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ABSTRACT 

The human gut microbiota is a complex community of microorganisms Infant diet 

influences the composition and diversity of the gut microbiota, which may impact 

neurodevelopmental outcomes. Herein, the mediating role of the infant gut microbiota in the 

associations between infant diet and infant neurodevelopment and an analysis of the influence of 

breastfeeding patterns on infant gut microbiota are presented.  

Participants in the Michigan Archive for Research on Child Health (MARCH), a cohort 

study in Michigan, provided infant fecal samples at 3 months of age and neurodevelopment 

information using the Ages and Stages Questionnaire at 9 months of age. 16S rRNA sequencing 

data was processed through mothur. Microbiota and statistical analyses were conducted using R.  

In Chapter 2, associations between gut microbiota and neurodevelopmental outcomes are 

described. Gut microbiota richness (Chao 1) was negatively associated with gross motor scores. 

However, gut microbial diversity (Shannon index) was positively associated with problem-

solving scores. Beta diversity (Bray-Curtis) was associated with fine motor and communication 

scores. Thus, the gut microbiota was associated with cognitive development. 

Chapter 3 examined the potential mediating role of early-life gut microbiota in the 

associations between infant diet and neurodevelopmental outcomes. The gut microbiota was 

impacted by diet. Breastfeeding and vitamin D supplementation was positively associated with 

fine motor scores. Infant gut microbial composition, measured by the Bray-Curtis dissimilarity 

index, mediated the association between infant feeding and fine motor scores. These results 

suggest the importance of promoting optimal gut health through nutrition to support healthy 

cognitive development. 

In Chapter 4 relationships between breastfeeding patterns (breastfed, bottle-fed, and mix-



  

fed), the proportions of breastmilk intake and infant gut microbiota among exclusively 

breastmilk-fed infants at 3 months of age are described. Infants fed at the breast had a lower 

abundance of Bifidobacterium but a higher abundance of Enterobacteriaceae compared to bottle- 

and mixed-fed infants. These microbiotas were then compared to those of infants fed some 

formula. Though bottle-fed infants were 100% breastmilk fed, they had similar microbiota 

composition as infants fed with >50% and <50% breastmilk. Thus, breastfeeding patterns 

influence the gut microbiota of infants. 

In summary, this work describes relationships among infant diet, breastfeeding patterns, 

gut microbiota, and neurodevelopment. The work underscores the importance of promoting 

optimal gut health through infant feeding practices and nutritional interventions, such as vitamin 

D supplementation, to support neurodevelopment. Notably, this work advances prior work by 

using infant dietary intake data collected in the week, as well as in the 24 hours, immediately 

prior to stool collection. Overall, these results contribute to our understanding of the role of gut 

microbiota in infant development and may inform the development of interventions aimed at 

promoting healthy gut microbiota and neurodevelopmental outcomes in early life. 
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CHAPTER 1: INTRODUCTION 
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The human gut microbiota is a complex and diverse community of microorganisms that 

live in the human gastrointestinal tract (Thursby & Juge, 2017). This community consists of 

trillions of microorganisms, including bacteria, viruses, fungi, and archaea (Matijašić et al., 

2020). The gut microbiota plays a vital role in human health, with research showing that it is 

involved in a wide range of processes such as digestion (Oliphant & Allen-Vercoe, 2019), 

nutrient absorption (Krajmalnik-Brown et al., 2012), and immune system regulation (Belkaid & 

Hand, 2014). Furthermore, studies have linked alterations in the gut microbiota to various health 

conditions such as obesity (Liu et al., 2021), diabetes (Li et al., 2020), and inflammatory bowel 

disease (Qiu et al., 2022). Other research has also explored the potential links between the gut 

microbiota and mental health disorders such as depression and anxiety (Clapp et al., 2017). 

Understanding the relationship between the gut microbiota and human health is an area of active 

research, and it has the potential to lead to new treatments and interventions to improve human 

health and well-being. 

Development of gut microbiota in early life is tightly related to health later in life (Kundu 

et al., 2017). Healthy breastfed infants are primarily colonized with Bifidobacterium strains 

(Saturio et al., 2021). However, infants with later atopic disease displayed a reduced ratio of 

bifidobacteria to clostrida, caused by reduced bifodobacteria and increased clostridia 

colonization (Björkstén et al., 2001; Kalliomäki et al., 2001). A higher risk of obesity later in life 

was also attributed to the decreased fecal bifodobacteria early infancy as compared by healthy 

children (Kalliomäki et al., 2008). Colicky infants have been shown to have increased 

colonization of Clostridium difficile compared with non-colicky infants (Savino et al., 2004). 

Finally, the gut microbial developmental trajectory during infancy were found to be associated 

with later development type 1 diabetes (Kostic et al., 2015).  
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Infant feeding practices include breastfeeding, formula feeding and mix feeding (both 

breastfeeding and formula feeding). Breastmilk feeding refers to the practice of feeding infants 

with breast milk produced by their mothers. Human milk is the ideal source of nutrition for 

newborns, providing necessary nutrients and immune factors for optimal growth and 

development (C. R. Martin et al., 2016). The modes of breastmilk feeding are comprised of 

direct breastfeeding, expressed breastfeeding, and mixed feeding (Pang et al., 2017; Pérez-

Escamilla et al., 2023). Direct breastfeeding is when the infant feeds directly from the mother's 

breast, while expressed breast milk feeding is when the infant is fed with human milk that has 

been extracted from the breast using a pump and provided through a bottle, cup, or spoon. Mixed 

feeding is a combination of both, where the infant is fed directly at the breast and also given 

expressed breast milk (Pang et al., 2017). Although breastmilk is the ideal source of nutrition for 

infants, it may not provide enough vitamin D for optimal growth and development 

(Balasubramanian, 2011). Vitamin D deficiency in breastfed infants can result in nutritional 

rickets which is a bone-related condition (Shore & Chesney, 2013). Formula feeding, on the 

other hand, is a viable alternative for infants who cannot be breastfed (Stevens et al., 2009). 

Formula provides a complete source of nutrition for infants, and it is designed to mimic the 

composition of breast milk.   

Infant feeding practices profoundly influence the colonization and maturation of the 

infant gut microbiome (Li et al., 2021; O'Sullivan et al., 2015). The human milk oligosaccharides 

(HMOs) are one of the main components of breast milk and they are utilized by Bifidobacterium 

in infant’s gut, which can inhibit the growth of pathogenic bacteria and modulate the mucosal 

barrier function and immune response (Le Huërou-Luron et al., 2010; Marcobal et al., 2010; 

Sudo et al., 1997). Formula-fed infants have a distinct gut microbial composition from breastfed 
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infants (Ma et al., 2020; O'Sullivan et al., 2015; Yatsunenko et al., 2012). Exclusively breastfed 

infants had lower bacterial diversity, increased abundance of Bifidobacterium, and decreased 

abundance of Lachnospiraceae compared to partially or non-breastfed infants (Baumann-

Dudenhoeffer et al., 2018; Forbes et al., 2018). Exclusively formula-fed infants displayed a more 

diverse gut microbiota with a lower abundance of Bifidobacterium species and an increased 

abundance of Clostridium species and Enterobacteriaceae species due to lacking HMOs and 

higher protein contents in infant formula compared to breastfed infants (Bäckhed et al., 2015; 

Benno et al., 1984; Penders et al., 2007). Lactobacilli/Enterococci counts were also higher in 

breastfed infants compared to formula-fed infants (Rinne et al., 2005). Recently, infant formula 

has been improved by adding oligosaccharides, making it possible to establish Bifidobacterium-

rich gut microbiota in infants (Veereman-Wauters et al., 2011). Furthermore, formula-fed infants 

form an adult-like gut microbiota composition at an early age (Bäckhed et al., 2015). In 

conclusion, breastfeeding plays a critical role in the development of the infant gut microbiota, 

promoting the growth of beneficial bacteria and providing long-term health benefits for the 

infant.  

Pumping breastmilk into a bottle is one of the common breastmilk feeding modes; 

however, it can impact the bacterial composition of breast milk (Differding & Mueller, 2020; 

Moossavi & Azad, 2020; Weiss, 2005 ). Human milk bacteria is a potential source of bacteria 

that colonize the infant gut (Urbaniak et al., 2016). Therefore, the changes of human milk 

microbial composition could possibly influence the infant gut microbiota. However, the 

consequences of pumping and breastfeeding on infant gut microbiota have not been well studied. 

Streptococcus spp. and Veillonella dispar co-occurred in breast milk and infant’s stool but this 

co-occurrence was depleted when infants were fed with pumped breastmilk (Fehr et al., 2020). 
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They also reported that infant gut microbiota composition was not associated with breastmilk 

feeding patterns (breastfeeding versus pumping) (Fehr et al., 2020). While the impact of 

pumping breast milk on the infant gut microbiota is not yet fully understood, studies suggest that 

it may alter the microbial composition of breast milk, potentially affecting the bacterial 

colonization of the infant gut. 

The introduction of complementary foods during weaning is a critical period for the 

development of the infant gut microbiota. During weaning, the introduction of complementary 

food causes an increase in alpha diversity of gut microbiota, resulting in the replacement of 

Proteobacteria and Actinobacteria by Firmicutes and Bacteroidetes phyla as the dominant 

species (Fallani et al., 2011; Koenig et al., 2011). The infant gut microbial diversity increased 

significantly with the consumption of solid foods at 9 months of age compared to milk-based diet 

at 4 months of age (McKeen et al., 2022). The timing of the introduction to solid in infancy was 

associated with altered gut microbial composition, which differed by duration of breastfeeding 

(Differding et al., 2020).  

Delivery mode is recognized as an essential driver of early gut microbiota composition in 

full-term born infants (Mitchell et al., 2020; Munyaka et al., 2014). The maternal vaginal 

microbiome is considered the first natural microbial exposure to newborn babies, which results 

in neonatal gut colonization by the mother’s vaginal microbiota, such as Lactobacillus and 

Prevotella (Biasucci et al., 2010; Dominguez-Bello et al., 2010). In contrast, cesarean section (C-

section) born infants are not directly exposed to vaginal microbiota; however, they are more 

likely to be colonized by some environmental microorganisms from maternal skin, the hospital 

staff, or the hospital environment (Bäckhed et al., 2015; Biasucci et al., 2010; Bokulich et al., 

2016; Fouhy et al., 2012; Rodríguez et al., 2015), such as Staphylococcus, Corynebacterium, and 
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Propionibacterium spp. Additionally, C-section delivered infants also show a reduced diversity 

of gut microbiota, and they are less likely to be colonized by Bifidobacterium and Bacteroides 

but are more frequently colonized by Clostridium sensu stricto (cluster I) and Clostridium 

difficile (Adlerberth et al., 2007; Akagawa et al., 2019; Biasucci et al., 2010; Del Chierico et al., 

2015; Dominguez-Bello et al., 2010; Hill et al., 2017; Jakobsson et al., 2014; Neu & Rushing, 

2011; Penders et al., 2006). Therefore, c-section might be leading to the dysbiosis of infant gut 

microbiota since it reduced the gut microbial diversity compared to vaginal delivery (Hoang et 

al., 2021). However, breast milk might help reverse this adverse outcome induced by c-section 

(Zhang et al., 2021). These gut microbial differences between vaginally and C-section-born 

babies decrease at 4 months and 12 months, but the gut microbiota of C-section-born infants 

remain more heterogeneous (Bäckhed et al., 2015; R. Martin et al., 2016). 

In the early stages, antibiotics exposure is a significant factor disrupting the normal gut 

microbiota colonization and development. Intrapartum antibiotic prophylaxis (IAP) is commonly 

used to prevent severe the bacterial infections, sepsis, and meningitis caused by Streptococcus 

agalactiae, group B Streptococcus (GBS), in newborn and young infants (Le Doare & Heath, 

2013; Moore et al., 2003; Schrag et al., 2000; Thigpen et al., 2011). The impact of maternal IAP 

on infant gut microbiota colonization is present at the age of two days (Nogacka et al., 2017). 

IAP infants have been shown to have a higher abundance of Enterobacteriaceae (Mazzola et al., 

2016), and a lower abundance of Bifidobacterium spp. at the age of one week (Corvaglia et al., 

2016). At three months of age, a decreased infant gut microbiota richness, a depletion of 

Bacteroidetes, and increased Firmicutes were observed, which persisted to 1 year among IAP-

exposed infants delivered by emergency C-section born babies and were not breastfed 

exclusively at 3 months (Azad et al., 2016). In addition to prenatal exposure, postnatal antibiotic 
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use also has a potential impact on gut microbiota development. Early empiric antibiotic use in 

preterm infants in the first week of life was associated with lower gut microbial diversity in the 

second and third weeks (Greenwood et al., 2014). Antibiotics administration caused a lower 

abundance of Bacteroides spp during the first three months of life (Eck et al., 2020). Broad-

spectrum antibiotics are used to treat suspected early-onset neonatal sepsis (sEONS). The gut 

microbial composition changed significantly after the antibiotics treatment (Reyman et al., 

2022). In addition, antibiotics treated infants showed a decreased abundance of Bifidobacterium 

spp. and increased abundance of Klebsiella and Enterococcus spp. compared to non-antibiotics 

treated infants (Greenwood et al., 2014; Korpela et al., 2020; Reyman et al., 2022). 

Epidemiological studies have been conducted that early exposure to antibiotics is associated with 

asthma, allergic diseases, overweight, inflammatory bowel disease, and celiac disease in 

childhood (Chelimo et al., 2020; Dydensborg Sander et al., 2019; Kronman et al., 2012; Murk et 

al., 2011; Saari et al., 2015; Zven et al., 2020).  

Associations between maternal pre-pregnancy BMI and infant gut microbiota are 

modified by delivery mode (Mueller et al., 2016; Singh et al., 2020). In one study, mothers who 

were overweight or obese before becoming pregnant had a significantly different gut microbial 

community structure, such as the enrichment in the Bacteroides and depletion in the 

Enterococcus, Acinetobacter, Pseudomonas, and Hydrogenophilus in vaginally born infants 

(Mueller et al., 2016). On the contrary, maternal pre-pregnancy BMI was not associated with 

infant gut microbial community structure (Mueller et al., 2016).  Another study observed that 

maternal overweight or obesity was associated with increased infant gut microbial diversity in 

vaginally born infants, while there was no association in C-section born infants (Singh et al., 

2020). In addition, Sugino et al. found that infant gut microbiota membership tended to differ by 
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maternal pre-pregnancy BMI category (18.5 ≤ BMI< 25, 25≤BMI<30, BMI≥30) (Sugino et al., 

2019).  

Gut microbiota secretions, such as peptides, gut hormones and neuroactive substances 

and microbiota-derived products, and microbiota-derived metabolites, which will modulate the 

brain through immune system, neuroendocrine system, enteric nervous system, circulatory 

system, and vagus nerve by altering receptor activity and neurotransmission due to microbial 

metabolites entry (Bonaz et al., 2018; Braniste et al., 2014; Brown et al., 2003; Carabotti et al., 

2015; Farzi et al., 2018; Onyszkiewicz et al., 2020). This process might lead to negative results, 

such as neurodegenerative diseases and neurodevelopmental and neuropsychiatric diseases 

(Luczynski et al., 2016; Zhang et al., 2022). 

Early life is crucial for brain development and the establishment of cognitive abilities 

(Gilmore et al., 2018), which might impact the future life of the child (Longo et al., 2021; Nelson 

et al., 2007). The gut microbiota that colonizes the gastrointestinal tract also develops rapidly 

after birth in response to the environmental factors mentioned above. Therefore, due to the GBA, 

the microbiota's colonization of the gastrointestinal tract appears to happen in parallel and 

interactively with brain development (Carlson et al., 2018; Gao et al., 2019). Loughman et al. 

observed a clear relationship between the decreased abundance of Prevotella collected when the 

infants were 12 months of age and increased behavioral problems at 2 years of age (Loughman et 

al., 2020). Carlson et al. showed that infants with a high abundance of beneficial gut microbiota 

such as Lactobacillus and Bacteroides might improve overall cognitive performance (Carlson et 

al., 2018). Lower alpha diversity was associated with lower cognitive performance as a result of 

adverse health outcomes, including type 1 diabetes and asthma in the future (Abrahamsson et al., 

2014; Carlson et al., 2018; Kostic et al., 2015). Animal studies have also provided insights into 
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the gut microbiota and brain development in the early postnatal period. In adulthood, at 8-9 

weeks of age, GF mice exhibited an anxiety-related behavior compared to SPF mice. Besides, 

the colonization of adolescent (5-6 weeks) GF mice by gut microbiota could not reverse the 

monoamine neurotransmitter-related gene expressions (Pan et al., 2019). Therefore, the early 

identification of abnormal neurodevelopment is essential to lead to earlier treatment and 

positively alter the long-term outcomes (Bian et al., 2012; Chaudhari & Kadam, 2012; Cioni et 

al., 2016; Hadders-Algra, 2021; Siller et al., 2013).  

The Ages and Stages Questionnaire (ASQ) is a parent-completed screening tool that 

pinpoints developmental progress in children. The ASQ was developed by D. Bricker and J. 

Squires from the University of Oregon, US. The Ages & Stages Questionnaires, Third Edition 

(ASQ-3) can take 10-15 minutes for parents to complete at home, in a waiting room, during a 

home visit, or in an interview, as well as 2-3 minutes for professionals to score. In addition, the 

ASQ-3 is available in different languages, such as Arabic, Chinese, English, French, Spanish, 

and Vietnamese. The ASQ-3 has been shown to effectively differentiate between children with 

developmental delays and those with typical development. The overall sensitivity of ASQ-3 or 

the ability of ASQ-3 to correctly identify children with developmental delay is 86%. The overall 

specificity of ASQ-3, or the ability of ASQ-3 to correctly identify typically developing children, 

is 85%. The ASQ-3 comprises 5 areas: communication, gross motor, fine motor, problem-

solving, and personal-social for children from 1-66 months. Scores for each area fall between 0 

and 60. Parents indicate for each item “yes” if child performs the item and scores 10 points, 

“sometimes” indicating an occasional or emerging skills and child scores 5 points, or “not yet” if 

child doesn’t perform the behavior and scores 0 points. The cutoff points for ASQ-3 9 months 

are 26.26, 32.27, 42.82, 39.11, 30.69 for communication, gross motor, fine motor, problem-
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solving and personal social, respectively. If the total score of each area is below cutoff, then 

further assessment with a professional maybe needed (Questionnaires, 2022). 

A more recent study, enrolling 309 full-term healthy infants, evaluated the relationships 

between fecal microbiota composition, also estimated through 16S sequencing, at 3–6 months of 

age and score of the Age and Stage Questionnaire (ASQ) at 3 years of age (Sordillo et al., 2019). 

The authors used a co-abundance factor approach, which allowed assigning four scores to each 

individual based on the co-abundance of the 25 most abundant bacterial taxa. They then 

mathematically correlated these microbiota scores to the ASQ scores. Interestingly, scores in 

communication and personal social skills were negatively associated with the microbiota factor 

comprising relative high abundance of Lachnospiraceae and Clostridiales and low abundance of 

Bacteroidetes, while fine motor skills scores were negatively correlated with the factor 

comprising relative high abundance of Bacteroidetes and low abundance of E. coli and 

Bifidobacterium, two early colonizers. A tendency for increased Shannon diversity index with 

lower personal and social skills was also noticed. In another study, Staphylococcus caprae was 

negativealy corrated with ASQ scores, but Escherichia coli were positively correlated with ASQ 

scores (Rozé et al., 2020). 

Breastfeeding is a nutrient delivery system to continuously transfer all essential nutrients 

in appropriate amounts from mother to infant (Hinde & German, 2012). In addition to being a 

meal for infants, it also has a profound long-term impact on their cognitive and behavioral 

development and mental health (Lockyer et al., 2021; Raju, 2011).  Guxens et al. and 

Leventakou et al. found that a higher duration of exclusive breastfeeding was positively 

associated with memory performance, early language development, and motor skills at 14 

months (Guxens et al., 2011) and 18 months (Leventakou et al., 2015) of age as measured by 
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Bayley Scales of Infant Development. These cognitive benefits from breastfeeding seem to be 

extended to childhood and adolescence. Similarly, another study showed communication, and 

global motor had more delays in preschoolers who were breastfed for only 3 months compared to 

those with 6- and 12-months breastfeeding duration when using the Ages and Stages 

Questionnaire-3 (Saliaj, 2015). A large population-based cohort study reported that 4-year-old 

children with a duration of exclusively breastfeeding for over 6 months after birth have better 

executive function (cognitive control) than those with less than a 6-month breastfeeding period 

(Julvez et al., 2014). Bernard et al. observed that the breastfeeding experience was related to 

improved cognitive development among 2 and 3 years old children with Communicative 

Development Inventory and Ages and Stages Questionnaire (Bernard et al., 2013). In addition, 

Mandy et al. reported that predominant breast milk feeding in the first 28 days of life was 

positively associated with IQ, academic achievement, working memory, and motor function at 7 

years of age among preterm infants (Belfort et al., 2016). There is conflicting evidence on 

whether breastfeeding can improve cognitive development. Breastfeeding was found to have 

little or no effect on intelligence among children aged 5-14 years as measured by Peabody 

individual achievement test (Der et al., 2006). A long duration of breastfeeding was not 

associated with later cognitive development in 9- to 10-year-old children in South India using 

Kaufman Assessment Battery for Children (Veena et al., 2010).  

Formula-fed infants gain more weight during infancy than breastfed infants because of 

the higher protein content in formula (Farrow et al., 2013; Kramer et al., 2004; Ren et al., 2022). 

Though there is some evidence to suggest a positive association between protein intake and 

neurodevelopment in infancy, the evidence is mixed. In a cohort study, increased protein intake 

in the first month of life was not associated with better cognitive, language, and motor scores or 
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decreased sensory impairments at 2 years of age (Cester et al., 2015). However, other studies 

reported the opposite results. Increased protein intake in the first week after birth was associated 

with higher Mental Development Index scores at 18 months in extremely low birth weight 

infants (Stephens et al., 2009). A positive association was demonstrated between protein intake 

during the first 28 days and cognitive and motor scores at 2 years in infants born at a gestational 

age < 31 weeks (Coviello et al., 2018).  

Based on the literature reviewed above, the main objective of this dissertation was to 

investigate the associations between infant feeding practices, infant gut microbiota and infant 

neurodevelopmental outcomes. The first aim of this body of work was to examine the 

associations between infant gut microbiota at 3 months of age and infant neurodevelopmental 

outcomes at 9 months of age. The second aim was to determine whether infant feeding practices 

during early infancy influence the infant neurodevelopmental outcomes, and also investigated the 

mediating role of the early life gut microbiota in the association between infant feeding methods 

and neurodevelopment. The third aim was to examine the effects of breastfeeding patterns 

(breastfeeding at the breast, breastfeeding from the bottle and breastfeeding from both breast and 

bottle) on infant gut microbiota. 
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CHAPTER 2: THE RELATIONSHIPS BETWEEN INFANT GUT MICROBIOTA AND 

INFANT NEURODEVELOPMENT, AS MEASURED BY THE AGES AND STAGES 

QUESTIONNAIRE    
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2.1 Abstract 

The gut-microbiota-axis (GBA) refers to the bidirectional communication between gut 

microbiota and the central nervous system. Infancy is a critical period for colonizing gut 

microbiota and brain development. The abnormal compositional gut microbiota development 

during early life can lead to worse cognitive performance later in life. However, the association 

between early-life gut microbiota and later neurodevelopment outcomes is unclear. Therefore, 

this study aimed to identify the relationship between infant gut microbiota at 3 months of age and 

neurodevelopment at 9 months of age. Deoxyribonucleic acid (DNA) was extracted from 64 

samples, 16S ribosomal ribonucleic acid (rRNA) libraries were made, and libraries were 

sequenced by Illumina MiSeq. Sequences were processed using mothur, and data were analyzed 

in R. Infant diet information was reported at three months of age. Neurodevelopment was 

assessed by the Ages and Stages Questionnaire, third edition (ASQ-3) when the infants were 9 

months old. A higher Chao 1 index was associated with lower gross motor skills. Shannon index 

was positively related to problem-solving. The Bray-Curtis dissimilarity matrix was associated 

with fine motor and communication. Three clusters of gut microbiota were identified: Cluster 1 

(Lachnospiraceae unclassified-dominated), Cluster 2 (Bifidobacterium-dominated), and Cluster 

3 (Bacteroides-dominant cluster). Infants whose gut microbiota were in Cluster 3 had lower 

problem-solving scores than those in Cluster 1. These findings suggest an association between 

characteristics of the infant gut microbiota at age 3 months and gross motor, fine motor, 

communication, and problem-solving skills at age 9 months.  

2.2 Keywords 

Bifidobacterium, Lachnospiraceae unclassified, Bacteroides, Ages and Stages 

Questionnaire, gross motor, fine motor, communication, problem-solving, infants 
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2.3 Introduction 

Gut microbiota plays an important role in maintaining human health (Thursby & Juge, 

2017). Mounting evidence from animal studies shows the bidirectional communication between 

the gut and brain, referred to as the GBA (Carabotti et al., 2015). For example,  germ-free (GF) 

mice displayed decreased anxiety-like behavior compared to specific pathogen-free mice with 

normal gut microbiota in the elevated plus maze and the light-dark box text (Heijtz et al., 2011; 

Neufeld et al., 2011), which can be reversed by moving GF mice to conventional mice cages 

covered with feces from conventional mice (Clarke et al., 2013). GF mice were found to have 

impaired short-term recognition and working memory (Gareau et al., 2011), but increased 

locomotor and rearing behaviors (Heijtz et al., 2011). 

Early life is crucial for brain development and the establishment of cognitive abilities 

(Gilmore et al., 2018), which might impact a child’s future life (Nelson et al., 2007).  The gut 

microbiota that colonizes the gastrointestinal tract (GI) also develops rapidly after birth in 

response to environmental factors (Sugino, Ma, Paneth, et al., 2021), such as delivery mode 

(Munyaka et al., 2014; Sugino et al., 2019), antibiotic exposure (Eck et al., 2020) (Reyman et al., 

2022), feeding practice (Haddad et al., 2021; O'Sullivan et al., 2015; Sugino, Ma, Kerver, et al., 

2021), etc. Breastfed infants with vitamin D supplementation were shown to have different gut 

microbial diversity compared to non-supplemented, breastfed infants (Ma et al., 2022). 

Therefore, the microbiota's colonization of the GI appears to happen in parallel and interactively 

with brain development (Ratsika et al., 2023). An enhanced understanding of the development of 

the GI reflects how the brain develops in early life and vice versa, allowing gut microbiota to be 

a regulator of early-life neurodevelopment (Jena et al., 2020). Loughman et al. observed a clear 

relationship between the decreased abundance of Prevotella collected when the infants were 12 

months of age and increased behavioral problems at two years of age (Loughman et al., 2020). 
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Carlson et al. showed that infants with a high abundance of beneficial gut microbiota, such as 

Lactobacillus and Bacteroides, demonstrated better overall cognitive performance (Carlson et 

al., 2018). Lower alpha diversity, indicating a less mature microbiota of infants, was associated 

with lower cognitive performance and led to adverse health outcomes, including type 1 diabetes 

and asthma, in the future (Abrahamsson et al., 2014; Carlson et al., 2018; Kostic et al., 2015). 

Few studies have investigated the association between early infant gut microbiota and 

neurodevelopment later in life, accounting for feeding practices, antibiotic use since birth, 

delivery mode, infant race, maternal education level, gestational age at birth, pre-pregnancy body 

mass index (BMI), and maternal age. Thus, this cohort study assessed whether infant gut 

microbiota at 3 months was associated with infant neurodevelopment at 9 months of age 

measured by the ASQ-3 (Squires J, 2009).   

2.4 Materials and methods 

2.4.1 Population characteristic 

A total of 64 participants were enrolled as part of the Michigan Archive for Research on 

Child Health (MARCH), an ongoing population-based pregnancy and birth cohort in Michigan’s 

lower peninsula. The participants provided informed consent to obtain the questionnaire and 

provide the infant stool samples at three months. The covariates used were from the MARCH 

Prenatal 1 Survey questionnaire that asks about mothers' education level, mother’s height, pre-

pregnancy weight, and maternal age. The birth certificate information includes infant sex, mode 

of delivery, and estimated weeks of gestation. MARCH 3-month survey dictionary includes the 

infant race. Infants with gestational age less than 37 weeks were excluded from the analyses 

Fecal was collected when the infants were 3 months old. At the same time, the sample collection 

form was completed, which asks whether the infants received breast milk or formula in the past 
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24 hours and the past week before collecting the sample, whether the infant was received 

antibiotics since birth, and other dietary history information Infants with missing data were also 

excluded. The Michigan State University Human Research Protection Program approved the 

study (IRB# 16-1429). 

2.4.2 Classification of infant dietary intake 

Infants were split into four groups based on their dietary intake in the past day: 

breastfeeding, breastfeeding with vitamin D supplementation, partial breastfeeding, and formula 

feeding. Seven feeding groups were classified according to the infant's dietary intake in the past 

week: 100% breastmilk feeding, 80% breastmilk feeding, 50-80% breastmilk feeding, 50% 

breastmilk feeding, 20-50% breastmilk feeding, 20% breastmilk feeding, and 100% formula 

feeding. 

2.4.3 Ages and Stages Questionnaire 

At approximately 9 months old, parents completed the ASQ-3 (Squires J, 2009) during a 

phone interview as part of the MARCH 9-Month Survey. The ASQ-3 is a parent-completed 

screening tool that pinpoints developmental progress in children. The ASQ-3 comprises 5 areas: 

communication, gross motor, fine motor, problem-solving, and personal-social for children from 

1-66 months. Scores for each area fall between 0 and 60. Parents indicate for each item “yes” if 

the child performs the item and the child scores 10 points, “sometimes” indicating an occasional 

or emerging skill and the child scores 5 points, or “not yet” if the child doesn’t perform the 

behavior and scores 0 points. The cutoff scores for ASQ-3 at 9 months are 26.26, 32.27, 42.82, 

39.11, 30.69 for communication, gross motor, fine motor, problem-solving, and personal social, 

respectively. If the total score of each area is below the cutoff, then further assessment with a 
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professional may be needed.  

2.4.4 Sample collection 

Collection kits were assembled at the dry research lab at MSU and sent to the participants 

by mail. The collection kits include an instruction for collecting a fecal sample at home, diapers 

for infant fecal samples, an OMNIgene•GUT tube (DNA genotek, Ontario, CA) for sample 

collection, and a box with postage to return the sample. Fecal samples were collected by parents 

from the infant’s diaper when the infant was approximately three months of age. Stool samples 

were returned to the lab in the pre-paid mailer through the United States postal system. Fecal 

samples were aliquoted into sterile Eppendorf tubes (Thermo Fisher Scientific, Waltham, MA) 

and stored at -80°C once reaching the lab. 

2.4.5 Laboratory procedures  

2.4.5.1 DNA extraction and 16S rRNA gene amplification 

DNA extractions were performed using the DNeasy Powersoil Pro kit (Qiagen MoBio, 

Carlsbad, CA). The V4 region of the 16S rRNA gene was amplified using the Schloss lab 

primers (500B-700A). Primers SB501-SB508 and SA701-SA712 were ordered from Integrated 

DNA Technologies (Coralville, IA). PCR amplification procedure followed the mothur wet lab 

documentation (Kozich et al., 2013). A final reaction volume of 20 μL with at most 10 ng of 

template DNA, primer pairs, and Accumprime Pfx Supermix (Thermo Fisher Scientific, 

Waltham, MA) was used. The PCR reactions were performed in triplicate and amplified using a 

thermocycler. A negative control without template DNA was included to control for non-specific 

amplification. Thermocycler conditions were set as follows: 1x (95  ̊C for 2 min); 30x (95  ̊C for 

20 s, 55 ̊C for 15 s, 72 ̊C for 5 min); 10 min for 72 ̊C. The PCR amplicons were checked by 
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agarose gel electrophoresis on a 1% agarose gel using 1X TBE buffer at 200 V for 30 min. 

Successful PCR triplicate amplicons were pooled and cleaned with Agencourt AMPure XP 

(Beckman Coulter, Brea, CA) with a few changes to the protocol: PCR products were purified by 

0.7X AMPure XP, and DNA was eluted using 20 μL of low EDTA TE buffer (IDT, Coralville, 

IA). After purification, the 16S rRNA PCR amplicons concentrations were determined by Quant-

IT dsDNA assay kit (Invitrogen, Carlsbad, CA). An equal amount (ng) of DNA in each sample 

was pooled for sequencing. The Michigan State University Research Technology Support 

Facility Genomics Core conducted paired-end 250 base-pair sequencing on the Illumina MiSeq 

platform using V2 chemistry. The average number of reads per sample was 21605, with at least 

82% of reads per sample having a read quality greater than or equal to 30. 

2.4.5.2 Processing and analysis of sequencing data  

16S rRNA sequences were processed using mothur, following the mothur Miseq standard 

operating procedure (Schloss et al., 2009). Taxonomy was assigned to operational taxonomic 

units (OTU) by phylotype using the RDP reference database (version 18). Samples were rarefied 

to 2,624 reads per sample before further analysis. Rarefaction curves were generated to confirm 

adequate community coverage. 

2.5 Statistical analysis 

All data were analyzed using R (version 4.2.2). Data normality was tested using Shapiro–

Wilk test (stats package). For categorical variables of descriptive analysis, the Wilcoxon Rank-

Sum test (stats package) was used to determine the relationship of sex, race, delivery mode with 

ASQ scales. The Kruskal-Wallis test (stats package) examined the associations of maternal 

education levels, feeding methods with ASQ scales. Data is presented as n (%) and median (min, 
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max). Univariate linear regression models (stats package) were used for continuous variables to 

analyze the relationship of pre-pregnancy BMI, maternal age, gestational age at birth with ASQ 

scales. Data is present as mean ± standard deviation (SD) and β (95% confidence interval, CI). 

Alpha diversity (Chao1, Shannon, and inverse Simpson indices) was calculated using the vegan 

package (Jari Oksanen et al., 2020). Multivariate linear regression models (stats package) were 

used to assess the associations between alpha diversity indices and ASQ scales, adjusted for 

feeding practice, infant sex, antibiotics use since birth, delivery mode, infant race, maternal 

education level, gestational age at birth, pre-pregnancy BMI, and maternal age. The Spearman 

correlation test (stats package) was used to test the association between alpha diversity indices 

and ASQ scales in each feeding group. For beta diversity, Sorensen and Bray-Curtis 

dissimilarities were calculated using the vegan package and ordinated using principal coordinate 

analysis (PCoA). Permutational multivariate analysis of variance (PERMANOVA) was 

performed using the vegan package to test for significant differences in beta diversity. Three 

clusters were determined by the partitioning around medoids (PAM) clustering algorithm using 

cluster package based on the Jensen-Shannon distance (JSD) of beta diversity and were assessed 

for the optimal number of clusters using the Calinski-Harabasz (CH) Index (Caliński & 

Harabasz, 1974; Kaufman, 1990). Analysis of variance (ANOVA) from stats package with 

Tukey’s honest Significant Differences (HSD) (stats package) and Kruskal-Wallis with Dunn’s 

test (dunn.test package) were used to examine the relationship between alpha diversity and 

clusters. Univariate and multivariate linear regression models adjusted by feeding practice, infant 

sex, antibiotics use since birth, delivery mode, infant race, maternal education level, gestational 

age at birth, pre-pregnancy BMI, and maternal age were performed to examine the associations 

between the three microbiota clusters and ASQ scales. Spearman correlation was used to test the 
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relationship between ASQ and the relative abundance of specific taxa. Chi-square (stats package) 

was used to assess the association between the three microbiota clusters and feeding methods. P-

value<0.05 is significant.  

2.6 Results 

2.6.1 Population characteristics 

A total of 64 participants were included in the final univariate analyses (Table 1). Of 

these, more than half of the infants were female (51.6%) and White (68.8%). Scores for each of 

the five ASQ scales were similar between male and female. Non-White infants had a 

significantly higher communication score compared to White infants (p-value=0.01). Maternal 

education level was associated with fine motor (p-value=0.04) and problem-solving (p-

value=0.03) scores. There was a trend that maternal education level was negatively related to 

communication scores (p-value=0.06). Breastfed infants had significantly lower fine motor 

scores compared to the other three feeding groups (p-value < 0.01). Mode of delivery, pre-

pregnancy BMI, and maternal age were not associated with ASQ scales. However, higher 

gestational age at birth tended to be associated with higher problem-solving scores (p-

value=0.05). 
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Table 1. Population characteristics and scores on the five ASQ scales 

 N=64 Gross motor Fine motor Communication Personal-social Problem-solving 

Categorical 

variable1 

N (%) or 

Mean±SD 

Median(min,

max) or 

β(95% CI) 

p-

value 

Median(min,

max) or 

β(95% CI) 

p-

value 

Median(min,

max) or 

β(95% CI) 

p-

value 

Median(min,

max) or 

β(95% CI) 

p-

value 

Median(min,

max) or 

β(95% CI) 

p-

value 

Infant sex            

Male 31(48.4%) 45(10, 60) 0.77 55(35, 60) 0.70 45(25, 60) 0.49 40(15, 60) 0.89 50(20, 60) 0.46 

Female 33(51.6%) 45(10, 60)  60(35, 60)  50(15, 60)  40(20, 60)  55(5, 60)  

Infant race            

White 44(68.8%) 45(10, 60) 0.14 55(35, 60) 0.08 42.5(15, 60) 
 

0.01* 
40(20, 60) 0.99 52.5(5, 60) 0.98 

Non-White 20(31.2%) 47.5(10, 60)  60(35, 60)  50(25, 60)  40(15, 60)  50(25, 60)  

Maternal 

education level 
           

Did not finish high 

school 
3(4.7%) 60(15,60) 0.84 60(60, 60) 0.04* 60(40, 60) 0.06 50(15, 55) 0.41 60(60, 60) 0.03* 

High school 

graduate or GED 
11(17.2%) 45(10, 60)  55(45, 60)  50(15, 60)  45(30, 60)  55(5, 60)  

Some college 13(20.3%) 45(30, 60)  60(50, 60)  50(15, 60)  45(20, 60)  60(40, 60)  

College graduate or 

more 
37(57.8%) 45(10, 60)  55(35, 60)  40(20, 60)  40(20, 55)  60(20, 55)  

Delivery mode            

Vaginal 39(60.9%) 45(10, 60) 0.81 60(35, 60) 0.11 50(15, 60) 0.63 40(15, 60) 0.16 50(5, 60) 0.94 

C-section 25(39.1%) 45(10, 60)  55(35, 60)  45(20, 60)  45(20, 60)  55(20, 60)  

Feeding method            

Breastfeeding 9(14.06%) 45(10, 60) 0.53 45(35, 55)a <0.01 35(15, 55) 0.08 45(20, 55) 0.53 50(5, 60) 0.42 

Breastfeeding with 

Vitamin D 
17(26.56%) 40(10, 60)  60(35, 60)b  50(25, 60)  40(20, 55)  55(30, 60)  

Partial 

breastfeeding 
16(25%) 47.5(20, 60)  57.5(50, 60)b  50(15, 60)  35(20, 60)  50(20, 60)  

Formula feeding 22(34.38%) 45(15, 60)  60(40, 60)b  47.5(30, 60)  47.5(15, 60)  55(25, 60)  
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Table 1 (cont’d) 

Continuous 

variable2 
           

Pre-pregnancy 

BMI 
32.07±21.98 

0.04(-0.15, 

0.23) 
0.67 

0.06(-0.02, 

0.15) 
0.15 

0.06(-0.07, 

0.19) 
0.34 

0.10(-0.03, 

0.24) 
0.14 

0.08(-0.06, 

0.22) 
0.23 

Maternal age 29.64±4.66 
-0.21(-1.09, 

0.66) 
0.63 

-0.04(-0.46, 

0.37) 
0.84 

-0.07(-0.69, 

0.55) 
0.82 

-0.11(-0.77, 

0.55) 
0.75 

0.12(-0.54, 

0.78) 
0.72 

Gestational age 39.16±1.24 
2.27(-0.98, 

5.51) 
0.17 

0.33(-1.23, 

1.89) 
0.67 

1.90(-0.37, 

4.17) 
0.10 

0.62(-1.87, 

3.11) 
0.62 

2.39 (-0.01, 

4.79) 
0.05 

1Categorical variable data is presented as N (%) and median (min,max). Wilcoxon Rank-Sum test was used to determine the relationship between sex, race, 

delivery mode, and ASQ scales, respectively. The Kruskal-Wallis test was used to examine the associations between maternal education level, feeding methods 

and ASQ scales. 2Continuous variable data is presented as Mean±SD and β (95% CI). Univariate linear regression models were used to examine the relationship 

between continuous variables and ASQ scales. *P-value < 0.05 is significant 
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2.6.2 Alpha diversity and ASQ 

Though the overall model was not significant, the Chao 1 index, a measure of richness, 

was inversely associated with gross motor score (β=-0.38, p-value=0.02), adjusted by feeding 

practice, infant sex, antibiotic use since birth, delivery mode, infant race, maternal education 

level, gestational age at birth, pre-pregnancy BMI, and maternal age (Table 2). The relationships 

between Chao 1 index and ASQ varied depending on the infant's diet in the past 24 hours. In 

univariate analyses, a higher richness of gut microbiota was significantly associated with higher 

communication (β=0.57, p-value < 0.01) (Figure 1C) and personal-social (β=0.45, p-value=0.04) 

(Figure 1D) scores among formula-fed infants.  

Shannon index, a measure of richness and evenness and weighs richness more, was 

positively associated with problem-solving scores (β=9.87, p-value=0.04) (Table 2). Infant diet 

influenced the relationship between the Shannon index and ASQ scales. Among formula-fed 

infants, Shannon index tended to be positively associated with fine motor (β=0.37, p-value=0.09) 

(Figure 2B) and communication (β=0.42, p-value=0.05) (Figure 2C) scores.  

There was a trend that the inverse Simpson index, a measure of a measure of richness and 

evenness and weighs evenness more, was positively associated with communication (β=1.61, p-

value=0.07) and problem-solving (β=1.84, p-value=0.07) scores (Table 2). The relationships 

between the inverse Simpson index and ASQ differed by infant diet. Inverse Simpson index 

tended to be positively associated with communication scores (β=0.39, p-value=0.07) among 

formula-fed infants (Figure 3C). For partially breastfed infants, there was a trend that inverse 

Simpson index was positively associated with personal-social scores (β=0.46, p-value=0.08) 

(Figure 3D). 
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Table 2. The associations between alpha diversity of gut microbiota at 3 months and each of 

the five ASQ scale measurements at 9 months 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1Multivariate linear regression models were used, adjusted by feeding practice, infant sex, antibiotic use since birth, 

delivery mode, infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. 

