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ABSTRACT

Shape plays a fundamental role across all organisms at all observable levels. Molecules and

proteins constantly fold and wrap into intricate designs inside cells. Cells arrange into elaborate

motifs to form sophisticated tissues. Layers of different tissues come together to form delicate

vascular systems that sustain leaves. Each of these tissues evolved as part of a distinct branch of the

ever-growing tree of life. From micro-biology to macro-evolutionary scales, shape and its patterns

are foundational to biology. Measuring and understanding the shape is key to extracting valuable

information from data, and push further our insights.

Shape is too complex to be comprehensively tackled with traditional methods. Landmark-based

morphometrics fail if there are not enough homologous points shared across all sampled individuals.

Elliptical Fourier Descriptors are not suitable for 3D data. These limitations are especially pressing

when we combine our plant visualizations with X-ray Computed Tomography (CT) technology to

also record the sophisticated internal structure of stems, seeds, and fruits.

Here, I study the potential of Topological Data Analysis (TDA) for plant shape quantifica-

tion. TDA is a combination of different mathematical and computational disciplines that seeks to

describe concisely and comprehensively the shape of data in a general setting. In very succinct

terms, TDA consists of two basic ingredients. First we think the data as a collection of points.

Second, we define a notion of distance between every pair of points. The points could be atoms,

biomolecultes, cells’ nuclei, image pixels, or an organism itself. Distances between points could be

the Euclidean, geodesic, genetic, or correlation-based. Once we have data points and distances, we

merge systematically the points, starting with those that are closer to each other. The key idea is to

keep track of distinct blobs, loops, and voids that form and disappear as we merge several points.

This versatile idea is not constrained to a particular dimension or set of landmarks, which makes it

ideal to compare a vast array of possible different shapes.

In this work, we will explore new techniques for mathematical plant phenotyping by studying

three concrete cases. For the first case, we digitally extract the totality of shape information from

X-ray CT scans of tens of thousands of barley seeds. With the Euler Characteristic Transform,



topological and traditional morphological descriptors of the seeds are then used to successfully

characterize different barley varieties based solely on the grain shape. This result later enables us

to deduce potential genes that contribute to distinct morphology, bridging the phenotype with its

genotype. A future goal is to link these genes to climate adaptability to breed better crops for an

ever changing weather. For the second case, we use directional statistics and persistence homology

to model the shape and distribution of citrus and their oil glands. This leads us to a novel path to

explore developmental constraints that govern novel relationships between fruit dimensions from

both evolutionary and breeding perspectives. For the third case, we comprehensively measure

the shape of walnut shells and kernel. Combining novel size- and shape-specific descriptors, we

explore the relationship between shell morphology and traits of commercial interest such as the

easiness to remove the kernel intact or the integrity of the shell after being cracked. From the

perspective that all data, whether phenotypic or genotypic, has shape, TDA can extract the totality

of morphological information. We have interest applying this approach to more crops, to more

plant biology inspired datasets, and to large-scale gene expression and population genetic data.
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CHAPTER 1

INTRODUCTION

Un viento que no deja crecer ni a las dulcamaras: esas plantitas

tristes que apenas si pueden vivir un poco untadas en la tierra,

agarradas con todas sus manos al despeñadero de los montes.

—from El Llano en Llamas

Juan Rulfo

Demeter was the Greek goddess of the harvest, agriculture, fertility and religious law. She, as

the rest of the Greek deities, was an embodiment of multitasking and multidisciplinarity. In fact,

most of the Olympus had to supervise multiple tasks each, as it seems that economic trouble and

budget constraints have plagued Greece since mythological times. Demeter must have had a precise

knowledge of yields and cycles of all the different crops, along with fine-grained details on how

each variety of cereal reacts to different soils, climates and farming practices. On top of that, she

had to supervise and assist the proper following of sacred rules. With such a packed schedule, she

needed to identify quickly the important traits of numerous cultivated plants. Perhaps a thorough,

informed glance at the shape of each grain and spike revealed to her all the information required

to understand the yield and resistance properties of different plant species. Maybe Demeter used

mathematics, especially algebraic topology, and some directional statistics to spice things up, to

comprehensively quantify and compare shape.

Shape plays a fundamental role across all organisms at all observable levels. Molecules and

proteins constantly fold and wrap into intricate designs inside our cells. Cells arrange into elaborate

motifs to form sophisticated tissues. Layers of different tissues come together to form delicate

vascular and nervous systems that sustain hands, wings, or fins. Each of these limbs evolved as part

of a distinct branch of the ever-growing tree of life. From micro-biology to macro-evolutionary

scales, shape and its patterns are foundational to biology. Measuring and understanding the shape

is key to extracting valuable information from data, and push further our insights.

Even if we limit our scope to plant biology, a simple glance outdoors reveals a large diversity
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of shape among flowers, leaves, fruits, and branches. A first attempt to characterize the shape of a

plant could use traditional morphometrics, describing the shape of the plant in terms of height, stem

thickness, or number of branches. With these measures at hand, we could look for allometry —the

relative growth of parts of an organism to the whole— and thus linearly transform biological shapes

between each other. However, any given plant shape is too complex to measure it simply in terms

of length, width, and branching angles. A more careful attempt, as suggested by Bookstein (1997),

could use geometric modern morphometrics (GMM) instead, where we first define homologous

landmark points on every sample and then measure shape similarity by overlapping all these

landmarks and computing their Euclidean differences. The computation of differences can be

refined by rotating, translating, and scaling appropriately the landmark coordinates prior to the

general overlap. This procedure, known as generalized Procrustes analysis, defines a morpho-

space, or a space of all possible shapes based on all the possible landmark configurations, which

allows us to define overall shape distance (Gower, 1975). TheGMMapproach can produce distorted

results if there are not enough landmarks shared across all sampled individuals, which could occur

if we attempt to compare tissues from different families. In the absence of corresponding sets of

coordinates, we may attempt to describe the outline of the shape using Fourier analysis (Lestrel,

1997), by considering the outline as a harmonic series, or the sum of wave-like curves (Kuhl and

Giardina, 1982). Both morphometrics or Fourier analysis have proven to be extremely insightful to

uncover hidden patterns that mold diverse organism shapes at genetic, developmental, evolutionary,

and environmental levels (Chitwood and Sinha, 2016).

The methods described above, face enormous challenges when we combine our plant visualiza-

tions with X-ray CT (computed tomography) technology to also record the sophisticated internal

structure of stems, seeds, and roots. Even with high-resolution images, it is hard to comprehen-

sively and simultaneously measure the vast array of external patterns and internal structures across

all possible tissues. Complex branching architectures multiply tenfold in front of our eyes with CT

technology, as we now have access to vascular and nervous systems, hyphae, and a better insight

of the overall evolutionary tree. X-ray CT imaging has provided new insights into root architecture
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(Atkinson et al., 2019; Booth et al., 2020; Griffiths et al., 2022; Zhou et al., 2020), xylem vessel

mechanics (Choat et al., 2018; Gauthey et al., 2020), and internal voids in flowers and berries (Xiao

et al., 2021). But at the same time in this CT setting, shared coordinates and common outlines are

simply not enough to capture the rich morphology we observe both with our eyes and with X-rays

(Li et al., 2020). A new strategy is needed. We focus thus on topology and as famously stated by

David Kendall (1984),

As topologists already have a theory of shape, I must apologize for using the word again

with an entirely different meaning. In this paper ‘shape’ is used in the vulgar sense,

and means what one would normally expect it to mean.

Topological Data Analysis (TDA) is a combination of different mathematical and computational

disciplines that seeks to describe concisely and comprehensively the shape of data in a general

setting (Amézquita et al., 2020; Lum et al., 2013; Munch, 2017). In extremely succinct terms,

TDA consists of two basic ingredients and a key idea. The first ingredient is to think of the data

as a collection of points, and the second is to define a notion of distance between every pair of

points. The points could be atoms, biomolecultes, cells’ nuclei, image pixels, or an organism itself.

Distances between points could be the Euclidean, geodesic, genetic, or correlation-based. Once

we have data points and distances, known formally as a metric space, we can connect these points

starting with those that are closer to each other first. The key idea is to keep track of distinct shape

features that form and disappear as we connect and merge several points. These ingredients and

idea, albeit simple, are extremely versatile and can be adapted to a myriad of contexts and data

collections. Moreover, the notion of shape presented by TDA is limited solely by the data itself,

unleashing it from possible selection biases. This very adaptability and impartiality makes TDA a

powerful data analysis tool that can further our insights in a variety of plant biology scenarios.

Plant biology faces mountains of genetic and phenotypic data that must be efficiently analyzed

and summarized. The solutions to grand challenges we face in the plant sciences, including

predicting phenotype from molecular profiles, lie in mathematics (Autran et al., 2021; Bucksch et

al., 2017). Despite emerging interdisciplinary research networks, the active collaboration between
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Figure 1.1: An example of geometricmorphometrics. A) 24 landmarks (orange dots) and pseudo-
landmarks (6,000 evenly spaced vertices between landmarks, magenta dots) on grapevine leaves of
Cabernet sauvignon (orange), Chardonnay (blue), and Chasselas cioutat (green) varieties. Every
grapevine leaf has five major veins, allowing corresponding landmarks to be placed throughout
every leaf. B) Corresponding vertices allows replicates to be superimposed on each other and
C) mean leaves calculated using Procrustean methods that translate, rotate, reflect, and scale. D)
A Principal Component Analysis (PCA) and other statistics can be performed on the Procrustes-
adjusted vertices (95% confidence ellipses for each variety are shown).

these two domains remains limited. We propose the mathematical study of shape as one of the

many potential bridges between mathematics and plant biology.

In recent years, TDA has produced promising results in diverse biological problems, like

histological image analysis (Kovacev-Nikolic et al., 2016), viral phylogenetic trees description

(Chan et al., 2013), and active-binding sites identification in proteins (Qaiser et al., 2019). In plant

biology specifically, it has been used to characterize the morphospace of all possible leafs as in

Figure 1.1 (Li et al., 2018), the 3D structure of grapevine inflorescence (Li et al., 2019), the shape

of different apple accessions (Migicovsky et al., 2019). The Euler characteristic has also been used

to study the genetic basis of cranberry shape (Diaz-Gárcia et al., 2018), the hairiness and shape
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of spikelets —arrangements of grass flowers— (McAllister et al., 2019) and patterns of vegetation

from satellite imagery (Mander et al., 2017). The power of TDA lies on its versatility to produce

different “topological signatures” for different shapes.

In Chapter 2 we present the main mathematical concepts behind TDA at an intuitive level. We

provide a middle ground between mathematics and biology: for mathematicians, a review of ways

TDA has been successfully used to study biology and for biologists, an accessible introduction

to topological thinking. We begin with examples from structural biology, evolution, and cellular

architecture that lend themselves to simple but powerful TDA representations. We then examine

shapes, focusing on the outlines of leaves, and the use of Euler characteristic curves as convenient

topological signatures that enable statistical analyses. Next, we highlight ways that TDA can

measure branching architecture and the use of bottleneck distance to calculate the overall topological

similarity between objects. We end with a discussion about future trends in TDA: measuring

dynamic shapes and time series as well as using topology to convert data to graphs representing its

structure.

In Chapter 3, as a proof of concept, we quantify the morphology of X-ray CT scans of barley

spikes and seeds using both traditional and topological shape descriptors. By combining both sets

of descriptors, we can successfully train a support vector machine to distinguish and classify 28

different varieties of barley based solely on the 3D shape of their grains. Rather than being an

alternative, we propose TDA as a powerful complement to traditional shape analysis, where the

topological descriptors pick up morphological information that is usually missed. We propose then

that this shape characterization will allow us later to link genotype with phenotype, furthering our

understanding on how the physical shape is genetically specified in DNA.

In Chapter 4, we investigate the shape of citrus fruit. We analyze 3D X-ray CT scan recon-

structions corresponding to 51 citrus accessions. Based on the centers of the oil glands, overall

fruit shape is approximated with an ellipsoid. Possible oil gland distributions on this ellipsoid

surface are explored using directional statistics. Our observations point to the existence of biophys-

ical developmental constraints that govern novel relationships between fruit dimensions from both
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evolutionary and breeding perspectives. Understanding these biophysical interactions prompt an

exciting research path on fruit development and breeding.

In Chapter 5, we explore the shape of walnut shells and kernels. We analyze almost 1300

individual 3D X-ray CT scan reconstructions of walnuts, corresponding to 171 walnut accessions.

Like in the previous chapter, we exploit the nondestructiveness of X-rays to digitally segment

and measure the 4 main tissues of interest for each walnut, namely shell, kernel, packing tissue,

and sealed air. From these we extract a total of 38 size- and shape-specific descriptors, many of

them unexplored in the current literature. We focus on several allometric relationships of interest,

from which we draw theoretical upper and lower bounds of possible walnut and kernel sizes. We

then study correlations and variations of these morphological descriptors with qualitative data

corresponding to traits of commercial interest like ease of kernel removal and shell strength.

Finally, Chapter 6 poses several exciting potential future directions we could take for each of

the previous three chapters.
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CHAPTER 2

BACKGROUND

En qué momento habían resucitado, cómo había sido la sensación de

pasar del polvo a la forma y de la forma a la vida y se pellizcaban

para ver si les salía sangre

—from El Tiempo Principia en Xibalbá

Luis de Lión

Biologists are accustomed to thinking about how the shape of biomolecules, cells, tissues, and

organisms arise from the effects of genetics, development, and the environment. Less often do we

consider that data itself has shape and structure, or that it is possible to measure the shape of data

and analyze it. Here, we review applications of Topological Data Analysis (TDA) to biology in a

way accessible to biologists and applied mathematicians alike. TDA uses principles from algebraic

topology to comprehensively measure shape in datasets. Using a function that relates the similarity

of data points to each other, we can monitor the evolution of topological features –—connected

components, loops, and voids. This evolution, a topological signature, concisely summarizes large,

complex datasets.

This chapter is derived from the review paper

• E.J. Amézquita, M.Y. Quigley, T. Ophelders, E. Munch, D.H. Chitwood (2020). The

shape of things to come: Topological data analysis and biology, frommolecules to organisms.

Developmental Dynamics 249(7): 816–833.

2.1 Topological Data Analysis (TDA): a primer

2.1.1 The Vietoris-Rips Complex

Topology is the branch of mathematics concerned with mathematical properties that are pre-

served under continuous transformations. With some mathematical framework, described below,

topology offers powerful tools that can precisely describe the overall shape and structure of the data

encoded by a given network. Informally, we can think the topology of a network as the collection
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Figure 2.1: An example of a simplicial complex. It has two connected components, one loop, and
one void.

of its features that remain unchanged whenever the data “varies smoothly”. For example, scaling,

centering, translation, and rotation are all smooth operations that do not alter the topology (i.e., the

core shape) of our data. However, partitioning, merging, and attaching are not smooth operations

and may significantly alter topology.

In a mathematical context, networks are referred to as graphs. Nodes or points are referred to

as vertices, while links between nodes as edges. We can generalize the idea of graphs by adding

triangles that link edges or even tetrahedrons that link triangles. More formally, we can think of

our data as composed of different building blocks, called simplices. Vertices, edges and triangles

are 0-, 1- and 2-dimensional simplices, respectively. A collection of multiple simplices makes a

simplicial complex, or complex, for short. For example, in Figure 2.1 we have a complex made of

vertices, edges, and triangles.

We can describe the topology of a complex based on the number of its connected components,

loops, and voids. For example, in Figure 2.1 we can see two distinct, separate pieces, each of them

being a connected component. We see that five edges in the left component form the frame of a

pentagon. We say then that these five edges form a loop. Also on the left, we see a collection of

four triangular faces that form a tetrahedron. We can assume that this tetrahedron is hollow, so that

the complex contains a void.

Many times, our data or network cannot be thought immediately as a complex. However, we

can generate a complex based on a collection of data points and a notion of similarity or distance

between these points. Formally, a collection of individual points and positive distances between

every pair of points is referred to as a metric space. The Vietoris-Rips (VR) complex is a versatile

method to define a complex from a network. The VR complex starts with data in a metric space and

a fixed nonnegative parameter r , often referred to as the radius. If two vertices are close enough,
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that is, the distance between them is less than r , then the VR complex will have an edge between

those two vertices. Similarly, if there are three vertices close enough, that is, the distance between

every pair of them is less than r , then the VR complex will have a triangle between those three

vertices. Following these two rules, every time we have a triangle, we also have the three edges

that make the frame or border of such triangle. Conversely, every time a trio of vertices form a

triangular frame, the VR complex will also contain the corresponding triangle.

2.1.1.1 Walking through an example

Notice that the same data and metric can produce different VR complexes by using a different

parameter r each time. We can consider a sequence of increasing radii and its corresponding

sequence of VR complexes. First observe that the distance between any two different data points is

always a positive quantity. If we start with r = 0, then the corresponding VR complex will consist

solely of separate vertices, one for each data point. As the radius r increases, the corresponding

VR complex will now have edges that link the pairs of vertices that are close to each other. If r

keeps increasing, we may then have triangles that link trios of close vertices.

For example, consider the five data points in Figure 2.2.A, which we can take as vertices of a

complex. The distance between the points will be simply the Euclidean distance. Consider seven

different positive radii. For the first three radii, the shape remains the same: just five separate

components. Suddenly, as soon as we increase the radius a fourth time, four pairs of vertices are

finally close to each other so we draw edges between them to form a square. There is also a fifth

vertex that remains isolated, as it is still distant from the rest. When the radius increases a fifth time,

the isolated vertex is finally close enough to one of the square vertices. We draw one more edge

at this point. The radius increases a sixth time, so that the pair of diagonal vertices in the square

are close enough. We then draw the diagonals of the square, which also draws the four possible

triangles in the square. The radius finally increases a seventh time, so that the fifth vertex is closer

to another vertex in the square. We then add an edge and a triangle including this fifth vertex. As

the radius keeps increasing beyond this, the overall shape of the VR complex will not have any

significant changes: it will always remain a single component with no holes.

9



V1V2

V3 V4

V7V7
V1V2

V3 V4

r0

V1V2

V3 V4

V7V7
V1V2

V3 V4 r1
2

V1V2

V3 V4

V7V7
V1V2

V3 V4 r2
2

V1V2

V3 V4

V7V7
V1V2

V3 V4 r3
2

V1V2

V3 V4

V7V7
V1V2

V3 V4 r4
2

V1V2

V3 V4

V7V7
V1V2

V3 V4 r5
2

V1V2

V3 V4

V7V7
V1V2

V3 V4 r6
2

V1V2

V3 V4

V7V7
V1V2

V3 V4 r7
2

r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7
ho

le
s

co
nn

ec
te

d
co

m
po

ne
nt

s
radius

ho
le

s
co

nn
ec

te
d

co
m

po
ne

nt
s

ho
le

s
co

nn
ec

te
d

co
m

po
ne

nt
s

A B

C

D

V1V2

V3 V4

V7V7

V1V2

V3 V4

r0

V1V2

V3 V4

V7V7

V1V2

V3 V4 r1
2

V1V2

V3 V4

V7V7

V1V2

V3 V4 r2
2

V1V2

V3 V4

V7V7

V1V2

V3 V4 r3
2

V1V2

V3 V4

V7V7

V1V2

V3 V4 r4
2

V1V2

V3 V4

V7V7

V1V2

V3 V4 r5
2

V1V2

V3 V4

V7V7

V1V2

V3 V4 r6
2

V1V2

V3 V4

V7V7

V1V2

V3 V4 r7
2

r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7r1 r2 r3 r4 r5 r6 r7

ho
le

s
co

nn
ec

te
d

co
m

po
ne

nt
s

radius

ho
le

s
co

nn
ec

te
d

co
m

po
ne

nt
s

ho
le

s
co

nn
ec

te
d

co
m

po
ne

nt
s

E F

G

H

Figure 2.2: An example of two different Vietoris-Rips complexes with resulting persistence bar-
codes. (A) Evolution of a VR complex with 7 vertices as Euclidean distance increases. (B)
Persistence barcode corresponding to topological changes in the previous VR complex. (C) Alter-
native visualization of the persistence barcode B as a dendrogram. (D) Alternative visualization of
the persistence barcode B as a tree. (E) Moving one vertex in A yields a different VR complex as
Euclidean distance increases. (F) Persistence barcode corresponding to topological changes in the
previous complex E. (G) Alternative visualization of the persistence barcode F as a dendrogram.
(H) Alternative visualization of the persistence barcode F as a tree.
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2.1.2 Representing persistent features

All the observations described above can be summarized using two topological features: con-

nected components and holes. For connected components we need to keep track of which snapshot

each connected component appeared (was born) and in which snapshot two separate components

merged (died). Similarly, we can keep track of when each hole is formed (born), and when it is

filled (dies). These life spans of topological birth and death can be drawn as life bars, the length of

which indicates for how long a component persisted before it merged or how long a hole persisted

before being filled. Putting all the bars together, we obtain a persistence barcode, in which each bar

corresponds to a topological feature and the horizontal axis indicates at which radius value these

features are born and die. Note that the vertical order of these life bars is irrelevant.

For the persistence barcode in Figure 2.2.B, we observe that we start with five different vertices,

all of which remain separate (the components persist) until the fourth radius. By the fourth radius,

we only have two connected components: one square and one distant vertex. We also observe

the birth of the hole in the square (indicated in blue). By the fifth radius, the distant vertex has

merged with the square so we have only one connected component. By the sixth radius, we observe

that the square hole has been filled with triangles. From this point onwards, as radius keeps

increasing, our VR complex will be essentially a single connected component with no holes. We

say then this components dies at infinity and it is represented by the continuing red arrow. We can

alternatively display the persistence of components and holes as a dendrogram (Figure 2.2.C) or

a tree (Figure 2.2.D), keeping track of which components merge. A particularly useful display of

persistence barcodes are persistence diagrams, as illustrated in Figure 2.3. Simply, the birth start

point and death end point of a bar in a persistence barcode are transformed as (x, y) coordinates in

a death-vs-birth plane in a persistence diagram. Persistence diagrams have a convenient visual and

mathematical representation which has allowed further theoretical developments in TDA.

Barcodes are a useful way to illustrate and summarize prominent topological features, such as

the distant fifth vertex or the hole enclosed by a square. Consider now “obstructing” this hole by

moving the distant fifth vertex inside the square, as in Figure 2.2.E. We observe in Figures 2.2.F–H
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Figure 2.3: Translating a persistence barcode into a persistence diagram. Birth and death times in
the persistence barcode are interpreted as (x, y) coordinates on a death-vs-birth plane. This planar
display is referred to as a persistence diagram.

a different persistence barcode, dendrogram, and tree, respectively. The barcode now shows that all

five vertices merge into a single connected component at earlier stages compared to Figure 2.2.A.

Also notice that we have now filled the square’s hole, so that the barcode in Figure 2.2.F registers

no holes, unlike Figure 2.2.B.

2.1.3 Filters: Beyond spatial distances

Asmentioned before, the Vietoris-Rips complex is constructed from a set of vertices and a sense

of distance or similarity between these. Usually we refer to such a measure of similarity as a filter

function. This function can determine when the vertices and their edges in between are observed.

For example, in 2.2.A and 2.2.E, our filter function was the Euclidean distance between vertices.

Given a filter function, we can consider a series of snapshots, where in each snapshot, we consider

larger and larger filter values, called thresholds. Going back to 2.2.A and 2.2.E, each snapshot

considers increasing radius lengths around each vertex. In this case, we say that our collection of

data points have been filtered by Euclidean distance with six thresholds. Notice that if we increase
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Figure 2.4: An example of a persistence barcode. (A) Snapshots of an X-ray CT image of an
orange. Only the pixels with intensity lower than indicated are displayed. (B) Persistence barcode
of connected components of such image. Observe that the barcode distinguishes the existence of
exocarp, rind, and pith as separate components at lower intensities.

the number of thresholds, we may be able to capture finer topological changes which may in turn

produce richer persistence barcodes.

Filter functions are extremely flexible and we can use more than a spatial distance. For example,

consider a grayscale image. We will consider each pixel a separate vertex and use an intensity filter,

resulting in the distance between two pixels simply being the difference of their intensities. We

then consider each possible intensity value as a threshold. Figure 2.4 shows the persistence barcode

of connected components from an X-ray Computed Tomography (CT) scan of an orange where we

consider more than 50,000 threshold values (Figure 2.4.A). In each snapshot, we only display the

voxels (vertices) whose intensity value is less than the value of the threshold. At 30,000, we only

observe the contour of the exocarp with some separate bits of rind. At 35,000, more bits (connected

components) of rind appear, and some of these rind bits merge into each other. Additionally, we

observe the appearance of the pith. By 40,000, we have 3 clear separate connected components,

namely exocarp, rind and pith. By 45,000, the rind and the exocarp have merged while numerous

bits of endocarp have appeared. By 50,000, the appearance of the endocarp has merged the pith to

the exocarp, yielding a single connected orange.
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2.2 Applied topology: examples from structural biology, evolution, cellular architecture,
and brain networks

The Vietoris-Rips complex framework introduced above, filtering on the Euclidean distance

between data points, can be used to study a wide range of complex phenomena in biology. A metric

space might be the 3D coordinates of amino acids in a protein, could represent species or virus

variants separated from each other by genetic distance, or might be defined by the nuclei of cells

in a cross-section of tissue. Below, we provide examples where the Vietoris-Rips complex has

successfully been applied to structural biology, evolution, and cellular architecture (Figure 2.5).

2.2.1 Structural biology

This prototypical example of TDA —a metric space consisting of points where the filter is

Euclidean distance—can be extended to biomolecules, where the points are atoms or residues

(Figure 2.5.A). Proteins are comprised of a linear polymer of amino acids. The primary structure

of a protein is the sequence of amino acids. The polypeptide chain of a protein folds upon itself,

stabilized by interactions between amino acids, first forming a secondary structure (local structures

such as alpha helices and beta sheets formed by hydrogen bonds in the peptide backbone) followed

by the tertiary structure. The overall 3D structure of a protein is determined by the interactions of

amino acid side chains within the protein. This overall structure, or conformation, of a protein is

the basis of protein function: metabolism, transport, signaling, structure, and movement, among

many others. The conformation of a protein can change depending upon binding ligands, signaling,

or the chemical environment.

