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ABSTRACT 
 
The increase in the world population in recent decades has been accompanied by a greater demand 

for food of animal origin. To meet this demand, intensive farms have emerged. As a consequence of 

this intensive production, large amounts of animal waste are produced impacting the soil, water, and 

air near the farms. Along with the increase in the number of intensive farms in several countries, 

known as Animal Feeding Operations (AFOs), there is also greater concern in the public opinion about 

the potential negative effects that these farms can have on the health of the people who live nearby 

AFO areas. In order to obtain evidence on the effects of AFOs on the health of people who live nearby, 

several studies have been conducted, however the findings are mixed, with studies describing 

negative effects and others not finding significant associations. The studies developed have been 

observational in nature making the results susceptible to various sources of systematic error. In 

addition to the bias present in the primary studies, it is not entirely clear whether the studies 

developed, despite being classified as cross-sectional or case-control, are capable of providing 

estimates of the incidence of health events, which is necessary to elucidate causality. 

The first study identified prevalence studies as part of a systematic review conducted to evaluate in 

each exposure-outcome pair reported the assumptions needed to provide estimates of comparative 

incidence. We identified that primary studies have not been discussing epidemiological assumptions 

necessary to interpret the measure of effect as estimates of comparative incidence. Similarly, we 

identified that a large percentage of exposure-outcome effect sizes might be interpreted as providing 

estimates of comparative incidence. The second study identified case-control studies as part of a 

systematic review to evaluate if the authors discussed the assumptions about the underlying 

population, the apparent nature of the cases (incident or prevalent), and the methods for sampling 

cases and controls in order to interpretate the effect size measure reported. We identify that authors 

have not been discussing the assumptions necessary to interpret the measure of effect as incidence. 



Similarly, we identity that a large percentage of exposure-outcome effect sizes might be interpreted 

as providing estimates of incidence. The third study used references that provide estimates of 

comparative incidence to understand what effect authors reported being of interest and the rationale 

for the selection and retention of potential confounding variables. Likewise, we used manuscripts 

where the authors reported a lower-respiratory disease outcome to conduct an analysis based on 

DAGs on what effect sizes may have been estimated (direct or total causal effect), remaining biasing 

pathways and sources of bias that might exist associated with control for confounding. We identified 

that none of the authors reported if they intended to estimate the total or direct effect. Only two 

studies included the rationale for the set of variables selected as confounders and the rationale for 

retention as confounders. No paper provided a DAG or causal pathway that supported the adjustment 

set included in the models. Among the studies addressing lower respiratory tract conditions, no study 

could estimate either the direct effect or the total effect of residential exposure to AFOs. The final 

study of this dissertation used references that provide estimates of comparative incidence to evaluate 

the characteristics of measurement of the exposure and outcomes and the authors approach to 

discussing consistency and measurement error. This study identifies those measurements of exposure 

based on AFOs density, measurement of direct emissions, distance from home to AFOs, dispersion 

models and perceived odor in the home were the measures used by the authors. Outcomes 

categorized as lower respiratory conditions and gastrointestinal conditions were the most 

investigated and its main source of information were medical records, questionaries, and mortality 

records. None of the measures of exposure captured an individual exposure to a metric of AFOs 

exposure such as personal exposure to ammonia levels. Authors did not discuss the consistency 

assumption.  
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CHAPTER 1: ANIMAL FEEDING OPERATIONS (AFO) AND COMMUNITY HEALTH  

Introduction 

In recent decades, the increase in world population has driven the intensification in food production. 

Large-scale industrial farms have emerged in several countries around the world as a response to meet 

the growing demand for products of animal origin at a favorable price for consumers. Besides the United 

States of America (USA), intensive farms also be found in other countries with large agricultural sectors 

such as Canada, Brazil, Denmark, Germany, Poland, and Australia 1. The number of livestock and poultry 

operations in the Unites States have substantially increased over the past few decades 2. For the year 2020 

the total number of large operations reported in the United States was 21,465, more than 2,900 new AFOS 

than those registered in 2011 3. In the United States, the Environmental Protection Agency (EPA) has 

defined two terms to describe large animal farms: animal feeding operations (AFO) and concentrated 

animal feeding operations (CAFO). An animal feeding operation is described as an agricultural enterprise 

where animals are kept and raised in confined situations. A CAFO is an AFO with more than 1,000 animal 

units confined on site for more than 45 days during the year. Any size AFO that discharges manure or 

wastewater into a natural or human-made ditch, stream, or other waterway is defined as a CAFO, 

regardless of size 4. 

AFOs are regulated in the Unites States by the federal Clean Water Act (CWA) under the National Pollution 

Discharge Elimination System (NPDES) permitting program. Under NPDES, these operations are required 

to obtain permits for operation. State and local governments can establish additional regulations to limit 

AFO location, size, and pollution discharge and increase monitoring, enforcement, and assessment of 

pollution prevention practices 5. Despite these regulations, some organizations consider enforcement has 

failed to protect community members and environmental health 6. Given that these large operations 

congregate animals, feed, manure and urine and dead animals on a small land area 7, this waste may affect 

human health and quality of life 8 through multiple pathways such as emitted harmful air pollutants, odor, 

and contaminated surface and groundwater. The controversy has not only been limited to the field of 

health but has also had implications for social and racial inequality. Studies have reported that the adverse 

health effects associated with AFOs are disproportionately located in disadvantaged communities with 

high proportions of ethnic and racial minority residents  8–11. 

Populations at-risk include people who are directly exposed while working on AFOs and people who live 

nearby but are not actively engaged in animal production. The exposure dose and routes these 

populations experience mean that the results from studies of one group do not translate to the other.  

People in surrounding communities can be exposed to polluted air or groundwater 8. Air pollution from 
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intensive livestock farming has been reported to cause symptoms and illnesses in occupational settings; 

however, because of differences in the dose and duration of community exposure there remains 

uncertainty in the existing evidence base in people not actively engaged in animal production living close 

to AFOs 1,12–17.   

Potential health effects of AFOs  

Epidemiological studies have reported adverse health effects, including respiratory dysfunction nasal 

allergies, exacerbation of pre-existing chronic conditions such as chronic obstructive pulmonary disease 

(COPD) and asthma, and mental health in nearby communities; however, other studies found no 

association 14,18–21. Only Q fever, a disease caused by the bacteria Coxiella burnetii, has been consistently 

associated with community member proximity to livestock operations 1,22,23.  Two systematic reviews on 

this topic have been conducted in 2010 and 2014 1,24. Both reviews and other systematic reviews 25 

concluded that there is insufficient evidence to draw any conclusions regarding residential exposure risk 

of AFOs. The inability to reach a conclusion may be due to study design flaws conducted such as the use 

of cross-sectional studies and biases in the study design 1,25. 

The American Public Health Association (APHA) has adopted a new policy resolution that is based on the 

uncertainty of the scientific evidence rather than the total certainty in the harmful effects of AFO. The 

Precautionary Moratorium calls the different government agencies to impose a national moratorium on 

new and expanding AFOs, until "additional scientific data on the attendant risks to public health have 

been collected and uncertainties resolved " 26.  This ban inhibits the development and progress of the AFO 

industry, which when effectively managed, located, and monitored, provides a low-cost source of food, 

and can enhance the local economy.   

Study designs and measures of effect 

All epidemiological studies are based on a particular population, the source population with members 

who differ in characteristics which are associated with an outcome – very often a disease. Within this 

framework, there is a fundamental distinction between studies that provide estimates of disease 

incidence and studies that provide estimates of disease prevalence 27–30. Studies that can directly estimate 

incidence are usually the approach to studying the causes of disease, however, given that they often 

involve lengthy periods of follow-up and substantial resources, it is often more practical to study the 

prevalence of disease at a particular point in time 28. Given that prevalence may differ between two groups 

because of differences in disease duration or other population parameters such as incidence, it is much 

more difficult to assess causation (i.e., whether an exposure increases disease incidence) in studies 

estimating prevalence 27,31. 
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There are three principal measures of effect used to compare incidence in a study: the incidence density 

ratio (also called rate ratio), the cumulative density ratio (also called risk ratio), and the incidence odds 

ratio 27,28,30. These three measures of disease occurrence all involve the same numerator: the number of 

incident cases of disease. They differ in whether their denominators represent person–time at risk, 

persons at risk or survivors 28. Studies that can provide direct estimates of incidence of health events are 

cohort studies because they involve collecting and analyzing all the relevant information on the source 

population as well as to obtain better information on when exposure and disease occurred 28. For case-

control studies, although no direct estimate of group level incidence can be obtained, the cross product 

of the exposure frequency in case and controls (often mistakenly called the odds ratio) can estimate the 

incidence density ratio (IDR), however it is necessary that certain conditions on the study population are 

met. These conditions are linked to the type of source population analyzed i.e., dynamic population, or 

fixed cohort  32,33. In cross-sectional designs the usual effect measures estimated are prevalence ratio (PR) 

and the prevalence odds ratio (POR) which are not considered causal parameters 27,30. Nevertheless, cross-

sectional studies involving common health events can also provide indirect estimates of comparative 

incidence such as incidence density ratio under certain assumptions related to the population, exposure 

measure and outcome measure 27,29,30. 

Biases 

In epidemiology, bias refers to systematic errors that result in an incorrect estimate of the true effect of 

an exposure on the outcome of interest 34. Bias primarily affects the internal validity and then by extension 

the external validity of a study. Whereas external validity or generalizability of results refers to how well 

the results of a particular study could be applied to the target population 35 internal validity is defined as 

the extent to which the observed results represent the truth in the population we are studying -  i.e., the 

source population and study sample - and, thus, are not due to methodological errors 36. Here, we use the 

terms as defined by Rothman et al 34, where the target population is the population to which it is possible 

to extrapolate results from a study, the source population is the population from which the study subjects 

are drawn, and the study sample/population  is the group of individual that end up in the study and are 

included in the results of the study. 

Observational studies are traditionally considered to have potential limitations with respect to the ability 

to infer causal relations due to concerns about internal validity.  Compared to randomized controlled 

trials, observational studies are more subject to three potential sources of bias: confounding, selection 

bias and information bias. Confounding is considered as the main bias of observational studies  because 

without random assignment, exposure groups may differ with respect to factors other than exposure 37.  



4 
 

In the language of directed acyclic graphs, confounding refers to the scenario of an uncontrolled common 

cause of the exposure and the outcome. When confounding is present, researchers must take steps to 

reduce its effect 38,39. Regardless of the method used to control for confounding, the purpose of any 

approach is to achieve homogeneity of predictors not of interest to the research hypothesis between the 

exposure groups 40. Some authors consider that while in randomized trial association measures can be 

interpreted as effect measures because randomization ensure exchangeability between exposed and 

unexposed groups, in observational studies association measures cannot be interpreted as effect 

measures because the exposed and the unexposed groups are not generally exchangeable. However, 

often observational studies are the only source for establishing causal relationships 41,42. Confounding can 

be controlled using study design features such as restriction or matching and after completion of a study 

using statistical approaches such as stratification, regression adjustment, instrumental variables 

techniques, propensity score techniques and G-methods. More recent techniques such as G-methods and 

propensity score (PS) are used to achieve interchangeability of exposed groups and then the estimation 

of the average causal effect 43,44. G-methods include inverse probability weighting (IPW), standardization 

and G-estimation, where the conditional exchangeability has been used in subsets defined by covariates 

to estimate the causal effect of exposures on outcomes in the entire population 45.  Much of the literature 

associated with the association between AFO and human health, uses older methods of adjusting for 

confounding and the extent of control is unclear. Further, because many of the studies are case control 

or cross-sectional, the issues of time varying confounding are almost entirely ignored.  It is important that 

these concepts are properly considered in seeking to make inference. 

Information bias, also called measurement bias, occurs when key information about exposure or outcome 

is either measured or collected mistakenly 46. Another key component where measurement is important 

is the assumption of consistency, a condition necessary along with exchangeability and positivity to 

establish causal inferences. It states that the observed effect of an intervention on an outcome should be 

equivalent to the counterfactual effect that would have been observed had the intervention been 

implemented in a different population or under different conditions. In other words, the effect of the 

treatment should be the same regardless of the specific context in which it is applied 37,47. 

RATIONALE 

Despite the fact that multiple primary investigations have been carried out to elucidate the role of AFOs 

in the development of diseases in the inhabitants of the nearby areas, the findings are mixed, which has 

made it difficult to reach a firm conclusion. Attempts to condense the evidence have been difficult for a 
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number of reasons, including the multiple sources of systematic error present in the studies and the 

majority use of cross-sectional studies. While uncertainty about the causal role of AFOs persists, this issue 

remains of strategic importance to public opinion given its impact on the public health of rural 

communities, often comprising disadvantaged individuals. Consequently, it is necessary to identify 

significant sources of bias and methodological flaws in the existing body of literature for two reasons. 

First, to understand what the current literature can tell us about the causal relationship between AFOs 

and the health of community members, and second so that future studies can be designed to purposefully 

address the limitations of prior research and provide more reliable data.  

Objectives and Specific Aims 

Overarching objective  

The overreaching objective of this dissertation is to evaluate primary research to identify systematic flaws 

and limitations in the design of studies that prevent establishing whether a causal relationship exist 

between residential exposure to AFO and health effects. Understanding the methodological errors that 

have made it impossible to conclude the role of AFOs in community health can help give 

recommendations to conduct more reliable and valid studies. 

Specific Aim 1: To characterize the design factors that limit causal inference for each exposure-outcome 

pair reported in the primary studies addressing the association between AFOs and human health 

outcomes. 

Hypothesis: Study design and assumptions about the underlying population dynamics determine the 

study’s ability to provide estimates of the incidence of a health effect.  

Objectives:  

1. Assess in each exposure-outcome pair reported in relevant prevalent studies the structural 

conditions needed to provide estimates of comparative incidence. 

2. Assess in each exposure-outcome pair reported in relevant case-control studies the structural 

conditions needed to provide estimates of comparative incidence. 

Specific Aim 2: To analyze the sources of bias that occur in studies related to the association between AFOs 

and human health outcomes. 

Hypothesis: Confounding, selection bias, and measurement bias are significant sources of systematic error 

in the primary studies that prevent reaching valid conclusions about causation. 

Objectives:  

1. Analyze the impact of bias due to confounding in the body of the work and issues derived from 

the efforts made by the authors to control or remove the effect of confounders. 
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2. Analyze the impact of bias due to information in the body of the work. 
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2. CHAPTER 2: STUDIES INVESTIGATING THE PREVALENCE OF HEALTH OUTCOMES IN PEOPLE 
LIVING NEAR ANIMAL FEEDING OPERATIONS: WHAT EFFECT MEASURE IS ESTIMATED? 

ABSTRACT 

Background  

The ability to estimate measures of effect representing causal parameters, such as incidence density rate 

ratio or cumulative incidence ratio, depends upon the study design and the validity of assumptions about 

the underlying population studied. Randomized controlled trials are the ideal design to study new cases' 

occurrence and estimate either cumulative incidence ratio (CIR), incidence density rate ratio (IDR), or 

incidence odds ratio between two or more treatment groups. Observational studies can also be used for 

estimating causal parameters, and the preferred design would be an incidence study design, such as a 

cohort study. However, conditional on meeting structural assumptions about the population, the effect 

measure reported in prevalence studies might also be interpreted as IDR. An area where prevalence 

studies are often employed is in assessing the association between living near Animal Feeding Operations 

(AFOs) and community member health. Our goal with this research was to evaluate the effect measure 

reported by authors of prevalence studies on this topic and to assess the ability of this group of studies to 

potentially report causal parameters.  

Methods  

We identified prevalence studies as part of a systematic review conducted to determine the effect of AFOs 

on the health of people living close to, but not employed at, those facilities. Exposure-outcome effect sizes 

were extracted, and thereafter we evaluated if the authors discussed the assumptions about the 

underlying population and what was estimated by the study. In parallel, we evaluated the assumptions to 

establish our opinion on the interpretation of the reported measure of effect.  

Results 

Fifteen prevalence studies were identified, from which 153 effect sizes were extracted. No author group 

discussed the population assumptions required to enable readers to interpret the effect size as anything 

other than a prevalence odds ratio or prevalence ratio.  This is even though all studies adjusted for 

potential confounding variables, which suggested the authors had causal inference as a goal. For 44% 

(67/153) of the effect sizes extracted from prevalence studies, the effect measure obtained by the authors 

could potentially have been interpreted as IDR because of the study design and characteristics of the 

underlying population.  
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Conclusion 

 Studies reporting on AFOs and human health have not been discussing important epidemiological 

assumptions necessary to interpret the measure of effect as IDR and CIR which would be important for 

causal inference. Given the large percentage of exposure-outcome effect sizes that might be interpreted 

as providing estimates of IDR, authors should discuss the assumptions and help readers understand their 

study's contribution to a causal relationship in the body of work. If authors are not estimating causal 

parameters, the authors should discuss the rationale for reporting adjusted estimates of the prevalence 

ratio estimates.  

Keywords: Prevalence study, cross-sectional study, causation, observational studies, agriculture  

INTRODUCTION 

The association between Animal Feeding Operations (AFOs) and community health continues to be a 

contentious topic in public health. The research studies used to investigate this topic are observational 

because it would be infeasible to randomize people to potentially harmful exposures 48. The diseases of 

interest investigated are varied, but often they are chronic diseases such as asthma. Further, this body of 

work consists largely of population-based prevalence studies because of the chronic nature of the diseases 

of interest 1,24,25,49. Previously, reviewers of this research area have proposed that causal statements 

should not be made for many studies on the topic for several reasons, including the use of comparative 

prevalence estimates such as prevalence odds ratio or prevalence ratio 1,24,25. However, here we sought 

to re-evaluate that assessment by examining the effect measures reported in the studies and based on 

population structure assumptions, propose what potentially could have been inferred. By doing so, we 

seek to highlight the need for authors of prevalence studies to completely report the assumptions about 

the study populations involved in addition to the results. Such information is necessary if society is to fully 

utilize the investment in research on this topic. We aim to encourage researchers to change their approach 

to reporting or to study designs used, to enable more accurate causal inference about this important 

public health question.  

Background on effect measures in study designs 

Incidence and prevalence are fundamental measures of disease occurrence in populations. Incidence 

measures the proportion or rate of persons who develop a condition during a particular time period using 

incident cases/events, while prevalence measures the proportion of persons who have a condition at or 

during a particular time using prevalent cases/events. Specifically, there are three measures of incidence 

that can be calculated in a single group: the incidence rate (person-time incidence rate), the incidence 
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proportion (risk, cumulative incidence proportion), and the incidence odds. These three measures have 

the same numerator: the number of incident cases of the disease. The three measures differ in whether 

the denominator represents person-time at risk, persons at risk of the outcome in the study period, or 

the number of people who do not experience the outcome event in the study period 28. Corresponding to 

these measures of disease occurrence, a direct comparison between two groups can be made by 

calculating three ratio measures of effect: incidence rate ratio (IDR) (also called rate ratio), incidence ratio 

(IR) (also called risk ratio, incidence risk ratio, cumulative incidence ratio) and the incidence odds ratio 

27,28,30,34. Such comparative measures are used to associate the groups with increased, decreased, or no 

change in disease incidence. Cohort or incidence studies can provide direct estimates of all three 

measures of disease incidence and, therefore, direct ratio measures of effect without any specific 

population assumptions because cohort studies involve collecting and analyzing the relevant information 

on the source population and, therefore, can account for instability in the population 28. 

Cohort studies estimating the ratio of measures of incidence are usually the preferred approach to 

studying the causes of disease if an observational approach is required. However, for many diseases of 

interest, given that cohort studies require lengthy periods of follow-up and substantial resources, it is 

often more practical to use alternative observational study designs that measure prevalent outcomes 

rather than incident outcomes 27,28,34,50. Pearce (2012) proposed the term prevalence study as a more 

general design than the more commonly used one, cross-sectional design. Pearce (2012) considered there 

were two major types of prevalence studies: prevalence case-control studies, which sample based on a 

prevalent outcome, and population-based prevalence studies, which cross-classify the exposure and 

prevalent outcome after enrolment. According to Pearce (2012) the familiar term prevalence study is 

considered a specific type of cross-sectional study where the disease outcome is dichotomous. Many 

prevalence studies do not concurrently collect exposure and outcome information, often using measures 

of exposure measured before or after the prevalent event. Therefore, such designs do not neatly fit the 

cross-sectional design terminology Pearce (2012) used. Such designs are not cohort studies as there is no 

follow-up time for the individuals.  

For prevalence studies, when seeking to report the ratio measures of effect, a detailed evaluation of the 

source population giving rise to the study population is needed to determine if the comparative effect 

measure (prevalence ratio or prevalence odds) obtained from the analysis can be interpreted as either 

the incidence density ratio, cumulative incidence ratio, or incidence odds ratio 28,32.   

It is necessary to understand the population dynamics of the source population 33,51. Populations can be 

fixed or dynamic. Dynamic populations can be in a steady state or non-steady state. In a steady state, on 
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average the proportion of each subpopulation defined by exposure, disease, and confounders does not 

change over a specified time interval. Pearce (2004) mentions that for such stability to exist “incidence 

rates and exposure and disease status are unrelated to the immigration and emigration rates and 

population size” 27. Furthermore, the average duration of illness is required to remain unchanged over the 

inferred time interval of stability and not to be different for exposed and unexposed subjects 27,30. All fixed 

populations are unstable because there are no additions; therefore, the distribution of subpopulations 

changes over time 32. These scenarios are illustrated in  Figure 2-1 and Figure 2-2. The bold undulating 

lines in the right panel in Figure 2-1 show the fluctuating number of people exposed in a steady state. 

Although not shown in Figure 2-1, the same dynamic but stable nature is also required for confounders. 

In the panel on the left in Figure 2-1, the exposure distribution is in a non-steady state. The panel on the 

right of Figure 2-1 illustrates a population that is dynamic and, on average, in a steady state. This 

population demographic is required to infer that the effect measure captured by a prevalence study might 

estimate a causal parameter. Figure 2-2 represents a fixed cohort which is not our focus but is included 

for completeness. The cohort consists of a number of persons present at the beginning of the follow-up 

period. 

In prevalence designs, depending upon the analysis, authors often report an estimate of the prevalence 

ratio (PR) from a regression using a log link (Poisson regression) and the prevalence odds ratio (POR) from 

regression with a logit link (logistics regression), neither of which are traditionally considered causal 

parameters 27,30.  

Given that prevalence may differ between two groups in a population because of differences in disease 

duration, differences in incidence, or both, it is more difficult to meet the assumptions for estimating a 

causal parameter (i.e., whether exposure increases disease incidence) in studies using prevalent outcomes 

28,31. Nevertheless, prevalence studies involving common health events (more than 10% in the two strata 

of exposure) can provide estimates of the incidence rate ratio under certain assumptions related to the 

structure of the population 27,29,30,52. The incidence rate ratio is estimated if 1) the population is in a steady 

state over the study period; 2) the mean duration of the outcome is the same regardless of the exposure 

group, i.e., independent of the exposure status; 3) the outcome cannot cause the exposure status in any 

way, i.e., no reverse causality; 4) the temporal directionality from the exposure to the outcome is 

sustainable, i.e., the exposure is antecedent to the outcome. All these scenarios are applied without the 

need to assume that the outcome or event of interest is rare (i.e., the prevalence of the disease is low in 

both exposure strata). The rare disease assumption would be an additional assumption needed to infer 

that a reported prevalence ratio estimates the incidence rate ratio 27,30. Figure 2-3 shows how, based on 
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the population structural assumptions, the prevalence odds are related to the incidence rate in a single 

group. Figure 2-4 then extends the concept by comparing the incidence rate at the group level and 

calculating the ratio. Figure 2-4 shows that the cross-product of a prevalence study (usually from a logistic 

regression) can estimate the incidence rate ratio and that only when the prevalence approaches zero, the 

PR is similar to the POR and can also estimate the incidence rate ratio of a health event. Of course, as with 

any effect size estimate, sources of bias may be important to properly interpret the effect measure but 

for the purposes of understanding what effect measure is estimated, we are setting aside issues of bias 

due to confounding, selection, or misinformation.   

Given this background, we were interested in understanding the implications of these concepts on the 

interpretation of the body of literature that seeks to identify the association between exposure to AFOs 

and the incidence of health effects in people living near those facilities. This body of literature often 

includes prevalence studies 1,24,25,49. Previously, it had been proposed that causal statements cannot be 

made for many studies in this work for several reasons, including the use of comparative prevalence 

estimates 1,24,25. However, here we examined that concept and sought to determine if the authors of these 

studies clarified if they interpreted the effect measures as causal by reporting the population structural 

assumptions. Further, we evaluated what might, in our opinion, be estimated if we applied this concept 

to the reported measures of association.  

MATERIALS AND METHODS 

Study population 

The studies used in the current study were a subset of studies from a living systematic review conducted 

to determine the effect of Animal Feeding Operations (AFOs) on the health of people living close to those 

facilities (described below); observational studies were identified and then classified according to the 

design. For this investigation, we used only prevalence studies identified as part of the living systematic 

review project. The classification of studies as prevalence studies was based on the authors' description 

of the design, or if none was provided, we used the description provided in the Materials and Methods 

section to infer if the outcome measured was incident or prevalent. The living systematic review protocol 

is available online (https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_AFO-3.pdf). 

The living systematic review was an update of prior reviews 1,24. For the living systematic review, eligible 

studies were observational studies collecting primary data where the unit of concern for the outcome was 

the individual. Studies where the unit of measurement of the outcome was a population aggregate (i.e., 

ecological studies) were not eligible. Participants eligible for inclusion in the systematic review were 

https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_CAFO-3.pdf
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humans living in communities near AFOs that might be described as industrial, large, concentrated, or 

other synonyms. Production systems that appeared to be grass-based, nomadic or confined smallholder 

operations based on the authors' description were considered irrelevant to the review. Measures of 

exposure to AFOs were not used as exclusion criteria in the living systematic review because, in this body 

of literature, exposure is measured in many ways, such as odor intensity, levels of contaminants in the air, 

soil, or water, proximity measured by distance, or exposure measured by AFO animal density units. For 

the living systematic review, outcomes of interest were health events (incident outcomes) or states 

(prevalent outcomes) measured on humans. The outcome did not need to be a disease; for example, 

colonization or culture of bacteria from a human was an eligible outcome. Health outcomes were only 

eligible if the primary research authors provided evidence of appropriate psychometric properties 

(validity, reliability, responsiveness) and clinical interpretability (validated). The studies captured by the 

systematic review were those found in the first review and the first update, conducted in 2014 8,14,53–68. In 

2022, the review was converted to a systematic living review and is updated every three months. The 

literature considered in this study is confined to studies identified before April 2022.   

Data extraction approach for prevalence studies 

For each relevant prevalence study identified, two reviewers extracted the year(s) the study was 

conducted, the study population’s location, the animal species at the AFOs, and a description of the 

human community (e.g., “neighboring residents of animal farms in the Dutch provinces of Noord-Brabant 

and Limburg”). The reviewers also extracted each effect measure for exposure-outcome pairs, comparing 

exposed and unexposed people and relative comparative measures reported by the authors, such as the 

incidence rate ratio, incidence risk ratio, incidence odds ratio, prevalence ratio, or prevalence odds ratio. 

An example of an exposure-outcome pair is the distance to the nearest AFO and asthma. Other effect 

measures were not extracted, such as regression coefficients (β) for logit or log models and mean 

difference from models with continuous outcomes. For each effect size extracted, we extracted the 

measure of precision (with 95% confidence interval, standard error, or credible interval) when reported. 

All effect sizes were extracted if the exposure had more than two categories. Outcomes extracted were 

classified in larger groups based on the body system affected: lower respiratory and upper respiratory 

conditions, antimicrobial resistance, dermatologic and infectious conditions.  

Structural assumptions of prevalence studies  

For the current study and its focus on prevalence studies, in addition to extraction of population 

characteristics and reported effect measures, we determined if the authors reported an effect measure 

that was not based on prevalence. For example, did any authors call the prevalence ratio an incidence 
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ratio and discuss the structural assumptions necessary for such inference? We also assessed the structural 

assumptions of the underlying source population based on biological knowledge of the health outcomes 

and the authors' description of the population, and using that information, our reviewers inferred what 

might be estimated by the study.  

For the prevalence studies that assessed a common health outcome and that reported a prevalence odds 

ratio, the questions used to assess the structural assumptions for each exposure-outcome pair were as 

follows:  

1. Is the study population dynamic and in a steady state?  

2. Is the mean duration of the outcome the same regardless of exposure group?   

3. Is the study free of concerns due to reverse causality?  

4. Is the temporal directionality from the exposure to the outcome continuous (exposure precedes 

the outcome)? 

For Question 1, we maintained the same type of population described by Pearce (2004) 27. However, the 

diagram presented in Pearce's paper is about the population that gives rise to the study population, 

therefore, in reality, we considered that Question 1 is about the source population that gives origin to the 

study population. Consequently, Question 1 was assessed by each reviewer using the information 

reported about the nature of the source population. Question 2 was assessed by each reviewer using a 

framework of understanding the underlying biology of the health outcome rather than the proxy measure 

reported by the authors.  Questions 3 and 4, were assessed by each reviewer using a framework of 

understanding the underlying biology of the disease measure and information from how the data were 

collected by the authors.  

If at least one of these assumptions was not met, the exposure-outcome pair was classified as providing 

an estimate of contrasting the prevalence of a disease event obtained in two populations, i.e., prevalence 

ratio or prevalence odds ratio – depending upon the statistical model. Otherwise, the outcome-exposure 

pair was classified as providing an estimate of the incidence rate ratio. For studies that provide a 

prevalence ratio, in addition to evaluating the above assumptions, the health event had to be rare (<10% 

prevalence) to approximate the incidence rate ratio (see Figure 2-4)27,30. 