*P-value < 0.05 is significant

 

Β (95% CI) p-value 
Overall adjusted 

R-squared 

Overall p-

value 

Gross motor 
 

  

Chao1 -0.38(-0.72, -0.05)   0.02* 0 0.54 

Shannon -3.19(-17.73, 11.34) 0.66 0 0.92 

inverse Simpson -0.98(-3.95, 1.99) 0.51 0 0.91 

Fine motor 
 

  

Chao1 -0.005(-0.14, 0.13) 0.93 0.27 0.005* 

Shannon 3.17(-2.28, 8.61) 0.25 0.29 0.003* 

inverse Simpson 0.42(-3.95, 1.99) 0.46 0.28 0.004* 

Communication 
 

  

Chao1  0.03(-0.18, 0.24) 0.78 0.14           0.08 

Shannon 7.24(-1.47, 15.95) 0.10 0.19 0.04* 

inverse Simpson  1.61(-0.16, 3.39) 0.07 0.19 0.03* 

Personal-social 
 

  

Chao1 0.21(-0.04, 0.46) 0.10 0 0.57 

Shannon 7.11(-3.48, 17.71) 0.18 0 0.65 

inverse Simpson 1.25(-0.94, 3.43) 0.26 0 0.70 

Problem-solving 
 

  

Chao1 0.06(-0.18, 0.30) 0.61 0.08 0.19 

Shannon 9.87(0.40, 19.34)   0.04* 0.15 0.07 

inverse Simpson 1.84(-0.12, 3.80) 0.07 0.14 0.08 
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Figure 1. The associations between Chao 1 index and ASQ by different feeding methods at 3 months  

Spearman correlations were used to test the association between the Chao1 index and ASQ scores for overall and individual tests. Data is presented as correlation  

coefficient (R) and p-value. Blue squared and regression line represent exclusively breastfed infants. Green dots and regression lines represent breastfed infants  

with vitamin D supplements. Orange triangles and regression lines represent partially breastfed infants. Purple diamonds and regression lines represent formula-

fed infants. R and p-value in black color are the overall results. P-value < 0.05 is significant. 
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Figure 2. The associations between Shannon index and ASQ by different feeding methods at 3 months  

Spearman correlations were used to test the association between the Shannon index and ASQ scores for overall and individual tests. Data is presented as 

correlation coefficient (R) and p-value. Blue squared and regression line represent exclusively breastfed infants. Green dots and regression lines represent 

breastfed infants with vitamin D supplements. Orange triangles and regression lines represent partially breastfed infants. Purple diamonds and regression lines 

represent formula-fed infants. R and p-value in black color are the overall results. P-value < 0.05 is significant. 
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Figure 3. The associations between inverse Simpson index and ASQ by different feeding methods at 3 months 

Spearman correlations were used to test the association between the inverse Simpson index and ASQ scores for overall and individual tests. Data is presented as 

correlation coefficient (R) and p-value. Blue squared and regression line represent exclusively breastfed infants. Green dots and regression lines represent 

breastfed infants with vitamin D supplements. Orange triangles and regression lines represent partially breastfed infants. Purple diamonds and regression lines 

represent formula-fed infants. R and p-value in black color are the overall results. P-value < 0.05 is significant. 
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2.6.3 Beta diversity and ASQ 

For univariate analysis, the Bray-Curtis dissimilarity matrix was associated with fine 

motor (p-value < 0.01) and communication scores (p-value < 0.01) (Table 3, Figure 4). Bray-

Curtis dissimilarity matrix was also significantly associated with fine motor (p-value < 0.01) and 

communication (p-value < 0.01) scores but tended to be related to problem-solving scores (p-

value=0.05) after adjusting for feeding practice, infant sex, antibiotics use since birth, delivery 

mode, infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and 

maternal age (Table 3). 
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Table 3. The associations between beta diversity of the infant gut microbiota and each of the 

five ASQ scales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

PERMANOVA was performed. Multivariate analysis was adjusted by feeding practice, infant sex, antibiotic use 

since birth, delivery mode, infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and 

maternal age. *P-value < 0.05 is significant. 

 Univariate analysis  Multivariate analysis 

 p-value p-value 

Gross Motor  

Sorensen 0.47 0.35 

Bray-Curtis 0.85 0.74 

Fine Motor  

Sorensen 0.24 0.16 

Bray-Curtis <0.01* <0.01* 

Communication  

Sorensen 0.26 0.18 

Bray-Curtis   0.01* <0.01* 

Personal-social  

Sorensen 0.20 0.13 

Bray-Curtis 0.25 0.14 

Problem-solving  

Sorensen 0.35 0.23 

Bray-Curtis 0.11 0.05 
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Figure 4. The significant associations between Bray-Curtis matrix and ASQ scales 

PERMANOVA was performed to examine the relationships between beta diversity and ASQ scales. P-value < 0.05 

is significant.  

2.6.4 Cluster analysis 

Upon using the PAM clustering algorithm and assessing using CH score to cluster infants 

into groups by their gut microbiota composition, three clusters emerged. The bacterial 

composition of each infant gut microbiota within each of the three clusters is shown in Figure 5. 

31.25% of the infants fell into Cluster 1, 35.94% fell into Cluster 2, and 32.81% were clustered 

into Cluster 3. When only considering the top 5 most abundant taxa, Cluster 1 is dominated by 

Lachnospiraceae unclassified, Cluster 2 is dominated by Bifidobacterium, and Bacteroides is the 

most abundant taxa in Cluster 3 (Figure 6). 
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Figure 5. The gut microbiota composition of infant stool samples organized by cluster 

Three clusters were determined by the PAM clustering algorithm assessed by the CH score based on the JSD of beta 

diversity. 

 
 

 

Figure 6. The composition of the top five overall most abundant taxa presented by cluster 

The average abundance of each taxon was calculated. Only the top five most abundant taxa were selected and 

plotted.  

The richness (Chao 1 index, p-value=0.11) of the 3-month infant gut microbiota was 

similar across the three clusters (Figure 7A). Shannon (p-value < 0.01) and inverse Simpson (p-
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value < 0.01) indices differed by clusters (Figure 8B, 7C). Clusters 1 and 3 had similar gut 

microbiota richness and evenness as measured by Shannon and inverse Simpson indices (Figure 

7B, 7C). Cluster 2 had significantly lower richness and was less even than Clusters 1 and 3 

(Figure 7B, 7C). As expected, the three clusters had significantly different gut microbial 

membership and composition when measuring beta diversity (Figure 8).  

 

Figure 7. Shannon and inverse Simpson indices of gut microbial alpha diversity differs across 

the three clusters 

Shapiro–Wilk test was used to test data normality. ANOVA tests were used to examine the relationships between 

Chao1 (A) and Shannon (B) indices and clusters. The relationship between inverse Simpson (C) and clusters was 

tested by the Kruskal-Wallis test. Tukey’s HSD and Dunn's tests were performed for pairwise comparison. The 

median with the min and max was plotted. Different letters indicate significant differences in pairwise comparisons. 

P-value < 0.05 is significant.  
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Figure 8. The gut microbiota beta diversity is differed by cluster 

PERMANOVA was performed to examine the relationships between beta diversity and clusters. P-value < 0.05 is 

significant.  

Infants whose gut microbiota were in Cluster 2 (Bifidobacterium dominated) had lower 

fine motor scores (β=-4.98, p-value=0.03) compared to infants whose gut microbiota were in 

Cluster 1 (Lachnospiraceae unclassified dominated) when conducting univariate analyses (Table 

4). In both univariate and multivariate models, infants whose gut microbiota were in Cluster 3 

(Bacteroides dominated) had lower problem-solving scores (univariate analysis: β=-9.01, p-

value=0.02; multivariate analysis: β=-10.08, p-value=0.02) compared to infants whose gut 

microbiotas were in Cluster 1 (Table 4). There was a trend that fine motor was negatively 

associated with the relative abundance of Bifidobacterium (p-value=0.08) but positively 

associated with the relative abundance of Lachnospiraceae unclassified (p-value=0.09) (Figure 

9A, 9B). Problem-solving tended to be positively associated with the relative abundance of 

Lachnospiraceae unclassified (p-value=0.06) (Figure 9D). The feeding method in the past 24 

hours (Figure 10A) and the past week (Figure 10B) were significantly associated with gut 

microbiota clusters (p-values < 0.01). Infants whose gut microbiotas fell into Cluster 1 were 

more likely to have been fed formula in the past day and less likely to have been fed any human 
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milk in the past day than infants whose gut microbiotas fell into clusters 2 or 3 (Figure 10A). The 

gut microbiota of infants was clustered to Cluster 2 when infants were mostly fed 100% 

breastmilk or 80% breastmilk in the past week (Figure 10B) 

Table 4. The associations between three clusters and ASQ scales  

1Multivariate linear regression models were used, adjusted by feeding practice, infant sex, antibiotic use since birth, 

delivery mode, infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. 

*P-value<0.05 is significant 

  

Univariate model Multivariate model1 

β (95% CI) 
p-

value 
β (95% CI) 

p-

value 

Overall 

adjusted 

R-squared 

Overall 

p-value 

Gross motor Cluster 1 Reference 

0 0.96 

Cluster 2 -1.91(-11.88, 

8.05) 
0.70 

0.83(-14.57, 

16.23) 
0.91 

Cluster 3 -2.05(-12.23, 

8.13) 
0.69 

-0.54(-13.76, 

12.69) 
0.94 

Fine motor Cluster 1 Reference 

0.30 0.004* 

Cluster 2 -4.98(-9.52, -

0.43) 
 0.03* 

-4.37(-10.06, 

1.32) 
0.13 

Cluster 3 -2.69(-7.34, 

1.95) 
0.25 

-3.29(-8.18, 

1.60) 
0.18 

Communication Cluster 1 Reference 

0.14 0.08 

Cluster 2 -5.10(-11.98, 

1.78) 
0.14 

-3.69(-13.03, 

5.68) 
0.43 

Cluster 3 -0.75(-7.78, 

6.28) 
0.83 

0.02(-8.02, 

8.06) 
0.997 

Personal-social Cluster 1 Reference 

0 0.85 

Cluster 2 -4.65(-12.10, 

2.79) 
0.22 

-1.82(-13.22, 

9.58) 
0.75 

Cluster 3 -4(-11.61, 

3.61) 
0.30 

-1.47(-11.26, 

8.33) 
0.77 

Problem-solving Cluster 1 Reference 

0.16 0.06 

Cluster 2 -5.12(-12.26, 

2.02) 
0.16 

-6.23(-16.10, 

3.63) 
0.21 

Cluster 3 -9.01(-16.31, -

1.72) 

  

0.02* 

-10.08(-18.56, -

1.61) 
 0.02* 
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Figure 9. The relationships between ASQ and relative abundance of specific taxa 

Spearman correlation was used. *P-value < 0.05 is significant.  
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Figure 10. The frequency of feeding methods in the past 24 hours and past week at 3 months 

of age in each cluster 

Data is presented as a percentage of infants within that cluster. Bars with different colors represent feeding groups. 

Chi-square was used to test if the proportion of infants in the various feeding groups differed across clusters. *P-

value < 0.05 is significant 

 

 

2.7 Discussion  

We investigated the association between infant gut microbiota and later life 

neurodevelopment measured by ASQ-3. Several animal studies have shown that gut microbiota 

was related to brain development (Clarke et al., 2013; Pan et al., 2019). However, this 

connection has not been elucidated in human populations, especially among infants. Our results 

suggested infant gut microbiota at 3 months of age might be potentially associated with gross 

motor, fine motor, communication, and problem-solving skills later in life after adjustment for 

feeding practice, infant sex, antibiotic use since birth, delivery mode, infant race, maternal 

education level, gestational age at birth, pre-pregnancy BMI, and maternal age.  

The current study found that the richness and evenness (Shannon index) of the gut 

microbiota were positively associated with problem-solving scores. Better-developed gut 

microbiota in infancy has a higher level of biological diversity, and decreased microbial diversity 
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is associated with adverse health outcomes among preterm infants (Jia et al., 2022; Warner et al., 

2016). Alpha diversity of gut microbiota from full-term born infants was significantly higher 

than preterm born infants (< 32 weeks of gestation) at day 14 after birth (Jia et al., 2022). 

Necrotizing enterocolitis in very low birth weight infants might be attributed to the lack of gut 

microbial diversity (Claud & Walker, 2001). A more diverse gut microbiota in the first week of 

life was related to a reduced risk of eczema in infants at 12 months of age (Ismail et al., 2012). 

Moreover, the low diversity of gut microbiota during the first month of life was associated with 

asthma in 7-year-old children (Abrahamsson et al., 2014). However, the evidence of the 

relationship between gut microbial diversity and health status later in life is controversial. 

Carlson et al. reported that alpha diversity of the gut microbiota of 1-year-old children was 

negatively associated with Mullen Scales of Early Learning Composite (MSEL ELC), expressive 

language, and visual reception subscale scores at the age of 2 years (Vaher et al., 2022). A 

positive association was found between Chao 1 index and function connectivity between the 

supplementary motor area (SMA) and the inferior parietal lobule (IPL) in 1-year-old infants’ 

brains. SMA-IPL connectivity was negatively related to the MSEL ELC at 2 years of age (Gao et 

al., 2019). A possible reason for these discrepancies is that the infant gut microbiota is 

susceptible to modulation by external factors such as infant feeding methods (O'Sullivan et al., 

2015). In the U.S., 40% of mothers introduce solid foods to infants before 4 months of age and 

start feeding infants with solids at 12 weeks (Clayton et al., 2013). Increased alpha diversity of 

the infant gut microbiota was found when complementary foods were introduced to infants from 

4 months until 12 months of age, where the shift occurred more significantly between 4 and 9 

months of age (McKeen et al., 2022). Aside from diet, mode of delivery, antibiotic exposure, and 

maternal pre-pregnancy BMI also impact the development of infant gut microbiota (Ainonen et 
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al., 2022; Biasucci et al., 2010; Stanislawski et al., 2017). These factors contribute to three 

different phases of microbiome progression: a developmental phase (3-14 months of age), a 

transitional phase (15-30 months of age), and a stable phase (31-46 months of age) (Stewart et 

al., 2018). Shannon diversity index changed significantly during the developmental and 

transitional phases but remained stable during the stable phase (Stewart et al., 2018). Therefore, 

this evidence reinforces the notion that the directionality and strength of the associations between 

alpha diversity and health outcomes are different between ages due to exposure to external 

factors.  

In addition to the alpha diversity, this study also demonstrated that Bray-Curtis 

dissimilarity matrix (gut microbial composition) was associated with fine motor. This was 

similar to other studies. Acuña et al. found that fine motor skills were strongly associated with 

gut microbial composition using weighted Unifrac metrics, which assesses membership and 

composition, measured by the Bayley-III questionnaire when the infants were at 18 months of 

age (Acuña et al., 2021).  

The abundance of specific gut microbes in infancy prime influences the 

neurodevelopmental outcomes. In the univariate analysis, we observed that fine motor was 

negatively associated with Cluster 2 (Bifidobacterium-dominated) compared to Cluster 1 

(Lachnospiraceae unclassified-dominated). Higher fine motor scores tended to be associated 

with a lower relative abundance of Bifidobacterium. It is somewhat surprising that 

Bifidobacterium was found to be more abundant in the above-median fine motor activity group 

compared to the below-median group in healthy full-term infants at 18 months of age (Acuña et 

al., 2021). However, another study reported that the relative abundance of Bifidobacteria wasn’t 

associated with fine motor scores when infants aged 17-18 weeks (Wu et al., 2021). Our study 
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reported that problem-solving was negatively associated with Cluster 3 (Bacteroides-dominated) 

compared to Cluster 1(Lachnospiraceae unclassified-dominated) when conducting univariate 

and multivariate analyses. The problem-solving was negatively associated with the relative 

abundance of Bacteroides, but it was not statistically significant. This association varies due to 

the different sex, ages, and populations studied. The higher abundance of genus Bacteroides in 

gut microbiota was associated with better cognitive and language scores at age 2, predominantly 

among males (Tamana et al., 2021). An increased abundance of Bacteroides during the first year 

of life positively impacted communication development later in childhood (Vaher et al., 2022). 

Conversely, other studies reported that an increased abundance of Bacteroides may reflect 

delayed maturation of the gut microbiome in children, which further supports the adverse 

outcomes of Bacteroides on infant neurodevelopment (Carlson et al., 2018). The Bacteroides-

dominated coabundance grouping of infants at ages 3 to 6 months was associated with poorer 

fine motor skills at age 3 years (Sordillo et al., 2019). The gut microbiota of infants with a 

Bacteroides-dominant community displayed poorer fine motor performance than other 

enterotypes (Acuña et al., 2021).  

The present study has several strengths. We demonstrated prospective associations 

between the early-life infant gut microbiota and neurodevelopmental outcomes later in life in a 

longitudinal cohort of typically developing infants. In addition, we excluded pre-term born 

infants who typically have delayed neurodevelopment compared to full-term infants. There are 

several limitations in this study. The stool samples were kept and shipped at room temperature 

for the day, which might influence the gut microbiota composition. However, the stool collection 

tube used in our lab has preservatives that can retain the gut microbiota composition for up to 

two weeks at room temperature. ASQ-3 is a parent-reported measurement. Thus, there might be 
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some biases resulting from parental responses. For example, parents with low socioeconomic 

status have been shown to over- or underestimate their children’s performance on the questions 

(Feldman et al., 2000). Some parents might be prone to social desirability bias (Bourdeaudhuij & 

Oost, 2000).  

2.8 Conclusion 

The current study suggests an association between infant gut microbiota composition at 

age 3 months and gross motor, fine motor, communication, and problem-solving skills at age 9 

months. Our findings provide insights into the relationship between early-life gut microbiota 

alteration and neurodevelopmental outcomes through the gut-microbiota-brain axis.    
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CHAPTER 3: THE MEDIATING ROLE OF INFANT GUT MICROBIOTA AT THREE 

MONTHS OF AGE IN THE ASSOCIATIONS BETWEEN INFANT FEEDING 

METHODS AT THREE MONTHS OF AGE AND INFANT NEURODEVELOPMENT 

AT NINE MONTHS OF AGE
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3.1 Abstract 

Early life is crucial for brain development and the establishment of cognitive abilities.  

The gut microbiota that colonizes the gastrointestinal tract also develops rapidly after birth in 

response to external factors. The microbial colonization of the gastrointestinal tract appears to 

happen in parallel and interactively with brain development. The infant gut microbial 

composition is linked to the infant diet. Breastfeeding in infancy might improve long-term 

neurodevelopmental outcomes in childhood. However, it’s unclear whether gut microbiota can 

mediate the association between infant feeding methods and neurodevelopmental outcomes. Aim 

1 demonstrated a relationship between infant gut microbiota at 3 months of age and 

neurodevelopmental outcomes at 9 months of age. Therefore, this study aimed to identify the 

mediating role of infant gut microbiota at 3 months of age in the association between infant diet 

and infant neurodevelopment. DNA was extracted from 64 stool samples, 16S rRNA libraries 

were prepared, and libraries were sequenced by Illumina MiSeq. Sequences were processed 

using mothur, and data were analyzed in R. Infant diet information was provided by parental 

report at three and nine months of age. Neurodevelopment was assessed by parental completion 

of the Ages and Stages Questionnaire-3 (ASQ-3) when infants were 9 months old. Breastfed 

infants with vitamin D supplementation (p-value<0.01), partially breastfed infants (p-

value<0.01), and formula-fed (p-value<0.01) infants at 3 months had higher fine-motor scores at 

9 months than exclusively breastfed infants that were not supplemented. Infant feeding method 

was associated with infant gut microbial composition as measured by Bray-Curtis dissimilarity 

matrix. Bray-Curtis distance matrix of beta diversity mediated the associations between feeding 

method and fine-motor scores univariately (p-value=0.04). Our results support the potential 

mediating role of early-life gut microbiota in the association between infant feeding method and 

infant neurodevelopmental outcomes in late infancy.  
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3.2 Key words 

 

vitamin D, breastfeeding, human milk, formula feeding, infant gut microbiota, mediation, 

neurodevelopment, problem-solving, Ages and Sages questionnaire 

3.3 Introduction 

 

Breastfeeding is a pathway to constantly transfer essential nutrients in appropriate 

amounts from mothers to infants (Hinde & German, 2012). In addition, breastfeeding has a more 

profound impact on infants’ cognitive and behavioral development and mental health than simple 

nutrient transfer alone (Raju, 2011). In fact, a longer duration of exclusive breastfeeding was 

positively associated with memory performance, early language development, and motor skills at 

14 months (Guxens et al., 2011) and 18 months of age (Leventakou et al., 2015) as measured by 

the Bayley Scales of Infant Development. Similarly, communication and global motor skills 

were more delayed in preschoolers who were breastfed for only 3 months compared to those 

with 6- and 12-month breastfeeding duration when using the ASQ-3 (Saliaj, 2015). Deoni et al. 

demonstrated that infant feeding practices influenced cognitive ability and white-matter 

development in children from 10 months through 4 years of age using magnetic resonance 

imaging (MRI)  (Deoni et al., 2013). Breastfed infants had significantly better mental and motor 

development at 18 months than formula-fed infants as measured by Bayley Scales of Infant 

Development II (Morley et al., 2004). Exclusively breastfed infants had higher cognitive scores 

than formula-fed infants at 12 months, as assessed by the Bayley Scales of Infant and Toddler 

Development, Third Edition (Timby et al., 2014). Therefore, breastfeeding in early infancy 

might positively impact the infant neurodevelopment in late infancy and later life.  

Infant feeding practices significantly influence the colonization and maturation of the 

infant gut microbiome (O'Sullivan et al., 2015). Human milk oligosaccharides (HMOs) are a 
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prominent constituent of human breast milk, and following partial digestion in the small 

intestine, then predominantly reach the colon. Once in the colon, they are metabolized by 

Bifidobacterium to produce short-chain fatty acids and other functional metabolites that are 

beneficial to our body (Le Huërou-Luron et al., 2010; Marcobal et al., 2010). Compared to 

partially or non-breastfed, exclusively breastfed infants exhibited reduced gut bacterial diversity, 

an increased prevalence of Bifidobacterium, and a decreased abundance of Lachnospiraceae. 

(Baumann-Dudenhoeffer et al., 2018; Forbes et al., 2018; Sugino, Ma, Kerver, et al., 2021). 

Infants exclusively fed with formula showed a higher diversity of gut microbiota with decreased 

prevalence of Bifidobacterium species and an increased prevalence of Clostridium species and 

Enterobacteriaceae species. This may be attributed to the absence of human milk 

oligosaccharides (HMOs) and higher protein content in infant formula, which contribute to the 

modulation of gut microbiota (Bäckhed et al., 2015; Benno et al., 1984; Penders et al., 

2007).Thus, infant gut microbiota composition is tightly linked to the infant diet.  

There has been limited evidence to determine if gut microbiota in early infancy mediates 

the association between infant feeding and neurodevelopment later in infancy. The prior aim has 

demonstrated that infant gut microbiota was associated with infant neurodevelopment later in 

life. Therefore, this study aimed to investigate whether there was an association between infant 

feeding practice at 3 months of age and infant neurodevelopment at 9 months of age and if gut 

microbiota at 3 months of age mediates this association.  

3.4 Materials and methods 

3.4.1 Study population 

The study population was described in aim 1. For aim 2, data and samples from 64 Michigan 

Archive for Research on Child Health (MARCH) participants were used in the analyses. Mothers' 
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education level, mother’s height, pre-pregnancy weight, and maternal age was collected via MARCH 

Prenatal 1 Survey. The birth certificate included the infant sex, mode of delivery, and estimated weeks of 

gestation. Infant race was obtained from MARCH 3-month questionnaire. The sample collection form, 

completed at the time of fecal sample collection and when the infants were approximately 3 months of 

age, included information about the antibiotics use since birth, infant diet in the past 24 hours, and the 

infant diet in the past week prior to fecal collection. Exclusive breastfeeding duration, any breastfeeding 

duration, and ASQ-3 information were obtained from the MARCH 9-Month Survey. Infants with 

gestational age less than 37 weeks were excluded from the analyses. Infants who had missing information 

were also removed. The Michigan State University Human Research Protection Program approved the 

study (IRB# 16-1429). 

3.4.2 Classification of feeding methods 

Infant feeding method in the past 24 hours prior to fecal collection was categorized into 

exclusive breastfeeding, partial breastfeeding, and formula feeding, which was the 

FED_PRAC_NEW variable in R codes. Infant feeding methods stratified with vitamin D 

supplementation included exclusive breastfeeding, exclusive breastfeeding with vitamin D 

supplementation, partial breastfeeding, and formula feeding in the past 24 hours prior to fecal 

collection, which was the FED_PRAC_LIGHT_NEW variable in R codes. Exclusive 

breastfeeding duration in days until 9 months of age was calculated. The end day was the last day 

the infants were fed exclusive breastmilk or the first day they were fed formula or 

complementary food. Any breastfeeding duration until 9 months includes the breastfeeding and 

formula feeding days, and the end day was the last day the infant stopped breastmilk feeding.  

3.4.3 Ages and Stages Questionnaire 

When the infants were approximately 9 months old, parents completed the ASQ-3 
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(Squires J, 2009) during a phone interview as part of the MARCH 9-Month Survey. The ASQ-3 

is a parent-completed screening tool that pinpoints developmental progress in children. The 

ASQ-3 comprises 5 areas: communication, gross motor, fine motor, problem-solving, and 

personal-social for children from 1-66 months. Scores for each area fall between 0 and 60 points. 

Parents indicate for each item “yes” if the child performs the item and scores 10 points, 

“sometimes” indicating an occasional or emerging skill and the child scores 5 points, or “not yet” 

if the child doesn’t perform the behavior and scores 0 points.  

3.4.4 Stool sample collection 

Sample collection was as described in Aim 1. 

3.4.5 Laboratory Procedures  

3.4.5.1 DNA Extraction and 16S rRNA Gene Amplification 

DNA extraction, 16S rRNA gene amplification, and sequencing were carried out on stool 

samples as previously described in Aim 1. 

3.4.5.2 Processing and analysis of sequence data  

The processing of sequencing data was also described in Aim 1.  

3.5 Statistical analysis 

All data were analyzed using R (version 4.2.2). Data normality was tested using Shapiro–

Wilk test (stats package). Kruskal-Wallis (stats package) with post-hoc Dunn’s test (dunn.test 

package) was used to analyze the relationships between (1) infant feeding method (exclusive 

breastfeeding, partial breastfeeding, formula feeding), (2) infant feeding method stratified with 

vitamin D supplementation (exclusive breastfeeding, exclusive breastfeeding with vitamin D 
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supplementation, partial breastfeeding, formula feeding) and ASQ scales. Univariate and 

multivariate linear regression models (stats package) adjusted by antibiotics use since birth, 

infant sex, delivery mode, infant race, maternal education level, gestational age at birth, pre-

pregnancy BMI, and maternal age were used to assess the associations between different feeding 

variables and ASQ scales. Chi-square (stats package) and Kruskal-Wallis tests were used to 

determine the associations between categorical and continuous variables of population 

characteristics and infant feeding methods stratified with vitamin D supplementation. Alpha 

diversity (Chao1, inverse Simpson, and Shannon indices) was calculated using the vegan 

package in R (Jari Oksanen et al., 2020). Analysis of variance (ANOVA) tests were used to 

examine the relationships between Chao1 and Shannon indices and feeding methods. The 

relationship between inverse Simpson and feeding methods was tested by the Kruskal-Wallis 

test. For beta diversity, Sorensen and Bray-Curtis dissimilarities were calculated using the vegan 

package in R and ordinated using principal coordinate analysis (PCoA). Permutational 

multivariate analysis of variance (PERMANOVA) was performed using the vegan package in R 

to test for significant differences in beta diversity between feeding methods. Simple mediation 

analysis was completed when the mediator was any of the alpha diversity indices (Shannon and 

inverse Simpson) using the MeMoBootR package (Buchanan, 2018), adjusted by infant sex, 

delivery mode, infant race, maternal education level, gestational age at birth, pre-pregnancy 

BMI, and maternal age. Mediation analysis was conducted using the LDM package to test the 

mediation effect of the Bray-Curtis dissimilarly matrix (Hu & Satten, 2020). 

3.6 Results 

3.6.1 The association between feeding methods and ASQ scales  

Infant feeding methods (breastfeeding, partial breastfeeding, and formula feeding) in the 
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past 24 hours before sample collection was not associated with the score for any of the ASQ 

scales at 9 months of age (Table 5). However, partially breastfed infants had higher fine motor 

skill scores compared to exclusively breastfed infants when conducting univariate (β=5.1, p-

value=0.03), but not multivariate (p-value=0.17), linear regression analysis (Table 6).  

When stratified by vitamin D supplementation, infant feeding method was associated with fine 

motor skills (p-value < 0.01), where exclusively breastfed infants had lower fine motor scores compared 

to infants in the other three feeding groups (Table 5). Additionally, maternal education level (p-

value=0.049) and mode of delivery (p-value=0.01) was associated with infant feeding method (Table 7). 

Maternal pre-pregnancy BMI (p-value=0.06) tended to be associated with infant feeding method when 

exclusively breastfed infants supplemented with vitamin D were included as a group distinct from the 

other exclusively breastfed infants (Table 7). The univariate linear regression models demonstrated that 

breastfeeding with vitamin D supplementation (fine motor: β=10.26,  p-value < 0.01, communication: 

β=11.7,  p-value=0.01), partial breastfeeding (fine motor: β=11.81, p-value < 0.01, communication: 

β=9.86, p-value=0.03), and formula feeding (fine motor: β=10.78, p-value < 0.01, communication: 

β=12.25, p-value < 0.01) were positively associated with fine motor and communication scores compared 

to exclusive breastfeeding (Table 8). Formula feeding tended to be positively associated with problem-

solving scores compared to exclusive breastfeeding (β=8.71, p-value=0.07) (Table 8). Multivariate 

analyses adjusted by antibiotics use since birth, delivery mode, infant race, maternal education level, 

gestational age at birth, pre-pregnancy BMI, and maternal age were conducted. A significant association 

remained between breastfeeding with vitamin D intake compared to exclusive breastfeeding (β=10.27, p-

value < 0.01), partial feeding compared to exclusive breastfeeding (β=10.19, p-value < 0.01), and formula 

feeding compared to exclusive breastfeeding (β=8.25, p-value=0.02) and fine motor scores. Breastfeeding 

with vitamin D intake was also positively associated with communication scores compared to exclusive 

breastfeeding (β=9.52, p-value=0.04) after controlling covariates (Table 8). Neither the duration of 

exclusively breastfeeding the infant (Table 9) nor the duration of any exposure to human milk (Table 10) 
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up to 9 months of age was associated with scores for any of the five ASQ scales. However, for each 

additional day of exposure to human milk, communication scores tended to decrease by 0.04 points (p-

value=0.05) (Table 10). 
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Table 5. The associations between infant feeding methods of infants at 3 months of age and ASQ scores at 9 months of age 

 N=64 Gross motor Fine motor Communication Personal-social Problem-solving 

 N (%)  Median(min,

max)  

p-

value 

Median(min

,max)  

p-

value 

Median(min,

max)  

p-

value 

Median(min

,max)  

p-

value 

Median(min

,max)  

p-

value 

Feeding method             

Breastfeeding 26(40.6%) 40(10, 60) 0.33 52.5(35, 60) 0.15 45(15, 60) 0.53 40(20, 55) 0.34 50(5, 60) 0.44 

Partial breastfeeding 16(25%) 47.5(20, 60) 57.5(50, 60) 50(15, 60) 35(20, 60) 50(20, 60) 

Formula 22(34.4%) 45(15, 60) 60(40, 60) 47.5(30, 60) 47.5(15, 60) 55(25, 60) 

Feeding method by 

vitamin D intake  

           

Breastfeeding 9(14.06%) 45(10, 60) 0.53 45(35, 55)a <0.01

* 

35(15, 55) 0.08 45(20, 55) 0.53 50(5, 60) 0.42 

Breastfeeding with 

Vitamin D 

17(26.56%) 40(10, 60) 60(35, 60)b 50(25, 60)  40(20, 55)  55(30, 60)  

Partial breastfeeding 16(25%) 47.5(20, 60) 57.5(50, 

60)b 

50(15, 60)  35(20, 60)  50(20, 60)  

Formula feeding 22(34.38%) 45(15, 60) 60(40, 60)b 47.5(30, 60)  47.5(15, 60)  55(25, 60)  

Infant feeding method was determined by parent responses on the 3-month stool sample information form questions which asked about infant feeding in the 24 

hours just prior to stool sample collection. The Kruskal-Wallis test was used to examine the associations between feeding methods and ASQ scales. Dunn’s test 

was performed to do the pairwise comparison. *P-value < 0.05 is significant
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Table 6. Associations between feeding methods in the 24 hours prior to stool sample collection at 3 months and infant ASQ scales 

at 9 months of age 
 

 

1Multivariate linear regression models were used, adjusted by antibiotics use since birth, infant sex, delivery mode, infant race, maternal education level, 

gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 is significant.

  
Univariate model Multivariate model1 

β (95% CI) p-value β (95% CI) p-value 
Overall adjusted 

R-squared 

Overall 

p-value 

Gross motor Breastfeeding Reference  Reference 
 

0 0.85 Partial breastfeeding 5.24(-4.92, 15.40) 0.31 6.17(-6.19, 18.53) 0.32 

Formula 7.12(-2.15, 16.38) 0.13 8.33(-3.43, 20.09) 0.16 

Fine motor Breastfeeding Reference  Reference  

0.11 0.11 Partial breastfeeding 5.10(0.41, 9.78) 0.03* 3.67(-1.62, 8.97) 0.17 

Formula 4.07(-0.20, 8.34) 0.06 2.23(-2.80, 7.27) 0.38 

Communication Breastfeeding Reference  Reference  

0.10 0.13 Partial breastfeeding 2.21(-4.98, 9.4) 0.54 0.70(-7.23, 8.64) 0.86 

Formula 4.60(-1.96, 11.15) 0.17 3.08(-4.46, 10.63) 0.42 

Personal-social Breastfeeding Reference  Reference  

0 0.67 Partial breastfeeding -2.64(-10.38, 5.09) 0.50 -1.17(-10.33, 8.00) 0.80 

Formula 2.64(-4.41, 9.69) 0.46 -1.5(-10.22, 7.22) 0.73 

Problem-solving Breastfeeding Reference  Reference  

0.08 0.17 
Partial breastfeeding -0.46(-8.14, 7.23) 0.91 2.90(-5.63, 11.42) 0.50 

Formula 3.78(-3.23, 10.78) 0.29 2.59(-5.52, 10.71) 0.52   
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Table 7. Associations between infant feeding in the 24 hours prior to stool sample collection and population characteristics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

1Categorical variable data was present as N (%). Chi-square test was used to determine the associations between categorical variables and infant feeding method. 
2Continuous variable data was present as Mean±SD. Kruskal-Wallis test was used to examine the relationship between continuous variables and infant feeding 

method. *P-value < 0.05 is significant.

 N=64 
Breastfeeding 

(N=9) 

Breastfeeding 

with vitamin D 

(N=17) 

Partial 

breastfeeding 

(N=16) 

Formula 

feeding(N=22) 
p-value 

Categorical variable1 
N (%) or 

Mean±SD 

N (%) or 

Mean±SD 

N (%) or 

Mean±SD 

N (%) or 

Mean±SD 

N (%) or Mean 

(SD) 
 

Infant sex      

0.49 Male 31(48.4%) 4(44.4%) 6(35.3%) 10(62.5%) 11(50%) 

Female 33(51.6%) 5(55.6%) 11(64.7%) 6(37.5%) 11(50%) 

Infant race      

0.47 White 44(68.75%) 8(88.9%) 12(70.6%) 11(68.75%) 13(59.1%) 

Non-White 20(31.25%) 1(11.1%) 5(29.4%) 5(31.25%) 9(40.9%) 

Maternal education level      

0.049* 

Did not finish high school 3(4.7%) 0(0%) 0(0%) 0(0%) 3(13.63%) 

High school graduate or 

GED 
11(17.2%) 1(11.1%) 0(0%) 3(18.75%) 7(31.82%) 

Some college 13(20.3%) 2(22.2%) 3(17.6%) 3(18.75%) 5(22.73%) 

College graduate or more 37(57.8%) 6(66.7%) 14(82.4%) 10(62.5%) 7(31.82%) 

Delivery mode      

0.01* Vaginal 39(60.9%) 5(55.6%) 10(58.8%) 15(93.75%) 9(40.9%) 

C-section 25(39.1%) 4(44.4%) 7(41.2%) 1(6.25%) 13(59.1%) 

Continuous variable2       

Pre-pregnancy BMI 32.07±21.98 24.73±4.25 28.69±8.22 27.88±7.89 40.74±34.97 0.06 

Maternal age 29.64±4.66 30±3.57 31.06±3.45 30.06±3.91 28.09±5.99 0.37 

Gestational age 39.16±1.24 39±1.12 39.71±1.10 39.06±1.53 38.86±1.08 0.19 
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Table 8. Associations between feeding methods after stratification by vitamin D 

supplementation in the 24 hours prior to stool sample collection at 3 months of age and infant 

ASQ scales at 9 months of age 

 
 
 
 
 

  
Univariate model Multivariate model1 

β(95% CI) 
p-

value 
β (95% CI) 

p-

value 

Overall 

adjusted 

R-

squared 

Over

all p-

value 

Gross 

motor 

Breastfeeding Reference  Reference 
 

0 0.89 

Breastfeeding with 

vitamin D 

1.01(-12.28, 

14.31) 
0.88 

-2.02(-16.65, 

12.62) 
0.78 

Partial breastfeeding 
5.90(-7.53, 

19.34) 
0.38 

4.89(-10.66, 

20.45) 
0.53 

Formula feeding 
7.78(-4.98, 

20.54) 
0.23 

7.15(-7.50, 

21.79) 
0.33 

Fine motor Breastfeeding Reference  Reference  

0.29 
<0.01

* 

Breastfeeding with 

vitamin D 

10.26(4.74, 

15.79) 
<0.01* 

10.27(4.72, 

15.82) 
<0.01* 

Partial breastfeeding 
11.81(6.22, 

17.39) 
<0.01* 

10.19(4.29, 

16.08) 
<0.01* 

Formula feeding 
10.78(5.48, 

16.09) 
<0.01* 

8.25(2.70, 

13.81) 
<0.01* 

Communica

tion 

Breastfeeding Reference  Reference  

0.16 0.05 

Breastfeeding with 

vitamin D 

11.70(2.79, 

20.61) 
0.01* 

9.52(0.52, 

18.52) 
0.04* 

Partial breastfeeding 
9.86(0.86, 

18.87) 
0.03* 

6.74(-2.82, 

16.31) 
0.16 

Formula feeding 
12.25(3.70, 

20.80) 
<0.01* 

8.67(-0.34, 

17.67) 
0.06 

Personal-

social 

Breastfeeding Reference  Reference  

0 0.73 

Breastfeeding with 

vitamin D 

1.18(-8.94, 

11.30) 
0.82 

2.32(-8.53, 

13.16) 
0.67 

Partial breastfeeding 
-1.88(-12.11, 

8.36) 
0.72 

0.30(-11.22, 

11.82) 
0.96 

Formula feeding 
3.41(-6.31, 

13.12) 
0.49 

-0.15(-11.00, 

10.70) 
0.98 
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Table 8 (cont’d) 

1Multivariate linear regression models were used, adjusted by antibiotics use since birth, infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 

is significant

Problem-

Solving 

Breastfeeding Reference  Reference  

0.09 0.15 

Breastfeeding with 

vitamin D 

7.55(-2.32, 

17.42) 
0.13 

6.45(-3.49, 

16.38) 
0.20 

Partial breastfeeding 
4.48(-5.50, 

14.45) 
0.37 

6.98(-3.58, 

17.54) 
0.19 

Formula feeding 
8.71(-0.76, 

18.18) 
0.07 

6.3 (-3.57, 

16.32) 
0.20 
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Table 9. Associations between exclusive breastfeeding duration and infant ASQ scales at 9 

months of age 

1Multivariate linear regression models were used, adjusted by antibiotics use since birth, infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age.  *P-value < 

0.05 is significant  

 

 

Table 10. Associations between any breastfeeding duration and infant ASQ scales at 9 months 

of age 

1Multivariate linear regression models were used, adjusted by antibiotics use since birth, infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 

is significant

 

Univariate analysis Multivariate analysis1 

 

β (95% CI) 
p-

value 
β (95% CI) 

p-

value 

Overall 

adjusted R-

squared 

Overall 

p-value 

Gross motor -0.004 (-0.05, 0.04) 0.88 0.007 (-0.05, 0.06) 0.81 0 0.94 

Fine motor -0.003 (-0.03, 0.02) 0.77 0.004 (-0.02, 0.03) 0.72 0.09 0.13 

Communication -0.004 (-0.04, 0.03) 0.81 0.01 (-0.02, 0.05) 0.51 0.11 0.10 

Personal-social 0.01 (-0.02, 0.05) 0.50 0.01 (-0.02, 0.05) 0.44 0 0.53 

Problem-

solving 
-0.01 (-0.05, 0.02) 0.54 -0.003 (-0.04, 0.03) 0.88 0.09 0.14 

 

Univariate analysis Multivariate analysis1 

 

β (95% CI) 
p-

value 
β (95% CI) 

p-

value 

Overall 

adjusted R-

squared 

Overall 

p-value 

Gross motor -0.03 (-0.07, 0.02) 0.25 -0.04 (-0.10, 0.01) 0.13 0 0.79 

Fine motor -0.02 (-0.04, 0.005) 0.13 -0.01 (-0.04, 0.01) 0.32 0.11 0.10 

Communication -0.02 (-0.06, 0.006) 0.11 
-0.04 (-0.07, 

0.0006) 
0.05 0.17 0.03* 

Personal-social -0.02 (-0.06, 0.009) 0.16 -0.006 (-0.05, 0.04) 0.78 0 0.58 

Problem-solving -0.01(-0.05, 0.02) 0.44 -0.007 (-0.05, 0.03) 0.71 0.09 0.14 
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3.6.2 Alpha and beta diversity of infant gut microbiota and feeding method at 3 months of age 

The gut microbiota richness was different in the four feeding groups (p-value=0.04) 

(Figure 11A). The diversity of infant gut microbiota differed from the four feeding methods after 

stratifying exclusively breastfed infants by vitamin D supplementation as measured by Shannon 

(p-value < 0.01) (Figure 11B) and inverse Simpson (p-value < 0.01) (Figure 11C) indices. When 

conducting the pairwise comparison, formula-fed infants had significantly higher gut microbial 

diversity compared to breastfed infants (Figure 11B,11C). The membership (Sorensen, p-

value<0.01) (Figure 12A) and composition (Bray-Curtis, p-value < 0.01) (Figure 12B) of the 

infant gut microbiota differed by feeding method. Formula-fed infants had different gut 

microbial membership and composition compared to exclusively breastfed, vitamin D 

supplemented exclusively breastfed, and partially breastfed infants.  

 

 
 

Figure 11. Associations between infant feeding method in the 24 hours prior to stool sample 

collection and infant gut microbiota alpha diversity at 3 months of age 

Shapiro-Wilk test was used to test data normality. ANOVA tests were used to examine the relationships between 

Chao1 and Shannon indices with feeding methods. The relationship between inverse Simpson and feeding methods 

was tested by the Kruskal-Wallis test. Tukey’s HSD and Dunn’s tests were conducted for post hoc comparisons. 

Median with the min and max was plotted. Different letters indicate significant differences in pairwise comparisons. 

P-value < 0.05 is significant.  
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Figure 12. Associations between infant feeding methods in the 24 hours prior to stool sample 

collection and gut microbiota beta diversity at 3 months of age 

PERMANOVA was performed to examine the relationships between beta diversity and clusters. P-value < 0.05 is 

significant. 

 

3.6.3 Mediation analyses 

In Aim 1 (Chapter 2), we reported that one measure of the alpha diversity of the gut 

microbiota, inverse Simpson, tended to be associated with communication (p-value=0.07) and 

problem-solving (p-value=0.07) scores (Table 2). Shannon index, another measure of the alpha 

diversity of the gut microbiota, was significantly associated with problem-solving score (p-

value=0.04). The Bray-Curtis dissimilarity matrix, a measure of the beta diversity of gut bacterial 

communities, was associated with fine motor (p-value < 0.01) and communication (p-value < 

0.01) scores (Table 3). In this chapter, the roles of inverse Simpson (alpha diversity), Shannon 

(alpha diversity), and Bray-Curtis (beta diversity) metrics as mediators in the association 

between infant feeding method (exposure) and ASQ scale scores (outcome) were evaluated. We 

reported the total, direct, and indirect effects. Direct effect indicates the effect from exposure to 

outcome after ignoring the mediating effect. Indirect effect is a measure of mediating effect. 
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Total effect indicates the effect from exposure to outcome, including the mediation effect of the 

mediator (Figure 13).  

 

 

 

 

 

 

 

 

 

 

Figure 13. Direct effect, indirect effect, and total effect in mediation analysis 

When considering the mediating effect of inverse Simpson of alpha diversity, the total 

effect of breastfeeding with vitamin D on the communication scales tended to score 9.51 units 

higher than breastfeeding (p-value=0.04) (Table 11). The total effect of formula feeding on the 

communication scales tended to score 8.66 units higher than breastfeeding (p-value=0.06). After 

ignoring the mediating effect, the direct effect of breastfeeding plus vitamin D supplementation 

on communication tended to increase by 8.22 units significantly compared to breastfeeding (p-

value=0.07). The direct effect was insignificant when comparing the effect of partial 
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breastfeeding verse breastfeeding (p-value=0.34) and formula verse breastfeeding (p-value=0.32) 

on communication scores. The association of the infant feeding method at 3 months of age on 

communication at 9 months of age was not mediated by inverse Simpson of alpha diversity at 3 

months of age (Table 11). Although the mediating effect was not statistically significant, one unit 

increased in breastfeeding with vitamin D intake, partial breastfeeding, and formula, the 

mediating effect increased by 1.29, 2.15, and 3.83 units, respectively, compared to the 

breastfeeding.   

