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ABSTRACT

About a decade ago, the measurement of the decay products of 11Be yielded an unexpectedly

large abundance of 10Be. The presence of 10Be daughters was interpreted as a signature of the

novel 𝛽− -delayed proton emission. An alternative hypothesis soon followed, that free neutrons and

loosely-bound neutrons in atomic nuclei may decay into unseen dark particles. This alternative

hypothesis could explain the abundance of 10Be daughters and the long-standing neutron lifetime

puzzle. Such a hypothesis has impacts on the stability of neutron stars, elemental abundances

from Big Bang nucleosynthesis, and physics beyond the Standard Model. In low-energy nuclear

physics specifically, the new hypothesis brought a sharp focus to the behavior of nuclear systems

near particle-emission thresholds and the mechanism of 𝛽−-delayed proton emission.

More recently, a number of experiments have been conducted with beams of short-lived 11Be

(13.8 s) and long-lived 10Be (1.5 MYr) to measure directly the 𝛽−-delayed proton and 𝛽−-delayed

𝛼 decays of 11Be and related structure in 11B. Similarly, many new theoretical calculations have

made pre- and post-dictions on the energies and intensities of these decay channels in 11Be. Most

theoretical model calculations predict 𝛽−-delayed proton branching ratios smaller than reported by

experiment. The branching ratio of the 𝛽−-delayed proton decay in 11Be remains an open question.

At the National Superconducting Cyclotron Laboratory (NSCL), on the campus of Michigan

State University, we used the Gaseous Detector with Germanium Tagging (GADGET) system to

measure the 𝛽−-delayed charged particle decay of 11Be, in search of the 𝛽− -delayed proton decay.

R-matrix calculations and Bayesian methods were employed to describe the competing (and far more

frequent) 𝛽−-delayed 𝛼 channel. This dissertation covers the experimental and analysis methods

used to produce the second reported measurement of the novel 𝛽− -delayed proton emission and

early interpretation of this new result.
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CHAPTER 1

THE ATOMIC NUCLEUS: A LABORATORY FOR FUNDAMENTAL INTERACTIONS

The focus of this dissertation is measurement of the novel 𝛽−-delayed proton (𝛽−𝑝) decay in 11-

beryllium, 11Be. Concurrent to the work presented in this dissertation, many related investigations

by other researchers were undertaken and for a variety of scientific motivations. That is to say, the

scientific interest in the 11Be(𝛽−𝑝) decay has been and continues to be multi-faceted. This chapter

will introduce the atomic nucleus as a laboratory of physical phenomena and set the stage for the

unique case of 11Be.

1.1 The Atomic Nucleus

The atom is the basic building block of the tangible, bulk matter that we interact with. Figure 1.1

shows a cartoon of the atom and its constituent structure. By volume, the atom is dominated by a

diffuse cloud of electrons, 𝑒−, orbiting a central, dense nucleus. By mass, the atom is dominated

by the atomic nucleus, which is a collection of tightly bound, strongly interacting protons, p, and

neutrons, n. The number of protons, carrying positive charge, is the atomic number, Z, and the

element classification of a nucleus. The number of electrically-neutral neutrons is the isotone or

neutron number, 𝑁 , classification of a nucleus. A specific number of protons and neutrons uniquely

defines a nuclide and all nuclei of a particular nuclide are identical. The expression of a particular

nuclide is often abbreviated to 𝐴
𝑍
𝑋 or 𝐴𝑋 , where the mass number 𝐴 = 𝑍 + 𝑁 denotes the total

number of nucleons and 𝑋 is the chemical symbol. Thus 11-beryllium can be written as 11Be.

Beryllium, being the fourth element, has 𝑍 = 4 and 𝑁 = 𝐴 − 𝑍 = 11 − 4 = 7 neutrons. Naturally

present beryllium is 9Be and has 𝑍 = 4, 𝑁 = 5.

More than 3000 unique isotopes have been observed, while some ∼7000 are predicted to exist
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Figure 1.1: A cartoon diagram of a helium (He) atom and constituent subatomic particles with
labels and approximate physical size. The atom is made of an electron cloud and an atomic nucleus.
The atomic nucleus is made of protons and neutrons, which are composed of quarks. Protons are
made of two up quarks and one down quark. Neutrons are made of one up quark and two down
quarks. Figure Credit: Contemporary Physics Education Project, Lawrence Berkeley National
Laboratory.
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[1]. Each isotope has distinct properties such as mass, (charge) radius, magnetic moment, excitation

spectra, and, for many, decay rates of various decay modes to more- stable isotopes. Many general

features of nuclei can be predicted by placing a nucleus on the Chart of the Nuclides, which plots

nuclei in a tile-mosaic fashion by their proton and neutron numbers. Figure 1.2 shows the Chart of

the Nuclides, color coded for primary decay mode. For light nuclei of 𝐴 ≲ 40, nuclei are stable

if 𝑍 = 𝑁 to within 1 unit or so. Above 𝐴 ∼ 40, the line of stability flattens and the stable nuclei

tend to have greater number neutrons than protons. Nuclei that have greater 𝑍 than the stability

line are called neutron deficient. For most of the chart, neutron deficient nuclides will undergo

𝛽+ or electron capture decay, converting a proton into a neutron by emission of a 𝛽+ particle (a

high-energy positron) or capturing an electron, respectively, and emission of a neutrino. Similarly,

most neutron-rich nuclei primarily decay by 𝛽−, converting a neutron into a proton by emission

of a 𝛽− particle (a high-energy electron) and an anti-neutrino. Multi-step decays are possible.

𝛽-delayed particle emission is the emission of a nuclear particle (a proton, neutron, 𝛼/He-nucleus,

or others) immediately following a 𝛽 decay.

For 𝛽-delayed particle emissions, there are strong patterns in the type of 𝛽 decay and the emitted

particle. The proton separation energy, or the energy required to remove a proton, is smaller when

𝑍 is large compared to 𝑁 . Similarly, the neutron separation energy usually is large when 𝑍 is large

compared to 𝑁 . The converse of each of these statements is true (when 𝑍 is small relative to 𝑁).

Putting all this together, 𝛽-delayed particle emissions are almost always 𝛽+-delayed proton (𝛽+𝑝)

decays, 𝛽−-delayed neutron (𝛽−𝑛) decays, 𝛽+-delayed (𝛽+𝛼) decays, or 𝛽−-delayed (𝛽−𝛼) decays.

In fact, prior to the observation of 11Be(𝛽−𝑝) reported in 2019, no 𝛽−𝑝 decay had been measured in

any nucleus [2]. Our first measurement was performed in May 2018 and, to our knowledge, was the

very first data-taking of 𝛽−𝑝 decays in the world. Those initial efforts, the follow-up measurement,

and analysis lead us to report the second ever measurement of the 𝛽−𝑝 decay here.
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Figure 1.2: The Chart of the Nuclides. Nuclides are represented by colored squares, where the color
depicts their primary decay mode. The colors represent: stable (black), 𝛽+ or electron capture (blue),
𝛽− (pink), 𝛼 (yellow), spontaneous fission (green), spontaneous proton (orange), spontaneous
neutron (purple), and unknown (grey). Black-outlined, color-filled squares are radioactive, but very
long lived, in excess of 1 billion years. Vertical and horizontal lines are so-called magic numbers.
Figure Credit: National Nuclear Data Center (NNDC), Brookhaven National Laboratory.
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1.2 Motivating a Measurement of the Novel 11Be(𝛽−𝑝) Decay

In 2018, Fornal and Grinstein [3] noted that the decades-long, technique-specific discrepancy

in neutron lifetime measurements [4, 5] could be reconciled alongside the then recent (2014)

surprisingly large measurement of the the 11Be−→10Be transmutation [6] measured by Accelerator

Mass Spectrometry (AMS). The reconciliation was that the neutron may have a ∼ 1% probability

to decay into an ensemble of undetected particles with mass less than, but within 1.665 MeV, of

the neutron mass.

1.2 The Neutron Lifetime Problem

The lifetime of a particle is one of its most fundamental properties. Due to quark confinement,

preventing the existence of a free quark, the proton and the neutron are among the simplest objects

with which to study quark behavior. Protons and neutrons can exist as free particles or bound in

atomic nuclei. The free proton is observationally stable against radioactive decay with a decay

lifetime of > 7.7 · 1033 years [7]. The free neutron however, has slightly greater mass the proton

and will decay to a final state containing a proton and leptons with a lifetime about 15 minutes.

Furthermore, the exact value of the neutron lifetime has consequences for big bang nucleosynthesis

[8] and quark mixing behavior in the Standard Model [9]. There are two general techniques in

which the neutron lifetime is measured: the bottle technique and the beam technique [5].

In the bottle technique, the lifetime of neutrons is measured. Briefly, ultra-cold (𝑇 < 100neV)

neutrons are confined in a material bottle or a magnetic bottle. Ideally, there are no mechanisms for

the loss of the neutron except by the free decay of the neutron. A packet of neutrons is prepared and

injected into this bottle and an amount of time Δ𝑡1 elapses, during which the neutrons can decay.

The neutrons are then ejected and counted, yielding the number of remaining neutrons 𝑁1. The
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measurement is repeated for a different amount of holding time, Δ𝑡2, yielding remaining neutrons

𝑁2. If the bunches start with the same number of neutrons and the bottle is loss-less except that by

neutron decay, then the decay lifetime can be calculated as:

𝜏 =
Δ𝑡2 − Δ𝑡1

ln(𝑁1/𝑁2)
(1.1)

Generally, however, to describe neutron losses to the bottle, the bottle dimensions are varied

across different measurements in a measurement campaign. The free neutron lifetime is then

extrapolated from the limit of an infinite bottle.

In the beam method, the rate of proton generation is measured from a beam of cold neutrons

entering a reflective electromagnetic trap. The neutron beam energy and length of the trap are

known, so the time the neutrons spend in the electromagnetic trap is calculable. Within the Standard

Model, neutrons decay and generate protons. These protons are reflected by the electromagnetic

trap and counted. Un-reacted neutrons pass through the trap and are measured. The rate of proton

creation is proportional to the neutron flux and inversely to the Standard Model lifetime:

¤𝑁 =
𝑑𝑁

𝑑𝑡
= − 𝑁

𝜏𝑝
(1.2)

If the only decay modes of the neutron are the usual Standard Model decays 𝑛 → 𝑝 + 𝑒− + 𝜈̄ and

𝑛 → 𝑝 + 𝑒− + 𝜈̄ + 𝛾, then the lifetimes measured by the disappearance of neutrons (bottle technique)

and the appearance of protons (beam technique) should equal.

However, as experiments using both techniques have improved and become more precise,

there has emerged a discrepancy between the lifetimes extracted between the two measurements

as large as 5𝜎 statistical significance. The most recent bottle measurement lifetime value is
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𝜏bottle = 877.75 ± 0.28stat + 0.22/−0.16syst [10] and the most recent beam measurement is 𝜏beam =

887.7 ± 1.2stat ± 1.9syst [11].

If the assumption of the Standard Model decay is loosened, then the two measurements can be

reconciled by a ∼ 1% branch into undetected particles. The bottle measurement would measure

the total decay lifetime (𝜏total ∼ 877 s), the beam measurement would measure the Standard Model

process (𝜏𝑝 ∼ 887 s), and the missing decay rate comes from the undetected or dark decay with

lifetime of ∼ 8 · 104 s.

1/𝜏bottle = 1/𝜏beam + 1/𝜏dark (1.3)

1.2 The Large 11Be−→10Be Transmutation Rate

In 2014, an Accelerator Mass Spectrometry measurement of the decay products of a sample of

radioactive 11Be (𝑡1/2 = 13.8s) decay products was performed. They measured the presence of 10Be

consistent with a 11Be−→10Be decay probability of 8.3(9) · 10−6 [6], far in excess of the ∼ 3 · 10−8

decay probability predicted of the 11Be(𝛽−𝑝)10Be decay beforehand by Baye and Tursunov [12].

The structure of 11Be is unusual due to its low neutron separation energy of 𝑆𝑛 = 501.6(3) keV

and valence s-wave neutron wavefunction. The confluence of these effects gives 11Be an extended

neutron halo that could enhance the 𝛽−𝑝 rate if the neutron were able to decay into the continuum,

in a ”quasi-free” way, and generate more 10Be than previously expected. Similarly, if the valence

neutron were to not decay by 𝛽−𝑝 but instead by a dark mechanism, the observed 10Be production

rate would be enhanced as both the 𝛽−𝑝 and dark decays produce 10Be in their final states.

1.2 The Possibility of Dark Matter Decay in Nuclei

In the original paper, Formal and Grinstein suggested the possibility of detecting 𝑛 → 𝜒dark in

nuclei with low neutron separation energies, 𝑆𝑛 < 1.665 MeV. This was explored in greater detail
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by Pfützner and Riisager [13] and 11Be was identified as the ideal candidate. Its low neutron

separation energy 𝑆𝑛 = 501.6(3) MeV leaves most of the allowed decay energy window and its

relatively long 13.8 s half-life allows time for the hypothetical dark decay to have a branching ratio

of up to 2.0 · 10−4, assuming the dark decay rate inferred from the difference of the two measured

lifetimes.

Since both the 𝛽−𝑝 and neutron dark decay create 10Be in the final state, the distinguishing

feature between the two channels is the emission (or not) of the visible 𝛽− particle, proton, and

10Be recoil. The recommendation to pursue measurements to disentangle visible and dark decays

in 11Be was published in January 2018. We took our first 11Be(𝛽−𝑝) data, the first 11Be(𝛽−𝑝)

dataset in May 2018.

1.3 Status of 11Be(𝛽−𝑝) Decay

A great deal of work around the 11Be(𝛽−𝑝) decay has been performed since May 2018. The

subsequent chapters will describe my own contributions, but here is a summary of the work done

by others.

Quickly after the neutron dark decay proposal, it was pointed out that this decay softened the

nuclear equation of state and makes the existence of neutron stars above 0.7 𝑀⊙ (solar mass) stars

difficult to explain [14, 15]. Neutron stars of 2𝑀⊙ are restored if the dark matter can interact with

the visible neutron star [16]. A recent review of baryon number violation in neutron stars can be

found in [17].

The Standard Model predicts relations between different neutron 𝛽-decay observables. One

is the relationship between the neutron lifetime and the angular correlation coefficient, (so-called

”little”-) 𝑎, between the emitted 𝛽 and 𝜈𝑒. A measurement of 𝑎 allows for a calculation of the

Standard Model term 𝜆 by the following relation: 𝑎 = 1−𝜆2

1+3·𝜆2 . The Standard Model neutron lifetime
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also depends on the 𝛽-decay 𝐹𝑡 value, which is determined most precisely by the 0+ → 0+ 𝛽-decay

in nuclei such as 10C, 14O, 22Mg, and 26𝑚Al [18]. The relation is

𝜏 =
5172.3(31)s

1 + 3 · 𝜆2 (1.4)

The world average of 𝜆 is 𝜆 = −1.2754(11) and yields a neutron lifetime consistent with the

bottle method and inconsistent with the beam method [19, 20]. There is tension with a recent

measurement of the 𝛽 − 𝜈𝑒 asymmetry yielding 𝜆 = −1.2677(28). This value implies the neutron

lifetime to be consistent with the beam method and inconsistent with the bottle method [21].

In 2019, the first observation of 𝛽−𝑝 was reported in 11Be(𝛽−𝑝) by Ayyad et al. [2]. They

used a gaseous time projection chamber and measured a 178 keV proton from a stopped beam of

11Be. Their 11Be was produced by the Isotope Separation On Line (ISOL) technique at TRIUMF.

From this proton measurement, they inferred a resonant state in 11B at 196(20) keV above the

proton separation threshold with width 12(5) keV and a 𝛽−𝑝 branching ratio of 𝑏𝑝 = 1.3(3) · 10−5,

consistent with the earlier AMS result of 8.3(9) · 10−6 intensity for 10Be creation.

In 2020, a new AMS measurement of the 11Be→10Be probability refuted the earlier claim of

11Be→10Be production at 8.3(9) · 10−6 and proposed a new limit for 10Be production (by all decay

mechanisms) of < 2.2 · 10−6 [22]. The authorship and facilities were similar between this new

measurement and the 2014 paper [6]. This new limit is in conflict with the direct 𝛽−𝑝 measurement

of Ayyad et al. [2].

A number of nuclear structure theory efforts have been published to better clarify expectations

around the Standard Model -allowed 𝛽−𝑝 decay, especially in light of these conflicting claims of

the measured 11Be(𝛽−𝑝) branching ratio.

In 2020, Volya [23] performed shell model calculations using the psdu and fsu Hamiltonians
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and reported no shell model states that could mediate the 𝛽−𝑝 at 196(20) keV observed in [2].

Between the small 𝛽− decay energy window, competition from 𝛽−𝛼 emission, and lack of a clear

resonant state in 11B, Volya concluded that 𝑏𝑝 ∼ 5 · 10−10, perhaps upwards of 𝑏𝑝 ∼ 10−7 if a

resonant state existed. Oko lowicz et al. [24] performed calculations of 11B structure with shell

model embedded in the continuum (SMEC) [25] and found a candidate resonant state that could

mediate the 𝛽−𝑝 at 𝐸𝑝 ∼ 142 keV, slightly lower than that measured in Ayyad et al. [2].

In 2021, Elkamhawy et al. [26] published Effective Field Theory calculations that reproduce the

Baye and Tursunov [12] branching ratio of 𝑏𝑝 ∼ 3 · 10−8 to a factor of 2 for non-resonant 𝛽−𝑝. By

assuming a resonance at 𝐸𝑝 = 196(20) keV, a branch of 𝑏𝑝 = 4.9+5.6
−2.9(experiment)+4.0

−0.8(theory) ·10−6

with intrinsic width of Γ = 9.0+4.8
−3.3(ex.)+5.3

−2.2(th.) keV was found, which is in excellent agreement

with the measured branch 𝑏𝑝 = 1.3(3) · 10−5 and width of 12(5) keV.

In 2022, Oko lowicz et al. [24] calculated a 𝛽−𝑝 branching ratio using SMEC as well as the

interplay between the 𝛽 feeding and proton-penetrability. They concluded that the 𝛽−𝑝 branching

ratio and width measured in Ayyad et al. [2] are incompatible with the 3.3(1)% 𝛽−𝛼 branch of

[27]. They calculated the branch to be 𝑏𝑝 ∼ 3 · 10−7 after model tuning to the 12(5) keV intrinsic

width of [2]. Atkinson et al. performed a no-core shell model calculation and found resonant states

that could mediate the 11Be(𝛽−𝑝), but calculate a small branching ratio of 𝑏𝑝 = 1.3(5) · 10−6 [28].

Finally, Le Ahn et al. calculated scattering properties of 10Be+𝑝 with the method of self-consistent

Skyrme Hartree-Fock in the continuum and inferred a resonant state in 11B with energy of 𝐸𝑝 ∼ 182

keV and width Γ ∼ 6 keV [29].

Experimentally, another couple of publications are worth noting. Ayyad et al. [30] performed

10Be(𝑝, 𝑝′) resonant scattering. They performed an R-matrix fit [31] to their measurement and

reported a resonance at 𝐸𝑝 = 171(20) keV with partial width Γ𝑝 = 4.5(11) keV and total width

Γ𝑇 = 16(3) keV. Similarly, Lopez-Saavedra et al. [32] performed a transfer reaction to a 11B
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resonance with 10Be(𝑑, 𝑛)10Be+𝑝. They reported a resonant state at 211(40) keV with a small 𝛼

width component. This small 𝛼 component seems at odds with the small proton component of the

proton resonance scattering measurement of Ayyad et al., unless there are multiple states at very

similar energies that were preferentially probed by the choice of production mechanism.

Generally, there seems to be building consensus between theory and experiment of a resonant

state in 11B capable of enhancing the 11Be(𝛽−𝑝) rate. There is a spread of possible resonance

energies from 140 keV to 210 keV. There is some tension in the width of this resonance, with an

associated proposal of not one new near-threshold resonance, but multiple to explain this tension

[32]. Perhaps most importantly, there is still only the one direct measurement of the 11Be(𝛽−𝑝)

branching ratio and it is incompatible with indirect measurements of the total 11Be→ 10Be decay

rate. Theory predictions are not unified in their predictions of the 𝛽−𝑝 branching ratio to even

an order of magnitude. To clarify experimental inconsistencies and provide insight to the theory

models that predict branching ratios, an independent measurement of the 11Be(𝛽−𝑝) branching

ratio, by a search for the novel 𝛽−𝑝 radiation, is sorely needed.
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CHAPTER 2

EXPERIMENT: MEASURING THE NOVEL 11Be(𝛽−p) RATE

The measurement of 11Be(𝛽−p) is hallmarked by three experimental challenges: the short lifetime

of 11Be, requiring online production at a rare-isotope facility; the low rate and rare incidence of such

decays and the resulting large backgrounds from more common decay processes; the low energy of

emitted protons restricting the use of several classes of detectors frequently used in nuclear 𝛽-decay

studies. This chapter will describe the facilities and equipment used in measurements conducted

to measure 11Be(𝛽−p) and their solutions to each of these challenges.

2.1 GADGET: The Gaseous Detector with Germanium Tagging

The Gaseous Detector with Germanium Tagging (GADGET) system [33] was developed to measure

low-intensity, low-energy, 𝛽-delayed proton decays of radioactive nuclei, with the purpose of

constraining thermonuclear reaction rates important to understanding explosive nucleosynthesis. It

has conducted several measurements of 𝛽+, specifically, -delayed proton (𝛽+p) decays in nuclei of

mass A=20-31 nuclei, measuring the emission of 𝛽-delayed protons as low as 200 keV [34, 35, 36]

at the National Superconducting Cyclotron Laboratory (NSCL). The GADGET system is the

synthesis of coupling the NSCL Segmented Germanium Array (SeGA), an array of high-resolution

germanium crystal 𝛾-ray detectors, with the Proton Detector, a gaseous proportional counter. SeGA

is installed about the body of the Proton Detector in its “barrel” configuration. As will be explained,

the coupling of these two detector systems enables our search of rare 𝛽-delayed charged particle

events.
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2.1 Proton Detector: Principle of Operation

The schematic of Figure 2.1 depicts the operational components of the Proton Detector. The

detector is filled with a gas, which is selected for its desirable properties such as high electrical

resistance and quenching of non-ionizing atomic and molecular excitations. The detector gas acts as

both a beam stopper/catcher as well as a medium which is ionized in the presence of charged particle

radiation. An electric field is applied within the detector to drift positive ions to the detector cathode

and freed electrons toward the MICROMEGAS detection pads at a constant velocity and without

amplification. Electrons reaching the MICROMEGAS will pass through the Micromesh and enter

the charge amplification region, with an electric field capable of inducing a Townsend avalanche

which produces a measurable amount of charge, inducing a signal on the MICROMEGAS anode.

One important operational characteristic of the gas is its low density relative to other detectors

such as plastic or glass scintillators and semiconductor materials such as silicon or germanium

detectors. With their relativistic velocity and long tracks due to the low density of the gas, emitted

𝛽 radiations will typically deposit only a small fraction of their kinetic energy in their gas before

reaching the detector boundaries. Low-energy protons, 𝛼-particles, and the complementary nuclear

residues will stop near the site of the decay, losing all of their energy to interactions with the gas

within several milli- or centimeters. This suppression of the 𝛽 spectrum allows measurement of 𝛽-

delayed lights ions, such as protons and 𝛼 particles, to lower energies than possible in higher-density

detector media.

2.1 Proton Detector: Design

Figure 2.2 shows a cut-away mechanical drawing of the Proton Detector. Key operational compo-

nents are labeled. The body of the Proton Detector is a cylinder of stainless steel with dimensions
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of roughly 49 cm long by 16.5 cm in diameter. The detector active volume is roughly 40 cm in

length and 10 cm in diameter. Radioactive beam enters through a 1.5 𝜇m thick, 50.2 mm diameter

aluminized mylar Kapton window in the upstream end cap. This end cap is also equipped with

a high voltage feedthrough, which is coupled to the detector cathode, and four small gas outlets,

which allow for the removal of detector gas. Along the interior of the detector volume is the electric

field cage, which electrically connects the cathode to the MICROMEGAS Micromesh by a resistive

Kapton sheet with printed copper bands, rolled into a cylinder and held in place with insulating

polyether ether ketone (PEEK) material. The alternating conductive-resistive sections act as a

voltage divider and help ensure a uniform electric drift field in the detector bulk. The gating grid

is a wire grid 1.5 cm before the MICROMEGAS and can be used to disrupt the electric drift field

to protect the MICROMEGAS from large currents produced during beam deposition. The rear of

the detector chamber has four gas inlets to introduce fresh gas, a valve for rough pumping of the

detector, and voltage feedthroughs to control the MICROMEGAS anode and gating grid voltages.

The downstream end is capped by the MICROMEGAS circuit board. The MICROMEGAS has two

primary components: a gold plated copper anode and an electro-formed stainless steel micromesh

supported by insulating pillars at 128 𝜇m above the anode plane.

