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ABSTRACT 

What are the contributions of landscape composition, weather, and seasonality to the 

overall variation in surface albedo and the albedo-induced warming or cooling climate benefit 

potentials across multiple spatiotemporal scales? What are the main key influences to growing 

season net ecosystem exchange fluxes at major bioenergy crops under different land use history 

and management? These are the main questions of this dissertation, addressed through three 

complementary studies focused on climate benefit potentials (i.e., cooling and mitigation effects) 

of biogeophysical and biogeochemical mechanisms in the context of global warming research, 

across managed agricultural landscapes in southwestern Michigan, USA. Chapter 1 provides an 

introduction of the overall research work by introducing the two mechanisms examined, as well 

as the knowledge gaps and future research needs. Chapters 2 and 3 focus on the climate benefit 

potentials of the biogeophysical mechanisms, hence the cooling and mitigation effects induced by 

changes in surface albedo. In particular, Chapter 2 provides a proof of concept to quantify the 

ecosystem and landscape contribution to local and global climate through the analysis of 

spatiotemporal changes of surface albedo across five equal area landscapes, each within an 

individual ecoregion, in southwestern Michigan, USA, and during different weather conditions. 

Results showed that ecoregions, land mosaic, and seasonality contributed to the variation of 

surface albedo. Different was the response to changes in weather conditions in changes of surface 

albedo at forest- and cropland-dominated landscapes. The five ecoregions were characterized by 

cooling effects, with higher magnitudes in forest-dominated landscapes (i.e., higher difference 

between forest and cropland albedos). Chapter 3 extends the analysis in Chapter 2 to a broader 

landscape (i.e., watershed level) and over a period of 19 years, by looking at the contribution of 

major cover types, compared to original land uses, during both growing season and non-growing 



  

season (i.e., the effects of snow vs snow-free surface albedo). The 19-year analysis showed that 

land mosaic (with respect to the original forest cover type) exhibited net cooling effects, varying 

by cover types and ecoregions considered. Croplands contributed the most to cooling the local 

climate, with seasonal and monthly offsets of 18% and 83%, respectively, of the annual greenhouse 

gas emission of maize fields in the same area. On the other hand, urban showed both cooling and 

warming effects. Overall, landscape composition produced different landscape climate benefit 

potentials. Chapter 4 focuses on the climate benefit potentials of biogeochemical mechanisms, by 

looking at investigating the main key influences to net ecosystem exchange fluxes of three major 

bioenergy crops (viz., no-till continuous maize, restored native prairie, and switchgrass) under 

different land use history and management. The interannual variations of hypothesized main key 

influences to net carbon (C) fluxes varied by cover types and growing season considered, with 

maize showing a unique pattern. Net C uptakes were higher within maize, with magnitudes 

between -9.4 and -22.8 gC m-2 d-1. Results also showed that number, importance, and magnitude 

of main influences to C uptakes varied by cover type, highlighting the different nature of bioenergy 

crops (annual vs perennial; monoculture vs polyculture). Lastly, I show that the use of fine-

resolution optical and radar remote sensing can improve forecasts of growing season C uptakes at 

maize cover type, depending on certain remote sensing variables and stage of maize’s growth. 

Recommendations for further research needs are discussed and include coupling my estimates with 

emissions from other greenhouse gasses (GHGs) and extending the analysis to non-growing season 

period for a more comprehensive understanding of C uptake dynamics under different land use 

history. These analyses of biogeophysical and biogeochemical mechanisms fill important gaps in 

landscape ecology and ecosystem science as well as global warming research.
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General introduction 

To date, there is strong scientific evidence that atmospheric concentrations of carbon-

dioxide (CO2) are gradually increasing and reaching 1.5 times of those of the pre-industrial era 

(Wiesner et al., 2022). Anthropogenic activities, such as burning fossil fuels and industrial 

processes, represent the highest contribution to the total greenhouse gas (GHG) emissions during 

the last four decades (1970−2010) and are the major driver of climate change (Masson-Delmotte 

et al., 2021). In turn, current climate change and future climate change scenarios—e.g., warming 

of the atmosphere and oceans, altered global water cycle, reduction in snow and ice, rising in 

global mean sea level, etc.—equate to high risks and impacts on all kinds of coupled natural-human 

(CNH) systems worldwide. Ultimately, current and future climate changes represent a real 

problem to the sustainable development of a given CNH system, which might be already 

experiencing the threat of climate change. For instance, increasing in global mean surface 

temperature above the pre-industrial period (1850–1900) have directly and indirectly affected 

human communities depending on natural and managed systems for foods, clean water, safe places 

to live, and livelihoods among many other ecosystems goods and services. Thus, some CNH 

systems might result more vulnerable to climate changes than others. (Hoegh-Guldberg et al., 

2019). Hence, assessing the exposure and vulnerability of CNH system has become a fundamental 

goal in climate change research (National Research Council, 2010). To that purpose, many 

complementary adaptation and mitigation options have been proposed to help reduce the risk of 

climate change impacts. No single option is sufficient by itself, and only through the realization of 

policies and international cooperation across multiple scales (i.e., international  regional  

national  sub-national  local) can we achieve effective implementation of such options.  
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In order to inform current climate benefit potentials (i.e., adaptation and mitigation efforts), 

robust Earth System Models and Regional Climate Models are needed to accurately reflect global 

and regional circulation and feedbacks among land, ocean, and atmosphere. Two different 

mechanisms are essential to these models: biogeophysical (i.e., surface energy fluxes, with 

particular interest in surface albedo changes) and biogeochemical (i.e., carbon (C) cycle, with 

particular interest in the net ecosystem exchange (NEE) fluxes). Moreover, to better inform 

worldwide initiatives (e.g., REDD+) involved in mitigating the overall (i.e., GHGs and energy 

fluxes impacts) adverse climate change, feedbacks from biogeophysical mechanisms must be 

considered in conjunction with those from the biogeochemical ones (Gotangco Castillo et al., 

2012). However, several knowledge gaps exist related to how different land use and land cover 

affect these mechanisms. Filling these knowledge gaps will ultimately advance explanation and 

prediction about the local climate mitigation potentials—referred here as cooling and mitigation 

effects—of different land use and land cover types through their biogeophysical and 

biogeochemical properties, which operate at different spatial and temporal scales. At that purpose, 

my study investigates the local climate benefit potentials of biogeophysical and biogeochemical 

mechanisms across intensively managed agricultural landscapes in the Kalamazoo River 

Watershed in southwestern Michigan, USA, by proposing a cross-scale (i.e., spatial and temporal) 

approach based on in-situ ground measurements and multi-sensor remote sensing imagery.  

To be quantitatively comparable, the climate benefit potentials of both biogeophysical and 

biogeochemical mechanisms are studied in terms of the amount of energy imbalance that they can 

cause in the Earth’s climate system. Such imbalance is referred in terms of radiative forcing (RF; 

W m-2)—the change in the net radiative flux at the top-of-atmosphere (TOA) due to the change in 

atmospheric CO2 (or any other GHG) concentration—which can be positive or negative, 
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representing the warming or cooling effects of a given GHG, respectively. Moreover, given the 

complexity and number of the mechanisms involved in global warming research, the 

Intergovernmental Panel on Climate Change (IPCC) has introduced pulse emission metrics that 

facilitate the process of multi-component climate policies by allowing the comparison of different 

GHGs, along with other climate forcing agents (e.g., albedo), to be expressed in 

mitigations/emissions equivalent to a reference GHG. Usually, the reference GHG found in the 

literature is CO2, and so the mitigations/emissions equivalent to CO2 (i.e., CO2eq). One example of 

pulse emission metric is the global warming potential (GWP; kgCO2eq m-2 yr-1)—hereinafter, 

referred to as global warming impact (GWI), to be in line with previous studies (Abraha et al., 

2021; Sciusco et al., 2020, 2022). To date, GWI has become the default pulse emission metric 

among a range of international cooperation parties, such as the United Nations Framework 

Convention on Climate Change (UNFCCC) and the Kyoto Protocol (Masson-Delmotte, et al., 

2021).  

It is clear that there is immediate need to reduce emissions to mitigate climate change and 

ensure we do not exceed 1.5 C above pre-industrial levels, at which point there is very high risk 

of severe, extensive, and irreversible impacts worldwide (Masson-Delmotte, et al., 2021). 

Continuing to reduce emissions, implementing so-called geoengineering or “climate intervention” 

(National Research Council, 2010) strategies, has been proposed to further reduce global 

temperature (Lenton & Vaughan, 2009). Climate intervention strategies represent a set of proposed 

methods and technologies that have the goal of deliberately altering the climate system of Earth 

by increasing the removal of CO2 from the atmosphere (i.e., carbon-dioxide removal; CDR, which 

includes reforestation, and direct air capture and carbon storage technologies), or by reducing the 

amount of absorbed solar energy that reaches Earth (i.e., solar radiation modification; SRM, which 
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includes stratospheric aerosol injection and marine cloud brightening; National Research Council, 

2015). While the CDR option refers to the climate benefit potentials due to CO2 uptake/emission 

in the context of ecosystem C budget, SRM specifically refers to the climate benefits due to 

increasing surface albedo—the fraction of incoming shortwave solar radiation scattered by a 

surface back to space—in the context of surface radiation budget.  

Although both biogeophysical and biogeochemical mechanisms are essential to accurately 

model Earth’s climate now and into the future and determine potential impacts of different climate 

adaptation and mitigation scenarios (including with or without climate intervention; Lenton & 

Vaughan, 2009), there are still many uncertainties and research gaps related to them. First, while 

research has focused on understanding how landscape degradation affects the C sequestration 

(Gellie et al., 2018; Matos et al., 2020), little is known about changes in albedo-induced RF (RF) 

and GWI (GWI) in the context of landscape mosaics at broader temporal scales and for multiple 

anthropogenic land uses. For that reason, the forcing effects of albedo due to land-use land cover 

change (LULCC) are ranked as medium-low relative to the rich scientific evidence of the forcing 

effects due to anthropogenic GHGs (Myhre et al., 2014). Second, current climate simulations do 

not consider surface albedo changes in the context of land composition and mosaic, but rather 

focus on land use conversion from natural vegetation (e.g.., deforestation; Sciusco et al., 2020, 

2022; F. Zhao et al., 2021). Third, there is a need to reduce uncertainty when applying 

biogeophysical models to study the canopy CO2 exchange with the atmosphere. As shown by 

Baldocchi et al. (2002), such models need better accuracy about the structure and the physiology 

of the canopy (i.e., leaf area index and photosynthetic activity), hence, it is fundamental to 

investigate direct and indirect effects of environmental factors on CO2 exchange between 

vegetation canopy and the atmosphere (Shao et al., 2016). Fourth, to better understand the climate 
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benefit offsets of biogeophysical and biogeochemical mechanisms, we need to quantify their 

dependence on external influences (e.g., extreme weather events, land management practices, land 

use history) that are fundamental to investigate whether the systems maintain their status as C sink 

or they become C source (Bonan, 2008). To fill these knowledge gaps, my research focuses on the 

climate benefit potentials of biogeophysical and biogeochemical mechanisms across intensively 

managed agricultural landscapes in the Kalamazoo River Watershed in southwestern Michigan, 

USA. This research is based on a cross-scale (i.e., spatial and temporal) approach to achieve my 

study objectives based on in-situ ground measurements and multi-sensor remote sensing imagery 

at multiple spatial and temporal resolutions. The questions that lay the basis of my research fall 

within three scientific foci, one per each Chapter: (i) Chapter 2: What are the contributions of 

landscape composition, weather, and seasonality to the overall variation in surface albedo, and 

albedo-induced radiative forcing and global warming impact across five contrasting ecoregions of 

equal area for three different years? (ii) Chapter 3: What are the contributions of land mosaic (i.e., 

major cover types) to seasonal (growing season) and monthly (non-growing season) surface 

albedo-induced global warming impacts at landscape level and for a 19-year study period across 

five contrasting ecoregions in the Kalamazoo River Watershed? (iii) Chapter 4: What are the main 

key influences to the growing season net ecosystem C fluxes of three major bioenergy cropping 

systems under different land use history and land management? 

Research Context and Background 

Anthropogenic activities represent the main driver of local and global climate change 

(Masson-Delmotte et al., 2021), and the magnitude of such activities has been escalating starting 

from the pre-industrial era, when the amount of well-mixed GHGs—i.e., CO2, methane (CH4), and 

nitrous oxide (N2O)— concentration released into the atmosphere started increasing exponentially, 
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mainly driven by economic and population growth. There is scientific agreement that such increase 

in atmospheric CO2 concentration, alone, contributes to a total anthropogenic RF with a warming 

effect of +2.3 W m-2. To date, we have already witnessed the potential consequences of such 

changes at both regional and global scales (Zarnetske et al., 2021). For years, the scientific 

community has researched a range of options to address climate change with the aim of reducing 

both the GHG emissions through carbon sequestration methods (i.e., mitigation options), and to 

assess how vulnerable a given CNH system becomes due to changing climate (i.e., adaptation 

options). Additionally, new approaches to manipulate the climate have been introduced, called 

climate intervention proposals (Lenton & Vaughan, 2009; National Research Council, 2015). Such 

proposals include deliberate actions (i.e., CDR and SRM options) to reduce some anthropogenic 

climate change, hence, there is increasing interest from researchers and policy makers to 

understand the outcomes of those proposals (National Academies of Sciences, Engineering, and 

Medicine, 2021; National Research Council, 2015; Williamson et al., 2014). CDR options (e.g., 

afforestation) have already been applied and tested in different ecosystems, whereas SRM options 

(e.g., increasing the atmospheric albedo through stratospheric aerosol injections or marine cloud 

brightening) are still untested and carry with them numerous uncertainties, side effects, and risks 

for ecological systems (Kvalevåg et al., 2010; Zarnetske et al., 2021). Overall, this gap leaves 

many pending considerations, such as the environmental, economic, social, and ethical risks, 

associated to climate intervention proposals. When considering alternative futures with CDR, 

SRM, and continued anthropogenic climate change, a major knowledge gap is understanding the 

climate regulations of albedo due to LULCC on warming/cooling the climate. 

Surface albedo—the fraction of incoming shortwave solar radiation scattered by a surface 

back to space—is a physical characteristic of land surface that is strongly affected by both physical 
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and biophysical land cover properties, such as canopy structure, soil water content, plant 

phenology, presence of snow, and more. Hence, it is important to consider spatiotemporal variation 

when quantifying albedo’s contribution to off-setting local to global climate warming. Currently, 

the IPCC (Forster et al., 2021) estimates that RF of well-mixed GHGs has a warming effect 

equivalent to ~+2.91 W m-2, while that of surface albedo, due to LULCC (i.e., deforestation, 

agricultural development, and urban expansion), has a cooling effect equivalent to ~-0.20 W m-2. 

In other words, albedo changes due to LULCC can offset up to ~7% of the RF from anthropogenic 

GHGs. Such climate benefit may sound small, although it is just a global average estimate and 

with medium confidence. As a matter of fact, previous studies showed that, while the effects of 

LULCC-induced biogeophysical mechanisms on climate can be negligible on global scales, it turns 

to be pronounced when smaller extents are considered (Brovkin et al., 2004; Gotangco Castillo et 

al., 2012; Matthews et al., 2004; Zhao et al., 2021). Hence, one can expect the benefits might turn 

into greater magnitudes if reported to regional/local scales and if considered as complementary 

methods to the CDR options, i.e., overall trade-off of the climate regulations between the two 

mechanisms. 

In this research work, I considered the climate benefit potentials originating from two 

different mechanisms: biogeophysical and biogeochemical (Figure 1.1). Particularly, this study 

investigates the biogeophysical mechanisms (Figure 1.1a) at landscape scale, where 

spatiotemporal variations of climate and management (ΔCM; e.g., wetter vs drier, fertilization vs 

non-fertilization, etc.), vegetation phenology (ΔVP; e.g., leaf development, inflorescence, etc.), 

land use history (ΔLUH; e.g., change of cover type), and land mosaic (ΔLM; e.g., coexistence of 

multiple land cover types within the same spatial extent) may strongly affect surface albedo (α). 

On the other hand, the biogeochemical mechanisms (Figure 1.1b) are investigated at parcel scale 
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(i.e., single field scale), where a variety of key influences (e.g., leaf area index, vegetation height, 

leaf chlorophyll content, soil water content, etc.) affect the variation of net ecosystem exchange 

(NEE; net ecosystem C) fluxes at tower scale. 

 

Figure 1.1: Conceptual framework showing the (a) biogeophysical (i.e., surface albedo; 

) and (b) biogeochemical (i.e., net ecosystem exchange fluxes; NEE) mechanisms involved in 

the climate benefit potentials at landscape (a) and parcel (b) levels, within the Kalamazoo River 

Watershed, southwestern Michigan, USA. Regarding (a), the main hypothesis is that 

spatiotemporal variations of climate and management (ΔCM; e.g., wetter vs drier, fertilization vs 

non-fertilization, etc.), vegetation phenology (ΔVP; e.g., leaf development, inflorescence, etc.), 

land use history (ΔLUH; e.g., change of cover type), and land mosaic (ΔLM; coexistence of 

multiple land cover types within the same spatial extent) strongly affect . Regarding (b), the 

main hypothesis is that a variety of key influences (e.g., leaf area index, vegetation height, leaf 

chlorophyll content, soil water content, precipitation, air temperature, etc.) affect the interannual 

variation NEE fluxes, with regard of cover type considered.  

The biogeophysical mechanisms refer to surface energy fluxes, with particular interest in 

albedo climate benefit potentials, that I defined here as the albedo-induced forcing 

(warming/cooling) on climate due to LULCC, land mosaic, and weather conditions. The latter 

mechanisms refer to the C cycle, with particular interest in NEE fluxes climate benefit potentials 

due to land use history/management and biophysical and physical key influences.  
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Biogeophysical mechanisms 

Even though biogeochemical mechanisms represented the main concern for the climate 

change mitigation options, recent IPCC reports have shown that biogeophysical mechanisms also 

play an important role in the climate regulation context (Masson-Delmotte, 2021). There is then 

the need to review climatic policies (McAlpine et al., 2010). In fact, for years now the main focus 

of global warming research has been the capability of natural ecosystems to sequester CO2 from 

the atmosphere (i.e., carbon-centric view) without considering the effects of LULCC on energy 

fluxes, water cycle, and atmospheric composition (Zhao & Jackson, 2014). Human activities, 

worldwide, have strongly reshaped the landscapes over the past 2-3 thousand years, at an 

escalating rate since the industrial revolution (Forster et al., 2021; Pielke et al., 2011). In turn, 

Earth’s surface reflectivity properties have changed accordingly, resulting in alterations of the 

Earth’s radiation balance, partially responsible for the change in climate. At that purpose, an 

important physical property by which LULCC can regulate the local climate is surface albedo, 

which can be either expressed with no units (i.e., 0–1) or as percentage (i.e., 0–100%). Globally, 

deforestation, agricultural development—including forest and grassland conversion—and urban 

expansion have been shown to be major sources of albedo change (Pielke et al., 2011; Shao et al., 

2014), which in turn can directly affect the Earth’s radiation budget. For instance, the albedo of 

forests is lower (i.e., darker; less incoming shortwave solar radiation is scattered back to space) 

than that of croplands (i.e., lighter; more incoming shortwave solar radiation is scattered back to 

space), and so, forests have warming effects because of the higher absorbed solar radiation (Bonan, 

2008). In turn, various examples of climate benefit potentials of surface albedo due to changes in 

LULCC can be found in the literature (Akbari et al., 2009; Carrer et al., 2018; Houspanossian et 

al., 2017; Lugato et al., 2020; Ouyang et al., 2022). More drastic proposals that aim to alter 
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planetary albedo (e.g., land and marine clouds albedo, surface albedo, etc.) can be found in the 

literature (Lenton & Vaughan, 2009), however such proposals are still theory/model-based and 

difficult to apply to real world’s cases—with few exceptions, such as those proposing the use of 

white roofs/roads as heat mitigation strategy (Akbari et al., 2009; Jandaghian & Akbari, 2018; 

Wang et al., 2020)—not only because of the lack of needed technology, but also due to the general 

concern of irreversible changes to ecosystems such proposals might cause (National Academies of 

Sciences, Engineering, and Medicine, 2021; Zarnetske et al., 2021). 

Biogeochemical mechanisms 

Understanding the NEE fluxes between terrestrial and aquatic ecosystems and atmosphere 

is fundamental to investigate many ecological processes. Such processes govern ecosystems and 

play a primary role in the context of global climate change (Campioli et al., 2016; Peters et al., 

2007). Previous studies highlighted that the biogeochemical mechanisms are driven by both 

anthropogenic activities (i.e., such as burning fossil fuel and LULCC) and by the capacity of 

terrestrial and aquatic ecosystems to uptake CO2 from the atmosphere (Hong et al., 2021). For 

example, clearing forests and natural grasslands for crops and grazing, and vice versa, has been 

widely investigated, and still, represents the main driver of climate change forcing for both local 

and global climate scales (Mahmood et al., 2014). In response, previous studies have emphasized 

the role of afforestation and forest management to offset anthropogenic CO2 emissions, and they 

have been recognized as necessary measures to mitigate climate change (Naudts et al., 2016). For 

example, it has been demonstrated that U.S. regions dominated by evergreen and deciduous forests 

can uptake up to 0.63 PgC yr-1, and that terrestrial ecosystems can offset up to 40% of the CO2 

emissions (Xiao et al., 2011). Moreover, in terms of forest management, Cannell (2003) showed 

that growing biomass for energy has the same C offset benefits of growing it for sequestration 
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purposes. Nevertheless, today’s agricultural cropping systems represent a conspicuous percentage 

of worldwide LULC (FAO, 2007; Smith et al., 2007) and for decades now they have been 

investigated to provide better scientific understanding of how ecosystems function and what 

services (i.e., ecosystem services) they provide or hinder (Bommarco et al., 2018), especially in 

the context of adaptations and mitigations strategies (Barrios et al., 2018). Among the various 

adaptation and mitigation strategies, one of the more studied deals with well-mixed GHGs 

emissions of a system, with particular focus on CO2 emissions. Hence, assessing whether a system 

behaves as sink or source of C, is of fundamental importance global warming research studies and 

for policy makers. The IPCC reports that, globally, in 2019, agricultural activities were responsible 

for emissions equivalent to 13 GtCO2 (aka ~22% of the net anthropogenic GHG emissions; Allan 

et al., 2022). The sink/source nature of agricultural cropping systems is function of vegetation-

related key influences (e.g., physical, biophysical, and phenological) as well as external factors 

such as land management, land use history, and weather conditions. Hence, there are multiple 

considerations behind the development of climate policies and mitigation strategies.  

Aligning with IPCC standards 

To be quantitatively comparable, both mechanisms are studied in terms of the amount of 

energy imbalance that they can cause in the Earth’s climate system. Such imbalance is referred in 

terms radiative forcing (RF; W m-2)—the change in the net radiative flux at the top-of-atmosphere 

(TOA) due to the change in atmospheric CO2 concentration—which can be positive or negative, 

representing the warming or cooling effects of a given GHG, respectively. For example, the 

increased atmospheric concentration of CO2 (i.e., up to 410 pmol mol-1), due to anthropogenic 

emissions in 2019, have had warming effects equivalent to +2.160.26 W m-2, with respect to pre-

industrial conditions (Forster et al., 2021). Moreover, given the need of comparison between 
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relative and absolute contributions of different GHGs to climate change, the IPCC has introduced 

the global warming impact (GWI) pulse emission metric—also referred by the literature to as 

global warming potential (GWP)—that allows the calculation of the forcing of anthropogenic 

activities on climate by taking the climate forcing of CO2 gas as the baseline. In other words, the 

GWI is expressed in terms forcing effects equivalent to emission (positive GWI) or mitigation 

(negative GWI) of CO2 per unit area and per unit of time (i.e., ±kgCO2eq m-2 yr-1). At the same 

way, the climate benefit potentials of albedo changes are expressed as both albedo-induced RF 

(RFΔα) and GWI (GWIΔα) by applying simple changes to the original RF and GWI equations 

(Bright & Lund, 2021; Chen et al., 2021). In this way, one can easily report the energy balance 

induced by albedo in terms of its warming/cooling and emissions/mitigations of CO2eq, 

respectively. For example, Houspanossian et al. (2017) found that conversion from forests to 

croplands, forests to pastures, and pastures to croplands in dry subtropical forests of South America 

offset 12–27 MgCeq ha-1 during a 12-year period, or 15% to 55% of the total C emissions due to 

deforestation. Carrer et al. (2018) estimated that variation of albedo of 0.0025 (e.g., 0.25% of solar 

radiation reflected by Earth’s surface) due to the introduction of cover crops in European 

agricultural systems, can be equivalent to a RFΔα of -0.15 W m-2 (i.e., cooling effect), and to a 

GWIΔα of -3.16 MtCO2-eq. m-2 (i.e., effect equivalent to C mitigation); while Lugato et al. ( 2020) 

showed that such mitigation potential due to the inclusion of cover crops could be substantially 

enhanced by growing high-albedo chlorophyll-deficient cover crops. Furthermore, in urban 

settings, Akbari et al. (2009), studied that increasing urban albedo by about 0.15–0.25 (i.e., 

15−25% of solar radiation reflected by the Earth’s surface) can reduce summertime temperatures 

and associated air-conditioning costs, allowing to save about $1,100 billion. On the other hand, 
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Ouyang et al. (2022) found that the decrease in albedo due to global urbanization over a 17-year 

period, resulted in a 100-year average annual albedo-induced global warming of 0.00014 C. 

Dissertation Focus and Organization  

The overarching goal of this work is to address questions related the climate benefit 

potentials (i.e., warming or cooling effects) of biogeophysical (albedo) and biogeochemical (NEE) 

mechanisms. Chapters 2 through 4 are complementary studies, each of them with unique but 

interrelated research objectives and hypothesis, as well as study area and methodology. 

To achieve this goal, I selected the Kalamazoo River Watershed as overall study area for 

my investigations (Figure 1.2). 
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Figure 1.2: The locations of the study areas considered for the chapters 2, 3, and 4. (a) Equal area 

forest-dominated (FOR1 and FOR2) and cropland-dominated (CROP1, CROP2 and CROP3) 

landscapes within the five United States Environmental Protection Agency (US EPA) Level IV 

ecoregions (Chapter 2) and the nine National Land Cover Database (NLCD) cover type classes at 

the five Level IV ecoregions within the Kalamazoo River Watershed (Chapter 3). (b) 

Agriculturally cultivated (AGR; upper right) and Conservation Reserve Program (CRP; bottom 

right) sites within the Kellogg Biological Station (KBS), with corresponding Eddy Covariance 

(EC) flux towers and ground sampling sublots (Chapter 4). Cover types at the KBS sites are 

continuous maize (Zea mays), restored native prairie, and switchgrass (Panicum virgatum). 

NLCD cover type classes (on 2016) and the true color from imagery (accessed on 07-14-2019, 

summer season) were used for (a) and (b) base-maps, respectively. 

The Kalamazoo River Watershed (5621 km2; Figure 2) is located in southwestern 

Michigan, USA. It includes portions of 10 counties: Allegan, Barry, Calhoun, Eaton, Hillsdale, 

Jackson, Kalamazoo, Kent, Ottawa, and Van Buren. Mean annual temperature (1981–2010) is 9.9 

°C and average annual precipitation is 900 mm evenly distributed throughout the year (Michigan 

State Climatologist’s Office, 2013). The dominant cover type prior to European settlement in the 

early 1800s was eastern deciduous forest (Brown et al., 2000), with scattered patches of tallgrass 

prairie, oak savanna, lakes, and wetlands (Chapman & Brewer, 2008). Today, the dominant land 



 16 

covers include cultivated crops, successional forest stands, pasture-hay grasslands, and two urban 

areas (Kalamazoo and Battle Creek). Medium to coarse texture soils and mesic climate allow 

continuous recharge of groundwater (Schaetzl et al., 2009). Within the watershed, there are several 

Long-Term Ecological Research (LTER) sites, part of the Great Lakes Bioenergy Research Center 

(GLBRC) of the Kellogg Biological Station (KBS). Different portions of the watershed were 

considered as focal areas of each Chapter. 

In Chapter 2, the underlying objective was to examine the spatiotemporal variation in 

surface albedo (Δα) in contrasting managed agricultural landscapes through the calculation of 

albedo-induced radiative forcing (RFΔα) and global warming impact (GWIΔα), under different 

precipitation regimes in a 3-year analysis and across equal area heterogeneous landscapes within 

the Kalamazoo River Watershed. The portion of Kalamazoo River Watershed considered as study 

area for this Chapter is based within an ecological-based frame system by considering five 

contrasting ecoregions (Figure 1.2a), which are defined as areas characterized by unique 

combinations of physiographic, geologic, pedologic, botanic, hydrologic, and climatic 

characteristics (Omernik & Griffith, 2014). Within the Kalamazoo River Watershed there are five 

United States Environmental Protection Agency (US EPA) Level IV ecoregions: Battle Creek 

Outwash Plain; Michigan Lake Plain; Lake Michigan Moraines; Lansing Loamy Plain; and 

Interlobate Dead Ice Moraines. Within each of the five ecoregions, I selected five equal area (100 

km2) landscapes for proof of concept of my investigations. I hypothesized that both land mosaic 

and precipitation regimes (i.e., drier vs wetter vs normal precipitation events) affect the Δα, RFΔα, 

and GWIΔα at landscape scale. Depending on the precipitation regime and the landscape 

composition (i.e., cropland- vs forest-dominated landscapes), I expected the five landscapes being 

characterized by different magnitudes of climate benefit potentials (i.e., warming/cooling and 
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emission/mitigation equivalent to CO2) due to Δα. The framework proposed expresses the 

relationship between Δα and RFΔα and GWIΔα as follows (Sciusco et al., 2020): 

[Δ𝛼𝑐 × ∆𝑙𝑚𝑙 × ∆𝑤𝑙] → ∆𝑅𝐹∆𝛼 → ∆𝐺𝑊𝐼∆𝛼      (1.1) 

where Δαc is the surface albedo change at cover type c, Δlml is the variation of land mosaic (i.e., 

forest- vs cropland-dominated) for landscape l, Δwl is the variation of weather conditions (i.e., 

precipitation regime) for landscape l, ΔRFΔα and ΔGWIΔα are the net landscape albedo-induced 

radiative forcing and global warming impact, respectively. The reason behind the proposed 

framework at Eq. 1.1 comes from the fact that, according to previous works, although land surface 

albedo is significantly affected by LULCC (Bala et al., 2007; Cai et al., 2016), the magnitude of 

spatiotemporal changes of albedo (and thus RFΔα and GWIΔα) depend on a range of physical and 

biophysical characteristics such as vegetation type and canopy structure (Bennett et al., 2006; Tian 

et al., 2018), soil water content and leaf wetness (Wang et al., 2004)—which on their turn, are 

driven by spatiotemporal distributions of precipitation—plant phenology (Homer et al., 2020), and 

agricultural practices (Houspanossian et al., 2017). Primary data for Chapter 2 are albedo and land 

cover classification. In particular, surface albedo data were acquired from the most recent 

MCD43A3 (V006) MODIS Bidirectional Reflectance Distribution Function (BRDF) product (cf. 

https://doi.org/10.5067/MODIS/MCD43A3.006), which includes parameters for the computation 

of both black- and white-sky albedo at 500 m spatial resolution, as a daily product obtained by a 

16-day composite centered on the given day. Regarding the land cover classification, it was 

obtained for the year 2011 from a supervised classification, following the Anderson level I 

classification scheme that includes seven land cover types (urban, croplands, barrens, forest, water, 

wetlands, and grasslands) and constructed using the Landsat archives at 30 m spatial resolution 

obtained from the United States Geological Survey (USGS) Earth Explorer and Global 

https://doi.org/10.5067/MODIS/MCD43A3.006


 18 

Visualization Viewer (GloVis) portals. Additionally, secondary data employed are the Level IV 

ecoregions layer, daily precipitation, normalized difference vegetation index (NDVI), and incident 

shortwave radiation at the surface (SWin; W m-2). More details are provided in the Material and 

Methods section at Chapter 2.  

In Chapter 3, I considered the following three objectives: (i) to quantify the contributions 

from different seasons and months to the annual total cooling or warming effects by cover type 

and ecoregion; (ii) to quantify the variations of GWIΔα contributions by cover type, ecoregion, and 

year; and (iii) to estimate the magnitude of cooling or warming effects due to land cover change 

relative to mature forest cover, the original land cover in all ecoregions. The portion of Kalamazoo 

River Watershed considered as study area for this Chapter 3 is extended to the entire Watershed 

(Figure 1.2a), still considering the subdivision provided by the five Level IV ecoregions. The main 

underlying hypothesis is that the seasonal and monthly variations in surface albedo (i.e., growing 

season vs non-growing season surface albedos) show different contributions (i.e., warming vs 

cooling vs neutral) and magnitudes to the total GWIΔα across the five ecoregions and the major 

cover types considered. Overall, I expected the non-growing season months to contribute more 

than the growing season ones in terms of cooling effects and mitigation equivalent to CO2, due to 

the presence of snow. For example, the late planting of dominating croplands (i.e., maize) within 

the watershed leaves bare soils during the non-growing season months and during the first part of 

the growing-season months when snowfall occurs, resulting in higher albedo of cropland than 

forest. As in Chapter 2, primary data for Chapter 3 are the surface albedo (obtained from the 

MCD43A3 (V006) MODIS BRDF product) over a 19-year period (i.e., 2001–2019) and at both 

seasonal and monthly (growing season vs non-growing season) time steps and the land cover 

classification, obtained from the National Land Cover Database (NLCD) (cf. 
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https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-

science_center_objects=0#qt-science_center_objects; Homer et al., 2020) which provides twenty 

land cover classes—consequently grouped into nine classes: barren, cropland, forest, grassland, 

pasture, shrubland, urban, water, and wetland—at 30 m spatial resolution and it is available for the 

years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Secondary data are the five Level IV 

ecoregions layers and the enhanced vegetation index (EVI) remote sensing data. More details are 

provided in the Material and Methods section at Chapter 3. 

In Chapter 4, I considered two main objectives: (i) to investigate the main key influences 

(e.g., soil water content, air temperature,  leaf area index, vegetation height, etc.) to the 

interannual variations of net ecosystem exchange (NEE) fluxes, drawing inferences on net 

growing season climate regulations due to crop type, land use history and management; and (ii) 

to use multi-sensor remote sensing approach to forecast one year of growing season NEE at 

continuous maize bioenergy crop. The study area considered for Chapter 4 are two groups of pre-

existing LTER sites at KBS: the agriculturally cultivated (AGR) and Conservation Reserve 

Program (CRP) sites (Figure 1.2b). The main difference between AGR and CRP sites is that 

AGR ones have been managed for more than 50 years as conventionally tilled maize-soybean 

rotations whereas, the CRP sites have been managed as grasslands for 22 years. Although, in 

2009, all the sites were converted first to no-till soybean (Glycine max L.), and then in 2010, they 

were converted into no-till continuous maize systems and perennial croplands such as restored 

native prairie, and switchgrass with bioenergy purposes (Abraha et al., 2019). Each site is 

equipped with an Eddy Covariance (EC) flux tower. The underlying hypothesis is that main key 

influences to the net climate benefit potentials of bioenergy crops depend on the crop considered 

(e.g., annual vs perennial; monoculture vs polyculture) as well as on the land use history and land 

https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects
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management. Among the data employed in this Chapter, the AGR and CRP sites are equipped 

with EC flux towers that take continuous instantaneous measurements of NEE fluxes and other 

ancillary biometric data (i.e., air and soil temperature, photosynthetically active radiation, etc.). 

In addition, other in-situ measurements are considered, as result of four years (2018−2021) 

summer fieldwork campaigns conducted roughly during May–August. In particular, the 

measurements collected during the summer fieldwork campaigns include leaf area index (LAI, 

m2 m-2), Soil and Plant Analysis Development index (SPAD index, which is a leaf-level index of 

leaf chlorophyll content; Hlavinka et al., 2013), vegetation height (Ht, m), and soil water content 

(SWC, %) within the first 10 cm of soil. These field measurements were collected at subplot 

level (five subplots at each site; Figure 1.2b) at a time step of ~14 days. Regarding the fine-

resolution remote sensing imagery, I employed Sentinel-2 (i.e., optical) and Sentinel-1 (i.e., 

radar) at 20 m spatial resolution. The images were downloaded from the European Space Agency 

(ESA) online catalog Copernicus Open Access Hub (cf. 

https://scihub.copernicus.eu/dhus/#/home). Further details are provided in the Material and 

Methods section at Chapter 4. 

https://scihub.copernicus.eu/dhus/#/home
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Abstract 

Albedo can be used to quantify ecosystem and landscape contributions to local and global 

climate. Such contributions are conventionally expressed as albedo-induced radiative forcing 

(RF) and global warming impact (GWI). I contextualize the results within landscape carbon 

production and storage to highlight the importance of changes in albedo for landscape GWI from 

multiple causes, including net ecosystem production (NEP) and greenhouse gas (GHG) emissions. 

The main objective is to examine the spatiotemporal changes in albedo () in contrasting 

managed landscapes through calculations of RF and GWI under different precipitation regimes 

(i.e., drier vs wetter vs normal). To do so, I selected five contrasting landscapes within the 

Kalamazoo River Watershed in southwestern Michigan, USA, as proof of concept. The daily 

MCD43A3 MODIS (V006) product was used to analyze the inter/ and intra-annual variations of 

growing season albedo. In addition, the variations of RF and GWI were computed based on 

landscape composition and weather conditios. Results show that RF (-5.6 W m-2) and GWI (-

1.3 MgCO2eq ha-1 yr-1) were high in forest-dominated landscapes, indicating cooling effects and 

CO2eq mitigation impacts similar to crops, with magnitudes at forest-dominated landscapes on 

average 52% stronger than those at cropland-dominated ones. In the landscape with the highest 

proportion of forest, under drier and wetter conditions, albedo-induced climate benefit potentials 

(i.e., CO2eq mitigation effects) were reduced by up to 24% and ~30%, respectively, while in one 

cropland-dominated landscape wetter conditions reduced the climate benefit potentials by 23%. 

