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ABSTRACT

Evolutionary algorithms (EAs) draw inspiration from biological evolution and replicate evo-

lutionary processes into a computational framework that can often solve challenging optimization

problems. These algorithms evolve a population of candidate solutions, where the population

typically cycles through three phases: evaluation, selection, and reproduction. Specifically, the

evaluation phase assesses the qualities of the candidate solutions, the selection phase identifies

which regions will be searched further, and the reproduction phase identifies the next positions to

search. Clearly, each phase plays a specific role in the evolutionary search that is implemented

through one or more interacting components that fully specify the algorithm. Of course, interac-

tions can make it difficult to isolate individual components in some complex EAs. As such, if we

want to understand how each component affects the properties of the overall algorithm, we need

a framework to formally define each component, and we need tools that characterize how each

component contributes to overall problem-solving success.

When a new EA is proposed, it is typically evaluated against a benchmark suite or hand-

picked test problems that clearly demonstrate its capabilities. Multiple benchmark suites exist

to highlight which classes of problems an EA is most effective against. Such suites, however, are

limited in their ability to diagnose why an EA performs the way it does. In particular, problems

with complex fitness landscapes do not facilitate an intuitive understanding of how an algorithm

traverses the search space. At a high level, components in an EA are well-classified for the role

they are supposed to play in traversing a search space: evaluation components generate qualities

for a candidate solution; selection components use these qualities to identify parents; reproduction

components propagate parents and apply variation. However, it is often less clear which particular

components would be most effective on a given problem or how different components will alter

each other’s behavior. Given the importance of component features and interactions, my aim is

to disentangle the mechanistic effects of each choice on the search process so that we can better

anticipate which combinations of components are most likely to produce an optimal solution to a

given problem.

In this dissertation, I achieved three synergistic goals: (1) I developed a formal definition for

selection scheme components that provides a framework for their study within generational EAs;

(2) I crafted a set of diagnostic tools that allow me to isolate the effects of individual selection



scheme components within this framework; and (3) I used these diagnostics to characterize the

search strategies employed by a set of common selection schemes.

In the chapters below, I first present a formal framework for dividing any selection scheme into

three fundamental components: population structures, trait processing, and selectors (Chapter 2).

Next, I use lexicase selection as the basis of two case studies where I demonstrate how subtle

alterations of this selection scheme affect performance on program synthesis problems, sometimes

producing dramatic improvements, but leaving many open questions as to when and why these

improvements will occur (Chapters 3 and 4). Once this motivation is established, I improve our

toolset for understanding selection schemes by developing a set of diagnostics that more precisely

and intuitively measure the strengths and weaknesses of a set of schemes (Chapters 5 and 6).

Finally, I apply these diagnostics to a new area, island structures, to demonstrate their versatility

and expected general usefulness (Chapter 7). This work emphasizes the importance of properly

configuring an EA for the problem at hand, and provides a precise and informative contribution to

the set of available benchmark suites.
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Chapter 1
Introduction

“How one goes about selecting and applying [evolutionary algorithms] to particular problem
domains is presently more of an art than a science” – Kenneth De Jong (1993)

Evolutionary algorithms (EAs) constitute a diverse family of optimization algorithms inspired

by biological evolution. Most EAs excel at some problem types or instances, but struggle when

used on others. The “no free lunch” theorem asserts that no one optimization technique can

dominate across all possible problems (Wolpert and Macready, 1997), but we can do a better job

identifying the properties of specific EA techniques and which EA should be applied to a given

problem. Practitioners are tasked with configuring an EA such that it is tailored to the problem at

hand, where the configuration ultimately determines the likelihood of success. This task is rather

challenging, as EAs have grown in complexity to contend with more challenging problems.

My thesis focuses on enhancing our current understanding of generational EAs. In it, I ac-

complish three synergistic aims:

1. I develop a theoretical framework to formally define a selection scheme.

2. I demonstrate how subtleties to a selection scheme impact problem-solving success.

3. I engineer and use a set of diagnostic tools to characterize a selection scheme’s abilities.

By formalizing the definition and composition of selection schemes, it becomes much easier to

describe, identify, and understand the scheme within an EA. Furthermore, my framework allows us

to more easily predict how individual changes to a selection scheme are likely to impact problem-

solving success. While it is helpful to find changes that improve success rates, we must understand

how the mechanisms behind these changes affect search space traversal to predict where else they

might be beneficial and develop more general principles. My diagnostic tools help illuminate why

differences in performance and search space traversal may occur due to modifications in a selection

scheme. Ultimately, this thesis leaves practitioners better equipped to define their EAs and better

able to make decisions on how to configure them.

Evolutionary algorithms are a perfect example of technology inspired by nature, as this family

of optimization algorithms lies at the intersection of evolutionary biology and computer science. In

nature, organisms within a population compete with one another for the opportunity to reproduce.

Offspring typically have genetic variations from their parent or parents, which may affect their
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traits or behaviors and, ultimately, their ability to survive and continue their lineage. While

most genetic changes are deleterious or neutral, those offspring with variations that improve their

survival and competitiveness are more likely to produce offspring of their own. Through this cycle of

genetic variation and natural selection, populations evolve to be better adapted to their environment

(Darwin, 1859). Indeed, evolution is effective at producing organisms with complex traits and

behaviors that enable them to thrive in environments where it appears difficult for life to exist, such

as deserts, volcanoes, and the deep sea. This description is a simplification of biological evolution,

but translating even these high-level evolutionary processes into a computational framework has

proven useful for optimization (Barros et al., 2012; Coello Coello, 2002; Freitas, 2003; Hruschka

et al., 2009; Karafotias et al., 2015; Slowik and Kwasnicka, 2020; Zhou et al., 2011).

Four main categories of EAs have historically included evolutionary strategies (Rechenberg,

1965), evolutionary programming (Fogel et al., 1966), genetic algorithms (Holland, 1967), and ge-

netic programming (Forsyth, 1981; Koza, 1989). Each category possesses its own unique methods

and motivations that distinguish it from the others, yet many similarities exist among them. Tradi-

tionally, EAs implement three key phases: evaluation, selection, and reproduction. While defining

different EAs with the three phases helps with understanding how an algorithm operates, each in-

dividual phase can be implemented as one or more interacting components that execute the role of

individual phases. This dissertation focuses on the selection phase within a generational

EA. The framework developed in Chapter 2 formally defines the selection phase, breaking it into

three components: population structure, trait processing, and selectors. Indeed, my framework

allows for precise changes to be applied to selection schemes and helps practitioners to predict the

impact of those changes on problem-solving success. Additionally, my framework allows practi-

tioners to easily characterize the selection scheme within an EA, thus reducing the likelihood of

constructing redundant selection schemes.

After developing the selection scheme framework in Chapter 2, I then demonstrate how small

alterations to a scheme can lead to differences in performance for a given problem. In Chapters 3

and 4, I systematically alter lexicase selection (Helmuth et al., 2015) – a highly successful selection

scheme for program synthesis problems with a large number of test cases. I engineer promising

variations of lexicase selection (cohort lexicase and down-sampled lexicase) that often give better

performances than standard lexicase selection and have since been shown to be state-of-the-art for
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program synthesis (Helmuth and Abdelhady, 2020). While the new lexicase variants proved to be

effective, it was initially difficult to precisely and intuitively understand why the changes increased

problem-solving success.

Traditionally, newly developed EAs and components are assessed on a benchmark suite (a tar-

geted set of problems) to measure their problem-solving efficacy (Garden and Engelbrecht, 2014).

While this may be the standard approach, two critical issues remain to be resolved: (1) no standard

benchmark exists (Hussain et al., 2017; Jamil and Yang, 2013), and (2) there is no consensus on

methodology for performing benchmark studies (Bartz-Beielstein et al., 2020). The first issue is

difficult to resolve, as different benchmark suites focus on specific problem domains and characteris-

tics, and multiple suites are available for practitioners to consider (e.g. Adorio and Dilman (2005);

Andrei (2008); Averick et al. (1992); Floudas et al. (1999); Hansen et al. (2009); Helmuth and Kelly

(2021); Helmuth and Spector (2015); Suganthan et al. (2005)). For Chapter 5, I developed an initial

diagnostic tool that starts to help address the second issue. Specifically, I formalized a methodology

for isolating and characterizing the exploration abilities of a selection scheme. This methodology

differs from the traditional approach for assessing EAs, as I focus only on the selection scheme,

which allows me to easily and intuitively diagnose its abilities. I was able to use this diagnostic

to better understand the different dynamics of the lexicase variants from Chapters 3 and 4, and

identified conditions where each technique was likely to be an appropriate choice. In Chapter 6, I

expanded our set of diagnostic tools and applied them to a broader set of commonly used selection

schemes, allowing me to quantitatively identify many of the benefits and drawbacks of each. Ad-

ditionally, my diagnostic tools allow us to diagnose the impact of integrating new components and

techniques into a selection scheme. In Chapter 7, I integrated island structures into a broad set of

selection schemes and diagnosed their effects under each condition.

1.1 Evolutionary algorithms
Evolutionary algorithms replicate the processes from biological evolution into a computational

framework that is applied to problem-solving, where these algorithms can be described as proba-

bilistic search algorithms that use evolutionary processes to sample a subset of possible solutions

(Bäck and Schwefel, 1993; Blickle and Thiele, 1995; Goldberg and Deb, 1991). Prior to running an

EA, the underlying representation must be determined for the problem at hand, which dictates the

space of all possible solutions that will constitute the population of candidate solutions under con-
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sideration. At the beginning of an evolutionary run, a population of random solutions is generated.

Next, candidate solutions in the population are evaluated on the problem. The results from these

evaluations are commonly summarized as a single fitness value, but for generality, we will assume

that this evaluation phase can record arbitrary information about the qualities of these solutions,

which we will call traits. Once one or more traits are recorded, these values can be used to choose

the set of candidate solutions to act as parents for the construction of a new generation. Offspring

produced from the set of parents will be subject to a source of variation, where variation typically

comes from mutations applied to their underlying representation or recombination from the genetic

material of other parents or previous candidate solutions. The same process is repeated with the

newly formed population until a stopping criterion is met, such as a suitable solution being found

or after a maximum number of generations have occurred.

1. Initialize the population of candidate solutions.

2. Repeat until stopping criterion is met:

(a) Evaluation: Prospective solutions are analyzed and traits are recorded as
measures of its quality and performance.

(b) Selection: A number of parents are identified through some procedure that
determines which candidate solutions will be chosen as parents for the next
generation.

(c) Reproduction: Offspring are produced and subjected to a source of
variation.

Algorithm 1.1: Phases for a simple evolutionary algorithm.

The process typically repeated by a simple EA (Algorithm 1.1) can be summarized into three

phases: evaluation, selection, and reproduction. While the EA description in Algorithm 1.1 has

each phase only once, more complex EAs may have the same phase multiple times in any order.

Each evolutionary algorithm phase has its own set of components, some of which interact with com-

ponents in other phases. For example, consider a component that determines population structure,

where a population structure defines how candidate solutions interact with one another. The pop-

ulation is shared across all three phases, where each phase alters and influences the construction of

a new population. During the evaluation phase, a population structure might determine the condi-
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tions under which a candidate solution is evaluated (e.g. cohort lexicase in Chapter 3). During the

selection phase, a population structure might influence which other individuals a candidate solution

must compete against (e.g. age-layered population structures in Hornby (2006)). And during the

reproduction phase, a population structure might determine where a candidate solution’s offspring

is placed (e.g. MAP-Elites in Mouret and Clune (2015)). Given the interconnectedness of an EA,

we must develop a deeper understanding of how components in different phases interact to create

more robust and efficient algorithms.

Before using an EA, practitioners must develop a blueprint for the EA, and determine the

nuts and bolts of each component that are needed to construct the EA. Once the EA is fully

configured, executed, and finished running, it may potentially find optimal solutions for the problem

it is attempting to solve. If the EA produced interesting results, practitioners might want to

publish their findings and share the algorithm with others. However, the multiple components

and the software implementation of the EA may make it difficult to describe and interpret. Given

that EA components interact, optimizations used within the software implementation make sense

from a practical perspective, but make it difficult to isolate and identify individual components.

Describing EAs through written descriptions is another commonly used approach, but the text

may be ambiguous, uninformative, and convoluted with both justifications and descriptions of the

EA. The confusion generated from the inability to understand an EA can lead to the construction

of redundant, inaccurate, and ineffective algorithms, along with impeding the ability to reproduce

results similar to existing research. Thus, the ability to formally describe evolutionary algorithms

is crucial for developing continuous progress within the field of EAs (López-Ibáñez et al., 2021).

I believe pseudocode is the best approach to use and expand for describing an EA’s components

and configuration, but more refinement and improvements are needed. The favoring of this approach

is not meant to halt the use of software and written descriptions to describe EAs, but rather to

ease the understanding of them by using the pseudocode as a bridge between software and written

descriptions. Both Bäck et al. (1997) and Rozenberg et al. (2012) successfully describe how specific

kinds of evolutionary algorithms operate with the three simple EA phases found in Algorithm

1.1. Yet, this description is insufficient to fully describe an EA used for a specific problem, as the

solution representation, selection scheme, and reproduction components are missing. While not

complete, this approach is beneficial to understand how an EA is operating at a high level, but
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more details are needed that define the specific components used. Both Helmuth et al. (2015) and

Chapter 5 do a good job of describing and simplifying the understanding of the selection scheme

used in their work. In both cases, pseudocode could have simplified the understanding of how

the EA operated in their respective works, along with including pseudocode for the reproduction

components similar to the selection scheme. Given the benefit of using pseudocode for both EA

and component descriptions, I believe pseudocode is the best path forward.

In order to contend with more challenging problems, practitioners developed new techniques,

procedures, and components that increase the problem-solving potential of EAs (Vikhar, 2016).

Indeed, the state-of-the-art EAs developed have grown in complexity (Hornby, 2006; Kriegman

et al., 2020; Mouret and Clune, 2015; Skolicki and De Jong, 2004; Stanley and Miikkulainen, 2002).

As the complexity of new EAs grows to contend with more challenging problems, the importance of

implementation details and communication of the EA is even more critical. I argue that the three

fundamental phases of a simple EA (evaluation, selection, and reproduction in Algorithm 1.1) are

a unifying framework for all EAs.

Next, I use four classes of EAs as a case study to demonstrate two key ideas: (1) why implemen-

tation details are important and (2) how more formal descriptions with pseudocode can illuminate

similarities and differences between EAs. Indeed, when all four classes are viewed through the

lens of simple EA phases, they all fit into a common framework. The classes of EAs used in this

case study are the four historical branches of EAs: evolutionary strategies (Rechenberg, 1965),

evolutionary programming (Fogel et al., 1966), genetic algorithms (Holland, 1967), and genetic

programming (Koza, 1989, 1990a). In the early stage of these branches, computational resources

were scarce and limited by the technology available at the time, which impeded the ability to carry

out more complex experiments and develop variants. In other words, the founders of each branch

were not limited by their imagination, but by the tools available. However, the founders of these

branches paved the way for the progress and success evolutionary algorithms see today. A more

complete history of the field of evolutionary computation can be found in Bäck et al. (1997) and

Rozenberg et al. (2012). Next, I give a more detailed description of the four main branches in the

following sections.
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1.1.1 Evolutionary strategies

The field of evolutionary strategies (ES) is credited to three students of the Technical Uni-

versity of Berlin, Peter Bienert, Ingo Rechenberg, and Hans-Paul Schwefel, who initially planned

to develop an autonomous system that repeatedly executed experiments and used the results from

the experiments to improve a real-world object for a given problem (Bäck et al., 1997; Luke, 2013;

Rozenberg et al., 2012). The first evolutionary strategy, (1+1)-ES, used stochasticity in its search

for optima to overcome the limitations of gradient-based optimization techniques at the time when

tackling problems from engineering domains (Rechenberg, 1965). This evolutionary strategy main-

tained a single solution that asexually produced an offspring that received mutations, and only

the better-performing solution between the parent and offspring continued to the next generation.

Indeed, selection and mutation drove the evolutionary search of (1+1)-ES, where the mutation

parameters were static and arbitrary. The (1+1)-ES would be further explored and extended, such

as mutations becoming more systematic, self-adaptive, and better understood (Rechenberg, 1973;

Schwefel, 1965, 1977). For example, in Rechenberg (1973) the 1
5 rule is established, where if the

proportion of successful mutations over a period of time deviates from 1
5 , then the magnitude of

the following mutations were adjusted.

Two generic, multi-solution variations of the (1+1)-ES became more widespread (Bäck et al.,

1997): (µ, λ)-ES and (µ + λ)-ES. For both these new variations of evolutionary strategies, µ is

the number of parents selected and λ is the number of offspring created. The (µ, λ)-ES algorithm

starts with generating λ solutions randomly. Once each solution receives its evaluation on some

problem, the µ top-performing individuals are identified as parents and produce λ
µ offspring. Each

offspring undergoes mutation and proceeds to the next generation. The same process is repeated

with the newly formed population until a stopping criterion is met, such as a suitable solution

being found or after a maximum number of generations have occurred. The (µ+ λ)-ES algorithm

deviates from this procedure, where both offspring and parents are placed in the population for the

next generation. Note that the population size for the (µ, λ)-ES algorithm is λ and the population

size for the (µ + λ)-ES algorithm after the first generation is µ + λ. These implementations of

evolutionary strategies were gathered from Luke (2013).

According to Rozenberg et al. (2012) and Bäck et al. (1997), canonical evolutionary strate-
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1. Initialize the population of candidate solutions.

2. Evaluate initial solutions on the given problem.

3. Repeat until stopping criterion is met:

(a) Select a list of parents from the population.

(b) Reproduce offspring with mutations applied.

(c) Evaluate offspring on the given problem.

(d) Select solutions from offspring and population for next generation.

Algorithm 1.2: Pseudocode for canonical evolutionary strategies.

gies are typically executed as follows: at the start, initialize a population of randomly generated

solutions and evaluate all solutions on the given problem. Parents are then selected uniformly at

random and each parent produces an offspring. Offspring receive mutations and then are evaluated

on the same problem. To construct the following population, both offspring and parents are ranked

according to their evaluation, where only the top-ranked solutions continue to the next generation.

This cycle continues with the newly formed population until a stopping criterion is met, such as

a suitable solution being found or after a maximum number of generations have occurred. Inter-

estingly, early work involving evolutionary strategies emphasized mutations so it was thought that

recombination was not a key component of evolutionary strategies, but is now part of contempo-

rary evolutionary strategies (Rozenberg et al., 2012). Here, the mutation-based implementation of

canonical evolutionary strategies is presented and the pseudocode for this algorithm can be found

in Algorithm 1.2.

Indeed, evolutionary strategies have been successfully applied in multiple fields, such as pa-

rameter optimization (Hatanaka et al., 1996; Li et al., 2013a), image processing (Li et al., 2006;

Louchet, 2000), task scheduling (Ahire et al., 2000; Belaqziz et al., 2014; Greenwood et al., 1994),

path planning (Sauter et al., 2002; Watanabe et al., 1999), and vehicle design (Ostertag et al., 1995;

Tayarani-N. et al., 2015).

1.1.2 Evolutionary programming

Lawrence Jerome Fogel founded evolutionary programming when simulating evolution to evolve

finite state machines that sequentially processed symbols to predict the next symbol within a prede-

8



termined environment (Fogel et al., 1966), where environments consisted of a sequence of symbols

generated from a finite alphabet. At the start of the simulation, a population of parent finite state

machines was randomly generated and each machine was evaluated on the prediction task. Each

finite state machine processed a symbol from the environment and predicted the following symbol

in the sequence, where a payload function scored each prediction. Once all the predictions for a

finite state machine were scored, they were summarized by a different payload function to quantify

a machine’s fitness. Next, all parent machines asexually generated an offspring, where offspring

possibly received mutations (changes to output state symbol, initial state, and topology). Once all

offspring were constructed, each offspring was evaluated on the prediction task. Only the machines

with the highest fitness made it to the next generation between both parents and offspring solu-

tions. The same cycle was repeated until a stopping criterion was met. This evolutionary process

ultimately laid the framework for the field of evolutionary programming.

1. Initialize the population of candidate solutions.

2. Evaluate initial solutions on the given problem.

3. Repeat until stopping criterion is met:

(a) Select a list of parents from the population.

(b) Reproduce offspring with mutations applied.

(c) Evaluate offspring on the given problem.

(d) Select solutions from offspring and population for next generation.

Algorithm 1.3: Pseudocode for canonical evolutionary programming.

According to Fogel et al. (1991), Bäck et al. (1997), and Rozenberg et al. (2012), canonical

evolutionary programming is typically implemented as follows: at the start, initialize a population

of random solutions for the problem at hand, where all initial candidate solutions are assigned an

evaluation from one or more payoff functions. To construct the following generation, all candidate

solutions asexually produce one offspring, and mutations are applied to the offspring; mutations

are implemented such that the offspring’s behaviors do not deviate far from their parents. Once all

offspring are constructed, they receive an evaluation from the payoff functions. The population for

the next generation is filled with the best solutions from both the current population and offspring.

9



This cycle continues with the newly formed population until a stopping criterion is met, such as

a suitable solution being found or after a maximum number of generations have occurred. The

pseudocode for this algorithm can be found in Algorithm 1.3.

While the first experiment with evolutionary programming focused on evolving finite state

machines for a prediction problem, the same evolutionary process would be extended (Fogel et al.,

1991; Swain and Morris, 2000; Yao et al., 1999). Indeed, evolutionary programming would be

successfully applied in various areas, such as the traveling salesman problem (Fogel, 1988, 1993),

neural networks (Fogel et al., 1995a, 1997; Jian and Yugeng, 1997), and constrained optimization

(Fong et al., 2006; Hoorfar, 2007; Kim and Myung, 1997; Shailti Swamp and Natarajan, 2005).

1.1.3 Genetic algorithms

The field of genetic algorithms is credited to John Holland (Holland, 1967), and the field

was extended and explored by his students and colleagues (Bäck et al., 1997; Rozenberg et al.,

2012). In Holland (1962), Holland sets out to develop a better understanding of adaptation, or

how systems can generate solutions that thrive in a given environment. Ultimately, this goal of

better understanding adaptation laid the groundwork for genetic algorithms, where Holland de-

scribes populations of programs that accumulate changes that increase the ability of a program

to thrive in a given environment each following generation. Later, Holland developed the schema

theorem that would make certain guarantees for genetic algorithms, which states that schema with

low-order, small defining length, and above-average fitness have a higher chance of continuing to

the next generation (Holland, 1975). There are three features that distinguish Holland’s first pro-

posed genetic algorithm: a genome represented by a bitstring, proportional selection, and variation

through mutation and recombination. In fact, this early variation of genetic algorithms preferred

recombination over mutation.

In Bäck et al. (1997) and Rozenberg et al. (2012), canonical genetic algorithms are typically

executed as follows: at the start, initialize a population of randomly generated solutions and

evaluate all solutions on the problem at hand. Next, select a set of parents for reproduction, where

offspring are generated through crossover and mutations are applied. The parents selected for

reproduction are identified probabilistically, where the probability of a solution being selected is

determined by its performance. Once all offspring are constructed, they are evaluated on the given

problem. The next generation is then constructed from both the current population and the set
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1. Initialize the population of candidate solutions.

2. Evaluate initial solutions on the given problem.

3. Repeat until stopping criterion is met:

(a) Select a list of parents from the population.

(b) Reproduce offspring through recombination and mutations.

(c) Evaluate offspring on the given problem.

(d) Select solutions from offspring and population for next generation.

Algorithm 1.4: Pseudocode for canonical genetic algorithms.

of offspring, where solutions must be selected to continue to the next generation. Additionally,

not all solutions may be needed to fill the next population. This cycle continues with the newly

formed population until a stopping criterion is met, such as a suitable solution being found or after

a maximum number of generations have occurred. Interestingly, genetic algorithms emphasize

recombination over mutations. The pseudocode for this algorithm can be found in Algorithm 1.4.

Indeed, genetic algorithms have proven their abilities in numerous fields (Katoch et al., 2021),

such as healthcare (Ghosh and Bhattacharya, 2020; Sharma and Kumar, 2022), scheduling (Hou

et al., 1994; Pezzella et al., 2008), security (Devaraj and Yegnanarayana, 2005; Kaur and Kumar,

2018), image processing (Bhanu et al., 1995; Hashemi et al., 2010), and neural networks (Ding

et al., 2011; Leung et al., 2003; Miller et al., 1989).

1.1.4 Genetic programming

Prior branches of evolutionary algorithms focused on solving individual instances of problems,

whereas genetic programming (GP) shifted the emphasis to evolving code that could solve all

instances of a given problem Koza and Poli (2005). Implementations of GP can be found as early

as Forsyth (1981), but became popularized by John Koza (Koza, 1990b). Early implementations

of GP used syntax trees to represent a program, which remains a popular technique. These trees,

inspired by LISP programming, consist of three key features (Koza, 1989, 1990a): functional nodes,

terminal nodes, and the edges connecting them. Functional (internal) nodes process inputs and

generate output, such as arithmetic, Boolean, or conditional operations. Terminal (leaf) nodes

typically consist of inputs to the program, variables, or constants. Edges connect the outputs
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from one node to the inputs of another. While syntax-tree representations are popular, other

types of GP representations include stack-based GP (Perkis, 1994), grammatical evolution GP

(O’Neill and Ryan, 2001), cartesian GP (Miller, 1999), linear GP (Brameier et al., 2007), and

graph programming (Atkinson et al., 2018). This flexibility in representation allows practitioners

to solve a wide range of problems with GP (De Jong, 1988). The theoretical foundations for GP

had a slow start, but eventually, an exact and general schema theory was developed that helped

explain its problem-solving success (Poli, 2001; Poli and McPhee, 2003a,b).

1. Initialize the population of candidate programs.

2. Evaluate programs in the population on each fitness case.

3. Repeat until stopping criterion is met:

(a) While offspring are needed choose an operation randomly:

i. Select a parent to produce a clonal offspring.

ii. Select two parents to recombine to produce an offspring.

iii. Select a parent to reproduce with mutations.

iv. Select a parent to reproduce with architecture-altering operations.

(b) Evaluate offspring on each fitness case.

(c) Replace the current population with the population of offspring.

Algorithm 1.5: Pseudocode for canonical genetic programming.

Since GP focuses on evolving actual computer programs, these programs must be executed

to measure how well they solve the given problem. Typically, multiple fitness cases are used to

measure problem-solving success and guide the evolutionary search toward optima, where infinitely

many cases may exist for a given problem (e.g. evolving a generalized sorting algorithm (Kinnear,

1993)). Indeed, since the full program must be run for each fitness case, a trade-off must be made for

the number of cases used to evolve programs. An excessive number of cases will increase run time,

and an insufficient number of cases will not adequately guide the evolutionary search. Ultimately,

the collection of fitness cases must capture the complete set of capabilities required of a program in

order to successfully solve a problem. Additionally, techniques have been developed to select fitness

cases for problems with infinitely many possibilities or to limit cases when fitness evaluations are
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computationally expensive (Curry and Heywood, 2004; Gathercole and Ross, 1994; Giacobini et al.,

2002; Hmida et al., 2017; Martínez et al., 2017; Ross, 2000). Indeed, GP has proven its abilities

in numerous fields (Langdon et al., 2008), such as automated machine learning (Olson and Moore,

2019), healthcare (Le et al., 2019), classification (Espejo et al., 2010), scheduling (Nguyen et al.,

2017), image processing (Khan et al., 2021), and civil engineering (Zhang et al., 2021).

1. Initialize the population of candidate programs.

2. Evaluate initial programs on each fitness case.

3. Repeat until stopping criterion is met:

(a) Select a list of parents from the population.

(b) Reproduce offspring by choosing a reproduction method and working
down the list of selected parents.

(c) Evaluate offspring on each fitness case.

(d) Select programs from offspring and population.

Algorithm 1.6: Pseudocode for canonical genetic programming adjusted to match other
evolutionary algorithm organization.

According to Koza and Poli (2005), canonical genetic programming implementations are typ-

ically executed as described in Algorithm 1.5. This cycle continues until a stopping criterion is

met, typically because a suitable program was found or the maximum number of generations oc-

curred. Interestingly, the selection scheme used to identify parents is similar between both genetic

programming and genetic algorithms. This canonical pseudocode description may appear different

from the previous EA branches, but we can adjust the description to follow the same format. An

example of this new pseudocode description can be seen in Algorithm 1.6. I will use this more

standard formulation for my subsequent analyses.

1.2 Differences and similarities for evolutionary algorithm branches
Clearly, each EA branch can be adjusted to operate similarly and use identical phases, yet

the components of each phase are implemented and function differently. In this section, I focus on

highlighting the key differences and similarities between the canonical algorithms of the four EA

branches.
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1.2.1 Differences in initial purpose, design philosophy, and problem domain

Here I describe the differences between evolutionary strategies, evolutionary programming,

genetic algorithms, and genetic programming in relation to each branch’s purpose, philosophy, and

problem domain.

Differences in purpose between branches

The purpose of the canonical algorithm for each EA branch is the first clear difference among

branches (Bäck et al., 1997; Rozenberg et al., 2012). Evolutionary programming attempted to

address the goals of artificial intelligence at the time, which focused on developing heuristics and

neural networks. Evolutionary strategies were intended to act as an autonomous system for modi-

fying real-world objects by repeatedly conducting experiments on the object and applying changes

to them based on the experiment results. Genetic algorithms were intended to study the principles

of adaptive systems. Genetic programming focused on getting computers to automatically solve a

problem.

Differences in design philosophy between branches

Each branch focuses on different evolutionary principles and mechanisms that guide the evo-

lutionary search to solve a problem. Both genetic algorithms and genetic programming evolve

solutions based on the assumption that the accumulation of building blocks within the genotype

will guide the evolutionary search toward optima. Schema theory reinforced this motivation, as

Holland (1975) and Poli (2001) demonstrated that solutions with small building blocks will be im-

proved over time. Additionally, the use of recombination as a variation operator goes hand in hand

with the building block motivation, as solutions may combine building blocks within their offspring.

Because of this preference for building blocks, both genetic algorithms and genetic programming

focused on evolving a genotype, where the former is typically an indirect encoding for a solution

to a given problem and the latter is an executable computer program for a given problem.

Evolutionary programming and evolutionary strategies focus the evolutionary search on phe-

notypic behaviors and make no assumption on the genotypic representation (Bäck et al., 1997;

Rozenberg et al., 2012). As a result, recombination did not directly benefit the improvement of

phenotypic behaviors, which explains the emphasis on mutations for both branches. Indeed, differ-

ent approaches for creating robust and effective mutation operators would be developed for both
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evolutionary strategies (Hansen and Ostermeier, 1996, 2001; Yao and Liu, 1997) and evolutionary

programming (Fogel et al., 1995b; Lee and Yao, 2004; Zhao et al., 2007). Although, recombination

would become part of these branches later on (Beyer and Schwefel, 2002; Fogel and Beyer, 1995).

Differences in target problem domain and genetic representation between branches

As the original purpose and philosophy varied between the EA branches, so did the problems

each was initially designed to solve. Thus, the solution representation also differed: evolutionary

programming evolved finite state machines for a simple prediction task (Fogel et al., 1966); evolu-

tionary strategies evolved real-world objects for different engineering domains (Rechenberg, 1965);

genetic algorithms evolved binary strings that represented encoded solutions for a variety of prob-

lems (Bäck et al., 1997; Rozenberg et al., 2012); and genetic programming evolved executable code

(often in the form of syntax trees) for a variety of problems (Koza, 1989). While the initial repre-

sentation and problem domains for each branch may be different, they have expanded into other

domains, and even overlap on some problems. For example, evolutionary programming, evolution-

ary strategies, and genetic algorithms attempt to solve different instances of the traveling salesman

problem through their own unique approach (Fogel, 1993; Karabulut et al., 2021; Larranaga et al.,

1999).

1.2.2 Comparison of similarities and components

Here, I describe the similarities between evolutionary strategies, evolutionary programming,

genetic algorithms, and genetic programming. When viewing each EA branch through the three

phases of a simple EA, each branch follows the same phases: initialization, evaluation, selection,

reproduction, evaluation, and selection. While each branch may follow the same phases, each phase

is implemented differently. The pseudocode description for evolutionary programming (Algorithm

1.3), evolutionary strategies (Algorithm 1.2), genetic algorithms (Algorithm 1.4), and genetic pro-

gramming (Algorithm 1.6) can be found in Section 1.1. Indeed, I illustrate the benefit of using

both the pseudocode and the simple EA phase framework to describe each historical branch of EAs

and how they operate. However, the ability to understand how an EA is operating is only half the

battle, as it is also important to understand how each component is implemented.

Initialization

All four branches start by initializing a population of random solutions and evaluating those

solutions on the problem at hand. While the creation of the starting population seems like a spe-
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cial phase on its own, I interpret it as a special case of reproduction where offspring are randomly

created. In fact, reproduction components that generate random solutions are common, as ran-

domly generated solutions are frequently added in the population for the Age-Layered Population

Structure algorithm (Hornby, 2006) and added to increase exploration (Grefenstette, 1992). After

these first two steps, while all branches appear to follow the same phases, the components are

implemented differently.

Parent selection

Step (a) identifies a set of parents that are used to generate a set of offspring. However, the

selection component is implemented differently across each branch. Interestingly, the implementa-

tion of evolutionary programming in Section B1.4.2.2 from Bäck et al. (1997) does not have this

line and the entire population acts as parents, but I call out this additional phase to highlight the

similarities. Evolutionary strategies select parents uniformly at random. Both genetic algorithms

and genetic programming identify parents through the use of proportional selection techniques.

Indeed, step (a) is established for all branches, but the selection component implementation differs.

Reproduction and offspring evaluation

Step (b) uses the set of parents identified from step (a) to generate a set of offspring. Note that

step (b) is the same for evolutionary programming and evolutionary strategies. Both evolutionary

programming and evolutionary strategies have each identified parent produce offspring asexually,

where offspring receive mutations. Genetic algorithms, however, use crossover to generate offspring

from the set of parents identified, where offspring also receive mutations. Genetic programming

uses a variety of ways to generate offspring: clonal, crossover, and mutation. Once the set of

offspring is constructed, each offspring is evaluated on the given problem in step (c). Indeed, step

(b) is established for all branches, but the reproduction component implementation differs.

Survivor selection

Step (d) identifies the solutions that will survive and form the population for the next genera-

tion. Interestingly, this step can also be viewed as a selection phase, as solutions must be selected

to continue to the following generation. For evolutionary strategies, evolutionary programming,

and genetic algorithms, the surviving solutions come from both the set of offspring and the set

of identified parents. Both evolutionary programming and evolutionary strategies only keep the

top-performing solutions, also known as truncation selection (Crow and Kimura, 1979). Genetic
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algorithms use a variety of techniques to select solutions that continue to the following generation:

proportional selection, rank selection, and tournament selection. Genetic programming, however,

only uses the offspring generated to construct the following generation. Step (d) is not found within

the canonical implementation of genetic programming, but I call out this additional phase to high-

light the similarities. Indeed, step (d) is established for all branches, but the selection component

implementation to identify survivors differs.

1.3 Evolutionary algorithms and benchmark suites
The flexibility in constructing EAs makes them applicable to a wide range of problems. In

fact, an EA can be used to solve a problem as long as a problem representation can be defined

with a variation operator that is capable of traversing the search space. Yet, even if state-of-the-art

evolutionary algorithms are applied to a new problem, there is no guarantee that the algorithm

will find an optimal solution. In order to maximize problem-solving success, practitioners are

challenged with both deciding which EA to use and how to tune it appropriately. Tuning is

especially challenging because an EA may have an intractable number of configuration options due

to either combinatorics or continuous values. As such, the broad applicability of EAs to virtually

any problem domain makes it difficult to formally analyze them. In the end, EAs tend to be

individually customized for each given problem.

