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ABSTRACT 

One key challenge in the deployment of future e-mobility systems is to ensure the safe 

operating condition of high-energy density batteries. Therefore, understanding battery failure 

mechanisms and reducing safety risks are critical in the design of electrified systems. Although 

the response of battery materials and systems under various conditions has been extensively 

explored in recent years, there are still a lot of challenges with developing models for predicting 

failures. One such challenge is the development of accurate thermomechanical models to predict 

battery failure caused by combined thermal and mechanical loadings. Such thermomechanical 

models aim to identify the thermomechanical failure condition of batteries through battery 

materials such as the separator. The structural integrity of battery separators plays a critical role in 

battery safety. This is because the deformation and failure of the separator can lead to an internal 

short circuit which can cause thermal runaway. In thermal runaway scenarios, the separator first 

expands and then shrinks before reaching its melting temperature. Furthermore, this shrinkage 

induces tensile stresses in the separator. Hence, developing a thermomechanical model that can 

predict the response of separators in their entire range of deformation is necessary. 

Commonly used battery separators are dry-processed polymeric membranes with 

anisotropic microstructures and deformation modes that involve various physical processes that 

are difficult to quantify. These complexities introduce challenges in their characterization and 

modeling as their properties and structural integrity depend on multiple factors such as loading 

rate, loading direction, temperature, and the presence of an electrolyte. To predict the structural 

integrity of polymeric separators in abuse scenarios an understanding of the thermal and 

mechanical behavior of the separator is needed. Due to the multiple factors influencing the 

structural integrity of polymeric battery separators, developing models for the prediction of their 

thermomechanical response has always been challenging. Furthermore, computational models in 

the form of user-defined material models are needed to account for these factors since existing 

material models in commercial software do not have that capability.  

In this study, thermomechanical models are developed to predict the response of polymeric 

battery separators in thermal ramp scenarios. The time-dependent response of polymeric battery 

separators is taken into account and the material is modeled as viscoelastic in the deformation 

region before yielding and as viscoplastic under large deformations post-yield. As a first step, a 

linear thermoviscoelastic model developed on an orthotropic framework was extended to account 



  

for the temperature effect and the plasticization effect of electrolyte solutions to predict the 

thermomechanical response of separators within the linear range of its deformation. In the 

developed linear orthotropic thermomechanical model, the temperature effect was introduced 

through the time-temperature superposition principle (TTSP). To account for the plasticization 

effect of electrolyte solutions on the thermomechanical response of the separator, a time-

temperature-solvent superposition method (TTSSM) was developed to model the behavior of the 

separator in electrolyte solutions based on the viscoelastic framework established in air. 

Furthermore, an orthotropic nonlinear thermoviscoelastic was developed to predict the material 

response under large deformations before the onset of yielding. The model was developed based 

on the Schapery nonlinear viscoelastic model and a discretization algorithm was employed to 

evaluate the nonlinear viscoelastic hereditary integral with a kernel of Prony series based on a 

generalized Maxwell model with nonlinear springs and dashpots. Temperature dependence was 

introduced into the model through the TTSP. Subsequently, the developed nonlinear viscoelastic 

model was coupled with a viscoplastic model developed on the basis of a rheological framework 

that considers the mechanisms involved in the initial yielding, change in viscosity, strain softening 

and strain hardening in the stress-strain response of polymeric battery separators. The coupled 

viscoelastic – viscoplastic model was developed to predict the thermomechanical response of 

separators in their entire range of deformation before the onset of failure. 

The material investigated in this work is Celgard®2400, a porous polypropylene (PP) 

separator. Experimental procedures were carried out under different loading and environmental 

conditions, using a dynamic mechanical analyzer (DMA), to characterize the material response, 

calibrate and validate the developed models. The developed thermomechanical models were 

implemented as user-defined subroutines in LS-DYNA® finite element (FE) package, which 

enables simulations with the thermal expansion/shrinkage behavior. Furthermore, analytical 

solutions were developed to verify the implementation and predictions of the viscoelastic models. 

The results from this study show that the model predictions of the material anisotropy, rate 

dependence, temperature dependence, and plasticization effect of electrolyte solutions agree 

reasonably well with the experimental data. The results also demonstrate that the non-isothermal 

simulations without considering the thermal expansion/shrinkage behavior of the separator 

resulted in large errors. 
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Chapter 1 Introduction 

This chapter presents an overview of battery separators, focusing on dry-processed 

polymeric microporous membranous separators used in lithium-ion batteries. The problem to be 

addressed in this thesis is defined and the research objectives and tasks are delineated. Finally, an 

outline, detailing the organization of this thesis is presented in this chapter. 

1.1 Lithium-ion Battery Separators 

In lithium-ion batteries (LIBs), the separator is a porous membrane that is placed between 

electrodes of opposite polarity to provide electrical insulation while allowing ionic transport 

between the electrodes [1]. In the working condition of a LIB, the separator is immersed in an 

electrolyte through which ions flow. Hence, the separator must be chemically and 

electrochemically stable, and mechanically strong. Fig.1.1 shows a typical internal structure of a 

LIB cell comprising the anode, cathode and separator immersed in an electrolyte. According to 

composition and structure, separators are categorized into three major groups: (1) microporous 

polymer membranes [5], non-woven fabric mats [6], and inorganic composite separators [7]. 

However, polymeric membranes of 20-30 mm thickness are widely used in commercial LIB. This 

is due to their relatively low cost, thermal shutdown properties, and their provision of higher 

energy and power densities due to their small relative thickness [4]. The most commonly used 

polymeric membranes are semi-crystalline polyolefin materials such as polyethylene (PE), 

polypropylene (PP), their blend (PP-PE), and high-density polyethylene (HDPE). Dry-processed 

polymeric LIB separators show an orthotropic mechanical response, meaning that the material has 

three planes of symmetry and three corresponding mutually orthogonal axes [8]. These are the 

machine direction (MD), the transverse direction (TD), and the through-thickness direction (TTD). 

This anisotropy is introduced in the manufacturing process which involves annealing, stretching 

along the MD, and heat fixation [1,4].  
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Figure 1.1 Typical internal schematic of a lithium-ion battery cell [9]. 

Furthermore, the surface microstructure of a typical polymeric separator is depicted in 

Fig.1.2(a), with its two in-plane material orientations (MD and TD). The 3D representation of a 

single-layer PP separator showing the three material orientations referred to as MD, TD and TTD 

is presented in Fig.1.2(b). The structural views of the separator provide a definition of its pore size, 

shape and structure. From Fig.1.2, the pores that allow for ionic transport are splits. These splits 

are a fraction of a micrometer long and ten to hundred nanometers apart from each other. The 

fiber-like structures between the splits are amorphous and the thick regions are semi-crystalline. 
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(a) (b) 

Figure 1.2 (a) Surface microstructure of Celgard®2400 [1] (b) 3D representation of 

Celgard®2500 [10]. 

1.2 Problem Definition 

The structural integrity of the separator is critical in preventing an internal short circuit 

(ISC). Separators in LIBs may fail under abusive mechanical loadings such as impact and crash, 

be pierced by dendrites grown during excessive electrical over-charge or discharge, or melt due to 

local overheating initiated by manufacturing defects [2,3,11]. Failure of the separator can also be 

induced by combined thermomechanical load caused by local overheating associated with non-

uniform heat generation and dissipation as the battery ages. Failure of the separator can cause the 

electrodes to come in contact with each other and lead to an ISC, which in turn leads to local 

temperature increases (i.e., thermal runaway), and can cause a thermal event. Furthermore, the 

relationship between separator failure and the onset of ISC has been studied and established using 

experimental techniques and finite element analysis (FEA) [11-13]. The evolution of ISC in LIBs 

can cause thermal runaway.  

To prevent ISC and enhance the safety of LIBs it is desirable to predict the response of 

separators under combined mechanical and thermal loadings. For this purpose, thermomechanical 

models that can accurately describe the orthotropic thermomechanical response of the polymeric 

battery separator are needed. Dry-processed polymeric separators are strongly anisotropic [14-20], 
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rate-dependent [15,16], and temperature-dependent [14,15] with a distinctive thermal 

expansion/shrinkage behavior [21,22]. Furthermore, polymeric separators soften when immersed 

in electrolyte solutions [15-17]. This plasticization effect of the electrolyte solution on the 

separator is a factor that needs to be taken into account.  To accurately predict the 

thermomechanical response of polymeric battery separators to prevent ISC, it is vital to account 

for the above-mentioned constitutive behaviors in material models. Without taking these factors 

into account, developed material models will be inaccurate in predicting the mechanical response 

of separators in LIBs. 

1.3 Research Objectives 

The objective of this research is to develop thermomechanical models for polymeric battery 

separators for simulations with combined thermal and mechanical loadings in crashworthiness 

analysis. Like typical polymeric materials, the response of polymeric battery separators to 

mechanical deformation is time and temperature dependent. Ideally, polymeric battery separators 

should be modeled as viscoelastic materials in the deformation region up to yielding and 

viscoplastic at the onset of permanent deformation and beyond. Hence, an orthotropic linear 

viscoelastic, orthotropic nonlinear viscoelastic and a coupled viscoelastic-viscoplastic 

thermomechanical model are developed in this work.   

The developed linear viscoelastic model is based on the framework of the well-established 

theory of viscoelasticity for isotropic materials [22-26] and counts for material anisotropy. In 

addition to considering the material anisotropy, the model will account for rate dependency, 

temperature effect, thermal expansion/shrinkage behavior of the polymeric separator, and the 

electrolyte effect. These are common factors that influence the mechanical and thermal response 

of polymeric separators in LIBs as discussed in section 1.2. To carry out this objective, the first 

task is to extend the orthotropic linear viscoelastic model developed by Yan et al [27], to account 

for temperature dependency and electrolyte effect. In this work, the temperature dependency will 

be introduced through the time-temperature superposition principle (TTSP) of linear 

viscoelasticity [22-25]. Furthermore, the electrolyte effect will be introduced through a time-

temperature-solvent superposition method developed in the current work. The TTSSM uses the 

TTSP in air as a framework to predict the material behavior in electrolyte solutions at higher 

temperatures. This is in contrast to the time-temperature-moisture superposition method 

(TTMSM) [28-31] which superimposes the time-temperature master curves for different moisture 
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content (humidity) values to form a super time-temperature-moisture master curve to describe the 

polymer behavior at different temperatures and moisture content levels [28].  

 The second task is to develop an orthotropic nonlinear thermoviscoelastic model to account 

for the material response in the large deformation region up to yielding or the evolution of 

irrecoverable deformations. The temperature effect will also be introduced into the orthotropic 

nonlinear thermomechanical model through the TTSP. The model will be able to predict the 

anisotropic, rate-dependent, and temperature-dependent response of polymeric separators. This 

model will also take the thermal expansion behavior of the separator into account.   

Furthermore, the third task will involve coupling the orthotropic nonlinear thermoviscoelastic 

model with a viscoplastic model to account for the material response in the entire range of its 

deformation before failure. A yield criterion will be introduced into the model to establish the onset 

of permanent deformations and act as a coupling mechanism between the nonlinear viscoelastic 

and viscoplastic models. Finally, a viscoplastic formulation will be introduced to account for the 

rate and temperature-dependent stress-strain response of the polymeric separator once the yield 

criterion is satisfied.  

Experimental methods will be carried out for the determination of model parameters and 

validation of the developed model predictions. The model parameters will be determined for the 

response of a selected polymeric separator (Celgard®2400) in the MD, TD, and in-plane shear. 

Celgard®2400 is a semi-crystalline polypropylene (PP) separator of thickness 25𝜇𝑚. The 

developed model will be implemented in LS-DYNA® finite element (FE) package as a user-

defined subroutine. The model predictions of the material anisotropy, rate dependence, 

temperature dependence, and electrolyte effect will be validated against experimental data.  

1.4 Thesis Outline 

This document is organized as follows.  

Chapter 1 introduces the problem and presents an overview of Lithium-ion battery 

separators and pays close attention to polymeric battery separators. The research objectives for 

this work are also delineated in this chapter. 

Chapter 2 provides a literature review of linear and nonlinear viscoelasticity, 

viscoplasticity and constitutive modeling of polymeric materials. Also, a review is presented on 

the thermomechanical behavior of polymeric separators, the plasticization effect of electrolyte 
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solutions and available models for polymeric battery separators. This chapter also provides a 

review of the orthotropic modeling of viscoelastic materials.  

Chapter 3 presents the development of an orthotropic linear thermoviscoelastic model for 

polymeric battery separators. This chapter discusses the experimental methodology for material 

characterization and model parameter determination within the linear viscoelastic deformation 

limit. Also, the developed model is implemented, verified using analytical solutions and validated 

in this chapter.  

Chapter 4 presents the development of an orthotropic nonlinear thermoviscoelastic model 

for polymeric battery separators. A discretization algorithm of the nonlinear Schapery hereditary 

integral is presented. Methods for model parameter identification are discussed and the developed 

model is implemented, verified using analytical solutions and validated against experimental data.  

Chapter 5 presents the development, implementation and validation of a coupled 

viscoelastic-viscoplastic model for polymeric battery separators. 

Chapter 6 provides a summary and conclusion of this thesis, as well as future research 

work.  
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Chapter 2 Literature review 

This chapter presents a review of the viscoelastic theory as well as constitutive models for 

polymeric materials based on viscoelastic models. The review on the viscoelastic theory pays 

attention to both the linear and nonlinear viscoelastic theories for the time-dependent response of 

polymeric materials. Furthermore, a review of the environmental effects and long-term response 

of polymeric materials is presented. Literature studies on the viscoplastic modeling of polymeric 

materials and the thermomechanical modeling of polymeric battery separators are also presented.   

2.1 Linear Viscoelasticity 

2.1.1 Overview 

Depending on the type of loading and environmental conditions, polymeric materials can 

display a wide range of mechanical behaviors, including those of an elastic solid and a viscous 

liquid. Polymers are typically referred to as viscoelastic, or time- and temperature-dependent, due 

to this mix of behaviors. As a result of this response, polymeric materials are susceptible to creep 

when a constant load is applied to the material. During the time at which the loading is kept 

constant, following an initial linear elastic response, strain continues to accumulate in the material. 

The typical creep response of viscoelastic materials is shown in Fig.2.1 below. 

 
Figure 2.1 Creep response for a constant applied stress. 

 The creep response of viscoelastic materials for a constant applied loading can be expressed 

as: 

𝜀(𝑡) = 𝐽(𝑡) ∙ 𝜎0                                                                                                                                          (2.1) 
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where 𝐽(𝑡) is the creep compliance function, 𝜀(𝑡) is the total creep strain, and is 𝜎0 the constant 

applied stress.  

 Viscoelastic materials also exhibit another time-dependent response known as stress 

relaxation. When a constant strain is applied to a viscoelastic material, the stress in the material 

relaxes for the entire duration of the time during which the strain is kept constant. Fig.2.2 presents 

the typical stress relaxation response of viscoelastic materials. 

 
Figure 2.2 Stress relaxation response for a constant applied strain. 

The stress relaxation response of viscoelastic materials for a constant applied strain can be 

expressed as: 

𝜎(𝑡) = 𝐺(𝑡) ∙ 𝜀0                                                                                                                                         (2.2) 

where 𝐺(𝑡) is the stress relaxation modulus, 𝜎(𝑡) is the total stress, and is 𝜀0 the constant applied 

strain.  

Furthermore, for the response of a material to be considered linear viscoelastic, the stress 

relaxation modulus or creep compliance function must be independent of the applied loading level 

[1]. Also, the creep and relaxation functions must be separable. 