These population structure assumptions were not evaluated for exposure-outcome pairs that measured 

common health outcomes (>10% prevalence) and reported the prevalence ratio (PR) as the assumption 

of rare health event is not met.  
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RESULTS 

The studies used in this study were those found in the first review, the 1st update which was conducted in 

2014 8,14,61–68,53–60 and those identified quarterly from 2014 to March 2022 through the living systematic 

review. 1758 abstracts were screened, and 87 references were assessed for eligibility based on the full 

text for the systematic review. A total of 33 observational studies were identified as relevant to the review, 

of which 15 were population-based prevalence studies 14,18,69–73,20,21,54,57,60,61,63,66, 11 were cohort studies 

13,53,55,56,59,62,64,74–77, and 7 were prevalent and incident case-control studies 8,58,65,67,68,78,79 . Table 2-1 

summarizes the effect measures reported in population-based prevalence studies where lower 

respiratory tract conditions were the most studied. Six studies were carried out in the Netherlands 

54,57,60,63,70,80, four studies were conducted in the United States of America 14,20,61,69 and Germany 21,71–73 

each, and one study was conducted in Mexico 66.   

In three studies, exposure-outcome pairs were not extracted as the authors reported Beta (β)  and mean 

differences 20,54,60. A total of 153 exposure-outcome pairs with the respective effect measures were 

extracted from thirteen prevalence studies (Table 2-1). Twelve prevalence studies reported using logistic 

regression to conduct the analysis and, therefore, without additional interpretation, the POR was the 

effect measure 14,21,81,57,61,63,64,66,70,71,73. One study used random-intercepts binary regression and, 

therefore, without additional interpretation, 58 prevalence ratios were extracted 82.   

No authors provided information about the possible structural assumptions or used terminology for effect 

size that would imply the authors had assessed the structural assumptions about the study population 

and reached a conclusion that the effect sizes estimated a causal parameter. However, all authors 

reported estimates adjusted for covariates which implies adjusting for confounding variables– a process 

associated with causal estimation intent 83.  

We concluded that four pairs (7%) of the fifty-eight prevalence ratios from the single study80 might directly 

estimate the IDR because of the outcome being a rare event (prevalence <10%) and the potential for the 

population to meet all the required structural assumptions (see Appendix). We further concluded that the 

remaining 54 prevalence ratios (93%; 54/58) provided only an estimate of contrasting prevalence 

obtained in two population strata because the health outcome was not rare (< 10% prevalence) nor did 

the structural assumptions allow estimation of the IDR from a prevalence ratio. 

In the 12 studies that reported the POR, 95 exposure-outcome pairs were extracted, of which, in our 

opinion, 63 POR (41%; 63/153) met the structural assumptions for estimating IDR (see Appendix). Thirty-

two POR (21%; 32/153), in our opinion, could only provide an estimate contrasting the prevalence odds 



19 
 

obtained in two population strata;  reverse causality assumption was a concern for 19 pairs in one study81  

whereas the temporal assumption was not met for thirteen pairs in four studies 57,61,64,71.   

DISCUSSION 

A cohort study is generally considered the most appropriate observational study if the goal is to compare 

the incidence between two exposure groups and elucidate causality when a randomized trial is not 

feasible 28,84. Prevalence studies which “include all subjects in the population at the time of ascertainment 

a representative sample of all such subjects, without regard for exposure and disease status” estimate the 

prevalence and prevalence ratio or prevalence odds ratio. However, the underlying source population 

characteristics in a prevalence study could also determine the ability to provide estimates of the incidence 

of a health effect 27,28,33,85. In this evaluation of 16 prevalence studies identified in a living systematic 

review addressing the association between residential exposure to AFOs and health effects, we found that 

despite adjusting for confounding variables, which implies an interest in a causal effect, no authors 

discussed the necessary assumptions for estimating causal parameters in prevalence studies.  

Although the authors of original manuscripts would be better placed to make such inferences, we 

considered for some studies that it might be reasonable that the effect measure obtained could be 

interpreted as IDR because of the study design and characteristics of the underlying population.  Further, 

to our knowledge, even though multiple previous reviews have focused on the health effects of AFOs on 

nearby communities 1,24,25, no other reviewer groups have delved into interpreting what is estimated by 

the effect measure reported from prevalence studies. Assessing the structural assumptions would 

obviously be far more accurate if the authors of the original studies, with their close knowledge of the 

populations studied, provided to readers the information about the assumptions. We acknowledge that 

our assessment of the assumptions may, for some populations, health outcomes, and exposures be 

incorrect. We would contend that the focus instead should be on the need for authors to address this 

issue directly when they conduct prevalence studies. In the literature, the assumptions used here have 

been described in detail to enable an understanding of what is estimated by the measures of effect 

reported in prevalence studies 27,28,30,32–34.  

Several conditions need to be considered in this context. Since all studies reported multiple exposure-

outcome pairs, it was not possible to make a single assessment for each study and instead, the structural 

conditions were assessed for each exposure-outcome pair reported. We found that in 44% (67 of 153) of 

the pairs extracted from prevalence studies, the estimated effect measure can be interpreted as IDR and 

the remaining 56% (86 of 153 pairs) as PR. Of the total measures of effect that can be interpreted as an 
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IDR, the majority did so through our interpretation of compliance with the structural assumptions (63 of 

95 pairs reporting POR) and a small number of pairs (4 of 58 pairs reporting PR) through compliance with 

the structural assumptions, plus the additional assumption that the health outcome was rare. This 

illustrates that the rare health outcome condition further limits the capacity of PR to estimate IDR. An 

example of a rare outcome would be asthma whose prevalence is low in countries such as the United 

States, where the prevalence among children (age <18 years) and adults (age 18+ years) is 6% and 8%, 

respectively 86.  

Some authors have pointed out that the structural assumption for POR to be interpreted as IDR are 

restrictive 27. This coincides with our findings that of the 153 POR exposure-outcome pairs analyzed, only 

67 (44%) pairs met the assumptions. This documents that it is important for authors to report the 

relevance of the structural assumptions for each outcome, if they expect the outcome to be rare, and if 

they are interpreting the outcome as incident or prevalent. Readers cannot assume that a prevalence 

study provides an estimate of the IDR and need guidance and justification from the authors of the paper.  

The structural assumptions for prevalence designs were evaluated through four questions. Our judgment 

of the population's steady state considered the population described in each study. In general, it was 

considered that all the populations studied can be considered dynamic and in a steady state: in the 

subpopulations defined by exposure (exposed to AFOs and not exposed), we considered it was reasonable 

to assume that the number of people remained stable in each one since although areas near AFOs may 

lose inhabitants, they would be on average replaced by inhabitants with the same socio-economic factors. 

The most commonly studied diseases were categorized as respiratory conditions, mainly related to 

chronic conditions such as asthma and COPD.  

One of the hardest issues to understand about the structural assumptions is that on average, the 

populations are stable. The structural assumptions do not imply that when an exposed individual with a 

disease of interest dies or moves to another area, they are immediately replaced by another exposed 

person who acquires the disease for the first time. Rather, assumptions are valid on-average, therefore 

as with any topic, replication is needed. Over multiple studies in multiple stable and dynamic populations, 

the average observed association would be the IDR. This is illustrated in the image (Figure 2-1) by the 

fluctuating lines of population size. 

Regarding the assumption of reverse causality, this condition refers to the concept that the health 

outcome can cause the exposure. It is critical that the inference can be made that reverse causality does 

not occur. An example of reverse causality would be observed in a hypothetical study where physical 

activity is the exposure and diabetes is the outcome. In this hypothetical prevalence study, it is possible 
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that those people diagnosed with diabetes, by their own motivation or by medical advice, perform more 

physical activity at the time of study. In the context of residential exposure to AFOs, although it is possible 

for people diagnosed with a particular illness to move away from AFOs, we considered it is unlikely that 

such a large number of people would decide to move for reasons that would have a meaningful effect on 

the population dynamics. Others may disagree. However, we considered that so many factors impact 

housing decisions, including socioeconomic, that such movement due to the association between health 

events and AFO would be rare in the populations being studied 87. 

Of all exposure-outcome pairs in which structural assumptions needed to be assessed, the outcomes were 

most frequently asthma-related or allergic rhinitis and, similarly, the exposures were proxies for exposure 

to AFOs such as odor, number of farms nearby and levels of ammonium and endotoxins. We considered 

that it was unlikely that asthma-related outcomes or allergic rhinitis occurred before they were diagnosed 

and had been a cause to move away from AFOs (or toward them). Therefore, in none of the exposure-

outcome pairs analyzed was reverse causality considered a concern. An exception to this statement is a 

Dutch article in which indicators of air pollution from livestock farms were inversely associated with 

respiratory morbidity 81. The authors argued that such an observation could be related to the selective 

migration of less healthy residents from rural to urban areas, which in our opinion, would be reasonable 

in Dutch rural communities that are not characterized by a low socioeconomic status and therefore, are 

likely to have greater potential for mobility based on health status. This example again documents the 

need for the author groups to specifically address the assumptions for each outcome and population. For 

the USA, we were unable to find data that reported that health concerns motivated rural-to-urban 

migration.   

Deciding about the temporal directionality from exposure to the outcome is very difficult. In some studies, 

the exposure information about the data collection process described by the authors and the 

measurement of the exposure occurred at a time preceding the measurement of the prevalent outcome. 

However, that was not sufficient to infer that exposure preceded the outcome because of the chronicity 

of the disease. For a chronic disease such as asthma, a person could have this condition for 20 years, 

therefore measuring the distance from AFOs based on an agricultural census 5 years prior to 

measurement of the asthma is not equivalent to showing the exposure occurred before disease.  

Interestingly, some studies even measured the exposure after measuring the outcome. For these 

exposure-outcome pairs, we did reject the temporality assumption because the exposure was assessed 

between 2005-2006 while the outcome was assessed earlier (2002 to 2004)71. Consequently, in these 

three pairs it was not possible to establish that they provided contrast estimates of incidences. However, 
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this approach to design does suggest that the original authors perhaps did assume the populations were 

stable and dynamic as they conducted the study using this framework and adjusted for confounders. The 

main authors' concern about this timing issue is linked to the possible misclassification of exposure: “The 

Lower Saxony Lung Study was conducted between 2002 and 2004, whereas ammonia exposure was 

measured 1 year later. A potential change in exposure over time could produce misclassification of 

exposure; because the degree of error is likely to be independent of respiratory symptoms, the reported 

ORs are expected statistically to be underestimates of the true effect.” 

The findings of this study show a between the epidemiological characteristics of studies (i.e., the causal 

interpretation that the results could have been based on the fulfillment of the assumptions) and the 

statistical interpretation of the measures of the effect in the body of work, probably due to the focus on 

the odds ratio from logistic regression of the cross-sectional studies. To overcome this problem pointed 

out by others 7,11,58 , it would be necessary and suitable to encourage authors to report and discuss which 

effect measure is being estimated in their cross-sectional studies. In human health research, 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) were developed to create 

homogeneity in the reporting of observational study results 89. Similar guidelines have been developed in 

veterinary research 90. The study authors are likely in a far better place to accurately assess the structural 

assumptions in their study populations so this information should be explicitly discussed.  

In this study we have used the term prevalence study, rather than cross-sectional study. This is because, 

as discussed, the designs do not exactly match the general definition of a cross-sectional study, which 

focuses on a single point in time. For example, the STROBE group defines a cross-sectional study as follows 

“In cross-sectional studies, investigators assess all individuals in a sample at the same point in time, often 

to examine the prevalence of exposures, risk factors or disease.” In this body of work, many authors 

measured the outcome on a cross-section of the population and then related this to a measure of 

exposure collected before the outcome. Such studies made an attempt to determine if the outcome was 

present when the exposure was measured, and there was no “ follow-up” period per se. Based on the 

results of the current study, we agree with the statement from the STROBE group that reporting of 

observational studies is less than ideal. Interestingly, the STROBE statement does not address the issue 

we addressed here, but it is clarified that studies with the intention of establishing causal associations 

should be particularly analyzed: “Some cross-sectional studies are analytical and aim to quantify potential 

causal associations between exposures and disease. Such studies may be analyzed like a cohort study by 

comparing disease prevalence between exposure groups. They may also be analyzed like a case-control 

study by comparing the odds of exposure between groups with and without disease”. STROBE indicates 
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that “If the study was a cross-sectional survey, the population, and the point in time at which the cross-

section was taken should be mentioned. When a study is a variant of the three main study types, there is 

an additional need for clarity.” If the authors are seeking to make causal inference, which is implied if they 

adjusted for confounding variables, we would propose that the authors should also address the structural 

assumptions.  

CONCLUSION  

Prevalence studies might provide estimates of contrast incidences, and this could contribute more to 

elucidating a causal relationship in studies of AFOs and human health effects.  However, current 

approaches to reporting prevalence studies limit this possibility. Although the assumptions necessary to 

interpret the measure of effect as IDR are known in the epidemiological literature, no author groups in 

the studies we reviewed discussed the assumptions in their body or work. The current study highlights 

the need to discuss which measure of effect is estimated in prevalence studies addressing the effects on 

the health of people living near Animal Feeding Operations.  
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Figures 

 

Figure 2-1. Representation of dynamic population in steady state and non-steady state. In each panel, the 
y-axis is the size of the population, and the x-axis is the inferred time interval of stability when the 
assumptions are being assessed. The time interval of stability may be weeks, months, or years. Bold 
undulating lines show the increase in exposure over the time period. The finer lines depict individuals 
entering and leaving the exposed population. Dots indicate cases of a disease emerging from the 
population. In the figure on the right, the bold undulating lines show the fluctuating number of people 
exposed in a population in a steady state. The finer lines below it depicts individuals who enter and leave 
the exposed population. Dots indicate cases of a disease emerging from the population. Figure adapted 
from Vandenbroucke & Pearce, 2012 33.  

 

 

Figure 2-2. Representation of a fixed population (cohort). The bold line going down represents the number 
of people who remain without the disease of interest; each step is a case of the disease.  The y-axis is the 
size of a population, and the x-axis is the time interval when the assumptions are being assessed. Note 
that at baseline, all subjects were free of the disease of interest. 

  



25 
 

 

Figure 2-3. Mathematical relationship between prevalence odds and incidence rate in a single group. 

Assuming that the population is in a steady state (stable), the number of people entering the 

prevalence pool in any time will be balanced by the number leaving it (Rothman et al., 2008). 

 

𝐼𝑛𝑓𝑙𝑜𝑤 =   𝑂𝑢𝑡𝑓𝑙𝑜𝑤 

The number of people who enter the prevalence pool at any time interval Δt will be 

𝐼(𝑁 − 𝑃)Δt 

Where I is the incidence rate, N the size population and P the prevalence pool. The outflow from the 

prevalence pool will be 

𝐼′𝑃Δt 

Where I’ is the incidence rate of leaving the prevalence pool. In the absence of migration, the 

reciprocal of I’ will equal D, the mean duration of the disease. Then 

𝐼𝑛𝑓𝑙𝑜𝑤 = 𝐼(𝑁 − 𝑃)Δt = Outflow =  
𝑃Δt

𝐷
 

Which yields 

𝑃

𝑁 − 𝑃
=  𝐼𝐷 
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Figure 2-4. Mathematical relationship between prevalence odds ratio and incidence rate ratio by 
comparing the incidence rate at the group level. 

 

 

  

The prevalence proportion of disease in the study population is denoted by P. Prevalence odds is 

equal to the incidence rate (I) times D (Rothman et al., 2008). 

 

𝑃

1 − 𝑃
=  𝐼𝐷 

In two populations, exposed and unexposed, that satisfy the structural assumptions, the prevalence 

odds ratio (POR) is equal to: 

𝑃𝑂𝑅 =  

𝑃1
1 −  𝑃1

𝑃0
1 − 𝑃0

=  
𝐼1𝐷1

𝐼0𝐷0
 

Given that the average duration of disease is the same in the exposed and unexposed groups 

(structural assumption), then the POR is equal to  

𝑃𝑂𝑅 =  

𝑃1
1 − 𝑃1

𝑃0
1 − 𝑃0

=  
𝐼1

𝐼0
 

If the disease is rare (1 −  𝑃1) and (1 − 𝑃0) are close to 1, then the POR and the prevalence ratio (
𝑃1

𝑃0
) 

are equal and directly estimate the incidence density ratio  

𝑃𝑂𝑅 =  
𝑃1

𝑃0
=  

𝐼1

𝐼0
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Tables  

 

Table 2-1. Effect measures reported in prevalence studies identified in a systematic review addressing the 
health effects of people living near Animal Feeding Operations. 

  

Number of exposure-
outcome pairs extracted  
(n = 153)              

Effect measure reported   

       Prevalence Odds Ratio 95 

       Prevalence Ratio 58 

Health Outcome Category  
      Lower Respiratory 121 

      Upper Respiratory 15 

      Antimicrobial Resistance 2 

      Infectious Conditions 13 

     Dermatologic Conditions 2 
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APPENDIX: EXPOSURE-OUTCOME PAIRS, EFFECT MEASURE REPORTED AND ITS 
INTERPRETATION IN PREVALENCE STUDIES 

 

Table 2-2. Exposure-outcome pairs, effect measure reported and its interpretation in prevalence studies 
addressing the effect of AFOs on the health of residents living near these operations.  

Reference 
Effect measure 

reported 
Outcome Exposure 

Interpretation 

of the effect 

measure 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children with 

Self-Reported 

Allergies 

Exposure 

category 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children without  

Self-Reported 

Allergies 

Exposure 

category 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

in all children 

Exposure 

category 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children with 

Self-Reported 

Allergies 

Hog pounds (in 

millions) within 3 

miles of school 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children without  

Self-Reported 

Allergies 

Hog pounds (in 

millions) within 3 

miles of school 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

in all children 

Hog pounds (in 

millions) within 3 

miles of school 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children with 

Self-Reported 

Allergies 

Livestock odor Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children without  

Self-Reported 

Allergies 

Livestock odor Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

in all children 

Livestock odor Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children with 

Self-Reported 

Allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

without 

physician 

diagnosis in 

children with 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Severe wheeze 

in children with 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

 

 

 

 



35 
 

Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Frequent severe 

wheeze in 

children with 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Physician 

diagnosed 

Asthma  in 

children with 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma 

medication use 

in past year  self-

reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Activity 

limitations in 

past year as a 

result of asthma 

symptoms 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

without 

physician 

diagnosis in 

children with no  

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children without  

Self-Reported 

Allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Severe wheeze 

in children with 

no self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Frequent severe 

wheeze in 

children with no 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Physician 

diagnosed 

Asthma  in 

children with no  

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma 

medication use 

in past year no 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

in all children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Severe Wheeze 

in all children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

without 

physician 

diagnosis in all 

children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Frequent severe 

wheeze in all 

children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Physician 

diagnoses 

asthma in all 

children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma 

medication use 

in past year  all 

children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

without 

physician 

diagnosis in 

children with 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Severe wheeze 

in children with 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Frequent severe 

wheeze in 

children with 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Physician 

diagnosed 

Asthma  in 

children with 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Activity 

limitations in 

past year as a 

result of asthma 

symptoms 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Asthma 

medication use 

in past year  self-

reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

without 

physician 

diagnosis in 

children with no  

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Severe wheeze 

in children with 

no self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Frequent severe 

wheeze in 

children with no 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Physician 

diagnosed 

Asthma  in 

children with no  

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Asthma 

medication use 

in past year no 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

without 

physician 

diagnosis in all 

children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Severe Wheeze 

in all children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Frequent severe 

wheeze in all 

children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Physician 

diagnoses 

asthma in all 

children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma 

medication use 

in past year  all 

children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children with 

Self-Reported 

Allergies 

Miles to nearest 

swine CAFO 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children without  

Self-Reported 

Allergies 

Miles to nearest 

swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

in all children 

Miles From 

Nearest Swine 

CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children with 

Self-Reported 

Allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

children without  

Self-Reported 

Allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Current wheeze 

in all children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma-related 

physician visit  

emergency visit  

and/or 

hospitalization in 

past year  no 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Asthma-related 

physician visit  

emergency visit  

and/or 

hospitalization in 

past year  all 

children 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma-related 

physician visit  

emergency visit 

and/or 

hospitalization in 

the past year 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Incidence 

density ratio 

Mirabelli et al 

2006 

Prevalence ratio Missed school in 

past year as a 

result of asthma 

symptoms 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Incidence 

density ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma-related 

physician visit  

emergency visit  

and/or 

hospitalization in 

past year  no 

self-reported 

allergies 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Mirabelli et al 

2006 

Prevalence ratio Asthma-related 

physician visit  

emergency visit  

and/or 

hospitalization in 

past year  all 

children 

>=3 vs <3 Miles 

from Nearest 

Swine CAFO 

Incidence 

density ratio 

Mirabelli et al 

2006 

Prevalence ratio Missed school in 

past year as a 

result of asthma 

symptoms 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Mirabelli et al 

2006 

Prevalence ratio Asthma-related 

physician visit  

emergency visit 

and/or 

hospitalization in 

the past year 

self-reported 

allergies 

Livestock Odor 

Reported 

Outside or Inside 

School Building 

Prevalence ratio 

Smit et al 2014 Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

One or more 

farms within 500 

m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

Presence of farm 

animals within 

500 m 

Prevalence odds 

ratio 
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Table 2-2 (cont’d) 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

PM10 emission 

from farms 

within 500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

Distance to 

nearest farm 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

One or more 

farms within 500 

m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

Presence of farm 

animals within 

500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

PM10 emission 

from farms 

within 500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

Distance to 

nearest farm 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

One or more 

farms within 500 

m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

Presence of farm 

animals within 

500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Allergic rhinitis PM10 emission 

from farms 

within 500 m 

Prevalence odds 

ratio 
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Table 2-2 (cont’d) 

Smit et al 2014 Odds ratio Allergic rhinitis Distance to 

nearest farm 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Allergic rhinitis One or more 

farms within 500 

m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Allergic rhinitis Presence of farm 

animals within 

500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

PM10 emission 

from farms 

within 500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

Distance to 

nearest farm 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

Number of farms 

within 500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Asthma (at least 

1 episode in past 

year) 

Number of farms 

within 500 m 

Prevalence odds 

ratio 

Smit et al 2014 Odds ratio Allergic rhinitis Number of farms 

within 500 m 

Prevalence odds 

ratio 
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Table 2-2 (cont’d) 

Schulze et al 

2011 

Odds ratio Allergic rhinitis Interpolated 

ammonia 

exposure > 19.71 

microgram/m 

Prevalence odds 

ratio 

Schulze et al 

2011 

Odds ratio Sensitization 

against 

ubiquitous 

allergens 

Interpolated 

ammonia 

exposure > 19.71 

microgram/m 

Prevalence odds 

ratio 

Schulze et al 

2011 

Odds ratio Wheezing 

without a cold 

Interpolated 

ammonia 

exposure > 19.71 

microgram/m 

Prevalence odds 

ratio 

Carrel et al 2014 Odds ratio MRSA-positive 

nares screen 

More than 1000 

swine AU within 

1 mile 

Prevalence odds 

ratio 

Carrel et al 2014 Odds ratio MRSA-positive 

nares screen 

Any swine AU 

within 1 mile 

Prevalence odds 

ratio 

Hooiveld et al 

2016 

Odds ratio Chronic enteritis For each 

additional CAFO 

within the postal 

code area of the 

residence 

Prevalence odds 

ratio 
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Table 2-2 (cont’d) 

Hooiveld et al 

2016 

Odds ratio Chronic enteritis For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Prevalence odds 

ratio 

Post et al 2019 Odds ratio Pneumonia Presence of goat 

farm near 

residential 

address 

Prevalence odds 

ratio 

Post et al 2019 Odds ratio Pneumonia Presence of a 

poultry farm 

near residence 

Prevalence odds 

ratio 

Post et al 2019 Odds ratio Pneumonia Presence of a 

chicken farm 

near residence 

Prevalence odds 

ratio 

Post et al 2019 Odds ratio Pneumonia Presence of farm 

with laying hens 

or parent stock 

near the 

residence 

Prevalence odds 

ratio 

Post et al 2019 Odds ratio Pneumonia Presence of farm 

with broilers 

near the 

residence 

Prevalence odds 

ratio 
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Table 2-2 (cont’d) 

Post et al 2019 Odds ratio Pneumonia Presence of farm 

with other 

poultry near the 

residence 

Prevalence odds 

ratio 

Smit et al 2012 Odds ratio Pneumonia Number of goats 

within 5 km 

Incidence 

density ratio 

Smit et al 2012 Odds ratio Pneumonia Presence of farm 

animals within 1 

km 

Incidence 

density ratio 

Smit et al 2012 Odds ratio Other infectious 

disease 

Presence of farm 

animals within 1 

km 

Incidence 

density ratio 

Smit et al 2012 Odds ratio Other infectious 

disease 

Number of goats 

within 5 km 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Wheezing 

Without Cold 

Level of Odor 

Annoyance 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Specific IgE to 

Common 

Allergens 

No. of animal 

houses within 

500 m 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Wheezing 

Without Cold 

No. of animal 

houses within 

500 m 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Bronchial 

Hyperresponsive

ness to 

Methacholine 

Level of Odor 

Annoyance 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Radon et al 2007 Odds ratio Specific IgE to 

Common 

Allergens 

Level of Odor 

Annoyance 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Bronchial 

Hyperresponsive

ness to 

Methacholine 

No. of animal 

houses within 

500 m 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Allergic rhinitis Level of Odor 

Annoyance 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Allergic rhinitis No. of animal 

houses within 

500 m 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Physician-

Diagnosed 

Asthma 

Level of Odor 

Annoyance 

Incidence 

density ratio 

Radon et al 2007 Odds ratio Physician-

Diagnosed 

Asthma 

No. of animal 

houses within 

500 m 

Incidence 

density ratio 

Radon et al 2005 Odds ratio Allergic rhinitis Animal houses 

within 500m 

Incidence 

density ratio 

Radon et al 2005 Odds ratio Allergic rhinitis Level of Odor 

Annoyance 

Incidence 

density ratio 

Radon et al 2005 Odds ratio Non-cold related 

rhonchal 

breathing 

sounds 

Animal houses 

within 500m 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Radon et al 2005 Odds ratio Non-cold related 

rhonchal 

breathing 

sounds 

Level of Odor 

Annoyance 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Allergic asthma-

Non-atopic 

parents 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Allergic asthma-

Atopic parents 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Non-allergic 

asthma-Non-

atopic parents 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Non-allergic 

asthma-Atopic 

parents 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Asthmatic 

Pathology-Not-

Atopic Parents 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Asthmatic 

Pathology-

Atopic Parents 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio Asthmatic 

Pathology 

Log of the 

Endotoxin 

Incidence 

density ratio 

Hoopmann et al 

2006 

Odds ratio IgE Log of the 

Endotoxin 

Incidence 

density ratio 

 

 

 



51 
 

Table 2-2 (cont’d) 

Freidl et al 2017 Odds ratio Pneumonia Presence of any 

type of farm 

within a certain 

distance of 

residence 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Presence of farm 

with minimum 

amount of 

animals within 

500m of 

residence 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Presence of farm 

with minimum 

amount of 

animals within 

1000m of 

residence 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Presence of farm 

with minimum 

amount of 

animals within 

1500m of 

residence 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Freidl et al 2017 Odds ratio Pneumonia Presence of farm 

with minimum 

amount of 

animals within 

2000m of 

residence 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Distance 

(quartiles 

expressed in 

meters) 

between 

residence and 

closest farm with 

minimum 250 

poultry 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Distance 

(quartiles 

expressed in 

meters) 

between 

residence and 

closest farm with 

minimum 50 

goats 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Number of 

animals within 

1000m of the 

residence 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Freidl et al 2017 Odds ratio Pneumonia Number of 

animals within 

1000m of the 

residence 

Incidence 

density ratio 

Freidl et al 2017 Odds ratio Pneumonia Number of farms 

(any type) within 

1000m of 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Other infectious 

disease 

For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Gastroenteritis 

presumed 

infection 

For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Allergic 

conjunctivitis 

For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Pneumonia For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Hooiveld et al 

2016 

Odds ratio Acute URI 

(Upper 

respiratory 

infection) 

For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Physician-

Diagnosed 

Asthma 

For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Hay fever For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Atopic eczema For each 

additional CAFO 

within the postal 

code area of the 

residence 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Hooiveld et al 

2016 

Odds ratio Other infectious 

disease 

For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Gastroenteritis 

presumed 

infection 

For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Allergic 

conjunctivitis 

For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Acute URI 

(Upper 

respiratory 

infection) 

For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Hooiveld et al 

2016 

Odds ratio Pneumonia For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Physician-

Diagnosed 

Asthma 

For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Hay fever For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Hooiveld et al 

2016 

Odds ratio Chronic 

obstructive 

pulmonary 

disease (COPD) 

For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 



57 
 

Table 2-2 (cont’d) 

Hooiveld et al 

2016 

Odds ratio Atopic eczema For each 

additional CAFO 

in adjacent 

postal code 

areas to the 

patient's 

residence 

Incidence 

density ratio 

Nava et al 2015 Odds ratio Anti-Toxocara 

canis antibodies 

Live near 

livestock farming 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Nasal allergies Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Lung allergies Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Nasal or lung 

allergies & 

current asthma 

Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 
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Table 2-2 (cont’d) 

Schultz et al 

2019 

Odds ratio Current asthma Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Asthma (at least 

1 episode in past 

year) 

Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Asthma 

medication use 

in the past year 

Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Current allergies Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 

Schultz et al 

2019 

Odds ratio Physician-

Diagnosed 

Asthma 

Restricted cubic 

spline of 

residential 

distance to the 

nearest CAFO 

Incidence 

density ratio 
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3. CHAPTER 3: CASE-CONTROL STUDIES ADDRESSING THE HEALTH EFFECTS OF PEOPLE LIVING 
NEAR ANIMAL FEEDING OPERATIONS: WHAT EFFECT SIZE MEASURE DO THEY ESTIMATE? 

ABSTRACT 

Background  

Randomized controlled trials are considered the ideal design to estimate the contrast of incidence. 

However, observational studies can also be used, and the preferred design is a population-based cohort 

study because it enables the direct estimation of incidence rates. However, conditional on meeting some 

assumptions about the source population, the nature of the cases, and the methods for sampling controls, 

the cross-product (odds ratio) reported from a case-control study might also be interpreted as a 

comparison of incidence. An area where case-control studies are often employed is in assessing the 

association between living near Animal Feeding Operations (AFOs) and community member health.  Our 

goal with this research was first to evaluate the effect size measure reported by authors of case-control 

studies about AFO) and community member health to and second to understand what is being estimated 

by these studies based on population assumptions. 