Running an EA on a benchmark suite is the standard approach for (1) predicting its usefulness,

(2) comparing it to other approaches, and (3) measuring its strengths and weaknesses. Success on

any problem in a benchmark suite demonstrates that it can be useful in at least some circumstances.

However, using benchmark suites to broadly compare EAs is more challenging. Practitioners must

individually determine the set of problems to evaluate EAs on, as no consensus benchmark suite

exists (Hussain et al., 2017; Jamil and Yang, 2013), which can lead to biased results. Approaches

to mitigate this bias focus on generating diverse benchmark suites through large numbers of prob-

lems (Whitley et al., 1996), using heuristics to select problems with desired features (Lang and

Engelbrecht, 2021), or targeting an appropriate range of fitness landscape properties (Doerr et al.,

2019). Furthermore, even if an EA performs well on a problem, it is not obvious how to use this

knowledge to predict success on new instances of the same type of problem, let alone problems

from other domains. Our inability to extrapolate problem-solving success is due to several factors:

it is challenging to perform sufficient replications to get robust statistical results (Vermetten et al.,
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2022), statistical analyses are often incomplete (López-Ibáñez et al., 2021), existing benchmark

suites are often limited in the types of problems they include (Garden and Engelbrecht, 2014), and

even when problems are varied, the tests will often only reach a small region of the entire problem

space (Lacroix and McCall, 2019).

The high-level mechanisms for how an EA moves a population through a search space are well-

established: mutation transforms a solution into one of its neighboring solutions; recombination

generates offspring somewhere between parents within the search space; and selection identifies

regions that the population should continue to search. Yet, it is difficult to know how these proper-

ties manifest during actual problem-solving, as solution representations and complex search spaces

are typically not conducive to an intuitive understanding. Many search space characteristics that

make problems challenging are well-known (Malan and Engelbrecht, 2013; Sun et al., 2014; Weise

et al., 2012), such as the number of peaks (modality), the number of basins of attraction, land-

scape ruggedness, neutrality, dimensionality, separability, deception, epistasis, genotype/phenotype

redundancy, etc. Capturing these characteristics is feasible and can be intuitive for simple search

spaces, but quickly becomes unmanageable as search space complexity increases. For example, mea-

suring any of these characteristics for a tree-based genetic programming search space for a synthesis

problem would be computationally intractable, as the search space is complex and unbounded.

Constructing new benchmark suites composed of handcrafted problems with targeted problem

characteristics can be a useful addition to the current benchmarking standards. In Weise et al.

(2008), the authors present the W-Model, a problem where multiple parameters are adjustable

such that the problem difficulty and characteristics are tunable. Specifically, the W-Model defines

the transformation of a bit string to a single fitness value, where the transformation applies a

layer of neutrality, epistasis, multi-objectivity, overfitting, and ruggedness in that order. Each layer

transforms the bitstring and passes the transformed bitstring to the following layer. The W-Model

illustrates its importance by highlighting algorithm differences when difficulty is increased (Weise

et al., 2020). It has also been used to illustrate how self-adapting mutation rates and population size

influence problem-solving success (Rodionova et al., 2019). Indeed, the W-model makes a strong

case to be considered part of the Black-Box Discrete Optimization Benchmarking Workshop at

The Genetic and Evolutionary Computation Conference (Weise and Wu, 2018). Other examples of

tunable, handcrafted problems include royal road (Mitchell et al., 1991), NK-Landscapes (Kauffman
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and Levin, 1987), One-Max (Bäck et al., 1997), and royal trees (Punch et al., 1996).

This dissertation builds on this idea of generating handcrafted problems to analyze EAs, where

I develop a suite of diagnostics that focus on specific problem characteristics (e.g., modality, multi-

objectivity, epistasis, etc.). Additionally, I narrow my analysis of EAs by only focusing on the

selection scheme and characterizing its abilities through the set of diagnostics. This approach

forms a new methodology for studying EAs by isolating the selection scheme within an EA and

comparing the results on the diagnostics, where only the selection scheme changes within the EA.

Indeed, I help establish a better understanding of the similarities and differences between selection

schemes. One argument against this approach is the fact that these handcrafted problems are

unrealistic and are not found in the real world. My position is that success on real-world problems

is important to prove the value of an EA, but these diagnostics are critical if we want to understand

the underlying mechanisms that lead to that success. This understanding, in turn, is necessary to

improve the mechanisms and apply them to other EAs more broadly.

1.4 Thesis Statement
Evolutionary algorithms (EAs) have proven to be extraordinarily successful on many classes

of problems where humans do not have the knowledge to craft a more customized optimization

algorithm. While many people have analyzed EAs from a theoretical perspective, a more formalized

framework is required if we are to make substantial progress on turning EA construction from an

art to a science. Furthermore, more targeted diagnostics can improve our analysis capabilities to

not only measure an EAs performance (like so many benchmark suites do), but also provide us

with a deeper intuition for how the underlying EA dynamics function.

1.5 Contributions
This thesis is divided into two parts: (1) Formalizing selection schemes within a generational

EA and demonstrating that subtleties to a scheme alter performance; (2) Engineering a set of

diagnostics to analyze selection schemes. Chapters 2, 3, and 4 focus on the former, while Chapters

5, 6, and 7 focus on the latter.

1.5.1 Formalizing selection schemes and demonstrating that subtleties alter
performance

Evolutionary algorithms have multiple components that interact with one another and influence

problem-solving success. To better understand the many strengths and weaknesses of an evolu-
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tionary algorithm, it is crucial to understand how each individual component influences success.

This dissertation focuses on analyzing a key component found across many evolutionary algorithms

— the selection scheme. While the number of selection schemes grows, there is still no consistent

method to denote a selection scheme. Thus, the first task I attempt to overcome is formalizing

what a selection scheme is, which was the focus of Chapters 2. More specifically, I demonstrate

that a selection scheme can be described through three components: population structures, trait

processing, and selectors. With this new framework, I easily alter and analyze different selection

scheme configurations.

Chapters 3 and 4 present two case studies that demonstrate how subtle changes to a selection

scheme can lead to different results. I leverage my selection scheme framework and alter different

components of lexicase selection, ultimately creating new lexicase variants that I analyze in Chapters

3 and 4. The results from these changes should not be surprising, as it is common to see an

evolutionary algorithm succeed in a particular problem domain or problem instance but fail when

attempting to solve a different one. Thus, I identify differences in performance, but leave further

investigation as to why these differences occur in later chapters as I build the necessary tools to do

so.

Chapter 3 focuses on reducing the number of evaluations standard lexicase selection requires

to identify a parent solution by incorporating two techniques: random subsampling of test cases each

generation or by assigning test case partitions to subgroups of the population. The former is down-

sampled lexicase and the latter is cohort lexicase. I evolved populations of linear genetic programs

to solve five different programming synthesis problems, where standard, down-sampled, and cohort

lexicase are used to identify parent solutions. Additionally, I used a variety of down-sampling levels

and cohort sizes to better understand the impact of the subsampling techniques. For each problem

and selection scheme combination, I analyzed and visualized the problem-solving success rates. I

make two key findings in this chapter: (1) The random subsampling of test cases each generation

can improve the problem-solving performance of lexicase selection, and (2) both cohort and down-

sampled lexicase variants are successful approaches for applying random subsampling to standard

lexicase. More specifically, I find that optimal configurations of down-sampled and cohort lexicase

depend on the problem at hand. This poses the question, why did these improvements occur?

Chapter 4 attempts to shine a light on this question, as I take a deeper look into why subsam-
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pling could improve the performance of lexicase selection. I ran four experiments to characterize

the effects of applying random subsampling to lexicase selection, where I evolved populations of

linear genetic programs on four program synthesis problems. In Chapter 4, I present three key

findings:

• With a fixed number of generations, rather than a fixed number of evaluations, down-sampled

and cohort lexicase did not significantly outperform lexicase selection.

• Both down-sampled and cohort lexicase used significantly fewer evaluations than standard

lexicase selection on all four problems to produce solutions (10% subsampling rate).

• Subsampling degrades lexicase selection’s specialist maintenance.

Altogether, this chapter demonstrates how changes to lexicase selection cause different results, yet

additional work is needed to identify why these differences occurred.

1.5.2 Building a set of diagnostics to analyze selection schemes

The previous chapters illustrate the importance of designing an algorithm best suited for the

problem at hand, or the algorithm may fail to find high-performing solutions. Information about the

strengths and weaknesses of various evolutionary algorithms will help with choosing and configuring

an algorithm for a specific problem. Benchmark suites provide the standard approach for evaluating

evolutionary algorithms. While benchmark suites provide useful insight into the kinds of problems

an evolutionary algorithm is effective against, problems with complex search space topologies make

it difficult to intuitively understand how each component is influencing problem-solving success.

I propose using a set of carefully handcrafted search spaces with targeted problem characteristics

to evaluate selection schemes, where the problem characteristics of interest are abstracted from

real-world problems (i.e., exploitation, exploration, modality, etc.).

Chapter 5 introduces the “exploration diagnostic” (later refined to be called “the multi-path

exploration diagnostic”) as a new tool for measuring the exploratory capacity of lexicase selection

and several of its variants: epsilon lexicase, down-sampled lexicase, cohort lexicase, and novelty-

lexicase. All optimization problems require a targeted balance of exploitation and exploration

to find high-quality solutions; thus, capturing a selection scheme’s exploitation and exploration

abilities is useful information. The exploration diagnostic generates a search space with multi-

ple pathways, differing in path length and peak height, but identical in slope. Selection schemes
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are challenged with navigating populations through the search space, with the goal of pursuing

the pathway leading toward the global optimum. I found that lexicase selection facilitates better

search space exploration than tournament selection on our diagnostic, and lexicase’s exploratory

capacity is sensitive to the ratio between population size and the number of test cases. Addition-

ally, I found that epsilon lexicase outperforms standard lexicase selection, where the relaxation

of lexicase selection’s elitism is incorporated in epsilon lexicase. All other variants degraded the

exploratory capacity of lexicase selection. These results demonstrate the importance of diagnos-

tics, as I uncovered key differences between lexicase selection and its variants with the exploration

diagnostic.

Chapter 6 expands the set of diagnostics, by introducing three additional entries:

• An “exploitation rate” diagnostic to measure a selection scheme’s ability to exploit a smooth,

non-epistatic fitness gradient.

• An “ordered exploitation” diagnostic to measure a selection scheme’s ability to pursue a

single, narrow gradient that leads toward a global optimum.

• A “contradictory objectives” diagnostic to measure a selection scheme’s ability to locate and

optimize conflicting objectives.

I use the diagnostics to evaluate six popular selection schemes: truncation selection, tournament

selection, fitness sharing, lexicase selection, nondominated sorting, and novelty search. In general,

our results are consistent with previous work. Truncation and tournament selection are heavily

exploitative with poor capacities for exploration, and novelty search was purely exploratory with

no mechanism for exploitation. Nondominated sorting excelled at managing multiple, contradictory

objectives, but did not exploit gradients well. Fitness sharing consistently performed poorly across

diagnostics, neither exploiting nor exploring particularly well. The results for fitness sharing illus-

trate that the current set of diagnostics is incomplete and missing some aspects of problem-solving.

Lexicase selection effectively balanced exploration with exploitation, performing reasonably well

across all diagnostics. These results further illustrate the importance of diagnostics, as these selec-

tion schemes that are typically used for different kinds of problems can now be compared.

Now that I have shown that these diagnostics can provide insights into configuring a complex

selection scheme (lexicase selection), and intuitive baseline results for several other common selec-
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tion schemes, in Chapter 7, I propose using the diagnostics to analyze population structures. This

chapter will leverage the selection scheme framework by adding a layer of complexity to the selection

schemes analyzed in Chapter 6. Specifically, I will integrate island structures into tournament se-

lection, truncation selection, and lexicase selection. Because I know that tournament selection and

truncation selection are extremely effective at exploitation, I can measure the tradeoffs an island

structure has for its ability to explore. Lexicase selection performs fairly well on all diagnostics but

does not outperform all other selection schemes, now I can measure the impact island structures

has on its exploitation and exploration abilities. Given that island structures are intended for di-

versity maintenance, I hypothesized that all three selection schemes would generally see a decrease

in performance for exploitation-based diagnostics while improving on the diagnostics that require

exploration. I believe the difference in performance will be ultimately dictated by the population

structure being used and its configuration. In fact, we find that island structures decrease the

exploitation abilities of all three selection schemes. Lexicase selection’s exploration abilities are

negatively affected by island structures, while both truncation and tournament selection see an

increase in exploration abilities.
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Part I

Formalizing selection schemes and demonstrating that subtleties
alter performance
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Chapter 2
Selection Scheme Framework

Authors: Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

This chapter presents a theoretical framework for selection schemes within a generational evo-

lutionary algorithm. We dismantle a selection scheme into three fundamental components: pop-

ulation structures, trait processing, and selectors. Population structures determine how solutions

interact with one another during selection. Trait processing specifies how traits are transformed

and used to identify parents. Selectors are the procedures that use the population structure and

processed traits to actually identify a parent. Indeed, this framework proves to be useful to engineer

robust selection schemes in the following chapters.

2.1 Introduction
Most evolutionary algorithms (EAs) make use of a selection scheme – a set of well-defined

procedures that identify the set of candidate solutions to act as parents to produce the following

generation. The purpose of a selection scheme is to choose parents that, in the long run, are most

likely to lead to the discovery of an optimal solution. In simple selection schemes, this process is

done by choosing “elite” solutions; that is, solutions with comparatively high performance or oth-

erwise beneficial qualities (Crow and Kimura, 1979). However, more nuanced techniques exist that

explicitly attempt to cross fitness valleys or promote the simultaneous exploration and exploitation

of many regions of the search space. The consensus across different evolutionary algorithm prac-

titioners is that selection schemes should favor high-quality solutions, but the question remains –

how should we decompose a selection scheme into meaningful and comparable components?

Solutions in the population must be evaluated on some problem prior to being considered

by a selection scheme. Evaluation sometimes entails processing an individual solution directly

using a simple fitness function, but can also involve more complex analyses such as simulations

in virtual environments. Sometimes, multiple measures of performance need to be taken (such as

evaluating a genetic program on many different test cases) or even measures of non-performance

characteristics (such as the size of the underlying representation, where size may be independent of

performance). The traits that a candidate solution earns from its evaluation on the given problems

provide useful information for identifying solutions that are exploring potentially promising regions

of the search space. Indeed, selection schemes act on these trait characteristics with the goal of
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leading a population to an optimal (or nearly optimal) solution in the long term. In the case of

problems with many conflicting objectives, the goal is often to cover the Pareto front as well as

possible.

Prior to entering the evaluation phase during an evolutionary run, practitioners must determine

the set of metrics that measure problem-solving success and other non-performance characteristics

of interest. For example, problem-solving metrics could be test cases for a problem, or desired

traits to have in a solution (such as low production cost, high reliability, or minimal resource

requirements). Non-performance metrics, on the other hand, could be a solution’s underlying rep-

resentation size or measures for the solution’s modularity, which may not be immediately beneficial,

but may help with future evolvability. Once these metrics are determined, they can be used directly

or passed as inputs to calculate the set of traits for the candidate solution. In practice, it is common

for simple selection schemes to use a single value to represent a solution’s quality, often an aggregate

of all metric evaluations, especially if each metric evaluation is a performance measurement on a

separate test case. This scenario is commonly found to be the case within genetic programming,

whereas many other EA branches typically receive one metric evaluation for the instance of the

problem they are attempting to solve. This reduction to a single value is not always the case,

as more advanced selection schemes often incorporate more than one trait value (Helmuth et al.,

2015). Because the evaluation phase has a major impact on a selection scheme’s ability to reach

optima, trait processing is a vital component that impacts a selection scheme’s problem-solving

abilities.

After the metrics are determined and traits are assigned to all candidate solutions, a selection

scheme can begin identifying parent solutions. As previously mentioned, the simplest approach

is to choose the top-performing solutions (truncation selection), but techniques take highly varied

approaches, such as creating different kinds of competitions to identify parents or altering the cri-

teria from one selection to the next. Tournament selection is an example of repeated competitions;

in each round, a random subset of the population is placed in a tournament and the “elite” solu-

tion from this subset is selected as a parent. The population structure for tournament selection is

typically well-mixed: all solutions in the population have the same opportunity to be included in

each tournament. Alternative population structures are also used with various selection schemes.

For example, it is possible to group solutions according to a trait such as age (Hornby, 2006), to
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separate them into fixed groups such as island models that facilitate allopatric speciation (Cohoon

et al., 1987), or to spread them across space where individuals only compete with nearby neighbors

such as cellular models (Tomassini, 2005). This example highlights the need for two additional

components to break down a selection scheme: the procedures used to identify parents (selectors)

and the mechanisms by which candidate solutions can interact (population structure).

2.2 Selection Scheme Components
Selection schemes can be difficult to characterize into components from either a written de-

scription (which tends to be presented holistically, focusing on the big picture) or even from software

implementations (which typically intertwine multiple parts for the sake of efficiency). I propose a

framework for selection schemes that accomplishes two important tasks: it formalizes the notation

of what a selection scheme is, as well as the external factors that affect selection. More impor-

tantly, describing selection schemes with this new conceptual framework illustrates that compatible

selection scheme components act as interchangeable parts.

Below are the descriptions of the three selection scheme components in detail, but first we

define our notation. The notation used in this work is inspired by Blickle and Thiele (1995). Let P

represent the population of N solutions, J represent the entire solution space, and ji represent an

individual solution from J. For example, if our solutions are bitstrings of length 100, each ji would

be an individual bitstring, while J would be the collection of all 2100 possible length-100 bitstrings.

This allows us to construct P = {j1, ..., jN}. Note, it is possible for two members of a population

to be identical (i.e., ji may be the same as jk.)

2.2.1 Population structure

The concept of a population structure has long been used in biology to understand how or-

ganisms interact with one another, and how they interact with the abiotic world around them. In

nature, organisms are inherently separated over space, but can also be subject to additional spatial

constraints such as barriers, different environments, and different size scales. These constraints on

biological interactions create a population structure, which can be mimicked within an EA to alter

evolutionary dynamics.

All EAs possess a population structure that defines how candidate solutions in the population

interact throughout evaluation, selection, and reproduction. Typically, EAs allow all solutions to

interact with one another throughout the entire evolutionary search (Alba and Tomassini, 2002;
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Sprave, 1999; Tomassini, 2005), but more complex structures exist that restrict the interactions

between solutions. Island models are an early example of population structures where the candidate

solutions are partitioned into separate islands. Age-layered population structure (ALPS) is another

example, where populations are partitioned according to how long ago their lineage was introduced

(Hornby, 2006). A more modern example is MAP-Elites, where candidate solutions are grouped

based on non-fitness traits that are believed to have an indirect effect on fitness (Mouret and

Clune, 2015). Ultimately, population structures provide another tool for selection schemes to find

high-quality solutions.

In practice, grouping solutions prior to executing a selection scheme is a mechanism for diversity

maintenance; common criteria used to construct population structures include genotypic (Ohira

and Islam, 2020) or phenotypic (Hu et al., 2005) similarity, test cases (Chapter 3), age (Hornby,

2006), or simply random assignment (Tomassini, 2005). Individual candidate solutions can be

separated by hard barriers (e.g., different islands) or soft (e.g., cellular models), and migration can

be incorporated. A selection scheme must be supplied with the group of individuals it can use to

identify parents, be this a whole population (e.g., well-mixed), a fixed subset (e.g., an island), or a

dynamic subset (e.g. a local neighborhood on a grid).

Recall from earlier that the population is given by P = {j1, ..., jN}. As in Sprave (1999), let Π

denote the complete set of interactions defined by the population structures with I being the total

number of interaction sets in Π. This notation gives us Π = {π1, ..., πI}, where each πi is an indi-

vidual set of interactions. The complete set of interactions Π must be set and given to the selection

scheme prior to a selection event occurring, where Π may be changing throughout an evolutionary

run. More sophisticated examples to depict population structures exist, such as hypergraphs in

(Sprave, 1999). We recognize the value in these more sophisticated representations, as they make

particular analyses easy to conduct. However, we intentionally chose a simple and generic repre-

sentation to describe population structure within our framework to simplify interoperability. Next,

we provide some examples of well-known population structures using our notation.

First, we define Π for the simple case for a well-mixed structure:

Π = {π}

Given all solutions interact with one another, the set of interactions is just the original population.

28



As such, π = {j1, ..., jN}.

Next, we define Π for age-layered population structure (ALPS):

Π = {π1, ..., πI}

Each πi ∈ Π represents a set of solutions that are allowed to interact for a selection event, and

all solutions fall within a specific age range. For this example, I is the number of age groupings

generated within ALPS. Island models would have a similar formulation to ALPS, but where each

πi are fixed groups whose sizes are maintained over time.

The population structures help selection schemes leverage characteristics that each structure

enforces, which can help with finding high-quality solutions. This component may often go unrec-

ognized, as it is common in practice to have a selection scheme that implicitly uses a well-mixed

structure without calling out this important design choice.

2.2.2 Trait processing

This component formalizes the protocols used to construct a single or set of traits that will

later be used to select parents. Traditionally, a single fitness value is used to measure the quality

of a solution. For genetic programming, this value is often obtained by aggregating performances

across multiple fitness cases, while many other EAs solving an instance of a problem will receive

only one performance value. More advanced methods for producing a single fitness value exist

(Goldberg and Richardson, 1987; Lehman et al., 2008), while more complex selection schemes use

more than one value to measure the qualities of a solution (Helmuth et al., 2015; Srinivas and Deb,

1994). The term fitness is often used in selection scheme literature, but I will refrain from using

it here to avoid confusion with the biological definition of fitness (which is a measured value, not

assigned) and to more comfortably discuss multi-trait selection schemes.

For example, if the problem at hand is to evolve a virtual robot that can walk as far as

possible, evaluation may be a full simulation of the individual solution. In a simple selection

scheme, trait processing might simply pull the distance walked from the evaluation and set that

as the individual’s fitness. Sometimes, a practitioner may want to optimize multiple traits along a

Pareto front (distance walked, price to build the robot, reliability, etc.). At other times, traits not

directly associated with overall quality may also be used. In such a case, trait processing might store

not just the distance moved, but how often different actuators were used, the vertical height the
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robot was able to maintain, how many individual steps were taken, etc. Some of these subsidiary

traits may be helpful in longer-term evolution; for example, rewarding vertical height might select

for robots that can stand and balance properly. Each practitioner might have a different opinion

about which specific traits will prove most important to evolving high-quality solutions.

Evaluations for the predetermined metrics must be calculated before traits can be constructed.

It is common in practice for metric evaluations to consist of performances on a set of test cases

for a given problem, but evaluations can also capture non-performance characteristics. Traits

are then derived from the metric evaluations that measure solution characteristics on the given

problem, and the final set of traits must be constructed before a selection scheme can identify

parents. It is possible for multiple transformations of values to occur before the final set of traits

is constructed. For example, the nondominated sorting genetic algorithm first generates a score

based on nondominated front ranking, then that score is adjusted using fitness sharing (Srinivas

and Deb, 1994). Once the traits are constructed, they are assigned to a candidate solution as a

trait vector t.

Let the set of metric functions be given by M = {m1, ...,mT } for some problem, where T

denotes the total number of metric functions. Each metric function mi takes in a candidate solution

as input and returns an evaluation as output. After evaluating all candidate solutions on the set

of metrics, an evaluation matrix can be constructed. The metric evaluation matrix is given by,

E =



m1(j1) ... mT (j1)

. .

. ... .

. .

m1(jN ) ... mT (jN )


Each row in E represents all the metric evaluations for a solution across all the metric functions

in M . For example, the first row represents solution j1’s evaluations across all metrics in M . Let

ej represent an evaluation vector for some arbitrary candidate solution j in the population. The

metric evaluation matrix is compressed to,

30



E =



m1(j1) ... mT (j1)

. .

. ... .

. .

m1(jN ) ... mT (jN )


=



e1

.

.

.

eN


The matrix E can be thought of as the metric evaluation matrix for all candidate solutions in the

population.

Let T represent the trait matrix that is produced after constructing the set of traits for each

candidate solution from its evaluation vector,

T =



t1

.

.

.

tN


The elements in T represent an individual solutions trait vector. It is important to note that

practitioners must describe how a solution’s trait vector is constructed. For example, if we use

tournament selection then only a single trait must be constructed. So, the trait vector with a single

value for candidate solution j is given by,

tj =
∑
e∈ej

e

If instead, we were to use lexicase selection, then we need to construct one trait per metric evalua-

tion. So, the trait vector for candidate solution j is given by,

tj = ej

While the previous examples are simple, this component description helps practitioners better

understand what candidate solutions are assigned after being evaluated on their specified metrics.

This is crucial as it is important for practitioners to understand how a solution’s quality is being

measured. Ideally, the metrics would be well defined, such as stating where they came from (e.g.,

benchmark suite, website, data, etc.).
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2.2.3 Selector

Once the population structure is constructed and each candidate solution is assigned a trait

vector, a selection scheme can use them to identify parents. Indeed, a set of parents must be

produced by the end of a selection phase, but how are parents actually being selected? Describing

the procedures used to identify parents is a crucial component of a selection scheme. We suggest

that these procedures should be described algorithmically, so that it is easy to identify how this

process is done. In the naive case, parents can be randomly chosen, but we would not expect

progress to be made in this circumstance unless other forms of implicit selection are introduced.

The selector describes the set of procedures that result in the selection of candidate solutions

to act as parents. It is common in practice to execute the selector multiple times, where the number

of selector calls is dependent on the number of parents and offspring required, but some selectors

may choose parents in groups. A selection scheme is provided both the population structure Π

and the trait matrix T as input, where the goal of a good selector is to leverage these inputs to

effectively traverse the search space.

There are numerous ways to select parent solutions, but what is the best way to do so? Clearly,

selecting random solutions to serve as parents will not allow the population to exploit promising

regions of the search space, so sophisticated procedures were developed to obtain better results.

The key takeaway for a selector is that once the inputs I and T are constructed, practitioners must

describe how the selector is leveraging both of the inputs.

2.3 Example: tournament selection
Here we present an example application of the selection scheme framework for a typical use of

tournament selection.

2.3.1 Population structure

Tournament selection is most commonly used with a well-mixed population structure, so Π =

{π}, where the set of interactions is just the original population. As such, π = {j1, ..., jN}.

2.3.2 Trait processing

Assuming the metric evaluation matrix E is constructed, candidate solution j’s trait vector is

defined by
tj =

∑
e∈ej

e
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For tournament selection, this trait vector must consist of only one single value.

2.3.3 Selector

Tournament selection conducts tournaments of a subset of k candidate solutions to identify an

individual parent. These procedures can be found in Algorithm 2.1. A similar procedure can be

used for most other common selection schemes.

1. Generate tournament of solutions from π ∈ Π:

(a) {ja, ..., jz} = random_subset(π, k)

2. Identify ‘elite’ solution j∗ from the tournament:

(b) j∗ = max(tja , ..., tjz)

3. Return j∗

Algorithm 2.1: Tournament selection selector.
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Chapter 3
Random subsampling improves performance in lexicase selection

Authors: Jose Guadalupe Hernandez, Alexander Lalejini, Emily Dolson, and Charles Ofria

This chapter is adapted from (Hernandez et al., 2019), which appeared in the companion proceed-

ings of the 2019 Genetic and Evolutionary Computation Conference.

In this work, we integrate random subsampling within lexicase selection to reduce the number

of evaluations needed to find high-performing solutions. The selection scheme framework assisted

in developing cohort lexicase and down-sampled lexicase, where we modified the trait processing

component of lexicase selection. Cohort lexicase partitions the population and test cases, pairs

the population and test case partitions, and runs standard lexicase to identify parents within each

pairing. Down-sampled lexicase samples a set of test cases each generation. Both new lexicase

selection variants reduce the test cases needed to identify an individual parent. We find that

both lexicase variants can increase problem-solving success for evolving linear genetic programs

to solve five different programming synthesis problems, where problem-solving success varied by

subsampling rate.

3.1 Introduction
We often apply evolutionary computation to test-based problems where the quality of a can-

didate solution is assessed by evaluating it on a large set of test cases. For such problems, we must

select parents (i.e., genetic source material) for each generation based on how well individuals solve

each test case. In many test-based problems, the space of possible test cases is either infinite or so

large that it is not computationally feasible to evaluate a candidate solution on every possible test

case. In the absence of extensive domain knowledge, it can be challenging to find an optimal test

set size. Too small, and we risk overfitting. Too large, and the demand on computational resources

will bring adaptive evolution to a crawl.

Lexicase selection is a more recent technique developed for genetic programming (GP) that has

been demonstrated to be particularly effective for solving challenging test-based problems (Helmuth

et al., 2015; Martínez et al., 2017; Spector, 2012). The lexicase algorithm chooses each parent for the

next generation by sequentially applying test cases, in a random order. Only the best performers

on each test case are kept until a single individual is identified. This sequential filtering approach is

a departure from traditional parent-selection methods that calculate an absolute fitness metric by

34



summing an individual’s performance across all test cases. Because lexicase changes the ordering

of test cases for every parent-selection event, individuals that perform well on different subsets of

test cases can co-exist. This dynamic allows lexicase selection to maintain specialists on tests that

the majority of the population fail, preserving potentially important genetic material (Dolson and

Ofria, 2018; Helmuth et al., 2016a) and thus searching for a perfect solution from many directions

at once.

The drawback of lexicase (and many other test-based selection schemes) is that assessing candi-

date solutions on a large set of test cases can be computationally expensive, especially if individual

evaluations are costly. A simple speed-up might seem to be cutting down the number of evaluations

by limiting the number of successive filtering steps taken during each lexicase selection event, shift-

ing to a random selection if multiple solutions are still available (e.g., truncated lexicase (Spector

et al., 2018)). However, in practice, each candidate solution must still be evaluated on most test

cases every generation.

We could trivially decrease the number of evaluations per generation by statically reducing the

total number of test cases used during the evolutionary search. For example, a 50% reduction in

test cases would allow us to run our search for about twice as many generations. However, simply

reducing the total number of tests is more likely to result in prospective solutions overfitting the

reduced test set. Reducing computational effort on test-based problems is a long-standing endeav-

our for GP (Gathercole and Ross, 1994). Many techniques have been proposed that dynamically

subsample the set of tests (from a large pool) used for candidate solution assessment and selection

(see Martínez et al. (2017) and Hmida et al. (2017) for recent reviews). Subsampling techniques

have been employed to reduce computational effort in GP (Curry and Heywood, 2004; Gathercole

and Ross, 1994) and to improve the generalizability of evolved programs (Gonçalves et al., 2012;

Martínez et al., 2017). Can we apply test-case subsampling techniques to lexicase selection?

Here, we examine two lexicase selection variants that leverage random subsampling to reduce

the number of evaluations per generation: down-sampled lexicase and cohort lexicase. Down-

sampled lexicase selects parents based on a random subset of test cases each generation, guaran-

teeing that individuals are only evaluated against test cases in the subset. Cohort lexicase uses

all test cases each generation, but divides both tests and individuals into cohorts, ensuring that

each individual is evaluated against only a subset of tests. By reshuffling which test cases are
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experienced every generation, lineages will eventually encounter all test cases. We compare the re-

sults of different configurations of down-sampled and cohort lexicase across five program synthesis

problems. Additionally, we compare the performance of our proposed lexicase variants to that of

standard lexicase with a reduced number of total tests.

3.2 Lexicase Selection
Lexicase selection is a method for choosing a candidate solution from a population to use as a

parent (i.e., to provide genetic source material for a new individual in the next generation). Each

such parent is selected individually, with replacement, such that individuals may be chosen multiple

times. In lexicase, a large number of test cases are used as criteria for evaluation. Unlike many

traditional parent-selection methods, lexicase does not aggregate performance across test cases to

calculate a single fitness score. Instead, each time a parent is needed, test cases are successively

applied in a random order, keeping only the most fit candidates on each. This process continues

until the population is filtered down to either a single candidate or a set of equivalent candidates

(at which point one is selected randomly). Because the ordering of test cases changes for every

parent-selection event, individuals that perform well on different subsets of test cases are able to

co-exist (Dolson and Ofria, 2018; Helmuth et al., 2016a). A more detailed description of lexicase

selection can be found in (Helmuth et al., 2015; Spector, 2012).

Spector (Spector, 2012) initially proposed lexicase selection as a GP selection scheme for modal

problems where qualitatively different modes of response are required for inputs from different re-

gions of the problem domain. Subsequent work demonstrated lexicase selection’s efficacy relative

to traditional parent-selection algorithms on uncompromising problems where solutions must per-

form optimally over the entire space of possible test cases (Helmuth et al., 2015). Part of lexicase

selection’s success is attributed to its effectiveness at diversity maintenance; lexicase maintains

specialists on test cases that the majority of the population fail, preserving potentially impor-

tant genetic material (Dolson and Ofria, 2018; Helmuth et al., 2016a). For an analysis of lexicase

selection in the context of ecological theory, see (Dolson and Ofria, 2018).

Several variants of lexicase selection have previously been proposed (Spector et al., 2018). We

propose two new lexicase variants that relax the need to evaluate all candidate solutions against

most test cases, thus allowing computational resources to be reallocated to additional search time,

larger population sizes, et cetera.
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3.3 Down-sampled Lexicase Selection
In each generation of standard lexicase selection, every test in the test case set is available as

evaluation criteria for selection events; thus, all individuals must be evaluated against most test

cases in each generation. Assuming we can store and reuse previously computed performances for

each repeated application of a test case during parent selection events, lexicase selection’s worst-

case number of per-generation evaluations is equal to the size of the test case set multiplied by the

population size (i.e., every member of the population is evaluated against every test case once).

Down-sampled lexicase applies the random subsampling technique (Gonçalves et al., 2012)

to lexicase selection. Each generation, down-sampled lexicase selects a random subset of the test

cases to use for all selection events, guaranteeing that unselected test cases are not evaluated at all.

Here, we refer to our ‘down-sample factor’ (the subsample rate) as D. For example, D = 10 implies

a tenfold subsample rate (i.e., each generation, we use 1
10 of the total test case set to evaluate

individuals). This down-sampling divides the worst-case number of evaluations performed each

generation by D, allowing us to run our evolutionary search for more generations (or with a larger

population size) than standard lexicase selection. Here, we exclusively apply random subsampling

to every generation; however, as discussed by Gonçalves et al. (2012), we could also vary the number

of generations at which we apply random subsampling.

Why is down-sampling the test case set preferable to simply reducing the number of test cases?

In down-sampled lexicase selection, lineages are likely to be tested against a large portion of the full

test set over several generations. Each generation, a candidate solution will encounter a proportion

of test cases equal to 1
D ; thus, 1 − 1

D gives the proportion of test cases not encountered by a

candidate solution in a given generation. The expected proportion of test cases not encountered

by a lineage after G generations is (D−1
D )G. To calculate the expected number of generations for

a lineage to be evaluated against proportion T of the test cases for a known down-sampling rate

( 1
D ), we can solve for G in Equation 3.1.

G =
log(1− T )

log(D − 1)− log(D)
(3.1)

Note that a lineage will always encounter proportion T ≤ 1
D in a single generation, and T

asymptotically approaches 1.0 as the number of generations increases.
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3.4 Cohort Lexicase Selection
Cohort lexicase selection makes use of the full test case set each generation but ensures that

each prospective solution is evaluated against only a subset of them. Every generation, cohort

lexicase randomly partitions both the population and test case set into K equally-sized sub-groups

(cohorts). Each of the K candidate solution cohorts is then paired with a test case cohort, and each

candidate solution in a cohort is evaluated against all test cases in the associated test case cohort.

