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ABSTRACT

In the first stage, a low-cost tap water fingerprinting technique was explored
using the coffee ring effect, which produces distinguishable residue patterns after tap
water evaporates. This technique was evaluated by photographing tap water droplets
from different communities in southern Michigan with a cell phone camera and 30x
loupe. A convolutional neural network (CNN) model was then trained using the
images to group the tap waters with similar water chemistry, achieving 80% accuracy.
Further experiments were conducted to determine the influence of lower
concentration species in the tap water "fingerprint". By analyzing the residue patterns
from salt mixtures with varying concentrations of sodium, calcium, magnesium,
chloride, bicarbonate, and sulfate, it was found that the residue patterns are unique and
reproducible, and are associated with the water chemistry of the sample. Principal
component analysis (PCA) was also applied to the image files and particle
measurements, further highlighting differences in the residue patterns. The results
suggest that the residue patterns of tap water, imaged with a cell phone camera and
loupe, contain valuable information about the composition of tap water, and the coffee
ring effect should be further studied for potential use in low-cost tap water
fingerprinting.

The second stage examined the coffee-ring effect for tap water component analysis
using synthetic samples with varying concentrations of ions. A custom four-axis
autosampler was built using Raspberry Pi, a 3D printer stage, and programmed
with Ubuntu and Python 3.7. The experiment was conducted in a controlled
temperature and humidity chamber. SEM images, EDS mapping, and particle features

extracted from photographs were analyzed using statistical methods. Optimal



conditions were identified as 23-26°C with 45%-50% humidity, 20-23°C with 45%-50%
humidity, and 26-29°C with 40%-45% humidity, showcasing the coffee-ring effect as a
low-cost, effective technique for tap water analysis. In the third stage, three models
were evaluated in this research: the One-stage point estimation model (OnePeM), the
Two-stage vision-transformer point estimation model (TwoVtPeM), and the Two-stage
vision-transformer multiple output estimation model (TwoVtMoM). The TwoVtPeM
technique achieved the best performance of the models tested (OnePeM, TwoVtPeM
and TwoVtMoM), with OnePeM also performing well and TwoVtMoM falling short.
The TwoVtPeM relative percentage errors were +17.1% for oxygen, +4.5% for sulfur,
+19.9% for sodium, +5.7% for chlorine, +19.8% for calcium, +25.8% for
magnesium, and +20.1% for carbon. The R? was 0.95 which is higher than
OnePeM with 0.90 R? and TwoVtMoM which was 0.54. The TwoVtPeM had a higher
error mean than OnePeM, but it exhibited lower relative standard deviations of
estimation; the TwoVtPeM relative standard deviations values were: 3.9% for oxygen,
3.0% for sulfur, 5.3% for sodium, 3.9% for magnesium, 5.3% for chlorine, 10.0%
for calcium, and 5.9% for carbon. Moreover, 79.2% of water samples were correctly
classified for hardness based on the estimated element concentrations by TwoVtPeM.
Compared to strip test kits, this technology offers advantages such as speed, low cost,
and the ability to simultaneously estimate multiple contaminants. However,
addressing certain limitations, such as the quality of the substrate used and the size and
complexity of the dataset and models, is essential. The TwoVtMoM is underfitting
and requires additional training epochs and fine-tuning. Overall, this research
demonstrates a promising technique for water quality analysis, providing a low-cost,

fast, and relatively accurate method for estimating water contaminant concentrations.
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CHAPTER 1

Introduction

1.1 Need for innovation in drinking water monitoring

The need for innovation in drinking water monitoring is growing due to increased
awareness of the impact of contaminated water on human health and the environment.
Current monitoring methods are often expensive, time-consuming, and reliant on manual
analysis. As a result, there is a pressing need for more efficient, cost-effective, and reliable
methods to monitor drinking water quality. Innovations in technologies, such as sensors
and machine learning, have the potential to revolutionize drinking water monitoring by
providing real-time data and reducing the need for manual analysis. In addition,
incorporating these technologies into drinking water monitoring systems can help to
address the current challenges of limited resources and expertise in many communities,

leading to better access to safe and clean drinking water for all.

1.2 Coffee-ring effect introduction

1.2.1  What is coffee-ring effect?

The coffee-ring effect is a low-cost method for separating particles in aqueous samples. It
occurs when a water droplet shrinks in height and its particles are squished into concentric
circles based on size as the droplet dries on a hydrophobic substrate Wong et al. [2011].
This phenomenon is known as "nanochromatography" and has been used to separate
particles with resolutions of 100 nm at low particle volume fractions Wong et al. [2011].
The separation is possible due to the differential effects of adhesion and surface tension
forces, which move larger particles towards the center of the drop and hold smaller

particles in place at the drop edge.



1.2.2 Several factors in pattern formation of crystals in the coffee-ring

effect process

Takhistov and Chang and other researchers found coffee-ring effect (CRE) depends on
temperature, concentration of particles and substrate hydrophobicity. film and solutal flux
dynamics of such small drops at their contact lines can induce macroscopic concentration
segregation and produce distinct large-scale stain patterns such as concentric rings on
hydrophilic surfaces and latticed crystals on hydrophobic ones. Coupling between these
bulk segregation instabilities and the classical Mullins-Sekerka crystallization instability
results in a large variety of crystal patterns with interwoven complex structures of two
length scales. Furthermore, low density crystals can occupy a larger area than the initial
drop, and gravitational drainage on inclined substrates can change the larger length scale.
Takhistov and Chang [2002], Shahidzadeh-Bonn et al. [2008], Zhong et al. [2017].
Researchers also found polyelectrolyte concentration and humidity have effects on pattern
formation Kaya et al. [2010]. Shin also demonstrated solubility, evaporation rate and
mobility of the contact line determines the pattern of formed crystals in the coffee-ring
effect Shin et al. [2014]. Lee proved the degree of supersaturation affects the nucleation
pathways of potassium dihydrogen phosphate solution droplet Lee et al. [2016]. It is also
found in the evaporation process of NaCl, the hydrophobicity (wettability) of substrate has
effects on formed crystal pattern. On hydrophilic surface, ringlike crystalline deposit
surrounded by a small spreading film formed and on hydrophobic surface, a close-up of the
cauliflower-like pattern on the residue border was formed. And degree of saturation has
effects on crystals pattern of Na2SO4 Shahidzadeh-Bonn et al. [2008]. Researchers found
salts concentration and wettability have effects on the formation of crystal pattern Zhong et

al. [2017].



1.2.3 Understanding the mechanism of coffee-ring effect

In terms of numerical approaches, a variety of studies have been conducted on the pattern
formation of evaporating suspensions containing dissolved nanoparticles, employing
Monte Carlo models Kim et al. [2011], Stannard [2011], Robbins et al. [2011], Brownian
dynamics Gupta and Peters [1985], Chen and Kim [2004] and physical microfluid
mechanism modeling Kang et al. [2016], Fischer [2002], Shmuylovich et al. [2002],
Pauchard and Allain [2003], Popov [2005], Heim et al. [2005].

Previous study investigated a computational Monte Carlo method approach for
estimating the ring-like deposition of nanoparticles contained in a drying liquid
droplet Kim et al. [2011]. The investigation of non-equilibrium dewetting
processes in nanoparticle-containing solutions revealed various pattern for example ring-
like structures formations and other underlying mechanisms Stannard [2011]. A dynamic
density functional theory was developed to replicate branched ’flower-like’, labyrinthine,
and network structures and this model was used to examine the effects of solvent
evaporation, as well as the diffusion of colloidal particles and liquid across the surface.
Robbins et al. [2011]. A study demonstrated the formation of coffee stains necessitates
specific boundary conditions, such as pinning boundaries Yunker et al. [2011]. A model
based on the bulk flow within the drop transporting particles to the interface where
they are captured by the receding free surface and subsequently transported along the
interface until they are deposited near the contact line was investigated Kang et al. [2016] A

review of recent studies can be found in Larson [2014].
1.2.4 Crystal structure prediction with energy minimization

Material synthesizing is an active area both in research and industry. Once a material

is finally synthesized and characterized, its properties can be evaluated in the



engineering design process. However, to synthesize the desired material, most applications
require an optimization of multiple properties which may be interrelated. In field of
thermoelectrics, materials are compared to one another using a figure of merit. In this
equation, S is the Seebeck coefficient, ¢ is the electrical conductivity, y is the thermal
conductivity, and T is temperature. However, the material properties o, y, and S are all
interrelated. For example, electrical conductivity is positively related with high carrier
concentration, whereas Seebeck coefficient is negatively related with carrier concentration
to increase zT. In addition, thermal conductivity also increases with carrier concentration
which in turn decreases zT. Therefore, optimization of thermoelectric materials requires a
compromise between these properties. Also, the most significant advances in this field have
come from identifying new compounds which exhibit a better intrinsic balance in these

properties Graser et al. [2018].

1.2.5 Coffee-ring effect applications

Understanding and controlling the process of solute deposition in the presence of coffee-ring
effect is important in manufacturing processes involving evaporation on surfaces including
printing Park and Moon [2006], Friederich et al. [2013], Kuang et al. [2014], Sun et al. [2015],
Huang and Zhu [2019] and fabrication of ordered structures Han and Lin [2012], functional
nanomaterials Shao et al. [2014], Zou and Kim [2014] and colloidal crystals Park et al. [2006],
Cui et al. [2009]. coffee-ring effect also improves the performance of commercial applications
including fluorescent microarrays Blossey and Bosio [2002], Dugas et al. [2005], matrix
assisted laser desorption ionization (MALDI) spectrometry Hu et al. [2013], Mampeallil et al.
[2012], Kudina et al. [2016], Lai et al. [2016], and surface enhanced Raman spectroscopy
(SERS) Zhou et al. [2014a], Wang et al. [2014], Garcia-Cordero and Fan [2017]. coffee-

ring effect has also implications in plasmonics Li et al. [2016a], solute separation Wong et



al. [2011], diagnostics Brutin et al. [2011], Wen et al. [2013], Gulka et al. [2014] and
electronics applications de Gans and Schubert [2004].

Suppression of coffee-ring effect

Coffee-ring effect can be suppressed through one of the three physical strategies (i)
preventing the pinning of the contact line; (ii) disturbing the capillary flow towards the
contact line and (iii) preventing the particles being transported to the droplet edge by the
capillary flows. The coffee-ring effect could be suppressed by preventing contact line
pinning using hydrophobic surfaces. Increasing the hydrophobicity of surfaces is often
accompanied by decreasing contact angle hysteresis (CAH) Eral et al. [2013]. Lower CAH
in essence means reduced contact line pinning which leads to suppression of coffee-ring
effect. Lower CAH could be achieved by patterning of controllable surface wettability as
reviewed previously by Tial et al. Tian et al. [2013]. These methods include chemical
modification Ko et al. [2004], Tian et al. [2013], Li et al. [2018] and physical modification
Yunker et al. [2011].

On hydrophobic and partially hydrophobic surfaces, pinning can even occur when the
CAH or solute concentration is high. If CAH is high, during the contact angle
decreases to the receding angle, typically a few seconds depending upon the rate of
evaporation, solutes can accumulate at the contact line. Such accumulation produces ring-
like deposits only if the duration of pinning is above a critical value for a given
substrate-solute system
Moraila-Martinez et al. [2013]. However if the pinning time is short, even with high initial
solute concentration, the coffee-ring effect will just produce smaller inner rings Nguyen et
al. [2013]. The nanoparticles are more prominent to form ring like patterns compared with

larger particles as they can flow into the microscopic regions of the droplet edge faster. In



the presence of solute particles in the droplet, electrowetting (EW) can reduce the pinned
contact line on (partially)-hydrophobic surfaces Mugele and Baret [2005], Li and Mugele
[2008]. A droplet is deposited on a dielectric layer covering an electrode. When a voltage
is applied between the droplet and the electrode an electric force pulls the contact line
outward, overcoming the pinning forces so the contact line pinning is reduced. The coffee-
ring effect can also be suppressed by vibration and acoustics, marangoni flow and other
factors Mampallil and Eral [2018]. Researchers have also proposed a method that relies on
the covalent cross-linking of monodisperse materials, which allows for the formation of thin
films with uniform thicknesses and macroscale cohesion. This approach prevents the
coffee-ring effect by inducing gelation of the coating materials through a thioacetate-
disulfide transition, counterbalancing the capillary forces generated by evaporation Li et al.
[2018].

Enhancing coffee-ring effect

Evaporation of droplets can be utilized as a method to concentrate its solutes in it.
Evaporation of the solvent can increase the analyte concentration making the reactions
more probable Hernandez-Perez et al. [2016], De Angelis et al. [2011]. Concentrating
solutes at the rim of the droplet by coffee-ring effect is called the self-ordered ring (SOR)
method. It acts as a pre-concentration procedure before other analyses. The deposition of
solutes and particles are exploited as a pre-concentration method 1.1. To enhance the
coffee-ring effect, hydrophobic surface is usually used as the substrate. Drying process on
hydrophobic surfaces forms smaller rings with higher solute density as the contact line is
pinned only in the later stages of the evaporation. Liu et al. demonstrated that the SOR
method enhanced the fluorescence detection of orally administrated berberine in human

urine Liu et al. [2002]. Similarly, fluorescent detection of trace levels of tetracycline



Huang et al. [2004a], quinidine sulfate in serum samples Yang and Huang [2006] and
fluorescein Liu et al. [2006] was demonstrated based on the SOR method. Coffee-ring
effect could facilitate identifying pathogens which are associated with diseases by isolating
the disease markers from body fluids Wong et al. [2011], Chen and Evans [2010].

The coffee-ring effect has been found to have several practical applications in various
fields. In particular, it has been utilized to enhance the deposition of gold nanoparticles
(AuNPs) on cellulose nanofibers (CNFs) for the purpose of improving surface-enhanced
Raman scattering (SERS) as reported in several studies Chen et al. [2017], Wang et al.
[2014], Hussain et al. [2019], Juneja and Bhattacharya [2019], Zhou et al. [2014b]. The
coffee-ring effect has also been used as a low-cost approach for malaria diagnosis Gulka et
al. [2014]. Additionally, the coffee-ring effect has shown potential for monitoring tap
water quality with the help of deep neural networks Li et al. [2020].

Furthermore, the coffee-ring effect has the potential to aid in identifying pathogens
associated with various diseases by isolating disease markers from body fluids Wong et al.
[2011], Chen and Evans [2010]. These findings demonstrate the versatile and practical

applications of the coffee-ring effect in various fields.
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Figure 1.1: Suppression and Enhancement of coffee-ring effect. Comparison of different
methods. The working principle, advantages and limitations are illustrated.

1.3 Machine-Learning Models in water treatment and modeling

The table referred to as Table 1.1 provides a summary of Al and ML models and
methods used in water treatment and modeling applications. It highlights their general and
specific uses, as well as the advantages and disadvantages of each method. The final
column includes references to peer-reviewed textbook sources that offer comprehensive and
in-depth explanations of these models and methods. Although the table may not cover every

aspect of water treatment and modeling, the applications selected are based on a well-defined



methodology. It is worth noting that the majority of the ML methods listed in the table fall
under the "black-box" category, which is generally considered a drawback for most models.

However, the exception to this are Genetic Algorithms (GA) and Gaussian Processes (GPs).
1.3.1 Image analysis via convolutional neural network (CNN)

The basic ideas underlying the use of convolutional neural networks (CNNs, also
known as ConvNets) for inverse problems are not innovative. For more historical
perspective, see Schmidhuber [2015], Li et al. [2016b], and for an accessible introduction
to deep neural networks and a summary of their recent research, see LeCun et al. [2015],
Schwendicke et al. [2019], Brinker et al. [2018]. The CNN architecture was proposed in
1986 in RUMBERT [1986] and were developed for solving inverse imaging problems
as early as 1988 Zhou et al. [1988]. These approaches, which used networks with a few
parameters and did not always include learning, were largely superseded by compressed
sensing (or, broadly, convex optimization with regularization) approaches in the 2000s. As
computer hardware improved, it became feasible to train larger and larger neural networks,
until, in 2012, Krizhevsky et al. Krizhevsky et al. [2017] achieved a significant
improvement over the state of the art on the ImageNet classification challenge by using a
GPU to train a CNN with 5 convolutional layers and 60 million parameters on a set of 1.3
million images. This work spurred a resurgence of interest in neural networks, and
specifically CNNs, for not only computer vision tasks, but also inverse problems and more.
With the development of CNN models, both accuracy and operation have increased
dramatically.

Basic CNN components

There are numerous variants of CNN architectures in the literature. However, their

basic components are the same. They all consist of three types of main layers, namely



convolutional, pooling, and fully-connected layers. The convolutional layer aims to learn
feature representations of the inputs, for example human eyes features, nose features or
objects. As shown in Figure. 1.2 Convolution layer is composed of several convolution
kernels which are used to compute different feature maps. Specifically, each neuron of a
feature map is connected to a region of neighbouring neurons in the previous layer. This
neighbourhood is referred to as the neuron’s receptive field in the previous layer. The new
feature map can be obtained by first convolving the input with a learn-able kernel and then
applying an element-wise nonlinear activation function on the convolved results. After the
activation function, a pooling layer is normally applied to the feature map to filter the high
frequency noise. The complete feature maps are obtained by using several different kernels
with the same or different activation and pooling functions Gu et al. [2018]. Mathematically,
the feature value at location (j, j) in the kth feature map of Ith layer, zil' ik Is calculated by

the equation:

z{j e = Wixi; + by (1.2)

Where w}. and b}, are the weight vector and bias term of the kth filter of the /th layer
respectively, and xf' ;is the input patch centered at location (j, j) in the previous layer, the
Ith layer. It worth to know that the kernel w}that generates the feature map zil' j ks shared

but there are several different kernels generated and learned in the model building

process
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Figure 1.2: The architecture of the LeNet-5 network works well on digit classification task.
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Such a weight sharing mechanism has several advantages such as it can reduce the model
complexity and make the network easier to train. At the same time, to not loose
generality and information, several kernels is trained and implemented in the model
structure. The activation function introduces nonlinearities to CNN, which are desirable for
multi-layer networks to detect nonlinear features Gu et al. [2018]. The activation function
are normally Sigmoid function, ReLU function, Tanh function and their derivatives LeCun
et al. [2012], Hinton [2010]. Let a(-) denote the nonlinear activation function. The

activation value a(i, j, k) of convolutional feature z/ can be computed as

L =alzi) (1.2)

a

The pooling layer aims to achieve shift-invariance and information aggregation by
reducing the dimension of the feature maps in the previous layer. It is usually placed
between two convolutional layers. Each feature map of a pooling layer is connected

to its corresponding feature map of the preceding convolutional layer. Denoting the

pooling function as pool(-), each feature map &’ could be denoted as:

Y = pool (afp. ) (1.3)
In this equation, where R;; is a local neighbourhood around location (i, j). The typical

pooling operations are average pooling Wang et al. [2012] and max pooling Boureau et al.
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[2010], Murray and Perronnin [2014]. The kernels in the lower convolutional layers are
designed to detect low-level features such as edges and curves, while the kernels in higher
layers are learned to detect more abstract features. By stacking several convolutional,
activation and pooling layers, the model could gradually extract higher-level feature
representations.

After the convolutional and pooling layers, there may be one or more fully-connected
layers which aim to perform high-level reasoning Simonyan and Zisserman [2014], Zeiler
and Fergus [2014], Hinton et al. [2012]. They take all neurons in the previous layer and
connect them to every single neuron of current layer to generate global semantic
information. Note that fully-connected layer not always necessary as it can be replaced by
a 1 x 1 convolution layer Lin et al. [2013], Saxena and Verbeek [2016]. The last layer of
CNNs is an output layer. Softmax operator is commonly used for classification tasks
Russakovsky et al. [2015]. Another commonly used method is SVM, which can be
combined with CNN features to solve different classification tasks Tang [2013], Madjarov
et al. [2012]. Let 6 denote all the parameters of a CNN (e.g., the weight vectors and bias
terms). The optimum parameters for a specific task can be obtained by minimizing an
appropriate loss function defined on that task. Suppose we have N desired input-output
relations (x”, y"); n € [1, ..., N ], where X" is the n-th input data, y” is its corresponding
target label and o” is the output of CNN.

The aim of training CNN is a problem of global optimization. However, in practice,
it is often a local minimum problems and by minimizing the loss function. Stochastic
gradient descent is a common solution for optimizing to find the best fitting set of
parameters.

The loss of CNN can be calculated as follows:
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L=~
N

Yn=11(6y™ 0™ (1.4)
Recent advances in convolutional neural networks

Since 2006, many methods have been developed to overcome the difficulties encountered
in training deep CNNs Niu and Suen [2012], Russakovsky et al. [2015], Simonyan and
Zisserman [2014], Szegedy et al. [2015]. For example, the CNN model proposed by
Krizhevsky et al. showed significant improvements upon previous methods on the image
classification task. The overall architecture of their method, i.e., AlexNet Russakovsky et
al. [2015], is similar to LeNet-5 but with a deeper structure. With the success of
Krizhevsky’s work, many works have been proposed to improve its performance. Among all
these works, there are four models which are most representative. These models are ZFNet
Zeiler and Fergus [2014], VGGNet Simonyan and Zisserman [2014], GoogleNet Szegedy et
al. [2015] and ResNet He et al. [2016]. From the evolution of the model architectures, a
typical trend is that researchers are building deeper networks, e.g., ResNet, which won the
champion of ILSVRC 2015, is about 20 times deeper than AlexNet. Theoretically, By
increasing depth, the network can achieve better feature extraction and representation
which could approximate the target function better. However, deeper model architecture
also increases the complexity of the network, which makes the network be more difficult
to optimize and easier to get overfitting and suffer th curse of dimensionality problem.
Along this way, various methods have been proposed to deal with these problems in

various aspects.
1.3.2 Vision Transformer in computer vision

Deep neural networks (DNNs) form the core of Al systems. Different types of
networks are designed for different tasks. The multi-layer perceptron (MLP) or fully

connected (FC) network, made up of multiple linear layers and nonlinear activations, is a
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classic neural network Rosenblatt [1957]. Convolutional neural networks (CNNs),
consisting of convolutional and pooling layers, are used to process images and other shift-
invariant data LeCun et al. [1998], Krizhevsky et al. [2017]. Recurrent neural networks
(RNNs) use recurrent cells to process sequential or time series data Hochreiter and
Schmidhuber [1997]. The transformer is a novel neural network that uses self-attention
mechanisms Bahdanau et al. [2014], Parikh et al. [2016] to extract intrinsic features
Vaswani et al. [2017]. It has shown potential for a wide range of Al applications,
especially in NLP. For example, Vaswani et al. Vaswani et al. [2017] proposed the
transformer for machine translation and English constituency parsing tasks, and BERT
(Bidirectional Encoder Representations from Transformers) was introduced by Devlin et al.
Devlin et al. [2018], a language representation model that pre-trains the transformer on
unlabeled text, considering the context of each word in a bidirectional manner. BERT
achieved state-of-the-art results on 11 NLP tasks. Brown et al. Brown et al. [2020] pre-
trained the massive transformer-based model, GPT-3 (Generative Pre-trained Transformer
3), using 45 TB of compressed plaintext data and 175 billion parameters, and it
performed well on various downstream NLP tasks without fine-tuning. These transformer-
based models have brought significant advances to NLP.

Inspired by the success of transformer architectures in NLP, researchers have
recently applied them to computer vision (CV) tasks. Although CNNs have been
traditionally considered the foundation of CV He et al. [2016], Ren et al. [2015], the
transformer is emerging as a potential alternative. Chen et al. Chen et al. [2020] trained a
sequence transformer to auto-regressively predict pixels, achieving results comparable to
CNNs in image classification tasks. Dosovitskiy et al. Dosovitskiy et al. [2020] proposed

the vision transformer model, ViT, which directly applies a pure transformer to sequences
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of image patches to classify the full image, and it has achieved state-of-the-art performance
on multiple image recognition benchmarks. Transformer has also been used to solve
various other CV problems, such as object detection Carion et al. [2020], Zhu et al. [2020],
semantic segmentation Zheng et al. [2021], image processing Chen et al. [2021], and video
understanding Zhou et al. [2018]. Its exceptional performance has attracted more

researchers to propose transformer-based models for a wide range of visual tasks.

1.3.3 Machine-Learning Models and Artificial-Intelligence Methods in

Water Treatment

Table 1.1 summarizes Al and ML models and methods, highlighting their general and
specific usages in water treatment and modeling applications, as well as their advantages
and disadvantages. The final column includes peer-reviewed textbook sources that
provide foundational and in-depth explanations of these models and methods. While not
all-encompassing, the selected water treatment and monitoring applications are based on a
specified methodology. The majority of the included ML methods fall under the "black-
box" archetype, which is generally considered a disadvantage for most models, with the

exception of GA/GPs.
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Table 1.1: A summary of AI methods and ML models used in water treatment and monitoring.

Leaning and

Reviewed Water

. General Treatment and Monitoring | Advantages Disadvantages
Modeling Application Applications
Technique pplications PP
Models for disinfection by- Kernel  selection is
product (DBP) modeling initially  difficult and
. Developing time consuming when
Classification Models for membrane models using SVM/SVR
Regression process parameter modeling | capable of handling high | ;0 deling
> dimensional datasets
Support Vector Classification, Models for ~ biological (i.e., datasets with a high | SVM/SVR modeling
Machines, Pattem. oxygen demand (BOD) and | ;)\ per of inputs vs. a | requires high
: Analysis Cortes | chemical oxygen demand | |, er number of outputs) | computational — power,
Regressions COD del [ ;
and ( ) modeling Develon dels i making it  mostly
Vapni - cveloping models that | ypgsyitable for larger
k Models for. dlgsolved can handle small changes | {atasets 8
[1995], Chua | OXvgenmodelingofrivers | i the dataset
[2003], Noble | podel f . ) SVM/SVR modeling is
[2006]. Caie | orouih rate todeline | Developing models that | sysceptible to noise in
ot al growth rate modeting are functional with both | jatasets
[2021], Models  for aquaponics linear and nonlinear data. SYM/SVR modeling T
Goodfellow et growth stage classification . modeling has
al. [2016] relatively long training

times.
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Table 1.1: (cont’d)

Leaning and

Reviewed Water

i General Treatment and Monitoring | Advantages Disadvantages
l;iiiiilgﬁe Applications Applications
Modeling adsorption Intuitive model
process parameters and | architecture for efficient Accuracy and robustness
Supervised percent removal using ML and effective ML | of the model  are
machine . . modeling detemlned - ‘py the
learning Developing  simple  and density of decision trees
hybrid models for dissolved | Models ~ capable  of _ .
Random Forest | Regression, oxygen prediction and | handling continuous and | [ncreasing the density of
(RF) Classification modeling categorical inputs, even d901§10n trees results n
Maimon and with missing values or significant increases ‘ n
Rokach [2005], data mq@el c.omplexny,
Ceriet al. training  period, and
[2003], Singh Models that are relatively | required computational
et al. [2016], Liu stable and have less | power

et al. [2012],
Hastie et al.
[2009]

impact due to noise and
outliers

Bagging algorithms to
reduce overfitting and
variance in the model
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Table 1.1: (cont’d)

Reviewed Water

Ih;[e:;;ﬁﬁg and General Treafmeflt and Monitoring | Advantages Disadvantages
Technique Applications Applications

Supervised

machine Requires minimal

learning training and can be easily | Poor performance with
k-Nearest _ ) implemented large datasets or those
Neighbor (k- Classification Classification of aquaponics ‘ with high dimensionality
NN) Gaya et al growth stage Capable of handling new

[2017], Zhu data additions without | Susceptible to noise and

[2002], Abba requiring significant | missing data, which can

et al modifications to the | result in  decreased

[2020], model accuracy
Wills et al
[2013], Allafi

etal. [2017]
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Table 1.1: (cont’d)

Leaning and Reviewed Water
. General Treatment and | Advantages Disadvantages
Modeling Applications Monitoring Applications
Technique
Decision Utilizing fuzzy logic
making, system rather than binary logic | The applicability of
control Moraga | Models for chlorine dosage | to better model the | models developed
Fuzzy Inference | et al set-point control human experience of | with fuzzy logic is
System (FIS) [2003], ) decision making dependent on operator
Afroozehetal. | Developing models  for . | defined parameters and
[2018], hydroponics system and | Developing models with experience, which makes
Moon environmental control easily interpretable them prone to human
et al. [2011], outputs and decisions | orror.
Kaynak et al. with a well defined
[1998], Zadeh system

[1998]
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Table 1.1: (cont’d)

Leaning and Reviewed Water
. General Treatment and | Advantages Disadvantages
Modeling Applications Monitoring Applications
Technique
DBP (disinfection
Supervised byproduct) formation | Capable of handling high | High computational
machine modeling dimensional datasets power associated with
learning backward  propagation
Artificial Neural Adsorption Modeling/prediction stage
Network Regression, process parameter | results obtained in a
Classification modeling reasonable amount Some models and
Goodfellow of time architecture themselves
et al Membrane ' are difficult to interpret
[2016], process parameter | Forward propagation
Shahmansouri et | modeling capable of cheap and fast | See below
al. [2021] _ . computation for specific
Chlorine dosage/set-point ANN model
disadvantages

Dissolved oxygen
concentration modeling
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Table 1.1: (cont’d)

Leaning and

Reviewed Water

Modeling Gene.ral . Treafmeflt and Monitoring | Advantages Disadvantages
Technique Applications Applications
Data must be in fixed
Regression, CNNs have been shown | dimensions
Classification, to produce highly . .
Convolutional Segmentation accurate results on a wide | Requires high
Neural Network | LeCun et al. | Disinfection by-product | range of image and video computatlonal‘ ‘
(CNN) [2015], Kim | formation modeling recognition tasks power:  Training and
and Kim [2017], . . processing CNNs
Acharya et al. Operations run in parallel | can be computationally
[2017], Gu et al. and results are obtained | intensive, requiring
[2018] quickly significant computational
power and
resources

21




Table 1.1: (cont’d)

Leaning and Reviewed Water
. General Treatment and | Advantages Disadvantages
Modeling Applications Monitoring Applications
Technique PP & APP
Regression,
Classification
LeCun Suitable for sequential
Recurrent et al Parameter modeling datasets especially time | Training and processing
Neural Network [2015], of membrane series  datasets and | RNNs requires high
(RNN)/Long Zhou et al. | process modeling computational power
Short  Term | 12019], Zhang
Memory et al Modeling of dissolve Suitable for varying | Prone to gradient
(LSTM) [2020], oxygen concentration lengths of sequence | exploding and vanishing
Hochreiter and | modeling datasets
Schmidhuber
[1997],
Smagulova
and James
[2020]
Capturing nonlinear
effects and
Hammerstein Regression Dissolved oxygen simultaneously being | Limited model structure
Wiener (HW) concentration modeling computationally less
complex than  fully
nonlinear dynamic
models
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Table 1.1: (cont’d)

Leaning and

Reviewed Water

. General Treatment and Monitoring | Advantages Disadvantages
Modeling Applications Applications
Technique
Slow convergence: GAs
can sometimes take a
Parallelism: Genetic | long time to converge to
Evolutionary, algorithms can explore | the optimal solution,
stochastic multiple solutions especially for large or
algorithm simultaneously, allowing | complex problems
Genetic ) for faster convergence to
Algorithm Regression, DBP formation modeling an optimal solution Premature ~ convergence:
Classification GAs can  converge
Agrawal and Applicability: GAs are | prematurely to
Mathew applicable to a wide | suboptimal solutions if
[2004] range of  problems, | the population diversity
, including those  with | is lost
Yang discrete, continuous, or )
[2020] mixed variable types, and Computational cost:
’ those  with  multiple Genetic algorlthms can
Katoch et al. objectives or constraints | P¢ ~ computationally
expensive,  particularly

[2021]

for large scale or high
dimensional problems
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Table 1.1: (cont’d)

Leaning and

Reviewed Water

. General Treatment and Monitoring | Advantages Disadvantages
Modeling Applications Applications
Technique PP PP
RBF networks are | RBF networks are hard
capable of approximating | to scale to large datasets
any continuous function, | and high dimensional
Regression, given a sufficient number | datasets
Classification Modeling of DBP formation | of hidden neurons and
Radial Basis | LeCun et al o _ appropriate basis | The model may become
Function (RBF) | [2015], Predictionof adsorption functions overly complex or overfit
Kernel Karimi process removal efficiency the data if the basis
et al. [2020], ) RBF networks can be | functions not chosen
Powell et al Modeling ofmetmbrane trained more quickly than | correctly
[1981], Baddari process parameters other types of neural Suscenti
ptible to  local
et al. [2009] networks OIS
RBF networks are

generally more robust to
noise than other types of
neural networks

The choice of radial basis
functions is fixed which
limits its flexibility
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Table 1.1: (cont’d)

Leaning and

Reviewed Water

Modelin General Treatment and Monitoring | Advantages Disadvantages
Techniqﬁe Applications Applications
Adaptive Neuro- | Regression, DBP formation modeling Fuzzy logic components off ANFIS models can be
Fuzzy Inference | Classification ) ANFIS allow for greater] complex, with  many
Systems (ANFIS) | Farhoudi Adsqrptlon process removal interpretability ~ of  the| parameters to tune
efficiency modeling model
et al. [2010], The training  process
Karaboga and Membrane process parameters| ANFIS is capable of of ANFIS can be
Kaya [2019], modeling modeling complex| computationally intensive
- Dissolved oxygen nonlinear relationships and time
Adedeji et al. . : between  inputs  and| consuming
[2019] concentration modeling L
outputs, making it suitable _
BOD/COD modeling for a wide range of ANFIS .model 1s prone to
applications overfitting the data
ANFIS models arel ANFIS may not scale well

generally robust to noise
and uncertainties in the
data

to large or
dimensional datasets

high

The performance of ANFIS
can be sensitive to the
initial ~ settings of the
membership functions and|
rule base
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Table 1.1: (cont’d)

Leaning and

Reviewed Water Treatment

Advantages

Disadvantages

General and Monitoring Applications
Modeling Applications
Technique PP
Extreme Learning | Regression, Dissolved oxygen Relatively short training Often faces over fitting o
Machine (ELM) | Classification Zhu| concentration modeling times under fitting if  too
et al. [2005], ‘ many/few hidden nodes are]
Huang et al. Suitable for pattern utilized
[2004b] classifications
Boltzmann Unsupervised Wastewater treatment process | Capable capture complex| Learning is slow and
Machines learning modeling dependencies between| computationally intensive
variables
Optimization, water treatment automated Challenge to scale to large
system control anomaly detection Providle a measure of datasets and high|
Demertzis et al. uncertainty for the learned dimensional problems
[2022], Harrou representations
Learning algorithm can get|
et al. [2018] Flexible architecture:| stuck in local optima

Boltzmann machines can|
be adapted and extended to
various architectures, such|
as Restricted Boltzmann|
Machines (RBMs) and
Deep Belief Networks

(DBNs)

Difficult to interpret

Outperformed
by modern
techniques, such as
deep learning models
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1.3.4 Applications of Al and ML methods in Water Treatment

Chlorination control has been effectively managed using AI methods, while ML models
have shown efficacy in modeling DBP concentrations and significant parameters for

adsorption and membrane-filtration processes. Commonly used statistical measures for evaluating
results include the coefficient of correlation (R), coefficient of determination (R?), mean average
error (MAE), mean square error (MSE), root mean square error (RMSE), and relative error (RE).
The following sections provide a brief overview of the applications of Al and ML methods in water
treatment.