Findings demonstrate that quantifying spatiotemporal changes in albedo in managed landscapes 

and under different precipitation regimes is essential to understand how landscape modification 

affects RF and GWI and thereby contributes to ecosystem-level GWI.
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Introduction 

Decoupling the causes and consequences of ecosystem functioning and services at multiple 

spatial scales represents an important scientific frontier in landscape ecology (Antón et al., 2011; 

Chen et al., 2013; Raudsepp-Hearne et al., 2010; Seidl et al., 2016; Yuan & Chen, 2015). Land use 

and land cover change (LULCC) caused by human activities (e.g., land uses and management) and 

natural disturbances (e.g., wildfires) directly affects regional and global climate through the 

exchange of energy, carbon, water, and greenhouse gases (GHGs) between the land surface and 

the atmosphere (Bonan, 2016; Bright et al., 2015). Management activities and disturbances such 

as cultivation, burning, and grazing not only influence GHG emissions but also alter the surface 

radiation balance (Pielke et al., 2011; Shao et al., 2014). Unfortunately, little effort has been 

directed towards investigating resulting changes in surface radiation balance (e.g., changes in 

albedo) at landscape scales (Chen et al., 2004; Euskirchen et al., 2002).  

Surface albedo— the fraction of incoming shortwave solar radiation scattered by a surface 

back to space—is a measurable physical variable that can be used to quantify ecosystem and 

landscape contributions to local and global climate (Brovkin et al., 2013; Dickinson, 1983; Li et 

al., 2016; Picard et al., 2012; Storelvmo et al., 2016). Changing surface albedo has been proposed 

as one of several climate intervention strategies for climate change mitigation (Goosse, 2015; 

Lenton & Vaughan, 2009; National Research Council et al., 2010) and it is also important for 

understanding exchanges of energy and mass between terrestrial surfaces and the atmosphere 

(Merlin, 2013). Albedo is in its early stages of incorporation into climate models, but it is useful 

for deriving different mechanisms to lower climate warming by potentially increasing the 

scattering of shortwave solar radiation energy back to space (Lenton & Vaughan, 2009). Although 

LULCC (e.g., conversions from forest to biofuel, grassland, and cropland) can significantly alter 
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surface albedo (Bala et al., 2007; Cai et al., 2016), the magnitude of changes depends on vegetation 

type and canopy structure (Bennett et al., 2006; Tian et al., 2018). 

Albedo is also highly correlated with leaf wetness, soil moisture, and soil water content 

(Henderson‐Sellers & Wilson, 1983; Wang et al., 2004)—which are strongly related to 

precipitation and its temporal distribution—as well as with plant phenology and vegetation 

structure (Luyssaert et al., 2014), plant or tree height (Betts, 2001), and agricultural practices 

(Houspanossian et al., 2017), this last scarcely considered (Jeong et al., 2014; Zhang et al., 2013). 

For example, Culf et al. (1995) reported decreased albedo in forests as a function of darker leaves 

and darker soils under wet conditions. Berbet and Costa (2003) found that ranchlands were 

characterized by variable albedo throughout the entire year depending on climatic conditions (e.g., 

drier vs wetter periods), whereas forests were characterized by higher and lower albedo in both dry 

and wet periods, respectively.  

Changes in atmospheric conditions and land mosaics due to LULCC can affect the Earth’s 

radiation balance (Gray, 2007). Radiative forcing (RF) has been widely used to describe this 

imbalance as changes in the fraction of solar energy reflected by the Earth’s surface (Mira et al., 

2015), whether anthropogenic or natural (Lenton & Vaughan, 2009). Radiative forcing can thus 

be used to compare modifications in radiation balance due to atmospheric/surface albedo changes 

or due to GHG emissions. Previous studies (Akbari et al., 2009; Betts, 2000) have developed 

methodologies to relate RF to climate regulations equivalents to CO2 (i.e., CO2eq), used to calculate 

ecosystem-scale contributions to global warming impacts (GWIs)—a common measure for 

quantifying RFs of different GHGs and other agents (Forster et al., 2007; Fuglestvedt et al., 2003; 

Peters et al., 2011). Global warming impact allows one to directly relate anthropogenic activities 

to GHG emissions (Cherubini et al., 2012; Davin et al., 2007; Haines, 2003; Robertson et al., 2017) 
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and to understand and quantify the impact of an ecosystem on climate. 

Despite escalating efforts to examine the magnitude and dynamics of albedo change due to 

LULCC, previous studies have focused on albedo, RF, and GWI differences among the cover types 

within landscapes or regions (Carrer et al., 2018; Chen et al., 2019; Haas et al., 2001; Román et 

al., 2009). For example, previous studies have shown that deforestation and expanding agricultural 

lands have played an important role in surface cooling of the northern hemisphere due to increased 

surface albedo and regeneration of forests after harvesting (Betts, 2001; Govindasamy et al., 2001; 

Lee et al., 2011). Georgescu et al. (2011) simulated strong cooling effects—equivalent to a 

reduction in carbon emission of 78 tC ha-1—by increasing the surface albedo of agricultural lands 

across the central United States. Loarie et al. (2011) demonstrated that introducing sugar cane 

production into cropland/pasture landscapes of Brazil increased albedo and evapotranspiration, 

which in turn appeared to cool the local climate. Importantly, to quantify the contribution of 

LULCC to global warming/cooling, GWI should be computed with reference to albedo due to pre-

existing conditions.  

Here I examined the spatiotemporal changes of albedo (i.e., ) in contrasting managed 

landscapes as compared to pre-existing forests through calculations of albedo-induced RF (ΔRFΔα) 

and GWI (GWIΔα) under different precipitation regimes (i.e., different weather conditions). I 

expressed the relationship between landscape , RF, and GWIΔα as (Figure 2.1): 

[Δ𝛼𝑐 × Δ𝑙𝑚𝑙 × Δ𝑤𝑙] → Δ𝑅𝐹Δ𝛼 → Δ𝐺𝑊𝐼Δ𝛼       (2.1) 

where Δαc is the surface albedo change at cover type c, Δlml is the variation of land mosaic (i.e., 

forest- vs cropland-dominated) for landscape l, Δwl is the variation of weather conditions for 

landscape l, ΔRFΔα and ΔGWIΔα are the net landscape albedo-induced radiative forcing and global 

warming impact, respectively.  
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Figure 2.1: Schematic diagram showing the relationship between landscape albedo () and 

albedo-induced radiative forcing (RFΔα) and global warming impact (GWIΔα), as outlined at Eq. 

2.1. The main hypothesis is that variations () in land mosaics (i.e., forest- vs cropland-

dominated landscapes) and weather conditions (i.e., drier vs wetter vs normal) affect the 

spatiotemporal variation of  and, hence, the RF and GWI. Figure modified from Sciusco et 

al., 2000. 

More specifically, I aimed to estimate the magnitude and seasonal changes in albedo so 

that ΔGWIΔα could be assessed at ecosystem, landscape, and watershed scales, and included in 

ecosystem GWI assessments (Gelfand and Robertson, 2015). I further contextualized my results 

within landscape C production and storage to highlight the importance of changes in landscape 

GWIΔα from multiple causes, including net ecosystem production (NEP) and GHG emissions. The 

framework developed in this study (Eq. 2.1 and Figure 2.1) can be applied to any landscape to 

compute landscape GWIΔα. To this end, I selected five contrasting landscapes in the Kalamazoo 

River Watershed of southwestern Michigan, USA, as a proof of concept to investigate inter/ and 

intra-annual variations of albedo under three different precipitation regimes. 

Material & Methods 

Study area 

I chose five contrasting landscapes in the Kalamazoo River Watershed, located in 

southwestern Michigan, USA, for proof of concept (Figure 2.2). Within the 5621 km2 watershed, 
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the long-term (1981–2010) mean annual temperature is 9.9 °C and the average annual precipitation 

is 900 mm that is evenly distributed throughout the year (Michigan State Climatologist’s Office, 

2013). The watershed includes portions of 10 counties: Allegan, Ottawa, Van Buren, Kent, Barry, 

Kalamazoo, Calhoun, Eaton, Jackson, and Hillsdale. Prior to European settlement, the watershed 

was dominated by forests (Brown et al., 2000) with interspersed tallgrass prairies, savannas, lakes, 

wetlands, and oak openings (Chapman & Brewer R, 2008). The watershed however has undergone 

significant LULCC since then. Present-day forest areas are secondary successional forests that 

followed their complete harvest by European settlers in the late 1800s (Brown et al., 2000). Today, 

the watershed consists of cultivated crops, successional forest stands, pasture-hay grasslands, and 

two urban areas (Kalamazoo and Battle Creek). Medium to coarse texture soils and mesic climate 

allow continuous recharge of groundwater (Schaetzl et al., 2009).  
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Figure 2.2: Locations of the five equal area landscapes (FOR1, FOR2, CROP1, CROP2, CROP3) 

within the Kalamazoo River Watershed in the southwest Michigan, USA. Each landscape falls 

within a unique Level IV ecoregion defined by the United States Environmental Protection 

Agency (U.S. EPA). Basemap sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, 

NRCAN, Esri Japan, METI, Esri China (Hong Kong), NOSTRA, © OpenStreetMap contributors, 

and the GIS User Community. 

I randomly selected five 10,000 ha landscapes (Figure 2.2; Barnes & Spurr, 1998) that 

represent the main ecoregions (i.e., areas characterized by similar vegetation, with the same type, 

quality, and quantity of environmental resources; Omernik & Griffith, 2014) of the watershed. The 

Kalamazoo River Watershed includes three United States Environmental Protection Agency (U.S. 

EPA) ecoregions (cf. https://www.epa.gov/eco-research/ecoregion-download-files-state-region-

5#pane-20): Eastern Temperate Forest (Level I), Mixed Wood Plain (Level II), and Southern 

Michigan/Northern Indiana Drift Plain (Level III). At a finer scale, five Level IV ecoregions (Table 

https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20
https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20
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A1) exist in the watershed: Battle Creek Outwash Plain (56b), Michigan Lake Plain (56d), Lake 

Michigan Moraines (56f), Lansing Loamy Plain (56g), and Interlobate Dead Ice Moraines (56h). 

I used the five landscapes to represent the five Level IV ecoregions so that each landscape fell 

within an individual Level IV ecoregion.  

Each landscape has different proportions of urban, cropland, barren, forest, water, wetland, 

and grassland cover types (Table 2.1). Two of the five landscapes have a higher proportion of 

forest (FOR1 highest proportion of forest, and FOR2 second highest proportion); while the 

remaining three landscapes are dominated by cropland (CROP1, CROP2, and CROP3, from high 

to low proportion of cropland, respectively) (Table 2.1). 

Table 2.1: Land cover composition of the five landscapes. Bold values indicate the cover type 

dominating the landscape. 

 

 

Given that forest was the dominant land cover type prior to European settlement within 

each landscape (Brown et al., 2000), I considered the average albedo of all forest portions within 

each of the five landscapes during the growing season at 10:30 a.m. local time (UTC -05; i.e., 

MODIS Terra morning overpass time) as the reference albedo. Thereafter, in each landscape, 

changes in albedo (Δα) were obtained by calculating the difference between mean cropland and 

 
Landscape 

Cover type FOR1 FOR2 CROP1 CROP2 CROP3 

 ha (%) 

Urban  513 (5.2) 1330 (13.3) 545 (5.5) 1047 (10.5) 1341 (13.4) 

Cropland 1035 (10.5) 2597 (26.0) 6807 (68.1) 6442 (64.5) 5713 (57.2) 

Barren 530 (5.4) 286 (2.9) 49 (0.5) 62 (0.6) 64 (0.6) 

Forest 5672 (57.5) 3833 (38.4) 1415 (14.2) 1670 (16.7) 1477 (14.8) 

Water 410 (4.2) 922 (9.2) 56 (0.6) 43 (0.4) 442 (4.4) 

Wetland 1669 (16.9) 1012 (10.1) 1101 (11.0) 693 (6.9) 917 (9.2) 

Grassland 30 (0.3) 12 (0.1) 21 (0.2) 35 (0.4) 38 (0.4) 
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mean forest albedos, and then used to calculate RFΔα and GWIΔα. 

Landscape structure 

The landscape structure of the watershed was quantified from a classified land cover map 

for 2011 (Figure 2.2) at 30 m spatial resolution, which was produced using the Landsat archives 

from the United States Geological Survey Earth Explorer and Global Visualization Viewer 

(GloVis) portals (cf. https://earthexplorer.usgs.gov/). The land cover map was obtained following 

the Anderson level I classification scheme and included seven land cover types: 1) urban, 2) 

cropland, 3) barren, 4) forest, 5) water, 6) wetland, and 7) grassland. The details of the accuracy 

assessment (i.e., producer and user’s accuracy for each class type and the overall accuracy in an 

error matrix) of the classification were provided in Chen et al. (2019). 

MODIS albedo 

Albedo datasets were obtained from the most recent collection (V006) of the MCD43A3 

MODIS Bidirectional Reflectance Distribution Function (BRDF) product (cf. 

https://doi.org/10.5067/MODIS/MCD43A3.006). MOD43A3 is a daily product at 500 m spatial 

resolution obtained by inversion of a Bidirectional Reflectance Distribution Function (the BRDF) 

model against a 16-day moving window of MODIS observations. The BRDF model was then used 

to derive the black-sky (i.e., directional-hemispherical reflectance) and white-sky (i.e., bi-

hemispherical reflectance) albedos (Wang et al., 2014). I only considered snow-free, white-sky 

albedo () at a shortwave length of 0.3–5.0 µm (hereafter, αSHO and expressed in percentage). For 

each image, the “Albedo_WSA_shortwave” (white-sky albedo) band was selected and rescaled to 

0–1. Only high-quality data were selected within the “full BRDF inversion” quality band (QA=0). 

The “Snow_BRDF_Albedo” band in the MCD43A2 product was used to filter and exclude pixels 

with snow albedo retrievals (Chrysoulakis et al., 2018). 

https://earthexplorer.usgs.gov/
https://doi.org/10.5067/MODIS/MCD43A3.006
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MODIS NDVI 

Previous studies have thoroughly addressed the importance of snow cover on 

variability/uncertainty of albedo (Bonan, 2008; Bright et al., 2015; Campbell & Norman, 1998; 

Iqbal, 2012; Kaye & Quemada, 2017; Liang et al., 2013; Sun et al., 2017; Zhao & Jackson, 2014). 

Here, I focused on , RFΔα, and GWIΔα only during the growing season when maximum 

variability of watershed crop phenology can be related with changes in climatic conditions and 

human disturbances at the landscape level. Therefore, for each year, I identified the “growing 

season” during March–October by detecting the greenness onset/offset for the entire Kalamazoo 

River Watershed. To do so, for each year, I used a 16-day composite time series of the normalized 

difference vegetation index (NDVI) to detect the inflection points (i.e., dates) when the maximum 

and minimum change rate of NDVI occurred (Jeong et al., 2011). I obtained NDVI at a 250 m 

spatial resolution from the most recent collection (V006) of the MYD13Q1 MODIS product (cf. 

https://doi.org/10.5067/MODIS/MYD13Q1.006). Finally, I divided each growing season (March–

October) into three periods (hereafter, seasons)—spring, summer, and fall using astronomical 

seasons’ subdivision (i.e., spring equinox, summer solstice, and fall equinox). 

Precipitation data 

Daily precipitation data at a 4 km spatial resolution was obtained from the Parameter-

elevation Regressions on Independent Slopes Model group (PRISM) AN81d product (c.f 

http://www.prism.oregonstate.edu/) over the 2012–2017 time-period. I also calculated the 

cumulative precipitation of the five landscapes during the growing season from March through 

October. For the time-period considered (e.g., 2012–2017), I then identified three years as drier, 

wetter, and normal years: 2012, 2016, and 2017, respectively. As a matter of fact, the Midwest of 

USA experienced 6 weeks of summer drought during June-July in 2012 (Mallya et al., 2013), 

https://doi.org/10.5067/MODIS/MYD13Q1.006
http://www.prism.oregonstate.edu/
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resulting in a growing season precipitation of <490 mm. In 2017, the watershed received over 750 

mm, while this was ~700 mm (i.e., near average) for 2017. All analysis and processing of albedo, 

NDVI, and precipitation data were performed on the Google Earth Engine (GEE) platform 

(Gorelick et al., 2017), where the MODIS products were uploaded, filtered to the date of interest, 

and clipped to the shape file for each of the five landscapes. 

Statistical analysis 

I performed analysis of variance (ANOVA) to examine the change in albedo with land 

cover type and landscape structure within the three-year study period and across three seasons. 

The following linear model was applied: 

𝛼𝑆𝐻𝑂 = 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 × 𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒 × 𝑦𝑒𝑎𝑟 × 𝑠𝑒𝑎𝑠𝑜𝑛      (2.2) 

where αSHO is the snow-free white-sky albedo at the shortwave length at a daily step acquired from 

MODIS at 10:30 a.m. local time (UTC -05); landscape, cover type, year, and season are the five 

equal area landscapes (FOR1, FOR2, CROP1, CROP2, CROP3), the seven cover types (Table 2.1) 

at each landscape, the three years (drier, wetter, and normal), and the three astronomical seasons 

(spring, summer, and fall), respectively. I also considered the interaction terms among the 

independent variables in our ANOVA. To test the normality of the data I checked the distribution 

of the residuals. I then carried out ANOVA and Tukey tests for multiple comparisons using the R-

package ‘lsmeans’ (R Core Team, 2020). 

Radiative forcing (RF) and global warming impact (GWI) 

To quantify the potential of landscape radiative forcing (RF) due to albedo, first, I needed 

to compute the changes in surface albedo () due to land mosaic as follows: 

∆𝛼 = 𝛼𝑐 − 𝛼𝑓           (2.3) 

where c and f are the changes of αSHO in terms of absolute difference between mean cropland 
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and mean forest albedos in each of the five landscapes. 

I then calculated the albedo-induced RF (RFΔα; W m-2), which refers to the direct RF at the 

top-of-atmosphere, by following the algorithms of Carrer et al. (2018):  

𝑅𝐹Δ𝛼 = −
1

𝑁
∑ 𝑆𝑊𝑖𝑛 × 𝑇𝑎 × Δ𝛼𝑁

𝑑=1         (2.4) 

where RFΔα is the mean albedo-induced radiative forcing at the top-of-atmosphere over the 

growing season (t), N is the number of days in the growing season, SWin (W m-2) is the incoming 

shortwave radiation at the surface, Ta is the upward atmospheric transmittance, and Δ𝛼 is the 

change in surface albedo (i.e., between mean cropland and mean forest albedos; Eq. 2.3). By 

multiplying both SWin and Δ𝛼 by Ta, I calculated the instantaneous amount of radiation that leaves 

the atmosphere at 10:30 a.m. local time (UTC -05). It is worth reiterating that all the variables (i.e., 

SWin, Δα, and Ta) refer to the specific time of 10:30 a.m. local time (UTC -05; i.e., MODIS Terra 

morning overpass time) and were considered to represent daily means. Negative values of RFΔα 

indicate a cooling effect due to the differences between mean cropland and mean forest albedos. 

While previous studies used a global annual average value of 0.854 (i.e., 85%) for Ta 

(Cherubini et al., 2012; Lenton & Vaughan, 2009), I calculated Ta as the ratio of incident shortwave 

radiation at the top of the atmosphere (SWTOA) to that at the surface (SWin) at 10:30 a.m. local time 

(UTC -05). By assuming a same value of upward and downward atmospheric transmittances 

(Carrer et al., 2018), SWin (W m-2) was obtained from a local Eddy Covariance (EC) tower located 

at one of the Long-term Ecological Research sites at Kellogg Biological Station (42°24´N, 

85°24´W) (Abraha et al., 2015), while SWTOA (W m-2) was calculated as:  

𝑆𝑊𝑇𝑂𝐴 = 𝑆𝑝𝑜 × cos (𝜃) × 𝑑          (2.5) 

where Spo is the solar constant (1,360; W m-2), cos(θ) is the cosine of the solar zenith angle, 

obtained from the MCD43A2 (V006) MODIS BRDF Albedo Quality product (cf. 
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https://doi.org/10.5067/MODIS/MCD43A2.006), applying the “BRDF_Albedo_LocalSolarNoon” 

band, and d is the mean Earth-Sun distance (km). 

I then converted RF into the CO2 equivalent (CO2eq) by using the GWI algorithms of Bird 

et al. (2008) and Carrer et al. (2018): 

𝐺𝑊𝐼Δ𝛼 =
𝑆×𝑅𝐹Δ𝛼

𝐴𝐹×𝑟𝑓𝐶𝑂2

1

𝑇𝐻
           (2.6) 

where GWIΔα is the albedo-induced global warming impact (kgCO2eq m-2 yr-1), represented by 

MODIS αSHO acquisitions at 10:30 a.m. local time (UTC -05), i.e., assuming that the values 

represent the mean CO2eq mitigation impact of each landscape during the growing season March–

October (t), RFΔα is the mean albedo-induced RF due to Δα over the growing season March-

October (t) (Eq. 2.4), S is cropland area (ha) for which I hypothesized the change of albedo 

occurred, AF is the CO2 airborne fraction (0.48; i.e., 48%; Muñoz et al., 2010) obtained from the 

exponential CO2 decay function (see Bird et al. (2008) for more details), and TH is the time horizon 

of potential global warming fixed at 100 years (Kaye & Quemada, 2017). Lastly, the parameter 

rfCO2—the marginal RF of CO2 emissions at the current atmospheric concentration—is kept as a 

constant at 0.908 W kgCO2
-1 (Bright et al., 2015; Carrer et al., 2018; Muñoz et al., 2010).  

Negative and positive values of GWIΔα indicate CO2eq mitigations and emissions, 

respectively. I calculated the annual GWIΔα as 1/100th of the total CO2eq to normalize to the 100-

year time horizon used in the Kyoto Protocol (Boucher et al., 2009). Notably, here I assumed that 

the same land mosaic in each landscape will be maintained for the duration of 100 years. Previous 

studies (Akbari et al., 2009; Betts, 2000) have also used a constant AF as opposed to the 

exponential CO2 decay function; however, the computed GWIs are similar (Bright et al., 2015). 

Results 

Two of the five landscapes (FOR1 and FOR2) were dominated by forests (Table 2.1), with 

https://doi.org/10.5067/MODIS/MCD43A2.006
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a forest coverage of 57.5% in FOR1 and 38.4% in FOR2. Wetlands and croplands accounted for 

16.9% and 10.5% of landscape, respectively, in FOR1 (Table 2.1), but only 10.1% and 26% in 

FOR2 where urban land was also the highest (13.3%). Croplands were dominant in CROP1, 

CROP2, and CROP3 (Table 2.1), with 68.1%, 64.5%, and 57.2% of area coverage, respectively. 

Forest cover ranked the second highest in these landscapes (14.2%, 16.7%, and 14.8%, 

respectively). Bare soils, grasslands, and water accounted for small portions of all five landscapes. 

The entire watershed had an αSHO of 15.9% during the drier (2012) and wetter (2016) years 

and of 15.6% during the normal (2017) year (Table A2), yielding an overall average of 15.8% with 

a low inter-annual variation. Each cover type contributed differently to αSHO at the watershed level. 

In particular, croplands and water bodies showed the highest (16.6%) and lowest (12.1%) αSHO, 

respectively, with the highest values occurring in both 2012 (16.6%±1.0) and 2016 (16.6%±1.1) 

for croplands, and the lowest in 2017 (11.9%±3.4) for water. The other cover types showed similar 

αSHO values, ranging 15.1–15.6% for barren and grassland, 15.2% for urban and forests and 15.4% 

for wetlands. At the landscape level, αSHO of forest, which was considered as reference, was 

generally lower than that of croplands. In particular, FOR1 and FOR2 landscapes averaged a low 

αSHO of 14.6% and 13.9%, respectively, whereas CROP1, CROP2, and CROP3 landscapes recorded 

higher values of 16.7%, 16.4%, and 16.2%, respectively. However, FOR1 and FOR2 demonstrated 

the highest αSHO in 2012 (14.7%±0.8 and 14.1%±2.3, respectively), while CROP1, CROP2, and 

CROP3 demonstrated the highest αSHO in different years, such as 2016 for CROP1 (17.0%±0.8), 

2012 and 2016 for CROP2 (16.5%±0.6), and 2017 for CROP3 (16.3%±1.7). In the forest-

dominated landscapes, all cover types showed higher αSHO during the drier year (2012). However, 

for FOR2, αSHO values of cropland and barren were high in the wetter year (2016). In the cropland-

dominated landscapes, the highest αSHO value (17.1%) was observed in CROP3 (±1.1) for 
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croplands in 2017, and in CROP1 for both urban (±0.6) and croplands (±0.8) in 2016. 

The ANOVA model (R2=0.64; Table 2.2) indicated that the variation of αSHO was 

significant (p-value<0.001) among the five landscapes (i.e., ecoregions; ω2=26.6%) by cover type 

(i.e., landscape mosaics; ω2=11.1%) and their interactions (ω2=5.2%), with year and its 

interactions explaining <1% of the variation. However, the variation from season (i.e., seasonality; 

ω2=15.9%) explained more than cover type. 

Table 2.2: Statistical results of analysis of variance (ANOVA) based on the linear model 

at Eq. 2.3 (dependent variable: αSHO). 

Variable DF SS MS F p-value  ω² R2 

lands. 4 1.869 0.467 3689.660 *** 0.266  

seas. 2 1.118 0.559 4414.651 *** 0.159 

Cover 6 0.779 0.130 1024.423 *** 0.111 

lands. × cover 24 0.371 0.015 121.891 *** 0.052  

lands. × seas. 8 0.142 0.018 140.167 *** 0.020  

lands. × cover × seas. 48 0.079 0.002 12.962 *** 0.011  

year × seas. 4 0.048 0.012 94.672 *** 0.007  

cover × seas. 12 0.030 0.003 19.844 *** 0.004  

lands. × year 8 0.022 0.003 21.210 *** 0.003  

lands. × year × seas. 16 0.020 0.001 9.684 *** 0.003  

year 2 0.013 0.007 51.367 *** 0.002  

lands. × cover × year 48 0.015 0 2.505 *** 0.002  

cover × year 12 0.002 0 1.278  0  

cover × year × seas. 24 0.003 0 1.047  0  

lands. × cover × year 

× seas. 

96 0.011 0 0.887  0 0.64 

Residuals 19779 2.505 0 
   

 

R2: R-squared score 

ω2: omega-squared indicating the variance in the dependent variable αSHO accounted for by the independent variables landscape, 

cover type, year, seasons, and their interactions 

Signif. codes: *** p-value < 0.001, ** p-value < 0.0.1, * p-value < 0.05,  p-value < 0.1, “ ” p-value > 0.1 

Forest-dominated landscapes showed lower least square means (LSM) of αSHO (LSMαSHO) 

than cropland-dominated landscapes (Figure 3a) over the three years. 
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Figure 2.3: Least square means (LSM) multi-comparison analysis of αSHO (a) and ΔαSHO (b) in 

2012 (i.e., drier), 2016 (i.e., wetter), and 2017 (i.e., normal) for each landscape. Boxes indicate 

the LSM; whiskers represent the lower and upper limits of the 95% family-wise confidence level 

of the LSM. Boxes sharing the same letters are not significantly different (inter/ and intra-annual, 

as well as within and among the five landscapes) according to the Tukey honestly significant 

difference test. 

A decreasing interannual trend (between 2012, 2016, and 2017 growing seasons) 

characterized FOR1, FOR2, and CROP2, with FOR1 showing statistically higher LSMαSHO in the 

drier year (i.e., 2012); whereas CROP2 showed statistically lower LSMαSHO in the normal year 
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(i.e., 2017). In addition, differences in LSM between cropland and forest albedos (LSMΔα) 

appeared to be higher in FOR1, FOR2, and CROP3 (Figure 3b), but with increasing inter-annual 

trends, than in CROP1 and CROP2. However, only FOR2 showed statistically lower LSMΔα in the 

drier year (2012) (Figure 2.3b). 

Clear seasonal patterns existed in αSHO and were generally lower in spring and autumn than 

in the summer (Figure 2.4). However, in CROP2, the αSHO of the major cover types (i.e., cropland, 

forest, urban, and wetland) was the highest in the spring of the drier year. The αSHO of cropland 

and urban areas in 2017 (a normal year) was also relatively higher in both spring and summer 

(Figures 2.4c1-c3). The interannual variability between the wetter and normal years (Figures 2.4b1–

b4 and 2.4c1–c4, respectively) appeared similar, with small differences between FOR1 and FOR2 

(e.g., the lowest αSHO occurring in spring in FOR1 and in autumn in FOR2).
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Figure 2.4: Mean αSHO (%) by cover type and season in 2012 (i.e., drier year; a1–a4), 2016 (i.e., 

wetter year; b1–b4), and 2017 (i.e., normal year; c1–c4) for the five landscapes. Mean of the 

difference between mean cropland and mean forest albedos (ΔαSHO) for the same years (Δa, Δb, 

and Δc, respectively) is also shown. 

The mean Δα ranged between 0.4% and 2% (i.e., ~1.2% mean difference between mean 

cropland and mean forest albedos) (Figure 2.4Δa–Δc); however, the intra-annual variability of Δα 

differed by landscape and year. I found that forest-dominated landscapes (FOR1 and FOR2) had 

higher Δα in spring each year, with the minimum in autumn (FOR1) and summer (FOR2) of every 

year. Cropland-dominated landscapes (CROP1, CROP2 and CROP3CROP3) showed higher Δα in 

spring that was more pronounced in 2016 for CROP1 (Figure 2.4Δb), in 2016 and 2017 for CROP2 

(Figure 2.4Δb-Δc), and in 2012 for CROP3 (Figure 2.4Δa). However, CROP2 in 2012 was 

characterized by a different Δα trend—lower in spring and higher in autumn (Figure 2.4Δa). The 

summer Δα variability among the five landscapes was lower in the drier year (Figure 2.4Δa) and 

higher in the normal year (Figure 2.4Δc). Two distinct clusters characterized the summer of the 

wetter year (Figure 2.4Δb), with FOR1, FOR2 and CROP3 having an Δα of ≥ 1% and CROP1 and 
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CROP2 of ≤ 0.5%.  

All five landscapes had negative RFΔα (Table 2.3 and Figure 2.5a). Among the cropland-

dominated landscapes, CROP1 and CROP2 had similar lower magnitude RFΔα values, with 

minimum and maximum values in the wetter and normal years (i.e., 2016 and 2017, respectively), 

respectively. In particular, CROP2 had RFΔα (W m-2) of -1.2 in 2016 and -1.9 in 2017, followed by 

CROP1 (-1.3 and -2.0) and CROP3 (-2.9 and -3.7). Among the forest-dominated landscapes, FOR1 

showed a similar trend, with minimum and maximum magnitude RFΔα in 2016 and 2017 (-3.9 and 

-5.6, respectively), while FOR2 had the minimum and maximum magnitude RFΔα in the dry and 

normal years (-2.7 and -2.9, respectively, in 2012 and 2017, respectively). 

Table 2.3: Mean ( one standard deviation) change of Δα (%), RFΔα (W m-2), and GWIΔα 

(MgCO2eq ha-1 yr-1) for each landscape in 2012, 2016, and 2017 growing seasons. Negative and 

positive values for RFΔα and GWIΔα indicate cooling and warming effects and CO2eq mitigation 

and emission impacts due to albedo change, respectively. Percentage changes (%) between 2017 

(baseline) and the two extreme weather years (i.e., diff 2017-2012 and diff 2017-1016, respectively) are 

also shown. Values with significant decrease (e.g., percent change) are highlighted in bold texts. 

: change in surface albedo between mean cropland and mean forest albedos 

RF and GWI: albedo-induced radiative forcing (W m-2) and global warming impact (MgCO2eq ha-1 yr-1) 

 2012 2016 2017 diff2017-2012  diff2017-2016 

 Δα RFΔα GWIΔα Δα RFΔα GWIΔα Δα RFΔα GWIΔα Δα RFΔα / 
GWIΔα 

Δα RFΔα / 
GWIΔα 

FOR1 1.2(±0.8) -4.2 -1.0 

 

1.2(±0.8) -3.9 -0.9 

 

1.3(±0.6) -5.6 -1.3 

 

9.0 24.0 6.1 29.9 

FOR2 0.8(±0.3) -2.7 -0.6 

 

1.0(±0.4) -2.9 -0.7 

 

1.1(±2.0) -2.9 -0.7 

 

28.5 9.0 7.8 1.4 

CROP1 0.5(±0.2) -1.7 -0.4 

 

0.5(±0.3) -1.3 -0.3 

 

0.5(±0.3) -2.0 -0.5 

 

9.2 15.6 12.6 32.1 

CROP2 0.5(±0.3) -1.7 -0.4 

 

0.4(±0.2) -1.2 -0.3 

 

0.6(±1.4) -1.9 -0.4 

 

19.4 9.9 34.3 33.4 

CROP3 0.9(±0.3) -3.2 -0.7 
 

0.9(±0.6) -2.9 -0.7 
 

0.9(±0.5) -3.7 -0.9 
 

6.0 14.9 1.0 23.3 
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Figure 2.5: Bar chart of albedo-induced radiative forcing (RFΔα; W m-2) due to the difference 

between mean cropland and mean forest albedos at the top-of-atmosphere across five landscapes 

at 10:30 a.m. local time (UTC -05) during the 2012, 2016, and 2017 growing seasons (a). Panel 

(b) shows the albedo-induced global warming impact (GWIΔα; MgCO2eq ha-1 yr-1) due to the 

difference between mean cropland and mean forest albedos. Negative values for RFΔα and 

GWIΔα indicate cooling effects and CO2eq mitigation impacts, respectively. Bars sharing the 

same letters are not significantly different (inter/ and intra-annual, as well as within and among 

the five landscapes) according to the Tukey honestly significant difference test. The three years 

2012, 2016, and 2017 refer to drier, wetter, and normal weather conditions, respectively. 

As for RFΔα, all five landscapes showed negative values of GWIΔα (Table 2.3 and Figure 

2.5b), which had inter/ and intra-annual trends similar to RFΔα (Figure 2.5b). In particular, CROP1 

and CROP2 had similar lower magnitude GWIΔα (MgCO2eq ha-1 yr-1) values, with minimum 

(CROP1 and CROP2: -0.3) and maximum (CROP1: -0.5 and CROP2: -0.4) values in the wet (i.e., 

2016) and normal (i.e., 2017) years, respectively, followed by CROP3 (-0.7 and -0.9, respectively). 
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FOR1 showed a similar trend, with minimum and maximum magnitude GWIΔα in 2016 and 2017 

(-0.9 and -1.3, respectively), with statistically higher GWIΔα in 2017, while FOR2 had the minimum 

and maximum magnitude GWIΔα in the drier (2012) and both wetter and normal (2016 and 2017) 

years (-0.6 and -0.7, respectively) (Table 2.3 and Figure 2.5b). 

Taking the normal year (2017) as my baseline, the percentage changes between the normal 

and drier years (e.g., diff 2017-2012), and the normal and wetter years (e.g., diff 2017-2016) showed 

reduced Δα, RFΔα, and GWIΔα values (Table 2.3). In particular, the decrease in Δα was higher in 

FOR2, CROP1 CROP2 (28.5%, 9.2%, and 19.4%, respectively) for diff2017-2012 and in CROP1 and 

CROP2 (12.6% and 34.3%, respectively) for diff2017-2016. FOR2 decreased the least from baseline 

in both RFΔα and GWIΔα compared to all other landscapes, which had the highest decrease in 

diff2017-2016—FOR1 (29.9%), CROP1 (32.1%), CROP2 (33.4%), and CROP3 (23.3%). Statistically, 

reductions in Δα, RFΔα, and GWIΔα values were all significant in FOR1 (for both diff2017-2012 and 

diff2017-2016) and in CROP2 (for diff2017-2016). 

Discussion 

The main finding of my study is that RFΔα and GWIΔα play an important role in climate 

change impact due to landscape mosaics. In particular, I found that forests have lower albedo than 

croplands, which is in consistent with previous studies. In all five landscapes LULCC from forest 

to cropland showed a cooling effect with negative RFΔα and GWIΔα values. The results also show 

that the difference between mean cropland and mean forest albedos during the three years produces 

on average ~64%, 65%, and 28% stronger CO2eq mitigation impacts in the landscape with the 

highest proportion of forest (FOR1) than in cropland-dominated landscapes (CROP1, CROP2, and 

CROP3, respectively), presumably due to the lower proportion in cropland (e.g., 10.5% of cropland 

area) in FOR1. Additionally, drier weather conditions in 2012 result in the highest albedo in almost 
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all landscapes, although only significantly higher in one of the forest-dominated (i.e., FOR1) 

landscapes, supporting a consensus that drier surfaces reflect more than wetter surfaces. Over the 

growing season, albedo peaks in summer in all cover types, with lower albedo in spring and autumn 

due to changes in plant phenology. 

Inter and intra-annual changes in albedo 

I compared αSHO values among major cover types (i.e., urban, cropland, forest, and 

wetland), disregarding those with lower proportions (i.e., grassland, water, and barren) due to their 

negligible contributions to the total landscape αSHO. I observed that croplands and forests had on 

average 7.8% higher and 0.7% lower albedo than other land covers, respectively. This is in line 

with previous studies that examined snow-free albedo variations among ecosystems (Chen et al., 

2019; Jiao et al., 2017) and across the conterminous United States (Barnes & Roy, 2010). Bonan 

(Bonan, 2008) showed that forests have lower surface albedo than other cover types, contributing 

to climate warming. My study indicated that in forest-dominated landscapes (FOR1 and FOR2) the 

average of interannual variation of αSHO was ~2.8% lower than that in cropland-dominated 

landscapes (Table A2 and Figure 2.3a). Analysis of variance also revealed that the five landscapes 

(i.e., ecoregions), cover types (i.e., landscape mosaics), and seasons (i.e., seasonality) contributed 

significantly to the overall variation of αSHO. Specifically, I found that besides the five landscapes, 

seasons (~16%) contributed by 5% more than cover type (11%) towards variation of αSHO (Table 

2.2). 

Changes in αSHO due to LULCC have been widely studied (Chrysoulakis et al., 2018); 

however, its dynamics at ecosystem-to-landscape scales remain unexplored. For example, Zheng 

et al. (2019) investigated how vegetation changes affect albedo trends without considering the 

integrated effect of both cover type and seasonality, while Matthews et al. (2003) investigated the 



 51 

cooling/warming effects of albedo change resulting from deforestation but failed to consider 

realistic land cover change scenarios. A number of agricultural management practices are known 

to mitigate climate change (summarized in Smith et al. (2008) and Eagle et al. (2012)), including 

GHG emission reductions and soil carbon storage, but the potential contribution of albedo change 

as an ecosystem-scale mitigation factor has not been much addressed. For example, tillage 

practices, harvest timing, residue management, and winter cover crops can all affect surface 

reflectance in annual cropping systems (Bright et al., 2015; Kaye & Quemada, 2017; Poeplau & 

Don, 2015; Robertson et al., 2017) and thus GWI.  