This means that the number of evaluations performed each generation (relative to standard lexicase

selection) is divided by K. Candidate solutions only compete within their cohort, and within-cohort

competition is arbitrated by the test cases in the associated cohort of tests. In this way, cohorts

impose a sort of island model (Wright, 1943) on standard lexicase selection where each island’s

membership (candidate solutions) and environment (test cases) is transient, and randomized every

generation.

Our formulation of cohort lexicase follows the same expectations as down-sampled lexicase for

the number of generations before a lineage is expected to encounter proportion T test cases (given

by Equation 3.1). Cohort lexicase’s K and down-sampled lexicase’s D create an equivalent down-

sampling rate. Note, however, in our implementation of cohort lexicase, tests are not repeated

across cohorts; though, there is no reason why they could not be repeated.

3.5 Methods
To test the utility of down-sampled and cohort lexicase selection, we used both selection

schemes to evolve linear genetic programs to solve five test-based problems from the program

synthesis benchmark suite (Helmuth and Spector, 2015): Small or Large, For Loop Index, Compare

String Lengths, Median, and Smallest. A description of our GP system (including source code) can

be found in supplemental material (Lalejini and Hernandez, 2019).

3.5.1 Program Synthesis Problems

Problems in the general program synthesis benchmark suite were selected from sources for

introductory computer science programming problems; while not particularly challenging for expe-

rienced human programmers, they can be challenging for current GP systems (Forstenlechner et al.,

2018; Helmuth and Spector, 2015). These benchmarks have been used to compare lexicase selection

against other, more traditional selection schemes (Helmuth and Spector, 2015). Previous studies

38



(using PushGP (Helmuth and Spector, 2015) and G3P (Forstenlechner et al., 2018)) have shown

standard lexicase selection to be capable of solving the five problems used in this work, making

them good choices for evaluating random test subsampling in the context of lexicase selection.

Each problem is defined by a set of test cases in which programs are given input data and

is scored on how well their output matches the correct output (assigning scores on a gradient or

pass-fail basis as appropriate). During an evaluation, the total number of steps (instructions) a

problem could execute varied by problem.

During evolution, programs were assessed using a training set of test cases, which defined the

selection criteria used for lexicase selection. To qualify as a solution, a program needed to perfectly

pass all test cases in a separate testing set (withheld generalization examples) in addition to passing

all tests in the training set used during evaluation. For all problems, we used the same training

and testing sets (100 training cases and 1,000 testing cases) and the same input constraints as

in (Helmuth and Spector, 2015). The exact training and testing sets used can also be found in our

supplemental material (Lalejini and Hernandez, 2019).

For a more detailed description of the five benchmark problems used here (Small or Large,

For Loop Index, Compare String Lengths, Median, and Smallest), see (Helmuth and Spector,

2015) or our supplemental material (Lalejini and Hernandez, 2019). For each problem, we added

problem-specific instructions (see (Lalejini and Hernandez, 2019)) to our GP instruction set to

allow programs to load test case inputs into memory and submit output.

3.5.2 Experimental Design

We evolved populations of 1,000 programs under a range of subsampling levels (i.e., the percent

of the training set used to assess candidate solutions) using both down-sampled and cohort lexicase:

5%, 10%, 25%, 50%, and 100% (no reduction). Additionally, we evolved programs using standard

lexicase selection (no subsampling) with 5%, 10%, 25%, 50%, and 100% (no reduction) of the

training set; when reducing the training set for standard lexicase selection runs, we randomly

selected the appropriate percentage of test cases from the full training set (e.g., 5 of the 100 total

test cases when using 5% of the training set), and the reduced training set remained static for the

duration of evolutionary search.

We ran 100 replicates of all conditions, each for a fixed budget of 30,000,000 evaluations (i.e.,

300 generations when using the full training set). Conditions where we subsampled or reduced
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the training set ran for more generations than conditions using the full training set (5%: 6,000

generations; 10% 3,000 generations; 25%: 1,200 generations; 50%: 600 generations). For each

problem and selection condition, we compared the problem-solving success rates (i.e., the number

of runs in which a perfect solution evolved) of using fewer training cases (via cohorts, down-

sampling, or static reduction) versus using the full training set during selection (Fisher’s exact test

with a significance level of 0.05 and a Holm-Bonferonni correction for multiple comparisons). All

statistical analyses were performed using the R Statistical Computing Platform (R Core Team,

2016). The source code for our analyses and data visualizations can be found in our supplemental

material (Lalejini and Hernandez, 2019).

3.6 Results and Discussion

Figure 3.1: Problem-solving success rates (i.e., the number of runs in which a perfect solution
evolved) for each program synthesis problem. Note that, here, all conditions using 100% of the
training set (regardless of lexicase variant) are qualitatively identical conditions.

Figure 3.1 shows the problem-solving success for all experimental conditions across all five

problems after a fixed number of test case evaluations; see our supplemental material (Lalejini and

Hernandez, 2019) for more detailed statistical analyses. With the exception of the For Loop Index

problem, reducing the size of the training set for standard lexicase selection (resulting in more

generations of evolution) did not improve (by a statistically significant amount) problem-solving

success. Indeed, on the Compare String Lengths, Median, and Smallest problems, reducing the

training set beyond a critical threshold (which varied by problem) when using standard lexicase

selection significantly reduced problem-solving success relative to using the full test case set (e.g.,

Compare String Lengths, 50% training: p < 0.021; Median, 10% training: p < 3.68e-10; Smallest,

25% training: p < 0.003). These reduced success rates are likely due to overfitting: we sufficiently
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reduced the training set such that it does not adequately represent the full space of test cases, and

as a result, evolved programs fail to generalize. On the For Loop Index problem, using standard

lexicase with only 25% of the full training set has a significantly higher success rate than when

using the full training set (p = 0.017); in this case, reducing the size of the training set to rapidly

progress through more generations pays off, which suggests that the full training set for this problem

is unnecessarily large to thoroughly assess candidate solutions.

Multiple configurations of down-sampled lexicase significantly improved problem-solving suc-

cess relative to standard lexicase across all problems except Compare String Lengths where im-

provements are not statistically significant (e.g., Small or Large, 50% training: p < 0.015; For

Loop Index, 25% training: p < 0.002; Median, 25% training: p < 0.007; Smallest, 50% training:

p < 0.024). Similarly, at least one configuration of cohort lexicase significantly improved problem-

solving success relative to standard lexicase across all problems (e.g., Small or Large, 25% training:

p < 0.034; For Loop Index, 10% training: p < 0.006; Compare String Lengths, 25% training:

p < 0.023; Median, 50% training: p < 0.006; Smallest, 25% training: p < 0.001). The particular

configurations of down-sampled and cohort lexicase that work best depend on the problem. Neither

cohort or down-sampled lexicase consistently outperformed the other on any of the five problems.

These results suggest that: (1) random subsampling can be used to improve the problem-

solving performance of lexicase selection, and (2) both cohort and down-sampled lexicase are suc-

cessful approaches for applying random subsampling to standard lexicase.

3.7 Conclusion
We presented two extensions of the lexicase parent selection algorithm that incorporate random

subsampling techniques: down-sampled lexicase and cohort lexicase. Using these techniques, we

confirm that random subsampling can be successfully applied to lexicase selection, allowing the

evolutionary search to more rapidly progress through generations and improving problem-solving

success rates. Our experimental results suggest that the best configuration of down-sampled and

cohort lexicase depends on the problem. Future studies will tease apart how different levels of

subsampling impact lexicase selection (e.g., diversity maintenance).
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Chapter 4
Characterizing the Effects of Random Subsampling on Lexicase

Selection
Authors: Austin J. Ferguson, Jose Guadalupe Hernandez, Daniel Junghans, Alexander Lalejini,

Emily Dolson, and Charles Ofria

This chapter is adapted from (Ferguson et al., 2020), which appeared in Genetic Programming

Theory and Practice XVII.

In this work, we investigate why differences occurred between standard lexicase selection and

its subsampling variants. We conducted four experiments to characterize the effects of subsam-

pling within both cohort and down-sampled lexicase selection, where populations of linear genetic

programs were evolved to solve four program synthesis problems. We make three key findings: (1)

both cohort and down-sampled lexicase do not out-perform standard lexicase selection with a fixed

generational budget, (2) both cohort and down-sampled lexicase require fewer test case evaluations

than standard lexicase selection to produce solutions on all four problems, and (3) subsampling

degrades lexicase selection’s ability to maintain specialists within the population.

4.1 Introduction
Evolutionary computation is often used to solve complex, multi-faceted problems where the

quality of a candidate solution is measured according to its performance on a large set of test

cases. For these test-based problems, we must somehow meld performances across many test cases

to select individuals to serve as parents for the next generation. In many test-based problems,

we cannot exhaustively evaluate a candidate solution over the entire space of possible test cases.

As a result, it can be challenging to balance the trade-off between using a large enough test set

to thoroughly evaluate candidate solutions while keeping the test set small enough to preserve

computational resources and rapidly progress through generations.

Lexicase selection is a relatively new parent-selection algorithm developed for genetic pro-

gramming (GP) and has been demonstrated as an effective tool for solving difficult test-based

problems (Helmuth and Spector, 2015; Helmuth et al., 2015; Spector, 2012). Many traditional

selection strategies for solving test-based problems score potential solutions by aggregating their

fitness across all test cases. The lexicase algorithm, however, chooses each parent for the next gen-

eration by sequentially applying test cases in a random order, keeping only the best performers on
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each test case until the population has been winnowed to a single individual. Because the ordering

of test cases changes for every parent selection event, individuals that perform well on different

subsets of test cases are able to co-exist (Dolson and Ofria, 2018; Helmuth et al., 2016a).

The drawback of many test-based selection schemes, including lexicase, is that assessing indi-

viduals using a large set of test cases can be computationally expensive; this drawback is exacerbated

when tests are costly to perform (e.g., robotics simulations). Using a large number of test cases

constrains the number of generations we are able to run an evolutionary search. Using too few test

cases, however, may fail to accurately represent the problem domain and lead to overfitting. To

combat this, many techniques dynamically subsample test cases (from a large pool representative

of the problem domain) for candidate solution evaluation and selection (see (Hmida et al., 2017;

Martínez et al., 2017) for recent reviews). Indeed, Subsampling has been used to reduce compu-

tational effort in GP (Curry and Heywood, 2004; Gathercole and Ross, 1994) and to improve the

generalizability of evolved programs (Gonçalves et al., 2012; Martínez et al., 2017).

In this chapter, we characterize the effects of random subsampling on the lexicase parent-

selection algorithm. Previous work has shown that lexicase selection performs well when combined

with random subsampling. Moore and Stanton applied random subsampling to lexicase selection in

the context of an evolutionary robotics problem because evaluating robot controllers on test cases

(simulation environments) was too costly to permit exhaustive assessments (Moore and Stanton,

2017, 2018, 2019). In Chapter 3, we proposed down-sampled and cohort lexicase selection, two vari-

ants of standard lexicase that employ random subsampling to reduce the number of per-generation

evaluations required by lexicase selection. We demonstrated that both down-sampled and cohort

lexicase could yield higher problem-solving success than standard lexicase on a fixed evaluation

budget in the context of program synthesis (Chapter 3).

Here, we explore why random subsampling can improve lexicase selection’s problem-solving

success. Additionally, we characterize the effect of subsampling on diversity and specialist mainte-

nance, both of which have been shown to be important factors behind lexicase selection’s efficacy

(Dolson and Ofria, 2018; Helmuth et al., 2016a, 2019; Moore and Stanton, 2018). We show that the

improvement in problem-solving success gained from subsampling is due to its facilitation of deeper

evolutionary searches (i.e., consisting of more generations relative to standard lexicase) given a fixed

evaluation budget. Moreover, we show that both down-sampled and cohort lexicase find solutions
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with less computational effort than standard lexicase. While we predicted that subsampling would

degrade diversity, we find no evidence for systematic degradation of phenotypic diversity. However,

as the level of subsampling increases, cohort lexicase generates and maintains more phylogenetic

diversity than down-sampled lexicase. As expected, we find that random subsampling degrades

specialist preservation relative to standard lexicase. Our phenotypic diversity results seem to con-

tradict our specialist preservation findings; this could be because of the particular problems we are

using or because of our choice of time to measure phenotypic diversity (at the time a solution was

found). Future work will continue investigating how subsampling affects diversity maintenance in

an expanded problem domain and with more fine-grained data collection and analysis.

4.2 Lexicase Selection
Since its conception, lexicase selection has been successfully applied in the field of genetic

programming. Such applications include program synthesis (Helmuth and Spector, 2015) and re-

gression (La Cava et al., 2016). Lexicase selection has also been in other areas such as evolutionary

robotics (Moore and Stanton, 2017), genetic algorithms (Metevier et al., 2019), and learning clas-

sifier systems (Aenugu and Spector, 2019). See Spector (2012), Helmuth et al. (2015), and Section

3.2 for a more detailed description of lexicase selection.

4.2.1 Applying Subsampling to Lexicase Selection

Several variants of lexicase selection (and lexicase-inspired selection algorithms) exist, such

as ϵ-lexicase, truncated lexicase, batch-tournament, batch-lexicase, down-sampled lexicase, and

cohort lexicase (Aenugu and Spector, 2019; De Melo et al., 2019; Spector et al., 2018). Here,

we investigate down-sampled and cohort lexicase, both of which leverage random subsampling to

reduce the number of per-generation evaluations required for lexicase selection. A more detailed

description of down-sampled lexicase (Section 3.3) and cohort lexicase (Section 3.4) can be found

in Chapter 3.

4.3 Methods
We conducted a series of experiments to characterize the effects of applying random subsam-

pling to lexicase selection. In all evolution experiments, we evolved populations of linear genetic

programs to solve four program synthesis problems. Using this setup, we replicated previous re-

sults (Chapter 3), tested the effect of the additional generations afforded by subsampling, and
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investigated how different types of subsampling affect the computational effort expended to solve

problems. Additionally, we analyzed how these subsampling techniques affect both population

diversity and specialist maintenance.

4.3.1 Evolutionary System

For each of our evolution experiments, we evolved populations of 1,000 linear genetic programs

on four program synthesis problems (each described in detail in Section 4.3.2). Our linear-GP

representation used:

• an instruction set that includes arithmetic, memory management, flow-control, and additional

problem-specific instructions

• memory accessed with binary tags (Lalejini and Ofria, 2019)

• modules referenced via binary tags (Lalejini and Ofria, 2018; Spector et al., 2011)

A more detailed description of our GP system (including source code) can be found in the

supplemental material (Ferguson, 2020).

We propagated programs asexually, subjecting offspring to mutations. Single-instruction in-

sertions, deletions, and substitutions were applied, each at a per-instruction rate of 0.005. Modules

were duplicated and deleted at a per-module rate of 0.05. We also applied ‘slip’ mutations (Lalejini

et al., 2017), which have the possibility of duplicating or deleting sequences of instructions, at a per-

program rate of 0.05. Program-tags were mutated at a per-bit rate of 0.001. The run-termination

criteria varied per experiment and are included in each experiment description.

4.3.2 Program Synthesis Problems

For all evolution experiments, we evolved programs to solve problems from the general program

synthesis benchmark suite (Helmuth and Spector, 2015). To test our hypotheses, we needed a set of

problems known to be challenging but not impossible for GP systems to solve. The general program

synthesis benchmark suite comprises introductory-level computer science programming questions,

many of which have been solved using lexicase selection (Forstenlechner et al., 2018; Helmuth

and Spector, 2015). We used the following four program synthesis problems in our experiments:

Smallest, Median, For Loop Index, and Grade. A description of each problem is given below:

Smallest: Programs are given four integer inputs (−100 ≤ inputi ≤ 100) and must output the

smallest value. We measured program performance on a pass-fail basis. We limited program length
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to a maximum of 64 instructions and also limited the maximum number of instruction-execution

steps to 64.

Median: Programs are given three integer inputs (−100 ≤ inputi ≤ 100) and must output the

median value. We measured program performance against test cases on a pass-fail basis. We limited

program length to 64 instructions and also limited the maximum number of instruction-execution

steps to 64.

For Loop Index: Programs receive three integer inputs start (−500 ≤ start ≤ 500), end (−500 ≤

end ≤ 500), (start < end), and step (1 ≤ step ≤ 10). Programs must output the following sequence:

n0 = start

ni = ni−1 + step

for each ni < end. We limited program length to a maximum of 128 instructions and also limited

the maximum number of instruction-execution steps to 256. Program performance against a test

case was measured on a gradient, using the Levenshtein distance between the program’s output

and the correct output sequence.

Grade: Programs receive five integers in the range [0, 100] as input: A, B, C, D, and score. A,

B, C, and D define the minimum score needed to receive that letter grade. These are specified

such that A > B > C > D (i.e., they are monotonically decreasing and unique). The program

must read in these thresholds and return the appropriate letter grade for the given score, or F if

score < D. We limited program length to a maximum of 64 instructions and also limited programs’

maximum instruction-execution steps to 64. On each test, we evaluated programs on a pass-fail

basis.

For these experiments, the Smallest, Median, and For Loop Index problems have an associated

training set of 100 test cases, and a separate validation set of 1,000 test cases (withheld during

fitness evaluations). We used 200 training cases and 2,000 validation cases for the Grade problem.

A program had to solve all test cases in both the training and validation sets to be considered

a “perfect” solution. All training and validation sets can be found in the supplemental material

(Ferguson, 2020).
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4.3.3 Experimental Design

We conducted five experiments: (1) we replicated a previous experiment (Chapter 3) to eval-

uate subsampling’s effect on lexicase selection’s problem-solving success; (2) we tested whether

or not subsampling improves problem-solving success because it facilitates deeper evolutionary

searches; (3) we evaluated whether subsampling can reduce the computational effort expended by

lexicase selection to solve problems; (4) we tested the effect of random subsampling on lexicase se-

lection, comparing the diversity maintenance of standard, down-sampled, and cohort lexicase; (5)

we compared each of standard, down-sampled, and cohort lexicase’s capacity to maintain specialist

candidate solutions (i.e., programs with low aggregate fitness that solve test cases that the majority

of the population fails).

Does subsampling improve lexicase selection’s problem-solving success given a fixed
computation budget?

First, we replicated the experiment conducted in Chapter 3 where both down-sampled and

cohort lexicase improved problem-solving success relative to standard lexicase selection. To evalu-

ate whether subsampling improves lexicase’s problem-solving success, we evolved programs using

down-sampled, cohort, and standard lexicase selection to solve each of the four program synthesis

problems (described in Section 4.3.2). While the sets of program synthesis problems are not iden-

tical, the main difference between the two experiments is that our previous work included a test

case that was designed to minimize program size of candidate solutions that solved all normal test

cases; this minimizing test case was discarded for all experiments in this work. For a control, we

also tested reduced lexicase: standard lexicase performed on a statically reduced training set that

was randomly sampled at the beginning of the run. Reduced lexicase is similar to down-sampled

lexicase, with the exception that test cases remain constant throughout the evolutionary search

and are not sampled every generation.

All three of these lexicase variants were tested at five subsampling levels: 100% (identical to

standard lexicase), 50%, 25%, 10% and, 5% (D = 1, 2, 4, 10, and 20, respectively). For standard lex-

icase and each variant, we limited each instance to a maximum computation budget of 30,000,000

evaluations1. Thus, standard lexicase ran for 300 generations, and the subsampled variants ran

for 300, 600, 1,200, 3,000, and 6,000 generations, respectively. We compared the problem-solving
1Evaluating a single program on a single test case is one test case evaluation.
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success (i.e., the number of replicates that produced a perfect solution) of each variant to standard

lexicase. For each problem, we ran 50 replicates (each with a unique random seed) of each subsam-

pled configuration, and 250 replicates (each with a unique random seed) of standard lexicase (50

replicates for each subsampling level).

Does subsampling improve lexicase selection’s problem-solving success because it fa-
cilitates deeper searches?

Both down-sampled and cohort lexicase perform fewer test case evaluations per generation

than standard lexicase, allowing us to run evolutionary searches for more generations given a

fixed computation budget (i.e., a fixed number of total test case evaluations). We expected that

subsampling improves lexicase’s problem-solving success because it enables deeper searches. To

test this hypothesis, we repeated the performance experiment (described previously in Section

4.3.3), except we evolved all populations (regardless of selection scheme and subsampling level)

for 300 generations. We compared the number of successful replicates from each of down-sampled,

cohort, and standard lexicase. If down-sampled and cohort lexicase lose their performance edge

over standard lexicase, the distinction must come from the time after the 300 generation limit

that they would have continued evolving. This finding would suggest that subsampling’s improved

problem-solving success results from its facilitation of deeper evolutionary searches.

Does random subsampling reduce the computational effort required to solve problems
with lexicase selection?

Our previous work (Chapter 3) shows that subsampling can improve lexicase selection’s

problem-solving success given a fixed computational budget. Here, we are interested in whether or

not subsampling reduces the total computational effort required to find solutions; that is, do down-

sampled and cohort lexicase generally find solutions using fewer total evaluations than standard

lexicase selection? We evolved programs on the four program synthesis problems described pre-

viously (Section 4.3.2) using down-sampled, cohort, and standard lexicase (at a 10% subsampling

level for down-sampled and cohort lexicase). For each condition, we ran 50 replicate populations.

Because we wanted to compare how much computational effort it generally took for a particular

selection scheme to solve a problem, we only used data from the first 25 replicates of each condition

to solve the problem (i.e., the 25 replicates per condition that used the least computational effort).

We also included truncated lexicase (Spector et al., 2018), another lexicase selection variant that
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works to reduce the rigidness in lexicase selection by limiting the number of test cases used in a

selection event before a candidate solution is selected. Truncated lexicase also has the potential to

reduce the computational effort needed to find solutions. For our truncated lexicase condition, we

used a truncation level equal to 10% of the training set.

Does subsampling degrade lexicase selection’s diversity maintenance?

Part of lexicase selection’s success is known to be the result of its effectiveness at diversity

maintenance (Dolson and Ofria, 2018; Helmuth et al., 2016a; Moore and Stanton, 2018). Subsam-

pling, however, is likely to degrade diversity maintenance because it both reduces the total number

of niches available each generation (i.e., there are fewer possible orderings of test cases) and de-

creases niche stability from generation to generation (i.e., the set of possible test case permutations

changes every generation). Thus, we expected populations evolved using down-sampled and cohort

lexicase selection to have lower overall diversity and more frequent selective sweeps (coalescence

events) than those evolved with standard lexicase selection. Additionally, cohort lexicase inher-

ently buffers populations against selective sweeps, slowing down the rate at which a lineage can

take over a population by limiting competition each generation to within cohorts. As such, we

expected cohort lexicase to have fewer selective sweeps (and thus more phylogenetic diversity) than

down-sampled lexicase.

To test our hypotheses, we replicated the experiment in Section 4.3.3, running both subsam-

pling lexicase variants (at a range of subsampling levels) and standard lexicase for 30,000,000 total

evaluations. In these runs, we collected data on genotypic, phenotypic, and phylogenetic diver-

sity. We measured genotypic and phenotypic diversity with the Shannon diversity index. To assess

phylogenetic diversity, we used a suite of phylogenetic diversity metrics (see Dolson et al. (2018)

for a review). After all replicates terminated, we analyzed the results of each of these diversity

measures at the time solutions were found.2 Within each subsampling level, we compared cohort,
2Choosing when to measure diversity in evolutionary computation is an interesting problem. In

evolutionary computation, diversity maintenance is often viewed as a mechanism to avoid premature
convergence on suboptimal solutions. If our goal is to compare how well different selection schemes
maintain diversity, when should we measure diversity? Measuring diversity after a global solution
is found is not particularly meaningful, as finding the solution often causes the population to
converge, decreasing diversity. We measured diversity at the time the solution is found to mitigate
this problem. However, this solution only partially addresses the underlying problem: the process
of evolution often involves many selective sweeps and subsequent divergences and we cannot know
where in this cycle our measurements occurred.
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Parameter Values
Population size 10, 20, and 100

# test cases 10, 20
Generalist pass rate on non-focal tests 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Table 4.1: Generated population configurations. We generated 100 populations for all combinations
of the parameters given in this table.

down-sampled, and standard lexicase selection.

Does subsampling reduce lexicase selection’s capacity to maintain specialists?

Recent work by Helmuth et al. (2019) demonstrates lexicase’s tendency to select specialist

individuals (i.e., individuals that have a low aggregate fitness but perform well on a subset of tests

that the majority of the population fails). Helmuth et al. found that lexicase’s ability to select

specialists is a major driver behind its problem-solving success. Just as we expected subsampling to

degrade lexicase selection’s diversity maintenance, we also expected subsampling to inhibit specialist

maintenance. Because specialists perform well on a few test cases (and potentially poorly on the

rest), a specialist’s likelihood of being selected by lexicase selection is reduced if any of the test

cases it passes are not sampled. Thus, we hypothesized that both down-sampled and cohort lexicase

reduce lexicase selection’s capacity to maintain specialist individuals.

To test our hypothesis, we investigated the extreme case of populations with a single specialist.

We generated hypothetical populations, each containing a ‘specialist’ and many ‘generalists’. In

each generated population, the specialist individual was able to solve only one focal test case, and

none of the generalists were allowed to solve the focal test case. We varied the probability at which

generalists could solve each non-focal test case, ranging from 0.1 to 1.0 (where all generalists solved

all non-focal test cases). We also varied the population size and the total number of test cases.

Table 4.1 shows all parameter values used in this experiment. We generated 100 populations for

each combination of these parameters.

For each population, we calculated the probability of each candidate solution being selected at

least once to be a parent in the next generation under standard, down-sampled, and cohort lexicase

selection. For standard lexicase selection, we calculated exact probabilities: we enumerated all pos-

sible orderings of test cases, counting the number of enumerations where each candidate solution

is selected. This is intractable for the subsampled lexicase variants, so we took a sampling ap-

proach. To approximate the selection probability in the lexicase variants, we randomly subsampled
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the population according to the selection scheme being tested. After subsampling, down-sampled

lexicase is equivalent to standard lexicase with fewer test cases, while cohort lexicase is equiva-

lent to standard lexicase conducted separately on each cohort. Thus, we calculated the selection

probabilities for each candidate solution with that particular random subsampling. This process

was repeated 100,000 times to approximate the true selection probabilities under down-sampled

and cohort lexicase. These calculations allowed us to compare the specialist’s selection probability

across configurations.

4.3.4 Statistical Analyses

All statistics were calculated using the R statistical computing language v3.6.0 R Core Team

(2019), and all figures in this work were created using the ggplot2 R package Wickham (2016a).

We compared problem-solving success rates among different independent conditions using Fisher’s

exact tests, and we corrected for multiple comparisons using the Holm-Bonferroni method where

appropriate. For measures of computational effort and diversity, we performed a Kruskal-Wallis

test to look for statistically significant differences among independent conditions. For comparisons

in which the Kruskal-Wallis test was significant (significance level of 0.05), we performed a post-hoc

Mann-Whitney test between relevant conditions (with a Holm-Bonferonni correction for multiple

comparisons where appropriate). Statistical analyses for the specialist experiment also used a

Kruskal-Wallis test, but swapped the Mann-Whitney test for a Wilcoxon test because the data

were paired. Analysis and visualization scripts can all be found in the supplemental material

Ferguson (2020).

4.4 Results and Discussion
4.4.1 Subsampling improves lexicase selection’s problem-solving success

Figure 4.1 shows the fraction of replicates where a perfect solution evolved within 30,000,000

evaluations under each of down-sampled, cohort, reduced, and standard lexicase selection. For each

program synthesis problem, we conducted a Fisher’s exact test (0.05 significance level) between the

250 standard lexicase replicates and the 50 subsampled replicates of each experimental condition;

we corrected for multiple comparisons using the Holm-Bonferonni method.

Our data are largely consistent with previous work in Chapter 3. For three of the four problems

(Smallest, Median, and Grade), statically reducing the training set beyond a critical threshold

significantly decreased problem-solving success. For example, at 5% and 10% subsampling levels,
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Figure 4.1: Problem-solving success after 30,000,000 evaluations. Bars show the fraction of repli-
cates that found a perfect solution. An asterisk (*) to the left of a bar denotes a significant difference
compared to the standard lexicase results (using a Holm-Bonferroni correction for multiple com-
parisons). Results for standard lexicase (light purple) consist of 250 replicates per problem, while
results for reduced lexicase (dark purple), down-sampled lexicase (yellow), and cohort lexicase (or-
ange) consist of 50 replicates for each configuration.
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reduced lexicase performs significantly worse than standard lexicase in each of the Smallest, Median,

and Grade problems. Reduced lexicase rarely outperformed standard lexicase, only doing so in three

cases: Grade at 25% and 50% subsampling, and For Loop Index at 10% subsampling. Statically

reducing the size of the training set did not inhibit our capacity to solve the For Loop Index

problem; we suspect this is because the training set (100 test cases) is much larger than necessary.

The same trend is true for 50%- and 25%-reduced lexicase on the Grade problem.

Both down-sampled and cohort lexicase performed significantly better than standard lexicase

on at least one subsampling level for every problem. Specifically, down-sampled lexicase significantly

outperformed standard lexicase on all problems at the 5% and 10% subsampling levels, while cohort

lexicase also outperformed standard lexicase at 5% and 10% subsampling on all problems except

For Loop Index at the 10% subsampling level. Neither down-sampled nor cohort lexicase performed

significantly worse than standard lexicase in any experimental configuration.

These results achieved better performance on more extreme subsampling levels than in Chapter

3; this is because we removed all selection pressure to reduce program size. In this previous work,

we included a single test case that favored small programs that only took effect when a program

solved all other test cases it was evaluated against. At high subsampling levels (e.g., 5%), it is easy

for programs that do not generalize well to prematurely trigger this size-minimization test case,

which negatively impacted problem-solving success rates.

These results support our previous claim that subsampling can improve lexicase selection’s

problem-solving success. Although there is evidence that subsampling can improve solution rates,

a different approach is needed to tease apart why this difference exists, or how down-sampled and

cohort lexicase actually differ.

4.4.2 Deeper evolutionary searches contribute to subsampling’s success

Figure 4.2 shows the fraction of replicates where a perfect solution evolved after 300 generations

under each of down-sampled, cohort, and standard lexicase selection. After 300 generations, con-

ditions with aggressive subsampling (e.g., 5%) have made fewer total evaluations than conditions

with milder subsampling (e.g., 50%) or standard lexicase. To be exact, 50%, 25%, 10%, and 5%

subsampling complete 15,000,000, 7,500,000, 3,000,000, and 1,500,000 evaluations, respectively. We

hypothesized that random subsampling improves lexicase selection because it allows evolutionary

searches to run for more generations given a fixed evaluation budget. By terminating all replicates
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Figure 4.2: Evolutionary results at the end of 300 generations. Bars show the fraction of replicates
that found a perfect solution on or before 300 generations. An asterisk (*) to the left of a bar
denotes a significant difference compared to the standard lexicase results. Results for standard
lexicase (light purple) consist of 250 replicates per problem, while results for down-sampled lexicase
(yellow) and cohort lexicase (orange) consist of 50 replicates for each experimental configuration.
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Figure 4.3: The number of evaluations required for each treatment to solve the specified problems.
The 25 replicates with the fewest evaluations for each treatment are shown. An asterisk (*) under
a box denotes a significant difference between that treatment and standard lexicase.

after 300 generations, we expected subsampling to lose its advantage over standard lexicase.

Given a fixed number of generations, neither down-sampled nor cohort lexicase significantly

outperformed standard lexicase at any subsampling level. In fact, down-sampled and cohort lexicase

performed significantly worse than standard lexicase on all problems with 5% and 10% subsampling

rates except in three cases: cohort at 10% subsampling on Grade, down-sampled at 10% and 5%

subsampling on For Loop Index.

As shown in Section 4.4.1, when given equivalent computational budgets (i.e., total number

of training case evaluations), subsampling significantly improves lexicase’s problem-solving success.

However, this experiment shows that when we restrict down-sampled and cohort lexicase to the

same number of generations as standard lexicase, they both have significantly diminished success on

the same problems. These data support our hypothesis that deeper evolutionary searches contribute

to the success of the subsampled variations on lexicase selection.

4.4.3 Subsampling reduces computational effort

Next, we explored how subsampling affects the amount of computational effort required to

solve problems in the context of lexicase selection. For this experiment, we removed all evaluation

and generation termination criteria. Figure 4.3 shows the number of test case evaluations in each

of the first 25 replicates for each condition in which a solution evolved (i.e., the 25 replicates that

required the least computational effort to solve the problem). We performed a Kruskal-Wallis test

(significance level 0.05) to look for significant differences among selection schemes for each program

synthesis problem. For problems in which the Kruskal-Wallis test was significant, we performed

a post-hoc Mann-Whitney test between standard lexicase and each of the down-sampled, cohort,
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Figure 4.4: Shannon diversity of candidate solution phenotypes at the first generation a perfect
solution was found; individual phenotypes were measured as a program’s performance on each test
from the training and validation sets. A dagger (†) above a box denotes a significant difference with
standard lexicase. A double dagger (‡) denotes a significant difference between cohort lexicase and
down-sampled lexicase at that subsampling level. Results consist of replicates that found a perfect
solution out of 250 replicates for standard lexicase on each problem (purple boxes) and 50 replicates
for each combination of problem and subsampling level for down-sampled lexicase (yellow boxes)
and cohort lexicase (orange boxes).

and truncated lexicase (with a Holm-Bonferonni correction for multiple comparisons).

Both down-sampled and cohort lexicase used significantly fewer evaluations than standard lex-

icase on all four problems. Across all problems, truncated lexicase did not use significantly fewer

evaluations than standard lexicase; on the Median problem, truncated lexicase actually used signifi-

cantly more evaluations than standard lexicase. The data show a clear trend that 10% subsampling,

whether via down-sampling or cohorts, can significantly reduce the number of evaluations needed

to solve these program synthesis problems. However, truncated lexicase (using 10% of the training

cases per selection event) causes either no effect or a significant increase in required evaluations.

4.4.4 Subsampling does not systematically decrease phenotypic diversity in lex-
icase selection

Mutations to the binary tags used by the programs to reference modules and memory are

often silent (i.e., the phenotype and fitness remain the same) allowing populations to endure high
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mutation rates that drive adaptive evolution. As a result, almost all replicates maximize genotypic

diversity, rendering comparisons uninformative. Therefore, we examined the phenotypic diversity

of lexicase and the two subsampled variants.

When evolution produced a candidate solution capable of solving all test cases in the training

set, we immediately tested that solution on the cases in the reserved validation set as well. If

this candidate solution continued to pass all test cases, we declared it a “perfect solution” and

proceeded to measure the phenotypic diversity of the population it arose from. To do so, we tested

all programs in the population on all test cases across both the training and validation sets. We

designated each candidate solution’s performances (in sequence) on all test cases as that solution’s

phenotype. Figure 4.4 shows the Shannon diversity of these results.

Minimal evidence was found to support our hypothesis that subsampling results in a reduction

of phenotypic diversity. After comparing the phenotypic diversity of both down-sampled and cohort

lexicase to the standard algorithm, only 2 of 32 configurations resulted in a significant decrease in

phenotypic diversity, both of which were down-sampled configurations. Conversely, cohort lexicase

actually had significantly higher phenotypic diversity than standard lexicase in two configurations.

Further, cohort lexicase results had significantly higher phenotypic diversity than down-sampled

lexicase in 4 of 16 comparisons.

With only two configurations leading to decreased phenotypic diversity, we cannot conclude

that there is a systematic decrease in phenotypic diversity due to subsampling for these program

synthesis problems. However, these results hint at a difference between diversity due to down-

sampled lexicase and cohort lexicase; we plan to explore this difference in future work.