The set-up is cycled between beam-delivering and decay-measurement modes synchronously

with the delivery of beam to the detector. The voltage on the gating grid is alternated to allow or

prevent the passage of drifted electrons to the MICROMEGAS. In beam-delivery mode, a beam

of radioisotopes is passed into the detector. Interactions between the impinging beam and the

detector gas thermalize the beam. Nuclei of the beam may be neutralized and form neutral atoms,

which then diffuse under Brownian motion until their radioactive decay. In the case of incomplete

neutralization, positively-charged atoms will drift to the detector cathode. In beam-delivery mode,

the gating grid voltage is set to 119 V, so ionization electrons created via beam stopping will drift
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to the gating grid, but not pass to the MICROMEGAS. In decay-measurement mode, the beam is

no longer deposited and the gating grid voltage is set to -225 V, to be electrically transparent with

respect to the drift field and allow ionization electrons into the MICROMEGAS. These voltage

settings are summarized in Table 2.1.

Component z-axis position beam-delivery voltage decay-measurement voltage
Cathode +40 cm -4.8 kV -4.8 kV

Gating Grid +1.5 cm 119 V -225 V
Micromesh 0 cm 0 V 0 V

Anode -128 𝜇m 330 V 330 V

Table 2.1: Voltage states for the Proton Detector components in beam-accepting and decay-
measurement operation modes.

The geometry of the MICROMEGAS anodes is shown in Figure 2.3. The anodes are split into

three concentric circles of radius 1.4, 4.0, 5.0 cm. The ring between 1.4 and 4.0 cm is segmented

fourfold, every 90◦. The ring between 4.0 and 5.0 cm is segmented eightfold, every 45◦. The pads

are labeled alphabetically, inwards to outwards, from A to M. Pad A is the singular pad in the radius

1.4 cm segmentation. Pads B, C, D, and E are identical quadrant pads between the radius 1.4 cm and

4.0 cm segmentations. The remaining eight pads are identical octal pads between the 4.0 cm and 5.0

cm radial segmentations. The large areas of Pads A-E make these the primary measurement pads,

while the thin radial sizes of the outer octal Pads F-M make them useful diagnostics to, in software,

exclude counting of events corresponding to charged-particle tracks that are not confined in the

sensitive volume of the Proton Detector. The measurement pads may be analysed independently

for better energy resolution and greater suppression of the 𝛽-particle background or jointly as a

single interior pad for higher efficiency.
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2.1 SeGA: The Segmented Germanium Array

The Segmented Germanium Array (SeGA) [37] is an array of high-resolution, coaxial high-purity

germanium (HPGe), 𝛾-ray detectors. HPGe detectors work under high-voltage bias across the Ge

crystal. As a 𝛾 ray interacts with the Ge, typically by a photoelectric effect complete absorption or

a Compton-scatter which deposits only part of the incident 𝛾 energy, electrons are excited to the

crystal’s conduction band producing electron-hole pairs. The bias voltage drifts these to cathode(s)

and anode(s), respectively, where a current can be measured, ideally proportional to the number of

liberated pairs and, in turn, the deposited 𝛾-ray energy.

Ge is used for several desirable properties. First, Ge is a semiconductor, with electrical

properties between that of common conductors and insulators. The band gap is the energy required

to promote an electron in a crystal from the valence state to a conducting state. Ideal conductors

have band gaps smaller than the Fermi energy of the valence electrons, so there always exist

conduction electrons, and insulators have large band gaps on order the ionization energy, so there

are never bound electrons in the conduction state. Semi-conductors, like Ge, have small band gaps

above the Fermi energy, which allow application of biasing voltages to drift conduction electrons to

readout electronics while also producing large numbers of charge carriers for an amount of deposited

energy due to the low cost of promotion. The small band gap in (and large number of created charge

carriers of) Ge gives HPGe detectors their excellent energy resolution as statistical fluctuations in

the number of charge carriers shrink relative to the total as the total becomes large. One notable

limitation of Ge’s small band gap is the electrical current produced by thermal excitation of valence

electrons, so HPGe detectors must be operated at cryogenic temperatures involving refrigerators or

liquid nitrogen (77K) cooling. Another desirable feature of HPGe is that it has a moderately high

atomic number for a semi-conductor of 𝑍 = 32. The cross-section of MeV 𝛾 rays to interact with
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a material scale roughly as 𝑍2 of the material, so the intrinsic efficiency of Ge is higher than other

semi-conductors including Si [38].

The segmentation of with SeGA gets its namesake is a 32-fold, 8-layer quadrant segmentation.

This segmentation allows for position reconstruction of a 𝛾-ray event in the detector, which can

be useful for Doppler reconstruction of 𝛾 rays produced in fast beam experiments. As our nuclei

were stopped, only the central contact carrying the total current in the crystal was recorded in our

measurements.

2.2 Measurements at the National Superconducting Cyclotron Laboratory

11Be is a radionuclide with a half-live of just 13.76(7) s [39]. This short half-life requires that

11Be must be produced in the same laboratory as experimental studies of it. Two measurements of

the 𝛽 decay of 11Be were conducted with GADGET at the now-retired National Superconducting

Cyclotron Laboratory. The NSCL experiment numbers were E18507, which ran in May 2018,

and E19030, which ran in July 2019. The NSCL operated the Coupled Cyclotron Facility and

earlier cyclotron-enabled rare isotope production programs, and provided world-competitive rates

of short-lived radioisotopes like 11Be for over 50 years.

2.2 11Be production by Projectile Fragmentation

A beam of 11Be was produced by projectile fragmentation at the Coupled Cyclotron Facility (CCF)

at NSCL by accelerating a beam of stable 18O to 120 MeV/u and impinging it on a 3196 mg/cm2 Be

production target. The initial 18O beam was created by Electron Cyclotron Resonance which ionizes

gas with microwave-driven electrons trapped in a magnetic bottle. Ionized 18O+ was extracted with

an electrostatic nozzle and transported to the CCF. Cyclotrons provide ion acceleration by two

primary elements: a magnetic field for confinement within the accelerator and radio frequency
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high voltage to drive ions’ motion at their cyclotron frequency until reaching the desired energy.

The CCF used the K500 to do primary acceleration before impinging beam upon a carbon foil

to strip the beam of electrons down to bare nuclei. Acceleration of 18O8+ is completed in the

K1200. At ∼ 120 MeV/u, a variety of nuclear reactions on the Be target are possible, such as

nuclear charge exchange, nucleon knockout, and collective fragmentation which can remove many

nucleons, including the desired reaction(s) to produce 11Be [40]. The A1900 fragment separator

[41] used magnetic beam steering and position-selective slits to remove the unreacted 18O8+ and

reduce the cocktail of undesired reaction products. The radioisotope production up to this point is

depicted in Figure 2.4 and further reading can be found in [41]. Beam was then delivered to the

experimental setup in the S2 vault.

2.2 Silicon P.I.N. Detector

The principle of particle identification by energy-loss and time-of-flight (ToF) measurements is as

follows. Beam bunches are prepared to a particular magnetic rigidity 𝐵𝜌, giving particles in a beam

bunch the same momentum to charge ratio, 𝑝

𝑞
. As the beam travels to the experiment, the lighter

mass species will have higher velocity and arrive sooner (having a shorter ToF). The instantaneous

energy deposition in the silicon detector is well-modeled by the Bethe formula [38]:

−𝑑𝐸

𝑑𝑥
=

4𝜋𝑒4𝑧2

𝑚0𝑣2 𝑁𝐵 (2.1)

where

𝐵 = 𝑍 [ln(2𝑚0𝑣
2

𝐼
) − ln(1 − 𝑣2

𝑐2 ) −
𝑣2

𝑐2 ] (2.2)

Here, 𝑣 and 𝑧 are the velocity and atomic number of the incident particle. 𝑁 and 𝑍 are the

number density and atomic numbers of the detector material. 𝑚0 is the electron mass and 𝑒 is the
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electron charge. The MSX detector was selected for its thin 300𝜇m profile, so energy loss of the

fast beam would be small relative to the total energy. In the approximation of small energy loss

(no velocity change), that instantaneous energy deposition is proportional to the square ratio of the

beam-particle’s atomic charge to its velocity, 𝑧2

𝑣2 . Thus, beam species should have unique energy

deposition and ToF profiles.

2.2 Electronics and Data Acquisition

Figure 2.5 depicts the operational and readout electronics as instrumented in E19030. The two

bias-voltage modules powered GADGET sub-systems and were controlled remotely by a dedicated

network-connected Linux machine. SeGA electronics were installed and operated by the NSCL

Gamma Group.

The instrumentation of NSCL E18507 and E19030 were kept similar. Notable exceptions were

the implementation of a beam time-of-flight timing circuit and implementation of the full Proton

Detector MICROMEGAS pad plane in E19030. The ToF timing circuit was used to measure the

time of flight of the beam specifically between the A1900 Focal Plane scintillator detector and our

insertable Silicon PIN detector, less than 1 m upstream of the Proton Detector. The detector was

inserted into the beam for short, dedicated measurements with attenuated beam between some full-

intensity production runs to produce an independent measurement the delivered beam composition.

Prior to E18507, several channels of the Proton Detector signal preamplifier were damaged and

E18507 ran with only eight of the thirteen MICROMEGAS pads implemented. In E19030, all

thirteen of the Proton Detector pads were implemented.

19



2.2 Implementation of GADGET electronics

The drift field in the Proton Detector was imposed by a CAEN N1470B programable high voltage

supply through the safe high voltage (SHV) feedthrough installed in the upstream end of the Proton

Detector. To produce the 120 V/cm electric field in the drift region, the N1470B provided −4.8 kV.

This field strength was calculated to provide a ∼ 8 𝜇s drift time from the detector cathode to the

MICROMEGAS. To limit the risk of electrical discharges, the high voltage bias was slowly ramped

(∼ 5 V/s) to the nominal voltage, where it remained for the duration of the experiment.

The second high voltage supply module was the Mesytec MHV-4. The first channel produced

the bias voltage for the charge-amplification field between the MICROMEGAS anodes and the

Micromesh. The bias was set to 330 V to produce a field of ∼ 2.6 · 104 V/cm. The second channel

produced the +40 V bias for the silicon PIN detector. The final two channels of the MHV-4 were

used to operate the gating grid. The third channel was set to -225 V for the ”decay-measurement”

operation mode and the fourth channel was set to +119 V for the ”beam-delivery” operation mode.

The two gating-grid voltages were modulated by a CGC Instruments NIM-AMX500-3 model high-

voltage switch module operating on the TTL standard for voltage logic set by the synchronizing

circuit.

The ”beam-delivery” and ”decay-measurement” cycle was set by a synchronizing circuit made

of two LeCroy 222 NIM Dual Gate and Delay Generator modules [42]. Each module consists

of two identical, independent sub-modules. The first module acts as a clock for the experiment

cycle and the second module prepared an analog logic signal that was delivered to the facility to

coordinate delivery of the pulsed 11Be beam. The synchronizing circuit works as follows. In the

first (”clock”) module, upon a receiving Start signal, the logic output of the first unit will turn

positive for a screwdriver-programmable amount of time (from ∼ 100 nsec to ∼ 11 sec). At the end

20



of the logical-on period, a short (∼ 10 ns FWHM) NIM-level signal will originate from the DEL

output. The DEL output of the first sub-module triggers the Start of the second and the the DEL of

the second triggers the Start of the first. Each unit was programmed to 1 second intervals allowing

for 1 second of ”beam-delivery” operation and 1 second of ”decay-measurement” operation. The

length of the cycle was chosen to be short relative to the 13.8 s 11Be halflife to minimize decay

losses during the ”beam-delivery” operation, while long compared to the ∼ 10−100 ms short-lived

contaminants. Longer cycles also reduce the relative detector dead time originating from switching

between operation modes. The synchronizing circuit reset itself every 1+1=2 seconds. The second

LeCroy 222 module was used to prepare the ”beam-on” signal to the facility. To ensure that the

Proton Detector gating-grid voltage was set and beam would not be delivered before the safety of

the GADGET electronics was ensured, the first unit of the second module was used to insert a ∼

10 ms delay before the complementary unit indicated beam should be delivered. The length of

this ”beam-on” logic pulse was short of 1 second (∼ 950 ms total) so that there would similarly

be time between beam delivery and the transition of the gating grid to allow ionization to the

MICROMEGAS again. A copy of the clock signal was sent to the data acquisition (Sec. 2.2.2.2)

to correlate data events against the measurement cycle. A diagram of this logic is shown in Figure

2.6.
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Figure 2.1: Schematic depicting the detection of a 𝛽+p decay. 𝛽 particle and proton (and any other,
non-depicted charged particles) create ionization in the detector media gas. Liberated electrons
are drifted, amplified in number, and detected by the MICROMEGAS pad (unlabeled, gold and
yellow). Electric field numbers are representative of nominal operating conditions. See text for
current electronics settings.
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Figure 2.2: An undimensioned mechanical design drawing of the Proton Detector. Key operational
components are labeled. The bulk of the detector is 49 cm long by 16.5 cm in diameter, while the
sensitive detection volume is roughly 40 cm by 10 cm in diameter.

23



Figure 2.3: Diagram of the detector pad plane. The MICROMEGAS anode is segmented into 13
pads labeled alphabetically A-M. Pads A-E are used for measurements while F-M are diagnostic.
The pad geometry is segmented radially at 1.4, 4.0, and 5.0 cm.

Figure 2.4: Schematic diagram of the Coupled Cyclotron Facility and the A1900 fragment separator.
A variety of ion sources feed low-energy beams into the K500 and K1200 coupled cyclotrons for
acceleration. Fast, ∼ 150 MeV/nucleon beams are impinged on the production target. The A1900
fragment separator uses magnetic rigidity separation to purify the beam before delivery to the
experiment. Figure Credit: Ref. [41].
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Figure 2.5: Schematic of electronics, with some settings, and wiring for E19030. Dashed lines are
meant to indicate devices, such as the Proton Detector, or various electronics or readout modules.
Figure Credit: Lijie Sun
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Figure 2.6: Schematic of electronics logical pulses controlling the Proton Detector and K1200 RF
cycling for E19030. The numbers indicate the sub-module of the LeCroy222 the signal originates
from. The first two sub-modules operate as a clock for the experiment. When NIM2/TTL2 are
”on”, the gating grid is set to its opaque setting. After a delay generated by DEL3, NIM4 signals
”on” for the CCF RF and beam delivery. Figure Credit: Lijie Sun

2.2 Data Acquisition

Data acquisition of GADGET sub-systems was performed with NSCL’s Digital Data Acquisition

System (DDAS). DDAS was developed to work with SeGA for the purposes of in-beam 𝛾 spec-
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troscopy for detection of and identification of nuclear reaction residues [43] and later expanded

to work with most familiar detectors [44]. It is meant to replace large portions of the catalog of

traditionally-used analog Nuclear Instrument Modules (NIM) electronics used for signal shaping,

timing, and other frequently used pre-analysis tools, such as coincidence matching between different

detector (sub-) systems. In DDAS, analog electronic signals are fed into standard digitization elec-

tronics and parameters such as peak voltages, voltage rise-times, and incident timing of radiation

events are extracted from the digitized traces in software and saved to disk. Digitized traces may

also be stored for further offline (re-)analysis. In stopped beam experiments, such as our 11Be(𝛽−p)

measurements, DDAS allows for essentially zero-dead-time measurements of rare decays.

In both of our measurements, we utilized three 250-MHz, 16-channel PXI Digital Pulse Pro-

cessors in a PXIE-CRATE-P16X14 from XIA, which will be referred to as Pixie0, Pixie1, and

Pixie2. The first thirteen channels of Pixie0 recorded the Proton Detector’s MICROMEGAS volt-

ages after passing through a Mesytec MPR-16-L preamplifier. Channel 14 of Pixie0 recorded the

NIM output of the LeCroy222. Channel 15 of Pixie0 and Channels 0-14 of Pixie1 recorded the 16

SeGA central-contact, full-energy, signals. Pixie2 measured the signal of the silicon PIN detector

in channel 0 and voltage from an Ortec566 Time To Charge NIM module [45] in channel 1. The

output voltage of the Ortec566 maps to the timing between the A1900 Focal Plane scintilator and

the upstream silicon detector. It returns a larger voltage for a greater delay.

2.2 NSCL Experiment E18507

Our first 11Be(𝛽−p) measurement was NSCL Experiment in E18507 and ran in May 2018. To

our knowledge, this measurement was the first of several across several groups world-wide to be

conducted following the dark neutron hypothesis put forth by Fornal and Grinstein [3]. E18507

ran as an extension of E17023, the GADGET commissioning experiment [33], with 12 hours of
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NSCL director-appointed discretionary beam time. Roughly six hours were used by the facility for

beam-tuning and roughly six hours of beam was delivered. Figure 2.7 shows the facility-provided

particle identification using the A1900 focal plane scintillator energy loss and timing with respect to

the CCF RF. The beam was 85% pure 11Be at a rate of 580000 particles per second. Contaminants

were identified as 13B, 12B, and 9Li. Of the contaminants, 13B was the most intense.

Figure 2.7: Particle identification plot provided by NSCL facility in E18507. The y-axis is an
uncalibrated measurement of in-flight energy loss through a small detector. The x-axis is the
particle time of flight through the A1900. 11Be is the dominant species. The beam has low levels
of contamination with 12B, 13B, and 9Li. The repeated structure every ∼ 45 ns is caused by the
arrival of the next RF beam bunch.

Despite the 15% beam contamination, the measured charged-particle 𝛽 decay was essentially

contamination free. The 1s-1s long on-off beam cycling removed most radioactive contaminants

by way of letting them decay during beam delivery. The half-life of 13B is 17.33(17)ms and the

half-life of 12B is 20.20(2)ms. The only contaminant with a half-live close to the 1 second on-off
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cycle length is 178 ms 9Li and it’s delivered on a level of just a couple percent. It may be present

in the beginning of the 1 second measurement and will be entirely absent toward the end. 9Li

will decay by 𝛽− decay, but will appear in the detector virtually identically as those 𝛽− particles

from 11Be. (The 9Li(𝛽−) Q-value is 13606.45(20) keV and the 11Be(𝛽−) Q-value is 11509.46(24)

keV.) There exists a 9Li(𝛽−n)8Be decay branch that will produce back-to-back 𝛼 particles from the

breakup of the daughter 8Be. The Q-value for 8Be−→2𝛼 is 91.84(4) keV, which is dominated by

the 11Be(𝛽−) background and not feasibly accessible with GADGET.

As E18507 was a serendipitous opportunity after the commissioning of GADGET, the full

MICROMEGAS was not able to be implemented. During GADGET commissioning, several

preamplifier channels were damaged so Pads F, G, L, and M were not instrumented. Pads B and E

were demoted to diagnostic veto pads and only Pads A, C, and D were used for measurements.

2.2 NSCL Experiment E19030

Following the analysis of NSCL E18507 described in Section 3.2, we proposed a subsequent

measurement to gather greater statistics and improve the search sensitivity. Our proposal was

awarded 96 hours of NSCL beam time, with roughly 76 hours of beam delivery to GADGET.

The experimental setup for E19030 was nearly the same as E18507, but the full MICROMEGAS

was instrumented as described in Section 2.1.2 and a MSX09 300𝜇m silicon PIN detector by

Micron Semiconductor Ltd. was implemented upstream of GADGET. During dedicated runs with

an attenuated beam, the silicon detector was inserted into the beam to perform energy-loss vs

time-of-flight measurements between the silicon detector and the A1900 focal plane scintillator.

These measurements were used for an independent particle identification of the incoming beam,

but were of limited utility due to poor performance of our silicon detector. Figure 2.8 shows the

beam particle identification measurements from the facility. In E19030, the delivered beam was
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Figure 2.8: Particle identification plot provided by NSCL facility in E19030. The y-axis is an
uncalibrated measurement of in-flight energy loss through a small detector. The x-axis is the
particle time of flight through the A1900. 11Be is the dominant species. The beam has low levels of
contamination with 12B, 13B, and 9Li. The repeated structure every∼ 45 ns is caused by the arrival
of the next RF beam bunch.

89% pure 11Be at a rate of 660,000 particles per second. Beam contaminants were similar to the

previous measurement and were, in order of abundance, were 13B, 12B, and 9Li. Similarly, the

anticipated impact of the decays of these contaminants in the measured charged-particle spectrum

was negligible. For the GADGET-side particle identification runs, to protect the silicon detector

and related electronics, the beam was attenuated by a factor of 3000 to roughly 200 particles per

second.
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CHAPTER 3

ANALYSIS: DATA SORTING, INFERENCE WITH 𝜒2-MINIMIZATION

The analysis of data from NSCL experiments E18507 and E19030 share similarities from being

conducted with the same experimental set up. Primitive data from DDAS was first extracted and

combed for a number of correlations between the Proton Detector and SeGA detector systems to

make histogramed charged-particle and 𝛾 spectra to which quantitative analysis was applied. A

number of analysis techniques will be discussed as ultimately, the E18507 dataset was statistics

limited and did not reach desired precision goals. It was found that applying the E18507 analysis to

the larger E19030 dataset lead to a systematically limited result that also missed desired precision

goals, and a new Bayesian Markov Chain Monte Carlo code (Chapter 4) was developed to handle

model-fitting the domineering 11Be(𝛽−𝛼)7Li background.

3.1 Data Sorting

To save data with the NSCL DDAS described in Section 2.2.2.2, a common template was used to

store values from the various detectors and detector sub-systems. That is, data was extracted from

each channel and saved when any single channel triggered the threshold for a ”valid” event. Thus,

most event files have a single entry from a single detector sub-system. This choice was made to

reduce detector deadtime and provide greater flexibility to vary coincidence and threshold cuts in

software, by scanning over events and selecting coincident events by their DDAS timestamps in an

offline analysis.

To organize the DDAS events into ”physical” events, a data file is searched chronologically for

a charged-particle measurement on a MICROMEGAS pad. For every hit, the subsequent DDAS

events are searched up to a period of 12 𝜇s later, which is in excess of the approximately 8 𝜇s
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drift time for charges traveling the full length of the detector. The analysis software looks for other

events on MICROMEGAS pads, veto (outer) and measurement (inner). Events that have triggered

an outer veto pad are discarded as the charged-particle radiation was not confined to the sensitive

volume of the Proton Detector. There are two data-sorting schemes to deal with events in the 12

𝜇s time window and stay within the Proton Detector sensitive volume: the composite pad scheme

and the individual pad scheme. In the composite pad scheme, charge measurements from all five

interior MICROMEGAS pads A-E are added together to create a single charged-particle spectrum.

Contributions are gain matched, or aligned with a pre- energy calibration, to spectral features to

standardize the outputs across the pads before summation and inclusion in the histogram to be

analyzed. In the individual pad scheme, every other pad is treated as a veto pad and one histogram

is created per pad. In this way, the individual pads each function as their own, smaller detector.

The composite pad scheme has greater efficiency due to the larger functional-pad area, however has

worse energy resolution due to differences in the individual pad electronics and a higher-energy 𝛽

background that reaches into the ∼ 200 keV energy region of interest from the large volume for 𝛽

particles to deposit energy. The individual pad scheme suppresses the 𝛽 background and has better

resolution, but has worse detection efficiency, due to the more selective veto/exclusion cuts.

3.2 NSCL Experiment E18507

Figure 3.1 shows the unsorted charged-particle events on all instrumented pads. Individual features

are difficult to identify, due to incomplete charge deposition per pad, except for a sharp feature

around ADC channel 12000 in only the quadrant Pads B, C, D, and E. Application of the individual

pad veto scheme yields Figure 3.2. The sharp features in the quadrant pads disappear and five

distinct features remain. At the lowest energies, we have the 𝛽− spectrum, attenuated by the

low-density detector gas. The other features are related to the ∼ 3% 11Be(𝛽−𝛼) branch [46, 47, 27].
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Figure 3.1: The unsorted, raw spectra of all Pads in E18507. There are general features such as a
large amount of counts below channel 1000, subtle peaks around channels 5000, 10000 and 15000,
with fairly flat connections between peaks, and sharp peaks in some spectra around 12000. The
behavior below 1000 channels comes from 𝛽 particles. The broad peaks at 5000, 10000, and 15000
are associated with the 11Be(𝛽−𝛼) decay. The sharp peaks near 12000 channels are thought to be
electronic noise, perhaps from inefficiencies in the transitions of the gating grid.

3.2 Understanding the Li+𝛼 spectrum

The nuclear structure information used in the first analysis came from the compilation and review

of Ref. [39] and the 𝛽-decay feeding information from [47, 46]. The 11Be(𝛽−𝛼) proceeds through

the 3/2+ state located at 9873(4) keV with a total intensity of 3.1(4)%. This 3/2+ state has an

intrinsic width of 109(14) keV and decays via emission of an 𝛼 particle to 𝛼 and 7Li, primarily to

the 7Li ground state. Some fraction of these decays populate the 478 keV excited state of 7Li. Ref.

[47, 46] measured this branch to populate the ground state 87.4(12)% and the 478 state 12.6(12)%.

