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ABSTRACT

It is commonplace today for scientists to study networks where interactions among the participants

happen at higher orders, where any number of participants can be related at once. Graphs,

the typical mathematical model for networks, can only display pairwise relationships, and are

sometimes inadequate in these situations. The combinatorial structures that have been used to

model higher order networks and generalize graphs, and which will play a major role in this thesis,

are hypergraphs and simplicial complexes. Hypergraphs have grown in popularity over the past

decades, and are becoming standard combinatorial objects used in network representations. They

differ from graphs only in that an edge in a hypergraph can have any number of vertices, not just

two.

Simplicial complexes, another generalization of graphs, have become ubiquitous in algebraic

topology. In part, this is because the homology of simplicial complexes is standard. Homology

is a tool for studying properties of the shape of topological spaces, and has proven to be useful

in topology for classifying spaces as it is a topological invariant. In data science, researchers

study the homology of simplicial complexes that change with the data. Keeping track of the

simplicial complexes over time allows them to ascertain when changes in the homology are caused

by meaningful changes in the data.

Hypergraphs are also generalizations of simplicial complexes, however, the homology of hy-

pergraphs is currently a problematic gap in the theory. No universal theory of homology for

hypergraphs has been established, and the definition of homology for simplicial complexes does

not extend obviously. Nonetheless, there has been research done into the homology of hyper-

graphs. The two homology theories for hypergraphs studied in this thesis are called the restricted

barycentric homology and the relative barycentric homology. We present novel combinatorial

definitions, topological and classification results, and methods for computation. This thesis aids in

the development of theory, interpretability, and data science of topological hypergraph analytics.
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CHAPTER 1

INTRODUCTION

Studying mathematics and analyzing data with network representations is a concept as old as

particular trip of Euler through Königsberg, and a generic traveling salesperson looking for the

shortest path to travel to all of the cities on their itinerary. Traditionally, those networks have been

modeled using graphs. However, over the course of the 20th century, graphs have occasionally been

found lacking because, by default, they only encode pairwise interactions. It is commonplace today

for scientists to study networks where interactions among the participants happen at higher orders.

For example, researchers in biology have found evidence of a three way symbiotic relationship

where no two of the organisms would be able to survive without the third [23]. They discovered

this network while studying a plant that was surviving in warmer soil than it would typically be

able to live. Originally, they found a fungus on the plant and thought the fungus and the plant were

in a symbiotic relationship, but later, they found a virus using the fungus as a host. Researchers

isolated and removed the virus, and the fungus and the plant died. The fungus and the virus could

not live without the plant, and the virus and the plant died without the fungus. If data scientists

wanted to use a combinatorial object to model this data, a graph would be insufficient because there

is a three way relationship without any of the two way subsets that would need to be displayed in a

graph. The combinatorial structures that have been used to generalize graphs, and which will play

a major role in this thesis, are hypergraphs and simplicial complexes. Surveys of historical and

current methods of studying higher order networks can be found in the following: [3, 4, 6, 31].

Hypergraphs have grown in popularity over the past decades, and are becoming standard

combinatorial objects used in network representations [5, 8]. Similar to graphs, hypergraphs can

be studied via notions of their path components [17, 1, 21], or via ideas of acyclicity [15, 10].

Some fields where researchers have studied hypergraphs include biology for gene identification

[16], urban traffic networks [17], and the domain name system [20].

Simplicial complexes, another generalization of graphs to higher order networks, have become

ubiquitous in algebraic topology. In part, this is because the homology of simplicial complexes is
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standard [18, 24]. Homology is a tool for studying properties of the shape of topological spaces.

Given a topological space, the homology of that space is represented by a group in every integer

dimension greater than or equal to zero. The ranks of these groups are called the Betti numbers.

In dimension zero, the Betti number is the number of connected components of the space. In

dimension one, it is the number of loops, or one dimensional holes. This increases with the

dimension, so in dimension two, the Betti number represents the number of hollow voids in the

space, and so on. Homology has proven to be useful in topology for classifying spaces as it is a

topological invariant. In data science, researchers track the homology of simplicial complexes that

change with the data. Keeping track of the simplicial complexes over time allows them to ascertain

when changes in the data cause changes in the homology. This process, called persistent homology,

is one of the major successes of the field of topological data analysis. Topological data analysis is

the name given to the science of using topological methods to model and analyze data, an umbrella

under which this thesis also falls.

Hypergraphs can also be viewed as generalizations of simplicial complexes, however, the lack

of a notion of homology of hypergraphs is currently a problematic gap in the theory. No universal

theory of homology for hypergraphs has been established, and the definition of homology for

simplicial complexes does not extend obviously. Nonetheless, there has been research done into

defining a homology of hypergraphs. First, researchers embedded hypergraphs into a particular

simplicial complex and found the homology of that complex [26, 25]. However, many different

hypergraphs will have the same simplicial complex. One group of researchers studying hypergraph

homology defined the embedded homology [7], which fits a hypergraph to the closest chain complex

(the algebraic structure needed for homology). They have also expanded that theory with typical

homology results like relative homology, a Mayer-Vietoris sequence, and a Künneth formula [7, 33,

29, 30]. One drawback of the embedded homology is that it abstractifies the original hypergraph

to an unrecognizable state, making it difficult to glean information about the original hypergraph

from this homology theory. Other theories on the homology of hypergraphs have crept up as well,

includin algebraic theories on rings and ideals associated to hypergraphs [14] and 1-dimensional
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homology on oriented hypergraphs [12].

There are two additional homology theories for hypergraphs that rely on the barycentric sub-

division of the associated simplicial complex [28], which are the focus of this thesis. The first

of these constructions, the restricted barycentric homology, only considers the subset of simplices

of the barycentric subdivision which are included as edges in the hypergraph. The second is the

relative barycentric homology for hypergraphs, where given the same barycentric subdivision, the

homology is computed relative to the subcomplex of the simplices that are not edges in the hyper-

graph. This latter definition of homology does a good job of accounting for the missing subedges,

thus discriminating between different hypergraphs with the same associated simplicial complex.

This thesis contributes to the study of hypergraph homology by developing the theory of

the restricted and relative barycentric homology. We accomplish this simultaneously in three

directions: combinatorics, topology, and data science. We start by manipulating standard results

from algebraic topology like the Mayer-Vietoris sequence and the long exact sequence of a pair

to make it easier to calculate the homology of complicated hypergraphs. These tools allow us

to completely classify the relative barycentric homology in several dimensions of a specific type

of hypergraph called a maximum edge hypergraph. In order to interpret these results, we also

needed novel combinatorial definitions not found in the hypergraph literature. These new concepts

include the ideas of the supplement of a hypergraph, and its fence components, an alternative

to the traditional idea of connected components. Lastly, we made advancements towards using

these methods in data science by finding techniques to simplify the computation and developing

results that account for changes in the hypergraph. The computations discussed in this thesis were

implemented in HyperNetX, an open source python package for hypergraph analytics [27]. We

have studied how the changes in a hypergraph over a filtration will affect the relative and restricted

barycentric homology.

We will conclude the introduction with an outline of the contents of the paper. The next

chapter contains background information: Section 2.1 on hypergraphs and Section 2.2 on simplicial

complexes and their homology. Section 2.3 gives the definitions of the restricted and relative
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barycentric homology for hypergraphs. Chapter 3 contains development of the restricted barycentric

homology. The chapter on the relative barycentric homology, Chapter 4, is split into three sections:

Section 4.1 on Mayer-Vietoris theorems for hypergraphs, Section 4.2 on results for maximum edge

hypergraphs, and Section 4.3, which contains results on the relative barycentric homology that

apply to general hypergraphs, and not just maximum edge hypergraphs. Chapter 5 discusses some

results that bridge the relative and restricted versions of the theory, and also contains Section 5.2,

which is about computation. Dynamic hypergraphs are studied in Chapter 6. This thesis finishes

with some concluding remarks and discussions of potential directions for future research in Chapter

7.
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CHAPTER 2

BACKGROUND

In this chapter, we will introduce the main objects of study, and the primary techniques used to

study them. First up will be an introduction to hypergraphs, including several novel definitions.

Then, we will introduce simplicial complexes, objects that are both combinatorial and topological

in nature. One major advantage of simplicial complexes is that they have a well studied homology

theory [24, 18], which is not true for hypergraphs. We will define simplicial homology and give a

few traditional results that we will analogize to hypergraphs later in this thesis. The last thing in this

chapter will be the definitions of the restricted and relative barycentric homology of hypergraphs.

These definitions were originally given by Emilie Purvine and collaborators [28]. The bulk of this

thesis will be developing the homology theory further for these two definitions.

2.1 Hypergraphs

A hypergraph is a combinatorial object that generalizes vertex-edge graphs. Informally, hyper-

graphs are graphs where an edge can have any number of vertices, not just two. Hypergraphs are

becoming increasingly utilized because of their ability to represent multirelational network data.

Two standard references for hypergraphs are [5, 8].

This section will be split into two parts. The first contains standard hypergraph definitions.

Versions of these definitions can be found in [8] unless otherwise noted. The second part consists

of new definitions and set-theoretic results on hypergraphs.

2.1.1 Standard Hypergraph Definitions

We will begin with the definition of a hypergraph. Similarly to a graph, a hypergraph consists

of vertices and edges, with the difference being that an edge can have any number of vertices.

Definition 2.1.1 (Hypergraph). A hypergraph H consists of two sets: a set of vertices

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}

and a set of edges, each of which is a nonempty subset of the vertex set,

𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚 | 𝑒𝑖 ⊂ 𝑉}.
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We will assume in perpetuity that neither𝑉 nor 𝐸 is empty and that every vertex is in some edge,

i.e. that there are no isolated vertices [8]. Because of this property, a hypergraph is well-defined

given only the edge set. Henceforth, we will use the notation 𝑒 ∈ H in place of 𝑒 ∈ 𝐸 to mean that

𝑒 is an edge in the hypergraph H , and will not consider the hypergraph any different from its edge

set. We will occasionally specify the edge set 𝐸 or the vertex set 𝑉 when it is convenient. The next

definition comes from [27], where it is used to simplify hypergraphs that have repeated edges.

Definition 2.1.2 (Edge-Collapsed Hypergraph). A hypergraph is said to be edge-collapsed if for

all 𝑖 ≠ 𝑗 , 𝑒𝑖 ≠ 𝑒 𝑗 .

All hypergraphs are henceforth assumed to be edge-collapsed, so there will not be any hyper-

graphs that have more than one copy of the same edge. This is analogous to avoiding multigraphs

when studying graph theory. A hypergraph that is a subset of another hypergraph will be called

a subhypergraph. Throughout this thesis, it will often be important whether or not an edge is

contained in another edge. We will use the terminology subedge [11] to describe an edge that is a

subset of another edge, and toplex [28] to describe an edge that is not a subset of another edge.

Definition 2.1.3 (Subedge). Let H be a hypergraph and 𝑒𝑖, 𝑒 𝑗 ∈ H such that 𝑒𝑖 ⊂ 𝑒 𝑗 . Then 𝑒𝑖 is

called a subedge in H and in particular it is a subedge of 𝑒 𝑗 .

Definition 2.1.4 (Toplex). Let H be a hypergraph and 𝑒𝑖 ∈ 𝐸 such that ∀𝑒 ∈ 𝐸, 𝑒𝑖 ⊄ 𝑒. Then 𝑒𝑖 is

called a toplex of H .

Since an edge is either a subset of some other edge or a subset of no other edges, every edge

in a hypergraph is a subedge or a toplex. Hypergraphs that have no subedges will also play an

important role, particularly in Theorems 3.2.2 and 4.3.9.

Definition 2.1.5 (Reduced Hypergraph). Let H be a hypergraph. It will be called a reduced

hypergraph if it does not have any subedges, or equivalently, if every edge is a toplex.

A reduced hypergraph is also called a simple hypergraph in [8] and other places. A reduced

hypergraph H ′ that has the same toplexes as a hypergraph H will be called its reduction. Figure
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Figure 2.1 A hypergraph H and a reduced hypergraph H ′.

2.1 gives our first two examples of a hypergraph, H and H ′. Notice that both hypergraphs have

the same vertex set, {𝐴, 𝐵, 𝐶, 𝐷}, but there are different edge sets, H = {𝐴𝐵𝐶, 𝐵𝐶𝐷, 𝐵, 𝐶} and

H ′ = {𝐴𝐵𝐶, 𝐵𝐶𝐷}. Here, H ′ does not have any edges that are subedges, and so it is a reduced

hypergraph, and since H has the same toplexes, H ′ is the reduction of H .

There are multiple ways of turning a hypergraph back into a graph. One can turn a hypergraph

into a bipartite graph by using 𝑉 and 𝐸 as the vertex sets of the bipartite graph, with graph edges

from 𝑣 ∈ 𝑉 to 𝑒 ∈ 𝐸 if 𝑣 ∈ 𝑒 in the hypergraph [21]. Another method is the two-section [8] of a

hypergraph, which is a graph on the same vertex set 𝑉 , with graph edges between two vertices that

share an edge in the hypergraph. Most useful for us will be the line graph, defined next. In [8], the

line graph is also called the intersection graph or representative graph.

Definition 2.1.6 (Line Graph). Let H be a hypergraph with edge set 𝐸 . The line graph of H ,

denoted 𝐿 (H), is a graph built as follows:

1. The vertex set of the line graph is the edge set of the hypergraph, 𝑉𝐿 B 𝐸

2. There is an edge between 𝑒𝑖 and 𝑒 𝑗 in the line graph if 𝑒𝑖 ∩ 𝑒 𝑗 ≠ ∅ in H .

For an example of a line graph, see Figure 2.2. The hypergraph H in the figure has edge set

𝐸 = {𝐴𝐵𝐶, 𝐵𝐶𝐷, 𝐵, 𝐶}, which are the vertices of the line graph 𝐿 (𝐻). Notice that there is not a

graph edge between 𝐵 and𝐶 in 𝐿 (H) because 𝐵∩𝐶 = ∅, but all other pairs of edges in H intersect

nontrivially, and that is represented by a graph edge in 𝐿 (H).
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Figure 2.2 A hypergraph H and its line graph 𝐿 (H).

The next definition is that of a complement hypergraph. Like with graphs, the complement

hypergraph consists of all of the edges that were not in the original hypergraph, retaining the same

vertex set.

Definition 2.1.7 (Complement of a Hypergraph). Let H = {𝑉, 𝐸} be a hypergraph. The comple-

ment of H is all subsets of the vertex set that are not edges in H , and is denoted Comp(H). Hence,

if P(𝑉) denotes the power set of 𝑉 , Comp(H) = P(𝑉) \ 𝐸 .

This set theoretic standard notion of the complement serves as the building block for several

results herein, as well as the inspiration for Definition 2.1.11 in the novel definitions section below.

See Figure 2.3 for an example. Another definition brought over from graph theory is the definition

of a walk along a hypergraph. Below is the definition of 1-walk along a hypergraph from [21],

herein just referred to as a walk.

Definition 2.1.8 (Hypergraph Edge Walk). Let H be a hypergraph with edge set 𝐸 . A walk is a

sequence of edges 𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑘 , where 𝑒𝑖 𝑗 ∩ 𝑒𝑖 𝑗+1 ≠ ∅ and 𝑒𝑖 𝑗 ≠ 𝑒𝑖 𝑗+1 .

Note that there is not a standard definition of walk in the hypergraph literature. In [8], a walk

lists both edges and vertices that are in their intersection, and is called a path. In [21], a path is a

specific type of walk. The idea of an 𝑠-walk, as defined in [21], leverages the more general nature

of hypergraphs by stipulating that each pair of consecutive edges in the walk must intersect in at

least 𝑠 different vertices. There would also be a natural notion of walk where only the vertices are
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Figure 2.3 A hypergraph H and its complement Comp(H).

listed and adjacent vertices in the walk must share an edge. We will use the given definition of

walks to define connected components in hypergraphs.

Definition 2.1.9 (Connected Components of a Hypergraph). Let H be a hypergraph with edge set

𝐸 . Define an equivalence relation on 𝐸 : 𝑒𝑖 ∼ 𝑒 𝑗 if there is a walk from 𝑒𝑖 to 𝑒 𝑗 . The equivalence

classes of this relation are the connected components of the hypergraph.

If walks were defined here in terms of vertices then the definition above could also be reworked

to give connected components in terms of vertices, as done in [8].

2.1.2 New Definitions and Results

Next we will include some novel definitions and some set-theoretic results on the complement

and supplement hypergraphs. The first definition is that of a maximum edge hypergraph. This

definition was necessitated and motivated by the results of Section 4.2.

Definition 2.1.10 (Maximum Edge Hypergraph). Let H = {𝑉, 𝐸} be a hypergraph. It will be

called a maximum edge hypergraph if there is some edge 𝑒 such that 𝑒 = 𝑉 . Oftentimes, 𝑒 will be

referred to as the maximum edge of H .

An important property of maximum edge hypergraphs is that if 𝑒 is the maximum edge,

𝑒𝑖 ⊂ 𝑒 ∀ 𝑒𝑖 ∈ 𝐸 . In words, every other edge of H is a subedge of the maximum edge 𝑒.

It will become apparent later (as soon as Section 2.3) that a special subset of the complement

hypergraph is particularly important. This subset consists of the edges that are subsets of edges that

9



Figure 2.4 A hypergraph H , its complement Comp(H), and its supplement Supp(H).

are in the hypergraph, and will be called the supplement hypergraph. (The † is used throughout

this thesis to indicate work partially supported by PNNL.)

Definition 2.1.11 (Supplement Hypergraph†). Let H be a hypergraph with edge set 𝐸 and vertex

set 𝑉 . Consider the set E of all subsets of edges in 𝐸 . Define 𝐺 B E \ 𝐸 . Here, 𝐺 is the set of all

subedges of edges in H that are not themselves edges, i.e.

𝐺 = {𝑒′ ⊂ 𝑒 for some 𝑒 ∈ 𝐸 | 𝑒′ ≠ 𝑒 for any 𝑒 ∈ 𝐸}.

The hypergraph with edge set 𝐺 is called the supplement hypergraph and denoted Supp(H).

Figure 2.4 gives an example of a hypergraph with both its complement and supplement. Here,

the hypergraph H has the vertices {𝐴, 𝐵, 𝐶}, but 𝐴𝐵𝐶 is not an edge, and so 𝐴𝐵𝐶 is an edge

in Comp(H). However, 𝐴𝐵𝐶 is not a subset of any existing edge in H , and is thus not an edge

in Supp(H). The complement Comp(H) is a maximum edge hypergraph, and the other two

hypergraphs are not.

Note that the vertex set of Supp(H ) may not be the same as the vertex set of H , as in Figure 2.4.

Supp(H) inherits only the vertices in edges in 𝐺. Since the complement includes all subsets of 𝑉

that are not edges in H , Supp(H) ⊂ Comp(H). Furthermore, for maximum edge hypergraphs,

the supplement and the complement agree, as shown next.

Proposition 2.1.1. † Let H be a maximum edge hypergraph. Then Comp(H) = Supp(H).

10



Proof. Let 𝑒 be the maximum edge of H , and 𝑉 the vertex set of H . Since H is a maximum edge

hypergraph, 𝑒 = {𝑉}. By definition, Supp(H) ⊂ Comp(H). Let 𝑓 ∈ Comp(H). By the definition

of complement, 𝑓 is not an edge in H , and 𝑓 ⊂ 𝑉 . However, 𝑒 = {𝑉}, so 𝑓 ⊂ 𝑒. Therefore, 𝑓 is not

an edge in H , but is a subset of an edge in H . Thus, 𝑓 ∈ Supp(H). So, Comp(H) ⊂ Supp(H),

and by double inclusion, the two are equal, proving the proposition. □

Maximum edge hypergraphs will turn out to be quite important, so we will want ways to

generate them even when starting with a hypergraph that is not maximum edge. One such way is

to take the complement. The next result says that for H that is not maximum edge, its complement

is maximum edge.

Lemma 2.1.2. Suppose H is not a maximum edge hypergraph. Then its complement, Comp(H),

is a maximum edge hypergraph.

Proof. Since H is not a maximum edge hypergraph, there is no edge containing all of its vertices

𝑉 . Therefore, by definition of the complement, 𝑒 = 𝑉 is an edge in the complement hypergraph.

Since all other edge in the complement will be subsets of 𝑒 = 𝑉 , the complement hypergraph is a

maximum edge hypergraph. □

The following corollary combines the previous results with the law of double complements to

write any hypergraph that is not maximum edge as a supplement of a maximum edge hypergraph.

Hence, every hypergraph is either a maximum edge hypergraph or the supplement of one.

Corollary 2.1.3. Suppose H is not a maximum edge hypergraph. Then H is the supplement of its

complement,

H = Supp(Comp(H)).

Proof. This corollary follows from the previous results. Recall the law of double complements

H = Comp(Comp(H )). Since Comp(H) is a maximum edge hypergraph by Lemma 2.1.2, its

complement is equal to its supplement by Proposition 2.1.1. Thus we get the following string of

equalities that prove the corollary: H = Comp(CompH)) = Supp(Comp(H)). □
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The next few definitions of this section are moving towards an alternative to the definition

of connected components in hypergraphs (Definition 2.1.9), which are called fence components.

Instead of being based off of intersections, fence components will be based off of inclusions of

subedges. These will come up often, particularly in Chapter 3. The preliminary definition will be

that of a hypergraph fence, which is a specific type of walk (Definition 2.1.8).

Definition 2.1.12 (Hypergraph Fence). Let H be a hypergraph. A fence in H is a hypergraph walk

𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑘 such that for all 𝑒𝑖 𝑗 either:

1. 𝑒𝑖 𝑗−1 ⊂ 𝑒𝑖 𝑗 ⊃ 𝑒𝑖 𝑗+1 , or

2. 𝑒𝑖 𝑗−1 ⊃ 𝑒𝑖 𝑗 ⊂ 𝑒𝑖 𝑗+1 .

A fence is more restrictive than a walk because for a fence, each consecutive pair of edges

needs to have an inclusion relation instead of only a nontrivial intersection. The definition for

connected components in Definition 2.1.9 uses the notion of walks to form an equivalence relation

and partition the edge set. The next definition does an analogous thing with fences instead of walks.

Definition 2.1.13 (Fence Components). Let H be a hypergraph with edge set 𝐸 . Define a relation

∼ on 𝐸 with 𝑒𝑖 ∼ 𝑒 𝑗 if there is a fence from 𝑒𝑖 to 𝑒 𝑗 . The equivalence classes of this relation are

called the fence components of H , and the number of fence components of a hypergraph will be

denoted Γ(H).

A good example of the difference between fence components and connected components can

be found in Figure 2.1. Both hypergraphs H and H ′ have one connected component, as the two

toplexes intersect in both hypergraphs. In H , 𝐴𝐵𝐶 ⊃ 𝐵 ⊂ 𝐵𝐶𝐷 is a fence between 𝐴𝐵𝐶 and

𝐵𝐶𝐷, and 𝐶 ⊂ 𝐴𝐵𝐶, so all edges are in the same fence component. In H ′, though, there is no

fence between 𝐴𝐵𝐶 and 𝐵𝐶𝐷, since they do not have a mutual subedge. Therefore H ′ has two

fence components whilst having one connected component.

Inclusion of edges in a hypergraph gives a partial order on H . The below definition comes

from [22], where it is called the edge containment partial order. This poset will be used later
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on, especially in Section 5.2. The name face poset was inspired by the face poset of a simplicial

complex from [32].

Definition 2.1.14 (Face Poset of a Hypergraph). Let H be a hypergraph. Define a relation on the

edges of H by 𝑒𝑖 < 𝑒 𝑗 if 𝑒𝑖 ⊂ 𝑒 𝑗 . This is a partial order, and it forms what is called the face poset

of H , 𝐹𝑃(H).

Recalling Definition 2.1.6, the line graph is a graph on the edge set ofH that displays information

about the intersection of edges. The next definition is another graph called the edge inclusion graph

and it is analogous to the line graph, but displays information about the inclusion relations among

edges in H . That difference is comparable to the difference between the connected components of

a hypergraph and its fence components, as discussed in the previous example.

Definition 2.1.15 (Edge Inclusion Graph). Let H be a hypergraph. The edge inclusion graph is a

graph 𝐸𝐼𝐺 (H) constructed as follows:

1. The vertex set of 𝐸𝐼𝐺 (H) is the edge set of the hypergraph, 𝑉𝐸𝐼𝐺 = {𝑣𝑒 | 𝑒 ∈ H}.

2. There is an edge in 𝐸𝐼𝐺 (H) between 𝑣𝑒𝑖 and 𝑣𝑒 𝑗 if 𝑒𝑖 ⊂ 𝑒 𝑗 or 𝑒𝑖 ⊃ 𝑒 𝑗 in H .

The final definition on hypergraphs is reserved for a special type of connected component

(Definition 2.1.9), called a simplicial component, which will prepare our transition to talking about

simplicial complexes.

Definition 2.1.16 (Simplicial Components). Let H be a hypergraph. Suppose there is a connected

component C ⊂ H that is closed under taking subsets, i.e.

∀ 𝑒 ∈ C, 𝑒′ ⊂ 𝑒 ∈ C =⇒ 𝑒′ ∈ C.

Then C is called a simplicial component.

Another way of phrasing the subset closure property is that there is a connected component

that contains all possible subedges of its toplexes. A hypergraph for which every component is a

simplicial component is a simplicial complex, as we will see in the next section.
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2.2 Simplicial Complexes and their Homology

Like hypergraphs, simplicial complexes are combinatorial objects that generalize graphs. In

fact, all graphs are 1-dimensional simplicial complexes. Moreover, simplicial complexes could be

considered as a special class of hypergraphs. They are hypergraphs for which every component

is a simplicial component (Definition 2.1.16), i.e. a hypergraph for which all possible subedges

are present in the hypergraph. They are commonly used in algebraic topology. One nice property

that simplicial complexes have that general hypergraphs do not have is a well-defined, standard

homology theory. Abstract simplicial complexes were originally defined in [34] in the late 1930s

and many of the definitions below appear in some form there. Unless another source is cited,

versions of the definitions in this section can be found in [18] and/or [24].

2.2.1 Simplicial Complexes

We will begin with the definition of an abstract simplex (plural - simplices). Informally, an

abstract simplex is a set of distinct vertices, just like an edge in a hypergraph.

Definition 2.2.1 (Simplex). An abstract simplex 𝜎 is a set of vertices 𝜎 = {𝑣0, 𝑣1, ..., 𝑣𝑛} such that

𝑣𝑖 ≠ 𝑣 𝑗 for any 𝑖 ≠ 𝑗 , i.e. a set without any repeated elements. The dimension of the simplex 𝜎 is

𝑛, one less than the number of vertices it has.

In this thesis we will consider abstract simplices, but simplices have geometric realizations as

well. Suppose the 𝑛 + 1 vertices of an 𝑛-simplex 𝜎 lie in R𝑛 such that {𝑣1 − 𝑣0, . . . , 𝑣𝑛 − 𝑣0} is a

linearly independent set. Then the geometric realization of 𝜎 is the convex hull of its vertices in

R𝑛 [24]. Henceforth, all simplices will be abstract simplices (the word abstract will be omitted),

and figures will show a geometric realization.

Simplices are the building blocks for simplicial complexes. An abstract simplicial complex is

a set of distinct simplices that is closed under taking subsets of its elements. Simplicial complexes

also have geometric realizations, as the union of the geometric realization of their simplices, and

similarly, outside of figures, all simplicial complexes will be abstract simplicial complexes.

Definition 2.2.2 (Simplicial Complex). A (finite) simplicial complex 𝐾 is a collection of simplices
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Figure 2.5 Of these two hypergraphs, H and 𝐾 , only 𝐾 is a simplicial complex.

𝐾 = {𝜎1, 𝜎2, ..., 𝜎𝑚} such that:

1. 𝜎𝑖 ≠ 𝜎𝑗 for any 𝑖 ≠ 𝑗 and

2. for all 𝜎𝑖 ∈ 𝐾 , if 𝜏 ⊂ 𝜎𝑖, then 𝜏 ∈ 𝐾 .

The dimension of a simplicial complex is the maximum dimension over all of its simplices. All

simplicial complexes considered will be assumed to be finite in both the number of simplices and

their dimensions.

Hypergraphs were defined after simplicial complexes, historically, and are generalizations of

simplicial complexes. Every simplicial complex is a hypergraph, but the converse is not true. The

following lemma relates to Definition 2.1.16 of simplicial components in a hypergraph. It says that

a hypergraph with all of its possible subedges is a simplicial complex.

Lemma 2.2.1 (Hypergraphs that are Simplicial Complexes). Let H be a hypergraph. If for all

𝑒 ∈ H , 𝑒′ ⊂ 𝑒 =⇒ 𝑒′ ∈ H , then H is a simplicial complex.

