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ABSTRACT

A quantum particle restricted to a lattice of points has been well studied in many
different contexts. In the absence of considering the interaction with its environment, the
particle simply undergoes ballistic transport for many suitable Hamiltonian operators. The
evolution becomes much more complicated when considering environmental interaction,
which leads to the so-called Lindblad master equation. When considering this master
equation, the Lindbladian term dominates the dynamics of the particle, leading to diffusive
propagation. In this document, we prove diffusion is indeed present in the context of
a periodic Hamiltonian. Additionally, we show that the diffusion constant is inversely

proportional to the particles’ coupling strength with its environment.
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GLOSSARY OF TERMS

B(H)={A:H — H:||A|ly < 0}, the set of bounded operators in a Hilbert space
H

Bi(H) ={A:H — H:trA < oo}, the set of operators in H with finite trace
My(A), the set of d x d matrices with entries in A

SA(H), the set of self-adjoint operators on a Hilbert space H

Co(X), the set of continuous functions on a metric space X which vanish at infinity
(1,f)(x) = f(x +y), the translation operator by y

(X, f)(z) = z;f(z), the position operators
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CHAPTER 1: INTRODUCTION

Consider a single quantum particle living in a closed quantum system given by the
Hilbert space H. The pure states of this particle are given by wave functions |¢;) € H

which evolve in time via the Schrodinger Equation

Oty = —iH[p)

for some self-adjoint Hamiltonian operator H € SA(H) which represents the energy of
the system. When analyzing entangled quantum systems, the associated density matrices
pr = | )| € Bi(H) are typically used. A density matriz is any bounded positive
operator p satisfying trp = 1. For convenience, we will denote p,(z,y) = (x| )|y
as the kernel of p;. The equation governing the evolution of density matrices in a closed

quantum system is simply given by the related von Neumann equation

atpt = _Z.[H7 pt]v (1>

where here [A, B] = AB — BA represents the usual commutator. In this document, we
consider a quantum particle restricted to a discrete lattice of points Z¢, which amounts to
letting our Hilbert space be H = ¢2(Z%). This could simulate the particle being in a rigid
crystalline structure and such models are widely used in modern day literature (See for
example [1], [2], [3]). On its own, the solution p; of equation (1) will behave ballistically
in the limit ¢ — oo for many standard Hamiltonian operators, i.e. translation invariant or
periodic operators. That is, for the 2nd position moments given by

<Xt2> = Z |$‘2pt($,l‘),

xeZd

we have the following asymptotic relation:
(XP) ~ ¢

for large times t. Many recent works have shown that the particle’s dynamics will drastically



change to exhibit diffusion, i.e.
(X)) ~t

when subject to some form of random disorder. For instance, [3], [4] showed diffusive prop-
agation for the tight binding Markov-Schrédinger model consisting of a random potential
which fluctuates stochastically in time. In [5] and [6], diffusion was proven for a quantum
particle coupled to a field of bosons having random thermal state in dimensions d > 3, as
well as a quantum particle coupled to an array of heat baths, respectively. Additionally, it is
conjectured that the Anderson model consisting of a random static potential will similarly
produce diffusion for dimension d > 3 provided the disorder strength is sufficiently small.
Heuristically, the random potential produces this diffusive effect due to the wave scatter-
ing off of the random background and producing random phases. These phases eventually
build up over time and lead to an overall decoherence of the wave.

Most of the recent works in this area do not consider how the particle couples with its
environment. For example, in the consideration of the particle being trapped in a crystal,
the wave function could interact with free boson gasses in the crystal caused by quantized
vibrations [1]. This situation is a lot more nuanced, though the equations of motion for such
a particle have been well-established in both open quantum theory [7] as well as quantum
information theory [8]. In the thermodynamic limit, the evolution of a one-particle density
matrix taking into account environmental coupling may be approximated by the Lindblad

equation

o = =il + 9 (W) = (D).}, ©)

where U is some completely positive operator, g > 0, and {A, B} = AB + BA is the

anti-commutator (See Section 4 for a derivation of this equation). The new term

L(p) 2= W(p) — (V" (1), o) Q



in this expression is called the Lindbladian operator, which describes the coupling of the
particle with its environment. A parameter g is introduced in (2) to allow us to control the
strength of this coupling. In [2] and [9], it was shown that Lindbladian interaction induces
diffusive behavior for quantum particles with translation-invariant Hamiltonian operators
similar to the effect of adding a disordered potential. In [1], diffusion was shown for a
model involving the Anderson Hamiltonian and an environmental interaction term similar
to but distinct from a Lindbladian. It is thus natural to wonder whether the Lindbladian
will be sufficient to contribute to diffusive behavior in other contexts as well. The present
document continues this work by proving diffusion for a single quantum particle in an open

quantum system coupled with an environment in the case of a periodic Hamiltonian.



CHAPTER 2: STATEMENTS OF MAIN RESULTS

For the remainder of this document, we will assume H : By ((*(Z%)) — By ((*(Z%)) is
Q-periodic. That is, let Q € My(Z) be an invertible matrix so that {Qx : x € Z?} defines a
sublattice of points in Z¢. Then, assume the Hamiltonian operator H satisfies [H, 7g.] = 0
for all x € Z¢ where 7, denotes the translation operator by z. The various assumptions
required for the Lindbladian are given in Section 5.3. However, I will outline in general
what we need here.

First, after diagonalizing the Lindbladian via a Fourier transform, we may fiber along

the momentum variable k, which yields
Ly =T, Dy

for T}, an integral operator and Dj; a multiplication operator. This is described by some
authors as the gain-loss framework (See [10], [1]) where T} is the gain term and Dy is
the loss term. At the zero fiber, we must guarantee that the kernel of the Lindbladian is
nondegenerate, which will help in calculations involving the spectrum. For the gain term, we
must assume a local uniform lower bound, and for the loss term, we must assume a uniform
upper and lower bound. Finally, the Lindbladian must abide by reflection invariance, in
order to reflect certain symmetries present in the environment. Some authors [1], [9] may
utilize certain physically realizable assumptions such as detailed balance or a gapping in
the spectrum of the Lindbladian at the zero fiber. However, as we will see later, our
assumptions are sufficient to prove a gapping in the spectrum of the Lindbladian and
Hamiltonian together at the zero fiber.

The main result proved in this document is the following central limit theorem:

Theorem 1. Let H be a Q-periodic Hamiltonian and L a Lindbladian satisfying Assump-

tions 1-4 in Section 5.3. Then, there exists a drift constant v € R? and a positive definite



diffusion matriz D = (D, ;); j € My(C) such that for all initial conditions po € By ((*(Z%)),

lim Z ei%(xqw)@flkpﬂ(x,x) = [trpgletZia Diikiki (4)

T—00
xeZd

where p; 1s a solution of (2). In addition, if the initial condition py satisfies the reqularity
assumption

Z |z po(z, 1) < oo,

xreZd

then the drift and diffusion constants are equivalent to:

v = lim 1 Z xpi(x, ), (5)

tg»m>[trp0]t =

Dy = i e 3 (@) @ = 1)(QT) o = 1)) (6)

xeZd

For () = I, this yields the known result of diffusion for translation-invariant Hamiltonian
operators given in [2], [9]. Some authors proving similar central limit theorems assume the
initial condition py = dp or a zero-drift condition v = 0 to simplify the calculations. Our
method of proof allows for a generalization of this, as given above.

In order to derive the Lindblad equation of motion (2), one must assume that the
coupling strength with the environment is small. Therefore, of particular interest is the
case 0 < g < 1. The method of proof used in this document allows for the diffusion matrix
to be expressed as a function of this parameter, which is an improvement over even the
translation-invariant case in [2], [9]. Assuming a uniform upper bound on the gain term,
as well as an ergodicity assumption, we are able to prove the following result concerning

the asymptotics of the diffusion for small g:

Theorem 2. Let D(g) be the diffusion matriz in Theorem 1 and suppose L additionally

satisfies Assumptions &5 and 6 in Section 5.3. Then

0 < lim ¢gD(g) < o0. (7)

g—07

That is, D(g) ~ é for small g. This is consistent with previous results since turning off
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the coupling with the environment will simply lead to ballistic motion.

The rest of this document is organized as follows. In Chapter 4, we provide some
background into the Lindblad equation (2), including a derivation found in various quantum
information theory sources, i.e. [8]. We also discuss Markov jump processes, which are
necessary to fully describe the structure of the Lindbladian. In this chapter, we also provide
an assumption from [11], and show how it is utilized to express the Lindbladian in a simpler
form as is done in [9]. In Chapter 5, we introduce some structure and properties of the
Lindbladian. First, we partially diagonalize the Hamiltonian and Lindbladian operators
using a generalized Fourier transform. This allows us to state the various assumptions
necessary to prove Theorems 1 and 2. We also compute the spectrum of our operators
using results from [12]. Theorems 1 and 2 are proved in Chapter 6, and we discuss in

Chapter 7 some additional research questions related to this work.