When the exposure was infant feeding method, the outcome was problem-solving scores, 

and the mediator was inverse Simpson (Table 12) or Shannon (Table 13). Neither the total effect 

nor the direct effect of infant feeding on problem-solving scores was statistically significant. 

Thus, the alpha diversity of the 3-month-old infant gut microbiota, as described by the inverse 

Simpson (Table 12) and Shannon (Table 13) indices, did not mediate the relationship between 

feeding method and problem-solving skills. 

 However, using the LDM package of Hu & Stratten (Hu & Satten, 2020) to test the 

mediation effect of the Bray-Curtis dissimilarly matrix, the Bray-Curtis distance matrix of beta 

diversity mediated the association of the feeding method and ASQ fine-motor (p-value=0.04) 

scores in univariate analysis (Table 14).  
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Table 11. Mediation effect of the inverse Simpson index on the association of feeding method 

with communication score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simple mediation analysis was performed using the MeMoBootR package, adjusted by infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 

is significant. 

 
 

Table 12. Mediation effect of the inverse Simpson index on the association of feeding method 

with problem-solving score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Feeding method β (95% CI) p-value 

Direct effect 

(exposure to outcome, 

ignoring the mediation 

effect) 

Breastfeeding Reference 
 

Breastfeeding_vitaminD 8.22(-0.59, 17.03) 0.07 

Partial breastfeeding 4.57(-4.92, 14.06) 0.34 

Formula 4.82(-4.84, 14.49) 0.32 

Indirect effect (a 

measure of mediating 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 1.29(-1.75, 4.44) 0.37 

Partial breastfeeding 2.15(-1.46, 6.04) 0.23 

Formula 3.83(-1.75, 9.28) 0.12 

Total effect 

(exposure to outcome, 

including the mediation 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 9.51(0.62, 18.41)  0.04* 

Partial breastfeeding 6.72(-2.69, 16.12) 0.16 

Formula 8.66(-0.25, 17.57) 0.06 

 
Feeding method β (95% CI) p-value 

Direct effect 

(exposure to outcome, 

ignoring the mediation 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 4.68(-5.16, 14.52) 0.34 

Partial breastfeeding 3.83(-6.77, 14.42) 0.47 

Formula 1.77(-9.01, 12.56) 0.74 

Indirect effect (a 

measure of mediating 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 1.49(-1.62, 4.90) 0.37 

Partial breastfeeding 2.48(-1.18, 6.65) 0.22 

Formula 4.42(-1.33, 10.14) 0.11 

Total effect 

(exposure to outcome, 

including the mediation 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 6.17(-3.78, 16.12) 0.22 

Partial breastfeeding 6.30(-4.22, 16.83) 0.23 

Formula 6.19(-3.78, 16.16) 0.22 
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Table 12 (cont’d) 

Simple mediation analysis was performed using the MeMoBootR package, adjusted by infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 

is significant. 

Table 13. Mediation effect of the Shannon index on the association of feeding method with 

problem-solving score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simple mediation analysis was performed using the MeMoBootR package, adjusted by infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 

is significant. 

 

Table 14. Mediation effect of the Bray-Curtis dissimilarity matrix on the association of feeding 

method with communication and fine motor scores 
 

PERMANOVA-FL function from LDM package was used to test the mediation effect when the infant feeding 

method was the exposure, Bray-Curtis dissimilarity matric was the mediator, and ASQ scales were the outcomes. 
1Multivariate linear regression models were used, adjusted by antibiotics use since birth, infant sex, delivery mode, 

infant race, maternal education level, gestational age at birth, pre-pregnancy BMI, and maternal age. *P-value < 0.05 

is significant. 

 
Feeding method β (95% CI) p-value 

Direct effect 

(exposure to outcome, 

ignoring the mediation 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 4.93(-4.86, 14.71) 0.32 

Partial breastfeeding 2.74(-8.17, 13.65) 0.62 

Formula 1.42(-9.50, 12.33) 0.80 

Indirect effect (a 

measure of mediating 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 1.24(-2.55, 4.89) 0.44 

Partial breastfeeding 3.56(-0.52, 8.24) 0.14 

Formula 4.78(-1.66, 11.07) 0.10 

Total Effect 

(exposure to outcome, 

including the mediation 

effect) 

Breastfeeding Reference  

Breastfeeding_vitaminD 6.17(-3.78, 16.12) 0.22 

Partial breastfeeding 6.30(-4.22, 16.83) 0.23 

Formula 6.19(-3.78, 16.16) 0.22 

   Univariate analysis Multivariate analysis1 

Exposure Mediator Outcome p-value p-value 

Infant feeding method Bray-Curtis Communication 0.16 0.55 

Infant feeding method Bray-Curtis Fine motor 0.04 0.28 
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3.7 Discussion 

The current study demonstrated that breastfed infants with vitamin D supplementation 

had higher fine motor and communication scores than those exclusively breastfed. Further, these 

results suggest that the feeding method in early infancy could potentially impact 

neurodevelopmental outcomes in later infancy. We also observed that the gut microbial 

membership and composition at 3 months, as measured by Bray-Curtis dissimilarity matrix 

mediates the association between infant feeding at 3 months and the infant neurodevelopmental 

outcomes of fine motor scores at 9 months. This study is a pilot study that investigated the 

mediating effect of gut microbiota in the association between infant feeding methods and 

neurodevelopmental outcomes. Further study with a larger and more diverse population will be 

analyzed when all necessary data collection has been completed by the cohort.  

Vitamin D plays an important role in brain development during the early years of life 

(Schwarzenberg & Georgieff, 2018). Our study found that breastfed infants with vitamin D 

supplementation exhibited higher fine motor and communication scores than those non-

supplemented infants who were exclusively breastfed. In an animal study, vitamin D deficiency 

in early life resulted in decreased social behavior, impaired learning, and memory problems 

among male adult rats (Yates et al., 2018). In humans, serum vitamin D level at birth was 

positively associated with communication and personal-social scores in 2-year-old infants, as 

measured by ASQ-3 (Juwita et al., 2021). Vitamin D supplementation in early life dose-

dependently improved neurodevelopment in extremely preterm infants, but this was not 

statistically significant (Salas et al., 2018). However, other studies reported inconsistent results 

when describing the association between vitamin D supplementation in early life and 

neurodevelopment in childhood. Chowdhury et al. measured plasma vitamin D levels when 

infants were 6-30 months of age and observed that such levels were not associated with cognitive 
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development at 9 years of age (Chowdhury et al., 2020). There was no association between 

vitamin D status and motor performance when children were 5 years old (Filteau et al., 2016). 

The occurrence of these inconsistencies suggests that there could be an optimal time point in 

early life to examine the effect of vitamin D status on neurodevelopmental outcomes. The timing 

of vitamin D assessment, duration of vitamin D supplementation, the dose of vitamin D 

supplementation, the age of neurodevelopmental assessment, and tools for assessment might also 

influence the results. 

Breastfeeding has long been considered to protect against adverse health outcomes, such 

as obesity and metabolic diseases, particularly when such outcomes are compared between 

breastfed infants and those infants fed formula (Armstrong & Reilly, 2002; Azad et al., 2018; 

Plagemann & Harder, 2005). Further, it is still debated whether breastfeeding is beneficial for 

cognitive development. Breastfeeding for more than nine months enhanced the cognitive 

development of Korean infants as measured by Bayley Scales of Infant Development II (Lee et 

al., 2016). This beneficial impact of breastfeeding remained evident until the children reached 

three years of age, even after accounting for other factors. Similarly, a meta-analysis of 20 

studies reported that breastfeeding was linked to considerably enhanced cognitive development, 

spanning from infancy through to adolescence compared to formula feeding (Anderson et al., 

1999). On the contrary, breastfeeding in the first after birth was found to have little or no effect 

on intelligence in 5-14 years old children using Peabody individual achievement test in the US 

(Der et al., 2006). There was no association between a long duration of breastfeeding and later 

cognitive development in 9- to 10-year-old children in South India, as measured by the Kaufman 

Assessment Battery for Children (Veena et al., 2010). In our study, we also found breastfeeding 

duration was not related to neurodevelopmental outcomes. The characteristics of individuals who 
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breastfeed their infants in the US have been extensively studied, and several factors such as 

maternal age (Colombo et al., 2018; Kitano et al., 2016), education level (Colombo et al., 2018), 

and household income (Temple Newhook et al., 2017), race and ethnicity(Jones et al., 2015) 

have been found to be associated with breastfeeding rates. However, it is important to note that 

these characteristics are not necessarily the driving factors in the observed improvements in 

neurodevelopment that have been linked to breastfeeding. Overall, cumulative evidence suggests 

whether breastfeeding can affect children's neurodevelopment is undetermined and deserves 

further analysis. 

Interestingly, we found that infants fed formula at 3 months had higher fine motor and 

communication scores at 9 months compared to those fed with exclusive breast milk. The 

compositional difference in nutrients of breast milk and formula could possibly explain this. 

Formula-fed infants often have greater weight gains in infancy than breastfed infants because of 

the higher protein content in formula (Alexy et al., 1999; Dewey, 1998; Farrow et al., 2013; 

Kramer et al., 2004; Ren et al., 2022; Victora et al., 1998). Though some evidence suggests a 

positive association between protein intake and neurodevelopment in infancy, the evidence is 

mixed. In a cohort study, increased protein intake in the first month of life was not associated 

with better cognitive, language, and motor scores or decreased sensory impairments at 2 years of 

age (Cester et al., 2015). However, other studies reported the opposite results. Increased protein 

intake in the first week after birth was associated with higher Mental Development Index scores 

at 18 months in extremely low birth weight infants (Stephens et al., 2009). A positive association 

was demonstrated between protein intake during the first 28 days and cognitive and motor scores 

at 2 years in infants born at a gestational age of less than 31 weeks (Coviello et al., 2018). The 

current study excluded preterm-born infants with a gestational age of less than 37 weeks and 
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studied the relationship between the feeding method in the first 3 months of life (early infancy) 

and neurodevelopment at 9 months (late infancy). Thus, there is abundant room for further 

research in determining whether the feeding method in early infancy predicts neurodevelopment 

in late infancy.  

Gut microbiota colonization and human brain development have similar developmental 

windows, and these windows occur during infancy (Ratsika et al., 2023). Gut-microbiota-axis 

(GBA), the bidirectional communication between the gut and brain, has been proposed 

(Carabotti et al., 2015). In the current study, we demonstrated that infant gut microbiota 

membership and composition (Bray-Curtis dissimilarity matrix) at 3 months of age mediated the 

association between infant feeding method at 3 months of age and infant neurodevelopment (fine 

motor scores) at 9 months. This result supports the assumption that nutritional intervention may 

be a novel strategy for initializing gut microbial colonization in early infancy with the aim of 

altering neurodevelopmental outcomes in late infancy. The extent to which and specific 

mechanisms by which the infant gut microbiota modulates neurodevelopment and how the infant 

feeding method mediates this association is still under investigation.  

ASQ is generally reliable in identifying young children who may require an additional 

assessment to determine their eligibility for early intervention services. This screening tool has 

the advantages of being cost-effective, simple to administer, and efficient in terms of time.  

However, ASQ is a parent-reported measurement. Thus, some biases may result from this 

parental report. For example, parents with low socioeconomic status have been reported to over- 

or underestimate their children’s performance on the questions from ASQ (Feldman et al., 2000). 

Some parents might be prone to social desirability bias (Bourdeaudhuij & Oost, 2000). In 

addition to ASQ, Bayley Scales of Infant and Toddler Development, a more formal and accurate 
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developmental assessment tool, is widely used to diagnose developmental delays in early 

childhood (Balasundaram & Avulakunta, 2022). Magnetic Resonance Imaging (MRI) can also 

be used if budget and time are allowed (Arulkumaran et al., 2020).  

The present study has several strengths. We are the first study investigating the mediating 

effect of early-life gut microbiota in the association between infant feeding method and 

neurodevelopmental outcomes. Our study provides insights into the development of a nutritional 

intervention by manipulating gut microbiota in early life to help prevent or reverse 

neurodevelopmental disorders. In addition, we excluded preterm-born infants who typically have 

delayed neurodevelopment compared to full-term infants. Therefore, our findings are 

generalizable among full-term infants. There are several limitations to this study. Our sample 

size (n=64) is small, which could reduce the power of this study. The small sample size further 

limits the covariates which can be included in the statistical models. Additionally, the small 

sample size may lead to a poor representation of participants with specific characteristics, which 

could bias the results of these analyses. For example, a large proportion of exclusively breastfed 

infants who received a vitamin D supplement were non-White, whereas all but one non-

supplemented exclusively breastfed infant was White. They might also have memory bias when 

collecting breastfeeding duration information until 9 months. Finally, we did not consider 

exposures at 9 months of age such as the contact with other infants during day care and feeding 

practices. 

3.8 Conclusion 

The evidence presented herein suggests that vitamin D supplementation could improve 

fine motor and communication skills among breastfed infants. Infants fed formula at 3 months 

had higher fine motor and communication scores at 9 months compared to those fed exclusive 
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breast milk. The Bray-Curtis dissimilarity matrix of gut microbiota at 3 months of age mediated 

the association between the infant feeding method at 3 months and fine motor scores at 9 

months. Future studies with a more diverse population and more comprehensive 

neurodevelopment tools are needed to test the mediation effect of gut microbiota in the 

association of infant feeding on neurodevelopmental outcomes. 
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CHAPTER 4: THE RELATIONSHIPS BETWEEN BREAST MILK FEEDING 

PRACTICES AND INFANT GUT MICROBIOTA AT THREE MONTHS OF AGE 
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4.1 Abstract 

Breastmilk plays a critical role in infant’s growth and development. In addition to 

meeting the infant’s direct nutritional needs, breastmilk can promote the growth of beneficial 

bacteria in infant’s gut and maintain a healthy gut environment. Further, the act of feeding at the 

breast may also have beneficial effects on infant development. Currently, it’s unknown how 

breastmilk feeding patterns (breastfeeding from breast, breastfeeding through a bottle, and 

breastfeeding through both breast and bottle) influence the infant gut microbial development. 

Therefore, this chapter aimed to investigate the relationship between breastfeeding patterns and 

infant gut microbiota among exclusively breastmilk-fed infants at 3 months of age. An additional 

aim was to compare gut microbes in infants of exclusively human milk fed groups to those in 

infants fed at least some formula. DNA was extracted, followed by the preparation of 16S rRNA 

libraries and sequencing on the Illumina MiSeq platform. Community sequencing data were 

processed using mothur, and data were analyzed in R. Bottle-fed infants had numerically lower 

alpha diversity of the gut microbiota than breast- and mixed-fed infants, but it was not 

statistically significant. Breast-fed infants had different gut microbial membership compared to 

bottle-fed and mixed-fed infants as measured by Sorensen dissimilarity matrix. Breast-fed infants 

had a lower abundance of Bifidobacterium but a higher abundance of Enterobacteriaceae 

unclassified compared to bottle- and mixed-fed infants. Infants in the groups fed some human 

milk had a higher abundance of Lacticaseibacillus compared to infants fed formula. These 

results suggest that breastfeeding patterns may play a role in shaping the composition and 

diversity of the gut microbiota in infants. Further research in analyzing the human milk bacteria 

is needed to better understand the mechanisms behind these differences and to determine the 

long-term implications for infant health. 
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4.2 Key words 

breast milk, human milk, breastfeeding, exclusive breastmilk feeding, bottle-feeding, 

breastfeeding, mixed-feeding, infant feeding, Bifidobacterium, Enterobacteriaceae unclassified, 

Escherichia-Shigella, Blautia, Parabacteroides 

4.3 Introduction 

Breastfeeding profoundly influences the colonization and maturation of the infant gut 

microbiome (Li et al., 2021; O'Sullivan et al., 2015; Sugino, Ma, Paneth, et al., 2021). 

Breastmilk is recommended for the first six months of life as it provides the ideal energy and 

nutrients to support infants’ growth and well-rounded development (Guittar et al., 2019). The 

human milk oligosaccharides (HMOs) are one of the main components of breast milk, which are 

partially digested in the small intestine and mostly reach the colon, where they are metabolized 

by Bifidobacterium, a beneficial bacteria, to produce metabolites that have physiological benefits 

and modulate immunological development (Donovan & Comstock, 2016; Le Huërou-Luron et 

al., 2010; Marcobal et al., 2010; Stuivenberg et al., 2022). In addition to the prebiotic effects of 

promoting the growth of beneficial bacteria, breast milk also contains diverse bacterial 

communities. It is recognized to be a potential source of bacteria that colonize the infant gut 

(Urbaniak et al., 2016). Exclusively breastfed infants had lower bacterial diversity, a higher 

abundance of Bifidobacterium, and a lower abundance of Lachnospiraceae compared to partially 

or non-breastfed infants (Baumann-Dudenhoeffer et al., 2018; Forbes et al., 2018; Sugino, Ma, 

Kerver, et al., 2021). Formula-fed infants had a distinct gut microbial composition from 

breastfed infants (Haddad et al., 2021; Ma et al., 2022; O'Sullivan et al., 2015; Yatsunenko et al., 

2012). Exclusively formula-fed infants displayed a more diverse gut microbiota with a lower 

abundance of Bifidobacterium species and an increased abundance of Clostridium species and 
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Enterobacteriaceae species due to the lacking of HMOs and higher protein contents in infant 

formula (Bäckhed et al., 2015; Benno et al., 1984; Penders et al., 2007). The mode of 

breastfeeding includes direct breastfeeding, expressed breastfeeding, and mixed feeding (Pang et 

al., 2017; Pérez-Escamilla et al., 2023). Direct breastfeeding is when an infant feeds directly 

from the breast. In contrast, expressed breast milk is when an infant consumes human milk that 

has been manually or mechanically expressed via a pump and is provided through a bottle, cup, 

or spoon. Mixed feeding occurs when an infant is both fed directly at the breast and given 

expressed breast milk (Pang et al., 2017). In this chapter, direct breastfeeding is referred to as 

“breastfeeding” or “breast;” expressed breastfeeding is referred to as “bottle feeding” or “bottle,” 

and mixed feeding is referred to as “mixed feeding” or “mix.” 

Pumping breast milk into a bottle can impact the bacterial composition of breast milk 

(Differding & Mueller, 2020; Moossavi & Azad, 2020; Weiss, 2005 ). However, the 

consequences of pumping and breastfeeding on infant gut microbiota have not been well studied. 

Streptococcus spp. and Veillonella dispar co-occurred in breast milk and infant’s stool, but this 

co-occurrence was reduced when infants were fed with pumped breastmilk (Fehr et al., 2020). 

They also reported that infants fed exclusively with direct breastmilk and those fed some pumped 

breastmilk had similar gut microbial composition (Fehr et al., 2020).   

It has yet to be fully examined whether there is a compositional difference in the infant 

gut microbiota when data are analyzed by breastfeeding patterns in the 24 hours immediately 

preceding fecal collection and the proportion of the human milk intake in the past week. There is 

little evidence on the association between breastfeeding patterns in the past 24 hours and infant 

gut microbiota when the infants are at 3 months of age. Therefore, this study aimed to investigate 

the relationship between breastmilk feeding patterns and infant gut microbiota in order to 
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determine how breastmilk feeding patterns and the proportion of the breastmilk affect the infant 

gut microbial composition.  

4.4 Materials and methods 

4.4.1 Study population 

The study population was described in aim 1. For aim 3, a total of 299 3-month-old 

infants were included in the final analysis, in which 136 infants were exclusively breastfed. 

Population demographics information was obtained from MARCH Prenatal 1 Survey 

questionnaire that asks about mothers' education level, maternal age, mother’s height, and pre-

pregnancy weight. The birth certificate information includes the infant sex, estimated weeks of 

gestation, and mode of delivery. Infant race information was collected through MARCH 3-month 

survey dictionary. The sample collection form, completed at the time of fecal sample collection 

and when the infants were 3 months of age, included information about the infant diet in the past 

24 hours and the infant dietary intake in the week prior to fecal collection, and breastfeeding 

patterns (at the breast, from a bottle, or mixed from breast and bottle). The Michigan State 

University Human Research Protection Program approved the study (IRB# 16-1429). 

4.4.2 Classification of breastfeeding patterns in the past day and the proportion of breastmilk 

intake in the past week 

The breastfeeding patterns in the past day among exclusively breastfed infants were 

classified as breastfeeding at the breast, bottle feeding, and mixed (at breast and from bottle) 

feeding. These infants were also reported to be fed 100% breastmilk in the past week. The 

additional categories of the proportion of breastmilk intake in the past week were breastmilk > 

50%, breastmilk ≤ 50%, and exclusively formula.  
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4.4.3 Stool sample collection 

Sample collection was as described in Aim 1. 

4.4.4 Laboratory procedures 

4.4.4.1 DNA extraction and 16S rRNA gene amplification 

DNA extraction, 16S rRNA gene amplification, and sequencing were carried out on stool 

samples as described in Aim 1. The only alteration was: PCR amplicon purification and 

quantification were conducted using SequalPrep™ Normalization Plate Kit per the 

manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA).  

4.4.4.2 Processing and analysis of sequence data 

The processing of sequencing data was also described in Aim 1. Samples were rarefied to 

1383 reads per sample before further analysis. Rarefaction curves were generated to confirm 

adequate community coverage. 

4.5 Statistical analysis 

All data were analyzed using R (version 4.0.2). Data normality was tested using 

Shapiro–Wilk test from stats package. Chi-square (stats package) for categorical population 

characteristics and Kruskal-Wallis (stats package) for continuous variables were used to examine 

the relationships with breastfeeding patterns (breastfeeding, bottle feeding, and mixed feeding) 

among exclusively breastfed infants. Data is presented as N (%) for categorical variables and 

Mean±SD with median (min, max) for continuous variables. Alpha diversity (Chao1, Shannon, 

and inverse Simpson indices) were assessed using the vegan package (Jari Oksanen et al., 2020). 

For the analysis of breastfeeding patterns, the relationships between Chao1 and Shannon and 
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breastfeeding patterns were tested using Kruskal-Wallis. Analysis of variance (ANOVA) from 

stats package was used to determine the relationship between inverse Simpson and breastfeeding 

patterns. For the analysis of all infants in the six feeding groups, relationships between Chao1 

and inverse Simpson and feeding groups were tested using Kruskal-Wallis. ANOVA was used to 

determine the relationship between Shannon and six groups. Dunn’s test (dunn.test package) for 

Kruskal-Wallis and Tukey’s HSD test (stats package) for ANOVA was used to conduct post hoc 

tests. Sorensen and Bray-Curtis dissimilarities of beta diversity were calculated using the vegan 

package and ordinated using principal coordinate analysis (PCoA). Permutational multivariate 

analysis of variance (PERMANOVA) was performed using the vegan package to test for 

significant differences in beta diversity. Post hoc pairwise comparison with FDR correction 

(Benjamini-Hochberg procedure, BH) was conducted to investigate the associations between two 

groups regarding beta diversity using pairwiseAdonis package. Average relative abundance for 

an OTU is calculated by summing all counts for that OTU and dividing by the total number of 

counts across all samples, then multiplying by 100 to get percent abundance. Taxa with an 

average relative abundance larger or equal to 1% were selected in the final analysis. Negative 

Binomial Generalized Linear Model from MASS package with FDR correction (BH procedure) 

was carried out to determine if the relative abundance of taxa differed by breastfeeding patterns 

or/and proportion of breastmilk intake. To validate the results from NB, Multivariate Association 

with Linear Models (MaAsLin) with FDR correction (BH procedure) from Maaslin2 package 

was used to investigate the associations between breastfeeding patterns and proportion of 

breastmilk intake and individual taxa (Mallick et al., 2021), adjusted by infant sex, infant race, 

mode of delivery, maternal education level, gestational age at birth, maternal pre-pregnancy 

BMI, maternal age and antibiotics use since birth. P-value<0.05 is significant. Associations are 
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considered significant when the q-value<0.1. 

4.6 Results 

4.6.1 Population characteristics 

A total of 136 exclusively breastfed infants were included in the final analyses (Table 

15). Of these, a majority of breastfed infants were female (53.7%) and White (87.5%). However, 

breastfeeding patterns were similar by infant sex and race. Maternal educational level tended to 

be associated with breastfeeding patterns (p-value=0.08). Around half of bottle-fed (54.5%) and 

mixed-fed infants (46.8%) were born to mothers with master’s or PhD degrees, whereas almost 

the same numbers of breast-fed infants were born to mothers with some college (33.3%), 

bachelor’s degree (30.2%), or master’s or PhD degree (27%). Mode of delivery, maternal pre-

pregnancy BMI, gestational age, and maternal age were not associated with breastfeeding 

patterns. 
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Table 15. Population characteristics and breastfeeding patterns among exclusively breastfed 

infants 

  
N=136 

Breastfeeding 

(N=63) 

Bottle feeding 

(N=11) 

Mixed feeding 

(N=62) 

p-

value 

Categorical variable1 
N(%) or 

Mean±SD 

N(%) or 

Median(min,max) 

N(%) or 

Median(min,max) 

N(%) or 

Median(min,m

ax) 

 

Infant sex      

Male 63(46.3%) 24(38.1%) 6(54.5%) 33(53.2%) 
0.20 

Female 73(53.7%) 39(61.9%) 5(45.5%) 29(46.8%) 

Infant race      

White 119(87.5%) 56(88.9%) 10(90.9%) 53(85.5%) 

0.26 Black 4(2.9%) 0(0%) 0(0%) 4(6.4%) 

Others 13(9.6%) 7(11.1%) 1(9.1%) 5(8.1%) 

Maternal education 

level 
     

High school or some 

high school 
10(7.4%) 6(9.5%) 0(0%) 4(6.5%) 

0.08 Some college 31(22.8%) 21(33.3%) 1(9.1%) 9(14.5%) 

Bachelor’s degree 43(31.6%) 19(30.2%) 4(36.4%) 20(32.2%) 

Master’s or PhD degree 52(38.2%) 17(27%) 6(54.5%) 29(46.8%) 

Delivery mode 
     

Vaginal 99(72.8%) 50(79.4%) 9(81.8%) 40(64.5%) 

0.15 C section 37(27.2%) 13(20.6%) 2(18.2%) 22(35.5%) 

No 114(83.8%) 54(85.7%) 11(100%) 49(79%) 

Continuous variable2      

Pre-pregnancy BMI 26.1±6.4 24.3 (17.6, 47.1) 23.5 (19, 39.5) 23.9(17, 46.5) 0.99 

Gestational age 38.9±1.58 39(34, 41) 39(37, 40) 39(31, 41) 0.23 

Maternal age 30.7±4.5 31(20, 51) 32(24, 34) 30.5(19, 42) 0.89 

1Categorical variable data is presented as N (%). Chi-square was used to examine the associations between infant 

sex, infant race, maternal education level, mode of delivery and breastfeeding patterns. 2Continuous variable data is 

presented as Mean±SD and Median(min,max). The Kruskal-Wallis test was used to examine the associations 

between maternal pre-pregnancy BMI, gestational age at birth, and maternal age and breastfeeding patterns. *P-

value < 0.05 is significant 
 

4.6.2 Alpha and beta diversity of the infant gut microbiota in relation to breastfeeding patterns 

The gut microbial diversity of infants was similar between breastfeeding, bottle feeding, 

and mixed feeding (Figure 14). The gut microbiota richness (Chao1 index) and diversity 

(Shannon index) was numerically lower in bottle-fed infants compared to breastfed and mixed-
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fed infants (Figure 14A, 14B). Similarly, mixed-fed infants seemed to have the lowest gut 

microbial richness and evenness among the more abundant microbiota compared to the other two 

groups (Figure 14C). However, it is important to note that these observed differences were not 

statistically significant.  

Figure 14. The associations between alpha diversity of the gut microbiota and infant 

breastfeeding patterns 
Shapiro–Wilk test was used to test data normality. Kruskal-Wallis test was used to examine the relationships 

between Chao1 (A) and Shannon (B) indices and breastfeeding patterns. The relationship between inverse Simpson 

index (C) and breastfeeding patterns was tested by ANOVA. P-value < 0.05 is significant. 

Breastfed, bottle-fed, and mixed-fed infants had significantly different gut microbial 

membership (p-value=0.03, Figure 15A) but similar gut microbial composition (Figure 15B). 

Gut microbiota of breastfed and mixed-fed infants had more similar richness (Figure 15A) 

compared to exclusively bottle-fed infants, explained by the closer ellipses and post hoc 

PERMANOVA tests (Breast vs Bottle, p-value=0.04; Breast vs Mix, p-value=0.4; Bottle vs Mix, 

p-value=0.3). 
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Figure 15. The associations between beta diversity of the gut microbiota and infant 

breastfeeding patterns  

PERMANOVA was performed to test the relationships between beta diversity and breastfeeding patterns. P-

value<0.05 is significant.   

4.6.3 Associations of alpha and beta diversity with breastfeeding patterns in the past day and 

dietary intake in the past week 

The alpha and beta diversity were compared between three breastfeeding patterns in the 

past day and three dietary intake groups in the past week (Figure 16, Figure 17). The infants in 

the three breastfeeding pattern groups (breast, bottle, and mix) were 100% breastmilk fed in the 

past day and were excluded from the other three infant feeding groups ( > 50% breastmilk,  ≤ 

50% breastmilk, and formula).  

Only breastfed infants had a similar gut microbial richness to those who fed breastmilk > 

50% or ≤ 50% in the past week (Figure 16A). The richness of gut microbiota of infants fed with 

exclusive breastmilk from the bottle and from both bottle and breast (mix) was significantly 

lower than those fed with breastmilk > 50%, breastmilk ≤ 50%, and formula in the past week. 

Infants fed with breastmilk>50%, breastmilk≤50%, and formula had similar gut microbial 

richness (Figure 16A). Infants fed breastmilk from breast or bottle had similar gut microbial 

diversity to the infants fed with more than 50% breastmilk, however; infants fed with a mix of 
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breastmilk from both breast and bottle had lower gut microbial diversity compared to the infants 

fed with > 50%, ≤ 50% of the breastmilk, and formula (Figure 16B, 16C). Infants fed with 

breastmilk > 50% had significantly lower gut microbial richness and composition than those fed 

breastmilk ≤ 50% and formula.  
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Figure 16. The associations between alpha diversity of the gut microbiota and breastfeeding 

patterns in the 24 hours immediately preceding stool sample collection for infants exclusively 

fed human milk and dietary intake in the past week for infants fed at least some formula 

Shapiro–Wilk test was used to test data normality. Kruskal-Wallis tests were used to examine the relationships 

between Chao1(A) and inverse Simpson(C) indices and feeding groups. The relationship between Shannon (B) and 

feeding groups was tested by the ANOVA test. Dunn's and Tukey’s HSD tests were performed for pairwise 

comparison. All infants in breastfeeding pattern groups were 100% breastmilk fed in the past week. They were 

excluded from the dietary intake groups. The boxplot shows the minimum, first quartile (Q1), median (Q2), third 

quartile (Q3), and maximum. P-value < 0.05 is significant.   
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For beta diversity, the gut microbial membership and composition differed across the six 

groups (Figure 17). Breastmilk from breast, bottle and mixed-fed infants had different gut 

microbial richness (Sorensen index) compared to > 50% and ≤ 50% breastmilk-fed infants 

(Figure 17A, Table 16). Bottle-fed infants with breastmilk had similar gut bacterial composition 

(Bray-Curtis index) to infants fed with > 50% and ≤ 50% breastmilk (Table 16). Formula-fed 

infants displayed a significantly different gut microbial membership and composition compared 

to the other 5 groups (breast-, bottle-, mixed-feeding, > 50% breastmilk, and ≤ 50% breastmilk) 

(Figure 17, Table 16). 

 

 

Figure 17. The associations between beta diversity of the gut microbiota and breastfeeding 

patterns in the past day for exclusively human milk fed infants and dietary intake in the past 

week for infants fed at least some formula 

PERMANOVA was performed to examine the relationships between gut microbiota beta diversity and six feeding 

groups. All infants in breastfeeding pattern groups were 100% breastmilk fed in the past week. They were excluded 

from the dietary intake groups. P-value<0.05 is significant. 
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Table 16. Significant pairwise comparisons of the relationships between beta diversity of the 

gut microbiota and breastfeeding patterns and breastmilk intake 

 
 

 

 

 

 

 

 

 

 

 

                                       

Pairwise PERMANOA with FDR correction (BH procedure) was conducted to investigate the associations between 

two groups in terms of beta diversity. All infants in breastfeeding pattern groups were 100% breastmilk fed in the 

past week. They were excluded from the dietary intake groups. Adjusted p-value < 0.1 is significant.    
 

4.6.4 The comparisons of the relative abundance of individual taxa in groups 

4.6.4.1 Individual taxa and breastfeeding patterns, results from NB 

Exclusively breastfed infants fed human milk at the breast had the lowest abundance of 

Bifidobacterium compared to bottle-fed and mixed-fed infants (Table 17). Enterobacteriaceae 

unclassified was more dominant in breastfed infants when compared to bottle-fed and mixed-fed 

infants (Table 17). The relative abundance of Bifidobacterium and Enterobacteriaceae 

unclassified was similar in the bottle and mixed feeding groups (Figure 18). The relative 

abundance of Escherichia Shigella was different across the three breastfeeding patterns, where 

bottle-fed infants had the highest abundance compared to breastfed and mixed-fed infants (Table 

 
Sorensen Bray-Curtis 

 Adjusted p-value Adjusted p-value 

Breast vs Breastmilk > 50% 0.05 0.02 

Bottle vs Breastmilk > 50% 0.05 Not significant 

Mixed vs Breastmilk > 50% 0.02 0.02 

Breast vs Breastmilk ≤ 50% 0.02 0.02 

Bottle vs Breastmilk ≤ 50% 0.03 Not significant 

Mixed vs Breastmilk ≤ 50% 0.02 0.02 

Breastmilk > 50% vs Breastmilk ≤ 50% Not significant 0.08 

Breastmilk ≤ 50% vs Formula 0.06 0.05 

Breastmilk > 50% vs Formula 0.02 0.02 

Breast vs Formula 0.02 0.02 

Bottle vs Formula 0.02 0.02 

Mixed vs Formula 0.02 0.02 
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17, Figure 19). There was almost no Blautia or Parabacteroides present in the guts of bottle-fed 

infants compared to the other two groups (Table 17). Bottle-fed infants had a higher abundance 

of Enterococcus compared to breastfed infants but similar levels of this bacteria as mixed-fed 

infants (Table 17, Figure 18). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 18. The comparisons of the relative abundance of taxa in three groups of breastfeeding 

patterns 

The top 15 abundant taxa with overall relative abundance >1% were shown in the figure. Negative Binomial 

Generalized Linear Model was used to compare the relative abundance of taxa between breastfeeding patterns. P-

values were FDR corrected with BH procedure. P-value < 0.1 is significant. 
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Table 17. The relative abundance of taxa in three groups of breastfeeding patterns 
 

Taxa Overall Breastfeeding 
Bottle 

feeding 

Mixed 

feeding 
p-value 

Bifidobacterium 29.7 ± 21.5 27.3 ± 20.3a 31.1 ± 22.9b 31.9 ± 22.6b <0.01* 

Lachnospiraceae_unclassified 3.7 ± 8.1 3.7 ± 8.2 8.4 ± 11.4 3 ± 7.3 0.46 

Veillonella 10.4 ± 12.4 11.3 ± 12.3 6 ± 8.4 10.4 ± 12.9 0.67 

Enterobacteriaceae_unclassified 2.1 ± 11 3.4 ± 15.6a 0.2 ± 0.4b 1 ± 4b   0.01* 

Bacteroides 6.5 ± 12.2 6.7 ± 12.9 8.2 ± 12.4 6 ± 11.6 0.90 

Escherichia Shigella 9.9 ± 9.4 11.3 ± 10.8a 12.7 ± 9.4b 8 ± 7.5c <0.01* 

Streptococcus 3.8 ± 5.8 3.7 ± 5.7 1.8 ± 3.1 4.3 ± 6.3 0.36 

Clostridium_sensu_stricto 6 ± 10.4 5.7 ± 8.5 5.1 ± 6.5 6.6 ± 12.5 0.90 

Blautia 1.7 ± 6.8 2 ± 6.8a 0 ± 0b 1.6 ± 7.4a   0.02* 

Parabacteroides 1.2 ± 5.1 1 ± 2.7a 0 ± 0b 1.7 ± 7a   0.05* 

Phocaeicola 5.1 ± 9.4 5.5 ± 9.7 7.1 ± 12.2 4.3 ± 8.6 0.82 

Megasphaera 1.2 ± 6.4 1.6 ± 8.3 0.3 ± 1 1 ± 4.4 0.80 

Enterococcus 1.7 ± 3.6 1.2 ± 2.1a 5.1 ± 10.1b 1.6 ± 2.2ab   0.02* 

Lacticaseibacillus 1.8 ± 3.4 2.3 ± 3.9 1.7 ± 2.7 1.2 ± 3 0.56 

Klebsiella 6.5 ± 12.7 5.1 ± 11.8 5.2 ± 11.7 8 ± 11.8 0.76 

The top 15 abundant taxa with overall relative abundance >1% are shown in the table. Negative Binomial 

Generalized Linear Model was used to compare the relative abundance of taxa between breastfeeding patterns. P-

values were FDR corrected with BH procedure. Data is presented as Mean±SD. P-value < 0.1 is significant.  

4.6.4.2 Individual taxa and six feeding groups, results from NB 

Formula-fed infants had a similar abundance of Bifidobacterium with infants fed with 

breastmilk ≤50% but lower than the rest of the four groups (Table 18). The relative abundance of 

Lachnospiraceae unclassified was similar in infants exclusively fed human milk through a bottle 

to those fed with breastmilk >50%, breastmilk≤50%, and formula. Infants exclusively fed human 

milk at the breast had a higher relative abundance of Enterobacteriaceae unclassified compared 

to the other groups. Formula-fed infants had a significantly lower abundance of Escherichia 

Shigella than infants fed with breast, bottle, and mixed. Breastfed, bottle-fed, and mixed-fed 

infants had a similar abundance of Streptococcus to formula-fed infants. Clostridium sensu 

stricto was more prevalent in breastfed and mixed-fed infants as compared to formula-fed 
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infants. Blautia and Parabacteroides were the least abundant in bottle-fed infants than the others. 

Breastfed infants had less abundance of Enterococcus than bottle-fed infants but a similar 

abundance to the other groups. Lacticaseibacillus was the least abundant in formula-fed infants 

in contrast to the other feeding groups.  
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Table 18. The relative abundance of taxa in six feeding groups, results from NB 
 

 Overall Breastfeeding 
Bottle 

feeding 

Mixed 

feeding 
Breastmilk >50 Breastmilk ≤50 Formula 

p-

value 

Bifidobacterium 24.1 ± 19.3 27.3 ± 20.3a 31.1 ± 22.9a 31.9 ± 22.6a 30.6 ± 17.2a 20.4 ± 14.7ab 13.1 ± 11.7b <0.01* 

Lachnospiraceae_unclassified 8.1 ± 10.6 3.7 ± 8.2a 8.4 ± 11.4ab 3 ± 7.3a 8.2 ± 8.7b 9.1 ± 9.4b 14.7 ± 12b <0.01* 

Veillonella 10.6 ± 11.4 11.3 ± 12.3 6 ± 8.4 10.4 ± 12.9 11.4 ± 12.7 13.4 ± 8.5 9.2 ± 9.9 0.66 

Enterobacteriaceae_unclassifie 1.2 ± 7.5 3.4 ± 15.6a 0.2 ± 0.4b 1 ± 4b 0.4 ± 1.9b 0.3 ± 0.8b 0.5 ± 1.4b <0.01* 

Bacteroides 6.4 ± 10.6 6.7 ± 12.9 8.2 ± 12.4 6 ± 11.6 6.9 ± 10.4 7.4 ± 10.6 5.6 ± 7.8 0.97 

Escherichia Shigella 7.3 ± 8.6 11.3 ± 10.8a 12.7 ± 9.4a 8 ± 7.5a 6.6 ± 9.6ab 6.5 ± 6.6ab 3.8 ± 5.8b <0.01* 

Streptococcus 3.1 ± 5.6 3.7 ± 5.7a 1.8 ± 3.1ab 4.3 ± 6.3a 1.5 ± 2.5b 2.7 ± 6.7ab 3 ± 5.9a   0.01* 

Clostridium_sensu_stricto 4 ± 7.9 5.7 ± 8.5a 5.1 ± 6.5ab 6.6 ± 12.5a 2.4 ± 4.5b 2.6 ± 4.8ab 2.1 ± 4.3b <0.01* 

Blautia 3 ± 6.8 2 ± 6.8a 0 ± 0b 1.6 ± 7.4a 1.5 ± 3.4a 4.8 ± 7.6ac 5.3 ± 6.9c <0.01* 

Parabacteroides 1.5 ± 4.9 1 ± 2.7a 0 ± 0b 1.7 ± 7a 1.3 ± 3.2a 2.1 ± 4.7a 1.9 ± 5.3a   0.07* 

Phocaeicola 5.6 ± 9.2 5.5 ± 9.7 7.1 ± 12.2 4.3 ± 8.6 4.5 ± 7.5 6.5 ± 10 6.6 ± 9.4 0.91 

Megasphaera 2.8 ± 8.7 1.6 ± 8.3ab 0.3 ± 1ab 1 ± 4.4a 7.2 ± 15.7b 1.7 ± 4.5ab 3.3 ± 7.1ab 0.13 

Enterococcus 1.7 ± 3.3 1.2 ± 2.1a 5.1 ± 10.1b 1.6 ± 2.2ab 1.2 ± 2.6a 2.4 ± 3.6ab 1.8 ± 2.9ab   0.03* 

Lacticaseibacillus 1 ± 2.6 2.3 ± 3.9a 1.7 ± 2.7a 1.2 ± 3a 0.9 ± 1.8a 0.6 ± 1.6a 0.1 ± 0.8b <0.01* 

Klebsiella 4.8 ± 9.5 5.1 ± 11.8ac 5.2 ± 11.7abc 8 ± 13.7a 2.2 ± 4.5b 3.3 ± 4.5ab 4 ± 6.2bc   0.04* 

Note that Breastfeeding, Bottle Feeding, and Mixed feeding were all exclusively fed human milk in the week preceding stool sample collection. Those infants in 

the remaining three groups were fed at least some formula in the week preceding stool sample collection. The top 15 abundant taxa with overall relative 

abundance>1% were shown in the table. Negative Binomial Generalized Linear Model was used to compare the relative abundance of taxa between 

breastfeeding patterns. P-values were FDR corrected with BH procedure. Data is presented as Mean±SD.P-value < 0.1 is significant.  
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4.6.4.3 Individual taxa and six feeding groups, results from MaAsLin 

The relative abundance of Bifidobacterium was significantly higher in the infants fed 

with breastmilk > 50% compared to formula-fed infants (Figure 19). Infants fed with breastmilk 

from the breast, breastmilk from a bottle, breastmilk from both breast and bottle, and breastmilk 

> 50% had a lower abundance of Blautia compared to those fed with formula. Similarly, infants 

fed breast milk from a bottle or mixed-fed had a lower abundance of Blautia than infants fed less 

than or equal to 50% breastmilk. Lachnospiraceae unclassified was lower in breast and mixed-

fed infants than in formula-fed infants. Infants fed with breastmilk > 50% or ≤ 50% had a higher 

relative abundance of Lachnospiraceae unclassified than those fed with breast and mixed 

patterns. Less Lacticaseibacillus was present in formula-fed infants than in the other five groups. 