Kovacev-Nikolic et al. (2016) use TDA to distinguish the open and closed conformations of

maltose-binding protein (MBP). Each of the 370 amino acids of MBP is treated as a vertex,

its 3D coordinates reflecting the spatial location of the residue. Euclidean distance is used to

create a filtered Vietoris-Rips complex for each protein studied. As the Vietoris-Rips complex

evolves, persistence barcodes record the birth and death of connected components, loops, and

voids, which within the context of the tortuous folding of a protein backbone, yield complex

topological signatures unique to distinct conformations. These persistence barcodes are transformed
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Figure 2.5: Applications of Topological Data Analysis (TDA) to biology, from protein structure, to
individual cell patterns, and phylogenetic tree analyses.
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Figure 2.5 (cont’d): a
Applications of Topological Data Analysis (TDA) to biology. (A) Structural biology. A diagram
of RNA secondary structure (left; solid lines covalent bonds, dashed lines hydrogen bonds).
Increasing radii of vertices (middle, right; blue points) is used to visualize filtration on Euclidean
distance. As radii merge, connected components die. Purple lines indicate the formation of loops
that eventually fill in as the radius threshold increases. (B) Evolution. A plot showing the genetic
distance of samples (left). As radius threshold value increases (middle, right) the birth and death
of connected components (blue) represents vertical evolution (a tree) while that of loops (purple)
horizontal evolution events (such as hybridization, gene transfer, or recombination; modified from
Chan et al. (2013)). (C) Cellular architecture. Modification of a part of the original Gleason guide
to prostate cancer changes in cellular architecture (left). Nuclei (blue) increase in radius (middle,
right) and connected components (blue) and loops (purple) are born and die. (D) Branching
architecture. A theoretical tree where the filter is geodesic distance to the base (blue). Branching
tips are separate connected components that merge as the filter progresses to the base of the tree
(left to right). (E) Mapper. Point cloud of a hand where the filter is the axes from the wrist to
fingertips (left). Cover intervals (bars on top of color scale) and their overlap (gray bars) divide
points into bins (middle). Points that cluster together over each cluster are assigned to a vertex, and
if the points are shared between clusters in an overlap, then they are assigned to an edge connecting
the corresponding vertices (modified Lum et al. (2013)).

into persistence landscapes (Bubenik, 2015) that allow statistics, hypothesis testing, and machine

learning to be applied to differentiate the shapes captured by topological signatures. The authors

successfully differentiate open- and closed-conformation states of MBP. They also note that the

active site residues (the amino acids responsible for ligand binding) lie at the edge of the most

persistent loop of the Vietoris-Rips complex, indicating that TDA is sensitive to the relationship

between structure and function. Beyond structure, electrostatic and other chemical properties of

atoms can be incorporated into topological signatures that, when analyzed using machine learning

methods, can predict protein-ligand binding affinities (Cang et al., 2018; Cang and Wei, 2018).

2.2.2 Evolution

Evolution is typically depicted as a tree, which in mathematical terms is an acyclic graph (a

graph with no loops). Each node and its descendant branches represent a common ancestor of a

taxonomic group and its members as a hierarchy of similarity or relatedness. Evolutionary trees

depict vertical evolution, random mutations that accumulate within a specific lineage that lead

to phenotypic changes. But genetic material can be exchanged between lineages as well. This
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process, known as horizontal evolution, is depicted as a reticulate graph (with loops), in which

genetic information is exchanged by recombination, hybridization, horizontal gene transfer, or viral

reassortment. Extensive phylogenetic theory models vertical evolutionary processes using trees,

but the study of horizontal evolution is often limited to detecting reticulate phylogenetic events,

and a theory unifying vertical and horizontal evolution had remained elusive.

Chan et al. (2013) reconsider evolution from the perspective of topology. Using influenza as

an example, they begin by considering that every sample has a genetic distance to every other,

a metric space. From this genetic space, they construct a Vietoris-Rips complex, just as in the

previous examples (Figure 2.5.B). The resulting persistence barcode for connected components can

be converted into a dendrogram, which is the phylogenetic tree that biologists are accustomed to.

Influenza viruses extensively exchange genetic material in a process known as reassortment. If

the persistence barcode highlights loops, then this represents a topological signature of horizontal

evolution. For example, a lower bound of recombination rate can be calculated from the number

of loops (recombination or reassortment events) for a given time frame (in this example, the filter

of genetic distance which can be calibrated to time). In higher dimensional spaces, voids can

be detected, and the authors show that persistence barcodes for voids detect more complicated

reassortment events, such as the triple reassortment that gave rise to the 2013 avian influenza

outbreak and complex reassortment eventswithinHIV.Using loops as an estimator of recombination

rate has been extended to large-scale genomic analysis of human biology (Cámara, 2017; Cámara

et al., 2016), expanded upon by evaluating different topological features (Humphreys et al., 2019),

applied to coalescent theory to estimate ancestral recombination events (Emmett et al., 2014), and

used to study lateral gene transfer of protein families and its implications for the evolution of

antibiotic resistance (Emmett and Rabadán, 2014).

2.2.3 Cellular architecture

Tissues are comprised of cells, the organization of which is determined by cell division, dif-

ferentiation, growth, movement, migration, and death. Within a tissue each cell takes up a finite

volume, often in close contact with neighbors. When a tissue is finely cross-sectioned and micro-
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scopically examined, a tessellated array of cells emerges: an aggregated mixture of parenchyma,

stroma, and glands (Figure 2.5.C). Staining can differentiate nuclei, cytoplasm, and extracellular

matrix. To a trained eye, these complex patterns can indicate disease or abnormalities, but the

process takes time and is subjective. The emergent organization of cells reflects developmental

processes as well. TDA provides an objective way to classify these patterns, potentially removing

the subjectivity of histopathological diagnosis enabling a rigorous way to define cellular anatomy.

Lawson et al. (2019) explore the cellular architecture of prostate cancer. The Gleason grading

system is a one to five scale that is a powerful prognostic indicator based on increasingly neoplastic

tissue organization of the prostate: a uniform cellular architecture becomes disrupted forming glands

that eventually form solid cell types. Tissue sections are stained with blue-purple hematoxylin and

pink eosin which indicate nuclei and cytoplasm/extracellular matrix, respectively. The authors

use these stains to isolate cell nuclei from surrounding structures (Figure 2.5.C). They then use

thresholding as a filter on histological images of prostate cancer to create binary images, where

connected components and loops are recorded as persistence barcodes. Creating vectors of the

most persistent features, they use a variety of statistical techniques including Principal Component

Analysis (PCA), hierarchical clustering, and t-distributed Stochastic Neighbor Embedding (t-SNE)

to successfully classify images according to the Gleason grading system (Lawson et al., 2019). The

strategy of reducing cells to data points of a Vietoris-Rip complex to classify cellular architecture

works for predicting epithelial organization from cell centroids (Atienza et al., 2019) and in other

cancers as well (Chung et al., 2018; Singh et al., 2014).

2.2.4 Brain networks

The complex architecture of neurons and their numerous connections in the brain, formally

referred to as the connectome, is of particular interest. The brain architecture, its activity and

connectivity, is usually presented as square pair-wise correlation matrix each row (and column)

represents different neurons or encoding brain regions when the subject is performing a fixed task.

Usually negative correlations are treated as zero, and the rest of matrix entries are thresholded so

that only neurons or regions with strong connectivity are considered. We can then consider a metric
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space where the points are different neurons, anatomical regions of interest, or imaging voxels. The

distance between these points is given by the correlation between them (or 1 minus correlation to

be mathematically consistent). With this setup, it is possible to produce Vietoris-Rips complexes

and persistence diagrams that summarize the brain network model.

Observing the change in number of connected components, we can differentiate the abnormal

glucose metabolism associated to neuronal activity between attention-deficit hyperactivity disorder

(ADHD) children, autism spectrum disorder (ASD) children, and pediatric control subjects (Lee

et al., 2012). By keeping track of persistent loops, we can distinguish the effects of psilocybin

in the human brain functional patterns (Petri et al., 2014). Persistent loops also highlight that

mental imagery shares the same neurophysiological bases with perceptual and motor experience

(Ibáñez-Marcelo et al., 2019). TDA has also revealed previously ignored anatomical loops and

voids in the connectome, which might explain both spatial and nonspatial behaviors both in mice

(Giusti et al., 2015) and humans (Sizemore et al., 2018).

2.3 Shape, texture, and the Euler characteristic curve

The examples above rely on point-based representations of biological data to which a filtered

Vietoris-Rips complex on Euclidean (or genetic) distance produces zero-dimensional (connected

components) and one-dimensional (loops) persistence barcodes. The persistence of the barcodes,

representing prominent topological features, is the focus of analysis. However, the concept of filter

can be extended to any real values that can be associated with structures: for instance, different

choices of metric space between data points, or even using filter functions based on the data points

instead of the edges between the data points. For the same data, a number of filters might be

applied, yielding a new lens to reveal different facets of shape. Persistence barcodes can always be

calculated, but there are other ways to record topological signatures as well.

Below, we first describe the Euler characteristic curve (ECC) as a convenient complement to

persistence barcodes to capture topological signatures that can be used with traditional statistical

methods. We then describe TDA frameworks to measure shape (in the traditional sense of a closed

contour) focusing on leaf outlines and the usefulness of ECCs tomeasure genetic and environmental
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effects that determine phenotype.

2.3.1 Euler characteristic curve (ECC)

The Euler characteristic, often denoted by the Greek letter χ, was originally defined by the

equation:

χ = #(Vertices) − #(Edges) + #(Faces).

The Euler characteristic is the first example of a topological invariant; that is, a quantity that can

be calculated and returns the same value on many different representations of the same topological

shape. For convex polyhedra (e.g., the Platonic solids), the Euler characteristic always equals two

since all platonic solids are topologically spheres. For example, a tetrahedron has four vertices,

six edges, and four faces (4 − 6 + 4 = 2); a cube has eight vertices, 12 edges, and six faces

(8 − 12 + 6 = 2).

What is evenmore surprising is that this quantity can also be obtained by counting some intrinsic

properties of a given shape. The Euler-Poincaré formula establishes that the formula above is the

same as:

χ = #(Connected Components) − #(Loops) + #(Voids).

Since all convex polyhedra have one connected component and one void, the Euler characteristic

is indeed 1 − 0 + 1 = 2. On the other hand, a doughnut, mathematically known as a solid torus,

has one connected component, one loop, and no voids so its Euler characteristic is 1 − 1 + 0 = 0.

By keeping track of the number of building blocks of our simplicial complex, we can indirectly

summarize its topological features.

Similar to persistence barcodes, given a data set, for each sample we define vertices, a filter

function, and a number of thresholds. For example, consider a 3D (voxel-based) image of a barley

seed (Figure 2.6.A). Each voxel is a vertex in our simplicial complex. One type of filter we can

apply is the 3D axes of the coordinate system, which is oriented with respect to the depth, width, and

height of the seed. For each of these filters, the voxels take the real number value of their coordinate

for the particular axis. We then choose a number of thresholds, or equivalently, we choose how

many times to “slice” through the seed along the given axis. Each time we take a slice, we compute
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Figure 2.6: Three different Euler Characteristic Curves (ECCs) from three different filters. (A)
X-ray CT scan of a barley seed. The symmetry of the seed encourages a filter by depth, width and
height values, i.e., the three main axis directions with respect to the seed scan. Slicing the barley
seed in different directions produce (B) different corresponding ECCs. Notice that the three curves
end with Euler characteristic equal to 1, which corresponds to the Euler characteristic of a solid
sphere.

the Euler characteristic of the seed. We continue to add slices one-by-one and recalculate the Euler

characteristic each time as we continue through the axis, which is the filter function. Adding all the

slices together yields the original seed. Finally, we summarize our computation as an ECC (Figure

2.6.B), where the x-axis is the threshold while the y-axis is the Euler characteristic of the complex

at that particular threshold value.

Persistence barcodes tend to be notoriously expensive and difficult to compute since they must

keep track of all the possible component merges and hole fillings for every threshold value (Otter et

al., 2017). Most of the available software to compute persistence barcodes is incapable of handling

truly large data sets effectively, especially when each sample consists of millions of vertices. (That

being said, there have been recent breakthroughs to efficiently compute persistent diagrams. Ripser

is very a promising software capable of handle more and more data with each new release (Bauer,

2021)). Euler characteristic curves are a convenient way to summarize a topological signature of an

object as a sequence of numbers, a curve, or numerical vector. Computing and storing these vectors

is quite efficient, and it is especially convenient since it allows us to perform standard statistical

analysis techniques and test hypotheses about the shape of our data. This simplicity makes it ideal

to process objects that may have more than a billion vertices (Heiss and Wagner, 2017; Wang et al.,
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2022).

2.3.2 Shapes and textures

Sometimes leaves have corresponding coordinates, as in the case of grapevine where every

leaf has five major veins and numerous landmark features (Chitwood and Sinha, 2016). In these

instances, geometric morphometrics is a powerful tool. Besides the base of the petiole and tip,

though, most leaves do not have coordinates that correspond in a way that analysis by geometric

morphometrics is possible. In order to compare the outlines of 182,707 leaves from 141 plant

families and 75 sites throughout the world, Li et al. (2018) used TDA. The pixel outline of each leaf

is treated as a point cloud. The filter applied to each pixel is a Gaussian density estimator, sensitive

to the number of neighboring pixels around each pixel. Straighter edges of the leaf blade will have

low density values while pixels in serrations, lobes, or other undulations will have higher values.

The number of connected components is monitored and the respective ECCs are computed.

For so many leaves, an ECC curve serves as a succinct, computationally feasible topological

signature that allows downstream statistical analyses. These signatures can define the morphospace

for all leaves, which reveals not only the leaf shapes that exist, but those that do not, either because

of developmental constraint or negative selection. This morphospace can be used then to predict

plant family and location (Li et al., 2018). Others have used the same filter and ECCs to determine

the genetic basis of leaf shape in apple (Migicovsky et al., 2018) and tomato (Li et al., 2018) as well

as the genetic basis of cranberry shape (Diaz-Gárcia et al., 2018). ECCs are sensitive enough to

complex and subtle changes in shape to measure the effects of rootstock and climate on grapevine

leaf shape (Migicovsky et al., 2019). ECCs have also been used to measure the hairiness and shape

of spikelets (arrangements of grass flowers) (McAllister et al., 2019), patterns of vegetation from

satellite imagery (Mander et al., 2017), and flow cytometry features (Smith and Zavala, 2021).

Moreover, by considering all the ECCs corresponding to all directional filters, we can successfully

encode important morphological information of barley seeds (Amézquita et al., 2021) and protein

structure (Tang et al., 2022).
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2.4 Branching architectures and bottleneck distances

2.4.1 Persistence diagrams

The Euler characteristic allows us to monitor a topological summary as a function of the filter

we choose. The resulting curve enables statistical analyses. In some cases, we might not want

a summary, though; we may want to keep track of each topological feature separately, as we do

in a barcode. The bottleneck distance is a convenient way to determine the overall topological

similarity of two barcodes with each other. If we compute the bottleneck distance of all barcodes to

all other barcodes, we can determine the overall topological similarity of samples to each other, in

which case statistical analyses can be performed. To understand the meaning of bottleneck distance,

we need a better display of topological information than persistence barcodes. We thus turn to

persistence diagrams.

As mentioned previously, each topological feature in the barcode has a birth and death time.

Instead of representing a topological feature with a life bar as in persistence barcodes, we can simply

represent it with a point in a plane; the x-coordinate of this point is the birth time of the topological

feature, while the y-coordinate is its death time. All of our topological information is then displayed

in a death-vs-birth plane, referred to as a persistence diagram. Certainly a topological feature cannot

die before it is born, so all our points will lie above the diagonal line. We also agree that the top of

the plane will represent infinite time, for those features that persist until infinity.

Consider a very simple persistence barcode as shown in Figure 2.3. The birth and death times

of each life bar are read as (x, y) coordinates on the plane below. Observe that the barcode presents

a component that persists until infinity. Thus, we define an “infinite death time” at the top of our

diagram below

2.4.2 Bottleneck distance

For ease of exposition, we will describe the bottleneck distance in terms of the persistence

diagrams rather than the persistence barcodes as they are equivalent. Intuitively, the bottleneck

distance between two diagrams measures how much change the first sample must undergo so that

its resulting persistence diagram matches the diagram of the second sample. More formally, think
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Figure 2.7: Computing the bottleneck distance between two persistence diagrams. (A) A possible
pairing of points is suggested. Observe that it produces a large maximum distance between pairs.
(B) An alternate pairing that yields a considerably smaller maximum distance between pairs.

of bottleneck distance as follows: we overlap the persistence diagrams of two samples, so both

diagrams are actually on the same plane. Next, we are tasked to pair topological features between

the diagrams. Every point from the first diagram must be either paired to an unmatched point from

the second diagram, or matched with the diagonal. Given a pairing, we define its score as the

maximum distance between pairs. The bottleneck distance is then defined as the minimum score

when considering all possible pairings.

For example, consider the two different persistence diagrams drawn on top of each other in

Figure 2.7, the first one being represented with red circles while the second with blue triangles.

In Figure 2.7.A we pair each triangle with another circle, taking care to match the infinite triangle

with the infinite circle. Observe that one circle is matched to the diagonal. The score of this pairing

is the length of the longest green, dashed line. A different pairing is considered in Figure 2.7.B,

which in turn produces a considerably smaller score as the green lines are all considerably shorter.

After considering all possible pairings between diagrams, we realize that Figure 2.7.B is optimal

in the sense that it produces the smallest score. The bottleneck distance between these barcodes is

then this minimum score.
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2.4.3 Branching architectures

Branching architecture is one example where bottleneck distance is useful. Traditional mor-

phometric approaches fail to measure branching, despite it being a common architectural motif

throughout life (Li et al., 2017). Li et al. (2019) measure the branching architecture of X-ray Com-

puted Tomography (CT) scans of grapevine rachises, the branching stem structure that remains after

removing the berries from the cluster. The filter they choose is geodesic distance of each voxel to

the rachis base (Figure 2.5.D). The geodesic distance is the shortest distance between two vertices

on a surface, in this case, the grapevine rachis itself. Starting with those voxels with the furthest

geodesic distance from the base and filtering towards those closest, if zero-dimensional features

are monitored, connected components at the tip of the branching structure are first born and then

die as they merge at their parent node. Connected components continue to arise at branch tips and

die at parent nodes in a hierarchical fashion. Each topological feature corresponds to a bar, and the

record of merging can create a dendrogram that recapitulates the branching. There are a number

of filters sensitive to branching that have been used in both plants and other organisms (Belchi et

al., 2018; Bendich et al., 2010; Bendich et al., 2016; Kanari et al., 2018; Stolz et al., 2022).

Branching is an instance where calculating bottleneck distance might be preferred to Euler

characteristic curves, because the topological features more directly correspond to the feature

of interest (branches). The bottleneck distances of each grapevine rachis to the other create a

metric space from which the rachises hierarchically cluster based on morphology (Li et al., 2019).

Comparingmorphological similarity to evolutionary history, rates of evolution along branches of the

phylogenetic tree can be modeled. The morphological similarity matrix calculated from bottleneck

distances can also be compared to traditional measurements (such as number of branches, median

branch length and width, convex hull) and the ability to classify rachises from different species.

2.5 The structure of data: Mapper and biological networks

2.5.1 Mapper

Topological signatures and TDAoutputs—barcodes, Euler characteristic curves, and bottleneck

distances— measure the shape of data comprehensively but lack a correspondence to the original
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data. This is known as the inverse problem: from data we can calculate a topological signature,

but from a topological signature we cannot reproduce the original data. Biological data is noisy,

and if the shape of the underlying structure in data could be visualized, individual data points that

contribute to the overall shape of data could be isolated and studied in detail. For this reason, we

now turn our attention to the mapper graph, which does provide some information in the reverse

direction. By delimiting an underlying structure to our data and assigning correspondence of data

points to this structure, complex and noisy datasets are simplified in a way similar to data reduction

techniques.

Mapper is a tool from TDA that skeletonizes and summarizes the shape and structure of data as

a graph Singh et al. (2007). The mapper algorithm is comprised of three main steps. 1) We choose

a filter function on the data (Figure 2.8.A), this time associated to vertices rather than edges, and

project all data points onto a line according to their filter function values (Figure 2.8.B). 2) Next,

we split the real line into a fixed number of bins called covers. Each cover is an interval over the

filter and, additionally, there is overlap between the covers. 3) Finally, we cluster the original data

points in each of these bins to form graph vertices. Edges are drawn between nodes in the mapper

graph if two clusters share some data points (Figure 2.8.C).

Imagine a 3D point cloud of data shaped like your hand, where the filter function is the distance

of each data point to your wrist Lum et al. (2013) (Figure 2.5). If we created overlapping intervals,

or covers, along this axis, then points at the fingertips would each form a vertex, and points towards

the base of the fingers would form their own vertices as well. Because there is overlap between

the covers, then vertices along each finger, but not between fingers, would share points, and we

would draw in edges between these groups of points that would recapitulate the structure of fingers.

The most proximal finger vertices would converge with vertices representing the palm, as well as

vertices of the thumb. In the case of a hand, it is easy to see how a mapper graph summarizes and

recapitulates the structure of the actual data. When applied to real world data, such as volumetric

images like an X-ray CT scan, mapper graphs recapitulate shape in intuitive ways Chitwood et al.

(2019).
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Figure 2.8: An example of mapper graphs. (A) X-Ray CT scan of a gall filtered by distance from
the center. (B) These filter values are projected to a real line. The real line is then covered by
a collection of overlapping intervals. For each interval, we then form different clusters of voxels
whose filter value is in such interval. These clusters then yield the vertices and edges of (C) a
mapper graph. Formally, the vertices are connected components within a certain range of radius
from the center and edges correspond to overlap. Size of vertices and edges corresponds to the size
of the component or overlap.

Let us consider a voxel-based X-ray CT scan of a gall, a swollen plant growth induced by an

insect for its own benefit (Figure 2.8.A). Each voxel is a data point that takes on the value of the

filter function, which in this case is its distance from the center of the gall. The Mapper algorithm

clusters the data into vertices based on their filter function value (Figure 2.8.B), and if two vertices

share some voxels between them (based on the cover intervals assigned and the physical location of

the voxels), then they are connected by an edge. Bigger vertices in the mapper graph (Figure 2.8.C)

correspond to a larger number of clustered voxels. Thicker edges correspond to a larger number of

voxels in the bin overlap. The color of the vertices corresponds to the average filter function values

of its voxel members. At the bottom of the graph, we can see a purple cluster corresponding to

the core of the gall. As we move up, we eventually find larger turquoise vertices corresponding to

the outer layers of the gall. Notice the small vertices that stem from these large turquoise vertices

which represent the vasculature of the gall. Finally, as we reach the top of the mapper graph, we

find green and yellow vertices that represent the leaf. From this example, two important features

of mapper can be seen: its ability to serve as a data reduction technique that summarizes structure

and the correspondence of the graph to the original data.
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2.5.2 Biological networks

We have focused on Euclidean distances up until this point. But just like genetic distances can

be used to create metric spaces to study evolution, other distance metrics can be used to create

graphs that can be studied with TDA as well. Nicolau et al. (2011) used mapper to identify breast

cancer subtypes using gene expression microarray data. The filter they use decomposes their data

into separate normal and disease components. The resulting mapper graph reveals three distinct

arms that, upon subsequent analysis, reveal a distinct genetic subtype of tumors. The architecture

of the mapper graph corresponds to disease progression and its vertices to the expression of genes

linked to breast cancer subtypes. By choosing an appropriate filter, the mapper graph reveals a

structure of the data that might have been missed otherwise and is linked to prognosis. A recent

study by Jeitziner et al. (2019) presented a new two-tiered version of the Mapper algorithm, which

is particularly useful for small genomic sample sizes. Topological approaches to RNA-sequencing

(RNA-seq) data have also been applied to study the in vitro differentiation of murine embryonic

stem cells into neurons (Rizvi et al., 2017), specific genomic differences across various lung cancer

patients (Amézquita et al., 2022), and to link gene expression to morphological outcomes across

all flowering plants (Palande et al., 2022). All this suggests the translatability of Mapper-based

topological analysis to many biological contexts.

2.6 A word on statistical caution

Most of the time, our data is subject to different kind of errors and wemust address the statistical

robustness of our topological signals. One foundational result by Cohen-Steiner et al. (2007) is the

stability of persistence diagrams with respect to the bottleneck distance. Intuitively, this stability

result implies that if all our data points wiggle only a little bit (possibly due to noise), then the

resulting points in the persistence diagram will only wiggle a little bit as well. We must be careful

with outliers though, since a single outlier can significantly alter our persistence diagram (Figure

2.2). Nonetheless, there has been a number of ideas to address this lack of robustness with respect

to outliers, such as using a distance to measure (Chazal et al., 2017) or multi-parameter persistence

(Lesnick and Wright, 2015, 2022). Intuitively, since an outlier is distant from every other point, it
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will lie in a low density region, so we then proceed to discard such regions. Alternatives exploit

bootstrap-like ideas, where the original point cloud is resampled and its topological signature

computed numerous times (Reani and Bobrowski, 2022). Intuively, a single, isolated, outlying

point will very rarely appear in resamples, so its distorting effect will be a rare event in the long

run.

It is worth to warn that the space of all possible persistence diagrams is a mathematically

complicated space to work with. For instance, given a collection of persistence diagrams, there

might not be a unique “mean diagram” (Mileyko et al., 2011). The space of persistence diagrams

presents a number of difficulties to define p-values, or confidence intervals, which are crucial in

any statistical analysis. However, there has been a growing number of ideas and research to address

such pitfalls, such as modifying the bottleneck distance to explicitly construct “mean diagrams”

(Munch et al., 2015; Turner et al., 2014), adapting randomized null hypothesis tests (Robinson and

Turner, 2017), or defining a confidence interval line along the diagonal of the diagrams (Fasy et

al., 2014). Other alternatives include transforming diagrams to a simpler and more sound space,

where the usual statistics, parameter estimation and hypothesis testing can be carried out as usual.

This can be done with persistence landscapes (Bubenik, 2015), persistence images (Adams et al.,

2017), or tent functions (Perea et al., 2022; Tymochko et al., 2019) to name a few examples.

Another caution to make is the interpretability of topological signatures. While summaries as

persistence landscapes and ECCs are powerful when combined with machine learning techniques, it

is hard to directly identify phenotypes from them. For instance, it is difficult to deduce seed’s length,

height and width based solely on the ECCs from Figure 2.6. Turner et al. (2014) mathematically

prove that the collection of all ECCs corresponding to all possible directions effectively summarizes

all the morphological information for 3D and 2D shapes. Moreover, with such collection we would

be able to reconstruct the original object. Nonetheless, in practice we cannot consider an infinite

number of directions. A finite bound on the number of necessary directions for general 3D shapes

has been proven (Curry et al., 2022), although the idea of efficiently reconstructing large objects

solely from ECCs remains elusive (Betthauser, 2018; Fasy et al., 2019; Micka, 2020).
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2.7 Conclusion

We have seen how given data, a summary of the topological shape and structure of the space can

be computed. For instance, data could come as a metric space of any distance—whether Euclidean,

geodesic, genetic, functional, or correlative—and we can return a Vietoris-Rips complex and

corresponding persistence barcode, which measure the shape of our data. By monitoring connected

components, loops, or higher dimensional features, the barcode captures shape comprehensively,

by monitoring the evolution of these features as a function of the filter. Such a framework has

been used to measure the shapes of proteins, model evolution, and classify tissue architecture.

The filter that we choose is arbitrary: it is merely a lens through which we can view relationships

between our data points. The ability to choose a filter tailored to the hypothesis at hand is what

confers the versatility of TDA to measure the shape of nearly any dataset, often in multiple ways.

Gaussian density estimators applied to the pixels defining leaf outlines measures shape, allowing

the genetic basis of the plant form to be studied. Geodesic distance captures the branching patterns

of grapevine clusters, permitting the analysis of their evolution and modeling of berry development.

