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ABSTRACT 

The aryl hydrocarbon receptor (AhR) is a ligand inducible transcription factor (TF) with 

multiple endogenous and exogenous ligands. AhR regulates many cellular processes including 

differentiation, development, and xenobiotic metabolism. Among its exogenous ligands 2, 3, 7, 8 

tetrachlorodibenzo-p-dioxin (TCDD) is its most potent inducer. Upon ligand binding, inactive 

cytosolic AhR undergoes a conformational change ultimately leading to its nuclear localization. 

Within the nucleus, AhR is thought to primarily dimerize with AhR nuclear translocator (ARNT) 

to form a functional TF which binds to DNA at dioxin response elements (DREs) and regulates 

transcription of AhR target genes. Most DREs in accessible chromatin are not bound by AhR, and 

DREs accessible in multiple cell lines or type can be bound in some and unbound in others. Still, 

since AhR possesses a strong core binding motif 5'-GCGTG-3', it is suited for a motif-centered 

analysis of its binding. To investigate determinants of AhR binding I developed interpretable 

machine learning models predicting the binding status of DREs in MCF-7, GM17212, HepG2 

cells, and primary human hepatocytes. I conclude that AhR binding is driven by a complex 

interplay of cell-agnostic DRE flanking sequence and cell-specific local chromatin context. 

On the other hand, AhR can bind DNA in absence of ARNT. Both, RelA and KLF6 have 

been shown to physically interact with AhR and together drive the activation of several genes. For 

example, the activation of 1) c-myc in breast cancer and 2) PAI-1, p21cip1, and E-cadherin genes 

is driven by AhR interacting with RelA and KLF6, respectively. However, it is unknown if these 

interactions with AhR occur genome-wide or if they are localized to a small number of genes.  I 

developed a computational method to investigate protein-protein interactions at AhR-bound sites. 

Results confirm ARNT as the main dimerization partner of AhR genome-wide in TCDD-exposed 

MCF-7 cells. By contrast, in untreated HepG2 cells, KLF6 and RelA but not ARNT were the main 



dimerization partners of AhR. These findings indicate that the role of AhR is likely ligand-

dependent and can potentially be explained through dimerization with different partners. 
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CHAPTER 1: INTRODUCTION 

Proteins are one of the main building blocks of cells. They are comprised of a chain of 

smaller units called amino acids that are folded into a functional 3D structure. The precise 3D 

structure of a protein is crucial to facilitate the performance of its specific cellular functions 

including enzymatic actions and involvement in providing and maintaining cellular structure (1). 

Transcription factors (TFs) are proteins that bind to DNA and regulate the transcription of genes, 

by either promoting or interfering with the recruitment of cellular transcription machinery (2). 

Some TFs are only activated by a ligand without which they are kept sequestered in the cytosol, 

and without which they do not bind to DNA nor actively promote transcription (3). Ligand binding 

determines the activity of such TFs. In that sense, ligands can be both agonist – transforming the 

TF into an active or DNA binding form; and antagonist – transforming the TF into an inactive 

form (4).  

The aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor belonging 

to the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) superfamily of TFs which act as 

sensors of both internal and external cellular environments (5). The existence of the AhR was 

hypothesized as early as 1976 by Poland et al. (6). Early research on the AhR uncovered its role 

as a xenobiotic sensor that binds exogenous ligands - xenobiotics in the class of polyhalogenated 

and polycyclic aromatic hydrocarbons (PAHs), chief among them being 2, 3, 7, 8 

tetrachlorodibenzo-p-dioxin (TCDD) (7). More recently it has been shown that the AhR can bind 

endogenous ligands as well. For example, certain tryptophan derivatives – such as kynurenine, 

tetrapyrroles, and metabolites of arachidonic acid (8–10). 

The structure of the AhR protein can be broken down into five main structural domains: 

the basic domain, two PAS domains, HLH domain and the transactivation domain (TAD). The 
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basic domain plays a role in DNA binding by the AhR. The two PAS domains - PAS A and PAS 

B, together with the HLH domain, play a role in dimerization with the canonical AhR dimerization 

partner – AhR nuclear translocator (ARNT). AhR ligands bind within the PAS B domain. Finally, 

the C-terminal of AhR contains the transcription activation domain (TAD), which is composed of 

an acidic, a Q-rich, and P/S/T subdomains. The TAD domain is responsible for the recruitment of 

co-activators and co-repressors, resulting in the activation or repression of gene expression, 

respectively (11–13). 

Activation of AhR by its exogenous ligands underlies its role as a xenobiotic sensor. The 

AhR signaling pathway resulting from such activation is referred to as the canonical AhR pathway. 

Prior to ligand activation, the AhR is localized to the cytosol where it is maintained in its inactive 

form through binding to its co-chaperone proteins. These proteins include hepatitis B virus X-

associated protein (XAP2) – also known as the AhR interacting protein (AIP), a dimer of heat 

shock protein 90 (HSP90), prostaglandin E synthase 3 (p23), and protein kinase SRC. Upon ligand 

binding, the AhR is released from its co-chaperones, exposing its nuclear translocation signal 

(NTS). Subsequently, the AhR translocates to the nucleus where it forms a heterodimer complex 

with the AhR Nuclear Translocator (ARNT). The AhR-ARNT complex modulates the expression 

of its target genes by binding to DNA at specific dioxin response elements (DREs), also known as 

xenobiotic response elements (XREs) and defined by the core DNA sequence 5'-GCGTG-3' (5). 

This pathway (illustrated in Figure 1) fits within the initially discovered role of AhR as a xenobiotic 

sensor regulating the adaptive metabolic response. Many target genes in this pathway are 

xenobiotic metabolizing genes, such as phase I metabolic enzymes, namely cytochrome P450 1A1 

(CYP1A1), CYP1A2, CYP1B1, as well as phase II metabolic enzymes, namely  glutathione S-

transferase (GST), and aldehyde dehydrogenase 3a1 (ALDH3A1) (14, 15). These metabolic 
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enzymes play a role in detoxifying xenobiotics, but can sometimes produce reactive metabolites, 

such as in the case of benzo[a]pyrene (B[a]P) (16). On the other hand, the AhR co-chaperone SRC 

participates in the non-genomic mechanisms of AhR signaling, where its disassociation from the 

activated AhR can result in the activation of other pathways, namely ERK1/2 and EGFR (17). 

 

Figure 1 – canonical AhR pathway 

adapted from (18). 

In addition to its role as a xenobiotic sensor, over time many other functions of the AhR 

have been discovered, such as its roles in differentiation (19), development (20), cancer (21), 

circadian rhythm (22), cell cycle progression (23), and immunity (24). In general, the AhR can be 

thought of as an integrator of dietary, metabolic, microbial, and environmental cues that initiates 

fine-tuned and selective transcriptional programs. These programs can be ligand-specific, cell 

type-specific and even context-specific (5).  
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The AhR appears to bind exclusively to DREs in an in vitro setting, i.e., on naked DNA 

outside of a cell nucleus. When examining the DNA binding of AhR in vivo, by looking at publicly 

available AhR binding experiments, I observed that most DREs in accessible chromatin are not 

bound by AhR, and DREs accessible in multiple cell lines or cell types can be bound in some and 

unbound in others. Nevertheless, the fact that AhR possesses a strong core binding motif 5'-

GCGTG-3' – the DRE, facilitates a motif-centered analysis of its binding. To investigate the 

molecular determinants of AhR binding I developed interpretable machine learning models 

predicting the binding status of DREs in MCF-7, GM17212, HepG2 cells, and primary human 

hepatocytes. My results indicate that AhR binding is driven by a complex interplay of cell-agnostic 

DRE flanking sequence and cell-specific local chromatin context. 

Aside from ARNT, AhR has been shown to bind DNA by interacting with other 

transcription factors, both with and without ARNT. For instance, the AhR-ARNT heterodimer 

interacts with the specificity protein 1 (SP1) via the AhR-ARNT HLH/PAS domains and SP1 zinc 

finger domains. AhR-ARNT and SP1 synergistically enhance the transcription of the CYP1A1 

gene by binding to their cognate binding motifs in the promoter of CYP1A1. The DRE and the 

GC-rich binding motif of SP1 in the promoter of CYP1A1 were shown to partially overlap (25). 

On the other hand, the AhR was shown to interact with several other TFs without ARNT. For 

example, TCDD activated AhR interacts with the retinoblastoma tumor suppressor protein (pRb) 

without ARNT to induce G1 cell cycle arrest. The pRb appears to preferentially associate with the 

ligand-bound form of AhR (26). Additionally, the RelA subunit of nuclear factor-kB (NF-kB) 

interacts with the AhR to activate the transcription of c-myc and IL-6 genes by binding together 

in their promoters (27, 28). The transcription of PAI-1, p21cip1, and E-cadherin genes is thought 

to be driven by AhR interacting with the Krüppel-like factor 6 (KLF6) (29).  
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However, these ARNT independent AhR-protein interactions have only been confirmed at 

a limited number of AhR bound loci. It is unknown if these protein interactions with AhR could 

be occurring genome wide. To address this question, I developed a computational method to 

investigate AhR-TF interactions at AhR-bound sites. My results confirm ARNT as the main 

dimerization partner of AhR genome-wide in TCDD-exposed MCF-7 cells. By contrast, in 

untreated HepG2 cells, KLF6 and RelA but not ARNT were the main dimerization partners of 

AhR. These findings indicate that the role of AhR is likely ligand-dependent and can potentially 

be explained through dimerization with different proteins. 

Additionally, unrelated to computational modeling of AhR binding and dimerization, I 

have developed a set of physiologically based toxicokinetic (PBTK) models for bisphenol A and 

S (BPA and BPS) in pregnant sheep (30). These chemicals are often used in the manufacturing 

of polycarbonate plastics, epoxy resins, dental sealants, and plastic and paper consumer products 

(31, 32). They are also known endocrine disruptors and can be found pervasively in the 

environment (32, 33). The PBTK models I developed and calibrated against available 

toxicokinetic data (34–36), demonstrated that BPS exhibited a higher potential for accumulation 

in the fetus with repeated daily maternal exposure. 

  

  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polycarbonate
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/epoxy-resin
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sealer
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CHAPTER 2: AHR BINDING PREDICTION 

INTRODUCTION 

The expression of genes is governed principally through the process of transcriptional 

regulation. This process represents the main mechanism by which crucial cellular processes such 

as differentiation, development, and response to exogenous stimuli are coordinated (37). 

Transcriptional regulation occurs in large part through direct or indirect binding of transcription 

factors (TFs) to DNA, and through the interactions of these TFs with transcriptional machinery 

(38). Altering the expression, function, or the DNA-binding ability of even a single TF can result 

in changes in expression of hundreds to thousands of genes (39, 40). Further, the removal of a 

single TF binding site, e.g., through an experimental procedure such as promoter bashing or 

targeted mutagenesis, often results in altered gene expression (41, 42). The problem of 

experimentally identifying TF binding sites across the genome is further complicated by the fact 

that TF binding is often highly tissue- and cell type- specific (37). 

The problem of computationally predicting DNA binding sites genome-wide for a 

particular TF, in a cell type- or tissue-specific manner, can be likened to finding the proverbial 

needle in a haystack. This problem is particularly difficult for TFs with a short core DNA binding 

motif such as the aryl hydrocarbon receptor (AhR). The AhR binds to a core 5-base pair (bp) 

sequence, 5'-GCGTG-3', referred to as the dioxin response element (DRE) (43, 44). Such short 

binding motifs occur millions of times in the human genome. However, a typical chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) binding assay for AhR produces a list of 

AhR bound regions on the order of a few hundred to a few thousand regions. This discrepancy 

could be partially explained by the fact that most genomic DREs lie in inaccessible regions of the 

genome in a particular cell line or type. Additionally, the nucleotides flanking the core motif on 
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both 5' and 3' ends are suspected to form an extended active AhR binding site (45). However, the 

manner in which the exact identity of these nucleotides affects AhR binding is currently unknown. 

Further, these AhR bound regions have anywhere between zero and 29 DREs (46, 47). Therefore, 

the occurrence of a DRE in the genome is neither sufficient nor necessary to induce AhR binding. 

The problem of predicting AhR-DNA binding is additionally complicated by the fact that it can be 

hard to distinguish direct DNA binding from indirect binding through tethering with other TFs or 

through 3D looping of chromatin (48). Considered together, these findings indicate that both 

genomic and epigenomic characteristics likely play a role in determining AhR binding in vivo. 

The AhR is a ligand-activated transcription factor (TF) in the basic-helix-loop-helix 

(bHLH) PER-ARNT-SIM (PAS) family of TFs (49, 50). The AhR can be activated by both 

endogenous and exogenous ligands (5, 51). In the later class of ligands, the environmental pollutant 

2, 3, 7, 8 tetrachlorodibenzo-ρ-dioxin (TCDD) is the prototypical AhR ligand (7, 51). Exposure to 

TCDD activates the xenobiotic response pathway of AhR. Initially, the AhR is constrained in the 

cytosol of the cell through binding with its co-chaperone proteins. These proteins include a dimer 

of the 90-kDa heat shock protein (HSP90) (52, 53), the AhR-interacting protein (AIP) (54, 55), 

the cochaperone protein p23 (56), and SRC (17). When bound by its ligand, AhR releases from its 

co-chaperones and translocates to the nucleus where it forms a heterodimer with the AhR Nuclear 

Translocator (ARNT) (57, 58). The AhR-ARNT heterodimer binds to DNA sequences containing 

the consensus 5'-GCGTG-3' core binding motif (59, 60). This binding motif has been named 

variously the xenobiotic response element (XRE), aryl hydrocarbon response element (AhRE), or 

dioxin response element (DRE) (61). In this thesis I will use the name DRE when to referring to 

AhR binding motif within potential AhR DNA binding sites. 



8 

 

The best understood function of the AhR is the direct regulation of its target genes, chief 

among them the cytochrome p450 1A1 (CYP1A1), 1A2 (CYP1A2) and 1B1 (CYP1B1). The AhR 

regulates these genes by binding to DREs in their proximal promoters or, potentially, distal 

enhancers (24, 62, 63). The first step towards reconstructing the AhR-mediated gene regulatory 

network is the accurate, cell type-specific identification of AhR binding sites. The construction of 

these gene regulatory networks is crucial for improving our understanding of the role of the AhR 

in xenobiotic-induced toxicity and disease, as well as in crucial physiological functions. These 

include the immune response (24), circadian rhythm (22), cell cycle progression (23), and 

embryonic development (20). Significant progress has been made with the development of high 

throughput molecular techniques for identification of TF-bound DNA fragments. These techniques 

often use a method for the enrichment of TF bound DNA complexes followed by sequencing of 

the enriched DNA fragments.  Techniques such as ChIP-seq (64), ChIP-exo (65) and ChIP-nexus 

(66) have enabled a genome-wide view of TF binding. Over time, the binding of hundreds of TFs 

in multiple cell lines, primary cells, and whole tissues has been investigated genome-wide and the 

results of these experiments have been made publicly available. Likewise, DNA binding of the 

AhR has been probed in several human cell lines and primary cells. Nonetheless, the determinants 

of cell-specificity of AhR binding remain poorly understood.  

Recent years have seen the development of many computational approaches for genome-

wide prediction of TF binding. The most widely used methods leverage the position weight matrix 

(PWM) corresponding to the TF of interest. A PWM is a statistical and quantitative representation 

of known and experimentally confirmed DNA binding sites for a TF of interest. The PWM 

effectively makes up the binding motif of the TF. PWMs are available in online databases such as 

TRANSFAC and JASPAR. These PWMs have been derived from experimental data and can also 
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be estimated de novo if binding data is available (67, 68). A PWM is used to calculate a score for 

each potential binding site as a sum of individual scores of each nucleotide making up the PWM 

and overlapping the potential binding site. PWMs are then used to scan the genome for TF binding 

sites, using a previously derived optimal threshold score as the cutoff to predict TF-bound sites 

(69, 70). PWMs are commonly derived from in vitro experiments. The most often used in vitro 

experiment is the high throughput systematic evolution of ligands by exponential enrichment (HT-

SELEX) (71). Occasionally, PWMs are also derived from in vivo experiments such as ChIP-seq. 

However, when examining the binding of TFs in vivo, it is often noted that many TFs are bound 

to DNA sequences that do not possess the in vitro or even the in vivo derived binding motif (72).  

Eukaryotic TFs generally do not bind DNA in isolation but rather in dense, often tissue-

specific, TF clusters. These clusters are characterized by the co-location of the TF binding sites 

for multiple different types of TFs in relatively short genomic regions (73, 74). Consequently, it is 

reasonable to assume that PWMs of co-bound TFs could be used to predict the binding of a TF of 

interest. Still, models that use PWMs of co-binding TFs have shown limited utility in improving 

model performance, with models of certain TFs seeing little to no improvement (72). Even so, 

given that TFs bind in dense clusters and that PWMs are not always representative of actual TF 

binding, I hypothesized that ChIP-seq signals of co-bound TFs, as a measure of their actual 

binding, could provide the information that PWMs could not. Further, I propose that interpretable 

machine learning combined with the measures of co-bound TFs would provide mechanistic 

insights into the molecular mechanisms underlying the cell specificity of AhR binding.  

TF binding prediction models based on PWMs have been extended over time to include 

other biological features demonstrated to be associated with TF binding, such as chromatin 

accessibility, histone modifications, evolutionary sequence conservation, PWMs of co-bound TFs, 
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and gene expression (72, 75). Similarly, a broad range of statistical and machine learning models 

ranging from unsupervised Bayesian mixture models (75) to deep learning (76–78) have been used 

to address the problem of tissue-specific TF binding prediction. Despite some of these models 

achieving high cross-tissue performance for select few TFs, most of them lack interpretability and 

do not translate into mechanistic insights.  

Most computational models predicting TF binding have been applied to constitutively 

active TFs. The binding of inducible TFs, on the other hand, remains largely computationally 

unexplored. In this chapter of the thesis, I applied a supervised machine learning algorithm, 

XGBoost (79), and developed machine learning models predicting the AhR binding status of DREs 

in open chromatin of a particular cell line or type. These models were trained to predict DREs in 

open chromatin, as either bound or unbound, and were applied to four cell lines and one primary 

cell type: two human breast cancer cell lines (MCF-7 and T-47D) (46, 47), primary human 

hepatocytes (80), human hepatocellular carcinoma cell line (HepG2) – data obtained from the 

ENCODE project (81, 82), and lymphoblastoid cell line (GM17212) (83). The cells in these 

experiments were treated with either TCDD, Methylcholanthrene (3-MC; an AhR ligand) or 

Dimethyl sulfoxide (DMSO; vehicle control) for a duration of either 45 minutes, 1 hour or 24 

hours. By using these datasets and chromatin accessibility experiments corresponding to the cell 

line or type used, I first identified cell line and type-specific AhR- bound and unbound DREs in 

open chromatin. Then, I developed machine learning models that predict the binding status of 

DREs in open chromatin for each cell line or type individually. My results demonstrate highly 

accurate and robust models of within-cell line or cell type binding. I identified several TFs as 

predictive of AhR binding in individual cell lines or types, such as GATA3 in MCF-7 cells, MXI1 

in HepG2 cells, and SP1 in primary human hepatocytes and GM17212 cells; as well as histone 
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modifications (HMs) – H3K4me1 and H3K4me3 in MCF-7 cells, H3K4me3 and H3K27ac in 

primary hepatocytes, and H3K27ac in GM17212 cells. My cell-specific models generalize well to 

the prediction of AhR binding sites without DREs, demonstrating the robustness of the models. In 

conclusion, I demonstrated that the patterns of TFs and HMs most predictive of AhR binding are 

consistent within cell lines or types but highly variable across them, which is suggestive of 

potentially different underlying cell-specific mechanisms of AhR binding. Additionally, I show 

that AhR binding is driven by a complex interplay of cell-agnostic DNA sequence flanking the 

DRE and cell-specific local chromatin context. The approach used here can be adapted to other 

inducible TFs, such as steroid hormone and nuclear receptors. 

MATERIALS AND METHODS 

Reference genome 

Unless otherwise specified the reference, genome used for sequence alignment in this part 

of the thesis was the human genome assembly version hg19. I opted for hg19 due to availability 

of data on ChIP-seq and DNase-seq data repositories such as GEO Datasets (84) ChIP-Atlas (85) 

and ENCODE (81, 82). Likewise, most other transcription factor binding prediction tools available 

at this time were trained on hg19.  

Visualization of ChIP-seq signal 

Bigwig files were used as inputs to deepTools version 3.5.1 (86) for visualization. 

DeepTools plotHeatmap function was used to create visualizations of ChIP-seq signal fold 

enrichment within a −1.5 to +1.5 kb region around the bound and unbound dioxin response 

elements (DREs), as well as to generate average profiles for ChIP-seq enrichment in the same 

region. 

