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ABSTRACT 
 

In the first stage, a low-cost tap water fingerprinting technique was explored 

using the coffee ring effect, which produces distinguishable residue patterns after tap 

water evaporates. This technique was evaluated by photographing tap water droplets 

from different communities in southern Michigan with a cell phone camera and 30x 

loupe. A convolutional neural network (CNN) model was then trained using the 

images to group the tap waters with similar water chemistry, achieving 80% accuracy. 

Further experiments were conducted to determine the influence of lower 

concentration species in the tap water "fingerprint". By analyzing the residue patterns 

from salt mixtures with varying concentrations of sodium, calcium, magnesium, 

chloride, bicarbonate, and sulfate, it was found that the residue patterns are unique and 

reproducible, and are associated with the water chemistry of the sample. Principal 

component analysis (PCA) was also applied to the image files and particle 

measurements, further highlighting differences in the residue patterns. The results 

suggest that the residue patterns of tap water, imaged with a cell phone camera and 

loupe, contain valuable information about the composition of tap water, and the coffee 

ring effect should be further studied for potential use in low-cost tap water 

fingerprinting. 

The second stage examined the coffee-ring effect for tap water component analysis 

using synthetic samples with varying concentrations of ions. A custom four-axis 

autosampler was built using Raspberry Pi, a 3D printer stage, and programmed 

with Ubuntu and Python 3.7. The experiment was conducted in a controlled 

temperature and humidity chamber. SEM images, EDS mapping, and particle features 

extracted from photographs were analyzed using statistical methods. Optimal 



conditions were identified as 23-26°C with 45%-50% humidity, 20-23°C with 45%-50% 

humidity, and 26-29°C with 40%-45% humidity, showcasing the coffee-ring effect as a 

low-cost, effective technique for tap water analysis. In the third stage, three models 

were evaluated in this research: the One-stage point estimation model (OnePeM), the 

Two-stage vision-transformer point estimation model (TwoVtPeM), and the Two-stage 

vision-transformer multiple output estimation model (TwoVtMoM). The TwoVtPeM 

technique achieved the best performance of the models tested (OnePeM, TwoVtPeM 

and TwoVtMoM), with OnePeM also performing well and TwoVtMoM falling short. 

The TwoVtPeM relative percentage errors were ±17.1% for oxygen, ±4.5% for sulfur, 

±19.9% for sodium, ±5.7% for chlorine, ±19.8% for calcium, ±25.8% for 

magnesium, and ±20.1% for carbon. The R2 was 0.95 which is higher than 

OnePeM with 0.90 R2 and TwoVtMoM which was 0.54. The TwoVtPeM had a higher 

error mean than OnePeM, but it exhibited lower relative standard deviations of 

estimation; the TwoVtPeM relative standard deviations values were: 3.9% for oxygen, 

3.0% for sulfur, 5.3% for sodium, 3.9% for magnesium, 5.3% for chlorine, 10.0% 

for calcium, and 5.9% for carbon. Moreover, 79.2% of water samples were correctly 

classified for hardness based on the estimated element concentrations by TwoVtPeM. 

Compared to strip test kits, this technology offers advantages such as speed, low cost, 

and the ability to simultaneously estimate multiple contaminants. However, 

addressing certain limitations, such as the quality of the substrate used and the size and 

complexity of the dataset and models, is essential. The TwoVtMoM is underfitting 

and requires additional training epochs and fine-tuning. Overall, this research 

demonstrates a promising technique for water quality analysis, providing a low-cost, 

fast, and relatively accurate method for estimating water contaminant concentrations. 
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skills to create a healthier, more sustainable future for all. 
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CHAPTER 1 

Introduction 

1.1 Need for innovation in drinking water monitoring 

The need for innovation in drinking water monitoring is growing due to increased 

awareness of the impact of contaminated water on human health and the environment. 

Current monitoring methods are often expensive, time-consuming, and reliant on manual 

analysis. As a result, there is a pressing need for more efficient, cost-effective, and reliable 

methods to monitor drinking water quality. Innovations in technologies, such as sensors 

and machine learning, have the potential to revolutionize drinking water monitoring by 

providing real-time data and reducing the need for manual analysis. In addition, 

incorporating these technologies into drinking water monitoring systems can help to 

address the current challenges of limited resources and expertise in many communities, 

leading to better access to safe and clean drinking water for all. 

1.2 Coffee-ring effect introduction 

1.2.1 What is coffee-ring effect? 

The coffee-ring effect is a low-cost method for separating particles in aqueous samples. It 

occurs when a water droplet shrinks in height and its particles are squished into concentric 

circles based on size as the droplet dries on a hydrophobic substrate Wong et al. [2011]. 

This phenomenon is known as "nanochromatography" and has been used to separate 

particles with resolutions of 100 nm at low particle volume fractions Wong et al. [2011]. 

The separation is possible due to the differential effects of adhesion and surface tension 

forces, which move larger particles towards the center of the drop and hold smaller 

particles in place at the drop edge. 
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1.2.2 Several factors in pattern formation of crystals in the coffee-ring 

effect process 

Takhistov and Chang and other researchers found coffee-ring effect (CRE) depends on 

temperature, concentration of particles and substrate hydrophobicity. film and solutal flux 

dynamics of such small drops at their contact lines can induce macroscopic concentration 

segregation and produce distinct large-scale stain patterns such as concentric rings on 

hydrophilic surfaces and latticed crystals on hydrophobic ones. Coupling between these 

bulk segregation instabilities and the classical Mullins-Sekerka crystallization instability 

results in a large variety of crystal patterns with interwoven complex structures of two 

length scales. Furthermore, low density crystals can occupy a larger area than the initial 

drop, and gravitational drainage on inclined substrates can change the larger length scale. 

Takhistov and Chang [2002], Shahidzadeh-Bonn et al. [2008], Zhong et al. [2017]. 

Researchers also found polyelectrolyte concentration and humidity have effects on pattern 

formation Kaya et al. [2010]. Shin also demonstrated solubility, evaporation rate and 

mobility of the contact line determines the pattern of formed crystals in the coffee-ring 

effect Shin et al. [2014]. Lee proved the degree of supersaturation affects the nucleation 

pathways of potassium dihydrogen phosphate solution droplet Lee et al. [2016]. It is also 

found in the evaporation process of NaCl, the hydrophobicity (wettability) of substrate has 

effects on formed crystal pattern. On hydrophilic surface, ringlike crystalline deposit 

surrounded by a small spreading film formed and on hydrophobic surface, a close-up of the 

cauliflower-like pattern on the residue border was formed. And degree of saturation has 

effects on crystals pattern of Na2SO4 Shahidzadeh-Bonn et al. [2008]. Researchers found 

salts concentration and wettability have effects on the formation of crystal pattern Zhong et 

al. [2017]. 
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1.2.3 Understanding the mechanism of coffee-ring effect 

In terms of numerical approaches, a variety of studies have been conducted on the pattern 

formation of evaporating suspensions containing dissolved nanoparticles, employing 

Monte Carlo models Kim et al. [2011], Stannard [2011], Robbins et al. [2011], Brownian 

dynamics Gupta and Peters [1985], Chen and Kim [2004] and physical microfluid 

mechanism modeling Kang et al. [2016], Fischer [2002], Shmuylovich et al. [2002], 

Pauchard and Allain [2003], Popov [2005], Heim et al. [2005]. 

Previous study investigated a computational Monte Carlo method approach for 

estimating the ring-like deposition of nanoparticles contained in a drying liquid 

droplet Kim et al. [2011].  The investigation of non-equilibrium dewetting 

processes in nanoparticle-containing solutions revealed various pattern for example ring-

like structures formations and other underlying mechanisms Stannard [2011]. A dynamic 

density functional theory was developed to replicate branched ’flower-like’, labyrinthine, 

and network structures and this model was used to examine the effects of solvent 

evaporation, as well as the diffusion of colloidal particles and liquid across the surface. 

Robbins et al. [2011]. A study demonstrated the formation of coffee stains necessitates 

specific boundary conditions, such as pinning boundaries Yunker et al. [2011]. A model 

based on the bulk flow within the drop transporting particles to the interface where 

they are captured by the receding free surface and subsequently transported along the 

interface until they are deposited near the contact line was investigated Kang et al. [2016] A 

review of recent studies can be found in Larson [2014]. 

1.2.4 Crystal structure prediction with energy minimization  

Material synthesizing is an active area both in research and industry. Once a material 

is finally synthesized and characterized, its properties can be evaluated in the 
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engineering design process. However, to synthesize the desired material, most applications 

require an optimization of multiple properties which may be interrelated. In field of 

thermoelectrics, materials are compared to one another using a figure of merit. In this 

equation, S is the Seebeck coefficient, σ is the electrical conductivity, χ is the thermal 

conductivity, and T is temperature. However, the material properties σ, χ, and S are all 

interrelated. For example, electrical conductivity is positively related with high carrier 

concentration, whereas Seebeck coefficient is negatively related with carrier concentration 

to increase zT. In addition, thermal conductivity also increases with carrier concentration 

which in turn decreases zT. Therefore, optimization of thermoelectric materials requires a 

compromise between these properties. Also, the most significant advances in this field have 

come from identifying new compounds which exhibit a better intrinsic balance in these 

properties Graser et al. [2018]. 

1.2.5 Coffee-ring effect applications 

Understanding and controlling the process of solute deposition in the presence of coffee-ring 

effect is important in manufacturing processes involving evaporation on surfaces including 

printing Park and Moon [2006], Friederich et al. [2013], Kuang et al. [2014], Sun et al. [2015], 

Huang and Zhu [2019] and fabrication of ordered structures Han and Lin [2012], functional 

nanomaterials Shao et al. [2014], Zou and Kim [2014] and colloidal crystals Park et al. [2006], 

Cui et al. [2009]. coffee-ring effect also improves the performance of commercial applications 

including fluorescent microarrays Blossey and Bosio [2002], Dugas et al. [2005], matrix 

assisted laser desorption ionization (MALDI) spectrometry Hu et al. [2013], Mampallil et al. 

[2012], Kudina et al. [2016], Lai et al. [2016], and surface enhanced Raman spectroscopy 

(SERS) Zhou et al. [2014a], Wang et al. [2014], Garcia-Cordero and Fan [2017]. coffee-

ring effect has also implications in plasmonics Li et al. [2016a], solute separation Wong et 
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al. [2011], diagnostics Brutin et al. [2011], Wen et al. [2013], Gulka et al. [2014] and 

electronics applications de Gans and Schubert [2004]. 

Suppression of coffee-ring effect 

Coffee-ring effect can be suppressed through one of the three physical strategies (i) 

preventing the pinning of the contact line; (ii) disturbing the capillary flow towards the 

contact line and (iii) preventing the particles being transported to the droplet edge by the 

capillary flows. The coffee-ring effect could be suppressed by preventing contact line 

pinning using hydrophobic surfaces. Increasing the hydrophobicity of surfaces is often 

accompanied by decreasing contact angle hysteresis (CAH) Eral et al. [2013]. Lower CAH 

in essence means reduced contact line pinning which leads to suppression of coffee-ring 

effect. Lower CAH could be achieved by patterning of controllable surface wettability as 

reviewed previously by Tial et al. Tian et al. [2013]. These methods include chemical 

modification Ko et al. [2004], Tian et al. [2013], Li et al. [2018] and physical modification 

Yunker et al. [2011]. 

On hydrophobic and partially hydrophobic surfaces, pinning can even occur when the 

CAH or solute concentration is high. If CAH is high, during the contact angle 

decreases to the receding angle, typically a few seconds depending upon the rate of 

evaporation, solutes can accumulate at the contact line. Such accumulation produces ring-

like deposits only if the duration of pinning is above a critical value for a given 

substrate-solute system 

Moraila-Martinez et al. [2013]. However if the pinning time is short, even with high initial 

solute concentration, the coffee-ring effect will just produce smaller inner rings Nguyen et 

al. [2013]. The nanoparticles are more prominent to form ring like patterns compared with 

larger particles as they can flow into the microscopic regions of the droplet edge faster. In 
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the presence of solute particles in the droplet, electrowetting (EW) can reduce the pinned 

contact line on (partially)-hydrophobic surfaces Mugele and Baret [2005], Li and Mugele 

[2008]. A droplet is deposited on a dielectric layer covering an electrode. When a voltage 

is applied between the droplet and the electrode an electric force pulls the contact line 

outward, overcoming the pinning forces so the contact line pinning is reduced. The coffee-

ring effect can also be suppressed by vibration and acoustics, marangoni flow and other 

factors Mampallil and Eral [2018]. Researchers have also proposed a method that relies on 

the covalent cross-linking of monodisperse materials, which allows for the formation of thin 

films with uniform thicknesses and macroscale cohesion. This approach prevents the 

coffee-ring effect by inducing gelation of the coating materials through a thioacetate-

disulfide transition, counterbalancing the capillary forces generated by evaporation Li et al. 

[2018]. 

Enhancing coffee-ring effect 

Evaporation of droplets can be utilized as a method to concentrate its solutes in it. 

Evaporation of the solvent can increase the analyte concentration making the reactions 

more probable Hernandez-Perez et al. [2016], De Angelis et al. [2011]. Concentrating 

solutes at the rim of the droplet by coffee-ring effect is called the self-ordered ring (SOR) 

method. It acts as a pre-concentration procedure before other analyses. The deposition of 

solutes and particles are exploited as a pre-concentration method 1.1. To enhance the 

coffee-ring effect, hydrophobic surface is usually used as the substrate. Drying process on 

hydrophobic surfaces forms smaller rings with higher solute density as the contact line is 

pinned only in the later stages of the evaporation. Liu et al. demonstrated that the SOR 

method enhanced the fluorescence detection of orally administrated berberine in human 

urine Liu et al. [2002]. Similarly, fluorescent detection of trace levels of tetracycline 
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Huang et al. [2004a], quinidine sulfate in serum samples Yang and Huang [2006] and 

fluorescein Liu et al. [2006] was demonstrated based on the SOR method. Coffee-ring 

effect could facilitate identifying pathogens which are associated with diseases by isolating 

the disease markers from body fluids Wong et al. [2011], Chen and Evans [2010]. 

The coffee-ring effect has been found to have several practical applications in various 

fields. In particular, it has been utilized to enhance the deposition of gold nanoparticles 

(AuNPs) on cellulose nanofibers (CNFs) for the purpose of improving surface-enhanced 

Raman scattering (SERS) as reported in several studies Chen et al. [2017], Wang et al. 

[2014], Hussain et al. [2019], Juneja and Bhattacharya [2019], Zhou et al. [2014b]. The 

coffee-ring effect has also been used as a low-cost approach for malaria diagnosis Gulka et 

al. [2014]. Additionally, the coffee-ring effect has shown potential for monitoring tap 

water quality with the help of deep neural networks Li et al. [2020]. 

Furthermore, the coffee-ring effect has the potential to aid in identifying pathogens 

associated with various diseases by isolating disease markers from body fluids Wong et al. 

[2011], Chen and Evans [2010]. These findings demonstrate the versatile and practical 

applications of the coffee-ring effect in various fields. 
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Figure 1.1: Suppression and Enhancement of coffee-ring effect. Comparison of different 

methods. The working principle, advantages and limitations are illustrated. 
 

1.3 Machine-Learning Models in water treatment and modeling 

The table referred to as Table 1.1 provides a summary of AI and ML models and 

methods used in water treatment and modeling applications. It highlights their general and 

specific uses, as well as the advantages and disadvantages of each method. The final 

column includes references to peer-reviewed textbook sources that offer comprehensive and 

in-depth explanations of these models and methods. Although the table may not cover every 

aspect of water treatment and modeling, the applications selected are based on a well-defined 
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methodology. It is worth noting that the majority of the ML methods listed in the table fall 

under the "black-box" category, which is generally considered a drawback for most models. 

However, the exception to this are Genetic Algorithms (GA) and Gaussian Processes (GPs). 

1.3.1 Image analysis via convolutional neural network (CNN) 

The basic ideas underlying the use of convolutional neural networks (CNNs, also 

known as ConvNets) for inverse problems are not innovative. For more historical 

perspective, see Schmidhuber [2015], Li et al. [2016b], and for an accessible introduction 

to deep neural networks and a summary of their recent research, see LeCun et al. [2015], 

Schwendicke et al. [2019], Brinker et al. [2018]. The CNN architecture was proposed in 

1986 in RUMBERT [1986] and were developed for solving inverse imaging problems 

as early as 1988 Zhou et al. [1988]. These approaches, which used networks with a few 

parameters and did not always include learning, were largely superseded by compressed 

sensing (or, broadly, convex optimization with regularization) approaches in the 2000s. As 

computer hardware improved, it became feasible to train larger and larger neural networks, 

until, in 2012, Krizhevsky et al. Krizhevsky et al. [2017] achieved a significant 

improvement over the state of the art on the ImageNet classification challenge by using a 

GPU to train a CNN with 5 convolutional layers and 60 million parameters on a set of 1.3 

million images. This work spurred a resurgence of interest in neural networks, and 

specifically CNNs, for not only computer vision tasks, but also inverse problems and more. 

With the development of CNN models, both accuracy and operation have increased 

dramatically. 

Basic CNN components 

There are numerous variants of CNN architectures in the literature.  However, their 

basic components are the same. They all consist of three types of main layers, namely 
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convolutional, pooling, and fully-connected layers. The convolutional layer aims to learn 

feature representations of the inputs, for example human eyes features, nose features or 

objects. As shown in Figure. 1.2 Convolution layer is composed of several convolution 

kernels which are used to compute different feature maps. Specifically, each neuron of a 

feature map is connected to a region of neighbouring neurons in the previous layer. This 

neighbourhood is referred to as the neuron’s receptive field in the previous layer. The new 

feature map can be obtained by first convolving the input with a learn-able kernel and then 

applying an element-wise nonlinear activation function on the convolved results. After the 

activation function, a pooling layer is normally applied to the feature map to filter the high 

frequency noise. The complete feature maps are obtained by using several different kernels 

with the same or different activation and pooling functions Gu et al. [2018]. Mathematically, 

the	feature	value	at	location	(i,	j)	in	the	kth	feature	map	of	lth	layer,	𝑧!,#,$% 	is	calculated	by	

the	equation:	

𝑧!,#,$% = 𝑤$%𝑥!,#% + 𝑏$% 																																																									 (1.2) 

Where 𝑤$%  and 𝑏$%  are the weight vector and bias term of the kth filter of the lth layer 

respectively,	and	𝑥!,#% is	the	input	patch	centered	at	location	(i,	j)	in	the	previous	layer,	the	 

lth	layer.	It	worth	to	know	that	the	kernel	𝑤$% that	generates	the	feature	map	𝑧!,#,$% is	shared	

but	 there	 are	 several	 different	 kernels	 generated	 and	 learned	 in	 the	 model	 building	

process	 
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Figure 1.2: The architecture of the LeNet-5 network works well on digit classification task. 

 
Such a weight sharing mechanism has several advantages such as it can reduce the model 

complexity and make the network easier to train. At the same time, to not loose 

generality and information, several kernels is trained and implemented in the model 

structure. The activation function introduces nonlinearities to CNN, which are desirable for 

multi-layer networks to detect nonlinear features Gu et al. [2018]. The activation function 

are normally Sigmoid function, ReLU function, Tanh function and their derivatives LeCun 

et al. [2012], Hinton [2010]. Let a(·) denote the nonlinear activation function. The 

activation value a(i, j, k) of convolutional feature zl can be computed as 

𝑎!,#,$% = 𝑎)𝑧!,#,$% *																																																									 (1.2) 

The pooling layer aims to achieve shift-invariance and information aggregation by 

reducing the dimension of the feature maps in the previous layer. It is usually placed 

between two convolutional layers. Each feature map of a pooling layer is connected 

to its corresponding feature map of the preceding convolutional layer. Denoting the 

pooling function as pool(·), each feature map al could be denoted as: 

𝑌 = 𝑝𝑜𝑜𝑙 /𝑎{',(,$}
{%} 0																																																							 (1.3) 

In this equation, where Rij is a local neighbourhood around location (i, j). The typical 

pooling operations are average pooling Wang et al. [2012] and max pooling Boureau et al. 
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[2010], Murray and Perronnin [2014]. The kernels in the lower convolutional layers are 

designed to detect low-level features such as edges and curves, while the kernels in higher 

layers are learned to detect more abstract features. By stacking several convolutional, 

activation and pooling layers, the model could gradually extract higher-level feature 

representations. 

After the convolutional and pooling layers, there may be one or more fully-connected 

layers which aim to perform high-level reasoning Simonyan and Zisserman [2014], Zeiler 

and Fergus [2014], Hinton et al. [2012]. They take all neurons in the previous layer and 

connect them to every single neuron of current layer to generate global semantic 

information. Note that fully-connected layer not always necessary as it can be replaced by 

a 1 x 1 convolution layer Lin et al. [2013], Saxena and Verbeek [2016]. The last layer of 

CNNs is an output layer. Softmax operator is commonly used for classification tasks 

Russakovsky et al. [2015]. Another commonly used method is SVM, which can be 

combined with CNN features to solve different classification tasks Tang [2013], Madjarov 

et al. [2012]. Let θ denote all the parameters of a CNN (e.g., the weight vectors and bias 

terms). The optimum parameters for a specific task can be obtained by minimizing an 

appropriate loss function defined on that task. Suppose we have N desired input-output 

relations (xn, yn); n ∈ [1, ..., N ], where xn is the n-th input data, yn is its corresponding 

target label and on is the output of CNN. 

The aim of training CNN is a problem of global optimization. However, in practice, 

it is often a local minimum problems and by minimizing the loss function. Stochastic 

gradient descent is a common solution for optimizing to find the best fitting set of 

parameters.  

The loss of CNN can be calculated as follows: 
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𝐿 = *
+
∑ 𝑙(q; 𝑦(, 𝑜()+
(,*      (1.4) 

Recent advances in convolutional neural networks 

Since 2006, many methods have been developed to overcome the difficulties encountered 

in training deep CNNs Niu and Suen [2012], Russakovsky et al. [2015], Simonyan and 

Zisserman [2014], Szegedy et al. [2015]. For example, the CNN model proposed by 

Krizhevsky et al. showed significant improvements upon previous methods on the image 

classification task. The overall architecture of their method, i.e., AlexNet Russakovsky et 

al. [2015], is similar to LeNet-5 but with a deeper structure. With the success of 

Krizhevsky’s work, many works have been proposed to improve its performance. Among all 

these works, there are four models which are most representative. These models are ZFNet 

Zeiler and Fergus [2014], VGGNet Simonyan and Zisserman [2014], GoogleNet Szegedy et 

al. [2015] and ResNet He et al. [2016]. From the evolution of the model architectures, a 

typical trend is that researchers are building deeper networks, e.g., ResNet, which won the 

champion of ILSVRC 2015, is about 20 times deeper than AlexNet. Theoretically, By 

increasing depth, the network can achieve better feature extraction and representation 

which could approximate the target function better. However, deeper model architecture 

also increases the complexity of the network, which makes the network be more difficult 

to optimize and easier to get overfitting and suffer th curse of dimensionality problem. 

Along this way, various methods have been proposed to deal with these problems in 

various aspects. 

1.3.2 Vision Transformer in computer vision 

Deep neural networks (DNNs) form the core of AI systems. Different types of 

networks are designed for different tasks. The multi-layer perceptron (MLP) or fully 

connected (FC) network, made up of multiple linear layers and nonlinear activations, is a 
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classic neural network Rosenblatt [1957]. Convolutional neural networks (CNNs), 

consisting of convolutional and pooling layers, are used to process images and other shift-

invariant data LeCun et al. [1998], Krizhevsky et al. [2017]. Recurrent neural networks 

(RNNs) use recurrent cells to process sequential or time series data Hochreiter and 

Schmidhuber [1997]. The transformer is a novel neural network that uses self-attention 

mechanisms Bahdanau et al. [2014], Parikh et al. [2016] to extract intrinsic features 

Vaswani et al. [2017]. It has shown potential for a wide range of AI applications, 

especially in NLP. For example, Vaswani et al. Vaswani et al. [2017] proposed the 

transformer for machine translation and English constituency parsing tasks, and BERT 

(Bidirectional Encoder Representations from Transformers) was introduced by Devlin et al. 

Devlin et al. [2018], a language representation model that pre-trains the transformer on 

unlabeled text, considering the context of each word in a bidirectional manner. BERT 

achieved state-of-the-art results on 11 NLP tasks. Brown et al. Brown et al. [2020] pre-

trained the massive transformer-based model, GPT-3 (Generative Pre-trained Transformer 

3), using 45 TB of compressed plaintext data and 175 billion parameters, and it 

performed well on various downstream NLP tasks without fine-tuning. These transformer-

based models have brought significant advances to NLP. 

Inspired by the success of transformer architectures in NLP, researchers have 

recently applied them to computer vision (CV) tasks. Although CNNs have been 

traditionally considered the foundation of CV He et al. [2016], Ren et al. [2015], the 

transformer is emerging as a potential alternative. Chen et al. Chen et al. [2020] trained a 

sequence transformer to auto-regressively predict pixels, achieving results comparable to 

CNNs in image classification tasks. Dosovitskiy et al. Dosovitskiy et al. [2020] proposed 

the vision transformer model, ViT, which directly applies a pure transformer to sequences 
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of image patches to classify the full image, and it has achieved state-of-the-art performance 

on multiple image recognition benchmarks. Transformer has also been used to solve 

various other CV problems, such as object detection Carion et al. [2020], Zhu et al. [2020], 

semantic segmentation Zheng et al. [2021], image processing Chen et al. [2021], and video 

understanding Zhou et al. [2018]. Its exceptional performance has attracted more 

researchers to propose transformer-based models for a wide range of visual tasks. 

1.3.3 Machine-Learning Models and Artificial-Intelligence Methods in 

Water Treatment 

Table 1.1 summarizes AI and ML models and methods, highlighting their general and 

specific usages in water treatment and modeling applications, as well as their advantages 

and disadvantages. The final column includes peer-reviewed textbook sources that 

provide foundational and in-depth explanations of these models and methods. While not 

all-encompassing, the selected water treatment and monitoring applications are based on a 

specified methodology. The majority of the included ML methods fall under the "black-

box" archetype, which is generally considered a disadvantage for most models, with the 

exception of GA/GPs. 
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Table 1.1: A summary of AI methods and ML models used in water treatment and monitoring. 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
 
 
 
Support Vector 
Machines, 
Regressions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Classification 

Regression, 
Classification, 
Pattern 
Analysis Cortes 
and
 Vapni
k 
[1995], Chua 
[2003], Noble 
[2006], Caie 
et al.
 [2021], 
Goodfellow et 
al. [2016] 

 
Models for disinfection by-
product (DBP) modeling 

Models for membrane 
process parameter modeling 

Models for biological 
oxygen demand (BOD) and 
chemical oxygen demand 
(COD) modeling 

Models for dissolved 
oxygen modeling of rivers 

Models for aquaponics 
growth rate modeling 

Models for aquaponics 
growth stage classification 

 
 

Developing
 models 
capable of handling high 
dimensional datasets 
(i.e., datasets with a high 
number of inputs vs. a 
lower number of outputs) 

Developing models that 
can handle small changes 
in the dataset 

Developing models that 
are functional with both 
linear and nonlinear data. 

 
Kernel selection is 
initially difficult and 
time consuming when 
using SVM/SVR 
modeling 

SVM/SVR modeling 
requires high 
computational power, 
making it mostly 
unsuitable for larger 
datasets 

SVM/SVR modeling is 
susceptible to noise in 
datasets 

SVM/SVR modeling has 
relatively long training 
times. 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
 
 
 
Random Forest 
(RF) 

 
 
 
Supervised 
machine 
learning 

Regression, 
Classification 
Maimon  and 
Rokach [2005], 
Ceri et  al. 
[2003], Singh 
et al. [2016], Liu 
et al. [2012], 
Hastie et al. 
[2009] 

 
Modeling adsorption 
process parameters and 
percent removal using ML 

Developing simple and 
hybrid models for dissolved 
oxygen prediction and 
modeling 

 
Intuitive model 
architecture for efficient 
and effective ML 
modeling 

Models capable of 
handling continuous and 
categorical inputs, even 
with missing values or 
data 

Models that are relatively 
stable and have less 
impact due to noise and 
outliers 

Bagging algorithms to 
reduce overfitting and 
variance in the model 

 

Accuracy and robustness 
of the model are 
determined by the 
density of decision trees 

Increasing the density of 
decision trees results in 
significant increases in 
model complexity, 
training period, and 
required computational 
power 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
k-Nearest 
Neighbor (k-
NN) 

 
Supervised 
machine 
learning 

Classification 
Gaya et al. 
[2017], Zhu 
[2002], Abba 
et al. 
 [2020], 
Wills et al. 
[2013], Allafi 
et al. [2017] 

 
 
 
 

Classification of aquaponics 
growth stage 

 
 
Requires minimal 
training and can be easily 
implemented 

Capable of handling new 
data additions without 
requiring significant 
modifications to the 
model 

 
 

Poor performance with 
large datasets or those 
with high dimensionality 

Susceptible to noise and 
missing data, which can 
result in decreased 
accuracy 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and 
Monitoring Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
Fuzzy Inference 
System (FIS) 

 
Decision 
making, system 
control Moraga 
et al. 
 [2003], 
Afroozeh et al. 
[2018],  
 Moon 
et al. [2011], 
Kaynak et al. 
[1998],  Zadeh 
[1998] 

 
 
 
Models for chlorine dosage 
set-point control 

Developing models for 
hydroponics system and 
environmental control 

 
Utilizing fuzzy logic 
rather than binary logic 
to better model the 
human experience of 
decision making 

Developing models with 
easily interpretable 
outputs and decisions 
with a well defined 
system 

 
 
The applicability of 
models developed 
with fuzzy logic is 
dependent on operator 
defined parameters and 
experience, which makes 
them prone to human 
error. 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and 
Monitoring Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
 
Artificial Neural 
Network 

 
 
Supervised 
machine 
learning 

Regression, 
Classification 
Goodfellow 
et al.
 [2016], 
Shahmansouri et 
al. [2021] 

 
DBP (disinfection 
byproduct)  formation 
modeling 

Adsorption
 process parameter 
modeling 

Membrane
 process parameter 
modeling 

Chlorine dosage/set-point 

Dissolved oxygen 
concentration modeling 

 
 
Capable of handling high 
dimensional datasets 

Modeling/prediction 
results obtained in  a 
reasonable amount
 of time 

Forward propagation 
capable of cheap and fast 
computation 

 

High computational 
power associated with 
backward propagation 
stage 

Some models and 
architecture themselves 
are difficult to interpret 

See below
 for specific 
ANN model 
disadvantages 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
Convolutional 
Neural Network 
(CNN) 

 
 
Regression, 
Classification, 
Segmentation 
LeCun et  al. 
[2015],  Kim 
and Kim [2017], 
Acharya et al. 
[2017], Gu et al. 
[2018] 

 
 
 
 

Disinfection by-product 
formation modeling 

 
 
CNNs have been shown 
to produce highly 
accurate results on a wide 
range of image and video 
recognition tasks 

Operations run in parallel 
and results are obtained 
quickly 

 
Data must be in fixed 
dimensions 

Requires high 
computational 
power:  Training  and 
processing  CNNs   
can be computationally 
intensive,   requiring 
significant computational
  power and 
resources 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and 
Monitoring Applications 

 
Advantages 

 
Disadvantages 

 
 
 

Recurrent 
Neural Network 
(RNN)/Long 
Short Term 
Memory 
(LSTM) 

 
Regression, 
Classification 
LeCun 
et al. 
 [2015], 
Zhou et al. 
[2019], Zhang 
et al.
 [2020], 
Hochreiter and 
Schmidhuber 
[1997], 
Smagulova 
and James 
[2020] 

 
 
 
 
Parameter modeling
 of membrane 
process 

Modeling of dissolve 
oxygen concentration 
modeling 

 
 
 
Suitable for sequential 
datasets especially time 
series datasets and 
modeling 

Suitable for varying 
lengths of sequence 
datasets 

 
 
 
 
Training and processing 
RNNs requires high 
computational power 

Prone to gradient 
exploding and vanishing 

 
 
 
Hammerstein 
Wiener (HW) 

 
 
 
Regression 

 
 
 
Dissolved oxygen 
concentration modeling 

 
Capturing nonlinear 
effects and 
simultaneously being 
computationally less 
complex than fully 
nonlinear dynamic 
models 

 
 
 
Limited model structure 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
 
 
 
Genetic 
Algorithm 

 
 
 
 
Evolutionary, 
stochastic 
algorithm 

Regression, 
Classification 
Agrawal  and 
Mathew
 [2004]
, 
Yang
 [2020]
, 
Katoch et al. 
[2021] 

 
 
 
 
 
 
 
 
DBP formation modeling 

 
 
 
Parallelism: Genetic 
algorithms can explore 
multiple solutions 
simultaneously, allowing 
for faster convergence to 
an optimal solution 

Applicability: GAs are 
applicable to a wide 
range of problems, 
including those with 
discrete, continuous, or 
mixed variable types, and 
those with multiple 
objectives or constraints 

 
Slow convergence: GAs 
can sometimes take a 
long time to converge to 
the optimal solution, 
especially for large or 
complex problems 

Premature convergence: 
GAs can converge 
prematurely to 
suboptimal solutions if 
the population diversity 
is lost 

Computational cost: 
Genetic algorithms can 
be computationally 
expensive, particularly 
for large scale or high 
dimensional problems 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

 
 
 
 
 
 
Radial Basis 
Function (RBF) 
Kernel 

 
 
 
 
Regression, 
Classification 
LeCun et al. 
[2015],  
Karimi 
et al. [2020], 
Powell et al. 
[1981], Baddari 
et al. [2009] 

 
 
 
 
 
Modeling of DBP formation 

Prediction of adsorption 
process removal efficiency 

Modeling of membrane 
process parameters 

 
RBF networks are 
capable of approximating 
any continuous function, 
given a sufficient number 
of  hidden  neurons and 
appropriate basis 
functions 

RBF networks can be 
trained more quickly than 
other types of neural 
networks 

RBF networks are 
generally more robust to 
noise than other types of 
neural networks 

 
RBF networks are hard 
to scale to large datasets 
and high dimensional 
datasets 

The model may become 
overly complex or overfit 
the data if the basis 
functions not chosen 
correctly 

Susceptible to local 
minima 

The choice of radial basis 
functions is fixed which 
limits its flexibility 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water 
Treatment and Monitoring 
Applications 

 
Advantages 

 
Disadvantages 

Adaptive Neuro-
Fuzzy Inference 
Systems (ANFIS) 

Regression, 
Classification 
Farhoudi 

et al. [2010], 
Karaboga and 
Kaya   [2019], 

Adedeji et al. 
[2019] 

DBP formation modeling 

Adsorption process removal 
efficiency modeling 

Membrane process parameters 
modeling 

Dissolved oxygen 
concentration modeling 

BOD/COD modeling 

Fuzzy logic components of 
ANFIS allow for greater 
interpretability of the 
model 

ANFIS is capable of 
modeling complex 
nonlinear relationships 
between inputs and 
outputs, making it suitable 
for a wide range of 
applications 

ANFIS models are 
generally robust to noise 
and uncertainties in the 
data 

ANFIS models can be 
complex, with many 
parameters to tune 

The  training  process 
of ANFIS  can  be 
computationally intensive
 and  time 
consuming 

ANFIS model is prone to 
overfitting the data 

ANFIS may not scale well 
to large or high 
dimensional datasets 

The performance of ANFIS 
can be sensitive to the 
initial settings of the 
membership functions and 
rule base 
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Table 1.1: (cont’d) 

Leaning and 
Modeling 
Technique 

General 
Applications 

Reviewed Water Treatment 
and Monitoring Applications 

Advantages Disadvantages 

Extreme Learning 
Machine (ELM) 

Regression, 
Classification Zhu 
et al. [2005], 
Huang et al. 
[2004b] 

Dissolved oxygen 
concentration modeling 

Relatively short training 
times 

Suitable for pattern 
classifications 

Often faces over fitting or 
under fitting if too 
many/few hidden nodes are 
utilized 

Boltzmann 
Machines 

Unsupervised 
learning 

Optimization, 
system  control 
Demertzis et al. 
[2022], Harrou 

et al. [2018] 

Wastewater treatment process 
modeling 

water treatment automated 
anomaly detection 

Capable capture complex 
dependencies between 
variables 

Provide a measure of 
uncertainty for the learned 
representations 

Flexible architecture: 
Boltzmann machines can 
be adapted and extended to 
various architectures, such 
as Restricted Boltzmann 
Machines (RBMs) and 
Deep Belief Networks 
(DBNs) 

Learning is slow and 
computationally intensive 

Challenge to scale to large 
datasets and high 
dimensional problems 

Learning algorithm can get 
stuck in local optima 

Difficult to interpret 

Outperformed 
 by modern
 techniques, such as 
deep learning models 
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1.3.4 Applications of AI and ML methods in Water Treatment  

Chlorination control has been effectively managed using AI methods, while ML models 

have shown efficacy in modeling DBP concentrations and significant parameters for 

adsorption and membrane-filtration processes. Commonly used statistical measures for evaluating 

results include the coefficient of correlation (R), coefficient of determination (R2), mean average 

error (MAE), mean square error (MSE), root mean square error (RMSE), and relative error (RE). 