Chlorination and Disinfection By-Product Estimation

In water and wastewater treatment plants, disinfection is crucial for killing or inactivating
microorganisms and viruses, often with chlorine-based disinfectants Li et al. [2017], Xu et
al. [2015, 2013]. However, chlorine poses human health hazards and can react with bromide
and organic matter to create disinfection by-products (DBPs), which are suspected
carcinogens and reproductive disruptors Sedlak and von Gunten [2011], Bull et al. [1995].
DBPs are divided into two subcategories, trihalomethanes (THMs) and haloacetic acids
(HAAs), with THMs being the most common form. ML technologies are well-suited for
predicting and mitigating DBP formation. Al methods can be used for controlling
chlorination. The studies often tested models on surface waters treated with chlorine as the
primary disinfectant and noted success in modeling DBP concentrations in treated water
distribution networks and at consumer taps Librantz et al. [2018], Godo-Pla et al. [2021],
Singh and Gupta [2012], Mahato and Gupta [2022], Park et al. [2018], Lin et al. [2020], Xu et
al. [2022], Peleato [2022], Okoji et al. [2022], Cordero et al. [2021]. Common model inputs
include water temperature, pH, chlorine concentration, contact time, and TOC/DOC

concentrations, as well as other markers such as bromine concentration, UV>s4, algae and
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chlorophyll-a concentrations, and DBP-precursor chemicals.

The most commonly tested ML model for chlorination and DBP prediction is the
Artificial Neural Network (ANN), although other models such as support vector machines,
fuzzy inference systems, and genetic algorithms have also been used. In comparative
studies, ANNs generally outperform GAs and SVMSs, although in some cases, SVMs
have provided a slight advantage when using R?> as a comparison metric Wortmann and
Fliichter [2015], Imo et al. [2007]. Researchers have modeled and predicted common
DBPs, such as total trihalomethanes (TTHM) and total haloacetic acids (THAA), as
well as specific DBP compounds including dichloroacetic acid (DCAA), trichloroacetic
acid (TCAA), bromochloroacetic acid (BCAA), HAAS, HAA9, trichloromethane (TCM),
bromodichloromethane (BDCM), and dibromochloromethane (DBCM). Statistical model
validation numbers did not show significant differences in predictions for TTHMs or

THAAs versus their individual compounds.
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Table 1.2: Disinfection by-products (DBP) formation prediction by ML models.

Target Water AUML
Compounds Source Disinfectants Technique Input Variables Output Year
Used
Artificial neural Dissolved organic
network (ANN), bon norma%ized
Total Surface ) support  vector CE{ e d ) TTHM effluent
trihalomethanes | water Chlorine machine (SVM), CHorthmoseer’a\;vui:r concentration  Singh | 2012
(TTHMs) and gene | P P | and Gupta [2012]
expression .
programming Corcllcentratlon3
(GEP) modeling and contact time
Artificial neural
TTHM Tap Chlorine network and Terpp erlatureltl,l PH’ TTHM . effluent 2022
water support  vector residua chlorine, | concentration Mahato
machine TOC, UVas4 and Gupta [2022]
Dissolved  organic
carbon (DOC),
RBF-ANN, UVA254, bromine
Haloacetic Tap Chlorine linear/log linear | concentration, DBP . tap 2020
acids (HAAs) | water regression temperature, pH, | concentration Lin
(MLR) models Cl concentration, | etal. [2020]
NO» —
N
concentration,
NH;1 — N
concentration
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Table 1.2: (cont’d)

AI/ML
Target Water Disinfectants Technique Input Variables Output Year
Compounds Source
Used
Ion artificial | Temperature, pH, Trichloromethane
neural network | UV absorbance (TCM)
Tap _ (RBF ANN), | at 254 (UVA254), b d’i hloromethan
TTHM water Chlorine Hybrid method | dissolved organic romodichioromethanc - 2020
of RBF ANN | carbon, bromide, (BDCM) and
and grey | residual free total-THMs
) ! . (T-THMs) Hong
relational chlorine, nitrite et al. [2020]
analysis (GRA) | and ammonia
Linear/log
TTHMs, linear regression
Sum of | Tap _ models (LRM) | pH, temperature, | DBP tap
trichloromethane| water Chlorine and radial | UV Azsa, Cl, | concentration Xu 2020
(TCM), BDCM basis  function | concentration et al. [2022]
artificial neural
network (RBF
ANN)
Dichloroacetonitrile
(DCAN),
TTHMs Tap Chlorine Classification Fluorescence trichloropropanone 2016
water trees spectra (TCP),
trichloronitromethane
(TCNM) Bergman
et al. [2016]
Tap Peroxide Fluorescence DBP effluent
TTHMs, HAAs water (Ozone), CNN spectra concentration Peleato | 2022
Chlorine [2022]
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Table 1.2: (cont’d)

Target Water AUML
Disinfectants Technique Input Variables Output Year
Compounds Source Used
Temperature,
TTHMs, TCM, | Tap Adaptive pH, UVA254, | DBP effluent
BDCM, DBCM | water Chlorine neuro-fuzzy residual  chlorine | concentration  Okoji
inference system | concentration, et al. [2022]
(ANFIS) dissolved  organic
carbon
Least-square Chlorine .
Trihalomethanes| Tap Boost dose/DOC, THM  concentration
(THMs) water Chlorine (LSBoost), reaction time, | Sikder et al. [2023] 2023
XGBoost, and | P H, . bromide
Random forest concentration, and
temperature
Tempaerature,
total residual
Generalized chlorine, dissolve
DCAN, TCP, | Tap Chlorine regression organic  chlorine, DCAN’ TCP, TCNM | 50n1
TCNM water neural network | turbidity, pH, Mian et al. [2021]
(GRNN) conductivity,

absorbance, TCM,
BDCM, DBCM,
DCAA, TCAA
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Table 1.2: (cont’d)

T AI/ML
arget Water Disinfectants Technique Input Variables Output Year
Compounds Source Used
Reservoir set-point
output, FRC of
Chlorine treated water _
dose and | Surface Chlorine ANN tank, FRC | Chlorine dosage, | 2018
free  residual | water output of WTP | WIP FRC set point
chlorine (FRC) (mg/L), WTP | Librantz et al. [2018]
set point production flow
rate, compensating
system flow rate,
dosage error
Multivariate Water quality
linear parameters .
Small regresion-based | R B e
DCAN, water Chlorine rnodel,. water temperature, | DCAN, chloropicrin | 2023
chloropicrin, distributior fegression total residual | (CPK) and TCP Hu
and TCP networks tree-based chlorine, dissolved | et al. [2023]
(SWDN ) E;(;jfg;ks_brz;al organic carbon,
turbidity, pH,
model and conductivity,
advanced ) and ultraviolet
non-parametric | .o hance at 254
regression model nm (UV254)
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Table 1.2: (cont’d)

T AI/ML
arget Water Disinfectants Technique Input Variables Output Year
Compounds Source
Used
Inflow rate, Raw
water total organic
Surface carbon (TOC), | Free chlorine and
Chlorine water Chlorine FIS Raw turbidity, | chlorine dioxide dose | 2021
conductivity, Godo-Pla et al. [2021]
temperature,
Raw water UV
absorbance
Number of
aromatic bonds,
hydrophilicity,
Haloacetic Support  vector | electrotopological
acids (HAAs), regressor, descriptors related | DBP effluent
trichloroacetic | Lab Chlorine random  forest | to electrostatic | concentration Cordero | 2121
acid (TCAA), | synthesizeq regressor, and | interactions, and | etal. [2021]
dichloroacetic multilayer atomic distribution
acid (DCAA) perceptron of electronegativity,
regressor geometry,
ionization
potential, ,
steric effects,
and acid-base

interactions et al.
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Adsorption Processes
Adsorption processes are a crucial physical and chemical treatment option for removing
various contaminants in the water and wastewater treatment industries. These processes
transfer target molecules from fluids to solid surfaces, known as adsorbents or sorptive
media. Due to the complex interactions involved in the process, it can be challenging to
determine the adsorption parameters and ultimate removals accurately Karri et al. [2020],
Vinayagam et al. [2022]. Predictive models using ML can optimize the adsorption process
and extend the media’s life, increasing the plant’s effectiveness and confidence in meeting
applicable regulations. Studies have modeled adsorption processes with water streams
contaminated with metals, industrial dyes, and organic compounds using various adsorbent
media, including carbonaceous materials and metal-based nanocomposites Bhagat et al.
[2021], Mazloom et al. [2020], Mesellem et al. [2021a], Al-Yaari et al. [2022], Mazaheri et
al. [2017], Ahmad et al. [2020], Fawzy et al. [2016], Ullah et al. [2020], Mahmoud et al.
[2019], Mesellem et al. [2021b]. Common inputs for modeling adsorption processes
include pH, water temperature, adsorbent dose, contact time, and initial adsorbate
concentration. Other models have used parameters such as adsorbent particle size, system
flow rate, agitation speed, bed height, and BET surface area, among others. The published
studies mostly focused on adsorbate percentage removal, while some models predicted
adsorption capacity, non-dimensional effluent concentrations, and the relative importance
of input water-quality parameters. These models have the potential to support operator
decisions and improve the efficiency of the adsorption process.

ANN was the most commonly used ML model in studies involving metal, organic,
and industrial-dye contaminants, while ANFIS, SVM, and RF were also studied with

notable success. These models generally achieved R, values greater than 0.9 and

34



sometimes greater than 0.99 Bhagat et al. [2021], Mazloom et al. [2020], Mohammadi et al.
[2019]. SVM models performed slightly better than ANN models in most cases, producing
R> and RMSE values with better statistical value. However, in one case, the optimized
ANFIS model performed poorly compared to other successful models, with an R = 0.813,
and was noted as the worst performing model in a comparison between ANN, ANFIS, and
SVM models Mesellem et al. [2021a]. In another case, the ANFIS model achieved

adequate performance with an R> of 0.9333 Al-Yaari et al. [2022].
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Table 1.3: Adsorption processes and removal rates prediction by ML models.

Adsorbate Adsorbent II\J/ISE dTechmque Input Variables Output Year
Nanosized
iron-oxide- Initial concentration, | As percent
As (1I1) immobilized Artificial neural | adsorbent dosage, pH, and | removal Maurya | 2022
graphene oxide | network (ANN) residence time et al. [2022]
gadolinium
oxide
(Fe-GO-Gd)
. pH, As initial
As (III) A variety of Adaptive concentration, contact time, Adsorbate 2022
absorbents or network-ba§ed adsorbent dosage, inoculum percent r.emoval
. fuzzy inference | . Al-Yaari et al.
biosorbents tem (ANFIS) size, and temperature, [2022]
system agitation speed, flow rate
Grid
optimization-based | Initial concentration of Cu | Adsorbate
. ) random forest | (IC), the  dosage  of | percent removal
Copper ions Attapulgite clay | (Grid-RF), artificial Attapulgite  clay  (Dose), | Bhagat et al 2021
neural | contact time (CT), pH, and | [2021]
network (ANN) | addition of NaNO3
and support vector
machine (SVM)
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Table 1.3: (cont’d)

Adsorbate Adsorbent II\J/ISE dTechmque Input Variables Output Year
Contents of ash, carbon,
hydrogen, oxygen, nitrogen,
sulfur, and iron, H/C
atomic ratio, O/C atomic
As (111, 1IV) Biochar Random forest | ratio, (O + N)/C atomic As ‘adsorptiqn 2021
algorithm ratio, and specific surface | C@pacity Liu
area (SBET), As species | €t al- [2023]
(arsenite ~ or  arsenate),
initial concentration (CAs),
adsorption conditions,
reaction temperature,
solution pH, adsorbent
dosage
Group Method BET surface area and
of Data Handling volume  of micropores Adsorbate
Asphaltenes Nickle(Il) Oxide (GMDH) ANN of nanocomposite, pH, | percent removal | 2020
Nanocomposites |y ’ Square; amount of nanocompps,-it.es Mazloom et al.
Support Vector | Over asphaltenes initial | [2020]
Machine (LSSVM) concentration (D/Co),
temperature
Artificial ~ Neural
Networks (ANNs), | Molar mass, initial | Non-dimensional
Various organic | Activated Support Vector | concentration, flow | effluent
pollutants carbon Machines (SVMs) | rate, bed height, BET | concentration 2021
and Adaptive | surface area, time | Mesellem et al.
Neuro-Fuzzy and concentration of | 2021a]
Inference  System | non-dimensional effluents
(ANFIS)
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Table 1.3: (cont’d)

Adsorbate Adsorbent II\J/ISE dTechmque Input Variables Output Year
Boosted regression
trees (BRTs), | Stirring time, pH, | Adsorbate
Methylene blue | Natural walnut | artificial adsorbent mass, MB | percent removal
(MB), Cd(II) activated carbon | neural network | concentration, Cd(II) | Mazaheri et al. 2017
(ANN) and | concentration, [2017]
response  surface
methodology
(RSM)
Methylene
Methylene blue | Graphite oxide | ANN Solution pH, initial dye | blue removal | 2014
(MB) (GO) nano concentration, contact time | efficiency
and adsorbent dosage Ghaedi et al.
[2014]
Neodymium(IIT)
Sunset yellow | chloride ANN Initiahl c‘oncentration, eszf?f[icienc;emoval 2020
(SY) modified order reaction time, and | 4o o d et al
mesoporous adsorbent dosage [2020]
carbon (OMC)
. Initial pH, bioadsorbent .
Ni(II), Cd(II) Typ ha . Adaptive dosage, initial metal-ions Metal-ions 2016
domingensis neuro-fuzzy i removal
(Cattail) inference  system qoncentrgtlon, cont‘act efficiency Fawzy
biomass (ANFIS) ;llfzr;e biosorbent  particle | . .1 17616
Low-cost . o .
Contact time, initial | Adsorption
Zn(Iy adsorbents ANN concentration and the capacrirt)y Ullah 2020
P roduced  from applied temperature et al. [2020]
rice husks
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Table 1.3: (cont’d)

Adsorbate Adsorbent II\J/ISE dTechmque Input Variables Output Year
Encapsulated Initial pH, itial PO;" | Adsorbate
Phosphate nanoscale ANN concentration,  adsorbent | percent removal | 2018
zero-valent dose, contact time, stirring | Mahmoud et al.
iron rate [2019]
Molar mass of target
contaminant, mitial Non-dimensional
Systems organic | Activated concentration, flow rate, bed offy;ent
pollutants carbon ANN height, particle diameter, concentration 2021
BET surface area, average
pore diameter, time,| Mesellem et al.
concentration off [2021b]
dimensionless effluents
Magnetic :
Pb (II) ash/graphene ANN Initial Pb ion concentration, AdSOI:pthl’l 2021
. capacity  Zeng
oxide (QO) temperature et al. [2022]
nanocomposites
Composite of
Pb (I), Cd (1) | metal  organic | ANN Type of ions (Pb, Cd) and | Adsorption 2021
framework and time capacity Wei
layered double etal. [2021]
hydroxide
Fibrous . )
As (IIT), Cr(VI) | zirconium oxide | “*d3PtVe Dose, pH, — time, | Removal 2021
.. neuro-fuzzy temperature and initial | efficiency
ethylenedlamme inference  system | concentration, bed height | Mandal et al.
adipate (ZEDA) | (ANFrs) and flow rate [2015a]
hybrid material
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Table 1.3: (cont’d)

ML Technique

Adsorbate Adsorbent Used Input Variables Output Year
Cerium
. t H, | R 1
As (I1I) hydroxylamine ANN Adsorben : dose, P menovd 2015
hvdrochlorid contact time, initial | efficiency
éj rgl(jA}(I)gl © concentration and contact | Mandal et al
(Ce-t ), temperature [2015b]
hybrid material
Cerium  oxide . Removal
o A t t H )
Cr (IV) polyaniline ANN teﬁqs;é?aet?lredosz’n dlmei’nilziai efficiency 2015
(CeO2/PANI) . Mandal et al.
. concentration
composite [2015¢]
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Membrane-Filtration Processes

Membrane processes separate contaminants in water and wastewater treatment by passing
the water through a barrier or filter using high-pressure differentials. These processes
are typically used for contaminants that are difficult or costly to remove by chemical or
physical means or require a high level of removal that cannot be achieved by other means.
Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are the most commonly
used membrane processes Hube et al. [2020], Pronk et al. [2019]. These models have been
used with microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and submerged
membrane bioreactors to treat various water sources contaminated with pollutants and
natural compounds such as petroleum, natural organic matter, industrial and
pharmaceutical wastes, and saltwater Zoubeik et al. [2019], Fetanat et al. [2021], Khan et
al. [2022], Yusof et al. [2020], Nazif et al. [2020], Shim et al. [2021], Ammi et al. [2021a].
ANN is the most dominant model used, although ANFIS, SVM, and specific forms of
ANNSs, including RNNs that utilize LSTM, have also been used for membrane-filtration-
process modeling.

ML techniques for modeling membrane-filtration processes aim to output several
variables, such as transmembrane pressure, permeate flux, and solute rejection. Inputs
in published studies include pH, temperature, contact/filtration time, transmembrane
pressure, and flux rate, among others. Due to the wide range of models testing for different
parameters, it is difficult to make a full statistical comparison of the values obtained in
these studies. However, ANN, RNN, and SVM models consistently performed well,
achieving R2 values greater than 0.9 and often greater than 0.99 Zoubeik et al. [2019],

Khan et al. [2022], Yangali-Quintanilla et al. [2009] (Table 1.4).
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Table 1.4: Membrane-filtration

parameters prediction by ML models.

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used
o Transmembrane  pressure
Titanium-based | Petroleum ANN,  ANFIS, | (TMP), crossflow velocity | Lcrmeate o WX 15519
ceramic production RBEANN CEV). t ¢ I Zoubeik al.
ultrafiltration wastewater ( _)’ emperature, - p [2019]
and time
) ) Temperature, pH, crossflow
Al‘ummum 9x1de Various  water | Hermia model, | velocity (CFV), and Permegte et flux 2022
microfiltration o ANN ‘ b Zoubeik al.
(MF) membrane typ ransmembrane pressure [2022]
(TMP)
Nanolayered
P t
double Nanolayered double ﬂl:)r(e :Z?eif 2017
hydroxide Various ~ water | ANN-GA hydroxide (NLDH), ’ P
. . flux and flux
decorated types polyvinylpyrrolidone (PVP, i
thin-film MW = 29 000 g/mol) and fCOfY%yk ratio
nanocomposite polymer concentrations. feli-iskoul
membrane et al. [2017]
Polymer concentration,
polymer type, filler | Solute rejection,
Nanocomposite Various ANN concentration, average filler | flux  recovery, | 2021
membranes size, solvent concentration | and pure water
(in the dope solution), | flux Fetanat
solvent type, and contact | etal. [2021]
angle
Oscillating Dilute suspension |ANN Permeate flux, shear rate, |[Transmembrane
slotted mixture of crude filtration time pressure  (TMP) | 2022
membrane oil, dilute Khan et al. [2022]
suspension

mixture of tween-
20
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Table 1.4: (cont’d)

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used
Submerged RNN, nonlinear | Pump  voltage,  airflow, Permeate flux,
membrane Palm oil mill | auto-regressive transmembrane pressure OR| transmembrane | 2019
bioreactor effluent model flux pressure (TMP)
Yusof et al
[2020]
Feedforward neural
network (FFNN), Permeate
Submerged radial basis flux and
membrane Waste water function neural | Permeate pump voltage transmembrane 2020
bioreactor network (RBFNN) pressure
(MBR) filtration and nonlinear Mahmod et al.
system autoregressive [2020]
exogenous
neural network
(NARXNN)
Membrane operating
period, time interval | Pressure drop
Reverse osmosis | Ground  water | General regression | between consequent | (PD), salt
membrane and surface | neural network | cleanings, water | passage (SP) 2020
(BW30-400) water (GRNN) temperature, input | Nazif et al
concentration, [2020]
inflow
, Inlet pressure of the
compartments, recovery
ANN:Ss, Random | Pressure, flow rate, Salt passage,
Reverse osmosis | Municipal forest, multiple | temperature, conductivity, | permeate  flow | 2022
wastewater linear ORP, turbidity, dissolved | rate Odabas1 et
regressio | organic carbon (COD), TDS | al. [2022]
n models
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Table 1.4: (cont’d)

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used
Operation time, pressure, Permeate  flux
Nanofiltration Surface  water | Long short-term | initial permeate flux, | (PF), fouling
system with natural | memory (LSTM) | dissolved organic carbon | layer thickness | 2021
organic matter model (DOC), modified FRI, | (FLT) Shim et
optical al. [2021]
coherenc
e tomography (OCT)
images
Substrate type,
nanoparticle type,
nanoparticle size,
nanoparticle loading,
Support vector | amine monomer type, amine | Relative
Organic solvent | Various water | machine  (SVM), concentration, | permeability
nanofiltration types boosted tree (BT), | chloride monomer type, | (RP) and | 2023
(OSN) and artificial neural | chloride concentration, | relative
network (ANN) water contact angle, surface | selectivity (RS)
roughness, organic solvent | Wang et al
type, solvent properties [2023]

(molecular
weight, viscosity, density
and molar volume), solute
type, solute concentration,
solute charge and solute
molecular weight
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Table 1.4: (cont’d)

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used
Anti-inflammatory drug
properties  (logD, dipole
moment, the  effective
diameter of the organic
compound in water "dc", | Rejection
Nanofiltration, Pharmaceutical | ANN, SVM molecular  length, and | percentage 2021
reverse wastewater molecular equivalent width | of the target
0Smosi "eqwidth"); membrane | compound
s membranes characteristics  (molecular | Ammi et al
weight cutoff "MWCO", | [2021a]
sodium chloride salt
rejection "SR (NaCl)", zeta
potential, and  contact
angle); and filtration
conditions (pH, pressure,
temperature, and recovery)
Polyamide-based Water flux,
thin film Effluent from Organic matters, sodium ion,| membrane
composite (TFC) | primary treatment| ANN, SVM and calcium ion| fouling, 2022
FO | plant concentrations and
membrane removal
efficiencies

Im et al. [2022]
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Table 1.4: (cont’d)

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used

Molecular weight (MW), log

Kow, dipole moment, molar

volume, molecular length,

molecular width, molecular
Polyamide depth, equivalent width; | rejection of
nanofiltration Various  water | ANN membrane  characteristics: | neutral organic | 2009
(NF) and reverse | types molecular weight cut-off | compounds
osmosis  (RO) (MWCO), pure water | Yangali-Quintanil
membrane permeability, = magnesium | et al. [2009]

sulphate salt rejection (SR),
surface membrane charge
(as zeta potential), and
hydrophobicity (as contact
angle); operating conditions:
operating
pressure and permeate flux
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Table 1.4: (cont’d)

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used
Pharmaceutical active
compound properties
(hydrophobicity "logD",
Quantitative dipole moment, the
structure-activity effective diameter of
Nanofiltration Domestic relationship (single | organic compound in water | Removal
(NF) and reverse | wastewater neural networks | "dc", molecular length, and | efficiency Ammi | 2021
osmosis  (RO) "QSAR-SNN" molecular equivalent width | et al. [2021b]
membrane and bootstrap | “eqwidth”); membrane
aggregated characteristics ~ (molecular
neural networks | weight cut-off "MWCO",
"QSAR-BANN") sodium chloride salt
rejection "SR (NaCl)", zeta
potential, and  contact
angle); and filtration
conditions (pH, pressure,
temperature, and recovery)
Molecular weight, ratio Uncharged
Nanofiltration of the equilibrium | organic
and Various  water | Bootstrap concentration (logD), | compounds 2017
revers | types aggregated neural | dipole moment, length, | rejection
€ 0Smosis networks (BANN) | eqwidth, SR (NaCl), zeta | Khaouane
membranes potential, contact angle, pH, | etal. [2017]

pressure,
temperature

recovery,
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Table 1.4: (cont’d)

Membrane Water Source ML~ Technique Input Variables Output Year
Type Used
Molecular weight, ratio
of the equilibrium
Nanofiltration concentration (logD), dipole | Uncharged
and Various  water | ANN moment, length, eqwidth, | organic 2015
revers | types membrane molecular weight | compounds
€ 0SMosis cutoff (MWCO)/pore size | rejection Ammi
membranes MWCO, SR (NaCl), zeta | etal. [2015]
potential, contact angle, pH,
pressure, recovery,
temperature
Molecular weight, molecular
effective  diameter '"dc",
Single neural | ratio of the equilibrium
Nanofiltration Various ~ water | networks  (SNN) | concentration (logD), dipole | Removal
and types and bootstrap | moment, length, eqwidth, | efficiency Ammi | 2018
revers aggregated neural | membrane molecular weight | et al. [2018]
€ 0Smosis networks (BANN) | cutoff (MWCO)/pore size

MWCO, SR (NaCl), SR
(MgS04), zeta potential,
contact angle, pH, pressure,
recovery, temperature
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Table 1.4: (cont’d)

Membrane
Type

Water Source

ML
Used

Technique

Input Variables

Output

Year

Nanofiltration
and

revers
€ 0SMmosis

Various  water

types

Random

neural
models

forest,
network

Molecular class, molecular
weight, The octanol/water
partition

coefficien
t (log Kow), partition
coefficient (logD),
dipole moment, length,
eqwidth, depth, equivalent
length, membrane type,
molecular weight cutoff
(MWCO)/pore

size
MWCO, zeta potential,
contact angle, pH, pressure,
recovery, pH, operating
pressure, recovery, salt
rejection SR (MgSO4)

Membrane
Rejection

e and Kim
[2020]

Le

2020
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CHAPTER 2
Tap water fingerprinting using a convolutional neural network

built from images of the coffee-ring effect

2.1  Abstract

A low-cost tap water fingerprinting technique was evaluated using the coffee-ring effect, a
phenomenon by which tap water droplets leave distinguishable “fingerprint” residue
patterns after water evaporates. Tap waters from communities across southern Michigan
dried on aluminum and photographed with a cell phone camera and 30x loupe
produced unique and reproducible images. A convolutional neural network (CNN) model
was trained using the images from the Michigan tap waters, and despite the small size of
the image dataset, the model assigned images into groups with similar water chemistry
with 80% accuracy. Synthetic solutions containing only the majority species measured in
Detroit, Lansing, and Michigan State University tap waters did not display the same residue
patterns as collected waters; thus, the lower concentration species also influence the tap
water “fingerprint”. Residue pattern images from salt mixtures with an array of sodium,
calcium, magnesium, chloride, bicarbonate, and sulfate concentrations were analyzed by
measuring features observed in the photographs as well as using principal component
analysis (PCA) on the image files and particles measurements. These analyses together
highlighted differences in the residue patterns associated with the water chemistry in the
sample. The results of these experiments suggest that the unique and reproducible residue
patterns of tap water samples that can be imaged with a cell phone camera and a loupe
contain a wealth of information about the overall composition of the tap water, and thus,

the phenomenon should be further explored for potential use in low-cost tap water
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fingerprinting.
2.2 Introduction

Need for innovation in drinking water monitoring

With tap water crisis events that continue to occur in both developed and developing
nations, the desire for low-cost tap water testing that is practical for application by citizens
is high. When a teacher, student, household, or community member would like to test
their tap water, they are faced with single use paper test strips, probes, standard analytical
methods for measuring water quality, or water testing fees for hundreds or even thousands
of different water quality parameters. Challenges exist in choosing which water
constituents to test and which methods to apply, both of which can be difficult since there
is little to no tap water education in typical K-12 and university systems. In this work,
experiments were conducted to determine if the coffee-ring effect, precipitation reactions,
and convolutional neural networks (CNN) could be harnessed for low-cost “fingerprinting”
of tap water samples as a whole, rather than measuring one contaminant at a time.
How does the coffee-ring effect work

The coffee-ring effect offers low-cost separation of particles in aqueous samples due to
the physics of water droplet drying on hydrophobic substrates. This phenomenon occurs
when water evaporates evenly from a water droplet surface with a pinned diameter, such
that the droplet shrinks in height while the diameter remains constant Wong et al.
[2011], Deegan et al. [1997]. The shrinking height of the droplet correlates to a
decrease in contact angle at the pinned surface through droplet drying, squishing particles
into concentric circles by size Wong et al. [2011]. The phenomenon was termed
nanochromatography after separation resolutions on the order 100 nm were demonstrated

for mixtures of fluorescently labeled antibodies, B-lymphoma cells, and E. coli at particle
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volume fractions on the order of <0.04% Wong et al. [2011]. Force balance analysis
suggests nanoscale separation is possible for low particle volume fractions due to the
difference in the magnitude of adhesion versus surface tension forces for large (1 mv) and
small (40 nm) particles at the drop edge, where surface tension forces move particles
towards the center of the drop and substrate-particle adhesion forces hold particles in
place.

