74] often use radiance/light field interpolation

to generate novel views. Such methods often offer a limited range of viewpoints and require

extremely dense input views for high quality output. As deep learning technology advances,

learnable image-based methods quickly gained popularity. Such methods warp and synthesize

input images into novel views[75] through sparser input data. Nevertheless, learning-based view

synthesis still requires a large amount of image data and lacks the understanding of the underlying

3D geometry. To make full use of information from 3D scenes, some methods [76] utilize depth

information to guide the synthesis of novel views. They, instead, rely heavily on the geometry

proxy estimated from the input views. There are also methods[77] that aim to build 3D mesh

representations explicitly, but accurate generic 3D reconstruction itself remains an open problem

so far. A template mesh with fixed topology is typically unavailable for generic 3D scenes in the

real world. Even generating photo-realistic textures for explicit meshes can be challenging, and the

rendering with textured meshes still deviates further from the real-world images compared to purely

image-based rendering. Recent methods [78, 79, 80, 81] that use implicit representations combined

with neural network seem to finally meet the requirements of high-quality view synthesis. They

model the radiance fields through volumetric fields of color and density (i.e., one set of RGB values

and one density value at each point or voxel), given only a set of input RGB images. NeRF[68]

attained great success in embedding feature volumes with neural networks and generate impressive

results by outputting radiance given specific locations and directions through volumetric rendering.

Our method follows the geometry-guided NeRF framework but incorporates a component that uses

NeRF to reversely guide the geometry, and reiterate the NeRF generation to refine the results.
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4.2.2 NeRF-based dynamic scene representation

The original NeRF is designed for static scenes. However, follow-up works like [82, 83, 71, 84,

72] extend NeRF to dynamic scenes by taking time component as part of the input. [82, 83] uses

scene flow to linearly interpolate between different frames. [84, 71, 85] convert different temporal

frames to a canonical frame. Specifically, [71, 85] model human head with the assumption that

head motion is small in typical input and output deformation/animation. [70, 72] utilizes a global

transformation matrix to embed dynamic NeRF in a canonical space to address large movements in

the video. [70] conditions NeRF on 3DMM expression parameters for different frames, while [72]

uses SMPL parameters based on a template human body mesh to integrate different frames. We

follow the embedding-based method for NeRF generation, but added a double-layer embedding to

speed up the diffusion of the implicit model.

4.2.3 Human face reconstruction

3DMM is typically driven by a low-dimensional parameter space. Most face reconstruction

methods [86] reply on 3DMM to provide a coarse template mesh as initialization. They either

build the blendshape basis for high-frequency details like fine wrinkles [87] or learn the non-rigid

deformation on top of the coarse surface[67]. NeRF-based methods[70, 69] learn an implicit

representation for the human head. To build the explicit mesh, EG3D[69] extracts the isosurface

from the depth field, which is technically only a 2.5D mesh. Our NeRF output can also be used

to generate a 2.5D mesh to provide an approximate geometry if needed. Moreover, we allow a

more flexible mesh deformation directly guided by the NeRF density field without resorting to a

blendshape basis.

4.2.4 Human avatar reconstruction

Traditional methods are usually based on 3DMM parameters to reanimate human subjects.

3DMM models built on a large of blendshapes provide us with the shape variation on a learned

shape space. Therefore, the deformation could be limited and the control over the template

mesh is coarse-grained. Recent methods start to combine 3DMM with neural network. [88, 86]

disentangle appearance and shape. [88] use shape parameter to model deformation, while color
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Figure 4.1 Overview of our proposed method.

map in canonical space stays unchanged. [86] assign feature descriptors to each surface vertex to

learn texture synthesis for the deformed mesh. In addition, the use of GAN enables the generation

of more photo-realistic rendering for human avatars, like in [89]. [72, 90] use one network to

learn the detailed shape deformation based on 3DMM face reconstruction while utilizing neural

rendering to recover the texture information. 3DMM parameters are utilized to generate novel

poses and expressions. Usually this kind of methods focus on mesh reconstruction quality, and the

rendered image quality is not comparable to NeRf-based methods. To gain fine-grained control

over avatar attributes, [91] uses local face models instead of 3DMM to offer more flexibility and

expressiveness, and [92] represents attributes as localized masks and regresses each attribute value

and its corresponding mask using neural network. It requires 2D mask annotations for a few shots

that specify which region of the image an attribute controls.

