COMPUTATIONAL MODELING OF GENOME-WIDE DNA BINDING AND PROTEIN
INTERACTIONS BY THE ARYL HYDROCARBON RECEPTOR

By

David Filipovic

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Biomedical Engineering — Doctor of Philosophy
Computational Mathematics, Science and Engineering — Dual Major

2023



ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand inducible transcription factor (TF) with
multiple endogenous and exogenous ligands. AhR regulates many cellular processes including
differentiation, development, and xenobiotic metabolism. Among its exogenous ligands 2, 3, 7, 8
tetrachlorodibenzo-p-dioxin (TCDD) is its most potent inducer. Upon ligand binding, inactive
cytosolic AhR undergoes a conformational change ultimately leading to its nuclear localization.
Within the nucleus, AhR is thought to primarily dimerize with AhR nuclear translocator (ARNT)
to form a functional TF which binds to DNA at dioxin response elements (DREs) and regulates
transcription of AhR target genes. Most DREs in accessible chromatin are not bound by AhR, and
DREs accessible in multiple cell lines or type can be bound in some and unbound in others. Still,
since AhR possesses a strong core binding motif 5'-GCGTG-3', it is suited for a motif-centered
analysis of its binding. To investigate determinants of AhR binding I developed interpretable
machine learning models predicting the binding status of DREs in MCF-7, GM17212, HepG2
cells, and primary human hepatocytes. I conclude that AhR binding is driven by a complex
interplay of cell-agnostic DRE flanking sequence and cell-specific local chromatin context.

On the other hand, AhR can bind DNA in absence of ARNT. Both, RelA and KLF6 have
been shown to physically interact with AhR and together drive the activation of several genes. For
example, the activation of 1) c-myc in breast cancer and 2) PAI-1, p21cipl, and E-cadherin genes
is driven by AhR interacting with RelA and KLF6, respectively. However, it is unknown if these
interactions with AhR occur genome-wide or if they are localized to a small number of genes. I
developed a computational method to investigate protein-protein interactions at AhR-bound sites.
Results confirm ARNT as the main dimerization partner of AhR genome-wide in TCDD-exposed

MCEF-7 cells. By contrast, in untreated HepG2 cells, KLF6 and RelA but not ARNT were the main



dimerization partners of AhR. These findings indicate that the role of AhR is likely ligand-

dependent and can potentially be explained through dimerization with different partners.
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CHAPTER 1: INTRODUCTION

Proteins are one of the main building blocks of cells. They are comprised of a chain of
smaller units called amino acids that are folded into a functional 3D structure. The precise 3D
structure of a protein is crucial to facilitate the performance of its specific cellular functions
including enzymatic actions and involvement in providing and maintaining cellular structure (1).
Transcription factors (TFs) are proteins that bind to DNA and regulate the transcription of genes,
by either promoting or interfering with the recruitment of cellular transcription machinery (2).
Some TFs are only activated by a ligand without which they are kept sequestered in the cytosol,
and without which they do not bind to DNA nor actively promote transcription (3). Ligand binding
determines the activity of such TFs. In that sense, ligands can be both agonist — transforming the
TF into an active or DNA binding form; and antagonist — transforming the TF into an inactive
form (4).

The aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor belonging
to the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) superfamily of TFs which act as
sensors of both internal and external cellular environments (5). The existence of the AhR was
hypothesized as early as 1976 by Poland et al. (6). Early research on the AhR uncovered its role
as a xenobiotic sensor that binds exogenous ligands - xenobiotics in the class of polyhalogenated
and polycyclic aromatic hydrocarbons (PAHs), chief among them being 2, 3, 7, 8
tetrachlorodibenzo-p-dioxin (TCDD) (7). More recently it has been shown that the AhR can bind
endogenous ligands as well. For example, certain tryptophan derivatives — such as kynurenine,
tetrapyrroles, and metabolites of arachidonic acid (8—10).

The structure of the AhR protein can be broken down into five main structural domains:

the basic domain, two PAS domains, HLH domain and the transactivation domain (TAD). The



basic domain plays a role in DNA binding by the AhR. The two PAS domains - PAS A and PAS
B, together with the HLH domain, play a role in dimerization with the canonical AhR dimerization
partner — AhR nuclear translocator (ARNT). AhR ligands bind within the PAS B domain. Finally,
the C-terminal of AhR contains the transcription activation domain (TAD), which is composed of
an acidic, a Q-rich, and P/S/T subdomains. The TAD domain is responsible for the recruitment of
co-activators and co-repressors, resulting in the activation or repression of gene expression,
respectively (11-13).

Activation of AhR by its exogenous ligands underlies its role as a xenobiotic sensor. The
AhR signaling pathway resulting from such activation is referred to as the canonical AhR pathway.
Prior to ligand activation, the AhR is localized to the cytosol where it is maintained in its inactive
form through binding to its co-chaperone proteins. These proteins include hepatitis B virus X-
associated protein (XAP2) — also known as the AhR interacting protein (AIP), a dimer of heat
shock protein 90 (HSP90), prostaglandin E synthase 3 (p23), and protein kinase SRC. Upon ligand
binding, the AhR is released from its co-chaperones, exposing its nuclear translocation signal
(NTS). Subsequently, the AhR translocates to the nucleus where it forms a heterodimer complex
with the AhR Nuclear Translocator (ARNT). The AhR-ARNT complex modulates the expression
of its target genes by binding to DNA at specific dioxin response elements (DREs), also known as
xenobiotic response elements (XREs) and defined by the core DNA sequence 5'-GCGTG-3' (5).
This pathway (illustrated in Figure 1) fits within the initially discovered role of AhR as a xenobiotic
sensor regulating the adaptive metabolic response. Many target genes in this pathway are
xenobiotic metabolizing genes, such as phase I metabolic enzymes, namely cytochrome P450 1A1
(CYP1A1), CYPIA2, CYPIBI, as well as phase II metabolic enzymes, namely glutathione S-

transferase (GST), and aldehyde dehydrogenase 3al (ALDH3A1) (14, 15). These metabolic



enzymes play a role in detoxifying xenobiotics, but can sometimes produce reactive metabolites,
such as in the case of benzo[a]pyrene (B[a]P) (16). On the other hand, the AhR co-chaperone SRC
participates in the non-genomic mechanisms of AhR signaling, where its disassociation from the

activated AhR can result in the activation of other pathways, namely ERK1/2 and EGFR (17).
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Figure I — canonical AhR pathway
adapted from (18).

In addition to its role as a xenobiotic sensor, over time many other functions of the AhR
have been discovered, such as its roles in differentiation (19), development (20), cancer (21),
circadian rhythm (22), cell cycle progression (23), and immunity (24). In general, the AhR can be
thought of as an integrator of dietary, metabolic, microbial, and environmental cues that initiates
fine-tuned and selective transcriptional programs. These programs can be ligand-specific, cell

type-specific and even context-specific (5).



The AhR appears to bind exclusively to DREs in an in vitro setting, i.e., on naked DNA
outside of a cell nucleus. When examining the DNA binding of AhR in vivo, by looking at publicly
available AhR binding experiments, I observed that most DREs in accessible chromatin are not
bound by AhR, and DREs accessible in multiple cell lines or cell types can be bound in some and
unbound in others. Nevertheless, the fact that AhR possesses a strong core binding motif 5'-
GCGTG-3' — the DRE, facilitates a motif-centered analysis of its binding. To investigate the
molecular determinants of AhR binding I developed interpretable machine learning models
predicting the binding status of DREs in MCF-7, GM17212, HepG2 cells, and primary human
hepatocytes. My results indicate that AhR binding is driven by a complex interplay of cell-agnostic
DRE flanking sequence and cell-specific local chromatin context.

Aside from ARNT, AhR has been shown to bind DNA by interacting with other
transcription factors, both with and without ARNT. For instance, the AhR-ARNT heterodimer
interacts with the specificity protein 1 (SP1) via the AhR-ARNT HLH/PAS domains and SP1 zinc
finger domains. AhR-ARNT and SP1 synergistically enhance the transcription of the CYP1A1
gene by binding to their cognate binding motifs in the promoter of CYP1A1l. The DRE and the
GC-rich binding motif of SP1 in the promoter of CYP1A1 were shown to partially overlap (25).
On the other hand, the AhR was shown to interact with several other TFs without ARNT. For
example, TCDD activated AhR interacts with the retinoblastoma tumor suppressor protein (pRb)
without ARNT to induce G1 cell cycle arrest. The pRb appears to preferentially associate with the
ligand-bound form of AhR (26). Additionally, the RelA subunit of nuclear factor-kB (NF-kB)
interacts with the AhR to activate the transcription of c-myc and IL-6 genes by binding together
in their promoters (27, 28). The transcription of PAI-1, p21cipl, and E-cadherin genes is thought

to be driven by AhR interacting with the Kriippel-like factor 6 (KLF6) (29).



However, these ARNT independent AhR-protein interactions have only been confirmed at
a limited number of AhR bound loci. It is unknown if these protein interactions with AhR could
be occurring genome wide. To address this question, I developed a computational method to
investigate AhR-TF interactions at AhR-bound sites. My results confirm ARNT as the main
dimerization partner of AhR genome-wide in TCDD-exposed MCF-7 cells. By contrast, in
untreated HepG2 cells, KLF6 and RelA but not ARNT were the main dimerization partners of
AhR. These findings indicate that the role of AhR is likely ligand-dependent and can potentially
be explained through dimerization with different proteins.

Additionally, unrelated to computational modeling of AhR binding and dimerization, I
have developed a set of physiologically based toxicokinetic (PBTK) models for bisphenol A and
S (BPA and BPS) in pregnant sheep (30). These chemicals are often used in the manufacturing
of polycarbonate plastics, epoxy resins, dental sealants, and plastic and paper consumer products
(31, 32). They are also known endocrine disruptors and can be found pervasively in the
environment (32, 33). The PBTK models Ideveloped and calibrated against available
toxicokinetic data (34-36), demonstrated that BPS exhibited a higher potential for accumulation

in the fetus with repeated daily maternal exposure.
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CHAPTER 2: AHR BINDING PREDICTION

INTRODUCTION

The expression of genes is governed principally through the process of transcriptional
regulation. This process represents the main mechanism by which crucial cellular processes such
as differentiation, development, and response to exogenous stimuli are coordinated (37).
Transcriptional regulation occurs in large part through direct or indirect binding of transcription
factors (TFs) to DNA, and through the interactions of these TFs with transcriptional machinery
(38). Altering the expression, function, or the DNA-binding ability of even a single TF can result
in changes in expression of hundreds to thousands of genes (39, 40). Further, the removal of a
single TF binding site, e.g., through an experimental procedure such as promoter bashing or
targeted mutagenesis, often results in altered gene expression (41, 42). The problem of
experimentally identifying TF binding sites across the genome is further complicated by the fact
that TF binding is often highly tissue- and cell type- specific (37).

The problem of computationally predicting DNA binding sites genome-wide for a
particular TF, in a cell type- or tissue-specific manner, can be likened to finding the proverbial
needle in a haystack. This problem is particularly difficult for TFs with a short core DNA binding
motif such as the aryl hydrocarbon receptor (AhR). The AhR binds to a core 5-base pair (bp)
sequence, 5'-GCGTG-3', referred to as the dioxin response element (DRE) (43, 44). Such short
binding motifs occur millions of times in the human genome. However, a typical chromatin
immunoprecipitation followed by sequencing (ChIP-seq) binding assay for AhR produces a list of
AhR bound regions on the order of a few hundred to a few thousand regions. This discrepancy
could be partially explained by the fact that most genomic DREs lie in inaccessible regions of the

genome in a particular cell line or type. Additionally, the nucleotides flanking the core motif on



both 5' and 3' ends are suspected to form an extended active AhR binding site (45). However, the
manner in which the exact identity of these nucleotides affects AhR binding is currently unknown.
Further, these AhR bound regions have anywhere between zero and 29 DREs (46, 47). Therefore,
the occurrence of a DRE in the genome is neither sufficient nor necessary to induce AhR binding.
The problem of predicting AhR-DNA binding is additionally complicated by the fact that it can be
hard to distinguish direct DNA binding from indirect binding through tethering with other TFs or
through 3D looping of chromatin (48). Considered together, these findings indicate that both
genomic and epigenomic characteristics likely play a role in determining AhR binding in vivo.
The AhR is a ligand-activated transcription factor (TF) in the basic-helix-loop-helix
(bHLH) PER-ARNT-SIM (PAS) family of TFs (49, 50). The AhR can be activated by both
endogenous and exogenous ligands (5, 51). In the later class of ligands, the environmental pollutant
2, 3,7, 8 tetrachlorodibenzo-p-dioxin (TCDD) is the prototypical AhR ligand (7, 51). Exposure to
TCDD activates the xenobiotic response pathway of AhR. Initially, the AhR is constrained in the
cytosol of the cell through binding with its co-chaperone proteins. These proteins include a dimer
of the 90-kDa heat shock protein (HSP90) (52, 53), the AhR-interacting protein (AIP) (54, 55),
the cochaperone protein p23 (56), and SRC (17). When bound by its ligand, AhR releases from its
co-chaperones and translocates to the nucleus where it forms a heterodimer with the AhR Nuclear
Translocator (ARNT) (57, 58). The AhR-ARNT heterodimer binds to DNA sequences containing
the consensus 5'-GCGTG-3' core binding motif (59, 60). This binding motif has been named
variously the xenobiotic response element (XRE), aryl hydrocarbon response element (AhRE), or
dioxin response element (DRE) (61). In this thesis I will use the name DRE when to referring to

AhR binding motif within potential AhR DNA binding sites.



The best understood function of the AhR is the direct regulation of its target genes, chief
among them the cytochrome p450 1A1 (CYP1A1), 1A2 (CYP1A2) and 1B1 (CYP1BI). The AhR
regulates these genes by binding to DREs in their proximal promoters or, potentially, distal
enhancers (24, 62, 63). The first step towards reconstructing the AhR-mediated gene regulatory
network is the accurate, cell type-specific identification of AhR binding sites. The construction of
these gene regulatory networks is crucial for improving our understanding of the role of the AhR
in xenobiotic-induced toxicity and disease, as well as in crucial physiological functions. These
include the immune response (24), circadian rhythm (22), cell cycle progression (23), and
embryonic development (20). Significant progress has been made with the development of high
throughput molecular techniques for identification of TF-bound DNA fragments. These techniques
often use a method for the enrichment of TF bound DNA complexes followed by sequencing of
the enriched DNA fragments. Techniques such as ChIP-seq (64), ChIP-exo (65) and ChIP-nexus
(66) have enabled a genome-wide view of TF binding. Over time, the binding of hundreds of TFs
in multiple cell lines, primary cells, and whole tissues has been investigated genome-wide and the
results of these experiments have been made publicly available. Likewise, DNA binding of the
AhR has been probed in several human cell lines and primary cells. Nonetheless, the determinants
of cell-specificity of AhR binding remain poorly understood.

Recent years have seen the development of many computational approaches for genome-
wide prediction of TF binding. The most widely used methods leverage the position weight matrix
(PWM) corresponding to the TF of interest. A PWM is a statistical and quantitative representation
of known and experimentally confirmed DNA binding sites for a TF of interest. The PWM
effectively makes up the binding motif of the TF. PWMs are available in online databases such as

TRANSFAC and JASPAR. These PWMs have been derived from experimental data and can also



be estimated de novo if binding data is available (67, 68). A PWM is used to calculate a score for
each potential binding site as a sum of individual scores of each nucleotide making up the PWM
and overlapping the potential binding site. PWMs are then used to scan the genome for TF binding
sites, using a previously derived optimal threshold score as the cutoff to predict TF-bound sites
(69, 70). PWMs are commonly derived from in vitro experiments. The most often used in vitro
experiment is the high throughput systematic evolution of ligands by exponential enrichment (HT-
SELEX) (71). Occasionally, PWMs are also derived from in vivo experiments such as ChIP-seq.
However, when examining the binding of TFs in vivo, it is often noted that many TFs are bound
to DNA sequences that do not possess the in vitro or even the in vivo derived binding motif (72).