Methods 

We evaluated case-control studies that were identified as part of a systematic review conducted to 

determine the effect of AFOs on the health of people living close to those facilities. For aim 1, all exposure-

outcome effect sizes were extracted, and thereafter we evaluated if the authors discussed the 

assumptions about the underlying population, the apparent nature of the cases (incident or prevalent), 

and the methods for sampling cases and controls. For aim 2, we evaluated the populations assumptions 

to provide an opinion on the interpretation of the effect size measure reported.  

Results 

Seven case-control studies were identified, where two were classified as prevalent case-control and five 

as incident case-control studies. Thirty-four cross-products (odds ratios) were extracted as measures of 

effect size. For aim 1, no author group discussed the population assumptions required to make causal 

inferences or the type of case-control design determined by the method used for sampling of controls 

(case-cohort, density sampling or cumulative incidence sampling). However, interestingly all studies 

adjusted for potential confounding variables, which suggested a goal of causal inference. For aim 2, in 

61% (21/34) of the effect sizes extracted, the effect measure obtained by the authors could, in our 

opinion, potentially have been considered equivalent to the incidence density ratio (IDR) due to the study 

design, the nature of the cases, the methods of sampling of controls and characteristics of the underlying 

population.  
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Conclusion 

Authors of case-control studies reporting the impact of AFOs on nearby communities have not been 

discussing the epidemiological assumptions necessary to interpret the measure of effect as IDR. Given the 

important percentage of exposure-outcome effect sizes that, in our opinion, might be interpreted as 

providing estimates of IDR, authors should discuss the assumptions to support the causal interpretation 

of their results and help readers understand their study's contribution to a causal relationship in the body 

of work.  

INTRODUCTION 

The significant growth in animal feeding operations (AFOs) in recent decades has increased concerns 

about the potential negative health impacts for the communities surrounding these facilities. 

Consequently, this is a topic of interest for public health that motivates multiple investigations to 

determine the effect of these facilities. With respect to AFOs, two major questions are of interest. First, 

investigators may be interested in asking if there is a difference in the burden of disease (prevalence) in 

communities that live near AFOS compared to unexposed communities. The alternative question is, are 

AFOS a cause of increased disease incidence in communities living near AFOS compared to unexposed 

communities. Such questions require different approaches to design and analysis, as observed 

associations are not necessarily causal due to potential for confounding variables to bias the observed 

effects size measure.   

The studies used to investigate AFOS and disease incidence and prevalence are observational in nature 

because it would be infeasible and unethical to randomize people to potentially harmful exposures 48. The 

diseases of interest investigated are varied but are often chronic diseases such as asthma. This body of 

work therefore has several case-control studies because of the chronic nature of the diseases of interest 

1,24,25,49.   

As explained by Knol and Vandenbroucke 32,33,51 it is well established that the approach taken to case 

determination and control selection and the underlying populations dynamic impact the effect size that 

can be estimated by a case-control study.  Therefore, as we seek to understand if the prevalence of disease 

and incidence of the disease is higher in communities near AFO’s it is critical that we recognize these 

differences and the impact on the inference obtained.  

Here we sought to focus on case-control studies in this body of work and understand better the types of 

case-control designs employed and the measure of effect estimated by investigators  based on the nature 
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of the event, the approach to selecting controls and the type of population investigated.  The specific aims 

of this study were first to evaluate the effect size measure reported by authors of case-control studies 

about AFO) and community member health, and second to understand what these studies estimated 

based on population assumptions.  By achieving these aims, we seek to ensure that we better understand 

the available data and maximize the value of research investment in this topic, and if the approach is 

unsuitable, to encourage researchers to change the study designs used to enable more accurate causal 

inference about this important public health question. In a companion paper, we investigated cross-

sectional studies (prevalence studies) (Studies investigating the prevalence of health outcome in people 

living near Animal Feeding Operations: What effect measure is estimated?)  Before discussing the 

approach to the aims, we provided a brief background on effect size estimation in case control studies.  

Readers wanting to understand the topic fully should read the more detailed cited papers.  

Background to effect size measures obtained from case-controls designs 

Cohort studies estimating the ratio of incidence measures are usually the preferred approach to studying 

the causes of disease if an observational approach is required. However, for many diseases of interest, 

given that cohort studies require lengthy follow-up and substantial resources, it is often more practical to 

conduct alternative observational designs such as case-control studies 28,34,50. Investigators often choose 

case-control designs because the design are useful for investigating disease etiology, especially if the 

disease is rare, indicated when assessing exposure is costly, and often are quick to conduct to inform 

public health policy 32,34. Despite the popularity of the case-control study design, confusion remains about 

the measures of effect obtained from the design. For example, a survey of 150 case-control studies in the 

human health literature found that 84% could potentially have interpreted the reported odds ratio 

(otherwise known as the cross product) as the incidence density ratio (IDR) if the authors had considered 

the structural assumptions of the population and the approach to sampling controls 32. Similarly, a survey 

of 100 studies labeled as case-control in the veterinary literature found that of the studies that reported 

an odds ratio as the effect measure, none reported on additional considerations that would have enabled 

to interpret of the effect size as a cumulative incidence ratio (CIR) or IDR 85.  

The confusion about the effect measure obtained from a case-control study may have multiple roots. 

Specifically, authors have noted that in some epidemiologic textbooks, the odds ratio is stated to be the 

primary effect measure for that study design 33,91, a statement that is particularly true for a particular type 

of case-control design where controls are sampled from the survivors at the end of the hypothetical time 

period of interest.  The impact of this misconception is that the term odds ratio as very commonly used 

as a synonym for the cross product of a two-by-two table (or the exponentiated coefficient from a logistic 
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regression of case-control study) which is not accurate for all case-control designs 91 . Further confusing 

the issue is that most authors do not include the nature of the case event in the effect measure i.e., 

prevalent cases or incident case, and instead simply use the term odds ratio leaving the reader to 

determine if the incidence odds ratio (also called the risk odds ratio) or the prevalence odds ratio is 

estimated.  

Three measures of incidence can be calculated in a single group: the incidence rate (person-time incidence 

rate), the incidence proportion (cumulative incidence), and the incidence odds. Corresponding to those 

measures of disease frequency, we can make a direct comparison between two or more groups by 

calculating three ratio measures of effect: incidence density ratio (IDR) (also called rate ratio, incidence 

rate ratio), cumulative incidence ratio (CIR) (also called risk ratio, incidence risk ratio) and the incidence 

odds ratio (IOR)  27,28,30,34. These three measures of disease incidence have the same numerator: the 

number of incident cases of the disease. These effect measures differ in whether the denominator 

represents person-time at risk, persons at risk, or the number of non-diseased people 28. Cohort studies 

can provide direct estimates of all three measures of disease incidence and, therefore, direct comparative 

incidence effect measures without any assumptions because cohort studies involve collecting and 

analyzing the relevant information on the source population prospectively and, therefore can account for 

instability in the population 28.  

It is known that the measure of effect reported in case-control studies, usually the cross-product obtained 

from a two-by-two table or logistic regression, can also be interpreted as IDR, CIR, IOR, or POR based on 

the design. Indeed, for example, some investigators have pointed out that “the exposure odds ratio from 

a case-cohort design is not an approximation of the risk ratio. It is, in fact, a mathematically equivalent 

way of expressing the risk ratio”91. Our goal here is not to provide a thorough tutorial on this concept, and 

the reader unfamiliar with this concept is directed to numerous other papers written on the topic 33,34,51,91. 

However, here we briefly cover the concept.  To determine if the cross-product obtained from the analysis 

of case-control studies is mathematically equivalent to either the IDR, CIR, IOR or POR, it is necessary to 

consider: 1) the nature of the cases, 2) the source population giving rise to the study population and 3) 

the method used for control sampling 28,32,33,91. This scenario should be differentiated from the situation 

where the estimate of an incidence odds ratio approximates the incidence RR because of the rare disease 

assumption a situation which arises because the denominator of the ROR and RR are very similar for rare 

diseases.  Here we briefly describe these concepts and provide further references as needed for more 

detail.  
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The nature of the cases:  

The first basic but fundamental distinction is whether the cases are incident or prevalent 32,33,92.  An 

incident case refers to a new health-related event within a specified period of time. On the other hand, a 

prevalent case refers to the event in which an attribute or disease is present or not at a given time 93. In 

case-control studies, the approach to sampling the cases and biological knowledge guide this 

determination (for more discussion see 28,33).   

The source population:  

To characterize the source population giving rise to the study population, it is necessary to understand 

the population dynamics of the source population 33,51.  Source populations can be fixed, or dynamic, and 

dynamic populations can be in a steady state or non-steady state. In a population in a steady state, the 

sizes of each subpopulation defined by exposure, disease, and confounders do not change over a specified 

time interval, and over repeated samplings, the average distribution of the population demographics are 

stable. For such a steady state to exit, exposure and outcome status as well as incidence rates should not 

have effect on ‘leaving’ or ‘entering’ the population. In simple terms, the steady-state population 

assumption assumes that people who 'leave' (because they die or because they move out) are “on 

average” constantly being replaced by the same type of people51.  A simple example of a dynamic 

population is provided by Vandenbroucke and Pearce (2012) 11.   

A dynamic population can be understood intuitively as a regiment of a given size in a modern army. 

Imagine a regiment with a size of 5000 persons. Each time a soldier leaves the regiment, for whatever 

reason (death, disease, pensioning and so forth), he or she is replaced by a new recruit. The size of the 

regiment varies slightly from day to day: on some days there are slightly <5000, because the new 

replacement recruits have not yet arrived; on other days slightly more because the new recruits have 

arrived before the last day of duty of previous recruits. Even on the battlefield, in today’s armies, numbers 

are sometimes kept constant by flying in new soldiers to replace the dead and wounded. As long as they 

are members of the regiment, soldiers belong to this dynamic population. Calculations of death rates based 

on a regiment are straightforward: on average, each day of the year there are 5000 soldiers. Thus, for a 

year, there are 5000 soldier-years of follow-up. If 63 soldiers die during the year (e.g. in a continuing 

entrenched war), this would lead to an incidence rate of 63/5000 soldier-years, or 1.3 per 100 soldier-

years. This is an incidence rate of death. 

Further, the average duration of illness is required not to change over time and to be the same exposed 

and unexposed populations, an assertion that is not necessary when controls are matched on time 27,30.  
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All fixed populations are in a non-steady state because there are no additions, and therefore, the 

distribution of subpopulations changes over time 32. For further details the reader are directed to our 

companion study and other references 27,28,32,33,51,94.  

The approach to selecting controls:  

The final aspect of interpreting a cross-product (or exponentiated coefficient) that arises from a case-

control study is the approach to sampling controls. According to the different methods for sampling 

controls in a case-control study, the IDR will be obtained from three design approaches: 1) in a fixed cohort 

in which controls are drawn concurrently with cases (Figure 2-1 graph B); 2) in a dynamic stable or unstable 

population in which matching on time is taken into account in the analysis; 3) in a dynamic population in 

a steady state 32.  

The CIR can be estimated in two scenarios: 1) in a fixed cohort in which controls are selected at baseline 

and in which censoring is not related to exposure (Figure 2-1graph A) and 2) in a fixed cohort in which 

controls are selected at the end of follow-up, in which disease is rare (incidence <10%) and in which 

censoring is not related to disease exposure (Figure 2-1graph C).   

 In the following situations, the cross-product from a two-by-two table (or the exponent of a coefficient 

from a logistic regression) can be interpreted as incidence odds ratio: 1) in a fixed cohort in which controls 

are selected at the end of follow-up and in which the disease is common (prevalence >10%); 2) in a fixed 

cohort in which controls are selected at baseline and censoring is related to exposure; 3) a fixed cohort in 

which controls are selected concurrently but matching on time is not taken into account in the analysis; 

4) in a dynamic population where controls are not matched on time and where the distribution of 

exposure among controls changes over time 32,33. Finally, the prevalence odds ratio provides estimate of 

IDR when prevalent cases are selected, and the duration of the disease does not depend on exposure 

status 32–34. 

Given this background, the aims of this study were 1) to assess how authors reported effect measures for 

case control studies and 2) to understand what is being estimated by these studies based on the nature 

of the event, the approach to selecting controls and populational assumptions. 

MATERIAL AND METHODS 

Selection of articles: source population.  

For the investigation, we utilized case-control studies identified through a systematic review conducted 

to determine the effect of AFOs on the health of people living close to those facilities. The review is an 

update of prior reviews 1,24. The classification of observational study design was based on the original 
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authors description of the design in the manuscript, and if no description of the design was provided, we 

used the design description to infer the design. The protocol for the systematic review is available online 

(https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_CAFO-3.pdf).  

As a point of clarification from this point onward, in the manuscript we refer to the product of analysis as 

the cross-product. We are seeking to determine what epidemiological effect measure the cross product 

of a two-by-two table or the exponent of a logistic regression represents. For simplicity, we refer to the 

mathematical result of these analysis processes as the “cross-product” to separate the mathematical 

result from the epidemiolocal inference that arises based on the design employed.  We recognize that 

many of the analysis results are estimates from regression models, but the language is overly cumbersome 

to refer to the cross product of a two-by-two table or the exponent of a logistic regression or Poisson 

model each time. 

Studies eligible for the systematic review, from which the case-control studies for this paper were a 

subset, were observational studies collecting primary data where the unit of concern for the outcome was 

the individual. Studies where the unit of measurement of the outcome is a population aggregate (i.e., 

ecological studies) were not eligible. Participants eligible for inclusion in the systematic review were 

humans living in communities near AFOs that might be described as industrial, large, concentrated, or 

other synonyms. Production systems that appear to be grass-based, nomadic, or confined smallholder 

operations based on the authors description were also considered to be not relevant to the review. 

Measures of exposure to AFOs were not used as exclusion criteria because in this body of literature 

exposure is measured in many ways, such as odor intensity, levels of contaminants in the air, soil, or water, 

proximity measured by distance, or exposure measured by AFO animal density units. Outcomes of interest 

were health events or states measured on humans. The outcome did not need to be a disease; for 

example, colonization or culture of bacteria from a human was an eligible outcome. Health outcomes 

captured at a single time point, such as self-reported health states or events using survey instruments, 

were not eligible unless the primary research authors provided evidence of appropriate psychometric 

properties (validity, reliability, responsiveness) and clinical interpretability (validated). All the health 

outcomes extracted were classified according to the anatomical location of the reported condition: 

antimicrobial resistance, cardiovascular, kidney, gastrointestinal and lower respiratory.  

The studies captured by this systematic review were those found in the last update which was conducted 

in 2017 8,14,61–68,53–60 plus those that have been identified since the adoption of the living systematic review 

approach in 2022. The systematic living review is updated every three months and the literature 

considered in this study is confined to studies identified before April 2022. More details of the living 

https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_CAFO-3.pdf
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systematic review are available in the protocol and in the companion paper investigating cross-sectional 

studies (prevalence studies) (https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_CAFO-

3.pdf)  (Studies investigating the prevalence of health outcome in people living near Animal Feeding 

Operations: What effect measure is estimated?) 

Study population  

Aim one was to evaluate the effect size measure reported by authors of case-control studies about AFO) 

and community member health. After each relevant case-control study in the systematic review was 

identified, two reviewers extracted the year the study was conducted, the study population’s location, 

the AFO animal species, and a description of the human community (e.g., “neighboring residents of animal 

farms in the Dutch provinces of Noord-Brabant and Limburg”). The reviewers also extracted each 

exposure and outcome pair reported. An example of an exposure-outcome pair is the distance to the 

nearest AFO and asthma, respectively.  

To achieve Aim 2, we assessed the structural assumptions of the underlying source population based on 

our biological knowledge of the diseases and the author's description of the population, and using that 

information, we inferred what might be estimated by the study. We followed the diagram (Figure 2) 

developed by Knol et al (2008) to discuss what effect measure was estimated by the authors 32.  Therefore, 

our approach replicated that previously used by other authors to infer the effect size measure.  

Firstly, we determined if the outcome was incident or prevalent (Figure 2, Level 1): when the outcome 

reported did not consider the temporality of the event, we considered it as a prevalent case (e.g., allergies) 

and when the outcome involved the measurement of a new event in a specific time, the case was 

considered as an incident case (e.g., wheezing within the past year).  

For incidence cases in dynamic populations (Figure 2: Level 2, 3 and 4), the questions of interest were: 

1. Were controls sampled each time a case occurred? 

2. Was the distribution of exposure stable in the source population? 

Only if the answer to first question was no, was the second question evaluated. If the response to the 

second question was also no, the cross-product of the exposure-outcome pair was interpreted as an 

incidence odd ratio. Otherwise, the cross-product of the outcome-exposure pair was classified as 

providing estimate of the IDR. 

For incidence cases in fixed cohorts (Figure 2: Level 2, 3 and 4): 

Since the controls can be selected using three methods: at the beginning of follow-up, at the end of follow-

up or concurrently, the questions evaluated for each method were respectively: 

1. Is incomplete information about study participants unrelated to exposure?  

https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_CAFO-3.pdf
https://syreaf.org/wp-content/uploads/2022/05/Draft_Protocol_CAFO-3.pdf
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2. Is the health event rare (<10% in the exposed group)?  

3. Was matching on time considered in the analysis?  

If the answer to any of these questions was negative, the effect measure of the exposure-outcome pair 

was interpretated simply as an odd ratio. Otherwise, the outcome-exposure pair was classified as 

providing an estimate of CIR for question 1 and 2, and IDR for question 3.  

RESULTS 

The studies used in this study were those found in the first review, the 1st update which was conducted in 

2014 8,14,61–68,53–60 and those identified quarterly from 2014 to March 2022 through the living systematic 

review. 1758 abstracts were screened and 87 were assessed for eligibility based on the full text. A total of 

33 observational studies were identified as relevant to the system review, of which seven were case-

control studies and relevant to this paper 8,53,58,65,67,68,78,79 . Table 3-1 shows the main characteristics of the 

case-control studies where gastrointestinal conditions and antimicrobial resistance were the most 

studied. Table 3-2 summarize the exposure-outcome pairs extracted, the nature of the outcomes reported 

(incident or prevalent) and the interpretation given to the effect measure reported by authors.  

For Aim one, the case-control studies reported 34 cross products obtained from a logistic regression and 

reported all as odds ratios. No authors reported if the investigators considered the nature of the cases to 

be incident or prevalant8,58,65,67,78,79 (Table 3.1). 

With respect to aim two, in our opinion, 61% (21 of 34) of the reported odds ratios could have been 

interpreted as IDR. 24% (8 of 34) of the outcomes 78,95, all of the effect sizes assessing MRSA outcomes, 

were classified as prevalent cases (outcomes) and the remaining 76% (26 of 34) were classified as incident 

cases (outcomes) 8,58,65,67.  One study reported the mean difference; thus, the structural assumptions were 

no evaluated 68.  

In the prevalent outcomes pairs that reported odds ratio, 63% (5 of 8), could be interpreted as IDR and 

37% (3 of 8) as prevalence ratio. Among the 26 exposure-outcome pairs that reported OR and that were 

classified as incident cases, in 61% (16 of 26) of them the measure of effect, could be interpreted as IDR 

and 39% (10 of 26) simply as incidence odds ratio.  

In all the studies, authors reported estimates adjusted for covariates which implies adjusting for 

confounding – a process associated with causal estimation intent which would imply recognition that an 

incident measure is captured by the design 83. No authors provided explicit information about the nature 

of the cases (prevalent or incident) or discussed the possible structural assumptions or used terminology 
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for effect size that would imply they had assessed the assumptions and reached a conclusion that the 

effect sizes estimated a causal parameter. 

DISCUSSION 

The results of this study show that the statistical interpretation of the measures of effect could differ from 

the epidemiological interpretation that considers characteristics of the studied population, control 

sampling method, and the nature of the event studied. It would be necessary to establish a pattern of 

ensuring authors report and discuss what effect measure is being estimated in their case-control studies. 

In human health research, Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) were developed to create homogeneity in the report of observational study results 89. Similar 

guidelines have been developed in veterinary research 90. STROBE indicates that depending on the case-

control sampling strategy and the nature of the population studied, the odds ratio obtained in a case-

control study could be interpreted as CIR, IDR, POR or IOR, but in the item checklist, there is no mention 

that the structural assumptions should be discussed to assess what measure of effect is being estimated. 

In the second guidelines, there is no allusion to the structural assumptions and their effect on the 

interpretation of the reported effect measure. The authors are likely in a far better place to accurately 

assess the structural assumptions in the study populations so this information should be explicitly 

discussed.  

The misunderstanding observed in the interpretation of the cross product reported could coincide with 

what some authors have pointed out about how the case-control design has traditionally been taught: as 

a design built within a cohort with fixed membership 33,51. This view may overlook that case-control 

designs can be performed in dynamic populations and therefore would be subject to different 

assumptions to ensure that the odds ratio estimates the contrast of incidence.   

The systematic review identified seven case-control studies addressing the association between 

residential exposure to AFOs and health effects and found that in many studies, the effect measure 

obtained might be interpreted as the contrast of incidences as a consequence of the study design and 

characteristics of the underlying population. To our knowledge, even though multiple previous reviews 

have focused on this topic 1,24,25,96–99, none have delved into interpreting what is estimated by the effect 

measure reported, either ratio of measures of  incidences or prevalence. Certainly, is fundamental to 

correctly know the effect measure estimated to make a balanced interpretation of the causal value of the 

conclusions reached in the studies through measures of effect that directly estimate the contrast of 

incidences. Furthermore, since studies can be used as input to combine multiple measures of effect 
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through meta-analysis, it is necessary to know precisely what effect is estimated to combine the same 

measures properly i.e., we cannot combine a prevalence odds ratio with an incidence density ratio.  

None of the authors in the body of work provided explicit information on the nature of the cases studied. 

This information is critical for inferring the interpretation to the effect measure reported in the case-

control studies and therefore should be clearly reported. Consequently, we classify the results based on 

our biological knowledge of the disease. For instance, it is mentioned that in chronic diseases such as 

asthma or diabetes, it is difficult to identify incident cases 33. However, in one of the studies whose interest 

was asthma, the exacerbation of this condition was evaluated through outcomes such as hospitalizations, 

emergency encounters, and oral corticosteroid, and in our determination, such an event could be 

considered as  incidents58. Similarly, for gastrointestinal conditions, which were reported in two  studies 

65,67, it was considered that the acute nature of the cases allowed them to be classified as incident events 

(Table 3.1). 

Although previously reported reviews of the effect sizes reported by case-control studies have mentioned 

that it is infrequent to find studies where the nature of the cases is prevalent 32, in this body of work we 

considered that two studies could be considered prevalent and these constituted 24% (8 of 34 exposure-

outcome pairs) of the exposure-outcome pairs identified 32. One of these studies identified the cases as 

individual carriers of methicillin-resistant Staphylococcus aureus (MRSA)95 and the other as carriers of 

livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA)78. The evaluation of the 

assumptions in the prevalent cases has been pointed out as difficult to verify because it relies on subject 

matter knowledge, here our judgment to determine the interpretation of the odds ratio was based on 

biological rationale 32. In the study that evaluated carriers of LA-MRSA, none of the reported effect 

measures, in our opinion, could be interpreted as IDR because the duration of the disease (persistence of 

carriers) could be dependent on exposure (density of animals in the municipality of the patient's 

residence) 100,101. Therefore, its interpretation was considered as prevalence ratio since the prevalence of 

MRSA in the Netherlands, which includes several LA-MRSA strains, is considered low (< 10%) 32,102. On the 

other hand, in the study that identified MRSA carrier cases, the effect measures could be interpreted as 

IDR because it is feasible to assume that the duration of the disease (carrier persistence) is independent 

of whether individuals live far away or close to AFO operation areas32,103.  

In the pairs whose cases were classified as representing incident events, we inferred the high percentage 

that in our opinion can be interpreted as IDR is mainly because most of the studies sampled dynamic 

populations with controls matched on time. This is consistent with prior studies looking at case-control 

studies as well as with the fact that matching on time is advised in situations where exposures (especially 
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the environmental ones) may not be stable even over short periods of time 32. Knol et al 2008, examined 

150 case-control studies and inferred that among the studies based on incident cases, 82% had mainly 

dynamic populations as their source population32. In veterinary science, the study by Cullen et al found a 

similar result 85.This may suggest that most of the case-control studies in the literature do not sample 

subjects from a cohort with fixed membership; rather, they sample from dynamic populations with 

variable membership. In the remaining 10 pairs drawn from the same study 8, it was not possible to 

determine the type of sampling of the controls due to lack of information and likely the distribution of 

exposure (density and presence of AFOs in the area) vary over the study years (2000 to 2017), so it was 

considered that the effect measures could be interpreted  as incidence odds ratio. 

Despite the high number of pairs that potentially can be interpreted as IDR, it was surprising that no article 

discussed the assumptions that allow such a judgment. This contrasts with the fact that the assumptions 

evaluated here have been described in detail to enable authors to understand what is estimated by the 

measures of effect reported in case-control studies 28,32–34,91. If authors had provided basic information 

such as nature of cases (i.e., prevalent or incident) or methods to control sampling, it would have helped 

us evaluate the assumptions or they could have provided their interpretation. As many of the authors 

appeared to be interested in making causal inference about the AFO based on the tone of the objectives, 

such an inference seemed implied.  

CONCLUSION 

Case-control studies might provide estimates of contrast incidences, and this could contribute more to 

elucidating a causal relationship in the body of work. However, currently it is very difficult for readers to 

assess these assumptions as many authors are not providing the information required. Although the 

assumptions necessary to interpret the measure of effect as the contrast of incidences are known in the 

epidemiological literature, no author groups discussed the assumptions in this body of work related to 

community health and proximity to AFOS. This study highlights the need to discuss which measure of 

effect is estimated in case-control studies addressing the effects on the health of people living near Animal 

Feeding Operations.  
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Figures 

 

 

Figure 3-2. Diagram taken from Knol et al 2008 for identifying what effect measure is being estimated by 
case-control studies 32.  

 

 

Figure 3-1. Sampling methods for controls of a cohort in an incidence case-control study. (A) Investigators 
sample control subjects at the beginning of follow-up (this is termed 'case-cohort'); (B) Investigators 
sample control subjects throughout the risk period (this is termed 'density sampling') at the time the 
incident cases arise. Again, controls may subsequently become cases but are still included both ways; (C) 
Investigators sample control subjects from the people who have still not developed the disease of interest 
at the end of the follow-up (this is termed ‘cumulative incidence sampling’). 
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Tables 

Table 3-1. Characteristics and effect measures reported in seven case-control studies identified in a 
systematic review addressing the health effects of people living near Animal Feeding Operations. 

  

Number of exposure-
outcome pairs extracted   
(n = 34)               

Effect measure reported   

       Odds Ratio 34 

Health Outcome Category  

      Lower Respiratory 7 

      Kidney Conditions  2 

      Gastrointestinal 
Conditions 

13 

      Antimicrobial resistance 8 

      Cardiovascular Conditions 4 

 

  



73 
 

Table 3-2 Exposure-outcome pairs drawn from six case-control studies reporting odds ratio and addressing 
the effect of AFOs on the health of residents living near these operations. Note: one study did report mean 
difference 68. 