CHAPTER 3: BACKGROUND

In this chapter, we provide some history into the Lindbladian as well as continuous-time
Markov processes, which will be necessary to analyze certain properties of the Lindbladian.
We also state the translation-covariance assumption, and show how this is used to decom-

pose the Lindbladian in a nicer way.

3.1 The Open Quantum System

In an arbitrary open quantum system, the total state space Hr is given by a composite
system comprised of a system of interest Hg and the system corresponding to the environ-
ment Hg. That is, Hy = Hs ® Hg. The goal is to derive the equations of motion for the
system of interest (2). There are two main approaches for deriving equation (2), one of
which comes from open quantum theory, and can be found in various sources such as [13],
[7]. The central idea is to assume the total system Hrp is a closed quantum system, and
thus its density matrices pr satisfy (1). In order to determine the evolution equation for
the density matrices p in the system of interest, we must trace out the extraneous degrees
of freedom in the environment, i.e. p = trgpy. After using various physical assumptions
such as the system of interest and the environment are noncorrelated for all times, the state
of the environment is thermal for all times, and the so-called rotating wave approximation,
we arrive at the master equation (2). What I present in Section 4.2 is a different approach

from quantum information theory using generators of dynamical semigroups.

3.2 Derivation of the Master Equation
3.2.1 The Schrodinger Picture

In quantum information theory, the evolution equation for density matrices p; in the



system of interest Hg should be of the form

atpt = gpt

for some time-independent operator G. For our purposes, we shall assume that G is
bounded; however, this assumption was relaxed in [14]. This differential equation is easily

solved as

pr = € po, (8)

and we assume that ®, := €'Y is a dynamical semigroup with generator given by G. That
is, &, : B1(H) — Bi(H) is a bounded one-parameter family of operators satisfying &, =
d, 0 & for all t,s = 0 and tl_i)ré1+ tr|®;p — p| = 0 for all p € Bi(H). As evidenced by
equation (8) and the fact that density matrices have unit trace, it is reasonable to assume
tr(Pp) = trp for all p € By(H), i.e. Py is trace-preserving. Furthermore, due to the
composite nature of the problem, we must guarantee positivity not only for the semigroups
acting on the system of interest Hg, but for semigroups acting on larger systems containing
Hs as a subsystem. In mathematical terms, we must guarantee positivity for the extended

operators ®; ® 1,, : M, (B1(H)) — M, (B1(H)) given by
O, R1L,(p®Eij) =p® Ej;

for all n € N where E;;, 1 <,7 < n are matrix units spanning M, (C). That is, we require
®, to be completely positive. Thus, this approach amounts to finding an explicit form
for the generator of a completely positive trace-preserving (CPTP) dynamical semigroup

known as a quantum Markov semigroup.
3.2.2 The Heisenberg Picture

Thus far, we have considered everything in the Schrodinger picture; that is, the states

depend on time whereas operators/observables are time-independent. However, most au-



thors (See for instance [8]) categorize the generators of quantum Markov semigroups in the
Heisenberg picture instead. In this picture, states are time-independent whereas observ-
ables X; € B(H) are dependent on time. Operators and density matrices are related due
to the following. For any map A : By(#H) — Bi(H) in the Schrodinger picture, there is a
corresponding map AT : B(H) — B(H) uniquely defined in the Heisenberg picture by the

relation
tr(XA(p)) = tr(A"(X)p)

and vice-versa. In the Heisenberg picture, we wish to categorize the generators of the
semigroups ®7 := ¢'9". In this space, the condition tl_i,%i tr|®yp — p| is replaced with norm-
continuity; that is, tl_i)rgl+ ||®F — 1|| = 0. The trace-preserving condition is replaced by
®T(I) = I, i.e. ®I must be unital. So in the Heisenberg picture, we wish to completely
categorize the generators of completely positive unital dynamical semigroups ®7 : B(H) —
B(H). Related to this categorization arises the concept of a completely dissipative operator.

For a bounded operator L, Lindblad [8] defines the dissipation function D(L) : B(H) x
B(H) — B(H) by

D(L; X,Y) := L(XY) - L(X")YY — XTL(Y).

A bounded operator L is then said to be completely dissipative if the following conditions

hold:

(il) L(XT) = L(X)T for all X € B(H), and

(ili) D(L®1,,X,X) >0 for all X € M,(B(H)) and all n € N.



3.2.3 Lindblad’s Representation Theorem

In [8], Lindblad produces the following representation theorem for the generators of
completely positive, unital, and norm-continuous dynamical semigroups in the Heisenberg

picture:

Proposition 1 (Lindblad, 1976). Let L : B(H) — B(H) be a bounded map and define

P, := etr. The following are equivalent:
(i) ®; is completely positive, unital, and norm-continuous
(ii) L is completely dissipative

(11i) There exists a completely positive map V and a self-adjoint operator H such that for
all X € B(H),

L(X) =i[H,X]+\I/(X)—%{\IJ(I),X}. 9)

Transforming (9) back into the Schrodinger picture will yield the arbitrary form for
a Lindbladian acting on density matrices. Assume G : B(H) — B(H) is the bounded

generator given in (9) with corresponding completely positive map ¥*. Then
tr(XG(p)) = tr(G" (X)p)
= tr(i[H, X]p + ¥ (X)p - S{¥"(1), X}p)
. R
= teX (—i[H, p] + ¥(p) = AT (1), p})-
Thus, G(p) = —i[H, p]+ ¥ (p) — 2{T*(I), p} and the evolution equation for density matrices

p¢ in an open quantum system is given by the master equation (2), after introducing the

scaling parameter g.

10



3.3 The Translation-Covariance Assumption

As the evolution equation (2) may be decomposed into a purely Hamiltonian part and
a purely Lindbladian part, let us begin by considering these terms separately. For the
Lindbladian operator (3), we may yield a further decomposition using the Choi-Kraus

Theorem given in [15], [16]:
Proposition 2 (Choi/Kraus, 1975). A linear map A : Bi(H) — Bi(H) is completely
positive if and only if
Ap = A;pAl
J
for A; € Bi(H).

Applying this to the completely positive maps ¥, we may express (3) as

1
Lp = ,(VipVl = 5{VIVi. o)

J

for V; € By(H). Due to Proposition 1, there exists a corresponding quantum Markov
semigroup ®; : By(H) — Bi(H) given by ®; = e'*. Let us assume that this Markov

semigroup is translation-covariant. That is, for 7, the translation operator by x, assume
Oy(7;p7a) = T Pu(p) T (10)

for every density matrix p € By(H) and every x € Z%. This assumption reflects certain
symmetries present in the environment and is thus a very physically reasonable assumption
to make. Assuming translation-covariance of the semigroup allows us to categorize a certain
class of Lindbladians by utilizing a very helpful theorem from Holevo [11], which I state

here in the Schrodinger picture:

Proposition 3 (Holevo, 1993). Let L be the generator of a translation-covariant trace-

11



preserving dynamical semigroup in By ((*(Z%)). Then
Lo = ~ilH,p] + | SAVLiO)oLs(0)'Vy ~ (Li(6)"L;(0). o))
J

where H € SA(*(Z%)) satisfies [H,7,] = 0 for all x € Z%, Vy is a unitary representation
of T, L;(0) are weak-* measureable functions satisfying [L;(0),7.] = 0 for all x € Z¢, and

the integral

[ Suerer
T4 5
weak-* converges.

Utilizing Proposition 3, our Lindbladian operator may further be decomposed as
£0) = | S L0y 0 (L0 L,(0). p})
J

where X represents the position operator. That is, we may express the completely positive

map VU in (3) as
U(p) :f dfe®X My (p)e™ (11)
Td

where the operators
My(p) := ) L;(0)pL;(6)*
J
commute with translations. An important result of this decomposition is that the oper-

ators U are also translation-covariant. This yields a very nice structure for the Lindbladian.

3.4 Generators of Markov Jump Processes

In this section, we give some background into continuous-time Markov processes, which
may be found in various sources such as [17], [18]. In particular, we will focus on the specific
Markov process known as a jump process. Jump processes are related to the structure of

the Lindbladian, as will be shown in more detail in Section 5.2. In Chapter 6, we will

12



utilize this structure to prove the small g asymptotic result given by Theorem 2.
Let X; be a continuous-time Markov process on a locally compact metric space with

homogeneous transition functions given by 7;. That is,

E[f(Xt)|Fs] = T;f—sf(Xs)a

where F; is the natural filtration (F;) = (0(X,,u < t)). According to the Chapman-
Kolmogorov equation, the family of transition functions {7; : ¢ > 0} form a dynamical
semigroup (Also see Hille-Yosida theory for more details). Hence we may define the in-

finitesimal generator A of the Markov process in the usual way by
(Af)(x) = lim (T ~ f)
x):= lim — - f).
t—0+ ¢ !