We can analyze and compare the most persistent features in our barcodes, summarize them using

the Euler characteristic, or truly calculate the overall topological similarity between barcodes using

bottleneck distance. Using mapper, we can summarize the structure of data as a graph, and upon

visualizing nodes of interest, identify the data points —whether voxels of an X-ray CT scan or

nodes corresponding to gene expression— for further study and interpretation.

The promise of the application of TDA to biology is still in its infancy. Unlike any other method

in biology, TDA provides a way to measure topological features and shape in a comprehensive

way. The versatility of filter function selection allows TDA to be applied to any number of datasets

across sub-disciplines: structural biology, evolution, molecular biology, medicine, neuroscience,

and developmental biology. The methods described here can be applied to higher dimensional

datasets that are dynamic or evolve over time (Myers et al., 2019; Perea, 2019; Topaz et al., 2015;

Tymochko et al., 2020), easily accommodating biological complexity. Regardless of data size,

complexity, or dimensionality, TDA provides concise summaries of the information content of any
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Figure 2.9: Endless forms most beautiful. X-ray Computed Tomography (CT) scans of biological
specimens showing the diversity of morphology in the natural world. (A) Magnolia bud, (B) bean
flowers, (C) grapevine leaf with phylloxera galls, (D) the fasciated meristem of a velvet flower, (E)
side view of a sunflower disc, (F) bell pepper, (G) treerings, (H) marigold flower, (I) vasculature
within an apple, (J) Haworthia, (K) Echeveria, (L) Agave hybrid, (M) citrus fruit, (N)monkeyflower,
(O) archaeological sunflower disc specimen.

dataset from the perspective of shape and structure. Given the spectacular diversity of form across

biology (Figure 2.9), a method like TDA, that can be customized to measure shape using a tailored

filter function, will allow previously unstudied phenomena to be analyzed from the perspective

of shape. The vision of TDA, that data is shape and shape is data, will be relevant as biology

transitions into a data-driven era where meaningful interpretation of large datasets is a limiting

factor.
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CHAPTER 3

THE SHAPE OF BARLEY

Go and measure for me the barley which is in the storehouse, that

which remains from last year’s barley.” Then he set out for her six

measures of barley. Then the peasant said to his wife, “Behold, there

are twenty measures of barley as food for you and your children.

Now make these six measures of barley into bread and beer for me

as daily rations, that I may live on them.

—from The Tale of the Eloquent Peasant

Anonymous tale from the Egyptian Middle Kingdom

(1991–1786 BC)

There is a discrepancy between the information embedded in biological forms that we can

discern with our senses versus that which we can quantify. Methods to comprehensively quantify

phenotype are not commensurate with the thoroughness and speed with which genomes can be

sequenced. High-throughput phenotyping has enabled us to collect large amounts of phenotyping

data (Andrade-Sanchez et al., 2013; Araus and Cairns, 2014; Tanabata et al., 2012); nonetheless,

we are not maximizing the information extracted from the data we collect.

To extract, compare, and analyze this information embedded in a robust and concise way, we

turn to Topological Data Analysis (TDA), specifically the Euler Characteristic Transform (ECT).

Here we show the use of ECTs to correctly summarize the shape of barley seeds as a proof of

concept. We scanned a collection of barley panicles comprising 28 different accessions with X-ray

CT technology at 127 micron resolution. These scans were later digitally processed to isolate 3121

individual grains, and their morphology was quantified using both traditional and topological shape

descriptors. We then explored both qualitatively and quantitatively the descriptiveness of these

measurements. To aid both assessments, we used KPCA and UMAP separately to aggressively

reduce the dimension of the traditional and ECT vectors. We observe that traditional shape

descriptors tend to cluster seeds based on their accession, while KPCA-reduced topological shape
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descriptors tend to cluster them based on panicles. UMAP-reduced topological descriptors balance

both approaches and draw shape distinctions at both accession and spike level. This in turn shows

that KPCA and UMAP draw from different pieces of ECT information. This observation suggests

that the ECT effectively summarizes both spike-specific and accession-specific morphological

information which can be then highlighted with an appropriate dimension reduction technique.

To quantify the descriptor correctness, we trained a support vector machine (SVM) to determine

the accession of individual grains based on their shape alone. Our experiments show that SVMs

perform better whenever topological information is taken into account, which suggests that the

ECT measures shape that is “hidden” from traditional shape descriptors.

This chapter is derived from the original research paper

• E.J. Amézquita, M.Y. Quigley, T. Ophelders, J.B. Landis, D. Koenig, E. Munch,

D.H. Chitwood (2021). Measuring hidden phenotype: Quantifying the shape of barley

seeds using the Euler Characteristic Transform. in Silico Plants 4(1): diab033.

3.1 Introduction

Topological Data Analysis (TDA) is a set of tools that arise from the perspective that all data

has shape and that shape is data (Amézquita et al., 2020; Lum et al., 2013; Munch, 2017). TDA

treats the data as if made of elementary building blocks: points, edges, squares, and cubes, referred

to as 0-, 1-, 2-, and 3-dimensional cells respectively (Figure 3.1.A). A collection of cells is referred

to as a cubical complex, or complex, for short.

Cubical complexes are both a natural and consistent way to represent image data (Kovalevsky,

1989). Given a grayscale image, we follow a strategy similar to Wagner et al. (2012) to construct

a cubical complex: a nonzero pixel will correspond to a vertex in our complex. If two pixels are

adjacent —in the 4-neighborhood sense— we say that there is an edge between the corresponding

vertices in the complex. If 4 pixels in the image form a 2 × 2 square, we will consider a square in

our complex between the corresponding 4 vertices (Figure3.1.A). Additionally, for the 3D image

case, if 8 voxels —the 3D equivalent of pixels— make a 2× 2× 2 cube, we will draw a cube in our
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complex between the corresponding 8 vertices.

TDA seeks to describe the shape of our data based on the number of relevant topological features

found in the corresponding complex. For instance, the complex in Figure 3.1.A has two distinct,

separate pieces colored in blue and red respectively, formally referred to as connected components.

This complex also has 8 edges forming the outline of a square without an actual red block filling

it —edges thickened for emphasis— this is referred to as a loop. In higher dimensions, we could

also consider hollow blocks containing voids. We can even go a step further and summarize these

topological features with a single value known as the Euler characteristic, represented by the Greek

letter χ, defined for voxel-based images as

χ = #(connected components) − #(loops) + #(voids).

TheEuler characteristic is a topological invariant; that is, it will remain unchanged under any smooth

transformation applied to our shape. The well-known but surprising Euler-Poincaré formula states

that χ can be computed easily as

χ = #(Vertices) − #(Edges) + #(Faces) − #(Cubes).

This equivalence can be seen in the cubical complex in Figure 3.1.A, where

χ = 20 vertices − 22 edges + 3 faces

= 2 connected components − 1 loop + 0 voids = 1.

The Euler characteristic by itself might be too simple. Nonetheless, we can extract more

information out of our data-based complex if we think of it as a dynamic object that grows

in number of vertices, edges, and faces across time. As our complex grows, we may observe

significant changes in χ. The changes in χ can be thought as a topological signature of the shape,

referred to as an Euler characteristic curve (ECC). The growth of the complex is defined by a filter

functionwhich assigns a real number value to each voxel. For reasons discussed later, we will focus

on directional filters which assign to each voxel its height as if measured from a fixed direction.
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Figure 3.1: Extracting topological shape signatures from barley seeds. (A) A binary image (left)
is treated as a cubical complex (right). This cubical complex has 2 connected components, 1 loop,
0 voids. The distinct connected components are colored in blue and red respectively. The loop is
emphasized with thicker edges. (B) The barley seeds were aligned so that their proximal-distal,
medial-lateral, and adaxial-abaxial axes corresponds to the X,Y, Z-axes in space. (C) Example of
an Euler Characteristic Curve (ECC) as we filter the barley seed across the adaxial-abaxial axis
(depicted as a solid, green line) through 32 equispaced thresholds. (D) The Euler Characteristic
Transform (ECT) consists of concatenating all the ECCs corresponding to all possible directions.
In this example, we concatenate 3 ECCs corresponding to the X,Y, Z directions, represented by the
solid lines respectively.
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As an example, consider the cubical complex of a barley seed and the direction corresponding

to the adaxial-abaxial axis (Figure 3.1.B). Voxels at the top of the seed will be assigned the lowest

values, while voxels at the bottom will obtain the highest values. We then consider 32 equispaced,

increasing thresholds t1 < t2 < . . . < t32 which define 32 different slices of equal thickness along

the adaxial-abaxial axis. We start by computing the Euler characteristic of the first slice, that is,

all the voxels with filter value less than t1. Next we aggregate the second slice, which are all

the voxels with filter value less than t2, and recompute the Euler characteristic. We repeat the

procedure for the 32 slices. For instance in Figure 3.1.C, we observe that we started with scattered

voxels which are thought of as many connected components which may explain the high Euler

characteristic values. As we keep adding slices, we connect most of the stray voxels into fewer but

larger connected components, and simultaneously, we might have created loops as seen in t4 and

t6. This merging of connected components, and formation and closing of loops might explain the

fluctuation of the Euler characteristic between positive and negative values. Finally, after more than

half of the slices have been considered, at t14, we observe that no new loops are formed, and every

new voxel will simply be part of the single connected component. Thus, the Euler characteristic

remains constant at 1. The ECC is precisely the sequence of different Euler characteristic values

as we add systematically individual slices along the chosen direction.

To get a better sense of how the Euler characteristic changes overall, we can compute several

ECCs corresponding to different directional filters. For example, in Figure 3.1.D we choose three

directions in total corresponding to the proximal-distal, medial-lateral, and adaxial-abaxial axes

respectively. Each filter produces an individual ECC, which we later concatenate into a unique

large signal known as the Euler Characteristic Transform (ECT).

There are two important reasons to use ECT over other TDA techniques. First, the ECT is

computationally inexpensive, since it is based on successive computations of the Euler character-

istic, which is simply an alternating sum of counts of cells. This inexpensiveness is especially

relevant as we are dealing with thousands of extremely high-resolution 3D images. Assuming that

we have already treated the image as a cubical complex, we can compute a single ECC in linear
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time with respect to the number of voxels in the image (Richardson and Werman, 2014). We can

thus compute the ECT of a 50,000-voxel seed scan with 150 directions in less than two seconds

on a traditional PC. The second reason to use the ECT is its provable invertibility and statistical

sufficiency. As first proved by Turner et al. (2014), and later extended separately by Curry et

al. (2022) and Ghrist et al. (2018), if we compute all possible directional filters we would have

sufficient information to reconstruct the original shape. Moreover, this ECT is a sufficient statistic

that effectively summarizes all information regarding shape. Although there are infinite possible

directional filters, there is ongoing research into defining a sufficient finite number of directions

such that we can effectively reconstruct shapes based solely on their finite ECT (Belton et al., 2020;

Betthauser, 2018; Curry et al., 2022; Fasy et al., 2019). Nonetheless, a computationally efficient

reconstruction procedure for large 3D images remains elusive.

Another computational consideration is the fact that the ECT produces a vector of topological

information of #(directions) × #(thresholds) dimensions, which is usually above 2000 dimensions.

In general, high-dimensional vectors tend to produce distorted prediction and regression results

(Köppen, 2000), and it is advised to denoise and summarize these vectors by using different

dimension reduction techniques. One such standard technique is principal component analysis

(PCA), which seeks to project the high-dimensional vectors unto the orthogonal directions that

capture the greatest variability of the data. These linear directions are referred to as the principal

components of the data. Sometimes, the data cannot be properly summarized as a collection of lines.

A more flexible approach is to consider kernel PCA (KPCA) (Schölkopf et al., 1998), a nonlinear

alternative. By specifying a kernel function, we can instead project the high-dimensional samples

unto the polynomial, trigonometric, or circular curves that capture the most variance of the data.

A completely different dimension reduction strategy is the uniform manifold approximation and

projection (UMAP) (McInnes et al., 2020), which also draws several ideas from TDA. Intuitively,

UMAP seeks to project the high-dimensional data unto a low-dimensional space while preserving

the most prominent topological local features. That is, if the original data contains large connected

components, wide loops, and ample voids, its low-dimensional UMAP projection should also
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exhibit several connected components, loops, and voids. If two sample points are in the same

connected component in the high-dimensional space, these two should remain in the same cluster

when projected to the low-dimensional space.

3.2 Materials and Methods

We selected 28 barley accessions with diverse spike morphologies and geographical origins

for our analysis (Harlan and Martini, 1929, 1936, 1940). In November of 2016, seeds from each

accession were stratified at 4C on wet paper towels for a week, and germinated on the bench at

room temperature. Four day old seedlings were transferred into pots in triplicate and arranged

in a completely randomized design in a greenhouse. Day length was extended throughout the

experiment using artificial lighting —minimum 16h light / 8h dark. After the plants reached

maturity and dried, a single spike was collected from each replicate for scanning at Michigan State

University. The scans were produced using the North Star Imaging X3000 system and the included

efX software, with 720 projections per scan, with 3 frames averaged per projection. The data was

obtained in continuous mode. The X-ray source was set to a voltage of 75 kV, current of 100 µA,

and focal spot size of 7.5 µm. The 3D reconstruction of the spikes was computed with the efX-CT

software, obtaining a final voxel size of 127 µm. The intensity values for all raw reconstructions

was standardized as a first step to guarantee that the air and the barley material had the same density

values across all scans. Next, the air and debris were thresholded out, and awns digitally pruned

(Figures 3.2.A-D). Finally, the seed coat of the caryopses was digitally removed, leaving only the

embryo and endosperm due to their high water content (Figure 3.2.E). We did not have enough

resolution in the raw scans to distinguish clearly the endosperm from the embryo. Hereafter, we

will refer to these embryo-endosperm unions simply as seeds. Thus, we digitally isolated all the

seeds and obtained a collection of 3438 seeds in total. Due to the large volume of data, we used an

in-house scipy-based python script to automate the image processing pipeline for all panicles and

grains.

To make the collection of different directional filters comparable across seeds, all the seeds

were aligned with respect to their first three principal components. Since all the seeds are oblong in
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Figure 3.2: Barley image processing. The morphology measurements were extracted from 3D
voxel-based images of the barley panicles. Before any analysis was done, the (A) raw X-ray CT
scans of the panicles had their (B) densities normalized, (C) air and other debris removed, and awns
pruned. (D) After automating these image processing steps, we could finally work with a large
collection of clean, 3D panicles. (E) An extra digital step segmented the individual seeds—embryo
and endosperm— for each barley spike. The left shows the original raw scan, the center shows the
isolated seed, while the right side shows part of the coat that was removed while segmenting. (F)
The seeds were aligned according to their principal components, which allowed us to (G) measure
a number of traditional shape descriptors. (H) Incomplete or broken seeds were later removed
from the data set. (I) These defective seeds were identified by manually examining the outliers
of different allometry plots. Outliers depicted as red triangles. (J) The total number of clean
and defective seeds measured from each accession. Defective seeds were not concentrated in a
particular accession.
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9 Parallels
8 Meridians:

74 directions

9 Parallels
11 Meridians:

101 directions

13 Parallels
12 Meridians:

158 directions

19 Parallels
12 Meridians:

230 directions

Figure 3.3: Directions chosen to compute the ECT. The sphere was split into a equispaced fixed
number of parallels andmeridians in each case. The directionswere the taken from the intersections.

Table 3.1: Sample size of seed scans used for each individual accession. N equals the number of
panicles from which seeds are derived.

Accession N seeds Accession N seeds Accession N seeds
Algerian 3 144 Golden Pheasant 3 89 Minia 3 112
Alpha 3 90 Good Delta 3 126 Multan 1 50
Arequipa 3 110 Han River 2 71 Oderbrucker 3 194
Atlas 3 132 Hannchen 3 89 Orel 3 74
California Mariout 3 189 Horn 3 98 Palmella Blue 3 59
Club Mariout 3 173 Lion 3 116 Sandrel 2 96
Everest 3 128 Lyallpur 3 115 Trebi 2 119
Flynn 3 78 Maison Carree 3 146 White Smyrna 3 58
Glabron 3 114 Manchuria 3 167 Wisconsin Winter 1 25

Meloy 3 159

TOTAL 83 3121 mean 111.5 standard dev. 42.2

shape, this PCA-based alignment corresponds to the proximal-distal, medial-lateral, and adaxial-

abaxial axes respectively (Figures 3.1.B, 3.2.F). The orientation of the principal components is

arbitrary with every run, so we did keep track of the crease and the tip of seed and flipped the

axes accordingly so that the tip would always be located as the rightmost point of the image and

the crease would always point north. With this uniform alignment we were able to measure the

length, width, heights, surface area and volume of each seed (Figure 3.2.G). We also computed

the convex hull for each seed and measured its surface area and volume, as well as the ratios with

respect to seed surface area and volume. In total, 11 different traditional shape descriptors were

measured. Damaged and incomplete seeds (Figure 3.2.H) were removed by evaluating allometry
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plots along their best linear fits and residuals (Figure 3.2.I). Points with residuals 4 times larger than

the standard deviation were deemed as outliers and the associated seed was manually examined

further. Outliers usually corresponded to either defective seeds —which were discarded— or to

a cluster of seeds that failed to be individually segmented. In the latter case, we repeated our

image processing scripts with more aggressive parameters to segment the seeds and re-examined

the result. A final visual assessment of the remaining images was conducted to ensure the removal

of all damaged seeds. These outliers did not represent a significant portion of the seeds of any

accession (Figure 3.2.J). In total we obtained 3121 cleanly segmented seeds. Every accession is

represented on average by 111 seeds, with ±42 seeds as standard deviation. All the accession

numbers are within 2 standard deviations from this empirical mean (Figure A.1; Table 3.1).

As a proof of concept, we explored how topological descriptors varied as we varied both the

number of different directions and the number of uniformly spaced thresholds. In total, for every

seed we computed the ECT considering 74, 101, 158, and 230 different directions. We emphasized

directions toward the seed’s crease, which correspond to directions close to both north and south

poles (Figure 3.1.B; Figure 3.3). For each direction, we produced ECCs with 4, 8, 16, 32, and 64

thresholds.

Recall that the ECT is a record of how topology changes at every single slice taken at every

direction (Figure 3.1.C). We performed Kruskal-Wallis one-way analyses (Kruskal and Wallis,

1952) to determine if the Euler characteristic inter-accession variance was significantly different

from the intra-accession variance at a particular slice and direction. This way, we observed which

parts of the seed anatomy were of particular relevance to the ECT. Accessions and individual

spikes were both considered as possible classes when performing the Kruskal-Wallis tests. These

results follow a conservative 10−10 false discovery rate after considering a multiple test Benjamini-

Hochberg correction (Benjamini and Hochberg, 1995).

For every seed we computed a very high-dimensional vector of topological information, usually

above 2000 dimensions, which were later reduced in dimension independently with KPCA and

UMAP to prevent high-dimensionality distortions. A non-linear KPCA with a σ = 1 Laplacian
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kernel reduced the ECT dimension based on its largest source of variance. UMAP on the other

hand was used to preserve the prominent, high-dimensional topological features of the ECT in

an unsupervised fashion. We fixed the use of 50 nearest neighbors, 0.1 minimum distance, and

Manhattan distance as the rest of key UMAP hyperparameters. For all dimension reduction

techniques, the ECT dimension was reduced to just 2, 3, 6, 12, and 24 dimensions. We focused on

an aggressive 2-dimensional reduction for visualization purposes both with KPCA and UMAP.

To evaluate the descriptiveness, we trained three non-linear support vector machines (SVM)

with radial kernel σ = 0.1 (Burges, 1998) to characterize and predict the seeds from 28 different

accessions based on three different collections of descriptors: traditional, topological, and com-

bining both traditional and topological descriptors. In every case, the descriptors were centered

and scaled to variance 1 prior to classification. Given that SVM is a supervised learning method,

we partitioned our data into training and testing sets. In our case, we randomly sampled 75% of

the seeds from every accession as our training data set, labeled according to their accession. The

remaining 25% was used to test the accuracy of our prediction model. We repeated this SVM

setup 100 times and considered the average accuracy and confusion matrices as final results. This

was done for all possible combinations of directions, thresholds, and dimensionality reductions

mentioned above. The SVM was our classifier of choice since it is quick to train and it does not

require vast amounts of training data to produce reasonable results.

3.3 Results

Topological and combined shape descriptors tend to produce more accurate shape-based clas-

sification results, provided that the ECT is computed with sensible parameters and an adequate

dimension reduction technique. The best SVM classification results were yielded by topologi-

cal and combined shape descriptors based on a 2568-dimensional ECT —158 directions and 16

thresholds (Figure A.3). Based on the highest F1 classification scores, these high-dimensional

vectors were best parsed after being reduced to just 2 dimensions with KPCA, or to 12 dimensions

with UMAP. Hereafter, the rest of topology-related results are based on these specific choice of

directions, thresholds, and dimensionality reduction.
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Figure 3.4: Relevant ECT directions and slices. (A) We examine the inter-accession and intra-
accession variance differences of the Euler characteristic for each direction and threshold. A
Kruskal-Wallis analysis combined with a Benjamini-Hochberg multiple test correction suggests a
handful of particularly discerning slices across accessions. (B) These directions and thresholds
are mostly concentrated around the poles, and (C) correspond to the seed’s crease and bottom
morphology. Colors bear no special meaning.

A Kruskal-Wallis one-way analysis of the ECT vectors, combined with a Benjamini-Hochberg

correction admitting a 10−10 FDR, reveals 55 features that explain the most of inter-accession

variance (Figure 3.4.A). The most accession-discerning slices and directions correspond to the

north and south poles (Figure 3.4.B). As discussed in the seed alignment heuristics in the Methods

section, these pole directions in turn correspond to the morphology of the crease and the bottom of

the seed (Figure 3.4.C). Similar results were observed when analyzing for the most spike-discerning

directions (Figure A.4). In other words, the topological shape descriptors do measure the crease

and bottom shape of the seed, a morphological feature not explicitly measured by our traditional

setting.

Turning back to the traditional shape descriptors, these share similar distributions across the 28
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Figure 3.5: Distribution of traditional shape descriptors. (A) Distribution of six of the 11 traditional
seed shape descriptors across the 3121 seeds. These measurements were first centered at 0 and
scaled to have variance 1. (B) Plot of the first 2 principal components of the 11 shape descriptors.
The first PC describes more than 70% of the total variance. Different marker and color indicate
seeds from different spikes.
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accessions, provided they are all centered and scaled to variance 1 (Figure 3.5.A). Kruskal-Wallis

analyses suggest that the seed length, surface area, and volume related measures explain the most

inter-accession variance (Figure A.5.A–B). Reducing the descriptors to a 2D representation with

PCA suggests that these traditional descriptors tend to group the seeds based on their accession

(Figure 3.5.B). These two components explain 84.0% of the total variance, with the first principal

component explaining a considerable 72.2% alone. A similar grouping-by-accession behavior

was observed whenever we reduced the traditional shape descriptors to 2 dimensions with UMAP

instead. KPCA dimension reduction did not yield insightful results.

Topological shape descriptors on the other hand can provide a more spike-specific morphology

encoding, depending on the dimension reduction technique used to parse the ECT. KPCA summa-

rizes the topological information as a loop, with sharply defined clusters corresponding to seeds

from individual spikes (Figure 3.6.A). On the other hand, the UMAP projection produces a large,

round cluster. Notice that seeds of different spikes tend to lie on different locations, while these

locations overlap partially for spikes of the same accession (Figure 3.6.B). This behavior suggests

that UMAP dimension reduction tries to balance both spike-specific and accession-specific shape

features.

Another round of Kruskal-Wallis analyses on the combined shape descriptors reinforce the idea

that traditional descriptors cluster based on accession, KPCA-reduced topological descriptors do

so based on spike, while UMAP-reduced ones provide a balanced clustering. The most inter-

accession variance is explained predominantly by the traditional shape descriptors, with just a few

topological features as complement (Figures A.5.A–B). However, most of the inter-spike variance

is predominantly captured by the dimension-reduced topological descriptors. The first two KPCA

components do explain most of this inter-spike variance, which agrees with the tight panicle clusters

seen before (Figure 3.6; Figure A.5.C). On the other hand, UMAP distributes regularly the spike

variance across most of its components, complemented by a few traditional shape descriptors

(Figure A.5.D). In other words, traditional shape descriptors capture accession-specific shape

features, KPCA highlights spike-specific features, and UMAP provides a balance between both of
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A

B

Figure 3.6: Dimension reduction of the ECT vectors. The ECT can produce a high-dimensional
topological signature for each seed. To better visualize this topological information, we can reduce
it to just two dimensions with (A) kernel PCA or (B) unsupervised UMAP. The seeds of individual
accessions are highlighted in every frame. Different marker and color indicate seeds from different
spikes.
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them.

When evaluating quantitatively the descriptiveness of these cluster differences, we observed

that topological shape descriptors are able to produce much better SVM classification results than

traditional shape descriptors (Table 3.2). Using exclusively traditional descriptors, the machine

is able to correctly determine the grain variety roughly 57% of the time. For comparison, by

simply randomly guessing the variety, we would expect to be correct just 1/28 × 100 ≈ 4% of the

time. The classification could not be improved by reducing the dimension of the traditional vector

(Figure A.2). If we use exclusively topological shape descriptors instead, the machine can classify

different accessionswithmore than 75% accuracy. These results depend on the dimension reduction

technique of choice (Figure A.3.A). We observe that KPCA provides a powerful 2-dimensional

summary of the ECT, which later can be used to predict grain accession with 85% classification

accuracy. This accuracy diminishes considerably as more nonlinear principal components are

considered. This drop of classification performance can be offset by combining the KPCA summary

with traditional shape descriptors, which keep the classification accuracy above 70% (FigureA.3.B).

The 2-dimensional UMAP summary (Figure 3.6.B) exhibits difficulties and discerning acces-

sions, where classification accession does not go above 25%. Nonetheless, if a 12-dimension

UMAP summary is considered, it is possible to classify accessions with 75% accuracy using

exclusively topological information. Moreover, these UMAP-summary classification results can

be further improved by combining them with traditional shape descriptors, where classification

accuracy goes beyond 88%. The ECT thus captures important morphological patterns that can be

complemented by size features which are provided by the traditional shape descriptors.

Additionally, for both KPCA and UMAP cases, a small p-value produced by Friedman tests

(Friedman, 1937) suggests that the three SVM classifiers, corresponding to the three sets of shape

descriptors, are statistically different. Since we are comparing only three classifiers at a time, we

can rely better on a Quade post-hoc pairwise test (Quade, 1979) as suggested in (Conover, 1998)

(Table 3.3).
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Table 3.2: SVM classification accuracy of barley seeds from 28 different founding lines after 100
randomized training and testing sets. Since we are in a multi-class classification setting we first
computed the precision, recall, and F1 scores for each founding line. Later, we computed the
weighted average for each score, where the weight depended on the number of test seeds for each
of the barley lines. Observe that the use of either topological or combined descriptors outperforms
the use of exclusively traditional descriptors.