Reference Outcome Type of 

case 

Outcome 

Category 

Exposure Interpretation 

of the OR 

Feingold et 

al 2013 78 

Livestock-

associated MRSA 

Prevalent Antimicrobial 

resistance 

Pig density in 

municipal area of 

patient residence 

Prevalence 

Ratio 

Feingold et 

al 2013 78 

Livestock-

associated MRSA 

Prevalent Antimicrobial 

resistance 

Cow density in 

municipal area of 

patient residence 

Prevalence 

Ratio 

Feingold et 

al 2013 78 

Livestock-

associated MRSA 

Prevalent Antimicrobial 

resistance 

Veal calf density in 

the municipality of 

the patient's 

residence 

Prevalence 

Ratio 

Schinasi et 

al 2014 95 

Nasal MRSA Prevalent Antimicrobial 

resistance 

Ever smell odor 

from a farm with 

animals when at 

home 

Incidence 

Density Ratio 

Schinasi et 

al 2014 95 

Nasal MRSA Prevalent Antimicrobial 

resistance 

Live within 1 mile 

of a swine or 

poultry AFO 

Incidence 

Density Ratio 

Schinasi et 

al 2014 95 

Nasal MRSA Prevalent Antimicrobial 

resistance 

Permitted 

farrowing swine 

per square mile of 

block group 

Incidence 

Density Ratio 

Schinasi et 

al 2014 95 

Nasal MRSA Prevalent Antimicrobial 

resistance 

Permitted non-

farrowing swine 

per square mile of 

block group 

Incidence 

Density Ratio 

Schinasi et 

al 2014 95 

Nasal MRSA Prevalent Antimicrobial 

resistance 

Permitted swine 

per square mile of 

block group 

Incidence 

Density Ratio 
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Table 3-2  (cont’d) 

Levallois et 

al 2014 65 

Acute children 

gastroenteritis 

Incident  Gastrointestinal 

condition 

Cattle density Incidence 

Density Ratio 

Levallois et 

al 2014 65 

Acute children 

gastroenteritis 

Incident Gastrointestinal 

condition 

Poultry density Incidence 

Density Ratio 

Levallois et 

al 2014 65 

Gastroenteritis with 

a bacterial or a 

parasite infection 

Incident Gastrointestinal 

condition 

Swine density Incidence 

Density Ratio 

Levallois et 

al 2014 65 

Gastroenteritis with 

a bacterial or a 

parasite infection 

Incident Gastrointestinal 

condition 

Cattle density Incidence 

Density Ratio 

Levallois et 

al 2014 65 

Gastroenteritis with 

a bacterial or a 

parasite infection 

Incident Gastrointestinal 

condition 

Poultry density Incidence 

Density Ratio 

Levallois et 

al 2014 65 

Acute children 

gastroenteritis 

Incident Gastrointestinal 

condition 

Swine density Incidence 

Density Ratio 

Poulsen et 

al 2018 67 

Non-specific 

diarrhea 

Incident Gastrointestinal 

condition 

Poultry operation 

activity quartile - 

prior antibiotic 

use 

Incidence 

Density Ratio 

Poulsen et 

al 2018 67 

Campylobacter Incident Gastrointestinal 

condition 

Poultry Operation 

Activity Quartile - 

Non-medical 

Assistance Patient 

Incidence 

Density Ratio 

Poulsen et 

al 2018 67 

Campylobacter Incident Gastrointestinal 

condition 

Poultry Operation 

Activity Quartile - 

Medical 

Assistance 

Patients 

Incidence 

Density Ratio 

Poulsen et 

al 2018 67 

Campylobacter Incident Gastrointestinal 

condition 

Poultry Operation 

Activity Quartile - 

0 Precipitation 

Events 

Incidence 

Density Ratio 
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Table 3-2  (cont’d) 

Poulsen et 

al 2018 67 

Campylobacter Incident Gastrointestinal 

condition 

Poultry Operation 

Activity Quartile - 

1 Precipitation 

Event 

Incidence 

Density Ratio 

Poulsen et 

al 2018 67 

Campylobacter Incident Gastrointestinal 

condition 

Poultry Operation 

Activity Quartile - 

2 Precipitation 

Events 

Incidence 

Density Ratio 

Poulsen et 

al 2018 67 

Campylobacter Incident Gastrointestinal 

condition 

Poultry Operation 

Activity Quartile - 

3 Precipitation 

Events 

Incidence 

Density Ratio 

Rasmussen 

et al 2017 58 

Asthma 

hospitalizations 

Incident Lower Respiratory Proximity of 

residential 

address to nearest 

swine or cattle 

AFO 

Incidence 

Density Ratio 

Rasmussen 

et al 2017 58 

Asthma emergency 

department visits 

Incident Lower Respiratory Proximity of 

residential 

address to nearest 

swine or cattle 

AFO 

Incidence 

Density Ratio 

Rasmussen 

et al 2017 58 

New asthma oral 

corticosteroid 

orders 

Incident Lower Respiratory Proximity of 

residential 

address to nearest 

swine or cattle 

AFO 

Incidence 

Density Ratio 

Son et al 

2021 8 

Death due to 

asthma 

Incident Lower Respiratory Presence of AFOs 

within 5, 10, 15 or 

20 km of 

residence 

Incidence 

Odds Ratio 
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Table 3-2  (cont’d) 

Son et al 

2021 8 

Death due to 

cardiovascular 

causes 

Incident Cardiovascular Presence of AFOs 

within 5, 10, 15 or 

20 km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death due to 

cardiovascular 

causes 

Incident Cardiovascular Number of AFOs 

within 15km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death due to 

respiratory causes 

Incident Lower Respiratory Presence of AFOs 

within 5, 10, 15 or 

20 km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death due to 

respiratory causes 

Incident Lower Respiratory Number of AFOs 

within 15km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death due to 

asthma 

Incident Lower Respiratory Number of AFOs 

within 15km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death from anemia Incident Cardiovascular Presence of AFOs 

within 5, 10, 15 or 

20 km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death from anemia Incident Cardiovascular Number of AFOs 

within 15km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death due to 

kidney-related 

causes 

Incident Kidney Presence of AFOs 

within 5, 10, 15 or 

20 km of 

residence 

Incidence 

Odds Ratio 

Son et al 

2021 8 

Death due to 

kidney-related 

causes 

Incident Kidney Number of AFOs 

within 15km of 

residence 

Incidence 

Odds Ratio 
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4. CHAPTER 4: CONFOUNDING IN EPIDEMIOLOGICAL STUDIES OF RESIDENTIAL EXPOSURE TO 
ANIMAL FEEDING OPERATIONS (AFO) AND HUMAN HEALTH 

ABSTRACT 

Background 

The significant growth of animal feeding operations (AFOs) in recent decades has increased concerns 

about the health impacts on communities surrounding these facilities. Given the nature of the question, 

it is not possible to conduct randomized trials to assess if exposure to AFOs is a cause of adverse health 

outcomes. Therefore, the studies on this topic are observational, which makes the results more 

susceptible to systematic bias such as confounding, selection bias or information bias. Confounding is 

considered a very important bias to control in observational studies because without random assignment, 

exposure groups may differ with respect to prognostic factors. In epidemiology, the approaches to control 

of confounding have evolved in recent years, especially with developments in causal inference and the 

use of graphical language of causal diagrams, that is, directed acyclic graphs (DAGs). These approaches 

are helping epidemiologists to understand what is being estimated, direct or total effects, and the impact 

of control approaches on estimates of effect. Similarly, by using DAGs the structure of bias and variables 

such as confounders or colliders (a variable directly affected by two or more other variables in the graph) 

are easily identified. Such approaches have not been applied to the body of observational studies relevant 

to the impact of AFOs on the health impacts on communities surrounding these facilities. Therefore, for 

this body of work, the first objective of this study was to understand what effect authors reported being 

of interest and the rationale for the selection and retention of potential confounding variables. The second 

objective was to conduct an analysis based on DAGs on what effect sizes may have been estimated (direct 

or total causal effect), remaining biasing pathways and sources of bias that might exist associated with 

control for confounding in studies related to the impact of AFOs on community health. 

Methods 

The study population consisted of observational studies identified as part of a systematic review 

conducted to determine the effect of AFOs on the health of people in communities living close to those 

facilities. For objective one, we limited the study population to studies that either due to design or 

population assumptions could be considered to estimate a measure of comparative incidence. We 

assessed if the authors reported whether they aimed to estimate the direct or total effect of exposure to 

AFOs on health outcomes. We also evaluated if the authors provided the rationale for selecting variables 

as confounders and the rationale for retention as confounders as well as the statistical methods used to 

control for these variables. For objective two the study population was limited to manuscripts where 
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either the authors included a DAG or the authors reported a lower-respiratory disease outcome for which 

a DAG from the Environmental Protection Agency (EPA) is available. We then mapped the exposure 

variable, outcome variable and adjustment set of control variables onto the DAG to determine if the 

authors estimated the total or direct effect, remaining biasing pathways, unnecessary adjustment, collider 

bias and overadjustment bias. 

Results 

Initially, thirty-three relevant studies were identified in the living review, of which four case-control, eight 

cross-sectional and four cohort studies were identified as relevant i.e., estimates of Incidence Density 

Ratio (IDR) either due to design or population assumptions. None of the authors of the sixteen studies 

reported if they intended to estimate the total or direct effect of exposure to AFOs on community 

members’ health. Two of the 16 studies included the rationale for the set of variables selected as 

confounders and the rationale for retention as confounders. All studies employed logistic regression to 

adjust for confounding suggesting they were investigating a causal relationship. No paper provided a DAG 

or causal pathway that supported the adjustment set included in the models. For objective two, among 

the ten studies addressing lower respiratory tract conditions, no study could estimate either the direct 

effect or the total effect of residential expo- sure to AFOs. For six studies, the major concern was the 

adjustment for a collider variable (smoking). For another four, failure to adjust for important confounding 

variables such as socioeconomic status or education meant biasing pathways remained open. 

Conclusion 

It is essential to fully understand confounding and underlying principles in order to best conduct studies 

and critically interpret the results presented in them. Although DAGs were not used in the relevant articles 

identified, they constitute a fundamental tool to visualize and represent the researchers’ assumptions 

about the causal structure between the variables studied, allowing easy identification of confounding or 

collider variables and communication of results. Confounding may prevent drawing causal conclusions in 

this body of work, as the sole use of multivariate models, without exhaustive analysis for the selection, 

identification and retention of confounding variables using tools such as DAGs, might not capture the full 

spectrum of bias and on the contrary, it could generate biased estimates due to the adjustment of 

colliders, mediators and unnecessary adjustment of confounding variables. 

INTRODUCTION 

In recent decades, the increase in world population has driven the development and intensification of 

food production. The increase in the number of large-scale industrial farms has facilitated access to food 

of animal origin; however, the adverse effects of large-scale production on the environment and public 
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health are controversial and debated 104,105. In the United States, the Environmental Protection Agency 

(EPA) defined animal feeding operations (AFOs) as large industrial- scale farms. An AFO is characterized 

as an agricultural enterprise where animals are kept and raised in confined situations. This type of 

operation amasses animals, feed, manure and urine, dead animals, and production operations on a small 

land area 106. Despite regulation of emissions from AFOS by several government agencies, some 

organizations consider enforcement has failed to protect community members and environmental health 

6. It is proposed that air pollutants, odor, and contaminated surface- and groundwater may affect the 

human health and quality of life of communities around AFOs 8. 

To investigate these concerns, researchers have used observational studies to evaluate the occurrence of 

respiratory dysfunction, impaired immune function, exacerbation of pre-existing chronic conditions, and 

mental health in nearby communities. Although efforts have been made in multiple reviews to analyze 

and synthesize these studies, the findings are mixed so it is difficult to reach a conclusion about the causal 

role of emissions from AFOs on the health of surrounding communities 1,24,25,97,105,107–110. Some authors 

suggest that heterogeneity of outcome definition and multiple sources of biases prevent reaching a 

conclusion about causality of residential exposure to AFOs and adverse health outcomes 1,19,25,80. 

There are three main sources of systematic bias in observational studies: confounding, information bias, 

and selection bias, and these biases weaken the ability of researchers to make causal inferences based on 

their findings 27,30. However, observational study designs do make up the bulk of existing data and 

therefore do represent the best available evidence to assess causality. Yet, when interpreting this work, 

it is important to assess the impact of bias on the inferences made. Although several systematic reviews 

have been conducted on this topic and the risk of bias has been assessed in the context of those systematic 

reviews 1,25,108, it is unclear how well the available risk-of-bias tools capture the current understanding of 

causal estimation and the impact of concepts such as overadjustment bias, collider bias, and confounding 

bias. Most risk-of-bias tools are intended for randomized or non-randomized intervention studies 

(Cochran ROB-2 and others) and do not apply to observational studies 111–114. Some risks of bias tools have 

been designed for observational studies. The CLARITY tools 115,116 are available for the three main 

observational study designs (cohort, case-control and cross-sectional). The Risk of Bias in Non-randomized 

Studies of Exposure (ROBINS-E) is designed for follow-up studies of observational exposures 117. However, 

more nuanced concepts that might introduce bias into causal effects estimate such as collider bias (i.e., 

the control of intermediate variables) and overadjustment bias, are potentially not well considered by 

these tools. Further, newer understandings of mediation and the control of intermediate variables can 

give insights into the target causal effect estimated i.e., direct or total effect. While total effect refers to 
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the overall impact of a causal factor on an outcome (it includes both direct and indirect effects), indirect 

effects refer to the impact of a factor on an outcome that occurs through its influence on other 

intermediate variables 118,119. These concepts impact the adjustment set the variables controlled in an 

observational study and potentially explain differences in effect. These concepts are routinely assessed in 

directed acyclic graphs which identify the adjustment set(s) needed to estimate the direct or total causal 

effect. 

Given the importance of observational studies and attempts to make causal inferences about the impact 

of living near AFOs on community health, a thorough evaluation of what is estimated after the control of 

variables is important. Therefore, our overall goal was to assess approaches to controlling for confounding 

variables in an attempt to estimate either a direct or total causal estimate. This study had two objectives. 

The first objective was to document what authors indicated they estimated in the studies and the 

rationale for the adjustment set of variables included in the study. The second objective was to conduct 

an analysis based on DAGs on what effect sizes may estimate (direct or total causal effect) and evidence 

of biasing pathways remaining and what those sources of bias might be. In the next section of the paper, 

we provide some a brief background about confounding, and DAGs. These sections are intended as brief 

refreshers rather than comprehensive tutorials. Readers wanting more detailed training on the concepts 

are encouraged to consult the provided references. Readers very comfortable with confounding in 

observational studies, adjustment set selection approaches and resulting biases may find it unnecessary 

to read the background sections. 

Background: 

What is Confounding? 

Confounding is considered a common bias in observational studies because without random assignment, 

exposure groups may differ with respect to prognostic factors 37,41. Unlike other sources of bias, such as 

selection bias that depends on study design and conduct, confounding can be thought of as a target 

population-specific concept because the target population is defined by the particular causal research 

question of interest 120. This differs from selection and information biases which only arise from the 

conduct of research. A confounding variable is a common cause of exposure of interest and the outcome 

of interest. This common cause variable leads to a situation where the exposure groups are not 

comparable or not exchangeable 120 . Without proper adjustment for the biasing impact of the common 

cause variable (confounding variable), important conditions required for causal inference cannot be met 

i.e., exchangability 121. Exchangability means, in lay terms, that the exposed group is not able to represent 

the average disease risk of the unexposed group and visa-versa, a condition that randomization enables. 
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How do we address confounding in observational studies 

Given the impact of confounding in observational studies, researchers must take action to reduce its 

biasing effect on the effect size estimated if there is interest in making causal statements about the 

exposure of interest and outcome of interest. Regardless of the method used to correct or adjust for 

confounding, the purpose of any approach is to achieve homogeneity or exchangeability between 

exposure groups with respect to all prognostic factors other than the exposure 40. There are two key 

phases to control/eliminate confounding: 1) during the design and/or 2) during data analysis. 

There are multiple strategies to remove the effect of confounding variables during study design such as 

randomization to exposure group when feasible and ethical, restriction of the population to a single level 

of the confounding variable or matching exposed and unexposed study participants on the confounding 

variable(s) so the confounding variable(s) have equal distribution in both groups. Only randomization is 

able to control for known and unknown confounding variables. During data analysis, techniques that can 

be employed include stratification, regression adjustment, instrumental variables techniques, inverse-

propensity score (IPS) techniques and G-methods 38,122. Whereas methods such as matching, restriction, 

stratification and regression achieve conditional exchangeability in subsets defined by some confounding 

variables to estimate the association between treatment and outcome in those subsets only, methods 

such standardization, Inverse-probability Weight (IPW), Instrumental variables (IV) and G-methods 

estimate the causal effect in the entire population or in any subset of the population 45,123,124. The former 

group of methods estimate the effect on individuals (conditional effect) and the latter estimate the effect 

on the entire population (marginal effect). Therefore, based on the statistical method used to adjust for 

confounding, only studies that estimated marginal effects will be interpreted causally, while statistical 

methods that estimate conditional effects will have an interpretation dependent on the variables used to 

adjust for confounding. 

Stratification is the simpler method used in the analysis phase to deal with confounding. In this approach 

the data set is divided into a number of subsets, called strata, corresponding to the levels of potential 

confounders 125. To illustrate, suppose a study addresses the relationship between living near AFOs 

(Exposure) and asthma (Outcome) development by comparing the risk in an exposed and unexposed 

group. Researchers can identify whether a factor such as age introduces confounding by comparing the 

overall effect estimate between living near to AFOs and the development of asthma with stratum-specific 

effect sizes calculated within each stratum of the confounding variable i.e., age ranges. In this way, 

confounding is reduced by balancing the distribution of age among the exposed groups, eliminating the 
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relationship between age and living close to AFOs, and ensuring comparability or conditional 

exchangeability within each age strata. 

Recent techniques such as G-methods and propensity score (PS) are used to achieve exchangeability of 

exposed groups in cohort studies and then the estimation of the marginal average causal effect 126. Thus, 

for example, using the PS approach, the fundamental principle is that cases with the same propensity 

score will be comparable with respect to covariates used to calculate the score. When the cases are 

comparable with respect to covariates, the effect reproduces that induced by randomization in a clinical 

trial 122. The presence of unmeasured confounders may threaten the validity of estimates obtained in 

studies using regression or propensity scores 123. Instrumental variable (IV) analysis is an approach to 

obtain unbiased treatment effect estimates even in the presence of unmeasured confounders, provided 

that certain assumptions are met 127. 

Directed acyclic graphs  

Frameworks for causal inference have evolved over time, beginning with qualitative models such as the 

Bradford Hill criteria, the sufficient-component cause model and triangulation 128. Recently, causal 

inference methods such as the Neyman-Rubin model (i.e., potential outcomes framework) and Pearl’s 

structural causal model, have been developed within a quantitative approach 129–131. As part of Pearl‘s 

causal model framework, DAGs were developed, unifying a graphical notation and the potential outcome 

framework, to represent graphically researchers’ assumptions about the causal relationships between 

variables in a causal model  129. Among the benefits of the DAGs, these increase transparency and facilitate 

communication and debate concerning the validity of estimated causal effects 120,132,133. Another major 

advantage of using DAGs is the ability to map out the expected relationships between variables of interest 

and inform variable selection for causal models. DAGs also make it possible to specify if the total or direct 

effect is of interest 34,120,132,133. Multiple approaches have been used to select which variables to adjust for 

in statistical models, including statistical criteria, algorithms and/or by checking if each variable is 

associated with the exposure and outcome, and not on the causal pathway between the exposure and 

outcome 123,134,135. However, researchers have demonstrated that these approaches may lead to bias 

because important confounding variables may be missed, poorly measured and non-confounding 

variables might be inadvertently included in the adjustment set. Conventional approaches explicitly may 

miscount the role of each variable in relation to exposure and outcome, and it is often unclear why some 

variables were chosen for control and others were not 132. Consequently, the knowledge of the 

hypothesized causal structure is critical to selection of the adjustment set 124. 
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The detailed process for constructing a DAG is beyond the scope of this article so readers are referred 

elsewhere 124,128. However, here we provide a very simple example in the context of AFOs and human 

health effects in the surrounding community. We can create a hypothetical causal structure of 

confounding for residential proximity AFOs as the exposure, asthma as the outcome, and smoking as a 

third factor that "causes/precedes" both Figure 4-1 Briefly, this graph is comprised of nodes (smoking, 

proximity to AFOs and asthma) connected by unidirectional arrows containing no paths that form a cycle 

133,136,137. The arrows drawn between the nodes represent the hypothesized relationships between the 

variables in a non-parametric way and may be obtained from expert opinion, statistical associations 

derived from epidemiological or toxicological studies, or a priori knowledge of cause-effect relationships 

including mode of action (MOA) processes 129. The DAG example was created using the open-source 

software DAGitty [http://www.dagitty.net/] 138. The implications of the Figure 4-1 is that people who 

smoke live near AFOS, and independent of living near AFOs, smoking is a factor influencing asthma 

incidence. Note that the DAG is non-parametric and does not indicate if the factor increases or decreases 

incidence - only that it exists. A confounding or non-causal or back-door path is an open path between 

the exposure and outcome that passes through one or more confounders. In this case, there is an open 

path between proximity to AFOs (exposure) and asthma (outcome) that passes through the variable 

smoking (Figure 4-1). The back door criterion provides a rationale for the choice of confounding variables 

to adjust for and states that a set of variables is sufficient to control for confounding if it blocks all non-

causal or confounding paths from exposure to the outcome. In DAGitty, this criterion has been automated 

and it is a valuable tool to check against any DAG. Once a set of adjustment variables has been identified 

as potential confounders, for this DAG example smoking variable, we can block the back-door path from 

Proximity to AFOs (exposure) to Asthma (outcome) producing an unbiased estimate of the exposure effect 

on asthma. Adjusting for the variable smoking technically blocks the back-door path such that it becomes 

closed; this would be achieved by including the variable smoking in a multivariable regression equation 

assuming the assumptions of such a model are met i.e., a linear relationship 132. In this example, we are 

also assuming the variables can be observed and measured without error. We are also assuming no 

selection bias occurred during enrollment or follow-up. 

Problems derived from the inappropriate control of variables 

Some issues could be derived from the efforts made by the authors to control or remove the effect of 

confounding variables. We describe the problems that could be present in the body of work generated by 

inappropriate confounding control such as overadjustment, residual confounding, unnecessary 

adjustment, and collinearity. 

http://www.dagitty.net/
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Unnecessary adjustment is defined as any adjustment for variables that does not alter the expectation of 

the average total or direct causal effect of interest, but it may affect precision 139. Adjustment for these 

types of variables could harm rather than improve estimates in terms of the combination of bias and 

variance. Unnecessary adjustment occurs in four primary cases represented in Figure 4-2: (a) adjusting for 

a variable completely outside the system of interest (C1), (b) adjusting for a variable that causes the 

exposure only (C2), (c) adjusting for a variable whose only causal association with variables of interest is 

as a descendent of the exposure and not in the causal pathway (C3), and (d) adjusting for a variable whose 

only causal association with variables of interest is as a cause of the outcome (C4) 139. 

Residual confounding can result in biased exposure effect estimates and reduce the control of 

confounding in the analysis 140. Measurement error in confounding variables can lead to residual 

confounding which is a distortion that remains after controlling for confounding. Some authors assert that 

for example if the sensitivity and specificity of dichotomous confounding variables are both 0.90, only 64% 

of the confounding is expected to be removed 141,142 56. Even if both exposure and outcome are perfectly 

measured, measurement error in confounding variables will result in biased estimates of effect. To 

illustrate the causal structure due to the mismeasurement of a confounding variable consider (Figure 4-3). 

For instance, it is reasonable to think that not all participants provide accurate information about their 

smoking. Here the confounder "smoking status" is measured with error. Given that researchers have 

gathered information about smoking status with error instead of the true value, we infer that it is not 

possible to completely reduce confounding by conditioning on the mismeasured smoking status variable, 

because this does not block the confounding path between the exposure (residential distance to nearest 

AFO) and outcome (asthma) that passes through the true but unmeasured confounders smoking. 

Although this is an important concept in confounding this body of work does not address issues of residual 

confounding here but rather in a paper on measurement error (Measurement in Observational Studies of 

Residential Exposure to Animal Feeding Operations and Human Health). 

Another problem derived from the improper identification of the adjustment set of confounding variables 

is overadjustment bias. Overadjustment bias is induced in the estimation of the effect by adjusting for an 

intermediate variable or a descendent of the unmeasured intermediate variable. Overadjustment is a bias 

based on a different structure from confounding or selection biases 139. The adjusted variable is not a 

common cause (confounding) or common effect (selection bias) of the exposure and outcomes of interest. 

Figure 4-4 provides a causal diagram representing the simplest case of overadjustment bias. A mediator 

is a variable that lies on a causal pathway between exposure and the outcome of interest. With a simple 

visual inspection, we observe that this mediator variable does not qualify as a confounder and that the 
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total causal effect of exposure on disease is mediated by the mediator variable. In other words, a mediator 

is caused by the exposure and in turn causes the outcome 132,143. 

An example of overadjustment is illustrated using a study of the association between AFOs and asthma 14. 

Here, the authors controlled for pet ownership, but it is not clear how pet ownership is a confounding 

variable i.e., a common cause of living close to a AFO and asthma. Instead, we might hypothesize that pet 

ownership could be a mediator variable. That is, living near a AFO implies a rural setting which may 

increase pet ownership 144,145 and pet ownership may cause allergies that cause the outcome asthma, and 

therefore adjusting the model for this variable could increase the risk of bias (Figure 4-4) 

METHODS 

The source population 

The source of studies used for this manuscript was obtained from a living systematic review (SR) of 

epidemiological studies evaluating adverse health outcomes of residents living in areas surrounding AFOs. 

The conduct of this living systematic review followed the best practice recommendations of The Conduct 

of Systematic Reviews in Toxicology and Environmental Health Research (COSTER) 146. These 

recommendations are focused on providing a comprehensive conceptual framework for SRs that address 

the risks to human health posed by exposure to environmental, chemical, or other challenges 146. Studies 

eligible for the living systematic review were observational studies collecting primary data where the unit 

of concern for the outcome is the individual. Studies, where the unit of measurement of the outcome is a 

population aggregate (i.e., ecological studies), were not eligible. Participants eligible for inclusion in the 

review were humans living in communities near AFOs that might be described as industrial, large, 

concentrated, or other synonyms. Production systems that appear grass-based, nomadic, or confined 

smallholder operations were also not relevant to the review. Exposure to AFOs has been measured in 

many ways, such as odor intensity, levels of contaminants in the air, soil, or water, proximity measured 

by distance, or exposure measured by AFOs animal density units. This list of exposures is indicative rather 

than exhaustive, and therefore other measures not mentioned so far were also eligible to cover new 

measures not yet identified. Outcomes of interest were health events or states measured on humans. The 

outcomes did not need to be a disease; for example, colonization or culture of bacteria from a human was 

an eligible outcome. All outcomes were classified based on body systems (lower respiratory disease, upper 

respiratory disease, gastrointestinal etc.). Health outcomes captured at a single time, such as self-reported 

health states or events using survey instruments, were not eligible unless the primary research authors 

provided evidence of appropriate psychometric properties (validity, reliability, responsiveness) and 

clinical interpretability (validated). This evidence would come from citations of known published disease 
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scales or conditions. Given the wide variety of health outcomes reported in studies, outcomes were 

categorized by organ system i.e., lower respiratory system, upper respiratory system, gastrointestinal 

system etc. 

The study population 

For objective 1, the studies identified for the living review, the subset of studies used for this study were 

the subset of papers that provided comparative estimates of incidence about health outcomes and 

exposure to AFOs. These papers included cohort studies, incidence case-control studies32,33,  and cross-

sectional studies that based on our assessment meet the population structural assumptions for estimation 

of causal parameters 27,28,51, Studies that provided comparative estimates of prevalence either prevalence 

odds ratio or prevalence ratios were not relevant in this study because confounding is a causal concept. 

For objective 2, only studies that reported lower respiratory disease outcomes or studies that reported 

their own DAG or causal pathway were considered. 

Objective One: The causal effect of interest and variable selection approach reported by authors 

We assessed the reporting in manuscripts to determine if the authors aimed to estimate the direct or total 

effect of exposure to AFOs on the health outcomes of interest. Next, we evaluated the rationale for the 

adjustment set in multivariable models. We determined if the authors used a multivariable model to 

obtain an estimate because this implies the authors intended to estimate a causal effect 83. We then 

evaluated the reported rationale for selecting variables for consideration as confounders and, if 

applicable, the rationale for retention as confounders in the model. The latter refers to any model-building 

approach. This step was conducted for each reported exposure-outcome pair, such as distance from an 

AFO (exposure) and doctor-diagnosed asthma (outcome). In particular, we sought to determine if the 

authors reported either prior research evidence to support the role of adjusted variables as confounders 

or referenced a previously published DAG or another causal pathway approach to inform the selection of 

confounding variables or provided their own hypothesized DAG or another causal pathway to inform the 

selection of confounding variables. 

For studies that included outcomes from different body systems, we assessed if the authors identified 

different potential confounding variables for the different health outcomes. The rationale for this 

question was that the association between proximity to AFOs and different health outcomes, such as 

gastrointestinal disease and lower respiratory disease, may potentially have different confounding 

variables. 
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Objective two: Assessment of the total or direct effect estimate, remaining biasing pathways, residual 

confounding, unnecessary adjustment, collider bias and over-adjustment bias for lower respiratory 

disease outcomes 

For each relevant exposure-outcome pair, we compared the confounding variables included in the model 

to either a modification of a previously published DAG proposed describing the causal association 

between a lower respiratory condition-chronic bronchitis and living near AFOs 129 or, if available, a DAG 

provided by the authors. The previously published directed acyclic graph is reproduced in Figure 4-5. There 

are several biasing pathways for the total effect and direct effect, indicated by red pathways. Variables on 

these pathways must be controlled to obtain an unbiased estimate of the direct or total effect, whichever 

is of interest. The DAG indicated that AFO was an unobserved variable. Instead, the EPA directed acyclic 

graph includes Odor/ NH3 and H2S as an observable proxy of the unobserved AFO variable. We inferred 

that exposures reported to be associated with lower respiratory disease were similarly proxies for 

emissions (although we ignore measurement error). The DAG also indicated that socioeconomic status 

(SES) was an unobserved proxy of the land use and zoning variable. 

Based on the output of DAGITTY (Figure 4-5), there are two minimal sufficient adjustment sets for the 

estimation of the total causal effect of AFO exposure on lower respiratory disease outcomes and it 

contains 

• Education Level 

• Land Use/ Zoning 

An example of the pathways after adjustment for potential biasing pathways is provided in Figure 4-6. 

According to the DAGITTY software, if AFO is unobserved, then land use/ zoning should be controlled or 

education for an unbiased estimate of the total effect. In Figure 4-6 only education is adjusted (the 

education variable is white rather than green indicating it is controlled) and no biasing pathways remain 

for the estimation of the total effect (i.e., only green pathways). 

Several minimal sufficient adjustment sets were options for estimating the direct effect of exposure to 

AFO on lower respiratory disease, as long as bronchial irritation from NH3, H2S is observable (Figure 4-7): 

• Bronchial Irritation from NH3, H2S, Education Level, Perception of Health Risk 

• Bronchial Irritation from NH3, H2S, Land Use/ Zoning, Perception of Health Risk 

Prior to the assessment of objective 2, some changes to the EPA DAG were incorporated Figure 4-8. 

Although the DAG designed by Brewer et al 2017 was designed only to study chronic bronchitis, we 

considered that it is feasible to assume that other lower respiratory tract conditions could share the same 

causal structure. This DAG was modified to incorporate some considerations and thus serve as a basis for 



92 
 

analyzing and comparing the causal relationships re- ported by the authors of the primary studies. Firstly, 

"Exhaled Nitric Acid" variable was removed because we consider that this biomarker may not be the cause 

of respiratory conditions. This biomarker instead has been used for distinguishing subjects with asthma 

from those without asthma 147. Secondly, EPA investigators assumed that socioeconomic status (SES) 

might not be directly measurable because it is a complex multi-dimensional construct that cannot be fully 

observed and therefore it is labeled as an unobservable variable 129. However, we maintain 

"Socioeconomic Status" is an observable variable since, based on the experience accumulated in previous 

systematic reviews, this variable has been widely captured and controlled by researchers in multiple ways 

such as poverty to income ratio 71, community socioeconomic deprivation 58 and median household 

income 8. Thirdly, we infer that the inclusion of the Land Use/Zoning variable in the EPA DAG could serve 

as an SES-related indicator to conceptually capture the SES complex construct. In only one of the 12 

studies addressing lower respiratory outcomes, the authors could have controlled for Land Use when 

adjusting their model for the variable Urbanicity 8. We hypothesized that Land Use could have been 

controlled in the other studies by design by selecting subjects with different degrees of neighborhood to 

AFOs, otherwise, land use would be an unobserved variable in all studies addressing lower respiratory 

outcomes. Forth, the direct path between the exposure and the outcome (green line in EPA DAG) was 

eliminated because, in our point of view, there is no direct effect that triggers the development of 

respiratory diseases that does not include bronchial irritation and lung inflammation. We do not intend 

to assert that the EPA DAG diagram and selection of confounders is the true one, but rather we consider 

that the act of drawing and sharing DAGs would make the proposed causal relationships explicit and open 

to discussion. Although it may be thought that the use of DAGs is not necessary for many of the relevant 

studies identified given the exploratory nature of the investigations, the act of adjusting variables 

considered confounding indicates that the intention of the authors was to establish causal relationships. 

