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ABSTRACT

Aquatic animals commonly oscillate their fins, tails, or other structures to propel and control

themselves in water. These elements are not perfectly rigid, so the interplay between their stiffness

and the fluid loading dictates their dynamics. We examine the propulsive qualities of a tail-like

flexible beam over a range of flow speeds, with oscillations induced either by a known forcing

function, feedback-based actuation, or a follower force. This is accomplished using the equations

of fluid-immersed beams in combination with a set of tractable expressions for thrust and efficiency.

We first compute these equations for a flexible beam actuated by a known forcing function over the

external flow velocity and forcing frequency plane and show that the flexible propulsor has regions

of both positive and negative thrust. We show the behavior of a sample underwater vehicle with

fixed drag characteristics as an illustration of a realizable system.

An alternate approach to generating the tail motion for underwater propulsion is to use a

method where the oscillation of the flexible element is self-induced. We investigate a pinned-free

beam in axial fluid flow, subjected to feedback-based actuation at the pinned end. The actuation

may be a moment or a prescribed angle, and it is proportional to the state (curvature, slope, or

displacement) of the beam at some point along its length. All equations and boundary condition

terms are non-dimensionalized and the stability of the system is studied over a range of external

flow velocities and sensing locations. For each combination of flow velocity and sensing location,

the critical gain (positive or negative) for the onset of flutter is determined. This process, which is

repeated for each combination of actuation and sensing modes, reveals that the closed-loop system

exhibits a rich set of stability transitions, each associated with a traveling waveform in the flexible

beam at the onset of flutter. With the intent of exploring the use of flexible fluttering beams for

underwater propulsion, the efficiency of these waveforms is computed using slender-body theory.

Additional insights into the efficiency of the waveforms are obtained through considerations of

the smoothness of the traveling waveforms. Using a water tunnel at various flow speeds, we

provide experimental validation of feedback-induced flutter of a beam for the specific case of

moment actuation proportional to curvature. We show that the model, adapted for experimental



considerations, results in flutter at very similar frequencies as the experimental results.

We complete our investigation of flutter-based propulsion by examining how the onset of flutter

is affected by the application of a follower force to a cantilevered beam in fluid flow. We consider the

full range of fluid-mass to beam-mass ratios (from thick pipes to thin beams) given the possibility

that the follower force could be generated by internal flow and a fluid jet. We follow the stability

of the system as the flow velocity is increased to determine the onset of flutter. Over this full

range of mass ratios and external flow velocities, we determine the critical follower force and

critical frequency. This set of investigations, along with our investigations of forced oscillations

and feedback-induced flutter, provide insights into how a flexible propulsor may be used as an

alternative to the propeller.
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CHAPTER 1

INTRODUCTION

Underwater robotic vehicles, also known as unmanned underwater vehicles (UUVs), are a rapidly

growing field given their increasing utility due to autonomy, capabilities, and cost. These vehicles

are used in a variety of applications, including military operations, environmental monitoring,

exploration, and research [1]. In recent years, advances in robotics, propulsion, and materials

science have enabled the development of highly capable UUVs with unique bio-inspired designs

and new capabilities [2, 3]. UUVs can operate at extreme depths, in conditions that would be

hazardous or impossible for humans to explore such as oil, gas, and mineral exploration [4–7].

UUVs are also being used to explore and map new and challenging environments such as underwater

caves, which require highly maneuverable vehicles that can navigate through narrow passages [8].

Additionally, the military is one of the largest users of UUVs, with applications ranging from

mine detection and disposal to submarine tracking and surveillance [9, 10]. UUVs can also

be used for reconnaissance and intelligence gathering, and for delivering payloads to targeted

locations [11]. Finally, UUVs are increasingly being used for environmental monitoring, including

tracking pollution levels, monitoring fish populations, and studying the impacts of climate change

on marine ecosystems [12–14].

One of the key challenges for underwater vehicles is propulsion. Water is denser and more

viscous than air, making it difficult for traditional propulsion systems to achieve high speeds or

maneuverability. To overcome this challenge, researchers have developed bio-inspired propulsion

systems that mimic the movements of marine animals [15]. For example, some UUVs use flapping

fins or undulating membranes to move through the water which offers improved maneuverability

over traditional propeller-based systems [16,17]. Efficiency is another important factor for UUVs,

as they typically rely on batteries for power and may need to operate autonomously for extended

periods of time, allowing for continuous data collection and analysis [18]. In this thesis, we explore

how oscillations of a beam in fluid flow, whether due to a known sinusoidal input or as a result of

flutter, can be harnessed to serve as a means of propelling an underwater vehicle.
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Our research is different from standard propellers in that it explores the use of oscillating a

flexible beam through forcing or flutter. Since we are using flexible beams, it behooves us to

study the elastic response and stability of structures. There has been considerable work in the

field of vibrations which focuses on the frequency dependent response of elastic structures to

increase efficacy, efficiency, and in many cases, prevent damage from resonance [19, 20]. The

study of stability focuses on the behavior of elastic structures when subject to differing system

or environmental parameters, a field of study since as early as the late 1800s e.g. [21]. Stability

can be lost drastically and permanently, such as the buckling of a column subject to too great of

a compressive force, or through oscillation, such as with a garden hose whipping back and forth

when unsecured [22]. Most research into oscillatory response behaviors has been for the purpose

of minimizing or preventing them [23, 24], but here we seek take advantage of their amplifying

power to generate thrust.

1.1 Forced Excitation of a Flexible Beam in Fluid Flow

There is tremendous interest in bio-inspired underwater propulsion systems as alternatives

to the standard propeller found on most undersea vehicles [25]. Nature has evolved a number

of periodic propulsive techniques [26], e.g. thunniform, carangiform, anguilliform, batoid, that

enable a large range of creatures to traverse the ocean [27, 28]. The periodic motions of fish

allow them to attain tremendous speeds and agility during hunting and evasive maneuvers while

also exhibiting impressive efficiencies over long distances. Given this impressive performance, a

significant amount of analytical work has been committed to understanding the hydrodynamics of

periodic motion, with the intention of adapting it to engineered systems [29–32]. Experimental

work has also been done with foils and panels which are periodically pitching [33], heaving [34],

or both pitching and heaving [35–37]; and using different shapes [38, 39], aspect ratios [40], and

flexibilities [41, 42]. Because these engineered systems can be run repeatably and understood in

detail, the analysis, measurement, and control [43] of these systems have provided scientists and

engineers with a better understanding of periodic propulsion [28].

With a better understanding of periodic propulsion, a number of robotic implementations have
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been built. These include the well-known RoboTuna [44], the recent designs described in [45–47],

and many others reviewed in [48]. Many of these designs use fully-actuated, rigid-link systems for

propulsion, but such fully-articulated systems have a drivetrain complexity that increases with the

number of joints. For the purpose of simplification, flexible propulsors have been used in place of

fully-actuated systems. Researchers have studied the effects of flexibility using distinct foils and

panels [49,50], as well as continuous tails actuated with a dynamic moment [51] or with tail motion

generated through instability [52].

Systems using a flexible tail for propulsion, as opposed to a fully-actuated rigid tail, are governed

by equations modeling fluid-immersed beams [53–55]. In this work, we investigate the propulsion

due to a flexible tail actuated by a dynamic moment at its base. This model can be studied over a

large range of frequencies and external flow velocities, treating them as independent variables, to

determine the tail motion. The tail motion of the forced system can be used to evaluate propulsive

performance using Lighthill’s equations for thrust and Froude efficiency for slender bodies [29].

Together, these can be used to determine the resultant velocity, thrust, and efficiency of a robotic

submersible driven at a specific tail frequency, based on its drag model and other system parameters.

1.2 Feedback-Induced Flutter Instability of a Flexible Beam in Fluid Flow

An alternate method of producing oscillatory motion in a fluid-immersed beam for propulsion

is through inducing flutter, rather than through the input of a known sinusoidal motion. The

phenomenon known as flutter is a parametric self-excitation that occurs in many types of systems.

Classic examples range from the casual, such as the flapping of flags in the wind [56], to the

concerning, such as unwanted vibrations in the trans-Arabian oil pipeline [57], to the catastrophic,

such as bridges collapsing (e.g. the infamous Tacoma Narrows Bridge [58]) and the loss of several

aircraft [59, 60]. These examples, particularly the latter ones, have led to rigorous study of the

phenomenon of flutter since at least the early 1950s [61–63] to improve these systems with respect

to safety and efficiency. Work continues on these topics through today with more sophisticated

methods and models.

In general, elastic systems can lose stability through either flutter, characterized by oscillations of

3



increasing amplitude until a limit cycle is reached (or failure occurs), or divergence, characterized by

near zero-frequency (often static) deflections away from the original point of equilibrium [64]. The

mode of instability is a function of the type of loading (conservative vs non-conservative) [65, 66]

as well as whether the system is damped or undamped [67]. Systems may also be studied from

a discrete perspective [62, 68], with a limited number of natural frequencies and associated mode

shapes, or from a continuous perspective [69], with infinite natural frequencies and associated

mode shapes.

For undamped systems (continuous or discrete), the natural frequencies lie on the axis of

marginal stability and move towards or away from the origin as the system parameters change.

If the complex conjugate pair of roots associated with the lowest frequency meet at the origin,

then stability is lost through divergence [67], e.g. the buckling of a column subject to an axial

compressive load. If two adjacent natural frequencies approach each other and meet, then the

system loses stability through coupled-mode flutter. On the contrary, for undamped systems, the

natural frequencies are not relegated to the axis of marginal stability and therefore stability can

be lost through single-mode flutter in which a single complex conjugate pair crosses the axis of

marginal stability onto the unstable half of the plane.

Divergence can result from either conservative or non-conservative loading while flutter typ-

ically1 results from non-conservative loading [72]. Elishakoff [73] presents a review of system

stability subject to follower forces which are often used to generate non-conservative loading.

This greater body of literature on the phenomenon of flutter of elastic systems includes discrete

systems, but we focus on continuous systems for this work (which are surveyed by Langthjem and

Sugiyam [74]), particularly with an emphasis on beams and pipes subjected to axial flow. These

structures are also non-conservative systems and much of the early work surrounding their study is

credited to Paidoussis [75] and Benjamin [68]. Investigation into this subject has been continued

by several [76–80] to better understand the stability characteristics of more complex systems under

varying conditions.

1In some recent works, it has been shown that flutter instability can occur in the presence of conservative loading

when subject to non-holonomic constraints [70, 71].
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As alluded to in the examples given earlier in this section, most studies attempt to understand this

behavior to avoid the instability. On the contrary, Hellum [52,81] investigated how to induce flutter

instability for the purpose of underwater propulsion. Work by Abdullatif [82] further investigated

the instigation of flutter through applying a dynamic moment to a beam with and without external

flow. In this work, we extend this work by considering a significantly broader scope of methods

to induce flutter through feedback. We also conduct experiments to validate our analytical and

numerical findings.

1.3 Effects of a Follower Force on the Inducement of Flutter in a Flexible

Beam in Fluid Flow

As mentioned, another method of inducing flutter (or divergence) in beams and pipes is through

the application of follower forces. Given the simplicity of analysis for the standard forms, but the

impressive insights and lessons that can be learned from studying them, they have continued to be

a very popular subject. Surveys of the field [83] were already being published in the early 1970s

though the survey conducted by Langthjem and Sugiyama [74], provides a tremendous review of the

field up through 2000. This survey focused on simple elastic structures subject to non-conservative

follower loads, with a particular emphasis on canonical problems, including Beck’s column and

Reut’s column, among others. Beck’s column is a simple, thin, flexible cantilevered beam that has

a compressive force applied to its free end, with the force always aligned tangentially to the free

end of the beam [84]. This differs from Reut’s column, for which the compressive force always

acts in the direction of the central axis of the undeformed beam [61]. These seminal works have

inspired several generations to continue studying the effects of non-conservative follower loads

and how they can induced instability. Efforts ranged from studying the effects of a compressive

follower force for asymmetric beams, showing how changing parameters could lead to flutter or

buckling [85] to studies on how the frequency response of MEMS resonator could be tuned by

varying the follower force. More recent work studies the non-linear limit cycle behavior of the 3D

beam showing complex behavior [86].

The field has not been without criticism as Elishakoff [73] writes about, given the difficulty of
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producing a tangential follower force without introducing significant additional effects such as fluid

flows or changing tip masses. An early attempt by Done applied a follower force with a jet engine

to show the onset of flutter instability, however, the study only lasted one second [87]. Sugiyama

later attempted to show the same with a rocket engine, which burned for four seconds [88]. More

recently Bigoni et al presented experimental evidence of flutter and divergence instabilities induced

by dry friction, first with rigid links, and then with a continuous beam i.e. a Pflüger column (a

Beck’s column with a concentrated tip mass) [89, 90].

Alongside this work on the stability of columns subjected to follower forces, both tangential and

axial, there has been significant work on the stability of fluid conveying pipes and fluid-immersed

beams, a field largely led by the work of Paidoussis and covered in his books on the topic [67, 91].

These systems follow similar equations of motion as elastic beams with follower forces as the

effluent jet provides a compressive effect on the beam, an effect which can be amplified by the

use of a convergent nozzle. However, the fluid imparts additional damping on the system which

is why such lengths were gone to when trying to experimentally validate Beck, Reut, and Pflüger

columns using jet and rocket engines [87, 88]. Different loading schemes were studied, such as

pinned-pinned or clamped-pinned fluid-conveying pipes under axial load [92] or pinned-free fluid

conveying pipe with an axial load but with the pinned end constrained by a rotational spring of

varying stiffness [93]. Clamped-free fluid-conveying pipes with distributed tangential loads (akin

to a very viscous, slow moving fluid being forced through a pipe) were studied [94] with Karimi-

Nobandegani adding the condition of having the tube spin [95] which add additional inertial and

coriolis forces. Ilgamov studied the effects on stability of the internal pressure from fitting a nozzle

to the end of a vertical fluid-conveying pipe that also had a follower force seeking to validate

the jet flow assumptions that had been made in previous works on the effects of the flow exiting

the jet [96]. More recently, several studies have involved research into the behavior of nanorods

and nanotubes subject to fluid flow conditions [97] with Bahaadini et al incorporating the nonlocal

surface effects [98] and Zhou et al studying the dynamics of spinning nanotubes conveying magnetic

nanofluid [99].
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Various methods have also been utilized to analyze the dynamics of fluid-conveying pipes with

axial loads. Laithier studied the non-linear Timoshenko equations of a cantilevered and clamped-

clamped fluid-conveying pipe through several derivations and compared them to the equations of

motion derived from Newtonian methods, showing strong agreement [100]. Guran developed a

fluid-conveying Reut’s column that accounts for shear stresses and extensibility, showing a loss

of stability through both divergence and flutter [101]. Several studies were conducted as to the

non-linear oscillations of fluid-conveying pipes, [102, 103] including vibration suppression in the

post-critical regime [104]. A very thorough and elucidating survey of non-linear techniques can

be found in [91].

1.4 Organization and Contributions

In this section we present the organization of this dissertation with an overview of each chapter

and the research contributions presented therein.

In Chapter 2, we delve into the propulsion capabilities of a flexible, tail-like beam that is driven

by a dynamic moment over a broad frequency and flow speed range. We model an underwater

vehicle that consists of a rigid body and a flexible beam connected by a revolute joint. It is here

that we introduce the general structure of the flexible, tail-like beam in axial fluid flow that will be

the focus of this thesis. The center of mass of rigid body of the model is limited to moving axially

along a channel by a pinned joint about which it is free to rotate. The leading edge of the beam is

attached by a revolute joint to the trailing edge of the rigid body while the trailing edge of the beam

is free. To simplify the model and make it easier to solve, we establish a set of assumptions about

the fluid-structure interactions and the physical properties of the rigid body and flexible tail-like

beam. We then use the equation of motion for fluid-immersed beam oscillations and the dynamics

of the rigid body acting as boundary conditions to mathematically define the system. Our method

of solution involves finding the beam’s motion through sinusoidal angle actuation of the revolute

joint. We present a series of tractable equations that allow us to calculate the thrust and efficiency

of the system as it moves across the velocity-frequency plane. Lastly, we provide a demonstration

of a sample underwater vehicle with fixed drag properties to give a practical example of how this
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system might work in real-life situations.

The contributions of this work presented in Chapter 2 are as follows. We determine the

analytical model for a rigid body in flow and show that it is numerically tractable to solve over a

large domain of model and state parameters. We show the utility of using slender body equations

for thrust and power to analyze a large region of the frequency - flow velocity space. We show that

the flexible propulsor exhibits areas of both positive and negative thrust. We discuss the effects of

resonance on the system. By defining a drag model of the rigid body, we determine the equilibrium

velocity of an example submersible propelled by a tail-like beam. We show that the efficiency

exceeds 50% on this locus of dynamic equilibrium.

In Chapter 3, we examine the use of different forms of feedback to induce flutter behavior in a

beam in fluid flow. Our focus is on a model of a pinned-free beam that is actuated at its leading

edge by a moment or angle proportional to the beam’s displacement, slope, or curvature at a

specific point along its length. We describe the equation of motion and boundary conditions of the

pinned joint which depend on the actuation and sensing method used. To simplify our analysis, we

non-dimensionalize the equations of motion and boundary conditions. Next, we present a method

of solution to determine the natural frequencies of the beam, taking into account parameters such

as beam properties, fluid flow velocity, feedback gain, and the location of sensing. Initially, we

examine the behavior of the system as the external flow velocity increases, with no feedback gain,

for both the moment actuation and angle actuation cases. We then show how to determine the

feedback gain at which the system becomes unstable. From the twelve possible combinations of

actuation, sensing, and feedback gain, we select six cases to demonstrate the range of behaviors

possible. We identify patterns in the critical stability and frequency surfaces and compare the

behavior of the different cases. We then evaluate the potential of using flutter oscillations as a

propulsor for an underwater vehicle, examining the thrust and efficiency characteristics and how

they are influenced by the parameters. We also examine how the smoothness of the waveform

affects efficiency, defining the Phase Smoothness Factor. Lastly, we study how the system behavior

is affected certain system parameters and not others.
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The contributions of this work presented in Chapter 3 are as follows. We model a pinned-free,

flexible, tail-like beam immersed in fluid flow using fluid, subject to various leading-edge boundary

conditions. We show how these non-conservative loading due to feedback causes the system to

lose stability through flutter. We study various actuation-proportional-to-sensing combinations

incorporating moment and angle actuation; displacement, slope, and curvature sensing; and both

positive and negative sign of feedback gain. We determine the flow velocity at which the systems

with zero feedback gain lose stability. We define the criteria for a system losing stability due to

feedback from which we, in turn, define the critical stability surfaces to present the results. We

present the results for six Cases, one for each combination of actuation and sensing over a large

range of feedback locations and flow velocities which show a rich set of stability transitions. We

determine the that the impact of flow velocity is much more mild than the significant impact of the

location of sensing. We further determine the propulsive characteristics of the waveforms generated

by the flutter instability through slender body equations. We then show that while the resulting

waveform is composed of four individual traveling waves, we can define a Phase Smoothness Factor

metric which can be used to reliably predict the efficiency based on the numerical waveform. Finally

we determine that the propulsive characteristics of the beam do not depend on the combination

of actuation and sensing by which flutter is produced; they depend only on the values of the

dimensionless fluid velocity and critical frequency, which completely define the waveform.

In Chapter 4, we aim to provide experimental validation for the feedback-induced flutter of a

flexible beam in fluid flow, which was introduced in Chapter 3. To achieve this, we selected a

suitable beam with the appropriate flexibility and density and installed strain gauges to measure

curvature at a point along the centerline. We then constructed a setup for applying a moment

to the beam’s leading edge and all necessary electronics for curvature measurement and torque

control. We created a Simulink program to implement the feedback control scheme and ran it

through the ControlDesk interface. We tested the system at various flow velocities and with both

positive and negative feedback gain to determine the critical feedback gain and frequency at which

flutter occurred. To validate our experimental findings, we adapted the moment-proportional-to-
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curvature system from Chapter 3 to account for experimental considerations and solved it for points

corresponding to those of the experiment. We then compare the experimental results and numerical

simulations to test the validity of the model used.

The contributions of this work presented in Chapter 4 are as follows. We design and construct

a system for applying feedback-based actuation to the leading edge of a flexible, tail-like beam

in fluid flow proportional to the curvature at a point along its centerline. This involves both the

application, sensing, and amplification of strain gauges as well as the control and transmission of

torque from a motor to the leading edge of the beam. We design a control scheme that enables the

input of the feedback gain which we use to determine when the beam loses stability through flutter

at different axial flow velocities. We show that the positive feedback gain behavior is significantly

different to the negative feedback behavior for our system. We show that the behavior of the system

is loosely correlated with the flow velocity. We modify the moment-proportional-to-curvature

boundary condition in Chapter 3 to include the the inertia of the torque application hardware and

the time delay that occurs due to the flexibility of the torque application hardware. We show that

the numerical model of the experimental setup loses stability through flutter at frequencies very

similar to those observed in the experiment. With this, we can state with confidence that the model

used is a good approximation of the real system and that feedback-induced flutter of a flexible beam

in axial fluid flow is achievable.

In Chapter 5, we again examine the flutter characteristics of a beam in fluid flow subject to a

follower force. This time, however, we focus on the impact of a follower force on the onset of

flutter, given the possibility that the follower force could be generated by internal flow and a fluid

jet emanating from a convergent nozzle, while retaining the same equations of motion. We start by

defining the model of a cantilever-free beam with a tangential follower force in fluid flow, with the

cantilevered end being upstream. Following the methods outlined in Chapter 3, we calculate the

equations of motion and boundary conditions of the beam. We then use the same solution process

to determine the natural frequencies of the beam, given parameters such as the beam material and

geometric properties, fluid flow velocity, and follower force amplitude. We first study the behavior
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of the system as the external flow velocity is increased with no follower force, over a range of

beam-to-fluid mass ratios. We analyze these curves to identify the range of external flow velocities

to examine further. We then show how to determine the follower force at which the system becomes

unstable. We present surfaces over the mass ratio and external flow velocity plane, indicating the

follower force required to induce flutter instability, the critical frequency at which the beam flutters,

and the mode from which the beam lost stability. Additionally, we delve into the scaling of the

system and observe some interesting convergence. We examine Ziegler’s paradox and its relevance

to the problem, and compare the effects of a follower force on stability to the attachment of a nozzle

to a fluid-conveying pipe using the same equations.

The contributions of this work presented in Chapter 5 are as follows. We model a cantilever-free,

flexible, tail-like beam in axial fluid flow with a tangential follower force applied at the free end.