4.4.5 Cohort lexicase enables more phylogenetic diversity than down-sampled
lexicase

As with phenotypic diversity, we recorded the phylogenetic diversity metrics at the time point

when populations first found a perfect solution. This timing was necessary; the discovery of a

perfect solution is likely to produce a selective sweep, radically altering the structure of the phy-

logeny. An unavoidable side effect is that the measurements are taken after different numbers of

generations have elapsed in different replicates. This discrepancy is potentially concerning, as phy-

logenetic diversity measurements are sensitive to the number of generations represented within the

phylogeny. Adding more generations will, in many cases, legitimately increase the diversity of evo-

57



 

†

†

†

†

†

†

 

 

†

†

†

†

†

†

 

†

†

†

†

†

†

†

†

†

†

†

†

Smallest Median For Loop Index Grade

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

5%

10%

25%

50%

Number of Changes

S
ub

sa
m

pl
in

g 
Le

ve
l

Lexicase Selection Variant Down-sampled Cohort

Most Recent Common Ancestor (MRCA) Changes

Figure 4.5: Number of times the most recent common ancestor (MRCA) of all extant candidate
solutions changed for each evolutionary run. Changes are shown on a logarithmic scale. A dagger
(†) above a box denotes a significant difference between cohort lexicase and down-sampled lexicase
at that subsampling level. All results shown are from the replicates that found a perfect solution
out of 50 replicates per experimental condition.

lutionary history that a population contains. However, the number of generations elapsed can have

a disproportionately large effect on a phylogenetic diversity metric, swamping out other effects. In

this case, it is these other effects that we are most interested in, as we have already analyzed the

causes and effects of the number of generations a population goes through. Fortunately, our results

comparing down-sampled vs. cohort lexicase do not appear to be driven by variation in the num-

ber of generations elapsed, as the distribution of generations at which the first perfect solution was

found did not vary consistently within any subsampling level. Because this distribution did vary

among subsampling levels, we are not attempting to make any strong claims about the relationship

between phylogenetic diversity and the degree of subsampling. Here we examine only two of the

phylogenetic metrics that were calculated; plots, descriptions, and statistics of all recorded metrics

can be found in the supplemental material (Ferguson, 2020).

The most recent common ancestor (MRCA) is the most recently evolved candidate solution

from which all extant candidate solutions descend. For this experiment, we tracked the MRCA

throughout the evolutionary search, and we examined the number of selective sweeps by counting
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Figure 4.6: Mean distance between all pairs of extant taxa in the phylogenetic tree for runs of both
subsampled lexicase variants at different subsampling levels. A dagger (†) above a box denotes a
significant difference between cohort lexicase and down-sampled lexicase at that subsampling level.
All results shown consist of the replicates that found a perfect solution out of 50 replicates per
experimental condition.

the number of times the MRCA changed (see Figure 4.5). For all problems tested, cohort lex-

icase has significantly fewer MRCA changes than down-sampled lexicase for 5%, 10%, and 25%

subsampling levels. This pattern suggests that cohort lexicase inhibits selective sweeps in a way

that down-sampled lexicase does not. A likely mechanism for this behavior is that, by explicitly

fragmenting the population into groups, cohort lexicase prevents any single candidate solution from

sweeping more than one cohort per generation.

Another phylogenetic measure we examined was the phylogenetic divergence (i.e., how distinct

the extant taxa are from each other) (Dolson et al., 2018). Here we quantify phylogenetic divergence

via mean pairwise distance of the extant solutions in the phylogeny. This metric is calculated as

the average distance in the phylogenetic tree between each pair of extant candidate solutions (see

Figure 4.6) (Webb, 2000). Cohort lexicase has a significantly higher mean pairwise distance than

down-sampled lexicase for all problems at the 5% and 10% subsampling levels. This result indicates

that cohort lexicase has significantly higher phylogenetic divergence than down-sampled lexicase,

providing further evidence that cohort lexicase is better than down-sampled lexicase at maintaining
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Figure 4.7: Bars show the median probability that a focal specialist will be selected as a parent in
the next generation at least once; data are aggregated over 100 experimental populations. Error
bars show the minimum and maximum probabilities across all populations for that configuration.
The dashed lines show the expected probability for both subsampled lexicase variants for configu-
rations where the population size is 100. An asterisk (*) denotes a significant difference between
cohort lexicase and down-sampled lexicase; standard lexicase was always significantly different. All
configurations shown are for 20 test cases.

phylogenetic diversity. Other phylogenetic diversity metrics were consistent with these results.

Because the differing generation counts prevent us from meaningfully comparing phylogenetic

diversity across subsampling levels, all we can say conclusively is that subsampling does not appear

to decrease phylogenetic diversity. That said, it may well be the case that greater phylogenetic

diversity helps produce better candidate solutions. If so, this factor could explain why more genera-

tions (as opposed to more evaluation thoroughness) increase the computational efficiency of lexicase

selection. A more targeted investigation will be required to determine how important phylogenetic

diversity is to the success of lexicase selection variants.

4.4.6 Subsampling degrades specialist maintenance

Across experimental conditions, lexicase selection has a significantly higher probability of se-

lecting the specialist than either subsampled variant (see Figure 4.7). This result supports our

hypothesis that subsampling degrades specialist preservation. Interestingly, down-sampled and co-
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hort lexicase behave differently across the conditions. Exploring these differences can help us better

understand the mechanisms that cause a lexicase variant to favor specialists.

When the population size is large, down-sampled and cohort lexicase behave nearly identically.

At higher subsampling rates specialists have a higher survival probability in both treatments.

At smaller population sizes, higher subsampling rates continue to demonstrate a higher survival

probability of specialists in down-sampled lexicase, but not always in cohort lexicase.

At the extreme, when population size, subsampling rate, and generalist pass rate are all small,

cohort lexicase has a drastically higher probability of specialist survival than down-sampled lexicase.

In this case, the specialist benefits from the low generalist pass rate, since many non-specialists will

fail to solve many of the test cases. Specifically, if all candidate solutions competing against the

specialist fail a given test case, it will be non-discriminatory and effectively ignored. This effect is

more pronounced in cohort lexicase, when the specialist is competing only within its cohort (e.g., a

cohort of size 2 for a population size of 20 with 10% subsampling), rather than the full population.

At a population size of 100, this benefit is lessened because cohorts still contain a relatively large

number of candidate solutions. In the remaining configurations, down-sampled lexicase has a higher

probability of specialist survival than cohort lexicase.

To better understand these probabilities, consider a situation with two constraints: 1) the

specialist solves only its one assigned test case, and 2) every other candidate solution can solve

all test cases but the specialist’s (i.e., the generalist pass rate is 1.0). While the situation is

improbable, it is the worst-case scenario for selecting the specialist; relaxing either constraint could

only increase the chance of selecting the specialist. In this situation, the specialist’s odds of selection

in a single selection event under lexicase selection is 1
T where T is the number of test cases; that

is, the probability of its focal test case being chosen first. The specialist’s probability of selection

for the entire next generation can be expressed as Equation 4.1 where N is the total population

size (Dolson and Ofria, 2018) (for further discussion of selection probabilities under full lexicase

selection, see La Cava et al. (2018)).

Plexicase = 1− (1− 1

T
)N (4.1)

We can modify Equation 4.1 to accommodate down-sampled lexicase by accounting for two

cases. First, the specialist’s sole test case can be included in the test cases used for this generation,
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in which case the specialist has a D
T chance of being selected (recall D is the down-sample factor,

which divides the number of training cases such that each organism sees 1
D of the full training set

each generation). Otherwise, the specialist’s test case is not included, and the specialist has no

chance of being selected. Thus, we arrive at Equation 4.2.

Pdown−sampled =
1− (1− D

T )N

D
(4.2)

Finally, we can also account for cohort lexicase selection. Cohort lexicase also gives the spe-

cialist a 1
D chance of being evaluated against its sole test case. The only difference is in the number

of selection events; cohort lexicase can be thought of as standard lexicase being conducted on each

cohort. Thus, in the case where the specialist is in the same cohort as its test case, it does not have

N selection events to be selected, but instead N
D . This gives us the final equation, Equation 4.3.

Pcohort =
1− (1− D

T )
N
D

D
(4.3)

Plotting these equations, we can see both that down-sampled and cohort lexicase approach

a maximum specialist survival probability of 1
D , and that down-sampled approaches that limit at

lower population sizes than cohort lexicase (see Figure 4.8). The plots also show that increasing the

number of training cases increases the required population size to reach the 1
D limit. Thus the two

subsampled lexicase variants have the same maximum specialist selection probability, but smaller

populations will see a lower value for cohort lexicase. These theoretical findings help explain our

empirical results.

Again, this is the worst-case scenario for the specialist. Further work is needed to see how

specialist preservation changes under different situations (e.g., more copies of the specialist, less

elite generalists, specialists that solve more than one test case, etc.) Figure 4.8 shows only the

lower bound on the specialist selection probability.
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Figure 4.8: Probabilities that the focal specialist will be selected to be a parent in the next gen-
eration at least once in the situation where there is one specialist, which solves only one test case,
but is also the only candidate solution to solve that specific test case. Meanwhile, all other candi-
date solutions solve all other test cases. Note the special case of a population size of 10 with 10%
subsampling. Here, each cohort has one solution, which guarantees selection exactly once with no
selective pressure.
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4.5 Conclusion
Here, we investigated the effects of random subsampling on lexicase selection. We replicated

previous results (Chapter 3), demonstrating that subsampling improves lexicase’s problem-solving

success, and we have shown that subsampling’s success is a result of it enabling deeper evolutionary

searches (i.e., running searches for more generations). Moreover, we have shown that subsampling

reduces the total computational effort required to evolve solutions in the context of lexicase se-

lection. We expected that applying subsampling to lexicase selection would degrade phenotypic

diversity, but have found no evidence of systematic degradation. However, we did find evidence that

cohort lexicase is better at generating and preserving phylogenetic diversity than down-sampled

lexicase. Finally, we have shown that subsampling does reduce lexicase’s capacity to maintain

specialist individuals.

Overall, our results highlight the value of random subsampling in lexicase selection, showing

that it can improve problem-solving success and save computational effort. However, we also

demonstrate that subsampling degrades specialist preservation, and as such, for problems where

maintaining specialists is especially important, subsampling might have an overall negative effect

on problem-solving success. Future work should explore how subsampling affects both overall

population diversity and specialist maintenance at a fine-grained scale and on a wider range of

problem types.
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Part II

Characterizing search strategies for selection schemes
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Chapter 5
An Exploration of Exploration: Measuring the ability of lexicase

selection to find obscure pathways to optimality
Authors: Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

This chapter is adapted from (Hernandez et al., 2022b), which appeared in Genetic Programming

Theory and Practice XVII.

In this work, we introduce the exploration diagnostic to measure the exploratory capacity of

lexicase selection and several of its variants. We find that lexicase selection facilitates better search

space exploration than tournament selection, where lexicase selection’s ability to explore is sensitive

to the ratio between population size and the number of test cases. Additionally, we find that all

lexicase variants degraded lexicase selection’s exploration capacity, except for epsilon lexicase.

5.1 Introduction
Lexicase-based parent selection algorithms have proven to be highly successful for finding

effective solutions to test-based problems in genetic programming (GP) (Helmuth and Abdelhady,

2020; Helmuth and Spector, 2015; Orzechowski et al., 2018). Lexicase selection’s success is rooted

in its ability to balance strong search space exploration with simultaneous exploitation. That

is, lexicase selection maintains meaningfully diverse populations (Helmuth et al., 2016a, 2020) by

promoting the coexistence of subpopulations that are each focused on different aspects of a problem

(e.g., on different test cases or selection criteria) (Dolson and Ofria, 2018). As such, lexicase

selection algorithms are able to explore many promising problem-solving pathways in parallel,

optimizing each until an overall solution is found.

Many genetic programming problems are multi-faceted where the quality of a candidate so-

lution must be measured according to its performance on a set of test cases. For such problems,

we must decide how to combine performances across many test cases in order to select promising

individuals to produce offspring for the next generation. Traditional parent selection algorithms

assess the quality of an individual by aggregating their performance on all test cases. The lexicase

selection algorithm, however, chooses each parent based on the relative performances of candi-

date solutions on random permutations of the test set. Specifically, each time a parent is needed,

the entire population is considered as candidates for selection, and the full set of test cases are

shuffled; each test case is applied sequentially (in the given shuffled order) to the current set of
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candidates, removing all but the best candidates from consideration until only a single individual

remains to be selected (Helmuth et al., 2015). Because the ordering of test cases is different for

each parent selection event, individuals that perform well on different subsets of problems are able

to coexist (Dolson and Ofria, 2018). Moreover, lexicase selection exerts strong selection pressure

to optimize each subpopulation, as only the best candidates on different sequences of test cases are

selected.

Indeed, the successes of the original lexicase selection algorithm have inspired numerous vari-

ants, each either specialized for solving different categories of problems or designed to address

potential shortcomings of the original lexicase algorithm (e.g., computational efficiency). Such

variants include epsilon lexicase (La Cava et al., 2018, 2016), down-sampled lexicase (Chapter 3),

novelty-lexicase (Jundt and Helmuth, 2019), ALPS lexicase (Helmuth and Abdelhady, 2020), and

batch-lexicase selection (Aenugu and Spector, 2019). Many of these variants have been rigorously

benchmarked on their problem-solving success and on their ability to maintain phenotypic and

phylogenetic diversity (Helmuth et al., 2016a,b; Spector et al., 2018). However, benchmarking is

often performed in the context of a particular GP system and with the overall goal of measuring

performance on challenging computational problems (e.g., program synthesis benchmark problems

from Helmuth and Spector 2015 and Helmuth and Kelly 2021). While such benchmarking is critical

for understanding the real-world applicability of a selection scheme, the specific problems used do

not always allow us to disentangle the particular pros and cons of each scheme (Hooker, 1995).

For this paper, we focus on one important aspect of lexicase-based selection schemes: How do we

isolate the exploration capabilities of lexicase selection and its variants?

We introduce an “exploration diagnostic” and use it to test how well a set of parent selection al-

gorithms can explore a simple landscape with many uphill pathways of differing peak fitnesses. Our

exploration diagnostic allows for the total number of possible evolutionary pathways to be tuned,

enabling practitioners to find where an algorithm’s exploratory abilities begin to fall off. First,

we verify established expectations that lexicase selection better facilitates search space exploration

than tournament selection, a more traditional selection algorithm. Next, we evaluate lexicase se-

lection on our exploratory diagnostic with an increasing number of possible pathways and identify

its exploratory limitations. Finally, we apply our exploration diagnostic to four variants of lexicase

selection: epsilon lexicase, down-sampled lexicase, cohort lexicase, and novelty-lexicase selection.
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We find that lexicase selection drives performance improvement at each of the exploration diag-

nostic difficulty levels that we evaluated. Lexicase selection finds nearly perfect solutions for fitness

landscapes with a small number of pathways to be explored, and performance gradually declines

as the number of possible evolutionary pathways increases. Additionally, we show that lexicase

selection can be sensitive to the ratio between population size and the number of test cases used

for evaluating candidate solutions. For small values of ϵ, epsilon lexicase improves the exploratory

capacity of lexicase selection. Random subsampling via either down-sampled or cohort lexicase

degrades exploratory capacity, but cohort partitioning better preserves lexicase’s exploratory ca-

pacity than down-sampling. Finally, we did not find compelling evidence that novelty-lexicase

improves performance on the exploration diagnostic relative to standard lexicase selection; in fact,

the addition of novelty test cases can substantially degrade lexicase’s diagnostic performance.

5.2 Exploration diagnostic
Understanding how parent-selection algorithms affect exploration and exploitation within a

search space is crucial to tackling increasingly challenging problems. This information can help

determine what modifications to an evolutionary algorithm may be needed to improve the like-

lihood of finding a high-quality solution. Different selection schemes (or other components of an

evolutionary algorithm) can alter the trade-off between exploitation and exploration (Eiben and

Schippers, 1998). An exploitation-only selection scheme will push the population to the closest

optimum and not allow it to explore other promising regions of the search space. Conversely, an

exploration-only selection scheme will scatter the population across the entire search space but is

unlikely to reach nearby optima. Hence, striking a balance between exploration and exploitation is

critical to finding high-quality solutions. Here, we introduce a diagnostic that challenges selection

schemes to explore multiple avenues of a search space, each with an upward pathway, with the goal

of finding the best avenue to hill climb.

We balanced both exploitation and exploration in our diagnostic. Specifically, we designed a

problem with many upward pathways that all have identical slopes, but vary in total length. Since

shorter pathways are always equivalent to the beginning of longer pathways, exploration is critical

for finding the longest pathway (which will lead to the global optimum). In the end, the only way

for an evolving population to determine the length of a pathway is to follow it.

Candidate solutions for this diagnostic are numerical vectors of a designated size (its “cardi-
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Figure 5.1: An example evaluation with the exploration diagnostic. A candidate solution with a
cardinality of 10 is analyzed. The highest value in its vector is identified as 98.2, and its position is
marked as the beginning of the active region. The next four values are all in a decreasing sequence
(77.6, 47.0, 46.1, and 32.5) and are thus all considered part of the active region. The value after
that (36.4) is greater than its predecessor and thus left inactive, closing the active region. All values
not in the active region are expressed in the phenotype as 0.0. The total fitness of the sequence is
the sum of the values in the phenotype or 0.0 + 0.0 + 0.0 + 98.2 + 77.6 + 47.0 + 46.1 + 32.5 +
0.0 + 0.0 = 301.4.

nality” – we used 100 as the default cardinality in this work). Cardinality determines the number of

pathways to local optima in the fitness landscape. Each value in a candidate solution is a floating-

point number between 0.0 and 100.0. To evaluate a candidate solution, we first scan its vector to

find the maximum value and designate its position as the “activation position” for calculating its

fitness. From an intuitive perspective, the activation position defines which peak the candidate

solution is climbing toward. Beginning at the activation position, we sum all consecutive values

that are less than or equal to each previous position. We stop when either a position is no longer

monotonically non-increasing or we reach the end of the vector. We refer to this consecutive se-

quence of scored values as the “active region” of the candidate solution. All values outside of the

active region have zero fitness contribution. The fitness contributions of each position (i.e., each

trait) define the “phenotype” of the candidate solution; two candidate solutions that differ only

in inactive regions will have identical phenotypes. Figure 5.1 shows an example fitness calcula-

tion. Given this search space, the optimal solution will have a 100.0 in every position of its vector

starting from the very first, making the entire candidate solution active and each value maximized.

However, any candidate solution with an activation position other than the first will not have a

pathway to the global optimum that is reachable via hill climbing alone.
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Given the large number of pathways that need to be simultaneously explored, this diagnostic

allows us to compare the exploration capacity of different selection schemes. Additionally, this

diagnostic allows researchers to test the exploration breaking point of a given selection scheme,

as increasing the cardinality of the diagnostic increases the exploratory capacity needed to find

the best activation position. In this work, we use this diagnostic to test the exploratory limits of

lexicase selection along with a number of its variants.

5.3 Lexicase selection
Spector (2012) introduced the lexicase parent selection algorithm for solving GP problems

that require programs to produce qualitatively different modes of response for different inputs.

Since its introduction, lexicase selection has been demonstrated to be successful across a broad

range of problem domains, including automatic program synthesis (Helmuth and Spector, 2015),

symbolic regression (La Cava et al., 2016), evolutionary robotics (Moore and Stanton, 2017), genetic

algorithms (Metevier et al., 2019), and learning classifier systems (Aenugu and Spector, 2019). See

Spector (2012), Helmuth et al. (2015), and Section 3.2 for a more detailed description of lexicase

selection. Algorithm 5.1 details the lexicase selection algorithm.

1. Mark entire population as current candidates under consideration.

2. Shuffle test_cases into a random order.

3. For each case in test_cases:

(a) Evaluate each candidate in candidates on case.

(b) Identify the best_score on case of all candidates.

(c) Remove each entry from candidates with a score on case worse than
best_score.

4. Select a random entry from candidates.

Algorithm 5.1: Lexicase selection for a single parent. Adapted from (Helmuth et al., 2015).

Many variants of lexicase selection have been proposed, each either specialized for solving a

particular type of problem or designed to address potential shortcomings of the original lexicase

selection scheme. Below, we describe each of the four variants of lexicase selection examined in this

work.
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5.3.1 Epsilon lexicase selection

Epsilon lexicase selection relaxes the elitism of the filtering step in standard lexicase selection

(step 3c in Algorithm 5.1). When filtering candidates on a given test case, epsilon lexicase retains

all individuals with performances within some threshold (ϵ) of the best performance on that test

case. The ϵ parameter can be tuned by the practitioner and can be applied either as a proportion

of the optimal performance on a given test case or as an absolute threshold.

Epsilon lexicase selection specializes standard lexicase selection for problems where perfor-

mances on selection criteria are measured using real-valued numbers, such as symbolic regression

problems (La Cava et al., 2016; Orzechowski et al., 2018; Spector et al., 2018) or evolving robot

controllers (Moore and McKinley, 2016; Moore and Stanton, 2017). The standard lexicase selec-

tion algorithm assumes that individuals with equivalent performances on a given test case will have

equal scores for that test case. Inconsequential noise in an individual’s score on a particular test

case could result in arbitrary, but consequential differences in which individuals are selected by the

standard lexicase algorithm. By allowing a small ϵ difference between individuals, epsilon lexicase

addresses this potential problem.

In this work, we vary ϵ to investigate how it affects exploration. La Cava et al. (2016) observed

that behavioral diversity increases at larger values of ϵ. Given ϵ’s effect on behavioral diversity, we

hypothesize that increasing ϵ will increase the exploration capacity of epsilon lexicase. However,

at too high of an ϵ value, we expect meaningful exploration to degrade. That is, as ϵ increases

beyond a certain point, different adaptive pathways blur together as meaningful differences in test

case performances become indistinguishable.

For simplicity, we apply ϵ as a fixed absolute error threshold in this work. Future work,

however, should investigate how different applications of ϵ further influence lexicase’s exploration

capacity (e.g., semi-dynamic and dynamic applications of ϵ from La Cava et al. 2018).

5.3.2 Down-sampled lexicase selection

Down-sampled lexicase applies random subsampling to the selection criteria in order to reduce

the per-generation computational effort required by lexicase selection (Chapter 3). Down-sampled

lexicase uses a random subset of test cases each generation, which reduces the number of test

cases on which each individual in the population must be evaluated every generation. After down
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sampling, the standard lexicase procedure is used to choose parents.

For an equivalent number of total evaluations, down-sampled lexicase allows practitioners to

run their evolutionary computing system for more generations or with a larger population size;

both of which have been shown to improve problem-solving success (Chapter 4 and Helmuth and

Spector (2020)). In this work, we investigate how down sampling affects lexicase selection’s ex-

ploratory capacity. While we found no evidence that down sampling reduces phenotypic diversity

across a range of program synthesis problems in Chapter 4, we did find that down sampling de-

grades specialist maintenance. We hypothesize that down sampling’s negative effect on specialist

maintenance harms its exploratory capacity. Entire categories of test cases may be excluded on any

given generation, and candidate solutions specializing on those test cases may be lost as a result.

Such dynamics may prevent extensive exploration of valuable niches.

5.3.3 Cohort lexicase selection

Cohort lexicase partitions the test case set and the population each into an equal number of

cohorts (Chapter 3). Each generation, cohort membership is randomly assigned, and each cohort

of candidate solutions is paired with a cohort of test cases. Each cohort of candidate solutions is

evaluated only on the test cases in the paired test case cohort, which, like down-sampled lexicase,

reduces the required number of per-generation evaluations relative to standard lexicase selection.

Unlike down-sampled lexicase, however, cohort lexicase ensures that every test case in the full set

is used every generation, as each cohort of candidate solutions competes on a different subset of

the full set. To select a parent, cohort lexicase first selects a cohort to choose from; previous work

guaranteed an equal number of parents were selected from each cohort each generation (Chapter

3 and 4). Candidate solutions only compete against other solutions within their respective cohort,

and within-cohort competition is arbitrated by the test cases in the associated cohort of tests.

In this work, we investigate how the number of cohorts that we partition the population and

test set into influences lexicase selection’s capacity for exploration. For similar reasons to down-

sampled lexicase, we expect cohort lexicase selection to degrade lexicase selection’s exploratory

capacity. However, because cohort lexicase uses every test case in every generation, we expect it

to better support exploration than down-sampled lexicase. As we increase the size of cohorts (and

decrease the number of cohorts), we expect cohort lexicase to approach the exploratory abilities of

standard lexicase selection. This could be due to the fact that as cohort size increases, the chances
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of a specialist being paired with the test cases it specializes on also increases.

5.3.4 Novelty-lexicase selection

Novelty-lexicase selection combines standard lexicase selection with novelty search (Jundt and

Helmuth, 2019). Novelty search disregards functional objectives and instead searches for behavioral

novelty, steering populations to continuously explore new regions of the search space (Lehman and

Stanley, 2011a). As such, novelty search is argued to be well-suited for solving problems with

deceptive fitness landscapes where local gradients lead away from the global optimum (Lehman

et al., 2008). Novelty-lexicase selection incorporates ideas from novelty search into lexicase selection.

Novelty-lexicase selection (as introduced in Jundt and Helmuth 2019) requires that the entire

population be evaluated on all test cases. For each member of the population, novelty-lexicase

selection computes their “novelty score” on each test case. A novelty score measures how different

a candidate solution’s output on a given test case is from the rest of the population. Here, a

candidate solution’s novelty score on a test case equals the average distance between its output and

the k nearest neighbor outputs for that test case. Novelty-lexicase selection incorporates novelty

scores by augmenting the test case set with an additional novelty test case for every original test

case. Using this augmented set of test cases, the standard lexicase procedure is used to choose

parents.

In this work, we use our exploration diagnostic to compare the exploratory capacity of novelty-

lexicase selection (at k =1, 2, 4, 8, 15, 30, and 60) and standard lexicase selection (k = 0). Jundt

and Helmuth (2019) found that novelty-lexicase selection generally maintained more behavioral

diversity than standard lexicase selection on several program synthesis problems. As such, we

expect the addition of novelty score test cases to improve lexicase selection’s exploratory capacity

on our exploration diagnostic.

5.4 Diagnosing the exploratory capacity of lexicase selection and its
variants

We conducted a series of experiments to analyze the exploratory limits of standard lexicase

selection and four of its variants: epsilon lexicase, down-sampled lexicase, cohort lexicase, and

novelty-lexicase. For each experiment, unless stated otherwise, we evolved populations of 500 nu-

merical vectors on our exploration diagnostic with a cardinality of 100 for 50,000 generations. Across

all experiments, we ran 50 replicates of each constituent treatment. We initialized populations to
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the lowest point in the fitness landscape, vectors of all 0.0s.

When evaluating a candidate solution, we calculated a score associated with each position in

its vector according to the exploration diagnostic (Figure 5.1). We used this collection of scores as

test case qualities for lexicase selection and its variants. For this work, we report quality directly;

for comparison to other studies, note that test case error is the amount that quality is below 100.

When a single fitness value was required (e.g., for tournament selection), we summed the individual

test case qualities to determine the solution’s aggregate fitness.

Selected candidate solutions reproduced asexually, and we applied point-mutations to offspring

at a per-position rate of 0.7%. The magnitude of each mutation was drawn from a normal distri-

bution with a mean of 0.0 and a standard deviation of 1.0 (N (0, 1)). When mutations would raise

a trait to a value x where x > 100, we rebounded that trait to 200 − x, ensuring that each trait

value remained less than or equal to 100. When mutations would lower a trait below 0.0, we reset

that trait to 0.0.

For each replicate of each experiment, we extracted the most performant individual in the

population (i.e., the individual with the highest aggregate score) to compare across treatments.

For different diagnostic cardinalities (i.e., different numbers of test cases), the range of possible

aggregate scores differs; as such, we normalized all aggregate scores by dividing by the cardinality,

which results in a value between 0.0 and 100.0.

To identify the number of pathways being explored by a population, we measured the num-

ber of unique activation positions within each population. Using this measurement, we calculated

“activation position coverage” as the fraction of possible activation positions represented in a pop-

ulation.

For each experiment, we report both mean performance and mean activation position coverage

over time (each with a bootstrapped 95% confidence interval), and we compare measurements from

the final generation across treatments. For each comparison, we performed a Kruskal-Wallis test

to determine if there were significant differences; if so, we applied a Wilcoxon rank-sum test to

distinguish between pairs of treatments, applying Bonferroni corrections for multiple comparisons

where appropriate.

The software used to conduct experiments, statistical analyses, experimental data, and guides

for replication are included in our supplemental material (Hernandez et al., 2021). See Section 5.6
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for more details.

5.4.1 Lexicase selection out-explores tournament selection

0

25

50

75

100

0 10000 20000 30000 40000 50000
Generation

A
ve

ra
ge

 tr
ai

t p
er

fo
rm

an
ce

Performance over timea

0

25

50

75

100

Lexicase Tournament
Selection

A
ve

ra
ge

 tr
ai

t p
er

fo
rm

an
ce

Final performanceb

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 40000 50000
Generation

A
ct

iv
at

io
n 

po
si

tio
n 

co
ve

ra
ge

Activation position coverage over timec

0.00

0.25

0.50

0.75

1.00

Lexicase Tournament
Selection

A
ct

iv
at

io
n 

po
si

tio
n 

co
ve

ra
ge

Final activation position coveraged

Selection Lexicase Tournament

Figure 5.2: Lexicase selection versus tournament selection on the exploration diagnostic. Panels (a)
and (b) show performance over time and at the end of 50,000 generations, respectively. Likewise,
panels (c) and (d) show activation position coverage over time and at the end of 50,000 generations,
respectively. For panels (a) and (c), each line gives the mean value across 50 replicates, and the
shading around each mean gives a 95% confidence interval.

First, we used the exploration diagnostic to test well-established expectations that lexicase

selection improves search space exploration relative to tournament selection. Unlike lexicase selec-

tion, tournament selection does not reliably maintain multiple niches within a population (Dolson

and Ofria, 2018); as such, we expected it to perform worse than lexicase selection on the exploration

diagnostic. For this experiment, we used tournaments of eight individuals.

Consistent with our expectations, we found that lexicase selection outperforms tournament

selection on the exploration diagnostic (Figure 5.2; Wilcoxon rank-sum test: p < 10−4). Early on,

populations evolving under tournament selection converge to a single local optimum in the explo-

ration diagnostic (i.e., a single activation position); without a mechanism to escape, populations
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become stuck and fail to continue exploring the search space. Lexicase selection, however, rewards

specialists for different activation positions, allowing the population to continuously explore differ-

ent evolutionary pathways. Indeed, we found that lexicase selection maintains substantially more

“activation-position” specialists than tournament selection (Figure 5.2; Wilcoxon rank-sum test:

p < 10−4).

5.4.2 The exploratory capacity of lexicase selection degrades as we increase
diagnostic cardinality
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Figure 5.3: Lexicase selection at a range of exploration diagnostic cardinalities. Panels (a) and (b)
show performance over time and at the end of 50,000 generations, respectively. Likewise, panels
(c) and (d) show activation position coverage over time and at the end of 50,000 generations,
respectively. For panels (a) and (c), each line gives the mean value across 50 replicates, and the
shading around each mean gives a 95% confidence interval.

Next, we evaluated standard lexicase selection on the exploration diagnostic at cardinalities

10, 20, 50, 100, 500, and 1,000. Cardinality defines the number of potential pathways that must be

explored by a population to guarantee to find the global optimum; increasing cardinality obscures

the path to optimality. Cardinality also corresponds to the number of test cases (i.e., niches)

that individuals can specialize on. For a fixed population size, increasing the number of test cases
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decreases the long-term survival probability of any single specialist under lexicase selection (Dolson

and Ofria, 2018), which could negatively affect lexicase’s capacity to fully explore pathways in the

search space. For these reasons, we expected lexicase selection’s performance on the exploration

diagnostic to degrade as we increased cardinality.

Figure 5.3 shows lexicase selection’s performance at each cardinality of the exploration diagnos-

tic. Across all cardinalities, lexicase selection improves performance over time. Notably, treatments

with cardinalities 10, 20, and 50 each perform near optimally after 50,000 generations, and popu-

lations evolved under cardinality 100 perform relatively well. Higher cardinalities (e.g., 200, 500,

and 1000), however, perform substantially worse (Wilcoxon rank-sum tests: p < 10−4) and appear

to need more time to converge on their maximal performance. These data verify that increasing

diagnostic cardinality also increases the exploration diagnostic’s difficulty, as lexicase selection’s

performance degrades as cardinality increases.

We also found that populations that evolved at lower diagnostic cardinalities maintained a

larger coverage of unique activation positions than populations that evolved at higher diagnostic

cardinalities (Figure 5.3). Such diversity maintenance likely drove lexicase selection’s ability to

continuously explore pathways in the search space.

In these experiments, we used a population size of 500, resulting in 500 selection events per

generation. In each selection event, scores for vector positions (Figure 5.1) are prioritized in a

random order. Across a population, we expect that positions that are consistently rewarded should

maintain solutions that start at that position. The optimal solution requires the initial position to

be the highest in the population, but this position may, by chance, never be evaluated first during

lexicase selection. The probability of this occurring varies with cardinality. With a population size

of 500 and a vector with 50 positions (i.e., a diagnostic cardinality of 50), there is a 0.004% chance

(1 in 25,000) of the initial position never being chosen first in a generation, making it unlikely to go

unselected. Increasing the cardinality to 100, however, increases the chance for the first position to

go unselected to 0.657% (1 in 152)—a much more likely occurrence that may explain the reduced

performance at cardinality 100 relative to cardinality 50. By cardinality 200, the probability for

the first position to go unselected within a given generation rises to 8.157%, an even more likely

occurrence.

One way to combat these dynamics is to increase population size, which would allow lexi-
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case selection to support higher levels of exploration by reducing the chances of any given starting

position from being skipped over by selection in any single generation. However, increasing popu-

lation size can be computationally expensive, as more individuals would need to be evaluated every

generation. Decreasing the depth of evolutionary search by reducing the number of generations

evaluated is one way to balance the cost of increasing population size. For a fixed computational

budget, can increasing population size at the expense of evaluating fewer generations of evolution

pay off under lexicase selection?

5.4.3 Increasing population size can improve lexicase selection’s exploratory
capacity

To test whether increasing population size can improve lexicase selection’s exploratory capacity,

we extended the runtime of our experiment and compared lexicase selection’s performance on the

exploration diagnostic (with a cardinality of 100) at two population sizes: 500 and 1,000. Because

increasing population size increases per-generation computational effort, we ran both conditions for

a fixed number of test case evaluations, evolving populations of 500 individuals for twice as many

generations as populations of 1,000 individuals (1,000,000 and 500,000 generations, respectively).

As such, lineages from 500-individual populations take two reproductive steps in the search space

for every one step reproductive step taken by a 1000-individual population. This difference may

allow the smaller populations to more rapidly exploit their initial position in the search space.

However, if larger populations are able to maintain more pathways in the search space, they may

eventually outperform smaller populations.

As expected, we found that increasing population size allows lexicase selection to maintain

more starting positions for the entire duration of our experiment (Figure 5.4). Smaller populations

initially outperform larger populations (given a fixed computational budget); however, despite run-

ning for fewer total generations, larger populations eventually outperform the smaller populations

(Figure 5.4; Wilcoxon rank-sum test: p < 10−4). These data suggest that, for a fixed number of test

case evaluations, we can indirectly tune lexicase selection’s level of search space exploitation and

exploration by adjusting our allocation of computational resources between generations of evolution

and population size.
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Figure 5.4: Lexicase selection’s performance on the exploration diagnostic at different population
sizes. Panels (a) and (b) show performance over time and at the end of the experiment, respectively.
Likewise, panels (c) and (d) show activation position coverage over time and at the end of the
experiment, respectively. For panels (a) and (c), each line gives the mean value across 50 replicates,
and the shading around each mean gives a 95% confidence interval.