2.1.2 Boltzmann Superposition Principle 

The Boltzmann superposition principle is one of the fundamental mathematical 

representations of linear viscoelastic response. Boltzmann [2], proposed that the creep or stress 

relaxation response of a viscoelastic material is a function of its entire past loading history. This 

simply means that each loading step independently contributes to the final deformation. Hence, 

the total deformation can be determined by simply adding all of the individual contributions of the 

loading steps. 
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From the Boltzmann superposition principle, the total stress at time t for the stress 

relaxation response to a multistep loading program in which the incremental strains ∆𝜀1, ∆𝜀2, ∆𝜀3, 

etc. are added at times 𝜏1, 𝜏2, 𝜏3, etc. is given by:  

𝜎(𝑡) = ∆𝜀1 ∙ 𝐺(𝑡 − 𝜏1) + ∆𝜀2 ∙ 𝐺(𝑡 − 𝜏2) + ∆𝜀3 ∙ 𝐺(𝑡 − 𝜏3) + ∙∙∙∙∙                                              (2.3) 

Based on the same principle, the total strain at time t for the creep response to a multistep 

loading program in which the incremental stresses ∆𝜎1, ∆𝜎2, ∆𝜎3, etc. are added at times 𝜏1, 𝜏2, 𝜏3,  

etc. is given by:  

𝜀(𝑡) = ∆𝜎1 ∙ 𝐽(𝑡 − 𝜏1) + ∆𝜎2 ∙ 𝐽(𝑡 − 𝜏2) + ∆𝜎3 ∙ 𝐽(𝑡 − 𝜏3) + ∙∙∙∙∙                                                  (2.4) 

Fig.2.3 below presents the stress relaxation response to a multistep loading program. 

 
Figure 2.3 Stress relaxation response of a linear viscoelastic material to multistep loading. 

Furthermore, the summations in the form of Eqns. 2.3 and 2.4 may be generalized into the 

hereditary integral representation of linear viscoelastic behavior. This form is also known as the 

Boltzmann superposition integral and can be expressed in the stiffness form as: 

𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝑑𝜀

𝑑𝜏

𝑡

0

𝑑𝜏                                                                                                                       (2.5) 

In terms of creep compliance, the hereditary integral takes the form: 

𝜀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑑𝜎

𝑑𝜏

𝑡

0

𝑑𝜏                                                                                                                        (2.6) 

Also, for a material to be considered as linearly viscoelastic, the Boltzmann superposition 

principle must be applicable. 

2.1.3 Rheological Models 

 Rheological models or mechanical analogs are used to establish differential equations that 

describe the stress – strain relationship in viscoelastic materials. These models combine springs 
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and dashpots to represent the dual nature of the material response. For linear viscoelastic response, 

combinations of Hookean springs and Newtonian dashpots are used to introduce elastic and 

viscous responses respectively. Also, for viscoelastic analysis and developing response equations, 

these mechanical analogs are assumed to be massless.  

The Maxwell Model 

The Maxwell model is one of the fundamental mechanical analogs. In this model, the 

spring and dashpot are connected in series as shown in Fig.2.4. 

 
Figure 2.4 Schematic representation of the Maxwell model. 

 The elastic response of the spring is governed by Hooke’s law expressed in the form: 

𝜎 = 𝐸 ∙ 𝜀                                                                                                                                                      (2.7) 

where  𝐸 is the elastic modulus of the material. The viscous response portrayed by the dashpot is 

governed by Newton’s law of viscosity: 

𝜎 = 𝜇 ∙
𝑑𝜀

𝑑𝑡
                                                                                                                                                   (2.8) 

where 𝜇 is the viscosity of the material. Furthermore, the stress – strain relationship for the 

Maxwell model is governed by the differential equation expressed as: 

𝑑𝜀

𝑑𝑡
=

1

𝐸
∙
𝑑𝜎

𝑑𝑡
+

𝜎

𝜇
                                                                                                                                        (2.9) 

 Consequently, the Maxwell model has certain deficiencies pertaining to the 

characterization of the complex response of viscoelastic materials. It fails to represent the 

complexity of creep behavior and a single exponential decay term from the Maxwell model is 

insufficient in representing stress relaxation behavior [3].  

Kevin-Voigt Model 
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The Kevin-Voigt model is another basic mechanical analog in which a Hookean spring is 

connected to a Newtonian dashpot in parallel as shown in Fig. 2.5.  

 
Figure 2.5 Schematic representation of the Kevin-Voigt model. 

 The stress – strain equation for this model takes the following form: 

𝜎 = 𝐸 ∙ 𝜀 + 𝜇 ∙
𝑑𝜀

𝑑𝑡
                                                                                                                                   (2.10) 

While this model provides a good representation of the creep response of viscoelastic 

materials, it does not represent stress relaxation behavior quite well [3]. To overcome the 

limitations of the Maxwell and Kevin-Voigt models, different combinations of Maxwell and 

Kevin-Voigt elements can be used to better represent the response of viscoelastic materials. An 

example of such models is the standard linear solid model [3,4]. More realistic representations of 

viscoelastic response can also be achieved by combining different Maxwell elements in parallel or 

different Kevin-Voigt elements in series. 

Generalized Maxwell Model (N-Maxwell element in parallel) 

 This is one of the standard generalizations of mechanical analogs used to represent the 

response of viscoelastic materials. In this model, Maxwell elements are arranged in parallel as 

shown in Fig.2.6. 

 
Figure 2.6 Generalized Maxwell Model. 



 14 

 The differential equation that expresses the stress – strain response described by the 

generalized Maxwell model is expressed as: 

(𝑝0 + 𝑝1𝐷 + 𝑝2𝐷
2 + 𝑝3𝐷

3 + ∙ ∙ ∙  +𝑝𝑛𝐷𝑛)𝜎

= (𝑞
0
+ 𝑞

1
𝐷 + 𝑞

2
𝐷2 + 𝑞

3
𝐷3 + ∙ ∙ ∙  +𝑞

𝑛
𝐷𝑛)𝜀.                                                   (2.11) 

where  𝑝𝑖 and 𝑞
𝑖
 are parameters dependent on the elastic modulus of the spring and viscosity of 

the dashpot, and 𝐷𝑖  is a differential operator for 𝑖 = 0,1,2, . . , 𝑛. 𝑛 is the total number of maxwell 

elements. Complete details on the mathematical evaluation of the generalized Maxwell model can 

be found in [4]. Furthermore, the stress relaxation response of the model is given as: 

𝐺(𝑡) = 𝐺∞ + 𝐺1 ∙ 𝑒
−

𝑡
𝜏𝑅1 + 𝐺2 ∙ 𝑒

−
𝑡

𝜏𝑅2 + 𝐺3 ∙ 𝑒
−

𝑡
𝜏𝑅3 + ∙ ∙ ∙  +𝐺𝑛 ∙ 𝑒

−
𝑡

𝜏𝑅𝑛                                       (2.12) 

where 𝐺𝑖 are relaxation constants and 𝜏𝑅𝑖 is the relaxation time. The form of the stress relaxation 

function represented as Eqn.2.12 is also known as a Prony series. Another generalized model used 

to characterize viscoelastic response is the generalized Kevin-Voigt model and more details on 

this model can be found in [4]. In summary, these mechanical analogs are very useful for 

representing the basic response of viscoelastic materials. They can also be used as a foundation for 

introducing constitutive theories for modeling viscoelastic response. 

2.1.4 Elastic – Viscoelastic Correspondence Principle 

 The elastic-viscoelastic correspondence principle is a powerful tool used in simplifying the 

procedure for obtaining solutions in viscoelastic analysis. The correspondence principle applies to 

problems of a statistically determinate nature and involves viscoelastic bodies subjected to 

boundary conditions, applied initially and held constant. According to the correspondence 

principle, the stresses in such bodies can be obtained from the corresponding elastic solutions for 

the same bodies subjected to the same boundary conditions [4-6]. These elastic solutions can be 

converted to the appropriate viscoelastic solutions through integral transforms (i.e., Laplace 

transform). As a result, it can also be said that the equations of the related boundary value problem 

for an elastic body are defined by the Laplace transforms of the governing equations of the motion 

of a viscoelastic body. An illustration of an elastic body with its boundary conditions and its 

corresponding viscoelastic body is presented in Fig.2.7. 
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Figure 2.7 Correspondence of an elastic and a viscoelastic body in terms of time and transform 

variables. 

 Let 𝑢𝑖
(𝑒)(𝒙), 𝜀𝑖𝑗

(𝑒)(𝒙), and 𝜎𝑖𝑗
(𝑒)(𝒙) which are the displacement, strain and stress field 

variables respectively represent the solution for the boundary value problem of the elastic body. 

The elastic-viscoelastic principle implies that the corresponding viscoelastic solutions are obtained 

by carrying out Laplace transforms of the elastic solutions. The viscoelastic solution is hence 

obtained by making the following substitutions [4]: 

1. Material properties 

𝐸𝑖𝑗 → 𝑎𝐺𝑖𝑗(𝑎),    𝑣 → 𝑎𝑣(𝑎),   𝜇 → 𝑎𝜇𝑅(𝑎) 

2. Field variables 

𝑢𝑖
(𝑒)(𝒙) → 𝑢𝑖(𝒙, 𝑎),    𝜀𝑖𝑗

(𝑒)(𝒙)  → 𝜀𝑖𝑗(𝒙, 𝑎),   𝜎𝑖𝑗
(𝑒)(𝒙)  → 𝜎𝑖𝑗(𝒙, 𝑎) 

3. Boundary conditions 

𝑢𝑖
∗(𝒙) → 𝑢𝑖

∗(𝒙, 𝑎),    𝑇𝑖
∗(𝒙)  → 𝑇𝑖

∗(𝒙, 𝑎)   

where 𝐸𝑖𝑗 is the elastic modulus, 𝐺𝑖𝑗 is the stress relaxation modulus, 𝑣 is the Poisson’s ratio, 𝜇 is 

viscosity, and 𝑇𝑖
∗ is the surface traction vector. 

 However, not all viscoelastic problems fit into the class of problems solvable by this 

principle. Boundary value problems for which the boundary conditions change with time at a point 

on the surface of the body cannot be solved using the elastic–viscoelastic correspondence 

principle. Furthermore, according to Wineman and Rajagopal [4], for the correspondence principle 

to be applicable, the following rules must apply: 

1. A point 𝒙 on the body must be part of the body for all times 𝑡 ≥ 0. 
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2. The motion of the viscoelastic body must be quasi-static. 

3. For a fixed point on the boundary, the boundary condition cannot be changed during the 

deformation. 

2.2 Nonlinear Viscoelasticity 

2.2.1 Overview 

 As viscoelastic materials deform over time, at some point in their deformation history, the 

linear viscoelastic limit will be exceeded. When this limit is exceeded, the material response 

transitions from linear viscoelastic into nonlinear viscoelastic. The stress – strain response of the 

material in this deformation region becomes more complex. The emergence of a nonlinear 

viscoelastic response is marked by the dependence of the stress relaxation modulus (or creep 

compliance) function of the viscoelastic response on the applied strain (or stress) level. 

𝐺(𝑡, 𝜀) =
𝜎(𝑡)

𝜀0
                                                                                                                                         (2.13) 

𝐽(𝑡, 𝜎) =
𝜀(𝑡)

𝜎0
                                                                                                                                          (2.14) 

 Due to the modifications to the stress relaxation and creep compliance functions, the 

Boltzmann superposition principle can no longer be assumed to be applicable. To describe 

stepwise loading response in nonlinear viscoelasticity, modified superposition principles or 

methods will have to be employed. Furthermore, nonlinear viscoelastic models have been 

developed to predict the response of viscoelastic materials under deformations beyond the linear 

viscoelastic limit. Subsections 2.2.2 and 2.2.3 of this chapter present a summary of these models. 

2.2.2 Schapery Nonlinear Viscoelastic Model 

 The Schapery nonlinear viscoelastic model or the single integral model is one of the most 

widely used models for predicting the stress – strain response of viscoelastic materials beyond the 

linear viscoelastic limit. The constitutive theory was developed by Schapery using the principles 

of thermodynamics of irreversible processes [7-9]. The stiffness-based uniaxial formulation of the 

single integral model is expressed as: 

𝜎(𝑡) = ℎ∞ ∙ 𝐺∞ ∙ 𝜀(𝑡) + ℎ1 ∙ ∫ ∆𝐺[𝜌(𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

                                                     (2.15) 
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where 𝐺∞ and ∆𝐺(𝜌)are the equilibrium and transient linear viscoelastic relaxation modulus. 

ℎ∞, ℎ1, 𝑎𝑛𝑑 ℎ2 are strain-dependent nonlinearity parameters, and 𝜌 is the reduced-time defined as: 

𝜌(𝑡) = ∫
𝑑𝑡′

𝑎𝜀[𝜀(𝑡′)]

𝑡

0

     (𝑎𝜀 > 0)                                                                                                         (2.16) 

𝜌(𝜏) = ∫
𝑑𝑡′

𝑎𝜀[𝜀(𝑡′)]
      

𝜏

0

                                                                                                                        (2.17) 

According to Schapery [9], the nonlinearity parameters have specific thermodynamic 

significance. Variations in the first three nonlinearity parameters (ℎ∞, ℎ1, 𝑎𝑛𝑑 ℎ2) are due to third 

and higher-order strain effects in the Helmholtz free energy. Changes in 𝑎𝜺 result from strong 

strain influences in both entropy production and free energy. Irrespective of the thermodynamic 

significance of these parameters, their placement in the constitutive equation is indicative of how 

these parameters affect the physical response of the viscoelastic material. The ℎ∞ term represents 

the measure of nonlinearity in the equilibrium modulus. ℎ1 is the measure of the nonlinearity in 

the transient modulus and ℎ2 represents the measure of the nonlinearity in the strain rate effect. 

Lastly, the parameter 𝑎𝜺 is a time shift factor that can be strain and temperature dependent. 

Furthermore, when the input strain is within the linear viscoelastic strain limit, the values of the 

nonlinearity parameters ℎ∞, ℎ1, ℎ2, and 𝑎𝜺 become equal to 1, and Eqn.2.15 reduces to the 

hereditary integral representation for linear viscoelastic materials (Eqn.2.5). 

The Schapery nonlinear viscoelastic model can be readily modified to include 

environmental effects such as temperature and can be tailored into numerical procedures. 

Furthermore, nonlinear viscoelastic models have been implemented in numeric simulations for 

predicting the response of polymeric materials and composites. Recurrent numerical algorithms 

[10,11] have been applied to the Schapery nonlinear viscoelastic model for numerical and finite 

element (FE) modeling of viscoelastic materials. Hence, the Schapery model has been successfully 

implemented over the past several decades to successfully model the nonlinear viscoelastic 

response of different materials [12-20]. Different parameter estimation methods as well as 

modifications to the Schapery model have been made to extend its applications.   

2.2.3 Other Nonlinear Viscoelastic Models 

Over the past several decades, nonlinear viscoelastic models have been developed to 

predict the response of polymeric and composite materials. A multiple-integral formulation for the 

mechanics of nonlinear viscoelastic response was proposed by Green and Rivlin [21]. 
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Furthermore, Findley and Lai [22], developed a modified superposition principle for predicting 

the creep response in the nonlinear deformation range under time-dependent step loadings. 

Experimental results for polyvinyl chloride under tensile creep showed the superposition principle 

described the response of the polymer well. Pipkin and Rodgers [23] presented a finite strain 

integral model for nonlinear viscoelastic response to arbitrary stress or strain histories. 