Shape Dimension No. of Scores (weighted average ± standard deviation)
descriptors reduction dims Precision Recall F1

Traditional * 11 0.58 ± 0.050 0.58 ± 0.016 0.57 ± 0.016
Topological KPCA 2 0.88 ± 0.031 0.87 ± 0.010 0.87 ± 0.011
Topological UMAP 12 0.75 ± 0.047 0.75 ± 0.016 0.74 ± 0.016
Combined KPCA 13 0.73 ± 0.052 0.72 ± 0.017 0.71 ± 0.017
Combined UMAP 23 0.89 ± 0.028 0.89 ± 0.010 0.89 ± 0.010

Table 3.3: Small Friedman and Quade post-hoc p-values (using t-distribution approximation with
Bonferroni correction) suggest that different descriptors produce statistically different SVM results.

ECT + KPCA ECT + UMAP

Friedman p-val 1.4 × 10−5 Friedman p-val 4.4 × 10−10

Traditional Topological Traditional Topological
Topological 1.8 × 10−11 ∗ Topological 8.0 × 10−4 ∗

Combined 5.9 × 10−5 4.4 × 10−4 Combined 4.4 × 10−13 7.8 × 10−7

3.4 Discussion

Traditionalmorphometrics has been used to reveal fundamental trends inmorphological changes

across space and time in ancient cereal grains (Bouby, 2001; Tanno and Willcox, 2012). Historical

evidence shows that barley seeds became smaller as the crop moved fromMediterranean climates to

Northwest Europe due to colder temperatures and higher sunlight variance, shedding insight on the

timeline of barley domestication in Central Asia (Motuzaite Matuzeviciute et al., 2018). Similarly,

grains became rounder and the spikes more compact as they moved to higher altitude sites in Nepal

(Fuller and Weisskopf, 2014). Differences are more subtle if we compare accessions originating

from similar regions and time periods. Geometric Morphometrics (GMM) has provided a more

quantitative characterization of the grains. For example, GMM can successfully tell apart barley

grains from einkorn (Triticum monococcum) and emmer (T. dicoccum) accessions (Bonhomme et

al., 2017); it can be used to distinguish two-row vs six-row barley seeds (Ros et al., 2014); and it
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can establish unique morphological characteristics of land races to deduce their possible historical

origins (Wallace et al., 2019).

The PCA of the traditional shape descriptors tends to group seeds based on accession as the

largest source of variance. This observation is further supported by the Kruskal-Wallis analyses

of variance (Figure A.5). The Euler characteristic however encodes additional important shape

information missed by traditional descriptors. We observe that the topological shape descriptors

provide better classification than the traditional shape descriptors (Table 3.2). Recall that we can

mathematically prove that the ECT captures all the shape information, to the point that a finite

topological signature can be used to reconstruct the original object (Curry et al., 2022; Fasy et

al., 2019). This vast amount of information is best parsed with dimension reduction techniques,

which highlight different morphology features encoded by the ECT. The biggest source of variation

encoded by the ECT, rendered through KPCA, are individual panicles. This high degree of spike

distinction may ignore underlying shape similarities between panicles of the same accession. In

contrast, with UMAP we reduce the ECT’s dimensionality taking into account overall topology

and geometry, and produce a clustering that balances both panicle-specific nuances with more

general accession-based traits. This accession-vs-panicle balance is further aided by combining

traditional and UMAP-reduced descriptors. In other words, the ECT is capable of capturing

both panicle- and accession-specific morphological descriptors, but different dimension reduction

techniques emphasize some nuances over others. The addition of traditional shape descriptors aids

accession-based clustering, by supplying size-related measurements.

The majority of the accessions studied are more easily distinguished with the topological lens

but not with traditional measures, with few exceptions (Figure 3.7). Exceptions like Hannchen,

Han River and Palmella Blue have slightly distinctive traditional trait distributions, so seed size

does matter and it is important to take it into account (Figure 3.5.A). At the same time, we observe

accessions like Alpha, Glabron, Minia, and Wisconsin Winter, that are poorly differentiated with

traditional information but report considerably higher classification accuracies whenever using

topological information. When looking at a more robust dimension reduction technique like
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Figure 3.7: SVM classification results for individual accessions. (A) Results when using a KPCA
2-dimension reduced topological vector. Accessions ordered according to their classification
accuracy determined by the topological shape descriptors. (B) Results when using a UMAP
12-dimension reduced topological vector. Accessions ordered according to their classification
accuracy determined by the combined shape descriptors.

UMAP, classification accuracy is increased when combined with size-related information.

An exploration on the directions used to compute the ECT reveals that the shape of the crease

and bottom discriminate accessions the most (Figure 3.4). These features are not directly measured

with our traditional setting. By analyzing inter- vs. intra-accession variance of a large number

of ECT axes and thresholds, we effectively isolate complex morphological features responsible

for distinguishing selected groups. Although the ECT comprehensively measures the information

content of an object, different dimension reduction techniques highlight different aspects of that

shape information (Figure 3.6). A more systematic exploration of other dimension reduction

algorithms, and classification techniques afterward is warranted moving forward.
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3.5 Software and data availability

The processed and cleaned barley panicles and barley seeds X-ray CT 3D reconstructions can

be found in the Dryad repository https://doi.org/10.5061/dryad.rxwdbrv93.

All of our code is available at the https://github.com/amezqui3/demeter/ repository. This

includes the image processing pipeline to clean the raw scans and segment the seeds (python), the

computation of the ECTs (python), and the SVM classification and analysis (R). A collection of

Jupyter notebook tutorials is also provided in order to ease the usage and understanding of the

different components of the data processing and data analyzing pipelines.
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CHAPTER 4

EXPLORING THE SHAPE OF AROMA AND CITRUS OIL GLANDS

Fairest of all God’s trees, the orange came and settled here,

Its leaves of green and pure white blossoms delight the eye of the

beholder,

And the thick branches and spines so sharp, and the fine round fruits,

Green ones with yellow intermingling to make a pattern of gleaming

brightness,

—from In Praise of the Orange-Tree (Ju song)

Qu Yuan (340–278 BC?)

Citrus come in diverse sizes and shapes, and play a key role in world culture and economy.

Citrus oil glands in particular contain essential oils which include plant secondary metabolites

associated with flavor and aroma. Capturing and analyzing nuanced information behind the citrus

fruit shape and its oil gland distribution provides a morphology-driven path to further our insight

into phenotype-genotype interactions.

We study the shape of citrus fruits and fruits from close citrus relatives based on 3D X-ray

CT (computed tomography) scan reconstruction of 166 different samples comprising 51 different

accessions, including samples of the three fundamental citrus species (C. medica, C. reticulata, and

C. maxima), accessions from related genera (P. trifoliata and F. margarita), and several interspecific

hybrids. First, using the power of X-rays and image processing, we compared volume ratios between

different tissues, including exocarp, endocarp, and oil gland tissue. Second, since citrus oil glands

contain essential oils which include plant secondary metabolites associated with flavor and aroma,

we examined the number of individual oil glands, their density, and their overall distribution across

all fruits. We determine that the average distance between neighboring oil glands follows a square

root model, which indicates that gland distributionmight follow normal diffusion dynamics (Vlahos

et al., 2008). Finally, based off a point cloud defined by the center of all individual oil glands,

we model the fruit shape as an ellipsoidal surface, a sphere with its three main axes shrunk or
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stretched accordingly. Once the glands are considered points on an ellipsoid, we are able to apply

multiple tools from directional statistics (Ley and Verdebout, 2017; Mardia and Jupp, 1999; Pewsey

and García-Portugués, 2021), which allows us to study and infer possible statistical distributions

on spherical surfaces. As an example of this mathematical machinery, we test whether the oil

glands either follow a uniform or symmetric distribution across the fruit surface. To the best of our

knowledge, the shape of citrus has not been explored with similar scanning technologies, nor has it

been analyzed with ellipsoidal and directional approximations. This morphological modeling will

allow us to set a new exciting path to explore further the phenotype-genotype relationship in citrus.

This chapter is derived from the original research paper

• E.J. Amézquita, M.Y. Quigley, T. Ophelders, D. Seymour, E. Munch, D.H. Chitwood

(2022). The shape of aroma: Measuring and modeling citrus oil gland distribution. Plants,

People, Planet.

4.1 Introduction

Citrus fruits and leaves have played a fundamental role across multiple aspects of human history

including the development of modern nutrition and medical sciences. The aromatic and medicinal

properties of mandarins and oranges have inspired delicate poetry since ancient times (Tseng, 1999;

Vovin, 2016). Etrog citrons represent “the fruit of a goodly tree” during the Sukkot celebrations in

the Jewish community (Isaac, 1959). The bael tree is considered sacred and it is generally grown

near Hindu temples (Sharma et al., 2007). The fruits, peels, and leaves of diverse citrus have

been used as traditional medicine for millennia for a diverse array of maladies (Mahomoodally

and Mooroteea, 2021; Shrestha and Dangol, 2019). Sour oranges and lemons inspired the first

modern clinical trials in the 18th and 19th centuries to determine the causes and cure of scurvy

—“the plague of the sea, and the spoyle of mariners” (Hawkins, 1986)— thus paving the way to

the eventual isolation and synthesis of the first vitamin, vitamin C. (Baron, 2009; Magiorkinis et

al., 2011).

Currently there is a rising trend in global citrus production, with more than 143 million tonnes
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produced in 2019 alone (FAO, 2021). Citrus production is valued for more than 3.3 billion US

dollars in the US alone. (NASS, 2021). Citrus derived products are vital for other multi-billion

dollar industries as well, from orange juice in the food industry, to essential oils in the perfume

and cosmetics industry (Spreen et al., 2020). Essential oils in particular are extracted for their

aromatic, flavoring, medicinal, and preservation properties useful in a variety of contexts (Mahato

et al., 2019).

Before any human intervention, current paleobotanical evidence suggests that the common

ancestor of citrus species originated more than 8 million years ago in the triangle defined by

modern day northeastern India, northern Myanmar, and northwestern Yunnan (Talon et al., 2020).

As monsoons weakened in southeastern Asia and climate transitioned to drier conditions, citrus

radiated and diversified over the next 5million years across the southeast Asian peninsula, Australia,

New Caledonia, the western Indian coast, and even Japan (Wu et al., 2018). Early civilizations in

India and China domesticated some of these species and their interspecific hybrids, even as early as

during the Xia Dynasty (2100-1600 BC) in Southern China (Deng et al., 2020). Through tribute,

trade, and invasion, different cultures contributed to spread many of these citrus across the rest of

the world over the next 3000 years (Langgut, 2017).

Citrus species are sexually compatible and their ability to hybridize, combined with constant

displacement and cultivation in multiple environments, produced a diversity of admixed accessions

with a vast array of phenotypic traits (Gmitter et al., 2020; Luro et al., 2017; Wu et al., 2021).

Asexual propagation is common in citrus and the interaction between grafted individuals has led to

novel phenotypes, including through the formation of graft chimeras, conglomerations of cells that

originated from separate zygotes (Caruso et al., 2020). The first reported plant chimera, known

as Bizarria, arose from a fortuitous graft junction of a Florentine citron and a sour orange in

1674 (Nati, 1674). Since then, chimeras have proved to be more common than originally thought,

transforming our perception of the genetic heterogeneity of individuals and its impact on plant

development and phenotype (Frank and Chitwood, 2016).

A phenotype of particular interest is shape. Specific combinations of shape features are used to
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distinguish diverse citrus varieties, and have motivated various citrus taxonomic systems (Ollitrault

et al., 2020). Leaf shape has been used to distinguish pummelos from sweet oranges among

other different citrus genotypes and their respective environment interactions (Iwata et al., 2002).

Root architecture is indicative of soil deficiencies for sour orange rootstocks (Mei et al., 2011).

Morphological traits, such as fruit size and oil gland density, are used to infer genetic similarities

between various mandarin cultivars (Pal et al., 2013). Oil gland size, structure and distribution are

associated with the fruit development of navel oranges (Knight et al., 2001) and grapefruits (Voo

et al., 2012).

4.2 Materials and Methods

4.2.1 Plant material and scanning

We selected 51 different accessions of citrus and citrus relatives with diverse fruit morphologies

and geographical origins for our analysis. Fruits were sampled from a single tree for each selected

accession maintained in the University of California Riverside Givaudan Citrus Variety Collection.

166 different individuals in total were sent for scanning at Michigan State University in December

2018 (Figure 4.1.A; Table B.1.) These 166 samples were arranged into 63 raw scans, one scan

per citrus variety containing all the replicates. Pummelos and citrons samples were scanned

individually due to the fruit size. The scans were produced using the North Star Imaging X3000

system and the included efX software, with 720 projections per scan, at 3 frames per second and

with 3 frames averaged per projection. The data was obtained in continuous mode. The X-ray

source was set to a current of 70 µA, voltage ranging from 70 to 90 kV, and focal spot sizes ranging

from 4.9 to 6.3 µm. The 3D reconstruction of the fruit was computed with the efX-CT software,

obtaining final voxel sizes ranging from 18.6 to 110.1 µm for different scans (Figure 4.1.B; Table

B.2.)

The air and debris were thresholded out of each raw scan, and individual replicates segmented

into separate images. Based on density and location, for each fruit we further segmented 3D

voxel-based reconstructions of its central column, endocarp, mesocarp, exocarp, and oil glands

(Figure 4.1(c)–(g)). The center of each oil gland was calculated as the center of mass of the voxels
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Figure 4.1: Citrus scanning and image processing. (A) A diverse collection was scanned using
X-ray CT technology. (B) Slices of a raw scan. The image processing steps involved segmenting
individual fruits and removing air and other debris. Then, individual tissues for each fruit were
segmented such as the (C) central spine, (D) endocarp, (E) mesocarp, (F) exocarp, and (G) oil
glands. (H) Close-up of some X-ray slices of the exocarp. (I) Same figure as above, with the
segmented oil gland tissue darkened for emphasis. AWillowleaf sour orange is used as an example
for Figures (B)–(I). All the figures are for illustrative purposes only.
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composing such gland. An in-house scipy.ndimage-based python script was used to process the

images for all fruits and their tissues. These were later visually inspected to verify their correctness.

All the Chinese box oranges (Severinia buxifolia) scans were discarded due to their poor quality.

To highlight nuanced differences among certain citrus groups, scans were partly split into sensible

clusters of morphological interest (Table 4.1).

4.2.2 Allometric relationships

The total volume of fruits and their separate tissues was measured from the scans, as well

as the number of individual oil glands. We studied the allometric relationships between these

measurements; that is, the relative size of different tissues with respect to each other. These

relationships in plants often follow a power law, so all the measurements were first log-transformed

(Niklas, 2004) and a reduced major axis linear regression (Smith, 2009) was fitted considering all

fruits. The slope, intercept, and R2 correlation coefficient were recorded (Figures 4.2, B.3). The

distribution of the residuals was compared against a normal distribution to determine the adequacy

of the linear fit (Figures B.2, B.4).

4.2.3 Oil gland distribution

For each fruit, a point cloud, a collection of (x, y, z) coordinates in the space, was defined by

the centers of all its individual oil glands. The 25 nearest neighbors, based on Euclidean distance,

were computed for each point, so that distances are not affected by the fruit skin curvature. The

average distance between each gland and its nearest neighbor, its second nearest neighbor, and so

on were computed. The oil gland density was determined both in terms of volume and surface

area, by dividing the number of glands by the volume of the whole fruit, and by the surface area

of the best-fit ellipsoid (discussed later in Section 4.2.4) respectively. As in the previous section,

all these measurements were log-transformed, linear regressions fitted, parameters recorded, and

residuals compared to a normal distribution (Figures 4.3.A, B.5). A root square model was fitted

between the average nearest neighbor distance and the nearest neighbor index to describe how far

apart glands spread from each other (Figure 4.3.B).
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Table 4.1: Selected citrus groups and varieties. N equals the number of pseudo-replicates. The full
list of citrus fruits and relatives scanned is found in Table B.1. Names according to the University
of California Givaudan Citrus Variety Collection (CVC). Asterisk denotes not available.

CVC Name Scientific Name N - CVC Name Scientific Name N
Kumquats

Nagami F. margarita 3

Lemons and lemon hybrids
Limon Real C. excelsa 4 Lamas C. limon 3
Interdonato C. limon 3 Volckamer C. volkameriana 3
Eureka C. limon 3

Mandarins and mandarin hybrids
Emperor C. reticulata 3 * C. reticulata 3
Lee C. reticulata 3 Som Keowan C. reticulata 3
Koster C. reticulata 3 Cleopatra C. reshni 3
Beledy C. reticulata 4 Fremont C. reticulata 3
USDA 88 C. reticulata 3 Kinkoji C. neo-aurantium 3

Microcitrus
Finger lime M. australasica 4

Papedas
* C. hanayu 3 Kalpi C. webberii 2
Makrut C. hystrix 4

Pummelos and pummelo hybrids
Star Ruby C. paradisi 3 Pomelit C. maxima 3
Kao Pan C. maxima 3 Hassaku C. hassaku 3
Egami Buntan C. maxima 3

Sour oranges and sour orange hybrids
Willowleaf C. aurantium 3 Standard C. aurantium 3
Konejime C. neoaurantium 4 Olivelands C. aurantium 3

Sweet oranges
Valencia C. sinensis 3 Shamouti C. sinensis 3
Navel C. sinensis 3 Argentina C. sinensis 3
Cara Cara C. sinensis 3

Trifoliates and trifoliate hybrids
Little-leaf P. trifoliata 3 Rubidoux P. trifoliata 4
C-35 X Citroncirus 3 Carrizo X Citroncirus 5
Swingle X Citroncirus 5
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4.2.4 Modeling the whole fruit as an ellipsoid and computing its sphericity

The surface of most of citrus fruits and their relatives can be approximated by an ellipsoid,

a sphere with its three main axes possibly shrunk or stretched.The three axes of symmetry of an

ellipsoid delimit three line segments from the center of the ellipsoid to its surface. These are

referred to as the ellipsoid semi-axes. Notice that a sphere is an ellipsoid with its three semi-axes

of the same length. We will consider triaxial ellipsoids, where the length of each semi-axes can

be different. An ellipsoid can also be represented as a quadratic equation surface which is both

mathematically simple to manipulate (Harris and Stöcker, 1998, Ch. 8.12), and versatile enough

to represent both the shapes of nearly-spherical Valencia oranges and elongated finger limes given

the right semi-axes lengths.

Each fruit is defined by a point cloud made by the centers of all its individual oil glands. The

parameters of the best-fit ellipsoid for this point cloud are computed following the algorithm by Li

and Griffiths (2004), fromwhich the semi-axes lengths, rotations, and center are determined (Panou

et al., 2020). The fruit point cloud is then rotated and translated such that the best-fit ellipsoid is

centered at the origin and its semi-major axes coincide with the proximal-distal axis of the fruit.

Finally, the centers of the oil glands are projected to this ellipsoid via geocentric projection, where

a ray from the center of the ellipsoid to the gland is drawn and its intersection with the ellipsoid is

considered (Figure 4.4.A–F).

This ellipsoid model summarizes important information of the overall shape of the fruit. As

an example, we measure how sphere-like different citrus are. There is no unique way to measure

sphericity, however, most of the commonly used formulas are based on the semi-axes lengths of

the object (Blott and Pye, 2008; Clayton et al., 2009). We measured the sphericity of the resulting

fruit-based ellipsoids using 6 different sphericity indices, all of them taking values between 0

(planes and lines) and 1 (perfect spheres) (Figure 4.4.G; Table 4.2).

4.2.5 Revisiting the distribution of the oil glands

The projected gland center locations on the ellipsoid were described in terms of longitude and

latitude coordinates with respect to the ellipsoid (Diaz-Toca et al., 2020). We tested whether the
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Table 4.2: Common sphericity indices based off best-fit ellipsoid. The indices values are bounded
between 0 (line or plane) and 1 (perfect sphere). The surface area, volume, and the largest, inter-
mediate, and smallest semi-axes lengths of the ellipsoid are denoted by Ae,Ve, a, b, c respectively.
Also, As denotes the surface area of a sphere of volume Ve.

Name Formula Reference

True sphericity As/Ae =
3
√

36πV2
e /Ae (Wadell, 1932)

Intercept sphericity 3
√

bc/a2 (Krumbein, 1941)
Corey shape factor c/

√
ab (Corey, 1949)

Maximum projection sphericity 3
√

c2/ab (Sneed and Folk, 1958)
Janke form factor c/

√
1
3 (a

2 + b2 + c2) (Janke, 1966)
Degree of equancy c/a (Blott and Pye, 2008)

gland point cloud follows a uniform distribution, where every unit area of the skin has the same

probability of containing oil glands; or if the underlying distribution is rotationally symmetric,

where the oil glands pattern is symmetrical around a fixed direction. Uniformity was tested with

Projected Anderson-Darling (PAD) test (García-Portugués et al., 2023) with the R package sphunif

(García-Portugués and Verdebout, 2021). The rotational symmetry was tested with a scatter-

location hybrid test with an unspecified direction of symmetry (García-Portugués et al., 2020) with

the R package rotasym (García-Portugués et al., 2021). Additionally, we visually examined the

distribution of oil glands for most fruits and compared them to simulated uniform distributions

by projecting them to 2D via Lambert azimuthal equal-area projections (Mardia and Jupp, 1999,

Ch. 9.1) from the North and South poles. Intuitively, these two projections flatten the sphere on a

plane by pushing it from the North pole and South pole while minimizing the distortion seen on

the north and south hemisphere respectively (Figure 4.5).

4.3 Results

4.3.1 Allometric relationships

The estimated volume of each tissue type and fruit follows the expected average fruit size of

each genetic group, with the smallest fruit in the bottom left corners (microcitrus, kumquats) and

large fruit in the top right corners (pummelos). Strong linear trends are observed when comparing

most of the volume-related features of all the fruits, indicated by high R2 correlation coefficient
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Figure 4.2: Various allometry plots between different tissue volumes compared to the total fruit
volume.
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Figure 4.2 (cont’d): a
Various allometry plots between different tissue volumes compared to the total fruit volume across
all fruits. The best fit line is depicted by a dashed line in blue. For each plot, the slope, intercept,
and correlation coefficient are recorded as m, b, and R2 respectively. The linear relationship in the
log-log plots suggests that fruit tissues may grow following a power law.

values, usually above 0.75 except for the central column tissue (Figures 4.2, B.3). Due to their thin

size and scanning quality, these columns were difficult to identify and isolate, especially in some

trifoliates, which might explain lower R2 values. The residuals of the fitted linear regression tend

to follow a normal distribution for the majority of measurement pairs, suggesting that the linear fit

is adequate (Figures B.2, B.4). This linearity indicates that the tissues across all citrus fruits grow

relative to each other following a power rule. For example, looking at the slope m values, both the

exocarp and the oil glands grow in volume at the same relative rate with respect to the volume of the

whole fruit (m = 0.85). On the other hand, the total number of oil glands appears to be decoupled

from all the measured size-related traits, as shown by much lower R2 values (Figure 4.2). In this

case, a power law may not be an adequate model to describe the oil gland number with respect to

tissue volume.

4.3.2 Oil gland distribution

There is a strong positive linear relationship between the volume of the fruit, and the average

distance between an oil gland and its nearest neighbor, with R2 correlation coefficients above 0.65.

There is a stronger negative linear relationship when considering the overall oil gland density,

reflected by R2 coefficients above 0.85 (Figure 4.3.A). The residuals follow normal distributions,

indicating that the linear model is adequate (Figure B.5). These allometric relationships suggest

that for all citrus and relative fruits, the average distance between nearest oil glands follows a power

law with respect to fruit volume and gland density. When considering fruit size, as expected, the

samples distribute in a similar pattern as with most of the previous allometry plots. However, an

inverse pattern is observed when considering oil gland density. In this case, the smallest fruits tend

to report the highest number of oil glands per unit volume or unit area. Other than microcitrus and

kumquats, the rest of highlighted citrus groups form a tighter cluster.
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Figure 4.3: Studying the average distance from each gland to its first 25 nearest neighbors, as
measured by the Euclidean distance.
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Figure 4.3 (cont’d): a
Studying the average distance from each gland to its nearest neighbors. (A) Allometric relation-
ships are observed across all fruits when comparing the average distance between each gland to
its closest neighbor with the overall size of the fruit. The overall linear trend is depicted by a
dashed blue line. The slope, intercept, and correlation coefficient are denoted by m, b, and R2

respectively. (B) For each oil gland, the average distance to its nearest neighbors follows a square
root relationship. The average for each group is plotted as black, thick line. These square root
models follow different parameters depending on the citrus group. The fruits that deviate the
most from the average usually correspond to hybrids. (C) Carrizo citranges are Washington sweet
orange × Trifoliate hybrids. The average distance between oil glands increases at a faster rate for
citranges than for their parents, which suggests hybrid vigor.

The average distance between an oil gland and its k-th nearest neighbor is modeled as

Average distance(k) =
√

Mk + B,

where M is the rate of distance growth and B the line intercept (Figure 4.3.B). As expected from

their higher oil gland density, the average distance to the gland’s nearest neighbors increases the

slowest for microcitrus, followed distinctly by kumquats. On the other hand, sweet oranges and

trifoliates report the largest average distances between neighboring oil glands. This higher gland

density could be partly affected by differences in scanning resolutions (Figure B.1).

In general, all the samples of every accession follow the same growth model. Outliers in growth

models are typically associated with hybrid accessions. Increased growth rates are found when the

second parent is a large fruited accession. For example, consider the Carrizo citrange, a trifoliate

x Washington sweet orange hybrid where sweet orange fruits are much larger than trifoliate fruits.

We observed that the oil glands in the citrange grow on average farther apart from each other than

in any of the parents (Figure 4.3.C), which suggests that hybrid vigor might be at play. Similarly,

hybrids derived from crosses with small-fruited accessions have reduced growth rates.

4.3.3 Ellipsoid modeling and sphericity of fruits

The best-fit ellipsoid successfully captures the overall shape of the citrus and relatives, with

a negligible portion of gland centers differing by more than 0.2cm from their ellipsoidal approx-

imation (Figure 4.4.G). This ellipsoidal model is flexible enough to capture both spherical and

elongated fruit shapes, from sweet oranges to Australian finger limes (Figures 4.4.A–F).
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Figure 4.4: Modeling citrus fruit surface as tri-axial ellipsoids. The glands were centered at the
origin, and the ellipsoid aligned with the proximal-distal, medial-lateral, and adaxial-abaxial axes.
Then the oil glands were projected to this best-fit ellipsoid. Examples of a (A) Valencia orange, (B)
Nagami kumquat, (C) Willowleaf sour orange, (D) Australian finger lime, (E) South Coast Field
Station citron, and a (F) Cleopatra mandarin. (G) Distribution of the residuals of the centers of
the oil glands to the best-fit ellipsoid. The distributions for all the fruit scans are overlaid. (H)
Various sphericity indices are computed and compared across different citrus groups. The indices
are named according to their original reference in Table 4.2. Figures (A)–(F) are not scaled.
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Most of the fruits report highly spherical indices, more than 0.9 for every sphericity index.

