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ABSTRACT

A quantum particle restricted to a lattice of points has been well studied in many

different contexts. In the absence of considering the interaction with its environment, the

particle simply undergoes ballistic transport for many suitable Hamiltonian operators. The

evolution becomes much more complicated when considering environmental interaction,

which leads to the so-called Lindblad master equation. When considering this master

equation, the Lindbladian term dominates the dynamics of the particle, leading to diffusive

propagation. In this document, we prove diffusion is indeed present in the context of

a periodic Hamiltonian. Additionally, we show that the diffusion constant is inversely

proportional to the particles’ coupling strength with its environment.
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GLOSSARY OF TERMS

• BpHq “ tA : H Ñ H : ||A||H ă 8u, the set of bounded operators in a Hilbert space
H

• B1pHq “ tA : H Ñ H : trA ă 8u, the set of operators in H with finite trace

• MdpAq, the set of d ˆ d matrices with entries in A

• SApHq, the set of self-adjoint operators on a Hilbert space H

• C0pXq, the set of continuous functions on a metric space X which vanish at infinity

• pτyfqpxq “ fpx ` yq, the translation operator by y

• pXjfqpxq “ xjfpxq, the position operators

vi



CHAPTER 1: INTRODUCTION

Consider a single quantum particle living in a closed quantum system given by the

Hilbert space H. The pure states of this particle are given by wave functions |ψty P H

which evolve in time via the Schrödinger Equation

Bt|ψty “ ´iH|ψty

for some self-adjoint Hamiltonian operator H P SApHq which represents the energy of

the system. When analyzing entangled quantum systems, the associated density matrices

ρt :“ |ψtyxψt| P B1pHq are typically used. A density matrix is any bounded positive

operator ρ satisfying trρ “ 1. For convenience, we will denote ρtpx, yq :“ xx|ψtyxψt|yy

as the kernel of ρt. The equation governing the evolution of density matrices in a closed

quantum system is simply given by the related von Neumann equation

Btρt “ ´irH, ρts, (1)

where here rA,Bs “ AB ´ BA represents the usual commutator. In this document, we

consider a quantum particle restricted to a discrete lattice of points Zd, which amounts to

letting our Hilbert space be H “ ℓ2pZdq. This could simulate the particle being in a rigid

crystalline structure and such models are widely used in modern day literature (See for

example [1], [2], [3]). On its own, the solution ρt of equation (1) will behave ballistically

in the limit t Ñ 8 for many standard Hamiltonian operators, i.e. translation invariant or

periodic operators. That is, for the 2nd position moments given by

xX2
t y :“

ÿ

xPZd

|x|
2ρtpx, xq,

we have the following asymptotic relation:

xX2
t y „ t2

for large times t. Many recent works have shown that the particle’s dynamics will drastically
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change to exhibit diffusion, i.e.

xX2
t y „ t

when subject to some form of random disorder. For instance, [3], [4] showed diffusive prop-

agation for the tight binding Markov-Schrödinger model consisting of a random potential

which fluctuates stochastically in time. In [5] and [6], diffusion was proven for a quantum

particle coupled to a field of bosons having random thermal state in dimensions d ě 3, as

well as a quantum particle coupled to an array of heat baths, respectively. Additionally, it is

conjectured that the Anderson model consisting of a random static potential will similarly

produce diffusion for dimension d ě 3 provided the disorder strength is sufficiently small.

Heuristically, the random potential produces this diffusive effect due to the wave scatter-

ing off of the random background and producing random phases. These phases eventually

build up over time and lead to an overall decoherence of the wave.

Most of the recent works in this area do not consider how the particle couples with its

environment. For example, in the consideration of the particle being trapped in a crystal,

the wave function could interact with free boson gasses in the crystal caused by quantized

vibrations [1]. This situation is a lot more nuanced, though the equations of motion for such

a particle have been well-established in both open quantum theory [7] as well as quantum

information theory [8]. In the thermodynamic limit, the evolution of a one-particle density

matrix taking into account environmental coupling may be approximated by the Lindblad

equation

Btρt “ ´irH, ρts ` g

ˆ

Ψpρtq ´
1

2
tΨ˚

pIq, ρtu

˙

, (2)

where Ψ is some completely positive operator, g ą 0, and tA,Bu “ AB ` BA is the

anti-commutator (See Section 4 for a derivation of this equation). The new term

Lpρtq :“ Ψpρtq ´
1

2
tΨ˚

pIq, ρtu (3)
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in this expression is called the Lindbladian operator, which describes the coupling of the

particle with its environment. A parameter g is introduced in (2) to allow us to control the

strength of this coupling. In [2] and [9], it was shown that Lindbladian interaction induces

diffusive behavior for quantum particles with translation-invariant Hamiltonian operators

similar to the effect of adding a disordered potential. In [1], diffusion was shown for a

model involving the Anderson Hamiltonian and an environmental interaction term similar

to but distinct from a Lindbladian. It is thus natural to wonder whether the Lindbladian

will be sufficient to contribute to diffusive behavior in other contexts as well. The present

document continues this work by proving diffusion for a single quantum particle in an open

quantum system coupled with an environment in the case of a periodic Hamiltonian.
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CHAPTER 2: STATEMENTS OF MAIN RESULTS

For the remainder of this document, we will assume H : B1pℓ2pZdqq Ñ B1pℓ
2pZdqq is

Q-periodic. That is, let Q P MdpZq be an invertible matrix so that tQx : x P Zdu defines a

sublattice of points in Zd. Then, assume the Hamiltonian operator H satisfies rH, τQxs “ 0

for all x P Zd where τx denotes the translation operator by x. The various assumptions

required for the Lindbladian are given in Section 5.3. However, I will outline in general

what we need here.

First, after diagonalizing the Lindbladian via a Fourier transform, we may fiber along

the momentum variable k, which yields

L̂k “ Tk ´ Dk

for Tk an integral operator and Dk a multiplication operator. This is described by some

authors as the gain-loss framework (See [10], [1]) where Tk is the gain term and Dk is

the loss term. At the zero fiber, we must guarantee that the kernel of the Lindbladian is

nondegenerate, which will help in calculations involving the spectrum. For the gain term, we

must assume a local uniform lower bound, and for the loss term, we must assume a uniform

upper and lower bound. Finally, the Lindbladian must abide by reflection invariance, in

order to reflect certain symmetries present in the environment. Some authors [1], [9] may

utilize certain physically realizable assumptions such as detailed balance or a gapping in

the spectrum of the Lindbladian at the zero fiber. However, as we will see later, our

assumptions are sufficient to prove a gapping in the spectrum of the Lindbladian and

Hamiltonian together at the zero fiber.

The main result proved in this document is the following central limit theorem:

Theorem 1. Let H be a Q-periodic Hamiltonian and L a Lindbladian satisfying Assump-

tions 1-4 in Section 5.3. Then, there exists a drift constant v P Rd and a positive definite
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diffusion matrix D “ pDi,jqi,j P MdpCq such that for all initial conditions ρ0 P B1pℓ
2pZdqq,

lim
τÑ8

ÿ

xPZd

e
i 1?

τ
px´τtvq¨Q´1k

ρτtpx, xq “ rtrρ0se
´t

ř

i,j Di,jkikj , (4)

where ρt is a solution of (2). In addition, if the initial condition ρ0 satisfies the regularity

assumption

ÿ

xPZd

|x|
2ρ0px, xq ă 8,

then the drift and diffusion constants are equivalent to:

v “ lim
tÑ8

1

rtrρ0st

ÿ

xPZd

xρtpx, xq, (5)

Di,j “ lim
tÑ8

1

2rtrρ0st

ÿ

xPZd

ppQT
q

´1
px ´ tvqqippQT

q
´1

px ´ tvqqjρtpx, xq. (6)

For Q “ I, this yields the known result of diffusion for translation-invariant Hamiltonian

operators given in [2], [9]. Some authors proving similar central limit theorems assume the

initial condition ρ0 “ δ0 or a zero-drift condition v “ 0 to simplify the calculations. Our

method of proof allows for a generalization of this, as given above.

In order to derive the Lindblad equation of motion (2), one must assume that the

coupling strength with the environment is small. Therefore, of particular interest is the

case 0 ă g ! 1. The method of proof used in this document allows for the diffusion matrix

to be expressed as a function of this parameter, which is an improvement over even the

translation-invariant case in [2], [9]. Assuming a uniform upper bound on the gain term,

as well as an ergodicity assumption, we are able to prove the following result concerning

the asymptotics of the diffusion for small g:

Theorem 2. Let Dpgq be the diffusion matrix in Theorem 1 and suppose L additionally

satisfies Assumptions 5 and 6 in Section 5.3. Then

0 ă lim
gÑ0`

gDpgq ă 8. (7)

That is, Dpgq „ 1
g
for small g. This is consistent with previous results since turning off
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the coupling with the environment will simply lead to ballistic motion.

The rest of this document is organized as follows. In Chapter 4, we provide some

background into the Lindblad equation (2), including a derivation found in various quantum

information theory sources, i.e. [8]. We also discuss Markov jump processes, which are

necessary to fully describe the structure of the Lindbladian. In this chapter, we also provide

an assumption from [11], and show how it is utilized to express the Lindbladian in a simpler

form as is done in [9]. In Chapter 5, we introduce some structure and properties of the

Lindbladian. First, we partially diagonalize the Hamiltonian and Lindbladian operators

using a generalized Fourier transform. This allows us to state the various assumptions

necessary to prove Theorems 1 and 2. We also compute the spectrum of our operators

using results from [12]. Theorems 1 and 2 are proved in Chapter 6, and we discuss in

Chapter 7 some additional research questions related to this work.
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CHAPTER 3: BACKGROUND

In this chapter, we provide some history into the Lindbladian as well as continuous-time

Markov processes, which will be necessary to analyze certain properties of the Lindbladian.

We also state the translation-covariance assumption, and show how this is used to decom-

pose the Lindbladian in a nicer way.

3.1 The Open Quantum System

In an arbitrary open quantum system, the total state space HT is given by a composite

system comprised of a system of interest HS and the system corresponding to the environ-

ment HE. That is, HT “ HS b HE. The goal is to derive the equations of motion for the

system of interest (2). There are two main approaches for deriving equation (2), one of

which comes from open quantum theory, and can be found in various sources such as [13],

[7]. The central idea is to assume the total system HT is a closed quantum system, and

thus its density matrices ρT satisfy (1). In order to determine the evolution equation for

the density matrices ρ in the system of interest, we must trace out the extraneous degrees

of freedom in the environment, i.e. ρ “ trEρT . After using various physical assumptions

such as the system of interest and the environment are noncorrelated for all times, the state

of the environment is thermal for all times, and the so-called rotating wave approximation,

we arrive at the master equation (2). What I present in Section 4.2 is a different approach

from quantum information theory using generators of dynamical semigroups.