Generalization to the three-dimensional form of the integral model, as well as the implications of 

isotropy was presented. Predictions of the single integral approximations agreed closely with 

experimental data from creep tests, for most cases.  

Furthermore, the concept of adaptive springs, originally introduced by Green and Tobolsky 

[24] was used by Drozdov et al [25] to model the chemical links between polymer molecules. The 

model was verified using creep data for polypropylene fibers and the predictions agreed well with 

experimental data. Drozdov continued to develop a nonlinear model based on a network of 

adaptive springs and was able to include thermal and aging effects [26-28]. Kolarik et al [29] 

proposed a Boltzmann-like superposition principle to analyze the multistep nonlinear creep 

response and demonstrated the method for three polypropylene materials. Knauss and Emri [30] 

used a single integral method to associate nonlinear parameters to free volume which allowed for 

the inclusion of stress-induced dilatation, moisture or other diffusion parameters in the theory. The 

free volume theory [30] was used by Bosi et al [31] to develop a nonlinear thermoviscoelastic 

model to characterize the response of orthotropic thin membranes up to yielding. The model 

accounted for the temperature and rate dependence under various mechanical loading conditions. 

Other nonlinear viscoelastic models such as the free volume-based model for a wide range of strain 

rates and temperatures [32], a fractional multiaxial nonlinear viscoelastic model [33], a nonlinear 

viscoelastic model based on the Ogden nonlinear elastic strain energy [34], and a differential 

nonlinear viscoelastic model for thermoset polymers under complex loadings [35] have also been 

successfully implemented in numerical modeling and FE analysis of viscoelastic materials. These 

constitutive models discussed above were successful in predicting the mechanical behavior of 

viscoelastic materials in the nonlinear deformation range and present an excellent basis for 

understanding nonlinear viscoelastic theory and the role constitutive modeling plays in 

understanding the mechanical response of viscoelastic materials under finite strains. 



 19 

2.3 Environmental Effects and Long-Term Material Response 

 The ability to predict material response over a long period or over its structural life span is 

a very important aspect of engineering design. Methods for predicting the long-term response of 

viscoelastic materials using short-term data provide a huge advantage in analyzing the response of 

viscoelastic materials. For polymeric materials, the time-temperature superposition principle 

(TTSP) presents a pathway for long-term material prediction. The TTSP has been extended in 

literature to introduce other environmental effects such as moisture in the form of time-

temperature-moisture superposition principles. These superposition principles will be covered 

extensively in this section. 

2.3.1 Time-Temperature Superposition Principle (TTSP) 

 The theoretical foundation for the TTSP is the kinetic theory of polymers which has been 

extensively studied and extended for many applications [36-39]. According to the principle, there 

is a time-temperature equivalence in the response of viscoelastic materials. This simply implies 

that the viscoelastic response at a specific temperature is related to that at another by a change in 

the time scale only [3,4,39-41]. Hence, the time and temperature variation of the relaxation moduli 

(or compliances) of a viscoelastic material is often said to be equivalent. Using this principle, the 

response of a viscoelastic material for a long-time span can be determined using short-term tests 

for a range of temperatures. The shift in the time scale or the horizontal time shift (𝑎𝑇) is expressed 

as the ratio of the relaxation time at one temperature (𝑇) to that at a reference temperature (𝑇0): 

𝑎𝑇 =
𝜏(𝑇)

𝜏(𝑇0)
                                                                                                                                               (2.18) 

 Typically, polymeric materials have many relaxation times. A polymeric material is 

considered thermorheologically simple if the same shift factor applies to all relaxation times. This 

means that all relaxation times of thermorheologically simple materials are affected by temperature 

in the same way. Hence, the TTSP is only applicable to thermorheologically simple materials. The 

shift factors are typically determined experimentally by building master curves. The horizontal 

time shift factor is usually fitted using the William-Landel-Ferry equation [40] or the Arrhenius 

equation [3]. The choice of the fitting equation depends on the considered temperature range and 

the glass transition temperature of the material (𝑇𝑔).  
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 The TTSP was applied to a number of polymers by Williams, Landel and Ferry [40], and 

they found an empirical expression for the time shift factor: 

𝐿𝑜𝑔 (𝑎𝑇) =
−𝐶1 ∙ (𝑇 − 𝑇0)

𝐶2 + (𝑇 − 𝑇0)
                                                                                                                 (2.19) 

where 𝐶1 and 𝐶2 are material constants. The WLF equation is applicable if the TTSP is 

implemented above 𝑇𝑔 and if considered temperature range is less than 𝑇𝑔 + 100°𝐶 or less than 

𝑇0 + 50°𝐶 [40].  On the other hand, when the TTSP is implemented below 𝑇𝑔, or at temperatures 

above 𝑇𝑔 + 100°𝐶 or 𝑇0 + 50°𝐶, it is appropriate to fit the time shift factor according to the 

Arhenius equation. The Arrhenius equation is expressed as: 

𝐿𝑜𝑔 (𝑎𝑇) =
∆𝐻

2.303 ∙ 𝑅
[
1

𝑇
−

1

𝑇0
]                                                                                                           (2.20) 

where ∆𝐻 is the activation energy and R is the universal gas constant. 

 Furthermore, when implementing the TTSP it is common to introduce small vertical shifts 

(𝑏𝑇) along the relaxation modulus (or creep compliance) scale. It has been suggested that the 

inclusion of vertical shifts accounts for the change in the degree of crystallinity of the considered 

polymeric material (in the case of semi-crystalline polymers) [9] and improves the overall accuracy 

of the long-time prediction of the viscoelastic response [41]. To implement the TTSP, master 

curves are built by shifting individual relaxation (or creep) curves at different temperatures onto a 

curve at a reference temperature on a log-log plot. With respect to the vertical and horizontal shift 

factors, the stress relaxation modulus at a given temperature level can be expressed as: 

𝑏𝑇 ∙ 𝐺(𝑡, 𝑇) = 𝐺 [
𝑡

𝑎𝑇
, 𝑇0]                                                                                                                      (2.21) 

where 𝐺 [
𝑡

𝑎𝑇
, 𝑇0] is the stress relaxation modulus function for the master curve built for the 

reference temperature 𝑇0. Graphically, the implementation of the TTSP is shown in Fig.2.8 below. 
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Figure 2.8 Implementation of the time-temperature superposition principle. 

 The TTSP has been successfully applied in literature, to predict the long-time and 

temperature-dependent response of viscoelastic materials in the linear [42-46] and nonlinear 

deformation range [47-50]. 

2.3.2 Time-Temperature-Moisture Superposition Method (TTMSM) 

 The time-temperature-moisture superposition method (TTMSM) is an extension of the 

TTSP. This method was developed from the need to predict the long-time response of viscoelastic 

material in environmental or working conditions that cause a change in the moisture content of the 

material. The TTMSM was developed based on the assumption that the change in moisture content 

has the same effect on a viscoelastic material as the change in temperature. According to this 

principle, there is a time-moisture equivalence in the response of viscoelastic materials. This 

implies that the viscoelastic response of a material at one moisture content level can be related to 

that at another by changes in the time scale alone. This introduces a new shift factor known as the 

time-moisture shift factor. This method studies the plasticization effect of moisture content or/and 

temperature on the response of viscoelastic materials. The TTMSM has been implemented in 

literature for predicting the long-time viscoelastic response of polymeric materials from 

accelerated test data [51-58]. 

 There are two main ways in which the TTMSM can be implemented. The first method 

involves carrying out stress relaxation, creep or frequency sweep tests at a constant temperature 

and different humidity levels. For this method, the test curves are superimposed onto a reference 

curve at a reference humidity level to form a time-moisture master curve. The second method 
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involves the effects of both moisture content and temperature. For this method, tests are carried 

out at different constant temperatures and different humidity levels. Time-temperature master 

curves a built for different constant humidity levels by shifting the curves onto that at a set 

reference temperature. Then, a super master curve is built by superimposing the time-temperature 

master curves onto that at a reference humidity level. This second method has been implemented 

in the work by Suarez-Martinez et al to study the dynamical and rheological behavior of 

polyelectrolyte complexes (PECs) [58]. 

 
Figure 2.9 Application of the time−water superposition principle for PECs. (a) 

Time−temperature master curves for relative humidity (RH) values of 50, 70, 80, 85, 90, and 

95%. (b) Time−water super master curve made from time−temperature master curves in (a) with 

RHref = 80% and Tref = 40°C [58]. 

2.4 Viscoplastic Modeling of Polymeric Materials 

2.4.1 Overview 

 The observed response of polymeric materials is generally time-dependent. Their stress 

response depends on the loading rate and the considered time scale. When the stress response 

beyond the limit where deformations are recoverable (yield point) is rate dependent as in Fig.2.10, 

the material response is said to be viscoplastic in that region. This rate-dependent response of 

polymeric materials is described by viscoplasticity (rate-dependent plasticity) models. This section 

covers a literature review on viscoelastic constitutive models for predicting the response of 

polymeric materials. 
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Figure 2.10 Stress-strain response of polymeric materials: (a) elastic-viscoplastic response and 

(b) viscoelastic-viscoplastic response. 

2.4.2 Viscoplastic Constitutive Models 

In applied mechanics, constitutive models are used to predict how materials respond to 

large deformations. There are two main categories of these models outlined by Perić and Owen 

[59]. They are micromechanical and phenomenological models. Micromechanical models attempt 

to simulate the behavior of individual molecules in a material to understand its overall response, 

while phenomenological models are developed based on macroscopic observations of the material.  

           Several micromechanical models have been proposed to model the large deformation 

response of polymeric materials. In the work by Parks and Ahzi [60], a viscoplastic model was 

developed that satisfied local kinematic constraints as well as global compatibility and applied to 

large deformation and texturing of orthorhombic polycrystalline materials. Lee et al [61], 

developed a micromechanically-based large deformation model for semi-crystalline polymers. The 

model was applied to predict the stress-strain response and texture evolution in high-density 

polyethylene under different straining modes. Furthermore, Drozdov and co-workers [62-65] have 

carried out extensive work on micromechanical modeling of polymeric materials under large 

deformations. Other physical micromechanical models have been developed and successfully 

implemented for the prediction of large deformation responses of polymeric materials [66,67]. 

However, a limitation of micromechanical models is that their predictive capabilities are restricted 

to specific conditions. Also, micromechanical models are not scalable to macroscale modeling of 

materials that exhibit different deformation characteristics at different scales. A typical example is 

semicrystalline polymers which are highly anisotropic on the microscale [68] but exhibit isotropic 
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deformation on the macroscale. This scaling discontinuity adds to the complexities of 

implementing micromechanical models on a practical scale.  

Macroscopic constitutive theories, also known as phenomenological models have been 

expressed in simple forms using rheological models. An elasto-viscoelastic-viscoplastic model 

termed “Burger’s model” was developed by Findlay et al [69] to model the stress-strain response 

of polymeric materials. The Burger’s model assumes that irrecoverable deformations occur at all 

stages of the material deformation and this assumption eliminates the yield surface which is typical 

of polymeric materials. A nonlinear elasto-viscoelastic-viscoplastic model was developed from 

thermodynamic principles by Schapery [70,71], to model the response of fiber-reinforced and 

unreinforced plastics, as well as semicrystalline polymers. Lai and Bakker [72] proposed an elasto-

viscoelastic-viscoplastic integral model for polymeric materials. The developed model was 

validated using creep and recovery tests for high-density polypropylene. Furthermore, more 

coupled elasto-viscoelastic-viscoplastic models based on rheological frameworks have been 

developed and implemented for predicting the stress-strain response of polymeric materials in their 

entire deformation range [73-78]. 

 

Figure 2.11 One-dimensional elasto-viscoelastic-viscoplastic rheological models used for 

polymers by (a) Findley et al. [69], (b) Schapery [70], (c)Brusselle-Dupend et al. [73, 74] and (d) 

Kletschkowski et al. [75].[79]. 

           Macroscopic viscoplastic constitutive models can be further classified into two groups. The 

first group is concerned with the consistency models and the other comprises the overstress 

models. The group of consistency viscoplasticity models was introduced by Wang et al. [80] and 
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was studied extensively by many authors [81-84]. The consistency viscoplastic models incorporate 

the time-dependent response in the large strain deformation region in a rate-dependent yield 

surface. These models are analogous to rate-independent plasticity in that they follow the Kuhn-

Tucker optimality conditions. The second group of viscoplastic models is the overstress model 

whose main postulate is that the current stress state can be outside the yield surface and that the 

yield function can be greater than zero. These models were developed based on the ideas presented 

by Perzyna [85] and they disregard the Kuhn-Tucker optimality conditions. The Perzyna model 

[85] and the Duvaut-Lions model [86], are the most popular formulations in the group of overstress 

models. Both models have been widely implemented in small strain problems [87-95], as well as 

finite strain problems [96-99].  

 Furthermore, phenomenological constitutive models have been developed to predict the 

flow stress of polymeric materials. This group of phenomenological models are known as flow 

stress models. As long as the flow stress behavior of the polymeric material can be represented, 

these models can be easily calibrated by fitting experimental data. G’sell and Jonas [100] 

developed a constitutive relationship to predict the flow stress behavior of polymeric materials at 

different constant strain rates. This model has been implemented in its original and modified forms 

in different works to predict the stress-strain response of polymeric materials at different strain 

rates and temperatures [101-104]. The Johnson-Cook model was proposed by Johnson and Cook 

[105], to predict flow stress at different strain rates and temperatures. This model has been 

popularly applied to modeling the stress-strain response of metals. However, the Johnson-Cook 

model and its variations have been applied to describe the tensile and compressive response of 

PEEK [106,107]. A flow stress model based on the work by G’sell and Jonas [100], was proposed 

by Nasraoui et al [108] for strain rate and the temperature-dependent response of polymeric 

materials. The model was validated against uniaxial compression tests for PMMA 

(polymethylmethacrylate) under quasi-static and dynamic loadings. Furthermore, a uniform 

constitutive phenomenological model known as the DSGZ model was proposed by Duan et al 

[109] for glassy and semicrystalline polymers. The model was proposed based on several 

constitutive models [100,105,110] and has been used to predict the flow stress of PMMA [109] 

and PC [109,111]. Recently, Zhu et al [112], developed a new phenomenological model for 

predicting the flow stress of thermoplastics. In the model included a transition function was 

introduced to enable a smooth transition of the flow stress behavior under both small and large 
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deformations. The model was validated against uniaxial tensile and compression tests for PEEK 

and PC. The constitutive model adequately predicted the trends in the response of the tested 

materials.  

           The constitutive models discussed in this section present different ways in which the rate-

dependent response of materials in the large deformation region can be described and predicted. 

These works also show how viscoplastic models can be coupled with viscoelastic and/or elastic 

models to capture the stress-strain response of polymeric materials in their entire range of 

deformation. They also show how flow stress models can be employed to predict the viscoplastic 

response as well as the entire stress-strain response of polymeric materials. These works present a 

foundation for developing new constitutive theories that can be implemented for more accurate 

numerical modeling of polymeric materials. 

2.5 Thermomechanical Modeling of Polymeric Battery Separators 

2.5.1 Thermomechanical Behavior of Polymeric Battery Separators 

In order to develop an accurate material model for polymeric separators, an understanding 

of their behavior under various mechanical and thermal loading conditions is necessary. 