We define the equation of motion and boundary conditions of this system and show the method of

determining the motion given a set of parameters. We explore the natural frequencies of the system

without follower force over the full range of possible beam-to-fluid mass ratios as the fluid flow

increases. These results present a rich set of behaviors which define the points from which our

follower-force analysis begins. Our analysis of the critical follower force allows us to determine

the frequency and mode at which the system loses stability through flutter given each combination

of mass ratio and fluid flow velocity. We show that for any given flow velocity, increasing the mass

ratio always requires a larger follower force to cause the system to lose stability. We show that by

scaling the flow velocity axis by the square root of the mass ratio, we can get all of our results for

the critical frequency surface and the critical mode surface to simplify tremendously. Our results

for very low flow velocities confirm Ziegler’s paradox regarding the destabilizing nature of low

damping on certain systems. Our analysis of incorporating a convergent nozzle to the downstream

end of the system shows that the follower force can be feasibly simulated for higher flow velocities

but not lower ones given the tremendous difficulty of actualizing a tangential follower force.

Concluding remarks and directions for future work are given in Chapter 6.
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CHAPTER 2

FORCED EXCITATION OF A FLEXIBLE BEAM IN FLUID FLOW

In this chapter, we examine the propulsive qualities of a tail-like flexible beam actuated by a dynamic

moment over a range of frequencies and flow speeds. We develop a model of an underwater vehicle

composed of a rigid body connected to a flexible tail-like beam by a revolute joint. The rigid body

is pinned about its center of mass and constrained to move along a channel. We lay out several

assumptions used to simplify our model and assist with tractability of the solution. We use the

equations of motion for fluid-immersed beams and the dynamics of the rigid body for the boundary

conditions to defined the system mathematically. We present a method of solving for the motion

of the beam under sinusoidal angle actuation of the revolute joint connecting the rigid body to the

flexible beam. We use a set of tractable equations to solve for the thrust and efficiency of the system

over the velocity-frequency plane and show that the flexible propulsor has regions of both positive

and negative thrust. We also show the behavior of a sample underwater vehicle with fixed drag

characteristics as an illustration of a realizable system.

The layout of this chapter is organized as follows. The physical system is described in Section2.1

along with a set of assumptions that simplify the mathematical model. The mathematical model is

presented in Section2.2 and the method of solution is discussed in Section2.3. For a specific set of

system parameters, the thrust and efficiency characteristics of the underwater vehicle, associated

with different driving frequencies, are discussed in Section2.4.

2.1 System Description and Assumptions

This chapter was previously published as [105], and has been reformatted to meet the require-

ments of this dissertation.

Consider the underwater vehicle immersed in quiescent fluid, in Fig.2.1. It is comprised of a

rigid body and a tail-like flexible beam. The center-of-mass of the rigid body is constrained to

translate along a channel and the beam is connected to the rigid body by a revolute joint. The

vehicle is propelled by the oscillatory motion of the flexible beam, which is generated by actively
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controlling the revolute joint. We make several simplifying assumptions in modeling the vehicle.

A1. The vehicle is in a state of dynamic equilibrium. The revolute joint of the vehicle translates

with constant velocity *e along the negative - axis in the quiescent fluid. We define the

reference frame -. where the - axis is aligned with the channel and the origin is located at

the projection of the revolute joint onto the - axis; this implies that the -. frame translates

along the channel. The -. frame is therefore an inertial reference frame and*e denotes the

external flow relative to this frame. The underwater vehicle is neutrally buoyant in a fluid of

density df and its motion is confined to the horizontal plane.

A2. The G1H1 frame is fixed to the rigid body at its center-of-mass. The orientation of the rigid

body relative to the -. frame is denoted by U, which is measured positive about the vertical

axis. The G2H2 frame is located at the revolute joint where the G2 axis is aligned with the

slope of the beam. The angle between the G1 and G2 axes is X, which is measured positive

about the vertical axis and is assumed to be small.

A3. The rigid body is symmetric about the vertical plane that contains the G1 axis. It has mass

moment of inertia � about its center-of-mass, which is located at a distance ℓ from the

.

-
G

H(G, C)U

X

*e
ℓ

!

H1

G1

H 2

G 2

\(G, C)

�

Figure 2.1: An underwater vehicle comprised of a rigid body and a tail-like flexible beam.
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revolute joint. For U = 0, the projected area of the rigid body in the ./ plane is �A . The

drag coefficient of the rigid body is �� and the drag force acts in the positive - direction at

a distance ;3 from the center-of-mass, measured along the G1 axis.

A4. The flexible beam satisfies Euler-Bernoulli assumptions. It has length ! and a rectangular

cross-section with flexural rigidity ��, where � and � are the Young’s modulus and area

moment of inertia, respectively. The fluid volume associated with the motion of the flexible

beam yields an added mass per unit length<e; this fluid is assumed to have a uniform velocity

profile [81], or an infinitely thin boundary layer. This assumption is made for tractability,

see, e.g., [106].

A5. The displacement of a point on the beam at a distance G from the revolute joint is denoted by

H(G, C) in the -. frame. The revolute joint has a displacement of H0 , H(0, C). The slope of

the beam is denoted by \(G, C) , [mH(G, C)/mG]. The slope of the beam at G = 0, denoted by

\0 , \(0, C), is small. Since \0 and X are both small, U , (\0 − X) is small.

A6. The net drag on the underwater vehicle is entirely due to the drag on the rigid body, i.e., the

flexible tail produces no drag. The drag force acts at a point on the longitudinal axis that lies

behind the center-of-mass; this is consistent with hydrodynamically stable bodies. The net

thrust produced by the vehicle is generated by the oscillating motion of the flexible tail.

2.2 Dynamic Model

Rigid Body Dynamics

The free-body diagrams of the rigid body and the flexible beam are shown in Fig.2.2. The reaction

forces at the revolute joint are assumed to be F and S along the - and . axes. The drag force and

the reaction force of the channel on the rigid body are denoted by D and R. The reaction moment

about the / axis isM. Summing the moments about the center-of-mass of the rigid body, we get:

M − Sℓ cosU + F (ℓ − ℓd) sinU = � ¥U (2.1)
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Substituting cosU ≈ 1 and (ℓ − ℓd) sinU ≈ 0, we get

M − ℓS = � ¥U (2.2)

One boundary condition at the revolute joint is geometric:

H0 = ℓ sinU ≈ ℓU = ℓ (\0 − X) (2.3)

The other boundary condition arises from the shear force S and the moment M, which are

dependent on the dynamics of the flexible beam. These will be described in the next sub-section.

Fluid-Immersed Beam Dynamics

The dynamics of the flexible beam in Fig.2.1 is identical to that of a beam in axial flow [52,91]:

��
m4H

mG4
+ <e*

2
e
m2H

mG2
+ 2<e*e

m2H

mGmC
+ (<e + <b)

m2H

mC2
= 0 (2.4)

where <e and <b denote the mass per unit length of the surrounding fluid (added mass) and the

beam, respectively. Including the wake of the rigid body or a boundary layer over the tail would

.

-

X

U

U

ℓ

ℓd

S

S
F

F
M

M

D

R

Figure 2.2: Free body diagrams of the rigid body and flexible beam shown in Fig.2.1.
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introduce a constant to the second term of (2.4) [106]. For a uniform velocity profile (A4), this

constant is 1. The boundary conditions at the free end of the beam are:

��
m2H

mG2

����
G=!

= 0, � �
m3H

mG3

����
G=!

= 0 (2.5)

Using the moment equilibrium (2.2) and the pinned condition (2.3), the boundary conditions at the

revolute joint can be expressed as:

��
m2H

mG2

����
G=0

− ℓ�� m
3H

mG3

����
G=0

= �

[
m3H

mGmC2

����
G=0

− 32X

3C2

]
(2.6a)

H

���
G=0

= ℓ

[
mH

mG

����
G=0

− X
]

(2.6b)

We introduce the following change of variables:

a =
H

!
, D =

G

!
, De = *e

√
<e!2

��
, g = C

√
��

(<e + <b)!4

to obtain the non-dimensional equation of motion of the beam

m4a

mD4
+ D2e

m2a

mD2
+ 2

√
VDe

m2a

mDmg
+
m2a

mg2
= 0 (2.7)

From (2.5), the non-dimensional boundary conditions at the free end of the beam are

m2a

mD2

����
D=1

= 0
m3a

mD3

����
D=1

= 0 (2.8)

while (2.6a) and (2.6b) provide the boundary conditions at the revolute joint

m2a

mD2

����
D=0

− ^ m
3a

mD3

����
D=0

= _

[
m3a

mDmg2

����
D=0

− 32X

3g2

]
(2.9a)

a

���
D=0

= ^

[
ma

mD

����
G=0

− X
]

(2.9b)

In (2.7) and (2.9), V, _, and ^ are non-dimensional parameters:

V =
<e

<e + <b
, _ =

�

(<e + <b)!3
, ^ =

ℓ

!
(2.10)
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2.3 Method of Solution

Exact Solution

The system of differential equations (2.7,2.8,2.9) is solved using the procedure from [52,91]. Since

the revolute joint is actively controlled, we assume

X(C) = X0 e
8ΩC = X0 e

8lg, l ,
(<e + <b

��

)1/2
Ω!2 (2.11)

where X0 and Ω are the driving amplitude and frequency and l is the non-dimensional excitation

frequency. We assume the response of the flexible beam to have the form

a(D, g) = q(D)e8lg (2.12)

where q(D) is a complex shape function with spatially-varying magnitude and phase. Substituting

(2.12) into (2.7) results in

q′′′′ + D2eq
′′ + 28De

√
Vl q′ − l2q = 0 (2.13)

where ( )′ denotes the spatial derivative of ( ) with respect to D. Applying the boundary conditions

in (2.8) and (2.9), we get

q′′(1) = 0

q′′′(1) = 0

q′′(0) − ^q′′′(0) + l2_q′(0) = l2_X0

q(0) − ^q′(0) = −^X0

(2.14)

where forcing terms appear on the right hand side. We assume the shape function to be of the form

q(D) = �1e
I1D + �2e

I2D + �3e
I3D + �4e

I4D (2.15)

where I8 = I8(l) are the roots of the characteristic equation of (2.13). Given De, V, and l,

substituting (2.15) into (2.14) yields
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

I21e
I1 I22e

I2 I23e
I3 I24e

I4

I31e
I1 I32e

I2 I33e
I3 I34e

I4

[1 [2 [3 [4

Z1 Z2 Z3 Z4





�1

�2

�3

�4



=



0

0

−l2_

−^



X0 (2.16)

where [8, Z8, 8 = 1, 2, 3, 4, are given by the relations

[8 = I28 − ^I
3
8 + _l2I8, Z8 = 1 − ^I8

We can solve (2.16) for the �8 to determine the shape function q(D). The response of the flexible

beam takes the form

a(D, g) =
4∑

==1

�=e
I=De8lg =

4∑

==1

�=e
Re[I=]De8(Im[I=]D+lg) . (2.17)

The forced response in (2.17) is the sum of four terms wherein each term is a product of two

exponential terms: the first exponential term is bounded because D is bounded and the second

exponential term is periodic as its exponent is imaginary. Each term in (2.17) is a traveling wave.

The forced response in (2.17) is also the steady-state response provided that the free response is

transient and decays out with time.

A Case Study

We consider the rigid body in Fig.2.1 to be an ellipsoid with length along the G1, H1 and I1 axes

equal to 0.4 m, 0.06 m, and 0.12 m, such that �A = 5.65 × 10−3 m2, ℓ = 0.2 m. Its density is

assumed to be the same as that of the surrounding fluid, which is water and equal to df = 1000

kg/m3; this yields � = 0.0123 kg m2.

The flexible beam has length ! = 0.45 m and a rectangular cross-section of width 0.001 m

and height 0.1 m, such that � = 8.333 × 10−12 m4. The material of the beam is assumed to be

Cirlex®, for which db = 1420 kg/m3, and � = 2.7 GPa. For these dimensions, the linear density

of the beam is <b = 0.142 kg/m; following standard approximations in the literature [81,107], the
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Figure 2.3: A sequence of images showing the shape of the flexible beam Re[a(D, g)] during

forced vibration for l = 40.0 and De = 2.0 over one cycle of oscillation. The revolute joint is at

D = 0.

linear density of the added mass of water is <e = 7.854 kg/m. This corresponds to the mass of the

cylinder of fluid surrounding the flapping beam.

For the set of dimensional parameters provided above, the non-dimensional parameters in (2.10)

are

V = 0.9822, _ = 0.0169, ^ = 0.4444

A sequence of images showing the traveling wave nature of the flexible beam under forced

vibration is shown in Fig.2.3 for the particular case of l = 40.0 and De = 2.0.
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2.4 Investigation of Propulsive Performance

Thrust

The method proposed by Lighthill for “slender fish" [29] can be used to estimate the thrust generated

by the flexible beam in fluid flow. As in [31, 52], the more general case of a beam is used rather

than the reduced case of a “tapered fish" that has neither mass nor area at its leading edge. The

time-averaged net thrust produced by the tail-like flexible beam is

F̄ =
1

2
<e



(
mH

mC

)2
−
(
*e
mH

mG

)2����
G=!

−
(
mH

mC

)2
−
(
*e
mH

mG

)2����
G=0


(2.18)

where the notation (·) is the cycle-average of (·). The thrust can be non-dimensionalized using the

change of variables in Section 2.2 and computed over one cycle using

F̄
∗ =
F̄!2

��
=
l

4c

∫2c/l

0

{[(
ma

mg

)2
−
(
De
ma

mD

)2]

D=1

−
[(
ma

mg

)2
−
(
De
ma

mD

)2]

D=0

}
3g (2.19)

The function a(D, g) is solved using the procedure in Section 2.3 and has both real and imaginary

parts. Since only the real part physically contributes to the thrust, Re[a] is used in place of a in

(2.19) and has the form

Re[a(D, g)] =
4∑

==1

eRe[I=]D {Re [�=] cos (Im [I=] D + lg) − Im [�=] sin (Im [I=] D + lg)}

(2.20)

The amplitude of the sinusoidal excitation will determine the magnitude of the thrust; we chose

X0 = 12 deg (≈ 0.2 rad). This does not universally guarantee small beam displacements due

to resonance; to conform with Euler-Bernoulli assumptions, we restrict our investigation to the

domain where the maximum elongation of the beam does not exceed 5%, i.e.,

sup
g∈[0,2c/l]

∫1

0

√
1 +

(
Re[a′]

)2
3D ≤ 1.05 (2.21)
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For the case study discussed in Section 2.3, Fig.2.4 shows a contour plot of the nondimensional

time-averaged thrust produced by the flexible beam in the domain l ∈ (0, 100] and De ∈ (0, 10].

The hatched regions show areas of negative thrust and solid grey regions show areas where the

elongation exceeds 5% due to resonance. The general trend of Fig.2.4 shows higher thrust at higher

frequency with regions of significantly greater thrust due to resonance. In the neighborhood of

resonance, denoted by the solid grey areas in Fig.2.4, the tip of the tail moves significantly more

which results in greater thrust - this follows from (2.19). As the frequency increases beyond a

region of resonance, the tail movement, and thus the thrust, drop off quickly.

It should be noted that l and De are treated as independent variables in the results presented in

Fig.2.4. In reality, De is a consequence of the dynamic equilibrium where the time-averaged thrust

F̄ is equal to the time-averaged drag D̄ for a given l. The time-averaged drag is assumed to be

0 10050

10

5

0

l

D
e

5.0

2.5

1.0

1.0

1.0
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0.25

0.25

0.1
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Figure 2.4: Contour plot of the nondimensional time-averaged thrust F̄∗ in the l-De plane;

hatched areas signify regions with negative thrust and the three solid grey areas indicate regions

around resonance where the elongation exceeds 5%.
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Figure 2.5: (a) Locus of dynamic equilibrium for the underwater vehicle described in Section 2.3,

(b) Froude efficiency along the locus of dynamic equilibrium.

D̄ = (1/2)df���A*
2
e (2.22)

with �� = 0.1 [108]. In light of this, we now look at the locus of points where F̄ = D̄. A

dimensional plot of the locus is shown in Fig.2.5(a). For a given Ω in this plot, if *e lies below

(above) the locus, it will accelerate (decelerate) until its velocity reaches the locus. Consider the

case of the vehicle accelerating from rest using Ω = 10 rad/s. Because its velocity initially lies

below the locus, the vehicle accelerates to the speed on the locus which matches the frequency,

*e = 0.41 m/s. By varying Ω, the vehicle can attain higher and lower *e for a given amplitude

X0. The general trend of Fig.2.5(a) shows higher *e at higher frequencies; *e increases rapidly as

the system approaches resonance and decreases post-resonance. This is in accord with the trends

observed in Fig.2.4. Each point on the locus can also be associated with a specific value of Froude

efficiency [29]. The derivation of this efficiency follows.

Efficiency

To compute the propulsive efficiency, we use an expression derived by Lighthill for the time-

averaged power P̄ required to generate the displacements H(G, C) which produce the thrust:
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P̄ = *e<e

[
mH

mC

(
mH

mC
+*e

mH

mG

)����
G=!

− mH

mC

(
mH

mC
+*e

mH

mG

)����
G=0

]
(2.23)

This expression can be non-dimensionalized using the same change of variables as before to get

P̄
∗ =
P̄!3

��
=
l

2c

∫2c/l

0

{[
ma

mg

(
ma

mg
+ De

ma

mD

)]

D=1
−
[
ma

mg

(
ma

mg
+ De

ma

mD

)]

D=0

}
3g (2.24)

The Froude efficiency [29], defined as the ratio between the power of forward motion through the

fluid and the power required to generate the thrust by the motion of fluid, is

[ =
F̄*e

P̄
=
F̄
∗De

P̄∗
(2.25)

The efficiency [ is defined when the vehicle is moving with a constant speed *e, so we compute

the efficiency only for points on the locus of dynamic equilibrium. Figure 2.5 (b) shows the Froude

efficiency as a function of Ω; the corresponding value of *e can be found from Fig.2.5 (a). For

example, with a driving frequency of Ω = 10 rad/s, the underwater vehicle will have a steady state

velocity of*e = 0.41 m/s with an efficiency of [ = 0.56.

2.5 Conclusion

The dynamics of a flexible tail-like structure, connected to a rigid body by an actively controlled

revolute joint, can be analyzed as a fluid-immersed beam in axial flow. The rigid body imposes

boundary conditions at one end of the beam while the other end is free. Subject to simplifying

assumptions, the dynamics of the flexible beam are analytically tractable and result in traveling

waves. These traveling waves produce thrust that can propel the underwater vehicle by overcoming

the drag of the rigid body. The efficiency of the thrust varies as a function of the flow velocity and

oscillation frequency of the revolute joint. The locus of dynamic equilibrium points, where thrust

and drag forces balance each other, was obtained for a sample vehicle; the efficiency values on the

locus are found to exceed 50%.

Since the analysis is based on Euler-Bernoulli beam theory, simulations were carried out using

a small amplitude of the revolute joint. Nevertheless, the deflection of the flexible tail-like structure
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becomes large near resonance and such regions were therefore excluded from our investigation.

A more accurate model of the fluid-structure interaction is necessary to investigate the behavior

of the dynamic system over the complete domain. In certain regions of the velocity-frequency

plane, the flexible beam produces negative thrust, implying that it acts as a brake. It should be

noted that negative thrust can potentially produce backward motion, but the current model needs

to be expanded to account for negative flow velocity. Similar to the thrust, the power can also be

negative. While this condition is not sustainable for a self-propelled underwater vehicle, it may

be possible to exploit it for energy extraction if the underwater vehicle remains anchored in a flow

such as a stream or river.
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CHAPTER 3

FEEDBACK-INDUCED FLUTTER INSTABILITY OF A FLEXIBLE BEAM IN FLUID

FLOW

In this chapter we aim to study how different forms of feedback could be used to instigate flutter

behavior in a beam in fluid flow. We begin by describing a model of a pinned-free beam which is

actuated at its leading edge by an moment or angle condition that is proportional to the displacement,

slope, or curvature of the beam at some point along its length. We formulate the equations

of motion and boundary conditions which include three default boundary conditions as well as

one that depends on which method of actuation and sensing is used. We provide a meethod of

non-dimensionalizing the equations and boundary conditions to simplify their analysis. We work

through the method of solution required to determine the natural frequencies of the beam given the

set of parameters such as beam properties, location of sensing, fluid flow velocity, and feedback

gain. We start by determining the behavior of the system as the external flow velocity is increased

with no feedback gain which corresponds to a pinned-free beam for the moment actuation case and

a cantilevered beam for the angle actuation case. From this, we show the method of determining

the feedback gain at which the system loses stability.

Of the twelve possible cases of actuation, sensing, and sign of feedback gain, we choose six

cases that are illustrative of the behavior possible over the span of external flow velocities and

locations of sensing. We describe several patterns that are observable in the critical stability and

critical frequency surfaces and compare and contrast the behavior of the different cases. Following

this, we explore the applicability of the flutter oscillations produced through feedback as a propulsor

for an underwater vehicle. We explore the thrust and efficiency characteristics to see how they

depend on the chosen parameters. We additionally explore how the smoothness of the waveform

affects the efficiency, defining a Phase Smoothness Factor in the process. Finally, we study how

the behavior of the system is determined by the external flow velocity and frequency of oscillation,

independent of the other parameters of the system.

The remainder of this chapter is organized as follows. The problem formulation is described in
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Section 3.1 and the analytical method of solution is discussed in Section 3.2. The investigation of

the flutter instability is defined in Section 3.3, and the numerical procedure is laid out in Section

3.3. Parameters for the system are given in Section 3.3 as well as the terminology for the results

that are presented in 3.4. Section 3.5 lays out how this system could be applied to the propulsion of

an underwater vehicle and also compares the dynamic and hydrodynamic characteristics at several

points of the results.

This chapter was previously published as [109], and has been reformatted to meet the require-

ments of this dissertation.

3.1 Problem Formulation

Consider the fluid-immersed flexible beam in Fig.3.1. The beam has length !, a rectangular

cross-section with widthF and height ℎ, mass per unit length<b, and Young’s modulus of elasticity

� . The upstream end of the beam is connected to a fixed point by a revolute joint, which is actively

controlled; the downstream end of the beam is free. The fluid is inviscid and flows with constant

velocity *e. The equation of motion of the beam, ignoring gravitational, viscous, pressurization

and tensile effects, is as follows [52, 91]:

��
m4H(G, C)

mG4
+ <4*

2
e
m2H(G, C)

mG2
+ 2<4*e

m2H(G, C)

mGmC
+ (<e + <b)

m2H(G, C)

mC2
= 0 (3.1)

H

G

Ĝ

*e

point of sensing

!

F

Figure 3.1: A flexible beam, connected at one end to a fixed point by a revolute joint and free at

the other end, is immersed in a fluid flowing with constant velocity*e.
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where H(G, C) is the displacement of the beam, � = (ℎF3/12) is the area moment of inertia of the

beam, and <4 is the mass per unit length of the external fluid. The mass per unit length of the

external fluid is approximated as the mass of water within the cylinder of unit length circumscribing

the beam cross-section [107].