To my knowledge, no effort has been made to understand albedo mitigation in terms of 

both RF and GWI in the context of landscape mosaics characterized by diverse land use type and 

intensity. Using the framework listed in Eq. 2.1 and Figure 2.1, I was able to integrate spatial (e.g., 

five landscapes within ecoregions) and temporal (e.g., inter/ and intra-annual) changes as main 

drivers of αSHO variations. Regardless of land composition, cropland-dominated landscapes 

showed a higher intra-annual variability of αSHO than forests under drier, wetter, and normal 

weather conditions (Figure 2.4a–c), likely due to the higher disturbances that croplands experience 

(i.e., fragmentation, land management, crop variety, and crop seasonality). For example, αSHO can 

be altered by the differences in leaf structure/properties (Miller et al., 2016) and leaf wetness 

(Luyssaert et al., 2014), by the difference in management of both perennial and annual crops and 

by agricultural practices (Bright et al., 2015; Kaye & Quemada, 2017; Robertson et al., 2017). 

The LSM multi-comparison analysis showed that dry conditions led FOR1 to yield 

statistically higher αSHO compared to wetter and normal conditions. On the other hand, CROP2 

showed significantly lower αSHO under normal conditions than under drier and wetter conditions 

(Figure 2.3a), indicating a different albedo response of forest- and cropland-dominated landscapes 
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to changes in weather conditions. All other landscapes showed higher αSHO in the drier year (2012) 

than in the normal and wetter years, although not statistically different. 

Albedo-induced radiative forcing (RF) and global warming impact (GWI) 

I obtained RFΔα (W m-2) values that were more representative of the entire growing season 

through the years 2012, 2016, and 2017. I found that the five landscapes had a negative RFΔα, 

indicating a cooling effect. However, such effect was stronger in FOR1 where it ranged between -

3.9 W m-2 and -5.6 W m-2 (Table 2.3 and Figure 2.5a), followed by CROP3 (-2.9 W m-2 and -3.7 

W m-2) and FOR2 (-2.7 W m-2 and -2.9 W m-2), while CROP1 and CROP2 were almost similar 

(ranging between -1.2 W m-2
 and -1.9 W m-2, respectively). In other words, land mosaics in the 

landscape with the highest proportion of forest (e.g., FOR1) leads to a maximum RFΔα of -5.6 W 

m-2 (i.e., a cooling effect), which is similar to that hypothesized by Jiao et al. (2017) under the 

simulated scenario of global deforestation of evergreen broadleaf forests (local magnitude of 

RFTOA at -5.6 W m-2). Moreover, in this study I was able to investigate RFΔα dynamics across three 

contrasting precipitation regimes—drier (2012), wetter (2016), and normal (2017). The 

interannual analysis specifically showed that within each landscape, the cooling effect was lower 

in 2016 and higher in 2017, with the exception of FOR2, which had a lower cooling effect in 2012 

and a higher one in 2017 (e.g., slightly higher than in 2016). In sum, accurate quantification of 

landscape contribution to the global warming potentials needs input from both landscape 

composition and climate that directly regulate ecosystem properties. 

The GWIΔα computations allowed me to estimate the CO2eq mitigation caused by the 

differences between mean cropland and mean forest albedos. Standardized to the same areas, the 

greatest contribution of albedo changes to GWI occurred in the FOR1 (GWIΔα = -1.3 MgCO2eq ha-

1 in 2017; Table 2.3 and Figure 2.5b), whereas the least contribution occurred in CROP2 (-0.3 
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MgCO2eq ha-1 yr-1). These contributions to GWI are of the same order of magnitude as many crop 

management components. For example, in this same watershed a corn-soybean-wheat rotation 

managed with a legume cover crop had a net GWI of 0.4 - 0.6 MgCO2eq ha-1 yr-1 (Robertson, 2000), 

without considering albedo change due to historical LULCC. Likewise, the net GWI of 

conventional and no-till cropping systems were similar in magnitude without consideration of 

albedo; 0.3 to 0.9 MgCO2eq ha-1 yr-1, respectively (Gelfand et al., 2013). In several landscapes 

(FOR1, FOR2, and CROP3), GWIΔα was sufficient to offset the GWI costs of both N2O emissions 

(0.4 MgCO2eq ha-1 yr-1) and farming inputs for an alfalfa cropping system (~0.8 MgCO2eq ha-1 yr-

1; Gelfand et al., 2013). 

Surprisingly, the results of interannual variation among the three growing seasons showed 

that the CO2eq mitigation impact between forest- and cropland-dominated (FOR1, CROP3) 

landscapes was statistically different in 2012 and 2016 for FOR1 (Table 2.3 and Figure 2.5a) and 

in 2016 for CROP3, suggesting that changes in weather conditions, as seen in my study from drier 

to normal and from wetter to normal, can affect the CO2eq mitigation impacts of landscapes. 

Overall, in one of the forest-dominated landscapes (FOR1) the percent decrease of CO2eq mitigation 

due to drier and wetter conditions was higher than that of the cropland-dominated landscape 

CROP3 under wetter conditions (e.g., lower albedo). Specifically, I found that both drier and wetter 

conditions in FOR1 could significantly reduce CO2-eq. mitigation by up to 24% and ~30% (i.e., 

percentage change), respectively; while the CO2eq mitigation’s decreasing in CROP3 was 

significant under wetter conditions (e.g., 23.3%), which, in both cases, is still enough to offset 11% 

of the total CO2eq emissions of conventionally tilled corn systems in the same area and under the 

same climatic conditions (i.e., 2012 and 2016; Abraha et al., 2019). Surprisingly the high decrease 

in Δα (e.g., FOR1: 9% vs 6.1% and CROP3: 6% vs 1%) under wetter conditions did not lead to a 
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high decrease in CO2eq mitigation. 

Assumptions and limitations 

The methodology used in this study represents an analytical approach as a proof of concept 

of the effects of landscape patches and climatic conditions on RFΔα and GWIΔα in the context of 

forest- and cropland-dominant landscapes. However, certain assumptions can be made on the 

application of our approach. The first is that RFΔα is related to land mosaics (e.g., patch 

composition) derived by land transformation (Muñoz et al., 2010). In fact, the focus of the present 

study is to measure the changes in RFΔα and GWIΔα due to conversion of forests to croplands, 

assuming the existing croplands were forests in the past. I then considered Δα using the baseline 

(forest), which is treated as a reference cover type of the five landscapes, since it was the dominant 

land cover type of the pre-European settlements (Brown et al., 2000).  

A second assumption is related to using in-situ incident shortwave radiation at the surface 

(SWin) for the calculation of upward atmospheric transmittance (Ta). While the literature 

(Cherubini et al., 2012; Lenton & Vaughan, 2009; Muñoz et al., 2010) refers to Ta as the annual 

global mean (Ta=0.854; i.e., 85%) for a constant zenith angle of 60°, here I calculated Ta for a 

given day as the ratio SWin/SWTOA, with SWin obtained from in-situ measurements within the 

study area (Abraha et al., 2015), specifically at the FOR2 landscape. By avoiding such a default 

value for Ta (i.e., 0.845), I reduced the error by ~30%. I then assumed that SWin would be the same 

at all five landscape locations. In fact, unlike previous studies, I calculated RFΔα and GWIΔα on a 

relatively small area (i.e., not global/regional) for which the uncertainty error carried by a constant 

Ta would not have been significant.  

A third assumption is related to the time horizon (TH) fixed at 100 years, which is the same 

time horizon used in the Kyoto Protocol (Boucher et al., 2009). By calculating the annual GWIΔα 
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as 1/100 of the total CO2eq, I assumed that, in each landscape, the same land mosaic will be 

maintained for the duration of 100 years. This choice of TH is a limitation because short time 

horizons can overemphasize the impacts of albedo, while long time horizons can de-emphasize the 

impacts (Anderson-Teixeira et al., 2012). 

Another limitation of the study is the use of a growing season (March–October) time frame 

for RFΔα and GWIΔα rather than an annual period. Previous studies (Bonan, 2008; Bright et al., 

2015; Campbell & Norman, 1998; Iqbal, 2012; Kaye & Quemada, 2017; Liang et al., 2013; Sun 

et al., 2017; Zhao & Jackson, 2014) have addressed the importance of snow cover to 

variability/uncertainty of albedo between forest and cropland because of the capability of forest 

stands of masking the snow (e.g., lowing the albedo). Nevertheless, my use of growing season 

values allowed to better isolate the human disturbance on the landscape through agricultural 

activities by focusing on the crop phenology and its relationship with climatic conditions. Had I 

included wintertime albedo, my forest-cropland differences would have been even greater, 

however, since deciduous forest stands have higher wintertime albedo than cropland due to the 

presence of bare branches (Anderson et al., 2011; Campbell & Norman, 1998) during winter. On 

the other hand, from the remote sensing perspective, MODIS snow-albedo retrievals have been 

demonstrated to be less accurate than acquisitions during the growing season (Wang et al., 2014).   

There are also uncertainties associated with user-defined data (Muñoz et al., 2010), such 

as considering Δα as the difference between croplands and forest albedos. AF (i.e., CO2 airborne 

fraction) and rfCO2 (the marginal RF of CO2 emissions at the current atmospheric concentration) 

are estimated to embed errors of ±15% and ±10%, respectively, in the GWI estimation (Akbari et 

al., 2009; Forster et al., 2007). It is also worth mentioning the uncertainties related to the scale-

dependency. In fact, there is a mismatch between the spatial representativeness of MODIS 
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acquisition pixels (e.g., 500 m) and that of Landsat (30 m), which leads to intrinsic variability of 

the measurements (Chen et al., 2019; Chrysoulakis et al., 2018). However, as already emphasized 

in previous studies (Mira et al., 2015; Moustafa et al., 2017), validation techniques provide a 

reasonable estimate of albedo from MODIS products across homogeneous landscapes (e.g., the 

two forest- and the three cropland-dominated landscapes).  

Lastly, I did not consider the effect of spatial autocorrelation that may affect the 

significance of the statistic test (Fletcher & Fortin, 2018). Nevertheless, the aim of this study is not 

to attempt spatial predictions (Feilhauer et al., 2012) of RFΔα and GWIΔα. 

Conclusions 

My study shows that there are significant contributions (R2=0.64) to the overall variation 

in albedo due to landscapes (i.e., ecoregions), cover types (i.e., landscape mosaics), and seasons 

(i.e., seasonality). Variation in seasons contributes more than landscape composition (~16% and 

11%, respectively) in variations of albedo. By integrating spatial (e.g., five landscapes within 

ecoregions) and temporal (e.g., inter and intra-annual) patterns as main drivers of albedo 

variation, I found that cropland-dominated landscapes produce a higher intra-annual variability 

of albedo under drier, wetter, and normal weather conditions, likely due to more frequent 

disturbances (i.e., management activities). Forest-dominated landscapes have higher albedo in 

drier and wetter years than that in normal years, whereas only one crop-dominated landscape 

shows statistically lower albedo under normal conditions than that under drier and wetter ones. 

This indicates a different response to changes in climatic conditions from forest- and cropland-

dominated landscapes. Regarding albedo contributions to cooling/warming effects, I found that 

cooling effects of RFΔα occur in all landscapes but are higher in the landscape with the highest 

proportion of forests (FOR1) (e.g., higher differences between mean cropland and mean forest 
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albedos). The pattern of GWIΔα across the five landscapes is similar to that of RFΔα, with CO2eq 

mitigation relative to pre-existing forest vegetation higher in FOR1 and lower in CROP1 and 

CROP2.  I found that in the landscape with the highest proportion of forest (FOR1) both drier and 

wetter conditions can significantly reduce CO2eq mitigation by up to 24% and ~30%, 

respectively; while the reduction of CO2eq mitigation is significant only in one of the cropland-

dominated landscapes (CROP3) under wetter conditions (e.g., 23.3% decrease). 

 



 58 

REFERENCES 

Abraha, M., Chen, J., Chu, H., Zenone, T., John, R., Su, Y.-J., Hamilton, S. K., & Robertson, G. 

P. (2015). Evapotranspiration of annual and perennial biofuel crops in a variable climate. 

GCB Bioenergy, 7(6), 1344–1356. https://doi.org/10.1111/gcbb.12239 

Abraha, M., Gelfand, I., Hamilton, S. K., Chen, J., & Robertson, G. P. (2019). Carbon debt of 

field-scale conservation reserve program grasslands converted to annual and perennial 

bioenergy crops. Environmental Research Letters, 14(2), 024019. 

https://doi.org/10.1088/1748-9326/aafc10 

Akbari, H., Menon, S., & Rosenfeld, A. (2009). Global cooling: Increasing world-wide urban 

albedos to offset CO2. Climatic Change, 94(3–4), 275–286. https://doi.org/10.1007/s10584-

008-9515-9 

Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Baldocchi, D. 

D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., Diffenbaugh, N. S., Gurney, K. 

R., Kueppers, L. M., Law, B. E., Luyssaert, S., & O’Halloran, T. L. (2011). Biophysical 

considerations in forestry for climate protection. Frontiers in Ecology and the Environment, 

9(3), 174–182. https://doi.org/10.1890/090179 

Anderson-Teixeira, K. J., Snyder, P. K., Twine, T. E., Cuadra, S. V., Costa, M. H., & DeLucia, 

E. H. (2012). Climate-regulation services of natural and agricultural ecoregions of the 

Americas. Nature Climate Change, 2(3), 177–181. https://doi.org/10.1038/nclimate1346 

Antón, A., Cebrian, J., Heck, K. L., Duarte, C. M., Sheehan, K. L., Miller, M.-E. C., & Foster, C. 

D. (2011). Decoupled effects (positive to negative) of nutrient enrichment on ecosystem 

services. Ecological Applications, 21(3), 991–1009. https://doi.org/10.1890/09-0841.1 

Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., & Mirin, A. (2007). 

Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the 

National Academy of Sciences, 104(16), 6550–6555. 

https://doi.org/10.1073/pnas.0608998104 

Barnes, B. V., & Spurr, S. H. (1998). Forest Ecology (4th ed.). John Wiley & Sons, New York, 

774. ISBN: 978-0-471-30822-5 

Barnes, C. A., & Roy, D. P. (2010). Radiative forcing over the conterminous United States due 

to contemporary land cover land use change and sensitivity to snow and interannual albedo 

variability. Journal of Geophysical Research, 115(G4). 

https://doi.org/10.1029/2010JG001428 

Bennett, A. F., Radford, J. Q., & Haslem, A. (2006). Properties of land mosaics: Implications for 

nature conservation in agricultural environments. Biological Conservation, 133(2), 250–

264. https://doi.org/10.1016/j.biocon.2006.06.008 

Berbet, M. L. C., & Costa, M. H. (2003). Climate change after tropical deforestation: Seasonal 

variability of surface albedo and its effects on precipitation change. Journal of Climate, 



 59 

16(12), 2099–2104. https://doi.org/10.1175/1520-

0442(2003)016<2099:CCATDS>2.0.CO;2 

Betts, R. A. (2000). Offset of the potential carbon sink from boreal forestation by decreases in 

surface albedo. Nature, 408(6809), 187–190. https://doi.org/10.1038/35041545 

Betts, R. A. (2001). Biogeophysical impacts of land use on present-day climate: Near-surface 

temperature change and radiative forcing. Atmospheric Science Letters, 2(1–4), 39–51. 

https://doi.org/10.1006/asle.2001.0037 

Bird, D. N., Kunda, M., Mayer, A., Schlamadinger, B., Canella, L., & Johnston, M. (2008). 

Incorporating changes in albedo in estimating the climate mitigation benefits of land use 

change projects. Biogeosciences Discussions, 5(2), 1511–1543. https://doi.org/10.5194/bgd-

5-1511-2008 

Bonan, G. (2016). Ecological Climatology: Concepts and Applications (3rd ed.). Cambridge 

University Press. https://doi.org/10.1017/CBO9781107339200 

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits 

of forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121 

Boucher, O., Friedlingstein, P., Collins, B., & Shine, K. P. (2009). The indirect global warming 

potential and global temperature change potential due to methane oxidation. Environmental 

Research Letters, 4(4), 044007. https://doi.org/10.1088/1748-9326/4/4/044007 

Bright, R. M., Zhao, K., Jackson, R. B., & Cherubini, F. (2015). Quantifying surface albedo and 

other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 

21(9), 3246–3266. https://doi.org/10.1111/gcb.12951 

Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A., & Claussen, M. (2013). Evaluation 

of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5 simulations. Journal of 

Advances in Modeling Earth Systems, 5(1), 48–57. 

https://doi.org/10.1029/2012MS000169@10.1002/(ISSN)1942-2466.MPIESM1 

Brown, D. G., Pijanowski, B. C., & Duh, J. D. (2000). Modeling the relationships between land 

use and land cover on private lands in the Upper Midwest, USA. Journal of Environmental 

Management, 59(4), 247–263. https://doi.org/10.1006/jema.2000.0369 

Cai, H., Wang, J., Feng, Y., Wang, M., Qin, Z., & B. Dunn, J. (2016). Consideration of land use 

change-induced surface albedo effects in life-cycle analysis of biofuels. Energy & 

Environmental Science, 9(9), 2855–2867. https://doi.org/10.1039/C6EE01728B 

Campbell, G. S., & Norman, J. M. (1998). Introduction to Environmental Biophysics (2nd ed.). 

Springer, New York, 286. 

Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X., & Ceschia, E. (2018). What is the potential of 

cropland albedo management in the fight against global warming? A case study based on 



 60 

the use of cover crops. Environmental Research Letters, 13(4), 044030. 

https://doi.org/10.1088/1748-9326/aab650 

Chapman, K. A. & Brewer R. (2008). Prairie and Savanna in Southern Lower Michigan: 

History, Slassification, Ecology. Michigan Botanic Club, 47, 48. 

Chen, J., Brosofske, K. D., Noormets, A., Crow, T. R., Bresee, M. K., Le Moine, J. M., 

Euskirchen, E. S., Mather, S. V., & Zheng, D. (2004). A working framework for 

quantifying carbon sequestration in disturbed land mosaics. Environmental Management, 

33(1), S210–S221. https://doi.org/10.1007/s00267-003-9131-4 

Chen, J., Sciusco, P., Ouyang, Z., Zhang, R., Henebry, G. M., John, R., & Roy, David. P. (2019). 

Linear downscaling from MODIS to Landsat: Connecting landscape composition with 

ecosystem functions. Landscape Ecology, 34(12), 2917–2934. 

https://doi.org/10.1007/s10980-019-00928-2 

Chen, J., Wan, S., Henebry, G., Qi, J., Gutman, G., Sun, G., & Kappas, M. (2013). Dryland East 

Asia: Land Dynamics Amid Social and Climate Change. Walter de Gruyter, Berlin, Boston, 

470. 

Cherubini, F., Bright, R. M., & Strømman, A. H. (2012). Site-specific global warming potentials 

of biogenic CO2 for bioenergy: Contributions from carbon fluxes and albedo dynamics. 

Environmental Research Letters, 7(4), 045902. https://doi.org/10.1088/1748-

9326/7/4/045902 

Chrysoulakis, N., Mitraka, Z., & Gorelick, N. (2018). Exploiting satellite observations for global 

surface albedo trends monitoring. Theoretical and Applied Climatology. 

https://doi.org/10.1007/s00704-018-2663-6 

Culf, A. D., Fisch, G., & Hodnett, M. G. (1995). The Albedo of Amazonian forest and ranch 

land. Journal of Climate, 8(6), 1544–1554. https://doi.org/10.1175/1520-

0442(1995)008<1544:TAOAFA>2.0.CO;2 

Davin, E. L., Noblet‐Ducoudré, N. de, & Friedlingstein, P. (2007). Impact of land cover change 

on surface climate: Relevance of the radiative forcing concept. Geophysical Research 

Letters, 34(13). https://doi.org/10.1029/2007GL029678 

Dickinson, R. E. (1983). Land surface processes and climate—Surface albedos and energy 

balance. In Advances in Geophysics (Vol. 25, pp. 305–353). Elsevier. 

https://doi.org/10.1016/S0065-2687(08)60176-4 

Eagle, A. J., Henry, L. R., Olander, L. P., Haugen-Kozyra, K., Millar, N., & Robertson, G. P. 

(2012). Greenhouse gas mitigation potential of agricultural land management in the United 

States: A synthesis of the literature. Technical Working Group on Agricultural Greenhouse 

Gases (T-AGG) Report, 10–04, 72. 



 61 

Euskirchen, E. S., Chen, J., Li, H., Gustafson, E. J., & Crow, T. R. (2002). Modeling landscape 

net ecosystem productivity (LandNEP) under alternative management regimes. Ecological 

Modelling, 154(1), 75–91. https://doi.org/10.1016/S0304-3800(02)00052-2 

Feilhauer, H., He, K. S., & Rocchini, D. (2012). Modeling species distribution using niche-Based 

proxies derived from composite bioclimatic variables and MODIS NDVI. Remote Sensing, 

4(7), 2057–2075. https://doi.org/10.3390/rs4072057 

Fletcher, R., & Fortin, M.-J. (2018). Spatial dependence and autocorrelation. In Spatial Ecology 

and Conservation Modeling: Applications with R. Springer International Publishing, 133–

168. https://doi.org/10.1007/978-3-030-01989-1_5 

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, 

J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Dorland, R., Bodeker, 

G., Boucher, O., Collins, W., Conway, T., & Whorf, T. (2007). Changes in Atmospheric 

Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science 

Basis. Contribution of Working Group I to the 4th Assessment Report of the 

Intergovernmental Panel on Climate Change. [Solomon, S., D. Qin, M. Manning, Z. Chen, 

M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University 

Press, Cambridge, United Kingdom and New York, NY, USA. 

Fuglestvedt, J. S., Berntsen, T. K., Godal, O., Sausen, R., Shine, K. P., & Skodvin, T. (2003). 

Metrics of climate change: Assessing radiative forcing and emission indices. Climatic 

Change, 58(3), 267–331. https://doi.org/10.1023/A:1023905326842 

Gelfand I Robertson G P. (2015). Mitigation of greenhouse gas emissions in agricultural 

ecosystems. In The Ecology of Agricultural Landscapes: Long-Term Research on the Path 

to Sustainability. Oxford University Press, New York, 310–339. 

Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). 

Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 

493(7433), 514–517. https://doi.org/10.1038/nature11811 

Georgescu, M., Lobell, D. B., & Field, C. B. (2011). Direct climate effects of perennial 

bioenergy crops in the United States. Proceedings of the National Academy of Sciences, 

108(11), 4307–4312. https://doi.org/10.1073/pnas.1008779108 

Goosse, H. (2015). Climate System Dynamics and Modeling. Cambridge University Press, 357. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 

Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 

Govindasamy, B., Duffy, P. B., & Caldeira, K. (2001). Land use changes and northern 

hemisphere cooling. Geophysical Research Letters, 28(2), 291–294. 

https://doi.org/10.1029/2000GL006121 



 62 

Gray, V. (2007). Climate change 2007: The physical science basis summary for policymakers. 

Energy & Environment, 18(3–4), 433–440. https://doi.org/10.1260/095830507781076194 

Haas, G., Wetterich, F., & Köpke, U. (2001). Comparing intensive, extensified and organic 

grassland farming in southern Germany by process life cycle assessment. Agriculture, 

Ecosystems & Environment, 83(1–2), 43–53. https://doi.org/10.1016/S0167-

8809(00)00160-2 

Haines, A. (2003). Climate Change 2001: The Scientific Basis. Contribution of Working Group 

1 to the Third Assessment report of the Intergovernmental Panel on Climate Change. J. T. 

Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Winden, X. Dai. Cambridge: 

Cambridge University Press, 2001, pp. 881, £34.95 (HB) ISBN: 0-21-01495-6; £90.00 

(HB) ISBN: 0-521-80767-0. International Journal of Epidemiology, 32(2), 321–321. 

https://doi.org/10.1093/ije/dyg059 

Henderson‐Sellers, A., & Wilson, M. F. (1983). Surface albedo data for climatic modeling. 

Reviews of Geophysics, 21(8), 1743–1778. https://doi.org/10.1029/RG021i008p01743 

Houspanossian, J., Giménez, R., Jobbágy, E., & Nosetto, M. (2017). Surface albedo raise in the 

South American Chaco: Combined effects of deforestation and agricultural changes. 

Agricultural and Forest Meteorology, 232, 118–127. 

https://doi.org/10.1016/j.agrformet.2016.08.015 

Iqbal, M. (2012). An Introduction To Solar Radiation. Elsevier, New York, 390. 

Jeong, S.-J., Ho, C.-H., Gim, H.-J., & Brown, M. E. (2011). Phenology shifts at start vs. end of 

growing season in temperate vegetation over the Northern Hemisphere for the period 1982–

2008. Global Change Biology, 17(7), 2385–2399. https://doi.org/10.1111/j.1365-

2486.2011.02397.x 

Jeong, S.-J., Ho, C.-H., Piao, S., Kim, J., Ciais, P., Lee, Y.-B., Jhun, J.-G., & Park, S. K. (2014). 

Effects of double cropping on summer climate of the North China Plain and neighbouring 

regions. Nature Climate Change, 4(7), 615–619. https://doi.org/10.1038/nclimate2266 

Jiao, T., Williams, C. A., Ghimire, B., Masek, J., Gao, F., & Schaaf, C. (2017). Global climate 

forcing from albedo change caused by large-scale deforestation and reforestation: 

Quantification and attribution of geographic variation. Climatic Change, 142(3–4), 463–

476. https://doi.org/10.1007/s10584-017-1962-8 

Kaye, J. P., & Quemada, M. (2017). Using cover crops to mitigate and adapt to climate change. 

A review. Agronomy for Sustainable Development, 37(1), 4. 

https://doi.org/10.1007/s13593-016-0410-x 

Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., Bracho, R., Drake, 

B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B. E., Margolis, H., Meyers, T., 

Monson, R., Munger, W., Oren, R., Paw U, K. T., … Zhao, L. (2011). Observed increase in 

local cooling effect of deforestation at higher latitudes. Nature, 479(7373), 384–387. 

https://doi.org/10.1038/nature10588 



 63 

Lenton, T. M., & Vaughan, N. E. (2009). The radiative forcing potential of different climate 

geoengineering options. Atmospheric Chemistry Physiscs, 9(15), 5539–5561 

Li, B., Gasser, T., Ciais, P., Piao, S., Tao, S., Balkanski, Y., Hauglustaine, D., Boisier, J.-P., 

Chen, Z., Huang, M., Li, L. Z., Li, Y., Liu, H., Liu, J., Peng, S., Shen, Z., Sun, Z., Wang, 

R., Wang, T., … Zhou, F. (2016). The contribution of China’s emissions to global climate 

forcing. Nature, 531(7594), 357–361. https://doi.org/10.1038/nature17165 

Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., Zhang, X., Liu, Q., Cheng, J., Tang, 

H., Qu, Y., Bo, Y., Qu, Y., Ren, H., Yu, K., & Townshend, J. (2013). A long-term Global 

LAnd Surface Satellite (GLASS) data-set for environmental studies. International Journal 

of Digital Earth, 6(sup1), 5–33. https://doi.org/10.1080/17538947.2013.805262 

Loarie, S. R., Lobell, D. B., Asner, G. P., Mu, Q., & Field, C. B. (2011). Direct impacts on local 

climate of sugar-cane expansion in Brazil. Nature Climate Change, 1(2), 105–109. 

https://doi.org/10.1038/nclimate1067 

Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., 

Erb, K., Ferlicoq, M., Gielen, B., Grünwald, T., Houghton, R. A., Klumpp, K., Knohl, A., 

Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., … Dolman, A. J. (2014). Land 

management and land-cover change have impacts of similar magnitude on surface 

temperature. Nature Climate Change, 4(5), 389–393. https://doi.org/10.1038/nclimate2196 

Mallya, G., Zhao, L., Song, X. C., Niyogi, D., & Govindaraju, R. S. (2013). 2012 Midwest 

drought in the United States. Journal of Hydrologic Engineering, 18(7), 737–745. 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000786 

Matthews, H. D., Weaver, A. J., Eby, M., & Meissner, K. J. (2003). Radiative forcing of climate 

by historical land cover change. Geophysical Research Letters, 30(2). 

https://doi.org/10.1029/2002GL016098 

Merlin, O. (2013). An original interpretation of the wet edge of the surface temperature–albedo 

space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area 

in northwestern Mexico. Hydrology and Earth System Sciences, 17(9), 3623–3637. 

https://doi.org/10.5194/hess-17-3623-2013 

Michigan State Climatologist’s Office. (2013). Gull Lake (3504). Michigan State University. 

Retrived from http://climate. geo.msu.edu/climate_mi/stations/3504/ 

Miller, J. N., VanLoocke, A., Gomez-Casanovas, N., & Bernacchi, C. J. (2016). Candidate 

perennial bioenergy grasses have a higher albedo than annual row crops. GCB Bioenergy, 

8(4), 818–825. https://doi.org/10.1111/gcbb.12291 

Mira, M., Weiss, M., Baret, F., Courault, D., Hagolle, O., Gallego-Elvira, B., & Olioso, A. 

(2015). The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course 

evaluated over agricultural landscape. Remote Sensing of Environment, 170, 216–228. 

https://doi.org/10.1016/j.rse.2015.09.021 



 64 

Moustafa, S. E., Rennermalm, A. K., Román, M. O., Wang, Z., Schaaf, C. B., Smith, L. C., 

Koenig, L. S., & Erb, A. (2017). Evaluation of satellite remote sensing albedo retrievals 

over the ablation area of the southwestern Greenland ice sheet. Remote Sensing of 

Environment, 198, 115–125. https://doi.org/10.1016/j.rse.2017.05.030 

Muñoz, I., Campra, P., & Fernández-Alba, A. R. (2010). Including CO2-emission equivalence of 

changes in land surface albedo in life cycle assessment. Methodology and case study on 

greenhouse agriculture. The International Journal of Life Cycle Assessment, 15(7), 672–

681. https://doi.org/10.1007/s11367-010-0202-5 

National Research Council (2010). Understanding the Changing Planet: Strategic Directions for 

the Geographical Sciences. Washington D.C., The National Academies Press. 

https://doi.org/10.17226/12860 

Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous United States: 

Evolution of a hierarchical spatial framework. Environmental Management, 54(6), 1249–

1266. https://doi.org/10.1007/s00267-014-0364-1 

Peters, G. P., Aamaas, B., T. Lund, M., Solli, C., & Fuglestvedt, J. S. (2011). Alternative “global 

warming” metrics in life cycle assessment: A case study with existing transportation data. 

Environmental Science & Technology, 45(20), 8633–8641. 

https://doi.org/10.1021/es200627s 

Picard, G., Domine, F., Krinner, G., Arnaud, L., & Lefebvre, E. (2012). Inhibition of the positive 

snow-albedo feedback by precipitation in interior Antarctica. Nature Climate Change, 

2(11), 795–798. https://doi.org/10.1038/nclimate1590 

Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. 

K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., & Noblet, N. de. (2011). Land 

use/land cover changes and climate: Modeling analysis and observational evidence. Wiley 

Interdisciplinary Reviews: Climate Change, 2(6), 828–850. https://doi.org/10.1002/wcc.144 

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover 

crops – a meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41. 

https://doi.org/10.1016/j.agee.2014.10.024 

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing: Vienna, Austria. https://www.R-project.org/ 

Raudsepp-Hearne, C., Peterson, G. D., Tengö, M., Bennett, E. M., Holland, T., Benessaiah, K., 

MacDonald, G. K., & Pfeifer, L. (2010). Untangling the environmentalist’s paradox: Why 

is human well-being increasing as ecosystem services degrade? BioScience, 60(8), 576–

589. https://doi.org/10.1525/bio.2010.60.8.4 

Robertson, G. P. (2000). Greenhouse gases in intensive agriculture: Contributions of individual 

gases to the radiative forcing of the atmosphere. Science, 289(5486), 1922–1925. 

https://doi.org/10.1126/science.289.5486.1922 



 65 

Robertson, G. P., Hamilton, S. K., Barham, B. L., Dale, B. E., Izaurralde, R. C., Jackson, R. D., 

Landis, D. A., Swinton, S. M., Thelen, K. D., & Tiedje, J. M. (2017). Cellulosic biofuel 

contributions to a sustainable energy future: Choices and outcomes. Science, 356(6345), 

2324. https://doi.org/10.1126/science.aal2324 

Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X., Braswell, R. H., 

Curtis, P. S., Davis, K. J., Dragoni, D., & Goulden, M. L. (2009). The MODIS (collection 

V005) BRDF/albedo product: Assessment of spatial representativeness over forested 

landscapes. Remote Sensing of Environment, 113(11), 2476–2498. 

https://doi.org/10.1016/j.rse.2009.07.009 

Schaetzl, R. J., Darden, J. T., & Brandt, D. S. (2009). Michigan Geography and Geology. 

Pearson Custom Publishing. http://catalog.hathitrust.org/api/volumes/oclc/309340740.html 

Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L., & Hicke, J. A. (2016). Searching for 

resilience: addressing the impacts of changing disturbance regimes on forest ecosystem 

services. Journal of Applied Ecology, 53(1), 120–129. https://doi.org/10.1111/1365-

2664.12511 

Shao, C., Li, L., Dong, G., & Chen, J. (2014). Spatial variation of net radiation and its 

contribution to energy balance closures in grassland ecosystems. Ecological Processes, 

3(1), 7. https://doi.org/10.1186/2192-1709-3-7 

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, 

F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, 

V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas 

mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184 

Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P. C. B., & Wild, M. (2016). Disentangling 

greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nature 

Geoscience, 9(4), 286–289. https://doi.org/10.1038/ngeo2670 

Sun, Q., Wang, Z., Li, Z., Erb, A., & Schaaf, C. B. (2017). Evaluation of the global MODIS 30 

arc-second spatially and temporally complete snow-free land surface albedo and reflectance 

anisotropy dataset. International Journal of Applied Earth Observation and 

Geoinformation, 58, 36–49. https://doi.org/10.1016/j.jag.2017.01.011 

Tian, L., Chen, J., & Shao, C. (2018). Interdependent dynamics of LAI-albedo across the roofing 

landscapes: Mongolian and Tibetan Plateaus. Remote Sensing, 10(7), 1159. 

https://doi.org/10.3390/rs10071159 

Wang, K., Liu, J., Zhou, X., Sparrow, M., Ma, M., Sun, Z., & Jiang, W. (2004). Validation of the 

MODIS global land surface albedo product using ground measurements in a semidesert 

region on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 109(D5). 

https://doi.org/10.1029/2003JD004229 



 66 

Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Woodcock, 

C. E., Hollinger, D. Y., & Fitzjarrald, D. R. (2014). Evaluation of MODIS albedo product 

(MCD43A) over grassland, agriculture and forest surface types during dormant and snow-

covered periods. Remote Sensing of Environment, 140, 60–77. 

https://doi.org/10.1016/j.rse.2013.08.025 

Yuan, Z. Y., & Chen, H. Y. H. (2015). Decoupling of nitrogen and phosphorus in terrestrial 

plants associated with global changes. Nature Climate Change, 5(5), 465–469. 

https://doi.org/10.1038/nclimate2549 

Zhang, Y., Wang, X., Pan, Y., & Hu, R. (2013). Diurnal and seasonal variations of surface 

albedo in a spring wheat field of arid lands of Northwestern China. International Journal of 

Biometeorology, 57(1), 67–73. https://doi.org/10.1007/s00484-012-0534-x 

Zhao, K., & Jackson, R. B. (2014). Biophysical forcings of land-use changes from potential 

forestry activities in North America. Ecological Monographs, 84(2), 329–353. 

https://doi.org/10.1890/12-1705.1 

Zheng, L., Zhao, G., Dong, J., Ge, Q., Tao, J., Zhang, X., Qi, Y., Doughty, R. B., & Xiao, X. 

(2019). Spatial, temporal, and spectral variations in albedo due to vegetation changes in 

China’s grasslands. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 1–12. 

https://doi.org/10.1016/j.isprsjprs.2019.03.020 

 

 



 67 

APPENDIX 

Table A1: Description of the five United States Environmental Protection Agency (US EPA) 

Level IV ecoregions that fall within the Kalamazoo River Watershed boundary. Additional 

information can be found online at https://www.epa.gov/eco-research/ecoregion-download-files-

state-region-5#pane-20. 

US EPA Level IV ecoregions 

Full name Abbreviation Features 

Battle Creek Outwash Plain 56b 

Landforms: broad, flat plain, major drainage 

during the Pleistocene glaciers receding. 

Soils: well-drained loamy soils (pasture) and 

sandy soils suitable for corn, soybeans, and grain. 

Pre-settlement vegetation: wet and dry tallgrass 

prairies, oak savanna. 

Michigan Lake Plain 56d 

Landforms: sandy coastal strip with beaches, 

high dunes, beaches ridges, mucky inter-dune 

depressions, and swales. 

Soils: excessively-drained (oak and white pine), 

poorly-drained (marsh grasses, aspen, silver 

maple), and well-drained sandy soils (pasture, 

hay, aspen, cherry, oak, white pine). 

Pre-settlement vegetation: pine, hemlock, 

beech, sugar maple, treeless marshes, lowland 

hardwood swamps, and tamarack swamp. 

Lake Michigan Moraines 56f 

Landforms: end and ground moraine. 

Soils: well-drained sandy loams soils (row crops, 

orchards, oak-hickory-sugar maple forests), 

poorly-drained sandy and clay loams soils (marsh 

grasses, aspen, silver maple), finer-textured, less 

permeable soils (beech-sugar maple forests). 

Pre-settlement vegetation: beech, sugar maple, 

oak, oak savanna, oak-hickory, hemlock. 

Lansing Loamy Plain 56g 

Landforms: ground moraine, well-drained hills, 

and poorly-drained linear depressions. 

Soils: medium-textured loamy soils (beech-sugar 

maple forests), sandy soils (pasture or hay), 

poorly-drained soils (marsh grasses, aspen, silver 

maple, and swamp white oak). 

Pre-settlement vegetation: beech-sugar maple 

forests, associated with basswood, black maple, 

red oak, and white maple forests (ground 

moraines), oak-hickory forests (drier end 

moraines), American elm, red ash, silver maple, 

tamarack, swamp white oak, and wet prairies 

(poorly drained linear depressions). 

Interlobate Dead Ice Moraines 56h 

Landforms: coarse-textured end moraine, kames, 

and outwash sands. 

Soils: sandy loams soils (corn, soybeans, and 

grain), poorly-drained sandy loams soils (marsh 

grasses, aspen, and silver maple), well-drained 

soils (pasture and oak-hickory forests). 

Pre-settlement vegetation: oak savanna, oak-

hickory forests, wet and dry tallgrass prairies. 

https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20
https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20
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Table A2: Mean (± one standard deviation) of αSHO (%) by cover type and landscapes during 

2012 (drier), 2016 (wetter) and 2017 (normal). Mean values (𝑋̅) among the three years are also 

reported. 