 



12 

 

DREs in open chromatin 

I obtained DNase-seq data for all relevant cell lines (MCF-7, T-47D, primary hepatocytes, 

HepG2, GM12878) from ENCODE - https://encodeproject.org/. I downloaded the broadPeak 

DNase-seq files for the hg19 genome assembly, and if there were multiple replicates, I found the 

intersection of all replicates. Any DRE found under the peaks of DNase-seq intersection was 

considered to be in the open chromatin of the corresponding cell line and was used in the 

determination of bound and unbound DREs for the purposes of model training. DREs occurring in 

ENCODE blacklisted regions, namely the merged consensus blacklist 

(wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz) and exclusion list regions (ENCODE 

accession ENCFF001TDO) were ignored in downstream analyses. 

AhR-bound and unbound DREs 

Firstly, I assembled a list of all DREs in the human genome by searching the hg19 human 

reference genome sequence for the occurrences of the core DRE sequence 5'-GCGTG-3' on either 

strand of the DNA. Only DREs in open chromatin, i.e., DREs overlapping DNase-seq broadPeaks 

from an ENCODE experiment for a given cell line, were considered for training. Additionally, 

bound DREs in closed chromatin were also considered for testing purposes. Secondly, I obtained 

the AhR ChIP-seq bed and bigwig files either from Gene Expression Omnibus (GEO) Datasets or 

from ChIP-Atlas (85) where the original sequencing files have been processed uniformly following 

a standard processing pipeline. Originally, AhR ChIP-seq data was generated in the following 

independent experiments, 1) AhR and ARNT ChIP-seq of MCF-7 cells treated with 10 nM TCDD 

for 45 minutes (47) – the binding data was obtained from GEO Datasets – accession GSE41820, 

2) AhR and AhRR ChIP-seq of MCF-7 cells treated with 10 nM TCDD for 45 minutes and 24 

hours (46) - the binding data was obtained from GEO Datasets – accession GSE90550, 3) AhR 

https://encodeproject.org/
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ChIP-chip of T-47D cells treated with 1 µM 3-MC or 10 nM TCDD for 1 hour (87, 88) - the 

binding data was obtained from their respective publications and converted from hg18 to hg19 

using the liftOver tool (89) 4) AhR ChIP-seq of primary hepatocytes treated with 1nM of TCDD 

for 24 hours – the binding data was obtained from GEO Datasets – accession GSE205502; 5) AhR 

(3xFLAG tagged AhR) ChIP-seq of untreated HepG2 cells from ENCODE – accession 

ENCSR412ZDC (81, 82); 6) AhR ChIP-seq of GM17212 cells treated with 1 µM 3-MC for 24 

hours – accessible through GEO Datasets – accession GSE116632; however, the binding data was 

obtained from ChIP-Atlas – accessions SRX4342282, SRX4342283, SRX4342285, and 

SRX4342286. Details of these experiments are summarized in Table 1. Bound DREs for the 

purposes of model training were determined as DREs found in open chromatin and under AhR 

peaks where only one DRE was present under the AhR peak (referred to as singleton DREs). 

Isolated unbound DREs are DREs in open chromatin found at least 500 bps away from the 

boundary of any AhR peak, as well as 100 bps away from any other DRE. These DREs were 

selected as unbound for model training in order to minimize confounding of DRE contribution to 

binding. All other DREs in open chromatin were considered ambiguous and were not used in 

model training. 

Promoters and enhancers 

I obtained all annotated transcription start sites from Ensembl 105 BioMart (human genes; 

GRCh38.p13) (90) and considered regions ±200 and ±1500 bp around the TSS as stringent and 

relaxed promoters, respectively. I obtained all computationally predicted enhancers from 

ChromHMM (91) for samples that had ChromHMM data available – HepG2 and GM12878 

(ENCODE) and MCF-7 (GEO Datasets – accession GSE57498). Both weak and strong enhancers 

(ChromHMM states 4 through 7) were considered as valid enhancers. 
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Sequence and genomic signal features 

For each DRE in the human genome, I obtained the genomic sequence of seven nucleotides 

5' upstream and 3' downstream from the DRE (5'-GCGTG-3') from the hg19 human reference 

genome. These nucleotides were one-hot encoded and used as features in my machine learning 

models. In total there were around 1.6 million DREs spread across the human genome. However, 

only a small fraction of them fulfilled the criteria for bound and unbound DREs used in training 

and testing. DNase-seq, as well as all available histone mark and transcription factor ChIP-seq 

genomic signal (bigwig) files were downloaded for MCF-7, T-47D, primary hepatocytes, HepG2, 

GM12878 (as the closest match to GM17212 where AhR was ChIP-ed) from the ENCODE 

consortium. For each bound and unbound DRE and each genomic signal (bigwig) file, I extracted 

the value of the genomic signal 740 bps up- and 740 bps down- stream from the DRE, for a total 

of 1485 bps of signal (DRE width is 5 base pairs). The extracted signal was split into 15 bins of 

equal 99-bp size and the signal within each bin was averaged to produce 15 features corresponding 

to the particular DRE-genomic signal combination. During averaging, any areas of missing signal 

were replaced with zeros. 

Model architecture and training 

For each cell line and all the bound and unbound DREs appearing in open chromatin of 

that particular cell line, I created sequence features, as well as genomic signal features for all 

available DNase-seq, histone mark and transcription factor (TF) ChIP-seq experiments. I then 

performed hyperparameter tuning of an XGBoost model through a grid search of the 

hyperparameter space with the following values - max_depth = {3, 4, 5, 6, 7}, min_child_weight 

= {3, 4, 5, 6, 7}, subsample = {1.0, 0.9, 0.8, 0.7}, colsample_by_tree = {1.0, 0.9, 0.8, 0.7} and eta 
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= {0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3}. I reported the average performances over all five folds 

for the best performing models in terms of hyperparameter selection.  

Model evaluation 

In addition to evaluating the models through 5-fold cross validation, I also evaluated model 

performance on predicting the binding status of DREs that occurred under multi-DRE AhR peaks 

both in open and closed chromatin. For each such peak and each DRE under the peak I used the 

AhR binding prediction model to make a prediction regarding whether the DRE is bound or not. 

If at least one DRE under the peak was predicted as bound, the peak was considered recovered, 

and the total fraction of recovered peaks was reported. Similarly, I evaluated the model 

performance on predicting the binding status of AhR peaks without DREs. Briefly, for each 0-

DRE peak I simulated five dummy DREs. These dummy DREs are not actually present in the 

genomic sequence and only represent the genomic location that was used as reference for the 

calculation of all non-sequence model input features. The center of the first dummy DRE is aligned 

to the center of the AhR peak and the other four dummy DREs are positioned -100, -50, +50, +100 

bps relative to the center point of the first dummy DRE. A zero-DRE peak is considered generally 

recovered if at least one of the five dummy DREs is predicted as bound. The peak is considered 

centrally recovered if the central DRE is predicted as bound.  

Model performance metrics 

To calculate the area under Receiver Operating Characteristic (auROC) and area under 

Precision Recall (auPRC) curves, I used the output of the XGBoost algorithm in the form of 

probabilities of each particular observation (DRE) belonging to a particular output class (bound or 

unbound). By using different thresholds for these probabilities above which the model predicts a 

DRE as bound, I obtained the numbers of true and false positives for each threshold, as well as 
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true and false negatives relative to the ground truth of DRE binding obtained from the 

corresponding AhR ChIP-seq experiment. Each threshold produced a point on the ROC and PRC 

curves; the area under the curve was calculated using a line interpolated through all the points. 

Statistical analysis 

Statistical analysis was carried out in Python 3, using the scipy 1.8.0 package (92). ChIP-

seq signals were analyzed using the Kruskal-Wallis test and post-hoc analysis performed with the 

Wilcoxon test for each pair. Results were considered significant if P-value was < 0.01. 

RESULTS 

AhR binding is cell line and cell type-specific  

The first part of my study was focused on improving the understanding of the molecular 

determinants underlying the binding of the human aryl hydrocarbon receptor (AhR) to DNA. To 

achieve this goal, I investigated the role of the core 5'-GCGTG-3' AhR binding motif in 

determining the cell-specificity of AhR binding. This core AhR binding motif is known as the 

dioxin response element – DRE. I compared AhR binding in human cells across previously 

published and publicly available AhR binding data in the form of chromatin immunoprecipitation 

(ChIP) experiments. These experiments were either followed by sequencing (ChIP-seq) or a 

microarray (ChIP-chip). The ChIP-seq experiments provided a genome-wide view of AhR 

binding, while the ChIP-chip experiments were focused only on determining AhR binding in gene 

promoters. Each experiment selected for the analysis of AhR binding was performed on a specific 

cell line or on primary cells. Experiments on the following cells were included in further analyses 

– 1) two epithelial breast cancer cell lines - MCF-7 and T-47D, 2) a hepatocellular carcinoma cell 

line - HepG2, 3) a lymphoblastoid cell line – GM17212, and 4) primary human hepatocytes. The 

cells in these experiments were treated with an AhR agonist (TCDD or 3-MC) or vehicle control 



17 

 

(VC) – dimethyl sulfoxide (DMSO) for a duration of 45 minutes, 1 hour or 24 hours, or were not 

treated with either – HepG2 cells. For the full list of experiments, including the total number of 

AhR peaks, as well as type, concentration, and duration of treatments, see Table 1. The breast 

cancer cell lines had data available from more than one experiment. 

 

Table 1 – AhR ChIP-seq and ChIP-chip experiments. 

To develop and train my machine learning models I used data from four AhR ChIP-seq 

binding experiments - 1) MCF-7 cells treated with 10 nM TCDD for 24 hours (referred to as MCF-

7 or MCF-7 24h), 2) primary hepatocytes treated with 1 nM TCDD for 24 hours (referred to as 

primary hepatocytes), 3) HepG2 cells without AhR agonist treatment (referred to as HepG2), 4) 

GM17212 cells treated with 1 µM 3-MC for 24 hours (referred to as GM17212). In addition, some 

analyses were performed on the remaining three AhR ChIP-seq and ChIP-chip binding 

experiments – 1) MCF-7 cells treated with 10 nM TCDD for 45 minutes (referred to as MCF-7 

45m), 2) T-47D cells treated with 10 nM TCDD for 1 hour (referred to as T-47D TCDD), 3) T-

47D cells treated with 1 µM 3-MC for 1 hour (referred to as T-47D 3-MC). All AhR binding 
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experiments performed on T-47D cells were ChIP-chip and only reported the binding of AhR in 

gene promoters. 

First, I searched for the occurrences of DREs within the hg19 human reference genome 

and found approximately 1.6 million DREs in the human genome. Upon intersecting these DREs 

with the genomic locations of AhR peaks I identified the existence of AhR peaks with either (i) 

none (0-DRE peaks), (ii) exactly one (singleton peaks), or (iii) more than one (multi-DRE peaks) 

DREs (Figure 2).  

 

Figure 2 – AhR peaks with 0-, 1-, and multi-DREs under the peak. 

Next, I calculated the percentages of each type of peak – 0-DRE, singleton, and multi-

DRE, across all AhR peaks within each AhR binding data set listed in Table 1. The percentage of 

singleton AhR peaks ranged between 22.3% and 33% and was similar across all data sets. The 

percentage of multi-DRE peaks, however, was markedly larger for the two types of liver cells – 

HepG2 cells and primary hepatocytes (Figure 3). Even though HepG2 cells were not treated with 

an AhR agonist, the HepG2 experiment resulted in 12,164 AhR peaks. These results suggest the 

possibility of basal induction of AhR in cells exposed to typical cell culture conditions.  
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Figure 3 – percentage of AhR peaks with at least one DRE. 

Then, I investigated the locations of singleton DREs relative to the mid-point of their 

corresponding AhR peaks. If these DREs are indeed functional and not only showing up at random 

under the AhR peaks I would expect them to be enriched at one central or two centrally 

symmetrical points. This is because the AhR-ARNT dimer can bind to either strand of the DNA – 

depending on where the DRE is located, and because the DNA binding domain of the dimer does 

not lie exactly in the middle of the protein complex. My results show that the majority of singleton 

DREs are located near the mid-point of their corresponding AhR peak (Figure 4). For example, in 

MCF-7 cells, approximately 50% and 80% of singleton peak DREs were found within 100 and 

200 base pairs up-/down- stream from the midpoint of the peak, respectively. However, I observed 

that in HepG2 cells, even though singleton DREs appeared somewhat centrally enriched, it was 

not to the same degree as singleton DREs in MCF-7 cells, primary hepatocytes and GM17212 cells 

(Figure 4). 
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Figure 4 – histogram of DRE position relative to the mid-poing of singleton AhR peaks. 

Most TF binding peaks occur in areas of open chromatin, except for some pioneering 

factors that bind in areas of closed chromatin, and potentially recruit chromatin remodeling factors. 

Therefore, the TF binding peaks of most TFs overlap with DNase hypersensitive sites (DHSs) or 

similar experimentally verified regions of open chromatin (82). To examine the contribution of 

chromatin accessibility in determining cell specificity of AhR binding, I examined DNase-seq 

broadPeak files from the ENCODE database. Only DNase-seq experiments most closely 

corresponding to the cell line or primary cell type used in the AhR binding experiment were used 

(81, 82). I identified all DREs and AhR peaks appearing in open chromatin for each cell line or 

type and determined that the majority of AhR peaks can be found in open chromatin (Table 2).  
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Table 2 – number of singleton bound and isolated unbound DREs; percentage of AhR peaks in 

open chromatin. 

Generally, DNase-seq or other types of experiments probing chromatin accessibility 

available in databases such as ENCODE are done on cells under normal cell culture conditions. 

Consequently, none of the available DNase-seq experiments corresponding to the cell lines or 

types used in this thesis were treated with AhR agonists. Therefore, the DNase-seq and AhR 

binding experiments are matched in ligand treatment only in the HepG2 cells, since these cells 

were not explicitly exposed to an AhR ligand. However, even though I use DNase-seq experiments 

corresponding to a non-treated cellular state to determine bound and unbound DREs in a treated 

cellular state, I observed that the majority of AhR peaks do lie in open chromatin - as it is before 

treatment (Table 2) – between 83.6% and 92.9%. These findings are consistent with our ATAC-

seq data in mouse primary hepatocytes treated with TCDD for 6 hours (unpublished). These results 

indicate that AhR activation does not result in extensive chromatin remodeling, therefore the use 

of the DNase-seq prior to treatment is justified. The only exception I found was the human primary 

hepatocyte AhR ChIP-seq experiment where only about 69% of AhR peaks lie in initially open 

chromatin. Unfortunately, none of the related human liver or hepatocyte DNase-seq experiments 

available on ENCODE could be closely matched to the primary hepatocytes used for the AhR 
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ChIP-seq experiment. Hence, primary hepatocytes were excluded from many of the subsequent 

analyses.  

Further analysis focused on contrasting bound and unbound DREs. I observed that the 

proportions and exact identities of unbound and bound DREs found in open chromatin appear to 

be highly cell line or type specific. Out of nearly 8,000 DREs found in open chromatin across each 

of the four relevant cell lines or types, about half are bound in at least one, while only 14 DREs 

are bound in all four (Figure 5). 

  

Figure 5 – Venn diagram of bound DREs in accessible chromatin of all four cell lines or types. 

In contrast, about half of these pervasively accessible DREs are unbound in all four cell 

lines or types (Figure 6). These results suggest that if a DRE is found in open chromatin of all four 

cell lines or types that DRE is much more likely to be unbound in all four than it is to be bound. 

Conversely, if such a DRE is found to be at all bound than it is most likely bound in only one or 

at most cell lines or types, since only 3.1% of bound DREs in Figure 5 are bound in 3 or all 4 cell 

lines or types. 
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Figure 6 – Venn diagram of unbound DREs in accessible chromatin of all four cell lines or 

types. 

The two breast cancer cell lines, MCF-7, and T-47D, have publicly available AhR binding 

experiments with similar treatment conditions, i.e., 45 minutes of 10 nM TCDD and 1 hour of 10 

nM TCDD treatment, respectively. However, even between these two breast cancer cell lines most 

accessible DREs appear bound in only one of the two cell lines according to their respective AhR 

peak lists (Figure 7). A more detailed look at a heatmap of MCF-7 AhR binding signal strength 

surrounding DREs bound only in T-47D shows that as many as three quarters of these DREs also 

possess subthreshold peaks in MCF-7 cells (Figure 7C). Ultimately, a DRE that lies within open 

chromatin of two different cell lines or types is somewhat likely to be bound in one and unbound 

in the other. These results jointly suggest the existence of AhR binding determinants beyond DNA 

sequence and the accessibility of chromatin.  
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Figure 7 – Venn diagram of AhR peaks in MCF-7 and T-47D cells; MCF-7 AhR signal across T-

47D only peaks. 
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When examining AhR peaks shared between two cell lines or types, I observed that among 

AhR peaks found at the same genomic location in two binding experiments there was a higher 

percentage of peaks with DREs, when compared to AhR peaks that were unique to a single binding 

experiment (Figure 8). Conversely, this means that AhR peaks with DREs are more likely to appear 

in more than one cell line or cell type than 0-DREs peaks. 

 

Figure 8 – fraction of AhR peaks with DREs. 

Breaking down AhR peaks by the number of DREs under the peak, into 0-DRE, singleton, 

and multi-DRE peaks and then quantifying the AhR ChIP-seq signal across each group of peaks 

revealed significant differences between average signal strength between groups. Namely, the 

more DREs an AhR peak had, the higher the average ChIP-seq signal was under the peak (Figure 

9). These results jointly suggest that DREs are likely participating in determination of AhR binding 

and that a DRE-centric approach to the investigation of cell-specificity of AhR binding could 

reveal important determinants and potential mechanisms driving AhR binding to DNA. 
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Figure 9 – average AhR signal across peaks with 0-, 1-, and multi-DREs. 

Machine learning models accurately predict AhR binding  

Next, I sought to improve our understanding of the likely molecular determinants of cell-

specific AhR binding, beyond chromatin accessibility and the core DRE motif. To achieve this 

goal, I developed a set of interpretable machine learning models trained to predict the binary 

binding status of DREs in open chromatin, i.e., bound or unbound. The models were trained with 

increasingly complex combinations of input features for each cell line or type. The models were 

trained on the singleton bound DREs occurring under AhR peaks, as my bound (positive) training 

examples and isolated unbound DREs (see Methods) occurring in open chromatin but not under 

AhR peaks, as my unbound (negative) training examples. The DREs under multi-DRE peaks were 

considered ambiguous, as it was not possible to computationally determine which specific DRE(s) 
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among the cluster of DREs were responsible for AhR binding. However, I have used these DREs 

in model evaluation. All machine learning models presented in this thesis were developed using 

the gradient boosted tree algorithm of the XGBoost family of algorithms, which has been shown 

to handle non-linear data well (93). In addition, these algorithms also provide metrics of feature 

importance. Therefore, it is possible to evaluate the contribution of individual input features to 

improving the model performance (94). 

The models I developed use features centered on the DRE which were based on the local 

chromatin context. These models are trained on singleton bound and isolated unbound DREs found 

in open chromatin for the cell line or type of interest. Models were validated using the 5-fold cross 

validation procedure. Due to a limited number of bound singleton DREs, I have not created a 

dedicated test set to evaluate the models. Instead, as model hyperparameters are tuned with 5-fold 

cross validation (see Methods), the average performance of the models across the five folds is 

reported (Figure 10). This choice is further justified by the purpose of this thesis which was to 

create interpretable machine learning models and derive from them mechanistic insights regarding 

cell-specific binding of AhR. 

 

Figure 10 – schematic representation of model training. 

I included the following local chromatin input features in the trained models - 1) DNA 

sequence immediately flanking the DRE. The contribution of flanking sequence of up to 7 

nucleotides directly up- and down- stream from the DRE was investigated. These nucleotides have 
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been previously proposed to be involved in AhR binding through an analysis of 13 bona fide AhR 

binding sites (45). The flanking sequences were one-hot encoded and used as model inputs; 2) 

Binned average values of bigWig signals of experiments performed on the cell line or type most 

closely corresponding to the one used in the AhR binding experiment. Namely, for the primary 

hepatocyte model I used bigWig signals from experiments done in hepatocytes originated from H9 

cells, and for GM17212 I used bigWig signals from experiments done in GM12878. All other cell 

lines were matched exactly, e.g., MCF-7, and HepG2. To create model input features from these 

bigWig files I used the following publicly available sequencing experiments i) DNase-seq (as 

representative of chromatin accessibility), ii) histone modification, and iii) transcription factor 

ChIP-seq experiments from ENCODE – see methods for details (81, 82). I created 15 bins of width 

99 base pairs for each bigWig signal and each DRE. Each bin was assigned a value that was the 

average bigWig signal across the width of that bin. The mid-point of the central bin was positioned 

at the middle nucleotide of the 5-bp DRE; 3) Indicator variables of whether the DRE is found in a 

strict (+/- 200 bp away from a transcription start site - TSS) or loose (+/- 1500 bp away from the 

TSS) definition of a promoter.  