Most existing studies on the coffee-ring effect have been conducted on particles or
biological molecules, sometimes in buffer solutions or biofluids where particle-like
species deposit on the outer edge forming concentric rings of particles separated by size
and soluble salts deposit throughout the center of the drop (Figure. 2.1). Particles within a
drop are known to deposit on the outer edge when the fluid flow that delivers particles to
the drop edge is faster than the surface capture effect, the latter which occurs if the
concentration of particles at the surface of the droplet is high or if water evaporation
is accelerated Li et al. [2016¢]. Tap water solutions, however, are composed largely of
dissolved ions rather than particles. Within dissolved salt solutions, the majority of the
particles observed in the residue patterns must form as water evaporates and increases ion
concentrations above solubility limits of their respective salts; however, very little work
has been conducted to document the coffee-ring patterns for complex mixtures of salts
Shahidzadeh et al. [2015]. It is expected that in mixed salt solutions both the coffee-ring
effect and the fundamental characteristics of the salts that form will control the
location, sizes, and shapes of each salt in the resulting residue pattern, with the least
soluble salts that form particles quickly separated by size at the drop edge. Thus, features
such as the sizes, shapes, colors, quantity, and location of particles within the coffee-ring

residue of a water sample are expected to correlate to water chemistry. The coffee-ring
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effect has previously been partnered with Raman spectroscopy to quantify cyanotoxins in
environmental water, signs of ocular damage in human tear fluid, and osteoarthritis
determinants in knee fluid; however, the patterns produced due to the coffee-ring effect
have not been harnessed without expensive chemical analysis instrumentation to record
composition of the deposited residues.

Image analysis via convolutional neural network (CNN)

Machine learning methods, especially deep learning artificial neural networks (ANNSs) are
increasing in popularity in research and engineering to solve problems that are challenging
to solve with traditional analysis techniques. Convolutional neural networks (CNNs) have
been widely tested and successfully used for image analysis, especially in segmentation
problems, such as differentiating between an object and the background. With the
development of more advanced CNN architectures (e.g., CNN models involving more
layers, new activation functions, more options for objective functions to calculate error,
more sophisticated model structures) and use of graphics processing units with higher
computational speeds, CNNs are being developed to analyze a growing variety of data
types, including medical images, electron microscopy images, cal structures. For example,
CNN models have proven the ability to identify brain tumors in magnetic resonance images
(MRI) faster and more accurately than the state of the art tools and can identify the
pancreas in computerized tomography (CT) images, both of which are challenging analysis
problems because of anatomical variability. In chemistry, CNN models are being trained
using 2D and 3D images of molecular structure for quantitative structure-activity
relationship (QSAR) modeling to predict toxicity Matsuzaka and Uesawa [2019] and to
predict therapeutic use classes of drugs Meyer et al. [2019]. CNN models have also been

trained to assign surface-enhanced Raman spectroscopy (SERS) spectra to classes of
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metabolites and to assign bundles of SERS spectra (8 x 8 pixel hyperspectral images) to
the concentration of rhodamine 800 dye at femtomolar concentrations for single molecule
detection Lussier et al. [2019], Thrift and Ragan [2019]. Additional applications include
identifying the types and positions of defect structures in silicon doped graphene from
unprocessed scanning transmission electron microscopy images, predicting chemical
reactivity, and diagnosing faults in the chemical process industry. Limitations of CNNs
include the computational cost of model training, the sensitivity of classification to
unbalanced datasets (unequal numbers of samples in different classes can result in poor
model performance), and the necessity of experienced users to modify model structure and
tune parameters for every individual CNN application. However, the accuracy of
classification results observed and the wide variety of cases in which it can be applied
ensures use of CNN will continue to grow.

The goal of this research was to determine if the residue patterns of tap water samples
imaged with a cell phone camera and loupe were sufficiently reproducible, sensitive, and
correlated to water chemistry to be valuable for low-cost analyses. Specific objectives were
to create a library of images of residue patterns for real and synthetic tap waters, determine
if the residue patterns were reproducible for a given water chemistry, document the
response of the fingerprint to changes in composition of majority species (sodium, calcium,
magnesium, chlorine, bicarbonate, sulfate), and apply machine learning image analysis
techniques to differentiate between residue patterns. These objectives were met by
photographing residue patterns for a variety of collected tap water solutions and
increasingly complex synthetic water solutions with a cell phone camera through a
jeweler’s loupe, measuring features observed in residue patterns, and correlating residue

features to water chemistry, and creating a CNN to classify residue pattern images to
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groups with similar water chemistry.

Water evaporation

JALLT7 ,

o droplet

umlnum substrate

Pre-formed u Soluble salts deposit
particles deposit throughout center of drop
at drop edge

separated by size

Figure 2.1: Nanoscale separation of particles within a drying droplet is provided by the
phenomenon known as the coffee-ring effect.

2.3 Experimental

Water samples

Thirty tap water samples were collected from communities across southern Michigan,
utilizing a variety of water treatment systems (Table. 2.1, Table. 6.1). One liter of each
water sample was collected in a hydrochloric acid washed polypropylene bottle from the
water supply at a public park, community center, or city building water fountain or
restroom tap. Samples were stored at 4 °C until analysis using the coffee-ring effect and
standard methods. Samples were not filtered before measurement. Conductivity was
measured by a Hach HQ40D portable conductivity meter and inteliCALTM CDC401
standard conductivity probe, and pH was measured with a Orion Star A211 pH meter
and Orion 8135BNUWP Ross Ultra Fast pH probe (Thermo Scientific). Chlorine, sulfate,
phosphate, fluoride, bromide, and nitrate concentrations were measured by ion
chromatography with a Dionex series 2000i/sp instrument. Bicarbonate was measured by

titration to pH of 4.5 using standard method 2320.28 Metals were measured by Varian 710-
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ES Axial ICP-OES and samples were digested by nitric acid using standard method 3030
E. One replicate sample was measured for every ten samples, and values that deviated from
expected ( from annual municipal water quality reports or previous measurements) were

repeated.
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Table 2.1: Measured water quality data for tap water samples collected across Michigan and treatment information from
annual municipal water quality reports and system operators. Averages and standard deviations are listed for values
conducted in replica.

City e IpH | Cond | Na® | ¢t | m2+ |kt | T | 50 | HCO; PO3 | Cu | Fe
uS/cm | mM | yM mM mM mM mM mM M mM | mM
Chlorine,

MSU, fluoride, 6.96 | 823 1.08 | 2.24 1.54 0.041 | 091 | 092 6.94 0.01 | 6.1x | 2.2%

academic phosphate, 1073|1072

hall sodium
hydroxide
Iron

Durand remove 6.72 | 388 031 | 0.16 0.11 0.075 | 1.10 | 047 4.88 0.02 | 1.6x | 2.4x
filters, 1073|1073
chlorine
Chlorine,

Kalamazoo | fluoride, 8.52 | 976 3.17 | 1.06 1.29 0.06 3.11 | 0.39 6.23 0.01 1.2x | 4.1x
and 103] 1073
phosphate

Portland | S0P | 6941000 | 076 | 053 |28 |0.109 | 005 |012 |751 |BD | LP¢| LI
phosphate 1073]1073

Battle Chlorine,

Creek Site fluoride, 722 | 673 1.60 | 1.77 1.04 0.035 | 1.16 | 0.50 5.47 0.02 4.0_>< 7. 9_><

A and 1073|1074
phosphate

Battle Chlo.rine,

Creek Site fluoride 722 | 673 1.60 | 1.77 1.04 0.035 | 1.16 | 0.50 5.47 0.02 8.9_>< 2.0_><

B and 1073|1072
phosphate

Charlotte Ii?é:;‘;‘;te g:ggu g %1379 | 253 [332 |0252 |410 | 054 |68 |o002 i’i_ﬁ ‘1":_1
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Table 2.1: (cont’d)

City E:’;tter;ent pH | Cond | Na* | Ca® |Mg* | K~ |CI |SO7 | HCO | POy | Cu | Fe
uS/em |mM |mM  |mM  |mM |™M mM M | oM | mM | mM
Fowlerville | SMOMIS 17141078 [ 463 | 110|091 |0158 |353 |024 |607 | o001 | 34|75
phosphate
Lansing ) Lime 870|609 |429 | 055 |056 | 0082 |233 | 134 099 |00l | gk | Ton
site A softening
Lansing -\ Lime 5000 535 1379 |063 | 049 | 0079 | 191 | 116 | 083|001 | 1o | Toa
site B softening
Lime,
ferric
East fluoride, 6.61 | 361 143 | 0.58 0.56 0.063 | 1.10 | 0.50 1.39 0.01 1.8 | 53x
Lansing filtration, 103 | 1073
chloramine,
fluoride,
phosphate
Howell | M€ 815|453 276 | 055 |0s4 | 0092 | 183 [062 | 129 |oo1 | 0% | 0%
softening
[ron
MSU exchange,
residence chlorine, 7.34 | 880 19.57 | 0.07 0.04 0.025 | 1.16 | 0.84 | 7.09 0.01 13 | 23
hall ﬂuoride, 1 0—3 1 0—2
phosphate,
sodium,
hydroxide
[ron
Williamstor] removal, 7.51 | 710 6.02 | 0.99 0.53 0.075 | 0.93 | 043 6.83 0.02 1.0x | 6.4x%
softening, 102 | 1074
chlorine,
phosphate
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Table 2.1: (cont’d)

. Water . 2 N . Ccr - | HCO | PO3~
City tontment | PH | Cond | Na® | Ca M | K SO’ .| POy | Cu | Fe
uSem |mM |mM |mM |mM | OM | mM M [ MM | M | mM
Household
Genoa water 7.044 1920+ | 18.65{ 0.20+ | 0.20+ | 0.03+ | 97+ | 061 |855 |BD |
Twp Soft | softener, | 0.23 | 30 047 | 0015 | 0.035 | 0.025 | 03 lo4 | BD
private
well
Genoa Private 45% | 47%
Twp, well, 724(1940 | 669 | 381 [198 |02 |11.16/060 |826 |BD |4 p2
Untreated | untreated
Chlorine
. . 34x | 1.7
giitr;é(s’p’ if bacteria | 7.36 | 516 | 3.08 | 141 | 046 | 0141 | 009 | 015 |619 |BD | 0% | 43
found
Chlorine
. . 2.7% | 9.3x
szzfaffgp’ if bacteria | 7.05 | 560 | 335 | 1.04 | 082 |0.085 | 079 | 021 |538 |BD 10-? 103
found
Chlorine
2.5% | 4.0
g%s/tlvfé%p’ if bacteria | 7.07 [ 546 | 122 | 176 | 119 [0.029 | 005 | 012 | 686 |BD |54 |y
found
Chlorine
4.1% | 1.
Rest S0P | 4¢ pacteria | 696 | 606 | 271 | 110 | 121 |0090 | 120 |014 |ses |BD | *L7| L3
Fenton 10 10
found
Reverse
0SMmMosis
Allegan 6.53 | 295 141 | 073 | 052 |0019 | 063 | 017 | 251 |002 | |gx | 60x
104 | 104
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Table 2.1: (cont’d)

City

Water
treatment

Cond

uS/cm

Na*

Ca2+
mM

Mg
mM

K+
mM

Cr

HCO_3

PO

Cu

Fe

Genoa
Twp RO

Reverse
0SMOsis

of private
well after
household
water
softener

6.64

264

3.23

0.08

0.02

0.006

1.27

0.11

1.37

BD

4.8x
107

4.8x
107

Detroit

Great
Lakes
Water
Authority
(GLWA),
Water
Works
Park plant

6.21

226

0.43

0.59

0.34

0.023

0.51

0.26

1.55

0.02

1.8x
1073

5.4x%
1073

Flint

GLWA,
Lake
Huron
plant

6.86

219

0.32

0.07

0.02

0.022

0.52

0.23

1.64

0.04

4.4x
1073

5.6x
1073

Swartz
Creek

GLWA,
Lake
Huron
plant

5.87

209

0.41

0.08

0.03

0.024

0.51

0.23

1.61

0.02

4.9x
1073

Grand
rapids

Lake
Michigan
Filtration
plant

7.17

304

0.44

0.89

0.26

0.030

0.63

0.33

2.2 +
0.04

0.02

4.9x
1073
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Table 2.1: (cont’d)

City

Water
treatment

Cond

uS/cm

Na*

Ca2+
mM

Mg
mM

K+
mM

Cr

HCO_3

PO;”

Cu

Fe

Holland

Holland
Board of
Public
Works
Water
Filtration
Plant

6.76

302

0.74

0.85

0.51

0.034

0.60

0.29

245

BD

3.7x
1073

5.7%
1073

Wyoming

Donald

K. Shrine
Water
Treatment
Plant

7.164
0.03

302+8

1.30+
0.005

0.905=+
0.005

0.5 +
0.001

0.036+
0.002

0.61+
0.01

0.34

2.17

BD

BD

BD
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In order to determine the effects of specific ions on residue patterns, synthetic water
samples containing various concentrations of the main components in tap water were
prepared, including synthetic hard freshwater (192 mg/L NaHCO3, 120 mg/L MgSOa, 120
mg/L. CaSOs4 2H>0, and 8 mg/L KC[) and mixtures of NaCl, NaHCO3, CaCl,, MgCl,,
CaSOs4, MgSOs, and NaxSO4. Salt mixtures were designed to examine ranges that may
be observed in real tap waters; thus, the low and high concentrations tested of every salt do
not match. Simplified synthetic tap waters were created to mimic concentrations of
calcium, magnesium, sodium, chlorine, sulfate, and total carbonate species observed in tap
water. Complex synthetic tap waters also contained phosphate, nitrate, fluoride, copper,
and iron. Natural organic matter was not added because larger organic molecules typically
deposit on the outer edge of the drop where the organics can’t be identified from images
alone.

Collection of coffee-ring residue patterns

Two microliter droplets of each water were gently pipetted onto aluminum substrates (6061
with mirror-like finish, McMaster-Carr 1655T1). Substrates from the manufacturer were
used directly after peeling off the plastic film that protects the mirror-like finish. Samples
were left uncovered for 20-30 minutes or until dry without being moved, touched, or
disturbed from the moment of deposition on the slide (Figure. 6.1). Relative humidity in the
lab ranged from 47-52% and temperature 23-25 °C over the course of the coffee-ring effect
experiments. Samples were imaged with a SamSung S6 cell phone through a Fancii 30x
triplet loupe (Amazon.com) with the LED light on (Figure. 2.2). At least five drops were
imaged for each sample, and residues that were not round due to lack of pinning to the
surface were repeated. Relative humidity and temperature were recorded for each

experiment with a Fisher Scientific Traceable Relative Humidity/Temperature Meter (11-
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661-13). Reproducibility of water residue patterns was examined by three researchers

testing a subset of water samples on several substrates.

#1) Place #4) Measure
droplet of dimensions of
water on__ features

aluminum
sheet

#3) Image residue with
02) Allow water cell phone through
to evaporate jeweler’s loupe

Figure 2.2: Tap water fingerprints were captured by drying droplets on aluminum and
photographing with a cell phone camera through a loupe.

Image processing, principal component analysis (PCA), and cluster analysis Residue pattern
photographs were cropped manually with ImageJ to dimensions of 700 by 600 pixels.
Scales bars of 0.5 mm were added in Imagel using ruler tape captured in photographs
as a reference, dimensions of features in residues were measured, and processed images
were saved in JPEG format. Images were converted to black and white, noise removed,
and particles measured in Matlab software version R2017b (im2bw, medfilt2, and
regionprops functions). Principal component analysis (PCA) was conducted on both
particle measurements and on the image files themselves using Python version 3.6.4
(matplotlib, numpy, and sklearn packages; Figure. 6.2). Measured water chemistry for
each tap water sample was plotted on a trilinear classification diagram using GW_Chart
(Version 1.29.0.0, USGS) with samples sorted according to treatment. The cluster analysis
algorithm CLARA was used to group samples into six groups using all thirteen of the
measured parameters after normalization by subtracting the mean from the measured value
and dividing by its standard deviation Liu and Ozsu [2009]. The cluster analysis result was

visualized in a two dimensional map using the two main components identified by principal
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component analysis with the R factoextra package.

Convolutional neural network

A convolutional neural network (CNN) model was created to classify images. Ten residue
images from each water sample were used for model training and testing, five of which
were from fresh samples and five collected after storage at 4 °C. The first three replicates
of each water sample for each condition (fresh and stored) were used for training the model
(180 images), and the last two replicates were used for testing the model (120 images).
Image pre-processing involved resizing each image from 470 by 470 pixels to 300 by 300
pixels and converting from color to gray-scale (Table. 6.3). The brightness was normalized
for each image by dividing the brightness value for each pixel in an RGB channel by the
overall sum of the brightness values of all pixels for that RGB channel.

A CNN model was built with two convolutional layers and three fully connected layers
in Python (Figure. 6.3). In the first layer eight filters were used to extract pattern features,
and sixteen filters were used in the second layer to extract deeper pattern features.
After the convolutional layers, three fully connected layers were used to fit the data. The
fitting method was a stochastic gradient descent (SGD) with probability calculations
through the SoftMax function. The batch size was five for each optimization process.
Samples were randomly selected by their weights which were set equal at the beginning
but updated after each optimization process by their classification result. The learning
rate was 107 in the model training process. In each iteration, five samples were randomly
selected from 180 training samples by their weights with replacement, and every 36
iterations consisted of one epoch. After each epoch, training accuracy, testing accuracy,
training loss, and testing loss were calculated. Two hundred epochs were processed for

each model and ten independent models were trained. The test dataset accuracies of the
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last one hundred epochs and the last epoch model were recorded for analysis.

2.4 Results and discussion

Coffee-ring residue patterns for each Michigan tap water are unique

Michigan State University and the surrounding communities frequently rely on
groundwater sources with minimal treatment (chlorine and phosphate, sometimes with
fluoride) or hardness removal by lime softening or ion exchange. Rural communities also
frequently use on point-of-use or point of entry treatment such as home water softeners or
reverse osmosis systems. Many communities near Great Lakes coast-lines utilize surface
water sources and conventional treatment. The Great Lakes Water Authority (GLWA)
treats and distributes water to a substantial fraction of Michigan’s population in the east
from Lake Huron or the Detroit River and many communities in the west utilize Lake
Michigan. Tap water collected from the sampled Michigan communities displayed a wide
range of chemical compositions (Table. 2.1).

The coffee-ring residue patterns for each type of tap water were unique, and
waters with similar chemistry displayed similar residue features (Figure. 2.3).
Reproducibility was evaluated initially by imaging five droplets of each sample on the
same slide, and most residue patterns displayed nearly identical features across
replicates (Figure. 6.4). Lime softened water showed variability across replicates, with
some samples displaying a thin film of particles across the entire drop and others
producing a clearing in the center. A subset of samples were analyzed by three analysts
with varying levels of experience. Mirrored aluminum 6061 substrates were chosen due to
low cost, availability, compatibility with the loupe and cell phone camera for imaging, and
ease of use for inexperienced users; substrates were inspected before use for scratches or

defects and only smooth areas without blemishes were used for the coffee-ring effect
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experiments. Nanopure water and synthetic hard freshwater were applied as controls. The
substrates contained residue remaining from the manufacturer that was captured in images
of nanopure water controls (Table. 6.5). A trend was not observed between residue
patterns for samples and the residue pattern or lack of residue pattern in the nanopure water
controls (Table. 6.5). Tap water samples were tested on multiple substrates to ensure that
variation observed in the patterns was not due to the substrate (Tables. 6.6). All analysts
produced more consistent data across a single slide than across different slides. Despite
variability between substrates, MSU water from academic buildings (hard water) displayed
similar patterns on substrates tested across all researchers. Untreated groundwater from the
rest stop was characteristically more variable, displaying one of two patterns with a thin
film of small particles and either a white ring at the outer edge or a circular segment
to one side. Residue patterns for lime softened water from East Lansing were typically
consistent across a single slide, but showed two types of patterns with several concentric
rings at the drop edge and either a clear center or a thin film of feathery particles across
the center surface. Neither the nanopure blank nor synthetic hard freshwater were
sufficient to predict which samples would produce thin films of particles for the lime
softened water. A similar result was observed for softened Lansing water (Table. 6.5).
Synthetic lime softened water may function as a more sensitive positive control for future
experiments. Only analyst 1 observed the residue pattern for Detroit with the center
scattering of particles concentrated on one side of the drop; this result was attributed to a
lab bench at an angle of approximately 1° (Table. 6.5). Residue patterns that displayed
variability across substrates were still sufficiently unique from samples with different
chemistry to identify what type of drinking water treatment was applied. The results of

these experiment suggest that a more uniform substrate and level surface may be
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required to reduce variability for applications beyond identifying the tap water source from
a library of residue fingerprints. It is well established that the hydrophobicity of the
substrate influences the coffee-ring effect Shahidzadeh et al. [2015], Zhang et al. [2003],
Ortiz et al. [2004], Zhong et al. [2017]; thus, the substrate used for training datasets
must be consistent with that of unknown samples. Additional variables that must be
controlled during coffee-ring effect experiments include temperature Li et al. [2016c],
Takhistov and Chang [2002], humidity Li et al. [2016c¢], Chhasatia et al. [2010], Kaya et al.
[2010], and the volume of the droplet Ortiz et al. [2006] (further evaluation of the
durability of the protocol is included in the ESI and Table. 6.6).

Synthetic tap water solutions containing six main constituents do not fully explain the
environmental samples

Synthetic tap water solutions were created to reflect components measured in Lansing
(lime softened groundwater), MSU (minimally treated hard water), and Detroit water
(surface water with conventional treatment). A synthetic mixture of simplified Lansing
water containing only the six major components (calcium, magnesium, sodium, chlorine,
sulfate, and total carbonate species) displayed many features observed in Lansing

waters
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MINIMALLY TREATED GROUNDWATER

MSU academic hall Durand Battle Creek Kalamazoo ) Fowlerville Charlotte Portland

LIME SOFTENED ION EXCHANGE
Lansing- Site B East Lansing & Meridian i illi

Williamston

UNTREATED GROUNDWATER REVERSE OSMOSIS
Rest stop - Okemos Rest stop - Zeeland Rest stop - 196/M66 Genoa Twp private Genoa Twp private Allegan

SURFACE WATER SOURCE - GLWA SURFACE WATER SOURCE — LAKE MICHIGAN
Detroit Flint Swartz Creek Holland Grand Rapids Wyoming

Figure 2.3: Coffee-ring residue patterns of freshly collected Michigan tap waters. The lab
temperature was 24-25 °C and relative humidity 52% for this experiment. Replicates are
included in Table. 6.4.

on various slides, but the simplified synthetic Detroit and MSU waters were different than
the collected tap water samples (Table. 2.2). The simplified synthetic Detroit water had
particles deposited at the drop edge like the environmental sample, but the rings,
color, and center were different. Adding iron, copper, nitrate, fluoride, and phosphate
caused the synthetic residue pattern for Detroit water to become closer to the
environmental sample, but still did not capture all the features. Additional studies
must be conducted to determine the influence of pH and organic matter on the residue
patterns as well. The complex synthetic Detroit water sample captured the yellow and
blue coloring observed in the concentric ring at the inner drop edge, possibly due to
the presence of phosphate and iron forming insoluble salts. The MSU tap water still did
not resemble the collected water after addition of the lower concentration components.

This finding provides further evidence that lower concentration species, pH, or
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particulates likely play a role in defining residue patterns.

Table 2.2: Simplified synthetic tap water compared residue patterns to real tap water,
with measured pH of each solution listed below the image (24 degree C, 47% relative
humidity). Replicate images are shown in Table. 6.1

Collected tap water | Simplified Complex
synthetic synthetic

Lansing
= 7.0-8.7 = 8.08 = 8.02

MSU

- 734 - 7.85 = 8.01

Detroit
= 6.21 - 7.39 - 735

Residue patterns document water chemistry

Simple synthetic mixtures demonstrate trends between water chemistry and particle, shape,
size, and location of deposition. To confirm that trends in particle shapes and sizes in
coffee-ring patterns are influenced by the identities and concentrations of solutes, three
salt synthetic mixtures were created of NaCl with CaCl2 and MgCI2, NaHCO; with

CaCl, and MgCl, Na,SOs with CaSOs and MgSOs4, and NaHCO3; with CaSOs and
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MgSO, at concentrations relevant to tap waters. In the presence of calcium and
magnesium chlorine, NaCl caused large uniform particles to be distributed across the
drop, while NaHCO3 caused smaller and more densely packed flakes and feathering
patterns at the higher concentrations (Table. 2.3). These features could be quantified by
measuring the average area of particles and the number of particles for each set of images.
For example, the average area of particles decreased with decreasing NaCl concentration
in the presence of 3.0 mM CaCl, and 1.5 mM MgCl,, and the average number of
particles decreased with decreasing NaHCQO3 concentration in the presence of 0.5 mM
CaCl, and 0.25 mM MgCl, (Figure. 2.4). It was hypothesized that because NaCl! and
NaHCQOs are highly soluble, both produced thin films of particles that were likely
deposited through surface capture or settling rather than the coffee-ring effect as ions
remain dissolved through most of the droplet evaporation process. Crystal formation was
sensitive to differences in slides; a similar result was found on additional slides, though
the large distinct, uniformly sized NaCl particles did not form at the lower
concentrations of calcium and magnesium chlorine (Table. 6.9). Intricate particle shapes
were observed for mixtures of sodium bicarbonate with calcium and magnesium
chlorides, but the shapes of the particles were not identical across all batches of slides.
Additional experiments are required with higher quality substrates to determine how the
shape of the bicarbonate particles correlates to the matrix water chemistry and
surrounding conditions.

Simple synthetic mixtures containing sulfate salts of sodium, magnesium, and calcium
had multiple concentric rings at the drop edge, likely due to differences in solubility
between calcium sulfate, magnesium sulfate, and sodium sulfate. Again, the number of

particles decreased with decreasing sodium sulfate concentration in the presence of 0.5 mM
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CaS0O4 and 0.25 mM MgSO4 (Figure. 2.4). Adding bicarbonate to the mixture at the same
concentration of calcium and magnesium sulfate caused the concentric rings at the drop
edge to be eliminated to create a thin film of densely packed very small uniform particles,
except for the lowest sulfate and bicarbonate concentrations (Table. 2.3), though the
number of particles still decreased with sodium bicarbonate concentration (Figure. 2.4).
PCA conducted on the image files themselves (five replicates of each image) was
compared to PCA on the measurements of particle sizes and numbers within the images. In
both cases, three principal components were useful in clustering the images into groups
with similar ions, but not sufficient to group samples by concentrations of components
(Figure. 2.5). Three principal components explained around 50% of the variability of the
data set for PCA conducted on the image files (Figure. 6.4). PCA is valuable for
highlighting variability in a dataset, but it does not take into account subimages or sub-
patterns (such as rings at the drop edge versus the center of the residue pattern) Kadappa
and Negi [2016]; thus, it is not surprising that PCA on the image files was not sufficient to
differentiate between images with different concentrations of ions despite clear qualitative
differences in residue patterns. Specific measurements of features within the images or a
convolutional neural network designed from a larger dataset may be more valuable in

determining concentrations of species (Figure. 2.4).
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Table 2.3: Simple synthetic mixtures analyzed at 24 °C and 48% relative humidity

NaCl

3 mM CaCh,
1.5 mM MgCl

1 mM CaCh,
0.5 mM MgCl,

0.5 mM CaCh,
0.25 mM MgCh

10

NaCl

mM

5.0

NaCl 25
mM

NaHCOs
10 mM

NaHCOs
5.0 mM

NaHCOs
2.5 mM

Na>SOs
5.0 mM

3 mM CaCh,
1.5 mM MgCl

1 mM CaCh,
0.5 mM MgCl,

0.5 mM CaCh,
0.25 mM MgCh,

Na>SOs
1.25 mM

NaHCOs
2.5 mM
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Similar residue patterns were observed for collected tap water samples with similar water
chemistry. Cluster analysis and trilinear classification diagrams were used to group
samples with similar water chemistry, with cluster analysis taking all the collected water
chemistry data into account and the trilinear diagram only using data for the species
with the highest concentrations typical of fresh waters (calcium, magnesium, sodium,
potassium, chlorine, sulfate, carbonate, and bicarbonate). In general, the cluster analysis
and the trilinear diagrams grouped samples with those from the same treatments together
(Figure. 2.6, Figure. 6.5). Cluster analysis, however, did not group ion exchange samples
together, more effectively separated minimally treated groundwaters, and lumped reverse
osmosis samples with surface waters. The trilinear plot showed the ion exchange samples
clearly distinct from the rest, plotted the reverse osmosis samples closer to the minimally
treated groundwaters, and the lime softened waters separated clearly from the surface
waters. These findings highlight that the water chemistry for the ion exchanged samples
are related in terms of the higher concentration components, but the overall water
chemistry more closely matches samples from other groups.

Inspection of the coffee-ring residue photographs according to the groupings visualized
by cluster analysis and trilinear diagrams uncovers patterns in the crystals that may
associate with a given water chemistry (Figure. 2.6). For example, each ion exchange
sample that clustered together on the trilinear diagram had a thin film of particles with
larger crystals scattered across the drop, but each image also displayed attributes of the
group assigned through cluster analysis when the lower concentration species were
accounted for. Trends in the dataset can also be determined from comparing residue
patterns from synthetic mixtures, samples with similar composition of the six main

water components, and samples with
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Figure 2.4: Particle areas and particle counts for simplified synthetic mixtures of three salts.
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Figure 2.5: Principal component analysis (PCA) on particle measurement data (left) and
PCA conducted on image files (right).

similar overall water chemistry. The residue patterns for tap waters treated by similar
methods displayed characteristic features representative of that treatment, such as several
concentric rings with a strong secondary ring near the outer edge for surface water, colorful

concentric rings with smaller particles scattered throughout for hard groundwaters with
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Figure 2.7: Testing dataset accuracies of ten CNN models (left) and the confusion matrix
of the first trained model (right).

minimal treatment, a thin film of fine particles for reverse osmosis treated groundwater, a
strong outer ring of white with small particles densely spread across the drop for untreated
groundwater, large crystals scattered across the drop for ion exchange, and a white/gray
thin film of small particles or dense concentric rings of small particles with feathering pat-
terns for lime softened water (Figure. 2.3). Tap water samples contain high concentrations
of dissolved ions when droplets are placed on the substrate, so particles form and grow as

water evaporates from the drop as observed previously for solutions of NaCl or CaSOs
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Shahidzadeh et al. [2015]. Therefore, particles of the least soluble salts that grow quickly
upon their concentrations exceeding solubility limits are expected to form particles early
enough during drying to be transported by the coffee-ring effect to the drop edge, unless
they grow large enough to settle first. Particles that do not form until the drop is nearly dry
are expected to be deposited through the surface capture effect or settling and be found
across the center of the drop. Calcium and magnesium carbonates and sulfates are less
soluble than sodium and chlorine containing salts Benjamin [2014], Haynes et al. [2016];
therefore, it is logical that hard waters would display an outer ring at the drop edge and
waters softened by ion exchange (containing more sodium than calcium or magnesium)
would display thin films of particles. Additional mixtures must be analyzed to verify the
qualitative patterns described here.