The 𝛼 separation energy of 11B is 8664.310(10) keV, so 𝛼-decays to the 7Li ground state have
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Figure 3.2: The sorted, raw spectra of Pads A, C, D in E18507. Comparing to the unsorted
histograms shown in Fig. 3.1, there is finer structure here that was revealed by the data sorting and
event-vetoing algorithm. There remain a large amount of counts below channel 1000. The peaks
around channels 5000, 10000 and 15000 are now clearly visible, in addition to a new peak around
channel 3000. The behavior below 1000 channels comes from 𝛽 particles. The peaks peaks at
3000, 5000, 10000, and 15000 are associated with the 11Be(𝛽−𝛼) decay. The sharp peaks near
12000 channels are were present previously have been removed by the sorting and veto algorithm.

1209(4) keV center of mass kinetic energy and decays to the 7Li excited state have 731(4) keV

center of mass kinetic energy. To make sense of Fig. 3.2, one must consider additional detector

effects coming from decays originating on the wall of the detector. Either by diffusion of 11Be,

by incomplete neutralization of the 11Be beam, or both of these effects, a significant fraction of

decays can originate from the detector cathode. The 𝛽−𝛼 decay will produce a back-to-back 𝛼 and

7Li pair, so decays originating on the interface of the detector gas and the detector body will lead

to measurements of only one of the two nuclear-fragment charged-particle radiations. That is, for

each of the two 7Li final states, the following sets of charged-particle radiations will be measured:
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𝛼 and 7Li both, 𝛼 alone, or 7Li alone. The energy sharing between the two fragments is given by

kinematics determined by particle mass. Table 3.1 shows the breakdown of central energies for

each detection possibility. Due to the broad nature (Γ = 109(14) keV) of the 9873 keV 𝛼-emitting

state [39], the peaks from each of these radiations have substantial widths and considerable overlap

in some cases.

Description Center of Mass Energy 𝛼 contribution 7Li contribution
11Be(𝛽−𝛼)7Li(g.s.) 1209(4) 769(3) 440(2)

11Be(𝛽−𝛼)7Li(𝛾) (478 keV) 731(4) 465(3) 266(2)

Table 3.1: Central energies of decay events seen by the Proton Detector. Actual energies are a
distribution determined by the 109(14) keV intrinsic width of the emitting 9874 3/2+ state in 11B
[39]. Energies are in keV.

With these more complex spectra from wall-effects in mind, we can now make sense of the

structures in Fig. 3.2. At ADC channels ¡2000, we have the suppressed 𝛽− spectrum. Around

channel 3000, we have measurement of the cathode-originated 7Li-recoil alone from the excited-

state feeding of 7Li (266 keV). The peak around channel 5000 is a composite peak made of two

cathode-originating decays, the 𝛼-particle alone from the excited state feeding of 7Li (465 keV)

and the 7Li-recoil alone of the ground state 7Li feeding (440 keV). The peak around channel 10000

is another composite peak, consisting of the in-gas, full-energy measurement to the 7Li excited

state (731 keV) and the cathode-originating 𝛼-particle alone from the ground state feeding of

7Li (769 keV). Finally, around channel 15000, we have the in-gas, full-energy decay to the 7Li

ground state (1209 keV). (Jumping ahead, see Fig. 4.9 for a theory calculation of all possible

𝛽−𝛼 -component spectra before detector effects and note the considerable overlap between some

different components.)

This is demonstrated further in Fig. 3.3 and 3.4. Fig. 3.3 shows the charged-particle spectra

for Pads A, C, and D in the individual pad veto scheme in coincidence with a 478 keV 𝛾 ray (470
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to 480 keV). The in-gas, full-energy peak is strongly suppressed and only appears from accidental

coincidences, arising from a 478 keV gamma from a decay outside of the Proton Detector or a

Compton scatter event depositing 478 keV. Fig. 3.4 shows this same coincidence but subtracts a

background of coincidence on 𝛾 rays from 482 to 492 keV. Now, the spectra are virtually pure

11Be(𝛽−𝛼)7Li(𝛾). (The energies are roughly 266, 265, and 731 keV). Unfortunately, these spectra

are severely statistically limited and have limited further utility.
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Figure 3.3: Individual pad spectra for Pads A, C, and D in E18507 coincident with a 478 keV
gamma from the deexcitation of 7Li∗ fed from the 11Be(𝛽−𝛼) decay. Accidental coincidences with
the 11Be(𝛽−𝛼)7Li decay are present, but the low-energy portion of the spectra is enhanced relative
to the high energy portion.

36



0 200 400 600 800 1000 1200 1400
Energy (keV)

20−

10−

0

10

20

30

40

50
su

bt
ra

ct
ed

 c
ou

nt
s/

12
 k

eV

PadA

PadC

PadD

Figure 3.4: Individual pad spectra for Pads A, C, and D in E18507 coincident with a 478 keV
gamma from the deexcitation of 7Li∗ fed from the 11Be(𝛽−𝛼) decay with random coincidence
background subtraction. Only the 11Be(𝛽−𝛼)7Li∗ emissions are visible here, with poor counting
statistics. There is the 7Li-alone at ∼ 265 keV, the 𝛼-alone at ∼ 465 keV, and the 7Li+𝛼 full-energy
decay at ∼ 731 keV.

An important thing to note is that the properties of this state have been determined by a

combination of 11Be(𝛽) decays and 7Li(𝛼,𝛼), 9Be(3He,𝑝), 12C(𝑡,𝛼𝛾), and 14N(𝑛,𝛼) reactions [39].

The energy and intrinsic width of the 𝛼 emitting state was determined by reaction measurements

and are at odds with the recent 11Be(𝛽−𝛼) measurement in Ref. [27]. It was found in the the

later E19030 analysis that the recent value of the intrinsic width Γ = 233(3)stat(3)syst, measured

by 𝛽−𝛼 decay and not nuclear reaction quantities, better agreed with what we measured in our

𝛽−𝛼 measurement. (See Fig. 4.6.) The energy and width values in Ref. [27] were adopted in

the E19030 analysis, but not the E18507 analysis. This change came as the new measurement was

published in 2019, after the analysis for E18507 was largely completed.
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3.2 Energy Calibration

Application of the veto schemes and a linear energy calibration yields Figure 3.5. The energy

calibration comes from fitting the peaks of the 7Li ground state feeding decays at 440 (7Li), 769

(𝛼), and 1209 keV (7Li and 𝛼) to Gaussian profiles in each measurement pad. Due to the composite

nature of the two lower-energy peaks, only the tops of the peaks (± ∼ 200 channels) were fit under

the assertion that the peak maximum is determined by the ground state feeding peak energies, even

if the full peak shape is harder to describe.
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Figure 3.5: The sorted and energy calibrated analysis spectra of E18507. Both individual pad and
composite pad schemes are shown. The 𝛽 background is suppressed in the individual pad scheme,
but at the cost of counting statistics.

In the composite scheme, the recorded energy is the sum of energies across all measurement

pads, within the correlation time window, corrected by the individual-pad-scheme calibrations.
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There is a small shift of the composite pad spectrum to higher energy, as the larger effective pad

yields greater 𝛽-particle energy deposition, but this effect is small (∼ 10 keV).

3.2 Efficiency and Normalization to the 3% 𝛽−𝛼 branch

To deduce a branching ratio, a measurement of the total number of 11Be decays is needed to

normalize any measured non-zero intensity. For this, we used the intensity of the 3.30(10)%

11Be(𝛽−𝛼) background [27]. By integrating the charged-particle spectra and applying calculated

efficiency corrections, we estimated the total number of 11Be decays ”eligible” for measurement on

each pad. The ratio of detected counts and this calculated number of atoms is the branching ratio.

The first step in calculating efficiency corrections was to simulate the particle ranges in the

detector gas using the code ”SRIM: The Stopping and Range of Ions in Matter” [48]. SRIM is a

particle-based simulation code that calculates ion interactions in matter and can calculate a variety

of useful descriptions, such as particle range, energy deposition profile, and fraction of energy lost

to different ion stopping processes (ionization, lattice disruptions in solid targets, kinetic energy

sharing with target). The simulated range distribution was modeled with a Gaussian profile. The

average range as the central value and the calculated straggling was treated as the Gaussian width

𝜎. Although physical events will have a distribution of energies from the intrinsic width of the

𝛼-emitting 9874 keV state in 11B, only the central energy was modeled.

A Monte Carlo code was developed to estimate the efficiency of an event measured in a detector

pad to survive the software veto cuts. This efficiency is normalized to each pad. To clarify, in

calculating the pad efficiency, only tracks that project to the given pad are considered. In the limit

of infinitesimal tracks, the efficiency of Pad A/C/D/ACD would be 100% as a track would originate

and terminate in the same location, in only the same single pad. The SRIM-calculated ranges were

input for several particle-energy combinations to be calculated and the distribution of 11Be decays
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Decay Type Location Pad A Efficiency (%) Pads C/D Efficiency (%)
p+10Be in-gas 77 86

cathode 88 93

𝛼+7Li∗ in-gas 54 71
cathode 77 85

𝛼+7Li in-gas 37 61
cathode 68 79

Table 3.2: Simulated charged-particle detection efficiency per pad for possible 11Be(𝛽−𝛼)7Li decay
radiations. Numbers are in percent.

was assumed to be uniform in the detector, due to the long half-life allowing substantial diffusion

before decaying. We simulated the efficiency of a 180 keV proton, a 18 keV 10Be recoil, 𝛼-particles

at 466 and 770 keV, and 7Li recoils at 266 and 440 keV. Simulations were run for both in-gas decays,

where the total event length is used (as the 7Li+𝛼 decay is back to back) and the cathode-originating

decays, where only one particle will be measured, leading to an shorter effective track. Table 3.2

lists the estimated detection efficiency of each type of decay. These values are weighted by the

frequency of the in-gas vs cathode-originating fractions (∼ 60% vs ∼ 40%) and the 7Li∗ vs 7Li(g.s.)

feedings (13% vs 87% [46]). The relative efficiency between 𝛽−p and 𝛽−𝛼 was determined to be

1.49 for Pad A and 1.25 for Pads C and D. Integrating the spectrum, events depositing 200 keV

of center of mass energy or greater are interpreted as 𝛽−𝛼 events and used in normalization. Pad

A recorded 112,285 events, Pad C recorded 223,966 events, and Pad D recorded 141,834 events.

Assuming the 8 · 10−6 branch of Ref. [6], we would expect to observe 40 to 75 𝛽−p counts per pad.

3.2 Statistical Inference of 𝛽−p

Statistical inference of the number of 11Be(𝛽−𝑝) counts was done on an individual pad basis. The

inferred 𝛽−𝑝 counts were normalized to the respective 11Be(𝛽−𝛼) spectra and efficiency calculations

to calculate a branching ratio. The average branching ratio result(s) were averaged, weighted by
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their standard 1 𝜎 error(s). Extraction of the observed 11Be(𝛽−𝑝) counts was performed by

fitting an equation, which one parameter which represented the number of 11Be(𝛽−𝑝) counts, to

the experimental histograms. The function parameters were optimized by a gradient-descent 𝜒2

minimization algorithm implemented by ROOT’s default histogram ”Fit()” function. Spectra were

fit by a function consisting of the sum of an exponential function meant to capture the 𝛽-particle

background, a quadratic polynomial meant to capture the 11Be(𝛽−𝛼) in the minimum around

𝐸 ∼ 200 keV, and a Gaussian peak meant to capture the possible 11Be(𝛽−𝑝) signal. In principle,

the 𝛽−𝑝 signal has contributions from each of the decay locations: a peak at ∼91% of the center

of mass energy of the cathode-originated proton alone and second peak at higher energy from the

in-gas proton and 10Be recoil. Usually, gas ionization and ion energy loss processes are assumed to

be linear, but SRIM estimated that only ∼ 50% of the 10Be recoil energy made its way to ionization.

(For all other particles, this fraction is ∼95+%.) Additionally, there is the cathode-originated 10Be-

alone radiation, but the estimated energy of such a decay is ∼ 20 keV and too low in energy to be

detected by the Proton Detector. In this first and simplest analysis, these details were not yet fully

investigated and the Gaussian peak was determined sufficient for a simple ”bump hunt” analysis.

To search for the 11Be(𝛽−𝑝), we still need to further define our search function, namely the

detector resolution for our Gaussian search function. Due to the broad nature of the 11Be(𝛽−𝛼) in

our spectra, further complicated by the cathode-originating decays and feeding of the 7Li∗ state,

extracting the detector resolution was not straightforward. Instead, the detector resolution was

parameterized as a function of energy using the following 𝛽+𝑝 peaks from previous GADGET

measurements: 401, 555, 943 keV peaks from 25Si [35]; 206, 267, 579, 866 keV peaks from 23Al

[34]; 259, 803, 1026 keV peaks from 31Cl [36]. Data was fit per pad with a linear curve with 𝜒2

minimization. The adopted detector resolutions were calculated by the parameterization for each

search energy, but were roughly 8.1%, 11.6%, and 6.4% for Pads A, C, and D, respectively.
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With our search feature and background models defined, a series of fits to data were performed

for center of mass energies from 160 keV to 250 keV on each of Pads A, C, and D. The fit window

was from 60 keV below to 40 keV above the nominal search energy and the nominal energy was

scanned over the search range. This asymmetry in the fit window is afforded by the exceptional

quality of the fit of the high-energy portion of the 𝛽-particle background to an exponential curve in

this data and in previous GADGET experiments [35, 33, 34, 36]. Fig. 3.6 shows one fit to Pad C,

searching for a peak at 175 keV. Additional fits to data can be found in Appendix A.
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Figure 3.6: Data from Pad C and a fit of the data to a modeling function. The model was the sum
of an exponential function with parameters 𝑒𝐻 and 𝑒𝑀 , a quadratic polynomial 𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2,
and a Gaussian with fixed 𝐸 = 175 keV center and ∼ 11.6% width. The Gaussian peak is meant to
extract the number of 𝛽−𝑝 counts in the ℎ𝑒𝑖𝑔ℎ𝑡 parameter. This fit yields 9(6) 𝛽−𝑝 counts.

Fig. 3.7 shows the statistical error-weighted average of this search over all three pads. Systematic

errors are not estimated. There are two regions of note. The first is a clear excess is seen at E∼170

keV. This excess is greater than zero at the 2 𝜎 level at its peak and exists over roughly the width of
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a peak with the average detector resolution. Secondly, the final point at E=250 keV also reaches a 2

𝜎 significance above zero. The fit here incorporates the 7Li∗ -alone peak to a large degree. Fitting

a novel, small peak on top of a large peak may serve as an uncontrolled systematic error. This point

deserves additional scrutiny before being taken too seriously.
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Figure 3.7: Results of E18507, plotting the averaged branching ratio of Pads A, C, and D, against
assumed resonance energy. Plotted also, in dashed lines, is zero and the then-only previous inference
of the branching ratio by AMS [6].
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With these averaged measurements, upper limits were derived. Upper limits were defined by

a Gaussian probability density function that is truncated at the non-physical negative values, and

normalized so the physically-allowed zero and positive values integrate to unity. That is, the limit

is determined by the following Eq. 3.1. Here, 𝐶𝐼 is a number between 0 and 1 that is the desired

degree of confidence, 𝑔(𝑥 |𝑥, 𝜎) is the Gaussian distribution with central value 𝑥 and standard 68%

error bar 𝜎, and 𝑏 is the value of the upper limit. We plotted results for 90% and 95% confidence

limits, shown in Figure 3.8.

𝐶𝐼 =

∫ 𝑏

0 𝑔(𝑥 |𝑥, 𝜎)𝑑𝑥∫ ∞
0 𝑔(𝑥 |𝑥, 𝜎)𝑑𝑥

(3.1)
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Figure 3.8: Upper limits derived from individual pad averaged results of E18507 in Fig. 3.7. The
upper limit is defined in Eq. 3.1. The red-dashed line shows a branch of 8 ·10−6, which was inferred
from the indirect AMS technique [6]. Over most of the search space, there is no ability to exclude
the 8 · 10−6 branching ratio. Exclusion occurs only for 185 ≲ 𝐸 ≲ 195 keV at ∼ 90% significance.
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From this upper limits plot, there is only a small range of energies with clear distinction from

zero and the 𝛽−𝑝 rate of 8 · 10−6 inferred from the indirect AMS technique [6]. Only in the

region of E=185-195 keV is there rejection of the finite value at a 90% but not 95% level. Given

the short, roughly six hour, duration of beam delivery in E18507 and the statistical error bars

similar in magnitude between the values of the available 𝛽−𝑝 hypotheses, we concluded an order

of magnitude greater statistics would likely allow discrimination between the then available 𝛽−𝑝

predictions (𝑏𝑝 ∼ 10−8) and inferences (𝑏𝑝 = 8.3(9) · 10−6). This analysis was written up as part

of the NSCL PAC proposal E19030 in PAC43 and was awarded the 95 hours requested beam time.

3.3 NSCL Experiment E19030

The setup of E19030 is described in 2.2.4. The primary difference between E18507 and E19030

was full implementation of all 13 MICROMEGAS pads in E19030. The initial analysis of E19030

was similar to the E18507 analysis described in Sec. 3.2.2, but expanded upon a great deal and will

be described here.

3.3 GADGET-side Particle Identification

In E19030, we also instrumented a dE-TOF circuit to conduct particle identification at the degrader

and diagnostic cross, just upstream of GADGET. The structure of these data events was different

than the usual GADGET events discussed before. In particle identification mode, only the MSX

silicon detector and the ORTEC566 TAC signals were analyzed and values saved. In the DDAS

event building, TAC signals were always stored as separate events. (The TAC signals were delayed

by the signal travel time from the experimental vault to the DataU user area, where the ORTEC566

was installed.) The DDAS events were sorted into physical correlations in software by the signature

of a silicon detector event followed by the TAC event in the subsequent DDAS event. The dE-TOF
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matrix is shown in Fig. 3.9 and projections are shown in Fig. 3.10 (energy projection) and 3.12

(time projection). The red dashed lines show possible boundaries for the particle identification

analysis.
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Figure 3.9: Silicon energy deposition and time of flight matrix color coded by intensity. The dashed
lines are proposed thresholds that may be useful in particle identification. The primary observation
is the dominance of one peak, assigned to the 11Be component of the beam, at energy 𝐸 ∼ 1220
(arb. units) and time of flight 𝑡 ∼ 12000 (arb. units).

The silicon detector histogram has several peak-like features with only limited separation, but

there may be peaks at ∼500, ∼750, ∼1220, ∼2500 channels. The relative intensities of these

regions is 0.3%, 2.7%, 96.8%, and 0.2% respectively. The number of peaks nicely matches the

NSCL-provided PID shown in Fig. 2.8, but the relative abundances are discrepant. Perhaps the

low-energy shoulder of the ∼1220 channel peak is another species. This is visualized in Fig. 3.11,

which shows the silicon energy histogram and a fit with the sum of four Gaussian curves. While

there is generally a nice match to data in shape, the extracted peak widths do not increase in a

regular pattern, which one would expect as the energy increases.

The realized silicon detector energy resolution was roughly 11% at FWHM. This was determined
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by fitting the highest-intensity, (assumed) 11Be energy peak with a Gaussian profile, shown in solid

red in Fig 3.10. Offline tests showed energy resolution of down to ∼6%, which is still in excess

of expectations for silicon detectors [38]. Additionally, LISE++ [49] calculations estimated energy

depositions of 11(2) MeV, 19(3) MeV, 19(3) MeV, and 38(4) MeV for the 9Li, 11Be, 12B, and 13B,

respectively. Taking the 19(3) MeV energy loss of 11Be as the central value, perhaps the 11(2)

MeV 9Li is observed at roughly half the energy of the most intense-peak, but the 38(4) MeV 13B at

twice the energy of the most-intense peak is not.
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Figure 3.10: Silicon energy deposition (blue) used in the particle identification electronics. The
dashed red lines are proposed thresholds that may be useful in particle identification. The solid
red line is a superimposed Gaussian profile, fit by 𝜒2 minimization to measure the peak center and
resolution.

Similarly, the TOF measurement was less insightful than expected. There are suggestive peaks

at ∼ 6000, ∼12200, ∼ 15000, and ∼ 21000 channels with relative intensities of 0.3%, 96.1%,3.2%,
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Figure 3.11: Silicon energy deposition (blue) used in the particle identification electronics with a
smaller range than in previous Fig. 3.10. The solid red line is a superimposed sum of four Gaussian
profiles, fit by 𝜒2 minimization. While the fit reproduces obvious features, all Gaussian parameters
are all free parameters. It is not obvious what secondary features are from beam contaminants and
what are from non-ideal behavior of the detector.

and 0.5%, respectively. Again, the odd, now high-energy, shoulder of the most-intense peak may

arise from a true measurement of a contaminant or may be an artifact of the particle identification

circuit. The resolution of the most intense peak was measured to be 6.8% in channels, but this is

somewhat harder to quantify due to a lack of timing calibration. Offline tests with pulser signals

showed sub-ns timing resolution. The same LISE++ simulations as a paragraph before predict time

separation of ∼40 ns between the first-arriving 12B and the last-arriving 9Li, with species-specific

time spreads of ∼4 ns, which closely matches the facility provided PID, shown in Fig. 2.8.

49



TOF
Entries  506712
Mean   1.231e+04
Std Dev     876.6

 / ndf 2χ  231.5 / 147
Prob  05− 1.07e
counts    10.4±  5467 
center    0.6± 1.219e+04 
sigma     0.5± 352.1 

0 5000 10000 15000 20000 25000 30000
Time of Flight (arb. units)

1

10

210

310

410
co

un
ts

 / 
bi

n
TOF

Entries  506712
Mean   1.231e+04
Std Dev     876.6

 / ndf 2χ  231.5 / 147
Prob  05− 1.07e
counts    10.4±  5467 
center    0.6± 1.219e+04 
sigma     0.5± 352.1 

Figure 3.12: Time of Flight (blue) used in the particle identification electronics. The dashed red
lines are proposed thresholds that may be useful in particle identification. The solid red line is a
superimposed Gaussian profile, fit by 𝜒2 minimization.

In conclusion, while the supplementary GADGET-side particle identification was first imple-

mented here in E19030, there are obvious limitations of the performance of the silicon detector and

associated hardware during the online measurements. From arguments in Sec. 2.2.3 around the

minimal impact of radioactive contaminants due to their short half-lives and non- charged-particle

emitting behaviors, and very clear nature of the facility provided PID, this section is included for

completeness only. Difficulties in this circuit are expected to have no bearing on the primary 𝛽−𝑝

measurement in GADGET.
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3.3 Summarizing the Remaining 𝜒2-Minimization Analysis

3.3 Limitations of E18507 Analysis

The analysis of E19030 using the E18507 method, accounting for the additional instrumented pads,

was quickly found to be of limited utility. With the increased statistics, the simple background of

the sum of an exponential curve and a quadratic polynomial no longer provided adequate quality fits

to the data over many of the pads. The search range with reasonable 𝜒2 p-values was E ∼ 180−220

keV, which is rather limited in scope. Further, even for these reasonable p-values, there is the

question of large (several 𝜎 significance) negative values for the 𝛽−𝑝 peak height parameter. This

is demonstrated in Fig. 3.13, which shows the fit of Pad C from 160 to 260 keV searching for a

peak of 220 keV. (This ∼ 3𝜎 negative-value peak at E=220 keV is common across pads, but Pad C

is shown here for its large p-value of ∼ 0.5.) Negative branching ratio is nonphysical, so this highly

significant negative intensity and decent p-value is suspect. Additional fits across pads, every 15

keV, are included in Appendix B.
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Figure 3.13: Pad C data from E19030 and a fit of the data to a modeling function. The model was the
sum of an exponential function with parameters 𝑒𝐻 and 𝑒𝑀 , a quadratic polynomial 𝑎+𝑏 ·𝐸+𝑐 ·𝐸2,
and a Gaussian with fixed 𝐸 = 220 keV center and ∼ 11.6% width. The Gaussian peak is meant to
extract the number of 𝛽−𝑝 counts. This fit yields −44(13) 𝛽−𝑝 counts. The quality of the fit, as
judged by p-value (𝑃𝑟𝑜𝑏), is excellent, however, a negative amount of counts is nonphysical and
this fit yields negative counts at nearly 3𝜎 significance.

For completeness, Fig. 3.14 is the (statistical) error-weighted average branching ratio, deter-

mined across pads A, B, C, D in E19030 using the analysis of E18507. In comparison to the

results of E18507 shown in Fig. 3.7, there are two notable features. First, the E19030 results have

statistical error bars of ∼ 2 · 10−6 as we sought to attain, but secondly, significant swaths of the

search region exist in nonphysical negative branching ratios with incredible statistical significance.

The situation with the E18507 analysis is as follows: we limit ourselves to the search range of E =

175 to 220 keV and have to contend with explaining the ∼ 4𝜎 nonphysical ”signal” at E = 220 keV

or we can reduce our search range but not on the merits of the p-value as a quality of the fit.
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Is this evidence that the background is unknowable? Hardly, but a more sophisticated, physically

motivated model is needed and the idea of systematic errors needs to be forefront in the decision

making.
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Figure 3.14: Results of E19030 with the E18507 analysis, plotting the averaged branching ratio of
Pads A, B, C, D, and E against assumed resonance energy. Plotted also, in dashed lines, is zero and
the then-only previous inference of the branching ratio by AMS [6].