5.4.4 Relaxing lexicase selection’s elitism can improve exploration

As discussed in Section 5.3.1, epsilon lexicase relaxes the elitism of lexicase selection. To

test whether this relaxation of elitism affects exploration, we compared standard lexicase selection

and epsilon lexicase selection on the exploration diagnostic. Specifically, we evolved 50 replicate

populations at each of the following ϵ values: 0.0 (standard lexicase), 0.1, 0.3, 0.6, 1.2, 2.5, 5.0, and

10.0.

Epsilon lexicase with small values of ϵ (0.1 and 0.3) outperforms standard lexicase selection on

the exploration diagnostic (Figure 5.5; Wilcoxon rank-sum tests: p < 10−4). Extreme values of ϵ

(5.0 and 10.0) significantly degrade performance relative to standard lexicase selection (Wilcoxon

rank-sum tests: p < 10−4). Interestingly, intermediate values of ϵ (0.6 and 1.2) perform best during

the first approximately 20,000 generations, but are eventually outperformed by treatments with
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Figure 5.5: Epsilon lexicase selection’s performance on the exploration diagnostic at a range of ϵ
values. Panels (a) and (b) show performance over time and after 50,000 generations of evolution,
respectively. Likewise, panels (c) and (d) show activation position coverage over time and after
50,000 generations of evolution, respectively. For panels (a) and (c), each line gives the mean value
across 50 replicates, and the shading around each mean gives a 95% confidence interval.

smaller values of ϵ. Unlike previous experiments, the relative levels of activation position coverage

among conditions do not correspond with diagnostic performance.

In general, epsilon lexicase is expected to have two main advantages over standard lexicase

selection (La Cava et al., 2016): (1) it allows small amounts of noise in the evaluation data to be

ignored, and (2) it prevents nearly identical scores from determining which candidate solutions win,

potentially allowing for greater coexistence. While the first mechanism cannot be at play here (since

all scores are deterministic), the second advantage could provide additional support for solutions

further along a given pathway. That is, solutions that begin optimizing at an earlier point in their

vector, by definition, must have slightly lower values for later positions in their activated region.

In standard lexicase, when two solutions had overlapping activation regions, the one that starts

later would have an advantage at all overlapped sites. In epsilon lexicase, however, the earlier start

(i.e., the one with more long-term potential) now has a better chance to pass lexicase selection’s
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selective filter.

5.4.5 Down-sampling degrades lexicase selection’s exploratory capacity
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Figure 5.6: Down-sampled lexicase selection’s performance on the exploration diagnostic at a range
of subsampling rates. Panels (a) and (b) show performance over time and at the end of the
experiment, respectively. Likewise, panels (c) and (d) show activation position coverage over time
and at the end of the experiment, respectively. For panels (a) and (c), each line gives the mean
value across 50 replicates, and the shading around each mean gives a 95% confidence interval.

Next, we investigated whether down-sampling affects lexicase selection’s exploratory capacity

by comparing the performance of lexicase selection at a range of sampling rates: 100% (standard

lexicase), 50%, 20%, 10%, 5%, 2%, and 1%. For example, a 10% sampling rate means that in each

generation we randomly selected 10 of the 100 possible test cases (for a diagnostic cardinality of 100)

to be used for parent selection. Down-sampling reduces the per-generation computational effort

required for parent selection by conducting fewer test case evaluations (Section 5.3.2). For a fair

comparison across different sampling rates, we limited the computational budget to a maximum

of 2.5 × 109 test case evaluations by varying the number of generations of evolution for each

subsampling rate (100%: 50,000 generations, 50%: 100,000 generations, 20%: 250,000 generations,

81



10%: 500,000 generations, 5%: 1,000,000 generations, 2%: 2,500,000 generations, and 1%: 5,000,000

generations).

Any amount of down-sampling significantly degraded lexicase selection’s performance on the

exploration diagnostic for the allotted computational budget (Figure 5.6; Wilcoxon-rank sum tests:

p < 10−4). Down-sampled lexicase selection’s drop in performance is likely attributed to frequent

mismatches between candidate solutions and the test cases that they are specialized on. As the

proportion of test cases used in each generation decreases, so too does the probability of a solution

encountering the same set of test cases for multiple generations in a row. As such, a solution has

a reduced chance of encountering the test cases for which it is most optimized (Chapter 4). These

dynamics will repeatedly remove solutions with small active regions, thereby reducing population

diversity. Indeed, we found that down-sampling substantially reduces the number of activation

position specialists represented in the population (Figure 5.6; Wilcoxon rank-sum tests: p < 10−4).

In fact, any down-sampling used appears to have a strong negative effect, substantially reducing

performance in all cases.

We repeated this experiment, except we increased population size instead of increasing gen-

erations of evolution for down-sampled lexicase; that is, we ran each condition for an equivalent

number of generations but differing population sizes to maintain a fixed number of evaluations. We

report these data in our supplemental material (Hernandez et al., 2021). Overall, the patterns were

similar to that of increasing generations of evolution. Initially, down-sampled lexicase outperforms

standard lexicase on the exploration diagnostic; however, standard lexicase eventually outperforms

down-sampled lexicase across all subsampling rates (Hernandez et al., 2021).

5.4.6 Cohort partitioning degrades lexicase selection’s exploratory capacity

Next, we evaluated whether partitioning the population and test cases into cohorts affects the

exploration capacity of lexicase selection. We compared the performance of standard lexicase to

that of cohort lexicase at a range of cohort sizes (given as the proportion of the population and the

set of test cases used in each cohort): 100% (standard lexicase), 50%, 20%, 10%, 5%, 2%, and 1%.

For example, a cohort size of 10% means that the population (of 500 individuals) is divided into

10 cohorts of 50 individuals each, and the test cases (100 total) are also divided into those same 10

cohorts, with 10 test cases in each. Like down-sampled lexicase, cohort lexicase reduces the per-

generation computational effort required for parent selection by evaluating each cohort of candidate
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Figure 5.7: Cohort lexicase selection’s performance on the exploration diagnostic at a range of
partitioning rates. Panels (a) and (b) show performance over time and at the end of the experiment,
respectively. Likewise, panels (c) and (d) show activation position coverage over time and at the
end of the experiment, respectively. For panels (a) and (c), each line gives the mean value across
50 replicates, and the shading around each mean gives a 95% confidence interval.

solutions on only one of the test case cohorts (Section 5.3.3). Likewise, for a fair comparison across

different cohort sizes, we limited the computational budget to a maximum of 2.5 × 109 test case

evaluations by varying the number of generations of evolution for each cohort size (100%: 50,000

generations, 50%: 100,000 generations, 20%: 250,000 generations, 10%: 500,000 generations, 5%:

1,000,000 generations, 2%: 2,500,000 generations, and 1%: 5,000,000 generations).

As with down-sampled lexicase, any level of cohort partitioning degrades lexicase’s performance

on the exploration diagnostic for the allotted computational budget (Figure 5.7; Wilcoxon rank-

sum tests: p < 10−4). However, cohort lexicase does not appear to degrade lexicase selection’s

performance to the same degree as down-sampled lexicase for a given subsampling rate (Figure 5.6).

Moreover, standard lexicase took longer (more total evaluations) to outperform cohort lexicase

than to outperform down-sampled lexicase. These data suggest that cohort partitioning (with
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intermediate levels of partitioning) may be a better method of random subsampling in the context

of lexicase selection.

We repeated this experiment, except we increased population size instead of increasing gen-

erations of evolution for cohort lexicase; that is, we ran each condition for an equivalent number

of generations but differing population sizes to maintain a fixed number of evaluations. We re-

port these data in our supplemental material (Hernandez et al., 2021). The overall patterns were

qualitatively different and warrant further exploration in future work. We found no compelling

evidence that cohort lexicase outperformed standard lexicase in the given computational budget;

however, we did find that populations evolving under cohort lexicase (with larger population sizes)

maintained more activation position coverage than standard lexicase selection (Hernandez et al.,

2021). Further, some of the cohort sizes were on an upward trajectory when the runs finished and

may eventually outperform standard lexicase given a larger computational budget.

5.4.7 Cohort lexicase out-explores down-sampled lexicase

Next, we independently verified that cohort lexicase out-explores down-sampled lexicase on

the exploration diagnostic. To do so, we compared the performance of cohort lexicase and down-

sampled lexicase with their most performant parameterizations: a 50% cohort size and a 50%

sampling rate, respectively. We again limited the computational budget to a maximum of 2.5×109

test case evaluations (100,000 generations of evolution for both conditions), and we ran 50 new

replicates of each condition for comparison.

As expected given Figures 5.6 and 5.7, cohort lexicase outperformed down-sampled lexicase

by a substantial margin for the given computational budget (Figure 5.8; Wilcoxon rank-sum test:

p < 10−4). Interestingly, down-sampled lexicase appears to briefly outperform cohort lexicase in

the first few thousand generations but is quickly overtaken by cohort lexicase. Both cohort and

down-sampled lexicase offer equivalent per-generation evaluation savings, but cohort lexicase uses

every test case for parent selection in every generation. This could play a role in problem-solving

success, as a test case that rewards exploration at any given activation position in the exploration

diagnostic is used every generation. Indeed, populations evolving under cohort lexicase selection

maintained a higher diversity of activation positions than populations evolving under down-sampled

lexicase selection (Figure 5.8; Wilcoxon rank-sum test: p < 10−4).

Previous work predicted the potential for such differences between cohort and down-sampled
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Figure 5.8: Down-sampled versus cohort lexicase on the exploration diagnostic. Panels (a) and (b)
show performance over time and at the end of the experiment, respectively. Likewise, panels (c)
and (d) show activation position coverage over time and at the end of the experiment, respectively.
For panels (a) and (c), each line gives the mean value across 50 replicates, and the shading around
each mean gives a 95% confidence interval.

lexicase. In Chapter 4, we found that cohort lexicase better maintained phylogenetic diversity than

down-sampled lexicase, as phylogenies coalesced less frequently under cohort lexicase selection

(maintaining deeper, more divergent branches). Despite this difference in diversity maintenance,

we did not find significant differences in problem-solving success across a set of program synthesis

benchmark problems, which suggests that the test cases used in these benchmark problems were

more robust to random subsampling than the test cases for the exploration diagnostic. Indeed,

each individual test case for the exploration diagnostic uniquely represents a single activation

position; that is, test cases are minimally redundant with one another. In many program synthesis

benchmark problems, however, individual test cases are often intentionally redundant to others,

differing only in the particular values of their inputs and outputs and not necessarily different

in the functional specialization they reward. Such redundancies prevent candidate solutions from

memorizing particular input-output pairings, forcing candidate solutions to generalize in order to
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achieve high fitness across redundant test cases. This detail could explain why the exploration

diagnostic reveals substantial performance differences between cohort and down-sampled lexicase

where more standard benchmark problems failed to do so.

5.4.8 Novelty test cases degrade lexicase selection’s exploratory capacity
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Figure 5.9: Novelty-lexicase selection’s performance on the exploration diagnostic at a range of
nearest-neighbor parameterizations. Panels (a) and (b) show performance over time and after
50,000 generations of evolution, respectively. Likewise, panels (c) and (d) show activation position
coverage over time and after 50,000 generations of evolution, respectively. For panels (a) and (c),
each line gives the mean value across 50 replicates, and the shading around each mean gives a 95%
confidence interval.

Finally, we evaluated how incorporating novelty test cases into lexicase selection impacts ex-

ploration. We compared the performance of standard lexicase to that of novelty-lexicase for a range

of k-nearest neighbors: 0 (standard lexicase), 1, 2, 4, 8, 15, 30, and 60.

Contrary to our expectations, we found that the addition of novelty test cases degrades perfor-

mance on the exploration diagnostic in all cases (Figure 5.9; Wilcoxon rank-sum test: p < 10−4).

Though, novelty-lexicase generally maintains similar levels of activation position diversity in the

population relative to standard lexicase, and by the end of the experiment, some parameterizations
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of novelty lexicase maintain more activation positions, though none of the differences appear to be

substantial (Figure 5.9).

Novelty search favors solutions that have never been seen before, regardless of their impact on

fitness. Based on previous studies, we expected novelty-lexicase to outperform standard lexicase

on the exploration diagnostic (Jundt and Helmuth, 2019). However, novelty-lexicase appears to

hinder lexicase’s ability to fully exploit pathways in the diagnostic’s search space.

While past work has demonstrated that novelty search can be effective at producing solutions

for complicated problems, the exploration diagnostic does not have any of the hidden intricacies

that novelty search excels at disentangling. Indeed, novelty search appears to thrive under con-

ditions where there are more non-linearities between genotype and phenotype. The underlying

representation used here is purposely simple numerical vectors, as opposed to an artificial neural

network (Lehman et al., 2008) or PushGP (Jundt and Helmuth, 2019) where internal architectures

can change and qualitatively different outputs are possible. For example, in this case, all sites in

a genome are optimal at one end of their range of values, whereas most complex problems are

assumed to have pockets of solutions throughout the genotype-phenotype map. Additionally, our

results also used a single, limited form of novelty lexicase. We did not use a seed bank (the impor-

tance of which has previously been stressed), and we used k-nearest neighbors euclidean distances

to measure novelty instead of a direct measure of behavioral uniqueness. These differences in prob-

lems may shine a light as to why novelty-lexicase did not outperform standard lexicase selection on

the exploration diagnostic.

Our results from varying diagnostic cardinality (Section 5.4.2) may also offer insights into the

unexpectedly poor performance of novelty-lexicase selection. Novelty-lexicase selection increases the

number of test cases used for parent selection (in this work, doubling the number of test cases from

100 to 200). Increasing the number of test cases (without simultaneously increasing the population

size) is not without cost, degrading specialist maintenance and performance on the exploration

diagnostic (Figure 5.3). This dynamic is likely to be at play in our novelty-lexicase experiment, as

population size was constant for both standard lexicase and novelty-lexicase selection.

5.5 Conclusion
In this work, we introduced a new diagnostic to investigate the exploratory limits of lexicase

selection along with several of its variants: epsilon lexicase, down-sampled lexicase, cohort lexi-
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case, and novelty-lexicase. First, we verified well-established expectations that lexicase selection

better facilitates search space exploration than tournament selection. Across all exploration di-

agnostic difficulty levels (i.e., cardinalities), lexicase selection drove improvements in performance

(Figure 5.3), while tournament selection repeatedly failed to escape early local optima (Figure 5.2).

As we increased the cardinality of the diagnostic, lexicase selection’s specialist maintenance and

overall performance waned. Conditions with larger diagnostic cardinalities used more test cases to

evaluate individuals, and as such had more possible specialists (i.e., niches). Given a fixed popu-

lation size, lexicase maintained a smaller fraction of possible specialists as the number of possible

niches increased, which, in turn, decreased overall performance (Figure 5.3).

Interestingly, we found that allocating a computational budget (i.e., candidate solution evalu-

ations) toward increasing generations versus increasing population size is not necessarily a straight-

forward choice when using lexicase selection. In our case, a larger population size enabled better

specialist maintenance and ultimately higher performance on the exploration diagnostic with stan-

dard lexicase (Figure 5.4). This finding is interesting in light of Helmuth and Spector (2021)’s

work investigating the problem-solving benefits of down-sampled lexicase; on a suite of program

synthesis problems, Helmuth and Spector found that some problems benefited from an increased

population size (at the cost of running for fewer generations), some problems benefited from an

increase in generations, and most problems were unaffected by their choice of increasing population

size versus generations evaluated.

Overall, these results suggest that lexicase selection can be sensitive to expanding the set of

test cases used for evaluation, especially if each test case uniquely represents a distinct, desirable

trait. Moreover, our results suggest the importance of more deeply examining the benchmark prob-

lems that we use and the characteristics of the search spaces that they represent. Given a fixed

computational budget, why do some problems benefit from running deeper evolutionary searches

while others benefit from increased population sizes under lexicase selection? For many problems,

different categories of test cases have uneven representation in the test set. We hypothesize that the

distribution of test cases among categories plays a role in lexicase selection’s success and the opti-

mal balance between population size and depth of search (generations of evolution). For example,

if the number of test cases is similar to population size, lexicase selection may fail to maintain spe-

cialists on categories that are underrepresented in the test cases and instead favor overrepresented
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categories. In future work, we will develop novel diagnostic tools for investigating the sensitivity

of selection schemes to test case set composition.

We found that each of the lexicase variants that we evaluated—epsilon lexicase, down-sampled

lexicase, cohort lexicase, and novelty-lexicase—affected lexicase selection’s exploratory capacity.

For small values of ϵ, epsilon lexicase outperformed standard lexicase selection on the exploration

diagnostic, while large values of ϵ substantially degraded performance. Surprisingly, we found that

novelty-lexicase degrades performance on the exploration diagnostic relative to standard lexicase

selection.

Our experiments are also the first to demonstrate consequential differences between down-

sampled and cohort lexicase selection, as previous work generally failed to distinguish the problem-

solving performance of these two lexicase variants (Chapter 4). Cohort lexicase substantially out-

performed down-sampled lexicase (Figure 5.8). Both down-sampled and cohort lexicase offer equiv-

alent per-generation evaluation savings, so our results suggest that cohort partitioning may often

be a better subsampling method than down-sampling for lexicase selection. Future work should ex-

amine whether this difference between cohort partitioning and down-sampling holds across different

selection schemes.

Given equivalent computational budgets, we found that standard lexicase selection eventually

outperforms both cohort and down-sampled lexicase on the exploration diagnostic (Figures 5.6

and 5.7). This result diverges from recent benchmarking studies where subsampling substantially

improved performance on a range of program synthesis problems (Helmuth and Spector, 2020,

2021). Future work will develop diagnostic problems to help identify when subsampling (e.g., via

either cohort partitioning or down-sampling) is likely to improve versus impede lexicase selection’s

performance.

In each of our experiments, we focused our analyses on performance and activation position

diversity maintenance. Future work should more deeply examine the evolutionary histories of

evolving populations using phylodiversity metrics (Dolson et al., 2020). Along with this, other

parameter values and configurations of each of the variants evaluated in this work could be tested

in order to develop a more complete understanding of how parameterization affects exploration.

We intend for this work to demonstrate how diagnostics (e.g., the exploration diagnostic intro-

duced here) can be valuable tools for evaluating the pros and cons of different selection schemes. We
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plan to implement a larger suite of selection scheme diagnostics, each targeted toward evaluating a

particular aspect of problem-solving. Such diagnostics will complement conventional benchmarking

experiments in our community’s effort to understand how different selection schemes steer evolu-

tionary search.

5.6 Data and Software Availability
Our supplemental material (Hernandez et al., 2021) is hosted on GitHub and contains the

software, data analyses, and documentation associated with this work. Our experiments are im-

plemented using the Empirical library (Ofria et al., 2020), and we used a combination of Python

and R version 4 (R Core Team, 2020) for data processing and analysis. We used the following R

packages for data wrangling, statistical analysis, graphing, and visualization: ggplot2 (Wickham

et al., 2021), tidyverse (Wickham, 2019), knitr (Xie, 2020b), cowplot (Wilke, 2020), viridis (Gar-

nier, 2018), RColorBrewer (Neuwirth, 2014), rstatix (Kassambara, 2021), ggsignif (Ahlmann-Eltze

and Patil, 2021), Hmisc (Harrell, 2020), and kableExtra (Zhu, 2021). We used R markdown (Al-

laire et al., 2020) and bookdown (Xie, 2020a) to generate web-enabled supplemental material. Our

experimental data is available on the Open Science Framework at https://osf.io/xpjft/ (Lalejini

and Hernandez, 2021).
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Chapter 6
A suite of diagnostic metrics for characterizing selection schemes

Authors: Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

This chapter is adapted from (Hernandez et al., 2022c), which is a preprint being finalized for

submission at the Evolutionary Computation journal.

In this work, we introduce three additional diagnostics: the exploitation rate diagnostic, the

ordered exploitation diagnostic, and the contradictory objective diagnostic. We use the diagnos-

tics to evaluate six popular selection schemes: truncation selection, tournament selection, fitness

sharing, lexicase selection, nondominated sorting, and novelty search. We find results that are

consistent with previous work and find key differences among the six selection schemes.

6.1 Introduction
Evolutionary algorithms have become an effective general-purpose technique for solving com-

plex real-world optimization problems. Many different types of evolutionary algorithms exist, differ-

ing in selection schemes, representations, variation operators, and other factors. However, choosing

which algorithm to use for a given problem—let alone configuring it—remains more of an art than

a science (Jong, 1993). Numerous benchmarking suites are available to assess the strengths and

weaknesses of these algorithms (Hansen et al., 2021; Jamil and Yang, 2013; Li et al., 2013b,c),

but do so indirectly by focusing on success with exemplar problems. Here, we introduce a set

of diagnostics that we crafted to highlight specific strengths and weaknesses of selection schemes.

We diagnose a range of common selection schemes for their ability to exploit and explore four

handcrafted search spaces with targeted properties, as well as their ability to manage contradictory

objectives. Each diagnostic is designed to be lightweight and easily understood, allowing it to be

evaluated quickly while producing results that are intuitive to interpret.

Selection schemes determine which individuals contribute genetic material to the next gener-

ation, thus driving an evolutionary algorithm’s search strategy. Given that problems may differ

in search space topology, strategies that are effective in one search space may be ineffective in

another. Selection schemes vary in the criteria they use (e.g., problem-solving performance, genetic

distinctness, phenotypic rarity, age, etc.) and how these criteria are used for selecting solutions

(e.g., choosing values that are best, diverse, novel, etc.). Understanding how effective different

selection schemes are for a given set of search space characteristics is crucial for making an efficient
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and productive choice when solving a particular problem. For example, evolving populations might

need to exploit narrow gradients, balance conflicting objectives, deal with noise, or develop building

blocks to scaffold complexity, all while minimizing computational costs. Different selection schemes

balance different trade-offs of these capabilities in order to find high-quality solutions.

Benchmark suites provide the standard approach to understanding a selection scheme’s overall

problem-solving capabilities through an assortment of curated challenges. Generally speaking,

these challenges can be classified into two broad categories: real-world problems and test functions

(Jamil and Yang, 2013). Real-world problems are typical challenges that researchers encountered

“in the wild” and used evolutionary algorithms to solve. These problems proved interesting, so they

were chosen to provide insight into which problem domains a selection scheme is best suited for

(Hussain et al., 2017; Jamil and Yang, 2013). Test functions, on the other hand, are usually created

explicitly to test evolutionary algorithms. They are well-documented mathematical functions that

are typically fast to evaluate and usually represent idealized versions of search spaces encountered

in real-world problems (Hansen et al., 2021; Hussain et al., 2017; Jamil and Yang, 2013; Li et al.,

2013b,c). Additionally, test functions are often tunable, which allows researchers to easily expose

selection schemes to numerous scenarios.

Complexity in the techniques integrated within selection schemes has grown in order to contend

with more challenging problems. Successful techniques increase the chances of finding high-quality

solutions, but disentangling their individual impact on search may be counter-intuitive, leading

to unexpected results in new problem domains or when multiple techniques are combined. While

benchmark suites provide valuable high-level information about a particular problem domain, it is

difficult to abstract a selection scheme’s low-level characteristics. Thus, it is hard to predict how a

selection scheme’s efficacy will be altered by subtle changes to the structure of the search space or

transfer to another domain. Most benchmark problems possess numerous integrated characteristics

(e.g., modality, deception, separability, etc.) that each impact a selection scheme’s problem-solving

success. Unfortunately, the effects of each problem characteristic cannot be disentangled without

extensive experimentation and analysis. We aim to be able to shine more light on the capabilities

of any given selection scheme by testing it on a carefully constructed set of diagnostic problems.

Each diagnostic problem is a simple test function that uses a handcrafted search space to isolate

specific problem characteristics.
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In this work, we evaluate six popular categories of selection schemes on a set of diagnostics:

truncation selection, tournament selection, fitness sharing, lexicase selection, nondominated sorting,

and novelty search. We propose four diagnostics, each requiring different degrees of exploitation and

exploration to find high-quality solutions: (1) An exploitation rate diagnostic to measure a selection

scheme’s ability to exploit a smooth fitness gradient. (2) An ordered exploitation diagnostic to

measure a selection scheme’s ability to pursue a single, narrow gradient that leads toward a single

global optimum. (3) A contradictory objectives diagnostic to measure a selection scheme’s ability

to locate and optimize conflicting objectives. (4) A multi-path exploration diagnostic to measure

a selection scheme’s ability to maintain and simultaneously exploit multiple gradients of differing

fitness peaks. Ultimately, our diagnostics allow us to identify meaningful differences between the

six chosen selection schemes.

6.2 Diagnostics
The “no free lunch” theorem states that no single optimization algorithm dominates all other

optimization algorithms across all possible problem instances (Wolpert and Macready, 1997). In-

deed, “no free lunch” holds in practice, as it is common to see an evolutionary algorithm excel in

one problem domain but struggle in others. One key determinant of an evolutionary algorithm’s

success is the trade-off between exploitation and exploration it exhibits throughout an evolutionary

search (Eiben and Schippers, 1998). The selection scheme heavily influences this trade-off, as it

determines what regions of a search space to explore or continue evaluating. We constructed a set of

handcrafted search spaces (diagnostics), each with calculated features; these diagnostics help us to

disentangle how a selection scheme trade-offs between exploitation and exploration. Additionally,

some diagnostics can be minor alterations of other ones; if a selection scheme performs differently

on such diagnostics, that difference can be attributed to the specific alteration, isolating the effect.

Ultimately, diagnostics help us develop a more comprehensive understanding of a selection scheme’s

strengths and weaknesses.

Determining the best selection scheme to use is one of the first challenges a practitioner en-

counters when trying to solve a new problem. Any given selection scheme uses a particular set of

techniques and parameters that interact to determine a search strategy, and ultimately, its effec-

tiveness at solving the given problem. For example, search strategies may vary in their trade-off

between exploitation and exploration, both of which are crucial to finding high-quality solutions
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(Eiben and Schippers, 1998; Črepinšek et al., 2013). A selection scheme may regulate this trade-off

by choosing the highest quality solutions under consideration (for exploitation) or the most dis-

tinct solutions (for exploration). A selection scheme that is too exploitative will prematurely push

the population toward the nearest optimum, missing out on higher peaks elsewhere. Conversely,

a scheme that is too exploratory will spread the population across the search space, but might

miss out on nearby optima. The ability to understand how each component and configuration of

a selection scheme affects this trade-off is crucial, as the ideal trade-off will vary by search space,

and even by the local characteristics within a region of search space.

We propose using our set of carefully constructed diagnostics to measure a selection scheme’s

exploitation and exploration capabilities. While benchmark suites provide valuable information,

extracting precise details on low-level capabilities may be difficult because of problems with complex

search space topologies. By handcrafting each diagnostic’s search space, we avoid complex search

space topologies in favor of intuitive and interpretable search spaces designed to challenge selection

schemes with targeted problem characteristics. The problem characteristics of interest in this work

include modality, deception, epistasis (interaction among genes), and dimensionality, all of which

pose unique challenges (Malan and Engelbrecht, 2013; Sun et al., 2014; Weise et al., 2012). Our

simplest diagnostic requires only the ability to climb a single, smooth hill, while others require a

balance of exploitation and exploration to solve. Indeed, one of the diagnostics presented here is

not even focused on problem-solving ability, but instead focuses solely on measuring the coverage

of many contradictory objectives.

6.2.1 Diagnostic Design

Our diagnostics focus on isolating and measuring selection scheme characteristics that are

critical for problem-solving success; however, many other design factors for evolutionary algorithms

must be considered and ideally controlled for, including representation, variation operators, and

population size. All of the diagnostics in this work assume a genome-based representation consisting

of a sequence of floating-point values, each bound to the range of 0.0 to 100.0. In this work, we

initialized populations near the lowest (least fit) point in the search space, genomes composed

of random values ranging from 0.0 to 1.0. This constrained representation creates a well-defined

search space that can be rigorously analyzed, yet intuitively understood. The difficulty of each

diagnostic can be adjusted by changing the range and number of values (the “dimensionality”) in
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each genome. We use 100 as the default dimensionality for this work.

Each diagnostic specifies a translation function of a candidate solution’s genome into an eval-

uated numerical vector of the same dimensionality (its “phenotype”). We refer to each position in

a candidate solution’s genome as a “gene” and each position in a phenotype as a “trait”. Selection

schemes can either operate on traits independently (where each is treated as a single objective)

or use the sum of all traits as a single fitness value. Many diagnostics define success as finding

high-quality solutions, but some diagnostics focus on active diversity measures.

6.2.2 Exploitation Rate Diagnostic

Exploitation is a hill-climbing process that focuses on optimizing within a local neighborhood

of a search space (Črepinšek et al., 2013). Indeed, in search spaces with a single, smooth peak (e.g.,

sum of different powers functions (Molga and Smutnicki, 2005)), exploitation alone is sufficient to

find the global optimum. Selection schemes that exploit effectively will steer populations toward

nearby optima (Beyer, 1998). Exploitation can be especially important when evaluations require

substantial resources (e.g., compute time, memory, robotic hardware, etc.), and improvements to

existing solutions need to be found using as few evaluations as possible. To measure a selection

scheme’s capacity for exploitation, we constructed the “exploitation rate” diagnostic, where a se-

lection scheme must steer a population through a search space that is unimodal, non-deceptive,

and has independent objectives.

In this diagnostic, a candidate solution’s genome is directly interpreted as its phenotype (Fig-

ure 6.1). Each trait is maximized at the upper bound (100.0); a phenotype where all traits are

maximized occupies the global optimum in the search space. Because there are no interactions

among genes when computing a genome’s phenotype, this diagnostic’s search space can be viewed

as comprising multiple smooth, non-deceptive gradients (one for each trait) that can each be op-

timized in parallel. Since we initialize the populations near the lowest point in the search space,

the distance selection schemes must traverse to reach the global optimum is nearly maximized. By

increasing this diagnostic’s dimensionality, we can increase the number of independent gradients to

be exploited, and by increasing the upper bound on gene values, we can tune the distance of each

gradient.

While this search space may be trivial to solve, it does isolate a key problem-solving characteris-

tic: exploitation rate. Ultimately, this diagnostic allows us to compare how well different selection
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Figure 6.1: An example evaluation with the exploitation diagnostic. A candidate solution with
a dimensionality of 10 is assessed. All genes are directly copied from the genome into the corre-
sponding trait in the phenotype. The total fitness of the sequence is the sum of the traits in the
phenotype or 68.4 + 35.6 + 32.4 + 78.7 + 42.9 + 57.0 + 50.1 + 31.5 + 39.4 + 17.3 = 453.3.

schemes are able to exploit a smooth fitness gradient. As such, we expect exploitation-focused

selection schemes (e.g., truncation and tournament selection) to perform best on this diagnostic.

6.2.3 Ordered Exploitation Diagnostic

Many problems require sub-problems to be solved before an overall solution can be found.

For example, to construct a multi-story building, the lower floors must be framed before starting

higher floors. Framing one floor allows progress to be made on the next floor while still finishing

the previous floor (e.g., adding insulation, interior finishings, etc). In this example, the sub-

problems—each floor–must be solved in order, and progress on lower floors must precede progress

on higher floors. To measure selection schemes’ capacity for such ordered optimization, we created

the “ordered exploitation” diagnostic. This diagnostic extends the exploitation rate diagnostic,

requiring that genes be optimized from start to finish, and sufficient progress must be made on

previous genes before subsequent genes can be optimized.

In this diagnostic, genes are evaluated in order, starting from the beginning of a candidate

solution’s genome. The first gene is marked as “active”, and each gene thereafter that is less than

or equal to its predecessor is also marked as active. If a gene exceeds the value of its predecessor,

that gene and all subsequent genes are marked as “inactive”. We refer to the set of consecutive active

genes as the “active region”. All active genes are then directly interpreted as traits in the phenotype,

and all inactive genes are interpreted as zero-valued traits in the phenotype (Figure 6.2). As in

the exploitation rate diagnostic, each trait is maximized at the upper bound (100.0); a phenotype

where all traits are maximized occupies the global optimum in the search space. Increasing the

dimensionality increases the length of the narrow pathway to optimality, which allows us to expose
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96.9 90.1 63.7 54.5 48.1 44.3 35.3 37.7 12.6 17.7

96.9 90.1 63.7 54.5 48.1 44.3 35.3 0.0 0.0 0.0

InactiveActive Region

Phenotype:

Genome:

Figure 6.2: An example evaluation with the ordered optimization diagnostic. A candidate solution
with a dimensionality of 10 is assessed. The first gene in its genome starts the active region. It
and the next six gene values are all in a non-increasing sequence (96.9, 90.1, 63.7, 54.5, 48.1, 44.3,
and 35.3) and are thus all considered part of the active region. The first gene value after the active
region (37.7) is greater than its predecessor, thus marked inactive, closing the active region. All
genes marked as active are directly expressed as traits in the phenotype, and all remaining genes
are interpreted as zero-valued traits. The total fitness of the sequence is the sum of the traits in
the phenotype or 96.9 + 90.1 + 63.7 + 54.5 + 48.1 + 44.3 + 35.3 + 0.0 + 0.0 + 0.0 = 432.9.

selection schemes to more extreme, yet similar, scenarios.

Intuitively, the ordered exploitation diagnostic requires selection schemes to guide populations

through a search space with a single, narrow gradient toward the global optimum. This diagnostic

extends the exploitation rate diagnostic by isolating a selection scheme’s ability to perform ordered

exploitation where genes must be optimized in a particular order. We hypothesize that selection

schemes that focus on exploiting neighborhoods of high-performing solutions will excel in this

diagnostic, as solutions are not rewarded for exploring outside of the narrow pathway to optimality.

Additionally, we expect that selection schemes that perform well on the exploitation rate diagnostic

will also perform well on this diagnostic.

6.2.4 Contradictory Objectives Diagnostic

The previous diagnostics each have a single global optimum, and for those diagnostics, we focus

on a selection scheme’s ability to steer populations to that optimum. For this diagnostic, however,

we focus on how many global optima a selection scheme can find and maintain in a population

(i.e., “trait coverage”), providing insights on a scheme’s ability to exhibit meaningful diversity. Such

diversity maintenance is especially important for optimization problems with multiple contradictory

objectives, as there is no single optimum for problems with this characteristic. Generating and

maintaining a population with meaningful diversity can increase the chances of finding high-quality

solutions by simultaneously exploring many distinct pathways through the search space and thus
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29.5 69.7 32.9 10.2 7.6 57.0 97.1 31.5 49.4 88.1

0.0 0.0 0.0 0.0 0.0 0.0 97.1 0.0 0.0 0.0

ActiveInactive

Genome:

Phenotype:

Inactive

Figure 6.3: An example evaluation with the contradictory objectives diagnostic. A candidate
solution with a dimensionality of 10 is assessed. The highest gene in its genome is identified as 97.1
and set as active, where the gene value is set in the phenotype. All other positions in the solution’s
genome are marked as inactive and expressed as 0.0 in the phenotype.

reducing premature convergence (Blickle and Thiele, 1995; Squillero and Tonda, 2016; Sudholt,

2020; Črepinšek et al., 2013).

To evaluate a genome, we identify the gene with the greatest value (ties are broken by choosing

the gene closest to the beginning of the genome), and we mark that gene as active. All other genes

are marked as inactive. The single active gene is directly interpreted as the associated trait in

the phenotype, and all inactive genes are interpreted as zero-valued traits (Figure 6.3). A trait is

maximized at the upper bound (100.0). There are many global optima in the search space—one for

each trait in a candidate solution’s phenotype (i.e., the diagnostic dimensionality); each optimum

is associated with a single maximized trait.

Selection schemes must balance exploration to discover the many gradients in the search space

and exploitation to follow gradients to their peak, while simultaneously preventing the population

from collapsing onto a single gradient. Thus, we expect selection schemes that balance exploitation

with diversity maintenance to maintain populations with many global optima.