Convolutional neural network (CNN) model assigned images to groups with similar water
chemistry. CNN models have previously been proven effective in object detection and image
classification Krizhevsky et al. [2017], Russakovsky et al. [2015], Szegedy et al. [2015]. Herein
a CNN model was developed and tested to assign residue images into classes with similar water
chemistry data as determined by cluster analysis. Overall, after building the model from a
library of similar training images, the CNN model was effective with 80% accuracy in
assigning residue images from the test set into groups with similar water chemistry. To
achieve higher accuracy, a larger dataset would be needed to train the model. Specifically, in
the CNN model developed here the average and standard deviation of the accuracy for
the last 100 epochs for ten independent CNN models was 76.7 + 3.0% (Figure. 2.7).
Only six of the test images were misclassified in the class one group of images that
contained a total of 48 images (largely from surface waters with RO samples and a few

others mixed in), but two of the test images were misclassified from class two that
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contained a total of four images all from the high TDS genoa township untreated well
water (Figure. 2.7). All of the misclassified images from class two were instead placed
into class four that contained minimally treated groundwaters and one ion exchanged
sample. Two out of twenty-four images from class four and two out of twenty-four
images in class five (minimally treated and untreated groundwaters) were misclassified
into class one. A few additional images were also mis- classified between class four and
five; in qualitative comparing residue images, images of class four and class five are more
similar than images in other classes, which is logical considering these both classes
largely contain minimally treated and untreated groundwaters. Confusion matrix of the
ten models were provided in Figure. 2.8.

There were a few of the test images that were misclassified more often than others (Table.
6.10). Five of the test images with a misclassification percentage over 70% had a coffee-ring
residue pattern that was notably different from replicates of the same sample. For
example, two MSU residence hall samples had a clearing in the center of the residue pattern
while the rest had a complete thin film across the entire drop; the two samples with clearings
were misclassified in over 70% of the models (Table. 6.10, Table. 6.3). Two of the
images with a misclassification percentage over 70% were from class two which had the
lowest number of replicates. The low number of images causes the model to be less sensitive to
this class despite the distinct large crystal pattern Junqué de Fortuny et al. [2013],
Martens et al. [2016]. Three images were often misclassified without a clear reason (Table.

6.10).

77



True class
class 6 class 5 class 4 class 3 class 2 class 1
S

S

class 1 class2 class3 class4 class5 class 6
Predicted class

True class
class 6 class 5 class 4 class 3 class 2 class 1
>

i

class 1 class2 class3 class4 class5 class 6
Predicted class

True class
class 6 class 5 class4 class 3 class 2 class 1
o

. o

class 1 class2 class3 class4 class5 class 6
Predicted class

True class
class 6 class 5 class 4 class 3 class 2 class 1
IS

- 3

class 1 class2 class 3 class4 class5 class 6
Predicted class

True class

class 6 class 5 class 4 class 3 class 2 class 1

S 2

class 1 class2 class3 class4 class5 class 6
Predicted class

The percentage of images that were properly classified into class one

o

4

o

o

o

5 o
o o
10 2
1

[ 2
[ o

5 3
1 o
10 2
o 17
4 1

1 1

5 3
o o
10 1
[ 14

1 2

3 3
1 o
12 [
o 16

4 1

2 3
2 0
10 3
0 ’nﬁ
1 5
0 2

o

o

o

7

3

2

4

32

24

24

24

24

24

True class
class 6 class 5 class 4 class 3 class 2 class 1

True class
class 6 class 5 class 4 class 3 class 2 class 1

True class
class 6 class 5 class 4 class 3 class 2 class 1

True class
class 6 class 5 class 4 class 3 class 2 class 1

True class

class 6 class 5 class 4 class 3 class 2 class 1

- 3

g o

[

6 1
1 o
9 3
[

1 3
1 [

1 0
1 0
0 o
0 o

o
0 4

class 1 class2 class3 class4 class5 class 6

- a4

[

Predicted class

3 4
1 [
10 2

[ o
1 o
o o
i o

o 2

class 1 class2 class3 class4 class5 class 6

g o

[

Predicted class

S 5
1 o
10 2
1l 19

[J [

1 o
1 [
o [
1 o

o 4

class 1 class2 class3 class4 class5 class 6

1

o

Predicted class

S 4
1 0
10 7z

o o
1 o
o o
3 o

[ 4

class 1 class 2 class 3 class4 class5 class 6

2

o

Predicted class

4 3
1 o
1 1
0 17

[ 2

[ [
1 o
o [
2 [

o 4

class 1 class2 class3 class4 class5 class 6

Predicted class

Figure 2.8: Confusion matrix of ten CNN models.
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process the model is skewed to more accurately predict the class one images Japkowicz and
Stephen [2002], Krawczyk [2016]. Generally with CNN models the accuracy is improved by
using a larger dataset of images during model training to allow the model to capture more
information and detail Junqué de Fortuny et al. [2013], Martens et al. [2016]. Overall,
class one, three, four and five had similar accuracy around 80%, but due to the low number of
samples the accuracies of classes two and six were around 40-50% (Figure. 6.6). About half
images in class one had less than 1% mis-classification percentage and most images in

class two and six had high mis-classification percentages.
2.5 Conclusions and future outlook

Both the coffee-ring effect and convolutional neural networks (CNNs) remain underutilized
techniques to be harnessed for tap water analysis. Herein we show proof of concept
experiments that document the unique fingerprints provided by the coffee-ring effect
for tap water solutions from various cities across Michigan and the reproducibility of the
phenomenon, demonstrate that low concentration species as well as major ions influence
the residue patterns, provide evidence that the patterns indeed document water chemistry
within the sample, and demonstrate the ability of a CNN in assigning images to water
chemistry. The low-cost substrate employed in this work caused variability between
experiments, especially for batches of substrates purchased at different times; however, the
variability was included in the training dataset, so the CNN was still able to classify
the images with 80% accuracy. Additional work is required to identify the appropriate
substrate that is widely available for a low cost test. Quality control metrics are critical for
identifying variation in experiments, and lime softened water was much more sensitive to
experimental variation than the hard synthetic water used as a control for this study.

Traditional PCA on image files is insufficient for differentiating between images of water
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samples with different concentrations of components, likely due to lack of consideration of
subregions such as the outer coffee-ring; however, with a larger dataset a CNN model will
be especially valuable for differentiating between water chemistries and assigning
unknown images to groups from a library of images. A larger library of residue patterns
and a corresponding CNN model must be trained to move this technology from qualitative
tap water quality analysis to a quantitative technique and to further identify features of
the residue patterns.

Despite the use of a low-cost and variable aluminum slide, using a pipette, $18
jeweler’s loupe, and cell phone camera, each type of tap water tested displayed unique
characteristics, water samples with similar water chemistry produced residue patterns with
similar features, waters from two locations in a city were more similar than samples from
different cities, and the CNN model was able to assign samples to groups with similar
water chemistry. This evidence suggests that this method should be further considered for

low-cost water quality fingerprinting.
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CHAPTER 3
Optimal environmental condition for contaminants separation

by coffee-ring effect

3.1 Abstract

This study investigates the potential of the coffee-ring effect as a tool for tap water
analysis, demonstrating its ability to produce unique fingerprints for water samples with
varying compositions and environmental conditions. However, the coffee-ring effect’s
stability is found to be influenced by environmental conditions, presenting a challenge for
its practical application. Additionally, identifying the optimal environmental conditions for
separating contaminants particles is essential to enhance the technique’s efficacy.
Establishing the correlation between water sample coffee-ring effect patterns and element
deposition compositions is also crucial for utilizing the technique to identify particle
compositions. The study confirms the reproducibility of the coffee-ring effect and
highlights the impact of both environmental condition and water compositions on the
residue patterns produced.

Various statistical methods, such as ANOVA, MANOVA, and PERMANOVA, can
differentiate coffee-ring effect residue patterns with respect to environmental conditions
and water sample compositions. However, determining the most effective method for
differentiating these patterns requires further research, as the results from different analyses
can be inconsistent.

The study’s statistical analyses indicate that environmental conditions and water
chemistry significantly influence residue patterns and element distributions. Optimal

environmental conditions, including 23-26°C with 45-50% relative humidity, 20-23°C with
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45-50% relative humidity, and 26-29°C with 40-45% relative humidity, are identified for
differentiating water samples with varying component concentrations. Nonetheless, the
optimal environmental condition is a temperature range of 23-26°C and a relative humidity
of 45-50%, as it yielded the highest number of optimal results in 12 separate analyses.
These findings have implications for further research on residue patterns and improving

the understanding of the underlying mechanisms of the coffee-ring effect.
3.2 Introduction

Centralized drinking water supply and distribution systems in the U.S. were developed in
1854 to reduce the reliance of fast growing cities on contaminated wells and decrease incidence
of cholera and typhoid diseases Burian et al. [2000]. Today, water distribution systems are
currently reaching their end of life and failing faster than they can be replaced, requiring
funding at a rate that strains many communities Coghill et al. [2014], Folkman [2018].
According to a 2018 report of 197,866 miles of pipes across the United States, over
16% of installed water mains are beyond their useful life, 28% of pipes of all material types
are older than 50 years, and 71% of all the pipes are older than 20 years Folkman [2018].
Since 2012, the overall break rates increased 27% , primarily due to failures in asbestos
cement (AC) and cast iron (CI) pipes Folkman [2018]. The most common method for
prioritizing pipe replacement is based on failure data. Large, critical mains have
essentially been ignored in many communities until they failed Darlene Garcia and Susan
Funchion [2015]. This method ignores water quality issues related to aging pipes. Prior
knowledge of pipe material or age can also be used to prioritize pipe replacement, but
knowledge of where lead service lines or older pipes exist is not always available
Cornwell et al. [2016]. Researchers have also developed models to prioritize pipe

replacement based on pipe failure data including multiobjective genetic algorithms, failure
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assessment models, rank aggregation models, etc. Giustolisi and Berardi [2009], Rogers
and Grigg [2008], Tlili and Nafi [2012], Choi et al. [2017], Marzouk et al. [2015], Ho et al.
[2009]. Water quality data can also be used to directly identify sections of the distribution
system that negatively impact water chemistry Kirmeyer [2002]; however, collecting
sufficient water quality data across a distribution system to determine which pipes are
hazardous to public health is often challenging due to the time and costs required to collect
and analyze enough water samples. Herein we propose to develop a fast, low-cost method
that can drastically increase the number of water samples that can be collected and
analyzed to aid in identification of waters across a distribution system that have been
impacted by corrosion. This method will harness tap water fingerprints created by the
coffee-ring effect.

Tap water fingerprints provided thru the coffee-ring effect are unique to water chemistry
When the coffee-ring effect is harnessed, tap waters leave unique residue patterns,
or fingerprints that correlate to tap water chemistry (Table. 3.1), Li et al. [2020],
Shahidzadeh-Bonn et al. [2008], Kaya et al. [2010], Shin et al. [2014], Shahidzadeh et al.
[2015]. The residue pattern formation is a crystallization process of water
contaminants and crystallization of salts or other materials in supersaturated solutions has
been intensively investigated due to its practical significance in pharmaceutical
purification, salt manufacturing, seawater purification, cosmetic production, deicing, and so
on Li et al. [2020], Qazi et al. [2017], Wei et al. [2012], Sammalkorpi et al. [2009], Desarnaud
et al. [2014], Meldrum and O’Shaughnessy [2020]. Previous researchers mainly studied
the mechanisms of crystallization in electrolyte solutions without evaporation. However,
Studies stressed on precipitation and crystallization from evaporating sessile droplets are

far less especially when compared with the active domain of colloidal sessile droplets
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Zhong et al. [2015], Feng et al. [2017], Zhong and Duan [2016], Anyfantakis et al. [2015],
Zhang et al. [2016], Xu et al. [2016], Bahmani et al. [2017], Lee et al. [2017], Saxena et al.
[2017], Li et al. [2016d], Chen et al. [2012], Malvadkar et al. [2010]. According to the
previous study, the more complex profile of a sessile droplet characterized by the three
phase contact line and the curved liquid vapor interface complexes the precipitation process
as compared the easy solution configuration. The higher evaporation flux in the vicinity of
the contact line can induce outward flows that result in heterogeneous distribution of ions
and the associated supersaturation degree. At the mean time, microfluid formed inside the
droplet sessile bring particles to the droplet substrate contact line. The curved liquid vapor
interface could limit the growth and vary the motion of precipitation. The complexity
caused by the multifactors in respect to evaporation, bulk flow, temperature, humidity and
wettability is therefore expected to significantly vary crystallization in sessile droplets.

So far crystallization of salts from drying saline droplets has been investigated in a
number of studies mainly focused on nucleation mechanisms and the dependence of
precipitation profile on solid surface properties, salt concentration, and so forth Takhistov
and Chang [2002], Townsend et al. [2017], Kaya et al. [2010], Shahidzadeh et al. [2015],
Shin et al. [2014], Suresh [2006], Shahidzadeh-Bonn et al. [2008]. The previous study
of the effects of polyelectrolyte concentration of drops and the surrounding humidity on
the final salt crystallization, which exhibited profiles of concentric rings and needle-like
and chainlike structures Kaya et al. [2010]. Takhistov et al. investigated the crystal
formation process from microliter droplets on both hydrophilic and hydrophobic
substrates. Based on their results, concentric rings of salts were formed on hydrophilic
surfaces while crystalline was produced on hydrophobic surfaces Takhistov and Chang

[2002]. Shahidzadeh et al. also investigated the evaporation and stain structures on
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various substrates with two types of salts, sodium chlorine (NaCl), and calcium sulfate

(CaSO4) with different crystalline structures and precipitation pathways. In their research,

they concluded the crystalline pattern in a variety was concluded to be controlled by the

interfacial properties of the emerging crystalline and the number of crystals generated

Shahidzadeh et al. [2015]. The study of crystallization from saline droplet is conducted by

Shin et al. They obtained threedimensional salt structures from droplets with high

aspect ratio and a rich variety of three-dimensional crystalline deposits were observed

Shin et al. [2014]. The coffee-ring effect process involves the solvent evaporation on

droplet surface and resulting residue ring like patterns. The formation of the coffee-ring

effect pattern is complex. The contact line pinning on the substrate and the contact

angle determines the pattern formation Wong et al. [2011], Larson [2014], Deegan et al.

[1997], Chen and Evans [2010], Eral et al. [2013]. Wong et al. found the physics of

particle separation during coffee-ring formation, which is based on a particle-size

selection mechanism near the contact line of an evaporating droplet. On the basis of this

mechanism, they found nanochromatography of three relevant biological entities

(proteins, micro-organisms, and mammalian cells) in a liquid droplet, with a separation

resolution on the order of 100 nm and a dynamic range from 10 nm to a few tens of

micrometers Wong et al. [2011].

Coffee-ring effect applications

Understanding and controlling the process of solute deposition in the presence of coffee-
ring effect is important in manufacturing processes involving evaporation on surfaces
including printing Park and Moon [2006], Friederich et al. [2013], Kuang et al. [2014], Sun
et al. [2015], Huang and Zhu [2019] and fabrication of ordered structures Han and Lin

[2012], functional nanomaterials Shao et al. [2014], Zou and Kim [2014] and colloidal
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crystals Park et al. [2006], Cui et al. [2009]. coffee-ring effect also improves the performance
of commercial applications including fluorescent microarrays Blossey and Bosio [2002],
Dugas et al. [2005], matrix assisted laser desorption ionization (MALDI) spectrometry Hu et
al. [2013], Mampallil et al. [2012], Kudina et al. [2016], Lai et al. [2016], and surface
enhanced Raman spectroscopy (SERS) Zhou et al. [2014a], Wang et al. [2014], Garcia-
Cordero and Fan [2017]. coffee-ring effect has also implications in plasmonics Li et al.
[2016a], solute separation Wong et al. [2011], diagnostics Brutin et al. [2011], Wen et al.
[2013], Gulka et al. [2014] and electronics applications de Gans and Schubert [2004].
Suppression of coffee-ring effect

Coffee-ring effect can be suppressed through one of the three physical strategies (i)
preventing the pinning of the contact line; (ii) disturbing the capillary flow towards the
contact line and (iii) preventing the particles being transported to the droplet edge by the
capillary flows. The coffee-ring effect could be suppressed by preventing contact line
pinning using hydrophobic surfaces. Increasing the hydrophobicity of surfaces is often
accompanied by decreasing contact angle hysteresis (CAH) Eral et al. [2013]. Lower CAH
in essence means reduced contact line pinning which leads to suppression of coffee-ring
effect. Lower CAH could be achieved by patterning of controllable surface wettability as
reviewed previously by Tial et al. Tian et al. [2013]. These methods include chemical
modification Ko et al. [2004], Tian et al. [2013] and physical modification.

On hydrophobic and partially hydrophobic surfaces, pinning can even occur when the
CAH or solute concentration is high. If CAH is high, during the contact angle
decreases to the receding angle, typically a few seconds depending upon the rate of
evaporation, solutes can accumulate at the contact line. Such accumulation produces ring-

like deposits only if the duration of pinning is above a critical value for a given substrate-
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solute system Moraila-Martinez et al. [2013]. However if the pinning time is short, even
with high initial solute concentration, the coffee-ring effect will just produce smaller inner
rings Nguyen et al. [2013]. The nanoparticles are more prominent to form ring like patterns
compared with larger particles as they can flow into the microscopic regions of the droplet
edge faster. In the presence of solute particles in the droplet, electrowetting (EW) can
reduce the pinned contact line on (partially)-hydrophobic surfaces Mugele and Baret
[2005], Li and Mugele [2008]. A droplet is deposited on a dielectric layer covering an
electrode. When a voltage is applied between the droplet and the electrode an electric
force pulls the contact line outward, overcoming the pinning forces so the contact line
pinning is reduced. The coffee-ring effect can also be suppressed by vibration and acoustics,
marangoni flow and other factors Mampallil and Eral [2018].

Enhancement of coffee-ring effect

Evaporation of droplets can be utilized as a method to concentrate its solutes in it.
Evaporation of the solvent can increase the analyte concentration making the reactions
more probable Hernandez-Perez et al. [2016], De Angelis et al. [2011]. By the coffee-ring
effect, the solutes is deposited at the contact line increasing their concentration there and
separated by their size, charge and solute-substrate interactions. This deposition of solutes
and particles are exploited as a pre-concentration method Figure. 1.1.

Concentrating solutes at the rim of the droplet by coffee-ring effect is called the
self-ordered ring (SOR) method. It acts as a pre-concentration procedure before other
analyses. To enhance the coffee-ring effect, hydrophobic surface is usually used as the
substrate. Drying process on hydrophobic surfaces forms smaller rings with higher solute
density as the contact line is pinned only in the later stages of the evaporation. Liu et

al. demonstrated that the SOR method enhanced the fluorescence detection of orally
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administrated berberine in human urine Liu et al. [2002]. Similarly, fluorescent detection of
trace levels of tetracycline Huang et al. [2004a], quinidine sulfate in serum samples Yang
and Huang [2006] and fluorescein Liu et al. [2006] was demonstrated based on the SOR
method.

Coffee-ring effect could facilitate identifying pathogens which are associated with
diseases by isolating the disease markers from body fluids Wong et al. [2011], Chen and
Evans [2010]. Coffee-ring effect has also been used to enhance the deposition of gold
nanoparticles(AuNPs) on cellulose nanofibers (CNFs) to enhance surface-enhanced Raman
scattering (SERS) Chen et al. [2017], Wang et al. [2014], Hussain et al. [2019], Juneja and
Bhattacharya [2019], Zhou et al. [2014b]. Coffee-ring effect has also been utilized for a
low-resource malaria diagnostic platform Gulka et al. [2014]. Coffee-ring effect also has
shown great potential to monitor tap water quality with deep neural networks Li et al.

[2020].
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Table 3.1: Coffee-ring residue patterns of Michigan tap waters Li et al. [2020].
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Tap water fingerprinting is fast, low-cost, and has potential to be automated, allowing greater
numbers of samples to be analyzed across a distribution system

Compared with other methods, the coffee-ring effect method for measuring pipe corrosion
indicators has benefits of being low-cost and fast, not requiring specialized technicians, and
the same method can be used to see multiple analytes at once. Required equipment to
complete the coffee-ring effect method includes a small aluminum substrate and one pipette
which costs about 10 dollars. To collect images, a cell phone camera and a $18, 30x jeweler’s
loupe can be used. Considering the wide availability of cell phone cameras already used in
households, the total cost for new, reusable equipment for this method is less than forty
dollars Li et al. [2020]. Common methods for contaminants elements measurement are
ICP-MS (about $25, 000 $40, 000 for refurbished), atomic absorption (about $13, 000
$20,000), and spectroscopic methods such as phenanthroline method, neocuproine method
and bathocuproine method Walter [1961] The coffee-ring effect method is not only a low-cost
method, but also fast (approximately total 25 minutes including 5 minutes to drop water
and 20 minutes to dry), does not use hazardous reagents, and does not require specialized
technicians to conduct the experiment, and has potential to be automated for the evaluation
of high numbers of samples across a distribution system.

Optimization of tap water fingerprinting for tap water contaminants

As demonstrated in previous research, tap water fingerprinting (coffee-ring effect),
an innovative technique for identifying and characterizing water samples, effectively
distinguishes between different tap water compositions and differentiates mixtures of
salts based on their consistent and reproducible water fingerprints Li et al. [2020],
Shahidzadeh-Bonn et al. [2008]. This groundbreaking approach shows promising potential

for a range of applications in environmental monitoring and water quality management.
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The tap water fingerprinting method produces consistent and reproducible residue patterns
under constant environmental conditions 3.2, but data is not yet available to demonstrate
how much the residue patterns of dried water droplets change for small changes in
environmental conditions.

Table 3.2: Nine environmental conditions

Temperature, RH | 20-23 (°C) | 23-26 (°C) | 26-29 (°C)
35%-40% A D G
40%-45% B E H
45%-50% C F I

Under low evaporation rate conditions, particles have time to arrange by Brownian
motion Mampallil and Eral [2018], Rodriguez-Navarro and Doehne [1999], Marin et al. [2011].
In contrast, when the evaporation rate is high, high-speed particles deposit into a disordered
phase. Consequently, under high relative humidity and low-temperature conditions,
coffee-ring fingerprints are more constant Mampallil and Eral [2018], Rodriguez-Navarro
and Doehne [1999], Marin et al. [2011]. However, no research has quantified how
evaporation rate (temperature and relative humidity) influences residue patterns for mixed
salt solutions at concentrations relevant to tap water.

In this study, we further optimized the tap water fingerprinting methodology to enhance
its capabilities for identifying contaminant particles in water samples. This optimization
process involved several critical factors that significantly influence the accuracy and
reliability of the fingerprinting results. Key factors considered include optimal temperature
and humidity conditions, and solute properties. Experiments will be conducted to
determine how much temperature and humidity control is required to minimize changes
in particle positions, sizes, shapes, elemental composition, and crystal structures while also
maximizing the separation of contaminant particles within the coffee-ring pattern. In this

work, the question of what temperature and relative humidity ranges (within the range
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of 20-29 degrees C and 35-50% relative humidity) provide reproducible fingerprints and
sufficient separation of contaminant particles from other salts to facilitate detection
within a photograph will be answered.

Firstly, we examined the effects of temperature and humidity on the fingerprinting
process. By conducting a series of controlled experiments, we determined the optimal
temperature and humidity conditions that yield the most accurate and consistent water
fingerprints. These findings are crucial in ensuring that the fingerprinting method can be
effectively applied under varying environmental conditions and across diverse geographical
regions.

Next, we investigated the role of solute properties in the fingerprinting process. Given
that the presence of various solutes can alter the characteristics of water fingerprints,
understanding their effects is essential for accurately identifying contaminants in water
samples. Through rigorous testing, we determined the key solute properties that influence
the fingerprinting results. Furthermore, we identified the optimal conditions to concentrate
similar contaminants and effectively separate different contaminants, thereby enhancing the
precision and reliability of the tap water fingerprinting method.

In conclusion, our optimization of the tap water fingerprinting method has resulted in
significant improvements in its ability to identify contaminant particles in water samples.
By carefully considering and addressing the effects of temperature and humidity conditions
and solute properties, we have established a more reliable and accurate technique for
analyzing water quality and detecting potential contaminants. This optimized fingerprinting
method holds great promise for enhancing water safety and protecting public health on a

global scale.
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3.3 Experimental Methods

3.3.1 Materials and instruments

The following substances were purchased from Fisher Scientific: sodium bicarbonate,
calcium chloride, magnesium chloride, sodium sulfate, sodium phosphate monobasic,
potassium fluoride, sodium hydroxide, iron nitrate nonahydrate, and copper sulfate. The
surface-polished aluminum slides used were obtained from McMaster-CARR (1655T1) with
a yield strength of 35,000 psi, a hardness of Brinell 95 (soft), and a fabrication of cold
rolled, temper 3/8" thick T651. The slides met the specification of ASTM B209 and were
polished to a #8 reflective finish without any visible grain lines. One side of these sheets
and bars was polished to either a brushed finish or a mirror-like finish and protected with
a peel-off film. 6061 aluminum, the most commonly used type, is used to make a wide
range of products, from pipe fittings and containers to automotive and aerospace parts.

The Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy
(EDS) images were acquired using a high-performance JEOL 6610LV SEM system,
set at an accelerating voltage of 20 kV. This advanced microscope is specifically designed
for the efficient characterization and imaging of delicate structures, providing exceptional
SEM imaging at magnifications ranging from 5X to 50,000X. The accelerating voltage of the
JEOL 6610LV can be adjusted from 300 V to 30 kV.

X-Ray diffraction images were collected by the Oxford EDS system which was
equipped on the SEM system. The JEM 6610LV Scanning Electron Microscope (SEM)
is equipped with EDS. SEM/EDS provides chemical analysis of the field of view or spot
analyses of minute particles. The EDS Analysis System for SEM was designed for a wide
range of applications. Whether simply collecting a spectrum or performing complex phase

analysis, the system is easy to get the quick results you want. EDS analysis is best
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suited for: Metals and metal alloys, Ceramics, Minerals and Certain types of polymeric
materials. The operation software is Scandium image processing software by Olympus Soft
imaging Solutions. Coffee-ring effect patterns were also collected by SamSung S6 cell
phone or a 5 MP Digital Microscope Pro-20x-200x magnification (Celestron) camera. Data
analysis and statistical analysis were performed on MATLAB R2021a, R 4.1.1 and python

3.7.
3.3.2 Four-axis-autosampler

The Four-axis-autosampler is a complex device that is designed to automate the process of
collecting and injecting samples. The device is composed of several components. The 3D
printer stage, a CNC 3018-PRO Router Kit, is responsible for providing the the foundation
for the other components to be mounted on and for providing the necessary movement and
precision for the device to operate accurately. The injector,a Thermo Scientific 365CL221,
is responsible for injecting the samples into the system. This component is designed
to be highly precise and accurate, ensuring that the samples are injected with minimal
error or variation. The Raspberry Pi-4 Model B 2019 Quad Core 64 Bit WiFi Bluetooth
(4GB) serves as the controller for the stepper motors, the injector, and the sample collection
system. The Raspberry Pi is also responsible for running the python code that controls the
device’s operations. The 3 steppers, Nema 17 Bipolar 2A Stepper Motor by OSM
Technology Co (17HS19-2004S1), are responsible for moving the injector. These motors
are designed to provide precise and accurate movement of the injector, ensuring that
samples are injected in the correct location. The one stepper motor driver (TB6600 4A 9-
42V Nema 17) is responsible for operating the sample collection and injection action.
This stepper motor is responsible for moving the sample collection system, which is

responsible for collecting samples, and moving the injector, which is responsible for
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injecting the samples into the system. The device is operated by python code under linux
system, specifically Ubuntu operating system. The sample code is used to control the
various components of the device, including the stepper motors, the injector, and the
sample collection system. This code is responsible for ensuring that the device operates
accurately and efficiently and is able to collect and inject samples with minimal error or
variation.

The Four-axis-autosampler is a highly advanced device that is designed to automatically
prepare water samples based on a predefined set of water samples. The device is equipped
with a sample holder that can hold up to 32 water samples at a time, making it suitable for
large-scale sample preparation tasks.

The device operates in several steps, each of which is specifically designed to ensure
accurate and efficient sample preparation. In the first step, the autosampler resets its
syringe positions to the initial setting to ensure that the syringe is in the correct position and
orientation before it begins to collect and inject samples. The syringe is then washed with
nanopure water to ensure that it is clean and free from any contaminants.

In the second step, the syringe collects a 2 4L water sample at a predefined water
sample location to ensure that the correct sample is collected and that the sample is
collected in the correct location. The stage then moves the syringe to the desired sample
location above the substrate and lowers the syringe until the syringe tip is 0.5 mm above
the substrate. This step is important for ensuring that the sample is delivered to the
correct location on the substrate.

In the third step, the fourth motor pushes the syringe piston to slowly push the 2 uL.
water sample out of the syringe. This step is important for ensuring that the sample is

delivered to the substrate in a controlled and precise manner. The water sample is then
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dropped on the substrate surface.

In the last step, after the water sample is dropped, the syringe is rinsed with nanopure
water again and reset to its original location for collecting the next water sample. This step
is important for ensuring that the syringe is clean and free from any contaminants before it
collects the next sample. The whole process is then repeated for each water sample in the
sample holder. This allows for efficient and accurate sample preparation for a large number
of samples in a short period of time. The process flow is illustrated in Figure. 6.7.

Furthermore, the system is built on open source software and hardware, it can be easily
modified and expanded according to the user’s needs. The device’s control system is based
on a Raspberry Pi, which is a powerful and versatile platform that can be easily
programmed and customized. This allows for flexibility and adaptability in the device’s
operation, making it suitable for a wide range of applications. The Four-axis-autosampler
is a powerful and efficient device that is designed to collect water coffee-ring samples at a
high speed. The device is capable of collecting samples at a rate of 45 seconds per sample,
which is comparable to the speed of a human sample collector, who typically takes around
30 seconds per sample. However, the autosampler has several advantages over human
sample collectors. One of the main advantages of the auto-sampler is its stability and
ability to work continuously for longer periods of time. Unlike human sample
collectors, the device does not tire, and it can work continuously without interruption.
This is an important feature for large-scale sample preparation tasks that require a high
degree of accuracy and consistency. Another advantage of the auto-sampler is that it can be
placed in a small chamber with controlled temperature and humidity. This is beneficial
because it allows for precise control over the sample preparation environment, which is

important for maintaining the integrity and quality of the samples. Operating the same
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experiments manually under this condition is tedious and time-consuming. In addition to
its ability to collect water coffee-ring samples, the auto-sampler can be easily modified
to work for other tasks. For example, it can be used for solution preparation, blood test and
so on. This makes it a versatile and useful tool for a wide range of applications.