The following sections provide a brief overview of the applications of AI and ML methods in water 

treatment. 

Chlorination and Disinfection By-Product Estimation 

In water and wastewater treatment plants, disinfection is crucial for killing or inactivating 

microorganisms and viruses, often with chlorine-based disinfectants Li et al. [2017], Xu et 

al. [2015, 2013]. However, chlorine poses human health hazards and can react with bromide 

and organic matter to create disinfection by-products (DBPs), which are suspected 

carcinogens and reproductive disruptors Sedlak and von Gunten [2011], Bull et al. [1995]. 

DBPs are divided into two subcategories, trihalomethanes (THMs) and haloacetic acids 

(HAAs), with THMs being the most common form. ML technologies are well-suited for 

predicting and mitigating DBP formation. AI methods can be used for controlling 

chlorination. The studies often tested models on surface waters treated with chlorine as the 

primary disinfectant and noted success in modeling DBP concentrations in treated water 

distribution networks and at consumer taps Librantz et al. [2018], Godo-Pla et al. [2021], 

Singh and Gupta [2012], Mahato and Gupta [2022], Park et al. [2018], Lin et al. [2020], Xu et 

al. [2022], Peleato [2022], Okoji et al. [2022], Cordero et al. [2021]. Common model inputs 

include water temperature, pH, chlorine concentration, contact time, and TOC/DOC 

concentrations, as well as other markers such as bromine concentration, UV254, algae and 
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chlorophyll-a concentrations, and DBP-precursor chemicals. 

The most commonly tested ML model for chlorination and DBP prediction is the 

Artificial Neural Network (ANN), although other models such as support vector machines, 

fuzzy inference systems, and genetic algorithms have also been used. In comparative 

studies, ANNs generally outperform GAs and SVMs, although in some cases, SVMs 

have provided a slight advantage when using R2 as a comparison metric Wortmann and 

Flüchter [2015], Imo et al. [2007]. Researchers have modeled and predicted common 

DBPs, such as total trihalomethanes (TTHM) and total haloacetic acids (THAA), as 

well as specific DBP compounds including dichloroacetic acid (DCAA), trichloroacetic 

acid (TCAA), bromochloroacetic acid (BCAA), HAA5, HAA9, trichloromethane (TCM), 

bromodichloromethane (BDCM), and dibromochloromethane (DBCM). Statistical model 

validation numbers did not show significant differences in predictions for TTHMs or 

THAAs versus their individual compounds. 
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Table 1.2: Disinfection by-products (DBP) formation prediction by ML models. 

Target 
Compounds 

Water 
Source Disinfectants 

AI/ML 
Technique 
Used 

Input Variables Output Year 

 
 
Total 
trihalomethanes 
(TTHMs) 

 
 

Surface 
water 

 
 

Chlorine 

Artificial neural 
network (ANN), 
support vector 
machine (SVM), 
and gene 
expression 
programming 
(GEP) modeling 

Dissolved organic 
carbon normalized 
chlorine dose, water 
pH, temperature, 
bromide 
concentration, 
and contact time 

 
 
TTHM effluent 
concentration Singh 
and Gupta [2012] 

 
 

2012 

 
TTHM Tap 

water 

 
Chlorine 

Artificial neural 
network and 
support vector 
machine 

Temperature, pH, 
residual chlorine, 
TOC, UV254 

TTHM effluent 
concentration Mahato 
and Gupta [2022] 

 
2022 

 
 
 
Haloacetic 
acids (HAAs) 

 
 
 
Tap 
water 

 
 
 
Chlorine 

 
 

RBF-ANN, 
linear/log linear 
regression 
(MLR) models 

Dissolved organic 
carbon   (DOC), 
UVA254, bromine 
concentration, 
temperature, pH, 
Cl2 concentration, 
NO2 −  
 N 
concentration, 
NH+ − N 4 
concentration 

 
 

DBP tap 
concentration Lin 
et al. [2020] 

 
 
 

2020 
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Table 1.2: (cont’d) 

Target 
Compounds 

Water 
Source Disinfectants 

AI/ML 
Technique 
Used 

Input Variables Output Year 

 
 

TTHM 

 
 
Tap 
water 

 
 

Chlorine 

Ion artificial 
neural network 
(RBF  ANN), 
Hybrid method 
of RBF  ANN 
and grey 
relational 
analysis (GRA) 

Temperature,  pH, 
UV  absorbance 
at 254 (UVA254), 
dissolved organic 
carbon, bromide, 
residual free 
chlorine,   nitrite 
and ammonia 

Trichloromethane 
(TCM), 
bromodichloromethane 
(BDCM) and 
total-THMs 
(T-THMs) Hong 
et al. [2020] 

 
 

2020 

 
TTHMs, 
Sum of 
trichloromethane 
(TCM), BDCM 

 
 
Tap 
water 

 
 

Chlorine 

Linear/log 
linear regression 
models (LRM) 
and radial 
basis function 
artificial neural 
network  (RBF 
ANN) 

 
 
pH, temperature, 
UV A254, Cl2 
concentration 

 
 
DBP tap 
concentration Xu 
et al. [2022] 

 
 

2020 

 
 
TTHMs 

 
 
Tap 
water 

 
 
Chlorine 

 
 

Classification 
trees 

 
 

Fluorescence 
spectra 

Dichloroacetonitrile 
(DCAN), 
trichloropropanone 
(TCP), 
trichloronitromethane 
(TCNM) Bergman 
et al. [2016] 

 
 

2016 

TTHMs, HAAs Tap 
water 

Peroxide 
(Ozone), 
Chlorine 

CNN Fluorescence 
spectra 

DBP effluent 
concentration Peleato 
[2022] 

2022 
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Table 1.2: (cont’d) 

Target 
Compounds 

Water 
Source Disinfectants 

AI/ML 
Technique 
Used 

Input Variables Output Year 

 
TTHMs, TCM, 
BDCM, DBCM 

 
Tap 
water 

 
 
Chlorine 

Adaptive 
neuro-fuzzy 
inference system 
(ANFIS) 

Temperature, 
pH, UVA254, 
residual chlorine 
concentration, 
dissolved  organic 
carbon 

 
DBP effluent 
concentration Okoji 
et al. [2022] 

 

 
Trihalomethanes 
(THMs) 

 
Tap 
water 

 
 
Chlorine 

Least-square 
Boost 
(LSBoost), 
XGBoost, and 
Random forest 

Chlorine 
dose/DOC, 
reaction  time, 
pH, bromide 
concentration, and 
temperature 

 
THM concentration 
Sikder et al. [2023] 

 
 

2023 

 
 

DCAN, TCP, 
TCNM 

 
 

Tap 
water 

 
 
 
Chlorine 

 
 
Generalized 
regression 
neural network 
(GRNN) 

Tempaerature, 
total  residual 
chlorine,   dissolve 
organic chlorine, 
turbidity,   pH, 
conductivity, 
absorbance, TCM, 
BDCM,   DBCM, 
DCAA, TCAA 

 
 

DCAN, TCP, TCNM 
Mian et al. [2021] 

 
 
 

2021 
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Table 1.2: (cont’d) 

Target 
Compounds 

Water 
Source Disinfectants 

AI/ML 
Technique 
Used 

Input Variables Output Year 

 
 
Chlorine 
dose and 
free residual 
chlorine (FRC) 
set point 

 
 
 

Surface 
water 

 
 
 
Chlorine 

 
 
 

ANN 

Reservoir set-point 
output, FRC of 
treated water 
tank, FRC 
output of WTP 
(mg/L),    WTP 
production flow 
rate, compensating 
system  flow  rate, 
dosage error 

 
 

Chlorine dosage, 
WTP FRC set point 
Librantz et al. [2018] 

 
 
 

2018 

 
 
 

DCAN, 
chloropicrin, 
and TCP 

 
 
 

Small 
water 
distribution 
networks 
(SWDNs) 

 
 
 
 
Chlorine 

Multivariate 
linear 
regression-based 
model, 
regression 
tree-based 
model, neural 
networks-based 
model  and 
advanced 
non-parametric 
regression model 

Water quality 
parameters 
measured   in  the 
samples    include 
water temperature, 
total  residual 
chlorine, dissolved 
organic   carbon, 
turbidity,     pH, 
conductivity, 
and ultraviolet 
absorbance at 254 
nm (UV254) 

 
 
 

DCAN, chloropicrin 
(CPK) and TCP Hu 
et al. [2023] 

 
 
 
 

2023 
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Table 1.2: (cont’d) 

Target 
Compounds 

Water 
Source Disinfectants 

AI/ML 
Technique 
Used 

Input Variables Output Year 

 
 

Chlorine 

 
 

Surface 
water 

 
 

Chlorine 

 
 

FIS 

Inflow rate, Raw 
water total organic 
carbon (TOC), 
Raw turbidity, 
conductivity, 
temperature, 
Raw water UV 
absorbance 

 
 
Free chlorine and 
chlorine dioxide dose 
Godo-Pla et al. [2021] 

 
 

2021 

 
 
 
Haloacetic 
acids  (HAAs), 
trichloroacetic 
acid (TCAA), 
dichloroacetic 
acid (DCAA) 

 
 
 
 

Lab 
synthesized 

 
 
 
 
 
Chlorine 

 
 
 
Support vector 
regressor, 
random  forest 
regressor, and 
multilayer 
perceptron 
regressor 

Number of 
aromatic  bonds, 
hydrophilicity, 
electrotopological 
descriptors related 
to electrostatic 
interactions,  and 
atomic distribution 
of electronegativity, 
geometry, 
ionization 
potential,   , 
steric  effects, 
and acid-base 
interactions et al. 

 
 
 
 
DBP effluent 
concentration Cordero 
et al. [2021] 

 
 
 
 
 

2121 
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Adsorption Processes 

Adsorption processes are a crucial physical and chemical treatment option for removing 

various contaminants in the water and wastewater treatment industries. These processes 

transfer target molecules from fluids to solid surfaces, known as adsorbents or sorptive 

media. Due to the complex interactions involved in the process, it can be challenging to 

determine the adsorption parameters and ultimate removals accurately Karri et al. [2020], 

Vinayagam et al. [2022]. Predictive models using ML can optimize the adsorption process 

and extend the media’s life, increasing the plant’s effectiveness and confidence in meeting 

applicable regulations. Studies have modeled adsorption processes with water streams 

contaminated with metals, industrial dyes, and organic compounds using various adsorbent 

media, including carbonaceous materials and metal-based nanocomposites Bhagat et al. 

[2021], Mazloom et al. [2020], Mesellem et al. [2021a], Al-Yaari et al. [2022], Mazaheri et 

al. [2017], Ahmad et al. [2020], Fawzy et al. [2016], Ullah et al. [2020], Mahmoud et al. 

[2019], Mesellem et al. [2021b]. Common inputs for modeling adsorption processes 

include pH, water temperature, adsorbent dose, contact time, and initial adsorbate 

concentration. Other models have used parameters such as adsorbent particle size, system 

flow rate, agitation speed, bed height, and BET surface area, among others. The published 

studies mostly focused on adsorbate percentage removal, while some models predicted 

adsorption capacity, non-dimensional effluent concentrations, and the relative importance 

of input water-quality parameters. These models have the potential to support operator 

decisions and improve the efficiency of the adsorption process. 

ANN was the most commonly used ML model in studies involving metal, organic, 

and industrial-dye contaminants, while ANFIS, SVM, and RF were also studied with 

notable success. These models generally achieved R2 values greater than 0.9 and 
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sometimes greater than 0.99 Bhagat et al. [2021], Mazloom et al. [2020], Mohammadi et al. 

[2019]. SVM models performed slightly better than ANN models in most cases, producing 

R2 and RMSE values with better statistical value. However, in one case, the optimized 

ANFIS model performed poorly compared to other successful models, with an R = 0.813, 

and was noted as the worst performing model in a comparison between ANN, ANFIS, and 

SVM models Mesellem et al. [2021a]. In another case, the ANFIS model achieved 

adequate performance with an R2 of 0.9333 Al-Yaari et al. [2022]. 
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Table 1.3: Adsorption processes and removal rates prediction by ML models. 

Adsorbate Adsorbent ML Technique 
Used Input Variables Output Year 

 
 

As (III) 

Nanosized 
iron-oxide-
immobilized 
graphene oxide 
gadolinium 
oxide 
(Fe-GO-Gd) 

 
Artificial neural 
network (ANN) 

 
Initial concentration, 
adsorbent dosage, pH, and 
residence time 

 
As percent 
removal Maurya 
et al. [2022] 

 
 

2022 

 
As (III) A variety of 

absorbents or 
biosorbents 

Adaptive 
network-based 
fuzzy inference 
system (ANFIS) 

pH, As initial 
concentration, contact time, 
adsorbent dosage, inoculum 
size, and temperature, 
agitation speed, flow rate 

Adsorbate 
percent removal 
Al-Yaari et al. 
[2022] 

 
2022 

 
 

Copper ions 

 
 

Attapulgite clay 

Grid 
optimization-based 
random  forest 
(Grid-RF), artificial
 neural 
network (ANN) 
and support vector 
machine (SVM) 

 
Initial concentration of Cu 
(IC), the dosage of 
Attapulgite clay (Dose), 
contact time (CT), pH, and 
addition of NaNO3 

 
Adsorbate 
percent removal 
Bhagat et al. 
[2021] 

 
 

2021 
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Table 1.3: (cont’d) 

Adsorbate Adsorbent ML Technique 
Used Input Variables Output Year 

 
 
 
 
As (III, IV) 

 
 
 
 
Biochar 

 
 
 
 
Random forest 
algorithm 

Contents  of  ash,  carbon, 
hydrogen, oxygen, nitrogen, 
sulfur, and iron, H/C 
atomic ratio, O/C atomic 
ratio, (O + N)/C atomic 
ratio, and specific surface 
area (SBET), As species 
(arsenite or arsenate), 
initial concentration (CAs), 
adsorption  conditions, 
reaction temperature, 
solution pH, adsorbent 
dosage 

 
 
 

As adsorption 
capacity  Liu 
et al. [2023] 

 
 
 
 

2021 

 
 
Asphaltenes 

 
 
Nickle(II) Oxide 
Nanocomposites 

Group  Method 
of Data Handling 
(GMDH),   ANN, 
Least Squares 
Support Vector 
Machine (LSSVM) 

BET  surface  area  and 
volume  of  micropores 
of nanocomposite, pH, 
amount of nanocomposites 
over asphaltenes initial 
concentration (D/C0), 
temperature 

 
Adsorbate 
percent removal 
Mazloom et al. 
[2020] 

 
 

2020 

 
 
Various organic 
pollutants 

 
 
Activated 
carbon 

Artificial Neural 
Networks (ANNs), 
Support    Vector 
Machines  (SVMs) 
and Adaptive 
Neuro-Fuzzy 
Inference   System 
(ANFIS) 

Molar   mass,    initial 
concentration,  flow 
rate, bed height, BET 
surface area, time 
and concentration of 
non-dimensional effluents 

 
Non-dimensional 
effluent 
concentration 
Mesellem et al. 
[2021a] 

 
 

2021 
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Table 1.3: (cont’d) 

Adsorbate Adsorbent ML Technique 
Used Input  Variables Output Year 

 
 
Methylene blue 
(MB), Cd(II) 

 
 
Natural walnut 
activated carbon 

Boosted  regression 
trees (BRTs), 
artificial 
neural network 
(ANN) and 
response surface 
methodology 
(RSM) 

 
Stirring time,  pH, 
adsorbent mass, MB 
concentration, Cd(II) 
concentration, 

 
Adsorbate 
percent removal 
Mazaheri et al. 
[2017] 

 
 

2017 

 
Methylene blue 
(MB) 

 
Graphite oxide 
(GO) nano 

 
ANN Solution pH, initial dye 

concentration, contact time 
and adsorbent dosage 

Methylene 
blue removal 
efficiency 
Ghaedi  et al. 
[2014] 

 
2014 

 
Sunset yellow 
(SY) 

Neodymium(III) 
chloride 
modified order 
mesoporous 
carbon (OMC) 

 
ANN Initial concentration, 

reaction time, and 
adsorbent dosage 

SY removal 
efficiency 
Ahmad  et al. 
[2020] 

 
2020 

 
Ni(II), Cd(II) Typha 

domingensis 
(Cattail) 
biomass 

Adaptive 
neuro-fuzzy 
inference system 
(ANFIS) 

Initial  pH,  bioadsorbent 
dosage, initial metal-ions 
concentration, contact 
time, biosorbent particle 
size 

Metal-ions 
removal 
efficiency Fawzy 
et al. [2016] 

 
2016 

 
Zn(II) 

Low-cost 
adsorbents 
produced from 
rice husks 

 
ANN 

Contact time, initial 
concentration and the 
applied temperature 

Adsorption 
capacity Ullah 
et al. [2020] 

 
2020 
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Table 1.3: (cont’d) 

Adsorbate Adsorbent ML Technique 
Used Input Variables Output Year 

 
Phosphate 

Encapsulated 
nanoscale 
zero-valent 
iron 

 
ANN 

Initial pH, initial PO3− 4 
concentration, adsorbent 
dose, contact time, stirring 
rate 

Adsorbate 
percent removal 
Mahmoud et al. 
[2019] 

 
2018 

 
 
Systems organic 
pollutants 

 
 
Activated 
carbon 

 
 

ANN 

Molar  mass  of  target 
contaminant, initial 
concentration, flow rate, bed 
height, particle diameter, 
BET surface area, average 
pore diameter, time, 
concentration of 
dimensionless effluents 

 
Non-dimensional 
effluent 
concentration 
Mesellem et al. 
[2021b] 

 
 

2021 

 
Pb (II) 

Magnetic 
ash/graphene 
oxide (GO) 
nanocomposites 

 
ANN Initial Pb ion concentration, 

temperature 

Adsorption 
capacity Zeng 
et al. [2022] 

 
2021 

 
Pb (II), Cd (II) 

Composite   of 
metal organic 
framework and 
layered double 
hydroxide 

 
ANN 

 
Type of ions (Pb, Cd) and 
time 

Adsorption 
capacity Wei 
et al. [2021] 

 
2021 

 
As (III), Cr(VI) 

Fibrous 
zirconium oxide 
ethylenediamine 
adipate (ZEDA) 
hybrid material 

Adaptive 
neuro-fuzzy 
inference system 
(ANFIS) 

Dose, pH, time, 
temperature and initial 
concentration, bed height 
and flow rate 

Removal 
efficiency 
Mandal et al. 
[2015a] 

 
2021 
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Table 1.3: (cont’d) 

Adsorbate Adsorbent ML Technique 
Used Input Variables Output Year 

 
As (III) 

Cerium 
hydroxylamine 
hydrochloride 
(Ce-HAHCl) 
hybrid material 

 
ANN 

Adsorbent dose, pH, 
contact time, initial 
concentration and contact 
temperature 

Removal 
efficiency 
Mandal et al. 
[2015b] 

 
2015 

 
Cr (IV) 

Cerium oxide 
polyaniline 
(CeO2/PANI) 
composite 

 
ANN 

Adsorbent dose, time, pH, 
temperature and initial 
concentration 

Removal 
efficiency 
Mandal et al. 
[2015c] 

 
2015 



 
41 

Membrane-Filtration Processes 

Membrane processes separate contaminants in water and wastewater treatment by passing 

the water through a barrier or filter using high-pressure differentials.  These processes 

are typically used for contaminants that are difficult or costly to remove by chemical or 

physical means or require a high level of removal that cannot be achieved by other means. 

Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are the most commonly 

used membrane processes Hube et al. [2020], Pronk et al. [2019]. These models have been 

used with microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and submerged 

membrane bioreactors to treat various water sources contaminated with pollutants and 

natural compounds such as petroleum, natural organic matter, industrial and 

pharmaceutical wastes, and saltwater Zoubeik et al. [2019], Fetanat et al. [2021], Khan et 

al. [2022], Yusof et al. [2020], Nazif et al. [2020], Shim et al. [2021], Ammi et al. [2021a]. 

ANN is the most dominant model used, although ANFIS, SVM, and specific forms of 

ANNs, including RNNs that utilize LSTM, have also been used for membrane-filtration-

process modeling. 

ML techniques for modeling membrane-filtration processes aim to output several 

variables, such as transmembrane pressure, permeate flux, and solute rejection.  Inputs 

in published studies include pH, temperature, contact/filtration time, transmembrane 

pressure, and flux rate, among others. Due to the wide range of models testing for different 

parameters, it is difficult to make a full statistical comparison of the values obtained in 

these studies. However, ANN, RNN, and SVM models consistently performed well, 

achieving R2 values greater than 0.9 and often greater than 0.99 Zoubeik et al. [2019], 

Khan et al. [2022], Yangali-Quintanilla et al. [2009] (Table 1.4). 
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Table 1.4: Membrane-filtration parameters prediction by ML models. 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

Titanium-based 
ceramic 
ultrafiltration 

Petroleum 
production 
wastewater 

ANN, ANFIS, 
RBF-ANN 

Transmembrane   pressure 
(TMP), crossflow velocity 
(CFV), temperature, pH 
and time 

Permeate 
Zoubeik 
[2019] 

 
et flux 

al. 

 
2019 

Aluminum oxide 
microfiltration 
(MF) membrane 

Various 
types 

water Hermia model, 
ANN 

Temperature, pH, crossflow 
velocity (CFV), and 
transmembrane pressure 
(TMP) 

Permeate 
Zoubeik 
[2022] 

 
et flux 

al. 

 
2022 

Nanolayered 
double 
hydroxide 
decorated 
thin-film 
nanocomposite 
membrane 

 
 
Various 
types 

 
 

water 

 
 

ANN-GA 
Nanolayered  double 
hydroxide (NLDH), 
polyvinylpyrrolidone (PVP, 
MW = 29 000 g/mol) and 
polymer concentrations. 

Pure water 
flux, protein 
flux and flux 
recovery ratio 
Arefi-Oskoui 
et al. [2017] 

 
2017 

 
 

Nanocomposite 
membranes 

 
 
Various 

 
 

ANN 

Polymer    concentration, 
polymer type, filler 
concentration, average filler 
size, solvent concentration 
(in the dope solution), 
solvent type, and contact 
angle 

Solute rejection, 
flux recovery, 
and pure water 
flux  Fetanat 
et al. [2021] 

 
 

2021 

Oscillating 
slotted 
membrane 

 Dilute suspension 
mixture of crude 
oil, dilute 
suspension 
mixture of tween-
20 

ANN Permeate flux, shear rate, 
filtration time 

Transmembrane 
pressure (TMP) 
Khan et al. [2022] 

 
2022 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

Submerged 
membrane 
bioreactor 

 
Palm oil mill 
effluent 

RNN, nonlinear 
auto-regressive 
model 

Pump voltage, airflow, 
transmembrane pressure OR 
flux 

Permeate flux, 
transmembrane 
pressure (TMP) 
Yusof et al. 
[2020] 

 
2019 

 
 
Submerged 
membrane 
bioreactor 
(MBR) filtration 
system 

 
 
 
Waste water 

Feedforward neural 
network (FFNN), 
radial  basis 
function  neural 
network (RBFNN) 
and nonlinear 
autoregressive 
exogenous 
neural network 
(NARXNN) 

 
 
 
Permeate pump voltage 

 
Permeate 
flux and 
transmembrane 
pressure 
Mahmod et al. 
[2020] 

 
 
 
2020 

 
 
Reverse osmosis 
membrane 
(BW30-400) 

 
 
Ground water 
and surface 
water 

 
 
General regression 
neural network 
(GRNN) 

Membrane operating 
period, time interval 
between consequent 
cleanings, water 
temperature, input 
concentration,
 inflow
, inlet pressure of the 
compartments, recovery 

 
Pressure   drop 
(PD), salt 
passage (SP) 
Nazif et al. 
[2020] 

 
 

2020 

 
Reverse osmosis 

 
Municipal 
wastewater 

ANNs, Random 
forest, multiple 
linear
 regressio
n models 

Pressure,    flow   rate, 
temperature, conductivity, 
ORP, turbidity, dissolved 
organic carbon (COD), TDS 

Salt passage, 
permeate flow 
rate  Odabaşı et 
al. [2022] 

 
2022 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

 
Nanofiltration 
system 

 
Surface water 
with natural 
organic matter 

 
Long short-term 
memory (LSTM) 
model 

Operation  time,  pressure, 
initial permeate flux, 
dissolved organic carbon 
(DOC), modified FRI, 
optical
 coherenc
e tomography (OCT) 
images 

Permeate flux 
(PF), fouling 
layer thickness 
(FLT)  Shim et 
al. [2021] 

 
 
2021 

 
 
 
 
 
Organic solvent 
nanofiltration 
(OSN) 

 
 
 
 
 
Various water 
types 

 
 
 
 
Support vector 
machine (SVM), 
boosted tree (BT), 
and artificial neural 
network (ANN) 

Substrate type, 
nanoparticle type, 
nanoparticle size, 
nanoparticle   loading, 
amine monomer type, amine
 concentration, 
chloride monomer type, 
chloride concentration, 
water contact angle, surface 
roughness, organic solvent 
type, solvent properties 
 (molecular 
weight, viscosity, density 
and molar volume), solute 
type, solute concentration, 
solute charge and solute 
molecular weight 

 
 
 

Relative 
permeability 
(RP)  and 
relative 
selectivity (RS) 
Wang et  al. 
[2023] 

 
 
 
 
 
 
2023 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

 
 
 
 

Nanofiltration, 
reverse
 osmosi
s membranes 

 
 
 
 
 
Pharmaceutical 
wastewater 

 
 
 
 
 
ANN, SVM 

Anti-inflammatory   drug 
properties (logD, dipole 
moment, the effective 
diameter of the organic 
compound in water "dc", 
molecular length, and 
molecular equivalent width 
"eqwidth"); membrane 
characteristics (molecular 
weight cutoff "MWCO", 
sodium chloride salt 
rejection "SR (NaCl)", zeta 
potential, and contact 
angle); and filtration 
conditions (pH, pressure, 
temperature, and recovery) 

 
 
 

Rejection 
percentage 
of the  target 
compound 
Ammi et al. 
[2021a] 

 
 
 
 
 
2021 

Polyamide-based 
thin film 
composite (TFC)
 FO 
membrane 

 
Effluent from 
primary treatment 
plant 

 
 
ANN, SVM 

 
Organic matters, sodium ion, 
and calcium ion 
concentrations 

Water flux, 
membrane 
fouling,
 and 
removal 
efficiencies 
Im et al. [2022] 

 
 
2022 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

 
 
 
 
Polyamide 
nanofiltration 
(NF) and reverse 
osmosis (RO) 
membrane 

 
 
 
 
 
Various water 
types 

 
 
 
 
 
ANN 

Molecular weight (MW), log 
Kow, dipole moment, molar 
volume, molecular length, 
molecular width, molecular 
depth, equivalent width; 
membrane characteristics: 
molecular weight cut-off 
(MWCO), pure water 
permeability, magnesium 
sulphate salt rejection (SR), 
surface membrane charge 
(as zeta potential), and 
hydrophobicity (as contact 
angle); operating conditions:
 operating 
pressure and permeate flux 

 
 
 
 
rejection  of 
neutral organic 
compounds 
Yangali-Quintanill 
et al. [2009] 

 
 
 
 
 
2009 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

 
 
 
 

Nanofiltration 
(NF) and reverse 
osmosis (RO) 
membrane 

 
 
 
 
 
Domestic 
wastewater 

 
 
 
Quantitative 
structure-activity 
relationship (single 
neural networks 
"QSAR-SNN" 
and bootstrap 
aggregated 
neural networks 
"QSAR-BANN") 

Pharmaceutical active 
compound properties 
(hydrophobicity "logD", 
dipole moment, the 
effective diameter of 
organic compound in water 
"dc", molecular length, and 
molecular equivalent width 
“eqwidth”); membrane 
characteristics (molecular 
weight cut-off "MWCO", 
sodium chloride salt 
rejection "SR (NaCl)", zeta 
potential, and contact 
angle); and filtration 
conditions (pH, pressure, 
temperature, and recovery) 

 
 
 
 
 
Removal 
efficiency Ammi 
et al. [2021b] 

 
 
 
 
 
 
2021 

 
Nanofiltration 
and
 revers
e osmosis 
membranes 

 
 
Various water 
types 

 
 
Bootstrap 
aggregated neural 
networks (BANN) 

Molecular  weight,  ratio 
of the equilibrium 
concentration (logD), 
dipole moment, length, 
eqwidth, SR (NaCl), zeta 
potential, contact angle, pH, 
pressure, recovery, 
temperature 

Uncharged 
organic 
compounds 
rejection 
Khaouane 
et al. [2017] 

 
 
2017 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

 
 
Nanofiltration 
and
 revers
e osmosis 
membranes 

 
 
 
Various water 
types 

 
 
 
ANN 

Molecular  weight,  ratio 
of the equilibrium 
concentration (logD), dipole 
moment, length, eqwidth, 
membrane molecular weight 
cutoff (MWCO)/pore size 
MWCO, SR (NaCl), zeta 
potential, contact angle, pH, 
pressure, recovery, 
temperature 

 
 
Uncharged 
organic 
compounds 
rejection Ammi 
et al. [2015] 

 
 
 
2015 

 
 
 
Nanofiltration 
and
 revers
e osmosis 

 
 
 
Various water 
types 

 
 
Single neural 
networks (SNN) 
and bootstrap 
aggregated neural 
networks (BANN) 

Molecular weight, molecular 
effective diameter "dc", 
ratio of the equilibrium 
concentration (logD), dipole 
moment, length, eqwidth, 
membrane molecular weight 
cutoff (MWCO)/pore size 
MWCO,  SR  (NaCl),  SR 
(MgSO4),  zeta  potential, 
contact angle, pH, pressure, 
recovery, temperature 

 
 
 
Removal 
efficiency Ammi 
et al. [2018] 

 
 
 

2018 
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Table 1.4: (cont’d) 
Membrane 
Type Water Source ML Technique 

Used Input Variables Output Year 

 
 
 
 
Nanofiltration 
and
 revers
e osmosis 

 
 
 
 

Various water 
types 

 
 
 
 
Random forest, 
neural network 
models 

Molecular class,  molecular 
weight, The octanol/water 
partition
 coefficien
t (log Kow), partition 
coefficient  (logD), 
dipole moment, length, 
eqwidth, depth, equivalent 
length, membrane type, 
molecular weight cutoff 
(MWCO)/pore  
 size 
MWCO, zeta potential, 
contact angle, pH, pressure, 
recovery, pH, operating 
pressure, recovery, salt 
rejection SR (MgSO4) 

 
 
 
 
Membrane 
Rejection
 Le
e and Kim 
[2020] 

 
 
 
 
 
2020 
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CHAPTER 2 

Tap water fingerprinting using a convolutional neural network 

built from images of the coffee-ring effect 

2.1 Abstract 

A low-cost tap water fingerprinting technique was evaluated using the coffee-ring effect, a 

phenomenon by which tap water droplets leave distinguishable “fingerprint” residue 

patterns after water evaporates. Tap waters from communities across southern Michigan 

dried on aluminum and photographed with a cell phone camera and 30x loupe 

produced unique and reproducible images. A convolutional neural network (CNN) model 

was trained using the images from the Michigan tap waters, and despite the small size of 

the image dataset, the model assigned images into groups with similar water chemistry 

with 80% accuracy. Synthetic solutions containing only the majority species measured in 

Detroit, Lansing, and Michigan State University tap waters did not display the same residue 

patterns as collected waters; thus, the lower concentration species also influence the tap 

water “fingerprint”. Residue pattern images from salt mixtures with an array of sodium, 

calcium, magnesium, chloride, bicarbonate, and sulfate concentrations were analyzed by 

measuring features observed in the photographs as well as using principal component 

analysis (PCA) on the image files and particles measurements. These analyses together 

highlighted differences in the residue patterns associated with the water chemistry in the 

sample. The results of these experiments suggest that the unique and reproducible residue 

patterns of tap water samples that can be imaged with a cell phone camera and a loupe 

contain a wealth of information about the overall composition of the tap water, and thus, 

the phenomenon should be further explored for potential use in low-cost tap water 
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fingerprinting. 