To optimize model performance and prevent overfitting, I conducted an extensive 

hyperparameter search for each newly trained model (see Methods). Thus, for each subset of input 

features and for each cell line a new hyperparameter search was performed. Among all models 

trained during the hyperparameter search the model with the highest average performance across 

the five folds was selected as the representative model for the given subset of input features and 

given cell line. Unless otherwise stated, model performance was evaluated as the area under the 

Receiver Operating Characteristic (ROC) and Precision Recall (PRC) curves, averaged over five 

folds using the 5-fold cross validation procedure. Since the AhR binding data sets were largely 
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unbalanced – i.e., there was a much higher number of unbound than bound DREs (Table 2), the 

area under the PRC curve (auPRC) was considered as a more appropriate metric of model 

performance. Therefore, in each case the model producing the highest auPRC was selected as the 

best performing model. Nonetheless, the area under the ROC curve (auROC) was reported as it 

remains a useful metric to distinguish between poorly and well performing models when 

comparing between different cell lines or types (see Methods – Performance Metrics).  

First, to investigate different input feature sets and their influence on model performance, 

I developed and validated models with the following feature sets used as model inputs - 1) DNase-

seq only (DNase model), 2) flanking sequence only (Seq model), 3) flanking sequence and DNase-

seq (Seq + DNase model), 4) flanking sequence, DNase-seq and histone modifications (Seq + 

DNase + HMs model), 5) flanking sequence, DNase-seq, histone modifications and transcription 

factor binding (referred to as the full model or Seq + DNase + HMs + TFs model). For most cell 

lines and types, the performance of each successive model improved, except for the primary 

hepatocyte (not shown) and HepG2 cells. Here, the performance of the sequence only models was 

overall very low, even lower than the performance of the corresponding DNase model. 

Nonetheless, the performance of Seq + DNase model was slightly higher than the DNase model 

for primary hepatocytes and HepG2. These results indicate that the flanking sequence provides 

some additional useful information when put in the context of the extent of chromatin accessibility 

(Figure 11). 
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Figure 11 – ROC and PRC curves for model training. 

The performance of most full (Seq + DNase + HMs + TFs) models was high, the only 

exception being the primary hepatocyte full model. I propose that primary hepatocyte model 

underperformed for two reasons. Namely, 1) lack of publicly available sequencing data in liver 

primary hepatocytes, and 2) the difference in the nature of hepatocytes used in different 

experiments. The AhR ChIP-seq experiment was performed on human primary hepatocytes 
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derived from a single donor specific to that experiment. All other input features, inclusive of the 

list of DREs in accessible chromatin, were obtained from hepatocyte-like cells in vitro 

differentiated from H9 cells. This discrepancy is also evidenced in a lower percentage of AhR 

peaks occurring in open chromatin in the primary hepatocyte experiment (Table 2). 

Next, I investigated the contribution of individual chromatin context features to improving 

the performance of full models. For each cell line, I trained the full model on all available data 

with the model hyperparameters set to values previously determined to produce the best 

performing model. After the full models were trained, I used the information gain metric generated 

by XGBoost to determine the average feature importance of all features (Figure 12),  the relative 

feature importance of sequence features per flanking sequence nucleotide position (Figure 13), and 

relative importance of individual bins of non-sequence features (Figure 14).  

 

Figure 12 – feature importance lists of all features for full models. 
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Figure 12 (cont’d) 

 

 

 

Figure 13 – feature importance of flanking sequence. 
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Figure 14 – feature importance of individual bins. 

Examining the feature importance scores of all features used in full models I observed that 

specific models are predominantly learning and making AhR-DRE binding predictions by relying 

on different features across different cell lines and types (Figure 12). Each cell line or type had 

three to six bigWig signals with feature importance 2-5 times higher than that of any other signal. 

These were: 1) in MCF-7 cells - H3K4me1, H3K4me3, GATA3, CTCF, ZNF217 and FOXA1; 2) 

in primary hepatocytes - DNase-seq, SP1, H3K27ac and RXRA; 3) in HepG2 cells - MXI1, MAX, 

NR2F2, ZEB1; and 4) in GM17212 cells - SP1, POLR2A, TAF1, H3K27ac, and CREB1. Some 

features appear to be ranked relatively highly across most cell line or types, such as the binding of 
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CTCF, Rad21, SP1, FOXA1, MAX and MAX related factors MAZ, and MXI1; as well as histone 

modification H3K27ac. Nevertheless, the relative level of importance of these features varied 

across different cell lines or types - e.g., CTCF ranked fifth in MCF-7 cells and 20th in primary 

hepatocytes (Figure 12). Additionally, when looking at the feature importance scores of individual 

bins across cell lines or types, the distribution of relative importance scores across bins varied 

between cell lines or type. For example, the central bins of H3K27ac in GM17212 cells exhibited 

the highest importance for this feature, whereas in MCF-7 cells the central bins were not used by 

the model and were, consequently, not assigned an importance score (Figure 14).  

To verify that the ordering of feature importance scores in Figure 12 was robust and 

reproducible I created ranked lists of features with highest feature importance - one ranked list for 

each of the five folds within the 5-fold cross validation. Next, for each feature I created a boxplot 

of rank distributions across the folds (Figure 15). I observe that the most highly ranked features 

always rank highly and thus exhibit low rank variability. For instance, H3K4me1 always ranks 

first in all five folds within the MCF-7 model. 

 

Figure 15 – ranks of features sorted by importance across five folds in 5-fold cross validation. 

To investigate the contribution to model performance of DNA sequence immediately 

flanking the DRE, I examined the importance scores of nucleotides flanking the DRE within 1) 

flanking sequence-only models (not shown), and 2) full models. Importance scores of nucleotides 
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produced by the sequence only models were highly variable between different cell lines and types. 

On the other hand, the importance scores of nucleotides flanking the DRE produced by the full 

models demonstrated similar profiles of nucleotide importance across different cell lines or types. 

In summary, the thymine residue at the flanking position directly 5' of the DRE (labelled as the -1 

position) had the highest feature importance out of all nucleotides that could appear at that position 

in three out of four examined binding experiments (Figure 13). Additionally, for two out of four 

binding experiments the thymine at position -2 and cytosine and guanine at position +1 also had 

high feature importance (Figure 13). 

To examine the influence of individual TFs on model performance, I developed models 

that used only a single input feature – the 15 bins representing the average bigWig signal of a 

single TF. Sorting these models by performance, I determined that the relative ordering of 

transcription factors (Figure 16) was different when compared to the feature importance ranking 

of the full models shown in Figure 12. Notably, for MCF-7 cells (Figure 16), EP300 was the factor 

resulting in the second-best performing model, while in the corresponding full model, EP300 did 

not appear even among the top 20 features with highest importance (Figure 12). On the other hand, 

GATA3 was the most predictive factor both in the full model and individually (Figure 12 and 

Figure 16). These results point to a high likelihood of redundancy between binding of different 

TFs. 
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Figure 16 – single transcription factor model performance. 

In conclusion, the models predicting the AhR binding status of DREs in open chromatin 

developed here, generalized well within the cell line or type they were trained on, when evaluated 

on a subset of bound singleton DREs and unbound isolated DREs left out from the training dataset 

(i.e., a single fold in a 5-fold cross validation). Additionally, these models exhibited highly variable 

chromatin context specificity between different cell lines or types. The only exceptions were the 

DNA flanking sequence features. Most cell lines or types exhibited similarities in DNA flanking 

sequence specificity, potentially pointing to a common flanking sequence grammar. 

Singleton peak-trained models predict multi-DRE and 0-DRE AhR peak binding within the 

same cell line or cell type  

To assess the robustness of trained models and to investigate the extent of overtraining, I 

performed feature selection based on the feature importance rankings of the full models, for each 

cell line or type. Briefly, using the list of 300 features with the highest feature importance in Figure 

12, I created several models with increasingly larger subsets of those features used as model inputs. 

I created models with a subset of top N features with highest importance scores in the full model 

(where N = 10, 25, 50, 75, 100, 200, 300). In the MCF-7 cells I observed that the performance 

plateaus already at around 100 top features used and that the performance of the model using only 
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the top 50 features, although slightly lower on average, is not significantly different than the 

performance of the full model (Figure 17).  

 

Figure 17 – reduced feature set model performance (all features). 

Similarly, I investigated the influence of the number of flanking nucleotides used in model 

training. It was previously indicated, based on computational analysis of 13 experimentally 

verified DREs, that up to 7 up- and down- stream DRE-flanking nucleotides might play a role in 

determining AhR binding (45). Accordingly, I have created sequence only models with N flanking 

nucleotides up- and down- stream of the DRE used in model training (N = 1, 2, 3, 4, 5, 6, 7). The 

results show that the sequence-only model performance plateaus at four flanking nucleotides 

(Figure 18). Therefore, all models using flanking sequence features were developed using exactly 

four flanking nucleotides up-/down- stream of the DRE. 
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Figure 18 – reduced feature set model performance (sequence features). 

Noting that the DRE is not a palindromic binding motif, it is possible that whether the DRE 

occurs on the forward or the reverse strand might influence AhR binding determinants. Mainly, 

DRE orientation might influence the spatial orientation of the AhR-ARNT heterodimer when 

binding DNA, and thus also influence the direction of interactions with other TFs. To account for 

this potential issue, I investigated whether correcting the orientation of local chromatin context 

features by aligning them with the orientation of the DRE influences model performance. 

Specifically, for DREs found on the forward strand, all features were left as-is, and for DREs found 

on the reverse strand, the bins of all features were flipped around the central bin (the bin containing 

the DRE), to match the DRE orientation. The results indicate that there are no differences between 

the original and strand-corrected models (Figure 19). 
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Figure 19 – model performance with and without strand correction. 

Next, I evaluated the ability of full models to predict the binding status of DREs that were 

not used in training, as a test of how well the models generalize. Model performance was first 

evaluated on multi-DRE AhR peaks. For each muli-DRE peak, the binding status of each DRE 

was predicted by the model. If at least one DRE was predicted as bound, the peak was considered 

generally recovered (Figure 20 - blue bars). If the DRE closest to the summit of the peak was 

predicted as bound, the peak was considered centrally recovered (Figure 20 - orange bars). General 

recovery of multi-DRE peaks in open chromatin resulted in true positive rates (TPR) between 80-

100% for most multi-DRE peaks (Figure 20).  

 

Figure 20 – model evaluation of multi-DRE AhR peaks in open chromatin. 

In the MCF-7 cells, AhR peaks containing more than four DREs were mostly not recovered 

by the models (TPR around 40% or lower), suggesting the possibility of a different mechanism 
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underlying AhR binding in areas of high DRE density in MCF-7 cells, possibly through 

cooperative binding (95). In the hg19 human reference genome approximately 1% of all DREs can 

be found in one of these high DRE density areas, which were defined as 5 or more DREs within a 

500-base pair region (Figure 21).  

 

Figure 21 – number of high DRE density clusters in the human genome. 

On the other hand, multi-DRE peaks in closed chromatin were recovered at a much lower 

and variable rate of 25-60% (Figure 22), suggesting that AhR binding in closed chromatin might 

be governed by a distinct set of rules compared to the binding in initially open chromatin. 

Alternatively, since my models are trained to predict the binding status of DREs in open chromatin, 

the model might struggle when predicting the binding status of DREs in closed chromatin.  

 

Figure 22 – model evaluation of multi-DRE AhR peaks in closed chromatin. 

However, taking a closer look at DNase-seq signal in the vicinity of these closed chromatin 

DREs revealed no correlation between the normalized binding strength of DNase-seq signal and 
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the DRE binding status prediction probabilities (Figure 23). This result indicates that the lower 

performance of the models when predicting the binding status of bound DREs in closed chromatin 

was not lower due to lower DNase-seq signal alone. 

 

Figure 23 – DNase-seq signal vs. model prediction probabilities across multi-DRE peaks in 

closed chromatin. 

 Contrary to the expectation that the more DREs a peak contains, the higher the likelihood 

of that peak being recovered by pure chance, I did not observe this trend in Figure 20 and Figure 
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22, with either general or central recovery. These results suggest that the models generalized well, 

and that the multiple-testing issue was not prevalent when assessing general recovery rates.  

I also evaluated the false positive rates (FPR) of the full models when predicting the 

binding status of 1) multi-DRE DNase-seq peaks, 2) 1+-DRE peaks of best performing TF in open 

chromatin, 3) 1+-DRE peaks of best performing TF in closed chromatin (Figure 24). “Best 

performing TF” refers to the TF that was ranked the highest in importance in Figure 12. Best 

performing TFs were GATA3, MXI1, and SP1 for MCF-7, HepG2 and GM17212 cells, 

respectively. The FPRs generally do not exceed 20% and are the lowest for multi-DRE DNase-seq 

peaks. 
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Figure 24 – model evaluation on non-AhR peaks. 

Similarly, to multi-DRE peaks, I evaluated the performance of the models on 0-DRE peaks. 

In this case, since there were no DREs to evaluate model performance on, models trained on all 

features excluding flanking DNA sequence (DNase + HMs + TFs) were used for evaluation. To 

calculate the values of all non-sequence input features I previously used the DRE genomic location 

as a reference. However, since 0-DRE peaks do not have any DREs, I simulated five “dummy 

DREs” for each 0-DRE AhR peak to create reference points for the calculation of input features. 
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Unlike actual genomic DREs, these dummy DREs are not present in the genomic sequence and 

only define the location to be used as reference for the calculation of input features. The center of 

the first dummy DRE was aligned to the mid-point of the AhR peak and the other four dummy 

DREs were positioned at -100, -50, +50, and +100 base pairs relative to the mid-point of the peak. 

I investigated up to five dummy DREs for each 0-DRE peak since the majority of DREs within 

singleton AhR peaks were located within –100 to +100 base pairs relative to the mid-point of the 

peak (as shown in Figure 4). Upon establishing the dummy DREs I applied the same procedure as 

described for predicting multi-DRE peaks. Specifically, a 0-DRE peak was considered generally 

recovered if at least one of the five dummy DREs was predicted as bound. The peak was considered 

centrally recovered if the central dummy DRE was predicted as bound. In MCF-7 cells, 

approximately 93.7% of the 0-DRE peaks are partially recovered and 91% are centrally recovered. 

Other cell lines exhibit a slightly lower rate of recovery, nevertheless, the majority of 0-DRE peaks 

was recovered (Figure 25).  

 

Figure 25 – model evaluation on 0-DRE AhR peaks in open chromatin. 

Similar to multi-DRE peaks, the central true positive rates for 0-DRE AhR peaks in closed 

chromatin are considerably lower – between 11.7% and 41.8% for GM17212 and MCF-7, 

respectively (Figure 26).  
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Figure 26 – model evaluation on 0-DRE AhR peaks in closed chromatin. 

Additionally, I evaluated the false positive rates (FPR) of my models when predicting the 

binding status of 1) 0-DRE DNase-seq peaks, 2) 0-DRE peaks of best performing TF in open 

chromatin, 3) 0-DRE peaks of best performing TF in closed chromatin. Central FPR for 0-DRE 

DNase-seq peaks is relatively low and does not exceed 1.3%, However, central FPR for 0-DRE 

best performing TF peaks in open chromatin can be high and ranges from 8.6% to 45% for HepG2 

and MCF-7 cells, respectively (Figure 27). 
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Figure 27 – model evaluation on 0-DRE non-AhR peaks. 

Cross-cell models provide insights into cell-specificity of AhR binding 

To examine whether full feature models for different cell lines learn from different features 

simply because different features were available for different cell lines, I developed full feature 

models that only use features available in all evaluated cell lines - MCF-7, HepG2 and GM17212. 

The input features were limited to DNase-seq, and to only those TF and HM features for which 

ChIP-seq experiments were available in all three cell lines. The results still exhibit a highly variable 

set of the most important features determining AhR binding within different cell lines (Figure 28).  
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Figure 28 – feature importance lists of all features in full models for DREs in enhancers only. 

On the other hand, the binding of AhR to DREs in specific genomic locations, such as 

promoters or enhancers, might be governed by distinct molecular mechanisms. Therefore, I 

investigated whether there were any enhancer-specific binding rules and whether these rules might 

be similar between cell lines. To this purpose, I created full models predicting the occupancy of 

singleton bound and isolated unbound DREs found only in enhancers. Once again, the results 

display a highly variable sets of the most important features for each cell line. Nevertheless, I 

observed an increase in feature importance for some TFs, such as the EP300 transcriptional 

coactivator for all cell lines (Figure 29).  

 

Figure 29 – feature importance lists of features shared by all three cell lines in full models for 

DREs. 
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Examining the feature importance of individual factors in different cell lines, I noticed that 

that SP1 and MAX transcription factor have the highest feature importance in the full models for 

GM17212 and HepG2 cells, respectively. However, in MCF-7 cells, neither of these factors 

appeared within the top 20 factors with highest feature importance (Figure 12). To investigate 

whether the importance of these factors might be low in MCF-7 cells due to redundancy with other 

TFs or other features, I examined the discriminative power of a single feature derived from these 

factors. For both SP1 and MAX, I created a single feature that was the maximal normalized signal 

within a 100-bp region surrounding the DREs used in model training. Next, for each feature in 

each cell line I found the optimal threshold that produced the highest F1 score. The F1 scores of 

both SP1 and MAX were much lower in MCF-7 cells when compared to HepG2 and GM17212 

cells – 7% vs. 35% and 60%, respectively (Figure 30).  

 

Figure 30 – within-cell line F1 scores for the optimal threshold of the central bin of the TF 

signal. 

These results indicate that SP1 and MAX are not predictive of AhR binding in MCF-7 cells 

but are highly predictive of AhR binding in GM17212 and HepG2 cells. On a similar note, GATA3 

is the factor most predictive of AhR binding in MCF-7 cells. Since GATA3 is not expressed in 

many other cell lines or types, it is difficult to investigate whether the AhR binding dependence 

on GATA3 in MCF-7 cells is specific to that cell line. To further investigate the difference in 
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predictive capabilities of features based on the MAX transcription factor I compared the binding 

profiles of MAX centered on bound and unbound DREs in MCF-7 and HepG2 cells. I observed 

that the difference in MAX signal between bound and unbound DREs appears qualitatively less 

pronounced in MCF-7 cells than it is in HepG2 cells, which could explain the increased utility of 

MAX features in the HepG2 model (Figure 31). 

 

Figure 31 – heatmaps representing MAX binding across bound and unbound DREs in MCF-7 

and HepG2 cells. 

Next, I evaluated the cross-cell performance of two models with similar treatments – MCF-

7 and primary hepatocyte models. Here I focused on the sequence-only models to examine the 

possibility of a cross-cell flanking sequence grammar. The sequence-only model trained on MCF-
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7 cells and evaluated on primary hepatocytes did not perform any better than random. Conversely, 

the sequence-only model trained on primary hepatocytes performed better when evaluated cross 

cells on MCF-7 cells than within-cells in primary hepatocytes (Figure 32). Admittedly, the cells 

in these two experiments were both treated with TCDD for 24 hours, although the concentration 

of TCDD was different - 10 nM and 1 nM, for MCF-7 cells and primary hepatocytes, respectively.  

 

Figure 32 – cross-cell performance of sequence only models. 

To further evaluate cross-cell performance, I focused on two similar cell lines – MCF-7 

and T-47D, which are both epithelial breast cancer luminal type A cell lines. Models comprising 

of 1) sequence-only, 2) GATA3-only, and 3) sequence and GATA3 features trained in the MCF-

7 cells exhibit high performance within cells (results not shown), where model performance rises 

with each successive model. Nonetheless, when these models were evaluated on all bound DREs 

within T-47D cells treated with either 3-MC or TCDD for one hour, I found that it was the 

sequence-only model that had the highest true positive rate of 90.67%. Any DREs that were bound 

in both MCF-7 and T-47D cells were excluded from model evaluation to avoid using training data 

in the testing phase. When evaluating the sequence-only model trained on MCF-7 cells separately 

in three subgroups of T-47D DREs, namely DREs bound in 1) TCDD treatment only, 2) 3-MC 

treatment only, 3) and both TCDD and 3-MC treatment, the true positive rates were 90.48%, 
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89.47%, and 92.86%, respectively (Figure 33). Therefore, the sequence-only model could not 

distinguish between AhR binding resulting from activation by different AhR ligands. These results 

indicate that AhR binding resulting from activation by different ligands in the same cell line might 

not be as different as Figure 7 seems to suggest. It is therefore possible that many of the AhR peaks 

unique to a single ligand were also sub-threshold peaks for the other ligand.  

 

Figure 33 – cross-cell performance of MCF-7 models applied on T-47D cells. 

Taken together, these results also suggest that cross-cell model predictions might be more 

accurate for binding experiments with similar cell lines or types (like MCF-7 and T-47D, both of 

which are breast carcinoma cell lines) and treatments, as opposed to binding experiments with 

dissimilar cell types (like MCF-7 and primary hepatocytes) but similar treatments.  

AhR binding models reveal positive and negative regulators of AhR binding 

Next, I focused on analyzing individual DRE binding status predictions. To this end, I used 

ELI5 - https://eli5.readthedocs.io/, an algorithm that summarizes the decision-making process 

underlying individual model predictions. ELI5 assigns a numerical weight to each feature the 

model used when making each DRE binding status prediction. These feature weights are a 

summary measure of how much the feature contributed to the final DRE binding status prediction 

across all decision trees used by the XGBoost model. The higher the weight the more the feature 

https://eli5.readthedocs.io/
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contributed. Features can be both positively and negatively weighted and an example showcasing 

the top 10 positively and negatively weighted features for a single DRE binding status prediction 

is shown in Figure 34. In this example, the high average bigWig signal value within bin 0 of MAX 

binding is assigned the highest weight by ELI5 which means that this feature contributes the most 

to the model predicting the corresponding DRE as bound.  