Proof. Since all hypergraphs are assumed to be edge-collapsed (Definition 2.1.2), any hypergraph

satisfies the first condition of Definition 2.2.2. The second condition of Definition 2.2.2 is exactly

the assumption made in the lemma, proving that a hypergraph with subedge closure is a simplicial

complex. □

A first example of viewing a hypergraph as a simplicial complex is in Figure 2.5. The hypergraph

H is missing some subedges, like 𝐴𝐶, and so is not a simplicial complex. However, the hypergraph
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𝐾 is closed under taking subedges, and is thus a simplicial complex. The rightmost image in the

figure shows the geometric realization of 𝐾 as a shaded triangle. Both the second hypergraph

and the triangle represent the exact same set of sets, 𝐾 , which is the minimal simplicial complex

containing H . It might be important to consider only a part of a simplicial complex and the first

definition about simplicial complexes is that of a special subset of a simplicial complex, called a

subcomplex.

Definition 2.2.3 (Subcomplex of a Simplicial Complex). A subset of a simplicial complex that is

itself a simplicial complex is called a subcomplex.

Here is one important type of subcomplex:

Definition 2.2.4 (Generated Subcomplex). Given a simplicial complex 𝐾 , let 𝑉 ′ ⊂ 𝑉 be a subset

of the vertex set of 𝐾 . Then, the subcomplex generated by 𝑉 ′ is the set of simplices in 𝐾 whose

vertices are contained in 𝑉 ′, i.e.

𝐾𝑉 ′ = {𝜎 ∈ 𝐾 | 𝜎 ⊆ 𝑉 ′}.

The next special type of subcomplex is the 𝑛-skeleton associated with a simplicial complex.

Definition 2.2.5 (Skeleta of a Simplicial Complex and Underlying Graph). The 𝑛-skeleton of a

simplicial complex is the subcomplex consisting of all of the simplices that are at most dimension

𝑛. The 1-skeleton of a simplicial complex is a graph, called the underlying graph in [2].

Many important results in algebraic topology rely on the idea of refining a simplicial complex

(see, for example, the Simplicial Approximation Theorem in [24]). One standard way of doing so is

called the barycentric subdivision, defined below. As the names restricted and relative barycentric

homology suggest, both of the main homology theories developed herein utilize the barycentric

subdivision.

Definition 2.2.6 (Barycentric Subdvision). Given a simplicial complex 𝐾 , its barycentric subdivi-

sion 𝑇 is a simplicial complex such that the vertex set of 𝑇 is the set of simplices of 𝐾 , i.e.

𝑉𝑇 = {𝑣𝜎𝑖 | 𝜎𝑖 ∈ 𝐾}
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Figure 2.6 A simplicial complex 𝐾 , its barycentric subdivision 𝑇 , and a generated subcomplex.

and the simplices of 𝑇 are given by the face relations on 𝐾 . That is,

𝑇 B {Ω = {𝑣𝜎1 , . . . , 𝑣𝜎𝑚} ⊂ 𝐾 | upto reordering of vertices in Ω, 𝜎1 ⊂ 𝜎2 ⊂ . . . ⊂ 𝜎𝑚 ∈ 𝐾}.

Figure 2.6 gives an example of both a barycentric subdivision and a generated subcomplex

(Definition 2.2.4). It starts with the simplicial complex 𝐾 , given by the triangle 𝐴𝐵𝐶 and all of its

subsets, 𝐾 = {𝐴𝐵𝐶, 𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐴, 𝐵, 𝐶}. Each of these becomes a vertex in 𝑇 , the barycentric

subdivision. Notice, for example, that there is an edge between the vertices 𝐴 and 𝐴𝐵 in 𝑇 . This is

because in 𝐾 , 𝐴 ⊂ 𝐴𝐵. Similarly, there is a triangle on the vertices 𝐶, 𝐴𝐶, 𝐴𝐵𝐶 in 𝑇 because in 𝐾 ,

𝐶 ⊂ 𝐴𝐶 ⊂ 𝐴𝐵𝐶. The rightmost picture highlights the subcomplex in 𝑇 generated by the vertices

{𝐴, 𝐵, 𝐴𝐶, 𝐵𝐶}, which includes all simplices in 𝑇 only consisting of those vertices.

Recall that in graph theory, clique is the term for a complete subgraph. If a set of 𝑚 vertices of

a graph is a clique, then all smaller subsets of those same vertices will also be a clique. Thus, it

might be advantageous to turn the cliques of a graph into simplices of a simplicial complex. This

construction is called a clique complex.

Definition 2.2.7 (Clique Complex). Let 𝐺 be a graph. Cliques in 𝐺 are complete subgraphs, i.e.

sets of vertices in which every two vertices are joined by an edge. Form a simplicial complex 𝑋 (𝐺)

by letting every clique in𝐺 be a simplex in 𝑋 (𝐺). Then 𝑋 (𝐺) is called the clique complex of𝐺. If

𝐾 is a simplicial complex, it is called a clique complex (or flag complex) if it is the clique complex

of its 1-skeleton.
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The last sentence of that definition is equivalent to the condition that every set of vertices that are

pairwise connected by 1-simplices are mutually contained in a single simplex [2]. In hypergraphs,

this condition is called conformality [2, 8]. As an example, the barycentric subdivision is always a

clique complex. This is because, for a set of simplices in a simplicial complex, if they are pairwise

related to each other, then there is a total order on that set. This can be seen in Figure 2.6. The

vertices {𝐶, 𝐴𝐶, 𝐴𝐵𝐶} in 𝑇 are each pairwise connected by an edge since 𝐶 ⊂ 𝐴𝐶, 𝐶 ⊂ 𝐴𝐵𝐶,

and 𝐴𝐶 ⊂ 𝐴𝐵𝐶 in 𝐾 . These can be rearranged into a single chain, 𝐶 ⊂ 𝐴𝐶 ⊂ 𝐴𝐵𝐶 in 𝐾 , and so

the corresponding triangle in 𝑇 is shaded.

Recall the face poset 𝐹𝑃 from Definition 2.1.14. Since simplicial complexes are hypergraphs,

it also makes sense to use this definition for the face poset of a simplicial complex. There is also a

natural way to generate a simplicial complex given a poset. This is called the order complex [32].

It uses chains of relations in the poset as simplices for the simplicial complex.

Definition 2.2.8 (Order Complex). Let (𝑃, <) be a poset. The order complex of 𝑃, denoted

Δ(𝑃), is the simplicial complex whose vertices are the elements of 𝑃, and whose simplices are

chains of the relation on 𝑃. In other words, {𝑣0, 𝑣1, . . . , 𝑣𝑘 } is a simplex in Δ(𝑃) exactly when

𝑣0 < 𝑣1 < . . . < 𝑣𝑘 is a linearly ordered set in 𝑃.

One result that uses the order complex is that the order complex of the face poset of a simplicial

complex is the same as the barycentric subdivision of that simplicial complex [32]. This gives an

alternative definition of the barycentric subdivision.

Proposition 2.2.2 (Alternative Definition of Barycentric Subdivision). Let 𝐾 be a simplicial com-

plex, and let 𝐹𝑃(𝐾) be its face poset. The order complex Δ(𝐹𝑃(𝐾)) is the same simplicial complex

as the barycentric subdivision, i.e. Δ(𝐹𝑃(𝐾)) = 𝑇𝐾 .

Proof. By Definition 2.2.6 of the barycentric subdivision, the vertex set of 𝑇𝐾 is

𝑉𝑇𝐾 = {𝑣𝜎 | 𝜎 ∈ 𝐾}
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and the simplices in 𝑇𝐾 are given by chains of face relations in 𝐾 ,

Ω = {𝑣𝜎1 , 𝑣𝜎2 . . . , 𝑣𝜎𝑚} ∈ 𝑇𝐾

if and only if, for some reordering of the 𝜎𝑖,

𝜎1 ⊂ 𝜎2 ⊂ . . . ⊂ 𝜎𝑚 ∈ 𝐾.

The elements of the face poset of 𝐾 are the simplices in 𝐾 , with 𝜎𝑖 < 𝜎𝑗 in 𝐹𝑃(𝐾) if and only if

𝜎𝑖 ⊂ 𝜎𝑗 in 𝐾 . The order complex Δ(𝐹𝑃(𝐾)) has as vertices the elements of 𝐹𝑃(𝐾), which are the

simplices in 𝐾 . Therefore, Δ(𝐹𝑃(𝐾)) and 𝑇𝐾 have the same vertices. The simplices in Δ(𝐹𝑃(𝐾))

are given by chains of relations in 𝐹𝑃(𝐾). Since in 𝐹𝑃(𝐾),

𝜎1 < 𝜎2 < . . . < 𝜎𝑚

if and only if

𝜎1 ⊂ 𝜎2 ⊂ . . . ⊂ 𝜎𝑚 ∈ 𝐾,

the simplices ofΔ(𝐹𝑃(𝐾)) are the same as the simplices of𝑇𝐾 , and thus they are the same simplicial

complex. □

The last definitions on simplicial complexes before we get into their homology are that of the

star and link. The star and link are important for many results on simplicial complexes that are of

a topological nature, as they essentially analogize the concepts of an open neighborhood and its

boundary to the combinatorial objects of simplicial complexes.

Definition 2.2.9 (Stars and Links of Simplices). Let 𝐾 be a simplicial complex, and 𝜎 ∈ 𝐾 be a

simplex. The (open) star of 𝜎, denoted St(𝜎), is defined as the set of simplices having 𝜎 as a face:

St(𝜎) = {𝜏 ∈ 𝐾 | 𝜎 ⊆ 𝜏}.

Let 𝐿 = {𝜎1, 𝜎2, . . . , 𝜎𝑛} be a subset of simplices in 𝐾 , not necessarily a subcomplex. The star

of 𝐿 is the union of the stars of its simplices:

St(𝐿) =
𝑛⋃
𝑘=1

St(𝜎𝑘 ).
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The closed star of 𝐿, St(𝐿), is the smallest subcomplex of 𝐾 containing St(𝐿).

The link of 𝐿, Lk(𝐿), is the set of simplices in the closed star that are not in the star. This is the

boundary of the star, given by

Lk(𝐿) = St(𝐿) \ St(𝐿).

2.2.2 Simplicial Homology

Next we will move into defining the homology of simplicial complexes. Earlier, we mentioned

that the presence of a standard homology theory was a feature that set simplicial complexes apart

from hypergraphs. Recall that the difference between general hypergraphs and simplicial complexes

is that simplicial complexes contain all of their subsets. This property makes a critical difference

when it comes to defining homology. In short, simplices have natural boundaries while general

hypergraph edges do not. Consider a 2-simplex with three vertices; its geometric realization is a

triangle. Assuming it is in a simplicial complex, the three sides of the triangle (one dimensional

simplices) are also guaranteed to be geometric realizations of simplices, and they make up the

boundary of the simplex. On the other hand, in a general hypergraph, there might be an edge with

three vertices, but not all (or possibly even none) of the two vertex subsets of that edge might be

edges themselves.

This property plays an important role in the boundary map, a requirement for homology. In

particular we will define a group for each dimension of simplices, and then the boundary map

descends in dimension by one, as in the triangle to edges example above. This sequence of groups

and maps forms the underlying structure required for a homology theory.

Let 𝐾 be a simplicial complex. Define the 𝑛th chain group of 𝐾 as the group of finite formal

sums of 𝑛-dimensional simplices:

𝐶𝑛 (𝐾) B
{∑︁

𝑎𝑖𝜎𝑖 | 𝜎𝑖 is an 𝑛-dimensional simplex ∈ 𝐾
}
.

The 𝑎𝑖 are coefficients from a specified group; in this thesis the coefficient group is always assumed

to be Z2Z . Henceforth, when there is no ambiguity the 𝐾 will be dropped, and the chain groups will

20



be denoted by 𝐶𝑛. There is a map 𝜕𝑛 : 𝐶𝑛 → 𝐶𝑛−1 called the boundary map defined as follows. If

𝜎 = {𝑣0, ..., 𝑣𝑛} is an 𝑛-simplex in 𝐾 , then

𝜕𝑝 (𝜎) B
𝑝∑︁
𝑖=0

(−1)𝑖 [𝑣0, 𝑣1, · · · , 𝑣𝑖, · · · , 𝑣𝑛]

where the hat indicates removal of that vertex. The (−1)𝑖 is not necessary when working with Z
2Z

coefficients, but is included in the general definition of the boundary map for any coefficient group.

The map 𝜕𝑛 is then extended linearly to the chains of 𝐶𝑛. Importantly, 𝜕𝑛−1 ◦ 𝜕𝑛 = 0. So there is a

sequence of groups and maps:

. . . 𝐶𝑛 𝐶𝑛−1 · · · 𝐶0 0.𝜕 𝜕 𝜕 𝜕

A sequence of groups and maps of this form where 𝜕2 = 0 is called a chain complex. If 𝐾𝑒𝑟 (𝜕𝑛) �

𝐼𝑚(𝜕𝑛+1), then the chain complex is said to be exact at 𝑛, and if the sequence is exact at every step,

it is called an exact sequence. While 𝐶𝑛 is not necessarily exact at 𝑛, we can measure its failure to

be exact using homology.

Definition 2.2.10 (Simplicial Homology). Given a simplicial complex 𝐾 , form the chain complex

𝐶 (𝐾) of its chain groups and boundary maps as above. Then, the 𝑛th homology group of 𝐾 , 𝐻𝑛 (𝐾),

is defined as

𝐻𝑛 (𝐾) B
𝐾𝑒𝑟 (𝜕𝑛)
𝐼𝑚(𝜕𝑛+1)

.

The rank of this group is called the 𝑛-th Betti number of 𝐾 , denoted 𝛽𝑛 (𝐾).

Viewing a single vertex 𝑣 as a 0-dimensional simplicial complex, we can compute that 𝛽0(𝑣) = 1,

while all other Betti numbers are 0.

In some sense, homology generalizes the concept of finding, counting, and listing cycles in

a graph. Since every graph is a 1-dimensional simplicial complex, it makes sense to talk about

the simplicial homoloy of a graph. Let 𝐺 be a graph. Then, it turns out that 𝛽0(𝐺) is equal to

the number of connected components of the graph, and 𝛽1(𝐺) is equal to the number of linearly

independent cycles in the graph.
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In higher dimensional simplicial complexes, however, some of those graph cycles might be

filled in with two dimensional simplices. Perhaps there is even a two dimensional analogue of a

cycle, this could look like an enclosed void in the geometric realization. Such a void would show up

as a class in 𝐻2(𝐾), the second dimensional homology group. This generalizes up to the dimension

of the simplicial complex, above which the homology groups are guaranteed to be zero, since there

are no simplices in those dimensions.

Instead of 𝛽0 = 1 for a single point, it would perhaps be more intuitive for a point to have no

homology whatsoever. This is the case in the theory of reduced homology (see, e.g. [18]), which

we will define next. Reduced homology is occasionally used when a result relies on it, for example

in the proof of Theorem 4.2.9. This could occur when it will be convenient to say that, for a vertex

𝑣, 𝛽𝑖 (𝑣) = 0 for all 𝑖.

Definition 2.2.11 (Reduced Homology). Given a simplicial complex 𝐾 with chain groups 𝐶𝑛, the

reduced chain complex is the usual chain complex with Z
2Z augmented after 𝐶0, i.e.

. . . 𝐶𝑛 𝐶𝑛−1 · · · 𝐶0
Z
2Z 0𝜕𝑛+1 𝜕𝑛 𝜕𝑛−1 𝜕1 𝜖

where 𝜖 maps a 0-chain to the sum of its coefficients. Then, the reduced homology of 𝐾 is the

homology of the reduced chain complex, denoted 𝐻 (𝐾), with reduced Betti numbers 𝛽(𝐾).

The main property we need from reduced homology is that 𝛽0(𝐾) = 𝛽0(𝐾) − 1, and for 𝑖 ≠ 0,

𝐻𝑖 (𝐾) � 𝐻𝑖 (𝐾). Reduced homology in dimension zero does not represent the number of connected

components. It instead represents gaps between connected components; 𝛽0(𝐾) is the number of

1-dimensional simplices that would need to be added to 𝐾 to have a conneced simplicial complex.

Another useful property of simplicial complexes is that the barycentric subdivision operator

preserves homology, creating a refinement of a simplicial complex with the same topological

properties, as shown in [18, 24].
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Lemma 2.2.3 (Homology of Barycentric Subdivision). Let 𝐾 be a simplicial complex, with 𝑇 its

barycentric subdivision. Then,

𝐻𝑛 (𝑇) � 𝐻𝑛 (𝐾) for all 𝑛.

Simplicial complexes that have the same topological properties as a point play an important

role, and are given the name contractible.

Definition 2.2.12 (Contractible Simplicial Complex). A simplicial complex 𝐾 is said to be con-

tractible if it is homotopy equivalent to a single point.

We will not define homotopy equivalence here (see [18], but this definition implies (among

other things) that for reduced homology, 𝐻𝑛 (𝐾) = 0 for all 𝑛. For the regular simplicial homology

of a contractible simplicial complex,

𝐻𝑛 (𝐾) =


Z
2Z when 𝑛 = 0

0 else.

In this thesis, the simplicity of the homology groups of a contractible simplicial complex will

be often used to ease calculation of homology groups of more complicated complexes.

The last homological definition we will require is the relative homology of a pair 𝑆 ⊆ 𝐾 , where

𝐾 is a simplicial complex, and 𝑆 is a subcomplex. Geometrically, this gives the homology of a

simplicial complex, after collapsing the subcomplex 𝑆 to a point. Unfortunately, the quotient space

𝐾/𝑆 is not generally a simplicial complex, so it does not make sense to talk about the simplicial

homology of 𝐾/𝑆.

Let 𝐶 (𝐾) and 𝐶 (𝑆) be the chain groups of 𝐾 and 𝑆, as defined above for the definition of

simplicial homology. Then 𝐶𝑛 (𝑆) ⊂ 𝐶𝑛 (𝐾), and in particular, 𝐶𝑛 (𝐾)/𝐶𝑛 (𝑆) is a well defined

quotient group in all dimensions. This sequence of groups, with the inherited boundary maps, still

forms a chain complex [18]. This chain complex is denoted 𝐶 (𝐾, 𝑆) and is called the relative chain

complex. Since it is a chain complex, the homology can be computed, and that is the definition of

relative homology.
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Definition 2.2.13 (Relative Homology). Let 𝐾 be a simplicial complex, with 𝑆 a subcomplex.

Then, the homology of 𝐾 relative to 𝑆, denoted 𝐻 (𝐾, 𝑆), is defined as the homology of the chain

complex 𝐶 (𝐾, 𝑆) defined above.

Relative homology can be difficult to calculate. Some of the results in the next section will give

additional ways to calculate it.

2.2.3 Simplicial Homology Theorems

There are some important theorems of simplicial homology that we will analogize to hyper-

graphs in this thesis. The first of these is the Mayer-Vietoris Theorem, which relates the homology

of a space to the homology of two of its subsets that cover it, as well as their intersection. This

theorem can be found in [18, 24].

Theorem 2.2.4 (Mayer-Vietoris Theorem). Let 𝐾 be a simplicial complex, and 𝐿1, 𝐿2 be subcom-

plexes such that 𝐿1 ∪ 𝐿2 = 𝐾 . Then the sequence of homology groups

. . . → 𝐻𝑛 (𝐿1 ∩ 𝐿2) → 𝐻𝑛 (𝐿1) ⊕ 𝐻𝑛 (𝐿2) → 𝐻𝑛 (𝐾) → 𝐻𝑛−1(𝐿1 ∩ 𝐿2) → . . .

where the first two maps are induced by inclusions, and the third map is derived through techniques

of homological algebra, is exact.

This long exact sequence is often called the Mayer-Vietoris sequence. It is commonly used in

algebraic topology to calculate the homology of complicated spaces when the homology of a cover

of them is known. It can be used with regular homology or reduced homology.

A first application of the Mayer-Vietoris sequence is to find the homology of the spheres, 𝑆𝑛,

via induction, assuming that the homology of 𝑆1 has been computed as the base case. Recall that

𝐻𝑖 (𝑆1) =


Z
2Z 𝑖 = 0, 1

0 else

For the inductive step, assume that 𝐻𝑖 (𝑆𝑖) = Z
2Z and consider 𝑆𝑖+1. Note that 𝑆𝑖+1 can be split into

slightly overlapping northern and southern hemisphere, which are both 𝑖 + 1 dimensional disks,
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𝐷𝑖+1, so

𝑆𝑖+1 = 𝐷𝑖+1 ∪ 𝐷𝑖+1.

Each disk is homologically trivial, and they intersect in an equator of the sphere,

𝐷𝑖+1 ∩ 𝐷𝑖+1 = 𝑆𝑖 .

Each of these pieces can now be plugged into the Mayer Vietoris sequence, giving

. . . → 𝐻𝑖+1(𝑆𝑖) → 𝐻𝑖+1(𝐷𝑖+1)⊕𝐻𝑖+1(𝐷𝑖+1) → 𝐻𝑖+1(𝑆𝑖+1) → 𝐻𝑖 (𝑆𝑖) → 𝐻𝑖 (𝐷𝑖+1)⊕𝐻𝑖 (𝐷𝑖+1) → . . .

Since disks are homologically trivial, it follows from the exactness of the sequence that

𝐻𝑖+1(𝑆𝑖+1) → 𝐻𝑖 (𝑆𝑖)

is an isomorphism, and thus,

𝐻𝑖+1(𝑆𝑖+1) � Z
2Z
.

The rest of the Mayer-Vietoris sequence yields the expected result, and can be applied in the

same way. We will discuss another application of the Mayer-Vietoris sequence in Theorem 6.2.1.

However, there is also a version of the Mayer-Vietoris sequence that uses relative homology, and

that is the version we will be analogizing to hypergraphs in Theorem 4.1.1.

Theorem 2.2.5 (Relative Mayer-Vietoris Theorem). Let 𝐾 be a simplicial complex with subcom-

plexes 𝐿1, 𝐿2, 𝑆 ⊂ 𝐾 such that 𝐿1 ∪ 𝐿2 = 𝐾 . Further assume we have subcomplexes 𝑅1 ⊂ 𝐿1 ∩ 𝑆,

and 𝑅2 ⊂ 𝐿2 ∩ 𝑆 such that 𝑅1 ∪ 𝑅2 = 𝑆. Then the sequence

. . . → 𝐻𝑛 (𝐿1∩𝐿2, 𝑅1∩𝑅2) → 𝐻𝑛 (𝐿1, 𝑅1)⊕𝐻𝑛 (𝐿2, 𝑅2) → 𝐻𝑛 (𝐾, 𝑆) → 𝐻𝑛−1(𝐿1∩𝐿2, 𝑅1∩𝑅2) → . . .

is exact.

Next up is the main result of relative homology. This is another long exact sequence, one that

relates the relative homology 𝐻 (𝐾, 𝑆) to 𝐻 (𝐾) and 𝐻 (𝑆). This sequence will play a major role in

Chapters 4 and 5.
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Theorem 2.2.6 (Long Exact Sequence of a Pair). Given a simplicial complex 𝐾 and a subcomplex

𝑆, the following is a long exact sequence of homology groups:

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝐾) → 𝐻𝑛 (𝐾, 𝑆) → 𝐻𝑛−1(𝑆) → 𝐻𝑛−1(𝐾) → . . .

The exactness of this sequence implies that in order to compute the homology 𝐻 (𝐾, 𝑆), we only

need 𝐻 (𝐾), 𝐻 (𝑆), and knowledge of the linear maps between them. Computationally, leveraging

this sequence will be vital as an alternative to taking the relative homology directly, since 𝐾/𝑆 is

in general not a simplicial complex.

The final result of this section is a way to remove simplices from simplicial complexes without

changing their homology, called a collapse. This will be analogized to hypergraphs in Theorem

3.2.6 and also used in Proposition 4.3.10.

Theorem 2.2.7 (Simplicial Collapse). Assume 𝜎 < 𝜏 are simplices in a simplicial complex 𝐾 such

that:

1. 𝜏 is a maximal face of 𝐾 , and

2. 𝜏 is the only maximal coface of 𝜎.

Then, if 𝐾 := 𝐾 \ {𝜔 | 𝜎 ≤ 𝜔 ≤ 𝜏}, 𝐾 ∼ 𝐾 are homotopy equivalent.

Simplicial complexes that collapse to a single vertex are called collapsible. Collapsible simpli-

cial complexes are always contractible, but the converse is not true.

2.3 Hypergraph Homology Theories

We are now ready to merge the topics of the prior two sections - hypergraphs, simplicial

complexes, and simplicial homology. Hypergraphs are more general than simplicial complexes.

The lack of the subset closure requirement means that more data can be modeled and that some

data can be modeled more accurately with hypergraphs than simplicial complexes or graphs [1, 3,

4, 6, 16, 17, 19, 21, 20, 22, 28, 31].

26



Figure 2.7 Comparing a hypergraph and simplicial model of a biological system.

Here is an example from biology [23]. Researchers found a species of panic grass that was

surviving in hostile conditions that it would not typically have been able to survive. Originally,

they located a fungus on the plant that was in a symbiotic relationship with the plant. After more

research, though, they also found a virus that was on the fungus that was a part of this symbiosis.

Researchers isolated and removed the virus, and both the fungus and the plant died. Researchers

isolated and removed the fungus, and both the virus and the plant died. Researchers killed the

plant, and both the fungus and virus died. No pair of them could survive without the third, in

what appears to be a three-way symbiotic relationship. This is much easier to represent with a

hypergraph than a graph or simplicial complex. If attempting to represent this with a graph, all

three (the virus, fungus, and plant) would need to be connected somehow, but each edge in the

graph can only connect two of them, which might mislead the reader into thinking that two of them

connected by an edge could survive. As a simplicial complex, there would be a 2-dimensional

simplex that represents the three way relationship, but this simplex would also necessarily contain

all of its subsets, including all of the two-way edges. As a hypergraph, there only needs to be a

three vertex edge and no possibly misleading subedges. This can be seen in Figure 2.7.

Homology has a history of being a useful tool for mathematicians. In topology, it is an important

invariant for classifying spaces. In topological data analysis, researchers use persistent homology

to measure how their data is changing over a parameter. This is done by taking the homology

of simplicial complexes built at critical points in the parameter’s range. Being able to define a
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homology theory for hypergraphs will allow researchers to use these results to classify and study

hypergraphs, and analyze data that is better modeled using a hypergraph.

It is when we reach the point of defining a homology theory on hypergraphs that their generality

becomes a double-edged sword. Because of the lack of the downward closure property that simpli-

cial complexes have, hypergraphs can be used to model data in ways that sometimes better reflects

its internal structure. However, the lack of that property also means there is not a natural boundary

map on hypergraph edges that immediately analogizes the definition of simplicial homology. From

the example in Figure 2.7, in order to more accurately represent the data the hypergraph does not

contain the pairwise edges between the vertices. The lack of those edges means that there is not

a natural boundary map for the edge that is present, and so it does not fit into our understood

framework for a homology theory.

The main complication, therefore, in defining a hypergraph homology theory is finding a chain

complex and boundary map that adequately and accurately represent the hypergraph. The bulk of

my thesis consists of development of the theory for two related definitions of hypergraph homology,

as originally defined by Emilie Purvine and collaborators [28]. These are the restricted barycentric

homology and the relative barycentric homology. There also exist other homology and cohomology

theories for hypergraphs, like the embedded homology [7, 29, 30, 33], and others [9, 12, 14, 25,

26].

Since we want to use simplicial homology, we will first start by taking a hypergraph, and

mapping it into a simplicial complex. One natural way of turning a hypergraph into a simplicial

complex is called the associated simplicial complex of the hypergraph [21, 25].

Definition 2.3.1 (Associated Simplicial Complex). Let H be a hypergraph. The associated sim-

plicial complex of H , denoted 𝐾 , is the simplicial complex constructed as follows:

𝐾 = {𝜎 ⊂ 𝑉 | 𝜎 ⊂ 𝑒 for some 𝑒 ∈ 𝐸}.

The associated simplicial complex is the smallest simplicial complex that contains the hyper-

graph H . The toplexes (Definition 2.1.4) of H are the maximal faces of 𝐾 . An initial approach
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to hypergraph homology, then, may be to define the homology of a hypergraph as the homology

of its associated simplicial complex, as done in [26, 25]. However, many distinct hypergraphs can

have the same associated simplicial complex, as we will explain. Because of the downward closure

property, a simplicial complex is completely characterized by its maximal faces. Thus, the toplexes

of a hypergraph determine its associated simplicial complex. Take, for example, a hypergraph

whose only toplex is the edge 𝐴𝐵𝐶. There are six possible subedges: 𝐴, 𝐵, 𝐶, 𝐴𝐵, 𝐴𝐶, 𝐵𝐶. This

means that there are 26 = 64 different hypergraphs that have that identical associated simplicial

complex, even with such a small example. The set of hypergraphs with the same toplexes, and

hence, associated simplicial complex, is called a hyperblock [21]. In order to distinguish between

different hypergraphs with the same associated simplicial complex, a more nuanced homology

definition is needed.