The generator of a Markov process is a way to describe how the process moves from point to
point in infinitesimally small increments, and thus it is important to be able to categorize
the process in a meaningful way. In general, generators of Markov processes may be very
complex. However, we may restrict to a specific class of Markov process to be able to
categorize them quite nicely. For instance, if we assume the transition functions act on the
space Cy(X) and are contractive (||T;|| < 1 Vt) and norm-continuous (tlirgl+ T f — fl| =
0 Vf e Co(X)), the Markov process is called a Feller process. For a Feller process, the
infinitesimal generator may be categorized via the following Proposition by Revuz and Yor

[17]:

Proposition 4. Let X; be a real-valued Feller process on a locally compact smooth manifold

X. Then the infinitesimal generator A is given by

(Af) (@) = cla) () + b(z) - V() + 3 div a(2)V f (z)
R S R v I 108 T
- V(@) Ridyie),

L[y —af
where R(dy|x) is a positive conditional Radon measure on X\{x}, a(x) is symmetric and

nonnegative, and c¢(x) < 0.

13



Heuristically, this generator describes a Markov process which moves from a position x
via translation by b(x), diffuses via a gaussian with covariance a(z), and jumps via R(-|z).
The term c¢(z) describes the killing probability, allowing for the process to be terminated at
some future time. While this is the most general form for the generator of a Feller process,
we are only interested in the special case where a particle’s movement is governed solely by
jumps, i.e. a pure jump process. In this process, the particle waits an exponential time at
a position z, jumps to a position y instantaneously, then repeats this process, jumping to

a new position. For a pure jump process, the infinitesimal generator will simply be given

by

Ane) = | 1) = f)AG) (12

where the rate at which the particle jumps from y to x is given by R(dy|z).

14



CHAPTER 4: LINDBLADIAN STRUCTURE AND ASSUMPTIONS

4.1 Quasi-Momentum Space

Let us now take a Fourier transform and consider our operators in the momentum
representation. We define our Fourier transform on the square-integrable kernel p,(z, z’) in
the following way. First, we may split Z¢ into a finite set of equivalence classes ¥ = Z¢/ ~
such that for x,y € Z%, x ~ y if and only if z — y € {Qn : n € Z4}. Then for 0,0’ € X,

D D)o = D, €O (3 ) (13)
z€0,x' 0’
where py(p, p') : T?* — By (C*¥!) is now matrix-valued. Applying this transform to the maps
(11) yields

\I](ﬁt)(pap/)a,a’ _ Jd d6 Z e—i(a&Q*l(p—QQ)—x’.Qfl(p’_QG))MQ(pt)(x’ l’l)
T

reo,x'ea’

_ L dBMy(pr) (p = Q6,9 — Q)

Using the specific form for My, we decompose this operator further. We note that since

L;(0) are translation-invariant, we may define

Li(0; 0 —y) == (x| L;(0)|y)

and using this notation,

—

M9 (pt) (pv p/)cr,a’

=]
= ) @) NN Li0ia — y)puy, ) L0527 — o)
zeo,x’ec’ n,m=1yeop,y’'€o’,
2
_ Z Z —zmQ PL 9 13))01;<p p)gn ot Z (e—ix/-Q_IP'Lj(Q;x/))*
n,m=1xr€oc—on z'ec’—o!,

= > (L;(050)5: (0, ) L (03 9) Vo

J

15



where

Zj(Q;p)(w/ = Z e_m'Q_lpLj(G;x).

reo—o’

Therefore,

V) p1f) = | d83hlp — Q0.0 ~ @)l — Q6.5 — Q6)

for the operators ]/\/[\9 given by

My(p,p)[A] := > L;(0: p)AL;(6; )",
j
We then define
- N k k
Pek(p) = Dy <p —g Pt 5) (14)

where p, k € T? and we think about p; as fibers over p;, indexed by k € T?. We note that

for the density matrix p; := |, ){1;|, we have

(P ieD)oe = ) e EQ (=)@ 0+ 5)) (1) (o)

reo,x’eo’

~, E\ ~ k
= 1y <p— 5)0% (P+ §>U,

~ p)o. _ Z eix-Qflpwxl‘)

TeET

where

Since |v;) € (2(Z%), |4, € L*(T% C'¥). Cauchy-Schwarz then yields
(’M’)k e LY(T? B, (C*)). By extension, we have py;, € L'(T% B, (C*)) given any

density matrix p; € By (¢%(Z%)). Tt will be useful later to define the pairing

(A,B) =tr J dpA(p)B(p) (15)

Td

whenever A(p)B(p) e L*(T4; B, (CPH)).

16



Using this fibering, we may write equation (11) as
~ — k k . ~
V(per)(p) = , doMy | p — 5~ QO,p+ 5 QO ) [pri(p — Q)] =: (Tiper)(p).  (16)
T
Remark: At the k = 0 fiber, this integral takes on the simple form
TA)p) = | d gy, A))
T

To compute U*(I), we observe:

tr(U*(1)pi(p, 1))
= tr(¥(p)(p,p))
_ L dp JT 40 Y tr(L(00 — Q0)'L,(0p — Q0)pulp — Q0. p — Q0))
= tr Ld dHZ IL;(0; p)*5e(p, ).
and so (V*(I)p:)(p,p') = D(p)pi(p, p’) where

D) = [ X 00 (17)

Similarly, (p,V*(1))(p,p") = pe(p,p')D(p’). This allows us to write the simplified form of

our Lindblad operator (3) in the momentum representation as
Ly =Ty, — Dy,
where

(DeA)(p) =

N | —
VRS
)
N\
|
O |
N——
ES
=
+
S
=
)
/?
+
O |
N———
N——

and Ty, is given in (16).

Let us now focus on the Hamiltonian term. In the momentum representation, we note

17



that due to the periodicity of the Hamiltonian, (Hp;)(x,z") becomes

12
—_— —if - w 1 /
Hp) (0,9 = Y, @@ Q) NS Fa ) py(y, o)
z€0,x' €0’ n=1y€on
=
= Z H(ma,anﬁt(pap/)omcrU
n=1
where
77 —iz-Q~!
H(p)os = Y, e PH(z +7,7). (18)
rEC—7Y
Similarly,
=]
(ptH D, p o = Z ,Ot p p o,0n (p )0'n70',

and therefore applying the Fourier transform to [H, p;|(x, z’) yields

g))i= 1 (= 5 ) Balo) = s (4 5).

Combining this with the Lindblad operator, we may write the evolution equation (2) as
OPek = —GiPrsk (19)
where

Gr = 1Jx — 9(Ti — D). (20)

4.2 The Jump Process

As our method of proof involves a perturbation argument similar to approaches taken
in [1], [3], and [2], it is natural to consider the £ = 0 fiber. At k = 0, we have some
additional structure for the Lindbladian that will be very useful in the proof of positivity

for the density matrix D. First, for the translation-invariant case ) = I, the operators Ej

18



and p; are no longer matrix-valued, and hence commute. This yields
Cop)p) = | XL 00 OFpilp~0)~ [ a0 3 IL,(6:0) Ao
T j T j

This is of the form (12) where the rate of jumping from 6 to p is given by >} |EJ (p—0;0)|°do
J

and thus L is the generator for a pure jump process in the translation-invariant case.

However, this is not true for an arbitrary (). In order to yield this structure for the

Lindbladian, we first must project onto the subspace given by ker 7.

Lemma 1. Let II be the projection onto kerJy. Then H,EOH 1s the generator for a jump

process on CI¥l x T4,

Proof. Since H(p) is a |S| x |S| matrix, we may list the eigenvalues as A;(p), - - - , Aizi(p)

with corresponding eigenvectors 11 (p),--- ,¥;5|(p). Denote Ey;(p) := |¢3(p)){¥;(p)| as the
corresponding matrix element in this basis. As the kernel of 7; is the commutant of H , in

the above framework, we may write that II is the projection onto diagonal matrices in the

basis {@/Ji(p)}gl, ie.
1|

(HA) (p) = Z A (p)Eu(p)

Furthermore, for any matrix A(p),
(E04)p) = 3 B30 |08y 04 IAG) B )
= 30 | A5 00 s 4 B 1) )
and similarly, 7]
(ITDoI1A) (p) = ; Eji(p) Z Aii(p)(D(p)Eii(p) + Eii(p) D(p)) Ej; (p)

= 2 A3 ()W D) D) () (p).
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The operator HEOH will thus be given by

A -3 [

i?j

WG GG ~ [ (). A6 | By

(21)

d

where

r((5,0), (0, 0)) = W5 (p) | M1y (9 ) [ Eia(0) 11905 (p))
—ZK% NZR (@M — 1) ) s = 0

and A(j,p) = Aj;j(p). This is again of the form (12) and hence IIL,I1 is the genera-

tor for a jump process on C*l x T¢ with rate of jumping from (i,p’) to (j,p) given by

r((4,p), (i, p"))dp". 0

4.3 Assumptions

At this point, we make some additional assumptions, which are slightly stronger con-
ditions than are often taken for Lindblad operators of this form (See for instance [1]). We
assume the following:

Assumptions:
1. (Nondegeneracy of the kernel) kerfg =),

2. (Uniform Dissipation at all Momenta) & < D(p) < C for some C > 0,

3. (Reflection invariance) [£, R] = 0 for the reflection operator (Riy)(z) = ¢ (—x),

4. (Local Uniform Positivity of the Integral Kernel) There exist constants 6 > 0 and

x > 0 such that

Ma-1p—p) (p/, p/) [A(p')] > —1

> | =

for all operators A € L'(T¢; B, (CI*!)) satisfying A(p') = 0 and trA(p') = 1 whenever
|p - p/| < 5a
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5. (Uniform Boundedness of the Integral Kernel) There exists a constant y > 0 such

that
Ma-1p-) (0", P)AWP)] < X1
for all operators A € L'(T%; B, (C™!)) satisfying A(p') = 0 and trA(p') = 1 and all
p,p' €T
6. (Ergodicity of HEAOH) For a.e. p e T? and every function ¢ = 0 with {, dp¢(p) = 1,
there exists n € N such that (ﬁHTOHy o(p) > 0.