Subsequently, for each outcome-exposure pair in relevant papers, we mapped the adjustment variables 

onto either the authors’ own proposed DAG or the EPA modified DAG. The Odor/ N3H H2S variable was 

replaced with the proxy exposure used and the lower respiratory disease outcome reported by the 

authors. Using the DAGITTY program, the subsequent DAG evaluated for biasing pathways and if either 

the total or direct effect causal effect could be estimated. We also assessed if other issues such as 

unnecessary adjustment, over-adjustment bias, or collider bias could have occurred. We also needed to 

map terms used by authors to terms used in the Brewer DAG 129. For example, we mapped all lower 

respiratory disease terms to chronic bronchitis, we mapped all measures of AFO to "Odors". For control 

variables, we attempted to match terms that would be consistent, i.e., for example if the authors adjusted 
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for household income, we mapped that to SES, and made it an observable variable because the authors 

implied it was such by adjusting for it. 

An illustration of the approach to objective two is provided here. The Mirabelli et all 2006 study 69 did not 

provide a hypothesized DAG but did adjust for confounding variables and used a lower respiratory disease 

outcome, so the modified Brewer 2017 DAG formed the basis for the analysis. This study had several lower 

respiratory outcomes and several metrics of exposure but here we focus on the outcome variable "missed 

school last year as a result of asthma" and the exposure "Livestock odor reported inside and outside the 

school building". For this lower respiratory disease health outcome, the model included adjustment for 

the following variables: age, gender, race, Hispanic ethnicity, economic status, smoking status, exposure 

to second-hand smoke at home, and use of a gas kitchen stove at home. We mapped "Smoking Status and 

Exposure to Secondhand Smoke at Home " to smoking in the modified Brewer 2017 DAG and "Economic 

Status" to " Socioeconomic Status" in the modified Brewer 2017 DAG and indicated these were adjusted. 

The remaining variables were added to the modified Brewer 2017 DAG. For example, there was no 

variable in the modified EPA DAG we could explicitly map to age or gender. The resulting DAG is provided 

Figure 4-9. We then determined if the total effect or the direct effect was estimated, and if any biasing 

pathways remained. Based on the modified Brewer et al 2017 DAG, it is not possible to estimate the total 

effect due to adjustment for an intermediate variable as smoking. There was evidence of unnecessary 

adjustment of age, gender, race, Hispanic ethnicity, and use of a gas kitchen stove at home and therefore 

potential decreased precision for excessive adjustment (see Figure 4-9) The variable bronchial irritation 

from NH3 and H2S would need to have been measured and controlled for estimation of the direct effect. 

This process was completed for any other studies that provided their own DAG or studies that had lower 

respiratory disease outcomes. 

RESULTS 

Source and Study population 

The living review identified ten cohort, seven prevalent and incident case-control studies, and 16 

population-based prevalence studies, where 56, 34 and 153 exposure-outcome pairs were extracted, 

respectively. For objective one, the study population consisted of 16 studies 14,21,63,66,69,70,72,73. No studies 

provided a DAG or other causal diagram. Objective two was only completed for the 10 studies that 

reported a lower respiratory disease outcome 14,21,63,69,70,72,73. The studies reporting a lower respiratory 

disease outcome included two cohort studies with 36 outcome- exposure pairs 59,64, one case control study 

with three outcome- exposure pairs 58 and 7 cross-sectional studies with 44 outcome-exposure pairs 

14,21,63,69,70,72,73. 
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Results Objective 1: The causal effect of interest and variable selection approach reported by 

authors 

None of the 16 studies explicitly reported in the review if the aim were to estimate the total or direct 

effect of exposure. All 16 studies used multivariate models and adjusted for potential confounding 

variables implying the aim was to estimate a causal effect of exposure on a health outcome(s) 83 All 

studies, except one that used Cox regression 53, reported using a logit link i.e. logistic regression model as 

the approach to adjusting for confounding variables. Study design and confounders included in each study 

are presented in the Table 4-1. 

Just two of sixteen papers provided a brief mention of the initial selection of potential confounding 

variables based on the literature. Schultz et al 14 and Freidl et al 63 were the only authors that reported the 

rationale for the retention of confounding variables within their models. Schultz et al 14 and Freidl et al 63 

indicated the criteria for retaining covariates in the multivariate model were based on a change in the 

main effect estimate by >10% and Freidl et al 63 mentioned that covariates with a p-value of less than 0.15 

were also included in multivariable analyses. Freidl et al 63 mentioned that three multivariable models 

were developed with different covariates. Based on the author’s assessment, the three adjusted models 

did not substantially differ in magnitude, thus, the one with the least number of confounding variables 

(age and gender) was chosen for reporting 63. The rest of the references forced the potential confounding 

variables into the model without reporting how these variables were identified and did not appear to use 

model-building approaches. 

 Results Objective 2: Effect estimated by authors, remaining biasing pathways, residual 

confounding, unnecessary adjustment, collider bias and over-adjustment bias 

As no studies provided a DAG or causal pathway for any outcomes, we only used the 10 studies using 

lower respiratory outcomes to address the potential for collider bias, unnecessary adjustment and 

overadjusment bias for addressing lower respiratory outcomes. DAGs created to analyze these biases in 

the lower respiratory outcomes can be consulted in Appendix. Unnecessary adjustment was prevalent in 

all studies that addressed lower respiratory tract outcomes as researchers adjusted for multiple variables 

not identified as confounders in the DAGs (see Appendix). 

Based on the proposed modified EPA DAG, there are three minimum sufficient adjustment sets for 

estimating the total effect of emissions from AFOs on lower respiratory disease and they included 

Education Level, Land Use/Zoning and Socioeconomic status. In five references it was not possible to 

estimate the total effect 21,58,72,73  since authors adjusted for the smoking variable, a collider variable ( see 

the Appendix 1 to visualize DAGs). In four European studies 57,59,64,70, the authors did not adjust for either 
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smoking, education, or economic status. These studies potentially could have estimated the total effect; 

however, as can be seen in the DAGs illustrated in the appendix, biased pathways remain (red paths) 

indicating that the estimates provided may be biased. Only a Dutch cohort study using each subject as 

their own control was, in our opinion, potentially able to estimate the total effect 59. 

No study was able to estimate the direct effect because bronchial irritation from NH3 and H2S was 

unobservable. The direct effect cannot be estimated since to estimate this effect it is necessary to control 

all the indirect effects that occur through the influence on intermediate variables. Thus, it would be 

necessary to control the indirect effect that flows through the intermediate variables Bronchial Irritation, 

Perception of Health Risk and Education level to estimate the direct effect of the emissions but since 

Bronchial Irritation is not observed, it is not possible to estimate the direct effect. 

DISCUSSION  

Overall, based on the assessment of the modified Brewer 2017 DAG, it is not clear that the available 

studies about the association between lower respiratory disease and proximity to AFOs provide unbiased 

total effect estimates. DAGs are an increasingly popular approach to identifying the adjustment set of 

variables and represent the hypothesized causal relations among the variables 132,148. Although no relevant 

study diagrammed DAGs, their use and reporting would certainly have facilitated readers’ understanding 

of the causal relationships hypothesized by the authors. Both authors and readers could more easily 

identify variables of the causal structure as confounders, colliders, and mediators necessary to make 

better causal interpretations. This contrasts with the results of a study that reviewed 234 original health 

research articles and where DAGs were reported in 62% of the articles 132. The lack of use of DAGs was 

also accompanied by little or no justification for the selection of the set of confounders used in the models. 

Such reporting would be consistent with guidelines for reporting observational studies from the STROBE 

group 89. Item 7 of the STROBE checklist indicates that authors should "Clearly define all outcomes, 

exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable". 

Item 16 of the STROBE checklist indicates that authors should "Give unadjusted estimates and, if 

applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear 

which confounders were adjusted for and why they were included". 

Sixteen studies identified in the review that provided estimates of incidence did not discuss explicitly the 

rationale for the set of variables selected as confounders based on prior research in the methods and 

materials section as is recommended by the STROBE statement 89. Taking one of the identified relevant 

studies as an example 14 when authors forced the potential confounding variables into the model, readers 

may interpret that there is a linear relationship between covariates used in logistic regression and that 
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such relationship would look as the Figure 4-10. To avoid such misinterpretations of the causal 

relationships studied, the development and reporting of DAGs are highly recommended. Similarly, the 

criteria to select confounding variables must be discussed and derived from subject-matter knowledge, 

not from statistical associations detected in the data 37,120,149.  

A study published by researchers of the Environmental Protection Agency (EPA) is the only reference 

where there is an explicit outlining of a DAG to describe the association between chronic bronchitis and 

living near AFOs 129 We did modify the proposed DAG and some may disagree with the changes, however, 

the results would not have changed if the DAG was unchanged. We believe the DAG we modified is more 

representative of reality. 

Based on the modified EPA DAG, there is a confounding-related concern in all the studies of lower 

respiratory outcomes when authors adjusted for many variables, only some of which may be considered 

confounders. This may introduce unnecessary adjustment when authors adjust for multiple variables 

(Appendix 1) such as age, gender, number of siblings 14,72 parental allergies 21, the oldest sibling 73 

breastfed 73, rug/carpet 73, mold 73, contact with cats at a young age 73, pet ownership 14 proximity to major 

roads 14 obesity, diabetes 58 distance to nearest hospital 58. This situation may yield potentially inefficient 

and unstable estimators 150 and introduce bias or increase the variance to unacceptable levels 151 Adjusting 

for the above variables would be equivalent to unnecessary adjustment, a situation that can be 

represented in Figure 4-4 when adjusting for the C1 variable. Inappropriate identification of other 

variables as confounders can be just as problematic as failing to identify confounders,106,133. 

When the variable Smoking Status is adjusted, the total effect cannot be estimated due to adjustment for 

a collider variable. The backdoor path from exposure (Odors) to the outcome (chronic bronchitis/lower 

respiratory conditions) is blocked by the collider variable Smoking, therefore, when this variable is 

adjusted it opens a backdoor or biasing pathway that induces a false association between exposure and 

outcome, also called collider bias 129,148 This would mean that the five studies that adjusted for Smoking 

Status may estimate a biased and different effect than the five European studies that did not, so these 

studies could not be considered to point to the same objective effect. This could explain the differences 

in the magnitude of effects observed in studies addressing lower respiratory outcomes. 

Most studies addressed a wide variety of health outcomes that could be categorized into multiple groups, 

that is, a single study could have addressed respiratory, gastrointestinal, and infectious conditions. In 

these studies, the adjustment was done using the same group of covariates, therefore, it is not clear how 

the same covariates are confounders of different outcome categories. For instance, Hoovied et al 2016 64 

studied as outcomes gastroenteritis presumed infection, asthma, and chronic enteritis and they adjusted 
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for age, gender, duration of registration, number of inhabitants in the zip code area, and total surface 

area. Similarly, Son et al 2021 8 approached renal, respiratory and cardiovascular mortality and adjusted 

for sex, age, race/ethnicity, education, median household income, urbanicity, year, season, and region. In 

both cases, it is not clear how the other covariates were simultaneously considered as confounders for 

the development of cardiovascular, renal, digestive or respiratory diseases. 

Confounding due to socioeconomical status (SES) 

Our goal in this paper was not to summarize the observed effect sizes; however, these are available in 

prior reviews and online (consult https://livestock-lsr.shinyapps.io/LivingSR/). It is interesting to note that 

while in general, studies based in the United States of America showed a positive association between 

AFOs and incidence of lower respiratory conditions, European studies often showed no effect or a 

protective effect, except when goats are associated with increased risk of lower respiratory conditions in 

surrounding communities. The question of interest is: “can we expect that the effect of exposure to AFOs 

would have the same causal pathway to lower respiratory disease in different populations?”. If so, then 

the observed differences could perhaps be attributed to different confounding structures in the target 

population. It is also possible that these differences in USA and European -based studies could be 

attributed to the confounding effect of socio-economical determinants present in each geographic 

location. Although checking for a change in the estimates after adjusting for candidate confounders 

should not be considered as the only method to identify confounders, the hypothesis of confounding 

effect due to differences in socio-economical determinants may be supported by the fact that some Dutch 

studies reported that after adjusting for SES, the estimates remain stable, which may indicate that SES is 

not a strong confounder in European studies 63.  It could mean that in exposure groups, i.e., different 

distances to the nearest AFOs, the SES does not vary significantly. Another option that requires further 

exploration is that SES has a threshold effect which implies that the adverse impacts of AFOs on health 

may become stronger when SES condition exceeds a certain threshold value 152. A relevant Dutch paper 

asserts that the neighboring residents of farms have a farming background and are not characterized by 

a low SES and a minority background 80. On the other hand, most of the USA studies may need to adjust 

for SES, to reflect the socio-economic disparities associated with people living close to AFOs. American 

authors evaluating the potential adverse health effects associated with AFOs indicate that these 

operations are mainly located in disadvantaged communities  10,11. Thus, the observed effect of exposure 

to AFOs on asthma or other medical conditions may be mixed with the effects of poor determinants of 

health associated with disadvantaged communities. We are not able to determine the truth. However, 

the most important finding arising from this study is that many authors in this area do not provide readers 
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and policymakers with the hypothesized causal pathways for their target population nor do they provide 

a rationale for the adjustment set. Such an approach would enable a clearer understanding of bias, 

perhaps provide a rationale for observed differences and increase the value of society’s investment in 

studies of the human health effects of living close to an AFO. 

Limitations  

Our study has some limitations. The most important of which is the use of DAGs for a "treatment" that is 

very difficult to modify. For example, the exposure of interest is AFO - but in reality, this is not an 

observable exposure. The Brewer 2017 DAG indicates this by listing it as an unobserved variable. They 

then list the variable "Odor" as an observable variable. Technically, DAGs need variables that can be 

intervened and well-defined 37. For observational studies of environmental health, this can be difficult to 

define. We have assumed that technically all exposure metrics used such as NH2 or ammonia, lbs. of hogs 

with 3 miles, etc., could all "eventually" be modifiable and are well-defined interventions; however, one 

may consider that Brewer DAG is not a causal diagram under the current state of the knowledge where 

the lack of consistency of exposure metrics used in this body of work is a concern because all causal 

pathways emerging from an ill-defined intervention may not have a causal interpretation. We have 

explored this concern in a companion paper addressing information bias on this topic (Measurement in 

Observational Studies of Residential Exposure to Animal Feeding Operations and Human Health). In the 

absence of authors providing a causal framework, we consider it biologically reasonable to assume the 

same causal pathway for all lower respiratory tract diseases such as chronic bronchitis. Finally, the 

pathway is hypothesized and there is concern it is incorrect. All knowledge is developed incrementally and 

hypothesized based on current information. The findings shown in this study would only be applicable to 

health events associated with the respiratory system, leaving aside other health events associated with 

other body systems that have been studied to a great extent, such as conditions of the gastrointestinal 

tract or alterations in mood. Again, our main point here is to place the emphasis back on the authors to 

provide a rationale for the adjustment set so readers can attempt to synthesize the results of the findings 

and reach conclusions.  

Although it would have been ideal to present the results of the risk assessment associated with 

confounding using a tool,  it does seem that current risk-of-bias tools are not able to help readers identify 

the issues that we have captured here 115,116. For example, questions aimed at assessing confounding bias 

in the CLARITY tool are " Was statistical adjustment carried out for important confounding variables?" in 

cross-sectional/case-control studies or " Did the study match exposed and unexposed for all variables that 

are associated with the outcome of interest or did the statistical analysis adjust for these confounding 
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variables?" in cohort studies. It seems evident that such questions do not capture problems identified and 

discussed throughout this article such as the methods used for the selection and identification of 

confounding variables or adjustment of collider or intermediate variables. In our opinion, the simple use 

of such questions could lead to questionable inferences about the impact of confounding on this body of 

work. 

CONCLUSIONS 

Confounding can prevent drawing causal conclusions in this body of work, as the sole use of multivariate 

models, without exhaustive analysis for the selection, identification and retention of confounding 

variables using tools such as DAGs, might not capture the full spectrum of bias and the contrary, could 

generate biased estimates due to the adjustment of colliders and unnecessary adjustment. Particularly, 

we observed that no study was able to estimate the direct effect of residential exposure to AFOs on lower 

respiratory outcomes since half of the studies adjusted for a collider variable and the other half did not 

adjust for any of the confounding factors identified in the EPA DAG. The authors of future studies on this 

topic are encouraged to elaborate, discuss and report their causal diagrams in order to make explicit their 

rationale for the selection and identification of confounding variables and other elements of the causal 

structure that may introduce bias. 
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Tables 

Table 4-1. Summary of variables controlled in 16 studies relevant that provide estimates of incidence.  

Study Country Study Design Variables controlled 

Smit et al. 2012 Netherlands 
Cross-
sectional 

Age, gender, presence of other farm 
animals 

Radon et al. 2007 Germany 
Cross-
sectional 

Active smoke exposure, age, level of 
education, number of siblings, 
parental allergies, passive smoke 
exposure, sex 

Radon et al. 2005 Germany 
Cross-
sectional 

Age, allergies of parents, gender, 
higher education status, second-
hand smoke exposure, number of 
siblings, smoker-status  

Hoopmann et al. 2006 Germany 
Cross-
sectional 

Gender, Oldest sibling, Experienced 
Street noise, Actual smoking, 
Education level, Breastfed, at least 4 
months, Mold, Contact with cats at 
a young age, Rug/Carpeted floor 

Freidl et al. 2017 Netherlands 
Cross-
sectional 

Age, gender 

Hooiveld et al. 2016 Netherlands Cohort 

Age, age (polynomial), gender, 
registry duration, the number of 
inhabitants in the postal code area 
and total surface area 

Schultz et al. 2019 USA 
Cross-
sectional 

Gender, age, poverty to income 
ratio, education, BMI, smoking 
status, pet ownership and proximity 
to major roadways 

Rasmussen et al. 2017 USA Case-Control 

Race/ethnicity, family history of 
asthma, smoking status, Medical 
Assistance, overweight/obesity, 
type 2 diabetes, community 
socioeconomic deprivation, 
distance to nearest major and minor 
arterial road, squared distance to 
nearest major and minor arterial 
road, distance to nearest Geisinger 
hospital, squared distance to 
nearest Geisinger hospital, age 
category, sex, and year of event 
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Table 4-1 (cont’d) 

van Kersen et al. 2020 Netherlands 
Cohort 
  

Subjects acted as their own 
controls. All models were adjusted 
for daily mean ambient 
temperature, relative humidity and 
day-in-study (linear trend) 

Schinasi et al. 2014 USA Case-Control Age, education, gender 

Horton et al. 2009 USA Cohort 
Time of day (morning versus 
evening) 

Levallois et al. 2014 Canada Case-Control 

Season, age group, sex, education, 
chronic diseases, low birth weight, 
swimming outdoors and contact 
with domestic, zoo or farm animals 

Nava et al. 2015 Mexico 
Cross-
sectional 

None 

Poulsen et al. 2018 USA Case-Control 
Sex, age, race/ethnicity, Medical 
Assistance, and smoking status 

Fisher et al. 2020 USA Cohort 

Age, BMI, education, cigarette 
smoking status, alcohol use, 
applicator type, family history of 
cancer 
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Figures 

 

 

Figure 4-1. DAG illustrating a hypothetical confounding structure in the context of health effects associated 
with AFOs.  

 

 

Figure 4-2. Causal diagram illustrating 4 types of unnecessary adjustments. C1, C2, C3 and C4 are not 
abbreviations, these are simply the names of hypothetical variables to illustrate unnecessary adjustment. 
The DAG was generated using DAGitty.net (Textor et al., 2011 138). The DAG allows variables to be labeled 
as exposure variables (green circle with inner triangle), outcome (blue circle with inner "I") and adjusted 
variables (illustrated by a white circle node). Red arrows indicated biasing paths. 
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Figure 4-3. DAG illustrates controlling for the mismeasurement confounder smoking. Adjusting for this 
mismeasured confounder, represented by a white circle, will induce bias. The DAG was generated using 
DAGitty.net (Textor et al., 2011 138). Nodes that are “upstream” from a particular variable are known as 
ancestors and nodes that are “downstream” from a particular variable are decedents. The DAG allows 
variables to be labeled as exposure variables (green circle with inner triangle), outcome ( blue circle with 
inner "I"), confounders ( red light circle), and adjusted variables (illustrated by a white circle node). Green 
arrows represent unbiased causal paths and red arrows indicated biasing paths.  

 

Figure 4-4. DAG representing an intermediate variable that lies on a causal pathway from exposure to 
health outcome. The DAG was generated using DAGitty.net (Textor et al., 2011 138). Adjusting for this 
mediator variable, represented by white circle, will induce overadjustment bias. The DAG allows variables 
to be labeled as exposure variables (green circle with inner triangle), outcome ( blue circle with inner "I"), 
and adjusted variables (illustrated by a white circle node). Green arrows represent unbiased causal paths. 
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Figure 4-5. Directed Acyclic Graph (DAG) proposed by Brewer et al 2017 129. The DAG was generated using 
DAGitty.net (Textor et al., 2011 138). Nodes that are “upstream” from a particular variable is known as 
ancestors and nodes that are “downstream” from a particular variable are decedents. The DAG allows 
variables to be labeled as exposure variables (green circle with inner triangle e.g., odor), outcome ( blue 
circle with inner "I" e.g., chronic bronchitis), unobserved variables (indicated by gray circles, e.g., CAFO 
(EPA uses this term instead of AFO), adjusted variables (illustrated by a white circle node, but not shown), 
ancestor of outcome (blue circle), ancestor of exposure (green circle). Green arrows represent unbiased 
causal paths and red arrows indicated biasing paths. The DAG was obtained from researchers working for 
the EPA.  
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Figure 4-6. Directed Acyclic Graph (DAG) proposed by Brewer et al 2017 129. The DAG was generated using 
DAGitty.net (Textor et al., 2011 138). Nodes that are “upstream” from a particular variable are known as 
ancestors and nodes that are “downstream” from a particular variable are decedents. The DAG allows 
variables to be labeled as exposure (odor, green circle with inner triangle), outcome (Chronic bronchitis), 
unobserved (gray circle), adjusted (white circle), ancestor of outcome (blue circle), ancestor of exposure 
(green circle). Green arrows represent causal paths. Abbreviations: NH3 = ammonia; H2S = hydrogen 
sulfide. 

 



106 
 

 

Figure 4-7. Directed Acyclic Graph (DAG) representing the hypothesized causal pathways from emissions 
to chronic bronchitis with adjustment for education level which removed biasing pathways. The DAG was 
generated using DAGitty.net (Textor et al., 2011 138). Nodes that are “upstream” from a particular variable 
are known as ancestors and nodes that are “downstream” from a particular variable are decedents. The 
DAG allows variables to be labeled as exposure (odor, green circle with inner triangle), outcome (Chronic 
bronchitis), unobserved (gray circle), adjusted (white circle), ancestor of outcome (blue circle), ancestor of 
exposure (green circle). Green arrows represent causal paths. Abbreviations: NH3 = ammonia; H2S = 
hydrogen sulfide. 
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Figure 4-8. Modified DAG proposed by Brewer et al  129  used to evaluate for biasing pathways, type of 
causal effect estimated (total or direct) and to assess other issues such as unnecessary adjustment, over 
adjustment bias, or collider bias. The DAG was generated using DAGitty.net (Textor et al., 2011 138). Nodes 
that are “upstream” from a particular variable are known as ancestors and nodes that are “downstream” 
from a particular variable are decedents. The DAG allows variables to be labeled as exposure (odor, green 
circle with inner triangle), outcome (Chronic bronchitis), unobserved (gray circle), adjusted (white circle), 
ancestor of outcome (blue circle), ancestor of exposure (green circle). Green arrows represent causal paths. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 
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Figure 4-9. Directed Acyclic Graph representing controlled variables from Mirabelli et al 2006 69. The DAG 
was generated using DAGitty.net (Textor et al., 2011 138). Nodes that are “upstream” from a particular 
variable are known as ancestors and nodes that are “downstream” from a particular variable are 
decedents. The DAG allows variables to be labeled as exposure (odor, green circle with inner triangle), 
outcome (Chronic bronchitis), unobserved (gray circle), adjusted (white circle), ancestor of outcome (blue 
circle), ancestor of exposure (green circle). Green arrows represent causal paths and red biasing paths. ** 
More outcomes evaluated with this exposure are illustrated in the appendix. Model code available in the 
appendix. Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 
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Figure 4-10. DAG illustrating how readers might interpret the causal structure analyzed by Schultz et al 
2019 14. The DAG was generated using DAGitty.net (Textor et al., 2011 138). Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure (odor, green circle with inner 
triangle), outcome (Chronic bronchitis), unobserved (gray circle), adjusted (white circle), ancestor of 
outcome (blue circle), ancestor of exposure (green circle). Green arrows represent causal paths and red 
biasing paths. 
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APPENDIX: PROPOSED DAGS FOR STUDIES ADDRESSING LOWER RESPIRATORY OUTCOMES 

 

DAGs proposed for exposure-outcome pairs reported in Mirabelli et al 2006 69: 

 

Figure 4-11. DAG generated for Mirabelli et al., 2006 69 using DAGitty.net 138. Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure variables (green circle with 
inner triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide.  

 

Other outcomes: Asthma-related physician visit emergency visit and/or hospitalization in past year  no 

self-reported allergies, Asthma-related physician visit emergency visit and/or hospitalization in past year  

all children, Asthma-related physician visit  emergency visit and/or hospitalization in the past year self-

reported allergies.  
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Dagitty code: 

dag { 

bb="0,0,1,1" 

"Allergy Status" [adjusted,pos="0.575,0.782"] 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.204,0.214"] 

"Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" [outcome,pos="0.455,0.863"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level" [pos="0.707,0.601"] 

"Hispanic Ethnicity" [adjusted,pos="0.148,0.828"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.204,0.624"] 

"Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" 

[exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" [adjusted,pos="0.458,0.668"] 

"Socioeconomic Status (Economic Status)" [adjusted,pos="0.703,0.438"] 

"Use of Gas Stove" [adjusted,pos="0.807,0.906"] 

Age [adjusted,pos="0.347,0.827"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.698,0.791"] 

Race [pos="0.598,0.392"] 

"Allergy Status" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Allergy Status" -> "Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" <-> "Smoking (Smoking status, 

Exposure to Secondhand Smoke at Home)" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> "Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" 

[pos="0.459,0.571"] 

"Education Level" -> "Chronic lndividual Stress" 

"Education Level" -> "Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" 
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"Hispanic Ethnicity" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Hispanic Ethnicity" -> "Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School 

Building)" 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" -> "Bronchial 

Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" -> "Perception of 

Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" -> "Lung Inflammation" 

"Socioeconomic Status (Economic Status)" -> "Education Level" 

"Socioeconomic Status (Economic Status)" -> "Land Use/ Zoning" [pos="0.612,0.287"] 

"Use of Gas Stove" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Use of Gas Stove" -> "Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School 

Building)" 

Age -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

Age -> "Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" 

CAFO -> "Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" 

Gender -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

Gender -> "Odors (NH3, H2S) (Livestock Odor Reported Inside and Outside the School Building)" 

Race -> "Socioeconomic Status (Economic Status)" 

} 



119 
 

 

Figure 4-12. DAG generated for Mirabelli et al., 2006 69 using DAGitty.net 138. Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure variables (green circle with 
inner triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

Other outcomes: Asthma-related physician visit emergency visit and/or hospitalization in past year no 

self-reported allergies, Asthma-related physician visit emergency visit and/or hospitalization in past year 

all children, Asthma-related physician visit emergency visit and/or hospitalization in the past year self-

reported allergies.  

Dagitty code: 

dag { 

bb="0,0,1,1" 

"Allergy Status" [adjusted,pos="0.564,0.784"] 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" [outcome,pos="0.455,0.863"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 
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"Education Level" [pos="0.707,0.601"] 

"Hispanic Ethnicity" [adjusted,pos="0.173,0.811"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" [exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" [adjusted,pos="0.458,0.668"] 

"Socioeconomic Status (Economic Status)" [adjusted,pos="0.703,0.438"] 

"Use of Gas Stove" [adjusted,pos="0.853,0.901"] 

Age [adjusted,pos="0.286,0.784"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.696,0.788"] 

Race [pos="0.611,0.385"] 

"Allergy Status" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Allergy Status" -> "Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" <-> "Smoking (Smoking status, 

Exposure to Secondhand Smoke at Home)" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> "Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" 

[pos="0.459,0.571"] 

"Education Level" -> "Chronic lndividual Stress" 

"Education Level" -> "Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" 

"Hispanic Ethnicity" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Hispanic Ethnicity" -> "Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" -> "Bronchial Irritation from NH3, H2S" 

"Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" -> "Perception of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 
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"Smoking (Smoking status, Exposure to Secondhand Smoke at Home)" -> "Lung Inflammation" 

"Socioeconomic Status (Economic Status)" -> "Education Level" 

"Socioeconomic Status (Economic Status)" -> "Land Use/ Zoning" [pos="0.612,0.287"] 

"Use of Gas Stove" -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

"Use of Gas Stove" -> "Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" 

Age -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

Age -> "Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" 

CAFO -> "Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" 

Gender -> "Chronic Bronchitis (Missed School Last Year as a Result of Asthma **)" 

Gender -> "Odors (NH3, H2S) (>=3 vs <3 Miles From Nearest Swine CAFO)" 

Race -> "Socioeconomic Status (Economic Status)" 

} 

  



122 
 

DAGs proposed for exposure-outcome pairs reported in Rasmussen et al 2017 58: 

 

Figure 4-13. DAG generated for Rasmussen et al 2017 58 using DAGitty.net 138. Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure variables (green circle with 
inner triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

Other outcomes: Asthma emergency department visits, New asthma oral corticosteroid orders.  