Eukaryotic TFs generally do not bind DNA in isolation but rather in dense, often tissue-
specific, TF clusters. These clusters are characterized by the co-location of the TF binding sites
for multiple different types of TFs in relatively short genomic regions (73, 74). Consequently, it is
reasonable to assume that PWMs of co-bound TFs could be used to predict the binding of a TF of
interest. Still, models that use PWMs of co-binding TFs have shown limited utility in improving
model performance, with models of certain TFs seeing little to no improvement (72). Even so,
given that TFs bind in dense clusters and that PWMs are not always representative of actual TF
binding, I hypothesized that ChIP-seq signals of co-bound TFs, as a measure of their actual
binding, could provide the information that PWMs could not. Further, I propose that interpretable
machine learning combined with the measures of co-bound TFs would provide mechanistic
insights into the molecular mechanisms underlying the cell specificity of AhR binding.

TF binding prediction models based on PWMs have been extended over time to include
other biological features demonstrated to be associated with TF binding, such as chromatin

accessibility, histone modifications, evolutionary sequence conservation, PWMs of co-bound TFs,



and gene expression (72, 75). Similarly, a broad range of statistical and machine learning models
ranging from unsupervised Bayesian mixture models (75) to deep learning (76—78) have been used
to address the problem of tissue-specific TF binding prediction. Despite some of these models
achieving high cross-tissue performance for select few TFs, most of them lack interpretability and
do not translate into mechanistic insights.

Most computational models predicting TF binding have been applied to constitutively
active TFs. The binding of inducible TFs, on the other hand, remains largely computationally
unexplored. In this chapter of the thesis, I applied a supervised machine learning algorithm,
XGBoost (79), and developed machine learning models predicting the AhR binding status of DREs
in open chromatin of a particular cell line or type. These models were trained to predict DREs in
open chromatin, as either bound or unbound, and were applied to four cell lines and one primary
cell type: two human breast cancer cell lines (MCF-7 and T-47D) (46, 47), primary human
hepatocytes (80), human hepatocellular carcinoma cell line (HepG2) — data obtained from the
ENCODE project (81, 82), and lymphoblastoid cell line (GM17212) (83). The cells in these
experiments were treated with either TCDD, Methylcholanthrene (3-MC; an AhR ligand) or
Dimethyl sulfoxide (DMSO; vehicle control) for a duration of either 45 minutes, 1 hour or 24
hours. By using these datasets and chromatin accessibility experiments corresponding to the cell
line or type used, I first identified cell line and type-specific AhR- bound and unbound DREs in
open chromatin. Then, I developed machine learning models that predict the binding status of
DREs in open chromatin for each cell line or type individually. My results demonstrate highly
accurate and robust models of within-cell line or cell type binding. I identified several TFs as
predictive of AhR binding in individual cell lines or types, such as GATA3 in MCF-7 cells, MXI1

in HepG2 cells, and SP1 in primary human hepatocytes and GM17212 cells; as well as histone
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modifications (HMs) — H3K4mel and H3K4me3 in MCF-7 cells, H3K4me3 and H3K27ac in
primary hepatocytes, and H3K27ac in GM17212 cells. My cell-specific models generalize well to
the prediction of AhR binding sites without DREs, demonstrating the robustness of the models. In
conclusion, I demonstrated that the patterns of TFs and HMs most predictive of AhR binding are
consistent within cell lines or types but highly variable across them, which is suggestive of
potentially different underlying cell-specific mechanisms of AhR binding. Additionally, I show
that AhR binding is driven by a complex interplay of cell-agnostic DNA sequence flanking the
DRE and cell-specific local chromatin context. The approach used here can be adapted to other
inducible TFs, such as steroid hormone and nuclear receptors.
MATERIALS AND METHODS
Reference genome

Unless otherwise specified the reference, genome used for sequence alignment in this part
of the thesis was the human genome assembly version hg19. I opted for hgl19 due to availability
of data on ChIP-seq and DNase-seq data repositories such as GEO Datasets (84) ChIP-Atlas (85)
and ENCODE (81, 82). Likewise, most other transcription factor binding prediction tools available
at this time were trained on hgl9.
Visualization of ChIP-seq signal

Bigwig files were used as inputs to deepTools version 3.5.1 (86) for visualization.
DeepTools plotHeatmap function was used to create visualizations of ChIP-seq signal fold
enrichment within a —1.5 to +1.5 kb region around the bound and unbound dioxin response
elements (DREs), as well as to generate average profiles for ChIP-seq enrichment in the same

region.
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DREs in open chromatin
I obtained DNase-seq data for all relevant cell lines (MCF-7, T-47D, primary hepatocytes,

HepG2, GM12878) from ENCODE - https://encodeproject.org/. I downloaded the broadPeak

DNase-seq files for the hgl9 genome assembly, and if there were multiple replicates, I found the
intersection of all replicates. Any DRE found under the peaks of DNase-seq intersection was
considered to be in the open chromatin of the corresponding cell line and was used in the
determination of bound and unbound DREs for the purposes of model training. DREs occurring in
ENCODE blacklisted regions, namely the merged consensus blacklist
(wgEncodeHg19ConsensusSignal ArtifactRegions.bed.gz) and exclusion list regions (ENCODE
accession ENCFF001TDO) were ignored in downstream analyses.
AhR-bound and unbound DREs

Firstly, I assembled a list of all DREs in the human genome by searching the hg19 human
reference genome sequence for the occurrences of the core DRE sequence 5'-GCGTG-3' on either
strand of the DNA. Only DREs in open chromatin, i.e., DREs overlapping DNase-seq broadPeaks
from an ENCODE experiment for a given cell line, were considered for training. Additionally,
bound DREs in closed chromatin were also considered for testing purposes. Secondly, I obtained
the AhR ChIP-seq bed and bigwig files either from Gene Expression Omnibus (GEO) Datasets or
from ChIP-Atlas (85) where the original sequencing files have been processed uniformly following
a standard processing pipeline. Originally, AhR ChIP-seq data was generated in the following
independent experiments, 1) AhR and ARNT ChIP-seq of MCF-7 cells treated with 10 nM TCDD
for 45 minutes (47) — the binding data was obtained from GEO Datasets — accession GSE41820,
2) AhR and AhRR ChIP-seq of MCF-7 cells treated with 10 nM TCDD for 45 minutes and 24

hours (46) - the binding data was obtained from GEO Datasets — accession GSE90550, 3) AhR
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ChIP-chip of T-47D cells treated with 1 uM 3-MC or 10 nM TCDD for 1 hour (87, 88) - the
binding data was obtained from their respective publications and converted from hgl8 to hgl9
using the liftOver tool (89) 4) AhR ChIP-seq of primary hepatocytes treated with InM of TCDD
for 24 hours — the binding data was obtained from GEO Datasets — accession GSE205502; 5) AhR
(3XxFLAG tagged AhR) ChIP-seq of untreated HepG2 cells from ENCODE - accession
ENCSR412ZDC (81, 82); 6) AhR ChIP-seq of GM17212 cells treated with 1 pM 3-MC for 24
hours — accessible through GEO Datasets — accession GSE116632; however, the binding data was
obtained from ChIP-Atlas — accessions SRX4342282, SRX4342283, SRX4342285, and
SRX4342286. Details of these experiments are summarized in Table 1. Bound DREs for the
purposes of model training were determined as DREs found in open chromatin and under AhR
peaks where only one DRE was present under the AhR peak (referred to as singleton DREs).
Isolated unbound DREs are DREs in open chromatin found at least 500 bps away from the
boundary of any AhR peak, as well as 100 bps away from any other DRE. These DREs were
selected as unbound for model training in order to minimize confounding of DRE contribution to
binding. All other DREs in open chromatin were considered ambiguous and were not used in
model training.
Promoters and enhancers

I obtained all annotated transcription start sites from Ensembl 105 BioMart (human genes;
GRCh38.p13) (90) and considered regions +200 and #1500 bp around the TSS as stringent and
relaxed promoters, respectively. 1 obtained all computationally predicted enhancers from
ChromHMM (91) for samples that had ChromHMM data available — HepG2 and GM12878
(ENCODE) and MCF-7 (GEO Datasets — accession GSE57498). Both weak and strong enhancers

(ChromHMM states 4 through 7) were considered as valid enhancers.
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Sequence and genomic signal features

For each DRE in the human genome, I obtained the genomic sequence of seven nucleotides
5" upstream and 3' downstream from the DRE (5'-GCGTG-3') from the hgl9 human reference
genome. These nucleotides were one-hot encoded and used as features in my machine learning
models. In total there were around 1.6 million DREs spread across the human genome. However,
only a small fraction of them fulfilled the criteria for bound and unbound DREs used in training
and testing. DNase-seq, as well as all available histone mark and transcription factor ChIP-seq
genomic signal (bigwig) files were downloaded for MCF-7, T-47D, primary hepatocytes, HepG2,
GM12878 (as the closest match to GM17212 where AhR was ChIP-ed) from the ENCODE
consortium. For each bound and unbound DRE and each genomic signal (bigwig) file, I extracted
the value of the genomic signal 740 bps up- and 740 bps down- stream from the DRE, for a total
of 1485 bps of signal (DRE width is 5 base pairs). The extracted signal was split into 15 bins of
equal 99-bp size and the signal within each bin was averaged to produce 15 features corresponding
to the particular DRE-genomic signal combination. During averaging, any areas of missing signal
were replaced with zeros.
Model architecture and training

For each cell line and all the bound and unbound DREs appearing in open chromatin of
that particular cell line, I created sequence features, as well as genomic signal features for all
available DNase-seq, histone mark and transcription factor (TF) ChIP-seq experiments. I then
performed hyperparameter tuning of an XGBoost model through a grid search of the
hyperparameter space with the following values - max_depth = {3, 4, 5, 6, 7}, min_child_weight

=1{3,4,5, 6,7}, subsample = {1.0, 0.9, 0.8, 0.7}, colsample by tree = {1.0, 0.9, 0.8, 0.7} and eta
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={0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3}. I reported the average performances over all five folds
for the best performing models in terms of hyperparameter selection.
Model evaluation

In addition to evaluating the models through 5-fold cross validation, I also evaluated model
performance on predicting the binding status of DREs that occurred under multi-DRE AhR peaks
both in open and closed chromatin. For each such peak and each DRE under the peak I used the
AhR binding prediction model to make a prediction regarding whether the DRE is bound or not.
If at least one DRE under the peak was predicted as bound, the peak was considered recovered,
and the total fraction of recovered peaks was reported. Similarly, I evaluated the model
performance on predicting the binding status of AhR peaks without DREs. Briefly, for each 0-
DRE peak I simulated five dummy DREs. These dummy DREs are not actually present in the
genomic sequence and only represent the genomic location that was used as reference for the
calculation of all non-sequence model input features. The center of the first dummy DRE is aligned
to the center of the AhR peak and the other four dummy DREs are positioned -100, -50, +50, +100
bps relative to the center point of the first dummy DRE. A zero-DRE peak is considered generally
recovered if at least one of the five dummy DRE:s is predicted as bound. The peak is considered
centrally recovered if the central DRE is predicted as bound.
Model performance metrics

To calculate the area under Receiver Operating Characteristic (auROC) and area under
Precision Recall (auPRC) curves, I used the output of the XGBoost algorithm in the form of
probabilities of each particular observation (DRE) belonging to a particular output class (bound or
unbound). By using different thresholds for these probabilities above which the model predicts a

DRE as bound, I obtained the numbers of true and false positives for each threshold, as well as
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true and false negatives relative to the ground truth of DRE binding obtained from the
corresponding AhR ChIP-seq experiment. Each threshold produced a point on the ROC and PRC
curves; the area under the curve was calculated using a line interpolated through all the points.
Statistical analysis

Statistical analysis was carried out in Python 3, using the scipy 1.8.0 package (92). ChIP-
seq signals were analyzed using the Kruskal-Wallis test and post-hoc analysis performed with the
Wilcoxon test for each pair. Results were considered significant if P-value was < 0.01.
RESULTS
AhR binding is cell line and cell type-specific

The first part of my study was focused on improving the understanding of the molecular
determinants underlying the binding of the human aryl hydrocarbon receptor (AhR) to DNA. To
achieve this goal, I investigated the role of the core 5'-GCGTG-3" AhR binding motif in
determining the cell-specificity of AhR binding. This core AhR binding motif is known as the
dioxin response element — DRE. I compared AhR binding in human cells across previously
published and publicly available AhR binding data in the form of chromatin immunoprecipitation
(ChIP) experiments. These experiments were either followed by sequencing (ChIP-seq) or a
microarray (ChIP-chip). The ChIP-seq experiments provided a genome-wide view of AhR
binding, while the ChIP-chip experiments were focused only on determining AhR binding in gene
promoters. Each experiment selected for the analysis of AhR binding was performed on a specific
cell line or on primary cells. Experiments on the following cells were included in further analyses
— 1) two epithelial breast cancer cell lines - MCF-7 and T-47D, 2) a hepatocellular carcinoma cell
line - HepG2, 3) a lymphoblastoid cell line — GM17212, and 4) primary human hepatocytes. The

cells in these experiments were treated with an AhR agonist (TCDD or 3-MC) or vehicle control
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(VC) — dimethyl sulfoxide (DMSO) for a duration of 45 minutes, 1 hour or 24 hours, or were not
treated with either — HepG2 cells. For the full list of experiments, including the total number of
AhR peaks, as well as type, concentration, and duration of treatments, see Table 1. The breast

cancer cell lines had data available from more than one experiment.

Treatment
Number
Cells Chemical Duration Concentration Control Genome of GEO or EN.CODE
wide? accession
peaks
MCF-7 TCDD 45 minutes 10 nM TCDD+IgG Yes 2594 GSE41820
MCF-7 TCDD 24 hours 10 nM VC Yes 3494 GSEQ90550
PIMaY" rcpp 24 hours 1 nM Ve Yes 3145 GSE205502
hepatocytes
HepG2 none 0 hours none 1gG Yes 12164 ENCSR412ZDC
GM17212 3-MC 24 hours 1 uM VC Yes 17535 GSE116632
T-47D 3-MC 1 hour 1M VC No 241 None
T-47D TCDD 1 hour 10 nM VC No 411 None

Table 1 — AhR ChIP-seq and ChIP-chip experiments.

To develop and train my machine learning models I used data from four AhR ChIP-seq
binding experiments - 1) MCF-7 cells treated with 10 nM TCDD for 24 hours (referred to as MCF-
7 or MCF-7 24h), 2) primary hepatocytes treated with 1 nM TCDD for 24 hours (referred to as
primary hepatocytes), 3) HepG2 cells without AhR agonist treatment (referred to as HepG2), 4)
GM17212 cells treated with 1 uM 3-MC for 24 hours (referred to as GM17212). In addition, some
analyses were performed on the remaining three AhR ChIP-seq and ChIP-chip binding
experiments — 1) MCF-7 cells treated with 10 nM TCDD for 45 minutes (referred to as MCF-7
45m), 2) T-47D cells treated with 10 nM TCDD for 1 hour (referred to as T-47D TCDD), 3) T-

47D cells treated with 1 uM 3-MC for 1 hour (referred to as T-47D 3-MC). All AhR binding
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experiments performed on T-47D cells were ChIP-chip and only reported the binding of AhR in
gene promoters.