3.2 Derivation of the Master Equation

3.2.1 The Schrödinger Picture

In quantum information theory, the evolution equation for density matrices ρt in the
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system of interest HS should be of the form

Btρt “ Gρt

for some time-independent operator G. For our purposes, we shall assume that G is

bounded; however, this assumption was relaxed in [14]. This differential equation is easily

solved as

ρt “ etGρ0, (8)

and we assume that Φt :“ etG is a dynamical semigroup with generator given by G. That

is, Φt : B1pHq Ñ B1pHq is a bounded one-parameter family of operators satisfying Φt`s “

Φt ˝ Φs for all t, s ě 0 and lim
tÑ0`

tr|Φtρ ´ ρ| “ 0 for all ρ P B1pHq. As evidenced by

equation (8) and the fact that density matrices have unit trace, it is reasonable to assume

trpΦtρq “ trρ for all ρ P B1pHq, i.e. Φt is trace-preserving. Furthermore, due to the

composite nature of the problem, we must guarantee positivity not only for the semigroups

acting on the system of interest HS, but for semigroups acting on larger systems containing

HS as a subsystem. In mathematical terms, we must guarantee positivity for the extended

operators Φt b 1n :MnpB1pHqq Ñ MnpB1pHqq given by

Φt b 1npρ b Eijq “ Φtρ b Eij

for all n P N where Eij, 1 ď i, j ď n are matrix units spanning MnpCq. That is, we require

Φt to be completely positive. Thus, this approach amounts to finding an explicit form

for the generator of a completely positive trace-preserving (CPTP) dynamical semigroup

known as a quantum Markov semigroup.

3.2.2 The Heisenberg Picture

Thus far, we have considered everything in the Schrödinger picture; that is, the states

depend on time whereas operators/observables are time-independent. However, most au-
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thors (See for instance [8]) categorize the generators of quantum Markov semigroups in the

Heisenberg picture instead. In this picture, states are time-independent whereas observ-

ables Xt P BpHq are dependent on time. Operators and density matrices are related due

to the following. For any map A : B1pHq Ñ B1pHq in the Schrödinger picture, there is a

corresponding map AT : BpHq Ñ BpHq uniquely defined in the Heisenberg picture by the

relation

trpXApρqq “ trpAT
pXqρq

and vice-versa. In the Heisenberg picture, we wish to categorize the generators of the

semigroups ΦT
t :“ etG

T
. In this space, the condition lim

tÑ0`
tr|Φtρ´ ρ| is replaced with norm-

continuity ; that is, lim
tÑ0`

||ΦT
t ´ 1|| “ 0. The trace-preserving condition is replaced by

ΦT
t pIq “ I, i.e. ΦT

t must be unital. So in the Heisenberg picture, we wish to completely

categorize the generators of completely positive unital dynamical semigroups ΦT
t : BpHq Ñ

BpHq. Related to this categorization arises the concept of a completely dissipative operator.

For a bounded operator L, Lindblad [8] defines the dissipation function DpLq : BpHq ˆ

BpHq Ñ BpHq by

DpL;X, Y q :“ LpX:Y q ´ LpX:
qY ´ X:LpY q.

A bounded operator L is then said to be completely dissipative if the following conditions

hold:

(i) Lp1q “ 0,

(ii) LpX:q “ LpXq: for all X P BpHq, and

(iii) DpL b 1n, X,Xq ě 0 for all X P MnpBpHqq and all n P N.
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3.2.3 Lindblad’s Representation Theorem

In [8], Lindblad produces the following representation theorem for the generators of

completely positive, unital, and norm-continuous dynamical semigroups in the Heisenberg

picture:

Proposition 1 (Lindblad, 1976). Let L : BpHq Ñ BpHq be a bounded map and define

Φt :“ etL. The following are equivalent:

(i) Φt is completely positive, unital, and norm-continuous

(ii) L is completely dissipative

(iii) There exists a completely positive map Ψ and a self-adjoint operator H such that for

all X P BpHq,

LpXq “ irH,Xs ` ΨpXq ´
1

2
tΨpIq, Xu. (9)

Transforming (9) back into the Schrödinger picture will yield the arbitrary form for

a Lindbladian acting on density matrices. Assume GT : BpHq Ñ BpHq is the bounded

generator given in (9) with corresponding completely positive map Ψ˚. Then

trpXGpρqq “ trpGT
pXqρq

“ trpirH,Xsρ ` Ψ˚
pXqρ ´

1

2
tΨ˚

pIq, Xuρq

“ trXp´irH, ρs ` Ψpρq ´
1

2
tΨ˚

pIq, ρuq.

Thus, Gpρq “ ´irH, ρs`Ψpρq´ 1
2
tΨ˚pIq, ρu and the evolution equation for density matrices

ρt in an open quantum system is given by the master equation (2), after introducing the

scaling parameter g.
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3.3 The Translation-Covariance Assumption

As the evolution equation (2) may be decomposed into a purely Hamiltonian part and

a purely Lindbladian part, let us begin by considering these terms separately. For the

Lindbladian operator (3), we may yield a further decomposition using the Choi-Kraus

Theorem given in [15], [16]:

Proposition 2 (Choi/Kraus, 1975). A linear map A : B1pHq Ñ B1pHq is completely

positive if and only if

Aρ “
ÿ

j

AjρA
:

j

for Aj P B1pHq.

Applying this to the completely positive maps Ψ, we may express (3) as

Lρ “
ÿ

j

pVjρV
:

j ´
1

2
tV :

j Vj, ρuq

for Vj P B1pHq. Due to Proposition 1, there exists a corresponding quantum Markov

semigroup Φt : B1pHq Ñ B1pHq given by Φt “ etL. Let us assume that this Markov

semigroup is translation-covariant. That is, for τx the translation operator by x, assume

Φtpτ
˚
x ρτxq “ τ˚

xΦtpρqτx (10)

for every density matrix ρ P B1pHq and every x P Zd. This assumption reflects certain

symmetries present in the environment and is thus a very physically reasonable assumption

to make. Assuming translation-covariance of the semigroup allows us to categorize a certain

class of Lindbladians by utilizing a very helpful theorem from Holevo [11], which I state

here in the Schrödinger picture:

Proposition 3 (Holevo, 1993). Let L be the generator of a translation-covariant trace-
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preserving dynamical semigroup in B1pℓ
2pZdqq. Then

Lρ “ ´irH, ρs `

ż

Td

ÿ

j

pVθLjpθqρLjpθq
˚V ˚

θ ´ tLjpθq
˚Ljpθq, ρuqdθ,

where H P SApℓ2pZdqq satisfies rH, τxs “ 0 for all x P Zd, Vθ is a unitary representation

of Td, Ljpθq are weak-* measureable functions satisfying rLjpθq, τxs “ 0 for all x P Zd, and

the integral

ż

Td

ÿ

j

LjpθqLjpθq
˚

weak-* converges.

Utilizing Proposition 3, our Lindbladian operator may further be decomposed as

Lpρq “

ż

Td

ÿ

j

peiθXLjpθqρLjpθq
˚e´iθX

´ tLjpθq
˚Ljpθq, ρuqdθ

where X represents the position operator. That is, we may express the completely positive

map Ψ in (3) as

Ψpρq “

ż

Td

dθeiθXMθpρqe´iθX (11)

where the operators

Mθpρq :“
ÿ

j

LjpθqρLjpθq
˚

commute with translations. An important result of this decomposition is that the oper-

ators Ψ are also translation-covariant. This yields a very nice structure for the Lindbladian.

3.4 Generators of Markov Jump Processes

In this section, we give some background into continuous-time Markov processes, which

may be found in various sources such as [17], [18]. In particular, we will focus on the specific

Markov process known as a jump process. Jump processes are related to the structure of

the Lindbladian, as will be shown in more detail in Section 5.2. In Chapter 6, we will
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utilize this structure to prove the small g asymptotic result given by Theorem 2.

Let Xt be a continuous-time Markov process on a locally compact metric space with

homogeneous transition functions given by Tt. That is,

ErfpXtq|Fss “ Tt´sfpXsq,

where Ft is the natural filtration pFtq “ pσpXu, u ď tqq. According to the Chapman-

Kolmogorov equation, the family of transition functions tTt : t ě 0u form a dynamical

semigroup (Also see Hille-Yosida theory for more details). Hence we may define the in-

finitesimal generator A of the Markov process in the usual way by

pAfqpxq :“ lim
tÑ0`

1

t
pTtf ´ fq.

The generator of a Markov process is a way to describe how the process moves from point to

point in infinitesimally small increments, and thus it is important to be able to categorize

the process in a meaningful way. In general, generators of Markov processes may be very

complex. However, we may restrict to a specific class of Markov process to be able to

categorize them quite nicely. For instance, if we assume the transition functions act on the

space C0pXq and are contractive (||Tt|| ď 1 @t) and norm-continuous ( lim
tÑ0`

||Ttf ´ f || “

0 @f P C0pXq), the Markov process is called a Feller process. For a Feller process, the

infinitesimal generator may be categorized via the following Proposition by Revuz and Yor

[17]:

Proposition 4. Let Xt be a real-valued Feller process on a locally compact smooth manifold

X. Then the infinitesimal generator A is given by

pAfqpxq “ cpxqfpxq ` bpxq ¨ ∇fpxq `
1

2
div apxq∇fpxq

`

ż

Xztxu

„

fpyq ´ fpxq ´
y ´ x

1 ` |y ´ x|2
¨ ∇fpxq

ȷ

Rpdy|xq,

where Rpdy|xq is a positive conditional Radon measure on Xztxu, apxq is symmetric and

nonnegative, and cpxq ď 0.
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Heuristically, this generator describes a Markov process which moves from a position x

via translation by bpxq, diffuses via a gaussian with covariance apxq, and jumps via Rp¨|xq.

The term cpxq describes the killing probability, allowing for the process to be terminated at

some future time. While this is the most general form for the generator of a Feller process,

we are only interested in the special case where a particle’s movement is governed solely by

jumps, i.e. a pure jump process. In this process, the particle waits an exponential time at

a position x, jumps to a position y instantaneously, then repeats this process, jumping to

a new position. For a pure jump process, the infinitesimal generator will simply be given

by

pAfqpxq “

ż

Xztxu

rfpyq ´ fpxqsRpdy|xq, (12)

where the rate at which the particle jumps from y to x is given by Rpdy|xq.
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CHAPTER 4: LINDBLADIAN STRUCTURE AND ASSUMPTIONS

4.1 Quasi-Momentum Space

Let us now take a Fourier transform and consider our operators in the momentum

representation. We define our Fourier transform on the square-integrable kernel ρtpx, x
1q in

the following way. First, we may split Zd into a finite set of equivalence classes Σ “ Zd{ „

such that for x, y P Zd, x „ y if and only if x ´ y P tQn : n P Zdu. Then for σ, σ1 P Σ,

ρ̂tpp, p
1
qσ,σ1 “

ÿ

xPσ,x1Pσ1

e´ipx¨Q´1p´x1¨Q´1p1qρtpx, x
1
q (13)

where ρ̂tpp, p
1q : T2d Ñ B1pC|Σ|q is now matrix-valued. Applying this transform to the maps

(11) yields

Ψpρ̂tqpp, p1
qσ,σ1 “

ż

Td

dθ
ÿ

xPσ,x1Pσ1

e´ipx¨Q´1pp´Qθq´x1¨Q´1pp1´QθqqMθpρtqpx, x1
q

“

ż

Td

dθM̂θpρtqpp ´ Qθ, p1
´ Qθqσ,σ1 .