Dagitty code: 

dag { 

bb="0,0,1,1" 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Asthma Hospitalizations **)" [outcome,pos="0.455,0.863"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Distance to Arterial Road" [adjusted,pos="0.738,0.928"] 

"Distance to Nearest Hospital" [adjusted,pos="0.649,0.823"] 
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"Education Level" [pos="0.707,0.601"] 

"Family History of Asthma" [adjusted,pos="0.716,0.723"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.200,0.593"] 

"Medical Assistance" [adjusted,pos="0.215,0.806"] 

"Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle CAFO)" 

[exposure,pos="0.460,0.077"] 

"Overweight/Obesity" [adjusted,pos="0.126,0.905"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Race/Ethnicity " [adjusted,pos="0.822,0.384"] 

"Smoking (Smoking status)" [adjusted,pos="0.458,0.668"] 

"Socioeconomic Status (Community Socioeconomic Deprivation)" [adjusted,pos="0.703,0.438"] 

"Type 2 diabetes" [adjusted,pos="0.885,0.842"] 

Age [adjusted,pos="0.339,0.827"] 

CAFO [latent,pos="0.598,0.189"] 

Sex [adjusted,pos="0.293,0.750"] 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic Bronchitis (Asthma Hospitalizations **)" <-> "Smoking (Smoking status)" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> "Smoking (Smoking status)" [pos="0.459,0.571"] 

"Distance to Arterial Road" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Distance to Arterial Road" -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or 

Cattle CAFO)" 

"Distance to Nearest Hospital" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Distance to Nearest Hospital" -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine 

or Cattle CAFO)" 

"Education Level" -> "Chronic lndividual Stress" 

"Education Level" -> "Smoking (Smoking status)" 

"Family History of Asthma" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Family History of Asthma" -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or 

Cattle CAFO)" 
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"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Medical Assistance" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Medical Assistance" -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle 

CAFO)" 

"Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle CAFO)" -> "Bronchial 

Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle CAFO)" -> "Perception of 

Health Risk" 

"Overweight/Obesity" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Overweight/Obesity" -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle 

CAFO)" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Race/Ethnicity " -> "Socioeconomic Status (Community Socioeconomic Deprivation)" 

"Smoking (Smoking status)" -> "Lung Inflammation" 

"Socioeconomic Status (Community Socioeconomic Deprivation)" -> "Education Level" 

"Socioeconomic Status (Community Socioeconomic Deprivation)" -> "Land Use/ Zoning" 

[pos="0.612,0.287"] 

"Type 2 diabetes" -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

"Type 2 diabetes" -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle 

CAFO)" 

Age -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

Age -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle CAFO)" 

CAFO -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle CAFO)" 

Sex -> "Chronic Bronchitis (Asthma Hospitalizations **)" 

Sex -> "Odors (NH3, H2S) (Proximity of Residential Address to Nearest Swine or Cattle CAFO)" 

} 
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DAGs proposed for exposure-outcome pairs reported in Smit et al 2012 23: 

 

 

Figure 4-14. DAG generated for Smit et al 2012 23 using DAGitty.net 138. Nodes that are “upstream” from a 
particular variable are known as ancestors and nodes that are “downstream” from a particular variable 
are decedents. The DAG allows variables to be labeled as exposure variables (green circle with inner 
triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

Other exposure: Presence of farm animals within 1 km. 

Dagitty code: 

dag { 

bb="0,0,1,1" 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Pneumonia, Other Infectious Disease)" [outcome,pos="0.459,0.891"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level" [pos="0.707,0.601"] 
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"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Odors (NH3, H2S) (Number of Farms within 500 m **)" [exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Presence of Other Farm Animals" [adjusted,pos="0.175,0.037"] 

"Socioeconomic Status " [pos="0.703,0.438"] 

Age [adjusted,pos="0.851,0.067"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.067,0.137"] 

Smoking [pos="0.458,0.668"] 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> Smoking [pos="0.459,0.571"] 

"Education Level" -> "Chronic lndividual Stress" 

"Education Level" -> Smoking 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Pneumonia, Other Infectious Disease)" 

"Odors (NH3, H2S) (Number of Farms within 500 m **)" -> "Bronchial Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Number of Farms within 500 m **)" -> "Perception of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Presence of Other Farm Animals" -> "Chronic Bronchitis (Pneumonia, Other Infectious Disease)" 

"Presence of Other Farm Animals" -> "Odors (NH3, H2S) (Number of Farms within 500 m **)" 

"Socioeconomic Status " -> "Education Level" 

"Socioeconomic Status " -> "Land Use/ Zoning" [pos="0.612,0.287"] 

Age -> "Chronic Bronchitis (Pneumonia, Other Infectious Disease)" 

Age -> "Odors (NH3, H2S) (Number of Farms within 500 m **)" 

CAFO -> "Odors (NH3, H2S) (Number of Farms within 500 m **)" 

Gender -> "Chronic Bronchitis (Pneumonia, Other Infectious Disease)" 

Gender -> "Odors (NH3, H2S) (Number of Farms within 500 m **)" 

Smoking -> "Chronic Bronchitis (Pneumonia, Other Infectious Disease)" 
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Smoking -> "Lung Inflammation" 

} 

DAGs proposed for exposure-outcome pairs reported in Radon et al 2005 72: 

 

Figure 4-15. DAG generated for Radon et al 2005 72 using DAGitty.net 138. Nodes that are “upstream” from 
a particular variable are known as ancestors and nodes that are “downstream” from a particular variable 
are decedents. The DAG allows variables to be labeled as exposure variables (green circle with inner 
triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

 

Dagitty code: 

dag { 

bb="0,0,1,1" 

"Allergies of Parents" [adjusted,pos="0.902,0.212"] 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Non-Cold Related Rhonchal Breathing Sounds)" [outcome,pos="0.459,0.891"] 
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"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level (Higher Education Status)" [adjusted,pos="0.707,0.601"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Number of Siblings" [adjusted,pos="0.090,0.161"] 

"Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" 

[exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Smoking (Second-Hand Smoke Exposure, Smoker-Status)" [adjusted,pos="0.458,0.668"] 

"Socioeconomic Status " [pos="0.703,0.438"] 

Age [adjusted,pos="0.061,0.489"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.876,0.067"] 

"Allergies of Parents" -> "Chronic Bronchitis (Non-Cold Related Rhonchal Breathing Sounds)" 

"Allergies of Parents" -> "Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> "Smoking (Second-Hand Smoke Exposure, Smoker-Status)" 

[pos="0.459,0.571"] 

"Education Level (Higher Education Status)" -> "Chronic lndividual Stress" 

"Education Level (Higher Education Status)" -> "Smoking (Second-Hand Smoke Exposure, Smoker-Status)" 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Non-Cold Related Rhonchal Breathing Sounds)" 

"Number of Siblings" -> "Chronic Bronchitis (Non-Cold Related Rhonchal Breathing Sounds)" 

"Number of Siblings" -> "Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" 

"Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" -> "Bronchial Irritation from 

NH3, H2S" 

"Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" -> "Perception of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 
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"Smoking (Second-Hand Smoke Exposure, Smoker-Status)" -> "Chronic Bronchitis (Non-Cold Related 

Rhonchal Breathing Sounds)" 

"Smoking (Second-Hand Smoke Exposure, Smoker-Status)" -> "Lung Inflammation" 

"Socioeconomic Status " -> "Education Level (Higher Education Status)" 

"Socioeconomic Status " -> "Land Use/ Zoning" [pos="0.612,0.287"] 

Age -> "Chronic Bronchitis (Non-Cold Related Rhonchal Breathing Sounds)" 

Age -> "Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" 

CAFO -> "Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" 

Gender -> "Chronic Bronchitis (Non-Cold Related Rhonchal Breathing Sounds)" 

Gender -> "Odors (NH3, H2S) (Animal Houses within 500m, Level of Odor Annoyance)" 

} 
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DAGs proposed for exposure-outcome pairs reported in Hoopmann et al 2006 73: 

 

Figure 4-16. DAG generated for Hoopmann et al 2006 73 using DAGitty.net 138. Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure variables (green circle with 
inner triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

 

Other outcomes: Allergic asthma-atopic parents, Non-allergic asthma-Non-atopic parents, Non-allergic 

asthma-Atopic parents, Asthmatic Pathology-Not-Atopic Parents, Asthmatic Pathology-Atopic Parents, 

Asthmatic Pathology, IgE. 

 

Dagitty code: 

dag { 

bb="0,0,1,1" 
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"Breastfed at Least 4 Months" [adjusted,pos="0.178,0.725"] 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" [outcome,pos="0.459,0.891"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Contact with Cats at a Young Age" [adjusted,pos="0.839,0.933"] 

"Education Level " [adjusted,pos="0.707,0.601"] 

"Experienced Street Noise" [adjusted,pos="0.716,0.741"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Odors (NH3, H2S) (Log of the Endotoxin)" [exposure,pos="0.460,0.077"] 

"Oldest Sibling" [adjusted,pos="0.634,0.850"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Rug/Carpeted Floor" [adjusted,pos="0.214,0.836"] 

"Smoking (Actual Smoking)" [adjusted,pos="0.458,0.668"] 

"Socioeconomic Status " [pos="0.703,0.438"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.348,0.850"] 

Mold [adjusted,pos="0.554,0.809"] 

"Breastfed at Least 4 Months" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Breastfed at Least 4 Months" -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> "Smoking (Actual Smoking)" [pos="0.459,0.571"] 

"Contact with Cats at a Young Age" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Contact with Cats at a Young Age" -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

"Education Level " -> "Chronic lndividual Stress" 

"Education Level " -> "Smoking (Actual Smoking)" 

"Experienced Street Noise" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Experienced Street Noise" -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 
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"Lung Inflammation" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Odors (NH3, H2S) (Log of the Endotoxin)" -> "Bronchial Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Log of the Endotoxin)" -> "Perception of Health Risk" 

"Oldest Sibling" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Oldest Sibling" -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Rug/Carpeted Floor" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Rug/Carpeted Floor" -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

"Smoking (Actual Smoking)" -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

"Smoking (Actual Smoking)" -> "Lung Inflammation" 

"Socioeconomic Status " -> "Education Level " 

"Socioeconomic Status " -> "Land Use/ Zoning" [pos="0.612,0.287"] 

CAFO -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

Gender -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

Gender -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

Mold -> "Chronic Bronchitis (Allergic Asthma-Non-Atopic Parents **)" 

Mold -> "Odors (NH3, H2S) (Log of the Endotoxin)" 

} 
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DAGs proposed for exposure-outcome pairs reported in Schultz et al 2019 14: 

 

Figure 4-17. DAG generated for Schultz et al 2019 14 using DAGitty.net 138. Nodes that are “upstream” from 
a particular variable are known as ancestors and nodes that are “downstream” from a particular variable 
are decedents. The DAG allows variables to be labeled as exposure variables (green circle with inner 
triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

 

Other outcomes: Nasal or lung allergies & current asthma, Current asthma, Asthma (at least 1 episode in 

past year), Asthma medication use in the past year, Physician-Diagnosed Asthma. 

Dagitty code: 

dag { 

bb="0,0,1,1" 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Lung allergies **)" [outcome,pos="0.459,0.891"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level " [adjusted,pos="0.707,0.601"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 
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"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" 

[exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Pet Ownership" [adjusted,pos="0.311,0.844"] 

"Proximity to Major Roadways" [adjusted,pos="0.722,0.858"] 

"Smoking (Smoking Status)" [adjusted,pos="0.458,0.668"] 

"Socioeconomic Status (Poverty to Income Ratio)" [adjusted,pos="0.703,0.438"] 

Age [adjusted,pos="0.554,0.844"] 

BMI [adjusted,pos="0.616,0.749"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.216,0.764"] 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> "Smoking (Smoking Status)" [pos="0.459,0.571"] 

"Education Level " -> "Chronic lndividual Stress" 

"Education Level " -> "Smoking (Smoking Status)" 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Lung allergies **)" 

"Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" -> "Bronchial 

Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" -> "Perception 

of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Pet Ownership" -> "Chronic Bronchitis (Lung allergies **)" 

"Pet Ownership" -> "Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest 

CAFO)" 

"Proximity to Major Roadways" -> "Chronic Bronchitis (Lung allergies **)" 

"Proximity to Major Roadways" -> "Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to 

the Nearest CAFO)" 
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"Smoking (Smoking Status)" -> "Chronic Bronchitis (Lung allergies **)" 

"Smoking (Smoking Status)" -> "Lung Inflammation" 

"Socioeconomic Status (Poverty to Income Ratio)" -> "Education Level " 

"Socioeconomic Status (Poverty to Income Ratio)" -> "Land Use/ Zoning" [pos="0.612,0.287"] 

Age -> "Chronic Bronchitis (Lung allergies **)" 

Age -> "Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" 

BMI -> "Chronic Bronchitis (Lung allergies **)" 

BMI -> "Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" 

CAFO -> "Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" 

Gender -> "Chronic Bronchitis (Lung allergies **)" 

Gender -> "Odors (NH3, H2S) (Restricted Cubic Spline of Residential Distance to the Nearest CAFO)" 

} 
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DAGs proposed for exposure-outcome pairs reported in Freidl et al 2017 63: 

 

Figure 4-18. DAG generated for Freidl et al 2017 63 using DAGitty.net 138. Nodes that are “upstream” from 
a particular variable are known as ancestors and nodes that are “downstream” from a particular variable 
are decedents. The DAG allows variables to be labeled as exposure variables (green circle with inner 
triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 
 

Other exposures: Presence of farm with minimum amount of animals within 1000m of residence, 

Presence of farm with minimum amount of animals within 1500m of residence, Presence of farm with 

minimum amount of animals within 2000m of residence, Distance (quartiles expressed in meters) 

between residence and closest farm with minimum 250 poultry, Distance (quartiles expressed in meters) 

between residence and closest farm with minimum 50 goats, Number of animals within 1000m of the 

residence, Number of farms (any type) within 1000m of residence.  

Dagitty code: 

dag { 

bb="0,0,1,1" 
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"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Pneumonia)" [outcome,pos="0.459,0.891"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level " [pos="0.707,0.601"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Odors (NH3, H2S) (Presence of Farm with Minimum Amount of Animals within 500m of Residence **)" 

[exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Socioeconomic Status " [pos="0.703,0.438"] 

Age [adjusted,pos="0.691,0.803"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.573,0.780"] 

Smoking [pos="0.458,0.668"] 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> Smoking [pos="0.459,0.571"] 

"Education Level " -> "Chronic lndividual Stress" 

"Education Level " -> Smoking 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Pneumonia)" 

"Odors (NH3, H2S) (Presence of Farm with Minimum Amount of Animals within 500m of Residence **)" -

> "Bronchial Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Presence of Farm with Minimum Amount of Animals within 500m of Residence **)" -

> "Perception of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Socioeconomic Status " -> "Education Level " 

"Socioeconomic Status " -> "Land Use/ Zoning" [pos="0.612,0.287"] 

Age -> "Chronic Bronchitis (Pneumonia)" 



138 
 

Age -> "Odors (NH3, H2S) (Presence of Farm with Minimum Amount of Animals within 500m of Residence 

**)" 

CAFO -> "Odors (NH3, H2S) (Presence of Farm with Minimum Amount of Animals within 500m of 

Residence **)" 

Gender -> "Chronic Bronchitis (Pneumonia)" 

Gender -> "Odors (NH3, H2S) (Presence of Farm with Minimum Amount of Animals within 500m of 

Residence **)" 

Smoking -> "Chronic Bronchitis (Pneumonia)" 

Smoking -> "Lung Inflammation" 

} 
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DAGs proposed for exposure-outcome pairs reported in Hooiveld et al 2016 64: 

 

Figure 4-19. DAG generated for Hooiveld et al 2016 64 using DAGitty.net 138. Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure variables (green circle with 
inner triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

Other outcomes: Physician-Diagnosed Asthma, Chronic obstructive pulmonary disease (COPD) 

Dagitty code: 

dag { 

bb="0,0,1,1" 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Pneumonia **)" [outcome,pos="0.459,0.865"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level " [pos="0.707,0.601"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 
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"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Number of Inhabitants in the Postal Code Area and Total Surface Area" [adjusted,pos="0.675,0.914"] 

"Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the Residence)" 

[exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Registry Duration" [adjusted,pos="0.298,0.774"] 

"Socioeconomic Status " [pos="0.703,0.438"] 

Age [adjusted,pos="0.564,0.788"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.707,0.788"] 

Smoking [pos="0.458,0.668"] 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> Smoking [pos="0.459,0.571"] 

"Education Level " -> "Chronic lndividual Stress" 

"Education Level " -> Smoking 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Pneumonia **)" 

"Number of Inhabitants in the Postal Code Area and Total Surface Area" -> "Chronic Bronchitis 

(Pneumonia **)" 

"Number of Inhabitants in the Postal Code Area and Total Surface Area" -> "Odors (NH3, H2S) (Each 

Additional CAFO within the Postal Code Area of the Residence)" 

"Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the Residence)" -> "Bronchial 

Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the Residence)" -> "Perception 

of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Registry Duration" -> "Chronic Bronchitis (Pneumonia **)" 

"Registry Duration" -> "Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the 

Residence)" 

"Socioeconomic Status " -> "Education Level " 
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"Socioeconomic Status " -> "Land Use/ Zoning" [pos="0.612,0.287"] 

Age -> "Chronic Bronchitis (Pneumonia **)" 

Age -> "Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the Residence)" 

CAFO -> "Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the Residence)" 

Gender -> "Chronic Bronchitis (Pneumonia **)" 

Gender -> "Odors (NH3, H2S) (Each Additional CAFO within the Postal Code Area of the Residence)" 

Smoking -> "Chronic Bronchitis (Pneumonia **)" 

Smoking -> "Lung Inflammation" 

} 

 

Figure 4-20. DAG generated for Hooiveld et al 2016 64 using DAGitty.net 138. Nodes that are “upstream” 
from a particular variable are known as ancestors and nodes that are “downstream” from a particular 
variable are decedents. The DAG allows variables to be labeled as exposure variables (green circle with 
inner triangle), outcome (blue circle with inner "I"), confounders (red light circle), and adjusted variables 
(illustrated by a white circle node). Green arrows represent unbiased causal paths and red arrows indicated 
biasing paths. ** Other outcomes assessed for this exposure are listed below, as well as the model code. 
Abbreviations: NH3 = ammonia; H2S = hydrogen sulfide. 

 

Other outcomes: Physician-Diagnosed Asthma, Chronic obstructive pulmonary disease (COPD). 
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Dagitty code: 

dag { 

bb="0,0,1,1" 

"Bronchial Irritation from NH3, H2S" [latent,pos="0.202,0.247"] 

"Chronic Bronchitis (Pneumonia **)" [outcome,pos="0.459,0.865"] 

"Chronic lndividual Stress" [latent,pos="0.460,0.409"] 

"Education Level " [pos="0.707,0.601"] 

"Increased Susceptibility to Infection" [latent,pos="0.327,0.497"] 

"Land Use/ Zoning" [pos="0.707,0.267"] 

"Lung Inflammation" [latent,pos="0.199,0.597"] 

"Number of Inhabitants in the Postal Code Area and Total Surface Area" [adjusted,pos="0.675,0.914"] 

"Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the Patient's Residence)" 

[exposure,pos="0.460,0.077"] 

"Perception of Health Risk" [pos="0.459,0.282"] 

"Registry Duration" [adjusted,pos="0.296,0.799"] 

"Socioeconomic Status " [pos="0.703,0.438"] 

Age [adjusted,pos="0.567,0.782"] 

CAFO [latent,pos="0.598,0.189"] 

Gender [adjusted,pos="0.729,0.772"] 

Smoking [pos="0.458,0.668"] 

"Bronchial Irritation from NH3, H2S" -> "Lung Inflammation" 

"Chronic lndividual Stress" -> "Increased Susceptibility to Infection" 

"Chronic lndividual Stress" -> Smoking [pos="0.459,0.571"] 

"Education Level " -> "Chronic lndividual Stress" 

"Education Level " -> Smoking 

"Increased Susceptibility to Infection" -> "Lung Inflammation" 

"Land Use/ Zoning" -> CAFO 

"Lung Inflammation" -> "Chronic Bronchitis (Pneumonia **)" 

"Number of Inhabitants in the Postal Code Area and Total Surface Area" -> "Chronic Bronchitis 

(Pneumonia **)" 

"Number of Inhabitants in the Postal Code Area and Total Surface Area" -> "Odors (NH3, H2S) (Each 

Additional CAFO in Adjacent Postal Code Areas to the Patient's Residence)" 
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"Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the Patient's Residence)" -> 

"Bronchial Irritation from NH3, H2S" 

"Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the Patient's Residence)" -> 

"Perception of Health Risk" 

"Perception of Health Risk" -> "Chronic lndividual Stress" 

"Registry Duration" -> "Chronic Bronchitis (Pneumonia **)" 

"Registry Duration" -> "Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the 

Patient's Residence)" 

"Socioeconomic Status " -> "Education Level " 

"Socioeconomic Status " -> "Land Use/ Zoning" [pos="0.612,0.287"] 

Age -> "Chronic Bronchitis (Pneumonia **)" 

Age -> "Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the Patient's 

Residence)" 

CAFO -> "Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the Patient's 

Residence)" 

Gender -> "Chronic Bronchitis (Pneumonia **)" 

Gender -> "Odors (NH3, H2S) (Each Additional CAFO in Adjacent Postal Code Areas to the Patient's 

Residence)" 

Smoking -> "Chronic Bronchitis (Pneumonia **)" 

Smoking -> "Lung Inflammation" 
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5. CHAPTER 5: MEASUREMENT IN OBSERVATIONAL STUDIES OF RESIDENTIAL EXPOSURE TO 
ANIMAL FEEDING OPERATIONS (AFO) AND HUMAN HEALTH 

ABSTRACT 

Background 

The significant growth of animal feeding operations (AFOs) in recent decades has increased concerns 

about the potential health impacts on members of the communities surrounding these facilities. To 

understand the effect on people residing near AFOs, several observational studies have been conducted. 

One challenge with the observational nature of the studies is that systematic biases can be introduced by 

the approach to measurement of exposure, outcome, and confounding variables.  The goal of this article 

is to document the approaches to the measurement of variables in this body of work related to AFOs and 

community health and the authors approach to discussing consistency. 

Methods 

Observational studies that measured comparative incidence identified as part of a living systematic review 

were relevant to the study goal. From relevant studies, we identified and extracted the metrics used to 

measure the exposure and the outcome, the methodology and data sources used to derive these metrics 

and the temporal relationship between measurement of the outcome and exposure. The consistency of 

the exposure measurement was analyzed in the extracted metrics. 

Results 

Thirty-four relevant papers were identified through the living systematic review and of these only 17 

studies were used for analysis, as these provided comparative incidence estimates. Measurements of 

exposure based on AFOs density, measurement of direct emissions, distance from home to AFOs, 

dispersion models and perceived odor in the home were the measures used by the authors. Health 

outcomes were grouped based on the anatomical system affected. Lower respiratory conditions and 

gastrointestinal conditions were the most commonly investigated and the main sources of information 

were medical records, questionnaires, and mortality records. Findings regarding the temporal relationship 

between exposure and outcome were mixed, with studies where it was possible to infer measurement of 

exposure before the outcomes, studies that assessed exposure and outcome concurrently, and others 

where lack of reporting prevented temporality inferences. None of the measures of exposure captured 

an individual exposure to a metric of AFOs exposure such as personal exposure to ammonia levels. The 

authors did not discuss the consistency assumption.  
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Conclusion  

Accurately assessing exposure to AFOs represents a methodological challenge due to the nature of the 

environmental contaminants involved, the instability of the levels over time, and the multiple pathways 

through which AFOs could affect people’s health. The extensive use of proxy measures, such as distance 

and density of farms, which are measured only once and without considering exposure time of the 

subjects, may not appropriately reflect cumulative and dynamic exposure to intensive farms, impacting 

the causal interpretation of the body of work. Lack of the consistency in exposure measures could make 

it difficult to synthetize the evidence and draw causal conclusions.  

INTRODUCTION 

Measurement of variables is critically important to understanding the inference that can be reached in 

observational studies. There are two main areas where measurement is important. First, the requirement 

for consistency as one of the three factors, with exchangeability and positivity required for causal 

inference, can be thought of as a measurement issue 153. Second, measurement error bias in the outcomes 

and exposures can cause information bias and for confounders, lead to residual confounding.   

Access to animal protein is essential to meet the needs of a growing world population. In response to this 

demand for food, in several countries around the world animal production has specialized to the point of 

developing large animal feeding operations (AFOs). In the United States of America, these intensive 

operations can also be defined as animal feeding operations (AFOs) if they exceed  a set number of animal 

units which differ by species and are subject to specific regulation 154.  As part of the intensive process of 

raising animals, these AFO’s generate waste that could contaminate the surrounding soil, water, and air 

7,155. The increase in the number of AFOs in recent decades has been accompanied by a growing concern 

in public opinion about the effect they could have on the environment and the health of the people who 

live in surrounding areas.  

To have greater clarity on the potential effects of AFOs on the health of people living in areas near AFOs, 

several studies with observational designs have been conducted because it would be impractical and 

unethical to randomly assign people to potentially harmful exposures. The effect of AFOs on surrounding 

communities is a current topic of interest for public health that continues to motivate multiple studies, 

probably because the findings of the investigations carried out to date are mixed and therefore more 

evidence is required. Similarly, several reviews that have sought to synthesize the available evidence have 

not reached a definitive conclusion on the causal role of AFOs in the development of diseases in the 

inhabitants of neighboring areas 1,24,25. Biases inherent to the observational nature of primary studies 
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could explain the mixed findings and could prevent reaching a firm conclusion 34,40,111156. There are three 

main sources of systematic bias in observational studies: confounding, information bias and selection bias 

28,30,40,111 . Observational studies of environmental topics, such as the association between AFOS and 

community member health is a classic example of how complicated it can be to make measurements that 

adequately reflect the exposure and health conditions present in the subjects. For example, several 

studies have used the distance to the nearest AFO as a measure of individual exposure, however this 

measure might not be enough to capture exposure to AFOs since living for ten years and five kilometers 

from the nearest AFO is not equivalent to living at the same distance for a year. Consequently, researchers 

have indicated that it is necessary to develop measures that better reflect residential exposure to AFOs 

1,25,99. In this study, we evaluate the impact of measurement approaches on the inference that can be 

obtained from observational studies related to AFOS and community.  We evaluate two aspects of 

measurement relevant to the body of work. The aim was to evaluate the approach to measurement of 

the exposure and outcomes and the authors approach to discussing consistency and measurement error. 

The paper begins with discussion of the concepts of consistency and measurement bias, and then outlines 

the methods of analysis, results, and discussion.   

Background 

Consistency assumption for causal inference  

Modern causal inference is based mainly on the counterfactual theory of causation and the potential 

outcomes framework 39,129,131. The counterfactual theory of causation states that causal claims can be 

expressed in counterfactuals i.e., using statements that describe what would have been the case under 

different circumstances than those observed. The potential outcomes framework describes 

mathematically counterfactual outcomes and the causal effect of an exposure on an outcome in statistical 

terms.  Thus, the causal effect of treatment A on outcome Y in a particular population can be expressed 

in terms of counterfactual contrasts. The contrast E[Ya=1] – E[Ya=0] represents the average causal effect 

of the binary treatment A on the outcome, where the counterfactual or potential outcome that would 

have been observed in an individual that had received treatment level a=1 is labeled as Ya=1 and the 

counterfactual or potential outcome that would have been observed in an individual that had received 

treatment level a=0 is labeled as Ya=0. If the causal effect is different from zero i.e., E[Ya=1] – E[Ya=0] ≠ 

0), it can be viewed as a sufficient, but not necessary, condition for A to be considered as a cause 37,128.  

Causal effects are impossible to measure directly because this involves comparing unobserved 

counterfactual outcomes, therefore, these are estimated using observable data that should meet certain 

assumptions about the data and the underlying causal relationships. These assumptions cannot be fully 
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tested statistically but have to be justified based on theoretical or current evidence knowledge 157. For the 

potential outcome framework, there are three assumptions sufficient to identify the average causal 

effect: consistency, positivity, and exchangeability 47. Although researchers suggest that positivity and 

exchangeability have received more attention in the causal inference literature, we will focus on the first 

assumption (consistency), a key condition for the identifiability of causal effects from observational data 

and that could be related with an adequate definition of exposure for its adequate measurement 158,159. 

Consistency is stated as Ya=Y for every individual with A=a. That is, among individuals who received 

treatment level A=a, their potential outcome Ya under treatment level a is equal to their observed 

outcome Y 153. The consistency assumption allows the connection of the potential outcomes with the 

observed data and requires  that the exposure is defined with enough accuracy that different variants of 

the exposure do not have different effects on the outcome 160. Consequently, when there are multiple 

different versions of the exposure with different causal effects, the assumption does not hold and making 

causal inference is not possible. Consistency is linked to the concept of research synthesis in two 

competing ways. First, there is strength in combining a body of research findings to understand the causal 

effect.  By combining results from multiple studies, research synthesis, and perhaps more specifically 

meta-analysis, is assuming that studies are measuring the same exposure with the same effect which can 

be captured as a random or fixed effect. By combining studies, the goal is to guard against making 

inference about random findings. However, on the “other side” of research synthesis is the broader 

concept such as triangulation which would suggest that perhaps all the different measures are pointing in 

the same direction, we can make stronger inference 161–163 

Information bias 

Information bias, also called measurement bias or measurement error, occurs when key information 

about the exposure or outcome is erroneously measured or collected causing it to differ from the true 

(unobserved) value 157. When the outcome is a discrete variable the measurement error is known as 

misclassification. Misclassification is often expressed as measures of sensitivity and specificity. 