Assumptions 1-4 are needed to prove Theorem 1, and Theorem 2 additionally requires
Assumptions 5 and 6. I now describe these assumptions in detail, as well as some useful
implications of each.

We note that clearly, EAOTI = (0. The first assumption guarantees that I is in fact the

only equilibrium eigenvector for EOT . The second assumption is utilized in Lemma 2 to

guarantee a gapping in the spectrum of G,. Looking closer at the third assumption, we
see that the reflection operator R is actually the operator (}A%Ak)(p)g,gl = A j(—p)—o—o in

momentum space. Hence the condition [R, £j,] = 0 yields

—(ViLilk=0A) (D)o = (RVkLilkzoA)(=P) oo
— (ViLilimoRA)(=p) oo

= (vk2k|k:0A)(p)o,a"
So the third assumption guarantees
ViLilr—o = 0. (22)

That is, we have zero-drift for a particle governed solely by the Lindbladian.

Let us define the operator

0, = efrn(iJoJrgDo)TOe*Tnfl(ijo+gDo)T0 . .ToefTo(ijoJrgDo)
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for some real numbers rq,--- ,r, > 0. We remark that

(170 + Do) A)(p) = K(p)Alp) + A(p)K'(p) (23)

for

K(p) =il (p) + D)

is simply a sum of multiplication operators. This implies
(e tT0+9D0) A (p) = e K@) A(p)e K@),

Let A e LY(T? B, (C™))) satisfy A(p) = 0 for all pe T¢ and (I, A) = 1. Assumption 4 then
yields the following:
(0nA)(p) = (e HHIPITO, 1 A)(p)
— ¢ ™K(P) (TyOp_14) (p)efrnK*(p)
= O g s (O s A) )] e

1
> Lk f dputr(On 1 A)(p1)).
X |[p—p1|<d

Due to Gronwall’s Inequality and Assumption 2,

‘efrnK(p)P > engrn

and hence,

le‘cgr" r
AP > e | (O )

Repeating this argument n times, we have

E n—1
O ] I | dpatr(Alpn)).
X |[p—p1|<d |Pn—1—pn|<d

If n is sufficiently large (nd > 27), we will have

[ e pats(Alpa)) = Cos | 6(AW) = Cog
|[p—p1|<é [Pn—1—pn|<d

Td
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for some constant C, s > 0 and so (O, A)(p) > 0 for all p e T%.
Let us now define the family of operators z(t) := e/("/ot9Po)e=t% for ¢+ > 0. For this

family, we have

d 4 ,
%x(t) _ get(zjo+gDo)TOe*t(1Jo+gDo)x<t)_

Hence,

0 i S1 Sn—1
o)=Y g f ds, f dsy - f s, 51 (T 9D0) T, (s2-51) (iT0+9D0) Ty .y ¢=5n(i0+D0)
T~ Jo 0 0

for some n € N and some constants s1,--- ,s, > 0. This finally implies

Sn—
0

(1% 4)(p) = f}g [[ass [t [ 0,0

where the real numbers rg,--- ,r, in O, are defined by rgy = s,, "1 = Sp_1 — Sn, ",
Tho1 = S1 — S9, ', =t — $1. So Assumption 4 guarantees that
(e A)(p) > 0V Ae LYT% By (CF)) satisfying
Alp) =0V pe T and (I, A) = 1. (24)
The fifth assumption will be utilized in Section 6.2 to bound the invariant state of G.

Finally, the sixth assumption is utilized to guarantee ergodicity of the underlying jump for

the jump process HEAOH.

4.4 The Spectrum

In order to compute the spectrum of Gy, we must utilize a result from Deimling [12]
and Schaefer [19] on the eigenvalues on the boundary of the spectral radius. For a Banach
space X, we define a total cone K < X to be a closed convex set such that AK < K for

all A\ >0, K n(—K) ={0}, and K — K = X. The dual cone of K is then defined as

K*:={z* e X* : Rez™(z) = 0 on K}.
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An operator T' € B(X) is considered to be quasicompact if T™ = Ty + Ty for some n € N,

Ty is bounded with r(77) < (r(T"))" and T3 is compact. Here, r(T) = sup |A| denotes the
Aea(T)
spectral radius of T'.

Proposition 5 (Theorem 19.5 in Deimling, 1985 and Proposition 5.1 in Schaefer, 1974).
Let X be a Banach space, K < X a total cone, and T € B(X) a positive quasicompact
operator satisfying that for each x € K\{0}, there exists n € N such that =*(T"x) > 0 for

all z* € K*\{0}. Then for r(T) the spectral radius of T', we have the following:

(a) r(T) > 0 and r(T) is a simple eigenvalue with a positive eigenvector v such that

x*(v) > 0 for all x* € K*\{0}.
(b) [N <r(T) for all \ € o(T)\{r(T)}.

We can then utilize Proposition 5 to prove the following Lemma regarding the spectrum

of our operator at the zero fiber:
Lemma 2. The operator Gy defined in (20) has spectrum given by
O'(go) = {0} U Eo,

where Xy < {Rez = 0,} for some 6, > 0. Furthermore, 0 is a nondegenerate eigenvalue of

Go for which the corresponding eigenvector F,, satisfies F.,(p) > 0 for a.e. p e T

Proof. Due to (20) we have 0.s5(Go) = 0ess(1Jo + gDo) since Tj is compact and essential

spectrum is invariant under compact perturbations. Due to (23) and Lemma 4, we have
O—ess(iu70 + gDO) = UU(K(p) Ct KT(p))

< J(o(K@®)) + oK' (p).

Assumption 2 yields
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Figure 1: A visualization of the spectrum of Gy. In (a), o(Gy) is shown with isolated
eigenvalue at 0 and the remaining spectrum included in the right half plane after a gap d,.
In (b), o(e~9) is shown with isolated eigenvalue at 1 and the remaining spectrum included
in the unit circle.
and S0 0.s5(Go) < {z e C:Rez> %} The remaining spectrum will be discrete spectrum.

As suggested in Figure 1, we will compute the discrete spectrum of Gy by consider-
ing the related operator e~9 and utilizing Proposition 5. This operator will act on ele-
ments of L!'(T? SA(C™!)). Therefore, we will consider the total cone given by K = {A e
LY(T% SA(CF) : A(p) = 0 for a.e. p € T}. We note that e % is certainly a positive
operator. To see that it is quasicompact, we first realize that o(Gy) < {z € C : Rez > 0}
implies o0(e79) < {z € C : |z| < 1}. Then due to our above observations about the essential
spectrum, we additionally have o..(e9) < {2z € C : |2| < ¢} for some ¢ < 1. Define the

counter-clockwise contour I' such that |z| < 1 for all z € T, 0,.(e79) < int ', and " does

not intersect any eigenvalues of e=9. Then for

z—

Ty = 5=, e‘z#godz and Th:=e 9% — Ty,
T will be bounded and T, will be compact since it is finite rank. Additionally, r(77) < 1 =
r(e=9) due to the fact that GII = 0. Thus, e % is quasicompact. Due to (24), we may
apply Proposition 5 to the operator e=9. This yields 1 is a simple eigenvalue, e~ F,, = F,
for some strictly positive equilibrium eigenvector F,,, and |A| < 1 for all eigenvalues A\ # 1.

This is equivalent to gg having a one-dimensional kernel given by (I). This then implies
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that Gy has a one-dimensional kernel as well. Furthermore, the rest of the eigenvalues of
e=9 will lie strictly inside B(0). Hence the rest of the discrete spectrum of Gy will lie in

{Rez = ¢,} for some constant ¢, > 0. So Lemma 2 holds with &, := min (£, ¢,). O

This Lemma states that there is a unique density matrix in the kernel of Gy. We shall
label this equilibrium eigenvector Fi,. Since 0 is an isolated point of the spectrum, we may
define the Riesz projection onto this eigenvector in the normal way as

1 1
Py= =
2mi Jr 2 — Go

dz = F. (1, ), (25)

where I is a counterclockwise contour in p(Gy) whose interior contains the eigenvalue 0 and

no other point of o(Gyp), and the pairing (-, -) is given in (15).

Im =z

Re z

5,/4 ()
NV

Figure 2: A visualization of the spectrum of G, for sufficiently small &, which consists of a
simple isolated eigenvalue E(k) € {z € C: |z| < §,/4} and the remaining spectrum in some
set X < {Rez > 36,/4}.

