
By

Craig Gross

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Applied Mathematics—Doctor of Philosophy

2023

SPARSITY IN THE SPECTRUM: SPARSE FOURIER TRANSFORMS AND SPECTRAL
METHODS FOR FUNCTIONS OF MANY DIMENSIONS

ABSTRACT

The Fourier basis has been a cornerstone of numerical approximations due in part to its amenable

algebraic properties resulting in efficient algorithmic approaches. Primary among these is the Fast

Fourier Transform (FFT) which transforms a collection samples of a univariate function into that

function’s Fourier coefficients with computational complexity linear in the number of samples (with

an extra logarithmic term). Extensions based on the FFT include algorithms that take advantage of

sparsity in a function’s Fourier coefficients (sparse Fourier transforms or SFTs) to lower this com-

plexity even further as well as efficient approaches for approximating certain Fourier coefficients

of multivariate functions, most often those indexed over computationally friendly hyperbolic cross

structures. The ability to quickly compute a function’s Fourier coefficients has additionally allowed

for a variety of applications including fast algorithms for numerically solving partial differential

equations (PDEs) via spectral methods. This dissertation considers improvements on these three

applications of the FFT to produce (1) a high-dimensional Fourier transform over arbitrary index

sets with reduced sampling complexity from current state of the art methods, (2) an accurate high-

dimensional, sparse Fourier transform that can dramatically drive down the sampling and compu-

tational complexity so long as a sparsity assumption is satisfied, and (3) a high-dimensional, sparse

spectral method which makes use of our sparse Fourier transform to solve PDEs with multiscale

structure in extremely high dimensions.

All three of these applications rely on the method of rank-1 lattices for their flexibility. By using

this quasi-Monte Carlo approach for sampling in high-dimensions, high-dimensional functions are

converted into one-dimensional ones on which well-studied techniques can be used. We extend

these approaches by first developing a fully deterministic construction of multiple, smaller, rank-1

lattices to sample over simultaneously which drive down the sampling complexity from traditional

rank-1 lattice methods. Our improved technique depends only linearly on the size of the underlying

set of frequencies that Fourier coefficients are computed over rather than the previously standard

quadratic dependence (with additional logarithmic terms).

We can push further beyond this linear dependence on the frequency set of interest by making

use of univariate SFTs after the high-dimensional to one-dimensional conversion. However, to

effectively integrate univariate SFT algorithms into the rank-1 lattice approach without ruining

the derived computational speedups, we provide an alternative approach. Rather than employing

multiple rank-1 lattice sampling sets, we need to employ multiple rank-1 lattice SFTs. The slightly

inflated sampling cost allows for significant gains in coefficient reconstruction: we produce two

methods whose dependence on the frequency set of interest is cast entirely into logarithmic terms.

The complexity is then quadratically or linearly (depending on the chosen variation) dependent on

an imposed sparsity parameter and linear in the dimension of the underlying function domain. The

dependence on this sparsity is then fully characterized in near-optimal approximation guarantees

for the function of interest.

And just as the FFT provided the foundation for fast spectral methods for numerically approx-

imating solutions to PDE, so too does our high-dimensional, sparse Fourier transform provide the

foundation for a high-dimensional, sparse spectral method. However, to be most effective, the un-

derlying frequency set of interest should be primarily driven by the PDE itself rather than the user.

As such, we provide a technique for efficiently converting sparse Fourier approximations of the

PDE data into a Fourier basis in which the solution to the PDE will be guaranteed to have a good

approximation. These ingredients combined with the rich literature on spectral methods allow for

us to provide error estimates in the Sobolev norm for the solution which are fully characterized by

properties of the PDE, namely the Fourier sparsity of its data and conditions related to its well-

posedness.

Throughout the text, these proposed algorithms are accompanied with practical considerations

and implementations. These implementations are then judged against a variety of numerical tests

which demonstrate performance on par with the theoretical guarantees provided.

Copyright by
CRAIG GROSS
2023

To Alan, my fellow scientist and my brother. I love you.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Mark Iwen, for your incredible support

throughout my time at Michigan State University. Your generosity in time, advice, ideas, and more

is the reason that this work exists and would not have been possible without your guidance. I also

owe to you the space that I had throughout my studies to fully explore my interests both mathe-

matically and professionally, and find a path that was fulfilling. And I also have you to thank for

allowing me to grow beyond the boundaries I came to MSU with, whether they be boundaries of

perspective, opportunity, or geography.

In that vein, I would also like thank my collaborators at Technische Universität Chemnitz, Lutz

Kämmerer and Toni Volkmer, who introduced me to the wonderful world of rank-1 lattices and

whom I wrote Chapters 2 and 3 alongside. You helped me develop as a researcher and an applied

mathematician through your invaluable mentorship, contributions, and conversations. And I have

you and the rest of Daniel Potts’ group to thank for your incredible hospitality in my unforgettable

visit to Chemnitz.

And to one of my first mathematical mentors, Andrew Gillette, I thank you for showing me what

it means to be a mathematician. From my first day of freshman year in the Cesar E. Chavez Build-

ing at the University of Arizona to our continued conversations at Lawrence Livermore National

Laboratory, you have been there to foster my mathematical journey and afford me the opportunities

to make it to this point.

I would also like to thank my fellow mathematicians who I had the pleasure of sharing thoughts

with throughout my studies. In particular, I have Ben Adcock and Simone Brugiapaglia to thank

for the inspiration and motivation resulting in the sparse spectral method presented in Chapter 4. I

also thank the members of my committee, Yingda Cheng, Jun Kitagawa, and Rongrong Wang, for

your instruction and guidance throughout my time at MSU.

To my friends in my cohort, thank you for the long nights of analysis homework, the HopCat

happy hours, and the consistent cycle of commiseration and inspiration. And to those friends who

came to MSU before or after me, thank you for making and keeping the math department bright,

vi

welcoming, and growing.

But most of all, I owe my successes, my opportunities, and everything else to my family. My

heroes, my mother and father, have provided the encouragement and continual support to reach

where I am today. Your perpetual care, humor, creativity, and joy form the foundation for me every

day, and it is only on that foundation that I am able to grow and push myself into places, ideas,

and worlds previously unknown. And to my siblings, Katie, for your empathy, drive, and spirit that

keeps me moving forward; Essa, for your conversations that bring me the perspective I need; and

Alan, for the everlasting knowledge that I have your love and support behind me: I can’t thank each

of you enough.

And finally, to Sarina, I could write another 124 pages about how this, and every day, is due

to you. But I’ll keep it brief. Simply put, this, and so many more of the achievements in my life,

wouldn’t have been able to happen without you. You’ve kept me together in the bad and have been

the celebration of the good. You’ve been by my side every day, my outlet, my reflection for thoughts,

joys, and all the rest. You bring me everything. Thank you.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Overview . 1
1.2 Notation . 9
1.3 Fourier preliminaries . 13

CHAPTER 2 CONSTRUCTING MULTIPLE RANK-1 LATTICES
DETERMINISTICALLY . 15

2.1 Overview of results . 15
2.2 The proof of Theorem 2.1 . 17
2.3 Numerics . 28

CHAPTER 3 HIGH-DIMENSIONAL SPARSE FOURIER TRANSFORMS 39
3.1 Overview of results and prior work . 39
3.2 One-dimensional sparse Fourier transform results 44
3.3 Fast multivariate sparse Fourier transforms . 53
3.4 Numerics . 74

CHAPTER 4 SPARSE FOURIER SPECTRAL METHODS FOR SOLVING PDE . . . 83
4.1 Overview of results and prior work . 83
4.2 Elliptic PDE setup . 87
4.3 Galerkin spectral methods . 89
4.4 Stamping sets and truncation analysis . 90
4.5 Fully sublinear-time SFTs with randomized lattices 99
4.6 A sparse spectral method via SFTs . 100
4.7 Numerics . 108

BIBLIOGRAPHY . 120

viii

CHAPTER 1

INTRODUCTION

1.1 Overview

This dissertation is concerned with the efficient approximation of periodic functions of many

variables by Fourier series and associated applications in solving partial differential equations. For

a periodic function 6 : T3 → C, where T is taken to be R/Z, we wish to compute its Fourier series,

or at least an approximation, as quickly as possible. That is, we want to find the coefficients 6̂, a

complex sequence indexed by multivariate frequencies k ∈ Z3 , of the Fourier series

6 =
∑
k∈Z3

6̂ke2cik·◦.

Since the collection of multivariate trigonometric monomials {e2cik·◦}k∈Z3 forms an orthonormal

basis for !2(T3) (cf. Theorem 1.1), the Fourier coefficients of 6 can be computed by

6̂k =

∫
T3
6(x)e−2cik·x 3x.

Of course, using this formulation would require full knowledge of 6 to begin with, or at least enough

information to approximate this integral. However, this is the problem we are attempting to solve

in the first place.

The univariate formulation of this problem has been classically solved using the fast Fourier

transform (FFT). Given a parameter ∈ N, the FFT computes approximate Fourier coefficients of

a function 61d : T→ R via a simple left Riemann sum over points:

6̂1d
l ≈

1

 ∑
9=0
6

(
9

)
e−2cil 9/ .

Computing all approximate Fourier coefficients with frequencies in [] := {0, . . . − 1} at once

can be performed by the matrix multiplication F g1d, where

F :=
(

1

e−2cil 9/
)
l∈[], 9∈[]

and g1d :=
(
61d

(
9

))
9∈[]

.

Taking advantage of algebraic properties of the Fourier basis, the FFT algorithm performs this

matrix multiplication in O(log) time and space, instead of the standard O(2) computational

complexity (see, e.g., [56] for a good survey of these techniques).

1

Returning to the multivariate setting, instead of using an equispaced sampling of the target

function over an interval, we can take an equispaced sampling over the 3-dimensional grid, denoted

(6(j/))j∈[]3 , and effectively apply 3 FFTs along the sides of this now 3-dimensional tensor.

Thus, this multivariate FFT has a time/space-complexity ofO(3 log3). This exponential growth

in 3 characterizes the well-known curse of dimensionality and therefore, this multivariate FFT is

only suitable for low dimensions.

Approaches to avoid this curse of dimensionality for Fourier approximation form a vast body

of literature. The state of the art in the contexts we are interested in is discussed in the literature

reviews of the subsequent chapters. However, we summarize a simple and effective approach upon

which the remainder of this dissertation is based: using rank-1 lattices.

Definition 1.1. Given a natural number " ∈ N and a generating vector z ∈ {1, . . . , " − 1}3 , the

rank-1 lattice Λ(z, ") ⊂ T3 is defined as

Λ(z, ") :=
{
9

"
z mod 1 | 9 ∈ ["]

}
.

Intuitively, a rank-1 lattice gives a direction vector z to restrict the multivariate function 6 into

a univariate one 61d defined by C ↦→ 6(Cz). The " sampling points in the rank-1 lattice are in fact

an equispaced sampling over T of 61d. An FFT of these equispaced samples of 61d is then able to

give us information about the Fourier coefficients of the original, high-dimensional function 6.

To see how the FFT relates to the Fourier coefficients of 6, we consider the Fourier series of 61d

by way of the Fourier series of 6,

61d(C) = 6(Cz) =
∑
k∈Z3

6̂ke2cik·zC =
∑
l∈Z

©­­­«
∑
k∈Z3
k·z=l

6̂k

ª®®®¬ e2cilC .

Thus

6̂1d
l =

∑
k∈Z3
k·z=l

6̂k.

In light of the fact that we will be using an FFT approximation of 6̂1d, let us also note well-known

2

aliasing effect of the FFT. For all l ∈ ["],(
F"g1d

)
l
=

∑
l′∈Z

l′≡l mod "

6̂l′ (1.1)

(see Lemma 1.3 for the proof and further explanation). We can then assert that(
F"g1d

)
l
=

∑
k∈Z3

k·z≡l mod "

6̂k.

To make the most effective use of the length-" FFT, a rank-1 lattice should be chosen so that this

sum contains at most one Fourier coefficient of the original function in 6̂. In order to accomplish

this, we will restrict the scope of our Fourier coefficient approximation to some chosen frequency

set of interest I ⊂ Z3 and introduce the idea of the modulus mapping and a reconstructing rank-1

lattice.

Definition 1.2. Choose some I ⊂ Z3 . The modulus mapping <z," : I → ["] is defined by

k ↦→ k · z mod " . A rank-1 lattice Λ(z, ") is said to be reconstructing for I if the modulus

mapping is injective. An equivalent condition is that

k · z . h · z mod " for all k ≠ h ∈ I.

We find then that for any trigonometric polynomial 6 ∈ ΠI := span{e2cik·◦ | k ∈ I}, (1.1)

reduces to

6̂k =

(
F"g1d

)
<z," (k)

for all k ∈ I

and for any 6 with Fourier coefficients not necessarily supported on I,

6̂k =

(
F"g1d

)
<z," (k)

+
∑
h∉I

h·z≡k·z mod "

6̂h for all k ∈ I. (1.2)

The upshot is that we are able to compute all Fourier coefficients in I of a periodic function 6 up to

errors related to restricting our attention to I. The full rank-1 lattice FFT approach is summarized

in Algorithm 1.1.

3

Algorithm 1.1 Rank-1 lattice FFT
Input: A function 6 : T3 → C, a frequency set of interest I ⊂ Z3 , and a reconstructing rank-1

lattice for I, Λ(z, ")
Output: Approximate Fourier coefficients ĝΛ ∈ CI

1: g1d ← (6(9z/")) 9∈["]
2: Compute F"g1d

3: for k ∈ I do
4: 6̂Λk ←

(
F"g1d)

<z," (k)
5: end for

With the basic ideas behind the rank-1 lattice FFT in hand, we can motivate the remaining

chapters of this dissertation.

1.1.1 Multiple rank-1 lattices and their construction

The most important ingredient for Algorithm 1.1 is a reconstructing rank-1 lattice for a chosen

frequency set I. The size of this rank-1 lattice also has major impacts on the computational com-

plexity Algorithm 1.1, namely, the sampling step and the FFT. Thus, the goal should be to find as

small a reconstructing rank-1 lattice as possible.

The most popular reconstructing rank-1 lattice construction is the component-by-component

(CBC) approach [39, 56, 46, 48]. The idea is to start with the set of frequency differencesD(I) :=

{k − h | k, h ∈ I} and consider these differences one component at a time. Each component of

the generating vector is chosen by a brute-force scan through these differences to ensure that there

are no collisions modulo " , where it suffices for " to be a prime number between |D(I)|/2 and

|D(I)|. But note also that |I | . |D(I)| . |I |2, and in fact, there exist specific frequency sets

which require any associated reconstructing rank-1 lattice to have size " = Ω(|I|2) [12, Section

3]. See also [39, Section 5] for more information about rank-1 lattices and their often (seemingly

unnecessarily) large sizes. The goal of Chapter 2 is to reduce this quadratic dependence on |I |

(and therefore on the sampling and computational complexity of Algorithm 1.1) using a slight

generalization of rank-1 lattices. Rather than restricting the high-dimensional function to just one

lattice, we use multiple rank-1 lattices [40, 41], which can be smaller than a single reconstructing

rank-1 lattice is required to be, to drive down the overall complexity.

4

In particular, Chapter 2 presents the first known deterministic algorithm for constructing a series

of multiple rank-1 lattices for an arbitrary frequency set. As input, it takes a reconstructing single

reconstructing rank-1 lattice and returns O(log |I |) lattices each of size at O
(
|� | log2 (I |I |)

)
where I is the sidelength of the smallest hypercube containingI. Each lattice handles a portion of

the frequencies inI so that performing FFTs over all smaller lattices will exactly recover the Fourier

coefficients of trigonometric polynomials in ΠI Approximation guarantees are also provided for

general periodic functions similar to (1.2). Due to the size of the full multiple rank-1 lattice returned,

any quadratic dependence on a single rank-1 lattice in |I | can therefore be reduced to a linear (with

polylogarithmic terms) dependence without incurring significant additional errors.

1.1.2 Sparse Fourier transforms and rank-1 lattices

Though the efforts of Chapter 2 are able to reduce the amount of work necessary in a rank-1

lattice FFT approach, a linear dependence on |I | in the complexity may still be intolerable. For

large search spaces of multivariate frequencies I such as the full hypercube of sidelength , I =(
(−

⌈

2
⌉
,
⌊

2
⌋
] ∩ Z

)3 , these methods still suffer from the curse of dimensionality.

Rather than a more general multiple rank-1 lattice approach, Chapter 3 considers the case of

functions whose Fourier series are sparse or compressible. Since the rank-1 lattice procedure

reduces high-dimensional functions into one-dimensional ones, one-dimensional sparse Fourier

transform (SFT) techniques [25, 27, 36, 35, 51, 62, 37, 26, 18, 45, 57, 58, 53, 3, 2, 1] become par-

ticularly appealing. SFTs are compressive sensing algorithms which are highly specialized to take

advantage of the number theoretic and algebraic structure of the Fourier basis as much as possible.

As a result, SFTs rarely have to consider Fourier basis functions individually during the reconstruc-

tion process, and so can simultaneously reduce both their measurement needs and computational

complexity to effectively depend only on the number of important Fourier series coefficients in the

function one aims to approximate. Thus, SFTs can sidestep runtimes which are polynomially de-

pendent on the bandwidth (in the case of a rank-1 lattice FFT, "), and instead run sublinearly in the

magnitude of the underlying frequency space under consideration. If one desires to capture only

the largest B Fourier coefficients of a function, the SFT discussed in Theorem 3.1, for example, runs

5

in O(B2 log4 ")-time/space (with a randomized version cutting the quadratic factor of B down to

linear). Additionally, these techniques often furnish recovery guarantees for Fourier compressible

functions in terms of best B-term approximations in the same vein as compressed sensing results

[19, 24].

However, simply replacing the FFT F"g1d in Line 2 of Algorithm 1.1 with a suitable SFT

AB,"6
1d is not enough to relieve linear dependence on |I |. The for loop from Line 3 to Line 5

which matches 3-dimensional and one-dimensional frequencies requires a linear scan through I.

A simple optimization is to swap the order this process, and match the B-many entries of AB,"6
1d

to the corresponding Fourier coefficients indexed over I. But even this is not enough, as it requires

complete knowledge of the inverse modulus mapping <−1
z," which is either built up through the

rank-1 lattice construction and stored or computed through a O(3 |I |)-computation. All benefit in

swapping the FFT along the lattice with an SFT is then lost.

The methods given in Chapter 3 instead use samples along possibly larger lattices to produce

a sparse approximation of the Fourier transform of 6 without directly inverting <z," . Two algo-

rithms are presented which operate on SFTs of manipulations of 61d in order to relate the univariate

coefficients to their multivariate counterparts in >(|I|)-time. This allows the methods to run faster

and with less memory than it takes to simply enumerate the frequency set I and/or store <z," (I)

whenever 6 has a sufficiently accurate sparse approximation.

The result is a series of curse-of-dimensionality breaking, high-dimensional SFTs with proven

compressive-sensing type guarantees for arbitrary periodic functions. The approaches are linear

in 3 in the sampling and run-time complexities which succeed deterministically in quadratic in B

time. As with the univariate SFT discussed above, this can be reduced to linear in B time via ran-

domization. We defer to Section 3.1 for a fuller discussion in the context of the provided literature

review.

Finally, though these results are able to sidestep the necessity of the inverse of the modulus

mapping, <z," (I), an existing reconstructing rank-1 lattice for I is still required. As discussed

above, CBC constructions, though only necessary to perform once, are still relatively expensive

6

in the context of SFT complexities. This requirement is dropped via a randomized approach to

constructing rank-1 lattices in Section 4.5, resulting in an algorithm with complexity fully sublinear

in |I |.

1.1.3 Applications to PDE

The fast, high-dimensional SFT techniques of Chapter 3 are applied in Chapter 4 to construct

an efficient, numerical PDE solver. For this exposition, we consider as a model problem an elliptic

PDE with periodic boundary conditions

−∇ · (0∇D) = 5 (1.3)

where 0, 5 : T3 → R are the PDE data, and D : T3 → R is the solution. Solving (1.3) using a

traditional Fourier spectral method amounts to replacing the data and the solution with their Fourier

series, simplifying the left-hand side into a single Fourier series, matching the Fourier coefficients

of both sides, and solving the resulting system of equations for the Fourier coefficients of D.

Two main sources of approximation error arise when implementing this technique computa-

tionally. The first is due to truncating the Fourier series involved to a finite number of terms. The

second is due to numerically approximating the Fourier coefficients of the PDE data. Due to the

rich theory of traditional spectral methods, these two sources of error can directly quantify the error

of the resulting approximation of D.

Lemma 1.1 (Strang’s lemma, [13]). Let Dtruncation be the function which has the same Fourier series

as D but truncated in some manner, and 0approximate and 5 approximate be computed using approxima-

tions of the Fourier series of 0 and 5 truncated in the same way as Dtruncation. Then the procedure

outlined above produces a solution Dspectral which satisfies

D − Dspectral

�1 .0, 5

D − Dtruncation

�1 +

0 − 0approximate

!∞ +

 5 − 5 approximate

!2

where .0, 5 denotes an upper bound with constants that depend on the PDE data.

This is a rough simplification of Strang’s lemma [13], which is itself a generalization of the

well-known Céa’s lemma (the specific version of the lemma that we use is presented and proven in

Lemma 4.6 below). Effectively, it states that the spectral method solution is optimal up to its Fourier

7

series truncation and the approximation of the PDE data 0 and 5 . Thus, analyzing convergence

reduces to estimating these two errors.

Using 3-dimensional FFTs to compute 0approximate and 5 approximate in the procedure suggested in

Lemma 1.1 naturally enforces a Fourier series truncation. A 3-dimensional FFT using a tensorized

grid of uniformly spaced points in each dimension will produce approximate Fourier coefficients

indexed by frequencies in the 3-dimensional hypercube on the integer lattice Z3 of sidelength

(note that when we refer to “bandwidth” in a multidimensional sense, we are still referring to the

sidelength of the hypercube containing these integer frequencies). As discussed above, the cost

of each 3-dimensional FFT in general requires more than 3 operations, as does the linear-system

solve (in the absence of any sparsity or other tricks). Thus, not only do traditional Fourier spectral

methods suffer from the curse of dimensionality, but even in moderate dimensions, multiscale prob-

lems (i.e., PDE data which require very high bandwidth to be fully resolved) can result in intractable

computations.

This is a prime opportunity to take advantage of our high-dimensional SFT algorithms to com-

pute 0approximate and 5 approximate. This allows for the data terms in Strang’s Lemma above to con-

verge near-optimally in terms of their compressibility in the Fourier basis. However, these SFTs

only provide us with truncation information useful for 0 and 5 , not necessarily D. One of the more

significant contributions of Chapter 4 is resolving this truncation gap. By analyzing in detail the

effect of the differential operator discretized using SFT approximations in frequency, we provide a

technique for computing the most important Fourier coefficients of D using knowledge of the most

important Fourier coefficients of 0 and 5 . We can then prove truncation estimates which allow for a

sparse spectral method with �1 error guarantees fully characterized by the Fourier compressibility

of the data and terms relating to the ellipticity properties of the original PDE. Note that though we

only consider a diffusion term in (1.3) for the simplicity of this overview, the analysis in Chapter 4

is actually that of a full multiscale, high-dimensional advection-diffusion-reaction equation, sim-

ilar to, e.g., the governing equations for flow dynamics in a porous medium used in hydrological

modeling [61].

8

1.1.4 A note on previous publication of this work

The three chapters following this introduction are each comprised of the results presented in

three previously available manuscripts. With some exceptions, Chapter 2 is published as [34],

Chapter 3 is published as [33], and (at the time of submission of this dissertation) Chapter 4 is

publicly available at [32] and has been submitted for publication. Thus, the contents of Chapters 2

and 3 were developed collectively with Lutz Kämmerer and Toni Volkmer and Chapters 2 to 4 with

Mark Iwen. Additionally, portions of this introduction were adapted from the introductions of the

original three manuscripts.

That being said, there are changes in the results given in this dissertation from their original pre-

sentations. In Chapter 2, the main modification is clarifying the Fourier recovery mechanism and

the error guarantees for approximation in Corollary 2.1. Chapter 3 includes the !∞ error guarantees

for the phase-encoding SFT originally provided in [32] and extends these guarantees to all algo-

rithms analyzed. Finally, Chapter 4 provides a complete analysis of advection-diffusion-reaction

equations rather than solely the diffusion equations of the original text.

1.1.5 Organization

The remainder of this chapter is comprised of a section setting the notation and a section collect-

ing some useful Fourier series related lemmas that are used throughout the text. The three following

chapters respectively present the three main results summarized above. Each chapter gives a short

overview, followed by the theory, and finally a numerics section with implementation details and

tests demonstrating that theory in practice.

1.2 Notation

We let 3 be the ambient dimension of function domains under consideration. The torus T is

defined as R/Z, i.e., [0, 1] with the endpoints identified. Given a natural number " ∈ N, we let

["] := {0, . . . , " − 1}.

Finite length vectors are defined using boldface. For example, we often use x ∈ T3 as a point in

the spatial domain of a function and k ∈ Z3 as a 3-dimensional frequency to index Fourier coeffi-

cients. This also extends to multiindexed finite vectors. For example, if I ⊂ Z3 with |I | < ∞, then

9

we would refer to a vector indexed over I as, e.g., ĝ = (6̂k)k∈I . Infinite length sequences remain

in standard roman font, e.g., 6̂ = (6̂k)k∈Z3 . All finite length vectors will be implicitly extended to

larger index sets by taking on the value zero wherever they are not originally defined. Additionally,

the set of all complex-valued, finite length vectors or infinite length sequences supported on an

index set D is denoted as CD . Our convention is to use zero-based indexing, i.e., C" = C["] .

In general, a multivariate function to be recovered is 6 : T3 → C. Specific functions of used in

the context of elliptic PDE are

• 0 : T3 → R, the diffusion coefficient;

• b : T3 → R3 , the advection field;

• 2 : T3 → R, the reaction coefficient;

• 5 : T3 → R, the forcing function; and

• D : T3 → R, the solution to the PDE.

Unless otherwise stated, we assume all functions are complex-valued and defined on the torus

T3 . For example, we take the inner product for D, E ∈ !2 := !2(T3;C) to be

〈D, E〉!2 :=
∫
T3
D(x)E(x) 3x

where E is taken to be the complex conjugate of E. Additionally, we assume all vectors and se-

quences are complex-valued and defined on Z3 unless otherwise stated. For example, we take the

inner product for D̂, Ê ∈ ℓ2 := ℓ2(Z3;C) to be

〈D̂, Ê〉ℓ2 :=
∑
k∈Z3

D̂kÊk.

The domains and ranges for the function spaces !1, !∞, � (the space of continuous functions), and

�∞ (the space of infinitely differentiable functions) are inferred similarly, as is the index set of the

spaces of sequences ℓ1 and ℓ∞.

We now define our specific notion of periodic Sobolev spaces (see also [8, Section 2.1] and [47,

Appendix A.2.2]).

Definition 1.3. For D ∈ !2 and U ∈ N30 a multiindex, if there exists a E ∈ !2 such that

〈E, q〉!2 = (−1) |U | 〈D, mUq〉!2 for all q ∈ �∞ ⊂ !2,

10

we call E the weak U derivative of D, and write mUD := E. We define the inner product

〈D, E〉�1 :=
∑

U∈{0,1}3 ,‖U‖1≤1

∫
T3
mUD(x)mE(x) 3x,

(where all derivatives are considered in the weak sense) and have the associated norm ‖D‖�1 :=√
〈D, D〉�1 . The periodic Sobolev space �1 is defined as �1 := {D ∈ !2 | ‖D‖�1 < ∞}.

For any 6 ∈ !1, and any k ∈ Z3 , we define the kth Fourier coefficient

6̂k :=
〈
6, e2cik·◦〉

!2 =

∫
T3
6(x)e−2cik·x 3x.

The Wiener algebra, := , (T3;C) is defined as the set of all functions with absolutely summable

Fourier coefficients, , :=
{
6 ∈ !1 | 6̂ ∈ ℓ1}. For any function 6 ∈ , , its Fourier series is written

as

6 =
∑
k∈Z3

6̂ke2cik·◦

(see also Theorem 1.1 below). Given a hatted sequence 6̂ ∈ CZ3 without having previously defined

6, the function 6 is then implicitly defined as the Fourier series with Fourier coefficients 6̂. In

examples where sequences of Fourier coefficients are known to be finite length, e.g., the output

of sparse Fourier transform algorithms, these coefficients are written in boldface, e.g., ĝB. Note

also that for notational aesthetic, Fourier coefficients for functions with super or subscripts will not

include the super or subscript under the hat, e.g., the Fourier coefficients of �3
3 are �̂3

3 . There are

some occasions where super or subscripts will refer to modifications of Fourier coefficients rather

than referring to the Fourier coefficients of a super or subscripted function (e.g., 6̂opt
B is the best

B-term approximation of 6̂, not the Fourier coefficients of a function 6opt
B), but these will be made

clear from context. For univariate functions 61d : T → C, we usually use l to index the Fourier

coefficients, e.g., 6̂1d =
(
6̂1d
l

)
l∈Z.

A 3-dimensional frequency set of interest is usually taken to be I ⊂ Z3 . In general, most 3-

dimensional frequency sets are labeled using calligraphic font. For example, Chapter 4 introduces

a particularly important class of frequency sets, the stamping sets denoted S# ⊂ Z3 for # ∈ N0

which are implicitly parameterized by the set of all active frequencies in a PDE’s dataA. The space

11

of all trigonometric polynomials with frequencies in I is denoted by ΠI := span{e2cik·◦ | k ∈ I}.

The expansion I of a frequency set I ⊂ Z3 is defined as

 I := max
9∈[3]

(
max
k∈I

: 9 −min
l∈I

; 9

)
+ 1.

Note that this can be interpreted as the sidelength of the smallest hypercube containing I.

For a sequence 6̂ ∈ CZ3 , its restriction to an index set I is denoted by 6̂ |I . The same is true for

vectors. This can be interpreted as either a vector in CI or a sequence in CZ3 which is set to zero

outside of I. When 6̂ refers to the Fourier coefficients of the function 6, restrictions of 6 to index

sets refer to the Fourier series with Fourier coefficients restricted in the same way, i.e.,

6 |I :=
∑
k∈Z3
(6̂ |I)k e2cik·◦ =

∑
k∈I

6̂ke2cik·◦.

We will also often consider restricting a multiindexed sequence to the hypercube with a fixed side-

length . We will denote this set by B3

, where the one-dimensional frequency band of length ,

B , is defined byB :=
(
−

⌈

2
⌉
,
⌊

2
⌋]
∩Z. Rather than subscript with this set, we use the shorthand

6̂ | := 6̂ |B3

. The best B-term approximation of a sequence 6̂ is defined as the restriction 6̂ to its

B-largest magnitude entries, denoted by 6̂opt
B . The same applies to vectors.

Given a univariate function 61d : T → C, we define the vector g1d ∈ C" as the vector of "

equispaced samples of 61d on T, that is,

g1d :=
(
61d

(
9

"

))
9∈["]

.

If not explicitly stated, the length of this sampled vector will be clear from context. The length-"

discrete Fourier transform (DFT) of a vector g1d is defined by(
F"g1d

)
l

:=
1
"

∑
9∈["]

61d
9 e−2cil 9/" =

1
"

∑
9∈["]

61d
(
9

"

)
e−2cil 9/" for all l ∈ ["],

where the matrix

F" :=
(

1
"

e−2cil 9/"
)
l∈["], 9∈["]

is the discrete Fourier transform matrix. In the context of discrete Fourier transforms, without

loss of generality, frequencies l are always taken implicitly modulo the length of the DFT, e.g.,(
F"g1d)

−1 =
(
F"g1d)

"−1. The same applies to the columns of the DFT matrix.

12

Given a natural number " ∈ N (often prime) and a generating vector z ∈ {1, . . . , " − 1}3 , the

associated rank-1 lattice is denoted

Λ(z, ") :=
{
9

"
z mod 1 | 9 ∈ ["]

}
.

For any 3-variate function 6, we define its restriction to a rank-1 lattice as 61d(C) := 6(Cz). Notice

then that by combining our previous conventions, given 6 : T3 → C, g1d is the vector of samples

of 6 on the rank-1 lattice Λ(z, "). The modulus function for a rank-1 lattice <z," : I → ["] is

defined by k ↦→ k · z mod "

1.3 Fourier preliminaries

In the sequel, we will make use of various well-known results on Fourier series and discrete

Fourier transforms. We provide their statements adapted to our setting here.

Theorem 1.1. The space of all infinitely differentiable periodic functions �∞ is dense in !2 and

�1. In particular, space of trigonometric monomials {e2cik·◦ ∈ �∞ | : ∈ Z3} is a basis for �∞, an

orthonormal basis for !2, and an orthogonal basis for �1.

Proposition 1.1 (Plancherel’s identity). If D ∈ !2, then D̂ ∈ ℓ2 with ‖D‖!2 = ‖D̂‖ℓ2 . If E ∈ !2, then

〈D, E〉!2 = 〈D̂, Ê〉ℓ2 .

Proof. Consider

〈D, E〉!2 =

〈 ∑
k∈Z3

D̂ke2cik·◦,
∑
l∈Z3

Êlecil·◦
〉
!2

=
∑

k,l∈Z3
D̂kÊl

〈
e2cik·◦, e2cil·◦〉

!2

=
∑

k,l∈Z3
D̂kÊlXk,l

=
∑
k∈Z3

D̂kÊk

= 〈D̂, Ê〉ℓ2

where we have used the orthonormality of the basis of trigonometric monomials in !2. The norm

result comes from taking E = D.

Lemma 1.2. Let 61d ∈ � (T) be bandlimited, that is, supp(6̂1d) ⊂ B" . Then 6̂1d = F"g1d.

13

Proof. Writing 61d(C) = ∑
l∈B" 6̂

1d
l e2cilC , for any l ∈ B" , we calculate(

F"g1d
)
l
=

1
"

∑
9∈["]

61d
(
9

"

)
e−2cil 9/"

=
1
"

∑
9∈["]

(∑
l′∈B"

6̂1d
l′e

2cil′ 9/"
)

e−2cil 9/"

=
1
"

∑
l′∈B"

6̂1d
l′

∑
9∈["]

e2ci(l′−l) 9/"

=
∑

l′∈B"
6̂1d
l′X0,(l′−l mod ")

= 6̂1d
l ,

as desired.

Lemma 1.3. For any function 61d : T→ C with Fourier series 61d(C) = ∑
l∈Z 6̂

1d
l e2cilC , define the

aliased polynomial

61d
alias(C) =

∑
l∈B"

(∑
l′≡l mod "

6̂1d
l′

)
︸ ︷︷ ︸

=:
(
6̂1d

alias

)
l

e2cilC .