The associated simplicial complex is the simplicial complex attained by forcing the hypergraph

to be closed under taking subedges. Essentially, we are adding all of the missing subedges to the

hypergraph to get the associated simplicial complex. Each edge 𝑒 ∈ H has a corresponding simplex

𝜎𝑒 ∈ 𝐾 . Typically, 𝑒 ∈ 𝐾 will be used to indicate a simplex in 𝐾 that represents an edge 𝑒 in the

hypergraph. However, if that 𝑒 was also used in close proximity to talk about the hypergraph edge,

we will use 𝜎𝑒 ∈ 𝐾 when talking about the simplex in 𝐾 . Another notation will come up when

talking about the barycentric subdivision 𝑇 of 𝐾 . Edges in the hypergraph are simplices in the

associated simplicial complex, and hence, vertices in its barycentric subdivision. When there is no

risk of confusion, 𝑒 ∈ 𝑇 will be used to denote a vertex in the barycentric subdivision that represents

an edge in the hypergraph. In a situation where that might seem ambiguous, 𝑣𝑒 or 𝑣𝜎𝑒 ∈ 𝑇 will

denote that a vertex in the barycentric subdivision represents an edge in the hypergraph. Similarly,

𝑣𝜎 ∈ 𝑇 will be used when a vertex in the barycentric subdivision represents the simplex 𝜎 in 𝐾 .

Both homology theories we will develop herein utilize the associated simplicial complex of

the hypergraph and its barycentric subdivision. We will start by defining the restricted barycentric

homology. These homology theories were originally defined by Emilie Purvine and collaborators

[28]. The notation and formal statements of the definitions are original to this thesis.
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2.3.1 Restricted Barycentric Homology

The idea behind the restricted barycentric homology is that we should restrict our study to

only the simplices that represent edges in the hypergraph. If one were to attempt to restrict the

associated simplicial complex 𝐾 to the simplices 𝑒 representing edges in H , the resulting set is

not necessarily a simplicial complex, as it is the hypergraph H exactly. Thus it is ill-defined to

discuss its simplicial homology. The definition of restricted barycentric homology works around

this pitfall by first passing to the barycentric subdivision 𝑇 . Each edge 𝑒 ∈ H is represented by

a vertex 𝑣𝑒 ∈ 𝑇 . Build the subcomplex generated by those vertices as in Definition 2.2.4. This

subcomplex contains only simplices whose vertices all represent edges in the hypergraph and so,

better reflects the structure of the hypergraph. During the results section in Chapter 3, it will

become apparent that the restricted barycentric homology does well quantifying information about

inclusion relations among edges that are present in the hypergraph.

Definition 2.3.2 (Restricted Barycentric Subdivision). Let H be a hypergraph. Let 𝐾 be its

associated simplicial complex, and let 𝑇 be the barycentric subdivision of 𝐾 . The restricted

barycentric subdivision 𝑅 of H is a subcomplex 𝑅 ⊂ 𝑇 constructed as follows:

𝑅 = {Ω ∈ 𝑇 | ∀ 𝑣 ∈ Ω, 𝑣 = 𝑣𝑒 for some 𝑒 ∈ H}.

Each simplex in 𝑅 consists of vertices that represent edges in H . The next result says that if a

set of vertices 𝑣𝑒𝑖 ∈ 𝑅 forms a simplex in 𝑅, those edges 𝑒𝑖 ∈ H are totally ordered by inclusion

in the hypergraph. This is useful to help get some intuition about what the restricted barycentric

subdivision can tell us about the hypergraph. It will also be utilized later when discussing alternate

ways of constructing 𝑅, for example in 3.1.1.

Proposition 2.3.1. Let H be a hypergraph, and let Ω = {𝑣𝑒1 , 𝑣𝑒2 , . . . , 𝑣𝑒𝑘 } be a simplex in 𝑅, its

restricted barycentric subdivision. Then for some ordering of the 𝑒𝑖, 𝑒1 ⊂ 𝑒2 ⊂ . . . ⊂ 𝑒𝑘 as edges

in H .

Proof. By Definition 2.3.2 of the restricted barycentric subdivision, each vertex 𝑣𝑒𝑖 in Ω is an edge

𝑒𝑖 in H , and a simplex 𝜎𝑒𝑖 ∈ 𝐾 . By Definition 2.2.6, simplices in the barycentric subdivision are
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Figure 2.8 A hypergraph H and its barycentric subdivision 𝑇 with the restricted barycentric
subdivision highlighted.

given by chains of face relations in 𝐾 . Thus for some ordering, 𝜎𝑒1 ⊂ 𝜎𝑒2 ⊂ . . . ⊂ 𝜎𝑒𝑘 as simplices

in 𝐾 . However, the simplices 𝜎𝑒𝑖 are set theoretically the same in 𝐾 and as edges 𝑒𝑖 in H , so

𝑒1 ⊂ 𝑒2 ⊂ . . . ⊂ 𝑒𝑘 as edges in H as well, proving the proposition. □

We will now define the restricted barycentric homology for hypergraphs. By first defining the

restricted barycentric subdivision 𝑅, we have done most of the leg work. The restricted barycentric

homology is defined as the simplicial homology of 𝑅.

Definition 2.3.3 (Restricted Barycentric Homology). Let H be a hypergraph, and 𝑅 its restricted

barycentric subdivision as constructed above. The restricted barycentric homology of H , denoted

𝐻𝑟𝑒𝑠 (H) is defined to be the simplicial homology of 𝑅, i.e.

𝐻𝑟𝑒𝑠𝑛 (H) B 𝐻𝑛 (𝑅).

The rank of 𝐻𝑟𝑒𝑠𝑛 (H) will be denoted 𝛽𝑟𝑒𝑠𝑛 (H) and called the 𝑛th restricted Betti number of the

hypergraph.

We will go through an example of the restricted barycentric homology with the hypergraph in

Figure 2.8. This hypergraph has two toplexes, 𝐴𝐵𝐶 and 𝐵𝐶𝐷, so its associated simplicial complex

(not shown) is the triangles 𝐴𝐵𝐶 and 𝐵𝐶𝐷, glued along their shared edge 𝐵𝐶. Shown in the picture

is the barycentric subdivision 𝑇 of that associated simplicial complex. The restricted barycentric

subdivision 𝑅 is highlighted. Here, 𝑅 is generated by the four vertices in 𝑇 that represent the
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four edges in H : 𝐴𝐵𝐶, 𝐵𝐶𝐷, 𝐵, 𝐶. Since 𝐵 ⊂ 𝐴𝐵𝐶, there is an edge in 𝑅 between 𝐵 and 𝐴𝐵𝐶,

and similarly for the other highlighted edges. This creates a hollow diamond shape, which has

simplicial homology

𝐻𝑛 (𝑅) =


Z
2Z when𝑛 = 0, 1

0 else.

Therefore, the restricted barycentric homology of H is

𝐻𝑟𝑒𝑠𝑛 (H) =


Z
2Z when 𝑛 = 0, 1

0 else.

2.3.2 Relative Barycentric Homology

Whereas the restricted barycentric homology theory accounted for the subedges that were

missing in the hypergraph by simply omitting them, the relative barycentric homology takes a

different approach. The process begins the same way, by taking the associated simplicial complex

𝐾 of a hypergraph H , and then moving to the barycentric subdivision 𝑇 . Once again, we take a

particular subcomplex of 𝑇 , which we call the missing subcomplex, defined below. The missing

subcomplex is defined in almost the same way as the restricted barycentric subdivision, as a

generated subcomplex on a vertex set. The difference is that the vertex set of the missing subcomplex

consists of the vertices 𝑣 ∈ 𝑇 that do not represent edges in H . It is the subcomplex in 𝑇 built by

vertices representing all of the missing subedges of edges in H .

Definition 2.3.4 (Missing Subcomplex). Let H be a hypergraph. Let 𝐾 be its associated simplicial

complex, and let 𝑇 be the barycentric subdivision of 𝐾 . The missing subcomplex 𝑆 of H is a

subcomplex 𝑆 ⊂ 𝑇 constructed as follows:

𝑆 = {Ω ∈ 𝑇 | ∀𝑣 ∈ Ω, 𝑣 ≠ 𝑣𝑒 for any 𝑒 ∈ H}.

Similarly to the restricted case, defining the missing subcomplex was most of the work towards

defining the relative barycentric simplicial homology. The next definition is purely for notational

convenience while discussing examples.
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Definition 2.3.5. Let H be a hypergraph, with 𝑇 the barycentric subdivision of its associated

simplicial complex 𝐾 . Let 𝑆 be the missing subcomplex as defined above. Then the relative

barycentric subdivision (𝑇, 𝑆) of H will be defined as the geometric realization of the barycentric

subdivision 𝑇 with the missing subcomplex 𝑆 labeled.

Now we are ready to define the relative barycentric homology of a hypergraph H . It is defined

as the homology of the barycentric subdivision 𝑇 relative to the missing subcomplex 𝑆, using

relative homology from Definition 2.2.13. In Chapter 4, it will become apparent that one of the

strengths of the relative barycentric homology is to quantify information about the subedges of H ,

and in particular the relationship between the subedges that are present and the possible subedges

that are missing from H .

Definition 2.3.6 (Relative Barycentric Homology). Let H be a hypergraph with barycentric sub-

division 𝑇 , and missing subcomplex 𝑆 as above. Then the relative barycentric homology of H ,

denoted 𝐻𝑟𝑒𝑙 (H), is defined as the homology of 𝑇 relative to 𝑆:

𝐻𝑟𝑒𝑙𝑛 (H) B 𝐻𝑛 (𝑇, 𝑆)

The rank of 𝐻𝑟𝑒𝑙𝑛 (H) will be denoted 𝛽𝑟𝑒𝑙𝑛 (H) and called the 𝑛-th relative Betti number of the

hypergraph.

For a first example of the relative barycentric homology, see Figure 2.9. The hypergraph H

has a single edge 𝐴𝐵𝐶. Its associated simplicial complex is the two-simplex 𝐴𝐵𝐶 and its subsets.

Notice that this is, topologically, a 2-dimensional disk. The barycentric subdivision 𝑇 is shown.

The missing subcomplex is generated by all of the missing subsets of 𝐴𝐵𝐶 in H , which is all of

its proper subsets {𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐴, 𝐵, 𝐶}. These are connected to form the missing subcomplex,

highlighted in the figure. The missing subcomplex 𝑆 in this case forms the entire boundary of 𝑇 .

Now the relative barycentric homology 𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝑇, 𝑆). A disk relative to its boundary is

the sphere of the same dimension [18], so here 𝐻𝑛 (𝑇, 𝑆) = 𝐻𝑛 (S2), where S2 is the 2-dimensional
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Figure 2.9 A hypergraph H and its barycentric subdivision 𝑇 with the missing subcomplex
highlighted.

sphere. Recalling the homology groups of spheres from algebraic topology texts such as [18, 24]

yields that

𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝑇, 𝑆) = 𝐻𝑛 (S2) =


Z
2Z when 𝑛 = 2

0 else.

The rest of this thesis contains new results, almost all of which utilize either the restricted

barycentric homology or the relative barycentric homology of hypergraphs. We start with the

restricted barycentric homology in the next chapter.
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CHAPTER 3

RESULTS ON THE RESTRICTED BARYCENTRIC HOMOLOGY

We will begin the results portion of this thesis with the restricted barycentric homology. Throughout

this chapter, 𝑅 will be used to denote the restricted barycentric subdivision (Definition 2.3.2) of a

hypergraph H .

3.1 Restricted Barycentric Subdivision

We begin this section with results on the combinatorial structure of the restricted barycentric

subdivisiOn 𝑅 itself before moving into results on the homology. A main component of this thesis,

discussed in Section 5.2, is the computation of these homology theories. In general, computing

the barycentric subdivision of a simplicial complex is expensive, as the number of simplices grows

very quickly. Sepcifically, the barycentric subdivision of an 𝑛-dimensional simplex has (𝑛 + 1)!

𝑛-dimensional simplices. Therefore, where possible, we will use alternate constructions that do not

require a full barycentric subdivision. To that end, the first two results of this section are alternative

constructions of the restricted barycentric subdivision 𝑅.

The following proposition is used as the definition of the restricted barycentric subdivision in

[22]. It says that 𝑅 is the order complex (Definition 2.2.8) of the face poset (Definition 2.1.14) of

the hypergraph.

Proposition 3.1.1 (Poset Construction of 𝑅). The restricted barycentric subdivisIon 𝑅 of a hyper-

graph H is the same simplicial complex as the order complex of the face poset of H ,

𝑅 = Δ(𝐹𝑃(H)).

Proof. Let H be a hypergraph. Denote its restricted barycentric subdivision by 𝑅. From H , form

the poset 𝐹𝑃 and its order complex Δ(𝐹𝑃). Let Ω be a simplex in 𝑅. Then, after a relabelling if

necessary, Ω = {𝑣𝑒1 , 𝑣𝑒2 , . . . , 𝑣𝑒𝑘 } where 𝑒𝑖 ⊂ 𝑒 𝑗 in H for all 𝑖 < 𝑗 . Note

𝑒1 ⊂ 𝑒2 ⊂ 𝑒3 . . . ⊂ 𝑒𝑘 in H
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by Proposition 2.3.1. Thus,

in 𝐹𝑃(H), 𝑒1 < 𝑒2 < ... < 𝑒𝑘 ,

which implies 𝜎 is a simplex in Δ(𝐹𝑃) as well. Therefore 𝑅 ⊂ Δ(𝐹𝑃).

Let 𝜎 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 } be a simplex in Δ(𝐹𝑃(H)). By definition, a simplex in the order

complex of a poset represents a chain of inclusions in the poset,

𝑒1 < 𝑒2 < . . . < 𝑒𝑘 in 𝐹𝑃(H).

The relation on the poset 𝐹𝑃(H) was given to be edge inclusion in H , so this means

𝑒1 ⊂ 𝑒2 ⊂ . . . ⊂ 𝑒𝑘 𝑡𝑒𝑥𝑡𝑖𝑛H

. Therefore, 𝜎 = {𝑣𝑒1 , 𝑣𝑒2 , . . . , 𝑣𝑒𝑘 } is also a simplex in 𝑅 by Proposition 2.3.1, and Δ(𝐹𝑃) ⊂ 𝑅,

so Δ(𝐹𝑃) = 𝑅. □

Recall the edge inclusion graph 𝐸𝐼𝐺 (Definition 2.1.15) of a hypergraph. The second result is

that its clique complex (Definition 2.2.7) is also equal to 𝑅. This is the construction that will be

used later for computation, since it does not require the entire barycentric subdivision.

Theorem 3.1.2 (Clique Construction of 𝑅). The restricted barycentric subdivision of a hypergraph

H is the same simplicial complex as the clique complex (Definition 2.2.7) of the edge inclusion

graph (Definition 2.1.15) of H that is 𝑅 = 𝑋 (𝐸𝐼𝐺).

Proof. Let H be a hypergraph. Denote its restricted barycentric subdivision with 𝑅. Build the

edge inclusion graph, 𝐸𝐼𝐺. The vertices of 𝐸𝐼𝐺 are edges in H so let 𝑘 vertices, 𝑣𝑒1 , ..., 𝑣𝑒𝑘 , be a

clique in 𝐸𝐼𝐺. This yields a (𝑘 − 1)-simplex in 𝑋 (𝐸𝐼𝐺). Inclusion is a partial order, and these 𝑘

vertices represent edges 𝑒1, ..., 𝑒𝑘 that are each pairwise comparable since it is a clique. Thus there

is a linear order (potentially after reordering),

𝑒1 ⊂ 𝑒2 ⊂ . . . ⊂ 𝑒𝑘−1 ⊂ 𝑒𝑘 in H .

This chain of edge inclusions gives rise to a matching (𝑘 − 1)-simplex in 𝑅, so 𝑋 (𝐸𝐼𝐺) ⊂ 𝑅.
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Let 𝜎 be a 𝑘 simplex in 𝑅. This corresponds to a chain of 𝑘 + 1 edges,

𝑒1 ⊂ 𝑒2 ⊂ . . . ⊂ 𝑒𝑘 ⊂ 𝑒𝑘+1 in H .

Each of these edges is a vertex in the edge inclusion graph, and since subset is a transitive relation,

each of those edges has a pairwise inclusion relation with every other, forming a (𝑘 + 1)-clique

in the graph, which corresponds to a 𝑘 simplex in is clique complex 𝑋 (𝐸𝐼𝐺), so 𝑅 ⊂ 𝑋 (𝐸𝐼𝐺).

Therefore, 𝑅 = 𝑋 (𝐸𝐼𝐺). □

When starting with the associated simplicial complex and barycentric subdivision, all of the

possible subedges are needed as vertices, not just the subedges that are present in the hypergraph.

Even worse, information about all possible chains of inclusion among all the possible edges is

needed. In this construction, only the edges of H are stored as vertices, and only their possible

inclusion relations need to be checked.

3.2 Restricted Barycentric Homology

Now we will develop the theory of the restricted barycentric homology. The first result is a

plausibility check. If H is a hypergraph that also happens to be a simplicial complex, its restricted

barycentric homology is the same as the simplicial homology. We first note a minor technicality:

as a result of the downward closure property, a simplicial complex will always contain the empty

set, and by Definition 2.1.1, a hypergraph never will. So, we say that a hypergraph is the same as

its associated simplicial complex when their set of nonempty elements are the same.

Proposition 3.2.1. Let H be a hypergraph that is the same as its associated simplicial complex,

𝐾 . Then for all 𝑛,

𝐻𝑟𝑒𝑠𝑛 (H) � 𝐻𝑛 (𝐾).

Proof. Since H is already a simplicial complex, there are no missing subedges to add to obtain the

associated simplicial complex 𝐾 (Definition 2.3.1), and thus H = 𝐾 \ {∅}. Let 𝑇 be the barycentric

subdivision of 𝐾 as in Definition 2.2.6.
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Let Ω be a simplex in 𝑇 . Then

Ω = {𝑣𝜎1 , 𝑣𝜎2 , . . . , 𝑣𝜎𝑘 },

where each 𝜎𝑖 is a simplex in 𝐾 . However, 𝐾 \ {∅} = H , and so each 𝑣𝜎𝑖 = 𝑣𝑒𝑖 represents an edge

𝑒𝑖 in H . Thus by the definition of the restricted barycentric subdivision (Definition 2.3.2), Ω ∈ 𝑅,

and hence 𝑇 ⊂ 𝑅. Since by definition 𝑅 ⊂ 𝑇 , 𝑅 = 𝑇 . We now have the following equalities and

isomorphism:

𝐻𝑟𝑒𝑠 (H) = 𝐻 (𝑅) = 𝐻 (𝑇) � 𝐻 (𝐾).

The first equality comes from Definition 2.3.3 of the restricted barycentric homology. The second

equality comes from the set theoretic result 𝑅 = 𝑇 , proved above, and the isomorphism 𝐻 (𝑇) �

𝐻 (𝐾) was given as Lemma 2.2.3. This proves the proposition. □

In words, when H is a simplicial complex, the restricted barycentric subdivision is equal to the

barycentric subdivision because all of the possible edges are actually present in the hypergraph. In

the next result, let 𝐻𝑟𝑒𝑠 (𝑒𝑖) denote the restricted barycentric homology of the hypergraph with only

one edge, 𝑒𝑖. Recall the definition of a reduced hypergraph from Definition 2.1.5 as a hypergraph

with no subedges. Since the restricted barycentric homology is concerned primarily with inclusion

relations, and a reduced hypergraph has no inclusion relations, a reduced hypergraph has a fairly

simple, characterizable restricted barycentric homology. This characterization is given in the next

theorem.

Theorem 3.2.2 (Restricted Homology of Reduced Hypergraphs†). LetH be a reduced hypergraph.

Then 𝛽𝑟𝑒𝑠0 (H) = |H | and 𝛽𝑟𝑒𝑠
𝑖

(H) = 0 for 𝑖 > 0.

Proof. Recall the restricted barycentric subdivision (Definition 2.3.2) is a simplicial complex with

a vertex for each edge in the hypergraph, and simplices based on chains of inclusions of edges. In a

reduced hypergraph, no edges are subedges, so each vertex is isolated and the restricted barycentric

subdivision is a disjoint union of vertices, each representing one of the 𝑒𝑖. Since the homology of

38



disjoint topological spaces is equal to the direct sum of the homology of each of their components

[18], this gives that 𝐻𝑟𝑒𝑠 (H) =
⊕𝑚

𝑖=1 𝐻
𝑟𝑒𝑠 (𝑒𝑖), where 𝑚 is the number of edges in the hypergraph.

Since the hypergraph with only the edge 𝑒𝑖 is a maximum edge hypergraph, we can apply

Theorem 3.2.3 to find its restricted Betti numbers, 𝛽𝑟𝑒𝑠0 (𝑒𝑖) = 1 and 𝛽𝑟𝑒𝑠𝑛 (𝑒𝑖) = 0 for 𝑛 > 0. Thus

each vertex of 𝑅 contributes a rank one subgroup to the zeroth dimensional homology of the

simplicial complex. This means that 𝛽𝑟𝑒𝑠0 (H) = |H | and 𝛽𝑟𝑒𝑠𝑛 (H) = 0 for 𝑛 > 0, as was to be

shown. □

In a reduced hypergraph, every edge is a toplex and there are no subedges. The next result

is about maximum edge hypergraphs (Definition 2.1.10), in which there is only one toplex. The

restricted barycentric homology has useful implications for the inclusion relationships between

toplexes and their subedges. In a maximum edge hypergraph, all of the edges are subedges of the

single toplex. This leads to a classification of the restricted barycentric homology of maximum

edge hypergraphs with nontrivial homology in only dimension zero.

Theorem 3.2.3 (Restricted Homology of Maximum Edge Hypergraphs). Let H be a maximum

edge hypergraph. Then the restricted barycentric homology 𝐻𝑟𝑒𝑠𝑛 (H) is as follows:

𝐻𝑟𝑒𝑠𝑛 (H) =


Z
2Z if 𝑛 = 0

0 else.

Proof. Let H be a maximum edge hypergraph, with maximum edge 𝑒. Construct 𝑅, the restricted

barycentric subdivision (Definition 2.3.2) of H . Note that 𝑒 is a vertex in 𝑅, since it is an edge in

the hypergraph and a simplex in 𝐾 . Because all other edges are included in 𝑒, 𝑣𝑒 is connected via

an edge in 𝑅 to all other vertices in 𝑅. If there are any higher dimensional simplices Ω with vertices

in 𝑅 \ 𝑣𝑒, representing inclusions among subedges of 𝑒 in the hypergraph, all of those edges are still

contained in 𝑒, so Ω ∪ 𝑣𝑒 is a simplex in 𝑅. Thus, 𝑅 is a cone with apex 𝑣𝑒, and hence contractible

([18]), proving the lemma. □

A maximum edge hypergraph has a single fence component (Definition 2.1.12). The next

theorem says that this knowledge is enough to know the zeroth dimensional restricted barycentric
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homology of the hypergraph. It turns out that the number of fence components of the hypergraph

is equal to the rank of the zeroth dimensional homology group, as shown next.

Theorem 3.2.4 (Zeroth Dimensional Restricted Homology†). The rank of the zeroth dimensional

restricted barycentric homology group, 𝛽𝑟𝑒𝑠0 (H), is equal to the number of fence components,

Γ(H), of the hypergraph.

Proof. Recall that 𝛽𝑟𝑒𝑠0 (H) = 𝛽0(𝑅) is the number of path components of 𝑅where 𝑅 is the restricted

barycentric subdivision of H (Definition 2.3.3). Suppose two vertices of 𝑅, 𝑣𝑒 and 𝑣 𝑓 , are in the

same path component of 𝑅. This means that there is a sequence of vertices 𝑣𝑒, 𝑣𝑒1 , 𝑣𝑒2 , ..., 𝑣 𝑓

such that there is an inclusion relationship between the hyperedges representing each pair of

adjacent vertices in the sequence. In other words, in the hypergraph there is a sequence of edges

𝑒, 𝑒1, 𝑒2, ..., 𝑓 where each pair of adjacent edges has an inclusion relationship in either direction.

This is the definition of 𝑒 and 𝑓 being in the same fence component of H .

Reversing that line of thought yields the inverse statement, and so two vertices in 𝑅 are in the

same path component of 𝑅 if and only if their corresponding edges are in the same fence component

of H . Since there is a bĳection between vertices of 𝑅 and edges of H , there will be the same

number of path components of 𝑅 and fence components of H . Thus 𝛽𝑟𝑒𝑠0 (H) = Γ(H), proving

the theorem. □

In the above proof, a bĳection is found between fence components of the hypergraph and path

components of 𝑅. Each fence component of the hypergraph gives rise to a path component of

𝑅. Since the homology of a simplicial complex is the direct sum of the homologies of its path

components [18], we get the following corollary.

Corollary 3.2.5. Let H be a hypergraph, with fence components H1,H2, . . . ,H𝑘 . Then

𝐻𝑟𝑒𝑠𝑛 (H) =
𝑘⊕
𝑖=1

𝐻𝑟𝑒𝑠𝑛 (H𝑖).
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Figure 3.1 Hypergraphs with different fence components than connected components.

As an application of Theorem 3.2.4, see the hypergraphs in Figure 3.1. The difference between

H and H ′ is the edge 𝐵, which is only in H ′. This edge does not change the number of connected

components as per Definition 2.1.9, but does change the number of fence components. In H , there

is no fence between the edge 𝐴𝐵 and 𝐵𝐶, because they do not share a mutual subedge or toplex.

However, in H , 𝐴𝐵, 𝐵, 𝐵𝐶 is a fence. Thus 𝛽𝑟𝑒𝑠0 (H) = 2 and 𝛽𝑟𝑒𝑠0 (H ′) = 1.

The last theorem in this section uses the idea of a simplicial collapse (Theorem 2.2.7). It gives

conditions on which edges can be removed from a hypergraph without changing the restricted

barycentric homology.

Theorem 3.2.6. † Let H be a hypergraph with an edge 𝑒 such that there is exactly one edge 𝑓 with

𝑒 ⊂ 𝑓 or 𝑓 ⊂ 𝑒. Denote by H ′ the hypergraph H \ {𝑒}. Then ∀ 𝑛, 𝐻𝑟𝑒𝑠𝑛 (H) � 𝐻𝑟𝑒𝑠𝑛 (H ′).

Proof. Let 𝑅, 𝑅′ be the restricted barycentric subdivisions of H ,H ′ respectively. Note that 𝑅 =

𝑅′∪ {𝑒 𝑓 , 𝑒}. In 𝑅, 𝑒 𝑓 is a maximal simplex. If 𝑒 𝑓 was not maximal, then it would be a face of 𝑒 𝑓 𝑔

for some edge 𝑔 ∈ 𝐸 . This would imply that 𝑒𝑔 is a simplex in 𝑅, which would imply that either

𝑒 ⊂ 𝑔 or 𝑔 ⊂ 𝑒, which cannot be true as 𝑒 was assumed to only be related by inclusion to 𝑓 . Since

𝑒 𝑓 is the only maximal simplex that 𝑒 is a face of, 𝑅 can be simplicially collapsed along 𝑒 and 𝑒 𝑓 by

Theorem 2.2.7. Removing 𝑒 𝑓 and 𝑒 from 𝑅 leaves the same simplicial complex as 𝑅′. Therefore,

𝑅 simplicially collapses to, and is thus homotopy equivalent to, 𝑅′, proving the theorem. □
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Figure 3.2 Hypergraphs used as examples of Theorem 3.2.6.

The two hypergraphs in Figure 3.2 have the same restricted barycentric homology because the

edge 𝐶𝐷 in H only has 𝐶 as a subedge, and thus can be removed by the theorem. We will further

discuss the computation of the restricted barycentric homology in Section 5.2. As part of the

conclusion, we will share some ideas for future research on the restricted barycentric homology of

hypergraphs. For now, we are ready to move on to the results on the second definition of hypergraph

homology studied in this thesis, the relative barycentric homology.
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CHAPTER 4

RESULTS ON THE RELATIVE BARYCENTRIC HOMOLOGY

In this chapter, we will discuss some results in the development of the theory of the relative barycen-

tric homology for hypergraphs. Throughout, 𝑆 will denote the missing subcomplex (Definition

2.3.4), and 𝑇 will denote the barycentric subdivision (Definition 2.2.6) of the associated simplicial

complex 𝐾 (Definition 2.3.1) of the hypergraph.