Overall, the Four-axis-autosampler is a powerful and efficient device that can
significantly improve the speed and accuracy of sample preparation tasks. Its compact size,
precise control over the sample preparation environment, and ability to work continuously

make it an ideal tool for large-scale sample preparation tasks.
3.3.3 Auto temperature humidity control chamber

An auto-temperature-humidity control chamber was constructed using a chamber, two
Diymore XH-M452 temperature and humidity controllers, a Space SFH-181 TP heater
from Ningbo Electrical Appliance Company, a Frigidaire FFRA0OS51WAE 5000 BTU air
conditioner, and an AO-101 AquaOasis humidifier. Sodium hydroxide was used as a
dehumidifier. Typically an environmental control chamber would cost on the order of
$5000; herein, to reduce overall cost of implementing the tap water fingerprinting method
we built, will demonstrate use of, and will publish designs for a lower cost setup on
the order of $1000. The chamber controlling system consists of two automotive
temperature and relative humidity controllers and one of them is programmed to increase
temperature and relative humidity and the other is programmed to decrease temperature
and relative humidity. The chamber consists of a 12V, 200W heater, a ultrasonic
humidifier, a 500 ml plastic bottle with dry NaOH and desiccant and a 5,000 BTU 115V

mini air-conditioner.
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Figure 3.1: Temperature humidity control chamber.

This auto temperature humidity control chamber is capable of adjusting and
maintaining the temperature and humidity automatically based on the pre-set temperature
and humidity values in the two Diymore controllers. The sensitivity of temperature is 0.5
degree and relative humidity is 1%. Based on the test, the system is capable adjust
temperature at a speed of 3 degrees Celsius per min and relative humidity of 2% per min.
After adjusting the temperature and humidity to desired the desired range, the chamber
switched to main mode. If the temperature increased and above the highest temperature
limit, the air conditioning switch would be turned on to decrease the temperature to the
desired range. On the other hand, if the temperature of the chamber was below the lowest
limit, the switch of the heater would be turned on to increase the chamber temperature
until temperature increased to the desired range. The humidifier and dehumidifier worked

in the same way. When the chamber humidity was below the pre-set lowest limit, the
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humidifier would be turned on until the humidity reaches the desired range and if the
humidity was higher than pre-set highest limit, the dehumidifier would be turned on to

lower the humidity to the desired range.
3.3.4 Water samples

In order to determine the effects of temperature and humidity on residue patterns of
various water compositions, synthetic tap water samples containing various concentrations
of the main components in tap water were prepared based on the range of composition
concentrations of the Detroit water quality report in 2017, 2018, 2019. Detroit water is
served by Great Lakes Water Authority to about 3.5 million people, 40% Michigan
residents (Detroit Water and Sewerage Department 2015). Sources of Detroit tap water
include the Detroit River and Lake Huron and thus, the composition of Detroit tap water
varies over time. The water recipe is determined by the average of Detroit Water Quality
Report from 2016 to 2018 and three recipes are designed to mimic the variability of the
water chemistry Table. 3.3. Water recipes Table. Water recipes will be spiked into water
samples prepared by preparing water sample with 0.7 ppm fluoride, 0.4 ppm nitrate, 0.062
ppm aluminum, 1.1 ppm potassium, 25 ppm sulfate, 0.36 ppm phosphorus in nanopure
water (Table. 3.4).

Table 3.3: Detroit tap water components data sheet (Source: Detroit water quality reports

2017-2019)
Average Average
Components (ppm) (mM)
Nitrate 0.790 0.013
Lead 0.000 0.000
[ron 0.277 0.005
Copper 0.015 0.000
Magnesium 10.800 0.444
Calcium 37.833 0.946
Sodium 9.817 0.427
Potassium 1.533 0.039
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Table 3.3: (cont’d)

Sodium 9.817 0.427

Potassium 1.533 0.039

Manganese 0.004 0.000

Zinc 0.000 0.000

Sulfate 33.267 0.346

Phosphorus 1.040 0.034

Chloride 18.033 0.509

Fluoride 0.853 0.045

Table 3.4: Recipe for synthetic water samples
Sample 1D
/ NaHCO| CaCl, | MgCl> | NaxSOs | NaH2POs| KF | Fe(NO3)3| CuSOs4
Components | 3
(mM)
Sample A 0.1 1.5 0.5 0.35 0.033 0.4 | 0.005 0.00024
Sample B 0.2 1 0.35 0.35 0.033 0.4 | 0.005 0.00024
Sample C 0.1 0.5 0.2 0.35 0.033 0.4 | 0.005 0.00024
Sample D 0 1 1 1.35 0.033 0.4 | 0.005 0.00024
Sample E 0 1 0.5 2.35 0.033 0.4 | 0.005 0.00024

3.3.5 Coffee-ring effect pattern statistical analysis methods

After preprocessing the images, particles would be recognized by MATLAB and would be
used to calculate particle shape, color, location from the drop edge, and size. These
properties would be extracted from each residue image for each water recipe, and analysis
of variance (ANOVA) would be conducted across the nine environmental condition groups
and for constant evaporation rates (five replicate samples in each group). Residue patterns
for two environmental conditions would be considered different from one another when a
statistical difference is observed for any of the particle measurements (shape, color,
location from the drop edge, and size). Residue patterns would be labeled as consistent
across two environmental conditions when there is no statistical difference observed
between any of the particle measurements. Analysis of variance (ANOVA) is a statistical
technique to analyze variation in a response variable (continuous random variable)

measured under conditions defined by discrete factors (classification variables, often with
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nominal levels).

In order to determine whether or not residue patterns are consistent across two
different environmental conditions, a statistical analysis would be conducted on various
particle measurements. These measurements include the shape, color, location from the
drop edge, and size of the particles.

If a statistical difference is observed for any of these measurements between the two
environmental conditions, the residue patterns would be considered different. This means
that there is a significant variation in one or more of the particle measurements between
the two conditions, indicating that the residue patterns are not the same.

If there is no statistical difference observed between any of the particle measurements,
the residue patterns would be labeled as consistent across the two environmental conditions.
This means that there is no significant variation in any of the particle measurements,
indicating that the residue patterns are the same. Overall this approach would be used to
compare residue patterns between two environmental conditions only, and that further
research and analysis may be required to compare residue patterns across multiple
conditions or other factors.

One-Way ANOVA

The one-way analysis of variance (One-way ANOVA) is also known as single-factor
ANOVA or simple ANOVA. As the name suggests, the one-way ANOVA is suitable for
experiments with only one independent variable (factor) with two or more levels.

Full Factorial ANOVA (Two-Way ANOVA)

Full Factorial ANOVA, also known as two-way ANOVA, is a statistical method used to
determine the effect of two or more independent variables on a dependent variable. It

involves using every possible combination of levels of the independent variables in an

101



experiment, and analyzing the data to see if there is a significant difference in the
dependent variable due to the different levels of the independent variables. Two-way
ANOVA can also be used to determine if there is an interaction between the independent
variables, which means that the effect of one variable on the dependent variable depends on
the level of the other variable. This method is useful for experiments where there are
multiple factors that could potentially affect the outcome, and allows researchers to gain a
more comprehensive understanding of the relationship between the variables.
PERMANOVA

PERMANOVA is an acronym for “permutational multivariate analysis of variance”. It is
best described as a geometric partitioning of multivariate variation in the space of a chosen
dissimilarity measure according to a given ANOVA design, with p-values obtained using
appropriate distribution-free permutation techniques (see Permutation Based Inference;
Linear Models: Permutation Methods). The method is semiparametric, motivated by the
desire to perform a classical partitioning, as in ANOVA (hence allowing tests and
estimation of sizes of main effects, interaction terms, hierarchical structures, random
components in mixed models, etc.), while simultaneously retaining important robust
statistical properties of rank-based nonparametric multivariate methods, such as the
analysis of similarities (ANOSIM?2), namely, (1) the flexibility to base the analysis on a
dissimilarity measure of choice (such as Bray-Curtis, Jaccard, etc.) and (2) distribution-
free inferences achieved by permutations, with no assumption of multivariate normality.
Thus, PERMANOVA opens the door for formal partitioning of multivariate data in
response to complex experimental designs in a wide variety of contexts: there may be
more response variables than sampling units, data may be severely non-normal, zero-

inflated, ordinal or qualitative (e.g., responses to questionnaires, DNA/RNA sequences,
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allele frequencies, amino acids, or protein data). Although originally motivated by
ecological studies, where variables usually consist of counts of abundances (or percentage
cover, frequencies, or biomass) for a large number of species, PERMANOVA is now
used across many fields, including chemistry, social sciences, agriculture, medicine,
genetics, psychology, economics, and more Anderson [2014]. The required assumption are
exchangeability and the linear model and homogeneity of multivariate dispersions.
MANOVA

The Multivariate analysis of variance (MANOVA) procedure provides regression analysis
and analysis of variance for multiple dependent variables by one or more factor variables
or covariates. The factor variables divide the population into groups. Using this general
linear model procedure, the null hypotheses could be tested about the effects of factor
variables on the means of various groupings of a joint distribution of dependent variables.
The MANOVA could be used to investigate interactions between factors as well as the
effects of individual factors. In addition, the effects of covariates and covariate
interactions with factors can be included. For regression analysis, the independent
(predictor) variables are specified as covariates. Both balanced and unbalanced models can
be tested. A design is balanced if each cell in the model contains the same number of
cases. In a multivariate model, the sums of squares due to the effects in the model and
error sums of squares are in matrix form rather than the scalar form found in univariate
analysis. These matrices are called SSCP (sums-of-squares and cross-products) matrices. If
more than one dependent variable is specified, the multivariate analysis of variance using
Pillai’s trace, Wilks’ lambda, Hotelling’s trace, and Roy’s largest root criterion with
approximate F statistic are provided as well as the univariate analysis of variance for each

dependent variable. In addition to testing hypotheses, Multivariate analysis of variance
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(MANOVA) produces estimates of parameters O’Brien and Kaiser [1985].

ANOSIM

Classical one-way ANOSIM operates on an appropriate resemblance matrix calculated
among samples, with a factor describing their a priori group structure (e.g. of different
sites, times, treatments, etc.) underlying the null hypothesis to be tested, namely HO: 'no
differences among groups of samples’. If the null hypothesis is true, then the average rank
resemblance among samples within groups is expected to be the same as the average rank
resemblance among samples from different groups. The ANOSIM statistic R is defined as

the scaled difference between the average between-group (r) and within-group (r w )

ranks:
_ Ts-Tw)
R==—"= 2 (3.1)
where M = n(n — 1)/2 and n is the total number of samples being considered.

Clearly, under the null hypothesis, R would be expected to take values (positive or
negative) ’close’ to zero, and increasing departure from Hy would result in increasingly
larger positive values for R. The scaling in equation 3.1 ensures that R falls within the
range -1 to 1, and takes the value R = 1 only under maximal separation of the groups,
that is if all samples within groups (replicates) are less dissimilar to each other than any
pair of samples from different groups. Values of R substantially less than 0 are not
usually to be expected as this implies that samples within groups are generally less similar
to each other than samples in different groups, a possibility only for a mislabeled or
seriously inappropriate design. Note that the usual mathematical terminology for ranks
assigns to the highest observation a rank value of 1 (the lowest number). If Ho is true,
then all samples effectively belong to a single group. The spread of possible values of

R under the null hypothesis can be determined by randomly permuting the sample labels
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and recalculating R for each random reallocation, or for a random subset if there is a
large number of possible permutations Hope [1968]. The significance level of the
observed value of R is then determined by comparing it to the range of values obtained
under permutation, with rejection of the null hypothesis when the observed R is sufficiently
large (positive) to have rarely or never occurred under permutation.

Jensen-Shannon divergence

The Jensen-Shannon divergence is a measure of similarity between two probability
distributions. It is a symmetric and finite variant of the Kullback-Leibler divergence, also
known as information radius Nielsen [2021], Manning and Schutze [1999] or total
divergence to the average Dagan et al. [1997]. The square root of the Jensen-Shannon
divergence is also known as the Jensen-Shannon distance Endres and Schindelin [2003],
Osterreicher and Vajda [2003], Fuglede and Topsoe [2004], and it is a metric that can be
used to compare two probability distributions. It is commonly used in information theory,
machine learning, and natural language processing, among other fields.

Multidimensional scaling (MDS)

Multidimensional scaling is a visual representation of distances or dissimilarities between
sets of objects. “Objects” can be colors, faces, map coordinates, political persuasion, or
any kind of real or conceptual stimuli Kruskal and Wish [1978]. Objects that are more
similar (or have shorter distances) are closer together on the graph than objects that are less
similar (or have longer distances). As well as interpreting dissimilarities as distances on a
graph, MDS can also serve as a dimension reduction technique for high-dimensional data
Buja et al. [2008].

Noise removal with singular value decomposition (SVD)

Singular value decomposition (SVD) is a mathematical technique by which a matrix is
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decomposed into a product of three matrices, which can also be written as a sum of rank-
one matrices. SVD could be regarded as a generalization of eigen decomposition, a
technique employed to decompose a positive semidefinite normal matrix. This relationship
makes SVD connected to principal component analysis (PCA), a technique commonly
utilized for data analysis and representation. One example of SVD application can be
found in image processing. A digital image can be represented by a matrix, where the
value of a matrix element encodes information about a specific pixel. By breaking down this
matrix using SVD, the image can be simplified, and useful information can be extracted.
Another application of SVD is observed in signal processing, where it is employed to
remove noise from biomedical signals and construct signal and noise subspaces for analysis
and approximation.

3.3.6 Experiment procedure

This research comprises three stages. In the first stage, data collection, SEM, EDS, and
camera photographs related to the coffee-ring effect were gathered and the images were
preprocessed. The second stage focused on method optimization, during which the required
extent of temperature and humidity control to maintain consistent residue patterns was
examined through the coffee-ring effect. The final stage involved identifying the optimal
environmental conditions for separating contaminant particles from one another (such as
calcium, sodium, magnesium, etc.) using the statistical analysis introduced earlier.

Stage 1: Collection of coffee-ring effect residue pattern

Stage 1 was divided into two subtasks. Task la) involved collecting the coffee-ring effect
SEM, EDS, and camera photographs. Task 1b) focused on preprocessing the images
gathered in Task la by implementing noise removal, color normalization, and other

techniques.
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Data collection: To investigate the effect of environmental conditions on coffee-ring
effect patterns, nine temperature and relative humidity (RH) combinations were maintained
by the auto temperature humidity control chamber, and a four-axis autosampler was placed
inside the chamber (Table. 3.1). During the droplet dropping process, each water sample
was stored in a 2 uL. micro-centrifuge tube and placed in the sample holder. In each
experiment, sixteen samples were positioned at once in one sample holder. The
autosampler was programmed to collect 2 uL. water samples and inject them onto the
aluminum substrate (6061 with mirror-like finish, McMaster-Carr 1655T1) as described
in previous research Li et al. [2020]. After each water sample injection, the injector tip
was rinsed through a programmed procedure in nanopure water.

To prevent the influence from other droplets’ drying processes, droplets were placed 1
cm apart, and ten droplets were dried at once on one aluminum substrate (1 inch wide
and 3 inches long). To avoid vibrations from autosampler motors, the aluminum slides
were positioned on an independent sample stage detached from the autosampler. The auto
temperature humidity control chamber not only maintained the desired temperature and
humidity but also prevented air flow in the environment. Two microliter droplets of
each of the five water samples would be deposited on a mirrored aluminum slide and
allowed to dry, separating particles that form through the coffee-ring effect Li et al. [2020].
Five water droplet replicates were collected under each environmental condition.

A low-cost camera photograph were used for all replicates, using 100X magnification
and the Celestron camera, including a color bar in all images to normalize brightness,
contrast, and color. The total number of collected photographs is 225 (9 environmental
conditions, 5 water recipes with 5 replicates). Residues were saved for further analysis.

Image preprocessing: In image preprocessing, images were color-normalized based on
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RGB distribution. Images were loaded using the imread function and converted to binary
with the im2bw function (threshold set to 0.2). Noise was removed from each binary image
using the medfilt2 function with an [8, 8] square parameter. Particle edges were captured
using the edge function with the canny method applied to the smoothed binary image.
Particle properties were extracted from the smoothed binary image using the regionprops
function with *Area’, ’Perimeter’, *Eccentricity’, ’Orientation’, and *Centroid’ methods. In
each SEM-EDS map, a 2-D coordinate was established with origin on the center of the
droplet pattern in Matlab. The deposition position of each particle for each element were
recorded as a x-y value in the coordinate. Because particles were deposited as a circle
around the residue center, particle locations were calculated by the distance between the
particle’s location and the coordinate center. The adjusted centroid was recalculated by
taking the square root of the sum of squares of the differences between the centroid x-
coordinate and the image center x-coordinate, and the centroid y-coordinate and the image
center y-coordinate.

Stage 2: Optimization of tap water fingerprints

Stage 2 was divided into three subtasks. Task 1a) Determine the ranges of temperature,
relative humidity that have consistent coffee-ring fingerprints. Task 1b) Find the optimal
ranges of temperature, relative humidity to separate contaminants particles from each
other. Task 1c¢) Investigate the elements deposition separation effect under each

environmental condition.

AdeSted coordinate = \/(Xcentroid - Xcenter)2 + (Ycentroid - Ycenter)2 (32)
Task 1a: Determine the ranges of temperature, relative humidity over which coffee-ring
fingerprints are constant.

In order to implement this method broadly for analyzing samples across a distribution
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system, it is essential to accommodate analysis in various laboratories and field settings.
This task assessed the extent of temperature and humidity control needed to produce
consistent tap water fingerprints. The proposed nine temperature and humidity conditions
Table. 3.2 were evaluated using PERMANOVA on coffee-ring effect residue pattern
features.

Task 1b: Find the optimal ranges of temperature, relative humidity that different water
samples exhibit different coffee-ring effect residue patterns.

This task aimed to investigate the optimal temperature and relative humidity conditions
under which differnt water samples exhibit different coffee-ring effect residue pattern.
In the previous task, the optimal temperature and relative humidity conditions were
determined to exhibit consistent coffee-ring effect residue pattern. However, only have
similar residue pattern is not enough to distinguish different water samples. This task
utilized PERMANOVA, MANOVA, ANOVA tecniges to investigate the coffee-ring effect
residue pattern feature statistics under different environmental conditions. Jensen-
Shannon divergence was used to measure the similarity between different water samples
and classical multidimensional scaling (NMDS) was used to visualize the differences in the
coffee-ring effect residue pattern features between different water samples.

Task 1c: Investigate the optimal ranges of temperature, relative humidity to separate
contaminants particles from each other.

This task is to investigate whether specific elements are associated with residue
particles, EDS mapping images were used to identify particle compositions in coffee-ring
effect residue patterns. The locations of elements were determined by calculating the
square root of the x-axis and y-axis relative to the center of each image. Analysis of

variance (ANOVA) was conducted on the element locations to examine whether there were
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any significant differences in the spatial distribution of elements within the residue
patterns.

Stage 3: Identify the correlation between water sample coffee-ring effect patterns and element
deposition compositions

The EDS images were preprocessed using Singular Value Decomposition (SVD) and noise
was filtered using the medfilt2 function with filter size [3, 3]. After preprocessing, the
element compositions were extracted from the EDS mappings.

To determine the composition ratio of each element in the corresponding particle, the
particles extracted from the water samples coffee-ring effect patterns were compared with
the pixel signals extracted from the EDS data. The composition ratio of each element in
each particle was then calculated. To investigate whether there is a significant difference in
the element composition ratios between particles, the correlations of these ratios were

calculated, and ANOVA was conducted on these ratios.

3.4 Results and Discussion
3.4.1 Under what environmental conditions are coffee-ring effect

fingerprints are consistent

PERMANOVA on coffee-ring effect residue pattern features (particle shape, color,
location from the drop edge, and size) results has shown in Table. 3.5. In all the nine
temperature and relative humidity combination conditions, the p-values are all smaller than
0.001. Based on the p-values which has the same degree of freedom of 4, all the coffee-
ring effect residue patterns are consistent between sample replicates and different between
different samples. However the R? of all the nine conditions are ranging from 0.716 to
0.957. PERMANOVA on coffee-ring effect residue pattern features visualization results

has shown in Table. 6.12. According to the visualization results (manhattan distance
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applied), under the condition A (20-23 °'C, 35%-40%), most samples have been
separated except samples A and B. However, sample A and sample B have similar
recipes according to Table. 3.4. At the same time, sample D and sample E have similar
water components, and their positions in the PERMANOVA visualization result are
near to each other Figure. 3.2. Based on the visualization result, the samples coffee-ring
effect residue pattern features are mostly differentiable under the condition C (20-23 °C,
45%-50%) (Figure. 3.3) and H (26-29 °C, 40%-45%) (Figure. 3.4). Across the nine
conditions, the sample C (0.1 mM NaHCOs3, 0.5 mM CaCl, 0.2 mM MgCl>, 0.35 mM
NaxS0Os, 0.033 mM NaH>POs, 0.4 mM KF', 0.005 mM Fe(NOs)3, 0.00024 mM CuSO:s) is
the most stable one that all replicates clustered in a smaller range and not overlapping
with other samples. Sample E (0 mM NaHCO3, 1 mM CaCly, 0.5 mM MgCly, 2.35 mM
NaxSOs4, 0.033 mM NaH>PO4, 0.4 mM KF', 0.05 mM Fe(NOs)3, 0.00024 mM CuSO,) is
the most unstable one that spreads most among the five water samples. This could be
explained by with higher humidity, there is more vapor-liquid exchange of water
molecules. So in the particles formation process, there is more time for the particles to
crystalize and in the droplet-air interface, the water density gradient decreases smaller than
low humidity conditions. This smaller water density induces the particles formed in a
slower and gradual manner which results in crystals formed in different phases of droplet
drying processes and formed unique residue patterns. At high temperature conditions, the
particles residue pattern features are not only spread out but also replicates of the same
sample clustered closer. The reason is at higher temperature conditions, at the moment of
crystallization, crystals formed at a relative speed so the patterns features are more
consistent between replicates, for example in condition H (26-29 C, 40%-45%) and I (26-

29 °C, 45%-50%). According to the overall analysis, the suitable conditions to produce
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consistent residue patterns are the conditions with high temperature and relative humidity

such as condition C, condition F, condition H and condition I. All condition results is

shown in Table. 6.11.

Table 3.5: PERMANOVA analysis for particle features

Condition | Df | Sum of Sqs | Mean Sqs | F.Model | R2 Pr(>F) sig.
A 4 1.09 x 10" | 2.71 x 10" | 113.28 0.95773 0.001 wokok
B 4 2.87x10% | 7.18 x 10° | 64.175 0.92772 0.001 wokok
C 4 1.91 x 10" | 4.78 x 10'° | 15.567 0.75689 0.001 wokok
D 4 1.67 x 10" | 4.18 x 10'° | 71.904 0.93498 0.001 wokok
E 4 1.49 x 10" | 3.73 x 10'9 | 12.651 0.71673 0.001 wokok
F 4 472 x 10" | 1.18 x 10'" | 15.542 0.7566 0.001 wokok
G 4 598 x 10" | 1.49 x 10'" | 8.1009 0.61835 0.001 wokk
H 4 2.08 x 10" | 5.20 x 10" | 27.386 0.84561 0.001 wokk
1 4 7.43 x 10" | 1.86 x 10'" | 24.709 0.8317 0.001 wokok
N
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Figure 3.2: PERMANOVA of condition A
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Figure 3.4: PERMANOVA of condition H

3.4.2 What are the optimal environmental conditions that different water

samples exhibit mostly different coffee-ring effect residue patterns

To investigate the optimal environmental conditions for separating particles in the coffee-
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ring effect residue pattern, water samples coffee-ring effect residue particles feature
statistics were analyzed under varying conditions. The most statistically significant particle
features were identified through multivariate analysis of variance (MANOVA) on water
samples and environmental conditions.

The study found that factors such as mean area, mean perimeter, mean eccentricity,
standard deviation of area, standard deviation of centroid, and standard deviation of
orientation influenced the coffee-ring effect residue pattern features. These results, as
shown in Table 3.6, provide insight into the conditions that promote a more visible and
distinct coffee-ring effect residue pattern. According to the findings, particle features
such as area, perimeter, eccentricity, and centroid are sensitive to environmental
conditions, with ’class’ representing water samples and ’condition’ representing

environmental conditions in Table 3.6.

Table 3.6: MANOVA analysis for image properties

Responses
Response area mean

Df Sum Sq Mean Sq F value Pr(>F) sig.
class 4 38382 9595.6 44.1302 <2.2x 10716 | ek
condition | 8 7450 931.3 4.2831 8.562 x 10703 | ek
Residuals | 212 46097 217.4

Response area std

Df Sum Sq Mean Sq F value Pr(>F) sig.
class 4 1930667 482667 46.1313 <2.2x 10716 | ek
condition | 8 274996 34375 3.2854 0.001482 ok

Residuals | 212 2218133 10463

Response eccentricity mean

Df Sum Sq Mean Sq F value Pr(>F) sig.
class 4 0.121804 0.0304510 | 42.7562 <2.2x 10716 | wkk
condition | 8 0.019479 0.0024348 | 3.4187 0.001016 ok

Residuals | 212 0.150987 0.0007122

Response eccentricity std

Df Sum Sq Mean Sq  |F value Pr(>F) sig.

class 4 0.0109677 | 0.00274192 [21.4681 6.974 x 10—-15  [F**
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Table 3.6: (cont’d)

condition | 8 0.0017548 | 0.00021935 (1.7174 0.09579
Residuals | 212 0.0270767 | 0.00012772
Response orientation mean
Df Sum Sq Mean Sq F value Pr(>F) sig.
class 4 555.90 138.975 11.9927 8.368 x 10797 | sk
condition | 8 189.02 23.628 2.0389 0.04333 *
Residuals | 212 2456.72 11.588
Response orientation std
Df Sum Sq Mean Sq F value Pr(>F) sig.
class 4 56.00 14.000 2.3224 0.05782
condition | 8 279.66 34.957 5.7991 1.074 x 10706 | ks
Residuals | 212 1277.94 6.028
Response perimeter mean
Df Sum Sq Mean Sq |F value Pr(>F) sig.
class 4 73599 18399.8 53.9503 <2.2 x 10716 ek
condition 8 10876 1359.5 3.9863 0.0002011 ok
Residuals | 212 72303 341.1
Response perimeter std
Df Sum Sq Mean Sq |F value Pr(>F) sig.
class 4 4692837 1173209  142.6128 <2x1071¢ otk
condition 8 500897 62612 2.2742 0.0236 B
Residuals | 212 5836749 27532
Response centroid mean
Df Sum Sq Mean Sq |F value Pr(>F) sig.
class 4 401278 100319 12.530 3.614 x 1079 e
condition 8 878527 109816 13.717 5513 x 10716 e
Residuals | 212 1697283 8006
Response centroid std
Df Sum Sq Mean Sq |F value Pr(>F) sig.
class 4 89628 22406.9 17.906 1.108 x 10712 fr**
condition 8 200351 25043.8 20.013 < 2.2 x 10716 ek
Residuals | 212 265294 1251.4

Table 3.6 demonstrates the coffee-ring effect residue pattern variabilities with

the interaction between environmental conditions and water samples. However, the coffee-

ring effect pattern variabilities of water samples without environmental conditions are not

clear. In the ANOVA analysis of coffee-ring effect residue pattern features (Table 3.7),
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area mean, area standard deviation, perimeter mean, perimeter standard deviation,
centroid mean, centroid standard deviation, and eccentricity mean are statistically

significant across the nine experiment conditions. The area mean is mostly
significant at the 10_6 level (conditions A, C, E, F, G, H, I) and lower, with only two

conditions (B, D) having larger statistical significance at 1072-1073. This result suggests
that the area mean significantly differs between water samples under most test
environmental conditions. It aligns with the results in Table 6.12, where particle positions
in the PERMANOVA visualization image are mixed under conditions B and D. This
confirms that particles formed by different water samples exhibit distinct coffee-ring

effect residue patterns.
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Table 3.7: P-value of ANOVA of coffee-ring effect residue

attern features under each experiment condition

... | Area | Perimeter | Centroid | Eccentricity | Orientation| Area | Perimeter| Centroid | Eccentricity | Orientation
Condition
mean | mean mean mean mean std std std std std
562x | 311 x| 1.57 x 6 2 | 3.58x 120 x |75 X -3 -
A 106 | 107 10 2.7x10 5.07x10 10° | 106 10-6 2.64 %10 8.07x10
9.51x | 1.71 x| 4.04 X -3 3 | 8.74x | 255 x| 1.07 X ) -1
B 102 | 102 10°8 5.71x10 7.16x10 107 | 10° 1010 3.83x10 1.67x10
2.46x | 1.26 x| 2.66 X 9 3 | L.26x [ 3.78 x| 1.10 x ) -1
C 1010 | 109 102 5.13x10 4.32x10 107 | 107 10! 4.60x 10 3.12x10
7.70x | 4.56 x| 3.23 x -5 -1 | 273x 1239 x| 848 X -3 -1
D 103 | 105 10-6 1.36 %10 1.75%10 10+ | 105 10-4 3.12x10 1.22x10
9.50% | 419 x | 486 X - 3 | 3.23x [ 1.09 x|6.57 x - -
E 1012 | 1012 10-6 1.09x107* | 4.62x107° 1015 | 1013 105 1.31x107° | 1.12x1072
8.41x | 643 x [ 299 x -5 -1 | 250x | 1.20 x | 7.38 X 4 -1
F 107 | 100 102 5.61x10 1.55%10 10° | 106 105 4.50x10 6.48x10
1.23x | 1.62 x| 1.45 x —7 2 19.30x 492 x|860 x 7 -5
G 106 | 10-10 106 4.66 %10 4.52x10 10° | 10°% 105 3.21x10 5.14x10
1.43x | 3.65 x| 1.47 x 6 1| 1.24x 1 7.94 x| 296 x 6 -1
H 10° | 1011 10°2 9.72x10 1.68x10 10° | 107 102 2.46x 10 2.80%10
I OV 2 30 500107 | 373107 | 219 ESL 0L X 369107 | 476x10°
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For the perimeter mean variable, the nine conditions show similar statistical results,

with the perimeter mean mostly significant at the 1072 level (conditions A, C, D, E, F,

G, H, I) and lower, except for one condition (B) with a larger statistical significance of

1.71 x 10 2. The larger significance value also contributes to point mixing in the

PERMANOVA under condition B (Table 6.11).

AN
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Figure 3.5: PERMANOVA of condition B

Although centroid mean is statistically significant in water sample coffee-ring effect
residue pattern features, the significance levels are lower than those of area mean and
perimeter mean features, with five significance values greater than 107° among nine
conditions. This occurs because the shapes of formed particles are similar, leading to
similar centroid calculations among particles. Interestingly, despite condition B having
larger significance values for area mean and perimeter mean, the significance value of
centroid under condition B is smaller than other conditions.

Eccentricity values are similar to centroid, with larger significance values than area
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mean and perimeter mean but smaller values than centroid. In contrast, orientation mean
shows much larger significance values due to particles forming in the droplet drying
process, from the droplet edge to the droplet center, resulting in the same orientations.

The standard deviations of coffee-ring effect residue particle area, perimeter, centroid,
eccentricity, and orientation display similar results to the feature means: area and perimeter
standard deviations have the highest levels of statistical significance, centroid and
eccentricity standard deviations have lower levels of statistical significance, and orientation
standard deviation has the lowest significance levels. However, unlike the residue particle
feature mean values, the feature standard deviation values do not correlate with the
PERMANOVA of residue particle features.