Unsurprisingly, the elongated Australian finger limes are the least spherical and their shape is very

distinct from the rest of the samples. The kumquats are less elongated than the finger limes, but

they also remain highly distinguishable for most of the sphericity indices. Mandarins and their

hybrids also tend to be slightly less spherical than the remaining groups of interest (Figure 4.4.H).

4.3.4 Oil glands revisited

Although the tools from directional statistics assume that the data points lie on a sphere rather

than an ellipsoid, most of scanned fruits were very sphere-shaped according to a variety of sphericity

indices (Figure 4.4.H). Thus shape information is not significantly alteredwhen translating longitude

and latitude coordinates from the best-fit ellipsoid to a sphere.

The uniform oil gland distribution hypothesis was strongly rejected for all scans, with all

p-values below 0.015 for the PAD test, and below 2.5 × 10−7 for 95% of all the point clouds

(Figure B.6.A). The scatter-location hybrid test strongly rejected the rotationally symmetric oil

gland distribution hypothesis for most of the point clouds as well. More than 90% of all the scans

reported p-values smaller 0.02. The 10 samples for which the rotationally symmetric hypothesis

was not rejected were not concentrated in any citrus groups (Table B.3; Figure B.6.B). Upon closer

visual examination, differences arise between the uniform distribution on a sphere and oil gland

distributions. The oil gland distributions tend to have defined clusters and empty spots, which are

not seen in typical uniform distributions. The northern and southern hemispheres are noticeably

different from each other for the oil gland distributions, while these look roughly the same in

uniform distributions (Figure 4.5).

4.4 Discussion

Measuring and understanding the shape is fundamental to extracting valuable information from

data, and push further our insights. A vast number of biological-inspired shapes are intrinsically

3 dimensional, like citrus fruit, and capturing their shape as 3D voxel-based provides a faithful

shape representation that allows accurate measurement of tissue volumes and modeling of gland

distributions in space. Better fruit modeling is key to provide more accurate descriptions of fruit
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A

B

Figure 4.5: Distribution of oil glands is not uniform nor rotationally symmetric across the citrus
exocarp. After modeling the fruits as ellipsoids and projecting their oil glands onto the ellipsoidal
surface, longitude and latitude coordinates are computed as in Figure 4.4. These coordinates can
be better visualized using two Lambert azimuthal equal-area projections, from the north and south
poles which represent the northern and southern hemispheres respectively with minimal distortion.
A battery of statistical tests strongly rejects the hypothesis of these glands being uniformly or
symmetrically distributed over the ellipsoid surface. (A) Examples of oil gland distribution of a
little leaf trifoliate, a parentWashington navel orange, aWillowleaf sour orange, and a SomKeowan
mandarin. (B) For comparison, a similar number of points are simulated following uniform,
low-concentration von Mises-Fisher, and low-concentration Bingham distributions. These three
distributions are rotationally symmetric.
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shape and oil gland content, as both are important traits for citrus scion improvement (Barry et

al., 2020). Citrus shape impacts oil gland abundance and distribution, as the shape of the rind,

the exocarp, and other tissues, along the distribution of the oil glands affects the physics of citrus

essential oil extraction and aroma dispersion (Smith et al., 2018).

When observing overall fruit tissue size trends, these correspond to known citrus genealogy.

For example, when comparing the size of exocarp against size of endocarp, most of the sour and

sweet oranges tend to lie between mandarins and pummelos, with sour oranges lying closer to

mandarins, while the sweet oranges are closer to pummelos (Figure 4.2). A similar arrangement of

citrus groups is observed when comparing the average distance between neighboring oil glands to

either fruit volume or gland density. Moreover, it is observed that oil glands distance themselves

from each other following a square root rate in general. The exact degree to which they push each

other apart depends on the oil gland density, which in turn is partly affected by the citrus genealogy.

For example, the average distances between oil glands in Carrizo citranges increase at higher rates

than in either the Washington sweet oranges or the trifoliates, the citrange parents (Figure 4.3).

The square root suggests that the mechanics of oil gland displacement across the fruit could be

partly governed by based on Brownian motion and normal diffusion interactions (Vlahos et al.,

2008). However, the hypothesis of oil gland locations following either a uniform or symmetric

distribution on the fruit surface is strongly rejected for all scans by the PAD and location-scatter

hybrid tests respectively. This discrepancy between our gland distribution observations could be

explained by the fact that uniform distributions and diffusion processes assume that the data consists

of point particles with no volume that can stand arbitrarily close to each other. For oil glands this

is obviously not the case, as they have volume and there are physical limitations on the proximity

between glands, which requires a more complex diffusion modeling. Higher resolution scans might

be able to capture better individual oil gland shape, rather than just its center. Individual oil

glands then could be approximated by individual minimum volume enclosing ellipsoids (Todd and

Yıldırım, 2007), which could then pose more advanced distribution and diffusion models.

All the studied citrus and related accessions exhibit allometric behavior in general across
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both their tissue volumes, and average distances between neighboring glands. This relative growth

relationships suggest that tissue sizes are deeply linked, as the size of oil gland tissue in general may

not be able to change without changing volume of both the endocarp andmesocarp. Moreover, there

might be biophysical principles at play that govern different tissue development across all citrus

fruits in general, just like normal diffusion might govern oil gland distribution. The determination

of such biophysical constraints prompt future lines of exciting research.

The quality of input data for our models is equally important. Through X-ray CT scanning

technology we have a novel way to observe, quantify, and analyze all the shape of citrus and their

tissues in a comprehensive, automated, non-invasive, and non-destructive manner. With the right

voltage and current, the 3D X-ray CT reconstructions can discern small, individual tissues, like oil

glands, which enables us to analyze tissue shape and distribution at very granular levels.

4.5 Software and data availability

The processed and cleaned citrus X-ray CT 3D reconstructions can be found in the Dryad repos-

itory https://doi.org/10.5061/dryad.34tmpg4n6, along with their separated tissues and associated

point clouds and ellipsoidal approximations.

All our code is available at the https://github.com/amezqui3/vitaminC_morphology repository.

This includes the image processing pipeline to clean the raw scans and segment the fruit tissues,

the computation of tissue volume, the best-fit ellipsoid, and the hypothesis testing of uniform and

symmetric distributions on a unit sphere. A collection of Jupyter notebook tutorials is also provided

to ease the usage and understanding of the different components of the data processing and data

analyzing pipelines. All the image-related scripts are available in python, while the statistical

analyses are in R.
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CHAPTER 5

THE SHAPE OF KERNELS AND CRACKS, IN A NUTSHELL

Don’t depend on the world’s friendship,

For friends can turn into foes.

Although walnut has a round shape,

Not every round object is a walnut

Flower and Soil

Parvin E’tesami

There is more than meets the eye whenever we look at walnuts (Juglans regia). Civilizations

originary from modern day Iran have used and traded walnut tree products since the 7000 BC

(Vahdati, 2014). The walnut fruit offers plenty of nutrients and health benefits (Chudhary et

al., 2020), the wood is strong and lustrous (Voulgaridis and Vassiliou, 2005), the essential oils

of the leaves are moisturizing (Verma et al., 2013). Walnuts traveled far and wide as they were

actively traded through the Silk Road, reconquering the Eurasian continent (Pollegioni et al., 2014).

Moreover, spatial genetic partitions among walnut populations coincide with large differences in

human language; similarly, areas with similar human languages coincide with areas were walnut

populations have been homogenized (Pollegioni et al., 2015).

The trade of walnuts remains an important part of the global economy. In 2021, the California

and the US produced more than 725,000 tons of walnuts valued in more than $1.0B, following a

historically increasing trend of both bearing acreage and bearing trees per acre (NASS, 2022). World

demand for walnut keeps increasing and it is estimated that the world will consume a record 2.5M

tons of walnuts for 2023, and the US is forecasted to satisfy 25% of the global demand (FAS, 2022).

The trade is not limited to the food industry, as there is also growing research on additional uses

for walnut shell material for more durable batteries (Wahid et al., 2017), lower-cost concrete (Hilal

et al., 2020), and stronger epoxy composites (Lala et al., 2018). As climate change alters weather

patterns, and the demand for walnut and its byproducts increases, we must breed walnuts with more

suitable traits (Bernard et al., 2017). Quantitative analyses and comprehensive pheontyping can

70



accelerate current breeding programs by quickly identifying varieties and individuals with desirable

characteristics (Fiorani and Schurr, 2013; Rahaman et al., 2015). The rapid selection of potentially

desirable progenitors for breeding programs is especially crucial for walnuts, as seedlings are hard

to propagate, it takes at least 2 years for trees to bear fruit for the first time, and at least 5 more to

yield fruit at a commercial scale (Lopez, 2004; Popa et al., 2023; Verma, 2014).

Most of the current walnut phenotyping follows themeasuring guidelines set by the International

Plant Genetic Resources Institute (IPGRI, 1994). The morphological phenotyping of the fruit is

mainly done using calipers to measure length, width, and height, combined with visual assessments

to describe more complicated traits such as texture and curvature. These simple measurements

have proved to be insightful to evaluate and identify promising genotypes. Moderate correlations

have been reported between these traditional morphological traits of the walnut tree and fruit with

commercial and horticultural traits of interest such as pollen release strategy, yield, shell thickness,

kernel weight, and pathogen resistance (Akca and Şen, 1995; Kelc et al., 2007; Khadivi-Khub et

al., 2015; Rezaei et al., 2018; Shah et al., 2021; Solar et al., 2003).

However, this caliper- and eye-based approach is time consuming, prone to human error and

subjectivity, and fails to capture richer shape nuance observed in the shells and kernels. As next

generation sequencing (NCS) technology advances, we observe an explosion in genomics data

collection that must be matched by equally powerful and encompassing phenomics (Andrade-

Sanchez et al., 2013; Araus and Cairns, 2014; Tanabata et al., 2012). We have to look deeper than

just nut lengths and widths. To that end, X-ray computed tomography (CT) scanning has proved to

be a powerful tool to accurately capture intricate, internal features of a vast array of plant data in a

nondestrutive manner. High-resolution, X-ray CT 3D reconstruction have been successfully used

to capture and quantify the complex branching architecture of inflorescence in grapevines (Li et al.,

2019) and sorghum panicles (Li et al., 2020), digitally segment and phenotype all the individual

seeds in a barley panicle (Amézquita et al., 2021), determine nuances in soil porosity for diverse

wheat root-soil interactions (Zhou et al., 2020), and measure exact volumes and distribution of oil

glands across multiple citrus exocarps (Amézquita et al., 2022). To the best of our knowledge,
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Bernard et al. (2020) is the first study that exploits X-ray CT 3D reconstructions to automatically,

accurately, and systematically quantify multiple nut shape phenotypes from a germplasm diversity

panel maintained by INRIA. Given the nature of X-rays, Bernard et al. are able to fully measure

the volume and percentage of different nut tissues, namely shell, kernel, and air contained, as well

as shape descriptors related to the whole nut, like total volume and surface area. Based on these

results, they are able to propose the selection of genotypes with higher kernel filling ratio and

thinner shells. In particular, they observe that larger fruits are correlated with rougher shell shape

and smaller kernel filling ratio. We also highlight that micro-CT imaging has been recently used

to document morphological changes of flower bud development (Gao, 2022), and to explore the

puzzling diversity and structure of the cell tesselations that conform the hard shell tissue for multiple

nuts (Huss et al., 2020). In both of these cases, the micro-CT imaging plays a more exploratory

role rather than a quantifying one.

Here, we study the shape of walnut fruits based on the X-ray CT 3D reconstruction of 1256

different samples comprising 173 accessions maintained by the Walnut Improvement Program at

the University of California Davis. We exploit the nondestructiveness of X-rays to isolate individual

walnuts and segment out shell, kernel, and packing tissues, as well as the air contained inside every

walnut. We then compute 38 different shape- and size-related traits for each walnut. This includes

side lengths, surface areas, and volumes of the whole nut and individual tissues, filling ratios,

and sphericity and convexity indices. This image processing task was done with an in-house,

python-based, open-source script inspired by the procedure described by Bernard et al. (2020). We

include the computation of the 14 traits used by them. Second, we look for allometric relationships

of interest across the whole population —the growth rate of a tissue relative to another. Third,

we perform Kruskal-Wallis analyses of variance (Kruskal and Wallis, 1952) to determine which

morphological traits contribute the most to qualitative traits of interest, such as kernel ease of

removal, kernel plumpness, and shell strength and integrity. Finally, we singled out the only

Himalayan, heterozygous accession and studied more carefully its morphology, as it is reportedly

extremely hard to crack open and extract its kernel. We noticed that this particular accession is
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no different in size or tissue distribution compared to other easier to crack accessions, except for

subtle differences in the kernel’s main cavity at the proximal end. This morphological modeling

will allow us to set a new exciting path to explore further the phenotype-genotype relationship in

walnuts.

5.1 Materials and methods

5.1.1 Plant material and scanning

All plant materials represent walnut breeding lines, germplasm, and cultivars maintained by

the Walnut Improvement Program at the University of California, Davis. A total of 149 walnuts

accessions were harvested into mesh bags at hull split, oven-dried overnight at 95F, and then air-

dried for several weeks before moving into cold storage at 35F. 5 to 16 individuals were selected for

each accession, for a total of 1301 individual walnuts to be scanned at Michigan State University

(Table C.1). Thewalnuts were scanned in 173 batches. The scanswere produced using the theNorth

Star X3000 system and the included efX-DR software, with 720 projections per scan, at 3 frames

per second and with 3 frames averaged per projection. The data was obtained in continuous mode.

The 3D X-ray CT reconstruction was computed with the efX-CT software, obtaining voxel-based

images with voxel size of 75.9 µm.

All the individual walnuts were manually separated with the efX-CT software (Figure 5.1.A).

Densities were rescaled so that all scans share similar air, kernel, and shell densities. Once densities

were comparable across samples, the external air and other debriswas removed through thresholding

and mathematical morphology operations (Figure 5.1.B). Rough estimates for the location of shell,

air, kernel, and packing tissues were obtained based on density and object thickness information.

These tissueswere fully segmented using thewatershed segmentation algorithm (Falcao et al., 2004)

(Figure 5.1.C, E-H).We took particular care of tissue labeled as shell, wherewe distinguished voxels

on or close to the walnut surface, to voxels protruding into the internal cavity. We also labeled

apart voxels that were of similar exterior shell density and that comprised extraneous bulges (Figure

5.1.D). Some of the scanned walnuts contained incomplete or no kernel at all. These were discarded

from further morphological analysis, leaving us with a total of 1264 individual walnuts. All the
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Figure 5.1: Walnut scanning, image processing, and phenotyping. (A) Raw scans of individual
walnuts. (B) Densities were standardized across all samples and the external air removed. (C)
Shell, air, kernel, and packing tissue were automatically labeled with a combination of basic image
morphology operations and watershed segmentation. (D) The tissue labeled as shell was further
broken down into external shell, bulging, and protruding tissue. (E) 3D renders of shell, (F) air,
(G) packing tissue, and (H) kernel. (I) All the walnuts were centered on their center of mass and
aligned. (J) The same centering and alignment was applied to the kernels. All the figures above
are for illustration purposes only and are not scaled.
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image processing above was done automatically with in-house, scipy-based, python scripts.

To make somemeasurements comparable, all the walnuts were centered on their centers of mass

and rotated such that the lateral plane goes through the walnut seal, and the shell tip is the rightmost

point of the longitudinal plane (Figure 5.1.I.) The same center and rotation was immediately applied

to the kernel (Figure 5.1.J).

5.1.2 Walnut morphological traits and evaluation

For each individual we computed the same 14 morphological traits as in Bernard et al. (2020):

nut length, height, width, total surface area, total volume, rugosity, sphericity, shape VA3D,

equancy, shell volume, shell thickness, kernel volume, kernel filling ratio, and the empty space

volume. We computed an additional collection of 24 morphological traits for a total of 38 mea-

surements per sample. We computed the length, width, and height of the kernel, the volume of

protruding shell, inner bulging shell, packing tissue, the percentage of each tissue volume, and

Krumbein and Sneed sphericity indices (Blott and Pye, 2008). We also computed surface area

and volume of the nut’s convex hull, and their ratio between actual nut surface area and volume

respectively as a proxy for lobeyness. This computation was repeated for the kernel. (Table 5.1)

Since all the 38morphological traits are nonnegative, we used the quartile coefficient of variation

(QCD) to measure the numerical variability of each of them across the 1301 scans. We preferred the

QCD as it only depends on the 25th and 75th quartiles, making it robust against outliers compared

to the coefficient of variation (CV) (Bonett, 2006). We studied allometric relationships between

all size-specific morphological traits, that is, the relative growth of one feature with respect to

another one. It is a well-documented phenomenon that different tissues grow relative to each other

following a power law rather than a simple linear relationship (Niklas, 2004; West et al., 1999), so

we plotted our data in log-log plots (Figure 5.2). Due to this nonlinear relationships between traits,

we favored the computation of Spearman rather Pearson correlation coefficients between different

morphological phenotypes (Figure 5.3).

Ten walnuts were cracked open from each sample using a hammer. Ease of removal was scored

onto that each sample on an ordinal scale (1-9) as the ease with which intact kernel halves could be
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Table 5.1: Morphological traits measured. Traits organized by unit and walnut tissue involved.
Exp indicates formula or expression. Asterisk denotes not applicable.

Trait Exp Description Unit

Whole walnut
Length Lw Distance from base to tip mm
Width Ww Longest distance across the seal mm
Height Hw Longest distance perpendicular to the seal mm
Surface Aw Surface area of the actual nut mm2

Convex surface Acw Surface area of the convex hull of the nut mm2

Volume Vw Total volume of the actual nut, including air mm3

Convex volume Vcw Volume of the convex hull of the nut mm3

VA3D A3
w/(36πV2

w) Shape factor *
Feret Ratio Hw/Lw Inverse index of roundness *
Krumbein 3

√
WwHw/L2

w Index of roundness *
Sneed 3

√
H2
w/WwLw Index of roundness *

Sphericity 3
√

36πV2
w/Aw Wadell’s index of roundness *

Rugosity 1/sphericity Index of surface roughness *
Convex area ratio Acw/Aw Index of nonconvexity *
Convex vol ratio Vw/Vcw Index of nonconvexity *

Shell
Total Volume Vs Total volume of the shell mm3

External Volume Ve Volume of shell without protrusions or bulges mm3

Bulging Volume Vb Volume of shell-like tissue bulging into the walnut mm3

Protruding Vol Vp Volume of shell-like bits that protrude into cavity mm3

Thickness Ts Average thickness of the external section of the shell mm
Volume ratio Vs/Vw Percentage of shell with respect to the whole walnut %
External ratio Ve/Vs Percentage of the external section of the shell %
Bulging ratio Vb/Vs Percentage of shell-like tissue bulging into the walnut %
Protruding ratio Vp/Vs Percentage of tissue protruding into the cavity %

Kernel
Length Lk Distance perpendicular to the transverse plane mm
Width Wk Distance perpendicular to the longitudinal plane mm
Height Hk Distance perpendicular to the lateral plane mm
Surface Ak Surface area of the actual kernel mm2

Convex surface Ack Surface area of the convex hull of the kernel mm2

Volume Vk Total volume of the actual kernel mm3

Convex volume Vck Volume of the convex hull of the kernel mm3

Volume ratio Vk/Vw Percentage of kernel with respect to the whole walnut %
Convex area ratio Ack/Ak Index of nonconvexity *
Convex vol ratio Vk/Vck Index of nonconvexity *
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Table 5.1 (cont’d)
Trait Exp Description Unit

Packing tissue
Volume Vt Total volume of the packing tissue mm3

Volume ratio Vt/Vw Percentage of packing tissue %

Air
Volume Va Total volume of the air contained by the nut mm3

Volume ratio Va/Vw Percentage of air with respect to the whole walnut %

extracted, with lower numbers representing easier removal. At the same time, the physical walnuts

were cracked open and qualitative score was assigned to the ease of removal, shell integrity, shell

strength, and shell texture. We computed Kruskal-Wallis one-way analyses (Kruskal and Wallis,

1952) to determine which morphological phenotypes contribute the most to differentiate ease of

removal and shell strength scores. These results follow a conservative 10−10 false discovery rate

after performing a multiple test Benjamini-Hochberg correction (Benjamini and Hochberg, 1995).

A similar analysis of variation was performed to determine the morphological traits that are the

most different between one walnut accession and the rest of the scanned collection.

5.2 Results

Our scanned walnut collection reported overall stable values of sphericity indices, and surface

area and volume ratios with respect to their convex hull. This suggests that walnuts by and large

have similar overall shell shape, rugosity, and lobeyness. More specifically, we observe a very high

ratio of total nut volume to convex hull volume (0.95±0.01), so overall nut is very close to being

convex. However, nuts also exhibit a much lower ratio of total surface area to convex hull area

(0.63±0.01), which indicates that their shell surface is covered by numerous, thin grooves. At the

same time, walnuts reveal a especially large variability of shell tissue. In particular, the amount of

shell tissue that protrudes into the walnut inner cavity ranges from 0 to 206 mm3. This corresponds

to a QCD of almost 0.5, where the 75th quartile (41.5 mm3) is almost 3 times as large as the 25th

one (15.1 mm3). There is a similar large variation of reported values of shell tissue that bulges

inwards (Table 5.2).
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Table 5.2: Morphological trait values. Standard deviation, 25th quartile, 75th quartile, quartile
coefficient of dispersion, and coefficient of variance are indicated by SD, Q25, Q75, QCD, and CV
respectively. Traits sorted by QCD. Asterisk denotes not applicable.

Trait Units Mean + SD Range Q25 Q75 QCD CV
Nut Cvex Vol Ratio * 0.95 ± 0.01 0.86 — 0.98 0.95 0.97 0.01 0.02
Nut Cvex Area Ratio * 0.63 ± 0.01 0.49 — 0.66 0.63 0.64 0.01 0.02
External Shell Ratio % 0.94 ± 0.03 0.81 — 0.99 0.93 0.96 0.02 0.03
Shell Rugosity * 1.66 ± 0.06 1.56 — 2.30 1.62 1.69 0.02 0.03
Nut Sphericity * 0.60 ± 0.02 0.44 — 0.64 0.59 0.62 0.02 0.03
Sneed Index * 0.92 ± 0.03 0.83 — 1.00 0.90 0.94 0.02 0.03
Krumbein Index * 0.90 ± 0.05 0.75 — 1.00 0.87 0.93 0.04 0.05
Kernel Cvex A Ratio * 0.38 ± 0.02 0.30 — 0.53 0.36 0.40 0.04 0.06
Nut Feret Ratio * 1.21 ± 0.10 1.00 — 1.56 1.14 1.27 0.05 0.08
Kernel Cvex V Ratio * 0.56 ± 0.05 0.38 — 0.69 0.54 0.60 0.05 0.09
Nut Width mm 32.1 ± 2.87 23.1 — 45.4 30.2 33.7 0.06 0.09
Nut Height mm 33.4 ± 2.94 25.6 — 44.6 31.4 35.2 0.06 0.09
Nut VA3D * 4.59 ± 0.50 3.78 — 12.2 4.27 4.83 0.06 0.11
Kernel Height mm 28.2 ± 2.72 20.8 — 39.9 26.4 29.9 0.06 0.10
Kernel Length mm 30.4 ± 2.97 18.2 — 40.4 28.4 32.4 0.06 0.10
Kernel Width mm 24.8 ± 2.8 15.7 — 39.8 23.0 26.4 0.07 0.11
Nut Length mm 38.5 ± 4.10 26.3 — 53.2 35.7 41.2 0.07 0.11
Packing Vol Ratio % 0.13 ± 0.02 0.07 — 0.23 0.11 0.14 0.08 0.15
Kernel Vol Ratio % 0.34 ± 0.05 0.18 — 0.48 0.31 0.37 0.09 0.15
Nut Cvex Area mm2 3675 ± 609 2057 — 6067 3257 4044 0.11 0.17
Kernel Cvex Area mm2 2572 ± 427 1277 — 3934 2281 2847 0.11 0.17
Nut Area mm2 5799 ± 1011 3316 — 9978 5116 6401 0.11 0.17
Air Vol Ratio % 0.37 ± 0.07 0.14 — 0.61 0.32 0.41 0.12 0.18
Shell Thickness mm 0.88 ± 0.16 0.51 — 1.57 0.77 0.99 0.12 0.18
Kernel Area mm2 6773 ± 1276 2827 — 10991 5905 7595 0.13 0.19
Shell Vol Ratio % 0.16 ± 0.03 0.09 — 0.33 0.14 0.18 0.13 0.20
Nut Volume mm3 19560 ± 4757 7905 — 41132 16300 22235 0.15 0.24
Kernel Vol mm3 6565 ± 1589 2087 — 12232 5542 7650 0.16 0.24
Nut Cvex Vol mm3 20511 ± 5102 8470 — 43346 16932 23441 0.16 0.25
Packing Vol mm3 2476 ± 676 954 — 6321 2032 2815 0.16 0.27
Kernel Cvex Vol mm3 11680 ± 2900 4007 — 21761 9710 13501 0.16 0.25
External Shell Vol mm3 3001 ± 811 1020 — 6369 2418 3501 0.18 0.27
Shell Volume mm3 3188 ± 886 1139 — 7446 2568 3724 0.18 0.28
Air Volume mm3 7332 ± 2628 2126 — 21812 5520 8681 0.22 0.36
Bulge Shell Ratio % 0.05 ± 0.02 0.00 — 0.18 0.03 0.06 0.32 0.52
Prot Shell Ratio % 0.01 ± 0.01 0.00 — 0.07 0.01 0.01 0.41 0.81
Bulge Shell Vol mm3 155 ± 108 9.94 — 1073 81.2 199 0.42 0.70
Prot Shell Vol mm3 32.5 ± 26.8 0.00 — 206 15.1 41.5 0.47 0.82
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Figure 5.2: Various allometry plots between different logarithmic values of tissue volumes, areas,
and lengths compared to the total walnut volume. An ordinary least squares linear model was
computed for each case. The slope, intercept, and coefficient of determination for each linear
model is indicated by m, b, and R2 respectively.

We observe that most of the size-specific traits follow power laws with respect to the total nut

volume Vw, as our allometric log-log plots exhibit large R2 coefficients of determination (Figure

5.2). The size-related measurement that exhibits the most superlinear growth rate is the total air

volume contained inside the nut Va. Our data suggests that these two volumes follow the power law

Va ≈ exp(−3.17)V1.22
w . That is, as the nut volume increases, biophysical constraints require that the

air volume increases by a larger factor. However, the air volume must always be lower than the total

nut volume. Evaluating the extreme case of a hypothetical walnut consisting entirely of air, we find

that Vw = exp(−3.17)V1.22
w when Vw ≈ 2.3×106 mm3. This is the same volume of a 16cm diameter

sphere. We also highlight that with a R2 coefficient of determination very close to 1, the volume
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of the convex hull of the nut Vcw follows a superlinear growth rate with respect to Vw, the power

law Vcw = exp(−0.16)V1.02
w . Do notice that the constant factor, exp(−0.16) = 0.85 is less than 1,

so that if Vw < 2063mm3, then Vcw < Vw, which is impossible. In other words, our allometric

power law only holds for walnuts whose total volume is comparable to that of a 1.6cm diameter

sphere. This in turn suggests interesting biophysical growth patterns at the early developmental

stages of the walnut (Pinney and Polito, 1983; Zhao et al., 2016). Of important note is the fact that

kernel volume grows at a slightly sublinear rate with respect to total nut volume, with a power law

Vk = exp(0.19)V0.87
w . For instance, if the total nut volume is duplicated, then the kernel volume will

only increase by a factor of 20.87 ≈ 1.8, which already indicates that larger walnuts tend to have

smaller kernel percentages, while they also tend to contain higher air percentages.