This chapter has three sections. The first section contains two analogues of the Mayer-Vietoris

sequence from Theorem 2.2.4. These allow for breaking large and complex hypergraphs down and

taking the relative barycentric homology of subhypergraphs, before gluing them back together with

the Mayer-Vietoris sequences. The first version is at the level of the hypergraph edges. It allows

for computing the relative barycentric homology of a hypergraph by knowing the homology of

two subhypergraphs and of the hypergraph whose edges are their intersection. The second method

applies at the simplicial complex level, using the relative Mayer-Vietoris Theorem to compute the

homology after taking the barycentric subdivision and finding the missing subcomplex. Therefore,

the second Mayer-Vietoris Theorem of this section will be called the simplicial version. The

drawback of the second method is that there is not a nice way to frame this theorem using edges of

the original hypergraph, but it has the advantage of requiring one fewer condition. We will give an

example of a hypergraph where the first version cannot be used to compute its relative barycentric

homology, but the simplicial version can be used to show why both results are useful. The last

topic of this section will be some implications of the hypergraph versions of the Mayer-Vietoris

Theorem.

The second section, then, is useful for studying the subhypergraphs. Maximum edge hyper-

graphs (Definition 2.1.10) have a relative barycentric homology that is simpler to study than general

hypergraphs. This is due to their associated simplicial complex 𝐾 being contractible. We will uti-

lize that fact and the long exact sequence of a pair of spaces from Theorem 2.2.6 as shortcuts to

computing the relative barycentric homology of maximum edge hypergraphs. We will see that the

relative barycentric homology 𝐻𝑟𝑒𝑙 (H) for a maximum edge hypergraph H depends heavily on
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the homology of its missing subcomplex 𝐻 (𝑆). After showing that in generality, we move on to

some results that help interpret what information the relative barycentric homology relates about

the maximum edge hypergraph. This is done in dimensions 0, 1, 𝑚 − 2, and 𝑚 − 1, where 𝑚 is the

number of vertices in the hypergraph. Lastly, a condition is presented that would cause a maximum

edge hypergraph to have no relative barycentric homology at all.

The third section gives results on the relative barycentric homology for general hypergraphs.

These include an overall classification of the relative barycentric homology of reduced hypergraphs

in all dimensions and of any hypergraph in dimension zero, comparable to Theorems 3.2.4 and 3.2.2

for the restricted barycentric homology. In dimension zero, the relative barycentric homology turns

out to be entirely dependent on the simplicial components (Definition 2.1.16) of the hypergraph.

There are more results about manipulating the long exact sequence of the pair (𝑇, 𝑆), which

maintains usefulness even when H is not a maximum edge hypergraph. The last result of this

chapter gives a condition on which simplicial collapses can be applied during relative barycentric

homology computations.

4.1 Two Versions of a Mayer-Vietoris Sequence

We will begin the results for the relative barycentric homology with two versions of the Mayer-

Vietoris Theorem. Since this is a relative homology theory, both versions are built off of Theorem

2.2.5. In algebraic topology, the Mayer-Vietoris Theorem is very useful for finding the homology

of a space when it can be decomposed into the union of two subspaces whose homology is already

known, and the intersection of those two subspaces also has a known homology. Recall the 𝑛-

dimensional sphere from the earlier example when we defined the Mayer-Vietoris sequence. It is

the union of two hemispheres, which are 𝑛-dimensional disks. The intersection of the hemispheres

is the equator, which is an (𝑛 − 1)-dimensional sphere. The Mayer-Vietoris theorem can thus

inductively be used to prove the homology groups of the spheres.

The first version allows for the hypergraph H to be written as H = H1
⋃H2, and these H1

and H2 form the analogous constructions to the subspaces in the regular Mayer-Vietoris sequence

(Theorem 2.2.4). This is helpful because it can be used to break down hypergraphs into smaller
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components for relative barycentric homology computations. Alternatively, it can be used to

glue together hypergraphs along some intersecting edges and compute the homology of the new

hypergraph.

Theorem 4.1.1 (Mayer-Vietoris Theorem for Hypergraphs). Fix a hypergraph H = {𝑉, 𝐸}. Let

H1 = {𝑉1, 𝐸1} and H2 = {𝑉2, 𝐸2} be subhypergraphs, chosen such that

1. 𝐸1, 𝐸2 ⊂ 𝐸 with 𝐸1 ∪ 𝐸2 = 𝐸 .

2. Let 𝑘 ∈ {1, 2}. For any 𝑒𝑖 ∈ H and 𝑒 𝑗 ∈ 𝐸𝑘 with 𝑒𝑖 ⊂ 𝑒 𝑗 , we have that 𝑒𝑖 ∈ 𝐸𝑘 .

3. Let 𝐸′ B 𝐸1∩𝐸2 and call the hypergraph it induces H ′. For all 𝑒1 ∈ 𝐸1 and 𝑒2 ∈ 𝐸2, ∃ 𝑒′ ∈

𝐸′ s.t. 𝑒1 ∩ 𝑒2 ⊂ 𝑒′.

Then the following is a long exact sequence on the relative barycentric homology of hypergraphs:

. . . → 𝐻𝑟𝑒𝑙𝑛 (H ′) → 𝐻𝑟𝑒𝑙𝑛 (H1) ⊕ 𝐻𝑟𝑒𝑙𝑛 (H2) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑟𝑒𝑙𝑛−1(H
′) → . . . .

Proof. The main objective of the proof is to show that the barycentric subdivisions and missing

subcomplexes of H ,H1,H2 and H ′ satisfy the requirements of Theorem 2.2.5.

Note that because we have inclusions on hypergraphs,

H1

H ′ H

H2

we have inclusions on the associated simplicial complexes,

𝐾1

𝐾′ 𝐾.

𝐾2

Define pairs (𝑇, 𝑆), (𝑇 ′, 𝑆′), (𝑇1, 𝑆1), and (𝑇2, 𝑆2) as in Definition 2.3.5 for H , H ′, H1, and H2

respectively. In each case, 𝑇 is the barycentric subdivision of the relevant associated simplicial
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complex 𝐾 , and 𝑆 is the missing subcomplex of𝑇 induced by the relevant hypergraph. For example,

𝑆′ and 𝑇 ′ are defined as

𝑇 ′ = {Ω = {𝑣𝜎1 , · · · , 𝑣𝜎𝑛} | 𝜎1 ⊂ 𝜎2 ⊂ . . . ⊂ 𝜎𝑛 ⊂ 𝐾′}, and

𝑆′ = {Ω ∈ 𝑇 | ∀ 𝑣𝜎𝑖 ∈ Ω, 𝜎𝑖 does not represent an edge in H ′}.

With this notation in place, the long exact sequence becomes

. . . → 𝐻𝑛 (𝑇 ′, 𝑆′) → 𝐻𝑛 (𝑇1, 𝑆1) ⊕ 𝐻𝑛 (𝑇2, 𝑆2) → 𝐻𝑛 (𝑇, 𝑆) → 𝐻𝑛−1(𝑇 ′, 𝑆′) → . . .

We will show that our setting fits the setup of the relative Mayer-Vietoris sequence from Definition

2.2.5, which will give the theorem. In particular, we need to show four things: (i) 𝑇 = 𝑇1 ∪ 𝑇2; (ii)

𝑆 = 𝑆1 ∪ 𝑆2; (iii) 𝑇 ′ = 𝑇1 ∩ 𝑇2; and (iv) 𝑆′ = 𝑆1 ∩ 𝑆2.

This will be done in order. First, we will show 𝑇 = 𝑇1 ∪ 𝑇2. If Ω = {𝑣𝜎1 , 𝑣𝜎2 , . . . , 𝑣𝜎𝑘 } is

a simplex in 𝑇 , then for some ordering of those vertices, 𝜎1 ⊂ 𝜎2 ⊂ . . . ⊂ 𝜎𝑘 ∈ 𝐾 . Further,

𝜎𝑘 represents a subedge of an edge 𝑒 in H , in which all of the other 𝜎𝑖 represented by vertices

in Ω must also be contained. For the rest of this proof, the 𝑣𝜎𝑘 that represents the simplex in 𝐾

containing all other vertices of a simplex Ω in 𝑇 will be called the maximal vertex of Ω. This edge

𝑒 must then be in 𝐸1 or 𝐸2, hence 𝜎𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑘} is in 𝐾1 or 𝐾2, which implies then that

Ω is a simplex in 𝑇1 or 𝑇2, i.e. Ω ∈ 𝑇1 ∪ 𝑇2.

Similarly, a simplex Φ in 𝑇1 or 𝑇2 has a maximal vertex 𝑣𝜏 corresponding to a simplex 𝜏 in 𝐾1

or 𝐾2, such that 𝜎 ⊂ 𝜏 for all 𝑣𝜎 ∈ Φ. This simplex 𝜏 represents a subedge of an edge 𝑒′ in 𝐸1 or

𝐸2. Both 𝐸1 and 𝐸2 are subsets of 𝐸 , so 𝑒′ ∈ 𝐸 . Thus 𝜏 ∈ 𝐾 , and, hence, Φ ∈ 𝑇 . Therefore, any

simplex in 𝑇1 or 𝑇2 must also be in 𝑇 . So, 𝑇1 ∪ 𝑇2 = 𝑇 .

Next, it is necessary to show 𝑆 = 𝑆1 ∪ 𝑆2. Recall that 𝑆 is the subcomplex of 𝑇 generated by the

vertices 𝑣𝜎 that correspond to the simplices 𝜎 in 𝐾 that are missing as subedges in H . Suppose Ω

is a simplex in 𝑆. Then every vertex comprising Ω corresponds to a simplex in 𝐾 that is a missing

subedge in H . In particular, the maximal vertex of Φ corresponds to a subedge of an edge 𝑒 in 𝐸 .

Now, 𝑒 must be in 𝐸1 or 𝐸2. Thus, Φ is in 𝑆1 or 𝑆2, so 𝑆 ⊆ 𝑆1 ∪ 𝑆2.
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Now let Φ be in 𝑆1 ∪ 𝑆2, say WLOG Φ ∈ 𝑆1. Then every vertex in Φ represents a missing

subedge of an edge in H1. By assumption two of the theorem for the construction of 𝐸1 and 𝐸2,

all of those vertices represent edges that are missing in 𝐸 as well, thus Φ is also in 𝑆. Therefore,

𝑆 = 𝑆1 ∪ 𝑆2.

The third step is to show that 𝑇 ′ = 𝑇1 ∩ 𝑇2. Let Ω ∈ 𝑇 ′. Then all of the vertices in Ω represent

simplices in 𝐾′ contained in the simplex representing the maximal vertex of Ω, meaning they are

all subedges of the edge 𝑒′ in 𝐸′ corresponding to that simplex. Since 𝐸′ = 𝐸1 ∩ 𝐸2, 𝑒′ is in 𝐸1

and 𝐸2, so all of its subedges are represented in 𝐾1 and 𝐾2. Therefore Ω ∈ 𝑇1 ∩ 𝑇2, and hence

𝑇 ′ ⊆ 𝑇1 ∩ 𝑇2. Similarly, a simplex Φ in both 𝑇1 and 𝑇2 has the same maximum edge in 𝐸1 and 𝐸2,

so that edge is in their intersection 𝐸′, and thus Φ is in 𝑇 ′. Therefore, 𝑇 ′ = 𝑇1 ∩ 𝑇2.

Lastly, it is necessary to verify that 𝑆′ = 𝑆1 ∩ 𝑆2. Let Φ be a simplex in 𝑆′, then every vertex in

Φ represents a missing subedge of an edge in 𝐸′, hence a missing subedge of an edge in both 𝐸1

and 𝐸2. Again by the second condition in the theorem on 𝐸1 and 𝐸2,Φ is necessarily a simplex in

both 𝑆1 and 𝑆2.

IfΩ is a simplex in 𝑆1∩𝑆2, then every vertex inΩ represents a missing subedge of a hyperedge in

𝐸1 ∩𝐸2 = 𝐸′, and so Ω ∈ 𝑆′. Thus, 𝑆′ = 𝑆1 ∩ 𝑆2. Therefore the complexes satisfy the requirements

of Definition 2.2.5, and so we have that the long exact sequence

. . . → 𝐻𝑟𝑒𝑙𝑛 (H ′) → 𝐻𝑟𝑒𝑙𝑛 (H1) ⊕ 𝐻𝑟𝑒𝑙𝑛 (H2) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑟𝑒𝑙𝑛−1(H
′) → . . . .

is exact as required. □

Condition 3 seems, and is, restrictive, but it is a necessary condition. Recall that the condition

states that for any 𝑒1 in 𝐸1 and 𝑒2 in 𝐸2, there is an edge 𝑒′ in 𝐸1 ∩ 𝐸2 such that 𝑒1 ∩ 𝑒2 ⊂ 𝑒′. In

words, this means that every pairwise intersection of edges in 𝐸1 and 𝐸2 is contained in an edge in

both. Consider the following hypergraph, which can be seen in Figure 2.1:

H = {𝐴𝐵𝐶, 𝐵𝐶𝐷, 𝐵, 𝐶}.
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A natural choice for a partition of this hypergraph is to separate the 3-vertex edges, and then in order

to satisfy condition 2 of the theorem, 𝐸1 = {𝐴𝐵𝐶, 𝐵, 𝐶} and 𝐸2 = {𝐵𝐶𝐷, 𝐵, 𝐶}. This partition,

however, does not satisfy condition 3. The edges 𝐴𝐵𝐶 ∈ 𝐸1 and 𝐵𝐶𝐷 ∈ 𝐸2 intersect in 𝐵𝐶, which

is not an edge of 𝐸′ or a subset therein. The vertices generating 𝑇 ′ = 𝑇1 ∩ 𝑇2 are {𝐵𝐶, 𝐵, 𝐶}, but

since 𝐵,𝐶 ∈ 𝐸 , the only vertex generating 𝑆′ = 𝑆1 ∩ 𝑆2 is {𝐵𝐶}. If there was an “intersection

hypergraph" that would allow us to use the Mayer-Vietoris theorem for hypergraphs here, it would

have to contain 𝐵𝐶 as both a missing subedge and a maximal edge. Of course, an edge can’t be

both a maximal edge and a missing subedge, so this is impossible. Thus, for this H and the most

natural partition, there is not a hypergraph whose relative barycentric division is (𝑇 ′, 𝑆′), and it

will therefore be impossible to write the Mayer-Vietoris sequence where the intersection term is

the relative barycentric homology of any hypergraph. The following lemma gives this result in

generality.

Lemma 4.1.2. Suppose 𝐸1, 𝐸2 form a partition of a hypergraph and satisfy condition two of the

Mayer-Vietoris Theorem for hypergraphs, but do not satisfy condition three. Then, (𝑇 ′, 𝑆′) is not

the relative barycentric subdivision of any hypergraph.

Proof. Let 𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2 be such that 𝑒1∩𝑒2 is not a subset of any edge in 𝐸1∩𝐸2; in other words

𝑒1 and 𝑒2 are edges that contradict condition three. It suffices to assume that 𝑒1 ∩ 𝑒2 is maximal

among intersections of edges in 𝐸1 and 𝐸2. This is because if an intersection is not maximal,

then a maximal intersection that it is contained in would also contradict the third condition. Since

𝑒1 ∩ 𝑒2 is maximal among intersections {𝑒𝑖 ∩ 𝑒 𝑗 | 𝑒𝑖 ∈ 𝐸1, 𝑒 𝑗 ∈ 𝐸2}, 𝜎𝑒1∩𝑒2 is a maximal simplex

in 𝐾′ = 𝐾1 ∩ 𝐾2. There is thus also a corresponding vertex 𝑣𝜎𝑒1∩𝑒2 of 𝑇 ′ = 𝑇1 ∩𝑇2. Since 𝑒1 ∩ 𝑒2 is

not a subedge of any edge in 𝐸1 ∩ 𝐸2, by condition two 𝑣𝑒1 ∩ 𝑣𝑒2 is a vertex in 𝑇 ′ that is part of the

generating set for 𝑆′. It will form part of the missing subcomplex. Suppose there was a hypergraph

such that 𝐾′ was its associated simplicial complex, with (𝑇 ′, 𝑆′) being its relative barycentric

subdivision. By the preceding sentences, 𝑒1 ∩ 𝑒2 is both a maximal edge and a missing subedge

of that hypergraph, which is a contradiction. Therefore, no hypergraph with relative barycentric

subdivision (𝑇 ′, 𝑆′) can exist, proving the lemma. □
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All hope is not lost for a useful Mayer-Vietoris sequence on hypergraphs, though. If we pass

through to the level of the relative barycentric subdivision, the relative version of the Mayer-Vietoris

sequence (Theorem 2.2.5) will still hold and be useful to compute the homology of a hypergraph

in terms of a direct sum of two of its subgraphs. In this case, simply defining 𝑇 ′ as 𝑇1 ∩ 𝑇2 and 𝑆′

as 𝑆1 ∩ 𝑆2 still ensures

. . . → 𝐻𝑛 (𝑇 ′, 𝑆′) → 𝐻𝑛 (𝑇1, 𝑆1) ⊕ 𝐻𝑛 (𝑇2, 𝑆2) → 𝐻𝑛 (𝑇, 𝑆) → 𝐻𝑛−1(𝑇 ′, 𝑆′) → . . .

is an exact sequence. The difference here is that 𝐻∗(𝑇 ′, 𝑆′) is not the relative barycentric homology

of the hypergraph H𝐸1∩𝐸2 , which is the hypergraph whose edgeset is 𝐸1 ∩ 𝐸2. The simplicial

complex 𝑇 ′ still can be given a physical interpretation in terms of the hypergraph, though. A

simplex in 𝑇 ′ is a simplex in 𝑇1 ∩𝑇2 and the simplices in 𝑇𝑖 are the simplices in 𝑇 that only contain

the representations of subsets of edges in 𝐸𝑖 as their vertices. Thus 𝑇 ′ is generated by (as in

Definition 2.2.4) the subsets 𝑉 𝑗 = {𝑣𝜎0 , ...., 𝑣𝜎𝑘 | ∀ 𝑖, 𝜎𝑖 ⊂ 𝑒1 ∈ 𝐸1, and 𝜎𝑖 ⊂ 𝑒2 ∈ 𝐸2}. Physically,

then, 𝑇 ′ is still the simplicial complex whose vertices are subedges of edges in 𝐸1 and 𝐸2 and whose

simplices are all the simplices in 𝑇 containing just some subset of those vertices. The caveat is just

that if the toplexes of 𝑇 ′ are not hyperedges, then there is no hypergraph interpretation of 𝑇 ′, as the

toplexes that are not hyperedges cannot be phrased as “missing subedges". In our example above

from Figure 2.1, 𝐵𝐶 was a toplex in 𝑇 ′, but was not an edge of H . The missing subcomplex 𝑆′

is still generated by any vertex of 𝑇 ′ that isn’t a hyperedge, but there may be a vertex in 𝑆′ whose

corresponding simplex in 𝐾 is not a subset of any edge in 𝐸′ = 𝐸1 ∩ 𝐸2.

We get the following theorem:

Theorem 4.1.3 (Mayer-Vietoris Theorem - Simplicial Version). Let H = {𝑉, 𝐸} be a hypergraph.

If H1 = {𝑉1, 𝐸1} and H2 = {𝑉2, 𝐸2} are subhypergraphs chosen such that

1. 𝐸1, 𝐸2 ⊂ 𝐸 with 𝐸1 ∪ 𝐸2 = 𝐸 , and

2. if 𝑒𝑖 ⊂ 𝑒 𝑗 , and 𝑒 𝑗 ∈ 𝐸1 (wlog), then 𝑒𝑖 ∈ 𝐸1.
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If𝑇 ′ = 𝑇1∩𝑇2 and 𝑆′ = 𝑆1∩𝑆2, where𝑇𝑘 , 𝑆𝑘 are the barycentric subdvision and missing subcomplex

of H𝑘 , then the following is a long exact sequence using both the relative barycentric homology of

hypergraphs and the relative homology of simplicial complexes:

. . . → 𝐻𝑛 (𝑇 ′, 𝑆′) → 𝐻𝑟𝑒𝑙𝑛 (H1) ⊕ 𝐻𝑟𝑒𝑙𝑛 (H2) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑇 ′, 𝑆′) → . . .

Using this simplicial version of the theorem, the homology of the hypergraph in the example

above from Figure 2.1 can be computed. Recall that 𝐸1 = {𝐴𝐵𝐶, 𝐵, 𝐶} and 𝐸2 = {𝐵𝐶𝐷, 𝐵, 𝐶}.

We will see in the next section that

𝐻𝑟𝑒𝑙𝑛 (H1) � 𝐻𝑟𝑒𝑙𝑛 (H2) =


Z
2Z 𝑛 = 1

0 else.

The associated simplicial complex ofH is two triangles joined together at an edge, soH is not going

to have any relative barycentric homology in dimensions higher than 2. Note that𝑇1 and𝑇2 are each

barycentric subdivisions of triangles, with intersection 𝑇 ′ = {{𝐵𝐶, 𝐵}, {𝐵𝐶,𝐶}, 𝐵𝐶, 𝐵, 𝐶}. Of

these, only 𝐵𝐶 ∈ 𝑆′, as 𝐵 and 𝐶 are both edges in the hypergraph. Therefore, (𝑇 ′, 𝑆′) is homotopic

to a line segment, which is contractible and so 𝐻𝑛 (𝑇 ′, 𝑆′) = 𝐻𝑛 (𝑇 ′) = 0 for all 𝑛.

Since every third term in the long exact sequence of Theorem 4.1.3 is 0, there is an isomorphism,

𝐻𝑟𝑒𝑙𝑛 (H1) ⊕ 𝐻𝑟𝑒𝑙𝑛 (H2) � 𝐻𝑟𝑒𝑙𝑛 (H). Therefore,

𝐻𝑟𝑒𝑙𝑛 (H) =


Z
2Z ⊕

Z
2Z 𝑛 = 1

0 else.

Applications of both Theorem 4.1.1 for hypergraphs and the simplicial version in Theorem 4.1.3

follow. If 𝐸1 and 𝐸2 can be chosen as disjoint sets (including if, for example, the hypergraph has

multiple connected components), then the Mayer-Vietoris sequence from Theorem 4.1.1 reduces

to 𝐻𝑟𝑒𝑙𝑛 (H1) ⊕ 𝐻𝑟𝑒𝑙𝑛 (H2) � 𝐻𝑟𝑒𝑙𝑛 (H ′) ∀𝑛. This is displayed in the second hypergraph in Figure

2.1. Here, 𝐸1 = {𝐴𝐵𝐶} and 𝐸2 = {𝐵𝐶𝐷}. Their intersection is empty, so the homology of the

hypergraph is the direct sum of their homologies.
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In Figure 2.9, we computed that

𝐻𝑟𝑒𝑙𝑛 (H1) = 𝐻𝑟𝑒𝑙𝑛 (H2) =


Z
2Z when 𝑛 = 2

0 else,

and so

𝐻𝑟𝑒𝑙𝑛 (H ′) =


Z
2Z ⊕

Z
2Z when 𝑛 = 2

0 else.

The second condition of Theorem 4.1.3 which says that the sets of edges chosen to partition H

must be closed under taking subedges in the hypergraph, means choosing 𝐸1, 𝐸2 to be disjoint is

not always possible. For example, if H is a maximum edge hypergraph, then the Mayer-Vietoris

sequence will not be useful, as whichever subhypergraph contains the maximum edge must contain

all of the edges in H .

If 𝐸1 and 𝐸2 are not disjoint, but the space (𝑇 ′, 𝑆′) is contractible (whether or not condition 3

holds), then very nearly the same thing can be said. This was the case in our previous example from

Figure 2.1, where condition 3 does not hold. After passing through to the relative barycentric subdi-

vision level of the Mayer-Vietoris sequence, (𝑇 ′, 𝑆′) being contractible implies that 𝐻𝑛 (𝑇 ′, 𝑆′) = 0

when 𝑛 > 0, so the isomorphism 𝐻𝑟𝑒𝑙𝑛 (H1) ⊕ 𝐻𝑟𝑒𝑙𝑛 (H2) � 𝐻𝑟𝑒𝑙𝑛 (H) holds for all 𝑛 > 1, with a still

exact sequence

0 → 𝐻𝑟𝑒𝑙1 (H1) ⊕𝐻𝑟𝑒𝑙1 (H2) → 𝐻𝑟𝑒𝑙1 (H) → 𝐻0(𝑇 ′, 𝑆′) → 𝐻𝑟𝑒𝑙0 (H1) ⊕𝐻𝑟𝑒𝑙0 (H2) → 𝐻𝑟𝑒𝑙0 (H) → 0.

The Mayer-Vietoris sequence can reduce any hypegraph to a collection of maximum edge

hypergraphs and their intersections, by letting the subhypergraphs be induced by the toplexes. It is

easier to find the homology of those subhypergraphs and their intersections, and then the Mayer-

Vietoris sequence will help splice them together. In fact, the next section will focus on computing

the homology of hypergraphs with maximum edges.
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4.2 Results on Maximum Edge Hypergraphs

Maximum edge hypergraphs have many nice properties in the relative barycentric homology,

running contrary to Theorem 3.2.3 which says the restricted barycentric homology does not dis-

tinguish any maximum edge hypergraph from any other. For the duration of this section, let H be

a maximum edge hypergraph as per Definition 2.1.10. Let 𝑒 be the maximum edge, and |𝑒 | = 𝑚

be the number of vertices in the hypergraph. In this section, we will begin by leveraging the

long exact sequence of a pair, Theorem 2.2.6, as a computational tool for the relative barycentric

homology. This will lead into Theorem 4.2.3 and Corollary 4.2.4 which give computational aides

in high and low dimensions, respectively. Using those results, this section will conclude with

several interpretability results that glean information about the hypergraph edge structure based on

its relative barycentric homology, with examples along the way.

4.2.1 Leveraging the Long Exact Sequence of a Pair

As the relative barycentric homology of a hypergraph H is a relative homology, it is a good

idea to try to fit it into the long exact sequence of a pair of spaces from Theorem 2.2.6. The missing

subcomplex 𝑆 is a subcomplex of the barycentric subdivision 𝑇 . Since the definition of the relative

barycentric homology in Definition 2.3.5 is 𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝑇, 𝑆), there is always a long exact

sequence:

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → . . .

In the case of a maximum edge hypergraph, this sequence becomes a lot simpler, which the

results at the beginning of this section show. Specifically, the first lemma of this section fully details

the associated simplicial complex 𝐾 of a maximum edge hypergraph H .

Lemma 4.2.1. The associated simplicial complex 𝐾 of a maximum edge hypergraph H is the

standard (𝑚 − 1)-simplex.

Proof. Recall from Definition 2.3.1 that 𝐾 is obtained from H by adding all of the subedges of

edges in H . However, all of the subedges of a maximum edge hypergraph are the subedges of 𝑒,

its maximum edge. The simplex associated to 𝑒 is of dimension 𝑚 − 1 since 𝑒 has 𝑚 vertices. The
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only other simplices in 𝐾 are the faces of 𝑒, so 𝐾 is an (𝑚 − 1)-simplex, consisting of 𝜎𝑒 and its

subsets. □

Since the homology of the standard (𝑚 − 1)-simplex is well documented [18], we have the

following corollary based on Lemma 2.2.3, which says that the barycentric subdivision 𝑇 has the

same homology as the associated simplicial complex 𝐾 .

Corollary 4.2.2. Let H be a maximum edge hypergraph, with associated simplicial complex 𝐾

and barycentric subdivision 𝑇 . The homology of 𝐾 , and hence of 𝑇 is

𝐻𝑛 (𝐾) = 𝐻𝑛 (𝑇) =


Z
2Z when 𝑛 = 0

0 else.
(4.1)

We will substitute the preceding corollary into the long exact sequence to get the following

theorem that relates the relative barycentric homology of the hypergraph H to the homology of its

missing subcomplex 𝑆. In high dimensions, this is an isomorphism.

Theorem 4.2.3. In high dimensions (𝑛 ≥ 2), the relative barycentric homology of a maximum edge

hypergraph H depends only on the (𝑛 − 1)-dimensional homology of the missing subcomplex 𝑆:

∀𝑛 ≥ 2,

𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛−1(𝑆).

Proof. This theorem follows from the long exact sequence:

. . . 𝐻𝑛 (𝑇) 𝐻𝑟𝑒𝑙𝑛 (H) 𝐻𝑛−1(𝑆) 𝐻𝑛−1(𝑇) . . .