The displacement boundary condition of the pinned end of the beam and the shear and moment

boundary conditions of the free end of the beam are given as

H(0, C) = ��
m2H(!, C)

mG2
= ��

m3H(!, C)

mG3
= 0 (3.2)

We assume that an actuator located at the revolute joint can either apply a bending moment or

impose an angle condition on the beam at G = 0. Furthermore, the bending moment or the imposed

angle can be based on feedback: proportional to the curvature, slope, or displacement of the beam

at some point along its length G = Ĝ. Therefore, the final boundary condition at G = 0 can take one

of six forms depending on the two modes of actuation and three modes of feedback:

��
m2H(0, C)

mG2
= �m,2

m2H(Ĝ, C)

mG2
moment ∝ curvature (3.3a)

��
m2H(0, C)

mG2
= �m,B

mH(Ĝ, C)

mG
moment ∝ slope (3.3b)

��
m2H(0, C)

mG2
= �m,3 H(Ĝ, C) moment ∝ displacement (3.3c)

mH(0, C)

mG
= �a,2

m2H(Ĝ, C)

mG2
angle ∝ curvature (3.3d)

mH(0, C)

mG
= �a,B

mH(Ĝ, C)

mG
angle ∝ slope (3.3e)

mH(0, C)

mG
= �a,3 H(Ĝ, C) angle ∝ displacement (3.3f)

where �m,2, �m,B, �m,3 , �a,2, �a,B and �a,3 are feedback gains of appropriate dimensions.

Remark 1 For the purpose of theoretical development, it is assumed that the curvature, slope, or

displacement of the beam at an arbitrary point along its length can be measured directly using

sensors or estimated from sensor measurements.
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Remark 2 The actuator at the revolute joint can directly apply a moment proportional to the

curvature, slope, or displacement at some point along the length of the beam. To impose an angle

condition, whereby the revolute joint angle is proportional to the curvature, slope, or displacement,

a feedback controller must be designed to drive the actuator to track the desired angle.

We introduce the following change of variables:

E =
H

!
, D =

G

!
, W =

Ĝ

!
, De = *e!

√
<e

��
, g = C

√
��

(<e + <b)!4

to obtain the non-dimensional equation of motion of the beam

m4E

mD4
+ D2e

m2E

mD2
+ 2

√
V De

m2E

mDmg
+
m2E

mg2
= 0 (3.4)

where V is the mass fraction:

V =
<e

<e + <b

From (3.2), the non-dimensional displacement boundary condition of the pinned end of the beam

and the non-dimensional natural boundary conditions of the free end of the beam are given as

E(0, g) =
m2E(1, g)

mD2
=
m3E(1, g)

mD3
= 0. (3.5)

From (3.3), the actuator-imposed boundary condition at the revolute joint takes one of the following

six forms:
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m2E(0, g)

mD2
= 2m,2

m2E(W, g)

mD2
moment ∝ curvature (3.6a)

m2E(0, g)

mD2
= 2m,B

mE(W, g)

mD
moment ∝ slope (3.6b)

m2E(0, g)

mD2
= 2m,3 E(W, g) moment ∝ displacement (3.6c)

mE(0, g)

mD
= 2a,2

m2E(W, g)

mD2
angle ∝ curvature (3.6d)

mE(0, g)

mD
= 2a,B

mE(W, g)

mD
angle ∝ slope (3.6e)

mE(0, g)

mD
= 2a,3 E(W, g) angle ∝ displacement (3.6f)

where the non-dimensional feedback gains in (3.6) are related to their dimensional counterparts by

the relations

2m,2 =
�m,2

��
, 2m,B =

!�m,B

��
, 2m,3 =

!2�m,3

��
, 2a,2 =

�a,2

!
, 2a,B = �a,B, 2a,3 = !�a,3

3.2 Method of Solution

To solve (3.4) for the boundary conditions in (3.5) and (3.6), we followed the procedure

introduced in [91] and used in [52]. In particular, we assume the following separable form for

E(D, g):

E(D, g) = 5 (D)48Ωg (3.7)

where Ω is the non-dimensional frequency of oscillation. Substitution of (3.7) into (3.4) and (3.5)

yields

5 ′′′′(D) + D2e 5
′′(D) + 2De

√
V 8Ω 5 ′(D) − Ω2 5 (D) = 0 (3.8)

5 (0) = 5 ′′(1) = 5 ′′′(1) = 0 (3.9)
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while substitution of (3.7) into (3.6) yields

5 ′′(0) = 2m,2 5
′′(W) moment ∝ curvature (3.10a)

5 ′′(0) = 2m,B 5
′(W) moment ∝ slope (3.10b)

5 ′′(0) = 2m,3 5 (W) moment ∝ displacement (3.10c)

5 ′(0) = 2a,2 5
′′(W) angle ∝ curvature (3.10d)

5 ′(0) = 2a,B 5
′(W) angle ∝ slope (3.10e)

5 ′(0) = 2a,3 5 (W) angle ∝ displacement (3.10f)

Since (3.8) is an ordinary differential equation with constant coefficients, the solution of 5 (D) is

assumed to be of the form 5 (D) = �4ID; this results in the characteristic equation

I4 + D2eI
2 + 2De

√
V 8ΩI − Ω2 = 0 (3.11)

For specific values of De and V, (3.11) provides four roots of I=, = = 1, 2, 3, 4, which are functions

of Ω. The solution of 5 (D) takes the form

5 (D) = �14
I1D + �24

I2D + �34
I3D + �44

I4D (3.12)

Substitution of the boundary conditions in (3.9) and (3.10) yields



1 1 1 1

I214
I1 I224

I2 I234
I3 I244

I4

I314
I1 I324

I2 I334
I3 I344

I4

X1 X2 X3 X4

︸                                   ︷︷                                   ︸
Z



�1

�2

�3

�4



=



0

0

0

0



(3.13)

where X=, = = 1, 2, 3, 4, are defined as follows
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X= ,




I2= − 2m,2 I
2
=4
I=W : moment ∝ curvature

I2= − 2m,B I=4
I=W : moment ∝ slope

I2= − 2m,3 4
I=W : moment ∝ displacement

I= − 2a,2 I
2
=4
I=W : angle ∝ curvature

I= − 2a,B I=4
I=W : angle ∝ slope

I= − 2a,3 4
I=W : angle ∝ displacement

For each of the six modes of actuation and feedback combinations, non-trivial solutions of (3.13)

can be obtained by solving the transcendental equation det (Z) = 0. For specific values of De, V,

W, and the appropriate feedback gain

2 ∈ {2m,2, 2m,B, 2m,3 , 2a,2, 2a,B, 2a,3} (3.14)

the transcendental equation can be solved numerically to get the complex frequencies Ω8, 8 =

1, 2, · · ·, and the I= terms, = = 1, 2, 3, 4, for each Ω8.

3.3 Investigation of Flutter Instability

Critical Stability

While Section 3.2 provides the frequencies of oscillation, Ω8, 8 = 1, 2, · · ·, for specific values of De,

V, W, and 21, we seek to find the critical stability points where the system loses stability through

flutter. For a particular Ω and corresponding I= terms, = = 1, 2, 3, 4, the solution of (3.4), (3.5),

and (3.6) can be obtained by substituting (3.12) into (3.7):

E(D, g) =
4∑

==1

�= 4
I=D 48Ωg = 4−I<[Ω]g

4∑

==1

�= 4
R4[I=]D 48{I<[I=]D+R4[Ω]g} (3.15)

where the coefficients �=, = = 1, 2, 3, 4, can be obtained from the null space of Z in (3.13). It

is clear from (3.15) that the stability of E(D, g) is dependent on the exponential term outside the

1The discussion here is general and applies to all six modes of actuation and feedback, i.e., 2 can be any element

of the set in (3.14)
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summation; if I<[Ω] < 0, this term is unbounded as C → ∞. Therefore, the point at which

I<[Ω] changes sign from positive to negative represents the onset of flutter instability. The first

exponential term inside the summation is bounded because D is bounded; the second exponential

term yields periodic motion, because it has an imaginary exponent.

It should be noted that (3.15) describes the solution for one non-dimensional frequency Ω. At

the flutter instability point, one specific value of Ω, Ω = ΩcA , satisfies I<[Ω] = 0 whereas all other

Ω values satisfy I<[Ω] > 0. The frequency ΩcA is real and is defined as the critical frequency.

Since 4−I<[Ω]g → 0 as g → ∞ for all Ω 6= ΩcA , the complete solution at the flutter instability point

takes the form

E(D, g) =
4∑

==1

�= 4
R4[I=]D 48{I<[I=]D+R4[ΩcA ]g} (3.16)

Since the imaginary exponent in (3.16) is a function of both D and g, the above equation represents

a traveling waveform.

Remark 3 In the context of a fluid-immersed slender body, Lighthill [29] established that a trav-

eling wave can generate positive thrust if the phase velocity of the wave is greater than the fluid

velocity. Since the expression in (3.16) is comprised of four waveforms with different, spatially

variable amplitudes and phase velocities, deriving a condition for positive thrust is not straight-

forward. The propulsive characteristics of the waveform in (3.16) will be discussed in Section

3.5.

Numerical Procedure

We first determine the natural frequencies Ω8, 8 = 1, 2, · · ·, for the unforced system, i.e., the system

with De = 0 and 2 = 0. The set of natural frequencies are determined separately for the two cases

where the moment applied at the revolute joint is zero - pinned boundary condition; and the angle

specified at the revolute joint is zero - cantilevered boundary condition. Unlike the cantilevered

boundary condition, the pinned boundary condition will include the rigid-body mode; this requires
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us to include Ω0 = 0 in the set of natural frequencies for the pinned case. We now introduce the

following definition:

Frequency Band: The range of frequencies in (0,Ω1] is defined as the first frequency band Π1. The

range of frequencies in (Ω 9−1,Ω 9 ] is defined as the 9-th frequency band Π 9 , 9 ≥ 2.

To determine the critical stability points, we fix the value of V and vary De and W over some

domain. For each point in this domain, we solve for the critical feedback gain 2 = 2cA , which

causes the system to lose stability through flutter. These points define a surface, which we refer to

as the critical stability surface. Each point on the critical stability surface corresponds to a critical

frequency ΩcA ; these points define a critical frequency surface. The critical stability and frequency

surfaces are obtained as follows: For a specific value of W, we start with 2 = 0 and De = 0.1. We

use the first eleven natural frequencies of the beam, Ω: , : = 0, 1, 2, · · · , 10, for the pinned case

and the first ten natural frequencies of the beam, Ω: , : = 1, 2, · · · , 10 for the cantilevered case, as

the initial guesses to solve for the eigenfrequencies as the magnitude of 2 is gradually increased.

The process is continued until one of the Ω: ’s satisfies the condition I<[Ω: ] = 0. This provides

the value of 2cA and ΩcA for De = 0.1 and the specific value of W; the value of : denotes the mode

of flutter instability, which will be formally defined later. The process is repeated by gradually

incrementing the value of De while keeping the value of W fixed; the process is terminated when the

value of 2cA is uniformly zero2. To obtain the critical stability and frequency surfaces, the overall

process is repeated on a fine mesh grid for W.

Simulation Environment

We will investigate flutter instability for V = 0.98223,

2This signifies that the external flow alone causes the beam to lose stability, much like a flag fluttering in the wind.

3This value of V is chosen based on a dimensional example that we will consider later in Section 3.5.
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W ∈




[0.1, 0.9] : feedback based on curvature

[0.1, 1.0] : feedback based on slope

[0.3, 1.0] : feedback based on displacement

and

De ∈



[0.1, 9.0] : actuator applies a bending moment

[0.1, 19.0] : actuator imposes an angle condition

A different range of W was chosen for each of the feedback modes. Since the beam has zero

curvature at its free end, we restrict the upper bound to 0.9 for curvature feedback; since the beam

has zero displacement at the revolute joint, we restrict the lower bound to 0.3 for displacement

feedback. The other bounds were chosen such that the values of the critical feedback gain 2cA at

the boundaries were not inordinately large compared to those within the bounds.

The upper bounds on De were chosen based on the finding that the beam loses stability due

to external flow alone at De = De,2A = 8.99 when the actuator applies a bending moment equal

to zero, i.e., pinned boundary condition; and De = De,2A = 18.12 when the actuator imposes an

angle equal to zero, i.e., cantilevered boundary condition. These critical velocities for the pinned

and cantilevered boundary conditions are shown in the Argand diagrams in Fig.3.2. The Argand

diagrams show the locus of the first few eigenfrequencies as De is increased from zero; each branch

starts at a natural frequency of the system Ω: .

The procedure for computing the critical stability points, described in Section 3.3, can now

be better explained with the help of the Argand digrams in Fig.3.2. A specific value of De = D∗e,

corresponds to a specific point on each branch of the Argand diagram; note that these points

correspond to 2 = 0 and therefore the value of W is immaterial. For a specific value of W = W∗,

increasing the value of 2 from zero results in eleven (ten) loci of the eigenfrequencies for the

moment actuation (angle actuation) case that start on each of the branches of the appropriate

Argand diagram at the points corresponding to De = D∗e and 2 = 0. The critical value of 2 = 2cA ,
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Figure 3.2: Argand diagrams for the beam without feedback for (a) pinned boundary conditions

for De = [0, 15] and (b) cantilevered boundary conditions for De = [0, 20]. For the pinned case, the

locus originating at Ω0 moves up along the imaginary axis, then downward, and upward again;

then, it meets the locus originating at Ω1 and breaks away into the complex plane resulting in

instability for De,2A = 8.99.

corresponds to the lowest value of 2 for which one of the eigenfrequencies satisfy I<[Ω] = 0. We

now introduce the following definition:

Single Mode of Flutter Instability: The system loses stability through the :-th mode of flutter if

the eigenfrequency satisfying I<[Ω] = 0 originated on the :-th branch in the Argand diagram of

Fig.3.2.

The above definition implicitly assumes that the loci of the eigenfrequencies do not intersect each

other prior to satisfying the condition I<[Ω] = 0. To account for the possibility of intersection of

loci, we introduce the following definition:

Coupled Mode of Flutter Instability: The system loses stability through :1-:2 mode of flutter if

the eigenfrequency satisfying I<[Ω] = 0 can be traced back to the intersection of two loci that

originated on the :1-th and :2-th branches of the Argand diagram of Fig.3.2.

Based on the above definitions, in the absence of feedback, stability is lost through the 0-1

mode for the pinned boundary condition of Fig.3.2(a) and through the 1st mode for the cantilevered

boundary condition of Fig.3.2(b).

Remark 4 The coupled mode of flutter is the result of two loci intersecting on the imaginary axis

of the Argand diagram. Alternatively, when two loci approach each other in the complex plane but
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do not intersect before moving away, they exhibit the phenomenon of veering [110,111].

It should be mentioned that both positive and negative values of the feedback gain 2 can cause

the system to lose stability. This means that for each of the three modes of feedback and two

modes of actuation, there are two cases to be considered, namely 2 > 0 and 2 < 0. This results in

twelve cases of which we present a subset of six illustrative cases which are categorized in Table

3.1. It should be mentioned that some of the cases not presented here exhibit divergence mode of

instability over a large region of the W-De domain; these include the two cases: moment ∝ slope

with 2 < 0, and moment ∝ displacement with 2 < 0.

Table 3.1: Six specific cases chosen for simulation.

Case 1 2 3 4 5 6

Actuation Moment Angle Moment Angle Moment Angle

Feedback Curvature Curvature Slope Slope Displacement Displacement

Sign of 2 2 < 0 2 < 0 2 > 0 2 < 0 2 > 0 2 < 0

We complete this Section by providing the first eleven (ten) natural frequencies of the beam for

the pinned (cantilevered) boundary conditions in Table 3.2. These values will be useful when we

present our results on the mode of flutter instability and the frequency band in which the system

loses stability in the next few subsections. The Argand diagrams in Fig.3.2 indicate that, in the

absence of feedback, external flow results in 0-1 mode of flutter instability in the first frequency

band for the pinned boundary condition, and 1st mode of flutter instability in the fourth frequency

band for the cantilevered boundary condition.

Table 3.2: Natural frequencies of beam for pinned and cantilevered boundary conditions.

Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10

Pinned 0 15.4 50.0 104 178 272 386 519 672 844 1037

Cantilevered - 3.52 22.0 61.7 121 200 299 417 555 713 891
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3.4 Results of Feedback-Induced Instability

Case 1: Moment ∝ Curvature with Negative Feedback Gain

For this case, the moment is proportional to the curvature with feedback gain 2 < 0. For 2 = 0,

the moment is zero, which signifies the pinned boundary condition. Therefore, the values of the

natural frequencies Ω: , : = 0, 1, 2, · · · , 10, are those of the pinned beam in Table 3.2. The critical

frequency surface is shown in Fig.3.3(a). The different colors correspond to the frequencies in

the color bar shown to the left and the lines demarcate the frequency bands Π 9 , 9 = 1, 2, · · · , 10.

Figure 3.3(a) shows well-defined striations of constant frequency band for any given W indicating

that the critical frequency ΩcA is highly influenced by the value of W. It is evident that for a constant

De, a change in the location of sensing (value of W) can result in discontinuous changes in ΩcA . In

contrast, for a constant W, ΩcA changes gradually as De changes. In some instances, this results in a

change in the frequency band of ΩcA , such as at De ≈ 6 and W ≈ 0.8.

The critical stability surface is shown in Fig.3.3(b). It exhibits crests and troughs corresponding

to the striations in the critical frequency surface in Fig.3.3(a), with the crests corresponding to the

boundaries of the striations. The 2cA values show an increasing trend as De increases and drop to
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Figure 3.3: Case 1: (a) Critical frequency surface (b) Critical stability surface. The colorbar

pertains only to the critical frequency surface in (a) with the lines demarcating the frequency

bands. To better illustrate the topography of the critical stability surface in (b), a suitable

perspective view is provided with a color gradient.
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Figure 3.4: Case 2: (a) Critical frequency surface (b) Critical stability surface. The colorbar

pertains only to the critical frequency surface in (a) with the lines demarcating the frequency

bands. To better illustrate the topography of the critical stability surface in (b), a suitable

perspective view is provided with a color gradient.

zero for D ≥ De,2A ≈ 9, which corresponds to the point where the pinned beam becomes unstable

solely due to the external flow - see Fig.3.2(a). The 2cA values are the lowest for low De and high

W; they increase moderately with decreasing W and more dramatically with increasing De. As W

approaches the pinned end of the beam from 0.3, the magnitude of 2cA increases dramatically, once

near W = 0.3 and again near W = 0.1. As W decreases from 0.3 to 0.1, it is noteworthy that the value

of ΩcA in Fig.3.3(a) passes through increasingly higher frequency bands for the entire range of De.

Case 2: Angle ∝ Curvature with Negative Feedback Gain

For this case, the angle is proportional to the curvature with feedback gain 2 < 0. For 2 = 0, the

angle is zero, which signifies the cantilevered boundary condition. Therefore, the values of the

natural frequencies Ω: , : = 1, 2, · · · , 10, are those of the cantilevered beam in Table 3.2. The

critical frequency surface is shown in Fig.3.4(a). Similar to Case 1, ΩcA shows a strong dependence

on W. However, the striations are wider in general and do not extend for the full range of De.

Compared to Case 1, ΩcA shows a greater dependence on De and the frequency band of ΩcA changes

with De for all values of W > 0.25. Indeed, for W ≈ 0.8, ΩcA smoothly passes through three

different frequency bands before exhibiting a sharp drop in frequency at De ≈ 16. Unlike Case 1,
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Figure 3.5: Argand diagrams for the beam with feedback for Case 2: (a) a small change in De

results in a change in the mode of flutter instability without significant change in ΩcA , and (b) a

small change in W results in a change in both the mode of flutter instability and ΩcA .

for W < 0.58, several of the striations are terminated “prematurely" as the system loses stability

in low frequency bands for high values of De. The large swath of frequency band Π3 originating

from W ∈ [0.18, 0.24] at De = 0.1 is not associated with a single mode of flutter. For example, as

can be seen from the Argand diagram in Fig.3.5(a), for W = 0.2, the mode of flutter changes from

: = 3 for De = 8.87 to : = 1 for De = 8.93 due to veering [110, 111]; neither ΩcA nor 2cA change

significantly.

The critical stability surface is shown in Fig.3.4(b); it shows crests and troughs along constant W

similar to the critical stability surface of Case 1 shown in Fig.3.3(b). Also, the value of 2cA becomes

zero for De ≥ De,2A ≈ 18.1, which corresponds to the point where the cantilevered beam becomes

unstable solely due to the external flow - see Fig.3.2(b). Unlike Case 1, there are additional peaks

of 2cA in the interior of the domain. The regions around these peaks are associated with changes

in the mode and frequencies of flutter instability. For example, for De = 10.6, the mode of flutter

changes from : = 9 for W = 0.69 with 2cA = 0.084 to : = 8 for W = 0.7 with 2cA = 0.15; the jump

in the ΩcA and 2cA values can be seen from the Argand diagram in Fig.3.5(b).

Remark 5 The magnitude of 2cA for Case 2 is O(0.1); this is an order of magnitude lower than

that in Case 1.

39



0.1

0.4

0.7

1.0
0.1

3

6

9

0

20

40

0.1

0.4

1.0

0.1

(a) (b)

3 6 9

0.7

0
Π1

Π2

Π3

Π4

Π5

Π6

Π7

Π8

Π9

Π10

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω8

Ω9

Ω10

W

WDe

De

|2
cA

|

Figure 3.6: Case 3: (a) Critical frequency surface (b) Critical stability surface. The colorbar

pertains only to the critical frequency surface in (a) with the lines demarcating the frequency

bands. To better illustrate the topography of the critical stability surface in (b), a suitable

perspective view is provided with a color gradient.

Case 3: Moment ∝ Slope with Positive Feedback Gain

For this case, the moment is proportional to the slope with feedback gain 2 > 0. The values of

the natural frequencies Ω: , : = 0, 1, 2, · · · , 10, are those of the pinned beam in Table 3.2. The

critical frequency surface is shown in Fig.3.6(a). As the first case to present slope-based feedback,

Fig.3.6(a) shows significantly different behavior from the two previous cases. This is in large part

due to the behavior of the eigenfrequency originating at Ω0: this locus is restricted to the imaginary

axis for Case 1 involving curvature feedback; for slope-based feedback, it breaks away from the

imaginary axis into the complex plane and results in coupled-mode flutter.

While Fig.3.6(a) shows some distinct striations of frequency bands along constant W, these are

confined to low values of W. In this limited range of W, both ΩcA and 2cA decrease as W increases.