Using the specific form for Mθ, we decompose this operator further. We note that since

Ljpθq are translation-invariant, we may define

Ljpθ;x ´ yq :“ xx|Ljpθq|yy

and using this notation,

M̂θpρtqpp, p1
qσ,σ1

“
ÿ

xPσ,x1Pσ1

e´ipx¨Q´1p´x1¨Q´1p1q

|Σ|
ÿ

n,m“1

ÿ

yPσn,y1Pσ1
m

Ljpθ;x ´ yqρtpy, y
1
qLjpθ;x

1
´ y1

q
˚

“

|Σ|
ÿ

n,m“1

ÿ

xPσ´σn

e´ix¨Q´1pLjpθ;xqρ̂tpp, p
1
qσn,σ1

m

ÿ

x1Pσ1´σ1
m

pe´ix1¨Q´1p1

Ljpθ;x
1
qq

˚

“
ÿ

j

pL̂jpθ; pqρ̂tpp, p
1
qL̂jpθ; p

1
q

:
qσ,σ1 ,
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where

L̂jpθ; pqσ,σ1 :“
ÿ

xPσ´σ1

e´ix¨Q´1pLjpθ;xq.

Therefore,

Ψpρ̂tqpp, p1
q “

ż

Td

dθM̂θpp ´ Qθ, p1
´ Qθqrρ̂tpp ´ Qθ, p1

´ Qθqs

for the operators M̂θ given by

M̂θpp, p
1
qrAs :“

ÿ

j

L̂jpθ; pqAL̂jpθ; p
1
q

:.

We then define

ρ̂t;kppq :“ ρ̂t

ˆ

p ´
k

2
, p `

k

2

˙

(14)

where p, k P Td and we think about ρ̂t;k as fibers over ρ̂t, indexed by k P Td. We note that

for the density matrix ρt :“ |ψtyxψt|, we have

p ̂|ψtyxψt|qkppqσ,σ1 “
ÿ

xPσ,x1Pσ1

e´ipx¨Q´1pp´ k
2 q´x1¨Q´1pp` k

2 qqψ˚
t pxqψtpx

1
q

“ ψ̂˚
t

ˆ

p ´
k

2

˙

σ

ψ̂t

ˆ

p `
k

2

˙

σ1

where

ψ̂tppqσ :“
ÿ

xPσ

eix¨Q´1pψtpxq.

Since |ψty P ℓ2pZdq, |ψ̂ty P L2pTd;C|Σ|q. Cauchy-Schwarz then yields

p ̂|ψtyxψt|qk P L1pTd;B1pC|Σ|qq. By extension, we have ρ̂t;k P L1pTd;B1pC|Σ|qq given any

density matrix ρt P B1pℓ
2pZdqq. It will be useful later to define the pairing

xA,By :“ tr

ż

Td

dpAppqBppq (15)

whenever AppqBppq P L1pTd;B1pC|Σ|qq.
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Using this fibering, we may write equation (11) as

Ψpρ̂t;kqppq “

ż

Td

dθM̂θ

ˆ

p ´
k

2
´ Qθ, p `

k

2
´ Qθ

˙

rρ̂t;kpp ´ Qθqs “: pTkρ̂t;kqppq. (16)

Remark: At the k “ 0 fiber, this integral takes on the simple form

pT0Aqppq “

ż

Td

dp1M̂Q´1pp´p1qpp
1, p1

qrApp1
qs.

To compute Ψ˚pIq, we observe:

trpΨ˚
pIqρ̂tpp, p

1
qq

“ trpΨpρ̂tqpp, p1
qq

“

ż

Td

dp

ż

Td

dθ
ÿ

j

trpL̂jpθ; p ´ Qθq
:L̂jpθ; p ´ Qθqρ̂tpp ´ Qθ, p ´ Qθqq

“ tr

ż

Td

dθ
ÿ

j

|L̂jpθ; pq|
2ρ̂tpp, p

1
q,

and so pΨ˚pIqρ̂tqpp, p1q “ Dppqρ̂tpp, p
1q where

Dppq :“

ż

Td

dθ
ÿ

j

|L̂jpθ; pq|
2. (17)

Similarly, pρ̂tΨ
˚pIqqpp, p1q “ ρ̂tpp, p

1qDpp1q. This allows us to write the simplified form of

our Lindblad operator (3) in the momentum representation as

L̂k “ Tk ´ Dk,

where

pDkAqppq “
1

2

ˆ

D

ˆ

p ´
k

2

˙

Appq ` AppqD

ˆ

p `
k

2

˙˙

and Tk is given in (16).

Let us now focus on the Hamiltonian term. In the momentum representation, we note
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that due to the periodicity of the Hamiltonian, pHρtqpx, x1q becomes

pĤρtqpp, p1
qσ,σ1 “

ÿ

xPσ,x1Pσ1

e´ipx¨Q´1p´x1¨Q´1p1q
|Σ|
ÿ

n“1

ÿ

yPσn

Hpx, yqρtpy, x
1
q

“

|Σ|
ÿ

n“1

Ĥppqσ,σn ρ̂tpp, p
1
qσn,σ1 ,

where

Ĥppqσ,γ :“
ÿ

xPσ´γ

e´ix¨Q´1pHpx ` γ, γq. (18)

Similarly,

pρ̂tHqpp, p1
qσ,σ1 “

|Σ|
ÿ

n“1

ρ̂tpp, p
1
qσ,σnĤpp1

qσn,σ1

and therefore applying the Fourier transform to rH, ρtspx, x
1q yields

pJkρ̂t;kqppq :“ Ĥ

ˆ

p ´
k

2

˙

ρ̂t;kppq ´ ρ̂t;kppqĤ

ˆ

p `
k

2

˙

.

Combining this with the Lindblad operator, we may write the evolution equation (2) as

Btρ̂t;k “ ´Gkρ̂t;k (19)

where

Gk “ iJk ´ gpTk ´ Dkq. (20)

4.2 The Jump Process

As our method of proof involves a perturbation argument similar to approaches taken

in [1], [3], and [2], it is natural to consider the k “ 0 fiber. At k “ 0, we have some

additional structure for the Lindbladian that will be very useful in the proof of positivity

for the density matrix D. First, for the translation-invariant case Q “ I, the operators L̂j
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and ρ̂t are no longer matrix-valued, and hence commute. This yields

pL̂0ρ̂tqppq “

ż

Td

dθ
ÿ

j

|L̂jpθ; p ´ θq|
2ρ̂tpp ´ θq ´

ż

Td

dθ
ÿ

j

|L̂jpθ; pq|
2ρ̂tppq.

This is of the form (12) where the rate of jumping from θ to p is given by
ř

j

|L̂jpp´θ; θq|2dθ

and thus L̂0 is the generator for a pure jump process in the translation-invariant case.

However, this is not true for an arbitrary Q. In order to yield this structure for the

Lindbladian, we first must project onto the subspace given by kerJ0.

Lemma 1. Let Π be the projection onto kerJ0. Then ΠL̂0Π is the generator for a jump

process on C|Σ| ˆ Td.

Proof. Since Ĥppq is a |Σ| ˆ |Σ| matrix, we may list the eigenvalues as λ1ppq, ¨ ¨ ¨ , λ|Σ|ppq

with corresponding eigenvectors ψ1ppq, ¨ ¨ ¨ , ψ|Σ|ppq. Denote Eijppq :“ |ψippqyxψjppq| as the

corresponding matrix element in this basis. As the kernel of J0 is the commutant of Ĥ, in

the above framework, we may write that Π is the projection onto diagonal matrices in the

basis tψippqu
|Σ|

i“1, i.e.

pΠAqppq “

|Σ|
ÿ

i“1

AiippqEiippq.

Furthermore, for any matrix Appq,

pΠT0ΠAqppq “
ÿ

j

Ejjppq

ż

Td

dp1M̂Q´1pp´p1qpp
1, p1

qrΠApp1
qsEjjppq

“
ÿ

i,j

ż

Td

dp1Aiipp
1
qxψjppq|M̂Q´1pp´p1qpp

1, p1
qrEiipp

1
qs|ψjppqyEjjppq

and similarly,

pΠD0ΠAqppq “
ÿ

j

Ejjppq
ÿ

i

AiippqpDppqEiippq ` EiippqDppqqEjjppq

“
ÿ

j

Ajjppqxψjppq|Dppq|ψjppqyEjjppq.
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The operator ΠL̂0Π will thus be given by

pΠL̂0ΠAqppq “
ÿ

i,j

"
ż

Td

dp1rppj, pq, pi, p1
qqApi, p1

q ´

ż

Td

dp1rppi, p1
q, pj, pqqApj, pq

*

Ejjppq

(21)

where

rppj, pq, pi, p1
qq :“ xψjppq|M̂Q´1pp´p1qpp

1, p1
qrEiipp

1
qs|ψjppqy

“
ÿ

k

|xψjppq|L̂kpQ´1
pp ´ p1

q; p1
q|ψipp

1
qy|

2
ě 0

and Apj, pq “ Ajjppq. This is again of the form (12) and hence ΠL̂0Π is the genera-

tor for a jump process on C|Σ| ˆ Td with rate of jumping from pi, p1q to pj, pq given by

rppj, pq, pi, p1qqdp1.

4.3 Assumptions

At this point, we make some additional assumptions, which are slightly stronger con-

ditions than are often taken for Lindblad operators of this form (See for instance [1]). We

assume the following:

Assumptions:

1. (Nondegeneracy of the kernel) kerL̂T
0 “ xIy,

2. (Uniform Dissipation at all Momenta) 1
C

ď Dppq ď C for some C ą 0,

3. (Reflection invariance) rL, Rs “ 0 for the reflection operator pRψqpxq “ ψp´xq,

4. (Local Uniform Positivity of the Integral Kernel) There exist constants δ ą 0 and

χ ą 0 such that

M̂Q´1pp´p1qpp
1, p1

qrApp1
qs ě

1

χ
I

for all operators A P L1pTd;B1pC|Σ|qq satisfying App1q ě 0 and trApp1q “ 1 whenever

|p ´ p1| ă δ,
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5. (Uniform Boundedness of the Integral Kernel) There exists a constant χ ą 0 such

that

M̂Q´1pp´p1qpp
1, p1

qrApp1
qs ď χI

for all operators A P L1pTd;B1pC|Σ|qq satisfying App1q ě 0 and trApp1q “ 1 and all

p, p1 P Td,

6. (Ergodicity of ΠL̂0Π) For a.e. p P Td and every function ϕ ě 0 with
ş

Td dpϕppq “ 1,

there exists n P N such that
´

1
ΠD0Π

ΠT0Π
¯n

ϕppq ą 0.

Assumptions 1-4 are needed to prove Theorem 1, and Theorem 2 additionally requires

Assumptions 5 and 6. I now describe these assumptions in detail, as well as some useful

implications of each.

We note that clearly, L̂T
0 I “ 0. The first assumption guarantees that I is in fact the

only equilibrium eigenvector for L̂T
0 . The second assumption is utilized in Lemma 2 to

guarantee a gapping in the spectrum of G0. Looking closer at the third assumption, we

see that the reflection operator R is actually the operator pR̂Akqppqσ,σ1 “ A´kp´pq´σ,´σ1 in

momentum space. Hence the condition rR̂, L̂ks “ 0 yields

´p∇kL̂k|k“0Aqppqσ,σ1 “ pR̂∇kL̂k|k“0Aqp´pq´σ,´σ1

“ p∇kL̂k|k“0R̂Aqp´pq´σ,´σ1

“ p∇kL̂k|k“0Aqppqσ,σ1 .