First, I searched for the occurrences of DREs within the hgl9 human reference genome
and found approximately 1.6 million DREs in the human genome. Upon intersecting these DREs
with the genomic locations of AhR peaks I identified the existence of AhR peaks with either (i)

none (0-DRE peaks), (ii) exactly one (singleton peaks), or (ii1) more than one (multi-DRE peaks)

DREs (Figure 2).
chr15 | GB,STB kb 69,8?0 kb e 70, 7|56 kb
MCF7 '
(TCDD for 24h)
peaks m
DREs I |l

1-DRE multi-DRE 0-DRE
(singleton)

Figure 2 — AhR peaks with 0-, 1-, and multi-DREs under the peak.

Next, I calculated the percentages of each type of peak — 0-DRE, singleton, and multi-
DRE, across all AhR peaks within each AhR binding data set listed in Table 1. The percentage of
singleton AhR peaks ranged between 22.3% and 33% and was similar across all data sets. The
percentage of multi-DRE peaks, however, was markedly larger for the two types of liver cells —
HepG2 cells and primary hepatocytes (Figure 3). Even though HepG2 cells were not treated with
an AhR agonist, the HepG2 experiment resulted in 12,164 AhR peaks. These results suggest the

possibility of basal induction of AhR in cells exposed to typical cell culture conditions.
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Figure 3 — percentage of AhR peaks with at least one DRE.
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Then, I investigated the locations of singleton DREs relative to the mid-point of their
corresponding AhR peaks. If these DREs are indeed functional and not only showing up at random
under the AhR peaks I would expect them to be enriched at one central or two centrally
symmetrical points. This is because the AhR-ARNT dimer can bind to either strand of the DNA —
depending on where the DRE is located, and because the DNA binding domain of the dimer does
not lie exactly in the middle of the protein complex. My results show that the majority of singleton
DREs are located near the mid-point of their corresponding AhR peak (Figure 4). For example, in
MCF-7 cells, approximately 50% and 80% of singleton peak DREs were found within 100 and
200 base pairs up-/down- stream from the midpoint of the peak, respectively. However, I observed
that in HepG2 cells, even though singleton DREs appeared somewhat centrally enriched, it was
not to the same degree as singleton DREs in MCF-7 cells, primary hepatocytes and GM 17212 cells

(Figure 4).
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Figure 4 — histogram of DRE position relative to the mid-poing of singleton AhR peaks.

Most TF binding peaks occur in areas of open chromatin, except for some pioneering
factors that bind in areas of closed chromatin, and potentially recruit chromatin remodeling factors.
Therefore, the TF binding peaks of most TFs overlap with DNase hypersensitive sites (DHSs) or
similar experimentally verified regions of open chromatin (82). To examine the contribution of
chromatin accessibility in determining cell specificity of AhR binding, I examined DNase-seq
broadPeak files from the ENCODE database. Only DNase-seq experiments most closely
corresponding to the cell line or primary cell type used in the AhR binding experiment were used
(81, 82). I identified all DREs and AhR peaks appearing in open chromatin for each cell line or

type and determined that the majority of AhR peaks can be found in open chromatin (Table 2).
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Number of DREs in open Percentage of

chromatin AhR peaks in
Singleton Tsolated open
Cells bound unbound chromatin

MCF-7 869 27 486 92.9%

primaty 764 39 750 69.0%
hepatocytes

HepG?2 3 857 21 228 83.6%

GM17212 2 557 3 833 85.6%

Table 2 — number of singleton bound and isolated unbound DREs, percentage of AhR peaks in
open chromatin.

Generally, DNase-seq or other types of experiments probing chromatin accessibility
available in databases such as ENCODE are done on cells under normal cell culture conditions.
Consequently, none of the available DNase-seq experiments corresponding to the cell lines or
types used in this thesis were treated with AhR agonists. Therefore, the DNase-seq and AhR
binding experiments are matched in ligand treatment only in the HepG2 cells, since these cells
were not explicitly exposed to an AhR ligand. However, even though [ use DNase-seq experiments
corresponding to a non-treated cellular state to determine bound and unbound DREs in a treated
cellular state, I observed that the majority of AhR peaks do lie in open chromatin - as it is before
treatment (Table 2) — between 83.6% and 92.9%. These findings are consistent with our ATAC-
seq data in mouse primary hepatocytes treated with TCDD for 6 hours (unpublished). These results
indicate that AhR activation does not result in extensive chromatin remodeling, therefore the use
of the DNase-seq prior to treatment is justified. The only exception I found was the human primary
hepatocyte AhR ChIP-seq experiment where only about 69% of AhR peaks lie in initially open
chromatin. Unfortunately, none of the related human liver or hepatocyte DNase-seq experiments

available on ENCODE could be closely matched to the primary hepatocytes used for the AhR
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ChIP-seq experiment. Hence, primary hepatocytes were excluded from many of the subsequent
analyses.

Further analysis focused on contrasting bound and unbound DREs. I observed that the
proportions and exact identities of unbound and bound DREs found in open chromatin appear to
be highly cell line or type specific. Out of nearly 8,000 DREs found in open chromatin across each
of the four relevant cell lines or types, about half are bound in at least one, while only 14 DREs

are bound in all four (Figure 5).

Bound DREs

B MCF-7 (TCDD 45m)
I Primary Hepatocyte
 HepG2

- GM12872

Figure 5 — Venn diagram of bound DREs in accessible chromatin of all four cell lines or types.

In contrast, about half of these pervasively accessible DREs are unbound in all four cell
lines or types (Figure 6). These results suggest that if a DRE is found in open chromatin of all four
cell lines or types that DRE is much more likely to be unbound in all four than it is to be bound.
Conversely, if such a DRE is found to be at all bound than it is most likely bound in only one or
at most cell lines or types, since only 3.1% of bound DREs in Figure 5 are bound in 3 or all 4 cell

lines or types.
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Unbound DREs
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Figure 6 — Venn diagram of unbound DREs in accessible chromatin of all four cell lines or
types.

The two breast cancer cell lines, MCF-7, and T-47D, have publicly available AhR binding
experiments with similar treatment conditions, i.e., 45 minutes of 10 nM TCDD and 1 hour of 10
nM TCDD treatment, respectively. However, even between these two breast cancer cell lines most
accessible DREs appear bound in only one of the two cell lines according to their respective AhR
peak lists (Figure 7). A more detailed look at a heatmap of MCF-7 AhR binding signal strength
surrounding DREs bound only in T-47D shows that as many as three quarters of these DREs also
possess subthreshold peaks in MCF-7 cells (Figure 7C). Ultimately, a DRE that lies within open
chromatin of two different cell lines or types is somewhat likely to be bound in one and unbound
in the other. These results jointly suggest the existence of AhR binding determinants beyond DNA

sequence and the accessibility of chromatin.
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Figure 7 — Venn diagram of AhR peaks in MCF-7 and T-47D cells; MCF-7 AhR signal across T-
47D only peaks.



When examining AhR peaks shared between two cell lines or types, I observed that among
AhR peaks found at the same genomic location in two binding experiments there was a higher
percentage of peaks with DREs, when compared to AhR peaks that were unique to a single binding
experiment (Figure 8). Conversely, this means that AhR peaks with DREs are more likely to appear

in more than one cell line or cell type than 0-DREs peaks.
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Figure 8 — fraction of AhR peaks with DREs.

Breaking down AhR peaks by the number of DREs under the peak, into 0-DRE, singleton,
and multi-DRE peaks and then quantifying the AhR ChIP-seq signal across each group of peaks
revealed significant differences between average signal strength between groups. Namely, the
more DREs an AhR peak had, the higher the average ChIP-seq signal was under the peak (Figure
9). These results jointly suggest that DREs are likely participating in determination of AhR binding
and that a DRE-centric approach to the investigation of cell-specificity of AhR binding could

reveal important determinants and potential mechanisms driving AhR binding to DNA.
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Figure 9 — average AhR signal across peaks with 0-, 1-, and multi-DREs.

Machine learning models accurately predict AhR binding

Next, I sought to improve our understanding of the likely molecular determinants of cell-
specific AhR binding, beyond chromatin accessibility and the core DRE motif. To achieve this
goal, I developed a set of interpretable machine learning models trained to predict the binary
binding status of DREs in open chromatin, i.e., bound or unbound. The models were trained with
increasingly complex combinations of input features for each cell line or type. The models were
trained on the singleton bound DREs occurring under AhR peaks, as my bound (positive) training
examples and isolated unbound DREs (see Methods) occurring in open chromatin but not under
AhR peaks, as my unbound (negative) training examples. The DREs under multi-DRE peaks were

considered ambiguous, as it was not possible to computationally determine which specific DRE(s)
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among the cluster of DREs were responsible for AhR binding. However, I have used these DREs
in model evaluation. All machine learning models presented in this thesis were developed using
the gradient boosted tree algorithm of the XGBoost family of algorithms, which has been shown
to handle non-linear data well (93). In addition, these algorithms also provide metrics of feature
importance. Therefore, it is possible to evaluate the contribution of individual input features to
improving the model performance (94).

The models I developed use features centered on the DRE which were based on the local
chromatin context. These models are trained on singleton bound and isolated unbound DREs found
in open chromatin for the cell line or type of interest. Models were validated using the 5-fold cross
validation procedure. Due to a limited number of bound singleton DREs, I have not created a
dedicated test set to evaluate the models. Instead, as model hyperparameters are tuned with 5-fold
cross validation (see Methods), the average performance of the models across the five folds is
reported (Figure 10). This choice is further justified by the purpose of this thesis which was to
create interpretable machine learning models and derive from them mechanistic insights regarding

cell-specific binding of AhR.

Model training and
evaluation schematic

Lm:arl chromatin T (=
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""" " XGBoost 5old
cross-validation

Figure 10— schematic representation of model training.

I included the following local chromatin input features in the trained models - 1) DNA
sequence immediately flanking the DRE. The contribution of flanking sequence of up to 7

nucleotides directly up- and down- stream from the DRE was investigated. These nucleotides have
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been previously proposed to be involved in AhR binding through an analysis of 13 bona fide AhR
binding sites (45). The flanking sequences were one-hot encoded and used as model inputs; 2)
Binned average values of bigWig signals of experiments performed on the cell line or type most
closely corresponding to the one used in the AhR binding experiment. Namely, for the primary
hepatocyte model [ used bigWig signals from experiments done in hepatocytes originated from H9
cells, and for GM17212 I used bigWig signals from experiments done in GM12878. All other cell
lines were matched exactly, e.g., MCF-7, and HepG2. To create model input features from these
bigWig files I used the following publicly available sequencing experiments i) DNase-seq (as
representative of chromatin accessibility), ii) histone modification, and 1iii) transcription factor
ChIP-seq experiments from ENCODE — see methods for details (81, 82). I created 15 bins of width
99 base pairs for each bigWig signal and each DRE. Each bin was assigned a value that was the
average bigWig signal across the width of that bin. The mid-point of the central bin was positioned
at the middle nucleotide of the 5-bp DRE; 3) Indicator variables of whether the DRE is found in a
strict (+/- 200 bp away from a transcription start site - TSS) or loose (+/- 1500 bp away from the
TSS) definition of a promoter.

To optimize model performance and prevent overfitting, I conducted an extensive
hyperparameter search for each newly trained model (see Methods). Thus, for each subset of input
features and for each cell line a new hyperparameter search was performed. Among all models
trained during the hyperparameter search the model with the highest average performance across
the five folds was selected as the representative model for the given subset of input features and
given cell line. Unless otherwise stated, model performance was evaluated as the area under the
Receiver Operating Characteristic (ROC) and Precision Recall (PRC) curves, averaged over five

folds using the 5-fold cross validation procedure. Since the AhR binding data sets were largely
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unbalanced — i.e., there was a much higher number of unbound than bound DREs (Table 2), the
area under the PRC curve (auPRC) was considered as a more appropriate metric of model
performance. Therefore, in each case the model producing the highest auPRC was selected as the
best performing model. Nonetheless, the area under the ROC curve (auROC) was reported as it
remains a useful metric to distinguish between poorly and well performing models when
comparing between different cell lines or types (see Methods — Performance Metrics).

First, to investigate different input feature sets and their influence on model performance,
[ developed and validated models with the following feature sets used as model inputs - 1) DNase-
seq only (DNase model), 2) flanking sequence only (Seq model), 3) flanking sequence and DNase-
seq (Seq + DNase model), 4) flanking sequence, DNase-seq and histone modifications (Seq +
DNase + HMs model), 5) flanking sequence, DNase-seq, histone modifications and transcription
factor binding (referred to as the full model or Seq + DNase + HMs + TFs model). For most cell
lines and types, the performance of each successive model improved, except for the primary
hepatocyte (not shown) and HepG2 cells. Here, the performance of the sequence only models was
overall very low, even lower than the performance of the corresponding DNase model.
Nonetheless, the performance of Seq + DNase model was slightly higher than the DNase model
for primary hepatocytes and HepG2. These results indicate that the flanking sequence provides
some additional useful information when put in the context of the extent of chromatin accessibility

(Figure 11).
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Figure 11 — ROC and PRC curves for model training.
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derived from a single donor specific to that experiment. All other input features, inclusive of the
list of DREs in accessible chromatin, were obtained from hepatocyte-like cells in vitro
differentiated from H9 cells. This discrepancy is also evidenced in a lower percentage of AhR

peaks occurring in open chromatin in the primary hepatocyte experiment (Table 2).

Next, I investigated the contribution of individual chromatin context features to improving
the performance of full models. For each cell line, I trained the full model on all available data
with the model hyperparameters set to values previously determined to produce the best
performing model. After the full models were trained, I used the information gain metric generated
by XGBoost to determine the average feature importance of all features (Figure 12), the relative
feature importance of sequence features per flanking sequence nucleotide position (Figure 13), and

relative importance of individual bins of non-sequence features (Figure 14).
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Figure 12 — feature importance lists of all features for full models.
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Figure 12 (cont’d)
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Figure 13 — feature importance of flanking sequence.
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Figure 14 — feature importance of individual bins.

Examining the feature importance scores of all features used in full models I observed that
specific models are predominantly learning and making AhR-DRE binding predictions by relying
on different features across different cell lines and types (Figure 12). Each cell line or type had
three to six bigWig signals with feature importance 2-5 times higher than that of any other signal.
These were: 1) in MCF-7 cells - H3K4mel, H3K4me3, GATA3, CTCF, ZNF217 and FOXAT1; 2)
in primary hepatocytes - DNase-seq, SP1, H3K27ac and RXRA; 3) in HepG2 cells - MXI1, MAX,
NR2F2, ZEB1; and 4) in GM17212 cells - SP1, POLR2A, TAF1, H3K27ac, and CREB1. Some

features appear to be ranked relatively highly across most cell line or types, such as the binding of

33



CTCF, Rad21, SP1, FOXA1, MAX and MAX related factors MAZ, and MXI1; as well as histone
modification H3K27ac. Nevertheless, the relative level of importance of these features varied
across different cell lines or types - e.g., CTCF ranked fifth in MCF-7 cells and 20th in primary
hepatocytes (Figure 12). Additionally, when looking at the feature importance scores of individual
bins across cell lines or types, the distribution of relative importance scores across bins varied
between cell lines or type. For example, the central bins of H3K27ac in GM 17212 cells exhibited
the highest importance for this feature, whereas in MCF-7 cells the central bins were not used by
the model and were, consequently, not assigned an importance score (Figure 14).

To verify that the ordering of feature importance scores in Figure 12 was robust and
reproducible I created ranked lists of features with highest feature importance - one ranked list for
each of the five folds within the 5-fold cross validation. Next, for each feature I created a boxplot
of rank distributions across the folds (Figure 15). I observe that the most highly ranked features
always rank highly and thus exhibit low rank variability. For instance, H3K4mel always ranks

first in all five folds within the MCF-7 model.
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Figure 15 — ranks of features sorted by importance across five folds in 5-fold cross validation.