 

Figure 34 – an example showcasing the top 10 positively and negatively weighted features for a 

single DRE. 

When analyzing the weights assigned to features that are the individual bins of bigWig 

signals across all correctly predicted bound DREs, i.e., true positives (TPs), I observed both model 

features whose weights increase with increasing feature values - termed positive regulators, as well 

as features whose weights decrease with increasing feature values – termed negative regulators 

(Figure 35).  

 

Figure 35 – scatterplot examples of positive and negative regulators. 
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Upon determining the direction of regulation – positive or negative regulator, for each 

feature in each cell line, I compared the direction of regulation of features in common to each 

combination of two cell lines. In total I found 102, 46, and 59 features used in common by 1) 

MCF-7 and HepG2, 2) MCF-7 and GM17212, and 3) HepG2 and GM17212 models, respectively. 

I observe that for each model combination approximately 41-62% of features appear as positive 

regulators in one cell line and negative in another (Figure 36).   

 

Figure 36 – positive and negative regulators in different pairs of cell lines. 

Further, a total of 15 features was used by all three models. Out of those, only three features 

had the same direction of regulation in all three models – bin 1 of MAZ, bin 1 of MAX, bin 3 of 

H3K27ac. All three of these features are positive regulators in all three models (results not shown). 

Even different bins of a single transcription factor, e.g., CTCF in HepG2 cells, can be both positive 

and negative regulators, albeit the bins that are negative regulator had very small feature weights 

(Figure 37). These results suggest that even though cell-specific models primarily learn from 

entirely different features, a small subset of those features shows similar patterns across cells. 

Additionally, different TFs might both facilitate or interfere with AhR binding in different cell 

lines.   
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Figure 37 – average weights assigned to different bins of CTCF. 

Lastly, ELI5 provided weights for flanking sequence features, as well. The flanking 

sequence feature were binary – i.e., a certain type of nucleotide either appeared at a specific 

position or it did not, e.g., nucleotide at position -1 was a thymine or not.  The flanking sequence 

features can also be seen as positive or negative regulators, as the model produces either positive 

or negative weights when a specific nucleotide at a particular position is present. Such sequence 

features are classically represented in the form of a sequence logo (95). These representations 

indicate how informative the presence of a certain nucleotide at a particular position is when 

determining whether the given sequence is a binding site or not. However, when these logos are 

formed, usually only the bound sequences are considered. Conversely, the logo generated by my 

models is a combination of two motifs – one that describes bound DREs, and another that describes 

the unbound DREs (the upper and lower motifs in Figure 38, respectively). I propose that this type 

of motif is more informative that a standard TF binding motif. 

 

Figure 38 – motif logo representing bound and unbound DREs. 
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Unlike non-sequence features that are common to different cell line models, the direction 

of regulation for DNA flanking sequence features appears more stable across cell lines or types. 

For instance, between the MCF-7 cells and primary hepatocytes, all three nucleotide features 

(position -2 is thymine, -1 is thymine and 1 is guanine) that are used by both models have the same 

direction of regulation (results not shown). 
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CHAPTER 3: AHR BINDING PARTNERS 

INTRODUCTION 

Some transcription factors (TFs), such as the AhR, are incapable of binding DNA by 

themselves due to their incomplete DNA binding domain, and need to dimerize with other TFs to 

bind DNA. The primary and most widely investigated dimerization partner of AhR is the AhR 

nuclear translocator (ARNT) protein. The AhR-ARNT dimer tends to dominate the AhR-DNA 

binding landscape – hence ARNT has been regarded as the canonical dimerization partner of AhR 

(96). In addition, there is little evidence of in vivo AhR binding in the absence of ARNT. However, 

many dimerizing TFs have multiple possible dimerization partners, for instance ARNT can 

dimerize with itself (97), AhR (96) and HIF1α (98). It is thus possible that AhR also has multiple 

dimerization partners and could potentially even bind to different cognate sequences when 

dimerized with different partners. 

Recently, it has been shown that AhR binds certain loci in the absence of ARNT, even 

when treated with exogenous ligands, such as 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin (TCDD). One 

such locus exists in the promoter of the plasminogen activator inhibitor 1 (PAI-1) gene. The AhR 

binds this locus in a TCDD-inducible manner, however the binding of ARNT is markedly absent. 

In addition, the promoter of PAI-1 possesses no dioxin response elements (DREs) – the 5'-

GCGTG-3' core consensus binding motif of the AhR-ARNT dimer (99). Huang and Elferink 

investigated preserved sequences across species in the promoter of PAI-1 and identified two likely 

locations for the binding of AhR.  By mutating these sequences and testing for binding via 

electrophoretic mobility shift assay (EMSA) they narrowed down AhR binding to a single region 

and identified several nucleotides within that region that influence AhR binding. This region was 

termed the nonconsensus DRE (NC-DRE) and it shared marked homology with the DNA binding 
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sequence of the Krüppel-like factor (KLF) family of TFs. Later, it was confirmed that KLF6 

interacts with AhR and binds to the NC-DRE in the PAI-1 promoter in a TCDD-dependent 

manner. Furthermore, sequential deletion studies demonstrated that the C terminus of the AhR and 

the N-terminal domains of KLF6 are necessary to facilitate this interaction (29). 

The activities of AhR and NF-kB pathways have also been functionally linked (100). Tian 

et al. demonstrated that AhR and the RelA subunit of NF-kB associate physically in murine 

hepatoma cells. Additionally, such physical interactions between AhR and RelA in the absence of 

ARNT have also been shown in the IL-6 promoter of human lung cells (28), and c-myc promoter 

in breast cancer cells (27). 

However, both KLF6 and RelA interactions with AhR have only been demonstrated at a 

limited number of loci and it is currently unknown if they could be more widespread. To 

investigate this possibility, I have developed a computational method to assess the likelihood of 

AhR interactions across the entire genome, by using publicly available ChIP-seq data. My results 

indicate that while TCDD-activated AhR predominantly interacts with ARNT, at a subset of sites, 

TCDD-activated AhR appears to bind with RelA as well. On the other hand, in cells not explicitly 

treated with an AhR ligand, AhR does not seem to interact with ARNT, except for a small subset 

of AhR peaks with DREs (0.5% of all AhR peaks). In this case, the AhR does seem to interact 

with both KLF6 and RelA extensively, across the genome. 

MATERIALS AND METHODS 

Reference genome 

The reference genome used for sequence alignment in this part of the thesis was the human 

genome assembly version hg38. 
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Genomic locations of DREs 

A list of all DREs and their genomic locations in the human genome was compiled by 

searching the hg38 human reference genome sequence for all occurrences of the core DRE 

sequence 5'-GCGTG-3' on either strand of the DNA.  

Scatterplot of signal-to-signal correlation between two TFs 

Given 1) a list of genomic ranges, e.g., a list of TF binding peaks, and 2) two TFs - TF1 

and TF2, and their bigWig binding strength signal files representing the genome-wide intensity of 

TF-DNA binding; a scatterplot of binding strength signal correlation is constructed in the 

following way. For each genomic range, described by the chromosome, start and end of the range, 

the maximum of the binding strength signal of both TF1 and TF2 is found. A point is plotted on a 

scatterplot, where the x-axis represents the binding strength signal of TF1 and the y-axis represents 

the binding strength signal of TF2. The procedure is illustrated below (Figure 39). 
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Figure 39 – construction of the scatterplot of signal-to-signal correlation between two TFs. 

Histogram of individual signal correlations between two TFs 

Given 1) a list of genomic ranges, e.g., a list of TF binding peaks, and 2) two TFs - TF1 

and TF2, and their bigWig binding strength signal files representing the genome-wide intensity of 

TF-DNA binding; a histogram of signal-to-signal correlations is constructed in the following way. 

For each genomic range, described by the chromosome, start and end of the range, the binding 

strength signals of both TF1 and TF2 within the given genomic range are extracted and converted 

into a numerical series of values. The Pearson correlation coefficient for the two series is calculated 

and recorded. A histogram of all Pearson correlation coefficients for all genomic regions of interest 

is constructed. The procedure is illustrated below (Figure 40). 
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Figure 40 – construction of the histogram of individual signal correlations between two TFs. 

RESULTS 

Genome-wide investigation of protein-protein interactions for DNA-bound TFs 

Certain TFs, like the AhR, are generally considered incapable of binding DNA by 

themselves and need to dimerize with other proteins to do so. Many such factors have more than 

one possible dimerization partner. For instance, ARNT can dimerize itself (97), AhR (96) and 

HIF1α (98) and possibly other TFs as well. Two TFs that dimerize to bind DNA, e.g., TFs A and 

B, do so together and could, therefore, be considered a single new A-B TF that is bound to DNA. 

The dimerization reaction, as well as dimer-DNA binding, are reversible reactions, however the 

crosslinking procedure that is the first step of the chromatin immunoprecipitation (ChIP) type of 

experiments makes the dimer-DNA complex stable. Thus, two ChIP-seq experiments, one for TF 

A and another for TF B should appear as though they were two replicate ChIP-seq experiments for 

the same A-B TF. Namely, they would appear as two biological replicate experiments that were 

also performed with different antibodies (Figure 41). However, this would be true only within the 

context of DNA sites that were bound by the dimer and not by individual TFs, or by an individual 

TF dimerized with a different TF.  
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To investigate TF-TF interactions across TF-DNA bound sites I propose an analytical 

method based on two semi-qualitative metrics. These are 1) the scatterplot of signal-to-signal 

correlation and 2) the histogram of individual signal correlations. Both metrics are constructed 

starting from a list of peaks. This list could be (i) a list of peaks of TF A, (ii) list of peaks of TF B, 

or (iii) the intersection of list of peaks of TF A and TF B.  

Given the list of peaks, the scatterplot of signal-to-signal correlation is generated by 

calculating the maximum of TF A and TF B signal for each peak and plotting these two maximums 

as a point on the scatterplot (left panels in TF-TF interaction figures). Each point represents a 

single peak (Figure 39). The value of the Pearson correlation coefficient – r, for all points on the 

scatterplot was also reported (see Methods for more details). Similarly, given a list of peaks, the 

histogram of individual signal correlations is generated by calculating the Pearson correlation 

between the signal of TF A and TF B across each peak, by first transforming these signals into 

number series of equal length, and then calculating their correlation coefficient. All Pearson 

correlation coefficients are then plotted on a histogram (Figure 40). The percentage of peaks 

having Pearson correlation coefficient r>0.7, was reported on the graph as well (see Methods for 

more details). 

This analytical method possesses an advantage over experimental methods such as 

immunoprecipitation followed by mass spectrometry (IP-MS) which are used to investigate 

protein-protein interactions. The IP-MS method pulls down the protein of interest (POI) and then 

performs mass spectrometry to obtain a list of proteins interacting with the POI. However, this 

method assumes that the two proteins interact even when not bound to the DNA, which might not 

be the case. The proposed method should work even if the concentration of the dimerized protein 

was generally much lower than the concentration of individual proteins A and B across the cell. 
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This is because the method works by selecting for sites bound by the A-B dimer, enriching for the 

A-B dimer signal in the process. 

 

Figure 41 – ChIP-seq of dimerized TFs as replicate ChIP-seq of a single TF. 

To set some expectations for these metrics in different scenarios, I first generated the 

scatterplot and histogram for two replicate experiments for the same TF – FOXA1. Data was 

obtained from ENCODE. The results demonstrated that for replicate experiments one could expect 

the scatterplot correlation to be high, r=0.82 in case of FOXA1 replicate experiments (left panel 

Figure 42). Similarly, the proportion of peaks with signal correlations exceeding 70% (r>0.7) was 

very high – 70% in the case of FOXA1 replicate experiments, and considerably shifted to the right 

(right panel Figure 42). 



63 

 

 

Figure 42 – FOXA1 replicate experiment interaction assessment – example of interacting TFs. 

Then, I generated the scatterplot and histogram for two experiments of TFs that are known 

not to interact – FOXA1 and CTCF. Data for both obtained from ENCODE. The results 

demonstrate that for experiments with non-interacting factors one could expect the scatterplot 

correlation to be very low, r=0.08 in this case (left panel Figure 43). Similarly, the proportion of 

peaks with signal correlations exceeding 70% (r>0.7) was very low – 9% in this case, and the 

histogram is relatively flat (right panel Figure 43). 

 

Figure 43 – FOXA1 and CTCF interaction assessment – example of non-interacting TFs. 

AhR interactions with ARNT 

To confirm and further investigate AhR interactions with ARNT, I examined two pairs of 

AhR and ARNT experiments (Table 3). The first pair of AhR and ARNT experiments was 
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conducted in MCF-7 cells treated with 10 nM TCDD for 24 hours under the same conditions by 

the same lab. The second pair of experiments assessed AhR and ARNT binding in HepG2 cells 

not treated by an AhR ligand (data available on ENCODE portal). 

 

Table 3 – AhR and ARNT ChIP-seq experiment list. 

AhR-ARNT interactions in TCDD-treated MCF-7 cells across all AhR peaks. In 

scenarios of treatment with exogenous AhR ligands such as TCDD, the AhR is assumed to require 

dimerization with ARNT to interact with DNA. On the other hand, ARNT is known to bind DNA 

by dimerizing with other TF partners, such as with itself or Hif1a. Therefore, I focused on 

investigating AhR-ARNT interactions by using the list of 17,588 AhR peaks in MCF-7 cells 

treated with 10 nM of TCDD for 45 minutes. I observed that the scatterplot correlation was very 

high, r=0.88 (left panel Figure 44), comparable to results for the two replicate experiments. The 

proportion of peaks with signal correlations exceeding 70% (r>0.7) was 26%, and the histogram 

was slightly shifted to the right (right panel Figure 44). This result is higher than for non-interacting 

TFs, but lower than for two replicate experiments. 

 

Figure 44 – AhR-ARNT interactions in TCDD-treated MCF-7 cells across all AhR peaks. 
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AhR-ARNT interactions in TCDD-treated MCF-7 cells across AhR peaks with 1+ and 

2+ DREs. Next, I investigated how the AhR binding motif, also known as the dioxin response 

element (DRE), influences the AhR-ARNT interaction results. I have again generated the 

scatterplots and histograms of TF interactions, but this time for (1) AhR peaks with 1 or more 

DREs –  1+ DREs, 3097 AhR peaks (left panel Figure 45), and for (2) AhR peaks with 2 or more 

DREs –  2+ DREs, 563 AhR peaks (right panel Figure 45). The results indicate that the scatterplot 

correlation increases with increasing number of DREs, r=0.90 and r=0.93 (top left and right panels 

Figure 45). I also observed the narrowing of the scatterplot, with less variation with increasing 

number of DREs under AhR peaks. The proportion of peaks with signal correlations exceeding 

70% (r>0.7) also increased to 36% and 43%, for 1+ DREs and 2+ DREs AhR peaks, respectively 

(bottom left and right panels Figure 45).  
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Figure 45 – AhR-ARNT interactions in TCDD-treated MCF-7 cells across AhR peaks with 1+ 

and 2+ DREs. 

AhR-ARNT interactions in TCDD-treated MCF-7 cells across ARNT peaks that do 

not overlap AhR peaks. Further, I investigated the correlations between AhR and ARNT binding 

across ARNT peaks that do not overlap AhR peaks – ARNT-only peaks. As mentioned, ARNT 

readily dimerizes and binds DNA with TFs other than AhR, hence I expected to see lower degrees 

of correlation between AhR and ARNT binding. The scatterplot correlation decreased to r=0.63 

(left panel Figure 46) compared to AhR peaks which was r=0.88. A trend similar to AhR peaks is 

still observable, however this is likely due to some AhR peaks not being called by the peak caller, 

despite possessing high AhR signal. On the other hand, the proportion of peaks with signal 
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correlations exceeding 70% (r>0.7) is low at 12%, making it more comparable to non-interacting 

factors (right panel Figure 46). 

 

Figure 46 – AhR-ARNT interactions in TCDD-treated MCF-7 cells across ARNT-only peaks. 

To investigate how AhR signal influences these results I have split the ARNT-only peaks 

into two groups. The first group is referred to as the low AhR signal group – with AhR signal 

lower than the AhR peak with the lowest AhR signal. The second group is referred to as the high 

AhR signal group – with AhR signal higher than the AhR peak with the lowest AhR signal. I 

observed that about 13% of ARNT peaks had no AhR signal at all, and that 61% fell into the low 

AhR signal group. Therefore, the left panel in Figure 47 contains more peaks than the right panel, 

even though that might not be obvious. The correlation coefficient of the signal scatterplot was 

much lower in the low AhR signal group than the high AhR signal group, r=0.11 vs. r=0.72, 

respectively (Figure 47). In addition, none of the ARNT peaks with low AhR signal had more than 

2 DREs. These results are in line with the notion that ARNT binds DNA in the absence of AhR. 

Together, these results indicate that some ARNT-only peaks might also be overlapping sub-

threshold peaks of AhR. 
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Figure 47 – AhR-ARNT interactions in TCDD-treated MCF-7 cells across ARNT-only peaks – 

low vs. high AhR signal. 

AhR-ARNT interactions in non-treated HepG2 cells across all AhR peaks. It is 

currently not known whether non-activated or endogenously activated AhR interacts with TFs 

other than ARNT and to what extent. By focusing on investigating AhR-ARNT interactions by 

using the list of approximately 15,000 AhR peaks in HepG2 cells, I observed that the scatterplot 

correlation was very low, r=0.09 (left panel Figure 48), comparable to the results for non-

interacting TFs. The proportion of peaks with signal correlations exceeding 70% (r>0.7) was 10%, 

and the histogram was also flat, which was also comparable to the results for non-interacting TFs 

(right panel Figure 48). These results suggest that ARNT might not be the primary dimerization 

partner of AhR in non-treated or endogenously treated cells. 
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Figure 48 – AhR-ARNT interactions in non-treated HepG2 cells across all AhR peaks. 

AhR-ARNT interactions in non-treated HepG2 cells across a subset of AhR peaks. I 

found that there were only 75 AhR peaks (about 0.5% of all AhR peaks) with more than 1 DRE 

and with high correlation between AhR and ARNT signals (r>0.9). The scatterplot correlation 

coefficient was much higher for this subset – r = 0.7 (Figure 49).  One of these peaks contains two 

DREs and was located in the upstream region of CYP1A1, approximately -1kb from the 

transcription start site (TSS). 

 

Figure 49 – AhR-ARNT interactions in non-treated HepG2 cells across a subset of AhR peaks. 
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AhR interactions with RelA 

To confirm and further investigate AhR interactions with RelA, I examined one pair of 

AhR and RelA experiments (Table 4), with both AhR and RelA experiments not treated by an AhR 

ligand in HepG2 cell line and available on ENCODE. 

 

Table 4 – AhR and RelA ChIP-seq experiment list. 

AhR-RelA interactions in HepG2 cells across all AhR peaks. Here I compared the 

binding of an untreated AhR experiment and an untreated RelA experiment in HepG2 cells. The 

scatterplot correlation was r=0.68 (left panel Figure 50), and the proportion of AhR peaks with 

signal correlations exceeding 70% (r>0.7) was 34%, with the histogram slightly shifted to the left 

(right panel Figure 50).  

 

Figure 50 – AhR-RelA interactions in HepG2 cells across all AhR peaks. 

AhR-RelA interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs. Next, 

I investigated how the DRE, influenced the AhR-RelA interaction results. I have again generated 

the scatterplots and histograms of TF interactions, but this time for (1) AhR peaks with exactly 0 

DREs (left panel Figure 51), and for (2) AhR peaks with 3 or more DREs –  3+ DREs (right panel 
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Figure 51). The results indicate that the scatterplot correlation decreased with increasing number 

of DREs, r=0.72 and r=0.51 (top left and right panels Figure 51). The proportion of peaks with 

signal correlations exceeding 70% (r>0.7) was 35% and 34%, for 0 DRE and 3+ DREs AhR peaks, 

respectively (bottom left and right panels Figure 51). Interestingly, the correlation between AhR 

and RelA binding decreased with increasing number of DREs under the peak, however the 

percentage of highly correlated peaks (peaks with r>0.7) remains the same. 

 

Figure 51 – AhR-RelA interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs. 

AhR-RelA interactions in HepG2 cells across AhR peaks with high peak to peak 

signal correlation between AhR and RelA. Next, I investigated the scatterplot correlation 

between AhR and RelA, but only across AhR peaks that have high peak to peak signal correlation 
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between AhR and RelA (peaks with signal to signal correlation of r>0.9), i.e., the right-most 

portion of the histogram of individual signal correlations. The scatterplot correlation increased to 

r=0.89 (Figure 52) compared to r=0.62 across all AhR peaks. Taken together, these results indicate 

that AhR likely interacts with RelA at a subset of AhR peaks. 

 

Figure 52 – AhR-RelA interactions in HepG2 cells across AhR peaks with high peak to peak 

signal correlation between AhR and RelA. 

AhR interactions with KLF6 

To confirm and further investigate AhR interactions with KLF6, I examined one pair of 

AhR and KLF6 experiments (Table 5). Both of these experiments were carried out in HepG2 cells 

that were not treated by an AhR ligand (data available on ENCODE portal). 