SHO: white-sky shortwave albedo  

FOR1 and FOR2: forest-dominated landscapes, with proportion of forest of ~58% and 38%, respectively 

CROP1, CROP2, and CROP3: cropland-dominated landscapes, with proportion of cropland of 68%, ~65%, and 57%, respectively 

 
 Cover type  

 year Urban Cropland Barrens Forest Water Wetlands Grasslands All 

FOR1 

2012 15.1(±0.7) 16.0(±0.7) 14.6(±0.5) 14.6(±0.6) 13.8(±0.6) 14.2(±0.8) 15.4(0) 14.7(±0.8) 
2016 14.7(±0.7) 15.8(±0.9) 14.2(±0.6) 14.3(±0.6) 13.7(±0.4) 14.1(±0.8) 14.9(0) 14.4(±0.9) 

2017 14.7(±0.8) 15.9(±1.0) 14.0(±0.7) 14.1(±0.7) 13.6(±0.5) 14.0(±0.8) 15.0(0) 14.3(±1.0) 

 X̅ 14.8 15.9 14.2 14.3 13.7 14.1 15.1 14.6 

FOR2 

2012 14.1(±1.8) 15.2(±1.0) 14.8(±0.6) 14.4(±1.2) 9.3(±3.5) 14.4(±1.1) 14.3(±1.3) 14.1(±2.3) 

2016 14.0(±1.9) 15.3(±1.2) 14.8(±0.7) 14.2(±1.5) 9.1(±3.6) 14.3(±1.2) 13.9(±1.5) 14.0(±2.4) 

2017 13.6(±1.9) 14.8(±1.1) 14.3(±0.7) 13.7(±1.3) 8.7(±3.5) 8.7(±1.2) 13.5(±1.7) 13.5(±2.3) 

 X̅ 13.9 15.1 14.6 14.1 9.0 14.2 13.9 13.9 

CROP1 

2012 16.8(±0.5) 16.9(±0.7) 16.5(0) 16.4(±0.9) 16.5(±0.1) 16.4(±0.7) 16.3(±1.0) 16.8(±0.7) 

2016 17.1(±0.6) 17.1(±0.8) 16.5(0) 16.6(±1.0) 16.2(±0.4) 16.6(±0.8) 16.1(±1.2) 17.0(±0.8) 
2017 16.9(±0.6) 17.0(±0.7) 16.5(0) 16.5(±0.9) 16.2(±0.2) 16.4(±0.8) 16.0(±1.7) 16.8(±0.8) 

 X̅ 16.9 17.0 16.5 16.5 16.3 16.5 16.1 16.7 

CROP2 

2012 16.0(±1.0) 16.7(±0.5) 16.0(0) 16.3(±0.5) 15.3(±0.8) 16.1(±0.5) 16.0(0) 16.5(±0.6) 

2016 16.0(±1.0) 16.7(±0.5) 16.3(0) 16.3(±0.6) 15.6(±0.6) 16.1(±0.5) 15.9(0) 16.5(±0.6) 

2017 15.7(±1.1) 16.4(±0.7) 15.9(0) 15.8(±0.6) 15.2(±0.6) 15.6(±0.4) 15.6(0) 16.1(±0.8) 

 X̅ 15.9 16.6 16.1 16.2 15.4 15.9 15.8 16.4 

CROP3 

2012 15.2(±1.4) 16.8(±0.8) 16.1(±0.6) 15.9(±1.0) 13.1(±1.2) 15.7(±1.1) 16.8(±0.3) 16.2(±1.4) 

2016 15.3(±1.5) 16.8(±0.9) 16.0(±1.1) 15.8(±1.1) 13.0(±1.1) 15.6(±1.2) 16.7(±0.4) 16.2(±1.5) 

2017 15.2(±1.7) 17.1(±1.1) 16.2(±1.8) 15.8(±1.3) 12.9(±1.2) 15.7(±1.4) 17.0(±0.3) 16.3(±1.7) 

 X̅ 15.3 16.9 16.1 15.9 13.0 15.6 16.8 16.2 

Watershed 

2012 15.4(±1.3) 16.6(±1.0) 15.3(±1.1) 15.4(±1.1) 12.3(±3.4) 15.6(±1.1) 15.8(±1.8) 15.9(±1.5) 
2016 15.3(±1.4) 16.6(±1.1) 15.2(±1.3) 15.3(±1.3) 12.1(±3.5) 15.5(±1.2) 15.7(±1.8) 15.9(±1.6) 

2017 15.0(±1.5) 16.5(±1.2) 14.8(±1.3) 14.9(±1.4) 11.9(±3.4) 15.2(±1.3) 15.4(±2.0) 15.6(±1.7) 

 X̅ 15.2 16.6 15.1 15.2 12.1 15.4 15.6 15.8 
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Abstract 

Land surface albedo is a significant regulator of climate. Changes in land use worldwide 

have greatly reshaped landscapes in the recent decades. Deforestation, agricultural development, 

and urban expansion alter land surface albedo, each with unique influences on shortwave radiative 

forcing and global warming impact (GWI). Here, I characterize the changes in landscape albedo-

induced GWI (GWI) at multiple temporal scales, with a special focus on the seasonal and 

monthly GWI over a 19-year period for different land cover types in five ecoregions within a 

watershed in the upper Midwest, USA. The results show that land cover changes from the original 

forest exhibited a net cooling effect, with contributions of annual GWI varying by cover type 

and ecoregion. Seasonal and monthly variations of the GWI showed unique trends over the 19-

year period and contributed differently to the total GWI. Cropland contributed most to cooling 

the local climate, with seasonal and monthly offsets of 18% and 83%, respectively, of the annual 

greenhouse gas emissions of maize fields in the same area. Urban areas exhibited both cooling and 

warming effects. Cropland and urban areas showed significantly different seasonal GWI at some 

ecoregions. The landscape composition of the five ecoregions could cause different net landscape 

GWI. 

Introduction 

Surface albedo—the fraction of incoming shortwave solar radiation scattered by a surface 

back to space—is a fundamental component of the Earth’s surface energy balance (Hollinger et 

al., 2010; Myhre et al., 2014). Unlike greenhouse gases (GHGs) that regulate climate by 

disproportionate interception of longwave radiation that affects the Earth’s radiation balance, the 

warming or cooling effects of surface albedo are directly due to changes in the amounts of 

shortwave radiation reflected back to outer space, and they are instantaneous. Changes in land uses 
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worldwide have greatly reshaped landscapes over the past 2-3 thousand years, at an escalating rate 

since the industrial revolution (Kalnay & Cai, 2003; Pielke et al., 2011; Vitousek et al., 1997; 

Wackernagel et al., 2002), and Earth’s surface albedo has changed accordingly, resulting in 

alterations of the Earth’s radiation balance that are partially responsible for the changing climate. 

Globally, deforestation, agricultural development—including forest and grassland 

conversion—and urban expansion are major sources of albedo change (Pielke et al., 2011; Shao et 

al., 2014), which in turn can directly affect the Earth’s radiation balance. Imbalances due to albedo 

change is described by the albedo-induced radiative forcing (RFΔα; W m-2)—changes in the 

fraction of solar radiation reflected back to the atmosphere from the surface of the Earth (Mira et 

al., 2015). For example, according to the Intergovernmental Panel on Climate Change (IPCC; 

Forster et al., 2021), the RF of well mixed GHGs—i.e., carbon-dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O)—has a warming effect equivalent to ~+2.91 W m-2, while the RFΔα due to 

land use and land cover change (LUCC) has a cooling effect equivalent to ~-0.20 W m-2. In other 

words, albedo changes have offset up to ~7% of the energy imbalance caused by well mixed 

GHGs, with the offsets varying substantially by region. However, such offset is a global average 

in reference to LULCC, with dominant changes from forest to non-forest since 1750; therefore, 

the unknown local contributions of RFΔα due to LULCC might play an important role in the overall 

global average climate regulation effects. As a matter of fact, the scientific understanding of the 

forcing effects of albedo due to LULCC are ranked as medium-low relative to the rich scientific 

evidence of the forcing effects of GHGs (Myhre et al., 2014). The albedo-induced warming or 

cooling can also be converted into equivalents of CO2 (CO2eq) and/or carbon (Ceq) atmospheric 

radiative forcing via the concept of global warming potential (GWP, kgCO2eq m-2 yr-1; Bright & 

Lund, 2021; Stocker et al., 2014) metric—hereinafter referred to as global warming impact (GWI), 
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to be in line with other studies (Abraha et al., 2021; Sciusco et al., 2020)—and thus can be 

compared with the climate impact of other GHGs (i.e., biogeochemical GWI). For example, 

Houspanossian et al. (2017) found that conversion from forests to croplands, forests to pastures, 

and pastures to croplands in dry subtropical forests of South America offset 12–27 MgCeq ha-1 

during a 12-year period, or 15% to 55% of the total C emissions due to deforestation. In Europe, 

Carrer et al. (2018) reported that inclusion of cover crops in annual cropping systems could have 

cooling effects equivalent to a mitigation of -0.03 MgCeq ha-1 yr-1; while Lugato et al. (2020) 

showed that such mitigation potential due to the inclusion of cover crops could be substantially 

enhanced by growing high-albedo chlorophyll-deficient cover crops. In southwest Michigan, 

USA, Chen et al. (2021) estimated that land conversion from forest to maize (Zea mays) can 

provide a cooling equivalent to a mitigation of -0.043 MgCeq ha-1 yr-1 due to a 0.051 (i.e., 5.1%) 

increase in albedo. At watershed scale, Sciusco et al. (2020) demonstrated that altered landscapes 

could produce cooling effects relative to intact native late successional forests typical of pre-

European settlement, with a range of -0.1 to -0.4 MgCeq ha-1 yr-1, which is the same order of 

magnitude as many crop management components of GWI (Gelfand et al., 2013; Gelfand & 

Robertson, 2015).  

Despite recognition of the potential importance of albedo modification strategies for 

regional to global climate mitigation by IPCC (Kauppi & Sedjo, 2003) and stimulating discussions 

(Cicerone, 2006; Crutzen, 2016) on possible ways of increasing surface albedo to cool the Earth, 

little effort has been made to understand changes in landscape RFΔα or GWIΔα in the context of 

landscape mosaics at broader temporal scales and for multiple anthropogenic LULCC (Chen et al., 

2004; Euskirchen et al., 2002; Sciusco et al., 2020). A critical unknown is how different cover 

types contribute to the total landscape GWIΔα at different times of the year. Over the long term 
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(i.e., years to decades), little is known about whether the intra-annual variations of landscape 

GWIΔα are significant. 

Here I build on Sciusco et al. (2020) (i.e., Chapter 2 of this dissertation) to estimate the 

contributions of GWIΔα to the landscape warming or cooling effects at seasonal and monthly time 

scales over 19 years for multiple ecoregions subtypes. My specific objectives are to quantify for 

different cover types in different ecoregions of the upper Midwest USA watershed 1) the monthly 

and seasonal contributions to the total landscape cooling or warming; 2) the variations of GWIΔα 

contributions by cover type, ecoregion, and year; and 3) the magnitude of cooling or warming 

effects due to land cover change (relative to mature forest cover). 

Materials & Methods  

Study area and landscape composition 

The Kalamazoo River Watershed (5621 km2; Figure 3.1) is located in southwestern 

Michigan, USA, and includes portions of 10 counties: Allegan, Barry, Calhoun, Eaton, Hillsdale, 

Jackson, Kalamazoo, Kent, Ottawa, and Van Buren. Mean annual temperature (1981–2010) is 9.9 

°C and average annual precipitation is 900 mm evenly distributed throughout the year (Michigan 

State Climatologist’s Office, 2013). The dominant cover type prior to European settlement in the 

early 1800s was eastern broadleaved deciduous forest (Brown et al., 2000), with scattered patches 

of tallgrass prairie, oak savanna, lakes, and wetlands (Chapman & Brewer, 2008). Today, the 

dominant land cover includes cultivated crops, successional forest stands, pasture-hay grasslands, 

and two urban areas (Kalamazoo and Battle Creek). Medium to coarse texture soils and mesic 

climate allow continuous recharge of groundwater (Schaetzl et al., 2009). 

Within the watershed, there are five United States Environmental Protection Agency (U.S. 

EPA) Level IV ecoregions (Figure 3.1), which are defined as areas characterized by unique 
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combinations of physiographic, geologic, pedologic, botanic, hydrologic, and climatic 

characteristics (Omernik & Griffith, 2014). Level IV ecoregions have the greatest resolution, and 

they are Battle Creek Outwash Plain (56b); Michigan Lake Plain (56d); Lake Michigan Moraines 

(56f); Lansing Loamy Plain (56g); and Interlobate Dead Ice Moraines (56h). For further details, 

see U.S. EPA at https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-

states. 

 

Figure 3.1: The study area of the five United States Environmental Protection Agency (U.S. 

EPA) Level IV ecoregions and the nine National Land Cover Database (NLCD) cover type 

classes within the Kalamazoo River Watershed in 2001. 

In this study I used the National Land Cover Database (NLCD; Homer et al., 2020; Yang 

et al., 2018), which provides twenty land cover classes—consequently grouped into nine classes: 

barren, cropland, forest, grassland, pasture, shrubland, urban, water, and wetland—at 30 m spatial 

resolution, and with an overall accuracy ranging between 80% and 90%, in the central and western 

U.S.. Land cover classifications from NLCD are available for the years 2001, 2004, 2006, 2008, 

https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
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2011, 2013, and 2016. Because land cover maps from NLCD are not obtained annually, unlike 

albedo data (see next section Intra-annual changes in albedo), for years where NLCD data are not 

available, land cover was assumed similar to previous year. For example, the land cover map for 

2002 was assumed to be the same as that of 2001, and for 2017–2019 I assumed the land cover 

had no significant changes. 

Intra-annual changes in albedo 

I obtained albedo data at 10:30 a.m. local time (UTC -05; i.e., MODIS Terra morning 

overpass time) at 500 m spatial resolution at daily time-step for 2001–2019 from the most recent 

collection (V006) of the MODIS Bidirectional Reflectance Distribution Function (BRDF) 

MCD43A3 product (cf. https://lpdaac.usgs.gov/products/mcd43d42v006/). The MCD43A3 

product was produced by the inversion of a BRDF model against a 16-day moving window of 

MODIS observations and it contains both the black-sky (i.e., directional-hemispherical 

reflectance) and white-sky (i.e., bi-hemispherical reflectance) albedos (Wang et al., 2014). I 

considered white-sky surface albedo (α) at a shortwave length of 0.3–5.0 µm by growing season 

and month during 2001–2019. For each image, I selected the “Albedo_WSA_shortwave” (i.e., 

white-sky albedo) band and rescaled it to 0–1. For quality control, I applied the quality band 

“BRDF_Albedo_Band_Mandatory_Quality_shortwave” (i.e., the full BRDF inversion) 

(Chrysoulakis et al., 2018; Sciusco et al., 2020) by filtering out pixels not meeting the control 

protocols. I then used an additional quality band (i.e., “Snow_BRDF_Albedo”) from the 

MCD43A2 product (accessed at https://lpdaac.usgs.gov/products/mcd43a2v061/) to further filter 

and select quality snow-albedo retrievals in the MCD43A3 product. 

Growing season and monthly albedos (αgs and αmo, respectively) at 10:30 a.m. local time 

(UTC -05) were derived by stacking (i.e., median image composite) the daily images into growing 

https://lpdaac.usgs.gov/products/mcd43d42v006/
https://lpdaac.usgs.gov/products/mcd43a2v061/
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seasons or months by year. Specifically, αgs accounted for 19 composites (2001–2019), while αmo 

accounted for 11 composites (January–December, over the 19-year period, less March, which was 

not considered because few images were available, due likely to the high cloud cover in this 

month). I applied the same methodology as Jeong et al. (2011) and Sciusco (2020) to identify the 

growing season for each year. Briefly, I used the enhanced vegetation index (EVI) to identify the 

growing season by detecting the EVI inflection points (i.e., the dates) when maximum and 

minimum change rate in greenness occurred over the entire watershed. I obtained 16-day 

composite time series of EVI at a 250 m spatial resolution from the most recent collection (V006) 

of the MODIS MYD13Q1 product (cf. https://lpdaac.usgs.gov/products/myd13q1v006/). Similar 

to the quality control protocols for albedo product, I filtered and selected only good quality EVI 

pixels by applying the quality band “SummaryQA” from the MYD13Q1 product. Both albedo and 

EVI acquisitions referred to approximately 10:30 a.m. and 1:00 p.m. local time (UTC -05), 

respectively, when MODIS (Terra and Aqua, respectively) passes over the study area.  

I employed the Google Earth Engine platform (Gorelick et al., 2017) to analyze and process 

all datasets, while ArcMap (v. 10.6) was used to perform the zonal statistical analysis to calculate 

the proportion of NLCD cover types within each MODIS pixel and to extract αgs and αmo values 

by pixel before statistical analysis in RStudio v.1.2.5033 (R Core Team, 2020). 

Albedo-induced global warming impact (GWI) 

I employed the linear downscaling approach of Chen et al. (2019) to estimate surface 

albedo of cover type i (𝛼̂𝑠𝑖) at each MODIS pixel. Briefly, for a MODIS pixel, 𝛼̂𝑠𝑖 is considered 

as the sum of surface albedo of cover type i (αsi) within each MODIS pixel, as follows: 

𝛼̂𝑠𝑖(𝑡) = [∑(𝑘𝑖 × 𝛼̂𝑠𝑖(𝑡))] + 𝜀𝑡        (3.1) 

https://lpdaac.usgs.gov/products/myd13q1v006/
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where 𝛼̂𝑠𝑖 is the estimated surface albedo of cover type i for a time-period (t) (i.e., GS: t = 2001–

2019 and monthly: t = January–December, less March), ki is the proportion (0–1) of cover type in 

each MODIS pixel, and εt represents model residuals. 

The calculation of landscape albedo-induced radiative forcing (RFΔα) and global warming 

impact (GWIΔα) is based on the change in surface albedo due to land cover conversion. This is 

normally considered as the surface albedo difference (Δαs) between a cover type i and the native 

vegetation cover type (i.e., the reference; Sciusco et al., 2020), here forest as the dominant land 

cover type prior to European settlement (Brown et al., 2000). Thus, the surface albedo difference 

of cover type i (Δαsi) for growing season and monthly periods and for each ecoregion at 10:30 a.m. 

local time (UTC -05) is calculated as: 

∆𝛼𝑠𝑖
= (𝛼̂𝑠𝑖 − 𝛼̂𝑠𝑓)          (3.2) 

where 𝛼̂𝑠𝑖 and 𝛼̂𝑠𝑓 are the estimated surface albedos of cover type i and of the reference forest f 

for growing season and monthly periods and for each ecoregion. I assumed that all land 

conversions occurred from forest to cropland, pasture, or urban—with the exception of barren, 

grassland, and shrubland (in low percentage within the study area), and current water and wetland 

covers (i.e., for which we excluded conversion from forest). I calculated Δαsi only when the 

proportion of a cover type i was ≥ 80% of the 500 m MODIS pixel. Hence, only cropland, forest, 

pasture, and urban covers will be considered in this study. 

I then used Δαsi to calculate the instantaneous albedo-induced radiative forcing at the top-

of-atmosphere (RFΔα; W m-2) using the solar radiation at the Earth’s surface, as follows (Bright et 

al., 2012; Xu et al., 2020):  

𝑅𝐹∆𝛼 = −(𝑆𝑊𝑇𝑂𝐴 × ∆𝛼𝑝)         (3.3) 
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where SWTOA is the incident shortwave radiation at the top-of-atmosphere (TOA) and Δαp is the 

change in planetary albedo. Changes in planetary albedo (Δαp) are linearly related to changes in 

surface albedo (Δαsi) as follows (Bright et al., 2012; Cherubini et al., 2012; Lenton & Vaughan, 

2009; Muñoz et al., 2010): 

∆𝛼𝑝 = 𝑓𝑎 × ∆𝛼𝑠𝑖          (3.4) 

where fa is a two-way atmospheric transmittance parameter that accounts for both the reflection 

and absorption of solar radiation through the atmosphere, and it can be decomposed into downward 

and upward transmittance coefficients as follows (Lenton & Vaughan, 2009): 

𝑓𝑎 = 𝐾𝑇 × 𝑇𝑎            (3.5) 

where the clearness index KT is the fraction (i.e., %) of SWTOA reaching the Earth’s surface, Ta is 

the upward atmospheric transmittance factor (i.e., the fraction of the radiation reflected by the 

Earth’s surface back at the top-of-atmosphere). In turn, Ta is calculated as: 

𝑇𝑎 =
𝑆𝑊𝑖𝑛

𝑆𝑊𝑇𝑂𝐴
           (3.6) 

where SWin and SWTOA are the incident shortwave radiation at the surface and at TOA, respectively. 

By replacing Eqs. 3.4, 3.5 and 3.6 in 3.3, I obtained the following equation (Bright et al., 2012; 

Carrer et al., 2018; Xu et al., 2020): 

𝑅𝐹∆𝛼 = −(𝑆𝑊𝑖𝑛 × 𝐾𝑇 × ∆𝛼𝑠𝑖)        (3.7) 

where RFΔα (W m-2) is the landscape albedo-induced radiative forcing at the top-of-atmosphere at 

10:30 a.m. local time (UTC -05), SWin, KT, and Δαsi are the incident shortwave radiation at the 

surface, the clearness index, and the surface albedo difference between a cover type i and the 

reference forest for growing season and monthly periods and for each ecoregion, respectively. The 

incident shortwave radiation at the surface (SWin) and the clearness index (KT) were derived from 

the solar and meteorological dataset NASA POWER (Sparks, 2020) at daily time-step for multiple 
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locations (i.e., five Level IV ecoregions) within the Kalamazoo River Watershed. I then averaged 

SWin and KT values to match the 19 growing seasons and the 11 months. I also calculated RF by 

using the upward atmospheric transmittance factor (Ta; Eq. 3.6) as in Carrer et al. (2018) and 

Sciusco et al. (2020), although the differences in RF calculated with the use of KT and Ta were 

negligible, so I decided to only report RF calculated with KT (Eq. 3.7). Positive or negative 

values of RFΔα indicate warming or cooling effects, respectively. 

Lastly, I calculated the landscape GWIΔα (Bright et al., 2012; Carrer et al., 2018; Xu et al., 

2020) as follows: 

𝐺𝑊𝐼∆𝛼 = (
𝐴×𝑅𝐹∆𝛼

𝐴𝐹(𝑡)×𝑟𝑓𝐶𝑂2

1

𝑇𝐻
)         (3.8) 

where GWIΔα (kgCO2eq m-2 yr-1) is the landscape albedo-induced global warming impact for 

growing season and monthly periods and for each ecoregion at 10:30 a.m. local time (UTC -05), 

A is the area for which the hypothesized albedo change occurred (here normalized to 1 m2), AF(t) 

is the CO2 airborne fraction that remains in the atmosphere at time (t) following a single pulse 

emission, rfCO₂ is the marginal RF for CO2 emissions at a given atmospheric concentration, and 

TH represents the time horizon of global warming. The parameter AF(t) is modeled with an 

exponential function through multi-model impulse response function analysis (Joos et al., 2013) 

as follows: 

𝐴𝐹(𝑡) = 𝑎0 + ∑ [𝑎𝑖𝑒
−𝑡

𝜏𝑖⁄ ]3
𝑖=1         (3.9) 

where t represents the time in years, ai and τi are the fitted coefficients representing the decay of 

CO2 pulse emission in the atmosphere over time. The recommended mean coefficients obtained 

from the multi-model impulse response function analysis are: a0=0.2173 (the fraction of CO2 that 

remains permanently in the atmosphere); a1=0.2240; a2=0.2824; a3=0.2763; τ1=394.4; τ2=36.54; 

and τ3=4.304 (Joos et al., 2013). 
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Lastly, rfCO₂ is kept as a constant at 0.908 W kgCO2
-1 (Bright et al., 2015; Carrer et al., 

2018; Muñoz et al., 2010), while TH is fixed at 100 years (i.e., the number of time steps the GWI 

is then divided by; Boucher et al., 2009; Kaye & Quemada, 2017). 

With Eq. 3.8 I calculate the equivalent RFΔα that a unit area of A would have at global scale. 

Positive or negative values of GWIΔα indicate effects equivalent to CO2 emission or mitigation, 

respectively. Here I report results of landscape seasonal and monthly GWIΔα (GWIΔαgs and 

GWIΔαmo, respectively) expressed with units of MgCeq ha-1 gs-1 and MgCeq ha-1 mo-1, respectively, 

and referred to at 10:30 a.m. local time (UTC -05). Positive or negative values of GWIΔα indicate 

effects equivalent to C emissions or mitigations, respectively. 

Contributions of land cover change to GWI 

I performed a nested analysis of variance (ANOVA) with repeated measurements (i.e., 

growing season and monthly periods) to quantify the contribution to landscape GWIΔα by cover 

type and ecoregion for the growing season and monthly periods. Specifically, I looked at 

contributions among and within the five ecoregions, with two linear models:  

𝐺𝑊𝐼∆𝛼(𝑡) = (𝑒𝑐𝑜𝑟𝑒𝑔𝑖𝑜𝑛 × 𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒)(𝑡)       (3.9) 

𝐺𝑊𝐼∆𝛼(𝑡) = 𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒 (𝑡)         (3.10) 

where ecoregion refers to the five Level IV ecoregions (i.e., 56b, 56d, 56f, 56g, and 56h) and cover 

type refers to the three cover types (i.e., cropland, pasture, and urban) used to determine the albedo 

difference from the reference forest (Eq. 3.2) for growing season and monthly periods and for each 

ecoregion. Prior to running the ANOVA, I checked for normal distribution of the residuals (i.e., 

normality and heteroscedasticity assumptions) and outliers, and performed the Mauchly’s test (i.e., 

sphericity assumption) when necessary. Wherever the sphericity assumption was violated, I 

applied the Greenhouse-Geisser corrections. I then calculated the generalized eta-squared (η2) 
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(Bakeman, 2005) to examine the variance of dependent variable GWIΔα by ecoregion, cover type 

and their interactions. Lastly, I carried out a post-hoc Tukey test analysis to see whether differences 

in the least square means (LSMs) of GWIΔα among and within cover type and ecoregions were 

significant. All analyses were carried out in RStudio v. 1.2.5033 (R Core Team, 2020), using the 

R-packages “ez”, “nlme”, “multcomp”, and “lsmeans” (Hothorn et al., 2020; Lawrence, 2016; 

Lenth, 2018; Pinheiro et al., 2017). 

Results 

Land use land cover change 

The dominant land cover types in the Kalamazoo River Watershed, cropland, forest, 

pasture, and urban cover, underwent detectable changes during 2001–2016 (Table 3.1).  

Table 3.1: Land cover composition in ha (%) of the Kalamazoo River Watershed and net gain (+) 
and loss (-) for each cover type during the period 2001–2016. 

 Land cover 

composition 

Land cover 

gain (+) or loss (−) 

 ha(%) 

Cover type 2001 2016 2001−2016 

Cropland 215869(40.90) 215155(40.80) -714(-0.33) 

Forest 115393(21.90) 113893(21.60) -1500(-1.30) 

Pasture 28382(5.40) 27296(5.20) -1087(-3.83) 

Urban 66759(12.70) 68743(13.00) +1984(+2.89) 

Declines were highest in forest (1500 ha, -1.3%), followed by pasture (1087 ha, -3.83%) 

and cropland (714 ha, -0.33%). Gains occurred in urban cover type (~2000ha, ~+3%). Cropland, 

forest, and pasture were converted into a variety of cover types (Table 3.2): cropland was 

primarily converted into urban (1157 ha), pasture (776 ha), and forest (137 ha), forest was 

largely converted into urban (515 ha) and cropland (164 ha), while pasture was mostly converted 

into cropland (1456 ha) and urban (197 ha).
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Table 3.2: Pivot table showing the land cover conversion in ha of each cover type during the 
period 2001–2016 across the Kalamazoo River Watershed. Values underlined indicate the main 

land conversions, while “*” indicates no land conversion. 

 Land cover conversion (ha) 2001−2016 

        2016 

2001 
Cropland Forest Pasture Urban Total2001 

Cropland 212802* 137 776 1157 214872 

Forest 164 113337* 9 515 114025 

Pasture 1456 57 26467* 197 28176 

Urban 16 21 8 66704* 66748 

Total2016 214437 113552 27259 68573 423821 

 

Albedo and GWI in time and space 

The linear downscaling model (Eq. 3.1) showed that each cover type contributed 

differently to total αgs (adj. R2=0.995) and αmo (adj. R2=0.745) (Table A3). The four cover types 

had an overall average αgs of 0.16±0.013, with cropland having the highest αgs at 0.17±0.002, 

followed closely by pasture (0.16±0.003), and urban and forest (0.15±0.004) covers (Table A4). 

On the other hand, the αmo (overall average: 0.23±0.134) had a higher variation than αgs and was 

higher in January, February, and December with a maximum of 0.46±0.109 in February (Table 

A4). Other months exhibited lower αmo, with a minimum of 0.14±0.017 in November. Cropland 

and pasture had the highest αmo (0.28±0.183 and 0.25±0.156, respectively). However, the 

remaining cover types ranked differently for αmo than for αgs, decreasing in the order urban 

(0.22±0.119) and forest (0.19±0.080). As with α, Δα varied substantially across cover types but it 

was relatively constant within a cover type among the ecoregions (Table A5 and Figure 3.2a-b). 

In particular, Δαgs ranged from -0.001±0.003 for urban to 0.026±0.004 for cropland cover (Table 

A5 and Figure 3.2a), while Δαmo had higher variation and ranged from 0.024±0.040 for urban to 

0.089±0.108 for cropland cover (Table A5 and Figure 3.2b).  
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Figure 3.2: Albedo difference between a cover type i and the forest for (a) growing season (Δαgs) 

and (b) monthly (Δαmo) periods, respectively, within the five Level IV ecoregions and the entire 

Kalamazoo River Watershed during 2001–2019 (see Table A5 in the Appendix). 

The average GWIΔα showed an overall cooling effect (Table A6 and Figure 3.3a-b) for 

most cover types, with the exception for urban, which showed neutral effects. 

 

Figure 3.3: Albedo-induced global warming impact (GWIΔα) for (a) growing season (GWIΔαgs, 
MgCeq ha-1 gs-1) and (b) monthly (GWIΔαmo, MgCeq ha-1 mo-1) periods, respectively, within the 
five Level IV ecoregions and the entire Kalamazoo River Watershed during 2001–2019 (see 

Table A6 in Appendix). 
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Overall, cropland cover type had seasonal and monthly average cooling effects equivalent 

to -0.35±0.05 MgCeq ha-1 gs-1 and -0.68±0.61 MgCeq ha-1 mo-1, respectively (Table A6 and Figure 

3.3a-b), with highest cooling effects equivalent to -0.47 MgCeq ha-1 gs-1 (in 2015 for Ecoregions 

56b, 56d, 56f, and 56h; Tables A7.1-A7.2-A7.3-A7.5) and -2.15 MgCeq ha-1 mo-1 (in February for 

Ecoregion 56b; Table A8.1), for the two periods, respectively. These cooling effects represented 

~26% and ~68% more than the seasonal and monthly annual averages, respectively. On the other 

hand, urban cover (seasonal and monthly averages effects equivalent to -0.001±0.034 MgCeq ha-1 

gs-1 and -0.158±0.256 MgCeq ha-1 mo-1, respectively; Table A6), was the only cover type showing 

neutral effects. 

All three cover types showed similar trends in GWIΔαgs during 2001–2019 across the five 

ecoregions (Tables A7.1–A7.5 and Figure 3.4a) with similar rises and falls from the average of 

GWIΔαgs values. 
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Figure 3.4: Albedo-induced global warming impact (GWIΔα) for a given cover type within the 
five Level IV ecoregions. Panels (a) and (b) represent the GWIΔα for the growing season 

(GWIΔαgs; MgCeq ha-1 gs-1; during 2001–2019) and monthly (GWIΔαmo; MgCeq ha-1 mo-1; during 
January–December, less March) periods, respectively. Positive and negative values of GWIΔαgs 

and GWIΔαmo indicate warming and cooling effects, respectively, equivalent to carbon (Ceq; 
emission and mitigation, respectively) during 19-year growing season and months, respectively. 

For cropland, cooling effects of GWIΔαgs ranged between -0.39 and -0.47 MgCeq ha-1 gs-1, 

-0.25 and -0.31 MgCeq ha-1 gs-1 for pasture, and -0.01 and -0.11 MgCeq ha-1 gs-1 for urban. Urban 

was the only cover type showing also warming effects of GWIΔαgs that raged between 0.01 and 

0.05 MgCeq ha-1 gs-1. The inter-monthly variation of GWIΔαmo for cropland, pasture, and urban 

cover showed similar trends with higher cooling effects in January, February, and December 

(Tables A8.1–A8.5 and Figure 3.4b). Among these cover types, the highest cooling occurred in 
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cropland (-0.18 to -2.15 MgCeq ha-1 mo-1), followed by pasture (-0.13 to -1.64 MgCeq ha-1 mo-1) 

and urban (-0.02 to -0.470 MgCeq ha-1 mo-1) cover. For the three cover types, GWIΔαmo was 

relatively constant from April–November; however, urban had slightly bell-shaped trends with 

small warming effects in June and July (0.01 to 0.1 MgCeq ha-1 mo-1; Tables A8.1–A8.5 and Figure 

3.4b) and cropland had an inverted bell-shaped trend with slight rises in June and October. Lastly, 

pasture (in Ecoregions 56b-56f-56g) had relatively constant trend. The variation among ecoregions 

in GWIΔαgs was significant (p<0.001) by ecoregion, cover type, and their interactions (ANOVA 

model in Eq. 3.9; Table A9), while the variation in GWIΔαmo was significant (p<0.001) only by 

cover type. Neither years nor months were significant for GWIΔα. Most of the variation in GWIΔαgs 

was explained by cover type (η2=~95%), followed by the interaction between ecoregions and cover 

type (η2=~52%) and ecoregions (η2=32%). In comparison, the variation in GWIΔαmo was almost 

equally explained by ecoregion, cover type, and their interactions, although only cover type was 

significant (η2=~24% at p<0.001). The variation in both GWIΔαgs and GWIΔαmo within ecoregions 

(Eq. 3.10; Table A9), however, was significant (p<0.001) by cover type, which explained more of 

the variation in GWIΔαgs (η2=99%) than in GWIΔαmo (η2=65%). 

A post-hoc Tukey test analysis (Figure 3.5a-b) showed that, within each ecoregion, the 

least square means (LSMs) for GWIΔαgs had low variability and were significantly different among 

the cover types (Figure 3.5a). The LSMs for GWIΔαmo were more variable, and many cover types 

had statistically similar means (Figure 3.5b). Among ecoregions, the LSMs of cropland GWIΔαgs 

at Ecoregion 56g were significantly different from those at Ecoregions 56b and 56d, while the 

LSMs of urban GWIΔαgs at Ecoregion 56g were significantly different from those at Ecoregion 

ecoregions 56d; however, no significant differences in their LSMs for GWIΔαmo were observed 

(Figure 3.5b). 
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Figure 3.5: The least square means (LSMs) multi-comparison analysis of albedo-induced global 

warming impact (GWIΔα) for a given cover type across the five Level IV ecoregions for the (a) 

growing season (GWIΔαgs; MgCeq ha-1 gs-1; during 2001–2019) and (b) monthly (GWIΔαmo; 

MgCeq ha-1 mo-1; during January–December, less March) periods, respectively. Whiskers 

represent the lower and upper limits of the 95% family-wise confidence level of the LSMs. Bars 

sharing the same letters are not significantly different according to the post-hoc Tukey test 

analysis. Lowercase letters indicate differences among cover types within the five ecoregions, 

while uppercase letters indicate differences of same cover type among the five ecoregions. 

The overall GWIΔα contribution from different seasons and months varied by cover type, 

and it was exclusively higher during the non-growing season (NGS) than during the growing 

season (GS) months for all ecoregions (Table A10 and Figure 3.6), with the NGS months being 

characterized by only cooling effects (Table A11). As a general trend, the highest contributions 

were in February the lowest in October. Specifically, during the NGS, urban (at all ecoregions) 

contributed the most to the total cooling effect (between 18% and 31%), followed by pasture (at 

Ecoregions 56b-56f-56g; contribution between 14% and 25%), and cropland (at all ecoregions; 

contribution between 14% and 24%). It is worth noting that, during GS months, no cover type had 

a contribution >8% (i.e., 1/12 of the annual total). Nevertheless, climate regulations of urban (for 
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all ecoregions) were close to the overall mean value of 8% in April, while cropland (at all 

ecoregions) and pasture (at Ecoregions 56b, 56f, and 56g) in April and May. 

 

Figure 3.6: Percent contribution of albedo-induced global warming impact (GWIΔα) to cooling 
(values in bold) or warming effects by season and month periods for major cover types in the 
five Level IV ecoregions. The horizontal dashed line represents the average contribution ~8% 
(i.e., 1/12 of the annual total); the solid vertical lines separate the non-growing season (NGS) 

from the growing season (GS) months. Values of March were missing and gap-filled as the mean 
GWIΔα of February and April. 

Discussion 

My results show that albedo-induced global warming impact (GWIΔα) accounts for 

significant climate cooling (i.e., Ceq mitigation) effects due to land cover changes and land mosaic. 

Individual contributions varied by cover type, ecoregion, and season/month, with cropland 



 89 

showing the highest cooling effects, followed by pasture; while urban showed both cooling and 

warming effects, the latter only during the growing season months. Overall, the cooling effects of 

monthly GWIΔα were higher than the seasonal ones, most likely due to the substantial influence of 

snow cover on land surface albedo (Li et al., 2018) or different vegetation surfaces (e.g., due to 

management practices). For the same reason, seasonal analysis showed that the cooling 

contributions during the non-growing season months were higher than during the growing season 

months. 

My results seem to be promising in the context of climate regulation potentials of albedo 

changes due to land cover changes and land mosaic. Nevertheless, several assumptions and 

limitations to my study could benefit GWI computations elsewhere in managed landscapes.  