The ANOVA on coffee-ring effect residue pattern features of each water sample
follows the same trend: particle area and perimeter features have the highest statistical
significance levels, centroid and eccentricity have lower statistical significance, and

orientation has the lowest significance levels (Table 3.8).
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Table 3.8: P-value of ANOVA of coffee-ring effect residue pattern features of water samples

Samples Area Perimeter | Centroid Eccentricity | Orientation| Area | Perimeter | Centroid | Eccentricity | Orientation
mean | mean mean mean mean std std std std std

?ample ?'Ol_ﬁx ‘1‘62_3 “ | 497x10° | 3.92x10° | 4.1x 107! %.Oo_zlx ?'02_? x hﬁz *13.24x107° | 4.66x107"
gample SEUN T 263x107 | 13710 [492x107 | DIV 300 10D X 169107 | 738x10
sample IO g T 118x107 | 52310 | 677107 | 120 | T 3% | 575310 | 128x10°
sample | 202 1ole T 12310 | L14x10% | 878x102 | 100 750 | 008 408 x 102 | 222¢10°
sample | 0L T o T 395 <107 [421xa0 | (53 16T TR, K 661 <10 | 1.24x107
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In a previous analysis of variance (ANOVA), the significance of each coffee-ring effect
residue pattern feature was evaluated independently, considering water sample class
or environmental condition separately. To confirm the statistical significance of these
pattern features, a multivariate analysis of variance (MANOVA) was conducted for each
environmental condition individually, as shown in Table 3.9.

Based on the MANOVA results, four conditions (A, B, D, and F) exhibited a
statistically significant residue area feature. Five conditions (A, B, C, E, and H) showed a
statistically significant residue eccentricity feature. Seven conditions (A, B, D, E, F, H,
and I) demonstrated a statistically significant residue centroid feature. Unlike the ANOVA
results, the orientation feature was not found to be statistically significant under any
condition. However, only one condition (B) had a statistically significant residue perimeter
feature. This discrepancy is likely due to the MANOVA algorithm accounting for the

correlations between the residue features.
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Table 3.9: MANOVA of coffee ring effect residue pattern features of water samples under each condition

. Area Perimeter | Centroid | Eccentricity | Orientation| Area | Perimeter| Centroid | Eccentricity | Orientation|

Condition

mean | mean mean mean mean std std std std std
A 0.6364 | 0.456 0.0001 4.8x107 | 0.016 0.0003| 0.003 %01—65 “ 10,012 0.032
B 0.408 | 0.059 }01_82 “ 1 0.035 0.80 0.0001 ?0%5 8 %09—89 1 0.0025 0.09
C 0.18 0.38 0.29 4.7x107° | 0.062 0.01 |0.2 0.5 0.254 0.22
D 0.23 0.51 0.001 0.038 0.366 0.0005| 0.1 0.001 0.268 0.79
E 0.179 | 0.117 ?09_7 1 0.006 0.05 0.01 | 0.014 0.007 0.004 0.19
F 0.40 0.44 0.38 0.03 0.06 0.0016| 0.037 0.0001 0.8 0.31
G 0.95 0.91 0.059 0.5 0.81 0.037 | 0.21 0.185 0.72 0.15
H 0.52 0.54 0.006 0.0006 0.099 0.076 | 0.182 0.0012 0.63 0.39
I 0.83 0.756 0.249 0.6 0.59 0.042 | 0.173 %07_65 “ 1 0.8 0.001
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ANOSIM for coffee-ring effect residue pattern features

To account for the correlation between the experiment environmental conditions and water
sample classes, ANOSIM (with Canberra dissimilarity index) was conducted on coffee-
ring effect residue pattern features. The results are shown in Table 6.12.

According to the ANOSIM results, conditions C, E, G, and H are the conditions where
coffee-ring effect residues of the same water recipe are more distinguishable than those of
water samples with different components. Conditions A and F display comparable
differences between water samples with the same components and those with different
components. However, conditions B and I show the least similarity in residue patterns for
the same water components and different residue patterns for different water components.
The ranking of water sample residue pattern similarity for the same water components
compared to water with different components is C, H, E, G, F, A, D, B, L. Statistically, the
null hypothesis is that there is no difference between the means of two or more groups of
(ranked) dissimilarities. The ANOSIM statistic R (Table 3.10) and significance values can
be compared to test this hypothesis.

Table 3.10: R-value ANOSIM result of water samples coffee-ring effect residue patterns

Temperature C

Relative Humidity | 20-23 (C) | 23-26 (C) | 26-29 ('C)
(R-value)

35%-40% 0.6344 0.5459 0.7600
40%-45% 0.5366 0.7706 0.7922
45%-50% 0.8643 0.7202 0.5366

ANOSIM was conducted on each particle feature of the coffee-ring effect residue
pattern features to investigate the variability of particle area, perimeter, eccentricity, and
centroid in relation to water samples and environmental conditions. Under each
environmental condition, Jensen-Shannon divergence was calculated based on particle

area, perimeter, and eccentricity. Multidimensional scaling and classical multidimensional
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scaling coordinates were then derived from the Jensen-Shannon distance matrix.
ANOSIM for coffee-ring effect residue pattern area feature

The ANOSIM result for the coffee-ring effect residue pattern area feature is shown in
Table 6.13. In this result, the upper right and lower left triangles are the same due to the
interchangeability of distances between two replicate residues. Also, in condition A results,
for images from 11 to 15, the distances between the replicates are smaller than the
distances between these replicates and other samples, demonstrating the consistency of
coffee-ring effect residue patterns. Conditions C, F, and H all display relatively smaller
distances within water samples than distances between samples. Under the high relative
humidity conditions (conditions C, F, and I), sample E (1 mM CaCl2, 0.5 mM MgCl2, 2.35
mM Na2S04, 0.033 mM NaH2PO4, 0.4 mM KF, 0.005 mM Fe(NOs)s3, and 0.00024 mM
CuSO4) exhibits relatively greater distinct residue patterns compared to other water
samples.

The CMDS coordinates of the ANOSIM results are shown in Table 6.14. In this
table, it is clear that the coffee-ring effect residue patterns of replicates for each water
sample are clustered near each other under conditions C, F, and H. However, the projected
points under conditions A, B, and D are mixed together. Therefore, based on the residue
pattern area feature, conditions C, F, and H are suitable for separating water contaminant
particles from each other.

ANOSIM for coffee-ring effect residue pattern perimeter feature

The ANOSIM result for the coffee-ring effect residue pattern perimeter is shown in
Table 6.15. Based on the results, under conditions D, G, and H, the similarities
between water samples C (0.1 mM NaHCO3, 0.5 mM CaCl, 0.2 mM MgCl,, 0.35 mM

Na>S04, 0.033 mM NaH>PO4, 0.4 mM KF, 0.005 mM Fe(NOs)3, and 0.00024 mM CuSOs)
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differ from those of water samples D (1 mM CaCl,, 1 mM MgCl,, 1.35 mM Na>SO4, 0.033
mM NaH>POs, 0.4 mM KF, 0.005 mM Fe(NOs3)3, and 0.00024 mM CuSOs) and E (1 mM
CaClh, 0.5 mM MgCl, 2.35 mM NaxSOs, 0.033 mM NaH>PO4, 0.4 mM KF, 0.005 mM
Fe(NO»)3, and 0.00024 mM CuSOs). The reason is that samples D and E do not contain
NaHCO:s.

Additionally, only under condition A do the replicates of water samples C, D, and
E produce consistent residue patterns; under other temperature and relative humidity
conditions, water samples A, B, and C produce more consistent residue patterns.
Furthermore, under conditions B, C, D, F, and I, sample E produces different residue
patterns than samples A, B, C, and D. In the nanochromatography (Table 6.24), sample
E is prone to forming an olive-shaped residue with a strong edge. Especially under
conditions D and G, sample E has difficulty maintaining a convex shape residue, which
results from the shrinkage of the residue during the droplet drying process.

The CMDS coordinates of the ANOSIM results are shown in Table 6.16. The sample
separation and replicate clustering results are not as strong as those for the residue pattern
area feature. This is because non-convex shaped residues can produce the same sized
residue pattern but with a much larger perimeter. Only under conditions C and F are
the water samples with different components separated, and replicates with the same recipe
are clustered together.

ANOSIM for coffee-ring effect residue pattern centroid feature

The ANOSIM result for the coffee-ring effect residue pattern centroid is shown in Table
6.17. Based on the results, only under condition C do the replicates of water samples
produce similar residue pattern centroid features, and water samples with different

components produce different residue patterns. Under conditions A and B, water samples
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C and D produce similar residue pattern centroid features.

The reason that the centroid feature is not a suitable metric to distinguish water samples
with different water components is that the formed particles in the residue have a similar
centroid, which originates from the formation of the particles. During the droplet drying
process, particles are formed from the droplet edge to the droplet center, and they are
formed in the same direction, resulting in particles with similar centroids (see Table 6.27).
The CMDS coordinates of the ANOSIM results are shown in Table 6.18. As shown in
the centroid ANOSIM results, only under condition C do water samples with different
components’ residue patterns produce different centroid features and have different
coordinates in the CMDS plot. Replicates of water samples with the same components
produce similar centroid residue patterns and have similar coordinates in the CMDS plot.
However, under conditions A, D, and G, the water sample C points are separable from the
other water samples (see Table 6.18). This is consistent with the results in the ANOSIM
results, where under condition G, water sample C (replicates 11 to 15) residue patterns
have more similar centroid features than the other water replicates. This phenomenon
occurs under conditions with lower relative humidity, where the concentration of 0.1 mM
NaHCO3, 0.5 mM CaCh, and 0.2 mM MgCl, is lower. These low component
concentrations result in slower particle formation, so only when the droplet shrinks to a
smaller size will particles form, and the formed particles are larger than particles formed
under other conditions (see Table 6.24, Table 6.25, and Table 6.26).

ANOSIM for coffee-ring effect residue pattern eccentricity feature
The ANOSIM results for coffee-ring effect residue pattern eccentricity are shown in
Table 6.19. Based on the results, under condition A, the replicates of water samples A

and B have similar eccentricity features, and water samples C, D, and E have similar
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eccentricity features. However, water samples A, B, and C form one group, and water
samples D and E form another group. Under conditions C, D, G, and H, water sample A
exhibits its own eccentricity feature. Under condition H, all five water samples exhibit
distinct eccentricity features.

The CMDS coordinates of ANOSIM results are shown in Table 6.20. Under conditions
B, C, and D, all replicate points are mixed together in a small region and cannot be
separated effectively. Under condition G, replicate points are separated by their
components; however, these points are too close together, making it difficult to find a clear
rule for separating them and using them for further prediction. The water samples are
separated maximally under condition H; however, there are two drawbacks in this condition.
First, the replicates of water sample A are not clustered in a small region, indicating that the
replicates’ consistency is not optimal, as shown in Table 6.19. Second, samples B and C

are too close to each other in the CMDS plot.

3.4.3 Under each environmental condition, are the elements deposition

locations significantly different from each other

Previous analyses have shown that both environmental conditions and water chemistry
have statistically significant effects on coffee-ring effect patterns. However, these analyses
did not provide information on whether the elements were separated in each residue
pattern. To investigate this, EDS mapping images were used to label particle compositions
in coffee-ring effect residue patterns. The locations of elements were calculated as the
square root of the x-axis and y-axis relative to the center of each image. The p-value of the
analysis of variance (ANOVA) was found to be smaller than 2 x 107!'® indicating that
environmental conditions and water sample class have significant statistical effects on

element distributions. This suggests that different elements are separated by the coffee-ring
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effect.

The carbon, chlorine and sulfur elements Two-way ANOVA results is shown in
Table. 6.21. All the tests on these nine conditions have degree of freedom of 4 for class
variable, degree of freedom of 2 for elements variable and degree of freedom of 8 for
class:elements (class stands for water samples, elements stands for elements, carbon,
chlorine and sulfur in this case). Based on these tests, all these nine conditions have shown
statistical significance that the p-value is smaller than 2 x 107'°. Comparing the F values
respect to the elements of under these nine conditions, condition A and C have the value
around 5600 and condition D have the value around 8600 which is the highest value in
these nine conditions. This results concludes the carbon, chlorine and sulfur are mostly
separated under condition D than condition A and C and other conditions. Comparing
the F values respect to the class variable, condition C, D and G all have shown largest F
values (F values in the range of 400-470) which means the carbon, chlorine and sulfur
elements are mostly separated in the coffee-ring effect residue pattern under these
environmental conditions with respect to the water components recipe. Comparing the
class to elements correlation, the carbon, chlorine and sulfur are mostly separated under the
C, D, F and G (F values in the range 400-600) conditions which is consistent with the
ANOSIM of residue pattern features result.

The Two-way ANOVA results for calcium, magnesium, and sodium elements are
presented in Table 6.22. All nine tests have a degree of freedom of 4 for the class
variable, 2 for the elements variable, and 8 for class:elements (where ’class’ represents water
samples, ’elements’ represents the elements calcium, magnesium, and sodium in this case).
Based on these tests, all nine conditions showed statistical significance, with p-values

smaller than 2 x 107'°,
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When comparing the F-values with respect to the elements under these nine conditions,
conditions A, B, C, and I had values around 3000, while condition D had the highest value
at around 3800. This indicates that calcium, magnesium, and sodium are more effectively
separated under condition D compared to A, B, C, and the other conditions.

When comparing the F-values with respect to the class variable, conditions B, C, D, and
E showed the largest F-values (in the range of 50 to 150), suggesting that calcium,
magnesium, and sodium elements are more effectively separated in the coffee-ring effect
residue pattern under these environmental conditions with respect to the water components
recipe.

Furthermore, when comparing the class to elements correlation, calcium, magnesium,
and sodium were more effectively separated under conditions B, C, D, and E (with F-
values in the range of 100 to 180), which is consistent with the ANOSIM analysis of
residue pattern features for carbon, chlorine, and sulfur.

Overall, these results suggest that conditions B, C, D, and E are the most effective
for separating calcium, magnesium, and sodium elements in the coffee-ring effect residue
pattern. Previous analyses have demonstrated that environmental conditions and water
chemistry have statistically significant effects on the coffee-ring effect pattern and the
distribution of element components in water samples. =~ However, it remains unclear
whether there is a correlation between the coffee-ring effect patterns and the element
compositions of water samples, which is crucial for building models to recognize and
quantify contaminants. In previous analyses, we identified several optimal conditions that
produced consistent replicates of water sample residue patterns and distinct residue patterns
for different water components. The following analysis aims to investigate under which

environmental conditions the coffee-ring effect patterns of water samples are correlated
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with element compositions. This analysis will provide insight into the relationship
between the residue patterns and the underlying elemental components, which can be

used to develop more accurate models for detecting and quantifying contaminants.

3.4.4 Do the water sample coffee-ring effect patterns have significant

statistical correlation with element composition

The heat-map correlations between the coffee-ring effect residue particles’ area,
eccentricity, and the percentage of elements such as sulfur, chlorine, carbon, sodium,
magnesium, and calcium are shown in Table 6.23. The strongest correlations between
residue particle features and element percentage are observed under conditions A, G, and
H.

Under condition G, the correlation between calcium and magnesium is -0.0093,
indicating that these two elements in the residue are well separated in the residue pattern.
Conversely, under condition B, the correlation between calcium and magnesium is 0.0087,
suggesting that these two elements present in similar positions in the residues are not well
separated.

Another important phenomenon observed under conditions A, G, and H is that the
correlation between particle area feature and elements is higher than other conditions. For
instance, the correlation between particle area and sulfur percentage is 0.01, which is
higher than condition B (0.0045) and condition D (0.0057). Additionally, the correlation
between area and chlorine is 0.027, which is the highest correlation among these nine
conditions.

Overall, these results suggest that conditions A, G, and H are more effective in
separating the elemental components in the coffee-ring effect residue pattern and

producing a higher correlation between the particle features and element compositions.
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Table 3.11: Optimal condition analysis for consistent replicates residue pattern and distinct
water samples particle features.

A B C D E F G H I

Conditions &
analysis
Temperature (°C) | 20-23 | 20-23 | 20-23 | 23-26 | 23-26 | 23-26 | 26-29 | 26-29 | 26-29
52;””6 hamidity | 35 40 | 40-45 | 45-50 | 3540 | 40-45 | 45-50 | 35-40 | 4045 | 4550
PERMANOVA
on CRE pattern v v v v
features
MANOVA on CRE
pattern area
MANOVA on CRE
pattern perimeter
MANOVA on CRE
pattern eccentricity
MANOVA on CRE
pattern centroid
CRE pattern
features ANOSIM
CRE area
ANOSIM

CRE perimeter
ANOSIM

CRE centroid
ANOSIM

CRE eccentricity
ANOSIM

EDS elements
ANOVA

Particles EDS
ANOVA
Summary-number
of optimal results | 6 6 7 6 4 8 5 7 2
out of 12 analyses

SRR AN BN

<] s s

<l s s s

<«

SRR AN BN

<l s s s

Based on the previous analysis presented in Table 3.11, the optimal environmental
conditions for separating the elemental components in the coffee-ring effect residue pattern
are 23-26°C with 45-50% relative humidity, 20-23°C with 45-50% relative humidity, and
26-29°C with 40-45% relative humidity. Nonetheless, the optimal environmental condition

is a temperature range of 23-26°C and a relative humidity of 45-50%, as it yielded the
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highest number of optimal results in 12 separate analyses. These conditions produced the
highest correlation between particle features and element compositions, indicating that the
particles and elements were well separated in the residue pattern. These optimal
environmental conditions can be useful for developing models to detect and quantify

contaminants in water samples using the coffee-ring effect residue pattern analysis.
3.5 Conclusion

The study demonstrates the potential of the coffee-ring effect as a tool for tap water
analysis. It shows that the coffee-ring effect can produce unique fingerprints for water
samples with different recipes and environmental conditions. The results also confirm
the reproducibility of the coffee-ring effect, which is essential for establishing it as a
reliable analytical technique. Additionally, the study highlights that both environmental
conditions and water compositions impact the residue patterns produced by the coffee-ring
effect, and that these patterns reflect the water chemistry within the sample. This study
demonstrated the effectiveness of the auto temperature humidity control chamber in
maintaining temperature and relative humidity, as well as the four-axis autosampler for
conducting nanochromatography experiments.

The study concludes that statistical methods such as ANOVA, MANOVA, and
PERMANOVA can differentiate coffee-ring effect residue patterns with respect to
environmental conditions and water sample compositions. However, the results from
different analysis methods are inconsistent, so further research is needed to determine the
best method for differentiating these patterns. The research presents the findings of
various statistical analyses conducted to investigate the coffee-ring effect residue patterns.
These analyses included ANOVA and MANOVA tests on residue pattern features, such as

area, perimeter, centroid, eccentricity, and orientation, ANOSIM tests on residue pattern
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features and element distributions, and two-way ANOVA tests on element distributions.
The results of these analyses indicate that both environmental conditions and
water chemistry significantly influence residue patterns and element distributions. In
particular, certain conditions, such as 23-26°C with 45-50% relative humidity, 20-23°C
with 45-50% relative humidity, and 26-29°C with 40-45% relative humidity, are well-
suited for differentiating between water samples with varying concentrations of different
components. Nonetheless, the optimal environmental condition is a temperature range
of 23-26°C and a relative humidity of 45-50%, as it yielded the highest number of optimal
results in 12 separate analyses. It is important to note that these findings have
implications for the study of residue patterns and the understanding of the coffee-ring
effect. Specifically, they suggest that further research is needed to better understand how

environmental factors and water chemistry work together to impact residue patterns.
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CHAPTER 4
CNN-Vision-transformer model for elements concentration

estimation by coffee-ring effect residue patterns

4.1 Abstract

This study investigates the effectiveness of the machine learning technique in detecting
multiple contaminants in a tap water’s dried residue’s coffee-ring effect "fingerprint" with
high accuracy. The use of the coffee-ring effect on water droplets dried on low-cost
aluminum substrates allows low-cost separation of solutes within water samples, forming
unique “fingerprints” for each tap water that can be photographed and analyzed using
machine learning. Three models were evaluated in this research: the One-stage point
estimation model (OnePeM), the Two-stage vision-transformer point estimation model
(TwoVtPeM), and the Two-stage vision-transformer multiple output estimation model
(TwoVtMoM). The TwoVtPeM technique achieved the best performance of the models
tested (OnePeM, TwoVtPeM and TwoVtMoM), with OnePeM also performing well and
TwoVtMoM falling short. The TwoVtPeM relative percentage errors were £17.1% for
oxygen, £4.5% for sulfur, £19.9% for sodium, £5.7% for chlorine, £19.8% for calcium,
+25.8% for magnesium, and £20.1% for carbon. The R? was 0.95 which is higher than
OnePeM with 0.90 R?> and TwoVtMoM which was 0.54. The TwoVtPeM had a higher
error mean than OnePeM, but it exhibited lower relative standard deviations of estimation;
the TwoVtPeM relative standard deviations values were: 3.9% for oxygen, 3.0% for sulfur,
5.3% for sodium, 3.9% for magnesium, 5.3% for chlorine, 10.0% for calcium, and
5.9% for carbon. Moreover, 79.2% of water samples were correctly classified for

hardness based on the estimated element concentrations by TwoVtPeM. The OnePeM
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model correctly classified 67.2% of water samples, however the TwoVtMoM model
achieved only 60.2% accuracy rate in classifying water samples for hardness.

The study’s findings reveal the advantages of the deep learning technique (TwoVtPeM)
potential for water analysis over other screening methods such as test strip test kits, due to
its ability to estimate multiple contaminants simultaneously, speed and low cost. Further
improvements can be made, including addressing certain limitations such as the quality of
the substrate and the size and complexity of the dataset and models. Advances in camera
technology and deep learning techniques have the potential to improve the method’s ability
to detect low concentrations of elements. In conclusion, this study highlights the potential
of machine learning to transform water quality monitoring, leading to better health

outcomes for individuals and communities.

4.2 Introduction

Ensuring sustainable and clean access to water is crucial for water and wastewater
treatment plants as well as other natural and industrial systems that depend on this vital
resource. These plants not only have to meet the needs of consumers and upgrade
infrastructure to improve their quality of life, but they also face increasingly stringent
regulatory measures to meet rising quality standards Faherty [2021]. Unfortunately,
heavily polluted waterways are becoming more common in many countries, posing a threat
to human, aquatic, and terrestrial life Ebenstein [2012]. To address these challenges,
researchers worldwide are exploring methods to optimize, remediate, and enhance water
usage Lages Barbosa et al. [2015], Yang et al. [2020], Vu and Wu [2022], Podder et al.
[2021]. Many are focusing on creating and simulating optimized, cost-effective, and
intelligent models to tackle these issues. Artificial intelligence (AI) has become an

important tool in this effort, enabling the analysis and interpretation of vast amounts of
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data to facilitate better decision-making and more effective management of water
resources.

The water industry is increasingly turning to emerging Al and ML technologies, as
well as smart systems, to address challenges that have traditionally been underserved by
conventional methods and approaches. These technologies are anticipated to offer cost
savings and process optimization through their resilience, generalization, and ease of
design, helping to model and overcome complex water-related issues Alam et al. [2022],
Taoufik et al. [2022], Gordanshekan et al. [2023], Xie et al. [2022]. Applications that have
already benefited from ML include water and wastewater treatment, natural-systems
monitoring, and precision agriculture. The most commonly used ML techniques in these
studies include artificial neural networks (ANNs), recurrent neural networks (RNNs),
random forest (RF), support vector machine (SVM), and adaptive-neuro fuzzy inference
systems (ANFISs), with occasional use of Al techniques such as fuzzy inference systems
(FISs). Some studies have also explored hybrid approaches, such as ANN-RF and SVM-

RF, with positive outcomes in water-related modeling processes.
4.2.1 Coffee-ring effect residue provides particles structure information

The coffee-ring effect creates unique residue patterns or fingerprints correlating to tap
water chemistry when harnessed Li et al. [2020], Shahidzadeh-Bonn et al. [2008], Kaya et al.
[2010], Shin et al. [2014], Shahidzadeh et al. [2015]. These patterns result from the
crystallization process of water contaminants and are influenced by various factors, such as
evaporation, bulk flow, temperature, humidity, and wettability Li et al. [2020], Qazi et al.
[2017], Wei et al. [2012], Sammalkorpi et al. [2009], Desarnaud et al. [2014], Meldrum
and O’Shaughnessy [2020]. Crystallization of salts from drying saline droplets has been

investigated in some studies, which analyzed nucleation mechanisms and the dependence
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of precipitation profile on factors like surface properties and salt concentration. The
complexity of the coffee-ring effect pattern formation is influenced by contact line pinning
on the substrate and the contact angle. Previous research has found particle separation
during coffee-ring formation to be based on a particle-size selection mechanism near the
contact line of an evaporating droplet, leading to nanochromatography of various biological
entities with high separation resolution and dynamic range Wong et al. [2011], Larson
[2014], Deegan et al. [1997], Chen and Evans [2010], Eral et al. [2013]. This mechanism

has the potential to be used to estimate crystal structures and even particle concentrations.
4.2.2 Applications of Al and ML methods in Water Treatment

ML techniques for modeling membrane-filtration processes aim to output several variables,
such as transmembrane pressure, permeate flux, and solute rejection. Inputs in
published studies include pH, temperature, contact/filtration time, transmembrane pressure,
and flux rate, among others. ANN, RNN, and SVM models consistently performed well,
achieving R? values greater than 0.9 and often greater than 0.99. Al and ML methods have
also been used to control chlorination, estimate disinfection by-product (DBP)
concentration, model significant parameters for adsorption and membrane-filtration
processes. Statistical measures used to evaluate results include the coefficient of correlation
(R), coefficient of determination (R?), mean average error (MAE), mean square error
(MSE), root mean square error (RMSE), and relative error (RE).

Chlorination and Disinfection By-Product Estimation

Disinfecting water is crucial for killing or inactivating microorganisms and viruses.
Chlorine-based disinfectants Li et al. [2017], Xu et al. [2015, 2013] are often used, but they
pose health hazards and can create DBPs Sedlak and von Gunten [2011], Bull et al. [1995].

Al methods can be used to control chlorination, while ML technologies can predict and
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mitigate DBP formation. Studies have tested models on surface waters treated with
chlorine and noted success in modeling DBP concentrations in treated water distribution
networks and at consumer taps Librantz et al. [2018], Godo-Pla et al. [2021], Singh and
Gupta [2012], Mahato and Gupta [2022], Park et al. [2018], Lin et al. [2020], Xu et al.
[2022], Peleato [2022], Okoji et al. [2022], Cordero et al. [2021].

Adsorption Processes

Adsorption processes remove various contaminants in the water and wastewater treatment
industries. Predictive models using ML can optimize the adsorption process and
extend the media’s life, increasing the plant’s effectiveness and confidence in meeting
applicable regulations. Studies have modeled adsorption processes with water streams
contaminated with metals, industrial dyes, and organic compounds using various adsorbent
media including carbonaceous materials and metal-based nanocomposites Bhagat et al.
[2021], Mazloom et al. [2020], Mesellem et al. [2021a], Al-Yaari et al. [2022], Mazaheri et
al. [2017], Ahmad et al. [2020], Fawzy et al. [2016], Ullah et al. [2020], Mahmoud et al.
[2019], Mesellem et al. [2021D].

Membrane-Filtration Processes

Membrane processes separate contaminants in water and wastewater treatment by passing
the water through a barrier or filter using high-pressure differentials. These processes are
typically used for contaminants that are difficult or costly to remove by chemical or
physical means Hube et al. [2020], Pronk et al. [2019]. Al and ML models have been used
to treat various water sources contaminated with pollutants and natural compounds
Zoubeik et al. [2019], Fetanat et al. [2021], Khan et al. [2022], Yusof et al. [2020], Nazif et
al. [2020], Shim et al. [2021], Ammi et al. [2021a]. ANN is the most commonly used model,

although ANFIS, SVM, and specific forms of ANNs have also been used for membrane-
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filtration-process modeling. ANN, RNN, and SVM models consistently performed well,
achieving R? values greater than 0.9 and often greater than 0.99 Zoubeik et al. [2019],
Khan et al. [2022], Yangali-Quintanilla et al. [2009].

Vision Transformer in computer vision

Deep neural networks (DNNs) are the backbone of Al systems today. Different types of
networks are suited for different tasks. For instance, the multi-layer perceptron (MLP) or
fully connected (FC) network, made up of multiple linear layers and nonlinear activations,
is a classical type of neural network Rosenblatt [1957]. Convolutional neural networks
(CNNs) use convolutional and pooling layers to process shift-invariant data like images
LeCun et al. [1998], Krizhevsky et al. [2017]. Recurrent neural networks (RNNs) apply
recurrent cells to handle sequential or time series data Hochreiter and Schmidhuber [1997].
Transformer is a novel neural network that uses self-attention mechanisms Bahdanau et al.
[2014], Parikh et al. [2016] to extract intrinsic features Vaswani et al. [2017] and
demonstrates great potentialfor broad Al applications. It was first used in NLP tasks,
where it showed significant improvement Vaswani et al. [2017], Devlin et al. [2018],
Brown et al. [2020]. For instance, Vaswani et al. Vaswani et al. [2017] first proposed
the transformer, which is based on the attention mechanism, for machine translation and
English constituency parsing tasks. Devlin et al. Vaswani et al. [2017] introduced BERT
(Bidirectional Encoder Representations from Transformers), a language representation
model that pre-trains the transformer on unlabeled text, considering the context of each
word in a bidirectional manner. BERT obtained state-of-the-art results on 11 NLP tasks
upon publication. Brown et al. Brown et al. [2020] pre-trained a massive transformer-
based model, GPT-3 (Generative Pre-trained Transformer 3), using 45 TB of compressed

plaintext data and 175 billion parameters. It performed well on various downstream NLP
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tasks without the need for fine-tuning. These transformer-based models, with their robust
representation capacity, have brought about significant advances in NLP.

Recently, the success of transformer architectures in NLP has inspired researchers to
apply it to computer vision tasks. Although CNNs have been traditionally considered the
foundation of vision applications He et al. [2016], Ren et al. [2015], the transformer is
proving to be a potential alternative. Chen et al. Chen et al. [2020] trained a sequence
transformer to predict pixels through auto-regression, achieving comparable results to
CNNs in image classification tasks. The vision transformer model, ViT, was proposed by
Dosovitskiy et al. Dosovitskiy et al. [2020], which directly applies a pure transformer to
sequences of image patches for full image classification and has achieved state-of-the-art
results on multiple image recognition benchmarks. Transformer has also been used to solve
various other vision problems, such as object detection Carion et al. [2020], Zhu et al.
[2020],semantic segmentation Zheng et al. [2021], image processing Chen et al. [2021],
and video understanding Zhou et al. [2018]. Its exceptional performance is attracting more
researchers to propose transformer-based models for a wide range of visual tasks.

However, there has not yet been research conducted using the coffee-ring effect in
conjunction with machine learning and deep learning models, particularly the vision
transformer model, to estimate the concentration of elements in water samples. The
vision transformer model has the potential to not only utilize the particle morphology and
location information from one element to make estimations but also incorporate the
physical chemistry interactions between elements to correct noise and increase accuracy.
This approach could offer a novel method for screening water quality and even
understanding the underlying interactions between various elements within them. Another

contribution of the study is the use of SEM-EDS images as training data to build the
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model. This approach allows for the extraction of much more detailed information
regarding crystal structure. Additionally, EDS images serve as guidance for the model to
estimate the locations of deposited elements, which helps reduce estimation errors and
increase the coefficient of determination from 0.90 to 0.95. This innovative method
provides improved accuracy and insights into the complex relationships between elements

within the samples.

4.2.3 Model for elements recognition and concentration estimation

The proposed components estimation model is a two-stage deep learning approach for
determining the elements concentrations in water samples using the coffee-ring effect. The
coffee-ring effect is a phenomenon in which a ring-shaped deposit of coffee particles is
formed around the perimeter of a droplet of coffee on a substrate. The effect is caused by
the combination of coffee particles’ Brownian motion and evaporation, which causes
the particles to be transported to the edge of the droplet. The coffee-ring effect is of interest in
various fields such as materials science, physics, and biology, as it can be used to pattern surfaces
and deposit particles in a controlled manner.