Breastfed infants had a higher abundance of Lacticaseibacillus than those fed with breastmilk > 

50% or ≤ 50%. The relative abundance of Streptococcus was higher in mixed-fed infants when 

compared to infants who received breastmilk > 50%. 
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Figure 19. The comparisons of the relative abundance of taxa in six feeding groups, results 

from MaAsLin 

Note that Breastfeeding, Bottle Feeding, and Mixed were all exclusively fed human milk in the week preceding stool 

sample collection. Those infants in the remaining three groups were fed at least some formula in the week preceding 

stool sample collection. The top 15 abundant taxa with overall relative abundance >1% were shown in the table. 

MaAsLin with FDR correction by BH procedure was used to compare the relative abundance of taxa between 

feeding groups, adjusted by infant sex, infant race, mode of delivery, maternal education level, gestational age at 

birth, maternal pre-pregnancy BMI, maternal age and antibiotics use since birth. q-value < 0.1 is significant. 
 

4.7 Discussion 

The current study demonstrated that the infant gut microbiota differed when fed human 

milk at the breast, from a bottle, and from both breast and bottle. However, the difference was 

small compared to the difference in the gut microbiota of infants fed breastmilk, partial 

breastmilk, and formula. Although bottle-fed infants were 100% breastmilk fed, they have 

similar microbiota composition with > 50% and ≤ 50% breastmilk intake infants. These results 

indicate that the mode of feeding (breastfeeding, bottle feeding, and mixed feeding) and the 

proportion of breastmilk intake may have an impact on the composition of infant gut 



 

 90 

microbiome. The differences in gut microbial richness, diversity, and specific bacterial taxa 

among the groups could have potential implications for the infant’s health and development. It is 

important to note that these results do not establish a causal relationship between the mode of 

feeding and gut microbiome composition. Further research is needed to understand the potential 

health implications of these differences, as well as the factors driving the observed differences in 

gut microbial composition among the feeding groups. 

Breast milk contains a rich microbiota, a potential source of microbes that colonize the 

infant’s gut (Corona-Cervantes et al., 2020; Pannaraj et al., 2017). Previous studies have shown 

that 68% of the infant gut bacteria within the first six days postpartum originated from human 

milk among Mexican newborns (Corona-Cervantes et al., 2020). Additionally, microbiota from 

mother’s areolar skin was transferred to exclusively breastfed infants’ guts. Breastfed infants had 

27.7% of their gut microbiota colonized from breastmilk and 10.4% from areolar skin of their 

mothers during the first-month life among American infants (Pannaraj et al., 2017). Breastmilk 

feeding patterns could potentially influence the bacterial transfer from human milk or skin to the 

infant gut microbiota. In our study, we found that the bottle-fed infants had numerically lower 

richness (Chao1 index) and diversity (Shannon and inverse Simpson indices) of gut microbiota 

compared to breastfed infants. However, this difference was not statistically significant. Gut 

microbiota of breastfed and mix-fed infants had more similar membership (Sorensen) compared 

to bottle-fed infants. Our results are similar to those reported by Fehr et al., where consumption 

of pumped milk was associated with depletion of some shared bacteria milk, but they didn’t 

report that there was a significant compositional and taxonomic difference (Fehr et al., 2020). In 

another study, human milk microbiota in pumped breastmilk was associated with lower alpha 

diversity (Observed OTUs and inverse Simpson index) compared to manually expressed breast 



 

 91 

milk. In the same study, the milk bacterial richness was significantly lower in some indirect 

breastfeeding compared to all direct breastfeeding (Moossavi et al., 2019). Therefore, it is 

possibly explained by whether the breastmilk bacteria can remain alive and active during 

pumping (e.g., sanitating), storing (e.g., freezing, heating, thawing), and bottle feeding (e.g., 

indirect contact with mothers), which weren’t assessed in our study. Additionally, we did not 

research the associations between human milk bacteria and infant gut microbiota by different 

breastfeeding patterns. Therefore, future research is needed to investigate how breastfeeding 

patterns, considering these potential factors mentioned above, would influence and shape the 

infant gut microbiota. 

Human milk oligosaccharides (HMOs) are comprised of complex and unconjugated 

glycans that are present in human breast milk (Austin & Bénet, 2018; Bode, 2012). They have 

recognized prebiotics that can promote the growth of beneficial gut microbiota in infants, such as 

Bifidobacterium (Akkerman et al., 2019; Fabiano et al., 2021; Ferro et al., 2021; Karav et al., 

2016; Rahman et al., 2023). Regardless of breastfeeding patterns, infants fed with more than 

50% breastmilk in the past week had a significantly higher abundance of Bifidobacterium than 

infants fed with less than or equal to 50% breastmilk and formula. This finding was consistent 

with the previous literature (Hascoët et al., 2011; Ma et al., 2020). Surprisingly, we observed that 

infants fed with breastmilk from the breast had the lowest abundance of Bifidobacterium 

compared to bottle-fed and mixed-fed infants. A possible explanation might be the compositional 

changes in breast milk during feeding, as explained next. Foremilk refers to the milk at the 

beginning of a feed, and it is lower in fat and higher in lactose than hindmilk. Hindmilk is the 

milk at the end of a feed with higher fats (Gidrewicz & Fenton, 2014; Khan et al., 2013; Slusher 

et al., 2003). This natural change in milk composition during a single feeding session exposes the 



 

 92 

infant's gut to a range of nutrient concentrations and osmolarity levels. As a result, different 

microenvironments may be created in the infant's gut, which could impact the growth and 

development of certain gut microbiota. On the other hand, when breast milk is expressed and fed 

to the infant from a bottle, the foremilk, and hindmilk are mixed together, creating a more 

uniform milk composition. This means that the infant receives a consistent mixture of nutrients 

throughout the feeding, with no gradual transition between foremilk and hindmilk, which may 

affect the infant's gut microbiota differently compared to the gradual transition experienced 

during direct breastfeeding. 

Our study has several strengths. We researched the infant gut microbial variation based 

on the short-term (one day) breastfeeding patterns and long-term (one week) dietary history and 

investigated how the variations in infant diet relate to infant gut microbiota composition and 

diversity. This study offers insights into the fact that, although infants who were fed breastmilk 

from a bottle in the past day are still considered breast milk-fed, their gut microbial diversity 

might differ from those who have been fed more than 50% breastmilk in the past week, 

potentially due to variations in feeding practices. There are some limitations in our study as well. 

Only 11 out of 136 infants were fed breastmilk from the bottle, and 87.5% were White. This 

might reduce the statistical power and limit the generalizability of the results. Additionally, we 

did not collect information on how caregivers sanitized the pumping supplies or bottles, nor did 

we collect information about how the pumped breastmilk was stored. These factors could 

potentially affect the milk microbial composition and, thereby, the gut microbial composition 

and, consequently, influence the results.  
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4.8 Conclusions 

 

In conclusion, this study provides evidence that the mode of feeding human milk, 

specifically breastfeeding, bottle feeding, or mixed feeding, may have an impact on the 

composition of an infant's gut microbiome. We identified variations in the abundance of specific 

bacterial taxa among the groups, such as Bifidobacterium, Enterobacteriaceae unclassified, 

Escherichia-Shigella, Blautia, and Parabacteroides. These results highlight the importance of 

further research to better understand the potential health implications of these differences and to 

inform healthcare professionals in providing personalized feeding recommendations for infants 

that promote optimal gut microbiome development and overall health. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTION
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5.1 Conclusion 

The results of the studies demonstrated the relationships between the infant feeding 

method in early infancy and neurodevelopmental outcomes in late infancy and how gut 

microbiota in early infancy mediated this relationship. It also provided evidence on whether 

breastfeeding patterns (breastmilk fed at breast, breastmilk fed from bottle, and breastmilk fed 

from both breast and bottle) can shape the infant gut microbiota composition. The following 

research aims were examined in each chapter (Figure 20): 

• Chapter 2 (Aim 1). The associations between infant gut microbiota and 

neurodevelopmental outcomes. 

• Chapter 3 (Aim 2). 1) The associations between infant feeding method and 

neurodevelopmental outcomes. 2) The relationship between infant feeding method and 

infant gut microbiota. 3) The mediating role of the infant gut microbiota in the 

associations of infant feeding method on neurodevelopmental outcomes. 

• Chapter 4 (Aim 3). The associations between infant breastfeeding patterns (breast, bottle, 

and mixed feeding) and infant gut microbiota 

 

 

 

 

 

 

 

Figure 20. An overview of the study design 
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The covariates were adjusted in each aim (Table 19): 

Table 19. Covariates adjusted in each aim 

Questionnaires Time Variables used Aim 

MARCH Prenatal 1 

Survey questionnaire 

During 

pregnancy 

Maternal education level 1,2,3 

Maternal height 1,2,3 

Pre-pregnancy weight 1,2,3 

Maternal age 1,2,3 

Birth certificate 

information 

Infants were 

born 

Infant sex 1,2,3 

Estimated weeks of gestation 1,2,3 

Mode of delivery 1,2,3 

MARCH 3-month 

survey  

Infants were 3  

months of age, 

before sending 

fecal collection 

kit 

Infant race 1,2,3 

Sample collection form Fecal collection 

at 3 months 

Infant feeding method in the past 24 

hours 

1,2 

Infant feeding method in the past week 1,3 

Infant breastfeeding patterns in the 

past 24 hours 

3 

Antibiotics intake since birth 1,2,3 

MARCH 9-month 

survey dictionary 

Infants were 9 

months of age 

Breastfeeding duration 2 

Any breastfeeding duration 

ASQ 1,2 

 

The following are the most important results:  

• A higher Chao 1 index was associated with lower gross motor skills. Shannon index was 

positively related to problem-solving. The Bray-Curtis dissimilarity matrix was 

associated with fine motor and communication. 

• Infants with gut microbiotas that grouped into Cluster 3 (Bacteroides-dominant) had 

lower problem-solving scores than those with gut microbiotas that grouped into Cluster 1 

(Lachnospiraceae unclassified-dominated). 

• Formula-fed infants had more diverse gut microbiota than breastfed infants at 3 months 

of age. 
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• Breastfed infants who had been given a vitamin D supplement in the past 24 hours prior 

to sampling had higher fine motor and communication scores than those exclusively 

breastfed infants. 

• Infants fed formula at 3 months had higher fine motor and communication scores at 9 

months compared to those fed exclusive breast milk. 

• The Bray-Curtis dissimilarity matrix of gut microbiota at 3 months of age mediated the 

association between the infant feeding method at 3 months and fine motor scores at 9 

months. 

• Infant fed exclusively breastmilk from a bottle had lower alpha diversity of the gut 

microbiota than those fed from breast and both breast and bottle, but it was not 

statistically significant. 

• Infant fed exclusively breastmilk at breast had different gut microbial membership than 

bottle-fed infants as measured by the Sorensen dissimilarity matrix. 

• Infant fed exclusively breastmilk at breast had a lower abundance of Bifidobacterium but 

the higher abundance of Enterobacteriaceae_unclassified compared to bottle- and mixed-

fed infants. 

The study in Chapter 2 (Aim 1) indicated that the richness measured by Chao 1 index of 

infant gut microbiota at 3 months was negatively associated with gross motor scores at 9 months. 

Richness and evenness, as measured by Shannon index of the gut microbiota, were positively 

associated with problem-solving scores. Bray-Curtis dissimilarity matrix was associated with 

fine motor and communication scores. These results suggest that the gut microbiota in early life 

plays a role in cognitive development later in life, which supports the growing body of evidence 

linking gut microbial diversity to brain development. Additionally, the positive association 
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between gut microbial diversity and problem-solving scores highlights the importance of 

maintaining a diverse gut microbiota in early life. This could have implications for developing 

interventions, such as probiotics or prebiotics, aimed at promoting gut health in infants. Finally, 

these results suggest that it may be possible to use gut microbiota measures as a predictor of 

infant development. However, further validation studies are required. 

Based on the results presented in Chapter 3 (Aim 2) demonstrated that breastfed infants 

given a vitamin D supplement in the 24 hours prior to stool sampling had higher fine motor and 

communication scores than those exclusively breastfed at 3 months, suggesting that 

supplementing breastfed infants with vitamin D may have a positive impact on infant brain 

development. However, we did not track the dose of the supplemented vitamin D. Nor did we 

measure vitamin D consumption status of the infants or their mothers. Therefore, the duration of 

vitamin D supplementation and the dose of vitamin D supplementation should also be considered 

to affirm this result. We found that infants fed formula at 3 months had higher fine motor and 

communication scores at 9 months than those fed exclusive breast milk. This result indicates that 

formula feeding may positively impact fine motor and communication development in some 

infants when the formula is provided beginning at 3 months of age specifically.  

A mediating role of gut microbiota in the associations between infant feeding method and 

neurodevelopment was reported by this study. The Bray-Curtis dissimilarity matrix of gut 

microbiota at 3 months of age mediated the association between the infant feeding method at 3 

months and fine motor scores at 9 months, but this mediation disappeared after controlling 

covariates. This result suggests that gut microbiota in early infancy plays a key role in mediating 

the impact of feeding practices on some aspects of infant neurodevelopment. In conclusion, this 

chapter provides insights into the importance of gut health in early life for infant 
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neurodevelopment. It provides evidence that the gut microbiome may play a key role in 

mediating the impact of feeding practices on infant neurodevelopment. These results confirm the 

hypothesis that utilizing nutritional intervention as a new approach to initiate gut microbial 

colonization in the early stages of infancy has the potential to change neurodevelopmental 

outcomes in later infancy. 

For Chapter 4 (Aim 3), it is important to note that all the infants were exclusively 

breastmilk-fed in the past day before fecal collection. The results presented in this chapter 

suggested that, for those infants exclusively fed human milk, the gut microbiota of bottle-fed 

infants had lower alpha diversity compared to breast- and mixed-fed infants; however, it was not 

statistically different. Breastfed infants, on the other hand, exhibited distinct gut microbial 

composition when compared to those who were bottle-fed, as indicated by the Sorensen 

dissimilarity matrix. Therefore, these results suggest that breastmilk feeding patterns play a 

crucial role in shaping the gut microbiota of infants, and infants fed human milk via a bottle may 

impact the richness and composition of the gut microbiota. Additionally, infants fed human milk 

exclusively at the breast had lower levels of Bifidobacterium but higher levels of 

Enterobacteriaceae unclassified than bottle- and mixed-fed infants. It has been studied that 

Bifidobacterium is a beneficial bacteria in infant gut that can help modulate the immune 

response, strengthen the gut barrier, etc (Stuivenberg et al., 2022). However, some species of 

Enterobacteriaceae are pathogenic (Zhang et al., 2020). Therefore, our results may have 

important implications for infant health and development. Although this result is opposed to 

conventional wisdom that breastfeeding from the breast is more beneficial, it highlights the 

complex relationship between the mode of breastfeeding and gut microbial composition in 

infants. 
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5.2 Future directions 

In Chapter 2 (Aim 1), we present evidence of associations between infant gut microbiota 

at 3 months of age and later life neurodevelopment measured by ASQ-3 at 9 months of age. In 

Chapter 3 (Aim 2), we present evidence for the mediating role of the early-life gut microbiota 

composition (Bray-Curtis matrix) in the association between infant feeding method at 3 months 

of age and fine motor scores at 9 months of age. The neurodevelopmental assessment instrument, 

ASQ-3, used in these experiments, requires parents or caregivers to complete the questionnaire. 

Thus, there might be some biases by their own perceptions, expectations, and cultural beliefs. 

Additionally, parents with low socioeconomic status have been shown to over- or underestimate 

their children’s performance on the questions (Feldman et al., 2000). Future study could use 

another standardized and comprehensive tool to assess infant neurodevelopment to obtain 

consistent results. The Bayley Scales of Infant and Toddler Development, which requires a 

trained evaluator to directly interact with the infants and score development using standardized 

tasks, would be a good option to assess the infant neurodevelopment (Balasundaram & 

Avulakunta, 2022). For example, a significant association was observed between infant gut 

microbiota and fine motor skills in 18-month-old full-term infants using Bayley Scales of Infant 

and Toddler Development, Third Edition (Acuña et al., 2021). In our study, we only assessed the 

neurodevelopment outcome when the infants were at 9 months of age. We did not extract the 

clinical diagnosis of neurodevelopment delays or follow the infants longitudinally to check if 

ASQ accurately captures the neurodevelopment delays. Therefore, conducting a longitudinal 

study to collect neurodevelopment information at different time points or using medical records 

of neurodevelopment is needed to analyze the relationship between infant gut microbial 

development and infant neurodevelopment at different ages to obtain potentially more consistent 



 

 101 

results and develop a causal relationship. In our study, we observed that breastfed infants with 

vitamin supplementation had higher fine motor and communication scores than exclusively 

breastfed infants based on the parental reports on vitamin D intake. Therefore, future studies 

should include an accurate vitamin D assessment. For example, collecting infant blood samples 

and testing the serum or plasma vitamin D levels should be done in the future. 

In Chapter 4 (Aim 3), we identified the potential influences of breastfeeding patterns on 

gut microbial development among exclusively breast milk-fed infants at 3 months of age. Infants 

were determined to be “exclusively human milk-fed” based on parental reports of infant dietary 

intake in the past week. We also collected breastfeeding patterns information (breastfeeding at 

breast, breastfeeding from the bottle and breastfeeding from both breast and bottle) in the past 24 

hours before fecal collection. However, based on this information, we can’t establish a causal 

relationship between breastfeeding patterns and infant gut microbiota. It has been shown that 

breastmilk bacteria can be affected by breastfeeding patterns (Moossavi et al., 2019). Future 

study can compare the survival rates of live breastmilk bacteria between breastfeeding patterns  

in combination with the infant gut microbiota. Additionally, other exposures during pumping, 

such as sanitation for the bottles and pumping supplies and breast milk storage conditions (e.g., 

heating, freezing, thawing), such as “How did you store the rest of the pumped breastmilk if you 

pump a lot of milk at once?” and “How often do you sanitize the pumping supplies?”, can also 

be assessed along with the breastfeeding patterns in future work. Through such research, the 

external bacteria contributed by the three different breastfeeding patterns on the infant gut 

microbiota will be better understood.  

Our study has several strengths. Our longitudinal study of typically developing infants found 

evidence of a relationship between the gut microbiota during infancy and neurodevelopmental 
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outcomes later in life. Our study is the first to examine the potential mediating role of early-life 

gut microbiota in the relationship between infant feeding practices and later neurodevelopmental 

outcomes. To reduce the potential impact of confounding factors, we excluded pre-term infants 

known to have delayed neurodevelopment compared to full-term infants. Our study also provides 

insights into whether breastfeeding patterns can affect the infant gut microbial composition 

among exclusively breastmilk-fed infants. This study is subject to several limitations that should 

be taken into consideration. Firstly, the stool samples were stored and transported at room 

temperature for a day, which may have affected the gut microbiota composition. However, we 

used stool collection tubes with preservatives that can maintain the gut microbiota composition 

for up to two weeks at room temperature, reducing the impact of this limitation. Secondly, the 

ASQ-3 measurements used in this study were parent-reported, possibly introducing some biases 

in the results. Thirdly, we did not consider exposures at 9 months of age such as the contact with 

other infants during day care and feeding practices. The limited size of our study sample may 

result in an inadequate representation of specific participant characteristics, potentially leading to 

biased results in our analyses. Additionally, we cannot research the “real neurodevelopmental 

delays” because a majority of the kids were appropriately developing as measured by the ASQ. 

Further study with a larger and more diverse population will be analyzed when the recruitment of 

participants is done. Shotgun metagenomics analysis could be conducted to investigate the 

functions and other organisms of our interest. The findings from the studies included in this 

dissertation provide a better understanding of the complex relationship between infant feeding 

practices, gut microbiota, and neurodevelopmental outcomes. Primarily, the work demonstrated 

that early-life gut microbiota plays a significant role in cognitive development, highlighting the 

importance of modulation of gut microbiota in early life. Additionally, this research noted that 
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gut microbiota composition at 3 months of age mediates the association between infant feeding 

at 3 months of age and fine motor scores at 9 months of age. Finally, this study suggests that 

breastmilk feeding patterns play a crucial role in shaping the gut microbiota of infants, with 

distinct gut microbial composition found in infants fed breastmilk from the breast compared to 

those fed breastmilk from a bottle. Overall, the findings provide important implications for 

healthcare providers and parents to promote optimal gut health and cognitive development in 

early life through nutritional intervention and suggest the need for further research to confirm 

and expand upon these findings.
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APPENDIX A: IRB APPROVAL LETTER 

 

Modification and Continuing Review APPROVAL 

Pre-2018 Common Rule 

March 27, 2023 

To: Nigel S Paneth 

Re: MSU Study ID: LEGACY16-1429M 
IRB: Biomedical and Health Inst. Review Board (BIRB) 
Principal Investigator: Nigel S Paneth 
Category: Expedited 2(b), 3, 5, 7 
Submission: Modification and Continuing Review MODCR00001186 
Submission Approval Date: 3/24/2023 
Effective Date: 3/24/2023 
Study Expiration Date: 3/23/2024 

Title: Prenatal Exposures and Child Health Outcomes: A Statewide Study (CGA# 
149003, 151506) 

This submission has been approved by the Michigan State University (MSU) 
Biomedical and Health Inst. Review Board (BIRB). The submission was reviewed 
by the Institutional Review Board (IRB) through the Non-Committee Review 
procedure. The IRB has found that this study protects the rights and welfare of 
human subjects and meets the requirements of MSU's Federal Wide Assurance 
(FWA00004556) and the federal regulations for the protection of human subjects in 
research (e.g., pre-2018 45 CFR 46, 28 CFR 46, 21 CFR 50, 56, other applicable  

Office of 
Regulatory 

Affairs 
Human Research 

Protection Program 

4000 Collins Road 
Suite 136 

Lansing, MI 48910 

517-355-2180 

regulations). 

This letter notes that the study is closed to new accrual and this approval is for 
patient follow-up reporting only. Any further new recruitment or contact with new 
subjects will require IRB review and approval via a modification before 
implementation. 

This letter notes approval for the social media cards, CHARM communications and 
thank you card, Prenatal 3 survey, Toenail Questionnaire, instructions, collection 
protocol, and communication scripts, and Data Abstraction Form. 

Fax: 517-432-4503  
Email: irb@msu.edu 

www.hrpp.msu.edu 
How to Access Final Documents 
To access the study’s final materials, including those approved by the IRB such as 
consent forms, recruitment materials, and the approved protocol, if applicable, 
please log into the Click™ Research Compliance System, open the study’s 
workspace, and view the “Documents” tab. To obtain consent form(s) stamped with 
the IRB watermark, select the “Final” PDF version of your consent form(s) as 
applicable in the “Documents” tab. Please note that the consent form(s) stamped 
with the IRB watermark must typically be used. 
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maintain oversight over all study personnel and to assure and to maintain 
appropriate tracking that these requirements are met (e.g. documentation of training 
completion, conflict of interest). When non-MSU personnel are engaged in human 
research, there are additional requirements. See HRPP Manual Section 4-10, 
Designation as Key Project Personnel on Non-Exempt IRB Projects for more 
information. 

Prisoner Research: If a human subject involved in ongoing research becomes a 
prisoner during the course of the study and the relevant research proposal was not 
reviewed and approved by the IRB in accordance with the requirements for 
research involving prisoners under subpart C of 45 CFR part 46, the investigator 
must promptly notify the IRB.

Site Visits: The MSU HRPP Compliance office conducts post approval site visits 
for certain IRB approved studies. If the study is selected for a site visit, you will be 
contacted by the HRPP Compliance office to schedule the site visit. 

For Studies that Involve Consent, Parental Permission, or Assent Form(s):

Use of IRB Approved Form: Investigators must use the form(s) approved by 
the IRB and must typically use the form with the IRB watermark.

Copy Provided to Subjects: A copy of the form(s) must be provided to the 
individual signing the form. In some instances, that individual must be provided 
with a copy of the signed form (e.g. studies following ICH-GCP E6 
requirements). Assent forms should be provided as required by the IRB.

Record Retention: All records relating to the research must be appropriately 
managed and retained. This includes records under the investigator's control, such 
as the informed consent document. Investigators must retain copies of signed forms 
or oral consent records (e.g., logs). Investigators must retain all pages of the form, 
not just the signature page. Investigators may not attempt to de-identify the form; it 
must be retained with all original information. The PI must maintain these records 
for a minimum of three years after the IRB has closed the research and a longer 
retention period may be required by law, contract, funding agency, university 
requirement or other requirements for certain studies, such as those that are 
sponsored or FDA regulated research. See HRPP Manual Section 4-7-A, 
Recordkeeping for Investigators, for more information.

Closure: If the research activities no longer involve human subjects, please submit 
a Continuing Review request, through which study closure may be requested. 
Human subject research activities are complete if there is no further interactions or 
interventions with human subjects and/or no further analysis of identifiable private 
information.

For More Information: See the HRPP Manual (available at hrpp.msu.edu).
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Contact Information: If we can be of further assistance or if you have questions, 
please contact us at 517-355-2180 or via email at IRB@msu.edu. Please visit 
hrpp.msu.edu to access the HRPP Manual, templates, etc. 

Expedited Category. Please see the appropriate research category below for the 
full regulatory text. 

Expedited 1. Clinical studies of drugs and medical devices only when condition (a) 
or (b) is met. 
(a) Research on drugs for which an investigational new drug application (21 CFR 
Part 312) is not required. (Note: Research on marketed drugs that significantly 
increases the risks or decreases the acceptability of the risks associated with the 
use of the product is not eligible for expedited review.)
(b) Research on medical devices for which (i) an investigational device exemption 
application (21 CFR Part 812) is not required; or (ii) the medical device is 
cleared/approved for marketing and the medical device is being used in accordance 
with its cleared/approved labeling.

Expedited 2. Collection of blood samples by finger stick, heel stick, ear stick, or 
venipuncture as follows: 
(a) from healthy, nonpregnant adults who weigh at least 110 pounds. For these 
subjects, the amounts drawn may not exceed 550 ml in an 8 week period and 
collection may not occur more frequently than 2 times per week; or
(b) from other adults and children, considering the age, weight, and health of the 
subjects, the collection procedure, the amount of blood to be collected, and the 
frequency with which it will be collected. For these subjects, the amount drawn may 
not exceed the lesser of 50 ml or 3 ml per kg in an 8 week period and collection 
may not occur more frequently than 2 times per week.

Expedited 3. Prospective collection of biological specimens for research purposes 
by noninvasive means.
Examples: (a) hair and nail clippings in a nondisfiguring manner; (b) deciduous 
teeth at time of exfoliation or if routine patient care indicates a need for extraction; 
(c) permanent teeth if routine patient care indicates a need for extraction; (d) 
excreta and external secretions (including sweat); (e) uncannulated saliva collected 
either in an unstimulated fashion or stimulated by chewing gumbase or wax or by 
applying a dilute citric solution to the tongue; (f) placenta removed at delivery; (g) 
amniotic fluid obtained at the time of rupture of the membrane prior to or during 
labor; (h) supra- and subgingival dental plaque and calculus, provided the collection 
procedure is not more invasive than routine prophylactic scaling of the teeth and the 
process is accomplished in accordance with accepted prophylactic techniques; (i) 
mucosal and skin cells collected by buccal scraping or swab, skin swab, or mouth 
washings; (j) sputum collected after saline mist nebulization.

Expedited 4. Collection of data through noninvasive procedures (not involving 
general anesthesia or sedation) routinely employed in clinical practice, excluding 
procedures involving x-rays or microwaves. Where medical devices are employed, 
they must be cleared/approved for marketing. (Studies intended to evaluate the 
safety and effectiveness of the medical device are not generally eligible for 
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expedited review, including studies of cleared medical devices for new indications.)
Examples: (a) physical sensors that are applied either to the surface of the body or 
at a distance and do not involve input of significant amounts of energy into the 
subject or an invasion of the subject’s privacy; (b) weighing or testing sensory 
acuity; (c) magnetic resonance imaging; (d) electrocardiography, 
electroencephalography, thermography, detection of naturally occurring 
radioactivity, electroretinography, ultrasound, diagnostic infrared imaging, doppler 
blood flow, and echocardiography; (e) moderate exercise, muscular strength 
testing, body composition assessment, and flexibility testing where appropriate 
given the age, weight, and health of the individual.

Expedited 5. Research involving materials (data, documents, records, or 
specimens) that have been collected, or will be collected solely for nonresearch 
purposes (such as medical treatment or diagnosis). (NOTE: Some research in this 
category may be exempt from the HHS regulations for the protection of human 
subjects. 45 CFR 46.101(b)(4). This listing refers only to research that is not 
exempt.)

Expedited 6. Collection of data from voice, video, digital, or image recordings made 
for research purposes.

Expedited 7. Research on individual or group characteristics or behavior (including, 
but not limited to, research on perception, cognition, motivation, identity, language, 
communication, cultural beliefs or practices, and social behavior) or research 
employing survey, interview, oral history, focus group, program evaluation, human 
factors evaluation, or quality assurance methodologies. (NOTE: Some research in 
this category may be exempt from the HHS regulations for the protection of human 
subjects. 45 CFR 46.101(b)(2) and (b)(3). This listing refers only to research that is 
not exempt.)

Expedited 8. Continuing review of research previously approved by the convened 
IRB as follows: 
(a) where (i) the research is permanently closed to the enrollment of new subjects; 
(ii) all subjects have completed all research-related interventions; and (iii) the 
research remains active only for long-term follow-up of subjects; or
(b) where no subjects have been enrolled and no additional risks have been 
identified; or
(c) where the remaining research activities are limited to data analysis.

Expedited 9. Continuing review of research, not conducted under an investigational 
new drug application or investigational device exemption where categories two (2) 
through eight (8) do not apply but the IRB has determined and documented at a 
convened meeting that the research involves no greater than minimal risk and no 
additional risks have been identified.
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MICHIGAN ARCHIVE FOR RESEARCH IN CHILD HEALTH 

RECORD OF CONSENT FOR PARTICIPATION

Participant’s Name:

Study Name: Michigan Archive for Research in Child Health 

Investigator’s Name: Nigel Paneth, MD MPH

Investigator’s Phone Number: 517-844-3961 or 1-833-242-7687 

Investigator Address: 909 Wilson Rd. Rm 218, East Lansing, MI 48824

Funding Sources: National Institutes of Health (NIH) & Michigan Health Endowment Fund (MHEF)

You are being asked whether you and your child will participate in a research study taking place 
across Michigan called M-ARCH (Michigan Archive for Research in Child Health). This study is led by 
a group called CHARM (Child Health Advances from Research with Mothers) which involves 
researchers from Michigan State University, the University of Michigan, Wayne State University, 
Henry Ford Health System, and the Michigan Department of Health and Human Services (MDHHS). 
MARCH is part of a nationwide research study, the ECHO (Environmental influences on Child Health 
Outcomes) program, which aims to understand the earliest causes of childhood diseases, including 
causes that may start before children are born.

We are asking you to join the ECHO Program to help understand how things that happen early in 
children’s lives – even before they are born – affect their development, health, and wellbeing. This 
research program includes about 200 locations in the US. The ECHO Program will combine 
information from about 50,000 children and their families. With so many participants from many parts 
of the US, researchers can answer questions that the MARCH study cannot answer alone. The 
MARCH study hopes to enroll at least 1,100 participants.

Why is this study being done?

We know that some factors in the environment during pregnancy and early childhood, such as lead, 
can affect a child’s health and development. But there is much we do not know. By getting information 
now, while you are pregnant, we can find out whether factors such as diet, genes, environmental 
chemicals, infections, hormones, and more might lead to illnesses in children such as asthma, 
obesity, or problems in physical, intellectual, or social development. The goal of MARCH is to identify 
these factors, so that we can prevent them from causing illness in children. The mission of ECHO is 
also to improve the health of children for generations to come. At the same time, we want to learn 
about the problems and concerns of pregnant women in our state and prevent illness in women too.

What does this study involve?

We will go over each component of the MARCH study with you, but briefly, you will participate in the 

MARCH and ECHO studies for at least 6 years. We will interview you both during and after your 

pregnancy. If in the future we cannot get in contact with you, we may use social media and/or other 

public records to help us keep your contact up to date. We will reserve portions of the samples 

routinely collected throughout your prenatal care and use them for this research study. Additionally, 

we will collect samples from you and your child, such as toenails, hair, and shed teeth, as well as 

information from the MDHHS and your medical records. We would like to share specimens and 

information that you give MARCH with the other scientists in the ECHO program. Your information 

could be very helpful to scientists who are trying to solve important health problems facing women 

Approved by a Michigan State University Institutional Review Board effective 5/11/2022.
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and children. This information may include variables such as your child's development and 

behavior, medical history and family history, social interactions, and diet. It may also include 

information about you such as your health and diet during pregnancy, or things that may cause 

stress in your life. Any study information that is shared with other researchers outside of our 

research team, including biological samples, will be stripped of most identifying information by 

giving it a code to protect your privacy. In doing so, we will assign a code that allows us to identify 

the material but would not allow the scientists who receive this material to do so. The only 

identifying information we will share will be your addresses, your and your baby’s dates of birth and 

other information including race, sex, gender, language, dates of procedures, collections, and 

health information. This information is required to answer some research questions, such as linking 

information about your child’s samples and health to information about air or water quality where 

your child lives or goes to school, but we will take many precautions to safeguard your privacy. All 

ECHO researchers are protected by a Certificate of Confidentiality in which investigators shall not 

disclose the name or other identifying information about a participant to any federal, State, or local 

civil, criminal, administrative, legislative, or other proceeding, without the specific consent of the 

individual to who the information pertains. This certificate is described below. We will provide 

financial compensation in recognition of the time and effort it takes you to participate in the study.

What will my child and I be asked to do?

In order for you to participate, we will need to you to provide us with your name, contact information, 
and the hospital where you plan to deliver. Your participation is voluntary, and for that reason you 
may refuse to be in the study or stop taking part in this study at any time without penalty.

The section below describes all other components of the study in detail and then ask you to sign to 
consent to participate. You have the option to refuse participation in any of these collections or 
questions.

Urine from the samples you give to your doctor during your prenatal visits to be collected and 
stored.

Extra blood (6-8 teaspoons or 30-40ml) will be collected when you have your blood drawn for 
your prenatal labs.

Post-delivery, your placenta will be collected, examined, and stored once no longer needed by 
the delivery hospital. We will let the hospital know that you are a part of the MARCH study.

Collect samples of your and your child’s toenails, hair, and urine.

Your social security number will be collected to see your baby’s birth certificate. This will allow 
us to make sure we have the right baby’s certificate.

Access to Michigan Department of Health and Human Services registries and program data. 
These registries and program may include the Michigan Care Improvement Registry for your 
and your child’s vaccination status, the Michigan Birth Defects Registry, the Michigan Newborn 
Screening program, and the Early Hearing Detection Intervention program, as well as other 
programs and registries housed in the Michigan Department of Health and Human Services.

A signed HIPAA form will be filled out to review all portions of your and your baby’s hospital 
records related to this pregnancy, birth and postpartum period.

When your child is around 3 months old we would like a sample of your baby’s poop. This can 
be done from the privacy of your own home.

We would like you to send us some of your child’s baby teeth as they naturally lose them. This 
usually happens between the ages of 5-10 years old.

MARCH will contact you for at least two prenatal surveys, including the one you will complete 
today or over the phone at a better time for you. After your child is born, we will contact you at 

Approved by a Michigan State University Institutional Review Board effective 5/11/2022.
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least once a year and ask you to complete phone and online surveys or to set up 
appointments to meet with you in your home. Topics of the surveys include items such as you 
and your child’s health, home environment, diet, and sleep.

Some researchers in the ECHO program would like to look at environmental factors by 
neighborhood. To do this they would need your address. To understand when these factors 
could have impacted you, they would need your and your child’s date of birth.

How long will the MARCH and ECHO research programs last?

The MARCH and ECHO programs will last until 2023, and may continue after that. MARCH and 
ECHO will store your and your child’s information and samples for an unlimited period of time, so 
researchers can use them in future health research.

What if I decide not to be a part of this study?

You have the right to refuse to be in the study, to refuse to do any part of the study, or to stop at 
any time without penalty or loss of benefits to which you would otherwise be entitled and without 
affecting your present or future medical care. You can also decide to withdraw any of your 
specimens or information that have not been used. Information and biospecimens that have 
already been distributed for research will not be retrieved. If you decide to do any of these things, 
please contact the Principal Investigator, Dr. Nigel Paneth, in writing, by phone, or by email. You 
can send a letter to Dr. Nigel Paneth, Michigan State University, Department of Epidemiology, 909 
West Fee Hall, East Lansing MI 48824. You can call him at 517-844-3961 or contact him by email 
at paneth@msu.edu.

What about my confidentiality?

To avoid having any information about you or your child being used in ways that might 
discriminate against you or stigmatize you or your family, all of the information collected in the 
MARCH study is strictly confidential. Your confidentiality and that of your child will be protected to 
the maximum extent allowed by law, and we will protect it in the ways we will explain. There is no 
way, however, to make it impossible for unauthorized people to identify you. All the researchers 
and research staff working with your specimens or information who do not have valid access to 
your identity have promised not to try and identify you, and will be removed from the investigative 
team and barred from participating in this research if they try to do so. To protect your 
confidentiality only the MARCH research staff will see your real name. We will store your sensitive 
information (for example, your social security number) separately from the rest of the information 
you provide us and it will be kept in a secured, locked computer servers that only our MARCH 
research team can access. The MARCH study and the ECHO Data Analysis Center at John 
Hopkins University and RTI International will maintain ECHO research information. Data and 
samples that are shared with other researchers will be labeled with a code. The key that links 
your name to this code will be kept securely by us, and not provided to other researchers. You 
may have provided information about illegal drug use, and it is also possible that the biological 
specimens you provide could be tested for illegal drugs.  We promise you that we will strictly limit 
the way this information is used so that researchers who want to study the effects of drug use 
don’t have access to any information that identifies you, will not analyze this information with any 
identifiers you provide such as your name, address or date of birth.  Our local MARCH research 
team follows this rule, and no one outside our local study can analyze the data we collect without 
signing an agreement that they will follow this rule as well.

There are also staff members at MSU who oversee research (Human Research Protection 
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Program) and individuals who fund this research who may see your name and identifiers to be 
sure that they correctly identify your/your child’s blood spot and to ensure that the MARCH project 
is properly conducting research. Laws help protect your and your baby’s genetic information and, 
in most cases, make it illegal to use genetic information to discriminate against you and your child 
for health insurance coverage and employment. These laws do not apply to other types of 
insurance (such as life, disability, or long-term care).

This research is covered by a Certificate of Confidentiality from the National Institutes of Health. 
The researchers with this Certificate may not disclose or use information, documents, or 
biospecimens that may identify you in any federal, state, or local civil, criminal, administrative, 
legislative, or other action, suit or proceeding, or be used as evidence, for example, if there is a 
court subpoena, unless you have consented for this use. Information, documents, or 
biospecimens protected by this Certificate cannot be disclosed to anyone else who is not 
connected with the research, except if there is a federal, state or local law that requires 
disclosure (such as to report child abuse or communicable diseases, but not for federal, state, 
or local civil, criminal, administrative, legislative, or other proceedings, see below); if you have 
consented to the disclosure, including for your medical treatment; or if it is used for other 
scientific research, as allowed by federal regulation protecting research subjects.

The Certificate of Confidentiality will not be used to prevent disclosure as required by federal, 
state, or local law of child abuse and neglect or harm to self or others.

You should understand that a Certificate of Confidentiality does not prevent you from voluntarily 
releasing information about yourself or your involvement in this research. If you want your 
research information released to an insurer, medical care provider, or any other person not 
connected with the research, you must provide consent to allow the researchers to release it.
Researchers will share summaries of ECHO analyses through scientific articles or other public 
scientific resources, such as NIH or ECHO databases. We will not publicly share any participant’s 
individual information.

What are the risks or costs to my child and me?

Because of the nature of genomic data, the risks of loss of confidentiality may extend beyond the 
individual participant to their families, and subgroups of people or populations and general.

There is only a very small risk to your confidentiality because of the measures we have taken to 
protect your data that we have explained, and participation in this study is free. If there is a breach 
in confidentiality, information about you and your child may be used to discriminate against you.

Will my child and I benefit from this study?

By being a part of this study, you will help answer questions about how to improve the health of 
children and mothers. You and your child will not receive medical care or other direct benefits from 
being in this study. Taking part in ECHO will not improve you or your child’s health right now, nor 
will it change anything about your current medical care. You likely will not directly benefit from this 
study, however your participation may help scientists and doctors all over the United States learn 
if there are ways to prevent pregnancy and childhood health issues.

Will I receive any compensation?

You will be compensated for your time for participation in the study. Compensation will come in 
the form of a check made out in your name or a gift card mailed to your current address. If you 
consent to the collection and storage of portions of the samples collected by your doctor as a part 
of your normal standard care, you will receive $10. If you participate in other parts of the study, 
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you will receive more compensation over the course of your participation. If you participate in all 
parts of this project, you will receive at least $600 worth of compensation over the next 6 years.
For Michigan State University to process and mail a check, the accounts payable department will 
need your name and address information. After the check is mailed to you, your name will be 
removed on all further documentation in accounts payable.

Will I have access to the information in my MARCH study record?

MARCH and ECHO will store your and your child’s information and samples for an unlimited 
period of time, so researchers can use them in future health research. From time to time, we will 
make study results available to all ECHO participants through the ECHO website, newsletters, 
community presentations, and scientific papers. These results will not be specific to any 
individual person in ECHO, including you and your child. If the researchers see results they 
believe are very important to your or your child’s health or medical care, we will give you a 
report with the information and an explanation of what each result means. We will also let you 
know if we think you should share the results with a doctor or other health professional.

If important new findings come up during the course of the study that might change your decision 
to be in this study, we will give you information about those findings as soon as possible. MARCH 
and ECHO are research studies and therefore do not provide medical care. You should always 
talk to your doctor if you have questions or concerns about you, your pregnancy and/or your 
child’s health. If you would like access to any of your own MARCH study information or have 
questions about how it is being used, contact the Principal Investigator, Dr. Nigel Paneth, at (517)- 
844-3961.

Who can I contact about my rights/roles within this study?

If you have questions or concerns about your role and rights as a research participant, or would 
like to obtain information or offer input, or would like to register a complaint about this study, you 
may contact, anonymously if you wish, the Michigan State University’s Human Research 
Protection Program at (517)-355-2180, Fax (517)-432-4503, or email irb@msu.edu or regular mail 
at 4000 Collins Rd, Suite 136, Lansing, MI 48910. 
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Statement of Consent

By signing below, you will indicate your voluntary agreement to participate in this research and to 
have your child participate in this research. Upon signature you will receive a copy of the consent 
form.

I voluntarily agree to participate in the study.

(Signature of Participant)

(Printed Name)

Date: Time:

(Signature of Person Obtaining Consent) 

Date: Time:

(Printed Name)

Now that you have agreed to participate in the MARCH and ECHO study, I will now ask you a 
series of questions about your willingness to participate in specific parts of the study that we would 
like to describe in more detail.

Six drops of blood are collected from a baby’s heel shortly after birth to diagnose disorders that 
need early treatment. After coding to protect your privacy, blood spots left over after newborn 
screening can be used for research through the Michigan BioTrust for Health program. When your 
child is born, you will be asked if you will allow your child’s leftover spots to be available for 
research through the BioTrust. This consent is for use of blood spots that are not identified, where 
the researcher does not know whose blood spot is being used.

We now ask permission to gain access to both your and your child’s identified leftover blood 
spots. We need the spots to be identified so that we can connect information from the spots to 
other information you may provide us with during M-ARCH. We will use the smallest amount we 
can from the blood spots, but we may have to use all of your and your child’s leftover blood spots 
that have been reserved for research. We will not use the one blood spot reserved by MDHHS in 
case your family needs access to it for personal use.

Blood spots will only be used for research on mother and child health such as we described above 
consent document. There are many different types of laboratory methods that we might use in the 
future that can study factors such as genes, environmental chemicals, and more. Once these 
spots are provided to the CHARM research team, they will be coded with a unique identification 
number so that researchers doing specific projects will not see you or your child’s name. For extra 
protection, each blood spot project must be approved by MDHHS to make sure your privacy is

Approved by a Michigan State University Institutional Review Board effective 5/11/2022.
       This version supersedes all previous versions. MSU Study ID LEGACY16-1429M.
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Page 7 of 7

protected, and that the scientific work is appropriate. In order to access these blood spots we will 
ask you to provide the hospital at which you were born and your mother’s name when she gave 
birth to you.