We design our avatar algorithm based on NeRF, the neural radiance field enables us to render

high-fidelity face images. Inserting the human head mesh in the 3D neural field enables our

network to reconstruct a dynamic human head. Additionally, the 3DMM parameters provide us

with control over pose and expression. Finally, our NeRF-based rendering pipeline could learn the

high-frequency details, such as hair and glasses, on top of the rough shape deformation without

annotations.
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Figure 4.2 Network structure.

4.3 Algorithm

Given a single-view portrait video, our method reconstructs a dynamic human head avatar which

enables the novel view synthesis of each input scene and arbitrary control of facial expressions and

head poses. Our model learns an implicit neural representation based on NeRF[68] for human head.

The overall pipeline is illustrated in Fig. 4.1. For each frame of a portrait video, we first reconstruct

the coarse 3d morphable mesh for each frame. We use DECA[87] to also extract the corresponding

pose, expression, and camera parameters for each frame. The pose parameters allow us to apply

rigid global transformation to embed the head shape in a canonical bounding box which is shared

by all frames. The expression parameter could be used for future facial expression manipulation.

Inspired by [72], we attach the latent code for NeRF generation on the coarse 3D shape, whose

embedding allows the generation of dynamic density and RGB fields. The latent codes attached

to each vertex on the head surface typically denote the local geometric deformation and texture

information during the training of the neural network. To generate the continuous radiance field,

the latent codes are diffused to nearby space through a code diffusion process. The neural network

could decode the sparse volumetric latent code field into color and density fields. The output image

is then generated from different viewpoints via volume rendering.
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4.3.1 Coarse facial geometry

For this part of our pipeline, we simply employ DECA [87]. We provide the details on

input preparation and our parameter choices below. Given single-view or multi-view portrait

images/videos, we first randomly choose input frames that may cover a wide enough range of view

angles if possible, since we aim to generate novel views of portrait animation. Then, for each

input frame, which may have different expressions and poses, we use DECA [87] to reconstruct

the shape 𝑆𝑡 , a parameterized mesh of 5,023 vertices. The type of coarse output mesh in DECA

is FLAME[93], a statistical 3D head mesh model that combines separate linear identity shape and

expression spaces with linear blend skinning (LBS) to articulate the neck, jaw, and eyeballs. The

advantage of the consistent connectivity across different frames is the straightforward deformation

of the NeRF volume fields as we detail next.

We optionally allow enhancement for different regions of the face, for instance allowing the

forehead area or top of the head to have two layers of vertices by offsetting the original mesh vertex

along the normal direction by a preset distance. Similar treatment can be performed near the eyes

or mouth for enhanced details to accommodate accessories or expressions. While our ablation

study showed no improvements in the statistics that we employ for accuracy, the improvements to

the targeted regions are visually noticeable.

4.3.2 Dynamic feature volume

A set of latent codes 𝑍 = {𝑧1, 𝑧2, ..., 𝑧5023} are anchored to the surface of shape 𝑆𝑡 , each latent

code is a 16 dimensional vector to encode local appearance information and geometric details on

top of the underlying 3D shape. The same vertex across all the input frames share the same set of

latent codes, which integrate all the frames together and take advantage of the consistency across

different frames in terms of the underlying 3D shape and the facial texture. The dynamics brought

by expression parameters affect the 3D shape 𝑆𝑡 directly, therefore the embedding locations of the

latent code in the feature volume will change accordingly, which leads to a dynamic feature volume

to allow expression-dependent output. While our model has been trained to be individual-specific

due to data availability, we believe it is possible to build feature volumes that also takes identity
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parameters for generic human avatar, since both the coarse geometry and appearance model can be

used to train the latent code representation across different identities.