Then the equispaced samples coincide, giving g1d = g1d
alias ∈ C

" and 6̂1d
alias = F"g1d.

Proof. We group frequencies in the Fourier series of 61d by their residues in B" , giving(
g1d

)
9
=

∑
l′∈Z

6̂1d
l′e

2cil′ 9/" =
∑
l∈B"

∑
=∈Z

6̂1d
l+="e2ci(l+=") 9/"

=
∑
l∈B"

(∑
l′≡l mod "

6̂1d
l′

)
e2cil 9/" =

(
g1d

alias

)
9

for all 9 ∈ ["] .

Now, since supp(6̂1d
alias) ⊂ B" , Lemma 1.2 implies 6̂1d

alias = F"g1d
alias = F"g1d.

14

CHAPTER 2

CONSTRUCTING MULTIPLE RANK-1 LATTICES DETERMINISTICALLY

As discussed in Section 1.1.1, this chapter focuses on computing Fourier series representations of

high-dimensional functions using multiple rank-1 lattices. We begin with a short overview of the

lattice construction and associated Fourier recovery methods in Section 2.1 and present the main

result in Theorem 2.1. Section 2.2 builds up the proof of Theorem 2.1 with some additional algo-

rithmic comments. Section 2.3 provides numerical tests of our multiple rank-1 lattice construction

and Fourier recovery algorithm.

2.1 Overview of results

We provide the first known deterministic algorithm for constructing multiple rank-1 lattices

[40] for any given index set I ⊂ Z3 with expansion I := max 9∈[3]
(
maxk∈I : 9 −minl∈I

)
+1. The

proposed algorithm takes a given generating vector z ∈ ["]3 of a reconstructing rank-1 lattice for

I as input and uses it to deterministically generate ! smaller lattice sizes %0, . . . , %!−1. Rather than

using the single set Λ(z, ") of " equispaced sampling points along the lattice generating vector

z as in Algorithm 1.1, we use the ! sampling sets Λ(z, %0), . . . ,Λ(z, %!−1) which are each still

equispaced points in the direction of z but are spaced out at different intervals. The frequencies in I

are then partitioned into ! groups, each associated with one of the smaller lattices This partitioning

is tracked by a function a : I → [!] with the defining property that

k · z . h · z mod %a(k) for all h ≠ k ∈ I, (2.1)

that is, for each lattice size %ℓ, the frequencies in a−1(ℓ) do not collide with any of the other fre-

quencies in I modulo %ℓ.

This is similar to the reconstructing property underlying the standard rank-1 lattice FFT ap-

proach Algorithm 1.1. However, to effectively use these ! sampling sets, we must take one FFT

along each smaller lattice and match only the frequencies associated to this lattice. Note though

that in total, these smaller lattices require only¹ O(|I| log2(I |I |)) function evaluations as op-

posed to the O(|I|2) function evaluations generally required by a single rank-1 lattice approach (cf.

15

Section 1.1.1). This process is outlined Algorithm 2.1.

Algorithm 2.1 Multiple rank-1 lattice FFT
Input: A function 6 : T3 → C, a frequency set of interest I ⊂ Z3 , multiple rank-1 lattices

Λ(z, %0), . . .Λ(z, %!−1) and mapping a : I → [!] satisfying (2.1)
Output: Approximate Fourier coefficients ĝ! ∈ CI

1: for ℓ ∈ [!] do
2: g1d,ℓ ← (6(9z/%ℓ)) 9∈[%ℓ]
3: ĝ1d,ℓ ← F%ℓg1d,ℓ

4: end for
5: for k ∈ I do
6: 6̂!k ←

(
ĝ1d,a(k)

)
<z,%a (k) (k)

// recall <z,%a (k) (k) := k · z mod %a(k)

7: end for

In detail, this chapter is devoted to proving this main theorem concerning the proposed Fourier

coefficient reconstruction algorithm on multiple rank-1 lattices.

Theorem 2.1. Let I ⊂ Z3 be some frequency set with expansion I . If Λ(z, ") is a reconstruct-

ing single rank-1 lattice for I, then one can deterministically construct multiple rank-1 lattices

Λ(z, %0), . . . ,Λ(z, %!−1) such that the Fourier coefficients {6̂k | k ∈ I} of any trigonometric

polynomial 6 ∈ ΠI can be exactly reconstructed using only samples of 6 on these lattices by Al-

gorithm 2.1. Moreover, the total number of function evaluations on these lattice points is bounded

by ∑
ℓ∈[!]

%ℓ ≤


2 for |I | = 1,

6 |I | log2(3 I") log
(
3 |I |

log2 (|I|)
log2(3 I")

)
for |I | ≥ 2.

The total computational complexity for the construction of these rank-1 lattices can be bounded by

O
(
|I |2 log(|I|) log(3 I") + |I| (3 + log(3 I") log(log(3 I")))

)
,

and the total computational complexity for reconstructing the Fourier coefficients can be bounded

by

O
(
|I |

(
3 + log(3 I") log2(|I| log|I | (3 I"))

))
. (2.2)

¹These bounds are simplifications of those in Lemma 2.2 and Theorem 2.2 under the mild assumptions that the
dimension 3 and size of the original single rank-1 lattice " are bounded polynomially by max{|I|, }. The latter
assumption holds for single rank-1 lattices constructed by CBC methods, cf. Section 2.2.1.

16

Proof. The bounds on the total number of samples from the rank-1 lattices follow from Theo-

rem 2.2, and the bound on the computational complexity for lattice construction follows from Sec-

tion 2.2.1. The exactness of the Fourier coefficient recovery is a result of Corollary 2.1. Since

Algorithm 2.1 requires an FFT of length ℓ for each ℓ ∈ [!], the total complexity of Line 1 to Line 4

requiresO(log
(
maxℓ∈[!] %ℓ

) ∑
ℓ∈[!] %ℓ) complexity, where the maximum is bounded in Lemma 2.2

and the sum is bounded above. The remaining lines are O(3 |I |) (assuming the modulus functions

have not been precomputed, in which case the complexity would reduce to O(|� |)). Simplifying

these complexities results in (2.2).

Note that Algorithm 2.1 exactly reconstructs all Fourier coefficients of multivariate trigonomet-

ric polynomials with frequencies in a specific frequency set I which is assumed to be given. One

can also apply these rules in order to compute approximations of the Fourier coefficients of more

general periodic functions. The resulting trigonometric polynomial can be used as an approximant.

For specific approximation settings, the worst case error of this approximation is almost as good as

the approximation one achieves when approximating the Fourier coefficients using the lattice rule

that uses all samples of the reconstructing single rank-1 lattice from which we start the construction

of our rules, cf. [44] for details. From that point of view, the strategy we present here even yields a

general approach for significantly reducing the number of sampling values used while only slightly

increasing approximation errors. We refer to Corollary 2.1 for more details and to the numerical

example in section 2.3.2 that yields Figure 2.5 illustrating this assertion.

2.2 The proof of Theorem 2.1

We denote the @th prime number by ?@, @ ∈ N. For technical reasons, we define ?0 := 1.

Lemma 2.1. Let J := {:1, . . . , :�} ⊂ N with :1 < . . . < :� and "̃ ≥ :� − :1. Also let @ ∈ N

be such that ?@−1 < � ≤ ?@, and & := max
(
1, 2(� − 1)

⌈
log?@ ("̃) − 1

⌉)
. Then, there exist primes

%0, . . . , %!−1 ∈ P� := {?@+ℓ}ℓ∈[&] with ! ≤ log2(�) + 1 such that

J =
⋃
ℓ∈[!]
{: ∈ J | : . ℎ mod %ℓ for all ℎ ∈ J \ {:}}

holds.

17

Proof. We assume � ≥ 2 and "̃ > ?@, otherwise the statement is trivial. Without loss of generality,

we can also assume J ⊂ ["̃] by considering the residues of each : 9 ∈ J modulo "̃ . Note that

these residues are all unique due to "̃ > :� − :1, and therefore, any modulo %ℓ collision of the

residues is equivalent to a collision of their original values.

Let P� = {?@+ℓ}ℓ∈[&] be the set of the & smallest prime numbers not smaller than ?@ and

.8, 9 := {? ∈ P� | :8 ≡ : 9 mod ?} a subset which collects all primes ? in P� where the frequencies

:8 ∈ J and : 9 ∈ J collide modulo ?. Since |:8 − : 9 | is divisible by each prime ? in .8, 9 , the

Chinese Remainder Theorem implies that
∏

?∈.8, 9 ? divides |:8 − : 9 | < "̃ . Therefore, we observe

?
|.8, 9 |
@ ≤

∏
?∈.8, 9

? < "̃

for all 8 ≠ 9 ∈ {1, . . . , �} =: (0, i.e., :8 ≠ : 9 , and this implies |.8, 9 | ≤
⌈
−1 + log?@ ("̃)

⌉
.

Moreover, we collect all primes for which :8 collides with any other : 9 in the sets

.8 : = {? ∈ P� | :8 ≡ : 9 mod ? for at least one : 9 ∈ J \ {:8}}

=
⋃

: 9∈J\{:8}
.8, 9 .

The cardinality of each .8 is bounded by

|.8 | ≤
∑

: 9∈J\{:8}
|.8, 9 | ≤ (� − 1)

⌈
−1 + log?@ ("̃)

⌉
.

Accordingly, we count

|P� \ .8 | = |P� | − |.8 | ≥ & − (� − 1)
⌈
−1 + log?@ ("̃)

⌉
≥ |P� |/2.

We define the indicator variables

/8,@+ℓ :=


1 ?@+ℓ ∈ P� \ .8,

0 ?@+ℓ ∈ .8,

for all :8 ∈ J and ?@+ℓ ∈ P� . Summing up these indicator variables and using the estimates from

above yields ∑
8∈(0

∑
ℓ∈[&]

/8,@+ℓ =
∑
8∈(0

|P� \ .8 | ≥ |(0 | |P� |/2 = � |P� |/2. (2.3)

18

We will now show that
∑
8∈(0 /8,@+ℓ ≥ �/2 holds for at least one ?ℓ ∈ P� by contradiction. To

this end, suppose that
∑
8∈(0 /8,@+ℓ < �/2 for all ?@+ℓ ∈ P� . Accordingly, we estimate∑

ℓ∈[&]

∑
8∈(0

/8,@+ℓ < |(0 | |P� |/2 = � |P� |/2

which is in contradiction to (2.3). Thus, there exists at least one prime ?@+ℓ0 ∈ P� such that∑
8∈(0

/8,@+ℓ0 = | {:8 ∈ J | :8 . : 9 mod ?@+ℓ0 for all : 9 ∈ J \ {:8}}︸ ︷︷ ︸
=:J1

| ≥ �/2.

We set %0 := ?@+ℓ0 , and then apply the strategy iteratively.

For A ∈ N, we define (A := {8 ∈ (A−1 | ∃: 9 ∈ J \ {:8} with :8 ≡ : 9 mod %A−1} and obtain

BA := |(A | ≤ 2−A�. Obviously, we have

J ′A := {:8 | 8 ∈ (A} = J \
A⋃
C=1
JC , (2.4)

which are the frequencies that collide modulo each of %0, . . . , %A−1 to some other frequency in J .

We reconsider the variables defined above, but now we restrict the indices to 8 ∈ (A . For instance,

we observe {%0, . . . , %A−1} ⊂ .8 for all 8 ∈ (A . We estimate∑
8∈(A

∑
ℓ∈[&]

/8,@+ℓ =
∑
8∈(A
|P� \ .8 | ≥ BA |P� |/2.

Using the same contradiction as above, we observe that for at least one ?@+ℓA ∈ P� \ {%0, . . . , %A−1}

we have ∑
8∈(A

/8,@+ℓA = | {:8 ∈ J ′A | :8 . : 9 mod ?@+ℓA for all : 9 ∈ J \ {:8}}︸ ︷︷ ︸
=:JA+1

| ≥ BA/2.

We now set %A := ?@+ℓA and increase A up to the point where 0 = |(A+1 | = BA+1 holds. In order to

estimate the largest possible step number Amax ≥ A , we require that BAmax+1 ≤ 2−(Amax+1)� < 1. This

is satisfied in particular when Amax =
⌊
log2(�)

⌋
, and thus we bound the total number of primes as

! ≤ Amax + 1 ≤ log2(�) + 1.

Remark 2.1. In the proof of Lemma 2.1 we determined that there exist primes in the candidate

set P� fulfilling the assertion. This set contains the first & := max
(
1, 2(� − 1)

⌈
log?@ ("̃) − 1

⌉)
19

prime numbers not smaller than ?@, ?@−1 < � ≤ ?@, which only depends on �. However, from a

theoretical point of view, any prime number ? larger than d�/2e may fulfill |J1 | ≥ �/2. Thus, one

also could start the set of prime candidates at that point, which would result in a slightly increased

cardinality of the candidate set, due to the fact that & depends on the logarithm to the base of the

smallest prime in the candidate set. In spite of that increased cardinality, the maximal prime number

in the candidate set ?@+&−1, which is estimated in the next lemma, may be decreased. Analyzing

this approach leads to similar statements as in the previous and the following lemmas with slightly

changed constants. In more detail, both constants �1 and �2 can be bounded less than 3. However,

the proof requires more effort and we could not bound the resulting constants lower than those stated

in Lemma 2.2.

Lemma 2.2. Assume �, "̃ ∈ N, � ≤ "̃ , ?@ is the smallest prime not smaller than �, and let

& := max
(
1, 2(� − 1)

⌈
log?@ ("̃) − 1

⌉)
. Then, we estimate

?@+&−1 ≤


2 for � = 1,

�1� log� ("̃) log
(
�2� log� ("̃)

)
for � ≥ 2,

with absolute constants �1 < 2.3 (1 + e−3/2) ≤ 2.832 and �2 ≤ 2.3.

Proof. For � = 1, we observe ?@+&−1 = ?@ = 2.

When � ≥ 2 and ?@ ≥ "̃ we have & = 1 and ?@ < 2� as a result of Bertrand’s postulate.

We then consider � ≥ 2 and ?@ < "̃ which yields

@ +& − 1 = @ − 1 + 2(� − 1)
⌈
log?@ ("̃) − 1

⌉
≤ @ − 1 + 2(� − 1) log?@ ("̃).

We distinguish two cases, where the final constants from the lemma are determined by the

second case. In the first, we restrict to the finite range where 2 ≤ � ≤ 8 with ?@ < "̃ < ?
d10/(�−1)e
@ ,

and numerically check that the upper bound

?@+&−1 < 2.831 � log� ("̃) log
(
2.3 � log� ("̃)

)
is satisfied. In the second case, where 2 ≤ � ≤ 8 with "̃ ≥ ?

d10/(�−1)e
@ or � ≥ 9, we have

20

@ +& − 1 ≥ 20. We then estimate this quantity from above as

@ +& − 1 ≤ @ − 1 + 2(� − 1) log� ("̃) =
(

@ − 1
� log� ("̃)

+ 2
� − 1
�

)
� log� ("̃)

≤
(
@ − 1
�
+ 2

� − 1
�

)
� log� ("̃) ≤ 2.3 � log� ("̃)

where one achieves the last estimate by computing @−1
�
+ 2 �−1

�
for 2 ≤ � < 66 and for � ≥ 66, one

obtains
@ − 1
�
+ 2

� − 1
�

[60, Eq. (3.6)]
≤ 1.25506

log �
+ 2 ≤ 1.25506

log 66
+ 2 < 2.3 .

By the estimate

4−1/2G log(G) ≤ G1+e−3/2
,

implying

log
(
4−1/2G log G

)
= log(G) + log log(G) − 1

2
≤ (1 + e−3/2) log G

for G > 1, an application of [60, Eq. (3.11)] gives

?@+&−1 < (@ +& − 1)
(
log(@ +& − 1) + log log(@ +& − 1) − 1/2

)
≤ (1 + e−3/2) (@ +& − 1) log(@ +& − 1)

≤ (1 + e−3/2) 2.3 � (log� ("̃)) log
(
2.3 � log� ("̃)

)
,

as desired.

Lemma 2.1 ensures the existence of a set of primes %0, . . . , %!−1 such that each single element

of a given set of integers will not collide modulo at least one %ℓ with any other of these integers.

We can now use these primes to convert the large reconstructing single rank-1 lattice Λ(I, ",I) for

some frequency set I into smaller rank-1 lattices which, based on their ability to avoid collisions

in the frequency domain, will provide a sampling set to exactly reconstruct the Fourier coefficients

of all multivariate trigonometric polynomials in ΠI .

Theorem 2.2. Let I ⊂ Z3 , |I | ≥ 2, and a generating vector z ∈ ["]3 of Λ(z, "), a reconstructing

rank-1 lattice for I, be given. We determine "̃ := max{k · z | k ∈ I} − min{k · z | k ∈ I} + 1.

21

Then there exists a set of prime numbers %0, . . . , %!−1, ! ≤ log2(|I|) + 1, such that

I =
⋃
ℓ∈[!]
{k ∈ I | k · z . h · z mod %ℓ for all h ∈ I \ {k}}, (2.5)

Thus, the multiple rank-1 latticesΛ(z, %0), …,Λ(z, %!−1) can be used as input for the multiple rank-

1 lattice Fourier transform Algorithm 2.1. The total number of sampling values in these multiple

rank-1 lattices can be bounded by∑
ℓ∈[!]

%ℓ ≤ 2�1 |I | (log2("̃)) log
(
�2 |I | log|I | ("̃)

)
, (2.6)

with constants �1, �2 from Lemma 2.2.

Proof. Define the set of hashed multivariate frequencies in I as I1d := {k · z | k ∈ I}. Applying

Lemma 2.1 with J = I1d and "̃ = maxI1d−minI1d+1 as above, we find a set of prime numbers

{%0, . . . , %!−1} with maxℓ∈[!] %ℓ ≤ ?@+&−1 and respective rank-1 lattices Λ(z, %0), . . .Λ(z, %!−1)

such that (2.5) holds. We estimate������ ⋃ℓ∈[!] Λ(z, %ℓ)
������ ≤ ∑

ℓ∈[!]
%ℓ ≤ (log2(|I|) + 1)?@−1+&

Lem. 2.2
≤ 2�1 |I | log2("̃) log

(
�2 |I | log|I | ("̃)

)
.

Remark 2.2. We consider two crucial estimates on "̃ in Theorem 2.2

"̃ = 1 +max
k∈I


∑
8∈[3]

:8I8

 +max
h∈I


∑
8∈[3]
−ℎ8I8

 ≤ 1 +
∑
8∈[3]

I8

(
max
k∈I

:8 −min
h∈I

ℎ8

)
≤ 3 I" (2.7)

"̃ = 1 +max
k∈I


∑
8∈[3]

:8I8

 −min
h∈I


∑
8∈[3]

ℎ8I8

 ≤ 2‖z‖∞max
k∈I
‖k‖1 + 1 ≤ 2" max

k∈I
‖k‖1 (2.8)

where I is the expansion of I.

The estimate in (2.7) is a rough but universal upper bound on "̃ that depends on the dimen-

sion 3. The inequality in (2.8) provides a dimension independent upper bound on "̃ in cases where

the frequency set I is contained in an ℓ1-ball of a specific size ', i.e., I ⊂ {k ∈ Z3 | ‖k‖1 ≤ '},

which yields "̃ ≤ 2"'. We refer to Section 2.2.1, where we present and analyze the computational

costs and discuss the advantages of the latter estimate.

22

The Fourier coefficient reconstruction process in Algorithm 2.1 allows for us to prove theoret-

ical error guarantees for approximation of functions that are not necessarily Fourier polynomials

supported on a known I. In particular, we are able provide !∞ and !2 bounds for the approxima-

tion error in terms of the error in truncating a function’s Fourier coefficients to a chosen I. The

proof relies on the fact that the aliasing error in a DFT is comparable to the truncation error. See,

e.g., [44, Lemma 3.1] for similar results and further details. For the following we define the Wiener

algebra, := {6 ∈ !1 | ‖6̂‖ℓ1 < ∞}.

Corollary 2.1. Let 6 ∈ , and fix a frequency set I ⊂ Z3 with |I | < ∞. Use the multiple rank-1

lattices for I in Theorem 2.2 with Algorithm 2.1 to produce ĝ! and 6! :=
∑

k∈I 6̂
!
k e2cik·◦ ∈ ΠI .

Then 6! approximates 6 with the error bounds

6 − 6!

!∞ ≤ (1 + !)‖6̂ − 6̂ |I ‖ℓ1

6 − 6!

!2 ≤
(
1 +
√
!

)
‖6̂ − 6̂ |I ‖ℓ2 .

Proof. By the triangle inequality

6 − 6!

!∞ ≤

∑
k∈I

��6̂k − 6̂!k
�� + ∑

k∈Z3\I
|6̂k |

=

6̂ |I − 6̂!

ℓ1 + ‖6̂ − 6̂ |I ‖ℓ1 .

Now, note that by partitioning the frequencies k ∈ I by their values of a(k), for ĝ1d,ℓ as in Line 3

of Algorithm 2.1, we obtain

6̂ |I − 6̂!

ℓ1 =
∑
ℓ∈[!]

∑
k∈a−1 (ℓ)

��6̂k − 6̂!k
��

=
∑
ℓ∈[!]

∑
k∈a−1 (ℓ)

���6̂k − ĝ1d,ℓ
k·z mod %ℓ

���
=

∑
ℓ∈[!]

∑
k∈a−1 (ℓ)

�����6̂k −
∑

l≡k·z mod %ℓ

6̂1d
l

�����,
where the final line follows from Lemma 1.3. Since the multidimensional frequencies k ∈ Z3 of 6̂

map to the frequencies of 6̂1d by k ↦→ k · z and for any k ∈ a−1(ℓ), there are no such h ∈ I \ {k}

23

such that h · z ≡ k · z mod %ℓ, we know that�����6̂k −
∑

l≡k·z mod %ℓ

6̂1d
l

����� ≤ ∑
h∈Z3\I

h·z≡k·z mod %ℓ

|6̂h |.

Thus

6̂ |I − 6̂!

ℓ1 =
∑
ℓ∈[!]

∑
k∈a−1 (ℓ)

�����6̂k −
∑

l≡k·z mod %ℓ

6̂1d
l

�����
≤

∑
ℓ∈[!]

∑
k∈a−1 (ℓ)

∑
h∈Z3\I

h·z≡k·z mod %ℓ

|6̂h |

≤
∑
ℓ∈[!]

∑
h∈Z3\I

|6̂h |

= !‖6̂ − 6̂ |I ‖ℓ1 ,

finishing the proof of the !∞/ℓ1 result. The !2/ℓ2 result follows by replacing the !∞ norm by the

!2 norm, taking squares of all terms, and taking a final square root.

As considered in [40, Subsection 4.2] for randomized lattice constructions, we can take an alter-

native approach to Theorem 2.2 which requires fewer samples at the cost of having only theoretical

reconstruction guarantees for trigonometric polynomials (i.e., the results concerning approximation

discussed in Corollary 2.1 do not apply in a straightforward manner). Rather than require that at

each step of the lattice construction, a prime ? is chosen so that a set of frequencies can be obtained

which do not collide with any other frequency in the original frequency set modulo ?, we instead

recursively reduce the size of the set that the resulting rank-1 lattice has the reconstruction property

over without concern for other frequencies.

Theorem 2.3. Let I ⊂ Z3 , |I | ≥ 1, 3 ≥ 2, "̃ := max{k · z | k ∈ I} − min{k · z | k ∈ I|} + 1.

For Λ(z, ") a reconstructing single rank-1 lattice for I , there exist primes %0, . . . , %!−1, ! ≤

log2(|I|) + 1, with

∑
ℓ∈[!]

%ℓ ≤


2 for |I | = 1,

8 |I | log2("̃) log
(
2 log2("̃)

)
for |I | ≥ 2,

(2.9)

24

such that for every 6 ∈ ΠI , the formula

6̂k =
1

%a(k)

%a (k)−1∑
9=0

6a(k)−1

((9z) mod %a(k)
%a(k)

)
e
−2ci 9k·z
%a (k)

with 6a(k)−1(x) := 6(x) −
∑

h∈{l|a(l)<a(k)}
6̂h e2cih·x

(2.10)

holds where a : I → [!] maps frequencies to the lattice used to reconstruct the corresponding

Fourier coefficient, i.e., we can uniquely reconstruct each multivariate trigonometric polynomial

with frequencies in I using samples along the rank-1 lattices Λ(z, %0), . . . ,Λ(z, %!−1).

Proof. The proof is simply a recursive application of part of the previously discussed approach, so

we only provide a sketch.

We use only the first prime %0 from Lemma 2.1 to determine a set of frequencies I0 ⊂ I such

thatΛ(z, %0) is a reconstructing single rank-1 lattice forI0 with |I0 | ≥ |I|/2. Performing the recon-

struction process in Theorem 2.2 for only frequencies in I0 using samples from Λ(z, %0) recovers

the corresponding Fourier coefficients exactly. This then defines the correspondence a(k) = 0 for

all k ∈ I0. Subtracting off the recovered polynomial terms and recursively repeating the process

with the frequency set I \ I0 gives (2.10).

The upper bound on the number of samples is a result of Lemma 2.2, noting that at each step,

the cardinality of the frequency set is reduced by half. Splitting the dependence on |I | and "̃ in

the second logarithm using the inequality log(GH) ≤ 2(log G) (log H) for G, H ≥ e and estimating the

resulting geometric series gives (2.9).

2.2.1 Analysis of lattice construction

The approach analyzed in Theorem 2.2 provides a constructive, deterministic method for build-

ing reconstructing multiple rank-1 lattices from reconstructing single rank-1 lattices. Algorithm 2.2

summarizes the suggested approach in detail. In the following, we analyze the runtime complexity.

We start by analyzing Line 1 which is O (3 |I |). The arithmetic complexity of Lines 2 and 4

are dominated by determining the set of primes P|I |, which can be done in linear time with respect

to ?@+&−1 ≤ �1 |I |(log|I | ("̃)) log
(
�2 |I | log|I | ("̃)

)
estimated in Lemma 2.2, therefore requiring

25

Algorithm 2.2 Deterministic construction of multiple rank-1 lattice suitable for reconstruction and
approximation, according to Theorem 2.2 and Lemma 2.1
Input: frequency set I ⊂ Z3 , generating vector z ∈ N30 of a reconstructing single rank-1 lattice for
I

Output: number of lattices !, lattice sizes %0, . . . , %!−1, and mapping a : I → [!] for which
coefficients are computed by which lattice

1: J ′0 ← {k · z | k ∈ I}
2: Determine @ ∈ N s.t. ?@−1 < |I | ≤ ?@ // recall ?ℓ is the ℓth prime
3: & ← max

(
0, 2(|I| − 1)

⌈
log?@ ("̃) − 1

⌉)
// recall "̃ := maxJ ′0 −minJ ′0 + 1

4: P|I | ←
{
?@+ℓ

}
ℓ∈[&]

5: Initialize A ← 0 and a : I → N with a(k) = 0 for all k ∈ I
6: repeat
7: for all ℓ ∈ [&] do
8: J ′

A+1 = ∅
9: for all k · z ∈ J ′A do

10: a(k) ← A

11: if k · z ≡ ℎ′ mod ?@+ℓ for any ℎ′ ∈ J ′0 \ {ℎ} then
12: J ′

A+1 ← J
′
A+1 ∪ {k · z}

13: end if
14: end for
15: if

��J ′
A+1

�� ≤ ��J ′A ��/2 then
16: %A ← ?@+ℓ
17: break
18: end if
19: end for
20: A ← A + 1
21: until J ′A = ∅
22: ! ← A

O
(
|I | log

(
"̃

)
log

(
log

(
"̃

)))
arithmetic operations.

The goal of the loop from Lines 6 to 21 is to separate the frequencies inI into ! groups. Each of

these ℓ ∈ [!] groups is assigned a prime %ℓ so that the frequencies do not collide with any others in

I modulo %ℓ. In the worst case, there will be at most ! = O(log(|I|)) (cf. Theorem 2.2) repetitions

of this loop. The first inner loop requires, at most, a scan through each of the& = O(|I| log?@ ("̃))

primes in P|� |. The body of this inner loop can be accomplished in O(|I| log(|I|)) time. Indeed,

this requires the computation of : mod ?@+ℓ for all : ∈ J ′0 (where we make sure to track the

association between : mod ?@+ℓ and the original frequency k ∈ I with : = k · z), a sort of these

residues, and a linear scan to determine duplicates of the residues of elements originally in J ′A

26

(where we can rely on our function a and the aforementioned association between : mod ?@ℓ and

k). This is dominated by the sort complexity, O(|I| log(|I|)). Thus, the total complexity for

Lines 6 to 21 is O
(
|� |2 log(|I|) log

(
"̃

))
(noting that log(|I|) < log

(
?@

)
). Altogether, we observe

a runtime complexity of

O
(
|I |2 log(|I|) log

(
"̃

)
+ |I|

(
3 + log

(
"̃

)
log

(
log

(
"̃

))))
.

In the following, we comment on practical issues of Algorithm 2.2. Line 1 might suffer from

overflowing integers which can be avoided by using higher precision integer representations. An

alternative is to skip this precomputation and instead compute the inner products modulo ?@+ℓ on

the fly in Line 11 which will increase the runtime complexity by a factor of 3 in the first summand.

Note also that one does not necessarily need to compute "̃ in advance. For the loop over primes

starting in Line 7, one might just start with the prime ?@ and increase the prime number using some

“nextprime” function, which would increase the second summand in the runtime complexity.

Finally, we discuss the range of the numbers "̃ as well as the influence of the original single

rank-1 lattice on the estimates herein. In general, there are two different suitable approaches for

finding a single reconstructing rank-1 lattice for a given frequency index setI. A simple approach is

to just pick a rank-1 latticeΛ(z, ") that provides the reconstruction property from a simple number-

theoretic point of view. For instance one can choose generating vectors z and lattice sizes " that

fulfill

I0 ∈ N, I8 ≥ (1 +max
k∈I

:8−1 −min
h∈I

ℎ8−1)I8−1, 8 = 1, . . . , 3 − 1,

" ≥ (1 +max
k∈I

:3−1 −min
h∈I

ℎ3−1)I3−1.

Clearly, even for extremely sparse frequency sets and moderate expansions of I this approach will

lead to exponentially increasing 3 − 1 components I3−1 ≥ 23−1 and lattice sizes " ≥ 23 .

As in Remark 2.2, this approach will lead to exponential increase in "̃ and thus a linear depen-

dence of the dimension 3 in all log
(
"̃

)
terms. From a theoretical point of view, this turns out to

be disadvantageous for higher dimensions 3 due to the fact that the runtime complexity of Algo-

27

rithm 2.2 as well as the estimates of the total number of sampling values in Theorems 2.2 and 2.3

will be affected by this factor.

A more costly way of determining reconstructing single rank-1 lattices is a suitable CBC con-

struction as suggested in [46], which requires a computational complexity in O
(
3 |I |2

)
. The ad-

ditional computational effort pays off when applying the theoretical bounds on the resulting lattice

size " . In more detail, the CBC approach offers reconstructing rank-1 lattices with prime lattice

sizes " bounded from above by " ≤ max(|I|2, 2(I + 1)), cf. [39, 46]. As a consequence, the

estimates in Remark 2.2 give "̃ ≤ �3 2
I |I |

2 or even "̃ ≤ �′' I |I |2 for I a subset of an ℓ1-ball

of radius '. Thus, the estimates on the required number of sampling values for unique reconstruc-

tion of multivariate trigonometric polynomials in ΠI estimated in (2.6) are respectively only either

logarithmically dependent on 3 or even independent of 3.

2.3 Numerics

In this section, we investigate the statements of Theorems 2.2 and 2.3 numerically². We consider

different types of frequency setsI. In particular, we use symmetric hyperbolic cross type frequency

sets

I = �3
',even :=

k := (:0, . . . , :3−1)> ∈ (2Z)3 |
∏
C∈[3]

max(1, |:C |) ≤ '
 (2.11)

with expansion parameter ' ∈ N, which results in I ≤ 2', in up to 3 = 9 spatial dimensions.

These frequency sets �3
',even have the property that in each frequency component only even indices

occur. This matches the behavior of the Fourier support of the test function �3
3 introduced below

in Section 2.3.2 which we approximate using samples on multiple rank-1 lattices, see also [50, 44]

and [65, section 2.3.5].

In addition, we use random frequency sets I ⊂ ([−', '] ∩ Z)3 , which yield I ≤ 2', and we

consider these in up to 3 = 10 000 spatial dimensions.

²All code is available at https://www.math.msu.edu/~markiwen/Code.html

28

https://www.math.msu.edu/~markiwen/Code.html

2.3.1 Deterministic multiple rank-1 lattices generated by Algorithm 2.2 suitable for recon-
struction and approximation

2.3.1.1 Resulting numbers of samples and oversampling factors

In the beginning, we determine the overall number of samples in the multiple rank-1 lattices

output from Algorithm 2.2. Up to an additive term of 1 − !, this corresponds to
∑
ℓ∈[!] %ℓ in

Theorem 2.2, since the node 0 (point of origin) is contained in each of the resulting rank-1 lattices

Λ(z, %ℓ). We start with symmetric hyperbolic cross sets I = �3
',even as defined in (2.11) and

consider three different types of reconstructing single rank-1 lattices for I, Λ(z, "), as input for

Algorithm 2.2.

First, we use the rank-1 lattices from [50, Table 6.1], which were generated by the CBC method

[38, Algorithm 3.7], as input for Algorithm 2.2. We plot the results in Figure 2.1a for spatial

dimensions 3 ∈ {2, 3, . . . , 9} and with various refinements ' ∈ N of I = �3
',even. The observed

numbers of samples seem to behave slightly worse than linear with respect to the cardinality of the

frequency set I. The corresponding theoretical upper bounds according to Theorem 2.2 using (2.8)

for "̃ are also shown as filled markers with dashed lines for spatial dimensions 3 ∈ {2, 9} in

Figure 2.1a. The plotted upper bounds are distinctly larger and their slopes seem to be slightly

higher than those observed by plotting the numerical tests.

Second, we consider single reconstructing rank-1 lattices for I, Λ(z, "), with

z := (1, I + 1, (I + 1)2, . . . , (I + 1)3−1)> and " := (I + 1)3 = (2' + 1)3 , (2.12)

where I = 2' in our case, and we show the results in Figure 2.1b. We observe that the obtained

numbers of samples are similar to the ones in Figure 2.1a, and the theoretical upper bounds accord-

ing to Theorem 2.2 using (2.8) for "̃ are slightly higher due components of the generating vector z

being larger.

Third, we apply Algorithm 2.2 to the reconstructing single rank-1 lattices for I, Λ(z, "), as

29

3=2 3=3 3=4 3=5 3=6 3=7 3=8 3=9 theo.