Cooling effects 

During the 19-year period, the highest cooling effect of seasonal and monthly GWIΔα of 

cropland were equivalent to -0.47 MgCeq ha-1 gs-1 in 2015 for Ecoregions 56b, 56d, 56f, and 56h, 

and -2.15 MgCeq ha-1 mo-1 in February for Ecoregion 56b, respectively. In comparison, Abraha et 

al. (2019)—accounting for GHGs using whole-system lifecycle analysis—found emissions of 2.6 

MgCeq ha-1 yr-1 over eight years in Conservation Reserve Program (CRP) grasslands converted to 

maize. Thus, the seasonal and monthly maximum albedo-induced cooling effects from cropland 

represent (i.e., offset) 18% and ~83%, respectively, of the annual Ceq over the eight years from 

CRP grasslands converted to maize fields. By only considering the cumulative highest cooling 

effects due to both seasonal and monthly GWIΔα, the albedo climate benefits would completely 

offset the annual emissions due to grassland converted to maize over the eight years. Moreover, 

the cropland cooling effects mentioned above are more than enough to offset the annual net 

biogeochemical GWI—i.e., warming effects due to the net contributions from CO2, CH4, and N2O 
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at 0.31 MgCeq ha-1 yr-1—produced by annual crop systems (i.e., maize-soybean-wheat rotation) 

under conventional tillage management of the same area (Robertson, 2000). 

Variable effects 

Urban areas appeared to have either cooling or warming effects depending on time scale 

examined. Unlike cropland cover type, which had cooling effects during summer months, mostly 

due to changes in vegetation over the growing season (Hammerle et al., 2007; Kuusinen et al., 

2016; Lukeš et al., 2014; Rechid et al., 2009; Zheng et al., 2019), urban cover type had warming 

effects over the growing season months and cooling effects during the rest of the year. More 

specifically, the highest seasonal and monthly warming effects, equivalent to 0.05 MgCeq ha-1 gs-

1 in 2002 and 2012 and to ~0.1 MgCeq ha-1 mo-1 in June–July, respectively, at Ecoregion 56g, are 

equivalent to ~29% and 45% of the annual net ecosystem production (NEP) of deciduous forest 

stands in northern Michigan (Curtis et al., 2002). On the other hand, the maximum monthly cooling 

effect of urban landscapes was equivalent to -0.7 MgCeq ha-1 mo-1 (in February at Ecoregion 56h), 

which is between 16% and 32% the estimated Ceq offset (i.e., between 2.2 MgCeq ha-1 and 4.4 

MgCeq ha-1) induced by an increase in albedo of 0.01 (i.e., 1%) across major cities in the U.S. over 

a 50-year period (Zheng et al., 2019). Such results are important, considering that the watershed 

includes two major urban centers, Kalamazoo and Battle Creek, with a total population of 

>500,000 people in 2010 (Chen et al., 2021), and, as previous studies predicted, the total built-up 

areas in the whole state of Michigan will increase >50% until 2030, with the urban areas alone 

representing >70% of this increase (Messina, 2008). 

Intra- and interannual variability of albedo and GWI 

Despite my expectation that intra- and inter-annual variability of surface albedo would vary 

due to seasonality and climatic conditions (Sciusco et al., 2020), I did not find significant 
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differences in interannual variation of Δα, and thus GWIΔα. For example, each cover type showed 

unique interannual trends that appeared to be similar during the seasonal and monthly periods. 

However, I found that during growing season, GWIΔα of cropland and urban cover types was not 

the same in every ecoregion, which emphasizes that cover types may contribute differently 

depending on the location. In other words, changes in landscape composition in the five ecoregions 

could cause different net landscape GWIΔα. For example, contrasting landscape compositions 

among the five ecoregions lead to different cumulative cooling effects during the growing season 

over 19 years; this value varied from -6.89 MgCeq ha-1 gs-1 to -11.36 MgCeq ha-1 gs-1 at Ecoregions 

56d and 56b, respectively. At monthly scale, as another example, landscape composition produced 

cumulative cooling effects of -9.14 MgCeq ha-1 mo-1 to -14.89 MgCeq ha-1 mo-1 at Ecoregions 56h 

and 56b, respectively. 

My results also suggest that a total forest loss of ~680 ha due to conversion to cropland and 

urban (i.e., the main cover type classes within the watershed) during 2001−2016 led to seasonal 

and monthly cooling effects at watershed scale that, on average, were equivalent to ~-179 MgCeq 

gs-1 and ~-374 MgCeq mo-1, respectively. 

Seasonal percent contribution to the total cooling and warming 

In line with other studies (Abraha et al., 2021), the largest contribution to the overall total 

seasonal GWIΔα came from the non-growing season months, during which all the cover types 

exhibited cooling effects, which varied in magnitude depending on the ecoregion. Once again, 

urban was the only cover type that contributed to warming effects in the growing season, generally 

following a decreasing trend going from June–September and with similar magnitude. However, 

despite the interest of my study being far from investigating importance of urban albedo 

modifications in the context of urban heat island effects, my results further imply the need for 
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future research on the same line as what other studies currently highlight: the importance of 

increasing the surface albedo of urban components (e.g., pavements, roofs, walls) as climate 

regulation strategy to solve urban energy budget and building energy demand (Jandaghian & 

Akbari, 2018; Zheng et al., 2019). However, the seasonal analysis clearly confirmed that the 

contributions to the total landscape cooling or warming effect varied by ecoregion, resulting in 

either net cooling/warming or in a net neutral effect of the albedo climate benefits at landscape 

scale. 

Assumptions and limitations 

Several assumptions and limitations in my study could benefit GWI computations 

elsewhere in managed landscapes. A first assumption is related to the choice of the time horizon 

(TH, Eq. 3.8) fixed at a 100-year period. The choice of either short or long-time horizons can either 

over- or de-accentuate albedo-induced global warming impact (GWIΔα) values (Anderson-Teixeira 

et al., 2012). Specifically, by keeping TH fixed at 100 years, I assume that the land cover 

composition of the study area will remain the same for the next 100 years, although it is likely that 

the land cover over the next 100 years will be very different. However, by setting TH=100, I put 

our study in line with the Kyoto Protocol (Boucher et al., 2009; Sciusco et al., 2020). 

There is also uncertainty associated with the spatial resolution of MODIS products. The 

albedo MODIS product employed in this work has a pixel with a nominal spatial resolution of 500 

m, which has been shown not to properly match the effective spatial resolution (usually much 

higher than the nominal one; Moreno-Ruiz et al., 2019; Zhou et al., 2019). However, despite 

previous studies attempts to analyze the effective spatial resolution of the MODIS albedo product 

(Campagnolo et al., 2016; Hovi et al., 2019), they were only based on a single homogeneous area. 
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For areas characterized by substantial land surface heterogeneity, like the one presented in this 

work, the effective spatial representativeness of the pixel is hard to determine (Zhou et al., 2019). 

My study investigates the contribution of land mosaics due to land transformation on 

GWIΔα in the context of climate change mitigations by considering forest cover type as the 

reference for the entire study area (Brown et al., 2000). However, without other references my 

calculations cannot estimate forests’ contribution to GWIΔα, which hinders a comprehensive 

synthesis of the total climate emission or mitigation of the watershed considering that the low 

albedo of forests contributes to climate warming (Bonan, 2008). Moreover, regarding indirect 

biophysical effects, forests’ role in mitigating climate change is multifaced and recent studies 

demonstrated how re- and afforestation strategies can increase low level cloud cover formation, 

which, depending on forest type, results in cooling effects on the planet (Duveiller et al., 2021). 

Lastly, analyzing land transformation with reference to forest is only one method. For example, 

for other studies and policymakers the main focus is on land transformation in the context of 

bioenergy conversions (Abraha et al., 2021) and land management practices to compare landscape 

dynamics to agriculture (Cai et al., 2016; Davin et al., 2014; Sieber et al., 2020).  

The MODIS BRDF function is the composite of a 16-day period (He et al., 2018) with 

albedo values from a single snapshot at 10:30 a.m. local time (UTC -05; i.e., MODIS Terra 

morning overpass time). However, there is increasing evidence showing diurnal variations of 

albedo (He et al., 2018; Wang et al., 2015) under different sky conditions. This means that albedo 

values at 10:30 a.m. local time (UTC -05) are likely different from the daily averages. 

Nevertheless, MODIS albedo products are soundly validated as well as widely accepted for 

retrieving albedo from other remote sensing products (Cescatti et al., 2012; He et al., 2012; Liu et 

al., 2009; Roman et al., 2013; Stroeve et al., 2005; Wang et al., 2014) and present an overall 
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accuracy of RMSE ~0.02 and maximum error of ~0.04, compared to in-situ measurements (Wang 

et al., 2004). 

Lastly, I considered growing season and monthly albedo at 10:30 a.m. local time (UTC -

05) by computing their median composite, which prevented me from accounting for the effects of 

land surface characteristics (i.e., vegetation properties, such as leaf area index, and landscape 

heterogeneity) on spatiotemporal variation of albedo within patches of the same type. This 

represents a limitation, as during the growing season, vegetation cover and canopy structure and 

albedo are negatively correlated, due to different capacity of the canopy to absorb incoming solar 

radiation (Tian et al., 2018). My cover type categories did not reflect these differences, so future 

efforts will be needed to quantify such differences, including the use of other remote sensing 

metrics and instantaneous measurements (Giannico et al., 2018). 

Conclusions 

In conclusion, I found that albedo-induced global warming impact (GWIΔα) accounted for 

a significant amount of landscape climate mitigation due to land use land cover changes, although 

its contributions varied by cover type, ecoregion, and season/month. Over the 19-year period, 

conversion of forest to cropland resulted in the highest amount of climate cooling compared with 

conversions to other land cover types, whether measured seasonally or monthly. Conversion of 

forest to urban cover showed a warming effect during June–September and a cooling effect in the 

other months. Each season or month contributed to the annual total GWIΔα very differently and 

can result in either net cooling or warming or in a near-neutral albedo climate benefits. 
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APPENDIX 

Table A3: Summary table for the overall linear downscaling models (Eq. 3.1) for the estimated 

𝛼̂𝑔𝑠 and 𝛼̂𝑚𝑜 (dependent variables) across the entire Kalamazoo River Watershed. Values in bold 

indicate the cover types considered in this study. 

 Variable Estimates SE t p-value DF adj. R2 

 barren 0.152 0.000 1340.300 ***   

 cropland 0.174 0.000 26281.727 ***   

 forest 0.145 0.000 13171.109 ***   

 grassland 0.129 0.000 1347.355 ***   

𝛼̂gs pasture 0.165 0.000 5715.941 *** 9 0.995 

 shrubland 0.138 0.000 653.438 ***   

 urban 0.145 0.000 10926.929 ***   

 water 0.091 0.000 2815.767 ***   

 wetland 0.154 0.000 12248.465 ***   

 barren 0.237 0.003 93.220 ***   

 cropland 0.283 0.000 1904.740 ***   

 forest 0.185 0.000 745.962 ***   

 grassland 0.171 0.002 76.378 ***   

𝛼̂mo pasture 0.260 0.001 398.528 *** 9 0.745 

 shrubland 0.149 0.005 32.996 ***   

 urban 0.215 0.000 715.211 ***   

 water 0.183 0.001 251.948 ***   

 wetland 0.215 0.000 766.229 ***   
Signif. codes: *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, · p-value < 0.1, “ ” p-value > 0.1 

𝛼̂𝑔𝑠 and 𝛼̂𝑚𝑜: estimated whites-sky shortwave albedo for growing season and monthly periods, respectively 
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Table A4: Mean (± one standard deviation) for 𝛼̂𝑔𝑠 and 𝛼̂𝑚𝑜 during 2001–2019 for the four cover 

types. Average values (𝑋̅) across the four cover types (𝑋̅𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒) and for the 19-year growing 

seasons (𝑋̅𝑔𝑠) and the 11-month (𝑋̅𝑚𝑜) periods are also shown. 

  Cover type 

Time-period Cropland Forest Pasture Urban  𝑋̅𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒  

 𝛼
𝑔

𝑠
 

2001 0.171(±0.002) 0.143(±0.001) 0.163(±0.001) 0.145(±0.001) 0.156(±0.013) 

2002 0.174(±0.001) 0.152(±0.001) 0.166(±0.001) 0.149(±0.002) 0.160(±0.011) 

2003 0.169(±0.001) 0.146(±0.001) 0.162(±0.001) 0.145(±0.001) 0.155(±0.012) 

2004 0.172(±0.002) 0.144(±0.001) 0.161(±0.001) 0.143(±0.002) 0.155(±0.014) 

2005 0.171(±0.002) 0.145(±0.001) 0.162(±0.001) 0.144(±0.002) 0.156(±0.013) 

2006 0.172(±0.002) 0.146(±0.001) 0.165(±0.001) 0.145(±0.002) 0.157(±0.014) 

2007 0.170(±0.001) 0.148(±0.001) 0.160(±0.001) 0.146(±0.001) 0.156(±0.011) 

2008 0.171(±0.001) 0.147(±0.001) 0.163(±0.001) 0.146(±0.001) 0.157(±0.012) 

2009 0.174(±0.002) 0.146(±0.002) 0.166(±0.001) 0.148(±0.002) 0.158(±0.014) 

2010 0.172(±0.002) 0.141(±0.002) 0.161(±0.001) 0.145(±0.002) 0.155(±0.014) 

2011 0.175(±0.002) 0.149(±0.001) 0.166(±0.001) 0.147(±0.002) 0.159(±0.013) 

2012 0.170(±0.001) 0.150(±0.001) 0.161(±0.001) 0.147(±0.001) 0.157(±0.010) 

2013 0.168(±0.001) 0.145(±0.001) 0.160(±0.001) 0.144(±0.001) 0.154(±0.012) 

2014 0.172(±0.002) 0.147(±0.001) 0.167(±0.001) 0.147(±0.002) 0.158(±0.013) 

2015 0.169(±0.002) 0.134(±0.002) 0.156(±0.001) 0.142(±0.002) 0.150(±0.015) 

2016 0.171(±0.001) 0.147(±0.001) 0.163(±0.001) 0.147(±0.002) 0.157(±0.012) 

2017 0.170(±0.002) 0.141(±0.001) 0.159(±0.001) 0.142(±0.002) 0.153(±0.014) 

2018 0.168(±0.002) 0.141(±0.001) 0.156(±0.001) 0.143(±0.001) 0.152(±0.013) 

2019 0.173(±0.001) 0.151(±0.001) 0.164(±0.001) 0.148(±0.001) 0.159(±0.012) 

  𝑋̅𝑔𝑠 0.171(±0.002) 0.145(±0.004) 0.162(±0.003) 0.146(±0.002) 0.156(±0.013) 

𝛼
𝑚

𝑜
 

Jan 0.575(±0.013) 0.320(±0.012) 0.504(±0.013) 0.413(±0.008) 0.453(±0.111) 

Feb 0.579(±0.013) 0.333(±0.012) 0.516(±0.013) 0.408(±0.008) 0.459(±0.109) 

Apr 0.162(±0.002) 0.129(±0.002) 0.155(±0.002) 0.139(±0.002) 0.147(±0.015) 

May 0.175(±0.002) 0.146(±0.002) 0.169(±0.002) 0.150(±0.001) 0.160(±0.014) 

Jun 0.178(±0.001) 0.163(±0.001) 0.177(±0.001) 0.158(±0.001) 0.169(±0.010) 

Jul 0.179(±0.001) 0.160(±0.001) 0.173(±0.001) 0.155(±0.001) 0.167(±0.011) 

Aug 0.177(±0.002) 0.153(±0.001) 0.166(±0.001) 0.149(±0.002) 0.161(±0.013) 

Sep 0.170(±0.002) 0.145(±0.001) 0.160(±0.001) 0.144(±0.001) 0.155(±0.012) 

Oct 0.156(±0.001) 0.136(±0.001) 0.151(±0.001) 0.138(±0.001) 0.145(±0.010) 

Nov 0.158(±0.002) 0.119(±0.002) 0.147(±0.002) 0.134(±0.002) 0.140(±0.017) 

Dec 0.530(±0.013) 0.277(±0.012) 0.463(±0.014) 0.374(±0.008) 0.411(±0.110) 

  𝑋̅𝑚𝑜 0.276(±0.183) 0.189(±0.080) 0.253(±0.156) 0.215(±0.119) 0.233(±0.134) 
𝛼̂𝑔𝑠 and 𝛼̂𝑔𝑠: estimated whites-sky shortwave albedo () for growing season and monthly periods, respectively 
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Table A5: Mean (± one standard deviation) of Δαgs and Δαmo for a given cover type within the 

five Level IV ecoregions during 2001–2019. Average values (𝑋̅) of each cover type for the entire 

Kalamazoo River Watershed (𝑋̅𝑤) are also shown. 

  Level IV ecoregions  

 Cover type 56b 56d 56f 56g 56h  𝑋̅𝑤  

Δ
α

g
s 

Cropland 0.026(±0.004) 0.026(±0.004) 0.025(±0.004) 0.025(±0.004) 0.026(±0.004) 0.026(±0.004) 

Pasture 0.018(±0.003) – 0.017(±0.003) 0.016(±0.003) 0.016(±0.003) 0.017(±0.003) 

Urban 0.000(±0.003) 0.001(±0.003) 0.000(±0.003) -0.001(±0.003) 0.000(±0.003) 0.000(±0.003) 

Δ
α

m
o
 Cropland 0.088(±0.106) 0.089(±0.108) 0.086(±0.105) 0.086(±0.104) 0.087(±0.105) 0.087(±0.102) 

Pasture 0.066(±0.080) – 0.061(±0.075) 0.062(±0.076) – 0.063(±0.075) 

Urban 0.026(±0.041) 0.028(±0.044) 0.025(±0.040) 0.024(±0.040) 0.025(±0.041) 0.026(±0.040) 

Δαgs and Δαmo: albedo difference between a cover type i and the reference forest at growing season and monthly periods, 
respectively 

“−”: no data available 
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Table A6: Mean (± one standard deviation) of GWIΔαgs (MgCeq ha-1 gs-1) and GWIΔαmo (MgCeq 

ha-1 mo-1) for a given cover type within the five Level IV ecoregions during 2001–2019. Average 

values (𝑋̅) of each cover type for the entire Kalamazoo River Watershed (𝑋̅𝑤) are also shown. 

Positive and negative values of GWIΔα indicate warming and cooling effects, respectively, 

equivalent to carbon (Ceq; emission and mitigation, respectively). 

  Level IV ecoregions  

 Cover type 56b 56d 56f 56g 56h  𝑋̅𝑤 

G
W

I Δ
α
g
s Cropland -0.354(±0.049) -0.356(±0.049) -0.349(±0.048) -0.342(±0.048) -0.349(±0.048) -0.350(±0.047) 

Pasture -0.242(±0.040) – -0.227(±0.039) -0.220(±0.039) -0.213(±0.039) -0.225(±0.040) 

Urban -0.002(±0.035) -0.007(±0.035) 0.000(±0.034) -0.007(±0.035) -0.001(±0.034) -0.001(±0.034) 

G
W

I Δ
α
m

o
 Cropland -0.683(±0.646) -0.682(±0.636) -0.672(±0.635) -0.665(±0.634) -0.674(±0.638) -0.675(±0.614) 

Pasture -0.512(±0.494) – -0.475(±0.461) -0.478(±0.469) – -0.488(±0.460) 

Urban -0.159(±0.265) -0.175(±0.280) -0.155(±0.262) -0.147(±0.260) -0.157(±0.262) -0.158(±0.256) 

GWIΔαgs and GWIΔαmo: albedo-induced global warming impact (GWIΔα) at growing season and monthly periods, respectively 

“−”: no data available 
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Table A7.1: Growing season albedo-induced global warming impact (GWIΔαgs, MgCeq ha-1 gs-1) 

during 2001–2019 for Ecoregion 56b. Underlined values indicate the cumulative GWIΔαgs value 

for the entire ecoregion over the 19-year period. Major peaks (↑) and decreases (↓) from the 

GWIΔαgs average are also shown. Positive and negative values of GWIΔαgs indicate growing 

season warming and cooling effects, respectively, equivalent to carbon (Ceq; emission and 

mitigation, respectively) during 2001–2019. 

  GWIΔαgs (MgCeq ha-1 gs-1) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56b 

2001 -0.37 -0.29↓ -0.03 -0.69 

2002 -0.29↑ -0.20↑** 0.04↑** -0.45 

2003 -0.32↑** -0.23 0.01 -0.54 

2004 -0.39 -0.25 0.00 -0.64 

2005 -0.35 -0.24 0.01 -0.58 

2006 -0.36 -0.27↓* 0.01 -0.63 

2007 -0.30↑ -0.18↑ 0.03↑ -0.46 

2008 -0.34 -0.24 0.00 -0.58 

2009 -0.39 -0.28↓ -0.02 -0.68 

2010 -0.42↓ -0.29↓ -0.06 -0.77 

2011 -0.35 -0.24 0.02↑* -0.57 

2012 -0.27↑* -0.16↑* 0.04↑** -0.39 

2013 -0.33 -0.22 0.01 -0.55 

2014 -0.35 -0.28↓ 0.00 -0.64 

2015 -0.47↓** -0.31↓** -0.10 -0.89 

2016 -0.33 -0.23 0.00 -0.56 

2017 -0.40↓* -0.25 -0.01 -0.67 

2018 -0.37 -0.22 -0.03 -0.62 

2019 -0.31↑ -0.20↑** 0.03↑ -0.48 

Tot.2001–2019 -6.73 -4.60 -0.03 -11.36 

𝑋̅2001–2019 -0.35 -0.24 0.00  

GS: growing season 
“*” and “**”: min and max decrease/peak, respectively 

“−”: no data available 
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Table A7.2: Growing season albedo-induced global warming impact (GWIΔαgs, MgCeq ha-1 gs-1) 

during 2001–2019 for Ecoregion 56d. Underlined values indicate the cumulative GWIΔαgs value 

for the entire ecoregion over the 19-year period. Major peaks (↑) and decreases (↓) from the 

GWIΔαgs average are also shown. Positive and negative values of GWIΔαgs indicate growing 

season warming and cooling effects, respectively, equivalent to carbon (Ceq; emission and 

mitigation, respectively) during 2001–2019. 

  GWIΔαgs (MgCeq ha-1 gs-1) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56d 

2001 -0.37 − -0.04↓* -0.41 

2002 -0.29↑ − 0.04↑** -0.25 

2003 -0.32↑** − 0.01 -0.31 

2004 -0.39↓* − 0.00 -0.39 

2005 -0.35 − 0.01 -0.34 

2006 -0.36 − 0.00 -0.36 

2007 -0.30↑ − 0.02↑* -0.28 

2008 -0.34 − 0.00 -0.34 

2009 -0.39 − -0.03 -0.42 

2010 -0.43↓ − -0.06↓ -0.49 

2011 -0.36 − 0.02 -0.34 

2012 -0.27↑* − 0.04↑** -0.23 

2013 -0.33 − 0.00 -0.33 

2014 -0.35 − -0.01 -0.36 

2015 -0.47↓** − -0.11↓** -0.58 

2016 -0.34 − 0.00 -0.34 

2017 -0.40↓ − -0.02 -0.42 

2018 -0.38 − -0.03 -0.40 

2019 -0.31↑ − 0.03 -0.28 

Tot.2001–2019 -6.76  -0.13 -6.89 

𝑋̅2001–2019 -0.36  -0.01  

GS: growing season 
“*” and “**”: min and max decrease/peak, respectively 

“−”: no data available 
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Table A7.3: Growing season albedo-induced global warming impact (GWIΔαgs, MgCeq ha-1 gs-1) 

during 2001–2019 for Ecoregion 56f. Underlined values indicate the cumulative GWIΔαgs value 

for the entire ecoregion over the 19-year period. Major peaks (↑) and decreases (↓) from the 

GWIΔαgs average are also shown. Positive and negative values of GWIΔαgs indicate growing 

season warming and cooling effects, respectively, equivalent to carbon (Ceq; emission and 

mitigation, respectively) during 2001–2019. 

  GWIΔαgs (MgCeq ha-1 gs-1) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56f 

2001 -0.37 -0.27↓ -0.03↓ -0.67 

2002 -0.28↑ -0.19↑** 0.04↑** -0.43 

2003 -0.31↑** -0.22 0.01 -0.52 

2004 -0.38 -0.24 0.01 -0.61 

2005 -0.35 -0.23 0.02 -0.56 

2006 -0.35 -0.26↓* 0.01 -0.60 

2007 -0.30↑ -0.17↑ 0.03↑ -0.44 

2008 -0.33 -0.22 0.00 -0.55 

2009 -0.38 -0.26↓* -0.02↓* -0.66 

2010 -0.42↓ -0.27↓ -0.05↓ -0.75 

2011 -0.35 -0.23 0.03↑* -0.55 

2012 -0.27↑* -0.14↑* 0.04↑** -0.37 

2013 -0.32 -0.21 0.01 -0.52 

2014 -0.34 -0.27↓ 0.00 -0.62 

2015 -0.47↓** -0.29↓** -0.10↓** -0.86 

2016 -0.33 -0.22 0.01 -0.54 

2017 -0.40↓* -0.24 -0.01 -0.64 

2018 -0.37 -0.21 -0.02↓* -0.60 

2019 -0.31↑** -0.18↑ 0.04↑** -0.46 

Tot.2001–2019 -6.63 -4.31 0.00 -10.94 

𝑋̅2001–2019 -0.35 -0.23 0.00  

GS: growing season 
“*” and “**”: min and max decrease/peak, respectively 

“−”: no data available 
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Table A7.4. Growing season albedo-induced global warming impact (GWIΔαgs, MgCeq ha-1 gs-1) 
during 2001–2019 for Ecoregion 56g. Underlined values indicate the cumulative GWIΔαgs value 

for the entire ecoregion over the 19-year period. Major peaks (↑) and decreases (↓) from the 
GWIΔαgs average are also shown. Positive and negative values of GWIΔαgs indicate growing 
season warming and cooling effects, respectively, equivalent to carbon (Ceq; emission and 

mitigation, respectively) during 2001–2019. 

  GWIΔαgs (MgCeq ha-1 gs-1) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56g 

2001 -0.36 -0.26↓ -0.02↓* -0.65 

2002 -0.28↑ -0.18↑** 0.05↑* -0.41 

2003 -0.31↑** -0.21 0.02 -0.50 

2004 -0.37 -0.23 0.01 -0.59 

2005 -0.34 -0.22 0.02 -0.54 

2006 -0.35 -0.25↓ 0.02 -0.58 

2007 -0.29↑ -0.16↑ 0.04↑* -0.42 

2008 -0.33 -0.22 0.01 -0.53 

2009 -0.37 -0.25↓* -0.01 -0.64 

2010 -0.41↓ -0.27↓ -0.05↓ -0.73 

2011 -0.34 -0.22 0.03 -0.52 

2012 -0.26↑* -0.14↑* 0.05↑** -0.35 

2013 -0.32 -0.20 0.02 -0.51 

2014 -0.34 -0.26↓ 0.01 -0.59 

2015 -0.46↓** -0.29↓** -0.09↓** -0.84 

2016 -0.32 -0.21 0.01 -0.52 

2017 -0.39↓* -0.23 0.00 -0.62 

2018 -0.36 -0.20 -0.02 -0.58 

2019 -0.30↑ -0.18↑** 0.04↑* -0.44 

Tot.2001–2019 -6.50 -4.19 0.14 -10.54 

𝑋̅2001–2019 -0.34 -0.22 0.01  

GS: growing season 
“*” and “**”: min and max decrease/peak, respectively 

“−”: no data available 
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Table A7.5: Growing season albedo-induced global warming impact (GWIΔαgs, MgCeq ha-1 gs-1) 
during 2001–2019 for Ecoregion 56h. Underlined values indicate the cumulative GWIΔαgs value 

for the entire ecoregion over the 19-year period. Major peaks (↑) and decreases (↓) from the 
GWIΔαgs average are also shown. Positive and negative values of GWIΔαgs indicate growing 
season warming and cooling effects, respectively, equivalent to carbon (Ceq; emission and 

mitigation, respectively) during 2001–2019. 

  GWIΔαgs (MgCeq ha-1 gs-1) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56h 

2001 -0.37 -0.26 -0.03↓ -0.65 

2002 -0.28↑ -0.17↑** 0.04↑ -0.42 

2003 -0.31↑** -0.20 0.01 -0.51 

2004 -0.38 -0.22 0.00 -0.60 

2005 -0.35 -0.21 0.01↑* -0.55 

2006 -0.35 -0.24↓* 0.01 -0.59 

2007 -0.30↑ -0.16↑ 0.03↑ -0.43 

2008 -0.33 -0.21 0.00 -0.54 

2009 -0.38 -0.25↓ -0.02↓* -0.65 

2010 -0.42↓ -0.26↓ -0.06↓ -0.73 

2011 -0.35 -0.21 0.02↑ -0.53 

2012 -0.27↑* -0.13↑* 0.04↑** -0.36 

2013 -0.33 -0.20 0.01 -0.51 

2014 -0.34 -0.25↓ 0.00 -0.60 

2015 -0.47↓** -0.28↓** -0.10↓** -0.85 

2016 -0.33 -0.20 0.01 -0.53 

2017 -0.40↓* -0.22 -0.01↓ -0.63 

2018 -0.37 -0.19 -0.02↓* -0.59 

2019 -0.31↑** -0.17↑** 0.03↑ -0.44 

Tot.2001–2019 -6.64 -4.04 -0.02 -10.71 

𝑋̅2001–2019 -0.35 -0.21 0.00  

GS: growing season 
“*” and “**”: min and max decrease/peak, respectively 

“−”: no data available 
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Table A8.1: Monthly albedo-induced global warming impact (GWIΔαmo, MgCeq ha-1 mo-1) during 

January–December for Ecoregion 56b. Underlined values indicate the cumulative GWIΔαmo value 

for the entire ecoregion over the 11-month period. Positive and negative values of GWIΔαmo 

indicate monthly warming and cooling effects, respectively, equivalent to carbon (Ceq; emission 

and mitigation, respectively) during the 19-year period. 

  GWIΔαmo (MgCeq ha-1 mo-1) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56b 

Jan -1.50 -1.11 -0.54 -3.16 

Feb -2.15 -1.64 -0.64 -4.43 

Apr -0.50 -0.41 -0.15 -1.06 

May -0.50 -0.40 -0.08 -0.98 

Jun -0.28 -0.26 0.09 -0.45 

Jul -0.32 -0.22 0.09 -0.45 

Aug -0.35 -0.19 0.05 -0.49 

Sep -0.29 -0.18 0.01 -0.46 

Oct -0.18 -0.14 -0.02 -0.34 

Nov -0.23 -0.17 -0.09 -0.48 

Dec -1.21 -0.91 -0.46 -2.58 

Tot.Jan–Dec -7.52 -5.63 -1.75 -14.89 

𝑋̅Jan–Dec -0.68 -0.51 -0.16  

“−”: no data available 

 

 



 113 

Table A8.2: Monthly albedo-induced global warming impact (GWIΔαmo, MgCeq ha-1 mo-1) during 

January–December for Ecoregion 56d. Underlined values indicate the cumulative GWIΔαmo value 

for the entire ecoregion over the 11-month period. Positive and negative values of GWIΔαmo 

indicate monthly warming and cooling effects, respectively, equivalent to carbon (Ceq; emission 

and mitigation, respectively) during the 19-year period. 

  GWIΔαmo (MgCeq ha-1 mo-1) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56d 

Jan -1.49 − -0.58 -2.07 

Feb -2.11 − -0.70 -2.82 

Apr -0.51 − -0.16 -0.67 

May -0.51 − -0.09 -0.60 

Jun -0.28 − 0.08 -0.20 

Jul -0.32 − 0.08 -0.25 

Aug -0.35 − 0.04 -0.31 

Sep -0.29 − 0.01 -0.28 

Oct -0.18 − -0.02 -0.21 

Nov -0.23 − -0.09 -0.32 

Dec -1.21 − -0.48 -1.70 

Tot.Jan–Dec -7.50  -1.92 -9.42 

𝑋̅Jan–Dec -0.68  -0.17  

“−”: no data available 
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Table A8.3: Monthly albedo-induced global warming impact (GWIΔαmo, MgCeq ha-1 mo-1) during 

January–December for Ecoregion 56f. Underlined values indicate the cumulative GWIΔαmo value 

for the entire ecoregion over the 11-month period. Positive and negative values of GWIΔαmo 

indicate monthly warming and cooling effects, respectively, equivalent to carbon (Ceq; emission 

and mitigation, respectively) during the 19-year period. 

  GWIΔαmo (MgCeq ha-1 mo-1) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56f 

Jan -1.48 -1.04 -0.53 -3.05 

Feb -2.11 -1.53 -0.64 -4.27 

Apr -0.50 -0.38 -0.15 -1.03 

May -0.49 -0.37 -0.08 -0.94 

Jun -0.27 -0.24 0.09 -0.42 

Jul -0.32 -0.20 0.09 -0.42 

Aug -0.34 -0.17 0.06 -0.46 

Sep -0.29 -0.16 0.02 -0.43 

Oct -0.18 -0.13 -0.02 -0.33 

Nov -0.23 -0.16 -0.09 -0.47 

Dec -1.19 -0.85 -0.45 -2.49 

Tot.Jan–Dec -7.39 -5.23 -1.70 -14.32 

𝑋̅Jan–Dec -0.67 -0.48 -0.15  

“−”: no data available 
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Table A8.4: Monthly albedo-induced global warming impact (GWIΔαgs, MgCeq ha-1 mo-1) during 

January–December for Ecoregion 56g. Underlined values indicate the cumulative GWIΔαmo value 

for the entire ecoregion over the 11-month period. Positive and negative values of GWIΔαmo 

indicate monthly warming and cooling effects, respectively, equivalent to carbon (Ceq; emission 

and mitigation, respectively) during the 19-year period. 

  GWIΔαmo (MgCeq ha-1 mo-1) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56g 

Jan -1.47 -1.05 -0.53 -3.05 

Feb -2.10 -1.54 -0.62 -4.26 

Apr -0.49 -0.38 -0.14 -1.01 

May -0.48 -0.37 -0.07 -0.92 

Jun -0.26 -0.23 0.10 -0.40 

Jul -0.31 -0.20 0.10 -0.40 

Aug -0.34 -0.17 0.06 -0.44 

Sep -0.28 -0.16 0.02 -0.42 

Oct -0.18 -0.13 -0.02 -0.32 

Nov -0.22 -0.16 -0.09 -0.47 

Dec -1.19 -0.86 -0.45 -2.49 

Tot.Jan–Dec -7.31 -5.26 -1.62 -14.19 

𝑋̅Jan–Dec -0.66 -0.48 -0.15  

“−”: no data available 
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Table A8.5: Monthly albedo-induced global warming impact (GWIΔαmo, MgCeq ha-1 mo-1) during 

January–December for Ecoregion 56h. Underlined values indicate the cumulative GWIΔαmo value 

for the entire ecoregion over the 11-month period. Positive and negative values of GWIΔαmo 

indicate monthly warming and cooling effects, respectively, equivalent to carbon (Ceq; emission 

and mitigation, respectively) during the 19-year period. 

  GWIΔαmo (MgCeq ha-1 mo-1) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56h 

Jan -1.48 − -0.54 -2.02 

Feb -2.12 − -0.64 -2.76 

Apr -0.50 − -0.15 -0.65 

May -0.49 − -0.08 -0.57 

Jun -0.27 − 0.09 -0.19 

Jul -0.32 − 0.09 -0.23 

Aug -0.35 − 0.05 -0.29 

Sep -0.29 − 0.01 -0.27 

Oct -0.18 − -0.02 -0.20 

Nov -0.23 − -0.09 -0.31 

Dec -1.20 − -0.46 -1.65 

Tot.Jan–Dec -7.41  -1.73 -9.14 

𝑋̅Jan–Dec -0.67  -0.16  

“−”: no data available 
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Table A9: Nested analysis of variance (ANOVA with repeated measurements), among and 

within ecoregions, based on the linear models at Eqs. 3.9 and 3.10. Dependent variables: 

GWIΔαgs and GWIΔαmo (MgCeq ha-1 gs-1/mo-1). 

  Variable DF SS MS F p-value  η2 (%) 

A
m

o
n
g
 E

co
re

g
io

n
 

GWIΔαgs 

Ecoregions 4 0.00 0.00 860.57 *** 32.04a 

Cover type 1 5.80 5.80 4786.41 *** 94.81 

Ecoregions × Cover type 4 0.00 0.00 182.84 *** 51.83a 

Residuals 162 0.02 0.00    

GWIΔαmo 

Ecoregions 4 0.01 0.00 24.17  28.53a 

Cover type 1 7.34 7.34 19.05 *** 23.52 

Ecoregions × Cover type 4 0.00 0.00 3.61  25.61a 

Residuals 90 3.86 0.39    

W
it

h
in

 E
co

re
g
io

n
 

GWIΔαgs 
Cover type 2 5.94 2.97 12185 *** 99.00 

Residuals 245 0.06 0.00    

GWIΔαmo 
Cover type 2 7.47 2.67 122.80 *** 65.40 

Residuals 130 3.95 0.03    
GWIΔαgs and GWIΔαmo: albedo-induced global warming impact (GWIΔα) at growing season and monthly periods, respectively 

Signif. codes: *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, ∙ p-value < 0.1, p-value > 0.1 
η2: generalized eta squares indicating the variance in the dependent variable (i.e., GWIΔα) accounted for by the independent 

variables (i.e., ecoregion, cover type, and their interactions) 

“a”: η2 values obtained from the Mauchly’s test of sphericity by applying the Greenhouse-Geisser correction 
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Table A10: Overall percent contribution and percent contribution higher than the average (>8%; 

i.e., 1/12th of the total, i.e., equal contribution across the 12-month period) of albedo-induced 

global warming impact (GWIΔα) by non-growing season and growing season in the five Level IV 

ecoregions. Cooling effects showing the contributions higher than the average are underlined. 

 Overall contribution (%) Contribution higher than the average (%) 

 Level IV ecoregions 

months 56b 56d 56f 56g 56h 56b 56d 56f 56g 56h 

NGS 73 75 73 73 74 100 100 100 100 100 

GS 27 25 27 27 26 0 0 0 0 0 
NGS: non-growing season months (January, February, March, and December) 

GS: growing season months (April–November) 
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Table A11: Percent contribution higher than the average (>8%; i.e., 1/12th of the total, i.e., equal 

contribution across the 12-month period) of albedo-induced global warming impact (GWIΔα) by 

non-growing season and growing season for cropland, pasture, and urban in the five Level IV 

ecoregions. 

 
Contribution higher than the 

average (%) 

  Cover type  

Ecoregion Months Cropland Pasture Urban 

56b 
NGS 100 100 100 

GS 0 0 0 

56d 
NGS 100 – 100 

GS 0 – 0 

56f 
NGS 100 100 100 

GS 0 0 0 

56g 
NGS 100 100 100 

GS 0 0 0 

56h 
NGS 100 – 100 

GS 0 – 0 
NGS: non-growing season months (January, February, March, and December) 

GS: growing season months (April–November) 

“−”: no data available 
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Table A12.1: Growing season albedo-induced radiative forcing (RFΔαgs, W m-2) during 2001–

2019 for Ecoregion 56b. Underlined values indicate the cumulative RFΔαgs value for the entire 

ecoregion over the 19-year period. Positive and negative values of RFΔαgs indicate growing 

season warming and cooling effects, respectively. 