Following[72, 94], we use SparseCovNet [95] to take 𝑆𝑡 and 𝑍 as input and generate a multi-

scale feature volume. As a typical NeRF field is represented by continuous volumetric fields

instead of samples on a dynamic surface, SparseCovNet provides a reasonable bridge to link the

sparse surface points to the ambient space with an implicit learned diffusion-like process. With this

conversion, given a query point, we may retrieve its latent code in the multi-scale feature volume

as shown in Fig. 4.2 and concatenate all the latent code at different scales as the final 352D feature

vector. The latent code is decoded in the next stage of our pipeline into density and color functions.

More specifically, we first compute the bounding box of the 3D head shape 𝑆𝑡 , and then divide

the bounding box to a cartesian grid. Each grid cell (voxel) has a size of 5𝑚𝑚 × 5𝑚𝑚 × 5𝑚𝑚. The

latent code assigned to each voxel is calculated as the mean of the latent codes on all the surface

points situated inside the voxel. Similar to [72, 94], we also downsample the feature volume by the

factors of 2, 4, 8 and 16 to build multi-scale feature volumes. From the feature volume at each scale,

we obtain a feature vector at each query point through trilinear interpolation, and then concatenate

all four feature vectors into a 352-dimensional vector as final output. For frame 𝑡, We denote the

feature vector at a given sample point 𝑥. The output at this stage is thus a function of the sample

point location 𝑥, parameterized by the latent code 𝐿 attached to the mesh vertices, and the given

head shape 𝑆𝑡 , written as 𝑓 (𝑥; 𝑆𝑡 , 𝑍).

While this embedding process is fairly standard, we optionally provide a NeRF-guided defor-

mation to the surface point locations. Thus, after the first iteration of training, we perturb the

position of each vertex to get a more accurate mesh surface, then insert the new surface points back

to the 3D feature volume, and train the network again to generate new rendering images. In our

ablation study in the next section, we found mixed results for this refinement. We speculate that

we may need larger training sets or more accurate initial geometry to consistently outperform our

current pipeline.
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4.3.3 Color/density estimation

At this stage of our pipeline, the feature vector associated with a spatial location is passed into

the MLP network to regress density and color at this point. For color regression, we add viewing

direction as input, since without viewing direction, the model will have difficulty representing

specularity. We also add another per-frame 128D latent code to encode the temporally-varying

factors across frames, such as illumination conditions. Given this treatment, the radiance field is

indeed a 5D function that depends both on location and direction.

Specifically, given a feature volume and a viewing direction, the radiance value at a given

viewpoint is determined by casting a ray from the viewpoint along the viewing direction towards

the feature volume. If the ray intersects with the bounding volume, sample points are distributed

along the portion of the ray that is inside the bounding volume. For each sample point, we query

the multi-scale feature volume to assemble the 352D latent code, which is then fed to a multi-layer

perceptron (MLP) network along with the viewing direction to estimate the output color and density

value, as done in typical practice.

As the final representation of our dynamic radiance field, our MLP network takes the feature

vector as as input, and outputs color and density predictions for each sample point inside the

bounding volume. For a given frame 𝑡, the density is defined as a function of latent code at sample

point, parameterized by a per-frame latent code that takes into account additional changes in the

environment, such as illumination.

Density The density model is trained to be directly a function of only the latent code 𝐿 (𝑥, 𝑍, 𝑆𝑡)

at a given location 𝑥, the given latent code 𝑍 for the entire mesh, and the current mesh shape 𝑆𝑡 :

𝑑 (𝑥) = 𝑀𝑑 (𝐿 (𝑥, 𝑍, 𝑆𝑡)), (4.1)

where 𝑀𝑑 is the MLP network for density as shown in Fig. 4.2.
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Color The color model additionally takes the given viewing direction 𝑣 and the 128D latent code

𝑙𝑡 associated with frame 𝑡 along with latent code 𝐿 (𝑥, 𝑍, 𝑆𝑡) as its three input:

𝑐(𝑥) = 𝑀𝑐 (𝐿 (𝑥, 𝑍, 𝑆𝑡), 𝑣, 𝑙𝑡), (4.2)

where 𝑀𝑐 is the MLP network for color as shown in Fig. 4.2.