The first stage of the model utilizes a deep learning model to estimate the locations and
abundances of seven elements (calcium, magnesium, sodium, sulfur, carbon, oxygen, and
chlorine) in the sample, based on the crystal structure and location information present in
images of the coffee-ring effect. The input to the model are the SEM images and EDS
images of the coffee-ring effect, which are pre-processed to ensure they are of good quality
and that the features of interest are clearly visible. The model uses a convolutional neural
network (CNN) architecture to extract features from the images, as the information
extracted from one element can be useful for understanding the presence and behavior of

other elements, and the crystal deposition location plays a critical role in determining the
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crystal composition.

The output of the first stage are seven binary images, each indicating the estimated
location and abundance of a specific element. The binary output images are threshold
images that have been processed to get a binary image where the pixels with signal
corresponds to the location of the estimated element and the abundance of signal pixels
indicates the abundance of the element in that area.

The second stage of the model utilizes a Vision-transformer deep learning model to
estimate the concentrations of the elements in the sample, based on the locations and
abundances estimated in the first stage. The model uses the outputs from the first stage as
input, and considers the relationships between elements, such as the low solubility of
calcium sulfate, to improve the accuracy of the concentration estimates. For example, the
estimated concentration of sulfur can be used to refine the concentration estimation of
calcium, and vice versa. This stage also uses a CNN architecture to extract features from
the inputs and a regression model to estimate the concentrations.

Overall, this proposed model utilizes the latest machine learning techniques to
study the coffee-ring effect and estimate the composition of elements in water samples.
The two-stage approach, with the co-learning and attention technique, allows for more
accurate estimation of the locations, abundances, and concentrations of the elements, and
can provide new insights into the dynamics of the coffee-ring effect and aid in the
development of new techniques for controlling the deposition of particles.

In this study, three models were built and evaluated on water samples that have been
prepared using scanning electron microscopy (SEM) images. The end-to-end model is
a single-stage model designed to estimate the concentrations of elements in the water

samples. The input to the model is a three-layer SEM image and the output is the
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estimated concentration of elements. The model consists of a Unet module with a
ResNet50 encoder, ImageNet encoder weights, and a sigmoid activation function.
This is followed by three convolutional layers, max pooling layers with ReLU
activation, and a final linear layer that outputs the estimated element concentrations
(refer to Figure 4.1). The Two-stage vision-transformer point estimation model is made
up of two modules (stages). The first module is identical to the Unet structure in the end-
to-end model, producing seven binary 2D outputs used to estimate the elements’
concentrations. The second module is a vision-transformer module that extracts elements’
location information to estimate their corresponding concentrations (refer to Figure
4.2). The third model, the Two-stage vision-transformer multiple output model, is
similar in structure to the Two-stage vision-transformer point estimation model, but it

produces a range of elements’ concentrations (refer to Figure 4.3).
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Figure 4.1: One-stage point estimation model structure.
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Figure 4.2: Two-stage vision-transformer point estimation model structure.
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Figure 4.3: Two-stage vision-transformer point estimation model structure.

4.3 Experimental Methods
4.3.1 Develop a deep learning model to identify corrosion indicators and

quantify their concentrations in tap water

A CNN model has been developed to identify corrosion indicators in tap water,
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utilizing similar methods as those previously employed for assigning tap water SEM
fingerprints to groups with similar water chemistry with an accuracy of 76.7 + 3.0% Li et al.
[2020]. Features of the previous model that are applicable to the new work include the
convolutional layers, fully connected layers, and the Relu activation function Li et al.
[2020]. Parameters of the model have been adjusted to fit this research, including the
number of convolutional layers, the output layer, and the loss function (three-channel
RGB images will be analyzed instead of black and white images). The output of this
study consists of maps depicting expected elemental deposition and concentrations of
each contaminant, in contrast to the previously published work where the output was a
classification of the image into a group with similar water chemistry. Loss will be
calculated for the proposed work using mean square error instead of the cross-entropy
method used previously Li et al. [2020].

The experiment has been divided into three steps. In the first step, additional tap water
SEM fingerprints have been collected and evaluated for synthetic Detroit water samples
under the optimal environmental condition (23-26 (°C), 45-50% relative humidity)
obtained from a chapter 3. In the second step, a deep learning model has been developed
using tap water SEM fingerprints (SEM images) and SEM-EDS map images to assign
elements to the crystals that formed. Finally, in the last step, three vision-transformer
models have been constructed to utilize the predicted element depositions in order to
estimate concentrations of each element.

Tap water fingerprints (SEM and photographs) collection for an array of synthetic
waters
Water sample recipes were developed based on Detroit water reports from 2017 to 2019.

Components were prepared in a broader range to accurately represent the variability of
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water constituents. The recipe details can be found in the supplementary file. The SEM
residue patterns and EDS mapping of contaminant particles in tap water samples have been
collected from droplets of each sample with five replicates that were dried under optimal
temperature and relative humidity conditions (23-26 (°C), 45-50% relative humidity).
Photographs of each residue were captured with the Celestron camera, SEM images of
whole droplets were taken, and EDS maps were obtained for sodium, calcium, magnesium,
chlorine, carbon, sulfur, and oxygen using the same method as in previous research Li et
al. [2020] section. 3.3. Water sample recipes were designed to mimic the range of tap water
components Table. 6.28 Table. 6.29 Table. 6.30. Table. 6.31 Table. 6.32. The SEM
image and EDS mapping of the same area are shown in Figure. 4.4.
Elements mapping estimation model for recognition of contaminants particles

Elements mapping estimation model has been built and trained based on the SEM and
EDS mapping data collected in previous step. The model takes water SEM fingerprints as
input and, however, EDS image maps of contaminants elements as output instead of
classification of the image. To evaluate the model performance, the output images have
been overlaid with the EDS map, the pixel positions in these two maps has been measured
and  accuracy has  been  calculated. The model was  built  with
segmentation_models pytorch package with resnet34 encoder, seven output classes,
sigmoid activation and model weights initialized with ImageNet weight initializer.
Multilabel dice loss was applied in the training process. All the three models trained for

1000 epochs with 0.1 learning rate.
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Figure 4.54: 3D stacking of residue surface scanning, SEM image, oxygen EDS, chlorine
EDS bottom up.

Dice loss

In cross entropy loss, the overall loss was calculated as the average of per-pixel loss.
However, the per-pixel loss was calculated discretely without considering whether its
neighboring pixels are boundaries or not. As a result, cross entropy loss only takes
into account the loss in a micro sense, rather than considering it globally, leading to
limitations in image-level prediction. Dice loss Eqn. 4.1 originates from Sorensen-Dice
coefficient, which is a statistic developed in 1940s to gauge the similarity between two
samples. It was brought to computer vision community by Milletari et al. in 2016 for 3D
medical image segmentation Milletari et al. [2016] which is widely used for image

segmentation and boundary detection.

_ 23V pi g
YYpE+ XY g?

(4.1)

The equation for the Dice coefficient, shown in Eq. 4.1, calculates the similarity
between the prediction and ground truth in boundary detection. The variables p; and g;

represent corresponding pixel values, with a value of 1 indicating the presence of a
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boundary and O indicating its absence. The denominator is the sum of total boundary
pixels in both the prediction and ground truth, while the numerator is the sum of correctly

predicted boundary pixels (i.e., those where pi and gi both have a value of 1).

2 X Set A - SetB

DSC(A, B) =

Set A + SetB

Figure 4.5: Dice coefficient (set view)

Persistent Homology of Point Clouds
In practice, the sliding window embedding of a video X is a finite set SWa. X = SWa,
X(?) : t € T, determined by a finite choice of 7 € R. As SW,. X c R” #@*D the ambient
Euclidean distance equips SWa. X with the structure of a finite metric space. Such
discrete metric spaces, or point clouds, are topologically trivial, with N points having N
connected components and no higher-dimensional features like holes. However, when a
point cloud is sampled from or around a continuous space with non-trivial topology
(e.g., a circle or torus), one would expect simplicial complexes built on the point cloud
vertices to reflect the underlying continuous space’s topology. Persistent homology is
applied to discrete collections of points such as sliding window embeddings Zomorodian and
Carlsson [2004].

For a point cloud (X, dx), where X is a finite set and dx : X * X — [0, o0) represents a

distance function, the Vietoris-Rips complex (also known as Rips complex) at scale ¢> 0
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consists of non-empty subsets of X with a diameter less than or equal to ¢:
R(X) =0 C X :dx(x1,x2) <€ Vxi,xi Ec (4.2)
The R(X) is a simplicial complex with its vertex set equivalent to X. It is formed by
adding an edge between any pair of vertices with a distance of at most ¢, incorporating all
2-dimensional triangular faces (i.e., 2-simplices) with existing bounding edges, and, more
generally, including all k-simplices with included (k-1)-dimensional bounding facets.
Figure 4.6 illustrates the evolution of the Rips complex for a set of points sampled around

the unit circle.

Epsilon =0 Epsilon = 0.3 Epsilon =0.4 Epsilon = 0.48

Figure 4.6: The Rips complex, at three different scales (¢ = 0, 0.30, 0.40, 0.48), on a point
cloud with 40 points sampled around S' ¢ R2.

For an open cover given by {B.(/;)} yers where L is the landmark set and a is the radius

of the balls, we have an associated partition of unity defined as

la—a(b.1;)|,
Ykla—dbldl+

¢;(b) = (4.3)

Persistent Homology of Point Cloud

In topological analysis, the nerve complex, or the nerve of a family of sets, is a concept
used to represent the intersection patterns of these sets. Given a collection of sets, the
nerve complex is an abstract simplicial complex where each set corresponds to a vertex,
and a collection of vertices forms a simplex if and only if the intersection of the

corresponding sets is nonempty. In other words, the nerve complex encodes how the sets in
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a family overlap with each other. This concept is particularly useful in various applications,
including topological data analysis, where it can help analyze the structure of complex data
sets Dey et al. [2017], Carlsson [2020].

Let 7 be a set of indices and C be a family of sets (U;)iz. The nerve of C is a set of
finite subsets of the index set / Geoghegan [2007]. It contains all finite subsets J € [ such
that the intersection of the U; whose subindices are in J is non-empty Eqn. 4.4.

N(C) ={] € I: Ny U; # 0,] finite set} 4.4)
Build vision-transformer model to use elements locations to estimate concentrations
of contaminants elements
The Elements mapping estimation model from previous step has been trained to recognize
element particles to output elements mappings. By utilizing the estimated contaminants
particles EDS mapping images, these particles concentrations has been quantified. In
this study, the vision-transformer model has been built and trained on EDS mapping
predictions to estimate contaminants concentrations. The vision-transformer composed by
two Multi Head Attention module with FeedForward module, Norm module, Positional
layer, Encoder module, Decoder module and Feature Extraction module.
One-stage point estimation model, two-stage vision-transformer point estimation model and
two-stage vision-transformer multiple output model comparison
To measure the model performance, One-stage point estimation model (OnePeM) was built
to estimate the concentrations of elements in the water samples. This model consists of two
modules. The first module is identical to the Unet structure of elements mapping
estimation model and the second module is to use the 2D layers to estimate the elements
concentrations. Different from the two-stage vision-transformer point estimation model

(TwoVtPeM), in this model, the elements EDS mapping weren’t used to train the first
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module of the module, however, the model was trained end-to-end to estimate the elements
concentrations. To produce robust concentration estimations, a two-stage vision-
transformer multiple output model (TwoVtMoM) was built to produce multiple elements
estimations. These two models have the same model backbone and the same activation
function, weight initializer as the two-stage vision-transformer point estimation model.

To train the model stochastic gradient descent (SGD) with 0.001 learning rate and MSE
loss were used to optimize the model parameters for 500 epochs. To accelerate the training
speed, the model is trained by distributed data parallel (DDP) module with eight A100
(80GB SXM4) GPUs. The training time is about 10 hours.

Model training

Three of the five replicates of each image collected in task were randomly assigned to the
training dataset and the remaining two replicates were assigned to the testing dataset. All
models were trained on the training set and model performance was tested on the testing
set. The accuracy of the particle recognition was computed by comparing two features of
the element SEM-EDS mapping image and CNN model output: 1) whether or not a pixel
occurs in the same location, and 2) the size of pixel clusters. Specifically, the pixel
occurrence was evaluated by first overlaying the CNN output map onto the EDS map for
contaminants particles. Both the EDS images and the CNN output are maps where each
pixel was assigned either a value of 0 or 1.

In the evaluation stage, the CNN model output were analyzed to determine whether or
not a pixel value of 1 exists in the same position or in a circle with a radius of 3 pixels
drawn around the corresponding location on the EDS map. The pixel will be labeled as
correctly identified if there exists at least one pixel for indicating the contaminants particles

in the EDS map or labeled as incorrectly if not. The model accuracy, percentage of the
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pixels that matched the EDS output for each image were calculated. Stochastic gradient
descent (SGD) with 0.001 learning rate and MSE loss were used to optimize the model
parameters and training were conducted for 500 epochs. To accelerate the training speed,
the mode;s were trained by distributed data parallel (DDP) module with eight A100

(80GB SXM4) GPUs.

4.4 Results and Discussion

4.4.1 Elements correlations between coffee-ring effect subrings

To investigate the correlations between elements in each coffee-ring effect residue subring,
the droplet residue were separated into fifteen subrings with the evenly 4.9. The elements
correlations between coffee-ring effect residue subrings were analyzed by Pearson correlation
coefficient. The Pearson correlation coefficient is a measure of the linear correlation between
two variables. It is a dimensionless number between -1 and 1, where 1 is total positive linear
correlation, 0 is no linear correlation, and -1 is total negative linear correlation. The Pearson
correlation coefficient is calculated by Eqn. Eqn. 4.5.

_ Y (=) (i—¥)
T'xy =
JZ?=1(xi—f)2JZ?=1(yi—J7)2

(4.5)

The strongest correlation was observed between sodium and chlorine, particularly
within the second subring of both elements. This phenomenon suggests that sodium and
chloride ions tend to form crystals in the second subring area. The highest correlations
among oxygen, calcium, and sulfur were found in the outermost subring, indicating the
formation of calcium sulfate (CaSO4) in this region Figure. 4.7. Meanwhile, the highest
correlations between chlorine and calcium occurred in the middle subring areas, signifying

the formation of calcium chloride (CaCl») in those regions Figure. 4.8.
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4.4.2 Elements mapping estimation model analysis

The estimated calcium-carbon and oxygen sulfur EDS mappings are displayed in separate
2D histograms in Figure 4.10. As observed, oxygen and sulfur are more prominently
present in the droplet residue pattern area, while calcium is distributed throughout the
entire image, although it is primarily located in the residue pattern. This is likely due to the
presence of calcium in the substrate during the manufacturing process. To overcome this
issue, a higher-quality substrate with a lower calcium content could be utilized. From
the histogram results, discerning the correlation between calcium and carbon proves to be
difficult. However, the relationship between calcium and sulfur is more apparent. SEM

example image is shown in Figure. 4.7.
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MgCl, 0.45 mM,

NaHCO; 2.0 mM,
MgSO, 0.5 mM,

CaCl, 2.0 mM

Figure 4.7: SEM image of water sample coffee-ring effect residue pattern (with detailed
subregion presentation). Water sample with MgCl> 0.45 mM, NaHCO3 1.0 mM, CaCl 1.5
mM, MgSOs 0.5 mM.
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Figure 4.8: Pearson correlation of water contaminants in Coffee-ring effect residue
subrings. Water sample with MgC/l> 0.45 mM, NaHCO3 1.0 mM, CaCl> 1.5 mM, MgSO4
0.5 mM.
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Table 4.1: Coffee ring effect elements deposition prediction by Unet model. Water sample
with MgCl, 0.45 mM, NaHCO3 1.0 mM, CaClL 1.5 mM, MgSO4 0.5 mM
Elements Predicted EDS| Target EDS
mapping mapping

Calcium

Sodium

Carbon

Magnesium

Oxygen

Sulfur

Chlorine
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Figure 4.9: Coffee-ring effect residue pattern were separated to fifteen subrings with
the evenly. Water sample with MgCl, 0.45 mM, NaHCO3 1.0 mM, CaCl» 1.5 mM,

MgSO4 0.5 mM.
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Figure 4.10: Topological nerve complex of estimated Calcium-Carbon EDS and
Oxygen-Sulfur EDS. The left is Calcium-Carbon 2D histogram and the right is Oxygen-Sulfur
2D histogram. x-axis and y-axis are scaled. Water sample with MgCl, 0.45 mM, NaHCOs
1.0 mM, CaCl> 1.5 mM, MgSO4 0.5 mM.
The calculation of the nerve complex was based on the combination of calcium and

carbon EDS mappings and the combination of calcium and sulfur EDS mappings. In both

combinations, the two EDS mappings were compared, with one serving as the reference
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and the other as the target. If a predicted element pixel was found in the reference, the
location of the corresponding pixel in the target was recorded as a positive signal if it was
present within a 3x3 area. To minimize noise, 1000 randomly selected points from the
resulting pixels were used. This method resulted in the creation of the calcium-carbon
and calcium-sulfur combination mappings with radius 0.008, which were then used to
calculate the nerve complex. The nerve complex of the calcium-carbon and calcium-sulfur
combination mappings are shown in Figure 4.11. The calcium-sulfur nerve comlex formed
at different locations of than calcium-calcium which was consistent the teh claim that
different composition particles formed at different locations in the droplet residue pattern.

The results of the Unet elements deposition estimation are presented in Figure
4.12. The three tables, from left to right, represent accuracy, false positive, and false
negative (sensitivity). The y-axis of each table represents 625 water samples, while the x-
axis lists the elements in the order of Oxygen, Sulfur, Sodium, Magnesium, Chlorine,
Calcium, and Carbon. The two-stage vision-transformer point estimation model, the one-
stage point estimation model, and the two-stage vision-transformer multiple output model
all include this module and were trained independently.

As shown in the accuracy results, sulfur and magnesium have the highest overall
accuracy, while calcium and carbon have the lowest accuracy. This is also evident in
Figure 4.17 where the predicted calcium values are mostly lower than the true values. The
high accuracy of sulfur and magnesium can be attributed to the more accurate
collection of sulfur and magnesium EDS mappings, compared to the high noise present in
the calcium EDS mapping (as seen in Figure 4.13), as the EDS instrument is more
sensitive to these two elements. Additionally, the substrate contains fewer sulfur and

magnesium impurities, and these elements are more separated from other elements such as
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oxygen and are prone tp form crystals, such as SO* ions. The false positive and false
negative values for magnesium are also lower than for other elements.

However, the EDS detector is not as sensitive to carbon, and the substrate contains a
high concentration of calcium, leading to an inaccurate collection of EDS mappings for
carbon. As a result, the model has difficulty learning the relationship between crystal

structure and elements composition for carbon.

Calcium-Carbon nerve complex  Calcium-Sulfur nerve complex

Figure 4.11: Topological nerve complex of estimated Calcium-Carbon EDS and
Calcium-Sulfur EDS. The diagram on the left represents the Calcium-Carbon EDS nerve
complex, while the one on the right shows the Oxygen-Sulfur nerve complex. A
radius of 0.008 was used in the calculations. The coffee-ring effect residue pattern
resulted in the formation of calcium carbon crystals (CaCOs3) and calcium sulfur crystals
(CaS0;) at different locations.
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Figure 4.12: Accuracy, False Positive, False Negative (Sensitivity) tables from left to right;
O, S, Na, Mg, Cl, Ca, C elements in each table from left to right. Result is averaged across
five replicates.
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Magnesium EDS mapping Sodium EDS mapping

Figure 4.13: Magnesium Sodium EDS mapping comparison. water sample was prepared
with the following components: 0.45 mM Magnesium Chloride (MgClz), 0.25 mM Sodium
Bicarbonate (NaHCO5), 2.0 mM Magnesium Sulfate (MgSOs), and 0.75 mM Calcium
Chloride (CaCl).
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Figure 4.14: Trilinear plot of water recipes.

The trilinear plot of water sample recipes, as depicted in Figure. 4.14, effectively
demonstrates the wide range of element concentrations found in various tap water samples.
These samples are distributed across the plot to account for the inherent variability of
tap water components that may be encountered in different geographical regions and
under diverse environmental conditions. This comprehensive representation of tap water
compositions enables a more thorough analysis and understanding of the various
factors influencing water quality, ultimately supporting the development and evaluation
of the vision-transformer model in this study.

4.4.3 Two-stage model produces better results than one-stage model

Water contaminants elements concentrations were predicted by the two-stage vision-
transformer point estimation model, one-stage point estimation model and two-stage
vision-transformer multiple output model. Results were plotted independently by target
concentrations (x-axis) versus predicted concentrations (y-axis). Elements were labeled by

independent color.
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Two-stage vision-transformer point estimation model (TwoVtPeM)

Figure 4.15 displays the predicted and true (target) chlorine-sulfur mass ratios. The
predicted chlorine to sulfur mass ratio is found to be higher than the true
values, particularly when the true values are larger. This is consistent with the
overestimation of concentration seen in the results of the TwoVtPeM (Fig. 4.17). The

reason for this overestimation will be discussed in the following sections.
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Figure 4.15: TwoVtPeM chlorine to sulfur mass ratio. Targets chlorine to sulfur mass ratio
vs predictions chlorine to Sulfur mass ratio. Marker colors relates target chlorine to sulfur
ratio value.

The predicted water hardness values tend to be higher than the true hardness values of
the water samples, as shown in Fig. 4.16. For instance, twenty hard water samples were
predicted as very hard, and five moderately hard water samples were predicted as hard.
Nineteen hard water samples and eighty very hard water samples were correctly predicted.
Only one sample had a predicted hardness lower than its true hardness. This is due

to the overestimation of calcium concentrations, as seen in Fig. 4.17. The reason for this

overestimation will be discussed in the following section.
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The concentrations of contaminants estimated by the TwoVtPeM model are displayed
in Figure 4.17. The target concentrations (elements concentrations in the water preparation
recipe) are plotted on the x-axis, while the predicted concentrations are plotted on the y-
axis. The results indicate that the predicted chlorine concentrations are generally higher
than the true chlorine concentrations. This is consistent with the EDS mapping results
in Figure 4.12 which show that the false negative value is lower than the false positive
value. This suggests that some of the estimated chlorine crystals are not actually
chlorine, leading to an overestimation of the chlorine concentration. Additionally, the
estimation of chlorine has a larger standard deviation, which is likely due to the
relatively high concentrations of chlorine compared to other elements in the water
samples. As shown in Table 4.1, the predicted chlorine crystals are larger than true

chlorine crystals.
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Figure 4.16: TwoVtPeM of water samples hardness category classification results.
The trilinear plot of the estimated element concentrations by the TwoVtPeM is

presented in Figure. 4.18. When comparing this result with the true element concentrations
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trilinear plot in Figure. 4.14, it is apparent that the water samples in the same table
of water recipes are situated in similar locations. This observation indicates that the
TwoVtPeM has successfully estimated element concentrations, demonstrating the

effectiveness and accuracy of the model in analyzing and characterizing various tap water

compositions.
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Figure 4.17: TwoVtPeM results. Targets (x-axis) vs predictions (y-axis).

One-stage point estimation model (OnePeM)

Figure 4.19 displays the predicted and true (target) chlorine to sulfur mass ratios. Different
from the overestimated chlorine to sulfur mass ratio in the TwoVtPeM, the estimated
chlorine to sulfur mass ratio is overestimated when the true chlorine to sulfur mass ratio is
low but underestimated by the OnePeM especially when the true chlorine to sulfur mass
ratio is high. This is consistent with the elements concentrations estimations Figure 4.21
that chlorine concentration is overestimated under its low concentrations condition but

overestimated under its high concentration condition.
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Figure 4.19: OnePeM chlorine to sulfur mass ratio. Targets chlorine to sulfur mass ratio vs
predictions chlorine to sulfur mass ratio. Marker colors relates target chlorine to sulfur

The predicted water hardness values also tend to be higher than the true hardness values

of the water samples, as shown in Fig. 4.20. For instance, thirty-four hard water

samples were predicted as very hard, three moderately hard water samples were predicted

ratio value.
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as hard and two moderately hard water samples predicted as very hard. six hard water
samples and eighty very hard water samples were correctly predicted. Only two samples
had a predicted hardness lower than its true hardness. This is due to the overestimation of
calcium and magnesium concentrations under low concentration conditions, as seen in

Fig. 4.21. The reason for this overestimation will be discussed in the following section.
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Figure 4.20: OnePeM of water samples hardness category classification results.

Figure 4.21 displays the concentrations of contaminants estimated by the one-stage
point estimation model. In comparison to the TwoVtPeM, the OnePeM results in a greater
standard deviation in the predicted concentrations. Additionally, the model tends to
overestimate low concentrations and underestimate high concentrations of each element.
For example, the predicted calcium concentration is higher than its true concentration when
it is around 2 mM, but lower than its true concentration when it is around 3.5 mM. This
is because the one-stage model is trained end-to-end, lacking the correction step present in
the TwoVtPeM that adjusts for the EDS mapping estimation. As a result, the model

requires more training epochs and fine-tuning to effectively learn the features.
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The trilinear plot of the estimated element concentrations by the OnePeM is
presented in Figure. 4.22. When comparing this result with the true element concentrations
trilinear plot in Figure. 4.14, it is apparent that the water samples in the same table of
water recipes are situated in similar locations, but not as accurately as the TwoVtPeM. This
observation indicates that while the OnePeM is capable of estimating element

concentrations, its performance is not as precise as the TwoVtPeM.
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Figure 4.21: OnePeM results. Targets (x-axis) vs predictions (y-axis).

Two-stage vision-transformer multiple output estimation model (TwoVtMoM)
While the TwoVtMoM was expected to produce more accurate results than the
TwoVtPeM, its element concentration estimations are actually worse. The model tends to

overestimate low true element concentrations and underestimate high true element concentrations.

This is due to the larger number of parameters in the TwoVtMoM model, which requires more

training epochs and fine-tuning to effectively learn the features.
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Figure 4.22: OnePeM model of water samples trilinear plot.

The results of each element estimation for the different models are summarized in
Figure 4.24. As illustrated in the figure, the TwoVtPeM (row 1) exhibits lower variance
compared to the OnePeM (row 2). The one-stage point estimation model tends to predict
lower element concentrations than the actual values. This is due to the fact that the
TwoVtPeM more accurately maps the elements’ locations compared to the OnePeM.
Although crystals form in a 3D structure, the EDS mapping can only represent the
elements’ 2D deposition. The TwoVtPeM can utilize relative location information from
other elements to construct the crystal deposition structure and infer the corresponding
concentrations.

The error mean (calculated as the percentage difference between the mean of
the estimated eclement concentrations and their true concentrations) and standard
deviation of concentration estimations (calculated as the standard deviation of
estimated element concentrations) are presented in Table 4.2. The OnePeM has the

lowest error mean for five elements (oxygen, sodium, chlorine, calcium, and carbon) out
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of the seven elements, while the TwoVtPeM has the lowest error mean for the
remaining two elements (sulfur and magnesium). Although the OnePeM has the
lowest error mean, the TwoVtPeM has the lowest standard deviation for all seven
element concentration estimations. This demonstrates that the TwoVtPeM is more stable
than the OnePeM, which is due to the elements EDS mapping estimation module in its first

stage, resulting in an R? of 0.95, which is higher than the 0.9 of the OnePeM.
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Figure 4.23: TwoVtMoM results. Targets (x-axis) vs predictions (y-axis).

Model comparison

In Section 4.4, the individual results of the three models regarding their element
concentration estimations are presented. To compare the three models, the
element concentration estimations and relative standard deviations are illustrated in
Figure 4.24 and Table 4.2. From this figure, it is evident that TwoVtPeM outperforms the
other models with lower variance and higher R?. The OnePeM concentration
estimations are accurate for nonmetals oxygen, chlorine, and sulfur; however, its

estimations are not precise for metals sodium, calcium, magnesium, and carbon. The
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TwoVtPeM is more accurate for all elements. The TwoVtMoM is the least effective model,
with the highest variance and lowest R,

According to model performance analysis: the TwoVtPeM technique achieved the best
performance of the models tested (OnePeM, TwoVtPeM and TwoVtMoM), with OnePeM
also performing well and TwoVtMoM falling short. The TwoVtPeM relative percentage
errors were £17.1% for oxygen, +4.5% for sulfur, £19.9% for sodium, +5.7% for chlorine,
+19.8% for calcium, £25.8% for magnesium, and +20.1% for carbon. The R? was 0.95 which
is higher than OnePeM with 0.90 R? and TwoVtMoM which was 0.54. The TwoVtPeM
had a higher error mean than OnePeM, but it exhibited lower relative standard deviations
of estimation; the TwoVtPeM relative standard deviations values were: 3.9% for oxygen,
3.0% for sulfur, 5.3% for sodium, 3.9% for magnesium, 5.3% for chlorine, 10.0% for
calcium, and 5.9% for carbon. Moreover, 79.2% of water samples were correctly classified
for hardness based on the estimated element concentrations by TwoVtPeM. The OnePeM
model correctly classified 67.2% of water samples, however the TwoVtMoM model
achieved only 60.2% accuracy rate in classifying water samples for hardness Table 4.2.

Although the OnePeM has the relative error for oxygen, sodium, chlorine, calcium, and
carbon, it exhibits larger relative standard deviations than the estimations of TwoVtPeM,
indicating that the OnePeM is less stable. The TwoVtPeM has the lowest standard
deviation for all seven element concentration estimations, demonstrating greater stability
than the OnePeM. This is attributed to the element EDS mapping estimation module in its
first stage. The TwoVtPeM can utilize relative location information from other elements to
construct the crystal deposition structure and infer the corresponding concentrations.

The TwoVtMoM was expected to have the lowest relative error and highest R?, but this

was not the case. This is due to the larger number of parameters in the TwoVtMoM model,
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which necessitates more training epochs and fine-tuning to effectively learn the features.
To apply this method in water quality monitoring, further research is required to
investigate the reasons for the TwoVtMoM’s poor performance and explore methods to
enhance it.

Another necessary step is to develop a model that transfers from the element
concentration estimation model based on water SEM fingerprints to one based on water
photograph fingerprints. The rationale is that SEM images are more accurate than
photographs, but SEM images are not available in households or in the field. The model
built from water SEM fingerprints is only used for learning crystal features from water
residue patterns, and this information is solely for constructing the element concentration
estimation model from water photograph fingerprints. Thus, in the future, when the
element concentration estimation model from water photograph fingerprints is developed,

only water photograph fingerprints will be needed for element concentration estimation.
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Table 4.2: Comparing Estimation Results of Model Element Concentrations.