0 0

According to Corollary 4.2.2, this part of the long exact sequence can be written with zeros for

𝐻𝑛 (𝑇) and 𝐻𝑛−1(𝑇), since 𝑛 ≥ 2. This makes the sequence 0 → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → 0, which

implies, by exactness, that 𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛−1(𝑆). □
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Although there is not as nice of a theorem in low dimensions, substituting Corollary 4.2.2 into

the long exact sequence can still be fruitful. This next corollary yields an exact sequence that will

aid in studying the relative barycentric homology in dimensions 0 and 1.

Corollary 4.2.4. If H is a maximum edge hypergraph, then the following is an exact sequence:

𝐻1(𝑇) 𝐻𝑟𝑒𝑙1 (H) 𝐻0(𝑆) 𝐻0(𝑇) 𝐻𝑟𝑒𝑙0 (H) 0.

0 Z
2Z

Proof. The first 0 and the Z2Z come from substituting Corollary 4.2.2 into the long exact sequence,

which already terminates in a 0 after 𝐻𝑟𝑒𝑙0 (H). □

Next, we will go through a few examples utilizing Theorem 4.2.3 and Corollary 4.2.4. We have

already done the first example, which is of the hypergraph H = {𝐴𝐵𝐶}. A picture of H , 𝑇 , and 𝑆

can be found in Figure 2.9. Here, 𝑆 is homotopic to a 1-sphere, and so

𝐻𝑛 (𝑆) =


Z
2Z 𝑛 = 0, 1

0 else.

Theorem 4.2.3 then gives that 𝐻𝑟𝑒𝑙2 (H) � 𝐻1(𝑆) = Z
2Z , and Corollary 4.2.4 is now

𝐻1(𝑇) 𝐻𝑟𝑒𝑙1 (H) 𝐻0(𝑆) 𝐻0(𝑇) 𝐻𝑟𝑒𝑙0 (H) 0.

0 Z
2Z

Z
2Z

Since the map Z
2Z → Z

2Z is induced by 𝑆 ⊂ 𝑇 , it is the identity map, leaving (by exactness)

𝐻𝑟𝑒𝑙1 (H) � 𝐻𝑟𝑒𝑙0 (H) = 0. Therefore,

𝐻𝑟𝑒𝑙𝑛 (H) =


Z
2Z 𝑛 = 2

0 else.

Another example is given in Figure 4.1. This hypergraph isH = {𝐴𝐵𝐶, 𝐴𝐵,𝐶}. Its barycentric

subdivision 𝑇 is shown on the right and the missing subcomplex 𝑆 is highlighted. Notice that 𝑆
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Figure 4.1 A hypergraph H with computation of 𝐻𝑟𝑒𝑙 (H).

is two line segments and so 𝐻0(𝑆) = Z
2Z ⊕ Z

2Z , and it has no homology in other dimensions. By

Theorem 4.2.3, 𝐻𝑟𝑒𝑙𝑛 (H) = 0 for all 𝑛 ≥ 2. In this case, the exact sequence from Corollary 4.2.4

reads as follows:

𝐻1(𝑇) 𝐻𝑟𝑒𝑙1 (H) 𝐻0(𝑆) 𝐻0(𝑇) 𝐻𝑟𝑒𝑙0 (H) 0.

0 Z
2Z ⊕

Z
2Z

Z
2Z

Both path components of 𝑆 (each represented by a Z2Z ) lie in the same path component of 𝑇 , and

so the map Z
2Z ⊕ Z

2Z → Z
2Z is surjective with a rank one kernel. By exactness then, 𝐻𝑟𝑒𝑙1 (H) = Z

2Z

and 𝐻𝑟𝑒𝑙0 (H) = 0. Thus,

𝐻𝑟𝑒𝑙𝑛 (H) =


Z
2Z 𝑛 = 1

0 else.

4.2.2 Interpretations

For the remainder of this section, we will give interpretative results on the relative barycentric

homology. These results will allow us to utilize relative barycentric homology to glean information

about the structure of the hypergraph itself, thus making these tools potentially useful for data

analysis. There are interpretative results in dimensions 0, 1, 𝑚 − 2 and 𝑚 − 1, where 𝑚 is the

cardinality of the maximum edge (and hence also the vertex set). A condition is also given that
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causes a hypergraph to have no relative barycentric homology in any dimension. The first result,

however, classifies the relative barycentric homology of a hypergraph that only has one edge.

Theorem 4.2.5. Let H be a hypergraph with one edge, 𝑒. Let |𝑒 | = 𝑚. Then

𝐻𝑟𝑒𝑙𝑛 (H) =


Z
2Z when 𝑛 = 𝑚 − 1

0 else.

Proof. Since a one edge hypergraph is a maximum edge hypergraph, it follows from Lemma 4.2.1

that 𝑇 is homotopic to an (𝑚 − 1)-disk. Let us construct 𝑆. It is the subcomplex of 𝑇 given by all

simplices whose vertices do not represent edges in the hypergraph H . Since the only edge in H

is 𝑒, 𝑆 = 𝑇 \ 𝑆𝑡 (𝑣𝜎𝑒), where 𝑆𝑡 (𝑣𝜎𝑒) is the star of the vertex 𝑣𝜎𝑒 in 𝑇 (Definition 2.2.9). Since 𝜎𝑒

is the only (𝑚 − 1)-simplex in 𝐾 , any of the (𝑚 − 1)-simplices of 𝑇 must contain the vertex 𝑣𝜎𝑒 ,

and so 𝑆 is constrained to simplices of dimension at most 𝑚 − 2 that do not contain 𝑣𝜎𝑒 . Thus, as

can be seen for 𝑚 = 3 in Figure 2.9, 𝑆 is the boundary of 𝑇 . The boundary of an (𝑚 − 1)-disk is an

(𝑚 − 2)-sphere, and, therefore, (𝑇, 𝑆) is homotopic to an (𝑚 − 1)-sphere.

Recall𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝑇, 𝑆) by definition, and from the reduced homology of the (𝑚−1)-sphere

[18].

𝐻𝑟𝑒𝑙𝑛 (H) =


Z
2Z when 𝑛 = 𝑚 − 1

0 else.

□

For an example of this theorem, see Figure 2.9, where we computed the relative barycentric

homology of H = {𝐴𝐵𝐶}, a one edge hypergraph. The next theorem says that the only way for

a maximum edge hypergraph to have 𝐻𝑟𝑒𝑙0 (H) ≠ 0 is if that hypergraph is a simplicial complex,

combining with Corollary 4.2.2 for a sufficient and necessary condition to get a nontrivial 𝐻𝑟𝑒𝑙0 (H).

Theorem 4.2.6. A maximum edge hypergraph H has nontrivial homology in dimension zero if and

only if it is a simplicial complex, i.e. there are no missing subedges and 𝑆 is empty. In this case,

𝐻𝑟𝑒𝑙0 (H) = Z
2Z .
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Proof. Suppose that there are no missing subedges in the hypergraph H . This means 𝑆 is empty

and thus, 𝐻0(𝑆) = 0. Substitute that into Corollary 4.2.4 to get the following exact sequence:

0 → Z

2Z
→ 𝐻𝑟𝑒𝑙0 (H) → 0.

This implies that 𝐻𝑟𝑒𝑙0 (H) = Z
2Z as required.

Next suppose the hypergraph H is not a simplicial complex. Then there are some missing

subedges and so 𝑆 is not empty. The map from 𝐻0(𝑆) → Z
2Z from Corollary 4.2.4 is surjective then,

since any representative in 𝐻0(𝑆) of a path component in 𝑆 will also represent the path component

of 𝑇 , and thus be in 𝐻0(𝑇). Since the generator of Z2Z is in the image of the map 𝐻0(𝑆) → 𝐻0(𝑇),

it is in the kernel of the map Z
2Z → 𝐻𝑟𝑒𝑙0 (H). That map then factors through 0, leaving an exact

sequence 0 → 𝐻𝑟𝑒𝑙0 (H) → 0, proving that H not simplicial implies 𝐻𝑟𝑒𝑙0 (H) = 0. □

Because a maximum edge hypergraph that has a nontrivial 𝐻𝑟𝑒𝑙0 must be a simplicial complex,

Corollary 4.2.2 says that it will have no other nontrivial homology groups. Therefore, a maximum

edge hypergraph cannot have both a 0-dimensional homology cycle and a homology cycle in any

higher dimension. The next result heavily utilizes Corollary 4.2.4 and relates 𝛽𝑟𝑒𝑙1 (H), the rank of

the first dimensional relative barycentric homology group, to the number of path components of

the missing subcomplex 𝑆.

Theorem 4.2.7. Let H be a maximum edge hypergraph with missing subcomplex 𝑆. If H is a

simplicial complex, 𝐻𝑟𝑒𝑙1 (H) = 0. If H is not a simplicial complex, then 𝛽𝑟𝑒𝑙1 (H) = 𝛽0(𝑆) − 1 =

𝛽0(𝑆)

Proof. Suppose that the hypergraph H is a simplicial complex. This means 𝑆 is empty, and so

𝐻0(𝑆) = 0. Substitute that into Corollary 4.2.4 to get the exact sequence 0 → 𝐻𝑟𝑒𝑙1 (H) → 0,

implying that 𝐻𝑟𝑒𝑙1 (H) = 0.

Next, assume 𝑆 is nontrivial. Then the map 𝐻0(𝑆) → Z
2Z from Corollary 4.2.4 relates the path

components of 𝑆 to the single path component of 𝑇 and is surjective. This means that the kernel

has rank 𝛽0(𝑆) − 1, by rank-nullity. Since 0 → 𝐻𝑟𝑒𝑙1 (H) → 𝐻0(𝑆) is exact, 𝐻𝑟𝑒𝑙1 (H) → 𝐻0(𝑆)
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Figure 4.2 A hypergraph H used as an example for Theorem 4.2.7.

is injective. So the rank of 𝐻𝑟𝑒𝑙1 (H) is equal to the rank of the kernel of the map 𝐻0(𝑆) → Z
2Z .

Therefore, 𝛽𝑟𝑒𝑙1 (H) = 𝛽0(𝑆) − 1, proving the theorem. □

We have already computed two examples of the relative barycentric homology in dimension 1.

In the one edge hypergraph of Figure 2.9, 𝑆 only has one path component, and hence, 𝛽𝑟𝑒𝑙1 (H) = 0.

The hypergraph in Figure 4.1 has a missing subcomplex 𝑆 with two path components, making

𝛽𝑟𝑒𝑙1 (H) = 1. In Figure 4.2, 𝑆 has three path components, which leads to 𝛽𝑟𝑒𝑙1 (H) = 2.

Moving towards higher dimensions now, recall that the relative barycentric homology of the

single edge hypergraph is concentrated in dimension 𝑚 − 1 (Theorem 4.2.5). This is actually an if

and only if statement, of which the next theorem proves the other half. The only way for a maximum

edge hypergraph with 𝑚 vertices in the maximum edge to have homology in dimension 𝑚 − 1 is if

the maximum edge is the only edge in the hypergraph.

Theorem 4.2.8. Given a maximum edge hypergraph H ,

𝛽𝑟𝑒𝑙𝑚−1(H) =


1 |H | = 1

0 else.

Proof. The |H | = 1 part of the statement follows from Theorem 4.2.5. Now let |H | ≥ 2, and let 𝑓

be an edge that is not the maximum edge. Recall from Theorem 4.2.3 that 𝛽𝑟𝑒𝑙
𝑚−1(H) = 𝛽𝑚−2(𝑆).
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Recall from the proof of Theorem 4.2.5 that 𝑆 is a subspace of the boundary of 𝑇 . This boundary

is an (𝑚 − 2)-sphere. However, since 𝑓 is an edge in the hypergraph, any simplices containing the

vertex representing 𝑓 are not part of 𝑆. Since 𝑆 is not the entire (𝑚 − 2)-sphere, there cannot be

any (𝑚 − 2)-homology. Thus 𝛽𝑟𝑒𝑙
𝑚−1(H) = 𝛽𝑚−2(𝑆) = 0, as was to be shown. □

A hypergraph can have relative barycentric homology in dimension zero if and only if it is a

simplicial complex, and in dimension𝑚−1 if and only if it is only a single edge. This way of relating

the 0th dimensional homology and the (𝑚 − 1)-dimensional homology of an (𝑚 − 1)-dimensional

simplicial complex is reminiscent of some of the duality theorems from algebraic topology like

Poincare, Lefschetz, or Alexander Duality (see [24, 18]). The next theorem is another indicator that

there may be a duality at work, because it gives a way of relating the (𝑚−2)-dimensional homology

to the homology in dimension 1. The pairing of dimensions that add up to the dimension of the

simplicial complex is a staple of the aforementioned duality theories. Recall from Theorem 4.2.7

that the relative barycentric homology in dimension 1 of a maximum edge hypergraph was related

to the number of path components in the missing subcomplex. The next result relates the relative

barycentric homology in dimension 𝑚 − 2 to the number of path components in the subcomplex of

𝑇 generated by the subedges that are present in the hypergraph, which is a complementary notion

to the missing subcomplex.

Theorem 4.2.9. Given a maximal edge hypergraph, H , with 𝑚 > 3, let H ′ = H \ {𝑒} be the

hypergraph after removing the maximum edge. Recall from Definition 2.1.12 that Γ(H ′) is the

number of fence components of H ′. Then

𝛽𝑟𝑒𝑙𝑚−2(H) =


0 H ′ is empty,

Γ(H ′) − 1 else.

Proof. From Theorem 4.2.8, 𝐻𝑚−2(𝑆) = 0 as long as there are any present subedges in the

hypergraph. If there are not, then 𝛽𝑟𝑒𝑙
𝑚−2(H) = Γ(H ′) = 0 by Corollary 4.2.5, taking care of the

first case. Now, we can assume that H ′ is not empty for the remainder of the proof.
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Figure 4.3 Hypergraphs used as examples for Theorem 4.2.9.

Since H is a maximum edge hypergraph, its associated simplicial complex 𝐾 is the standard

(𝑚 − 1)-simplex (Lemma 4.2.1). Recall from Theorem 4.2.3 that 𝐻𝑟𝑒𝑙
𝑚−2(H) � 𝐻𝑚−3(𝑆), where 𝑆

is the missing subcomplex (Definition 2.3.4). Note that, geometrically, 𝑆 is entirely contained in

the boundary of the barycentric subdivision 𝑇 (since the only interior point represents the maximal

edge), and this boundary is homeomorphic to S𝑚−2, the (𝑚 − 2) dimensional sphere.

In particular, an application of the long exact sequence of the pair (𝜕𝑇, 𝑆) of topological spaces

leads to the following exact sequence:

𝐻𝑚−2(𝑆) 𝐻𝑚−2(𝜕𝑇) 𝐻𝑚−2(𝜕𝑇, 𝑆) 𝐻𝑚−3(𝑆) 𝐻𝑚−3(𝜕𝑇)

0 𝐻𝑚−2(S𝑚−2) 𝐻𝑚−3(𝑆𝑚−2)

Z
2Z 0

Because H ′ is not empty, 𝐻𝑚−2(𝑆) = 0. Thus, 𝛽𝑚−2(𝜕𝑇, 𝑆) − 1 = 𝛽𝑚−3(𝑆) by the exactness

of the above sequence. Furthermore, 𝛽𝑚−3(𝑆) = 𝛽𝑟𝑒𝑙
𝑚−2(H) by Theorem 4.2.3. Thus we get the

following string of equalities:

𝛽𝑚−2(𝜕𝑇, 𝑆) − 1 = 𝛽𝑚−3(𝑆) = 𝛽𝑟𝑒𝑙𝑚−2(H).

So, to prove the theorem, we need to show that that 𝛽𝑚−2(𝜕𝑇, 𝑆) is the number of fence components

of H ′, Γ(H ′) which was already seen (Theorem 3.2.4) to be the number of path components in

the restricted barycentric subdivision 𝑅′. Recall from Definition 2.3.2 that the vertices in 𝑅′ are

𝑣𝜎𝑒′ , where 𝑒′ is a proper subedge in H (and hence an edge in H ′). This means 𝑅′ will be entirely
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contained in 𝜕𝑇 . We prove 𝛽𝑚−2(𝜕𝑇, 𝑆) = Γ(H ′) = 𝛽0(𝑅′) by showing that each path component

of 𝑅′ gives rise to an (𝑚 − 2)-dimensional homology class in 𝐻𝑚−2(𝜕𝑇, 𝑆).

We start by showing the (𝑚 − 2)-faces of the star (Definition 2.2.9) of a path component of

𝑅′ comprise an (𝑚 − 2)-cycle in 𝐶𝑚−2(𝜕𝑇, 𝑆), the chain group. To see this, it needs to be shown

that its boundary is contained in 𝑆. However, the boundary of the star is the link, and the link

must be entirely contained in 𝑆, as shown next. If there was a vertex in the link that was not in

𝑆, then that vertex would have to represent an existing subedge from the hypergraph, but then it

would be part of the path component in question, as it would be connected to the path component

via the star. So, the link, and hence boundary, of a path component in 𝑅′ is in 𝑆. Thus, any fence

component of the hypergraph H ′ gives rise to an (𝑚 − 2)-cycle in 𝐶𝑚−2(𝜕𝑇, 𝑆), i.e. is in the kernel

of 𝐶𝑚−2(𝜕𝑇, 𝑆). Since there are no (𝑚 − 1)-simplices in 𝜕𝑇 , the image of 𝐶𝑚−1(𝜕𝑇, 𝑆) via 𝜕𝑚−1 is

empty. Thus, by the definition of homology, any fence component of the hypergraph H ′ gives rise

to an (𝑚 − 2)-cycle in 𝐻𝑚−2(𝜕𝑇, 𝑆).

Therefore, the number of fence components of H is equal to 𝛽𝑚−2(𝜕𝑇, 𝑆), which is equal to

𝛽𝑚−3(𝑆) + 1, which is equal to 𝛽𝑟𝑒𝑙
𝑚−2(H) + 1, proving the theorem. □

For two examples of the 𝑚 = 4 case, see Figure 4.3. Each of these hypergraphs has 𝛽𝑟𝑒𝑙2 = 1

since they have two fence components after removing the maximum edge. Theorem 4.2.9 is useful

because it is giving information about the edges that are actually present in the hypergraph, while

the result in dimension 1 is giving information about the missing subedges. This complementary

relationship between the results in dimension 1 and𝑚−2 suggests a duality in the relative barycentric

homology. For a maximum edge hypergraph with 𝑚 > 3, combining Theorem 4.2.3 and Theorem

4.2.9 creates an easy way to study the subedges of the hypergraph by building only 𝑆, and taking

its (𝑚 − 3)-dimensional homology, like in the proof of the latter theorem.

Table 4.1 displays 𝛽𝑟𝑒𝑙 (H) for the different dimensions and types of maximum edge hypergraphs

that have been discussed thus far. In this table, 𝑚 is the number of vertices in the hypergraph, Γ is

the number of fence components, Supp(H) is the supplement of H (Definition 2.1.11), and H ′ is

as in the previous theorem. The final theorem in this section gives a condition on maximum edge
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Dimension H Simplicial H One Edge H Other

𝛽𝑟𝑒𝑙0 (H) 1 0 0

𝛽𝑟𝑒𝑙1 (H) 0 0 Γ(Supp(H)) − 1

𝛽𝑟𝑒𝑙
𝑚−2(H) 0 0 Γ(H ′) − 1

𝛽𝑟𝑒𝑙
𝑚−1(H) 0 1 0

Table 4.1 with 𝛽𝑟𝑒𝑙 (H) for Maximum Edge Hypergraphs, 𝑚 is the number of vertices in the
hypergraph, Γ is its number of fence components.

hypergraphs that would cause H to have no nontrivial relative barycentric homology groups. This

will happen when the missing subcomplex 𝑆 turns out to be contractible (Definition 2.2.12).

Theorem 4.2.10. Let H be a maximum edge hypergraph such that 𝑆 is nonempty and contractible.

Then 𝛽𝑟𝑒𝑙𝑛 (H) = 0 for all 𝑛.

Proof. Since 𝑆 is contractible,

𝐻𝑛 (𝑆) =


Z
2Z when 𝑛 = 0

0 else.

Theorem 4.2.3 gives that 𝛽𝑟𝑒𝑙𝑛 (H) = 0 for all 𝑛 ≥ 2. Now, plug in 𝐻0(𝑆) = Z
2Z to the exact sequence

from Corollary 4.2.4 to get

𝐻1(𝑇) 𝐻𝑟𝑒𝑙1 (H) 𝐻0(𝑆) 𝐻0(𝑇) 𝐻𝑟𝑒𝑙0 (H) 0.

0 Z
2Z

Z
2Z

The map Z
2Z → Z

2Z is the identity isomorphism since the path component of 𝑆 is included into the

path component of 𝑇 . Therefore, 𝐻𝑟𝑒𝑙1 (H) = 0 = 𝐻𝑟𝑒𝑙0 (H).

Thus, for all 𝑛, 𝛽𝑟𝑒𝑙𝑛 (H) = 0. □

Figure 4.4 gives an example of a hypergraph that has a contractible 𝑆. This hypergraph is

H = {𝐴𝐵𝐶, 𝐴𝐵, 𝐴}. In the figure, we can see that 𝑆 is one connected line segment, and so

it is contractible. Therefore, by Theorem 4.2.10, 𝐻𝑟𝑒𝑙𝑛 (H) = 0 for all 𝑛. Even if H is not a

maximum edge hypergraph, the condition of contractibility of 𝑆 eases the computation of the
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Figure 4.4 A hypergraph H used as an example for Theorem 4.2.10.

relative barycentric homology, which is the result of Theorem 4.3.4 in the next section. That

theorem, and the rest of the results therein, generalizes the results on the relative barycentric

homology of maximum edge hypergraphs of this section to hypergraphs that are not necessarily

maximum edge.

4.3 Results on General Hypergraphs

One of the first results we did for the restricted barycentric homology was Proposition 3.2.1,

saying that the restricted barycentric homology of a hypergraph that happens to be a simplicial

complex agrees with its simplicial homology. This is true for the relative baryencetric homology

as well, as stated in the first result of this section. This is largely due to the fact that the missing

subcomplex, 𝑆, will be empty in this case.

Proposition 4.3.1. Let H be a hypergraph that is the same as 𝐾 , its associated simplicial complex.

Then for all 𝑛, 𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝐾).

Proof. Since H = 𝐾 as sets, there are no missing subedges of H , and 𝑆, the missing subcomplex,

is empty. Recall that 𝐻𝑟𝑒𝑙𝑛 (H) was defined as 𝐻𝑛 (𝑇, 𝑆). Since 𝑆 is empty, 𝐻𝑛 (𝑇, 𝑆) � 𝐻𝑛 (𝑇)

for all 𝑛. By definition of barycentric subdivision, 𝐻𝑛 (𝑇) � 𝐻𝑛 (𝐾) for all 𝑛. Thus for all 𝑛,

𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝐾). □

A standard result of simplicial homology is that different path components do not interact during
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Figure 4.5 A hypergraph H with multiple connected components.

the homology computation, and so the simplicial homology of a simplicial complex with multiple

path components is the direct sum of the simplicial homology of its path components. This turns

out to be true for the relative barycentric homology as well. Compare this to Corollary 3.2.5,

which wrote the restricted barycentric homology as the direct sum of the homology of its fence

components. For the relative barycentric homology, we will go back to the standard definition of

hypergraph connected components from Definition 2.1.9.

Proposition 4.3.2. Let H be a hypergraph, with connected components H1,H2, . . . ,H𝑘 . Then

𝐻𝑟𝑒𝑙𝑛 (H) =
𝑘⊕
𝑖=1

𝐻𝑟𝑒𝑙𝑛 (H𝑖).

Proof. Let 𝑇𝑖 and 𝑆𝑖 be the barycentric subdivision and missing subcomplex corresponding to each

component H𝑖. Let ⊔ be used to denote the disjoint union of two spaces. The proof is the following

string of isomorphisms:
𝑘⊕
𝑖=1

𝐻𝑟𝑒𝑙𝑛 (H𝑖) �
𝑘⊕
𝑖=1

𝐻𝑛 (𝑇𝑖, 𝑆𝑖) � 𝐻𝑛 (⊔𝑘𝑖=1𝑇𝑖,⊔
𝑘
𝑖=1𝑆𝑖) � 𝐻𝑛 (𝑇, 𝑆) � 𝐻

𝑟𝑒𝑙
𝑛 (H).

Here the first and last isomorphisms are the definition of the relative barycentric homology

from Definition 2.2.13, and the middle two isomorphisms are drawn from the fact that the result

holds for simplicial homology, which can be found in [18]. □

Although the proof above uses properties of simplicial homology, one could also have ap-

proached that proof with the Mayer-Vietoris sequence from Theorem 4.1.1 and inducted on the

number of path components, since distinct path components have empty intersections.
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Figure 4.6 A non maximum edge hypergraph H with contractible 𝐾 .

The hypergraph in Figure 4.5 has two connected components. By the theorem, it would suffice

to compute the relative barycentric homology of each and then the relative barycentric homoloy of

H would be the direct sum. Each component is a maximum edge hypergraph, so we could use the

results of the last section to do this computation more easily than if we started with the barycentric

subdivision of all of H at once.

4.3.1 Manipulating the Long Exact Sequence of a Pair

In the last section, we manipulated the long exact sequence of homology groups of a pair of

topological spaces as in Definition 2.2.6. As we noted there, in the case of the relative barycentric

homology of hypergraphs, it is as follows:

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → . . .

This sequence was used in the last section in the case whereH was a maximum edge hypergraph,

which meant 𝑇 was homotopic to a disk. Since the homology of a disk is well known, this allowed

us to easily study the relative barycentric homology of a maximum edge hypergraph, as in Theorem

4.2.3 and Corollary 4.2.4. Theorem 4.2.10 gave a condition where, if 𝑆 is contractible and H is

a maximum edge hypergraph, 𝐻𝑟𝑒𝑙 (H) = 0 for all 𝑛. However, the long exact sequence above is

useful in more cases besides just when H is a maximum edge hypergraph. The next few results

give more situations where the long exact sequence is useful for studying the relative barycentric

homology.

Corollary 4.2.2 gave us the homology for the barycentric subdivision of a maximum edge
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hypergraph, and that allowed us to utilize the long exact sequence, as in Theorem 4.2.3 and other

results. Any hypergraph whose barycentric subdivision has the same homology groups as a disk,

i.e. is contractible, will allow us to do the same thing. See, for example, Figure 4.6 where the

hypergraph H has a contractible associated simplicial complex 𝐾 even though it is not a maximum

edge hypergraph. Since the homology groups have not changed, we also have not fundamentally

changed the result (see Theorem 4.2.3 and Corollary 4.2.4), just extended it to a wider class of

hypergraphs. The following theorem now holds for any hypergraph whose associated simplicial

complex is contractible.

Theorem 4.3.3. LetH be a hypergraph such that its associated simplicial complex𝐾 is contractible.

Then ∀𝑛 ≥ 2,

𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛−1(𝑆),

and the following is an exact sequence:

𝐻1(𝑇) 𝐻𝑟𝑒𝑙1 (H) 𝐻0(𝑆) 𝐻0(𝑇) 𝐻𝑟𝑒𝑙0 (H) 0

0 Z
2Z

Proof. This result (and proof) is identical to the one in Theorem 4.2.3 and Corollary 4.2.4. Since

𝐾 is contractible, 𝑇 is also contractible, and so (by Definition 2.2.12) they have homology groups

𝐻𝑛 (𝐾) � 𝐻𝑛 (𝑇) �


Z
2Z when 𝑛 = 0

0 else.
(4.2)

Plugging these groups into the long exact sequence of the pair (𝑇, 𝑆) gives the result. □

Even if H is not a maximum edge hypergraph as in Theorem 4.2.10, using the long exact

sequence when 𝑆 is contractible can simplify the calculation of the relative barycentric homology.

The case where 𝑆 is contractible is even more enlightening than when 𝐾 is contractible, as it was

above.
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Theorem 4.3.4. Let H be a hypergraph such that its missing subcomplex, 𝑆, is contractible. Then

∀𝑛 ≥ 1,

𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝑇) � 𝐻𝑛 (𝐾),

and

𝛽𝑟𝑒𝑙0 (H) = 𝛽0(𝑇) − 1 = 𝛽0(𝐾) − 1.

Proof. Since 𝑆 is contractible, its homology groups are as follows:

𝐻𝑛 (𝑆) �


Z
2Z when 𝑛 = 0

0 else.
(4.3)

Plug these into the long exact sequence of a pair

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → 𝐻𝑛−1(𝑇) → . . .

to get an exact sequence

𝐻𝑛 (𝑆) 𝐻𝑛 (𝑇) 𝐻𝑟𝑒𝑙𝑛 (H) 𝐻𝑛−1(𝑆)

0 0

for dimensions 𝑛 ≥ 2. This shows that for 𝑛 ≥ 2, 𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝑇). We must consider low

dimensions separately since 𝐻0(𝑆) = Z
2Z . The end of the exact sequence then reads

0 → 𝐻1(𝑇) → 𝐻𝑟𝑒𝑙1 (H) → Z

2Z
→ 𝐻0(𝑇) → 𝐻𝑟𝑒𝑙0 (H) → 0.