The minimal 𝜒2 value is improved by inclusion of additional polynomial terms. (One additional

term pushes fits to reasonable p-values across most pads at most energies.) However, beginning

with a cubic function to model the lowest energy portions of the 11Be(𝛽−𝛼) spectrum, we can no

longer guarantee the same selectivity between the 𝛽−𝛼 background and any possible 𝛽−𝑝 signal.

A search peak, whether a simple Gaussian or one more complicated, based out of greater inclusion

of physics and detector features, as will be detailed soon, will be of mixed concavity. On the tails
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of the peak, the second-derivative concavity will be positive. Near the maxima, the concavity will

be negative. The choice of summed exponential and quadratic polynomial curves to describe the

background provided some guarantee against background-selection of our search peak.

While 𝜒2-minimization fitting of a parameterized curve doesn’t explicitly select parameters

based upon their influence on any order derivative of the curve (only the trivial zeroth), this is meant

as a qualitative argument against increasing the polynomial number until reaching a satisfactory 𝜒2

p-value. A polynomial of sufficiently high order will perfectly describe our background and 𝛽−𝑝

signal without differentiation of the two. Inclusion of a search peak will only improve such a fit, with

the only evidence of accidental equivalence between the background and signal is an increase of the

correlation matrix elements between the signal strength parameter and the sufficient-ly numerous

polynomial parameters. Furthermore, such a correlation matrix is defined at a singular solution and

may present somewhat different values depending on exactly the amount of signal that is captured

by the background model and exact shape of the contours of 𝜒2 space around that solution, for a

singular fit out of the many fits performed across pads and energies.

3.3 Fitting With Other Background Models

One way to give greater detail to the background model while minimizing the risk of confusing

signal for backgrounds (or vice versa), is to fit using not polynomials, but physically motivated

functions that have more tightly-constrained shapes. In experiment and simulations, the high-

energy portion of the 𝛽− background is already well modelled by an exponential curve. It is the

7Li∗ peak (and low-energy tail of the ground state, 7Li-alone and excited 7Li∗ feeding 𝛼-alone peaks

to a smaller degree) that need a better modelling function.

The energy spectra of isolated resonances are well described by a Lorentzian (alternatively

Breit-Wigner or Cauchy, with different notations of Γ) curve [50]. The general shape of this curve
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is:

𝐿 (𝐸) ∼ 1
(𝐸 − 𝐸̄)2 + Γ2/4

(3.2)

The simplest assumption of the detector response is a Gaussian response for a Delta function

of a single energy. Previous measurements with GADGET [33, 34, 35, 36], have demonstrated

that a Gaussian detector response is a fair approximation. The detector response of an input with

non-zero width would be the mathematical convolution of the physical input and the Gaussian

detector response as in Eq. 3.3. Here, 𝐷 (𝐸) is the observed distribution of energies measured by

the detector, 𝑔 is the detector response at 𝐸 for a physical signal at energy 𝑥, and 𝑑 is the distribution

of actual, physical energies.

𝐷 (𝐸) = 𝑔 ⊗ 𝑑 =

∫
𝑔(𝐸, 𝑥)𝑑 (𝑥)𝑑𝑥 (3.3)

The convolution of the Lorentzian and Gaussian distributions is the so-called Voigt profile.

This function does not have a closed form except for particular values of the Gaussian width 𝜎 or

Lorentzian width Γ. Evaluation of the Voigt profile was implemented by ROOT’s Voigt function,

which is part of the TMath library.

The next background model attempted was the sum of three parts: an exponential curve to model

the 𝛽− particles, a Voigt profile to model the 7Li∗ peak, and a constant term, from incomplete charge

deposition, seen in previous measurements with narrow background peaks. A variety of fits were

performed with this new background function with different fit ranges and assumptions for the

correct Γ width of the 7Li∗ peak. What will follow are fits over 145-250 keV in each of the quadrant

pads. The width of the 7Li∗ peak is left as a free parameter for two reasons. First, our background

isn’t purely one peak. From the energies included in the fit range, we largely exclude the higher
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energy peaks, but not entirely. Secondly, a R-matrix (Sec 4.2.1) analysis of 11Be(𝛽−𝛼) [27] was

published during this analysis. The width of the 𝛼-emitting state in 11B was significantly broader

than the evaluated average that was determined from reaction and scattering measurements [39].

The 𝛽−𝛼 R-matrix deduced width was reported to be Γ = 233(3) [3] keV, which is a factor of two

larger than the evaluated 109(4) keV. Perhaps the 𝛽−-fed width is greater than the reaction and

scattering width, as the earlier 𝛽−𝛼 measurement by Alburger et al. [47] of ∼ 330 keV, but they

claim no significance due to a poor energy calibration. The search signal in this model is a sum

of two Voigt curves. The first curve is centered at the full center of mass energy, originating from

decays in the volume and the second curve is at ∼ 10/11 of the full energy from the kinematics

of the emitted proton and 10Be, and comes from measuring just the cathode-originated protons.

The Gaussian width 𝜎 of the peaks was assumed to be 7.5% of the full peak energy. The peaks

are weighted by the measured split of in-gas and cathode decays, measured by the 𝛾-ray/𝛼 and

𝛾-ray/7Li coincidences from the 11Be(𝛽−𝛼)7Li∗(𝛾) decay. The inclusion of a finite width to the

𝛽−𝑝 signal is motivated by a measurement of the 11Be(𝛽−𝑝) at TRIUMF with a similar detector.

The TRIUMF-measurement group measured the width to be Γ = 12(5) keV [2].

Figures 3.15, 3.16, and 3.17 show the unnormalized results of this peak search for the quadrant

pads, assuming a narrow (Γ = 0 keV), Γ = 12keV, and Γ = 24 keV 𝛽−𝑝 emitting resonance in 11B,

respectively. The range of Γ values shown here were informed by the TRIUMF measurement’s

value of 12(5) keV. To guide reading the unnormalized counts, with the new E19030 dataset, each

100 counts is ∼ 1 · 10−6 branching ratio. At low widths, Pads B, C, and D each peak around E

∼ 175 keV, are largely consistent with zero, then at E ∼ 210 keV and greater report −2𝜎 negative

values. Pad E has similar behavior, but is shifted to higher energies ∼ 10 keV. As the Γ width

increases, the measurements lose this peak-like behavior and develop into a step function with very

large branching ratios (∼ 20 to 100 · 10−6) for energies below E ∼ 200 keV and moderately large
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negative branching ratios (∼ −20 · 10−6) at higher energies. It is hard to interpret these curves as

a physical peak and the simplest description is that sufficiently wide search signals match some

feature in the background better than the assumed background model.

For an example, if we consider the behavior at E = 175 keV for Γ = 0, 12, and 24 keV. As the

assumed proton intrinsic width Γ𝑝 increases, so does the 7Li∗ width Γ𝐿𝑖 and total 7Li∗ intensity

while the flat background decreases. This effect is usually ≲ 1𝜎 in each of these parameters going

from Γ𝑝 = 0 keV to Γ𝑝 = 24 keV, but this pattern is ubiquitous across all four pads. Further, the

statistical error really is only relevant to this point in that it allows a comparison between statistical

and systematic errors. The data is the same for each fit and choice of Γ𝑝 and not a re-measurement of

the data itself. The variation of re-measurements of data is what the 1 𝜎 statistical error estimates.

This correlation is just that, a correlation, but the shared behavior across pads is suggestive (beyond

the absurd step-function curves) that our background model has additional systematic error. That

is, if our background were modeled perfectly, the resulting intensity of the 𝛽−𝑝 signal should not

have wild dependencies on the assumed signal shape.
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Figure 3.15: Inferred 𝛽−𝑝-like counts from fitting the E19030 quadrant pads with the Exponen-
tial+Flat+Voigt model. The 𝛽−𝑝 peak shape is described in the text and the fits here assume a
narrow, Γ𝑝 = 0 keV proton-emitting resonance. Generally, an excess is seen for 𝐸 ∼ 175 keV. At
high energies, nonphysical negative counts are extracted.
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Figure 3.16: Inferred 𝛽−𝑝-like counts from fitting the E19030 individual pads with the Exponen-
tial+Flat+Voigt model. The 𝛽−𝑝 peak shape is described in the text and the fits here assume a
Γ𝑝 = 12 keV proton-emitting resonance. Generally, below 𝐸 ∼ 200 keV, a somewhat flat amount
of excess is observed. At higher energies, a somewhat flat ”excess” of nonphysical negative counts
are extracted.
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Figure 3.17: Inferred 𝛽−𝑝-like counts from fitting the E19030 individual pads with the Expo-
nential+Flat+Voigt model. The 𝛽−𝑝 peak shape is described in the text and the fits here assume
a Γ𝑝 = 24 keV proton-emitting resonance. Generally, below 𝐸 ∼ 200 keV, a somewhat flat
amount of excess counts is observed. Counting excesses of this size yield branching ratios of
𝑏𝑝 ∼ 50 − 100 · 10−6, in excess of any previous measurement by more than a factor of five. At
higher energies, a somewhat flat ”excess” of nonphysical negative counts are extracted.

Concluding this chapter, a few other background models were utilized. The flatness of the

flat background component and the precise shape of the 7Li∗ peak were tested with a variety of

slightly different functional forms. One such model was a sum of two exponential functions (one

steep for 𝛽− particles and one shallow) and two Voigt profiles (one for 7Li∗ peak and one for the

composite 7Li-𝛼∗ peak). An example of one of these fits is in the Appendix Fig. B.37, where it

is shown that a 𝜒2 optimization provides an excellent fit to data far in excess of our search region

of 𝐸𝑝 < 250 keV. This high-parameter model did away with the step-function in the results of the

simpler Expoential+Flat+Voigt model, but became very hard to work with. Seemingly insignificant
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changes in starting values for the 𝜒2 minimization or assumed peak energy could make extracted

𝛽−𝑝 intensities move on order or even in excess of their 1𝜎 statistical error. (See Appendix Fig.

B.39.) In Chapter 4, I will explain how moving the fitting procedure from ROOT’s 𝜒2 optimization

by gradient descent into a from-scratch Markov Chain Monte Carlo method with Bayesian priors

allowed for a sort of simplification of the analysis by doing away with inflexible Gaussian probability

density functions and ”baking in” all of our statistical and systematic uncertainties into one self-

consistent analysis procedure.
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CHAPTER 4

ANALYSIS: R-MATRIX, GAS STOPPING, BAYESIAN INFERENCE

Chapter 3 is a summary of how the data for E19030 came to exist and an exhibit of analysis

difficulties of searching for a ∼ 10−5 𝛽−𝑝 branch on the low-energy tails of the ∼ 0.03 𝛽−𝛼 branch

from the decay of 11Be. This chapter will be a more direct account of the final analysis and

motivations for the details of the analysis. The general data sorting from Chapter 3 will carry over,

but other details will be revisited in this chapter with greater scrutiny. This additional scrutiny

came from the implementation of the Bayesian analysis, which requires well defined uncertainty

quantification of its inputs. This chapter is meant to show the complete state of the analysis for

E19030. Results and discussion will continue in Chapter 5.

The Markov Chain Monte Carlo used in this chapter was developed in close collaboration with

Scott Pratt and Pablo Giuliani.

4.1 Summary of what we do know

Recapping, here are the following elements needed to infer the 11Be(𝛽−𝑝) branching ratio:

• Data sorting to produce analysis spectra

• Determination of a background shape

• Determination of the 𝛽−𝑝 signal shape

• Inference of the number of 𝛽−𝑝 events in the analysis spectra

• Normalization of the 𝛽−𝑝 counts to generate a branching ratio

The data sorting will not be revisited and the summary in Sec. 3.1 is complete. The determina-

tion of the background shape will be revisited with information from the recent R-matrix analysis
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of 11Be(𝛽−𝛼) decay [27] in Sec. 4.2. The shape of the assumed 𝛽−𝑝 signal will be revisited through

the lens of low-energy ion-stopping processes. This, in addition to the new recommended energy of

the 𝛽−𝛼 decay from [27], has carryover consequences for the energy calibration and the resonance

energy values hereon should not be compared to the previous analysis of Chapter 3. Statistical

inference took a large step in complexity; Sec. 4.4 will introduce both Bayes’ theorem, the Markov

Chain Monte Carlo method to ”solve” Bayes’ theorem, and how these ideas were implemented to

infer the 11Be(𝛽−𝑝) decay rate.

4.1 Some data-inferred details

Before diving into new interpretation and analysis tools, there are a few important details that still

need to be presented that can be pulled from the data alone: normalization of the 𝛽−𝑝 events,

spacial distribution of the 11Be decays, and the energy resolution of the detector pads.

4.1 Normalization of the 𝛽−𝑝 counts

First, we will revisit the Proton Detector detection efficiency calculations which allow us to normal-

ize to the well-studied 11Be(𝛽−𝛼) decay branch and calculate a branching ratio from a number of

𝛽−𝑝 counts. Following the detailed work of Tamas Budner with his own GADGET analysis [51],

the efficiency code described in Sec. 3.2.1.2 was updated to include diffusion of the ionization elec-

trons as they drift through the detector gas toward the MICROMEGAS. Tyler Wheeler performed

MAGBOLTZ calculations for each of us to estimate this effect. MAGBOLTZ performs numerical

particle-tracking based simulations that solve the Boltzmann transport equation for electrons drift-

ing in a medium, pushed by an external electric field. The simulations include atomic excitation

such as bound-electron orbital promotion and vibrational excitation in polyatomic molecules like

CH4 [52, 53].
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For our 11Be measurements at 600 Torr, it was calculated that the electric-drift-field transverse

diffusion coefficient of these electrons was 𝐷𝑡 = 14060 cm2/s. Decays were assumed to happen

uniformly throughout the ∼ 8𝜇s drift length of the Proton Detector. The results of this new

simulation for in-gas 7Li(g.s.)+𝛼 decays are shown in Fig. 4.1. Simulations were run for cathode-

originated 7Li-alone and 𝛼-alone peaks, but are not included. The general behavior of the these

cathode-originated efficiency curves were similar to that of in-gas decays shown here. For in-gas

decays of 𝐸 ∼ 1200 keV, the detection efficiency for Pad A (∼ 31%) is similar to the quadrant pads

(∼ 39%, shown as Pad B). This is roughly half of the estimated ∼ 72% for the composite ABCDE

pad. The composite pad would be expected to have much greater detection efficiency due to the

larger area compared to its edge, compared to the area/edge ratio of its constituent pads.

Figure 4.1: Simulated detection efficiency of in-gas 7Li(g.s.)+𝛼 decay for different pad schemes
and respective geometries. The quadratic polynomial fits are meant to parameterize the output of
the simulation for fast calculations of arbitrary energy.

Figure 4.2 shows a comparison of the individual pads spectra, the sum of the individual pad

spectra, and the composite ABCDE pad spectrum. Ignoring subtle differences in the energy cali-

bration, the individual pad summed spectrum is nearly as intense as the composite pad spectrum.

64



This goes against expectations based on the efficiency calculation based off of SRIM and MAG-

BOLTZ, which predicted nearly a factor of 2 between individual pad -summed efficiencies and the

composite pad efficiency.

Figure 4.3 shows the bin-by-bin ratio of the summed spectrum over the composite pad scheme

spectrum. The efficiency is somewhat flat with respect to energy, with the individual pad scheme

capturing ∼ 85% of the events that the composite pad scheme captured. This indicates that

many more charged-particle events are confined to a single measurement pad than the simulation

suggested. This suggests the SRIM calculated ranges or the MAGBOLTZ diffusion coefficient

or both are too large, and simulated events cross over measurement pad boundaries in excess of

real events. In-simulation veto-scheme thresholds, analogous to detector trigger thresholds and

software veto-scheme thresholds in the experimental data, could explain this discrepancy. While

the normalization of the 𝛽−𝑝 decay intensity is performed against the 𝛽−𝛼 decay intensity in

the individual pad scheme, pad by pad, and not across different pad schemes as shown here, the

takeaway is that the intensity of the sum of individual pad spectra is equivalent to the composite pad

only when charged-particle tracks were shorter than calculated and activate only a single pad. For

radiations that rarely activate other pads, the detection efficiency of every 𝛽−𝛼 radiation in either

scheme must then be quite high. Hereon, the detection efficiency ratio between 𝛽−𝛼 radiations and

𝛽−𝑝 decay both will be treated as unity with a ≲ 20% error.

The number of 𝛽−𝛼 decays measured in each pad are shown in Table 4.1. This is calculated

by integrating the individual pad spectra above 𝐸 = 200 keV. This choice of the boundary includes

minimal 𝛽 particles and captures all but the lowest-energy tails of the 𝛽−𝛼 spectrum. The inference

of 11Be normalization comes from the 3.30(10)% value of the 𝛽−𝛼 branching ratio reported in

Refsgaard et al. [27]. We would expect just about 1000 counts of 𝛽−𝑝 per pad, assuming a 10−5

branch, similar to that reported by Ayyad et al. [2]. This is a small signal when most of the
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Figure 4.2: Individual pad spectra (green), summed individual pad spectrum (blue), and composite
pad spectrum (red). The sum of individual pad spectra is similar in counts to the composite pad
spectrum over much of the spectrum which is suggestive of relatively flat detection efficiency curves
as a function of energy.

background in the search region is ∼ 1000 counts/bin with 1 keV binning and the search signal

will be ∼ 20 keV wide. However, assuming Poisson counting statistics, the error in counts of a

bin or a region of bins is 𝜎 ∼
√
𝑁 , where 𝑁 is the number of counts in the region. A 20 keV

wide signal will cover roughly 20,000 background counts. We expect statistical limitations at about

𝜎stat ∼
√

20, 000 ∼ 140 counts. Thus, a 1000 count signal is small, but can appear with ∼ 7𝜎stat in

the limit of no systematic uncertainties.

4.1 Cathode-volume fraction, decay location determination

The relative intensity of the 10Be+proton and 𝑝-alone peaks is determined by the physical distribu-

tion of the 11Be decays. This distribution was determined by the relative intensity of 7Li+𝛼 against
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Figure 4.3: Bin-by-bin ratio of the summed individual pad spectra and the composite pad spectrum
shown in Fig. 4.2. Overall, the sum of individual pads tend to have ∼ 85% of the total counts of
the composite ABCDE pad.

7Li-alone and 𝛼-alone peaks. Identification was done by considering charged-particle energy de-

position and timing between detection of charge in the Proton Detector and a 478 keV 𝛾 ray in the

SeGA array. Figure 4.4 shows a two dimensional histogram that was used to determine the location

of 11Be decays along the 𝑧-axis in Pad B. At all times, there is an intense band above ∼ 400 keV,

another below ∼ 800 keV, and another at ∼ 1200 keV. These are from accidental coincidences. This

is shown by the similar intensity of these bands after the sharp spike of events at times ∼ 7.2𝜇s.

The detector drift field was set so that the drift time of the full length of the detector would be

7 − 8𝜇s, so the peak at ∼ 7.2𝜇s is interpreted as decays originating from the upstream detector

cathode. Similarly, there are two spots in this time spike, one at 𝐸 ∼ 260 keV and one 𝐸 ∼ 440

keV. The peak at 𝐸 ∼ 260 keV is the 7Li-alone detection and the 𝐸 ∼ 440 keV peak is the 𝛼-alone
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Pad Label Integrated Counts Inferred 11Be Normalization Inferred 𝛽−𝑝 for 𝑏𝑝 = 10−5

B 3.825 · 106 1.16(4) · 108 1.16(4) · 103

C 3.080 · 106 9.3(3) · 107 9.3(3) · 102

D 3.244 · 106 9.8(3) · 107 9.8(3) · 102

E 3.419 · 106 1.04(3) · 108 1.04(3) · 103

Table 4.1: Per Pad, integrated number of observed 𝛽−𝛼 counts, inferred 11Be normalization, and
inferred 11Be(𝛽−𝑝) counts assuming a branch of 𝑏𝑝 = 10−5.

detection. At lower time, there is a blob of intensity that comes from the in-gas decay and detection

of both the 7Li and 𝛼 together.

With this understanding of the feature at ∼ 7.2𝜇s as the cathode, the events at greater times

are certainly accidental coincidences. One can perform a background subtraction to remove these

at earlier times. There are several possible methods to perform this, but the simplest is to project

the coincident-events from this histogram to a one dimension histogram of energy. The formula

for this background subtraction is below, if 𝐸 and 𝑡 are discrete bin values. Note that Δ𝑡 is then

a number of bins. The background subtracted histogram calculated bin-by-bin from the original

spectrum and the time-integrated projection of the late-time spectrum.

ℎsub(𝐸, 𝑡) = ℎ𝛾−coinc.(𝐸, 𝑡) −
ℎacc. coinc.(𝐸)

Δ𝑡
(4.1)

This subtraction yields Fig. 4.5. The features that remain are the diffuse in-gas decays that

measure the full charged-particle energy from the 11Be(𝛽−𝛼)7Li∗ decay that arrive up to ∼ 7.2𝜇s

after the 𝛾 ray, the measurement of 7Li-alone and 𝛼-alone originating from the cathode arriving

∼ 7.2𝜇s after the 𝛾 ray, and the intense 𝛽-particle background at low energy. Due to the long tracks

of the 𝛽 particles, the ionization from these radiations appears more diffusely in time than the heavy

ions with short ranges and more localized tracks.

The fraction of cathode and volume decays was taken by integrating the heavy ion 𝐸 > 200
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Figure 4.4: Coincidence histogram of the Pad B energy and pad signal arrival time when coincident
with a 478 keV 𝛾 ray. Events after ∼ 7.2𝜇s are accidental coincidences. The spike at ∼ 7.2𝜇s
comes from detection of only one of the light ions from cathode-originated 11Be(𝛽−𝛼)7Li∗ decay.
The diffuse cloud of events at time < 7.2𝜇s and energy ∼ 700 keV are from full-energy 7Li+𝛼
events originating in the detector gas. The low-energy events at all times are 𝛽− particles.

keV coincident events in the background-subtracted spectra. Events recorded for 0 < 𝑡 < 6.8𝜇s

were deemed in-gas volume events. Events recorded for 6.8 < 𝑡 < 7.6𝜇s were deemed cathode-

originated. Pads B, C, D, and E had cathode-originated fractions of 63.4%, 71.6%, 73.1%, and

67.4% respectively. The choice of the energy threshold creates a ∼ 1.5% error in these numbers.

The counting-statistics error is small compared to this threshold systematic error.

4.1 Detector Resolution Measurements

In the previous analysis, the anticipated detector resolution was determined by fitting historical

resolution data in other GADGET experiments that used different gas pressures and operational
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Figure 4.5: Coincidence histogram of the Pad B energy and pad signal arrival time when coincident
with a 478 keV 𝛾 ray after subtraction of accidental coincidences. Events after ∼ 7.2𝜇s are
statistically consistent with zero. The spike at ∼ 7.2𝜇s comes from detection of only one of
the light ions from cathode-originated 11Be(𝛽−𝛼)7Li∗ decay. The diffuse cloud of events at time
< 7.2𝜇s and energy ∼ 700 keV are from full-energy 7Li+𝛼 events originating in the detector gas.

voltages. Ideally, these settings were scaled proportionally to give historically similar behavior

(see Figures A.1,A.2,A.3), but using data from within the E19030 experiment would still be best.

Additionally, the Bayesian analysis that was developed does not strictly require Gaussian distributed

errors and more general forms can be chosen.

Figure 4.6 shows a fit of the in-gas, full energy 7Li+𝛼 peak. In Pad B, the measured resolution

is 5.0(8)% FWHM and intrinsic width is 225(2) keV. For Pads C, D, and E, the detector resolution

was measured to be 5.4(4)%, 6.4(4)%, and 5.2(4)% FWHM respectively. The intrinsic widths were

226(2), 230(2), and 222(2) keV respectively.

Figure 4.7 shows a fit to the low energy spectrum of Pad B, to extract detector resolution from
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Figure 4.6: Pad B full-energy 11Be(𝛽−𝛼)7Li decay peak with energy 1182 keV fit by a Voigt curve
and an exponential curve, meant to model the high-energy tail of the 𝛽−𝛼 spectrum to lower energy.
The intrinsic width, 𝑔𝑎𝑚𝑎, is 225(4) keV and the detector resolution, 𝑠𝑖𝑔𝑚, is 5.0(8)% FWHM.
The other fit parameters are: the integrated peak counts, ℎ; the peak center, 𝑐𝑒𝑛𝑡; an exponential
height, 𝑒𝑥𝑝1, and decay rate, 𝑒𝑥𝑝2 that take the shape of exp(𝑒𝑥𝑝1 + 𝑒𝑥𝑝2 · 𝐸).

the other isolated peak, the 7Li∗ peak. The measured detector resolution here is zero, but is highly

correlated with the assumed intrinsic width of the 7Li∗ peak, which was fixed to 82 keV as a

kinematic rescaling of the width measurement of the full decay (the parameter 7𝑠𝑖𝑔𝑚 in Fig. 4.6).