2.2 Introduction 

Need for innovation in drinking water monitoring 

With tap water crisis events that continue to occur in both developed and developing 

nations, the desire for low-cost tap water testing that is practical for application by citizens 

is high. When a teacher, student, household, or community member would like to test 

their tap water, they are faced with single use paper test strips, probes, standard analytical 

methods for measuring water quality, or water testing fees for hundreds or even thousands 

of different water quality parameters. Challenges exist in choosing which water 

constituents to test and which methods to apply, both of which can be difficult since there 

is little to no tap water education in typical K-12 and university systems. In this work, 

experiments were conducted to determine if the coffee-ring effect, precipitation reactions, 

and convolutional neural networks (CNN) could be harnessed for low-cost “fingerprinting” 

of tap water samples as a whole, rather than measuring one contaminant at a time. 

How does the coffee-ring effect work 

The coffee-ring effect offers low-cost separation of particles in aqueous samples due to 

the physics of water droplet drying on hydrophobic substrates. This phenomenon occurs 

when water evaporates evenly from a water droplet surface with a pinned diameter, such 

that the droplet shrinks in height while the diameter remains constant Wong et al. 

[2011], Deegan et al. [1997]. The shrinking height of the droplet correlates to a 

decrease in contact angle at the pinned surface through droplet drying, squishing particles 

into concentric circles by size Wong et al. [2011]. The phenomenon was termed 

nanochromatography after separation resolutions on the order 100 nm were demonstrated 

for mixtures of fluorescently labeled antibodies, B-lymphoma cells, and E. coli at particle 
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volume fractions on the order of <0.04% Wong et al. [2011]. Force balance analysis 

suggests nanoscale separation is possible for low particle volume fractions due to the 

difference in the magnitude of adhesion versus surface tension forces for large (1 mν) and 

small (40 nm) particles at the drop edge, where surface tension forces move particles 

towards the center of the drop and substrate-particle adhesion forces hold particles in 

place. 

Most existing studies on the coffee-ring effect have been conducted on particles or 

biological molecules, sometimes in buffer solutions or biofluids where particle-like 

species deposit on the outer edge forming concentric rings of particles separated by size 

and soluble salts deposit throughout the center of the drop (Figure. 2.1). Particles within a 

drop are known to deposit on the outer edge when the fluid flow that delivers particles to 

the drop edge is faster than the surface capture effect, the latter which occurs if the 

concentration of particles at the surface of the droplet is high or if water evaporation 

is accelerated Li et al. [2016c]. Tap water solutions, however, are composed largely of 

dissolved ions rather than particles. Within dissolved salt solutions, the majority of the 

particles observed in the residue patterns must form as water evaporates and increases ion 

concentrations above solubility limits of their respective salts; however, very little work 

has been conducted to document the coffee-ring patterns for complex mixtures of salts 

Shahidzadeh et al. [2015]. It is expected that in mixed salt solutions both the coffee-ring 

effect and the fundamental characteristics of the salts that form will control the 

location, sizes, and shapes of each salt in the resulting residue pattern, with the least 

soluble salts that form particles quickly separated by size at the drop edge. Thus, features 

such as the sizes, shapes, colors, quantity, and location of particles within the coffee-ring 

residue of a water sample are expected to correlate to water chemistry. The coffee-ring 
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effect has previously been partnered with Raman spectroscopy to quantify cyanotoxins in 

environmental water, signs of ocular damage in human tear fluid, and osteoarthritis 

determinants in knee fluid; however, the patterns produced due to the coffee-ring effect 

have not been harnessed without expensive chemical analysis instrumentation to record 

composition of the deposited residues. 

Image analysis via convolutional neural network (CNN) 

Machine learning methods, especially deep learning artificial neural networks (ANNs) are 

increasing in popularity in research and engineering to solve problems that are challenging 

to solve with traditional analysis techniques. Convolutional neural networks (CNNs) have 

been widely tested and successfully used for image analysis, especially in segmentation 

problems, such as differentiating between an object and the background. With the 

development of more advanced CNN architectures (e.g., CNN models involving more 

layers, new activation functions, more options for objective functions to calculate error, 

more sophisticated model structures) and use of graphics processing units with higher 

computational speeds, CNNs are being developed to analyze a growing variety of data 

types, including medical images, electron microscopy images, cal structures. For example, 

CNN models have proven the ability to identify brain tumors in magnetic resonance images 

(MRI) faster and more accurately than the state of the art tools and can identify the 

pancreas in computerized tomography (CT) images, both of which are challenging analysis 

problems because of anatomical variability. In chemistry, CNN models are being trained 

using 2D and 3D images of molecular structure for quantitative structure-activity 

relationship (QSAR) modeling to predict toxicity Matsuzaka and Uesawa [2019] and to 

predict therapeutic use classes of drugs Meyer et al. [2019]. CNN models have also been 

trained to assign surface-enhanced Raman spectroscopy (SERS) spectra to classes of 
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metabolites and to assign bundles of SERS spectra (8 x 8 pixel hyperspectral images) to 

the concentration of rhodamine 800 dye at femtomolar concentrations for single molecule 

detection Lussier et al. [2019], Thrift and Ragan [2019]. Additional applications include 

identifying the types and positions of defect structures in silicon doped graphene from 

unprocessed scanning transmission electron microscopy images, predicting chemical 

reactivity, and diagnosing faults in the chemical process industry. Limitations of CNNs 

include the computational cost of model training, the sensitivity of classification to 

unbalanced datasets (unequal numbers of samples in different classes can result in poor 

model performance), and the necessity of experienced users to modify model structure and 

tune parameters for every individual CNN application. However, the accuracy of 

classification results observed and the wide variety of cases in which it can be applied 

ensures use of CNN will continue to grow. 

The goal of this research was to determine if the residue patterns of tap water samples 

imaged with a cell phone camera and loupe were sufficiently reproducible, sensitive, and 

correlated to water chemistry to be valuable for low-cost analyses. Specific objectives were 

to create a library of images of residue patterns for real and synthetic tap waters, determine 

if the residue patterns were reproducible for a given water chemistry, document the 

response of the fingerprint to changes in composition of majority species (sodium, calcium, 

magnesium, chlorine, bicarbonate, sulfate), and apply machine learning image analysis 

techniques to differentiate between residue patterns. These objectives were met by 

photographing residue patterns for a variety of collected tap water solutions and 

increasingly complex synthetic water solutions with a cell phone camera through a 

jeweler’s loupe, measuring features observed in residue patterns, and correlating residue 

features to water chemistry, and creating a CNN to classify residue pattern images to 
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groups with similar water chemistry. 

 

Figure 2.1: Nanoscale separation of particles within a drying droplet is provided by the 
phenomenon known as the coffee-ring effect. 

 
2.3 Experimental 

Water samples 

Thirty tap water samples were collected from communities across southern Michigan, 

utilizing a variety of water treatment systems (Table. 2.1, Table. 6.1). One liter of each 

water sample was collected in a hydrochloric acid washed polypropylene bottle from the 

water supply at a public park, community center, or city building water fountain or 

restroom tap. Samples were stored at 4 °C until analysis using the coffee-ring effect and 

standard methods.  Samples were not filtered before measurement.  Conductivity was 

measured by a Hach HQ40D portable conductivity meter and intelliCALTM CDC401 

standard conductivity probe, and pH was measured with a Orion Star A211 pH meter 

and Orion 8135BNUWP Ross Ultra Fast pH probe (Thermo Scientific). Chlorine, sulfate, 

phosphate, fluoride, bromide, and nitrate concentrations were measured by ion 

chromatography with a Dionex series 2000i/sp instrument. Bicarbonate was measured by 

titration to pH of 4.5 using standard method 2320.28 Metals were measured by Varian 710-
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ES Axial ICP-OES and samples were digested by nitric acid using standard method 3030 

E. One replicate sample was measured for every ten samples, and values that deviated from 

expected ( from annual municipal water quality reports or previous measurements) were 

repeated. 
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Table 2.1: Measured water quality data for tap water samples collected across Michigan and treatment information from 
annual municipal water quality reports and system operators. Averages and standard deviations are listed for values 

conducted in replica. 

City Water 
treatment pH Cond 

uS/cm 

Na+ 

mM 
Ca2+ 

mM 

Mg2+ 

mM 

K+ 

mM 

Cl− 
mM 

SO2− 4 
mM 

HCO− 3 
mM 

PO3
− 4 
mM 

Cu 

mM 

Fe 

mM 

MSU, 
academic 
hall 

Chlorine, 
fluoride, 
phosphate, 
sodium 
hydroxide 

 
6.96 

 
823 

 
1.08 

 
2.24 

 
1.54 

 
0.041 

 
0.91 

 
0.92 

 
6.94 

 
0.01 

 
6.1× 
10−3 

 
2.2× 
10−2 

 
Durand 

Iron 
remove 
filters, 
chlorine 

 
6.72 

 
388 

 
0.31 

 
0.16 

 
0.11 

 
0.075 

 
1.10 

 
0.47 

 
4.88 

 
0.02 1.6× 

10−3 
2.4× 
10−3 

 
Kalamazoo 

Chlorine, 
fluoride, 
and 
phosphate 

 
8.52 

 
976 

 
3.17 

 
1.06 

 
1.29 

 
0.06 

 
3.11 

 
0.39 

 
6.23 

 
0.01 1.2× 

10−3 
4.1× 
10−3 

Portland Chlorine, 
phosphate 6.94 909 0.76 0.53 2.86 0.109 0.05 0.12 7.51 BD 1.1× 

10−3 
1.1× 
10−3 

Battle 
Creek Site 
A 

Chlorine, 
fluoride, 
and 
phosphate 

 
7.22 

 
673 

 
1.60 

 
1.77 

 
1.04 

 
0.035 

 
1.16 

 
0.50 

 
5.47 

 
0.02 4.0× 

10−3 
7.9× 
10−4 

Battle 
Creek Site 
B 

Chlorine, 
fluoride 
and 
phosphate 

 
7.22 

 
673 

 
1.60 

 
1.77 

 
1.04 

 
0.035 

 
1.16 

 
0.50 

 
5.47 

 
0.02 8.9× 

10−3 
2.0× 
10−2 

Charlotte Chlorine, 
phosphate 

7.01± 
0.29 

1215 ± 
23 3.79 2.53 3.32 0.252 4.10 0.54 6.89 0.02 3.9× 

10−4 
4.4× 
10−3 
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Table 2.1: (cont’d) 

City Water 
treatment pH Cond 

uS/cm 

Na+ 

mM 

Ca2+ 

mM 

Mg2+ 

mM 

K+ 

mM 

Cl− 
mM 

SO2− 
4 

mM 

HCO− 
3 

mM 

PO3− 
4 

mM 
Cu 

mM 

Fe 

mM 

Fowlerville Chlorine, 
phosphate 7.14 978 4.63 1.10 0.91 0.158 3.53 0.24 6.07 0.01 7.8× 

10−4 
9.4× 
10−3 

Lansing 
site A 

Lime 
softening 8.70 609 4.29 0.55 0.56 0.082 2.33 1.34 0.99 0.01 3.1× 

10−4 
2.5× 
10−3 

Lansing 
site B 

Lime 
softening 7.04 535 3.79 0.63 0.49 0.079 1.91 1.16 0.83 0.01 1.4× 

10−3 
5.9× 
10−4 

 
 
East 
Lansing 

Lime, 
ferric 
fluoride, 
filtration, 
chloramine, 
fluoride, 
phosphate 

 
 

6.61 

 
 

361 

 
 

1.43 

 
 

0.58 

 
 

0.56 

 
 

0.063 

 
 

1.10 

 
 

0.50 

 
 

1.39 

 
 

0.01 

 

1.8× 
10−3 

 

5.3× 
10−3 

Howell Lime 
softening 8.15 453 2.76 0.55 0.54 0.092 1.83 0.62 1.29 0.01 6.9× 

10−4 
6.6× 
10−3 

 
MSU 
residence 
hall 

Iron 
exchange, 
chlorine, 
fluoride, 
phosphate, 
sodium, 
hydroxide 

 
 

7.34 

 
 

880 

 
 

19.57 

 
 

0.07 

 
 

0.04 

 
 

0.025 

 
 

1.16 

 
 

0.84 

 
 

7.09 

 
 

0.01 

 

1.3× 
10−3 

 

2.3× 
10−2 

 
Williamston 

Iron 
removal, 
softening, 
chlorine, 
phosphate 

 
7.51 

 
710 

 
6.02 

 
0.99 

 
0.53 

 
0.075 

 
0.93 

 
0.43 

 
6.83 

 
0.02 

 
1.0× 
10−2 

 
6.4× 
10−4 
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Table 2.1: (cont’d) 

City Water 
treatment pH Cond 

uS/cm 

Na+ 

mM 

Ca2+ 

mM 

Mg2+ 

mM 

K+ 

mM 

Cl− 
mM 

SO2− 
4 

mM 

HCO− 
3 

mM 

PO3− 
4 

mM 
Cu 

mM 

Fe 

mM 
 
Genoa 
Twp Soft 

Household 
water 
softener, 
private 
well 

 
7.04± 
0.23 

 
1920 ± 
30 

 
18.65± 
0.47 

 
0.20± 
0.015 

 
0.20± 
0.035 

 
0.03± 
0.025 

 
9.7 ± 
0.3 

 
0.61 

 
8.55 

 
BD 

 
8.1× 
10−4 

 
BD 

Genoa 
Twp, 
Untreated 

Private 
well, 
untreated 

7.24 1940 6.69 3.81 1.98 0.12 11.16 0.60 8.26 BD 4.5× 
10−4 

4.7× 
10−2 

Rest stop, 
Okemos 

Chlorine 
if bacteria 
found 

7.36 516 3.08 1.41 0.46 0.141 0.09 0.15 6.19 BD 3.4× 
10−4 

1.7× 
10−3 

Rest stop, 
Zeeland 

Chlorine 
if bacteria 
found 

7.05 560 3.35 1.04 0.82 0.085 0.79 0.21 5.38 BD 2.7× 
10−4 

9.3× 
10−3 

Rest stop, 
I96/M66 

Chlorine 
if bacteria 
found 

7.07 546 1.22 1.76 1.19 0.029 0.05 0.12 6.86 BD 2.5× 
10−4 

4.0× 
10−2 

Rest stop 
Fenton 

Chlorine 
if bacteria 
found 

6.96 606 2.71 1.10 1.21 0.090 1.20 0.14 5.64 BD 4.1× 
10−3 

1.3× 
10−2 

 
 

Allegan 

Reverse 
osmosis 

 
 

6.53 

 
 

295 

 
 

1.41 

 
 

0.73 

 
 

0.52 

 
 

0.019 

 
 

0.63 

 
 

0.17 

 
 

2.51 

 
 

0.02 

 
 
1.8× 
10−4 

 
 
6.0× 
10−4 
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Table 2.1: (cont’d) 

City Water 
treatment pH Cond 

uS/cm 

Na+ 

mM 

Ca2+ 

mM 

Mg2+ 

mM 

K+ 

mM 

Cl− 
mM 

SO2− 
4 

mM 

HCO− 
3 

mM 

PO3− 
4 

mM 
Cu 

mM 

Fe 

mM 
 
 
Genoa 
Twp RO 

Reverse 
osmosis 
of private 
well after 
household 
water 
softener 

 
 

6.64 

 
 

264 

 
 

3.23 

 
 

0.08 

 
 

0.02 

 
 

0.006 

 
 

1.27 

 
 

0.11 

 
 

1.37 

 
 
BD 

 

4.8× 
10−4 

 

4.8× 
10−4 

 
 

Detroit 

Great 
Lakes 
Water 
Authority 
(GLWA), 
Water 
Works 
Park plant 

 
 

6.21 

 
 

226 

 
 

0.43 

 
 

0.59 

 
 

0.34 

 
 

0.023 

 
 

0.51 

 
 

0.26 

 
 

1.55 

 
 

0.02 

 
 
1.8× 
10−3 

 
 
5.4× 
10−3 

 
Flint 

GLWA, 
Lake 
Huron 
plant 

 
6.86 

 
219 

 
0.32 

 
0.07 

 
0.02 

 
0.022 

 
0.52 

 
0.23 

 
1.64 

 
0.04 4.4× 

10−3 
5.6× 
10−3 

Swartz 
Creek 

GLWA, 
Lake 
Huron 
plant 

 
5.87 

 
209 

 
0.41 

 
0.08 

 
0.03 

 
0.024 

 
0.51 

 
0.23 

 
1.61 

 
0.02 6.9× 

10−4 
4.9× 
10−3 

Grand 
rapids 

Lake 
Michigan 
Filtration 
plant 

 
7.17 

 
304 

 
0.44 

 
0.89 

 
0.26 

 
0.030 

 
0.63 

 
0.33 2.2 ± 

0.04 

 
0.02 4.9× 

10−3 
1.9× 
10−2 
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Table 2.1: (cont’d) 

City Water 
treatment pH Cond 

uS/cm 

Na+ 

mM 

Ca2+ 

mM 

Mg2+ 

mM 

K+ 

mM 

Cl− 
mM 

SO2− 
4 

mM 

HCO− 
3 

mM 

PO3− 
4 

mM 
Cu 

mM 

Fe 

mM 
 
 
Holland 

Holland 
Board of 
Public 
Works 
Water 
Filtration 
Plant 

 
 

6.76 

 
 

302 

 
 

0.74 

 
 

0.85 

 
 

0.51 

 
 

0.034 

 
 

0.60 

 
 

0.29 

 
 

2.45 

 
 
BD 

 

3.7× 
10−3 

 

5.7× 
10−3 

 
Wyoming 

Donald 
K. Shrine 
Water 
Treatment 
Plant 

 
7.16± 
0.03 

 
302±8 

 
1.30± 
0.005 

 
0.905± 
0.005 

 
0.5 ± 
0.001 

 
0.036± 
0.002 

 
0.61± 
0.01 

 
0.34 

 
2.17 

 
BD  

BD 
 
BD 
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In order to determine the effects of specific ions on residue patterns, synthetic water 

samples containing various concentrations of the main components in tap water were 

prepared, including synthetic hard freshwater (192 mg/L NaHCO3, 120 mg/L MgSO4, 120 

mg/L CaSO4 2H2O, and 8 mg/L KCl) and mixtures of NaCl, NaHCO3, CaCl2, MgCl2, 

CaSO4, MgSO4, and Na2SO4. Salt mixtures were designed to examine ranges that may 

be observed in real tap waters; thus, the low and high concentrations tested of every salt do 

not match. Simplified synthetic tap waters were created to mimic concentrations of 

calcium, magnesium, sodium, chlorine, sulfate, and total carbonate species observed in tap 

water. Complex synthetic tap waters also contained phosphate, nitrate, fluoride, copper, 

and iron. Natural organic matter was not added because larger organic molecules typically 

deposit on the outer edge of the drop where the organics can’t be identified from images 

alone. 

Collection of coffee-ring residue patterns 

Two microliter droplets of each water were gently pipetted onto aluminum substrates (6061 

with mirror-like finish, McMaster-Carr 1655T1). Substrates from the manufacturer were 

used directly after peeling off the plastic film that protects the mirror-like finish. Samples 

were left uncovered for 20-30 minutes or until dry without being moved, touched, or 

disturbed from the moment of deposition on the slide (Figure. 6.1). Relative humidity in the 

lab ranged from 47-52% and temperature 23-25 °C over the course of the coffee-ring effect 

experiments. Samples were imaged with a SamSung S6 cell phone through a Fancii 30× 

triplet loupe (Amazon.com) with the LED light on (Figure. 2.2). At least five drops were 

imaged for each sample, and residues that were not round due to lack of pinning to the 

surface were repeated. Relative humidity and temperature were recorded for each 

experiment with a Fisher Scientific Traceable Relative Humidity/Temperature Meter (11-
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661-13). Reproducibility of water residue patterns was examined by three researchers 

testing a subset of water samples on several substrates. 

 

Figure 2.2: Tap water fingerprints were captured by drying droplets on aluminum and 
photographing with a cell phone camera through a loupe. 

 
Image processing, principal component analysis (PCA), and cluster analysis Residue pattern 

photographs were cropped manually with ImageJ to dimensions of 700 by 600 pixels. 

Scales bars of 0.5 mm were added in ImageJ using ruler tape captured in photographs 

as a reference, dimensions of features in residues were measured, and processed images 

were saved in JPEG format. Images were converted to black and white, noise removed, 

and particles measured in Matlab software version R2017b (im2bw, medfilt2, and 

regionprops functions). Principal component analysis (PCA) was conducted on both 

particle measurements and on the image files themselves using Python version 3.6.4 

(matplotlib, numpy, and sklearn packages; Figure. 6.2). Measured water chemistry for 

each tap water sample was plotted on a trilinear classification diagram using GW_Chart 

(Version 1.29.0.0, USGS) with samples sorted according to treatment. The cluster analysis 

algorithm CLARA was used to group samples into six groups using all thirteen of the 

measured parameters after normalization by subtracting the mean from the measured value 

and dividing by its standard deviation Liu and Özsu [2009]. The cluster analysis result was 

visualized in a two dimensional map using the two main components identified by principal 
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component analysis with the R factoextra package. 

Convolutional neural network 

A convolutional neural network (CNN) model was created to classify images. Ten residue 

images from each water sample were used for model training and testing, five of which 

were from fresh samples and five collected after storage at 4 °C. The first three replicates 

of each water sample for each condition (fresh and stored) were used for training the model 

(180 images), and the last two replicates were used for testing the model (120 images). 

Image pre-processing involved resizing each image from 470 by 470 pixels to 300 by 300 

pixels and converting from color to gray-scale (Table. 6.3). The brightness was normalized 

for each image by dividing the brightness value for each pixel in an RGB channel by the 

overall sum of the brightness values of all pixels for that RGB channel. 

A CNN model was built with two convolutional layers and three fully connected layers 

in Python (Figure. 6.3). In the first layer eight filters were used to extract pattern features, 

and sixteen filters were used in the second layer to extract deeper pattern features. 

After the convolutional layers, three fully connected layers were used to fit the data. The 

fitting method was a stochastic gradient descent (SGD) with probability calculations 

through the SoftMax function. The batch size was five for each optimization process. 

Samples were randomly selected by their weights which were set equal at the beginning 

but updated after each optimization process by their classification result. The learning 

rate was 10−4 in the model training process. In each iteration, five samples were randomly 

selected from 180 training samples by their weights with replacement, and every 36 

iterations consisted of one epoch. After each epoch, training accuracy, testing accuracy, 

training loss, and testing loss were calculated. Two hundred epochs were processed for 

each model and ten independent models were trained. The test dataset accuracies of the 
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last one hundred epochs and the last epoch model were recorded for analysis. 

2.4 Results and discussion 

Coffee-ring residue patterns for each Michigan tap water are unique 

Michigan State University and the surrounding communities frequently rely on 

groundwater sources with minimal treatment (chlorine and phosphate, sometimes with 

fluoride) or hardness removal by lime softening or ion exchange. Rural communities also 

frequently use on point-of-use or point of entry treatment such as home water softeners or 

reverse osmosis systems. Many communities near Great Lakes coast-lines utilize surface 

water sources and conventional treatment. The Great Lakes Water Authority (GLWA) 

treats and distributes water to a substantial fraction of Michigan’s population in the east 

from Lake Huron or the Detroit River and many communities in the west utilize Lake 

Michigan. Tap water collected from the sampled Michigan communities displayed a wide 

range of chemical compositions (Table. 2.1). 

The coffee-ring residue patterns for each type of tap water were unique, and 

waters with similar chemistry displayed similar residue features (Figure. 2.3). 

Reproducibility was evaluated initially by imaging five droplets of each sample on the 

same slide, and most residue patterns displayed nearly identical features across 

replicates (Figure. 6.4). Lime softened water showed variability across replicates, with 

some samples displaying a thin film of particles across the entire drop and others 

producing a clearing in the center. A subset of samples were analyzed by three analysts 

with varying levels of experience. Mirrored aluminum 6061 substrates were chosen due to 

low cost, availability, compatibility with the loupe and cell phone camera for imaging, and 

ease of use for inexperienced users; substrates were inspected before use for scratches or 

defects and only smooth areas without blemishes were used for the coffee-ring effect 
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experiments. Nanopure water and synthetic hard freshwater were applied as controls. The 

substrates contained residue remaining from the manufacturer that was captured in images 

of nanopure water controls (Table. 6.5). A trend was not observed between residue 

patterns for samples and the residue pattern or lack of residue pattern in the nanopure water 

controls (Table. 6.5). Tap water samples were tested on multiple substrates to ensure that 

variation observed in the patterns was not due to the substrate (Tables. 6.6). All analysts 

produced more consistent data across a single slide than across different slides. Despite 

variability between substrates, MSU water from academic buildings (hard water) displayed 

similar patterns on substrates tested across all researchers. Untreated groundwater from the 

rest stop was characteristically more variable, displaying one of two patterns with a thin 

film of small particles and either a white ring at the outer edge or a circular segment 

to one side. Residue patterns for lime softened water from East Lansing were typically 

consistent across a single slide, but showed two types of patterns with several concentric 

rings at the drop edge and either a clear center or a thin film of feathery particles across 

the center surface. Neither the nanopure blank nor synthetic hard freshwater were 

sufficient to predict which samples would produce thin films of particles for the lime 

softened water. A similar result was observed for softened Lansing water (Table. 6.5). 

Synthetic lime softened water may function as a more sensitive positive control for future 

experiments. Only analyst 1 observed the residue pattern for Detroit with the center 

scattering of particles concentrated on one side of the drop; this result was attributed to a 

lab bench at an angle of approximately 1° (Table. 6.5). Residue patterns that displayed 

variability across substrates were still sufficiently unique from samples with different 

chemistry to identify what type of drinking water treatment was applied. The results of 

these experiment suggest that a more uniform substrate and level surface may be 
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required to reduce variability for applications beyond identifying the tap water source from 

a library of residue fingerprints. It is well established that the hydrophobicity of the 

substrate influences the coffee-ring effect Shahidzadeh et al. [2015], Zhang et al. [2003], 

Ortiz et al. [2004], Zhong et al. [2017]; thus, the substrate used for training datasets 

must be consistent with that of unknown samples. Additional variables that must be 

controlled during coffee-ring effect experiments include temperature Li et al. [2016c], 

Takhistov and Chang [2002], humidity Li et al. [2016c], Chhasatia et al. [2010], Kaya et al. 

[2010], and the volume of the droplet Ortiz et al. [2006] (further evaluation of the 

durability of the protocol is included in the ESI and Table. 6.6). 

Synthetic tap water solutions containing six main constituents do not fully explain the 

environmental samples 

Synthetic tap water solutions were created to reflect components measured in Lansing 

(lime softened groundwater), MSU (minimally treated hard water), and Detroit water 

(surface water with conventional treatment). A synthetic mixture of simplified Lansing 

water containing only the six major components (calcium, magnesium, sodium, chlorine, 

sulfate, and total carbonate species) displayed many features observed in Lansing 

waters 
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Figure 2.3: Coffee-ring residue patterns of freshly collected Michigan tap waters. The lab 
temperature was 24-25 ◦C and relative humidity 52% for this experiment. Replicates are 

included in Table. 6.4. 
 
on various slides, but the simplified synthetic Detroit and MSU waters were different than 

the collected tap water samples (Table. 2.2). The simplified synthetic Detroit water had 

particles deposited at the drop edge like the environmental sample, but the rings, 

color, and center were different. Adding iron, copper, nitrate, fluoride, and phosphate 

caused the synthetic residue pattern for Detroit water to become closer to the 

environmental sample, but still did not capture all the features. Additional studies 

must be conducted to determine the influence of pH and organic matter on the residue 

patterns as well. The complex synthetic Detroit water sample captured the yellow and 

blue coloring observed in the concentric ring at the inner drop edge, possibly due to 

the presence of phosphate and iron forming insoluble salts. The MSU tap water still did 

not resemble the collected water after addition of the lower concentration components. 

This finding provides further evidence that lower concentration species, pH, or 
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particulates likely play a role in defining residue patterns. 

Table 2.2: Simplified synthetic tap water compared residue patterns to real tap water, 
with measured pH of each solution listed below the image (24 degree C, 47% relative 

humidity). Replicate images are shown in Table. 6.1 
 Collected tap water Simplified 

synthetic 

Complex 

synthetic 

 
 

Lansing 

 

• 7.0-8.7 

 

• 8.08 

 

• 8.02 

 
 

MSU 

 

• 7.34 
 

• 7.85 
 

• 8.01 

 
 

Detroit 

 

• 6.21 

 

• 7.39 
 

• 7.35 

 
Residue patterns document water chemistry 

Simple synthetic mixtures demonstrate trends between water chemistry and particle, shape, 

size, and location of deposition. To confirm that trends in particle shapes and sizes in 

coffee-ring patterns are influenced by the identities and concentrations of solutes, three 

salt synthetic mixtures were created of NaCl with CaCl2 and MgCl2, NaHCO3 with 

CaCl2 and MgCl2, Na2SO4 with CaSO4 and MgSO4, and NaHCO3 with CaSO4 and 
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MgSO4 at concentrations relevant to tap waters. In the presence of calcium and 

magnesium chlorine, NaCl caused large uniform particles to be distributed across the 

drop, while NaHCO3 caused smaller and more densely packed flakes and feathering 

patterns at the higher concentrations (Table. 2.3). These features could be quantified by 

measuring the average area of particles and the number of particles for each set of images. 

For example, the average area of particles decreased with decreasing NaCl concentration 

in the presence of 3.0 mM CaCl2 and 1.5 mM MgCl2, and the average number of 

particles decreased with decreasing NaHCO3 concentration in the presence of 0.5 mM 

CaCl2 and 0.25 mM MgCl2 (Figure. 2.4). It was hypothesized that because NaCl and 

NaHCO3 are highly soluble, both produced thin films of particles that were likely 

deposited through surface capture or settling rather than the coffee-ring effect as ions 

remain dissolved through most of the droplet evaporation process. Crystal formation was 

sensitive to differences in slides; a similar result was found on additional slides, though 

the large distinct, uniformly sized NaCl particles did not form at the lower 

concentrations of calcium and magnesium chlorine (Table. 6.9). Intricate particle shapes 

were observed for mixtures of sodium bicarbonate with calcium and magnesium 

chlorides, but the shapes of the particles were not identical across all batches of slides. 

Additional experiments are required with higher quality substrates to determine how the 

shape of the bicarbonate particles correlates to the matrix water chemistry and 

surrounding conditions. 

Simple synthetic mixtures containing sulfate salts of sodium, magnesium, and calcium 

had multiple concentric rings at the drop edge, likely due to differences in solubility 

between calcium sulfate, magnesium sulfate, and sodium sulfate. Again, the number of 

particles decreased with decreasing sodium sulfate concentration in the presence of 0.5 mM 
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CaSO4 and 0.25 mM MgSO4 (Figure. 2.4). Adding bicarbonate to the mixture at the same 

concentration of calcium and magnesium sulfate caused the concentric rings at the drop 

edge to be eliminated to create a thin film of densely packed very small uniform particles, 

except for the lowest sulfate and bicarbonate concentrations (Table. 2.3), though the 

number of particles still decreased with sodium bicarbonate concentration (Figure. 2.4). 