We also note that the spectrum of G, moves continuously with k& and hence for k

sufficiently small,
o(Gr) = {E(k)} v E

where E(k) is some isolated nondegenerate eigenvalue in {z € C : [z| < §,/4} and
¥, < {Rez = 39,/4} (See Figure 2). Since E(k) is isolated and nondegenerate, we may con-

sequently define the one-dimensional Riesz projection onto the corresponding eigenvector
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as

1 1
P, =—
2w Jp z — Gy

dz, (26)

where I is a counterclockwise contour in p(Gy) whose interior contains the eigenvalue E(k)

and no other point of o(Gy).

4.5 A Generalized Dissipation Condition

Let us now return to the operator GI' acting on observables X € B(L?*(T%)) in the
Heisenberg picture. Due to Proposition 1, GI' will be completely dissipative. In this
section, we prove a generalized version of dissipation using the results from Lemma 2.

First, note that GI' = iJy — L% where
1
LoX = U(X) — {¥(1), X}
for every X e L?(T?; B(C/*!)) and

V) - |

Td

dOM (p,p)[X (p + QB)] = J

Td

do ) L;(6;p)' X (p+ Q6)L;(6; p).
J
Due to Proposition 2 in Lindblad [8], we may further decompose this operator as

VX)) = | W)X+ Q0 © Wil

for some functions W : T¢ x T¢ — B(C* ® K) and some auxiliary Hilbert space K. Recall
the dissipation function D(GI) : L?(T% B(C*1)) x L*(T¢; B(CPl)) — L2(T¢; B(C*)) given
by

D(Gy; X, Y) =Gy (XTY) - GF(XT)Y — X'Gg (V).
Using our decomposition of ¥, we observe that

D(Gy; X(p), X(p)) = — Ld dO|(X (p + QO) @ 1)Wy(p) — Wy(p) X (p)|* < 0.
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For a function F € L?(T% B(C*)), define the following inner product on L?(T¢; B(C™!)):

Xy g [ FOE0).Y (),

We then have for Fi, the equilibrium eigenfunction of Gy,

Re(X, 6] Xor, = —1tr | dpP(p)D(G]: X 0). X)) + DIGH: X1 (2). X1 ()]
=t AP [ 81X + QO @ VW) - Wal) X ()
+ (X0 + QO) @ )Ws(p) — Wo(p) X' (0]

Hence, since F.4(p) > 0 for a.e. p € T by Lemma 2, Re(X,Gj X)p,, = 0 if and only if
(X(p+ Q0) @ 1)Wy(p) = Wy(p)X(p) and (XT(p + QF) @ 1)Wy(p) = Wu(p)X'(p) for a.e.
p, 0 € T4 Multiplying by Wy (p)" and integrating, these imply ¥(X)(p) = ¥(I)(p)X (p) and
U(X)(p) = X(p)¥(I)(p) for a.e. p e T Hence (EOTX)(p) = 0 and so by Assumption 1,

X =T and (GF'X)(p) = 0. This string of implications yields the observation that

(Gs X)(p) # 0 for a.e. pe T? = Re(X, GJ X ), > 0. (27)

28



CHAPTER 5: DIFFUSIVE PROPAGATION FOR MASTER EQUATION
WITH PERIODIC HAMILTONIAN

5.1 Proof of Main Result

We now have everything we need to prove Theorem 1.

Proof. To prove the central limit theorem (4), we note that

trf dpprk(p f de Z *)_zl'Q_l(pJfg))pt(x,x’) = Ze”'Qflkpt(x,x)

ceX x,x'€c

and hence,
i (z—7tv)-Q 'k —itrtv-Q 'k ~
ZG VT th($7l') =e V7 tr ddpth%k/\ﬁ(p)'
- T

where the drift constant v is to be chosen later. Since pyj = e*tgkﬁo;k, this then gives that

this term is equivalent to

—i=Ttv-Q 'k -7 ~
e trfddp (€79 Do) ().
T
Consider the Riesz projection Py s as defined in (26). Introducing the projections Py 7
and 1 — Py~ after the semigroup yields

Zei#(x—Ttv)-Q’lkat(x7 ZE)

T

= TR l<I Po; k/f>€ BN 4+ tr J ) dp (ethgk/‘F(l - Pk/ﬁ)ﬁo;k/ﬁ) ()
T

Let us first deal with the second term in this expression. Define a contour I' surrounding
0(Gr/ =) \{E£(k/+/T)} such that Rel' > §,/2 (which is possible for sufficiently large 7, say
T= % for some £ > 0). As Gy, /7 is bounded, we may additionally choose I' to be bounded,
and

1

— =M<
2= Ouvr

sup
’T?%,ZGF
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We then have

—i-Lrtv-Q1 -7 D
He T ktrJd dp (€77 (1 — Py ) Posky 7 (p)H
T

—Ttz 1 -~
o Yy e
T4 r z2=Gr)yr
1 e —7t inf Rez
< sup  ||———||||Pox/v7l] [T']e  =F
2 |= g | Pl I

< M|F|<Ia /p\O;k/\/?>€7Tt6g/2'
We note that

~ iim 71]6
<Iap0;k/ﬁ> :Ze VT N pO(xax) — trpo

as 7 — o0 and hence this term will vanish in the large 7 limit. For the first term, we use
the Taylor expansion
E@Aﬁ)=Em)+J;Eyuqmm+-5§yuwﬂmm@+o(l).
VTS 27 = T
Since E(0) is the isolated eigenvalue of Gy, Lemma 2 gives E(0) = 0. Using Feynman-

Hellman,
azE(O) = <[7 aigk‘k:0F6q>-
Hence, if we choose the drift constant to be

v = ZQT<]7 ngk|k=OFeq>7 (28>

L7'1511-(2’1143

then e ‘v7 —7t1 Y, B E(0)k;

will cancel with e . In this case,

—% X, 0:0; E(0)kik;

P e (Z eiﬁ”'Q_lkpo(x,x)> e +o(1).

x T

Again using the fact that (I, po.x/,7) — trpo and choosing the diffusion matrix D to be
defined as

Dy = 504,5(0), (29)
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this yields

lim
T—00

Zeiﬁ(z_t”)@_%pﬁ(x,x) = [trpp]e ™" Zis Piakiks
X

as desired.

Now let us assume the initial condition py satisfies Y. |z|?po(x,z) < o0. The solution
zeZd

to the evolution equation (19) is given by pr.r = e % pp.r and so we have the following for

the right-hand side of (5):
E E zp(z, ) = ——intrf AdpV ek (P) k=
/ t\ 2, ; ) kPt:k\P) k=0

l —~
- 10 [ e R ) o
T

After using the formula for the derivative of a semigroup and using the fact that et =T

due to conservation of quantum probabilities, we have

1 i t G~ i .
= aplw, ) = -QTtFJ dpf dsViGrlr=oe ™" Bo0(p) — -QTUJ (Vipo) (p)-

t 2e7d t Td 0 t Td

The second term in this expression trivially vanishes in the large ¢ limit. For the first term,

we insert the Riesz projections Py and 1 — P, after the semigroup to yield the two terms

i t R i t B R
gt f dp f A5V Gl Feap)T, o) + Q" f dp f 051G lk—oe ™% (1 — Py)Gno ().
T 0 T 0

For the projection off of Py, we may draw a bounded contour I" around o(Gy)\{0} such that

Rel' > %g. Hence
Z» t
ZQTtrJ dpj dsVGlr—oe ™" (1 — Py)poo(p)
Td 0
1

‘ t

i .7 1 _

=-0Q't d d —o— | dze % .

tQ TLd pfo Svkgk|k_02m. L e — gopo,o(p)
1

1 1
='thd _f_l_—tz
iQ tr Td pvkgk’k_ohm' th( ¢ )z—go

ﬁo;o(p)'

This will vanish in the large ¢ limit since (1 —e™**) — 0 as ¢ — oo for Rez > 0. Therefore,

1 ‘ ~ .
Jim — > e w) = iQTtr J L APViGili—oFeq()XT, Do) = Q" [trpol(I, ViGrli=0Feq)-
xeZd T
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So v = th—>Hoé m IEZZd xpi(x, ) due to our definition of the drift constant (28).