So the third assumption guarantees

∇kL̂k|k“0 “ 0. (22)

That is, we have zero-drift for a particle governed solely by the Lindbladian.

Let us define the operator

On :“ e´rnpiJ0`gD0qT0e
´rn´1piJ0`gD0qT0 ¨ ¨ ¨T0e

´r0piJ0`gD0q
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for some real numbers r0, ¨ ¨ ¨ , rn ą 0. We remark that

ppiJ0 ` gD0qAqppq “ KppqAppq ` AppqK:
ppq (23)

for

Kppq :“ iĤppq `
g

2
Dppq

is simply a sum of multiplication operators. This implies

pe´tpiJ0`gD0qAqppq “ e´tKppqAppqe´tK:ppq.

Let A P L1pTd;B1pC|Σ|qq satisfy Appq ě 0 for all p P Td and xI, Ay “ 1. Assumption 4 then

yields the following:

pOnAqppq “ pe´rnpiJ0`gD0qT0On´1Aqppq

“ e´rnKppq
pT0On´1Aqppqe´rnK:ppq

“ e´rnKppq

"
ż

Td

dp1M̂Q´1pp´p1qpp1, p1qrpOn´1Aqpp1qs

*

e´rnK:ppq

ě
1

χ
|e´rnKppq

|
2

ż

|p´p1|ăδ

dp1trppOn´1Aqpp1qq.

Due to Gronwall’s Inequality and Assumption 2,

|e´rnKppq
|
2

ě e´Cgrn

and hence,

pOnAqppq ě
1

χ
e´Cgrn

ż

|p´p1|ăδ

dp1trppOn´1Aqpp1qq.

Repeating this argument n times, we have

pOnAqppq ě
|Σ|n´1

χn
e´Cgpr0`¨¨¨`rnq

ż

|p´p1|ăδ

dp1 ¨ ¨ ¨

ż

|pn´1´pn|ăδ

dpntrpAppnqq.

If n is sufficiently large (nδ ą 2π), we will have

ż

|p´p1|ăδ

dp1 ¨ ¨ ¨

ż

|pn´1´pn|ăδ

dpntrpAppnqq ě Cn,δ

ż

Td

trpAppqq “ Cn,δ
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for some constant Cn,δ ą 0 and so pOnAqppq ą 0 for all p P Td.

Let us now define the family of operators xptq :“ etpiJ0`gD0qe´tG0 for t ą 0. For this

family, we have

d

dt
xptq “ getpiJ0`gD0qT0e

´tpiJ0`gD0qxptq.

Hence,

xptq “

8
ÿ

n“0

gn
ż t

0

ds1

ż s1

0

ds2 ¨ ¨ ¨

ż sn´1

0

dsne
s1piJ0`gD0qT0e

ps2´s1qpiJ0`gD0qT0 ¨ ¨ ¨T0e
´snpiJ0`gD0q

for some n P N and some constants s1, ¨ ¨ ¨ , sn ą 0. This finally implies

pe´tG0Aqppq “

8
ÿ

n“0

gn
ż t

0

ds1

ż s1

0

ds2 ¨ ¨ ¨

ż sn´1

0

dsnpOnAqppq

where the real numbers r0, ¨ ¨ ¨ , rn in On are defined by r0 “ sn, r1 “ sn´1 ´ sn, ¨ ¨ ¨ ,

rn´1 “ s1 ´ s2, rn “ t ´ s1. So Assumption 4 guarantees that

pe´tG0Aqppq ą 0 @ A P L1
pTd;B1pC|Σ|

qq satisfying

Appq ě 0 @ p P Td and xI, Ay “ 1. (24)

The fifth assumption will be utilized in Section 6.2 to bound the invariant state of G.

Finally, the sixth assumption is utilized to guarantee ergodicity of the underlying jump for

the jump process ΠL̂0Π.

4.4 The Spectrum

In order to compute the spectrum of G0, we must utilize a result from Deimling [12]

and Schaefer [19] on the eigenvalues on the boundary of the spectral radius. For a Banach

space X, we define a total cone K Ă X to be a closed convex set such that λK Ă K for

all λ ě 0, K X p´Kq “ t0u, and K ´ K “ X. The dual cone of K is then defined as

K˚ :“ tx˚
P X˚ : Rex˚

pxq ě 0 on Ku.
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An operator T P BpXq is considered to be quasicompact if T n “ T1 ` T2 for some n P N,

T1 is bounded with rpT1q ă prpT qqn and T2 is compact. Here, rpT q “ sup
λPσpT q

|λ| denotes the

spectral radius of T .

Proposition 5 (Theorem 19.5 in Deimling, 1985 and Proposition 5.1 in Schaefer, 1974).

Let X be a Banach space, K Ă X a total cone, and T P BpXq a positive quasicompact

operator satisfying that for each x P Kzt0u, there exists n P N such that x˚pT nxq ą 0 for

all x˚ P K˚zt0u. Then for rpT q the spectral radius of T , we have the following:

(a) rpT q ą 0 and rpT q is a simple eigenvalue with a positive eigenvector v such that

x˚pvq ą 0 for all x˚ P K˚zt0u.

(b) |λ| ă rpT q for all λ P σpT qztrpT qu.

We can then utilize Proposition 5 to prove the following Lemma regarding the spectrum

of our operator at the zero fiber:

Lemma 2. The operator G0 defined in (20) has spectrum given by

σpG0q “ t0u Y Σ0,

where Σ0 Ď tRez ě δgu for some δg ą 0. Furthermore, 0 is a nondegenerate eigenvalue of

G0 for which the corresponding eigenvector Feq satisfies Feqppq ą 0 for a.e. p P Td.

Proof. Due to (20) we have σesspG0q “ σesspiJ0 ` gD0q since T0 is compact and essential

spectrum is invariant under compact perturbations. Due to (23) and Lemma 4, we have

σesspiJ0 ` gD0q “
ď

p

σpKppq ¨ ` ¨ K:
ppqq

Ď
ď

p

`

σpKppq¨q ` σp¨K:
ppqq

˘

.

Assumption 2 yields

ď

p

σpKppq¨q,
ď

p

σp¨K:
ppqq Ď

!

z P C : Rez ě
g

2C

)
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Re z

Im z

δg

(a) σpG0q

Re z

Im z

(b) σpe´G0q

Figure 1: A visualization of the spectrum of G0. In (a), σpG0q is shown with isolated
eigenvalue at 0 and the remaining spectrum included in the right half plane after a gap δg.
In (b), σpe´G0q is shown with isolated eigenvalue at 1 and the remaining spectrum included
in the unit circle.

and so σesspG0q Ď
␣

z P C : Rez ě
g
C

(

. The remaining spectrum will be discrete spectrum.

As suggested in Figure 1, we will compute the discrete spectrum of G0 by consider-

ing the related operator e´G0 and utilizing Proposition 5. This operator will act on ele-

ments of L1pTd;SApC|Σ|qq. Therefore, we will consider the total cone given by K “ tA P

L1pTd;SApC|Σ|qq : Appq ě 0 for a.e. p P Tdu. We note that e´G0 is certainly a positive

operator. To see that it is quasicompact, we first realize that σpG0q Ď tz P C : Rez ě 0u

implies σpe´G0q Ď tz P C : |z| ď 1u. Then due to our above observations about the essential

spectrum, we additionally have σesspe
´G0q Ď tz P C : |z| ď cu for some c ă 1. Define the

counter-clockwise contour Γ such that |z| ă 1 for all z P Γ, σesspe
´G0q Ă int Γ, and Γ does

not intersect any eigenvalues of e´G0 . Then for

T1 :“
1

2πi

ş

Γ
e´z 1

z´G0
dz and T2 :“ e´G0 ´ T1,

T1 will be bounded and T2 will be compact since it is finite rank. Additionally, rpT1q ă 1 “

rpe´G0q due to the fact that G:

0I “ 0. Thus, e´G0 is quasicompact. Due to (24), we may

apply Proposition 5 to the operator e´G0 . This yields 1 is a simple eigenvalue, e´G0Feq “ Feq

for some strictly positive equilibrium eigenvector Feq, and |λ| ă 1 for all eigenvalues λ ‰ 1.

This is equivalent to G:

0 having a one-dimensional kernel given by xIy. This then implies
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that G0 has a one-dimensional kernel as well. Furthermore, the rest of the eigenvalues of

e´G:
0 will lie strictly inside B1p0q. Hence the rest of the discrete spectrum of G0 will lie in

tRez ě cgu for some constant cg ą 0. So Lemma 2 holds with δg :“ min
`

g
C
, cg

˘

.

This Lemma states that there is a unique density matrix in the kernel of G0. We shall

label this equilibrium eigenvector Feq. Since 0 is an isolated point of the spectrum, we may

define the Riesz projection onto this eigenvector in the normal way as

P0 “
1

2πi

ż

Γ

1

z ´ G0

dz “ FeqxI, ¨y, (25)

where Γ is a counterclockwise contour in ρpG0q whose interior contains the eigenvalue 0 and

no other point of σpG0q, and the pairing x¨, ¨y is given in (15).

Re z

Im z

δg{4 Epkq

3δg{4

Figure 2: A visualization of the spectrum of Gk for sufficiently small k, which consists of a
simple isolated eigenvalue Epkq P tz P C : |z| ď δg{4u and the remaining spectrum in some
set Σk Ď tRez ě 3δg{4u.

We also note that the spectrum of Gk moves continuously with k and hence for k

sufficiently small,

σpGkq “ tEpkqu Y Σk

where Epkq is some isolated nondegenerate eigenvalue in tz P C : |z| ď δg{4u and

Σk Ď tRez ě 3δg{4u (See Figure 2). Since Epkq is isolated and nondegenerate, we may con-

sequently define the one-dimensional Riesz projection onto the corresponding eigenvector
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as

Pk “
1

2πi

ż

Γ

1

z ´ Gk

dz, (26)

where Γ is a counterclockwise contour in ρpGkq whose interior contains the eigenvalue Epkq

and no other point of σpGkq.

4.5 A Generalized Dissipation Condition

Let us now return to the operator GT
0 acting on observables X P BpL2pTdqq in the

Heisenberg picture. Due to Proposition 1, GT
0 will be completely dissipative. In this

section, we prove a generalized version of dissipation using the results from Lemma 2.

First, note that GT
0 “ iJ0 ´ gL̂T

0 where

L̂T
0X “ ΨpXq ´

1

2
tΨpIq, Xu

for every X P L2pTd;BpC|Σ|qq and

ΨpXqppq “

ż

Td

dθM̂T
θ pp, pqrXpp ` Qθqs “

ż

Td

dθ
ÿ

j

L̂jpθ; pq
:Xpp ` QθqL̂jpθ; pq.

Due to Proposition 2 in Lindblad [8], we may further decompose this operator as

ΨpXqppq “

ż

Td

dθW :

θ ppqpXpp ` Qθq b 1qWθppq

for some functions W : Td ˆTd Ñ BpC|Σ| bKq and some auxiliary Hilbert space K. Recall

the dissipation function DpGT
0 q : L2pTd;BpC|Σ|qq ˆL2pTd;BpC|Σ|qq Ñ L2pTd;BpC|Σ|qq given

by

DpGT
0 ;X, Y q :“ GT

0 pX:Y q ´ GT
0 pX:

qY ´ X:GT
0 pY q.