1. Will you allow us to gain access to your and your child’s identified leftover blood spots?

a. Yes

b. No

Some scientists, both inside and outside of the ECHO program, might want to study your genes or 
the genes of your child. We can get this genetic information from the specimens you provide to us. 
We know genes and DNA can affect health and illness, so the ECHO researchers are very 
interested in how they might affect mothers and children. In the future other researchers might use 
this genetic information to study different scientific and medical questions than the ones ECHO is 
trying to answer. We don’t know now what those future questions might be. Genetic studies will 
need to access not just to genetic information, but also to the other information you give us in 
MARCH.

2. Do you give us permission to share de-identified genetic and other information about you 
and your baby with these other scientists? However, any identifiable information such as 
address and dates of birth will not be a part of that data set.

a. Yes

b. No

You are currently enrolled in the MARCH Study. We would like permission to contact you for 
future possible studies related to this one. Your contact information will be maintained by MARCH 
staff and stored in a password protected computer database, separately from your collected 
information. It will only be available to the investigators and research staff of the study. You may 
choose to withdraw your permission at any time. Agreeing to allow us to contact you for future 
studies does NOT mean you agree to participate in future studies.

3. Will you allow other MARCH researchers to contact you about future studies related to 
MARCH?

a. Yes

b. No

Approved by a Michigan State University Institutional Review Board effective 5/11/2022.
       This version supersedes all previous versions. MSU Study ID LEGACY16-1429M.
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APPENDIX C: SAMPLE INFORMATION FORM 
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APPENDIX D: QUESTIONS USE FOR COVARIATES 

Table 20. Questions use for covariates 

Questionnaires Time Variable names Questions Aim 

MARCH Prenatal 1 Survey 

questionnaire 

During 

pregnancy 
Maternal education level 

Looking at page 16, what is the highest grade or level of school 

you have completed or the highest degree you have received? 
1,2,3 

Maternal height Feet & Inches 1,2,3 

Pre-pregnancy weight 
Just before you got pregnant with this baby, how much did you 

weigh? 
1,2,3 

Maternal age ————————————————————— 1,2,3 

Birth certificate information Infants were 

born 
Infant sex Sex 1,2,3 

Estimated weeks of gestation Estimated weeks of gestational age 1,2,3 

Mode of delivery Final route and method of delivery 1,2,3 

MARCH 3-month survey  Infants were 3  

months of age 
Infant race Baby race 1,2,3 

Sample collection form Fecal 

collection at 3 

months Infant feeding method in the past 

24 hours 

Did baby have breast milk from the breast in the past day? 

1,2 
Did baby have breast milk from the bottle in the past day? 

Did baby have infant formula in the past day? 

What else did baby eat and drink in the past day? 

Infant feeding method in the past 

week 
During this past week, my baby ate 1,3 

Infant breastfeeding patterns in the 

past 24 hours 

Did baby have breast milk from the breast in the past day? 

3 Did baby have breast milk from the bottle in the past day? 

Did baby have infant formula in the past day? 

Antibiotics intake since birth Has baby had any antibiotics since birth? 1,2,3 
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Table 20 (cont’d) 

MARCH 9-month survey 

dictionary 

Infants were 9 

months of age Breastfeeding duration 

Was this child EVER breastfed or fed breast milk? 

2 

If yes, how old was this child when he/she completely stopped 

breastfeeding or being fed breast milk? 

Any breastfeeding duration 

How old was this child when he/she was first fed formula? 

How old was this child when he or she was FIRST fed 

anything other than breast milk or formula? Include juice, 

cow's milk, sugar water, baby food, or anything else that your 

child might have been given, even water. 

ASQ ————————————————————— 1,2 
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APPENDIX E: ORIGINAL R CODES 

Chapter 2 

Data preparation 

library(vegan) 
library(lubridate) 
library(tidyr) 
library(MASS) 
library(car) 
library(dunn.test) 
library(ggplot2) 
library(openxlsx) 
library(Hmisc) 
library(DirichletMultinomial) 
library(microbiome) 
library(reshape2) 
library(magrittr) 
library(dplyr) 
library(Maaslin2) 
library(ggpubr) 
library(funrar) 
require(fifer) 
library(clusterSim) 
library(forcats) 
 
setwd("/Users/busihan/Desktop/2023Mar20_Aim1_double_check") 
Data.Subsample.genus_37wks<-read.csv("Data.Subsample.genus_37wks.csv",
header = T,stringsAsFactors = T,row.names = 1) 
metadata<-read.csv("metadata_updated_Jan.csv",na="",header = T) 
cols<-c("antibiotics_since_birth","FED_PRAC_NEW","SEX","FED_PRAC_LIGHT
_NEW","MD_FINAL_ROUTE","Race_new","EDU_LVL") 
summary(metadata) 
metadata[cols]<-lapply(metadata[cols], factor) 
sapply(metadata,class) 
 
Data.Subsample.genus_37wks$Group 
metadata$Group 
temp<-merge(Data.Subsample.genus_37wks, metadata,by.x="Group") 
 
Data.Subsample.genus_37wks<-temp[,c(1:(ncol(Data.Subsample.genus_37wks
)))] 
metadata<-temp[,c(1,254:294)] 
 
Data.Subsample.genus_37wks$Group 
metadata$Group 
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Alpha<-function(OTU,Names="Sample",Groups="Sample"){ 
  Chao<-t(estimateR(OTU)) 
  Chao<-Chao[,2] 
  Shannon<-diversity(OTU,index="shannon") 
  Invsimpson<-diversity(OTU,index="invsimpson") 
  OTU.Subsample.Alpha<-data.frame(Names,Groups,Chao,Shannon,Invsimpson
) 
  return(OTU.Subsample.Alpha) 
} 
 
Sor.bray.pcoa<-function(OTUS,Dim=2,Color=1,binary,pch=16,Title="PCoA")
{ 
  Data.df<-vegdist(OTUS,method="bray", binary) 
  Data.df.PCoA<-cmdscale(Data.df, k = Dim, eig = FALSE) 
  Data.df.PCoA.eig<-cmdscale(Data.df, k = Dim, eig = TRUE) 
  eig.Data.df.PCoA<-Data.df.PCoA.eig$eig 
  eig.Data.df.PCoA.sum<-sum(eig.Data.df.PCoA) 
  a<-(eig.Data.df.PCoA/eig.Data.df.PCoA.sum)*100 
  xlab<-paste("PC1","(",round(a[1],1),"%",")",sep="") 
  ylab<-paste("PC2","(",round(a[2],1),"%",")",sep="") 
  if(binary==TRUE){ 
    main<-"Sorensen PCoA" 
  }else(main<-"Bray-Curtis PCoA") 
  plot(Data.df.PCoA, col=Color, 
       main=Title,xlab=xlab,ylab=ylab,pch=c(pch)) 
  return(Data.df.PCoA) 
} 
 
 
PERMANOVA<-function(OTUS,Group,binary,iters=9999){ 
  Data.Dist<-vegdist(OTUS,method="bray", binary=binary) 
  adonis2(Data.Dist~Group,permutations=iters) 
} 
 
PERMDISP<-function(OTUS,Group,binary,iters=9999){ 
  Data.Dist<-vegdist(OTUS,method="bray", binary=binary) 
  Data.betadisper<-betadisper(Data.Dist, group=Group) 
  permutest(Data.betadisper, group=Group, permutations=iters) 
} 

Table 1. Population characteristics and scores on the five ASQ scales   

shapiro.test(metadata$asq_9_total_grossmotor)  #p-value = 8.718e-05 
shapiro.test(metadata$asq_9_total_finemotor) #p-value = 3.08e-08 
shapiro.test(metadata$asq_9_total_communication.total.) #p-value = 0.0
02063 
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shapiro.test(metadata$asq_9_total_personal_social) #p-value = 0.006921 
shapiro.test(metadata$asq_9_total_problemsolving) #p-value = 4.254e-07 
summary(metadata) 
###Categorical variable### 
###Baby Sex### 
31/64*100 
33/64*100 
#gross motor 
sex<-aggregate(metadata$asq_9_total_grossmotor~metadata$SEX,FUN = leng
th) 
sex_median<-aggregate(metadata$asq_9_total_grossmotor~metadata$SEX,FUN
 = median) 
sex_median 
sex_min<-aggregate(metadata$asq_9_total_grossmotor~metadata$SEX,FUN = 
min) 
sex_min 
sex_max<-aggregate(metadata$asq_9_total_grossmotor~metadata$SEX,FUN = 
max) 
sex_max 
wilcox.test(asq_9_total_grossmotor~SEX, data = metadata,exact = FALSE)
   
 
#fine motor 
sex_median<-aggregate(metadata$asq_9_total_finemotor~metadata$SEX,FUN 
= median) 
sex_median 
sex_min<-aggregate(metadata$asq_9_total_finemotor~metadata$SEX,FUN = m
in) 
sex_min 
sex_max<-aggregate(metadata$asq_9_total_finemotor~metadata$SEX,FUN = m
ax) 
sex_max 
wilcox.test(asq_9_total_finemotor~SEX, data = metadata,exact = FALSE)  
 
#communication 
sex_median<-aggregate(metadata$asq_9_total_communication.total.~metada
ta$SEX,FUN = median) 
sex_median 
sex_min<-aggregate(metadata$asq_9_total_communication.total.~metadata$
SEX,FUN = min) 
sex_min 
sex_max<-aggregate(metadata$asq_9_total_communication.total.~metadata$
SEX,FUN = max) 
sex_max 
wilcox.test(asq_9_total_communication.total.~SEX, data = metadata,exac
t = FALSE)  
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#personal social 
sex_median<-aggregate(metadata$asq_9_total_personal_social~metadata$SE
X,FUN = median) 
sex_median 
sex_min<-aggregate(metadata$asq_9_total_personal_social~metadata$SEX,F
UN = min) 
sex_min 
sex_max<-aggregate(metadata$asq_9_total_personal_social~metadata$SEX,F
UN = max) 
sex_max 
wilcox.test(asq_9_total_personal_social~SEX, data = metadata,exact = F
ALSE)   
 
#problem solving 
sex_median<-aggregate(metadata$asq_9_total_problemsolving~metadata$SEX
,FUN = median) 
sex_median 
sex_min<-aggregate(metadata$asq_9_total_problemsolving~metadata$SEX,FU
N = min) 
sex_min 
sex_max<-aggregate(metadata$asq_9_total_problemsolving~metadata$SEX,FU
N = max) 
sex_max 
wilcox.test(asq_9_total_problemsolving~SEX, data = metadata,exact = FA
LSE)   
 
###Baby Race### 
44/64*100 
20/64*100 
#gross motor 
Race_new<-aggregate(metadata$asq_9_total_grossmotor~metadata$Race_new,
FUN = length) 
Race_new_median<-aggregate(metadata$asq_9_total_grossmotor~metadata$Ra
ce_new,FUN = median)  
Race_new_median 
Race_new_min<-aggregate(metadata$asq_9_total_grossmotor~metadata$Race_
new,FUN = min)  
Race_new_min 
Race_new_max<-aggregate(metadata$asq_9_total_grossmotor~metadata$Race_
new,FUN = max)  
Race_new_max 
wilcox.test(asq_9_total_grossmotor~Race_new, data = metadata,exact = F
ALSE)   
 
#fine motor 
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Race_new_median<-aggregate(metadata$asq_9_total_finemotor~metadata$Rac
e_new,FUN = median)  
Race_new_median 
Race_new_min<-aggregate(metadata$asq_9_total_finemotor~metadata$Race_n
ew,FUN = min)  
Race_new_min 
Race_new_max<-aggregate(metadata$asq_9_total_finemotor~metadata$Race_n
ew,FUN = max)  
Race_new_max 
wilcox.test(asq_9_total_finemotor~Race_new, data = metadata,exact = FA
LSE)   
 
#communication 
Race_new_median<-aggregate(metadata$asq_9_total_communication.total.~m
etadata$Race_new,FUN = median)  
Race_new_median 
Race_new_min<-aggregate(metadata$asq_9_total_communication.total.~meta
data$Race_new,FUN = min) 
Race_new_min 
Race_new_max<-aggregate(metadata$asq_9_total_communication.total.~meta
data$Race_new,FUN = max) 
Race_new_max 
wilcox.test(asq_9_total_communication.total.~Race_new, data = metadata
,exact = FALSE)   
 
#personal social 
Race_new_median<-aggregate(metadata$asq_9_total_personal_social~metada
ta$Race_new,FUN = median)  
Race_new_median 
Race_new_min<-aggregate(metadata$asq_9_total_personal_social~metadata$
Race_new,FUN = min)  
Race_new_min 
Race_new_max<-aggregate(metadata$asq_9_total_personal_social~metadata$
Race_new,FUN = max)  
Race_new_max 
wilcox.test(asq_9_total_personal_social~Race_new, data = metadata,exac
t = FALSE)    
 
#problem solving 
Race_new_median<-aggregate(metadata$asq_9_total_problemsolving~metadat
a$Race_new,FUN = median) 
Race_new_median 
Race_new_min<-aggregate(metadata$asq_9_total_problemsolving~metadata$R
ace_new,FUN = min)  
Race_new_min 
Race_new_max<-aggregate(metadata$asq_9_total_problemsolving~metadata$R
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ace_new,FUN = max)  
Race_new_max 
wilcox.test(asq_9_total_problemsolving~Race_new, data = metadata,exact
 = FALSE)    
 
###Maternal education level### 
3/64*100 
11/64*100 
13/64*100 
37/64*100 
#gross motor 
EDU_LVL_median<-aggregate(metadata$asq_9_total_grossmotor~metadata$EDU
_LVL,FUN = median)  
EDU_LVL_median 
EDU_LVL_min<-aggregate(metadata$asq_9_total_grossmotor~metadata$EDU_LV
L,FUN = min)  
EDU_LVL_min 
EDU_LVL_max<-aggregate(metadata$asq_9_total_grossmotor~metadata$EDU_LV
L,FUN = max)  
EDU_LVL_max 
kruskal.test(asq_9_total_grossmotor~EDU_LVL, data = metadata)    
 
#fine motor 
EDU_LVL_median<-aggregate(metadata$asq_9_total_finemotor~metadata$EDU_
LVL,FUN = median)  
EDU_LVL_median 
EDU_LVL_min<-aggregate(metadata$asq_9_total_finemotor~metadata$EDU_LVL
,FUN = min)  
EDU_LVL_min 
EDU_LVL_max<-aggregate(metadata$asq_9_total_finemotor~metadata$EDU_LVL
,FUN = max)  
EDU_LVL_max 
kruskal.test(asq_9_total_finemotor~EDU_LVL, data = metadata)    
dunn.test(metadata$asq_9_total_finemotor,metadata$EDU_LVL,altp = TRUE,
 method="bh") 
 
#communication 
EDU_LVL_median<-aggregate(metadata$asq_9_total_communication.total.~me
tadata$EDU_LVL,FUN = median)  
EDU_LVL_median 
EDU_LVL_min<-aggregate(metadata$asq_9_total_communication.total.~metad
ata$EDU_LVL,FUN = min)  
EDU_LVL_min 
EDU_LVL_max<-aggregate(metadata$asq_9_total_communication.total.~metad
ata$EDU_LVL,FUN = max)  
EDU_LVL_max 



 

 149 

kruskal.test(asq_9_total_communication.total.~EDU_LVL, data = metadata
)   
  
#personal social 
EDU_LVL_median<-aggregate(metadata$asq_9_total_personal_social~metadat
a$EDU_LVL,FUN = median)  
EDU_LVL_median 
EDU_LVL_min<-aggregate(metadata$asq_9_total_personal_social~metadata$E
DU_LVL,FUN = min)  
EDU_LVL_min 
EDU_LVL_max<-aggregate(metadata$asq_9_total_personal_social~metadata$E
DU_LVL,FUN = max)  
EDU_LVL_max 
kruskal.test(asq_9_total_personal_social~EDU_LVL, data = metadata)   
 
#problem solving 
EDU_LVL_median<-aggregate(metadata$asq_9_total_problemsolving~metadata
$EDU_LVL,FUN = median)  
EDU_LVL_median 
EDU_LVL_min<-aggregate(metadata$asq_9_total_problemsolving~metadata$ED
U_LVL,FUN = min)  
EDU_LVL_min 
EDU_LVL_max<-aggregate(metadata$asq_9_total_problemsolving~metadata$ED
U_LVL,FUN = max)  
EDU_LVL_max 
kruskal.test(asq_9_total_problemsolving~EDU_LVL, data = metadata)   
dunn.test(metadata$asq_9_total_problemsolving,metadata$EDU_LVL,altp = 
TRUE, method="bh") 
 
###MD_FINAL_ROUTE### 
39/64*100 
25/64*100 
#gross motor 
MD_FINAL_ROUTE<-aggregate(metadata$asq_9_total_grossmotor~metadata$MD_
FINAL_ROUTE,FUN = length) 
MD_FINAL_ROUTE_median<-aggregate(metadata$asq_9_total_grossmotor~metad
ata$MD_FINAL_ROUTE,FUN = median) 
MD_FINAL_ROUTE_median 
MD_FINAL_ROUTE_min<-aggregate(metadata$asq_9_total_grossmotor~metadata
$MD_FINAL_ROUTE,FUN = min) 
MD_FINAL_ROUTE_min 
MD_FINAL_ROUTE_max<-aggregate(metadata$asq_9_total_grossmotor~metadata
$MD_FINAL_ROUTE,FUN = max) 
MD_FINAL_ROUTE_max 
wilcox.test(asq_9_total_grossmotor~MD_FINAL_ROUTE,data=metadata,exact 
= FALSE) 
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#fine motor 
MD_FINAL_ROUTE_median<-aggregate(metadata$asq_9_total_finemotor~metada
ta$MD_FINAL_ROUTE,FUN = median) 
MD_FINAL_ROUTE_median 
MD_FINAL_ROUTE_min<-aggregate(metadata$asq_9_total_finemotor~metadata$
MD_FINAL_ROUTE,FUN = min) 
MD_FINAL_ROUTE_min 
MD_FINAL_ROUTE_max<-aggregate(metadata$asq_9_total_finemotor~metadata$
MD_FINAL_ROUTE,FUN = max) 
MD_FINAL_ROUTE_max 
wilcox.test(asq_9_total_finemotor~MD_FINAL_ROUTE,data=metadata,exact =
 FALSE) 
 
#communication 
MD_FINAL_ROUTE_median<-aggregate(metadata$asq_9_total_communication.to
tal.~metadata$MD_FINAL_ROUTE,FUN = median) 
MD_FINAL_ROUTE_median 
MD_FINAL_ROUTE_min<-aggregate(metadata$asq_9_total_communication.total
.~metadata$MD_FINAL_ROUTE,FUN = min) 
MD_FINAL_ROUTE_min 
MD_FINAL_ROUTE_max<-aggregate(metadata$asq_9_total_communication.total
.~metadata$MD_FINAL_ROUTE,FUN = max) 
MD_FINAL_ROUTE_max 
wilcox.test(asq_9_total_communication.total.~MD_FINAL_ROUTE,data=metad
ata,exact = FALSE) 
 
#personal social 
MD_FINAL_ROUTE_median<-aggregate(metadata$asq_9_total_personal_social~
metadata$MD_FINAL_ROUTE,FUN = median) 
MD_FINAL_ROUTE_median 
MD_FINAL_ROUTE_min<-aggregate(metadata$asq_9_total_personal_social~met
adata$MD_FINAL_ROUTE,FUN = min) 
MD_FINAL_ROUTE_min 
MD_FINAL_ROUTE_max<-aggregate(metadata$asq_9_total_personal_social~met
adata$MD_FINAL_ROUTE,FUN = max) 
MD_FINAL_ROUTE_max 
wilcox.test(asq_9_total_personal_social~MD_FINAL_ROUTE,data=metadata,e
xact = FALSE) 
 
#problem solving 
MD_FINAL_ROUTE_median<-aggregate(metadata$asq_9_total_problemsolving~m
etadata$MD_FINAL_ROUTE,FUN = median) 
MD_FINAL_ROUTE_median 
MD_FINAL_ROUTE_min<-aggregate(metadata$asq_9_total_problemsolving~meta
data$MD_FINAL_ROUTE,FUN = min) 
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MD_FINAL_ROUTE_min 
MD_FINAL_ROUTE_max<-aggregate(metadata$asq_9_total_problemsolving~meta
data$MD_FINAL_ROUTE,FUN = max) 
MD_FINAL_ROUTE_max 
wilcox.test(asq_9_total_problemsolving~MD_FINAL_ROUTE,data=metadata,ex
act = FALSE) 
 
###FED_PRAC_LIGHT### 
9/64*100 
17/64*100 
16/64*100 
22/64*100 
#Gross motor 
summary(metadata) 
FED_PRAC_LIGHT_median<-aggregate(metadata$asq_9_total_grossmotor~metad
ata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_median 
FED_PRAC_LIGHT_min<-aggregate(metadata$asq_9_total_grossmotor~metadata
$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_min 
FED_PRAC_LIGHT_max<-aggregate(metadata$asq_9_total_grossmotor~metadata
$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_max 
kruskal.test(asq_9_total_grossmotor~FED_PRAC_LIGHT_NEW, data =metadata
)  
 
#Fine motor 
FED_PRAC_LIGHT_median<-aggregate(metadata$asq_9_total_finemotor~metada
ta$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_median 
FED_PRAC_LIGHT_min<-aggregate(metadata$asq_9_total_finemotor~metadata$
FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_min 
FED_PRAC_LIGHT_max<-aggregate(metadata$asq_9_total_finemotor~metadata$
FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_max 
kruskal.test(asq_9_total_finemotor~FED_PRAC_LIGHT_NEW, data =metadata)
   
dunn.test(metadata$asq_9_total_finemotor,metadata$FED_PRAC_LIGHT_NEW,a
ltp = TRUE, method="bh") 
 
#Communication 
FED_PRAC_LIGHT_median<-aggregate(metadata$asq_9_total_communication.to
tal.~metadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_median 
FED_PRAC_LIGHT_min<-aggregate(metadata$asq_9_total_communication.total
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.~metadata$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_min 
FED_PRAC_LIGHT_max<-aggregate(metadata$asq_9_total_communication.total
.~metadata$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_max 
kruskal.test(asq_9_total_communication.total.~FED_PRAC_LIGHT_NEW, data
 =metadata) 
 
#Personal and social 
FED_PRAC_LIGHT_median<-aggregate(metadata$asq_9_total_personal_social~
metadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_median 
FED_PRAC_LIGHT_min<-aggregate(metadata$asq_9_total_personal_social~met
adata$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_min 
FED_PRAC_LIGHT_max<-aggregate(metadata$asq_9_total_personal_social~met
adata$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_max 
kruskal.test(asq_9_total_personal_social~FED_PRAC_LIGHT_NEW, data =met
adata)  
 
#Problem solving 
FED_PRAC_LIGHT_median<-aggregate(metadata$asq_9_total_problemsolving~m
etadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_median 
FED_PRAC_LIGHT_min<-aggregate(metadata$asq_9_total_problemsolving~meta
data$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_min 
FED_PRAC_LIGHT_max<-aggregate(metadata$asq_9_total_problemsolving~meta
data$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_max 
kruskal.test(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW, data =meta
data) 
 
###Continuous variable### 
### pre BMI### 
mean(metadata$PRE_BMI) 
sd(metadata$PRE_BMI) 
#Gross motor 
preBMI<-lm(asq_9_total_grossmotor~PRE_BMI,data=metadata)  
summary(preBMI) 
confint(preBMI,'PRE_BMI',level=0.95)   
 
#Fine motor 
preBMI<-lm(asq_9_total_finemotor~PRE_BMI,data=metadata)  
summary(preBMI) 
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confint(preBMI,'PRE_BMI',level=0.95)    
 
#Communication 
preBMI<-lm(asq_9_total_communication.total.~PRE_BMI ,data=metadata)   
summary(preBMI) 
confint(preBMI,'PRE_BMI',level=0.95)  
 
#Personal and social 
preBMI<-lm(asq_9_total_personal_social~PRE_BMI,data=metadata)   
summary(preBMI) 
confint(preBMI,'PRE_BMI',level=0.95)   
 
#Problem solving 
preBMI<-lm(asq_9_total_problemsolving~PRE_BMI,data=metadata)   
summary(preBMI) 
confint(preBMI,'PRE_BMI',level=0.95)   
 
###maternal age### 
mean(metadata$maternal_age) 
sd(metadata$maternal_age) 
#Gross motor 
MATERALAGE<-lm(asq_9_total_grossmotor~maternal_age,data=metadata)    
summary(MATERALAGE) 
confint(MATERALAGE,'maternal_age', level=0.95)  
 
#Fine motor 
MATERALAGE <-lm(asq_9_total_finemotor~maternal_age ,data=metadata)   
summary(MATERALAGE) 
confint(MATERALAGE,'maternal_age',level=0.95)   
 
#Communication 
MATERALAGE<-lm(asq_9_total_communication.total.~maternal_age ,data=met
adata)   
summary(MATERALAGE) 
confint(MATERALAGE,'maternal_age',level=0.95)   
 
#Personal and social 
MATERALAGE<-lm(asq_9_total_personal_social~ maternal_age,data=metadata
)   
summary(MATERALAGE) 
confint(MATERALAGE,'maternal_age',level=0.95)    
 
#Problem solving 
MATERALAGE<-lm(asq_9_total_problemsolving~ maternal_age,data=metadata) 
summary(MATERALAGE) 
confint(MATERALAGE,'maternal_age',level=0.95)   
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###gestational age at birth### 
mean(metadata$ESTWKSGEST) 
sd(metadata$ESTWKSGEST) 
#Gross motor 
ESTWKSGEST<-lm(asq_9_total_grossmotor~ESTWKSGEST,data=metadata)  
summary(ESTWKSGEST) 
confint(ESTWKSGEST,'ESTWKSGEST',level=0.95)     
 
#Fine motor 
ESTWKSGEST<-lm(asq_9_total_finemotor~ESTWKSGEST,data=metadata)   
summary(ESTWKSGEST) 
confint(ESTWKSGEST,'ESTWKSGEST',level=0.95)    
 
#Communication 
ESTWKSGEST<-lm(asq_9_total_communication.total.~ESTWKSGEST,data=metada
ta)   
summary(ESTWKSGEST) 
confint(ESTWKSGEST,'ESTWKSGEST',level=0.95)   
 
#Personal and social 
ESTWKSGEST<-lm(asq_9_total_personal_social~ESTWKSGEST,data=metadata)   
summary(ESTWKSGEST) 
confint(ESTWKSGEST,'ESTWKSGEST',level=0.95)    
 
#Problem solving 
ESTWKSGEST<-lm(asq_9_total_problemsolving~ESTWKSGEST,data=metadata)   
summary(ESTWKSGEST) 
confint(ESTWKSGEST,'ESTWKSGEST',level=0.95)   

Table 2. The associations between alpha diversity of gut microbiota at 3 months and each 

of the five ASQ scale measurements at 9 months 

options(scipen = 999) 
Data.Subsample.final.Alpha<-read.csv("/Users/busihan/Desktop/MARCH\ B3
m_ASQ_updated/Data.Subsample.final.Alpha_Final.csv", header = T) 
chao<-Data.Subsample.final.Alpha$Chao 
shan<-Data.Subsample.final.Alpha$Shannon 
invismp<-Data.Subsample.final.Alpha$Invsimpson 
 
###gross motor### 
grossmotor_chao<-lm(asq_9_total_grossmotor~chao+FED_PRAC_LIGHT_NEW+ant
ibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PR
E_BMI+maternal_age,data=metadata) 
summary(grossmotor_chao) 
confint(grossmotor_chao,"chao")   
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grossmotor_shan<-lm(asq_9_total_grossmotor~shan+FED_PRAC_LIGHT_NEW+ant
ibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PR
E_BMI+maternal_age,data=metadata) 
summary(grossmotor_shan) 
confint(grossmotor_shan,"shan")   
 
grossmotor_invismp<-lm(asq_9_total_grossmotor~invismp+FED_PRAC_LIGHT_N
EW+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSG
EST+PRE_BMI+maternal_age,data=metadata) 
summary(grossmotor_invismp) 
confint(grossmotor_invismp,"invismp")   
 
#fine motor 
finemotor_chao<-lm(asq_9_total_finemotor~chao+FED_PRAC_LIGHT_NEW+antib
iotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_
BMI+maternal_age,data=metadata) 
summary(finemotor_chao) 
confint(finemotor_chao,"chao")   
 
finemotor_shan<-lm(asq_9_total_finemotor~shan+FED_PRAC_LIGHT_NEW+antib
iotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_
BMI+maternal_age,data=metadata) 
summary(finemotor_shan) 
confint(finemotor_shan,"shan")   
 
finemotor_invismp<-lm(asq_9_total_finemotor~invismp+FED_PRAC_LIGHT_NEW
+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGES
T+PRE_BMI+maternal_age,data=metadata) 
summary(finemotor_invismp) 
confint(grossmotor_invismp,"invismp")   
 
##communication### 
communication_chao<-lm(asq_9_total_communication.total.~chao+FED_PRAC_
LIGHT_NEW+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+
ESTWKSGEST+PRE_BMI+maternal_age,data=metadata) 
summary(communication_chao) 
confint(communication_chao,"chao")   
 
communication_shan<-lm(asq_9_total_communication.total.~shan+FED_PRAC_
LIGHT_NEW+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+
ESTWKSGEST+PRE_BMI+maternal_age,data=metadata) 
summary(communication_shan) 
confint(communication_shan,"shan")   
 
communication_invismp<-lm(asq_9_total_communication.total.~invismp+FED
_PRAC_LIGHT_NEW+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+ED
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U_LVL+ESTWKSGEST+PRE_BMI+maternal_age,data=metadata) 
summary(communication_invismp) 
confint(communication_invismp,"invismp")   

###personal and social### 
social_chao<-lm(asq_9_total_personal_social~chao+FED_PRAC_LIGHT_NEW+an
tibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+P
RE_BMI+maternal_age,data=metadata) 
summary(social_chao) 
confint(social_chao,"chao")   
 
social_shan<-lm(asq_9_total_personal_social~shan+FED_PRAC_LIGHT_NEW+an
tibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+P
RE_BMI+maternal_age,data=metadata) 
summary(social_shan) 
confint(social_shan,"shan")   
 
social_invismp<-lm(asq_9_total_personal_social~invismp+FED_PRAC_LIGHT_
NEW+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKS
GEST+PRE_BMI+maternal_age,data=metadata) 
summary(social_invismp) 
confint(social_invismp,"invismp") 
 
###problem solving### 
problem_chao<-lm(asq_9_total_problemsolving~chao+FED_PRAC_LIGHT_NEW+an
tibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+P
RE_BMI+maternal_age,data=metadata) 
summary(problem_chao) 
confint(problem_chao,"chao")   
 
problem_shan<-lm(asq_9_total_problemsolving~shan+FED_PRAC_LIGHT_NEW+an
tibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+P
RE_BMI+maternal_age,data=metadata) 
summary(problem_shan) 
confint(problem_shan,"shan")  
 
problem_invismp<-lm(asq_9_total_problemsolving~invismp+FED_PRAC_LIGHT_
NEW+antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKS
GEST+PRE_BMI+maternal_age,data=metadata) 
summary(problem_invismp) 
confint(problem_invismp,"invismp")   

Figure 1. The associations between Chao 1 index and ASQ by different feeding methods at 

3months 

#gross motor 
cor.test(Data.Subsample.final.Alpha$Chao,metadata$asq_9_total_grossmot
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or,method="spearman",exact=F) 
p1<-ggplot(metadata, aes(x = asq_9_total_grossmotor, y = chao))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Gross motor",y="Chao1 Index")+ 
  ggtitle("Gross motor_Chao1")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=77, label="R = -0.14, p = 0.27") 

p1 

## `geom_smooth()` using formula = 'y ~ x' 

#fine motor 
cor.test(Data.Subsample.final.Alpha$Chao,metadata$asq_9_total_finemoto
r,method="spearman", exact=F) 
p2<-ggplot(metadata, aes(x = asq_9_total_finemotor, y = chao))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm", se = FALS
E, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
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#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Fine motor",y="Chao 1 Index")+ 
  ggtitle("Fine motor_Chao1")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=55, y=76, label="R = 0.03, p = 0.81") 
p2 

## `geom_smooth()` using formula = 'y ~ x' 

#Communication 
cor.test(Data.Subsample.final.Alpha$Chao,metadata$asq_9_total_communic
ation.total.,method="spearman", exact=F) 
p3<-ggplot(metadata, aes(x = asq_9_total_communication.total., y = cha
o))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Communication",y="Chao 1 Index")+ 
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  ggtitle("Communication_Chao1")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text( x=50, y=76, label="R = 0.15, p = 0.25") 
p3 

## `geom_smooth()` using formula = 'y ~ x' 

#personal social 
cor.test(Data.Subsample.final.Alpha$Chao,metadata$asq_9_total_personal
_social,method="spearman", exact=F) 
p4<-ggplot(metadata, aes(x = asq_9_total_personal_social, y = chao))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Personal social",y="Chao1 Index")+ 
  ggtitle("Personal social_Chao1")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=76, label="R = 0.29, p = 0.02") 
p4 

## `geom_smooth()` using formula = 'y ~ x' 

#problem solving 
cor.test(Data.Subsample.final.Alpha$Chao,metadata$asq_9_total_problems
olving,method="spearman", exact=F) 
p5<-ggplot(metadata, aes(x = asq_9_total_problemsolving, y = chao))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
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              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Problem solving",y="Chao1 Index")+ 
  ggtitle("Problem solving_Chao1")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=75, label="R = 0.13, p = 0.31") 
p5 

## `geom_smooth()` using formula = 'y ~ x' 

png("Chao1_ASQ_5panels_correct_spearman_final_spearman_overall.png", r
es=300, height=9, width=13,units="in") 
ggarrange( 
  p1, p2,p3,p4,p5, labels = c("A", "B","C","D","E"), 
  common.legend = TRUE, legend = "bottom" 
) 

## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 

while (!is.null(dev.list()))  dev.off() 

Figure 2. The associations between Shannon index and ASQ by different feeding methods 

at 3 months 

#gross motor 
cor.test(Data.Subsample.final.Alpha$Shannon,metadata$asq_9_total_gross
motor,method="spearman",exact=F) 
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p6<-ggplot(metadata, aes(x = asq_9_total_grossmotor, y = shan))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Gross motor",y="Shannon Index")+ 
  ggtitle("Gross motor_Shannon")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=2.65, label="R = 0.08, p = 0.54") 
p6 

## `geom_smooth()` using formula = 'y ~ x' 

#fine motor 
cor.test(Data.Subsample.final.Alpha$Shannon,metadata$asq_9_total_finem
otor,method="spearman", exact=F) 
p7<-ggplot(metadata, aes(x = asq_9_total_finemotor, y = shan))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
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stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Fine motor",y="Shannon Index")+ 
  ggtitle("Fine motor_Shannon")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=55, y=2.7, label="R = 0.37, p < 0.01") 
p7 

## `geom_smooth()` using formula = 'y ~ x' 

#Communication 
cor.test(Data.Subsample.final.Alpha$Shannon,metadata$asq_9_total_commu
nication.total.,method="spearman", exact=F) 
p8<-ggplot(metadata, aes(x = asq_9_total_communication.total., y = sha
n))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Communication",y="Shannon Index")+ 
  ggtitle("Communication_Shannon")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
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  geom_text(x=50, y=2.7, label="R = 0.37, p < 0.01") 
p8 

## `geom_smooth()` using formula = 'y ~ x' 

#Personal social 
cor.test(Data.Subsample.final.Alpha$Shannon,metadata$asq_9_total_perso
nal_social,method="spearman", exact=F) 
p9<-ggplot(metadata, aes(x = asq_9_total_personal_social, y = shan))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Personal social",y="Shannon Index")+ 
  ggtitle("Personal social_Shannon")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=2.7, label="R = 0.33, p < 0.01") 
p9 

## `geom_smooth()` using formula = 'y ~ x' 

#Problem solving 
cor.test(Data.Subsample.final.Alpha$Shannon,metadata$asq_9_total_probl
emsolving,method="spearman", exact=F) 
p10<-ggplot(metadata, aes(x = asq_9_total_problemsolving, y = shan))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
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stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Problem solving",y="Shannon Index")+ 
  ggtitle("Problem solving_Shannon")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=49, y=2.7, label="R = 0.33, p < 0.01") 
p10 

## `geom_smooth()` using formula = 'y ~ x' 

png("Shannon_ASQ_5panels_correct_spearman_final_spearman_overall.png",
 res=300, height=9, width=13,units="in") 
ggarrange( 
  p6, p7,p8,p9,p10, labels = c("A","B","C","D","E"), 
  common.legend = TRUE, legend = "bottom" 
) 

## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 

while (!is.null(dev.list()))  dev.off() 

Figure 3. The associations between inverse Simpson index and ASQ by different feeding 

methods at 3 months 

#gross motor 
cor.test(Data.Subsample.final.Alpha$Invsimpson,metadata$asq_9_total_gr
ossmotor,method="spearman",exact=F) 
p11<-ggplot(metadata, aes(x = asq_9_total_grossmotor, y = invismp))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
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W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Gross motor",y="Inverse Simpson Index")+ 
  ggtitle("Gross motor_Inverse Simpson")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=12.5, label="R = 0.05, p = 0.67") 
p11 

## `geom_smooth()` using formula = 'y ~ x' 

# fine motor 
cor.test(Data.Subsample.final.Alpha$Invsimpson,metadata$asq_9_total_fi
nemotor,method="spearman", exact=F) 
p12<-ggplot(metadata, aes(x = asq_9_total_finemotor, y = invismp))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
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  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Fine motor",y="Inverse Simpson Index")+ 
  ggtitle("Fine motor_Inverse Simpson")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=53, y=12.5, label="R = 0.32, p = 0.01") 
p12 

## `geom_smooth()` using formula = 'y ~ x' 

# communication 
cor.test(Data.Subsample.final.Alpha$Invsimpson,metadata$asq_9_total_co
mmunication.total.,method="spearman", exact=F) 
p13<-ggplot(metadata, aes(x = asq_9_total_communication.total., y = in
vismp))+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Communication",y="Inverse Simspon Index")+ 
  ggtitle("Communication_Inverse Simspon")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=12.5, label="R = 0.33, p < 0.01") 
p13 
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## `geom_smooth()` using formula = 'y ~ x' 

#personal social 
cor.test(Data.Subsample.final.Alpha$Invsimpson,metadata$asq_9_total_pe
rsonal_social,method="spearman", exact=F) 
p14<-ggplot(metadata, aes(x = asq_9_total_personal_social, y =invismp)
)+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Personal social",y="Inverse Simpson Index")+ 
  ggtitle("Personal social_Inverse Simpson")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=12.3, label="R = 0.28, p = 0.03") 
p14 

## `geom_smooth()` using formula = 'y ~ x' 

#problem solving 
cor.test(Data.Subsample.final.Alpha$Invsimpson,metadata$asq_9_total_pr
oblemsolving,method="spearman", exact=F) 
p15<-ggplot(metadata, aes(x = asq_9_total_problemsolving, y = invismp)
)+ 
  geom_point(aes(color = FED_PRAC_LIGHT_NEW, shape = FED_PRAC_LIGHT_NE
W))+ 
  geom_smooth(aes(color = FED_PRAC_LIGHT_NEW), method ="lm",  
              se = FALSE, fullrange = TRUE)+ 
  scale_color_manual(name="Feeding method",labels=c("Breastmilk","Brea
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stmilk_vitaminD","Partial breastmilk","Formula"), 
                     values = c("#65A8D3","#67C5AB","#E69D67","#847AB7
"))+ 
  scale_fill_manual(name="Feeding method",labels=c("Breastmilk","Breas
tmilk_vitaminD","Partial breastmilk","Formula"),values = c("#65A8D3","
#67C5AB","#E69D67","#847AB7"))+ 
  scale_shape_manual(name="Feeding method",labels=c("Breastmilk","Brea
stmilk_vitaminD","Partial breastmilk","Formula"),values=c(15, 16, 17, 
18))+ 
  stat_cor(method="spearman",aes(color = FED_PRAC_LIGHT_NEW),show.lege
nd = FALSE,r.accuracy=0.01,p.accuracy=0.01)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1)
)+ 
  labs(x="Problem solving",y="Inverse Simpson Index")+ 
  ggtitle("Problem solving_Inverse Simpson")+ 
  theme(plot.title=element_text(hjust=0.5))+ 
  geom_text(x=50, y=12.5, label="R = 0.27, p = 0.03") 
p15 

## `geom_smooth()` using formula = 'y ~ x' 

png("Inv Simpson_ASQ_5panels_correct_spearman_final_spearman_overall.p
ng", res=300, height=9, width=13,units="in") 
ggarrange( 
  p11, p12,p13,p14,p15, labels = c("A","B","C","D","E"), 
  common.legend = TRUE, legend = "bottom" 
) 

while (!is.null(dev.list()))  dev.off() 

Table 3. The associations between beta diversity of the infant gut microbiota and each of 

the five ASQ scales 

#gross motor 
#Sorensen# 
a<-metadata$asq_9_total_grossmotor 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,TRUE,9999) 
#Bray-Curtis 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999) 
 
#fine motor 
#Sorensen# 
a<-metadata$asq_9_total_finemotor 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,TRUE,9999) 
#Bray-Curtis 
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PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999) 
 
#Communication# 
a<-metadata$asq_9_total_communication.total. 
#Sorenson 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,TRUE,9999) 
#Bray Curtis 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999) 
 
#Personal Social# 
a<-metadata$asq_9_total_personal_social 
#Sorenson 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,TRUE,9999) 
#Bray Curtis 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999) 
 
#Problem Solving# 
a<-metadata$asq_9_total_problemsolving 
#Sorenson 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,TRUE,9999) 
#Bray Curtis 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999) 
 
###Multivariate analysis### 
OTUS<-Data.Subsample.genus_37wks[,-c(1:3,254)] 
#Gross motor 
#Sorensen 
Data.Dist<-vegdist(OTUS,method="bray", binary=TRUE) 
adonis2(Data.Dist~asq_9_total_grossmotor+FED_PRAC_LIGHT_NEW+antibiotic
s_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_BMI+m
aternal_age,data=metadata,permutations=9999)   
#Bray-Curtis 
Data.Dist<-vegdist(OTUS,method="bray", binary=FALSE) 
adonis2(Data.Dist~asq_9_total_grossmotor+FED_PRAC_LIGHT_NEW+antibiotic
s_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_BMI+m
aternal_age,data=metadata,permutations=9999)   
 
#Fine motor 
#Sorensen 
Data.Dist<-vegdist(OTUS,method="bray", binary=TRUE) 
adonis2(Data.Dist~asq_9_total_finemotor+FED_PRAC_LIGHT_NEW+antibiotics
_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_BMI+ma
ternal_age,data=metadata,permutations=9999)   
#Bray-Curtis 
Data.Dist<-vegdist(OTUS,method="bray", binary=FALSE) 
adonis2(Data.Dist~asq_9_total_finemotor+FED_PRAC_LIGHT_NEW+antibiotics



 

 170 

_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_BMI+ma
ternal_age,data=metadata,permutations=9999)   
 
#Communication# 
#Sorenson 
Data.Dist<-vegdist(OTUS,method="bray", binary=TRUE) 
adonis2(Data.Dist~asq_9_total_communication.total.+FED_PRAC_LIGHT_NEW+
antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST
+PRE_BMI+maternal_age,data=metadata,permutations=9999)   
#Bray Curtis 
Data.Dist<-vegdist(OTUS,method="bray", binary=FALSE) 
adonis2(Data.Dist~asq_9_total_communication.total.+FED_PRAC_LIGHT_NEW+
antibiotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST
+PRE_BMI+maternal_age,data=metadata,permutations=9999)   
 
#Personal Social# 
#Sorenson 
Data.Dist<-vegdist(OTUS,method="bray", binary=TRUE) 
adonis2(Data.Dist~asq_9_total_personal_social+FED_PRAC_LIGHT_NEW+antib
iotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_
BMI+maternal_age,data=metadata,permutations=9999)   
#Bray Curtis 
Data.Dist<-vegdist(OTUS,method="bray", binary=FALSE) 
adonis2(Data.Dist~asq_9_total_personal_social+FED_PRAC_LIGHT_NEW+antib
iotics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_
BMI+maternal_age,data=metadata,permutations=9999)   
 
#Problem Solving# 
#Sorenson 
Data.Dist<-vegdist(OTUS,method="bray", binary=TRUE) 
adonis2(Data.Dist~asq_9_total_problemsolving+FED_PRAC_LIGHT_NEW+antibi
otics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_B
MI+maternal_age,data=metadata,permutations=9999)   
#Bray Curtis 
Data.Dist<-vegdist(OTUS,method="bray", binary=FALSE) 
adonis2(Data.Dist~asq_9_total_problemsolving+FED_PRAC_LIGHT_NEW+antibi
otics_since_birth+SEX+MD_FINAL_ROUTE+Race_new+EDU_LVL+ESTWKSGEST+PRE_B
MI+maternal_age,data=metadata,permutations=9999)   

Figure 4. The significant associations between Bray-Curtis dissimilarity matrix and ASQ 

scales 

legend.col <- function(col, lev){ 
  opar <- par 
  n <- length(col) 
  bx <- par("usr") 
  box.cx <- c(bx[2] + (bx[2] - bx[1]) / 1000, 
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              bx[2] + (bx[2] - bx[1]) / 1000 + (bx[2] - bx[1]) / 50) 
  box.cy <- c(bx[3], bx[3]) 
  box.sy <- (bx[4] - bx[3]) / n 
  xx <- rep(box.cx, each = 2) 
  par(xpd = TRUE) 
  for(i in 1:n){ 
    yy <- c(box.cy[1] + (box.sy * (i - 1)), 
            box.cy[1] + (box.sy * (i)), 
            box.cy[1] + (box.sy * (i)), 
            box.cy[1] + (box.sy * (i - 1))) 
    polygon(xx, yy, col = col[i], border = col[i]) 
  } 
  par(new = TRUE) 
  plot(0, 0, type = "n", 
       ylim = c(min(lev), max(lev)), 
       yaxt = "n", ylab = "", 
       xaxt = "n", xlab = "", 
       frame.plot = FALSE) 
  axis(side = 4, las = 2, tick = FALSE, line = .25) 
  par <- opar 
} 
 
#Fine motor 
a<-metadata$asq_9_total_finemotor 
#Bray-Curtis 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999) 
 
#Communication# 
a<-metadata$asq_9_total_communication.total. 
#Bray Curtis 
 
df.Genus.Sor_2<-Sor.bray.pcoa(Data.Subsample.genus_37wks[,-c(1:3,254)]
,binary=FALSE) 

shapes<-c(21,22,23,24) 
shapes<-shapes[as.numeric(metadata$FED_PRAC_LIGHT_NEW)] 
shapes 
 
#png("Beta_diversity_fine_comm.png", res=300, height=5, width=10,units
="in") 
par(mfrow= c(1,2),mar=c(4,4.1,4,4.1)) 
rbPal <- colorRampPalette(c('white','black')) 
a<-metadata$asq_9_total_finemotor 
b<-rank(a) 
Col <- rbPal(20)[as.numeric(cut(b,breaks = 20))] 
{plot(df.Genus.Sor_2,bg=Col,xlab="PC1(25.1%)",ylab="PC2(13.6%)",main =
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"A.Bray-Curtis and fine motor",,pch=shapes,cex.axis=1.5,cex.lab=1.5,ce
x.main=1.5) 
text(-0.3,0.4,"p-value<0.01",cex = 1) 
legend(0.06,0.53,c("Breastmilk","Breastmilk_vitaminD","Partial breastm
ilk","Formula"), pch=c(21,22,23,24),cex = 0.7) 
legend.col(col = rbPal(10), lev = a)} 
 
 
a<-metadata$asq_9_total_communication.total 
b<-rank(a) 
Col <- rbPal(20)[as.numeric(cut(b,breaks = 20))] 
{plot(df.Genus.Sor_2,bg=Col,xlab="PC1(25.1%)",ylab="PC2(13.6%)",main =
"B.Bray-Curtis and communication",pch=shapes,cex.axis=1.5,cex.lab=1.5,
cex.main=1.5) 
text(-0.3,0.4,"p-value=0.01",cex = 1) 
legend(0.06,0.53,c("Breastmilk","Breastmilk_vitaminD","Partial breastm
ilk","Formula"), pch=c(21,22,23,24),cex = 0.7) 
legend.col(col = rbPal(10), lev = a)} 

#while (!is.null(dev.list()))  dev.off() 

Figure 5. The gut microbiota composition of infant stool samples organized by cluster 

TaxName<-read.table("/Users/busihan/Desktop/MARCH\ B3m_ASQ_updated/sta
bility.trim.contigs.good.unique.good.filter.unique.precluster.pick.pds
.wang.pick.tx.1.cons.taxonomy",header=TRUE, fill=TRUE,row.names=NULL) 
head(TaxName) 
Edit.Taxname<-function(n,level){ 
  if(level=="Genus"|level==1){ 
    n<-as.matrix(n) 
    for (i in 1:4){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n, col=1,into=c("Family","Genus"), sep=" ") 
    x<-ifelse(n$Genus%in%c("unclassified","uncultured"), paste(n$Genus
, n$Family), paste(n$Genus,n$Other1,n$Other2)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Family"|level==2){ 
    n<-as.matrix(n) 
    for (i in 1:3){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
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    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n,col=1, into=c("Order","Family","Genus"), sep=" ") 
    x<-ifelse(n$Family%in%c("unclassified","uncultured"), paste(n$Orde
r, n$Family), paste(n$Family)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Order"|level==3){ 
    n<-as.matrix(n) 
    for (i in 1:2){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n,col=1, into=c("Class","Order","Family","Genus"), sep
=" ") 
    x<-ifelse(n$Order%in%c("unclassified","uncultured"), paste(n$Class
, n$Order), paste(n$Order)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Class"|level==4){ 
    n<-as.matrix(n) 
    for (i in 1){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n,col=1, into=c("Phylum","Class","Order","Family","Gen
us"), sep=" ") 
    x<-ifelse(n$Class%in%c("unclassified","uncultured"), paste(n$Phylu
m, n$Class), paste(n$Class)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Phylum"|level==5){ 
    n<-as.matrix(n) 
    n<-gsub('[(0-9);""]{1,}', '_', n) 
    n<-gsub('^.*?_', '', n) 
    n<-gsub('_.*', '', n) 
  } 
} 
 
TaxName<-Edit.Taxname(TaxName$Taxonomy,level=1) 
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## Warning: Expected 2 pieces. Additional pieces discarded in 250 rows
 [1, 2, 3, 4, 5, 6, 
## 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...]. 