Epidemiological research is conceived as an exercise of measurement where one of the great challenges 

is the use of data on the observed variables to make inferences about unobserved variables 34,37,164. When 

measurement bias is present during the development of an epidemiological investigation, it will impact 

the validity of the findings making them less credible i.e., the study population findings will not reflect the 

source populations. Therefore, allocating the sources of bias due to mismeasurement and its underlying 

specific error structure helps to understand the impacts on effect size estimates 46. In epidemiology, and 

other papers in this series, we have been able to express the structural basis for the bias as a directed 
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acyclic graph. The causal structure of measurement bias can be displayed in a causal diagram, although, 

unlike confounding and selection bias, there is no single diagram to represent the structure of different 

types of measurement error (dependent/ independent and differential/nondifferential). For this section, 

to illustrate the structure of measurement error, we will limit ourselves to the of use hypothetical 

examples constructed in the context of the relationship between AFOs and health effects and according 

to two properties: independence and non-differentially 37,153. 

First, we introduce the concept of independent measurement error. Suppose the objective of a study was 

to evaluate the effect of AFOs emissions on the development of pneumonia in residents who live near, 

but do not work on, AFOs.  As an exposure metric, researchers use environmental monitors that measure 

airborne emissions to assign individual participant exposure. Information on pneumonia incidence during 

the past three years was collected through a questionnaire applied to each participant. Exposure 

measured after disease cannot be used to represent exposure prior to disease and it is not possible to 

assume that the exposure measured accurately capture the individual’s exposure to emissions. Similarly, 

measurement of a pneumonia case could be subject to measurement error due to recall errors. With this 

scenario, the researchers only have access to both mismeasured exposure and outcome as illustrated in 

Figure 5-1A. However, in this example, the mismeasurement of one exposure is not related to 

mismeasurement of the outcome, so there is independent measurement error 153.  Any directional 

relationship of mismeasurement that occurs between exposure and the outcome occurs haphazardly. 

Contrast this with measurement errors for exposure and outcome that may be dependent, as depicted in 

Figure 5-1B. In this diagram, both the measurement of the outcome and the exposure are inaccurate i.e., 

they do not reflect the true value, and because the error arise from the same measurement method, the 

measurement error is dependent. To illustrate it, now suppose that both information about exposure and 

outcome was collected at the same time using the same questionnaire for each individual. Some 

participants did not precisely recall when they have perceived odor (exposure) and confuse cases of 

pneumonia (outcome) with another respiratory condition or non-events. In this example, there is a 

situation of dependent measurement errors because of the necessity to recall accurate information on 

the measurement of both exposure and outcome. In both examples, the measurement error for exposure 

is nondifferential with respect to the outcome and measurement error for the outcome is nondifferential 

with respect to the exposure i.e., and there are no arrows connecting the true value of the exposure and 

the measurement error of the outcome and vice versa (Figure 5-1B).  

Dependence and independence of measurement does not mean that there is a consistent direction of 

association between exposure mismeasurement and outcome mismeasurement – that concept is related 
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to differential versus non-differential selection bias. Dependence and independence of measurement has 

implications for intervening in mismeasurement. In the first example, two solutions are required to solve 

mismeasurement, whereas in the second scenario solving the single measurement tool will solve the 

issue. Although this concept of dependence and independence of measurement error is discussed in the 

framework of DAG and understanding the bias as shown in Figure 5-1, it is less commonly considered in 

favor of the more common known concept of differential versus non differential measurement error 37.   

To illustrate an example of differential measurement error of the exposure in which the true value of the 

outcome affects the exposure measurement, suppose that the evaluated outcome is allergic rhinitis, and 

that the exposure was obtained through an interview to determine whether the resident smelled any 

odor coming from AFOs. In this case, it is likely that rhinitis affects the ability to distinguish odors and lead 

to measurement error of the exposure. This error is shown in the Figure 5-2(A) with an arrow connecting 

the true outcome with the mismeasured exposure. Likewise, a differential measurement error of the 

outcome will occur if, for example, researchers suspecting that proximity to AFOs causes asthma, measure 

the presence of asthma in residents who live nearby more intensely than in those who live far from the 

AFOs. This error is shown in Figure 5-2(B) with an arrow connecting the true exposure with the 

mismeasured outcome. Independent nondifferential, dependent nondifferential, independent 

differential, and dependent differential result from a combination of the causal structures described 

above. While differential errors can be minimized through the design and implementation of the study, 

most attention is focused on the impact of non-differential measurement error 37,153.  

Measurement error in confounding variables can lead to residual confounding which is a distortion that 

remains after controlling for confounding 140. Some authors assert that for example if the sensitivity and 

specificity of dichotomous confounding variables are both 0.90, only 64% of the confounding is expected 

to be removed 141,142. Even if both exposure and outcome are perfectly measured, measurement error in 

confounding variables will result in biased estimates of effect. To illustrate the causal structure due to 

mismeasurement of a confounding variable (Figure 5-3), we will use a key study where authors gathered 

information about potential demographic confounders via personal interviews 14. For instance, it is 

reasonable to think that not all participants provide accurate information about education or household 

income for multiple reasons such as participants deliberate incorrect estimation of income or education 

or a mistake when recalling the income or education. Here the confounders education and household 

income are measured with error. In this situation, researchers only had access to the mismeasured 

variables education and household income rather than on the true confounders. From the Figure 5-3, we 

observe that there is an open path between the exposure (residential distance to nearest AFO) and 
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outcome (asthma) that passes through the confounder variables education and household income. 

However, given that researchers have gathered information about education and household income with 

error instead of true value of education and household income, we infer that it is not possible to 

completely reduce confounding by conditioning on the mismeasured education and household income 

variables, because these does not block the confounding path between the exposure (residential distance 

to nearest AFO) and outcome (asthma) that passes through the true but unmeasured confounders 

education/household income.  

With that background, we return to the aim of the study. The aim was to evaluate the characteristics of 

measurement of the exposure and outcomes and the authors approach to discussing consistency and 

measurement error.  

METHODS 

Articles eligible for the review and studies eligible for this study 

Relevant papers analyzed in this study were identified from a living systematic review conducted to 

determine the effect of AFOs on the health of people living close to those facilities.  For detailed 

information about the living systematic review reader can consult the review protocol at 

https://syreaf.org/wp-content/uploads/2021/08/Draft_Protocol_CAFO-3.pdf. Only references that 

provided comparative incidence estimates were used for this study. The studies used in this study were 

those found in the first review, the 1st update which was conducted in 2014 8,14,61–68,53–60 and those 

identified quarterly from 2014 to April 2022 through the living systematic review.  

There were no restrictions on the metrics used to estimate exposure to AFOs. Outcomes of interest did 

not need to be a disease; for example, colonization or culture of bacteria from a human was an eligible 

outcome. Health outcomes captured at a single time, such as self-reported health events using survey 

instruments, were not eligible unless the primary research authors provided evidence of appropriate 

psychometric properties (validity, reliability, responsiveness) and clinical interpretability (validated). This 

evidence came from citations of known published scales of disease/conditions or validated questionaries.  

Aim: Characterizing of measurement of the exposure and outcomes and the authors approach to 

discussing consistency and measurement error.   

Data extraction approach 

For each relevant study identified, two reviewers extracted the exposures measurement, variables 

reported as confounders, outcomes, effect sizes for exposure-outcome pairs comparing exposed and 

unexposed people and relative comparative measures reported by the authors such as the rate ratio, risk 

ratio, prevalence ratio, prevalence odds ratio, and incidence odds ratio. An example of an exposure-

https://syreaf.org/wp-content/uploads/2021/08/Draft_Protocol_CAFO-3.pdf
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outcome pair is the distance to the nearest AFO and asthma. Other effect measures such as regression 

coefficient (β) and mean difference were not extracted. Similarly, we identified the source of information 

for exposure and outcome data, and the temporal relationship between measurement of outcome and 

exposure.  

Characterizing consistency, outcomes and exposures: 

Each outcome was categorized based on the following body systems and health conditions: antimicrobial 

resistance, gastrointestinal conditions, cancer, infectious conditions, lower respiratory conditions, ocular 

conditions, psychiatric conditions, skin condition and upper respiratory conditions. Gastrointestinal, 

dermal, and ocular conditions grouped diseases that affect segments of the gastrointestinal tract such as 

the esophagus, stomach, small intestine, or large intestine, skin and the eye, respectively. Similarly, lower 

and upper respiratory conditions include disorders that affect organs of the respiratory tract such as the 

lungs, larynx, trachea, or paranasal sinuses. The category of infectious conditions grouped outcomes in 

which an infectious agent, mainly bacterial, was responsible for a pathological process reported by the 

authors. In a relevant paper identified in the last systematic review, the authors used pneumonia as a 

potential Q fever-related outcome, because pneumonia was the most frequent diagnosis among the 

notified Q fever patients in the Netherlands epidemic. We decided to classify pneumonia as lower 

respiratory outcome instead of an infectious condition. Under psychiatric conditions, mental, emotional 

and behavioral disorders were grouped. When mortality associated with a specific body system was 

addressed, such as death due to pneumonia, the outcome was grouped into the system involved, i.e., 

lower respiratory conditions. A similar classification system was used in the second systematic review 1.  

As with outcomes, each exposure was categorized into approaches based on the methodology used by 

investigators to determine exposure to AFOs. These approaches were based on the methodology used by 

investigators to determine exposure to AFOs: measurements of distance between the home and AFO, 

number of AFOs per unit area i.e., density of AFOs, odor perceived in their homes by study participants, 

measurements of polluting gases around the home such as  hydrogen sulfide (H2S), particulate matter less 

than 10 micrometers (PM10) or ammonia (NH3), and dispersion models that calculated an index of 

exposure based on the combination of measures of multiple exposures, such as the density of AFOs in the 

study area, distance from AFOs, number of animals in each AFO, weight of animals in each farm, and 

measurements of wind direction. Then we categorized the exposures into subjective or objective 

measures of exposure. We also evaluated if any authors mentioned the expected sensitivity and specificity 

of the metrics and any discussion about measurement error and the consistency assumption. In addition 

to the extraction of each exposure-outcome pair identified in the relevant studies, the time period in 
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which the outcome and exposure measurements were made, as well as the source of information used 

to obtain these measurements, were recorded.  

RESULTS 

As of June 30th, 2022, 1842 abstracts were screened, and ninety-six references were assessed for 

eligibility based on the full text. A total of 34 observational studies were identified as relevant to the 

review, of which 15 were cross-sectional studies 14,18,69–73,20,21,54,57,60,61,63,66, 12 were cohort studies 

13,53,77,165,55,56,59,62,64,74–76, and 7 were case-control studies 8,58,65,67,68,78,79. The references used for this study 

were a subset of the thirty-four identified observational studies whose effect measure provided 

contrasting estimates of incidence. This subset is made up of four case-control 58,65,67,95, five cohort 

53,59,64,165,166 and eight prevalence 14,21,63,66,69,70,72,73 studies. None of the studies' authors discussed the topic 

of consistency in exposure or its impact on the results. 

Measures of exposure employed in AFO studies  

Seventeen studies were used, as these estimated a comparison of incidence. Exposure measures and 

health outcomes reported in relevant studies estimating incidence contrast are provided in Table 5-1. No 

study performed individualized exposure measurements, instead all exposure metrics were assigned 

indirectly through aggregated exposure. 

The number of exposure-outcome pairs extracted according to the grouped exposure measure and the 

study design are illustrated in Table 5-2. At the level of the number of exposure-outcome pairs extracted, 

exposure measures based on the animal density in the residence area, with almost half (43.1%; 62/144) 

of the exposure-outcome pairs extracted, were the most common method of measurement. The next 

most common exposure measurement approach was based on emission in the residence area with 21.5 

% (31/144) of pairs extracted. Measurements based on distance were the third most employed with 18.1% 

(26/144) of exposure-outcome pairs extracted. Self-reported odor level measure was identified in 11.8% 

(17/144) of exposure-outcome pairs extracted from three prevalence  studies  21,72,82, one incidence case-

control 79and one cohort study 166. Density of AFOs and distance were measured at a single point in time 

which could limit the ability to capture the true level of exposure of the participants since a single measure 

would only approximately reflect the degree of exposure at a specific moment in time without considering 

that many of the conditions may be the result of accumulated exposures to pollutants. Dispersion models 

were the least used with 5.6% (8/144) of pairs extracted in one prevalence study 73. At the level of number 

of studies, measurements based on density in the area were the most used in ten studies, followed by 

distance to the closest AFO in seven studies, odor perceived in five studies, emission measurement in the 
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area in two studies, and a single study that used dispersion models to assign exposure (see Table 5-2). For 

the two studies that measured emissions, central monitors were used to assign an aggregate measure of 

exposure based on the geocode of their house. Whereas Horton et al 2009 reported that the average 

distance from the monitoring platform to the nearest industrial hog operation in each neighborhood was 

0.51 miles; the minimum distance to the nearest industrial hog operation was 0.20 miles and the 

maximum distance to the nearest industrial hog operation was 1.42 miles77, Kersen et al 2020 reported 

that the distance between the stations and the participants’ home addresses ranged from 2 km to 40 km 

with an average of 23 km 59. 

Measures of outcome employed in AFO studies 

Regarding the outcomes addressed by the authors, Table 5-4 shows how they were grouped to have a 

better understanding of the type of health conditions investigated. More than half of the extracted pairs 

addressed a medical condition associated with the lower respiratory tract, such as asthma or chronic 

obstructive pulmonary disease (COPD). Other conditions studied to a lesser extent included diseases of 

the gastrointestinal tract such as acute children gastroenteritis, a single study that reported all psychiatric 

conditions 166, diseases of the upper respiratory tract such as nasal allergies, and MRSA-associated 

bacterial infection. The outcomes were obtained mainly from medical records, individual questionnaires, 

and mortality records, where the first two sources were the most commonly used by the authors (see 

Appendix). 

In all 17 studies that provided incidence estimates, except for two that performed emissions 

measurements 59,166, the source of information to determine exposure to AFOs were environmental 

licenses from national, municipal, or state agencies that record the geographic location of farms, the type 

and number of confined animals. In one of the studies that performed emissions measurements, the 

researchers used their own emissions monitors 166, and in another investigators accessed the 

environmental records of a national agency that deploys its measurement monitors on the ground 59. In 

addition to the data obtained in the operating licenses to estimate exposure to AFOs, in five studies 

questionnaires were administered to the participants to assess the odor perceived in the residences 

21,69,72,95,166.  

Temporal relationship between exposure and outcome 

In Table 5-3 each exposure-outcomes pair extracted in each study and the temporal relationship between 

the exposure measurement and the outcome measurement. In seven studies 21,53,58,64,69,70,95, in our 

opinion, it is difficult to establish a temporally causal relationship since these variables were measured at 

the same time as outcomes of a chronic nature and without information on the time that the AFOs have 
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been operating in the area or the total time study participants have resided in the area. In five 

studies21,69,72,95,166, the measurement of exposure (odor) and health outcomes were performed 

simultaneously, which in our opinion could not ensure the temporal relationship between perceived odor 

and health outcomes of a chronic nature addressed in four studies 21,69,72,95. However, in one study, odor 

was studied as a mood trigger, which could ensure a temporal relationship between exposure and 

outcome 166. In only one study, the authors attempted to verify that neighboring farms were operational 

before the study period, thus ensuring that exposure was temporally related to the health outcomes 

studied 14. In five references 59,65,67,165,166, despite the fact that there is an overlap between the time of 

exposure measurement and the outcome, establishing a temporally causal relationship is feasible given 

the acute nature of the health outcomes addressed. In four studies it was possible to establish a temporal 

relationship since the measurement of exposure to AFOs preceded the measurement of the outcome 

21,63,69,165. Finally, in five references it was not possible to infer the temporal relationship because authors 

did not report when either the exposure or the outcomes were measured 14,66,72,73,95. 

Consistency 

No study discussed the consistency assumption. In Table 5-4 we can see the differ metrics used for 

exposure for each of the health outcomes. For dispersion models it can be seen only one study was 

conducted, for other exposures multiple studies are available. Interestingly, the authors did not discuss 

the implications of multiple measures of exposure in their studies or triangulation.  

DISCUSSION 

Measuring the exposure and the outcome: 

Multiple ways of measuring exposure to AFOs have been used in this body of work. However, 79% of the 

exposure-outcome pairs extracted relied on indirect/proxy measures such as distance from the farm, 

density of farms in a buffer, and odor perceived. One concern with the use of these proxy measures is the 

potential increase in misclassification error since they do not provide a direct indication of personal 

exposure to contaminants originating from farm activities. Consequently, it is possible that any observed 

effects are not directly due to increased exposure to farm pollution and may be the result of exposure to 

other environmental contaminants or factors. The type of measurement used could increase the grade of 

misclassification of the exposure. For example, by using the distance-based metrics, it is likely that all 

people living within 5 km would be classified as exposed. However, this classification does not consider 

multiple factors such as residence time in the area, wind direction, temperature/season, topography, 

number of animals housed, type of facility, waste management system, amount of time in the home, 

housing characteristics and variations in the indoor/outdoor microenvironment, which could mean that 



155 
 

even living at the same distance from a farm, two homes would have different degrees of exposure. We 

consider that the residential location represents inhaled exposure that only accounts for a part of the total 

exposure due to AFOs. Conversely, the use of dispersion models in some cohort studies that consider the 

proportion of wind coming from farms to estimate pollutant concentrations would help reduce exposure 

misclassification.  

We consider that it is possible to infer the chronic or acute nature of the outcomes addressed in this body 

of work. For example, some widely addressed outcomes such as asthma, chronic obstructive pulmonary 

disease, or associated conditions could be considered chronic in nature. Grouped results in conditions of 

the gastrointestinal tract such as acute intestinal disease, non-specific diarrhea, campylobacteriosis are 

acute in nature. The chronic or acute nature of the disease is a factor that should have been considered 

in more detail since in our opinion this could have an impact on the way exposure to AFOs is measured. 

Authors have indicated that differential measurement error is more likely to occur when measurement of 

exposure and outcome occur at the same time, as in a cross-sectional study 117. We consider that when 

the disease is acute, the incubation period for this outcome is short and so the patient's current residence, 

without specific information about timing residing in the area, may be a good representation of their 

exposure (ROBINS-E)117. This observation would be particularly valid for relevant studies that addressed 

acute conditions of the digestive tract and used the distance or density of farms as an indicator of 

exposure to AFOs without regard the time residing in the area (Table 5-4). 

Chronic diseases are often the result of a long process in which environmental exposures may play a key 

role 167. Therefore, identifying the time period in which the risk factor has the greatest impact on the risk 

of developing a disease is challenging. Given this scenario, some authors have indicated that to assess 

causal associations it would be necessary to estimate the relationship between the complete history of 

exposure that precedes and begins long before the risk period of the health event 168. In our opinion, the 

time of residence in the area and the time of operation of the AFOs should be measured to establish 

better causal relationships, however in the body of work only two studies used this approach. In one 

reference authors ensured that facilities were operating in previous years8 and in another study 

researchers ensured that AFOs were in existence both during the year of study and one year prior 14. None 

of the prevalence or prevalent and incident case-control studies measured the time of residence in the 

area. We believe that future studies could explore the role of residence history as a modifier of the effect 

of residence exposure to AFOs. 

A significant number of studies addressed health outcomes of a chronic nature, especially related to the 

respiratory system. Mainly conditions associated with asthma such as use of asthma control medications, 
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exacerbation of symptoms, diagnosis, hospitalization, mortality, and chronic obstructive pulmonary 

disease (COPD) have been extensively studied in the relevant studies in this body of work. It is biologically 

plausible to assume that the development of these chronic conditions requires a prolonged and 

accumulated period of exposure, that is, residing for a long period of time in areas with the presence of 

AFOs. When examining the way of measuring the exposure in studies evaluating chronic respiratory 

conditions, it is observed that the residence history in the area is not measured, creating a possible 

measurement error by using proxy measures without considering the duration of the time exposed to 

AFOs. Parallel, it is reasonable to assume that the effect of exposure to AFOs on health status varies 

according to the timing of exposures. Historical exposure metrics should be considered to estimate the 

cumulative effect of time-varying exposure that represents living near AFOs 168. For this purpose, exposure 

history metrics such as the cumulative index of exposure (CIE)169, weighted CIE (WCIE) 170, distributed lag 

models (DLM) 171, reverse DLM172 have been developed. These methods could be applied in a context 

where long-term exposure and outcome are collected at identical times across individuals, fitting well 

with the dominant study designs in the body of work (prevalence and prevalent and incident case-control). 

Investigators measured the odor by asking through validated questionaries if study participants had 

perceived farm odor when at home and odor intensity. Contradictory results are found when addressing 

the association of odor with different ways of measuring health outcomes. For instance, in Radon et al 

200721, we observed that for the same exposure level of odor annoyance (a self-reported exposure 

metric), there was a strong dose-response for self-reported wheezing (a subjective outcome), but when 

bronchial hyper-responsiveness to methacholine (an objective outcome) was considered, there was no 

evidence of an association. Seeking to reduce these discordant results, in the review protocol of the living 

review from which the papers in this study were drawn, we decided to include only health outcomes that 

provided evidence of appropriate psychometric properties (validity, reliability, responsiveness) and 

clinical interpretability (validated). Subjective exposures such as odor have the potential to bias estimates 

away from the null.  

Emission measurements are an alternative to exposure metrics based on quantifiable contaminants 

emitted from AFOs such as endotoxin concentration, ammonia concentrations and hydrogen sulphide. 

The advantage of these exposure metrics is that they are consistent across time and space. Particulate 

matter (PM) is a unique exposure measured in environmental research and was used in multiple studies 

in the body of work (Table 5-2). For example, in a study the distance between the monitors and the 

participants’ home addresses ranged from 2 km to 40 km with an average of 23 km 59.  In this study, the 

group average exposure levels were assigned to each individual which can increase concern about 
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measurement error. Some authors suggest that this approach creates a Berkson type error which may 

cause little or no bias in effect estimates but will make them less precise. Although at first sight the 

majority use of proxy measures of exposure observed in this body of work may be considered problematic 

by increasing the probability of making measurement errors, some research has suggested that individual 

measurement of exposure could threaten the validity of the findings by introducing confounding bias by 

personal factors that can often be hard to control, such as personal behaviors173. 

Consistency assumption in the body of work 

Some authors suggest that readers and researchers of environmental epidemiology should consider 

concepts of causal inference to evaluate the quality of papers and to address causal questions with success 

174. Under the lens of modern causal inference, it is required that the exposure is sufficiently well defined, 

an assumption knows as consistency. In simple terms, this assumption requires that there not exist 

multiple potential outcomes to the same exposure version 159,160. This condition is necessary for drawing 

causal inferences within the counterfactual framework 160. From Table 5-4, it can be seen that, for 

example, for lower respiratory outcomes – the metrics for exposure included distance, odor, density of 

AFOs in the area and dispersion models. This does raise a concern about consistency because it is possible 

that these metrics are not the same metric especially as some are subjective, and others are objective. 

We consider that some of the exposure measures used to estimate the effect on the same outcome could 

be more accurate than others, but it is not clear that distance is consistent with other metrics used, such 

as density and odor. By using measures based on distance or density to classify all the people who live in 

a certain distance or in a high-density area as exposed, it could be overlooked that it is not the same to 

live in an area of with high AFOs density area for one year than to have a history of residence of ten or 

more years. This may constitute a violation of the consistency assumption since there are multiple 

different versions of the exposure with different causal effects. For example, defining a person living 3 km 

from a feeding operation as exposed to determine the effect on the development of asthma, it is likely 

that the consistency assumption does not hold since the causal effect of residing 3 km from an AFO for a 

year might be different from the effect of living 3 km from a AFO for a lifetime. Looking at this body of 

work, we envision that if a research group decides to synthesize the available evidence, they would have 

to deal with the question of consistency and make the assumption that others are measuring the same 

thing, which is uncertain, or they will need to discuss a triangulation approach 162,163. Investigators assert 

that consistency is problematic in observational studies with exposures for which manipulation is difficult 

as is the case with odor-based exposure  160. Establishing more precise ways to define exposure to AFOs is 

essential to obtaining better causal interpretations.  
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CONCLUSIONS 

Because there is not a clear definition of residential exposure to AFOs, measurement error always needs 

to be carefully considered. Studying the effect of residing in AFO areas on the development of health 

conditions involves the fundamental fact of properly measuring and defining exposure to these 

operations. In fact, the mixed results observed could reflect the multiple ways that have been used to 

define and measure AFO exposure. It is reasonable to assume that the potential health outcomes 

addressed, mostly of a chronic respiratory nature, are due to cumulative and variable exposure to 

emissions from farms. Consequently, the extensive use of proxy measures that do not consider the 

complete history of exposure that precedes and begins long before the risk period of the health event, 

could compromise the causal interpretations in the body of work. The use of exposure history metrics 

could represent an option for this purpose. Finally, in addition to measuring AFO exposure and health 

status appropriately and without error, further investigations should ensure that exposure precedes 

outcome to improve causal interpretations. 
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Tables 

 

Table 5-1. Summary of exposure-outcome pairs extracted form relevant papers according to the study design. Abbreviations: (MRSA) Methicillin-
resistant Staphylococcus aureus , (IgE). Immunoglobulin E, (Log) logarithm. 

Case-control studies 

Levallois et al 2014 
Acute children gastroenteritis 

Cattle density 
Poultry density 
Swine density 

Gastroenteritis with a bacterial or a parasite infection 
Cattle density 
Poultry density 
Swine density 

Poulsen et al 2018 
Diarrhea- Campylobacter diagnosis 

Poultry Operation Activity Quartile - 0 Precipitation Events 
Poultry Operation Activity Quartile - 1 Precipitation Event 
Poultry Operation Activity Quartile - 2 Precipitation Events 
Poultry Operation Activity Quartile - 3 Precipitation Events 
Poultry Operation Activity Quartile - Non-medical Assistance Patient 
Poultry Operation Activity Quartile - Medical Assistance Patients 

Non-specific diarrhea 
Poultry operation activity quartile - prior antibiotic use 
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Table 5-1 (cont’d) 

Rasmussen et al 2017 
Asthma emergency department visits 

Proximity of residential address to nearest swine or cattle CAFO 
Asthma hospitalizations 

Proximity of residential address to nearest swine or cattle CAFO 
New asthma oral corticosteroid orders 

Proximity of residential address to nearest swine or cattle CAFO 

Schinasi et al 2014 
Nasal MRSA 

Ever smell odor from a farm with animals when at home 
Live within 1 mile of a swine or poultry CAFO 
Permitted farrowing swine per square mile of block group 
Permitted non-farrowing swine per square mile of block group 
Permitted swine per square mile of block group 

Cohort studies 

Fisher et al 2020 
Lymphohematopoietic cancers 

Total animal units within 5km of residence 

Hooiveld et al 2016 
Acute URI (upper respiratory infection) 

For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Allergic conjunctivitis 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Asthma 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 
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Table 5-1 (cont’d) 

Atopic eczema 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Chronic enteritis 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

COPD 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Gastroenteritis presumed infection 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Hay Fever 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Other infectious disease 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Pneumonia 
For each additional CAFO in adjacent postal code areas to the patient's residence 
For each additional CAFO within the postal code area of the residence 

Horton et al 2009 
Angry, grouchy or bad-tempered 

PM10 
Semi-volatile PM10 
Twice daily odor rating 

Angry, grouchy or bad-tempered  
Hydrogen sulfide 
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Table 5-1 (cont’d) 

Confused or unable to concentrate 
Hydrogen sulfide 
PM10 
Semi-volatile PM10 
Twice daily odor rating 

Gloomy, blue or unhappy 
Hydrogen sulfide 
PM10 
Semi-volatile PM10 
Twice daily odor rating 

Nervous or anxious 
Hydrogen sulfide 
PM10 
Semi-volatile PM10 
Twice daily odor rating 

Stressed or annoyed 
Hydrogen sulfide 
PM10 
Semi-volatile PM10 
Twice daily odor rating 

Kersen et al 2020 
Evening decrements > 20% FEV1 

IQR increase in NH3 
IQR increase in PM10 

Evening decrements > 20% PEF 
IQR increase in NH3 
IQR increase in PM10 
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Table 5-1 (cont’d) 

Evening decrements of PEF > 10% 
IQR increase in NH3 
IQR increase in PM10 

Morning decrements > 10% PEF 
IQR increase in NH3 
IQR increase in PM10 

Morning decrements > 20% FEV1 
IQR increase in NH3 
IQR increase in PM10 

Morning decrements > 20% PEF 
IQR increase in NH3 
IQR increase in PM10 

Morning peakflow decreases in FEV1 >10% 
IQR increase in PM10 

Morning peakflow decreases in FEV1 > 10% 
IQR increase in NH3 

Simões et al 2022 
Mortality due to chronic lower respiratory disease 

Number of cattle near the home residence 
Number of chickens near the home residence 
Number of mink near the home residence 
Number of pigs near the home 

Mortality due to pneumonia 
Number of cattle near the home residence 
Number of chickens near the home residence 
Number of mink near the home residence 
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Table 5-1 (cont’d) 

Mortality due to respiratory system diseases 
Number of cattle near the home residence 
Number of chickens near the home residence 
Number of mink near the home residence 
Number of pigs near the home 

Cross-sectional studies 

Freidl et al 2017 
Pneumonia 

Distance (quartiles expressed in meters) between residence and closest farm with minimum 250 
poultry 

Distance (quartiles expressed in meters) between residence and closest farm with minimum 50 goats 
Number of animals within 1000m of the residence 
Number of farms (any type) within 1000m of residence 
Presence of any type of farm within a certain distance of residence 
Presence of farm with minimum amount of animals within 1000m of residence 
Presence of farm with minimum amount of animals within 1500m of residence 
Presence of farm with minimum amount of animals within 2000m of residence 
Presence of farm with minimum amount of animals within 500m of residence 

Hoopmann et al 2006 
Allergic asthma-Atopic parents 

Log of the Endotoxin 
Allergic asthma-Non-atopic parents 

Log of the Endotoxin 
Asthmatic Pathology 

Log of the Endotoxin 
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Table 5-1 (cont’d) 

Asthmatic Pathology-Atopic Parents 
Log of the Endotoxin 

Asthmatic Pathology-Not-Atopic Parents 
Log of the Endotoxin 

IgE 
Log of the Endotoxin 

Non-allergic asthma-Atopic parents 
Log of the Endotoxin 

Non-allergic asthma-Non-atopic parents 
Log of the Endotoxin 

Mirabelli et al 2006 
Asthma-related physician visit  emergency visit  and/or hospitalization in past year  all children 

>=3 vs <3 Miles From Nearest Swine CAFO 
Livestock Odor Reported Outside or Inside School Building 

Asthma-related physician visit  emergency visit  and/or hospitalization in past year  no self-reported 
allergies 

Livestock Odor Reported Outside or Inside School Building 
Asthma-related physician visit  emergency visit and/or hospitalization in the past year self-reported 

allergies 
>=3 vs <3 Miles From Nearest Swine CAFO 
Livestock Odor Reported Outside or Inside School Building 

Asthma-related physician visit,  emergency visit,  and/or hospitalization in past year  no self-reported 
allergies 

>=3 vs <3 Miles From Nearest Swine CAFO 
Missed school in past year as a result of asthma symptoms 

>=3 vs <3 Miles From Nearest Swine CAFO 
Livestock Odor Reported Outside or Inside School Building 
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Table 5-1 (cont’d) 

Nava et al 2015 
Anti-Toxocara canis antibodies 

Live near livestock farming 

Radon et al 2005 
Allergic rhinitis 

Animal houses within 500m 
Level of Odor Annoyance 

Non-cold related rhonchal breathing sounds 
Animal houses within 500m 
Level of Odor Annoyance 

Radon et al 2007 
Allergic rhinitis 

Level of Odor Annoyance 
No. of animal houses within 500 m 

Bronchial Hyperresponsiveness to Methacholine 
Level of Odor Annoyance 
No. of animal houses within 500 m 

Physician-Diagnosed Asthma 
Level of Odor Annoyance 
No. of animal houses within 500 m 

Specific IgE to Common Allergens 
Level of Odor Annoyance 
No. of animal houses within 500 m 

Wheezing Without Cold 
Level of Odor Annoyance 
No. of animal houses within 500 m 
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Table 5-1 (cont’d) 

Schultz et al 2019 
Asthma (at least 1 episode in past year) 

Restricted cubic spline of residential distance to the nearest CAFO 
Asthma medication use in the past year 

Restricted cubic spline of residential distance to the nearest CAFO 

Current allergies 
Restricted cubic spline of residential distance to the nearest CAFO 

Current asthma 
Restricted cubic spline of residential distance to the nearest CAFO 

Lung allergies 
Restricted cubic spline of residential distance to the nearest CAFO 

Nasal allergies 
Restricted cubic spline of residential distance to the nearest CAFO 

Nasal or lung allergies & current asthma 
Restricted cubic spline of residential distance to the nearest CAFO 

Physician-Diagnosed Asthma 
Restricted cubic spline of residential distance to the nearest CAFO 

Smit et al 2012 
Other infectious disease 

Number of goats within 5 km 
Presence of farm animals within 1 km 

Pneumonia 
Number of goats within 5 km 
Presence of farm animals within 1 km 
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Table 5-2. Number of exposure-outcome pairs extracted according to the type of measurement used in the 
relevant articles identified. Consult Appendix to see the exposures classified in each exposure type. 