Using our decomposition of Ψ, we observe that

DpGT
0 ;Xppq, Xppqq “ ´

ż

Td

dθ|pXpp ` Qθq b 1qWθppq ´ WθppqXppq|
2

ď 0.
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For a function F P L2pTd;BpC|Σ|qq, define the following inner product on L2pTd;BpC|Σ|qq:

xX, Y yF :“
1

2
tr

ż

Td

F ppqtX:
ppq, Y ppqu.

We then have for Feq the equilibrium eigenfunction of G0,

RexX,GT
0 XyFeq “ ´

1

4
tr

ż

Td

dpFeqppqrDpGT
0 ;Xppq, Xppqq ` DpGT

0 ;X
:
ppq, X:

ppqqs

“
1

4
tr

ż

Td

dpFeqppq

ż

Td

dθ
“

|pXpp ` Qθq b 1qWθppq ´ WθppqXppq|
2

` |pX:
pp ` Qθq b 1qWθppq ´ WθppqX:

ppq|
2
‰

.

Hence, since Feqppq ą 0 for a.e. p P Td by Lemma 2, RexX,GT
0 XyFeq “ 0 if and only if

pXpp ` Qθq b 1qWθppq “ WθppqXppq and pX:pp ` Qθq b 1qWθppq “ WθppqX:ppq for a.e.

p, θ P Td. Multiplying byWθppq: and integrating, these imply ΨpXqppq “ ΨpIqppqXppq and

ΨpXqppq “ XppqΨpIqppq for a.e. p P Td. Hence pL̂T
0Xqppq “ 0 and so by Assumption 1,

X “ I and pGT
0 Xqppq “ 0. This string of implications yields the observation that

pGT
0 Xqppq ‰ 0 for a.e. p P Td

ñ RexX,GT
0 XyFeq ą 0. (27)
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CHAPTER 5: DIFFUSIVE PROPAGATION FOR MASTER EQUATION

WITH PERIODIC HAMILTONIAN

5.1 Proof of Main Result

We now have everything we need to prove Theorem 1.

Proof. To prove the central limit theorem (4), we note that

tr

ż

Td

dpρ̂t;kppq “

ż

Td

dp
ÿ

σPΣ

ÿ

x,x1Pσ

e´ipx¨Q´1pp´ k
2 q´x1¨Q´1pp` k

2 qqρtpx, x
1
q “

ÿ

x

eix¨Q´1kρtpx, xq

and hence,

ÿ

x

e
i 1?

τ
px´τtvq¨Q´1k

ρτtpx, xq “ e
´i 1?

τ
τtv¨Q´1k

tr

ż

Td

dpρ̂τt;k{
?
τ ppq.

where the drift constant v is to be chosen later. Since ρ̂t;k “ e´tGk ρ̂0;k, this then gives that

this term is equivalent to

e
´i 1?

τ
τtv¨Q´1k

tr

ż

Td

dp
`

e´τtGk{
?
τ ρ̂0;k{

?
τ

˘

ppq.

Consider the Riesz projection Pk{
?
τ as defined in (26). Introducing the projections Pk{

?
τ

and 1 ´ Pk{
?
τ after the semigroup yields

ÿ

x

e
i 1?

τ
px´τtvq¨Q´1k

ρτtpx, xq

“ e
´i 1?

τ
τtv¨Q´1k

„

xI, ρ̂0;k{
?
τye´τtEpk{

?
τq

` tr

ż

Td

dp
`

e´τtGk{
?
τ p1 ´ Pk{

?
τ qρ̂0;k{

?
τ

˘

ppq

ȷ

.

Let us first deal with the second term in this expression. Define a contour Γ surrounding

σpGk{
?
τ qztEpk{

?
τqu such that ReΓ ě δg{2 (which is possible for sufficiently large τ , say

τ ě 1
ε
for some ε ą 0). As Gk{

?
τ is bounded, we may additionally choose Γ to be bounded,

and

sup
τě 1

ε
,zPΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

z ´ Gk{
?
τ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“:M ă 8.
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We then have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e
´i 1?

τ
τtv¨Q´1k

tr

ż

Td

dp
`

e´τtGk{
?
τ p1 ´ Pk{

?
τ qρ̂0;k{

?
τ

˘

ppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tr

ż

Td

dp

ż

Γ

dze´τtz 1

z ´ Gk{
?
τ

ρ̂0;k{
?
τ ppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
τě 1

ε
,zPΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

z ´ Gk{
?
τ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

||ρ̂0;k{
?
τ || |Γ|e

´τt inf
zPΓ

Rez

ď M |Γ|xI, ρ̂0;k{
?
τye´τtδg{2.

We note that

xI, ρ̂0;k{
?
τy “

ÿ

x

e
i 1?

τ
x¨Q´1k

ρ0px, xq Ñ trρ0

as τ Ñ 8 and hence this term will vanish in the large τ limit. For the first term, we use

the Taylor expansion

Epk{
?
τq “ Ep0q `

1
?
τ

ÿ

i

BiEp0qki `
1

2τ

ÿ

i,j

BiBjEp0qkikj ` o

ˆ

1

τ

˙

.

Since Ep0q is the isolated eigenvalue of G0, Lemma 2 gives Ep0q “ 0. Using Feynman-

Hellman,

BiEp0q “ xI, BiGk|k“0Feqy.

Hence, if we choose the drift constant to be

v “ iQT
xI,∇kGk|k“0Feqy, (28)

then e
´i 1?

τ
τtv¨Q´1k

will cancel with e´τt 1
τ

ř

i BiEp0qki . In this case,

ÿ

x

e
i 1?

τ
px´τtvq¨Q´1k

ρτtpx, xq “

˜

ÿ

x

e
i 1?

τ
x¨Q´1k

ρ0px, xq

¸

e
´ t

2

ř

i,j
BiBjEp0qkikj

` op1q.

Again using the fact that xI, ρ̂0;k{
?
τy Ñ trρ0 and choosing the diffusion matrix D to be

defined as

Di,j “
1

2
BiBjEp0q, (29)
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this yields

lim
τÑ8

ÿ

x

e
i 1?

τ
px´tvq¨Q´1k

ρτtpx, xq “ rtrρ0se
´t

ř

i,j Di,jkikj

as desired.

Now let us assume the initial condition ρ0 satisfies
ř

xPZd

|x|2ρ0px, xq ă 8. The solution

to the evolution equation (19) is given by ρ̂t;k “ e´tGk ρ̂0;k and so we have the following for

the right-hand side of (5):

1

t

ÿ

xPZd

xρtpx, xq “ ´
i

t
QT tr

ż

Td

dp∇kρ̂t;kppq|k“0

“ ´
i

t
QT tr

ż

Td

dp∇kpe´tGk ρ̂0;kqppq|k“0.

After using the formula for the derivative of a semigroup and using the fact that e´tG:

kI “ I

due to conservation of quantum probabilities, we have

1

t

ÿ

xPZd

xρtpx, xq “
i

t
QT tr

ż

Td

dp

ż t

0

ds∇kGk|k“0e
´sG0 ρ̂0;0ppq ´

i

t
QT tr

ż

Td

p∇kρ̂0;0qppq.

The second term in this expression trivially vanishes in the large t limit. For the first term,

we insert the Riesz projections P0 and 1 ´ P0 after the semigroup to yield the two terms

i

t
QT tr

ż

Td

dp

ż t

0

ds∇kGk|k“0FeqppqxI, ρ̂0;0y `
i

t
QT tr

ż

Td

dp

ż t

0

ds∇kGk|k“0e
´sG0p1´P0qρ̂0;0ppq.

For the projection off of P0, we may draw a bounded contour Γ around σpG0qzt0u such that

ReΓ ě
δg
2
. Hence

i

t
QT tr

ż

Td

dp

ż t

0

ds∇kGk|k“0e
´sG0p1 ´ P0qρ̂0;0ppq

“
i

t
QT tr

ż

Td

dp

ż t

0

ds∇kGk|k“0
1

2πi

ż

Γ

dze´sz 1

z ´ G0

ρ̂0;0ppq

“ iQT tr

ż

Td

dp∇kGk|k“0
1

2πi

ż

Γ

1

tz
p1 ´ e´tz

q
1

z ´ G0

ρ̂0;0ppq.

This will vanish in the large t limit since 1
tz

p1´e´tzq Ñ 0 as t Ñ 8 for Rez ą 0. Therefore,

lim
tÑ8

1

t

ÿ

xPZd

xρtpx, xq “ iQT tr

ż

Td

dp∇kGk|k“0FeqppqxI, ρ̂0;0y “ iQT
rtrρ0sxI,∇kGk|k“0Feqy.
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So v “ lim
tÑ8

1
rtrρ0st

ř

xPZd

xρtpx, xq due to our definition of the drift constant (28).

We perform a similar analysis in calculating the expression (6) for the diffusion matrix

D. We observe:

1

2t

ÿ

xPZd

ppQT
q

´1
px ´ tvqqippQT

q
´1

px ´ tvqqjρtpx, xq

“ ´
1

2t
tr

ż

Td

dppBi ´ itppQT
q

´1vqiqpBj ´ itppQT
q

´1vqjqρ̂t;kppq|k“0

“ ´
1

2t
tr

ż

Td

dprBiBj ´ itppQT
q

´1vqiBj ´ itppQT
q

´1vqjBi

´ t2ppQT
q

´1vqippQT
q

´1vqjspe
´tGk ρ̂0;kqppq|k“0.

After using the formula for the derivative of a semigroup and using the fact that e´tG:

kI “ I

due to conservation of quantum probabilities, we have

1

2t

ÿ

xPZd

ppQT
q

´1xqippQT
q

´1xqjρtpx, xq “

7
ÿ

n“1

Nnptq

where

N1ptq “ ´
1

2t
tr

ż

Td

dppBiBj ρ̂0;0qppq,

N2ptq “ ´
1

2t
tr

ż

Td

dp

ż t

0

ds
␣

BiGk|k“0e
´sG0pBj ρ̂0;0qppq ` BjGk|k“0e

´sG0pBiρ̂0;0qppq
(

,

N3ptq “ ´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

BiGk|k“0e
´ps´rqG0BjGk|k“0e

´rG0 ρ̂0;0ppq

` BjGk|k“0e
´ps´rqG0BiGk|k“0e

´rG0 ρ̂0;0ppq
(

,

N4ptq “
1

2t
tr

ż

Td

dp

ż t

0

dsBiBjGk|k“0e
´sG0 ρ̂0;0ppq,

N5ptq “
1

2
tr

ż

Td

dp
␣

ippQT
q

´1vqipBj ρ̂0;0qppq ` ippQT
q

´1vqjpBiρ̂0;0qppq
(

,

N6ptq “
1

2
tr

ż

Td

dp

ż t

0

ds
␣

ippQT
q

´1vqiBjGk|k“0e
´sG0 ρ̂0;0ppq

`ippQT
q

´1vqjBiGk|k“0e
´sG0 ρ̂0;0ppq

(

, and

N7ptq “
t

2
ppQT

q
´1vqippQT

q
´1vqjxI, ρ̂0;0y.