Contrary to the previous two cases, this trend continues as W increases towards the free end of the

beam (W = 1) resulting in a very large region of Π1. Except for small regions where W ≈ 0.4 and

W ≥ 0.95, stability is lost through flutter in low frequency bands for a large fraction of the W-De

domain. In the Π1 region, the system loses stability in the 1st mode for low values of De, in the 0-th

mode for intermediate values of De, and in the 0-1 coupled mode for high values of De. Stability is
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lost in the 0-th mode when a pair of loci originating at Ω0 intersect on the imaginary axis, break

away, and cross the real axis at a non-zero frequency. On the other hand, stability is lost in the

0-1 coupled mode when the loci originating at Ω0 and Ω1 intersect on the imaginary axis, break

away, and cross the real axis. This behavior is similar to what was observed in Fig.3.2(a), albeit for

higher values of De in the absence of feedback.

The critical stability surface is shown in Fig.3.6(b). Similar to the previous two cases, the value

of 2cA is low for high values of W and low values of De; the value of 2cA increases with decrease

in W and increase in De. However, contrary to the previous two cases, the critical stability surface

is smooth and contains region in the interior of the domain where 2cA ≈ 0. In particular, for

W ∈ [0.6, 1.0] and De ≈ 6.3, the system is marginally stable in the absence of feedback and loses

stability with a negligible value of feedback gain 2cA ; the corresponding critical frequency ΩcA is

also small. This region of low ΩcA and 2cA will be discussed further in Section 3.4 with the help of

an Argand diagram.

Remark 6 The magnitude of 2cA for Case 3 is O(10); this is an order of magnitude higher than

that in Case 1 and two orders of magnitude higher than that in Case 2.

Case 4: Angle ∝ Slope with Negative Feedback Gain

For this case, the angle is proportional to the slope with feedback gain 2 > 0. The values of the

natural frequencies Ω: , : = 1, 2, · · · , 10, are those of the cantilevered beam in Table 3.2. The

critical frequency and critical stability surfaces are shown in Figs.3.7(a) and (b). The striations

over the critical frequency surface and crests and troughs over the critical stability surface are quite

similar to those observed in Cases 1 and 2. Also similar to these cases, the value of 2cA jumps

at W ≈ 0.3 - see Fig.3.7(b). As with all cases discussed so far, ΩcA increases monotonically as W

decreases below 0.3 - see Fig.3.7(a). Similar to Case 2, there exists a range of W, W ∈ [0.3, 1.0],

for which ΩcA drops abruptly at a specific De, De < DcA ; this is exhibited by a sudden change of

the frequency bands from high to low in Fig.3.7(a). This sudden drop in ΩcA is accompanied by a
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Figure 3.7: Case 4: (a) Critical frequency surface (b) Critical stability surface. The colorbar

pertains only to the critical frequency surface in (a) with the lines demarcating the frequency

bands. To better illustrate the topography of the critical stability surface in (b), a suitable

perspective view is provided with a color gradient.

sharp transition in the slope of 2cA , from rapidly increasing with De to rapidly decreasing with De -

see Fig.3.7(b).

The small “island" of high-frequency band that appears at De ≈ 9 and W ≈ 0.85 in Fig.3.7(a) is

associated with the : = 9 mode of flutter. At De ≈ 9, the : = 1 locus is sufficiently far from the real

axis in the Argand diagram in Fig.3.2(b) such that introduction of feedback causes the : = 9 locus4

to reach the real axis prior to the : = 1 locus because the : = 9 locus is very sensitive to 2 for W

values close to 0.85. When the : = 1 locus starts sufficiently close to the real axis, introduction of

feedback causes the : = 1 mode to reach the real axis before the other modes - this explains the

“sea" of low-frequency bands in a large fraction of the upper-right domain. The border of this low

frequency region shows the effect of the interplay between W and De on the stability characteristics

of the system. In this low-frequency region, the magnitude of 2cA exhibits an undulatory behavior

as De increases; this can be attributed to the oscillatory behavior of the : = 1 locus in the Argand

diagram of Fig.3.2(b).

Remark 7 The magnitude of 2cA for Case 4 is O(1), the same magnitude as Case 1 but an order

4The : = 9 locus is not shown in the Argand diagram in Fig.3.2(b) but shown in Fig.3.5(b) for De up to at least

10.6.
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of magnitude higher than that shown in Case 2 and an order of magnitude lower than that shown

in Case 3.

Case 5: Moment ∝ Displacement with Positive Feedback Gain

For this case, the moment is proportional to the displacement with feedback gain 2 < 0. The values

of the natural frequencies Ω: , : = 0, 1, 2, · · · , 10, are those of the pinned beam in Table 3.2. The

critical frequency and critical stability surfaces are shown in Figs.3.8(a) and (b). Although based

on displacement feedback, these plots have many similarities with those of Case 3 in Figs.3.6(a)

and (b), which are based on slope feedback. In particular, both the critical frequency and stability

surfaces show a nearly monotonic increase with decreasing W, with ridges on the critical stability

surface demarcating the change in mode of flutter. Also, the frequency bands curve in the direction

of increasing W as De increases; this is distinctly different from the other cases where the narrow

frequency bands or striations are largely independent of De. Similar to Case 3, there exists a large

region of the W-De domain where the system loses stability in the 1st mode for low values of De,

in the 0-th mode for intermediate values of De, and in the 0-1 coupled mode for high values of De.

For intermediate values of De where stability is lost in the 0-th mode, the behavior of the system

is however distinctly different from that of Case 3. For slope-based feedback (Case 3), the locus

originating at Ω0 curves towards the real axis immediately after breaking away from the imaginary

axis; this results in low values of ΩcA and 2cA - see Fig.3.9 (a). For displacement-based feedback

(this case), the locus moves away from the real axis and converges on it at a higher value of ΩcA ;

the associated value of 2cA is also higher - see Fig.3.9 (b).

Remark 8 The magnitude of 2cA for Case 5 is O(100). In comparison to the other two cases of

moment actuation, the magnitude of 2cA is an order of magnitude higher than Case 3 and two

orders of magnitude higher than Case 1.
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Case 6: Angle ∝ Displacement with Negative Feedback Gain

For this case, the angle is proportional to the displacement with feedback gain 2 > 0. The values of

the natural frequencies Ω: , : = 1, 2, · · · , 10, are those of the cantilevered beam in Table 3.2. The

critical frequency and critical stability surfaces are shown in Figs.3.10(a) and (b); they resemble
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Figure 3.9: Argand diagrams for the beam with slope and displacement feedback. For D∗e = 5.0
and W = 0.85, (a) moment actuation based on slope feedback (Case 3) results in ΩcA = 3.94 and

2cA = 2.28; (b) moment actuation based on displacement feedback (Case 5) results in

ΩcA = 23.30 and 2cA = 29.16.
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those of Case 3 in Figs.3.6(a) and (b) and those of Case 5 in Figs.3.8(a) and (b) although the mode

of actuation and sign of 2 are different for both Cases 3 and 5 and the mode of sensing is different

for Case 3. The tendency of the critical frequency to increase with increasing De and decreasing W is

particularly noticeable due to the “curving up" of the frequency bands in Fig.3.10(a); this behavior

is present in all cases but is very distinct in Cases 3 and 5. Similar to Case 3, for low De, Fig3.10(a)

shows small regions where stability is lost through flutter in high frequency bands. Otherwise,

both the critical frequency and stability surfaces resemble Figs.3.8(a) and (b) pertaining to Case 5,

increasing towards low W and high De with ridges on the critical stability surface demarcating the

changes in the mode of flutter.

Remark 9 The magnitude of 2cA for Case 6 is O(10). A comparison of all six cases indicate that

the magnitude of 2cA depends on the modes of actuation and sensing. A change in the mode of

actuation from angle to moment increases 2cA by one order of magnitude on average. Similarly,

changing the mode of sensing from curvature to angle as well as from angle to displacement

increases 2cA by one order of magnitude on average - see Table 3.3.
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Table 3.3: Order of magnitude for critical stability.

Curvature Slope Displacement

Sensing Sensing Sensing

Moment Actuation 1.0 10 100

Angle Actuation 0.1 1.0 10

3.5 Application to Underwater Propulsion

An Underwater Vehicle with a Flexible Propulsor

All of the analysis presented in Sections 3.1 and 3.2 and the results presented in Section 3.4 can

find a potential application in the propulsion of undersea vehicles. To motivate this, we consider

a submersible comprised of a rigid body and a tail-like flexible beam, immersed in a quiescent

fluid; the rigid body is connected to the flexible beam by an active revolute joint - see Fig.3.11.

For the sake of simplicity, we assume that the drag of the submersible is entirely due to the rigid

body and the thrust is produced entirely by the flexible tail. The submersible is assumed to move

with constant velocity*e in a state of dynamic equilibrium, where thrust and drag forces are equal

and opposite. The rigid body is assumed to have negligible rotational motion due to its inertia and

consequently it translates with constant velocity *e. This is in conformity with the assumptions

made in Section 3.1, namely, the pinned joint is at the origin of an inertial reference frame, and the

beam is immersed in a fluid that moves with constant relative velocity*e.

H

Grigid body

*e

flexible beam

!

active joint

Figure 3.11: A rigid body connected to a tail-like flexible beam by an active revolute joint.
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Propulsive Characteristics

Thrust, Power, and Efficiency

For a “slender fish", Lighthill [29] estimated the thrust, power, and efficiency assuming that the

fish has neither mass nor area at its leading edge. For the more general case, Hellum [52] adapted

these expressions for computing the nondimensional thrust F and power P

F =
Ω

4c

∫2c/Ω

0

{[(
mE

mg

)2
−
(
De
mE

mD

)2]

D=1

−
[(
mE

mg

)2
−
(
De
mE

mD

)2]

D=0

}
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where Ω = ΩcA is the non-dimensional frequency of oscillation, and the thrust and power expres-

sions are approximated by their averages over one period of oscillation. The function E(D, g) is

solved using the procedure outlined in Section 3.2 and has both real and imaginary parts. Since

only the real part physically contributes to the thrust and power, Re[E] is used in place of E in (3.17)

and has the form

Re[E(D, g)] =
4∑

==1

eRe[I=]D {Re [�=] cos (Im [I=] D + Ωg) − Im [�=] sin (Im [I=] D + Ωg)}

(3.18)

From the thrust and power values, the Froude efficiency [29] can be calculated as

[ =
FDe

P
(3.19)

Both the thrust and power expressions depend on the amplitude of the waveform of the flexible

tail, which depends on the �= terms in (3.18). The �= terms are obtained from the null-space of Z

in (3.13); therefore, the thrust and power will depend on the scaling of the null-space vector. This

scaling is arbitrary because we are using a linear model of the system. Ideally, the amplitude of the

waveform would be determined by a limit cycle analysis of the nonlinear model, which is outside

47



the scope of this work. Therefore, we focus on the waveform efficiency, which is not dependent on

the amplitude of the waveform.

Wave Speed and Phase Smoothness

The efficiency of the tail-like propulsor, given by (3.19), assumes that the thrust generated is positive.

This can be verified from the sign of F, computed using (3.17a) with an arbitrary amplitude of the

waveform. For a tail oscillating with a waveform

6(D, g) = ℎ(D) cos(Ωg − :D)

where : is the non-dimensional wavenumber, Hellum [52] provided a simple condition for the tail

to generate positive thrust. This condition, which was adapted from Lighthill [29], is given as

Ω

:
> D4 V

−1/2 ⇒ D4 V
−1/2

(Ω/:)
< 1 (3.20)

where (Ω/:) is referred to as the non-dimensional phase velocity. When this condition is met, the

efficiency can be alternately computed using the expression

[∗ = 1 − 1

2

[
1 − D4 V

−1/2

(Ω/:)

]
(3.21)

which has been adapted from [112] using non-dimensional variables. It was shown in [112] that

[∗ is restricted to lie in the range [0.5, 1.0].

The motion of the flexible propulsor is comprised of four traveling waves - see (3.18); therefore

the condition in (3.20) and the expression in (3.21) are inapplicable. We can however compute a

value of the average non-dimensional wavenumber, which we denote by :̄; simulation results show

that positive thrust is generated when (3.20) is satisfied with : replaced by :̄ . To compute :̄ , we

first recognize that E(D, g) of (3.7) is a complex helix defined by the shape function 5 (D) which

rotates with angular velocity Ω. At any given time, :̄ can be computed from the phase of the helix

q(D) as follows
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:̄ = q(0) − q(1), q(D) = atan2(Im[ 5 (D)],Re[ 5 (D)]) (3.22)

For the purpose of illustration, we plot q(D) and :̄ for the specific operating point: D4 = 3.4

and W = 0.90 for Case 6 - see Fig.3.12. It can be seen that q(D) decreases as D varies from 0 to

1, which signifies that the waveform travels from the hinged end to the free end of the beam. The

value of :̄ is the negative of the slope of the straight line joining q(0) and q(1). The phase angle q

in Fig.3.12 is observed to exhibit undulations about the straight line, implying that the phase does

not vary linearly. To characterize this variation, we plot the spatial derivative of the phase angle

(3q/3D) in Fig.3.12 and define the phase smoothness factor (PSF):

P(� =
min|(3q/3D)|
max|(3q/3D)| (3.23)

The value of PSF signifies the extent to which the traveling wave exhibit a stop-and-go motion as

it moves from the hinged end (D = 0) to the free end of the flexible tail (D = 1). When q(D) varies

linearly, the value of PSF is equal to 1, which describes a wave traveling with constant velocity. In
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Figure 3.12: Phase plot for Case 6 at D4 = 3.4 and W = 0.9.
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the next section, it will be shown that the Froude efficiency is highly correlated with the value of

PSF, with higher efficiencies associated with PSF values closer to unity.

Illustrative Examples of Traveling Waveforms

Effect of Change in De and W

We illustrate the change in the traveling waveform and its propulsive characteristics due to changes

in the external flow velocity De and the location of sensing W. We consider three operating points

from Case 6, presented in Section 3.4: a nominal point (Point 1) and two other points, obtained

by varying either W (Point 2) or De (Point 3). The critical feedback gain, the critical frequency, the

Froude efficiency, the average nondimensional wavenumber, the value of PSF, the wavespeed, and

the value of efficiency computed using (3.21) at these three points are shown in Table 3.4.

For the nominal point (Point 1: De = 3.2, W = 0.30), the waveform is shown in Fig.3.13 (a).

The waveform exhibits a “stop-and-go" motion with amplitudes varying considerably along the

length of the tail, which corresponds to its low PSF value. The value of [∗ lies near the lower

bound of the range [0.5, 1.0]; this follows from (3.21) since the wavespeed (Ω/:̄) is significantly

higher than the external flow velocity De5. The value of [ computed using (3.19) is also near the

lower bound of [0.5, 1.0].

When the location of sensing alone is changed (Point 2: De = 3.2, W = 0.90), we notice a

significant drop in the frequency with a less significant drop in the wavenumber, which results in

a lower wavespeed - see Table 3.4. While still producing positive thrust as per (3.20), the drop in

wavespeed results in a jump in the value of [∗, which closely matches the computed value of [.

5For our simulations, we assumed V = 0.9822 - see Section 3.3. This gives a value of V−1/2 = 1.0090 ≈ 1.

Table 3.4: Propulsive characteristics at three operating points of Case 6.

Point De W 2cA Ω = ΩcA [ :̄ PSF (Ω/:̄) [∗

1 3.2 0.30 9.78 193.1 0.514 13.40 0.074 14.41 0.611

2 3.2 0.90 3.65 24.0 0.701 3.24 0.403 7.40 0.716

3 12.4 0.30 11.25 258.1 0.751 11.11 0.505 23.23 0.767
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The waveform, shown in Fig.3.13 (b), indicates a fewer number of undulations compared to that

of Fig.3.13 (a)in accordance with the the lower wavenumber. Additionally, it can be seen that the

waveform travels much more smoothly along the length of the tail which is captured by its much

higher value of PSF.

When the external flow velocity alone is changed (Point 3: De = 12.4, W = 0.30), we notice

a moderate increase in the frequency but a slight decrease in the wavenumber, which results in a

higher wavespeed - see Table 3.4. Though the wavespeed is increased, the system operates at a

much higher external velocity which results in a jump in the value of [∗, which, again, closely

matches the computed value of [. The waveform, shown in Fig.3.13 (c), indicates a similar number

of undulations compared to that of Fig.3.13 (a) due to the similar magnitude of the wavenumber.

While there are many undulations, it can be seen that the waveform travels much more smoothly

along the length of the tail, which is captured by its much higher value of PSF.

Remark 10 The results in Table 3.4 indicate that there is a strong positive correlation between the

value of PSF and the values of [ and [∗. This trend has been observed for other points in the W-De

domain for Case 6, as well as other cases with different modes of sensing and actuation.

Dependence of Propulsive Characteristics on De and Ω

We select three operating points with identical values of De and similar values of Ω6 from three

different cases, namely Case 1, Case 2, and Case 4. The propulsive characteristics of these three

cases are found to be very similar - see Table 3.5. These characteristics, which include the efficiency,

the average nondimensional wavenumber, the value of PSF, and the wavespeed, are particularly

close for Cases 1 and 2, for which the frequencies differ by only 0.4%. The characteristics of Case

4 differ slightly more as its frequency is 4.5% lower than the other two cases. It is observed that

for a constant D4, a lower frequency is associated with higher values of [ and PSF; this agrees

well with the trend illustrated by Points 1 and 2 in Section 3.5. The waveforms for the three cases

6For a fixed value of De, each critical frequency plot degenerates to a line where each point on the line corresponds

to a different value of ΩcA . Through trial and error it is possible to find similar ΩcA values across multiple cases.
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Figure 3.13: Traveling waveforms over one complete cycle, shown at intervals of c/4, for the

three operating points of Case 6 shown in Table 3.4: (a) Point 1, (b) Point 2, and (c) Point 3.

are shown in Fig. 3.14. The waveforms for Cases 1 and 2 are nearly indistinguishable, while the

waveform for Case 4 is slightly different from the other two, which can be attributed to the slightly

different value of the frequency of oscillation.

Remark 11 The data in Table 3.5 are a small set of results which indicate that the nature of a

waveform and its propulsive characteristics depend solely on the values of De and Ω, and are

D

Ω
g
=

0

0 1

Figure 3.14: Traveling waveforms for the three operating points of Case 1 (dotted), Case 2

(dashed), and Case 4 (solid), shown in Table 3.5. The waveforms from Case 1 and 2 exhibit

tremendous overlap while the waveform from Case 4 is slightly separated.
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independent of the modes of actuation and sensing.

Table 3.5: Propulsive characteristics at three operating points of Cases 1, 2, 4 with identical D4
and similar Ω values.

Case De W 2cA Ω = ΩcA [ :̄ PSF (Ω/:̄) [∗

1 6.9 0.30 1.46 152.8 0.720 9.51 0.318 16.073 0.715

2 6.9 0.11 0.11 152.2 0.723 9.47 0.318 16.074 0.715

4 6.9 0.92 1.24 145.7 0.746 9.06 0.324 16.079 0.715

The results observed in this section, that the waveforms are uniquely determined by the values

of De and ΩcA and are independent of the modes of sensing and actuation, can be explained

mathematically as follows. For convenience, we revisit (3.16), (3.11), and (3.13) from Sections 3.2

and 3.3:

E(D, g) =
4∑

==1

�= 4
R4[I=]D 48{I<[I=]D+R4[ΩcA ]g} (3.16 revisited)

I4 + D2eI
2 + 2De

√
V 8ΩI − Ω2 = 0 (3.11 revisited)



1 1 1 1

I214
I1 I224

I2 I234
I3 I244

I4

I314
I1 I324

I2 I334
I3 I344

I4

X1 X2 X3 X4

︸                                   ︷︷                                   ︸
Z



�1

�2

�3

�4



=



0

0

0

0



(3.13 revisited)

The waveform in (3.16) is defined by three terms: ΩcA , I=, and �=, of which ΩcA is the same for the

different cases. From (3.11), we can see that for a fixed value of V, the solutions of I=, = = 1, 2, 3, 4,

are uniquely defined by De and ΩcA and are independent of the modes of sensing and feedback.

As a consequence, the first three rows of Z in (3.13) are solely functions of De and ΩcA . It can be

shown that the first three rows of Z are linearly independent though Z is singular as that is how ΩcA

was solved for. Therefore, the direction of the null space vector (�1, �2, �3, �4)
) is independent
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of the last row of Z and thus independent of the modes of sensing and feedback. Therefore, each

term of the waveform in (3.16) is solely a function of De and ΩcA .

3.6 Conclusion

Beam flutter occurs due to non-conservative loading. Such loading is commonly generated by a

follower force or through interaction of the beam with a fluid, flowing internally or externally. It is

also possible to produce non-conservative loading by applying an actuation, proportional to some

state of the beam, at one of the boundaries. This work provides a generalized description of flutter,

generated using this method, in a pinned-free beam. The actuation can take the form of a moment

or an angle prescribed at the pinned boundary. This actuation is proportional to some state of the

beam (displacement, slope, or curvature) measured at any location along its length. The onset of

flutter is not symmetric about zero gain, meaning that there are twelve potential flutter mechanisms

identified here: two modes of actuation, three modes of sensing, and two signs of the critical gain

for each combination. This opens up a wide range of physical mechanisms, beyond the standard

follower force and fluid-flow mechanisms, that can be used to produce and study flutter, some of

which we intend to realize in future work.

For each combination of actuation and sensing, the critical gain was determined over a range of

external flow velocities and sensing locations along the beam. For a majority of the twelve possible

combinations, stability was lost through flutter; a representative sample of six cases (one for each

combination of actuation and sensing) were investigated. These six cases illustrated a rich set of

stability transitions that depend strongly on the location of sensing and mildly on the external flow

velocity. It was observed that small changes in the location of sensing could result in very different

modes of flutter with large jumps in the critical frequency thereby resulting in significantly different

traveling waveforms.

These traveling waveforms of the flexible beam could be exploited to develop a propulsion

mechanism for underwater vehicles. Because the Euler–Bernoulli beam model is fourth-order

in space, the solution naturally comprises four separate traveling waves. Based on the spatial

derivative of the beam phase, we constructed a metric, “the phase smoothness factor”, which is
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a measure of how closely the four traveling waves can be approximated by a single waveform.

Waveforms which are smoother demonstrate higher propulsive efficiency. The same is observed in

nature, where fish swim with optimized waveforms that are smooth and efficient. Interestingly, the

propulsive characteristics of the beam do not depend on the combination of actuation and sensing

by which flutter is produced; they depend only on the values of the dimensionless fluid velocity

and critical frequency, which completely define the waveform.
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CHAPTER 4

EXPERIMENTAL VALIDATION OF FEEDBACK-INDUCED FLUTTER INSTABILITY

OF A FLEXIBLE BEAM IN FLUID FLOW

In this chapter we aim to present experimental verification of the feedback-induced flutter of a

flexible beam immersed in fluid flow as introduced in Chapter 3. In order to accomplish this, we

procured a beam of suitable flexibility and density and affixed strain gauges to measure the curvature

at a point along its centerline. We then built a setup for applying a moment to the leading edge of

the beam as well as all of the electronics needed for the curvature measurement and torque control.