Considering their importance in battery safety, the thermomechanical response of polymeric 

battery separators has been studied extensively in literature. Dry-processed polymeric battery 

separators have been found to display strong material anisotropy [113-119]. This class of 

separators show higher tensile strength and elastic modulus in the MD than the TD due to the extra 

strain hardening given in the MD during their manufacturing process. The mechanical properties 

of polymeric separators are also rate-dependent [113-115]. Uniaxial tensile tests were carried out 

on Celgard®2400 polypropylene separators at different loading rates and the results were presented 

in the work by Yan et al [113]. From the results, there was a clear relationship between the loading 

rate and the measured modulus of elasticity. The measured elastic modulus was found to 

progressively increase with the increase in the loading rate in all three material orientations. The 

material orthotropy was also depicted in the results as shown in Fig 2.12.  
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(a) (b) 

 

 

(c)  

Figure 2.12 Stress-strain response of Celgard®2400 separator at different loading rates in the (a) 

MD, (b) TD, and (c) 45 off-axis direction [100]. 

The mechanical properties of the separators are temperature-dependent as commonly 

observed in polymeric materials.  It has been shown that the material becomes significantly softer 

due to a reduction in its mechanical properties, with an increase in temperature [1114,116]. Avdeev 

et al [114] showed the rate and the temperature-dependent response of polymeric battery separators 

through the stress-strain behavior of a Celgard®C480 Tri-layered separator at different strain rates 

and temperatures. With an increase in temperature, the material stiffness was found to decrease in 

all orientations. Furthermore, investigating the temperature-dependent response of polymeric 

separators is of utmost importance from the point of safety in thermal runaway scenarios. Dry-

processed polymeric separators also show a unique thermal expansion/shrinkage behavior 

[120,121]. Their thermal expansion/shrinkage response is unique in the sense that with increasing 

temperature, polymeric separators first expand and then shrink before failure. This response is not 

typical of polymeric materials and can be attributed to the unique microstructure of the material. 
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The amount of material shrinkage at elevated temperatures can be as high as 10%. In a constrained 

condition, such as in battery cells, the shrinkage will induce tensile stresses in separators and may 

play a role in causing an internal short circuit. Yan et al [120] measured the thermal 

expansion/shrinkage behavior of three commonly used polymeric separators. The coefficients of 

thermal expansion (CTE) as a function of temperature were determined for the separators. It was 

also determined that the fracture/necking temperatures of the TD samples for all three separators 

investigated were 15-35°C lower than the MD samples. This also shows evidence of the material’s 

anisotropic nature in its thermal expansion/shrinkage response. 

2.5.2 Plasticization Effects of Electrolyte Solutions 

To understand the mechanical response of the separator in its working environment (battery 

cells), the electrolyte effect needs to be taken into account. Electrolyte solutions have been found 

to remarkably weaken the mechanical performance of LIB separators [114,116,119,122,123]. It 

has been observed that when being immersed in dimethyl carbonate (DMC) which is a common 

solvent for electrolyte solutions, the tensile modulus of Celgard®2400 decreased to 48.5% and 

87.7% in the MD and TD respectively in terms of ratio to the measured modulus in air [119]. It 

has also been observed that electrolyte solutions markedly weakened the thermal stability at 

elevated temperatures and mechanical performance, especially on the crack resistance of the 

polymeric separators [122]. Furthermore, Gor et al [123], investigated the effect of certain 

electrolyte solvents on the thickness and elastic modulus of Celgard®3501 polypropylene 

separator. Their results showed that electrolyte solvents such as dimethyl carbonate, diethyl 

carbonate, and ethyl acetate caused reasonable softening of the separator. The softening of the 

separator material was attributed to swelling. Hence, thermomechanical models developed based 

on the response of the polymeric separator in air (or dry condition) will lead to an overprediction 

in its mechanical response under various mechanical and thermal loading conditions.  

2.5.3 Existing Models for Polymeric Battery Separators 

In literature, the mechanical response of separators has been modeled in numerical 

simulations with material models. Wu et al. [124] presented the development of a multiphysics 

model for stress analysis in polypropylene separators in lithium-ion battery cells that considered 

the mechanical loading, the Li-induced intercalation and the thermal expansion mismatch between 

the components of the battery. In addition to the considered stress-inducing factors, the time and 
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temperature-dependent behavior of the PP separator was also characterized experimentally by 

implementing the time-temperature superposition principle (TTSP).  However, this model did not 

consider the anisotropic behavior of the separator. Yan et al [125] developed an orthotropic 

viscoelastic material model for polymeric separators implemented in LS-DYNA® as a user-defined 

model. The model was able to accurately predict the material anisotropy and rate dependence. 

Furthermore, X. Zhang et al. [126] implemented an anisotropic crushable foam model (MAT 126) 

from the LS-DYNA® material library to model the force vs displacement behavior of a 

polyethylene separator in the TD, MD and through-thickness direction in tension and compression. 

In [127], a large deformation elastic–plastic constitutive model of a PP separator was developed 

with the Rich–Hill large deformation elastoplastic constitutive theory. The constitutive model 

accurately captured the anisotropy behaviors and the elastic–plastic process considering the large 

deformation of the separator.  Also, an implicit nonlinear dynamic method was implemented in 

modeling dry-processed PP separators as elastic-viscoplastic [128]. Xie et al [129] proposed a 

representative volumetric element modeling method in finite element simulation to predict the 

electrolyte-immersed, rate-dependent tensile properties of polypropylene (PP) separators. These 

works have offered some insights into the behavior of polymeric separators. However, these 

models are not adequate for simulations of the response of separators in thermal ramp conditions. 

Without the combined consideration of material anisotropy, temperature dependency, and the 

electrolyte effect, these models are inadequate in simulations with thermal ramp scenarios. Hence, 

for more accurate predictions of the response of polymeric battery separators, models that account 

for the constitutive behaviors of separators in their working conditions need to be developed. 
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Chapter 3 Orthotropic Linear Thermoviscoelastic Constitutive Modeling  

 This chapter presents the development of an orthotropic linear viscoelastic material model 

for polymeric separators that accounts for the material anisotropy and rate dependence while 

accounting for temperature and electrolyte effects is presented. In this model, the temperature 

effect is introduced through the time-temperature superposition principle (TTSP). A time-

temperature-solvent superposition method (TTSSM) is developed to model the behavior of the 

separator in electrolyte solutions based on the viscoelastic framework established in air. Analytical 

solutions for stress relaxation are developed and introduced for model verification. The model 

parameters are established for the selected separator material and presented in this chapter. The 

developed model is implemented in LS-DYNA® finite element (FE) package as a user-defined 

subroutine, which enables simulations with the thermal expansion/shrinkage behavior. The model 

predictions of the material anisotropy, temperature dependence, and solvent effect are validated 

against experimental data and the results are presented. The work presented in this chapter has 

been summarized and published [1]. 

3.1 Orthotropic Linear Viscoelastic Model Development 

3.1.1 Constitutive Model Overview 

 The constitutive model developed in this work is based on the hereditary integral 

representation of the stress-strain response of linear viscoelastic materials. This hereditary integral 

is also known as the Boltzmann superposition integral [2-6]. The stiffness-based representation of 

the linear hereditary integral is expressed as: 

𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝑑𝜀(𝜏)

𝑑𝜏

𝑡

0

𝑑𝜏                                                                                                                 (3.1) 

where 𝜎 is the stress, 𝜀 is the strain and 𝐺(𝑡) is the stress relaxation stiffness matrix. To represent 

the components of the stress relaxation stiffness matrix, the stress-strain response of the separator 

is also expressed rheologically. In this work, this is done using the generalized Maxwell model 

which has been discussed in detail, in Chapter 2. The stress relaxation response of the generalized 

Maxwell model is expressed as a Prony series. Hence, each component of the stress relaxation 

stiffness matrix in Eqn.3.1 is usually expressed in terms of a Prony series expressed as: 

𝐺(𝑡) = 𝐺∞ + ∑ 𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
𝑡

𝜏𝑖
]                         

𝑛

𝑖=1

                                                                                  (3.2) 
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where 𝐺∞ is the equilibrium or fully relaxed modulus, 𝐺𝑖 is the stress relaxation constant and 𝜏𝑖 

is the relaxation time. 

3.1.2 Numerical Intergation of the Linear Viscoelastic Hereditary Integral with a Kernel of Prony 

Series 

To implement the linear viscoelastic model for FE simulations involving arbitrary stress, 

strain and temperature histories, the hereditary integral has to be evaluated. A discretization 

algorithm for the evaluation of the linear viscoelastic hereditary integral with a kernel of a single 

exponential function was introduced by Puso and Weiss [7].  Using a similar approach, Yan et al 

[8] developed a discretization algorithm for the linear hereditary integral with a kernel of Prony 

series, implemented as an orthotropic linear viscoelastic model in FE packages. The simulations 

with this model compared well with analytical solutions with multi-step loading cases and with 

experimental results of non-isostress cases [8], proving that the algorithm is correct. This algorithm 

is used in this work as a framework for the orthotropic linear thermoviscoelastic model. The 

discretization algorithm starts from the analysis of Eqn.3.1 at a time 𝑡 + ∆𝑡: 

𝜎(𝑡 + ∆𝑡) = ∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)
𝑑𝜀

𝑑𝑡′

𝑡+∆𝑡

0

𝑑𝑡′                                                                                         (3.3) 

Evaluating Eqn.3.3 as a path integral allows the possibility of separating it into two terms 

that can be evaluated separately as follows: 

𝜎(𝑡 + ∆𝑡) = ∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)
𝑑𝜀

𝑑𝑡′

𝑡

0

𝑑𝑡′ + ∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)
𝑑𝜀

𝑑𝑡′

𝑡+∆𝑡

𝑡

𝑑𝑡′                                     (3.4) 

 The second term in Eqn.3.4 can be solved approximately, using the Mean Value Theorem 

when ∆𝑡 is considered to be very small: 

∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)
𝑑𝜀

𝑑𝑡′

𝑡+∆𝑡

𝑡

𝑑𝑡′ =
𝜀(𝑡 + ∆𝑡) − 𝜀(𝑡)

∆𝑡
∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)

𝑡+∆𝑡

𝑡

𝑑𝑡′ =
Δ𝜀

∆𝑡
∙ 𝐺(∆𝑡) ∙ ∆𝑡

= Δ𝜀 ∙ 𝐺(∆𝑡)                                                                                                                   (3.5) 

To evaluate the first term in Eqn.3.4, a specific kernel function was defined such that 

𝐺(𝑡) was set initially to be a single term exponential function such that such that:  

𝐺(𝑡) = 𝐶1 ∙ 𝑒𝑥𝑝 (−
𝑡

𝜏
)                                                                                                                             (3.6) 

Hence, the first term in Eqn.3.4 becomes: 
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∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)
𝑑𝜀

𝑑𝑡′

𝑡

0

𝑑𝑡′ = ∫ 𝐶1 ∙ exp (−
𝑡 + ∆𝑡 − 𝑡′

𝜏
)

𝑑𝜀

𝑑𝑡′

𝑡

0

𝑑𝑡′

=  exp (−
∆𝑡

𝜏
)∫ 𝐶1 ∙ exp (−

𝑡 − 𝑡′

𝜏
)

𝑑𝜀

𝑑𝑡′

𝑡

0

𝑑𝑡′

= exp (−
∆𝑡

𝜏
) 𝜎(𝑡)                                                                                                                                     (3.7) 

 To represent the relaxation modulus over a broad time spectrum, using a single exponential 

function is insufficient. Hence, the algorithm was extended for the hereditary integral with a kernel 

of Prony series. This was based on the examination of the generalized Maxell model. From the 

model, the total stress is contributed to by the long-term equilibrium stress (𝜎∞) and the stresses 

in the individual Maxwell components (𝜎𝑖(𝑡)) expressed as:  

𝜎(𝑡) = 𝜎∞ + ∑ 𝜎𝑖(𝑡)

𝑛

𝑖=1

                                                                                                                            (3.8) 

 Applying the same mathematical operation as in Eqn.3.7, the first term of Eqn.3.4 is 

derived for a kernel of Prony series as: 

∫ 𝐺(𝑡 + ∆𝑡 − 𝑡′)
𝑑𝜀

𝑑𝑡′

𝑡

0

𝑑𝑡′ = 𝜎∞ + ∑exp (−
∆𝑡

𝜏𝑖
)

𝑛

𝑖=1

∙ ∫ 𝐺𝑖 ∙ 𝑒𝑥𝑝(−
𝑡 − 𝑡′

𝜏𝑖
)

𝑑𝜀

𝑑𝑡′
𝑑𝑡′

𝑡

0

 

= 𝜎∞ + ∑exp (−
∆𝑡

𝜏𝑖
)

𝑛

𝑖=1

∙ 𝜎𝑖(𝑡)                                                                                                              (3.9) 

The flowchart for the implementation of this algorithm in LS-DYNA® user-defined 

subroutine is presented in Fig.3.1. At a step j, for time and strain increments ∆𝑡 and Δ𝜀 respectively, 

the stress increment is contributed to by the increment in the equilibrium relaxation stress and the 

sum of the incremental stresses in the individual Maxwell components. 

∆𝜎 = ∆𝜎∞ + ∑∆𝜎𝑖

𝑛

𝑖=1

                                                                                                                             (3.10) 

Furthermore, the stress increment in the individual Maxwell element is expressed as:  

∆𝜎𝑖 = 𝐺𝑖 exp (−
∆𝑡

𝜏𝑖
) ∙ ∆𝜀 + [exp (−

∆𝑡

𝜏𝑖
) ∙ 𝜎𝑖(𝑡) − 𝜎𝑖(𝑡)]                                                           (3.11) 

In the user-defined subroutine, the stress in the individual Maxwell element and the total 

stress is updated and stored at every time step to be used in the next. 
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Figure 3.1 Flowchart for the implementation of evaluation of hereditary integral with Prony 

series [8]. 

3.1.3 Plane Stress Stiffness Matrix  

 To implement the discretization algorithm in section 3.1.2 for orthotropic materials, a 

stiffness matrix has to be introduced into the model. Polymeric battery separators are thin materials 

of thickness in the tens of micrometers and they are usually under a plane state of stress. For 

orthotropic linear elastic materials, the plane stress stiffness matrix is given as [9]: 

𝑬 =
1

[1 − 𝑣12𝑣21]
∙ [

𝐸1 𝑣12𝐸2 0
𝑣21𝐸1 𝐸2 0

0 0 [1 − 𝑣12𝑣21]𝜏12

]                                                                (3.12) 

where 𝐸1 and 𝐸2 are the elastic moduli in the two principal in-plane directions. 𝜏12 is the in-plane 

shear modulus and 𝑣12 and 𝑣21 are the major and minor Poisons ratio respectively. The Poisons 

ratio and the elastic moduli for elastic materials are related by Betti’s reciprocal law such that [9]: 

𝑣12𝐸2 = 𝑣21𝐸1                                                                                                                                         (3.13) 

Hence plane stress stiffness matrix in Eqn.3.12 above contains four independent 

engineering constants 𝐸1, 𝐸2, 𝑣12 , and 𝐺12. 

Furthermore, from the viscoelastic theory, the correspondence principle allows for the 

determination of solutions for viscoelastic problems, knowing its corresponding elastic solution 
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for the same loading, boundary conditions and geometry [2-6]. Hence, to obtain the plane stress 

stiffness matrix for an orthotropic linear viscoelastic material model, the elastic constants in 

Eqn.3.13 can be replaced with the corresponding viscoelastic functions according to the 

correspondence principle to give: 

 

𝑮 =
1

[1 − 𝑣12𝑣21]
∙ [

𝐺11(𝑡) 𝑣12𝐺22(𝑡) 0

𝑣12𝐺22(𝑡) 𝐺22(𝑡) 0

0 0 [1 − 𝑣12𝑣21]𝐺66(𝑡)
]                                         (3.14) 

Where 𝐺11(𝑡), 𝐺22(𝑡), and 𝐺66(𝑡) are the relaxation moduli in the MD, TD and in-plane 

shear respectively, 𝑣12 and 𝑣21 are the major and minor Poison’s ratios.  