PCA conducted on the image files themselves (five replicates of each image) was 

compared to PCA on the measurements of particle sizes and numbers within the images. In 

both cases, three principal components were useful in clustering the images into groups 

with similar ions, but not sufficient to group samples by concentrations of components 

(Figure. 2.5). Three principal components explained around 50% of the variability of the 

data set for PCA conducted on the image files (Figure. 6.4). PCA is valuable for 

highlighting variability in a dataset, but it does not take into account subimages or sub- 

patterns (such as rings at the drop edge versus the center of the residue pattern) Kadappa 

and Negi [2016]; thus, it is not surprising that PCA on the image files was not sufficient to 

differentiate between images with different concentrations of ions despite clear qualitative 

differences in residue patterns. Specific measurements of features within the images or a 

convolutional neural network designed from a larger dataset may be more valuable in 

determining concentrations of species (Figure. 2.4). 
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Table 2.3: Simple synthetic mixtures analyzed at 24 ◦C and 48% relative humidity 
 NaCl 10 

mM 
NaCl 5.0 
mM 

NaCl 2.5 
mM 

NaHCO3 
10 mM 

NaHCO3 
5.0 mM 

NaHCO3 
2.5 mM 

Quality 
check 

3 mM CaCl2, 
1.5 mM MgCl2 

       
1 mM CaCl2, 
0.5 mM MgCl2 

      

 

0.5 mM CaCl2, 
0.25 mM MgCl2 

       
 Na2SO4 

5.0 mM 
Na2SO4 
2.5 mM 

Na2SO4 
1.25 mM 

NaHCO3 
10 mM 

NaHCO3 
5.0 mM 

NaHCO3 
2.5 mM 

Quality 
check 

3 mM CaCl2, 
1.5 mM MgCl2 

       
1 mM CaCl2, 
0.5 mM MgCl2 

      

 

0.5 mM CaCl2, 
0.25 mM MgCl2 
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Similar residue patterns were observed for collected tap water samples with similar water 

chemistry. Cluster analysis and trilinear classification diagrams were used to group 

samples with similar water chemistry, with cluster analysis taking all the collected water 

chemistry data into account and the trilinear diagram only using data for the species 

with the highest concentrations typical of fresh waters (calcium, magnesium, sodium, 

potassium, chlorine, sulfate, carbonate, and bicarbonate). In general, the cluster analysis 

and the trilinear diagrams grouped samples with those from the same treatments together 

(Figure. 2.6, Figure. 6.5). Cluster analysis, however, did not group ion exchange samples 

together, more effectively separated minimally treated groundwaters, and lumped reverse 

osmosis samples with surface waters. The trilinear plot showed the ion exchange samples 

clearly distinct from the rest, plotted the reverse osmosis samples closer to the minimally 

treated groundwaters, and the lime softened waters separated clearly from the surface 

waters. These findings highlight that the water chemistry for the ion exchanged samples 

are related in terms of the higher concentration components, but the overall water 

chemistry more closely matches samples from other groups. 

Inspection of the coffee-ring residue photographs according to the groupings visualized 

by cluster analysis and trilinear diagrams uncovers patterns in the crystals that may 

associate with a given water chemistry (Figure. 2.6). For example, each ion exchange 

sample that clustered together on the trilinear diagram had a thin film of particles with 

larger crystals scattered across the drop, but each image also displayed attributes of the 

group assigned through cluster analysis when the lower concentration species were 

accounted for. Trends in the dataset can also be determined from comparing residue 

patterns from synthetic mixtures, samples with similar composition of the six main 

water components, and samples with 
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Figure 2.4: Particle areas and particle counts for simplified synthetic mixtures of three salts. 
 

 
Figure 2.5: Principal component analysis (PCA) on particle measurement data (left) and 

PCA conducted on image files (right). 
 
similar overall water chemistry. The residue patterns for tap waters treated by similar 

methods displayed characteristic features representative of that treatment, such as several 

concentric rings with a strong secondary ring near the outer edge for surface water, colorful 

concentric rings with smaller particles scattered throughout for hard groundwaters with 
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Figure 2.6: Cluster analysis of water chemistry data. 

 

 
Figure 2.7: Testing dataset accuracies of ten CNN models (left) and the confusion matrix 

of the first trained model (right). 
 
minimal treatment, a thin film of fine particles for reverse osmosis treated groundwater, a 

strong outer ring of white with small particles densely spread across the drop for untreated 

groundwater, large crystals scattered across the drop for ion exchange, and a white/gray 

thin film of small particles or dense concentric rings of small particles with feathering pat- 

terns for lime softened water (Figure. 2.3). Tap water samples contain high concentrations 

of dissolved ions when droplets are placed on the substrate, so particles form and grow as 

water evaporates from the drop as observed previously for solutions of NaCl or CaSO4 
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Shahidzadeh et al. [2015]. Therefore, particles of the least soluble salts that grow quickly 

upon their concentrations exceeding solubility limits are expected to form particles early 

enough during drying to be transported by the coffee-ring effect to the drop edge, unless 

they grow large enough to settle first. Particles that do not form until the drop is nearly dry 

are expected to be deposited through the surface capture effect or settling and be found 

across the center of the drop. Calcium and magnesium carbonates and sulfates are less 

soluble than sodium and chlorine containing salts Benjamin [2014], Haynes et al. [2016]; 

therefore, it is logical that hard waters would display an outer ring at the drop edge and 

waters softened by ion exchange (containing more sodium than calcium or magnesium) 

would display thin films of particles. Additional mixtures must be analyzed to verify the 

qualitative patterns described here. 

Convolutional neural network (CNN) model assigned images to groups with similar water 

chemistry. CNN models have previously been proven effective in object detection and image 

classification Krizhevsky et al. [2017], Russakovsky et al. [2015], Szegedy et al. [2015]. Herein 

a CNN model was developed and tested to assign residue images into classes with similar water 

chemistry data as determined by cluster analysis. Overall, after building the model from a 

library of similar training images, the CNN model was effective with 80% accuracy in 

assigning residue images from the test set into groups with similar water chemistry. To 

achieve higher accuracy, a larger dataset would be needed to train the model. Specifically, in 

the CNN model developed here the average and standard deviation of the accuracy for 

the last 100 epochs for ten independent CNN models was 76.7 ± 3.0% (Figure. 2.7). 

Only six of the test images were misclassified in the class one group of images that 

contained a total of 48 images (largely from surface waters with RO samples and a few 

others mixed in), but two of the test images were misclassified from class two that 
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contained a total of four images all from the high TDS genoa township untreated well 

water (Figure. 2.7). All of the misclassified images from class two were instead placed 

into class four that contained minimally treated groundwaters and one ion exchanged 

sample. Two out of twenty-four images from class four and two out of twenty-four 

images in class five (minimally treated and untreated groundwaters) were misclassified 

into class one. A few additional images were also mis- classified between class four and 

five; in qualitative comparing residue images, images of class four and class five are more 

similar than images in other classes, which is logical considering these both classes 

largely contain minimally treated and untreated groundwaters. Confusion matrix of the 

ten models were provided in Figure. 2.8. 

There were a few of the test images that were misclassified more often than others (Table. 

6.10). Five of the test images with a misclassification percentage over 70% had a coffee-ring 

residue pattern that was notably different from replicates of the same sample. For 

example, two MSU residence hall samples had a clearing in the center of the residue pattern 

while the rest had a complete thin film across the entire drop; the two samples with clearings 

were misclassified in over 70% of the models (Table. 6.10, Table. 6.3). Two of the 

images with a misclassification percentage over 70% were from class two which had the 

lowest number of replicates. The low number of images causes the model to be less sensitive to 

this class despite the distinct large crystal pattern Junqué de Fortuny et al. [2013], 

Martens et al. [2016]. Three images were often misclassified without a clear reason (Table. 

6.10). 
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Figure 2.8: Confusion matrix of ten CNN models. 

 
The percentage of images that were properly classified into class one was much higher 

than most of the other classes. Class one had the most images, so in the model training 



 
79 

process the model is skewed to more accurately predict the class one images Japkowicz and 

Stephen [2002], Krawczyk [2016]. Generally with CNN models the accuracy is improved by 

using a larger dataset of images during model training to allow the model to capture more 

information and detail Junqué de Fortuny et al. [2013], Martens et al. [2016]. Overall, 

class one, three, four and five had similar accuracy around 80%, but due to the low number of 

samples the accuracies of classes two and six were around 40-50% (Figure. 6.6). About half 

images in class one had less than 1% mis-classification percentage and most images in 

class two and six had high mis-classification percentages. 

2.5 Conclusions and future outlook 

Both the coffee-ring effect and convolutional neural networks (CNNs) remain underutilized 

techniques to be harnessed for tap water analysis. Herein we show proof of concept 

experiments that document the unique fingerprints provided by the coffee-ring effect 

for tap water solutions from various cities across Michigan and the reproducibility of the 

phenomenon, demonstrate that low concentration species as well as major ions influence 

the residue patterns, provide evidence that the patterns indeed document water chemistry 

within the sample, and demonstrate the ability of a CNN in assigning images to water 

chemistry. The low-cost substrate employed in this work caused variability between 

experiments, especially for batches of substrates purchased at different times; however, the 

variability was included in the training dataset, so the CNN was still able to classify 

the images with 80% accuracy. Additional work is required to identify the appropriate 

substrate that is widely available for a low cost test. Quality control metrics are critical for 

identifying variation in experiments, and lime softened water was much more sensitive to 

experimental variation than the hard synthetic water used as a control for this study. 

Traditional PCA on image files is insufficient for differentiating between images of water 
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samples with different concentrations of components, likely due to lack of consideration of 

subregions such as the outer coffee-ring; however, with a larger dataset a CNN model will 

be especially valuable for differentiating between water chemistries and assigning 

unknown images to groups from a library of images. A larger library of residue patterns 

and a corresponding CNN model must be trained to move this technology from qualitative 

tap water quality analysis to a quantitative technique and to further identify features of 

the residue patterns. 

Despite the use of a low-cost and variable aluminum slide, using a pipette, $18 

jeweler’s loupe, and cell phone camera, each type of tap water tested displayed unique 

characteristics, water samples with similar water chemistry produced residue patterns with 

similar features, waters from two locations in a city were more similar than samples from 

different cities, and the CNN model was able to assign samples to groups with similar 

water chemistry. This evidence suggests that this method should be further considered for 

low-cost water quality fingerprinting. 
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CHAPTER 3 

Optimal environmental condition for contaminants separation 

by coffee-ring effect 

3.1 Abstract 

This study investigates the potential of the coffee-ring effect as a tool for tap water 

analysis, demonstrating its ability to produce unique fingerprints for water samples with 

varying compositions and environmental conditions. However, the coffee-ring effect’s 

stability is found to be influenced by environmental conditions, presenting a challenge for 

its practical application. Additionally, identifying the optimal environmental conditions for 

separating contaminants particles is essential to enhance the technique’s efficacy.  

Establishing the correlation between water sample coffee-ring effect patterns and element 

deposition compositions is also crucial for utilizing the technique to identify particle 

compositions. The study confirms the reproducibility of the coffee-ring effect and 

highlights the impact of both environmental condition and water compositions on the 

residue patterns produced. 

Various statistical methods, such as ANOVA, MANOVA, and PERMANOVA, can 

differentiate coffee-ring effect residue patterns with respect to environmental conditions 

and water sample compositions. However, determining the most effective method for 

differentiating these patterns requires further research, as the results from different analyses 

can be inconsistent. 

The study’s statistical analyses indicate that environmental conditions and water 

chemistry significantly influence residue patterns and element distributions. Optimal 

environmental conditions, including 23-26°C with 45-50% relative humidity, 20-23°C with 
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45-50% relative humidity, and 26-29°C with 40-45% relative humidity, are identified for 

differentiating water samples with varying component concentrations. Nonetheless, the 

optimal environmental condition is a temperature range of 23-26°C and a relative humidity 

of 45-50%, as it yielded the highest number of optimal results in 12 separate analyses. 

These findings have implications for further research on residue patterns and improving 

the understanding of the underlying mechanisms of the coffee-ring effect. 

3.2 Introduction 

Centralized drinking water supply and distribution systems in the U.S. were developed in 

1854 to reduce the reliance of fast growing cities on contaminated wells and decrease incidence 

of cholera and typhoid diseases Burian et al. [2000]. Today, water distribution systems are 

currently reaching their end of life and failing faster than they can be replaced, requiring 

funding at a rate that strains many communities Coghill et al. [2014], Folkman [2018]. 

According to a 2018 report of 197,866 miles of pipes across the United States, over 

16% of installed water mains are beyond their useful life, 28% of pipes of all material types 

are older than 50 years, and 71% of all the pipes are older than 20 years Folkman [2018]. 

Since 2012, the overall break rates increased 27% , primarily due to failures in asbestos 

cement (AC) and cast iron (CI) pipes Folkman [2018]. The most common method for 

prioritizing pipe replacement is based on failure data. Large, critical mains have 

essentially been ignored in many communities until they failed Darlene Garcia and Susan 

Funchion [2015]. This method ignores water quality issues related to aging pipes. Prior 

knowledge of pipe material or age can also be used to prioritize pipe replacement, but 

knowledge of where lead service lines or older pipes exist is not always available 

Cornwell et al. [2016]. Researchers have also developed models to prioritize pipe 

replacement based on pipe failure data including multiobjective genetic algorithms, failure 
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assessment models, rank aggregation models, etc. Giustolisi and Berardi [2009], Rogers 

and Grigg [2008], Tlili and Nafi [2012], Choi et al. [2017], Marzouk et al. [2015], Ho et al. 

[2009]. Water quality data can also be used to directly identify sections of the distribution 

system that negatively impact water chemistry Kirmeyer [2002]; however, collecting 

sufficient water quality data across a distribution system to determine which pipes are 

hazardous to public health is often challenging due to the time and costs required to collect 

and analyze enough water samples. Herein we propose to develop a fast, low-cost method 

that can drastically increase the number of water samples that can be collected and 

analyzed to aid in identification of waters across a distribution system that have been 

impacted by corrosion. This method will harness tap water fingerprints created by the 

coffee-ring effect. 

Tap water fingerprints provided thru the coffee-ring effect are unique to water chemistry 

When the coffee-ring effect is harnessed, tap waters leave unique residue patterns, 

or fingerprints that correlate to tap water chemistry (Table. 3.1), Li et al. [2020], 

Shahidzadeh-Bonn et al. [2008], Kaya et al. [2010], Shin et al. [2014], Shahidzadeh et al. 

[2015]. The residue pattern formation is a crystallization process of water 

contaminants and crystallization of salts or other materials in supersaturated solutions has 

been intensively investigated due to its practical significance in pharmaceutical 

purification, salt manufacturing, seawater purification, cosmetic production, deicing, and so 

on Li et al. [2020], Qazi et al. [2017], Wei et al. [2012], Sammalkorpi et al. [2009], Desarnaud 

et al. [2014], Meldrum and O’Shaughnessy [2020]. Previous researchers mainly studied 

the mechanisms of crystallization in electrolyte solutions without evaporation. However, 

Studies stressed on precipitation and crystallization from evaporating sessile droplets are 

far less especially when compared with the active domain of colloidal sessile droplets 
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Zhong et al. [2015], Feng et al. [2017], Zhong and Duan [2016], Anyfantakis et al. [2015], 

Zhang et al. [2016], Xu et al. [2016], Bahmani et al. [2017], Lee et al. [2017], Saxena et al. 

[2017], Li et al. [2016d], Chen et al. [2012], Malvadkar et al. [2010]. According to the 

previous study, the more complex profile of a sessile droplet characterized by the three 

phase contact line and the curved liquid vapor interface complexes the precipitation process 

as compared the easy solution configuration. The higher evaporation flux in the vicinity of 

the contact line can induce outward flows that result in heterogeneous distribution of ions 

and the associated supersaturation degree. At the mean time, microfluid formed inside the 

droplet sessile bring particles to the droplet substrate contact line. The curved liquid vapor 

interface could limit the growth and vary the motion of precipitation. The complexity 

caused by the multifactors in respect to evaporation, bulk flow, temperature, humidity and 

wettability is therefore expected to significantly vary crystallization in sessile droplets. 

So far crystallization of salts from drying saline droplets has been investigated in a 

number of studies mainly focused on nucleation mechanisms and the dependence of 

precipitation profile on solid surface properties, salt concentration, and so forth Takhistov 

and Chang [2002], Townsend et al. [2017], Kaya et al. [2010], Shahidzadeh et al. [2015], 

Shin et al. [2014], Suresh [2006], Shahidzadeh-Bonn et al. [2008]. The previous study 

of the effects of polyelectrolyte concentration of drops and the surrounding humidity on 

the final salt crystallization, which exhibited profiles of concentric rings and needle-like 

and chainlike structures Kaya et al. [2010]. Takhistov et al. investigated the crystal 

formation process from microliter droplets on both hydrophilic and hydrophobic 

substrates. Based on their results, concentric rings of salts were formed on hydrophilic 

surfaces while crystalline was produced on hydrophobic surfaces Takhistov and Chang 

[2002]. Shahidzadeh et al. also investigated the evaporation and stain structures on 
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various substrates with two types of salts, sodium chlorine (NaCl), and calcium sulfate 

(CaSO4) with different crystalline structures and precipitation pathways. In their research, 

they concluded the crystalline pattern in a variety was concluded to be controlled by the 

interfacial properties of the emerging crystalline and the number of crystals generated 

Shahidzadeh et al. [2015]. The study of crystallization from saline droplet is conducted by 

Shin et al. They obtained threedimensional salt structures from droplets with high 

aspect ratio and a rich variety of three-dimensional crystalline deposits were observed 

Shin et al. [2014]. The coffee-ring effect process involves the solvent evaporation on 

droplet surface and resulting residue ring like patterns. The formation of the coffee-ring 

effect pattern is complex. The contact line pinning on the substrate and the contact 

angle determines the pattern formation Wong et al. [2011], Larson [2014], Deegan et al. 

[1997], Chen and Evans [2010], Eral et al. [2013]. Wong et al. found the physics of 

particle separation during coffee-ring formation, which is based on a particle-size 

selection mechanism near the contact line of an evaporating droplet. On the basis of this 

mechanism, they found nanochromatography of three relevant biological entities 

(proteins, micro-organisms, and mammalian cells) in a liquid droplet, with a separation 

resolution on the order of 100 nm and a dynamic range from 10 nm to a few tens of 

micrometers Wong et al. [2011]. 

Coffee-ring effect applications 

Understanding and controlling the process of solute deposition in the presence of coffee-

ring effect is important in manufacturing processes involving evaporation on surfaces 

including printing Park and Moon [2006], Friederich et al. [2013], Kuang et al. [2014], Sun 

et al. [2015], Huang and Zhu [2019] and fabrication of ordered structures Han and Lin 

[2012], functional nanomaterials Shao et al. [2014], Zou and Kim [2014] and colloidal 
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crystals Park et al. [2006], Cui et al. [2009]. coffee-ring effect also improves the performance 

of commercial applications including fluorescent microarrays Blossey and Bosio [2002], 

Dugas et al. [2005], matrix assisted laser desorption ionization (MALDI) spectrometry Hu et 

al. [2013], Mampallil et al. [2012], Kudina et al. [2016], Lai et al. [2016], and surface 

enhanced Raman spectroscopy (SERS) Zhou et al. [2014a], Wang et al. [2014], Garcia-

Cordero and Fan [2017]. coffee-ring effect has also implications in plasmonics Li et al. 

[2016a], solute separation Wong et al. [2011], diagnostics Brutin et al. [2011], Wen et al. 

[2013], Gulka et al. [2014] and electronics applications de Gans and Schubert [2004]. 

Suppression of coffee-ring effect 

Coffee-ring effect can be suppressed through one of the three physical strategies (i) 

preventing the pinning of the contact line; (ii) disturbing the capillary flow towards the 

contact line and (iii) preventing the particles being transported to the droplet edge by the 

capillary flows. The coffee-ring effect could be suppressed by preventing contact line 

pinning using hydrophobic surfaces. Increasing the hydrophobicity of surfaces is often 

accompanied by decreasing contact angle hysteresis (CAH) Eral et al. [2013]. Lower CAH 

in essence means reduced contact line pinning which leads to suppression of coffee-ring 

effect. Lower CAH could be achieved by patterning of controllable surface wettability as 

reviewed previously by Tial et al. Tian et al. [2013]. These methods include chemical 

modification Ko et al. [2004], Tian et al. [2013] and physical modification. 

On hydrophobic and partially hydrophobic surfaces, pinning can even occur when the 

CAH or solute concentration is high. If CAH is high, during the contact angle 

decreases to the receding angle, typically a few seconds depending upon the rate of 

evaporation, solutes can accumulate at the contact line. Such accumulation produces ring-

like deposits only if the duration of pinning is above a critical value for a given substrate-
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solute system Moraila-Martinez et al. [2013]. However if the pinning time is short, even 

with high initial solute concentration, the coffee-ring effect will just produce smaller inner 

rings Nguyen et al. [2013]. The nanoparticles are more prominent to form ring like patterns 

compared with larger particles as they can flow into the microscopic regions of the droplet 

edge faster. In the presence of solute particles in the droplet, electrowetting (EW) can 

reduce the pinned contact line on (partially)-hydrophobic surfaces Mugele and Baret 

[2005], Li and Mugele [2008]. A droplet is deposited on a dielectric layer covering an 

electrode. When a voltage is applied between the droplet and the electrode an electric 

force pulls the contact line outward, overcoming the pinning forces so the contact line 

pinning is reduced. The coffee-ring effect can also be suppressed by vibration and acoustics, 

marangoni flow and other factors Mampallil and Eral [2018]. 

Enhancement of coffee-ring effect 

Evaporation of droplets can be utilized as a method to concentrate its solutes in it. 

Evaporation of the solvent can increase the analyte concentration making the reactions 

more probable Hernandez-Perez et al. [2016], De Angelis et al. [2011]. By the coffee-ring 

effect, the solutes is deposited at the contact line increasing their concentration there and 

separated by their size, charge and solute-substrate interactions. This deposition of solutes 

and particles are exploited as a pre-concentration method Figure. 1.1. 

Concentrating solutes at the rim of the droplet by coffee-ring effect is called the 

self-ordered ring (SOR) method. It acts as a pre-concentration procedure before other 

analyses. To enhance the coffee-ring effect, hydrophobic surface is usually used as the 

substrate. Drying process on hydrophobic surfaces forms smaller rings with higher solute 

density as the contact line is pinned only in the later stages of the evaporation. Liu et 

al. demonstrated that the SOR method enhanced the fluorescence detection of orally 
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administrated berberine in human urine Liu et al. [2002]. Similarly, fluorescent detection of 

trace levels of tetracycline Huang et al. [2004a], quinidine sulfate in serum samples Yang 

and Huang [2006] and fluorescein Liu et al. [2006] was demonstrated based on the SOR 

method. 

Coffee-ring effect could facilitate identifying pathogens which are associated with 

diseases by isolating the disease markers from body fluids Wong et al. [2011], Chen and 

Evans [2010]. Coffee-ring effect has also been used to enhance the deposition of gold 

nanoparticles(AuNPs) on cellulose nanofibers (CNFs) to enhance surface-enhanced Raman 

scattering (SERS) Chen et al. [2017], Wang et al. [2014], Hussain et al. [2019], Juneja and 

Bhattacharya [2019], Zhou et al. [2014b]. Coffee-ring effect has also been utilized for a 

low-resource malaria diagnostic platform Gulka et al. [2014]. Coffee-ring effect also has 

shown great potential to monitor tap water quality with deep neural networks Li et al. 

[2020]. 
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Table 3.1: Coffee-ring residue patterns of Michigan tap waters Li et al. [2020]. 
MINIMALLY TREATED GROUNDWATER LIME SOFTENED 

MSU tap 
water 

Durand 
tap 

Battle 
Creek 

Kalamazoo 
tap Lansing East 

Lansing Howell 

       
SURFACE WATER 
LAKE MICHIGAN 

ION EXCHANGE UNTREATED 
GROUNDWATER 

Holland, 
MI 

Grand 
Rapids Wyoming Williamston Holmes 

Hall Okemos Zeeland 
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Tap water fingerprinting is fast, low-cost, and has potential to be automated, allowing greater 

numbers of samples to be analyzed across a distribution system 

Compared with other methods, the coffee-ring effect method for measuring pipe corrosion 

indicators has benefits of being low-cost and fast, not requiring specialized technicians, and 

the same method can be used to see multiple analytes at once. Required equipment to 

complete the coffee-ring effect method includes a small aluminum substrate and one pipette 

which costs about 10 dollars. To collect images, a cell phone camera and a $18, 30x jeweler’s 

loupe can be used. Considering the wide availability of cell phone cameras already used in 

households, the total cost for new, reusable equipment for this method is less than forty 

dollars Li et al. [2020]. Common methods for contaminants elements measurement are 

ICP-MS (about $25, 000  $40, 000 for refurbished), atomic absorption (about $13, 000 

$20,000), and spectroscopic methods such as phenanthroline method, neocuproine method 

and bathocuproine method Walter [1961] The coffee-ring effect method is not only a low-cost 

method, but also fast (approximately total 25 minutes including 5 minutes to drop water 

and 20 minutes to dry), does not use hazardous reagents, and does not require specialized 

technicians to conduct the experiment, and has potential to be automated for the evaluation 

of high numbers of samples across a distribution system. 

Optimization of tap water fingerprinting for tap water contaminants 

As demonstrated in previous research, tap water fingerprinting (coffee-ring effect), 

an innovative technique for identifying and characterizing water samples, effectively 

distinguishes between different tap water compositions and differentiates mixtures of 

salts based on their consistent and reproducible water fingerprints Li et al. [2020], 

Shahidzadeh-Bonn et al. [2008]. This groundbreaking approach shows promising potential 

for a range of applications in environmental monitoring and water quality management. 
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The tap water fingerprinting method produces consistent and reproducible residue patterns 

under constant environmental conditions 3.2, but data is not yet available to demonstrate 

how much the residue patterns of dried water droplets change for small changes in 

environmental conditions. 

Table 3.2: Nine environmental conditions 
Temperature, RH 20-23 (°C) 23-26 (°C) 26-29 (°C) 
35%-40% A D G 
40%-45% B E H 
45%-50% C F I 

 
Under low evaporation rate conditions, particles have time to arrange by Brownian 

motion Mampallil and Eral [2018], Rodriguez-Navarro and Doehne [1999], Marin et al. [2011]. 

In contrast, when the evaporation rate is high, high-speed particles deposit into a disordered 

phase. Consequently, under high relative humidity and low-temperature conditions, 

coffee-ring fingerprints are more constant Mampallil and Eral [2018], Rodriguez-Navarro 

and Doehne [1999], Marin et al. [2011]. However, no research has quantified how 

evaporation rate (temperature and relative humidity) influences residue patterns for mixed 

salt solutions at concentrations relevant to tap water. 

In this study, we further optimized the tap water fingerprinting methodology to enhance 

its capabilities for identifying contaminant particles in water samples. This optimization 

process involved several critical factors that significantly influence the accuracy and 

reliability of the fingerprinting results. Key factors considered include optimal temperature 

and humidity conditions, and solute properties. Experiments will be conducted to 

determine how much temperature and humidity control is required to minimize changes 

in particle positions, sizes, shapes, elemental composition, and crystal structures while also 

maximizing the separation of contaminant particles within the coffee-ring pattern. In this 

work, the question of what temperature and relative humidity ranges (within the range 
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of 20-29 degrees C and 35-50% relative humidity) provide reproducible fingerprints and 

sufficient separation of contaminant particles from other salts to facilitate detection 

within a photograph will be answered. 

Firstly, we examined the effects of temperature and humidity on the fingerprinting 

process. By conducting a series of controlled experiments, we determined the optimal 

temperature and humidity conditions that yield the most accurate and consistent water 

fingerprints. These findings are crucial in ensuring that the fingerprinting method can be 

effectively applied under varying environmental conditions and across diverse geographical 

regions. 

Next, we investigated the role of solute properties in the fingerprinting process. Given 

that the presence of various solutes can alter the characteristics of water fingerprints, 

understanding their effects is essential for accurately identifying contaminants in water 

samples. Through rigorous testing, we determined the key solute properties that influence 

the fingerprinting results. Furthermore, we identified the optimal conditions to concentrate 

similar contaminants and effectively separate different contaminants, thereby enhancing the 

precision and reliability of the tap water fingerprinting method. 

In conclusion, our optimization of the tap water fingerprinting method has resulted in 

significant improvements in its ability to identify contaminant particles in water samples. 

By carefully considering and addressing the effects of temperature and humidity conditions 

and solute properties, we have established a more reliable and accurate technique for 

analyzing water quality and detecting potential contaminants. This optimized fingerprinting 

method holds great promise for enhancing water safety and protecting public health on a 

global scale. 
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3.3 Experimental Methods 

3.3.1 Materials and instruments 

The following substances were purchased from Fisher Scientific: sodium bicarbonate, 

calcium chloride, magnesium chloride, sodium sulfate, sodium phosphate monobasic, 

potassium fluoride, sodium hydroxide, iron nitrate nonahydrate, and copper sulfate. The 

surface-polished aluminum slides used were obtained from McMaster-CARR (1655T1) with 

a yield strength of 35,000 psi, a hardness of Brinell 95 (soft), and a fabrication of cold 

rolled, temper 3/8" thick T651. The slides met the specification of ASTM B209 and were 

polished to a #8 reflective finish without any visible grain lines. One side of these sheets 

and bars was polished to either a brushed finish or a mirror-like finish and protected with 

a peel-off film. 6061 aluminum, the most commonly used type, is used to make a wide 

range of products, from pipe fittings and containers to automotive and aerospace parts. 

The Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy 

(EDS) images were acquired using a high-performance JEOL 6610LV SEM system, 

set at an accelerating voltage of 20 kV. This advanced microscope is specifically designed 

for the efficient characterization and imaging of delicate structures, providing exceptional 

SEM imaging at magnifications ranging from 5X to 50,000X. The accelerating voltage of the 

JEOL 6610LV can be adjusted from 300 V to 30 kV. 

X-Ray diffraction images were collected by the Oxford EDS system which was 

equipped on the SEM system. The JEM 6610LV Scanning Electron Microscope (SEM) 

is equipped with EDS. SEM/EDS provides chemical analysis of the field of view or spot 

analyses of minute particles. The EDS Analysis System for SEM was designed for a wide 

range of applications. Whether simply collecting a spectrum or performing complex phase 

analysis, the system is easy to get the quick results you want. EDS analysis is best 
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suited for: Metals and metal alloys, Ceramics, Minerals and Certain types of polymeric 

materials. The operation software is Scandium image processing software by Olympus Soft 

imaging Solutions. Coffee-ring effect patterns were also collected by SamSung S6 cell 

phone or a 5 MP Digital Microscope Pro-20x-200x magnification (Celestron) camera. Data 

analysis and statistical analysis were performed on MATLAB R2021a, R 4.1.1 and python 

3.7. 

3.3.2 Four-axis-autosampler 

The Four-axis-autosampler is a complex device that is designed to automate the process of 

collecting and injecting samples. The device is composed of several components. The 3D 

printer stage, a CNC 3018-PRO Router Kit, is responsible for providing the the foundation 

for the other components to be mounted on and for providing the necessary movement and 

precision for the device to operate accurately. The injector,a Thermo Scientific 365CL221, 

is responsible for injecting the samples into the system. This component is designed 

to be highly precise and accurate, ensuring that the samples are injected with minimal 

error or variation. The Raspberry Pi-4 Model B 2019 Quad Core 64 Bit WiFi Bluetooth 

(4GB) serves as the controller for the stepper motors, the injector, and the sample collection 

system. The Raspberry Pi is also responsible for running the python code that controls the 

device’s operations. The 3 steppers, Nema 17 Bipolar 2A Stepper Motor by OSM 

Technology Co (17HS19-2004S1), are responsible for moving the injector. These motors 

are designed to provide precise and accurate movement of the injector, ensuring that 

samples are injected in the correct location. The one stepper motor driver (TB6600 4A 9-

42V Nema 17) is responsible for operating the sample collection and injection action. 

This stepper motor is responsible for moving the sample collection system, which is 

responsible for collecting samples, and moving the injector, which is responsible for 



 
95 

injecting the samples into the system. The device is operated by python code under linux 

system, specifically Ubuntu operating system. The sample code is used to control the 

various components of the device, including the stepper motors, the injector, and the 

sample collection system. This code is responsible for ensuring that the device operates 

accurately and efficiently and is able to collect and inject samples with minimal error or 

variation. 

The Four-axis-autosampler is a highly advanced device that is designed to automatically 

prepare water samples based on a predefined set of water samples. The device is equipped 

with a sample holder that can hold up to 32 water samples at a time, making it suitable for 

large-scale sample preparation tasks. 

The device operates in several steps, each of which is specifically designed to ensure 

accurate and efficient sample preparation. In the first step, the autosampler resets its 

syringe positions to the initial setting to ensure that the syringe is in the correct position and 

orientation before it begins to collect and inject samples. The syringe is then washed with 

nanopure water to ensure that it is clean and free from any contaminants. 

In the second step, the syringe collects a 2 µL water sample at a predefined water 

sample location to ensure that the correct sample is collected and that the sample is 

collected in the correct location. The stage then moves the syringe to the desired sample 

location above the substrate and lowers the syringe until the syringe tip is 0.5 mm above 

the substrate. This step is important for ensuring that the sample is delivered to the 

correct location on the substrate. 

In the third step, the fourth motor pushes the syringe piston to slowly push the 2 µL 

water sample out of the syringe. This step is important for ensuring that the sample is 

delivered to the substrate in a controlled and precise manner. The water sample is then 
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dropped on the substrate surface. 

In the last step, after the water sample is dropped, the syringe is rinsed with nanopure 

water again and reset to its original location for collecting the next water sample. This step 

is important for ensuring that the syringe is clean and free from any contaminants before it 

collects the next sample. The whole process is then repeated for each water sample in the 

sample holder. This allows for efficient and accurate sample preparation for a large number 

of samples in a short period of time. The process flow is illustrated in Figure. 6.7. 