To investigate the contribution to model performance of DNA sequence immediately
flanking the DRE, I examined the importance scores of nucleotides flanking the DRE within 1)

flanking sequence-only models (not shown), and 2) full models. Importance scores of nucleotides
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produced by the sequence only models were highly variable between different cell lines and types.
On the other hand, the importance scores of nucleotides flanking the DRE produced by the full
models demonstrated similar profiles of nucleotide importance across different cell lines or types.
In summary, the thymine residue at the flanking position directly 5' of the DRE (labelled as the -1
position) had the highest feature importance out of all nucleotides that could appear at that position
in three out of four examined binding experiments (Figure 13). Additionally, for two out of four
binding experiments the thymine at position -2 and cytosine and guanine at position +1 also had
high feature importance (Figure 13).

To examine the influence of individual TFs on model performance, I developed models
that used only a single input feature — the 15 bins representing the average bigWig signal of a
single TF. Sorting these models by performance, I determined that the relative ordering of
transcription factors (Figure 16) was different when compared to the feature importance ranking
of the full models shown in Figure 12. Notably, for MCF-7 cells (Figure 16), EP300 was the factor
resulting in the second-best performing model, while in the corresponding full model, EP300 did
not appear even among the top 20 features with highest importance (Figure 12). On the other hand,
GATA3 was the most predictive factor both in the full model and individually (Figure 12 and
Figure 16). These results point to a high likelihood of redundancy between binding of different

TFs.
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Figure 16 — single transcription factor model performance.

In conclusion, the models predicting the AhR binding status of DREs in open chromatin
developed here, generalized well within the cell line or type they were trained on, when evaluated
on a subset of bound singleton DREs and unbound isolated DREs left out from the training dataset
(i.e., a single fold in a 5-fold cross validation). Additionally, these models exhibited highly variable
chromatin context specificity between different cell lines or types. The only exceptions were the
DNA flanking sequence features. Most cell lines or types exhibited similarities in DNA flanking
sequence specificity, potentially pointing to a common flanking sequence grammar.

Singleton peak-trained models predict multi-DRE and 0-DRE AhR peak binding within the
same cell line or cell type

To assess the robustness of trained models and to investigate the extent of overtraining, [
performed feature selection based on the feature importance rankings of the full models, for each
cell line or type. Briefly, using the list of 300 features with the highest feature importance in Figure
12, I created several models with increasingly larger subsets of those features used as model inputs.
I created models with a subset of top N features with highest importance scores in the full model
(where N = 10, 25, 50, 75, 100, 200, 300). In the MCF-7 cells I observed that the performance

plateaus already at around 100 top features used and that the performance of the model using only
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the top 50 features, although slightly lower on average, is not significantly different than the
performance of the full model (Figure 17).
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Figure 17 — reduced feature set model performance (all features).

Similarly, I investigated the influence of the number of flanking nucleotides used in model
training. It was previously indicated, based on computational analysis of 13 experimentally
verified DREs, that up to 7 up- and down- stream DRE-flanking nucleotides might play a role in
determining AhR binding (45). Accordingly, I have created sequence only models with N flanking
nucleotides up- and down- stream of the DRE used in model training (N =1, 2, 3, 4, 5, 6, 7). The
results show that the sequence-only model performance plateaus at four flanking nucleotides
(Figure 18). Therefore, all models using flanking sequence features were developed using exactly

four flanking nucleotides up-/down- stream of the DRE.
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Figure 18 — reduced feature set model performance (sequence features).

Noting that the DRE is not a palindromic binding motif, it is possible that whether the DRE
occurs on the forward or the reverse strand might influence AhR binding determinants. Mainly,
DRE orientation might influence the spatial orientation of the AhR-ARNT heterodimer when
binding DNA, and thus also influence the direction of interactions with other TFs. To account for
this potential issue, I investigated whether correcting the orientation of local chromatin context
features by aligning them with the orientation of the DRE influences model performance.
Specifically, for DREs found on the forward strand, all features were left as-is, and for DREs found
on the reverse strand, the bins of all features were flipped around the central bin (the bin containing

the DRE), to match the DRE orientation. The results indicate that there are no differences between
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the original and strand-corrected models (Figure 19).
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Figure 19 — model performance with and without strand correction.

Next, I evaluated the ability of full models to predict the binding status of DREs that were
not used in training, as a test of how well the models generalize. Model performance was first
evaluated on multi-DRE AhR peaks. For each muli-DRE peak, the binding status of each DRE
was predicted by the model. If at least one DRE was predicted as bound, the peak was considered
generally recovered (Figure 20 - blue bars). If the DRE closest to the summit of the peak was
predicted as bound, the peak was considered centrally recovered (Figure 20 - orange bars). General
recovery of multi-DRE peaks in open chromatin resulted in true positive rates (TPR) between 80-

100% for most multi-DRE peaks (Figure 20).

Multi-DRE TPR across AhR peaks in open chromatin
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Figure 20 — model evaluation of multi-DRE AhR peaks in open chromatin.

In the MCF-7 cells, AhR peaks containing more than four DREs were mostly not recovered

by the models (TPR around 40% or lower), suggesting the possibility of a different mechanism
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underlying AhR binding in areas of high DRE density in MCF-7 cells, possibly through
cooperative binding (95). In the hg19 human reference genome approximately 1% of all DREs can
be found in one of these high DRE density areas, which were defined as 5 or more DREs within a

500-base pair region (Figure 21).
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Figure 21 — number of high DRE density clusters in the human genome.

On the other hand, multi-DRE peaks in closed chromatin were recovered at a much lower
and variable rate of 25-60% (Figure 22), suggesting that AhR binding in closed chromatin might
be governed by a distinct set of rules compared to the binding in initially open chromatin.
Alternatively, since my models are trained to predict the binding status of DREs in open chromatin,

the model might struggle when predicting the binding status of DREs in closed chromatin.

MCF-7 HepG2 GM17212
Multi-DRE TPR across AhR peaks in closed chromatin
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Figure 22 — model evaluation of multi-DRE AhR peaks in closed chromatin.

However, taking a closer look at DNase-seq signal in the vicinity of these closed chromatin

DREs revealed no correlation between the normalized binding strength of DNase-seq signal and
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the DRE binding status prediction probabilities (Figure 23). This result indicates that the lower

performance of the models when predicting the binding status of bound DREs in closed chromatin

was not lower due to lower DNase-seq signal alone.
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closed chromatin.

Contrary to the expectation that the more DREs a peak contains, the higher the likelihood

of that peak being recovered by pure chance, I did not observe this trend in Figure 20 and Figure
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22, with either general or central recovery. These results suggest that the models generalized well,
and that the multiple-testing issue was not prevalent when assessing general recovery rates.

I also evaluated the false positive rates (FPR) of the full models when predicting the
binding status of 1) multi-DRE DNase-seq peaks, 2) 1+-DRE peaks of best performing TF in open
chromatin, 3) 1+-DRE peaks of best performing TF in closed chromatin (Figure 24). “Best
performing TF” refers to the TF that was ranked the highest in importance in Figure 12. Best
performing TFs were GATA3, MXII1, and SP1 for MCF-7, HepG2 and GM17212 cells,
respectively. The FPRs generally do not exceed 20% and are the lowest for multi-DRE DNase-seq

peaks.
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Figure 24 — model evaluation on non-AhR peaks.

Similarly, to multi-DRE peaks, I evaluated the performance of the models on 0-DRE peaks.
In this case, since there were no DREs to evaluate model performance on, models trained on all
features excluding flanking DNA sequence (DNase + HMs + TFs) were used for evaluation. To
calculate the values of all non-sequence input features I previously used the DRE genomic location
as a reference. However, since 0-DRE peaks do not have any DREs, I simulated five “dummy

DREs” for each 0-DRE AhR peak to create reference points for the calculation of input features.
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Unlike actual genomic DREs, these dummy DREs are not present in the genomic sequence and
only define the location to be used as reference for the calculation of input features. The center of
the first dummy DRE was aligned to the mid-point of the AhR peak and the other four dummy
DREs were positioned at -100, -50, +50, and +100 base pairs relative to the mid-point of the peak.
I investigated up to five dummy DREs for each 0-DRE peak since the majority of DREs within
singleton AhR peaks were located within —100 to +100 base pairs relative to the mid-point of the
peak (as shown in Figure 4). Upon establishing the dummy DREs I applied the same procedure as
described for predicting multi-DRE peaks. Specifically, a 0-DRE peak was considered generally
recovered if at least one of the five dummy DREs was predicted as bound. The peak was considered
centrally recovered if the central dummy DRE was predicted as bound. In MCF-7 cells,
approximately 93.7% of the 0-DRE peaks are partially recovered and 91% are centrally recovered.
Other cell lines exhibit a slightly lower rate of recovery, nevertheless, the majority of 0-DRE peaks

was recovered (Figure 25).
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Figure 25 — model evaluation on 0-DRE AhR peaks in open chromatin.

Similar to multi-DRE peaks, the central true positive rates for 0-DRE AhR peaks in closed
chromatin are considerably lower — between 11.7% and 41.8% for GM17212 and MCF-7,

respectively (Figure 26).
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Additionally, I evaluated the false positive rates (FPR) of my models when predicting the

binding status of 1) 0-DRE DNase-seq peaks, 2) 0-DRE peaks of best performing TF in open

chromatin, 3) 0-DRE peaks of best performing TF in closed chromatin. Central FPR for 0-DRE

DNase-seq peaks is relatively low and does not exceed 1.3%, However, central FPR for 0-DRE

best performing TF peaks in open chromatin can be high and ranges from 8.6% to 45% for HepG2

and MCF-7 cells, respectively (Figure 27).
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Figure 27 — model evaluation on 0-DRE non-AhR peaks.

Cross-cell models provide insights into cell-specificity of AhR binding

To examine whether full feature models for different cell lines learn from different features
simply because different features were available for different cell lines, I developed full feature
models that only use features available in all evaluated cell lines - MCF-7, HepG2 and GM17212.
The input features were limited to DNase-seq, and to only those TF and HM features for which
ChIP-seq experiments were available in all three cell lines. The results still exhibit a highly variable

set of the most important features determining AhR binding within different cell lines (Figure 28).
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Figure 28 — feature importance lists of all features in full models for DREs in enhancers only.

On the other hand, the binding of AhR to DREs in specific genomic locations, such as
promoters or enhancers, might be governed by distinct molecular mechanisms. Therefore, I
investigated whether there were any enhancer-specific binding rules and whether these rules might
be similar between cell lines. To this purpose, I created full models predicting the occupancy of
singleton bound and isolated unbound DREs found only in enhancers. Once again, the results
display a highly variable sets of the most important features for each cell line. Nevertheless, I

observed an increase in feature importance for some TFs, such as the EP300 transcriptional

coactivator for all cell lines (Figure 29).
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Figure 29 — feature importance lists of features shared by all three cell lines in full models for
DREs.
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Examining the feature importance of individual factors in different cell lines, I noticed that
that SP1 and MAX transcription factor have the highest feature importance in the full models for
GM17212 and HepG2 cells, respectively. However, in MCF-7 cells, neither of these factors
appeared within the top 20 factors with highest feature importance (Figure 12). To investigate
whether the importance of these factors might be low in MCF-7 cells due to redundancy with other
TFs or other features, I examined the discriminative power of a single feature derived from these
factors. For both SP1 and MAX, I created a single feature that was the maximal normalized signal
within a 100-bp region surrounding the DREs used in model training. Next, for each feature in
each cell line I found the optimal threshold that produced the highest F1 score. The F1 scores of
both SP1 and MAX were much lower in MCF-7 cells when compared to HepG2 and GM17212

cells — 7% vs. 35% and 60%, respectively (Figure 30).
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Figure 30 — within-cell line F1 scores for the optimal threshold of the central bin of the TF
signal.

These results indicate that SP1 and MAX are not predictive of AhR binding in MCF-7 cells
but are highly predictive of AhR binding in GM17212 and HepG2 cells. On a similar note, GATA3
is the factor most predictive of AhR binding in MCF-7 cells. Since GATA3 is not expressed in
many other cell lines or types, it is difficult to investigate whether the AhR binding dependence

on GATA3 in MCF-7 cells is specific to that cell line. To further investigate the difference in
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predictive capabilities of features based on the MAX transcription factor I compared the binding
profiles of MAX centered on bound and unbound DREs in MCF-7 and HepG2 cells. I observed
that the difference in MAX signal between bound and unbound DREs appears qualitatively less
pronounced in MCF-7 cells than it is in HepG2 cells, which could explain the increased utility of
MAX features in the HepG2 model (Figure 31).
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Figure 31 — heatmaps representing MAX binding across bound and unbound DREs in MCF-7
and HepG?2 cells.

Next, I evaluated the cross-cell performance of two models with similar treatments — MCF-
7 and primary hepatocyte models. Here I focused on the sequence-only models to examine the

possibility of a cross-cell flanking sequence grammar. The sequence-only model trained on MCF-
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7 cells and evaluated on primary hepatocytes did not perform any better than random. Conversely,
the sequence-only model trained on primary hepatocytes performed better when evaluated cross
cells on MCF-7 cells than within-cells in primary hepatocytes (Figure 32). Admittedly, the cells
in these two experiments were both treated with TCDD for 24 hours, although the concentration

of TCDD was different - 10 nM and 1 nM, for MCF-7 cells and primary hepatocytes, respectively.
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Figure 32 — cross-cell performance of sequence only models.

To further evaluate cross-cell performance, I focused on two similar cell lines — MCF-7
and T-47D, which are both epithelial breast cancer luminal type A cell lines. Models comprising
of 1) sequence-only, 2) GATA3-only, and 3) sequence and GATA3 features trained in the MCF-
7 cells exhibit high performance within cells (results not shown), where model performance rises
with each successive model. Nonetheless, when these models were evaluated on all bound DREs
within T-47D cells treated with either 3-MC or TCDD for one hour, I found that it was the
sequence-only model that had the highest true positive rate of 90.67%. Any DREs that were bound
in both MCF-7 and T-47D cells were excluded from model evaluation to avoid using training data
in the testing phase. When evaluating the sequence-only model trained on MCF-7 cells separately
in three subgroups of T-47D DREs, namely DREs bound in 1) TCDD treatment only, 2) 3-MC

treatment only, 3) and both TCDD and 3-MC treatment, the true positive rates were 90.48%,
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89.47%, and 92.86%, respectively (Figure 33). Therefore, the sequence-only model could not
distinguish between AhR binding resulting from activation by different AhR ligands. These results
indicate that AhR binding resulting from activation by different ligands in the same cell line might
not be as different as Figure 7 seems to suggest. It is therefore possible that many of the AhR peaks

unique to a single ligand were also sub-threshold peaks for the other ligand.
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Figure 33 — cross-cell performance of MCF-7 models applied on T-47D cells.

Taken together, these results also suggest that cross-cell model predictions might be more
accurate for binding experiments with similar cell lines or types (like MCF-7 and T-47D, both of
which are breast carcinoma cell lines) and treatments, as opposed to binding experiments with
dissimilar cell types (like MCF-7 and primary hepatocytes) but similar treatments.

AhR binding models reveal positive and negative regulators of AhR binding

Next, I focused on analyzing individual DRE binding status predictions. To this end, I used

ELI5 - https://eli5.readthedocs.io/, an algorithm that summarizes the decision-making process
underlying individual model predictions. ELIS assigns a numerical weight to each feature the
model used when making each DRE binding status prediction. These feature weights are a
summary measure of how much the feature contributed to the final DRE binding status prediction

across all decision trees used by the XGBoost model. The higher the weight the more the feature
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contributed. Features can be both positively and negatively weighted and an example showcasing
the top 10 positively and negatively weighted features for a single DRE binding status prediction
is shown in Figure 34. In this example, the high average bigWig signal value within bin 0 of MAX
binding is assigned the highest weight by ELIS which means that this feature contributes the most

to the model predicting the corresponding DRE as bound.
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Figure 34 — an example showcasing the top 10 positively and negatively weighted features for a
single DRE.