  RFΔαgs (W m-2) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56b 

2001 -5.08 -3.91 -0.44 -9.43 

2002 -3.93 -2.73 0.57 -6.10 

2003 -4.35 -3.12 0.12 -7.35 

2004 -5.28 -3.44 0.04 -8.67 

2005 -4.83 -3.33 0.19 -7.97 

2006 -4.91 -3.74 0.10 -8.55 

2007 -4.13 -2.48 0.38 -6.22 

2008 -4.63 -3.27 0.03 -7.87 

2009 -5.27 -3.79 -0.28 -9.34 

2010 -5.79 -3.96 -0.78 -10.53 

2011 -4.83 -3.29 0.33 -7.79 

2012 -3.71 -2.14 0.56 -5.28 

2013 -4.50 -3.05 0.10 -7.45 

2014 -4.76 -3.89 -0.05 -8.70 

2015 -6.46 -4.27 -1.37 -12.10 

2016 -4.55 -3.15 0.06 -7.64 

2017 -5.52 -3.44 -0.18 -9.14 

2018 -5.11 -3.03 -0.35 -8.49 

2019 -4.26 -2.71 0.47 -6.49 

Tot.2001–2019 -91.90 -62.73 -0.48 -155.11 

𝑋̅2001–2019 -4.84 -3.30 -0.025  

GS: growing season 

“−”: no data available 
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Table A12.2: Growing season albedo-induced radiative forcing (RFΔαgs, W m-2) during 2001–

2019 for Ecoregion 56d. Underlined values indicate the cumulative RFΔαgs value for the entire 

ecoregion over the 19-year period. Positive and negative values of RFΔαgs indicate growing 

season warming and cooling effects, respectively. 

  RFΔαgs (W m-2) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56d 

2001 -5.11 − -0.52 -5.64 

2002 -3.96 − 0.50 -3.46 

2003 -4.36 − 0.08 -4.28 

2004 -5.32 − -0.04 -5.36 

2005 -4.83 − 0.13 -4.69 

2006 -4.94 − 0.00 -4.94 

2007 -4.13 − 0.32 -3.81 

2008 -4.65 − -0.04 -4.69 

2009 -5.31 − -0.37 -5.68 

2010 -5.80 − -0.84 -6.64 

2011 -4.86 − 0.23 -4.62 

2012 -3.70 − 0.52 -3.18 

2013 -4.50 − 0.05 -4.45 

2014 -4.79 − -0.14 -4.92 

2015 -6.47 − -1.44 -7.90 

2016 -4.58 − -0.01 -4.59 

2017 -5.52 − -0.24 -5.76 

2018 -5.12 − -0.39 -5.51 

2019 -4.27 − 0.39 -3.88 

Tot.2001–2019 -92.21  -1.80 -94.00 

𝑋̅2001–2019 -4.85  -0.095  

GS: growing season 

“−”: no data available 
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Table A12.3: Growing season albedo-induced radiative forcing (RFΔαgs, W m-2) during 2001–

2019 for Ecoregion 56f. Underlined values indicate the cumulative RFΔαgs value for the entire 

ecoregion over the 19-year period. Positive and negative values of RFΔαgs indicate growing 

season warming and cooling effects, respectively. 

  RFΔαgs (W m-2) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56f 

2001 -5.00 -3.69 -0.41 -9.10 

2002 -3.87 -2.56 0.59 -5.84 

2003 -4.28 -2.94 0.15 -7.08 

2004 -5.21 -3.23 0.07 -8.36 

2005 -4.75 -3.12 0.22 -7.65 

2006 -4.84 -3.53 0.12 -8.25 

2007 -4.05 -2.30 0.41 -5.94 

2008 -4.55 -3.07 0.05 -7.57 

2009 -5.19 -3.56 -0.26 -9.01 

2010 -5.71 -3.73 -0.74 -10.18 

2011 -4.76 -3.09 0.35 -7.50 

2012 -3.64 -1.97 0.59 -5.03 

2013 -4.43 -2.86 0.13 -7.15 

2014 -4.69 -3.68 -0.03 -8.41 

2015 -6.37 -4.02 -1.32 -11.70 

2016 -4.47 -2.95 0.09 -7.34 

2017 -5.44 -3.22 -0.14 -8.80 

2018 -5.04 -2.83 -0.31 -8.18 

2019 -4.18 -2.52 0.49 -6.21 

Tot.2001–2019 -90.48 -58.87 0.04 -149.31 

𝑋̅2001–2019 -4.76 -3.10 0.002  

GS: growing season 

“−”: no data available 
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Table A12.4: Growing season albedo-induced radiative forcing (RFΔαgs, W m-2) during 2001–

2019 for Ecoregion 56g. Underlined values indicate the cumulative RFΔαgs value for the entire 

ecoregion over the 19-year period. Positive and negative values of RFΔαgs indicate growing 

season warming and cooling effects, respectively. 

  RFΔαgs (W m-2) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56g 

2001 -4.90 -3.61 -0.31 -8.81 

2002 -3.78 -2.46 0.69 -5.55 

2003 -4.19 -2.84 0.23 -6.81 

2004 -5.10 -3.12 0.17 -8.05 

2005 -4.68 -3.03 0.31 -7.40 

2006 -4.73 -3.43 0.24 -7.92 

2007 -3.98 -2.21 0.50 -5.69 

2008 -4.46 -2.98 0.16 -7.29 

2009 -5.08 -3.47 -0.14 -8.70 

2010 -5.61 -3.65 -0.65 -9.90 

2011 -4.66 -2.97 0.47 -7.16 

2012 -3.57 -1.88 0.67 -4.79 

2013 -4.35 -2.77 0.22 -6.90 

2014 -4.58 -3.58 0.09 -8.07 

2015 -6.26 -3.95 -1.23 -11.44 

2016 -4.38 -2.86 0.19 -7.05 

2017 -5.34 -3.13 -0.05 -8.53 

2018 -4.95 -2.75 -0.24 -7.94 

2019 -4.11 -2.42 0.59 -5.94 

Tot.2001–2019 -88.70 -57.13 1.91 -143.92 

𝑋̅2001–2019 -4.67 -3.01 0.100  

GS: growing season 

“−”: no data available 
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Table A12.5: Growing season albedo-induced radiative forcing (RFΔαgs, W m-2) during 2001–

2019 for Ecoregion 56h. Underlined values indicate the cumulative RFΔαgs value for the entire 

ecoregion over the 19-year period. Positive and negative values of RFΔαgs indicate growing 

season warming and cooling effects, respectively. 

  RFΔαgs (W m-2) 

Ecoregion GS Cropland Pasture Urban Tot.cover type 

56h 

2001 -5.00 -3.51 -0.43 -8.94 

2002 -3.88 -2.36 0.56 -5.67 

2003 -4.28 -2.74 0.12 -6.91 

2004 -5.20 -3.00 0.05 -8.16 

2005 -4.77 -2.91 0.19 -7.49 

2006 -4.84 -3.31 0.10 -8.06 

2007 -4.07 -2.12 0.38 -5.81 

2008 -4.56 -2.88 0.04 -7.41 

2009 -5.19 -3.37 -0.27 -8.83 

2010 -5.71 -3.55 -0.76 -10.01 

2011 -4.77 -2.86 0.34 -7.29 

2012 -3.66 -1.79 0.56 -4.89 

2013 -4.44 -2.67 0.11 -7.00 

2014 -4.69 -3.47 -0.04 -8.20 

2015 -6.36 -3.86 -1.33 -11.56 

2016 -4.48 -2.77 0.07 -7.18 

2017 -5.44 -3.02 -0.17 -8.63 

2018 -5.04 -2.66 -0.34 -8.03 

2019 -4.20 -2.32 0.47 -6.05 

Tot.2001–2019 -90.61 -55.17 -0.34 -146.12 

𝑋̅2001–2019 -4.77 -2.90 -0.018  

GS: growing season 

“−”: no data available 
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Table A13.1: Monthly albedo-induced radiative forcing (RFΔαmo, W m-2) during January–

December for Ecoregion 56b. Underlined values indicate the cumulative RFΔαmo value for the 

entire ecoregion over the 11-month period. Positive and negative values of RFΔαmo indicate 

monthly warming and cooling effects, respectively. 

  RFΔαmo (W m-2) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56b 

Jan -20.51 -15.17 -7.40 -43.08 

Feb -29.29 -22.39 -8.80 -60.48 

Apr -6.87 -5.55 -2.08 -14.51 

May -6.80 -5.50 -1.07 -13.37 

Jun -3.80 -3.49 1.21 -6.08 

Jul -4.39 -3.01 1.21 -6.19 

Aug -4.80 -2.63 0.73 -6.70 

Sep -3.98 -2.46 0.19 -6.25 

Oct -2.46 -1.88 -0.34 -4.69 

Nov -3.12 -2.27 -1.21 -6.60 

Dec -16.55 -12.44 -6.28 -35.27 

Tot.Jan–Dec -102.58 -76.80 -23.84 -203.22 

𝑋̅Jan–Dec -9.33 -6.98 -2.17  

“−”: no data available 

 



 126 

Table A13.2: Monthly albedo-induced radiative forcing (RFΔαmo, W m-2) during January–

December for Ecoregion 56d. Underlined values indicate the cumulative RFΔαmo value for the 

entire ecoregion over the 11-month period. Positive and negative values of RFΔαmo indicate 

monthly warming and cooling effects, respectively. 

  RFΔαmo (W m-2) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56d 

Jan -20.35 − -7.89 -28.24 

Feb -28.84 − -9.59 -38.43 

Apr -6.95 − -2.17 -9.11 

May -6.95 − -1.27 -8.22 

Jun -3.85 − 1.07 -2.78 

Jul -4.42 − 1.06 -3.35 

Aug -4.80 − 0.59 -4.21 

Sep -3.99 − 0.12 -3.87 

Oct -2.47 − -0.33 -2.80 

Nov -3.15 − -1.21 -4.36 

Dec -16.57 − -6.61 -23.19 

Tot.Jan–Dec -102.34  -26.22 -128.56 

𝑋̅Jan–Dec -9.30  -2.38  

“−”: no data available 
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Table A13.3: Monthly albedo-induced radiative forcing (RFΔαmo, W m-2) during January–

December for Ecoregion 56f. Underlined values indicate the cumulative RFΔαmo value for the 

entire ecoregion over the 11-month period. Positive and negative values of RFΔαmo indicate 

monthly warming and cooling effects, respectively. 

  RFΔαmo (W m-2) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56f 

Jan -20.17 -14.16 -7.30 -41.63 

Feb -28.77 -20.85 -8.72 -58.34 

Apr -6.79 -5.21 -2.01 -14.01 

May -6.73 -5.09 -1.02 -12.84 

Jun -3.74 -3.21 1.22 -5.73 

Jul -4.31 -2.73 1.23 -5.80 

Aug -4.70 -2.36 0.76 -6.29 

Sep -3.90 -2.24 0.23 -5.92 

Oct -2.43 -1.76 -0.30 -4.49 

Nov -3.08 -2.14 -1.16 -6.38 

Dec -16.28 -11.62 -6.15 -34.04 

Tot.Jan–Dec -100.89 -71.36 -23.22 -195.46 

𝑋̅Jan–Dec -9.17 -6.49 -2.11  

“−”: no data available 
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Table A13.4: Monthly albedo-induced radiative forcing (RFΔαmo, W m-2) during January–

December for Ecoregion 56g. Underlined values indicate the cumulative RFΔαmo value for the 

entire ecoregion over the 11-month period. Positive and negative values of RFΔαmo indicate 

monthly warming and cooling effects, respectively. 

  RFΔαmo (W m-2) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56g 

Jan -20.09 -14.34 -7.18 -41.60 

Feb -28.63 -21.09 -8.42 -58.14 

Apr -6.66 -5.22 -1.95 -13.83 

May -6.55 -5.11 -0.89 -12.54 

Jun -3.61 -3.16 1.37 -5.40 

Jul -4.20 -2.67 1.38 -5.50 

Aug -4.62 -2.32 0.88 -6.05 

Sep -3.84 -2.21 0.30 -5.75 

Oct -2.39 -1.74 -0.29 -4.42 

Nov -3.05 -2.14 -1.17 -6.36 

Dec -16.18 -11.77 -6.09 -34.04 

Tot.Jan–Dec -99.83 -71.74 -22.06 -193.64 

𝑋̅Jan–Dec -9.08 -6.52 -2.01  

“−”: no data available 
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Table A13.5: Monthly albedo-induced radiative forcing (RFΔαmo, W m-2) during January–

December for Ecoregion 56h. Underlined values indicate the cumulative RFΔαmo value for the 

entire ecoregion over the 11-month period. Positive and negative values of RFΔαmo indicate 

monthly warming and cooling effects, respectively. 

  RFΔαmo (W m-2) 

Ecoregion Month Cropland Pasture Urban Tot.cover type 

56h 

Jan -20.25 − -7.33 -27.58 

Feb -28.92 − -8.72 -37.64 

Apr -6.76 − -2.05 -8.81 

May -6.69 − -1.04 -7.73 

Jun -3.74 − 1.20 -2.54 

Jul -4.34 − 1.20 -3.14 

Aug -4.73 − 0.73 -4.01 

Sep -3.92 − 0.19 -3.73 

Oct -2.43 − -0.33 -2.76 

Nov -3.07 − -1.19 -4.26 

Dec -16.32 − -6.21 -22.53 

Tot.Jan–Dec -101.18  -23.55 -124.73 

𝑋̅Jan–Dec -9.20  -2.14  

“−”: no data available 
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Figure A1: Albedo-induced radiative forcing (RFΔα) for the five Level IV ecoregions. Panels (a) 
and (b) represent the RFΔα for the growing season (RFΔαgs; 2001–2019) and monthly (RFΔαmo; 

January–December, less March) periods, respectively. Positive and negative values of RFΔαgs and 
RFΔαmo indicate warming and cooling effects, respectively, during 19-year growing season and 

months, respectively. 
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CHAPTER 4. MODELING THE MAIN KEY INFLUENCES ON THE NET 

ECOSYSTEM EXCHANGE (NEE) FLUXES: INFERENCES TO CLIMATE 

REGULATION POTENTIALS DUE TO LAND USE HISTORY AT BIOENERGY 

CROPPING SYSTEMS IN SOUTHWESTERN MICHIGAN 
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Abstract 

Land use and land cover and associated management history can substantially affect the 

net carbon (C) sink/source nature of a landscape. Here I examined the contribution of interannual 

variation of main key influences affecting the net C uptake/emission during 2018–2021 growing 

seasons, under different land use history and management, using both in-situ and remote sensing 

data. The results show that interannual variations of key influences to the net ecosystem exchange 

(NEE) depend on the cover type and growing season, with a unique seasonal pattern observed in 

maize. Specifically, the ranking, number, and magnitude of key influences to the net growing 

season NEE varied by cover type, highlighting the different nature of bioenergy crops (i.e., annual 

vs perennial and monoculture vs polyculture). Among the three bioenergy crops considered, maize 

contributes the most to net C uptakes, with magnitudes ranging between -9.4 and -22.8 gC m-2 d-

1. Lastly, I show the capability of fine-resolution optical and radar remote sensing to improve 

forecasts (depending on the site and the date considered) of growing season NEE at maize cover 

type as proof of concept. Further work may benefit from coupling these estimates with emissions 

from other greenhouse gases (GHGs), as well as by extending the analysis to non-growing season 

to improve our understanding of the role that land use history and management have on climate 

warming/cooling. 

Introduction 

As stated in the Sixth Assessment Report (AR6) by the Intergovernmental Panel on Climate 

Change (IPCC), adaptation and mitigation strategies to climate change are essential to limit global 

warming to 1.5 C in order to achieve sustainable development (Bezner et al., 2022). Agricultural 

cropping systems represent a conspicuous percentage (~50%) of worldwide land cover and for 

decades now croplands have been investigated to improve our understanding of the ecosystem 
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functions and services they provide, especially in the context of adaptations and mitigations 

strategies (Barrios et al., 2018). Both adaptation and mitigation strategies fall within several foci. 

Just to mention a few: that of well-mixed greenhouse gasses (GHGs)—i.e., carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O)—emissions, representing the sink/source nature of a 

system; soil and water conservation; grassland quality; crop yield; biodiversity. Regarding the 

former, given the well-established scientific knowledge of the contributions of GHGs to global 

warming, understanding whether a system behaves as sink or source is of fundamental interest for 

many research studies and of particular importance for policy makers. For instance, according to 

the IPCC, global agricultural activities in 2019 were responsible for emissions equivalent to 13 

GtCO2, which represented ~22% of the total net anthropogenic GHG emissions (Shukla et al., 

2022). Researchers agree that the CO2 sink/source nature of agricultural crop systems is a complex 

function of various physical, biophysical, and physiological drivers, as well as the type of cropping 

system (i.e., food vs fuel crops). In turn, such drivers are strongly influenced by land management 

(e.g., agronomic practices), land use history and change (e.g., conversion of croplands to 

grasslands), weather conditions (e.g., frequency and intensity of precipitation events and high/low 

temperature periods), etc. (Abraha & Hamilton, et al., 2018; Liu & Greaver, 2009; Tongwane & 

Moeletsi, 2018). Hence, it is important to measure all those drivers and their role in altering 

ecosystem CO2 balances, especially in the anticipation of future climate projections. The U.S. 

Midwest is well suited to investigate these drivers because it contains land cover mosaics including 

agricultural crops that vary in their type of crop, land use history and change, and weather 

conditions. Moreover, in the Midwest, future climate scenarios point to increase in frequency of 

heavy precipitation events and droughts, leading to more variable water availability for agriculture 

and natural plant communities (Hayhoe et al., 2010). 
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One mitigation option in the context of agricultural cropping systems is the use of 

bioenergy crops—the use of biomass for direct generation of energy rather than food or feed—to 

enhance the carbon (C) debt payback (i.e., offset between C emissions and mitigations). However, 

the C debt payback of bioenergy crops has been shown to be strongly influenced by land use 

history and farm management practices (Forster et al., 2021). Here I estimate the main key 

influences to CO2 uptake/emission across three different bioenergy cropping systems (i.e., maize, 

prairie, and switchgrass) during four years of growing seasons by using both in-situ and remote 

sensing approach. In particular, I aim to: (i) investigate the main key influences (e.g., soil water 

content, air temperature, leaf area index, vegetation height, etc.) to interannual variations of net 

ecosystem exchange (NEE) fluxes, expressed as gC m-2; and (ii) to use multi-sensor remote sensing 

approach to forecast NEE for maize during 2021 growing season, drawing inferences to the net 

growing season C uptake/emissions under different land use history and due to main stages of 

maize’s growth development. While the analysis of the main key influences to NEE was carried 

out across three different bioenergy crops (i.e., maize, restored prairie, and switchgrass), the focus 

of the forecast of NEE was only on maize as a proof of concept because it was the only cover type 

whose growth development stages fall entirely within the in-situ data collection timeframe and it 

is not expected to show major intra-annual variation of NEE due to its mono-culture and highly 

genetically bred nature. 

Materials & Methods 

Study area 

I considered six study sites (42°24′ N, 85°24′ W, 288 m a.s.l.; Figure 4.1ab) located at the 

Great Lakes Bioenergy Research Center (GLBRC) of the Kellogg Biological Station (KBS), in 

southwestern Michigan, USA. The sites are characterized by humid continental temperate climate 
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with mean annual (1981–2010) air temperature of 9.9 °C and mean total annual precipitation of 

1027 mm (Abraha et al., 2019). Soils are Typic Hapludalfs, well-drained sandy loams (Abraha et 

al., 2016; Thoen, 1990). Mean air temperature and total precipitation are 19.7°C and 523 mm, 

respectively, with highest temperatures in July (Bhardwaj et al., 2011). 

 

Figure 4.1: Location of the study area at the Kellogg Biological Station (KBS), in southwest 

Michigan, USA. Panels (a) and (b) refer to the historically cultivated as agricultural land (AGR) 

and the Conservation Reserve Program (CRP) sites, each with three bioenergy crops: no-till 

continuous maize (Zea mays; in blue), restored prairie (in orange), and switchgrass (Panicum 

virgatum; in green). The location of the seven Eddy Covariance (EC) flux towers (white star 

symbol), as well as the five subplots (yellow solid circles) are also shown. 

The study sites are clustered into two groups, depending on their land use and management 

history: the historically cultivated as agricultural lands (hereafter indicated with the prefix “AGR”; 

Figure 4.1a) and the Conservation Reserve Program (hereafter indicated with the prefix “CRP”; 

Figure 4.1b) sites. The AGR sites were managed as conventionally-tilled agricultural corn-soybean 
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rotations, while the CRP sites were managed as grasslands (Bromus inermis; i.e., the dominant 

species), for 22 years (Abraha et al., 2019). In 2009, both groups (i.e., AGR and CRP) were then 

converted to their present land cover types, which include no-till continuous maize (Zea mays), 

restored prairie, and switchgrass (Panicum virgatum), hereinafter indicated as M, P, and S and 

using the final nomenclature as AGR-M/P/S and CRP-M/P/S, respectively. I considered the 

growing season of four years (i.e., 2018–2021) as study period of the present research. However, 

given the different phenologies of -M/P/S, for each of the three cover types, start and end of season 

(SoS and EoS, respectively) were selected considering the period between the first four days in 

row of uptake (SoS) and release (EoS) of carbon dioxide (CO2), respectively. Further details about 

the SoS and EoS are outlined in the next section. 

Net ecosystem exchange of CO2 

The exchange in CO2 fluxes between terrestrial ecosystems and the atmosphere are referred 

to as net ecosystem exchange (NEE; gCO2 m-2 d-1). The monitoring of NEE is carried out at field 

level via the use of Eddy Covariance (EC) flux towers (Abraha & Gelfand, et al., 2018). In this 

study, each site included one EC system (Figure 4.1ab), which carried a LI-7500 open-path 

infrared gas analyzer (IRGA, LI-COR Bioscience, Lincoln, NE) for measurements of both CO2 

and water (H2O) concentration, and a CSAT3 three-dimensional sonic anemometer (Campbell 

Scientific Inc. CSI, Logan, UT) for measurements of wind speed and direction. Half-hourly 

meteorological measurements of incoming and outgoing solar radiation, air temperature, and 

relative humidity were also measured at each site using sensors like CNR1 (Kipp & Zonen, Delft, 

The Netherlands) and HMP45C (CSI). On each tower, the EC sensors are mounted at about 1.5–2 

m above the vegetation canopy and logged at 10Hz using a Campbell CR5000 datalogger. Half-

hourly fluxes were processed in “EdiRe” for screening out-of-range data due to bad weather, 
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sensors, and/or logger malfunction as well as de-spiking. For full data quality control details, refer 

to Zenone et al. (2011) and Abraha et al. (2015). Given the discrepancy in time acquisition between 

NEE fluxes and field data, I considered cumulative daily NEE fluxes, so that to match them with 

in-situ data collected during each field visit (Table A14). 

During the study period, planting dates for AGR-/CRP-M were roughly around the first 

week of May, which roughly coincided to the start of the summer fieldwork campaigns. However, 

the phenological stages of maize differs from those of prairie and of switchgrass. Hence, I 

considered the growing seasons during 2018–2021 of the present study. Yearly growing seasons 

were obtained by detecting the SoS and EoS (i.e., first four days in row of CO2 uptake and release, 

respectively; Table A15 and Figure A2ab). Specifically, when the detected NEE SoS day was 

posterior to the first day of field visit, the NEE on DOY “d” (NEEd) was assumed to be the starting 

point for the cumulative NEE calculation. For example, the SoS for the AGR-M field in 2018 was 

on DOY 164 (i.e., June 13th; Table A15), while the first day of field visit in 2018 was on DOY 152 

(i.e., June 1st; Table A14), hence the NEEAGR-M164 was equal to NEE164 (i.e., the NEE on June 13th). 

On the other hand, when the SoS day was prior to the first day of field visit, I summed the daily 

NEE up to the field visit on DOY “d”. For example, SoS for AGR-P field in 2018 was on DOY 

142 (May 22nd; Table A15), while the first day of field visit in 2018 was on DOY 152 (June 1st; 

Table A14); hence, I calculated the NEEAGR-P142 as the cumulative NEE from DOY 142 to 152 

(i.e., NEEAGR-P142 to NEEAGR-P152), as shown below: 

𝑁𝐸𝐸152 = ∑ 𝑁𝐸𝐸𝑑
𝑛
𝑆𝑜𝑆          (4.1) 

where SoS is the DOY of start of season, prior to the DOY of first field visit (n), and NEEd is the 

daily net ecosystem exchange (at DOY d). 

In this study, I report the results in the context of C uptake/emission, with units of gC m-2 
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per day (d-1) or growing season (gs-1), defined as negative and positive NEE for net C uptake from 

and emission to the atmosphere, respectively.  

In-situ variables 

Summer fieldwork campaigns at the six AGR and CRP sites were conducted from May 

through August during 2018–2021, at five pre-existing subplots (Figure 4.1ab). The six sites were 

visited roughly every ~14 days, depending on the weather conditions (Table A14), between 10 

a.m. and 3 p.m. local time (UTC -05), with a growing summer average of ~6-8 visits per each site. 

During the field visit, at subplot level (Figure 4.1ab), I collected variables, such as leaf area index 

(LAI; m2 m-2), Soil and Plant Analysis Development index (SPAD index; an index of leaf 

chlorophyll content; Hlavinka et al., 2013), vegetation height (Ht; m), and soil water content 

(SWC; %). Specifically, LAI, SPAD, and SWC were measured using the LP-80 ceptometer 

(METER ACCUPAR), the SPAD-502DL (KONICA MINOLTA), and the HydroSense II 

(Campbell Scientific), respectively. For each day of visit, at each of the five subplots, I took three 

repeated measurements, for a total of 105 measurements (then averaged to 35, per subplot), per 

day of visit. All the measurements were assumed to represent daily values to be matched with 

cumulative daily NEE and remote sensing imagery acquisitions.  

In addition to LAI, SPAD, Ht, and SWC, I also acquired other ancillary data such as mean 

daily air temperature (Tair; °C), daily relative humidity (RH; %), and mean daily photosynthetically 

active radiation (PAR; mol m-2 d-1), which were provided by the LTER meteorological station at 

KBS (Robertson, 2020) and were assumed to not vary significantly by site, due to their close 

proximity. Lastly, I used Tair and RH to calculate daily vapor pressure deficit (VPD; kPa), another 

hypothesized driver to NEE. Vapor pressure deficit was calculated as follows (Chen et al., 2021): 

𝑉𝑃𝐷 = 𝑒𝑠 − 𝑒𝑎         (4.2) 



 139 

where es and ea are the saturation and actual vapor pressure (kPa), respectively. Saturation vapor 

pressure can then be estimated for temperatures above 0 C (Monteith & Unsworth, 2013) as 

follows: 

𝑒𝑠 = 0.6118𝑒
(

17.502𝑇𝑎𝑖𝑟
𝑇𝑎+240.97

)
        (4.3) 

where Tair is the mean daily air temperature (°C). On the other hand, the actual vapor pressure is 

calculated as follows: 

𝑒𝑎 = 0.000462𝐸𝑎𝑇𝑎𝑖𝑟𝐾
        (4.4) 

where Ea is the actual vapor density (kg m-3) and TairK is the mean daily air temperature in Kelvin 

(K). The actual vapor density (Ea) is then calculated as: 

𝐸𝑎 =
𝐸𝑠𝑅𝐻

100
          (4.5)  

where Es is the saturation vapor density (kg m-3) and RH is the relative humidity (%). Lastly, the 

saturation vapor density is obtained as follows: 

𝐸𝑠 =
𝑒𝑠

0.000462𝑇𝑎𝑖𝑟𝐾

         (4.6) 

where es is the saturation vapor pressure (Eq. 4.3) and TairK is the mean daily air temperature (K). 

Remote sensing products 

In addition to NEE fluxes and biophysical and physical in-situ data, I employed remote 

sensing imagery, namely, Sentinel-2 (optical) and Sentinel-1 (synthetic aperture radar), hereafter 

S2 and S1. Remote sensing imagery were acquired over the study area (Figure 4.1a,b) during the 

2018–2021 growing seasons, by choosing images that had closest acquisition dates to those of the 

field visits (Table A14). 

S2 consists of a constellation of two polar-orbiting satellites (Sentinel-2A and Sentinel-

2B), in the same sun-synchronous orbit that carry a multispectral instrument (MSI) with 12 

multispectral bands (cf. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
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msi/resolutions/spatial). Under cloud-free conditions, a single S2 satellite (i.e., A or B) has a revisit 

time of ~10 days at the equator, while ~5 days with A and B satellites together, with overpass time 

at 10:30 a.m. local time (UTC -05). Although S2 is offered at multiple spatial resolutions of 10, 

20, and 60 m, here I used a spatial resolution of 20 m. The images were downloaded from the 

online catalog Copernicus Open Access Hub (c.f. https://scihub.copernicus.eu/dhus/#/home, 

accessed on July 2022) of the European Space Agency, as level 2A (i.e., surface reflectance) over 

the study area. Where level 2A was not available, I downloaded level 1C (i.e., top-of-atmosphere; 

TOA) images that were then atmospherically corrected to obtain surface reflectance by using the 

default settings of the Sen2Cor (v. 2.5.5) algorithm (Müller-Wilm et al., 2020). Specifically, I 

considered the spectral bands in the blue (B; “B02”; 492.4 nm), green (G; “B03”; 560 nm), red (R; 

“B04”; 665 nm), red-edge (RE; “B07”; 783 nm), near-infrared (NIR; “B8A”; 865 nm), and short-

wave infrared (SWIR1; “B11”; 1614 nm; and SWIR2; “B12”; 2202 nm). I then used the “SCL” 

(i.e., scene classification layer), “CLDPRB” (i.e., cloud probability), and “B8A” bands to create a 

cloud-/cloud shadow mask for each image following this approach: 

https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless. 

Lastly, in order to investigate major stages of the maize’s growth development, I calculated 

vegetation indices (S2-VIs), such as the enhanced vegetation index 2 (EVI2; Jiang et al., 2008), 

the green chlorophyll index (CIg; Clevers & Gitelson, 2013), and the shortwave infrared (SWIR) 

normalized difference water index (NDWISWIR), as follows: 

𝐸𝑉𝐼2 = 2.5 ∙
𝜌𝑁𝐼𝑅−𝜌𝑅

𝜌𝑁𝐼𝑅+2.4∙𝜌𝑅+1
         (4.7) 

𝐶𝐼𝑔 =
𝜌𝑅𝐸

𝜌𝐺
− 1           (4.8) 

𝑁𝐷𝑊𝐼𝑆𝑊𝐼𝑅 =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
         (4.9) 

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
https://scihub.copernicus.eu/dhus/#/home
https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless
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where  is the surface reflectance in the near-infrared (NIR), red (R), red-edge (RE), green (G), 

and shortwave infrared (SWIR1 and SWIR2). 

Regarding S1, it consists of a constellation of two polar-orbit satellites (Sentinel-1A and 

Sentinel-1B) carrying a C-band (5.4 GHz) synthetic aperture radar (SAR). The SARs acquire data 

with dual polarization (dual-pol; VV and VH) backscatter at a nominal spatial resolution of 10 m 

and with a combined (i.e., S1- A and B together) revisit time of ~5 days, in both ascending and 

descending orbits. Since ascending and descending orbit pass directions strongly affect the 

intensity of the backscatter due to different view angles, I used only S-1B images with ascending 

orbit pass night-time, i.e., 11:30 p.m. local time (UTC -05), over the study area and during 2018–

2021 growing seasons. The S1-B images were downloaded from the ESA online catalog 

Copernicus Open Access Hub:  I downloaded the dual-pol (VV and VH) Level-1 Ground Range 

Detected (GRD) product in the interferometric wide (IW) swath mode images. I then used the 

Sentinel application platform (SNAP; v.9.0.0) to develop a semi-automated workflow to extract 

sigma nought () polarization intensity backscatter (i.e., S1-)—used for the calculation of S1-

 ratios, arithmetic calculations, and the radar vegetation index (RVI)—and the S1 polarimetric 

SAR (S1-PolSAR) decomposition coefficients, such as Entropy, Alpha, and Anisotropy (i.e., H-

-A) (Nasirzadehdizaji et al. 2019). The main steps in the generic processing workflow were (i) 

radiometric calibration, (ii) orbit correction, (iii) polarimetric matrices calculation (only for S1-

PolSAR analysis), (iv) speckle filtering, (v) geometric correction, and (vi)  calculations (only 

for S1-) and PolSAR analysis (only for S1-PolSAR). Further details about the S1 processing 

workflow can be found in Nasirzadehdizaji et al. (2019). 

Regarding the S1- intensity ratios, arithmetic calculations, and the RVI they were 

calculated as follows 9): 
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𝑟𝑎𝑡𝑖𝑜1 =
𝜎∘

𝑉𝐻

𝜎∘
𝑉𝑉

           (4.10) 

𝑟𝑎𝑡𝑖𝑜2 =
𝜎∘

𝑉𝑉−𝜎∘
𝑉𝐻

𝜎∘
𝑉𝑉+𝜎∘

𝑉𝐻
          (4.11) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦1 = 𝜎∘
𝑉𝐻 − 𝜎∘

𝑉𝑉         (4.12) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦2 = 𝜎∘
𝑉𝑉 + 𝜎∘

𝑉𝐻         (4.13) 

𝑅𝑉𝐼 =
4𝜎∘

𝑉𝐻

𝜎∘
𝑉𝑉+𝜎∘

𝑉𝐻
          (4.14) 

where VH and VV are the intensity backscatters in VH and VV polarizations, respectively 

(Nasirzadehdizaji et al., 2019). 

On the other hand, the S1-PolSAR decomposition coefficients considered in this study 

were Entropy (H) and Alpha (), which are used to extract average parameters from polarimetric 

SAR data (Cloude & Pottier, 1996). Specifically, the H- parameters indicate the randomness of 

the scatter and the scattering type (i.e., surface, double-bounce, and volume), respectively. As 

already mentioned, in order to compute the S1-PolSAR decomposition, I needed to calculate the 

dual-pol covariance matrix C2, which is generally expressed as: 

𝐶2 = [
𝐶11 𝐶12

𝐶21 𝐶22
]          (4.15) 

where the dual-pol S1 mode (i.e., VV and VH) is represented by the diagonal elements C11 and 

C22, while the cross-pol mode (i.e., VV-VH and VH-VV) is represented by the elements C12 and 

C21. For Sentinel-1 data, the dual-pol covariance matrix is calculated as: 

〈𝐶〉𝑑𝑢𝑎𝑙 = [
〈𝑆𝑉𝑉𝑆∗

𝑉𝑉〉 〈𝑆𝑉𝑉𝑆∗
𝑉𝐻〉

〈𝑆𝑉𝐻𝑆∗
𝑉𝑉〉 〈𝑆𝑉𝐻𝑆∗

𝑉𝐻〉
]        (4.16) 

where S indicates the scattering in VV and VH polarizations, while the asterisk (*) indicates the 

complex conjugation. 

Once I obtained the final images with S2-VIs and S1-, RVI, and H-, I used RStudio 
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v.2022.07.1 to extract the pixel values at subplot level (Figure 4.1).  

Interannual variability of field variables 

I performed the non-parametric Kruskal-Wallis test (with Bonferroni adjustment to the p-

value, with critical value of 0.01) to evaluate interannual variability of field variable (i.e., LAI, 

SPAD, Ht, SWC, and NEE) during the 2018 through 2021 growing seasons (i.e., pairwise 

variable–year, for each pair combination of year), across maize, prairie, and switchgrass. 

Specifically, the interannual analysis was carried out as follows: 

𝑦𝑐 = 𝐺𝑆2018–2021          (4.17) 

where yc is the individual field variable (i.e., LAI, SPAD, Ht, SWC, and NEE) at the cover type c 

(i.e., maize, prairie, and switchgrass) and GS2018–2021 is the growing season during 2018–2021. In 

this way, I was able to investigate whether a variable y, at a cover type c, significantly differed 

during 2018–2021 growing seasons. I then employed the Wilcoxon rank sum test as post-hoc test 

to identify the growing season during which a variable yc significantly differed (using Bonferroni 

adjustment to the p-value, with critical value of 0.01). Both Kruskal-Wallis and Wilcoxon tests 

were carried out using the R functions “kruskal.test” and “pairwise.wilcox.test”, respectively, from 

the R-package “stats”.  

Main key influences on NEE dynamics 

I investigated the main key influence(s) to NEE by fitting three different types of models: 

Generalized Linear Model (GLM), Multi-Layer Perceptron (MLP), and Random Forest (RF). The 

equation expressing the relationships between independent variables, representing both structural 

attributes (i.e., LAI, SPAD, and Ht) and influences (i.e., SWC, Tair, PAR, and VPD), and the 

dependent variable NEE is the following: 

𝑁𝐸𝐸 = 𝑓(𝐿𝐴𝐼, 𝑆𝑃𝐴𝐷, 𝐻𝑡, 𝑆𝑊𝐶, 𝑇𝑎𝑖𝑟 , 𝑃𝐴𝑅, 𝑉𝑃𝐷)      (4.18) 
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where LAI, SPAD, Ht, and SWC are the leaf area index, SPAD index, soil water content (%), and 

vegetation height (m), respectively, measured at subplot level; while Tair, PAR, and VPD are the 

mean daily air temperature (C), mean daily photosynthetically active radiation (mol m-2 d-1), 

and vapor pressure deficit (kPa), respectively, measured at tower level and assumed to be 

homogeneous across sites, due to their close proximity. I then applied transformations to some of 

the independent variables to overcome for their non-linear relationship with the dependent 

variable. Practically, the specific transformation was chosen after plotting independent vs 

dependent variables in a “1-1 xy plot”. For example, when plotted against NEE, the LAI variable 

showed to be reciprocal to NEE and to resemble an exponential curve; therefore, it was transformed 

as “
1

1+𝑒−𝐿𝐴𝐼”. Similarly, Tair and VPD showed to be reciprocal to NEE, while the logarithmic (i.e., 

“
1

log (𝑇𝑎𝑖𝑟)
”) and square root (i.e., “

1

√𝑉𝑃𝐷
”) transformations, respectively, were applied. Lastly, a 

logarithmic transformation was applied to SWC as well (i.e., "log (𝑆𝑊𝐶)”). 