OTU<-Data.Subsample.genus_37wks[,c(4:253)] 
colnames(OTU) <- TaxName 
mat = as.matrix(OTU) 
rel_mat = make_relative(mat) 
rel_otu<-as.data.frame(t(rel_mat)) 
colnames(rel_otu)<-Data.Subsample.genus_37wks$Group 
 
dist.JSD <- function(inMatrix, pseudocount=0.000001, ...) { 
  KLD <- function(x,y) sum(x *log(x/y)) 
  JSD<- function(x,y) sqrt(0.5 * KLD(x, (x+y)/2) + 0.5 * KLD(y, (x+y)/
2)) 
  matrixColSize <- length(colnames(inMatrix)) 
  matrixRowSize <- length(rownames(inMatrix)) 
  colnames <- colnames(inMatrix) 
  resultsMatrix <- matrix(0, matrixColSize, matrixColSize) 
   
  inMatrix = apply(inMatrix,1:2,function(x) ifelse (x==0,pseudocount,x
)) 
   
  for(i in 1:matrixColSize) { 
    for(j in 1:matrixColSize) {  
      resultsMatrix[i,j]=JSD(as.vector(inMatrix[,i]), 
                             as.vector(inMatrix[,j])) 
    } 
  } 
  colnames -> colnames(resultsMatrix) -> rownames(resultsMatrix) 
  as.dist(resultsMatrix)->resultsMatrix 
  attr(resultsMatrix, "method") <- "dist" 
  return(resultsMatrix)  
} 
 
data.dist=dist.JSD(rel_otu) 
  
pam.clustering=function(x,k) {  
  require(cluster) 
  cluster = as.vector(pam(as.dist(x), k, diss=TRUE)$clustering) 
  return(cluster) 
} 
 
data.cluster=pam.clustering(data.dist, k=3) 
data<-rel_otu 
nclusters = index.G1(t(data), data.cluster, d = data.dist, centrotypes
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 = "medoids") 
nclusters=NULL 
 
for (k in 1:10) {  
  if (k==1) { 
    nclusters[k]=NA  
  } else { 
    data.cluster_temp=pam.clustering(data.dist, k) 
    nclusters[k]=index.G1(t(data),data.cluster_temp,  d = data.dist, 
                          centrotypes = "medoids") 
  } 
} 
plot(nclusters, type="h", xlab="k clusters", ylab="CH index",main="Opt
imal number of clusters")   #k=3 

#k=3 
cluster=data.frame(row.names = colnames(data),Cluster=data.cluster) 
OTU_new<-Data.Subsample.genus_37wks[,c(1,4:253)] 
OTU_new$Group 
cluster['Group'] <- Data.Subsample.genus_37wks$Group 
OTU_new<-merge(OTU_new,cluster,by="Group") 
metadata<-merge(metadata,cluster,by="Group") 
cluster$Cluster<-as.factor(cluster$Cluster) 
summary(cluster) 
 
# rank the stacked bars # 
StackedBarPlot<-function(OTU,Group="Samples",TaxName,N=19,Title="Stack
ed Bar Chart"){ 
  Rowsum<-as.matrix(rowSums(OTU)) 
  abun<-matrix(0,nrow=nrow(OTU),ncol=ncol(OTU)) 
  for (i in 1:nrow(OTU)){ 
    for (j in 1:ncol(OTU)){ 
      abun[i,j]=(OTU[i,j])/(Rowsum[i])*100 
    } 
  } 
  colnames(abun)<-TaxName 
  abun<-abun[,order(-colSums(abun))] 
  taxa_list<-colnames(abun)[1:N] 
  taxa_list<-taxa_list[!grepl("unclassified unclassified",taxa_list)] 
  N<-length(taxa_list) 
  new_x<-data.frame(abun[,colnames(abun) %in% taxa_list],Others=rowSum
s(abun[,!colnames(abun) %in% taxa_list])) 
  if (ncol(new_x)>(N+1)){ 
    Other<-rowSums(new_x[,c((N+1):ncol(new_x))]) 
    new_x<-new_x[,c(1:N)] 
    new_x$Other<-Other 
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  } 
  abun_groups<-cbind(Group,new_x) 
  new_x <- abun_groups 
  grouping_info<-new_x$Group 
  new_x2<-new_x[,-1] 
  tempname<-c(taxa_list,"Other") 
  colnames(new_x2)<-tempname 
  df<-NULL 
  for (i in 1:dim(new_x2)[2]){ 
    tmp<-data.frame(row.names=NULL,Sample=rownames(new_x2),Taxa=rep(co
lnames(new_x2)[i],dim(new_x2)[1]),Value=new_x2[,i],Type=grouping_info) 
    if(i==1){df<-tmp} else {df<-rbind(df,tmp)} 
  } 
  colours <- c("#F0A3FF", "#0075DC", "#993F00","#4C005C","#2BCE48","#F
FCC99","#808080","#94FFB5","#8F7C00","#9DCC00","#C20088","#003380","#F
FA405","#FFA8BB","#426600","#FF0010","#5EF1F2","#00998F","#740AFF","#9
90000","#FFFF00"); 
  p<-ggplot(df,aes(Sample,Value,fill=fct_reorder(Taxa,Value)))+geom_ba
r(stat="identity")+facet_grid(. ~ Type, drop=TRUE,scale="free",space="
free_x") 
  p<-p+scale_fill_manual(values=colours[1:(N+1)]) 
  p<-p+theme_bw(base_size = 24)+ylab("Relative Abundance %")+ggtitle("
Top 19 taxa in 3 clusters")+xlab("Clusters") 
  p<-p+guides(fill=guide_legend(title="Taxa")) 
  p<-p+scale_y_continuous(expand = c(0,0))+theme(strip.background = el
ement_rect(fill="gray85"))+theme(panel.spacing = unit(0, "lines")) 
  p<-p+theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))+the
me(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks
.x=element_blank()) 
  print(p) 
  return(df) 
} 
 
#png("Barchart_cluster", res=300, height=7, width=11,units="in") 
a<-StackedBarPlot(OTU=OTU_new[,c(2:251)],TaxName=TaxName,Group = OTU_n
ew$Cluster) 

#while (!is.null(dev.list()))  dev.off() 

Figure 6. The composition of the top five overall most abundant taxa presented by cluster 

## chose average(relative) abundance > 1% 
Subset.Taxa<-function(OTUS,TaxName,CutOff=1){ 
  colnames(OTUS)<-TaxName 
  row<-rowSums(OTUS) 
  row<-sum(row) 
  col<-colSums(OTUS) 
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  ratio<-as.matrix(col/row*100) 
  ratio<-cbind(TaxName,ratio) 
  subset<-data.frame(ratio[ratio[,2]>=CutOff,]) 
  subset<-data.frame(subset[!subset$X1=="unclassified unclassified",]) 
  newOTUS<-data.frame(OTUS[,colnames(OTUS) %in% subset$X1]) 
  colname<-colnames(newOTUS) 
  colnames(newOTUS)<-gsub("\\."," ",colname) 
  return(newOTUS) 
} 
  
rownames(OTU_new)<-OTU_new$Group  
newOTUS<-Subset.Taxa(OTU_new[,c(2:251)],TaxName=TaxName,CutOff=1) 
newOTUS<-as.matrix(newOTUS) 
rel_mat_1<-make_relative(newOTUS) 
rel_mat_1<-rel_mat_1 * 100 
rank(colSums(rel_mat_1)) 
 
# choose the following 5 taxa 
TaxName<-as.data.frame(TaxName) 
colnames(OTU_new)[2:251]<- TaxName$V1 
OTU_new$`Lachnospiraceae_unclassified  `   # column 4, 3rd 
OTU_new$`Bifidobacterium  `  # column 3, 1st 
OTU_new$`Bacteroides  `  # column 6, 4th 
OTU_new$`Veillonella  ` # column 2, 2nd 
OTU_new$`Escherichia/Shigella  ` # column 7, 5th 
 
# calculate the rel abun in whole otu table 
OTU_new<-as.data.frame(OTU_new) 
OTU_new_rel<-OTU_new[,c(2:251)] 
OTU_new_rel<-as.matrix(OTU_new_rel) 
OTU_new_rel <- make_relative(OTU_new_rel) 
OTU_new_rel<-OTU_new_rel * 100 
OTU_new_rel<-as.data.frame(cbind(OTU_new_rel,OTU_new$Cluster)) 
 
cluster<-OTU_new_rel[,c(3,2,5,1,6,251)] 
names(cluster)[5]<-"Escherichia Shigella" 
cluster<-melt(cluster, id = "V251") 
cluster$V251[cluster$V251 == "1"]<-"Cluster1" 
cluster$V251[cluster$V251 == "2"]<-"Cluster2" 
cluster$V251[cluster$V251 == "3"]<-"Cluster3" 
 
png("Cluster_top5_update_color", res=300, height=5, width=15,units="in
") 
ggplot(cluster, aes(x=V251, y=value, fill=variable)) +  
  labs(title=NULL,x=NULL, y = "Relative abundance %")+ 
  scale_color_manual(values=c("#173F5F", "#20639B", "#3CAEA3","#F6D55C
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", "#ED553B"), name=NULL)+ 
  scale_fill_manual(values=c("#173F5F", "#20639B", "#3CAEA3","#F6D55C"
, "#ED553B"))+ 
  theme_classic()+ 
  theme(legend.position="top")+ 
  theme(legend.title=element_blank())+ 
  theme(axis.text.x = element_text(size=18, color="black", face="bold"
,angle=0))+ 
  theme(axis.text.y = element_text(size=18, color="black", face="bold"
,angle=0))+ 
  theme(axis.title.y = element_text(size=18, color="black", face="bold
",angle=90))+ 
  theme(legend.text = element_text(size=18, color="black", face="bold"
,angle=0))+ 
  geom_boxplot() 
while (!is.null(dev.list()))  dev.off() 

Figure 7. Shannon and inverse Simpson indices of gut microbial alpha diversity differs 

across the three clusters 

shapiro.test(Data.Subsample.final.Alpha$Chao)    ## p-value =0.3152 
shapiro.test(Data.Subsample.final.Alpha$Shannon)  ## p-value =0.5289 
shapiro.test(Data.Subsample.final.Alpha$Invsimpson)  ## p-value = 0.00
8523 
chao<-Data.Subsample.final.Alpha$Chao 
shan<-Data.Subsample.final.Alpha$Shannon 
invismp<-Data.Subsample.final.Alpha$Invsimpson 
a<-as.factor(OTU_new$Cluster) 
 
#Chao1 
summary(aov(chao~a))  #p=0.113 
 
#Shannon 
summary(aov(shan~a))  #p=1.12e-07 
TukeyHSD(aov(shan~a)) 
 
#Inverse Simp 
kruskal.test(invismp~a) #p-value = 4.837e-07 
dunn.test(invismp,a,altp = TRUE, method="bh") 
 
labels<-c("Cluster1","Cluster2","Cluster3") 
png("Alpha_diversity_3_clusters_updated.png", res=300, height=6, width
=16.7,units="in") 
par(mfrow= c(1,3),mar=c(5, 5, 3, 1) + 0.1) 
{boxplot(chao~a,main="A. Chao1 index of 3 clusters",xlab=NA,ylab="Chao
1 Index",cex.axis=2.5,cex.lab=2.5,cex.main=2.5, names=labels) 
text(x=1.5,y=75,labels= "p-value=0.11", cex=2)} 
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{boxplot(shan~a,main="B. Shannon index of 3 clusters",ylab="Shannon In
dex",xlab=NA,cex.axis=2.5,cex.lab=2.5,cex.main=2.5,names=labels ) 
text(x=2,y=2.8,labels= "p-value<0.01", cex=2) 
text(x=1,y=1.47,labels= "a", cex=2.3) 
text(x=2,y=2.23,labels= "b", cex=2.3) 
text(x=3,y=2.62,labels= "a", cex=2.3)} 
{boxplot(invismp~a,main="C. Inverse Simpson index of 3 clusters",ylab=
"Inverse Simpson Index",xlab=NA,cex.axis=2.5,cex.lab=2.5,cex.main=2.5,
names=labels) 
  text(x=1.7,y=12,labels= "p-value<0.01", cex=2) 
  text(x=1,y=10.97,labels= "a", cex=2.3) 
  text(x=2,y=7.2,labels= "b", cex=2.3) 
  text(x=3,y=8,labels= "a", cex=2.3)} 
while (!is.null(dev.list()))  dev.off() 

Figure 8. The gut microbiota beta diversity is differed by cluster 

#Sorensen 
a<-as.factor(OTU_new$Cluster) 
PERMANOVA(OTU_new[,c(2:251)],a,TRUE,9999)   #p=1e-04  
Sor_cluster<-Sor.bray.pcoa(OTU_new[,c(2:252)],Dim=2,Color=OTU_new$Clus
ter,binary=TRUE) 

Color<-ifelse(grepl("1", OTU_new$Cluster),"#000000", ifelse(grepl("2",
 OTU_new$Cluster),"#E79F00","#0072B2")) 
 
#Bray-curtis 
PERMANOVA(OTU_new[,c(2:252)],a,FALSE,9999)  #1e-04 
Bray_cluster<-Sor.bray.pcoa(OTU_new[,c(2:252)],Dim=2,Color=OTU_new$Clu
ster,binary=FALSE) 

shapes<-c(21,22,23,24) 
shapes<-shapes[as.numeric(metadata$FED_PRAC_LIGHT_NEW)] 
shapes 
 
#png("Beta_diversity_3_clusters_beauty_shapes.png", res=300, height=5,
 width=10,units="in") 
par(mfrow= c(1,2),mar=c(5, 5, 3, 1) + 0.1) 
plot(Sor_cluster,cex.axis=1.5,cex.lab=1.5,cex.main=2,cex=2,col=1, 
     pch=shapes,xlim=c(-.45,.5),ylim=c(-.3,.35),xlab="PC1 (22.5%)",yla
b="PC2 (11.8%)",bg=Color,main="A. Sorensen") 
ordiellipse(Sor_cluster,OTU_new$Cluster,col=Color,lwd=2) 
legend(0.2,-0.17,c("Cluster1","Cluster2","Cluster3"),  
       pch=21,col=1,pt.bg=c("#000000","#E79F00","#0072B2"),cex = 0.8,y
.intersp = 0.72) 
legend(0.1,0.35,c("Breastmilk","Breastmilk_vitaminD","Partial breastmi
lk","Formula"), pch=c(21,22,23,24),cex =0.8,y.intersp = 0.72) 
text(-0.3,0.25, labels= "p-value<0.01",cex=1) 
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plot(Bray_cluster,cex.axis=1.5,cex.lab=1.5,cex.main=2,cex=2,col=1, 
     pch=shapes,xlim=c(-.5,.65),ylim=c(-.35,.35),xlab="PC1 (25.1%)",yl
ab="PC2 (13.6%)",bg=Color,main="B. Bray-Curtis") 
ordiellipse(Bray_cluster,OTU_new$Cluster,col=Color,lwd=2) 
legend(0.34,-0.2,c("Cluster1","Cluster2","Cluster3"),  
       pch=21,col=1,pt.bg=c("#000000","#E79F00","#0072B2"),cex=0.8,y.i
ntersp = 0.72) 
legend(0.215,0.35,c("Breastmilk","Breastmilk_vitaminD","Partial breast
milk","Formula"), pch=c(21,22,23,24),cex=0.75,y.intersp = 0.72) 
text(0.4,0.16, labels= "p-value<0.01",cex=1) 

#while (!is.null(dev.list()))  dev.off() 

Table 4. The associations between three clusters and ASQ scales 

summary(metadata) 
metadata$Cluster<-as.factor(metadata$Cluster) 
###univariate regression### 
# gross motor 
grossmotor<-lm(asq_9_total_grossmotor~Cluster,data=metadata)   
summary(grossmotor ) 
confint(grossmotor) 
 
#Fine motor 
finemotor<-lm(asq_9_total_finemotor~Cluster, data=metadata) 
summary(finemotor) 
confint(finemotor)  
 
#Communication 
Communication<-lm(asq_9_total_communication.total.~Cluster,data=metada
ta)   
summary(Communication) 
confint(Communication)   
 
#Personal and social 
personal<-lm(asq_9_total_personal_social~ Cluster,data=metadata)   
summary(personal) 
confint(personal) 
 
#Problem solving 
problem<-lm(asq_9_total_problemsolving~Cluster,data=metadata)   
summary(problem) 
confint(problem)   
###multivariate regression### 
#Gross motor 
grossmotor<-lm(asq_9_total_grossmotor~Cluster+FED_PRAC_LIGHT_NEW+antib
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iotics_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_
BMI+maternal_age,data=metadata)  
summary(grossmotor) 
confint(grossmotor)   
#Fine motor 
finemotor<-lm(asq_9_total_finemotor~Cluster+FED_PRAC_LIGHT_NEW+antibio
tics_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BM
I+maternal_age, data=metadata) 
summary(finemotor) 
confint(finemotor)  
 
#Communication 
Communication<-lm(asq_9_total_communication.total.~Cluster+FED_PRAC_LI
GHT_NEW+antibiotics_since_birth+SEX++ESTWKSGEST+MD_FINAL_ROUTE+Race_ne
w+EDU_LVL+PRE_BMI+maternal_age,data=metadata)   
summary(Communication) 
confint(Communication) 
 
#Personal and social 
personal<-lm(asq_9_total_personal_social~Cluster+FED_PRAC_LIGHT_NEW+an
tibiotics_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+P
RE_BMI+maternal_age,data=metadata)   
summary(personal) 
confint(personal)   
 
#Problem solving 
problem<-lm(asq_9_total_problemsolving~Cluster+FED_PRAC_LIGHT_NEW+anti
biotics_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE
_BMI+maternal_age,data=metadata)   
summary(problem) 
confint(problem)   

Figure 9. The relationships between ASQ and relative abundance of specific taxa 

OTU<-Data.Subsample.genus_37wks[,c(4:253)] 
colnames(OTU) <- TaxName$V1 
mat = as.matrix(OTU) 
rel_mat = make_relative(mat) 
rel_otu<-as.data.frame(t(rel_mat)) 
colnames(rel_otu)<-Data.Subsample.genus_37wks$Group 
rel_otu<-t(rel_otu) 
 
# based on cluster analysis in table 4 
#Fine motor is negatively associated with cluster 2(bifidobacterium) c
ompared to cluster 1(Lachnospiraceae_unclassified) 
metadata$Bifi<-rel_otu[,2] 
shapiro.test(metadata$Bifi)  # p-value = 0.0001565 
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metadata$Bifi_percent<-metadata$Bifi*100 
 
c<-ggplot(metadata,aes(x=asq_9_total_finemotor, y= Bifi_percent)) + 
  geom_smooth(method='lm',se=FALSE, color='darkblue')+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  geom_point()+ 
  labs(x='Fine motor', y='Bifidobacterium %', title='Fine motor_Bifido
bacterium') + 
  theme(plot.title = element_text(hjust=0.5, size=15, face='bold'))+ 
  theme(axis.text.x=element_text(size=12),axis.text.y=element_text(siz
e=12),axis.title=element_text(size=12,face="bold"))+ 
  stat_cor(method="pearson",show.legend = FALSE,r.accuracy=0.01,p.accu
racy=0.01) 
c 

## `geom_smooth()` using formula = 'y ~ x' 

metadata$Lach<-rel_otu[,3] 
metadata$Lach_percent<-metadata$Lach*100 
 
d<-ggplot(metadata,aes(x=asq_9_total_finemotor, y= Lach_percent)) + 
  geom_smooth(method='lm',se=FALSE, color='darkblue')+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  geom_point()+ 
  labs(x='Fine motor', y='Lachnospiraceae_unclassified %', title='Fine
 motor_Lachnospiraceae unclassified') + 
  theme(plot.title = element_text(hjust=0.5, size=15, face='bold'))+ 
  stat_cor(method="pearson",show.legend = FALSE,r.accuracy=0.01,p.accu
racy=0.01)+ 
  theme(axis.text.x=element_text(size=12),axis.text.y=element_text(siz
e=12),axis.title=element_text(size=12,face="bold")) 
d 

#problem solving is negatively associated with cluster3(bacteriodes) c
ompared to cluster 1(lach) 
metadata$Bacter<-rel_otu[,5] 
metadata$Bacter_percent<-metadata$Bacter*100 
 
f<-ggplot(metadata,aes(x=asq_9_total_problemsolving, y= Bacter_percent
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)) + 
  geom_smooth(method='lm',se=FALSE, color='darkblue')+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  geom_point()+ 
  labs(x='Problem-solving', y='Bacteroides %', title='Problem-solving_
Bacteroides') + 
  theme(plot.title = element_text(hjust=0.5, size=15, face='bold'))+ 
  stat_cor(method="pearson",show.legend = FALSE,r.accuracy=0.01,p.accu
racy=0.01)+ 
  theme(axis.text.x=element_text(size=12),axis.text.y=element_text(siz
e=12),axis.title=element_text(size=12,face="bold")) 
f 
## `geom_smooth()` using formula = 'y ~ x' 

h<-ggplot(metadata,aes(x=asq_9_total_problemsolving, y=Lach_percent)) 
+ 
  geom_smooth(method='lm',se=FALSE, color='darkblue')+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  geom_point()+ 
  labs(x='Problem-solving', y='Lachnospiraceae_unclassified %', title=
'Problem-solving_Lachnospiraceae unclassified') + 
  theme(plot.title = element_text(hjust=0.5, size=15, face='bold'))+ 
  stat_cor(method="pearson",show.legend = FALSE,r.accuracy=0.01,p.accu
racy=0.01)+ 
  theme(axis.text.x=element_text(size=12),axis.text.y=element_text(siz
e=12),axis.title=element_text(size=12,face="bold")) 
h 

## `geom_smooth()` using formula = 'y ~ x' 

png("problemsolving_bacter_Lach_finemotor_bifi_lach.png", res=300, hei
ght=10, width=12,units="in") 
ggarrange(c,d,f,h, labels = c("A", "B","C","D")) 

## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
## `geom_smooth()` using formula = 'y ~ x' 
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while (!is.null(dev.list()))  dev.off() 

Figure 10. The frequency of feeding methods in the past 24 hours and past week at 3 

months of age in each cluster 

percent<-read.xlsx("Figure10_percent.xlsx") 
summary(percent) 
 
chisq.test(table(metadata$Cluster,metadata$FED_PRAC_LIGHT_NEW),simulat
e.p.value = TRUE)   
p<-as.data.frame(chisq.post.hoc(table(metadata$Cluster,metadata$FED_PR
AC_LIGHT_NEW))) 
p 
 
chisq.test(table(metadata$Cluster,metadata$During.the.past.week..my.ba
by.ate.),simulate.p.value = TRUE)   
p_1<-as.data.frame(chisq.post.hoc(table(metadata$Cluster,metadata$Duri
ng.the.past.week..my.baby.ate.))) 
p_1 
 
p1<-ggplot(percent, aes(x = Cluster_pastday, y = percent_pastday, fill
 =factor(fed_pastday), label = percent_pastday,color=factor(fed_pastda
y)))+ 
    geom_bar(stat = "identity")+ 
    labs(x= "Cluster", y = "Percentage %")+ 
   ggtitle("A. Feeding method in the past day") + 
    geom_text(size = 5, position = position_stack(vjust = 0.5),color="
black")+ 
    theme_classic()+ 
    theme(legend.title=element_blank())+ 
    scale_fill_discrete(labels=c('Breastmilk', 'Breastmilk_vitaminD', 
'Partial breastmilk', 'Formula'))+ 
  scale_color_discrete(labels=c('Breastmilk', 'Breastmilk_vitaminD', '
Partial breastmilk', 'Formula'))+ 
  theme(text = element_text(size = 5),axis.text = element_text(size = 
17),axis.title = element_text(size = 16),legend.text = element_text(si
ze = 15), 
        plot.title = element_text(size = 16))+ 
  annotate("text", x=1, y=105, label= "a",size=6)+ 
  annotate("text", x=2, y=105, label= "b",size=6)+ 
  annotate("text", x=3, y=105, label= "b",size=6) 
 
p2<-ggplot(percent, aes(x = Cluster_pastweek, y = percent_pastweek, fi
ll =factor(fed_pastweek), label = percent_pastweek,color=factor(fed_pa
stweek)))+ 
    geom_bar(stat = "identity")+ 
    labs(x= "Cluster", y = "Percentage %")+ 
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    ggtitle("B.Feeding method in the past week") + 
    geom_text(size = 5, position = position_stack(vjust = 0.5),color="
black")+ 
    theme_classic()+ 
    theme(legend.title=element_blank())+ 
    theme(text = element_text(size = 5),axis.text = element_text(size 
= 17),axis.title = element_text(size = 16),legend.text = element_text(
size = 15), 
        plot.title = element_text(size = 16))+ 
    annotate("text", x=1, y=105, label= "a",size=6)+ 
    annotate("text", x=2, y=105, label= "b",size=6)+ 
    annotate("text", x=3, y=105, label= "a",size=6) 
 
#png("Feeding_2_variables_cluster.png", res=300, height=5, width=10,un
its="in") 
ggarrange(p1,p2) 

## Warning: Removed 3 rows containing missing values (`position_stack(
)`). 
## Removed 3 rows containing missing values (`position_stack()`). 

#while (!is.null(dev.list()))  dev.off() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



 

 186 

Chapter 3 

Data preparation 

library(vegan) 
library(lubridate) 
library(tidyr) 
library(MASS) 
library(car) 
library(dunn.test) 
library(ggplot2) 
library(openxlsx) 
library(Hmisc) 
library(pairwiseAdonis) 
library(Maaslin2) 
library(mediation) 
library(MeMoBootR) 
library(Rfast) 
library(energy) 
library(tidyr) 
library(phyloseq); packageVersion("phyloseq") 
library(energy); packageVersion("energy") 
library(LDM) 
library(dplyr) 
  
 
setwd("/Users/busihan/Desktop/2023Mar22_Aim2_double_check") 
metadata<-read.csv("metadata_updated_Jan.csv",na="",header = T) 
Data.Subsample.genus_37wks<-read.csv("Data.Subsample.genus_37wks.csv",
header = T,stringsAsFactors = T,row.names = 1) 
cols<-c("antibiotics_since_birth","FED_PRAC_NEW","SEX","FED_PRAC_LIGHT
_NEW","MD_FINAL_ROUTE","Race_new","EDU_LVL") 
summary(metadata) 
metadata[cols]<-lapply(metadata[cols], factor) 
sapply(metadata,class) 
 
Data.Subsample.genus_37wks$Group 
metadata$Group 
temp<-merge(Data.Subsample.genus_37wks, metadata,by="Group") 
 
Data.Subsample.genus_37wks<-temp[,c(1:(ncol(Data.Subsample.genus_37wks
)))] 
metadata<-temp[,c(1,254:294)] 
 
Data.Subsample.genus_37wks$Group 
metadata$Group 
  
Alpha<-function(OTU,Names="Sample",Groups="Sample"){ 
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  Chao<-t(estimateR(OTU)) 
  Chao<-Chao[,2] 
  Shannon<-diversity(OTU,index="shannon") 
  Invsimpson<-diversity(OTU,index="invsimpson") 
  OTU.Subsample.Alpha<-data.frame(Names,Groups,Chao,Shannon,Invsimpson
) 
  return(OTU.Subsample.Alpha) 
} 
Sor.bray.pcoa<-function(OTUS,Dim=2,Color=1,binary,pch=16,Title="PCoA")
{ 
  Data.df<-vegdist(OTUS,method="bray", binary) 
  Data.df.PCoA<-cmdscale(Data.df, k = Dim, eig = FALSE) 
  Data.df.PCoA.eig<-cmdscale(Data.df, k = Dim, eig = TRUE) 
  eig.Data.df.PCoA<-Data.df.PCoA.eig$eig 
  eig.Data.df.PCoA.sum<-sum(eig.Data.df.PCoA) 
  a<-(eig.Data.df.PCoA/eig.Data.df.PCoA.sum)*100 
  xlab<-paste("PC1","(",round(a[1],1),"%",")",sep="") 
  ylab<-paste("PC2","(",round(a[2],1),"%",")",sep="") 
  if(binary==TRUE){ 
    main<-"Sorensen PCoA" 
  }else(main<-"Bray-Curtis PCoA") 
  plot(Data.df.PCoA, col=Color, 
       main=Title,xlab=xlab,ylab=ylab,pch=c(pch)) 
  return(Data.df.PCoA) 
} 
 
PERMANOVA<-function(OTUS,Group,binary,iters=9999){ 
  Data.Dist<-vegdist(OTUS,method="bray", binary=binary) 
  adonis2(Data.Dist~Group,permutations=iters) 
} 
 
PERMANOVA_pairwise<-function(OTUS,Group,binary,iters=9999){ 
  Data.Dist<-vegdist(OTUS,method="bray", binary=binary) 
  pairwise.adonis(Data.Dist,Group) 
} 

Table 5. The associations between infant feeding methods of infants at 3 months of age and 

ASQ scores at 9 months of age 

###FED_PRAC_NEW### 
summary(metadata$FED_PRAC_NEW)  
26/64*100 
16/64*100 
22/64*100 
#gross motor# 
FED_PRAC_NEW_median<-aggregate(metadata$asq_9_total_grossmotor~metadat
a$FED_PRAC_NEW,FUN = median)  
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FED_PRAC_NEW_median 
FED_PRAC_NEW_min<-aggregate(metadata$asq_9_total_grossmotor~metadata$F
ED_PRAC_NEW,FUN = min)  
FED_PRAC_NEW_min 
FED_PRAC_NEW_max<-aggregate(metadata$asq_9_total_grossmotor~metadata$F
ED_PRAC_NEW,FUN = max)  
FED_PRAC_NEW_max 
kruskal.test(asq_9_total_grossmotor~FED_PRAC_NEW, data=metadata)  
 
#Fine motor 
FED_PRAC_NEW_median<-aggregate(metadata$asq_9_total_finemotor~metadata
$FED_PRAC_NEW,FUN = median)  
FED_PRAC_NEW_median 
FED_PRAC_NEW_min<-aggregate(metadata$asq_9_total_finemotor~metadata$FE
D_PRAC_NEW,FUN = min)  
FED_PRAC_NEW_min 
FED_PRAC_NEW_max<-aggregate(metadata$asq_9_total_finemotor~metadata$FE
D_PRAC_NEW,FUN = max)  
FED_PRAC_NEW_max 
kruskal.test(asq_9_total_finemotor~FED_PRAC_NEW, data=metadata)   
 
#Communication 
FED_PRAC_NEW_median<-aggregate(metadata$asq_9_total_communication.tota
l.~metadata$FED_PRAC_NEW,FUN = median)  
FED_PRAC_NEW_median 
FED_PRAC_NEW_min<-aggregate(metadata$asq_9_total_communication.total.~
metadata$FED_PRAC_NEW,FUN = min)  
FED_PRAC_NEW_min 
FED_PRAC_NEW_max<-aggregate(metadata$asq_9_total_communication.total.~
metadata$FED_PRAC_NEW,FUN = max)  
FED_PRAC_NEW_max 
kruskal.test(asq_9_total_communication.total.~FED_PRAC_NEW, data=metad
ata)  
 
#Personal and social 
FED_PRAC_NEW_median<-aggregate(metadata$asq_9_total_personal_social~me
tadata$FED_PRAC_NEW,FUN = median)  
FED_PRAC_NEW_median 
FED_PRAC_NEW_min<-aggregate(metadata$asq_9_total_personal_social~metad
ata$FED_PRAC_NEW,FUN = min)  
FED_PRAC_NEW_min 
FED_PRAC_NEW_max<-aggregate(metadata$asq_9_total_personal_social~metad
ata$FED_PRAC_NEW,FUN = max)  
FED_PRAC_NEW_max 
kruskal.test(asq_9_total_personal_social~FED_PRAC_NEW, data=metadata)  
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#Problem solving 
FED_PRAC_NEW_median<-aggregate(metadata$asq_9_total_problemsolving~met
adata$FED_PRAC_NEW,FUN = median) 
FED_PRAC_NEW_median 
FED_PRAC_NEW_min<-aggregate(metadata$asq_9_total_problemsolving~metada
ta$FED_PRAC_NEW,FUN = min)  
FED_PRAC_NEW_min 
FED_PRAC_NEW_max<-aggregate(metadata$asq_9_total_problemsolving~metada
ta$FED_PRAC_NEW,FUN = max)  
FED_PRAC_NEW_max 
kruskal.test(asq_9_total_problemsolving~FED_PRAC_NEW, data=metadata) 
 
 
###FED_PRAC_LIGHT_NEW### 
summary(metadata$FED_PRAC_LIGHT_NEW)  
9/64*100 
17/64*100 
16/64*100 
22/64*100 
#Gross motor 
FED_PRAC_LIGHT_NEW_median<-aggregate(metadata$asq_9_total_grossmotor~m
etadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_NEW_median 
FED_PRAC_LIGHT_NEW_min<-aggregate(metadata$asq_9_total_grossmotor~meta
data$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_NEW_min 
FED_PRAC_LIGHT_NEW_max<-aggregate(metadata$asq_9_total_grossmotor~meta
data$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_NEW_max 
kruskal.test(asq_9_total_grossmotor~FED_PRAC_LIGHT_NEW,data=metadata)  
 
#Fine motor 
FED_PRAC_LIGHT_NEW_median<-aggregate(metadata$asq_9_total_finemotor~me
tadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_NEW_median 
FED_PRAC_LIGHT_NEW_min<-aggregate(metadata$asq_9_total_finemotor~metad
ata$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_NEW_min 
FED_PRAC_LIGHT_NEW_max<-aggregate(metadata$asq_9_total_finemotor~metad
ata$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_NEW_max 
kruskal.test(asq_9_total_finemotor~FED_PRAC_LIGHT_NEW, data=metadata) 
  
dunn.test(metadata$asq_9_total_finemotor,metadata$FED_PRAC_LIGHT_NEW,a
ltp = TRUE, method="bh") 
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#Communication 
FED_PRAC_LIGHT_NEW_median<-aggregate(metadata$asq_9_total_communicatio
n.total.~metadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_NEW_median 
FED_PRAC_LIGHT_NEW_min<-aggregate(metadata$asq_9_total_communication.t
otal.~metadata$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_NEW_min 
FED_PRAC_LIGHT_NEW_max<-aggregate(metadata$asq_9_total_communication.t
otal.~metadata$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_NEW_max 
kruskal.test(asq_9_total_communication.total.~FED_PRAC_LIGHT_NEW, data
=metadata)  
 
#Personal and social 
FED_PRAC_LIGHT_NEW_median<-aggregate(metadata$asq_9_total_personal_soc
ial~metadata$FED_PRAC_LIGHT_NEW,FUN = median)  
FED_PRAC_LIGHT_NEW_median 
FED_PRAC_LIGHT_NEW_min<-aggregate(metadata$asq_9_total_personal_social
~metadata$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_NEW_min 
FED_PRAC_LIGHT_NEW_max<-aggregate(metadata$asq_9_total_personal_social
~metadata$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_NEW_max 
kruskal.test(asq_9_total_personal_social~FED_PRAC_LIGHT_NEW, data=meta
data)  
 
#Problem solving 
FED_PRAC_LIGHT_NEW_median<-aggregate(metadata$asq_9_total_problemsolvi
ng~metadata$FED_PRAC_LIGHT_NEW,FUN = median) 
FED_PRAC_LIGHT_NEW_median 
FED_PRAC_LIGHT_NEW_min<-aggregate(metadata$asq_9_total_problemsolving~
metadata$FED_PRAC_LIGHT_NEW,FUN = min)  
FED_PRAC_LIGHT_NEW_min 
FED_PRAC_LIGHT_NEW_max<-aggregate(metadata$asq_9_total_problemsolving~
metadata$FED_PRAC_LIGHT_NEW,FUN = max)  
FED_PRAC_LIGHT_NEW_max 
kruskal.test(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW, data=metad
ata) 

Table 6. Associations between feeding methods in the 24 hours prior to stool sample 

collection at 3 months and infant ASQ scales at 9 months of age 

# Gross motor 
grossmotor_uni<-lm(asq_9_total_grossmotor~FED_PRAC_NEW,data=metadata)  
summary(grossmotor_uni) 
confint(grossmotor_uni)   
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grossmotor<-lm(asq_9_total_grossmotor~FED_PRAC_NEW+antibiotics_since_b
irth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_a
ge,data=metadata) 
summary(grossmotor) 
confint(grossmotor)   
 
#Fine motor 
finemotor_uni<-lm(asq_9_total_finemotor~FED_PRAC_NEW, data=metadata) 
summary(finemotor_uni) 
confint(finemotor_uni)  
  
finemotor<-lm(asq_9_total_finemotor~FED_PRAC_NEW+antibiotics_since_bir
th+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_age
, data=metadata) 
summary(finemotor) 
confint(finemotor)  
 
#Communication 
Communication_uni<-lm(asq_9_total_communication.total.~FED_PRAC_NEW,da
ta=metadata)   
summary(Communication_uni) 
confint(Communication_uni)  
 
Communication<-lm(asq_9_total_communication.total.~FED_PRAC_NEW+antibi
otics_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_B
MI+maternal_age,data=metadata)   
summary(Communication) 
confint(Communication)   
 
#Personal and social 
personal_uni<-lm(asq_9_total_personal_social~FED_PRAC_NEW,data=metadat
a)   
summary(personal_uni) 
confint(personal_uni)  
 
personal<-lm(asq_9_total_personal_social~FED_PRAC_NEW+antibiotics_sinc
e_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+materna
l_age,data=metadata)   
summary(personal) 
confint(personal)  
 