 

Table 5 – AhR and KLF6 ChIP-seq experiment list. 

AhR-KLF6 interactions in HepG2 cells across all AhR peaks. Here I compared the 

binding in untreated HepG2 cells between an AhR and a KLF6 binding experiment. The scatterplot 

correlation was r=0.77 (left panel Figure 53), higher than the scatterplot correlation for KLF6. The 
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proportion of AhR peaks with signal correlations exceeding 70% (r>0.7) was 33%, and the 

histogram was slightly shifted to the left (right panel Figure 53), similar to RelA results. 

 

Figure 53 – AhR-KLF6 interactions in HepG2 cells across all AhR peaks. 

AhR-KLF6 interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs. Next, 

I investigated how the number of DREs under the AhR peak influenced the AhR-KLF6 interaction 

results. I have again generated the scatterplots and histograms of TF interactions, but this time for 

(1) AhR peaks with exactly 0 DREs (left panel Figure 54), and for (2) AhR peaks with 3 or more 

DREs –  3+ DREs (right panel Figure 54). The scatterplot correlation decreased with increasing 

number of DREs, r=0.81 and r=0.65 (top left and right panels Figure 51). The proportion of peaks 

with signal correlations exceeding 70% (r>0.7) was 33% and 34%, for 0 DRE and 3+ DREs AhR 

peaks, respectively (bottom left and right panels Figure 51). Similar to interactions with RelA, the 

correlation between AhR and RelA binding decreased with increasing number of DREs under the 

peak, however the percentage of highly correlated peaks (peaks with r>0.7) remained the same. 
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Figure 54 – AhR-KLF6 interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs. 

AhR-KLF6 interactions in HepG2 cells across AhR peaks with high peak to peak 

signal correlation between AhR and KLF6. Next, I investigated the scatterplot correlation 

between AhR andKLF6, but only across AhR peaks that have high peak to peak signal correlation 

between AhR and KLF6 (peaks with signal to signal correlation of r>0.9), i.e., the right-most 

portion of the histogram of individual signal correlations. The scatterplot correlation increased to 

r=0.85 (Figure 55) compared to r=0.77 across all AhR peaks. These results jointly indicate that 

AhR likely interacts with KLF6 at a subset of AhR peaks and that this subset might be slightly 

larger than the subset of AhR peaks where AhR and RelA interact. An implication of these results 

is that at some AhR peaks, AhR likely interacts with both RelA and KLF6 at the same time. 
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Figure 55 – AhR-KLF6 interactions in HepG2 cells across AhR peaks with high peak to peak 

signal correlation between AhR and KLF6. 

Taking the genomic sequence of 0-DRE AhR peaks where AhR and KLF6 exhibit high 

peak to peak signal correlation (r>0.9) in the +/- 200-bp region around the mid-point of each peak, 

I ran the MEME-ChIP motif discovery pipeline. Surprisingly, the most enriched motif was the 

RE1 silencing transcription factor (REST) motif, shown in Figure 56. In addition to being the most 

enriched motif, it was also highly centrally enriched. REST is not known to interact with either 

AhR, KLF6 or RelA. 

 

Figure 56 – de novo motif discovery across 0-DRE AhR peaks with high KLF6 correlation in 

HepG2 cells. 

AhR-KLF6 interactions in HepG2 cells across AhR peaks without the REST motif. 

Since the role of REST in AhR-KLF6 interactions is unknown and unexpected, I investigated the 

correlation between AhR and KLF6 across AhR peaks that did not possess a REST motif. To 

achieve this, I first searched for the REST motif, JASPAR motif MA0138.2 (103), under AhR 

peaks, looking at sequences within the region of +/-200 from the mid-point of the peak. I used 
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FIMO with a q-value cutoff of 0.001 (104). This search generated 841 AhR peaks without the 

REST motif. The scatterplot correlation was lower than for all AhR peaks, r=0.56 (left panel Figure 

57) compared to r=0.77 for all AhR peaks. The proportion of peaks with signal correlations 

exceeding 70% (r>0.7) was 33% (right panel Figure 57), similar to result obtained for all AhR 

peaks. 

 

Figure 57 – AhR-KLF6 interactions in HepG2 cells across AhR peaks without the REST motif. 

Performing another de novo motif search across AhR peaks without the REST motif, I 

found the KLF6-like motif under these peaks (Figure 58). The KLF6 motif contains little 

information overall and is generally degenerate, so exact matching with high confidence is 

difficult. The q-value reported by TomTom for the match between the KLF6 and the found motif 

was 0.0213. Notably, nucleotides at positions 5 and 11 do not match well between the two motifs.  

 

Figure 58 – de novo motif discovery across AhR peaks without the REST motif in HepG2 cells. 
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The de novo discovered motif looks remarkably like the sequence used to probe the NC-

DRE. Huang and Elferink identified a potential binding site for AhR by examining a species-

conserved sequence in the promoter of plasminogen activator inhibitor 1 (PAI-1) (99). They 

subsequently ran electronic mobility shift assays (EMSA) to probe the extent of AhR binding. 

They tested the wild-type (WT) sequence and five sequence mutants (labeled M1, M2, M3, M4 

and M5). Mutants M2 through M5 lie in the portion of the sequence overlapping the de novo found 

motif. The motif, together with the WT and all the mutant sequences is shown in Figure 59. The 

mutated portions of the sequence in the mutant sequences are labelled by a red line drawn on top 

of the mutated sequence. 



78 

 

 

Figure 59 – comparison of de novo derived motif and functionally tested sequences in PAI-1 

promoter. 

Next, I calculated the position specific scoring matrix (PSSM) of the de novo discovered 

motif using Biopython (105), with pseudocounts calculated using the 

motifs.jaspar.calculate_pseudocounts function. I applied that PSSM to calculate the score for the 

WT and each of the mutant sequences (Figure 60).  
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Figure 60 – PSSM scores of the putative AhR-KLF6 motif for five PAI-1 sequences. 

These results are only in partial agreement with the functional analysis performed by 

Huang and Elferink (99). In their in vitro experiments mutants M2 and M4 exhibited impaired 

binding, while M3 and M5 did not. Further, in their in vivo experiments, mutants M3 and M5 

exhibited the ability to activate a luciferase promoter, whereas mutant M4 did not (mutant M2 was 

not tested). Motif scores for mutants M2 and M5 are in line with previous work, while scores for 

mutants M3 and M4 are not. To match the functional analysis results, the score of the M3 sequence 

should be higher and the score of the M4 sequence should be lower. Admittedly, with only 70 

sequences used to construct the motif, I suspect that there is not enough power to resolve all 

binding sites properly. It is possible that the true motif is less sensitive to certain nucleotide 

alterations and more sensitive to others, which could explain the functional results of Huang and 

Elferink. The consensus sequence of the motif is TGGGAGGCTGAGGCGGGAGGG, and the 

score for this sequence is 27.82. 
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CHAPTER 4: BISPHENOL A AND BISPHENOL S 

PREGNANCY-SPECIFIC PHYSIOLOGICALLY-BASED 

TOXICOKINETIC MODELS 

INTRODUCTION 

Bisphenols are a large class of chemicals structurally identified as having two 

hydroxyphenyl rings. Many bisphenols are considered endocrine disrupting chemicals (EDCs) 

(106). They are widely used in the manufacturing of polycarbonate plastics, epoxy resins, 

dental sealants, and plastic and paper consumer products (31, 107), and are pervasively present in 

dust and soil (32, 33). Due to consumer concerns and heightened regulations regarding the use of 

bisphenol A (BPA) in some countries (108), industrial and consumer products producers have 

resorted to using less studied bisphenol alternatives in their products (109). Such BPA-alternatives 

include bisphenol S (BPS), which is structurally similar to BPA, and is becoming just as 

environmentally prevalent (110). As a consequence, BPS is the second leading bisphenol found in 

humans following BPA (107, 111, 112). Bisphenols can be detected in urine, blood, breast milk, 

amniotic fluid and cord blood, highlighting the ubiquitous exposure humans have to these 

chemicals (32, 111–116). Several studies have shown that even at low concentrations, exposure to 

BPA during gestation can result in negative effects on the development of the fetus (117, 118). 

The detection of BPS in human fetal cord blood (119), the positive association between BPS 

exposure and prolonged gestational length (120), and the fact that in mammals, fetal exposure to 

BPS can alter reproductive (121, 122), metabolic (123), and behavioral outcomes (124), warrant 

research into the precise toxicokinetic mechanisms of these emerging bisphenol chemicals during 

pregnancy. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polycarbonate
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/epoxy-resin
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sealer
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Physiologically based toxicokinetic (PBTK) mathematical models integrate toxicokinetic 

processes such as chemical absorption, distribution, metabolism, and excretion (ADME). The main 

advantage of PBTK models over the classical compartmental approaches to understanding 

chemical toxicokinetics is the ability of PBTK models to extrapolate outside of the conditions or 

population that was evaluated experimentally (125). The quantitative predictive and extrapolative 

capabilities of PBTK models can inform health risk assessments for chemical and pharmaceutical 

exposure (126, 127). Chemical toxicokinetics during pregnancy are more complex with the 

inclusion of the maternal, placental, and fetal compartments (126). Moreover, ethical constraints 

do not allow for any toxicokinetic studies other than biomonitoring to be conducted in pregnant 

women. The use of refined fetal surgery techniques in a sheep animal model represents unique 

opportunities to monitor the maternal, amniotic, and fetal compartments; key elements of 

pregnancy-specific PBTK (p-PBTK) models (126). Importantly, sheep are excellent models to 

study placental function (128, 129) and have been used for the study of feto-maternal transfer of 

drugs (130, 131) and EDCs (34, 132), as they allow for the simultaneous and longitudinal 

characterization of the pregnancy multi-compartment model in real time. 

The toxicokinetics of BPA have been extensively studied and modeled in both animals and 

humans (133–138). Primary metabolism (conjugation) for BPA occurs in the liver and the intestine 

(139). In rodents, BPA undergoes substantial enterohepatic recirculation. However, in monkeys 

and humans, the rapid metabolism and extensive renal excretion of BPA metabolites means that a 

negligible amount of conjugated BPA is able to undergo enterohepatic recirculation (140, 141). In 

pregnancy, both conjugation and deconjugation reactions also occur in fetal tissues, primarily the 

fetal liver, but these processes occur at varying rates during different developmental windows. In 

the early developmental stages deconjugation dominates with conjugation barely occurring (142). 
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However, in the case of BPA, conjugation has been shown to increase from 512-fold lower to 13-

fold lower when compared with maternal conjugation rates from early to late pregnancy (132). 

Despite the breadth of work on BPA, only a limited number of studies have investigated 

the toxicokinetics of BPS during pregnancy (35, 36). Of the two available BPS toxicokinetic 

models (134, 143) only one is physiologically-based (134) and it is based on a non-pregnant sheep 

dataset. This non-pregnant BPS model was derived by a substitution of parameters from a 

previously calibrated BPA PBTK model with parameter values derived from quantitative 

structure–activity relationships (QSARs) for BPS, but was neither formally calibrated, nor 

validated. Recently, BPS was reported to reach higher systemic concentrations than BPA in 

humans (144), representing a need to better distinguish toxicokinetic characteristics between 

bisphenols, for which PBTK models are uniquely suited. Therefore, the objective of my current 

study was to improve the understanding of pregnancy toxicokinetics for bisphenols through the 

development of physiologically relevant multi-compartment p-PBTK models for BPA and BPS. 

Both p-PBTK models were developed using three independent pair-matched maternal and fetal 

sheep exposure cohort datasets (34–36). The text and figures in this chapter have been published 

as a research paper and are reprinted here with the permission of the publisher (30). 

MATERIALS AND METHODS 

Datasets 

Experimental datasets used in this work were obtained from previously published 

bisphenol toxicokinetic studies in pregnant sheep (34–36). For model calibration, three 

independent datasets were used (two for each bisphenol). Dataset #1 from (35) , reported total 

(conjugated plus unconjugated) bisphenol concentrations for BPA and BPS in the maternal and 

fetal plasma and was used for calibrating both bisphenol models. In brief, toxicokinetic data was 
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obtained from pregnant Polypay × Dorset sheep (singleton pregnancies only) that underwent 

fetal catheterization surgery at gestational day (GD) 115. Females (n = 3) were injected with a 

single subcutaneous dose of BPS (0.5 mg/kg) or a combination of BPA and BPS (n = 3; 0.5 mg/kg 

for each chemical) and data were collected over a 72-h period. No differences in toxicokinetic 

parameters (maximum concentration reached, time of maximum concentration, half-life, area 

under the curve, area under the first moment curve, mean residence time, and total body clearance) 

between single-chemical exposure and mixture dosing were reported, so all BPS values (n = 6) 

were combined. 

Additionally, two other toxicokinetic studies in pregnant sheep which presented data for 

conjugated and unconjugated bisphenols (34, 36) were used during model calibration. For BPA, 

dataset #2 was obtained from (34), who used pregnant Lacaune sheep (unreported fetal number) 

that underwent fetal catheterization surgery between GD 108 and 117. In separate experiments, 

females (n = 8) and fetuses (n = 8, unreported sex) were dosed with an intravenous (IV) infusion 

over 24 h of unconjugated BPA or BPA-glucuronide (conjugated, BPA-G) at a dose of 2.0 and 

3.54 mg/kg/day respectively in the mother, and 5.0 and 3.54 mg/kg/day respectively in the fetus, 

assuming a 2.5 kg fetus. Plasma concentrations were collected over a 46-h period and the steady 

state plasma concentration over the final 3-h of infusion was reported. For BPS, dataset #3 was 

obtained from (36) which included pregnant Lacaune sheep (unreported fetal number) that 

underwent fetal catheterization surgery between GD 109 and 113. A dual dosing strategy was used, 

where pregnant females (n = 8) and their fetuses received simultaneous IV doses. First the mother 

received a dose of 2.7 mg/kg BPS-glucuronide (conjugated, BPS-G) and the fetus was 

administered a dose of 5 mg deuterated BPS (BPS-d8). This procedure was followed by a 

simultaneous administration of 5 mg/kg BPS to the mother and 17.5 mg BPS-G-d8 to the fetus. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/catheterization
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Plasma concentrations were reported over a 72-h period. Dataset #3 was collected at somewhat 

regular intervals, though not always at the exact same time point (36). As such, these data could 

not be directly aggregated to yield mean and standard deviation values. Instead, the plasma data 

for each animal was interpolated using a cubic spline. The most representative time points were 

selected, and all the interpolated time-concentration curves were sampled at the selected time 

points and aggregated together. The time points used were either those containing the most data 

points across animals for all time points except the first and the last ones, or time points lying 

within each sheep’s interpolation region, for the first and last timepoint, to prevent extrapolation. 

Model development 

To establish informative and useful p-PBTK models for BPA and BPS, I developed a 

minimal generic p-PBTK model for an unconjugated bisphenol and its conjugate metabolite that 

includes 6 compartments for the mother (liver, fat, kidney, placenta, blood and rest of the body) 

and 3 compartments for the fetus (liver, blood and the rest of the body) (Figure 61). All relevant 

biological processes were included, namely conjugation (metabolism) in the maternal and fetal 

livers, maternal urinary and biliary excretion, and deconjugation in the fetal liver (145). The two 

coupled sub-models of identical structure for the unconjugated and conjugated bisphenols were 

connected through liver metabolism in the mother and the fetus, as well as deconjugation in the 

fetal liver, with one sub-model used for the parent compound (BPA or BPS) and another for the 

conjugate (BPAconj or BPSconj). In the case of BPS, a duplicate model was developed for deuterated 

BPS and BPSconj to account for fetal administration. Subsequently, I determined the physiological 

parameters for an average pregnant sheep, with a single fetus, at the gestational age where the 

experimental data were generated. This was done for the generic model, as well as for separately 

parametrized and calibrated individual instances of the generic model for both unconjugated BPA 
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and BPS, and their respective conjugated metabolites. I based the model structure and types of 

compartments and processes to be inclusive of the only two, to my knowledge, published BPA p-

PBTK models (135, 137). All compartments were considered perfusion limited for both 

unconjugated and conjugated bisphenol sub-models. The most common bisphenol conjugate is 

glucuronide, although others, such as sulfate, exist (146). Due to a lack of available data on non-

glucuronide conjugates, all conjugates for each parent compound were combined into a single 

conjugate parameter (BPAconj/BPSconj) which was calibrated against glucuronide-conjugate data. 

 

Figure 61 – PBTK model schematic. 

Model equations 

The equations listed in this section describe both the BPA and the BPS p-PBTK models 

and are the same for both compounds. The model equations for the maternal unconjugated 

bisphenol models are described below (Figure 62). All transport equations were perfusion limited. 
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Equations for conjugation represented saturable metabolism in both maternal and fetal livers and 

the equation for deconjugation in the fetal liver, as well as maternal urinary and biliary excretion 

equations were modeled as first order processes. All physiological and biochemical parameter 

units can be found in Table 6, Table 7, and Table 9. 

 

 

 

 

 

 

 

Figure 62 – model equations for the maternal unconjugated bisphenols. 

VT is the volume of tissue T, QT is the blood perfusion, CT is the chemical concentration, 

PT is the blood:tissue partition coefficient, and CVT is the concentration in the venous blood exiting 

the tissue. CA is the chemical concentration in the arterial blood. kt1 and kt2 are the diffusion rates 

from maternal placental blood to fetal blood and fetal blood to maternal placental blood, 

respectively. Subscript _f denotes fetal tissues. T_all is used in the maternal blood compartment to 

describes the sum of all tissue compartments. FSC and ASC represent the bioavailability of 

subcutaneous administration and remaining unabsorbed subcutaneous dose, respectively, and Ka is 

the first order rate constant for subcutaneous absorption. KELR is the rate of renal excretion. 

Vmax is the maximum reaction rate, and Km the Michaelis-Menten constant. 
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The model equations for the maternal conjugated bisphenol models are described as 

follows (Figure 63). Equations that are the same as in the unconjugated bisphenol models have 

been omitted. 

 

 

Figure 63 – model equations for the maternal conjugated (c) bisphenols. 

Here, (c) in superscript denotes the conjugated compound, KELL is the rate of biliary 

excretion. All the other symbols have the same meaning as in the unconjugated bisphenol models. 

The model equations for the fetal unconjugated bisphenol models are described below 

(Figure 64). 

 

 

 

Figure 64 – model equations for fetal unconjugated bisphenol. 

Maternal liver partition coefficient (PL) was used in the fetus, as well. 

The equations for the conjugated bisphenol models in the fetus are described below (Figure 

65). 

 

 

Figure 65 – model equations for fetal conjugated bisphenol. 
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Values listed obtained from references: 1(35), 2(147), 3(148), 4(149) 

Table 6 – physiological parameters in pregnant sheep. 
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Values listed obtained from references: (35), (134)  
BW: body weight, G: glucuronide, Ka: absorption rate constant, MW: molecular weight. 

Table 7 – BPA and BPS physicochemical parameters. 

Parametrization 

The generic bisphenol model was first partially parametrized with the pregnant sheep 

physiological parameters obtained from the literature (Table 6), inclusive of fractional blood flows 

and organ volumes. Following this procedure, two separate model instances were created for BPA 

and BPS using their respective physiochemical parameters (Table 7) and the tissue:blood partition 

coefficients (Table 8), which were calibrated within ranges of one order of magnitude around 

values either obtained from the literature (35, 134, 147–150), or estimated from the available log 

octanol:water partition parameters for compounds with similar partitioning (143, 151, 152) and 

calibration was performed within those ranges. Partition coefficients for the rest of the body for 

both BPA and BPS models were calibrated within the minimum and maximum values for all other 

tissues. All physiological parameters were assumed to be time-invariant due to the nature of the 

experimental data, which was collected over a short period of time during mid-late pregnancy. 
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Table 8 – passive biochemical parameters (tissue/blood partition coefficients). 

Calibration 

The calibration for both the BPA and the BPS models was carried out in four steps: (1) 

fetal conjugated bisphenol calibration, (2) maternal conjugated bisphenol calibration, (3) maternal 

complete calibration, and (4) feto-placental transfer and fetal complete calibration. Maternal body 

weight used was dependent on which of the three experimental datasets the model was being 

calibrated against. During the fetal conjugated bisphenol calibration, the appropriate fetal 

conjugated bisphenol IV administration experiment was used to partially calibrate the fetal model, 

namely the conjugated bisphenol partition parameters for the fetal liver and the rest of the body. 

The maternal conjugated bisphenol calibration relied on the maternal conjugated bisphenol IV 

administration data and was used to partially calibrate the maternal model, namely the remaining 

conjugated bisphenol partition coefficients (maternal kidney, fat, and rest of body), as well as 

urinary and biliary excretion rates. The complete maternal calibration relied on the maternal 

unconjugated bisphenol IV and total bisphenol subcutaneous administration data from all three 

datasets. These were used to fully calibrate the maternal model, namely the unconjugated 

bisphenol partition coefficients, and metabolism and urinary excretion rates (Table 9). During this 

step of the calibration, the feto-placental transfer of the unconjugated bisphenol was not accounted 

for to minimize the number of calibrated parameters. Feto-placental transfer and total fetal 

calibration relied on the maternal unconjugated bisphenol IV and subcutaneous administration to 
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fully calibrate the feto-placental diffusion rates and the remainder of the fetal parameters. These 

parameters were mainly unconjugated bisphenol partition coefficients for the rest of the body and 

metabolism and deconjugation rates in the fetal liver. Except for the rest of body partition 

coefficient, all other partition coefficients corresponding to the same tissue between the mother 

and the fetus were assumed equal. 