3.1.4 Three-Dimensional Stiffness Matrix with Transverse Orthotropy 

In this work, a 3D stiffness matrix is also introduced for model implementation using solid 

elements. Here, transverse orthotropy is assumed in the 2-3 direction (i.e., 𝐸2 = 𝐸3) and the 

material response in the transverse direction (TD) is assumed to be the same in the through-

thickness direction. Applying the elastic-viscoelastic correspondence principle for an elastic 

transversely orthotropic 3D stiffness matrix, the stiffness matrix in terms of viscoelastic functions 

becomes: 

𝑮 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0     0     0
𝐶12

𝐶12

0
0
0

𝐶22

𝐶23

0
0
0

𝐶23

𝐶22

0
0
0

0
0

𝐶44

0
0

0
0
0

𝐶66

0

0
0
0
0

𝐶66]
 
 
 
 
 

                                                                                           (3.15) 

Where the components of the stiffness matrix 𝐶𝑖𝑗 are defined as: 

𝐶11 =
(1 − 𝑣23

2 ) ∙ 𝐺11(𝑡)

∆
 

𝐶12 =
(𝑣12 + 𝑣12 ∙ 𝑣23) ∙ 𝐺22(𝑡)

∆
 

𝐶22 =
(1 − 𝑣12 ∙ 𝑣21) ∙ 𝐺22(𝑡)

∆
 

𝐶44 =
𝐺22(𝑡)

2 ∙ (1 + 𝑣23)
 

𝐶23 =
(𝑣23 + 𝑣12 ∙ 𝑣21) ∙ 𝐺22(𝑡)

∆
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𝐶66 = 𝐺66(𝑡) 

Also,  ∆= [1 − 𝑣23
2 − 2 ∙ 𝑣12 ∙ 𝑣21 − 2 ∙ 𝑣12 ∙ 𝑣21 ∙ 𝑣23]. 𝑣23 is the poisons ratio in the 2-3 

plane. Since transverse orthotropy is assumed here, it is also vital to note that 𝑣23 = 𝑣32. 

3.2 Orthotropic Linear Thermoviscoelastic Material Characterization 

3.2.1 Experimental Procedure 

The separator investigated is Celgard®2400, a porous PP material. Celgard®2400 is a 

single-layer film with a thickness of 25µm. The received separator was in the form of a roll of 255 

mm in width. The in-plane viscoelastic responses of the separators were measured along the MD, 

TD, and in-plane shear using a 45° off-axis specimen as discussed in [10].  The nominal 

dimensions of each specimen were 45 mm in length and 5 mm in width. These specimens were 

cut using a razor blade. The sample gage length was ~17mm.  

The in-plane viscoelastic property of Celgard®2400 was investigated in air and dimethyl 

carbonate (DMC). DMC is a common solvent for LIB electrolytes. It has been shown that the 

Young’s modulus of Celgard®2400 measured in DMC was about 95% of the value measured in an 

electrolyte solution of 1.1 M LiPF6 EC/DMC in a 1:1 volume ratio for both MD and TD  [11]. 

Therefore, DMC is a good replacement for LIB electrolytes in the investigation of the electrolyte 

effect.  

  

(a) (b) 

Figure 3.2 (a) RSA-G2 dynamical mechanical analyzer testing set up, (b) external heating of 

DMC in water bath, (c) DMC transferred into solvent bath, and (d) closed solvent bath. 
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Figure 3.2 (Cont’d) 

 

 

 

  
(c) (d) 

 

 Uniaxial stress relaxation tests were carried out using an RSA-G2 rheometer in tensile 

mode, as shown in Fig.3.2. For the test in air, the separator was tested over a temperature range of 

20°C-110°C whereas, for the tests in DMC, the range was 20°C-40°C. The upper testing 

temperature in DMC was limited by the high volatility of the solvent.  

To saturate the sample during testing in DMC, a solvent bath was used as shown in 

Fig.3.2(a). The samples were clamped into the tensile fixture using a torque screwdriver to 

maintain the clamping force to ensure that there was no sample slippage during the tests. For the 

tests in DMC above ambient temperature, to reduce the evaporation during testing, the solvent was 

preheated. This was accomplished by heating the solvent in a water bath and monitoring its 

temperature with a thermocouple, as shown in Fig.3.2(b). When the solvent reached the desired 

testing temperature [30°C, 35°C, 40°C], it was poured into the testing fixture where the sample 

already resides as shown in Fig.1c. The heating chamber was closed and the temperature was 

equilibrated at the desired value. Regardless of whether it was in air or in DMC, the sample was 

kept at the specified temperature for 4min before testing. There was no observed difference in the 

relaxation behavior for soaking and heating times of 4min and 10min. A preload force of ~3g was 

applied to ensure the sample was straight and the gap was locked before starting each test. Each 

stress relaxation test was run for 20 mins at the given temperature level. 
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Isothermal tests were carried out in all three material orientations, in air, and in DMC 

according to the method described above.  To validate the model, non-isothermal stress relaxation 

tests were performed. The non-isothermal stress relaxation tests were carried out in air using the 

samples in the MD with multi-step temperature histories.  A fresh sample was used for each test 

and all tests were repeated two to three times for replicability and consistency of the results. The 

results presented here are the averaged results. Table 3.1 below provides a summary of the 

experimental procedures and their purpose. 

Table 3.1 Summary of the experimental procedures 

Experiment Specimen Test Conditions Purpose 

Stress relaxation 

MD, TD, 

45° off-axis 

0.2-1.2% strain levels at 20°C-

22°C and 80°C in air and at 

20°C-22°C in DMC 

Determination of 

linear viscoelastic 

strain limit 

Stress relaxation 

MD, TD, 

45° off-axis 

0.2-0.3% strain levels at 

temperatures ranging from 

20°C-110°C in air 

Establishment of the 

TTSP and 

determination of 

temperature-

dependent model 

parameters. 

Stress relaxation 

MD, TD, 

45° off-axis 

0.4% strain level at 

temperatures ranging from 

20°C-40°C in DMC 

Establishment of the 

TTSSM and 

determination of 

solvent-dependent 

model parameters. 

Tensile 

MD, TD 0.001, 0.01mm/s at 30°C, 40°C 

50°C, 60°C in air 

Validation under 

iso-thermal 

conditions 

Stress relaxation 

MD 30°C to 40°C, 60°C to 70°C, 

and 30°C to 60°C with 

T=10°C at 0.2% strain level 

Validation under 

non iso-thermal 

condition 

Iso-stress 

MD, TD 0.067-3MPa at 3°C/min ramp 

rate 

Validation under 

non iso-thermal 

condition 

 

3.2.2 Determination of Linear Viscoelastic Strain Limit 

To ensure that the stress relaxation experiments are conducted within the range of the linear 

viscoelastic response of the material, the linear viscoelastic strain limit needs to be determined. In 

linear viscoelasticity, the relaxation modulus is independent of strain levels. Hence, the linear 

viscoelastic limit was determined by measuring the stress relaxation responses at different strain 
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levels, as shown in Fig.3.3. From Fig.3.3, the strain limit for the TD is 0.3% in air and 0.4% in 

DMC.  

The strain limit for the linear stress relaxation response in air was determined at the lowest 

test temperature 20-22°C and at 80°C, and in DMC at 20-22°C. It has been observed that the strain 

limit increases as temperature crosses the glass transition temperature (𝑇𝑔) from below [12]. The 

reported  𝑇𝑔 of Celgard®2400 is -15°C in air [13]. In this work, all stress relaxation tests were 

conducted at temperatures higher than the 𝑇𝑔. To observe the possible increase of the strain limit, 

the measurements were also determined at 80°C in air in the TD (Fig 3.4) and the strain limit was 

found indeed to be higher than the value at 20°C. When testing in DMC, molecules diffuse into 

the amorphous phase of the separator and act as plasticizers and lubricants[14]. It is expected that 

the strain limit would increase due to plasticization as reported in [15]. Table 3.2 summarizes the 

values of the strain limit for various conditions. 

  
(a) (b) 

Figure 3.3 Determination of the linear viscoelastic strain limit using stress relaxation 

experiments at 20-22°C. (a) TD in air (b) TD in DMC (c) MD in air (d) MD in DMC (e) 45° off-

axis in air (f) 45° off-axis in DMC. 
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Figure 3.3 (Cont’d)  

  
(c) (d) 

  
(e) (f) 

 

 
Figure 3.4 Determination of the linear viscoelastic strain limit using stress relaxation 

experiments at 80°C for TD in air. 
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Table 3.2 Strain limit of the linear stress relaxation response in air and in DMC 

Environment 
Strain limit of the linear stress relaxation response (%) 

MD TD 45° Off-axis 

In air (20-22°C) 0.2 0.3 0.3 

In air (80°C) - 0.4 - 

In DMC (20-22°C) 0.4 0.4 0.6 

 

3.2.3 Stress relaxation at different temperatures  

Stress relaxation tests were conducted in air and in DMC at temperatures above the ambient 

temperature and within the strain levels listed in Table 3.2.  The test results in air and in DMC are 

shown in Figs.3.5 and 3.6 respectively. The stress relaxation modulus is plotted vs log time and 

the results show the reduction in the relaxation with increasing temperature and the presence of 

the solvent. This is consistent with the viscoelastic theory. 

  

(a) (b) 

 

 

(c)  

Figure 3.5 Stress relaxation curves in air for samples cut along the (a) MD, (b) TD, and (c) off-

axis 45°. 
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(a) (b) 

 

 

(c)  

Figure 3.6 Stress relaxation curves in DMC for samples cut along the (a) MD, (b) TD, and (c) 

off-axis 45° direction. 

3.2.4 Determination of In-Plane Shear Relaxation Modulus 

Due to the difficulties involved in direct measurement of the in-plane shear properties of 

thin films, the time-dependent in-plane shear relaxation modulus of the separator in air and in 

DMC was determined using the 45° off-axis specimen and then computed analytically as described 

in [10]. This is based on a well-established method for determining the shear properties of 

unidirectional composites [9] :    

1

𝐸𝑥
=

𝑚2(𝑚2 − 𝑛2𝑣12)

𝐸1
+

𝑛2(𝑛2 − 𝑚2𝑣21)

𝐸2
+

𝑚2𝑛2

𝐺12
                                                                    (3.16) 

where m= cos θ, n= sin θ, and E1, E2, and G12 are the longitudinal, transverse, and shear 

elastic moduli.  
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According to the elastic-viscoelastic correspondence principle [2-6], the elastic constants 

in Eqn.3.16 can be substituted with the viscoelastic constants. For θ=45°, the time-dependent in-

plane shear relaxation modulus was calculated using the relationship: 

𝐺66(𝑡) = [
4

𝐺45°(𝑡)
−

(1 − 𝑣12)

𝐺11(𝑡)
−

(1 − 𝑣21)

𝐺22(𝑡)
]

−1

                                                                             (3.17) 

where G45° (t), G11(t), and G22(t) are the measured stress relaxation of the 45° off-axis, MD, and 

TD samples respectively. The major Poisson’s ratio 𝜈12 in DMC was assumed to be 0.17, the same 

value as in air. The minor poisons ratio 𝜈21 is dependent on v12, G22, and G11 through Betti’s 

reciprocal law [9]. 𝜈21 was calculated analytically using the formula: 

𝜈21 =
𝜈12𝐺22(𝑡)

𝐺11(𝑡)
                                                                                                                                     (3.18) 

Furthermore, the stress relaxation curves for in-plane shear in air and in DMC are plotted 

in a logarithmic time scale and are presented in Fig.3.7. The relaxation curves followed the same 

trend, expressed by the reduction of the stress relaxation modulus with increasing temperature and 

presence of electrolyte solutions or solvent.  

  
(a) (b) 

  

Figure 3.7 In-plane shear relaxation modulus in (a) air and (b) DMC. 

3.3 Temperature and Electrolyte Effects 

3.3.1 Implementation of the Time-temperature superposition principle (TTSP)  

The TTSP can be used as a methodology to systematically characterize the time and 

temperature-dependent properties of viscoelastic materials and as a model to describe its thermo-

viscoelastic behavior [2,16]. Following the TTSP, the stress relaxation of the material as a function 
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of time at different temperatures is expressed by a master curve and shifting factors. This master 

curve is built by shifting individual isothermal relaxation curves relative to the relaxation curve at 

a reference temperature. These isothermal curves are commonly shifted horizontally in a 

logarithmic time scale, as shown in Fig.3.8. Occasionally, vertical shifts in the logarithmic 

relaxation modulus scale in conjunction with the horizontal shifts, are used. This is done in order 

to produce the best master curve possible. For characterizing the temperature-dependent response 

of the separator in the linear range and for large times, only horizontal shifts were used in the 

implementation of the TTSP as they were sufficient to produce suitable master curves. In terms of 

the horizontal shift, the stress relaxation modulus as a function of time and temperature is 

expressed as [4]: 

𝐺(𝑡, 𝑇) = 𝐺 (
𝑡

𝑎𝑇(𝑇, 𝑇0)
, 𝑇0)                                                                                                                (3.19) 

Where 𝑎𝑇(𝑇, 𝑇0) is the horizontal shifting factor in the time scale which is dependent on 

the current (𝑇) and reference (𝑇0) temperatures. 

The TTSP was applied to the experimental data generated for all three material orientations 

with the lowest testing temperature as the reference temperatures. Fig.3.8 presents the master 

curves for MD, TD, and in-plane shear in air and in DMC. 

  
(a) (b) 

Figure 3.8 Application of the TTSP in air and in DMC: (a) Master curve for MD sample in air 

(b) Master curve for TD sample in air (c) Master curve for in-plane shear in air (d) Master curve 

for MD sample in DMC (e) Master curve for TD sample in DMC (f) Master curve for in-plane 

shear in DMC. 
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Figure 3.8 (Cont’d)  

  

(c) (d) 

  
(e) (f) 

 

The master curves together with the shiting factors describe the viscoelastic behavior of 

the material over a wide range of time and temperatures. In literature, the temperature dependency 

of the shifting factors has been explained with the William-Landel-Ferry (WLF) model and the 

Arrhenius equation [3]. The WLF model is based on the free volume theory for amorphous 

polymers whereas the Arrhenius equation is for the rate of thermally activated processes. Both 

models were examined for fitting the horizontal shifting factors. Firstly, the shifting factors were 

fitted using the WLF model using a least square regression and presented in Fig 3.8. The results 

show that the horizontal shifting factor (𝑎𝑇(𝑇, 𝑇0)) data deviated from the WLF model at T > 70°𝐶 

as detailed in Table 3.3. Furthermore, Williams et al [16], have reported that the WLF model is 

not expected to hold at temperatures 𝑇 > 𝑇𝑔 + 100°𝐶. In the current case, the 𝑇𝑔 of PP is -15°C in 

air and thus, the deviation from the WLF model is justified.  
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(a) (b) 

 

 

(c)  

Figure 3.9 Shifting factor fitting using the WLF model for master curves in air (a) MD, (b) TD, 

and (c) In-plane shear. 