When analyzing the weights assigned to features that are the individual bins of bigWig
signals across all correctly predicted bound DREs, i.e., true positives (TPs), I observed both model
features whose weights increase with increasing feature values - termed positive regulators, as well

as features whose weights decrease with increasing feature values — termed negative regulators

(Figure 35).
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Figure 35 — scatterplot examples of positive and negative regulators.
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Upon determining the direction of regulation — positive or negative regulator, for each
feature in each cell line, I compared the direction of regulation of features in common to each
combination of two cell lines. In total I found 102, 46, and 59 features used in common by 1)
MCF-7 and HepG2, 2) MCF-7 and GM 17212, and 3) HepG2 and GM 17212 models, respectively.
I observe that for each model combination approximately 41-62% of features appear as positive

regulators in one cell line and negative in another (Figure 36).
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Figure 36 — positive and negative regulators in different pairs of cell lines.

Further, a total of 15 features was used by all three models. Out of those, only three features
had the same direction of regulation in all three models — bin 1 of MAZ, bin 1 of MAX, bin 3 of
H3K27ac. All three of these features are positive regulators in all three models (results not shown).
Even different bins of a single transcription factor, e.g., CTCF in HepG?2 cells, can be both positive
and negative regulators, albeit the bins that are negative regulator had very small feature weights
(Figure 37). These results suggest that even though cell-specific models primarily learn from
entirely different features, a small subset of those features shows similar patterns across cells.
Additionally, different TFs might both facilitate or interfere with AhR binding in different cell

lines.
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Figure 37 — average weights assigned to different bins of CTCF.

Lastly, ELI5S provided weights for flanking sequence features, as well. The flanking
sequence feature were binary — i.e., a certain type of nucleotide either appeared at a specific
position or it did not, e.g., nucleotide at position -1 was a thymine or not. The flanking sequence
features can also be seen as positive or negative regulators, as the model produces either positive
or negative weights when a specific nucleotide at a particular position is present. Such sequence
features are classically represented in the form of a sequence logo (95). These representations
indicate how informative the presence of a certain nucleotide at a particular position is when
determining whether the given sequence is a binding site or not. However, when these logos are
formed, usually only the bound sequences are considered. Conversely, the logo generated by my
models is a combination of two motifs — one that describes bound DREs, and another that describes
the unbound DRE:s (the upper and lower motifs in Figure 38, respectively). I propose that this type

of motif is more informative that a standard TF binding motif.
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Figure 38 — motif logo representing bound and unbound DREs.
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Unlike non-sequence features that are common to different cell line models, the direction
of regulation for DNA flanking sequence features appears more stable across cell lines or types.
For instance, between the MCF-7 cells and primary hepatocytes, all three nucleotide features
(position -2 is thymine, -1 is thymine and 1 is guanine) that are used by both models have the same

direction of regulation (results not shown).
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CHAPTER 3: AHR BINDING PARTNERS

INTRODUCTION

Some transcription factors (TFs), such as the AhR, are incapable of binding DNA by
themselves due to their incomplete DNA binding domain, and need to dimerize with other TFs to
bind DNA. The primary and most widely investigated dimerization partner of AhR is the AhR
nuclear translocator (ARNT) protein. The AhR-ARNT dimer tends to dominate the AhR-DNA
binding landscape — hence ARNT has been regarded as the canonical dimerization partner of AhR
(96). In addition, there is little evidence of in vivo AhR binding in the absence of ARNT. However,
many dimerizing TFs have multiple possible dimerization partners, for instance ARNT can
dimerize with itself (97), AhR (96) and HIF 1 a (98). It is thus possible that AhR also has multiple
dimerization partners and could potentially even bind to different cognate sequences when
dimerized with different partners.

Recently, it has been shown that AhR binds certain loci in the absence of ARNT, even
when treated with exogenous ligands, such as 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin (TCDD). One
such locus exists in the promoter of the plasminogen activator inhibitor 1 (PAI-1) gene. The AhR
binds this locus in a TCDD-inducible manner, however the binding of ARNT is markedly absent.
In addition, the promoter of PAI-1 possesses no dioxin response elements (DREs) — the 5'-
GCGTG-3' core consensus binding motif of the AhR-ARNT dimer (99). Huang and Elferink
investigated preserved sequences across species in the promoter of PAI-1 and identified two likely
locations for the binding of AhR. By mutating these sequences and testing for binding via
electrophoretic mobility shift assay (EMSA) they narrowed down AhR binding to a single region
and identified several nucleotides within that region that influence AhR binding. This region was

termed the nonconsensus DRE (NC-DRE) and it shared marked homology with the DNA binding
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sequence of the Kriippel-like factor (KLF) family of TFs. Later, it was confirmed that KLF6
interacts with AhR and binds to the NC-DRE in the PAI-1 promoter in a TCDD-dependent
manner. Furthermore, sequential deletion studies demonstrated that the C terminus of the AhR and
the N-terminal domains of KLF6 are necessary to facilitate this interaction (29).

The activities of AhR and NF-kB pathways have also been functionally linked (100). Tian
et al. demonstrated that AhR and the RelA subunit of NF-kB associate physically in murine
hepatoma cells. Additionally, such physical interactions between AhR and RelA in the absence of
ARNT have also been shown in the IL-6 promoter of human lung cells (28), and c-myc promoter
in breast cancer cells (27).

However, both KLF6 and RelA interactions with AhR have only been demonstrated at a
limited number of loci and it is currently unknown if they could be more widespread. To
investigate this possibility, I have developed a computational method to assess the likelihood of
AhR interactions across the entire genome, by using publicly available ChIP-seq data. My results
indicate that while TCDD-activated AhR predominantly interacts with ARNT, at a subset of sites,
TCDD-activated AhR appears to bind with RelA as well. On the other hand, in cells not explicitly
treated with an AhR ligand, AhR does not seem to interact with ARNT, except for a small subset
of AhR peaks with DREs (0.5% of all AhR peaks). In this case, the AhR does seem to interact
with both KLF6 and RelA extensively, across the genome.

MATERIALS AND METHODS
Reference genome
The reference genome used for sequence alignment in this part of the thesis was the human

genome assembly version hg38.
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Genomic locations of DREs

A list of all DREs and their genomic locations in the human genome was compiled by
searching the hg38 human reference genome sequence for all occurrences of the core DRE
sequence 5'-GCGTG-3' on either strand of the DNA.
Scatterplot of signal-to-signal correlation between two TFs

Given 1) a list of genomic ranges, e.g., a list of TF binding peaks, and 2) two TFs - TF1
and TF2, and their bigWig binding strength signal files representing the genome-wide intensity of
TF-DNA binding; a scatterplot of binding strength signal correlation is constructed in the
following way. For each genomic range, described by the chromosome, start and end of the range,
the maximum of the binding strength signal of both TF1 and TF2 is found. A point is plotted on a
scatterplot, where the x-axis represents the binding strength signal of TF1 and the y-axis represents

the binding strength signal of TF2. The procedure is illustrated below (Figure 39).

58



N
o
o

=
w
o

TF1 signal

A

y

50

40

30

20

TF2 signal

10

L] 50 100 50
relative genomic position [bage pairs]

A\ J

200 1]

0 100 150
relatiye genomic position [base pairs]

lﬂ
o
hd

TF2 signal

0 200 400

TF1 signal

200

Figure 39 — construction of the scatterplot of signal-to-signal correlation between two TFs.

Histogram of individual signal correlations between two TFs

Given 1) a list of genomic ranges, e.g., a list of TF binding peaks, and 2) two TFs - TF1
and TF2, and their bigWig binding strength signal files representing the genome-wide intensity of
TF-DNA binding; a histogram of signal-to-signal correlations is constructed in the following way.
For each genomic range, described by the chromosome, start and end of the range, the binding
strength signals of both TF1 and TF2 within the given genomic range are extracted and converted
into a numerical series of values. The Pearson correlation coefficient for the two series is calculated

and recorded. A histogram of all Pearson correlation coefficients for all genomic regions of interest

is constructed. The procedure is illustrated below (Figure 40).
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Figure 40 — construction of the histogram of individual signal correlations between two TFs.

RESULTS
Genome-wide investigation of protein-protein interactions for DNA-bound TFs

Certain TFs, like the AhR, are generally considered incapable of binding DNA by
themselves and need to dimerize with other proteins to do so. Many such factors have more than
one possible dimerization partner. For instance, ARNT can dimerize itself (97), AhR (96) and
HIF1a (98) and possibly other TFs as well. Two TFs that dimerize to bind DNA, e.g., TFs A and
B, do so together and could, therefore, be considered a single new A-B TF that is bound to DNA.
The dimerization reaction, as well as dimer-DNA binding, are reversible reactions, however the
crosslinking procedure that is the first step of the chromatin immunoprecipitation (ChIP) type of
experiments makes the dimer-DNA complex stable. Thus, two ChIP-seq experiments, one for TF
A and another for TF B should appear as though they were two replicate ChIP-seq experiments for
the same A-B TF. Namely, they would appear as two biological replicate experiments that were
also performed with different antibodies (Figure 41). However, this would be true only within the
context of DNA sites that were bound by the dimer and not by individual TFs, or by an individual

TF dimerized with a different TF.
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To investigate TF-TF interactions across TF-DNA bound sites I propose an analytical
method based on two semi-qualitative metrics. These are 1) the scatterplot of signal-to-signal
correlation and 2) the histogram of individual signal correlations. Both metrics are constructed
starting from a list of peaks. This list could be (i) a list of peaks of TF A, (ii) list of peaks of TF B,
or (iii) the intersection of list of peaks of TF A and TF B.

Given the list of peaks, the scatterplot of signal-to-signal correlation is generated by
calculating the maximum of TF A and TF B signal for each peak and plotting these two maximums
as a point on the scatterplot (left panels in TF-TF interaction figures). Each point represents a
single peak (Figure 39). The value of the Pearson correlation coefficient — r, for all points on the
scatterplot was also reported (see Methods for more details). Similarly, given a list of peaks, the
histogram of individual signal correlations is generated by calculating the Pearson correlation
between the signal of TF A and TF B across each peak, by first transforming these signals into
number series of equal length, and then calculating their correlation coefficient. All Pearson
correlation coefficients are then plotted on a histogram (Figure 40). The percentage of peaks
having Pearson correlation coefficient r>0.7, was reported on the graph as well (see Methods for
more details).

This analytical method possesses an advantage over experimental methods such as
immunoprecipitation followed by mass spectrometry (IP-MS) which are used to investigate
protein-protein interactions. The IP-MS method pulls down the protein of interest (POI) and then
performs mass spectrometry to obtain a list of proteins interacting with the POI. However, this
method assumes that the two proteins interact even when not bound to the DNA, which might not
be the case. The proposed method should work even if the concentration of the dimerized protein

was generally much lower than the concentration of individual proteins A and B across the cell.
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This is because the method works by selecting for sites bound by the A-B dimer, enriching for the

A-B dimer signal in the process.
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Replicate ChIP-seq of protein A-B?
Figure 41 — ChlP-seq of dimerized TFs as replicate ChlP-seq of a single TF.

To set some expectations for these metrics in different scenarios, I first generated the
scatterplot and histogram for two replicate experiments for the same TF — FOXA1. Data was
obtained from ENCODE. The results demonstrated that for replicate experiments one could expect
the scatterplot correlation to be high, r=0.82 in case of FOXA1 replicate experiments (left panel
Figure 42). Similarly, the proportion of peaks with signal correlations exceeding 70% (r>0.7) was
very high — 70% in the case of FOXAI replicate experiments, and considerably shifted to the right

(right panel Figure 42).
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Figure 42 — FOXAI replicate experiment interaction assessment — example of interacting TFss.
Then, I generated the scatterplot and histogram for two experiments of TFs that are known
not to interact — FOXA1 and CTCF. Data for both obtained from ENCODE. The results
demonstrate that for experiments with non-interacting factors one could expect the scatterplot
correlation to be very low, r=0.08 in this case (left panel Figure 43). Similarly, the proportion of
peaks with signal correlations exceeding 70% (r>0.7) was very low — 9% in this case, and the

histogram is relatively flat (right panel Figure 43).
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Figure 43 — FOXAI and CTCF interaction assessment — example of non-interacting TFs.
AhR interactions with ARNT

To confirm and further investigate AhR interactions with ARNT, I examined two pairs of

AhR and ARNT experiments (Table 3). The first pair of AhR and ARNT experiments was
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conducted in MCF-7 cells treated with 10 nM TCDD for 24 hours under the same conditions by
the same lab. The second pair of experiments assessed AhR and ARNT binding in HepG2 cells

not treated by an AhR ligand (data available on ENCODE portal).

Cell line AhR ARNT

MCEF-7 10 nM TCDD for 45 minutes 10 nM TCDD for 45 minutes

HepG2 No treatment No treatment

Table 3 — AhR and ARNT ChIP-seq experiment list.

AhR-ARNT interactions in TCDD-treated MCF-7 cells across all AhR peaks. In
scenarios of treatment with exogenous AhR ligands such as TCDD, the AhR is assumed to require
dimerization with ARNT to interact with DNA. On the other hand, ARNT is known to bind DNA
by dimerizing with other TF partners, such as with itself or Hifla. Therefore, I focused on
investigating AhR-ARNT interactions by using the list of 17,588 AhR peaks in MCF-7 cells
treated with 10 nM of TCDD for 45 minutes. I observed that the scatterplot correlation was very
high, r=0.88 (left panel Figure 44), comparable to results for the two replicate experiments. The
proportion of peaks with signal correlations exceeding 70% (r>0.7) was 26%, and the histogram
was slightly shifted to the right (right panel Figure 44). This result is higher than for non-interacting

TFs, but lower than for two replicate experiments.
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Figure 44 — AhR-ARNT interactions in TCDD-treated MCF-7 cells across all AhR peaks.
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AhR-ARNT interactions in TCDD-treated MCF-7 cells across AhR peaks with 1+ and
2+ DREs. Next, I investigated how the AhR binding motif, also known as the dioxin response
element (DRE), influences the AhR-ARNT interaction results. I have again generated the
scatterplots and histograms of TF interactions, but this time for (1) AhR peaks with 1 or more
DREs — 1+ DREs, 3097 AhR peaks (left panel Figure 45), and for (2) AhR peaks with 2 or more
DREs — 2+ DREs, 563 AhR peaks (right panel Figure 45). The results indicate that the scatterplot
correlation increases with increasing number of DREs, r=0.90 and r=0.93 (top left and right panels
Figure 45). I also observed the narrowing of the scatterplot, with less variation with increasing
number of DREs under AhR peaks. The proportion of peaks with signal correlations exceeding
70% (r>0.7) also increased to 36% and 43%, for 1+ DREs and 2+ DREs AhR peaks, respectively

(bottom left and right panels Figure 45).
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Figure 45 — AhR-ARNT interactions in TCDD-treated MCF-7 cells across AhR peaks with 1+
and 2+ DREs.

AhR-ARNT interactions in TCDD-treated MCF-7 cells across ARNT peaks that do
not overlap AhR peaks. Further, I investigated the correlations between AhR and ARNT binding
across ARNT peaks that do not overlap AhR peaks — ARNT-only peaks. As mentioned, ARNT
readily dimerizes and binds DNA with TFs other than AhR, hence I expected to see lower degrees
of correlation between AhR and ARNT binding. The scatterplot correlation decreased to r=0.63
(left panel Figure 46) compared to AhR peaks which was r=0.88. A trend similar to AhR peaks is
still observable, however this is likely due to some AhR peaks not being called by the peak caller,

despite possessing high AhR signal. On the other hand, the proportion of peaks with signal
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correlations exceeding 70% (r>0.7) is low at 12%, making it more comparable to non-interacting

factors (right panel Figure 46).
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Figure 46 — AhR-ARNT interactions in TCDD-treated MCF-7 cells across ARNT-only peaks.