#Problem solving 
problem_uni<-lm(asq_9_total_problemsolving~FED_PRAC_NEW,data=metadata)
   
summary(problem_uni) 
confint(problem_uni)   
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problem<-lm(asq_9_total_problemsolving~FED_PRAC_NEW+antibiotics_since_
birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_
age,data=metadata) 
summary(problem) 
confint(problem)   

Table 7. Associations between infant feeding in the 24 hours prior to stool sample collection 

and population characteristics 

###Baby Sex### 
summary(metadata) 
31/64*100 
33/64*100 
#Male 
male_breast<-filter(metadata,SEX=="1" & FED_PRAC_LIGHT_NEW=="1") #n=4 
count(male_breast) 
male_breast_D<-filter(metadata,SEX=="1" & FED_PRAC_LIGHT_NEW=="2") #n=
6 
count(male_breast_D) 
male_mix<-filter(metadata,SEX=="1" & FED_PRAC_LIGHT_NEW=="3") #n=10 
count(male_mix) 
male_formula<-filter(metadata,SEX=="1" & FED_PRAC_LIGHT_NEW=="4") #n=1
1 
count(male_formula) 
4/9*100 
6/17*100 
10/16*100 
11/22*100 
#Female 
gross_breast<-filter(metadata,SEX=="2" & FED_PRAC_LIGHT_NEW=="1") #n=5 
count(gross_breast) 
gross_breast_D<-filter(metadata,SEX=="2" & FED_PRAC_LIGHT_NEW=="2") #n
=11 
count(gross_breast_D) 
gross_mix<-filter(metadata,SEX=="2" & FED_PRAC_LIGHT_NEW=="3") #n=6 
count(gross_mix) 
gross_formula<-filter(metadata,SEX=="2" & FED_PRAC_LIGHT_NEW=="4") #n=
11 
count(gross_formula) 
chisq.test(table(metadata$SEX,metadata$FED_PRAC_LIGHT_NEW),simulate.p.
value = TRUE)   
5/9*100 
11/17*100 
6/16*100 
11/22*100 
 
###Baby Race### 



 

 193 

44/64*100 
20/64*100 
#white# 
white_breast<-filter(metadata,Race_new=="1" & FED_PRAC_LIGHT_NEW=="1")
 #n=8 
count(white_breast) 
white_breast_D<-filter(metadata,Race_new=="1" & FED_PRAC_LIGHT_NEW=="2
") #n=12 
count(white_breast_D) 
white_mix<-filter(metadata,Race_new=="1" & FED_PRAC_LIGHT_NEW=="3") #n
=11 
count(white_mix) 
white_formula<-filter(metadata,Race_new=="1" & FED_PRAC_LIGHT_NEW=="4"
) #n=13 
count(white_formula) 
8/9*100 
12/17*100 
11/16*100 
13/22*100 
#non white# 
nowhite_breast<-filter(metadata,Race_new=="2" & FED_PRAC_LIGHT_NEW=="1
") #n=1 
count(nowhite_breast) 
nowhite_breast_D<-filter(metadata,Race_new=="2" & FED_PRAC_LIGHT_NEW==
"2") #n=5 
count(nowhite_breast_D) 
nowhite_mix<-filter(metadata,Race_new=="2" & FED_PRAC_LIGHT_NEW=="3") 
#n=5 
count(nowhite_mix) 
nowhite_formula<-filter(metadata,Race_new=="2" & FED_PRAC_LIGHT_NEW=="
4") #n=9 
count(nowhite_formula) 
chisq.test(table(metadata$Race_new,metadata$FED_PRAC_LIGHT_NEW),simula
te.p.value = TRUE)   
1/9*100 
5/17*100 
5/16*100 
9/22*100 
 
###materanl education level### 
3/64*100 
11/64*100 
13/64*100 
37/64*100 
# non-high school 
nohigh_breast<-filter(metadata,EDU_LVL=="1" & FED_PRAC_LIGHT_NEW=="1")
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#n=0 
count(nohigh_breast) 
nohigh_breast_D<-filter(metadata,EDU_LVL=="1" & FED_PRAC_LIGHT_NEW=="2
") #n=0 
count(nohigh_breast_D) 
nohigh_mix<-filter(metadata,EDU_LVL=="1" & FED_PRAC_LIGHT_NEW=="3") #n
=0 
count(nohigh_mix) 
nohigh_formula<-filter(metadata,EDU_LVL=="1" & FED_PRAC_LIGHT_NEW=="4"
) #n=3 
count(nohigh_formula) 
3/22*100 
#high school 
high_breast<-filter(metadata,EDU_LVL=="2" & FED_PRAC_LIGHT_NEW=="1") #
n=1 
count(high_breast) 
high_breast_D<-filter(metadata,EDU_LVL=="2" & FED_PRAC_LIGHT_NEW=="2")
 #n=0 
count(high_breast_D) 
high_mix<-filter(metadata,EDU_LVL=="2" & FED_PRAC_LIGHT_NEW=="3") #n=3 
count(high_mix) 
high_formula<-filter(metadata,EDU_LVL=="2" & FED_PRAC_LIGHT_NEW=="4") 
#n=7 
count(high_formula) 
1/9*100 
3/16*100 
7/22*100 
#some college 
socoll_breast<-filter(metadata,EDU_LVL=="3" & FED_PRAC_LIGHT_NEW=="1")
 #n=2 
count(socoll_breast) 
socoll_breast_D<-filter(metadata,EDU_LVL=="3" & FED_PRAC_LIGHT_NEW=="2
") #n=3 
count(socoll_breast_D) 
socoll_mix<-filter(metadata,EDU_LVL=="3" & FED_PRAC_LIGHT_NEW=="3") #n
=3 
count(socoll_mix) 
socoll_formula<-filter(metadata,EDU_LVL=="3" & FED_PRAC_LIGHT_NEW=="4"
) #n=5 
count(socoll_formula) 
2/9*100 
3/17*100 
3/16*100 
5/22*100 
#college 
coll_breast<-filter(metadata,EDU_LVL=="4" & FED_PRAC_LIGHT_NEW=="1") #
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n=6 
count(coll_breast) 
coll_breast_D<-filter(metadata,EDU_LVL=="4" & FED_PRAC_LIGHT_NEW=="2")
 #n=14 
count(coll_breast_D) 
coll_mix<-filter(metadata,EDU_LVL=="4" & FED_PRAC_LIGHT_NEW=="3") #n=1
0 
count(coll_mix) 
coll_formula<-filter(metadata,EDU_LVL=="4" & FED_PRAC_LIGHT_NEW=="4") 
#n=7 
count(coll_formula) 
chisq.test(table(metadata$EDU_LVL,metadata$FED_PRAC_LIGHT_NEW),simulat
e.p.value = TRUE)   
6/9*100 
14/17*100 
10/16*100 
7/22*100 
 
#Delivery mode 
39/64*100 
25/64*100 
#vaginal 
vag_breast<-filter(metadata,MD_FINAL_ROUTE=="1" & FED_PRAC_LIGHT_NEW==
"1") #n=5 
count(vag_breast) 
vag_breast_D<-filter(metadata,MD_FINAL_ROUTE=="1" & FED_PRAC_LIGHT_NEW
=="2") #n=10 
count(vag_breast_D) 
vag_mix<-filter(metadata,MD_FINAL_ROUTE=="1" & FED_PRAC_LIGHT_NEW=="3"
) #n=15 
count(vag_mix) 
vag_formula<-filter(metadata,MD_FINAL_ROUTE=="1" & FED_PRAC_LIGHT_NEW=
="4") #n=9 
count(vag_formula) 
5/9*100 
10/17*100 
15/16*100 
9/22*100 
#c section 
C_breast<-filter(metadata,MD_FINAL_ROUTE=="2" & FED_PRAC_LIGHT_NEW=="1
") #n=4 
count(C_breast) 
C_breast_D<-filter(metadata,MD_FINAL_ROUTE=="2" & FED_PRAC_LIGHT_NEW==
"2") #n=7 
count(C_breast_D) 
C_mix<-filter(metadata,MD_FINAL_ROUTE=="2" & FED_PRAC_LIGHT_NEW=="3") 
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#n=1 
count(C_mix) 
C_formula<-filter(metadata,MD_FINAL_ROUTE=="2" & FED_PRAC_LIGHT_NEW=="
4") #n=13 
count(C_formula) 
chisq.test(table(metadata$MD_FINAL_ROUTE,metadata$FED_PRAC_LIGHT_NEW),
simulate.p.value = TRUE) 
4/9*100 
7/17*100 
1/16*100 
13/22*100 
 
###continuous variables### 
mean(metadata$PRE_BMI) 
sd(metadata$PRE_BMI) 
#pre_bmi 
bmi_breast<-filter(metadata, FED_PRAC_LIGHT_NEW=="1")  
mean(bmi_breast$PRE_BMI) 
sd(bmi_breast$PRE_BMI) 
bmi_breast_D<-filter(metadata, FED_PRAC_LIGHT_NEW=="2")  
mean(bmi_breast_D$PRE_BMI) 
sd(bmi_breast_D$PRE_BMI) 
bmi_mix<-filter(metadata, FED_PRAC_LIGHT_NEW=="3") 
mean(bmi_mix$PRE_BMI) 
sd(bmi_mix$PRE_BMI) 
bmi_formula<-filter(metadata, FED_PRAC_LIGHT_NEW=="4")  
mean(bmi_formula$PRE_BMI) 
sd(bmi_formula$PRE_BMI) 
kruskal.test(PRE_BMI~FED_PRAC_LIGHT_NEW, data=metadata)   
 
#maternal age 
mean(metadata$maternal_age) 
sd(metadata$maternal_age) 
 
age_breast<-filter(metadata, FED_PRAC_LIGHT_NEW=="1")  
mean(age_breast$maternal_age) 
sd(age_breast$maternal_age) 
age_breast_D<-filter(metadata, FED_PRAC_LIGHT_NEW=="2")  
mean(age_breast_D$maternal_age) 
sd(age_breast_D$maternal_age) 
age_mix<-filter(metadata, FED_PRAC_LIGHT_NEW=="3") 
mean(age_mix$maternal_age) 
sd(age_mix$maternal_age) 
age_formula<-filter(metadata, FED_PRAC_LIGHT_NEW=="4")  
mean(age_formula$maternal_age) 
sd(age_formula$maternal_age) 
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kruskal.test(maternal_age~FED_PRAC_LIGHT_NEW, data=metadata)   
 
#gestational age 
mean(metadata$ESTWKSGEST) 
sd(metadata$ESTWKSGEST) 
 
gest_breast<-filter(metadata, FED_PRAC_LIGHT_NEW=="1")  
mean(gest_breast$ESTWKSGEST) 
sd(gest_breast$ESTWKSGEST) 
gest_breast_D<-filter(metadata, FED_PRAC_LIGHT_NEW=="2")  
mean(gest_breast_D$ESTWKSGEST) 
sd(gest_breast_D$ESTWKSGEST) 
gest_mix<-filter(metadata, FED_PRAC_LIGHT_NEW=="3") 
mean(gest_mix$ESTWKSGEST) 
sd(gest_mix$ESTWKSGEST) 
gest_formula<-filter(metadata, FED_PRAC_LIGHT_NEW=="4")  
mean(gest_formula$ESTWKSGEST) 
sd(gest_formula$ESTWKSGEST) 
 
kruskal.test(ESTWKSGEST~FED_PRAC_LIGHT_NEW, data=metadata)   

Table 8. Associations between feeding methods after stratification by vitamin D 

supplementation in the 24 hours prior to stool sample collection at 3 months of age and 

infant ASQ scales at 9 months of age 

# gross motor 
grossmotor_uni1<-lm(asq_9_total_grossmotor~FED_PRAC_LIGHT_NEW,data=met
adata)   
summary(grossmotor_uni1) 
confint(grossmotor_uni1) 
  
grossmotor<-lm(asq_9_total_grossmotor~FED_PRAC_LIGHT_NEW+antibiotics_s
ince_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+mate
rnal_age,data=metadata)  
summary(grossmotor) 
confint(grossmotor)  
 
#Fine motor 
finemotor_uni1<-lm(asq_9_total_finemotor~FED_PRAC_LIGHT_NEW, data=meta
data) 
summary(finemotor_uni1) 
confint(finemotor_uni1)  
 
finemotor<-lm(asq_9_total_finemotor~FED_PRAC_LIGHT_NEW+antibiotics_sin
ce_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+matern
al_age, data=metadata) 
summary(finemotor) 
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confint(finemotor) 
 
#Communication 
Communication_uni1<-lm(asq_9_total_communication.total.~FED_PRAC_LIGHT
_NEW,data=metadata)   
summary(Communication_uni1) 
confint(Communication_uni1)   
 
Communication<-lm(asq_9_total_communication.total.~FED_PRAC_LIGHT_NEW+
antibiotics_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL
+PRE_BMI+maternal_age,data=metadata)   
summary(Communication) 
confint(Communication)  
 
#Personal and social 
personal_uni1<-lm(asq_9_total_personal_social~ FED_PRAC_LIGHT_NEW,data
=metadata)   
summary(personal_uni1) 
confint(personal_uni1)   
 
personal<-lm(asq_9_total_personal_social~FED_PRAC_LIGHT_NEW+antibiotic
s_since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+m
aternal_age,data=metadata)   
summary(personal) 
confint(personal)  
 
#Problem solving 
problem_uni1<-lm(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW,data=me
tadata)   
summary(problem_uni1) 
confint(problem_uni1)  
 
problem<-lm(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW+antibiotics_
since_birth+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+mat
ernal_age,data=metadata)   
summary(problem) 
confint(problem)   

Table 9. Associations between exclusive breastfeeding duration and infant ASQ scales at 9 

months of age 

options(scipen = 100) 
summary(metadata) 
#Gross motor 
grossmotor_uni2<-lm(asq_9_total_grossmotor~exclusive_feeding_duration_
updated,data=metadata)   
summary(grossmotor_uni2) 



 

 199 

confint(grossmotor_uni2)   
 
grossmotor<-lm(asq_9_total_grossmotor~exclusive_feeding_duration_updat
ed+SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_
LVL+PRE_BMI+maternal_age ,data=metadata)   
summary(grossmotor) 
confint(grossmotor,"exclusive_feeding_duration_updated")   
 
#Fine motor 
finemotor_uni2<-lm(asq_9_total_finemotor~exclusive_feeding_duration_up
dated,data=metadata) 
summary(finemotor_uni2) 
confint(finemotor_uni2)   
 
finemotor<-lm(asq_9_total_finemotor~exclusive_feeding_duration_updated
+SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LV
L+PRE_BMI+maternal_age,data=metadata)   
summary(finemotor ) 
confint(finemotor,"exclusive_feeding_duration_updated")   
 
#Communication 
Communication_uni2<-lm(asq_9_total_communication.total.~exclusive_feed
ing_duration_updated,data=metadata)   
summary(Communication_uni2) 
confint(Communication_uni2)   
 
Communication<-lm(asq_9_total_communication.total.~exclusive_feeding_d
uration_updated+SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+
Race_new+EDU_LVL+PRE_BMI+maternal_age,data=metadata)  
summary(Communication) 
confint(Communication,"exclusive_feeding_duration_updated")   
  
#Personal and social 
personal_uni2<-lm(asq_9_total_personal_social~exclusive_feeding_durati
on_updated,data=metadata)   
summary(personal_uni2) 
confint(personal_uni2)   
 
personal<-lm(asq_9_total_personal_social~exclusive_feeding_duration_up
dated+SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+E
DU_LVL+PRE_BMI+maternal_age,data=metadata)   
summary(personal) 
confint(personal,"exclusive_feeding_duration_updated")   
  
#Problem solving 
problem_uni2<-lm(asq_9_total_problemsolving~exclusive_feeding_duration
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_updated,data=metadata)  
summary(problem_uni2) 
confint(problem_uni2)   
 
problem<-lm(asq_9_total_problemsolving~exclusive_feeding_duration_upda
ted+SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU
_LVL+PRE_BMI+maternal_age,data=metadata)   
summary(problem) 
confint(problem,"exclusive_feeding_duration_updated")   

Table 10. Associations between any breastfeeding duration and infant ASQ scales at 9 

months of age 

options(scipen = 100) 
summary(metadata) 
#Gross motor 
grossmotor_uni2<-lm(asq_9_total_grossmotor~ mix_breastfeeding_duration
_updated,data=metadata)   
summary(grossmotor_uni2) 
confint(grossmotor_uni2)   
 
grossmotor<-lm(asq_9_total_grossmotor~ mix_breastfeeding_duration_upda
ted +SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+ED
U_LVL+PRE_BMI+maternal_age,data=metadata)   
summary(grossmotor) 
confint(grossmotor,"mix_breastfeeding_duration_updated")   
 
#Fine motor 
finemotor_uni2<-lm(asq_9_total_finemotor~ mix_breastfeeding_duration_u
pdated,data=metadata) 
summary(finemotor_uni2) 
confint(finemotor_uni2)   
 
finemotor<-lm(asq_9_total_finemotor~ mix_breastfeeding_duration_update
d +SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_
LVL+PRE_BMI+maternal_age,data=metadata)   
summary(finemotor) 
confint(finemotor,"mix_breastfeeding_duration_updated")   
 
#Communication 
Communication_uni2<-lm(asq_9_total_communication.total.~ mix_breastfee
ding_duration_updated,data=metadata)   
summary(Communication_uni2) 
confint(Communication_uni2)   
 
Communication<-lm(asq_9_total_communication.total.~ mix_breastfeeding_
duration_updated +SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUT
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E+Race_new+EDU_LVL+PRE_BMI+maternal_age,data=metadata)  
summary(Communication) 
confint(Communication,"mix_breastfeeding_duration_updated")   
  
#Personal and social 
personal_uni2<-lm(asq_9_total_personal_social~ mix_breastfeeding_durat
ion_updated,data=metadata)   
summary(personal_uni2) 
confint(personal_uni2)   
 
personal<-lm(asq_9_total_personal_social~ mix_breastfeeding_duration_u
pdated +SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new
+EDU_LVL+PRE_BMI+maternal_age,data=metadata)   
summary(personal) 
confint(personal,"mix_breastfeeding_duration_updated")   
  
#Problem solving 
problem_uni2<-lm(asq_9_total_problemsolving~ mix_breastfeeding_duratio
n_updated,data=metadata)  
summary(problem_uni2) 
confint(problem_uni2)   
 
problem<-lm(asq_9_total_problemsolving~ mix_breastfeeding_duration_upd
ated +SEX+antibiotics_since_birth+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+E
DU_LVL+PRE_BMI+maternal_age,data=metadata)   
summary(problem) 
confint(problem,"mix_breastfeeding_duration_updated")   

Figure 11. Associations between infant feeding method in the 24 hours prior to stool sample 

collection and infant gut microbiota alpha diversity at 3 months of age 

Data.Subsample.final.Alpha<-read.csv("/Users/busihan/Desktop/MARCH\ B3
m_ASQ_updated/Data.Subsample.final.Alpha_Final.csv", header = T) 
shapiro.test(Data.Subsample.final.Alpha$Chao)   #p=0.3152 
shapiro.test(Data.Subsample.final.Alpha$Shannon)  #p=0.5375 
shapiro.test(Data.Subsample.final.Alpha$Invsimpson) #p=0.008523 
chao<-Data.Subsample.final.Alpha$Chao 
shan<-Data.Subsample.final.Alpha$Shannon 
invismp<-Data.Subsample.final.Alpha$Invsimpson 
a<-metadata$FED_PRAC_LIGHT_NEW 
 
# Chao 
summary(aov(chao~a)) 
TukeyHSD(aov(chao~a)) 
 
#Shannon 
summary(aov(shan~a))  
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TukeyHSD(aov(shan~a)) 
 
#Inverse Simp 
kruskal.test(invismp~a) 
dunn.test(invismp,a,altp = TRUE, method="bh") 
 
labels<-c("Breastmilk","Breastmilk_VitaminD","Partial breastmilk","For
mula") 
png("Fed_PRAC_light_Alpha.png", res=300, height=5, width=13,units="in"
) 
par(mfrow= c(1,3),mar=c(7, 5, 3, 1)) 
boxplot(chao~a,main="A.Feeding method_Chao1",ylab="Chao1 Index",xlab =
 NA,cex.lab=2,cex.main=2,cex.axis=2,xaxt = "n") 
axis(side = 2, labels = FALSE) 
text(x = 1:4,y = par("usr")[3]-3.3,labels =labels,xpd = NA,srt = 25,ce
x = 1.7,adj = 1) 
text(x=2,y=75,labels= "p-value=0.04",cex=1.5) 
 
boxplot(shan~a,main="B.Feeding method_Shannon",ylab="Shannon Index",xl
ab=NA,cex.lab=2,cex.main=2,cex.axis=2,xaxt = "n") 
axis(side = 2, labels = FALSE) 
text(x = 1:4,y = par("usr")[3] -0.1,labels =labels,xpd = NA,srt = 25,c
ex = 1.7,adj = 1) 
text(x=1,y=2.09,labels= "a",cex=1.5) 
text(x=2,y=2.285,labels= "a",cex=1.5) 
text(x=3,y=2.41,labels= "b",cex=1.5) 
text(x=4,y=1.49,labels= "c",cex=1.5) 
text(x=2,y=2.8,labels= "p-value<0.01",cex=1.5) 
  
boxplot(invismp~a,main="C.Feeding method_inverse Simpson",ylab="Invers
e Simpson Index",xlab = NA,cex.lab=2,cex.main=2,cex.axis=2,,xaxt = "n"
) 
text(x=1,y=6.55,labels= "a",cex=1.5) 
text(x=2,y=6.6,labels= "a",cex=1.5) 
text(x=3,y=7.95,labels= "ab",cex=1.5) 
text(x=4,y=10.9,labels= "b",cex=1.5) 
axis(side = 1, labels = FALSE) 
text(x = 1:4,y = par("usr")[3] - 0.55,labels =labels,xpd = NA,srt = 25
,cex = 1.7,adj = 1) 
text(x=1.5,y=11,labels= "p-value<0.01",cex=1.5) 
while (!is.null(dev.list()))  dev.off() 

Figure 12. Associations between infant feeding methods in the 24 hours prior to stool 

sample collection and gut microbiota beta diversity at 3 months of age 

a<-metadata$FED_PRAC_LIGHT_NEW 
#Sorenson 
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PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,TRUE,9999) #p =1e
-04 
Sor<-Sor.bray.pcoa(Data.Subsample.genus_37wks[,-c(1:3,254)],Dim=2,Colo
r=metadata$FED_PRAC_LIGHT_NEW,binary=TRUE) 

#Bray-Curtis 
PERMANOVA(Data.Subsample.genus_37wks[,-c(1:3,254)],a,FALSE,9999)#p = 1
e-04 
Bray<-Sor.bray.pcoa(Data.Subsample.genus_37wks[,-c(1:3,254)],Dim=2,Col
or=metadata$FED_PRAC_LIGHT_NEW,binary=FALSE) 

Color<-ifelse(grepl("1", metadata$FED_PRAC_LIGHT_NEW),"#000000", ifels
e(grepl("2", metadata$FED_PRAC_LIGHT_NEW),"#E79F00",ifelse(grepl("3", 
metadata$FED_PRAC_LIGHT_NEW),"#652DC1","#0072B2"))) 
 
png("Beta_diversity_Feeding.png", res=300, height=7, width=17,units="i
n") 
par(mfrow= c(1,2),mar=c(7, 5, 3, 1)) 
plot(Sor,cex.axis=2,cex.lab=2,cex.main=3,cex=3,col=1, 
     pch=21,xlim=c(-.38,.5),ylim=c(-.3,.4),xlab="PC1 (22.1%)",ylab="PC
2 (11.7%)",bg=Color,main="A. Sorensen") 
ordiellipse(Sor,groups=metadata$FED_PRAC_LIGHT_NEW,col= c("#000000","#
E79F00","#652DC1","#0072B2"),lwd=2) 
legend(0.15,0.41,c("Breastmilk","Breastmilk_vitaminD","Partial breastm
ilk","Formula"), pch=21,cex = 1.5,pt.bg=c("#000000","#E79F00","#652DC1
","#0072B2"),y.intersp = 0.72) 
text(0.3,-0.25, labels= "p-value<0.01",cex=1.5) 
  
plot(Bray,cex.axis=2,cex.lab=2,cex.main=3,cex=3,col=1, 
     pch=21,xlim=c(-.5,.55),ylim=c(-.35,.58),xlab="PC1 (25.1%)",ylab="
PC2 (13.6%)",bg=Color,main="B. Bray-Curtis") 
ordiellipse(Bray,groups=metadata$FED_PRAC_LIGHT_NEW,col= c("#000000","
#E79F00","#652DC1","#0072B2"),lwd=2) 
legend(0.1,0.55,c("Breastmilk","Breastmilk_vitaminD","Partial breastmi
lk","Formula"), pch=21,cex =1.5,pt.bg=c("#000000","#E79F00","#652DC1",
"#0072B2"),y.intersp = 0.72) 
text(0.28,-0.3, labels= "p-value<0.01",cex=1.5) 
while (!is.null(dev.list()))  dev.off()  

Table 11. Mediation effect of the inverse Simpson index on the associations of feeding 

method with communication 

#Exposure : feeding practice light 
#Mediator: Inverse Simpson 
#Outcome: communication 
Data.Subsample.final.Alpha<-read.csv("/Users/busihan/Desktop/MARCH\ B3
m_ASQ_updated/Data.Subsample.final.Alpha_Final.csv", header = T) 
metadata<-merge(metadata,Data.Subsample.final.Alpha,by.x="Group", by.y
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 = "Names") 
 
saved = mediation1(y = "asq_9_total_communication.total.",  
                   x = "FED_PRAC_LIGHT_NEW",  
                   m = "Invsimpson",  
                   cvs = c("SEX","MD_FINAL_ROUTE","Race_new","EDU_LVL"
,"ESTWKSGEST","PRE_BMI","maternal_age"),  
                   df = metadata,  
                   with_out = T,  
                   nboot = 1000,   
                   conf_level = .95) 

####view the analysis#### 
summary(saved$model1) #c path,total effect 
summary(saved$model2) #a path,   
summary(saved$model3) #b and c' path 
 
# total effect 
summary(saved$model1) 
#double check 
Communication<-lm(asq_9_total_communication.total.~FED_PRAC_LIGHT_NEW+
SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_age,da
ta=metadata)  
summary(Communication) 
confint(Communication) 
 
# direct effect, # X predicts Y with M as the exposure not outcome 
summary(saved$model3) #b and c' path 
#double check 
Communication<-lm(asq_9_total_communication.total.~FED_PRAC_LIGHT_NEW+
Invsimpson+SEX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+mate
rnal_age,data=metadata)  
summary(Communication) 
confint(Communication)  
 
#total, direct, indirect effects (estimates) 
saved$total.effect; saved$direct.effect; saved$indirect.effect 
 
#Sobel test to test the significance of indirect effects(p-value) 
saved$z.score; saved$p.value 
 
#bootstrapped indirect effect (95%CI) 
saved$boot.results 
saved$boot.ci 

Table 12. Mediation effect of inverse Simpson on the associations of feeding method with 
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problem-solving 

#Exposure : feeding practice light 
#Mediator: Inverse simpson 
#Outcome: problem solving 
saved = mediation1(y = "asq_9_total_problemsolving",  
                   x = "FED_PRAC_LIGHT_NEW",  
                   m = "Invsimpson",  
                   cvs = c("SEX","MD_FINAL_ROUTE","Race_new","EDU_LVL"
,"ESTWKSGEST","PRE_BMI","maternal_age"),  
                   df = metadata,  
                   with_out = T,  
                   nboot = 1000,   
                   conf_level = .95) 

####view the analysis#### 
summary(saved$model1) #c path,total effect 
summary(saved$model2) #a path,   
summary(saved$model3) #b and c' path 
 
# total effect 
summary(saved$model1) 
problem<-lm(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW+SEX+ESTWKSGE
ST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_age,data=metadata)
   
summary(problem) 
confint(problem)   
 
# direct effect, # X predicts Y with M as the exposure not outcome 
summary(saved$model3) #b and c' path 
problem<-lm(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW+Invsimpson+S
EX+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_age,dat
a=metadata)   
summary(problem) 
confint(problem)   
 
#total, direct, indirect effects(estimates) 
saved$total.effect; saved$direct.effect; saved$indirect.effect 
 
#Sobel test to test the significance of indirect effects(p-value) 
saved$z.score; saved$p.value 
 
#bootstrapped indirect (95%CI) 
saved$boot.results 
saved$boot.ci 

Table 13. Mediation effect of the Shannon index on the associations of feeding method with 
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problem-solving 

#Exposure : feeding practice light 
#Mediator: Shannon 
#Outcome: problem solving 
saved = mediation1(y = "asq_9_total_problemsolving",  
                   x = "FED_PRAC_LIGHT_NEW",  
                   m = "Shannon",  
                   cvs = c("SEX","MD_FINAL_ROUTE","Race_new","EDU_LVL"
,"ESTWKSGEST","PRE_BMI","maternal_age"),  
                   df = metadata,  
                   with_out = T,  
                   nboot = 1000,   
                   conf_level = .95) 

####view the analysis#### 
 ####view the analysis#### 
summary(saved$model1) #c path,total effect 
summary(saved$model2) #a path,   
summary(saved$model3) #b and c' path 
 
# total effect 
summary(saved$model1) 
problem<-lm(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW+SEX+ESTWKSGE
ST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_age,data=metadata)
   
summary(problem) 
confint(problem)   
 
# direct effect, # X predicts Y with M as the exposure not outcome 
summary(saved$model3) #b and c' path 
problem<-lm(asq_9_total_problemsolving~FED_PRAC_LIGHT_NEW+Shannon+SEX+
ESTWKSGEST+MD_FINAL_ROUTE+Race_new+EDU_LVL+PRE_BMI+maternal_age,data=m
etadata)   
summary(problem) 
confint(problem)   
 
#total, direct, indirect effects (estimates) 
saved$total.effect; saved$direct.effect; saved$indirect.effect 
 
#Sobel test to test the significance of indirect effects(p-value) 
saved$z.score; saved$p.value 
 
#bootstrapped indirect effect(95%CI) 
saved$boot.results 
saved$boot.ci 
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Table 14. Mediation effect of the Bray-Curtis dissimilarity matrix on the associations of 

feeding method with ASQ scales 

otu_table<-Data.Subsample.genus_37wks[,-c(1:3,254)] 
 
#Exposure : feeding practice light 
#Mediator: Bray-Curtis 
#Outcome: communication 
 
#univariate 
med_uni <- permanovaFL(otu_table ~ FED_PRAC_LIGHT_NEW + asq_9_total_co
mmunication.total.,data=metadata, seed=82955, n.cores=4,test.mediation
=TRUE,dist.method="bray",square.dist=TRUE) 
med_uni$med.p.permanova   #p=0.1552 
 
#multivariate analysis 
med_multi<- permanovaFL(otu_table|(SEX+antibiotics_since_birth+EDU_LVL
+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+PRE_BMI+maternal_age)~FED_PRAC_LIG
HT_NEW + asq_9_total_communication.total.,data=metadata, seed=82955, n
.cores=4,test.mediation=TRUE, dist.method="bray", 
square.dist=TRUE) 
med_multi$med.p.permanova   #p=0.5476 
 
#Exposure : feeding practice light 
#Mediator: Bray-Curtis 
#Outcome: fine motor 
 
#univariate 
med_uni <- permanovaFL(otu_table ~ FED_PRAC_LIGHT_NEW + asq_9_total_fi
nemotor,data=metadata, seed=82955, n.cores=4,test.mediation=TRUE,dist.
method="bray",square.dist=TRUE) 
med_uni$med.p.permanova   #p=0.037 
 
#multivariate analysis 
med_multi<- permanovaFL(otu_table|(SEX+antibiotics_since_birth+EDU_LVL
+ESTWKSGEST+MD_FINAL_ROUTE+Race_new+PRE_BMI+maternal_age)~FED_PRAC_LIG
HT_NEW + asq_9_total_finemotor,data=metadata, seed=82955, n.cores=4,te
st.mediation=TRUE,dist.method="bray",square.dist=TRUE) 
med_multi$med.p.permanova   #p=0.283 
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Chapter 4 

Data preparation 

require(vegan) 
require(lubridate) 
require(tidyr) 
require(MASS) 
require(car) 
require(dunn.test) 
require(ggplot2) 
require(ggpubr) 
require(dplyr) 
require(pBrackets) 
require(grid) 
require(Maaslin2) 
require(pairwiseAdonis) 
 
setwd("/Users/busihan/Desktop/2023Mar27_Aim3_double_check/") 
 
Alpha<-function(OTU,Names="Sample",Groups="Sample"){ 
  Chao<-t(estimateR(OTU)) 
  Chao<-Chao[,2] 
  Shannon<-diversity(OTU,index="shannon") 
  Invsimpson<-diversity(OTU,index="invsimpson") 
  OTU.Subsample.Alpha<-data.frame(Names,Groups,Chao,Shannon,Invsimpson
) 
  return(OTU.Subsample.Alpha) 
} 
 
Sor.bray.pcoa<-function(OTUS,Dim=2,Color=1,binary,pch=16,Title="PCoA")
{ 
  Data.df<-vegdist(OTUS,method="bray", binary) 
  Data.df.PCoA<-cmdscale(Data.df, k = Dim, eig = FALSE) 
  Data.df.PCoA.eig<-cmdscale(Data.df, k = Dim, eig = TRUE) 
  eig.Data.df.PCoA<-Data.df.PCoA.eig$eig 
  eig.Data.df.PCoA.sum<-sum(eig.Data.df.PCoA) 
  a<-(eig.Data.df.PCoA/eig.Data.df.PCoA.sum)*100 
  xlab<-paste("PC1","(",round(a[1],1),"%",")",sep="") 
  ylab<-paste("PC2","(",round(a[2],1),"%",")",sep="") 
  if(binary==TRUE){ 
    main<-"Sorensen PCoA" 
  }else(main<-"Bray-Curtis PCoA") 
  plot(Data.df.PCoA, col=Color, 
       main=Title,xlab=xlab,ylab=ylab,pch=c(pch)) 
  return(Data.df.PCoA) 
} 
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PERMANOVA<-function(OTUS,Group,binary,iters=9999){ 
  Data.Dist<-vegdist(OTUS,method="bray", binary=binary) 
  adonis2(Data.Dist~Group,permutations=iters,p.adjust.m = "BH") 
} 
 
PERMANOVA_pairwise<-function(OTUS,Group,binary,iters=9999){ 
  Data.Dist<-vegdist(OTUS,method="bray", binary=binary) 
  pairwise.adonis(Data.Dist,Group) 
} 
 
TaxName<-read.table("stability.trim.contigs.good.unique.good.filter.un
ique.precluster.pick.pds.wang.pick.tx.1.cons.taxonomy",header = T,fill
 = T) 
Edit.Taxname<-function(n,level){ 
  if(level=="Genus"|level==1){ 
    n<-as.matrix(n) 
    for (i in 1:4){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n, col=1,into=c("Family","Genus"), sep=" ") 
    x<-ifelse(n$Genus%in%c("unclassified","uncultured"), paste(n$Genus
, n$Family), paste(n$Genus,n$Other1,n$Other2)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Family"|level==2){ 
    n<-as.matrix(n) 
    for (i in 1:3){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n,col=1, into=c("Order","Family","Genus"), sep=" ") 
    x<-ifelse(n$Family%in%c("unclassified","uncultured"), paste(n$Orde
r, n$Family), paste(n$Family)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Order"|level==3){ 
    n<-as.matrix(n) 
    for (i in 1:2){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
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    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n,col=1, into=c("Class","Order","Family","Genus"), sep
=" ") 
    x<-ifelse(n$Order%in%c("unclassified","uncultured"), paste(n$Class
, n$Order), paste(n$Order)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Class"|level==4){ 
    n<-as.matrix(n) 
    for (i in 1){ 
      n<-gsub('^.*?;', '', n) 
    } 
    n<-gsub(';',' ',n) 
    n<-gsub('\\(100)','',n) 
    n<-data.frame(n) 
    n<-separate(n,col=1, into=c("Phylum","Class","Order","Family","Gen
us"), sep=" ") 
    x<-ifelse(n$Class%in%c("unclassified","uncultured"), paste(n$Phylu
m, n$Class), paste(n$Class)) 
    n<-as.matrix(x) 
    return(n) 
  }else if(level=="Phylum"|level==5){ 
    n<-as.matrix(n) 
    n<-gsub('[(0-9);""]{1,}', '_', n) 
    n<-gsub('^.*?_', '', n) 
    n<-gsub('_.*', '', n) 
  } 
} 
TaxName<-Edit.Taxname(TaxName$Taxonomy,level=1) 

## Warning: Expected 2 pieces. Additional pieces discarded in 347 rows
 [1, 2, 3, 4, 5, 6, 
## 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...]. 

Subset.Taxa<-function(OTUS,TaxName,CutOff=1){ 
  colnames(OTUS)<-TaxName 
  row<-rowSums(OTUS) 
  row<-sum(row) 
  col<-colSums(OTUS) 
  ratio<-as.matrix(col/row*100) 
  ratio<-cbind(TaxName,ratio) 
  subset<-data.frame(ratio[ratio[,2]>=CutOff,]) 
  subset<-data.frame(subset[!subset$X1=="unclassified unclassified",]) 
  newOTUS<-data.frame(OTUS[,colnames(OTUS) %in% subset$X1]) 
  colname<-colnames(newOTUS) 
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  colnames(newOTUS)<-gsub("\\."," ",colname) 
  return(newOTUS) 
} 
 
NB.overall<-function(newOTUS,Group){ 
  m<-as.matrix(NA) 
  n<-as.matrix(NA) 
  o<-as.matrix(NA) 
  for (i in 1:ncol(newOTUS)){ 
    l<-glm.nb(newOTUS[,i]~Group) 
    m<-anova(l) 
    n[i]<-data.frame(m[2,5]) 
    o[i]<-colnames(newOTUS[i]) 
  } 
  n<-p.adjust(n, method="BH") 
  p<-cbind(o,n) 
  return(p) 
  p[,1]<-as.character(p[,1]) 
  p[,2]<-as.numeric(as.character(p[,2])) 
  par(mar=c(10,4,1,1)) 
  plot(p[,2],xaxt = "n",ylim=c(0,1),xlab="",pch=16,ylab="p-value",main
="Overall p-values") 
  axis(1, at=1:nrow(p), labels=FALSE) 
  text(x=c(1:nrow(p)), y=par()$usr[3]-0.1*(par()$usr[4]-par()$usr[3]), 
       labels=p[,1], srt=45, adj=1, xpd=TRUE) 
  abline(h=0.05) 
} 
 
NB.pairwise<-function(newOTUS,Group){ 
  Group<-as.factor(Group) 
  grp<-length(levels(Group)) 
  otu.name<-colnames(newOTUS) 
  p.vals<-data.frame() 
  comp<-c() 
  for(i in 1:grp){ 
    if(levels(Group)[1]!=levels(Group)[i]){ 
      comp<-c(comp,paste(levels(Group)[1],"vs",levels(Group)[i])) 
    } 
  } 
  for (i in 1:ncol(newOTUS)){ 
    l<-glm.nb(newOTUS[,i]~Group) 
    m<-data.frame(coef(summary(l))[,4][2:length(levels(Group))]) 
    j<-1 
    while(j!=grp){ 
      p.vals[i,j]<-m[j,] 
      j<-j+1 
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    } 
  } 
  for(i in 1:(grp-1)){ 
    p.vals[,i]<-p.adjust(p.vals[,i], method="BH") 
  } 
  overall<-cbind(otu.name,p.vals) 
  colnames(overall)<-c("Taxa",comp) 
  return(overall) 
} 

Table 15. Population characteristics and breastfeeding patterns among exclusively 

breastfed infants 

## Start analyzing the data ## 
metadata<-read.csv("breast_bottle_metadata_UPDATE.csv",header = T, str
ingsAsFactors = T) 
summary(metadata) 
cols<-c("SEX","MD_FINAL_ROUTE","EDUC_LVL","BABY_RACE","FED_PATTERN") 
metadata[cols]<-lapply(metadata[cols], factor) 
sapply(metadata,class) 
 

summary(metadata$FED_PATTERN) 
#Breast:63 
#Bottle:11 
#Mix: 62 
 
# BABY SEX 
summary(metadata$SEX) 
63/136* 100 
73/136* 100 
Male_breast<-filter(metadata, SEX=="1"& FED_PATTERN=="1") #N=24 
nrow(Male_breast) 
Male_bottle<-filter(metadata, SEX=="1"& FED_PATTERN=="2") #N=6 
nrow(Male_bottle) 
Male_mix<-filter(metadata, SEX=="1"& FED_PATTERN=="3") #N=33 
nrow(Male_mix) 
24/63* 100 
6/11* 100 
33/62* 100 
Female_breast<-filter(metadata, SEX=="2"& FED_PATTERN=="1") #N=39 
nrow(Female_breast) 
Female_bottle<-filter(metadata, SEX=="2"& FED_PATTERN=="2") #N=5 
nrow(Female_bottle) 
Female_mix<-filter(metadata, SEX=="2"& FED_PATTERN=="3") #N=29 
nrow(Female_mix) 
39/63* 100 
5/11* 100 
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29/62* 100 
chisq.test(table(metadata$SEX,metadata$FED_PATTERN))  #p=0.20 
 

# BABY race 
summary(metadata$BABY_RACE) 
119/136* 100 
4/136* 100 
13/136* 100 
white_breast<-filter(metadata, BABY_RACE=="1"& FED_PATTERN=="1") #N=56 
nrow(white_breast) 
white_bottle<-filter(metadata, BABY_RACE=="1"& FED_PATTERN=="2") #N=10 
nrow(white_bottle) 
white_mix<-filter(metadata, BABY_RACE=="1"& FED_PATTERN=="3") #N=53 
nrow(white_mix) 
56/63* 100 
10/11* 100 
53/62* 100 
black_breast<-filter(metadata, BABY_RACE=="2"& FED_PATTERN=="1") #N=0 
nrow(black_breast) 
black_bottle<-filter(metadata, BABY_RACE=="2"& FED_PATTERN=="2") #N=0 
nrow(black_bottle) 
black_mix<-filter(metadata, BABY_RACE=="2"& FED_PATTERN=="3") #N=4 
nrow(black_mix) 
4/62* 100 
other_breast<-filter(metadata, BABY_RACE=="3"& FED_PATTERN=="1") #N=7 
nrow(other_breast) 
other_bottle<-filter(metadata, BABY_RACE=="3"& FED_PATTERN=="2") #N=1 
nrow(other_bottle) 
other_mix<-filter(metadata, BABY_RACE=="3"& FED_PATTERN=="3") #N=5 
nrow(other_mix) 
7/63* 100 
1/11* 100 
5/62* 100 
chisq.test(table(metadata$BABY_RACE,metadata$FED_PATTERN),simulate.p.v
alue = TRUE) #p-value = 0.26 
 
# EDUC_LVL 
summary(metadata$EDUC_LVL) 
10/136* 100 
31/136* 100 
43/136* 100 
52/136* 100 
high_breast<-filter(metadata, EDUC_LVL=="1"& FED_PATTERN=="1") #N=6 
nrow(high_breast) 
high_bottle<-filter(metadata, EDUC_LVL=="1"& FED_PATTERN=="2") #N=0 
nrow(high_bottle) 
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high_mix<-filter(metadata, EDUC_LVL=="1"& FED_PATTERN=="3") #N=4 
nrow(high_mix) 
6/63* 100 
0/11* 100 
4/62* 100 
somecoll_breast<-filter(metadata, EDUC_LVL=="2"& FED_PATTERN=="1") #N=
21 
nrow(somecoll_breast) 
somecoll_bottle<-filter(metadata, EDUC_LVL=="2"& FED_PATTERN=="2") #N=
1 
nrow(somecoll_bottle) 
somecoll_mix<-filter(metadata, EDUC_LVL=="2"& FED_PATTERN=="3") #N=9 
nrow(somecoll_mix) 
21/63* 100 
1/11* 100 
9/62* 100 
Bach_breast<-filter(metadata, EDUC_LVL=="3"& FED_PATTERN=="1") #N=19 
nrow(Bach_breast) 
Bach_bottle<-filter(metadata, EDUC_LVL=="3"& FED_PATTERN=="2") #N=4 
nrow(Bach_bottle) 
Bach_mix<-filter(metadata, EDUC_LVL=="3"& FED_PATTERN=="3") #N=20 
nrow(Bach_mix) 
19/63* 100 
4/11* 100 
20/62* 100 
MasPhD_breast<-filter(metadata, EDUC_LVL=="4"& FED_PATTERN=="1") #N=17 
nrow(MasPhD_breast) 
MasPhD_bottle<-filter(metadata, EDUC_LVL=="4"& FED_PATTERN=="2") #N=6 
nrow(MasPhD_bottle) 
MasPhD_mix<-filter(metadata, EDUC_LVL=="4"& FED_PATTERN=="3") #N=29 
nrow(MasPhD_mix) 
17/63* 100 
6/11* 100 
29/62* 100 
chisq.test(table(metadata$EDUC_LVL,metadata$FED_PATTERN),simulate.p.va
lue = TRUE) #p-value =  0.08 
 