I split the entire dataset into training (i.e., 80%) and test (i.e., 20%) and I ran the three 

models on standardized variable values, after removing any missing value. For the MLP and RF 

models, tuning model parameters were estimated employing a 10-fold cross validation using the 

R function “train” from the R-package “caret” (Khun, 2021), while the packages “neuralnet” and 

“ranger” (Günther & Fritsch, 2010; Wright & Ziegler, 2017) were used to fit the MLP and RF, 

respectively. Once the three models were fitted, I calculated the goodness of fit and prediction 

measures, such as the R-squared score (R2), which provides information about the amount of 

dataset variation explained by the model, and the root mean squared error (RMSE), which gives 

an indication of the accuracy of models predictions  within the data range used for fitting, and the 

magnitude of deviation of predictions from observed values. Both R2 and RMSE were calculated 

using the R function “model_performance” from the R-package “DALEX” (Biecek, 2018). Lastly, 
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I evaluated variable-importance measure and the partial-dependence (PD) profiles of the main 

driver(s), for each of the explanatory variables to the NEE at each cover type. Variable-importance 

measures were obtained by employing a permutation-based evaluation, using RMSE as model 

performance measure, while PD profiles were obtained by calculating the individual dependence 

of an instance-level prediction on an explanatory variable. Both variable-importance and PD 

profiles were carried out using the R function “model_parts” from the R-package “DALEX”. 

Bayesian dynamic linear model for maize’s NEE 

In this section I explain how I forecast one growing season (2021) of NEE (gC m-2 d-1) for 

maize at both AGR and CRP farms using a regression-based Bayesian Dynamic Linear Model 

(BDLM). A BDLM is a special state-space model in which the regression model is used to 

investigate dependencies of state variables (i.e., observed variables at a given time t) related to 

different observations. A BDLM is made up of two different models: an observation model and a 

process model. The former describes the relationship between the observed variable and its current 

state, while the latter shows the dynamic and stochastic variations within the system. 

Mathematically, the BLDM used in this work is described as follows (Wang et al., 2019):  

observation model: 

𝑌𝑡 = 𝐹𝑡𝜃𝑡 + 𝑣𝑡 ,   𝑣𝑡~𝑁(0, 𝑉𝑡)         (4.19) 

process model: 

𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝑤𝑡 ,   𝑤𝑡~𝑁(0, 𝑊𝑡)        (4.20) 

where Yt is the observation vector (NEEs for 2018, 2019, and 2020 in this case), Ft and Gt are the 

observation and evolution matrices, respectively, t is the state parameter vector, and vt and wt are 

the observational and evolution errors—wt indicates the stochastic changes in state parameters 

from t-1 to t. Lastly, both vt and wt are described by a Gaussian distribution (with mean 0 and 
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variance Vt and Wt, respectively). In other words, Vt and Wt represent the priors of both the 

observation and the process models, which are described as follows: 

priors: 

𝑉𝑡 ~Γ(1, 1)           (4.21) 

𝑊𝑡~Γ(1, 1)           (4.22) 

where  indicates the gamma distribution with mean and variance of 1. 

In case of forecasting, in the BLDM context, the residuals are modeled through the 

autoregressive model, which describes the relationship between previous (t-1) and current (t) 

values of the state parameter. The prior distribution of t at a time t is defined as: 

𝑃(𝜃𝑡|𝐷𝑡)~𝑁(𝜇𝑡 , 𝜎𝑡)          (4.23) 

where t and t are initial conditions of the state parameter P(t|Dt) mean and variance, while D is 

the state of information. Prior distribution of the P(t+1|Dt) state parameter, at a time t+1, is the 

following: 

𝑃(𝜃𝑡+1|𝐷𝑡)~𝑁(𝜇𝑡+1, 𝜎𝑡+1)         (4.24) 

with t+1 obtained as follows: 

𝜇𝑡+1 = 𝜇𝑡−1 + 𝛽1𝜇𝑡−1         (4.25) 

and the following model non-informative (i.e., weak) prior for initial condition: 

𝛽1~𝑁(0, 0.00001)          (4.26) 

After choosing the best performing model (i.e., the one with the least RMSE and the highest 

R2), among GLM, MLP, and RF, I used the best explanatory variable(s), identified from the 

variable-importance and partial-dependence (PD) profiles analysis, as best candidates to be main 

key influences to NEE for the forecast. Two kinds of forecast were performed: (i) using actual 

biophysical/physical in-situ variables as explanatory for maize; and (ii) using both S2-VIs and S1-
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, RVI, and S1-PolSAR as substitutes for the in-situ observations. Both forecasts were produced 

for only for maize during the 2021 growing season. Specifically, the variable replacement was 

based on the best correlation between in-situ and remote sensing variables, by using the 

Spearman’s Rho () correlation coefficients (R function “rcorr” from the “Hmisc” R-package; 

Harrel, 2021), which were also used to investigate multicollinearity between the variables. Only 

statistically significant (p-value<0.05) coefficients were considered. For the BDLM, I used the R 

function “ecoforecastR” and “rjags” (Plummer, 2003). 

Results 

Interannual variation 

Growing season lengths varied by the three cover types, four years, and two farms (i.e., 

AGR and CRP; Table 4.1 and Figure A2a,b). 

Table 4.1: Day of the year indicating the start and the end of the growing seasons during 2018–

2021 at the historically cultivated as agricultural lands (AGR) and the Conservation Reserve 

Program (CRP) sites. Start and end of the growing season (i.e., SoS and EoS, respectively) were 

obtained on the first four days in row of negative and positive NEE (i.e., CO2 uptake from and 

emission to the atmosphere), respectively. 

 2018 2019 2020 2021 mean 2018–2021 

site SoS EoS #days SoS EoS #days SoS EoS #days SoS EoS #days #days 

AGR-M 164 256 93 172 270 98 166 270 105 163 254 92 96.0 

AGR-P 142 236 95 147 253 107 150 244 95 127 249 123 104.0 

AGR-S 142 262 121 153 270 118 150 270 121 143 263 121 119.2 

CRP-M 164 244 81 173 270 99 179 274 96 178 261 84 89.0 

CRP-P 115 236 122 130 253 124 109 270 162 101 263 163 141.8 

CRP-S 142 244 103 153 253 101 122 274 153 149 274 126 119.8 

SoS: start of season (DOY) 

EoS: end of season (DOY) 

#days: length of growing season in number of days (EoS-SoS+1) 

On average, maize showed the shortest growing season length (~93 days), followed by 

switchgrass (~120 days) and prairie (~123 days) cover types. Regarding the interannual variation, 

growing season length showed to vary by year, with AGR-C ranging between 91 to 104 days in 

2021 and 2020, respectively, and with CRP-C ranging between 80 to 98 days in 2018 and 2019, 

respectively, with an intra-annual average of 96 days and 89 days at AGR-C and CRP-C, 
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respectively. On the other hand, prairie cover type had a minimum and maximum growing season 

length of 94 days (in 2018 and 2020) and 122 days (in 2021), at AGR, and of 121 days (in 2018) 

and 162 days (in 2021), at CRP, with an intra-annual average of 104 days and 141.8 days at AGR 

and CRP, respectively. Lastly, switchgrass cover type showed a growing season length ranging 

between a minimum of 117 days (in 2019) to a maximum of 120 days (in 2018, 2020, and 2021), 

at AGR, and a minimum and maximum length of 100 days (in 2019) and 152 days (in 2020), 

respectively, at CRP, with an intra-annual average of 119.2 days and 119.8 days at AGR and CRP, 

respectively. 

Regarding the in-situ measurements, across cover types and farms, highest interannual 

variation was observed in SPAD index, on average higher in maize cover type (45.41±3; Table 

4.1), SWC on average higher in switchgrass cover type (17.83±4; %), and NEE, on average higher 

in maize (-577±77; gC m-2 gs-1), while least variation was observed in LAI (higher in prairie cover 

type: 3.37±1), Ht (higher in maize: 1.14), and Ta (higher in switchgrass cover type: 21±1; °C). 
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Table 4.2: Interannual mean (± one standard deviation) for LAI, SPAD index, Ht (m), SWC (%), 

Ta (C), and NEE (gC m-2 d-1) at the historically cultivated as agricultural lands (AGR) and the 

Conservation Reserve Program (CRP) sites, for maize (M), prairie (P), and Switchgrass (S), 

during 2018–2021 (i.e., '18–'21) growing seasons. NEE is also reported as cumulative values 

(i.e., NEE) over the '18–'21 growing seasons. Averages by cover type–farm and by cover type 

are also shown. 

 Interannual by cover type and farm 

  Averages    

Farm Cover t. LAI SPAD Ht SWC NEE NEE days GS 

AGR 

M 2.1(±1.3) 41.7(±9.5) 1.3(±1.0) 20.5(±6.4) -6.0(±5.0) -556 93  

P 1.9(±1.2) 34.6(±5.2) 1.1(±0.5) 22.7(±8.0) -4.6(±3.6) -442 95 '18 

S 2.4(±1.5) 31.5(±5.3) 1.0(±0.4) 24.1(±6.5) -3.1(±3.1) -375 121  

M 1.8(±1.4) 44.3(±9.2) 1.1(±0.7) 16.4(±7.7) -5.0(±3.8) -494 98  

P 3.8(±1.4) 34.1(±5.3) 1.0(±0.5) 16.28(±10.8) -4.3(±3.6) -465 107 '19 

S 2.4(±0.7) 33.9(±4.4) 1.05(±0.3) 18.0(±11.4) -3.1(±3.0) -360 118  

M 2.0(±1.5) 46.4(±8.5) 1.1(±0.8) 18.9(±4.0) -6.7(±4.5) -654 105  

P 3.0(±1.4) 28.8(±4.9) 0.9(±0.4) 18.9(±8.5) -3.3(±3.2) -411 95 '20 

S 2.7(±0.8) 31.9(±3.5) 1.0(±0.3) 19.2(±7.1) -2.9(±2.5) -375 121  

M 2.1(±1.8) 49.9(±9.3) 1.3(±1.0) 17.8(±5.4) -7.4(±5.1) -682 92  

P 2.3(±1.1) 31.3(±4.7) 0.9(±0.3) 18.6(±6.2) -2.6(±2.3) -319 123 '21 

S 2.2(±1.0) 35.4(±3.1) 1.1(±0.5) 20.7(±4.4) -2.3(±2.7) -276 121  

CRP 

M 2.0(±1.1) 40.5(±9.3) 1.2(±0.8) 14.6(±6.9) -5.7(±4.2) -461 81  

P 2.7(±1.2) 34.0(±5.5) 1.1(±0.4) 16.2(±7.8) -2.2(±2.7) -272 122 '18 

S 3.1(±1.3) 36.6(±3.9) 1.1(±0.3) 15.9(±6.4) -5.0(±3.9) -520 103  

M 1.9(±1.4) 45.5(±12.9) 1.0(±0.8) 15.9(±7.2) -6.5(±4.3) -607 99  

P 4.9(±1.5) 33.7(±5.9) 1.1(±0.4) 15.2(±8.5) -2.5(±3.5) -371 124 '19 

S 4.6(±1.9) 38.5(±4.6) 1.1(±0.5) 17.9(±8.7) -4.4(±3.6) -440 101  

M 2.5(±2.1) 47.4(±9.9) 1.0(±0.8) 11.9(±4.5) -6.5(±4.0) -541 96  

P 4.9(±2.3) 29.8(±5.2) 1.0(±0.3) 13.7(±10.1) -2.2(±2.6) -347 162 '20 

S 4.4(±1.3) 38.8(±3.4) 1.1(±0.4) 9.2(±4.6) -3.7(±3.2) -505 153  

M 1.7(±1.6) 47.6(±9.5) 1.2(±1.0) 13.5(±5.0) -7.4(±3.9) -618 84  

P 3.4(±1.8) 32.2(±4.2) 1.0(±0.4) 11.7(±6.2) -2.2(±2.1) -354 163 '21 

S 3.8(±2.1) 38.7(±9.0) 1.3(±0.5) 17.8(±9.2) -3.4(±3.5) -433 126  

  

 Averages by cover type–farm 

AGR 

M 2.0(±0.1) 45.6(±3.5) 1.2(±0.1) 18.4(±1.8) -6.3(±1.0) -597(±55) 96.0  

P 2.7(±0.8) 32.2(±2.7) 1.0(±0.1) 19.1(±2.7) -3.7(0.9) -409(±64) 104.0  

S 2.5(±0.2) 33.2(±1.8) 1.0(±0.1) 20.5(±2.7) -2.8(±0.4) -347(±48) 119.2  

CRP 

M 2.0(±0.3) 45.2(±3.3) 1.1(±0.1) 14.0(±1.7) -6.3(±0.8) -557(±68) 89.0 '18–'21 

P 4.0(±1.1) 32.4(±1.9) 1.0(±0.1) 14.2(±2.0) -2.3(0.2) -336(±44) 141.8  

S 4.0(±0.7) 38.1(±1.0) 1.2(±0.1) 15.2(±4.1) -4.1(±0.7) -474(±44) 112.8  

  

 Averages by cover type 

 M 2.0(±0.2) 45.4(±3.1) 1.1(±0.1) 16.2(±2.9) -6.3(±0.9) -577(±77) 92.5  

 P 3.4(±1.1) 32.3(±2.2) 1.0(±0.1) 16.7(±3.4) -3.0(±1.0) -373(±64) 122.9 '18–'21 

 S 3.2(±0.9) 35.6(±3.0) 1.1(±0.1) 17.8(±4.3) -3.5(±0.9) -411(±81) 175.6  

GS: growing seasons during 2018–2021 

days: number of days during GS  

LAI: leaf area index (m2 m-2) 

SPAD: Soil and Plant Analysis Development index (SPAD index; unitless) 

Ht: vegetation height (m) 

SWC: soil water content (%) 

Tair: air temperature (°C) 

PPT: cumulative precipitation (mm) 

NEE: net ecosystem exchange (gC m-2 d-1) 

 

Among the three cover types, on average, maize showed the highest magnitude of growing 
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season NEE, followed by switchgrass and prairie (Table 4.2). Specifically, cumulative NEE values 

at maize were 35% and 29% higher than those of prairie and switchgrass, respectively; while daily 

NEE values were 52% and 45% higher than those of prairie and switchgrass, respectively. Same 

was true for magnitudes of growing season NEE by cover type and by farm, during 2018–2021, 

where maize NEE values were 31% and 42% (at AGR) and 40% and 15% (CRP) higher than those 

of prairie and switchgrass, respectively. Regarding the remaining cover types, the magnitudes of 

growing season NEE for prairie were 15% higher than those for switchgrass at AGR farm. 

However, opposite magnitudes were observed at CRP farm (i.e., NEE of switchgrass 29% higher 

than that of prairie). Same was true for the interannual magnitudes of growing season NEE, with 

maize cover type showing higher magnitudes than those of prairie and switchgrass, with the 

exception for NEE of maize at CRP on 2018, which was 11% lower than that of switchgrass.  

In regard of seasonal variations of data collected at subplot level, overall, LAI and Ht 

showed increasing trends (Figures A3.1abc and A3.3abc), at the three cover types and at both 

farms, which appeared to be similar among the four years, with the exception of LAI at CRP-M in 

2020 (Figure A3.1a), at CRP-P in 2018 and 2019 (Figure A3.1b), and at CRP-S in 2019 (Figure 

A3.1c). On the other hand, seasonal variations of SPAD index increased at both AGR-/CRP-M 

(Figure A3.2a), while stable for prairie and switchgrass at AGR-/CRP- (Figure A3.2bc). Lastly, 

SWC was the only variable showing seasonal patterns that varied by farm, cover type, and year 

(Figure A3.4abc).  

The non-parametric Kruskal-Wallis rank sum test showed whether the variation of LAI, 

SPAD index, Ht, SWC, and NEE at the three cover types were statistically significant (i.e., 

Bonferroni adjustment, with critical value of 0.01) during 2018–2021 (Table A15). In particular, 

interannual variations of LAI, SWC, and NEE were statistically significant (p-value<0.05) at 
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prairie and switchgrass, while SPAD index showed statistical significance at all three cover types. 

On the other hand, Ht did not show any significant interannual variations. By employing the non-

parametric Wilcoxon rank sum test, I was able to investigate for which pairwise (i.e., 2018-2019, 

2018-2020, etc.) the five variables were statistically different (Bonferroni adjusted, with critical 

value of 0.01), among cover types (Table A16 and Figure A4). For instance, for maize cover type, 

SPAD index was the only variable showing statistically significant (Bonferroni adjusted, with 

critical value of 0.01) interannual variations (between the pairwise 2018-2020 and 2018-2021). At 

prairie cover type, LAI statistically differed between the pairwise 2018-2019, 2018-2020, 2019-

2021, and 2020-20201, followed by SPAD index (between the pairwise 2018-2020, 2018-2021, 

2019-2020, and 2020-2021), NEE (between the pairwise 2018-2021 and 2020-2021), and SWC 

(between the pairwise 2018-2021). As already shown by the Kruskal-Wallis, and then confirmed 

by the Wilcoxon rank sum test, Ht did not show any significant interannual variation in any of the 

pairwise comparisons. 

Key drivers of growing season NEE 

I investigated the relationships hypothesized at Eq. 4.18 for the main key driver(s) to NEE 

by fitting three different models, such as the generalized linear model (GLM), the multi-layer 

perceptron (MLP; Figure A5), and the random forest (RF). The 10-fold cross validation for the 

model training parameters produced different architectures of the MLP (Table A17 and Figure A5) 

and RF (Table A17) models. 

All three models showed to perform well in modeling maize NEE. However, overall, the 

RF model showed the best performance (Table 4.3 and Figure 4.2).
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Table 4.3: Model performance (R2 and RMSE) of the generalized linear model (GLM), the 

multi-layer perceptron (MLP), and the random forest (RF) for maize, prairie, and switchgrass. 

The models chosen for this study are highlighted in bold. 

 

Cover type Model R2 RMSE 

Maize 

GLM 0.92 18.48 

MLP 0.95 13.97 

RF 0.97 10.22 

Prairie 

GLM 0.01 24.64 

MLP -1.31 37.60 

RF 0.61 15.45 

Switchgrass 

GLM 0.41 22.15 

MLP 0.72 15.18 

RF 0.90 8.91 
R2: R-squared score 

RMSE: root-mean squared error 
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Figure 4.2: Scatterplots of predicted vs measured net ecosystem exchange (NEE; gC m-2 d-1) 

values by the generalized linear model (GLM, solid orange circles), multilayer perceptron (MLP, 

solid light blue squares) model, and random forest (RF, solid black diamonds) models for (a) 

maize, (b) prairie, and (c) switchgrass during the 2018–2021 growing seasons. Black solid 

diagonal lines show the 1:1 relationship. The R-squared score models’ goodness of fit is also 

shown. 
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On the other hand, while the GLM model performed well at maize (R2=0.92 and 

RMSE=18.48; Table 4.3, Figure 4.2a, and Table A18), it did a poor job at switchgrass (R2=0.41 

and RMSE=22.15; Table 4.3, Figure 4.2c, and Table A18) and prairie (R2=0.01 and RMSE=24.64; 

Table 4.3, Figure 4.2b, and Table A18). Lastly, the MLP was performed well and better than the 

GLM for maize (R2=0.95 and RMSE=13.97), followed by switchgrass (R2=0.72 and 

RMSE=15.18), but it did a poor job in predicting NEE in prairie (R2=-0.21 and RMSE=37.60). 

Accordingly, I focus on the results of the NEE predictions using RF model only. 

Overall (i.e., averages by cover type during 2018–2021), predicted magnitude of NEE were 

the same as the measured ones (Table 4.4).
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Table 4.4: Predicted and measured values of the net ecosystem exchange (NEE; gC m-2 d-1) at 

the historically cultivated as agricultural lands (AGR) and the Conservation Reserve Program 

(CRP) sites during 2018–2021 growing seasons (GS). Averages by cover type–farm and by 

cover type only are also shown. 

 Averages by cover type, farm, and year 
Farm Cover t.  Predicted  Measured  GS 

  days averages daily averages daily  

AGR 

M 4 -64.3 -16.1 -66.0 -16.5 

'18 P 5 -80.4 -16.1 -84.2 -16.8 

S 4 -55.1 -13.8 -54.0 -13.5 

M 5 -82.9 -16.6 -81.7 -16.3 

'19 P 6 -72.2 -12.0 -77.0 -12.8 

S 6 -56.2 -9.4 -55.9 -9.3 

M 5 -74.4 -14.9 -76.3 -15.3 

'20 P 5 -71.6 -14.3 -73.0 -14.6 

S 5 -60.9 -12.2 -60.1 -12.0 

M 7 -79.1 -11.3 -81.6 -11.7 

'21 P 7 -45.7 -6.5 -45.0 -6.4 

S 7 -42.0 -6.0 -40.6 -5.8 

CRP 

M 5 -76.0 -15.2 -75.3 -15.1 

'18 P 4 -48.3 -12.1 -42.9 -10.7 

S 3 -75.1 -25.0 -78.9 -26.3 

M 4 -90.3 -22.6 -91.0 -22.8 

'19 P 5 -74.8 -15.0 -71.6 -14.3 

S 5 -73.9 -14.8 -74.9 -15.0 

M 5 -64.3 -12.9 -62.5 -12.5 

'20 P 5 -67.2 -13.4 -67.1 -13.4 

S 4 -74.8 -18.7 -76.9 -19.2 

M 7 -68.2 -9.7 -65.8 -9.4 

'21 P 7 -47.8 -6.8 -46.2 -6.6 

S 7 -57.4 -8.2 -57.3 -8.2 

    

 Averages by cover type and farm 

AGR 

M 5 -75.2 -14.3 -76.4 -14.6 

'18–'21 

P 6 -67.5 -11.7 -69.8 -12.1 

S 6 -53.6 -9.7 -52.7 -9.6 

CRP 

M 5 -74.7 -14.2 -73.6 -14.0 

P 5 -59.5 -11.3 -57.0 -10.8 

S 5 -70.3 -14.8 -72.0 -15.2 

    

 Averages by cover type 
 M 5 -74.9 -14.3 -75.0 -14.3 

'18–'21  P 6 -63.5 -11.5 -63.4 -11.5 

 S 6 -61.9 -12.1 -62.3 -12.2 

days: number of days of field measurements 

The interannual variations of predicted NEE values for maize were always higher than 

those for prairie and switchgrass, with the exception for the years 2018 and 2020. Overall, 

predicted NEE values for maize were 15% and 17% higher than those for prairie and switchgrass, 

respectively; by considering the averages by cover type and by farms, predicted NEE values for 

maize were 10% and 29% (AGR) and 20% and 6% (CRP) higher than those for prairie and 
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switchgrass, respectively.  

Seasonal predictions appeared to be very accurate for maize cover type, at both AGR and 

CRP farms (Figure A6a), with the exception on early August 2018-2020-2021 (at AGR) and on 

late July and August 2018, on early August 2019, and on July 2020-2021 (at CRP). Overall 

accurate predictions were also obtained at switchgrass cover type, at both AGR and CRP farms 

(Figure A6c), with some exceptions on late July 2018, June and early July 2019, early June and 

August 2020, and July-August 2021 (at AGR), and on late June-July 2018, and early July 2020 (at 

CRP). Regarding prairie cover type, overall, less accurate predictions were obtained at both AGR 

and CRP farms (Figure A6b).  

Despite the model performance, for each cover type, the three models showed unique 

hierarchy of the importance of the main key influence(s) to NEE (Figure 4.3). For example, at 

maize cover type, main key influences to NEE were LAI and Ht for the GLM model, while Ht 

became the main key influence for both the MLP and RF models. Nevertheless, Ht resulted the 

leading key influence to NEE for all the three models. Regarding prairie cover type, little key 

influences’ variability was observed for the GLM model, while PAR and Ht resulted more 

important for the MLP one, equally followed by the remaining variables. Lastly, only VPD 

appeared to be the main key influence to NEE for the RF model. Regarding switchgrass cover 

type, for the GLM model, LAI and SWC resulted the main key influences to NEE, while the 

remaining variables showed similar magnitudes; Ht, slightly followed by VPD, Ta, PAR, SWC, 

and LAI for MLP model; Ht followed by Ta, LAI, PAR, VPD, and SWC and SPAD as least, for 

the RF model. 
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Figure 4.3: Standardized mean variable importance for generalized linear model (GLM), 

multilayer perceptron (MLP), and random forest (RF) models at maize, prairie, and switchgrass 

cover types, during 2018–2021 growing seasons. Bar plots indicate the median values of the 

variable importance for the seven independent variables leaf area index (LAI), Soil Plant 

Analysis Development index (SPAD index), soil water content (SWC), vegetation height (Ht), 

mean air temperature (Ta), photosynthetic active radiation (PAR), and vapor pressure deficit 

(VPD), calculated using 50 permutations and the root-mean square error (RMSE) loss function. 

The error bars indicate the standard deviation across the permutations. The darker the colors of 

the bars the higher the variable importance in predicting net ecosystem exchange (NEE; gC m-2 

d-1). 
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By only considering the RF model, the partial-dependence profiles showed us the sign (i.e., 

positive, negative, or null), as well as the magnitude, of each variable (Figure A7). Specifically, 

by only focusing on the main key influence on NEE, for maize and switchgrass cover types, Ht 

showed negative sign—i.e., as maize’s height increases, the more negative is NEE (increasing in 

C uptake) until reaching a plateau. However, at maize cover type, such plateau is reached for higher 

magnitudes of NEE. On the other hand, VPD showed positive sign—i.e., the higher the VPD the 

more positive NEE is (lower the C uptake). 

Growing season NEE forecast at maize cover type 

The most associated structural attribute to NEE employed in the in-situ Bayesian Dynamic 

Linear Model (BDLM; at Eqs. 4.19–4.26) for NEE forecast at maize cover type was vegetation 

height (Ht). The forecast was carried out for the 2021 growing season, during which NEE fluxes 

were measured over a total of 7 days (May 27, June 10, June 24, July 8, July 21, August 4, and 

August 20; Table A14). During such period, I was able to monitor some of the stages of maize’s 

growth development (Figure A8)—i.e., vegetative (V) and reproductive (R) stages—starting from 

the elongation stages of the n root whorls (i.e., V1 through V13), tasseling (VT), silking (R1), 

blister (R2), and milk (R3) stages (Nleya, 2019). From the NEE perspective, and considering 

AGR- and CRP- farms together, such stages were characterized by net-neutral C emission (on May 

27), a slight net C emission (on June 10), a near-neutral C uptake (on June 24), and a net C uptake 

increasing in magnitude from June 8 to August 4, while decreasing on August 20 (Figure A8). The 

in-situ BDLM analysis showed that forecasts at maize slightly varied by farm sites as well as by 

the stage of maize’s development. For instance, when the two farms were considered together, less 

accurate (i.e., either under and over estimation) forecasts were obtained on late May, June, early 

July, and on late August (Table A20 and Figure A9). However, when looking at individual farms, 
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low accuracy forecasts (i.e., RMSE 20% higher) were obtained on late May, and early July at 

AGR, while on late May, and early June, at CRP. Nevertheless, whether AGR and CRP were 

considered together or not, forecasts at the very start and the very end of the fieldwork season 

period tended to show poor performances (i.e., RMSEs between 3022 and 4822, respectively).  

Regarding the BDLM using remote sensing variables, the selection of the key variables—

S2-VIs, S1-, RVI, and S1-PolSAR decomposition coefficients—was based on the Spearman’s 

 correlation analysis (i.e., high significant correlation) between Ht and both S2 and S1 variables 

(Table A19). However, for the purpose of this study, we considered the four S2 VIs (EVI2, CIg, 

NDWI1 and NDWI2), three S1  variables (RVI, Ratio1, Intensity2), and two S1-PolSAR 

variables (entropy and alpha). The remote sensing BDLM analysis showed that forecasts highly 

varied by type of remote sensing variable employed (Figure A10), with EVI2, CIg, and Alpha 

performing better than the rest. Hence, only results from EVI2, CIg, and Alpha at AGR and CRP 

farms and both farms together were reported. The use of EVI2 in BDLM showed differential 

performance by site and date t (Table A20 and Figure A11.1). For example, predictions at AGR 

were less accurate, almost across the whole growing season, than those at CRP. When the two 

farms were considered together, the forecasts performance improved. Similar pattern was observed 

for CIg (Table 20 and Figure A11.2): less accurate predictions were obtained at AGR, while overall 

better forecasts were obtained at CRP and when both farms were considered together. Specifically, 

main improvements (compared to Ht) at AGR were obtained thanks to EVI2 and CIg on June 24 

(RMSE reduced by 80% and 65%, respectively) and on August 20 (RMSE reduced by 29% and 

17%), respectively, with predictions switching from overestimating to underestimating net C 

uptake (Tables A20-A21 and Figures 11.1-11.2). At CRP, the use of EVI2 contributed to a better 

forecast on June 10 (RMSE reduced by 26% but still overestimating), July 8 (RMSE reduced by 
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29% but still underestimating), and August 20 (RMSE reduced by 55% but still overestimating), 

while the use of CIg contributed to a better forecast on May 27 (RMSE reduced by 18% but still 

overestimating), June 10 (RMSE reduced by 32% (but still overestimating), and August 20 (RMSE 

reduced by 75%). On the other hand, the use of Alpha brought to similar forecast performances 

between AGR and CRP, with the only improvements on July 8 (RMSE reduced by 31% but still 

underestimating) and August 20 (RMSE reduced by 64% but slightly underestimating) at AGR- 

and CRP-, respectively (Tables A20-A21; Figure A11.3). Still, forecasts improved when both 

farms were considered together—EVI2: on June 10 (RMSE reduced by 40% but still 

overestimating), July 8 (RMSE reduced by 9%) and August 20 (RMSE reduced by 51% but still 

overestimating); CIg: on July 8 (RMSE reduced by 22% but slightly underestimating) and August 

20 (RMSE reduced by 52% but still overestimating); and Alpha: on August 20 (RMSE reduced by 

78% but slightly underestimating).  

Discussion 

My results showed that the three cover types were characterized by different growing 

season lengths, with maize and prairie cover types having the shortest and longest growing 

seasons, respectively. The interannual variations of the main controlling drivers to NEE varied by 

cover type and growing season considered reflecting the nature of each crop related to the land use 

history, management, and length of the study period. Maize cover type showed the highest net C 

uptake, which, despite it did not show significant interannual variation, it varied in magnitude 

depending on the land use history considered. Moreover, each cover type showed unique hierarchy 

of main controlling drivers to NEE, which varied in number and magnitude depending on the 

nature of the cover type, in other words, monoculture vs polyculture and annual vs perennial.  
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Interannual variation of main key drivers 

The interannual analysis showed that the in-situ variables varied by cover type and year 

considered. For instance, vegetation height was the only variable not showing significant 

interannual variation the reason of which could be likely because of the well-established (since 

2010) perennial crops and same variety of maize used during such a short time-period (i.e., 2018–

2021). Moreover, at such time scale, we were not able to investigate possible biotic or abiotic 

constraints (i.e., sources of stress), such as the extreme weather events (i.e., drought) which could 

cause changes in crop vegetation height (Aslam et al., 2022; Hajibabaee et al., 2012). Among the 

three cover types, maize was the only one showing non-significant interannual variations of leaf 

area index and soil water content, probably due to the monoculture and highly genetically bred 

characteristic of this row crop. Contemporary maize hybrid tends not to vary by across the field, 

neither from one year to the next one, in both leaf structure and canopy cover, plant height, and 

root system. On the other hand, both prairie—the North American tallgrass prairie is dominated 

by diverse mix of perennial "cool season" (C3) and "warm season" (C4) grass and forb species—

and switchgrass (perennial C4 grass) showed significant interannual variations of the in-situ 

variables (i.e., prairie: LAI and SWC; switchgrass: SWC). 

Special mention should be reserved for the leaf chlorophyll content (SPAD index), which 

was the only variable that varied at the three cover types, with prairie showing interannual 

variations at almost every year pairwise. Previous studies have highlighted various constraints can 

affect the plant chlorophyll content, including thermal and humidity conditions, management, and 

applications of mineral fertilizers. For example, Szulc et al. (2021) showed that growing maize in 

direct sowing as well as applying mineral fertilizers (i.e., N and NP) in critical stages of growth 

could affect the leaf greenness and chlorophyll content. Moreover, the highly interannual variation 
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of leaf chlorophyll content at prairie could be due to the polyculture nature of this cover type, 

which resulted into a sampling of more diversified plant species during the field campaigns.  

Interannual variation and magnitude of growing season C uptake 

Similar to the key influences, the interannual variation of growing season NEE depended 

on the cover type and the year examined. For instance, at maize cover type, on average, NEE did 

not vary significantly during 2018–2021 growing seasons, while significant were the interannual 

differences of NEE at prairie and switchgrass cover types. Such results could be supported by the 

more regular interannual growth phases of maize—i.e., annual and genetically bred hybrid—

compared to the perennial (i.e., prairie and switchgrass) and polyculture (i.e., prairie) ones. 

However, our results were contrasting to those reported by previous studies (Abraha et al., 2018) 

in which it was shown that less interannual variation in NEE was observed in perennial crops. 

Such discrepancy could possibly arise since I only considered growing season NEE, while 

previous studies also took into account the non-growing season. This difference is important 

because, in terms of NEE magnitude, negative and positive growing season NEE indicate net C 

uptake and emission, respectively. By only considering growing season NEE, I considered the net 

C uptake of the three cover types. As a matter of fact, all three cover types showed negative 

growing season NEE (i.e., net C uptake during 2018–2021). The highest C uptake was observed 

in maize cover type, with same magnitudes at both farms. Such values were in contrast with those 

reported by Abraha et al. (2018), during an 8-year study period, where AGR sites showed to have 

significantly higher C uptake than CRP ones. The reason for such discrepancy is because my 

predictions of growing season NEE were carried out for the summer fieldwork time-period only 

(other than the fact of not taking into account non-growing season days). When looking at the full 

growing season (i.e., start to end of the season, calculated by considering the first four days in row 



 163 

of CO2 uptake and release, respectively), my results were similar to those at Abraha et al. (2018), 

with maize C uptakes (cumulative uptakes) higher at AGR (i.e., NEE: -59755 gC m-2; -6.31.0 

gC m-2 d-1) than those at CRP (i.e., NEE: -55768 gC m-2; -6.30.8 gC m-2 d-1), however I did 

not investigate if such differences were significant or not. 

Higher magnitudes of NEE are observed at AGR, compared to CRP, because maintaining 

lands for 20 years under the Conservation Reserve Program, resulted in an increase of labile C 

pool in the soil (first 10 cm), which was twofold that of soils that were formerly tilled (Abraha et 

al., 2018). In other words, higher labile C pools result in net C emissions, and hence in lower 

magnitude of net C uptake, during growing season as well as during the non-growing season. 

On the other hand, daily averages (over a 14-day period) of the net C uptake showed to be 

similar (i.e., predicted NEE at -14 gC m-2 d-1) to those observed by Wagle et al. (2018) over a 7-

day period for maize in the Texas High Plains (at -14.81.14 gC m-2 d-1) and within the range or 

slightly smaller than those for irrigated (from -15 to -17 gC m-2 d-1) and rainfed (from -13 to -18 

gC m-2 d-1) maize fields in Nebraska. 

The two perennial cover types exhibited lower C uptake, of a magnitude equal to 11.5 gC 

m-2 d-1 and 12.2 gC m-2 d-1, at prairie and switchgrass, compared to 14.3 gC m-2 d-1 of maize cover 

type. However, in the context of land use history, predicted C uptakes were higher for prairie than 

switchgrass at AGR, while opposite trends was observed at CRP, where C uptake of switchgrass 

were higher than those of prairie (except for 2019). Again, similar results were reported by Abraha 

et al. (2018), where prairie appeared to have significantly higher C uptakes than switchgrass at 

AGR, right after following conversion in 2010, while switchgrass gained higher C uptakes after 

about three years following the conversion in 2010. Overall, the cumulative predicted and actual 

net C uptakes of the three cover types presented in this study might have higher magnitudes than 
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those observed by other studies since we either considered the summer fieldwork campaign or the 

growing season time-period only, instead of accounting for non-growing seasons as well. 

Main key drivers of growing season NEE 

The three model comparative analysis allowed me to investigate the structural attribute 

associated to NEE, during 2018–2021 growing seasons. Regardless of the best final model 

selected, the amount and the magnitude of the drivers considered, strongly varied by cover type. 

Overall, prairie and switchgrass cover types showed highest number of main explanatory variable 

to NEE, while maize cover type had the lowest one. Again, this finding can be expected given the 

perennial (for both prairie and switchgrass) and polyculture (for prairie) nature of such crops, 

compared to the annual genetically bred row crop such as maize. Nevertheless, according to the 

random forest model, the most relevant explanatory variable for NEE at maize cover type was 

vegetation height. This finding could be likely explained by the monoculture and highly 

genetically bred nature of hybrids of maize, for which the C sink/source condition is directly 

related to the plant’s height (i.e., aboveground biomass). On the other hand, in line with other 

studies (Wagle et al., 2018), I found that climatic variables (e.g., air temperature, photosynthetic 

active radiation, and vapor pressure deficit) did not significantly associate with  NEE during 2018–

2021. Interestingly, for the model selected, I found that leaf area index had almost zero control on 

growing season NEE. Such result is in contrast with other studies, according to which, leaf area 

index was found to be an important driver to NEE at maize, under different management (irrigated 

vs. rain-fed (Safa et al., 2019). Similarly, Wagle et al. (2018) showed that higher magnitudes of 

growing season NEE at maize are influenced by the higher leaf area index values. A different story 

came out from the analysis of prairie cover type, which, according to the random forest model, 

showed to have multiple main explanatory variables associated with growing season NEE. In 
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particular, the strongest explanatory variable appeared to be vapor pressure deficit, followed by 

photosynthetic active radiation, daily air temperature, soil water content, and vegetation height, 

while SPAD index and leaf area index appeared to have less magnitude. I think that the main 

reason for more than one single key driver, compared to maize, is that, in a perennial polyculture 

set-up, carbon fluxes are influenced by plant diversity at both single species scale and community-

wide scale, due to the diversified photosynthetic and respiration rates of different photosynthetic 

pathways (C3 vs C4; Kohli et al., 2021). Lastly, switchgrass showed the highest number of key 

drivers, such as vegetation height and daily air temperature, slightly followed by vapor pressure 

deficit, leaf area index, soil water content, and photosynthetic active radiation. For instance, 

switchgrass is a perennial warm-season C4 grass, which has been shown to be sensitive to moisture 

stress (Stahlheber et al., 2020). Moreover, depending on the ecotypes considered, crop’s 

morphological traits, precipitation, and soil water availability have been shown to influence 

switchgrass ecophysiology (Wullschleger et al., 2010). 