Table 3.3 Predicted shifting factors using the WLF model compared with experimental shifting 

factors 

 Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

T 

(ºC ) 

Experiment 

 

Predicted  Experiment 

 

Predicted Experiment 

 

Predicted  

20 0 0 0 0 0 0 

30 -1.15 -1.18 -1.90 -1.89 -1.10 -1.17 

40 -2.67 -2.42 -3.50 -3.67 -3.25 -2.45 

50 -3.97 -3.73 -5.70 -5.32 -4.25 -3.86 

60 -5.70 -5.09 -7.42 -6.86 -6.00 -5.42 

70 - - -8.65 -8.31 - - 

80 -7.60 -8.07 -9.70 -9.67 -7.75 -9.12 

90 - - -10.50 -10.95 - - 

100 -9.25 -11.38 -11.50 -12.16 -9.70 -13.85 

110 -9.98 -13.19 -12.10 -13.31 -10.10 -16.74 



 55 

Hence, for the model development and determination of the temperature-dependent 

parameters, the Arrhenius equation was used to fit the shifting factors. From Table 3.4 it is evident 

that the shifting factors predicted using the Arrhenius equation are comparable to the experimental 

values. 

The Arrhenius theory considers the temperature dependence of reaction rates. Assuming 

the stress relaxation process is thermally activated, it would conform to the kinetic rate theory. The 

Arrhenius equation for relating the shift factor to temperature is given by [17]: 

𝐿𝑜𝑔 (𝑎𝑇_𝑎𝑖𝑟
) =

∆𝐻

2.303𝑅
[
1

𝑇
−

1

𝑇0
]                                                                                                        (3.20) 

where ∆𝐻 is the activation energy, R is the universal gas constant, T and T0 are the current and 

reference temperatures, respectively. Here R=8.3145 J/(mol-K). 

The shifting factors for the master curves in air were fitted with the Arrhenius equation 

using the least square regression. The coefficients of determination R2 of these fittings were in the 

range of 0.996-0.998, indicating excellent fitting (Fig.3.10). Table 3.4 compares the experimental 

shifting factors and shifting factors calculated by the Arrhenius equation. From Table 3.4, it is 

evident that the temperature-dependent behavior of the separator material follows the Arrhenius 

equation over the entire temperature range.  

  
(a) (b) 

Figure 3.10 Shifting factor fitting using the Arrhenius equation for master curves in air (a) MD, 

(b) TD, and (c) In-plane shear. 
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Figure 3.10 (Cont’d)  

 

 

(c)  

 

Table 3.4 Experimental shifting factors in air and the predicted values using the Arrhenius 

equation 

 Machine Direction (MD) Transverse Direction 

(TD) 

In-Plane Shear 

T  

(ºC ) 

Experiment 

 

Predicted  Experiment 

 

Predicted Experiment 

 

Predicted  

T0 0 0 0 0 0 0 

30 -1.15 -1.43 -1.90 -1.82 -1.10 -1.48 

40 -2.67 -2.78 -3.50 -3.52 -3.25 -2.86 

50 -3.97 -4.04 -5.70 -5.12 -4.25 -4.16 

60 -5.70 -5.22 -7.42 -6.62 -6.00 -5.38 

70 - - -8.65 -8.04 - - 

80 -7.60 -7.39 -9.70 -9.37 -7.75 -7.61 

90 - - -10.50 -10.63 - - 

100 -9.25 -9.32 -11.50 -11.82 -9.50 -9.60 

110 -9.98 -10.22 -12.10 -12.96 -10.10 -10.52 

 

Assuming that for the same temperature range (20°C-110°C), the temperature-dependent 

behavior of the separator in DMC will also follow the same trend as in air, the Arrhenius equation 

was also used to fit the shifting factors for the master curve in DMC (aTDMC
). The fittings in all 

three orientations achieved R2>0.998 (Fig.3.11). Table 3.5 compares the experimental values and 

the prediction by the Arrhenius equation. The Arrhenius equation provided good fittings for the 

available experimental data obtained in DMC. Furthermore, Table 3.6 presents the values of the 
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activation energy in the Arrhenius equation determined by curve fitting for the shifting factors in 

air and in DMC. 

  

(a) (b) 

 

 

(c)  

Figure 3.11 Shifting factor fitting using the Arrhenius equation for master curves in DMC (a) 

MD, (b) TD, and (c) In-plane shear. 

Table 3.5 Experimental Shifting factors in DMC and the predicted values using the Arrhenius 

equation 

 Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

T  

(ºC ) 

Experiment 

 

Predicted  Experiment 

 

Predicted Experiment 

 

Predicted  

T0 0 0 0 0 0 0 

30 -1.10 -1.06 -1.50 -1.46 -1.00 -0.98 

35 -1.70 -1.62 -2.40 -2.33 -1.50 -1.45 

40 -2.10 -2.17 -3.10 -3.17 -1.85 -1.89 
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Table 3.6 The activation energy in Arrhenius equation (Eqn.3.20) 

Parameters Machine Direction 

(MD) 

Transverse 

Direction (TD) 

In-Plane Shear 

∆𝐻air (KJ) 243.88 309.30 251.11 

T0 (°C) 20 20 20 

∆𝐻𝐷𝑀𝐶  (KJ) 201.49 311.60 166.78 

T0 (°C) 21 22 20 

 

3.3.2 Time-temperature-solvent superposition method (TTSSM) 

To understand the mechanical response of the separator in its working environment, the 

electrolyte effect needs to be taken into account. Electrolyte solutions have been found to 

remarkably weaken the mechanical performance [11] and thermal stability [18] of LIB separators. 

It has been observed that when being immersed in DMC, the tensile modulus of Celgard®2400 

decreased to 48.5% and 87.7% in the MD and TD respectively in terms of ratio to the measured 

modulus in air [11]. Hence, a model based on the behavior of the polymeric separator in air will 

lead to an overprediction in its mechanical response under stresses in batteries. Due to the 

difficulties in testing for the thermo-mechanical behavior in solvent at high temperatures, it is 

inherently important to develop a model to predict the mechanical response of the separator in 

electrolyte solutions. Krauklis et al [19] developed a time-temperature-plasticization superposition 

principle (TTPSP) to predict the long-term viscoelastic behavior of plasticized amorphous 

polymers below 𝑇𝑔 using short-term experimental data. However, in thermal ramp scenarios, 

polymeric battery separators experience temperatures well above 𝑇𝑔, making the TTPSP not 

applicable. To overcome this limitation, a TTSSM is developed in this work to utilize the 

viscoelastic response of the separator in air as a framework for predicting its behavior in solvent 

at temperatures above 𝑇𝑔. 

The TTSSM is an extension of the TTSP. It is based on the assumption that the 

temperature-dependent mechanical behavior of the separator in solvent at a temperature value 

(𝑇𝑠𝑜𝑙) is equivalent to the behavior in air at another temperature value (𝑇𝑎𝑖𝑟). In the current work, 

this principle was established, using the TTSP master curves in air and the stress relaxation curves 

in solvent.  
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Figure 3.12 Time-temperature-solvent superposition method (TTSSM). 

The process of applying the time-temperature-solvent superposition (TTSS) generates a 

time-temperature-solvent shift factor (aTTS). aTTS describes the temperature-dependent behavior 

of the separator in solvent from its known behavior in air. In the current work, aTTS is decoupled 

into two shifting factors. The first is the shifting factor in DMC (𝑎𝑇_𝐷𝑀𝐶) which accounts for the 

temperature effect on the material in the plasticized state. ATDMC
 is determined by horizontally 

shifting the experimental isothermal stress relaxation curves in DMC to create a TTSP master 

curve in DMC, as discussed in 3.3.1. The second shifting factor is the air-solvent shift (𝑎𝑎_𝑠) which 

is determined by shifting the TTSP master curve in DMC to the TTSP master curve in air, as 

illustrated in Fig.3.12.  𝑎𝑎_𝑠 accounts for the increase in the free volume, structural realignment, 

and decrease in the relaxation modulus of the separator due to the presence of the solvent. Hence, 

𝑎𝑎_𝑠 introduces the plasticizing effect to the master curve in air, making it possible to use the master 

curve in air as a framework for predicting the electrolyte effect on the mechanical properties of the 

separator.  The proposed decoupled aTTS is expressed as: 

𝐿𝑜𝑔 (𝑎𝑇𝑇𝑆) = 𝐿𝑜𝑔 (𝑎𝑎_𝑠) + 𝐿𝑜𝑔 (𝑎𝑇_𝐷𝑀𝐶)                                                                                      (3.21) 

𝑎𝑇𝑇𝑆 = 𝑎𝑎_𝑠 ∙ 𝑎𝑇_𝐷𝑀𝐶                                                                                                                               (3.22) 

 Attempts to fit 𝑎𝑎_𝑠 data using the WLF and Arrhenius-like equations were made but were 

not successful. On the other hand, a linear log relationship was found to be sufficiently accurate in 

fitting the 𝑎𝑎_𝑠(T, T0) function.   
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𝐿𝑜𝑔 (𝑎𝑎_𝑠) = 𝑄1 ∙ (𝑇 − 𝑇0) + 𝑄2                                                                                                       (3.23)                                                          

In Eqn.3.23, T is the current temperature,  T0 is the reference temperature of the super 

master curve (time-temperature-solvent master curve),  Q1 as the slope which is dependent on the 

shape of the master curves representing the viscoelastic behavior in air and in solvent, and Q2 is 

the air-solvent shift when the current temperature is equal to the reference temperature (T=T0). 

The air-solvent shift was fitted using a least square regression method according to Eqn. 3.23 and 

the results are presented in Fig.3.13. The fittings in all three material orientations achieved R2 > 

0.99 showing excellent fittings. 

  

(a) (b) 

 

 

(c)  

Figure 3.13 Air-solvent shifting factor fitting in the (a) MD, (b) TD, and (c) In-plan shear. 

Implementing aTTS on the experimental data leads to the formation of an air-solvent super 

master curve. This super master curve, otherwise known as the time-temperature-solvent master 

curve will account for the solvent effect on the linear viscoelastic behavior of polymeric battery 

separators at different temperature values. Fig.3.14 presents the time-temperature-solvent 
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superposition (TTSS) process for the three material orientations. Figs.3.13(b, d, and f) show the 

super master curves for the MD, TD, and in-plane shear respectively. 

  
(a) (b) 

 

 
(c) (d) 

  

(e) (f) 

Figure 3.14 Implementation of the time-temperature-solvent shift 𝑎𝑎_𝑠. (a-b) MD, (b-c) TD, and 

(e-f) in-plane shear. 
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3.4 Analytical Solutions for Stress Relaxation  

3.4.1 Single Step Stress Relaxation at Constant Temperature 

The TTSP master curve for the relaxation modulus was fitted with the generalized Maxwell 

model in Prony series. The mathematical expression is given by [4]: 

𝐺(𝑡) = 𝐺∞ + ∑ 𝐺𝑖 ∙ 𝑒𝑥𝑝 (−
𝑡

𝜏𝑖
)

𝑛

𝑖=1

                                                                                                        (3.24) 

where 𝐺∞ and 𝐺I are the Prony series coefficients, t is the time, and 𝜏𝑖 are the characteristic 

relaxation times, respectively. 

To include the temperature effect, a reduced time t’ is introduced such that: 

𝑡′ =
𝑡

𝑎𝑇_𝑎𝑖𝑟
                                                                                                                                               (3.25) 

Replacing t in Eq.3.24 with t’, we have the expression for the relaxation modulus with 

temperature dependence in air: 

𝐺(𝑡) = 𝐺∞ + ∑𝐺𝑖

𝑛

𝑖=1

∙ 𝑒𝑥𝑝 (−
𝑡

 𝑎𝑇𝑎𝑖𝑟
 ∙  𝜏𝑖

 )                                                                                      (3.26) 

 Similarly, the reduced time t’ can include the time-temperature-solvent effect in the form:     

𝑡′ =
𝑡

𝑎𝑎_𝑠 ∙ 𝑎𝑇_𝐷𝑀𝐶
                                                                                                                                  (3.27) 

Hence, the expression for the relaxation modulus with temperature dependence and solvent 

effect is expressed as: 

𝐺(𝑡) = 𝐺∞ + ∑ 𝐺𝑖
𝑛
𝑖=1 ∙

𝑒𝑥𝑝 (−
𝑡

𝑎𝑎_𝑠 ∙ 𝑎𝑇_𝐷𝑀𝐶  ∙ 𝜏𝑖
 )                                                                       (3.28)                                                     

Equations 3.24, 3.26, and 3.28 are based on the same framework, i.e., the Prony series for 

the master curve in air obtained by TTSP. Furthermore, the relationship between the shifting factor 

in solvent and the shifting factor in air is assumed to be:  

𝐿𝑜𝑔(𝑎𝑇_𝐷𝑀𝐶) = Q3 ∙ Log (𝑎𝑇_𝑎𝑖𝑟)                                                                                                      (3.29) 

Simplifying Eqn.3.29 by eliminating the logarithmic terms leads to: 

𝑎𝑇_𝐷𝑀𝐶 = (𝑎𝑇_𝑎𝑖𝑟)
Q3

                                                                                                                              (3.30) 

where Q3, is a material constant. Since both  𝑎𝑇_𝐷𝑀𝐶 and 𝑎𝑇_𝑎𝑖𝑟 have been fitted with the Arhenius 

equation, we have: 
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Q3 =
∆𝐻DMC

∆𝐻air
                                                                                                                                           (3.31)                                                                         

From Eqn.3.31, Q3 is the ratio of the activation energies for the stress relaxation process in 

solvent and in air. A value of Q3 <1 indicates that the activation energy of the relaxation process 

is reduced in the presence of electrolyte solutions and vice versa.  

The modified equation for the relaxation modulus as a function of time in solvent can be 

expressed as: 

𝐺(𝑡) = 𝐺∞ + ∑𝐺𝑖

𝑛

𝑖=1

∙ 𝑒𝑥𝑝 (−
𝑡

𝑎𝑎_𝑠 ∙ (𝑎𝑇_𝑎𝑖𝑟)
Q3

∙ 𝜏𝑖

 )                                                                    (3.32) 

From Eqn. 3.32, we can simply revert the process to consider only the temperature effect 

in air (Eqn.3.26). In this case, there is no air-solvent shift (𝐿𝑜𝑔 (𝑎𝑎_𝑠) = 0, 𝑎𝑎_𝑠 = 1 ), and Q3 =

1.  

Furthermore, the stress relaxation as a function of time can be calculated from the 

relaxation moduli expressed above by multiplying by the desired constant strain level, 𝜀0. 