100 101 102 103 104 105 106

100
101

103

105

107

109

|I |

#s
am

pl
es

(a) Λ(z, ") generated by [38, Algorithm 3.7]

100 101 102 103 104 105 106

100
101

103

105

107

109

|I |

#s
am

pl
es

(b) z and " according to (2.12)

Figure 2.1 Overall #samples = 1 − ! + ∑
ℓ∈[!] %ℓ for symmetric hyperbolic cross index sets I =

�3
',even. Filled markers with dashed lines represent theoretical upper bounds from Theorem 2.2 for

3 ∈ {2, 9} calculated using (2.8).

considered in [37, section 6]. In detail, we choose

" :=
∏
C∈[3]

@C and z := ("/@0, "/@1, . . . , "/@3−1)>,

where @0 := 3 I + 3 + 1 and @C+1 := min{? ∈ N | ? > @C and ? prime}.
(2.13)

Here, the observed numerical results yield results that do not differ recognizably from Figure 2.1b,

and we therefore omit these plots. We would like to point out, that the theoretical upper bounds for

that kind of reconstructing single rank-1 lattices are slightly worse than those plotted in Figure 2.1b,

cf. Remark 2.2.

Note that when running Algorithm 2.2 using single rank-1 lattices Λ(z, ") of type (2.12)

and (2.13) in practice, one may need to deal with limited numeric precision in the computer arith-

metic. For instance, for higher spatial dimensions, some components IC of the generating vector

z may become larger than 64-bit integers. This means that the sets J ′A may have to be computed

carefully and repeatedly modulo each considered prime ? ∈ P|I | when searching for the primes

%0, . . . , %!−1 in Lines 6 to 21 of Algorithm 2.2.

In order to have a closer look at the number of samples, we visualize the oversampling factor

#samples / |I| = (1 − ! + ∑
ℓ∈[!] %ℓ)/|I| in Figure 2.2. For the considered test cases and the

30

three different types of lattices, we observe that the oversampling factors are below 1.7 log |I | + 3

for |I | > 1. This is distinctly smaller than the theoretical upper bounds in Theorem 2.2 suggest,

which have a constant of ≈ 5.7 and additional logarithmic factors depending on "̃ . For instance

in Figure 2.2a, for I = �9
256,even (cardinality |I | = 1 264 513 and #samples = 27 025 383), the

oversampling factor is ≈ 21.37 whereas the corresponding upper bound for the oversampling factor

is ≈ 3 069 according to Theorem 2.2 using (2.8) for "̃ . The plots for reconstructing single rank-1

lattices for I, Λ(z, "), according to (2.13) look similar to the ones according to (2.12), where the

latter are shown in Figure 2.2b. Moreover, we only observe a relatively small difference compared

to Figure 2.2a.

3=2 3=3 3=4 3=5 3=6 3=7 3=8 3=9 1.7 log |I | + 3

100 101 102 103 104 105 106

1

5

10

15

20

|I |

#s
am

pl
es
/|
I
|

(a) Λ(z, ") generated by [38, Algorithm 3.7]

100 101 102 103 104 105 106

1

5

10

15

20

|I |

#s
am

pl
es
/|
I
|

(b) z and " according to (2.12)

Figure 2.2 Oversampling factors for deterministic reconstructing multiple rank-1 lattices for sym-
metric hyperbolic cross index sets �3

',even.

Next, we change the setting and use frequency sets I drawn uniformly randomly from cubes

[−', ']3 ∩ Z3 . We generate reconstructing single rank-1 lattices for I, Λ(z, "), using [38, Al-

gorithm 3.7]. Then, we apply Algorithm 2.2 in order to deterministically generate reconstructing

multiple rank-1 lattices. We repeat the test 10 times for each setting with newly randomly cho-

sen frequency sets I and determine the maximum number of samples over the 10 repetitions. For

frequency set sizes |I | ∈ {10, 100, 1 000, 10 000} in 3 ∈ {2, 3, 4, 6, 10, 100, 1 000, 10 000} spatial

dimensions and |I | = 100 000 for only some of the aforementioned spatial dimensions 3, we visu-

alize the resulting oversampling factors in Figure 2.3 for expansion parameter ' = 64 (I ≤ 128).

31

Using different reconstructing single rank-1 lattices for I, Λ(z, "), as in Figure 2.2, changes the

oversampling factors only slightly, and the oversampling factors are still well below 1.7 log |I | + 3,

compare Figures 2.3a and 2.3b. The plots for reconstructing single rank-1 lattices Λ(z, ") accord-

ing to (2.13) are omitted since they look very similar to Figure 2.3b. As mentioned before, we have

to take care of possible issues with numeric precision when running Algorithm 2.2 on reconstruct-

ing single rank-1 lattices of type (2.12) and (2.13) in practice.

3=2 3=3 3=4 3=6 3=10 3=100 3=1000 3=10000 1.7 log |I | + 3

101 102 103 104 105

1

5

10

15

20

|I |

#s
am

pl
es
/|
I
|

(a) Λ(z, ") generated by [38, Algorithm 3.7]

101 102 103 104 105

1

5

10

15

20

|I |

#s
am

pl
es
/|
I
|

(b) z and " according to (2.12)

Figure 2.3 Oversampling factors for deterministic reconstructing multiple rank-1 lattices for random
frequency sets I ⊂ {−64,−63, . . . , 64}3 .

2.3.1.2 Improvement of numbers of samples compared to single rank-1 lattices constructed
component-by-component

For the deterministic reconstructing multiple rank-1 lattices generated by Algorithm 2.2 in the

previous subsection, one aspect of particular interest is the total number of nodes compared to the re-

constructing single rank-1 lattices, which are given as an input to the algorithm. We investigate this

in more detail for the case of lattices generated component-by-component by [38, Algorithm 3.7].

These reconstructing single rank-1 lattices for I, Λ(z, "), are specifically tailored to the structure

of the corresponding frequency sets I. We do not consider the case when Algorithm 2.2 is applied

to single rank-1 lattices of type (2.12) or (2.13) as these ones are typically extremely large compared

to the cardinality |I | of the frequency sets I.

First, we start with symmetric hyperbolic cross index sets I = �3
',even and reconstructing sin-

32

gle rank-1 lattices for I, Λ(z, ") generated by [38, Algorithm 3.7]. In Figure 2.4a, the obtained

#samples from Figure 2.1a is divided by the size " of the single rank-1 lattice. We observe that

for smaller expansion parameters ' and consequently smaller cardinalities |I |, the generated mul-

tiple rank-1 lattices still consist of more nodes than the corresponding single rank-1 lattices and

therefore the ratio is larger than one. One main reason for this behavior is that for the component-

by-component constructed single rank-1 lattices, the number of nodes is initially much less than the

worst case upper bounds of almost O(|I|2) suggest, cf. [38, section 3.8.2] for a detailed discussion.

Once a certain expansion I and cardinality |I | have been reached, the multiple rank-1 lattices

outperform the single rank-1 lattices, yielding ratios around 0.1 in Figure 2.4a, i.e., Algorithm 2.2

reduces the number of sampling nodes by 9/10.

Second, we consider randomly generated frequency sets as in Figure 2.3a. In Figure 2.4b, we vi-

sualize the ratios of the number of nodes of the deterministic reconstructing multiple rank-1 lattices

generated by Algorithm 2.2 over the lattice sizes " of the reconstructing single rank-1 lattices gen-

erated by [38, Algorithm 3.7]. For the spatial dimensions 3 ≥ 4 considered in Figure 2.3a, the ratios

decrease rapidly for increasing cardinality |I |, and we do not observe any noticeable dependence

on the spatial dimension 3. Note that in the case 3 = 2, the ratios are close to or above one since the

cube {−64,−63, . . . , 64}2 of possible frequencies only has cardinality 16 641 and the single rank-1

lattices already have small oversampling factors "/|I| < 16. Similarly, in the case 3 = 3 for

cardinality |I | = 105, the frequency set I fills approximately 1/20 of the cube {−64,−63, . . . , 64}3

and again the low oversampling factors "/|I| < 22 of the single rank-1 lattices are hard to beat

for multiple rank-1 lattices.

33

100 101 102 103 104 105 106
10−2

10−1

100

101

|I |

#s
am

pl
es
/"

3 = 2 3 = 3 3 = 4 3 = 5
3 = 6 3 = 7 3 = 8 3 = 9

(a) using symmetric hyperbolic cross index sets I =

�3
',even

101 102 103 104 105

10−2

10−1

100

101

|I |

#s
am

pl
es
/"

3 = 2 3 = 3 3 = 4
3 = 6 3 = 10 3 = 100
3 = 1000 3 = 10000

(b) I ⊂ {−64,−63, . . . , 64}3 random frequency sets

Figure 2.4 Ratio #samples for deterministic reconstructing multiple rank-1 lattices suitable for ap-
proximation over lattice size " of reconstructing single rank-1 lattice Λ(z, "), where Λ(z, ") was
generated by [38, Algorithm 3.7].

2.3.2 Comparison of reconstructing multiple and single rank-1 lattices for function approx-
imation

As mentioned in Corollary 2.1, we can use Algorithm 2.1 to compute approximations of func-

tions from samples along multiple rank-1 lattices. We consider the tensor-product test functions

�3
3 : T3 → C from [50], �3

3 (x) :=
∏

9∈[3] 63(G 9), where the one-dimensional function 63 : T→ C

is defined by

63(G) := 4
√

3c
207c − 256

(
2 + sgn((G mod 1) − 1/2) sin(2cG)3

)
and ‖�3

3 ‖!2 (T3) = 1. The function �3
3 lies in a so-called Sobolev space of dominating mixed

smoothness with smoothness almost 3.5 such that its Fourier coefficients �̂3
3 decay fast with re-

spect to hyperbolic cross structures. In addition, (�̂3
3)k = 0 if at least one component of k is odd.

Therefore, we approximate the function �3
3 by multivariate trigonometric polynomials �3,!

3 :=∑
k∈I (Ĝ3,!

3)k e2cik·◦ with Fourier coefficients supported on modified hyperbolic cross index sets

I = �3
',even as defined in (2.11). We compute the Fourier coefficients Ĝ3,!

3 based on samples of�3
3

and determine the relative !2(T3) sampling errors ‖�3
3 − �

3,!

3 ‖!2 (T3)/‖�3
3 ‖!2 (T3) , where

‖�3
3 − �

3,!

3 ‖!2 (T3) =

√
‖�3

3 ‖
2
!2 (T3) −

∑
k∈I

���(Ĝ3,!

3

)
k

���2 +∑
k∈I

���(�̂3
3

)
k
−

(
Ĝ3,!

3

)
k

���2.
34

We compare the numerical results from [44, Figure 4.3b], where reconstructing single rank-1 lat-

tices and reconstructing random multiple rank-1 lattices were used, with new results using deter-

ministic multiple rank-1 lattices returned by Algorithm 2.2.

As input for Algorithm 2.2, we use reconstructing single rank-1 lattices for I, Λ(z, "), with

generating vectors chosen according to (2.12). Instead of computing the Fourier coefficients �̂3,!

3

of the multivariate trigonometric polynomial �3,!

3 by Algorithm 2.1, we use [43, Algorithm 2],

which averages over all single rank-1 lattices Λ(z, %ℓ) that are able to reconstruct a Fourier coef-

ficient 6̂k of any multivariate trigonometric polynomial 6 for a given frequency k ∈ I, whereas

Algorithm 2.1 uses only one single rank-1 lattice Λ(z, %a(k)). Note that both computation methods

are based on the same samples of �3
3 along the obtained deterministic multiple rank-1 lattices. The

resulting relative !2(T3) sampling errors are visualized for spatial dimensions 3 ∈ {2, 3, 5, 8} in

Figure 2.5 as solid lines and filled markers. We observe that the errors decrease rapidly for increas-

ing expansion parameters ' of the hyperbolic cross I = �3
',even and correspondingly increasing

number of samples. In addition, we consider reconstructing single rank-1 lattices generated by [38,

Algorithm 3.7] as input for Algorithm 2.2 and obtain results which are very close and therefore

omit their plots.

Moreover, the relative errors from [44, Figure 4.3b] when using reconstructing random multiple

rank-1 lattices are shown in Figure 2.5 as dotted lines and filled markers. We observe that the

obtained number of samples and errors are similar to the deterministic ones. The results for the

deterministic multiple rank-1 lattice seem to be slightly better for 3 ∈ {3, 5, 8}. In addition, the

relative errors from [44, Figure 4.3b] when directly sampling along reconstructing single rank-1

lattices are drawn as dashed lines and unfilled markers. It has already been observed in [44] that

in the beginning for smaller expansion parameters ' and consequently smaller number of samples,

the single rank-1 lattices perform better until a certain expansion parameter ' has been reached.

Afterwards, the multiple rank-1 lattices clearly outperform the single ones.

35

100 101 102 103 104 105 106 107 108 109
10−10

10−8

10−6

10−4

10−2

100

number of samples

‖�
3 3
−
�

3
,! 3
‖ !

2 (
T
3
)/
‖�

3 3
‖ !

2 (
T
3
)

3=2 3=3 3=5 3=8

Figure 2.5 Relative !2(T3) sampling errors for �3
3 with respect to the number of samples for re-

constructing single rank-1 lattices (dashed lines, unfilled markers), reconstructing random multiple
rank-1 lattices (dotted lines, filled markers), and reconstructing deterministic multiple rank-1 lat-
tices (solid lines, filled markers), when using the frequency index sets I := �3

',even. Results for
single rank-1 lattices from [65, Figure 2.14] and for reconstructing random multiple rank-1 lattices
from [44, Figure 4.3].

2.3.3 Deterministic multiple rank-1 lattices with decreasing lattice size for reconstruction of
trigonometric polynomials

Besides generating deterministic multiple rank-1 lattices according to Theorem 2.2 and Algo-

rithm 2.2, we have also discussed the alternate approach of Theorem 2.3, where the theoretical

results for function approximation, as mentioned in Corollary 2.1, cannot be applied directly, but

the number of required samples for the reconstruction of multivariate trigonometric polynomials

may be distinctly smaller.

We start with symmetric hyperbolic cross type index sets I = �3
',even and apply the gen-

eration strategy of Theorem 2.3 on reconstructing single rank-1 lattices for I, Λ(z, "), gener-

ated by [38, Algorithm 3.7]. We visualize the resulting oversampling factors #samples / |I| =

(1 − ! +∑
ℓ∈[!] %ℓ)/|I| in Figure 2.6a for spatial dimensions 3 ∈ {2, 3, . . . , 9} and various expan-

sion parameters '. For the considered test cases, we observe that the oversampling factors are well

below 3. When starting with single rank-1 lattices according to (2.12), the observed oversampling

factors only differ slightly, cf. Figure 2.6b.

36

3=2 3=3 3=4 3=5 3=6 3=7 3=8 3=9

100 101 102 103 104 105 106

1

2

3

|I |

#s
am

pl
es
/|
I
|

(a) Λ(z, ") generated by [38, Algorithm 3.7] for
symmetric hyperbolic cross index sets I = �3

',even

100 101 102 103 104 105 106

1

2

3

|I |

#s
am

pl
es
/|
I
|

(b) z and " according to (2.12) for symmetric hyper-
bolic cross index sets I = �3

',even

3=2 3=3 3=4 3=6 3=10 3=100 3=1000 3=10000

101 102 103 104 105

1

2

3

|I |

#s
am

pl
es
/|
I
|

(c) Λ(z, ") generated by [38, Algorithm 3.7] for ran-
dom frequency sets I ⊂ {−64,−63, . . . , 64}3

101 102 103 104 105

1

2

3

|I |

#s
am

pl
es
/|
I
|

(d) z and" according to (2.12) for random frequency
sets I ⊂ {−64,−63, . . . , 64}3

Figure 2.6 Oversampling factors for deterministic reconstructing multiple rank-1 lattices con-
structed according to Theorem 2.3.

The reason for these very low oversampling factors is that during the generation process ac-

cording to the proof of Theorem 2.3 the prime %0 is relatively close to |I |, the next prime %1 is

relatively close to |I \ I0 |, %2 is relatively close to |I \ (I0 ∪ I1) |, and so on, where I0 contains

the frequencies of I which can be reconstructed by the lattice Λ(z, %0) and where I1 contains the

frequencies of I \ I0 which can be reconstructed by Λ(z, %1). In particular, we do not have the

fixed lower bound |I | ≤ %ℓ for all ℓ as in Algorithm 2.2.

Next, we change the setting and use the frequency sets I drawn uniformly randomly from

cubes [−', ']3 ∩ Z3 , see Section 2.3.1. As before, we generate reconstructing single rank-1 lat-

37

tices for I, Λ(z, "), using [38, Algorithm 3.7]. Then, we apply the strategy of Theorem 2.3

in order to deterministically generate reconstructing multiple rank-1 lattices. We repeat the test

10 times for each setting with newly randomly chosen frequency sets I and determine the maxi-

mum number of samples over the 10 repetitions. For cardinalities |I | ∈ {10, 100, 1 000, 10 000} in

3 ∈ {2, 3, 4, 6, 10, 100, 1 000, 10 000} spatial dimensions, we visualize the resulting oversampling

factors in Figure 2.6c for expansion parameter ' = 64 (I ≤ 128). Starting with reconstruct-

ing single rank-1 lattices Λ(z, ") according to (2.12) as in Figure 2.3b changes the oversampling

factors only slightly, and the oversampling factors are still well below 4, cf. Figure 2.6d.

38

CHAPTER 3

HIGH-DIMENSIONAL SPARSE FOURIER TRANSFORMS

As discussed in Section 1.1.2, this chapter focuses on efficient sparse Fourier transforms (SFTs)

for high-dimensional functions. We begin with a review of the prior work against which we com-

pare our techniques as well as provide a more in-depth discussion of the methods in Section 3.1.

Section 3.2 reviews and further refines the univariate SFTs from [37, 53] which we will use in our

multivariate techniques. Section 3.3 presents our main multivariate approximation algorithms and

their analysis. Finally, we implement these two algorithms numerically and present the empirical

results in Section 3.4.

3.1 Overview of results and prior work

Much recent work has considered the problem of quickly recovering both exactly sparse mul-

tivariate trigonometric polynomials as well as approximating more general functions by sparse

trigonometric polynomials using dimension-incremental approaches [65, 59, 17, 16]. These meth-

ods recover multivariate frequencies adaptively by searching lower-dimensional projections of I ⊂((
−

⌈

2
⌉
,
⌊

2
⌋]
∩ Z

)3 for energetic frequencies. These lower dimensional candidate sets are then

paired together to build up a fully 3-dimensional search space smaller than the original one, which

is expected to support the most energetic frequencies (see e.g., [42, Section 3] and the references

within for a general overview).

In the context of Fourier methods, lattice-based techniques do a good job of support identifi-

cation on the intermediary, lower-dimensional candidate sets, and especially recently, techniques

based on multiple rank-1 lattices have shown success [43, 42] (see also Chapter 2). Though the total

complexity in each of these steps is manageable and can be kept linear in the sparsity B of the Fourier

series to be computed, these steps must be repeated in general to ensure that no potential frequencies

have been left out. In particular, this results in at least O(3B2) operations (up to logarithmic fac-

tors) for functions supported on arbitrary frequency sets in order to obtain approximations that are

guaranteed to be accurate with high probability. Though from an implementational perspective,

this runtime can be mitigated by completing many of the repetitions and initial one-dimensional

39

searches in parallel, once pairing begins, the results of previous iterations must be synchronized

and communicated to future steps, necessitating serial interruptions.

Other earlier works include [37] in which previously existing univariate SFT results [36, 62] are

refined and adapted to the multivariate setting. Though the resulting complexity on the dimension

is well above the dimension-incremental approaches, deterministic guarantees are given for multi-

variate Fourier approximation in O(34B2) (up to logarithmic factors) time and memory, as well as

a random variant which drops to linear scaling in B, leading to a runtime on the order of O(34B)

with respect to B and 3. Additionally, the compressed sensing type guarantees in terms of Fourier

compressibility of the function under consideration carry over from the univariate SFT analysis.

The scheme essentially makes use of a reconstructing rank-1 lattice on a superset of the full integer

cube I =

((
−

⌈
3
2
⌉
,
⌊
3
2
⌋]
∩ Z

)3
with certain number theoretic properties that allow for fast in-

version of the resulting one-dimensional coefficients by the Chinese Remainder Theorem. We note

that this necessarily inflated frequency domain accounts for the suboptimal scaling in 3 above.

In [54], another fully deterministic sampling strategy and reconstruction algorithm is given.

Like [37] though, the method can only be applied to Fourier approximations over an ambient fre-

quency space I which is a full 3-dimensional cube. Moreover, the vector space structure exploited

to construct the sampling sets necessitates that the side length of this cube is the power of a

prime. However, the benefits to this construction are among the best considered so far: the method

is entirely deterministic, has noise-robust recovery guarantees in terms of best B-term estimates,

the sampling sets used are on the order of O(33B2), and the reconstruction algorithm’s runtime

complexity is on the order of O(33B2 2) both up to logarithmic factors. On the other hand, this

algorithm still does not scale linearly in B.

Finally, we discuss [15, 14], a pair of papers detailing high-dimensional Fourier recovery algo-

rithms which offer a simplified (and therefore faster) approach to lattice transforms and dimension-

incremental methods. These algorithms make heavy use of a one-dimensional SFT [51, 18] based

on a phase modulation approach to discover energetic frequencies in a fashion similar to our Al-

gorithm 3.1 below. The main idea is to recover entries of multivariate frequencies by using equis-

40

paced evaluations of the function along a coordinate axis as well as samples of the function at the

same points slightly shifted (the remaining dimensions are generally ignored). This shift in space

produces a modulation in frequency from which frequency data can be recovered (cf. (3.6) and

Algorithm 3.1 below). By supplementing this approach with simple reconstructing rank-1 lattice

analysis for repetitions of the full integer cube, the runtime and number of samples are given on

average as O(3B) up to logarithmic factors.

However, due to the possibility of collisions of multivariate frequencies under the hashing al-

gorithms employed, these results hold only for random signal models. In particular, theoretical

results are only stated for functions with randomly generated Fourier coefficients on the unit circle

with randomly chosen frequencies from a given frequency set. Additionally, the analysis of these

techniques assumes that the algorithm applied to the randomly generated signal does not encounter

certain low probability (with respect to the random signal model considered therein) energetic fre-

quency configurations. Furthermore, the method is restricted in stability, allowing for spatial shifts

in sampling bounded by at most the reciprocal of the side length of the multivariate frequency cube

under consideration, and only exact recovery is considered (or recovery up to factors related to sam-

ple corruption by Gaussian noise in [14]). In addition, no results given are proven concerning the

approximation of more general periodic functions, e.g., compressible functions.

3.1.1 Main contributions

We begin with a brief summary of the benefits provided by our approach in comparison to

the methods discussed above. Below, we ignore logarithmic factors in our summary of the run-

time/sampling complexities.

• All variants, deterministic and random, of both algorithms presented in this paper have run-

time and sampling complexities linear in 3 with best B-term estimates for arbitrary signals.

This is in contrast to the complexities of dimension-incremental approaches [16, 17, 43, 42]

and the number theoretic approaches [37, 54] while still achieving similarly strong best B-term

guarantees.

• Both algorithms proposed herein have randomized variants with runtime and sampling com-

41

plexities linear in B with best B-term estimates on arbitrary signals that hold with high

probability. Thus, the randomized methods proposed in this paper achieve the efficient run-

time complexities of [15, 14] while simultaneously exhibiting best B-term approximation

guarantees for general periodic functions thereby improving on the non-deterministic dimen-

sion incremental approaches [16, 17, 43, 42].

• Both algorithms proposed herein have a deterministic variant with runtime and sampling

complexities quadratic in B with best B-term estimates on arbitrary signals that also hold

deterministically. This is in contrast to all previously discussed methods without determin-

istic guarantees, [16, 17, 43, 42, 14, 15], as well as improving on prior deterministic results

[37, 54] for functions whose energetic frequency support setsI are smaller than the full cube.

Overview of the methods and related theory

We will build on the fast and potentially deterministic one-dimensional SFT from [37] and its

discrete variant from [53] by applying those techniques along rank-1 lattices. As previously dis-

cussed, the primary difficulty in doing so is matching energetic one-dimensional Fourier coefficients

with their 3-dimensional counterparts. We are especially interested in doing this in an efficient and

provably accurate way. We propose and analyze two different methods for solving this problem

herein.

The first frequency identification approach, Algorithm 3.1, involves modifications of the phase

shifting technique from [51, 18, 15, 14]. We make use of the translation to modulation property

of the Fourier transform (cf. (3.6) below) observed in these works to extract out frequency data.

Combining this with SFTs on rank-1 lattices gives a new class of fast methods with several bene-

fits. Notably, we are able to maintain error guarantees for any function (not just random signals) in

terms of best Fourier B-term approximations. Additionally, we factor the instability and potential

for collisions from [15, 14] into these best B-term approximations. The only downside in our es-

timates is an additional linear factor of multiplying the terms commonly seen in standard error

bounds (cf. Corollaries 3.1 and 3.2). However, we are able to maintain deterministic results with

runtime and sampling complexities that are quadratic in B, as well as results for random variants

42

with complexities that are linear in B. Additionally, the dependence on the dimension 3 is reduced

from O(34) in [37] to only O(3).

Our second technique in Algorithm 3.2 uses a different approach to applying SFTs to modifi-

cations of the multivariate function along a reconstructing rank-1 lattice. Effectively, we reduce

6 to a two-dimensional function. This is done by mapping all but one dimension, say ℓ, down to

one using a rank-1 lattice, and leaving the ℓ dimension free. From here, we take a two-dimensional

DFT (taking care to use SFTs where possible). The locations of Fourier coefficients in this two-

dimensional DFT can then be used to determine the ℓth coordinate of the frequency data. This is

then repeated for each dimension ℓ ∈ [3].

This process is slower but more stable than Algorithm 3.1. In particular this produces more ac-

curate best Fourier B-term approximation guarantees without the extraneous factor of (cf. Corol-

laries 3.3 and 3.4). The deterministic results still have a complexity quadratic in B with random

extensions that are linear in B. However, we incur an extra quadratic factor of in the complexity

bounds (cf. Lemma 3.4).

We stress here that by compartmentalizing the translation from multivariate analysis to univari-

ate analysis into the theory of rank-1 lattices, our techniques are suitable for any frequency set of

interest I. The only constraint is the necessity for a reconstructing rank-1 lattice for I (and poten-

tially projections of I in the case of Algorithm 3.2). This flexibility improves the results from [37],

primarily with respect to the polynomial factor of 3 in our runtime and sampling complexities. We

remark that though the existence of the necessary reconstructing rank-1 lattice is a nontrivial re-

quirement, there exist efficient construction algorithms for arbitrary frequency sets via deterministic

component by component methods, see e.g., [39, 46, 56].

In terms of implementation, we note that the multivariate techniques we employ are entirely

modular with respect to the univariate SFT used. As such, the complexity estimates and error

bounds for our approaches in Section 3.3 are directly derived from the chosen SFT.

Finally, the methods we present are trivially parallelizable so that in particular, a large majority

of these univariate SFTs in Algorithm 3.1 or Algorithm 3.2 can occur in parallel.

43

3.2 One-dimensional sparse Fourier transform results

Below, we summarize some of the previous work on one-dimensional sparse Fourier transforms

which will be used in our multivariate algorithms. Rather than focus on the inner workings of these

SFTs, we highlight five main properties concerning their recovery guarantees and computational

complexity. This compartmentalization allows for any SFT satisfying these properties to be easily

extended for multivariate Fourier recovery simply by plugging into Algorithm 3.1 and 3.2.

We first review the sublinear-time algorithm from [37] which uses fewer than " nonequispaced

samples of a function to compute Fourier coefficients in B" . We refer the reader interested in its

implementation and mathematical explanation to [37] as well as [36, 62]. Below, we will use slightly

improved error bounds over those in its original presentation. The proof of these improvements

necessitates the following lemma.

Lemma 3.1. For x ∈ C and Sg := {: ∈ [] | |G: | ≥ g}, if g ≥ ‖x−xopt
B ‖1
B

, then |Sg | ≤ 2B and

‖x − x|Sg ‖2 ≤ ‖x − xopt
2B ‖2 + g

√
2B,

‖x − x|Sg ‖1 ≤ ‖x − xopt
2B ‖1 + g · 2B.

Proof. Ordering the entries of x in descending order (with ties broken arbitrarily) as |G:1 | ≥ |G:2 | ≥

. . ., we first note that

‖x − xopt
B ‖1 ≥

2B∑
9=B+1
|G: 9 | ≥ B |G:2B |.

By assumption then, g ≥ |G:2B |, and since Sg contains the |Sg |-many largest entries of x, we must

have Sg ⊂ supp(xopt
2B). Note then that |Sg | ≤ 2B. Finally, we calculate

‖x − x|Sg ‖2 ≤ ‖x − xopt
2B ‖2 + ‖x

opt
2B − xSg ‖2

≤ ‖x − xopt
2B ‖2 +

√ ∑
:∈supp(xopt

2B)\Sg

|G: |2

≤ ‖x − xopt
2B ‖2 + g

√
2B.

The ℓ1 estimate is proved by the same procedure, where the 2B many terms are bounded by g in the

last line without a square root.

44

Theorem 3.1 (Robust sublinear-time, nonequispaced SFT: [37], Theorem 7/[53], Lemma 4). For

a signal 61d ∈ , (T) ∩ � (T) corrupted by some arbitrary noise ` : T → C, Algorithm 3 of [37],

denoted Asub
2B," , will output a 2B-sparse coefficient vector ĝ1d,B ∈ CB" which

1. reconstructs every frequency of 6̂1d |" ∈ CB" , l ∈ B" , with corresponding Fourier coeffi-

cients meeting the tolerance

|6̂1d
l | > (4 + 2

√
2)

(
‖6̂1d |" − (6̂1d |")opt

B ‖1
B

+ ‖6̂1d − 6̂1d |" ‖1 + ‖`‖∞

)
,

2. satisfies the ℓ∞ error estimate for recovered coefficients

(6̂1d |" − ĝ1d,B) |supp(ĝ1d,B)

∞ ≤
√

2
©­­«

6̂1d |" − (6̂1d |")opt

B

1

B
+

6̂1d − 6̂1d |"

1 + ‖`‖∞
ª®®¬ ,

3. satisfies the ℓ2 error estimate

‖6̂1d |" − ĝ1d,B‖2 ≤ ‖6̂1d |" − (6̂1d |")opt
2B ‖2 +

(8
√

2 + 6)‖6̂1d |" − (6̂1d |")opt
B ‖1√

B

+ (8
√

2 + 6)
√
B

(
‖6̂1d − 6̂1d |" ‖1 + ‖`‖∞

)
,

4. satisfies the ℓ1 error estimate

‖6̂1d |" − ĝ1d,B‖1 ≤ ‖6̂1d |" − (6̂1d |")opt
2B ‖1 + (6

√
2 + 16)‖6̂1d |" − (6̂1d |")opt

B ‖1

+ (6
√

2 + 16)B
(
‖6̂1d − 6̂1d |" ‖1 + ‖`‖∞

)
,

5. and the number of required samples of 61d and the operation count for Asub
2B," are

O
(
B2 log4 "

log B

)
.

The Monte Carlo variant ofAsub
2B," , denotedAsub,MC

2B," , referred to by Corollary 4 of [37] satisfies all

of the conditions (1) – (4) simultaneously with probability (1 − f) ∈ [2/3, 1) and has number of

required samples and operation count

O
(
B log3(") log

(
"

f

))
.

The samples required by Asub,MC
2B," are a subset of those required by Asub

2B," .

45

Proof. We refer to [37, Theorem 7] and its modification for noise robustness in [53, Lemma 4] for

the proofs of properties (2) and (5). As for (1), [37, Lemma 6] and its modification in [53, Lemma

4] imply that any l ∈ B" with |6̂1d
l | > 4(‖6̂1d |" − (6̂1d |")opt

B ‖1/B + ‖6̂1d − 6̂1d |" ‖1 + ‖`‖∞) =: 4X

will be identified in [37, Algorithm 3]. An approximate Fourier coefficient for these and any other

recovered frequencies is stored in the vector x which satisfies the same estimate in property (2) by

the proof of [37, Theorem 7] and [53, Lemma 4]. However, only the 2B largest magnitude values of

x will be returned in ĝ1d,B. We therefore analyze what happens when some of the potentially large

Fourier coefficients corresponding to frequencies in S4X do not have their approximations assigned

to ĝ1d,B.

Using the definition of Sg given in Lemma 3.1 applied to 6̂1d |" , we must have |S4X | ≤ 2B =

| supp(ĝ1d,B) |. If l ∈ S4X \ supp(ĝ1d,B), there must then exist some other l′ ∈ supp(ĝ1d,B) \ S4X

which was identified and took the place of l in supp(ĝ1d,B). For this to happen, |6̂1d
l′ | ≤ 4X and

|Gl′ | ≥ |Gl |. But by property (2) (extended to all coefficients in x), we know

4X +
√

2X ≥ |6̂1d
l′ | +

√
2X ≥ |Gl′ | ≥ |Gl | ≥ |6̂1d

l | −
√

2X.

Thus, any frequency in S4X not chosen satisfies |6̂1d
l | ≤ (4 + 2

√
2)X, and so every frequency in

S(4+2√2)X is in fact identified in ĝ1d,B verifying property (1).

As for property (3), we estimate the ℓ2 error using property (2), Lemma 3.1, and the above

argument as

‖6̂1d |" − ĝ1d,B‖2 ≤ ‖6̂1d |" − 6̂1d |supp(ĝ1d,B) ‖2 + ‖(6̂1d |" − ĝ1d,B) |supp(ĝ1d,B) ‖2

≤ ‖6̂1d |" − 6̂1d |S4X∩supp(ĝ1d,B) ‖2 +
√

2X
√

2B

≤ ‖6̂1d |" − 6̂1d |S4X ‖2 + ‖6̂1d |S4X\supp(ĝ1d,B) ‖2 + 2X
√
B

≤ ‖6̂1d |" − (6̂1d |")opt
2B ‖2 + 4X

√
2B + (4 + 2

√
2)X
√

2B + 2X
√
B

= ‖6̂1d |" − (6̂1d |")opt
2B ‖2 + (8

√
2 + 6)

√
BX.