We designed a Simulink program to implement the feedback control scheme which was run through

the ControlDesk interface. We tested the system at several flow velocities with both positive and

negative feedback gain to determine the critical feedback gain and the critical frequency at which

flutter occurred. To validate the experimental findings, we adapted the moment-proportional-to-

curvature system from Chapter 3 to account for experimental considerations. We then compare

the results of the experiments and numerical simulations which show many similarities to give

confidence to the model used.

The layout of this chapter is organized as follows. The experimental hardware, setup, control

scheme, and procedures are described in Sections 4.1 and 4.2. The experimental results are

presented in Section 4.3 while the methods and results of the numerical model are in Section 4.4.

The results of both are compared in Section 4.5.

4.1 Experimental setup

Equipment

The flexible beam used in this experiment had width F = 0.9 mm, height ℎ = 100 mm, and length

! = 400 mm, and was made of Cirlex® with density db = 1420 kg/m and Young’s modulus

� = 2.7 GPa. Mounted directly opposite to each other along the centerline of either face of

the beam and 100 mm from the leading edge, were two strain gauges of 6 mm length, resistance

' = 120 Ω, and :-factor : = 2.35
∆'/'0

n - see Fig.4.1. Each strain gauge was bonded to the
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surface of the beam using Gorilla® superglue, soldered to lead wires, and all exposed electrical

components were covered in several layers of clear nail polish to prevent infiltration of the fluid.

Figure 4.1: CAD model of experimental setup on the aluminum plate. Shown are the flexible

beam with attached strain gauge which is clamped by the rotating shaft. The shaft is actuated by

the motor through the coupler with the encoder measuring the rotation.

From each strain gauge, the pair of lead wires travelled along the face of the beam and up the

rotating shaft to form half of Wheatstone Bridge - see Fig.4.2. This configuration is standard for

measuring the curvature a beam while rejecting the normal strain and temperature fluctuations of the

beam and strain gauges. The voltage across the Wheatstone bridge was filtered and amplified by an

Omega® DMD4059 Bridge/Strain Gage Signal Conditioner powered by a 108 V DC signal1. The

excitement voltage was +4G28C4 = 1 V and the amplification was (0<? = 1000 mV / 30 mV. The

amplified signal was passed to a dSPACE® DS1103 PPC Controller Board (hereafter dSPACE®

board) which processed it as described in Section 4.1. The resultant torque command was sent to

1Powering the DMD4059 using the built-in 120 V AC power adapter caused an overpowering 60 Hz signal to

dominate the strain gauge measurement.
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Figure 4.2: Experimental setup: (a) Omega® DMD4059 Bridge/Strain Gage Signal Conditioner;

(b) Advanced Motion Controls® 12A8 PWM servo drive; (c) dSPACE® DS1103 PPC Controller

Board; (d) DC power supplies; (e) Plexiglass plates; (f) Wheatstone bridge; (g) Faulhaber®

3863H024 CR graphite commutation brushed DC motor; (h) Dynapar® E2320000541 quadrature

encoder; (i) Clamping shaft; (j) Strain gauge (2x); (k) Flexible beam; (m) Grasshopper3

GS3-U3-28S4M camera.

an Advanced Motion Controls® 12A8 PWM servo drive. This motor driver was powered by a 24

V DC power supply which amplified the signal by "0<? = 1 A/V and applied a bi-directional

PWM voltage to the Faulhaber® 3863H024 CR graphite commutation brushed DC motor with

torque constant g< = 0.0398 N.m/A. This motor was connected by a custom-built shaft coupler to

the 6.35 mm aluminum rod which had been split down the middle to clamp the leading edge of the

beam. The rotation of the shaft was measured by a Dynapar® E2320000541 quadrature encoder

(2000 ticks/rev) which was read by the dSPACE® board. The motor and encoder were mounted to

the upper face of a 4.76 mm × 100 mm × 400 mm aluminum plate with the flexible beam held by

the aluminum shaft below.
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Testing Facility

The plate was placed in the Turbulent Mixing and Unsteady Aerodynamics Laboratories (TMUAL)

Large Water Tunnel Facility shown in Fig.4.3, marginally above the water level so as not to submerge

the electronics but fully submerge the beam. The plate was secured to large suspended plexiglass

plates that spanned the width of the tunnel, directly on the surface of the water. The water tunnel had

dimensions width = 61 cm, height = 61 cm, and length = 244 cm, and could sustain a steady flow

rate of 30 cm/s that has been shown to be very well conditioned. This flow velocity was controlled

using a LabviewTM application. The beam was placed as centrally as possible along the width

and length of the water tunnel to reduce the boundary layer effects of the tunnel walls. Below the

water tunnel was a Grasshopper3TM GS3-U3-28S4M camera from Point Grey Research® which

was used to record the videos and ensure consistent alignment of the beam.

Figure 4.3: CAD model of the Turbulent Mixing and Unsteady Aerodynamics Laboratories

(TMUAL) Large Water Tunnel Facility with a cross-section of 61 cm × 61 cm and a usable length

of 244 cm. Located below the test section of the water tunnel is the camera used to record the

Trials.
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Control Scheme and Interface

Figure 4.4: Simulink Model used to control the feedback on the dSPACE® board using the

dSPACE® ControlDeskTM application interface. Shown are the encoder blocks, logic, and

outputs (dashed line); the curvature-torque feedback loop including the dSPACE® blocks, the

feedback gain, filters, and outputs (dot-dashed line); a cut-off function for stopping the system

from damaging itself due to large deformation or torque input; and a PID program to return the

system to the home orientation (dotted line).

To implement the feedback control scheme, a SimulinkTM model, shown in Fig.4.4, was de-

signed to be run on the dSPACE® board using the dSPACE® ControlDeskTM application interface

- see Fig.4.5. The amplified curvature voltage+0 was read by the dSPACE® ADC block which was

converted to the curvature using (4.1), a function of the beam width (F), the strain gauge :-factor

(:), the Wheatstone bridge configuration (the factor of 4), and the Omega® Signal Conditioner

(+4G28C4 and (0<?) parameters – see Section 4.1.

Curvature = +0
4

+4G28C4 : F (0<?
(4.1)

This curvature reading went through a high-pass filter (4.2) with time constant g = 1.5915, which

corresponds to corner frequency 52 = 1
2cg = 0.1 Hz. This value was intentionally chosen to be

quite slow so as to less affect the flutter instability dynamics.

+ 5 (B) = Curvature(B)
gB

1 + gB
(4.2)
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The curvature measurement was then multiplied by the desired feedback gain factor – see Section

4.2. Following this, to account for subsequent amplification and motor parameters, the signal was

divided by the motor driver amplification"0<? and the motor torque constant g< . This voltage was

then transmitted to the Advanced Motion Controls® 12A8 PWM servo drive with the dSPACE®

DAC block.

The values transmitted by the Dynapar® encoder were read in by the dSPACE® encoder block

as raw tick values. These were converted to radians and radians/sec given the 2000 ticks/rev of

the encoder, the 16 : 20 gear ratio of the motor sprocket to the encoder sprocket, and the 1000 Hz

frequency of the dSPACE® board real-time operating system. Together, the commanded torque

and the maximum angular displacement were used as triggers to prescribe the maximum conditions

that the shaft could experience before the system would automatically cut off the torque so as to

prevent damage. Finally, a simple PID controller block was included to return the beam to its

starting orientation between Trials.

To interact with the feedback controller, the Simulink model was imported into the dSPACE®

ControlDeskTM application interface - see Fig.4.5. This enabled the experimenter to view the

curvature, encoder, and commanded torque values as well as to increment the feedback gain. For

each Trial, the application would record the data at the 1000 Hz polling rate of the real-time

operating system and then export that data to MATLAB® for further analysis. Additionally, the

experimenter could set the home position and command the system to return to it between Trials.
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Figure 4.5: ControlDesk application interface used for interacting with the dSPACE® board. (a)

Controls for beginning and ending the data recording. (b) Commanded torque. (c) Raw curvature

(red) and high-pass filtered curvature (green). (d) Encoder position (red) and velocity (green). (e)

Controls for PID loop to return to home position. (f) Feedback gain interface. (g) Commanded

torque (blue) and cutoff trigger statuses (red, green, yellow).

4.2 Experimental Methods

Experimental Procedure

For the initial setup, the beam was aligned with the direction of flow of the water tunnel using the

viewport at the back of the water tunnel. The stress was removed from the strain gauge wire lead so

that it would not act as a spring by applying a restoring force to the shaft or beam about the default

position. The aluminum plate was then clamped down to the plexiglass plates of the water tunnel

to prevent movement of the motor relative to the initial position. The ControlDeskTM program was

then started at this point so as to set this orientation to the zero point.
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The procedure for each Trial was as follows. The ControlDeskTM program was initialized

and after waiting for the high-pass filter to remove the DC component of the strain readings, the

measurement and video recording were begun. The gain was then slowly increased/decreased from

� = 0 in increments of ±0.01 until the onset of flutter instability was observed. The torque control

was then cancelled, either by the operator or automatically by the program, and then the beam

was commanded back to the original orientation. After this, the ControlDeskTM program was

re-initialized and the process was repeated for the next Trial.

Six Trials at different flow velocities and positive/negative gain were conducted - see Table 4.1.

An additional Trial was conducted at a higher flow velocity without any feedback gain to ascertain

that the system did not develop flutter when subject to fluid flow alone.

Table 4.1: Trial scheme for experiments.

Trial # Flow Velocity (cm/s) Gain Sign

1 0 +

2 0 -

3 10 +

4 10 -

5 20 +

6 20 -

7 30 N/A

Numerical methods

To analyze the data in MATLAB®, several tools were used and are briefly described here. A

bidirectional (two-pass) first-order low-pass filter2 was applied to the high-pass-filtered curvature

data to make the results smoother and allow the behavior to be more easily discerned. Additionally,

for the Fast-Fourier Transform (FFT) results of the low frequency flutter, the weighted average

of the three points nearest to the peak was taken as the flutter frequency to account for the very

low resolution at such low frequencies. Finally, the built-in MATLAB® spectrogram function was

utilized over the entirety of each Trial data, specifying the window to be ≈ 2 periods of the flutter

2Using the discrete low-pass filter equation -= = (1 − f)-=−1 + f-=4F , with f = 0.25.
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frequency, but leaving the other arguments3 as default. The results of the spectrogram were used to

determine the magnitude of the frequency of maximum amplitude in each window. It is important

to note that this amplitude does not correspond directly to the amplitude of oscillation seen from

the data directly unless there was only a single frequency present.

4.3 Results

Trial #1 Results

For this Trial, the flow velocity was*4 = 0 cm/s and the feedback gain was incremented by +0.01.

Increasing the feedback gain to� = 0.15 over the first 54.511 s resulted in no discernible oscillatory

behavior that can be seen from the high-pass-filtered curvature data in Fig.4.6. Derived from the

spectrogram of the curvature data (described in Section 4.2), the amplitude of the highest-amplitude

(peak) frequency shown in Fig.4.7 for this period is on the order of ≈ 10−6 m−1. Upon increasing

the feedback gain to � = 0.16 at C = 54.511 s, there begins to be a noticeable increase in the

amplitude of the response which continues to grow as the feedback gain is further increased. For

the period of � = 0.22 from C = 114.838 s to C = 166.854 s, the system sustains a very slight

but consistent oscillation as seen in Fig.4.6. The oscillation during this period has an amplitude

of peak-frequency on the order of ≈ 10−3 m−1 with a frequency of l2A = 0.3014 Hz as derived

from the FFT procedure outlined in Section 4.2. This minimal but steady oscillatory behavior is

evocative of that of a limit cycle, a nonlinear phenomenon in which system loses stability through

flutter, but the magnitude of oscillation is held in check by the non-linear effects of the sensing and

actuation system as well as the damping effects of the surrounding fluid.

Upon raising the feedback gain to � = 0.23 at C = 166.854 s, the system gradually began

oscillating with increasingly greater amplitude (see Fig.4.6) until the cut-off trigger was activated

at C = 193.547 and stopped the input torque. Over the course of these 26.7 s, the amplitude of

the peak-frequency oscillation grew by two orders of magnitude (see Fig.4.7), clearly signifying

that the system had lost stability through flutter. During this period, the frequency of oscillation

3nooverlap: samples of overlap between adjoining segments; and nfft: sampling points to calculate the discrete

Fourier transform [https://www.mathworks.com/help/signal/ref/spectrogram.html]

64



0 20 40 60 80 100 120 140 160 180 200

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
u
rv

a
tu

re
 (

m
-1

)

C
 =

 0
.1

1

C
 =

 0
.1

6

C
 =

 0
.2

0

C
 =

 0
.2

3

Figure 4.6: Curvature measurements for the full Trial of beam in 0 cm/s flow with positive

feedback gain, that has been two-pass filtered - see Section 4.2. The solid vertical lines

correspond to when the feedback gain was increased by 0.01. Prior to increasing the feedback

gain to � = 0.16 at C = 54.511 s, there is no discernible oscillatory behavior, but increasing the

feedback gain to � = 0.16 causes the system to show a small but marked oscillatory behavior

with a frequency of l2A = 0.3014 Hz. Upon raising the feedback gain to � = 0.23 at C = 166.854
s, the system gradually began oscillating with increasingly greater amplitude at a frequency of

l2A = 0.426 Hz. The dashed vertical line denotes where the cut-off trigger was activated at

C = 193.547 s.

l2A = 0.426 Hz was greater than the previous, much smaller oscillations.
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Figure 4.7: Amplitude of the peak frequency for the full Trial of beam in 0 cm/s flow with

positive feedback gain taken from a spectrogram with a window of 4.0 s (approximately 2 cycles),

presented on a logarithmic scale. The solid vertical lines correspond to when the feedback gain

was increased by 0.01 while the dashed vertical line denotes where the cut-off trigger was

activated at C = 193.547 s. Prior to increasing the feedback gain to � = 0.16 at C = 54.511 s, the

magnitude of the peak frequency was on the order of ≈ 10−6 m−1, but increasing the feedback

gain to � = 0.16 and beyond causes the magnitude of the peak frequency to increase by several

orders of magnitude with increasing feedback gain. This behavior continues slowly until the

feedback gain is set to � = 0.23 at C = 166.854 s at which point the magnitude increases much

more rapidly until the cut-off trigger stops the Trial.

Trial #2 Results

For this Trial, the flow velocity was*4 = 0 cm/s and the feedback gain was incremented by −0.01.

Similarly to Trial 1, decreasing the feedback gain to � = −0.25 over the first 74.649 s resulted

in no discernible oscillatory behavior that can be seen from the high-pass-filtered curvature data

in Fig.4.8. The amplitude of peak frequency for this period, shown in Fig.4.9, is on the order

of ≈ 10−7 m−1 which is on the order of system noise. After decreasing the feedback gain to
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Figure 4.8: Curvature measurements for the full Trial of beam in 0 cm/s flow with negative

feedback gain, that has been two-pass filtered - see Section 4.2. The solid vertical lines

correspond to when the feedback gain was decreased by 0.01. Prior to decreasing the feedback

gain to � = −0.26 at C = 74.649 s, there is no discernible oscillatory behavior, but decreasing the

feedback gain to � = −0.26 causes the system to show a small but marked oscillatory behavior

with a distinct frequency of l2A = 4.786 Hz. Upon lowering the feedback gain to � = −0.30 at

C = 104.737 s, the system gradually began oscillating with increasingly greater amplitude at a

frequency of l2A = 4.719 Hz. This limit cycle behavior remained steady until the Trial was

manually ended at C = 126.934 s, denoted by the dashed vertical line.

� = −0.26 at C = 74.649 s, there is a noticeable jump of one order of magnitude in the amplitude

of the response in Fig.4.9 (though indiscernible to one viewing the beam in person), which then

continues to grow slowly as the feedback gain is further decreased to � = −0.29. For the period

of � = −0.25 through � = −0.29 from C = 74.649 s to C = 104.737 s, while the oscillation has

an amplitude of peak-frequency on the order of ≈ 10−6 m−1, it has a very distinct frequency of

l2A = 4.786 Hz as derived from the FFT procedure outlined in Section 4.2. This minuscule but

steady oscillatory behavior is again akin to that of a limit cycle or of a system operating at marginal
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Figure 4.9: Amplitude of the peak frequency for the full Trial of beam in 0 cm/s flow with

negative feedback gain taken from a spectrogram with a window of 0.4 s (approximately 2 cycles),

presented on a logarithmic scale. The solid vertical lines correspond to when the feedback gain

was decreased by 0.01 while the dashed vertical line denotes where the Trial was manually ended

at C = 126.934 s. Prior to decreasing the feedback gain to � = −0.26 at C = 74.649 s, the

magnitude of the peak frequency was consistently on the order of ≈ 10−7 m−1. Decreasing the

feedback gain to � = −0.26 causes a noticeable jump of one order of magnitude in the amplitude

of the response after which the magnitude slowly increases with decreasing feedback gain. When

the feedback gain is set to � = −0.30 at C = 104.737 s, the magnitude increases much more

rapidly to the order of ≈ 10−2 m−1 where upon it remains fairly constant until the Trial is ended

manually at C = 126.934 s.

stability.

Upon lowering the feedback gain to � = −0.30 at C = 104.737 s, the system gradually began

oscillating with increasingly greater amplitude (see Fig.4.8), taking approximately 15.1 s (≈ 70

oscillations) to reach the maximum amplitude of ≈ 10−2 m−1. It then held this amplitude of

oscillation fairly steady in the manner of a limit cycle until the Trial was manually ended at
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C = 126.934 s. For this period, the oscillation has a very distinct frequency of l2A = 4.719 Hz

which was insignificantly lower than that of the previous period of extremely small oscillation. The

FFT also reports very noticeable higher harmonics of the critical frequency.

Trial #3 Results
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Figure 4.10: Curvature measurements for the full Trial of beam in 10 cm/s flow with positive

feedback gain, that has been two-pass filtered - see Section 4.2. The solid vertical lines correspond

to when the feedback gain was increased by 0.01. Prior to increasing the feedback gain to

� = 0.22 at C = 32.327 s, there is no discernible oscillatory behavior, but increasing the feedback

gain to � = 0.22 causes the system to show a small but marked oscillatory behavior with a

frequency of l2A = 0.330 Hz. � = 0.29 at C = 97.793, the system very quickly lost stability

through flutter before being stopped by the cut-off trigger at C = 100.639 s (dashed vertical line).

For this Trial, the flow velocity was *4 = 10 cm/s and the feedback gain was incremented

by +0.01. The feedback gain was quickly increased to � = 0.15 as it was known that the flutter

behavior would not manifest at such a low feedback gain, after which it was increased more slowly.
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Figure 4.11: Amplitude of the peak frequency for the full Trial of beam in 10 cm/s flow with

positive feedback gain taken from a spectrogram with a window of 4.0 s (approximately 2 cycles),

presented on a logarithmic scale. The solid vertical lines correspond to when the feedback gain

was increased by 0.01 while the dashed vertical line denotes where the cut-off trigger was

activated at C = 100.639 s. Prior to increasing the feedback gain to � = 0.22 at C = 32.327 s, the

magnitude of the peak frequency was on the order of ≈ 10−6 m−1, but increasing the feedback

gain to � = 0.22 and beyond causes the magnitude of the peak frequency to increase by several

orders of magnitude with increasing feedback gain. This behavior continues slowly until the

feedback gain is set to � = 0.29 at C = 97.793 s at which point the magnitude increases very

rapidly until the cut-off trigger stops the Trial.

Similar to the previous two Trials, increasing the feedback gain to � = 0.21 over the first 32.327 s

resulted in no discernible oscillatory behavior that can be seen from the high-pass-filtered curvature

data in Fig.4.10. The amplitude of peak frequency shown in Fig.4.11 for this period is on the order

of ≈ 10−6 m−1. Upon increasing the feedback gain to � = 0.22 at C = 32.327 s, there begins to

be a noticeable increase in the amplitude of the response which continues to grow as the feedback

gain is further increased. Imperfections of the experimental setup cause the curvature data to
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have non-perfect sinusoidal measurements. For the period of � = 0.25 through � = 0.27 from

C = 45.019 s to C = 87.401 s, the system sustains a very slight but consistent oscillation as seen

in Fig.4.10. The oscillation during this period has an amplitude of peak-frequency on the order of

≈ 10−4 m−1 with a frequency of l2A = 0.330 Hz.

Upon raising the feedback gain to � = 0.29 at C = 97.793 s, the system very quickly lost

stability through flutter - see Fig.4.10. The increase in amplitude was very sharp and rapidly

triggered the torque cut-off at C = 100.639 s. Given the windowing of the spectrogram and the

short time in which the sytem activated the cut-off trigger, the last point of the amplitude of peak

frequency plot in Fig.4.11 is based in large part on the data from before the final increase in the

feedback gain to � = 0.29 at C = 97.793 s. While there were not sufficient oscillations to apply

the FFT method to the region of flutter, by measuring the half-period from the first peak to the first

trough, the frequency can be approximated to be l2A ≈ 0.458 Hz, again significantly higher that

than of the oscillations of the region before.

Trial #4 Results

For this Trial, the flow velocity was *4 = 10 cm/s and the feedback gain was incremented by

−0.01. Overall, the behavior of the system is very similar to that of Trial 2 which had no flow and

negative feedback gain. Decreasing the feedback gain to � = −0.27 over the first 56.318 s resulted

in no discernible oscillatory behavior that can be seen from the high-pass-filtered curvature data in

Fig.4.12. The amplitude of the peak frequency shown in Fig.4.13 for this period is on the order of

≈ 10−7 m−1. Upon decreasing the feedback gain to � = −0.28 at C = 56.318 s, there begins to be

a noticeable increase in the amplitude of the response which continues to grow by about two orders

of magnitude as the feedback gain is further decreased to� = −0.30. For this period of� = −0.28

through � = −0.30 from C = 56.318 s to C = 96.823 s, while the oscillation grows to an amplitude

of peak-frequency on the order of ≈ 10−5 m−1, it has a very distinct frequency of l2A = 4.814 Hz

as derived from the FFT procedure outlined in Section 4.2.