The map Z
2Z → 𝐻0(𝑇) is rank one since the representative of the path componenent in 𝑆 is also a

representative of the path component in 𝑇 . Thus by exactness, the map 𝐻𝑟𝑒𝑙1 (H) → Z
2Z is the zero

map. So, by exactness, 𝐻1(𝑇) � 𝐻𝑟𝑒𝑙1 (H) and 𝛽0(𝑇) − 1 = 𝛽𝑟𝑒𝑙0 (H), as was to be shown. The last

equality in each part of the theorem are given by the equivalence of the simplicial homology of 𝑇

and 𝐾 , from Lemma 2.2.3. □

Figure 4.7 shows a hypergraph H where the last theorem can be applied to compute the relative

barycentric homology. The missing subcomplex 𝑆 is highlighted; note that it is contractible.

Therefore by the theorem, 𝛽𝑟𝑒𝑙1 (H) = 1 since 𝛽1(𝑇) = 1, and 𝛽𝑟𝑒𝑙0 (H) = 0 because 𝛽0(𝑇) = 1.
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Figure 4.7 A non maximum edge hypergraph H with contractible 𝑆.

It is also possible to factor long exact sequences via maps, and not just groups. One example

of this is when the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) is zero for all 𝑛 > 0. Since, as topological spaces, 𝑆 ⊂ 𝑇 ,

the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) could only be zero in dimension 0 if 𝑆 is empty, but there is a rather large

class of hypergraphs that satisfy this condition for 𝑛 > 0. We will describe what this condition

says about the hypergraph, its missing subedges and its associated simplicial complex. What the

expression 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) = 0 means is that none of the (higher than 0-dimensional) homology

in 𝑆 survives the inclusion into 𝑇 , i.e. that any homology cycle in 𝑆 is a boundary in 𝑇 . Figure

4.8 has an example of a hypergraph that does not satisfy this condition. The chain of 1-simplices

{𝐸,𝐶𝐸,𝐶, 𝐵𝐶, 𝐵, 𝐵𝐸} is a homology generator in both 𝑆 and𝑇 , so the map 𝐻1(𝑆) → 𝐻1(𝑇) is not

the zero map. Hypergraphs that do satisfy this condition can decompose their relative barycentric

homology as a direct sum of the homology of 𝑇 and the homology of 𝑆, in the following way.

Theorem 4.3.5. Suppose that H is a hypergraph such that the map on homology, 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇),

induced by the inclusion 𝑆 → 𝑇 , is the zero map for all 𝑛 > 0.

Then, for all 𝑛 ≥ 2,

𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝑇)
⊕

𝐻𝑛−1(𝑆).

Proof. Since the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) is the zero map for all 𝑛 > 0, the long exact sequence

factors into short exact sequences that can be split up between the 𝑆 and 𝑇 step:

0 → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙 (H) → 𝐻𝑛−1(𝑆) → 0
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Figure 4.8 A hypergraph for which the map 𝐻1(𝑆) → 𝐻1(𝐾) is not zero.

is exact when 𝑛 ≥ 2. Because the homology groups in question are vector spaces over the field Z
2Z ,

the sequence splits, and for all 𝑛 ≥ 2,

𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝑇)
⊕

𝐻𝑛−1(𝑆),

completing the proof. □

Often, the sequence will split even if the coefficient group is not a field. This will be true, if,

for example, the group 𝐻𝑛−1(𝑆) is a free module. A slight modification of the hypergraph in Figure

4.8 is shown in Figure 4.9. Notice the difference is that now, 𝐸 is an edge in the hypergraph, and

so the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝐾) is zero for all 𝑛 ≠ 0. Even though there still is a nontrivial homology

class in 𝐻1(𝑆), it is homologically trivial when included into 𝑇 , because it is the boundary of the

2-simplices it surrounds. Thus the thereom applies, and 𝛽𝑟𝑒𝑙2 (H) = 𝛽1(𝑆) + 𝛽2(𝐾) = 1.

This theorem is useful because instead of having a relative homology, we now have the direct

sum of two nonrelative homologies that are easier to compute than the relative homology. Moreover,

there is a large class of hypergraphs for which this decomposition holds. One type of hypergraph

to which Theorem 4.3.5 always applies, and for which we would not even need to construct 𝑆 to

check the condition, is classified in the next theorem.
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Figure 4.9 A hypergraph for which 𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝐾)
⊕

𝐻𝑛−1(𝑆).

Theorem 4.3.6. Let H be a hypergraph such that its associated simplicial complex 𝐾 satisfies the

following condition:

For all 𝑛, for any
𝑘∑︁
𝑖=1

𝜎𝑖 generating a class in 𝐻𝑛 (𝐾),

∃ 𝑗 ∈ {1, 2, . . . , 𝑘} such that 𝜎𝑗 is a toplex in 𝐾.

Then for H , 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) is 0 for all 𝑛 > 0, and the previous theorem applies to H .

Proof. Suppose H is a hypergraph with 𝐾 satisfying the condition given in the theorem statement.

We will approach the proof by contradiction: suppose that for some 𝑛 > 0, 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) is not

the zero map. Let
∑𝑘
𝑖=1 𝜎𝑖 be in the image of the map from 𝐶𝑛 (𝑆) → 𝐶𝑛 (𝑇) such that

[∑𝑘
𝑖=1 𝜎𝑖

]
is

not homologous to 0 in 𝐻𝑛 (𝑇). Since the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) is generated by the inclusion map

𝑆 → 𝑇 , the preimage of
∑𝑘
𝑖=1 𝜎𝑖 in 𝑇 is

∑𝑘
𝑖=1 𝜎𝑖 in 𝑆. Therefore, each of the 𝜎𝑖 represents a missing

subedge in H . However, according to the condition given in the theorem statement, at least one of

the 𝜎𝑖 is a toplex in 𝐾 . Toplexes in 𝐾 are exactly the same as toplexes in H , by definition of the

associated simplicial complex (Definition 2.3.1). Thus, for some 𝑖, 𝜎𝑖 is both a missing subedge of

H and a present toplex in H . This is a contradiction. Thus, 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) = 0 for all 𝑛 > 0,

and Theorem 4.3.5 can be applied to H . □

At least for this section, we are finished manipulating the long exact sequence of a pair. This idea,

and especially the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) will play a major role in computing the relative barycentric
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homology in Section 5.2. We will use the long exact sequence to avoid computing a relative

homology, instead using the linear algebra of the maps of the exact sequence for computation.

4.3.2 Classification of Relative Barycentric Homology for General Hypergraphs

We will continue developing the relative barycentric homology with some classification theo-

rems. The next theorem is the analog of Theorem 3.2.4 for relative barycentric homology. It relates

the zeroth dimensional relative barycentric homology to the simplicial components (Definition

2.1.16).

Theorem 4.3.7 (Zeroth Dimensional Relative Homology†). Let H be a hypergraph. Then 𝛽𝑟𝑒𝑙0

equals the number of simplicial components of H .

The proof will be given by induction on the number of connected components (Definition

2.1.9). The base case (H is connected) is written as a separate lemma, and was already proven

for maximum edge hypergraphs in Theorem 4.2.6. Note that not every connected hypergraph is

maximum edge, but the proofs are similar.

Lemma 4.3.8. † Let H be a connected hypergraph. Then 𝛽𝑟𝑒𝑙0 ≤ 1, and 𝛽𝑟𝑒𝑙0 = 1 if and only if H

is a simplicial complex.

Proof. First, note that since H is connected, its associated simplicial complex 𝐾 and barycentric

subdivision 𝑇 are also connected. Since 𝐻∗(H) B 𝐻∗(𝑇, 𝑆), recall the tail end of the long exact

exact sequence of a pair of topological spaces:

. . . → 𝐻1(𝑇, 𝑆) → 𝐻0(𝑆) → 𝐻0(𝑇) → 𝐻0(𝑇, 𝑆) → 0.

Because 𝑇 is connected, 𝐻0(𝑇)) = Z
2Z . Noting that 𝐻0(𝑇, 𝑆) maps to 0 in the exact sequence,

everything (if anything) in 𝐻0(𝑇, 𝑆) must be in its kernel. Thus by exactness, rk(𝐻0(𝑇, 𝑆)) ≤ 1.

Now let’s consider the exactness at the 𝐻0(𝑇) step. Recall that rk(𝐻0(𝑇) = 1, and so if the

kernel of the map 𝐻0(𝑇) → 𝐻0(𝑇, 𝑆) is rank 1, then 𝐻0(𝑇, 𝑆) = 0 by exactness. That will happen

exactly when the map 𝐻0(𝑆) → 𝐻0(𝑇) has rank 1.
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That map is the map on homology induced by the inclusion 𝑆 → 𝑇 . If 𝑆 is not empty, then 𝑆

includes nontrivially into 𝑇 , and so the map on homology cannot be trivial. Thus as long as 𝑆 is

nonempty, 𝐻0(𝑆) → 𝐻0(𝑇) has rank 1, and therefore 𝐻0(𝑇, 𝑆) = 0.

Recall that with respect to the hypergraph, 𝑆 is the missing subcomplex, i.e. the subcomplex

of 𝑇 generated by the simplices in 𝐾 that are not edges of H . So 𝑆 will be empty only when there

are no missing subedges in H . A hypergraph with no missing subedges is a simplicial complex,

completing the proof. □

Proof of Theorem 4.3.7. The lemma will serve as the base case for the proof of the theorem. Next,

suppose that the theorem is true for hypergraphs with 𝑘 − 1 connected components.

Let H be a hypergraph with 𝑘 connected components. WLOG, choose a connected component

of H and call it H1 and its edge set 𝐸1. Let the rest of the hypergraph be H2 with edge set

𝐸2 = 𝐸 \ 𝐸1. Since 𝐸1 ∩ 𝐸2 = ∅, the Mayer-Vietoris theorem for hypergraphs (Theorem 4.1.1)

applies in this situation, and every term corresponding to the intersection is 0. This yields an

isomorphism

𝐻0(H1) ⊕ 𝐻0(H2) � 𝐻0(H).

By the induction hypothesis and the base case, each of the terms on the left has rank equal

to its number of simplicial components. Since the map giving the isomorphism is induced by

the inclusions of H1 and H2 into H , and will be the identity on homology generators (which are

representatives of those simplicial components), 𝛽0(H) = 𝛽0(H1) + 𝛽0(H2) will be the number of

simplicial components, finishing the proof. □

As an example, consider again the hypergraph in Figure 4.5. This hypergraph has two connected

components. The component with the edge 𝐴𝐵𝐶 is not simplicial, but the component with the edge

𝐷𝐸𝐹 is simplicial. Therefore 𝛽𝑟𝑒𝑙0 (H) = 1. Throughout the next theorem, we will use 𝐻𝑟𝑒𝑙 (𝑒𝑖)

to denote the relative barycentric homology of the hypergraph with only one edge, 𝑒𝑖, which was

given in Theorem 4.2.5. The next result classifies the relative barycentric homology for reduced
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hypergraphs (Definition 2.1.5). This result compares to Theorem 3.2.2 for the restricted barycentric

homology.

Theorem 4.3.9 (Relative Homology of Reduced Hypergraphs†). Let H be a reduced hypergraph,

with edge set 𝐸 = {𝑒1, ..., 𝑒𝑚}. Let 𝐸 𝑘 denote the set of edges with exactly 𝑘 vertices, i.e.

𝐸 𝑘 B {𝑒 ∈ 𝐸 | |𝑒 | = 𝑘}.

Then 𝐻𝑟𝑒𝑙 (H) =
𝑚⊕
𝑖=1

𝐻𝑟𝑒𝑙 (𝑒𝑖), and 𝛽𝑟𝑒𝑙
𝑘−1(H) = |𝐸 𝑘 |.

Proof. The proof is by induction on the number of edges in the hypergraph.

Base Case: Suppose 𝑚 = 1, then since 𝑒1 is the only edge in the hypergraph, 𝐻𝑟𝑒𝑙 (H) =

𝐻𝑟𝑒𝑙 (𝑒1). Let |𝑒1 | = 𝑘 . Recall the homology of the single edge hypergraph (Theorem 4.2.5):

𝐻𝑟𝑒𝑙𝑛 (H) =


Z
2Z when 𝑛 = 𝑘 − 1

0 else.

Since |𝐸 𝑘 | = 1, and |𝐸 𝑗 | = 0 for 𝑗 ≠ 𝑘 , the base case is proved.

Induction Hypothesis: Assume that the theorem holds for a reduced hypergraph with 𝑚 − 1

edges.

Induction Step: LetH be a reduced hypergraph with𝑚 edges. Let𝐾 be the associated simplicial

complex of H and 𝑇 its barycentric subdivision. Let 𝑆 denote the missing subcomplex.

Partition 𝐸 into 𝐸1 and 𝐸2 with 𝐸1 = {𝑒1} and 𝐸2 = 𝐸 \ {𝑒1}. Let H1 and H2 be the

hypergraphs with edge sets 𝐸1 and 𝐸2, respectively. Let 𝐾1, 𝐾2, 𝑇1, and 𝑇2 be the corresponding

associated simplicial complexes and barycentric subdivisions. Let 𝑆1 and 𝑆2 be the corresponding

missing subcomplexes.

Then recall the simplicial version of the Mayer-Vietoris sequence (Theorem 4.1.3). Let 𝑇 ′ =

𝑇1 ∩ 𝑇2 and 𝑆′ = 𝑆1 ∩ 𝑆2. Then there is an exact sequence:

. . . → 𝐻𝑛 (𝑇 ′, 𝑆′) → 𝐻𝑛 (𝑇1, 𝑆1) ⊕ 𝐻𝑛 (𝑇2, 𝑆2) → 𝐻𝑛 (𝑇, 𝑆) → 𝐻𝑛−1(𝑇 ′, 𝑆′) → . . .
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Apply the definition of the relative barycentric homology to see that 𝐻𝑛 (𝑇, 𝑆) = 𝐻𝑟𝑒𝑙𝑛 (H),

𝐻𝑛 (𝑇1, 𝑆1) = 𝐻𝑟𝑒𝑙𝑛 (H1) = 𝐻𝑟𝑒𝑙𝑛 (𝑒1) by the base case, and 𝐻𝑛 (𝑇2, 𝑆2) = 𝐻𝑟𝑒𝑙𝑛 (H2) =
⊕𝑚

𝑖=2 𝐻
𝑟𝑒𝑙
𝑛 (𝑒𝑖)

by the induction hypothesis.

Next, we will show 𝐻𝑛 (𝑇 ′, 𝑆′) = 0 for all 𝑛. This is done by showing that 𝑆′ = 𝑇 ′. By definition,

𝑆′ ⊂ 𝑇 ′, since 𝑆1 ⊂ 𝑇1, and 𝑆2 ⊂ 𝑇2.

Suppose Ω ∈ 𝑇 ′. Then, Ω ∈ 𝑇1 and 𝑇2. Recall that simplices in the barycentric subdivision

represent chains of inclusions of simplices in the original simplicial complex, so Ω = {𝑣𝜎0 ⊂ 𝑣𝜎1 ⊂

. . . ⊂ 𝑣𝜎𝑟 } for 𝑟 = dim Ω + 1 and every 𝜎𝑖 is a subset of an edge in 𝐸1 and and edge in 𝐸2.

Remember that 𝐸1 = {𝑒1} and 𝑒1 ∉ 𝐸2. Since the hypergraph is reduced, any subset of 𝑒1

that is also a subset of an edge in 𝐸2 cannot be present as an edge in the hypergraph, as it would

be a proper subedge. Therefore, Ω is built on the vertices 𝜎 that are all missing subedges of the

hypergraph, and thus Ω ∈ 𝑆′.

Since Ω was an arbitrary simplex in 𝑇 ′, 𝑇 ′ ⊂ 𝑆′, and thus, 𝑇 ′ = 𝑆′. Therefore 𝐻𝑛 (𝑇 ′, 𝑆′) = 0 for

all 𝑛. We get the following exact sequence:

𝐻𝑛 (𝑇 ′, 𝑆′) 𝐻𝑛 (𝑇1, 𝑆1) ⊕ 𝐻𝑛 (𝑇2, 𝑆2) 𝐻𝑛 (𝑇, 𝑆) 𝐻𝑛−1(𝑇 ′, 𝑆′)

0 𝐻𝑟𝑒𝑙𝑛 (𝑒1) ⊕ (
𝑚⊕
𝑖=2

𝐻𝑟𝑒𝑙𝑛 (𝑒𝑖)) 𝐻𝑟𝑒𝑙𝑛 (H) 0

which yields the following isomorphism of homology:

𝐻𝑟𝑒𝑙𝑛 (𝑒1) ⊕ (
𝑚⊕
𝑖=2

𝐻𝑟𝑒𝑙𝑛 (𝑒𝑖)) � 𝐻𝑟𝑒𝑙𝑛 (H).

This proves the first part of the theorem. The second part of the theorem about 𝛽𝑟𝑒𝑙 follows

from the base case and induction hypothesis, with 𝛽𝑟𝑒𝑙𝑛 (H) = 𝛽𝑟𝑒𝑙𝑛 (H2) for all 𝑛 ≠ |𝑒1 |, and

𝛽𝑟𝑒𝑙|𝑒1 | (H) = 𝛽𝑟𝑒𝑙|𝑒1 | (H2) + 1. □

For this theorem, it does not matter whether the reduced hypergraph has a high degree of

intersection, or is made up of many connected components. It only considers that there are no

subedges present in the hypergraph. This seems to imply that the relative barycentric homology is

giving information primarily about the subedge structure of the hypergraph, and not the structure
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Figure 4.10 Three different hypergraphs with the same toplexes.

and intersectionality of its toplexes. For example, the three hypergraphs in Figure 4.10 all have the

same relative barycentric homology.

Recall the definition of a simplicial collapse from Theorem 2.2.7. Simplicial collapses make

computing the homology of a simplicial complex easier by shrinking the complex without changing

its homology. Unfortunately, not every allowable collapse can be applied to the barycentric

subdivision 𝑇 of a hypergraph H without changing its relative barycentric homology. In the

barycentric subdivision 𝑇 of Figure 4.4, the edge {𝐴𝐶,𝐶} can be simplicially collapsed with the

triangle {𝐴𝐵𝐶, 𝐴𝐶,𝐶}. However, this would split the missing subcomplex 𝑆, highlighted in the

image, into two path components, thereby changing 𝐻𝑟𝑒𝑙1 (H). This theorem gives a condition on

the simplices of the barycentric subdivision 𝑇 allowing collapses depending on whether or not the

collapsed simplices lie in the missing subcomplex 𝑆.

Proposition 4.3.10. Let H be a hypergraph, with barycentric subdivision 𝑇 and missing subcom-

plex 𝑆. Let Φ < Ω be two simplices in 𝑇 that meet the requirements for a simplicial collapse.

Suppose either

1. All of the vertices of Φ and Ω are in 𝑆, or

2. All of the vertices of Φ and Ω are not in 𝑆.

Then the collapse can be made at the simplicial level without changing the relative barycentric

homology of the hypergraph.

Proof. Recall the definition of the relative barycentric homology as 𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝑇, 𝑆). Let 𝑇 ′

denote 𝑇 \ {Φ,Ω} and 𝑆′ denote the analogous construction for 𝑆. In the second case, 𝑆′ = 𝑆.
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Since simplicial collapses preserve homology, 𝐻𝑛 (𝑇) � 𝐻𝑛 (𝑇 ′) for all 𝑛, and 𝐻𝑛 (𝑆) � 𝐻𝑛 (𝑆′).

Using the long exact sequences of the pairs (𝑇, 𝑆) and (𝑇 ′, 𝑆′) and maps on homology generated

by inclusions, we get the following commutative diagram:

𝐻𝑛 (𝑆′) 𝐻𝑛 (𝑇 ′) 𝐻𝑛 (𝑇 ′, 𝑆′) 𝐻𝑛−1(𝑆′) 𝐻𝑛−1(𝑇 ′) . . .

𝐻𝑛 (𝑆) 𝐻𝑛 (𝑇) 𝐻𝑛 (𝑇, 𝑆) 𝐻𝑛−1(𝑆) 𝐻𝑛−1(𝑇) . . .

The four outside vertical maps are all isomorphisms, thus the middle map is an isomorphism

as well. Therefore, for all 𝑛, 𝐻𝑟𝑒𝑙𝑛 (H) � 𝐻𝑛 (𝑇, 𝑆) � 𝐻𝑛 (𝑇 ′, 𝑆′), proving the theorem. □

Initial collapses can only use case 2 of not in 𝑆, but subsequent collapses might use the in 𝑆

case. An example of a hypergraphH and corresponding barycentric subdivision where Proposition

4.3.10 does apply can be found in Figure 4.1. The edge {𝐴𝐶,𝐶} can be collapsed with the triangle

{𝐴𝐵𝐶, 𝐴𝐶,𝐶}. After that collapse, {𝐴𝐵𝐶, 𝐴𝐶, 𝐴} is the only maximal simplex that {𝐴𝐵𝐶, 𝐴𝐶}

is a face of, and so they can be collapsed. Then, finally, the only maximal simplex that 𝐴𝐶 is a face

of is {𝐴𝐶, 𝐴}, and they are both simplices in 𝑆. The pair (𝑇 ′, 𝑆′) after these collapses has the same

relative homology.

In this section, we gave some results helping to compute and interpret the relative barycentric

homology for hypergraphs. Several of these results, like Theorem 4.3.3 and Theorem 4.3.5,

leveraged the ideas of the long exact sequence of a pair. Because of the exactness of the sequence

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → 𝐻𝑛−1(𝑇) → . . .

every homology class in 𝐻𝑟𝑒𝑙𝑛 (H) either comes from 𝐻𝑛 (𝑇) or maps into 𝐻𝑛−1(𝑆). This concept

will form the backbone for computing the relative barycentric homology at the end of the next

chapter in Section 5.2. First, however, we will state some results that help to form a bridge between

the restricted and relative barycentric homology theories, allowing us to connect the two.
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CHAPTER 5

BRIDGING THE THEORIES AND COMPUTATION

This chapter has two main objectives, which both serve the purpose of uniting the relative and

restricted barycentric homology theories. The second goal will be to discuss the computation of

the relative and restricted barycentric homology. During my internship with PNNL, I wrote code

in Python for computing the Betti numbers for both the restricted barycentric homology and the

relative barycentric homology. That code, and an accompanying tutorial, will soon be avilable on

HyperNetX, a PNNL developed Python package for studying hypergraphs [27]. In this thesis, we

will not spend much time discussing the code and its efficiency. Instead, in Section 5.2, we will look

to show the theory behind why the algorithm returns the correct answer. This is necessary because

the computations are not done using the definitions given in Section 2.3. In particular, a main

goal when writing the code was to avoid building the entire barycentric subdivision since this is

computationally expensive, and we will discuss how this goal was accomplished. Before we discuss

computation however, we will give some theoretical results merging the two homology theories.

These are mainly set-theoretic results on the supplement and complement of hypergraphs and how

the definition of supplement from Definition 2.1.11 interacts with the definition of the missing

subcomplex from Definition 2.3.4. Recall Lemma 2.1.2 which says that for every hypergraph,

either it is a maximum edge hypergraph or its complement is maximum edge (sometimes both).

Since the relative barycentric homology of maximum edge hypergraphs is easier to study, benefits

of the results in this section include ways of relating the homology of a complement or supplement

hypergraph to the homology of the original hypergraph.

5.1 Results Bridging the Relative and Restricted Barycentric Homologies

For this section, recall the definition of the complement (Definition 2.1.7) and supplement

(Definition 2.1.11) of a hypergraph. Briefly, given a hypergraph, its complement is all of the

subsets of the vertex set that are not edges in the hypergraph, while the supplement is all subsets

of existing edges that are not themselves edges. The first lemma says that given a hypergraph, its

missing subcomplex (Definition 2.3.4) is the restricted barycentric subdivision (Definition 2.3.2)
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of its supplement.

Lemma 5.1.1. † LetH be a hypergraph and Supp(H) be its supplement. The restricted barycentric

subdivison 𝑅 of Supp(H) is the same as the missing subcomplex 𝑆 of H .

Proof. Let 𝑅 be the restricted barycentric subdivision of Supp(H). Then the vertices in 𝑅 are the

edges of Supp(H) and the simplices of 𝑅 are given by their inclusion relations in Supp(H). By

definition of the supplement, the edges in Supp(H) are the missing subedges of edges in H . Let 𝑆

be the missing subcomplex of the relative barycentric subdivision of H . The vertices of 𝑆 are the

missing subedges of edges in H , with simplices given by the chains of inclusions in the associated

simplicial complex H . Thus, these simplicial complexes 𝑅 and 𝑆 have the same vertex set with

simplices constructed in the same way, and are therefore the same simplicial complex. □

This means that given a hypergraph H , we can alter the long exact sequence for the relative

barycentric homology

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → . . .

by replacing 𝐻𝑛 (𝑆) at all steps with 𝐻𝑟𝑒𝑠Supp(H), as in the following theorem, which is based off

of Theorem 4.2.3 and Corollary 4.2.4 and holds when H is a maximum edge hypergraph.

Theorem 5.1.2. † Let H be a maximum edge hypergraph, and G be its supplement. Then

𝐻𝑟𝑒𝑙𝑛+1(H) � 𝐻𝑟𝑒𝑠𝑛 (G)

when 𝑛 > 1, and there is a long exact sequence

0 → 𝐻𝑟𝑒𝑙1 (H) → 𝐻𝑟𝑒𝑠0 (G) → Z

2Z
→ 𝐻𝑟𝑒𝑙0 (H) → 0.

Proof. Since H is a maximum edge hypergraph, we have the following results for its relative

homology from Theorem 4.2.3 and Corollary 4.2.4.

𝐻𝑟𝑒𝑙𝑛+1(H) � 𝐻𝑛 (𝑆)
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Figure 5.1 A hypergraph H used as an example for Theorem 5.1.2.

when 𝑛 > 1 and an exact sequence

0 → 𝐻𝑟𝑒𝑙1 (H) → 𝐻0(𝑆) → Z→ 𝐻𝑟𝑒𝑙0 (H) → 0.

However, by the lemma, we can substitute 𝑅 in for 𝑆. Moreover, since 𝑅 is the restricted

barycentric subdivision of Supp(G), 𝐻𝑛 (𝑅) � 𝐻𝑟𝑒𝑠𝑛 (Supp(H)) ∀ 𝑛, so in the above expressions,

𝐻𝑛 (𝑆) can be replaced by 𝐻𝑟𝑒𝑠𝑛 (Supp(G)). This proves the theorem. □

The prior theorem relates the relative barycentric homology of a maximum edge hypergraph to

the restricted barycentric homology of its supplement. Figure 5.1 shows a hypergraph H and its

supplement Supp(H). Notice that the missing subcomplex of H , highlighted in 𝑇 , is the same as

the restricted barycentric subdivision of Supp(H). The following corollary, which uses Corollary

2.1.3 to rephrase Theorem 5.1.2, relates the restricted barycentric homology of a hypergraph that

is not maximum edge to the relative barycentric homology of its complement.

Corollary 5.1.3. † Let H be a hypergraph that is not maximum edge, and let Comp(H) be its

complement. Then

𝐻𝑟𝑒𝑙𝑛+1(Comp(H)) � 𝐻𝑟𝑒𝑠𝑛 (H)

when 𝑛 > 1, and there is a long exact sequence

0 → 𝐻𝑟𝑒𝑙1 (Comp(H)) → 𝐻𝑟𝑒𝑠0 (H) → Z→ 𝐻𝑟𝑒𝑙0 (Comp(H)) → 0.

Proof. This corollary is a result of Corollary 2.1.3, which says that H is the supplement of

Comp(H), and so the previous theorem can be applied to yield the corollary. □
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Figure 5.2 A hypergraph H and its missing subcomplex and restricted barycentric subdivision.

This sheds some light on why it makes sense to talk about the restricted and relative barycentric

homologies as complementary theories. The restricted barycentric subdivision (Definition 2.3.2)

is built from the barycentric subdivision using the vertices that represent edges in the hypergraph.

The missing subcomplex of Definition 2.3.4 is built from the barycentric subdivision using the

vertices that do not represent edges in the hypergraph. A vertex in the barycentric subdivision

either represents an edge in the hypergraph or it does not. Therefore, the restricted barycentric

subdivision and the missing subcomplex partition the vertex set of the barycentric subdivision.