We first note that lim
tÑ8

N1ptq “ 0 so this first term is negligible in the large time limit. Let
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us now consider projecting onto and off of the eigenspace xFeqy using the Riesz projection

P0 given in (25). Introducing P0 ` p1 ´ P0q after every semigroup in the above expression

yields the following. For the second term, we have

N2ptq “ ´
1

2t
tr

ż

Td

dp

ż t

0

ds
␣

BiGk|k“0e
´sG0p1 ´ P0qpBj ρ̂0;0qppq

`BjGk|k“0e
´sG0p1 ´ P0qpBiρ̂0;0qppq

(

´
1

2

␣

ippQT
q

´1vqixI, Bj ρ̂0;0y ` ippQT
q

´1vqjxI, Biρ̂0;0y
(

,

the second part of which simply cancels with N5ptq. For the first part of this term, we use

the fact that off of the equilibrium eigenvalue, we may draw a contour Γ enclosing the rest

of the spectrum of G0 such that ReΓ ě C ą 0 as per Lemma 2. This yields

N2ptq ` N5ptq “ ´
1

2t
tr

ż

Td

dp

ż t

0

ds

"

BiGk|k“0
1

2πi

ż

Γ

e´sz 1

z ´ G0

pBj ρ̂0;0qppq

`BjGk|k“0
1

2πi

ż

Γ

e´sz 1

z ´ G0

pBiρ̂0;0qppq

*

“ ´
1

2t
tr

ż

Td

dp

"

BiGk|k“0
1

2πi

ż

Γ

1

z
p1 ´ e´tz

q
1

z ´ G0

pBj ρ̂0;0qppq

`BjGk|k“0
1

2πi

ż

Γ

1

z
p1 ´ e´tz

q
1

z ´ G0

pBiρ̂0;0qppq

*

.

Since ReΓ ě C ą 0, lim
tÑ8

1
tz

p1 ´ e´tzq “ 0 for z P Γ. Hence this term vanishes as well for

t Ñ 8. For the fourth term, we note that

N4ptq “
1

2t
tr

ż

Td

dp

ż t

0

dsBiBjGk|k“0e
´sG0p1 ´ P0qρ̂0;0ppq

`
1

2
tr

ż

Td

dpBiBjGk|k“0FeqppqxI, ρ̂0;0y.

In a very similar manner to the previous calculation, the first part of this term vanishes as
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t Ñ 8. For N6ptq, another similar calculation yields

N6ptq “
1

2
tr

ż

Td

dp

ż t

0

ds
␣

ippQT
q

´1vqiBjGk|k“0e
´sG0p1 ´ P0qρ̂0;0ppq

`ippQT
q

´1vqjBiGk|k“0e
´sG0p1 ´ P0qρ̂0;0ppq

(

´ tppQT
q

´1vqippQT
q

´1vqjxI, ρ̂0;0y.

Due to the lack of a t in the denominator, the first part of this term will not vanish as

t Ñ 8. In fact, the first part of this term will tend to

1

2
tr

ż

Td

dptippQT
q

´1vqiBjGk|k“0G´1
0 p1 ´ P0qρ̂0;0ppq

` ippQT
q

´1vqjBiGk|k“0G´1
0 p1 ´ P0qρ̂0;0ppqu.

Finally, for N3ptq, applying P0 to both semigroups yields

´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

BiGk|k“0e
´ps´rqG0P0BjGk|k“0e

´rG0P0ρ̂0;0ppq

`BjGk|k“0e
´ps´rqG0P0BiGk|k“0e

´rG0P0ρ̂0;0ppq
(

“ ´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr tBiGk|k“0FeqppqxI, BjGk|k“0Feqy

`BjGk|k“0FeqppqxI, BiGk|k“0Feqyu xI, ρ̂0;0y

“ ´
1

2t

␣

ippQT
q

´1vqi ¨ ippQT
q

´1vqj ` ippQT
q

´1vqj ¨ ippQT
q

´1vqi
( 1

2
t2xI, ρ̂0;0y

“
t

2
ppQT

q
´1vqippQT

q
´1vqjxI, ρ̂0;0y.

This will fully cancel with N7ptq and the second part of N6ptq. For the remainder of the
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terms in N3ptq, we again use the contour Γ. We observe that

´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

BiGk|k“0e
´ps´rqG0P0BjGk|k“0e

´rG0p1 ´ P0qρ̂0;0ppq

`BjGk|k“0e
´ps´rqG0P0BiGk|k“0e

´rG0p1 ´ P0qρ̂0;0ppq
(

“ ´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

BiGk|k“0FeqppqxI, BjGk|k“0e
´rG0p1 ´ P0qρ̂0;0y

`BjGk|k“0FeqppqxI, BiGk|k“0e
´rG0p1 ´ P0qρ̂0;0y

(

“ ´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

ippQT
q

´1vqiBjGk|k“0e
´rG0p1 ´ P0qρ̂0;0ppq

`ippQT
q

´1vqjBiGk|k“0e
´rG0p1 ´ P0qρ̂0;0ppq

(

Ñ ´
1

2
tr

ż

Td

dp
␣

ippQT
q

´1vqiBjGk|k“0G´1
0 p1 ´ P0qρ̂0;0ppq

`ippQT
q

´1vqjBiGk|k“0G´1
0 p1 ´ P0qρ̂0;0ppq

(

.

This precisely cancels with the first part of N6ptq as shown above. Similarly, placing the

projections in the reverse order for N3ptq gives

´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

BiGk|k“0e
´ps´rqG0p1 ´ P0qBjGk|k“0e

´rG0P0ρ̂0;0ppq

`BjGk|k“0e
´ps´rqG0p1 ´ P0qBiGk|k“0e

´rG0P0ρ̂0;0ppq
(

Ñ ´
1

2
tr

ż

Td

dp
␣

BiGk|k“0G´1
0 p1 ´ P0qBjGk|k“0Feqppq

`BjGk|k“0G´1
0 p1 ´ P0qBiGk|k“0Feqppq

(

xI, ρ̂0;0y.

Finally, performing the projection 1´P0 on both semigroups in N3ptq requires two contours

35



Γ and Γ1, each with strictly positive real part and such that Γ X Γ1 ‰ H. We then have

´
1

2t
tr

ż

Td

dp

ż t

0

ds

ż s

0

dr
␣

BiGk|k“0e
´ps´rqG0p1 ´ P0qBjGk|k“0e

´rG0p1 ´ P0qρ̂0;0ppq

`BjGk|k“0e
´ps´rqG0p1 ´ P0qBiGk|k“0e

´rG0p1 ´ P0qρ̂0;0ppq
(

“ ´
1

2t
tr

ż

Td

dp

"

BiGk|k“0
1

2πi

ż

Γ

dz
1

2πi

ż

Γ1

dz1

1

z1 ´ z

ˆ

1

tz
p1 ´ e´tz

q ´
1

tz1
p1 ´ e´tz1

q

˙

1

z ´ G0

BjGk|k“0
1

z1 ´ G0

ρ̂0;0ppq

` BjGk|k“0
1

2πi

ż

Γ

dz
1

2πi

ż

Γ1

dz1

1

z1 ´ z

ˆ

1

tz
p1 ´ e´tz

q ´
1

tz1
p1 ´ e´tz1

q

˙

1

z ´ G0

BiGk|k“0
1

z1 ´ G0

ρ̂0;0ppq

*

Ñ 0.

Putting all terms Nnptq together and taking the limit as t Ñ 8 then gives the following

expression for the right-hand side of (6):

lim
tÑ8

1

2rtrρ0st

ÿ

xPZd

ppQT
q

´1
px ´ tvqqippQT

q
´1

px ´ tvqqjρtpx, xq

“ ´
1

2
tr

ż

Td

dpBiGk|k“0G´1
0 p1 ´ P0qBjGk|k“0Feqppq

´
1

2
tr

ż

Td

dpBjGk|k“0G´1
0 p1 ´ P0qBiGk|k“0Feqppq (30)

`
1

2
tr

ż

Td

dpBiBjGk|k“0Feqppq.

Using second-order perturbation theory, we have

BiBjEp0q “ xI, BiBjGk|k“0Feqy ` xI, BiGk|k“0G´1
0 p1 ´ P0qBjGk|k“0Feqy

` xI, BjGk|k“0G´1
0 p1 ´ P0qBiGk|k“0Feqy

and hence due to our definition of the diffusion matrix (29),

Di,j “
1

2
BiBjEp0q “ lim

tÑ8

1

2rtrρ0st

ÿ

xPZd

ppQT
q

´1
px ´ tvqqippQT

q
´1

px ´ tvqqjρtpx, xq.

It is clear that the diffusion matrix D is symmetric. We wish to further show that this
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matrix is positive definite. To show positivity for the final term in (30), let us consider

a solution ρ̂t;k of the evolution equation (19) with initial condition ρ̂0;k “ Feq. That is,

ρ̂t;k “ e´tGkFeq. Similar to the above analysis, we have for z P Cd,

0 ď
1

2t

ÿ

xPZd

ρtpx, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ppQT
q

´1xqizi

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

2t

ÿ

i,j

ÿ

xPZd

ppQT
q

´1xqippQT
q

´1xqjρtpx, xqz˚
i zj

“ ´
1

2t

ÿ

i,j

tr

ż

Td

dpBiBjpe
´tGkFeq ´ Feqqppq|k“0z

˚
i zj.

As e´tGk is a dynamical semigroup, lim
tÑ0

e´tGkFeq´Feq

t
“ ´Gk. Hence taking a limit as t Ñ 0

of the above expression yields

1

2

ÿ

i,j

tr

ż

Td

dpBiBjGk|k“0Feqppqz˚
i zj ě 0.

To show positivity for the first two terms in (30), we note that due to (22), the expression

may be simplified using the modified inner product introduced in Section 5.5. We observe:

1

2
tr

ż

Td

dpBiJk|k“0G´1
0 p1 ´ P0qBjJk|k“0Feqppq

`
1

2
tr

ż

Td

dpBjJk|k“0G´1
0 p1 ´ P0qBiJk|k“0Feqppq

“
1

2
tr

ż

Td

dppBiĤppqG´1
0 p1 ´ P0qpBjĤFeqqppq ` BiĤppqG´1

0 p1 ´ P0qpFeqBjĤqppqq

`
1

2
tr

ż

Td

dppBjĤppqG´1
0 p1 ´ P0qpBiĤFeqqppq ` BjĤppqG´1

0 p1 ´ P0qpFeqBiĤqppqq

“ RexBjĤ, pGT
0 q

´1
p1 ´ P0qBiĤyFeq

` RexBiĤ, pGT
0 q

´1
p1 ´ P0qBjĤyFeq .

Therefore, for z P Cdzt0u,

Rexz,Dzy ě 2Rex
ÿ

i

ziBiĤ, pGT
0 q

´1
p1 ´ P0q

ÿ

i

ziBiĤyFeq

“ 2RexΦ,GT
0 p1 ´ P0qΦyFeq
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where Φ :“
ř

i

zipGT
0 q´1BiĤ. Due to (27), this expression will be strictly positive and so D

is positive definite.

5.2 The Small g Limit

We wish to show the diffusion is O
´

1
g

¯

in the small g limit as per Theorem 2. This

requires us to first analyze the limit of the equilibrium eigenvector Feq.