6.2.5 Multi-path Exploration Diagnostic

The ideal trade-off between exploitation and exploration varies by optimization problem and

even by local regions of a search space. This trade-off is especially true for problems with many

local optima, each with a different peak fitness; exploration can help populations discover multiple

gradients, and exploitation helps populations reach each of their peaks. In fact, simultaneously

seeking multiple optima will often increase the chance of finding better-performing solutions. Given

this common problem characteristic, we include a diagnostic that examines the ability of selection

98



29.5 0.0 82.9 99.2 87.6 57.0 50.1 31.5 39.4 17.3

0.0 0.0 0.0 99.2 87.6 57.0 50.1 31.5 0.0 0.0

InactiveActive Region

Activation Position

Inactive

Genome:

Phenotype:

Figure 6.4: An example evaluation with the multi-path hill climbing diagnostic. A candidate
solution with a dimensionality of 10 is assessed. The highest value in its vector is identified as
99.2, and its position is marked as the start of the active region. The next four values are all in a
non-increasing sequence (87.6, 57.0, 50.1, and 31.5) and are thus all considered part of the active
region. The value after the active region (39.4) is greater than its predecessor, thus marked inactive,
closing the active region. All values not marked as active are expressed in the phenotype as 0.0, and
all values in the active region are set in the phenotype. The total fitness of the sequence is the sum
of the traits in the phenotype or 0.0+0.0+0.0+99.2+87.6+57.0+50.1+31.5+0.0+0.0 = 325.4.

schemes to explore multiple avenues of a search space.

To evaluate a genome, we first mark the gene with the greatest value as the “activation po-

sition”. Starting from this activation position, we mark all consecutive genes that are less than

or equal to the previous gene as active, creating an active region, and move their values to the

associated phenotypic traits (Figure 6.4). All genes outside of the active region are marked as

inactive and are interpreted as zero-valued traits in the phenotype. Traits are maximized at the

upper bound (100.0), and a phenotype where all traits are maximized occupies the global optimum

in the search space.

Intuitively, the search space consists of multiple pathways (the number of which is determined

by the dimensionality used) differing in path length and peak height but identical in slope. The fact

that pathways are initially indistinguishable means that the potential of any given pathway can be

determined only by traversing it to its end. Since all pathways terminate at the end of a genome, the

activation position specifies which pathway it occupies in the search space. As such, the pathway

beginning at the first position in the genome leads to the global optimum. This diagnostic measures

how well a selection scheme can simultaneously explore multiple pathways (like the contradictory

objectives diagnostic) and pursue narrow pathways (like the ordered exploitation diagnostic). Note

pathways are synonymous with gradients.

The multi-path exploration diagnostic has already proven to be a valuable tool for analyzing
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selection schemes. In Chapter 5, we used this diagnostic to produce actionable recommendations on

how to maximize the exploratory capacity of lexicase selection and several of its variants. The size

of a population typically determines the number of evaluations that a selection scheme needs to per-

form each generation. As such, the computational budget of an evolutionary algorithm is typically

proportional to the population size times the number of generations run. We demonstrated that

the total computational budget available determined the best trade-off between population size and

number of generations in order to maximize evolved solution quality. With a large computational

budget, larger populations allowed for greater diversity maintenance and improved problem-solving

potential; with a small computational budget, smaller populations outperformed larger populations,

as small populations could be evolved for more generations to better exploit local regions of the

search space. Additionally, this diagnostic was the first technique to reveal consequential differences

between down-sampled and cohort lexicase selection, showing that cohort lexicase can better facil-

itate search space exploration. This diagnostic has also been used to demonstrate that measures of

phylogenetic diversity can provide meaningfully different information about an evolving population

than measures of phenotypic diversity (Hernandez et al., 2022a).

6.3 Methods
We conducted four sets of experiments, each experiment comparing how different selection

schemes react to the search space characteristics embodied by one of our diagnostics. We com-

pared the following commonly used selection schemes: truncation selection, tournament selection,

fitness sharing, lexicase selection, nondominated sorting selection, and novelty search. For each

experiment, we performed eight treatments: two associated with fitness sharing (one using geno-

typic similarity and another using phenotypic similarity), one treatment associated with each of

the five remaining selection schemes, and a random control. Within each treatment, we performed

50 replicates; for each replicate, we evolved populations of 512 individuals for 50, 000 generations.

In each case, we used the target selection scheme to identify 512 parents, fixing all other factors,

such as starting conditions, variation operators, reproduction, et cetera.

We initialized all populations near the lowest point in each of the diagnostics’ search space,

genomes composed of random values ranging from 0.0 to 1.0. For each generation, we evaluated

each candidate solution’s genome according to the given diagnostic, and we used the resulting

phenotypes to select individuals to serve as parents for the next generation. Selected candidate
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solutions reproduced asexually, and we applied mutations to offspring. We mutated individual

genes at a per-gene rate of 0.7%, where the magnitude of each mutation is obtained from a normal

distribution with a mean of 0.0 and a standard deviation of 1.0 (N (0.0, 1.0)). If a mutation would

cause a gene to drop below the lower bound (0.0), we rebound it to its absolute value (i.e., a would-

be gene value of -0.7 becomes 0.7). If a mutation would cause a gene to exceed the upper bound

(100.0), we again rebound it by the amount it would have exceeded the limit (i.e., a mutation to

100.7 instead becomes 99.3).

We intentionally limited variation operators to point mutations to prevent large-effect genetic

changes (e.g., as a result of crossover). While it is common in practice to use crossover, more

dramatic sources of variation could “jump” offspring to different regions of the search space than

their parent. For the purposes of this study, we focus on a selection scheme’s ability to iteratively

traverse a search space. In future work, we will investigate the effect of crossover on how selection

schemes steer populations through search spaces.

6.3.1 Selection Schemes

In this work, we diagnose the following six selection schemes. We selected these selection

schemes because of their popularity and demonstrated effectiveness on different optimization prob-

lems.

Truncation Selection

Truncation selection uses the top performing (“elite”) individuals in a population as parents to

generate the next generation. This selection scheme is the simplest and most direct way to identify

high-quality parents; it is the basis for most animal husbandry (Crow and Kimura, 1979) and is

used widely within evolutionary computation (Beyer and Schwefel, 2002; Luke, 2013).

At the start of the selection step, all candidate solutions are assigned a single fitness value;

for our diagnostics, we use the sum of all of the individual’s traits. The population is then sorted

by fitness (with ties settled randomly) and then truncated, leaving only the top t performers to be

used as parents for the following generation. Selected parents produce equal numbers of offspring,

so that the next generation contains the correct number of candidate solutions. In this work, we

use t = 8, meaning that after truncation, each of the parents creates 64 offspring.

This selection scheme is heavily exploitive, as the population is truncated and only a designated

number of top performers are used as parents. The level of truncation, t, dictates the strength of
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selection. As t approaches 1, the selection pressure is increased as only a small number of high-

fitness solutions are used as parents. Conversely, increasing t reduces selection pressure, as a greater

number of individuals with lower fitness are used as parents. We hypothesized that truncation

selection (as configured here) would excel on diagnostics that focus on exploitation.

Tournament Selection

Tournament selection is one of the earliest and most commonly used selection schemes in

evolutionary computing (Brindle, 1980; Goldberg and Deb, 1991; Luke, 2013). In tournament

selection, each parent is chosen by first picking t random candidate solutions from the population.

Each candidate solution in this “tournament” is assigned a single fitness value; for our diagnostics,

we use the sum of all of the individual’s traits. The individual with the highest fitness is selected

(with ties settled randomly) as a parent. The number of tournaments determines the number of

parents identified: thus, 512 (population size) tournaments are held given our setup.

The tournament size, t, determines the strength of selection. As the tournament size ap-

proaches the population size, only the most fit individuals in the population are able to win tour-

naments and be chosen as parents. Conversely, as the tournament size approaches 1, tournament

selection behaves more like random selection, allowing lower-fitness individuals to be chosen as

parents. For our work, we set the tournament size to an intermediate size of t = 8. We hypothe-

sized that tournament selection under this configuration will perform well on diagnostics focused on

exploitation, but struggle with diagnostics that require substantial exploration to find high-quality

solutions.

Fitness Sharing

Fitness sharing incorporates an explicit mechanism for maintaining a diverse population in

order to reduce the likelihood of premature convergence (Goldberg and Richardson, 1987). At the

start of the selection step, all candidate solutions are assigned a single fitness value and a similarity

to each other individual. For our diagnostics, we use the sum of all of the individual’s traits to

represent a candidate solution’s fitness value. The similarity metric can be either genotypic (e.g.,

the hamming distance between genomes) or phenotypic (e.g., the number of traits two individuals

have in common). Fitness sharing then modifies each individual’s fitness value, decreasing it as a

function of its similarity to the rest of the population; individuals occupying crowded regions of the

search space have their fitness reduced more than those in less crowded regions.
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Consider candidate solution x with fx representing the sum of all of its trait values after being

evaluated on a diagnostic. The shared fitness f ′
x of solution x is given by

f ′
x =

fx
mx

where mx quantifies a candidate solution x’s fitness reduction due to its similarity to the rest

of the population. In this work, we use two versions of fitness sharing, one that uses genotypic

similarity and one that uses phenotypic similarity, which we refer to as genotypic fitness sharing

and phenotypic fitness sharing. For each, we calculate mx as

mx =
∑
y∈P

S(dxy)

where P is the current population, S() is the sharing function, and dxy is the euclidean distance

between genotypic or phenotypic vectors for candidate solutions x and y. The sharing function S()

uses a candidate solution’s distance from another solution to set the associated fitness penalty, if

any:

S(d) =


1− ( dσ )

α, if d < σ

0, otherwise

Two variables are required to configure the sharing function: α and σ. The parameter α regulates

the shape of the sharing function and σ determines the threshold of dissimilarity beyond which no

penalty should exist.

We use α = 1.0 and σ = 0.3 for all replicates in this work. We selected this α value due to it

being commonly used in the literature (Goldberg and Richardson, 1987; Sareni and Krahenbuhl,

1998a) and we empirically identified a generally effective σ value (Hernandez et al., 2022d). Once

all solutions have their shared fitness assigned, the stochastic remainder selection with replacement

described in Section 2 of (Haq et al., 2019) is used to identify parents, as it is recommended to

pair fitness sharing with stochastic remainder selection (Goldberg and Richardson, 1987; Sareni

and Krahenbuhl, 1998b).

We expect fitness sharing to perform better on those diagnostics that require more exploration,

but poorly on diagnostics focused exclusively on exploitation (e.g., those where narrow pathways

must be traversed). Even more so, the choice of genotypic versus phenotypic distance metrics will

play a big role in problems where these values differ. If there are smooth phenotypic pathways to

103



the global optimum, we expect that phenotypic distance metrics will perform better, while if a more

exhaustive exploration of the fitness landscape is critical, genotypic distance should be preferred.

Lexicase Selection

Lexicase selection is a technique designed for genetic programming problems where solutions

must perform well across multiple test cases (Helmuth and Abdelhady, 2020; Helmuth et al., 2015;

Orzechowski et al., 2018). The previously described selection schemes focus on maximizing total

trait values (truncation, tournament selection) or promoting rare trait values (fitness sharing). By

contrast, lexicase selection selects for individuals that specialize on different combinations of high

traits by iterating through shuffled sets of test cases, resulting in high levels of stable diversity

(Dolson and Ofria, 2018; Helmuth et al., 2016a, 2020).

In lexicase selection, all candidate solutions are evaluated on a set of test cases, and their

performance on each test case is recorded. In our diagnostics, we associate one test case with each

possible trait in an individual’s phenotype (resulting in 100 test cases). We use each trait value

in an individual’s phenotype as a direct measure of performance for the associated test case. In

order to identify a parent for replication, lexicase selection shuffles the set of test cases and iterates

through each test case in sequence. Starting from the full population, each test case (in shuffled

order) is used to filter down the current set of candidate parents; only those solutions tied for best

performance on a given test case are allowed to continue. This filtering process continues until a

single candidate parent remains or all test cases have been used. The single remaining candidate

becomes a parent or a random one is selected if multiple candidates remain.

We hypothesized that lexicase selection would excel across multiple diagnostics, as lexicase

selection is able to balance both exploitation and exploration. Details about its ability to explore

and exploit can now be easily compared to other selection schemes that focus on exploration and

exploitation differently.

Nondominated Sorting

The nondominated sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994) and its de-

scendants (Deb et al., 2002; Yuan et al., 2014) are successful evolutionary multi-objective opti-

mization techniques. Evolutionary multi-objective optimization methods aim to generate a set

of solutions that represent the best possible trade-offs among multiple (often conflicting) objec-

tives (Coello Coello et al., 2020). NSGA combines two procedures during selection: a ranking
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procedure that groups individuals into nondominated fronts and fitness sharing for diversity main-

tenance within each group. Given its proven success in multi-objective contexts, we included the

selection procedure used in NSGA in our study.

We use the set of phenotypes produced by our diagnostics to identify whether or not each

solution is dominated in a given population. Given two phenotypes x and y, we say that x dominates

y if all of x’s traits are greater than or equal to y’s traits and at least one of x’s trait is strictly greater

than the corresponding trait in y. Note that these diagnostics assume maximization problems.

The first nondominated front is created by collecting all candidate solutions that are not

dominated by any other solution in the population. Once the first front is constructed, all solutions

in the first nondominated front are assigned a large fitness value (Hernandez et al., 2022d). Fitness

sharing is then applied to the solutions within the first front; the same procedure used to calculate

shared fitness is found in section 6.3.1 with phenotypic similarity. Each subsequent nondominated

front is constructed by removing solutions in previous fronts and then finding the next set of

nondominated solutions from the current population. As each front is constructed, a starting

fitness value is selected that is lower than all shared fitness values from the previous front; fitness

sharing is again applied within this new group and this cycle continues until all solutions in the

population are placed into a front. Finally, once all solutions have their shared fitness assigned,

the stochastic remainder selection paired with fitness sharing in section 6.3.1 is used to identify

parents, as Srinivas and Deb (1994) use stochastic remainder selection.

Given that this selection scheme focuses on generating multiple Pareto-optimal solutions, we

hypothesized that this scheme would perform well on diagnostics that possess multiple global optima

and focus on exploration. Conversely, we expect this selection scheme will struggle with hill-

climbing, since this scheme focuses on exploring across the entirety of the current Pareto front.

Novelty Search

Novelty search mitigates complications associated with objective functions (e.g., deception and

local optima) by abandoning traditional fitness-based objectives. Instead, it uses a novelty metric

to quantify how behaviorally distinct solutions in the population are from one another. Novelty

search then uses the resulting novelty score to preferentially select solutions with trait combinations

distinct from those previously observed (Lehman et al., 2008), encouraging productive exploration

even without an obvious path to optimality.
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We use the phenotype returned by our diagnostics to represent the set of behaviors used for

measuring novelty. Consider a phenotype x after being evaluated on some diagnostic. The novelty

score of x is given by

ρ(x) =
1

k

k∑
i=0

dist(x, ui)

where ρ(x) is the novelty score of x and ui is the i−th nearest neighbor of x with respect to

phenotypes. All calculations of nearest neighbor phenotypes include both the current population

and an archive of all novel phenotypes that were previously found. For this work, we used the

euclidean distance between two phenotypes as the distance metric. We also set k = 15, as it

recommended in (Lehman et al., 2008). Once the novelty scores are calculated for all candidate

solutions, we used tournament selection with size two to identify parents for the following generation

as in Lehman and Stanley (2010) and Jundt and Helmuth (2019).

Since novelty search is focused on finding phenotypes that were never previously encountered,

maintaining an unbounded archive is important. We use a threshold pmin to determine whether

a phenotype is sufficiently novel to be tracked by the archive. In this work, pmin is set to 10.0.

Furthermore, approximately one phenotype is randomly saved to the archive every 200 generations.

If more than 4 phenotypes enter the archive by being more novel than pmin in one generation,

pmin is increased by 25%. If no new phenotypes are added to the archive for 500 generations, pmin

is decreased by 5%. This configuration closely follows the novelty search used in (Lehman et al.,

2008).

We expect that novelty search will perform poorly (compared to all other objective-based

schemes) on diagnostics where a single gradient leads to high-quality solutions. The diagnostics

that incorporate deception and multiple optima should be advantageous for the novelty search

algorithm, but given its complexity, it is difficult to predict its performance.

6.3.2 Statistical Analysis

We performed a KruskalWallis test to determine if significant differences among selection

schemes occurred. For comparisons where the Kruskal-Wallis test was significant (significance

level of 0.05), we performed a post-hoc Wilcoxon rank-sum test between relevant schemes with a

Bonferroni correction for multiple comparisons where appropriate. We note that because novelty

search uses an archive to track novel behaviors, we also consider archive solutions when gathering
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data.

Data Tracking

The diagnostics for exploitation rate and ordered exploitation measure a selection scheme’s

ability to hill-climb; thus, we measure the quality of a search by the best-performing solution

ever found. We report the performance of an individual as its average trait score, which is the

sum of individual scores divided by the dimensionality (100), resulting in values between 0.0 and

100.0. Additionally, we record the generation a satisfactory solution is first discovered within the

population. We define an individual trait to be satisfactory if it has a value greater than or equal

to 99% of the target value (100.0); if all traits in an individual are satisfactory, we designate that

individual as a satisfactory solution.

The contradictory objectives diagnostic measures the number of mutually exclusive global

optima that a selection scheme can simultaneously maintain in a population. We track both

population-level satisfactory trait coverage, which is the number of unique satisfactory traits found

across all individuals in a population, and population-level activation gene coverage, which is the

number of unique activation genes found across all individuals in a population, regardless of whether

a satisfactory trait has been obtained. Given only one gene can be active within a genome for

this diagnostic, we label that gene as the activation gene. Activation gene coverage measures a

selection scheme’s capacity to produce and maintain a diverse set of phenotypes within a population.

Satisfactory trait coverage measures selection schemes’ ability to simultaneously exploit mutually-

exclusive traits. Note that both have values between 0 and 100 (dimensionality).

The multi-path exploration diagnostic focuses on a selection scheme’s ability to explore multiple

gradients, only one of which leads to the global optimum. We track the average trait score of the

best-performing solution found each generation, as it tells us a selection scheme’s ability to exploit a

gradient. Additionally, we track population-level activation gene coverage, as it measures a selection

scheme’s capacity to pursue a diverse set of gradients.

6.3.3 Software Availability

We include supplemental material (Hernandez et al., 2022d) that is hosted on GitHub and

contains the software, data analyses, and documentation for this work. Our experiments are im-

plemented using the Empirical library (Ofria et al., 2020), and we used a combination of Python

and R version 4 (R Core Team, 2020) for data processing and analysis. The following R packages
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are used for data wrangling, statistical analysis, graphing, and visualization: ggplot2 (Wickham

et al., 2021), tidyverse (Wickham, 2019), cowplot (Wilke, 2020), reshape2 (Wickham, 2007) and

dplyr (Wickham et al., 2020). Our experimental data is available on the Open Science Framework

at https://osf.io/5nv86/.

6.4 Results and Discussion
6.4.1 Exploitation Rate
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Figure 6.5: Results for selection schemes evaluated on the exploitation rate diagnostic. Best per-
formance in the population (a) over time and (b) earned throughout 50, 000 generations. For panel
(a), we plot the average across the 50 replicates, with shading between the maximum and minimum
performance.

Using the exploitation rate diagnostic, we compared the relative ability to exploit a smooth

fitness gradient among selection schemes. We found that all selection schemes improve performance

over time. The two fitness sharing treatments produced identical results for this diagnostic; in all

other cases, the rate of improvement differs between schemes (Figure 6.5a). Additionally, we found

that all selection schemes outperformed the random control when comparing the best performance

earned throughout an evolutionary run (Figure 6.5b; Wilcoxon rank-sum test: p < 10−14).

Notably, truncation, tournament, and lexicase selection are the only schemes that found sat-

isfactory solutions (phenotype with traits greater than or equal to 99.0), doing so in all replicates.

For the configurations used here, truncation selection found satisfactory solutions in fewer gener-

ations than tournament selection (Wilcoxon rank-sum test: p < 10−15). This result is interesting,

as both selection schemes share the same asymptotic takeover time (Bäck, 1996; Goldberg and

Deb, 1991), suggesting they exhibit similar selection pressure. Additionally, tournament selection

found satisfactory solutions in fewer generations than lexicase selection (Wilcoxon rank-sum test:
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p < 10−15). Evidently, truncation and tournament selection find satisfactory solutions faster than

lexicase selection due to maximizing an aggregate score, whereas lexicase selection pressures the

population to be best at multiple test case combinations. Lexicase selection’s diversity maintenance

does not provide any explicit advantage to solutions with larger aggregate scores, slowing down the

rate of exploitation.

Given the exploitation rate diagnostic directly translates a genotype into a phenotype, there

is no procedural difference between genotypic or phenotypic fitness sharing. Indeed, no statisti-

cal difference is found between their best performances earned throughout an evolutionary run

(Wilcoxon rank-sum test: p > 0.05). As populations can maximize traits in any order, fitness

sharing penalizes the performance of individuals maximizing similar traits, lowering the chances

of solutions with larger aggregate scores from being selected. This reduction in performance is

exacerbated with higher aggregate scores, as genomes will become more similar as they approach

the optimum. Nonetheless, both fitness sharing treatments outperform nondominated sorting and

novelty search (Wilcoxon rank-sum test for best performance: p < 10−15). The rate at which

performance increases can be explained by the takeover time associated with stochastic remainder

selection, as it is slower than truncation and tournament selection (Bäck, 1996; Goldberg and Deb,

1991).

Both nondominated sorting and novelty search perform poorly, as neither emphasizes exploita-

tion in their search strategy. In fact, NSGA-II extends the nondominated sorting in NSGA by

incorporating elitism (Deb et al., 2002), and other implementations of novelty search incorporate

mechanisms to increase exploitation (Lehman and Stanley, 2011b). Interestingly, novelty search

found better-performing solutions than nondominated sorting throughout an evolutionary search

(Wilcoxon rank-sum test: p < 10−3).

6.4.2 Ordered Exploitation

Using the ordered exploitation diagnostic, we compared the relative ability to pursue a single,

narrow gradient toward the global optimum among selection schemes. We found that all selection

schemes improve performance over time, but the rate of improvement differs between all schemes.

Additionally, all selection schemes outperform the random control when comparing the best perfor-

mance earned throughout an evolutionary run (Figure 6.6b; Wilcoxon rank-sum test: p < 10−15).

Notably, truncation, tournament, and lexicase selection are the only schemes that found satis-
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Figure 6.6: Results for selection schemes evaluated on the ordered exploitation rate diagnostic.
Best performance in the population (a) over time and (b) earned throughout 50, 000 generations.
For panel (a), we plot the average across the 50 replicates, with shading between the maximum
and minimum performance.

factory solutions (phenotypes with traits greater than or equal to 99.9), doing so in all replicates.

For the configurations used here, tournament selection found satisfactory solutions in fewer genera-

tions than lexicase selection, while truncation found satisfactory solutions in fewer generations than

both selection schemes (Wilcoxon rank-sum test for both comparisons: p < 10−15), similar to our

results from the previous diagnostic. For this diagnostic, building off the best-performing solution’s

genome will lead to high-performing solutions much quicker, which coincides with truncation and

tournament selection’s search strategy. One could have easily guessed that the test case shuffling

lexicase selection implements would complicate this diagnostic, yet lexicase selection still found

satisfactory solutions.

Our results illustrate that fitness sharing is detrimental for exploitative search spaces. Indeed,

we find additional evidence of this within the results for the previous diagnostic. Clearly, pressuring

the population to explore sparse regions of the genotype or phenotype space was not beneficial for

exploitative search spaces. Interestingly, genotypic fitness sharing found better-performing solutions

than phenotypic fitness sharing (Figure 6.6b; Wilcoxon rank-sum test: p < 10−15). We suspect this

occurred because while early portions of a genome were being optimized, the genotype of the later,

non-active regions could drift when genomes were being compared for fitness sharing, but would

always be zero when phenotypic traits were compared. As such, genotypic fitness sharing’s ability

to minimize similarity allows it to outperform phenotypic fitness sharing.

Nondominated sorting found better-performing solutions than both fitness sharing configura-
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tions and novelty search (Figure 6.6b; Wilcoxon rank-sum test: p < 10−15). The previous diagnostic

provides evidence that nondominated sorting is able to climb a single gradient, even though it does

so at a slower rate compared to the other schemes. We suspect nondominated sorting’s perfor-

mance can be explained by its focus on finding multiple Pareto-optimal solutions. Nondominated

sorting pressures the solutions to be nondominated, as solutions in early nondominated fronts have

higher fitness. This pressure favors unlocking a new active gene, thus the population is pressured

to increase their streaks of active genes. Long streaks of active genes are found in high-performing

solutions, as better-performing solutions can be reached, which helps explain its performance. In-

deed, we find that nondominated sorting is able to find solutions with longer streaks of active genes

than both fitness sharing configurations and novelty search (Wilcoxon rank-sum test: p < 10−15;

Hernandez et al. (2022d)).

Finally, as expected, novelty search performs poorly due to not emphasizing exploitation in its

search strategy. Given enough time, however, we might expect novelty search to find solutions by

exhaustively enumerating the search space.

6.4.3 Contradictory Objectives

The contradictory objectives diagnostic limits each individual’s phenotype to specializing on a

single trait, allowing us to compare the relative ability to locate and optimize conflicting objectives

across selection schemes. Specifically, we compared population-level satisfactory trait coverage (i.e.,

the number of distinct satisfied traits across the whole population) and population-level activation

gene coverage (i.e., the number of distinct activation genes maintained in the population).

All selection schemes, except novelty search and the random control, satisfied at least one

trait after 50, 000 generations (Figure 6.7b). All populations evolved under truncation selection,

tournament selection, and genotypic fitness sharing covered exactly one satisfactory trait; that

is, these selection schemes never produced populations with more than one unique satisfactory

trait. Phenotypic fitness sharing, lexicase selection, and nondominated sorting consistently pro-

duced populations with more than one unique satisfactory trait. For the configurations used here,

nondominated sorting attained more satisfactory traits than lexicase selection, and lexicase selec-

tion attained more satisfactory traits than phenotypic fitness sharing (Wilcoxon rank-sum tests:

p < 10−15). We found that all selection schemes, except novelty search, attained more satisfactory

traits than our random control (Wilcoxon rank-sum tests: p < 10−15).
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Figure 6.7: Results for selection schemes evaluated on contradictory objective diagnostic.
Population-level unique satisfactory traits over (a) over time and (b) at 50, 000 generations.
Population-level activation gene coverage (c) over time and (d) as 50, 000 generations. For panel
(a) and (c), we plot the average across the 50 replicates, with shading between the maximum and
minimum data.

Because starting populations are initialized with genomes consisting of random values between

0.0 and 1.0, each individual has a random activation gene. As such, initial populations have high

activation gene coverage across all treatments (Figure 6.7c). However, activation gene coverage

rapidly decreases for all selection schemes, except nondominated sorting. In fact, each replicate

of tournament selection, truncation selection, and genotypic fitness sharing rapidly collapsed to a

single activation gene; all other selection schemes, including our random control, maintained mul-

tiple activation genes in each population (Figure 6.7d). For the configuration used here, we found

that novelty search maintained more activation genes than nondominated sorting, nondominated

sorting maintained more activation genes than lexicase selection, and lexicase selection maintained

more activation genes than phenotypic fitness sharing (Wilcoxon rank-sum tests: p < 10−15).

In general, selection schemes capable of maintaining populations with diverse activation genes

were also able to optimize those genes to satisfactory levels. Note that in such cases, the diverse

activation genes were typically optimized in parallel.

We suspect novelty search did not obtain any satisfactory traits due to its preference for novel
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traits over incremental improvements to existing traits. Novelty search’s results on the exploitation

rate diagnostic demonstrate it can slowly pursue a single gradient and consistently performs poorly,

but better than random search. Clearly, pressure for novel traits does not facilitate reaching a

satisfactory trait within the allotted time; yet this pressure did allow novelty search to maintain

higher activation gene coverage than all other selection schemes (Figure 6.7d; Wilcoxon rank-sum

tests: p < 10−15). We suspect this result was due to a combination of the emphasis of finding novel

behaviors and the implicit diversity enhancements provided by the archive. By using phenotypic

similarity, the population is pressured to optimize different traits, as doing so increases novelty

scores. Early in the evolutionary search, activation gene coverage drops, yet it reaches perfect

coverage by the end (Figure 6.7c). This drop in coverage occurred due to the population requiring

time to diversify, as the starting novelty threshold is too high for solutions to be added to the

archive. Note these results include data found by solutions in both the current population and the

archive.
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Figure 6.8: Results for nondominated sorting, phenotypic fitness sharing, and nondominated front
ranking (nondominated sorting with σ = 0.0) evaluated on the contradictory objective diagnostic.
We present the unique satisfactory traits found at 50,000 generations.

Interestingly, nondominated sorting surpassed all other selection schemes at producing popu-

lations with high satisfactory trait coverage (Wilcoxon rank-sum tests: p < 10−15). This result is

expected, as the contradictory objectives diagnostic generates the ideal search space for nondom-

inated sorting, containing one equidistant Pareto-optimal solution per trait (100). Nondominated

sorting’s performance appears to be due to its two diversity maintenance mechanisms: nondom-

inated front ranking and phenotypic fitness sharing within fronts. To illuminate the relative im-

portance of both components of nondominated sorting, we applied nondominated front ranking

and phenotypic fitness sharing to the contradictory objectives diagnostic (Figure 6.8). There is

a significant drop in the final satisfactory trait coverage between using both nondominated front
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ranking and fitness sharing, as compared to using just one (Wilcoxon rank-sum tests: p < 10−15).

Clearly, nondominated sorting can simultaneously optimize multiple gradients within a population.

Aside from nondominated sorting, lexicase selection was the only other selection scheme to pro-

duce populations with high coverage of satisfactory traits. Lexicase selection’s success is consistent

with previous theoretical and experimental findings that demonstrate its ability to produce popu-

lations with meaningful diversity without impeding simultaneous exploitation (Dolson and Ofria,

2018; Helmuth et al., 2016a, 2020). Lexicase selection’s emphasis on selecting specialists (Helmuth

et al., 2020) is particularly valuable for performing well on this diagnostic, as a population that

finds satisfactory solutions for all traits must be a population of specialists; given this, why does

lexicase selection result in substantially lower satisfactory trait coverage than nondominated sort-

ing? Previous theoretical and experimental work has shown that lexicase selection’s capacity to

maintain a given specialist is related to the probability that its associated test cases appear first in

the shuffles during selection (Chapter 5). That is, lexicase selection is sensitive to the ratio between

population size and the number of test cases. As such, we expect that increasing population size

or decreasing diagnostic dimensionality would reduce the performance gap between nondominated

sorting and lexicase selection on the contradictory objectives diagnostic.

Neither phenotypic nor genotypic fitness sharing produced populations with high satisfactory

trait coverage. However, of these two methods of fitness sharing, phenotypic fitness sharing sur-

passed genotypic fitness sharing (Figure 6.7b and 6.7d; Wilcoxon rank-sum test: p < 10−15). We

suspect that this difference in outcome is driven by the information captured by each similarity

metric. Phenotypic similarity is more likely to penalize individuals that optimize the same trait,

which results in greater selection pressure to optimize different traits. This pressure is masked

with genotypic similarity, as the similarity between solutions optimizing the same trait can be de-

creased by inactive genes drifting. Thus, when comparing two solutions, genotypic fitness sharing

does not focus only on the traits that those two solutions are optimizing, but this is exactly what

happens with phenotypic fitness sharing. Previous theoretical and experimental work has shown

the threshold of dissimilarity and population size affect fitness sharing’s ability to fill multiple

niches (Della Cioppa et al., 2004); indeed, we find evidence of this, as increasing the threshold

value leads to higher activation gene coverage and satisfactory trait coverage (Hernandez et al.

(2022d); Wilcoxon rank-sum tests: p < 10−12).
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Truncation and tournament selection performed poorly on this diagnostic, as both schemes do

not maintain or generate diverse populations, and exhibit strong selection pressure (Bäck, 1996;

Goldberg and Deb, 1991; Helmuth et al., 2016a). Tournament selection increases the number of

unique parents identified through tournaments, yet only one satisfactory trait and activation gene

is reached at the end of 50, 000 generations for all replicates. Each selection scheme’s takeover

time suggests that early high-performing solutions will reduce the number of unique traits being

optimized in the population, as expected (Bäck, 1996; Goldberg and Deb, 1991). Additionally,

aggregating traits makes it impossible to differentiate what trait is being optimized.

6.4.4 Multi-path Exploration
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Figure 6.9: Results for selection schemes evaluated on the multi-path exploration diagnostic. Best
performance in the population (a) over time and (b) at 50, 000 generations. Population-level acti-
vation gene coverage (c) over time and (d) at 50, 000 generations. For panels (a) and (c), we plot
the average across the 50 replicates, with shading between the maximum and minimum data.

The multi-path exploration diagnostic generates a search space with multiple gradients, equal

in slope but differing in length, and thus final peak fitness. This search space allows us to compare

the relative ability for selection schemes to maintain and simultaneously exploit different gradients,

with the goal of fully traversing the gradient that leads to the global optimum. Specifically, we

compared performance and population-level activation gene coverage.

We found that all selection schemes improve performance over time, but the rates and levels of
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improvement differ among schemes (Figure 6.9a). All selection schemes found better-performing

solutions in the final populations than the random control (Figure 6.9b; Wilcoxon rank-sum tests:

p < 10−15). This diagnostic proved to be challenging for all selection schemes, as none were able

to consistently evolve a satisfactory solution in the allotted time; yet, tournament, truncation,

and lexicase selection each produced high-performing solutions. While tournament and truncation

selection were able to find high-performing solutions, only a few replicates were able to do so.

Selection schemes that are unable to maintain any exploration should have approximately a 1%

chance of stumbling on the optimal trajectory; the results for tournament and truncation were

consistent with this expectation. Lexicase selection, by contrast, consistently found high-performing

solutions, outperforming all other selection schemes (Wilcoxon rank-sum tests: p < 10−10).

Initial populations have high activation gene coverage across all treatments, as starting pop-

ulations are randomly generated; however, coverage rapidly decreases for all selection schemes

(Figure 6.9c). We found no difference between activation gene coverage in the final populations

for truncation selection, tournament selection, and the random control (Wilcoxon rank-sum tests:

p > 0.05); while all other selection schemes maintain more activation genes than the random con-

trol (genotypic fitness sharing, lexicase selection, novelty search, nondominated sorting: p < 10−7;

phenotypic fitness sharing: p < 10−3). As in the previous diagnostic results, we found that novelty

search, lexicase selection, and nondominated sorting maintained higher activation gene coverage

than all other selection schemes (Wilcoxon rank-sum tests: p < 10−15). For the configuration used

here, lexicase selection maintained more activation genes than nondominated sorting, while novelty

search maintained more than both selection schemes (Wilcoxon rank-sum tests: p < 10−15). The

remaining selection schemes maintained low levels of activation gene coverage.

We found lexicase selection was the only selection scheme to continuously reach better-

performing solutions throughout an evolutionary search (Figure 6.9a), while also maintaining high

activation gene coverage (Figure 6.9c). These results are expected, as the previous diagnostics

allow us to estimate a selection scheme’s potential on this diagnostic. Indeed, lexicase selection’s

performance on the ordered exploitation diagnostic demonstrates its ability to exploit gradients

similar to those found in this diagnostic’s search space, while its performance on the contradictory

objectives diagnostic demonstrates its ability to maintain a diverse set of activation genes. Ulti-

mately, lexicase selection is the only selection scheme to consistently simultaneously achieve the
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levels of exploration and exploitation to reach high-performing solutions in the final populations.