Upon lowering the feedback gain to � = −0.31 at C = 96.823 s, the system gradually began
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Figure 4.12: Curvature measurements for the full Trial of beam in 10 cm/s flow with negative

feedback gain, that has been two-pass filtered - see Section 4.2. The solid vertical lines

correspond to when the feedback gain was decreased by 0.01. Prior to decreasing the feedback

gain to � = −0.28 at C = 56.318 s, there is no discernible oscillatory behavior, but decreasing the

feedback gain to � = −0.28 causes the system to show a small but marked oscillatory behavior

with a distinct frequency of l2A = 4.814 Hz. Upon lowering the feedback gain to � = −0.31 at

C = 96.823 s, the system gradually began oscillating with increasingly greater amplitude at a

frequency of l2A = 4.741 Hz. This limit cycle behavior remained steady until the Trial was

manually ended at C = 118.549 s, denoted by the dashed vertical line.

oscillating with increasingly greater amplitude (see Fig.4.12), taking approximately 5.5 s (approx-

imately 25 oscillations) to reach the maximum amplitude on the order of ≈ 10−2 m−1. It then

holds this amplitude of oscillation fairly steady in the manner of a limit cycle until the Trial was

manually ended at C = 118.549 s. For this period, the oscillation has a very distinct frequency

of l2A = 4.741 Hz which was insignificantly lower than that of the previous period of extremely

small oscillation. The FFT also reports very noticeable higher harmonics of the critical frequency.
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Figure 4.13: Amplitude of the peak frequency for the full Trial of beam in 10 cm/s flow with

negative feedback gain taken from a spectrogram with a window of 0.4 s (approximately 2 cycles),

presented on a logarithmic scale. The solid vertical lines correspond to when the feedback gain

was decreased by 0.01 while the dashed vertical line denotes where the Trial was manually ended

at C = 118.549 s. Prior to decreasing the feedback gain to � = −0.28 at C = 56.318 s, the

magnitude of the peak frequency was consistently on the order of ≈ 10−7 m−1. Decreasing the

feedback gain to � = −0.28 and further causes a noticeable increases in the amplitude of the peak

frequency with decreasing feedback gain. When the feedback gain is set to � = −0.31 at

C = 96.823 s, the magnitude gradually increases to the order of ≈ 10−2 m−1 where upon it

remains fairly constant until the Trial is ended manually at C = 118.549 s.

Trial #5 Results

For this Trial, the flow velocity was*4 = 20 cm/s and the feedback gain was incremented by+0.01.

Increasing the feedback gain to� = 0.22 over the first 60.887 s resulted in no discernible oscillatory

behavior that can be seen from the high-pass-filtered curvature data in Fig.4.14. Derived from the

spectrogram of the curvature data (described in Section 4.2), the amplitude of peak frequency

shown in Fig.4.15 for this period is on the order of ≈ 10−6 m−1. Upon increasing the feedback gain
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Figure 4.14: Curvature measurements for the full Trial of beam in 20 cm/s flow with positive

feedback gain, that has been two-pass filtered - see Section 4.2. The solid vertical lines

correspond to when the feedback gain was increased by 0.01. Prior to increasing the feedback

gain to � = 0.23 at C = 60.887 s, there is no discernible oscillatory behavior, but increasing the

feedback gain to � = 0.23 causes the system to show a small but marked oscillatory behavior

with a frequency of l2A = 0.385 Hz. Upon raising the feedback gain to � = 0.37 at C = 196.946
s, the system gradually began oscillating with increasingly greater amplitude at a frequency of

l2A = 0.426 Hz. This limit cycle behavior remained steady until the Trial was manually ended at

C = 196.936 s, denoted by the dashed vertical line.

to � = 0.23 at C = 60.887 s, there begins to be a sporadic but noticeable increase of approximately

one order of magnitude in the amplitude of the response which continues to grow slowly as the

feedback gain is further increased. For the period of � = 0.25 through � = 0.36 from C = 98.135

s to C = 196.936 s, the system sustains a very slight but consistent oscillation as seen in Fig.4.14.

The oscillation during this period has an amplitude of peak-frequency on the order of ≈ 10−5 m−1

with a frequency of l2A ≈ 0.385 Hz though unlike the other FFT data sets, the peak frequency is

not a clear single frequency.
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Figure 4.15: Amplitude of the peak frequency for the full Trial of beam in 20 cm/s flow with

positive feedback gain taken from a spectrogram with a window of 4.0 s (approximately 2 cycles),

presented on a logarithmic scale. The solid vertical lines correspond to when the feedback gain

was increased by 0.01 while the dashed vertical line denotes where the cut-off trigger was

activated at C = 196.936 s. Prior to increasing the feedback gain to � = 0.23 at C = 60.887 s, the

magnitude of the peak frequency was on the order of ≈ 10−6 m−1, but increasing the feedback

gain to � = 0.23 and beyond causes the magnitude of the peak frequency to increase in a very

inconsistent manner by an order of magnitude with increasing feedback gain. When the feedback

gain is set to � = 0.37 at C = 196.946 s, the magnitude gradually increases to the order of ≈ 10−1

m−1 where upon it remains constant until the Trial is ended manually at C = 233.120 s.

Upon raising the feedback gain to � = 0.37 at C = 196.946 s, the system very quickly lost

stability through flutter - see Fig.4.14. The increase in amplitude was of four orders of magnitude

(≈ 10−5 m−1 to ≈ 10−1 m−1) and occurred in a little over 5 seconds (2.5 cycles of oscillation).

Unlike the previous two Trials with positive feedback gain which triggered the safety cut-off due to

their increasingly larger oscillations, the system for this Trial entered a large limit cycle oscillation

which continued until the system was manually turned off at C = 233.120 s. During this period,
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the beam oscillated with a frequency of 0.577 Hz which is significantly higher than the period

preceding the final increase in feedback gain. This frequency is also higher than that of the large

flutter of the previous two Trials with positive feedback gain, Trials 1 and 3.

Trial #6 Results
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Figure 4.16: Curvature measurements for the full Trial of beam in 20 cm/s flow with negative

feedback gain, that has been two-pass filtered - see Section 4.2. The solid vertical lines

correspond to when the feedback gain was decreased by 0.01. Prior to decreasing the feedback

gain to � = −0.29 at C = 55.017 s, there is no discernible oscillatory behavior, but decreasing the

feedback gain to � = −0.26 causes the system to show a small but marked oscillatory behavior

with a distinct frequency of l2A = 4.786 Hz. Upon lowering the feedback gain to � = −0.35 at

C = 115.443 s, the system gradually began oscillating with increasingly greater amplitude at a

frequency of l2A = 4.719 Hz. This limit cycle behavior remained steady until the Trial was

manually ended at C = 126.934 s, denoted by the dashed vertical line.

For this Trial, the flow velocity was *4 = 20 cm/s and the feedback gain was incremented
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Figure 4.17: Amplitude of the peak frequency for the full Trial of beam in 20 cm/s flow with

negative feedback gain taken from a spectrogram with a window of 0.4 s (approximately 2 cycles),

presented on a logarithmic scale. The solid vertical lines correspond to when the feedback gain

was decreased by 0.01 while the dashed vertical line denotes where the Trial was manually ended

at C = 126.934 s. Prior to decreasing the feedback gain to � = −0.29 at C = 55.017 s, the

magnitude of the peak frequency was consistently on the order of ≈ 10−7 m−1. Decreasing the

feedback gain to � = −0.29 causes a very slight increase in the magnitude of oscillation to

≈ 10−6 m−1 which was maintained with decreasing feedback gain. When the feedback gain is set

to � = −0.35 at C = 115.443 s, the magnitude increases much more rapidly to the order of ≈ 10−2

m−1 where upon it remains fairly constant until the Trial is ended manually at C = 136.961 s.

by −0.01. Overall, the behavior of the system is similar to that of Trials 2 and 4 which had no

or slower flow and negative feedback gain but there are distinct difference. As with the previous

Trials, the initial decreasing of the feedback gain produced no discernible effect visible on the

curvature data shown in Fig.4.16 and as further evinced by the magnitude of oscillation of the peak

frequency (≈ 10−7 m−1) shown in Fig.4.17. At C = 55.017 s the feedback gain was decreased

to � = −0.29 which caused a very slight increase in the magnitude of oscillation to ≈ 10−6 m−1
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which was maintained until the feedback gain was decreased to � = −0.35 at C = 115.443 s.

This slight increase prior to � = −0.35 was significantly less apparent than that of the previous

Trials. Fig.4.16 shows that, unlike all previous Trials, the magnitude of oscillation did not begin

increasing immediately upon the final increment of feedback gain, but continued to maintain the

same magnitude until 4.1 s later when it suddenly had a significantly larger oscillation. This

magnitude of oscillation was maintained for 0.7 s after which it began increasing by several orders

of magnitude as can be seen in both Fig.4.16 and Fig.4.17. The beam then fluttered at a relatively

steady but slightly varying amplitude until the Trial was manually ended at C = 136.961 s. During

this period of the large limit cycle behavior, the system oscillated with a very distinct frequency of

4.932 Hz.

Trial #7 Results

The system in 30 cm/s flow and with no feedback did not exhibit any oscillatory behavior beyond

what could be considered noise as can be seen in Fig.4.18. For the duration of this Trial, there was

no distinct frequency of oscillation and the magnitude of curvature measurement was significantly

smaller than even those of the small oscillatory periods of the previous Trials. This supports the

claim that the flutter induced in the system was due entirely to the feedback rather than the fluid

flow.
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Figure 4.18: Curvature measurements for the full Trial of beam in 30 cm/s flow without feedback

gain, that has been two-pass filtered - see Section 4.2.

General Trends and Conclusions

Table 4.2: Summary of results for all of the Trials. Values in parentheses denote low precision

values not taken from a distinct peak of the FFT figures.

Trial #
Flow

Velocity (cm/s)

Gain

Sign

Critical

Gain

Critical

Frequency (Hz)

Minor Oscillatory

Frequency (Hz)

1 0 + 0.23 0.426 0.301

2 0 - -0.30 4.719 4.810

3 10 + 0.29 (0.458) 0.331

4 10 - -0.31 4.741 4.778

5 20 + 0.37 0.577 0.390

6 20 - -0.35 4.932 (4.807)

7 30 N/A - - -

There are a few interesting observations that can be taken from the results of the different Trials

which are summarized in Table 4.2. The simplest is that the positive feedback gain Trials 1, 3,
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and 5 are much more similar to each other than to the negative feedback gain Trials 2, 4, and 6,

with respect to the frequency of flutter (≈ 0.5 Hz vs. ≈ 5 Hz) as well as the minor oscillation

frequency before the larger flutter behavior (≈ 0.35 Hz vs. ≈ 5 Hz). This is despite the differences

in flow velocity. Of interest is that the minor oscillation frequency before the large flutter behavior

for the positive feedback gain Trials was significantly smaller than that of the frequency of flutter

oscillations, while there was no distinct difference between the minor oscillation and larger flutter

frequencies for the negative feedback gain Trials. For both cases, it is seen how the magnitude

of the critical gain increased with flow velocity with both cases increasing at a greater than linear

rate but with the positive feedback gain Trials increasing at a much greater rate than the negative

feedback gain Trials.

4.4 Numerical simulation

To verify that the theory used in Chapter 3 is consistent with the experimental results presented

in Section 4.3, we use the parameters of the experimental beam in the model. In order to do this we

first determine the non-dimensionalized values of the beam parameters, fluid flow, feedback gain,

and flutter frequencies to input into the model. As the analysis will be done non-dimensionally, these

values will also be used to re-dimensionalize the results attained. Additionally, we consider some

extensions to the model that can help it better represent the experimental system. Using the process

of extending the frequency loci from a specific flow velocity for a given curvature measurement

location (see Section 3.3, particularly Figs.3.5 and 3.9), we shall determine the critical gain and

critical frequency at which the model predicts the system loses stability. We shall then summarize

the numerical results and compare them to those gathered from the experiment.

Non-Dimensional Terms/Scaling

Referring to Section 3.1, the non-dimensional values needed for the equation of motion (3.4) and

the moment based on curvature boundary condition (3.6a) are
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V =
<e

<e + <b
, W =

Ĝ

!
, De = *e!

√
<e

��
, g = C

√
��

(<e + <b)!4
, 2m,2 =

�m,2

��

Using the values given in Section 4.1, we determine the following values or ratios:

V = 0.984, W = 0.25,
De

*e
= 8.21,

g

C
= 0.317,

2m,2

�m,2
= 57.2

Model Adjustments needed for Time Delay

Referring again to Section 3.1, the model, assuming perfect and instantaneous curvature measure-

ment and torque actuation, does not account for several aspects of the physical realization of the

experiment. Particularly, the model does not account for the inertia of the shaft complex (motor,

coupler, and shaft) which transmits the moment to the leading edge of the beam, nor the time delays

inherent in acquiring, processing, and applying the moment to the beam.

H

G

�

\0 =
mH0
mG

M

Figure 4.19: A flexible beam, connected at one end to a fixed point by a revolute joint and free at

the other end, is immersed in a fluid flowing with constant velocity*e.

In Fig.4.19 we show the actuated momentM which rotates the shaft complex (rotational inertia

�) which in turn applies the moment to the leading edge of the beam. This actuated moment is

proportional to the curvature measurement at Ĝ that has been delayed by a factor C0. Summing the

applied moment, the reaction moment of the beam (defined in Section 3.1), and rotational inertia

of the shaft complex about the origin, we get the following equation:
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M(�m,2, Ĝ, C0) − ��
m2H(0, C)

mG2
= � ¥\0 → ��

m2H(0, C)

mG2
+ �

m3H(0, C)

mGmC2
= �m,2

m2H(Ĝ, C − C0)
mG2

(4.3)

This equation is similar to that of (3.3a) but incorporates the shaft complex inertia and time delay.

Following the same process as in Section 3.1, we non-dimensionalize (4.3) to get

m2E(0, g)

mD2
+ _

m3E(0, g)

mDmg2
= 2m,2

m2E(W, g − g0)
mD2

(4.4)

where _ is the non-dimensional inertia of the shaft complex and g0 is the non-dimensional time

delay between the instantaneous curvature of the beam at W and the proportional moment being

applied to the leading edge of the beam. These terms are non-dimensionalized from the dimensional

terms by

_ =
�

(<4 + <1)!2
, g0 = C0

√
��

(<e + <b)!4

For � = 1.349×10−5 we get_ = 1.128×10−5 while the ratio of the non-dimensional to dimensional

time delay was g0/C0 = 0.3173, which corresponds to the same ratio as that in Section 4.4. While

the curvature sensing to torque command process was shown to occur in the duration of a single

control loop i.e. 1 ms, the flexibility of the shaft complex caused a noticeable lag between when

the torque was commanded and actually applied to the leading edge of the beam. Evaluating an

open-loop frequency sweep showed that the time delay could range from a minimum of 3 ms to

as great as 50 ms depending on the amplitude of the oscillation which was itself a function of the

frequency i.e. resonance. Through trial and error of the simulation model, the time delay for the

positive feedback gain Trials was taken as C0 = 0 ms while the time delay for the negative feedback

gain Trials was taken as C0 = 30 ms. This difference is possibly due to the higher frequency of

oscillation of the negative feedback gain Trials causing the flexion of the shaft complex to have a

relatively greater impact on the response behavior.
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Continuing with the solution process laid out in Section 3.2, using the assumed form of the

solution (3.7) i.e. E(D, g) = 5 (D)48Ωg, we get the following form for the boundary condition. This

equation now explicitly includes the frequency unlike (3.10b)

5 ′′(0) − _Ω2 5 ′(0) = 2m,2 5
′′(W)4−8Ωg0 (4.5)

Substitution of the assumed form of the solution of 5 (D) (see (3.12) in Section 3.2) into (4.5) gives

the following equation



1 1 1 1

I214
I1 I224

I2 I234
I3 I244

I4

I314
I1 I324

I2 I334
I3 I344

I4

X1 X2 X3 X4

︸                                   ︷︷                                   ︸
Z



�1

�2

�3

�4



=



0

0

0

0



(4.6)

where the I= terms are the the roots of the characteristic equation of motion (3.11) and the X=,

= = 1, 2, 3, 4, are defined as follows

X= , I
2
= − 2m,2 I

2
=4
I=W−8Ωg0 − _Ω2I=

Non-trivial solutions of (4.6), i.e. complex frequencies Ω8, 8 = 1, 2, · · ·, can be obtained by

numerically solving the transcendental equation det (Z) = 0 given specific parameter values and

feedback gain.

Numerical Results

The Argand diagrams of the simulation results are shown in Fig.4.20 for the positive feedback gain

and Fig.4.21 for the negative feedback gain. The units along both axes have been converted to

dimensional Hz as described in Section 4.4. Each figure shows the loci of the first four modes

for a series of configurations with the regions of frequency between the modes removed so as to

better be able to discern the behavior of the system. One set of loci corresponds to increasing the
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Figure 4.20: Argand diagram of the first four modes for the simulation of the positive feedback

gain Trials with time delay of C0 = 0.00 s. The x-axis has units of dimensional Hz with each of

the four modes of interest shown in focus with the empty frequency ranges between them

removed. We can see that the system loses stability in the first mode at each flow velocity: *4 = 1
and 10 cm/s resulting in flutter at 0.27 Hz and 0.225 Hz, respectively, while*4 = 20 cm/s results

in divergence at the origin. The loci of the other modes do not approach the Re[Ω] axis nearly as

quickly as the feedback gain is increased.

flow rate from *4 = 0 cm/s to *4 = 30 cm/s with zero feedback gain, while the other three sets

of loci correspond to increasing/decreasing the feedback gain while keeping the flow rate constant

at the three values4 tested in the experiment: *4 = 1, 10, and 20 cm/s. For these, the feedback

gain was increased/decreased until one of the loci reached the Re[Ω] axis. Shared between both

figures, the loci corresponding to increasing the flow rate from*4 = 0 cm/s to*4 = 30 cm/s with

zero feedback gain, each continue to become more stable as *4 increases. This corroborates the

experimental observation in Trial 7 in Section 4.3 that the system did not lose stability due to flow

alone.

As can be seen in Fig.4.20, the simulation for the positive feedback gain system lost stability

4The simulated system corresponding to the experimental Trials with *4 = 0 cm/s were simulated with *4 = 1
cm/s so as to incorporate the damping term of the equation of motion (3.4). Otherwise, the system would be completely

ignoring the damping effects of the surrounding fluid.
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Figure 4.21: Argand diagram of the first four modes for the simulation of the negative feedback

gain Trials with time delay of C0 = 0.030 s. The x-axis has units of dimensional Hz with each of

the four modes of interest shown in focus with the empty frequency ranges between them

removed. We can see that the system loses stability in the third mode at each flow velocity:

*4 = 1, 10, and 20 cm/s crossing the Re[Ω] axis at frequencies of approximately 5.276, 5.315, and

5.343 Hz, respectively, signifying flutter. The lower modes also move towards the Re[Ω] axis

while the fourth mode moves away. There is a mild but noticeable jump from the unforced loci

given the inclusion of the rotor, coupler, and shaft inertia and time lag but this does not

substantially affect the results shown.

through the first mode for each flow velocity. The loci originating from the zero-feedback locus

of the first mode for *4 = 1 and 10 cm/s crossed the Re[Ω] axis at a very low frequency of

approximately 0.27 Hz and 0.225 Hz, respectively, signifying low frequency flutter. The loci

corresponding to*4 = 20 cm/s reach the Re[Ω] axis at the origin signifying divergence rather than

flutter. The loci of the higher modes with positive feedback gain also moved towards the Re[Ω]

axis but not as quickly.

The simulation for the negative feedback gain system shown in Fig.4.21 lost stability through

the third mode for each flow velocity. The loci originating from the zero-feedback locus of the third

mode for *4 = 1, 10, and 20 cm/s crossed the Re[Ω] axis at frequencies of approximately 5.276,

5.315, and 5.343 Hz, respectively, signifying flutter. The loci of the lower modes with negative
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feedback gain also moved towards the Re[Ω] axis but not as quickly while the loci of fourth mode

moved away from the Re[Ω] axis. The initial abrupt movement from the zero-feedback loci was

due to the introduction of the C0 = 0.030 s time delay introduced to have the results more closely

match the experiment.

4.5 Conclusion: Comparison of Numerical and Experimental Results

The results from the simulations are summarized in Table 4.3 alongside the pertinent results

from the experimental results previously shown in Table 4.2 in Section 4.3. For both signs of the

feedback, the stability was lost through flutter at approximately the correct frequency corresponding

to the correct mode. Significantly, the loci of the other modes were either becoming more stable

with increasing magnitude of feedback gain, or approaching the Re[Ω] axis considerably slower

than the loci of the mode that lost stability. Additionally, as the flow velocity increased, a greater

magnitude of feedback was required for both the experimental and simulated results, with respect

to both the negative and positive feedback systems. In this regards, a point of strong disagreement

was that the positive feedback gain jumped by considerable margins in the experimental results

for the change in flow velocity but changed very slightly in the simulation results. The negative

feedback gain showed the exact opposite comparison with the experimental results changing very

Table 4.3: Summary of results for the numerical simulations of the system for all of the Trials

alongside the re-presented experimental results from Section 4.3. Values in square brackets

denote a simulation that lost stability through divergence. Values in parentheses denote an

experimental frequency that was not derived from FFT analysis. Simulations for Trials with

negative feedback had a C0 = 0.030 s time delay.

Simulation Experimental

Trial #
Flow

Velocity (cm/s)

Gain

Sign

Critical

Gain

Critical

Frequency (Hz)

Critical

Gain

Critical

Frequency (Hz)

1 0-1 + 0.0252 0.270 0.23 0.426

2 0-1 - -0.00061 5.276 -0.30 4.719

3 10 + 0.0262 0.225 0.29 (0.458)

4 10 - -0.00577 5.315 -0.31 4.741

5 20 + [0.0281] [0.0] 0.37 0.577

6 20 - -0.0110 5.343 -0.35 4.932

7 30 0 N/A N/A N/A N/A
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slightly while the simulation results showed considerable increase with increase in flow velocity.

The large disparity of the feedback gain values can be attributed in part to errors in the

implementation of the scaling values described in Section 4.1. As each of these were only scaling

terms, they can only account for an error by a fixed scale of the feedback gain, but would not have

affected the behavior of the system. Additionally, the model used was of a linearized Euler-Bernouli

beam in non-vortical flow which does not capture the large oscillation behaviour well, especially

for the low frequency, large amplitude flutter response of the positive feedback gain Trials. Finally,

the flexibility of the rotating shaft and time lag were not well understood, and while modelled

simplistically, are another source of potentially disparity between the experimental and theoretical

results.
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CHAPTER 5

EFFECTS OF A FOLLOWER FORCE ON THE INDUCEMENT OF FLUTTER IN A

FLEXIBLE BEAM IN FLUID FLOW

In this chapter, we continue to explore the flutter characteristics of a beam in fluid flow. However,

rather than feedback-induced flutter, we look into how a follower force affects the onset of flutter

given varying beam geometry and fluid flow velocity. We define the model of a cantilever-free

beam with a tangential follower force in fluid flow with the cantilevered end being upstream. This

follower force is a standard method of inducing flutter used in the literature and could analogously

be generated by internal pipe flow with fluid jet emanating from a convergent nozzle, resulting in

the same equations of motion. We describe the system as a beam here for continuity. Following

the methods in Chapter 3, we determine the equations of motion and boundary conditions of the

beam. We work through the method of solution required to determine the natural frequencies of the

beam given the set of parameters such as beam properties, fluid flow velocity, and follower force

amplitude. We begin by determining the behavior of the system over a wide range of beam-to-fluid

mass ratios as the external flow velocity is increased with no follower force. We study the behavior

of these curves which are used for finding the range of external flow velocities to study further.