Lemma 3. The equilibrium eigenvector Feq for G0 converges weakly as g Ñ 0 to the

equilibrium eigenvector for ΠL̂0Π, where Π is the projection onto ker J0. Furthermore,

this eigenvector is strictly positive.

Proof. First, we must guarantee the existence of w-lim
gÑ0

Feq. To do so requires a uniform

bound on ||Feq||2, which guarantees we may pass to a weakly convergent subsequence. Since

Feq P ker G0, (20) yields

Feq “

ˆ

D0 `
i

g
J0

˙´1

T0Feq. (31)

Since

ˆ

D0 `
i

g
J0

˙

Appq “

ˆ

1

2
Dppq `

i

g
Ĥppq

˙

Appq ` Appq

ˆ

1

2
Dppq ´

i

g
Ĥppq

˙

is a sum of multiplication operators, (31) becomes

Feq “

ż 8

0

dte´tp 1
2
Dppq` i

g
ĤppqqpT0Feqqppqe´tp 1

2
Dppq´ i

g
Ĥppqq.

Due to Gronwall’s inequality and Assumption 2, we have ||e´tp 1
2
Dppq˘ i

g
Ĥppqq|| ď e´ 1

2C
t, and

hence

||Feq||2 ď

ż 8

0

dt||e´tp 1
2
Dppq` i

g
Ĥppqq|| ||pT0Feqqppq||2||e

´tp 1
2
Dppq´ i

g
Ĥppqq||

ď

ż 8

0

dte´ 1
C
t
||pT0Feqqppq||2

ď C

ż

Td

dp1
||M̂Q´1pp´p1qpp

1, p1
qrFeqpp

1
qs||2.
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Due to Lemma 2, we may apply Assumption 5 to bound this kernel to yield

||Feq||2 ď Cχ

ż

Td

dp1
||I||2trFeqpp

1
q “ Cχ|Σ|

1{2.

Hence ||Feq||2 is uniformly bounded and a certain subsequence of Feq converges weakly as

g Ñ 0 to some matrix F 0
eq. This implies Feq converges weakly as well and it must also

converge to F 0
eq.

Due to Lemma 6, taking the weak limit of (31) as g Ñ 0 yields

F 0
eq “ ΠpΠD0Πq

´1ΠT0F
0
eq (32)

where Π is the projection onto ker J0. Hence F
0
eq is an equilibrium eigenvector for ΠL̂0Π.

Due to Lemma 1, F 0
eq will be nonnegative, as it is the equilibrium eigenvector for the

generator of a jump process. In addition, F 0
eq ‰ 0 since xI, Feqy “ 1 for all g implies

xI, F 0
eqy “ 1 as well. Therefore, due to Assumption 4 (using a suitable normalization of

F 0
eq), F

0
eq will in fact be strictly positive.

Lemma 3 shows that Feq converges weakly to F 0
eq satisfying F

0
eqppq “

|Σ|
ř

i“1

wippqEiippq for

some wippq and the matrix elements Eijppq “ |ψippqyxψjppq| for the basis tψippqu
|Σ|

i“1 of Ĥppq

given in the proof of Lemma 1. Utilizing Corollary 1 in Appendix C, we can now prove

Theorem 2.

Proof. To begin, consider expression (30). To leading order in g, the diffusion will be

Di,j “
1

2
tr

ż

Td

dpBiJk|k“0piJ0 ´ gL̂0q
´1

BjJk|k“0Feqppq

`
1

2
tr

ż

Td

dpBjJk|k“0piJ0 ´ gL̂0q
´1

BiJk|k“0Feqppq ` Op1q.

Multiplying by g and taking the limit g Ñ 0` using Corollary 1 yields

gDi,j Ñ ´
1

2
tr

ż

Td

dpΠBiJ0|k“0pΠL̂0Πq
´1ΠBjJk|k“0F

0
eq

´
1

2
tr

ż

Td

dpΠBjJ0|k“0pΠL̂0Πq
´1ΠBiJk|k“0F

0
eq,
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where Π is the projection onto kerJ0 and F 0
eq “ lim

gÑ0
Feq as in the proof of Lemma 3. For

an arbitrary function F ppq, we calculate

pΠBjJk|k“0F qppq “ ´
1

2

|Σ|
ÿ

i“1

EiippqpBjĤppqF ppq ` F ppqBjĤppqqEiippq.

In particular, this yields

pΠBjJk|k“0F
0
eqqppq “ ´

|Σ|
ÿ

i“1

wippqxψippq|BjĤppq|ψippqyEiippq.

Let z P Cdzt0u. If we denote Φppq :“
|Σ|
ř

i“1

xψippq|
ř

j

BjĤppqzj|ψippqyEiippq, we will have

lim
gÑ0`

Rexz, gDzy “ ´RexΦ, pΠL̂0Πq
´1ΦF 0

eqy

“ ´RexΦF 0
eq, pΠL̂0ΠF

0
eqq

´1ΦF 0
eqy

“ ´xΦF 0
eq, ppΠL̂0ΠF

0
eqq

:
q

´1RepΠL̂0ΠF
0
eqqpΠL̂0ΠF

0
eqq

´1ΦF 0
eqy

“ ´RexpΠL̂0ΠF
0
eqq

´1ΦF 0
eq,ΠL̂0ΠF

0
eqpΠL̂0ΠF

0
eqq

´1ΦF 0
eqy.

Due to the proof of Lemma 3, ΠL̂0Π is the generator for a jump process with a unique

positive invariant state given by F 0
eq. Hence Lemma 5 applies and this term will be strictly

positive. Hence Dpgq “ O
´

1
g

¯

.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

A quantum particle’s dynamics are seemingly governed solely by its interaction with

the environment in the case of a Lindblad master equation. Indeed, [9] and [2] showed

diffusion was present in this context for a translation-invariant Hamiltonian. This document

showed that in the more general Q-periodic Hamiltonian context, diffusive propagation also

occurred. In [1], diffusion was shown for an Anderson Hamiltonian (though the Lindbladian

used in that paper was not the generator of a completely positive semigroup). In each case,

the presence of a Lindbladian caused the dynamics of the particle to exhibit diffusion. It

is then natural to wonder whether this behavior occurs for other Hamiltonians as well.

For instance, consider the Anderson model (2) whose Hamiltonian operator is given by

Hω “ ´∆ ` λVω (33)

where the potentials Vω are diagonal operators with ω given by i.i.d. random variables and

the parameter λ measures the strength of the disorder. We should also suspect diffusion to

be present for this Hamiltonian in the context of Lindbladian environmental interaction.

However, one would expect the disorder to affect the asymptotics of the diffusion for small

g, as the g “ 0 case should yield localization for large enough disorder. Thus we make the

following conjecture.

Conjecture 1. Let ρt be a solution of (2) with initial condition ρ0 P B1pℓ
2pZdqq and

g ą 0. If Hω satisfies (33) with λ sufficiently large, then the quantum particle whose density

matrix is given by ρt exhibits diffusive propagation with diffusion matrix Dpgq satisfying

Dpgq “ Opgq for small g.

A particularly interesting subcase of the one-dimensional Anderson model is the random

dimer model. In this model, the random variables ωpxq for x P Z are chosen from the set

t´1, 1u with the additional requirement that ωp2xq “ ωp2x ` 1q for every x P Z. That is,

the random variables are chosen in dimer pairs. This particular case of the Anderson model
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is interesting, since it was shown that (without Lindbladian interaction) the dynamics of

the quantum particle change depending on the value of λ. For instance, the particle’s

dynamics will be localized as with the usual Anderson model for λ ą 1, yet diffusive for

λ “ 1 and superdiffusive for 0 ă λ ă 1 [20], [21]. This leads us to the following conjecture.

Conjecture 2. Let ρt be a solution of (2) with initial condition ρ0 P B1pℓ
2pZdqq and g ą 0.

If Hω is the random dimer Hamiltonian, then the quantum particle whose density matrix is

given by ρt exhibits diffusive propagation with diffusion matrix Dpgq. For small g, we have

the following asymptotics:

• If 0 ď λ ď 1, then Dpgq “ Opg´1`2λq

• If λ ą 1, then Dpgq “ Opgq.
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APPENDIX A: A SPECTRUM RESULT FOR COMMUTING OPERATORS

Lemma 4. Let A and B be bounded operators on a Banach space with rA,Bs “ 0. Then

σpA ` Bq Ď σpAq ` σpBq.

Proof. We first note that rA,Bs “ 0 implies rpA´zq´1, pB´wq´1s “ 0 for all z P ρpAq, w P

ρpBq since

rpA ´ zq
´1, pB ´ wq

´1
s “ pA ´ zq

´1
pB ´ wq

´1
rA ´ z,B ´ wspB ´ wq

´1
pA ´ zq

´1
“ 0.

Let z R σpAq ` σpBq so that σpAq and z ´ σpBq are two disjoint compact sets. We may

thus define a bounded counterclockwise contour Γ enclosing σpAq such that intΓ contains

no part of z ´ σpBq. Using this contour, we define an operator

Φ :“
1

2πi

ż

Γ

dwpw ` B ´ zq
´1

pw ´ Aq
´1

which will be bounded since distpΓ, σpAqq, distpΓ, z ´ σpBqq ą 0. Since the resolvents of A

and B commute,

pA ` B ´ zqΦ “
1

2πi

ż

Γ

dwpA ´ wqpw ` B ´ zq
´1

pw ´ Aq
´1

`
1

2πi

ż

Γ

dwpB ` w ´ zqpw ` B ´ zq
´1

pw ´ Aq
´1

“ ´
1

2πi

ż

Γ

dwpw ` B ´ zq
´1

`
1

2πi

ż

Γ

dwpw ´ Aq
´1

“ 0 ` I.

So Φ “ pA ` B ´ zq´1 and since Φ is bounded, z P ρpA ` Bq.
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APPENDIX B: NEGATIVITY OF A JUMP PROCESS

Lemma 5. Suppose L is the generator for a jump process on a compact metric space X

with nonnegative jump rate rpx, yqdy, i.e.

pLfqpxq “

ż

X

dy rpx, yqfpyq ´

ż

X

dy rpy, xqfpxq “: pKfqpxq ´ Dpxqfpxq.

Also, suppose for a.e. x P X, 1
C

ď Dpxq ď C for some C ą 0 and let L have a unique

nonnegative invariant state w. Assume that for a.e. x P X and every nonnegative function

ϕ with
ş

X
ϕpxqdx “ 1, there exists n P N such that pKnϕqpxq ą 0. Then for all f ‰ constant

a.e.,

´Rexf,Lpwfqy ą 0.

Proof. We first observe that the adjoint operator will be given by

pL:fqpxq “

ż

X

rpy, xqpfpyq ´ fpxqqdy.

We then have since Lw “ 0,

´Rexf,Lpwfqy “ ´
1

2
Rexf,Lpwfqy ´

1

2
RexL:f, pwfqy

“ ´
1

2
Re

ż

X

ż

X

dxdy f˚
pxqrrpx, yqwpyqfpyq ´ rpy, xqwpxqfpxqs

´
1

2
Re

ż

X

ż

X

dxdy rpy, xqrf˚
pyq ´ f˚

pxqswpxqfpxq

“
1

2
Re

ż

X

ż

X

dxdy rpx, yqwpyqr|fpxq|
2

´ 2f˚
pxqfpyq ` |fpyq|

2
s

“
1

2

ż

X

ż

X

dxdy rpx, yqwpyq|fpxq ´ fpyq|
2.