We perform a similar analysis in calculating the expression (6) for the diffusion matrix

D. We observe:

LS (@) (& — (@) — 1))l )

2t zeZd

— gt |l =@ )@ = it(Q) ) et o

— gt | dpldy = it((Q) o)t —ie(@) o)

= 2((Q") T )i((QT) ™ v);1(e™ Do) (p) lk—o-

After using the formula for the derivative of a semigroup and using the fact that e 9T =1

due to conservation of quantum probabilities, we have

1

% ((QT)*lwh((QT)—lx)jpt(x’x) - Z Nn<t)

xeZd n=1

where

M) = —gptr | dpl@dn) o)
Ny(t) = —étr Ld dp f: ds {0:Gx k=0 (0;00:0) (p) + 0;Gklk=0¢ " (:P00) (1) }
Ns(t) = —%tr Ld dp Jot ds JOS dr {0:G|r=oe™ "% 0,Gk k=0 "% Poo (p)
+ 0;Gk| k=o€ "9 0,G r0e " Do (p) } 4

Ny(t) = 2lttr Ld dp Lt ds0,0;Gr|k=0¢ " Do (p),
No(t) = 5 j A {i((@T) (7)) + Q7)) (B 1)}
Ng(t) = %tr Ld dp Lt ds {i((Q")")i0;Gklv—oe™*% Do (p)

+i((Q") ') ;0:Gk k=o€ *%Po,0(p) } , and

Na(t) = (@) 0)(@QT) o)L o

We first note that tlim Ni(t) = 0so this first term is negligible in the large time limit. Let
—00
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us now consider projecting onto and off of the eigenspace (F,,) using the Riesz projection
Py given in (25). Introducing Py + (1 — P,) after every semigroup in the above expression

yields the following. For the second term, we have

1 ! N
Ny(t) = —gtr ﬁrd dpJO ds {0iGrlk=0e™*% (1 = Po)(0;p0:0) ()
+0;Gk|k—oe " (1 — Po)(¢ipos0) (p) }

-5 {Z 0)iI, 0500y + 1((QT) ™ ) {I, Gy}

the second part of which simply cancels with N5(t). For the first part of this term, we use
the fact that off of the equilibrium eigenvalue, we may draw a contour I' enclosing the rest

of the spectrum of Gy such that Rel’ > C' > 0 as per Lemma 2. This yields

Ny(t) + Ns(t) = ——trﬁrd dpf ds{a Gl o—f Z—go (0jPo0) (p)

—Sz 1
+0;Gk k=0 ZLG z—go( zpo;o)(p)}
—ltfd 0G0 [ L e (p)
——Qthdp k’ko = FZ( —¢€ Z_go(]pﬂo)p
1 1 . ~
+ajgk|k:0% . ;(1 —e! )z ~ G (aiPO;O)(p)} :

Since Rel' > C' > 0, tlim (1 —e ") =0 for z € . Hence this term vanishes as well for
—00

t — co. For the fourth term, we note that

1 t N
Ny(t) = Ti J ) dpf d50;0;Gk| k=0 "% (1 — Py)po,o(p)
T 0
1 ~
s oir j dpidGeli=oFuy(p)I. o).

In a very similar manner to the previous calculation, the first part of this term vanishes as
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t — 0. For Ng(t), another similar calculation yields

0 =gt | o [ s {iQ) 00 Gucoe™ (1 = Po)na)
+i((Q")10);0:Gklk=0e " (1 = Po)pu:o(p) }

—t((Q") )i ((QT) ') {I, Poso)-

Due to the lack of a t in the denominator, the first part of this term will not vanish as

t — oo. In fact, the first part of this term will tend to

%tr f dp{i((QT) " 0):0,Gk koG (1 — Po)poo(p)
’I[‘d
+i((Q")'0);0:Gklk=0Gy ' (1 — Po)poso(p)}-

Finally, for N5(t), applying Py to both semigroups yields

1 t S
f—trf dpf dSJ dr {0:Gx|k=oe ™79 Py0; G |k—0e "% Popoo(p)
2t Jra  Jo Jo
+0,;Grlk=0e ™9 Py0iGilr—oe "% Popoo(p) }
1 t s
= —2—ttr ﬁrd dpf dsJ dr {0;Grlk=o0Feq(p){L, 0;Gr|k=0Feq)
o Jo
+0;Gk|k=0Feq (P){I, 9'gk\k70Feq>}<I P00,
1
=5 i((QT) )i - 1((QT) M)y +i((QT) Mw); - i((@T) ! } t<[ Po:0)
t —~
= 5((QT)_IU%((QT)_1U)J‘<I:P0;0>-

This will fully cancel with N7(¢) and the second part of Ng(t). For the remainder of the
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terms in N3(t), we again use the contour I'. We observe that
1 ! ° —(s—r)G —rG ~
—gtl‘ dp dS d?“ {87;Qk|k:06 OPoank]kzoe 0(1 — Po)po;o(P)
a  Jo 0
+ajgk|k:0€_(s_r)gopoaigk’kzoe_rgo(1 — Po)ﬁo;o(P)}
1 t s R
= —Q—ttrf dpf dSJ dr {0:Gk|k=0Feq(p){I, 0;Gk|r=0¢""" (1 — Po) o)
Td 0 0
+0;Gk k=0 Feq(p){I, 0:iGr|roe™ " (1 — Po)ﬁ0;0>}
= ——trf dpj dsf dr {i((Q")v):0;Gr|k=0e "% (1 — Po)po.o(p)
Td

+i((Q")'0);0:Gk k=o€ (1 — Po)poo(p) }
— —%trf dp {i((QT)flv)iangk:ogo*l(1 — ) po.o(p)
’]l‘d

+i((QT) 1) ;0,Gklk-0G5 (1 — Po)poo(p)} -

This precisely cancels with the first part of Ng(¢) as shown above. Similarly, placing the

projections in the reverse order for N3(t) gives

——trf dpf dsf dr {0:G|p—oe™ "% (1 = Py)0;Gx|r—0e "% Popo.o(p)
Td

+0;Gx|r=0e” 79 (1 — Py)0iGrlr—oe "% Popoo(p) }

1
- —§t1“f dp{0:Gkli=0Gy (1 — Po);Gklk—0Feq(p)
Td
+0;Gk|k=0Gy (1 — Po)0iGklk—o0Feq(p) } (I, Poso)-

Finally, performing the projection 1 — Py on both semigroups in N3(t) requires two contours
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I and I, each with strictly positive real part and such that I' n IV # ¢f. We then have

1 t S R
T J . dpf dsf dr {0:Gklk=oe™ "% (1 = Py)0;Gklr=oe™ " (1 = Py)poo(p)
T 0 0

+0;Gk k0”9 (1 — Py)iGrlrmoe "9 (1 — Py)poo(p)}
1 /
— —gtrf dp{& Gr|k= O—J dz% dz
1

1 1 e 1 i
zuz(E(l_et)_Q(l_et))z G |k0,*g:000(p)
1 1
+ ajgk|k—0_.f dz— dz'
21 Jr

21 Jp

1 i _ —tz _i . —tz! 1
z’—z(t2(1 ) tz’(l ¢ ))z—goagk““ 0 gOPOO(p)}

— 0.

Putting all terms N, (t) together and taking the limit as ¢ — oo then gives the following
expression for the right-hand side of (6):

fim g D (Q) " = (@) o — )il

zeZd

1
= —?crf dpaigk|k:0gal(1 — R)0;Gklr=0Feq(p)
']Td
1
S f dp0,Geli-05" (1 =~ Po)iGeli-oFun(p) (30)
T
1
+ itrJ dpaiajgk’k:OFeq(p)'
’]I‘d

Using second-order perturbation theory, we have

0;0;E(0) = {1, 0;0;Gk|k=0Feq) + (I, 3:Gk|k=0G5 " (1 — Py)0;Grlr—oFrq)
+ {1, 0;Gk|k=0G5 (1 — Py)0iGlhoFrq)

and hence due to our definition of the diffusion matrix (29)

D; = 220,E(0) = lim ﬁZ (@) M@ = )@ (& — 1)) pula, ).

€74

It is clear that the diffusion matrix D is symmetric. We wish to further show that this
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matrix is positive definite. To show positivity for the final term in (30), let us consider
a solution p;j of the evolution equation (19) with initial condition py, = Fi,. That is,

Dk = € 9% F,,. Similar to the above analysis, we have for z € C%,

2

0% 5 X ol o) | 2@ M

- —2 D@D Q) 2)ypula, )21

— ——ztrj dpd;0j(e 9% Fy — Fop) (D) |k—02) 2j.

e 9% Foq—Feq
t

As e %9 is a dynamical semigroup, lim = —0i. Hence taking a limit as ¢ — 0

of the above expression yields
1 *
5 Ztr » dp0;0;Grlk=0leq(p)2i z; = 0.
27.]

To show positivity for the first two terms in (30), we note that due to (22), the expression

may be simplified using the modified inner product introduced in Section 5.5. We observe:

1
?TJ dpdi Telk=0Go (1 — Po) 0 Tnlk=0Frq(p)
Td

n %tr Ld dpd; Tilk=0G5 (1 = Po)0i Tl ko Feg(p)
- st j Cdp(aiH(p)Gy (1= Po) (0 HE.,)(p) + 0. H(p)G5 (1 = Po)(FLyd, H)(p)

+ st L dp(;H(p)Gy (1 = Po)(@HE.)(p) + 0, H )Gy (1~ Bo)(FuyduH) (p)
— Re(d;H, (GT) ' (1 — Py)o;Hp,

+Re(0:H, (GI)™ (1 — Ry)o;H),,.
Therefore, for z € C%\{0},

Re(z,Dz) > 2Re() | 2,0,H,(G3) (1 — Po) Y. z:0:H ),

)

= 2Re(®, Gl (1 — Ry)®)r,,
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where @ := >’ zi(gép)_léif[. Due to (27), this expression will be strictly positive and so D

is positive definite. n

5.2 The Small g Limit

We wish to show the diffusion is O (é) in the small g limit as per Theorem 2. This

requires us to first analyze the limit of the equilibrium eigenvector Fr,.