From this, we show the method of determining the follower force at which the system loses stability.

We present the surfaces over the mass ratio and external flow velocity plane which correspond

to the follower force required to induce flutter instability, the critical frequency at which the beam

flutters, and the mode from which the beam lost stability. We explore some insights on the scaling

of the system and observe some interesting convergence. We delve into the phenomenon known

as Ziegler’s paradox and explore how it relates to the problem at hand. Finally, using the identical

equations between a fluid-conveying pipe and a fluid-immersed beam, we compare the effects of a

follower force to attaching a nozzle to a fluid conveying pipe.

The layout of this chapter is organized as follows. The problem formulation is described in

Section 5.1 and the analytical method of solution is discussed in Section 5.2. The investigation of

the flutter instability is defined in Section 5.3. Parameters for the system and an exploration of the
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behavior of the system without follower force are given in Section 5.3 with an explanation of the

method of solution of the critical follower force given in Section 5.3. The critical stability results

are presented in Section 5.4 with further explorations detailed in Section 5.4 (Ziegler Paradox) and

Section 5.4 (Effluent Jet with Nozzle Attachment).

The Problem Formulation (Section 5.1) and Method of Solution (Section 5.2) of this chapter are

adapted from those of Chapter 3 which was published as [109] and included here with permission.

5.1 Problem Formulation

Consider the fluid-immersed flexible beam in Fig.5.1. The beam has length !, a rectangular

cross-section with widthF and height ℎ, mass per unit length<b, and Young’s modulus of elasticity

� . The upstream end of the beam is fixed while the downstream end of the beam is free. At the

free end of the beam, a follower force % is applied and acts tangentially to the slope of the beam.

The fluid is inviscid and flows with constant velocity*e. The equation of motion of the beam with

follower force, ignoring gravitational, viscous, pressurization and tensile effects, is as follows [91]:

��
m4H(G, C)

mG4
+

(
<4*

2
e + %

) m2H(G, C)

mG2
+ 2<4*e

m2H(G, C)

mGmC
+ (<e + <b)

m2H(G, C)

mC2
= 0 (5.1)

where H(G, C) is the displacement of the beam, � = (ℎF3/12) is the area moment of inertia of the

beam, and <4 is the mass per unit length of the external fluid. The mass per unit length of the

fluid is approximated as the mass of water within the cylinder of unit length circumscribing the

H

G
%

*e

!

F

Figure 5.1: A flexible beam, rigidly connected at one end and free at the other end, is immersed in

a fluid flowing with constant velocity*e. At the free end of the beam, a follower force % is

applied and acts tangentially to the slope of the beam.
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beam cross-section [107]. The boundary conditions of the fixed end of the beam and the shear and

moment boundary conditions of the free end of the beam are given as

H(0, C) =
mH(0, C)

mG
= ��

m2H(!, C)

mG2
= ��

m3H(!, C)

mG3
= 0 (5.2)

We introduce the following change of variables:

D =
G

!
, E =

H

!
, g = C

√
��

(<e + <b)!4
, De = *e!

√
<e

��
, P =

%!

��

to obtain the non-dimensional equation of motion of the beam

m4E

mD4
+

(
D2e + P

) m2E
mD2

+ 2
√
V De

m2E

mDmg
+
m2E

mg2
= 0 (5.3)

where V is the mass fraction of the fluid to the fluid and beam:

V =
<e

<e + <b

From (5.2), the non-dimensional geometric boundary conditions of the fixed end of the beam and

the non-dimensional natural boundary conditions of the free end of the beam are given as

E(0, g) =
mE(0, g)

mD
=
m2E(1, g)

mD2
=
m3E(1, g)

mD3
= 0. (5.4)

5.2 Method of Solution

To solve (5.3) for the boundary conditions in (5.4), we followed the procedure introduced in [91]

and used in [52]. In particular, we assume the following separable form for E(D, g):

E(D, g) = 5 (D)48Ωg (5.5)

where Ω is the non-dimensional frequency of oscillation while 5 (D) is the spatially varying shape

function. Substitution of (5.5) into (5.3) and (5.4) yields
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5 ′′′′(D) +
(
D2e + P

)
5 ′′(D) + 2De

√
V 8Ω 5 ′(D) − Ω2 5 (D) = 0 (5.6)

and

5 (0) = 5 ′(0) = 5 ′′(1) = 5 ′′′(1) = 0 (5.7)

Since (5.6) is an ordinary differential equation with constant coefficients, the solution of 5 (D) is

assumed to be of the form 5 (D) = �4ID. This results in the characteristic equation for the system

I4 +
(
D2e + P

)
I2 + 2De

√
V 8ΩI − Ω2 = 0 (5.8)

For specific values of De, P, and V, (5.8) provides four roots of I=, = = 1, 2, 3, 4, which are functions

of Ω. The quartic equation (5.8), can be solved analytically for each of these parameters and Ω.

These four roots cause the solution of 5 (D) to take the form

5 (D) = �14
I1D + �24

I2D + �34
I3D + �44

I4D (5.9)

Substitution of the boundary conditions in (5.7) into (5.9) yields



1 1 1 1

I1 I2 I3 I4

I214
I1 I224

I2 I234
I3 I244

I4

I314
I1 I324

I2 I334
I3 I344

I4

︸                                   ︷︷                                   ︸
Z



�1

�2

�3

�4



=



0

0

0

0



(5.10)

Non-trivial solutions of (5.10) can be obtained by solving the transcendental equation

det (Z) = 0 (5.11)

For specific values of De, P, and V, the transcendental equation can be solved numerically to get

the complex frequencies Ω8, 8 = 1, 2, · · ·, and from these, the I= terms, = = 1, 2, 3, 4, for each Ω8.
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5.3 Investigation of Flutter Instability

Critical Stability

While Section 5.2 provides the frequencies of oscillation, Ω8, 8 = 1, 2, · · ·, for specific values of

De, P, and V, we seek to find the critical stability points where the system loses stability through

flutter. For a particular Ω and corresponding I= terms, = = 1, 2, 3, 4, the solution of (5.3) and (5.4)

can be obtained by substituting (5.9) into (5.5):

E(D, g) =
4∑

==1

�= 4
I=D 48Ωg = 4−I<[Ω]g

4∑

==1

�= 4
R4[I=]D 48{I<[I=]D+R4[Ω]g} (5.12)

where the coefficients �=, = = 1, 2, 3, 4, can be obtained from the null space of Z in (5.10). It

is clear from (5.12) that the stability of E(D, g) is dependent on the exponential term outside the

summation; if I<[Ω] < 0, this term is unbounded as C → ∞. Therefore, the point at which I<[Ω]

changes sign from positive to negative represents the onset of flutter instability. Additionally, the

first exponential term inside the summation is bounded because D is bounded while the second

exponential term, because it has an imaginary exponent, yields periodic motion.

It should be noted that (5.12) describes the solution for one non-dimensional frequency Ω

representing a single solution to the transcendental equation of (5.11). At the flutter instability

point, one specific value of Ω, Ω = ΩcA , satisfies I<[Ω] = 0 whereas all other Ω values satisfy

I<[Ω] > 0. The frequency ΩcA is real and is defined as the critical frequency. Since 4−I<[Ω]g → 0

as g → ∞ for all Ω 6= ΩcA , the complete solution at the flutter instability point takes the form

E(D, g) =
4∑

==1

�= 4
R4[I=]D 48{I<[I=]D+R4[ΩcA ]g} (5.13)

As the imaginary exponent in (5.13) is a function of both D and g, the above equation represents a

traveling waveform; more specifically, a combination of four superimposed traveling waveforms.
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Simulation Environment

Our ultimate goal is to determine the critical follower force PcA required to cause the system to

lose stability through flutter over a domain of V and De. For this work, we will investigate flutter

instability for the following range of V1

V = {0.001, 0.005, 0.01} ∪ {0.025, 0.05, ..., 0.95, 0.975} ∪ {0.99, 0.995} (5.14)

High values of V → 1, correspond to systems with very large fluid mass to beam mass ratios such as

tall ℎ and thin F beams in a dense fluid flow or thin-walled pipes. Low values of V → 0, correspond

to systems with very small fluid mass to beam mass ratios such as thick, fluid-conveying pipes. As

the equations of motion are identical between the two systems, the whole range is treated here for

completeness.

To determine the range of De we first determine the natural frequencies Ω8, 8 = 1, 2, · · ·, for the

cantilevered-unforced system in zero flow, i.e., the system with De = 0 and P = 0. We then select

a value of V and increase De from De = 0, solving for the natural frequencies of the Ω 9 , 9 = 1, 2, · · ·

of the unforced system in flow. This is continued until the system loses stability as described in

Section 5.3 at De = DcA(V) for each V. From this process, a different range of fluid flow velocity

De is chosen for each value of V as determined by the value of DcA which caused the system to lose

stability through flutter. Here we define the value of : as the mode through which the system lost

stability through flutter. It is over this V-De domain that we will the determine the critical follower

force PcA required to cause the system to lose stability through flutter.

While the bounds of the V-De domain have thus been defined, the behavior of the zero follower

force P = 0 system as DcA increases is important to explore. As will be described in Section 5.3,

it is from intermediary points along each of these increasing De loci that the follower force P will

be increased until the system loses stability through flutter. To begin, we consider the critical flow

velocities DcA , critical frequencies ΩcA , and mode, : , at which the system loses stability through

flutter for the zero follower force P = 0 case as summarized in Fig.5.2. Of particular note are

1V = 0 will be treated separately as a special case in Section 5.4.
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Figure 5.2: Critical flow velocity D2A (solid line) and critical frequency Ω2A (dotted line)

corresponding to each V for the zero follower force P = 0 system. The critical mode : is denoted

for each section.

the periods where even though the mode of flutter : changes as V gradually increases, there are

only relatively minor changes in DcA and ΩcA . Conversely, there are the periods of relatively major

changes in DcA and ΩcA as V gradually increases even though the mode of flutter : remains the

same.

To understand the causes of this behavior, we follow the loci of increasing De for the first three2

natural frequencies corresponding to select V. Given the large number of V values, we divide the

set into seven subsets that exhibit distinctly similar behavior. From these an illustrative select few

are chosen, so as to reduce the clutter in each figure as well as better show the behavior of the

system as De increases from 0 for each V. The Argand diagrams for each subset of V loci are shown

2It was determined that there was no behaviour of note above the third natural frequency. Higher frequencies were

calculated throughout this process, but are here omitted.
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Figure 5.3: Argand diagrams for the cantilever beam with P = 0 for V = {0.001, 0.1, 0.2, 0.275}.
Loci of increasing V are denoted as well as the direction in which each loci moves as D4 increases.

As previously shown in Fig.5.2, while the fluid flow velocity required for the system to lose

stability, D2A , increases with V, the critical frequency Ω2A decreases with V.

in Figs.5.3 - 5.9. Representing the first subset of V, Fig.5.3 shows the Argand diagrams for the

cantilever beam with P = 0 for V = {0.001, 0.1, 0.2, 0.275}. For this subset, as De increases, each

loci, beginning from the natural frequencies of the cantilevered-unforced system in zero flow, i.e.,

the system with De = 0 and P = 0, initially becomes more stable by moving away from the Re[Ω]

axis. However, the loci of the : = 2 mode curve back towards the Re[Ω] axis and eventually cross

it, denoting the point of the system becoming unstable. As seen in Fig.5.2, for this range of V, while

the fluid flow velocity required for the system to lose stability, D2A , increases with V, the critical

frequency Ω2A with which it flutters decreases with V.

Referring to Fig.5.2, we see that at V = 0.3, the behavior of the system shows a sharp change
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Figure 5.4: Argand diagrams for the cantilever beam with P = 0 for

V = {0.3, 0.325, 0.35, 0.375, 0.4}. Loci of increasing V are denoted as well as the direction in

which each loci moves as D4 increases. All but the loci corresponding to V = 0.4 are the solid

lines. The loci of V = 0.4 is included to show the veering effect which explains the change in

mode from : = 2 to : = 3 seen in Fig.5.2. It is important to note, however, that this veering does

not correspond to a significant change in either Ω2A nor D2A . Additionally, this figure shows how

the curvature of the locus corresponding to : = 2 mode of V = 0.3 just misses the Re[Ω] axis

before crossing it at a significantly latter point with respect to both Ω2A and D2A . This, as opposed

to veering, is the phenomenon which causes the jumps in Ω2A and D2A of Fig.5.2.
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in critical flow velocity D2A and critical frequency Ω2A while the mode of flutter remains constant

at : = 2. The cause of this behavior is shown in Fig.5.4 which is the Argand diagram for the

cantilever beam with P = 0 for V = {0.3, 0.325, 0.35, 0.375, 0.4}. This figure shows how the

curvature of the locus corresponding to : = 2 mode of V = 0.3 just misses the Re[Ω] axis before

crossing it at a significantly later point with respect to both Ω2A and D2A . As V continues to increase,

both Ω2A and D2A increase, as can also be seen in Fig.5.2. However, included in Fig.5.4 are the loci

corresponding to V = 0.4, which is when, while both Ω2A and D2A continue to increase slightly,

the mode of flutter changes from : = 2 to : = 3 due to the phenomenon of veering. Veering is

when two loci approach each other in the complex plane but do not intersect before continuing in

divergent directions [110, 111], at some points often dramatically swapping direction towards that

previously taken by the other mode. Even with the dramatic change in the behavior of the loci, the

values of Ω2A and D2A in Fig.5.2 do not signify that anything in particular has happened.

Looking at Fig.5.5, we have the Argand diagrams for the cantilever beam with P = 0 for

V = {0.4, 0.45, 0.5, 0.525, 0.55}. For this range, the flow velocity required for the system to lose

stability D2A continues to increase gradually with increasing V, but the critical frequency Ω2A

remains nearly unchanged. At V = 0.55, we again see the veering phenomenon that causes a

change in the mode of flutter, but this time from : = 3 back to : = 2, all while the values of

Ω2A and D2A in Fig.5.2 continue to hold steady or change as they had been. For Fig.5.6, we have

the Argand diagrams for the cantilever beam with P = 0 for V = {0.55, 0.575, 0.6, 0.625}. Very

similarly to Fig.5.5, the critical flow velocity D2A continues to increase gradually with increasing V

while the critical frequency Ω2A stays nearly constant until the system again experiences veering at

V = 0.625, this time from : = 2 to : = 1.

For Figs.5.7 - 5.9, the mode of flutter remains constant at : = 1, but as Fig.5.2 shows, there are

jumps in Ω2A and D2A at V = 0.7 and V = 0.925. In Fig.5.7, we have the Argand diagrams for the

cantilever beam with P = 0 for V = {0.625, 0.65, 0.675, 0.7}. We see the loci of the first mode

exhibits several oscillations before contacting the Re[Ω] axis at nearly the same Ω2A , but shallower

and shallower angles before the loci corresponding to V = 0.7 passes right above the Re[Ω] axis
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Figure 5.5: Argand diagrams for the cantilever beam with P = 0 for

V = {0.4, 0.45, 0.5, 0.525, 0.55}. Loci of increasing V are denoted as well as the direction in

which each loci moves as D4 increases. All but the loci corresponding to V = 0.55 are the solid

lines. The loci of V = 0.55 is included to show the veering effect as explained in Fig.5.4: The

mode changes back to : = 2 from : = 3 though Ω2A and D2A do not exhibit a jump in value.

to cross at a much higher Ω2A with a correspondingly higher D2A . This is the same behavior that

marked the first jump of Ω2A and D2A Fig.5.2 at V = 0.3. In Fig.5.8, which shows the Argand

diagrams for the cantilever beam with P = 0 for V = {0.7, 0.775, 0.825, 0.9, 0.925}, we again see

the same behavior with the loci corresponding to V = 0.925 skimming right above the Re[Ω] axis

to cross at a much higher Ω2A and higher D2A . Finally with Fig.5.9, we have the Argand diagrams

for the cantilever beam with P = 0 for V = {0.925, 0.95, 0.975, 0.995}. These loci all exhibit

similar behavior to each other but noticeably cross at a significantly higher Ω2A with a higher D2A .
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Figure 5.6: Argand diagrams for the cantilever beam with P = 0 for

V = {0.55, 0.575, 0.6, 0.625}. Loci of increasing V are denoted as well as the direction in which

each loci moves as D4 increases. All but the loci corresponding to V = 0.625 are the solid lines.

In this set, the loci of V = 0.625 is included to show the veering effect as explained in Figs.5.4 and

5.5. In this case however, the veering occurs between the loci of the : = 1 and : = 2 modes.
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Figure 5.7: Argand diagrams for the cantilever beam with P = 0 for

V = {0.625, 0.65, 0.675, 0.7}. Loci of increasing V are denoted as well as the direction in which

each loci moves as D4 increases. All but the loci corresponding to V = 0.7 are the solid lines. The

loci of V = 0.7 is included to show how the loci of the : = 1 mode transitions from crossing the

Re[Ω] axis at around Re[Ω]= 27 to just missing the Re[Ω] axis before crossing at a much higher

value of Ω2A and D2A . This corresponds to the second jump of Ω2A and D2A in Fig.5.2, similar to

how the behavior shown in Fig.5.4 corresponds to the first set of jumps.
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Figure 5.8: Argand diagrams for the cantilever beam with P = 0 for

V = {0.7, 0.775, 0.825, 0.9, 0.925}. Loci of increasing V are denoted as well as the direction in

which each loci moves as D4 increases. All but the loci corresponding to V = 0.925 are the solid

lines. The loci of V = 0.925 is included to show how the loci of the : = 1 mode transitions from

crossing the Re[Ω] axis at around Re[Ω]= 45 to just missing the Re[Ω] axis before crossing at a

much higher value of Ω2A and D2A . This corresponds to the third jump of Ω2A and D2A in Fig.5.2,

similar to how the behavior shown in Figs.5.4 and 5.7 correspond to the first and second sets of

jumps.
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Figure 5.9: Argand diagrams for the cantilever beam with P = 0 for

V = {0.925, 0.95, 0.975, 0.995}. Loci of increasing V are denoted as well as the direction in which

each loci moves as D4 increases. For such high values of V, the system loses stability at a very

high Ω2A though requiring a correspondingly high D2A to induce the loss of stability.
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Numerical Procedure

For each point in the V − De domain3 defined in Section 5.3, we solve for the critical follower force

P = PcA , which causes the system to lose stability through flutter. These points define a surface,

which we refer to as the critical follower force surface. Each point on the critical follower force

surface corresponds to a critical frequency ΩcA ; these points define a critical frequency surface.

The critical stability and frequency surfaces are obtained as follows: For a specific value of V,

we start with P = 0 and De = 0.01. We use the first three natural frequencies of the beam, Ω 9 ,

9 = 1, 2, 3, as the initial guesses to solve for the eigenfrequencies as the magnitude of P is gradually

increased. The process is continued until one of the Ω 9 terms satisfies the condition I<[Ω: ] = 0.

This provides the value of PcA and ΩcA for De = 0.01 and the specific value of V. Here, in keeping

with Section 5.3, the value of : denotes the mode of the unforced locus from which the forced locus

which lost stability originated. The process is repeated by gradually incrementing the value of De

while keeping the value of V fixed; the process is terminated when the value of De = DcA(V)4. To

obtain the critical stability and frequency surfaces, the overall process is repeated on a fine mesh

grid for V.

The procedure for computing the critical stability points, described in Section 5.3, can now

be better explained with the help of the Argand diagrams in Figs.5.10 and 5.11. The thin lines

represent the loci of increasing fluid flow De(V = 0.75) and no follower force as previously shown

in Fig.5.8. For both figures, given the shared value of V = 0.75 the zero follower force P = 0 loci

are the same, and, as can be seen from Fig.5.8, eventually lose stability through the : = 1 mode

at Ω2A = 26.08 and D2A = 8.78. At a specific point on each loci of the unforced Argand diagram

corresponding to a specific value of De = D∗e, the follower force P is increased from P = 0.

Increasing the value of P from zero results in a separate locus sprouting from each of the branches.

These continue until the critical value of P = PcA is reached when one of the eigenfrequencies

satisfy Im[Ω] = 0, analogous to the P = 0 system.

3We have 0 ≤ De ≤ DcA (V) defining the range of De for each V

4This signifies that the fluid flow alone causes the beam to lose stability, much like a flag fluttering in the wind.
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Figure 5.10: Argand diagrams for the cantilever beam with V = 0.75. The thin lines represent the

loci of increasing fluid flow De and no follower force. The thicker lines represent the loci for the

system with D∗e = 4.0 as the follower force P = 0 increases until the system loses stability when

one of the loci crosses the Re[Ω] axis. Here, while the system with no follower force is stable at

D∗e = 4.0 (though it eventually loses stability through the : = 1 mode at Ω2A = 44.58 and

D2A = 13.14), the follower force causes the system to lose stability in the : = 2 mode at

Ω2A = 13.80 and P2A = 27.84.

These Argand diagrams show how the behavior that results from increasing the follower force

while holding the flow velocity constant differs greatly from the P = 0 loci. In Fig.5.10 the

flow velocity is held at D∗e = 4.0, a point at which the system is initially stable. Increasing the

follower force results in the new loci quickly branching from the P = 0 loci with the : = 1 locus

remaining on the Im[Ω] axis while moving away from the Re[Ω] axis, the : = 2 locus heading

quickly for the Re[Ω] axis, and the : = 3 locus maintaining its Im[Ω] component while decreasing

in Re[Ω]. Eventually, the system loses stability through flutter in the : = 2 mode at Ω2A = 13.80
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and P2A = 27.84, noticeably different than the : = 1 mode through which the P = 0 system lost

stability through flutter.

In Fig.5.11 the flow velocity is held at D∗e = 7.0, from which the system is initially stable.

Increasing the follower force results in the : = 2 locus remaining nearly in place while performing

a small loop. The loci of the : = 1 and : = 3 modes move nearly directly towards each other

before veering apart with the : = 1 locus moving away from the Re[Ω] axis while the : = 1 locus

moving towards the Re[Ω] axis. Eventually, the follower force causes the system to lose stability

through flutter in the : = 3 mode at Ω2A = 26.44 and P2A = 32.64. Of note, while the locus of

increasing P of the : = 1 mode begins closer to the Re[Ω] axis than that of the : = 3 mode, the

follower force imposes a stabilizing behavior on the locus of the : = 1 mode, while that is not the

case for the locus of the : = 3 mode. The system does, however, still loses stability through flutter

nonetheless.
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Figure 5.11: Argand diagrams for the cantilever beam with V = 0.75. The thin lines represent the

loci of increasing fluid flow De and no follower force. The thicker lines represent the loci for the

system with D∗e = 7.0 as the follower force P = 0 increases until the system loses stability when

one of the loci crosses the Re[Ω] axis. Here, while the system with no follower force is stable at

D∗e = 7.0 (though it eventually loses stability through the : = 1 mode at Ω2A = 44.58 and

D2A = 13.14 - see Fig.5.8), the follower force causes the system to lose stability in the : = 1 mode

at Ω2A = 26.44 and P2A = 32.64. Additionally, we also see how increasing P can also cause the

system to exhibit the phenomenon of veering as shown by the loci originating from the : = 1 and

: = 3 modes. It is also interesting to note how, while the locus of increasing P of the : = 1 mode

begins closer to the Re[Ω] axis than that of the : = 3 mode, the follower force imposes a

stabilizing behavior on the locus of the : = 1 mode, while that is not the case for the locus of the

: = 3 mode. The behavior of the locus of the : = 2 mode, while not consequential is interesting

nonetheless.
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5.4 Results

Critical Stability Surfaces

Figure 5.12: Critical follower force P2A surface. The D4 = 0.01 border is at a nearly constant

P2A = 17.557, from which P2A increases or decreases for different values of V as D4 increases.