 

Table 9 – rate constants. 
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Our p-PBTK models required the use of blood-to-plasma partition coefficients as 

parameters, since the experimentally derived calibration datasets reported plasma concentrations. 

The blood-to-serum partition coefficient for BPA in rats has been experimentally determined as 

1.10 (153), and blood-to-plasma partition coefficient for BPA and BPA-glucuronide in humans 

has been computationally estimated to be 1.05 and 0.83, respectively (154). Since calibrating the 

blood:plasma partition coefficient in the BPA model for both conjugated and unconjugated BPA 

within the range of 0.80 to 1.20 did not affect the model results in a significant way, blood:plasma 

partition coefficients for both conjugated and unconjugated BPA were fixed to 1, simplifying the 

modeling procedure. I observed similar results for BPS, and have thus fixed the blood:plasma 

partition coefficients of both conjugated and unconjugated BPS to 1. 

Calibration of unknown parameter values was performed using sequential least 

square quadratic programming with random restart (155). Sequential least squares quadratic 

programming is a formal optimization technique known to perform well for systems requiring 

constrained nonlinear optimization, which was the case for my developed models. Here, each 

calibration procedure was repeated 500 times, each time starting from a randomly selected point 

within the allowable ranges of the calibrated parameters. The calibration most closely matching 

the datasets, using the lowest mean absolute percentage error score as the selection criteria, was 

chosen as the final calibration. 

Extrapolation of maternal and fetal body burdens 

Dosing regimens simulating daily repeated maternal and fetal exposures to both BPA and 

BPS were run with the calibrated ovine models using the reference dose for BPA set by 

the U.S. Environmental Protection Agency (50 µg/kg/day) (156). Simulations were run over a 

two-week period. 
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Computing software 

The current model was coded in, and all simulations run using the Python programming 

language and the Python package Tellurium version 2.1.5 developed for reproducible dynamical 

modeling of biological networks (157). The full model code is available 

at https://github.com/BhattacharyaLab/BisphenolPBTK 

Sensitivity analysis 

Global sensitivity analyses of the fetal plasma compartment kinetics for both unconjugated 

and conjugated BPA and BPS were performed to identify the most influential parameters 

determining fetal bisphenol kinetics. Sensitivity analysis was performed using the variance-based 

Sobol method (158), as implemented within the SALib python library (159). Parameters 

determining fetal kinetics were examined between 50% and 150% of the nominal values listed 

in Table 8 and Table 9, and were sampled using the Saltelli sampling scheme with N = 1,000 

generated samples (160). To examine simulated fetal kinetics with both a loading (absorption) and 

an elimination phase, subcutaneous dosing from Dataset #1 was selected, as described 

in Datasets. The sensitivity analysis was repeated every half-hour for 48 h of simulation time 

(excluding 0 h). The parameters included in the sensitivity analysis were the fetal hepatic 

metabolism parameters (Vmax_f and Km_f), deconjugation rate constant (Kd_f) and rest of body 

partition coefficients (PR_f and PR_f 
(c)). Additionally, I repeated the sensitivity analysis by also 

adding the feto-placental transfer parameters (kt1 and kt2). 

 

 

https://github.com/BhattacharyaLab/BisphenolPBTK
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RESULTS 

Calibration 

Simulations of the fully calibrated BPA model for both maternal and fetal compartments 

were compared to experimental dataset #1 following a single subcutaneous administration of BPA 

to the mother (Figure 66A maternal compartment, and Figure 66D fetal compartment). A full 

simulation was also performed for dataset #2 following either a 24-h IV infusion of BPA and BPA-

G to the mother (Figure 66B and Figure 66C, respectively), or 24-h IV infusion of BPA and BPA-

G to the fetus (Figure 66E and Figure 66F, respectively). All simulations matched the experimental 

data ± one standard deviation from the individual data points for total, unconjugated and 

conjugated BPA (34, 35). 

 

Figure 66 – simulated toxicokinetic plots of BPA for maternal and fetal circulation. 

Similar to BPA, simulations of the fully calibrated BPS model were compared to 

experimental dataset #1 following a single subcutaneous injection of BPS to the mother (Figure 

67A - maternal compartment, and Figure 67D - fetal compartment), or dataset #3 following a 
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single IV bolus of BPA and BPA-G to the mother (Figure 67B and Figure 67C, respectively), or a 

single IV bolus of BPS-d8 and BPS-G-d8 to the fetus (Figure 67E and Figure 67F, respectively). 

Except for fetal IV boluses of BPS-d8 and BPS-G-d8, all data points were consistent with the 

experimental datasets ± one standard deviation from the individual data points for total, 

unconjugated and conjugated BPS (35, 36). 

 

Figure 67 – simulated toxicokinetic plots of BPS for maternal and fetal circulation. 

Due to its robustness, full simulations of dataset #1 (35), separated into total, conjugated, 

and unconjugated forms of bisphenols, were run for both BPA and BPS. This was necessary to 

estimate the breakdown of unconjugated and conjugated bisphenols, which was not available from 

the original dataset. 

Extrapolation of maternal and fetal body burdens in an ovine model 

Simulations showing repeated daily subcutaneous exposure to BPA and BPS are shown 

in Figure 68 and Figure 69, respectively. Maternal exposure was consistent with known 
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toxicokinetic parameters for BPA (35), where unconjugated BPA was cleared from circulation 

within a 24-h period (Figure 68A, right panel). In the fetal compartment, I observed a gradual 

accumulation of total, unconjugated and conjugated BPA (Figure 68B), plateauing around a mean 

of 0.28 ng/ml unconjugated BPA at 14 days of daily exposure (Figure 68B, right panel, solid black 

line). Like BPA, total, unconjugated and conjugated BPS also rapidly clears from maternal blood 

(Figure 69A) and accumulate in the fetal compartment, but total fetal BPS accumulation does not 

plateau within the 14-day exposure window (Figure 69B, left panel). The BPS model simulates 

fetal blood concentrations at a mean of 0.45 ng/ml unconjugated BPS by 14 days of exposure 

(Figure 69B, right panel). 

 

Figure 68 – simulation of BPA body burden following two weeks of daily dosing in an 

ovine model. 
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Figure 69 – simulation of BPS body burden following two weeks of daily dosing in an ovine 

model. 

Sensitivity analysis 

A global sensitivity analysis was run to investigate the main effect of all relevant fetal 

parameters over time and results are shown in Figure 70 (for BPA) and Figure 71 (for BPS). For 

both bisphenols, the main effect (%) of the placental to fetal transfer parameter kt1 were the highest 

among the parameters evaluated for both unconjugated and conjugated BPA and BPS. For BPA, 

the main effect of the fetal to placental transfer parameter kt2 increased over time while other 

parameters like fetal hepatic deconjugation (Kd_f) and the rate of enzymatic reaction (Vmax_f) 

remained constant. For BPS, the main effect of kt2 was lower than for BPA, but also increased 

over time. The contribution of other parameters that determine fetal plasma kinetics, such as 

metabolic (Vmax_f, Km_f) and deconjugation (Kd_f) parameters tended to increase over time. 
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Metabolic parameters (Vmax_f, Km_f) were more important for fetal plasma kinetics of unconjugated 

BPA, until ~ 15 h where they begin to plateau. For unconjugated BPS, the main effect of both 

Vmax_f and Km_f was higher than Kd_f throughout the 48-h period. The rest of body partition 

coefficient for unconjugated bisphenols (PR_f) had a minor contribution to output variance in 

determining both BPA and BPS fetal plasma kinetics, however the rest of body partition coefficient 

for conjugated bisphenols (PR_f 
(c)) was especially important for determining conjugated BPA and 

BPS plasma kinetics. 

 

Figure 70 – global sensitivity analysis of the fetal compartment for BPA model. 
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Figure 71 – global sensitivity analysis of the fetal compartment for BPS model. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

Over time many computational models predicting the DNA binding of transcription factors 

(TFs) have been developed and the binding of specific TFs has been studied experimentally quite 

extensively (93, 161, 162). However, the molecular determinants and mechanisms governing the 

cell-specificity of binding for many TFs remain elusive. The AhR is one such TF. The AhR is a 

ligand-inducible TF, and its DNA binding cannot be fully determined through chromatin 

accessibility, the extended binding motif of AhR, the motifs of other co-bound TFs, or any 

combination of these features.  

In vitro studies examining the DNA binding of AhR demonstrated that AhR binds 

exclusively to the 5'-GCGTG-3' DNA sequence, known as the dioxin response element (DRE). On 

the other hand, in vivo studies revealed that AhR was bound to many genomic regions that did not 

possess a DRE (68, 69). Thus, it is likely that some AhR-bound regions with DREs were not a 

result of AhR binding to those DREs. Instead, the DREs may have occurred under the AhR peaks 

by chance, and the AhR may have bound the DNA through some other mechanism. 

 My results show that many AhR peaks still have DREs and that some peaks have more 

DREs than could be expected by chance (Figure 3). When examining the position of the DRE 

within the peak relative to the mid-point of the peak, I observed that the DREs appear centrally 

enriched in all AhR binding experiments (Figure 4). Additionally, AhR peaks with a higher 

number of DREs under the peak have a statistically higher average normalized binding signal 

strength than AhR peaks with a lower number of DREs (Figure 9). These results suggest that 

DREs, although not necessary for AhR binding, are useful in determining the intensity of AhR 

binding.  
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On the other hand, AhR has also been shown capable of binding to a GC-rich region 

without sequence homology to the DRE. Thus, the existence of a non-canonical DRE (NC-DRE) 

was hypothesized.  It was later demonstrated that one such NC-DRE in the promoter of 

plasminogen activator inhibitor 1 (PAI-1) was bound by AhR without ARNT, but together with 

KLF6 instead (29, 99). My analysis discovered a GC-rich motif appearing under 70 out of 841 

AhR peaks having high correlation of AhR and KLF6 binding signals in the HepG2 cell line 

(Figure 58). This motif shares homology with the KLF6 binding motif, as well as with the 

identified GC-rich sequence bound by the AhR in the promoter of PAI-1. Nonetheless, the DREs 

still seem to play a role in HepG2 cells, as the correlation between AhR and KLF6 binding 

decreases with an increasing number of DREs under AhR peaks (Figure 54). Interestingly, I did 

not find a similar motif under AhR peaks in any other AhR binding experiment. Since the AhR 

binding experiment in HepG2 cells was conducted without treatment with an AhR ligand, I 

propose that AhR-KLF6 dimers binding to DNA do so preferentially in non-treated, or potentially 

endogenously treated cells. 

To investigate the likely molecular determinants of AhR binding, I developed interpretable 

machine learning models predicting the binding status of DREs in open chromatin. These models 

were trained on singleton bound DREs as examples of bound DREs, but were able to predict the 

binding of 0-DRE AhR peaks with high accuracy. This result could be explained by a high level 

of indirect binding of AhR within singleton and 0-DRE AhR peaks. In this case, AhR would not 

be bound to the DNA directly, but instead the AhR could, for instance, be tethered to other TFs 

that are directly bound to DNA (161). If a sufficient number of singleton AhR peaks used in 

training were actually a result of such binding, then the AhR binding prediction models could learn 
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to recognize indirect binding of AhR and thus predict AhR binding of 0-DRE peaks. The 0-DRE 

AhR peaks are likely not directly bound – since they do not possess the AhR binding motif. 

Another explanation for high model accuracy when predicting the binding of 0-DRE AhR 

peaks is that some of the bound AhR might be part of 3D chromatin loops. In this scenario, the 

AhR could be directly bound to one or more DREs, in one loop anchor, such that the imprint of 

AhR binding could also appear in other loop anchors due to their physical proximity in 3D space. 

EP300 transcriptional activator was one of the factors most predictive of AhR binding in enhancers 

(Figure 29). The EP300 has been shown to be a marker of pre-established enhancer anchors that 

appear in enhancer-promoter loops formed after glucocorticoid receptor (GR) activation (162). 

Furthermore, EP300, H3K4me1, and H3K27ac jointly mark active enhancers (163). In this 

scenario, the AhR molecule that was directly bound to a singleton DRE could leave an impression 

of a 0-DRE AhR peak in another anchor of the same loop, due to their physical proximity in 3D 

(48). Thus, any chromatin complexes participating in these loops would then be associated with 

both singleton and 0-DRE peaks. In this case my models would be learning how to identify direct 

AhR binding.  

Interpretation of the model predictions demonstrated that binding of AhR is likely 

determined by 1) a common cross-cell flanking-sequence syntax (Figure 13 and Figure 38) and 2) 

cell-specific chromatin context syntax (Figure 12, Figure 28, Figure 29, and Figure 30). The 

chromatin context determinants differ vastly between cell lines or types (Figure 12, Figure 14, and 

Figure 36). Most commonly, one or two TFs appear to be the most important contributors to model 

performance in each model. I propose that these factors 1) play a significant role in determining 

cell identity, or 2) are a common AhR co-factor in that specific cell line or type.  
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The pioneering factor GATA3 is mutated in MCF-7 cells, but not in T-47D cells. The 

MCF-7 mutation of GATA3 is heterozygous, and results in a copy of the GATA3 protein that is 

more stable and resistant to turnover. Consequently, the mutated GATA3 in MCF-7 cells binds to 

DNA more strongly than its wildtype counterpart (164, 165). I propose that the increase in binding 

activity of GATA3 in MCF-7 cells makes GATA3 the most predictive factor of AhR binding in 

those cells. In addition, GATA3 was also shown to be the most commonly overlapping factor for 

binding of ERα, another inducible TF, in MCF-7 cells (166). Nonetheless, AhR peaks in T-47D 

cells were still correlated with GATA3 binding, albeit to a lesser extent. Therefore, wild type 

GATA3 might still play a role in determining AhR binding, however, this role appears to be less 

pronounced. Additionally, GATA3 and AhR binding have shown synergistic effects on the 

expression of GPR15 in human CD4+ T cells (167). Therefore, AhR-GATA3 interactions might 

not be confined to breast cancer cells. 

On the other hand, certain TFs have been shown to be functionally associated with AhR, 

such as ARNT, RelA and KLF6. However, none of these factors were ranked highly by my models. 

ARNT is considered the principal dimerization partner of TCDD-induced AhR. However, my 

HepG2 and GM17212 models rank ARNT features very lowly (Figure 12). Admittedly, in the 

GM17212 model, the ARNT binding experiment was performed on a different but similar cell line 

– GM12878, and, more importantly, without AhR ligand treatment. HepG2 cells were not treated 

with an AhR ligand in either the AhR or the ARNT experiment. Still, when tryptophan in cell 

culture media is exposed to light it produces a photoproduct which has been shown to be an AhR 

agonist (168). In this case one could consider the ARNT experiment as having been conducted 

under similar conditions as the AhR experiment. Still, ARNT features were not used by the HepG2 

model at all. When looking at the correlation between AhR and ARNT binding across AhR peaks 
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it is not difficult to see why (Figure 48). I suspect that the tryptophan derivative-induced activation 

of AhR might be more similar to endogenous than exogenous activation of AhR. Some of AhR’s 

endogenous activities are likely mediated through AhR di- and multi- merization with its other 

known partners, such as KLF6, and RELA. Surprisingly, even though KLF6 and RELA features 

were used in the HepG2 model, and I have shown that the binding of AhR was highly correlated 

with KLF6 and RelA binding (Figure 50, Figure 53), the KLF6 and RelA features did not rank 

highly in feature importance. However, since I relied on a DRE-centered approach to predict AhR 

binding and since AhR-KLF6 dimers do not appear to directly bind DREs (Figure 58), it is possible 

that my selection of bound and unbound DREs in open chromatin of HepG2 cells was non-

informative for the machine learning models. 

In summary, I developed highly accurate and robust predictive models of within-cell line 

or type AhR binding. My models dissected the cell-type specificity of AhR binding and showed 

that cell-type specific AhR binding is driven by a complex interplay of cell-type agnostic DNA 

sequence immediately flanking the DRE, and a highly cell-type specific local chromatin context. 

Additionally, I demonstrated that ARNT was the primary binding partner of AhR in TCDD treated 

cells, but not in untreated cells, where KLF6 and RelA appear to be the primary binding partners 

of AhR. 

Finally, my BPA and BPS PBTK models demonstrated chemical accumulation in the fetal 

compartment of a pregnant sheep experimental model; the majority of which is simulated as the 

bisphenol conjugate for both BPA and BPS.  When considering extrapolation to daily exposure 

patterns in sheep, the accumulation of bisphenols in the fetal compartment has been observed in 

humans (169), with glucuronide conjugates being the predominant form detected (170). Using 

the U.S. Environmental Protection Agency’s reference dose for BPA (50 µg/kg/day), I simulated 
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repeated maternal dosing over a two-week period for both BPA and BPS in sheep, to evaluate fetal 

plasma chemical burden. Here, my simulations predicted that a pseudo steady-state of 0.28 ng/ml 

unconjugated BPA would be reached, which falls within the range of detection for unconjugated 

BPA (0–53 ng/ml) in cord blood (118). For BPS, my simulations predict that a pseudo steady-state 

of 0.45 ng/ml unconjugated BPS would be reached. Since biomonitoring of unconjugated BPS has 

not been reported for cord blood, a direct comparison to human exposure cannot be made. 

However, the simulated total BPS in the fetal compartment (12.5 ng/ml on day 14) is in excess of 

total BPS concentrations measured in cord blood (<0.03–0.12 ng/ml total BPS) from a Chinese 

cohort (171). Most of the BPS accumulated in the fetus is predicted to be in the form of BPS 

conjugated metabolites. Although these metabolites are generally considered non-bioactive, BPA-

G has been shown to be bioactive, and has adipogenic potential in vitro (172) . Given the predicted 

accumulation potential of BPS-G in the fetal compartment, the bioactivity of BPS metabolites like 

BPS-G should be further examined. My simulations also demonstrate that, given a steady maternal 

intake of BPA, unconjugated BPA rapidly reaches a state where it no longer accumulates in fetal 

blood. Unconjugated BPS, on the other hand, continues to accumulate in fetal blood even after 

14 days of daily administrations. These results highlight the need to further study the precise fetal 

toxicokinetics of BPS, as well as the fetal accumulation potential of other BPA analogs. 

 

 

  



106 

 

BIBLIOGRAPHY 

1. Laskowski,R.A. and Thornton,J.M. (2008) Understanding the molecular machinery of 

genetics through 3D structures. Nat. Rev. Genet. 2008 92, 9, 141–151. 

2. Latchman,D.S. (1997) Transcription factors: an overview. Int. J. Biochem. Cell Biol., 29, 

1305–1312. 

3. Sogawa,K. and Fujii-Kuriyama,Y. (1997) Ah Receptor, a Novel Ligand-Activated 

Transcription Factor. J. Biochem., 122, 1075–1079. 

4. A Pharmacology Primer: Theory, Applications, and Methods - Terry Kenakin - Google Books. 

5. Rothhammer,V. and Quintana,F.J. (2019) The aryl hydrocarbon receptor: an environmental 

sensor integrating immune responses in health and disease. Nat. Rev. Immunol., 19, 184–

197. 

6. Poland+,A., Glover,E. and Kende,A.S. (1976) Stereospecific, high affinity binding of 2,3,7,8-

tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is 

receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem., 251, 4936–4946. 

7. Mimura,J. and Fujii-Kuriyama,Y. (2003) Functional role of AhR in the expression of toxic 

effects by TCDD. Biochim. Biophys. Acta - Gen. Subj., 1619, 263–268. 

8. Nguyen,L.P. and Bradfield,C.A. (2008) The Search for Endogenous Activators of the Aryl 

Hydrocarbon Receptor. Chem. Res. Toxicol., 21, 102. 

9. Kaiser,H., Parker,E. and Hamrick,M.W. (2020) Kynurenine signaling through the aryl 

hydrocarbon receptor: Implications for aging and healthspan. Exp. Gerontol., 130. 

10. Perepechaeva,M.L. and Grishanova,A.Y. (2020) The Role of Aryl Hydrocarbon Receptor 

(AhR) in Brain Tumors. Int. J. Mol. Sci., 21. 

11. Wu,D., Potluri,N., Kim,Y. and Rastinejad,F. (2013) Structure and Dimerization Properties of 

the Aryl Hydrocarbon Receptor PAS-A Domain. Mol. Cell. Biol., 33, 4346. 

12. Pandini,A., Denison,M.S., Song,Y., Soshilov,A.A. and Bonati,L. (2007) Structural and 

functional characterization of the aryl hydrocarbon receptor ligand binding domain by 

homology modeling and mutational analysis. Biochemistry, 46, 696–708. 

13. Schulte,K.W., Green,E., Wilz,A., Platten,M. and Daumke,O. (2017) Structural Basis for Aryl 

Hydrocarbon Receptor-Mediated Gene Activation Article Structural Basis for Aryl 

Hydrocarbon Receptor-Mediated Gene Activation. Struct. Des., 25, 1025–1033.e3. 