To investigate how AhR signal influences these results I have split the ARNT-only peaks
into two groups. The first group is referred to as the low AhR signal group — with AhR signal
lower than the AhR peak with the lowest AhR signal. The second group is referred to as the high
AhR signal group — with AhR signal higher than the AhR peak with the lowest AhR signal. I
observed that about 13% of ARNT peaks had no AhR signal at all, and that 61% fell into the low
AhR signal group. Therefore, the left panel in Figure 47 contains more peaks than the right panel,
even though that might not be obvious. The correlation coefficient of the signal scatterplot was
much lower in the low AhR signal group than the high AhR signal group, r=0.11 vs. r=0.72,
respectively (Figure 47). In addition, none of the ARNT peaks with low AhR signal had more than
2 DREs. These results are in line with the notion that ARNT binds DNA in the absence of AhR.
Together, these results indicate that some ARNT-only peaks might also be overlapping sub-

threshold peaks of AhR.
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Figure 47 — AhR-ARNT interactions in TCDD-treated MCF-7 cells across ARNT-only peaks —
low vs. high AhR signal.

AhR-ARNT interactions in non-treated HepG2 cells across all AhR peaks. It is
currently not known whether non-activated or endogenously activated AhR interacts with TFs
other than ARNT and to what extent. By focusing on investigating AhR-ARNT interactions by
using the list of approximately 15,000 AhR peaks in HepG2 cells, I observed that the scatterplot
correlation was very low, r=0.09 (left panel Figure 48), comparable to the results for non-
interacting TFs. The proportion of peaks with signal correlations exceeding 70% (1>0.7) was 10%,
and the histogram was also flat, which was also comparable to the results for non-interacting TFs

(right panel Figure 48). These results suggest that ARNT might not be the primary dimerization

partner of AhR in non-treated or endogenously treated cells.
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Figure 48 — AhR-ARNT interactions in non-treated HepG2 cells across all AhR peaks.

AhR-ARNT interactions in non-treated HepG2 cells across a subset of AhR peaks. |
found that there were only 75 AhR peaks (about 0.5% of all AhR peaks) with more than 1 DRE
and with high correlation between AhR and ARNT signals (r>0.9). The scatterplot correlation
coefficient was much higher for this subset —r = 0.7 (Figure 49). One of these peaks contains two
DREs and was located in the upstream region of CYPIAIl, approximately -1kb from the

transcription start site (TSS).
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Figure 49 — AhR-ARNT interactions in non-treated HepG?2 cells across a subset of AhR peaks.
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AhR interactions with RelA
To confirm and further investigate AhR interactions with RelA, I examined one pair of
AhR and RelA experiments (Table 4), with both AhR and RelA experiments not treated by an AhR

ligand in HepG2 cell line and available on ENCODE.

Cell line AhR RelA

HepG2 No treatment No treatment

Table 4 — AhR and RelA ChlP-seq experiment list.

AhR-RelA interactions in HepG2 cells across all AhR peaks. Here I compared the
binding of an untreated AhR experiment and an untreated RelA experiment in HepG2 cells. The
scatterplot correlation was r=0.68 (left panel Figure 50), and the proportion of AhR peaks with

signal correlations exceeding 70% (r>0.7) was 34%, with the histogram slightly shifted to the left

(right panel Figure 50).
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Figure 50 — AhR-RelA interactions in HepG2 cells across all AhR peaks.

AhR-RelA interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs. Next,
I investigated how the DRE, influenced the AhR-RelA interaction results. I have again generated
the scatterplots and histograms of TF interactions, but this time for (1) AhR peaks with exactly 0

DREs (left panel Figure 51), and for (2) AhR peaks with 3 or more DREs — 3+ DREs (right panel
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Figure 51). The results indicate that the scatterplot correlation decreased with increasing number
of DREs, r=0.72 and r=0.51 (top left and right panels Figure 51). The proportion of peaks with
signal correlations exceeding 70% (r>0.7) was 35% and 34%, for 0 DRE and 3+ DREs AhR peaks,
respectively (bottom left and right panels Figure 51). Interestingly, the correlation between AhR
and RelA binding decreased with increasing number of DREs under the peak, however the

percentage of highly correlated peaks (peaks with r>0.7) remains the same.
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Figure 51 — AhR-RelA interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs.

AhR-RelA interactions in HepG2 cells across AhR peaks with high peak to peak
signal correlation between AhR and RelA. Next, I investigated the scatterplot correlation

between AhR and RelA, but only across AhR peaks that have high peak to peak signal correlation
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between AhR and RelA (peaks with signal to signal correlation of r>0.9), i.e., the right-most
portion of the histogram of individual signal correlations. The scatterplot correlation increased to

r=0.89 (Figure 52) compared to r=0.62 across all AhR peaks. Taken together, these results indicate

that AhR likely interacts with RelA at a subset of AhR peaks.
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Figure 52 — AhR-RelA interactions in HepG?2 cells across AhR peaks with high peak to peak
signal correlation between AhR and RelA.

AhR interactions with KLF6
To confirm and further investigate AhR interactions with KLF6, I examined one pair of
AhR and KLF6 experiments (Table 5). Both of these experiments were carried out in HepG2 cells

that were not treated by an AhR ligand (data available on ENCODE portal).

Cell line
HepG2

AhR KLEG

No treatment No treatment

Table 5 — AhR and KLF6 ChlP-seq experiment list.

AhR-KLFG6 interactions in HepG2 cells across all AhR peaks. Here I compared the
binding in untreated HepG?2 cells between an AhR and a KLF6 binding experiment. The scatterplot

correlation was 1=0.77 (left panel Figure 53), higher than the scatterplot correlation for KLF6. The
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proportion of AhR peaks with signal correlations exceeding 70% (r>0.7) was 33%, and the

histogram was slightly shifted to the left (right panel Figure 53), similar to RelA results.
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Figure 53 — AhR-KLF6 interactions in HepG2 cells across all AhR peaks.

AhR-KLF6 interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs. Next,
Iinvestigated how the number of DREs under the AhR peak influenced the AhR-KLF6 interaction
results. [ have again generated the scatterplots and histograms of TF interactions, but this time for
(1) AhR peaks with exactly 0 DREs (left panel Figure 54), and for (2) AhR peaks with 3 or more
DREs — 3+ DREs (right panel Figure 54). The scatterplot correlation decreased with increasing
number of DREs, r=0.81 and 1=0.65 (top left and right panels Figure 51). The proportion of peaks
with signal correlations exceeding 70% (r>0.7) was 33% and 34%, for 0 DRE and 3+ DREs AhR
peaks, respectively (bottom left and right panels Figure 51). Similar to interactions with RelA, the
correlation between AhR and RelA binding decreased with increasing number of DREs under the

peak, however the percentage of highly correlated peaks (peaks with r>0.7) remained the same.
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Figure 54 — AhR-KLF6 interactions in HepG2 cells across AhR peaks with 0 and 3+ DREs.

AhR-KLF6 interactions in HepG2 cells across AhR peaks with high peak to peak
signal correlation between AhR and KLF6. Next, I investigated the scatterplot correlation
between AhR andKLF6, but only across AhR peaks that have high peak to peak signal correlation
between AhR and KLF6 (peaks with signal to signal correlation of r>0.9), i.e., the right-most
portion of the histogram of individual signal correlations. The scatterplot correlation increased to
r=0.85 (Figure 55) compared to r=0.77 across all AhR peaks. These results jointly indicate that
AhR likely interacts with KLF6 at a subset of AhR peaks and that this subset might be slightly
larger than the subset of AhR peaks where AhR and RelA interact. An implication of these results

is that at some AhR peaks, AhR likely interacts with both RelA and KLF6 at the same time.
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Figure 55 — AhR-KLF6 interactions in HepG?2 cells across AhR peaks with high peak to peak
signal correlation between AhR and KLF6.

Taking the genomic sequence of 0-DRE AhR peaks where AhR and KLF6 exhibit high
peak to peak signal correlation (r>0.9) in the +/- 200-bp region around the mid-point of each peak,
I ran the MEME-ChIP motif discovery pipeline. Surprisingly, the most enriched motif was the
REI silencing transcription factor (REST) motif, shown in Figure 56. In addition to being the most

enriched motif, it was also highly centrally enriched. REST is not known to interact with either

AhR, KLF6 or RelA.
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Figure 56 — de novo motif discovery across 0-DRE AhR peaks with high KLF6 correlation in
HepG?2 cells.

2
24

AhR-KLF6 interactions in HepG2 cells across AhR peaks without the REST motif.
Since the role of REST in AhR-KLF6 interactions is unknown and unexpected, I investigated the
correlation between AhR and KLF6 across AhR peaks that did not possess a REST motif. To
achieve this, I first searched for the REST motif, JASPAR motif MA0138.2 (103), under AhR

peaks, looking at sequences within the region of +/-200 from the mid-point of the peak. I used
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FIMO with a g-value cutoff of 0.001 (104). This search generated 841 AhR peaks without the
REST motif. The scatterplot correlation was lower than for all AhR peaks, r=0.56 (left panel Figure
57) compared to r=0.77 for all AhR peaks. The proportion of peaks with signal correlations

exceeding 70% (r>0.7) was 33% (right panel Figure 57), similar to result obtained for all AhR

peaks.
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Figure 57 — AhR-KLF6 interactions in HepG2 cells across AhR peaks without the REST motif.

Performing another de novo motif search across AhR peaks without the REST motif, I
found the KLF6-like motif under these peaks (Figure 58). The KLF6 motif contains little
information overall and is generally degenerate, so exact matching with high confidence is
difficult. The g-value reported by TomTom for the match between the KLF6 and the found motif
was 0.0213. Notably, nucleotides at positions 5 and 11 do not match well between the two motifs.
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Figure 58 — de novo motif discovery across AhR peaks without the REST motif in HepG?2 cells.
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The de novo discovered motif looks remarkably like the sequence used to probe the NC-
DRE. Huang and Elferink identified a potential binding site for AhR by examining a species-
conserved sequence in the promoter of plasminogen activator inhibitor 1 (PAI-1) (99). They
subsequently ran electronic mobility shift assays (EMSA) to probe the extent of AhR binding.
They tested the wild-type (WT) sequence and five sequence mutants (labeled M1, M2, M3, M4
and M5). Mutants M2 through M5 lie in the portion of the sequence overlapping the de novo found
motif. The motif, together with the WT and all the mutant sequences is shown in Figure 59. The
mutated portions of the sequence in the mutant sequences are labelled by a red line drawn on top

of the mutated sequence.
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Figure 59 — comparison of de novo derived motif and functionally tested sequences in PAI-1
promoter.

Next, I calculated the position specific scoring matrix (PSSM) of the de novo discovered

motif  using  Biopython  (105), with

pseudocounts

calculated

using

the

motifs.jaspar.calculate pseudocounts function. I applied that PSSM to calculate the score for the

WT and each of the mutant sequences (Figure 60).
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Sequence Motif score

WT 6.37
M2 -4.78
M3 -5.32
M4 7.00
M5 8.92

Figure 60 — PSSM scores of the putative AhR-KLF6 motif for five PAI-1 sequences.

These results are only in partial agreement with the functional analysis performed by
Huang and Elferink (99). In their in vitro experiments mutants M2 and M4 exhibited impaired
binding, while M3 and M5 did not. Further, in their in vivo experiments, mutants M3 and M5
exhibited the ability to activate a luciferase promoter, whereas mutant M4 did not (mutant M2 was
not tested). Motif scores for mutants M2 and M5 are in line with previous work, while scores for
mutants M3 and M4 are not. To match the functional analysis results, the score of the M3 sequence
should be higher and the score of the M4 sequence should be lower. Admittedly, with only 70
sequences used to construct the motif, I suspect that there is not enough power to resolve all
binding sites properly. It is possible that the true motif is less sensitive to certain nucleotide
alterations and more sensitive to others, which could explain the functional results of Huang and
Elferink. The consensus sequence of the motif is TGGGAGGCTGAGGCGGGAGGQG, and the

score for this sequence is 27.82.
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CHAPTER 4: BISPHENOL A AND BISPHENOL S

PREGNANCY-SPECIFIC PHYSIOLOGICALLY-BASED

TOXICOKINETIC MODELS

INTRODUCTION

Bisphenols are a large class of chemicals structurally identified as having two
hydroxyphenyl rings. Many bisphenols are considered endocrine disrupting chemicals (EDCs)
(106). They are widely used in the manufacturing of polycarbonate plastics, epoxy resins,
dental sealants, and plastic and paper consumer products (31, 107), and are pervasively present in
dust and soil (32, 33). Due to consumer concerns and heightened regulations regarding the use of
bisphenol A (BPA) in some countries (108), industrial and consumer products producers have
resorted to using less studied bisphenol alternatives in their products (109). Such BPA-alternatives
include bisphenol S (BPS), which is structurally similar to BPA, and is becoming just as
environmentally prevalent (110). As a consequence, BPS is the second leading bisphenol found in
humans following BPA (107, 111, 112). Bisphenols can be detected in urine, blood, breast milk,
amniotic fluid and cord blood, highlighting the ubiquitous exposure humans have to these
chemicals (32, 111-116). Several studies have shown that even at low concentrations, exposure to
BPA during gestation can result in negative effects on the development of the fetus (117, 118).
The detection of BPS in human fetal cord blood (119), the positive association between BPS
exposure and prolonged gestational length (120), and the fact that in mammals, fetal exposure to
BPS can alter reproductive (121, 122), metabolic (123), and behavioral outcomes (124), warrant
research into the precise toxicokinetic mechanisms of these emerging bisphenol chemicals during

pregnancy.
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Physiologically based toxicokinetic (PBTK) mathematical models integrate toxicokinetic
processes such as chemical absorption, distribution, metabolism, and excretion (ADME). The main
advantage of PBTK models over the classical compartmental approaches to understanding
chemical toxicokinetics is the ability of PBTK models to extrapolate outside of the conditions or
population that was evaluated experimentally (125). The quantitative predictive and extrapolative
capabilities of PBTK models can inform health risk assessments for chemical and pharmaceutical
exposure (126, 127). Chemical toxicokinetics during pregnancy are more complex with the
inclusion of the maternal, placental, and fetal compartments (126). Moreover, ethical constraints
do not allow for any toxicokinetic studies other than biomonitoring to be conducted in pregnant
women. The use of refined fetal surgery techniques in a sheep animal model represents unique
opportunities to monitor the maternal, amniotic, and fetal compartments; key elements of
pregnancy-specific PBTK (p-PBTK) models (126). Importantly, sheep are excellent models to
study placental function (128, 129) and have been used for the study of feto-maternal transfer of
drugs (130, 131) and EDCs (34, 132), as they allow for the simultaneous and longitudinal
characterization of the pregnancy multi-compartment model in real time.

The toxicokinetics of BPA have been extensively studied and modeled in both animals and
humans (133-138). Primary metabolism (conjugation) for BPA occurs in the liver and the intestine
(139). In rodents, BPA undergoes substantial enterohepatic recirculation. However, in monkeys
and humans, the rapid metabolism and extensive renal excretion of BPA metabolites means that a
negligible amount of conjugated BPA is able to undergo enterohepatic recirculation (140, 141). In
pregnancy, both conjugation and deconjugation reactions also occur in fetal tissues, primarily the
fetal liver, but these processes occur at varying rates during different developmental windows. In

the early developmental stages deconjugation dominates with conjugation barely occurring (142).
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However, in the case of BPA, conjugation has been shown to increase from 512-fold lower to 13-
fold lower when compared with maternal conjugation rates from early to late pregnancy (132).