4.3.4 Volumetric rendering with radiance fields

Accumulating the data along each ray and assembling rays into images is a standard procedure

in volume rendering[96]. Once we obtain the procedure to produce radiance associated with any

ray, the image is constructed by a simple loop that iterates over all the pixels. Thus, we provide the

details for radiance estimate based on the sample points in the previous stage. We may see it as

the evaluation of the radiance field based on the internal per-point density and directional emitted

radiance (in RGB color) representation.

For the output color (which corresponds to the direction-dependent physical quantity radiance),

we integrate the color and density of the sample points along the ray. Specifically, the color obtained

in the previous stage encodes the radiance emitted from one location towards the given direction,

and the density indicates how the light interacts with the matter in the small volume at the point,

filtering out a fraction of the light passing through the volume. A practical way to perform the

integral numerically is the approximation through quadrature. Thus, based the previous sampled

point data, the final color of the corresponding ray 𝑟 that reaches the projection center (origin of 𝑟)

of the camera is given by:

𝐶 (𝑟) =
𝑁∑︁
𝑘=1

𝑇𝑘 (1 − exp(−𝑑 (xk)𝛿𝑘 ))𝑐(xk), (4.3)

where

𝑇𝑘 = exp(−
𝑘−1∑︁
𝑗=1

𝑑 (xj)𝛿 𝑗 ), (4.4)

and 𝛿𝑘 = | |xk+1 − xk | |2 is the distance between adjacent sampled points, 𝑑 (𝑥𝑘 ) is the density at

sample point 𝑥𝑘 , 𝑐(𝑥𝑘 ) is the color at the sample point 𝑥𝑘 along the ray direction. We set the total

sample point number 𝑁 to 64 in our experiment. Note that the sample points are sorted from near

to far.
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4.3.5 3D mesh extraction

Some 3D surface reconstruction methods exist for extracting geometric information from neural

radiance fields generated by MLP. However, methods like EG3D [69] only generate a 2.5D mesh,

i.e., a depth map from a given camera direction. Since the internal density model of NeRF learns

for every point a probability of whether it is inside, it is only accurate in the sense of reproducing

the image rendering. Thus, it is not necessarily reliable for the extraction of an accurate surface.

On the other hand, the integral data along rays, as done in volumetric rendering, is more accurate

than the point samples. That is why the 2.5D meshes generated by integrating a chosen direction

are often more stable since they are based on the reasonable estimate of the closest point of the

scene to the camera along each projection ray.

However, to refine the mesh used in the NeRF construction, we need an honest 3D mesh. Thus,

we propose to keep the mesh connectivity intact, and only perturb the locations of existing vertices.

To have a reliable estimate as in the 2.5D reconstruction, we mimic the procedure of volumetric

rendering by tracing along rays. The difference is that now we construct a ray that passes through

the initial surface vertex locations, with the ray direction following the inward-pointing normal

direction at that point of the original surface.

To ensure that we start from an outside point, we first move surface point 𝑉 to the outside

space of the head through offsetting the point by a safe distance 𝑎. Similar to 2.5D depth image

generation, we calculate the depth for the point along the negative normal direction, and then move

the surface point back along the negative normal direction by distance 𝑑 to reach the surface point.

The new location 𝑉 ′ of the surface point is calculated as follows:

𝑉 ′ = 𝑉 + (𝑎 − 𝑑)𝑛̂, (4.5)

where 𝑛̂ is the unit outward normal of the surface mesh. To make sure that the mesh is only

perturbed, we clamp the 𝑎 − 𝑑 to the range [−𝜖, 𝜖], where 𝜖 = 5𝑚𝑚 is the offset distance upper

bound.