46

The proof of property (4) is very similar. We estimate the ℓ1 error using the same techniques as

‖6̂1d |" − ĝ1d,B‖1 ≤ ‖6̂1d |" − 6̂1d |supp(ĝ1d,B) ‖1 + ‖(6̂1d |" − ĝ1d,B) |supp(ĝ1d,B) ‖1

≤ ‖6̂1d |" − 6̂1d |S4X∩supp(ĝ1d,B) ‖1 +
√

2X · 2B

≤ ‖6̂1d |" − 6̂1d |S4X ‖1 + ‖6̂1d |S4X\supp(ĝ1d,B) ‖1 + 2
√

2XB

≤ ‖6̂1d |" − (6̂1d |")opt
2B ‖1 + 4X · 2B + (4 + 2

√
2)X · 2B + 2

√
2XB

= ‖6̂1d |" − (6̂1d |")opt
2B ‖1 + (6

√
2 + 16)BX.

Remark 3.1. In the noiseless case, if the univariate function 61d is Fourier B-sparse, i.e., is a trigono-

metric polynomial and " is large enough such that supp(6̂1d) ⊂ B" , bothAsub
2B," andAsub,MC

2B," will

exactly recover 6̂1d |" (the latter with probability 1 − f), and therefore 6̂1d. In particular, note that

the output of either algorithm will then actually be B-sparse.

Using the above SFT algorithm with the discretization process outlined in [53] leads to a fully

discrete sparse Fourier transform, requiring only equispaced samples of 61d, denoted g1d. However,

rather than separately accounting for the truncation to the frequency band B" as above, the equis-

paced samples allow us to take advantage of aliasing, which is particularly important when we apply

the algorithm along reconstructing rank-1 lattices. Thus, instead of approximating 6̂1d |" ∈ CB" ,

we prefer to approximate the discrete Fourier transform of g1d given by F"g1d.

Eventually, we will consider techniques for approximation of arbitrary periodic functions rather

than simply polynomials. For this reason, we require noise-robust recovery results for the method in

[53]. The necessary modifications to account for this robustness as well as the improved guarantees

carried over from the previous algorithm are given below. The upshot is that we are able to state

five properties of this SFT analogous to those in Theorem 3.1 which allow for modular proofs of

the multivariate results later on.

Theorem 3.2 (Robust discrete sublinear-time SFT: see [53], Theorem 5). For a signal 61d ∈ , (T)∩

� (T) corrupted by some arbitrary noise ` : T→ C, and 1 ≤ A ≤ "
36 , Algorithm 1 of [53], denoted

Adisc
2B," , will output a 2B-sparse coefficient vector ĝ1d,B ∈ CB" which

47

1. reconstructs every frequency of F" g1d ∈ CB" , l ∈ B" , with corresponding aliased Fourier

coefficient meeting the tolerance

| (F" g1d)l | > 12(1 +
√

2)
(
‖F" g1d − (F" g1d)opt

B ‖1
2B

+ 2(‖g1d‖∞"−A + ‖-‖∞)
)
,

2. satisfies the ℓ∞ error estimate for recovered coefficients

‖(F" g1d− ĝ1d,B) |supp(ĝ1d,B) ‖∞ ≤ 3
√

2

(
‖F" g1d − (F" g1d)opt

B ‖1
2B

+ 2(‖g1d‖∞"−A + ‖-‖∞)
)
,

3. satisfies the ℓ2 error estimate

‖F" g1d − ĝ1d,B‖2 ≤ ‖F" g1d − (F" g1d)opt
2B ‖2 + 38

‖F" g1d − (F" g1d)opt
B ‖1√

B

+ 152
√
B(‖g1d‖∞"−A + ‖-‖∞),

4. satisfies the ℓ1 error estimate

‖F" g1d − ĝ1d,B‖1 ≤ ‖F" g1d − (F" g1d)opt
2B ‖1 + 54‖F" g1d − (F" g1d)opt

B ‖1

+ 215B(‖g1d‖∞"−A + ‖-‖∞),

5. and the number of required samples of g1d and the operation count for Adisc
2B," are

O
(
B2A3/2 log11/2 "

log B

)
.

The Monte Carlo variant ofAdisc
2B," , denotedAdisc,MC

2B," , satisfies all of the conditions (1) – (4) simul-

taneously with probability (1 − f) ∈ [2/3, 1) and has number of required samples and operation

count

O
(
BA3/2 log9/2(") log

(
"

f

))
.

Proof. All notation in this proof matches that in [53] (in particular, we use 5 to denote the one-

dimensional function in place of 61d in the theorem statement and # = 2" + 1). We begin by

substituting the 2c-periodic Gaussian filter given in (3) on page 756 with the 1-periodic Gaussian

and associated Fourier transform

6(G) = 1
21

∞∑
==−∞

e
− (2c)

2 (G−=)2

222
1 , 6̂l =

1
√

2c
e−

22
1l

2

2 .

48

Note then that all results regarding the Fourier transform remain unchanged, and since this 1-

periodic Gaussian is a just a rescaling of the 2c-periodic one used in [53], the bound in [53, Lemma

1] holds with a similarly compressed Gaussian, that is, for all G ∈
[
−1

2 ,
1
2
]

6(G) ≤
(

3
21
+ 1
√

2c

)
e
− (2cG)

2

222
1 . (3.1)

Analogous results up to and including [53, Lemma 10] for 1-periodic functions then hold straight-

forwardly.

Assuming that our signal measurements f = (5 (H 9))2"9=0 = (5 (9
#
))2"
9=0 are corrupted by some

discrete noise - = (` 9)2"9=0, we consider for any G ∈ T a similar bound to [53, Lemma 10]. Here,

9 ′ := arg min 9 |G − H 9 | and ^ := dW ln #e + 1 for some W ∈ R+ to be determined. Then,������ 1
#

2"∑
9=0

5 (H 9)6(G − H 9) −
1
#

9 ′+∑̂
9= 9 ′−^

(5 (H 9) + ` 9)6(G − H 9)

������
≤ 1
#

������ 2"∑
9=0

5 (H 9)6(G − H 9) −
9 ′+∑̂
9= 9 ′−^

5 (H 9)6(G − H 9)

������ + 1
#

����� 9 ′+∑̂
9= 9 ′−^

` 96(G − H 9)
�����

≤ 1
#

������ 2"∑
9=0

5 (H 9)6(G − H 9) −
9 ′+∑̂
9= 9 ′−^

5 (H 9)6(G − H 9)

������ + ‖-‖∞# ∑̂
:=−^

6(G − H 9 ′+:)

We bound the first term in this sum by a direct application of [53, Lemma 10]; however, we take this

opportunity to reduce the constant in the bound given there. In particular, bounding this term by

the final expression in the proof of [53, Lemma 10] and using our implicit assumption that 36 ≤ # ,

we have ������ 1
#

2"∑
9=0

5 (H 9)6(G − H 9) −
1
#

9 ′+∑̂
9= 9 ′−^

(5 (H 9) + ` 9)6(G − H 9)

������
≤

(
3
√

2c
+ 1

2c

√
ln 36
36

)
‖f‖∞#−A +

1
#
‖-‖∞

∑̂
:=−^

6(G − H 9 ′+:).

(3.2)

We now work on bounding the second term. First note that for all : ∈ [−^, ^] ∩ Z,

6(G − H 9 ′±:) = 6
(
G − H 9 ′ ±

:

#

)
.

49

Assuming without loss of generality that 0 ≤ G − H 9 ′ , we can bound the nonnegatively indexed

summands by (3.1) as

6

(
G − H 9 ′ +

:

#

)
≤

(
3
21
+ 2
√

2c

)
e
− (2c)

2:2

222
1#

2
. (3.3)

For the negatively indexed summands, the definition of 9 ′ = arg min 9 |G − H 9 | implies that G − H 9 ′ ≤
1

2# . In particular,

G − H 9 ′ −
:

#
≤ 1 − 2:

2#
< 0

implies (
G − H 9 ′ −

:

#

)2
≥ 1 − 2:

2#

(
G − H 9 ′ −

:

#

)
≥ 2: − 1

2#
· :
#
,

giving

6

(
G − H 9 ′ −

:

#

)
≤

(
3
21
+ 2
√

2c

)
e
− (2c)

2:2

222
1#

2 e
(2c)2:
422

1#
2
. (3.4)

We now bound the final exponential. We first recall from [53] the choices of parameters

21 =
V
√

ln #
#

, ^ = dW ln #e + 1, W =
6A
√

2c
=
V
√
A

2
√
c
, V = 6

√
A

with 1 ≤ A ≤ #
36 . For : ∈ [1, ^] ∩ Z then,

exp

(
(2c)2:
422

1#
2

)
≤ exp

(
(2c)2^
422

1#
2

)

≤ exp
©­­«
c2

(
6A ln #√

2c
+ 2

)
36A ln #

ª®®¬
≤ exp

(
c

6
√

2
+ c2

18A ln #

)
≤ exp

(
c

6
√

2
+ c2

18 ln 36

)
=: �.

Combining this with our bounds for the nonnegatively indexed summands (3.3) and the nega-

tively indexed summands (3.4), we have

1
#

∑̂
:=−^

6(G − H 9 ′+:) ≤
(

3
V
√

ln #
+ 1
#
√

2c

) (
1 + (1 + �)

∑̂
:=1

e−
(2c)2:2

2V2 ln #

)
50

Expressing the final sum as a truncated lower Riemann sum and applying a change of variables on

the resulting integral, we have∑̂
:=1

e−
(2c)2:2

2V2 ln # ≤ V
√

ln #
√

2c

∫ ∞

0
4−G

2
3G =

V
√

ln #
2
√

2c
.

Making use of our parameter values from [53], and the fact that 1 ≤ A ≤ #
36 ,

1
#

∑̂
:=−^

6(G − H 9 ′+:) ≤
(

3
V
√

ln #
+ 1
#
√

2c

) (
1 + 1 + �

2
√

2c
V
√

ln #
)

≤ 3
6
√

ln 36
+ 3(1 + �)

2
√

2c
+ 1

36
√

2c
+ 1 + �

4c

√
ln 36
36

< 2.

(3.5)

With our revised bound for (3.2) above, we reprove [53, Theorem 4] to estimate 6 ∗ 5 by the

truncated discrete convolution with noisy samples. In particular, we apply [53, Theorem 3], (3.2),

(3.1), and finally our same assumption that 1 ≤ A ≤ #
36 to obtain��������(6 ∗ 5) (G) −

1
#

9 ′+
⌈

6A√
2c

ln #
⌉
+1∑

9= 9 ′−
⌈

6A√
2c

ln #
⌉
−1

(5 (H 9) + ` 9)6(G − H 9)

��������
≤ #1−A

6
√
A
√

ln #
‖f‖∞#−A +

(
3
√

2c
+ 1

2c

√
ln 36
36

)
‖f‖∞#−A + 2‖-‖∞

≤
(

1
6
√

ln 36
+ 3
√

2c
+ 1

2c

√
ln 36
36

)
‖f‖∞
#A
+ 2‖-‖∞ < 2

(
‖f‖∞
#A
+ ‖-‖∞

)
.

Replacing all references of 3‖f‖∞#−A by 2(‖f‖∞#−A + ‖-‖∞) in the remainder of the steps up to

proving [53, Theorem 5] gives the desired noise robustness (with a slightly improved constant).

Using the revised error estimates of the nonequispaced algorithm from Theorem 3.1 and re-

defining X = 3(‖ f̂− f̂opt
B ‖1/2B+2(‖f‖∞#−A + ‖-‖∞)) as in the proof of [53, Theorem 5] (which also

contains the proof of property (2)), the discretization algorithm [53, Algorithm 1] will produce can-

didate Fourier coefficient approximations in lines 9 and 12 corresponding to every | 5̂l | ≥ (4+2
√

2)X

in place of 4X in Theorem 3.1. The exact same argument as in the proof of Theorem 3.1 then applies

to the selection of the 2B-largest entries of this approximation with the revised threshold values and

error bounds to give properties (1), (3) and (4).

51

In detail, [53, Lemma 13] and the discussion right after its statement gives that property (2) holds

for any approximate coefficient with frequency recovered throughout the algorithm (which, for the

purposes of the following discussion, we will store in x rather than '̂ defined in [53, Algorithm 1]),

not just those in the final output v := xopt
B . Additionally, by the same lemma and our revised bounds

from Theorem 3.1, any frequency l ∈ [#] satisfying | 5l | > (4 + 2
√

2)X will have an associated

coefficient estimate in x.

By Lemma 3.1, |S(4+2√2)X | ≤ 2B = | supp(v) |, and so if l ∈ S(4+2√2)X \ supp(v), there exists

some l′ ∈ supp(v) \ S(4+2√2)X such that El′ took the place of El in S. In particular, this means

that |Gl′ | ≥ |Gl |, | 5̂l′ | ≤ (4 + 2
√

2)X, and | 5̂l | > (4 + 2
√

2X). Thus,

(4 + 2
√

2)X +
√

2X > | 5̂l′ | +
√

2X ≥ |Gl′ | ≥ |Gl | ≥ | 5̂l | −
√

2X,

implying that | 5̂l | ≤ 4(1 +
√

2)X and therefore proving (1).

To prove (3), we use Lemma 3.1, and consider

‖ f̂ − v‖2 ≤ ‖ f̂ − f̂ |supp(v) ‖2 − ‖(f̂ − v) |supp(v) ‖2

≤ ‖ f̂ − f̂ |S(4+2√2) X∩supp(v) ‖2 +
√

2X
√

2B

≤ ‖ f̂ − f̂ |S(4+2√2) X
‖2 + ‖ f̂ |S(4+2√2) X\supp(v) ‖2 + 2X

√
B

≤ ‖ f̂ − f̂opt
2B ‖2 + (4 + 2

√
2)X
√

2B + 4(1 +
√

2)X
√

2B + 2X
√
B

= ‖ f̂ − f̂opt
2B ‖2 + (14 + 8

√
2)X
√
B.

The proof of (4) is similar, bounding the ℓ1 error as

‖f̂ − v‖1 ≤ ‖ f̂ − f̂ |supp(v) ‖1 − ‖(f̂ − v) |supp(v) ‖1

≤ ‖ f̂ − f̂ |S(4+2√2) X∩supp(v) ‖1 +
√

2X · 2B

≤ ‖ f̂ − f̂ |S(4+2√2) X
‖1 + ‖ f̂ |S(4+2√2) X\supp(v) ‖1 + 2

√
2XB

≤ ‖ f̂ − f̂opt
2B ‖1 + (4 + 2

√
2)X · 2B + 4(1 +

√
2)X · 2B + 2

√
2XB

= ‖ f̂ − f̂opt
2B ‖1 + (16 + 14

√
2)XB.

52

3.3 Fast multivariate sparse Fourier transforms

Having detailed two sublinear-time, one-dimensional SFT algorithms, we are now prepared to

extend these to the multivariate setting. The general approach will be to apply the one-dimensional

methods to transformations of our multivariate function of interest with samples taken along rank-1

lattices. The particular approaches for transforming our multivariate function will then allow for

the efficient extraction of multidimensional frequency information for the most energetic coeffi-

cients identified by univarate SFTs. In particular, our first approach considered in Section 3.3.1

successively shifts the function in each dimension, whereas our second approach considered in

Section 3.3.2 successively collapses all but one dimension along a rank-1 lattice and samples the

resulting two-dimensional function.

Since the two approaches in Algorithms 1 and 2 below can make use of any univariate SFT algo-

rithm, their analysis will be presented in a modular fashion below. Each algorithm is followed by a

lemma (Lemma 3.2 and Lemma 3.4 respectively) which provides associated error guarantees when

any sufficiently accurate univariate SFTAB," is employed. The lemmas are then each followed by

two corollaries (Corollaries 3.1 and 3.2 and Corollaries 3.3 and 3.4 respectively) where we apply

the lemma to the two example univariate SFTs reviewed in Section 3.2 specified by Theorems 3.2

and 3.1.

3.3.1 Phase encoding

We begin by noting that this section makes significant use of the property of the Fourier trans-

form that translation of a function modulates its Fourier coefficients. We denote the shift operator

(ℓ,U in the ℓth coordinate with shift U ∈ R defined by its action on the multivariate periodic function

6 : T3 → C as

(ℓ,U (6) (G1, . . . , G3) := 6(G1, . . . , Gℓ−1, (Gℓ + U) mod 1, Gℓ+1, . . . , G3).

By a change of coordinates in the integral defining a Fourier coefficient, we see that translating will

modulate the Fourier coefficients of 6 : T3 → C as

(̂(ℓ,U6)k = e2ci:ℓU6̂k. (3.6)

53

zC
zC + (1/ , 0)

1/
→

e2ci(:0I0C+:1I1C)

(0,1/

e2ci(:0 (I0C+1/)+:1I1C)

= e2ci:0·1/ ︸ ︷︷ ︸
compute :0
from here

e2ci(:0I0C+:1I1C)

Figure 3.1 The basic procedure for the phase encoding algorithm applied to the trigonometric mono-
mial 6(x) = e2cik·x.

The main idea of our phase encoding approach in Algorithm 3.1 is that by exploiting this spatial

translation property, we can separate out the components of recovered frequencies in modulations

of the function’s Fourier coefficients. Before stating the algorithm in detail, we begin with a simple

example.

Example 3.1 (Phase encoding on a trigonometric monomial). Let 3 = 2. Suppose that 6(x) =

e2cik·x is a trigonometric monomial with single frequency k ∈ I ⊂ Z2 for some known, potentially

large I. Given Λ(z, "), a reconstructing rank-1 lattice for I, we consider the one-dimensional

restriction of 6 to the lattice 61d(C) := 6(Cz). Since 6 is Fourier-sparse, a lattice FFT (cf. Algo-

rithm 1.1) on 61d is unnecessarily expensive. Thus, applying a much faster SFT to 61d returns

6̂1d
k·z mod " = 1. Our goal is to match this coefficient of 61d to the correct Fourier coefficient of 6

without having to search all of I.

Figure 3.1 depicts the phase encoding method we use in Algorithm 3.1 below. In order to

compute 61d, we restrict 6 to the dark blue line in this figure, zC. However, to get extra information

about k, we also consider (0,1/ 6, a shift of 6 in the first coordinate by 1/ , restricted to the same

lattice. The shifted lattice that we effectively restrict 6 to, zC + (1/ , 0), is depicted in light blue.

The resulting modulation of 6 induced by this spatial shift (as described by (3.6)) is detailed

in the remainder of Figure 3.1. Thus, defining 61d,1(C) := (0,1/ 6(zC), an SFT would discover

54

6̂
1d,1
k·z mod " = e2ci:0/ . We then can extract :0 from this modulation.

Repeating this process in the ℓ = 1 coordinate will recover :1, and therefore, the entirety of k

is recovered by using 3 = 2 SFTs. From here, we can then match 6̂1d
k·z mod " = 1 to 6̂k in faster than

O(|I|) time and memory as desired.

In the language of Algorithm 3.1, the original SFT of 61d occurs on Line 1. The SFTs of the

shifts of 6, denoted 61d,0, . . . , 61d,3−1, occur on Line 3. In this example, we considered a function

with only one significant Fourier mode, however, we will generally recover B significant Fourier

modes from the SFT algorithm. Thus, the for loop from Lines 6 to 14 considers each of these

recovered one-dimensional frequencies separately. Line 9 computes the modulation induced by

each of the 3 shifts, then extracts each coordinate of the 3-dimensional frequency. The remaining

check on Line 11 is useful for the theoretical analysis to ensure that spuriously recovered frequencies

are ignored.

Algorithm 3.1 Simple Frequency Index Recovery by Phase Encoding
Input: A multivariate periodic function 6 ∈ , (T3) ∩ � (T3) (from which we are able to obtain

potentially noisy samples), a multivariate frequency set I ⊂ B3

, a reconstructing rank-1 lattice
Λ(z, ") for I, and an SFT algorithm AB," .

Output: Sparse coefficient vector ĝB = (6̂Bk)k∈B3 (optionally supported on I, see Line 11), an
approximation to (6̂ |I)opt

B .
1: Apply AB," to the univariate restriction of 6 to the lattice, 61d(C) = 6(Cz), to produce ĝ1d,B =
AB,"6

1d, a sparse approximation of F" g1d ∈ CB" .
2: for all ℓ ∈ [3] do
3: Apply AB," to 61d,ℓ (C) = (ℓ,1/ 6(Cz) to produce ĝ1d,ℓ,B = AB,"6

1d,ℓ, a sparse approxima-
tion of F" g1d,ℓ ∈ CB" .

4: end for
5: ĝB ← 0
6: for all l ∈ supp(ĝ1d,B) ⊂ B" do
7: kl ← 0
8: for all ℓ ∈ [3] do
9: (:l)ℓ ← round(arg(6̂1d,ℓ,B

l /6̂1d,B
l)/2c)

10: end for
11: if kl · z ≡ l (mod ") (and optionally kl ∈ I; see Remark 3.2) then
12: 6̂Bkl ← 6̂Bkl + 6̂

1d,B
l

13: end if
14: end for

55

3.3.1.1 Analysis of Algorithm 3.1

Having seen the phase encoding approach of Algorithm 3.1 in action, we now provide an error

guarantee for its output. Notice that the assumptions on the SFT necessary for this theoretical

analysis are exactly those provided by Theorems 3.1 and 3.2. When we use the complex argument

function in Algorithm 3.1 and below, we use the principal branch, so that arg : C→ (−c, c].

Lemma 3.2 (General recovery result for Algorithm 3.1). LetAB," in the input to Algorithm 3.1 be

a noise-robust SFT algorithm which, for a function 61d ∈ , (T)∩� (T) corrupted by some arbitrary

noise ` : T → C, constructs an B-sparse Fourier approximation AB," (61d + `) =: ĝ1d,B ∈ CB"

which

1. reconstructs every frequency (up to B many) of F" g1d ∈ C" , l ∈ B" , with corresponding

Fourier coefficient meeting the tolerance | (F" g1d)l | > g,

2. satisfies the ℓ∞ error estimate for recovered coefficients

(F" g1d − ĝ1d,B) |supp(ĝ1d,B)

∞ ≤ [∞ < g,

3. satisfies the ℓ2 error estimate

F" g1d − ĝ1d,B

2 ≤ [2,

4. satisfies the ℓ1 error estimate

F" g1d − ĝ1d,B

1 ≤ [1,

5. and requires O(%(B, ")) total evaluations of 61d, operating with computational complexity

O('(B, ")).

Additionally, assume that the parameters g and [∞ hold uniformly for each SFT performed in Al-

gorithm 3.1.

Let 6, I, and Λ(z, ") be as specified in the input to Algorithm 3.1. Collecting the g-significant

frequencies of 6 into the set Sg := {k ∈ I | |6̂k | > g}, assume that |Sg | ≤ B, and set

V = max

(
g, [∞

(
1 + 2

sin
(
c

))) .
56

Then Algorithm 3.1 (ignoring the optional check on Line 11) will produce an B-sparse approxima-

tion ĝB of the Fourier coefficients of 6 satisfying the error estimates

‖ĝB − 6̂‖ℓ2 (Z3) ≤ [2 + (V + [∞)
√

max(B − |SV |, 0)

+ ‖6̂ |I − 6̂ |SV ‖ℓ2 (Z3) + ‖6̂ − 6̂ |I ‖ℓ2 (Z3)

and

‖ĝB − 6̂‖ℓ1 (Z3) ≤ [1 + (V + [∞)max(B − |SV |, 0)

+ ‖6̂ |I − 6̂ |SV ‖ℓ1 (Z3) + ‖6̂ − 6̂ |I ‖ℓ1 (Z3)

requiring O (3 · %(B, ")) total evaluations of 6, in O (3 · ('(B, ") + B)) total operations.

Proof. We begin by assuming that 6 is a trigonometric polynomial with supp(6̂) ⊂ I. Since

Λ(z, ") is a reconstructing rank-1 lattice for I, there are no collisions among the one-dimensional

frequencies {k · z | k ∈ I} modulo " . Setting 6(Cz) = 61d(C) then ensures that for each k ∈ I,

6̂k = 6̂1d
k·z. Since there are no frequency collisions in the lattice FFT, Lemma 1.3 implies that

6̂k = (F" g1d)k·z mod " . Thus, by assumption 1 on the SFT algorithm AB," , Lines 1 and 3 of

Algorithm 3.1 will produce coefficient estimates of 6̂k for every k ∈ Sg. We then write these SFT

approximations as 6̂1d,B
k·z mod " = 6̂k + [k and 6̂1d,ℓ,B

k·z mod " = e2ci:ℓ/ (6̂k + [ℓk) respectively, where we

have made use of (3.6). Note that |[k |, |[ℓk | ≤ [∞. Now, considering the estimate for :ℓ, we have

2c
arg

(
6̂

1d,ℓ,B
k·z mod "

6̂
1d,B
k·z mod "

)
=

2c
arg

(
e2ci:ℓ/ 6̂k + [ℓk

6̂
1d,B
k·z mod "

)
= :ℓ +

2c
arg

(
6̂k + [ℓk
6̂

1d,B
k·z mod "

)
= :ℓ +

2c
arg

(
1 +

[ℓk − [k

6̂
1d,B
k·z mod "

)
.

We now only consider |6̂k | > V ≥ max(g, 3[∞), that is k ∈ SV ⊂ Sg, and therefore, the correspond-

ing approximate coefficient satisfies |6̂1d,B
k·z mod " | > V − [∞. Thus, the magnitude of the fraction in

the argument must be strictly less than 2[∞
V−[∞ ≤ 1. Therefore, we consider the argument of a point

lying in the right half of the complex plane, in the open disc of radius 2[∞
V−[∞ centered at 1. The

57

maximal absolute argument of a point in this disc will be that of a point lying on a tangent line

passing through the origin. This point, the origin, and 1 then form a right triangle from which we

deduce that �����arg

(
1 +

[ℓk − [k

6̂
1d,B
k·z mod "

)����� < arcsin
(

2[∞
V − [∞

)
,

and our choice of V ≥ [∞(1 + 2/sin(c/)) then implies that�����arg

(
1 +

[ℓk − [k

6̂
1d,B
k·I mod "

)����� < c

.

Thus, ����� 2c arg

(
6̂

1d,ℓ,B
k·z mod "

6̂
1d,B
k·z mod "

)
− :ℓ

����� < 1
2
,

and so after rounding to the nearest integer, Algorithm 3.1 will recover :ℓ for all ℓ ∈ [3] and k ∈ SV.

We now know that the final loop of Algorithm 3.1 will properly map the one-dimensional fre-

quency l = k · z mod " to k for all k ∈ SV. Thus, for these same k ∈ SV, Line 12 ensures

that we set 6̂Bk := 6̂
1d,B
k·z mod " . Additionally, the max(B − |SV |, 0) many coefficients 6̂1d,B

l for which

l ≠ k · z mod " for any k ∈ SV are still available for potential assignment. If any multivariate

frequency kl ∈ I is reconstructed and passes the mandatory check in Line 11 then the approximate

Fourier coefficient 6̂1d,B
l properly corresponds to (F" g1d)kl ·z mod " = 6̂kl .

On the other hand, if some error introduced in the SFTs reconstructs a multivariate frequency

kl ∉ I, the reconstructing property does not allow us to conclude anything about a (:l, l) pair

passing the check in Line 11. Thus, it is possible that 6̂1d,B
l will contribute to some component of

ĝB not corresponding to any frequency in I. At the least however, since we know that all entries of

ĝ1d,B corresponding to frequencies in SV are correctly assigned, the remaining ones satisfy |6̂1d,B
l | ≤

V + [∞. Using these facts allows us to estimate the ℓ2 error as

‖ĝB − 6̂‖ℓ2 (Z3) ≤ ‖ĝB |Z3\I ‖ℓ2 (Z3) + ‖ĝB |I − 6̂ |supp(ĝB)∩I ‖ℓ2 (Z3) + ‖6̂ − 6̂ |SV ‖ℓ2 (Z3)

≤ (V + [∞)
√

max(B − |SV |, 0) + [2 + ‖6̂ − 6̂ |SV ‖ℓ2 (I)

(3.7)

and the ℓ1 error as

‖ĝB − 6̂‖ℓ1 (Z3) ≤ ‖ĝB |Z3\I ‖ℓ1 (Z3) + ‖ĝB |I − 6̂ |supp(ĝB)∩I ‖ℓ1 (Z3) + ‖6̂ − 6̂ |SV ‖ℓ1 (Z3)

≤ (V + [∞)max(B − |SV |, 0) + [1 + ‖6̂ − 6̂ |SV ‖ℓ1 (I)

(3.8)

58

where we have additionally used the accuracy of the initial one-dimensional SFT and the assumption

that 6̂ is supported on I.

We now handle the case when 6 is not necessarily a polynomial with Fourier support contained

in I. Rather than aiming to approximate 6̂k for every k ∈ Z3 , we restrict attention to only frequen-

cies in I, instead attempting to approximate the Fourier coefficients of 6 |I =
∑

k∈I 6̂ke2cik·◦. We

then have that 6 =: 6 |I + 6 |Z3\I and view potentially noisy input 6 + ` to our algorithm as

6 + ` = 6 |I + 6 |Z3\I + `︸ ︷︷ ︸
`′

.

Algorithm 3.1 applied to 6+ ` is then equivalent to applying it to 6 |I + `′, where now g, [∞, [2,

and [1 depend on `′, and the output is an approximation of 6̂ |I . Since `′ represents noise on the

input to AB," in its applications to 6 |I (Cz) and (ℓ,1/ 6 |I (Cz) we remark here that

‖`′‖∞ ≤ ‖6 |Z3\I ‖∞ + ‖`‖∞ ≤ ‖6̂ − 6̂ |I ‖ℓ1 (Z3) + ‖`‖∞ (3.9)

so as to help us estimate g, [∞, [2, and [1 in future applications of the lemma. Accounting for the

truncation to I in the ℓ2 error bound and using (3.7) applied to 6̂ |I , we estimate the ℓ2 error as

‖ĝB − 6̂‖ℓ2 (Z3) ≤ ‖ĝB − 6̂ |I ‖ℓ2 (Z3) + ‖6̂ − 6̂ |I ‖ℓ2 (Z3)

≤ (V + [∞)
√

max(B − |SV |, 0) + [2 + ‖6̂ |I − 6̂ |SV ‖ℓ2 (Z3)

+ ‖6̂ − 6̂ |I ‖ℓ2 (Z3)

and the ℓ1 error as

‖ĝB − 6̂‖ℓ1 (Z3) ≤ ‖ĝB − 6̂ |I ‖ℓ1 (Z3) + ‖6̂ − 6̂ |I ‖ℓ1 (Z3)

≤ (V + [∞)max(B − |SV |, 0) + [1 + ‖6̂ |I − 6̂ |SV ‖ℓ1 (Z3)

+ ‖6̂ − 6̂ |I ‖ℓ1 (Z3)

Recalling that %(B, ") and '(B, ") are the sampling and runtime complexity of AB," respec-

tively, since 1+ 3 SFTs are required, the number of 6 evaluations is O (3 · %(B, ")) and the associ-

ated computational complexity is O (3 · '(B, ")). The complexity of Lines 6 to 14 is O(B3).

59

Remark 3.2. Since the only possible misassigned values of 6̂1d,B
l contribute to coefficients in ĝB

outside the chosen frequency set I for which Λ(z, ") is reconstructing, if it is possible to quickly

(e.g., in O(3) time) check a multivariate frequency’s inclusion in I (e.g., a hyperbolic cross), en-

tries outside of I in ĝB can be identified in the optional check on Line 11 and remain (correctly)

unassigned. This has the effect of removing the max(B−|SV |, 0) terms in the error bounds while not

increasing the computational complexity. Additionally, this outputs an approximation to (6̂ |I)opt
B

which is supported only on our supplied frequency set I as we may expect or prefer.

We now apply Lemma 3.2 with the discrete sublinear-time SFT from Theorem 3.2 to give spe-

cific error bounds in terms of best B-term approximation errors as well as detailed runtime and

sampling complexities.

Corollary 3.1 (Algorithm 3.1 with discrete sublinear-time SFT). Let ≥ 9. For I ⊂ B3

with

reconstructing rank-1 lattice Λ(z, ") and the function 6 ∈ , (T3) ∩ � (T3), we consider applying

Algorithm 3.1 where each function sample may be corrupted by noise at most 4∞ ≥ 0 in absolute

magnitude. Using the discrete sublinear-time SFT algorithm Adisc
2B," or Adisc,MC

2B," with parameter

1 ≤ A ≤ "
36 , Algorithm 3.1 will produce ĝB = (6̂Bk)k∈B3 a 2B-sparse approximation of 6̂ satisfying

the error estimates

‖ĝB − 6̂‖2 ≤ (48 + 4) ‖6̂ |I − (6̂ |I)
opt
B ‖1√

B
+ (189 + 16)

√
B(‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞)

‖ĝB − 6̂‖1 ≤ (69 + 6)

6̂ |I − (6̂ |I)opt

B

1
+ (267 + 23)B (‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞) ,

albeit with probability 1−f ∈ [0, 1) for the Monte Carlo version. The total number of evaluations

of 6 and computational complexity will be

O
(
3B2A3/2 log11/2 "

log B

)
or O

(
3BA3/2 log9/2 " log

(
3"

f

))
for Adisc

2B," or Adisc,MC
2B," respectively.

Proof. For the definitions of g and V in Lemma 3.2 with associated values given by Theorem 3.2,

60

Lemma 3.1 applied with x = 6̂ |I implies that SV can contain at most 2B elements and the bound

‖6̂ |I − 6̂ |SV ‖ℓ2 (Z3) ≤ ‖6̂ |I − (6̂ |I)
opt
2B ‖ℓ2 (Z3) + V

√
2B

≤
‖6̂ |I − (6̂ |I)opt

B ‖ℓ1 (Z3)

2
√
B

+ V
√

2B
(3.10)

holds. Note that the last inequality follows from [24, Theorem 2.5] applied to 6̂ |I − (6̂ |I)opt
B .

Lemma 3.2 then holds with B replaced by 2B for the 2B-sparse approximations given by Adisc
2B,"

or Adisc,MC
2B," in Algorithm 3.1.

After treating the truncation error as measurement noise as well as accounting for any noise in

the input bounded by 4∞, Theorem 3.2 gives the values

[∞ = 3
√

2

(
‖6̂ |I − (6̂ |I)opt

B ‖1
2B

+ 2(‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞)
)
,

g =
12(1 +

√
2)

3
√

2
[∞.

Assuming ≥ 9,

V = max

(
g, [∞

(
1 + 2

sin
(
c

))) = [∞

(
1 + 2

sin
(
c

)) ≤ [∞ (
1 + 2

9 sin
(
c
9
))

.

Inserting the estimate for ‖6̂ |I − 6̂ |SV ‖2 from (3.10), this bound for V, and the values for [2 (where

again we use [24, Theorem 2.5]) and [1 from Theorem 3.2

[2 ≤
77‖6̂ |I − (6̂ |I)opt

B ‖1
2
√
B

+ 152
√
B(‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞)

[1 ≤ 55

6̂ |I − (6̂ |I)opt

B

1
+ 215B(‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞)

into the recovery bound in Lemma 3.2 and upper bounding ‖6̂ − 6̂ |I ‖2 by
√
B‖6̂ − 6̂ |I ‖1 gives the

final error estimate.