Despite the breadth of work on BPA, only a limited number of studies have investigated
the toxicokinetics of BPS during pregnancy (35, 36). Of the two available BPS toxicokinetic
models (134, 143) only one is physiologically-based (134) and it is based on a non-pregnant sheep
dataset. This non-pregnant BPS model was derived by a substitution of parameters from a
previously calibrated BPA PBTK model with parameter values derived from quantitative
structure—activity relationships (QSARs) for BPS, but was neither formally calibrated, nor
validated. Recently, BPS was reported to reach higher systemic concentrations than BPA in
humans (144), representing a need to better distinguish toxicokinetic characteristics between
bisphenols, for which PBTK models are uniquely suited. Therefore, the objective of my current
study was to improve the understanding of pregnancy toxicokinetics for bisphenols through the
development of physiologically relevant multi-compartment p-PBTK models for BPA and BPS.
Both p-PBTK models were developed using three independent pair-matched maternal and fetal
sheep exposure cohort datasets (34—36). The text and figures in this chapter have been published
as a research paper and are reprinted here with the permission of the publisher (30).
MATERIALS AND METHODS
Datasets

Experimental datasets used in this work were obtained from previously published
bisphenol toxicokinetic studies in pregnant sheep (34-36). For model calibration, three
independent datasets were used (two for each bisphenol). Dataset #1 from (35), reported total
(conjugated plus unconjugated) bisphenol concentrations for BPA and BPS in the maternal and

fetal plasma and was used for calibrating both bisphenol models. In brief, toxicokinetic data was
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obtained from pregnant Polypay x Dorset sheep (singleton pregnancies only) that underwent
fetal catheterization surgery at gestational day (GD) 115. Females (n = 3) were injected with a
single subcutaneous dose of BPS (0.5 mg/kg) or a combination of BPA and BPS (n = 3; 0.5 mg/kg
for each chemical) and data were collected over a 72-h period. No differences in toxicokinetic
parameters (maximum concentration reached, time of maximum concentration, half-life, area
under the curve, area under the first moment curve, mean residence time, and total body clearance)
between single-chemical exposure and mixture dosing were reported, so all BPS values (n = 6)
were combined.

Additionally, two other toxicokinetic studies in pregnant sheep which presented data for
conjugated and unconjugated bisphenols (34, 36) were used during model calibration. For BPA,
dataset #2 was obtained from (34), who used pregnant Lacaune sheep (unreported fetal number)
that underwent fetal catheterization surgery between GD 108 and 117. In separate experiments,
females (n = 8) and fetuses (n = 8, unreported sex) were dosed with an intravenous (IV) infusion
over 24 h of unconjugated BPA or BPA-glucuronide (conjugated, BPA-G) at a dose of 2.0 and
3.54 mg/kg/day respectively in the mother, and 5.0 and 3.54 mg/kg/day respectively in the fetus,
assuming a 2.5 kg fetus. Plasma concentrations were collected over a 46-h period and the steady
state plasma concentration over the final 3-h of infusion was reported. For BPS, dataset #3 was
obtained from (36) which included pregnant Lacaune sheep (unreported fetal number) that
underwent fetal catheterization surgery between GD 109 and 113. A dual dosing strategy was used,
where pregnant females (n = 8) and their fetuses received simultaneous IV doses. First the mother
received a dose of 2.7 mg/kg BPS-glucuronide (conjugated, BPS-G) and the fetus was
administered a dose of 5 mg deuterated BPS (BPS-d8). This procedure was followed by a

simultaneous administration of 5 mg/kg BPS to the mother and 17.5 mg BPS-G-d8 to the fetus.
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Plasma concentrations were reported over a 72-h period. Dataset #3 was collected at somewhat
regular intervals, though not always at the exact same time point (36). As such, these data could
not be directly aggregated to yield mean and standard deviation values. Instead, the plasma data
for each animal was interpolated using a cubic spline. The most representative time points were
selected, and all the interpolated time-concentration curves were sampled at the selected time
points and aggregated together. The time points used were either those containing the most data
points across animals for all time points except the first and the last ones, or time points lying
within each sheep’s interpolation region, for the first and last timepoint, to prevent extrapolation.
Model development

To establish informative and useful p-PBTK models for BPA and BPS, I developed a
minimal generic p-PBTK model for an unconjugated bisphenol and its conjugate metabolite that
includes 6 compartments for the mother (liver, fat, kidney, placenta, blood and rest of the body)
and 3 compartments for the fetus (liver, blood and the rest of the body) (Figure 61). All relevant
biological processes were included, namely conjugation (metabolism) in the maternal and fetal
livers, maternal urinary and biliary excretion, and deconjugation in the fetal liver (145). The two
coupled sub-models of identical structure for the unconjugated and conjugated bisphenols were
connected through liver metabolism in the mother and the fetus, as well as deconjugation in the
fetal liver, with one sub-model used for the parent compound (BPA or BPS) and another for the
conjugate (BPA..,; or BPS..;). In the case of BPS, a duplicate model was developed for deuterated
BPS and BPS.., to account for fetal administration. Subsequently, I determined the physiological
parameters for an average pregnant sheep, with a single fetus, at the gestational age where the
experimental data were generated. This was done for the generic model, as well as for separately

parametrized and calibrated individual instances of the generic model for both unconjugated BPA
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and BPS, and their respective conjugated metabolites. I based the model structure and types of
compartments and processes to be inclusive of the only two, to my knowledge, published BPA p-
PBTK models (135, 137). All compartments were considered perfusion limited for both
unconjugated and conjugated bisphenol sub-models. The most common bisphenol conjugate is
glucuronide, although others, such as sulfate, exist (146). Due to a lack of available data on non-
glucuronide conjugates, all conjugates for each parent compound were combined into a single

conjugate parameter (BPA.../BPS..,;) which was calibrated against glucuronide-conjugate data.
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Figure 61 — PBTK model schematic.
Model equations

The equations listed in this section describe both the BPA and the BPS p-PBTK models
and are the same for both compounds. The model equations for the maternal unconjugated
bisphenol models are described below (Figure 62). All transport equations were perfusion limited.
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Equations for conjugation represented saturable metabolism in both maternal and fetal livers and
the equation for deconjugation in the fetal liver, as well as maternal urinary and biliary excretion
equations were modeled as first order processes. All physiological and biochemical parameter

units can be found in Table 6, Table 7, and Table 9.
Vi dgf = Qk- (CA —g—f{‘)
Vit — Q- (cA _g_) -
Vilde = Q- ( g—)
VRch = Qg (CA }C)_;a)

Vs = S Qr_g- pT d —Qc+Cp —KELR -Cp +Fsc+-Kq+Asc

Vpr dCPL = Qpr+ (Ca —Cypr) —kt1Cypr +kt2Cx ¢
Cyr = PT

Figure 62 — model equations for the maternal unconjugated bisphenols.

Vr is the volume of tissue T, Qr is the blood perfusion, Cr is the chemical concentration,
Pr is the blood:tissue partition coefficient, and Cvr is the concentration in the venous blood exiting
the tissue. Ca is the chemical concentration in the arterial blood. kt; and kt> are the diffusion rates
from maternal placental blood to fetal blood and fetal blood to maternal placental blood,
respectively. Subscript _f'denotes fetal tissues. T_all is used in the maternal blood compartment to
describes the sum of all tissue compartments. Fsc and Asc represent the bioavailability of
subcutaneous administration and remaining unabsorbed subcutaneous dose, respectively, and K is
the first order rate constant for subcutaneous absorption. KELR is the rate of renal excretion.

Vmax 1S the maximum reaction rate, and Ky, the Michaelis-Menten constant.
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The model equations for the maternal conjugated bisphenol models are described as

follows (Figure 63). Equations that are the same as in the unconjugated bisphenol models have

been omitted.

dCL([A) CL([A) Vmu_r ¢ ;_!L-

=0 (CA([-)_ c )+
dt P, (Kerg—i)

—KEL,"“'Cy, v,

Vi

dc, Cr.an'"® (¢) ()
Vi —=> Orar—5=0c*Ci =KEL{ - C,

Figure 63 — model equations for the maternal conjugated © bisphenols.

Here, (c) in superscript denotes the conjugated compound, KEL_ is the rate of biliary
excretion. All the other symbols have the same meaning as in the unconjugated bisphenol models.

The model equations for the fetal unconjugated bisphenol models are described below

(Figure 64).

dCLf — . CLf Vmux,f 'CL,f/PL (C) ( )
Vifa = Qu (CA-f P, ) (Kny i) T KarCLs ™ /PLE

dCp_ Cr
VR /g = QRf( Af pr)

dCy Crfa
Vi = 2_Qrfai*pyry —Qcs * Cag+ kt1 Cvp,—ktaCay
Figure 64 — model equations for fetal unconjugated bisphenol.
Maternal liver partition coefficient (PL) was used in the fetus, as well.
The equations for the conjugated bisphenol models in the fetus are described below (Figure

65).

dC, CLs© Vipax f * CLs /P
Vi Lf QLf(CA_f(C) éﬁc))+(Kmff+ C;ff//p LL)_deCLf(c) /P, (©

c)

_QCf Cas'

d
Ve—5 C” ZQTfau'

Figure 65 — model equations for fetal conjugated bisphenol.
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Parameter Abbreviation  Value Units
Body weight! BW 76.25 kg

Total cardiac output® Qcc 6.9 L/h/kg BW
Fractional blood flow to fat® Qrc 8.5 %
Fractional blood flow to kidney3 Qxc 17 %
Fractional blood flow to liver? Qic 18.3 %
Fractional blood flow to placentef‘l Qpic 8 %
Fractional volume of fat® Vic 0.168 L/kg BW
Fractional volume of kidney3 Vke 0.0046  L/kg BW
Fractional volume of liver® Vic 0.016 L/kg BW
Fractional volume of blood® Vic 0.057 L/kg BW
Fractional volume of feto-placental unit! VpLEFC 0.078 L/kg BW
Fractional volume of fetus® VErc 0.0525 L/kg BW

Values listed obtained from references: '(35), %(147), 3(148), (149)

Table 6 — physiological parameters in pregnant sheep.
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Parameter Value Units

Dose 0.5%10 g/kg BW
K,-BPS 0.183 L/h
MW-BPS 250.3 g/mol
MW-BPS-G 426 g/mol
Ka-BPA 0.204 L/h
MW-BPA 228.3 g/mol
MW-BPA-G 404 g/mol

Values listed obtained from references: (35), (134)
BW: body weight, G: glucuronide, Ka: absorption rate constant, MW: molecular weight.

Table 7 — BPA and BPS physicochemical parameters.

Parametrization

The generic bisphenol model was first partially parametrized with the pregnant sheep
physiological parameters obtained from the literature (Table 6), inclusive of fractional blood flows
and organ volumes. Following this procedure, two separate model instances were created for BPA
and BPS using their respective physiochemical parameters (Table 7) and the tissue:blood partition
coefficients (Table 8), which were calibrated within ranges of one order of magnitude around
values either obtained from the literature (35, 134, 147-150), or estimated from the available log
octanol:water partition parameters for compounds with similar partitioning (143, 151, 152) and
calibration was performed within those ranges. Partition coefficients for the rest of the body for
both BPA and BPS models were calibrated within the minimum and maximum values for all other
tissues. All physiological parameters were assumed to be time-invariant due to the nature of the

experimental data, which was collected over a short period of time during mid-late pregnancy.
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Compartment Abbreviation BPS BPScon; BPA BPA onj

Adipose Pr 0.031 0.0027 1.160 0.220

Kidney Py 0.017 0.0049 0.858 3.180

Liver P, 2.300  2.4700 4.350 6.760

Rest of Body (maternal) Py 0.013  0.0019 0.044 0.154

Placenta Ppr. 0.106 0.0020 0.880 0.680

Fetal Rest of Body Pr¢ 0.005 0.1680 0.006  0.500
(fetal)

Table 8 — passive biochemical parameters (tissue/blood partition coefficients).

Calibration

The calibration for both the BPA and the BPS models was carried out in four steps: (1)
fetal conjugated bisphenol calibration, (2) maternal conjugated bisphenol calibration, (3) maternal
complete calibration, and (4) feto-placental transfer and fetal complete calibration. Maternal body
weight used was dependent on which of the three experimental datasets the model was being
calibrated against. During the fetal conjugated bisphenol calibration, the appropriate fetal
conjugated bisphenol IV administration experiment was used to partially calibrate the fetal model,
namely the conjugated bisphenol partition parameters for the fetal liver and the rest of the body.
The maternal conjugated bisphenol calibration relied on the maternal conjugated bisphenol IV
administration data and was used to partially calibrate the maternal model, namely the remaining
conjugated bisphenol partition coefficients (maternal kidney, fat, and rest of body), as well as
urinary and biliary excretion rates. The complete maternal calibration relied on the maternal
unconjugated bisphenol IV and total bisphenol subcutaneous administration data from all three
datasets. These were used to fully calibrate the maternal model, namely the unconjugated
bisphenol partition coefficients, and metabolism and urinary excretion rates (Table 9). During this
step of the calibration, the feto-placental transfer of the unconjugated bisphenol was not accounted
for to minimize the number of calibrated parameters. Feto-placental transfer and total fetal

calibration relied on the maternal unconjugated bisphenol IV and subcutaneous administration to
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fully calibrate the feto-placental diffusion rates and the remainder of the fetal parameters. These
parameters were mainly unconjugated bisphenol partition coefficients for the rest of the body and
metabolism and deconjugation rates in the fetal liver. Except for the rest of body partition
coefficient, all other partition coefficients corresponding to the same tissue between the mother

and the fetus were assumed equal.

Parameter Abbreviation BPS BPS onj BPA BPA_ onj

Bioavailability Fsc 43 S 12.9 _
(%)

Biliary excretion KEL;, — 0.061 R 2.052
(h™h

Renal excretion KELg 0.023 4.093 0.035 0.375
(L/h)

Maternal K., 4.79 _— 3.46 _
Michaelis-
Menten
constant (mg/
L)

Maternal Vinax 8,185.66 2~ — 3,458.40 —

maximum rate
of metabolism
(mg/h/kg®7%)

Placental to fetal kty 0.075 _— 6.733 _—
transfer

Fetal to placental kty 0.113 _— 5.412 _—
transfer

Fetal Ka ¢ _ 2.80 R 1.41
deconjugation
(L/h)

Fetal Michaelis- Kt 2.74 _ 6.85 _—
Menten
constant (mg/
L)

Fetal maximum Vinax f 1,000.26 D 4,312.04 e
rate of
metabolism
(mg/h/kgO75)

Table 9 — rate constants.
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Our p-PBTK models required the use of blood-to-plasma partition coefficients as
parameters, since the experimentally derived calibration datasets reported plasma concentrations.
The blood-to-serum partition coefficient for BPA in rats has been experimentally determined as
1.10 (153), and blood-to-plasma partition coefficient for BPA and BPA-glucuronide in humans
has been computationally estimated to be 1.05 and 0.83, respectively (154). Since calibrating the
blood:plasma partition coefficient in the BPA model for both conjugated and unconjugated BPA
within the range of 0.80 to 1.20 did not affect the model results in a significant way, blood:plasma
partition coefficients for both conjugated and unconjugated BPA were fixed to 1, simplifying the
modeling procedure. I observed similar results for BPS, and have thus fixed the blood:plasma
partition coefficients of both conjugated and unconjugated BPS to 1.

Calibration of unknown parameter values was performed using sequential least
square quadratic programming with random restart (155). Sequential least squares quadratic
programming is a formal optimization technique known to perform well for systems requiring
constrained nonlinear optimization, which was the case for my developed models. Here, each
calibration procedure was repeated 500 times, each time starting from a randomly selected point
within the allowable ranges of the calibrated parameters. The calibration most closely matching
the datasets, using the lowest mean absolute percentage error score as the selection criteria, was
chosen as the final calibration.