Furthermore, the system is built on open source software and hardware, it can be easily 

modified and expanded according to the user’s needs. The device’s control system is based 

on a Raspberry Pi, which is a powerful and versatile platform that can be easily 

programmed and customized. This allows for flexibility and adaptability in the device’s 

operation, making it suitable for a wide range of applications. The Four-axis-autosampler 

is a powerful and efficient device that is designed to collect water coffee-ring samples at a 

high speed. The device is capable of collecting samples at a rate of 45 seconds per sample, 

which is comparable to the speed of a human sample collector, who typically takes around 

30 seconds per sample. However, the autosampler has several advantages over human 

sample collectors. One of the main advantages of the auto-sampler is its stability and 

ability to work continuously for longer periods of time. Unlike human sample 

collectors, the device does not tire, and it can work continuously without interruption. 

This is an important feature for large-scale sample preparation tasks that require a high 

degree of accuracy and consistency. Another advantage of the auto-sampler is that it can be 

placed in a small chamber with controlled temperature and humidity. This is beneficial 

because it allows for precise control over the sample preparation environment, which is 

important for maintaining the integrity and quality of the samples. Operating the same 
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experiments manually under this condition is tedious and time-consuming. In addition to 

its ability to collect water coffee-ring samples, the auto-sampler can be easily modified 

to work for other tasks. For example, it can be used for solution preparation, blood test and 

so on. This makes it a versatile and useful tool for a wide range of applications. 

Overall, the Four-axis-autosampler is a powerful and efficient device that can 

significantly improve the speed and accuracy of sample preparation tasks. Its compact size, 

precise control over the sample preparation environment, and ability to work continuously 

make it an ideal tool for large-scale sample preparation tasks. 

3.3.3 Auto temperature humidity control chamber 

An auto-temperature-humidity control chamber was constructed using a chamber, two 

Diymore XH-M452 temperature and humidity controllers, a Space SFH-181 TP heater 

from Ningbo Electrical Appliance Company, a Frigidaire FFRA051WAE 5000 BTU air 

conditioner, and an AO-101 AquaOasis humidifier. Sodium hydroxide was used as a 

dehumidifier. Typically an environmental control chamber would cost on the order of 

$5000; herein, to reduce overall cost of implementing the tap water fingerprinting method 

we built, will demonstrate use of, and will publish designs for a lower cost setup on 

the order of $1000. The chamber controlling system consists of two automotive 

temperature and relative humidity controllers and one of them is programmed to increase 

temperature and relative humidity and the other is programmed to decrease temperature 

and relative humidity. The chamber consists of a 12V, 200W heater, a ultrasonic 

humidifier, a 500 ml plastic bottle with dry NaOH and desiccant and a 5,000 BTU 115V 

mini air-conditioner. 
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Figure 3.1: Temperature humidity control chamber. 
 

This auto temperature humidity control chamber is capable of adjusting and 

maintaining the temperature and humidity automatically based on the pre-set temperature 

and humidity values in the two Diymore controllers. The sensitivity of temperature is 0.5 

degree and relative humidity is 1%. Based on the test, the system is capable adjust 

temperature at a speed of 3 degrees Celsius per min and relative humidity of 2% per min. 

After adjusting the temperature and humidity to desired the desired range, the chamber 

switched to main mode. If the temperature increased and above the highest temperature 

limit, the air conditioning switch would be turned on to decrease the temperature to the 

desired range. On the other hand, if the temperature of the chamber was below the lowest 

limit, the switch of the heater would be turned on to increase the chamber temperature 

until temperature increased to the desired range. The humidifier and dehumidifier worked 

in the same way. When the chamber humidity was below the pre-set lowest limit, the 
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humidifier would be turned on until the humidity reaches the desired range and if the 

humidity was higher than pre-set highest limit, the dehumidifier would be turned on to 

lower the humidity to the desired range. 

3.3.4 Water samples 

In order to determine the effects of temperature and humidity on residue patterns of 

various water compositions, synthetic tap water samples containing various concentrations 

of the main components in tap water were prepared based on the range of composition 

concentrations of the Detroit water quality report in 2017, 2018, 2019. Detroit water is 

served by Great Lakes Water Authority to about 3.5 million people, 40% Michigan 

residents (Detroit Water and Sewerage Department 2015). Sources of Detroit tap water 

include the Detroit River and Lake Huron and thus, the composition of Detroit tap water 

varies over time. The water recipe is determined by the average of Detroit Water Quality 

Report from 2016 to 2018 and three recipes are designed to mimic the variability of the 

water chemistry Table. 3.3. Water recipes Table. Water recipes will be spiked into water 

samples prepared by preparing water sample with 0.7 ppm fluoride, 0.4 ppm nitrate, 0.062 

ppm aluminum, 1.1 ppm potassium, 25 ppm sulfate, 0.36 ppm phosphorus in nanopure 

water (Table. 3.4). 

Table 3.3: Detroit tap water components data sheet (Source: Detroit water quality reports 
2017-2019) 

Components Average 
(ppm) 

Average 
(mM) 

Nitrate 0.790 0.013 
Lead 0.000 0.000 
Iron 0.277 0.005 
Copper 0.015 0.000 
Magnesium 10.800 0.444 
Calcium 37.833 0.946 
Sodium 9.817 0.427 
Potassium 1.533 0.039 
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Table 3.3: (cont’d) 
Sodium 9.817 0.427 
Potassium 1.533 0.039 
Manganese 0.004 0.000 
Zinc 0.000 0.000 
Sulfate 33.267 0.346 
Phosphorus 1.040 0.034 
Chloride 18.033 0.509 
Fluoride 0.853 0.045 

 
Table 3.4: Recipe for synthetic water samples 

Sample ID 
/ 
Components 
(mM) 

 
NaHCO
3 

 
CaCl2 

 
MgCl2 

 
Na2SO4 

 
NaH2PO4 

 
KF Fe(NO3)3 

 
CuSO4 

Sample A 0.1 1.5 0.5 0.35 0.033 0.4 0.005 0.00024 
Sample B 0.2 1 0.35 0.35 0.033 0.4 0.005 0.00024 
Sample C 0.1 0.5 0.2 0.35 0.033 0.4 0.005 0.00024 
Sample D 0 1 1 1.35 0.033 0.4 0.005 0.00024 
Sample E 0 1 0.5 2.35 0.033 0.4 0.005 0.00024 

 
3.3.5 Coffee-ring effect pattern statistical analysis methods 

After preprocessing the images, particles would be recognized by MATLAB and would be 

used to calculate particle shape, color, location from the drop edge, and size. These 

properties would be extracted from each residue image for each water recipe, and analysis 

of variance (ANOVA) would be conducted across the nine environmental condition groups 

and for constant evaporation rates (five replicate samples in each group). Residue patterns 

for two environmental conditions would be considered different from one another when a 

statistical difference is observed for any of the particle measurements (shape, color, 

location from the drop edge, and size). Residue patterns would be labeled as consistent 

across two environmental conditions when there is no statistical difference observed 

between any of the particle measurements. Analysis of variance (ANOVA) is a statistical 

technique to analyze variation in a response variable (continuous random variable) 

measured under conditions defined by discrete factors (classification variables, often with 
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nominal levels). 

In order to determine whether or not residue patterns are consistent across two 

different environmental conditions, a statistical analysis would be conducted on various 

particle measurements. These measurements include the shape, color, location from the 

drop edge, and size of the particles. 

If a statistical difference is observed for any of these measurements between the two 

environmental conditions, the residue patterns would be considered different. This means 

that there is a significant variation in one or more of the particle measurements between 

the two conditions, indicating that the residue patterns are not the same. 

If there is no statistical difference observed between any of the particle measurements, 

the residue patterns would be labeled as consistent across the two environmental conditions. 

This means that there is no significant variation in any of the particle measurements, 

indicating that the residue patterns are the same. Overall this approach would be used to 

compare residue patterns between two environmental conditions only, and that further 

research and analysis may be required to compare residue patterns across multiple 

conditions or other factors. 

One-Way ANOVA 

The one-way analysis of variance (One-way ANOVA) is also known as single-factor 

ANOVA or simple ANOVA. As the name suggests, the one-way ANOVA is suitable for 

experiments with only one independent variable (factor) with two or more levels. 

Full Factorial ANOVA (Two-Way ANOVA) 

Full Factorial ANOVA, also known as two-way ANOVA, is a statistical method used to 

determine the effect of two or more independent variables on a dependent variable. It 

involves using every possible combination of levels of the independent variables in an 
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experiment, and analyzing the data to see if there is a significant difference in the 

dependent variable due to the different levels of the independent variables. Two-way 

ANOVA can also be used to determine if there is an interaction between the independent 

variables, which means that the effect of one variable on the dependent variable depends on 

the level of the other variable. This method is useful for experiments where there are 

multiple factors that could potentially affect the outcome, and allows researchers to gain a 

more comprehensive understanding of the relationship between the variables. 

PERMANOVA 

PERMANOVA is an acronym for “permutational multivariate analysis of variance”. It is 

best described as a geometric partitioning of multivariate variation in the space of a chosen 

dissimilarity measure according to a given ANOVA design, with p-values obtained using 

appropriate distribution-free permutation techniques (see Permutation Based Inference; 

Linear Models: Permutation Methods). The method is semiparametric, motivated by the 

desire to perform a classical partitioning, as in ANOVA (hence allowing tests and 

estimation of sizes of main effects, interaction terms, hierarchical structures, random 

components in mixed models, etc.), while simultaneously retaining important robust 

statistical properties of rank-based nonparametric multivariate methods, such as the 

analysis of similarities (ANOSIM2), namely, (1) the flexibility to base the analysis on a 

dissimilarity measure of choice (such as Bray-Curtis, Jaccard, etc.) and (2) distribution-

free inferences achieved by permutations, with no assumption of multivariate normality. 

Thus, PERMANOVA opens the door for formal partitioning of multivariate data in 

response to complex experimental designs in a wide variety of contexts: there may be 

more response variables than sampling units, data may be severely non-normal, zero-

inflated, ordinal or qualitative (e.g., responses to questionnaires, DNA/RNA sequences, 
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allele frequencies, amino acids, or protein data). Although originally motivated by 

ecological studies, where variables usually consist of counts of abundances (or percentage 

cover, frequencies, or biomass) for a large number of species, PERMANOVA is now 

used across many fields, including chemistry, social sciences, agriculture, medicine, 

genetics, psychology, economics, and more Anderson [2014]. The required assumption are 

exchangeability and the linear model and homogeneity of multivariate dispersions. 

MANOVA 

The Multivariate analysis of variance (MANOVA) procedure provides regression analysis 

and analysis of variance for multiple dependent variables by one or more factor variables 

or covariates. The factor variables divide the population into groups. Using this general 

linear model procedure, the null hypotheses could be tested about the effects of factor 

variables on the means of various groupings of a joint distribution of dependent variables. 

The MANOVA could be used to investigate interactions between factors as well as the 

effects of individual factors. In addition, the effects of covariates and covariate 

interactions with factors can be included. For regression analysis, the independent 

(predictor) variables are specified as covariates. Both balanced and unbalanced models can 

be tested. A design is balanced if each cell in the model contains the same number of 

cases. In a multivariate model, the sums of squares due to the effects in the model and 

error sums of squares are in matrix form rather than the scalar form found in univariate 

analysis. These matrices are called SSCP (sums-of-squares and cross-products) matrices. If 

more than one dependent variable is specified, the multivariate analysis of variance using 

Pillai’s trace, Wilks’ lambda, Hotelling’s trace, and Roy’s largest root criterion with 

approximate F statistic are provided as well as the univariate analysis of variance for each 

dependent variable. In addition to testing hypotheses, Multivariate analysis of variance 
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(MANOVA) produces estimates of parameters O’Brien and Kaiser [1985]. 

ANOSIM 

Classical one-way ANOSIM operates on an appropriate resemblance matrix calculated 

among samples, with a factor describing their a priori group structure (e.g. of different 

sites, times, treatments, etc.) underlying the null hypothesis to be tested, namely H0: ’no 

differences among groups of samples’. If the null hypothesis is true, then the average rank 

resemblance among samples within groups is expected to be the same as the average rank 

resemblance among samples from different groups. The ANOSIM statistic R is defined as 

the scaled difference between the average between-group ( r̄ B ) and within-group (r¯W ) 

ranks: 

𝑅 = (.!////0."/////)
2/4

                     (3.1) 

where M = n(n − 1)/2 and n is the total number of samples being considered. 

Clearly, under the null hypothesis, R would be expected to take values (positive or 

negative) ’close’ to zero, and increasing departure from H0 would result in increasingly 

larger positive values for R. The scaling in equation 3.1 ensures that R falls within the 

range -1 to 1, and takes the value R = 1 only under maximal separation of the groups, 

that is if all samples within groups (replicates) are less dissimilar to each other than any 

pair of samples from different groups. Values of R substantially less than 0 are not 

usually to be expected as this implies that samples within groups are generally less similar 

to each other than samples in different groups, a possibility only for a mislabeled or 

seriously inappropriate design. Note that the usual mathematical terminology for ranks 

assigns to the highest observation a rank value of 1 (the lowest number). If H0 is true, 

then all samples effectively belong to a single group. The spread of possible values of 

R under the null hypothesis can be determined by randomly permuting the sample labels 
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and recalculating R for each random reallocation, or for a random subset if there is a 

large number of possible permutations Hope [1968]. The significance level of the 

observed value of R is then determined by comparing it to the range of values obtained 

under permutation, with rejection of the null hypothesis when the observed R is sufficiently 

large (positive) to have rarely or never occurred under permutation.  

Jensen-Shannon divergence 

The Jensen-Shannon divergence is a measure of similarity between two probability 

distributions. It is a symmetric and finite variant of the Kullback-Leibler divergence, also 

known as information radius Nielsen [2021], Manning and Schutze [1999] or total 

divergence to the average Dagan et al. [1997]. The square root of the Jensen-Shannon 

divergence is also known as the Jensen-Shannon distance Endres and Schindelin [2003], 

Osterreicher and Vajda [2003], Fuglede and Topsoe [2004], and it is a metric that can be 

used to compare two probability distributions. It is commonly used in information theory, 

machine learning, and natural language processing, among other fields. 

Multidimensional scaling (MDS) 

Multidimensional scaling is a visual representation of distances or dissimilarities between 

sets of objects. “Objects” can be colors, faces, map coordinates, political persuasion, or 

any kind of real or conceptual stimuli Kruskal and Wish [1978]. Objects that are more 

similar (or have shorter distances) are closer together on the graph than objects that are less 

similar (or have longer distances). As well as interpreting dissimilarities as distances on a 

graph, MDS can also serve as a dimension reduction technique for high-dimensional data 

Buja et al. [2008]. 

Noise removal with singular value decomposition (SVD) 

Singular value decomposition (SVD) is a mathematical technique by which a matrix is 
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decomposed into a product of three matrices, which can also be written as a sum of rank-

one matrices. SVD could be regarded as a generalization of eigen decomposition, a 

technique employed to decompose a positive semidefinite normal matrix. This relationship 

makes SVD connected to principal component analysis (PCA), a technique commonly 

utilized for data analysis and representation. One example of SVD application can be 

found in image processing. A digital image can be represented by a matrix, where the 

value of a matrix element encodes information about a specific pixel. By breaking down this 

matrix using SVD, the image can be simplified, and useful information can be extracted. 

Another application of SVD is observed in signal processing, where it is employed to 

remove noise from biomedical signals and construct signal and noise subspaces for analysis 

and approximation. 

3.3.6 Experiment procedure 

This research comprises three stages. In the first stage, data collection, SEM, EDS, and 

camera photographs related to the coffee-ring effect were gathered and the images were 

preprocessed. The second stage focused on method optimization, during which the required 

extent of temperature and humidity control to maintain consistent residue patterns was 

examined through the coffee-ring effect. The final stage involved identifying the optimal 

environmental conditions for separating contaminant particles from one another (such as 

calcium, sodium, magnesium, etc.) using the statistical analysis introduced earlier. 

Stage 1: Collection of coffee-ring effect residue pattern 

Stage 1 was divided into two subtasks. Task 1a) involved collecting the coffee-ring effect 

SEM, EDS, and camera photographs. Task 1b) focused on preprocessing the images 

gathered in Task 1a by implementing noise removal, color normalization, and other 

techniques. 
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Data collection: To investigate the effect of environmental conditions on coffee-ring 

effect patterns, nine temperature and relative humidity (RH) combinations were maintained 

by the auto temperature humidity control chamber, and a four-axis autosampler was placed 

inside the chamber (Table. 3.1). During the droplet dropping process, each water sample 

was stored in a 2 µL micro-centrifuge tube and placed in the sample holder. In each 

experiment, sixteen samples were positioned at once in one sample holder. The 

autosampler was programmed to collect 2 µL water samples and inject them onto the 

aluminum substrate (6061 with mirror-like finish, McMaster-Carr 1655T1) as described 

in previous research Li et al. [2020]. After each water sample injection, the injector tip 

was rinsed through a programmed procedure in nanopure water. 

To prevent the influence from other droplets’ drying processes, droplets were placed 1 

cm apart, and ten droplets were dried at once on one aluminum substrate (1 inch wide 

and 3 inches long). To avoid vibrations from autosampler motors, the aluminum slides 

were positioned on an independent sample stage detached from the autosampler. The auto 

temperature humidity control chamber not only maintained the desired temperature and 

humidity but also prevented air flow in the environment. Two microliter droplets of 

each of the five water samples would be deposited on a mirrored aluminum slide and 

allowed to dry, separating particles that form through the coffee-ring effect Li et al. [2020]. 

Five water droplet replicates were collected under each environmental condition. 

A low-cost camera photograph were used for all replicates, using 100X magnification 

and the Celestron camera, including a color bar in all images to normalize brightness, 

contrast, and color. The total number of collected photographs is 225 (9 environmental 

conditions, 5 water recipes with 5 replicates). Residues were saved for further analysis. 

Image preprocessing: In image preprocessing, images were color-normalized based on 
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RGB distribution. Images were loaded using the imread function and converted to binary 

with the im2bw function (threshold set to 0.2). Noise was removed from each binary image 

using the medfilt2 function with an [8, 8] square parameter. Particle edges were captured 

using the edge function with the canny method applied to the smoothed binary image. 

Particle properties were extracted from the smoothed binary image using the regionprops 

function with ’Area’, ’Perimeter’, ’Eccentricity’, ’Orientation’, and ’Centroid’ methods. In 

each SEM-EDS map, a 2-D coordinate was established with origin on the center of the 

droplet pattern in Matlab. The deposition position of each particle for each element were 

recorded as a x-y value in the coordinate. Because particles were deposited as a circle 

around the residue center, particle locations were calculated by the distance between the 

particle’s location and the coordinate center. The adjusted centroid was recalculated by 

taking the square root of the sum of squares of the differences between the centroid x-

coordinate and the image center x-coordinate, and the centroid y-coordinate and the image 

center y-coordinate. 

Stage 2: Optimization of tap water fingerprints 

Stage 2 was divided into three subtasks. Task 1a) Determine the ranges of temperature, 

relative humidity that have consistent coffee-ring fingerprints. Task 1b) Find the optimal 

ranges of temperature, relative humidity to separate contaminants particles from each 

other. Task 1c) Investigate the elements deposition separation effect under each 

environmental condition. 

Adjusted	coordinate = G(X56789:;< − X567869)4 + (Y56789:;< − Y567869)4           (3.2) 

Task 1a: Determine the ranges of temperature, relative humidity over which coffee-ring 

fingerprints are constant. 

In order to implement this method broadly for analyzing samples across a distribution 
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system, it is essential to accommodate analysis in various laboratories and field settings. 

This task assessed the extent of temperature and humidity control needed to produce 

consistent tap water fingerprints. The proposed nine temperature and humidity conditions 

Table. 3.2 were evaluated using PERMANOVA on coffee-ring effect residue pattern 

features. 

Task 1b: Find the optimal ranges of temperature, relative humidity that different water 

samples exhibit different coffee-ring effect residue patterns. 

This task aimed to investigate the optimal temperature and relative humidity conditions 

under which differnt water samples exhibit different coffee-ring effect residue pattern. 

In the previous task, the optimal temperature and relative humidity conditions were 

determined to exhibit consistent coffee-ring effect residue pattern. However, only have 

similar residue pattern is not enough to distinguish different water samples. This task 

utilized PERMANOVA, MANOVA, ANOVA tecniqes to investigate the coffee-ring effect 

residue pattern feature statistics under different environmental conditions. Jensen-

Shannon divergence was used to measure the similarity between different water samples 

and classical multidimensional scaling (NMDS) was used to visualize the differences in the 

coffee-ring effect residue pattern features between different water samples. 

Task 1c: Investigate the optimal ranges of temperature, relative humidity to separate 

contaminants particles from each other. 

This task is to investigate whether specific elements are associated with residue 

particles, EDS mapping images were used to identify particle compositions in coffee-ring 

effect residue patterns. The locations of elements were determined by calculating the 

square root of the x-axis and y-axis relative to the center of each image. Analysis of 

variance (ANOVA) was conducted on the element locations to examine whether there were 
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any significant differences in the spatial distribution of elements within the residue 

patterns. 

Stage 3: Identify the correlation between water sample coffee-ring effect patterns and element 

deposition compositions 

The EDS images were preprocessed using Singular Value Decomposition (SVD) and noise 

was filtered using the medfilt2 function with filter size [3, 3]. After preprocessing, the 

element compositions were extracted from the EDS mappings. 

To determine the composition ratio of each element in the corresponding particle, the 

particles extracted from the water samples coffee-ring effect patterns were compared with 

the pixel signals extracted from the EDS data. The composition ratio of each element in 

each particle was then calculated. To investigate whether there is a significant difference in 

the element composition ratios between particles, the correlations of these ratios were 

calculated, and ANOVA was conducted on these ratios. 

3.4 Results and Discussion 

3.4.1 Under what environmental conditions are coffee-ring effect 

fingerprints are consistent 

PERMANOVA on coffee-ring effect residue pattern features (particle shape, color, 

location from the drop edge, and size) results has shown in Table. 3.5. In all the nine 

temperature and relative humidity combination conditions, the p-values are all smaller than 

0.001. Based on the p-values which has the same degree of freedom of 4, all the coffee-

ring effect residue patterns are consistent between sample replicates and different between 

different samples. However the R2 of all the nine conditions are ranging from 0.716 to 

0.957. PERMANOVA on coffee-ring effect residue pattern features visualization results 

has shown in Table. 6.12. According to the visualization results (manhattan distance 
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applied), under the condition A (20-23 ◦C, 35%-40%), most samples have been 

separated except samples A and B. However, sample A and sample B have similar 

recipes according to Table. 3.4. At the same time, sample D and sample E have similar 

water components, and their positions in the PERMANOVA visualization result are 

near to each other Figure. 3.2. Based on the visualization result, the samples coffee-ring 

effect residue pattern features are mostly differentiable under the condition C (20-23 ◦C, 

45%-50%) (Figure. 3.3) and H (26-29 ◦C, 40%-45%) (Figure. 3.4). Across the nine 

conditions, the sample C (0.1 mM NaHCO3, 0.5 mM CaCl2, 0.2 mM MgCl2, 0.35 mM 

Na2SO4, 0.033 mM NaH2PO4, 0.4 mM KF , 0.005 mM Fe(NO3)3, 0.00024 mM CuSO4) is 

the most stable one that all replicates clustered in a smaller range and not overlapping 

with other samples. Sample E (0 mM NaHCO3, 1 mM CaCl2, 0.5 mM MgCl2, 2.35 mM 

Na2SO4, 0.033 mM NaH2PO4, 0.4 mM KF , 0.05 mM Fe(NO3)3, 0.00024 mM CuSO4) is 

the most unstable one that spreads most among the five water samples. This could be 

explained by with higher humidity, there is more vapor-liquid exchange of water 

molecules. So in the particles formation process, there is more time for the particles to 

crystalize and in the droplet-air interface, the water density gradient decreases smaller than 

low humidity conditions. This smaller water density induces the particles formed in a 

slower and gradual manner which results in crystals formed in different phases of droplet 

drying processes and formed unique residue patterns. At high temperature conditions, the 

particles residue pattern features are not only spread out but also replicates of the same 

sample clustered closer. The reason is at higher temperature conditions, at the moment of 

crystallization, crystals formed at a relative speed so the patterns features are more 

consistent between replicates, for example in condition H (26-29 C, 40%-45%) and I (26-

29 ◦C, 45%-50%). According to the overall analysis, the suitable conditions to produce 
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consistent residue patterns are the conditions with high temperature and relative humidity 

such as condition C, condition F, condition H and condition I. All condition results is 

shown in Table. 6.11. 

Table 3.5: PERMANOVA analysis for particle features 
Condition Df Sum of Sqs Mean Sqs F.Model R2 Pr(>F) sig. 
A 4 1.09 × 1011 2.71 × 1010 113.28 0.95773 0.001 *** 
B 4 2.87 × 108 7.18 × 109 64.175 0.92772 0.001 *** 
C 4 1.91 × 1011 4.78 × 1010 15.567 0.75689 0.001 *** 
D 4 1.67 × 1011 4.18 × 1010 71.904 0.93498 0.001 *** 
E 4 1.49 × 1011 3.73 × 1010 12.651 0.71673 0.001 *** 
F 4 4.72 × 1011 1.18 × 1011 15.542 0.7566 0.001 *** 
G 4 5.98 × 1011 1.49 × 1011 8.1009 0.61835 0.001 *** 
H 4 2.08 × 1011 5.20 × 1010 27.386 0.84561 0.001 *** 
I 4 7.43 × 1011 1.86 × 1011 24.709 0.8317 0.001 *** 

 

 
Figure 3.2: PERMANOVA of condition A 
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Figure 3.3: PERMANOVA of condition C 

 

 
Figure 3.4: PERMANOVA of condition H 

 
3.4.2 What are the optimal environmental conditions that different water 

samples exhibit mostly different coffee-ring effect residue patterns 

To investigate the optimal environmental conditions for separating particles in the coffee-
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ring effect residue pattern, water samples coffee-ring effect residue particles feature 

statistics were analyzed under varying conditions. The most statistically significant particle 

features were identified through multivariate analysis of variance (MANOVA) on water 

samples and environmental conditions. 

The study found that factors such as mean area, mean perimeter, mean eccentricity, 

standard deviation of area, standard deviation of centroid, and standard deviation of 

orientation influenced the coffee-ring effect residue pattern features. These results, as 

shown in Table 3.6, provide insight into the conditions that promote a more visible and 

distinct coffee-ring effect residue pattern. According to the findings, particle features 

such as area, perimeter, eccentricity, and centroid are sensitive to environmental 

conditions, with ’class’ representing water samples and ’condition’ representing 

environmental conditions in Table 3.6. 

Table 3.6: MANOVA analysis for image properties 
Responses 

Response area mean 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 

class 4 38382 9595.6 44.1302 < 2.2 × 10−16 *** 
condition 8 7450 931.3 4.2831 8.562 × 10−05 *** 
Residuals 212 46097 217.4    

Response area std 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 

class 4 1930667 482667 46.1313 < 2.2 × 10−16 *** 
condition 8 274996 34375 3.2854 0.001482 *** 
Residuals 212 2218133 10463    

Response eccentricity mean 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 

class 4 0.121804 0.0304510 42.7562 < 2.2 × 10−16 *** 
condition 8 0.019479 0.0024348 3.4187 0.001016 ** 
Residuals 212 0.150987 0.0007122    

Response eccentricity std 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 
class 4 0.0109677 0.00274192 21.4681 6.974 × 10−15 *** 
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Table 3.6: (cont’d) 
condition 8 0.0017548 0.00021935 1.7174 0.09579 . 
Residuals 212 0.0270767 0.00012772    

Response orientation mean 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 

class 4 555.90 138.975 11.9927 8.368 × 10−09 *** 
condition 8 189.02 23.628 2.0389 0.04333 * 
Residuals 212 2456.72 11.588    

Response orientation std 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 

class 4 56.00 14.000 2.3224 0.05782 . 
condition 8 279.66 34.957 5.7991 1.074 × 10−06 *** 
Residuals 212 1277.94 6.028    

Response perimeter mean 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 
class 4 73599 18399.8 53.9503 <2.2 × 10−16 *** 
condition 8 10876 1359.5 3.9863 0.0002011 *** 
Residuals 212 72303 341.1    

Response perimeter std 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 
class 4 4692837 1173209 42.6128 < 2 × 10−16 *** 
condition 8 500897 62612 2.2742 0.0236 * 
Residuals 212 5836749 27532    

Response centroid mean 
 Df Sum Sq Mean Sq F value Pr(>F) sig. 
class 4 401278 100319 12.530 3.614 × 10−09 *** 
condition 8 878527 109816 13.717 5.513 × 10−16 *** 
Residuals 212 1697283 8006    

Response centroid std 
 Df Sum Sq Mean Sq F value Pr(>F) sig.  
class 4 89628 22406.9 17.906 1.108 × 10−12 *** 
condition 8 200351 25043.8 20.013 < 2.2 × 10−16 *** 
Residuals 212 265294 1251.4    

 
Table 3.6 demonstrates the coffee-ring effect residue pattern variabilities with 

the interaction between environmental conditions and water samples. However, the coffee-

ring effect pattern variabilities of water samples without environmental conditions are not 

clear. In the ANOVA analysis of coffee-ring effect residue pattern features (Table 3.7), 
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area mean, area standard deviation, perimeter mean, perimeter standard deviation, 

centroid mean, centroid standard deviation, and eccentricity mean are statistically 

significant across the nine experiment conditions. The area mean is mostly 

significant at the 10−6 level (conditions A, C, E, F, G, H, I) and lower, with only two 

conditions (B, D) having larger statistical significance at 10−2-10−3. This result suggests 

that the area mean significantly differs between water samples under most test 

environmental conditions. It aligns with the results in Table 6.12, where particle positions 

in the PERMANOVA visualization image are mixed under conditions B and D. This 

confirms that particles formed by different water samples exhibit distinct coffee-ring 

effect residue patterns. 
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Table 3.7: P-value of ANOVA of coffee-ring effect residue pattern features under each experiment condition 

Condition Area 
mean 

Perimeter 
mean 

Centroid 
mean 

Eccentricity 
mean 

Orientation 
mean 

Area 
std 

Perimeter 
std 

Centroid 
std 

Eccentricity 
std 

Orientation 
std 

A 5.62× 
10−6 

3.11 × 
10−7 

1.57 × 
10−3 2.7 × 10−6 5.07×10−2 

3.58× 
10−6 

1.20 × 
10−6 

7.5 × 
10−6 2.64 × 10−3 8.07×10−2 

B 9.51× 
10−2 

1.71 × 
10−2 

4.04 × 
10−8 5.71 × 10−3 7.16×10−3 

8.74× 
10−7 

2.55 × 
10−6 

1.07 × 
10−10 3.83 × 10−2 1.67×10−1 

C 2.46× 
10−10 

1.26 × 
10−9 

2.66 × 
10−2 5.13 × 10−9 4.32×10−3 

1.26× 
10−7 

3.78 × 
10−7 

1.10 × 
101 

4.60 × 10−2 3.12×10−1 

D 7.70× 
10−3 

4.56 × 
10−5 

3.23 × 
10−6 1.36 × 10−5 1.75×10−1 

2.73× 
10−4 

2.39 × 
10−5 

8.48 × 
10−4 3.12 × 10−3 1.22×10−1 

E 9.50× 
10−12 

4.19 × 
10−12 

4.86 × 
10−6 1.09 × 10−4 4.62×10−3 

3.23× 
10−15 

1.09 × 
10−13 

6.57 × 
10−5 1.31 × 10−3 1.12×10−2 

F 8.41× 
10−7 

6.43 × 
10−9 

2.99 × 
10−2 5.61 × 10−5 1.55×10−1 

2.50× 
10−6 

1.20 × 
10−6 

7.38 × 
10−5 4.50 × 10−4 6.48×10−1 

G 1.23× 
10−6 

1.62 × 
10−10 

1.45 × 
10−6 4.66 × 10−7 4.52×10−2 

9.30× 
10−6 

4.92 × 
10−8 

8.60 × 
10−5 3.21 × 10−7 5.14×10−5 

H 1.43× 
10−9 

3.65 × 
10−11 

1.47 × 
10−2 9.72 × 10−6 1.68×10−1 

1.24× 
10−6 

7.94 × 
10−7 

2.96 × 
10−2 2.46 × 10−6 2.80×10−1 

I 6.74× 
10−6 

2.41 × 
10−6 

3.02 × 
10−1 5.00 × 10−3 3.73×10−1 

3.16× 
10−5 

2.51 × 
10−5 

9.13 × 
10−7 3.69 × 10−2 4.76×10−3 
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For the perimeter mean variable, the nine conditions show similar statistical results, 

with the perimeter mean mostly significant at the 10−5 level (conditions A, C, D, E, F, 

G, H, I) and lower, except for one condition (B) with a larger statistical significance of 

1.71 × 10−2. The larger significance value also contributes to point mixing in the 

PERMANOVA under condition B (Table 6.11). 

 
Figure 3.5: PERMANOVA of condition B 

 
Although centroid mean is statistically significant in water sample coffee-ring effect 

residue pattern features, the significance levels are lower than those of area mean and 

perimeter mean features, with five significance values greater than 10−3 among nine 

conditions. This occurs because the shapes of formed particles are similar, leading to 

similar centroid calculations among particles. Interestingly, despite condition B having 

larger significance values for area mean and perimeter mean, the significance value of 

centroid under condition B is smaller than other conditions. 