The change to the complexity of the randomized algorithm arises from distributing the proba-

bility of failure f over the 3 + 1 SFTs in a union bound.

Because the nonequispaced SFTs discussed in Theorem 3.1 do not approximate the discrete

Fourier transform and therefore do not alias the one-dimensional frequencies k·z into frequencies in

B" , slightly modifying Algorithm 3.1 to use SFTs with a larger bandwidth allows for the following

recovery result.

61

Corollary 3.2 (Algorithm 3.1 with nonequispaced sublinear-time SFT). For I ⊂ B3

with ≥ 6,

fix the new bandwidth parameter "̃ := 2 maxk∈I |k · z| + 1. For Λ(z, "), a reconstructing rank-1

lattice forI with" ≤ "̃ , and the function 6 ∈ , (T3)∩� (T3), we consider applying Algorithm 3.1

where each function sample may be corrupted by noise at most 4∞ ≥ 0 in absolute magnitude with

the following modifications:

1. use the sublinear-time SFT algorithm Asub
2B,"̃

or Asub,MC
2B,"̃

2. and only check equality against l in Line 11 (rather than equivalence modulo "),

to produce ĝB = (6̂Bk)k∈B3 a 2B-sparse approximation of 6̂ satisfying the error estimates

‖ĝB − 6̂‖ℓ2 (Z3) ≤ (25 + 3)
[
‖6̂ |I − (6̂ |I)opt

B ‖1√
B

+
√
B‖6̂ − 6̂ |I ‖1 +

√
B4∞

]
,

‖ĝB − 6̂‖ℓ1 (Z3) ≤ (35 + 3)
[

6̂ |I − (6̂ |I)opt

B

1
+ B‖6̂ − 6̂ |I ‖1 + B4∞

]
albeit with probability 1−f ∈ [0, 1) for the Monte Carlo version. ForAsub

2B,"̃
andAsub,MC

2B,"̃
respec-

tively, the total number of evaluations of 6 and computational complexity will be

O
(
3B2 log4 "̃

log B

)
or O

(
3B log3("̃) log

(
3"̃

f

))
.

Proof. The bandwidth specified ensures that B"̃ ⊃ {k · z | k ∈ I}. In the case where 6 is a

trigonometric polynomial with supp(6̂) ⊂ I, so long as there exists some" ≤ "̃ such thatΛ(z, ")

is reconstructing forI, we are guaranteed that a length-"̃ DFT on a polynomial supported on {k·z |

k ∈ I} will not suffer from aliasing collisions. Thus, by Lemma 1.2, the one-dimensional Fourier

transforms truncated toB"̃ coincide with length "̃ DFTs. We can therefore view an approximation

from the algorithm in Theorem 3.1 as one of a length "̃ DFT. The reasoning in the proofs of

Lemma 3.2 and Corollary 3.1 then holds with the SFT algorithms, parameters, numbers of samples,

and complexities of Theorem 3.1.

Remark 3.3. As in Chapter 2, (2.7) and (2.8), we can estimate "̃ above with two different tech-

62

niques:

"̃ = 1 + 2 max
k∈I

������ ∑ℓ∈[3] :ℓIℓ
������ ≤ 1 + 2

∑
ℓ∈[3]
|Iℓ |max

k∈I
|:ℓ | = O(3 I"),

"̃ = 1 + 2 max
k∈I

������ ∑ℓ∈[3] :ℓIℓ
������ ≤ 1 + 2‖z‖∞max

k∈I
‖k‖1 = O

(
" max

k∈I
‖k‖1

)
.

The latter case is especially useful when I is a subset of a known ℓ1 ball as it will provide a dimen-

sion independent upper bound on "̃ . Either of these upper bounds may then be used in practice to

avoid having to estimate "̃ .

That being said however, if one is willing to perform the one-time search through the frequency

set I to more accurately calculate "̃ , one can go even further to use the minimal bandwidth "̃′ =

maxk∈I (k · z) −mink∈I (k · z) + 1 so long as the function samples are properly modulated to shift

the one-dimensional frequencies into B"̃ ′ . For example, running Asub
2B,"̃ ′

or Asub,MC
2B,"̃ ′

on 61d(C) =

e2ciqC6(Cz) and 61d,ℓ (C) = e2ciqC(ℓ,1/ 6(Cz) with q =

⌊
"̃ ′

2

⌋
−maxk∈I (k · z) is acceptable so long as

this shift is accounted for in the frequency check on Line 11. Note though that these improvements

will only have the effect of reducing the logarithmic factors in the computational complexity.

3.3.2 Two-dimensional DFT technique

Below, we will consider a method for recovering frequencies which, rather than shifting one

dimension of the multivariate periodic function 6 at a time, leaves one dimension of 6 out at a time.

We will fix one dimension ℓ ∈ [3] of 6 at equispaced nodes over T and apply a lattice SFT to the

other 3 − 1 components. Applying a standard FFT to the results will produce a two-dimensional

DFT. The indices corresponding to the standard FFT will represent frequency components in di-

mension ℓ while the indices corresponding to the lattice SFT will be used to synchronize with

known one-dimensional frequencies k · z mod " .

Note that below, we will separate out coordinate ℓ of a multivariate point x ∈ T3 or frequency

k ∈ Z3 , denoting the remaining coordinates as x′
ℓ
∈ T3−1 or k′

ℓ
∈ Z3−1. With a slight abuse of

notation, we can rewrite the original point or frequency as x = (Gℓ, x′ℓ) or k = (:ℓ, k′ℓ).

Again, before stating Algorithm 3.2 in detail, we present an example.

63

Example 3.2 (Two-dimensional DFT technique on a trigonometric monomial). As in Example 3.1,

we let 6 be the trigonometric monomial 6(x) := e2cik·x. However, in this example, we let 3 = 3, so

k ∈ I ⊂ Z3 and the domain of 6 is T3 depicted in Figure 3.2. We will consider the procedure to

compute the ℓ = 0 component of k.

First, we take a reconstructing rank-1 latticeΛ(z, ") forI and restrict all but the first component

of 6 to the lattice. This produces a two-dimensional function of the form

(G0, C) ↦→ e2ci(:0G0+:1I1C+:2I2C) .

We then sample this function at equispaced points over T in the G0 variable. This produces

projected lattices spaced 1/ apart in the G0 direction on which we sample 6, depicted in Figure 3.2.

Fixing G0 at each equispaced point produces the univariate functions which are organized into

the top array of Figure 3.3. Notice that colors of the entries in this array correspond to the lattices

in Figure 3.2 over which we sample 6 to produce that entry.

The next step is to apply an SFT to each of the univariate functions in this array. Each function

has exactly one active frequency, :1I1 + :2I2, with corresponding Fourier coefficient e2ci:0 9/ .

Thus, collecting the results into a matrix produces the left-most matrix in Figure 3.3 with only

the :1I1 + :2I2 mod " column filled. This column contains equispaced samples of the function

e2ci:0G0 , and so finally applying a DFT to the matrix will produce the right-most matrix in Figure 3.3.

We find only one entry in row :0 mod " corresponding to the only active frequency of e2ci:0G0 .

Thus, we can read off the ℓ = 0 entry of k by determining which row contains the Fourier coefficient

of 6 of interest. Repeating this process for all ℓ = 0, . . . , 3 − 1 we will be able to recover k.

We now generalize the procedure demonstrated in Example 3.2 in a lemma. In particular, we

must account for functions which have more than one significant frequency. For theoretical sim-

plicity, we use a length "-DFT in the first step rather than an SFT.

Lemma 3.3. Fix some finite multivariate frequency set I ⊂ B3

, let Λ(z, ") be a reconstructing

rank-1 lattice for {k − :ℓeℓ | k ∈ I} (where eℓ ∈ Z3 is the canonical basis vector which has

(eℓ)ℓ = 1 and zeros in all other entries) for all ℓ ∈ [3], and assume that 6 has Fourier support

supp(6̂) ⊂ I. Fixing one dimension ℓ ∈ [3], and writing the generating vector as z = (Iℓ, z′ℓ) ∈ Z
3 ,

64

G0

G1

G2

1

Figure 3.2 An example of T3 depicting the projected rank-1 lattices on which 6(x) is sampled to
compute the ℓ = 0 component of each 3-dimensional frequency.

e2ci(:0
0

+:1I1C+:2I2C)

e2ci(:0
1

+:1I1C+:2I2C)

...

e2ci(:0
 −2

+:1I1C+:2I2C)

e2ci(:0
 −1

+:1I1C+:2I2C)

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

0 · · · 0 e2ci:0
0
 0 · · · 0

0 · · · 0 e2ci:0
1
 0 · · · 0

...

0 · · · 0 e2ci:0
 −2
 0 · · · 0

0 · · · 0 e2ci:0
 −1
 0 · · · 0

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

0 · · · 0 0 0 · · · 0
...
. . .

...
. . .

...

0 0 0 0 0
0 · · · 0 1 0 · · · 0
0 0 0 0 0
...
. . .

...
. . .

...

0 · · · 0 0 0 · · · 0

©­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®¬

Apply SFT AB," to rows

Apply
F to
columns

column :1I1 + :2I2 mod "
column :1I1 + :2I2 mod "

row :0 mod

Figure 3.3 One round of the basic procedure for the two dimensional DFT algorithm applied to the
trigonometric monomial 6(x) = e2cik·x sampled over the sets depicted in Figure 3.2. Notice that
each row corresponds to samples of 6(x) on the shifted lattice of the corresponding color.

65

define the polynomials

6
1d,ℓ
9
(C) := 6

(
9

, Cz′ℓ

)
for all 9 ∈ [],

that is, fix coordinate ℓ at 9/ and restrict the remaining coordinates to dimensions [3] \ {ℓ} of

the rank-1 lattice. Then for all one-dimensional frequencies l ∈ ["],

(
F" g1d,ℓ

9

)
l
=


∑

ℎℓ∈B s.t.
(ℎℓ ,k′ℓ)∈I

e2ci 9 ℎℓ/ 6̂(ℎℓ ,k′ℓ) if ∃k ∈ I with l ≡ k′
ℓ
· z′
ℓ
(mod "),

0 otherwise.

Moreover, defining the matrix Gℓ =

((
F" g1d,ℓ

9

)
l

)
9∈[],l∈["]

, we have(
F Gℓ

)
:ℓ mod ,k′

ℓ
·z′
ℓ

mod "
= 6̂k for all k ∈ I,

and the remaining entries of the matrix F Gℓ ∈ C ×" are zero.

Proof. Using the Fourier series representation of 6, we have

6
1d,ℓ
9
(C) :=

∑
k∈I

6̂k e2ci
(
9:ℓ

+k′
ℓ
·z′
ℓ
C

)
.

We calculate for l ∈ ["](
F" g1d,ℓ

9

)
l
=

1
"

∑
8∈["]

∑
h∈I

e
2ci 9ℎℓ
 6̂h e

2ci(h′
ℓ
·z′
ℓ
−l)8

"

=
∑
h∈I

e
2ci 9ℎℓ
 6̂h X0,(h′

ℓ
·z′
ℓ
−l mod ") .

When there exists some k ∈ I such that k′
ℓ
·z′
ℓ
≡ l mod " , the fact that Λ(z, ") is a reconstructing

rank-1 lattice for {k−:ℓeℓ | k ∈ I} ensures that such k′
ℓ

satisfying this equivalence is unique. Then,

we can simplify this sum to (
F" g1d,ℓ

9

)
l
=

∑
ℎℓ∈B s.t.
(ℎℓ ,k′ℓ)∈I

e
2ci 9ℎℓ
 6̂(ℎℓ ,k′ℓ) .

When no k ∈ I exists such that k′
ℓ
·z′
ℓ
≡ l (mod "), this sum is instead zero as desired. Applying

F to Gℓ then allows us to compute(
F Gℓ

)
:ℓ mod , k′

ℓ
·z′
ℓ

mod "
=

1

∑
9∈[]

∑
ℎℓ∈B

6̂(ℎℓ ,k′ℓ) e
2ci(ℎℓ−:ℓ mod) 9

 = 6̂k.

66

Algorithm 3.2 Frequency Index Recovery by Two Dimensional DFT
Input: A multivariate periodic function 6 ∈ , (T3) ∩ � (T3) (from which we are able to obtain

potentially noisy samples), a multivariate frequency setI ⊂ B3

, a rank-1 latticeΛ(z, ") which
is reconstructing for I and {k − :ℓeℓ | k ∈ I} for all ℓ ∈ [3], and an SFT algorithm AB," .

Output: Sparse coefficient vector ĝB = (6̂Bk)k∈B3 (optionally supported on I, see Line 16), an
approximation to (6̂ |I)opt

B .
1: Apply AB," to the univariate restriction of 6 to the lattice, 61d(C) := 6(Cz), to produce ĝ1d,B :=
AB,"6

1d, a sparse approximation of F" g1d ∈ C" .
2: for all ℓ ∈ [3] do
3: for all 9 ∈ [] do
4: Apply AB," to 61d,ℓ

9
(C) := 6

(
9

, Cz′

ℓ

)
to produce ĝ1d,ℓ,B

9
:= AB,"6

1d,ℓ
9

, a sparse approxi-

mation of F" g1d,ℓ
9

.
5: Row 9 of Gℓ,B ← ĝ1d,ℓ,B

9
.

6: end for
7: for all nonzero columns l of Gℓ,B do
8: Apply F to column l of Gℓ,B to produce F Gℓ,B.
9: end for

10: end for
11: ĝB ← 0
12: for all l ∈ supp(ĝ1d,B) do
13: for all ℓ ∈ [3] do
14: ((:l)ℓ,∼) ← arg min{|6̂1d,B

l − (F Gℓ,B)ℎ,l′ | | (ℎ, l′) ∈ B × ["] with ℎIℓ + l′ ≡
l mod "}

15: end for
16: if kl · z ≡ l mod " (and optionally kl ∈ I) then
17: 6̂Bkl ← 6̂Bkl + 6̂

1d,B
l

18: end if
19: end for

Example 3.2 and Lemma 3.3 explain the procedure in Lines 1 through 10 of Algorithm 3.2.

However, some care must be taken when we assign rows of nonzero entries in the resulting matrix

to coordinates of significant frequencies. The solution is the minimization problem in Line 14. This

step uses column information as well as the values of the entries in the matrix to ensure that we are

properly matching frequency components with the correct Fourier coefficient 6̂1d,B
l .

The remainder of the algorithm is the same as Algorithm 3.1. Line 16 consists of the same

check to ensure that recovered frequencies are correct, and if this check passes, the one-dimensional

Fourier coefficient is assigned to its matched 3-dimensional frequency.

Remark 3.4. We bring special attention to the fact that Algorithm 3.2 requires as input a rank-1

67

lattice Λ(z, ") which is reconstructing for not only I, but also the projections of I of the form

{k − :ℓeℓ | k ∈ I} for any ℓ ∈ [3]. For frequency sets I which are downward closed, that is,

if I is such that for any k ∈ I and h ∈ Z3 , |h| ≤ |k| component-wise implies that h ∈ I, any

reconstructing rank-1 lattice for I is necessarily one for the considered projections as well. Thus,

for many frequency spaces of interest, e.g., hyperbolic crosses (cf. Remarks 3.2 and 3.3 as well as

Section 3.4 below), any reconstructing rank-1 lattice for I will suffice as input to Algorithm 3.2.

3.3.2.1 Analysis of Algorithm 3.2

With the conceptual explanation of Algorithm 3.2 complete, we now provide error guarantees

for its output.

Lemma 3.4 (General recovery result for Algorithm 3.2.). Let 6, I, and Λ(z, ") be as specified

in the input to Algorithm 3.2. Additionally, let AB," be a noise-robust SFT algorithm satisfying

the same constraints as in Lemma 3.2 with parameters g and [∞ holding uniformly for each SFT

performed in Algorithm 3.2.

Collect the g-significant frequencies of 6 into the set Sg := {k ∈ I | |6̂k | > g} and assume that

|Sg | ≤ B. Then Algorithm 3.2 (ignoring the optional check on Line 16) will produce an B-sparse

approximation of the Fourier coefficients of 6 satisfying the error estimates

‖ĝB − 6̂‖ℓ2 (Z3) ≤ [2 + (4g + [∞)
√

max(B − |S4g |, 0) + ‖6̂ |I − 6̂ |S4g ‖ℓ2 (Z3) + ‖6̂ − 6̂ |I ‖ℓ2 (Z3)

‖ĝB − 6̂‖ℓ1 (Z3) ≤ [1 + (4g + [∞)max(B − |S4g |, 0) +

6̂ |I − 6̂ |S4g

ℓ1 (Z3) + ‖6̂ − 6̂ |I ‖ℓ1 (Z3) .

requiringO (3 · %(B, ")) total evaluations of 6, inO (3 ('(B, ") + B log)) total operations.

Proof. We begin by assuming that 6 is a trigonometric polynomial with supp(6̂) ⊂ I. Since

Λ(z, ") is a reconstructing rank-1 lattice for I, the DFT-aliasing ensures that Line 1 of Algo-

rithm 3.2 will return approximate coefficients uniquely corresponding to all g-significant frequen-

cies k ∈ Sg which we can label 6̂1d,B
k·z mod " . Additionally, Line 4 recovers approximations to all

g-significant frequencies of F" g1d,ℓ
9

which have the form given in Lemma 3.3. In particular, if

68

k ∈ Sg, we have

g < |6̂k | =
����(F Gℓ

)
:ℓ mod ,k′

ℓ
·z′
ℓ

mod "

����
=

������ 1

∑
9∈[]

(
F" g1d,ℓ

9

)
k′
ℓ
·z′
ℓ

mod "
e
−2ci 9:ℓ mod

������
≤ 1

∑
9∈[]

����(F" g1d,ℓ
9

)
k′
ℓ
·z′
ℓ

mod "

����
≤ max

9∈[]

���(F" g1d,ℓ
9
)k′
ℓ
·z′
ℓ

mod "

��� .
Thus, there exists at least one F" g1d,ℓ

9
with k′

ℓ
· z′
ℓ

mod " recovered as a g-significant frequency

in the SFT of Line 4, and k′
ℓ
· z′
ℓ

mod " will be a nonzero column in Gℓ,B for all k ∈ Sg.

Analyzing these SFTs in more detail for any k ∈ I such that k′
ℓ
· z′
ℓ

mod " is a nonzero column

of Gℓ,B, we write (
ĝ1d,ℓ,B
9

)
k′
ℓ
·z′
ℓ

mod "
=

(
F" g1d,ℓ

9

)
k′
ℓ
·z′
ℓ

mod "
+

(
[ℓ9

)
k′
ℓ
·z′
ℓ

mod "

where, by the ℓ∞ and recovery guarantees for AB," , the error satisfies

����([ℓ9)k′
ℓ
·z′
ℓ

mod "

���� ≤

[∞ if

(
ĝ1d,ℓ,B
9

)
k′
ℓ
·z′
ℓ

mod "
≠ 0

g if
(
ĝ1d,ℓ,B
9

)
k′
ℓ
·z′
ℓ

mod "
= 0
≤ g.

Thus, in the application of F to column k′
ℓ
· z′
ℓ

mod " of Gℓ,B, we have(
F Gℓ,B

)
:ℓ mod ,k′

ℓ
·z′
ℓ

mod "

=

(
F Gℓ

)
:ℓ mod ,k′

ℓ
·z′
ℓ

mod "
+

(
F

((
[ℓ9

)
k′
ℓ
·z′
ℓ

mod "

)
9∈[]

)
:ℓ mod

=: 6̂k + [ℓk

with

|[ℓk | =

������ 1

∑
9∈[]

(
[ℓ9

)
k′
ℓ
·z′
ℓ

mod "
e
−2ci 9:ℓ mod

������ ≤ max
9∈[]

����([ℓ9)k′
ℓ
·z′
ℓ

mod "

���� ≤ g.

69

These same calculations apply to the computed columns of F Gℓ,B which do not correspond to

values of k′
ℓ
· z′

ℓ
mod " for some k ∈ I since we assume supp(6̂) ⊂ I, and so at worst, these

columns are filled with noise bounded in magnitude by g.

Restricting our attention to k ∈ S4g ⊂ Sg, we know that Line 14 will be run with l = k · z mod

" and (:ℓ mod , k′
ℓ
·z′
ℓ

mod ") as an admissible index in the minimization. By the reconstructing

property of Λ(z, "), no other h ∈ I will correspond to an admissible index (ℎℓ mod , h′
ℓ
·z′
ℓ

mod

"), and so the only remaining values of (F Gℓ,B)ℎ,l′ in the minimization correspond to pure noise

[bounded in magnitude by g. Analyzing the objective at (:ℓ mod , k′
ℓ
· z′
ℓ

mod "), we find

|6̂1d,B
k·z mod " − (F Gℓ,B):ℓ mod ,k′

ℓ
·z′
ℓ

mod " | ≤ 2g < |6̂k | − 2g ≤ |6̂1d,B
k·z mod " − [|,

and so the value for (:l)ℓ will in fact be assigned :ℓ. Thus, after all 3 components of kl = k have

been recovered, 6̂Bk will be assigned 6̂1d,B
k·z mod " .

The remaining max(B − |S4g |, 0) nonzero entries of ĝ1d,B can be distributed to entries of ĝB

possibly correctly but with no guarantee; at the very least however, these values must be at most 4g+

[∞ in magnitude. We split ĝB as ĝB = ĝB,correct+ ĝB,incorrect to account for the values of ĝB respectively

assigned correctly and incorrectly and note that supp(ĝB,correct) ⊃ S4g. We then estimate the ℓ2 error

as

‖ĝB − 6̂‖ℓ2 (Z3) ≤ ‖ĝB,correct − 6̂ |supp(ĝB,correct) ‖ℓ2 (Z3) + ‖ĝB,incorrect‖ℓ2 (Z3) + ‖6̂ − 6̂ |supp(ĝB,correct) ‖ℓ2 (Z3)

≤ [2 + (4g + [∞)
√

max(B − |S4g |, 0) + ‖6̂ − 6̂ |S4g ‖ℓ2 (Z3)

and the ℓ1 error as

‖ĝB − 6̂‖ℓ1 (Z3) ≤

ĝB,correct − 6̂ |supp(ĝB,correct)

ℓ1 (Z3) +

ĝB,incorrect

ℓ1 (Z3) +

6̂ − 6̂ |supp(ĝB,correct)

ℓ1 (Z3)

≤ [1 + (4g + [∞)max(B − |S4g |, 0) +

6̂ − 6̂ |S4g

ℓ1 (Z3) .

As in the proof of Lemma 3.2, we note that the mandatory check in Line 16 helps ensure that all

misassigned values 6̂1d,B
l which contribute to ĝB,incorrect correspond to reconstructed kl outside of

I, with the optional check in this line (see Remark 3.2) eliminating ĝB,incorrect and the corresponding

term in the error estimate entirely.

70

Now, supposing that the Fourier support of 6 is not limited to only I, just as in the analysis

for Algorithm 3.1, we treat 6 as a perturbation of 6 |I , and use the robust SFT algorithm and the

previous argument to approximate 6̂ |I . Note again that in each SFT, the noise added when using

measurements of 6 as proxies for those of 6 |I is compounded by ‖6 |Z3\I ‖∞ and is bounded by

‖6̂ − 6̂ |I ‖ℓ1 (Z3) . Applying the guarantees above gives the ℓ2 estimate

‖ĝB − 6̂‖ℓ2 (Z3) ≤ ‖ĝB − 6̂ |I ‖ℓ2 (Z3) + ‖6̂ − 6̂ |I ‖ℓ2 (Z3)

≤ [2 + (4g + [∞)
√

max(B − |S4g |, 0) + ‖6̂ |I − 6̂ |S4g ‖ℓ2 (Z3) + ‖6̂ − 6̂ |I ‖ℓ2 (Z3)

and the ℓ1 estimate

‖ĝB − 6̂‖ℓ1 (Z3) ≤ ‖ĝB − 6̂ |I ‖ℓ1 (Z3) + ‖6̂ − 6̂ |I ‖ℓ1 (Z3)

≤ [1 + (4g + [∞)max(B − |S4g |, 0) +

6̂ |I − 6̂ |S4g

ℓ1 (Z3) + ‖6̂ − 6̂ |I ‖ℓ1 (Z3) .

Employing fast Fourier transforms for the at most 3B DFTs, the computational complexity of

Lines 2 to 10 is O
(
3 (· '(B, ") + B 2 log)

)
(which dominates the complexity of the remainder

of the algorithm). Since 1+ 3 SFTs are required, the number of 6 evaluations is O(3 ·%(B, ")).

Remark 3.5. Though the number of nonzero columns of Gℓ,B can be theoretically at most B , in

practice with a high quality algorithm, each of the SFTs should recover nearly the same frequen-

cies, meaning that there are actually O(B) columns. This would remove a power of in the second

term of the runtime estimate.

Note however, that even with near exact SFT algorithms, recovering exactly B total frequencies

is not a certainty. There can be cancellations for certain terms in F" g1d,ℓ
9

depending interactions

between the coefficients sharing the same values on their [3] \ {ℓ} entries, which makes it possible

that an SFT on F" g1d,ℓ
9

will miss coefficients. If required to output B-entries, an SFT algorithm

could favor some noisy value corresponding to a frequency outside the support.

Remark 3.6. Though we perform an exact FFT of the nonzero columns of G1d,ℓ in Line 8 of Algo-

rithm 3.2, Lemma 3.3 implies that the resulting matrix will be as sparse as the original function’s

Fourier transform. Thus, for a truly compressible function, an SFT down the columns of G1d,ℓ

71

would be feasible as well. However, in especially higher dimensions, even small can allow for

large frequency spaces I. In these large frequency spaces, what is perceived as relatively sparse

can therefore quickly surpass , rendering an B-sparse, length SFT useless.

As a simple example, consider I to be the cube of side length = B, B3B . For 3 large enough,

any frequency support of size B will be small in comparison to |I | = B3 . However, using an B-sparse

SFT instead of a length-B DFT in Algorithm 3.2 will actually be more expensive.

Applying the discrete sublinear-time SFT from Theorem 3.2 to Lemma 3.4 analogously to the

derivation of Corollary 3.1 from Lemma 3.2 allows for the following recovery bound for Algo-

rithm 3.2. In particular, we observe asymptotically improved error guarantees over Corollary 3.1

at the cost of a slight increase in runtime.

Corollary 3.3 (Algorithm 3.2 with discrete sublinear-time SFT). For I ⊂ Z3 with reconstructing

rank-1 lattice Λ(z, ") and the function 6 ∈ , (T3) ∩ � (T3), we consider applying Algorithm 3.2

where each function sample may be corrupted by noise at most 4∞ ≥ 0 in absolute magnitude.

Using the discrete sublinear-time SFT algorithm Adisc
2B," or Adisc,MC

2B," with parameter 1 ≤ A ≤ "
36

will produce ĝB = (6̂Bk)k∈B3 a 2B-sparse approximation of 6̂ satisfying the error estimates

‖ĝB − 6̂‖ℓ2 (Z3) ≤ 206
‖6̂ |I − (6̂ |I)opt

B ‖1√
B

+ 821
√
B(‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞)

‖ĝB − 6̂‖ℓ1 (Z3) ≤ 293

6̂ |I − (6̂ |I)opt

B

1
+ 1161B (‖6‖∞"−A + ‖6̂ − 6̂ |I ‖1 + 4∞)

albeit with probability 1 − f ∈ [0, 1) for the Monte Carlo version.

The total number of evaluations of 6 and the computational complexity will be

O
(
3B

(
BA3/2 log11/2 "

log B
+ log

))
or O

(
3B

(
A3/2 log9/2(") log

(
3 "

f

)
+ log

))
for Adisc

2B," or Adisc,MC
2B," respectively.

Again, the same strategy from Corollary 3.2 of widening the frequency band and shifting the

one-dimensional transforms accordingly allows us to use the nonequispaced SFT algorithm from

Theorem 3.1 in Algorithm 3.2. Note here that the widening and shifting occurs on a dimension by

72

dimension basis so as to account for the differing one-dimensional frequencies of the form k′
ℓ
· z′
ℓ

for k ∈ I.

Corollary 3.4 (Algorithm 3.2 with nonequispaced sublinear-time SFT). For I ⊂ B3

, let "̃ be the

larger one-dimensional bandwidth parameter from Corollary 3.2, and additionally define "̃ℓ :=

2 maxk∈I |k′ℓ · z
′
ℓ
| + 1. For Λ(z, "), a reconstructing rank-1 lattice for I and where " is such

that " ≤ min{"̃,minℓ∈[3] "̃ℓ}, for the function 6 ∈ , (T3) ∩ � (T3), we consider applying

Algorithm 3.2 where each function sample may be corrupted by noise at most 4∞ ≥ 0 in absolute

magnitude with the following modifications:

1. use the sublinear-time SFT algorithmAsub
2B,"̃

orAsub,MC
2B,"̃

in Line 1 andAsub
2B,"̃ℓ

orAsub,MC
2B,"̃ℓ

in

Line 4

2. and only check equality against l in Line 14 (rather than equivalence modulo "),

to produce ĝB = (6̂Bk)k∈B3 a 2B-sparse approximation of 6̂ satisfying the error estimates

‖ĝB − 6̂‖ℓ2 (Z3) ≤ 98

(
‖6̂ |I − (6̂ |I)opt

B ‖1√
B

+
√
B‖6̂ − 6̂ |I ‖1 +

√
B4∞

)
‖ĝB − 6̂‖ℓ1 (Z3) ≤ 139

(

6̂ |I − (6̂ |I)opt
B

1
+ B‖6̂ − 6̂ |I ‖1 + B4∞

)
,

albeit with probability 1 − f ∈ [0, 1) for the Monte Carlo version.

Letting "̄ = max("̃,maxℓ∈[3] "̃ℓ), the total number of evaluations of 6 will be

O
(
3 B2 log4 "̄

log B

)
or O

(
3 B log3 "̄ log

(
3 "̄

f

))
with associated computational complexities

O
(
3 B

(
B log4 "̄

log B
+ log

))
or O

(
3 B

(
log3 "̄ log

(
3 "̄

f

)
+ log

))
for Asub

2B,· and Asub,MC
2B,· respectively.

Remark 3.7. The bounds in Remark 3.3 will still hold for "̃ℓ as well; thus one of these upper

bounds can be used as the effective bandwidth parameter for every SFT without having to calculate

the 3 + 1 bandwidths by scanning I. Again however, if this scan is tolerable, one can reduce the

overall complexity by using analogous minimal bandwidths discussed in Remark 3.3 along with

corresponding frequency shifts.

73

3.4 Numerics

We now demonstrate the effectiveness of our phase encoding and two-dimensional DFT al-

gorithms for computing Fourier coefficients of multivariate functions in a series of empirical tests.

The two techniques are implemented in MATLAB, with the code for the algorithms and tests in this

section publicly available¹. The results below use a MATLAB implementation² of the randomized

univariate sublinear-time nonequispaced algorithm Asub,MC
2B," (cf. Theorem 3.1) as the underlying

SFT for both multivariate approaches as this allows for the fastest runtime and most sample effi-

cient implementations.

In the univariate code, all parameters but one are qualitatively tuned below theoretical upper

bounds to increase efficiency while maintaining accuracy and are kept constant between tests below.

In particular, we fix the values C := 1, sigma := 2/3, and primeShift := 0 (see the documentation

and the original paper [37] for more detail). The only parameter we vary is “randomScale” which

affects the rate at which the deterministic algorithm Asub
2B," is randomly sampled to produce the

Monte Carlo version Asub,MC
2B," . This parameter represents a multiplicative scaling on logarithmic

factors of the bandwidth which determines how many prime numbers are randomly selected from

those used in the deterministic SFT implementation. Therefore, lower values of “randomScale”

will result in using fewer prime numbers, decreasing the number of function samples and overall

runtime at the risk of a higher probability of failure. We consider values well below the code default

and theoretical upper bound of 21 given in [37].

3.4.1 Exactly sparse case

In the beginning, we consider the case of multivariate trigonometric polynomials with frequen-

cies supported within hyperbolic cross index sets. We define the 3-dimensional hyperbolic cross

frequency set

H 3
 :=

k ∈ Z3 :
∏
ℓ∈[3]

max(1, |:ℓ |) ≤

2
and max

ℓ∈[3]
:ℓ <

2

 ⊂ B3
¹available at https://gitlab.com/grosscra/Rank1LatticeSparseFourier
²available at https://gitlab.com/grosscra/SublinearSparseFourierMATLAB

74

https://gitlab.com/grosscra/Rank1LatticeSparseFourier
https://gitlab.com/grosscra/SublinearSparseFourierMATLAB

where the second condition ensures that H 3

is of expansion ∈ N. For a given sparsity B, we

choose B many frequencies uniformly at random from H 3

, and we randomly draw corresponding

Fourier coefficients 6̂k from [−1, 1]+i [−1, 1], |6̂k | ≥ 10−3. For each parameter setting, we perform

the tests 100 times.

Over these tests, we will determine the success rate as the percentage of times that all frequencies

were correctly identified in the output. We focus on frequency identification since this is the core

issue that Algorithms 3.1 and 3.2 solve, with the coefficient estimates carrying over directly from the

SFT algorithm. Moreover, with the Bmost significant frequencies identified, any alternative method

for quickly computing the corresponding Fourier coefficients (if those fromAB," are not tolerable)

can be performed. Nevertheless, see the experiments following those in Section 3.4.1.1 for examples

where we compute ℓ2 errors in the coefficient vectors rather than just comparing frequencies.

3.4.1.1 Randomized frequency sets within the 10-dimensional hyperbolic cross and high-
dimensional full cuboids

We set the spatial dimension 3 := 10, the expansion := 33, and use I := H10
33 as set of

possible frequencies with cardinality |I | = 45 548 649. Then, the rank-1 lattice with generating

vector
z :=(1, 33, 579, 3 628, 21 944, 169 230,

1 105 193, 7 798 320, 49 768 670, 320 144 128)>
(3.11)

and lattice size " := 2 040 484 044 is a reconstructing one. We apply Algorithm 3.1 and Algo-

rithm 3.2 with the SFT algorithm Asub,MC
2B,"̃

.

In Figure 3.4a, the success rate over 100 test runs is plotted against the sparsity values B ∈

{10, 20, 50, 100, 200, 500, 1000} for Algorithm 3.1 and B ∈ {10, 20, 50, 100} for Algorithm 3.2.