14. Watson,J.D., Prokopec,S.D., Smith,A.B., Okey,A.B., Pohjanvirta,R. and Boutros,P.C. (2014) 

TCDD dysregulation of 13 AHR-target genes in rat liver. Toxicol. Appl. Pharmacol., 274, 

445–454. 



107 

 

15. Korashy,H.M. and El-Kadi,A.O.S. (2006) The role of aryl hydrocarbon receptor and the 

reactive oxygen species in the modulation of glutathione transferase by heavy metals in 

murine hepatoma cell lines. Chem. Biol. Interact., 162, 237–248. 

16. Shimizu,Y., Nakatsuru,Y., Ichinose,M., Takahashi,Y., Kume,H., Mimura,J., Fujii-

Kuriyama,Y. and Ishikawa,T. (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking 

the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. U. S. A., 97, 779–782. 

17. Xie,G., Peng,Z. and Raufman,J.P. (2012) Src-mediated aryl hydrocarbon and epidermal 

growth factor receptor cross talk stimulates colon cancer cell proliferation. Am. J. Physiol. - 

Gastrointest. Liver Physiol., 302, G1006. 

18. Rothhammer,V. and Quintana,F.J. (2019) The aryl hydrocarbon receptor: an environmental 

sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 2019 193, 

19, 184–197. 

19. Park,R., Madhavaram,S. and Ji,J.D. (2020) The Role of Aryl-Hydrocarbon Receptor (AhR) 

in Osteoclast Differentiation and Function. Cells, 9. 

20. Gialitakis,M., Tolaini,M., Li,Y., Pardo,M., Yu,L., Toribio,A., Choudhary,J.S., Niakan,K., 

Papayannopoulos,V. and Stockinger,B. (2017) Activation of the Aryl Hydrocarbon 

Receptor Interferes with Early Embryonic Development. Stem Cell Reports, 9, 1377. 

21. Wang,Z., Snyder,M., Kenison,J.E., Yang,K., Lara,B., Lydell,E., Bennani,K., Novikov,O., 

Federico,A., Monti,S., et al. (2021) How the AHR Became Important in Cancer: The Role 

of Chronically Active AHR in Cancer Aggression. Int. J. Mol. Sci., 22, 1–22. 

22. Shimba,S. and Watabe,Y. (2009) Crosstalk between the AHR signaling pathway and 

circadian rhythm. Biochem. Pharmacol., 77, 560–565. 

23. Marlowe,J.L. and Puga,A. (2005) Aryl hydrocarbon receptor, cell cycle regulation, toxicity, 

and tumorigenesis. J. Cell. Biochem., 96, 1174–1184. 

24. Esser,C., Rannug,A. and Stockinger,B. (2009) The aryl hydrocarbon receptor in immunity. 

Trends Immunol., 30, 447–454. 

25. Kobayashi,A., Sogawa,K. and Fujii-Kuriyama,Y. (1996) Cooperative interaction between 

AhR.Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene. J. Biol. Chem., 271, 

12310–12316. 

26. Ge,N.L. and Elferink,C.J. (1998) A direct interaction between the aryl hydrocarbon receptor 

and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J. Biol. Chem., 273, 

22708–22713. 

27. Kim,D.W., Gazourian,L., Quadri,S.A., Raphaëlle, Sherr,D.H. and Sonenshein,G.E. (2000) 

The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to 

transactivate the c-myc promoter in mammary cells. Oncogene, 19, 5498–5506. 



108 

 

28. Chen,P.H., Chang,H., Chang,J.T. and Lin,P. (2012) Aryl hydrocarbon receptor in association 

with RelA modulates IL-6 expression in non-smoking lung cancer. Oncogene, 31, 2555–

2565. 

29. Wilson,S.R., Joshi,A.D. and Elferink,C.J. (2013) The tumor suppressor Kruppel-like factor 6 

is a novel aryl hydrocarbon receptor DNA binding partner. J. Pharmacol. Exp. Ther., 345, 

419–429. 

30. Gingrich,J., Filipovic,D., Conolly,R., Bhattacharya,S. and Veiga-Lopez,A. (2021) 

Pregnancy-specific physiologically-based toxicokinetic models for bisphenol A and 

bisphenol S. Environ. Int., 147. 

31. Liao,C. and Kannan,K. (2013) Concentrations and profiles of bisphenol a and other 

bisphenol analogues in foodstuffs from the united states and their implications for human 

exposure. J. Agric. Food Chem., 61, 4655–4662. 

32. Liao,C., Liu,F., Guo,Y., Moon,H.B., Nakata,H., Wu,Q. and Kannan,K. (2012) Occurrence of 

eight bisphenol analogues in indoor dust from the United States and several Asian 

countries: implications for human exposure. Environ. Sci. Technol., 46, 9138–9145. 

33. Kwak,J. Il, Moon,J., Kim,D., Cui,R. and An,Y.J. (2018) Determination of the soil hazardous 

concentrations of bisphenol A using the species sensitivity approach. J. Hazard. Mater., 

344, 390–397. 

34. Corbel,T., Gayrard,V., Viguié,C., Puel,S., Lacroix,M.Z., Toutain,P.L. and Picard-Hagen,N. 

(2013) Bisphenol A disposition in the sheep maternal-placental-fetal unit: Mechanisms 

determining fetal internal exposure. Biol. Reprod., 89, 11–12. 

35. Gingrich,J., Pu,Y., Ehrhardt,R., Karthikraj,R., Kannan,K. and Veiga-Lopez,A. (2019) 

Toxicokinetics of bisphenol A, bisphenol S, and bisphenol F in a pregnancy sheep model. 

Chemosphere, 220, 185–194. 

36. Grandin,F.C., Lacroix,M.Z., Gayrard,V., Gauderat,G., Mila,H., Toutain,P.L. and Picard-

Hagen,N. (2018) Bisphenol S instead of Bisphenol A: Toxicokinetic investigations in the 

ovine materno-feto-placental unit. Environ. Int., 120, 584–592. 

37. Sonawane,A.R., Platig,J., Fagny,M., Chen,C.-Y., Paulson,J.N., Lopes-Ramos,C.M., 

DeMeo,D.L., Quackenbush,J., Glass,K. and Kuijjer,M.L. (2017) Understanding Tissue-

Specific Gene Regulation. Cell Rep., 21, 1077–1088. 

38. Todeschini,A.L., Georges,A. and Veitia,R.A. (2014) Transcription factors: specific DNA 

binding and specific gene regulation. Trends Genet., 30, 211–219. 

39. Caetano,M.S., Hassane,M., Van,H.T., Bugarin,E., Cumpian,A.M., McDowell,C.L., 

Cavazos,C.G., Zhang,H., Deng,S., Diao,L., et al. (2018) Sex specific function of epithelial 

STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat. Commun. 2018 91, 9, 

1–11. 



109 

 

40. Warrick,J.I., Walter,V., Yamashita,H., Chung,E., Shuman,L., Amponsa,V.O., Zheng,Z., 

Chan,W., Whitcomb,T.L., Yue,F., et al. (2016) FOXA1, GATA3 and PPARɣ Cooperate to 

Drive Luminal Subtype in Bladder Cancer: A Molecular Analysis of Established Human 

Cell Lines. Sci. Reports 2016 61, 6, 1–15. 

41. Kress,S., Reichert,J. and Schwarz,M. (1998) Functional analysis of the human cytochrome 

P4501A1 (CYP1A1) gene enhancer. Eur. J. Biochem., 258, 803–812. 

42. Ye,W., Chen,R., Chen,X., Huang,B., Lin,R., Xie,X., Chen,J., Jiang,J., Deng,Y. and Wen,J. 

(2019) AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by 

recruiting Sp1. FEBS J., 286, 4215–4231. 

43. Denison,M.S., Fisher,J.M. and Whitlock,J.P. (1988) The DNA recognition site for the 

dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J. Biol. Chem., 

263, 17221–17224. 

44. Swanson,H.I., Chan,W.K. and Bradfield,C.A. (1995) DNA binding specificities and pairing 

rules of the Ah receptor, ARNT, and SIM proteins. J. Biol. Chem., 270, 26292–26302. 

45. Sun,Y. V., Boverhof,D.R., Burgoon,L.D., Fielden,M.R. and Zacharewski,T.R. (2004) 

Comparative analysis of dioxin response elements in human, mouse and rat genomic 

sequences. Nucleic Acids Res., 32, 4512–4523. 

46. Yang,S.Y., Ahmed,S., Satheesh,S. V. and Matthews,J. (2018) Genome-wide mapping and 

analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor 

(AHRR)-binding sites in human breast cancer cells. Arch. Toxicol., 92, 225–240. 

47. Lo,R. and Matthews,J. (2012) High-resolution genome-wide Mapping of AHR and ARNT 

binding sites by ChIP-Seq. Toxicol. Sci., 130, 349–361. 

48. Liang,J., Lacroix,L., Gamot,A., Cuddapah,S., Queille,S., Lhoumaud,P., Lepetit,P., 

Martin,P.G.P., Vogelmann,J., Court,F., et al. (2014) Chromatin immunoprecipitation 

indirect peaks highlight long-range interactions of insulator proteins and Pol II pausing. 

Mol. Cell, 53, 672–681. 

49. Denison,M.S. and Nagy,S.R. (2003) Activation of the Aryl Hydrocarbon Receptor by 

Structurally Diverse Exogenous and Endogenous Chemicals. Annu. Rev. Pharmacol. 

Toxicol., 43, 309–334. 

50. Abel,J. and Haarmann-Stemmann,T. (2010) An introduction to the molecular basics of aryl 

hydrocarbon receptor biology. 391, 1235–1248. 

51. Gutiérrez-Vázquez,C. and Quintana,F.J. (2018) Regulation of the Immune Response by the 

Aryl Hydrocarbon Receptor. Immunity, 48, 19–33. 

52. Perdew,G.H. (1988) Association of the Ah receptor with the 90-kDa heat shock protein. J. 

Biol. Chem., 263, 13802–13805. 



110 

 

53. Denis,M., Cuthill,S., Wikström,A.C., Poellinger,L. and Gustafsson,J.Å. (1988) Association 

of the dioxin receptor with the Mr 90,000 heat shock protein: A structural kinship with the 

glucocorticoid receptor. Biochem. Biophys. Res. Commun., 155, 801–807. 

54. Carver,L.A. and Bradfield,C.A. (1997) Ligand-dependent Interaction of the Aryl 

Hydrocarbon Receptor with a Novel Immunophilin Homolog In Vivo. J. Biol. Chem., 272, 

11452–11456. 

55. Meyer,B.K. and Perdew,G.H. (1999) Characterization of the AhR-hsp90-XAP2 core 

complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. 

Biochemistry, 38, 8907–8917. 

56. Grenert,J.P., Sullivan,W.P., Fadden,P., Haystead,T.A.J., Clark,J., Mimnaugh,E., Krutzsch,H., 

Ochel,H.J., Schulte,T.W., Sausville,E., et al. (1997) The Amino-terminal Domain of Heat 

Shock Protein 90 (hsp90) That Binds Geldanamycin Is an ATP/ADP Switch Domain That 

Regulates hsp90 Conformation. J. Biol. Chem., 272, 23843–23850. 

57. Ikuta,T., Eguchi,H., Tachibana,T., Yoneda,Y. and Kawajiri,K. (1998) Nuclear Localization 

and Export Signals of the Human Aryl Hydrocarbon Receptor. J. Biol. Chem., 273, 2895–

2904. 

58. Ikuta,T., Kobayashi,Y. and Kawajiri,K. (2004) Phosphorylation of nuclear localization signal 

inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor. Biochem. 

Biophys. Res. Commun., 317, 545–550. 

59. Durrin,L.K., Jones,P.B.C., Fisher,J.M., Galeazzi,D.R. and Whitlock,J.P. (1987) 2,3,7,8-

Tetrachlorodibenzo-p-dioxin receptors regulate transcription of the cytochrome P1-450 

gene. J. Cell. Biochem., 35, 153–160. 

60. Dere,E., Lo,R., Celius,T., Matthews,J. and Zacharewski,T.R. (2011) Integration of Genome-

Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-

Elicited Responses in the Mouse Liver. BMC Genomics 2011 121, 12, 1–19. 

61. Nebert,D.W., Roe,A.L., Dieter,M.Z., Solis,W.A., Yang,Y. and Dalton,T.P. (2000) Role of 

the aromatic hydrocarbon receptor and (Ah) gene battery in the oxidative stress response, 

cell cycle control, and apoptosis. In Biochemical Pharmacology. Biochem Pharmacol, Vol. 

59, pp. 65–85. 

62. Sorg,O. (2014) AhR signalling and dioxin toxicity. Toxicol. Lett., 230, 225–233. 

63. Beischlag,T. V., Morales,J.L., Hollingshead,B.D. and Perdew,G.H. (2008) The Aryl 

Hydrocarbon Receptor Complex and the Control of Gene Expression. Crit. Rev. Eukaryot. 

Gene Expr., 18, 207. 

64. Barski,A., Cuddapah,S., Cui,K., Roh,T.Y., Schones,D.E., Wang,Z., Wei,G., Chepelev,I. and 

Zhao,K. (2007) High-Resolution Profiling of Histone Methylations in the Human Genome. 

Cell, 129, 823–837. 



111 

 

65. Rhee,H.S. and Pugh,B.F. (2011) Comprehensive Genome-wide Protein-DNA Interactions 

Detected at Single Nucleotide Resolution. Cell, 147, 1408. 

66. He,Q., Johnston,J. and Zeitlinger,J. (2015) ChIP-nexus enables improved detection of in vivo 

transcription factor binding footprints. Nat. Biotechnol. 2015 334, 33, 395–401. 

67. Wasserman,W.W. and Sandelin,A. (2004) Applied bioinformatics for the identification of 

regulatory elements. Nat. Rev. Genet. 2004 54, 5, 276–287. 

68. Khan,A., Fornes,O., Stigliani,A., Gheorghe,M., Castro-Mondragon,J.A., van der Lee,R., 

Bessy,A., Chèneby,J., Kulkarni,S.R., Tan,G., et al. (2018) JASPAR 2018: update of the 

open-access database of transcription factor binding profiles and its web framework. 

Nucleic Acids Res., 46, D260. 

69. Staden,R. (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic 

Acids Res., 12, 505. 

70. Li,F. and Stormo,G.D. (2001) Selection of optimal DNA oligos for gene expression arrays. 

Bioinformatics, 17, 1067–1076. 

71. Ogawa,N. and Biggin,M.D. (2012) High-Throughput SELEX Determination of DNA 

Sequences Bound by Transcription Factors In Vitro. Methods Mol. Biol., 786, 51–63. 

72. Karimzadeh,M. and Hoffman,M.M. (2022) Virtual ChIP-seq: predicting transcription factor 

binding by learning from the transcriptome. Genome Biol. 2022 231, 23, 1–23. 

73. Gotea,V., Visel,A., Westlund,J.M., Nobrega,M.A., Pennacchio,L.A. and Ovcharenko,I. 

(2010) Homotypic clusters of transcription factor binding sites are a key component of 

human promoters and enhancers. Genome Res., 20, 565–577. 

74. Yan,J., Enge,M., Whitington,T., Dave,K., Liu,J., Sur,I., Schmierer,B., Jolma,A., Kivioja,T., 

Taipale,M., et al. (2013) Transcription Factor Binding in Human Cells Occurs in Dense 

Clusters Formed around Cohesin Anchor Sites. Cell, 154, 801–813. 

75. Pique-Regi,R., Degner,J.F., Pai,A.A., Gaffney,D.J., Gilad,Y. and Pritchard,J.K. (2011) 

Accurate inference of transcription factor binding from DNA sequence and chromatin 

accessibility data. Genome Res., 21, 447–455. 

76. Quang,D. and Xie,X. (2019) FactorNet: A deep learning framework for predicting cell type 

specific transcription factor binding from nucleotide-resolution sequential data. Methods, 

166, 40–47. 

77. Keilwagen,J., Posch,S. and Grau,J. (2019) Accurate prediction of cell type-specific 

transcription factor binding. Genome Biol. 2019 201, 20, 1–17. 

78. Srivastava,D. and Mahony,S. (2020) Sequence and chromatin determinants of transcription 

factor binding and the establishment of cell type-specific binding patterns. Biochim. 

Biophys. Acta - Gene Regul. Mech., 1863, 194443. 



112 

 

79. Chen,T. and Guestrin,C. (2016) XGBoost: A Scalable Tree Boosting System. In Proceedings 

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining. ACM, New York, NY, USA, pp. 785–794. 

80. Filipovic,D., Qi,W., Kana,O.Z., Marri,D., LeCluyse,E.L., Andersen,M.E., Cuddapah,S. and 

Bhattacharya,S. (2022) Predictive Models of Genome-wide Aryl Hydrocarbon Receptor 

DNA Binding Reveal Tissue Specific Binding Determinants. bioRxiv, 

10.1101/2022.05.13.491754. 

81. Davis,C.A., Hitz,B.C., Sloan,C.A., Chan,E.T., Davidson,J.M., Gabdank,I., Hilton,J.A., 

Jain,K., Baymuradov,U.K., Narayanan,A.K., et al. (2018) The Encyclopedia of DNA 

elements (ENCODE): Data portal update. Nucleic Acids Res., 46, D794–D801. 

82. Dunham,I., Kundaje,A., Aldred,S.F., Collins,P.J., Davis,C.A., Doyle,F., Epstein,C.B., 

Frietze,S., Harrow,J., Kaul,R., et al. (2012) An integrated encyclopedia of DNA elements in 

the human genome. Nature, 489, 57–74. 

83. Neavin,D.R., Lee,J.-H., Liu,D., Ye,Z., Li,H., Wang,L., Ordog,T. and Weinshilboum,R.M. 

(2019) Single Nucleotide Polymorphisms at a Distance from Aryl Hydrocarbon Receptor 

(AHR) Binding Sites Influence AHR Ligand–Dependent Gene Expression. Drug Metab. 

Dispos., 47, 983–994. 

84. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F., Tomashevsky,M., 

Marshall,K.A., Phillippy,K.H., Sherman,P.M., Holko,M., et al. (2013) NCBI GEO: archive 

for functional genomics data sets—update. Nucleic Acids Res., 41, D991–D995. 

85. Oki,S., Ohta,T., Shioi,G., Hatanaka,H., Ogasawara,O., Okuda,Y., Kawaji,H., Nakaki,R., 

Sese,J. and Meno,C. (2018) ChIP-Atlas: a data-mining suite powered by full integration of 

public ChIP-seq data. EMBO Rep., 19, e46255. 

86. Ramírez,F., Dündar,F., Diehl,S., Grüning,B.A. and Manke,T. (2014) deepTools: a flexible 

platform for exploring deep-sequencing data. Nucleic Acids Res., 42, W187–W191. 

87. Pansoy,A., Ahmed,S., Valen,E., Sandelin,A. and Matthews,J. (2010) 3-Methylcholanthrene 

Induces Differential Recruitment of Aryl Hydrocarbon Receptor to Human Promoters. 

Toxicol. Sci., 117, 90–100. 

88. S,A., E,V., A,S. and J,M. (2009) Dioxin increases the interaction between aryl hydrocarbon 

receptor and estrogen receptor alpha at human promoters. Toxicol. Sci., 111, 254–266. 

89. Navarro Gonzalez,J., Zweig,A.S., Speir,M.L., Schmelter,D., Rosenbloom,K.R., Raney,B.J., 

Powell,C.C., Nassar,L.R., Maulding,N.D., Lee,C.M., et al. (2021) The UCSC genome 

browser database: 2021 update. Nucleic Acids Res., 49, D1046–D1057. 

90. Howe,K.L., Achuthan,P., Allen,J., Allen,J., Alvarez-Jarreta,J., Ridwan Amode,M., 

Armean,I.M., Azov,A.G., Bennett,R., Bhai,J., et al. (2021) Ensembl 2021. Nucleic Acids 

Res., 49, D884–D891. 



113 

 

91. Ernst,J. and Kellis,M. (2012) ChromHMM: automating chromatin-state discovery and 

characterization. Nat. Methods, 9, 215–216. 

92. Virtanen,P., Gommers,R., Oliphant,T.E., Haberland,M., Reddy,T., Cournapeau,D., 

Burovski,E., Peterson,P., Weckesser,W., Bright,J., et al. (2020) SciPy 1.0: fundamental 

algorithms for scientific computing in Python. Nat. Methods 2020 173, 17, 261–272. 

93. Elith,J., Leathwick,J.R. and Hastie,T. (2008) A working guide to boosted regression trees. J. 

Anim. Ecol., 77, 802–813. 

94. Gregorutti,B., Michel,B. and Saint-Pierre,P. (2017) Correlation and variable importance in 

random forests. Stat Comput, 27, 659–678. 

95. Schneider,T.D. and Stephens,R.M. (1990) Sequence logos: a new way to display consensus 

sequences. Nucleic Acids Res., 18, 6097–6100. 