The entirety of the surface terminates at P2A = 0 at D4 = D2A as this is where the system loses

stability without any P as discussed in Section 5.3. For lower values of V, the surface slopes only

downwards, while for higher values of V, the surface exhibits a series of ridges of greater P2A
emanating from the discontinuities also described in Section 5.3.

To begin, we have the critical follower force P2A surface shown in Fig.5.12. This figure shows

how the value of P2A changes for each V as D4 increases. As will be discussed further in Section

5.4, at D4 = 0.01, for each V, the critical follower force is a nearly constant P2A ≈ 17.557. As D4

increases, the entire surface eventually decreases to P2A = 0 at D4 = D2A which corresponds to

when the system loses stability through fluid flow alone. However, for higher values of V, there are

a series of ridges of significantly higher P2A seemingly emanating from each of the discontinuities.
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Figure 5.13: Curves of critical follower force P2A with order of increasing V denoted. Presented

here is the same information as the surface of Fig.5.12 but as individual lines. Of particular note is

that for a given D4, the follower force required to cause the system to lose stability through flutter

increases monotonically with increasing V. This view of the data really signifies the tremendous

change in P2A needed to cause the system to lose stability through flutter as V and D4 vary.

As V is increased, the crests of these ridges curve backwards compared to D4.

The information provided in Fig.5.12 is also shown in Fig.5.13 as a set of distinct curves for

each V given in Section 5.3. The ridges are very pronounced from this view. For V < 0.3, P2A

shows a monotonic decrease to zero as D4 increases. This is the region that corresponds to Fig.5.3,

before the first discontinuity. For values of V in 0.3 < V < 0.475, the P2A curves decrease in

value before rising over a ridge of higher P2A emanating from the first discontinuity, and then

going down to P2A = 0. For V ≥ 0.475 the P2A curves increase in value before cresting the ridge

emanating from first discontinuity and then going down towards P2A = 0. Of those, the P2A curves
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for V ≤ 0.6750 continue falling to zero, while the P2A curves for V ≥ 0.7 (having made it past the

second discontinuity), rise up another ridge of higher P2A emanating from that second discontinuity.

Finally, of the curves that make it past the second discontinuity, for values of V ≤ 0.8750, the P2A

curves continue falling to P2A = 0 while the P2A curves for V ≥ 0.9 (having made it past the third

discontinuity), rise up a final ridge emanating from that third discontinuity. Of note is that for a

given D4, the follower force required to cause the system to lose stability through flutter increases

monotonically with increasing V, i.e the P2A curves never cross.

Figure 5.14: Critical frequency Ω2A surface. There are four large plateaus of nearly constant

critical frequency Ω2A corresponding to the plateaus of similar critical frequency Ω2A of the

unforced case in Fig.5.2. Rather than abrupt jumps in Ω2A , these plateaus are separated by smooth

transitions. Overall, this surface shows a significantly less varied dependence on V and D4 than

P2A does as seen in Fig.5.12.

Following this, Fig.5.14 shows the critical frequency Ω2A surface at which the increasing

follower force P2A causes the system to lose stability for each V and D4. The first obvious
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observation is that there are large plateaus of very similar critical frequency Ω2A separated by

smooth transitions which occur along slopes emanating from the discontinuities and corresponding

to the ridges of P2A seen in Figs.5.12 and 5.13. To reiterate, rather than having discontinuities, the

follower force causes the system to exhibit smooth transitions between frequency plateaus. It is

also noticeable how each of the plateaus of similar critical frequency Ω2A very closely matches the

frequency plateaus of Fig.5.2 which represents the unforced case with P = 0.

Figure 5.15: The critical mode surface which shows from which unforced P = 0 loci, the forced

loci which lost stability originated. Border corresponds to where the system loses stability

without any Pval as discussed in Section 5.3. For the portion of lower D4, the system lost stability

through the : = 2 mode which corresponds to where the damping term D4
√
V is relatively small.

There is a curve stripe of : = 3 mode in the middle of the space while the high D4 - high V region

is : = 1 mode.

Finally, we have the critical mode surface in Fig.5.15 which shows from which unforced P = 0

loci, the forced loci which lost stability originated. For the portion of lower D4, the system lost

stability through the : = 2 mode which corresponds to where the damping term D4
√
V is relatively
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small. There is a curve stripe of : = 3 mode in the middle of the space while the high D4 -

high V region is : = 1 mode. Of interest are the regions where the mode changes. As neither

the critical follower force surface in Fig.5.12 nor the critical frequency surface in Fig.5.14 exhibit

discontinuous jumps of any kind, the behavior of the critical mode surface indicates that each of

these changes in critical modes is due to the phenomenon of veering as described in Section 5.3.

Scaling by Damping Term D4
√
V

While the discussion so far has been with respect to separate V and D4 axes, interesting behavior

becomes apparent when we scale our D4 axis by
√
V such that the x-axis is now exactly proportional

to the coeffiecient of the damping term of (5.3). This leaves only D24+P as the other free parameter

of the system. Figures 5.16(a) and (b) show how the system behavior collapses to much simpler

surfaces when the x-axis is D4
√
V. Fig.5.16(a) shows how the critical frequency Ω2A at which

the system loses stability is constant for any given D4
√
V. For a given D4

√
V, it is the sum of the

forcing terms that uniquely define the state at which the system loses stability. Fig.5.16(b) shows

how the critical mode :2A from which the system loses stability is also defined almost entirely by

(a) (b)
D4

√
VD4

√
V

V V
Ω
2
A

:
2
A

Figure 5.16: (a) Critical Frequency surface as presented in Fig.5.14, but with the x-axis scaled by√
V. If viewed from the XZ plane, there would only be a line visible. (b) Critical Mode surface as

presented in Fig.5.15, but with the x-axis scaled by
√
V.
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D4
√
V. There are, however, interesting deviations from this generalization: the : = 2 mode stripe

at D4
√
V ≈ 5 and a small region at the base of the : = 3 mode stripe. This is in large part due to the

veering phenomenon in which changing certain parameters slightly can cause the mode behavior

to change, but the final state of the system at the point of instability to be largely unchanged.

Ziegler’s Paradox

As can be seen in Fig.5.13, the critical value of P which causes the system to lose stability through

flutter for very small D4, particularly D4 = 0.01, is P2A ≈ 17.557, regardless of V > 0. This,

however, is significantly lower than the system without any damping at all as shown in Figs.5.17

and 5.18. In the D4 = V = 0 (undamped) case5, the loci of the : = 1 and : = 2 modes move

towards each other along the Re[Ω] axis until they meet at Re[Ω] = 11.0828 and separate off the

axis as a Hamiltonian Hopf bifurcation [91]. One locus then moves into the Im[Ω] > 0 (stable)

half-plane while the other locus moves into the Im[Ω] < 0 (unstable) half-plane, causing the system

to lose stability through flutter. Fig.5.18 shows how Re[Ω: ] changes with increasing P until the

loci of the : = 1 and : = 2 modes meet at P2A = 20.06 signifying the moment of flutter.

Conversely, Figs.5.19 and 5.20 show how the system evolves with increasing P when D4 = 0.01

and V = 0.001 are held constant (signifying very small damping). In this case, the loci of the : = 1

and : = 2 modes are very slightly above the Re[Ω] axis as they approach each other, in accordance

with the damping having a stabilizing effect. However, as can be seen in Fig.5.19, the loci split

before meeting. This behavior is shown in much greater detail in Fig.5.20. The loci of the damped

system (solid) each have Im[Ω: ] > 0 (stable) though they are very slowly diverging (in a Im[Ω: ]

sense) from each other as P increases. Eventually, the lowermost locus passes the Im[Ω] = 0 axis

at P2A = 17.56, which is a significantly lower value than the undamped case (denoted by the dashed

lines). This destabilizing effect of damping is in accord with the Ziegler paradox as described by

Ziegler in his seminal 1952 paper [62].

5Both having the effect of making the third (damping/coriolis) term of (5.1) go to 0, while D4 = 0 entails no

contribution to the second (forcing) term.
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Figure 5.17: Argand diagrams for the cantilever beam subject to increasing follower force P,

without fluid flow or damping. Without damping, the roots of the system remain entirely real until

the loci of the : = 1 and : = 2 modes meet at Re[Ω]= 11.0828 causing the system to lose stability

through coupled-mode flutter by the mechanism of the Hamiltonian Hopf bifurcation [91].

With this in mind, it is interesting to take another look at Fig.5.13 and see how, as D4 increases,

different values of V have the system require increasing or decreasing amounts of P to destabilize

the system. Of particularly peculiar note, is that for a significant amount of D4, V = 0.475 requires

nearly constant P to lose stability. Curves of P2A for V < 0.475 decrease quadratically with

increasing D4 while curves of P2A for V > 0.475 increase quadratically with increasing D4.
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Figure 5.18: Re[Ω] for the cantilever beam subject to increasing follower force P, without fluid

flow or damping. This figure clearly shows how the real part of the natural frequencies of the

: = 1 and : = 2 modes approach each other before meeting at Re[Ω] = 11.0828 when P = 20.06
and becoming complex conjugate pairs, signified by their both having the same real part.
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Figure 5.19: Argand diagrams for the cantilever beam subject to increasing follower force P, with

fluid flow D4 = 0.01 and V = 0.001. With this very small damping, the roots of the system travel

just above the Re[Ω] axis until they very gradually veer apart before the point of meeting. The thin

lines show how the system evolves for increasing D4 with P = 0 for comparison. Compared to the

case of holding D4 constant while increasing P, this case experiences greater and greater damping.

115



15 16 17 18 19 20 21 22

gh

gi

gj

gk

gl

0

1

2

3

4

5

mn
o
p

10
qr

s 17.56

t -1.81073e-07

P2A

Figure 5.20: Comparison of Im[Ω] for the cantilever beam subjected to increasing follower force

P, both without fluid flow or damping (dashed) and also with D4 = 0.01 and V = 0.001 (solid).

This figure clearly shows how the imaginary part of the very lightly damped system crossed the

Re[Ω] axis at P2A = 17.56, well before the undamped system.
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Comparison of Follower Force to Effluent Jet with Nozzle Attachment

In the discussion so far, the value of V has generally corresponded to the ratio of the added mass

of the surrounding fluid to the mass of the beam. However, the system described by (5.1) was

first approached using the same equation as a fluid conveying pipe whereby the fluid mass was

not external, i.e. <4, but internal, i.e. <8 (with internal flow velocity *8 analogous to external

flow velocity *4). As an extension of this (and for experimental convenience), Gregory and

Païdoussis [55] analyzed what the effects would be of introducing a massless convergent nozzle to

the downstream/effluent end of the fluid conveying pipe. As part of their work, they presented the

variation of (5.1) with a convergent nozzle as

��
m4H(G, C)

mG4
+ <8*i*j

m2H(G, C)

mG2
+ 2<8*i

m2H(G, C)

mGmC
+ (<i + <b)

m2H(G, C)

mC2
= 0 (5.15)

where

*j = *i
�8

� 9
= *iU 9

and U 9 = �8/� 9 is the ratio of the pipe cross-section to the cross-sectional area of the nozzle exit.

Following the same process as before, this takes the nondimesnional form

m4E

mD4
+ DiDj

m2E

mD2
+ 2

√
V8 Di

m2E

mDmg
+
m2E

mg2
= 0 (5.16)

where

V8 =
<i

<i + <b

Using this, we can further analyze how the follower force % would compare to different nozzle

ratios. To do this, in view of the structure of (5.3), we further introduce

U% = 1 +
P
D24

(5.17)
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Figure 5.21: Contour plots of pipe area to nozzle exit area ratio U 9 (overlain on the full 3D

surface) that would be equivalent to the effects of the follower force P which causes the system to

lose stability to fluid flow D8. Values for D8 < 2 are omitted because U 9 becomes excessively large

as D8 → 0. The rightmost border of the surface is defined by U 9 = 1 which corresponds to the

system losing stability without any follower force, reverting to the original equation with only D24 .

which allows us to directly equate U% to U 9 to see what nozzle ratio corresponds to which follower

force. These two terms, U% and U 9 , are the coefficients multiplying the second term D2e,8
m2E
mD2

of

their respective equations. Of note is that neither of these two coefficients have an effect on the

damping of the system which appears in the third term of each equation.

Figure 5.21 shows the surface of U% = U 9 (hereafter, just U 9 ) as a function of V and D4 = D8

(hereafter, just D4). To begin, we omit the portion of the surface for D4 < 2 as the values of U 9

become extremely large as D4 → 0 due to the division by D24 . The physical meaning of this is that

the nozzle would need to have a very fine opening relative to the nominal diameter of the pipe so as

to generate a very high velocity of the effluent fluid. The dominance of D24 continues over the whole
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surface wherein the peaks of P as seen in Fig.5.12 are visible, but the division by D24 results in a

nearly monotonic decrease of U 9 until the system loses stability through flutter without any follower

force (U 9 = 1). However, it may be observed that there are regions where the value of U 9 shows

an increase with increasing D4 (signified by a contour line curving downward). These regions are

always associated with the discontinuities of D2A(V) wherein a decrease in V post-discontinuity,

would result in a continuously decreasing D2A . The regions of decreasing U 9 correspond to places

where the “relative" V is smaller than the unforced (P = 0) system with equivalent D4.

On a related note, while it may seem obvious, it is significant that the U 9 surface does not

go below U 9 = 1. This is in accord with the findings that a tensile force is always stabilizing in

addition to analysis and experiments in which a diverging nozzle is attached to the end of the pipe

which results in no axial effluence, and consequently, no loss of stability [113]. An alternative

interpretation of the dips of the U 9 contours of Fig.5.21, particularly the U 9 = 1.1 contour and the

implied U 9 = 1 contour, is that a negative P follower force could re-stabilize the system through

the discontinuities of D2A(V). This implies that the U 9 , and by inference, the P2A , surfaces could

be extended towards greater D4 by accepting P < 0 and U 9 < 1.

5.5 Conclusion

There are several methods of inducing flutter in non-conservative systems including due to a

follower force or through interaction of the beam with a fluid, flowing internally or externally. In

this work, we explore the interaction that develops from combining these two methods. We analyze

a flexible, tail-like beam in axial fluid flow with a tangential follower force at the free end. The

equation of motion and boundary conditions are defined, and the motion is determined using a

set of parameters. Natural frequencies are explored without the follower force to establish a basis

for our analysis. Critical follower forces are analyzed to determine the frequency and mode at

which the system loses stability through flutter, given each combination of mass ratio and fluid

flow velocity. Increasing the mass ratio monotonically requires a larger follower force to cause

instability. Scaling the flow velocity axis by the square root of the mass ratio allows all results to

collapse onto a single curve. Results confirm Ziegler’s paradox at very low flow velocities.
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Finally, we investigate how incorporating a convergent nozzle to the downstream end of the

system shows that the critical follower force can be simulated for higher flow velocities over a very

wide range of mass ratios (though not feasibly for lower flow velocities). In conjunction with the

work on fluid-conveying, fluid-immersed tails introduced by Hellum [52], this convergent nozzle

would allow for the more controllable instigation of flutter. Utilizing both the effluent jet thrust as

well as the oscillation of the fluttering tail could be used as a novel propulsive device for underwater

vehicles.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Forced Excitation of a Flexible Beam in Fluid Flow

In Chapter 2, we developed an analytical model for a rigid body in flow and demonstrated

that it was possible to solve it numerically across a large domain of model and state parameters.

Using slender body equations for thrust and power, we showed how they could be used to analyze

a large region of the frequency-flow rate space. We observed that the flexible propulsor exhibited

both positive and negative thrust and discussed how resonance affected the system. To find the

equilibrium velocity of a submersible propelled by a tail-like beam, we defined a drag model of the

rigid body. Finally, we found that the efficiency surpassed 50% on this dynamic equilibrium locus.

6.2 Feedback-Induced Flutter Instability of a Flexible Beam in Fluid Flow

In Chapter 3, we modeled a pinned-free, flexible, tail-like beam immersed in fluid flow using

fluid, subject to various leading edge boundary conditions. We showed how these non-conservative

loading due to feedback caused the system to lose stability through flutter. We studied various

actuation-proportional-to-sensing combinations incorporating moment and angle actuation; dis-

placement, slope, and curvature sensing; and both positive and negative sign of feedback gain.

We determined the flow velocity at which the systems with zero feedback gain lost stability. We

defined the criteria for a system losing stability due to feedback from which we, in turn, defined the

critical stability surfaces to present the results. We presented the results for six Cases, one for each

combination of actuation and sensing over a large range of feedback locations and flow velocities

which showed a rich set of stability transitions. We determined that the impact of flow velocity was

much more mild than the significant impact of the location of sensing. We further determined the

propulsive characteristics of the waveforms generated by the flutter instability through slender body

equations. We then showed that while the resulting waveform was composed of four individual

traveling waves, we could define a Phase Smoothness Factor metric which could be used to reliably

predict the efficiency based on the numerical waveform. Finally, we determined that the propulsive
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characteristics of the beam did not depend on the combination of actuation and sensing by which

flutter was produced; they depended only on the values of the dimensionless fluid velocity and

critical frequency, which completely defined the waveform.

6.3 Experimental Validation of Feedback-Induced Flutter Instability of a

Flexible Beam in Fluid Flow

In Chapter 4, we designed and constructed a system for applying feedback-based actuation to

the leading edge of a flexible, tail-like beam in fluid flow proportional to the curvature at a point

along its centerline. This involved both the application, sensing, and amplification of strain gauges

as well as the control and transmission of torque from a motor to the leading edge of the beam. We

designed a control scheme that enabled the input of the feedback gain which we used to determine

when the beam lost stability through flutter at different axial flow velocities. We showed that the

positive feedback gain behavior was significantly different from the negative feedback behavior for

our system. We showed that the behavior of the system was loosely correlated with the flow velocity.

We modified the moment-proportional-to-curvature boundary condition in Chapter 3 to include the

inertia of the torque application hardware and the time delay that occurred due to the flexibility of

the torque application hardware. We showed that the numerical model of the experimental setup

lost stability through flutter at frequencies very similar to those observed in the experiment. With

this, we could state with confidence that the model used was a good approximation of the real

system and that feedback-induced flutter of a flexible beam in axial fluid flow was achievable.

6.4 Effects of a Follower Force on the Inducement of Flutter in a Flexible

Beam in Fluid Flow

In Chapter 5, we modeled a cantilever-free, flexible, tail-like beam in axial fluid flow with

a tangential follower force applied at the free end. We defined the equation of motion and

boundary conditions of this system and showed the method of determining the motion given a set

of parameters. We explored the natural frequencies of the system without follower force over the

full range of possible beam-to-fluid mass ratios as the fluid flow increased. These results presented

a rich set of behaviors that defined the points from which our follower-force analysis began. Our
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analysis of the critical follower force allowed us to determine the frequency and mode at which the

system lost stability through flutter given each combination of mass ratio and fluid flow velocity.

We showed that for any given flow velocity, increasing the mass ratio always required a larger

follower force to cause the system to lose stability. We showed that by scaling the flow velocity axis

by the square root of the mass ratio, we could get all of our results to collapse onto a single curve

for each of the critical follower force surface, critical mode surface, and critical frequency surface.

Our results for very low flow velocities confirmed Ziegler’s paradox regarding the destabilizing

nature of low damping on certain systems. Our analysis of incorporating a convergent nozzle to the

downstream end of the system showed that the follower force could be feasibly simulated for higher

flow velocities (though not lower ones) given the tremendous difficulty of actualizing a tangential

follower force.

6.5 Future Directions

There are several avenues for future work regarding the forced excitation of flexible beams in

fluid flow, particularly with respect to their performance for underwater propulsion. For example,

each of the parameters of our model could be varied to study their impact on the propulsive

performance of the system. The torque and power requirements at the revolute joint can be further

investigated for feasibility in a real-world system. To accommodate torque and/or power limitations

of a physical system, more complex trajectories through the velocity-frequency plane could be

designed by changing the amplitude and frequency of the revolute joint. An underwater robotic

vehicle utilizing this design would validate this model if implemented successfully.

With respect to feedback-induced flutter of a flexible beam in fluid flow as a means of generating

a traveling wave for propulsion, we envision a number of other directions along which this work can

be extended. First, the observation that a waveform dominated by a single traveling wave appears

to be more efficient than a mixed waveform is satisfying, but a proof has eluded us to date. It is also

likely that analyzing a discrete analogy of the problem, in which flutter of an articulated system is

produced through actuation of the base, can provide additional insights because of the reduction

to finite dimension. Finally, we believe that the results can be extended to an interesting boundary
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condition at the free end, that of a hydrodynamically “active” fin, which has mass, dimension, and

experiences fluid forces. This conceptually mimics the situation of a fast-swimming thunniform

fish, which has a large caudal fin at the end of its tail.

While our experimental work validated the heart of feedback-induced flutter of a flexible beam

in fluid flow, several lines of inquiry could be pursued in future research. The first would be to

replicate the experiment with a more fine-grained incrementing of the feedback gain. As was seen

several times in some of the Trials, the system went from very small oscillations to such large

oscillations that the cut-off trigger was activated, while other Trials resulted in nice and steady

limit cycles. These limit cycles resulted in beam motions that could have the desired potential as

propulsive devices. Additionally, the energetics and hydrodynamic performance (i.e. thrust and

efficiency) of the beams could be measured to ascertain their feasibility as a means of propelling a

submersible.

For the work regarding the effects of the follower force on the instigation of flutter, we investi-

gated how incorporating a convergent nozzle to the downstream end of the system could be used to

simulate the critical follower force for higher flow velocities over a very wide range of mass ratios.

This work could be combined with the work on fluid-conveying, fluid-immersed tails introduced

by Hellum [52], in which this convergent nozzle would allow for the more controllable instigation

of flutter. Utilizing both the effluent jet thrust as well as the oscillation of the fluttering tail could

be used as a novel propulsive device for underwater vehicles.

With respect to this entire work, all aspects of it could be extended to incorporate non-linear

dynamics and analysis, both for the flexible beams, and the fluid-structure interactions. This

analysis could then be incorporated into control schema to better operate these flexible beams as

propulsive devices of underwater vehicles.
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