The last observation is also supported by a high, negative Spearman correlation index (-0.78)

between the kernel and air volume ratios , and a smaller, negative index (-0.25) with nut volume.

We also observe that kernel ratio is positively correlated with its convex volume inverse ratio

(0.84) while negatively correlated with the convex area ratio (-0.65). There is also a small positive

correlation with walnut sphericity (0.25) and walnut convex volume inverse ratio (0.23) (Figure

5.4). This implies that walnuts that are smaller in volume, with smoother shells, and less grooves on

their surface tend to have a larger percentage of kernel with respect to its total size. This observation

agrees with Bernard et al. (2020). At the same time, kernel percentage is higher when its overall

shape is more convex and it present numerous deep but thin grooves. (Figure 5.4). For shell

thickness, we observe unsurprising high correlations with shell volume percentage (0.91), shell

total volume (0.78), and other shell-related measurements. There are also negative correlations

with air percentage (0.47) and nut sphericity (-0.20), which implies that nuts with thinner shells

tend to have smoother shells but a higher content of air. (Figure 5.4).

The morphological traits that explained the most variance for ease of removal were shell

thickness and shell, air, and packing tissue volume percentage. The amount of shell-like tissue that

bulges into the walnut cavity also appears to influence the ease of removal, as well as the volume

and surface area ratio of the kernel with respect to its convex hull. In general, unbroken kernel
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Nut Convex Area Ratio
Nut Sphericity
Nut Convex Volume Inverse Ratio
Packing Volume Ratio
Kernel Volume Ratio
Kernel Convex Volume Inverse Ratio
Krumbein Index
Sneed Index
External Shell Ratio
Air Volume Ratio
Kernel Convex Area Ratio
Shell Volume
External Shell Volume
Air Volume
Nut Length
Kernel Length
Nut Surface Area
Nut Volume
Nut Convex Surface Area
Nut Convex Volume
Nut Height
Nut Width
Kernel Height
Kernel Width
Packing Volume
Kernel Convex Volume
Kernel Convex Surface Area
Kernel Volume
Kernel Surface Area
Nut VA3D
Shell Rugosity
Nut Feret Ratio
Protruding Shell Ratio
Protruding Shell Volume
Shell Volume Ratio
Shell Thickness
Bulge Shell Ratio
Bulge Shell Volume

1.0

0.5

0.0

0.5

1.0

Spearman correlation

Figure 5.3: Spearman correlation for all phenotypes. Most of the overall nut size-related traits are
only positively correlated with kernel size-related traits as expected. All the shell-specific traits
are only positively correlated between themselves. All the sphericity, aspect ratio, and rugosity are
highly correlated only among themselves.
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Sneed Index
Packing Volume

Shell Volume
External Shell Volume
Packing Volume Ratio

Nut Width
Nut Height
Nut Length

Nut Convex Area Ratio
Nut Volume

Nut Convex Volume
Kernel Surface Area

Nut Convex Surface Area
Nut Convex Volume Inverse Ratio

Nut Surface Area
Nut Sphericity

Nut VA3D
Shell Rugosity
Kernel Volume

Air Volume
Kernel Convex Area Ratio

Air Volume Ratio
Kernel Convex Volume Inverse Ratio

Kernel Volume Ratio Spearman correlation

0.5 0.0 0.5

Kernel Surface AreaNut HeightNut WidthNut Convex Volume Inverse RatioAir VolumeNut VolumeKernel VolumeNut Convex VolumeKernel LengthNut Convex Surface AreaNut Surface AreaSneed IndexKrumbein IndexPacking VolumeNut Feret RatioNut Convex Area RatioNut VA3DNut SphericityShell RugosityKernel Convex Volume Inverse RatioNut LengthProtruding Shell VolumeExternal Shell RatioBulge Shell RatioAir Volume RatioBulge Shell VolumeExternal Shell VolumeShell VolumeShell Volume Ratio

Shell Thickness Spearman correlation

Figure 5.4: Highest Spearman correlation traits for kernel volume ratio and shell thickness. (A) All
the correlation coefficients highlighted in the barplots are statistically significant (p-value > 10−3).
(B) Different traits versus kernel filling ratio and (C) shell thickness. The Pearson and Spearman
correlation coefficients are denoted by r and s respectively.
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Figure 5.5: Morphological traits that explain the most variance across different qualitative groups
according to Kruskal-Wallis analyses. (A) Boxplots for different trait values according to the ease
of kernel removal and (B) shell strength of the walnut. Both qualitative traits are scored in an
increasing scale 3–8, where 3 indicates the easiest walnut to remove both kernel halves intact
and the least strong shell. All the highlighted traits are statistically significant after a 10−10 false
discovery rate correction.

halves are easier to remove for walnuts with thinner shells, with relatively little external and internal

shell and packing tissue content. The kernels are easier to extract when the nut contains a higher

percentage of air, and when they have deeper and wider grooves (Figure 5.5). For shell strength,

the morphological traits that explained it the most were unsurprisingly related to shell thickness,

volume, or relative percentage. We also noticed that shell is stronger for walnuts with lower relative

content of air and higher content of packing tissue. Up to a point, shell strength also seems to be

affected by kernel volume and walnut length (Figure 5.5).
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For both ease of removal and shell strength, we notice that in general the Himalayan Earliest

accession (the only one scoring 8 for both evaluations) consistently breaks a visual trend followed

by the rest of accessions and scores. Comparing the morphological features distributions of this

Himalayan accession with the rest of the collection reveals that this Himalayan accession has on

average a larger percentage of air content and a lower percentage of kernel and packing tissue

volume. This accession on average also has a higher kernel area ratio and lower kernel volume

inverse ratio with respect to its convex hull. This indicates that kernels of Himalayan accession

tend to have wider, deeper cavities, which most likely are filled with air. We did not find significant

distribution differences for the rest of morphological traits between the Himalayan accession and

the rest of the collection.

5.3 Discussion

The diversity, propagation, and diffusion of walnut populations offer an important window to

past climates and civilizations. Current genome sequencing data suggests that the common walnut

originated as an ancient hybrid in the late Pliocene, 3.45 million years ago, as a cross between

American and Asian Juglans lineages (Zhang et al., 2019). However, the Last Glacial Maximum

extinguished most of the walnut populations except for some located in select glacial refugia 18

thousand years ago (Aradhya et al., 2017). This cataclismic event imposed a severe bottleneck

effect on the walnut germplasm, reducing dramatically its effective population size (Ding et al.,

2022). These refugia were mostly separate pockets surrounded by mountainous terrain between

Southwestern China, the Qinghia-Tibet Plateu, and the Himalayas, regions that represent the core

of walnut genetic diversity (Luo et al., 2022). From there, humans propagated walnut populations

through trade following the Silk Road, dispersing the walnut all the way from the Iberian peninsula

to Southeastern China (Beer et al., 2008). There is plenty of observed phenotypic diversity within

a fixed walnut population, but surprisingly these variations are usually not sufficient to distinguish

geographically distant populations (Roor et al., 2017). It could be that morphological differences

across regions are too subtle to be captured by simple caliper measurements.

This difficulty to comprehensively measure walnut morphology is more pressing when trying

84



Figure 5.6: Main morphological differences between the Earliest Himalayan accession (1) and the
rest of the collection (0). (A) Boxplots of morphologhical traits that are the most different for the
Earliest accession. (B) Longitudinal plane view of kernel halves. The top two rows depict Earliest
kernels, while the bottom two rows depict other accessions. Notice that the bottom cavity tends to
be deeper and wider for the Earliest accession. All the highlighted traits are statistically significant
according to Kruskal-Wallis analyses of variance after a 10−5 false discovery rate correction.

85



to understand the fine-grained details that determine important traits of commercial concern (Du

and Tan, 2021). One such trait is the ease of removal of the kernel, how easy is to remove the

main two halves of walnut intact. A related trait is the shell strength and the fracture patterns

suffered by shells under pressure (Gülsoy et al., 2019). Multiple-pronged strategies have been

proposed and developed to unravel the underlying mechanisms that regulate shell thickness, shape,

and strength. Research on these traits has been approached from a genetics standpoint, such as

quantitative trait loci (QTL) and genome-wide association studies (GWAS) to identify transcription

factors and pathways that affect the shell and seal formation (Sideli et al., 2020; Wang et al., 2022).

Walnut shell behavior has been explored with numerical simulations, where walnuts are modeled

as thin spheres and biophysical mechanical properties are tested under unidirectional loads based

on finite-element analyses (Bao et al., 2022; Koyuncu et al., 2004). Recent exciting work has

focused on the shape of the polylobate sclerid individual cells that tesselate and conform the walnut

shell while forming intricate puzzles that confer remarkable toughness and strength (Antreich et

al., 2019; Zhang et al., 2014). This approach is then complemented with biochemical techniques

that seek to unravel the structural and compositional changes during walnut shell development, as

individual cells go from a soft to hard state (Antreich et al., 2021; Xiao et al., 2020).

X-ray CT scans allows us to accurately extract more nuanced shape and size features from our

sampled walnuts, providing new avenues to explore subtle morphological changes and implications.

For example, with more size-related features, we can compute better allometric relationships that

point to biophysical constraints in walnut growth development. In particular, we are able to draw

theoretical upper and lower bounds on walnut size. The growth of empty space within a walnut

outpaces the overall nut growth rate, which indicates that larger walnuts tend to contain a higher

proportion of air. At the same time, we observed that for small nuts, their total volume was almost

identical to the volume of their convex hulls. This implies that smooth, groove-free nuts must be

small. Moreover, this allometric relationship only holds for nut that are larger than a certain size,

which indicates that the growth dynamics of the nut undergo a regime change as the nut develops.

We also observe that the kernel volume grows at a slower rate than the total nut volume, which
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suggests that larger walnuts tend to contain less kernel tissue (Figure 5.2). Walnuts with more

relative kernel content tend to be smoother but the kernels themselves present more grooves that

are deeper and narrower. Walnuts with thinner shells tend to have smoother shells but a higher

content of air (Figure 5.4). All of the allometric observations and correlations above suggest that

walnut and kernel sizes and smoothness are not just dependent on genes and environment, but there

are also unavoidable biophysical constraints at play that should be explored further and considered

by breeding programs (Niklas and Hammond, 2019).

Our extended list of measured phenotypes also offers new insight to qualitatively assessed traits.

We highlight traits related to packing tissue, contained air, or convexity ratios, as they are difficult

or impossible to measure with traditional tools. To the best of our knowledge, this is the first time

that such traits are completely quantified. Packing tissue is commercially relevant, as its filling ratio

seems to affect the ease of kernel removal and shell strength. Nuts with high relative content of

packing tissue tend to have stronger shells and present more difficulties to remove kernels (Figure

5.5). This confirms previous reports on moderate correlations between packing tissue thickness

and ease of kernel removal (Fallah et al., 2022; Kouhi et al., 2020). The convexity of kernel also

appears to play an important role in the cracking mechanics of the nut. The hardest walnut to crack

in the collection reported very average size and shape measurements except for subtle differences

in the kernel’s main cavity at the proximal end. This cavity might act as a clamp under pressure,

which could explain the harness to crack this particular accession open. This might suggest that

the easiness of kernel removal and shell integrity might not be solely dependent on shell thickness

and volume, but also on shape characteristics of the rest of nut tissues. Moreover, this uniquely

clamp-shaped kernels are closely related to wild type accessions from the Himalayas, one of the

areas with the highest diversity of walnut germplasm (Shah et al., 2021).

Walnuts offer a especially unique opportunity to analyze domestication in perennial crops. De-

spite their long history with humans, current research suggests that walnut domestication happened

less than 100 years ago (Mapelli et al., 2018). Even today, due to economical and horticultural

reasons, walnut is propagated through via seeds and not grafting throughout most of Southwest
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Asia (Rezaee et al., 2008; Thapa et al., 2021). This makes walnut an exciting organism to study the

immediate effects of domestication and breeding in real time across multiple populations. A care-

ful, nuanced study of kernel morphology might provide us key insights into domestication-induced

morphological changes, and accelerate the selection of progenitors in breeding programs.
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CHAPTER 6

CONCLUDING REMARKS

All the plants out here are malevolent, heavy and sharp. The parts of

the palms above the fronds are tufted in sick stuff like coconut-hair.

Roaches and other things live in the trees. Rats, maybe. Loathsome

high-altitude critters of all kinds. All the plants either spiny or

meaty. Cacti in queer tortured shapes. The tops of the palms like

Rod Stewart’s hair, from days gone by.

—from Infinite Jest

David Foster Wallace

6.1 Conclusion

In this dissertation we presented three different project, each with a novel way to compre-

hensively encode and compare the diverse morphology found in the plant biology domain. The

three of our applications focus on the quantification of shape based from high-resolution 3D X-ray

CT scan reconstructions. The non-destructive and thorough nature of X-rays allowed us to fully

extract barley seeds from their panicles without worrying about occlusion; it allowed us to examine

different fruit tissues from citrus; and it was key to measure the walnut kernels before cracking

the shell open. Traditional and modern morphometrics has a number of drawbacks with respect

to X-ray CT images. Landmark-based morphometrics requires homologous points and, although

3D and higher dimensional analysis is possible, it is usually applied to 2D images (Dryden and

Mardia, 2016). Further, a geometric framework is limited to the relationship of data points to each

other. Landmark-based approaches reduce the shape information to a relatively small and possibly

subjective collection of points, which can be further restricted if there are no obvious homologous

landmarks across all samples. Fourier-based outlines are limited to the analysis of 2D images

and are not suitable for inputs in higher dimensions. We thus turned to algebraic topology and

directional statistics.
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Our results on the quantification of barley seed morphology shows that the Euler characteristic

is a simple yet powerful way to reveal features not readily visible to the naked eye. There is

“hidden” morphological information that traditional and geometric morphometric methods are

missing. The Euler characteristic, and Topological Data Analysis (TDA) in general, can be readily

computed from any given image data, which makes it a versatile tool to use in a vast number of

biology-related applications. TDA provides a comprehensive framework to detect and compare

morphological nuances, nuances that traditionalmeasures fail to capture and that remain unexplored

using simple geometric methods. In the specific case of barley seeds presented here, these “hidden”

shape nuances provide enough information to not only characterize specific accessions, but the

individual spikes from which seeds are derived. Our results suggest a new exciting path, driven by

morphological information alone, to explore further the phenotype-genotype relationship.

TDA is just one of the novel mathematical domains that can be used to further our biological

insight. There is rich shape information in the natural world to be captured, analyzed, and linked

to biophysical developmental and evolutionary principles. Sound mathematical models are key

to uncover these biophysical interactions at work. For example, even with a limited number of

points, overall fruit shapes can be approximated with various quadratic surfaces like ellipsoids.

Given the appropriate parameters, an ellipsoid can represent both nearly spherical navel oranges,

and elongated finger limes. This quadratic surface approximation is mathematically versatile and

computationally simple, and can be applied to other round-shaped biologically-motivated data.

Moreover, ellipsoid coordinates can be translated naturally to longitudes and latitudes on a sphere,

which opens the door to a wide array of mathematical tools from directional statistics. Some of

those tools, like density estimations, hypothesis testing, and distribution fitting, allow us to quantify

shape in a mathematically rigorous and comprehensive way.

Our results for each of the three projects presented suggest extremely exciting future research,

in both mathematical and biological lines.
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6.1.1 Further exploration with ECT

TheECThas proved to be an extremely powerfulmorphological descriptor of grain shape. There

are a number of topics to explore with respect to the implementation of this novel approach, both

theoretically and empirically. For instance, exploring how our predictions might change if we pick

uniformly randomly distributed directions —or according to any other probability distribution—

instead of polar-biased ones. There is also more research to be done into alternatives to determine

which 3D shape features are the most relevant to distinguish inter-accession characteristics. One

possibility is running our results through established statisitical pipelines like SINATRA to uncover

such features (Wang et al., 2021). We can also explore how our barley classification results might

change with variants of ECT, such as the Smooth ECT (Crawford et al., 2020), Weighted ECT

(Jiang et al., 2020), or Euler Characteristic Surfaces (Beltramo et al., 2022).

6.1.2 Brewing barley genomics into the topological party

There is extensive literature to understand the underlying genetic mechanisms that allow bar-

ley’s tremendous versatility (Hockett and Nilan, 1985; Mascher et al., 2017; Sato, 2020). The

combination of genomics with archaeology has revealed important patterns of its domestication

and its intimate relationship with ancient civilizations (Mascher et al., 2016; Russell et al., 2016).

The historical and geographical diversity makes barley an ideal organism to understand the genetic

adaptations to tillering (Komatsuda et al., 2007), UV intensity, changes in sunlight availability, and

flowering time (Dawson et al., 2015), and more importantly, to understand how these adaptations

relate to total grain weight, which is a crucial trait to develop better cereal crops (Liller et al., 2015).

For our historical composite cross barley population, we have access to genome-wide genotypic

data for 850 progeny using a RADseq reduced representation approach (Baird et al., 2008), allowing

us to score over 200,000 polymorphic sites in each individual. RADseq has proved to be a powerful

approach to sequence organisms with large genomes with limited sequence data. Combined with

high-density linkage maps, RADseq has been able to map QTLs responsible for chlorophyl-related

traits in soybean (Wang et al., 2020), fiber quality in hemp (Petit et al., 2020), and agronomic traits

(such as panicle length and average grain weight) in grasses such as foxtail millet (Wang et al.,
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2017). RADseq has been especially powerful when it comes to study how a particular trait has

evolved among large and diverse populations (Davey and Blaxter, 2011). RADseq combined with

genome-wide association studies (GWAS) has unveiled important polymorphic regions responsible

for caffeine content during the domestication of multiple tea plants (Yamashita et al., 2020), seed

size during domestication of soybean (Zhou et al., 2015), and has further our knowledge of the

population structure of sesame accessions across four continents (Basak et al., 2019).

There is a fine relationship between barley genome and barley morphology, especially about

the specifics on the domestication of barley shape. Important ongoing work explores patterns and

relationships between our computed topological signatures and different genetic loci acrossmultiple

filial generations usingRADseq reads, heritability analyses, andGWAS. Current preliminary results

have already yielded candidate loci that can be further explored for synteny among other barley

accessions and even among other related grasses like wheat or rye.

6.1.3 If life gives you lemons, determine distances between their oil gland distributions

As discussed at the end of Chapter 4, directional statistical tests strongly reject the hypothesis

that citrus oil glands follow a uniform, rotationally symmetric, or any otherwell-studied distribution.

An alternative to mathematically characterize oil gland distributions is to turn to non-parametric

approaches based on spherical kernel density estimators (Di Marzio et al., 2019; Vuollo and

Holmström, 2018). Then we can measure numerically the distance between two nonparametric

spherical density functions (Boente et al., 2014) and compute a pairwise distance matrix. Another

alternative to comprehensively describe oil gland distributions is to compute persistent homology

directly on the point cloud defined by the oil gland centers (Figure 4.4). This way we do not

have to resort to deformations induced by ellipsoidal approximations. Once every fruit oil gland

distribution is summarized as a persistence diagram, there are many well established pipelines to

compute a matrix of pairwise distances. Specifically, we can compute bottleneck distances between

diagrams, or transform such diagrams into more mathematically amenable objects like persistence

landscapes (Bubenik, 2015), persistence images (Adams et al., 2017), or tent functions (Perea et

al., 2022; Tymochko et al., 2019) to name a few examples. In either case, we can then compare
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citrus phylogenetic distances with oil gland distribution distances. This would ultimately provide

us with novel insight into fruit development.

There is also future work to be done in terms of citrus breeding. We can link our morphological

characterization of citrus oil gland distribution with commercially important traits, such as acidity,

sweetness, skin response to mechanical injuries, or amount of oil extracted to name a few examples.

6.1.4 The morphology of domestication: a hard nut to crack

As discussed inChapter 5, wewere initially puzzled by the fact that Earliest Himalayan accession

initial results. It was the hardest accession to crack open and it is essentially impossible to extract

their kernel intact. However, their morphological trait values are close to the population average,

which clearly breaks visual trends when relating shape phenotypes with qualitative data (Figure

5.5). Moreover, current literature highlights that individual phenotype variation of walnuts is high

within a given population, but not so much between physically distant populations (Mapelli et al.,

2018; Roor et al., 2017). At the same time, the Himalayas are reported to be one of the main

hotspots for walnut germplasm diversity (Luo et al., 2022; Shah et al., 2021), while the rest of

the collection is mainly homozygous (Aradhya et al., 2010). A closer look at trait distributions

reveals that this Earliest Himalaya accession can be distinguished from the rest of the collection by

relatively lower content of packing tissue, a relatively higher content of air, and distinct convexity

indices (Figure 5.6). Preliminary results suggest that the Earliest accession kernel has a distinctive

wide, deep cavity at its proximal end. To the best of our understanding, this specific traits, packing

tissue volume and convexity indices, have never been measured. The cavity at the proximal end

offers new research directions aimed at unraveling its specific development mechanics from both

genetical and biophysical points of view.

This new cavity also suggests that it is possible to characterize the morphology of physically

separate populations. We just need more comprehensive and fine-tuned morphological descriptors.

Walnut kernels have tortuous, polylobed morphologies that no set of traditional shape descriptors

will every fully capture. An exciting future direction is to analyze these intricate shapes with TDA,

specifically with the ECT like in Chapter 3 or a similar technique. This in turn might shed new light
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into broader morphological changes for perennial crops in general when they are domesticated.

In general, capturing and analyzing this nuanced shape information for a wide array of data sets

provides a morphology-driven path to further our insight into phenotype-genotype relationships.

As stated by D’Arcy Thompson in his seminal biomathematical treatise On Growth and Form

(1942),

An organism is so complex a thing, and growth so complex a phenomenon, that for

growth to be so uniform and constant in all the parts as to keep the whole shape

unchanged would indeed be an unlikely and an unusual circumstance. Rates vary,

proportions change, and the whole configuration alters accordingly.

94



BIBLIOGRAPHY

Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S,
Hanson E, Motta F, Ziegelmeier L (2017). Persistence images: A stable vector representation
of persistent homology. Journal of Machine Learning Research 18(8): 1–35.

Akca Y, Şen SM (1995). The relationship between dichogamy and yield–nut characteristics in
Juglans regia L. In Acta Horticulturae, Volume 442, pp. 215–216. Leuven, Belgium: Interna-
tional Society for Horticultural Science (ISHS).

Amézquita EJ, Nasrin F, Storey KM, YoshizawaM (2022). Genomics data analysis via spectral
shape and topology. Preprint.

Amézquita EJ, Quigley MY, Ophelders T, Landis JB, Koenig D, Munch E, Chitwood DH
(2021). Measuring hidden phenotype: quantifying the shape of barley seeds using the Euler
characteristic transform. in silico Plants 4(1): diab033.

Amézquita EJ, QuigleyMY, Ophelders T,Munch E, Chitwood DH (2020). The shape of things
to come: Topological data analysis and biology, from molecules to organisms. Developmental
Dynamics 249(7): 816–833.

Amézquita EJ, Quigley MY, Ophelders T, Seymour D, Munch E, Chitwood DH (2022). The
shape of aroma: Measuring and modeling citrus oil gland distribution. Plants, People, Planet 0:
1–14.

Andrade-Sanchez P, Gore MA, Heun JT, Thorp KR, Carmo-Silva AE, French AN, Salvucci
ME, White JW (2013). Development and evaluation of a field-based high-throughput pheno-
typing platform. Functional Plant Biology 41(1): 68–79.

Antreich SJ, XiaoN,Huss JC,GierlingerN (2021). A belt for the cell: cellulosic wall thickenings
and their role in morphogenesis of the 3D puzzle cells in walnut shells. Journal of Experimental
Botany 72(13): 4744–4756.

Antreich SJ, Xiao N, Huss JC, Horbelt N, Eder M, Weinkamer R, Gierlinger N (2019). The
puzzle of the walnut shell: A novel cell type with interlocked packing. Advanced Science 6(16):
1900644.

AradhyaM, Velasco D, Ibrahimov Z, Toktoraliev B,Maghradze D,MusayevM, Bobokashvili
Z, Preece JE (2017). Genetic and ecological insights into glacial refugia of walnut (Juglans
regia L.). PLOS ONE 12(10): 1–27.

Aradhya M, Woeste K, Velasco D (2010). Genetic diversity structure and differentiation in culti-
vated walnut (Juglans Regia L.). In Acta Horticulturae, Number 861, pp. 127–132. International
Society for Horticultural Science (ISHS), Leuven, Belgium.

95



Araus JL, Cairns JE (2014). Field high-throughput phenotyping: the new crop breeding frontier.
Trends in Plant Science 19(1): 52–61.

Atienza N, Escudero LM, Jimenez MJ, Soriano-Trigueros M (2019). Characterising epithelial
tissues using persistent entropy. In Marfil R, Calderón M, Díaz del Río F, Real P, Bandera A
(Eds.), Computational Topology in Image Context, pp. 179–190. Cham: Springer International
Publishing.

Atkinson JA, Pound MP, Bennett MJ, Wells DM (2019). Uncovering the hidden half of plants
using new advances in root phenotyping. Current Opinion in Biotechnology 55: 1–8. Analytical
Biotechnology.

Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao
Y, Johnston IG et al. (2021). What is quantitative plant biology? Quantitative Plant Biology 2:
e10.

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA,
Johnson EA (2008). Rapid SNP discovery and genetic mapping using sequenced RADmarkers.
PLOS ONE 3(10): 1–7.

Bao X, Chen B, Dai P, Li Y, Mao J (2022). Construction and verification of spherical thin shell
model for revealing walnut shell crack initiation and expansion mechanism. Agriculture 12(9).

Baron JH (2009). Sailors’ scurvy before and after James Lind — a reassessment. Nutrition
Reviews 67(6): 315–332.

Barry GH, Caruso M, Gmitter FG (2020). Chapter 5 - Commercial scion varieties. In Talon M,
Caruso M, Gmitter FG (Eds.), The Genus Citrus, pp. 83–104. Woodhead Publishing.

Basak M, Uzun B, Yol E (2019). Genetic diversity and population structure of the Mediterranean
sesame core collection with use of genome-wide SNPs developed by double digest RAD-Seq.
PLOS ONE 14(10): e0223757.

Bauer U (2021). Ripser: efficient computation of Vietoris–Rips persistence barcodes. Journal of
Applied and Computational Topology 5(3): 391–423.

Beer R, Kaiser F, Schmidt K, Ammann B, Carraro G, Grisa E, Tinner W (2008). Vegetation
history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin?
Quaternary Science Reviews 27(5): 621–632.

Belchi F, Pirashvili M, Conway J, Bennett M, Djukanovic R, Brodzki J (2018). Lung topology
characteristics in patients with chronic obstructive pulmonary disease. Scientific Reports 8(5341).