96. Haidar,R., Henkler,F., Kugler,J., Rosin,A., Genkinger,D., Laux,P. and Luch,A. (2021) The 

role of DNA-binding and ARNT dimerization on the nucleo-cytoplasmic translocation of 

the aryl hydrocarbon receptor. Sci. Reports 2021 111, 11, 1–11. 

97. Sogawa,K., Nakano,R., Kobayashi,A., Kikuchi,Y., Ohe,N., Matsushita,N. and Fujii-

Kuriyama,Y. (1995) Possible function of Ah receptor nuclear translocator (Arnt) 

homodimer in transcriptional regulation. Proc. Natl. Acad. Sci. U. S. A., 92, 1936–1940. 

98. Gassmann,M., Chilov,D. and Wenger,R.H. (2000) Regulation of the hypoxia-inducible 

factor-1 alpha. ARNT is not necessary for hypoxic induction of HIF-1 alpha in the nucleus. 

Adv. Exp. Med. Biol., 475, 87–99. 

99. Huang,G. and Elferink,C.J. (2012) A Novel Nonconsensus Xenobiotic Response Element 

Capable of Mediating Aryl Hydrocarbon Receptor-Dependent Gene Expression. Mol. 

Pharmacol., 81, 338. 

100. Tian,Y., Ke,S., Denison,M.S., Rabson,A.B. and Gallo,M.A. (1999) Ah receptor and NF-

kappaB interactions, a potential mechanism for dioxin toxicity. J. Biol. Chem., 274, 510–

515. 

101. Gupta,S., Stamatoyannopoulos,J.A., Bailey,T.L. and Noble,W.S. (2007) Quantifying 

similarity between motifs. Genome Biol., 8, 1–9. 

102. Kulakovskiy,I. V., Vorontsov,I.E., Yevshin,I.S., Sharipov,R.N., Fedorova,A.D., 

Rumynskiy,E.I., Medvedeva,Y.A., Magana-Mora,A., Bajic,V.B., Papatsenko,D.A., et al. 

(2018) HOCOMOCO: towards a complete collection of transcription factor binding models 

for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res., 46, D252. 

103. Castro-Mondragon,J.A., Riudavets-Puig,R., Rauluseviciute,I., Berhanu Lemma,R., 

Turchi,L., Blanc-Mathieu,R., Lucas,J., Boddie,P., Khan,A., Perez,N.M., et al. (2022) 

JASPAR 2022: the 9th release of the open-access database of transcription factor binding 

profiles. Nucleic Acids Res., 50, D165–D173. 



114 

 

104. Grant,C.E., Bailey,T.L. and Noble,W.S. (2011) FIMO: scanning for occurrences of a given 

motif. Bioinformatics, 27, 1017–1018. 

105. Cock,P.J.A., Antao,T., Chang,J.T., Chapman,B.A., Cox,C.J., Dalke,A., Friedberg,I., 

Hamelryck,T., Kauff,F., Wilczynski,B., et al. (2009) Biopython: freely available Python 

tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422–

1423. 

106. Gore,A.C., Crews,D., Doan,L.L., Merrill,M. La, Patisaul,H. and Zota,A. (2014) 

Introduction to Endocrine Disrupting Chemicals (EDCs): A Guide for Public Interest 

Organizations and Policy Makers. 

107. Liao,C., Liu,F., Alomirah,H., Loi,V.D., Mohd,M.A., Moon,H.B., Nakata,H. and Kannan,K. 

(2012) Bisphenol S in urine from the United States and seven Asian countries: Occurrence 

and human exposures. Environ. Sci. Technol., 46, 6860–6866. 

108. Jalal,N., Surendranath,A.R., Pathak,J.L., Yu,S. and Chung,C.Y. (2018) Bisphenol A (BPA) 

the mighty and the mutagenic. Toxicol. Reports, 5, 76–84. 

109. EPA (2015) Bisphenol A Alternatives in Thermal Paper. 

110. Rochester,J.R. and Bolden,A.L. (2015) Bisphenol S and F: A systematic review and 

comparison of the hormonal activity of bisphenol a substitutes. Environ. Health Perspect., 

123, 643–650. 

111. Philips,E.M., Jaddoe,V.W.V., Asimakopoulos,A.G., Kannan,K., Steegers,E.A.P., Santos,S. 

and Trasande,L. (2018) Bisphenol and phthalate concentrations and its determinants among 

pregnant women in a population-based cohort in the Netherlands, 2004–5. Environ. Res., 

161, 562–572. 

112. Ye,X., Wong,L.Y., Kramer,J., Zhou,X., Jia,T. and Calafat,A.M. (2015) Urinary 

Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of 

U.S. Adults during 2000-2014. Environ. Sci. Technol., 49, 11834–11839. 

113. Asimakopoulos,A.G., Xue,J., De Carvalho,B.P., Iyer,A., Abualnaja,K.O., Yaghmoor,S.S., 

Kumosani,T.A. and Kannan,K. (2016) Urinary biomarkers of exposure to 57 xenobiotics 

and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environ. 

Res., 150, 573–581. 

114. Lehmler,H.J., Liu,B., Gadogbe,M. and Bao,W. (2018) Exposure to Bisphenol A, Bisphenol 

F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition 

Examination Survey 2013-2014. ACS Omega, 3, 6523–6532. 

115. Rocha,B.A., Asimakopoulos,A.G., Honda,M., da Costa,N.L., Barbosa,R.M., Barbosa,F. and 

Kannan,K. (2018) Advanced data mining approaches in the assessment of urinary 

concentrations of bisphenols, chlorophenols, parabens and benzophenones in Brazilian 

children and their association to DNA damage. Environ. Int., 116, 269–277. 



115 

 

116. Xue,J., Wu,Q., Sakthivel,S., Pavithran,P. V., Vasukutty,J.R. and Kannan,K. (2015) Urinary 

levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl 

ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. 

Environ. Res., 137, 120–128. 

117. Gingrich,J., Ticiani,E. and Veiga-Lopez,A. (2020) Placenta Disrupted: Endocrine 

Disrupting Chemicals and Pregnancy. Trends Endocrinol. Metab., 31, 508–524. 

118. Veiga-Lopez,A., Pu,Y., Gingrich,J. and Padmanabhan,V. (2018) Obesogenic Endocrine 

Disrupting Chemicals: Identifying Knowledge Gaps. Trends Endocrinol. Metab., 29, 607–

625. 

119. Kolatorova,L., Vitku,J., Hampl,R., Adamcova,K., Skodova,T., Simkova,M., Parizek,A., 

Starka,L. and Duskova,M. (2018) Exposure to bisphenols and parabens during pregnancy 

and relations to steroid changes. Environ. Res., 163, 115–122. 

120. Wan,Y., Huo,W., Xu,S., Zheng,T., Zhang,B., Li,Y., Zhou,A., Zhang,Y., Hu,J., Zhu,Y., et 

al. (2018) Relationship between maternal exposure to bisphenol S and pregnancy duration. 

Environ. Pollut., 238, 717–724. 

121. Gingrich,J., Pu,Y., Roberts,J., Karthikraj,R., Kannan,K., Ehrhardt,R. and Veiga-Lopez,A. 

(2018) Gestational bisphenol S impairs placental endocrine function and the fusogenic 

trophoblast signaling pathway. Arch. Toxicol., 92, 1861–1876. 

122. Kolla,S.D.D., Morcos,M., Martin,B. and Vandenberg,L.N. (2018) Low dose bisphenol S or 

ethinyl estradiol exposures during the perinatal period alter female mouse mammary gland 

development. Reprod. Toxicol., 78, 50–59. 

123. Pu,Y., Gingrich,J.D., Steibel,J.P. and Veiga-Lopez,A. (2017) Sex-Specific Modulation of 

Fetal Adipogenesis by Gestational Bisphenol A and Bisphenol S Exposure. Endocrinology, 

158, 3844–3858. 

124. Catanese,M.C. and Vandenberg,L.N. (2017) Bisphenol S (BPS) Alters Maternal Behavior 

and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters. 

Endocrinology, 158, 516–530. 

125. Tsamandouras,N., Rostami-Hodjegan,A. and Aarons,L. (2015) Combining the ‘bottom up’ 

and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed 

clinical data. Br. J. Clin. Pharmacol., 79, 48–55. 

126. Ke,A.B., Greupink,R. and Abduljalil,K. (2018) Drug Dosing in Pregnant Women: 

Challenges and Opportunities in Using Physiologically Based Pharmacokinetic Modeling 

and Simulations. CPT Pharmacometrics Syst. Pharmacol., 7, 103–110. 

127. Zhuang,X. and Lu,C. (2016) PBPK modeling and simulation in drug research and 

development. Acta Pharm. Sin. B, 6, 430–440. 

128. Fowden,A.L., Forhead,A.J., Sferruzzi-Perri,A.N., Burton,G.J. and Vaughan,O.R. (2015) 



116 

 

Review: Endocrine regulation of placental phenotype. Placenta, 36, S50–S59. 

129. Mourier,E., Tarrade,A., Duan,J., Richard,C., Bertholdt,C., Beaumont,M., Morel,O. and 

Chavatte-Palmer,P. (2016) Non-invasive evaluation of placental blood flow: lessons from 

animal models. Reproduction, 153, R85–R96. 

130. Krishna,R., Riggs,K.W., Kwan,E., Wong,H., Szeitz,A., Walker,M.P.R. and Rurak,D.W. 

(2002) Clearance and disposition of indometacin in chronically instrumented fetal lambs 

following a 3-day continuous intravenous infusion. J. Pharm. Pharmacol., 54, 801–808. 

131. Ngamprasertwong,P., Dong,M., Niu,J., Venkatasubramanian,R., Vinks,A.A. and 

Sadhasivam,S. (2016) Propofol Pharmacokinetics and Estimation of Fetal Propofol 

Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model. PLoS One, 

11, e0146563. 

132. Corbel,T., Perdu,E., Gayrard,V., Puel,S., Lacroix,M.Z., Viguié,C., Toutain,P.L., Zalko,D. 

and Picard-Hagen,N. (2015) Conjugation and Deconjugation Reactions within the 

Fetoplacental Compartment in a Sheep Model: A Key Factor Determining Bisphenol A 

Fetal Exposure. Drug Metab. Dispos., 43, 467–476. 

133. Fisher,J.W., Twaddle,N.C., Vanlandingham,M. and Doerge,D.R. (2011) Pharmacokinetic 

modeling: Prediction and evaluation of route dependent dosimetry of bisphenol A in 

monkeys with extrapolation to humans. Toxicol. Appl. Pharmacol., 257, 122–136. 

134. Karrer,C., Roiss,T., von Goetz,N., Skledar,D.G., Mašič,L.P. and Hungerbühler,K. (2018) 

Physiologically based pharmacokinetic (PBPK) modeling of the bisphenols BPA, BPS, 

BPF, and BPAF with new experimental metabolic parameters: Comparing the 

pharmacokinetic behavior of BPA with its substitutes. Environ. Health Perspect., 126. 

135. Kawamoto,Y., Matsuyama,W., Wada,M., Hishikawa,J., Chan,M.P.L., Nakayama,A. and 

Morisawa,S. (2007) Development of a physiologically based pharmacokinetic model for 

bisphenol A in pregnant mice. Toxicol. Appl. Pharmacol., 224, 182–191. 

136. Poet,T. and Hays,S. (2017) Extrapolation of plasma clearance to understand species 

differences in toxicokinetics of bisphenol A. 

https://doi.org/10.1080/00498254.2017.1379626, 48, 891–897. 

137. Sharma,R.P., Schuhmacher,M. and Kumar,V. (2018) The development of a pregnancy 

PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data. Sci. 

Total Environ., 624, 55–68. 

138. Vom Saal,F.S., Vandevoort,C.A., Taylor,J.A., Welshons,W. V., Toutain,P.L. and Hunt,P.A. 

(2014) Bisphenol A (BPA) pharmacokinetics with daily oral bolus or continuous exposure 

via silastic capsules in pregnant rhesus monkeys: Relevance for human exposures. Reprod. 

Toxicol., 45, 105–116. 

139. Domoradzki,J.Y., Pottenger,L.H., Thornton,C.M., Hansen,S.C., Card,T.L., Markham,D.A., 

Dryzga,M.D., Shiotsuka,R.N. and Waechter,J.M. (2003) Metabolism and Pharmacokinetics 



117 

 

of Bisphenol A (BPA) and the Embryo-Fetal Distribution of BPA and BPA-

Monoglucuronide in CD Sprague-Dawley Rats at Three Gestational Stages. Toxicol. Sci., 

76, 21–34. 

140. Doerge,D.R., Twaddle,N.C., Woodling,K.A. and Fisher,J.W. (2010) Pharmacokinetics of 

bisphenol A in neonatal and adult rhesus monkeys. Toxicol. Appl. Pharmacol., 248, 1–11. 

141. Völkel,W., Colnot,T., Csanády,G.A., Filser,J.G. and Dekant,W. (2002) Metabolism and 

Kinetics of Bisphenol A in Humans at Low Doses Following Oral Administration. Chem. 

Res. Toxicol., 15, 1281–1287. 

142. Lucier,G.W., Sonawane,B.R. and McDaniel,O.S. (1977) Glucuronidation and 

deglucuronidation reactions in hepatic and extrahepatic tissues during perinatal 

development. Drug Metab. Dispos., 5. 

143. Oh,J., Choi,J.W., Ahn,Y.A. and Kim,S. (2018) Pharmacokinetics of bisphenol S in humans 

after single oral administration. Environ. Int., 112, 127–133. 

144. Khmiri,I., Côté,J., Mantha,M., Khemiri,R., Lacroix,M., Gely,C., Toutain,P.L., Picard-

Hagen,N., Gayrard,V. and Bouchard,M. (2020) Toxicokinetics of bisphenol-S and its 

glucuronide in plasma and urine following oral and dermal exposure in volunteers for the 

interpretation of biomonitoring data. Environ. Int., 138, 105644. 

145. Nishikawa,M., Iwano,H., Yanagisawa,R., Koike,N., Inoue,H. and Yokota,H. (2010) 

Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. 

Environ. Health Perspect., 118, 1196–1203. 

146. Ho,K.L., Yuen,K.K., Yau,M.S., Murphy,M.B., Wan,Y., Fong,B.M.W., Tam,S., Giesy,J.P., 

Leung,K.S.Y. and Lam,M.H.W. (2017) Glucuronide and Sulfate Conjugates of Bisphenol 

A: Chemical Synthesis and Correlation Between Their Urinary Levels and Plasma 

Bisphenol A Content in Voluntary Human Donors. Arch. Environ. Contam. Toxicol., 73, 

410–420. 

147. Craigmill,A.L. (2003) A physiologically based pharmacokinetic model for oxytetracycline 

residues in sheep. J. Vet. Pharmacol. Ther., 26, 55–63. 

148. Upton,R.N. (2008) Organ weights and blood flows of sheep and pig for physiological 

pharmacokinetic modelling. J. Pharmacol. Toxicol. Methods, 58, 198–205. 

149. Makowski,E.L., Meschia,G., Droegemueller,W. and Battaglia,F.C. (1968) Measurement of 

umbilical arterial blood flow to the sheep placenta and fetus in utero. Distribution to 

cotyledons and the intercotyledonary chorion. Circ. Res., 23, 623–631. 

150. NCBI 4,4’-Sulfonyldiphenol, CID=6626. 

151. Chow,E.C.Y., Talattof,A., Tsakalozou,E., Fan,J., Zhao,L. and Zhang,X. (2016) Using 

Physiologically Based Pharmacokinetic (PBPK) Modeling to Evaluate the Impact of 

Pharmaceutical Excipients on Oral Drug Absorption: Sensitivity Analyses. AAPS J., 18, 



118 

 

1500–1511. 

152. Lyons,M.A., Reisfeld,B., Yang,R.S.H. and Lenaerts,A.J. (2013) A physiologically based 

pharmacokinetic model of rifampin in mice. Antimicrob. Agents Chemother., 57, 1763–

1771. 

153. Shin,B.S., Kim,C.H., Jun,Y.S., Kim,D.H., Lee,B.M., Yoon,C.H., Park,E.H., Lee,K.C., 

Han,S.-Y., Park,K.L., et al. (2004) PHYSIOLOGICALLY BASED 

PHARMACOKINETICS OF BISPHENOL A. J. Toxicol. Environ. Heal. Part A, 67, 1971–

1985. 

154. Edginton,A.N. and Ritter,L. (2009) Predicting plasma concentrations of bisphenol A in 

children younger than 2 years of age after typical feeding schedules, using a physiologically 

based toxicokinetic model. Environ. Health Perspect., 117, 645–652. 

155. Bonnans,J.F., Gilbert,J.C., Lemaréchal,C. and Sagastizábal,C.A. (2003) Numerical 

Optimization. 10.1007/978-3-662-05078-1. 

156. EPA (2012) Bisphenol A, CASRN 80-05-7. IRIS (Integrated Risk Information System). 

Washingron, DC. 

157. Medley,J.K., Choi,K., König,M., Smith,L., Gu,S., Hellerstein,J., Sealfon,S.C. and 

Sauro,H.M. (2018) Tellurium notebooks—An environment for reproducible dynamical 

modeling in systems biology. PLOS Comput. Biol., 14, e1006220. 

158. Saltelli,A., Annoni,P., Azzini,I., Campolongo,F., Ratto,M. and Tarantola,S. (2010) Variance 

based sensitivity analysis of model output. Design and estimator for the total sensitivity 

index. Comput. Phys. Commun., 181, 259–270. 

159. Herman,J. and Usher,W. (2017) SALib : An open-source Python library for Sensitivity 

Analysis. J. Open Source Softw., 2, 3873–3878. 

160. Saltelli,A. (2002) Making best use of model evaluations to compute sensitivity indices. 

Comput. Phys. Commun., 145, 280–297. 

161. Lonard,D.M. and O’Malley,B.W. (2006) The Expanding Cosmos of Nuclear Receptor 

Coactivators. Cell, 125, 411–414. 

162. McDowell,I.C., Barrera,A., D’Ippolito,A.M., Vockley,C.M., Hong,L.K., Leichter,S.M., 

Bartelt,L.C., Majoros,W.H., Song,L., Safi,A., et al. (2018) Glucocorticoid receptor recruits 

to enhancers and drives activation by motif-directed binding. Genome Res., 28, 1272–1284. 

163. Creyghton,M.P., Cheng,A.W., Welstead,G.G., Kooistra,T., Carey,B.W., Steine,E.J., 

Hanna,J., Lodato,M.A., Frampton,G.M., Sharp,P.A., et al. (2010) Histone H3K27ac 

separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. 

Sci., 107, 21931–21936. 

164. Adomas,A.B., Grimm,S.A., Malone,C., Takaku,M., Sims,J.K. and Wade,P.A. (2014) Breast 



119 

 

tumor specific mutation in GATA3 affects physiological mechanisms regulating 

transcription factor turnover. BMC Cancer, 14. 

165. Takaku,M., Grimm,S.A., De Kumar,B., Bennett,B.D. and Wade,P.A. (2020) Cancer-

specific mutation of GATA3 disrupts the transcriptional regulatory network governed by 

Estrogen Receptor alpha, FOXA1 and GATA3. Nucleic Acids Res., 48, 4756–4768. 

166. Jiang,G., Wang,X., Sheng,D., Zhou,L., Liu,Y., Xu,C., Liu,S. and Zhang,J. (2019) 

Cooperativity of co-factor NR2F2 with pioneer factors GATA3, FOXA1 in promoting ERα 

function. Theranostics, 9, 6501–6516. 

167. Swaminathan,G., Nguyen,L.P., Namkoong,H., Pan,J., Haileselassie,Y., Patel,A., Ji,A.R., 

Mikhail,D.M., Dinh,T.T., Singh,H., et al. (2021) The aryl hydrocarbon receptor regulates 

expression of mucosal trafficking receptor GPR15. Mucosal Immunol. 2021 144, 14, 852–

861. 

168. Öberg,M., Bergander,L., Håkansson,H., Rannug,U. and Rannug,A. (2005) Identification of 

the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a 

factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci., 85, 

935–943. 

169. Pan,Y., Deng,M., Li,J., Du,B., Lan,S., Liang,X. and Zeng,L. (2020) Occurrence and 

Maternal Transfer of Multiple Bisphenols, including an Emerging Derivative with 

Unexpectedly High Concentrations, in the Human Maternal-Fetal-Placental Unit. Environ. 

Sci. Technol., 54, 3476–3486. 

170. Andra,S.S., Austin,C., Yang,J., Patel,D. and Arora,M. (2016) Recent advances in 

simultaneous analysis of bisphenol A and its conjugates in human matrices: Exposure 

biomarker perspectives. Sci. Total Environ., 572, 770–781. 

171. Liu,J., Li,J., Wu,Y., Zhao,Y., Luo,F., Li,S., Yang,L., Moez,E.K., Dinu,I. and Martin,J.W. 

(2017) Bisphenol A Metabolites and Bisphenol S in Paired Maternal and Cord Serum. 

Environ. Sci. Technol., 51, 2456–2463. 

172. Boucher,J.G., Boudreau,A., Ahmed,S. and Atlas,E. (2015) In vitro effects of bisphenol A β-

D-glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. Environ. 

Health Perspect., 123, 1287–1293. 

 