Lemma 3. The equilibrium eigenvector Fy, for G, converges weakly as g — 0 to the
equilibrium eigenvector for HEAOH, where 11 is the projection onto ker Jy. Furthermore,

this eigenvector is strictly positive.

Proof. First, we must guarantee the existence of w-lim F,,. To do so requires a uniform

g—)

bound on || F,,||2, which guarantees we may pass to a weakly convergent subsequence. Since

F,, € ker Gy, (20) yields
F, - (DO ; é%) e, (31)

Since
(2o+220) ) = (5000 + 276)) A + A0) (5000 -

is a sum of multiplication operators, (31) becomes

hence

o0
—+(Lip if —H(IDpm—iH
H%M<L<We%(wg@WW%EMMME“Z@QWW

o0
< J dte™ 5| (To Fug) (0)]2
0

< C | | ¥grsm 0 )P0l
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Due to Lemma 2, we may apply Assumption 5 to bound this kernel to yield

1Fulle < Ox | dpITlateFey(e!) = OXIZP2
T

Hence ||F.,||2 is uniformly bounded and a certain subsequence of F,, converges weakly as
g — 0 to some matrix Feoq. This implies [, converges weakly as well and it must also
converge to Fy).

Due to Lemma 6, taking the weak limit of (31) as g — 0 yields
F. = I(IID,I1) I T, FY, (32)

where II is the projection onto ker J,. Hence F eoq is an equilibrium eigenvector for HEOH.
Due to Lemma 1, Feoq will be nonnegative, as it is the equilibrium eigenvector for the
generator of a jump process. In addition, Feoq # 0 since (I, F,;,) = 1 for all g implies
{, Feoq> = 1 as well. Therefore, due to Assumption 4 (using a suitable normalization of

F?), Y, will in fact be strictly positive. O

=]
Lemma 3 shows that Fi, converges weakly to ng satisfying F fq(p) = Z w;(p)Eyi(p) for

=1
some w;(p) and the matrix elements E;;(p) = [:(p) {¢j(p)| for the basis {1 (10)}51 of H(p)
given in the proof of Lemma 1. Utilizing Corollary 1 in Appendix C, we can now prove

Theorem 2.

Proof. To begin, consider expression (30). To leading order in g, the diffusion will be

1 . S N—
Di,j = étr ﬁrd dpaijk|k:0(2j0 - gﬁo) lajjk‘k:OFeq(p>

1 . S
+ §tIJd dpajjﬂk:o(l% — gﬁo) lﬁijk|k=gFeq(p) + 0(1)
T
Multiplying by ¢ and taking the limit ¢ — 0% using Corollary 1 yields
1 ~
gDi,j — —étI‘J de(?ij0|k:0(H£0H)’1H&jjk|k:0F£q
Td

1 ~
— §tr f ) dpﬂﬁjjo|k:0(HC0H)_1H5iJk|k=0F£q7
T
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where II is the projection onto kerJ, and Feoq = hII(l) F,, as in the proof of Lemma 3. For
g—)

an arbitrary function F(p), we calculate

12
(00, TilkmoF) ) = —5 3, Balp) @AW () + F )0, () B,

In particular, this yields

1>

(T10; Tkl k=0 Fey) (p) = — Z wi(p){Wi(p)|0; H ()i (p)) Eii(p).-

Let z € CA\{0}. If we denote ®(p) := %‘@bl(pﬂ > @ﬁ(p)zjwi(p)}Eii(p), we will have
i=1 j

lim Re(z,gDz) = —Re(®, (LoI) '@ FY),
g—0

= —Re(PFY, (ILIIFL) 1O FY
= —(OFY, (ILLIIFS)) ' Re(IIL IIFL (LIS ) LD Y,

= —Re((IILILF,) ' OF,  TILILF, (IILILE, ) 'O F,).

eq’

Due to the proof of Lemma 3, HEOH is the generator for a jump process with a unique
positive invariant state given by F qu. Hence Lemma 5 applies and this term will be strictly

positive. Hence D(g) = O <l> O

g
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

A quantum particle’s dynamics are seemingly governed solely by its interaction with
the environment in the case of a Lindblad master equation. Indeed, [9] and [2] showed
diffusion was present in this context for a translation-invariant Hamiltonian. This document
showed that in the more general ()-periodic Hamiltonian context, diffusive propagation also
occurred. In [1], diffusion was shown for an Anderson Hamiltonian (though the Lindbladian
used in that paper was not the generator of a completely positive semigroup). In each case,
the presence of a Lindbladian caused the dynamics of the particle to exhibit diffusion. It
is then natural to wonder whether this behavior occurs for other Hamiltonians as well.

For instance, consider the Anderson model (2) whose Hamiltonian operator is given by
H,=-A+M\V, (33)

where the potentials V,, are diagonal operators with w given by i.i.d. random variables and
the parameter \ measures the strength of the disorder. We should also suspect diffusion to
be present for this Hamiltonian in the context of Lindbladian environmental interaction.
However, one would expect the disorder to affect the asymptotics of the diffusion for small
g, as the g = 0 case should yield localization for large enough disorder. Thus we make the

following conjecture.

Conjecture 1. Let p; be a solution of (2) with initial condition py € By((*(Z%)) and
g > 0. If H, satisfies (33) with \ sufficiently large, then the quantum particle whose density
matrixz is given by p, exhibits diffusive propagation with diffusion matriz D(g) satisfying
D(g) = O(g) for small g.

A particularly interesting subcase of the one-dimensional Anderson model is the random
dimer model. In this model, the random variables w(z) for x € Z are chosen from the set
{—1,1} with the additional requirement that w(2z) = w(2z + 1) for every x € Z. That is,

the random variables are chosen in dimer pairs. This particular case of the Anderson model
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is interesting, since it was shown that (without Lindbladian interaction) the dynamics of
the quantum particle change depending on the value of A\. For instance, the particle’s
dynamics will be localized as with the usual Anderson model for A > 1, yet diffusive for

A = 1 and superdiffusive for 0 < A < 1 [20], [21]. This leads us to the following conjecture.

Conjecture 2. Let p; be a solution of (2) with initial condition py € By (¢*(Z4)) and g > 0.
If H,, is the random dimer Hamiltonian, then the quantum particle whose density matrix is
given by p; exhibits diffusive propagation with diffusion matriz D(g). For small g, we have

the following asymptotics:
o If0< A <1, then D(g) = O(g~'*)

o If\>1, then D(g) = O(g).
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APPENDIX A: A SPECTRUM RESULT FOR COMMUTING OPERATORS

Lemma 4. Let A and B be bounded operators on a Banach space with [A, B] = 0. Then
o(A+ B) < o(A) +o(B).

Proof. We first note that [A, B] = 0 implies [(A—2)"!, (B—w)™!] =0 for all z € p(A),w €

p(B) since
[(A—2) " (B-w) ] =(A-2)""(B-w)[A-zB—-w|(B-—w) (A-2)"'=0.

Let z ¢ 0(A) + o(B) so that o(A) and z — o(B) are two disjoint compact sets. We may
thus define a bounded counterclockwise contour I' enclosing o(A) such that intI" contains
no part of z — o(B). Using this contour, we define an operator

1
®:=— | dw(w+ B—2)"Hw-A4)"
211 r

which will be bounded since dist(I", 0(A)), dist(T", z — o(B)) > 0. Since the resolvents of A

and B commute,

(A+B—@¢=£— duw(A — w)(w + B — 2) " (w — A)!

T Jr

+ 1 dw(B+w—z)(w+B—z)"'(w—A)"

2m Jp
1 o B
=—— | dw(w+B—-2z)" +— | dw(w—A)
211 r ™ Jr
=0+1.
So ® = (A+ B — z)~! and since ® is bounded, z € p(A + B). O
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APPENDIX B: NEGATIVITY OF A JUMP PROCESS

Lemma 5. Suppose L is the generator for a jump process on a compact metric space X

with nonnegative jump rate r(x,y)dy, i.e.

e - |

X

dy r(z,y) fy) — L dy r(y,2)f(2) = (Kf)(z) — D(@)f(x).

Also, suppose for a.e. v € X, % < D(x) < C for some C > 0 and let L have a unique

nonnegative invariant state w. Assume that for a.e. x € X and every nonnegative function
¢ with § ¢(x)dx = 1, there exists n € N such that (K"¢)(x) > 0. Then for all f # constant

a.e.,

—Re(f, L(wf)) > 0.

Proof. We first observe that the adjoint operator will be given by

(£ f)(x) = f ry,2)(f(y) — f(2))dy.