Eccentricity values are similar to centroid, with larger significance values than area 
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mean and perimeter mean but smaller values than centroid. In contrast, orientation mean 

shows much larger significance values due to particles forming in the droplet drying 

process, from the droplet edge to the droplet center, resulting in the same orientations. 

The standard deviations of coffee-ring effect residue particle area, perimeter, centroid, 

eccentricity, and orientation display similar results to the feature means: area and perimeter 

standard deviations have the highest levels of statistical significance, centroid and 

eccentricity standard deviations have lower levels of statistical significance, and orientation 

standard deviation has the lowest significance levels. However, unlike the residue particle 

feature mean values, the feature standard deviation values do not correlate with the 

PERMANOVA of residue particle features. 

The ANOVA on coffee-ring effect residue pattern features of each water sample 

follows the same trend: particle area and perimeter features have the highest statistical 

significance levels, centroid and eccentricity have lower statistical significance, and 

orientation has the lowest significance levels (Table 3.8). 
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Table 3.8: P-value of ANOVA of coffee-ring effect residue pattern features of water samples 

Samples Area 
mean 

Perimeter 
mean 

Centroid 
mean 

Eccentricity 
mean 

Orientation 
mean 

Area 
std 

Perimeter 
std 

Centroid 
std 

Eccentricity 
std 

Orientation 
std 

Sample 
1 

5.16 × 
10−4 

4.2 × 
10−3 4.97×10−9 3.92 × 10−5 4.1 × 10−1 

2.02× 
10−1 

6.26 × 
10−1 

1.87 × 
10−4 3.24 × 10−3 4.66×10−1 

Sample 
2 

8.89 × 
10−3 

7.48 × 
10−3 2.63×10−9 1.37 × 10−5 4.92×10−3 

9.81× 
10−2 

3.99 × 
10−2 

1.05 × 
10−8 6.9 × 10−2 7.38×10−4 

Sample 
3 

4.72 × 
10−11 

1.2 × 
10−12 1.18×10−3 5.23 × 10−5 6.77×10−1 

3.2 × 
10−8 

2.87 × 
10−8 

5.64 × 
10−9 5.75 × 10−6 1.28×10−5 

Sample 
4 

2.05 × 
10−6 

1.79 × 
10−6 1.23×10−4 1.14 × 10−3 8.78×10−2 

4.51× 
10−6 

5.55 × 
10−7 

6.68 × 
10−10 4.08 × 10−2 2.22×10−3 

Sample 
5 

2.60 × 
10−3 

1.65 × 
10−4 

2.90 × 
10−12 3.95 × 10−5 4.21×10−1 

1.35× 
10−3 

1.67 × 
10−4 

7.45 × 
10−12 6.61 × 10−2 1.24×10−3 
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In a previous analysis of variance (ANOVA), the significance of each coffee-ring effect 

residue pattern feature was evaluated independently, considering water sample class 

or environmental condition separately. To confirm the statistical significance of these 

pattern features, a multivariate analysis of variance (MANOVA) was conducted for each 

environmental condition individually, as shown in Table 3.9. 

Based on the MANOVA results, four conditions (A, B, D, and F) exhibited a 

statistically significant residue area feature. Five conditions (A, B, C, E, and H) showed a 

statistically significant residue eccentricity feature. Seven conditions (A, B, D, E, F, H, 

and I) demonstrated a statistically significant residue centroid feature. Unlike the ANOVA 

results, the orientation feature was not found to be statistically significant under any 

condition. However, only one condition (B) had a statistically significant residue perimeter 

feature. This discrepancy is likely due to the MANOVA algorithm accounting for the 

correlations between the residue features. 
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Table 3.9: MANOVA of coffee ring effect residue pattern features of water samples under each condition 

Condition Area 
mean 

Perimeter 
mean 

Centroid 
mean 

Eccentricity 
mean 

Orientation 
mean 

Area 
std 

Perimeter 
std 

Centroid 
std 

Eccentricity 
std 

Orientation 
std 

A 0.6364 0.456 0.0001 4.8 × 10−5 0.016 0.0003 0.003 1.15 × 
10−6 0.012 0.032 

B 0.408 0.059 1.12 × 
10−8 0.035 0.80 0.0001 8.4 × 

10−5 
1.99 × 
10−8 0.0025 0.09 

C 0.18 0.38 0.29 4.7 × 10−5 0.062 0.01 0.2 0.5 0.254 0.22 
D 0.23 0.51 0.001 0.038 0.366 0.0005 0.1 0.001 0.268 0.79 

E 0.179 0.117 3.9 × 
10−7 0.006 0.05 0.01 0.014 0.007 0.004 0.19 

F 0.40 0.44 0.38 0.03 0.06 0.0016 0.037 0.0001 0.8 0.31 
G 0.95 0.91 0.059 0.5 0.81 0.037 0.21 0.185 0.72 0.15 
H 0.52 0.54 0.006 0.0006 0.099 0.076 0.182 0.0012 0.63 0.39 

I 0.83 0.756 0.249 0.6 0.59 0.042 0.173 1.75 × 
10−6 0.88 0.001 
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ANOSIM for coffee-ring effect residue pattern features 

To account for the correlation between the experiment environmental conditions and water 

sample classes, ANOSIM (with Canberra dissimilarity index) was conducted on coffee-

ring effect residue pattern features. The results are shown in Table 6.12. 

According to the ANOSIM results, conditions C, E, G, and H are the conditions where 

coffee-ring effect residues of the same water recipe are more distinguishable than those of 

water samples with different components. Conditions A and F display comparable 

differences between water samples with the same components and those with different 

components. However, conditions B and I show the least similarity in residue patterns for 

the same water components and different residue patterns for different water components. 

The ranking of water sample residue pattern similarity for the same water components 

compared to water with different components is C, H, E, G, F, A, D, B, I. Statistically, the 

null hypothesis is that there is no difference between the means of two or more groups of 

(ranked) dissimilarities. The ANOSIM statistic R (Table 3.10) and significance values can 

be compared to test this hypothesis. 

Table 3.10: R-value ANOSIM result of water samples coffee-ring effect residue patterns 
Temperature ◦C 
Relative Humidity 
(R-value) 

20-23 (◦C) 23-26 (◦C) 26-29 (◦C) 

35%-40% 0.6344 0.5459 0.7600 
40%-45% 0.5366 0.7706 0.7922 
45%-50% 0.8643 0.7202 0.5366 

 
ANOSIM was conducted on each particle feature of the coffee-ring effect residue 

pattern features to investigate the variability of particle area, perimeter, eccentricity, and 

centroid in relation to water samples and environmental conditions.  Under each 

environmental condition, Jensen-Shannon divergence was calculated based on particle 

area, perimeter, and eccentricity. Multidimensional scaling and classical multidimensional 
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scaling coordinates were then derived from the Jensen-Shannon distance matrix. 

ANOSIM for coffee-ring effect residue pattern area feature 

The ANOSIM result for the coffee-ring effect residue pattern area feature is shown in 

Table 6.13. In this result, the upper right and lower left triangles are the same due to the 

interchangeability of distances between two replicate residues. Also, in condition A results, 

for images from 11 to 15, the distances between the replicates are smaller than the 

distances between these replicates and other samples, demonstrating the consistency of 

coffee-ring effect residue patterns. Conditions C, F, and H all display relatively smaller 

distances within water samples than distances between samples. Under the high relative 

humidity conditions (conditions C, F, and I), sample E (1 mM CaCl2, 0.5 mM MgCl2, 2.35 

mM Na2SO4, 0.033 mM NaH2PO4, 0.4 mM KF, 0.005 mM Fe(NO3)3, and 0.00024 mM 

CuSO4) exhibits relatively greater distinct residue patterns compared to other water 

samples. 

The CMDS coordinates of the ANOSIM results are shown in Table 6.14. In this 

table, it is clear that the coffee-ring effect residue patterns of replicates for each water 

sample are clustered near each other under conditions C, F, and H. However, the projected 

points under conditions A, B, and D are mixed together. Therefore, based on the residue 

pattern area feature, conditions C, F, and H are suitable for separating water contaminant 

particles from each other. 

ANOSIM for coffee-ring effect residue pattern perimeter feature 

The ANOSIM result for the coffee-ring effect residue pattern perimeter is shown in 

Table 6.15. Based on the results, under conditions D, G, and H, the similarities 

between water samples C (0.1 mM NaHCO3, 0.5 mM CaCl2, 0.2 mM MgCl2, 0.35 mM 

Na2SO4, 0.033 mM NaH2PO4, 0.4 mM KF, 0.005 mM Fe(NO3)3, and 0.00024 mM CuSO4) 
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differ from those of water samples D (1 mM CaCl2, 1 mM MgCl2, 1.35 mM Na2SO4, 0.033 

mM NaH2PO4, 0.4 mM KF, 0.005 mM Fe(NO3)3, and 0.00024 mM CuSO4) and E (1 mM 

CaCl2, 0.5 mM MgCl2, 2.35 mM Na2SO4, 0.033 mM NaH2PO4, 0.4 mM KF, 0.005 mM 

Fe(NO3)3, and 0.00024 mM CuSO4). The reason is that samples D and E do not contain 

NaHCO3. 

Additionally, only under condition A do the replicates of water samples C, D, and 

E produce consistent residue patterns; under other temperature and relative humidity 

conditions, water samples A, B, and C produce more consistent residue patterns. 

Furthermore, under conditions B, C, D, F, and I, sample E produces different residue 

patterns than samples A, B, C, and D. In the nanochromatography (Table 6.24), sample 

E is prone to forming an olive-shaped residue with a strong edge. Especially under 

conditions D and G, sample E has difficulty maintaining a convex shape residue, which 

results from the shrinkage of the residue during the droplet drying process. 

The CMDS coordinates of the ANOSIM results are shown in Table 6.16. The sample 

separation and replicate clustering results are not as strong as those for the residue pattern 

area feature. This is because non-convex shaped residues can produce the same sized 

residue pattern but with a much larger perimeter. Only under conditions C and F are 

the water samples with different components separated, and replicates with the same recipe 

are clustered together. 

ANOSIM for coffee-ring effect residue pattern centroid feature 

The ANOSIM result for the coffee-ring effect residue pattern centroid is shown in Table 

6.17. Based on the results, only under condition C do the replicates of water samples 

produce similar residue pattern centroid features, and water samples with different 

components produce different residue patterns. Under conditions A and B, water samples 
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C and D produce similar residue pattern centroid features. 

The reason that the centroid feature is not a suitable metric to distinguish water samples 

with different water components is that the formed particles in the residue have a similar 

centroid, which originates from the formation of the particles. During the droplet drying 

process, particles are formed from the droplet edge to the droplet center, and they are 

formed in the same direction, resulting in particles with similar centroids (see Table 6.27). 

The CMDS coordinates of the ANOSIM results are shown in Table 6.18. As shown in 

the centroid ANOSIM results, only under condition C do water samples with different 

components’ residue patterns produce different centroid features and have different 

coordinates in the CMDS plot. Replicates of water samples with the same components 

produce similar centroid residue patterns and have similar coordinates in the CMDS plot. 

However, under conditions A, D, and G, the water sample C points are separable from the 

other water samples (see Table 6.18). This is consistent with the results in the ANOSIM 

results, where under condition G, water sample C (replicates 11 to 15) residue patterns 

have more similar centroid features than the other water replicates. This phenomenon 

occurs under conditions with lower relative humidity, where the concentration of 0.1 mM 

NaHCO3, 0.5 mM CaCl2, and 0.2 mM MgCl2 is lower. These low component 

concentrations result in slower particle formation, so only when the droplet shrinks to a 

smaller size will particles form, and the formed particles are larger than particles formed 

under other conditions (see Table 6.24, Table 6.25, and Table 6.26). 

ANOSIM for coffee-ring effect residue pattern eccentricity feature 

The ANOSIM results for coffee-ring effect residue pattern eccentricity are shown in 

Table 6.19. Based on the results, under condition A, the replicates of water samples A 

and B have similar eccentricity features, and water samples C, D, and E have similar 
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eccentricity features. However, water samples A, B, and C form one group, and water 

samples D and E form another group. Under conditions C, D, G, and H, water sample A 

exhibits its own eccentricity feature. Under condition H, all five water samples exhibit 

distinct eccentricity features. 

The CMDS coordinates of ANOSIM results are shown in Table 6.20. Under conditions 

B, C, and D, all replicate points are mixed together in a small region and cannot be 

separated effectively. Under condition G, replicate points are separated by their 

components; however, these points are too close together, making it difficult to find a clear 

rule for separating them and using them for further prediction. The water samples are 

separated maximally under condition H; however, there are two drawbacks in this condition. 

First, the replicates of water sample A are not clustered in a small region, indicating that the 

replicates’ consistency is not optimal, as shown in Table 6.19. Second, samples B and C 

are too close to each other in the CMDS plot. 

3.4.3 Under each environmental condition, are the elements deposition 

locations significantly different from each other 

Previous analyses have shown that both environmental conditions and water chemistry 

have statistically significant effects on coffee-ring effect patterns. However, these analyses 

did not provide information on whether the elements were separated in each residue 

pattern. To investigate this, EDS mapping images were used to label particle compositions 

in coffee-ring effect residue patterns. The locations of elements were calculated as the 

square root of the x-axis and y-axis relative to the center of each image. The p-value of the 

analysis of variance (ANOVA) was found to be smaller than 2 × 10−16, indicating that 

environmental conditions and water sample class have significant statistical effects on 

element distributions. This suggests that different elements are separated by the coffee-ring 
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effect. 

The carbon, chlorine and sulfur elements Two-way ANOVA results is shown in 

Table. 6.21. All the tests on these nine conditions have degree of freedom of 4 for class 

variable, degree of freedom of 2 for elements variable and degree of freedom of 8 for 

class:elements (class stands for water samples, elements stands for elements, carbon, 

chlorine and sulfur in this case). Based on these tests, all these nine conditions have shown 

statistical significance that the p-value is smaller than 2 × 10−16. Comparing the F values 

respect to the elements of under these nine conditions, condition A and C have the value 

around 5600 and condition D have the value around 8600 which is the highest value in 

these nine conditions. This results concludes the carbon, chlorine and sulfur are mostly 

separated under condition D than condition A and C and other conditions. Comparing 

the F values respect to the class variable, condition C, D and G all have shown largest F 

values (F values in the range of 400-470) which means the carbon, chlorine and sulfur 

elements are mostly separated in the coffee-ring effect residue pattern under these 

environmental conditions with respect to the water components recipe. Comparing the 

class to elements correlation, the carbon, chlorine and sulfur are mostly separated under the 

C, D, F and G (F values in the range 400-600) conditions which is consistent with the 

ANOSIM of residue pattern features result. 

The Two-way ANOVA results for calcium, magnesium, and sodium elements are 

presented in Table 6.22. All nine tests have a degree of freedom of 4 for the class 

variable, 2 for the elements variable, and 8 for class:elements (where ’class’ represents water 

samples, ’elements’ represents the elements calcium, magnesium, and sodium in this case). 

Based on these tests, all nine conditions showed statistical significance, with p-values 

smaller than 2 × 10−16. 
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When comparing the F-values with respect to the elements under these nine conditions, 

conditions A, B, C, and I had values around 3000, while condition D had the highest value 

at around 3800. This indicates that calcium, magnesium, and sodium are more effectively 

separated under condition D compared to A, B, C, and the other conditions. 

When comparing the F-values with respect to the class variable, conditions B, C, D, and 

E showed the largest F-values (in the range of 50 to 150), suggesting that calcium, 

magnesium, and sodium elements are more effectively separated in the coffee-ring effect 

residue pattern under these environmental conditions with respect to the water components 

recipe. 

Furthermore, when comparing the class to elements correlation, calcium, magnesium, 

and sodium were more effectively separated under conditions B, C, D, and E (with F-

values in the range of 100 to 180), which is consistent with the ANOSIM analysis of 

residue pattern features for carbon, chlorine, and sulfur. 

Overall, these results suggest that conditions B, C, D, and E are the most effective 

for separating calcium, magnesium, and sodium elements in the coffee-ring effect residue 

pattern. Previous analyses have demonstrated that environmental conditions and water 

chemistry have statistically significant effects on the coffee-ring effect pattern and the 

distribution of element components in water samples. However, it remains unclear 

whether there is a correlation between the coffee-ring effect patterns and the element 

compositions of water samples, which is crucial for building models to recognize and 

quantify contaminants. In previous analyses, we identified several optimal conditions that 

produced consistent replicates of water sample residue patterns and distinct residue patterns 

for different water components. The following analysis aims to investigate under which 

environmental conditions the coffee-ring effect patterns of water samples are correlated 
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with element compositions. This analysis will provide insight into the relationship 

between the residue patterns and the underlying elemental components, which can be 

used to develop more accurate models for detecting and quantifying contaminants. 

3.4.4 Do the water sample coffee-ring effect patterns have significant 

statistical correlation with element composition 

The heat-map correlations between the coffee-ring effect residue particles’ area, 

eccentricity, and the percentage of elements such as sulfur, chlorine, carbon, sodium, 

magnesium, and calcium are shown in Table 6.23. The strongest correlations between 

residue particle features and element percentage are observed under conditions A, G, and 

H. 

Under condition G, the correlation between calcium and magnesium is -0.0093, 

indicating that these two elements in the residue are well separated in the residue pattern. 

Conversely, under condition B, the correlation between calcium and magnesium is 0.0087, 

suggesting that these two elements present in similar positions in the residues are not well 

separated. 

Another important phenomenon observed under conditions A, G, and H is that the 

correlation between particle area feature and elements is higher than other conditions. For 

instance, the correlation between particle area and sulfur percentage is 0.01, which is 

higher than condition B (0.0045) and condition D (0.0057). Additionally, the correlation 

between area and chlorine is 0.027, which is the highest correlation among these nine 

conditions. 

Overall, these results suggest that conditions A, G, and H are more effective in 

separating the elemental components in the coffee-ring effect residue pattern and 

producing a higher correlation between the particle features and element compositions. 
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Table 3.11: Optimal condition analysis for consistent replicates residue pattern and distinct 
water samples particle features. 

Conditions vs 
analysis A B C D E F G H I 

Temperature (°C) 20-23 20-23 20-23 23-26 23-26 23-26 26-29 26-29 26-29 
Relative humidity 
(%) 35-40 40-45 45-50 35-40 40-45 45-50 35-40 40-45 45-50 

PERMANOVA 
on CRE pattern 
features 

   
✓ 

   
✓ 

  
✓ 

 
✓ 

MANOVA on CRE 
pattern area ✓ ✓  ✓  ✓    

MANOVA on CRE 
pattern perimeter 

 ✓        

MANOVA on CRE 
pattern eccentricity ✓ ✓ ✓  ✓   ✓  

MANOVA on CRE 
pattern centroid ✓ ✓  ✓ ✓ ✓  ✓ ✓ 

CRE pattern 
features ANOSIM 

  ✓  ✓ ✓ ✓ ✓  

CRE area 
ANOSIM 

  ✓   ✓  ✓  

CRE perimeter 
ANOSIM 

 ✓ ✓ ✓  ✓    

CRE centroid 
ANOSIM ✓   ✓   ✓   

CRE eccentricity 
ANOSIM 

  ✓ ✓  ✓ ✓   

EDS elements 
ANOVA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

Particles EDS 
ANOVA ✓      ✓ ✓  

Summary-number 
of optimal results 
out of 12 analyses 

6 6 7 6 4 8 5 7 2 

 
Based on the previous analysis presented in Table 3.11, the optimal environmental 

conditions for separating the elemental components in the coffee-ring effect residue pattern 

are 23-26°C with 45-50% relative humidity, 20-23°C with 45-50% relative humidity, and 

26-29°C with 40-45% relative humidity. Nonetheless, the optimal environmental condition 

is a temperature range of 23-26°C and a relative humidity of 45-50%, as it yielded the 
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highest number of optimal results in 12 separate analyses. These conditions produced the 

highest correlation between particle features and element compositions, indicating that the 

particles and elements were well separated in the residue pattern. These optimal 

environmental conditions can be useful for developing models to detect and quantify 

contaminants in water samples using the coffee-ring effect residue pattern analysis. 

3.5 Conclusion 

The study demonstrates the potential of the coffee-ring effect as a tool for tap water 

analysis. It shows that the coffee-ring effect can produce unique fingerprints for water 

samples with different recipes and environmental conditions. The results also confirm 

the reproducibility of the coffee-ring effect, which is essential for establishing it as a 

reliable analytical technique. Additionally, the study highlights that both environmental 

conditions and water compositions impact the residue patterns produced by the coffee-ring 

effect, and that these patterns reflect the water chemistry within the sample. This study 

demonstrated the effectiveness of the auto temperature humidity control chamber in 

maintaining temperature and relative humidity, as well as the four-axis autosampler for 

conducting nanochromatography experiments. 

The study concludes that statistical methods such as ANOVA, MANOVA, and 

PERMANOVA can differentiate coffee-ring effect residue patterns with respect to 

environmental conditions and water sample compositions. However, the results from 

different analysis methods are inconsistent, so further research is needed to determine the 

best method for differentiating these patterns. The research presents the findings of 

various statistical analyses conducted to investigate the coffee-ring effect residue patterns. 

These analyses included ANOVA and MANOVA tests on residue pattern features, such as 

area, perimeter, centroid, eccentricity, and orientation, ANOSIM tests on residue pattern 
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features and element distributions, and two-way ANOVA tests on element distributions. 

The results of these analyses indicate that both environmental conditions and 

water chemistry significantly influence residue patterns and element distributions. In 

particular, certain conditions, such as 23-26°C with 45-50% relative humidity, 20-23°C 

with 45-50% relative humidity, and 26-29°C with 40-45% relative humidity, are well-

suited for differentiating between water samples with varying concentrations of different 

components. Nonetheless, the optimal environmental condition is a temperature range 

of 23-26°C and a relative humidity of 45-50%, as it yielded the highest number of optimal 

results in 12 separate analyses. It is important to note that these findings have 

implications for the study of residue patterns and the understanding of the coffee-ring 

effect. Specifically, they suggest that further research is needed to better understand how 

environmental factors and water chemistry work together to impact residue patterns. 
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CHAPTER  4 

CNN-Vision-transformer model for elements concentration 

estimation by coffee-ring effect residue patterns 

4.1 Abstract 

This study investigates the effectiveness of the machine learning technique in detecting 

multiple contaminants in a tap water’s dried residue’s coffee-ring effect "fingerprint" with 

high accuracy. The use of the coffee-ring effect on water droplets dried on low-cost 

aluminum substrates allows low-cost separation of solutes within water samples, forming 

unique “fingerprints” for each tap water that can be photographed and analyzed using 

machine learning. Three models were evaluated in this research: the One-stage point 

estimation model (OnePeM), the Two-stage vision-transformer point estimation model 

(TwoVtPeM), and the Two-stage vision-transformer multiple output estimation model 

(TwoVtMoM). The TwoVtPeM technique achieved the best performance of the models 

tested (OnePeM, TwoVtPeM and TwoVtMoM), with OnePeM also performing well and 

TwoVtMoM falling short. The TwoVtPeM relative percentage errors were ±17.1% for 

oxygen, ±4.5% for sulfur, ±19.9% for sodium, ±5.7% for chlorine, ±19.8% for calcium, 

±25.8% for magnesium, and ±20.1% for carbon. The R2 was 0.95 which is higher than 

OnePeM with 0.90 R2 and TwoVtMoM which was 0.54. The TwoVtPeM had a higher 

error mean than OnePeM, but it exhibited lower relative standard deviations of estimation; 

the TwoVtPeM relative standard deviations values were: 3.9% for oxygen, 3.0% for sulfur, 

5.3% for sodium, 3.9% for magnesium, 5.3% for chlorine, 10.0% for calcium, and 

5.9% for carbon. Moreover, 79.2% of water samples were correctly classified for 

hardness based on the estimated element concentrations by TwoVtPeM. The OnePeM 
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model correctly classified 67.2% of water samples, however the TwoVtMoM model 

achieved only 60.2% accuracy rate in classifying water samples for hardness. 

The study’s findings reveal the advantages of the deep learning technique (TwoVtPeM) 

potential for water analysis over other screening methods such as test strip test kits, due to 

its ability to estimate multiple contaminants simultaneously, speed and low cost. Further 

improvements can be made, including addressing certain limitations such as the quality of 

the substrate and the size and complexity of the dataset and models. Advances in camera 

technology and deep learning techniques have the potential to improve the method’s ability 

to detect low concentrations of elements. In conclusion, this study highlights the potential 

of machine learning to transform water quality monitoring, leading to better health 

outcomes for individuals and communities. 

4.2 Introduction 

Ensuring sustainable and clean access to water is crucial for water and wastewater 

treatment plants as well as other natural and industrial systems that depend on this vital 

resource. These plants not only have to meet the needs of consumers and upgrade 

infrastructure to improve their quality of life, but they also face increasingly stringent 

regulatory measures to meet rising quality standards Faherty [2021]. Unfortunately, 

heavily polluted waterways are becoming more common in many countries, posing a threat 

to human, aquatic, and terrestrial life Ebenstein [2012]. To address these challenges, 

researchers worldwide are exploring methods to optimize, remediate, and enhance water 

usage Lages Barbosa et al. [2015], Yang et al. [2020], Vu and Wu [2022], Podder et al. 

[2021].  Many are focusing on creating and simulating optimized, cost-effective, and 

intelligent models to tackle these issues. Artificial intelligence (AI) has become an 

important tool in this effort, enabling the analysis and interpretation of vast amounts of 
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data to facilitate better decision-making and more effective management of water 

resources. 

The water industry is increasingly turning to emerging AI and ML technologies, as 

well as smart systems, to address challenges that have traditionally been underserved by 

conventional methods and approaches. These technologies are anticipated to offer cost 

savings and process optimization through their resilience, generalization, and ease of 

design, helping to model and overcome complex water-related issues Alam et al. [2022], 

Taoufik et al. [2022], Gordanshekan et al. [2023], Xie et al. [2022]. Applications that have 

already benefited from ML include water and wastewater treatment, natural-systems 

monitoring, and precision agriculture. The most commonly used ML techniques in these 

studies include artificial neural networks (ANNs), recurrent neural networks (RNNs), 

random forest (RF), support vector machine (SVM), and adaptive-neuro fuzzy inference 

systems (ANFISs), with occasional use of AI techniques such as fuzzy inference systems 

(FISs). Some studies have also explored hybrid approaches, such as ANN-RF and SVM-

RF, with positive outcomes in water-related modeling processes. 

4.2.1 Coffee-ring effect residue provides particles structure information 

The coffee-ring effect creates unique residue patterns or fingerprints correlating to tap 

water chemistry when harnessed Li et al. [2020], Shahidzadeh-Bonn et al. [2008], Kaya et al. 

[2010], Shin et al. [2014], Shahidzadeh et al. [2015]. These patterns result from the 

crystallization process of water contaminants and are influenced by various factors, such as 

evaporation, bulk flow, temperature, humidity, and wettability Li et al. [2020], Qazi et al. 

[2017], Wei et al. [2012], Sammalkorpi et al. [2009], Desarnaud et al. [2014], Meldrum 

and O’Shaughnessy [2020]. Crystallization of salts from drying saline droplets has been 

investigated in some studies, which analyzed nucleation mechanisms and the dependence 
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of precipitation profile on factors like surface properties and salt concentration. The 

complexity of the coffee-ring effect pattern formation is influenced by contact line pinning 

on the substrate and the contact angle. Previous research has found particle separation 

during coffee-ring formation to be based on a particle-size selection mechanism near the 

contact line of an evaporating droplet, leading to nanochromatography of various biological 

entities with high separation resolution and dynamic range Wong et al. [2011], Larson 

[2014], Deegan et al. [1997], Chen and Evans [2010], Eral et al. [2013]. This mechanism 

has the potential to be used to estimate crystal structures and even particle concentrations. 

4.2.2 Applications of AI and ML methods in Water Treatment  

ML techniques for modeling membrane-filtration processes aim to output several variables, 

such as transmembrane pressure, permeate flux, and solute rejection. Inputs in 

published studies include pH, temperature, contact/filtration time, transmembrane pressure, 

and flux rate, among others. ANN, RNN, and SVM models consistently performed well, 

achieving R2 values greater than 0.9 and often greater than 0.99. AI and ML methods have 

also been used to control chlorination, estimate disinfection by-product (DBP) 

concentration, model significant parameters for adsorption and membrane-filtration 

processes. Statistical measures used to evaluate results include the coefficient of correlation 

(R), coefficient of determination (R2), mean average error (MAE), mean square error 

(MSE), root mean square error (RMSE), and relative error (RE). 

Chlorination and Disinfection By-Product Estimation 

Disinfecting water is crucial for killing or inactivating microorganisms and viruses. 

Chlorine-based disinfectants Li et al. [2017], Xu et al. [2015, 2013] are often used, but they 

pose health hazards and can create DBPs Sedlak and von Gunten [2011], Bull et al. [1995]. 

AI methods can be used to control chlorination, while ML technologies can predict and 



 
138 

mitigate DBP formation. Studies have tested models on surface waters treated with 

chlorine and noted success in modeling DBP concentrations in treated water distribution 

networks and at consumer taps Librantz et al. [2018], Godo-Pla et al. [2021], Singh and 

Gupta [2012], Mahato and Gupta [2022], Park et al. [2018], Lin et al. [2020], Xu et al. 

[2022], Peleato [2022], Okoji et al. [2022], Cordero et al. [2021]. 

Adsorption Processes 

Adsorption processes remove various contaminants in the water and wastewater treatment 

industries. Predictive models using ML can optimize the adsorption process and 

extend the media’s life, increasing the plant’s effectiveness and confidence in meeting 

applicable regulations. Studies have modeled adsorption processes with water streams 

contaminated with metals, industrial dyes, and organic compounds using various adsorbent 

media including carbonaceous materials and metal-based nanocomposites Bhagat et al. 

[2021], Mazloom et al. [2020], Mesellem et al. [2021a], Al-Yaari et al. [2022], Mazaheri et 

al. [2017], Ahmad et al. [2020], Fawzy et al. [2016], Ullah et al. [2020], Mahmoud et al. 

[2019], Mesellem et al. [2021b]. 

Membrane-Filtration Processes 

Membrane processes separate contaminants in water and wastewater treatment by passing 

the water through a barrier or filter using high-pressure differentials. These processes are 

typically used for contaminants that are difficult or costly to remove by chemical or 

physical means Hube et al. [2020], Pronk et al. [2019]. AI and ML models have been used 

to treat various water sources contaminated with pollutants and natural compounds 

Zoubeik et al. [2019], Fetanat et al. [2021], Khan et al. [2022], Yusof et al. [2020], Nazif et 

al. [2020], Shim et al. [2021], Ammi et al. [2021a]. ANN is the most commonly used model, 

although ANFIS, SVM, and specific forms of ANNs have also been used for membrane-
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filtration-process modeling. ANN, RNN, and SVM models consistently performed well, 

achieving R2 values greater than 0.9 and often greater than 0.99 Zoubeik et al. [2019], 

Khan et al. [2022], Yangali-Quintanilla et al. [2009]. 

Vision Transformer in computer vision 

Deep neural networks (DNNs) are the backbone of AI systems today. Different types of 

networks are suited for different tasks. For instance, the multi-layer perceptron (MLP) or 

fully connected (FC) network, made up of multiple linear layers and nonlinear activations, 

is a classical type of neural network Rosenblatt [1957]. Convolutional neural networks 

(CNNs) use convolutional and pooling layers to process shift-invariant data like images 

LeCun et al. [1998], Krizhevsky et al. [2017]. Recurrent neural networks (RNNs) apply 

recurrent cells to handle sequential or time series data Hochreiter and Schmidhuber [1997]. 

Transformer is a novel neural network that uses self-attention mechanisms Bahdanau et al. 

[2014], Parikh et al. [2016] to extract intrinsic features Vaswani et al. [2017] and 

demonstrates great potentialfor broad AI applications. It was first used in NLP tasks, 

where it showed significant improvement Vaswani et al. [2017], Devlin et al. [2018], 

Brown et al. [2020]. For instance, Vaswani et al. Vaswani et al. [2017] first proposed 

the transformer, which is based on the attention mechanism, for machine translation and 

English constituency parsing tasks. Devlin et al. Vaswani et al. [2017] introduced BERT 

(Bidirectional Encoder Representations from Transformers), a language representation 

model that pre-trains the transformer on unlabeled text, considering the context of each 

word in a bidirectional manner. BERT obtained state-of-the-art results on 11 NLP tasks 

upon publication. Brown et al. Brown et al. [2020] pre-trained a massive transformer-

based model, GPT-3 (Generative Pre-trained Transformer 3), using 45 TB of compressed 

plaintext data and 175 billion parameters. It performed well on various downstream NLP 
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tasks without the need for fine-tuning. These transformer-based models, with their robust 

representation capacity, have brought about significant advances in NLP. 

Recently, the success of transformer architectures in NLP has inspired researchers to 

apply it to computer vision tasks. Although CNNs have been traditionally considered the 

foundation of vision applications He et al. [2016], Ren et al. [2015], the transformer is 

proving to be a potential alternative. Chen et al. Chen et al. [2020] trained a sequence 

transformer to predict pixels through auto-regression, achieving comparable results to 

CNNs in image classification tasks. The vision transformer model, ViT, was proposed by 

Dosovitskiy et al. Dosovitskiy et al. [2020], which directly applies a pure transformer to 

sequences of image patches for full image classification and has achieved state-of-the-art 

results on multiple image recognition benchmarks. Transformer has also been used to solve 

various other vision problems, such as object detection Carion et al. [2020], Zhu et al. 

[2020],semantic segmentation Zheng et al. [2021], image processing Chen et al. [2021], 

and video understanding Zhou et al. [2018]. Its exceptional performance is attracting more 

researchers to propose transformer-based models for a wide range of visual tasks. 