The following is the details of our procedure to generate depth for each sample point by

integrating density along the normal direction to avoid the drawback of a 2.5d depth map: First, we
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select a large 𝑎 (0.03 in our experiment) to make sure we reach the exterior of the human head, the

density will be effectively zero in the outside space. Newt, we select a negative distance 𝑏(-0.01 in

our experiment), to make sure we reach the interior of the head, where the density will be nearly

1. Then, we query the density function for 64 sample points between 𝑉 + 𝑎𝑛̂ and 𝑉 + 𝑏𝑛̂. For each

sample point, we integrate the density between this point and 𝑉 + 𝑎𝑛̂:

𝑑𝑒𝑝𝑡ℎ =

𝑁∑︁
𝑖=1
𝑇𝑖 (1 − 𝑒−𝛿𝑖𝜎𝑖 )𝑑𝑖, (4.6)

where 𝑇𝑖 is evaluated the same way as in the volumetric rendering.

The overall algorithm to extract a perturbed mesh from the neural radiance field is outlined as:

Algorithm 4.1 Surface Update
1: function SurfaceUpdate(𝑉, 𝑛̂, 𝑎, 𝑏)
2: for 𝑖 = 1 to 𝑛 do ⊲ 𝑛 = 5, 023: vertex count
3: sample 64 points 𝑃 along 𝑛𝑖 with an offset between 𝑎 and 𝑏
4: for 𝑘 = 1 to 64 do
5: 𝑑𝑒𝑝𝑡ℎ(𝑃𝑘 ) =

∑
𝑘 𝑇𝑘 (1 − 𝑒−𝛿𝑘𝜎𝑘 )𝑑𝑘

6: if 𝑑𝑒𝑝𝑡ℎ(𝑃𝑘 ) == 0 then
7: 𝑑 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑃𝑘 ) break
8: end if
9: end for

10: clamp 𝑎 − 𝑑 to [−𝜖, 𝜖]
11: 𝑉 ′

𝑖
= 𝑉𝑖 + (𝑎 − 𝑑)𝑛𝑖

12: end for
13: end function

4.3.6 Loss function

There are several choices in loss functions that we have tested. The differences are the treatments

of background pixels. The simplest choice is to model the background within the bounding volume,

it creates the best transition but typically distorts the background in novel views. Another choice

is through using automated background masks, we ignore the pixels in the background region in

the loss function. This allows the network to focus on the foreground, but would require the use of

the roughly estimated foreground mask based on the DECA mesh. The choice that creates better

geometric construction is to force background pixels to match an accumulated alpha value of 0,

which forces the density to appear where the head intersects with the camera rays. Regardless of
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Figure 4.3 Comparison to state-of-the-art algorithms on self-reenactment.

the choice, we optimize the network to reduce the difference between the rendered image and the

ground truth images, with the loss function expressed as:

𝐿 =
1
𝑁

∑︁
𝑟∈R

| |𝐶 (𝑟) − 𝐶𝑡 (𝑟) | |22 (4.7)

where R is the set of camera rays that pass through the image plane, 𝑁 is the number of sampled

rays, and 𝐶𝑡 is the ground truth pixel value. The summation range is according to the background

treatment choice.

4.4 Experiments

We tested our pipeline on multiple portrait videos from a diverse set of sources. We get three

human videos by the courtesy of NerFace, two by the courtesy of authors of Neural Head, and

two by the courtesy of authors of CoNeRF. In additional we downloaded public-domain videos of

Barack Obama and Michelle Obama from Youtube to demonstrate the generality and robustness of

our model. Since NerFace training dataset is already shuffled, we randomly select 300 frames from

the test dataset for testing. For CoNeRF, we use 300 frames for training and take every other frame

for testing.

We measure the typically used metrics: 𝐿1 distance, Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS), and report
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Figure 4.4 Increasing training frames will increase the performance on all four metrics.

Video 𝐿1 ↓ PSNR↑ SSIM↑ LPIPS↓
Head0 0.012 26.49 0.94 0.11
Head4 0.011 27.12 0.95 0.08

Person1 0.021 23.81 0.93 0.10
Person2 0.010 30.23 0.97 0.03
Person3 0.013 27.48 0.95 0.06
Video1 0.026 22.56 0.91 0.09
Average 0.015 26.28 0.94 0.08

Table 4.1 Quantitative result on different videos.

them in Table 4.4. for different videos, the resolution, frame rate, and human head size in the video

differ significantly, which may influence the performance of our algorithm. We also compare our

quantitative results with baselines, like NerFace, FOMM, and DVP. Our algorithm outperforms

these baselines. As for conerf, it requires users to manually annotate facial attributes. Our method

and conerf don’t fall into the same category, there is no need for direct comparison with conerf.