Extrapolation of maternal and fetal body burdens

Dosing regimens simulating daily repeated maternal and fetal exposures to both BPA and
BPS were run with the calibrated ovine models using the reference dose for BPA set by
the U.S. Environmental Protection Agency (50 pg/kg/day) (156). Simulations were run over a

two-week period.
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Computing software

The current model was coded in, and all simulations run using the Python programming
language and the Python package Tellurium version 2.1.5 developed for reproducible dynamical
modeling of biological networks (157). The full model code is available

at https://github.com/BhattacharyalLab/BisphenolPBTK

Sensitivity analysis

Global sensitivity analyses of the fetal plasma compartment kinetics for both unconjugated
and conjugated BPA and BPS were performed to identify the most influential parameters
determining fetal bisphenol kinetics. Sensitivity analysis was performed using the variance-based
Sobol method (158), as implemented within the SALib python library (159). Parameters
determining fetal kinetics were examined between 50% and 150% of the nominal values listed
in Table 8 and Table 9, and were sampled using the Saltelli sampling scheme with N = 1,000
generated samples (160). To examine simulated fetal kinetics with both a loading (absorption) and
an elimination phase, subcutaneous dosing from Dataset #1 was selected, as described
in Datasets. The sensitivity analysis was repeated every half-hour for 48 h of simulation time
(excluding O h). The parameters included in the sensitivity analysis were the fetal hepatic
metabolism parameters (Vmax fand Ki_f), deconjugation rate constant (Kq r) and rest of body
partition coefficients (PR rand PR (©). Additionally, I repeated the sensitivity analysis by also

adding the feto-placental transfer parameters (kt; and kt>).
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RESULTS
Calibration

Simulations of the fully calibrated BPA model for both maternal and fetal compartments
were compared to experimental dataset #1 following a single subcutaneous administration of BPA
to the mother (Figure 66A maternal compartment, and Figure 66D fetal compartment). A full
simulation was also performed for dataset #2 following either a 24-h IV infusion of BPA and BPA-
G to the mother (Figure 66B and Figure 66C, respectively), or 24-h IV infusion of BPA and BPA-
G to the fetus (Figure 66E and Figure 66F, respectively). All simulations matched the experimental
data + one standard deviation from the individual data points for total, unconjugated and

conjugated BPA (34, 35).
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Figure 66 — simulated toxicokinetic plots of BPA for maternal and fetal circulation.

Similar to BPA, simulations of the fully calibrated BPS model were compared to

experimental dataset #1 following a single subcutaneous injection of BPS to the mother (Figure
67A - maternal compartment, and Figure 67D - fetal compartment), or dataset #3 following a
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single IV bolus of BPA and BPA-G to the mother (Figure 67B and Figure 67C, respectively), or a
single IV bolus of BPS-d8 and BPS-G-d8 to the fetus (Figure 67E and Figure 67F, respectively).
Except for fetal IV boluses of BPS-d8 and BPS-G-d8, all data points were consistent with the

experimental datasets = one standard deviation from the individual data points for total,

unconjugated and conjugated BPS (35, 36).
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Figure 67 — simulated toxicokinetic plots of BPS for maternal and fetal circulation.

Due to its robustness, full simulations of dataset #1 (35), separated into total, conjugated,
and unconjugated forms of bisphenols, were run for both BPA and BPS. This was necessary to
estimate the breakdown of unconjugated and conjugated bisphenols, which was not available from
the original dataset.

Extrapolation of maternal and fetal body burdens in an ovine model
Simulations showing repeated daily subcutaneous exposure to BPA and BPS are shown

in Figure 68 and Figure 69, respectively. Maternal exposure was consistent with known
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toxicokinetic parameters for BPA (35), where unconjugated BPA was cleared from circulation
within a 24-h period (Figure 68A, right panel). In the fetal compartment, I observed a gradual
accumulation of total, unconjugated and conjugated BPA (Figure 68B), plateauing around a mean
of 0.28 ng/ml unconjugated BPA at 14 days of daily exposure (Figure 68B, right panel, solid black
line). Like BPA, total, unconjugated and conjugated BPS also rapidly clears from maternal blood
(Figure 69A) and accumulate in the fetal compartment, but total fetal BPS accumulation does not
plateau within the 14-day exposure window (Figure 69B, left panel). The BPS model simulates
fetal blood concentrations at a mean of 0.45 ng/ml unconjugated BPS by 14 days of exposure

(Figure 69B, right panel).
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Figure 68 — simulation of BPA body burden following two weeks of daily dosing in an
ovine model.
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Figure 69 — simulation of BPS body burden following two weeks of daily dosing in an ovine
model.

Sensitivity analysis

A global sensitivity analysis was run to investigate the main effect of all relevant fetal
parameters over time and results are shown in Figure 70 (for BPA) and Figure 71 (for BPS). For
both bisphenols, the main effect (%) of the placental to fetal transfer parameter kt; were the highest
among the parameters evaluated for both unconjugated and conjugated BPA and BPS. For BPA,
the main effect of the fetal to placental transfer parameter kt; increased over time while other
parameters like fetal hepatic deconjugation (Kq r) and the rate of enzymatic reaction (Vmax f)
remained constant. For BPS, the main effect of kt> was lower than for BPA, but also increased
over time. The contribution of other parameters that determine fetal plasma kinetics, such as

metabolic (Vmax £, Km f) and deconjugation (Kq ) parameters tended to increase over time.
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Metabolic parameters (Vmax_, Km ) were more important for fetal plasma kinetics of unconjugated
BPA, until ~ 15 h where they begin to plateau. For unconjugated BPS, the main effect of both
Vmax rand Km rwas higher than Kq fthroughout the 48-h period. The rest of body partition
coefficient for unconjugated bisphenols (PR r) had a minor contribution to output variance in
determining both BPA and BPS fetal plasma kinetics, however the rest of body partition coefficient
for conjugated bisphenols (PR ¢ (©) was especially important for determining conjugated BPA and

BPS plasma kinetics.
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Figure 70 — global sensitivity analysis of the fetal compartment for BPA model.
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CHAPTER 5: DISCUSSION AND CONCLUSIONS

Over time many computational models predicting the DNA binding of transcription factors
(TFs) have been developed and the binding of specific TFs has been studied experimentally quite
extensively (93, 161, 162). However, the molecular determinants and mechanisms governing the
cell-specificity of binding for many TFs remain elusive. The AhR is one such TF. The AhR is a
ligand-inducible TF, and its DNA binding cannot be fully determined through chromatin
accessibility, the extended binding motif of AhR, the motifs of other co-bound TFs, or any
combination of these features.

In vitro studies examining the DNA binding of AhR demonstrated that AhR binds
exclusively to the 5'-GCGTG-3' DNA sequence, known as the dioxin response element (DRE). On
the other hand, in vivo studies revealed that AhR was bound to many genomic regions that did not
possess a DRE (68, 69). Thus, it is likely that some AhR-bound regions with DREs were not a
result of AhR binding to those DREs. Instead, the DREs may have occurred under the AhR peaks
by chance, and the AhR may have bound the DNA through some other mechanism.

My results show that many AhR peaks still have DREs and that some peaks have more
DREs than could be expected by chance (Figure 3). When examining the position of the DRE
within the peak relative to the mid-point of the peak, I observed that the DREs appear centrally
enriched in all AhR binding experiments (Figure 4). Additionally, AhR peaks with a higher
number of DREs under the peak have a statistically higher average normalized binding signal
strength than AhR peaks with a lower number of DREs (Figure 9). These results suggest that
DREs, although not necessary for AhR binding, are useful in determining the intensity of AhR

binding.
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On the other hand, AhR has also been shown capable of binding to a GC-rich region
without sequence homology to the DRE. Thus, the existence of a non-canonical DRE (NC-DRE)
was hypothesized. It was later demonstrated that one such NC-DRE in the promoter of
plasminogen activator inhibitor 1 (PAI-1) was bound by AhR without ARNT, but together with
KLF6 instead (29, 99). My analysis discovered a GC-rich motif appearing under 70 out of 841
AhR peaks having high correlation of AhR and KLF6 binding signals in the HepG2 cell line
(Figure 58). This motif shares homology with the KLF6 binding motif, as well as with the
identified GC-rich sequence bound by the AhR in the promoter of PAI-1. Nonetheless, the DREs
still seem to play a role in HepG2 cells, as the correlation between AhR and KLF6 binding
decreases with an increasing number of DREs under AhR peaks (Figure 54). Interestingly, I did
not find a similar motif under AhR peaks in any other AhR binding experiment. Since the AhR
binding experiment in HepG2 cells was conducted without treatment with an AhR ligand, I
propose that AhR-KLF6 dimers binding to DNA do so preferentially in non-treated, or potentially
endogenously treated cells.

To investigate the likely molecular determinants of AhR binding, I developed interpretable
machine learning models predicting the binding status of DREs in open chromatin. These models
were trained on singleton bound DREs as examples of bound DREs, but were able to predict the
binding of 0-DRE AhR peaks with high accuracy. This result could be explained by a high level
of indirect binding of AhR within singleton and 0-DRE AhR peaks. In this case, AhR would not
be bound to the DNA directly, but instead the AhR could, for instance, be tethered to other TFs
that are directly bound to DNA (161). If a sufficient number of singleton AhR peaks used in

training were actually a result of such binding, then the AhR binding prediction models could learn
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to recognize indirect binding of AhR and thus predict AhR binding of 0-DRE peaks. The 0-DRE
AhR peaks are likely not directly bound — since they do not possess the AhR binding motif.

Another explanation for high model accuracy when predicting the binding of 0-DRE AhR
peaks is that some of the bound AhR might be part of 3D chromatin loops. In this scenario, the
AhR could be directly bound to one or more DREs, in one loop anchor, such that the imprint of
AhR binding could also appear in other loop anchors due to their physical proximity in 3D space.
EP300 transcriptional activator was one of the factors most predictive of AhR binding in enhancers
(Figure 29). The EP300 has been shown to be a marker of pre-established enhancer anchors that
appear in enhancer-promoter loops formed after glucocorticoid receptor (GR) activation (162).
Furthermore, EP300, H3K4mel, and H3K27ac jointly mark active enhancers (163). In this
scenario, the AhR molecule that was directly bound to a singleton DRE could leave an impression
of a 0-DRE AhR peak in another anchor of the same loop, due to their physical proximity in 3D
(48). Thus, any chromatin complexes participating in these loops would then be associated with
both singleton and 0-DRE peaks. In this case my models would be learning how to identify direct
AhR binding.

Interpretation of the model predictions demonstrated that binding of AhR is likely
determined by 1) a common cross-cell flanking-sequence syntax (Figure 13 and Figure 38) and 2)
cell-specific chromatin context syntax (Figure 12, Figure 28, Figure 29, and Figure 30). The
chromatin context determinants differ vastly between cell lines or types (Figure 12, Figure 14, and
Figure 36). Most commonly, one or two TFs appear to be the most important contributors to model
performance in each model. I propose that these factors 1) play a significant role in determining

cell identity, or 2) are a common AhR co-factor in that specific cell line or type.
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The pioneering factor GATA3 is mutated in MCF-7 cells, but not in T-47D cells. The
MCF-7 mutation of GATA3 is heterozygous, and results in a copy of the GATA3 protein that is
more stable and resistant to turnover. Consequently, the mutated GATA3 in MCF-7 cells binds to
DNA more strongly than its wildtype counterpart (164, 165). I propose that the increase in binding
activity of GATA3 in MCF-7 cells makes GATA3 the most predictive factor of AhR binding in
those cells. In addition, GATA3 was also shown to be the most commonly overlapping factor for
binding of ERa, another inducible TF, in MCF-7 cells (166). Nonetheless, AhR peaks in T-47D
cells were still correlated with GATA3 binding, albeit to a lesser extent. Therefore, wild type
GATA3 might still play a role in determining AhR binding, however, this role appears to be less
pronounced. Additionally, GATA3 and AhR binding have shown synergistic effects on the
expression of GPR15 in human CD4+ T cells (167). Therefore, AhR-GATA3 interactions might
not be confined to breast cancer cells.

On the other hand, certain TFs have been shown to be functionally associated with AhR,
such as ARNT, RelA and KLF6. However, none of these factors were ranked highly by my models.
ARNT is considered the principal dimerization partner of TCDD-induced AhR. However, my
HepG2 and GM17212 models rank ARNT features very lowly (Figure 12). Admittedly, in the
GM17212 model, the ARNT binding experiment was performed on a different but similar cell line
— GM12878, and, more importantly, without AhR ligand treatment. HepG2 cells were not treated
with an AhR ligand in either the AhR or the ARNT experiment. Still, when tryptophan in cell
culture media is exposed to light it produces a photoproduct which has been shown to be an AhR
agonist (168). In this case one could consider the ARNT experiment as having been conducted
under similar conditions as the AhR experiment. Still, ARNT features were not used by the HepG2

model at all. When looking at the correlation between AhR and ARNT binding across AhR peaks
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it is not difficult to see why (Figure 48). I suspect that the tryptophan derivative-induced activation
of AhR might be more similar to endogenous than exogenous activation of AhR. Some of AhR’s
endogenous activities are likely mediated through AhR di- and multi- merization with its other
known partners, such as KLF6, and RELA. Surprisingly, even though KLF6 and RELA features
were used in the HepG2 model, and I have shown that the binding of AhR was highly correlated
with KLF6 and RelA binding (Figure 50, Figure 53), the KLF6 and RelA features did not rank
highly in feature importance. However, since I relied on a DRE-centered approach to predict AhR
binding and since AhR-KLF6 dimers do not appear to directly bind DREs (Figure 58), it is possible
that my selection of bound and unbound DREs in open chromatin of HepG2 cells was non-
informative for the machine learning models.

In summary, I developed highly accurate and robust predictive models of within-cell line
or type AhR binding. My models dissected the cell-type specificity of AhR binding and showed
that cell-type specific AhR binding is driven by a complex interplay of cell-type agnostic DNA
sequence immediately flanking the DRE, and a highly cell-type specific local chromatin context.
Additionally, I demonstrated that ARNT was the primary binding partner of AhR in TCDD treated
cells, but not in untreated cells, where KLF6 and RelA appear to be the primary binding partners
of AhR.

Finally, my BPA and BPS PBTK models demonstrated chemical accumulation in the fetal
compartment of a pregnant sheep experimental model; the majority of which is simulated as the
bisphenol conjugate for both BPA and BPS. When considering extrapolation to daily exposure
patterns in sheep, the accumulation of bisphenols in the fetal compartment has been observed in
humans (169), with glucuronide conjugates being the predominant form detected (170). Using

the U.S. Environmental Protection Agency’s reference dose for BPA (50 ng/kg/day), I simulated
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repeated maternal dosing over a two-week period for both BPA and BPS in sheep, to evaluate fetal
plasma chemical burden. Here, my simulations predicted that a pseudo steady-state of 0.28 ng/ml
unconjugated BPA would be reached, which falls within the range of detection for unconjugated
BPA (0-53 ng/ml) in cord blood (118). For BPS, my simulations predict that a pseudo steady-state
of 0.45 ng/ml unconjugated BPS would be reached. Since biomonitoring of unconjugated BPS has
not been reported for cord blood, a direct comparison to human exposure cannot be made.
However, the simulated total BPS in the fetal compartment (12.5 ng/ml on day 14) is in excess of
total BPS concentrations measured in cord blood (<0.03-0.12 ng/ml total BPS) from a Chinese
cohort (171). Most of the BPS accumulated in the fetus is predicted to be in the form of BPS
conjugated metabolites. Although these metabolites are generally considered non-bioactive, BPA-
G has been shown to be bioactive, and has adipogenic potential in vitro (172) . Given the predicted
accumulation potential of BPS-G in the fetal compartment, the bioactivity of BPS metabolites like
BPS-G should be further examined. My simulations also demonstrate that, given a steady maternal
intake of BPA, unconjugated BPA rapidly reaches a state where it no longer accumulates in fetal
blood. Unconjugated BPS, on the other hand, continues to accumulate in fetal blood even after
14 days of daily administrations. These results highlight the need to further study the precise fetal

toxicokinetics of BPS, as well as the fetal accumulation potential of other BPA analogs.
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