However, there has not yet been research conducted using the coffee-ring effect in 

conjunction with machine learning and deep learning models, particularly the vision 

transformer model, to estimate the concentration of elements in water samples. The 

vision transformer model has the potential to not only utilize the particle morphology and 

location information from one element to make estimations but also incorporate the 

physical chemistry interactions between elements to correct noise and increase accuracy. 

This approach could offer a novel method for screening water quality and even 

understanding the underlying interactions between various elements within them. Another 

contribution of the study is the use of SEM-EDS images as training data to build the 
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model. This approach allows for the extraction of much more detailed information 

regarding crystal structure. Additionally, EDS images serve as guidance for the model to 

estimate the locations of deposited elements, which helps reduce estimation errors and 

increase the coefficient of determination from 0.90 to 0.95. This innovative method 

provides improved accuracy and insights into the complex relationships between elements 

within the samples. 

4.2.3 Model for elements recognition and concentration estimation 

The proposed components estimation model is a two-stage deep learning approach for 

determining the elements concentrations in water samples using the coffee-ring effect. The 

coffee-ring effect is a phenomenon in which a ring-shaped deposit of coffee particles is 

formed around the perimeter of a droplet of coffee on a substrate. The effect is caused by 

the combination of coffee particles’ Brownian motion and evaporation, which causes 

the particles to be transported to the edge of the droplet. The coffee-ring effect is of interest in 

various fields such as materials science, physics, and biology, as it can be used to pattern surfaces 

and deposit particles in a controlled manner. 

The first stage of the model utilizes a deep learning model to estimate the locations and 

abundances of seven elements (calcium, magnesium, sodium, sulfur, carbon, oxygen, and 

chlorine) in the sample, based on the crystal structure and location information present in 

images of the coffee-ring effect. The input to the model are the SEM images and EDS 

images of the coffee-ring effect, which are pre-processed to ensure they are of good quality 

and that the features of interest are clearly visible. The model uses a convolutional neural 

network (CNN) architecture to extract features from the images, as the information 

extracted from one element can be useful for understanding the presence and behavior of 

other elements, and the crystal deposition location plays a critical role in determining the 
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crystal composition. 

The output of the first stage are seven binary images, each indicating the estimated 

location and abundance of a specific element. The binary output images are threshold 

images that have been processed to get a binary image where the pixels with signal 

corresponds to the location of the estimated element and the abundance of signal pixels 

indicates the abundance of the element in that area. 

The second stage of the model utilizes a Vision-transformer deep learning model to 

estimate the concentrations of the elements in the sample, based on the locations and 

abundances estimated in the first stage. The model uses the outputs from the first stage as 

input, and considers the relationships between elements, such as the low solubility of 

calcium sulfate, to improve the accuracy of the concentration estimates. For example, the 

estimated concentration of sulfur can be used to refine the concentration estimation of 

calcium, and vice versa. This stage also uses a CNN architecture to extract features from 

the inputs and a regression model to estimate the concentrations. 

Overall, this proposed model utilizes the latest machine learning techniques to 

study the coffee-ring effect and estimate the composition of elements in water samples. 

The two-stage approach, with the co-learning and attention technique, allows for more 

accurate estimation of the locations, abundances, and concentrations of the elements, and 

can provide new insights into the dynamics of the coffee-ring effect and aid in the 

development of new techniques for controlling the deposition of particles. 

In this study, three models were built and evaluated on water samples that have been 

prepared using scanning electron microscopy (SEM) images.  The end-to-end model is 

a single-stage model designed to estimate the concentrations of elements in the water 

samples. The input to the model is a three-layer SEM image and the output is the 
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estimated concentration of elements. The model consists of a Unet module with a 

ResNet50 encoder, ImageNet encoder weights, and a sigmoid activation function.  

This is followed by three convolutional layers, max pooling layers with ReLU 

activation, and a final linear layer that outputs the estimated element concentrations 

(refer to Figure 4.1). The Two-stage vision-transformer point estimation model is made 

up of two modules (stages). The first module is identical to the Unet structure in the end-

to-end model, producing seven binary 2D outputs used to estimate the elements’ 

concentrations. The second module is a vision-transformer module that extracts elements’ 

location information to estimate their corresponding concentrations (refer to Figure 

4.2).  The third model, the Two-stage vision-transformer multiple output model, is 

similar in structure to the Two-stage vision-transformer point estimation model, but it 

produces a range of elements’ concentrations (refer to Figure 4.3). 
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Figure 4.1: One-stage point estimation model structure. 

 

 

Figure 4.2: Two-stage vision-transformer point estimation model structure. 
 

 
Figure 4.3: Two-stage vision-transformer point estimation model structure. 

 
4.3 Experimental Methods 

4.3.1 Develop a deep learning model to identify corrosion indicators and 

quantify their concentrations in tap water 

A CNN model has been developed to identify corrosion indicators in tap water, 
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utilizing similar methods as those previously employed for assigning tap water SEM 

fingerprints to groups with similar water chemistry with an accuracy of 76.7 ± 3.0% Li et al. 

[2020]. Features of the previous model that are applicable to the new work include the 

convolutional layers, fully connected layers, and the Relu activation function Li et al. 

[2020]. Parameters of the model have been adjusted to fit this research, including the 

number of convolutional layers, the output layer, and the loss function (three-channel 

RGB images will be analyzed instead of black and white images). The output of this 

study consists of maps depicting expected elemental deposition and concentrations of 

each contaminant, in contrast to the previously published work where the output was a 

classification of the image into a group with similar water chemistry. Loss will be 

calculated for the proposed work using mean square error instead of the cross-entropy 

method used previously Li et al. [2020]. 

The experiment has been divided into three steps. In the first step, additional tap water 

SEM fingerprints have been collected and evaluated for synthetic Detroit water samples 

under the optimal environmental condition (23-26 (°C), 45-50% relative humidity) 

obtained from a chapter 3. In the second step, a deep learning model has been developed 

using tap water SEM fingerprints (SEM images) and SEM-EDS map images to assign 

elements to the crystals that formed. Finally, in the last step, three vision-transformer 

models have been constructed to utilize the predicted element depositions in order to 

estimate concentrations of each element. 

Tap water fingerprints (SEM and photographs) collection for an array of synthetic 

waters 

Water sample recipes were developed based on Detroit water reports from 2017 to 2019. 

Components were prepared in a broader range to accurately represent the variability of 
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water constituents. The recipe details can be found in the supplementary file. The SEM 

residue patterns and EDS mapping of contaminant particles in tap water samples have been 

collected from droplets of each sample with five replicates that were dried under optimal 

temperature and relative humidity conditions (23-26 (°C), 45-50% relative humidity). 

Photographs of each residue were captured with the Celestron camera, SEM images of 

whole droplets were taken, and EDS maps were obtained for sodium, calcium, magnesium, 

chlorine, carbon, sulfur, and oxygen using the same method as in previous research Li et 

al. [2020] section. 3.3. Water sample recipes were designed to mimic the range of tap water 

components Table. 6.28 Table. 6.29 Table. 6.30. Table. 6.31 Table. 6.32. The SEM 

image and EDS mapping of the same area are shown in Figure. 4.4. 

Elements mapping estimation model for recognition of contaminants particles 

Elements mapping estimation model has been built and trained based on the SEM and 

EDS mapping data collected in previous step. The model takes water SEM fingerprints as 

input and, however, EDS image maps of contaminants elements as output instead of 

classification of the image. To evaluate the model performance, the output images have 

been overlaid with the EDS map, the pixel positions in these two maps has been measured 

and accuracy has been calculated. The model was built with 

segmentation_models_pytorch package with resnet34 encoder, seven output classes, 

sigmoid activation and model weights initialized with ImageNet weight initializer. 

Multilabel dice loss was applied in the training process. All the three models trained for 

1000 epochs with 0.1 learning rate. 
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Figure 4.54: 3D stacking of residue surface scanning, SEM image, oxygen EDS, chlorine 

EDS bottom up. 
 
Dice loss 

In cross entropy loss, the overall loss was calculated as the average of per-pixel loss. 

However, the per-pixel loss was calculated discretely without considering whether its 

neighboring pixels are boundaries or not.  As a result, cross entropy loss only takes 

into account the loss in a micro sense, rather than considering it globally, leading to 

limitations in image-level prediction. Dice loss Eqn. 4.1 originates from Sorensen-Dice 

coefficient, which is a statistic developed in 1940s to gauge the similarity between two 

samples. It was brought to computer vision community by Milletari et al. in 2016 for 3D 

medical image segmentation Milletari et al. [2016] which is widely used for image 

segmentation and boundary detection. 

𝐷 =
2∑ 𝑝!+

! 𝑔!
∑ 𝑝!4+
! + ∑ 𝑔!4+

!
																																																																	(4.1) 

The equation for the Dice coefficient, shown in Eq. 4.1, calculates the similarity 

between the prediction and ground truth in boundary detection. The variables pi and gi 

represent corresponding pixel values, with a value of 1 indicating the presence of a 
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boundary and 0 indicating its absence. The denominator is the sum of total boundary 

pixels in both the prediction and ground truth, while the numerator is the sum of correctly 

predicted boundary pixels (i.e., those where pi and gi both have a value of 1). 

 
Figure 4.5: Dice coefficient (set view) 

 
Persistent Homology of Point Clouds 

In practice, the sliding window embedding of a video X is a finite set SWd,τ X = SWd,τ 

X(t) : t ∈ T , determined by a finite choice of T ⊂ R. As SWd,τ X ⊂ RW H(d+1), the ambient 

Euclidean distance equips SWd,τ X with the structure of a finite metric space. Such 

discrete metric spaces, or point clouds, are topologically trivial, with N points having N 

connected components and no higher-dimensional features like holes. However, when a 

point cloud is sampled from or around a continuous space with non-trivial topology 

(e.g., a circle or torus), one would expect simplicial complexes built on the point cloud 

vertices to reflect the underlying continuous space’s topology. Persistent homology is 

applied to discrete collections of points such as sliding window embeddings Zomorodian and 

Carlsson [2004]. 

For a point cloud (X, dX), where X is a finite set and dX : X ∗ X → [0, ∞) represents a 

distance function, the Vietoris-Rips complex (also known as Rips complex) at scale ϵ ≥ 0 
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consists of non-empty subsets of X with a diameter less than or equal to ϵ: 

Rϵ(X) := σ ⊂ X : dX(x1, x2) ≤ ϵ, ∀xi, xj ∈ σ                                  (4.2) 

The Rϵ(X) is a simplicial complex with its vertex set equivalent to X. It is formed by 

adding an edge between any pair of vertices with a distance of at most ϵ, incorporating all 

2-dimensional triangular faces (i.e., 2-simplices) with existing bounding edges, and, more 

generally, including all k-simplices with included (k-1)-dimensional bounding facets. 

Figure 4.6 illustrates the evolution of the Rips complex for a set of points sampled around 

the unit circle. 

 

Figure 4.6: The Rips complex, at three different scales (ϵ = 0, 0.30, 0.40, 0.48), on a point 
cloud with 40 points sampled around S1 ⊂ R2. 

 
For an open cover given by {Bα(lj)}lj ∈L, where L is the landmark set and α is the radius 

of the balls, we have an associated partition of unity defined as 

𝜙#(𝑏) =
=>0?@A,%#B=$
∑ |>0?(A,%%)|$%

                  (4.3) 

Persistent Homology of Point Cloud 

In topological analysis, the nerve complex, or the nerve of a family of sets, is a concept 

used to represent the intersection patterns of these sets. Given a collection of sets, the 

nerve complex is an abstract simplicial complex where each set corresponds to a vertex, 

and a collection of vertices forms a simplex if and only if the intersection of the 

corresponding sets is nonempty. In other words, the nerve complex encodes how the sets in 
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a family overlap with each other. This concept is particularly useful in various applications, 

including topological data analysis, where it can help analyze the structure of complex data 

sets Dey et al. [2017], Carlsson [2020]. 

Let I be a set of indices and C be a family of sets (Ui)i∈I . The nerve of C is a set of 

finite subsets of the index set I Geoghegan [2007]. It contains all finite subsets J ⊆ I such 

that the intersection of the Ui whose subindices are in J is non-empty Eqn. 4.4. 

𝑁(𝐶) = {𝐽 ⊆ 𝐼:⋂ 𝑈!!∈F ≠ ∅, 𝐽 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡}                                  (4.4) 

Build vision-transformer model to use elements locations to estimate concentrations 

of contaminants elements 

The Elements mapping estimation model from previous step has been trained to recognize 

element particles to output elements mappings. By utilizing the estimated contaminants 

particles EDS mapping images, these particles concentrations has been quantified. In 

this study, the vision-transformer model has been built and trained on EDS mapping 

predictions to estimate contaminants concentrations. The vision-transformer composed by 

two Multi Head Attention module with FeedForward module, Norm module, Positional 

layer, Encoder module, Decoder module and Feature Extraction module. 

One-stage point estimation model, two-stage vision-transformer point estimation model and 

two-stage vision-transformer multiple output model comparison 

To measure the model performance, One-stage point estimation model (OnePeM) was built 

to estimate the concentrations of elements in the water samples. This model consists of two 

modules. The first module is identical to the Unet structure of elements mapping 

estimation model and the second module is to use the 2D layers to estimate the elements 

concentrations. Different from the two-stage vision-transformer point estimation model 

(TwoVtPeM), in this model, the elements EDS mapping weren’t used to train the first 
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module of the module, however, the model was trained end-to-end to estimate the elements 

concentrations. To produce robust concentration estimations, a two-stage vision-

transformer multiple output model (TwoVtMoM) was built to produce multiple elements 

estimations. These two models have the same model backbone and the same activation 

function, weight initializer as the two-stage vision-transformer point estimation model. 

To train the model stochastic gradient descent (SGD) with 0.001 learning rate and MSE 

loss were used to optimize the model parameters for 500 epochs. To accelerate the training 

speed, the model is trained by distributed data parallel (DDP) module with eight A100 

(80GB SXM4) GPUs. The training time is about 10 hours. 

Model training 

Three of the five replicates of each image collected in task were randomly assigned to the 

training dataset and the remaining two replicates were assigned to the testing dataset. All 

models were trained on the training set and model performance was tested on the testing 

set. The accuracy of the particle recognition was computed by comparing two features of 

the element SEM-EDS mapping image and CNN model output: 1) whether or not a pixel 

occurs in the same location, and 2) the size of pixel clusters. Specifically, the pixel 

occurrence was evaluated by first overlaying the CNN output map onto the EDS map for 

contaminants particles. Both the EDS images and the CNN output are maps where each 

pixel was assigned either a value of 0 or 1. 

In the evaluation stage, the CNN model output were analyzed to determine whether or 

not a pixel value of 1 exists in the same position or in a circle with a radius of 3 pixels 

drawn around the corresponding location on the EDS map. The pixel will be labeled as 

correctly identified if there exists at least one pixel for indicating the contaminants particles 

in the EDS map or labeled as incorrectly if not. The model accuracy, percentage of the 
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pixels that matched the EDS output for each image were calculated. Stochastic gradient 

descent (SGD) with 0.001 learning rate and MSE loss were used to optimize the model 

parameters and training were conducted for 500 epochs. To accelerate the training speed, 

the mode;s were trained by distributed data parallel (DDP) module with eight A100 

(80GB SXM4) GPUs. 

4.4 Results and Discussion 

4.4.1 Elements correlations between coffee-ring effect subrings 

To investigate the correlations between elements in each coffee-ring effect residue subring, 

the droplet residue were separated into fifteen subrings with the evenly 4.9. The elements 

correlations between coffee-ring effect residue subrings were analyzed by Pearson correlation 

coefficient. The Pearson correlation coefficient is a measure of the linear correlation between 

two variables. It is a dimensionless number between -1 and 1, where 1 is total positive linear 

correlation, 0 is no linear correlation, and -1 is total negative linear correlation. The Pearson 

correlation coefficient is calculated by Eqn. Eqn. 4.5. 

𝑟GH =
∑ (G&0G̅)(H&0H/)
'
&()

J∑ (G&0G̅)*'
&() J∑ (H&0H/)*'

&()

             (4.5) 

The strongest correlation was observed between sodium and chlorine, particularly 

within the second subring of both elements. This phenomenon suggests that sodium and 

chloride ions tend to form crystals in the second subring area. The highest correlations 

among oxygen, calcium, and sulfur were found in the outermost subring, indicating the 

formation of calcium sulfate (CaSO4) in this region Figure. 4.7. Meanwhile, the highest 

correlations between chlorine and calcium occurred in the middle subring areas, signifying 

the formation of calcium chloride (CaCl2) in those regions Figure. 4.8. 
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4.4.2 Elements mapping estimation model analysis 

The estimated calcium-carbon and oxygen sulfur EDS mappings are displayed in separate 

2D histograms in Figure 4.10. As observed, oxygen and sulfur are more prominently 

present in the droplet residue pattern area, while calcium is distributed throughout the 

entire image, although it is primarily located in the residue pattern. This is likely due to the 

presence of calcium in the substrate during the manufacturing process. To overcome this 

issue, a higher-quality substrate with a lower calcium content could be utilized. From 

the histogram results, discerning the correlation between calcium and carbon proves to be 

difficult. However, the relationship between calcium and sulfur is more apparent. SEM 

example image is shown in Figure. 4.7. 
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Figure 4.7: SEM image of water sample coffee-ring effect residue pattern (with detailed 

subregion presentation). Water sample with MgCl2 0.45 mM, NaHCO3 1.0 mM, CaCl2 1.5 
mM, MgSO4 0.5 mM. 
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Figure 4.8: Pearson correlation of water contaminants in Coffee-ring effect residue 

subrings. Water sample with MgCl2 0.45 mM, NaHCO3 1.0 mM, CaCl2 1.5 mM, MgSO4 
0.5 mM. 
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Table 4.1: Coffee ring effect elements deposition prediction by Unet model. Water sample 
with MgCl2 0.45 mM, NaHCO3 1.0 mM, CaCl2 1.5 mM, MgSO4 0.5 mM 

Elements Predicted EDS 
mapping 

Target EDS 
mapping 

 
Calcium 

  
 
Sodium 

  
 
Carbon 

  
 
Magnesium 

  
 
Oxygen 

  
 
Sulfur 

  
 
Chlorine 
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Figure 4.9: Coffee-ring effect residue pattern were separated to fifteen subrings with 
the evenly. Water sample with MgCl2 0.45 mM, NaHCO3 1.0 mM, CaCl2 1.5 mM, 

MgSO4 0.5 mM. 
 

 
 

Figure 4.10: Topological nerve complex of estimated Calcium-Carbon EDS and 
Oxygen-Sulfur EDS. The left is Calcium-Carbon 2D histogram and the right is Oxygen-Sulfur 

2D histogram. x-axis and y-axis are scaled. Water sample with MgCl2 0.45 mM, NaHCO3 
1.0 mM, CaCl2 1.5 mM, MgSO4 0.5 mM. 

 
The calculation of the nerve complex was based on the combination of calcium and 

carbon EDS mappings and the combination of calcium and sulfur EDS mappings. In both 

combinations, the two EDS mappings were compared, with one serving as the reference 
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and the other as the target. If a predicted element pixel was found in the reference, the 

location of the corresponding pixel in the target was recorded as a positive signal if it was 

present within a 3x3 area. To minimize noise, 1000 randomly selected points from the 

resulting pixels were used. This method resulted in the creation of the calcium-carbon 

and calcium-sulfur combination mappings with radius 0.008, which were then used to 

calculate the nerve complex. The nerve complex of the calcium-carbon and calcium-sulfur 

combination mappings are shown in Figure 4.11. The calcium-sulfur nerve comlex formed 

at different locations of than calcium-calcium which was consistent the teh claim that 

different composition particles formed at different locations in the droplet residue pattern. 

The results of the Unet elements deposition estimation are presented in Figure 

4.12. The three tables, from left to right, represent accuracy, false positive, and false 

negative (sensitivity). The y-axis of each table represents 625 water samples, while the x-

axis lists the elements in the order of Oxygen, Sulfur, Sodium, Magnesium, Chlorine, 

Calcium, and Carbon. The two-stage vision-transformer point estimation model, the one-

stage point estimation model, and the two-stage vision-transformer multiple output model 

all include this module and were trained independently. 

As shown in the accuracy results, sulfur and magnesium have the highest overall 

accuracy, while calcium and carbon have the lowest accuracy. This is also evident in 

Figure 4.17 where the predicted calcium values are mostly lower than the true values. The 

high accuracy of sulfur and magnesium can be attributed to the more accurate 

collection of sulfur and magnesium EDS mappings, compared to the high noise present in 

the calcium EDS mapping (as seen in Figure 4.13), as the EDS instrument is more 

sensitive to these two elements. Additionally, the substrate contains fewer sulfur and 

magnesium impurities, and these elements are more separated from other elements such as 
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4 oxygen and are prone to form crystals, such as SO2− ions. The false positive and false 

negative values for magnesium are also lower than for other elements. 

However, the EDS detector is not as sensitive to carbon, and the substrate contains a 

high concentration of calcium, leading to an inaccurate collection of EDS mappings for 

carbon. As a result, the model has difficulty learning the relationship between crystal 

structure and elements composition for carbon. 

 
Figure 4.11: Topological nerve complex of estimated Calcium-Carbon EDS and 

Calcium-Sulfur EDS. The diagram on the left represents the Calcium-Carbon EDS nerve 
complex, while the one on the right shows the Oxygen-Sulfur nerve complex. A 

radius of 0.008 was used in the calculations. The coffee-ring effect residue pattern 
resulted in the formation of calcium carbon crystals (CaCO3) and calcium sulfur crystals 

(CaSO4) at different locations. 
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Figure 4.12: Accuracy, False Positive, False Negative (Sensitivity) tables from left to right; 
O, S, Na, Mg, Cl, Ca, C elements in each table from left to right. Result is averaged across 

five replicates. 
 

 
Figure 4.13: Magnesium Sodium EDS mapping comparison. water sample was prepared 

with the following components: 0.45 mM Magnesium Chloride (MgCl2), 0.25 mM Sodium 
Bicarbonate (NaHCO3), 2.0 mM Magnesium Sulfate (MgSO4), and 0.75 mM Calcium 

Chloride (CaCl2). 
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Figure 4.14: Trilinear plot of water recipes. 

 
The trilinear plot of water sample recipes, as depicted in Figure. 4.14, effectively 

demonstrates the wide range of element concentrations found in various tap water samples. 

These samples are distributed across the plot to account for the inherent variability of 

tap water components that may be encountered in different geographical regions and 

under diverse environmental conditions. This comprehensive representation of tap water 

compositions enables a more thorough analysis and understanding of the various 

factors influencing water quality, ultimately supporting the development and evaluation 

of the vision-transformer model in this study. 

4.4.3 Two-stage model produces better results than one-stage model 

Water contaminants elements concentrations were predicted by the two-stage vision-

transformer point estimation model, one-stage point estimation model and two-stage 

vision-transformer multiple output model. Results were plotted independently by target 

concentrations (x-axis) versus predicted concentrations (y-axis). Elements were labeled by 

independent color. 
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Two-stage vision-transformer point estimation model (TwoVtPeM) 

Figure 4.15 displays the predicted and true (target) chlorine-sulfur mass ratios. The 

predicted chlorine to sulfur mass ratio is found to be higher than the true 

values, particularly when the true values are larger. This is consistent with the 

overestimation of concentration seen in the results of the TwoVtPeM (Fig. 4.17). The 

reason for this overestimation will be discussed in the following sections. 

  
Figure 4.15: TwoVtPeM chlorine to sulfur mass ratio. Targets chlorine to sulfur mass ratio 
vs predictions chlorine to Sulfur mass ratio. Marker colors relates target chlorine to sulfur 

ratio value. 
 

The predicted water hardness values tend to be higher than the true hardness values of 

the water samples, as shown in Fig. 4.16. For instance, twenty hard water samples were 

predicted as very hard, and five moderately hard water samples were predicted as hard. 

Nineteen hard water samples and eighty very hard water samples were correctly predicted. 

Only one sample had a predicted hardness lower than its true hardness. This is due 

to the overestimation of calcium concentrations, as seen in Fig. 4.17. The reason for this 

overestimation will be discussed in the following section. 
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The concentrations of contaminants estimated by the TwoVtPeM model are displayed 

in Figure 4.17. The target concentrations (elements concentrations in the water preparation 

recipe) are plotted on the x-axis, while the predicted concentrations are plotted on the y-

axis. The results indicate that the predicted chlorine concentrations are generally higher 

than the true chlorine concentrations.  This is consistent with the EDS mapping results 

in Figure 4.12 which show that the false negative value is lower than the false positive 

value. This suggests that some of the estimated chlorine crystals are not actually 

chlorine, leading to an overestimation of the chlorine concentration. Additionally, the 

estimation of chlorine has a larger standard deviation, which is likely due to the 

relatively high concentrations of chlorine compared to other elements in the water 

samples. As shown in Table 4.1, the predicted chlorine crystals are larger than true 

chlorine crystals. 

  
Figure 4.16: TwoVtPeM of water samples hardness category classification results. 

 
The trilinear plot of the estimated element concentrations by the TwoVtPeM is 

presented in Figure. 4.18. When comparing this result with the true element concentrations 
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trilinear plot in Figure.  4.14, it is apparent that the water samples in the same table 

of water recipes are situated in similar locations. This observation indicates that the 

TwoVtPeM has successfully estimated element concentrations, demonstrating the 

effectiveness and accuracy of the model in analyzing and characterizing various tap water 

compositions. 

  
Figure 4.17: TwoVtPeM results. Targets (x-axis) vs predictions (y-axis). 
 

One-stage point estimation model (OnePeM) 

Figure 4.19 displays the predicted and true (target) chlorine to sulfur mass ratios. Different 

from the overestimated chlorine to sulfur mass ratio in the TwoVtPeM, the estimated 

chlorine to sulfur mass ratio is overestimated when the true chlorine to sulfur mass ratio is 

low but underestimated by the OnePeM especially when the true chlorine to sulfur mass 

ratio is high. This is consistent with the elements concentrations estimations Figure 4.21 

that chlorine concentration is overestimated under its low concentrations condition but 

overestimated under its high concentration condition. 
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Figure 4.18: TwoVtPeM of water samples trilinear plot. 

 

 
Figure 4.19: OnePeM chlorine to sulfur mass ratio. Targets chlorine to sulfur mass ratio vs 

predictions chlorine to sulfur mass ratio. Marker colors relates target chlorine to sulfur 
ratio value. 

 
The predicted water hardness values also tend to be higher than the true hardness values 

of the water samples, as shown in Fig. 4.20. For instance, thirty-four hard water 

samples were predicted as very hard, three moderately hard water samples were predicted 
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as hard and two moderately hard water samples predicted as very hard. six hard water 

samples and eighty very hard water samples were correctly predicted. Only two samples 

had a predicted hardness lower than its true hardness. This is due to the overestimation of 

calcium and magnesium concentrations under low concentration conditions, as seen in 

Fig. 4.21. The reason for this overestimation will be discussed in the following section. 

  
Figure 4.20: OnePeM of water samples hardness category classification results. 

 
Figure 4.21 displays the concentrations of contaminants estimated by the one-stage 

point estimation model. In comparison to the TwoVtPeM, the OnePeM results in a greater 

standard deviation in the predicted concentrations. Additionally, the model tends to 

overestimate low concentrations and underestimate high concentrations of each element. 

For example, the predicted calcium concentration is higher than its true concentration when 

it is around 2 mM, but lower than its true concentration when it is around 3.5 mM. This 

is because the one-stage model is trained end-to-end, lacking the correction step present in 

the TwoVtPeM that adjusts for the EDS mapping estimation. As a result, the model 

requires more training epochs and fine-tuning to effectively learn the features. 
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The trilinear plot of the estimated element concentrations by the OnePeM is 

presented in Figure. 4.22. When comparing this result with the true element concentrations 

trilinear plot in Figure. 4.14, it is apparent that the water samples in the same table of 

water recipes are situated in similar locations, but not as accurately as the TwoVtPeM. This 

observation indicates that while the OnePeM is capable of estimating element 

concentrations, its performance is not as precise as the TwoVtPeM. 

  
Figure 4.21: OnePeM results. Targets (x-axis) vs predictions (y-axis). 

 
Two-stage vision-transformer multiple output estimation model (TwoVtMoM)  

While the TwoVtMoM was expected to produce more accurate results than the 

TwoVtPeM, its element concentration estimations are actually worse. The model tends to 

overestimate low true element concentrations and underestimate high true element concentrations. 

This is due to the larger number of parameters in the TwoVtMoM model, which requires more 

training epochs and fine-tuning to effectively learn the features. 

 



 
168 

  
Figure 4.22: OnePeM model of water samples trilinear plot. 

 
The results of each element estimation for the different models are summarized in 

Figure 4.24. As illustrated in the figure, the TwoVtPeM (row 1) exhibits lower variance 

compared to the OnePeM (row 2). The one-stage point estimation model tends to predict 

lower element concentrations than the actual values. This is due to the fact that the 

TwoVtPeM more accurately maps the elements’ locations compared to the OnePeM. 

Although crystals form in a 3D structure, the EDS mapping can only represent the 

elements’ 2D deposition. The TwoVtPeM can utilize relative location information from 

other elements to construct the crystal deposition structure and infer the corresponding 

concentrations. 

The error mean (calculated as the percentage difference between the mean of 

the estimated element concentrations and their true concentrations) and standard 

deviation of concentration estimations (calculated as the standard deviation of 

estimated element concentrations) are presented in Table 4.2. The OnePeM has the 

lowest error mean for five elements (oxygen, sodium, chlorine, calcium, and carbon) out 
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of the seven elements, while the TwoVtPeM has the lowest error mean for the 

remaining two elements (sulfur and magnesium).  Although the OnePeM has the 

lowest error mean, the TwoVtPeM has the lowest standard deviation for all seven 

element concentration estimations. This demonstrates that the TwoVtPeM is more stable 

than the OnePeM, which is due to the elements EDS mapping estimation module in its first 

stage, resulting in an R2 of 0.95, which is higher than the 0.9 of the OnePeM. 

  
Figure 4.23: TwoVtMoM results. Targets (x-axis) vs predictions (y-axis). 

 
Model comparison 

In Section 4.4, the individual results of the three models regarding their element 

concentration estimations are presented.  To compare the three models, the 

element concentration estimations and relative standard deviations are illustrated in 

Figure 4.24 and Table 4.2. From this figure, it is evident that TwoVtPeM outperforms the 

other models with lower variance and higher R2. The OnePeM concentration 

estimations are accurate for nonmetals oxygen, chlorine, and sulfur; however, its 

estimations are not precise for metals sodium, calcium, magnesium, and carbon. The 
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TwoVtPeM is more accurate for all elements. The TwoVtMoM is the least effective model, 

with the highest variance and lowest R2. 

According to model performance analysis: the TwoVtPeM technique achieved the best 

performance of the models tested (OnePeM, TwoVtPeM and TwoVtMoM), with OnePeM 

also performing well and TwoVtMoM falling short. The TwoVtPeM relative percentage 

errors were ±17.1% for oxygen, ±4.5% for sulfur, ±19.9% for sodium, ±5.7% for chlorine, 

±19.8% for calcium, ±25.8% for magnesium, and ±20.1% for carbon. The R2 was 0.95 which 

is higher than OnePeM with 0.90 R2 and TwoVtMoM which was 0.54. The TwoVtPeM 

had a higher error mean than OnePeM, but it exhibited lower relative standard deviations 

of estimation; the TwoVtPeM relative standard deviations values were: 3.9% for oxygen, 

3.0% for sulfur, 5.3% for sodium, 3.9% for magnesium, 5.3% for chlorine, 10.0% for 

calcium, and 5.9% for carbon. Moreover, 79.2% of water samples were correctly classified 

for hardness based on the estimated element concentrations by TwoVtPeM. The OnePeM 

model correctly classified 67.2% of water samples, however the TwoVtMoM model 

achieved only 60.2% accuracy rate in classifying water samples for hardness Table 4.2. 

Although the OnePeM has the relative error for oxygen, sodium, chlorine, calcium, and 

carbon, it exhibits larger relative standard deviations than the estimations of TwoVtPeM, 

indicating that the OnePeM is less stable. The TwoVtPeM has the lowest standard 

deviation for all seven element concentration estimations, demonstrating greater stability 

than the OnePeM. This is attributed to the element EDS mapping estimation module in its 

first stage. The TwoVtPeM can utilize relative location information from other elements to 

construct the crystal deposition structure and infer the corresponding concentrations. 

The TwoVtMoM was expected to have the lowest relative error and highest R2, but this 

was not the case. This is due to the larger number of parameters in the TwoVtMoM model, 
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which necessitates more training epochs and fine-tuning to effectively learn the features. 

To apply this method in water quality monitoring, further research is required to 

investigate the reasons for the TwoVtMoM’s poor performance and explore methods to 

enhance it. 