Therefore, the analytical solutions for the stress relaxation accounting for temperature dependence 

and temperature-solvent effect are given by Eqn.3.33 and Eq.3.34 respectively below: 

𝜎(𝑡) = 𝜀0 ∙ [𝐺∞ + ∑𝐺𝑖

𝑛

𝑖=1

𝑒𝑥𝑝(−
𝑡

𝑎𝑇_𝑎𝑖𝑟 ∙ 𝜏𝑖
 )]                                                                               (3.33) 

𝜎(𝑡) = 𝜀0 ∙ [𝐺∞ + ∑𝐺𝑖

𝑛

𝑖=1

𝑒𝑥𝑝(−
𝑡

𝑎𝑎_𝑠 ∙ (𝑎𝑇_𝑎𝑖𝑟)
𝑄3

∙ 𝜏𝑖

 )]                                                            (3.34) 

3.4.2 Step loading at constant temperature 

According to the linear viscoelastic theory [3], the analytical expression for the total stress 

𝜎(𝑡) at a given time t, when the constant strain for stress relaxation is added incrementally, is given 

by: 

𝜎(𝑡) = ∆𝜀1 ∙ 𝐺(𝑡 − 𝑡1) + ∆𝜀2 ∙ 𝐺(𝑡 − 𝑡2) + ∙∙∙∙∙ +∆𝜀𝑛 ∙ 𝐺(𝑡 − 𝑡𝑛)                                             (3.35) 

Eqn. 3.35 gives the basis the Boltzmann superposition principle, where 𝐺(𝑡 − 𝑡1) is the 

stress relaxation modulus, and ∆𝜀1, ∆𝜀2 and ∆𝜀𝑛 are the strain increments added at times 𝑡1, 𝑡2, 

and 𝑡𝑛. The stress relaxation modulus can be represented by Eqn.3.26 for cases with temperature 

effect in air and Eqn.3.32 for cases in DMC. For multistep loading cases for stress relaxation at 

constant temperature, the analytical solution is given by Eqn.3.35 
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3.4.3 Step temperature history at constant strain level 

For the case where the temperature loading is applied stepwise and the temperature values 

𝑇1, 𝑇2, up to  𝑇𝑛 for n steps are added at times 𝑡1, 𝑡2, up to 𝑡𝑛. To develop the analytical solution 

for stress relaxation with a step temperature history, the reduced time has to be evaluated for the 

time intervals at which the temperature steps are held. For linear viscoelastic response with 

temperature dependence introduced via the TTSP, the reduced time is defined mathematically as: 

𝜌(𝑡) = ∫
𝑑𝜏

𝑎𝑇

𝑡

0

                                                                                                                                           (3.36) 

 To calculate the reduced time and vertical shifts, the total time is broken down into 

intervals: 𝑡 ∈ [𝑡1, 𝑡2], 𝑡 ∈ [𝑡2, 𝑡3], … , and 𝑡 > 𝑡𝑛, where n is the total number of time segments. 

For each time interval, the reduced time is calculated as follows. 

For the interval 𝑡 ∈ [𝑡1, 𝑡2], the reduced time becomes: 

𝜌(𝑡) = ∫
𝑑𝜏

𝑎𝑇1

=
𝑡 − 𝑡1
𝑎𝑇1

                                                                                                                        (3.37)
𝑡

𝑡1

 

For the interval 𝑡 ∈ [𝑡2, 𝑡3], the reduced time is: 

𝜌(𝑡) = ∫
𝑑𝜏

𝑎𝑇1

+ ∫
𝑑𝜏

𝑎𝑇2

𝑡

𝑡2

=
𝑡2 − 𝑡1

𝑎𝑇1

+
𝑡 − 𝑡2
𝑎𝑇2

                                                                                   (3.38)
𝑡2

𝑡1

 

In cases that involve more temperature steps, the reduced time can be evaluated for the 

intervals at which the temperature values are added following the procedure in Eqns. 3.37 and 

3.38. 

The reduced time at the time interval 𝑡 > 𝑡𝑛 after the final temperature step has been added 

is given by: 

𝜌(𝑡) = ∫
𝑑𝜏

𝑎𝑇1

+ ∫
𝑑𝜏

𝑎𝑇2

𝑡3

𝑡2

+ ⋯+ ∫
𝑑𝜏

𝑎𝑇3

𝑡

𝑡𝑛

=
𝑡2 − 𝑡1

𝑎𝑇1

+
𝑡3 − 𝑡2

𝑎𝑇2

𝑡2

𝑡1

+ ⋯+
𝑡 − 𝑡𝑛
𝑎𝑇𝑛

                           (3.39) 

Hence, the analytical solution for the stress relaxation as a function of time and temperature 

with step history is given as: 

𝜎(𝑡, 𝑇) = 𝜀0 ∙ {𝐺∞ + ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
𝜌(𝑡)

𝜏𝑖
]

𝑛

𝑖=1

}                                                                                      (3.40) 

With temperature change, the thermal strains due to thermal expansion have to be 

accounted for and introduced into the analytical solution. The thermal strain is expressed as: 

𝜀𝑡ℎ = 𝛼 ∙ (𝑇 − 𝑇0)                                                                                                                                   (3.41) 
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where 𝛼 is the coefficient of thermal expansion (CTE). Hence the analytical solution for stress 

relaxation accounting for thermal expansion effect takes the form: 

𝜎(𝑡, 𝑇) = [𝜀0 − 𝜀𝑡ℎ] ∙ {𝐺∞ + ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
𝜌(𝑡)

𝜏𝑖
]

𝑛

𝑖=1

}                                                                       (3.42) 

 The analytical solutions (Eqns.3.40 and 3.42) developed in this section are applicable for 

stress relaxation with step temperature increment in air (𝑎𝑇_𝑎𝑖𝑟) and in DMC (𝑎𝑇_𝐷𝑀𝐶). 

3.5 Prony Series Fitting and Summary of TTSSM Parameters 

The stress relaxation modulus of the separator investigated in this work was expressed in 

terms of a Prony series. The relaxation constants were determined using the least squares method 

calculated using a MATLAB (MathWorks, Natick, MA, USA) code. The Prony series parameters 

for the separator material in MD, TD, and in-plane shear are presented in Table 3.7. To show the 

quality of the Prony series coefficients generated from the least square fitting, the curves for the 

fitted data and the master curves from the experimental data are compared in a log time scale for 

all three material orientations in Fig.3.15. 

Table 3.7 Prony series parameters 

Machine Direction (MD) Transverse Direction (TD) In-Plane Shear 

Relaxation 

Coefficient    

𝑮𝒊 (Pa) 

Relaxation 

time 𝝉𝒊 (s) 

Relaxation 

Coefficient 

𝑮𝒊 (Pa) 

Relaxation 

time 𝝉𝒊 (s) 

Relaxation 

Coefficient 

 𝑮𝒊 (Pa) 

Relaxation 

time 𝝉𝒊 (s) 

2.08 × 107 - 9.18 × 107 - 9.18 × 106 - 

3.64 × 108 1 7.61 × 107 1 2.24 × 107 1 

4.22 × 108 102 8.47 × 107 102 3.16 × 107 102 

4.02 × 108 104 9.16 × 107 104 2.79 × 107 104 

3.01 × 108 106 9.95 × 107 106 2.67 × 107 106 

6.47 × 107 107 1.02 × 108 108 6.92 × 106 107 

1.89 × 108 108 1.04 × 108 1010 1.46 × 107 108 

1.33 × 108 1010 8.15 × 107 1012 9.83 × 106 1010 

8.71 × 107 1012 8.20 × 107 1014 3.85 × 106 1012 
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(a) 

 
(b) 

Figure 3.15 Prony series fitting for the stress relaxation master curves in log time scale for (a) 

MD and TD, and (b) In-plane shear. 

Furthermore, the TTSSM parameters are summarized in Table 3.8. It is worth noting that 

the Q3 values obtained by fitting agreed well with the values estimated by Eqn.3.31. Fig 3.16 

below presents the least square regression fittings for the material parameter Q3. 

  
(a) (b) 

Figure 3.16 Curve fittings for the material parameter Q3 in the (a) MD, (b) TD, and (c) In-plane 

shear. 
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Figure 3.16 (Cont’d)  

 

 

(c)  

Table 3.8 TTSSM Parameters 

Parameters Machine Direction 

(MD) 

Transverse 

Direction (TD) 

In-Plane Shear 

Q1 0.016 -0.009   0.01 

Q2 -4.11 -4.81 -3.70 

Q3  0.83 1.01 0.66 

Q3 =
∆𝐻DMC

∆𝐻air
 0.83 1.01 0.66 

 

3.6 Simulation Details 

3.6.1 Shell Element Simulations 

The developed model is validated in this work for uniaxial loading conditions. One-element 

simulations are used for model verification and validation. This is a standard practice among finite 

element (FE) code developers to test developed subroutines. A shell element is used for all 

simulations involving model validation. This is due to the large discrepancy in the thickness of 

considered thin film samples in comparison to the in-plane dimension. A square shell element of 

size 5mm with node numbers, constraints and coordinate system as shown in Fig.3.17 was used. 

The boundary conditions were defined as follows: node #1 was fixed in all translational degrees 

of freedom, while node #2 was constrained in the y-direction but allowed to translate in the x-

direction, node #3 was constrained in the x-direction but allowed to move in the y-direction and 

node #4 has no translational constraints. Table 3.9 below summarizes the boundary conditions 

applied at the nodes with 1 meaning “constrained” and 0 meaning “allowed to translate”. For 
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simulations in the MD, the loadings are applied at nodes #2 and #4 (x-direction). For TD 

simulations, the loadings are applied at nodes #3 and #4 (y-direction). Furthermore, for 45° off-

axis simulations, the loadings were applied in either the x-direction (nodes #2 and #4) or the y-

direction (nodes #3 and #4) while the material coordinate was rotated in the anti-clockwise 

direction (𝛽 = 45°). For the 45° off-axis simulations, applying the loadings in the x or y-direction 

produced the same results. The appropriate temperature history was applied at all four nodes of 

the shell element. Explicit time integration was used in all simulations with the time, scaled so that 

1ms will correspond to 1s in real-time.   

 

Figure 3.17 Shell element with boundary conditions. 

Table 3.9 Boundary conditions for shell element 

Node Number X - Direction Y - Direction 

1 1 1 

2 0 1 

3 1 0 

4 0 0 

3.6.2 Hexahedral Solid Element Simulations 

 The applicability of the developed model to different element geometries was explored by 

running simulations using a hexahedral solid element as shown in Fig.3.18. The element was 

assumed to be transversely isotropic with the properties in the TD assigned to the TTD. The 

tetrahedral element is of size 5mm x 5mm x 5mm and the node numbers, constraints and coordinate 

system are also shown in Fig 3.18. Furthermore, Table 3.10 below summarizes the boundary 

conditions applied at the nodes and their degrees of freedom. For simulations run with the solid 
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element, the three-dimensional stiffness matrix discussed in section 3.1.4 was implemented. 

Simulation results produced using the solid element will be compared to that produced using the 

shell element for the same loading conditions to validate the model’s applicability for solid 

elements. 

 

Figure 3.18 Hexahedral solid element with boundary conditions. 

Table 3.10 Boundary conditions for solid element 

Node Number X - Direction Y - Direction Z - Direction 

1 1 1 1 

2 0 1 1 

3 0 1 0 

4 1 1 0 

5 1 0 1 

6 0 0 1 

7 0 0 0 

8 1 0 0 

3.7 Orthotropic Linear Thermoviscoelastic Model Verification  

The orthotropic thermomechanical material model based on TTSP and TTSSM framework 

is implemented in LS-DYNA® as a user material model for shell elements. The implemented 

model is verified using the analytical solutions introduced in section 3.4. The model predictions 

will also be compared with the isothermal stress relaxation experimental results. All simulations, 

except when indicated are performed with the shell element shown in Fig.3.16.  

 For non-isothermal simulations *MAT_ADD_THERMAL_EXPANSION in the LS-

DYNA® keyword [20] is introduced to include the thermal expansion/shrinkage effect in the 

simulations. In the work by Yan et. al. [21], the CTE as a function of temperature over the range 
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of 30º-160ºC has been determined for Celgard®2400 and two other separators. Table 3.11 presents 

the CTE in different temperature ranges as functions of temperature used in the current work.  

Table 3.11 CTE for Celgard®2400 [21] 

Material Temperature (ºC) CTE (x10
-6

/ºC) 

2400 MD 30-65 44 

 65-175 −3.45 × 10−13𝑇7.6262 

2400 TD 30-130 1.4T+26 

 130-140 0 

 140-160 -88T+12044 

 

The analytical solutions are computed using Eqn.3.33 and Eqn.3.34 for cases with constant 

temperature history. Analytical solutions for stress relaxation with two-step loadings at constant 

temperatures were calculated using Eqn.3.35. For cases with step temperature histories, Eqn.3.40 

and Eqn.3.42 are used. The TTSP parameters in Table 3.6, the Prony series parameters in Table 

3.7, and the TTSSM parameters in Table 3.8 were the input parameters for the model.  

Fig.3.19 presents the stress relaxations in the MD in air at 20ºC, 50ºC, 80ºC, and 100ºC. 

The simulation results are compared with analytical solutions and experimental results for the 

selected temperature levels. As shown, the simulations and analytical solutions coincided at all 

four temperature levels, indicating the model has been implemented correctly in the user material 

model. Hence, verifying the numerical model. On the other hand, the simulations do not coincide 

with the experimental curves exactly. For 20ºC, 50ºC, and 100ºC, the simulation agreed with the 

experimental curves reasonably well. The largest discrepancy occurred at 80ºC. The predicted 

curve had a different shape from the experimental curve. Fig.3.20 and Fig.3.21 present the stress 

relaxations in air at 20ºC, 50ºC, 80ºC, and 100ºC in the TD and the 45° off-axis direction, 

respectively. Fig.3.22-Fig.3.24 present the stress relaxations in DMC for the MD, TD, and 45° off-

axis direction, respectively. From the results, analytical solutions coincide with the simulation 

results showing that the electrolyte effect has been introduced into the model correctly. These 

results show that the model has captured the overall trend but may not be as accurate at certain 

temperatures. Furthermore, the model predictions agreed with experimental results in the TD better 

than the other two material orientations.  
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(a) (b) 

Figure 3.19 Comparison of the stress history predicted by simulations with analytical solutions 

and experimental data for stress relaxation in the MD at 0.2% strain in air at (a) 20ºC and 50ºC 

(b) 80ºC and 100ºC. 

 
 

(a) (b) 

Figure 3.20 Comparison of the stress history predicted by simulations with analytical solutions 

and experimental data for stress relaxation in the TD at 0.3% strain in air at (a) 20ºC, 50ºC (b) 

80ºC,100ºC. 
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(a) (b) 

Figure 3.21 Comparison of the stress history predicted by simulations with experimental data for 

stress relaxation in the 45° off-axis direction at 0.3% strain in air at (a) 20ºC and 50ºC (b) 80ºC 

and100ºC. 

 

Figure 3.22 Comparison of the stress history predicted by simulations with analytical solutions 

and experimental data in the MD for stress relaxation at 0.4% strain in DMC at 21ºC, 30ºC, and 

40ºC. 
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Figure 3.23 Comparison of the stress history predicted by simulation with analytical solutions 

and experimental data in the TD for stress relaxation at 0.4% strain in DMC at 22ºC, 30ºC, and 

40ºC. 

 

Figure 3.24 Comparison of the stress history predicted by simulation with experimental data for 

stress relaxation in the 45° off-axis direction at 0.4% strain in DMC at 20ºC, 30ºC, and 40ºC. 

The difference in mechanical response in the MD and TD can be related to the formation 

of the microstructure of the separator. The porous structure of dry-processed separators was 

generated by stretching along the MD [22]. This microstructure is not in a state of equilibrium. 

With increasing temperature, the microstructure tends to return to its equilibrium state and this is 

manifested mainly in the MD. For Celgard®2400, the CTE changes from expansion to shrinkage 
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at 65ºC along the MD but at 130ºC along the TD [21]. With increasing temperature, the modulus 

decreases more rapidly in the MD than that in the TD. As shown in Figs.3.5a and 3.5b, at lower 

temperatures, the relaxation modulus is significantly higher in the MD than in the TD. At 

temperatures higher than 80ºC, however, the trend starts to reverse. This is also shown in Fig.3.14a. 