X

We then have since Lw = 0,

~Re(f, £(wf)) = ~5ReC, £(wf) ~ SReCLS, (wf)

= _%Re JX L dxdy f*()[r(z,y)w(y) f(y) —r(y, 2)w(z) f(z)]
— %Re JX JX dxdy r(y, 2)[f*(y) — f*(x)]w(z) f(x)
= %Re L L dedy r (@, y)w(y)[|f(@)* = 21 (@) f(y) + [ (y)]]
= L L dady r(w, y)w(y)|f (@) = f)P.
This integral is clearly nonngative. Since w is an invariant state for £, we will have
w(z) = (%K> w(z) = (%K> w(z) = %(K”w)(x)

for each n € N and a.e. x € X. Using a suitable normalization of w, this implies w > 0

a.e. By way of contradiction, suppose —Re(f, L(wf)) = 0. Then for a.e. z,y € X with
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r(z,y) > 0, we have f(z) = f(y). However, our assumption yields

J dyl---f dynlf dyr(x, y1)r(y1, y2) -+ 7 (Yn—2, Yn—1)7 (Yn-1,y)P(y) > 0
X X X

for a.e. x € X and every function ¢ > 0 with SX ¢(z)dz = 1. Hence there exists a positive

measure set £ < X" ! such that

(@, 1), (Y1, Y2), T (Yn—2,Yn-1), T"(Yn-1,4) > 0

for a.e. z,y € X and ae. (y1,---,yn) € E. Therefore, for a.e. x,y € X and a.e.

(ylv"' 7yn) EE,

f@)=fn)=fy2) == fUn-2) = (Y1) = f(¥)

and f = constant a.e., a contradiction. O]
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APPENDIX C: A GENERALIZED LIMIT FOR RESOLVENTS

In [1], the following limit result was proved for resolvents of a particular form:

Proposition 6 (Frohlich/Schenker, 2016). Let H be a Hilbert space. Suppose A is a normal
operator on H with ReA > 0 and B is a bounded operator on H with ReB = ¢ > 0. Then

if Il denotes the projection onto the kernel of A,

Jim (p, (AA + B) ")y = (I, (ILBI) T
for all ¢, € H.

This Proposition, while elegant, has a couple of drawbacks. For one, it requires that
A be normal. Also, it does not hold up to compact perturbations of B. What we prove
below is a slightly stronger generalization of this Proposition using the concept of dilation
spaces given in [22].
Lemma 6. Let H be a Hilbert space. Let A and B be operators on H with ReA > 0,

ReB = ¢ > 0 and B bounded. Then if w-limy_, o ¥\ = ¢ € H,

gl_{rolo<¢a (AA + B)_lw/\>7-l = <H¢7 (HBH>_1Hw>mnH
for any ¢ € H, where I1 denotes the projection onto the kernel of A.

Proof. Let z € C be such that Rez > 0 and consider the operator F(z) := (AA + 2)~! for
some fixed A > 0. As this is an operator-valued Herglotz function with Re(¢p, F'(2)¢) = 0,

there exists a positive operator-valued measure M such that

F(z) — f L anre).

I+ 2
Based on results in [22], there exists a dilation space K > H and a minimal dilation N of
M onto K where N is a projection-valued measure on the real line. Furthermore, if P is

the projection of IC onto H, then since ﬁ is bounded,

1 1
M(t) =P N(t)P.
J At + zd ®) J I+ zd ®)
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Since N is a projection-valued measure on R, the spectral theorem dictates that H :=

§tdN (t) defines a self-adjoint operator. Hence by spectral mapping,
F(z) = P(iIAH + 2)7'P.
Now consider the operator (AA + B + z)~!. Since B is bounded, a Taylor expansion yields

M +B+2)! = Z
" 0
= Z —PBP(iMH + 2)"")"P

— P(i\H + PBP + z)~'P

= PGAH + P(B—c)P+z+¢)"'P.

Since ReA > 0 and ReB > ¢ > 0, the limit 2z — 0 may be taken on the left-hand side.
Similarly, since ¢ > 0, Re(iH) = 0, and ReP(B — ¢)P > 0, we may take a limit as z — 0

on the right-hand side as well to give
(M + B)™' = P(iA\H + P(B—c)P +¢)"'P.

Denote hy := (i\H+P(B—c)P+c) ' Pi,. We note that Re(iH) = 0 and ReP(B—c)P+c >

¢ > 0. Hence h, is bounded since
cl[hall* < Re (i, Py < [|Ral] | Pa]]
implies ||hy|] < ¢7!|Py]|. Then since Py = iAXHhy + [P(B — ¢)P + c|h,, this gives
IAL[EHRAl < (1+ ¢THIP(B = )P + c||)||Pl]-

Now since 1, — 1, Banach-Steinhaus yields P, is uniformly bounded. Therefore, (I —
[I)hy — 0 where Iy is the projection onto the kernel of H. Since iH is normal, Iy

commutes with ¢1H. Hence

y[P(B - ¢)P + clhy = Iy Pij,.
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Furthermore, since [Ig[P(B — ¢) P + ¢]Ily is boundedly invertible, we have
(u[P(B — )P + c|lly) "Iy Py — (u[P(B — ¢)P + c|lly) "z Py.
These together imply that [Ighy — (IIg[P(B — ¢)P + c|ll) 'z Py. That is,
}EEIO<¢, PNiH+P(B —¢)P + ¢) 'PYy )y
= Uy P¢, [y[P(B — c)P + c|lly) Ty PY)rantty p

for all ¢ € H. Now the kernel of A corresponds with the atoms of the operator-valued
measure M. These clearly correspond to the atoms of the projection-valued measure N,
which then further correspond with the kernel of H. Hence the kernel of H coincides with
the kernel of A and we may replace Iy by II. Finally, since P is a projection from K onto

H, P may be removed from the final expression. O

Corollary 1. Let H be a Hilbert space. Let A, B € B(H) with ReA = 0 and ReB = ¢ > 0,
and let K be compact in H. Then if w-limy o 1\ = ¢ € H and kerll(B + K)II = kerIl for

IT the projection onto the kernel of A,
1 (6, (AA + B+ K) ™y = (16, (B + K)IT) ™ T
for any ¢ € H.

Proof. For an arbitrary compact K, we may write K = K’ + F where ReK’ > —c and F
has finite rank. As Re(B+ K’) = ¢ > 0 for some constant ¢/, we may thus assume without
loss of generality that K = F' has finite rank.

Let us write
M+ B+EK)'=M+B) ™~ M+B) 'KAM+B+K)™*
or

S\AM+B+K)'=MA+B)"!
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where
Sy:=1+ M+ B)'K.

Consider the decomposition H = H; @ Hs where H; = ranP and Hs = ran(1 — P) for P

the projection onto (kerK ). This decomposition yields

S 1-P (1-P) N+ B)'K
\ =
0 P+ P+ B)'K

Assuming for the moment that P + P(AA + B)~!K is invertible, Schur complement gives

B 1—P —(1-P)AA+B)'K(P+P\A+B)"'K)!
0 (P+PMA+B)'K)™!

We observe that P + P(AA + B) 'K will be invertible if and only if P(AA + B) 'K does
not have a nontrivial eigenvector corresponding to the eigenvalue -1.

By Lemma 6, (A + B)"'K converges weakly to II(IIBII)"'TIK as A — oo. Then
since K is compact and P is the projection onto rank’, P(AA + B)~'K actually converges
to PII(IIBII)~'TIK in norm. Hence taking A — o0 in the eigenvalue equation P(AA +
B) 'Ky = — yields II(IIBII) " 'IKw = —1) for ¢ € ranP. In fact, this equation reveals
that ¢ € ranll as well and so (IIBI)"'IIKIy = —1 for ¢ € ranP n ranll. That is,
II(B + K)IIy = 0. Since we have assumed kerlI(B + K)II = kerll, ¢» = 0 and therefore,
P + PII(IIBII)'IK is invertible. Using perturbation theory and norm convergence, we
may conclude that P + P(AA + B)™'K is invertible for sufficiently large A and so S is

also invertible with inverse given in block form by (34). Then since (AA + B + K)™! =

51



STHAA 4+ B)7L, we have for any ¢, 1, € H with 1) — 9,

(6, AMA+ B+ K)™ ') =
(1= P)¢, (1= P)AA+B) ")
—{(1=P)¢,(1—P)AM + B)'K(P+ P\A+ B)'K)"'"P(AM + B)'¢)
+{(P¢,(P+ P(A + B)"'K)"'P(AA + B) 'y).
Since P is the projection onto a finite rank operator, we may decompose each projection P

in the above expression into a finite sum. Then utilizing Lemma 6, the limit of each term

should exist as A — oo. In particular, we should have

Jim (6, (A + B + K) ™) =
(1= P)¢, (1 - P)I(IIBII)'IIy))
—{(1 = P)¢,(1 — P)IIIBI) 'K (P + PII(IIBI) 1K) ' PI(ILBI) 1)
+{(P¢, (P + PI(IIBI) 'IIK) " PII(IIBIT) Iy

= (¢, S, TI(TIBIN)~ ')

where

- 1—P (1- P)IIIBI)'IK

o0

0 P+ PH(IIBI)'IK

Working backwards, this yields Sy, = I + II(IIBIT)~TIIK and therefore, we have
Jim (¢, AN + B + K) ")) = (o, (I + H(IIBI) ' TIK)"TI(ITBIT) " Ixp).
By decomposing the space H into H = ran(1 — IT) @ ranll, this may be simplified to
lim (6, (AA + B + K) ™'y = (g, (T(B + K)I) "Iy

as desired. ]
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