Forecast of growing season C uptake in maize 

The Bayesian Dynamic Linear Models using the in-situ variable (i.e., vegetation height) as 

main key driver to NEE produced results that varied depending on the land use history considered 

(i.e., AGR or CRP). Generally, the models overestimated the net C uptake during the early stages 

of maize development, while underestimated the net C uptake on early July. While overestimates 

were higher at CRP (between 24 and 41 gC m-2 d-1 less than the actual C uptake measured) than 

those at AGR, underestimates were lower at CRP (of about 48 gC m-2 d-1 less than the actual C 

uptake measured) than AGR. Nevertheless, despite the land use history considered, models’ 

performances were poor (i.e., high RMSE) at the very beginning of the forecast window, due to 

the nature of the BDLM, which bases estimates at the step t+1 on those at the step t, where no 
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previous estimate was available. The use of remote sensing variables in the BDLMs brought to 

some improvements in forecasting the net C uptake/emission; however, the overall forecast did 

not benefit much from the remote sensing analysis (Tables A20-A21 and Figures A11.1–A11.3). 

At the historically cultivated as agricultural lands sites, improvements in forecasting were obtained 

from EVI2 and CIg on June 24 and on August 20, likely due to the sensitivity of the two optical 

indices to changes in vegetation greenness and canopy chlorophyll content during the canopy 

closure and senescence. Regarding the radar PolSAR decomposition coefficient Alpha (i.e., type 

of scattering: surface vs double-bounce vs volume), improvements were obtained on July 8. Unlike 

optical vegetation indices, PolSAR decomposition coefficients provide information about the 

structure of the target (i.e., vegetation) thanks to the differentiation of scattering type (i.e., surface, 

double-bounce, and volume scattering), which can be related to the changes in maize canopy 

structure during the flowering and grain-filling stages. At the previously Conservation Reserve 

Program site, the employment of EVI2 and CIg VIs brought to an improvement of forecasting on 

May 27 (CIg only), June 10 (both EVI2 and CIg), on July 8 (only EVI2) and on August 20 (both 

EVI2 and CIg). On the other hand, the use of Alpha improved forecasting on August 20. Lastly, 

when both land use histories were considered together, I found that improvements were on June 

10 (EVI2 only), July 8 (both EVI2 and CIg), and August 20 (EVI2, CIg, and Alpha). 

Limitations and potential implications 

One limitation of the present study is the choice of the growing season as time-period of 

my analysis. The reason of limiting the analysis to the growing season only, derived by the fact 

that the in-situ variables could only be collected during such period (i.e., roughly from May to 

August). However, by doing so, I ignored the net outgoing fluxes (i.e., CO2 emissions) during the 

non-growing season period. For that reason, my results showed NEE values that were higher in 
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magnitude, and so contrasting with other studies (Abraha et al., 2018). A further limitation, and 

potential implication, to my study is given by the need to integrate the analysis within a more 

comprehensive framework, through for example, a life cycle assessment (LCA) analysis (i.e., other 

sources of CO2 emission), which would help with a better understanding the impact (and 

magnitude) of land use history and land management in the context of climate benefit potentials 

due to various sources of GHG emission. For example, net magnitudes of ecosystem sink/source 

should also account for the CO2 emitted due to harvesting (i.e., grain, stover, and biomass), other 

than the CO2 uptake by the crops during the growing season—i.e., the so-called adjusted net 

ecosystem exchange (NEEadj; Abraha et al., 2018). Depending on the land use history, NEEadj 

might result in higher/lower CO2 emissions, due to higher/lower exported yield, coupled with 

lower/higher magnitude of NEE, respectively. Moreover, a more comprehensive calculation of 

NEEadj must also include the emissions due to agronomic practices (e.g., N2O emissions due to N 

fertilization), which are related to soil microbial communities and the readily available C source 

(Abraha & Gelfand, et al., 2018; Gelfand et al., 2015) as well as the mitigations due to the 

employment of bioenergy crops as alternative source of energy to fuel (Abraha et al., 2019).  

Conclusion 

Land use and land cover and associated management history can substantially affect the 

net C sink/source nature of a landscape. The three cover types accounted for conspicuous climate 

benefit potentials (i.e., net C uptake) due to land use history during the growing season. 

Specifically, looking at individual cover type, maize had the highest net C uptake, which was 

higher in magnitude at the conservation reserve program land than the one established on 

historically cultivated agricultural lands. Prairie cover type showed the second-highest climate 

benefit potentials, slightly followed by switchgrass cover type, although differences due to land 
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cover history were not remarkable. Each cover type showed unique main key influences involved 

in the magnitude of net C uptake/emission, which reflected the nature of the crop considered, 

whether annual vs perennial and monoculture vs polyculture. Net C uptake/emission at Maize 

cover type were mainly influenced by vegetation height, while multiple key influences were 

involved in the C uptake/emission at prairie and switchgrass. Lastly, the employment of fine spatial 

resolution (20 m) optical and radar satellite imagery provides distinct contribution (i.e., site and 

date dependent) to improving forecasts of daily net C uptake/emission during 2021 growing 

season. Generally, the two optical vegetation indices (i.e., EVI2 and CIg) contributed to improving 

the forecasts at various stages of the maize’s growth development (i.e., germination/emergence, 

seedling, flowering/grain-filling, and senescence), where changes were expressed in terms of 

change in surface reflectance (i.e., greenness and canopy chlorophyll content). On the other hand, 

the radar polarimetric SAR (PolSAR) decomposition coefficient (i.e., Alpha) helped improving 

the forecasts of the mid/late growing season stages, where changes were expressed in terms of 

structural features of maize. In conclusion, further work is needed to improve understanding the 

magnitude of land use history and land management in the context of climate warming/cooling, 

for example, by couple our estimates with other GHGs in an LCA framework, as well as by 

extending the analysis to non-growing season.
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APPENDIX 

Table A14: Dates of summer fieldwork visits and Sentinel-1 and -2 acquisitions at the six 

historically cultivated as agricultural lands (AGR) and the Conservation Reserve Program (CRP) 

sites, during 2018–2021 growing seasons. 

2018 2019 2020 2021 

fieldwork S1 S2 fieldwork S1 S2 fieldwork S1 S2 fieldwork S1 S2 

– – – – – – – – – 05/27 05/22 05/22 

06/01 06/07 06/28 06/11 06/14 06/12 06/09 06/08 06/06 06/10 06/15 06/11 

06/21 06/19 06/17 06/25 06/26 06/27 06/22 06/20 06/21 06/23 06/27 06/16 

07/09 07/13 07/07 067/09 07/08 07/07 07/08 07/02 07/06 07/08 07/09 07/06 

07/24 07/25 07/17 07/23 07/20 07/22 07/21 07/14 07/21 07/21 07/21 07/26 

08/08 08/06 08/01 08/07 08/13 08/11 08/05 08/26 08/05 08/04 08/02 08/05 

08/31 08/30 08/31 08/20 08/25 08/21 08/19 08/19 08/20 08/19-20* 08/26 06/15-25 

“–”: no fieldwork visit 

* fieldwork visit was split into two consecutive days due to weather conditions 
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Table A15: Non-parametric Kruskal-Wallis rank sum test for the five variables leaf area index 

(LAI; m2 m-2), SPAD index, vegetation height (Ht; m), soil water content (SWC; %), and net 

ecosystem exchange (NEE; gC m-2 d-1), for the pairs “cover type-growing season”. 

 Kruskal-Wallis rank sum test 

pairs (-growing season) variable 2 p-value df 

maize 

LAI 

1.859  

3 

prairie 49.742 *** 

switchgrass 9.407 * 

maize 

SPAD 

20.344 *** 

prairie 31.309 *** 

switchgrass 12.360 ** 

maize 

Ht 

2.955  

prairie 8.015  

switchgrass 3.667  

maize 

SWC 

3.009  

prairie 9.527 * 

switchgrass 17.200 *** 

maize 

NEE 

1.302  

prairie 25.864 *** 

switchgrass 22.600 *** 
Signif. codes: *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, ∙ p-value < 0.1, “ ” p-value > 0.1 
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Table A16: Non-parametric Wilcoxon rank sum test for the five variables leaf area index (LAI; 

m2 m-2), SPAD index, vegetation height (Ht; m), soil water content (SWC; %), and net 

ecosystem exchange (NEE; gC m-2 d-1) for the pairwise “2018–2021 growing seasons”. 

  Wilcoxon rank sum test 

  LAI SPAD Ht SWC NEE 

Cover t.  2018 2019 2020 2018 2019 2020 2018 2019 2020 2018 2019 2020 2018 2019 2020 

M 

2019  – –  – –  – –  – –  – – 

2020   – **  –   –   –   – 

2021    ***            

P 

2019 *** – –  – –  – –  – –  – – 

2020 ***  – *** *** –   –   –   – 

2021  *** * * ∙ *    *    *** *** 

S 

2019  – –  – –  – –  – –  – – 

2020 ∙  –   –   – ***  –   – 

2021    **        ** ***  *** 
Signif. codes: *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, ∙ p-value < 0.1, “ ” p-value > 0.1 
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Table A17: Hyperparameters used for the tuning of the multi-layer perceptron (MLP) and 

random forest (RF) models following a 10-fold cross validation. The designs were selected based 

on the least root-mean squared error (RMSE; leading to model convergence), the R-squared 

scores (R2), and the mean absolute error (MAE). 

 MLP  RF 

 Hidden layers  RMSE R2 MAE  mtry Srule Nod. size RMSE R2 MAE 

Maize 4-5-7 0.25 0.93 0.17  7 Variance 1 0.18 0.97 0.13 

Prairie 7-4-6 1.14 0.24 0.85  7 Max stat 1 0.56 0.70 0.46 

Switchgrass 7-6-4 0.45 0.82 0.33  6 Max stat 1 0.35 0.89 0.26 

mtry: the number of variables to consider at any given split. 

Srule: the splitting rule to use during tree construction. 

Nod. size: the minimal node size 
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Table A18: Summary table for the generalized linear models (GLM; at Eq. 4.17) for the NEE 

(dependent variable) across maize, prairie, and switchgrass, at both the historically cultivated as 

agricultural lands (AGR) and the Conservation Reserve Program (CRP) sites. 

cover type variable estimate SE t-test p-value R2 

Maize 

Intercept -0.005 0.028 -0.194   

0.93 

LAI -0.390 0.059 -6.642 *** 

SPAD -0.036 0.036 -0.979  

SWC 0.194 0.029 6.661 *** 

Ht -0.556 0.062 -8.997 *** 

Ta -0.164 0.032 -5.200 *** 

PAR -0.189 0.041 -4.668 *** 

VPD -0.064 0.040 -1.605  

Prairie 

Intercept -0.022 0.071 -0.311   

0.08 

LAI 0.167 0.078 2.145 * 

SPAD 0.013 0.074 0.174   

SWC 0.197 0.073 2.678 ** 

Ht -0.179 0.079 -2.263 * 

Ta -0.064 0.087 -0.734  

PAR -0.296 0.100 -2.972 ** 

VPD 0.162 0.105 1.533  

Switchgrass 

Intercept 0.049 0.059 0.820  

0.32 

LAI -0.476 0.094 -5.056 *** 

SPAD 0.098 0.065 1.506  

SWC 0.306 0.065 4.690 *** 

Ht -0.143 0.090 -1.586  

Ta -0.089 0.073 -1.232  

PAR -0.197 0.084 -2.362 * 

VPD -0.160 0.086 -1.850  
Signif. codes: *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, ∙ p-value < 0.1, “ ” p-value > 0.1 

NEE: net ecosystem exchange (g C m-2 d-1) during 2018–2021 growing seasons 

AGR: agriculturally cultivated farms 

CRP: conservations reserve program farms 
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Table A19: Spearman’s () correlation coefficients between the in-situ field data and the optical 

Sentinel-2 vegetation indices (S2-VIs) and the radar Sentinel-1 sigma nought (i.e., ) 

polarization intensity backscatter (S1-) and polarimetric SAR decomposition coefficients (S1-

PolSAR) remote sensing variables, at maize cover type, during 2018–2021 growing seasons. 

Only statistically significance (i.e., p-value<0.05) coefficients are shown. Positive and negative 

values indicate positive and negative correlations, respectively. Values in bold indicate the 

remote sensing variables used for the Bayesian Dynamic Linear Models (BDLMs). 

   Spearman’s () coefficients 

Cover type Remote sensing output LAI SPAD Ht SWC 

Maize 

S2-VIs 

EVI2 0.83 0.54 0.90 – 

CIgreen 0.83 0.50 0.86 – 

NDWI1 0.62 0.42 0.77 – 

NDWI2 0.78 0.52 0.87 -0.18 

S1-backscatter 

RVI 0.33 0.20 0.30 – 

Ratio1 0.33 0.20 0.30 – 

Ratio2 -0.33 -0.20 -0.30 – 

Intensity1 -0.25 -0.16 -0.34 -0.20 

Intensity2 0.41 0.26 0.48 0.22 

S1 PolSAR coefficients 
Entropy 0.58 0.35 0.62 – 

Alpha 0.58 0.35 0.59 – 
“–”: p-values > 0.05 

S2-VIs: Sentienk-2 vegetation indices 

S1-backscatter: Sentinel-1 backscatter and intensity values 

S1-PolSAR: Sentinel-1 polarimetric SAR decomposition coefficients 
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Table A20: Root-mean squared error (RMSE, i.e., accuracy of the forecast, mean ( standard deviation)) of forecasted net ecosystem 

exchange (NEE; gC m-2 d-1) values using both in-situ variables (i.e., vegetation height; Ht) and remote sensing outputs (i.e., EVI2, 

CIg, and Alpha). 

 
 Ht EVI2 CIg Alpha 

date AGR&CRP AGR CRP AGR&CRP AGR CRP AGR&CRP AGR CRP AGR&CRP AGR CRP 

May 25 30(22) 41(24) 48(22) 35(18) 84(0) 53(20) 38(24) 79(2) 40(25) 44(30) 68(23) 64(24) 

June 9 23(1) 24(1) 31(1) 14(4) 35(14) 23(6) 23(1) 39(11) 21(1) 39(9) 53(6) 55(5) 

June 22 17(2) 12(3) 21(2) 39(11) 2(2) 35(8) 41(9) 4(1) 36(8) 37(4) 44(10) 45(3) 

July 7 17(11) 53(13) 19(11) 16(7) 61(18) 15(10) 13(11) 79(15) 19(12) 28(5) 37(9) 27(3) 

July 20 10(5) 9(5) 10(5) 24(10) 11(6) 17(11) 19(13) 16(9) 15(4) 13(8) 11(5) 11(9) 

August 3 10(6) 10(13) 10(8) 18(6) 86(9) 21(5) 50(8) 88(11) 60(7) 35(9) 50(3) 50(7) 

August 18 43(7) 31(3) 48(5) 21(4) 22(10) 21(3) 20(11) 25(11) 12(7) 10(6) 37(4) 17(6) 
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Figure A2: Cumulative net ecosystem exchange (NEE; gC m-2 d-1) during 2018–2021 growing 

seasons across (a) the historically cultivated as agricultural lands (AGR) and (b) the 

Conservation Reserve Program (CRP) sites, at maize (M), prairie (P), and switchgrass (S) cover 

types. Solid yellow and black circles indicate the start of the growing season (SoS) and the end 

of the growing season (EoS), respectively, calculated as the first four days in row of negative 

(i.e., CO2 uptake) and positive (i.e., CO2 emission) NEE, respectively. Vertical black dashed 

lines indicate the start and the end dates of the summer fieldwork campaigns (see Table A14) 

during 2018–2021. Daily precipitation (mm) and mean air temperature (°C) values are also 

shown. 
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Figure A3.1: Growing season trends of leaf area index (LAI; m2 m-2) at (a) maize, (b) prairie, and 

(c) switchgrass cover types, during 2018–2021 growing seasons. Black full circles indicate 

measurements at subplot (5) level, while red solid lines and triangles refer to average values. 
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Figure A3.2: Growing season trends of Soil and Plant Analysis Development index (SPAD; 

unitless) at (a) maize, (b) prairie, and (c) switchgrass cover types, during 2018–2021 growing 

seasons. Black full circles indicate measurements at subplot (5) level, while red lines/triangles 

refer to average values. 
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Figure A3.3: Growing season trends of vegetation height (Ht; m) at (a) maize, (b) prairie, and (c) 

switchgrass cover types, during 2018–2021 growing seasons. Black full circles indicate 

measurements at subplot (5) level, while red lines/triangles refer to average values. 
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Figure A3.4: Growing season trends of soil water content (SWC; %) at (a) maize, (b) prairie, and 

(c) switchgrass cover types, during 2018–2021 growing seasons. Black full circles indicate 

measurements at subplot (5) level, while red lines/triangles refer to average values. 
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Figure A4: Boxplot of the five variables leaf area index (LAI; m2 m-2), Soil and Plant Analysis 

Development index (SPAD; unitless), vegetation height (Ht; m), soil water content (SWC; %), 

and net ecosystem exchange (NEE; gC m-2 d-1) during 2018–2021 growing seasons. Each box 

represents the 1st (Q1) and 3rd (Q3) quartiles of the interquartile distribution (IQR). The 

horizontal line and the red diamonds indicate the distribution median (Q2) and mean, 

respectively. The whiskers represent the limits (minimum and maximum) of the IQR (5% and 

95%, respectively), while the black solid points represent the outliers. 
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Figure A5: Feed-forward Multi-Layer Perceptron (MLP) neural network for (a) maize, (b) 

prairie, and (c) switchgrass cover types, during 2018–2021 growing seasons. Each model is 

composed of one input layer (“I”; left-hand side of the graph), represented by the seven 

independent variables—i.e., leaf area index (LAI), Soil and Plant Analysis Development index 

(SPAD), soil water content (SWC), vegetation height (Ht), mean air temperature (Ta), 

photosynthetic active radiation (PAR), and vapor pressure deficit (VPD); three hidden layers 

(“H”; middle side of the graph); and one output layer (“O”; right-hand side of the graph) 

represented by the dependent variable net ecosystem exchange (NEE). Line thickness and color 

represent the magnitude (i.e., the thicker the line the higher the weight magnitude) and the sign 

(i.e., black = positive, grey = negative) of the weights. Models’ sum of square errors (SSE) and 

number of steps (i.e., iterations) are also reported. 
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Figure A6: Predicted (Random Forest model; solid black lines and empty circles) and measured 

(dashed black lines and full black circles) values of the net ecosystem exchange (NEE; gC m-2 d-

1) at (a) maize, (b) prairie, and (c) switchgrass cover types, during the 2018–2021 growing 

seasons. Error bars indicate the minimum and maximum values across the five subplots. 



 188 

 

Figure A7: Partial-dependence (PD) profiles showing mean predictions of standardized net 

ecosystem exchange (NEE; gC m-2 d-1) values from the Random Forest (RF) model as function 

of variations in mean standardized leaf area index (LAI), SPAD index (SPAD), vegetation height 

(Ht), soil water content (SWC), , mean air temperature (Ta), photosynthetic active radiation 

(PAR), and vapor pressure deficit (VPD) at maize, prairie, and switchgrass. Asterisks indicate 

the dominant key drivers, as highlighted by the variable importance at Figure 4.3. PD profiles 

show individual dependence (positive, negative, or null) of an instance-level prediction on an 

explanatory variable.  
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Figure A8: Stages of maize’s growth development and net ecosystem exchange (NEE; gC m-2 d-

1). Photos were taken during the summer field visits in 2021 and represent the typical stages of 

growth at both the historically cultivated as agricultural lands (AGR) and the Conservation 

Reserve Program (CRP) sites. For the meaning of each stage (i.e., V and R), refer to the main 

text. 



 190 

 

Figure A9: (a) Forecast of the net ecosystem exchange (NEE; gC m-2 d-1) for maize cover type, 

during 2021 growing season, at the historically cultivated as agricultural lands (AGR), the 

Conservation Reserve Program (CRP), and at both sites together, using Bayesian Dynamic 

Linear Model (BDLM) with in-situ variables. Full red squares and black asterisks represent the 

measured and forecasted ( min and max at the 5 subplots) NEE values; while black dashed lines 

indicate the 95% confidence intervals (CI). (b) Root-mean square error (RMSE) of the forecasted 

NEE indicating accuracy of the forecast. 
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Figure A10: Mean forecasts of the net ecosystem exchange (NEE; gC m-2 d-1) for maize cover 

type, at the historically cultivated as agricultural lands (AGR) and the Conservation Reserve 

Program (CRP) sites together, during 2021 growing season using Sentinel-2 vegetation indices 

(EVI2, CIg, NDWI1, and NDWI2), Sentinel-1 polarization intensity backscatters (RVI, ratio1, 

and intensity2), and Sentinel-1 Polarimetric SAR decomposition coefficients (Entropy and 

Alpha). Full red circles represent the actual NEE values in 2021. Black bounding boxes indicate 

the remote sensing outputs selected for the analysis. 
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Figure A11.1: (a) Forecast of the net ecosystem exchange (NEE; gC m-2 d-1) for maize cover 

type, during 2021 growing season, at the historically cultivated as agricultural lands (AGR), the 

Conservation Reserve Program (CRP), and at both sites together, using Bayesian Dynamic 

Linear Model (BDLM) with the remote sensing variable EVI2. Full red squares represent the 

measured NEE values, while black asterisks and full blue circles represent the forecasted ( min 

and max at the 5 subplots) NEE values using Ht and EVI2, respectively. Black dashed lines 

indicate the 95% confidence intervals (CI). (b) Comparison of the root-mean square error 

(RMSE; i.e., accuracy of the forecast) of the forecasted NEE using Ht (black asterisk) and EVI2 

(full blue circles).  
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Figure A11.2: (a) Forecast of the net ecosystem exchange (NEE; gC m-2 d-1) for maize cover 

type, during 2021 growing season, at the historically cultivated as agricultural lands (AGR), the 

Conservation Reserve Program (CRP), and at both sites together, using Bayesian Dynamic 

Linear Model (BDLM) with the remote sensing variable CIg. Full red squares represent the 

measured NEE values, while black asterisks and full blue circles represent the forecasted ( min 

and max at the 5 subplots) NEE values using Ht and CIg, respectively. Black dashed lines 

indicate the 95% confidence intervals (CI). (b) Comparison of the root-mean square error 

(RMSE; i.e., accuracy of the forecast) of the forecasted NEE using Ht (black asterisk) and CIg 

(full blue circles). 
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Figure A11.3: (a) Forecast of the net ecosystem exchange (NEE; gC m-2 d-1) for maize cover 

type, during 2021 growing season, at the historically cultivated as agricultural lands (AGR), the 

Conservation Reserve Program (CRP), and at both sites together, using Bayesian Dynamic 

Linear Model (BDLM) with the remote sensing variable Alpha. Full red squares represent the 

measured NEE values, while black asterisks and full blue circles represent the forecasted ( min 

and max at the 5 subplots) NEE values using Ht and Alpha, respectively. Black dashed lines 

indicate the 95% confidence intervals (CI). (b) Comparison of the root-mean square error 

(RMSE; i.e., accuracy of the forecast) of the forecasted NEE using Ht (black asterisk) and Alpha 

(full blue circles). 
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CHAPTER 5. CONCLUSIONS 
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Lessons learned from my research 

This dissertation is the result of investigations onto the biogeophysical and biogeochemical 

mechanisms involved in climate regulation potentials (i.e., warming/cooling effects) as mitigation 

strategies to global warming, in the context of ecosystem functioning and landscape ecology. The 

research explores the effects of (i) landscape mosaic and composition on surface albedo changes 

(Chapters 2 and 3), and (ii) land use history and recent management on net ecosystem exchange 

fluxes of bioenergy crops (Chapter 4). 

Results from Chapters 2 and 3 showed the potential of spatiotemporal variations of surface 

albedo to cool the local climate, with different magnitudes, depending on weather conditions, 

major land cover types, and time of the year (growing season vs non-growing season) considered. 

Results from Chapter 4 showed that the inter-annual variation of main biophysical and physical 

controlling drivers to net ecosystem exchange (NEE) fluxes, with pattern, magnitude, and 

importance varying by bioenergy crop and growing season considered. Results also showed the 

capability of fine-resolution optical and radar remote sensing imagery to improve forecasts of 

growing season NEE of maize as a bioenergy crop. 

Major Contributions  

Agricultural landscapes have represented the main subject of several environmental 

research studies that, besides food and feed production, focused on assessing their roles as a carbon 

sink/source. The Kalamazoo River Watershed has been subjected to intensive land use and land 

cover changes after the European settlements, which brought to the present characteristic highly 

managed agricultural land mosaics (Brown et al., 2000). The analysis of biogeophysical and 

biogeochemical mechanisms across contrasting landscapes and ecoregions, makes the present 

research a unique study that fills some gaps in the current landscape ecology and ecosystem science 
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as well as global warming research. Chapter 2 provides a proof of concept to quantify the 

ecosystem and landscape contribution to local and global climate through the analysis of 

spatiotemporal changes of surface albedo across five equal area landscapes, in southwestern 

Michigan, USA, and during three scenarios led by precipitation events (i.e., wet vs dry vs normal). 

Chapter 3 extends the analysis at Chapter 2 to the entire Kalamazoo River Watershed for a 19-year 

period, by looking at the contribution of major cover types, compared to original land uses, during 

both growing season and non-growing season (i.e., the effects of snow vs snow-free surface 

albedo). Chapter 4 presents the climate regulations of the net ecosystem exchange (NEE) fluxes 

of three major bioenergy crops under different land use history and management by analyzing the 

main biophysical and physical controlling drivers to NEE using a comparison of three models. 

Several major contributions derive from the first two Chapters. First, this study provides a 

novel methodology for quantifying the landscape contribution to local and global climate by 

considering changes in surface albedo due to the co-existence of multiple land cover types (i.e., 

major land covers composing the land mosaic) within the same landscape. In contrast, previous 

studies only considered the land cover transformation (i.e., prior vs posterior land cover classes) 

as main driver to changes in surface albedo (Bala et al., 2007; Barnes et al., 2013; Bonan, 2008). 

Moreover, the first two Chapters contributed on building scientific knowledge in regard of the 

applied methodology to translate changes in surface albedo into albedo-induced radiative forcing 

(i.e., cooling/warming effects) and into its CO2-equivalent (i.e., mitigation/emission effects), so 

that to be consistent with current IPCC emission metric approaches. In my opinion, such 

contribution is of fundamental importance because a major challenge of current research to 

translate albedo changes into CO2-equivalent mitigation/emission effects is the lack of universal 

time dependency following the perturbation in albedo change. In other words, a methodology 
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producing a metric that is true equivalent to CO2 emissions still does not exist (Bright & Lund, 

2021). 

The three-model comparison approach employed in Chapter 4, along with the methodology 

based on both in-situ and remote sensing imagery, contributed to the overall need to investigate 

major controlling drivers to the variations of ecosystem carbon budget (i.e., C uptake/emission). 

Therefore, it is fundamental to understand the importance and magnitude of controlling drivers to 

the C uptake/emission across cropping systems. As major contribution, Chapter 4 sheds light on 

multivariate unexplored controlling drivers as well as pattern-processes of NEE fluxes of three 

different bioenergy crops. Few are the studies found in the literature that deal with environmental 

controls on CO2 exchange across cropping systems (e.g., Hernandez-Ramirez et al., 2011). 

Moreover, while it has been generally established that available light, ambient temperature, and 

precipitation patterns represent key controlling drivers of CO2 fluxes (Griffis et al., 2003; Law et 

al., 2002; Pingintha et al., 2010; Reverter et al., 2010), the relationships have only been examined 

separately as single factors (Hernandez-Ramirez et al., 2011).  

Recommendations for Future Research 

This dissertation represents a collection of three complementary research works, each of 

which focused on mitigation strategies in the context of global warming research. 

Recommendations for further research needed could fill the knowledge gaps of the present 

research. 

For instance, I proposed the Kalamazoo River Watershed and its different portions within 

ecoregion boundaries as proof of concept for my research. Similarly, previous works have been 

carried out to estimate cooling/warming effects due to surface albedo changes over the 

conterminous United States (CONUS) (Barnes et al., 2013; Barnes & Roy, 2008, 2010), by 
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considering boundaries at Ecoregion level and remote sensing albedo data. However, no effort has 

been made to put the results in the context of landscape composition and mosaic. Therefore, further 

effort is needed to adapt the proposed methodology to other study cases, within and outside the 

US. Moreover, with the research presented at Chapters 2 and 3, I investigated the contribution of 

land mosaics due to land transformation on albedo-induced GWI by considering forest cover type 

as the reference for the entire study area (Brown et al., 2000). However, such methodology 

precludes from estimating forests’ contribution to albedo-induced GWI, hindering a 

comprehensive synthesis of the total climate mitigation/emission of the watershed considering that 

the low albedo of forests contributes to climate warming (Bonan, 2008). 

Regarding Chapter 4, additional work should not be limited only to the growing season 

analysis. In fact, the exclusion of non-growing season fluxes entails the omission of net outgoing 

fluxes (e.g., GHG emissions, water vapor fluxes, upwelling reflectances), with the result of 

producing partial understanding of the full story. Furthermore, additional work could focus on 

critical stages of the maize’s growth development during growing season. For example, other 

studies showed that fluctuations in available light during the most photosynthetically active phase 

of maize’s canopy could represent the main controlling driver to CO2 uptake (Hernandez-Ramirez 

et al., 2011). Hence, there is the need to integrate this work with seasonal analysis, to include, for 

example, early vs peak vs late growing season. Extending the analysis to not only consider the 

growing season period, would also help better investigate the magnitude of C ecosystem response 

to several climatic events, which it has been generally shown to depend on lagged effects (e.g., 

weather preceding the growing season), and not only on the current event (Archibald & Kirton, 

2009). For example, factors like air and soil temperature, radiation, and vapor pressure deficit play 

different role (i.e., importance) to the CO2 uptake depending on the time scale considered (Suyker 
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& Verma, 2012). 

In light of the present study’s findings, I think that there are still several challenges ahead. 

To start with, there is the need to translate such findings into key concepts for policy makers, who 

ultimately have the role to bridge scientific knowledge with society (i.e., communities and 

organizations) and to help them to address environmental concerns. As demonstrated by my 

research, out there, there are valuable options to mitigate the effect of climate change and global 

warming. However, one big challenge is that the trade-off space within which the mitigation 

options interact is still not readily described. For instance, the main challenge related to the 

assessment of albedo as mitigation strategy comes from the use of a measure like radiative forcing 

(RF; W m-2), which can be hard to digest for many decision-makers, who currently deal with 

currency of CO2-equivalent emissions (Bright & Lund, 2021). In addition to that, many researchers 

express the albedo RFs in terms of their CO2-equivalent effects; however, by employing non-

standard methods for calculating it, like there is for well-mixed greenhouse gas ones. In turn, there 

is confusion even within the scientific community. Moreover, despite scientists have been 

employing the use of pulse emission metrics (i.e., global warming impact) for years, this field is 

highly evolving and changing. As result, there is a lot of confusion and misunderstanding about 

how human modifications to the landscape can be translated into something tangible, such as, 

warming/cooling and emission/mitigation. 

On the other hand, I find essential the need to keep in mind what the manager perspectives 

might be. For instance, in my humble opinion, in a mindset driven by the sole economic and 

productive interest, the perceived knowledge about the magnitude with which the management of 

the landscape is affecting its warming/cooling and emission/mitigation status, is not that useful. 

For example, telling a farmer how much warming/cooling and emission/mitigation derive from 
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their management practices and/or their choice of land use, due to the consequent change in both 

surface albedo and CO2 fluxes, might be relevant to their economic/political calculus. However, if 

such knowledge was accompanied by incentives, similar to how it works for the carbon score and 

credit, its impact would be more meaningful. In part, some research studies are already leaning 

towards this way of delivering scientific information. For example, in urban settings, some studies 

have compared the cooling effects derived by higher urban albedo in terms of money saved from 

the reduced air-conditioning costs. 

To conclude, future research will help to fill those gaps, as long as there is a corresponding 

framework for new policies coming along with it. 

 



 202 

REFERENCES 

Archibald, S. A., Kirton, A., Van der Merwe, M. R., Scholes, R. J., Williams, C. A., & Hanan, 

N. (2009). Drivers of inter-annual variability in net ecosystem exchange in a semi-arid 

savanna ecosystem, South Africa. Biogeosciences, 6(2), 251-266. 

Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., & Mirin, A. (2007). 

Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the 

National Academy of Sciences, 104(16), 6550–6555. 

https://doi.org/10.1073/pnas.0608998104 

Barnes, C. A., & Roy, D. P. (2008). Radiative forcing over the conterminous United States due 

to contemporary land cover land use albedo change. Geophysical Research Letters, 35(9). 

https://doi.org/10.1029/2008GL033567 

Barnes, C. A., & Roy, D. P. (2010). Radiative forcing over the conterminous United States due 

to contemporary land cover land use change and sensitivity to snow and interannual albedo 

variability. Journal of Geophysical Research, 115(G4), G04033. 

https://doi.org/10.1029/2010JG001428 

Barnes, C. A., Roy, D. P., & Loveland, T. R. (2013). Projected surface radiative forcing due to 

2000–2050 land-cover land-use albedo change over the eastern United States. Journal of 

Land Use Science, 8(4), 369–382. https://doi.org/10.1080/1747423X.2012.667453 

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits 

of forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121 

Bright, R. M., & Lund, M. T. (2021). CO2-equivalence metrics for surface albedo change based 

on the radiative forcing concept: A critical review. Atmospheric Chemistry and Physics, 

21(12), 9887–9907. https://doi.org/10.5194/acp-21-9887-2021 

Brown, D. G., Pijanowski, B. C., & Duh, J. D. (2000). Modeling the relationships between land 

use and land cover on private lands in the Upper midwest, USA. Journal of Environmental 

Management, 59(4), 247–263. https://doi.org/10.1006/jema.2000.0369 

Griffis, T. J., Black, T. A., Morgenstern, K., Barr, A. G., Nesic, Z., Drewitt, G. B., Gaumont-

Guay, D., & McCaughey, J. H. (2003). Ecophysiological controls on the carbon balances of 

three southern boreal forests. Agricultural and Forest Meteorology, 117(1), 53–71. 

https://doi.org/10.1016/S0168-1923(03)00023-6 

Hernandez-Ramirez, G., Hatfield, J. L., Parkin, T. B., Sauer, T. J., & Prueger, J. H. (2011). 

Carbon dioxide fluxes in corn–soybean rotation in the midwestern U.S.: Inter- and intra-

annual variations, and biophysical controls. Agricultural and Forest Meteorology, 151(12), 

1831–1842. https://doi.org/10.1016/j.agrformet.2011.07.017 

Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A. 

J., Falk, M., Fuentes, J. D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I. 

A., Jarvis, P., Jensen, N. O., Katul, G., Mahli, Y., … Wofsy, S. (2002). Environmental 



 203 

controls over carbon dioxide and water vapor exchange of terrestrial vegetation. 

Agricultural and Forest Meteorology, 113(1–4), 97–120. https://doi.org/10.1016/S0168-

1923(02)00104-1 

Pingintha, N., Leclerc, M. Y., Beasley, J. P. J., Durden, D., Zhang, G., Senthong, C., & Rowland, 

D. (2010). Hysteresis response of daytime net ecosystem exchange during drought. 

Biogeosciences, 7(3), 1159–1170. https://doi.org/10.5194/bg-7-1159-2010 

Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P., Oyonarte, C., & Kowalski, 

A. S. (2010). Analyzing the major drivers of NEE in a Mediterranean alpine shrubland. 

Biogeosciences, 7(9), 2601–2611. https://doi.org/10.5194/bg-7-2601-2010 

Suyker, A. E., & Verma, S. B. (2012). Gross primary production and ecosystem respiration of 

irrigated and rainfed maize–soybean cropping systems over 8 years. Agricultural and 

Forest Meteorology, 165, 12–24. https://doi.org/10.1016/j.agrformet.2012.05.021 

 

 


	LIST OF ABBREVIATIONS
	CHAPTER 1. INTRODUCTION
	General introduction
	Research Context and Background
	Biogeophysical mechanisms
	Biogeochemical mechanisms
	Aligning with IPCC standards

	Dissertation Focus and Organization

	REFERENCES
	CHAPTER 2. SPATIOTEMPORAL VARIATIONS OF ALBEDO IN MANAGED AGRICULTURAL LANDSCAPES: INFERENCES TO GLOBAL WARMING IMPACT (GWI)
	Abstract
	Introduction
	Material & Methods
	Study area
	Landscape structure
	MODIS albedo
	MODIS NDVI
	Precipitation data
	Statistical analysis
	Radiative forcing (RF) and global warming impact (GWI)

	Results
	Discussion
	Inter and intra-annual changes in albedo
	Albedo-induced radiative forcing (RF(() and global warming impact (GWI(()
	Assumptions and limitations

	Conclusions

	REFERENCES
	APPENDIX
	CHAPTER 3. ALBEDO-INDUCED GLOBAL WARMING IMPACT AT MULTIPLE TEMPORAL SCALES WITHIN AN UPPER MIDWEST USA WATERSHED
	Abstract
	Introduction
	Materials & Methods
	Study area and landscape composition
	Intra-annual changes in albedo
	Albedo-induced global warming impact (GWI(()
	Contributions of land cover change to GWI((

	Results
	Land use land cover change
	Albedo and GWI(( in time and space

	Discussion
	Cooling effects
	Variable effects
	Intra- and interannual variability of albedo and GWI((
	Seasonal percent contribution to the total cooling and warming
	Assumptions and limitations

	Conclusions

	REFERENCES
	APPENDIX
	CHAPTER 4. MODELING THE MAIN KEY INFLUENCES ON THE NET ECOSYSTEM EXCHANGE (NEE) FLUXES: INFERENCES TO CLIMATE REGULATION POTENTIALS DUE TO LAND USE HISTORY AT BIOENERGY CROPPING SYSTEMS IN SOUTHWESTERN MICHIGAN
	Abstract
	Introduction
	Materials & Methods
	Study area
	Net ecosystem exchange of CO2
	In-situ variables
	Remote sensing products
	Interannual variability of field variables
	Main key influences on NEE dynamics
	Bayesian dynamic linear model for maize’s NEE

	Results
	Interannual variation
	Key drivers of growing season NEE
	Growing season NEE forecast at maize cover type

	Discussion
	Interannual variation of main key drivers
	Interannual variation and magnitude of growing season C uptake
	Main key drivers of growing season NEE
	Forecast of growing season C uptake in maize
	Limitations and potential implications

	Conclusion

	REFERENCES
	APPENDIX
	CHAPTER 5. CONCLUSIONS
	Lessons learned from my research
	Major Contributions
	Recommendations for Future Research

	REFERENCES