# delivery mode 
summary(metadata$MD_FINAL_ROUTE) 
99/136* 100 
37/136* 100 
 

vag_breast<-filter(metadata, MD_FINAL_ROUTE=="1"& FED_PATTERN=="1") #N
=50 
nrow(vag_breast) 
vag_bottle<-filter(metadata, MD_FINAL_ROUTE=="1"& FED_PATTERN=="2") #N
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=9 
nrow(vag_bottle) 
vag_mix<-filter(metadata, MD_FINAL_ROUTE=="1"& FED_PATTERN=="3") #N=40 
nrow(vag_mix) 
50/63* 100 
9/11* 100 
40/62* 100 
csection_breast<-filter(metadata, MD_FINAL_ROUTE=="2"& FED_PATTERN=="1
") #N=13 
nrow(csection_breast) 
csection_bottle<-filter(metadata, MD_FINAL_ROUTE=="2"& FED_PATTERN=="2
") #N=2 
nrow(csection_bottle) 
csection_mix<-filter(metadata, MD_FINAL_ROUTE=="2"& FED_PATTERN=="3") 
#N=22 
nrow(csection_mix) 
13/63* 100 
2/11* 100 
22/62* 100 
chisq.test(table(metadata$MD_FINAL_ROUTE,metadata$FED_PATTERN),simulat
e.p.value = TRUE) #p-value = 0.15 
 
# pre_bmi 
mean(metadata$PRE_BMI) 
sd(metadata$PRE_BMI) 
 
shapiro.test(metadata$PRE_BMI) #p-value = 1.342e-09 
breast<-filter(metadata, FED_PATTERN=="1")  
median(breast$PRE_BMI) #24.27 
min(breast$PRE_BMI) #17.57 
max(breast$PRE_BMI) #47.09 
 
bottle<-filter(metadata, FED_PATTERN=="2")   
median(bottle$PRE_BMI) #23.49 
min(bottle$PRE_BMI) #19.01 
max(bottle$PRE_BMI) #39.46 
 

mix<-filter(metadata, FED_PATTERN=="3")  
median(mix$PRE_BMI)  #23.89 
min(mix$PRE_BMI)  #17.01 
max(mix$PRE_BMI)  #46.46 
 
kruskal.test(PRE_BMI~FED_PATTERN, data =metadata) #p-value = 0.9861 
 

# gestional age at birth 
mean(metadata$ESTWKSGEST) 
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sd(metadata$ESTWKSGEST) 
 
shapiro.test(metadata$ESTWKSGEST) #p-value = 2.115e-11 
breast<-filter(metadata, FED_PATTERN=="1")  
median(breast$ESTWKSGEST) #39 
min(breast$ESTWKSGEST) #34 
max(breast$ESTWKSGEST)  #41 
 
bottle<-filter(metadata, FED_PATTERN=="2")  
median(bottle$ESTWKSGEST)  #39 
min(bottle$ESTWKSGEST) #37 
max(bottle$ESTWKSGEST) #40 
 
mix<-filter(metadata, FED_PATTERN=="3")  
median(mix$ESTWKSGEST) #39 
min(mix$ESTWKSGEST) #31 
max(mix$ESTWKSGEST) #41 
 
kruskal.test(ESTWKSGEST~FED_PATTERN, data =metadata) #p-value = 0.2286 
 

# maternal age 
mean(metadata$age_enrollment) 
sd(metadata$age_enrollment) 
 
shapiro.test(metadata$age_enrollment) #p-value = 0.0007524 
breast<-filter(metadata, FED_PATTERN=="1")  
median(breast$age_enrollment) #31 
min(breast$age_enrollment) #20 
max(breast$age_enrollment)  #51 
 
bottle<-filter(metadata, FED_PATTERN=="2")  
median(bottle$age_enrollment)  #32 
min(bottle$age_enrollment) #24 
max(bottle$age_enrollment) #34 
 
mix<-filter(metadata, FED_PATTERN=="3")  
median(mix$age_enrollment) #30.5 
min(mix$age_enrollment) #19 
max(mix$age_enrollment) #42 
 
kruskal.test(age_enrollment~FED_PATTERN, data =metadata) #p-value =  0
.8885 

Figure 14. The associations between alpha diversity of the gut microbiota and infant 

breastfeeding patterns 

# subsample: rareified to 1383 reads 
metadata<-read.csv("breast_bottle_metadata_UPDATE.csv",header = T, str
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ingsAsFactors = T) 
Data.Subsample<-read.csv("Data.Subsample.original.csv", header = T) 
temp<-merge(Data.Subsample, metadata,by="Group") 
Data.Subsample.genus<-temp[,c(1:(ncol(Data.Subsample)))]   
metadata<-temp[,c(1,(ncol(Data.Subsample)+1):(ncol(temp)))] 
Data.Subsample.genus$Group 
metadata$Group 
 
Data.Alpha<-Alpha(Data.Subsample.genus[,-c(1:3)]) 
shapiro.test(Data.Alpha$Chao) #p-value = 5.556e-10 
shapiro.test(Data.Alpha$Shannon) #p-value = 0.02078 
shapiro.test(Data.Alpha$Invsimpson) #p-value =0.1702 
 
#Chao 1 
kruskal.test(Data.Alpha$Chao~metadata$FED_PATTERN)  #p-value = 0.148 
#Shannon 
kruskal.test(Data.Alpha$Shannon~metadata$FED_PATTERN)  #p-value =0.385
2 
 
#inverse Simpson 
summary(aov(Data.Alpha$Invsimpson~metadata$FED_PATTERN)) #p=0.198 
 
png("Alpha_breastfeeding_pattern_UPDATE.png", res=300, height=4, width
=12,units="in") 
par(mfrow= c(1,3),cex.main=1.8,cex.axis=1.8,mar=c(7, 5, 3, 1))  
label<-c("Breast","Bottle","Mix") 
boxplot(Data.Alpha$Chao~metadata$FED_PATTERN,main="A. Chao1 index",yla
b="Chao1 Index",xlab="Breastfeeding patterns",names=label,cex.lab = 2) 
text(labels="p-value=0.15", x=2, y=80,cex=1.8) 
boxplot(Data.Alpha$Shannon~metadata$FED_PATTERN,main="B. Shannon index
",ylab="Shannon Index",xlab="Breastfeeding patterns",names=label,cex.l
ab = 2) 
text(labels="p-value=0.39", x=2, y=0.5,cex=1.8) 
boxplot(Data.Alpha$Invsimpson~metadata$FED_PATTERN,main="C. inverse Si
mpson index",ylab="inverse Simpson Index",xlab="Breastfeeding patterns
",names=label,cex.lab = 2) 
text(labels="p-value=0.20", x=2, y=1.6,cex=1.8) 
while (!is.null(dev.list()))  dev.off() 

Figure 15. The associations between beta diversity of the gut microbiota and infant 

breastfeeding patterns 

#Sorensen 
a<-as.factor(metadata$FED_PATTERN) 
PERMANOVA(Data.Subsample.genus[,-c(1:3)],a,TRUE,9999) #P=0.0263 
Sor_pattern<-Sor.bray.pcoa(Data.Subsample.genus[,-c(1:3)],Dim=2,Color=
a,binary=TRUE) 
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#Bray-Curtis 
PERMANOVA(Data.Subsample.genus[,-c(1:3)],a,FALSE,9999) #P=0.4839 
Bray_pattern<-Sor.bray.pcoa(Data.Subsample.genus[,-c(1:3)],Dim=2,Color
=a,binary=FALSE) 

png("Beta_breastfeeding_pattern_UPDATE.png", res=300, height=5, width=
12,units="in") 
par(mfrow= c(1,2)) 
Color_pattern<-ifelse(grepl("1", a),"#000000", ifelse(grepl("2", a),"#
E79F00","#0072B2")) 
plot(Sor_pattern,cex.axis=1.5,cex.lab=1.5,cex.main=2,cex=2,col=1, 
     pch=21,xlim=c(-.38,.38),ylim=c(-.3,.35),xlab="PC1 (21.1%)",ylab="
PC2 (9%)",bg=Color_pattern,main="A. Sorensen") 
ordiellipse(Sor_pattern,groups=a,col= c("#000000","#E79F00","#0072B2")
,lwd=2) 
legend(0,0.35,c("Breast","Bottle","Mix"), pch=21,cex = 1.2,pt.bg=c("#0
00000","#E79F00","#0072B2"),y.intersp = 0.72) 
text(0.2,-0.26, labels= "p-value=0.03",cex=1.4) 
 
Color_pattern<-ifelse(grepl("1", a),"#000000", ifelse(grepl("2", a),"#
E79F00","#0072B2")) 
plot(Bray_pattern,cex.axis=1.5,cex.lab=1.5,cex.main=2,cex=2,col=1, 
     pch=21,xlim=c(-.35,.55),ylim=c(-.55,.5),xlab="PC1 (25.9%)",ylab="
PC2 (14.9%)",bg=Color_pattern,main="B. Bray-Curtis") 
ordiellipse(Bray_pattern,groups=a,col= c("#000000","#E79F00","#0072B2"
),lwd=2) 
legend(0.15,0.51,c("Breast","Bottle","Mix"), pch=21,cex = 1.2,pt.bg=c(
"#000000","#E79F00","#0072B2"),y.intersp = 0.72) 
text(0.44,-0.4, labels= "p-value=0.48",cex=1.4) 
while (!is.null(dev.list()))  dev.off() 

Figure 16. The associations between alpha diversity of the gut microbiota and 

breastfeeding patterns inthe 24 hours immediately preceding stool sample collection for 

infants exclusively fed human milk and dietary intake in the past week for infants fed at 

least some formula 

metadata<-read.csv("breast_bottle_feed_past_wk_UPDATE.csv",header=T, s
tringsAsFactors = T) 
Data.Subsample<-read.csv("Data.Subsample.csv",header = T) 
temp<-merge(Data.Subsample, metadata,by="Group") 
Data.Subsample.genus<-temp[,c(1:(ncol(Data.Subsample)))]  #N=299 
metadata<-temp[,c(1,(ncol(Data.Subsample)+1):(ncol(temp)))] #N=299 
Data.Subsample.genus$Group 
metadata$Group 
 
Data.Alpha<-Alpha(Data.Subsample.genus[,-c(1:3)],Groups=metadata$FED_P
ATTERN_50CUT) 
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shapiro.test(Data.Alpha$Chao) #p-value = 4.441e-13 
shapiro.test(Data.Alpha$Shannon) #p-value = 0.1949 
shapiro.test(Data.Alpha$Invsimpson) #p-value = 5.107e-11 
 
metadata$FED_PATTERN_50CUT<-as.factor(metadata$FED_PATTERN_50CUT) 
levels(metadata$FED_PATTERN_50CUT) 
  
#Chao 1 
kruskal.test(Data.Alpha$Chao~metadata$FED_PATTERN_50CUT)  #p-value =1.
903e-06 
dunn.test(Data.Alpha$Chao,metadata$FED_PATTERN_50CUT,altp = TRUE, meth
od="bh") 
 
p1<-ggplot(Data.Alpha,aes(x=as.factor(Groups), y=Chao)) + 
  stat_boxplot(geom ='errorbar')+ 
  geom_boxplot(outlier.shape = NA)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  scale_x_discrete(labels=c("Breast","Bottle","Mix","Breastmilk>50","B
reastmilk≤50","Formula"))+ 
  labs(y= "Chao1 index", x="",title ="Chao1 index and feeding methods"
)+ 
  theme(text = element_text(size=23),plot.title = element_text(size = 
23,hjust = 0.5),axis.text.x=element_text(size=23, angle = 45,hjust = 1
),axis.text.y = element_text(size=23))+ 
  geom_bracket(xmin = "1", xmax = "3", y.position = 100, label = "Brea
stfeeding patterns \n in the past day", tip.length = c(0.08, 0.08),lab
el.size=7)+ 
  geom_bracket(xmin = "4", xmax = "6", y.position = 100, label = "Diet
ary intake \n in the past week", tip.length = c(0.08, 0.08),label.size
=7)+ 
  annotate("text", x=1, y=61.5, label= "ab",size=7)+ 
  annotate("text", x=2, y=28.5, label= "a",size=7)+ 
  annotate("text", x=3, y=60.5, label= "a",size=7)+ 
  annotate("text", x=4, y=88, label= "bc",size=7)+ 
  annotate("text", x=5, y=63, label= "bc",size=7)+ 
  annotate("text", x=6, y=74.5, label= "c",size=7)+ 
  annotate("text", x=2, y=86, label= "p-value<0.01",size=7)+ 
  scale_y_continuous(limits = c(10, 120)) 
 
   
#Shannon 
summary(aov(Data.Alpha$Shannon~metadata$FED_PATTERN_50CUT)) #p=2e-16 
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TukeyHSD(aov(Data.Alpha$Shannon~metadata$FED_PATTERN_50CUT)) 
 
p2<-ggplot(Data.Alpha,aes(x=as.factor(Groups), y=Shannon)) + 
  stat_boxplot(geom ='errorbar')+ 
  geom_boxplot(outlier.shape = NA)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  scale_x_discrete(labels=c("Breast","Bottle","Mix","Breastmilk>50","B
reastmilk≤50","Formula"))+ 
  labs(y= "Shannon index", x="",title ="Shannon index and feeding meth
ods")+ 
  theme(text = element_text(size=23),plot.title = element_text(size = 
23,hjust = 0.5),axis.text.x=element_text(size=23, angle = 45,hjust = 1
),axis.text.y = element_text(size=23))+ 
  geom_bracket(xmin = "1", xmax = "3", y.position = 3, label = "Breast
feeding patterns \n in the past day", tip.length = c(0.08, 0.08),label
.size=7)+ 
  geom_bracket(xmin = "4", xmax = "6", y.position = 3, label = "Dietar
y intake \n in the past week", tip.length = c(0.08, 0.001),label.size=
7)+ 
  annotate("text", x=1, y=2.44, label= "ab",size=7)+ 
  annotate("text", x=2, y=2.12, label= "ab",size=7)+ 
  annotate("text", x=3, y=2.53, label= "a",size=7)+ 
  annotate("text", x=4, y=2.69, label= "b",size=7)+ 
  annotate("text", x=5, y=2.86, label= "c",size=7)+ 
  annotate("text", x=6, y=3.1, label= "c",size=7)+ 
  annotate("text", x=5.5, y=1, label= "p-value<0.01",size=7)+ 
  scale_y_continuous(limits = c(0.7, 3.5)) 
 
 
#inverse Simpson 
kruskal.test(Data.Alpha$Invsimpson~metadata$FED_PATTERN_50CUT)  # p-va
lue < 2.2e-16 
dunn.test(Data.Alpha$Invsimpson,metadata$FED_PATTERN_50CUT,altp = TRUE
, method="bh") 
 
p3<-ggplot(Data.Alpha,aes(x=as.factor(Groups), y=Invsimpson)) + 
  stat_boxplot(geom ='errorbar')+ 
  geom_boxplot(outlier.shape = NA)+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
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th=1))+ 
  scale_x_discrete(labels=c("Breast","Bottle","Mix","Breastmilk>50","B
reastmilk≤50","Formula"))+ 
  labs(y= "inverse Simpson index", x="",title ="Inverse Simpson index 
and feeding methods")+ 
  theme(text = element_text(size=23),plot.title = element_text(size = 
23,hjust = 0.5),axis.text.x=element_text(size=23, angle = 45,hjust = 1
),axis.text.y = element_text(size=23))+ 
  geom_bracket(xmin = "1", xmax = "3", y.position = 15, label = "Breas
tfeeding patterns \n in the past day", tip.length = c(0.08, 0.08),labe
l.size=7)+ 
  geom_bracket(xmin = "4", xmax = "6", y.position = 15, label = "Dieta
ry intake \n in the past week", tip.length = c(0.08, 0.08),label.size=
7)+ 
  annotate("text", x=1, y=7.9, label= "ab", size=7)+ 
  annotate("text", x=2, y=5.95, label= "ab",size=7)+ 
  annotate("text", x=3, y=7.3, label= "a",size=7)+ 
  annotate("text", x=4, y=8.7, label= "b",size=7)+ 
  annotate("text", x=5, y=11.17, label= "c",size=7)+ 
  annotate("text", x=6, y=11.5, label= "c",size=7)+ 
  annotate("text", x=2, y=12, label= "p-value<0.01",size=7) 
 
png("Alpha_diversity_6feedinggroups_50cutoff_UPDATE_vertical.png", res
=300, height=20, width=8,units="in") 
ggarrange(p1, p2,p3, labels = c("A", "B","C"),font.label=list(size=28)
, nrow = 3, ncol = 1) 

## Warning: Removed 4 rows containing non-finite values (`stat_boxplot
()`). 
## Removed 4 rows containing non-finite values (`stat_boxplot()`). 

## Warning: Removed 2 rows containing non-finite values (`stat_boxplot
()`). 
## Removed 2 rows containing non-finite values (`stat_boxplot()`). 

while (!is.null(dev.list()))  dev.off() 

Figure 17.The associations between beta diversity of the gut microbiota and breastfeeding 

patterns in the past day for exclusively human milk fed infants and dietary intake in the 

past week for infants fed at least some formula 

Table 16. Significant pairwise comparisons of the relationships between beta diversity of 

the gut microbiota and breastfeeding patterns in the past day and dietary intake in the past 

week 

metadata<-read.csv("breast_bottle_feed_past_wk_UPDATE.csv",header=T, s
tringsAsFactors = T) 
Data.Subsample<-read.csv("Data.Subsample.csv",header = T) 
temp<-merge(Data.Subsample, metadata,by="Group") 
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Data.Subsample.genus<-temp[,c(1:(ncol(Data.Subsample)))]  #N=299 
metadata<-temp[,c(1,(ncol(Data.Subsample)+1):(ncol(temp)))] #N=299 
Data.Subsample.genus$Group 
metadata$Group 
 
a<-metadata$FED_PATTERN_50CUT 
#Sorensen 
PERMANOVA(Data.Subsample.genus[,-c(1:3)],a,TRUE,9999) #P=1e-04  
Sor_pattern<-Sor.bray.pcoa(Data.Subsample.genus[,-c(1:3)],Dim=2,Color=
a,binary=TRUE) 

b<-PERMANOVA_pairwise(Data.Subsample.genus[,-c(1:3)],a,TRUE,9999) 
#Bray-Curtis 
PERMANOVA(Data.Subsample.genus[,-c(1:3)],a,FALSE,9999) #P=1e-04  
Bray_pattern<-Sor.bray.pcoa(Data.Subsample.genus[,-c(1:3)],Dim=2,Color
=a,binary=FALSE) 

c<-PERMANOVA_pairwise(Data.Subsample.genus[,-c(1:3)],a,FALSE,9999) 
  
Color<-ifelse(grepl("1", a),"#009392", ifelse(grepl("2", a),"#39b1b5",
ifelse(grepl("3", a),"#9ccb86",ifelse(grepl("4", a),"#e9e29c",ifelse(g
repl("5", a),"#eeb479","#e88471"))))) 
 
png("Beta_diversity_6feedinggroups_50cutoff_UPDATE.png", res=300, heig
ht=5, width=10,units="in") 
par(mfrow= c(1,2))    
plot(Sor_pattern,cex.axis=1.5,cex.lab=1.5,cex.main=2,cex=1.6,col=1, 
     pch=21,xlim=c(-.4,.41),ylim=c(-.3,.36),xlab="PC1 (21.2%)",ylab="P
C2 (10%)",bg=Color,main="A. Sorensen") 
ordiellipse(Sor_pattern,groups=a,col= c("#009392","#39b1b5","#9ccb86",
"#e9e29c","#eeb479","#e88471"),lwd=3) 
legend(0.16,0.375,c("Breast","Bottle","Mix","Breastmilk>50","Breastmil
k≤50","Formula"),pch=21,cex = 0.8,y.intersp = 0.72,pt.bg=c("#009392","
#39b1b5","#9ccb86","#e9e29c","#eeb479","#e88471")) 
text(-0.25,-0.26, labels= "p-value<0.01",cex=0.95) 
 

plot(Bray_pattern,cex.axis=1.5,cex.lab=1.5,cex.main=2,cex=1.6,col=1, 
     pch=21,xlim=c(-.45,.47),ylim=c(-.55,.35),xlab="PC1 (21.6%)",ylab=
"PC2 (13.3%)",bg=Color,main="B. Bray-Curtis") 
ordiellipse(Bray_pattern,groups=a,col= c("#009392","#39b1b5","#9ccb86"
,"#e9e29c","#eeb479","#e88471"),lwd=3) 
legend(0.195,-0.315,c("Breast","Bottle","Mix","Breastmilk>50","Breastm
ilk≤50","Formula"),pch=21,cex = 0.8,y.intersp = 0.72,pt.bg=c("#009392"
,"#39b1b5","#9ccb86","#e9e29c","#eeb479","#e88471")) 
text(0.37,0.3, labels= "p-value<0.01",cex=0.95) 
while (!is.null(dev.list()))  dev.off() 
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Figure 18. The comparison of the relative abundance of taxa in three groups of 

breastfeeding patterns 

metadata<-read.csv("breast_bottle_metadata_UPDATE.csv",header = T, str
ingsAsFactors = T) 
Data.Subsample<-read.csv("Data.Subsample.original.csv", header = T) 
temp<-merge(Data.Subsample, metadata,by="Group") 
Data.Subsample.genus<-temp[,c(1:(ncol(Data.Subsample)))]   
metadata<-temp[,c(1,(ncol(Data.Subsample)+1):(ncol(temp)))] 
Data.Subsample.genus$Group 
metadata$Group 
 
#chose the taxa with rel abun >1%  
newOTUS<-Subset.Taxa(Data.Subsample.genus[,-c(1:3)],TaxName=TaxName,Cu
tOff=1) 
#calculate the overall p-value 
Group<-as.factor(metadata$FED_PATTERN) 
p<-NB.overall(newOTUS,Group) 

#negative binomial 
temp<-NB.pairwise(newOTUS=newOTUS,Group=Group) 

Group<-factor(Group, levels(Group)[c(2,1,3)]) 
levels(Group) 
temp2<-NB.pairwise(newOTUS,Group) 

pairwise<-cbind(p,temp,temp2) 
#write.csv(pairwise,"Negative_biomial_breastfeeding_pattern_p-values_o
riginal_UPDATE.csv",row.names = F) 
 
NB.pair<-read.csv("Negative_biomial_breastfeeding_pattern_p-values_ori
ginal_UPDATE.csv",header = T) 
colnames(NB.pair)<-c("Taxa","Breast vs Bottle","Breast vs Mix","Bottle
 vs Mix") 
 
p.plot<-function(NB.pair,title=""){ 
  taxa<-NB.pair[,1] 
  p<-NB.pair[,-1] 
  par(mar=c(11,6,3,4)) 
  plot(p[,1],xaxt = "n",ylim=c(0,1),xlab="",pch=16,ylab="p-value",main
=paste(title)) 
  text(x=c(1:length(taxa)), y=par()$usr[3]-0.03*(par()$usr[4]-par()$us
r[3]), 
       labels=taxa, srt=45, adj=1, xpd=TRUE) 
  legend(12,.4,legend=paste(colnames(p)), pch=16,col=seq(1,ncol(p)),ce
x = 0.7) 
  axis(1, at=1:nrow(p), labels=FALSE) 
  abline(h=0.1) 
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  for(i in 2:ncol(p)-1){ 
    par(new=TRUE) 
    plot(jitter(1:nrow(p)),p[,i+1],ylim=c(0,1),xaxt ="n",pch=16,xlab="
",yaxt = "n",ylab="",col=c(i+1)) 
  } 
} 
p.plot(NB.pair) 

png("Top15taxa_breastfeeding_pattern_UPDATE.png", res=300, height=5.5,
 width=7,units="in") 
p.plot(NB.pair) 
while (!is.null(dev.list()))  dev.off() 

Table 17. The relative abundance of taxa in three groups of breastfeeding patterns 

NB.table<-function(OTUS,newOTUS,Group){ 
  total<-rowSums(OTUS) 
  rel.otu<-newOTUS/total*100 
  overall<-paste(round(colMeans(rel.otu),1),"\u00b1",round(apply(rel.o
tu,2,sd),1)) 
  taxa.mean<-as.matrix(round(aggregate(rel.otu,list(Group),mean)[,-1],
1)) 
  taxa.sd<-as.matrix(round(aggregate(rel.otu,list(Group),sd)[,-1],1)) 
  taxa1<-t(matrix(nrow=3,paste(taxa.mean,"\u00b1",taxa.sd))) 
  colnames(taxa1)<-levels(Group) 
  tables<-cbind(matrix(colnames(taxa.mean)),overall,taxa1) 
  return(tables) 
} 
test<-NB.table(Data.Subsample.genus[,-c(1:3)],newOTUS,Group) 
test 
test_p<-cbind(test,p) 
write.csv(test_p,"Negative_biomial_breastfeeding_pattern_UPDATE.csv",r
ow.names = F) 

Table 18. The relative abundance of taxa in six feeding groups, results from NB 

metadata<-read.csv("breast_bottle_feed_past_wk_UPDATE.csv",header=T, s
tringsAsFactors = T) 
Data.Subsample<-read.csv("Data.Subsample.csv",header = T) 
temp<-merge(Data.Subsample, metadata,by="Group") 
Data.Subsample.genus<-temp[,c(1:(ncol(Data.Subsample)))]  #N=299 
metadata<-temp[,c(1,(ncol(Data.Subsample)+1):(ncol(temp)))] #N=299 
Data.Subsample.genus$Group 
metadata$Group 
 

newOTUS<-Subset.Taxa(Data.Subsample.genus[,-c(1:3)],TaxName=TaxName,Cu
tOff=1)  #N=15 
Group<-as.factor(metadata$FED_PATTERN_50CUT) 
p<-NB.overall(newOTUS,Group) 
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NB_taxa<-as.data.frame(p) 
 
temp<-NB.pairwise(newOTUS,Group) 
Group<-factor(Group, levels(Group)[c(2,1,3,4,5,6)]) 
levels(Group) 
temp2<-NB.pairwise(newOTUS,Group) 
 
Group<-factor(Group, levels(Group)[c(3,1,2,4,5,6)]) 
levels(Group) 
temp3<-NB.pairwise(newOTUS,Group) 
 
Group<-factor(Group, levels(Group)[c(4,1,2,3,5,6)]) 
levels(Group) 
temp4<-NB.pairwise(newOTUS,Group) 
 

Group<-factor(Group, levels(Group)[c(5,1,2,3,4,6)]) 
levels(Group) 
temp5<-NB.pairwise(newOTUS,Group) 
 
Group<-factor(Group, levels(Group)[c(6,1,2,3,4,5)]) 
levels(Group) 
temp6<-NB.pairwise(newOTUS,Group) 
 
pairwise<-cbind(p,temp,temp2,temp3,temp4,temp5,temp6) 
write.csv(pairwise,"Negative_biomial_all_feeding_groups_p-values_UPDAT
E.csv",row.names = F) 
 
NB.table<-function(OTUS,newOTUS,Group){ 
  total<-rowSums(OTUS) 
  rel.otu<-newOTUS/total*100 
  overall<-paste(round(colMeans(rel.otu),1),"\u00b1",round(apply(rel.o
tu,2,sd),1)) 
  taxa.mean<-as.matrix(round(aggregate(rel.otu,list(Group),mean)[,-1],
1)) 
  taxa.sd<-as.matrix(round(aggregate(rel.otu,list(Group),sd)[,-1],1)) 
  taxa1<-t(matrix(nrow=6,paste(taxa.mean,"\u00b1",taxa.sd))) 
  colnames(taxa1)<-levels(Group) 
  tables<-cbind(matrix(colnames(taxa.mean)),overall,taxa1) 
  return(tables) 
} 
test<-NB.table(Data.Subsample.genus[,-c(1:3)],newOTUS,Group) 
test 
write.csv(test,"Negative_biomial_6_groups_pattern_rel_abun_UPDATE.csv"
,row.names = F) 

Figure 19. The comparison of the relative abundance of taxa in six feeding groups, results 

from MaAsLin 
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metadata<-read.csv("breast_bottle_feed_past_wk_UPDATE.csv",header=T, s
tringsAsFactors = T) 
Data.Subsample<-read.csv("Data.Subsample.csv",header = T) 
temp<-merge(Data.Subsample, metadata,by="Group") 
Data.Subsample.genus<-temp[,c(1:(ncol(Data.Subsample)))]  #N=299 
metadata<-temp[,c(1,(ncol(Data.Subsample)+1):(ncol(temp)))] #N=299 
Data.Subsample.genus$Group 
metadata$Group 
 

summary(metadata) 
cols<-c("SEX","MD_FINAL_ROUTE","EDUC_LVL","BABY_RACE","FED_PATTERN_50C
UT") 
metadata[cols]<-lapply(metadata[cols], factor) 
sapply(metadata,class) 
 

rownames(Data.Subsample.genus)<-Data.Subsample.genus$Group 
rownames(metadata)<-metadata$Group 
metadata<-metadata[,-1] 
  
metadata$FED_PATTERN_50CUT<-as.character(metadata$FED_PATTERN_50CUT) 
metadata$FED_PATTERN_STRING[metadata$FED_PATTERN_50CUT=="1"]<-"Breast" 
metadata$FED_PATTERN_STRING[metadata$FED_PATTERN_50CUT=="2"]<-"Bottle" 
metadata$FED_PATTERN_STRING[metadata$FED_PATTERN_50CUT=="3"]<-"Mix" 
metadata$FED_PATTERN_STRING[metadata$FED_PATTERN_50CUT=="4"]<-"Breastm
ilk>50" 
metadata$FED_PATTERN_STRING[metadata$FED_PATTERN_50CUT=="5"]<-"Breastm
ilk<50" 
metadata$FED_PATTERN_STRING[metadata$FED_PATTERN_50CUT=="6"]<-"Formula
" 
 
Data.Subsample.genus<-Data.Subsample.genus[,-c(1:3)] 
Data.Subsample.genus<-t(Data.Subsample.genus) 
row.names(Data.Subsample.genus)<-TaxName 
Data.Subsample.genus<-t(Data.Subsample.genus) 
Data.Subsample.genus<-as.data.frame(Data.Subsample.genus) 
 

metadata$FED_PATTERN_STRING<-as.factor(metadata$FED_PATTERN_STRING) 
 
Maaslin_multi<-Maaslin2( 
  input_data = Data.Subsample.genus,  
 input_metadata = metadata,  
  output = "Maaslin_6_feeding_groups_multivariate_Breast_control_UPDAT
E", 
  fixed_effects = c("FED_PATTERN_STRING","SEX","MD_FINAL_ROUTE","EDUC_
LVL","BABY_RACE","ESTWKSGEST","PRE_BMI","Has.baby.had.antibiotics.sinc
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e.birth.","age_enrollment"), 
  reference = c("FED_PATTERN_STRING,Breast")) 

Maaslin_multi<-Maaslin2( 
 input_data = Data.Subsample.genus,  
  input_metadata = metadata,  
  output = "Maaslin_6_feeding_groups_multivariate_Bottle_control_UPDAT
E", 
  fixed_effects = c("FED_PATTERN_STRING","SEX","MD_FINAL_ROUTE","EDUC_
LVL","BABY_RACE","ESTWKSGEST","PRE_BMI","Has.baby.had.antibiotics.sinc
e.birth.","age_enrollment"), 
  reference = c("FED_PATTERN_STRING,Bottle")) 

Maaslin_multi<-Maaslin2( 
  input_data = Data.Subsample.genus,  
  input_metadata = metadata,  
  output = "Maaslin_6_feeding_groups_multivariate_Mix_control_UPDATE", 
  fixed_effects = c("FED_PATTERN_STRING","SEX","MD_FINAL_ROUTE","EDUC_
LVL","BABY_RACE","ESTWKSGEST","PRE_BMI","Has.baby.had.antibiotics.sinc
e.birth.","age_enrollment"), 
  reference = c("FED_PATTERN_STRING,Mix")) 

Maaslin_multi<-Maaslin2( 
  input_data = Data.Subsample.genus,  
  input_metadata = metadata,  
  output = "Maaslin_6_feeding_groups_multivariate_Breastmilk>50_contro
l_UPDATE", 
  fixed_effects = c("FED_PATTERN_STRING","SEX","MD_FINAL_ROUTE","EDUC_
LVL","BABY_RACE","ESTWKSGEST","PRE_BMI","Has.baby.had.antibiotics.sinc
e.birth.","age_enrollment"), 
  reference = c("FED_PATTERN_STRING,Breastmilk>50")) 

Maaslin_multi<-Maaslin2( 
  input_data = Data.Subsample.genus,  
  input_metadata = metadata,  
  output = "Maaslin_6_feeding_groups_multivariate_Breastmilk<50_contro
l_UPDATE", 
  fixed_effects = c("FED_PATTERN_STRING","SEX","MD_FINAL_ROUTE","EDUC_
LVL","BABY_RACE","ESTWKSGEST","PRE_BMI","Has.baby.had.antibiotics.sinc
e.birth.","age_enrollment"), 
  reference = c("FED_PATTERN_STRING,Breastmilk<50")) 

Maaslin_multi<-Maaslin2( 
  input_data = Data.Subsample.genus,  
  input_metadata = metadata,  
  output = "Maaslin_6_feeding_groups_multivariate_Formula_control_UPDA
TE", 
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  fixed_effects = c("FED_PATTERN_STRING","SEX","MD_FINAL_ROUTE","EDUC_
LVL","BABY_RACE","ESTWKSGEST","PRE_BMI","Has.baby.had.antibiotics.sinc
e.birth.","age_enrollment"), 
  reference = c("FED_PATTERN_STRING,Formula")) 

#combine the data 
#Breast as control.Every level compare to reference 
all_breast_control<-read.table("/Users/busihan/Desktop/Thesis_aim3/Maa
slin_6_feeding_groups_multivariate_Breast_control_UPDATE/all_results.t
sv", header = T) 
all_breast_control$feature<-gsub("\\."," ", all_breast_control$feature
) 
all_breast_control<-filter(all_breast_control, metadata=="FED_PATTERN_
STRING") 
Maaslin_NB_taxa_breast<-merge(NB_taxa,all_breast_control,by.x="o", by.
y="feature") 
 
#Bottle vs Breast 
Maaslin_NB_taxa_breast$value[Maaslin_NB_taxa_breast$value=="Bottle"]<-
"Bottle vs Breast" 
Bottle_vs_Breast<-filter(Maaslin_NB_taxa_breast,value=="Bottle vs Brea
st") 
 
#Mix vs Breast 
Maaslin_NB_taxa_breast$value[Maaslin_NB_taxa_breast$value=="Mix"]<-"Mi
x vs Breast" 
Mix_vs_Breast<-filter(Maaslin_NB_taxa_breast,value=="Mix vs Breast") 
 
#Breast>50% vs Breast 
Maaslin_NB_taxa_breast$value[Maaslin_NB_taxa_breast$value=="Breastmilk
>50"]<-"Breastmilk>50% vs Breast" 
large50_vs_Breast<-filter(Maaslin_NB_taxa_breast,value=="Breastmilk>50
% vs Breast") 
 
#Breast<=50% vs Breast 
Maaslin_NB_taxa_breast$value[Maaslin_NB_taxa_breast$value=="Breastmilk
<50"]<-"Breastmilk≤50% vs Breast" 
less50_vs_Breast<-filter(Maaslin_NB_taxa_breast,value=="Breastmilk≤50%
 vs Breast") 
 
#################################################### 
#Bottle as control. Every level compare to reference 
all_bottle_control<-read.table("/Users/busihan/Desktop/2023Mar27_Aim3_
double_check/Maaslin_6_feeding_groups_multivariate_Bottle_control_UPDA
TE/all_results.tsv", header = T) 
all_bottle_control$feature<-gsub("\\."," ", all_bottle_control$feature
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) 
all_bottle_control<-filter(all_bottle_control, metadata =="FED_PATTERN
_STRING") 
Maaslin_NB_taxa_bottle<-merge(NB_taxa,all_bottle_control,by.x="o", by.
y="feature") 
 
#Mix vs Bottle 
Maaslin_NB_taxa_bottle$value[Maaslin_NB_taxa_bottle$value=="Mix"]<-"Mi
x vs Bottle" 
Mix_vs_Bottle<-filter(Maaslin_NB_taxa_bottle,value=="Mix vs Bottle") 
 
#Breast>50% vs Bottle 
Maaslin_NB_taxa_bottle$value[Maaslin_NB_taxa_bottle$value=="Breastmilk
>50"]<-"Breastmilk>50% vs Bottle" 
large50_vs_Bottle<-filter(Maaslin_NB_taxa_bottle,value=="Breastmilk>50
% vs Bottle") 
 
#Breast<=50% vs Breast 
Maaslin_NB_taxa_bottle$value[Maaslin_NB_taxa_bottle$value=="Breastmilk
<50"]<-"Breastmilk≤50% vs Bottle" 
less50_vs_Bottle<-filter(Maaslin_NB_taxa_bottle,value=="Breastmilk≤50%
 vs Bottle") 
 
#################################################### 
#mix control. Every level compare to reference 
#################################################### 
all_mix_control<-read.table("/Users/busihan/Desktop/2023Mar27_Aim3_dou
ble_check/Maaslin_6_feeding_groups_multivariate_Mix_control_UPDATE/all
_results.tsv", header = T) 
all_mix_control$feature<-gsub("\\."," ", all_mix_control$feature) 
all_mix_control<-filter(all_mix_control, metadata =="FED_PATTERN_STRIN
G") 
Maaslin_NB_taxa_mix<-merge(NB_taxa,all_mix_control,by.x="o", by.y="fea
ture") 
 
#Breast>50% vs Mix 
Maaslin_NB_taxa_mix$value[Maaslin_NB_taxa_mix$value=="Breastmilk>50"]<
-"Breastmilk>50% vs Mix" 
large50_vs_Mix<-filter(Maaslin_NB_taxa_mix,value=="Breastmilk>50% vs M
ix") 
 
#Breast<=50% vs Mix 
Maaslin_NB_taxa_mix$value[Maaslin_NB_taxa_mix$value=="Breastmilk<50"]<
-"Breastmilk≤50% vs Mix" 
less50_vs_Mix<-filter(Maaslin_NB_taxa_mix,value=="Breastmilk≤50% vs Mi
x") 
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#################################################### 
# breastmilk<50. Every level compare to reference 
#################################################### 
all_breast_less50_control<-read.table("/Users/busihan/Desktop/2023Mar2
7_Aim3_double_check/Maaslin_6_feeding_groups_multivariate_Breastmilk<5
0_control_UPDATE/all_results.tsv", header = T) 
all_breast_less50_control$feature<-gsub("\\."," ", all_breast_less50_c
ontrol$feature) 
all_breast_less50_control<-filter(all_breast_less50_control, metadata 
=="FED_PATTERN_STRING") 
Maaslin_NB_taxa_less50<-merge(NB_taxa,all_breast_less50_control,by.x="
o", by.y="feature") 
 

#Breast>50% vs Breast≤50% 
Maaslin_NB_taxa_less50$value[Maaslin_NB_taxa_less50$value=="Breastmilk
>50"]<-"Breastmilk>50% vs Breastmilk≤50%" 
Breast_more50_vs_Breast_less50<-filter(Maaslin_NB_taxa_less50,value=="
Breastmilk>50% vs Breastmilk≤50%") 
 

#################################################### 
# Formula. Every level compare to reference 
#################################################### 
all_formula_control<-read.table("/Users/busihan/Desktop/2023Mar27_Aim3
_double_check/Maaslin_6_feeding_groups_multivariate_formula_control_UP
DATE/all_results.tsv", header = T) 
all_formula_control$feature<-gsub("\\."," ", all_formula_control$featu
re) 
all_formula_control<-filter(all_formula_control, metadata =="FED_PATTE
RN_STRING") 
Maaslin_NB_taxa_formula<-merge(NB_taxa,all_formula_control,by.x="o", b
y.y="feature") 
 
#Breast vs Formula 
Maaslin_NB_taxa_formula$value[Maaslin_NB_taxa_formula$value=="Breast"]
<-"Breast vs Formula" 
Breast_vs_Formula<-filter(Maaslin_NB_taxa_formula,value=="Breast vs Fo
rmula") 
 
#Bottle vs Formula 
Maaslin_NB_taxa_formula$value[Maaslin_NB_taxa_formula$value=="Bottle"]
<-"Bottle vs Formula" 
Bottle_vs_Formula<-filter(Maaslin_NB_taxa_formula,value=="Bottle vs Fo
rmula") 
 
#Mix vs Formula 
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Maaslin_NB_taxa_formula$value[Maaslin_NB_taxa_formula$value=="Mix"]<-"
Mix vs Formula" 
Mix_vs_Formula<-filter(Maaslin_NB_taxa_formula,value=="Mix vs Formula"
) 
 
#Breastmilk>50% vs Formula 
Maaslin_NB_taxa_formula$value[Maaslin_NB_taxa_formula$value=="Breastmi
lk>50"]<-"Breastmilk>50% vs Formula" 
Breastmilk_large50_vs_Formula<-filter(Maaslin_NB_taxa_formula,value=="
Breastmilk>50% vs Formula") 
 
#Breastmilk<50% vs Formula 
Maaslin_NB_taxa_formula$value[Maaslin_NB_taxa_formula$value=="Breastmi
lk<50"]<-"Breastmilk≤50% vs Formula" 
Breastmilk_less50_vs_Formula<-filter(Maaslin_NB_taxa_formula,value=="B
reastmilk≤50% vs Formula") 
 
all_comparsion<-rbind(Bottle_vs_Breast,Mix_vs_Breast,large50_vs_Breast
,less50_vs_Breast,Mix_vs_Bottle,large50_vs_Bottle,less50_vs_Bottle,lar
ge50_vs_Mix,less50_vs_Mix,Breast_more50_vs_Breast_less50,Breast_vs_For
mula,Bottle_vs_Formula,Mix_vs_Formula,Breastmilk_large50_vs_Formula,Br
eastmilk_less50_vs_Formula) 
 
write.csv(all_comparsion,"Maaslin_all_comparsion_correct_order_USE_THI
S_UPDATE.csv", row.names = F) 
 

#all_comparsion<-read.csv("Maaslin_all_comparsion_correct_order_USE_TH
IS_UPDATE.csv", header = T) 
 
all_comparsion$value<-factor(all_comparsion$value, levels=c("Breastmil
k>50% vs Breastmilk≤50%","Breastmilk≤50% vs Mix","Breastmilk>50% vs Mi
x","Breastmilk≤50% vs Bottle","Breastmilk>50% vs Bottle","Mix vs Bottl
e","Breastmilk≤50% vs Breast","Breastmilk>50% vs Breast","Mix vs Breas
t","Bottle vs Breast","Breastmilk≤50% vs Formula","Breastmilk>50% vs F
ormula","Mix vs Formula","Bottle vs Formula","Breast vs Formula")) 
 
 

ggplot(all_comparsion,aes(x=o,y=value, fill=coef))+ 
  geom_tile()+ 
  scale_fill_gradient2(low = "#2166ac",high = "#b2182b")+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, linewid
th=1))+ 
  labs(x= "", y="",fill='Beta \ncoefficient')+ 



 

 232 

  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=0.97, 
size=11),axis.text.y = element_text(size=10))+ 
  theme(plot.margin = margin(0.5,0.05,0.05,3, "cm")) 

ggsave("Heatmap_UPDATE_UPDATE.png",width = 8, height = 5)
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