Lexicase selection’s strong performance on the exploration diagnostic is consistent with previous

work investigating the exploratory capacity of different variants of lexicase selection (Chapter 5).

Success on the contradictory objectives diagnostic predicts success on this diagnostic, as the

ability to maintain a diversity of activation genes increases a selection scheme’s chance of exploring

multiple pathways in the search space. While truncation and tournament selection are apt at

exploiting gradients, neither selection scheme can maintain high activation gene coverage, limiting

their ability to explore more than one gradient in the search space. Indeed, only replicates where

the population (by chance) converges to a high-potential gradient produce high-fitness solutions.

Exploitation is also crucial for success on this diagnostic, as the only way to reach the global

optimum is by effectively exploiting the optimum’s gradient. While fitness sharing, nondominated

sorting, and novelty search maintained multiple activation genes, they failed to fully exploit the

associated gradients, which is consistent with their performances on the ordered exploitation diag-

nostic.

6.5 Conclusion
In this work, we introduce four diagnostics—exploitation rate, ordered exploitation, contradic-

tory objectives, and multi-path exploration—that can be used to measure the relative exploitation

and exploration capabilities of selection schemes. We use our diagnostics to compare six popular

categories of selection schemes: truncation selection, tournament selection, fitness sharing, lexicase

selection, nondominated sorting, and novelty search.

In general, our results are consistent with previous work. Truncation and tournament selec-

tion were heavily exploitative with poor capacities for exploration, and novelty search was purely

exploratory with no mechanism for exploitation. Nondominated sorting excelled at managing mul-

tiple, contradictory objectives, but did not exploit gradients well. Fitness sharing consistently

performed poorly across diagnostics, neither exploiting nor exploring particularly well. Lexicase

selection effectively balanced exploration with exploitation, performing reasonably well across all

diagnostics. Because the results for each diagnostic are heavily dependent on the configurations

used for each selection scheme, we included additional replicates for each selection scheme with

different parameter configurations (Hernandez et al., 2022d). Overall, our results emphasize the

importance of choosing the appropriate selection scheme for a given problem, as each of the selec-
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tion algorithms that we investigated exhibited distinct trade-offs between different problem-solving

characteristics.

Here, we investigated the relative exploration and exploitation abilities of basic versions of only

six selection methods. Future work will expand our analyses to more selection schemes, including

more complex versions of those investigated here. In particular, we plan to use our diagnostics

to help us to disentangle the relative importance of different components of complex selection

algorithms (e.g., NSGA-II) by isolating the scheme’s constituent components and evaluating them

on each diagnostic. We also plan to use our diagnostics to investigate how other factors, such

as population size, influence a selection scheme’s ability to exploit or explore. Ultimately, our

diagnostics allow selection schemes to be investigated with more control than previously possible

with standard benchmarking approaches.
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Chapter 7
Diagnosing Island Structures Within Selection Schemes

Authors: Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

This chapter uses the selection schemes framework from Chapter 2 to integrate an island

structure within tournament selection, truncation selection, and lexicase selection. We use the same

evolutionary algorithm configuration from Chapter 6, with only the previously mentioned selection

schemes. Within the selection scheme, we integrate an island structure with a ring topology, where

the population is partitioned into four groups (islands). Additionally, migrations occur after a

certain amount of generations, where solutions are swapped between each island pairing, and no

solution can return to its original island. We find that island structures reduce the exploitation

abilities of all selection schemes. Conversely, island structures increase the exploration abilities of

both truncation and tournament selection, but reduce exploration abilities for lexicase selection.

7.1 Introduction

“Everything should be made as simple as possible, but not simpler” – Albert Einstein

All evolutionary algorithms (EAs) possess a population structure that defines how solutions

compete and interact with one another. Typically, EAs use a well-mixed population where all

solutions in the population can interact (Alba and Tomassini, 2002; Sprave, 1999; Tomassini, 2005).

Well-mixed populations may be the standard, but previous work has shown that different population

structures can increase problem-solving success (Hornby, 2006; Punch, 1998; Skolicki and De Jong,

2004; Whitley et al., 1999). In fact, this improvement can be seen in evolutionary programming,

evolutionary strategies, and genetic algorithms, as they all use a well-mixed population by default,

but population structures can help them increase their problem-solving abilities (Cohoon et al.,

1987; Duncan, 1993; Rudolph, 1991). A balance must be considered when adding additional features

to any EA, as each “upgrade” may improve efficiency in some circumstances, but also introduces

new parameters to tune and new interactions to understand. Population structures, in particular,

limit interactions from acting across all organisms to just local neighborhoods, which will have a

dramatic effect on their dynamics and influence on the evolutionary process.

Due to the limited computational resources in the 1960s when EAs were first conceived, they

used well-mixed populations and were implemented to run sequentially on a single processor (Alba
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and Tomassini, 2002). In order to increase the computational power and resources directed at an

EA, new population structures were formulated that could partition a population across indepen-

dent CPUs to be executed in parallel (Sprave, 1999). Given this shift to parallelization, well-mixed

populations were now actively slower and harder to implement than those that used structured

populations. These new structures limited interactions among candidate solutions to reduce inter-

process communication and maximize the benefits of parallelized EA implementations. Indeed,

this need to partition a population across different CPUs led to variations of EAs that make use

of structured populations: distributed EAs (Gong et al., 2015), parallel EAs (Sudholt, 2015), and

coevolutionary EAs (Miguel Antonio and Coello Coello, 2018). Fortunately, structured populations

also had the potential to improve optimization success. Many types of population structures have

been explored, but the two most used in practice are island models and cellular models (Gong

et al., 2015; Skolicki and De Jong, 2004; Tomassini, 2005). In this work, we focus on diagnosing

the impact that island models have on a selection scheme’s problem-solving success.

Island models work by dividing an entire population into sub-populations (islands) and peri-

odically migrating solutions across those sub-populations. The concept of partitioning a population

into independent subpopulations was inspired by nature (Bäck et al., 1997; Cohoon et al., 1987;

Rozenberg et al., 2012; Tomassini, 2005), as a population of organisms can be initially well-mixed

but be abruptly divided by external factors. For example, allopatric speciation can occur when a

population becomes separated by external factors, such as a rare event that moves members of a

species from one island to another (MacArthur and Wilson, 1967). As a result, the subpopulations

are unable to exchange genetic material and the organisms on each island accumulate mutations

that differentiate them from their recent kin on other islands. Both subpopulations may continue

to thrive in similar environments, yet, each group may evolve to have different traits and behaviors.

Evolutionary algorithms can benefit from this scenario, where the subpopulations can diverge to

simultaneously explore different regions of the search space. Indeed, allopatric speciation inspired

an early variation of island models with EAs in Cohoon et al. (1987), where the island model EA

found better-performing solutions for an optimal linear arrangement problem with less total ‘work’

than a well-mixed EA.

Population structures are used throughout all phases within an EA, as structures may dictate

how solutions are evaluated (Chapter 3), which solutions compete with one another (Hornby,
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2006), and where offspring are placed (Mouret and Clune, 2015). As such, it can be difficult

to pinpoint exactly how the structure is affecting overall problem-solving success. This difficulty

is exacerbated by the same issues found with the standard approach for analyzing EAs through

benchmark suites (Section 1.3). Currently, there is no consensus on how to determine the set of

parameters for an island model and more work is needed to understand the kinds of problems a

structure and its configuration is best suited for (Fernández et al., 2000, 2003; Punch, 1998; Skolicki,

2007; Tomassini, 2005). Fortunately, our diagnostics give us a controlled environment to measure

how island structures influence a population traversing the handcrafted search spaces. Ultimately,

this work gives practitioners a better understanding of the search space characteristics that an

island model may be useful for.

We focus our analysis on homogeneous island models where all subpopulations remain in

perfect synchronization and each island is configured similarly. Specifically, we use a population

structure within a single EA that partitions a population into separate islands and periodically

migrates solutions between islands. However, this structuring of the population can lead to two

different interpretations of how a selection scheme is being used. For example, one can interpret

that each individual island uses a unique instance of the same selection scheme, or one can interpret

that all islands use a single selection scheme. The selection scheme framework (Section 2) fits the

latter interpretation, as the population structure is a component of the selection scheme and uses

it to identify parents accordingly.

In this work, we measure the effects that an island structure has when integrated within trun-

cation selection, tournament selection, and lexicase selection. We compare these results to selection

schemes with a well-mixed population structure and an island structure with no migration. We

find that the exploitation abilities of these selection schemes are negatively impacted by any island

structures when evaluated on the exploitation rate diagnostic and ordered exploitation diagnostic.

The magnitude of the impact is influenced by the migration interval. Conversely, we find that

island structures increase the exploration abilities of both truncation and tournament selection,

but negatively affect the exploration abilities of lexicase selection.

7.2 Island models
While it is widely accepted that diversity plays a role in an EA’s ability to solve problems,

an EA’s parameters must be tuned to properly promote diversity for a given problem (Burke
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et al., 2004; McPhee and Hopper, 1999; Sudholt, 2020; Črepinšek et al., 2013). For example,

low diversity can lead to premature convergence and the inability to escape local optima, but

can be beneficial in finding the global optimum in a unimodal search space. Conversely, high

diversity can reduce the exploitation of promising regions of the search space, but can help decrease

the likelihood of premature convergence in a multimodal search space. As a result, numerous

techniques have been used to promote diversity, such as penalizing for similarity (Goldberg and

Richardson, 1987), selecting for novel behaviors (Lehman et al., 2008), and injecting randomly

generated solutions into the population (Grefenstette, 1992). Island models promote diversity by

partitioning a population into subpopulations that alternate between evolving independently and

exchanging solutions. Islands can explore distinct regions of the search space during independent

evolution and periodically share solutions through migration, often providing bursts of exploitation

(Skolicki and De Jong, 2005; Tomassini, 2005; Whitley et al., 1999).

Island models are characterized by three key categories of configurations (Skolicki, 2007): island

subpopulation parameters, migration parameters, and island topology parameters. Typically all

of these parameters remain constant throughout an evolutionary run (Skolicki, 2007), but there

are techniques where parameters change throughout a run (Fernández et al., 2000; Lässig and

Sudholt, 2011; Wineberg and Chen, 2004). While island models may increase problem-solving

success, finding the best configuration for each parameter is not well-understood (Fernández et al.,

2000; Skolicki, 2007; Tomassini, 2005). Understanding the strengths and weaknesses of a simple

EA is already difficult, and island models exacerbate this issue by integrating an extra layer of

complexity (Sprave, 1999). Additionally, all three categories of island model parameters interact

with one another and affect the evolutionary trajectory of individual islands and problem-solving

success. Typically, the configuration of an island model is set by trial-and-error or by arbitrary

choice (Cantú-Paz and Goldberg, 2000; Gong and Fukunaga, 2011).

7.2.1 Individual island configurations

Each individual island can be described by the EA rules used to evolve its constituent sub-

population (Skolicki, 2007), including its mutation rate, selection scheme, solution representation,

subpopulation size, etc. Simple island models are homogeneous. That is, each island uses the same

configuration to direct evolution. Because all islands follow the same search strategy, simple island

models rely on stochastic differences from one island to another to diversify the evolutionary search
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at the global level.

Island models with at least one EA parameter differing between islands are labeled as heteroge-

neous. Heterogeneous island models can potentially generate additional diversity, as different EAs

implement different balances of exploration and exploitation. Indeed, different heterogeneous is-

land models have proven useful by varying solution representation per island (Skolicki and De Jong,

2004), dynamically changing the subpopulation sizes (Wineberg and Chen, 2004), evolving island

parameters (Clune et al., 2005), and randomly setting configurations for islands (Gong and Fuku-

naga, 2011). Any island model inherently adds a layer of complexity to analyzing evolutionary

dynamics, with heterogeneous island models being especially challenging for theoretical analysis.

An island’s size plays a significant role in determining how much of the search space its sub-

population can cover, and thus the island model’s overall exploitation and exploration abilities

(Skolicki and De Jong, 2005; Tomassini, 2005). Smaller islands are limited in exploitation because

fewer points can be covered in a promising region of the search space, while larger islands can use

more solutions to thoroughly sample the promising region. Larger subpopulations allow for greater

diversity to exist within a single island, but their higher exploitation increases the probability that

all of the islands will explore the same region of the search space. The reduced exploitation in

smaller islands (combined with the greater number of islands given a fixed total population size)

results in them having a greater diversity between islands and more distinct regions of the search

space being simultaneously explored. As such, the balance between the number and size of islands

may need to vary by problem, as each problem requires a specific combination of exploitation and

exploration.

7.2.2 Migration configurations

Migration events can be defined by migration size, migration interval, and emigration and

immigration policies (Skolicki, 2007). The migration size determines the total number of solutions

that migrate when a migration event occurs, and the migration interval determines the number

of generations that pass between migration events. Both play an important factor in an island

model’s problem-solving success, but there is evidence to suggest that the migration interval plays

a bigger role (Skolicki and De Jong, 2005). Emigration policies specify the rules for choosing

solutions to migrate, and whether they are copied or moved (i.e., do chosen migrants also remain

on their source island). Immigration policies specify how incoming solutions are integrated into the
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receiving island.

Given an overall population size of N and k subpopulations with sizes of n1 through nk (where∑k
i=1 ni = N), a migration size of zero means no migration between islands occurs and is equivalent

to a set of independent runs of an EA with population sizes n1 through nk (Cantú-Paz and Goldberg,

2003; Fuchs, 1999). In this scenario, each individual island may cover a unique region of the search

space for exploration, but will be limited to local solutions for exploiting a region.

A large migration size can disrupt the evolutionary trajectory for both the sending and receiving

islands, as a large number of solutions may need to be replaced in both islands. In the extreme

case, entire islands may be swapped, which provides no benefit to the overall evolutionary search.

Conversely, a small migration size may not have any effect on the evolutionary trajectory of an

island that receives migrants, as the small number of migrants may not survive due to stochasticity

or may not introduce sufficient variation to incorporate within the receiving subpopulation.

Migration size must be paired with migration interval to determine the total number of so-

lutions that migrate throughout an evolutionary search. A migration interval that is too large

mimics independent runs of an EA, similar to setting the migration size to zero. Conversely, a

small migration interval will lead to frequent migration events and may become indistinguishable

from one large population. Certain combinations of migration size and migration intervals can

have issues as well. For example, a small migration interval paired with a large migration size will

not allow islands to generate meaningful diversity before they are fully intermixed again. The best

combination of migration size and migration interval must be tuned for the problem at hand, where

there is evidence suggesting that it is best to use moderate migration intervals with small migration

sizes (Skolicki and De Jong, 2005).

The emigration and immigration policies directly influence an island model’s exploitation and

exploration abilities (Cantú-Paz, 2001; Sprave, 1999). Typically, emigration policies select either the

best or random solutions to migrate, and immigration policies replace either the worst or random

solutions within the receiving islands. In Cantú-Paz (2001), the takeover times are formulated

for different migration policies, where migrants replace solutions within the receiving island until

the best solution completely sweeps the subpopulation. From fastest to slowest takeover time,

the following rankings for times were found: (1) good migrants replacing bad solutions, (2) good

migrants replacing random solutions, (3) random migrants replacing bad solutions, and (4) random
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migrants replacing random solutions. This last migration policy had takeover times that were

indistinguishable from one large population rather than an island structure.

7.2.3 Island topology configurations

Island topology dictates the number of islands and which islands can exchange solutions within

the island model. A trade-off must be made between the sizes of individual islands and the num-

ber of islands. The topology of those islands is then formally defined by a graph (Tomassini,

2005), where each node represents an individual island and each edge represents islands that can

exchange solutions. For a simple island model, the topology (nodes and edges) remains constant

throughout an evolutionary search, where only the solutions on each island differ after a migration

event. In practice, common topologies include rings, lattices, stars, and hypercubes (Tomassini,

2005), but more sophisticated techniques exist that randomly generate topologies (Fernández et al.,

2000; Tang et al., 2004) and alter a topology throughout an evolutionary run (Lin et al., 1994).

Indeed, the topology used for an island model directly influences its exploitation and exploration

abilities (Cantú-Paz, 2001; Giacobini et al., 2005; Rudolph, 2001).

The topology of islands influences evolution on each island. For example, consider an island

model with a fully-connected topology, where all islands can exchange solutions with one another.

In this scenario, each island may send most of its subpopulation as migrants to other islands and

replenish its subpopulation with migrants from all other islands. This type of topology can result in

the island model behaving like a standard EA with a well-mixed population. Conversely, consider

an island model with a ring topology, where each island is arranged in a circular ring and connected

to its two neighboring islands. In this scenario, each individual island exchanges migrants only with

its two neighboring islands, which slows the spread of solutions across islands relative to a fully

connected topology.

7.3 Methods
Here, we used the four diagnostics in the DOSSIER suite to examine the impact that different

island structures have on the effectiveness of three common selection schemes: truncation selection,

tournament selection, and lexicase selection. For our initial analysis, we conducted twelve sets of

experiments, one for each diagnostic and selection scheme combination. Each experiment had three

treatments (of 100 runs each), one for each focal population structure: a well-mixed structure, a

standard island structure (i.e., an island model with migration), and an island structure with no

125



migration (effectively a set of parallel runs, each with a smaller population). We then compared how

different population structures affect each selection scheme’s ability to traverse the search space.

To keep these experiments comparable with previous work, we followed a similar configuration to

the EA in Section 6.3 with an additional step that checked if migration events should be triggered.

We used a moderate migration interval (Skolicki and De Jong, 2005) of 500 generations, but in

follow-up experiments, we also examined shorter (50) and longer (5000) intervals.

7.3.1 Evolutionary algorithm

At the start of each evolutionary run, the EA initialized the population with 512 genotypes

from the lowest region in the search space, where genes varied between 0.0 and 1.0 (Step 1 in

Algorithm 7.1). The EA evolved each population for 50, 000 generations (Step 2 in Algorithm

7.1). During each generation, the EA evaluated all candidate solution genomes according to the

treatment’s diagnostic (Step a in Algorithm 7.1). Once all candidate solutions were assigned a

phenotype, the selection scheme identified 512 parents (Step b in Algorithm 7.1). Then, each

identified parent asexually produced an offspring with mutations potentially applied to it (Step c

in Algorithm 7.1). The EA used this constructed set of offspring to form the next generation of

solutions, following the rules of the given population structure. For the standard island structure,

a migration event occurred every 500 generations (Step d in Algorithm 7.1).

1. Initialize population of solutions and population structure.

2. Repeat for 50, 000 generations:

(a) Evaluate each solution on diagnostic and assign a phenotype.

(b) Select solutions from the population via phenotype and population
structure.

(c) Reproduce offspring asexually with mutations applied.

(d) If migration:

i. Migrate solutions between islands.

Algorithm 7.1: Pseudocode for evolutionary algorithm in this work.

Population structures and migrations

The well-mixed structure mimics a standard EA, whereas both island structures evenly par-

tition the population into four homogeneous islands. We chose this island count to allow each
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subpopulation to maintain a reasonable size (128 solutions) for a selection scheme to work with.

We used a ring topology within the standard island structure due to its use in practice (Tomassini,

2005). The four islands were arranged into a circular ring, and each island was connected to two

neighboring islands.

Isolated island structures did not have migration events. As such, the isolated island structure

was identical to four parallel instances of the standard EA, each with a smaller population size.

For the standard island structure, migration events occurred at intervals of 500 generations, and

8 solutions migrated between island pairs. We determined this default migration interval and size

pairing based on Skolicki and De Jong (2005), which recommended the use of moderate migration

intervals and small migration sizes. To perform a single migration, a solution was randomly chosen

from each island and the pair were swapped between islands. Migrations occurred between pairs of

islands in an order that guaranteed that no solution could return to its starting island, though it

was technically possible for an individual solution to be migrated twice. After a migration event,

≈ 12% of each subpopulation comprises migrants. Tomassini (2005) recommends that 10% of a

subpopulation should be sent to another island, although this value may be too high for certain

problems (Skolicki and De Jong, 2005).

DOSSIER diagnostics

For each DOSSIER diagnostic (see Chapter 6), a solution’s genome consists of a numerical

vector of dimensionality 100. A diagnostic specifies a transformation from the genotype to a

phenotype that is of the same type and dimensionality. Each diagnostic focuses on different aspects

of exploitation and exploration:

• The exploitation rate diagnostic measures the ability of a selection scheme to exploit a

single, smooth fitness gradient.

• The ordered exploitation diagnostic measures the ability of a selection scheme to exploit

a single, narrow fitness gradient.

• The contradictory objectives diagnostic measures the ability of a selection scheme to

simultaneously maintain and exploit conflicting objectives.

• The multi-path exploration diagnostic measures the ability of a selection scheme to

simultaneously explore multiple pathways and pursue narrow pathways.
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The population structure used by a selection scheme has no direct effect on how a solution is

evaluated by a diagnostic.

Selection

Given a well-mixed population structure, a selection scheme can identify parents from anywhere

in the population. The island structures restrict how candidate solutions interact with one another,

thus, limiting which solutions compete to become a parent. Specifically, island structures limit

competitions to solutions within the same island, where the number of parents identified per island

is the size of that island (128 for this work).

A more detailed description of the selection schemes used in this work can be found in Section

6.3.1, where each scheme may combine trait values differently. For example, tournament selection

and truncation selection both use an aggregate performance value, whereas lexicase selection uses

individual traits to narrow a set of candidate parents. We parameterized the selection schemes used

in this work in the same way as in Chapter 6. Specifically, tournament selection uses a tournament

size of 8, and truncation selection uses a truncation size of 8. Note that the same configuration of

a selection scheme is used regardless of the population structure.

For island model conditions, each selection scheme operates as follows:

• Truncation selection: Sort the island’s subpopulation by performance and truncate the 8

top-performing candidate solutions. Each of the top performers is identified as a parent 16

times, such that a total of 128 parents are identified for a given island.

• Tournament selection: To identify a single parent, randomly select 8 solutions from the

island’s subpopulation and choose the top-performing candidate solution as a parent. A total

of 128 tournaments must be held to identify 128 parents for a given island.

• Lexicase selection: The island’s subpopulation serves as the starting set of candidate par-

ents, and the set of traits is considered in random order. As each trait is processed only those

parents that have the highest value on that trait are kept. Once all traits are processed,

if more than one solution is left, a random solution is selected from those remaining. This

process is repeated 128 times to identify 128 parents for a given island.
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Reproduction

The mutations applied to offspring in this work are similar to the mutations in Chapter 6.

The variation applied to an offspring’s genotype is limited to point mutations potentially applied

to individual genes, where the chance of a mutation occurring is 0.7%. The magnitude of each

mutation is obtained from a normal distribution with a mean of 0.0 and a standard deviation of

1.0 (N (0.0, 1.0)). If a mutation leads to a gene going below the lower bound (0.0) or going over the

upper bound (100.0), the gene value is rebounded. Point mutations are the only variation operators

used in this work so that the impact that different population structures have within the iterative

search process can be measured for a selection scheme.

The placement of an offspring differs by the population structure being used. For a well-mixed

structure, the offspring is placed back into the single population. For island structures, the offspring

is placed on the same island that its parents belonged to.

7.3.2 Hypotheses

Given that island models are meant to increase diversity, we expect that incorporating island

structures within any selection scheme will hinder exploitation abilities, but benefit exploration

abilities. Of course, we expect that the magnitude of impact an island structure has will vary by

selection scheme, as each scheme exhibits is own unique balance of exploitation and exploration.

The results for these island structure configurations may generalize to other configuration settings,

but more extensive experimentation is needed to verify this claim.

Both truncation selection and tournament selection excel at exploiting gradients, but island

structures reduce the opportunity for the best-performing solution to become a parent. As such,

we hypothesize this reduction caused by island structures will limit both selection scheme’s ability

to exploit, especially for isolated islands because there is no mechanism for the best-performing

solution or its descendants to migrate to other islands. However, we hypothesize the same reduction

should benefit exploration for both selection schemes, as islands can focus on different regions of

the search space. Indeed, the increase in exploration abilities for standard island structures will

be dictated by how a selection scheme incorporates and maintains new migrants throughout the

evolutionary run, as new migrants can be washed away by the existing solutions on the island over

time.
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Lexicase selection performs relatively well across all diagnostics, meaning it has a good balance

of exploitation and exploration. We hypothesize that lexicase selection’s ability to exploit will also

be negatively impacted, as it already selects a diverse set of solutions to act as parents and the

islands further reduce the likelihood of the top-performing solution from being identified. In terms

of exploration, we hypothesize that lexicase selection’s capacity for exploration will be increased, as

lexicase selection already explores well, and now each island can focus on a specific portion of the

search space. Additionally, we expect lexicase selection’s exploration abilities will not be affected

by migrations, as lexicase already selects a diverse set of parents and the region a migrant is in

may already be covered within the new island.

7.3.3 Data tracking and analysis

We record the same data in this work similar to the work in Chapter 6. For both the ex-

ploitation rate and ordered exploitation diagnostics, we report the best performance found in the

population each generation and the generation a satisfactory solution is found. For the contradic-

tory objectives diagnostic, we report both the activation gene and satisfactory trait coverage. For

the multi-path exploration diagnostics, we report both the activation gene coverage and the best

performance found in the population at each generation.

Statistical analysis

We perform a Kruskal-Wallis test to determine if significant differences among population

structures within a selection scheme occurred. If significant differences were observed for a Kruskal-

Wallis test (significance level of 0.05), we performed a post-hoc Wilcoxon rank-sum test between

population structures with a Bonferroni correction for multiple comparisons. For comparisons of

performance, we use the aggregate of the phenotype. For comparisons of coverage, we use the raw

coverage value. Additionally, we repeated this process to determine if significant differences among

migration intervals occurred within a standard island structure for a given selection scheme.

7.3.4 Software availability

We include supplementary material in (Hernandez et al., 2023) that is hosted on GitHub and

contains all the software, data analysis, and documentation for this work. The experiments in

this work are implemented using the Empirical Library (Ofria et al., 2020). The data processing,

analysis, and visualizations are implemented with a combination of Python3 and R version 4 (R

Core Team, 2020). The following R packages were used in this project: ggplot2 (Wickham, 2016b),
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cowplot (Wilke, 2020), dplyr (Wickham et al., 2020), and PupillometryR (Forbes, 2020). All the

data used for visualizations and statistical analysis in this work is available on the Open Science

Framework at https://osf.io/vbk8d/.

7.4 Results and Discussion
For each diagnostic, we present the results for truncation and tournament selection together,

and lexicase selection separately. Note that the results for the standard island model assume a

migration interval of 500 unless otherwise specified. We include additional figures and statistical

analyses in our supplemental material in Hernandez et al. (2023).

7.4.1 Exploitation rate diagnostics
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Figure 7.1: Results for the exploitation rate diagnostic. The generation that a satisfactory solution
is found for (A) truncation selection, (B) tournament selection, and (C) lexicase selection. Within
each panel, each column follows the ordering found in the legend. Note that each panel has a
different range of generations.

We used the exploitation rate diagnostic to measure the effect of different population struc-

tures on a selection scheme’s ability to exploit a single, smooth gradient. Regardless of population

structure, all selection schemes improved performance over time, with all 100 replicates finding sat-

isfactory solutions within 50, 000 generations for every pairing of selection scheme and population

structure. Consistent with our hypothesis, however, island structures increased the number of gen-

erations needed to find satisfactory solutions compared to the well-mixed structure for all selection

schemes (Figure 7.1; Wilcoxon rank-sum test: p < 10−3). This effect is less obvious with lexicase

selection due to wider distributions of solve times and greater overlap, but the mean increase in

time to finding a solution is still substantial, with the standard island model taking an average of

≈ 6.18% longer.
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In this work, island structures limit the ability to search promising regions of the search space

(i.e., exploitation rate) by reducing the number of solutions that can cover a newly discovered region

and constraining the number of times high-performing solutions can become parents. The initial

islands are populated with random solutions from the bottom of the search space, where selection

schemes identify parents within each subpopulation to construct the following generation. Selection

schemes may collapse diversity in a subpopulation by favoring the high-performing solutions within

an island, which dictates the path taken to reach the optimum. Thus, each island may be covering

distinct regions of the search space. A well-mixed structure, however, lets a selection scheme identify

parents from the entire population; thus the highest-performing solutions are selected as parents

more often in well-mixed than in island models.

Island structures decrease raw exploitation for truncation and tournament

Both truncation and tournament selection improved performance regardless of population

structure, but the use of island structures decreased the rate of improvement. Interestingly, is-

land structures increased the number of generations required to find satisfactory solutions when

compared to the well-mixed structure for both selection schemes (Figure 7.1 A and B; Wilcoxon

rank-sum test: p < 10−3). This result can be explained by how island structures change the manner

in which a selection scheme can identify parents (Bäck, 1994; Blickle and Thiele, 1995; Goldberg

and Deb, 1991). Specifically, both selection schemes had fewer opportunities to select the top per-

formers as parents. Truncation selection identified 8 unique parents for each island, meaning that

a total of 32 unique parents were used across islands. In the runs using a well-mixed structure,

however, the top 8 unique parents overall were used. Similarly, tournament selection is limited to

picking parents on a given island, even when one island is strictly inferior to another. As such,

more offspring are potentially descendants of lower-performing solutions in both selection schemes.

Indeed, island structures help identify a more diverse set of parents, which helps exploration, but

limits high-performing parents from producing offspring, which limits exploitation.

The standard island structure found satisfactory solutions in fewer generations than the isolated

island structure for both tournament and truncation selection (Wilcoxon rank-sum test: p < 10−3).

This result must be caused by migrations, as it is the only difference between island structures.

Specifically, at least 9 migration events occurred for truncation selection and at least 11 migration

events occurred for tournament selection before all satisfactory solutions were found. Migrations
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give high-performing solutions more opportunities to become parents by landing on new islands.

Both selection schemes likely flood islands with local high-performing solutions, as they naturally

exhibit high selection pressure. Migrants that are better than local solutions are likely to become

parents and their lineage may eventually dominate the new island. This dynamic provides bursts

of exploitation that reduce the number of generations needed to find satisfactory solutions (Cantú-

Paz, 2001). Indeed, each island may initially pursue the optimum from different regions of the

search space, yet migrations help islands pursue the optimum from a better position in the search

space that other islands may reside in.

Increasing the migration interval to 5000 led to fewer migration events before a satisfactory

solution was found, as truncation selection found all satisfactory solutions before a migration event

could occur and in all cases only one migration event occurred for tournament selection. Conversely,

reducing the migration interval to 50 led to over 90 migration events for truncation selection and over

110 migration events for tournament selection before satisfactory solutions were found. For both

selection schemes, the migration interval of 50 found satisfactory solutions in fewer generations than

the migration intervals of 500 and 5000, and the migration interval of 500 required fewer generations

than the interval of 5000 (Figure 7.2 A and B; Wilcoxon rank-sum test: p < 10−3). However,

the well-mixed structure found satisfactory solutions in fewer generations than the standard island

structure with any migration interval (Hernandez et al. (2023); Wilcoxon rank-sum test: p < 10−3).

The reduction in generations needed to find satisfactory solutions for a migration interval of 50 was

expected, as small migration intervals more closely mimic the well-mixed structure and all solutions

encounter one another over time (Skolicki and De Jong, 2005).

Island structures decrease raw exploitation for lexicase

Lexicase selection improved performance over time with all population structures, yet island

structures reduced the rate of improvement. Specifically, island structures required more genera-

tions to find satisfactory solutions than the well-mixed structure (Figure 7.1 C; Wilcoxon rank-sum

test: p < 10−3). Indeed, favoring solutions that are specialists on a subset of traits hinders lex-

icase selection’s performance because a better total performance is always closer to the optimal

peak. This issue is compounded by the island structures, as selection schemes must identify par-

ents within individual islands and there are even fewer opportunities for high-performing solutions

to become parents. The well-mixed structure, however, provides more opportunities for solutions
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Figure 7.2: Results for the exploitation rate diagnostic for standard island structures with small,
moderate, and large intervals. The generation that a satisfactory solution is found for (A) truncation
selection, (B) tournament selection, and (C) lexicase selection. Within each panel, each column
follows the ordering found in the legend. Note that each panel has a different range of generations.

that specialize on multiple traits, where these solutions are farther up the gradient than solutions

that specialize on fewer traits.

No difference was detected in the number of generations needed to reach a satisfactory solution

between both island structures (Wilcoxon rank-sum test: 0.05 < p). Clearly, migration did not help

with finding satisfactory solutions, where at least 46 migration events occurred before satisfactory

solutions were found. Lexicase selection will generate and maintain islands with specialists on

a subset of traits, where the likelihood of islands sharing specialists is low due to its diversity

maintenance. When migrants that possess a unique set of specialized traits are sent to new islands,

lexicase selection will typically favor them within the new island due to test cases being shuffled

each time a parent is identified. The isolated island structure, however, will continue to optimize

specialists within individual islands until new traits give rise to new specialists. Indeed, both of

these approaches mimic the same exploitation abilities for this diagnostic, as no difference is found

between them.

The well-mixed structure found satisfactory solutions in fewer generations than the standard

island structure with any migration interval (Wilcoxon rank-sum test: p < 10−3). Interestingly,

there was no difference in the number of generations needed to reach satisfactory solutions between

the three migration intervals (Figure 7.2 C; Wilcoxon rank-sum test: 0.05 < p). This result was

surprising, as all solutions will eventually encounter one another over time with small migration

intervals (Skolicki and De Jong, 2005), but this has no detectable effect on lexicase selection.
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7.4.2 Ordered exploitation diagnostic
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Figure 7.3: Results for the ordered exploitation diagnostic. The generation that a satisfactory
solution is found for (A) truncation selection, (B) tournament selection, and (C) lexicase selection.
For panel (C), Fail indicates that a satisfactory solution was not found by the end of the evolutionary
search. Note that each panel has a different range of generations.

We used the ordered exploitation diagnostic to measure the effect of different population struc-

tures on a selection scheme’s ability to exploit a single, narrow gradient. Each selection scheme

and population structure pairing displayed improved performance over time, but island structures

reduced the rate at which performance increased (Hernandez et al., 2023). All replicates of tourna-

ment and truncation selection still found satisfactory solutions; lexicase selection, however, found

satisfactory solutions in only 18 out of 100 replicates with migration and in none of the replicates

without migration. Given that this diagnostic penalizes solutions for diverging away from the nar-

row gradient, selection schemes that strictly favor those solutions that are further up the gradient

will reduce the number of generations needed to find satisfactory solutions and thus increase the

likelihood of success. These results provide additional evidence that island structures reduce the

exploitation abilities of the selection schemes used in this work, but the magnitude of the impact

varies by selection scheme.

Island structures reduce ordered exploitation for truncation and tournament

For both tournament and truncation selection, the island structures increased the number

of generations needed to find satisfactory solutions when compared to the well-mixed structure

(Figure 7.3 A and B; Wilcoxon rank-sum test: p < 10−3). This result can be explained by how

island structures reduce the opportunity for the top-performing solutions to be selected as parents,

similar to the exploitation rate diagnostic. In this case, there are typically fewer beneficial mutations
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that will allow a solution to follow the gradient. Therefore, there is a greater advantage for those

rare higher performing individuals to be selected. As with the previous diagnostic, population

structures that facilitate the selection of the top individuals from the entire population are likely

to be most effective.

The isolated island structure needs more generations than both the standard island and well-

mixed structures to reach satisfactory solutions (Wilcoxon rank-sum test: p < 10−3). Yet, the

standard island model reached satisfactory solutions in fewer generations than the isolated island

model for both selection schemes (Wilcoxon rank-sum test: p < 10−3). This result must be due to

the migration of high-performing solutions into new islands, where truncation selection underwent

at least 48 migration events and tournament selection underwent at least 60 migration events to

find satisfactory solutions. High-performing migrants are especially helpful for this diagnostic, as

these migrants can have other islands improve the solutions further up the gradient than the local

solutions. The isolated island structure takes an average of ≈ 4.2% longer than the standard island

model for truncation selection, and ≈ 3.9% for tournament selection.