Belton RL, Fasy BT, Mertz R, Micka S, Millman DL, Salinas D, Schenfisch A, Schupbach J,
WilliamsL (2020). Reconstructing embedded graphs from persistence diagrams. Computational

96



Geometry 90: 101658.

Beltramo G, Skraba P, Andreeva R, Sarkar R, Giarratano Y, Bernabeu MO (2022). Euler
characteristic surfaces. Foundations of Data Science 4(4): 505–536.

Bendich P, Edelsbrunner H, Kerber M (2010). Computing robustness and persistence for
images. IEEE Transactions on Visualization and Computer Graphics 16(6): 1251–1260.

Bendich P, Marron JS, Miller E, Pieloch A, Skwerer S (2016). Persistent homology analysis of
brain artery trees. Ann. Appl. Stat. 10(1): 198–218.

Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 57(1): 289–300.

Bernard A, Hamdy S, Le Corre L, Dirlewanger E, Lheureux F (2020). 3D characterization of
walnut morphological traits using X-ray computed tomography. Plant Methods 16(1): 115.

Bernard A, Lheureux F, Dirlewanger E (2017). Walnut: past and future of genetic improvement.
Tree Genetics & Genomes 14(1): 1.

Betthauser LM (2018). Topological reconstruction of grayscale images. Ph. D. thesis, University
of Florida, Gainesville, Florida.

Blott SJ, Pye K (2008). Particle shape: a review and new methods of characterization and
classification. Sedimentology 55(1): 31–63.

Boente G, Rodriguez D, Manteiga WG (2014). Goodness-of-fit test for directional data. Scan-
dinavian Journal of Statistics 41(1): 259–275.

Bonett DG (2006). Confidence interval for a coefficient of quartile variation. Computational
Statistics & Data Analysis 50(11): 2953–2957.

Bonhomme V, Forster E, Wallace M, Stillman E, Charles M, Jones G (2017). Identification of
inter- and intra-species variation in cereal grains through geometric morphometric analysis, and
its resilience under experimental charring. Journal of Archaeological Science 86: 60–67.

Bookstein FL (1997).Morphometric Tools for Landmark Data: Geometry and Biology. Geometry
and Biology. Cambridge: Cambridge University Press.

Booth S, Kurtz B, de Heer MI, Mooney SJ, Sturrock CJ (2020). Tracking wireworm bur-
rowing behaviour in soil over time using 3D X-ray computed tomography. Pest Management
Science 76(8): 2653–2662.

Bouby L (2001). L’orge à deux rangs (Hordeum distichum) dans l’agriculture gallo-romaine :

97



données archéobotaniques. ArchéoSciences, revue d’Archéométrie 25: 35–44.

Bubenik P (2015). Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research 16(3): 77–102.

Bucksch A, Atta-Boateng A, Azihou AF, Battogtokh D, Baumgartner A, Binder BM, Bray-
brook SA, Chang C, Coneva V, DeWitt TJ et al. (2017). Morphological plant modeling:
Unleashing geometric and topological potential within the plant sciences. Frontiers in Plant
Science 8.

Burges CJ (1998). A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery 2(2): 121–167.

Cámara PG (2017). Topological methods for genomics: Present and future directions. Current
Opinion in Systems Biology 1: 95–101. Future of Systems Biology • Genomics and epigenomics.

Cámara PG, Rosenbloom DI, Emmett KJ, Levine AJ, Rabadán R (2016). Topological
data analysis generates high-resolution, genome-wide maps of human recombination. Cell
Systems 3(1): 83–94.

Cang Z, Mu L, Wei GW (2018). Representability of algebraic topology for biomolecules in
machine learning based scoring and virtual screening. PLOS Computational Biology 14(1):
1–44.

Cang Z, Wei GW (2018). Integration of element specific persistent homology and machine
learning for protein-ligand binding affinity prediction. International Journal for Numerical
Methods in Biomedical Engineering 34(2): e2914. e2914 cnm.2914.

Caruso M, Smith MW, Froelicher Y, Russo G, Gmitter FG (2020). Chapter 7 - Traditional
breeding. In Talon M, Caruso M, Gmitter FG (Eds.), The Genus Citrus, pp. 129–148. Woodhead
Publishing.

Chan JM, Carlsson G, Rabadán R (2013). Topology of viral evolution. Proceedings of the
National Academy of Sciences 110(46): 18566–18571.

Chazal F, Fasy B, Lecci F, Michel B, Rinaldo A, Rinaldo A, Wasserman L (2017). Robust
topological inference: Distance to a measure and kernel distance. J. Mach. Learn. Res. 18(1):
5845–5884.

Chitwood D, Sinha N (2016). Evolutionary and environmental forces sculpting leaf development.
Current Biology 26(7): R297–R306.

Chitwood DH, EithunM,Munch E, Ophelders T (2019). Topological mapper for 3D volumetric
images. InBurgeth B, KleefeldA,Naegel B, Passat N, Perret B (Eds.),MathematicalMorphology
and Its Applications to Signal and Image Processing, pp. 84–95. Cham: Springer International

98



Publishing.

Choat B, Nolf M, Lopez R, Peters JMR, Carins-Murphy MR, Creek D, Brodribb TJ (2018).
Non-invasive imaging shows no evidence of embolism repair after drought in tree species of two
genera. Tree Physiology 39(1): 113–121.

Chudhary Z, Khera RA, Hanif MA, Ayub MA, Hamrouni L (2020). Chapter 49 – Walnut. In
Hanif MA, Nawaz H, Khan MM, Byrne HJ (Eds.),Medicinal Plants of South Asia, pp. 671–684.
Elsevier.

Chung Y, Hu C, Lawson A, Smyth C (2018). Topological approaches to skin disease image
analysis. In 2018 IEEE International Conference on Big Data (Big Data), pp. 100–105. Seattle,
WA: IEEE.

Clayton CRI, Abbireddy COR, Schiebel R (2009). A method of estimating the form of coarse
particulates. Géotechnique 59(6): 493–501.

Cohen-Steiner D, Edelsbrunner H, Harer J (2007). Stability of persistence diagrams. Discrete
& Computational Geometry 37(1): 103–120.

Conover WJ (1998). Practical Nonparametric Statistics (3rd ed.). Wiley Series in Probability
and Statistics. New York: Wiley.

Corey AT (1949). Influence of shape on fall velocity of sandgrains. Master’s thesis, Colorado
Agricultural and Mechanical College, Fort Collins, CO.

Crawford L, Monod A, Chen AX, Mukherjee S, Rabadán R (2020). Predicting clinical
outcomes in glioblastoma: An application of topological and functional data analysis. Journal
of the American Statistical Association 115(531): 1139–1150.

Curry J, Mukherjee S, Turner K (2022). How many directions determine a shape and other
sufficiency results for two topological transforms. Transactions of the American Mathematical
Society Series B 9: 1006–1043.

Davey JW, Blaxter ML (2011). RADSeq: next-generation population genetics. Briefings in
Functional Genomics 9(5-6): 416–423.

Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R (2015). Barley: a
translational model for adaptation to climate change. New Phytologist 206(3): 913–931.

Deng X, Yang X, Yamamoto M, Biswas MK (2020). Chapter 3 - Domestication and history. In
Talon M, Caruso M, Gmitter FG (Eds.), The Genus Citrus, pp. 33–55. Woodhead Publishing.

Di Marzio M, Fensore S, Panzera A, Taylor CC (2019). Kernel density classification for
spherical data. Statistics & Probability Letters 144: 23–29.

99



Diaz-Gárcia L, Covarrubias-Pazaran G, Schlautman B, Grygleski E, Zalapa J (2018). Image-
based phenotyping for identification of QTL determining fruit shape and size in american
cranberry (Vaccinium macrocarpon L.). PeerJ 6(e5461): e5461.

Diaz-Toca GM, Marin L, Necula I (2020). Direct transformation from Cartesian into geodetic
coordinates on a triaxial ellipsoid. Computers & Geosciences 142: 104551.

Ding YM, Cao Y, Zhang WP, Chen J, Liu J, Li P, Renner SS, Zhang DY, Bai WN (2022).
Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into
iron walnut during domestication. Genome Biology 23(1): 145.

Dryden IL, Mardia KV (2016). Statistical Shape Analysis with Applications in R (2 ed.).
Chichester, West Sussex, England: John Wiley & Sons Ltd.

Du F, Tan T (2021). Recent studies in mechanical properties of selected hard-shelled seeds: A
review. JOM 73(6): 1723–1735.

Emmett K, Rosenbloom D, Cámara P, Rabadán R (2014). Parametric inference using persis-
tence diagrams: A case study in population genetics. In Proceedings of the 31st International
Conference on Machine Learning, Volume 32. Beijing, China: W&CP.

Emmett KJ, Rabadán R (2014). Characterizing scales of genetic recombination and antibiotic
resistance in pathogenic bacteria using topological data analysis. In Ślȩzak D, Tan AH, Peters
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APPENDIX A

BARLEY APPENDIX
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Figure A.1: Distribution of the 3121 seeds according to their accession. The seed number values
as in Table 3.1 have empirical mean µ̄ = 111.46 and empirical standard deviation σ̄ = 42.21. A
normal distribution with these parameters is drawn on top of the histogram. Observe that all the
accession seed numbers are within two standard deviations.
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Figure A.2: Classification results for traditional shape descriptors. After centering and scaling the
traditional shape descriptors, we used PCA to reduce their dimension and then performed an SVM
classification with these dimension-reduced vectors. We observe that the highest classification F1
scores correspond to the use of almost all the traditional dimensions.
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Figure A.3: Classification results for combined and topological shape descriptors computed for
different choices of parameters.
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FigureA.3 (cont’d): a
Classification results for combined and topological shape descriptors computed for different
choices of parameters. To evaluate the ECT descriptiveness, we sought to use these ECT vectors
to classify 28 different barley accessions based solely on seed morphology. The ECT was
computed for different number of directions and thresholds. These high-dimensional vectors
were later reduced to different number of dimensions using both KPCA and UMAP. Observe that
both dimension reduction techniques summarize the ECT information in very different ways, as
evidenced by the different SVM classification F1 scores when using (A) exclusively topological
information or (B) combining both topological and traditional seed shape descriptors.
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Figure A.4: Relevant ECT directions and slices. (A) We examine the inter-spike and intra-spike
variance differences of the Euler characteristic for each direction and threshold. A Kruskal-
Wallis analysis combined with a Benjamini-Hochberg multiple test correction suggests a number
of discerning slices across accessions. (B) These directions and thresholds are mostly concentrated
around the poles, similar to the case of inter- and intra-accession variance case (Figure 3.4).
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Figure A.5: Relevant combined descriptors. Dimension-reduced topological vectors were concate-
nated with tradtional shape descriptors to produce combined descriptors. Kruskal-Wallis analyses
reveal which descriptors explain the most inter-accession variance when the ECT was reduced in
dimension with (A) KPCA, and (B) UMAP. Similar analyses also reveal which features contribute
the most to inter-spike variance when the ECT vector was reduced with (C) KPCA, and (D) UMAP.
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APPENDIX B

CITRUS APPENDIX

B.1 Supporting figures
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Figure B.1: Comparing the effect of different scan resolutions. A negative R2 value suggests no
correlation between the scan resolution and the number of oil glands extracted. Nonetheless, there
is a possible correlation between scan resolution and oil gland density.
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Figure B.2: Analysis of the distribution of residuals. The left side of each column are the residuals
of the fitted linear regression from Figure 4.2. The right side of each column shows the distribution
of these residuals. For some of these measurement pairs of traits, the residuals follow a normal
distribution, suggesting that the linear fit in the log-log plots is adequate.
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Figure B.3: Allometry plots for all possible pairs of measured phenotypes. Different citrus species
are denoted with different markers.
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FigureB.3 (cont’d): a
Allometry plots for all possible pairs of measured phenotypes. Different citrus species are denoted
with different markers.We observe a strong allometric relationship between different tissue
volumes. However, this relationship is missing when comparing the total number of oil glands to
all tissue volumes, suggesting that the number of glands is decoupled from these volume traits. The
best fit line is depicted by a dashed line in blue. For each plot, the slope, intercept, and correlation
coefficient are recorded as m, b, and R2 respectively. The linear relationship in the log-log plots
suggests that fruit tissue volumes may grow following a power law.
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Analyses of residuals after linear fitting of log-log allometric plots

Figure B.4: Analysis of the distribution of residuals as in Figure B.2. The left side of each column
depicts residuals of the linear fit as in Figure B.3. The right side of each column shows the
distribution of these residuals. For some of these measurement pairs of traits, the residuals follow
a normal distribution, suggesting that the linear fit in the log-log plots is adequate.

122



log Vol(Whole) [cm3]
0.4

0.2

0.0

0.2

log Vol(Whole) vs log(Avg dist to nearest neigh)

N(0, 0.142)

0 2 4 6
log Vol(Exocarp) [cm2]

0.25

0.00

0.25

0.50
log Vol(Exocarp) vs log(Avg dist to nearest neigh)

0 2
Density

N(0, 0.162)

log (Oil gland density per volume) [glands/cm3]

0.4

0.2

0.0

0.2
log(Density per vol) vs log(Avg dist to NN)

N(0, 0.082)

2 3 4 5 6 7 8
log (Oil gland density per area) [glands/cm2]

0.4

0.2

0.0

0.2
log(Density per area) vs log(Avg dist to NN)

0.0 2.5 5.0
Density

N(0, 0.102)

R
es

id
ua

ls
R

es
id

ua
ls

Analyses of residuals after linear fitting of log-log allometric plots

Figure B.5: Analysis of the distribution of residuals. The left side of each column depicts residuals
of the linear fit as in Figure 4.3.A. The right side of each column shows the distribution of these
residuals. For some of these measurement pairs of traits, the residuals follow a normal distribution,
suggesting that the linear fit in the log-log plots is adequate.
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Figure B.6: Testing whether the oil glands are distributed uniformly or rotationally symmetric
on the surface of the fruits. (A) p-values after testing if the underlying oil gland distribution is
not uniform according to projected Anderson-Darling (PAD) test. (B) p-values after testing if the
underlying oil gland distribution is not rotationally symmetric according to the scatter-location
hybrid test. Red line at α = 0.05 in all plots.

123



B.2 Supporting tables

Table B.1: A total of 166 different individual citrus fruits were scanned comprising 51 citrus accessions to represent modern cultivated
citrus types as well as the species contributing ancestry to each group. All the shape and size analyses focused on a subset of these
accessions, as indicated in Table 4.1. Names, identifiers, locations, and notes according to the University of California Givaudan Citrus
Variety Collection (CVC). The N column indicates the number of pseudoreplicate fruits scanned per accession. Asterisk denotes not
available.

ID CVC_Name Scientific Name Type Location N
2317 Limon Real Citrus excelsa Wester Lemon 18B-18-9 4
3919 Lamas lemon Citrus limon L. Burm.f. Lemon 18A-24-1 3
3593 Interdonato lemon o.p. seedling Citrus limon L. Burm.f. Lemon-Hybrid 18A-8-3 3
3005 Frost nucellar Eureka lemon Citrus limon L. Burm.f. Eureka-type Lemon 18B-37-1 3
3050 Volckamer lemon o.p. seedling Citrus volkameriana Rough Lemon 18B-29-1 3
1482 Palestine sweet lime (Indian sweet lime) Citrus limettiodes Tan. Lime-Sweet 18B-27-7 3
661 Indian citron o.p. seedling (Zamburi) Citrus medica L. Citron-Hybrid 18B-13-7 3
3546 South Coast Field Station citron Citrus medica L. Citron 18A-5-3 3
3226 Scarlet Emperor mandarin o.p. seedling

Pankan
Citrus reticulata Blanco Mandarin 12B-27-1 3

3812 * Citrus reticulata o.p. seedling Mandarin 12B-29-1 3
3851 Lee mandarin (Clementine X Orlando) Citrus reticulata Blanco RU-

TACEAE
Mandarin 12B-25-9 3

3752 Som Keowan o.p. seedling Citrus reticulata Blanco Mandarin 12B-28-7 3
3958 Koster tangor Citrus reticulata Blanco Tangor Mandarines 12A-23-13 3
3844 Cleopatra mandarin o.p. seedling Citrus reshni hort. ex Tanaka RU-

TACEAE
Mandarin 12B-31-1 3

3363 Beledy mandarin o.p. seedling Citrus reticulata Blanco Mandarin 12B-23-1 4
3991 USDA 88-2 (Lee X Nova) Citrus reticulata Blanco Mandarin-Hybrid 12A-22-13 3
3816 Kinkoji Unshiu (graft hybrid of C. obovoidea

+ Satsuma)
Citrus neo-aurantium Mandarin-Hybrid 12B-24-11 3

3558 Fremont mandarin Citrus reticulata Blanco RU-
TACEAE

Mandarin 12B-23-15 3

3781 Tahitian pummelo X Star Ruby grapefruit Citrus paradisi Macfadyen Pummelo-Hybrid 12A-31-9 3
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Table B.1 (cont’d)
ID CVC_Name Scientific Name Type Location N
4026 Pomelit pummelo hybrid (Djeroek Deleema

Kopjor)
Citrus maxima (Burm.) Merr Pummelo-Hybrid 12A-19-7 3

3907 Hassaku (Citrus hassaku, Beni Hassaku) Citrus hassaku hort. ex Tanaka RU-
TACEAE

Pummelo-Hybrid 12B-41-3 3

3959 Egami Buntan (Egami, Ogami) pummelo Citrus maxima (Burm.) Merr. RU-
TACEAE

Pummelo 12B-48-13 3

2242 Kao Panne pummelo (Kao Pan) Citrus maxima (Burm.) Merr. RU-
TACEAE

Pummelo 12A-35-3 3

3289 Willowleaf sour orange Citrus aurantium var. salicifolia Sour Orange 12B-19-9 3
628 Standard sour orange Citrus aurantium L. Sour Orange 12B-18-5 3
3611 Konejime sour orange o.p. seedling Citrus neo-aurantium Sour Orange-Hybrid 12B-20-11 4
2717 Olivelands Sour orange Citrus aurantium L. Sour Orange 12B-40-1 3
3030 Cutter Valencia nucellar seedling Citrus sinensis L. Osbeck Valencia Sweet Or-

ange
12B-8-5 3

3746 Shamouti orange, Israeli seedling #1 Citrus sinensis L. Osbeck Sweet Orange 12B-17-7 3
1241-
B

Parent Washington navel Citrus sinensis (L.) Osbeck Early/mid-season
Navel Orange

12B-4-3 3

2802 Argentina sweet orange o.p. seedling Citrus sinensis (L.) Osbeck RU-
TACEAE

Sweet Orange 12B-11-5 3

3994 Cara Cara pink fleshed navel Citrus sinensis (L.) Osbeck Early/mid-season
Navel Orange

12A-25-9 3

3163 Indian wild orange Citrus indica Tanaka Citrus species 12B-30-1 3
2485 Nasnaran Citrus amblycarpa (Hassk.) Ochse Citrus species 12B-29-9 4
3228 Korai tachibana Citrus nippokoreana hort ex.

Tanaka
Citrus species 12B-30-9 3

2320 Winged lime (Talimasan) Citrus longispina Wester Citrus species 18B-18-3 3
3877 Nagami kumquat Fortunella margarita (Lour.)

Swingle
Kumquat 12B-44-13 3

3661 Australian finger lime Microcitrus australasica Microcitrus 18B-16-5 4
3605 Samuyao Citrus micrantha var. microcarpa Papeda 18B-19-5 6
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Table B.1 (cont’d)
ID CVC_Name Scientific Name Type Location N
2327 Ichang papeda Citrus cavaleriei H. Lév. ex Cava-

lerie
Papeda 18B-9-5 1

3469 * Citrus hanayu Siebold ex Shirai Papeda 12B-36-9 3
1455 Kalpi, Nogapog, Malayan lemmon Citrus webberii Papeda 18B-17-6 2
2454 Makrut lime Citrus hystrix DC. Papeda 18B-20-5 4
3842 Alemow (Colo) Citrus macrophylla Wester Papeda 18B-18-5 3
1491 Chinese box orange Severinia buxifolia Relative 12D-26-15 3
3140 Indian bael fruit Aegle marmelos (L.) Corrêa Relative 18B-9-1 3
4008 Little-leaf trifoliate Poncirus trifoliata (L.) Raf. RU-

TACEAE
Trifoliate 12A-24-5 3

838 Rubidoux trifoliate Poncirus trifoliata (L.) Raf. RU-
TACEAE

Trifoliate 12A-5-5 4

3912 C-35 citrange (Ruby orange x Webber-
Fawcett trifoliate)

X Citroncirus spp Trifoliate-Hybrid 12B-41-11 3

2863 Carrizo citrange o.p. seedling (’Washington’
sweet orange X Poncirus trifoliata)

X Citroncirus sp. RUTACEAE Trifoliate-Hybrid 12A-39-9 5

3771 Swingle citrumelo (’Duncan’ grapefruit x
Poncirus trifoliata)

X Citroncirus spp. RUTACEAE Trifoliate-Hybrid 12A-42-5 4
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Table B.2: Technical details for all the 63 citrus fruit scans produced comprising 166 individual fruits representing 51 citrus accessions
(see Table B.1 for details). The scans were produced using the North Star Imaging X3000 system and the included efX software, with
720 projections per scan, at 3 frames per second and with 3 frames averaged per projection. The data was obtained in continuous mode.
The fruits were placed as close as possible to the X-ray detector, provided all fruits of the same accession could be scanned completely at
once, which resulted in varying voxel size resolutions after reconstruction. Pummelo and citron fruits were scanned individually due to
their large size. The X-ray source was set to different current and voltages for different fruits, resulting in varying focal spot sizes. Voxel
size, voltage, current, and focal size denoted by vs, V, C, and fs respectively.

scan_ID CVC_name vs [µm] V [kV] C [µÅ] fs [µm]
C01_CRC2317_18B-18-9 Limon Real 83.6 75 70 5.25
C02_CRC3919_18A-24-1 Lamas lemon 81.2 75 70 5.25
C03_CRC3593_18A-8-3 Interdonato lemon o.p. seedling 104.2 75 70 5.25
C04_CRC3005_18B_37_1 Frost nucellar Eureka lemon 95.3 75 70 5.25
C05_CRC3050_18B-29-1 Volckamer lemon o.p. seedling 87.4 75 70 5.25
C06_CRC1482_18B-27-7 Palestine sweet lime (Indian sweet lime) 88.4 75 70 5.25
C07_CRC0661_18B-13-7 Indian citron o.p. seedling (Zamburi) 105.5 90 70 6.3
C08A_CRC3546_18A-5-3 South Coast Field Station citron 78.7 90 70 6.3
C08B_CRC3546_18A-5-3 South Coast Field Station citron 91.2 90 70 6.3
C08C_CRC3546_18A-5-3 South Coast Field Station citron 92.6 90 70 6.3
M01_CRC3226_12B-27-1 Scarlet Emperor mandarin o.p. seedling Pankan 78.6 70 70 4.9
M02_CRC3812_12B-29-1 Citrus reticulata Blanco 94.7 70 70 4.9
M03_CRC3851_12B-25-9 Lee mandarin (Clementine X Orlando) 87.2 70 70 4.9
M04_CRC3752_12B-28-7 Som Keowan o.p. seedling 78.5 70 70 4.9
M05_CRC3958_12A-23-13 Koster tangor 78.5 70 70 4.9
M06_CRC3844_12B-31-1 Cleopatra mandarin o.p. seedling 46.7 70 70 4.9
M07_CRC3363_12B-23-1 Beledy mandarin o.p. seedling 77.1 70 70 4.9
M08_CRC3991_12A-22-13 USDA 88-2 (Lee X Nova) 97.6 70 70 4.9
M09_CRC3816_12B-24-11 Kinkoji Unshiu (graft hybrid of C. obovoidea + Sat-

suma)
106.8 70 70 4.9

M10_CRC3558_12B-23-15 Fremont mandarin 76.2 70 70 4.9
P01A_CRC3781_12A-31-9 Tahitian pummelo X Star Ruby grapefruit 60.3 90 70 6.3
P01B_CRC3781_12A-31-9 Tahitian pummelo X Star Ruby grapefruit 58.8 90 70 6.3
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Table B.2 (cont’d)
scan_ID CVC_name vs [µm] V [kV] C [µÅ] fs [µm]
P01C_CRC3781_12A-31-9 Tahitian pummelo X Star Ruby grapefruit 66.1 90 70 6.3
P02A_CRC4026_12A-19-7 Pomelit pummelo hybrid (Djeroek Deleema Kopjor) 64.7 90 70 6.3
P02B_CRC4026_12A-19-7 Pomelit pummelo hybrid (Djeroek Deleema Kopjor) 65.1 90 70 6.3
P02C_CRC4026_12A-19-7 Pomelit pummelo hybrid (Djeroek Deleema Kopjor) 69.4 90 70 6.3
P03A_CRC3907_12B-41-3 Hassaku (Citrus hassaku, Beni Hassaku) 64.7 90 70 6.3
P03B_CRC3907_12B-41-3 Hassaku (Citrus hassaku, Beni Hassaku) 69.6 90 70 6.3
P03C_CRC3907_12B-41-3 Hassaku (Citrus hassaku, Beni Hassaku) 69.4 90 70 6.3
P04A_CRC3959_12B-48-13 Egami Buntan (Egami, Ogami) pummelo 85.2 90 70 6.3
P04B_CRC3959_12B-48-13 Egami Buntan (Egami, Ogami) pummelo 81.8 90 70 6.3
P04C_CRC3959_12B-48-13 Egami Buntan (Egami, Ogami) pummelo 81.1 90 70 6.3
P05A_CRC2242_12A-35-3 Kao Panne pummelo (Kao Pan) 85.2 90 70 6.3
P05B_CRC2242_12A-35-3 Kao Panne pummelo (Kao Pan) 87.5 90 70 6.3
P05C_CRC2242_12A-35-3 Kao Panne pummelo (Kao Pan) 81.1 90 70 6.3
SR01_CRC3289_12B-19-9 Willowleaf sour orange 72.4 75 70 5.25
SR02_CRC0628_12B-18-5 Standard sour orange 88.8 75 70 5.25
SR03_CRC3611_12B-20-11 Konejime sour orange o.p. seedling 77.3 75 70 5.25
SR04_CRC2717_12B-40-1 Olivelands Sour orange 83.6 75 70 5.25
SW01_CRC3030_12B-8-5 Cutter Valencia nucellar seedling 103.8 75 70 5.25
SW02_CRC3746_12B-17-7 Shamouti orange, Israeli seedling #1 110.1 75 70 5.25
SW03_CRC1241-B_12B-4-3 Parent Washington navel 110.4 75 70 5.25
SW04_CRC2802_12B-11-5 Argentina sweet orange o.p. seedling 86.5 75 70 5.25
SW05_CRC3994_12A-25-9 Cara Cara pink fleshed navel 97.5 75 70 5.25
WR01_CRC1491_12D-26-15 Chinese box orange 18.6 70 70 4.9
WR02_CRC3877_12B-44-13 Nagami kumquat 46 70 70 4.9
WR03_CRC3163_12B-30-1 Indian wild orange 46 70 70 4.9
WR04_CRC4008_12A-24-5 Little-leaf trifoliate 67.3 70 70 4.9
WR05_CRC3605_18B-19-5 Samuyao 57.5 70 70 4.9
WR06_CRC2485_12B-29-9 Nasnaran 57.5 70 70 4.9
WR07_CRC2327_18B-9-5 Ichang papeda 29.5 70 70 4.9
WR08_CRC3661_18B-16-5 Australian finger lime 35 70 70 4.9
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Table B.2 (cont’d)
scan_ID CVC_name vs [µm] V [kV] C [µÅ] fs [µm]
WR09_CRC3469_12B-36-9 Citrus hanayu Siebold ex Shirai 84.4 70 70 4.9
WR10_CRC0838_12A-5-5 Rubidoux trifoliate 84.7 70 70 4.9
WR11_CR3228_12B-30-9 Korai tachibana 84.7 70 70 4.9
WR12_CRC1455_18B-17-6 Kalpi, Nogapog, Malayan lemmon 86 70 70 4.9
WR13_CRC3912_12B-41-11 C-35 citrange (Ruby orange x Webber-Fawcett trifoli-

ate)
79.2 70 70 4.9

WR14_CRC2320_18B-18-3 Winged lime (Talimasan) 95.9 70 70 4.9
WR15_CRC3140_18B-9-1 Indian bael fruit 77.5 70 70 4.9
WR16_CRC3771_12A-42-5 Swingle citrumelo (’Duncan’ grapefruit x Poncirus

trifoliata)
87.3 70 70 4.9

WR17_CRC2454_18B-20-5 Makrut lime 88.6 70 70 4.9
WR18_CRC2863_12A-39-9 Carrizo citrange o.p. seedling (’Washington’ sweet

orange X Poncirus trifoliata)
102.6 70 70 4.9

WR19_CRC3842_18B-18-5 Alemow (Colo) 107.7 70 70 4.9
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Table B.3: We tested whether the oil glands on the citrus fruit skins are either uniformly or rotationally symmetrically distributed (see
main text for details). Uniformity was tested with Projected Anderson-Darling (PAD) test. Rotational symmetry was tested with a
scatter-location hybrid von Mises-Fisher (vMF) test with an unspecified direction of symmetry. The resulting statistics and p-values are
reported below. Individual fruits are identified by their original scan_ID (as in Table B.2). Individual pseudoreplicates are identified
with different labels.