Freeing this parameter allowed fits returning up to ∼ 30% FWHM resolution and hard-to-believe

small intrinsic widths. The other pads had low-energy resolutions of 4.6(4)%, zero, and 8.6(14)%

FWHM, respectively. With obvious caveats of the correlation between the detector width and

intrinsic width, this is suggestive that the detector resolution at low energy is somewhere in the

range of 4.5-10% FWHM, which is reasonable for such a detector [38] and consistent with previous

GADGET measurements.
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Figure 4.7: (Top) The low-energy spectrum of Pad B. The fit function is the sum of two exponential
functions, a constant, a Voigt peak (7Li∗), and a semi-restricted Voigt peak (7Li). The intrinsic width
is fixed to 82 keV scaled from the width measured in Fig. 4.6. The fit resolution (from the parameter
7𝑠𝑖𝑔𝑚) for Pad B is zero. Other pads show up to 5% FWHM. The other fit parameters are: an
exponential height, 𝑒𝑥𝑝1, and decay rate, 𝑒𝑥𝑝2 that take the shape of exp(𝑒𝑥𝑝1+𝑒𝑥𝑝2 ·𝐸); a second
exponential height, 𝑒𝑥𝑝21, and decay rate, 𝑒𝑥𝑝22 that take the shape of exp(𝑒𝑥𝑝21 + 𝑒𝑥𝑝22 · 𝐸);
a constant background term, 𝑓 𝑙𝑎𝑡; the integrated peak counts in the 7Li∗ peak, 7ℎ𝑖𝑡𝑒; the 7Li∗
peak center, 7𝑐𝑒𝑛𝑡; the integrated peak counts in the 7Li&𝛼∗ peak, 72ℎ𝑖𝑡𝑒, and the 7Li&𝛼∗ peak
resolution, 72𝑠𝑖𝑔𝑚. (Bottom) Fit residuals.

4.2 R-matrix Guidance to Describing the 𝛽−𝛼 Background

The R-matrix theory is a non-relativistic quantum mechanical scattering theory that was developed

largely independently for atomic and nuclear physics [54]. The present utility of the R-matrix theory

comes from the recent R-matrix characterization of the 11Be(𝛽−𝛼) decay spectrum by Refsgaard

et al. [27]. R-matrix theory calculations using the Refsgaard-suggested values were used to better

understand the 11Be(𝛽−𝛼) background in GADGET.
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4.2 Introduction to R-matrix theory

The R-matrix is a phenomenological multi-channel scattering theory, developed by numerous au-

thors, although the fundamental inception is credited to Kapur and Peierls [55, 54]. The framework

has been used widely to relate nuclear scattering observables to nuclear structure. Modern formu-

lations, such as the Brune formalism [56] have theory inputs with clear physical analogs such as

nuclear state energy, spin, parity, and mixing parameters with other states. Furthermore, the Brune

convention is used in the R-matrix code Azure2 [31] which was used to perform the R-matrix

calculations of the 11Be(𝛽−𝛼) background.

In the R-matrix theory, the nuclear wavefunction is described with in two regions. The wave-

function of the internal region has well defined angular momentum 𝐽 and 𝑀 and can be expanded

into a complete set of basis eigenstates. The wavefunction of the external region is assumed to be

subject to just Coulomb interactions and well defined by allowed coupled-particle channels. The

external wavefunction, then, is described by inbound and outbound Coulomb functions. These

Coulomb functions are fully analytic and have well defined energy, charges, masses, and angular

momenta. The utilization of the theory falls out of matching the external Coulomb functions and

their derivatives to solution to the interior wavefunction at the boundary surface.

The R-matrix is defined as:

𝑅𝑐𝑐′ =
∑︁ 𝛾𝜆𝑐𝛾𝜆𝑐′

𝐸𝜆 − 𝐸
(4.2)

where 𝛾𝜆𝑐 is the integral of the internal eigenstate wavefunction of the 𝜆th level and the external

wavefunction corresponding to the 𝑐-channel. Thus, 𝛾𝜆𝑐 is a measure of the contribution of the 𝜆th

level to the observation of the 𝑐-channel. 𝐸𝜆 is the energy of the 𝜆𝑡ℎ level and 𝐸 is the scattering

energy. With this R-matrix defined, calculations can be performed with the collision matrix, which

is calculated from the following inputs: the R-matrix, channel energies, wavefunction-matching
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boundary radius, and the incoming and outbound Coulomb wavefunctions.

Alternatively, to simplify computation of the collision matrix in the case of few levels, one may

use the A-matrix formalism. The A-matrix is defined by its inverse:

(𝐴−1)𝜆𝜆′ = (𝐸𝜆 − 𝐸)𝛿𝜆𝜆′ + Δ𝜆𝜆′ −
Γ𝜆𝜆′

2
(4.3)

with the following definitions:

Δ𝜆𝜆′ = −
∑︁
𝑐

𝛾𝜆𝑐𝛾𝜆′𝑐 (𝑆𝑐 − 𝐵𝑐) (4.4)

Γ𝜆𝑐 = 2𝑃𝑐𝛾
2
𝜆𝑐 (4.5)

Γ𝜆𝜆′ =
∑︁
𝑐

2𝑃𝑐𝛾𝜆𝑐𝛾𝜆′𝑐 (4.6)

Where 𝑆𝑐 is the shift factor, 𝑃𝑐 is the penetration factor and 𝐵𝑐 is the boundary condition

parameter. These values are related to the wavefunction and the logarithmic derivative matching at

the boundary radius [57].

Barker and Warburton [58] write the 𝛽-fed spectral function in terms of this mathematically

equivalent A-matrix:

𝑁𝑐 (𝐸) = 𝑓𝛽𝑃𝑐 |
∑︁
𝜆𝜇

𝐵𝜆𝛾𝜇𝑐𝐴𝜆𝜇 |2 (4.7)

Here, 𝑓𝛽 is the phase-space factor for the 𝛽 decay, 𝐵𝜆 is the 𝛽 decay feeding strength, and 𝐴𝜆𝜇 is

an element of the A-matrix. The form of Eq. 4.7 is simpler than in Barker and Warburton, but this

is due to the consideration of Gamow-Teller decays only in the Refsgaard analysis of 11Be(𝛽−𝛼).

Gamow-Teller decays have Δ𝑆 = 1 from spin alignment of the emitted electron and anti-neutrino.

Fermi decays are the opposite, having Δ𝑆 = 0 and anti-alignment of electron and anti-neutrino spin.
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The ground state of 11Be is 1/2+ and the 𝛽−𝛼 emitting state in 11B has been identified as 3/2+.

Allowed 𝛽 decays impart no angular momentum (that is, Δ𝐿 = 0). Angular momentum algebra

requires a 1/2+ −→ 3/2+ decay to be Gamow-Teller, Δ𝑆 = 1.

The Azure2 code performs these calculations, taking as input structure information and 𝛽 decay

feeding information. One output of the Azure2 calculations is the spectral shape from each channel,

that is the shape as a function of energy of the 11Be(𝛽−𝛼)7Li and 11Be(𝛽−𝛼)7Li∗ decays.

4.2 R-matrix Calculations of 11Be(𝛽−𝛼)

The suggested R-matrix parameters from [27] are summarized in Table 4.2. They report statistical

and systematic errors both, and we consider parameters in these values as the root of the sum

of squared errors. The radial boundary term 𝑟0, which sets the R-matrix boundary radius at

𝑅 = 𝑟0(𝐴1/3
1 + 𝐴

1/3
2 ), is adopted to be 1.6 fm. 𝐴1 and 𝐴2 are the mass numbers of the outgoing

channel particles, or 7 and 4 here.

𝜆 = 1 𝜆 = 2
𝐸𝜆 (keV) 9846(1)[10] 11490(80)[50]
Γ𝜆1 (keV) 233(3)[3] 430(150)[50]
Γ𝜆2 (keV) 20.4(3)[3] 50(60)[50]
M(GT) 0.717(12)[7] 1.05(17)[5]
B(GT) 0.318(11)[6] 0.7(2)[1]
ln(ft) 4.08(3)[2] 3.8(3)[1]

Table 4.2: R-matrix parameters adopted from [27]. Values in parentheses are their statistical errors
and values in square brackets are their systematic errors.

Figure 4.8 shows the output of the R-matrix calculation with the central values of Tab. 4.2. The

energy scale is relative to the 8.664 MeV 𝛼 separation energy in 11B. The two output channels and

sum are color coded. It is the primary peak of each channel that is seen in the GADGET data. The

upturn in the R-matrix output above 2 MeV of excitation energy is not seen in the individual pad

data, but is somewhat in the composite pad scheme, possibly due to detection efficiency effects at
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these larger energies. Rather, there is an absence of events above ∼ 2750 keV. The ”turn-off” energy

in the R-matrix is ∼ 2800 keV. The Q-value for the 𝛽−𝛼 is 2.834 MeV and drives this ”turn-off”

of the spectral strength. The small difference in the ”turn-off” energies is a nice test of our energy

calibration extrapolation from ∼ 1.2 MeV. (The energy calibration will be revisited in light of the

exploration of very-low energy ionization processes, Sec. 4.3.2.)
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Figure 4.8: The R-matrix calcuated spectral strength of the 11Be(𝛽−𝛼) with the central values of
Table 4.2 [27]. The curves are the 7Li∗-fed channel (red), 7Li grounds state -fed channel (blue), and
the sum of the two channels (black). The two-state structure is evident in the two-peak behavior of
the spectral output, despite the strong 𝛽-feeding preference of the lower-energy state.

Figure 4.9 shows the R-matrix output representing the physical spectra and also the inferred

individual 𝛼 and 7Li spectra. The 𝛼 and 7Li individual spectra are not output from Azure2, but

are calculated by rescaling of the energy of the output. The rescaling comes from the two-body

kinematics of the 11B(𝛼)7Li breakup.
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Figure 4.9: The R-matrix calculate strength of 11Be(𝛽−𝛼) with the central values of Table 4.2 [27].
The thick curves are the 7Li∗-fed channel (red), 7Li ground state -fed channel (blue). The thin
curves show the kinematically scaled distributions for the 7Li-alone (lower energy of a color) and
the 𝛼-alone (higher energy of a color). Note the strong overlap of the 7Li(g.s.)-alone and 𝛼-alone
from the 7Li∗ feeding, and the 𝛼-alone from the 7Li(g.s.) feeding and the full-energy 𝛼+7Li∗.

The initial thought was to use the R-matrix calculations directly in the fit to the GADGET spectra.

However, it was quickly determined that such a scheme would be computationally challenging. In

this scheme, we would want to smear the output by an assumed detector response, but early tests

showed this taking prohibitively long if the smearing would be parameterized and included in the

fit and not merely calculated once at the beginning of a fitting code. Furthermore, which R-matrix

curve should be used? Refsgaard et al. [27] gives individual R-matrix parameters and associated

errors. It is not these parameters that are comparable to GADGET data, but instead the curves

they generate, which add additional computational overhead. Due to these challenges in using

actual R-matrix calculations in the fit to data, we investigated if the R-matrix output could be
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approximated locally, in the region of interest, with a quickly-evaluated curve that could take its

place in the analysis.

The lowest energy peak, the 7Li∗ peak with 𝐸 ∼ 256 keV of energy is the primary 𝛽−𝛼

background in the region of interest. The 7Li∗ peak calculated by Azure2 was fit by a Lorentzian.

The fit is shown in Fig. 4.10. This is quite similar to and actually a test of the previous fit of

GADGET data with a Voigt curve, assuming a Lorentzian-described physical spectrum smeared

by a Gaussian detector response. Qualitatively, the two curves are similar, but this discrepancy is

unacceptable for a search of our precision. Local fits with a Lorentzian were better, such as just the

region lower in energy than the peak, but even this isn’t sufficient. To quantify these claims, we first

need to quantify the quality of the fit. For a rough estimate of the precision needed, we first need

to estimate the branching ratio into the 7Li∗-alone peak measured in GADGET: 0.5 for the cathode

efficiency of 7Li-alone and not 𝛼-alone, ∼ 0.6 for the fraction of decays originating on the cathode,

∼ 0.1 for the fraction of 𝛽−𝛼 decays that populate the 7Li 478 keV excited state, and ∼ 0.03 for

the 𝛽−𝛼 branching ratio. All together, the 7Li∗-alone decay from the detector cathode occurs with

intensity of ∼ 9 · 10−4, which is large compared to the ∼ 1 · 10−5 nominal branch of the signal.

The integral of a peak is roughly proportional to the product of its height and its width. The

R-matrix spectrum is peaked at ∼ 20 strength units (SU) and has width ∼ 80 keV. The area then

is ∼ 1600 SU·keV. If we take the branching ratio intensity of this peak as the ∼ 9 · 10−4 from

before, the spectral intensity per unit of 𝛽 decay intensity is ∼ 1600SU·keV
9·10−4 ≃ 1.8 · 106 SU·keV. If

our approximation is to be useful, we want the mis-match to introduce not more than ∼ 1 · 10−6

branching ratio error. This corresponds to a spectral intensity error of ∼ 1.8 SU·keV. If we assume

a 𝛽−𝑝 signal peak with width of 20 keV and a constant residual error between the approximation

and the R-matrix output over the signal-peak width, the magnitude of the residue needs to be less

than ∼ 1.8SU·keV
20 keV ≃ 0.09 SU. The Lorentzian fit of Fig. 4.10 is different from the R-matrix curve by
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Figure 4.10: R-matrix calculation of the isolated spectrum of 7Li∗-alone (black) and comparison
of a Lorentzian curve (red). Despite the reasonable fit to the experimental data using a Voigt
curve (see Sect. 3.3.2.2), the R-matrix calculation output spectrum has notable differences than the
Lorentzian that is implicit in the Voigt curve.

up to ∼ 2 SU in some places, which could show up at a ∼ 2 · 10−5 systematic error, twice that of

the 𝛽−𝑝 branching ratio reported in Ayyad et al. [2]!

To improve the estimation of the R-matrix output, the output was fit with the product of a Voigt

profile and a polynomial function. The idea here is that the Voigt curve is peak-like, but symmetric.

Multiplication by a polynomial can make the approximate function asymmetric and behave closer

to the R-matrix output. If the general shape of the Voigt is close to the R-matrix output, then the

polynomial would make small corrections to the Voigt to bring it in line with the R-matrix curve.

However, the Lorentzian is tricky as starting with a polynomial with degree two, the polynomial

can overwhelm the ∼ 1/𝑥2 behavior of the curve. The Gaussian is safe and and will overcome any

polynomial of any order. (As an aside, this peak-like requirement can be enforced in a Bayesian

79



fitting analysis so even the polynomial order constraint from the ∼ 1
𝑥2 Lorentzian form is not a true

a constraint.)

With this mapping between the residual in the R-matrix fit and the systematic-error induced

in the inferred branching ratio, the order of the polynomial in the approximation function was

increased until the residual error was less than 0.09 SU. This first occurred for a linear ”correcting”

polynomial. This fit and its residuals are shown in Fig. 4.11. The linear corrective fit has residual

errors of less than 0.06 SU, so systematic shifts in the 𝛽−𝑝 branching ratio from this approximation

should be held under ∼ 1 · 10−6.
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Figure 4.11: (Top) in black, the R-matrix output for the excited state spectra, energy-scaled to give
the shape of just the 7Li∗-alone peak, but this is largely obscured by the fit in red. The fit is the
product of a Voigt curve and a polynomial. (Bottom) fit residuals, in the same scale as the top.
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4.3 Low-Energy Ionization Processes

Gaseous proportional counters, like the Proton Detector in GADGET, ideally have a linear detector

response. That is, the energy of radiation lost as an ion traverses the detector gas, ideally, is

proportional to the charge measured at the end of the detector. Non-linearity can be caused by a

multitude of effects, but can generally be described as detector physics or signal processing effects.

Physics-driven non-linearity in the detector’s response is generically described as the pulse height

defect. The first source is related to the detector dead layer, the surface layer of the detector that

engages in ion energy-loss processes, but is not part of the sensitive portion of the detector. Another

source of the pulse height defect is due to charge recombination of the radiation-created ion pairs.

Decays in the Proton Detector are internal to the gas, so there are no windows or dead layers. As

for charge recombination, the low density of the detector gas leads to long particle tracks and low

charge-pair density, making recombination less likely than in a solid state detector.

One contribution to the pulse height defect that is equally present in the gaseous detectors is

related to a ion-species dependence on the stopping, with partitioning of energy-loss processes

depending on the ion’s mass and charge [38]. In addition to producing ionization, impinging ions

can perform non-ionizing electronic excitation, impart kinetic energy to target atoms with elastic

scattering, and (primarily reserved for electron radiations) produce ”breaking” Bremsstrahlung

photons, which may or may not be reabsorbed by the detector in a different location. This is

notable for energies of ≲ 200 keV/u, where ion velocity has a dramatic effect on the stopping

and ionization [59]. This threshold is several times the Bohr velocity ∼ 25 keV/u, where the ion-

stopping physics is very different than at higher energies. In the high energy regime, the ion and

target interaction is eikonal. In a classical picture, the target atom is functionally ”frozen” in space

for the duration of the interaction. As the ion velocity decreases, the electron cloud of the target
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atom is capable of responding to the presence of the bombarding ion, providing more effective

charge screening of the target atom’s nuclear charge. Generally, at lower velocities, ions more easily

charge-exchange electrons with their environment changing their charge state ([60] proton on argon

gas, [61] helium on argon gas, [62] lithium on argon gas), stronger charge screening changes the

weights of interactions between the targets’ nuclei and electrons, and interaction times are longer.

These effects generate a pulse height defect as the detector only measures liberated electrons, which

is only one of the many channels by which the ion can lose energy.

Understanding the pulse height defect is important for our case. It influences the energy

calibration as our data has no internal reference of 𝛽−𝑝 to calibrate against, only 𝛽−𝛼, of which

the 7Li radiations have ∼ 35 and ∼ 65 keV/u, which is quite near this Bohr velocity threshold. It

influences the shape of our assumed 𝛽−𝑝 signal in that the spacing of the 𝑝-alone cathode peak

and the 𝑝+10Be in-gas peak depends on both the proton ionization and the 10Be ionization. The

10Be energy is ∼ 2 keV/u, far below the Bohr velocity. The proton and 10Be recoil will have about

an order of magnitude different energy, (because of) an order of magnitude different mass, and a

factor of four different nuclear charge. In this section, I will show evidence that each of these are

important to understand.

4.3 Estimating Ionization in P-10 Gas

There exists a dearth of experimental data on low-energy, energy-loss partitioning of ions traversing

of P-10 gas. A great number of measurements were conducted in the 1970s and before to measure

the ionization yields of different ions in a variety of gasses, mostly air, air constituents, noble gases,

and so-called tissue-equivalent gases meant to model the stoichiometric makeup of human tissue.

Much of this is summarized in the ICRU Report 31 [63]. Despite being published more than 40

years ago, it remains an influential compilation of this work [38], but it lacks information on gas
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mixtures used in low-energy nuclear physics like P-10 and CO2/He mixtures, as well as impinging

ions heavier than 𝛼 particles.

This is not to say that P-10 gas is not characterized. In fact, it is a well studied gas and the pulse

height defect is well-characterized for a wide range of masses and charges at energies of hundreds

of keV and up with the LSS theory by Linehard et al. [64], demonstrated nicely with a recent

measurement of 252Cf spontaneous fission in P-10 gas [65]. Fragments are peaked at ∼ 110u and

∼ 145u and have ∼ 185 MeV to share. Assuming a two-body decay, the lowest energy fragments

would have ∼ 500 keV/u or about five times the Bohr velocity.

The data that are missing are these Bohr velocity ionization yields such as those measured for

a variety of low-energy ion beams impinged on argon gas [66, 67, 68, 69, 70, 71, 72, 73] or on

methane gas [74, 75, 76, 77, 78]. In light of a lack of experimental information, two approaches were

taken to approximate the pulse height defect of the 𝛽−𝛼 spectrum and set the shape of the assumed

𝛽−𝑝 signal. The first approach was calculation using the now familiar ion-stopping simulation

software SRIM. The second was a compilation, parameterization, and uncertainty quantification of

the literature of the ionization yields (measured as W values, see Sec. 4.3.1.2) of beams impinged

on pure argon and methane gas that was used with a gas mixing calculation to estimate unmeasured

gas properties of P-10.

4.3 Estimating Ionization Yields with SRIM

The SRIM code was first introduced in Sec. 3.2.1.2. There, we used it to calculate particle

ranges in P-10 gas. We use this code again to study the partitioning of energy loss processes.

SRIM categorizes the energy loss into six bins. There is energy lost to: ionization, vacancies,

and phonons, for each the primary ion and for secondary ions. A secondary ion is an ion that

receives kinetic energy (above a threshold, for computation speed) from the primary ion. Energy
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ion recoils sum
ionization 99.63 0.05 99.68
vacancies 0.02 0.03 0.05
phonons 0.01 0.25 0.26

Table 4.3: SRIM calculated energy loss partioning for a 170 keV proton. The vast majority (99.7%)
of the energy loss goes into electronic stopping and ionization production. Numbers are in percent.

ion recoils sum
ionization 38.87 10.53 49.40
vacancies 0.97 7.38 8.35
phonons 0.36 41.88 42.24

Table 4.4: SRIM calculated energy loss partioning for a 20 keV 10Be. The energy loss is spread
out between primary interactions and recoil interactions. Only about 50% of the energy goes into
electronic stopping and ionization production. Numbers are in percent.

lost to ionization is energy that is spent creating ion pairs in the target material. Energy lost to

vacancies is energy that is spent when a target atom receives a kick that removes it from the atomic

lattice it occupies. (SRIM was developed to estimate exactly this, the damage, in solid targets and

electronics.) Finally, the energy into phonons is a catch-all bucket for energy conservation in the

code. Energy in this bucket comes from target atoms that receive energy, but not sufficient to leave

their lattice location.

SRIM uses a interatomic potential developed by its authors [79] to calculate the energy sharing of

ions with target atoms (nuclear stopping) and electrons (electronic stopping) [59]. At typical nuclear

physics experimental energy and higher, the electronic stopping dominates the total stopping. At

very low energies, the nuclear stopping and electronic stopping are similar. SRIM stopping powers

are quoted to have an error of 4.3% from experimental stopping values [48].

The breakdown of energy loss for various ions follows: 170 keV proton in Tab. 4.3, 20 keV 10Be

in Tab. 4.4, 266 keV 7Li in Tab. 4.5, 440 keV 7Li in Tab. 4.6, and 770 keV 𝛼 in Tab. 4.7. The exact

meaning of vacancies and phonons values are hard to interpret in the P-10 gas, but taking the sum

of the ion and recoil ionization values, we have that most particles will deposit the vast majority
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ion recoils sum
ionization 91.89 1.52 93.41
vacancies 0.14 0.96 1.10
phonons 0.04 5.45 5.49

Table 4.5: SRIM calculated energy loss partioning for a 266 keV 7Li. The bulk of the energy loss
is goes into primary ionization, but some ionization from recoiling ions is recovered. About 93%
of the energy ends up going to ionization. Compare to Tab. 4.6 to see the effect of ion energy on
energy loss partitioning. Numbers are in percent.

ion recoils sum
ionization 94.76 1.00 95.76
vacancies 0.09 0.62 0.71
phonons 0.03 3.51 3.54

Table 4.6: SRIM calculated energy loss partioning for a 440 keV 7Li. The bulk of the energy loss
is goes into primary ionization, but some ionization from recoiling ions is recovered. About 96%
of the energy ends up going to ionization. Compare to Tab. 4.5 to see the effect of ion energy on
energy loss partitioning. Numbers are in percent.

ion recoils sum
ionization 98.87 0.19 99.06
vacancies 0.03 0.12 0.15
phonons 0.01 0.77 0.78

Table 4.7: SRIM calculated energy loss partioning for a 770 keV 𝛼. The vast majority (99.1%) of
the energy loss goes into electronic stopping and ionization production. Numbers are in percent.
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of their energy in the form of ionization: 170 keV protons 99.7%, 20 keV 10Be 49%, 266 keV 7Li

93%, 440 7Li 96%, and 770 keV 𝛼 99%. The efficiency of an in-gas 7Li+𝛼 decay of energy 𝐸

should then be ∼ 4/11 · 96%+7/11 · 99% ∼ 98%. The large pulse height defect calculated for 10Be

was somewhat surprising and SRIM provides no error quantification. In private communication,

Ziegler recommended referencing experimental results from similar experiments, if they existed,

as the 10Be energy is low, suggesting errors in stopping could be as large as 30%.

4.3 Estimating Ionization Yields of Gas Mixtures

The more detailed approach and that which was adopted in the final analysis was to consider data

on the ionization yields of the P-10 components and average them to create an estimate for the

P-10. This is not merely calculating an average ionization, molecule for molecule, according to

the gas mixture, as the gas has properties from both its constituents and the interactions of its

constituents. The role of the methane in P-10 is that of a quench gas. The quench gas has a lower

ionization potential than the primary gas (12.61 eV [80] and 15.76 eV [81], respectively) and helps

with localization of charge production in the vicinity of radiations by absorbing UV radiations and

by the Penning Ionization mechanism, where excited states of argon gas can de-excite by collisions

with the methane, producing an ion pair off the methane [38].

Ionization yields will now be discussed by their inverse, normalized to ion pair. That is, the

following discussion will involved the W value, which has units of energy per pair and has some

analog to the work function of the photoelectric effect. It is the average amount of energy required

to liberate a single ion pair and is often written as 𝑊 (𝐸), emphasising the role of the energy of the

impinging ion. This is incomplete as the W value is sensitive to ion species as well.