Exposure 
Measurement 
Type 

Reference Study Design Number of 
Exposure-
Outcome Pairs 

Density Fisher et al 2020 Cohort 2 

Freidl et al 2017 Prevalence 3 

Hooiveld et al 2016 Cohort 20 

Levallois et al 2014 Case-control 6 

Poulsen et al 2018 Case-control 7 

Radon et al 2005 Prevalence 2 

Radon et al 2007 Prevalence 5 

Schinasi et al 2014 Case-control 3 

Simões et al 2022 Cohort 12 

Smit et al 2012 Prevalence 2 

Dispersion 
models 

Hoopmann et al 2006 Prevalence 8 

Distance Freidl et al 2017 Prevalence 7 

Mirabelli et al 2006 Prevalence 4 

Nava et al 2015 Prevalence 1 

Rasmussen et al 2017 Case-control 3 

Schinasi et al 2014 Case-control 1 

Schultz et al 2019 Prevalence 8 

Smit et al 2012 Prevalence 2 

Emissions  Horton et al 2009 Cohort 15 

Kersen et al 2020 Cohort 16 

Odor Horton et al 2009 Cohort 5 
Mirabelli et al 2006 Prevalence 4 
Radon et al 2005 Prevalence 2 
Radon et al 2007 Prevalence 5 
Schinasi et al 2014 Case-control 1 

Total     144 
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Table 5-3. Temporal relationship between the exposure measurement and the outcome for each exposure-outcome pair extracted from relevant 
studies that provided estimates of incidence. 

 Manuscript and outcomes Measurement of Exposure 
in Relation to 
Measurement of Outcome 

Freidl et al 2017     
Pneumonia 

  

Distance (quartiles expressed in meters) between residence and closest farm with minimum 250 
poultry 

Antecedent 

Distance (quartiles expressed in meters) between residence and closest farm with minimum 50 
goats 

Antecedent 

Number of animals within 1000m of the residence Antecedent 
Number of farms (any type) within 1000m of residence Antecedent 
Presence of any type of farm within a certain distance of residence Antecedent 
Presence of farm with minimum amount of animals within 1000m of residence Antecedent 
Presence of farm with minimum amount of animals within 1500m of residence Antecedent 
Presence of farm with minimum amount of animals within 2000m of residence Antecedent 
Presence of farm with minimum amount of animals within 500m of residence   Antecedent 

Hoopmann et al 2006   
Allergic asthma-Atopic parents 

 

Log of the Endotoxin No information 
Allergic asthma-non-atopic parents 

 

Log of the Endotoxin No information 
Asthmatic Pathology 

 

Log of the Endotoxin No information 
Asthmatic Pathology-Atopic Parents 

 

Log of the Endotoxin No information 
Asthmatic Pathology-Not-Atopic Parents 

 

Log of the Endotoxin No information 
Immunoglobulin E (IgE) 
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Table 5-3 (cont’d) 

Log of the Endotoxin No information 
Non-allergic asthma-Atopic parents 

 

Log of the Endotoxin No information 
Log of the Endotoxin No information 

Levallois et al 2014   
Acute children gastroenteritis 

 

Cattle density Concurrent 
Poultry density Concurrent 
Swine density Concurrent 
Gastroenteritis with a bacterial or a parasite infection 

 

Cattle density Concurrent 
Poultry density Concurrent 
Swine density Concurrent 

Mirabelli et al 2006   
Asthma-related physician visit emergency visit and/or hospitalization in past year  all children 
>=3 vs <3 Miles from Nearest Swine CAFO Concurrent 
Livestock Odor Reported Outside or Inside School Building Subsequent 
Asthma-related physician visit emergency visit and/or hospitalization in past year  no self-reported allergies 
>=3 vs <3 Miles from Nearest Swine CAFO Concurrent 
Livestock Odor Reported Outside or Inside School Building Subsequent 
Asthma-related physician visit emergency visit and/or hospitalization in the past year self-reported allergies 
>=3 vs <3 Miles from Nearest Swine CAFO Concurrent 
Livestock Odor Reported Outside or Inside School Building Subsequent 
Missed school in past year as a result of asthma symptoms 
>=3 vs <3 Miles from Nearest Swine CAFO Concurrent 
Livestock Odor Reported Outside or Inside School Building Subsequent 
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Table 5-3 (cont’d) 

Nava et al 2015     
Anti-Toxocara canis antibodies 

 

Live near livestock farming No information 

Poulsen et al 2018   
Campylobacter 

 

Poultry Operation Activity Quartile - 0 Precipitation Events Concurrent 
Poultry Operation Activity Quartile - 1 Precipitation Event Concurrent 
Poultry Operation Activity Quartile - 2 Precipitation Events Concurrent 
Poultry Operation Activity Quartile - 3 Precipitation Events Concurrent 
Poultry Operation Activity Quartile - Medical Assistance Patients Concurrent 
Poultry Operation Activity Quartile - Non-medical Assistance Patient Concurrent 

Non-specific diarrhea   
Poultry operation activity quartile - prior antibiotic use Concurrent 

Radon et al 2005   
Allergic rhinitis 

 

Animal houses within 500m No information 
Level of Odor Annoyance No information 
Non-cold related rhonchal breathing sounds 

 

Animal houses within 500m No information 
Level of Odor Annoyance No information 

Radon et al 2007   
Allergic rhinitis 

 

Level of Odor Annoyance Concurrent 
No. of animal houses within 500 m Antecedent 
Bronchial Hyperresponsiveness to Methacholine 

 

Level of Odor Annoyance Concurrent 
No. of animal houses within 500 m Antecedent 
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Table 5-3(cont’d) 

Physician-Diagnosed Asthma 
 

Level of Odor Annoyance Concurrent 
No. of animal houses within 500 m Antecedent 
Specific IgE to Common Allergens 

 

Level of Odor Annoyance Concurrent 
No. of animal houses within 500 m Antecedent 
Wheezing Without Cold 

 

Level of Odor Annoyance Concurrent 
No. of animal houses within 500 m Antecedent 
Rasmussen et al 2017 

 

Asthma emergency department visits 
 

Proximity of residential address to nearest swine or cattle CAFO Subsequent 
Asthma hospitalizations 

 

Proximity of residential address to nearest swine or cattle CAFO Subsequent 
New asthma oral corticosteroid orders 

 

Proximity of residential address to nearest swine or cattle CAFO Subsequent 

Schinasi et al 2014   
Nasal MRSA 

  

Ever smell odor from a farm with animals when at home Concurrent 
Nasal MRSA 

  

Live within 1 mile of a swine or poultry CAFO Concurrent 
Nasal MRSA 

  

Permitted farrowing swine per square mile of block group No information 
  Nasal MRSA 

  

Permitted non-farrowing swine per square mile of block group No information 
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Table 5-3 (cont’d) 

Schultz et al 2019   
Asthma (at least 1 episode in past year) 

 

Restricted cubic spline of residential distance to the nearest CAFO No information 
Asthma medication use in the past year 

 

Restricted cubic spline of residential distance to the nearest CAFO No information 
Current allergies 

 

Restricted cubic spline of residential distance to the nearest CAFO No information 
Current asthma 

 

Restricted cubic spline of residential distance to the nearest CAFO No information 
Lung allergies 

  

Restricted cubic spline of residential distance to the nearest CAFO No information 
Nasal allergies 

  

Restricted cubic spline of residential distance to the nearest CAFO No information 
Nasal or lung allergies & current asthma 

 

Restricted cubic spline of residential distance to the nearest CAFO No information 
Physician-Diagnosed Asthma 

 

Restricted cubic spline of residential distance to the nearest CAFO No information 

Smit et al 2012     
Other infectious disease 

 

Number of goats within 5 km Concurrent 
Presence of farm animals within 1 km Concurrent 
Pneumonia 

  

Number of goats within 5 km Concurrent 
Presence of farm animals within 1 km Concurrent 
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Table 5-4. Number of exposure-outcome pairs according to the type of exposure measurement and type 
of outcome. In total 144 pairs were extracted from the relevant articles identified. Consult Appendix to see 
the exposures classified in each exposure type. 

Type of Outcome Reference Exposure Type Number of Exposure-
Outcome pairs 

Antimicrobial resistance Schinasi et al 2014 Density/Odor/Distance 5 

Cancer Fisher et al 2020 Density 2 

Gastrointestinal condition Hooiveld et al 2016 Density 4 

Levallois et al 2014 Density 6 

Poulsen et al 2018 Density 7 

Infectious conditions Hooiveld et al 2016 Density 4 

Nava et al 2015 Distance 1 

Smit et al 2012 Density/Distance 2 

Lower Respiratory Freidl et al 2017 Density/Distance 10 

Hooiveld et al 2016 Density 6 

Hoopmann et al 2006 Dispersion model 8 

Kersen et al 2020 Emissions 16 

Mirabelli et al 2006 Odor/Distance 8 

Radon et al 2005 Density/Odor 2 

Radon et al 2007 Density/Odor 9 

Rasmussen et al 2017 Distance 3 

Schultz et al 2019 Distance 6 

Simões et al 2022 Density 12 

Smit et al 2012 Density/Distance 2 

Ocular conditions Hooiveld et al 2016 Density 2 

Psychiatric conditions Horton et al 2009 Emissions / Odors 20 

Skin condition Hooiveld et al 2016 Density 2 

Upper Respiratory Hooiveld et al 2016 Density 2 

Radon et al 2005 Density/Odor 2 

Radon et al 2007 Density/Odor 1 

Schultz et al 2019 Distance 2 

Total     144 
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Figures 

 

Figure 5-1. A. Causal diagram illustrating independent measurement error where (*) represents the 
measured outcome and exposure. B. Causal diagram illustrating dependent measurement error where (*) 
represents the measured outcome and exposure. 

 

 

Figure 5-2. Causal diagram illustrating differential measurement error of the exposure where (*) represent 
the measured exposure. B. Causal diagram illustrating differential measurement error of the outcome 
where (*) represent the measured outcome.  
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Figure 5-3. Directed Acyclic Graph representing controlling for mismeasurement confounder. Adjusting for 
this mismeasured confounder, represented by a box with thick edges, will induce bias. 
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APPENDIX: CLASSIFICATION OF EXPOSURE METRICS AND SOURCES OF DATA INFORMATION 
TO ESTIMATE THE EXPOSURE TO ANIMAL FEEDING OPERATIONS (AFO)  AND HEALTH 

OUTCOMES 

Table 5-5. Classification of exposure metrics extracted from studies that provide incidence estimates 
according to five measurement methods. 

Reference Exposure Exposure Type 

Schinasi et al 2014 
Ever smell odor from a farm with animals when at 
home 

Odor - Subjective 

Schinasi et al 2014 Live within 1 mile of a swine or poultry CAFO 
Distance - 
Objective 

Schinasi et al 2014 
Permitted farrowing swine per square mile of block 
group 

Density - Objective 

Schinasi et al 2014 
Permitted non-farrowing swine per square mile of 
block group 

Density - Objective 

Schinasi et al 2014 Permitted swine per square mile of block group Density - Objective 

Levallois et al 
2014 

Cattle density Density - Objective 

Levallois et al 
2014 

Poultry density Density - Objective 

Levallois et al 
2014 

Swine density Density - Objective 

Poulsen et al 2018 
Poultry operation activity quartile - prior antibiotic 
use 

Density - Objective 

Poulsen et al 2018 
Poultry Operation Activity Quartile - Non-medical 
Assistance Patient 

Density - Objective 

Poulsen et al 2018 
Poultry Operation Activity Quartile - Medical 
Assistance Patients 

Density - Objective 

Poulsen et al 2018 
Poultry Operation Activity Quartile - 0 Precipitation 
Events 

Density - Objective 

Poulsen et al 2018 
Poultry Operation Activity Quartile - 1 Precipitation 
Event 

Density - Objective 

Poulsen et al 2018 
Poultry Operation Activity Quartile - 2 Precipitation 
Events 

Density - Objective 

Poulsen et al 2018 
Poultry Operation Activity Quartile - 3 Precipitation 
Events 

Density - Objective 

Rasmussen et al 
2017 

Proximity of residential address to nearest swine or 
cattle CAFO 

Density - Objective 
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Table 5-5 (cont’d) 

Mirabelli et al 
2006 

Livestock Odor Reported Outside or Inside School Building 
Density - 
Objective 

Mirabelli et al 
2006 

>=3 vs <3 Miles from Nearest Swine CAFO 
Density - 
Objective 

Smit et al 2012 Number of goats within 5 km 
Density - 
Objective 

Smit et al 2012 Presence of farm animals within 1 km 
Density - 
Objective 

Radon et al 
2007 

No. of animal houses within 500 m 
Density - 
Objective 

Radon et al 
2007 

Level of Odor Annoyance 
Density - 
Objective 

Freidl et al 2017 
Presence of any type of farm within a certain distance of 
residence 

Density - 
Objective 

Freidl et al 2017 
Presence of farm with minimum amount of animals within 
500m of residence 

Density - 
Objective 

Freidl et al 2017 
Presence of farm with minimum amount of animals within 
1000m of residence 

Density - 
Objective 

Freidl et al 2017 
Presence of farm with minimum amount of animals within 
1500m of residence 

Density - 
Objective 

Freidl et al 2017 
Presence of farm with minimum amount of animals within 
2000m of residence 

Density - 
Objective 

Freidl et al 2017 
Distance (quartiles expressed in meters) between 
residence and closest farm with minimum 250 poultry 

Density - 
Objective 

Freidl et al 2017 
Distance (quartiles expressed in meters) between 
residence and closest farm with minimum 50 goats 

Density - 
Objective 

Freidl et al 2017 Number of animals within 1000m of the residence 
Density - 
Objective 

Freidl et al 2017 Number of farms (any type) within 1000m of residence 
Density - 
Objective 

Radon et al 
2005 

Animal houses within 500m 
Density - 
Objective 

Radon et al 
2005 

Level of Odor Annoyance 
Density - 
Objective 

Hoopmann et al 
2006 

Log of the Endotoxin 
Density - 
Objective 
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Table 5-5 (cont’d) 

Nava et al 2015 Live near livestock farming 
Density - 
Objective 

Schultz et al 
2019 

Restricted cubic spline of residential distance to the 
nearest CAFO 

Density - 
Objective 

Horton et al 
2009 

Hydrogen sulfide 
Emission - 
Objective 

Horton et al 
2009 

PM10 
Emission 
measurements 
- Objective 

Horton et al 
2009 

Semi-volatile PM10 
Emission 
measurements 
- Objective 

Horton et al 
2009 

Twice daily odor rating 
Odor - 
Subjective 

Hooiveld et al 
2016 

For each additional CAFO within the postal code area of 
the residence 

Density - 
Objective 

Hooiveld et al 
2016 

For each additional CAFO in adjacent postal code areas to 
the patient's residence 

Density - 
Objective 

Kersen et al 
2020 

IQR increase in NH3 
Emission 
measurements 
- Objective 

Kersen et al 
2020 

IQR increase in PM10 
Emission 
measurements 
- Objective 

Simões et al 
2022 

Number of cattle near the home residence 
Density - 
Objective 

Simões et al 
2022 

Number of pigs near the home 
Density - 
Objective 

Simões et al 
2022 

Number of chickens near the home residence 
Density - 
Objective 

Simões et al 
2022 

Number of minks near the home residence 
Density - 
Objective 

Fisher et al 
2020 

Total animal units within 5km of residence 
Density - 
Objective 
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Table 5-6. Sources of information used by authors to estimate the exposure to AFOs and health 

outcomes. 

Reference 
Outcome Information 
Source 

Exposure Information Source 

Schinasi et al 2014 
Patients attending a hospital 
and tested at admission 

Questionnaire asking about 
odor 

Schinasi et al 2014 
Patients attending a hospital 
and tested at admission 

Home Address in Medical 
Records and Questionnaires 

Schinasi et al 2014 
Patients attending a hospital 
and tested at admission 

Database from the North 
Carolina 
Division of Water Quality 

Levallois et al 2014 
Patients Hospitalized or 
Reported to the Public Health 
System 

Municipality Records 

Poulsen et al 2018 Medical records 
Nutrient Management Plan 
(NMP) reported to 
Pennsylvania state 

Rasmussen et al 2017 Medical records 

Nutrient management plans 
from the Pennsylvania 
Department of 
Environmental Protection to 
CAFO location and medical 
record data for home 
addresses 

Mirabelli et al 2006 Questionnaires 

Survey responses about 
noticeable odors and data 
from permits that were 
issued by the North Carolina 
Division of Water Quality 

Smit et al 2012 
Medical records of 
practitioners in CAFO areas 

Provincial database of 
mandatory environmental 
licenses for CAFO location 
and medical records for 
home address 

Radon et al 2007 
Questionnaires to self-assess 
some outcomes and clinical 
test 

Exposure from 
environmental licenses and 
population registries to home 
address 

Radon et al 2007 
Questionnaires to self-assess 
some outcomes and clinical 
test 

Questionaries to assess odor 

 



187 
 

Table 5-6 (cont’d) 

Freidl et al 2017 
Information from 
questionnaires and electronic 
medical records 

Provincial databases of 
mandatory environmental 
CAFO licenses and home 
address form medical records 

Radon et al 2005 Questionaries 
Questionaries for odor 
assessment and no 
information about distances 

Hoopmann et al 2006 
Questionaries with self-
assessment and clinical tests 

Individuals’ exposure was 
estimated using a Lagrange 
dispersion model based on 
the emission rates and 
locations of the livestock 
facilities 

Nava et al 2015 
Blood sampled and tested for 
antibodies 

Questionnaire 

Schultz et al 2019 
Questionaries for self-
assessment 

Wisconsin environmental 
records for CAFO location 
and questionnaire for 
household addresses 

Horton et al 2009 Questionaries 
Emission measurements with 
central monitors at each 
neighborhood 

Horton et al 2009 Questionaries 
Questionaries for odor 
assessment 

Hooiveld et al 2016 Electronic Medical records 

Numbers and type of CAFOs 
located in the postal code 
areas obtained from the 
Dutch Agricultural 
Geographic Information 
System and postal code area 
of patients’ home address 
abstracted from electronic 
medical records 

Kersen et al 2020 
Questionnaire and 
spirometry measurements 

Dutch Air Quality Monitoring 
Network (National Institute 
for Public Health and the 
Environment) from two 
central monitors 
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Table 5-6 (cont’d) 

Simões et al 2022 National census-based cohort 

Geographic Information 
System for Agricultural 
Holdings database to locate 
CAFOs and databases from 
Statistics Netherlands to 
obtain the home address of 
participants 

Fisher et al 2020 
Iowa Cancer Registry, Iowa 
mortality files and the 
National Death Index 

Records maintained by the 
Iowa Department of Natural 
Resources and home 
addresses from Iowa Cancer 
Registry 
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CHAPTER 6: CONCLUSIONS  

Design factors that limit causal inference in the primary studies addressing the association between 

animal feeding operations (AFOs) and human health outcomes. 

The first study of this dissertation hypothesized that study design and assumptions about the underlying 

population dynamics determine the study’s ability to provide estimates of the incidence of a health effect. 

Our objectives were to assess in each exposure-outcome pair reported in relevant prevalent studies the 

structural conditions needed to provide estimates of comparative incidence. Likewise, we assessed in 

each exposure-outcome pair reported in relevant case-control studies the structural conditions needed 

to provide estimates of comparative incidence. 

The first objective was accomplished by identifying prevalent studies addressing the health effect of living 

close to animal feeding operations through a systematic review. Exposure-outcome effect sizes were 

extracted, and thereafter we evaluated if the authors discussed the assumptions about the underlying 

population and what was estimated by the study. In parallel, we evaluated the assumptions to establish 

our opinion on the interpretation of the reported measure of effect. Fifteen prevalent studies were 

identified, from which 153 effect sizes were extracted. For 44% of the effect sizes extracted, the effect 

measure obtained by the authors potentially could have been interpreted as incidence density ratio (IDR), 

a measure of effect representing causal parameters.  

The second objective was accomplished by identifying case-control studies addressing the health effect 

of living close to animal feeding operations through a systematic review. All exposure-outcome effect 

sizes were extracted, and thereafter we evaluated if the authors discussed the assumptions about the 

underlying population, the apparent nature of the cases (incident or prevalent), and the methods for 

sampling cases and controls. Concurrently, we evaluated the populations assumptions to provide an 

opinion on the interpretation of the effect size measure reported. Seven case-control studies were 

identified, where 34 cross-products (odds ratios) were extracted as measures of effect size. No author 

group discussed the population assumptions required to make causal inferences or the type of case-

control design determined by the method used for sampling of controls. However, interestingly all studies 

adjusted for potential confounding variables, which suggested a goal of causal inference. In 61% (21/34) 

of the effect sizes extracted, the effect measure obtained by the authors could, in our opinion, potentially 

have been considered equivalent to the incidence density ratio (IDR) due to the study design, the nature 

of the cases, the methods of sampling of controls and characteristics of the underlying population. 

Overall, neither authors of prevalent nor case-control studies in this body of work have discussed the 

epidemiological assumptions necessary to interpret the measure of effect as incidence density ratio (IDR) 
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which would be important for causal inference. Given the important percentage of exposure-outcome 

effect sizes that, in our opinion, might be interpreted as providing estimates of IDR, authors should discuss 

the assumptions to support the causal interpretation of their results and help readers understand their 

study's contribution to a causal relationship in the body of work. 

Sources of bias that occur in studies related to the association between animal feeding operations (AFO) 

and human health outcomes. 

The second study of this dissertation hypothesized that confounding, and measurement bias are 

significant sources of systematic error in the primary studies that prevent reaching valid conclusions about 

causation. One objective was to analyze the impact of bias due to confounding in the body of the work 

and issues derived from the efforts made by the authors to control or remove the effect of confounders. 

Similarly, the other objective was to analyze the impact of bias due to information in the body of the work. 

The first objective was accomplished by limiting the study population to studies that either due to design 

or population assumptions could be considered to estimate a measure of comparative incidence. We 

assessed if the authors reported whether they aimed to estimate the direct or total effect of exposure to 

AFOs on health outcomes. We also evaluated if the authors provided the rationale for selecting variables 

as confounders and the rationale for retention as confounders as well as the statistical methods used to 

control for these variables. Next, we limited the analyses to manuscripts where either the authors 

included a DAG or the authors reported a lower-respiratory disease outcome for which a DAG from the 

Environmental Protection Agency (EPA) is available.  We then mapped the exposure variable, outcome 

variable and adjustment set of control variables onto the DAG to determine if the authors estimated the 

total or direct effect, remaining biasing pathways, unnecessary adjustment, collider bias and 

overadjustment bias. A total of 33 observational studies were identified as relevant to the review, of which 

15 were population-based prevalence studies, 11 were cohort studies, and 7 were prevalent and incident 

case-control studies. Of these, seventeen manuscripts were analyzed as they were considered to estimate 

a measure of comparative incidence. None of the authors reported if they intended to estimate the total 

or direct effect of exposure to AFOs on community members' health. Only two of the seventeen studies 

included the rationale for the set of variables selected as confounders and the rationale for retention as 

confounders. All studies employed logistic regression to adjust for confounding suggesting they were 

investigating a causal relationship. No paper provided a DAG or causal pathway that supported the 

adjustment set included in the models. Ten studies addressed lower respiratory tract conditions. No study 

could estimate either the direct effect or the total effect of residential exposure to AFOs. For six studies, 

the major concern was the adjustment for a collider variable (smoking). For another four, failure to adjust 
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for important confounding variables such as socioeconomic status or education meant biasing pathways 

remained open. Unnecessary adjustment was a prevalent concern across all of the papers addressing 

lower respiratory conditions.   

The second objective was accomplished by limiting the study population to studies that, due to population 

assumptions, were considered to estimate a measure of comparative incidence. For these manuscripts, 

we extracted descriptive information about the measures used and the authors discussion of 

measurement.  Several other aspects were evaluated such as the temporal relationship between 

measurement of the outcome and exposure, consistency of exposure measurement, source of 

information used to obtain exposure and outcome measurement, and determination of exposure 

measurement as an aggregate measure or individual exposure. Seventeen studies were used for the 

analyzes related to information bias as they provided effect measures capable of estimating contrast of 

incidences. Measurements of exposure based on AFOs density, measurement of direct emissions, 

distance from home to AFOs, dispersion models and perceived odor in the home were the measures used 

by authors. Health outcomes were grouped based on the anatomical system affected. Lower respiratory 

conditions and gastrointestinal conditions were the most investigated and the main source of information 

for these outcomes were medical records, questionaries, and mortality records. Findings regarding the 

temporal relationship between exposure and outcome were mixed, with studies where it was possible to 

infer temporality, studies that assessed exposure and outcome concurrently, and others where lack of 

reporting prevented temporality inferences. None of the measures of exposure captured an individual 

exposure to a metric of AFOs exposure such as personal exposure to ammonia levels. Authors did not 

discuss the consistency assumption.  

Overall, confounding may prevent drawing causal conclusions in this body of work, as the sole use of 

multivariate models, without exhaustive analysis for the selection, identification and retention of 

confounding variables using tools such as DAGs, might not capture the full spectrum of bias and on the 

contrary, it could generate biased estimates due to the adjustment of colliders and unnecessary 

adjustment of confounding variables. Accurately assessing exposure to AFOs represents a methodological 

challenge due to the nature of the environmental contaminants involved, the instability of their levels 

over time, and the multiple pathways through which AFOs could affect people’s health. The extensive use 

of proxy measures, such as distance and density of farms, which are measured only once and without 

considering exposure time of the subjects, may not appropriately reflect cumulative and dynamic 

exposure to intensive farms, impacting the causal interpretation of the body of work. Additionally, the 
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lack of consistency in the different metrics used to estimate exposure can compromise drawing causal 

inferences in the body of work, making it difficult to synthesize the available evidence. 

CONCLUSION 

This dissertation allows greater clarity on the measures of effect present in the body of work, particularly 

those obtained through cross-sectional or case-control studies. Based on the evaluation of 

epidemiological aspects of the design of each relevant study identified, it was found that many of the 

estimated measures of effect have a causal value since they can be interpreted as measures of incidence. 

However, despite the causal value that some measures of effect may have, our analysis of confounding 

through the use of DAGs to identify the types of effects estimated (direct or total), unnecessary 

adjustment, overfitting, and collider adjustment, showed that none of the studies that address conditions 

of the lower respiratory tract are able to estimate the total or direct effect of residential exposure to AFOs 

on the development of respiratory conditions. Similarly, with the use of multiple ways of measuring 

exposure to AFOs, the causal value of the estimates obtained could be affected as we do not believe the 

metrics used are consistent with each other. Establishing more precise ways to define exposure to AFOs 

is urgent to obtaining valid causal interpretations. 

 