However, the same cannot be said for the higher dimensional simplices. Simplices that have

some vertices representing edges in the hypergraph and others that do not will not be in either the

restricted barycentric subdivision or the missing subcomplex. Figure 5.2 illustrates this interesting

concept. The missing subcomplex 𝑆 is highlighted in red and the restricted barycentric subdivision

𝑅 is highlighted in blue. These partition the vertex set of the barycentric subdivision 𝑇 .

In the next section, which discusses computation, the connection between the restricted and

relative barycentric homologies will become even more apparent. During computation, there

are many parallels between the theories, and some of the shortcuts that can be taken to reduce

computation complexity work for both versions of the homology, as we will see next.

5.2 Computation of the Restricted and Relative Barycentric Homologies

This section† contains a discussion of the computation of the restricted and relative barycentric

homology theories. There are two main success stories of this section. First, for both the restricted
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and relative barycentric homology, the computation is made without taking the barycentric sub-

division. Avoiding this computationally unwieldy construction saves both space and time. The

second contribution, exclusively pertaining to the relative barycentric homology, is that the com-

putation happens without needing to take the quotient space or a relative homology at all. This is

shown in Theorem 5.2.3. The code, and an accompanying tutorial, which was written during my

internship with PNNL, will soon be included in the python package HyperNetX [27]. Finding the

asscoiated simplicial complex of a hypergraph was already implemented in HyperNetX, and taking

the homology of a simplicial complex is done using the standard Smith Normal Form [13], so my

contribution besides the two successes outlined above is building the specific simplicial complexes

needed for the computations. We will begin with the computation of the restricted barycentric

homology.

5.2.1 Computation of Restricted Barycentric Homology

The restricted barycentric subdivision is built in the code as follows: the edges of the hypergraph

are used as vertices of a graph. Each pair of edges is checked for an inclusion, and an edge is added

to the graph if there is an inclusion relation. The restricted barycentric subdivision is the clique

complex of this graph, as demonstrated in Theorem 3.1.2, and the chain complex of that is what

is used in the computation. The main advantage of this approach is that it does not require taking

all subsets of the edges, as is necessary for finding the full barycentric subdivision. There is still a

bottleneck in having to take all maximal cliques of a graph.

This construction follows closely the understanding of the restricted barycentric subdivision as

the order complex of the edge containment poset, as in Proposition 3.1.1. Each element of the poset

is an edge in the hypergraph, and the relations in the poset are inclusions of edges. After building

the restricted barycentric subdivision, one builds the chain complex, boundary matrices, and takes

the homology as implemented in HyperNetX.

Before we move on to the relative barycentric homology, we will follow along with the algorithm

to compute the homology of the hypergraph in Figure 2.8. This hypergraph has four edges:

H = {𝐴𝐵𝐶, 𝐵𝐶𝐷, 𝐵, 𝐶}. First, the algorithm will build a graph with those as its vertices. Then,

81



𝐵 will be connected to 𝐴𝐵𝐶 and 𝐵𝐶𝐷 because it is a subset of them, but 𝐵 will not be connected

to 𝐶, because there is not an inclusion relation in either direction between 𝐵 and 𝐶. Next, 𝐶 will

be connected via an edge to 𝐴𝐵𝐶 and 𝐵𝐶𝐷 since it is a subset of both of them. Then 𝐴𝐵𝐶 and

𝐵𝐶𝐷 will not be connected. This gives the restricted barycentric subdivision 𝑅, as highlighted in

the figure, but without having to construct 𝑇 . HyperNetX will build the chain complex to 𝑅 and

take its homology using Smith Normal Form, returning [1, 1] to indicate that 𝛽𝑟𝑒𝑠0 (H) = 1 and

𝛽𝑟𝑒𝑠1 (H) = 1. Since there are no simplices in higher dimension, it does not return any higher Betti

numbers, which are all zero.

5.2.2 Computation of Relative Barycentric Homology

The first step in taking the relative barycentric homology is to use the native HyperNetX

functions to find the chain complex, boundary matrices, and homology of the associated simplicial

complex 𝐾 . In order to build the missing subcomplex, it is necessary to go through almost the same

process as it takes to build the barycentric subdivision. It still starts by taking all subsets of the

edges of the hypergraph. Instead of using every subset like in the barycentric subdivision, it only

stores those subsets that are not edges of H . These form the vertices of the missing subcomplex.

Again the full missing subcomplex 𝑆 is the clique complex of a graph built on these vertices based

on inclusions in subsets of the hypergraph, as shown in the proposition below.

Proposition 5.2.1 (Poset Construction of 𝑆). The missing subcomplex 𝑆 of a hypergraph H is

the same simplicial complex as the order complex (Definition 2.2.8) of the face poset (Definition

2.1.14) of Supp(H), 𝑆H = Δ(𝐹𝑃Supp(H)).

Proof. This result is a combination of Lemma 5.1.1 and Proposition 3.1.1. Lemma 5.1.1 says

that 𝑆 is the same simplicial complex as the restricted barycentric subdivision 𝑅 of Supp(H), and

Proposition 3.1.1 says that 𝑅 is the same simplicial complex as the mentioned poset construction. □

This is analogous to Proposition 3.1.1 for the restricted barycentric subdivision. These two

constructions being so closely connected lends credence to the idea that the restricted and relative
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barycentric homology are complementary theories. The next theorem, which is how the missing

subcomplex is built in the code, is a clique complex construction of 𝑆 similar to Theorem 3.1.2.

Theorem 5.2.2 (Clique Construction of 𝑆). The missing subcomplex 𝑆 of a hypergraph H is

the same simplicial complex as the clique complex (Definition 2.2.7) of the edge inclusion graph

(Definition 2.1.15) of its supplement Supp(H ), 𝑆H = 𝑋 (𝐸𝐼𝐺Supp(H)).

Proof. Similarly to the above Proposition, utilizing Lemma 5.1.1 gives that 𝑆 is the same simplicial

complex as 𝑅SuppH , and then applying Theorem 3.1.2 constructs 𝑅Supp(H) as stated. □

Once the missing subcomplex 𝑆 is constructed, we use the built in HyperNetX functions for

generating its chain complex for use in the computation. Recall our long exact sequence for relative

barycentric homology:

. . . → 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) → 𝐻𝑛−1(𝑇) . . .

In this sequence, the map 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) is the map induced on homology by the inclusion

𝑆 → 𝑇 . The map 𝐻𝑛 (𝑇) → 𝐻𝑟𝑒𝑙𝑛 (H) is the map induced on homology by the quotient map

𝑇 → (𝑇, 𝑆), and the map 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆) is derived using the snake lemma. Because of

this exactness, the terms and maps listed above are enough to determine 𝐻𝑟𝑒𝑙𝑛 (H) without actually

computing the relative homology 𝐻𝑛 (𝑇, 𝑆).

We will next leverage another important fact from algebraic topology, that of Lemma 2.2.3:

𝐻𝑛 (𝑇) � 𝐻𝑛 (𝐾) for all 𝑛, and they are furthermore homotopy equivalent. So anywhere in

the above discussion, it is possible to replace 𝐻 (𝑇) with 𝐻 (𝐾). (Computationally, this will

not affect Betti numbers, but will affect generators.) We will use 𝑖𝑛 to denote the composition

𝐻𝑛 (𝑆) → 𝐻𝑛 (𝑇) → 𝐻𝑛 (𝐾), where the second map is a homotopy equivalence. This leads to an

exact sequence:

. . . → 𝐻𝑛 (𝑆)
𝑖𝑛−→ 𝐻𝑛 (𝐾) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆)

𝑖𝑛−1−−−→ 𝐻𝑛−1(𝐾) . . .

There are large classes of hypergraphs for which 𝑖𝑛 is guaranteed to be the zero map (Theorem

4.3.6) and it will always be possible to write the above sequence as a direct sum decomposition.
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In order for a homology in 𝑆 to also be in 𝐾 , 𝐾 must contain a homology class that is entirely

generated by simplices that are missing subedges in H , as seen in Figure 4.8. This means that 𝐾

needs a homology class that is generated entirely by simplices that are not toplexes. Therefore,

any hypergraph whose associated simplicial complex does not have such a homology can have its

relative barycentric homology written as 𝐻𝑟𝑒𝑙 (H) � 𝐻𝑛 (𝐾) ⊕ 𝐻𝑛−1(𝑆) by Theorem 4.3.5.

This leads to the best, so far, physical interpretation of the relative barycentric homology. Even

if the hypergraph does not lie in that special case where 𝐻𝑟𝑒𝑙 (H) � 𝐻𝑛 (𝐾) ⊕ 𝐻𝑛−1(𝑆), all relative

barycentric homologies still come from either 𝐾 or 𝑆 (because of the exactness of the sequence).

So the relative homology can be separated as either homology native to the associated simplicial

complex of that hypergraph or homology coming from the poset structure of the missing subedges

of the hypergraph. The latter piece (those homologies coming from 𝑆) can also be viewed as the

restricted barycentric homology of the supplement hypergraph. In fact, even if 𝑖𝑛 : 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝐾)

is not 0 for all 𝑛, that map is all of the information we need to find 𝐻𝑟𝑒𝑙 (H). This is summarized

in the next theorem.

Theorem 5.2.3 (Computing Relative Barycentric Homology). Let H be a hypergraph. Recall the

long exact sequence of homology groups:

. . . → 𝐻𝑛 (𝑆)
𝑖𝑛−→ 𝐻𝑛 (𝐾) → 𝐻𝑟𝑒𝑙𝑛 (H) → 𝐻𝑛−1(𝑆)

𝑖𝑛−1−−−→ 𝐻𝑛−1(𝐾) . . .

Then 𝐻𝑟𝑒𝑙𝑛 (H) is determined entirely by the maps 𝑖𝑛 : 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝐾) and 𝑖𝑛−1 : 𝐻𝑛−1(𝑆) →

𝐻𝑛−1(𝐾). In fact,

𝐻𝑟𝑒𝑙𝑛 (H) = 𝐻𝑛 (𝑇, 𝑆) � Cok(𝑖𝑛)⊕Ker(𝑖𝑛−1), and 𝛽𝑟𝑒𝑙𝑛 (H) = 𝛽𝑛 (𝐾)+𝛽𝑛−1(𝑆)−rk(𝑖𝑛)−rk(𝑖𝑛−1).

Proof. This is again because of the exactness of the sequence

. . .−→𝐻𝑛 (𝑆)
−→
𝑖𝑛𝐻𝑛 (𝐾)−→𝐻𝑟𝑒𝑙𝑛 (H)−→𝐻𝑛−1(𝑆)

−−→
𝐼𝑛−1𝐻𝑛−1(𝐾)−→ . . .

The composition of the middle two maps is zero since the sequence is exact. This means that

all homology generators of 𝐻𝑟𝑒𝑙𝑛 (H) either come from 𝐻𝑛 (𝐾) or map into 𝐻𝑛−1(𝑆), but not both.
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First, we consider the generators that come from 𝐻𝑛 (𝐾). Since they are in the image of the

map 𝐻𝑛 (𝐾) → 𝐻𝑟𝑒𝑙𝑛 (H), they were not in the image of 𝑖𝑛 : 𝐻𝑛 (𝑆) → 𝐻𝑛 (𝐾) by exactness. Thus,

they must be exactly the generators of the cokernel of 𝑖𝑛, denoted Cok(𝑖𝑛). Recall that rk(Cok(𝑖𝑛))

= 𝛽𝑛 (𝐾) − rk(𝑖𝑛).

Then there are the generators of 𝐻𝑟𝑒𝑙𝑛 (H) that map into 𝐻𝑛−1(𝑆). Since these are the image of

that map, they become the kernel of 𝑖𝑛−1 : 𝐻𝑛−1(𝑆) → 𝐻𝑛−1(𝐾), denoted Ker(𝑖𝑛−1). Recall that

rk(Ker(𝑖𝑛−1)) = 𝛽𝑛 (𝑆) − rk(𝑖𝑛−1).

As stated earlier, because of the exactness of the sequence, all homology generators of 𝐻𝑟𝑒𝑙𝑛 (H)

either come from 𝐻𝑛 (𝐾) or map into 𝐻𝑛−1(𝑆), but not both. The generators that come from 𝐻𝑛 (𝐾)

are exactly Cok(𝑖𝑛), and the generators that map into 𝐻𝑛−1(𝑆) are exactly Ker(𝑖𝑛−1), so

𝐻𝑟𝑒𝑙𝑛 (H) � Cok(𝑖𝑛) ⊕ Ker(𝑖𝑛−1).

This means that

𝛽𝑟𝑒𝑙𝑛 (H) = rk(Cok(𝑖𝑛)) + rk(Ker(𝑖𝑛−1)) = 𝛽𝑛 (𝐾) − rk(𝑖𝑛) + 𝛽𝑛 (𝑆) − rk(𝑖𝑛−1),

as was to be shown. □

Note that if 𝑖𝑛 is the zero map, then its kernel is everything in𝐻𝑛 (𝑆) and its cokernel is everything

in 𝐻𝑛 (𝐾), yielding the direct sum decomposition 𝐻𝑟𝑒𝑙 (H) � 𝐻𝑛 (𝐾) ⊕ 𝐻𝑛−1(𝑆) presented in

Theorem 4.3.5 and recalled above.

Once the missing subcomplex 𝑆 is built, we can find the homology of 𝑆 using HyperNetX.

Then, it is necessary to construct the matrix for the map 𝑆 → 𝐾 . The inclusion from 𝑆 → 𝑇 is

the identity on each simplex in 𝑆, but we need to describe the map 𝑇 → 𝐾 . This map is induced

on simplices of 𝑇 by a vertex map. Each vertex in 𝑇 represents a simplex in 𝐾 , so if 𝑣𝜎 is a

vertex in 𝑆 representing {𝑣0, ..., 𝑣𝑛} ∈ 𝐾 , the map 𝑆 → 𝐾 takes 𝑣𝜎 to 𝑣0. It always chooses the

lexicographically first vertex contained in that simplex in 𝐾 .

The algorithm computes the matrix (in each dimension) for this map by looking at every simplex

in 𝑆, writing down all of the first entries in each of the vertices comprising that simplex, and then
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checking the simplices in 𝐾 to look for a match. If there is a match, the corresponding matrix

element is made a 1.

After computing that matrix, each of the homology generators of 𝑆 are multiplied by it to put

them in terms of the chain groups for𝐾 . Cycles in 𝑆 are automatically cycles in𝐾 . So, using the same

techniques as the homology algorithm with Smith Normal Form uses, they are projected into the

cokernel to see if they are also homology generators in 𝐾 . Homologies in 𝑆 that are also homologies

in 𝐾 result in obstructions to the direct sum decomposition, and the number of these obstructions

in each dimension is tracked in a vector called Bettiob. Lastly, the relative Betti numbers are

computed, using the following formula: 𝛽𝑟𝑒𝑙𝑛 (H) = 𝛽𝑛 (𝐾) + 𝛽𝑛−1(𝑆) − Bettiob𝑛 − Bettiob𝑛−1.

To close this section, we will follow along with the algorithm to compute the relative barycentric

homology of the hypergraph in Figure 2.9. This is the hypergraph H = {𝐴𝐵𝐶}. First, HyperNetX

takes the chain complex of the associated simplicial complex 𝐾 and, using Smith Normal Form,

its homology. It records this as [1, 0, 0], denoting that 𝛽0(𝐾) = 1 and 𝛽𝑖 (𝐾) = 0 for all 𝑖 ≠

0. Next, we have to build 𝑆. The algorithm notes that, of the subsets of 𝐴𝐵𝐶,the collection

{𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐴, 𝐵, 𝐶} is missing from the hypergraph, and so it forms the vertex set of 𝑆. Edges

are made between 𝐴 and 𝐴𝐵, and 𝐴 and 𝐴𝐶, as well as the rest of the pairs that have a subset

relation, giving the graph highlighted in the figure, which is 𝑆. HyperNetX takes its chain complex

and homology, returning [1, 1] as the sequence of Betti numbers for 𝑆. The map 𝑆 → 𝐾 sends

𝐴, 𝐴𝐵, 𝐴𝐶 to 𝐴, 𝐵 and 𝐵𝐶 to 𝐵, and 𝐶 to 𝐶. The algorithm builds the corresponding matrix and

then the homology generators of 𝑆 are multiplied by that map to see if they still generate nontrivial

homology in 𝐾 . In this case, the class in dimension zero maps nontrivially (since the only path

component of 𝑆 is also the path component of 𝐾), but the class in dimension one does not as there

is no homology in dimension one in 𝐾 . So, the code returns [1, 0] to denote the rank of the map

induced on homology by the map 𝑆 → 𝐾 . These vectors are added according to the formula to get

a final answer for this hypergraph of [0, 0, 1], as expected.
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CHAPTER 6

DYNAMIC HYPERGRAPHS

If the relative and restricted barycentric homology of hypergraphs are going to be useful for studying

real world data, it will be necessary to quantify how changing a hypergraph changes the homology,

as real world data is constantly being modified. Our methods need to be able to account for and

analyze changes in the hypergraph. This chapter takes the first steps towards doing just that. There

are three ways in which a hypergraph H can change: the vertex set 𝑉 could change, the edge

set 𝐸 could change, or the incidence of the vertices and edges can change. However, the third

option of changing vertex-edge relationships is covered by the second case of changing the edge

set. Changing vertex-edge incidence is done by removing all of the edges from 𝐸 that have a

different vertex set in the new hypergraph, and then adding in all of the edges that were not a part

of the original edge set. Therefore, all dynamic hypergraphs can be traced by keeping track of the

vertices and edges being added or removed.

Moreover, because of the invertability of the operation of adding or removing vertices and

edges, it is enough to only consider the consequences of adding. The upcoming results in this

chapter are written for adding vertices and edges, but they can also be read to have the opposite

effect for removing a vertex or edge with the same conditions. For example, in Theorem 6.2.1,

conditions are given for which adding a vertex to a hypergraph increases the dimension of all of

the homology classes. It should be understood that this also implies that removing a vertex under

the same conditions decreases the dimension of all the homology cycles.

This chapter consists of two sections. The first gives results on the effects on the restricted and

relative barycentric homology when adding an edge to a hypergraph. It is not assumed that the

vertex set stays the same when adding edges, so new edges can consist partially or entirely of new

vertices. These results are concentrated in dimension zero. The second section contains results on

the effects of adding a vertex to a hypergraph, while keeping the edge set the same. The main result

of that section, Theorem 6.2.1, is for the relative barycentric homology and applies for maximum

edge hypergraphs in all dimensions.
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6.1 Adding an Edge

Throughout this section, let H B {𝑉, 𝐸} be a hypergraph, with 𝑉 = {𝑣1, ...., 𝑣𝑛} and 𝐸 =

{𝑒1, ...., 𝑒𝑚 | 𝑒𝑖 ⊂ 𝑉}. The edge added to the hypergraph will be denoted 𝑒′ ∉ 𝐸 . Let 𝑉 ′ = 𝑉 ∪ 𝑒′

and 𝐸′ = 𝐸 ∪ {𝑒′}, then H ′ = {𝑉 ′, 𝐸′} denotes the new hypergraph with added edge. We will start

by outlining the effects of adding an edge on the relative barycentric homology in dimension zero.

6.1.1 The Effects of Adding an Edge on Zeroth Dimensional Relative Homology

Let H be a hypergraph. Recall that 𝛽𝑟𝑒𝑙0 (H), the 0th relative Betti number, is the rank of

𝐻𝑟𝑒𝑙0 (H). This is the number of path components of H that are simplicial complexes, called

simplicial components from Definition 2.1.16.

We will consider when adding an edge can change 𝐻𝑟𝑒𝑙0 . First, how can adding an edge to

the hypergraph increase the number of connected components that are simplicial complexes? One

option is to add a new connected component that was not there before. This would have to be a

single new edge around one new vertex. If it is around more vertices, then there will be missing

subedges, since we have only added one edge. An isolated vertex/edge pair like this that does not

interact with the rest of the hypergraph in any way could be interesting and is worth tracking. This

would increase 𝛽𝑟𝑒𝑙0 by 1. This case is the topic of the first proposition.

Proposition 6.1.1. † Suppose 𝑒′ ∩𝑉 = ∅. Then,

𝛽𝑟𝑒𝑙0 (H ′) =


𝛽𝑟𝑒𝑙0 (H) + 1 if |𝑒′| = 1

𝛽𝑟𝑒𝑙0 (H) else.

Proof. Since 𝑒′ ∩ 𝑉 = ∅, the new edge 𝑒′ is its own connected component in the hypergraph. This

means that it cannot reduce 𝛽𝑟𝑒𝑙0 , by Theorem 4.3.7. It will increase 𝛽𝑟𝑒𝑙0 when it is a simplicial

component. If |𝑒′| = 1, then it is simplicial. If |𝑒′| > 1, then it is not simplicial as it will have some

missing subedges, since 𝑒′ is the only edge in its connected component. □

Figure 6.1 has three hypergraphs: H , H1, and H2. Each of H1 and H2 adds one edge that

is a new connected component to H . By the above proposition, 𝛽𝑟𝑒𝑙0 (H1) = 𝛽𝑟𝑒𝑙0 (H) + 1 and

𝛽𝑟𝑒𝑙0 (H2) = 𝛽𝑟𝑒𝑙0 (H) based on the number of vertices in the added edge.
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Figure 6.1 Three hypergraphs used as examples for Proposition 6.1.1.

The second option for increasing the number of simplicial components is to turn an existing

connected component into a simplicial complex by adding an edge. This would mean that there

was a connected component in H that was only missing one edge, thereby finishing a simplicial

component. This would increase 𝛽𝑟𝑒𝑙0 by 1. It represents the densest and second most dense types

of connected components possible in a hypergraph. This is proved in the next proposition. Recall

that a subedge is an edge that is contained in another edge, while a toplex is an edge that is not

contained in any other edges. Every edge in a hypergraph is either a toplex or subedge.

Proposition 6.1.2. † Suppose 𝑒′ ⊂ 𝑒 for some 𝑒 ∈ 𝐸 . Denote by C′ the connected component of

H ′ containing 𝑒′. Then,

𝛽𝑟𝑒𝑙0 (H ′) =


𝛽𝑟𝑒𝑙0 (H) + 1 C′ is simplicial

𝛽𝑟𝑒𝑙0 (H) else.

Proof. Since 𝑒′ is a subedge, it only intersects with one connected component of H , and that

component was missing an edge, so it was not simplicial to begin with. Therefore, adding 𝑒′ cannot

reduce 𝛽𝑟𝑒𝑙0 , by Theorem 4.3.7. Adding 𝑒′ will only increase 𝛽𝑟𝑒𝑙0 if it finishes filling in a connected

component, turning it into a simplicial component. □

Something else that may be interesting here is that, if a connected component is only missing

one edge, it will have trivial relative homology (Theorem 4.3.4). So if a connected component has

nontrivial relative homology in dimension greater than 0, adding a subedge to it cannot add a 0

dimensional homology, proving the following corollary.
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Corollary 6.1.3. Suppose H is a connected hypergraph with 𝛽𝑟𝑒𝑙
𝑖
> 0 for some 𝑖 > 0. Then adding

an edge to H cannot increase 𝛽𝑟𝑒𝑙0 .

The previous results showed how adding an edge to a hypergraph can increase the number

of simplicial components. Next, how can adding an edge to a hypergraph reduce the number of

connected components that are simplicial complexes? This is done by adding an edge that intersects

with a connected component that was a simplicial complex. If this is done in a way that the new

edge is missing subedges, then any previous simplicial components that were connected to this new

edge are no longer simplicial. What follows is the case when 𝑒′ intersects exactly one simplicial

component.

Proposition 6.1.4. † Suppose 𝑒′ is an that intersects one simplicial component, C. Let |𝑒′| = 𝑑.

Then,

𝛽𝑟𝑒𝑙0 (H ′) =


𝛽𝑟𝑒𝑙0 (H) all size 𝑑 − 1 subsets of 𝑒′ are in H

𝛽𝑟𝑒𝑙0 (H) − 1 else

Proof. Since 𝑒′ intersects exactly one simplicial component C, adding 𝑒′ will reduce 𝛽𝑟𝑒𝑙0 by 1

unless C remains simplicial after appending 𝑒′, by Theorem 4.3.7. This can only occur if all 𝑑 − 1

subsets of 𝑒′ are edges in H . All of the other subsets will also be there because it was a simplicial

component to begin with. □

However, a newly added edge can intersect any number of components at once, by, for example,

including multiple components in a single edge. If the new edge intersects with any number other

than two connected components that were simplicial complexes, it will make them all nonsimplicial.

This will reduce 𝛽𝑟𝑒𝑙0 by the number of connected components that were connected via the new

edge.

If the new hyperedge intersects with exactly two connected components that were simplicial

complexes, it is possible that instead of killing both of them, it merges them into one simplicial

complex, only reducing 𝛽𝑟𝑒𝑙0 by 1. This will happen exactly when the new hyperedge is between two

vertices, one each in a connected component that was a simplicial complex. If there were any more
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Figure 6.2 A hypergraph where adding the edge 𝐶𝐷 merged two simplicial components.

than two vertices in it, (as would have to happen if it were intersecting more than two simplicial

components), then there would be missing subedges inside of the new edge. This result is proved

next.

Proposition 6.1.5. † Suppose 𝑒′ is an edge that intersects 𝑘 > 1 simplicial components, and

|𝑒′| = 𝑑. Then,

𝛽𝑟𝑒𝑙0 (H ′) =


𝛽𝑟𝑒𝑙0 (H) − 1 𝑘 = 𝑑 = 2

𝛽𝑟𝑒𝑙0 (H) − 𝑘 else

Proof. Note that, in order to intersect 𝑘 different components, 𝑑 ≥ 𝑘 . We will consider when

𝑑 > 2 and 𝑑 = 2 separately. If 𝑑 > 2, let {𝑣𝑖, 𝑣 𝑗 } be vertices in 𝑒′ where 𝑣𝑖 is in a different

simplicial component then 𝑣 𝑗 . So {𝑣𝑖, 𝑣 𝑗 } is a missing subedge of 𝑒′, and so the new connected

component containing 𝑒′ is not a simplicial component. That means none of the formerly simplicial

components that intersect 𝑒′ will be simplicial components in H ′ and 𝛽𝑟𝑒𝑙0 will decrease by the

number of simplicial components that intersect 𝑒′, byt Theorem 4.3.7.

In the case 𝑘 = 𝑑 = 2, 𝑒′ intersects 2 simplicial components and is an edge with 2 vertices.

Notice both vertices (and hence, all of the proper subsets) in 𝑒′ are already edges in the hypergraph.

Instead of making both components nonsimplicial, this merges two simplicial components into one,

therefore only reducing 𝛽𝑟𝑒𝑙0 by 1. □

For an example of the 𝑘 = 𝑑 = 2 case, see Figure 6.2. The hypergraph H ′ in this figure is the

hypergraph after the edge 𝐶𝐷 was added. Notice how, if 𝐶𝐷 was removed from the hypergraph,
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there would be two simplicial components, with toplexes 𝐴𝐵𝐶 and 𝐷𝐸𝐹, so 𝛽𝑟𝑒𝑙0 (H) = 2. The

edge 𝐶𝐷 connects two simplicial components and has two vertices, so 𝛽𝑟𝑒𝑙0 (H) = 1.

Lastly, there are ways of adding an edge without changing 𝛽𝑟𝑒𝑙0 . This will probably be the most

common result of adding an edge. One way to do this is by adding a new connected component

which has more than one vertex, as in H2 of Figure 6.1. This does not affect any of the other

existing connected components, and adds a connected component that is not a simplicial complex,

so it will not change 𝛽𝑟𝑒𝑙0 .

You could also add a new toplex intersecting connected components that were not simplicial

complexes to begin with. This could be one or more connected components, but as long as none of

them were simplicial complexes, adding toplexes will not affect 𝛽𝑟𝑒𝑙0 . Adding subedges to connected

components that are missing at least two hyperedges will also not change 𝛽𝑟𝑒𝑙0 .

So far we have enumerated what can happen to 𝛽𝑟𝑒𝑙0 when an isolated edge or a subedge is added

to the hypergraph. Now let 𝑒′ be a toplex intersecting at least one edge in 𝐸 . The change in 𝛽𝑟𝑒𝑙0

from adding 𝑒′ depends primarily on how many simplicial components it intersects. Note that the

addition of a toplex cannot turn a non-simplicial component into a simplicial one. If 𝑒′ is a toplex

that does not intersect any simplicial components, 𝛽𝑟𝑒𝑙0 will not change.

Proposition 6.1.6. † Suppose 𝑒′ is a toplex that intersects no simplicial components, but does

intersect H . Then 𝛽𝑟𝑒𝑙0 (H ′) = 𝛽𝑟𝑒𝑙0 (H).