The form of the W value averaging equation was first described in the 1950s by the Basel group

[82, 83] and extended in 1987 by Tawara et al.[84]. Tawara et al. parameterized the W value
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function curve for 𝛼 particles of ∼ 1 − 5 MeV in various mixtures of argon and methane detector

gas. The W value of a mixture of a primary component 𝑥 with a quench gas 𝑦 can be calculated by

the following equation:

𝑊𝑥𝑦 (𝐸)−1 = (𝑊𝑥 (𝐸)−1 −𝑊𝑦 (𝐸)−1) · 𝑍 (𝐸) +𝑊𝑦 (𝐸)−1 + 𝑍 (𝐸) · 𝐵𝑥𝑦 (4.8)

where 𝑍 (𝐸) is the fractional stopping between gas components with stopping powers 𝑆𝑖 and

partial pressures 𝑃𝑖

𝑍 (𝐸) = (1 +
𝑆𝑦𝑃𝑦

𝑆𝑥𝑃𝑥

)−1 (4.9)

and the mixture-dependent parameter 𝐵𝑥𝑦 = 0.09 for P-10 gas. The 𝐵𝑥𝑦 term is new with

Tawara et al. [84]. Due to the absence of data on the W value of P-10 for low-energy ions, the W

value was estimated by the Tawara formula. The pulse height defect is related to the W value in

that as the W value increases, fewer ion pairs are created for the same impinging energy.

87



Parameterization of Argon Gas W value

First, argon was studied. The nominal W value for argon gas is 26.3 eV/pair in [38] and 27(1)

eV/pair in [63]. The following W values for ions impinging on argon were compiled and are shown

in Fig. 4.12:

• Phipps et al. [70]: H, He, C, N, O, Ar on Ar

• Chemtob et al. [72]: H, He, Ar on Ar

• Chappell and Sparrow [71]: He on Ar

• Leimgruber et al. [73]: N, O on Ar

• Nguyen et al. [69]: H, He, Ar on Ar

• Larson [68]: H on Ar

• Lowry and Miller [66]: H on Ar
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Figure 4.12: The W value against incident ion energy into argon gas. The data are color coded
according to their publication. The W value is multi-valued for a particular value of energy and
this is due to the impinging ion species, shown later. There is overlap in energies between most
sets of measurements, so consistency of W values can be checked.

Error bars aren’t shown. The spread in data is due to different impinging species, shown better

in Fig. 4.13. In general, it looks as if all values may converge to the ∼ 27 eV/pair from the

compilations at sufficiently high energy, but the W value of heavy ions is a function of energy. The

heavier the ion, the stronger the energy dependence. Figure 4.14 shows much of the complexity in

the W value is actually due to the ion’s mass. Velocity is calculated as 𝑣 =
√︁
𝐸/𝐴(

√︁
(keV/u)). This

velocity is the incident velocity, so these W values are integrated over the whole energy loss. The

fit shown is a power law, with the high-energy behavior reducing to the nominal W value of 26.3

eV/pair.

𝑊 (𝑣) = 26.3 + 𝛼 · 𝑣𝛽 (4.10)
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Figure 4.13: The W value against incident ion energy into argon gas. The data are color coded
according to the impinging ion species. The W value is not a function of energy, or at least is a
very weak function of energy, for impinging H+ and He+. There W value a strong dependence on
energy for all other chemical species shown.
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ion W value (eV/pair) ∼ 1𝜎 error (eV/pair)
10Be, 20 keV 56.6 5.8
7Li, 256 keV 27.9 0.7
7Li, 430 keV 27.2 0.6
𝛼, 752 keV 26.6 0.4

Table 4.8: Estimated W values and associated 1𝜎 errors for relevant charged-particle radiations, in
argon gas. See text and Fig. 4.14 for determination of these estimates.

While the velocity isn’t a perfect predictor of W value and clear patterns exist in the fit residuals,

it is quite suggestive. This matches some of the qualitative arguments about ion velocity determining

stopping physics in the target from [59] and lends some credence to the ∼ 0.5 ionization of the 10Be

calculated by SRIM. In these units, a 20 keV 10Be has velocity of ∼ 1.4, a 250 keV 7Li has velocity

of ∼ 6, a 430 keV 𝛼 has velocity of ∼ 10. Thus, of the particles in our data, the largest pulse height

defect occurs for the 10Be recoil. Additional terms for the 𝑍 of the impinging ion can improve the

fit some, but a simple function seems sufficient for our purposes.

The fit yields parameters of 𝛼 = 61.6 and 𝛽 = −2.05. Parameter errors are not shown as the fit

was performed without defined error bars to data. Error in the parameterization was estimated by

taking the standard deviation of the fit residuals over the interval (-25%,+30%) (∼ ±0.26 in natural

log scale). With these definitions, we have the following description of the W value of our spectra

in pure argon gas.
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Figure 4.14: (Above) The W value against incident ion velocity into argon gas. Velocity is in
units of

√
keV/u. The data are color coded according to the impinging ion species and markers

represent data source. By plotting in velocity and not energy, much of the spread in W values has
disappeared. The smooth line is a power-law equation Eq. 4.10. (Below) Residuals between data
and the fit.
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Parameterization of Methane Gas W value

Similarly, the available W value data for methane gas was collected. The nominal W value

for methane is 29.1 eV/pair in [38] and 29(1) eV/pair in [63]. The following W values for ions

impinging on methane were compiled and shown in Fig 4.15:

• Nguyen et al. [77]: H, He, C, O, N on methane

• MacDonald and Sidenius [78]: 𝑍 ⩽ 22 on methane (with select elements shown)

• Jesse [74]: He on methane

• Varma and Baum [75] He on methane

• Tawara et al. [76] He on methane
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ion W value (eV/pair) ∼ 1𝜎 error (eV/pair)
10Be, 20 keV 68.3 9.8
7Li, 256 keV 35.8 3.8
7Li, 430 keV 34.0 3.8
𝛼, 752 keV 31.6 2.9

Table 4.9: Estimated W values and associated 1𝜎 errors for relevant charged-particle radiations, in
methane gas. See text and Fig. 4.15 for determination of these estimates.

Here, we see similar behavior to the argon data, where the W value as an asymptotically

decreasing function of velocity. A similar power law function was fit to data, but with the high

energy W value of methane in place of that for argon.

𝑊 (𝑣) = 29.1 + 𝛼 · 𝑣𝛽 (4.11)

In the methane data, 𝛼 = 59.7 and 𝛽 = −1.22. With the same error assesment as in the argon

data, we have the following W values for methane:

Hidden in plain sight is a strong dependence on the chemical group of the inpinging ion. Group

I, alkali metals have larger W values than other groups. This pattern was noted in the original paper,

but no mechanism was prescribed to this behavior [78]. Given the richness of this data (all elements

for 𝑍 ⩽ 22 and very low energy/mass ratios), some time was spent modeling this behavior in light

of chemical electronegativity and only weak patterns were found beyond the Group I elements, low

electronegativity, and large W values. (Fluorine, with near maximal electronegativity falls under

the fit, but not by much and other elements with modest electronegativity have still lower W values.)

This effect likely is the culmination of many related effects, each with ties to atomic shell structure.
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Figure 4.15: (Above) The W value against incident ion velocity into methane gas. Velocity is
in units of

√
keV/u. The data are color coded according to the impinging ion species and marker

shapes represent data source. The smooth line is a power-law equation Eq. 4.11. (Below) Residuals
between data and the fit.
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radiation W value (eV/pair) 1𝜎 error (eV/pair) W value fraction 1𝜎 error
10Be, 20 keV 39.4 3.0 0.56 0.08
7Li, 256 keV 23.2 0.7 0.94 0.03

𝛼+7Li, 1182 keV 22.4 0.6 0.98 0.02
nominal 21.9 0.5 1.00 0.02

Table 4.10: Estimated W values and associated 1𝜎 errors for relevant charged-particle radiations,
in P-10 gas. See text for determination of these estimates.

Estimation of P-10 Gas W value

With each element of the Tawara formula [84] defined, P-10 W values were estimated. To

perform error propagation, a Monte Carlo calculation was performed for each ion of interest in

the previous tables. Values were sampled according to a Gaussian probability density function

centered on the power-law fit function values and the width defined by the standard deviation of

the fit residuals, the same as the tables above. Samples were drawn 100,000 times and applied in

the Tawara formula. Results were saved. The mean of the results is the central value of the final

(Gaussian-enough) probability density function and the standard deviation is the 1𝜎 error.

Most of the W values calculated in the Tawara formula are a bit lower than the nominal value

of P-10 (26.5 eV/pair). As done in Tawara et al. [84], these calculated W values are normalized to

the ”nominal” high-energy value calculated in the Tawara formula using the high-energy values of

the constituent gases. Thus, the full energy 7Li+𝛼 peak will create 98(2)% of the charge per unit

energy if it was higher in energy. The other isolated peak, the 256 keV 7Li ∗-alone peak, creates

94(3)% of the ionization a higher-energy particle would. The 10Be peak does, in fact, produce

only about half the ionization than one would expect assuming linearity in the detector gas, as was

calculated by SRIM.
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4.3 Effects on Analysis

With a more thorough accounting of the behavior of the P-10 gas pulse height defect, several items

will be reevaluated. First, the energy calibration of the E18507 analysis and E18507-style analysis

needs to change. In light of these gas effects and the publication of Refsgaard et al. [27], which

provides a ∼ 30 keV lower-energy state for the 𝛽−𝛼-emitting state in 11B, the energy calibration

was redone. The energy scale was set to the physical center of mass energy, so the 1182 keV 7Li+𝛼

in-gas, full energy peak appears with 1182 · 0.98(2) = 1158(24) keV and the 256 keV 7Li∗-alone

cathode-originated peak appears with 256 · 0.94(3) = 241(8) keV. Secondly, the large pulse height

defect of the 10Be changes the shape of the assumed 𝛽−𝑝 search peak. Assuming a 200 keV 𝛽−𝑝

resonance, the proton will carry 10/11 · 200keV = 182 keV and the 10Be will carry the remaining

1/11 · 200keV = 18 keV. However, while the proton will efficiently create charge, the 10Be will

create some 18 keV · 0.56(8) = 10(2) ”keV” of charge. This pushes the two constituent peaks

closer together toward a single peak appearing at ∼ 96% the center of mass energy.

4.4 Bayesian Inference of 𝛽−𝑝 with Markov Chain Monte Carlo

With many of the fit parameters being constrained in intuitive, but highly relational ways like a

prohibition on the very flexible R-matrix approximation function creating a local maximum that

could fit and hide a 𝛽−𝑝 signal, a more flexible fitting scheme was needed. Additionally, some

parameters, such as the 10Be ionization efficiency have well-described, Gaussian errors. Others,

like the detector resolution at ∼200 keV are less clear, but experience and some data from the

spectra inform us that the resolution is not worse than 10% FWHM. In the case of the detector

resolution, a Gaussian probability density function requires a choice of a central value, but it is

unclear which value to pick and it really needs a fairly sharp cut-off past 10%. Gaussian probability
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density functions have non-zero value at all values.

All these points can be solved by the marriage of Bayes’ Theorem and a Markov Chain Monte

Carlo (MCMC) sampling algorithm.

4.4 Introduction to Bayes’ Theorem

Bayes’ Theorem is

𝑝(H—d) = 𝑝(d—H) · 𝑝(H)
𝑝(d) (4.12)

It says that the posterior, or updated, probability density function of a hypothesis 𝐻, in light of

new data 𝑑, is the confluence of the quality of agreement of your data to the assumed hypothesis

𝑝(d—H), your prior belief in the hypothesis 𝑝(H), and your belief in the ability to obtain data 𝑑

across all possible hypotheses 𝑝(d). While belief in a hypothesis strains some desire for absolute

objectivity in analysis, this is merely semantics. Taking 𝑝(𝑑) = 𝑝(𝐻) = 1 yields the typical

statistical inference relation

𝑝(H—d) = 𝑝(d—H) (4.13)

from which classical parameter estimation are inferred. It was this inference relation that was

implicit in the E18507 style analysis that sometimes yielded large negative values for the 𝛽−𝑝,

clearly driven by a systematic error, likely by poor choice of a background model, as negative

event counts are not physical. Presented another way, the form of Eq. 4.13 is a statement of

statistical uncertainty, within a particular model, alone. Varying the model assumptions and

repeating the analysis to characterize the results’ influence by model assumptions is a common way

to estimate systematics of the analysis. This distinction is unnecessary and, in fact, can complicate

such a systematic search if multiple parameters are correlated and not varied according to to this

correlation, which itself is a complicating factor. Rather, the classical form of the inference equation

98



is an artifact of a historical lack of computational power required to numerically ”solve” Bayes’

Theorem and extract the posterior probability distributions.

The model limits that are tested to infer the influence of systematic errors are a choice. Model

selection, including model complexity (such as the degree of a polynomial or the choice between

a Gaussian, Lorentzian, or Voigt), is a choice. The classical inference equation 4.13 does not exist

separate from systematic-influencing choices based on model beliefs, but is embedded within them

with the details hidden away from a reader and maybe even an incurious practitioner. While the

discussion has grown into the unification of statistical and systematic errors in the Bayesian scheme,

here is an example that shows the application of a prior distribution 𝑝(𝐻) is a standard tool in the

analyst’s tool-belt and not something entirely new.

An Example: When reducing multiple independent measurements with central values 𝑥𝑖 and

Gaussian distributed errors 𝜎𝑖, one performs the calculation

𝑥 =

∑ 𝑥𝑖
𝜎2
𝑖∑ 1

𝜎2
𝑖

(4.14)

to find the error-weighted average. If we considered the probability density functions of each of

these measurements, they would be of the form

𝑝𝑖 (𝑥) ∼ exp
(
−(𝑥 − 𝑥𝑖)2

2𝜎2
𝑖

)
. (4.15)

The probability of a set of independent events is simply the product of the probability of each, so

the composite probability is

𝑃(𝑥) =
∏

𝑝𝑖 (𝑥) ∼ exp
(
− 1

2

∑︁ (𝑥 − 𝑥𝑖)2

𝜎2
𝑖

)
. (4.16)
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Expanding the sum and collecting terms in powers of 𝑥 yields

𝑃(𝑥) ∼ exp
(
− 1

2
· (𝑥2

∑︁ 1
𝜎2
𝑖

− 2𝑥
∑︁ 𝑥𝑖

𝜎2
𝑖

+
∑︁ 𝑥2

𝑖

𝜎2
𝑖

)
)
. (4.17)

Completion of the square yields (and dropping constant terms that are wrapped up in the propor-

tionality symbol)

𝑃(𝑥) ∼ exp
(
− 1

2
·
∑︁ 1

𝜎2
𝑖

· (𝑥 −
∑︁ 𝑥𝑖

𝜎2
𝑖

·
(∑︁ 1

𝜎2
𝑖

)−1)2
)

(4.18)

The joint probability is maximized for

𝑥 =

∑ 𝑥𝑖
𝜎2
𝑖∑ 1

𝜎2
𝑖

, (4.19)

which is the usual result for error-weighted averaging. To make the example clear, we invoke

multiplicative associativity applied to Eq. 4.16. That is, the joint probability can be written as the

product of new measurements and old (prior) measurements

𝑃(𝑥) =
∏

𝑝𝑖 (𝑥) =
∏
𝑖,new

𝑝𝑖 (𝑥)
∏
𝑗 ,old

𝑝 𝑗 (𝑥) (4.20)

or new measurements against theory

𝑃(𝑥) =
∏

𝑝𝑖 (𝑥) =
∏

𝑖,experiment
𝑝𝑖 (𝑥)

∏
𝑗 ,theory

𝑝 𝑗 (𝑥) (4.21)

or equivalently and more generally,

𝑃(𝑥) = 𝑝data · 𝑝prior (4.22)
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which is identically Bayes’ Theorem, Eq. 4.12, without the constant denominator.

4.4 Introduction to Markov Chain Monte Carlo

The Markov Chain Monte Carlo is a class of algorithms that is useful in exploring a probabilistic

parameter space. MCMC algorithms are numerical in nature and the results are numerical strings or

chains of sampled parameters. That is, instead of solving an integral or solving a 𝜒2-minimization

analytically and calculating the solution and errors in the solution by the shape of the probability

surface around the solution, the algorithm is run to generate samples of interest filling the chain,

and upon completion, the values of the chain can be interpreted as a sampled set of solutions to

the problem of interest, with more frequently sampled values being preferred. Less abstractly, the

Metropolis-Hastings algorithm is a MCMC algorithm that performs a ”random walk” through a

probability-like space, 𝑓 (®𝑥), which is proportional to the probability space, 𝑝(®𝑥), and the generated

chains will be sampled according to the probability space.

The basic steps of the algorithm follow:

• Assuming ®𝑥𝑖, compute a test value ®𝑡 according to some generator 𝑔(®𝑡 | ®𝑥𝑖)

• Calculate the probability fraction 𝛼 =
𝑓 (®𝑡)
𝑓 (®𝑥𝑖) =

𝑝(®𝑡)
𝑝(®𝑥𝑖) and a random number 𝑟 from a uniform

distribution

• Compare 𝛼 and 𝑟 . Accept the trial value if 𝛼 > 𝑟 and set ®𝑥𝑖+1 = ®𝑡. Reject the trial value ®𝑥𝑖 if

𝛼 < 𝑟 and set ®𝑥𝑖+1 = ®𝑥𝑖

• Repeat with ®𝑥𝑖+1

The stored values of ®𝑥 make the Markov chain and these values will have the same properties

as a sample set sampled directly from 𝑝(®𝑥).
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While simple at a high level, there are some assumptions and tricks related to the generator

𝑔(®𝑡 | ®𝑥𝑖). As written, the generator must be symmetric 𝑔(®𝑥 | ®𝑦) = 𝑔(®𝑦 | ®𝑥). In principle, asymmetric

generators can be used, but this biases your trial samples and must be accounted for to correctly

sample the probability distribution 𝑝(𝑥). In a large number of sampled dimensions, the odds of

performing a ”bad” step in one or more dimension increases. To solve for this, a common generator

to use is the multi-variate Gaussian, which is a multi-dimensional Gaussian defined by a covariance

matrix. An alternative is Gibbs sampling, which is a subset of Metropolis-Hasting schemes and is

implemented similarly, but only one component of the parameter space is varied in each step. The

individual components are updated cyclically. The Gibbs-sampled component may be an individual

parameter of the probability space or a linear combination of parameters. This sampling reduces

the dimensionality of each step, but increases the number of steps required to achieve the same

coverage in the entire probability space.

These MCMC solutions are robust to high-dimensional problems that may have local minima,

as solutions will enter and exit minima in the probability distributions during the parameter walk.

Furthermore, they allow for non-Gaussian-distributed probability surfaces which can more closely

model the inference problem at hand.

4.4 Implementation of Bayesian Inference with MCMC

A Bayesian Markov Chain Monte Carlo code was written to perform the fit of the E19030 spectra

for Pads B, C, D, and E.

Trial steps across the model parameter space were generated with ROOT’s RooMultiVar object

that provides the mathematics of a multi-variate Gaussian. It is easily trained by passing data to

other ROOT objects. Historical steps were stored in a TPrincipal object that was used to generate

the data covariance matrix (TMatrixD) which the multi-variate Gaussian object (RooMultiVar)
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was trained to. New trial parameter steps were (pseudo-)randomly generated and passed to the

step-evaluation portion of the code.

The probability-proportional function ( 𝑓 (®𝑥) in Sec. 4.4.2) for a particular set of model param-

eters was done in two steps: fitting to data and evaluation against the Bayesian priors.

4.4 Fitting To Data

The data was fit from 120 keV to 245 keV in the 100% ionization efficiency center of mass energy

scale and 𝛽−𝑝 peaks were tested for center mass energy from 145 keV to 215 keV. The low energy

range limit comes from the shape of the 𝛽 background becoming less exponential in shape and

therefore too complex to model. The high energy range limit is roughly the peak of the 256 keV

7Li∗ after accounting for incomplete ionization processes of the slow 7Li. The fit background

function was the sum of an exponential curve, a flat offset, and the product of a Voigt and quadratic

polynomial, written below

𝑓back(𝐸) = exp(𝑎 + 𝑏 · 𝐸) + 𝑐 + Voigt(𝐸, 𝐸̄7, 𝜎7, 𝛾7) · (𝐴0 + 𝐴1 · 𝐸 + 𝐴2 · 𝐸2) (4.23)

and the peak function was

𝑓peak(𝐸) = 𝑁 ·
[
1
2
𝑐fracVoigt(𝐸, 𝐸̄ = 𝑚10𝑞𝑝𝐸𝑝, 𝜎, 𝛾 = 𝑚10𝑞𝑝Γ)

+ (1 − 𝑐frac)Voigt
(
𝐸, 𝐸̄ = (𝑚10𝑞𝑝 + 𝑚𝑝𝑞10)𝐸𝑝, 𝜎, 𝛾 = (𝑚10𝑞𝑝 + 𝑚𝑝𝑞10

)
Γ)

]
(4.24)

where 𝑐frac is the fraction of decays originating on the Proton Detector cathode, 𝑚10 is the mass

fraction of the 10Be to the 10Be+proton system,𝑚𝑝 is the mass fraction of the 10Be to the 10Be+proton

system, 𝑞𝑝 was the proton ionization efficiency, 𝑞10 was the 10Be ionization efficiency, 𝐸𝑝 was the
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center of mass energy of the 𝛽−𝑝 resonance, 𝜎 was the Gaussian width detector resolution, and Γ

was the intrinsic width of the 𝛽−𝑝 resonance. The total (background and peak-search both) model

has 14 parameters.

The fit was judged by the 𝜒2 sum of the squared difference between data and the model function,

divided by the square of the expected data error, which was the root of the data in the bin, from

Poisson counting statistics. The probability of a particular data histogram given the model is then

𝑝(d|H) = exp(−𝜒2/2).

4.4 Evaluation of model against priors

The next part was to evaluate a particular model against the priors. Strictly speaking, many of

these priors are un-normalizable, so these priors are not true probabilities that integrate to 1. This

is alright as the MCMC code requires only a function that is proportional to probability, so un-

normalized priors are fine if not true probabilities. Here is a list of individual priors 𝑝𝑖 that are

multiplied to generate the entire model prior 𝑝𝑀 =
∏

𝑝𝑖:

• 𝑝0 = 1 if the exponential slope meant for the 𝛽 background is negative, 𝑏 < 0

• 𝑝1 = 1 if the constant flat background is positive AND less than the minimum data bin,

0 ≤ 𝑐 ≲ 1200

• 𝑝2 = exp
(
− (𝑐frac−𝑐frac)2

2·0.0062

)
, so the cathode fraction is within ∼1.5% of the value measured using

the 𝛽−𝛼 − 𝛾(478keV) coincidence

• 𝑝3 = 1 if proton counts, 𝑁 , are positive

• 𝑝4 = 1 if the detector resolution is between 4.5% and 10% of the center of mass energy 𝐸𝑝

• 𝑝5 = 1 if the 𝛽−𝑝 intrinsic width Γ is less than 30 keV
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• 𝑝6 = exp
(
− (𝑞10−𝑞10)2

2·0.082

)
, so the 10Be ionization efficiency matches that calculated in Sec.

4.3.1.2

• 𝑝7 = 1 if the nominal Voigt center is between 210 and 260 keV, 210 < 𝐸̄7 < 260

• 𝑝8 = 1 if the Voigt·Polynomial is positive, that is 𝐴0 + 𝐴1 · 𝐸 + 𝐴2 · 𝐸2 over the fit window

• 𝑝9 = 1 if the nominal Voigt widths are less than 300 keV, that is 𝜎7 < 300 and 𝛾7 < 300

• 𝑝10 = 1 if the Voigt· Polynomial curve is increasing on the interval 120-150 keV. This

guarantees the peak-like behavior far from the peak

otherwise, 𝑝𝑖 = 0. That is, most of our priors are ”ignorant” to model parameters, granting the

model great flexibility, and instead only excludes unphysical behavior of the background model.

This point is critical. We did not and do not have access to a 11Be(𝛽−𝛼)7Li ”calibration” that

guarantees no 11Be(𝛽−𝑝)10Be. We need a background model that can accommodate the convolution

of real 11Be(𝛽−𝛼)7Li and the detector response to a precision exceeding that of any previous

GADGET experiment, due to asymmetry of the nominal∼ 1 ·10−5 𝛽−𝑝 branch against the∼ 3 ·10−2

𝛽−𝛼 background. In the scenario of an incorrectly simple model, the Bayesian posterior distribution

will still incur a systematic shift from the signal compensating for a deficiency in the background

model. However, in the scenario of a too-complicated model, where one has model redundancies

between signal and nuisance parameters, all confusions between signal and background will be

represented with their quality-of-fit probabilistic weights. Complicated correlations are explored

across the entirety of the parameter space and not merely at the ”most probable” point, and are

easily visualized in 2D plots of signal vs nuisance-parameter.
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4.4 The MCMC Algorithm

This next section outlines the explicit coding details of the MCMC code. Initial parameter values

were determined by a 𝜒2 fit of the data with the background function alone, Eq. 4.23. Initial

step sizes were selected by the 𝜒2 fit error bars. Each of the Pads B, C, D, and E were treated

independently, so the algorithm was run for each pad and assumed resonance energy 𝐸𝑝 on the

interval 145 to 215 keV with 1 keV spacing for a total of 280 implementations.