In Figure 3.4b, the average numbers of samples over 100 tests are reported. The magenta line

with circles corresponds to Algorithm 3.1 with bandwidth parameter "̃ = 3 " ≈ 6.7 · 1011 and

randomScale = 0.3. We observe that the number of samples grow nearly linearly with respect to

the sparsity B. Moreover, the success rate is at least 0.99 (99 out of 100 test runs), where we define

success such that the support of output (sparse coefficient vector) contains the true frequencies.

Next, we reduce the bandwidth "̃ to 1 + 2‖z‖∞maxk∈I ‖k‖1 ≈ 1.6 · 1010 (see also Remark 3.3)

75

10 20 50 100 200 500 1,000

0.90

0.95

1.00

sparsity B

su
cc

es
sr

at
e

phase bwℓ∞ rs=0.3 phase bwℓ1 rs=0.3
phase bwℓ1 rs=0.5 2dim bwℓ1 rs=0.3
2dim bwℓ1 rs=0.5

(a) Success rates vs. sparsity B.

10 20 50 100 200 500 1,000

107

108

109

sparsity B

sa
m

pl
es

" ∼ B

phase bwℓ∞ rs=0.3 phase bwℓ1 rs=0.3
phase bwℓ1 rs=0.5 2dim bwℓ1 rs=0.3
2dim bwℓ1 rs=0.5

(b) Samples vs. sparsity B.

Figure 3.4 Success rates and average number of samples over 100 test runs for Algorithm 3.1 with
Asub,MC

2B,"̃
, denoted by “phase”, and Algorithm 3.2 with Asub,MC

2B,"̃
, denoted by “2dim”, on random

multivariate trigonometric polynomials, setting randomScale := rs. Random frequencies are cho-
sen from hyperbolic crossI := H10

33 . “bwℓ∞” and “bwℓ1” respectively correspond to the bandwidth
parameters "̃ = 3 " with approximate value 6.7 · 1011 and "̃ = 1 + 2‖z‖∞maxk∈I ‖k‖1 with
approximate value 1.6 · 1010.

and visualize this as solid blue line with squares. This smaller bandwidth causes a decrease in the

number of samples of up to 50 percent while only mildly decreasing the success rates to values not

below 0.90. Increasing the randomScale parameter to 0.5, denoted by dashed blue line with squares,

raises the success rate to 1.00 while achieving still fewer samples than bandwidth parameter "̃ =

3 " ≈ 6.7·1011 and randomScale = 0.3 (solid magenta line with circles). The numbers of samples

for Algorithm 3.2 are plotted as solid and dashed red lines with triangles for randomScale = 0.3 and

0.5, respectively, choosing the bandwidth "̃ := 1 + 2‖z‖∞maxk∈I ‖k‖1 ≈ 1.6 · 1010. We observe

that Algorithm 3.2 requires a much larger number of samples, more than one order of magnitude,

compared to Algorithm 3.1, while achieving similar success rates. For comparison, in the case of

sparsity B = 100 and randomScale = 0.5, Algorithm 3.2 takes almost " = 2 040 484 044 samples,

the number to use a non-SFT, standard rank-1 lattice FFT.

76

10 11 12 13 14 15 16 17 18 19 20

0.98

0.99

1.00

dimension 3

su
cc

es
sr

at
e

phase rs=0.3 2dim rs=0.3

(a) Success rate vs. spatial dimension 3.

10 11 12 13 14 15 16 17 18 19 20

108

109

dimension 3

sa
m

pl
es

∼ 3 ∼ 32

phase rs=0.3 2dim rs=0.3

(b) Samples vs. spatial dimension 3.

Figure 3.5 Average number of samples over 100 test runs for Algorithm 3.1 with SFT algorithm
Asub,MC

2B,"̃
, denoted by “phase”, and Algorithm 3.2 with Asub,MC

2B,"̃
, denoted by “2dim”, on random

multivariate trigonometric polynomials, setting randomScale := rs. Random frequencies are cho-
sen from full cuboid of cardinality |I | ≈ 1012 with lattice size " = |I | and bandwidth parameter
"̃ = " .

In Figure 3.5b, we investigate the dependence of the required number of samples of Algo-

rithm 3.1 and 3.2 on the spatial dimension 3, where we consider the values 3 ∈ {10, 11, . . . , 20}.

As before, the success rates are reported in Figure 3.5a. For this, we use a slightly different setting,

where we choose B = 100 random frequencies from a full cuboid of cardinality ≈ 1012. Note that a

cuboid with edge lengths 1, 2, . . . , 3 has the rank-1 lattice construction

z = (1, 1, 1 · 2, . . . , 1 · 2 · · · 3−1) =
©­«
∏
9=[ℓ]

 9
ª®¬ℓ=[3]

with lattice size " =
∏
ℓ∈[3] ℓ = |I |. The main benefit of this construction is that the map

k ↦→ k · z is a bijection between I and B" . Thus, the one-dimensional bandwidth parameter

"̃ = 2 maxk∈I |k · z| + 1 (which is usually larger than ") in this case coincides with " = |I |.

By choosing cuboids in this experiment which have approximately the same cardinality, we remove

any dependence on "̃ in our experiments, allowing us to focus on the dependence on 3.

In our examples, the cuboids are constructed by manually tuning the edge lengths for each

dimension so that the total cardinality is ≈ 1012. One way to start this procedure is by computing

77

(1012)1/3 and then choosing 3 edge lengths that approximately average to this value. From here,

the edge lengths can be qualitatively tweaked to arrive at a cuboid of the desired size. For instance,

we utilize the cuboid I := {−8,−7, . . . , 7}9× {−7,−6, . . . , 7}, |I | ≈ 1.03 ·1012, in the case 3 = 10

and I := {−2,−1, . . . , 2} × {−2,−1, 0, 1}18 × {−1, 0, 1}, |I | ≈ 1.03 · 1012, for 3 = 20. Since

the expansion is a factor in the number of samples of Algorithm 3.2 (cf. Corollary 3.4) and we

want to concentrate on the dependence on the spatial dimension 3, we now fix this parameter to

 := 16 independent of 3. Moreover, the randomScale parameter is set to 0.3. The plots indicate

that the numbers of samples grow approximately linearly with respect to the dimension 3 as stated

by Corollaries 3.2 and 3.4 for Algorithms 3.1 and 3.2, respectively. The success rates are slightly

better compared to the tests from Figure 3.4a.

3.4.1.2 Random frequency sets within 10-dimensional hyperbolic cross and noisy samples

In this section, we again consider random multivariate trigonometric polynomials with frequen-

cies supported within the hyperbolic cross index set H10
33 of expansion = 33 and use the recon-

structing rank-1 lattice with generating vector z as stated in (3.11) and size " := 2 040 484 044.

Similarly as in [43, Section 5.2], we perturb the samples of the trigonometric polynomial by addi-

tive complex (white) Gaussian noise Y 9 ∈ C with zero mean and standard deviation f. The noise is

generated by Y 9 := f/
√

2
(
Y1, 9 + iY2, 9

)
where Y1, 9 , Y2, 9 are independent standard normal distributed.

Since the signal-to-noise ratio (SNR) can be approximately computed by

SNR ≈
∑"−1
9=0 |6(x 9) |2/"∑"−1
9=0 |Y 9 |2/"

≈
∑

k∈supp(6̂) |6̂k |2

f2 ,

this leads to the choice f :=
√∑

k∈supp(6̂) |6̂k |2/
√

SNR for a targeted SNR value. The SNR is

often expressed in the logarithmic decibel scale (dB), with SNRdB = 10 log10 SNR and SNR =

10SNRdB/10, i.e., a linear SNR = 102 corresponds to a logarithmic SNRdB = 20 and SNR = 103

corresponds to SNRdB = 30. Here, our tests use sparsity B = 100 and signal-to-noise ratios

SNRdB ∈ {0, 5, 10, 15, 20, 25, 30}. Moreover, we only use the bandwidth parameter "̃ = 1 +

2‖z‖∞maxk∈I ‖k‖1 ≈ 1.6 · 1010. Besides that, we choose the algorithm parameters as in Fig-

ure 3.4.

78

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

SNRdb

su
cc

es
sr

at
e

phase rs=0.3 phase rs=0.5
2dim rs=0.3 2dim rs=0.5

(a) success rates vs. noise level for B = 100

0 5 10 15 20 25 30

10−3

10−2

10−1

SNRdb

re
la

tiv
e
ℓ

2
er

ro
r

phase rs=0.3 phase rs=0.5
2dim rs=0.3 2dim rs=0.5

(b) relative ℓ2 errors vs. noise level for B = 100

Figure 3.6 Average success rates (all frequencies detected) and relative ℓ2 errors over 100 test runs
for Algorithm 3.1 with Asub,MC

2B,"̃
, denoted by “phase”, and Algorithm 3.2 with Asub,MC

2B,"̃
, denoted

by “2dim”, on random multivariate trigonometric polynomials supported on the hyperbolic cross
I := H10

33 , setting randomScale := rs ∈ {0.3, 0.5} and using the bandwidth parameter "̃ = 1 +
2‖z‖∞maxk∈I ‖k‖1 with approximate value 1.6 · 1010.

In Figure 3.6a, we visualize the success rates depending on the noise level. For randomScale ∈

{0.3, 0.5} and both algorithms, the success rates start at less than 0.12 for SNRdB = 0 and grow

for increasing signal-to-noise ratios until at least 0.90 for SNRdB = 30. The success rates of Algo-

rithm 3.2 with Asub,MC
2B,"̃

(“2dim”) are often higher than for Algorithm 3.1 with Asub,MC
2B,"̃

(“phase”),

which may be caused by the larger numbers of samples for Algorithm 3.2 and the noise model

used. Note that the numbers of samples correspond to those in Figure 3.4b for B = 100 independent

of the noise level. For Algorithm 3.2 with randomScale = 0.3, the increase of the success rate

seems to stagnate at SNRdB = 20, while this does not seem to be the case for randomScale = 0.5

or Algorithm 3.1. In particular, this behavior can also be observed in Figure 3.6b, where we plot

the average relative ℓ2 error of the Fourier coefficients against the signal-to-noise ratio. Here, we

observe that for randomScale = 0.3, the decrease of the errors for increasing SNRdB values almost

stops once reaching SNRdB = 20 for both algorithms. Initially, the average error of Algorithm 3.2

is smaller, but at SNRdB = 15 and higher, the average error of Algorithm 3.1 is smaller. In case

79

of randomScale = 0.5, we observe a distinct decrease for growing signal-to-noise ratios for both

algorithms.

3.4.1.3 Deterministic frequency set within 10-dimensional hyperbolic cross and noisy sam-
ples

Next, instead of randomly chosen frequencies, we now consider frequencies on a 3-dimensional

weighted hyperbolic cross

H 3,U

:=

k ∈ Z3 :
∏
ℓ∈[3]

max(1, (ℓ + 1)U |:ℓ |) ≤

2
and max

ℓ∈[3]
:ℓ <

2

 .
Here, we use 3 = 10, = 33, I := H10

33 , and U = 1.7, which yields B = |H10,1.7
33 | = 101. Again,

the Fourier coefficients 6̂k are randomly chosen from [−1, 1] + i [−1, 1], |6̂k | ≥ 10−3. We use the

same lattice and bandwidth parameter as in the last subsection as well as the same noise model and

parameters.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

SNRdb

su
cc

es
sr

at
e

phase rs=0.3 phase rs=0.5
2dim rs=0.3 2dim rs=0.5

(a) success rates vs. noise level for B = 100

0 5 10 15 20 25 30

10−3

10−2

10−1

SNRdb

re
la

tiv
e
ℓ

2
er

ro
r

phase rs=0.3 phase rs=0.5
2dim rs=0.3 2dim rs=0.5

(b) relative ℓ2 errors vs. noise level for B = 100

Figure 3.7 Average success rates (all frequencies detected) and relative ℓ2 errors over 100 test runs
for Algorithm 3.1 withAsub,MC

2B,"̃
, denoted by “phase”, and Algorithm 3.2 withAsub,MC

2B,"̃
, denoted by

“2dim”, on multivariate trigonometric polynomials with (deterministic) frequencies on weighted
hyperbolic cross within hyperbolic cross I := H10

33 , setting randomScale := rs ∈ {0.3, 0.5} and
bandwidth parameter "̃ = 1 + 2‖z‖∞maxk∈I ‖k‖1 ≈ 1.6 · 1010.

In Figure 3.7, we depict the obtained results. In particular, the results in Figure 3.7a are very

80

similar to the ones for randomly chosen frequencies in Figure 3.6a. For the case of deterministic

frequencies in Figure 3.7a, the success rates are slightly better. Moreover, we do not observe the

“stagnation” of the success rates for Algorithm 3.2 with randomScale = 0.3. Correspondingly, the

relative ℓ2 errors, as shown in Figure 3.7b, decrease distinctly for growing signal-to-noise ratios.

Algorithm 3.2 performs slightly better than Algorithm 3.1, but also requires more than one order

of magnitude more samples, similar to the results shown in Figure 3.4b for B = 100.

3.4.2 Compressible case in 10 dimensions

In this section, we apply the methods on a test function which is not exactly sparse but com-

pressible. In addition, we also consider noisy samples as in Section 3.4.1.2. We use the 10-variate

periodic test function 6 : T10 → R,

6(x) :=
∏

ℓ∈{0,2,7}
 2(Gℓ) +

∏
ℓ∈{1,4,5,9}

 4(Gℓ) +
∏

ℓ∈{3,6,8}
 6(Gℓ), (3.12)

from [59, Section 3.3] and [43, Section 5.3] which has infinitely many non-zero Fourier coeffi-

cients 6̂k, where < : T→ R is the B-Spline of order < ∈ N,

 < (G) := �<
∑
:∈Z

sinc
(c
<
:

)<
(−1): e2ci:G ,

with a constant �< > 0 such that ‖ < ‖!2 (T) = 1. We remark that each B-Spline < of order

< ∈ N is a piece-wise polynomial of degree < − 1. We apply Algorithm 3.1 with Asub,MC
2B,"̃

and use the sparsity parameters B ∈ {50, 100, 250, 500, 1000, 2000}, which corresponds to 2B ∈

{100, 200, 500, 1000, 2000, 4000}-many frequencies and Fourier coefficients for the output of Al-

gorithm 3.1. We use the frequency set I := H10
33 and randomScale := rs ∈ {0.05, 0.1}. Moreover,

we work with the same rank-1 lattice as in Section 3.4.1.2.

The obtained basis index sets supp(ĝB) should “consist of” the union of three lower dimensional

manifolds, a three-dimensional hyperbolic cross in the dimensions 1, 3, 8; a four-dimensional hyper-

bolic cross in the dimensions 2, 5, 6, 10; and a three-dimensional hyperbolic cross in the dimensions

4, 7, 9. All tests are performed 100 times and the relative !2 approximation error

‖6 − 6B‖!2

‖6‖!2
=

√
‖6‖2

!2 −
∑

k∈supp(ĝB) |6̂k |2 +
∑

k∈supp(ĝB) |6̂Bk − 6̂k |2

‖6‖!2

81

is computed each time.

100 200 500 1,000 2,000 4,000

107

108

109

sparsity 2B of the approximation

sa
m

pl
es

" ∼ B

rs=0.05 rs=0.1

(a) samples vs. sparsity 2B

100 200 500 1,000 2,000 4,000
10−3

10−2

10−1

100

sparsity 2B of the approximation

re
la

tiv
e
!

2
er

ro
r

rs=0.05, noiseless rs=0.1, SNRdb = 10
rs=0.1, SNRdb = 20 rs=0.1, SNRdb = 30
rs=0.1, noiseless (6̂ |I)

opt
2B

(b) relative !2 errors vs. sparsity 2B

Figure 3.8 Average number of samples and relative !2 errors over 100 test runs for Algorithm 3.1
with Asub,MC

2B,"̃
on 10-dimensional test function (3.12) consisting of tensor products of B-Splines

of different order. Search space is unweighted hyperbolic cross I := H10
33 with SFT parameters

randomScale := rs ∈ {0.05, 0.1} and "̃ = 1 + 2‖z‖∞maxk∈I ‖k‖1 ≈ 1.6 · 1010.

In Figure 3.8a, we visualize the average number of samples against the sparsity 2B of the approx-

imation. We observe an almost linear increase with respect to 2B. In Figure 3.8b, we show the aver-

age relative errors for randomScale ∈ {0.05, 0.1} in the noiseless case as well as randomScale = 0.1

for SNRdb ∈ {10, 20, 30}. In general, for increasing sparsity, the errors become smaller. For

randomScale = 0.05 in the noiseless case and randomScale = 0.1 with SNRdb = 10, the average

error is similar and stays above 3 · 10−2 even for sparsity 2B = 4000. For higher signal-to-noise

ratio, the error decreases further. For SNRdb = 30, the obtained average error is 6.1 · 10−3 for

2B = 4000, which is only approximately twice as high as the best possible error when using the

2B largest (by magnitude) Fourier coefficients 6̂k with the restriction k ∈ I := H10
33 . The latter is

plotted in Figure 3.8b as dashed line without markers.

82

CHAPTER 4

SPARSE FOURIER SPECTRAL METHODS FOR SOLVING PDE

As discussed in Section 1.1.3, this chapter focuses on a sparse spectral method for solving el-

liptic PDEs. We begin with a review of the literature on sparse spectral methods against which

we motivate our results in Section 4.1. Section 4.2 gives the advection-diffusion-reaction PDE

setup and Section 4.3 converts this problem to its Galerkin representation underpinning the spec-

tral method approach. The following three sections provide the ingredients outlined by Strang’s

lemma, Lemma 1.1, in Section 1.1.3:

1. a Fourier series truncation method for the solution and the resulting error analysis (Sec-

tion 4.4),

2. a (sparse) Fourier series approximation technique (Section 4.5), and

3. a version of Strang’s lemma that ties everything together (Section 4.6).

We close with a numerics section, Section 4.7, describing the implementation of our technique and

a variety of numerical experiments demonstrating the theory.

4.1 Overview of results and prior work

We now outline some of the previous literature on spectral methods with an emphasis on exploit-

ing sparsity. Along the way, various shortcomings will arise, and we will use these as opportunities

to motivate and explain our approach in the sequel.

4.1.1 Prior attempts to relieve dependence on bandwidth via SFT-type methods

A key work pioneering the use of SFTs in computing solutions to PDEs is due to Daubechies, et

al. [21]. This work mostly focuses on time-dependent, one-dimensional problems where the spectral

scheme is formulated as alternating Fourier-projections and time-steps. Thus, there is no need to

impose an a priori Fourier basis truncation on the solution. The proposed projection step instead

utilizes an SFT at each time step to adaptively retain the most significant frequencies throughout the

time-stepping procedure. Time-independent problems like (1.3) can then be handled by stepping

in time until a stationary solution is obtained.

83

A simplified form of this algorithm is shown to succeed numerically in [21], and it is also ana-

lyzed theoretically in the case where the diffusion coefficient consists of a known, fine-scale mode

superimposed over lower frequency terms. There, the Fourier-projection step can be considered to

be fixed. However, removing the known fine-scale assumption leads to many difficulties, including

the possibility of sparsity-induced omissions in early time steps cascading into larger errors later on.

In this chapter, on the other hand, we focus on the case of time-independent problems. This allows

us to utilize SFTs only once initially. By doing so we avoid the possibility of SFT-induced error

accumulation over many time steps. The main difficulty in our analysis then becomes determining

how the Fourier-sparse representations of the PDE data discovered by high-dimensional SFTs can

be used to rapidly find a suitable Fourier representation of the solution. This takes the form of mix-

ing the Fourier supports the data into stamping sets (discussed in detail in Section 4.4) on which

we can analyze the projection error of the solution. In fact, these stamping sets can be viewed as a

modification and generalization of the techniques used in the one-dimensional and known fine-scale

analysis from [21].

4.1.2 Attempts to relieve curse of dimensionality

Many attempts to overcome the curse of dimensionality in Fourier spectral methods for PDE

have focused on using basis truncations which allow for an efficient high-dimensional Fourier

transform. One of the most popular techniques is the sparse grid spectral method, which com-

putes Fourier coefficients on the hyperbolic cross [47, 11, 29, 30, 63, 31, 20]. In general, a sparse

grid method reduces the number of sampling points necessary to approximate the PDE data to

O(log3−1()), where acts as a type of bandwidth parameter. Algorithms to compute spec-

tral representations using these sparse sampling grids run with similar complexity. When used

in conjunction with spectral methods for solving PDE, these sparse grid Fourier transforms pro-

duce solution approximations with error estimates similar to the full 3-dimensional FFT-versions

reduced by factors only on the order of 1/log3−1().

In the context of sparse grid Fourier transforms, these methods compute Fourier coefficients

with frequencies indexed on hyperbolic crosses of similar cardinality to the number of sampling

84

points. These hyperbolic crosses have intimate links with the space of bounded mixed derivative,

in the sense that they are the optimal Fourier-approximation spaces for this class. Thus, sparse grid

Fourier spectral methods are particularly apt for problems where the solution is of bounded mixed

derivative, as this produces an optimal D − Dtruncation term in Lemma 1.1 above.

Though sparse-grid spectral methods can efficiently solve a variety of high-dimensional prob-

lems, there are clear downsides for the types of problems we target in this chapter. While many

problems fit the bounded mixed derivative assumption [67, 68], and therefore have accurate Fourier

representations on the hyperbolic cross, the multiscale, Fourier-sparse problems that we are inter-

ested in are especially problematic. In fact, since a hyperbolic cross of bandwidth contains only

those frequencies k ∈ Z3 with
∏
8∈[3] |:8 | = O(), 3-dimensional frequencies active in all dimen-

sions can have only ‖k‖∞ = O(1/3). Thus, in a multiscale problem with even one frequency

that interacts in all dimensions, a hyperbolic cross is required with a bandwidth exponential in 3

to properly resolve the data. This then forces the traditionally curse-of-dimensionality-mitigating

log3−1() terms characteristic of sparse grid methods to be at least on the order of 33−1.

4.1.3 More on high-dimensional Fourier transforms

As outlined in Section 4.1.1 above, this chapter uses sparse Fourier transforms to create an

adaptive basis truncation suited to the PDE data. This mimics a similar evolution in the field of

high-dimensional Fourier transforms from sparse grids to more flexible techniques [52, 22, 55, 49,

31, 50, 56, 34]. In particular, the rank-1 lattice based approaches for high-dimensional Fourier

transforms discussed in Chapters 2 and 3 originate from a link between early high-dimensional

quadrature techniques and Fourier approximations on the hyperbolic cross [49, 50].

Though many rank-1 lattice approaches take I to be the hyperbolic cross to leverage the well-

studied regularity properties and cardinality bounds similarly enjoyed in the sparse-grid literature,

rank-1 lattice results are available for arbitrary frequency sets. The computationally efficient exten-

sion of these techniques via sparse Fourier transforms in Chapter 3 as well as the randomization

trick presented in Section 4.5 take this frequency set flexibility to its limit, allowing I to be the a

priori unknown set of the most important Fourier coefficients of the function to be approximated.

85

This again suggests the applicability of these methods over sparse grid (or other non-sparsity ex-

ploiting) Fourier transforms in the context of multiscale problems involving even a small number

of Fourier coefficients in extremely high dimensions.

4.1.4 Additional links to compressive sensing

As discussed above, the SFT literature overlaps considerably with the language and techniques

of compressive sensing. As previously detailed in Chapter 3, the high-dimensional SFT we use

herein provides error bounds with best B-term approximation, compressive-sensing-type error guar-

antees [19]. As a result, the Fourier coefficients of the PDE data are approximated with errors

depending on the compressibility of their true Fourier series, and then the compressibility of the

PDE’s solution in the Fourier basis is inferred from the Fourier compressibility of the data in a

direct and constructive fashion.

Another very successful line of work, however, aims to more directly apply standard com-

pressive sensing reconstruction methods to the general spectral method framework for solving

PDEs. Referred to as CORSING [9, 4, 10, 8, 6], these techniques use compressed sensing con-

cepts to recover a sparse representation of the solution to the system of equations derived from the

(Petrov-)Galerkin formulation of a PDE. These methods have been further extended to the case of

pseudospectral methods in [5], in which a simpler-to-evaluate matrix equation is subsampled and

used as measurements for a compressive sensing algorithm (as an aside, [5] and discussions with

the author served as a primary inspiration for the results in this chapter). This compressive spec-

tral collocation method works by finding the largest Fourier-sine coefficients of the solution with

frequencies in the integer hypercube with bandwidth by applying Orthogonal Matching Pursuit

(OMP) on a set of samples of the PDE data. By using OMP, the method is able to succeed with

measurements on the order of O(3 exp(3)B log3(B) log()) where B is the imposed sparsity level

of the solution’s Fourier series. Thus, while the O(3) dependence from a traditional Fourier

(pseudo)spectral method is avoided and the method adapts well to large bandwidths, the curse of

dimensionality is still apparent.

Recently, an improvement on [5] that addresses the curse of dimensionality was made avail-

86

able which is therefore well-suited for similar types of problems discussed in this chapter. In [66],

the approach of approximating Fourier-sine coefficients on a full hypercube is replaced with ap-

proximating Fourier coefficients on a hyperbolic cross. This has the effect of converting the lin-

ear dependence on 3 in the sampling complexity to a log(3) due to cardinality estimates of the

hyperbolic cross. However, the exp(3) term is refined using a different technique. The key theo-

retical ingredient for being able to apply compressive sensing to these problems is bounding the

Riesz constants of the basis functions that result after applying the differential operator [6]. A

careful estimation of these constants on the Fourier basis indexed by a hyperbolic cross is able to

entirely remove the exponential in 3 dependence, leading to a sampling complexity on the order

of O(�0B log(3) log3(B) log()), where �0 involves terms depending on ellipticity and compress-

ibility properties of 0. Notably, this estimation procedure has connections to our stamping set

techniques described in Section 4.4.

On the other hand, though focusing on the hyperbolic cross in compressive spectral colloca-

tion breaks the curse of dimensionality in the sampling complexity, the method still suffers from

the inability to generalize to multiscale problems or generic frequency sets of interest like those

described in Section 4.1.2. Additionally, as mentioned in Section 4.1.4, the compressive-sensing

algorithm used for recovery (in this case OMP) suffers from a computational complexity on the

order of the cardinality of the truncation set of interest. For the hyperbolic cross, this is still ex-

ponential in log(3). Finally, the error estimates are presented in terms of the compressibility of

the Fourier series of the solution D, which may not be known a priori from the PDE data. We ex-

pect that there may be some way to link our stamping theory and convergence estimates with the

compressive sensing theory to refine and generalize both approaches.

4.2 Elliptic PDE setup

We begin with a model elliptic partial differential equation.

Definition 4.1. For some 0 : T3 → R, b : T3 → R3 , 2 : T3 → R sufficiently smooth, define the

advection-diffusion-reaction operator in divergence form L by

LD = −∇ · (0∇D) + b · ∇D + 2D.

87

If for some 5 : T3 → R sufficiently smooth, D ∈ �2 satisfies

LD = 5 , (SF)

we say that D solves the given PDE with periodic boundary conditions in the strong form.

Now, after multiplying by the complex conjugate of a test function E ∈ �1(T3) and integrating

the first term by parts, we define the sesquilinear form associated to L as L : �1 × �1 → C with

L(D, E) :=
∫
T3
0(x)∇D(x) · ∇E(x) + b(x) · ∇D(x)E(x) + 2(x)D(x)E(x) 3x,

and we say that D ∈ �1 solves the given PDE with periodic boundary conditions in the weak form

if

L(D, E) = 〈 5 , E〉!2 for all E ∈ �1. (WF)

For our purposes, we will take 0, 2 ∈ !∞(T3;R), b ∈ !∞(T3;R)3 (i.e., each coordinate of the

advection field is in !∞), and 5 ∈ !2(T3;R).

By the conditions specified in the Lax-Milgram theorem (see, e.g., [23]), we are guaranteed

that a unique solution to (WF) exists. We use the formulation as stated in [8, Proposition 2.1] and

proven in [7].

Proposition 4.1. For 0, 2 ∈ !∞(T3;R), b ∈ !∞(T3;R)3 , L is continuous with continuity constant

V ≤ max
{
‖0‖!∞ , sup

x∈T3
‖b(x)‖2, ‖2‖!∞

}
,

that is

|L(D, E) | ≤ V‖D‖�1 ‖E‖�1 for all D, E ∈ �1. (4.1)

Additionally, assuming b ∈ �1(T3;R)3 , if 0(x) ≥ 0min > 0 and −1
2∇ · b(x) + 2(x) ≥ 3min > 0 a.e.

on T3 , then L is also coercive with coercivity constant

U ≥ min {0min, 3min} ,

that is

|L(D, D) | ≥ U‖D‖2
�1 for all D ∈ �1. (4.2)

Under conditions (4.1) and (4.2), if 5 ∈ !2(T3;R) then (WF) has unique solution D ∈ �1 satisfying

‖D‖�1 ≤
‖ 5 ‖!2

U
. (4.3)

88

4.3 Galerkin spectral methods

By Theorem 1.1, it is equivalent to replace the weak PDE (WF) by

L(D, e2cik·◦) = 〈 5 , e2cik·◦〉!2 =: 5̂k for all k ∈ Z3 .

Rewriting the sesquilinear form on the left-hand side and using the Fourier series representations

of 0, b (where we collect all coordinates’ Fourier coefficients at a given frequency k ∈ Z3 into the

vectors b̂k ∈ C3), 2, and D, we obtain

L(D, e2cik·◦) =
∑

l1,l2∈Z3
0̂l1 D̂l2

∫
T3

e2cil1·x∇e2cil2·x · ∇e2cik·x 3x

+
∑

l1,l2∈Z3
D̂l2

∫
T3

e2cil1·xb̂l1 · ∇e2cil2·xe2cik·x 3x

+
∑

l1,l2∈Z3
2̂l1 D̂l2

∫
T3

e2cil1·xe2cil2·xe2cik·x 3x

=
∑

l1,l2∈Z3
Xl1,k−l2

[
(2c)2(l2 · k)0̂l1 + 2ci

(
b̂l1 · l2

)
+ 2̂l1

]
D̂l2

=
∑
l∈Z3

[
(2c)2(l · k)0̂k−l + 2ci

(
b̂k−l · l

)
+ 2̂k−l

]
D̂l

=: (!D̂)k,

where ! is an operator in ℓ2. This leads to the Galerkin form of our PDE,

!D̂ = 5̂ . (GF)

The computational advantages of (GF) are clear. By numerically approximating 0̂, b̂, 2̂ and 5̂

(which automatically truncates !), we arrive at a discretized, finite system of equations that can be

solved for the Fourier coefficients of our solution.

We will use a fast sparse Fourier transform (SFT) for functions of many dimensions to approx-

imate our PDE data which then leads to a sparse system of equations that we can quickly solve to

approximate D̂. This SFT will use the values of 0, b, 2 and 5 at equispaced nodes on a randomized

rank-1 lattice in T3 , and therefore, our technique is effectively a pseudospectral method where the

discretization of the solution space {D̂ | D ∈ ℎ} is adapted to the PDE data.

89

Before we move to the detailed discussion of this SFT, we provide a more detailed analysis of

the Galerkin operator in Section 4.4 to help us analyze the resulting spectral method. But first, we

note that ! also captures the behavior of L as a sesquilinear form.

Proposition 4.2. For D̂, Ê ∈ ℓ2 with D, E ∈ �1,

L(D, E) = 〈!D̂, Ê〉ℓ2 .

Proof. By the Fourier series representation of E,

L(D, E) =
∑
k∈Z3

L(D, e2cik·◦)Êk =
∑
k∈Z3
(!D̂)k Êk = 〈!D̂, Ê〉ℓ2 .

4.4 Stamping sets and truncation analysis

Notably, (GF) gives us insight into the frequency support of D̂. The structure outlined in the

following proposition is crucial in constructing a fast spectral method that exploits Fourier-sparsity.

Proposition 4.3. Given 0̂, b̂, and 2̂, the Fourier coefficients of the diffusion coefficient, the advec-

tion field, and the reaction coefficient of an ADR equation respectively, denote the set of “active”

frequencies

A := supp (0̂) ∪ ©­«
⋃
9∈[3]

supp
(
1̂ 9

)ª®¬ ∪ supp (2̂) ⊂ Z3 .

For any set F ⊂ Z3 and # ∈ N0, recursively define the sets

S# [A](F) :=


F if # = 0

S#−1 [A](F) + A if # > 0
,

S∞ [A](F) :=
∞⋃
#=0
S# [A](F),

(4.4)

where here, addition is defined as the Minkowski sum of sets. Under the conditions of Proposi-

tion 4.1, supp(D̂) ⊂ S∞ [A](supp(5̂)).

Proof. Note first that the fact that 0, b, and 2 are real imply the supports of their Fourier series are

“rotationally” symmetric in Z3 , e.g., supp(0̂) = − supp(0̂). Now, we show that !k,k ≠ 0 for all

k ∈ Z3 . Recall that

!k,k := (2c)2(k · k)0̂0 + 2ci
(
b̂0 · k

)
+ 2̂0.

90

It suffices to show that 0̂0 and 2̂0 are strictly positive as the middle term will always be purely

imaginary. Since 0 is always strictly positive under the assumptions of Proposition 4.1, its mean 0̂0

is necessarily strictly positive. As for 2, the conditions of Proposition 4.1 require

−1
2
∇ · b + 2 > 0

which implies

2̂0 >
1
2

∫
T3
∇ · b(x) 3x.

However, the divergence theorem implies that the right hand side is zero, and therefore 2̂0 is positive

as desired.

Now, since Lk,k is nonzero, we may rearrange the equality (!D̂)k = 5̂k to obtain

D̂k =
5̂k −

∑
l∈({k}+A)\{k} !k,lD̂l

!k,k
,

where we have restricted the summation to only those frequencies where the entries of row k of ! are

nonzero, that is, the active frequencies of the PDE data translated by k. Thus, D̂k explicitly depends

only on the values of D̂ on S1 [A]({k}) \ {k}, which themselves then depend only on values of D̂

on S2 [A]({k}), and so on. This decouples the system of equations !D̂ into a disjoint collection of

systems of equations, one for each class of frequenciesS∞ [A]({k}). Since Proposition 4.1 implies

that Ê = 0 is the unique solution of !Ê = 0, the unique solution of the system of equations for D̂ on

S∞ [A]({k}) for any k ∉ supp(5̂) is D̂ |S∞ [A]({k}) = 0. Therefore, supp(D̂) ⊂ S∞ [A](supp(5̂)) as

desired.

In what follows, when the set F (often supp(5̂)) and set of active frequenciesA are clear from

context, we suppress them in the notation given by (4.4) so that S# := S# [A](F). Intuitively, we

can imagine constructingS# by first creating a “rubber stamp” in the shape ofA. This rubber stamp

is then stamped onto every frequency in F =: S0 to construct S1. Then, this process is repeated,

stamping each element of S1 to produce S2, and so on. For this reason, we will colloquially refer

to these as “stamping sets.” Figure 4.1 gives an example of this stamping procedure for 3 = 2.