Models | Oxygen | Sulfur | Sodium | Magnesium | Chlorine | Calcium | Carbon | R*

Relative Error (%)

OnePeM +5.2% +16.4% | £5.2% +20.0% +10.7% | £17.9% | £3.2% | 0.90

TwoVtPeM | £17.1% | +4.5% | £19.8% | £5.7% +19.7% | £25.8% | £20.1% | 0.95
TwoVtMoM | £35.5% | £19.3% | £30.2% | £21.9% +11.8% | £20.7% | £33.3% | 0.54
Relative Standard Deviation Error (%)
OnePeM 6.9% 19.7% 8.0% 27.9% 12.2% 24.6% 6.2%
TwoVtPeM | 3.9% 3.0% 5.3% 3.9% 5.3% 10.0% 5.9%
TwoVtMoM | 59.0% 31.0% 46.8% 42.3% 20.3% 39.9% 53.1%
Coefficient of Variation (%)

OnePeM 33.5% 20.7% 36.4% 34.7% 22.0% 30.2% 36.5%
TwoVtPeM | 13.0% 22.4% 14.1% 25.0% 14.1% 20.5% 17.6%
TwoVtMoM | 19.4% 18.1% 25.6% 26.4% 15.1% 20.7% 22.7%

Mean Absolute Percentage Error (%)

OnePeM +18.1% +33.2% | £20.3% +37.3% +38.9% | £27.1% | £17.4%

TwoVtPeM | £17.1% | £13.3% | £20.7% | £25.9% +15.7% | £19.8% | £20.3%
TwoVtMoM | £55.2% | +#42.2% | £49.6% | +49.2% +47.6% | £36.8% | £52.8%
Root Mean Square Error
OnePeM 0.52 0.44 0.18 0.39 0.45 0.79 0.17
TwoVtPeM | 0.45 0.18 0.18 0.27 0.18 0.54 0.18
TwoVtMoM | 1.57 0.60 0.51 0.54 0.60 0.40 1.09
Mean Square Error
OnePeM 0.27 0.19 0.04 0.16 0.20 0.62 0.03
TwoVtPeM | 0.20 0.03 0.03 0.07 0.03 0.29 0.03
TwoVtMoM | 2.47 0.36 0.26 0.29 0.37 1.19 0.27
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4.5 Conclusion

Machine learning is transforming the way we approach water quality and public
health. This study shows the potential of machine learning to revolutionize water
quality monitoring. With the use of low-cost aluminum substrates, the overall cost
of the experiment is significantly lower than traditional analytical methods, making this
technique a cost-effective solution for water quality monitoring. The method is
especially useful in rural areas and in the event of potential pollution incidents, where
early detection is crucial.

The findings of this study reveal that the TwoVtPeM technique achieved the
best performance of the models tested (OnePeM, TwoVtPeM and TwoVtMoM), with
OnePeM also performing well and TwoVtMoM falling short. The TwoVtPeM relative
percentage errors were +17.1% for oxygen, £4.5% for sulfur, £19.9% for sodium, +£5.7%
for chlorine, £19.8% for calcium, +25.8% for magnesium, and +20.1% for carbon.
The R? was 0.95 which is higher than OnePeM with 0.90 R? and TwoVtMoM which was
0.54. The TwoVtPeM had a higher error mean than OnePeM, but it exhibited lower
relative standard deviations of estimation; the TwoVtPeM relative standard deviations
values were: 3.9% for oxygen, 3.0% for sulfur, 5.3% for sodium, 3.9% for magnesium,
5.3% for chlorine, 10.0% for calcium, and 5.9% for carbon. Moreover, 79.2% of water
samples were correctly classified for hardness based on the estimated element
concentrations by TwoVtPeM. The OnePeM model correctly classified 67.2% of water
samples, however the TwoVtMoM model achieved only 60.2% accuracy rate in classifying
water samples for hardness.

Advances in camera technology and deep learning techniques hold great potential for

improving the method’s ability to detect low concentrations of elements. By using substrates
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with varying surface properties, such as roughness, wettability, charge, and others,
different crystal formations can be produced that can be designed to monitor specific
contaminants. The two-stage vision-transformer multiple output model produces a smaller
variance, but the concentration estimation is not always accurate, requiring more fine-
tuning and training epochs.

To detect low concentrations of elements, water samples with lower concentrations
need to be prepared and the coffee-ring effect residue pattern collected. Confirmation of the
crystal structure can be obtained through Raman spectroscopy on the water sample residue.
To analyze the one-stage point estimation model performance, the intermediate output of
the seven element mappings can be compared with the predicted EDS mapping of the two-
stage vision-transformer point estimation model. This will provide insights into the
strengths and weaknesses of each model, allowing for further improvements to be made.

An additional avenue for improvement is the creation of a loss function that takes
into account not only the pixel classes but also their structure. Contaminants often have
distinct 3D lattice structures, and this information could be leveraged in the loss function.
Additionally, incorporating domain knowledge from physical chemistry could also be
beneficial. For instance, magnesium and calcium crystals are unlikely to form crystals at
the same location, but calcium and sulfur are more likely to form calcium sulfate first
due to their relatively low K, values compared to other crystals such as sodium chloride
and calcium chloride.

In conclusion, this study highlights the potential of machine learning to revolutionize
water quality monitoring. By improving the efficiency and effectiveness of water quality
management systems, machine learning has the potential to lead to better health

outcomes for individuals and communities. With continued advancements in technology
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and machine learning techniques, we can expect to see even more exciting developments

in this field in the future.
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CHAPTER 5

Implications

Machine learning is revolutionizing both water quality and public health. In the realm
of water quality, machine learning is employed to create predictive models that shed light
on the relationships between various water quality parameters and the impact of different
factors. This results in the creation of early warning systems that can identify potential
water quality problems, enabling proactive solutions. Machine learning also enables the
analysis of large amounts of data and extraction of previously hidden insights, leading to a
deeper understanding of water quality and new methods for managing this critical
resource. By automating certain tasks and simplifying data analysis processes, machine
learning has the potential to enhance the efficiency and effectiveness of water quality
management systems. In public health, machine learning algorithms are trained on medical
images and patient records to diagnose diseases and predict future health outcomes. They
are also utilized to analyze and forecast the spread of infectious diseases, providing crucial
support to public health officials.

Machine learning is integrated into environmental monitoring systems, providing
real-time data analysis for environmental facilities and resulting in more informed
management decisions. Additionally, machine learning algorithms can predict the risk of
specific environmental issues, such as pollution events or habitat degradation, allowing
for early interventions and preventive measures. Machine learning has the potential to
significantly improve the efficiency and effectiveness of environmental initiatives, leading
to better environmental outcomes for ecosystems and communities. The impact of

machine
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learning on water quality and public health is substantial and has the potential to
fundamentally change the way we approach and manage these critical resources.
Through the use of advanced machine learning techniques, we can gain a deeper
understanding of water quality, create new and innovative solutions for preserving this
essential resource, and protect public health for future generations.

This study underscores the potential of machine learning to transform water quality
monitoring. By enhancing the efficiency and effectiveness of water quality management
systems, machine learning can be utilized for various image formats, including SEM, EDS,
X-ray Powder Diffraction (XRD), Raman spectroscopy, images collected in rural areas,
and even satellite data covering larger areas. Consequently, machine learning could
potentially result in better health outcomes for individuals and communities. As
technology and machine learning techniques continue to advance, we can anticipate further
groundbreaking developments in this field that will contribute to ensuring cleaner water
and healthier environments for all. As a screening method, this research demonstrates the
effectiveness of machine learning techniques in water quality monitoring. With
improvements in camera technology, material science, and model design, such as the
development of multimodal techniques incorporating local weather, groundwater
information, pipe information, and environmental incidents, this approach shows great

promise as a fast, low-cost, and accurate water quality monitoring technique.
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APPENDIX

Table 6.1: Measured water chemistry data from tap water samples collected across
Michigan and treatment information from annual municipal water quality reports and system
operators. Averages and standard deviations are listed for values conducted in replicate.

City F~ (mM) |NO, (mM) Zn (mM) TOC (ppm)
MSU - academic hall | 0.04 BD 2.3x107° 3.1
Durand 0.03 0.02 BD 1.3
Kalamazoo 0.04 0.03 BD BD
Portland 0.03 BD BD 2.1
Battle Creek site A 0.05 BD 3.9%107° 0.79
Battle Creek site B 0.05 0.02 BD 1.2
Charlotte 0.02 0.01 1.1*¥107* 1.4
Fowlerville 0.04 BD BD 1.4
Lansing site A 0.01 0.01 1.2*107* 1.5
Lansing site B 0.03 0.01 9.1*107* 1.5
East Lansing 0.02 0.03 6.3*107* 1.3
Howell 0.03 BD 1.5*107* BD
MSU - residence hall | 0.05 BD 4.2%10°* 3.2
Williamston 0.03 BD 3.5%10°* 22
Genoa Twp soft BD BD 1.7%10°* 2.2
Genoa Twp BD BD 1.1*¥107* 2.0
Rest stop Okemos 0.03 BD BD 1.1
Rest stop Zeeland 0.04 BD 2.8%107° 1.0
Rest stop 196/M66 0.03 BD 4.9%10°* 33
Rest stop Fenton 0.06 0.02 1.0¥107° 1.0
Allegan 0.03 BD 5.5%107* BD
Genoa Twp BD BD 1.2*107* BD
Detroit 0.03 0.07 3.2*%107° 1.6
Flint 0.04 0.03 7.5%107* BD
hline Swartz Creek 0.03 0.03 1.2%10°* BD
Grand Rapids 0.03 0.03 2.3*10°* BD
Holland 0.04 0.03 8.9%107* BD
Wyoming 0.03 0.03 BD BD
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Table 6.3: Examples of raw and pre-processed images used for the convolutional neural

Table 6.2: Composition of synthetic tap water solutions.
Chemicals (mM) | Detroit | Lansing | MSU hard water
NaHCO; 0.23 0.50 0.55
Na>SOs - 1.20 -

MgCh(H20)s 0.25 0.53 0.40
MgSO«(H20)7 0.10 - 0.80
MgCOs - - 0.50

CaCl - 0.56 -

CaSO4 0.16 - -

CaCO; 0.50 - 2.60
KCl - 0.100 0.027
KH>POq 0.0152 0.0100 0.0113
NaNOs 0.0725 0.0140 -

KF (H20)» 0.0325 0.0270 0.0430
FeCl 0.0016 - 0.0190
CuCh(H20), 0.0006 0.0005 0.0020

network (CNN) model.

Water
sample

Detroit

Raw image

image

Pre-processed

Genoa
Township
well RO

Genoa

Township
private well
untreated
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Table 6.4: Five replicates of each freshly collected water sample (stored less than one week).
The lab temperature was 24-25 °C and relative humidity 52% for this experiment.
MINIMALLY TREATED GROUNDWATER
MSU academic hall Durand

Kalamazoo Portland

Battle Creek Site Battle Creek Site B

e

\

LIME SOFTENED

Lansing Sit Lansing Site B

flolloliclioliclio]

East Lansi Howell

MSU residenc Williamston

Genoa Township private well softened

UNTREATED GROUNDWATER
Genoa Township private Rest stop A - Okemos

well untreated

Rest stop D - M66/196 East

'”‘z‘ & /» ‘ SN

REVERSE OSMOSIS
Genoa Township private well RO

HE 888
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Table 6.4: (cont’d)
SURFACE WATER
Detroit

Swartz Creek

| |

Holland

@

=1
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Table 6.5: Consistency of tap water residue patterns on different mirrored aluminum
slides prepared by different researchers, with nanopure water and synthetic hard freshwater
controls. The lab temperature was 24 "C and relative humidity 47%.

Analyst 1 Analyst 2 Analyst 3 Lea t
Experienced 1 Moderate Experienced 1
year Experience week
0.5 month
MSU academic hall
1 2 3

slide 7 8 9 7 8
Replicate 1 | F&

Replicate 2

1|

Replicate 3 E

Blank " '

Synthetic H ;, E
- Eamng -

slide 1 A 1

Replicate 1

Replicate 2

Replicate 3

Blank

Synthetic

slide
Replicate 1

Replicate 2

Replicate 3

Blank

Synthetic
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Table 6.5: (cont’d)

Analyst 1 Analyst 2 Analyst 3 Least
Experienced 1 Moderate Experienced 1
year Experience week
0.5 month
Detroit

slide 1 2 3 1 2 NA 1 2 3
Replicate 1 :

Replicate 2

Replicate 3

Blank

Synthetic

']
I}
I}
| |
@

slide 2

Replicate 1 | I l

Replicate 2

Replicate 3

.

' .

Table 6.6: Nanochromatography patterns of Michigan tap waters (stored for two months at
4°C) dried on slides cut from the same sheet of aluminum. Nanopure water synthetic hard
water served as controls. The lab temperature was 24 °C and relative humidity was 47-48%

for this experiment.
Minimally treated groundwater
MSU academic building nanopure | Synthetic

Blank

Synthetic

Durand
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Table 6.6: (cont’d

Charlotte

Lime softened
Lansing Site A

Lansing Site

East Lansing
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Ion exchange

MSU residence hall

Williamston

noa Township private well softened

Untreated groundwater

Genoa Township well untreated

Rest stop A Okemos

Rest stop D M66/196 East

-

Sk

Lansing Site C Zeeland

Reverse osmosis

Allegan

Genoa Township well RO
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Surface waters

_ Detroit

Grand Rapids

Gyoming

Swz Ceek

Holland
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Table 6.7: Temperature and humidity effect on residue pattern for four salt mixtures.

3.0 oM 0.5 mM | 0.5 mM | 0.5 mM
Temperature | Drying C.'a ch CaSOs, CaSOs, CaCl,
and relative | time 15 ’ M 025 mM | 025 mM| 025 mM
humidity (min) Mg Ch. 10 MgSOsq, MgSOs, MgCl,
N Nac |30 mM 10 mM |10 mM
> | NaaSOsg; NaHCOs; NaHCOs;
24 °C <20%
RH 20
24 C
46-48% RH | 2

Table 6.8: Residue patterns of synthetic tap water solutions compared to real tap water at
24 °C and relative humidity of 47%.

Collected tap Simplified Complex
water synthetic, synthetic,
Calcium, simplified
magnesium, synthetic water
sodium, sample plus
chloride, sulfate, iron, copper,
bicarbonate nitrate, fluoride,
phosphate
MSU
Detroit
Lansing
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Table 6.9: Simple synthetic mixtures on a separate slides analyzed at 24 °C and 48% relative
humidity. The low concentration mixtures that are not the same as the previous table are

indicated by bold font.
3 mM

NaCl NaCl NaHCOs NaHCOs

10 mM 5.0 mM 10 mM 5.0 mM
3 mM Cab
1.5 mM
MgCl»
1 mM Cabh
0.5 mM
MgCl»
0.1 mM Cal
0.05 mM
MgCl»

Table 6.10: Images with mis-classification percentage over 70%.
Image is different from other replicates

Lansing site MSU MSU
B & residence residence Portland Portland
hall hall

class two

Reason not clear Image in
Genoa Genoa Genoa Genoa
Township Township Battle Creek | Township Township
private well | private well | site B private well | private well
untreated untreated softened softened
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Step 1: Peel off plastic film

Mirrored
surface

Plastic film ‘/

Step 2: Pipette 2 pL water sample onto aluminum
and keep substrate immobile during drying

Water evaporation

\v11 17
e i

Water
droplet

Coffee ring effect transports
particles to droplet edge

Step 3: Allow water to evaporate

Water evaporation

RRRER
[

Less soluble salt
crystals form first

Droplet
edge
pinned

Step 4: Allow water to evaporate

Water evaporation

NRREN

More soluble salt
crystals form later

lDropIet
edge

pinned

Figure 6.1: The experimental procedure includes depositing two microliter droplets of
an aqueous solution onto an aluminum substrate and allowing it to dry without
movement.

PARTICLE MEASUREMENT AND PCA

Particke Images wieh
srilar partcie
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function
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regrorprops BRUTE S i
function

Matlab Matb
imlow

function

Python

IMAGE PCA

e 8 Simdar images
Grey scale -
Python
fMpy ARy
and pca
functions

Figure 6.2: Image analysis pipeline in MATLAB and Python.
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8filtersin 16filtersin 1600 neurons 512 neurons 32 neurons 6 classes
size 59 x 59 size 10 x 10
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image
yO [y O/»0
|
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Y
First convolution Second convolution First full Second fully  Third fully Output
layer layer connected Connected connected layer
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Figure 6.3: A schematic of the convolutional neural network (CNN) model.

Scree Plot for all 60 images
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Figure 6.4: PCA on the nanochromatography image files for simplified synthetic waters

(five replicates of twelve mixtures of salts).
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EXPLANATION

Great Lakes Water Authority
Lake Michigan source

Ton exchange

Minimally treated groundwater
Lime softened

Untreated groundwater
Reverse osmosis

CH EA A

CATICNS ANICNS

Figure 6.5: Trilinear classification of tap water samples organized by treatment technology.
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Figure 6.6: Test dataset accuracies by class.
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Figure 6.7: Autosampler for coffee-ring effect nanochromatography experiment.
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Figure 6.8: Autosampler for coffee-ring effect nanochromatography experiment.
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Figure 6.9: Autosarhpler for coffee-ring effect nanochromatography experiment.

Figure 6.10: Autosampler for coffee-ring effect nanochromatography experiment.
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Figure 6.12: Autosampler for coffee-ring effect nanochromatography experiment.

219



Cr.
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Figure 6.14: Trilinear plot for water samples.
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Table 6.11: PERMANOVA clustering result

Experiment
condition
Temperature,
Relative Humidity

20-23 °C 23-26 °C 26-29 °C

35%-40%

40%-45%

45%-50%
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Table 6.12: ANOSIM of particles CRE residue features

Temperature C
Relative Humidity
(p-value)

Bar plots

20-23 °C, 35%-40%

Dissimilarity rank

100 150 200 250 300

50

R= 0.634, P= 0.001

[
: .
! i
i
-
T T i
i ! i
i
I
I
! i
3 :
i
| -
| i
i I
i
; B H
: + T T 4
T T T T T T
Between sample1 sample2 sample3 sample4 sample5

Sample class
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Table 6.12: (cont’d)

R = 0.537, P = 0.001

o
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o
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Table 6.12: (cont’d)

R = 0.546, P = 0.001
o
3 ‘
i
i
o |
0 0
23-26 C, 35%-40% 2 !
-
i
o . !
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N | e |
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R=0.771, P= 0.001
o
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o i
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o
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Table 6.12: (cont’d)

23-26 °C, 45%-50%

300

250

R=0.72, P= 0.001
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Table 6.12: (cont’d)

R=0.792, P= 0.001
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Table 6.13: ANOSIM of CRE residue pattern area. Images are arranged in two orientations:
from left to right across the top row, numbered 1 to 25, and from top to bottom along the
left column, also numbered 1 to 25.

Temperature R o o
& Rh 20-23 °C 23-26 C 26-29 C

35%-40%

40%-45%

45%-50%

Color bar
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Table 6.14: CMDS of CRE residue pattern area. Red circle represents water sample A;
green circle represents water sample B; blue circle represents water sample C; yellow circle
represents water sample D; purple circle represents water sample E. The three axes are
labeled as Dimension 1, Dimension 2, and Dimension 3.

Temperature
€ Relative | 50 53°c 23-26°C 26-29 °C
Humidity
(p-value)

35%-40%

40%-45%

45%-50%

Color bar @ water sample 1 @ watersample 2 water sample 3 @ water sample 4 @ water sample 5
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Table 6.15: ANOSIM of CRE residue pattern perimeter. Images are arranged in two
orientations: from left to right across the top row, numbered 1 to 25, and from top to
bottom along the left column, also numbered 1 to 25.

Temperature R o o
& Rh 20-23 °C 23-26 C 26-29 C

35%-40%

40%-45%

45%-50%

Color bar
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Table 6.16: CMDS of CRE residue pattern centroid perimeter. Red circle represents water
sample A; green circle represents water sample B; blue circle represents water sample C;
yellow circle represents water sample D; purple circle represents water sample E. The three
axes are labeled as Dimension 1, Dimension 2, and Dimension 3.

Temperature
€ Relative | 50 53°c 23-26°C 26-29 °C
Humidity
(p-value)

35%-40%

40%-45%

45%-50%

Color bar @ water sample 1 @ watersample 2 water sample 3 @ water sample 4 @ water sample 5
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Table 6.17: ANOSIM of CRE residue pattern centroid. Images are arranged in two
orientations: from left to right across the top row, numbered 1 to 25, and from top to
bottom along the left column, also numbered 1 to 25.

Temperature R o o
& Rh 20-23 °C 23-26 C 26-29 C

35%-40%

40%-45%

45%-50%

Color bar
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Table 6.18: CMDS of CRE residue pattern centroid. Red circle represents water sample
A; green circle represents water sample B; blue circle represents water sample C; yellow
circle represents water sample D; purple circle represents water sample E. The three axes
are labeled as Dimension 1, Dimension 2, and Dimension 3.

Temperature
€ Relative | 54 53°c 23-26 °C 26-29 °C
Humidity
(p-value)

35%-40%

40%-45%

45%-50%

Color bar @ water sample 1 @ watersample 2 water sample 3 @ water sample 4 @ water sample 5
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Table 6.19: ANOSIM of CRE residue pattern eccentricity. Images are arranged in two
orientations: from left to right across the top row, numbered 1 to 25, and from top to
bottom along the left column, also numbered 1 to 25.

Temperature o o .
& Rh 20-23 C 23-26 C 26-29 C

35%-40% ‘ =
e iEf

P!
Ttn
il

40%-45% I-j =
!
| |
|

45%-50% e -j'l'l I' : | - t.—.-,. =

s
B R
|
1
"

1 I

0.0 0.2 04 0.6 0.8 1.0
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Table 6.20: CMDS of CRE residue pattern eccentricity. Red circle represents water sample
A; green circle represents water sample B; blue circle represents water sample C; yellow
circle represents water sample D; purple circle represents water sample E. The three axes
are labeled as Dimension 1, Dimension 2, and Dimension 3.

Temperature
C Relative | 5y 93¢ 23-26 °C 26-29 °C
Humidity
(p-value)

35%-40%

40%-45%

45%-50%

Color bar @ watersample 1 @ watersample2  water sample 3 @ water sample 4 @ water sample 5
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Table 6.21;

Two-way ANOVA for Carbon, Chlorine and Sulfur elements

Condition A
F .
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 4.05x10° | 1.01 x 10° | 151 < 2x1Q716 | ok
Element 2 7.72 %107 | 3.86 x 107 | 5751 <2 x 10710 | ok
Class:Element | 8 1.42x107 | 1.78 x 10° | 256.8 | <2 x 107'¢
Residuals 1018 “ 1 7.93x101° | 6713
Condition B
F .
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 6.42x10% | 1.6 x 10° 2458 | <2x10716 | ok
Element 2 4.64x107 | 2.32x 107 | 3546 | <2 x 10710 #xk
Class:Element | 8 1.25x107 | 1.56 x 10° | 239.7 | <2 x107'¢
Residuals 1034 | 8.12x10" | 6537
Condition C
F .
>
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 1.25x107 | 3.13 x 10° | 467.1 | <2x10716 | #%x*
Element 2 7.58x 107 | 3.79 x 107 | 5645 <2 x 10710 | ok
Class:Element | 8 2.34x107 | 292 x10° | 4348 | <2x107'¢
Residuals 16%7 | 7.83x10 | 6714
Condition D
F
Pr(>F ig.
Df Sum Sq Mean Sq value r(>F) sig
Class 4 1.18 x 107 | 2.96 x 10° | 442.8 | <2x]107 16 |
Element 2 1.16 x10° | 5.80 x 10" | 8677 <2 x 10710 | ok
Class:Element | 8 3.17x107 | 3.96 x 10° | 5922 | <2x107'°
Residuals 10%9 1 7.02x101° | 6686
Condition E
F
Pr(>F ig.
Df Sum Sq Mean Sq value r(>F) sig
Class 4 3.87x10° | 9.68 x 10° | 1483 | <2x10716 | #k=
Element 2 3.36x 107 | 1.68 x 107 | 2568 <2 x 10710 | ok
Class:Element | 8 8.06x10° | 1.00 x 10° | 1543 | <2x1071'°
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Table 6.21: (cont’d)

Residuals 1636 | 8.26x101 | 6532
Condition F
F .
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 1.04x 107 | 2.61 x 10° | 387.3 | <2x10716 | ##x*
Element 2 5.92x107 | 2.96 x 107 | 4398 <2 x 10710 | ok
Class:Element | 8 2.13x107 | 2.67 x10° | 396.9 | <2x107'¢
Residuals 1030 | 8.13x10" | 6733
Condition G
F .
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 1.07 x 107 | 2.67 x 10° | 400.1 | < 2x10716 |
Element 2 6.12x 107 | 3.06 x 107 | 4575 <2 x 10710 | kx
Class:Element | 8 2.54x107 | 3.18 x 10° | 4754 | <2x107'¢
Residuals 1032 1 8.19x10" | 6688
Condition H
F
Pr(>F i
Df Sum Sq Mean Sq value r(>F) sig.
Class 4 6.66x 10° | 1.67 x 10% | 245.8 | <2x10Q716 | #xx*
Element 2 6.25x107 | 3.12x 10" | 4609 <2 x 10710 | ok
Class:Element | 8 1.32x107 | 1.65x 10° | 244.1 | <2x107'¢
Residuals 10%9 1 8.09x101 | 6778
Condition I
F
Pr(>F ig.
Df Sum Sq Mean Sq value r(>F) sig
Class 4 5.07x10% | 1.27 x 10° | 187.7 | <2x10716 | #k=
Element 2 4.87x107 | 2.44x 10" | 3605 <2 x 10710 | ok
Class:Element | 8 1.81x107 | 226 x 10° | 3349 | <2x107'¢
Residuals 10%9 1 8.01x101° | 6757
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Table 6.22: Two-way ANOVA for Calcium, Magnesium and Sodium elements

Condition A
F .
>
Df Sum Sq Mean Sq value Pr(>F) sig.
Cl .
o 4 847x 104 | 211 x104 | >1% 00132 | *x
El t
emen 2 370 %107 | 1.85x 107 | 2700 | <2x10-16] ***
Class:El t .
T 135x 106 | 1.69x 105 | 22! | <2x10-16
Residual
i 135%107 | 9.07x1010 | 6701
Condition B
F .
>
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 3.85%x10° | 9.63 x 10° 146.1 < 2x10Q716 | ek
Element 2 3.80x 107 | 1.90 x 107 | 2887 <2 x 10716 ] ek
Class:Element | 8 5.97x10° | 7.46 x 10° 113.2 <2 x 10716
7
Residuals L3101 9 07x100 | 6393
Condition C
F .
>
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 138 10° | 3.45% 10° | 5145 | <2x10 1© | #=
Element 2 3.87x 107 | 1.93 x 107 | 2882 | <2 x 10 16| ***
Class:Element | 8 6.36x 10° | 7.95x10° | 118.52 | <2 x 107'°
7
Residuals L30T 5 ox100 | 6708
Condition D
F .
>
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 2.17x10° | 5.42 x 10° &1.05 < 2x1Q716 | ek
Element 2 5.11x107 | 2.56 x 107 | 3817 <2 x 10716 ] ek
Class:Element | 8 595x10° | 7.43 x 10° | 111 <2 x 107'6
7
Residuals 136107 9 12101 | 6699
Condition E
F .
>
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 1.42x10° | 3.56 x 10° 54.01 < 2x1Q716 | wkx
Element 2 2.36x 107 | 1.18 x 107 1791 <2 x 10716 ] ek
Class:Element | 8 927x10% | 1.15x10° | 175.8 | <2 x 107!
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Table 6.22: (cont’d)

7
Residuals LAO0T 9 3041010 | 6587
Condition F
F .
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 6.67x10° | 1.67 x10° | 24.82 | <2x10716 | #*x
Element 2 3.16 x 107 | 1.58 x 107 | 2354 <2 x 10716 | wkx
Class:Element | 8 2.74x10° | 3.42x10° | 51.05 | <2x1071¢
Residuals 103 8 | 9asx101 | 6714
Condition G
F .
Df Sum Sq Mean Sq value Pr(>F) sig.
Class 4 6.40x10° | 1.60 x 10° | 23.87 | <2x10716 | #*=
Element 2 2.72x107 | 1.35x 107 | 2017 | <2 x 10716 #xx
Class:Element | 8 2.98x10°% | 3.72x 10° | 55.66 | <2x107'¢
Residuals 10’:’9 “ 1 9.31x10" | 6698
Condition H
F
Pr(>F ig.
Df Sum Sq Mean Sq value r(>F) sig
Class 4 2.74x10° | 6.85x 10* | 10.18 | <2x10Q716 | #x
Element 2 3.11x107 | 1.55x 107 | 2311 <2 x 1Q716 | Hekx
Class:Element | 8 2.02x107 | 2.52x10° | 3747 | <2x1071¢
Residuals 1637‘7 | 9.28x10 | 6732
Condition I
F
Pr(>F i
Df Sum Sq Mean Sq value r(>F) sig.
<
Class 4 5.05%10° | 1.26 x 10° | 18.78 10_115'88 | e
Element 2 4.21x107 | 2.10 x 10" | 3132 <2 x 1Q716 | Hekx
Class:Element | 8 2.26x10° | 2.83 x 10° | 42.07 | <2x107'¢
Residuals 1636 1 9.19x101 | 6728

238




Table 6.23: Heat map of particle area, eccentricity and element compositions

Temperature

C Relative | 5 53+ 23-26 °C 26-29 °C

Humidity

(p-value)

35%-40% o o o B - [
IODM | " 007 008005
100. I , ... ) .. ; 1‘00 o 001

- . RN -0.01 | 0.00
40%-45%

45%-50%

100

Color bar

0.00 0.05 0.10 0.15 0.20
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Table 6.24: Nanochromatography images under condition A, 20-23 °C, 35%-40%

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5
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Table 6.25: Nanochromatography images under condition B, 20-23 °C, 40%-45%

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5
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Table 6.26: Nanochromatography images under condition C, 20-23 °C, 45%-50%

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5
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Table 6.27: Nanochromatography images under condition F 23-26 °C, 45%-50%

Replicate 1

elefelole

Replicate 2

Replicate 3

Replicate 4

Replicate 5
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Table 6.28: Water samples recipe of table A for stage 2

Table 1
MgCl; 0.45 mM,
NaHCOs 025 | CaCh mM | 0.5 0.75 1.0 1.5 |2
mM
MgSOs (mM)
0.25 I |2 |3 |4 |5
0.5 6 |7 |8 |9 |10
0.75 11 |12 |13 |14 | 15
1.0 16 |17 |18 | 19 | 20
2.0 21 |22 |23 |24 |25
Table 6.29: Water samples recipe of table B for stage 2
Table 2
ANlif[lé 0?'3'55 nrlnl\l/\f CaCL, mM | 05| 075/ 1.0 | 1.5 | 2
MgSOs (mM)
0.25 1 2 3 4 5
0.5 6 7 8 9 10
0.75 11 |12 |13 |14 | 15
1.0 16 |17 | 18 |19 | 20
2.0 21 |22 |23 (24 |25
Table 6.30: Water samples recipe of table C for stage 2
Table 3
ANlif[lé 0?'3% 5%1\1\44’ CaCl, mM | 05| 0.75) 1.0 | 1.5 | 2
MgSOs (mM)
0.25 1 2 3 4 5
0.5 6 7 8 9 10
0.75 11 |12 |13 |14 | 15
1.0 16 |17 | 18 |19 | 20
2.0 21 |22 |23 |24 |25
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Table 6.31: Water samples recipe of table D for stage 2

Table 4

ANlif[lé 03?.50 nrlnl\l/\f CaCL, mM | 05075 1.0 | 1.5 |2

MgSO; (mM)

025 T |2 |3 |4 |5

0.5 6 |7 |8 |9 |10
0.75 112 |13 |14 |15
1.0 16 | 17 [ 18 | 19 |20
2.0 21 |22 |23 | 24 | 25

Table 6.32: Water samples recipe of table E for stage 2

Table 5

ANlif[lé 0?';‘?0 nrlnl\l/\f CaCL, mM | 05075 1.0 | 1.5 |2

MgSO; (mM)

025 T (2 [3 |4 |5

0.5 6 |7 |8 |9 |10
0.75 112 |13 |14 |15
1.0 16 | 17 |18 | 19 |20
2.0 21 |22 |23 | 24 | 25
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Figure 6.15: TwoVtMoM Chlorine-Sulfur mass ratio. Targets Chlorine-Sulfur mass ratio vs
predictions Chlorine-Sulfur mass ratio. Marker colors relates target Chlorine-Sulfur ratio

value.
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Figure 6.16: TwoVtMoM of water samples hardness category classification results
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Figure 6.17: TwoVtMoM of water samples trilinear plot.
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