There were five burn in periods of the MCMC. Each burn in consisted of 10,000 saved samples

spaced every 20 steps along the chain. The burn-in chains were thus 200,000 samples long.

As many of the model parameters are correlated and high-dimensionality steps are less likely to

succeed than single-dimension steps, the first burn in was sampled according to the Gibbs scheme

with individual parameters. That is, the first parameter was updated by 𝑡0 = 𝑥0 + 𝑟 (0, 𝜎0), where

𝑟 is a random number generated from a Gaussian distribution with mean zero and width 𝜎0.

The step was evaluated and either accepted or rejected, then the second parameter was varied by

𝑡1 = 𝑥1 + 𝑟 (0, 𝜎1) and evaluated, and so on.

Once this primary chain completed, four additional burn in chains were sampled. These chains

proposed steps that updated all model parameters using steps sampled from a multi-variate Gaussian

defined by the covariance of the previous burn in chain, 𝑑𝑥. That is, the trial steps were calculated

by ®𝑡 = ®𝑥𝑖 + ®𝑑𝑥𝑖. The burn in periods allowed the MCMC code to reach the statistical distribution

if the initial parameter values or step sizes were not in equilibrium with the posterior distribution.

This was nearly guaranteed.

The ”data-taking” chain followed. Here, the step sizes are the values drawn from the multi-

variate Gaussian distribution scaled by 0.25. From this chain 1 million samples were drawn, spaced

every 20 steps, for a total of 20 million steps. The covariance matrix from which the trial steps
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are generated was reevaluated every 500 saved samples (10,000 steps) in the chain. If a batch

of 500 samples had poor update success (> 10% of saved samples were identical to the previous

saved sample), then that block of steps was repeated with 33% smaller step sizes. Resampling

allowed more efficient motion throughout the parameter space. The check against high failure rates

of the proposed trial steps safeguarded against the MCMC ”getting stuck”, leading to a singular

covariance matrix and breaking at the next new trial step generation.
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CHAPTER 5

RESULTS AND DISCUSSION: EVIDENCE FOR NOVEL 𝛽−𝑝

The Bayesian Markov Chain Monte Carlo procedure described in Sec. 4.4 was applied to GADGET

Pads B, C, D, and E. A number of metrics to judge the quality of the performance of the MCMC

will be presented and then the inferred 𝛽−𝑝 branching ratio. This branching ratio will be compared

to existing theory work and the other experimental work.

5.1 Results of Bayesian Markov Chain Monte Carlo

The first results we will show are related to the behavior of the MCMC. The MCMC generates a

great deal of data. To store 1,000,000 double precision floating point numbers requires 8M bytes. 1

million samples over 14 parameters requires 112 MB of storage per fit. We can study 1D parameter

distributions, 2D parameter correlation distributions, conditional distributions (e.g. ”What is the

branching ratio and detector resolution correlation, assuming a 𝛽−𝑝 intrinsic width Γ = 5 keV?”),

as well as the actual path of the MCMC through the parameter space, which can be used to ensure

the chain is exploring the space efficiently. These distributions and tests exist for all fits, across all

pads and energies.

5.1 Convergence of the Markov Chain

A first test of the MCMC is to look at the parameter traces. (These are sometimes called caterpillar

plots for aesthetic reasons.) If the MCMC is sampling the parameter space efficiently, then samples

are fairly uncorrelated, as random samples ought to be if they are truly random. Figures 5.1, 5.2,

5.3, 5.4 shows the trace from the MCMC fit of Pad B at 𝐸 = 160 keV. The sampling here is showing

every 100th saved point. Most traces are fairly random in appearance, but to demonstrate some

behavior of correlation, consider the 7Li∗ center parameter in the middle of Fig. 5.3. The sampling
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appears fairly random around 𝐸7 ∼ 230 keV most of the time. However, there is another solution

for 𝐸7 ∼ 250 keV. By considering the 𝜒2 value at different times (Fig. 5.5), we can see these

transitions from 𝐸7 ∼ 230 keV to 𝐸7 ∼ 250 keV are not met with any sort of decrease in the quality

of the fit. However, there is still correlation in the sample as once the value of the 𝐸7 parameter

jumps, it fluctuates about this new value for some thousands of samples. While this correlation is

not ideal, the MCMC steps into and out of this region several times, and does not become ”stuck”

in a bad region nor does it become ”un-stuck” and continually move toward a new, better, region.

That is, this motion is probably fairly statistical.
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Figure 5.1: MCMC parameter traces for Pad B and 𝐸𝑝 = 160 keV. The parameters are the
exponential scaling (𝑒𝑥𝑝1), exponential slope (𝑒𝑥𝑝2), and constant background ( 𝑓 𝑙𝑎𝑡). Parameter
values are plotted in the y-axis and the sample number along the MCMC are plotted along the
x-axis. (1/5)
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Figure 5.2: MCMC parameter traces for Pad B and 𝐸𝑝 = 160 keV. The parameters are the 𝛽−𝑝
counts (𝑝𝐶𝑜𝑢𝑛𝑡𝑠), detector resolution applied to the 𝛽−𝑝 signal (𝑝𝑆𝑖𝑔𝑚𝑎), and assumed intrinsic
width Γ𝑝 (𝑝𝐺𝑎𝑚𝑚𝑎). Parameter values are plotted in the y-axis and the sample number along the
MCMC are plotted along the x-axis. (2/5)
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Figure 5.3: MCMC parameter traces for Pad B and 𝐸𝑝 = 160 keV. The parameters are the 10Be
ionization efficiency (10𝐵𝑒 − 𝐼𝑜𝑛𝐸 𝑓 𝑓 ), the Voigt center of the 7Li∗ peak (7𝐿𝑖𝐶𝑒𝑛𝑡), and the
Gaussian width of the 7Li∗ peak 𝜎7 (7𝐿𝑖𝑆𝑖𝑔𝑚𝑎). Parameter values are plotted in the y-axis and the
sample number along the MCMC are plotted along the x-axis. (3/5)
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Figure 5.4: MCMC parameter traces for Pad B and 𝐸𝑝 = 160 keV. The parameters are the
Lorentzian width of the 7Li∗ peak 𝛾7 (7𝐿𝑖𝐺𝑎𝑚𝑚𝑎), the zeroth term in the polynomial applied to
the 7Li∗ peak Voigt (𝑝𝑜𝑙0), and the linear term in the polynomial applied to the 7Li∗ peak Voigt
(𝑝𝑜𝑙1). Parameter values are plotted in the y-axis and the sample number along the MCMC are
plotted along the x-axis. (4/5)
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Figure 5.5: MCMC parameter traces for Pad B and 𝐸𝑝 = 160 keV. The parameters are the quadratic
term in the polynomial applied to the 7Li∗ peak Voigt (pol2) and (not a parameter) the Bayesian-
modified 𝜒2 of the fit (chisq). Parameter values are plotted in the y-axis and the sample number
along the MCMC are plotted along the x-axis. (5/5)
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One example of unambiguously poor behavior is walking behavior, with high correlation and

a clear direction. Such behavior can be seen in the burn-in chains, moving from non-ideal fit

parameters toward the statistical distribution of fit parameters. As these walking samples are never

revisited, they arguably are not truly part of the true probability distribution, but are instead an

artifact of the MCMC implementation. Similarly, parameters that rarely update are unfavorable. A

stepping scheme that rarely makes a successful step should still have the desired statistical properties

of a stepping scheme that has more successful stepping, but will take a very long time to converge

to a desirable distribution. In shorter chains, the final sample distributions will have ”spikes” in

the distributions because of the rarity of steps and, when steps are rare, the same step is ”sampled”

and saved repeatedly.

This is to argue that while obvious correlations exist in this chain, every unusual space is sampled

several distinct times and these traces still exhibit nice statistical properties in both regions. One

quantitative metric of this is the success rate of the sampling. If the success rate is too high, then

the chain likely is taking very small steps relative to the features in the N-dimensional probability

space. These small steps mean the whole space is not explored as quickly as if the trial steps were

larger. Similarly, if the trial-step success rate is too low, then the trial steps are likely too large, or

with a correlation different than the shape of the probability space. Gelman et al. showed that for

high dimensional systems, such as our 14 parameter model that the convergence of the sampling is

optimized for a trial step success rate of 23.4% [85]. These traces are for just the fit of Pad B with

the assumed energy 𝐸𝑝 = 160 keV, but all traces that were visually inspected appear similar in their

sampling and across Pads and across assumed energies. All MCMC iterations had success rates of

22 − 26%, which is close to the ideal success rate.

One benefit of the MCMC that was discussed in 4.4.3 was that complicated parameter corre-

lations can be investigated over the entirety of the probability space and not merely in the vicinity
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of the 𝜒2-minimum location. Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 show the full

correlation output of the MCMC run on Pad B at 𝐸𝑝 = 160 keV. The nine pages are sections of the

same type of graphic. The parameters are plotted row-wise and column-wise to make a 14x14 ma-

trix of the two-parameter correlations and the two-dimensional, color-coded histograms are filled

with the specified parameter values along the Markov Chain. More intense regions are regions

where the MCMC spent more ”time”/samples and are to be interpreted as proportionally more

probable. (The histograms are not normalized to integrate to unity, so the intensity is proportional

to probability.) Uncorrelated parameters will have ellipse-like shapes in their sample distributions

and highly correlated parameters, like the exponential background scaling and decay parameters,

will appear as tight lines or curves.

Parameters within a component of the background tend to be highly correlated. This can be

seen in the exp1 and exp2 exponential parameters modelling the 𝛽 background. Similarly, the 7Li∗

peak’s 𝜎 and 𝛾 are well correlated along an elliptical contour, even if 𝛾 ∼ 70 keV and 𝜎 ∼ 10

keV are the favored values. Finally, the polynomial terms of the same peak pol0, pol1, pol2 are all

highly correlated and in complicated ways between all three parameters.

What is not strongly correlated with background parameters is the inferred proton counts.

Proton counts are shown in the fourth row of Fig. 5.6, 5.7, and 5.8. A lack of correlation with

background parameters is suggestive that our model description of the background is modeling the

background and our model description of the signal is modeling the signal, with minimal ”mixing”

of the two. (Again, a great example of ”mixed” parameters is the interplay of the two Voigt widths.)

The proton counts parameter, however, is not entirely uncorrelated with parameters associated with

the shape of the 𝛽−𝑝 peak. The strongest example of this is the correlation between the counts

parameter and the intrinsic width parameter, shown in Fig. 5.15. This correlation shows that at

𝐸𝑝 = 160 keV, as measured by Pad B, for all values of Γ𝑝, there is an inference of non-zero proton
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counts. Secondly, if we assume a large value of Γ, we must infer a large number of 𝛽−𝑝 counts.

Conversely, an assumed large number of 𝛽−𝑝 counts implies a large intrinsic width Γ𝑝.

Finally, one may refer to Appendix C, which shows a collection of MCMC samples in their

function, not parameter, forms compared to the experimental data. The figures within show

examples of the complex interplay show in the histograms of Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11,

5.12, 5.13, 5.14, and the flexibility of different components of the background model.
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Figure 5.6: (1/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.7: (2/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.8: (3/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.9: (4/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.10: (5/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.11: (6/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.12: (7/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.13: (8/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.14: (9/9) 1-D distributions and 2-D correlations for Pad B and 𝐸𝑝 = 160 keV.
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Figure 5.15: 2D parameter sample distribution between the intrinsic width Γ of the proton-emitting
resonance and proton counts for Pad B at 𝐸𝑝 = 160 keV. For large values of Γ, a large number of
𝛽−𝑝 counts is inferred. Conversely, a large number of 𝛽−𝑝 counts implies a large intrinsic width Γ.

5.1 𝛽−𝑝 intensity maps

The previous section was a deep dive into just one fit to the data to test the convergence of the

MCMC code. Ultimately, the primary observable of interest is the intensity of the 11Be(𝛽−𝑝) decay

and its energy. The MCMC algorithm gives us a Markov Chain of parameter samples assuming

a proton resonance energy 𝐸𝑝. By plotting the proton counts parameter for each 𝐸𝑝 in a 2D

histogram, we arrive at an intensity map showing the inferred 𝛽−𝑝 branching ratio as a function of

assumed resonance energy. Figure 5.16 shows this map for Pads B and C. Figure 5.17 shows this

map for Pads D and E.

These intensity maps are probability density profiles. Since each pad is operated independently
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Figure 5.16: Intensity map from the MCMC sampling for Pad B (top) and Pad C (bottom).
Inferred proton counts are normalized by the 𝛽−𝛼 branch to calculate a branching ratio and this
branching ratio is plotted against resonance energy. The black curve shows the most probable
value; red shows the 68% confidence interval boundaries; green shows the 95% confidence interval
boundaries; purple shows the 99.7% confidence interval boundaries. Pad B is suggestive of a finite
value but consistent with a zero value for 𝐸𝑝 < 170 keV. Above 𝐸𝑝 = 170 keV, there is no indication
of an excess caused by 𝛽−𝑝. Pad C is suggestive of a finite value but consistent with a zero value
for 150 < 𝐸𝑝 < 170 keV and 𝐸𝑝 ≳ 200 keV. Elsewhere, there is no indication of an excess caused
by 𝛽−𝑝.

of the others, each map from each pad is an independent measurement of the inferred branching

ratio 𝑏𝑝. To combine, a bin-by-bin multiplication of the intensity map for each of the four pads

was performed. To keep the interpretation of probability for an assumption of 𝐸𝑝, the combined

probability distribution was normalized to unity for each 𝐸𝑝. The result of this multiplication is

shown in Fig. 5.18.
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Figure 5.17: Intensity map from the MCMC sampling for Pad D (top) and Pad E (bottom).
Inferred proton counts are normalized by the 𝛽−𝛼 branch to calculate a branching ratio and this
branching ratio is plotted against resonance energy. The black curve shows the most probable
value; red shows the 68% confidence interval boundaries; green shows the 95% confidence interval
boundaries; purple shows the 99.7% confidence interval boundaries. Pad D is suggestive of a finite
value but consistent with a zero value for 150 < 𝐸𝑝 < 165 keV and 185 < 𝐸𝑝 < 210. Pad E is
suggestive of a finite value but consistent with a zero value for 𝐸𝑝 < 150 keV and 165 < 𝐸𝑝 < 185
keV. Above 𝐸𝑝 = 180 keV, there is no indication of an excess caused by 𝛽−𝑝.

The energy uncertainty in the region of interest comes primarily from the uncertainty in the

pulse height defect of the 7Li∗ peak which was determined to be ∼ 3% in Sec. 4.3, or ∼ 8 keV.

Additional uncertainty comes from the extrapolation of the energy calibration between the 7Li∗

peak and full-energy 7Li+𝛼 peak. The relative uncertainty from the extrapolation comes from

the uncertainty of the pulse height defect for the full-energy peak, or ∼ 2%, measured from the

7Li∗ peak at 𝐸𝑝 = 241(8) keV. The energy uncertainty from the energy extrapolation to a peak at

𝐸𝑝 = 150 keV would be be less than ∼ 2 keV, which is small relative to the ∼ 8 keV uncertainty

129



3−10

2−10

1−10

150 160 170 180 190 200 210
Energy of Resonance (keV)

0

0.01

0.02

0.03

0.04

0.05

3−10×
In

fe
rr

ed
 B

ra
nc

hi
ng

 R
at

io

Figure 5.18: Combined intensity map of all four pads. Probability density below ∼ 10−4/bin
is truncated. The black curve shows the most probable value; red shows the 68% confidence
interval boundaries; green shows the 95% confidence interval boundaries; purple shows the 99.7%
confidence interval boundaries. There is evidence of a 𝛽−𝑝 -like excess at 𝐸𝑝 ∼ 160 keV.

from the location of the 7Li∗ peak.

5.2 Discussion

With the composite heatmap of Fig. 5.18, there is a clear excess at 𝐸𝑝 = 160(8) kev with a

maximum in the branching ratio intensity of 𝑏𝑝 = 8+5
−4 · 10−6. The central value comes from the

most intense value and the asymmetric errors come from integrating the most likely values out to

68% of the probability space for the assumed 𝐸𝑝. This is done to preserve the most probable regions

in the confidence interval integral. For a further argument for this construction of a confidence

interval, see Appendix Chapter C.
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The choice of intrinsic width Γ is highly correlated with the inferred 𝛽−𝑝 branching ratio. For

all fits, the smaller the Γ, the smaller the inferred branching ratio. The branching ratios shown

in Fig. 5.18 are integrated over all values of Γ, some of which are sizable. That is, much of the

uncertainty in this result is driven by our choice of a flat prior in the width Γ for Γ < 30 keV.

It is also worth noting that Pad E yields slightly different results than the other pads. In Pads

B, C, and D, there are small excesses peaking at 𝑏𝑝 ∼ 10−5 from 150 ≲ 𝐸𝑝 ≲ 170 keV and Pads C

and D have similar or smaller excesses for 𝐸𝑝 > 190 keV. Pad E, however, has a 𝑏𝑝 ∼ 10−5 excess

at 165 ≲ 𝐸𝑝 ≲ 185 keV. All pads were treated with the same analysis procedure, from data sorting,

to the energy calibration, to statistical inference, so it is hard to ascertain the source of this, if it

is significant beyond statistical fluctuations. The effect of a non-statistical energy shift in Pad E

would be to lower the composite branching ratio at 𝐸𝑝 = 160(8) keV.

5.2 Comparison To Other Experiments

Several other experiments have been conducted to understand the 11Be(𝛽−𝑝) branching ratio. Most

directly comparable to our results are those of Ayyad et al. (2019) [2], where they reported

𝐸𝑝 = 196(20) keV, Γ = 12(5) keV and 𝑏𝑝 = 1.3(3) · 10−5 in a gaseous time projection chamber.

Our energy is ∼ 2𝜎 lower than that reported in Ayyad et al. (2019) and our 𝛽−𝑝 branching ratios are

consistent. Next, we consider the indirect branching ratio determined by AMS of the 11Be decay

products. The newest AMS measurement can only measure a total 10Be production rate and their

suggested value of the branching ratio was < 2.2 · 10−6, which is lower than our measured value.

Additionally, two reaction measurements have been published that provide 11B resonance

structure information for comparison. A measurement of the 10Be(𝑝, 𝑝′)10Be scattering reaction

by Ayyad et al. (2022) [30] reported observation of a resonance with energy 𝐸𝑝 = 171(20) keV,

proton partial width Γ𝑝 = 4.5(11) keV, total width Γ𝑇 = 16(3) keV. Our energy agrees with this
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measurement and is more than a factor of two more precise. A measurement of 10Be(𝑑, 𝑛)10Be+𝑝

reported observation of a resonance with energy 𝐸𝑝 = 211(40) keV. We are consistent with this

second measurement, but that is due to the large 40 keV uncertainty in the resonance energy.

The comparable experimental values are in Tab. 5.1. Our resonance energy 𝐸𝑝 = 160(8)

keV is consistent with all literature resonance energies. Our measurement of the branching ratio

𝑏𝑝 = 8+5
−4 · 10−6 is consistent with the Ayyad et al. (2019) 𝛽−𝑝 measurement and are somewhat at

odds with the most recent AMS inferred limit by Riisager et al.. We are not able to make strong

claims about the intrinsic width of the state, however, if the width is determined precisely in the

future, then the probability density plots from the analysis of our experimental data can be used to

refine the experimental branching ratio.

Reference 𝐸𝑝 (keV) Γ𝑝 (keV) BR(𝛽−𝑝) production mechanism
Riisager et al. (2014) [6] - - 8.3(9) · 10−6 10Be AMS
Ayyad et al. (2019) [2] 196(20) 12(5) 1.3(3) · 10−5 𝛽−𝑝

Riisager et al. (2020) [22] - - < 2.2 · 10−6 10Be AMS
Ayyad et al. (2022) [30] 171(20) 4.5(11) - 10Be(𝑝, 𝑝′)

Lopez-Saavedra et al. [32] 211(40) - - 10Be(𝑑, 𝑛)10Be+𝑝
Surbrook et al. (this work) 160(8) - 8+5

−4 · 10−6 𝛽−𝑝

Table 5.1: Summary of experimental results for the branching ratio of the 11Be(𝛽−𝑝) decay and
candidate resonant state properties. Resonance energies, 𝐸𝑝, are in reference to the proton emission
threshold.

5.2 Comparison To Theory

A number of theory models have been applied to this question of a ∼ 10−5 𝛽−𝑝 branching ratio.

Different models can calculate different physical observables and patterns between observables. The

following papers report calculations of the 𝛽−𝑝 branching ratio. Baye and Tursunov calculated 𝛽−𝑝

decay through a structure-less continuum and calculated 𝑏𝑝 ∼ 3 · 10−8 [12]. Volya performed shell

model calculations of the 11B nucleus with the psdu and fsu interactions, to search for undiscovered
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near-threshold resonances that could participate in allowed 𝛽−𝛼 and 𝛽−𝑝 decays. He calculated

𝑏𝑝 ∼ 5 · 10−10, unless there exists a resonant state which was not predicted by the shell model

calculations, then 𝑏𝑝 < 1 · 10−7 [23]. Oko lowicz et al. performed shell model calculations with a

continuum coupling and found a near-threshold resonance that could participate in an allowed 𝛽−𝑝

decay with a small intensity 𝑏𝑝 ∼ 3 · 10−7 [86]. Elkamhawy et al. performed Halo effective field

theory calculations with an assumed resonance of the energy reported in Ayyad et al. (2019) [2] and

found an experimentally consistent branch of 𝑏𝑝 = 4.9+5.6
−2.9(ex.)+4.0

−0.8(th.) · 10−6 [26, 87]. Atkinson et

al. performed ab initio calculations of a participating resonance in 11B and find 𝑏𝑝 = 1.3(5) · 10−6

[28]. These model predictions are summarized in Table 5.2.

Reference 𝐸𝑝 (keV) Γ𝑝 (keV) BR(𝛽−𝑝)

Baye and Tursunov [12] ∼ 150 - ∼ 3 · 10−8

Volya [23] - - ∼ 5 · 10−10

Oko lowicz et al. (2020) [24] ∼ 142 - -
Oko lowicz et al. (2022) [86] ∼ 160 - ∼ 3 · 10−7

Elkamhawy et al. (2021) [26] (196)∗ 9.0+4.8
−3.3(ex.)+5.3

−2.2(th.) 4.9+5.6
−2.9(ex.)+4.0

−0.8(th.) · 10−6

Atkinson et al. [28] - - 1.3(5) · 10−6

Le Ahn et al. [29] ∼ 182 ∼ 6 -

Table 5.2: Summary of theory predictions for the branching ratio of the 11Be(𝛽−𝑝) decay and
candidate intermediary resonant state properties. Resonance energies, 𝐸𝑝, are in reference to the
proton emission threshold.
∗ The energy of Elkamhawy et al. (2021) was set to the experimental value of [2].

Generally, theory predicts small widths Γ < 10 keV and small branching ratios 𝑏𝑝 < 10−5.

Many of these branching ratios are smaller than the precision of our measurement and are effectively

zero-valued, which our result excludes at 94% confidence at 𝐸𝑝 = 160 keV. Elkamhawy et al. (2022)

[87] is a follow-up paper to the 2021 paper [26] that goes into detail regarding these effective field

theory calculations, which predict the relationship between the resonance energy 𝐸𝑝, width Γ𝑝, and

the branching ratio 𝑏𝑝. Considering our result’s relationship between the width Γ and branching
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ratio 𝑏𝑝, we may consider testing the consistency between our result and their calculations by more

than just the branching ratio 𝑏𝑝.

In terms of energy predictions, the 𝛽−𝑝-like excess in our data is found at 𝐸𝑝 ∼ 160(8) keV.

The Baye and Tursunov value is not a resonance energy and comes from broad continuum behavior,

so we’ll disregard. Our resonance energy is similar to Oko lowicz et al., especially the 2022 value

of 𝐸𝑝 ∼ 160 keV, which includes 𝛽 decay feeding weights. Our value is somewhat low compared

to the value of Le Ahn et al. (𝐸𝑝 ∼ 182 keV), but there is no uncertainty reported from that

calculation.
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CHAPTER 6

CONCLUSIONS: INTERPRETING THIS WORK AND FUTURE EFFORTS

6.1 Conclusions

Concluding, the determination of the 11Be(𝛽−𝑝) branching ratio is strongly motivated. The novel

𝛽−𝑝 decay is a probe of the three-fold near-threshold structure in 11B. (The thresholds for 𝑛, 𝑝, and

3H are all similar in 11B.) This near-threshold structure likely has complex behavior, explaining

the difficulty in theoretical calculations to report a consistent 𝛽−𝑝 branching ratio and the limited

number of experimental results to report consistent partial widths of the participating state in

11B. Prior to our measurement, only one direct observation of the 𝛽−𝑝 from 11Be(𝛽−𝑝) had been

reported and it suggested a finite value of the branching ratio. This is inconsistent with the most

recent indirect measurement result inferred by counting the 10Be residues which sets an upper limit

on the production of 10Be from 11Be. The 11Be(𝛽−𝑝) decay yields a 10Be residue, so 11Be(𝛽−𝑝)

decay can explain the presence of 10Be in the decay products of a sample of 11Be. An excess

of 10Be production relative to 11Be(𝛽−𝑝) decay is a signature of the hypothetical dark decay of

loosely-bound neutrons. The converse, where 11Be(𝛽−𝑝) is observed in excess of 10Be production,

defies physical explanation. As new measurements are performed, should the 10Be production rate

be deemed in excess of the 11Be(𝛽−𝑝) decay rate, one can again consider the hypothetical dark

decay of the halo neutron in 11Be.