scan_ID label kind s_PAD p_PAD s_vMF p_vMF
C01_CRC2317_18B-18-9 L00 Lemon 9.80E+01 0.00E+00 3.41E+02 1.70E-72
C01_CRC2317_18B-18-9 L01 Lemon 8.73E+01 0.00E+00 1.47E+02 8.00E-31
C01_CRC2317_18B-18-9 L02 Lemon 4.62E+01 1.20E-09 2.09E+02 5.12E-44
C01_CRC2317_18B-18-9 L03 Lemon 2.96E+01 4.12E-09 1.20E+02 6.29E-25
C02_CRC3919_18A-24-1 L00 Lemon 1.12E+01 1.28E-08 1.21E+01 1.66E-02
C02_CRC3919_18A-24-1 L01 Lemon 1.14E+01 0.00E+00 3.82E+00 4.30E-01
C02_CRC3919_18A-24-1 L02 Lemon 1.24E+01 2.93E-08 3.61E+00 4.62E-01
C03_CRC3593_18A-8-3 L00 Lemon 6.68E+01 2.73E-09 7.93E+02 2.47E-170
C03_CRC3593_18A-8-3 L01 Lemons 6.49E+01 1.69E-08 8.66E+02 3.06E-186
C03_CRC3593_18A-8-3 L02 Lemons 4.07E+01 0.00E+00 4.80E+02 1.48E-102
C04_CRC3005_18B_37_1 L00 Lemons 4.07E+01 1.01E-08 1.88E+01 8.52E-04
C04_CRC3005_18B_37_1 L01 Lemons 1.85E+01 1.94E-09 9.35E+01 2.41E-19
C04_CRC3005_18B_37_1 L02 Lemons 3.86E+01 0.00E+00 2.26E+01 1.55E-04
C05_CRC3050_18B-29-1 L00 Lemons 1.06E+02 0.00E+00 1.60E+02 1.41E-33
C05_CRC3050_18B-29-1 L01 Lemons 1.63E+01 4.43E-08 9.65E+01 5.38E-20
C05_CRC3050_18B-29-1 L02 Lemons 1.63E+01 3.47E-08 1.67E+01 2.22E-03
C06_CRC1482_18B-27-7 L00 Other 4.91E+01 0.00E+00 2.99E+02 1.54E-63
C06_CRC1482_18B-27-7 L01 Other 2.19E+01 0.00E+00 3.38E+01 8.33E-07
C06_CRC1482_18B-27-7 L02 Other 1.29E+01 2.29E-08 8.51E+01 1.47E-17
C07_CRC0661_18B-13-7 L00 Other 2.09E+01 0.00E+00 5.41E+01 4.92E-11
C07_CRC0661_18B-13-7 L01 Other 3.73E+01 0.00E+00 3.99E+01 4.60E-08
C07_CRC0661_18B-13-7 L02 Other 1.63E+01 1.37E-08 6.06E+01 2.14E-12
C08A_CRC3546_18A-5-3 L00 Other 3.98E+02 2.52E-07 9.76E+02 7.25E-210
C08B_CRC3546_18A-5-3 L00 Other 2.12E+02 9.15E-09 5.92E+01 4.37E-12
C08C_CRC3546_18A-5-3 L00 Other 5.22E+02 7.24E-09 1.38E+03 9.37E-298
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Table B.3 (cont’d)
scan_ID label kind s_PAD p_PAD s_vMF p_vMF
M01_CRC3226_12B-27-1 L00 Mandarins 2.44E+01 0.00E+00 1.12E+02 3.40E-23
M01_CRC3226_12B-27-1 L01 Mandarins 2.48E+01 0.00E+00 4.75E+01 1.18E-09
M01_CRC3226_12B-27-1 L02 Mandarins 2.19E+01 0.00E+00 5.77E+00 2.17E-01
M02_CRC3812_12B-29-1 L00 Mandarins 5.45E+01 1.97E-09 6.60E+02 1.30E-141
M02_CRC3812_12B-29-1 L01 Mandarins 6.41E+01 1.22E-08 3.01E+02 6.71E-64
M02_CRC3812_12B-29-1 L02 Mandarins 2.58E+01 0.00E+00 1.54E+02 2.52E-32
M03_CRC3851_12B-25-9 L00 Mandarins 3.18E+01 0.00E+00 9.94E+01 1.29E-20
M03_CRC3851_12B-25-9 L01 Mandarins 1.72E+01 0.00E+00 4.52E+01 3.66E-09
M03_CRC3851_12B-25-9 L02 Mandarins 1.55E+01 4.30E-08 3.12E+01 2.74E-06
M04_CRC3752_12B-28-7 L00 Mandarins 8.15E+00 0.00E+00 1.50E+01 4.72E-03
M04_CRC3752_12B-28-7 L01 Mandarins 8.76E+00 1.50E-08 2.34E+01 1.04E-04
M04_CRC3752_12B-28-7 L02 Mandarins 7.81E+00 0.00E+00 2.45E+01 6.30E-05
M05_CRC3958_12A-23-13 L00 Mandarins 4.18E+01 1.38E-08 1.82E+02 2.56E-38
M05_CRC3958_12A-23-13 L01 Mandarins 1.68E+01 0.00E+00 6.30E+01 6.73E-13
M05_CRC3958_12A-23-13 L02 Mandarins 5.42E+01 1.40E-08 1.33E+02 8.60E-28
M06_CRC3844_12B-31-1 L00 Other 4.26E+01 1.32E-08 6.50E+02 2.60E-139
M06_CRC3844_12B-31-1 L01 Other 3.56E+01 3.15E-08 5.69E+02 8.75E-122
M06_CRC3844_12B-31-1 L02 Other 2.01E+01 0.00E+00 9.50E+00 4.98E-02
M07_CRC3363_12B-23-1 L00 Mandarins 2.19E+01 3.22E-10 2.67E+02 1.74E-56
M07_CRC3363_12B-23-1 L01 Mandarins 2.58E+01 0.00E+00 1.50E+02 2.27E-31
M07_CRC3363_12B-23-1 L02 Mandarins 2.01E+01 0.00E+00 1.98E+02 8.31E-42
M07_CRC3363_12B-23-1 L03 Mandarins 1.41E+01 8.69E-09 9.92E+00 4.18E-02
M08_CRC3991_12A-22-13 L00 Mandarins 3.53E+01 0.00E+00 1.33E+02 9.16E-28
M08_CRC3991_12A-22-13 L01 Mandarins 2.02E+01 0.00E+00 1.16E+02 3.65E-24
M08_CRC3991_12A-22-13 L02 Mandarins 3.28E+01 0.00E+00 4.83E+01 8.17E-10
M09_CRC3816_12B-24-11 L00 Mandarins 6.19E+00 2.19E-07 3.09E+01 3.19E-06
M09_CRC3816_12B-24-11 L01 Mandarins 6.58E+00 1.04E-07 3.30E+01 1.18E-06
M09_CRC3816_12B-24-11 L02 Mandarins 8.70E+00 2.54E-08 1.50E+01 4.70E-03
M10_CRC3558_12B-23-15 L00 Mandarins 4.92E+01 1.70E-09 3.14E+02 9.37E-67
M10_CRC3558_12B-23-15 L01 Mandarins 8.32E+00 1.70E-08 6.89E+00 1.42E-01
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Table B.3 (cont’d)
scan_ID label kind s_PAD p_PAD s_vMF p_vMF
M10_CRC3558_12B-23-15 L02 Mandarins 1.44E+01 0.00E+00 2.75E+01 1.54E-05
P01A_CRC3781_12A-31-9 L00 Pummelos 3.32E+01 3.12E-08 1.01E+02 5.17E-21
P01B_CRC3781_12A-31-9 L00 Pummelos 1.64E+02 0.00E+00 3.68E+02 1.94E-78
P01C_CRC3781_12A-31-9 L00 Pummelos 2.67E+01 0.00E+00 8.44E+01 2.04E-17
P02A_CRC4026_12A-19-7 L00 Pummelos 5.88E+01 1.68E-08 4.76E+01 1.15E-09
P02B_CRC4026_12A-19-7 L00 Pummelos 1.50E+02 5.20E-06 1.54E+02 2.78E-32
P02C_CRC4026_12A-19-7 L00 Pummelos 7.30E+01 3.60E-09 3.16E+01 2.28E-06
P03A_CRC3907_12B-41-3 L00 Pummelos 6.88E+01 3.47E-08 3.42E+02 9.83E-73
P03B_CRC3907_12B-41-3 L00 Pummelos 7.32E+01 1.33E-08 7.47E+01 2.29E-15
P03C_CRC3907_12B-41-3 L00 Pummelos 2.78E+01 0.00E+00 1.46E+02 1.26E-30
P04A_CRC3959_12B-48-13 L00 Pummelos 1.14E+02 0.00E+00 5.19E+01 1.46E-10
P04B_CRC3959_12B-48-13 L00 Pummelos 2.27E+02 2.37E-09 7.96E+02 4.59E-171
P04C_CRC3959_12B-48-13 L00 Pummelos 1.37E+02 0.00E+00 2.68E+02 9.57E-57
P05A_CRC2242_12A-35-3 L00 Pummelos 1.16E+02 0.00E+00 5.92E+01 4.26E-12
P05B_CRC2242_12A-35-3 L00 Pummelos 3.83E+01 0.00E+00 6.26E+01 8.41E-13
P05C_CRC2242_12A-35-3 L00 Pummelos 8.52E+01 5.46E-09 8.52E+01 1.36E-17
SR01_CRC3289_12B-19-9 L00 Sour Oranges 2.65E+01 0.00E+00 2.72E+01 1.78E-05
SR01_CRC3289_12B-19-9 L01 Sour Oranges 1.85E+01 3.78E-08 2.00E+01 5.00E-04
SR01_CRC3289_12B-19-9 L02 Sour Oranges 1.55E+01 4.12E-08 3.58E+01 3.18E-07
SR02_CRC0628_12B-18-5 L00 Sour Oranges 3.72E+01 0.00E+00 1.31E+01 1.08E-02
SR02_CRC0628_12B-18-5 L01 Sour Oranges 2.31E+01 8.41E-10 3.51E+00 4.77E-01
SR02_CRC0628_12B-18-5 L02 Sour Oranges 1.59E+01 4.80E-08 9.22E+01 4.42E-19
SR03_CRC3611_12B-20-11 L00 Sour Oranges 1.67E+01 2.91E-08 5.73E+01 1.09E-11
SR03_CRC3611_12B-20-11 L01 Sour Oranges 1.21E+01 1.45E-08 4.14E+01 2.20E-08
SR03_CRC3611_12B-20-11 L02 Sour Oranges 6.64E+00 8.48E-08 2.51E+01 4.70E-05
SR03_CRC3611_12B-20-11 L03 Sour Oranges 9.85E+00 2.44E-08 4.83E+00 3.06E-01
SR04_CRC2717_12B-40-1 L00 Sour Oranges 2.36E+01 0.00E+00 3.54E+01 3.86E-07
SR04_CRC2717_12B-40-1 L01 Sour Oranges 2.28E+00 1.46E-02 6.56E+00 1.61E-01
SR04_CRC2717_12B-40-1 L02 Sour Oranges 9.70E+00 0.00E+00 1.07E+02 3.28E-22
SW01_CRC3030_12B-8-5 L00 Sweet Oranges 9.69E+01 0.00E+00 2.19E+02 3.07E-46
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Table B.3 (cont’d)
scan_ID label kind s_PAD p_PAD s_vMF p_vMF
SW01_CRC3030_12B-8-5 L01 Sweet Oranges 1.38E+01 4.17E-08 1.76E+02 6.51E-37
SW01_CRC3030_12B-8-5 L02 Sweet Oranges 2.34E+01 1.47E-08 5.11E+01 2.12E-10
SW02_CRC3746_12B-17-7 L00 Sweet Oranges 2.19E+01 0.00E+00 1.65E+02 1.48E-34
SW02_CRC3746_12B-17-7 L01 Sweet Oranges 3.02E+01 5.90E-08 1.43E+02 5.54E-30
SW02_CRC3746_12B-17-7 L02 Sweet Oranges 2.10E+01 1.21E-08 1.42E+02 9.91E-30
SW03_CRC1241-B_12B-4-3 L00 Sweet Oranges 4.90E+01 1.46E-07 3.91E+01 6.80E-08
SW03_CRC1241-B_12B-4-3 L01 Sweet Oranges 2.45E+01 1.23E-08 1.16E+01 2.03E-02
SW03_CRC1241-B_12B-4-3 L02 Sweet Oranges 1.35E+01 0.00E+00 1.25E+02 4.22E-26
SW04_CRC2802_12B-11-5 L00 Sweet Oranges 9.34E+00 1.08E-08 3.02E+01 4.46E-06
SW04_CRC2802_12B-11-5 L01 Sweet Oranges 3.80E+00 1.99E-04 5.62E+01 1.86E-11
SW04_CRC2802_12B-11-5 L02 Sweet Oranges 3.17E+00 1.20E-03 1.02E+01 3.75E-02
SW05_CRC3994_12A-25-9 L00 Sweet Oranges 8.29E+01 0.00E+00 2.48E+02 1.95E-52
SW05_CRC3994_12A-25-9 L01 Sweet Oranges 3.29E+01 6.03E-09 1.01E+02 4.83E-21
SW05_CRC3994_12A-25-9 L02 Sweet Oranges 6.17E+01 6.62E-08 2.12E+01 2.83E-04
WR02_CRC3877_12B-44-13 L00 Kumquats 9.03E+01 0.00E+00 1.35E+02 2.99E-28
WR02_CRC3877_12B-44-13 L01 Kumquats 1.22E+02 1.62E-08 2.16E+02 1.59E-45
WR02_CRC3877_12B-44-13 L02 Kumquats 8.95E+01 0.00E+00 6.04E+02 1.67E-129
WR03_CRC3163_12B-30-1 L00 Other 1.14E+02 0.00E+00 5.09E+02 7.08E-109
WR03_CRC3163_12B-30-1 L01 Other 2.96E+01 9.10E-09 3.62E+01 2.65E-07
WR03_CRC3163_12B-30-1 L02 Other 1.82E+01 0.00E+00 2.03E+01 4.39E-04
WR04_CRC4008_12A-24-5 L00 Trifoliates 3.84E+01 5.98E-09 2.15E+01 2.54E-04
WR04_CRC4008_12A-24-5 L01 Trifoliates 2.06E+01 5.37E-09 8.45E+01 1.98E-17
WR04_CRC4008_12A-24-5 L02 Trifoliates 1.43E+01 0.00E+00 5.48E+01 3.59E-11
WR05_CRC3605_18B-19-5 L00 Other 1.40E+01 1.26E-08 2.54E+01 4.19E-05
WR05_CRC3605_18B-19-5 L01 Other 1.66E+01 0.00E+00 1.22E+01 1.62E-02
WR05_CRC3605_18B-19-5 L02 Other 7.77E+00 9.73E-09 3.67E+01 2.06E-07
WR05_CRC3605_18B-19-5 L03 Other 9.30E+00 1.48E-08 3.58E+01 3.17E-07
WR05_CRC3605_18B-19-5 L04 Other 7.41E+00 1.36E-08 9.91E+00 4.19E-02
WR05_CRC3605_18B-19-5 L05 Other 6.95E+00 3.44E-08 8.51E-01 9.32E-01
WR06_CRC2485_12B-29-9 L00 Other 2.26E+01 5.32E-09 1.90E+01 7.90E-04
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Table B.3 (cont’d)
scan_ID label kind s_PAD p_PAD s_vMF p_vMF
WR06_CRC2485_12B-29-9 L01 Other 3.20E+01 0.00E+00 8.80E-01 9.27E-01
WR06_CRC2485_12B-29-9 L02 Other 2.21E+01 0.00E+00 2.28E+01 1.39E-04
WR06_CRC2485_12B-29-9 L03 Other 1.52E+01 3.36E-08 2.01E+01 4.83E-04
WR07_CRC2327_18B-9-5 L00 Other 9.28E+01 1.04E-08 1.31E+03 2.39E-281
WR08_CRC3661_18B-16-5 L00 Microcitrus 2.92E+02 0.00E+00 5.38E+03 0.00E+00
WR08_CRC3661_18B-16-5 L01 Microcitrus 3.66E+02 0.00E+00 6.30E+03 0.00E+00
WR08_CRC3661_18B-16-5 L02 Microcitrus 3.32E+02 9.20E-09 4.99E+03 0.00E+00
WR08_CRC3661_18B-16-5 L03 Microcitrus 2.60E+02 5.81E-10 6.40E+03 0.00E+00
WR09_CRC3469_12B-36-9 L00 Papedas 5.61E+01 0.00E+00 1.70E+02 9.47E-36
WR09_CRC3469_12B-36-9 L01 Papedas 2.34E+01 0.00E+00 2.26E+02 1.16E-47
WR09_CRC3469_12B-36-9 L02 Papedas 6.12E+00 2.67E-07 2.84E+01 1.02E-05
WR10_CRC0838_12A-5-5 L00 Trifoliates 2.28E+01 0.00E+00 1.56E+02 1.17E-32
WR10_CRC0838_12A-5-5 L01 Trifoliates 1.22E+01 1.58E-08 1.05E+02 7.15E-22
WR10_CRC0838_12A-5-5 L02 Trifoliates 2.76E+01 2.87E-08 2.27E+01 1.45E-04
WR10_CRC0838_12A-5-5 L03 Trifoliates 1.70E+01 0.00E+00 4.86E+01 6.94E-10
WR11_CR3228_12B-30-9 L00 Other 3.19E+01 6.61E-08 3.13E+01 2.69E-06
WR11_CR3228_12B-30-9 L01 Other 1.15E+01 8.61E-09 2.15E+01 2.54E-04
WR11_CR3228_12B-30-9 L02 Other 2.06E+01 2.24E-08 1.70E+02 1.25E-35
WR12_CRC1455_18B-17-6 L00 Papedas 5.62E+01 4.94E-09 4.69E+01 1.57E-09
WR12_CRC1455_18B-17-6 L01 Papedas 9.54E+01 0.00E+00 1.46E+02 1.72E-30
WR13_CRC3912_12B-41-11 L00 Trifoliates 6.16E+00 1.92E-07 6.81E+01 5.71E-14
WR13_CRC3912_12B-41-11 L01 Trifoliates 2.55E+00 6.76E-03 3.27E+01 1.35E-06
WR13_CRC3912_12B-41-11 L02 Trifoliates 2.57E+01 4.25E-07 2.58E+02 1.49E-54
WR14_CRC2320_18B-18-3 L00 Other 2.07E+01 0.00E+00 2.38E+01 8.62E-05
WR14_CRC2320_18B-18-3 L01 Other 1.28E+01 0.00E+00 2.99E+01 5.02E-06
WR14_CRC2320_18B-18-3 L02 Other 1.92E+01 1.60E-08 1.24E+01 1.47E-02
WR14_CRC2320_18B-18-3 L03 Other 1.00E+01 0.00E+00 3.38E+01 8.02E-07
WR15_CRC3140_18B-9-1 L00 Other 2.87E+01 3.52E-08 2.26E+01 1.54E-04
WR15_CRC3140_18B-9-1 L01 Other 2.23E+01 5.74E-09 1.43E+02 6.77E-30
WR15_CRC3140_18B-9-1 L02 Other 2.51E+01 1.90E-08 4.54E+01 3.21E-09
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Table B.3 (cont’d)
scan_ID label kind s_PAD p_PAD s_vMF p_vMF
WR16_CRC3771_12A-42-5 L00 Other 1.80E+02 0.00E+00 1.09E+03 3.41E-235
WR16_CRC3771_12A-42-5 L01 Other 8.21E+01 3.55E-09 1.08E+02 2.04E-22
WR16_CRC3771_12A-42-5 L02 Other 1.16E+02 2.14E-08 9.25E+01 3.78E-19
WR16_CRC3771_12A-42-5 L03 Other 4.09E+01 0.00E+00 2.69E+02 6.05E-57
WR17_CRC2454_18B-20-5 L00 Papedas 2.22E+01 1.27E-09 8.35E+01 3.16E-17
WR17_CRC2454_18B-20-5 L01 Papedas 1.05E+01 2.96E-08 2.13E+01 2.76E-04
WR17_CRC2454_18B-20-5 L02 Papedas 7.45E+00 0.00E+00 7.22E+00 1.24E-01
WR17_CRC2454_18B-20-5 L03 Papedas 7.81E+00 5.49E-09 9.49E+01 1.19E-19
WR18_CRC2863_12A-39-9 L00 Trifoliates 3.07E+01 1.12E-09 3.97E+01 5.10E-08
WR18_CRC2863_12A-39-9 L01 Trifoliates 1.00E+01 5.03E-09 3.77E+01 1.32E-07
WR18_CRC2863_12A-39-9 L02 Trifoliates 2.00E+01 6.44E-09 1.40E+01 7.16E-03
WR18_CRC2863_12A-39-9 L03 Trifoliates 1.02E+01 3.62E-09 2.08E+01 3.50E-04
WR18_CRC2863_12A-39-9 L04 Trifoliates 3.38E+00 6.62E-04 2.17E+01 2.28E-04
WR19_CRC3842_18B-18-5 L00 Other 6.27E+01 0.00E+00 5.98E+02 4.79E-128
WR19_CRC3842_18B-18-5 L01 Other 3.48E+01 6.07E-09 1.05E+02 7.07E-22
WR19_CRC3842_18B-18-5 L02 Other 3.34E+01 1.33E-08 2.96E+02 7.33E-63
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APPENDIX C

WALNUT APPENDIX

Table C.1: A total of 1301 individual walnuts were scanned, comprising 147 different accessions.
The accessions are identified by their UCACCSD code, which is the identifying system used
by the Walnut Improvement Program at the University of California, Davis. The number of
pseudoreplicates scanned per accession are denoted by N. Asterisk denotes not available.

UCACCSD N UCACCSD N
03-001-3395 7 12-042-3 9
06-004-4 7 12-042-4 7
06-005-27 9 12-042-5 7
06-030-18 5 12-042-7 8
08-001-28 6 12-042-8 9
08-002-4 7 12-042-9 8
08-006-11 8 12-045-11 9
08-019-11 9 12-045-12 4
09-003-20 7 12-045-13 7
09-025-107 9 12-045-14 7
09-025-117 9 12-045-15 5
09-025-123 8 12-045-3 7
09-025-13 9 12-045-7 7
09-025-24 8 12-045-8 9
09-025-60 8 12-045-9 9
09-025-62 8 12-048-11 6
09-025-64 8 12-048-13 7
09-025-69 7 12-048-14 7
09-025-72 9 12-048-3 8
09-025-78 9 12-048-4 7
09-025-99 9 12-048-5 4
1 15 12-048-6 8
10-001-6 9 12-048-7 8
10-005-3 9 12-048-8 8
10-008-16 9 12-048-9 5
10-008-23 9 12-053-19 9
10-008-37 7 12-053-20 9
10-008-63 9 12-053-22 8
10-008-71 5 12-053-23 8
10-008-73 6 12-053-24 9
10-008-76 6 12-053-3 9
10-016-34 9 12-053-4 9
10-018-1 8 12-053-5 7
10-019-84 7 12-054-10 9
10-020-10 9 12-054-11 8
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Table C.1 (cont’d)
UCACCSD N UCACCSD N
10-020-12 9 12-054-12 5
10-020-17 4 12-054-14 9
10-020-3 9 12-054-17 8
10-020-59 9 12-054-2 8
10-020-9 7 12-054-21 9
10-024-18 6 12-054-22 6
11-003-4 6 12-054-23 9
11-020-2 9 12-054-3 8
11-029-9 9 12-054-4 5
11-030-3 9 12-054-8 7
12-002-10 8 12-054-9 5
12-002-11 7 12-059-21 7
12-002-15 9 12-059-22 7
12-002-17 6 12-059-23 5
12-002-18 8 12-059-24 6
12-002-20 7 12-059-25 7
12-002-21 6 12-059-27 7
12-002-23 6 12-059-28 5
12-002-25 8 12-059-29 7
12-002-26 9 12-059-30 9
12-002-27 8 12-059-32 8
12-002-28 8 2 15
12-002-3 8 3 13
12-002-5 9 48 16
12-002-6 7 49-049 15
12-002-7 9 53-113 8
12-004-1 5 54 15
12-005-1 6 59-129 17
12-005-2 9 6 18
12-005-4 8 64-172 26
12-005-5 4 64-182 9
12-005-7 5 67-011 16
12-005-8 8 85-023-2 8
12-037-27 7 85-043-1 14
12-037-29 8 91-136 7
12-037-30 9 95-011-16 7
12-040-8 8 95-022-26 7
12-042-1 8 95-026-37 6
12-042-2 8 * 96
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