Proof. Let C be a simplicial component in H . Because 𝑒′ does not intersect C, C is still a

simplicial components in H ′. Therefore, 𝛽𝑟𝑒𝑙0 (H ′) > 𝛽𝑟𝑒𝑙0 (H). Propositions 6.1.1 and 6.2 detailed

all ways that adding an edge can increase 𝛽𝑟𝑒𝑙0 , neither of which apply here. Therefore, 𝛽𝑟𝑒𝑙0 (H ′) =

𝛽𝑟𝑒𝑙0 (H). □

Next, we will move on to the effect of adding an edge on the restricted barycentric homology in

dimension zero.
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6.1.2 Effects of Adding an Edge on Zeroth Dimensional Restricted Barycentric Homology

Recall that given a hypergraph, the rank of the zeroth dimensional restricted barycentric ho-

mology group, denoted by 𝛽𝑟𝑒𝑠0 , is the number of fence components of the hypergraph. Next we

will detail what happens to 𝛽𝑟𝑒𝑠0 when edges are added to the hypergraph. Again, the effects of

removing an edge are the inverse of the effects of adding the same edge.

How can adding an edge to the hypergraph add a new fence component to the hypergraph?

The fence components of the hypergraph are given by the inclusion relations of the hypergraph, so

adding a subedge will never add a new fence component to the hypergraph. In fact, even for adding

toplexes, in order to create a new fence component, that new edge must not include any other edges.

So in order to add an edge to increase 𝛽𝑟𝑒𝑠0 , it must be a toplex that does not have any subedges,

although it can intersect other edges.

Sometimes adding an edge can reduce 𝛽𝑟𝑒𝑠0 by merging fence components. As with some of

the above, a single edge wrapped around what were formerly separate connected components will

reduce 𝛽𝑟𝑒𝑠0 by an arbitrary amount. Moreover, it is possible to add subedges and merge fence

components. Imagine a star type hypergraph where multiple edges that do not otherwise intersect

all share a single vertex, as in Figure 6.3. If this vertex is not an edge in the hypergraph, then each

edge is its own fence component, but adding in the "star vertex" will create a hypergraph with only

one fence component. Unlike the case with relative barycentric homology, there will always be a

fence component in whatever is left, so the merger will reduce 𝛽𝑟𝑒𝑠0 by 1 less than the number of

components that were involved.

Note that it is not possible to add an edge that is simultaneously a subedge in one fence

component and a toplex in another fence component, as the larger fence component must already

have contained the smaller one. This means that in order for this kind of merge to take place, the

new edge must be exclusively a subedge or toplex of the fence components it is merging.

Oftentimes, adding an edge to the hypergraph will not change 𝛽𝑟𝑒𝑠0 . This will happen when the

edge added is part of exactly one fence component that was already present. It can be either a toplex

or a subedge. If an edge is added that only has an inclusion relation with one other edge, then it
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will not change the restricted homology at all (as in Theorem 3.2.6). If the edge added is a toplex,

then it must have at least one subedge and all of its subedges must be totally ordered. Otherwise

it would have merged more than one fence component. If the added edge is a subedge, then all of

the edges that it is contained in must be able to be totally ordered. (Any subedges of the new edge

would be contained in its toplexes as well, so those will not affect 𝛽𝑟𝑒𝑠0 .) The first result is what can

happen to 𝛽𝑟𝑒𝑠0 when 𝑒′ is a subedge.

Proposition 6.1.7. † Suppose 𝑒′ is a subedge of edges representing 𝑟 different fence components.

Then

𝛽𝑟𝑒𝑠0 (H ′) = 𝛽𝑟𝑒𝑠0 (H) − (𝑟 − 1)

Proof. Note that it is impossible for 𝑟 to be 0, since 𝑒′ is a subedge of some edge 𝑒 ∈ 𝐸 , and that

edge must be in a fence component. If 𝑟 = 1, then all of the edges 𝑒 with 𝑒′ ⊂ 𝑒 are already in

the same fence component and so 𝑒′ is also only in that fence component and the number does not

change. So let 𝑒 > 1 and choose 𝑒1, ..., 𝑒𝑟 edges such that each is in a different fence component

of H and 𝑒′ ⊂ 𝑒𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑟. Then for 𝑖 > 1, {𝑒1, 𝑒
′, 𝑒𝑖} is a valid fence. Thus all of the 𝑒𝑖 are

now in the same fence component, and the number of fence components has been reduced by 𝑟 − 1.

Hence,

𝛽𝑟𝑒𝑠0 (H ′) = 𝛽𝑟𝑒𝑠0 (H) − (𝑟 − 1)

in all cases. □

One example of this theorem is a hypergraph where many edges share a central vertex, as in

Figure 6.3. In the hypergraph H , each of those edges is a separate fence component, but after

the edge 𝐴 is added into the hypergraph H ′, all of the edges are in the same fence component.

Therefore, adding the edge 𝐴 reduced 𝛽𝑟𝑒𝑠0 (H) by four. The second result in this section is what

can happen to 𝛽𝑟𝑒𝑠0 when 𝑒′ is a toplex.

Proposition 6.1.8. † Suppose 𝑒′ is a toplex with subedges representing 𝑟 different fence components.

Then

𝛽𝑟𝑒𝑠0 (H ′) = 𝛽𝑟𝑒𝑠0 (H) − (𝑟 − 1).

94



Figure 6.3 A hypergraph where adding the edge 𝐴 reduced 𝛽𝑟𝑒𝑠0 (H)

Proof. If 𝑟 = 0, then 𝑒′ doesn’t have any subedges, and therefore cannot form a fence with any other

edges, so it is a fence component all by itself, thereby increasing 𝛽𝑟𝑒𝑠0 by 1. So let 𝑟 ≥ 1 and choose

𝑒1, ..., 𝑒𝑟 edges such that each is in a different fence component of H and 𝑒′ ⊃ 𝑒𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑟. Then

for 𝑖 > 1, {𝑒1, 𝑒
′, 𝑒𝑖} is a valid fence. Thus all of the 𝑒𝑖 are now in the same fence component, and

the number of fence components has been reduced by 𝑟 − 1. Thus

𝛽𝑟𝑒𝑠0 (H ′) = 𝛽𝑟𝑒𝑠0 (H) − (𝑟 − 1),

proving the proposition. □

In the first lemma of this section, it is impossible for 𝑟 = 0, but in the second lemma this is

possible, and that is the only case where adding an edge can increase 𝛽𝑟𝑒𝑠0 . Figure 6.1 serves as a

good example for this result. Here both H1 and H2 add a new fence component, increasing 𝛽𝑟𝑒𝑠0

from H . This is different from the relative case, in which only H1 increased 𝛽𝑟𝑒𝑙0 .

In both the restricted and relative barycentric homology theories, increasing 𝛽0 by adding an

edge seems to have the fewest number of possible causes. It will thus usually be easy to track why

𝛽𝑟𝑒𝑙0 or 𝛽𝑟𝑒𝑠0 went up, and which new edge caused the increase. If 𝛽𝑟𝑒𝑙0 and 𝛽𝑟𝑒𝑠0 both increased, this

can only be the result of a new singleton edge around a vertex that was not present before, which is

certainly worth tracking. In the next section, we will dive into results about the effects of adding a

vertex into some existing edges.
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6.2 Adding a Vertex

It is natural to consider the effects of adding a vertex to a hypergraph. There might be a new

data point that enters into existing relationships, like a new species in an ecosystem. There are two

main results in this section. The first applies to the relative barycentric homology of maximum edge

hypergraphs, and says that adding a vertex inside of just the maximum edge increases the dimension

of all homology cycles by one. We will also give some remarks about under what conditions this

can apply to hypergraphs that are not necessarily maximum edge. The second result will give a

condition on which adding a vertex to a hypergraph can affect the zeroth dimensional restricted

barycentric homology.

6.2.1 The Effects of Adding a Vertex to a Maximum Edge Hypergraph on the Relative
Barycentric Homology

Let H be a maximum edge hypergraph, as in Definition 2.1.10, with maximum edge 𝑒. Let

|𝑒 | = 𝑚. Suppose a new vertex 𝑣𝑚+1 is added to H such that 𝑣𝑚+1 ∈ 𝑒 is only in the maximal edge.

Denote the new hypergraph by H ′. Therefore,

𝑉 ′ = {𝑣1, 𝑣2, ..., 𝑣𝑚, 𝑣𝑚+1},

with new maximum edge 𝑒′ = 𝑉 ′. The edge set is

𝐸′ = {{𝑒′} ∪ 𝐸 \ {𝑒}}},

and, thus the hypergraph H ′ is

H ′ = {𝑉 ′, 𝐸′}.

Theorem 6.2.1 (Add a Vertex Theorem). Suppose H ′ is built from a maximum edge hypergraph H

by adding a single vertex into only the maximum edge ofH . Then𝐻𝑟𝑒𝑙𝑛 (H ′) � 𝐻𝑟𝑒𝑙
𝑛−1(H) for all 𝑛 ≥

0 (assuming that 𝐻𝑟𝑒𝑙−1 (H) = 0).

Proof. This will be proved by showing that the missing subcomplex 𝑆′ ofH ′ is homotopy equivalent

to a suspension of 𝑆, the missing subcomplex of H . Recall from [18] that the suspension Σ𝑋 of a

topological space 𝑋 is the join of 𝑋 and two points. Another way of thinking about the suspension
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is as a union of two cones of 𝑋 , with the copy of 𝑋 on the bases of the cones identified with itself.

Recalling that cones are contractible, and an application of the Mayer-Vietoris sequence from

Theorem 2.2.4, gives the result that suspending a space increases the dimension of its homology

groups by one, i.e. �̃�𝑛+1(Σ𝑋) � �̃�𝑛 (𝑋) for all 𝑛 ≥ 0. Notice that this result uses the reduced

homology of Definition 2.2.11, and is known as the suspension theorem.

To ease notation, we will add ′ to constructions pertaining to H ′. Hence, 𝐾′ will be the

associated simplicial complex of H ′, and in this case, 𝐾′ = {𝜎 | 𝜎 ⊂ 𝑒′}. Further, 𝑇 ′ will be the

barycentric subdivision of 𝐾′, and 𝑆′ will be the subcomplex generated by vertices corresponding

to missing subedges of H ′, so, by definition, 𝐻𝑟𝑒𝑙𝑛 (H ′) = 𝐻𝑛 (𝑇 ′, 𝑆′). To avoid confusion with the

vertex set of the hypergraph, we will use 𝑢𝜎 to denote vertices in 𝑇 and 𝑇 ′ during this proof.

The proof that 𝑆′ is homotopy equivalent to a suspension of 𝑆 will proceed as follows. First, we

will describe the set of simplices in 𝑆′, and split it up into three groups. Second, we will show that

two of those groups contract to the vertices 𝑢𝜎𝑒 and 𝑢𝜎𝑣𝑚+1
, respectively. Lastly, we will form two

cones with base 𝑆 within 𝑆′, which will finish showing that 𝑆′ is homotopy equivalent to 𝑆.

We begin by describing which simplices of 𝑇 ′ are in 𝑆′. Recall that a simplex in 𝑆′, Ω, consists

of vertices representing simplices in 𝐾′ that are missing subedges of H ′. By assumption, 𝑒′ is

the only edge of H ′ containing the new vertex 𝑣𝑚+1. Therefore, every simplex in 𝐾′ containing

the vertex 𝑣𝑚+1 except 𝜎𝑒′ represents a missing subedge in H ′. Therefore, if 𝑢𝜏 is a vertex in 𝑇 ′

representing a simplex 𝜏 in 𝐾′ that contains 𝑣𝑚+1, 𝑢𝜏 is part of the generating set for 𝑆′. We will

denote the set of simplices in 𝑇 ′ containing at least one such vertex 𝑢𝜏 by 𝑆[𝑣𝑚+1] to indicate their

reliance on the new vertex 𝑣𝑚+1.

Let Ω be a simplex in 𝑆′ that is not in 𝑆[𝑣𝑚+1]. Since none of the vertices 𝑢𝜎 in Ω represent

simplices 𝜎 in 𝐾′ that contain 𝑣𝑚+1, Ω is in 𝑇 . Now there are two cases, Ω ∈ 𝑆 or not. Note 𝑆 ⊂ 𝑆′

because if a subedge was missing in H , it is still a missing subedge in H ′, as the only edge added

to H ′ was 𝑒′, which is not in 𝑆. Suppose though that Ω was not in 𝑆. This would mean that at least

one simplex represented by a vertex in Ω was not in 𝑆, but is missing in H ′. The only edge that is

missing in H ′ but was an edge in H is 𝑒. We will refer to simplices Ω of 𝑆′ where at least one of
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the vertices represents the simplex 𝑒 in 𝐾′ as 𝑆[𝑒] to denote its containment of the vertex 𝑢𝜎𝑒 in 𝑆′.

Note that 𝑆 does not intersect 𝑆[𝑒] or 𝑆[𝑣𝑚+1] since neither 𝑢𝜎𝑒 nor 𝑢𝜎𝑣𝑚+1
is in 𝑆. Also, by the

definition of how simplices are constructed in the barycentric subdivision, 𝑆[𝑒] does not intersect

𝑆[𝑣𝑚+1], since in𝐾′, 𝑒 and 𝑣𝑚+1 do not have an inclusion relation. Therefore 𝑆′ = 𝑆∪𝑆[𝑒]∪𝑆[𝑣𝑚+1]

and those sets are disjoint.

The next step of the proof is to show that 𝑆[𝑒] and 𝑆[𝑣𝑚+1] are contractible. By definition, 𝑆[𝑒]

is contractible, since any simplex in 𝑆[𝑒] has 𝑢𝜎𝑒 as a vertex. Next we will show that 𝑆[𝑣𝑚+1] is

contractible. Let Ω be a simplex in 𝑆[𝑣𝑚+1]. This means that one of the vertices 𝑢𝜏 of Ω represents

a simplex 𝜏 in 𝐾′ that contains 𝑣𝑚+1 as a vertex. Since 𝑣𝑚+1 ⊂ 𝜏, that subset relationship is

represented by an edge in the barycentric subdivision. Therefore, Ω∪𝑢𝜎𝑣𝑚+1
is a simplex in 𝑆′. The

set of simplices of the form Ω ∪ 𝑢𝜎𝑣𝑚+1
is contractible to the vertex 𝑢𝜎𝑣𝑚+1

, showing that 𝑆[𝑣𝑚+1] is

contractible.

The last step in the proof that 𝑆′ is homotopy equivalent to a suspension of 𝑆 is to show that

𝑆 connects to both 𝑆[𝑒] and 𝑆[𝑣𝑚+1], which were just shown to be contractible. Recalling that 𝑆

is disjoint from both of those other sets, let Ω be a simplex in 𝑆. Because every vertex 𝑢𝜎 in Ω

represents a simplex 𝜎 in 𝐾 that is a subset of 𝑒, Ω ∪ 𝑢𝜎𝑒 is a simplex in 𝑆′ and, in particular, in

𝑆[𝑒]. Therefore, 𝑆 connects to 𝑆[𝑒], and since 𝑆[𝑒] is contractible, it forms a cone of 𝑆. Similarly,

if Ω is a simplex in 𝑆, Ω ∪ 𝑢𝜎𝑣𝑚+1
is a simplex in 𝑆′. This is now a part of 𝑆[𝑣𝑚+1], and forms the

other cone of S. We have shown that 𝑆′ is homotopy equivalent to two distinct cones of 𝑆. Thus, 𝑆′

is homotopy equivalent to a suspension of 𝑆.

So, from the suspension theorem, for all 𝑛, �̃�𝑛 (𝑆) � �̃�𝑛+1(𝑆′). From the results on the homology

of maximal edge hypergraphs (Theorem 4.2.3), this can be extended to the string of isomorphisms,

for 𝑛 ≥ 1, 𝐻𝑟𝑒𝑙
𝑛+1(H) � 𝐻𝑛 (𝑆) � 𝐻𝑛+1(𝑆′) � 𝐻𝑟𝑒𝑙𝑛+2(H

′), proving the theorem in dimensions higher

than 2.

It remains to consider the homology groups 𝐻𝑟𝑒𝑙𝑚 (H ′) when 𝑚 = 0, 1, 2. 𝐻𝑟𝑒𝑙0 (H ′) = 0 by

Theorem 4.2.6 as 𝑆′ is not empty since 𝑢𝜎𝑒 ∈ 𝑆′.

𝐻𝑟𝑒𝑙1 (H ′) depends on 𝐻0(𝑆′) as noted in Corollary 4.2.4. First, suppose that H was a simplicial
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Figure 6.4 A hypergraph used as an example for Theorem 6.2.1.

complex to begin with, so that 𝑆 is empty. Then 𝐻𝑟𝑒𝑙0 (H) = Z
2Z , by Theorem 4.2.6. The suspension

of the empty set is two disjoint points, so 𝐻0(𝑆′) = Z
2Z ⊕ Z

2Z . Therefore, by Theorem 4.2.7,

𝐻𝑟𝑒𝑙1 (H ′) = Z
2Z = 𝐻𝑟𝑒𝑙0 (H).

Next, suppose that 𝑆 was not empty. Then 𝐻𝑟𝑒𝑙0 (H) = 0 by Theorem 4.2.6. In this case, 𝑆′

must be path connected as a suspension of 𝑆, so by Theorem 4.2.7, 𝐻𝑟𝑒𝑙1 (H ′) = 0 In both cases,

𝐻𝑟𝑒𝑙1 (H ′) � 𝐻0(H).

Recall that 𝐻𝑟𝑒𝑙2 (H ′) � 𝐻1(𝑆′) by Theorem 4.2.3, and since 𝑆′ is the suspension of 𝑆, 𝐻1(𝑆′) �

�̃�0(𝑆). Again, when 𝑆 is empty, 𝐻𝑟𝑒𝑙1 (H) � �̃�0(𝑆) = 0, so 𝐻𝑟𝑒𝑙2 (H ′) = 0 as well. If 𝑆 is not

empty, then the following string of isomorphisms holds from the fact that 𝑆′ is a suspension of 𝑆

and Theorems 4.2.7 and 4.2.3:

𝐻𝑟𝑒𝑙1 (H) � �̃�0(𝑆) � 𝐻1(𝑆′) � 𝐻𝑟𝑒𝑙2 (H ′).

In both cases, 𝐻𝑟𝑒𝑙2 (H ′) � 𝐻𝑟𝑒𝑙1 (H), and this concludes the proof of the theorem in all

dimensions. □

The images in Figure 6.4 serve to illustrate this theorem. The hypergraph H has 𝛽𝑟𝑒𝑙1 (H) = 1,

with all other relative Betti numbers equal to zero. The hypergraph H1 is an example of a single

vertex being added to H . As long as the new vertex is added inside only the maximum edge, the

theorem holds. Thus 𝛽𝑟𝑒𝑙2 (H1) = 1, and all other Betti numbers are zero. The other hypergraph

in the figure, H2, is different in that the vertex 𝐷 was added into the edge 𝐶 to make a new

subedge 𝐶𝐷 as well. This hypergraph has the same relative Betti numbers, and we conjecture that

this theorem holds no matter which subedges the new vertex is added into, as long as it is added
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into the maximum edge. Even if the hypergraph is not a maximum edge hypergraph, it will still

sometimes be possible to apply the above theorem. As the theorem shows, if the vertex is added to a

maximum edge hypergraph, it suspends the missing subcomplex. Similarly, if a vertex is added into

an existing toplex, the subcomplex of the missing subcomplex corresponding to missing subedges

of that toplex will likewise be suspended. Therefore, a homology cycle that is entirely contained

in the missing subedges of that toplex will see its dimension increase by one. This could also be

seen by using the Mayer-Vietoris sequence, if either version applies for that hypergraph. It will not

apply in the situation where the new vertex takes an edge that was a subedge and is not included

in the edges which that edge was contained in, therefore creating a toplex. That situation will be

addressed next for its effects on the restricted barycentric homology.

6.2.2 The Effects of Adding a Vertex on the Zeroth Restricted Barycentric Homology

Recall from Theorem 3.2.3 that the restricted barycentric homology of a maximum edge

hypergraph H is as follows:

𝐻𝑟𝑒𝑠 (H) =


Z
2Z if 𝑛 = 0

0 else.

Adding a vertex inside of the maximum edge of a maximum edge hypergraph will not change

the fact that is it a maximum edge hypergraph, and so it cannot change the restricted barycentric

homology. One case where the number of fence components, and hence the zeroth dimensional

restricted barycentric homology, can change is detailed below as the final result of this section.

Theorem 6.2.2. Let H be a hypergraph with an edge 𝑒 that is a subedge. Suppose a vertex 𝑣𝑛+1 is

added to the hypergraph such that 𝑣𝑛+1 is in exactly 𝑒 and its subedges. Then, 𝛽𝑟𝑒𝑠0 will increase,

by an amount depending on the number of toplexes containing 𝑒.

Proof. Let H ′ denote the hypergraph with 𝑣𝑛+1. Recall from Theorem 3.2.4 that 𝛽𝑟𝑒𝑠0 is the number

of fence components. Let 𝑓 be an edge of H such that 𝑒 ⊂ 𝑓 . Therefore, by Definition 2.1.13, in

H , 𝑒 and 𝑓 are part of the same fence component. In order to prove the theorem, it will suffice to

show that in H ′, 𝑒 and 𝑓 are not part of the same fence component.
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Figure 6.5 A hypergraph used as an example for Theorem 6.2.2.

Suppose, to the contrary, that there is a fence 𝑒, 𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑘 , 𝑓 between 𝑒 and 𝑓 . By

assumption, 𝑒 is the largest edge containing 𝑣𝑛+1, and is thus a toplex. Therefore, 𝑒𝑖1 must be a

subedge of 𝑒, and, by assumption, must contain 𝑣𝑛+1 as well. By definition of fence (Definition

2.1.12), 𝑒𝑖1 ⊂ 𝑒𝑖2 , so 𝑒𝑖2 also contains 𝑣𝑛+1, and is thus a subset of 𝑒. Therefore, 𝑒𝑖3 ⊂ 𝑒𝑖2 ⊂ 𝑒 and

all of the edges in the fence will likewise be subsets of 𝑒. Since 𝑓 is not a subset of 𝑒, there cannot

be a fence from 𝑒 to 𝑓 , and they must be in different fence components. □

As an example of this theorem, see the hypergraphs in Figure 6.5. The vertex 𝐷 has been added

to hypergraph H to get H ′. That vertex was added inside the edge 𝐵𝐶 to create a new edge 𝐵𝐶𝐷.

In H , 𝐵𝐶 is a subedge, but in H ′, 𝐵𝐶𝐷 is a toplex. Note that H has one fence component, but H ′

has two. Therefore, 𝛽𝑟𝑒𝑠0 (H) = 1, 𝛽𝑟𝑒𝑠0 (H ′) = 2, and, as the theorem states, 𝛽𝑟𝑒𝑠0 has increased.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We will close this thesis by offering some concluding remarks about the implication of its contents

as well as some interesting ideas for future research along these lines. Data is rapidly gaining

importance in most fields of study, including many that would not have been considered as data

science fields even twenty years ago. As technology improves, we have the ability to create larger

and more complex data sets. To handle complex data sets, researchers and analysts need more

sophisticated methods to model data. One such method is that of hypergraphs. Hypergraphs are

useful tools because they serve as generalizations for two common combinatorial objects: graphs

and simplicial complexes. Graphs have been used as data models for over 150 years, whereas the

science of using simplicial complexes to model data is much more recent. Hypergraphs combine

useful features of both graphs and simplicial complexes. Like graphs, they are simply a list of

vertices and a list of edges, and like simplicial complexes, they are naturally able to model higher

order relationships. Because of the generality of hypergraph structure, they are natural models for

many different types of data sets, and sometimes serve as better representations than graphs or

simplicial complexes.

However, with greater generality comes less rigidity and structure. When researchers study

graphs, one question they often ask is about the cycles in those graphs. There is not a canonical

notion of what constitutes a cycle in a hypergraph, and, in fact, there are at least five different

definitions of a cycle in a hypergraph that all reduce to the definition of a cycle if the hypergraph

happens to be a graph. Moreover, since hypergraphs can display higher order relationships, a

natural question to ask is if there is any notion of what it would mean for a hypergraph to have a

higher order cycle.

This is where the idea of homology is useful. A graph can be viewed as a one dimensional

simplicial complex, and when it is, the zeroth dimensional homology gives information about the

connected components of that graph, and the first dimensional homology gives information about

the structure of cycles in the graph. In general, the homology of simplicial complexes gives an
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interpretation of higher order cycles. Unfortunately, the way in which hypergraphs generalize

simplicial complexes means that the definition of the homology of a simplicial complex does not

immediately translate to hypergraphs. The question of defining a homology theory for hypergraphs

which accurately reflects the way in which hypergraphs generalize simplicial complexes is an

important one as data scientists increase their usage of hypergraphs to model data. This thesis

contributes towards an answer to that question.

Two particular homology theories for hypergraphs, the restricted and relative barycentric ho-

mology, were put forth by Emilie Purvine and collaborators [28]. This thesis takes those two

theories and significantly develops them in three ways: combinatorially, topologically, and com-

putationally. Combinatorially, we discussed new definitions on hypergraphs that allow for these

homology theories to be more readily interpreted, such as the supplement of a hypergraph or its

fence components. We took concepts standard in algebraic topology, such as the Mayer-Vietoris

Sequence or the Long Exact Sequence of a Pair, and adapted them for use with these hypergraph

homology theories. These adaptations are useful to simplify calculations of the homology of

complicated hypergraphs. Lastly, for data science purposes, everything needs to be computable.

We developed methods of building the necessary structures for computation without using the

barycentric subdivision, which is computationally unwieldy, and discussed the novel algorithm that

is used by HyperNetX for the computation of the restricted and relative barycentric homology of

hypergraphs. This thesis helps to make the theories computable and the results interpretable, both

necessary ingredients for successful data analysis.

There is still more work to be done. We will close by briefly discussing some ideas for future

research. To align with the three main areas of contribution, we will discuss potential questions

in the combinatorial, topological, and computational directions. As mentioned above, there is a

hierarchy of hypergraph acyclicities. One potential question to ask is how those different acyclicity

theories fit with the relative and restricted barycentric homology of a hypergraph. Is a hypergraph

with certain homology groups guaranteed a specific type of acyclicity? In graph theory, researchers

often look for specific subgraphs and the effect that they might have on the properties of the entire
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graph. Can we do something similar with hypergraph minors, and in particular, is there a certain

subedge structure that always generates a homology class?

In topology, there is also a notion of singular homology which applies to continuous spaces. For

geometric realizations of simplicial complexes, these two notions coincide [18, 24]. One advantage

of singular homology is that you can consider the homology of a subspace of a simplicial complex

without it needing to be a subcomplex. In particular, we would like to prove that the restricted

barycentric homology of a hypergraph H is isomorphic to the singular homology of the associated

simplicial complex 𝐾 restricted to the simplices that represent edges in the hypergraph. Similarly,

we conjecture that the relative barycentric homology of H is isomorphic to the singular homology

of 𝐾 relative to the simplices that represent edges missing from the hypergraph. Recall that some

of the theorems on the relative barycentric homology, in particular Theorem 4.2.7, give more

information about the edges that are missing from the hypergraph than the edges that are present.

To switch this result to a result that gives information about the edges present in the hypergraph,

we could define a slightly different version of the relative barycentric homology, where instead

of collapsing the missing subcomplex, the restricted barycentric subdivision is collapsed instead.

Then, the analogous version of Theorem 4.2.7 would be giving information about the edges that are

present in the hypergraph. This would equate Theorem 4.2.7 to Theorem 4.2.9. In general, these

two theorems seem to be complementary, and when there is a maximum edge hypergraph on three

vertices, they are exactly the same. Just as with many duality theorems in topology, the dimensions

of homology discussed in the reference theorems add up to the dimension of the simplicial complex.

One interesting question for future research is if this concept can be generalized to a duality theorem

for the relative barycentric homology of hypergraphs.

For areas relating to computation and data science, there are also some natural next steps. First,

the code currently only returns the Betti numbers, and it would be useful to have it also give the

generators for the homology classes, to add to the interpretability of the results. Also, real world

data is constantly changing and it is important to continue to develop tools to handle dynamic

hypergraphs and hypergraph filtrations, along the lines of [25]. Lastly, we would like to apply these
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methods to real data sets from other disciplines, such as biology or social science, to glean insights

useful to researchers in those fields, as well as motivate needed advances in the theory.

Because of how quickly the field of data science is growing, researchers are continually trying

to develop new methods that can be used to analyze increasingly large and complex data sets while

simulataneously maintaining computational feasibility and accurate, interpretable results. This

thesis not only gives computational tools towards topological methods for hypergraph analytics in

the form of hypergraph homology theories; it also further develops the topology and combinatorics

of these methods to make the results of the computational tools meaningfully interpretable.
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