A key approach of our further analysis will be analyzing the decay of D̂ on successive stamping

levels. The stamping level will become the driving parameter in the spectral method rather than

91

A supp(5̂) = S0 [A]
(
supp(5̂)

)
S1 [A]

(
supp(5̂)

)

S2 [A]
(
supp(5̂)

)
S3 [A]

(
supp(5̂)

)
= 0
= 1
= 2
= 3

Figure 4.1 New frequencies in each stamping level up to # = 3 where # = 0 is supp(5̂).

bandwidth in a traditional spectral method. Before moving onto this analysis however, we provide

an upper bound for the cardinality of the stamping sets. This will ultimately be used to upper bound

the computational complexity of our technique.

Lemma 4.1. Suppose that A = −A with 0 ∈ A, and
��supp(5̂)

�� ≤ |A|. Then��S# [A](supp(5̂))
�� ≤ 7 max(|A|, 2# + 1)min(|A|,2#+1) .

We prove this by first providing the following combinatorial upper bound for the cardinality of

a stamp set.

Lemma 4.2. Suppose that A = −A with 0 ∈ A. Then

��S# [A](supp(5̂))
�� ≤ ��supp(5̂)

�� #∑
==0

min(=,(|A|−1)/2)∑
C=0

2C
(
(|A| − 1)/2

C

) (
= − 1
C − 1

)
. (4.5)

Proof. We begin by separating S# into the disjoint pieces

S# =

#⊔
==0

(
S= \

(
=−1⋃
8=0
S8

))

92

and computing the cardinality of each of these sets (where we take (−1 = ∅). If k ∈ S= \
(⋃=−1

8=0 S8
)
,

then we are able to write k as

k = k 5 +
=∑

<=1
k<A (4.6)

where k 5 ∈ supp(5̂) and k<A ∈ A \ {0} for all < = 1, . . . , =. Additionally, since k is not in any

earlier stamping sets, this is the smallest = for which this is possible. In particular, it is not possible

for any two frequencies in the sum to be negatives of each other resulting in pairs of cancelled terms.

With this summation in mind, arbitrarily split A \ {0} into � t −� (i.e., place all frequencies

which do not negate each other into � and their negatives in −�). By collecting like frequencies

that occur as a k<A term in (4.6), we can rewrite this sum as

k = k 5 +
∑

kA∈�
B(k, kA)<(k, kA)kA , (4.7)

where the sign function B(k, kA) is given by

B(k, kA) :=



1 if kA is a term in the summation (4.6)

−1 if −kA is a term in the summation (4.6)

0 otherwise

and the multiplicity function <(k, kA) is defined as the number of times that kA or −kA appears

as a k<A term in (4.6). Letting s(k) := (B(k, kA))kA∈� and m(k) := (<(k, kA))kA∈�, we can then

identify any k ∈ S= \
(⋃=−1

8=0 S8
)

with the tuple

(k 5 , s(k),m(k)) ∈ supp(5̂) × {−1, 0, 1}� × {0, . . . , =}�.

Upper bounding the number of these tuples that can correspond to a value of k ∈ S= \
(⋃=−1

8=0 S8
)

will then upper bound the cardinality of this set.

Since any k 5 ∈ supp(5̂) can result in a valid k value, we will focus on the pairs of sign and

multiplicity vectors. Define by)= ⊂ {−1, 0, 1}� × {0, . . . , =}� the set of valid sign and multiplicity

pairs that can correspond to a k ∈ S= \
(⋃=−1

8=0 S8
)
. In particular, for (s,m) ∈)=, ‖m‖1 = = and

93

supp(s) = supp(m). Thus, we can write

)= ⊂
min(=,|�|)⊔

C=0

{
(s,m) ∈ {−1, 0, 1}� × {0, . . . , =}� | ‖m‖1 = = and | supp(s) | = | supp(m) | = C

}
.

This inner set then corresponds to the C-partitions of the integer = spread over the |�| entries of m

where each non-zero term is assigned a sign −1 or 1. The cardinality is therefore 2C
(|�|
C

) (=−1
C−1

)
: the

first factor is from the possible sign options, the second is the number of ways to choose the entries

of m which are nonzero, and the last is the number of C-partitions of = which will fill the nonzero

entries of m. Noting that |�| = |A|−1
2 , our final cardinality estimate is

��S# �� = #∑
==0

�����S= \
(
=−1⋃
8=0
S8

)�����
≤

#∑
==0

��supp(5̂)
��|)= |

≤
��supp(5̂)

�� #∑
==0

min(=,(|A|−1)/2)∑
C=0

2C
(
(|A| − 1)/2

C

) (
= − 1
C − 1

)
as desired.

Though this upper bound is much tighter than the one given in the main text, it is harder to

parse. As such, we simplify it to the bound presented in Lemma 4.1.

Proof of Lemma 4.1. Let A = (|A| − 1)/2. We consider two cases:

Case 1: A ≥ # We estimate the innermost sum of (4.5). Since A ≥ # ≥ =, min(=, (|A|−1)/2) = =.

By upper bounding the binomial coefficients with powers of A, we obtain

=∑
C=0

2C
(
A

C

) (
= − 1
C − 1

)
≤

=∑
C=0

2C (A C)2

≤ 2(2A2)=

where the second estimate follows from the approximating the geometric sum. Again, bound-

ing the next geometric sum by double the largest term, we have

��S# �� ≤ ��supp(5̂)
�� #∑
==0

2(2A2)= ≤ (2A + 1)4(2A2)# ≤ 2(2A + 1)2#+1 = |A|2#+1.

94

Case 2: A < # Bounding the innermost sum of (4.5) proceeds much the same way as Case 1, but

we must first split the outermost sum into the first A + 1 terms and last # − A terms. Working

with the first terms, we find

A∑
==0

=∑
C=0

2C
(
A

C

) (
= − 1
C − 1

)
≤ 4(2A2)A

using the argument in Case 1. Now, we bound

#∑
==A+1

A∑
C=0

2C
(
A

C

) (
= − 1
C − 1

)
≤

#∑
==A+1

2(2(= − 1)2)A

≤ 2A+1
∫ #

A

=2A 3=

≤
√

2
(
√

2#)2A+1
2A + 1

.

Thus, ��S# �� ≤ ��supp(5̂)
�� [4(2A2)A +

√
2
(
√

2#)2A+1
2A + 1

]
≤ 5
√

2
(√

2#
) |A|
≤ 7(2# + 1) |A| .

Combining the two cases gives the desired upper bound.

Proposition 4.3 gives us a natural way to consider truncations of the solution D in frequency

space. We will use these truncations to discretize the Galerkin formulation (GF) in Section 4.6

below. In order to analyze the error in the resulting spectral method algorithm, we will need quan-

titative bounds on how the solution decays outside of the frequency sets S# := S# [A](supp(5̂)).

For S# to be finite, we assume in this section that A and supp(5̂) are finite. This assumption will

be lifted later via Lemma 4.5.

We begin with a technical result regarding the interplay between ! and the supports of vectors

that it acts on.

Proposition 4.4. For any Ê with supp(Ê) ⊂ S= \ S=−1, supp(!Ê) ⊂ S=+1 \ S=−2.

Proof. For any k ∈ Z3 , recall that row k of ! is supported on {k} + A. Consider

(!Ê)k =
∑
l∈Z3

!k,lÊl =
∑

l∈({k}+A)∩supp(Ê)
!k,lÊl =

∑
l∈({k}+A)∩(S=\S=−1)

!k,lÊl.

95

This sum is nonempty only if k is such that there exists l ∈ S= \ S=−1 and k∗A ∈ A with

k = l + k∗A . By definition of l ∈ S= \ S=−1, = is the minimal such number that

l = k 5 +
=∑

<=1
k<A , where k 5 ∈ supp(5̂), k<A ∈ A for all < = 1, . . . , =

holds. In particular, this implies that k<A ≠ 0 for all < = 1, . . . , =.

There are now two cases. First, if k∗A = −k<A for any <, k = l + k∗A ∈ S
=−1 \ S=−2, and the

proposition is satisfied. On the other hand, we consider the case when k∗A does not negate any k<A
involved in the sum equalling l. If k∗A = 0, then clearly k = l ∈ S= \ S=−1. In any other case, we

represent

k = k 5 +
=∑

<=1
k<A + k∗A =: k 5 +

=+1∑
<=1

k<A ,

where = + 1 is the smallest number for which this holds. Thus, k ∈ S=+1 \ S=. Altogether then,

the only possible k values such that the sum is nonzero are those in S=+1 \ S=−2, completing the

proof.

Noting that supp(!D̂) = supp(5̂), we observe the following interesting relationship between the

values of D̂ on neighboring stamping levels. Below, to simplify notation, for all <, = ∈ N0, we set

3<,= := 〈!D̂S<\S<−1 , D̂S=\S=−1〉ℓ2 ,

with the convention that S−1 = ∅.

Corollary 4.1. For all = ∈ N0,

3=+1,= + 3=,= + 3=−1,= =


〈 5̂ , D̂ |S0〉ℓ2 if = = 0

0 otherwise.

Proof. By Proposition 4.4, D̂ |S=\S=−1 is ℓ2-orthogonal to !D̂ |S<\S<−1 for all < ∉ {= − 1, =, = + 1}.

In our simplified notation, 3<,= = 0 for all < ∉ {= − 1, =, = + 1}. Thus

〈 5̂ , D̂ |S=\S=−1〉ℓ2 = 〈!D̂, D̂ |S=\S=−1〉ℓ2 =

∞∑
<=0

3<,= = 3=+1,= + 3=,= + 3=−1,=.

96

The proof is finished by noting that

〈 5̂ , D̂ |S=\S=−1〉ℓ2 =


〈 5̂ , D̂ |S0〉 if = = 0

0 otherwise.

We are now ready to estimate D̂ |S=\S=−1 in terms of its neighbors D̂ |S=+1\S= and D̂ |S=−1\S=−2 . The

standard approach would be to use a combination of coercivity and continuity (see, e.g., the proof

of Lemma 4.6 or [13, Section 6.4] for other examples): for = > 0,

U

D |S=\S=−1

2
�1 ≤ |3=,= | ≤ |3=+1,= | + |3=−1,= | ≤ V

D |S=\S=−1

�1

(

D |S=+1\S=

�1 +

D |S=−1\S=−2

�1

)
,

and we obtain

D |S=\S=−1

�1 ≤

V

U

(

D |S=+1\S=

�1 +

D |S=−1\S=−2

�1

)
.

However, we will hope to iterate this bound, and the fact that V ≥ U will not allow for us to show

any decay as =→∞. Thus, we require a slightly subtler estimate than simply using continuity.

Proposition 4.5. Define

V0
− := max

{
‖0 − 0̂0‖!∞ , sup

x∈T3

b(x) − b̂0

2, ‖2 − 2̂0‖!∞
}
.

For = > 0, we have

|3=±1,= | ≤ V0
−

D |S=\S=−1

�1

D |S=±1\S=±1−1

�1 .

Proof. Restricting all sums to the support of the vectors they index, we have

3=±1,= =
∑

k∈S=\S=−1

∑
l∈({k}+A))∩(S=±1\S=±1−1)

!k,lD̂lD̂k.

Clearly, choosing l = k ∈ S= \ S=−1 would not allow for l ∈ S=±1 \ S=±1−1. Thus, no term

multiplying !k,k will appear in the sum. This implies that there are no terms including the Fourier

coefficients 0̂0, b̂0, or 2̂0. It is therefore equivalent to replace ! with a version !− defined using the

Fourier coefficients 0̂ − 0̂0, b̂ − b̂0, and 2̂ − 2̂0. We then have the equivalence

3=±1,= = 〈!−D̂ |S=±1\S=±1−1 , D̂ |S=\S=−1〉ℓ2 ,

97

which by Proposition 4.2 and the standard argument to prove the continuity upper bound, implies

|3=±1,= | ≤ V0
−

D |S=\S=−1

�1

D |S=±1\S=±1−1

�1 .

as desired.

The same argument preceding Proposition 4.5 then gives the desired “neighbor” estimate.

Corollary 4.2. For all = > 1,

D |S=\S=−1

�1 ≤

V0
−
U

(

D |S=+1\S=

�1 +

D |S=−1\S=−2

�1

)
.

We now have the pieces to state an estimate of the truncation error.

Lemma 4.3. Let 0, b, 2, 5 , and D be as in Proposition 4.1. Assume

3V0
− < U. (4.8)

Then

‖D − D |S# ‖�1 ≤
(

V0
−

U − 2V0
−

)#+1 ‖ 5 ‖!2

U
.

Proof. We begin by breaking supp(D̂) \ S# into sets of new contributions
⋃∞
==#+1

(
S= \ S=−1)

(which holds due to Proposition 4.3). Thus

‖D − D |S# ‖�1 ≤
∞∑

==#+1

D |S=\S=−1

�1 =:)# .

Applying the neighbor bound, Corollary 4.2, (where we define � := V0
−/U), we have

)# ≤ �
(∞∑
==#+1

D |S=+1\S=

�1 +
∞∑

==#+1

D |S=−1\S=−2

�1

)
= � ()#+1 +)#−1)

= 2�)# + �
(

D |S# \S#−1

�1 −

D |S#+1\S#

�1

)
.

After rearranging, and ignoring the negative term, we find

)# ≤
�

1 − 2�

D |S# \S#−1

�1 . (4.9)

Noting that we always have

D |S# \S#−1

�1 ≤)#−1, (4.10)

98

iterating (4.9) and (4.10) in turn gives

‖D − D |S# ‖�1 ≤)# ≤
(

�

1 − 2�

)#+1

D |S0

�1 ≤

(
�

1 − 2�

)#+1 ‖ 5 ‖!2

U
.

4.5 Fully sublinear-time SFTs with randomized lattices

In Chapter 3, two methods for high-dimensional SFTs are presented, each with a determin-

istic and Monte Carlo variant. Below, we will be using the faster of the two algorithms (at the

cost of slightly suboptimal error guarantees), the phase-encoding approach with the nonequispaced

sublinear-time SFT discussed in Corollary 3.2. We focus on only the Monte Carlo variant as the

improvements in this section require randomization.

To use the high-dimensional phase-encoding SFT given in Algorithm 3.1, we need to know

a reconstructing rank-1 lattice in advance. Though component-by-component algorithms can de-

terministically construct a reconstructing rank-1 lattice given any frequency set I, as previously

discussed, these algorithms are superlinear in |I | as they effectively search the frequency space for

collisions throughout construction.

This section presents an alternative based on choosing a random lattice. This lattice is chosen

by drawing z from a uniform distribution over {1, . . . , " − 1}3 for " sufficiently large. Below, we

provide probability estimates for when this lattice is reconstructing for a frequency set I.

Lemma 4.4. Let I := max 9∈[3] (maxk∈I : 9 − minl∈I ; 9) + 1 be the expansion of the frequency

set I ⊂ Z3 . Let f ∈ (0, 1], and fix " to be the smallest prime greater than max(I , |I |
2

f
). Then

drawing each component of z i.i.d from {1, . . . "−1} gives that Λ(z, ") is a reconstructing rank-1

lattice for I with probability 1 − f.

Proof. In order to show that Λ(z, ") is reconstructing for I, it suffices to show that for any k ≠

l ∈ I, k · z . l · z mod " (cf. Definition 1.2). Thus, we are interested in showing that P[∃k ≠ l ∈

I s.t. (k − l) · z ≡ 0 mod "] is small.

If k, l ∈ I are distinct, at least one component : 9 − ; 9 is nonzero. Since " > I , we therefore

have that : 9 − ; 9 . 0 mod " , and since " is prime, : 9 − ; 9 has a multiplicative inverse modulo

" . Then P[(k− l) · z ≡ 0 mod "] = P
[
I 9 = (: 9 − ; 9)−1

(∑
8∈[3],8≠ 9 (:8 − ;8)I8 mod "

)]
. Since I 9

99

is uniformly distributed in {1, . . . " − 1}, this probability is 1
"−1 . By the union bound,

P[∃k ≠ l ∈ I s.t. (k − l) · z ≡ 0 mod "] ≤
∑

k≠l∈I
P[(k − l) · z ≡ 0 mod "] ≤ |I|

2

" − 1
≤ f

as desired.

One important consequence of Lemma 4.4 is that we no longer need to provide the frequency

set of interest in Corollary 3.2. Having chosen , the expansion, and B, the sparsity level, we

can always take I to be the frequencies corresponding to the largest B Fourier coefficients of the

function 6 in the hypercube B3

. Lemma 4.4 then implies that a randomly generated lattice with

length max(, B2/f) will be reconstructing for these optimal frequencies with probability f. We

summarize this in the following corollary.

Corollary 4.3. Given a multivariate bandwidth , a sparsity level B, probability of failure f ∈

(0, 1], and sampling access to 6 ∈ !2, there exists a fast, randomized SFT which will produce a

2B-sparse approximation ĝB of 6̂ and function 6B :=
∑

k∈supp(ĝB) 6̂
B
ke2cik·◦ approximating 6 satisfying

‖6 − 6B‖!2 ≤ ‖6̂ − ĝB‖ℓ2 ≤ (25 + 3)
√
B

6̂ − (6̂ |)opt
B

ℓ1

with probability 1 − f. If 6 ∈ !∞, then 6B and ĝB satisfy the upper bound

‖6 − 6B‖!∞ ≤ ‖6̂ − ĝB‖ℓ1 ≤ (35 + 3)B

6̂ − (6̂ |)opt

B

ℓ1

with the same probability estimate. The total number of samples of 6 and computational complexity

of the algorithm can be bounded above by

O
(
3B log3(3 max(, B/f)) log

(
3 max(, B/f)

f

))
.

If we fix f (say f = 0.95), this reduces to a complexity of

O
(
3B log4(3 max(, B))

)
.

4.6 A sparse spectral method via SFTs

Let âB, b̂B, ĉB, and f̂B be B-sparse approximations of 0̂, b̂, 2̂, and 5̂ respectively, where each

coordinate in b̂ is approximated separately. We will use these approximations to discretize the

100

Galerkin formulation (GF) of our PDE. The first step is to reduce to the case where the PDE data

is Fourier-sparse which is motivated by the following lemma.

Lemma 4.5. Let 0′ := 0 |supp(âB) , 1′9 := 1 9 |supp(b̂B
9
) for 9 ∈ [3], 2′ := 2 |supp(ĉB) , and 5 ′ := 5 |supp(f̂B) .

Define

V′− := max
{
‖0 − 0′‖!∞ , sup

x∈T3
‖b − b′‖2, ‖2 − 2′‖!∞

}
.

Suppose that 0′, b′, 2′, and 5 ′ satisfy the conditions of Proposition 4.1 and let D′ be the unique

solution of the resulting elliptic PDE, which we write in Galerkin form as

!′D̂′ = 5̂ ′. (4.11)

Then

‖D − D′‖�1 ≤
‖ 5 − 5 ′‖!2

U
+ V
′
−‖ 5 ′‖!2

UU′
.

where U′ is taken to be the coercivity coefficient of the differential operator defined using 0′, b′, and

2′.

Proof. We begin by observing

! (D̂ − D̂′) = !D̂ − !′D̂′ − (! − !′)D̂′ = 5̂ − 5̂ ′ − (! − !′)D̂′,

and therefore

|〈! (D̂ − D̂′), D̂ − D̂′〉| ≤
��〈 5̂ − 5̂ ′, D̂ − D̂′〉�� + |〈(! − !′)D̂′, D̂ − D̂′〉|.

After an application of Proposition 4.2 to convert the ℓ2 inner products into sesquilinear forms, we

can make use of coercivity, (4.2), continuity, (4.1), and the Cauchy-Schwarz inequality to produce

the �1 approximation

U‖D − D′‖�1 ≤

 5̂ − 5̂ ′

ℓ2 + V′−‖D′‖�1 .

An application of the stability estimate (4.3) gives the desired bound

‖D − D′‖�1 ≤
‖ 5 − 5 ′‖!2

U
+ V
′
−‖ 5 ′‖!2

UU′
.

101

We can now replace the trial and test spaces in (WF) with finite dimensional approximations

so as to convert (GF) to a matrix equation. Inspired by Proposition 4.3 and the truncation error

analysis in Section 4.4, we use the space of functions whose Fourier coefficients are supported on

S# := S# [A](supp 5̂). By doing so, we discretize the Galerkin formulation of the problem (GF)

into the finite system of equations

(L# û)k :=
∑
l∈S#

[
(2c)2(l · k)0̂k−l + 2ci

(
b̂k−l · l

)
+ 2̂k−l

]
D̂l = 5̂k for all k ∈ S# . (4.12)

However, in practice, we do not know 0̂, b̂, 2̂, and 5̂ exactly (and indeed, they may not be exactly

sparse). Thus, we substitute the SFT approximations âB, b̂B, ĉB, and f̂B, defining the new finite-

dimensional operator LB,# : CS# → CS# by(
LB,# û

)
k :=

∑
l∈S#

[
(2c)2(l · k)0̂Bk−l + 2ci

(
b̂Bk−l · l

)
+ 2̂Bk−l

]
D̂l for all k ∈ S# .

Our new approximate solution will be ûB,# ∈ CS# which solves

LB,# ûB,# = f̂B . (4.13)

We summarize our technique in Algorithm 4.1.

Algorithm 4.1 Sparse spectral method
Input: PDE data 0, b, 2, and 5 , a sparsity parameter B, a bandwidth parameter , and stamping

level #
Output: Fourier coefficients ûB,# of approximate solution

1: âB ← SFT[B,] (0) // SFT is Algorithm 3.1 using a random rank-1 lattice (cf. Section 4.5)
2: AB ← supp(âB)
3: for 9 ∈ [3] do
4: b̂B

9
← SFT[B,] (1 9)

5: AB ← AB ∪ supp
(
b̂B
9

)
6: end for
7: ĉB ← SFT[B,] (2)
8: AB ← AB ∪ supp(ĉB)
9: f̂B ← SFT[B,] (5)

10: Compute S# [AB]
(
supp

(
f̂B

))
// see, e.g., (4.4) or (4.7)

11: (LB,#)k∈S# ,l∈S# ← (2c)2(l · k)0̂Bk−l + 2ci
(
b̂Bk−l · l

)
+ 2̂Bk−l

12: ûB,# ← LB,#\f̂B // using MATLAB backslash notation for matrix solve

102

Showing that DB,# converges to D now relies on a version of Strang’s lemma [13, Equation

(6.4.46)]. We make the assumption here that all functions’ Fourier coefficients are supported on

the supports of the outputs of their respective SFTs so that our use ofS# is unambiguous. However,

this assumption will be lifted by Lemma 4.5 in Corollary 4.4 below.

Lemma 4.6 (Strang’s Lemma). Suppose that supp(0̂) = supp(âB), supp
(
1̂ 9

)
= supp

(
b̂B
9

)
for all

9 ∈ [3], supp(2̂) = supp(ĉB), and supp(5̂) = supp(f̂B). Also suppose that 0B ≥ 0Bmin > 0 and

−1
2∇ · b

B + 2B ≥ 3Bmin > 0 on T3 , with UB ≥ min{0Bmin, 3
B
min}. Additionally, define

VB− := max
{
‖0 − 0B‖!∞ , sup

x∈T3
‖b − bB‖2, ‖2 − 2B‖!∞

}
.

Let D and DB,# be as above. Then

D − DB,#

�1 ≤

(
1 + V

UB

)

D |Z3\S#

�1 +
VB−
UB
‖D |S# ‖�1 +

‖ 5 − 5 B‖!2

UB
.

Proof. Define !B as ! where 0, b, and 2 are replaced by 0B, bB, and 2B. Note that !B is still an

infinite dimensional operator and is not truncated to S# like LB,# is. We let ê := ûB,# − D̂ |S# , and

consider

LB,# ê = LB,# ûB,# − (!BD̂ |S#) |S#

= f̂B − 5̂ + (!D̂) |S# − (!BD̂ |S#) |S#

= f̂B − 5̂ + (!D̂ |Z3\S#) |S# + ((! − !B)D̂ |S#) |S# .

Noting that LB,# ê = (!Bê) |S# and owing to coercivity of !B, we have

UB‖4‖2
�1 ≤

��〈LB,# ê, ê〉
��

≤ ‖ 5 B − 5 ‖!2 ‖4‖�1 + V

D |Z3\S#

�1 ‖4‖�1 + VB−‖D |S# ‖�1 ‖4‖�1 .

The result then follows from rearranging to estimate ‖4‖�1 and using the triangle inequality to

estimate

D − DB,#

�1 ≤ ‖D − D |S# ‖�1 + ‖4‖�1 .

We can now thread all of our results together into a final convergence analysis. The first corollary

below is a more direct application of Strang’s lemma which is then followed by another corollary

103

which takes advantage of the SFT recovery results. We will also return to the setting where the PDE

data are not necessarily Fourier sparse. Thus, we again employ intermediate, compactly Fourier-

supported PDE data as in Lemma 4.5.

Corollary 4.4. Let 0B, bB, 2B, and 5 B be Fourier sparse approximations of 0, b, 2, and 5 . Let

0′ = 0 |supp(âB) , 1′9 = 1 9 |supp(b̂B
9
) for all 9 ∈ [3], 2′ = 2 |supp(ĉB) , and 5 ′ = 5 |supp(f̂B) . Suppose 0, b, 2,

5 ; 0′, b′, 2′, 5 ′; and 0B, bB, 2B, 5 B satisfy the conditions of Proposition 4.1 with coercivity constants

U, U′, and UB respectively. Define the three modified continuity constants

V′− := max
{
‖0 − 0′‖!∞ , sup

x∈T3
‖b − b′‖2, ‖2 − 2′‖!∞

}
,

V′,0− := max
{
‖0′ − 0̂0‖!∞ , sup

x∈T3

b′ − b̂0

2, ‖2
′ − 2̂0‖!∞

}
,

V′,B− := max
{
‖0′ − 0B‖!∞ , sup

x∈T3
‖b′ − bB‖2, ‖2′ − 2B‖!∞

}
.

Additionally, suppose that

3V′,0− < U′. (4.14)

Then with D the exact solution to (WF) and DB,# the output of Algorithm 4.1, we have

D − DB,#

�1 ≤

‖ 5 − 5 ′‖!2

U
+ V
′
−‖ 5 ′‖!2

UU′
+ V
′,B
− ‖ 5 ′‖!2

UBU′
+ ‖ 5

′ − 5 B‖!2

UB

+
(
1 + V

′
−
UB

) (
V′,0−

U′ − 2V′,0−

)#+1
‖ 5 ′‖!2

U′
.

(4.15)

Proof. The condition (4.14) allows the use of Lemma 4.3, which upper bounds the truncation error

in Lemma 4.6. Combining Lemma 4.5 with this bound from Lemma 4.6 and applying the stability

estimate from Proposition 4.1 finishes the proof.

This upper bound relies on the intermediate 0′, b′, 2′, and 5 ′. However, in practice, it is more

likely that user of this algorithm will have knowledge regarding the well-posedness of the original

problem (i.e., that 0, b, 2, and 5 satisfy Proposition 4.1) and will be able to verify the well-posedness

of the sparse approximate problem (i.e., that 0B, bB, 2B, and 5 B satisfy Proposition 4.1) or at least

increase the accuracy of the SFT so that the coercivity conditions of the original problem are not too

far perturbed. The intermediate “prime” functions, on the other hand, are less accessible. There-

fore, we rewrite this statement so the assumptions and error bounds can be quantified using only

104

errors between the original functions and the sparse approximations which Corollary 4.3 gives up-

per bounds for.

Corollary 4.5. Assume that 0, 2 ∈ !∞(T3;R), b ∈ �1(T3;R)3 , and 5 ∈ !2(T3;R) with 0(x) ≥

0min > 0 and −1
2∇ · b(x) + 2(x) ≥ 3min > 0 a.e. on T3 . Let 0B, bB, 2B, and 5 B be Fourier sparse

approximations supported in frequency on B3

of 0, b, 2, and 5 respectively with

‖0̂ − âB‖ℓ1 < 0min,

‖2̂ − ĉB‖ℓ1 + c
2

∑
9∈[3]

1̂ 9 − b̂B9

ℓ1
− ‖∇ · (b − b|)‖!∞ < 3min.

(4.16)

Define

U := min
0min − ‖0̂ − âB‖ℓ1 , 3min − ‖2̂ − ĉB‖ℓ1 − c

2

∑
9∈[3]

1̂ 9 − b̂B9

ℓ1
− ‖∇ · (b − b|)‖!∞

 > 0,

V̂B− := max
‖0̂ − âB‖ℓ1 ,

√√ ∑
9∈[3]

1̂ 9 − b̂B
9

2

ℓ1
, ‖2̂ − ĉB‖ℓ1

 ,
and

V̂0
− := max

‖0̂ − 0̂0‖ℓ1 ,

√√ ∑
9∈[3]

1̂ 9 − (
1̂ 9

)
0

2

ℓ1
, ‖2̂ − 2̂0‖ℓ1

 .
Additionally, suppose that

3V̂0
− ≤ U.

Then with D the exact solution to (WF) and DB,# the output of Algorithm 4.1, we have

D − DB,#

�1 ≤ 3

 5̂

ℓ2

U

(

 5̂ − f̂B

ℓ2

 5̂

ℓ2

+ V̂
B
−
U
+

(
V̂0
−

U − 2V̂0
−

)#+1)
.

Proof. Since 0̂′ = 0̂ |supp(âB) ,

‖0 − 0′‖!∞ ≤ ‖0̂ − 0̂′‖ℓ1 ≤ ‖0̂ − âB‖ℓ1 ,

‖0′ − 0B‖!∞ ≤ ‖0̂′ − âB‖ℓ1 ≤ ‖0̂ − âB‖ℓ1 ,

and analogously for 2, 1 9 for all 9 ∈ [3], and 5 , where the latter uses ℓ2 norms. This allows for the

replacement of V′− and V′,B− in (4.15) by V̂B− as well as the replacement of ‖ 5 − 5 ′‖!2 and ‖ 5 ′ − 5 B‖!2

by

 5̂ − f̂B

!2 . A similar argument allows the replacement of V′,0− by V̂0

−.

105

Additionally,

0B ≥ 0 − ‖0 − 0B‖!∞ ≥ 0 − ‖0̂ − âB‖ℓ1 and

0′ ≥ 0 − ‖0 − 0′‖!∞ ≥ 0 − ‖0̂ − âB‖ℓ1

giving min(0Bmin, 0
′
min) ≥ 0min − ‖0̂ − âB‖ℓ1 . We can bound min(3Bmin, 3

′
min) from below similarly.

In particular, e.g.,

2′ − 1
2
∇ · b′ ≥ 2 − 1

2
∇ · b − ‖2 − 2′‖!∞ −

1
2
‖∇ · (b − b′)‖!∞ .

The ‖2 − 2′‖!∞ term can be bounded by ‖2̂ − ĉB‖ℓ1 . To bound the divergence term, we use

‖∇ · (b − b′)‖!∞ ≤ ‖∇ · (b − b′) | ‖!∞ + ‖∇ · (b − b|)‖!∞

=

∑
9∈[3]

∑
k∉supp(b̂B

9
)∩B3

(
1̂ 9

)
k
m9e2cik·◦

!∞

+ ‖∇ · (b − b|)‖!∞

≤ 2c
∑
9∈[3]

∑
k∉supp(b̂B

9
)∩B3

���(1̂ 9)
k
: 9

��� + ‖∇ · (b − b|)‖!∞

≤ c
∑
9∈[3]

1̂ 9 − 1̂′9

ℓ1
+ ‖∇ · (b − b|)‖!∞

≤ c
∑
9∈[3]

1̂ 9 − b̂B9

ℓ1
+ ‖∇ · (b − b|)‖!∞

(4.17)

Thus min(U′, UB) ≥ U as stated, implying the satisfaction of Proposition 4.1 for the PDEs with 0′,

b′, 2′, 5 ′ and 0B, bB, 2B, 5 B as data. This also allows the replacement of U, U′ and UB in (4.15) by U.

The rest follows by upper bounding ‖ 5 ′‖!2 by

 5̂

ℓ2 , combining like terms, and simplifying.

Remark 4.1. Corollary 4.5, includes some overly cautious concessions in order to produce a fully

unified result with cleaner error bounds. In particular, condition (4.16) and the resulting definition

of U are used to avoid the need to consider well-posedness of the approximate versions of the PDE

as required in Corollary 4.4. In general, this condition is less important as the SFT approximations

of the PDE data become more accurate. The pessimistic advection term bounding in (4.17) is a

result of the fact that �1 guarantees for the SFT algorithm are not available. Again, this step is

unnecessary if it is known (or assumed) that the approximate PDEs are well-posed. However, note

106

that the truncation term ‖∇ · (b − b|)‖!∞ can be controlled via regularity results for multivariate

Fourier truncation, e.g., [64, 47], so long as the regularity of the advection field is known a priori.

Remark 4.2. We can interpret this upper bound by focusing on the sum

 5̂ − f̂B

ℓ2

 5̂

ℓ2

+ V̂
B
−
U
+

(
V̂0
−

U − V̂0
−

)#+1
. (4.18)

The first term is controlled by the accuracy of the SFT approximation to 5 . As a reminder, using

Algorithm 3.1 for this SFT produces a near optimal error, upper bounded in Corollary 4.3 by

 5̂ − f̂B

ℓ2 ≤ (25 + 3)

√
B

 5̂ − (
5̂ |

)opt

B

ℓ1
.

The second term, V̂B−/U is controlled by the accuracy of the SFT approximations of the coeffi-

cients defining the differential operator, 0, b, and 2. Again, recall that Algorithm 3.1 produces near

optimal approximations with error upper bounded by, e.g.,

‖0̂ − âB‖ℓ1 ≤ (25 + 3)B

0̂ − (0̂ |)opt

B

ℓ1
.

The final term is controlled by two factors: the properties of the PDE data and the stamping

level chosen. We see that the error decays exponentially as the stamping level increases. The base

of this exponent is controlled by the PDE data. In particular, convergence is accelerated as 0 and 2

approach large constants and b approaches a field with divergence zero and little deviation from its

mean. Indeed V0
− is reduced as the deviation of all three coefficients from their mean decreases. The

other piece, U, (ignoring the SFT-dependent terms) increases as the minimums of 0 and 2 − 1
2∇ · b

increase.