The 𝛽− -delayed charged particle spectrum of 11Be was measured using the GADGET system

at the National Superconducting Cyclotron Laboratory. We carefully characterized portions of the

significant 11Be(𝛽−𝛼) background and our expected 𝛽−𝑝 signal, guided by R-matrix calculations

and 𝛾-ray coincidences with 𝛽−𝛼 decays. We performed a search for a 𝛽−𝑝 -like excess in the 𝛽−

-delayed charged particle spectrum using a Bayesian statistical model, sampled by a Markov Chain
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Monte Carlo algorithm. Here, we report the second direct measurement of 11Be(𝛽−𝑝). We found a

∼ 2𝜎 𝛽−𝑝 excess at resonant energy 𝐸𝑝 = 160(8) keV and branching ratio 𝑏𝑝 = 8+5
−4 · 10−6, which

is consistent with the experimental literature. The energy of the 𝛽−𝑝 excess is compatible with

resonances predicted by many structure models and, similar to the other 𝛽−𝑝 measurement, the

measured branching ratio is larger than most models predict.

6.2 Outlook

Looking forward, several types of measurements could be performed to further investigate the

interesting 11Be(𝛽−𝑝) decay:

Old 7Li(𝛼,𝛼′) scattering measurements could be repeated with very fine precision around 150-

200 keV above the 11B proton threshold. A recent Ph.D. project proposal at Michigan State

University discussed performing such a measurement at Notre Dame in the near future. If the

structure of 11B around 𝐸𝑥 = 11.4 MeV is multi-faceted, state selection may be probe- sensitive

and the (𝛼, 𝛼′) scattering may yield not just additional, but unique information.

The 𝛽−𝑝 from 11Be could be remeasured. Our present measurement was systematically limited.

The MICROMEGAS pad plane of GADGET was recently upgraded from the 13 pixel design

discussed here to a new pad plane geometry with 1024 pixels. GADGET II, as it is called, can

operate as a time projection chamber, which has demonstrated particle identification. Utilization of

GADGET II to perform another measurement of 11Be may reduce the large 𝛽− and 𝛽−𝛼 backgrounds

we contended with and limit the systematic uncertainties related to their modeling.

The indirect measurements of the 11Be(𝛽−𝑝) branching ratio with AMS could be improved.

The indirect AMS 11Be(𝛽−𝑝) branching ratio limit comes from the collection sample yielding

the smallest branching ratio; other samples measured more than two orders of magnitude larger

abundances of 10Be, which the authors contend was due to molecular contamination of the 11Be+
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sample beam with 10BeH+, which has a relative mass difference of ∼ 3 · 10−5 from 11Be+. Standard

magnetic cleaning of cocktail beams cannot separate these two ions and the techniques used in

the past to produce intense beams of 11Be will also produce 10Be. An improvement to the AMS

measurement could be to use some technique to purify sample beam against 10BeH+. Two such

techniques could be mass filtering using a Multi-Reflection Time-Of-Flight mass spectrometer or

charge breeding the 11Be beam to a high charge state, which would break any possible molecules.

Such schemes suffer beam intensity losses, but new rare isotope production facilities may have

the 11Be production capability to suffer these losses and still deliver enough 11Be to measure the

minuscule branching ratios predicted by many theoretical models.

Changing focus, one could perform direct measurements of the W-value of modern detector

gas mixtures at ∼ keV/u beam energies, similar to the work done in the 1960s, 1970s, and 1980s

on chemically pure and tissue equivalent gas. It would seem that there is a gap in the scientific

literature here and the model to parameterize detector gas behavior from its constituents is not well

tested at very low energies or across elemental beam species. At these low beam energies, the

beam velocity approaches that of the classical bound-electron velocity, so it is hard to imagine the

absence of chemical effects in the beam stopping and ionization production.

Finally, another bound-neutron dark decay candidate was 15C. One nice feature of 15C is that

the 15C(𝛽−𝑝) decay is energetically forbidden, so the generation of 14C from 15C is a clear signal

of a bound-neutron dark decay. However, 14C is naturally abundant and presents an obvious hazard

of a false detection. Additionally, the relative mass difference between 14CH+ and 15C+ is also

∼ 3 · 10−5, so the difficulties from the 11Be AMS measurements of removing a daughter-containing

molecule from the beam holds true in 15C. The AMS sample beam preparation techniques proposed

for a re-measurement of 11Be−→10Be could also be utilized with 15C to reduce 14C background in

AMS sample collection.
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A. Wunderle, W. Heil, R. Maisonobe, M. Simson, T. Soldner, R. Virot, O. Zimmer,
M. Klopf, G. Konrad, S. Baeßler, F. Glück, and U. Schmidt. Improved determination of
the 𝛽−𝜈𝑒 angular correlation coefficient 𝑎 in free neutron decay with the 𝑎SPECT spectrom-
eter. Phys. Rev. C, 101:055506, May 2020. doi: 10.1103/PhysRevC.101.055506. URL
https://link.aps.org/doi/10.1103/PhysRevC.101.055506.
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APPENDIX A
SUPPLEMENTARY INFORMATION OF NSCL E18507 ANALYSIS

Historical GADGET Individual-Pad Resolution

This appendix section shows the historical GADGET narrow-peak detector resolution used to
estimate the detector response in E18507.

energy (keV)
0 200 400 600 800 1000 1200

E
/E

 (
%

)
∆

0

2

4

6

8

10

12

Si25

Al23

Cl31

pad A resolution

Figure A.1: Full width at half maximum energy resolution of GADGET Pad A in previous
experiments [35, 34, 36]. Error bars not visible are smaller than the marker. Figure credit: Moshe
Friedman.
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Figure A.2: Full width at half maximum energy resolution of GADGET Pad C in previous
experiments [35, 34, 36]. Error bars not visible are smaller than the marker. Figure credit:
Moshe Friedman.
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Figure A.3: Full width at half maximum energy resolution of GADGET Pad D in previous
experiments [35, 34, 36]. Error bars not visible are smaller than the marker. Figure credit: Moshe
Friedman.
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Individual Pad Fits in E18507

This appendix section shows a sample of spectra and their statistical model fitting used to extract
the number of 𝛽−𝑝 -like events in different detector pads and assumed resonance energies. It is
included to show the quality of the E18507 analysis applied to the E18507 dataset. The following
section shows the (poor) quality of this analysis applied to the E19030 dataset.
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Figure A.4: Data of Pad A from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160
keV.
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Figure A.5: Data of Pad C from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160
keV.
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Figure A.6: Data of Pad D from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160
keV.

151



PadAHistCal
Entries  1184993
Mean    178.9
Std Dev     31.17

 / ndf 2χ  71.79 / 60
Prob   0.1417
height    5.0927± 0.3716 
a         74.5± 649.3 
b         0.822±6.005 − 
c         0.00222± 0.01657 
eH        0.37± 36.34 
eM        0.16±0.25 − 

140 160 180 200 220

Energy (keV)

0

50

100

150

200

250

300

C
ou

nt
s/

1.
5 

ke
V

PadAHistCal
Entries  1184993
Mean    178.9
Std Dev     31.17

 / ndf 2χ  71.79 / 60
Prob   0.1417
height    5.0927± 0.3716 
a         74.5± 649.3 
b         0.822±6.005 − 
c         0.00222± 0.01657 
eH        0.37± 36.34 
eM        0.16±0.25 − 

Figure A.7: Data of Pad A from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure A.8: Data of Pad C from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure A.9: Data of Pad D from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure A.10: Data of Pad A from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure A.11: Data of Pad C from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure A.12: Data of Pad D from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure A.13: Data of Pad A from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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Figure A.14: Data of Pad C from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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Figure A.15: Data of Pad C from E18507 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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APPENDIX B
SUPPLEMENTARY INFORMATION OF NSCL E19030 ANALYSIS

Limitations of E18507 Analysis

This appendix section shows a sample of spectra and their statistical model fitting used to extract
the number of 𝛽−𝑝 -like events in different detector pads and assumed resonance energies from
the E19030 dataset. The fitting model here was the same as E18507, and these samples are shown
to show a range of behaviors, some undesirable, of the E18507 analysis applied to the E19030
dataset. In general, the fits to data are poor, judged by the 𝜒2 per degree of freedom and associated
p-value (𝜒2/ndf and 𝑃𝑟𝑜𝑏 in the plot information boxes, respectively) and/or have unphysical
negative values of the 𝛽−𝑝 counts. The range of detector pads and energies that satisfy these
two requirements is quite small, suggesting that this choice of fitting model is poor and should be
reconsidered.
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Figure B.1: Data of Pad B from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160
keV.
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Figure B.2: Data of Pad C from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160
keV.
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Figure B.3: Data of Pad D from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160
keV.
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Figure B.4: Data of Pad E from E19030 (blue) and model fit (red). The fit function is the sum of an
exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak with
integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 160 keV.
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Figure B.5: Data of Pad B from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 175
keV.
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Figure B.6: Data of Pad C from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 175
keV.
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Figure B.7: Data of Pad D from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 175
keV.
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Figure B.8: Data of Pad E from E19030 (blue) and model fit (red). The fit function is the sum of an
exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak with
integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 175 keV.
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Figure B.9: Data of Pad B from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure B.10: Data of Pad C from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure B.11: Data of Pad D from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure B.12: Data of Pad E from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 190
keV.
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Figure B.13: Data of Pad B from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure B.14: Data of Pad C from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure B.15: Data of Pad D from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure B.16: Data of Pad E from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 220
keV.
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Figure B.17: Data of Pad B from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 235
keV.

177



180 200 220 240 260 280

Energy (keV)

1000

1200

1400

1600

1800

2000

2200

2400

C
ou

nt
s/

1.
0 

ke
V

pad 2 - 235 keV

pad2Cal

Entries    4.017694e+07

Mean    234.6

Std Dev     31.15

 / ndf 2χ  155.3 / 94

Prob  05− 7.168e

height    14.39±82.38 − 

a         4.387e+03±2.177e+05 − 

b         17.3±  1049 

c         0.021±1.396 − 

eH        0.02± 12.56 

eM        0.000075±0.007427 − 
180 200 220 240 260 280

Energy (keV)

1000

1200

1400

1600

1800

2000

2200

2400

C
ou

nt
s/

1.
0 

ke
V

pad2Cal

Entries    4.017694e+07

Mean    234.6

Std Dev     31.15

 / ndf 2χ  155.3 / 94

Prob  05− 7.168e

height    14.39±82.38 − 

a         4.387e+03±2.177e+05 − 

b         17.3±  1049 

c         0.021±1.396 − 

eH        0.02± 12.56 

eM        0.000075±0.007427 − 

Figure B.18: Data of Pad C from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 235
keV.

178



180 200 220 240 260 280

Energy (keV)

1000

1200

1400

1600

1800

2000

2200

2400

2600

C
ou

nt
s/

1.
0 

ke
V

pad 3 - 235 keV

pad3Cal

Entries    4.266081e+07

Mean    234.5

Std Dev      31.4

 / ndf 2χ  148.3 / 94

Prob   0.0003005

height    14.0±186.4 − 

a         2.707e+02±2.166e+05 − 

b         1.2±  1121 

c         0.003±1.576 − 

eH        0.00± 12.64 

eM        0.000023±0.008479 − 
180 200 220 240 260 280

Energy (keV)

1000

1200

1400

1600

1800

2000

2200

2400

2600

C
ou

nt
s/

1.
0 

ke
V

pad3Cal

Entries    4.266081e+07

Mean    234.5

Std Dev      31.4

 / ndf 2χ  148.3 / 94

Prob   0.0003005

height    14.0±186.4 − 

a         2.707e+02±2.166e+05 − 

b         1.2±  1121 

c         0.003±1.576 − 

eH        0.00± 12.64 

eM        0.000023±0.008479 − 

Figure B.19: Data of Pad D from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 235
keV.
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Figure B.20: Data of Pad E from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 235
keV.
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Figure B.21: Data of Pad B from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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Figure B.22: Data of Pad C from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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Figure B.23: Data of Pad D from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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Figure B.24: Data of Pad E from E19030 (blue) and model fit (red). The fit function is the sum of
an exponential (exp[𝑒𝐻 + 𝑒𝑀 · 𝐸]), quadratic polynomial (𝑎 + 𝑏 · 𝐸 + 𝑐 · 𝐸2), and Gaussian peak
with integrated counts ℎ𝑒𝑖𝑔ℎ𝑡. The peak width is described in text and peak center is fixed to 250
keV.
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Model 1: Exponential + Flat + Voigt

This appendix section shows a sample of spectra and their statistical model fitting used to extract
the number of 𝛽−𝑝 -like events in different detector pads and assumed resonance energies from
the E19030 dataset. The fitting model here was the sum of an exponential curve, a constant term,
a Voigt profile, and a signal-like peak with height as a parameter. In general, the fits to data are
reasonable, judged by the 𝜒2 per degree of freedom and associated p-value (𝜒2/ndf and 𝑃𝑟𝑜𝑏 in the
plot information boxes, respectively). However, the results have difficult to explain behaviors. See
the discussion in the main text at Section 3.3.2.2. These figures are included here to supplement
that text without affecting readability.
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Figure B.25: Data of Pad B from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 0.0 keV. The search peak center is fixed to 175 keV.
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Figure B.26: Data of Pad B from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 12.0 keV. The search peak center is fixed to 175 keV.
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Figure B.27: Data of Pad B from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 24.0 keV. The search peak center is fixed to 175 keV.
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Figure B.28: Data of Pad C from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 0.0 keV. The search peak center is fixed to 175 keV.
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Figure B.29: Data of Pad C from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 12.0 keV. The search peak center is fixed to 175 keV.
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Figure B.30: Data of Pad C from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 24.0 keV. The search peak center is fixed to 175 keV.
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Figure B.31: Data of Pad D from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 0.0 keV. The search peak center is fixed to 175 keV.
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Figure B.32: Data of Pad D from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 12.0 keV. The search peak center is fixed to 175 keV.
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Figure B.33: Data of Pad D from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 24.0 keV. The search peak center is fixed to 175 keV.
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Figure B.34: Data of Pad E from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 0.0 keV. The search peak center is fixed to 175 keV.
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Figure B.35: Data of Pad E from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 12.0 keV. The search peak center is fixed to 175 keV.
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Figure B.36: Data of Pad E from E19030, fit to data (red), and fit components (dashed black). The
fit function is the sum of an exponential(exp[𝑒𝑥𝑝1+ 𝑒𝑥𝑝2 · 𝐸]), constant ( 𝑓 𝑙𝑎𝑡), Voigt to model the
7Li∗ peak (with counts 𝑣𝐻𝑒𝑖𝑔ℎ𝑡, center 𝑣𝐶𝑒𝑛𝑡, and Γ width 𝑣𝐿𝐺), and a Voigt search peak with
integrated counts 𝑝𝐶𝑜𝑢𝑛𝑡𝑠. The detector resolution is given in text and proton resonance width is
fixed Γ = 24.0 keV. The search peak center is fixed to 175 keV.
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Model 2: 2Expoential + Flat + 2 Voigt

This appendix section shows a sample of spectra and their statistical model fitting used to extract
the number of 𝛽−𝑝 -like events in different detector pads and assumed resonance energies from the
E19030 dataset. The fitting model here was the sum of an two exponential curves, a constant term,
two Voigt profile, and a signal-like peak with height as a parameter. In general, the fits to data are
reasonable, judged by the 𝜒2 per degree of freedom and associated p-value (𝜒2/ndf and 𝑃𝑟𝑜𝑏 in
the plot information boxes, respectively). However, the results have difficult to explain behaviors.
See the discussion in the main text at Section 3.3.2.2 and Fig. B.39. These figures are included
here to supplement that text without affecting readability.
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Figure B.37: (Top) Here shows the 2Exponential + Flat + 2Voigt fit to Pad B from E19030 with
no 𝛽−𝑝 peak. The red line is the full fit and black dashed lines are individual components that are
summed to create the red. The background is the sum of two exponentials (exp[𝑒𝑥𝑝1 + 𝑒𝑥𝑝2 · 𝐸] +
exp[𝑒𝑥𝑝21 + 𝑒𝑥𝑝22 · 𝐸]), a constant term ( 𝑓 𝑙𝑎𝑡), a Voigt to model the 7Li∗ peak (with integrated
counts 7ℎ𝑖𝑡𝑒, center 7𝑐𝑒𝑛𝑡, detector resolution 7𝑠𝑖𝑔𝑚, and fixed intrinsic width from text), and a
Voigt to model the peak at 𝐸 ∼ 440 keV (with fixed center at 440 keV and intrinsic width from text,
integrated height 72ℎ𝑖𝑡𝑒, and detector resolution-like term 72𝑠𝑖𝑔𝑚).
(Bottom) Fit residuals.
The fit quality is reasonable. For this choice of fit range, the 𝜒2 per degree of freedom is 229/200
and the p-value is 0.177. Compare to Fig. B.38. The removal of the 𝛽−𝑝 peak hardly influences
the quality of the fit.
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Figure B.38: (Top) Here shows the 2Exponential + Flat + 2Voigt fit to Pad B from E19030 with
the height of a 𝛽−𝑝 peak as a parameter (𝑝𝐶𝑜𝑢𝑛𝑡𝑠). The red line is the full fit and black dashed
lines are individual components that are summed to create the red. The signal’s assumed resonance
energy is 𝐸 = 200 keV. The background is the sum of two exponentials (exp[𝑒𝑥𝑝1 + 𝑒𝑥𝑝2 · 𝐸] +
exp[𝑒𝑥𝑝21 + 𝑒𝑥𝑝22 · 𝐸]), a constant term ( 𝑓 𝑙𝑎𝑡), a Voigt to model the 7Li∗ peak (with integrated
counts 7ℎ𝑖𝑡𝑒, center 7𝑐𝑒𝑛𝑡, detector resolution 7𝑠𝑖𝑔𝑚, and fixed intrinsic width from text), and a
Voigt to model the peak at 𝐸 ∼ 440 keV (with fixed center at 440 keV and intrinsic width from text,
integrated height 72ℎ𝑖𝑡𝑒, and detector resolution-like term 72𝑠𝑖𝑔𝑚).
(Bottom) Fit residuals.
The fit quality is reasonable. For this choice of fit range, the 𝜒2 per degree of freedom is 228/200
and the p-value is 0.181. Compare to Fig. B.37. The addition of the 𝛽−𝑝 peak hardly influences
the quality of the fit.
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Figure B.39: Here shows inferred 𝛽−𝑝 counts from scanning the assumed energy and proton
emitting state’s width Γ for the 2Exponential + Flat + 2Voigt fit model for Pad B from E19030.
Error bars are statistical. I speculate that the 𝜒2 surface has both bulk and small-scale features,
especially for larger values of Γ. Note the non-statistical spread in data points that are 1 keV
apart and sometimes wildly fluctuating error bars. (The detector resolution is 5-10% or 10-20 keV,
so changes in results from changes in fit centers of 1 keV difference are artifacts of the fitting.)
With the very similar quality of fits of Fig. B.37 and B.38 in mind, also note the behavior around
𝐸 ∼ 180 keV. Values of ∼ 1000 counts are extracted assuming Γ = 0 keV. Values of ∼ 1000 or
∼ 5000 for Γ = 12 keV. Is one measurement correct and the other a systematic shift from fitting?
Is the difference 𝛿 ∼ 4000 an estimate of the systematic error? Nevertheless, the minimization
terminating point is a reasonable value. The 𝜒2 minimization chooses a single value and it seems
that not a single value, but a variety of values are all reasonable.
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APPENDIX C
SUPPLEMENTARY INFORMATION OF THE BAYESIAN ANALYSIS

Visualizing Bayesian MCMC Fits to Data

Some results of the Bayesian MCMC applied in the E19030 experiment are shown using single-
parameter histograms and parameter-correlation, two-dimensional histograms in Chapter 5. This
Appendix section will show a sample collection of fits to the E19030 histogramed data. The
parameters for the functions shown in the following graphics are drawn from the MCMC chain.
Each graphic shows the experimental data and the fit function (and its components). The graphics
shown here are data from Pad B and the posterior distribution samples assuming a 𝛽−𝑝 resonance
energy of 𝐸𝑝 = 160 keV.
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Figure C.1: The 0th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a burn-
in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.2: The 100 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.3: The 200 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.4: The 300 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.5: The 400 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.6: The 500 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.7: The 600 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.8: The 700 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.9: The 800 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Figure C.10: The 900 000th sample of the Bayesian Markov Chain Monte Carlo algorithm, after a
burn-in period described in text. The jagged dark blue is the experimental data; the black line is the
exponential function component to model the 𝛽− background; the green line is the Quadratic⊗Voigt
function to model the 𝛽−𝛼 background; the red constant line is the constant component to model
the incomplete energy deposition of the 𝛽−𝛼 background; the smooth solid blue shows a 20 times
magnified 𝛽−𝑝 signal; the dashed blue lines show the 20 times magnified contributions of the 𝛽−𝑝
signal; and, the smooth red line is the sum of all components, which was compared against the
experimental data.
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Confidence Interval Calculations

Converting a non-Gaussian probability density function to a confidence interval is not as straight-
forward as the Gaussian interval. In the Gaussian probability density function, the distribution is
such that 1) the most likely values are toward the median of the distribution and 2) the probability of
increasingly/decreasingly extreme values diminishes symmetrically away from the median. How-
ever, in general, these properties are not guaranteed in probability density functions and are both
untrue in the case of an exponential probability density function that might be used in describing
an upper limit on a value.

Figure C.11, starts at the median of the distribution and moves symmetrically outward. Math-
ematically, this symmetry condition can be written as:�����𝑑𝑝(𝑥left)

𝑑𝑥
· Δ𝑥left

����� =
�����𝑑𝑝(𝑥right)

𝑑𝑥
· Δ𝑥right

����� (C.1)

This symmetry only serves nicely in symmetric probability density functions. In asymmetric
ones, one can find unfortunate circumstances such as physical boundaries never being included
in a limit, no matter how probable, as the symmetric scheme requires probability be outside of
the interval in equal amounts. This is undesirable in the case of an upper-limit against a physical
boundary, where the exponential curve may nicely describe the probability density function, but
the median-scheme never allows for an inference of a value of zero.

Now consider Fig. C.12. The scheme used here starts at the most probable value and integrates
outwards in the probabilistically preferred direction. In the case of an exponential probability
density function, this is necessarily one-sided. As the confidence interval increases, zero is always
included, as is desired for an upper limit probability distribution.

The final example will be a suggestive, but not conclusive finite measurement, similar to some
of the probability density functions that were extracted in the Bayesian analysis of Sec. 4.4 and
Chapter 5. This distribution was generated by the sum of an arctangent function and a Gaussian
curve. It is meant to have a clear peak representing a clearly favored value, but still substantial
probability close to zero. The symmetric median scheme will return confidence intervals centered
on the low-value shoulder of the peak. Again, at even high confidence, it excludes zero, which
has substantial probability density. The mode scheme always includes the peak. Furthermore, for
low confidence values, it reports a finite value with an upper and lower limit. At some degree of
confidence, however, the interval reverts to being an upper limit. This ability to change from a
finite measurement to a limit is valuable with these suggestive, in-between distributions that are not
clearly limits nor finite valued; at low confidence, the interval is a finite value; at high confidence,
the interval is a limit.
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Figure C.11: Confidence intervals of an upper-limit-like exponential probability density function,
taken symmetrically about the median. At no confidence level does the symmetric confidence
interval include zero, which would likely be desirable.
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Figure C.12: Confidence intervals of an upper-limit-like exponential probability density function,
taken asymmetrically about the mode and incremented according to the most probable direction.
The asymmetric calculation nicely provides natural interpretations of a statistical limit of a param-
eter.
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Figure C.13: Confidence intervals of a suggestive, but not conclusively non-zero probability density
function, taken symmetrically about the median. At low values for the confidence interval, the peak
in the probability density function is missed. Similarly to the median-scheme with the exponential
distribution in Fig. C.11, zero is never included, even at high confidence.
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Figure C.14: Confidence intervals of a suggestive, but not conclusively non-zero probability density
function, taken symmetrically about the mode. At low values for the confidence interval, the peak
in the probability density function is inferred. Similarly to the mode-scheme with the exponential
distribution in Fig. C.12, at high confidence a limit-like confidence interval is retrieved.
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