Another necessary step is to develop a model that transfers from the element 

concentration estimation model based on water SEM fingerprints to one based on water 

photograph fingerprints. The rationale is that SEM images are more accurate than 

photographs, but SEM images are not available in households or in the field. The model 

built from water SEM fingerprints is only used for learning crystal features from water 

residue patterns, and this information is solely for constructing the element concentration 

estimation model from water photograph fingerprints. Thus, in the future, when the 

element concentration estimation model from water photograph fingerprints is developed, 

only water photograph fingerprints will be needed for element concentration estimation. 
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Figure 4.24: TwoVtMoM (row 1) produces lower variance than one-stage point estimation 

model (row 2). OnePeM predicts lower elements concentrations than their real values. 
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Table 4.2: Comparing Estimation Results of Model Element Concentrations. 
Models Oxygen Sulfur Sodium Magnesium Chlorine Calcium Carbon R2 

Relative Error (%) 
OnePeM ±5.2% ±16.4% ±5.2% ±20.0% ±10.7% ±17.9% ±3.2% 0.90 
TwoVtPeM ±17.1% ±4.5% ±19.8% ±5.7% ±19.7% ±25.8% ±20.1% 0.95 
TwoVtMoM ±35.5% ±19.3% ±30.2% ±21.9% ±11.8% ±20.7% ±33.3% 0.54 

Relative Standard Deviation Error (%) 
OnePeM 6.9% 19.7% 8.0% 27.9% 12.2% 24.6% 6.2%  
TwoVtPeM 3.9% 3.0% 5.3% 3.9% 5.3% 10.0% 5.9%  
TwoVtMoM 59.0% 31.0% 46.8% 42.3% 20.3% 39.9% 53.1%  

Coefficient of Variation (%) 
OnePeM 33.5% 20.7% 36.4% 34.7% 22.0% 30.2% 36.5%  
TwoVtPeM 13.0% 22.4% 14.1% 25.0% 14.1% 20.5% 17.6%  
TwoVtMoM 19.4% 18.1% 25.6% 26.4% 15.1% 20.7% 22.7%  

Mean Absolute Percentage Error (%) 
OnePeM ±18.1% ±33.2% ±20.3% ±37.3% ±38.9% ±27.1% ±17.4%  
TwoVtPeM ±17.1% ±13.3% ±20.7% ±25.9% ±15.7% ±19.8% ±20.3%  
TwoVtMoM ±55.2% ±42.2% ±49.6% ±49.2% ±47.6% ±36.8% ±52.8%  

Root Mean Square Error 
OnePeM 0.52 0.44 0.18 0.39 0.45 0.79 0.17  
TwoVtPeM 0.45 0.18 0.18 0.27 0.18 0.54 0.18  
TwoVtMoM 1.57 0.60 0.51 0.54 0.60 0.40 1.09  

Mean Square Error 
OnePeM 0.27 0.19 0.04 0.16 0.20 0.62 0.03  
TwoVtPeM 0.20 0.03 0.03 0.07 0.03 0.29 0.03  
TwoVtMoM 2.47 0.36 0.26 0.29 0.37 1.19 0.27  

 
 



 
174 

4.5 Conclusion 

Machine learning is transforming the way we approach water quality and public 

health. This study shows the potential of machine learning to revolutionize water 

quality monitoring. With the use of low-cost aluminum substrates, the overall cost 

of the experiment is significantly lower than traditional analytical methods, making this 

technique a cost-effective solution for water quality monitoring. The method is 

especially useful in rural areas and in the event of potential pollution incidents, where 

early detection is crucial. 

The findings of this study reveal that the TwoVtPeM technique achieved the 

best performance of the models tested (OnePeM, TwoVtPeM and TwoVtMoM), with 

OnePeM also performing well and TwoVtMoM falling short. The TwoVtPeM relative 

percentage errors were ±17.1% for oxygen, ±4.5% for sulfur, ±19.9% for sodium, ±5.7% 

for chlorine, ±19.8% for calcium, ±25.8% for magnesium, and ±20.1% for carbon. 

The R2 was 0.95 which is higher than OnePeM with 0.90 R2 and TwoVtMoM which was 

0.54. The TwoVtPeM had a higher error mean than OnePeM, but it exhibited lower 

relative standard deviations of estimation; the TwoVtPeM relative standard deviations 

values were: 3.9% for oxygen, 3.0% for sulfur, 5.3% for sodium, 3.9% for magnesium, 

5.3% for chlorine, 10.0% for calcium, and 5.9% for carbon. Moreover, 79.2% of water 

samples were correctly classified for hardness based on the estimated element 

concentrations by TwoVtPeM. The OnePeM model correctly classified 67.2% of water 

samples, however the TwoVtMoM model achieved only 60.2% accuracy rate in classifying 

water samples for hardness. 

Advances in camera technology and deep learning techniques hold great potential for 

improving the method’s ability to detect low concentrations of elements. By using substrates 
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with varying surface properties, such as roughness, wettability, charge, and others, 

different crystal formations can be produced that can be designed to monitor specific 

contaminants. The two-stage vision-transformer multiple output model produces a smaller 

variance, but the concentration estimation is not always accurate, requiring more fine-

tuning and training epochs. 

To detect low concentrations of elements, water samples with lower concentrations 

need to be prepared and the coffee-ring effect residue pattern collected. Confirmation of the 

crystal structure can be obtained through Raman spectroscopy on the water sample residue. 

To analyze the one-stage point estimation model performance, the intermediate output of 

the seven element mappings can be compared with the predicted EDS mapping of the two-

stage vision-transformer point estimation model. This will provide insights into the 

strengths and weaknesses of each model, allowing for further improvements to be made. 

An additional avenue for improvement is the creation of a loss function that takes 

into account not only the pixel classes but also their structure. Contaminants often have 

distinct 3D lattice structures, and this information could be leveraged in the loss function. 

Additionally, incorporating domain knowledge from physical chemistry could also be 

beneficial. For instance, magnesium and calcium crystals are unlikely to form crystals at 

the same location, but calcium and sulfur are more likely to form calcium sulfate first 

due to their relatively low Ksp values compared to other crystals such as sodium chloride 

and calcium chloride. 

In conclusion, this study highlights the potential of machine learning to revolutionize 

water quality monitoring. By improving the efficiency and effectiveness of water quality 

management systems, machine learning has the potential to lead to better health 

outcomes for individuals and communities. With continued advancements in technology 
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and machine learning techniques, we can expect to see even more exciting developments 

in this field in the future. 
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CHAPTER 5 

Implications 

Machine learning is revolutionizing both water quality and public health. In the realm 

of water quality, machine learning is employed to create predictive models that shed light 

on the relationships between various water quality parameters and the impact of different 

factors. This results in the creation of early warning systems that can identify potential 

water quality problems, enabling proactive solutions. Machine learning also enables the 

analysis of large amounts of data and extraction of previously hidden insights, leading to a 

deeper understanding of water quality and new methods for managing this critical 

resource. By automating certain tasks and simplifying data analysis processes, machine 

learning has the potential to enhance the efficiency and effectiveness of water quality 

management systems. In public health, machine learning algorithms are trained on medical 

images and patient records to diagnose diseases and predict future health outcomes. They 

are also utilized to analyze and forecast the spread of infectious diseases, providing crucial 

support to public health officials. 

Machine learning is integrated into environmental monitoring systems, providing 

real-time data analysis for environmental facilities and resulting in more informed 

management decisions. Additionally, machine learning algorithms can predict the risk of 

specific environmental issues, such as pollution events or habitat degradation, allowing 

for early interventions and preventive measures. Machine learning has the potential to 

significantly improve the efficiency and effectiveness of environmental initiatives, leading 

to better environmental outcomes for ecosystems and communities. The impact of 

machine 
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learning on water quality and public health is substantial and has the potential to 

fundamentally change the way we approach and manage these critical resources. 

Through the use of advanced machine learning techniques, we can gain a deeper 

understanding of water quality, create new and innovative solutions for preserving this 

essential resource, and protect public health for future generations. 

This study underscores the potential of machine learning to transform water quality 

monitoring. By enhancing the efficiency and effectiveness of water quality management 

systems, machine learning can be utilized for various image formats, including SEM, EDS, 

X-ray Powder Diffraction (XRD), Raman spectroscopy, images collected in rural areas, 

and even satellite data covering larger areas. Consequently, machine learning could 

potentially result in better health outcomes for individuals and communities. As 

technology and machine learning techniques continue to advance, we can anticipate further 

groundbreaking developments in this field that will contribute to ensuring cleaner water 

and healthier environments for all. As a screening method, this research demonstrates the 

effectiveness of machine learning techniques in water quality monitoring. With 

improvements in camera technology, material science, and model design, such as the 

development of multimodal techniques incorporating local weather, groundwater 

information, pipe information, and environmental incidents, this approach shows great 

promise as a fast, low-cost, and accurate water quality monitoring technique. 
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APPENDIX 
 

Table 6.1: Measured water chemistry data from tap water samples collected across 
Michigan and treatment information from annual municipal water quality reports and system 

operators. Averages and standard deviations are listed for values conducted in replicate. 
City F − (mM) NO− (mM) 3 Zn (mM) TOC (ppm) 
MSU - academic hall 0.04 BD 2.3x10−3 3.1 
Durand 0.03 0.02 BD 1.3 
Kalamazoo 0.04 0.03 BD BD 

Portland 0.03 BD BD 2.1 
Battle Creek site A 0.05 BD 3.9*10−3 0.79 
Battle Creek site B 0.05 0.02 BD 1.2 
Charlotte 0.02 0.01 1.1*10−4 1.4 
Fowlerville 0.04 BD BD 1.4 
Lansing site A 0.01 0.01 1.2*10−4 1.5 
Lansing site B 0.03 0.01 9.1*10−4 1.5 
East Lansing 0.02 0.03 6.3*10−4 1.3 
Howell 0.03 BD 1.5*10−4 BD 
MSU - residence hall 0.05 BD 4.2*10−4 3.2 
Williamston 0.03 BD 3.5*10−4 2.2 
Genoa Twp soft BD BD 1.7*10−4 2.2 
Genoa Twp BD BD 1.1*10−4 2.0 
Rest stop Okemos 0.03 BD BD 1.1 
Rest stop Zeeland 0.04 BD 2.8*10−3 1.0 
Rest stop I96/M66 0.03 BD 4.9*10−4 3.3 
Rest stop Fenton 0.06 0.02 1.0*10−3 1.0 
Allegan 0.03 BD 5.5*10−4 BD 
Genoa Twp BD BD 1.2*10−4 BD 
Detroit 0.03 0.07 3.2*10−3 1.6 
Flint 
hline Swartz Creek 

0.04 
0.03 

0.03 
0.03 

7.5*10−4 

1.2*10−4 

BD 
BD 

Grand Rapids 0.03 0.03 2.3*10−4 BD 
Holland 0.04 0.03 8.9*10−4 BD 
Wyoming 0.03 0.03 BD BD 
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Table 6.2: Composition of synthetic tap water solutions. 
Chemicals (mM) Detroit Lansing MSU hard water 
NaHCO3 0.23 0.50 0.55 
Na2SO4 - 1.20 - 
MgCl2(H2O)6 0.25 0.53 0.40 
MgSO4(H2O)7 0.10 - 0.80 
MgCO3 - - 0.50 
CaCl2 - 0.56 - 
CaSO4 0.16 - - 
CaCO3 0.50 - 2.60 
KCl - 0.100 0.027 
KH2PO4 0.0152 0.0100 0.0113 
NaNO3 0.0725 0.0140 - 
KF (H2O)2 0.0325 0.0270 0.0430 
F eCl3 0.0016 - 0.0190 
CuCl2(H2O)2 0.0006 0.0005 0.0020 

 
Table 6.3: Examples of raw and pre-processed images used for the convolutional neural 

network (CNN) model. 

Water 
sample 

 
Detroit 

Genoa 
Township 
well RO 

Genoa 
Township 

private well 
untreated 

 
Howell 

 
Williamston 

Raw image 

     
Pre-processed 
image 
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Table 6.4: Five replicates of each freshly collected water sample (stored less than one week). 
The lab temperature was 24-25 ◦C and relative humidity 52% for this experiment. 

MINIMALLY TREATED GROUNDWATER 
MSU academic hall Durand 

          
Kalamazoo Portland 

          
Battle Creek Site Battle Creek Site B 

          
Charlotte Fowlerville 

          
LIME SOFTENED 

Lansing Site A Lansing Site B 

          
East Lansing Howell 

          
ION EXCHANGE 

MSU residence hall Williamston 

          
Genoa Township private well softened 

     

     

UNTREATED GROUNDWATER 
Genoa Township private 

well untreated 
Rest stop A - Okemos 

          
Rest stop C - Zeeland A Rest stop D - M66/I96 East 

          
REVERSE OSMOSIS 

Allegan Genoa Township private well RO 
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Table 6.4: (cont’d) 
SURFACE WATER 

Detroit Flint 

          
Swartz Creek Grand Rapids 

          
Holland Wyoming 
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Table 6.5: Consistency of tap water residue patterns on different mirrored aluminum 
slides prepared by different researchers, with nanopure water and synthetic hard freshwater 

controls. The lab temperature was 24 ◦C and relative humidity 47%. 
 Analyst 

Experienced 1 
year 

1 Analyst 2 
Moderate 
Experience 
0.5 month 

Analyst 3 Leas 
Experienced 
week 

t 
1 

 MSU academic hall 
slide 7 8 9 7 8 9 1 2 3 
Replicate 1 

         
Replicate 2 

         
Replicate 3 

         
Blank 

         
Synthetic 

         
 East Lansing 

slide 1 2 3 1 2 NA 1 2 3 
Replicate 1 

     

 
   

Replicate 2 
     

 
   

Replicate 3 
     

 
   

Blank 
     

 
   

Synthetic 
     

 
   

    Rest Stop (M66)    
slide 4 5 6 4 5 6 1 2 3 
Replicate 1 

         
Replicate 2 

         
Replicate 3 

         
Blank 

         
Synthetic 
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Table 6.5: (cont’d) 
 Analyst 1 

Experienced 1 
year 

Analyst 2 
Moderate 
Experience 
0.5 month 

Analyst 3 Least 
Experienced 1 
week 

 Detroit 
slide 1 2 3 1 2 NA 1 2 3 
Replicate 1 

     

 
   

Replicate 2 
     

 
   

Replicate 3 
     

 
   

Blank 
     

 
   

Synthetic 
     

 
   

 Grand Rapids 
slide 4 5 6 4 5 6 1 2 3 
Replicate 1 

         
Replicate 2 

         
Replicate 3 

         
Blank 

         
Synthetic 

         
 

Table 6.6: Nanochromatography patterns of Michigan tap waters (stored for two months at 
4◦C) dried on slides cut from the same sheet of aluminum. Nanopure water synthetic hard 

water served as controls. The lab temperature was 24 ◦C and relative humidity was 47-48% 
for this experiment. 

Minimally treated groundwater 
MSU academic building nanopure Synthetic 

       
Durand  
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Table 6.6: (cont’d) 

       
Kalamazoo  

       
Portland  

       
Battle Creek Site A  

       
Battle Creek Site B  

       
Fowlerville  

       
Charlotte  

       
Lime softened 

Lansing Site A  

       
Lansing Site B  

       
Howell  

       
East Lansing  
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Table 6.6: (cont’d) 

       
Ion exchange 

MSU residence hall  

       
Williamston  

       
Genoa Township private well softened  

       
Untreated groundwater 

Genoa Township well untreated  

       
Rest stop A Okemos  

       
Rest stop D M66/I96 East  

       
Lansing Site C Zeeland  

       
Rest stop B Fenton  

       
Reverse osmosis 

Allegan  

       
Genoa Township well RO  
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Table 6.6: (cont’d) 

       
Surface waters 

Detroit  

       
Flint  

       
Grand Rapids  

       
Gyoming  

       
Swartz Creek  

       
Holland  
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Table 6.7: Temperature and humidity effect on residue pattern for four salt mixtures. 
 
Temperature 
and relative 
humidity 

 
Drying 
time 
(min) 

3.0 mM 
CaCl2, 
1.5 mM 
MgCl2, 10 
mM NaCl; 

0.5 mM 
CaSO4, 
0.25 mM 
MgSO4, 
5.0 mM 
Na2SO4; 

0.5 mM 
CaSO4, 
0.25 mM 
MgSO4, 
10 mM 
NaHCO3; 

0.5 mM 
CaCl2, 
0.25 mM 
MgCl2, 
10 mM 
NaHCO3; 

24 ◦C <20% 
RH 20 

    
24 ◦C 
46-48% RH 25 

    
 

Table 6.8: Residue patterns of synthetic tap water solutions compared to real tap water at 
24 ◦C and relative humidity of 47%. 

 Collected tap 
water 

Simplified 
synthetic, 
Calcium, 

magnesium, 
sodium, 

chloride, sulfate, 
bicarbonate 

Complex 
synthetic, 
simplified 

synthetic water 
sample plus 
iron, copper, 

nitrate, fluoride, 
phosphate 

MSU 
         

Detroit 
         

Lansing 
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Table 6.9: Simple synthetic mixtures on a separate slides analyzed at 24 ◦C and 48% relative 
humidity. The low concentration mixtures that are not the same as the previous table are 

indicated by bold font. 
 

NaCl 

10 mM 

3 mM 
NaCl 
5.0 mM 

NaHCO3 

10 mM 

NaHCO3 

5.0 mM 
3 mM Cal2 
1.5 mM 
MgCl2 

 

 

 

 

 

 

 

 
1 mM Cal2 
0.5 mM 
MgCl2 

 

 

 

 

 

 

 

 
0.1 mM Cal2 
0.05 mM 
MgCl2 

 

 

 

 

 

 

 

 
 

Table 6.10: Images with mis-classification percentage over 70%. 
Image is different from other replicates 

Lansing site 
B 

MSU 
residence 
hall 

MSU 
residence 
hall 

Portland Portland 

     
Reason not clear Image in class two 

Genoa 
Township 
private well 
untreated 

Genoa 
Township 
private well 
untreated 

Battle Creek 
site B 

Genoa 
Township 
private well 
softened 

Genoa 
Township 
private well 
softened 
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Figure 6.1: The experimental procedure includes depositing two microliter droplets of 

an aqueous solution onto an aluminum substrate and allowing it to dry without 
movement. 

 

 
Figure 6.2: Image analysis pipeline in MATLAB and Python. 
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Figure 6.3: A schematic of the convolutional neural network (CNN) model. 
 

 
Figure 6.4: PCA on the nanochromatography image files for simplified synthetic waters 

(five replicates of twelve mixtures of salts). 
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Figure 6.5: Trilinear classification of tap water samples organized by treatment technology. 

 

 
Figure 6.6: Test dataset accuracies by class. 
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Figure 6.7: Autosampler for coffee-ring effect nanochromatography experiment. 
 

 

Figure 6.8: Autosampler for coffee-ring effect nanochromatography experiment. 
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Figure 6.9: Autosampler for coffee-ring effect nanochromatography experiment. 

 

 
Figure 6.10: Autosampler for coffee-ring effect nanochromatography experiment. 
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Figure 6.11: Autosampler for coffee-ring effect nanochromatography experiment. 

 

 
Figure 6.12: Autosampler for coffee-ring effect nanochromatography experiment. 
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Figure 6.13: Temperature humidity control chamber. 

 

 
Figure 6.14: Trilinear plot for water samples. 
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Table 6.11: PERMANOVA clustering result 
Experiment 
condition 
Temperature, 
Relative Humidity 

 
20-23 °C 

 
23-26 °C 

 
26-29 °C 

 
35%-40% 

   

 
40%-45% 

   

 
45%-50% 
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Table 6.12: ANOSIM of particles CRE residue features 
Temperature  C 
Relative Humidity 
(p-value) 

 
Bar plots 

 
 

20-23 ◦C, 35%-40% 
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Table 6.12: (cont’d) 
 
 

20-23 ◦C, 40%-45% 

 

 
 

20-23 ◦C, 45%-50% 
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Table 6.12: (cont’d) 
 
 

23-26 ◦C, 35%-40% 

 

 
 

23-26 ◦C, 40%-45% 
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Table 6.12: (cont’d) 
 
 

23-26 ◦C, 45%-50% 

 

 
 

26-29 ◦C, 35%-40% 
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Table 6.12: (cont’d) 
 
 

26-29 ◦C, 40%-45% 

 

 
 

26-29 ◦C, 45%-50% 
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Table 6.13: ANOSIM of CRE residue pattern area. Images are arranged in two orientations: 
from left to right across the top row, numbered 1 to 25, and from top to bottom along the 

left column, also numbered 1 to 25. 
Temperature 
& Rh 20-23 ◦C 23-26 ◦C 26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 
 

40%-45% 
 

 

 

 

 

 
 

45%-50% 
 

 

 

 

 

 
 
Color bar 
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Table 6.14: CMDS of CRE residue pattern area. Red circle represents water sample A; 
green circle represents water sample B; blue circle represents water sample C; yellow circle 
represents water sample D; purple circle represents water sample E. The three axes are 
labeled as Dimension 1, Dimension 2, and Dimension 3. 

Temperature 
C Relative 
Humidity 
(p-value) 

 
20-23 ◦C 

 
23-26 ◦C 

 
26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 

 
40%-45% 

 

 

 

 

 

 

 
45%-50% 

 

 

 

 

 

 

Color bar  
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Table 6.15: ANOSIM of CRE residue pattern perimeter. Images are arranged in two 
orientations: from left to right across the top row, numbered 1 to 25, and from top to 
bottom along the left column, also numbered 1 to 25. 

Temperature 
& Rh 20-23 ◦C 23-26 ◦C 26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 
 

40%-45% 
 

 

 

 

 

 
 

45%-50% 
 

 

 

 

 

 
 
Color bar 
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Table 6.16: CMDS of CRE residue pattern centroid perimeter. Red circle represents water 
sample A; green circle represents water sample B; blue circle represents water sample C; 
yellow circle represents water sample D; purple circle represents water sample E. The three 
axes are labeled as Dimension 1, Dimension 2, and Dimension 3. 

Temperature 
C Relative 
Humidity 
(p-value) 

 
20-23 ◦C 

 
23-26 ◦C 

 
26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 

 
40%-45% 

 

 

 

 

 

 

 
45%-50% 

 

 

 

 

 

 

Color bar  
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Table 6.17: ANOSIM of CRE residue pattern centroid. Images are arranged in two 
orientations: from left to right across the top row, numbered 1 to 25, and from top to 
bottom along the left column, also numbered 1 to 25. 

Temperature 
& Rh 20-23 ◦C 23-26 ◦C 26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 
 

40%-45% 
 

 

 

 

 

 
 

45%-50% 
 

 

 

 

 

 
 
Color bar 
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Table 6.18: CMDS of CRE residue pattern centroid. Red circle represents water sample 
A; green circle represents water sample B; blue circle represents water sample C; yellow 
circle represents water sample D; purple circle represents water sample E. The three axes 
are labeled as Dimension 1, Dimension 2, and Dimension 3. 

Temperature 
C Relative 
Humidity 
(p-value) 

 
20-23 ◦C 

 
23-26 ◦C 

 
26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 

 
40%-45% 

 

 

 

 

 

 

 
45%-50% 

 

 

 

 

 

 

Color bar  
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Table 6.19: ANOSIM of CRE residue pattern eccentricity. Images are arranged in two 
orientations: from left to right across the top row, numbered 1 to 25, and from top to 
bottom along the left column, also numbered 1 to 25. 

Temperature 
& Rh 20-23 ◦C 23-26 ◦C 26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 
 

40%-45% 
 

 

 

 

 

 
 

45%-50% 
 

 

 

 

 

 
 
Color bar 
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Table 6.20: CMDS of CRE residue pattern eccentricity. Red circle represents water sample 
A; green circle represents water sample B; blue circle represents water sample C; yellow 
circle represents water sample D; purple circle represents water sample E. The three axes 
are labeled as Dimension 1, Dimension 2, and Dimension 3. 

Temperature 
C Relative 
Humidity 
(p-value) 

 
20-23 ◦C 

 
23-26 ◦C 

 
26-29 ◦C 

 
35%-40% 

 

 

 

 

 

 

 
40%-45% 

 

 

 

 

 

 

 
45%-50% 

 

 

 

 

 

 

Color bar  
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Table 6.21: Two-way ANOVA for Carbon, Chlorine and Sulfur elements 
Condition A 

 
Df Sum Sq Mean Sq F 

value Pr(>F) sig. 

Class 4 4.05 × 106 1.01 × 106 151 < 2×10−16 *** 
Element 2 7.72 × 107 3.86 × 107 5751 <2 × 10−16 *** 
Class:Element 8 1.42 × 107 1.78 × 106 256.8 <2 × 10−16  

Residuals 1.18 × 
107 

7.93×1010 6713 
   

Condition B 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 6.42 × 106 1.6 × 106 245.8 < 2×10−16 *** 
Element 2 4.64 × 107 2.32 × 107 3546 <2 × 10−16 *** 
Class:Element 8 1.25 × 107 1.56 × 106 239.7 <2 × 10−16  

Residuals 1.24 × 
107 

8.12×1010 6537 
   

Condition C 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 1.25 × 107 3.13 × 106 467.1 < 2×10−16 *** 
Element 2 7.58 × 107 3.79 × 107 5645 <2 × 10−16 *** 
Class:Element 8 2.34 × 107 2.92 × 106 434.8 <2 × 10−16  

Residuals 1.17 × 
107 

7.83×1010 6714 
   

Condition D 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 1.18 × 107 2.96 × 106 442.8 < 2×10−16 *** 
Element 2 1.16 × 108 5.80 × 107 8677 <2 × 10−16 *** 
Class:Element 8 3.17 × 107 3.96 × 106 592.2 <2 × 10−16  

Residuals 1.19 × 
107 

7.92×1010 6686 
   

Condition E 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 3.87 × 106 9.68 × 105 148.3 < 2×10−16 *** 
Element 2 3.36 × 107 1.68 × 107 2568 <2 × 10−16 *** 
Class:Element 8 8.06 × 106 1.00 × 106 154.3 <2 × 10−16  
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Table 6.21: (cont’d) 

Residuals 1.26 × 
107 

8.26×1010 6532 
   

Condition F 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 1.04 × 107 2.61 × 106 387.3 < 2×10−16 *** 
Element 2 5.92 × 107 2.96 × 107 4398 <2 × 10−16 *** 
Class:Element 8 2.13 × 107 2.67 × 106 396.9 <2 × 10−16  

Residuals 1.20 × 
107 

8.13×1010 6733 
   

Condition G 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 1.07 × 107 2.67 × 106 400.1 < 2×10−16 *** 
Element 2 6.12 × 107 3.06 × 107 4575 <2 × 10−16 *** 
Class:Element 8 2.54 × 107 3.18 × 106 475.4 <2 × 10−16  

Residuals 1.22 × 
107 

8.19×1010 6688 
   

Condition H 
 

Df Sum Sq Mean Sq 
F 
value Pr(>F) sig. 

Class 4 6.66 × 106 1.67 × 106 245.8 < 2×10−16 *** 
Element 2 6.25 × 107 3.12 × 107 4609 <2 × 10−16 *** 
Class:Element 8 1.32 × 107 1.65 × 106 244.1 <2 × 10−16  

Residuals 1.19 × 
107 

8.09×1010 6778 
   

Condition I 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 5.07 × 106 1.27 × 106 187.7 < 2×10−16 *** 
Element 2 4.87 × 107 2.44 × 107 3605 <2 × 10−16 *** 
Class:Element 8 1.81 × 107 2.26 × 106 334.9 <2 × 10−16  

Residuals 1.19 × 
107 

8.01×1010 6757 
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Table 6.22: Two-way ANOVA for Calcium, Magnesium and Sodium elements 
Condition A 

 
Df Sum Sq Mean Sq 

F 
value Pr(>F) sig. 

Class 
4 8.47 × 104 2.11 × 104 

3.16 0.0132 *** 
Element 

2 3.70 × 107 1.85 × 107 2760 <2×10−16 *** 
Class:Element 

8 1.35 × 106 1.69 × 105 25.21 <2×10−16  
Residuals 

1.35×107 9.07×1010 6701    
Condition B 

 
Df Sum Sq Mean Sq F 

value Pr(>F) sig. 

Class 4 3.85 × 106 9.63 × 105 146.1 < 2×10−16 *** 
Element 2 3.80 × 107 1.90 × 107 2887 <2 × 10−16 *** 
Class:Element 8 5.97 × 106 7.46 × 105 113.2 <2 × 10−16  

Residuals 1.3×107 9.07×1010 6593 
   

Condition C 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 1.38 × 106 3.45 × 105 51.45 < 2×10−16 *** 
Element 2 3.87 × 107 1.93 × 107 2882 <2 × 10−16 *** 
Class:Element 8 6.36 × 106 7.95 × 105 118.52 <2 × 10−16  

Residuals 1.34×107 9.00×1010 6708 
   

Condition D 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 2.17 × 106 5.42 × 105 81.05 < 2×10−16 *** 
Element 2 5.11 × 107 2.56 × 107 3817 <2 × 10−16 *** 
Class:Element 8 5.95 × 106 7.43 × 105 111 <2 × 10−16  

Residuals 1.36×107 9.12×1010 6699 
   

Condition E 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 1.42 × 106 3.56 × 105 54.01 < 2×10−16 *** 
Element 2 2.36 × 107 1.18 × 107 1791 <2 × 10−16 *** 
Class:Element 8 9.27 × 106 1.15 × 106 175.8 <2 × 10−16  
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Table 6.22: (cont’d) 

Residuals 1.41×107 9.30×1010 6587 
   

Condition F 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 6.67 × 105 1.67 × 105 24.82 < 2×10−16 *** 
Element 2 3.16 × 107 1.58 × 107 2354 <2 × 10−16 *** 
Class:Element 8 2.74 × 106 3.42 × 105 51.05 <2 × 10−16  

Residuals 1.38 × 
107 

9.25×1010 6714 
   

Condition G 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 6.40 × 105 1.60 × 105 23.87 < 2×10−16 *** 
Element 2 2.72 × 107 1.35 × 107 2017 <2 × 10−16 *** 
Class:Element 8 2.98 × 106 3.72 × 105 55.66 <2 × 10−16  

Residuals 1.39 × 
107 

9.31×1010 6698 
   

Condition H 
 

Df Sum Sq Mean Sq F 
value Pr(>F) sig. 

Class 4 2.74 × 105 6.85 × 104 10.18 < 2×10−16 *** 
Element 2 3.11 × 107 1.55 × 107 2311 <2 × 10−16 *** 
Class:Element 8 2.02 × 107 2.52 × 105 37.47 <2 × 10−16  

Residuals 1.37 × 
107 

9.28×1010 6732 
   

Condition I 
 

Df Sum Sq Mean Sq 
F 
value Pr(>F) sig. 

Class 4 5.05 × 105 1.26 × 105 18.78 < 1.88 × 
10−15 *** 

Element 2 4.21 × 107 2.10 × 107 3132 <2 × 10−16 *** 
Class:Element 8 2.26 × 106 2.83 × 105 42.07 <2 × 10−16  

Residuals 1.36 × 
107 

9.19×1010 6728 
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Table 6.23: Heat map of particle area, eccentricity and element compositions 
Temperature 
C Relative 
Humidity 
(p-value) 

 
20-23 ◦C 

 
23-26 ◦C 

 
26-29 ◦C 

 
35%-40% 

   

 
40%-45% 

   

 
45%-50% 

   

 
Color bar 

 



 
240 

Table 6.24: Nanochromatography images under condition A, 20-23 ◦C, 35%-40% 
Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 
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Table 6.25: Nanochromatography images under condition B, 20-23 ◦C, 40%-45% 
Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 
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Table 6.26: Nanochromatography images under condition C, 20-23 ◦C, 45%-50% 
Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 
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Table 6.27: Nanochromatography images under condition F 23-26 ◦C, 45%-50% 
Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 
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Table 6.28: Water samples recipe of table A for stage 2 
Table 1 

MgCl2 0.45 mM, 
NaHCO3 0.25 
mM 

CaCl2 mM 0.5 0.75 1.0 1.5 2 

MgSO4 (mM)       
0.25  1 2 3 4 5 
0.5  6 7 8 9 10 
0.75  11 12 13 14 15 
1.0  16 17 18 19 20 
2.0  21 22 23 24 25 

 
Table 6.29: Water samples recipe of table B for stage 2 

Table 2 
MgCl2  0.45  mM, 
N aHCO3 0.5 mM CaCl2 mM 0.5 0.75 1.0 1.5 2 

MgSO4 (mM)       
0.25  1 2 3 4 5 
0.5  6 7 8 9 10 
0.75  11 12 13 14 15 
1.0  16 17 18 19 20 
2.0  21 22 23 24 25 

 
Table 6.30: Water samples recipe of table C for stage 2 

Table 3 
MgCl2  0.45  mM, 
N aHCO3 0.75 mM CaCl2 mM 0.5 0.75 1.0 1.5 2 

MgSO4 (mM)       
0.25  1 2 3 4 5 
0.5  6 7 8 9 10 
0.75  11 12 13 14 15 
1.0  16 17 18 19 20 
2.0  21 22 23 24 25 
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Table 6.31: Water samples recipe of table D for stage 2 
Table 4 

MgCl2  0.45  mM, 
N aHCO3 1.0 mM CaCl2 mM 0.5 0.75 1.0 1.5 2 

MgSO4 (mM)       
0.25  1 2 3 4 5 
0.5  6 7 8 9 10 
0.75  11 12 13 14 15 
1.0  16 17 18 19 20 
2.0  21 22 23 24 25 

 
Table 6.32: Water samples recipe of table E for stage 2 

Table 5 
MgCl2  0.45  mM, 
N aHCO3 2.0 mM CaCl2 mM 0.5 0.75 1.0 1.5 2 

MgSO4 (mM)       
0.25  1 2 3 4 5 
0.5  6 7 8 9 10 
0.75  11 12 13 14 15 
1.0  16 17 18 19 20 
2.0  21 22 23 24 25 
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Figure 6.15: TwoVtMoM Chlorine-Sulfur mass ratio. Targets Chlorine-Sulfur mass ratio vs 
predictions Chlorine-Sulfur mass ratio. Marker colors relates target Chlorine-Sulfur ratio 
value. 
 

 
Figure 6.16: TwoVtMoM of water samples hardness category classification results
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Figure 6.17: TwoVtMoM of water samples trilinear plot. 