This integral is clearly nonngative. Since w is an invariant state for L, we will have

wpxq “

ˆ

1

D
K

˙

wpxq “

ˆ

1

D
K

˙n

wpxq ě
1

Cn
pKnwqpxq

for each n P N and a.e. x P X. Using a suitable normalization of w, this implies w ą 0

a.e. By way of contradiction, suppose ´Rexf,Lpwfqy “ 0. Then for a.e. x, y P X with
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rpx, yq ą 0, we have fpxq “ fpyq. However, our assumption yields

ż

X

dy1 ¨ ¨ ¨

ż

X

dyn´1

ż

X

dyrpx, y1qrpy1, y2q ¨ ¨ ¨ rpyn´2, yn´1qrpyn´1, yqϕpyq ą 0

for a.e. x P X and every function ϕ ě 0 with
ş

X
ϕpxqdx “ 1. Hence there exists a positive

measure set E Ď Xn´1 such that

rpx, y1q, rpy1, y2q, ¨ ¨ ¨ , rpyn´2, yn´1q, rpyn´1, yq ą 0

for a.e. x, y P X and a.e. py1, ¨ ¨ ¨ , ynq P E. Therefore, for a.e. x, y P X and a.e.

py1, ¨ ¨ ¨ , ynq P E,

fpxq “ fpy1q “ fpy2q “ ¨ ¨ ¨ “ fpyn´2q “ fpyn´1q “ fpyq

and f “ constant a.e., a contradiction.
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APPENDIX C: A GENERALIZED LIMIT FOR RESOLVENTS

In [1], the following limit result was proved for resolvents of a particular form:

Proposition 6 (Fröhlich/Schenker, 2016). Let H be a Hilbert space. Suppose A is a normal

operator on H with ReA ě 0 and B is a bounded operator on H with ReB ě c ą 0. Then

if Π denotes the projection onto the kernel of A,

lim
λÑ8

xϕ, pλA ` Bq
´1ψyH “ xΠϕ, pΠBΠq

´1ΠψyranΠ

for all ϕ, ψ P H.

This Proposition, while elegant, has a couple of drawbacks. For one, it requires that

A be normal. Also, it does not hold up to compact perturbations of B. What we prove

below is a slightly stronger generalization of this Proposition using the concept of dilation

spaces given in [22].

Lemma 6. Let H be a Hilbert space. Let A and B be operators on H with ReA ě 0,

ReB ě c ą 0 and B bounded. Then if w-limλÑ8 ψλ “ ψ P H,

lim
λÑ8

xϕ, pλA ` Bq
´1ψλyH “ xΠϕ, pΠBΠq

´1ΠψyranΠ

for any ϕ P H, where Π denotes the projection onto the kernel of A.

Proof. Let z P C be such that Rez ą 0 and consider the operator F pzq :“ pλA ` zq´1 for

some fixed λ ą 0. As this is an operator-valued Herglotz function with Rexϕ, F pzqϕy ě 0,

there exists a positive operator-valued measure M such that

F pzq “

ż

1

iλt ` z
dMptq.

Based on results in [22], there exists a dilation space K Ą H and a minimal dilation N of

M onto K where N is a projection-valued measure on the real line. Furthermore, if P is

the projection of K onto H, then since 1
iλt`z

is bounded,

ż

1

iλt ` z
dMptq “ P

ż

1

iλt ` z
dNptqP.
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Since N is a projection-valued measure on R, the spectral theorem dictates that H :“
ş

tdNptq defines a self-adjoint operator. Hence by spectral mapping,

F pzq “ P piλH ` zq
´1P.

Now consider the operator pλA`B ` zq´1. Since B is bounded, a Taylor expansion yields

pλA ` B ` zq
´1

“ F pzq

8
ÿ

n“0

p´BF pzqq
n

“ P piλH ` zq
´1

8
ÿ

n“0

p´PBP piλH ` zq
´1

q
nP

“ P piλH ` PBP ` zq
´1P

“ P piλH ` P pB ´ cqP ` z ` cq´1P.

Since ReA ą 0 and ReB ě c ą 0, the limit z Ñ 0 may be taken on the left-hand side.

Similarly, since c ą 0, RepiHq “ 0, and ReP pB ´ cqP ě 0, we may take a limit as z Ñ 0

on the right-hand side as well to give

pλA ` Bq
´1

“ P piλH ` P pB ´ cqP ` cq´1P.

Denote hλ :“ piλH`P pB´cqP`cq´1Pψλ. We note that RepiHq “ 0 and ReP pB´cqP`c ě

c ą 0. Hence hλ is bounded since

c||hλ||
2

ď Re xhλ, Pψλy ď ||hλ|| ||Pψλ||

implies ||hλ|| ď c´1||Pψλ||. Then since Pψλ “ iλHhλ ` rP pB ´ cqP ` cshλ, this gives

|λ| ||iHhλ|| ď p1 ` c´1
||P pB ´ cqP ` c||q||Pψλ||.

Now since ψλ á ψ, Banach-Steinhaus yields Pψλ is uniformly bounded. Therefore, pI ´

ΠHqhλ á 0 where ΠH is the projection onto the kernel of H. Since iH is normal, ΠH

commutes with iH. Hence

ΠHrP pB ´ cqP ` cshλ “ ΠHPψλ.
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Furthermore, since ΠHrP pB ´ cqP ` csΠH is boundedly invertible, we have

pΠHrP pB ´ cqP ` csΠHq
´1ΠHPψλ á pΠHrP pB ´ cqP ` csΠHq

´1ΠHPψ.

These together imply that ΠHhλ á pΠHrP pB ´ cqP ` csΠHq´1ΠHPψ. That is,

lim
λÑ8

xϕ, P pλiH`P pB ´ cqP ` cq´1PψλyH

“ xΠHPϕ, pΠHrP pB ´ cqP ` csΠHq
´1ΠHPψyranΠHP

for all ϕ P H. Now the kernel of A corresponds with the atoms of the operator-valued

measure M . These clearly correspond to the atoms of the projection-valued measure N ,

which then further correspond with the kernel of H. Hence the kernel of H coincides with

the kernel of A and we may replace ΠH by Π. Finally, since P is a projection from K onto

H, P may be removed from the final expression.

Corollary 1. Let H be a Hilbert space. Let A, B P BpHq with ReA ě 0 and ReB ě c ą 0,

and let K be compact in H. Then if w-limλÑ8 ψλ “ ψ P H and kerΠpB `KqΠ “ kerΠ for

Π the projection onto the kernel of A,

lim
λÑ8

xϕ, pλA ` B ` Kq
´1ψλyH “ xΠϕ, pΠpB ` KqΠq

´1ΠψyranΠ

for any ϕ P H.

Proof. For an arbitrary compact K, we may write K “ K 1 ` F where ReK 1 ą ´c and F

has finite rank. As RepB`K 1q ě c1 ą 0 for some constant c1, we may thus assume without

loss of generality that K “ F has finite rank.

Let us write

pλA ` B ` Kq
´1

“ pλA ` Bq
´1

´ pλA ` Bq
´1KpλA ` B ` Kq

´1

or

SλpλA ` B ` Kq
´1

“ pλA ` Bq
´1
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where

Sλ :“ I ` pλA ` Bq
´1K.

Consider the decomposition H “ H1 ‘ H2 where H1 “ ranP and H2 “ ranp1 ´ P q for P

the projection onto pkerKqK. This decomposition yields

Sλ “

¨

˚

˝

1 ´ P p1 ´ P qpλA ` Bq´1K

0 P ` P pλA ` Bq´1K

˛

‹

‚

.

Assuming for the moment that P ` P pλA ` Bq´1K is invertible, Schur complement gives

S´1
λ “

¨

˚

˝

1 ´ P ´p1 ´ P qpλA ` Bq´1KpP ` P pλA ` Bq´1Kq´1

0 pP ` P pλA ` Bq´1Kq´1

˛

‹

‚

. (34)

We observe that P ` P pλA ` Bq´1K will be invertible if and only if P pλA ` Bq´1K does

not have a nontrivial eigenvector corresponding to the eigenvalue -1.

By Lemma 6, pλA ` Bq´1K converges weakly to ΠpΠBΠq´1ΠK as λ Ñ 8. Then

since K is compact and P is the projection onto ranK, P pλA`Bq´1K actually converges

to PΠpΠBΠq´1ΠK in norm. Hence taking λ Ñ 8 in the eigenvalue equation P pλA `

Bq´1Kψ “ ´ψ yields ΠpΠBΠq´1ΠKψ “ ´ψ for ψ P ranP . In fact, this equation reveals

that ψ P ranΠ as well and so pΠBΠq´1ΠKΠψ “ ´ψ for ψ P ranP X ranΠ. That is,

ΠpB ` KqΠψ “ 0. Since we have assumed kerΠpB ` KqΠ “ kerΠ, ψ “ 0 and therefore,

P ` PΠpΠBΠq´1ΠK is invertible. Using perturbation theory and norm convergence, we

may conclude that P ` P pλA ` Bq´1K is invertible for sufficiently large λ and so Sλ is

also invertible with inverse given in block form by (34). Then since pλA ` B ` Kq´1 “
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S´1
λ pλA ` Bq´1, we have for any ϕ, ψλ P H with ψλ á ψ,

xϕ, pλA ` B ` Kq
´1ψλy “

xp1 ´ P qϕ, p1 ´ P qpλA ` Bq
´1ψλy

´ xp1 ´ P qϕ, p1 ´ P qpλA ` Bq
´1KpP ` P pλA ` Bq

´1Kq
´1P pλA ` Bq

´1ψλy

` xPϕ, pP ` P pλA ` Bq
´1Kq

´1P pλA ` Bq
´1ψλy.

Since P is the projection onto a finite rank operator, we may decompose each projection P

in the above expression into a finite sum. Then utilizing Lemma 6, the limit of each term

should exist as λ Ñ 8. In particular, we should have

lim
λÑ8

xϕ, pλA ` B ` Kq
´1ψλy “

xp1 ´ P qϕ, p1 ´ P qΠpΠBΠq
´1Πψy

´ xp1 ´ P qϕ, p1 ´ P qΠpΠBΠq
´1ΠKpP ` PΠpΠBΠq

´1ΠKq
´1PΠpΠBΠq

´1Πψy

` xPϕ, pP ` PΠpΠBΠq
´1ΠKq

´1PΠpΠBΠq
´1Πψy

“ xϕ, S´1
8 ΠpΠBΠq

´1Πψy

where

S´1
8 :“

¨

˚

˝

1 ´ P p1 ´ P qΠpΠBΠq´1ΠK

0 P ` PΠpΠBΠq´1ΠK

˛

‹

‚

.

Working backwards, this yields S8 “ I ` ΠpΠBΠq´1ΠK and therefore, we have

lim
λÑ8

xϕ, pλA ` B ` Kq
´1ψλy “ xϕ, pI ` ΠpΠBΠq

´1ΠKq
´1ΠpΠBΠq

´1Πψy.

By decomposing the space H into H “ ranp1 ´ Πq ‘ ranΠ, this may be simplified to

lim
λÑ8

xϕ, pλA ` B ` Kq
´1ψλy “ xΠϕ, pΠpB ` KqΠq

´1Πψy

as desired.
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