Remark 4.3. The computational complexity of Algorithm 4.1 is

O
(
3B log4(3 max(, B)) +max(B, 2# + 1)3 min(B,2#+1)

)
.

in the case of no advection field, and

O
(
32B log4(3 max(, B)) +max(3B, 2# + 1)3 min(3B,2#+1)

)
.

when an advection field is present. This is due to the three or 3 + 3 SFTs respectively and a matrix

solve of a
��S# �� × ��S# �� system. Note that computing the stamping set can be done by enumerating

107

the frequencies using the techniques in Lemma 4.2 and therefore is subject to the same upper bound

as given in Lemma 4.1 for a stamp set’s cardinality. Recall also that the SFT complexity can be

tuned to produce SFT approximations satisfying the above bounds with higher probability.

We do not analyze the complexity of the matrix solve in depth, and instead resort to the upper

bound given by Gaussian elimination on the dense matrix. However, LB,# is relatively sparse for

larger stamping levels. As the capabilities of sparse solvers depend strongly on analyzing the graph

connecting interacting rows in LB,# (cf. [28, Chapter 11]), we expect that the analysis of an efficient

sparse solver could be carried out using much of the same analysis of stamping sets performed in

Section 4.4.

4.7 Numerics

This section gives examples of the algorithm summarized above applied to various problems.

We begin with an overview of our implementation as well as some techniques used evaluate the

accuracy of our approximations. We then present solutions to univariate and very high-dimensional

multiscale problems with both exactly sparse and Fourier-compressible data. For simplicity, all

experiments presented except for the last discard the advection and reaction terms, solving only a

stationary diffusion equation. In this setting, solutions are unique up to constant shifts, so we always

consider solutions with mean zero, that is, D̂0 = 0.

4.7.1 Code and testing overview

We implement Algorithm 4.1 described above in MATLAB using an object-oriented approach,

with all code publicly available.¹ All SFTs are computed using the rank-1 lattice sparse Fourier

transforms from Chapter 3.²

In order to evaluate the quality of our approximations, we need to choose an appropriate metric.

Letting DB,# be the approximation returned by our algorithm, the ideal choice would be to use

D − DB,#

�1 . However, for the types of problems we will be investigating, the true solution D

is unavailable to us. Instead, we will use a proxy that takes advantage of the stability result in

¹https://gitlab.com/grosscra/SparseADR
²this code is publicly available at https://gitlab.com/grosscra/Rank1LatticeSparseFourier

108

https://gitlab.com/grosscra/SparseADR
https://gitlab.com/grosscra/Rank1LatticeSparseFourier

Proposition 4.1.

Lemma 4.7. Let D be the true solution to (GF) and DB,# be the approximation returned by solving

(4.13). Define 5̂ B,# := !D̂B,# with 5 B,# = LDB,# . Then

D − DB,#

�1 ≤

 5 − 5 B,#

!2

U
=

 5̂ − 5̂ B,#

ℓ2

U
.

Proof. The result follows from the fact that D̂ − D̂B,# solves !
(
D̂ − D̂B,#

)
= 5̂ − !D̂B,# = 5̂ − 5̂ B,#

and applying Proposition 4.1.

In the sequel, we will ignore U since we are mostly interested in convergence properties in B

and # and we will compute the relative error

 5 − 5 B,#

!2

‖ 5 ‖!2
or

 5̂ − 5̂ B,#

ℓ2

 5̂

ℓ2

as our proxy instead. Whenever the data are exactly Fourier-sparse, the numerator of the second

of these proxies can be computed exactly due to the fact that supp(5̂ B,#) is known to be contained

in S#+1 (cf. Proposition 4.4). However, in the non-sparse setting, even though 5 − 5 B,# can be

evaluated pointwise, computing an accurate approximation of its norm on T3 is challenging for

large 3. For this reason, we approximate the norm via Monte Carlo sampling. We also furnish the

cases where exactly computing

 5̂ − 5̂ B,#

ℓ2 is possible with the pointwise Monte Carlo estimates

to show that in practice, Monte Carlo sampling does as well as the exact computation.

4.7.2 Univariate compressible

We begin by replicating the lone numerical example of solving an elliptic problem in [21, Sec-

tion 5.1]. In this case, we solve the univariate problem

−(0(G)D′(G))′ = 5 (G) for all G ∈ T, where

0(G) = 1
10

exp
(
0.6 + 0.2 cos(2cG)
1 + 0.7 sin(256cG)

)
, 5 (G) = exp(− cos(2cG)) −

∫
T

exp(− cos(2cG)) 3G
(4.19)

(note that the only difference from [21] is that we use the domain T = [0, 1] rather than [0, 2c]).

This data is not Fourier sparse, but is compressible. In the original paper, a bandwidth of = 1 536

is considered and approximations with 9 and 17 Fourier coefficients are used.

109

We first construct a high accuracy approximation of the solution to (4.19) by numerically in-

tegrating on an extremely fine mesh of 10 000 points. This allows us to forgo our proxy error

described in Lemma 4.7. As in [21], the bandwidth of our SFT used is set to = 1 536. Due to

our SFT returning a 2B sparse approximation, we use B = 4 and B = 8 to compare with the 9 and

17 terms respectively considered in the original paper, and also provide an example with B = 12.

We set the stamping level to # = 1 throughout, which, as discussed in the introduction, is similar

to the technique used in [21].

4 8 12
10−2

10−1

100

101

B (sparsity)

Re
la

tiv
e

er
ro

r

!2

�1

Proxy error

Figure 4.2 Errors in approximating the solution to (4.19).

0 0.2 0.4 0.6 0.8 1

−0.20

−0.10

0.00

0.10

D

D4,1

D8,1

D12,1

(a) Approximate solutions of (4.19).
0.680 0.685 0.690

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D′

(D4,1)′
(D8,1)′
(D12,1)′

(b) Detail of approximate derivatives of (4.19).

Figure 4.3 Qualitative results.

The relative errors approximated in !2 and �1 are given in Figure 4.2. The original paper

does not give numerical results, and instead, gives qualitative results, comparing the approximate

110

solutions and their derivatives with the true solution and its derivative. We have replicated this

qualitative analysis in Figure 4.3 with similar results.

Figure 4.2 also shows the error computed via the proxy described by Lemma 4.7, and in particu-

lar, how pessimistic the proxy error can be. In this case, the small errors in the derivative (visualized

in Figure 4.3b) are compounded by passing the approximate solution through the operator where 0′

is often large relative to 0. In future examples, we will see that the convergence of the proxy error

is much more tolerable.

4.7.3 Multivariate exactly sparse

4.7.3.1 Low sparsity

Moving to the multivariate case, we start with a simple example with exactly sparse data. Our

goal is to solve

−∇ · (0(x)∇D(x)) = 5 (x) for all x ∈ T3 , where

0(x) = 0̂0 + 20 cos(2ck0 · x), 5 (G) = sin
(
2ck 5 · x

)
.

(4.20)

We draw 20 ∼ Unif ([−1, 1]), keep it constant for each dimension, and set 0̂0 = 4 so that our

problem remains elliptic (in the specific example below, 20 ≈ −0.6). For dimensions varying from

3 = 1 to 3 = 1 024, we then draw k0, k 5 ∼ Unif
(
[−499, 500]3 ∩ Z3

)
. The PDE (4.20) is then

solved for stamping levels # = 1, . . . , 5. The bandwidth of the SFT is set to 1000 and the sparsity

is set to 2. We then compute a Monte Carlo approximation of the proxy error choosing 200 points

drawn uniformly from T3 and also compute the proxy error exactly by virtue of the sparsity of 0

and 5 . The results are given in Figure 4.4.

We see that the results do not depend on the dimension of the problem. Since all dependence

on 3 is in the runtime of the SFT, we also observe that in practice, after the SFTs of the data have

been computed, re-solving the problem on different stamping levels takes about the same amount

of time for each 3. The error also converges exponentially in the stamping level as suggested by

the theoretical error guarantees. Notably, we also see that the Monte Carlo approximation with 200

points captures the same proxy error as the exact computation.

111

1 2 3 4 5
10−6

10−5

10−4

10−3

10−2

(stamping level)

 5−5
B
,#

 !
2

‖ 5
‖ !

2

3 = 1 Monte Carlo 3 = 1 exact
3 = 4 Monte Carlo 3 = 4 exact
3 = 16 Monte Carlo 3 = 16 exact
3 = 64 Monte Carlo 3 = 64 exact
3 = 256 Monte Carlo 3 = 256 exact
3 = 1024 Monte Carlo 3 = 1024 exact

Figure 4.4 Proxy error solving (4.20) with 3 = 1, 4, 16, 64, 256, 1 024 and # = 1, . . . , 5.

4.7.3.2 High sparsity

We expand on the exactly sparse case by testing a diffusion coefficient with much higher sparsity.

Here, we solve (4.20) with

0(x) = 0̂0 +
∑
k∈I0

2k cos(2ck · x). (4.21)

The vector of coefficients is drawn as c ∼ Unif
(
[−1, 1]25) once and reused in each test. For every 3,

the frequencies k ∈ I0 are each drawn uniformly from [−499, 500]3 ∩ Z3 as before with |I0 | = 25.

Here 0̂0 = 4 d‖c‖2e to ensure ellipticity. Again, the bandwidth of the SFT algorithm is set to 1 000,

but the sparsity is now fixed to 26. The results are given in Figure 4.5

Again, we see that the results do not depend on the spatial dimension except for the notable

example of 3 = 1. The 3 = 1 case suffers from similar issues in a pessimistic proxy error as in Fig-

ure 4.2. Specifically, the right hand-side for this example was generated with frequency : 5 = −10

and is therefore relatively low-frequency. Thus, the high-frequency modes leading to errors in the

approximate solution are amplified by the high-frequencies in 0 when computing 5 B,# . Indeed, in

further experiments (not pictured here), increasing the frequencies of 5 or decreasing the frequen-

112

1 2 3

10−2

10−1

100

(stamping level)

 5−5
B
,#

 !
2

‖ 5
‖ !

2

3 = 1 Monte Carlo 3 = 1 exact
3 = 4 Monte Carlo 3 = 4 exact
3 = 16 Monte Carlo 3 = 16 exact
3 = 64 Monte Carlo 3 = 64 exact
3 = 256 Monte Carlo 3 = 256 exact
3 = 1024 Monte Carlo 3 = 1024 exact

Figure 4.5 Proxy error solving (4.20) with diffusion coefficient (4.21) in dimensions 3 = 1, 4, 16,
64, 256, 1 024 and stamping levels # = 1, . . . , 3.

cies of 0 result in a lower proxy error.

For the other dimensions, the slight offsets in the exact proxy error can be attributed to the ran-

domized frequencies as well as slight variations in the randomized SFT code. We do see slightly

more variance in the proxy error computed using Monte Carlo sampling however. This is to be ex-

pected for data with more varied frequency content, and as such, in future experiments, we increase

the number of sampling points.

Note that because we consider sparsity much larger than the stamping level, the computa-

tional and memory complexity of the stamping and solution step is much higher. As suggested

by Lemma 4.1, the size of the resulting stamp set (and therefore the necessary matrix solve) in the

largest case is at most 7 ·527 ≈ 7×1012 which pushes the memory boundaries of our computational

resources.

4.7.4 Multivariate compressible

In order to test Fourier-compressible data which is not exactly sparse, we use a series of ten-

sorized, periodized Gaussians. Here, we present the only details necessary to demonstrate our

113

algorithm’s effectiveness on Fourier-compressible data, but for a fuller treatment on the Fourier

properties of periodized Gaussians, see e.g., [53, Section 2.1].

Here, we define the periodic Gaussian �A : T→ R by

�A (G) =
√

2c
A

∞∑
<=−∞

e−
(2c)2 (G−<)

2A2

where the dilation-type parameter A allows us to control the effective support of �̂A . In practice, we

truncate the infinite sum to < ∈ {−10, . . . , 10} as additional terms do not change the output up to

machine precision. Note here that the nonstandard multiplicative factors help control the behavior

of the function in frequency rather than space. Given a multivariate modulating frequency k ∈ Z3 ,

we define the modulated, tensorized, periodic Gaussian by

�A,k(x) =
∏
9∈[3]

e2ci:8G8�A (G8).

Finally, given a set of frequencies I ⊂ Z3 , dilation parameters r ∈ RI+ , and coefficients c ∈ RI , we

can define Gaussian series

�Ic,r(x) :=
∑
k∈I

2k�Ak,k(x).

Depending on the severity of the dilations chosen (i.e., Ak � 1), this can well approximate a

Fourier series with frequencies in I. On the other hand, a less severe dilation results in Fourier co-

efficients with magnitudes forming less concentrated Gaussians centered around the “frequencies”

k ∈ I and −k. An example of a series with its associated Fourier transform is given in Figure 4.6.

In our first experiment, we fix 3 = 2 and vary both stamp level and sparsity to again solve (4.20).

The diffusion coefficient in (4.20) is replaced with a two-term Gaussian series 0 = 20 +�Ic,r, where

I ∼ Unif
((
[−24, 25]2 ∩ Z2

)2
)
, c ∼ Unif

(
[−1, 1]2

)
, r = 1.121, 20 = 10 d‖c‖2e .

Note the increased constant factor from our previous examples to decrease the likelihood of sparse

approximations of 0 not satisfying the ellipticity property. The Fourier transform of the resulting

0 used for the following test is depicted in Figure 4.7 below. The diffusion equation is then solved

across various sparsities with increasing stamping level. The bandwidth parameter of the SFT is

114

−0.25
0 0.25 0.5

−0.25
0

0.25
0.5

−10
0

10

20

30

G0
G1

(a) 21�A1,k1 + 22�A2,k2

−40−30−20−10 0 10 20 30 40 50

−40
−30
−20
−10

0
10
20
30
40
50

:0

:
1

(b) 21�̂A1,k1 + 22�̂A2,k2

Figure 4.6 An example Gaussian series with 21 = 22 = 1, A1 = 0.5, A2 = 2, k1 = (3, 2), and
k2 = (−5, 15). The first term corresponds to the wider Gaussian shape and more spread out portions
of the Fourier transform. The second term contributes to the highly oscillatory parts and the isolated
spikes in the Fourier transform.

set to = 100 to account for the wider effective support of 0̂. The Monte Carlo proxy error is

computed with 1 000 samples and depicted in Figure 4.8.

−40−30−20−10 0 10 20 30 40 50

−40
−30
−20
−10

0
10
20
30
40
50

:0

:
1

Figure 4.7 The specific 0̂ used in examples depicted in Figure 4.8.

Here, the stamping level does not affect convergence until the sparsity is above B ≥ 16. This

demonstrates the tradeoff between sparsity and stamping level in regards to the error bound (4.18).

Until the SFT is able to capture enough useful information in 0̂, the ‖0̂ − âB‖ℓ1 piece of the error

bound dominates. Eventually, this factor is reduced far enough that the stamping term becomes

115

1 2 3

10−2

(stamping level)

 5−5
B
,#

 !
2

‖ 5
‖ !

2

B = 2 Monte Carlo B = 16 Monte Carlo
B = 4 Monte Carlo B = 32 Monte Carlo
B = 8 Monte Carlo B = 64 Monte Carlo

Figure 4.8 Proxy error solving (4.20) with Gaussian series diffusion coefficient with sparsity levels
B = 2, 4, 8, 16, 32, 64, and stamping levels # = 1, . . . , 3.

apparent.

We provide another example, where sparsity is fixed at B = 16, and dimension and stamping

level are increased. Again we solve (4.20) with the diffusion coefficient replaced by the two-term

Gaussian series 0 = 20 + �Ic,r, where

I ∼ Unif
((
[−249, 250]3 ∩ Z3

)2
)
, c ∼ Unif

(
[−1, 1]2

)
, r = 1.131, 20 = 10 d‖c‖2e ,

and c and 20 are not redrawn across test cases. The bandwidth of the SFT is set to 1 000 to again

account for the potentially widened Fourier transform of 0. With a 1 000 point Monte Carlo ap-

proximation of the proxy error, the results are given in Figure 4.9.

Here we observe much the same behavior as the previous test case. This is due to the fact that the

dimension additionally drives the sparsity of the Gaussian Fourier transforms based on the choice

of dilation r = 1.131. In additional experiments performed at higher dimensions (not pictured

here), this factor results in numerical instability and the approximation error blows up. We also

see that the 3 = 2 and 3 = 4 examples are swapped from their assumed positions (and the 3 = 2

case even mildly benefits from increased stamping level). This is attributed to the random draw of

the frequency locations affecting the proxy error as well as the SFT algorithm performing better in

116

1 2 3 4

10−4

10−3

10−2

(stamping level)

 5−5
B
,#

 !
2

‖ 5
‖ !

2

3 = 2 Monte Carlo 3 = 8 Monte Carlo
3 = 4 Monte Carlo 3 = 16 Monte Carlo

Figure 4.9 Approximate proxy error solving (4.20) with Gaussian series diffusion coefficient with
3 = 2, 4, 8, 16 and # = 1, . . . , 5.

lower dimensions when all parameters are fixed.

4.7.5 Three-dimensional exactly sparse advection-diffusion-reaction equation

We now extend our numerical experiments to the situation of a three-dimensional advection-

diffusion-reaction equation. We work with the PDE

−∇ · (0∇D) + b · ∇D + 2D = 5 (4.22)

with exactly sparse data

0(x) = 0̂0 +
∑

k∈Isine
0

2sine
0,k sin(2ck · x) +

∑
k∈Icosine

0

2cosine
0,k cos(2ck · x)

1 9 (x) =
∑

k∈Isine
1 9

2sine
1 9 ,k sin(2ck · x) +

∑
k∈Icosine

1 9

2cosine
1 9 ,k cos(2ck · x) for all 9 ∈ [3]

2(x) = 2̂0 +
∑

k∈Isine
2

2sine
2,k sin(2ck · x) +

∑
k∈Icosine

2

2cosine
2,k cos(2ck · x)

5 (x) =
∑

k∈Isine
5

2sine
5 ,k sin(2ck · x) +

∑
k∈Icosine

5

2cosine
5 ,k cos(2ck · x),

(4.23)

117

where ��Isine
0

�� = ��Icosine
0

�� = 2���Isine
1 9

��� = ���Icosine
1 9

��� = ��Isine
2

�� = ��Icosine
c

�� = 5 for all 9 ∈ [3]���Isine
5

��� = 2, and
���Icosine
5

��� = 3.

In total, there are 45 terms composing the differential operator, and 5 terms composing the forcing

function. Each frequency is randomly drawn from Unif ([−49, 50]3 ∩ Z3) and each coefficient for

0 and 5 from Unif ([−1, 1]). The coefficients for b and 2 are drawn from Unif ([0, 1]). To ensure

well-posedness, 0̂0 = 4
⌈√

2sine

0

2
2 +

2cosine
0

2
2

⌉
, and 2̂0 = 4

⌈√

2sine
2

2
2 +

2cosine
2

2
2

⌉
. The bandwidth

of the SFT is set to = 100 and we consider sparsity levels B = 2 and B = 5. Due to the large size

of the stamp, we only consider stamping levels # = 1, 2.

 5 − 5 B,#

!2/‖ 5 ‖!2

B # exact Monte Carlo

2 1 0.518 0.518

2 0.518 0.518

5 1 0.054 0.054

2 0.031 0.031

Table 4.1 Error in approximating solution to ADR equation (4.22).

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

G2

G
3

(a) Slice through 5 2,1.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

G2

G
3

(b) Slice through 5 10,2.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

G2

G
3

(c) Slice through 5 .

Figure 4.10 Samples of 5 10,2 and 5 on the G1 = 63/128 plane.

The resulting true and Monte Carlo proxy error (sampled over 1 000 points) is given in Table 4.1.

Additionally, Figure 4.10 shows a portion of a slice through 5 as well as 5 2,1 and 5 10,2 which are

computed by passing D2,1 and D10,2 through the differential operator.

118

We note that 5 10,2 and 5 appear qualitatively indistinguishable. However, since the sparsity

level, B = 2, used to compute D2,1 is lower than the sparsity of any term in (4.23), 5 2,1 loses some

of characteristics of the original source term. Though it captures some of the true behavior in

both larger scales (e.g., the oscillations moving in the northeast direction) and finer scales (e.g., the

oscillations moving in the southeast direction), some interfering modes which produce the “wavy”

effect are left out. This is supported by the relative errors reported in Table 4.1. Note also that the

stamping level affects the convergence in B = 5 case, but not the B = 2 case. This is due to the

sparsity related errors in (4.18) overwhelming the stamping term until the SFT approximations of

the data are accurate enough.

119

BIBLIOGRAPHY

[1] Sina Bittens and Gerlind Plonka. Real sparse fast DCT for vectors with short support. Linear
Algebra Appl., 582:359–390, 2019.

[2] Sina Bittens and Gerlind Plonka. Sparse fast DCT for vectors with one-block support. Numer.
Algorithms, 82(2):663–697, 2019.

[3] Sina Bittens, Ruochuan Zhang, and Mark A Iwen. A deterministic sparse FFT for functions
with structured Fourier sparsity. Advances in Computational Mathematics, 45(2):519–561,
2019.

[4] Simone Brugiapaglia. COmpRessed SolvING: Sparse Approximation of PDEs based on Com-
pressed Sensing. PhD thesis, Polytecnico Di Milano, Milan, Italy, January 2016.

[5] Simone Brugiapaglia. A compressive spectral collocation method for the diffusion equa-
tion under the restricted isometry property. In Marta D’Elia, Max Gunzburger, and Gian-
luigi Rozza, editors, Quantification of Uncertainty: Improving Efficiency and Technology:
QUIET selected contributions, Lecture Notes in Computational Science and Engineering,
pages 15–40. Springer International Publishing, Cham, 2020.

[6] Simone Brugiapaglia, Sjoerd Dirksen, Hans Christian Jung, and Holger Rauhut. Sparse re-
covery in bounded Riesz systems with applications to numerical methods for PDEs. Applied
and Computational Harmonic Analysis, 53:231–269, July 2021.

[7] Simone Brugiapaglia, Stefano Micheletti, Fabio Nobile, and Simona Perotto. Supplementary
material to “Wavelet–Fourier CORSING techniques for multidimensional advection–diffu-
sion–reaction equations”, September 2020.

[8] Simone Brugiapaglia, Stefano Micheletti, Fabio Nobile, and Simona Perotto. Wavelet–Fourier
CORSING techniques for multidimensional advection–diffusion–reaction equations. IMA
Journal of Numerical Analysis, (draa036), September 2020.

[9] Simone Brugiapaglia, Stefano Micheletti, and Simona Perotto. Compressed solving: A nu-
merical approximation technique for elliptic PDEs based on compressed sensing. Computers
& Mathematics with Applications, 70(6):1306–1335, September 2015.

[10] Simone Brugiapaglia, Fabio Nobile, Stefano Micheletti, and Simona Perotto. A theoretical
study of COmpRessed SolvING for advection-diffusion-reaction problems. Mathematics of
Computation, 87(309):1–38, January 2018.

[11] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269,
May 2004. Publisher: Cambridge University Press.

[12] Glenn Byrenheid, Lutz Kämmerer, Tino Ullrich, and Toni Volkmer. Tight error bounds for
rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numerische Mathematik,
136(4):993–1034, August 2017.

120

[13] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. Spectral Meth-
ods: Fundamentals in Single Domains. Scientific Computation. Springer-Verlag, Berlin Hei-
delberg, 2006.

[14] Bosu Choi, Andrew Christlieb, and Yang Wang. Multiscale High-Dimensional Sparse Fourier
Algorithms for Noisy Data. ArXiv e-prints, 2019. arXiv:1907.03692.

[15] Bosu Choi, Andrew Christlieb, and Yang Wang. High-dimensional sparse Fourier algorithms.
Numerical Algorithms, 87(1):161–186, May 2021.

[16] Bosu Choi, Mark Iwen, and Toni Volkmer. Sparse harmonic transforms ii: best s-term ap-
proximation guarantees for bounded orthonormal product bases in sublinear-time. Numerische
Mathematik, 148(2):293–362, Jun 2021.

[17] Bosu Choi, Mark A. Iwen, and Felix Krahmer. Sparse harmonic transforms: A new class of
sublinear-time algorithms for learning functions of many variables. Found. Comput. Math.,
2020.

[18] Andrew Christlieb, David Lawlor, and Yang Wang. A multiscale sub-linear time Fourier
algorithm for noisy data. Appl. Comput. Harmon. Anal., 40(3):553 – 574, 2016.

[19] Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Compressed sensing and best :-term
approximation. Journal of the American Mathematical Society, 22(1):211–231, January 2009.

[20] Dinh Dũng, Vladimir Temlyakov, and Tino Ullrich. Hyperbolic Cross Approximation. Ad-
vanced Courses in Mathematics - CRM Barcelona. Springer International Publishing, Cham,
2018.

[21] Ingrid Daubechies, Olof Runborg, and Jing Zou. A sparse spectral method for homogeniza-
tion multiscale problems. Multiscale Modeling & Simulation, 6(3):711–740, January 2007.
Publisher: Society for Industrial and Applied Mathematics.

[22] Michael Döhler, Stefan Kunis, and Daniel Potts. Nonequispaced hyperbolic cross fast Fourier
transform. SIAM Journal on Numerical Analysis, 47(6):4415–4428, January 2010. Publisher:
Society for Industrial and Applied Mathematics.

[23] Lawrence C. Evans. Partial differential equations. Number v. 19 in Graduate studies in
mathematics. American Mathematical Society, Providence, R.I, second edition edition, 2010.

[24] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing.
Springer, 2013.

[25] A. C. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal
sparse Fourier representations. In Manos Papadakis, Andrew F. Laine, and Michael A. Unser,
editors, Wavelets XI, volume 5914, pages 398 – 412. International Society for Optics and
Photonics, SPIE, 2005.

[26] Anna C Gilbert, Piotr Indyk, Mark Iwen, and Ludwig Schmidt. Recent developments in
the sparse Fourier transform: A compressed Fourier transform for big data. IEEE Signal
Processing Magazine, 31(5):91–100, 2014.

121

[27] Anna C. Gilbert, Martin J. Strauss, and Joel A. Tropp. A tutorial on fast Fourier sampling.
IEEE Signal Process. Mag., 25(2):57–66, 2008.

[28] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition,
2013.

[29] V Gradinaru. Fourier transform on sparse grids: Code design and the time dependent
Schrödinger equation. Computing (Wien. Print), 80(1):1–22, January 2007. Place: Wien
Publisher: Springer.

[30] Michael Griebel and Jan Hamaekers. Sparse grids for the Schrödinger equation. Special
issue on molecular modelling, 41(2):215–247, January 2007. Place: Les Ulis Publisher: EDP
Sciences.

[31] Michael Griebel and Jan Hamaekers. Fast discrete Fourier transform on generalized sparse
grids. In Jochen Garcke and Dirk Pflüger, editors, Sparse Grids and Applications - Munich
2012, volume 97, pages 75–107. Springer International Publishing, Cham, 2014. Series Title:
Lecture Notes in Computational Science and Engineering.

[32] Craig Gross and Mark Iwen. Sparse spectral methods for solving high-dimensional and mul-
tiscale elliptic PDEs. ArXiv e-prints, 2023. arXiv:2302.00752.

[33] Craig Gross, Mark Iwen, Lutz Kämmerer, and Toni Volkmer. Sparse Fourier transforms on
rank-1 lattices for the rapid and low-memory approximation of functions of many variables.
Sampling Theory, Signal Processing, and Data Analysis, 20(1):1, December 2021.

[34] Craig Gross, Mark A Iwen, Lutz Kämmerer, and Toni Volkmer. A deterministic algorithm
for constructing multiple rank-1 lattices of near-optimal size. Advances in Computational
Mathematics, 47(6):1–24, 2021.

[35] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algo-
rithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 1183–1194. SIAM, 2012.

[36] Mark A Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of Computa-
tional Mathematics, 10(3):303–338, 2010.

[37] Mark A. Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms.
Appl. Comput. Harmon. Anal., 34:57–82, 2013.

[38] Lutz Kämmerer. High Dimensional Fast Fourier Transform Based on Rank-1 Lattice Sam-
pling. Ph.D, Universitätsverlag Chemnitz, 2014.

[39] Lutz Kämmerer. Reconstructing multivariate trigonometric polynomials from samples along
rank-1 lattices. In Gregory E. Fasshauer and Larry L. Schumaker, editors, Approximation
Theory XIV: San Antonio 2013, pages 255–271. Springer International Publishing, 2014.

[40] Lutz Kämmerer. Multiple rank-1 lattices as sampling schemes for multivariate trigonometric
polynomials. Journal of Fourier Analysis and Applications, 24(17):17–44, 2018.

122

[41] Lutz Kämmerer. Constructing spatial discretizations for sparse multivariate trigonometric
polynomials that allow for a fast discrete Fourier transform. Applied and Computational Har-
monic Analysis, 47(3):702–729, 2019.

[42] Lutz Kämmerer, Felix Krahmer, and Toni Volkmer. A sample efficient sparse FFT for arbitrary
frequency candidate sets in high dimensions. Numerical Algorithms, 89(4):1479–1520, Apr
2022.

[43] Lutz Kämmerer, Daniel Potts, and Toni Volkmer. High-dimensional sparse FFT based on
sampling along multiple rank-1 lattices. Appl. Comput. Harmon. Anal., 51:225–257, 2021.

[44] Lutz Kämmerer and Toni Volkmer. Approximation of multivariate periodic functions based on
sampling along multiple rank-1 lattices. Journal of Approximation Theory, 246:1–27, 2019.

[45] Michael Kapralov. Sparse Fourier Transform in Any Constant Dimension with Nearly-Optimal
Sample Complexity in Sublinear Time, page 264–277. Assoc. Comput. Mach., New York, NY,
USA, 2016.

[46] Frances Kuo, Giovanni Migliorati, Fabio Nobile, and Dirk Nuyens. Function integra-
tion, reconstruction and approximation using rank-1 lattices. Mathematics of Computation,
90(330):1861–1897, July 2021.

[47] Friedrich Kupka. Sparse grid spectral methods for the numerical solution of partial differen-
tial equations with periodic boundary conditions. Ph.D., Universität Wien, Vienna, Austria,
November 1997.

[48] Lutz Kämmerer. A fast probabilistic component-by-component construction of exactly inte-
grating rank-1 lattices and applications. ArXiv e-prints, 2020. arXiv:2012.14263.

[49] Lutz Kämmerer, Stefan Kunis, and Daniel Potts. Interpolation lattices for hyperbolic cross
trigonometric polynomials. Journal of Complexity, 28(1):76–92, February 2012.

[50] Lutz Kämmerer, Daniel Potts, and Toni Volkmer. Approximation of multivariate periodic
functions by trigonometric polynomials based on rank-1 lattice sampling. Journal of Com-
plexity, 31(4):543–576, August 2015.

[51] David Lawlor, Yang Wang, and Andrew Christlieb. Adaptive sub-linear time Fourier algo-
rithms. Adv. Adapt. Data Anal., 05(01):1350003, 2013.

[52] Dong Li and Fred J. Hickernell. Trigonometric spectral collocation methods on lattices. In
Recent advances in scientific computing and partial differential equations (Hong Kong, 2002),
volume 330 of Contemp. Math., pages 121–132. Amer. Math. Soc., Providence, RI, 2003.

[53] Sami Merhi, Ruochuan Zhang, Mark A. Iwen, and Andrew Christlieb. A new class of fully
discrete sparse Fourier transforms: Faster stable implementations with guarantees. Journal
of Fourier Analysis and Applications, 25(3):751–784, June 2019.

[54] Lucia Morotti. Explicit universal sampling sets in finite vector spaces. Appl. Comput. Harmon.
Anal., 43(2):354–369, 2017.

123

[55] Hans Munthe-Kaas and Tor Sørevik. Multidimensional pseudo-spectral methods on lattice
grids. Applied Numerical Mathematics, 62(3):155–165, March 2012.

[56] Gerlind Plonka, Daniel Potts, Gabriele Steidl, and Manfred Tasche. Numerical Fourier Anal-
ysis. Applied and Numerical Harmonic Analysis. Springer International Publishing, Cham,
2018.

[57] Gerlind Plonka and Katrin Wannenwetsch. A sparse fast Fourier algorithm for real non-
negative vectors. J. Comput. Appl. Math., 321:532–539, 2017.

[58] Gerlind Plonka, Katrin Wannenwetsch, Annie Cuyt, and Wen-shin Lee. Deterministic sparse
FFT for "-sparse vectors. Numer. Algorithms, 78(1):133–159, 2018.

[59] Daniel Potts and Toni Volkmer. Sparse high-dimensional FFT based on rank-1 lattice sam-
pling. Appl. Comput. Harmon. Anal., 41(3):713–748, 2016.

[60] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6(1):64–94, 1962.

[61] A.D. Rubio, A. Zalts, and C.D. El Hasi. Numerical solution of the advection-reaction-
diffusion equation at different scales. Environmental Modelling & Software, 23(1):90–95,
January 2008.

[62] Ben Segal and MA Iwen. Improved sparse Fourier approximation results: faster implementa-
tions and stronger guarantees. Numer. Algorithms, 63(2):239–263, 2013.

[63] Jie Shen and Li-Lian Wang. Sparse spectral approximations of high-dimensional problems
based on hyperbolic cross. SIAM Journal on Numerical Analysis, 48(3):1087–1109, January
2010. Publisher: Society for Industrial and Applied Mathematics.

[64] V. N. Temlyakov. Approximation of periodic functions. Comput. Math. Anal. Ser. Nova Sci.
Publ., Inc., Commack, NY, 1993.

[65] Toni Volkmer. Multivariate Approximation and High-Dimensional Sparse FFT Based on
Rank-1 Lattice Sampling. Ph.D, Universitätsverlag Chemnitz, 2017.

[66] Weiqi Wang and Simone Brugiapaglia. Compressive Fourier collocation methods for high-
dimensional diffusion equations with periodic boundary conditions. ArXiv e-prints, 2022.
arxiv:2206.01255.

[67] Harry Yserentant. On the regularity of the electronic Schrödinger equation in Hilbert spaces
of mixed derivatives. Numerische Mathematik, 98(4):731–759, October 2004.

[68] Harry Yserentant. Sparse grid spaces for the numerical solution of the electronic Schrödinger
equation. Numerische Mathematik, 101(2):381–389, August 2005.

124

	Introduction
	Overview
	Notation
	Fourier preliminaries

	Constructing multiple rank-1 lattices deterministically
	Overview of results
	The proof of Theorem 2.1
	Numerics

	High-dimensional sparse Fourier transforms
	Overview of results and prior work
	One-dimensional sparse Fourier transform results
	Fast multivariate sparse Fourier transforms
	Numerics

	Sparse Fourier spectral methods for solving PDE
	Overview of results and prior work
	Elliptic PDE setup
	Galerkin spectral methods
	Stamping sets and truncation analysis
	Fully sublinear-time SFTs with randomized lattices
	A sparse spectral method via SFTs
	Numerics

	Bibliography