For both selection schemes, the migration interval of 50 found satisfactory solutions in fewer

generations than the migration intervals of 500 and 5000 (Wilcoxon rank-sum test: p < 10−3),

and the migration interval of 500 required fewer generations than the interval of 5000 (Figure

7.4 A and B; Wilcoxon rank-sum test: p < 10−3). However, the well-mixed structure found

satisfactory solutions in fewer generations than the standard island structure with any migration

interval (Wilcoxon rank-sum test: p < 10−3). As above, this result was expected, as increasing the

frequency of migration events will place high-performing migrants on new islands and give them

more opportunities to be improved.

Island structures reduce the number of satisfactory solutions found with lexicase

Island structures reduced the rate of progress compared to the well-mixed structure for lexicase

selection, but all population structures reached high-quality solutions (Hernandez et al., 2023).

Specifically, for the well-mixed structure all of the replicates reached satisfactory solutions; for the

standard island model 18 out of 100 replicates reached satisfactory solutions; and for the isolated

island model, none of the replicates reached satisfactory solutions. These results indicate that the

size of the local population affects lexicase selection’s ability to reach a satisfactory solution.

While island structures reduced the number of replicates that reached a satisfactory solution,
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Figure 7.4: Results for the ordered exploitation diagnostic for standard island structures with
small, moderate, and large intervals. The generation that a satisfactory solution is found for (A)
truncation selection, (B) tournament selection, and (C) lexicase selection. Within each panel, each
column follows the ordering found in the legend. Note that each panel has a different range of
generations.

the standard island structure reached better-performing solutions than the isolated island structures

(Figure 7.3 C; Wilcoxon rank-sum test: p < 10−3). This result must be due to migrations, which

allow high-performing solutions to propagate onto new islands. Lexicase is driven by diversity and

performs best when it has more options to choose from. The isolated island structures, however,

do not possess any mechanisms to increase island diversity or to improve the opportunities for

near-optimal solutions to be chosen by selection.

Decreasing the migration interval to 50 nearly quadrupled the number of replicates to reach

satisfactory solutions (from 18 to 70 out of 100). Conversely, increasing the migration interval to

5000 dropped the number of satisfactory solutions to only 5 out of the 100 replicates. These results

are illustrated in Figure 7.4 C. As would be expected, the migration interval of 50 reached better-

performing solutions than the migration intervals of 500 and 5000, and the migration interval of

500 found better-performing solutions than the interval of 5000 (Hernandez et al. (2023); Wilcoxon

rank-sum test: p < 10−3).

7.4.3 Contradictory objectives diagnostic

We used the contradictory objectives diagnostic to measure the effect of different population

structures on a selection scheme’s ability to simultaneously locate, maintain, and optimize con-

flicting objectives. All evolutionary runs began with nearly full coverage of activation genes albeit

with very low fitness for each gene. This effect is because starting populations are initialized with

random solutions, and as such each gene is equally likely to be the activation gene in each individ-
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Figure 7.5: Results for the contradictory objectives diagnostic. The satisfactory trait coverage
in the final population for (A) truncation selection, (B) tournament selection, and (C) lexicase
selection. Note that panel (C) has a greater range of coverage compared to panels (A) and (B).

ual solution; with 512 solutions the probability of all 100 genes being active is > 55%. Activation

gene coverage, however, decreased over time and the rate at which coverage decreased varies by

selection scheme and population structure pairing. As such, the coverage converges to different val-

ues under different conditions. Island structures increased satisfactory trait coverage in truncation

and tournament selection early in the run. However, in the standard island model, satisfactory

trait coverage eventually collapsed to a single trait. These results concurred with our hypothesis

that island structures would improve exploration for both truncation and tournament selection.

Contrary to our hypothesis, lexicase selection was negatively impacted by island structures, where

the island structures decreased satisfactory trait coverage.

Island structures can increase exploration for tournament and truncation

Activation gene coverage rapidly decreased for truncation and tournament selection with all

population structures, as both selection schemes naturally exhibit high selection pressure (Chapter

6). For both selection schemes, island structures consistently maintained between 3 and 4 unique

activation genes across the entire population at the 100 generation mark. Conversely, the well-

mixed structure always collapsed to 1 unique activation gene by the 100 generation mark. The

isolated island structure maintained higher activation gene coverage in the final generation than

both the standard island and well-mixed structures (Wilcoxon rank-sum test: p < 10−3). There

was no difference in activation gene coverage in the final generation between the standard island

and well-mixed structures, as all populations had exactly one unique activation gene.

Each island under truncation or tournament selection was able to maintain at most one unique
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activation gene. As such, populations with four islands (and prior to migration, if any) would end

up with four randomly chosen activation genes, one per island. These activation genes were usually

distinct (> 90% of the time) but did occasionally overlap by chance. For standard island models,

migrations quickly collapsed the activation gene coverage. Indeed, by four migration events, all

standard island model populations had reduced to only one unique activation gene.

Beyond merely looking at the number of unique active genes in a population, we are also

interested in whether selection was able to optimize those genes. In all cases, the number of

active genes at the end of evolution was identical to the number of satisfactory genes. Looking

best coverage found across the entire run, both island structures achieved greater satisfactory trait

coverage than the well-mixed structure (Wilcoxon rank-sum test: p < 10−3), and no difference

was detectable between both island structures (Wilcoxon rank-sum test: 0.05 < p). The success

of the standard island model, however, was despite migrations, not because of them as the diverse

satisfactory traits were predominantly found prior to the first migration event.

In the standard island model, reducing the migration interval to 50 led to a satisfactory trait

coverage of one throughout the evolutionary run, as 50 generations was insufficient to optimize

the traits before the first migration collapsed the diversity of the activated genes. Increasing the

migration interval to 5000, however, led to qualitatively identical results to the interval of 500

(Hernandez et al., 2023). The only obvious difference with the longer interval between migrations

was a delay in the coverage collapsing to one. Indeed, the use of frequent migrations is detrimental

to this diagnostic, as islands quickly become dominated by solutions with only one satisfactory

trait.

Island structures reduce exploration for lexicase selection

Activation gene coverage decreased at a slower rate for lexicase selection, although the specific

rate at which coverage decreases varies by population structure. Specifically, coverage decreased

faster for island structures than the well-mixed structure, and coverage decreased faster for the

standard island structure than the isolated island structure. By the final generation, the well-mixed

structure maintained the most activation gene coverage (36 to 42 unique activation genes), followed

by the isolated island structure (29 to 38), with the standard island structure reaching the least

coverage (15 to 19) (Hernandez et al. (2023); Wilcoxon rank-sum test: p < 10−3). In a standard EA,

lexicase selection alone is effective at maintaining diversity, and this effect is stronger as population
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Figure 7.6: Results for the contradictory objectives diagnostic for standard island structures with
small, moderate, and large intervals. The satisfactory trait coverage in the final population for (A)
truncation selection, (B) tournament selection, and (C) lexicase selection. Note that panel (C) has
a greater range of coverage compared to panels (A) and (B).

size increases (Chapter 5). Ignoring migration, each island would be able to maintain substantially

lower diversity because of its smaller size (Dolson and Ofria, 2018), and the diversity between islands

would be independent, therefore allowing overlap. While migrations may superficially seem like

they should help with overall diversity, they will actually cause more overlap between islands. The

number of unique traits maintained per island would remain the same in the presence of migration,

but the overall pool of traits would become more homogenized. Indeed, across all replicates of the

standard island model, we found at most one non-overlapping activation gene among all islands by

the end of the run. Since lexicase selection acts on only one island at a time, it would not be able

to rebalance based on inter-island duplications.

As would be expected, all activated genes that were maintained over time, were eventually

satisfactory. Some active genes were lost due to random chance; examining the entire run, the

number of satisfactory traits that ever existed remains consistent with the above: the well-mixed

structure ranged between 45 and 51 unique satisfactory traits, the isolated island structure ranged

between 35 and 45, and the standard island structure ranged between 21 and 29.

The best satisfactory trait coverage achieved varied by migration interval, where more frequent

migration intervals collapsed diversity more rapidly. The migration interval of 5000 ranged between

34 and 45 unique satisfactory traits, the migration interval of 500 ranged between 21 and 29, and

the migration interval of 50 ranged between 21 and 26. Indeed, the migration interval of 5000

achieved greater coverage than both migration intervals of 500 and 50 (Wilcoxon rank-sum test:
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p < 10−3), and no difference was detectable between migration intervals of 500 and 50 (Figure 7.6;

Wilcoxon rank-sum test: 0.05 < p). Yet, all migration intervals achieved less coverage than the

well-mixed model (Hernandez et al. (2023); Wilcoxon rank-sum test: p < 10−3).

7.4.4 Multi-path exploration diagnostic

We used the multi-path exploration diagnostic to measure the effect of different population

structures on a selection scheme’s ability to simultaneously maintain and exploit multiple gradi-

ents. All selection schemes begin with nearly perfect activation gene coverage due to random start

conditions, but, as with the previous diagnostic, coverage decreased over time and the amount of

coverage maintained differs by population structure. Both the standard island structure with a mi-

gration interval of 5000 and the isolated island structure improved the quality of the solutions found

for truncation and tournament selection. The shorter migration intervals did not show obvious im-

provement. For lexicase selection, however, any island structure negatively affected the quality of

solutions reached. Indeed, these results provide additional evidence that an island structure must

be tuned for the selection scheme it is combined with and the problem at hand.
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Figure 7.7: Results for the multi-path exploration diagnostic. Distribution of the best performance
reached throughout evolutionary search per replicate for (A) truncation selection, (B) tournament
selection, and (C) lexicase selection.

Island structures increase exploration for tournament and truncation

Early exploration is critical for this diagnostic so that many paths can be tried, and the

best paths can be settled upon. Isolated island structures maintained the greatest activation gene

coverage, allowing them to explore more pathways in the search space than either the well-mixed

or standard island structure. Both the well-mixed and standard island structures failed to explore

many pathways in the search space, as they could not maintain high activation gene coverage. The
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collapse in diversity observed is consistent with those from the contradictory objective diagnostic

(Section 7.4.3).

The quality of the best solutions reached in the entire run varies across selection schemes

and population structure pairings. The isolated island structure found better-performing solutions

than the well-mixed and standard island structures (Wilcoxon rank-sum test: p < 10−3), and

we were unable to detect any difference between the well-mixed and standard island structures

(Figure 7.7 A and B; Wilcoxon rank-sum test: 0.05 < p). The increase in the quality of solutions

appears to be explained by the independent exploration on the isolated islands. The ordered

exploitation results demonstrate that both selection schemes can reach the end of a single, narrow

gradient regardless of population structure given enough time. The well-mixed and standard island

structures eventually collapsed to low activation gene converge, which prevented exploration of

more than one primary pathway (though deleterious mutations could produce shorter pathways

that were degraded from the original). Conversely, the isolated island structure maintained an

average activation gene coverage approximately three times greater than the other two population

structures, which increases the chances of finding better-performing solutions.

For both selection schemes with the standard island model, the migration interval of 5000

reached better-performing solutions than the migration intervals of 50 or 500 (Figure 7.8 A and

B; Wilcoxon rank-sum test: p < 10−3), and we were unable to detect a difference between the

migration intervals of 50 and 500 (Wilcoxon rank-sum test: 0.05 < p). Interestingly, the migration

interval of 5000 was the only interval that reached better-performing solutions than the well-mixed

structure (Wilcoxon rank-sum test: p < 10−3), and we were unable to detect a difference between

the migration interval of 5000 and the isolated island structure (Hernandez et al. (2023); Wilcoxon

rank-sum test: 0.05 < p). The increase in quality of solutions reached with the migration interval

of 5000 can be explained by islands having enough time to reach the end of a gradient prior to a

migration event, as both selection schemes find satisfactory solutions before 5000 generations on

the ordered exploitation diagnostic (Section 7.4.2). Conversely, migrations that happen early on in

the evolutionary run will send migrants to new islands that can potentially out-compete solutions

pursuing better gradients.
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Figure 7.8: Results for the multi-path exploration diagnostic for standard island structures with
small, moderate, and large intervals. Distribution of the best performance reached throughout
evolutionary search per replicate for (A) truncation selection, (B) tournament selection, and (C)
lexicase selection.

Island structures reduce lexicase’s ability to simultaneously explore multiple pathways

Maintaining multiple gradients is essential for success with this diagnostic, as it enhances the

chances of following the gradient that leads to the optimum. Consistent with the contradictory

objectives diagnostic, both island structures reduced lexicase selection’s performance compared to

a well-mixed population (Figure 7.7 C; Wilcoxon rank-sum test: p < 10−3). However, the isolated

island structure reached better solutions than the standard island structure (Wilcoxon rank-sum

test: p = 0.0032).

Islands with migration create a shared pool of candidates across all islands, but the efforts

of lexicase selection are merely duplicated from one island to another rather than being able to

balance across all available individuals. For islands with no migration, lexicase selection appears to

maintain similar activation gene coverage as the well-mixed structure (Hernandez et al., 2023), but

this was likely due to each individual island focusing on a unique subset of activation genes. In both

cases, the lower coverage in each individual island is not conducive to success on this diagnostic. In

fact, previous work illustrates that lexicase selection’s performance on this diagnostic is influenced

by the ratio between the population size and the number of gradients to explore 5.

The quality of the best solutions reached throughout an evolutionary run varies by the mi-

gration interval. Specifically, the migration interval of 50 reached better solutions than migration

intervals of 500 and 5000 (Wilcoxon rank-sum test: p < 10−3), and the migration interval of

5000 reached better solutions than the interval of 500 (Figure 7.8 C; Wilcoxon rank-sum test:
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p = 0.0013). This result is interesting, as the standard island model with the migration interval of

500 reached worse performances than either longer or shorter migration intervals, but moderate mi-

gration intervals are typically recommended (Skolicki and De Jong, 2005). Yet, the improvements

in performances reached by the migration intervals of 50 and 5000 can be explained by how they

mimic the well-mixed and isolated island structures, respectively. Frequent migrations closely mimic

well-mixed structures and all solutions eventually encounter one another, which benefits lexicase

selection on this diagnostic. Conversely, rare migrations closely mimic isolated island structures,

where no difference was detected between the standard island structure with a migration interval

of 5000 and the isolated island structure when comparing the best solutions reached throughout

an evolutionary run (Hernandez et al. (2023); Wilcoxon rank-sum test: 0.05 < p). Clearly, the

pairing of lexicase selection and island structure with the migration interval of 500 is not conducive

to success on this diagnostic.

7.5 Conclusion
In this work, we used the DOSSIER suite to measure the effect different island structures have

on the exploitation and exploration abilities of three prominent selection schemes: truncation selec-

tion, tournament selection, and lexicase selection. The selection schemes tested in this work were

paired with either a well-mixed structure, a standard island structure (i.e., an island model with

migration), and an isolated island structure (i.e., an island model with no migration). Island struc-

tures are known to help promote diversity (Skolicki and De Jong, 2005; Tomassini, 2005), which is

a key factor in problem-solving and avoiding premature convergence. We found that the raw ex-

ploitation abilities of all three selection schemes were negatively impacted by the island structures,

requiring more generations to reach satisfactory solutions. Additionally, island structures improved

search space exploration when combined with truncation or tournament selection, as demonstrated

by the contradictory objectives and multi-path exploration diagnostics. Contrary to our expecta-

tions, however, we found that island structures negatively impacted lexicase selection’s exploration

abilities.

Indeed, we found that the migration interval for the standard island structure affected perfor-

mance differently across each diagnostic. For exploitation-focused diagnostics, shorter migration

intervals reduced the number of generations needed to find satisfactory solutions for tournament and

truncation selection. Yet, for exploration-focused diagnostics, longer migration intervals improved
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the quality of solutions found for tournament and truncation selection. This provides evidence that

the migration interval must be adjusted for a given problem.

Island structures introduce new dynamics that interact with selection schemes. Predicting

these combined dynamics may be counterintuitive. For example, our hypotheses on how the island

structures would affect both truncation and tournament selection were supported, as exploitation

was negatively impacted and exploration was positively impacted. Making predictions for both

selection schemes was simple, as they both focus purely on exploitation. However, our simple

intuition for how island structures would affect lexicase selection’s exploration abilities was not

supported. Indeed, lexicase selection’s diversity maintenance is sensitive to the ratio between

population size and the number of test cases, and island models alter this dynamic. As such,

practitioners must consider how a particular population structure should be implemented and how

the structure will interact with the selection scheme used.

Here, we focus on the theory behind island models, ignoring the specific implementation details

(e.g., whether it is serial or parallel). This abstraction facilitates our ability to describe the model,

understand how it operates, and identify general properties. Specifically, we use island structures

that mimic homogeneous island models, where all subpopulations remain in perfect synchronization

and each island is configured identically. Indeed our diagnostics help illuminate the impact these

island structures have on three prominent selection schemes. In future work, we can evaluate more

complex island structures, such as heterogeneous island models that remain in perfect synchroniza-

tion, each island is configured differently (e.g., different population size, selection scheme, variation

operators, etc.).

In examining the role of island models, the diagnostics were unable to identify conditions

under which island models with migration outperformed both alternative population structures.

The island models were, however, clearly on the Pareto front, in that they were better than the

well-mixed structure on some combinations of diagnostics and selection schemes, and better than

the isolated island structure on others. That said, these results identify a potential gap in our

diagnostic testing suite.

The four diagnostics described in this dissertation are intended as an initial starting point for

the DOSSIER suite. We have already identified the need for additional diagnostics that examine

a selection scheme’s capacity for valley crossing, though we do not expect those diagnostics to
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identify a situation where the island models with migration outperform the other contenders. For

this situation, we believe that the real advantage of island models does not lie in a pure improvement

in either exploration or exploitation; instead, it may be the ability to alternate between the two

capacities. While islands are separated they will have an easier time exploring in different directions,

thus increasing exploration overall. At each migration event, an island model shifts into much

higher exploitation as newly migrated solutions compete with existing options on each island.

Selecting a migration interval is likely most important for determining the balance between periods

of exploration and bursts of exploitation.

We have multiple possible directions to still go in order to investigate these ideas about ex-

ploitation and exploration in island models. In the literature, one common method to illustrate

the value of islands is to introduce recombination (Whitley et al., 1999), a factor we ignored in

order to first focus on the fundamentals of how island models work. Recombination is valuable

because it allows for the best parts of solutions found on different islands to be combined into a

single solution. Unfortunately, we also do not expect our existing diagnostics to benefit greatly

from this form of additional search. In order for the additional exploration provided by islands to

be helpful under recombination, it has to produce building blocks on individual islands that would

not have been as easily produced in a well-mixed population. It is not clear that any of the current

diagnostics have this property.

In examining diagnostics to add to DOSSIER to capture this important aspect of fitness

landscapes, we have multiple options. One possibility is to structure our valley-crossing diagnostic

such that there are multiple independent valleys to cross (perhaps one per trait). In such as scenario,

if different islands cross different valleys between migration events, recombination would be able to

produce a single solution where all valleys had been traversed. Alternatively, we could also produce

a diagnostic that does not rely on recombination, but instead creates a simple landscape where

populations must be able to alternate between exploration and exploitation many times in order

to find a satisfactory solution. The standard island structure should exhibit such an alternation,

and we would be able to focus experiments on tuning the migration interval to match the needed

exploration periods for optimal evolutionary rate.
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Chapter 8
Conclusions

Evolutionary algorithms (EAs) provide an effective set of tools for solving different kinds of

problems. Yet, engineering these algorithms to maximize problem-solving success is not an intuitive

process. Two issues arise when a new EA is being developed and tested: (1) describing the EA such

that it can be intuitively understood and (2) understanding why the EA performs as well as it does.

EAs typically consist of multiple integrated components that can make describing them difficult.

Additionally, benchmark suites used for testing may contain problems with complex search spaces

that do not provide an intuitive understanding of how an EA traverses them. Both issues are

challenging, but resolving them will allow researchers to use principled approaches for developing

better EAs.

8.1 Contributions
In this dissertation, I developed a theoretical framework that formally defines the selection

scheme used within a generational EA into three components, which helps to describe an EA

more precisely. The framework played a crucial role in the development of both cohort lexicase and

down-sampled lexicase, where down-sampled lexicase selection is one of the more promising lexicase

variants to date (Helmuth and Abdelhady, 2020). Indeed, the modifications to lexicase selection

illustrated how even small alterations to a selection scheme can lead to different problem-solving

dynamics and capabilities. I have also demonstrated the value of developing diagnostic problems

that facilitate a more intuitive understanding of the strengths and weaknesses of a selection scheme,

and how a scheme traverses the search spaces of each diagnostic. Indeed, I was able to use the

diagnostics to establish key differences between commonly used selection schemes.

In summary, this dissertation makes the following contributions:

• In Chapter 2, I introduced my selection scheme framework that formally defines a selection

scheme through three components: population structures, trait processing, and selectors. By

representing selection schemes with this framework, I can easily modify, analyze, and ex-

tend different selection scheme configurations and combine concepts across otherwise distinct

selection schemes.

• In Chapter 3, I introduced two new variations of lexicase selection designed to reduce the
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number of per-generation evaluations: down-sampled lexicase and cohort lexicase. I used the

two new lexicase variants to evolve populations of linear genetic programs to solve five different

program synthesis problems. This work demonstrated that the random subsampling of test

cases can the improve problem-solving success of lexicase selection, and both down-sampled

and cohort lexicase variants are successful for a variety of problems.

• In Chapter 4, I attempted to develop a deeper understanding of why subsampling test

cases could improve problem-solving success for lexicase selection. This work made three key

findings, where the subsampling variants of lexicase (1) did not outperform standard lexicase

selection given a fixed number of generations, but (2) required fewer total evaluations than

standard lexicase selection to evolve solutions on four program synthesis problems, and yet (3)

struggled with specialist maintenance. However, the program synthesis benchmark problems

used had complex search spaces, making it challenging to fully disentangle the effects of

subsampling on how lexicase traversed the search space.

• In Chapter 5, I introduced the exploration diagnostic as an intuitive tool to measure the

exploration abilities of lexicase selection and several of its variants. The exploration diagnostic

creates a search space with multiple pathways that differ in path length and peak height, where

selection schemes are challenged with steering populations to the correct pathway that leads

to the optimum. I made two key findings for standard lexicase selection on this diagnostic: (1)

lexicase selection facilitates better search space exploration than tournament selection and (2)

lexicase selection’s exploration abilities are sensitive to the ratio between the population size

and the number of test cases. Additionally, I found that epsilon lexicase outperforms standard

lexicase selection on this diagnostic, while the remaining variants degrade the exploration

abilities of standard lexicase selection.

• In Chapter 6, I introduced the DOSSIER suite that holds the set of diagnostics used in

this work. In this initial version of the suite, there are a total of four diagnostics that

measure different aspects of exploitation and exploration. I used the DOSSIER suite to

diagnose a variety of commonly used selection schemes for their exploitation and exploration

abilities. I found that truncation and tournament selection excel at exploitation, but struggle

with exploration. Novelty search excelled at exploration, but struggled with exploitation.
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Fitness sharing performed poorly across all diagnostics, which implies that there is some

aspect of problem-solving that the current set of diagnostics is missing. Lexicase selection

performed reasonably well across all diagnostics. Nondominated sorting excelled at managing

contradictory objectives, but struggled with exploitation.

• In Chapter 7, I used the DOSSIER suite to measure the effect different population struc-

tures have on the exploitation and exploration abilities of three selection schemes: truncation

selection, tournament selection, and lexicase selection. Three population structures were used

in this work: a well-mixed structure, a standard island structure with migration, and an iso-

lated island structure with no migration. I found that island structures reduce the exploitation

abilities for the three selection schemes tested. Additionally, I found that island structures

increase the exploration abilities for both truncation selection and tournament selection, but

negatively impact the exploration abilities of lexicase selection.

Overall, this dissertation represents my initial attempt at moving research forward into more

fundamental analyses of how EAs function, how we can disentangle their dynamics more intu-

itively, and how we can use these principles to design more effective evolutionary problem-solving

techniques. I believe that I have clearly demonstrated the power and potential of this approach.

The DOSSIER suite is still new, and I have started it with four diagnostics that I believe are

all essential to understanding how an EA operates. That said, there are still a huge number of

other critical dynamics and characteristics of EAs that I do not yet have diagnostics to identify.

One of my key ideas for the DOSSIER suite is that it should always be able to highlight factors

that make one EA more effective than another on a subset of problems. Any time an EA is identified

that is able to show superior performance on a real-world problem, but where this advantage is

not yet reflected in DOSSIER results, it indicates a need to add an additional diagnostic that

can account for this disparity. The procedure for adding such a diagnostic is to (1) hypothesize

about the core mechanism that the EA under investigation is using, (2) simplify the idea as far

as possible (without losing its importance), (3) design a proposed diagnostic that directly targets

this simplified mechanism, and (4) demonstrate that this new diagnostic provides the needed novel

information in an intuitive form.

For example, in our results above, we were unable to demonstrate any advantage to using
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Figure 8.1: Example of how sawtooth valleys can be applied in the conversion of a gene to a trait.

fitness sharing, yet fitness sharing has been frequently used in real-world works to positive results.

In preliminary tests, however, I have been able to show that fitness sharing is more effective at

valley crossing than any of the other selection schemes that I have been examining. I am still

finalizing the exact valley-crossing diagnostics that would be valuable to include in DOSSIER, but

it will likely be a sawtooth function for the conversion of each gene to a trait, such as in Figure 8.1.

When running the set of selection schemes from Chapter 6 on this new candidate diagnostic,

the results were intriguing (shown in Figure 8.2).
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Figure 8.2: Results for the preliminary valley-crossing diagnostic. This diagnostic sums the values
of all traits after the valley-crossing transformation from Figure 8.1 is applied. This graph shows
the distribution of the best performance reached throughout the evolutionary search for the same
selection schemes and parameters evaluated in Chapter 6.

Not only does this diagnostic illustrate the advantage of using fitness sharing, but it also

identifies a clear shortcoming of lexicase selection. In retrospect, the result with lexicase is not

surprising. Lexicase selection maintains progress on multiple upward pathways by shuffling the

order of test cases, but it always picks the very best individuals on each test case as they are
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applied. As such, lexicase selection is unable to take any downward steps, excluding it from

performing valley crossings that cannot occur with a single mutational step. The above extension

is a project that I am currently engaging in, but I have many other thoughts on how this work

should continue.

8.2 Future directions
Below, I highlight two planned directions: diagnosing EAs with sophisticated selection schemes

and additional extensions to the DOSSIER suite.

8.2.1 Diagnosing EAs with sophisticated selection schemes

In this dissertation, I varied components in a simple EA that repeats three key phases: evalua-

tion, selection, and reproduction. This model provides a good starting point when engineering and

configuring an EA for the problem at hand, but often needs to be extended for more challenging

problems. Typically, only one selection scheme is used within an EA, however, this approach locks

the EA into the single search strategy implemented by the selection scheme. Instead, I envision

using the DOSSIER suite to identify effective combinations of different selection schemes or other

approaches that use more than one scheme to improve overall problem-solving success.

Combining selection schemes

As I have repeatedly shown, all selection schemes implement their own unique search strategy

that strikes a balance of exploitation and exploration. Each selection scheme can be broken down

into three fundamental components with my selection scheme framework: population structure,

trait processing, and selectors. Decomposing a selection scheme into these three components makes

it easier to view different selection schemes as interchangeable parts, if compatible. For example,

the framework makes it intuitive to combine tournament selection and fitness sharing. The three

components of this new selection scheme would consist of a population structure that is well-mixed,

traits that are processed so that fitness is shared among similar solutions, and parent identification

in tournaments that use this processed fitness value. While this may be a simple example, the

same methodology works for more complex selection scheme combinations. For example, lexicase

selection and novelty search are combined in Jundt and Helmuth (2019), where the framework

would consist of a population structure that is well mixed, trait processing that uses independent

test cases and novelty scores, and parent identification using lexicase filtering.

I am most excited about developing new selection schemes that harvest components from
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existing schemes, and evaluating their effectiveness on both real-world problems and the DOSSIER

suite. My hope is to find new selection scheme variants that increase the problem-solving success

over the selection schemes from which they derive due to more synergistic interactions. Additionally,

the idea of viewing these newly combined selection schemes as offspring from their “parent” selection

schemes hints at the idea of using evolution to evolve a new set of promising selection schemes,

where a Pareto set can be uncovered.

Multi-selection scheme approach

Using one selection scheme serves as a good starting point when constructing an EA for a given

problem, yet this approach limits the EA to one search strategy, regardless of the structure of the

local search space. The use of a single search strategy may reduce an EA’s problem-solving success,

as some regions of a search space may require more exploitation, while others may require more

exploration. Using multiple selection schemes may help mitigate this issue, but the use of more

than one selection scheme makes it even more difficult to understand the evolutionary dynamics

occurring during the search.

Typically, if one selection scheme is used, it identifies the complete set of parents to construct

the next generation of solutions. However, if more than one selection scheme is used, each selec-

tion scheme must split the number of parents identified. For example, let us assume that both

tournament selection and novelty search are going to be used to identify parents. The former

selection scheme excels at exploitation and the latter excels at exploration. As such, altering the

balance of search space exploitation and exploration is rather simple, where allowing tournament

selection to identify more parents increases exploitation, and allowing novelty search to identify

more parents increases exploration. This tuning of search space exploitation and exploration will

be useful, as there is more flexibility with this approach than using a single selection scheme.

Additionally, dynamically adjusting the proportion of identified parents by selection scheme and

alternating between the selection scheme being used throughout an evolutionary run may be ben-

eficial to avoid premature convergence and increase the exploitation of promising regions of the

search space (Ragusa and Bohm, 2022). Indeed, finding useful combinations of selection schemes

that increase problem-solving on real-world problems is preferred, and the DOSSIER suite allows

us to understand how the multiple selection schemes affect exploitation and exploration abilities.

Island models provide an additional approach for using multiple selection schemes to guide an
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evolutionary search. In Chapter 7, I integrated a homogeneous island structure within a single EA,

where the same selection scheme was used within each individual island. Partitioning the population

into separate islands allowed for each subpopulation to focus on a distinct region of a search space,

and migrations allowed for different islands to encounter solutions potentially residing in new regions

and differing in performance. However, the selection scheme used can collapse the diversity each

individual island maintains if the scheme overly emphasizes high-performing solutions. The use of

a heterogeneous island structure may help reduce this issue, as different selection schemes may be

used within each island. For example, let us assume that each island is assigned either tournament

selection or novelty search to identify parents. The distribution of selection schemes within islands

will impact the overall exploitation and exploration, as islands with tournament selection will focus

on exploitation, and islands with novelty search will focus on exploration. As such, exploitation and

exploration can be adjusted by tuning the number of islands paired with a given selection scheme.

Of course, the island structure configuration plays an important role in the overall exploitation and

exploration, which can make it difficult to understand how everything is affecting the evolutionary

search. Fortunately, the DOSSIER suite allows us to test how each individual component may

affect exploitation and exploration abilities.

8.2.2 Additional extensions to the DOSSIER suite

The DOSSIER suite used in this dissertation consisted of four diagnostics (Chapter 6 and 7):

the exploitation rate diagnostic, the ordered exploitation diagnostic, the contradictory objectives

diagnostic, and the multi-path exploration diagnostic. Each diagnostic generates a unique search

space that requires different degrees of exploitation and exploration to reach optima. While the

current set of diagnostics revealed key differences among selection schemes, there are additional

characteristics to consider for exploitation and exploration.

Both the contradictory objective and multi-path exploration diagnostic encompassed search

space exploration from the perspective of populations exploring multiple gradients residing within

a search space. Indeed, this flavor of exploration is a problem-solving characteristic that selection

schemes encounter in many problems, but a different kind of exploration may be needed to cross

fitness valleys in a search space, as discussed above. While the preliminary valley crossing diagnostic

effectively adds valley crossing to the exploitation diagnostic, this transformation could be applied to

all four existing diagnostics, allowing a more nuanced study of how valleys interact with exploitation
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and other aspects of exploration.

All of the existing diagnostics specify a unique transformation from a genotype to a phenotype,

with no stochasticity in this process. Future work could apply small amounts of noise when a

transformation occurs to test how well a selection scheme can traverse a noisy search space. For

example, noise can be applied to each trait in the phenotype, where the magnitude of the noise is

taken from a normal distribution with a mean of 0.0 and a standard deviation of 1.0 (N (0.0, 1.0)).

Stochasticity is found in many real-world problems that EAs encounter, thus, studying how selection

schemes react to a noisy environment is important (Beyer, 2000; Neumann et al., 2020). Indeed, the

extension of the DOSSIER suite with noise will contribute to this research and generate a deeper

understanding of how noise affects selection schemes.

Another axis that could extend the DOSSIER suite is considering the relationship between

genes and traits. Currently, each individual gene can be interpreted as a single specific test case

and the corresponding trait can be interpreted as a result of the given test case. It is, however,

possible to create duplicates of an existing trait that introduce redundancy. In fact, redundancy is

seen within real-world problems, as it is common for multiple test cases to focus on the same exact

functionality required in the solution. To account for this aspect, we could generate redundancy by

randomly determining the number of times the trait associated with each specific gene is generated.

The addition of redundant test cases would have interesting results across diagnostics. Specifically,

the multi-path exploration diagnostic with redundancy will generate multiple instances of each

pathway. This redundancy in pathways could impact selection schemes in different ways, as some

may be better than others at handling redundant test cases.

8.3 Closing remarks
My passion for mathematics and computer science naturally guided me to fields related to

artificial intelligence (AI) and machine learning (ML). Mathematics allowed me to understand,

speak, and write the language used for algorithms within AI and ML. Computer science allowed me

to bring these algorithms to life and apply them to real problems. While the application and power

of both AI and ML initially captured my interest, it was when I was presented with an alternative

process to solve difficult real-world problems – evolution – that I was truly inspired. The first time

evolution caught my attention was during CSE 431 Algorithm Engineering, taught by none other

than Dr. Charles Ofria and Dr. Alexander Lalejini. Both Dr. Ofria and Dr. Lalejini demonstrated
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the power and potential of using evolution as a unique optimization procedure to generate solutions

that may be unintuitive to a human engineer. Indeed, evolution is a creative optimizer when

considering all of the complex organisms in the world today living in harsh environments.

I believe this dissertation advances the ongoing research for developing a deeper understanding

of EAs. Specifically, this dissertation adds to this discussion through two key contributions: I

engineered tools that increase our understanding of selection scheme abilities and I developed

a theoretical framework to describe a selection scheme. The diagnostics provide a new set of

problems that allow practitioners to develop a better intuition of the strengths and weaknesses of a

selection scheme, which is crucial for understanding why problem-solving success may occur. The

selection scheme framework provides a formal definition to describe selection schemes, which can

potentially lead to a common language. Clearly, both contributions provide additional knowledge

for developing a deeper understanding of EAs.

Throughout the completion of this dissertation, I have gained a tremendous amount of knowl-

edge and experience working with EAs. Chapters 3 and 4 focus on evaluating EAs with problems

from benchmark suites, which provided me with experiences on how to use EAs to solve real-world

problems. Later chapters focused on the theoretical problem-solving characteristics of the selection

scheme within an EA. Following graduation, I will continue to hone my research skills as a post-

doctoral scholar with Dr. Jason Moore’s Lab at Cedars-Sinai. I am excited to start this postdoc,

as it will give me the opportunity to apply the knowledge I gained from this dissertation to new

problem domains, including biomedical engineering, and state-of-the-art EAs such as TPOT (Olson

and Moore, 2019).
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