53



Figure 4.5 The second iteration could capture more high-frequency details in mouth and glass
region.

Method 𝐿1 ↓ PSNR↑ SSIM↑ LPIPS↓
FOMM 0.036 23.77 0.91 0.16

DVP 0.021 25.67 0.93 0.10
NerFace 0.029 24.22 0.93 0.09
CoNeRF 0.015 32.24 0.98 0.17
Average 0.015 26.28 0.94 0.08

Table 4.2 Comparison with baselines.

Method 𝐿1 ↓ PSNR↑ SSIM↑ LPIPS↓
1st iteration 0.014 27.26 0.95 0.06
2nd iteration 0.014 27.45 0.95 0.06

Table 4.3 Ablation study.

The quantitative comparison is shown in table 4.4. The qualitative comparison is shown in Fig.

4.3. As can be seen from the qualitative result, our algorithm could reconstruct the appearance and

facial expressions and preserve facial details including wrinkles, while other algorithms either did

not reconstruct correct facial expressions or missed high-frequency details, in these test cases.

We ran an ablation study on the three videos from Neural Head to investigate what could be
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the key factor to influence the final performance. Increasing the training frames will significantly

increase the accuracy until a certain minimum frame number is reached, as shown in Fig 4.4. Our

ablation study in table 4.4 also shows the refined mesh improves the overall performance slightly.

However, from the qualitative result in Fig. 4.5, we could see in some specific circumstances, the

refined mesh could improve the reconstruction of local regions, like the more deformable mouth

region and the glasses that are not in the original DECA mesh. Another reason may have been

that since DECA does not reconstruct the mouth cavity when the mouth is open, our refined mesh

would assign vertices in this region, and the feature vectors attached to the vertices will encode

appearance information and increase the expressiveness of our algorithm.

4.5 Conclusion and Future Work

We presented a 3DMM-based NeRF for dynamic human head rendering. With the guidance

of geometric shapes, we could significantly reduce the training frames. We could generate high-

fidelity novel-view face images and also reanimate the human head by changing 3DMM parameters.

While the refined mesh does not improve the result further, it shows promise in its handling of

local regions. We will explore the use of shape regularizers and region-specific local distance

thresholding, as well as seek a more accurate initial 3D mesh, to improve our neural radiance field-

guided mesh perturbation. There are other aspects of our pipeline that could have been enhanced

to improve the final rendering performance, such as the use of better foreground mask generation.
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APPENDIX

CONTRIBUTION ON MULTI-AUTHORED PUBLICATIONS

Chapter 2 is based on the paper "ILEE: Algorithms and toolbox for unguided and accurate quan-

titative analysis of cytoskeletal images" [97]. As co-first-authors, Pai Li and I contributed equally

to this work. As an expert in biology, Pai Li was responsible for capturing data samples from

plant cells using microscopes. He also collected data samples from other biology labs to ensure

the diversity of our dataset. He also utilized his biostatistics background to propose the model for

the global gradient threshold. I was responsible for building the linear system and implementing

the computational work. We proposed the quantitative indices for the cytoskeleton together. I also

built a python library for our pipeline, making our work an easy-to-use tool for biologists. We

wrote our part of the documentation respectively. Chapter 3 is based on the paper "Towards High

Fidelity Face Relighting with Realistic Shadows" [98]. I contributed to the geometry-related part

of the work in this whole research project. I utilized the ray-tracing algorithm to generate shadow

masks for face shapes. I also processed all lighting data to provide consistent lighting input based

on Spherical Harmonics for the whole pipeline. Andrew Hou proposed the hourglass network

structure and designed the loss function. We wrote the corresponding manuscript respectively.

Chapter 4 is written solely for the thesis, and may be submitted in the future for publication in

vision or graphics venues. I was the only student in this project.
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