The MD and TD master curves cross over at long relaxation times. According to the TTSP, a 

longer time is equivalent to a higher temperature.  

Furthermore, the developed model was verified for stress relaxation with step loading at 

constant temperature and for stress relaxation with step temperature histories at constant strain 

levels. The model was verified according to the step histories presented in Fig.3.25 and Fig. 3.26 

in the MD and TD.  

  
(a) (b) 

Figure 3.25 Strain loading for two-step stress relaxation at constant temperatures for (a) 0.1%-

0.2% strain levels (low to high), (b) 0.2%-0.1% strain levels (high to low) cases. 

  

(a) (b) 

Figure 3.26 Applied temperature history (a) 30ºC – 40ºC and (b) 30ºC – 40ºC – 50ºC – 60ºC. 
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(a) (b) 

  
(c) (d) 

Figure 3.27 Model verification with analytical solution for two-step (low to high) and two-step 

(high to low) loading cases respectively in the (a,b) MD and (c,d) TD. 
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(a) (b) 

 

 

(c)  

Figure 3.28 Model verification with the analytical solution for stress relaxation with step 

temperature history with and without considering thermal expansion in (a) MD 30ºC – 40ºC, (b) 

TD 30C – 40C and (c) MD 30ºC – 40ºC – 50ºC – 60ºC. 

The results presented in Fig.3.27 and Fig.3.28 show that the analytical solutions coincide 

with the simulation results showing that the model has been implemented correctly. 

Finally, the applicability of the developed model to solid elements is verified by comparing 

simulations carried out using the shell element to those produced using the hexahedral solid 

element. Fig.3.29 compares single and multi-step stress relaxation simulations in the MD and TD. 

The results show that the predictions from simulations using both elements coincide for the 

different loading conditions and for the different material orientations. 
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(a) (b) 

  
(c) (d) 

Figure 3.29 Model verification by comparing shell and solid element simulations for stress 

relaxation cases in air for (a) MD 20ºC – 0.2% strain, (b) TD 20C – 0.3% strain (c) MD 30ºC – 

40ºC – 50ºC – 60ºC – 0.2% strain and (d) TD 30ºC – 40ºC – 50ºC – 60ºC – 0.3% strain. 

3.8 Orthotropic Linear Thermoviscoelastic Model Validation 

In this section, the developed model is validated by comparing simulations with 

experimental data carried out under various combined thermomechanical loadings separate from 

those used to determine the model parameters. The experimental data used to validate the model 

were generated from uniaxial tensile tests at constant temperatures, stress relaxation tests under 

non-isothermal conditions and iso-stress temperature ramp tests. 

Firstly, the model is validated against uniaxial tensile tests carried out on samples cut along 

the MD and TD at temperatures ranging from 30ºC to 60ºC. The tests were also carried out at 

displacement rates of 0.001mm/s and 0.01mm/s. The comparison between the experimental data 
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and simulation results is shown in Fig.3.30. From the results, the model predictions agree well 

with the experimental data as they capture the trends in the material anisotropy, rate and 

temperature dependence. Furthermore, the modulus of elasticity (Young’s modulus) was 

determined from the experimental and simulated stress-strain curves. The Young’s modulus was 

determined by measuring the slope of the stress-strain curves in the deformation region from 0.1% 

to 0.5% strain. The results are presented in Table 3.12 and they show that the predicted modulus 

is comparable to the experimental modulus for the same loading conditions. 

  
(a) (b) 

  
(c) (d) 

Figure 3.30 Comparison between simulations and experimental data for uniaxial tensile tests at 

different temperatures and displacement rates in (a) MD 30C, (b) MD 40C, (c) MD 60C (d)TD 

30C (e) TD 40C (f) TD 50C (g) TD 60C. 

 
 
 
 
 



 79 

Figure 3.30 (Cont’d)  

  

(e) (f) 

 

 

(g)  

 

Table 3.12 Experimental and predicted young’s modulus of Celgard® 2400 

T 

(ºC) 

Machine Direction (MD) Transverse Direction (TD) 

Experiment 

(MPa) 

Simulation 

(MPa) 

Experiment 

(MPa) 

Simulation 

(MPa) 

0.001 

mm/s 

0.01 

mm/s 

0.001 

mm/s 

0.01 

mm/s 

0.001 

mm/s 

0.01 

mm/s 

0.001 

mm/s 

0.01 

mm/s 

30 1103.00 1306.3 1143.6 1304.9 609.46 655.19 627.75 655.73 

40 808.81 1091.1 809.68 1089.8 525.57 580.18 542.87 577.27 

50 - - - - 414.06 467.05 454.09 513.26 

60 373.63 495.93 439.34 615.87 340.91 383.19 371.16 440.75 

 

Furthermore, the model is validated by comparing simulations with experimental data 

under non-isothermal conditions. Stress relaxation experiments were performed in the MD in air 
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under non-isothermal conditions following a multi-step temperature history, as shown in Fig.3.31. 

The experiments were performed for three cases: two with two-step 30ºC-40ºC and 60ºC-70ºC, 

and one with four-step 30ºC-40ºC-50ºC-60ºC. The measurements were repeated at least twice for 

consistency and the averaged results are presented here. The recorded temperature histories are 

also shown in Fig.3.31.  

  
(a) (b) 

  

(c) (d) 

Figure 3.31 Comparison of the stress history predicted by LS-DYNA® simulation using the 

orthotropic thermo-mechanical material model with experimental data in the MD for non-

isothermal stress relaxation at temperature steps of (a) 30ºC-40ºC, (b) 60ºC-70ºC, and (c) 30ºC-

40ºC-50ºC-60ºC. (d) Thermal expansion/shrinkage of Celgard®2400 MD in the temperature 

range of 30º-80ºC [21]. 

The simulations were carried out for stress relaxation with the recorded temperature 

history. To examine the effect of CTE, simulations were performed with and without considering 
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CTE. The two-step results showed that the CTE had a significant effect at a 30ºC-40ºC increment 

but little effect at a 60ºC-70ºC increment. To understand this, the CTE data of Celgard®2400 MD 

was inspected. The data in the range of 30º-80ºC is presented in Fig.3.31d. Celgard®2400 MD 

sample displays a nearly linear thermal expansion up to 65ºC and then starts to shrink with 

increasing temperature. As a result, the thermal strains at 60ºC and 70ºC are almost the same and 

hence the effect of CTE is negligible for the 60ºC-70ºC step. For the four-step case, the simulation 

with CTE agrees with experimental results quite well. Without the consideration of CTE, the 

simulation overestimated the stress value by over 100%. These cases demonstrate the importance 

of thermomechanical simulations.  

Finally, the model is validated against iso-stress temperature ramp experimental results 

obtained in [21]. As shown in Fig.3.32, the experiments were performed in the MD at three stress 

levels: 0.067, 0.13, and 3MPa, and in the TD at 0.067, and 0.13 MPa over the temperature range 

of 25ºC -110ºC. Simulations were performed with and without the effect of thermal expansion. 

The experimental results showed that the thermal expansion/shrinkage effect exceeded that of 

creep at lower stress levels (0.067 and 0.13MPa) in both the MD and TD. Without considering the 

CTE, the predicted strains were the accumulated creep strains only, which were far from 

experimental curves. Simulations with the CTE effect correctly predicted the trend of strain 

evolution over this broad temperature range for each case. From the experimental results for the 

MD under iso-stress of 3MPa, the creep strain accumulation exceeded the shrinkage effect and the 

strain increased with temperature. The simulation with the CTE effect captured this trend. The 

predicted curve was closer to the experimental curve than the simulation without the CTE.  
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(a) (b) 

 
 

(c) (d) 

Figure 3.32 Comparison between simulations and experimental data for iso-stress temperature 

ramp at stress levels of (a) MD - 0.067MPa, (b) MD – 0.13MPa and 3MPa, (c) TD – 0.06MPa 

(d)TD – 0.13MPa. 

3.9 Summary 

In this chapter, the development of an orthotropic thermo-mechanical model has been 

presented. The model is built upon a linear viscoelastic framework with temperature dependence 

based on the time-temperature superposition principle (TTSP). To consider the effect of electrolyte 

solvents, a time-temperature-solvent superposition principle (TTSSM) has been proposed. 

Orthotropic viscoelastic characterizations have been performed for a PP separator, Celgard® 2400 

in air and in DMC.  The model parameters for Celgard® 2400 have been established. 
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The developed model was implemented as a user material model in LS-DYNA®. Using 

one element FE model, the user material model was tested in simulations for a wide range of 

experimental cases, including uniaxial stress relaxation under isothermal and non-isothermal 

conditions in the MD, TD, and 45º off-axis direction, uniaxial tensile tests, and iso-stress 

experiments with a temperature ramp. Analytical solutions were developed and implemented to 

verify the model. The model was validated against experimental data and although the predictions 

do not coincide exactly with the experimental results for each particular case, they predicted the 

overall trend in material anisotropy, temperature dependence, and solvent effect. The results also 

demonstrated that the simulations without the thermal expansion/shrinkage behavior of the 

separator resulted in large errors. This current model is limited to predictions of the separator 

response under small strains (linear viscoelastic region), the extension of the model to capture and 

predict the separator response under large deformations will be addressed in the subsequent 

chapters. 
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Chapter 4 Orthotropic Nonlinear Thermoviscoelastic Constitutive Modeling 

 In this chapter, the development of an orthotropic nonlinear thermoviscoelastic material 

model for polymeric separators that accounts for the material anisotropy and rate dependence is 

presented. In the previous chapter (Ch.3), we developed, verified, and validated an orthotropic 

linear viscoelastic material model for polymeric separators. The results showed that the model was 

capable of accurately predicting the thermomechanical response of the separator under loadings 

within the linear viscoelastic limit. This present study extends the model to predict the 

thermomechanical response of the material in the nonlinear deformation region up to the onset of 

yielding or evolution of irrecoverable deformations. This model is developed based on the 

Schapery nonlinear viscoelastic model and the temperature dependence is introduced through the 

time-temperature superposition principle (TTSP). The model is implemented in LS-DYNA® finite 

element (FE) package as a user-defined subroutine. The model parameters are determined for a 

polypropylene (PP) separator. Analytical solutions for step loading and step temperature history 

conditions are introduced and compared to the model predictions to verify the model 

implementation. The predicted material responses under large deformations in isothermal and non-

isothermal temperature conditions for stress relaxation, creep and tensile loadings at different rates 

are compared with the experimental data to validate the model predictions. The work presented in 

this chapter has been summarized and published [1]. 

4.1 Orthotropic Nonlinear Viscoelastic Model Development 

4.1.1 Constitutive Model Overview 

 Nonlinearities arise in the stress-strain response of viscoelastic materials when the applied 

loading is larger than the linear viscoelastic strain or stress limit. Within the linear viscoelastic 

limit, the relaxation and creep response of a viscoelastic material are functions of time alone. 

However, above this limit, creep and relaxation functions become functions of both time and stress 

or strain. The viscoelastic response of the material becomes nonlinear above the linear viscoelastic 

limit. This nonlinearity in the material response evolves before the onset of irrecoverable 

deformations or yielding. Fig.4.1 below shows the stress relaxation response of the TD of 

Celgard®2400 PP separator carried out at different strain levels. From Fig.4.1 it is clear that above 

0.3% the stress relaxation response of the material becomes dependent on the strain level. Hence, 
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when developing models for viscoelastic materials under large deformations, it is vital to consider 

the nonlinearity in the stress-strain response of the material before yielding.  

 
Figure 4.1 Stress relaxation response of a PP separator in the TD at 20-22°C. 

The nonlinearities in the stress-strain response of the separator material arising due to large 

deformations before yielding are accounted for through a modified version of the stiffness-based 

formulation of the Schapery single integral viscoelastic model. For uniaxial loading, the Schapery 

single integral model in its stiffness form is written as: 

𝜎(𝑡) = ℎ∞(𝜀) ∙ 𝐺∞ ∙ 𝜀(𝑡) + ℎ1(𝜀) ∙ ∫∆𝐺[𝜌(𝑡) − 𝜌(𝜏)]
𝑑ℎ2(𝜀)𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

                                      (4.1) 

where 𝜎 is the stress, 𝜀  is the strain, 𝐺∞ and ∆𝐺(𝑡)are the equilibrium and linear 

viscoelastic transient relaxation modulus. ℎ∞, ℎ1, ℎ2, are strain-dependent nonlinearity parameters, 

and 𝜌 is the reduced time defined as: 

𝜌(𝑡) = ∫
𝑑𝑡′

𝑎𝜀[𝜀(𝑡′)] ∙ 𝑎𝑇[𝑇, 𝑇0]
      

𝑡

0

                                                                                                       (4.2) 

𝜌(𝜏) = ∫
𝑑𝑡′

𝑎𝜀[𝜀(𝑡
′)] ∙ 𝑎𝑇[𝑇, 𝑇0]

      
𝜏

0

                                                                                                       (4.3) 

In Eqns.4.2 and 4.3,  𝑎𝜺 is the time-strain shifting factor and 𝑎𝑇 is the time-temperature 

shifting factor, where T and T0 are current and reference temperatures respectively. According to 

TTSP, the effect of temperature is equivalent to that of time. When T > T0 , the time needed to 

produce the equivalent viscoelastic response will be reduced. In Eqn.4.1, the effects of temperature 

and strain are not coupled. The other strain-dependent nonlinearity parameters ( ℎ∞, ℎ1, and ℎ2)  
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are considered temperature-independent. In this way, the strain-dependent and temperature-

dependent parameters are decoupled in the current model.  

When the input strain is below the linear viscoelastic strain limit, the values of the nonlinear 

parameters ℎ∞, ℎ1, ℎ2, and 𝑎𝜺 become equal to 1, and Eqn.4.1 reduces to the hereditary integral 

representation for linear viscoelastic materials.  

4.1.2 Numerical Integration of the Nonlinear Viscoelastic Hereditary Integral with a Kernel of 

Prony Series 

To evaluate the nonlinear viscoelastic hereditary integral for loading with arbitrary stress, 

strain, and temperature histories, numerical solutions have to be developed. The discretization 

algorithm implemented in this section is an extension of the approach introduced by Yan et al [2] 

based on the work by Puso and Weiss [3] for the linear viscoelastic hereditary integral. In the 

present work, this algorithm is extended for nonlinear viscoelastic modeling with the Schapery 

hereditary integral.  

To evaluate the Schapery hereditary integral, the generalized Maxwell model is assumed 

to be composed of nonlinear springs and dashpots. From the generalized Maxwell model, if the 

stress in each component is known, the total stress is given as the sum of the stresses in the 

individual components in the form: 

𝜎(𝑡) = 𝜎∞ + ∑ 𝜎𝑖(𝑡)

𝑛

𝑖=1

                                                                                                                            (4.4) 

where 𝜎∞ is the equilibrium stress and from Eqn.4.1, it can be represented as: 

𝜎∞(𝑡) = ℎ∞ ∙ 𝐺∞ ∙ 𝜀(𝑡)                                                                                                                            (4.5) 

At a time 𝑡 + ∆𝑡 , the equilibrium stress increment becomes: 

∆𝜎∞ = 𝜎∞(𝑡 + ∆𝑡) − 𝜎∞(𝑡) = ℎ∞ ∙ 𝐺∞ ∙ [𝜀(𝑡 + ∆𝑡) − 𝜀(𝑡)] = ℎ∞ ∙ 𝐺∞ ∙ ∆𝜀                            (4.6) 

Furthermore, the stress in each individual Maxwell component is given by: 

𝜎𝑖(𝑡) = ℎ1 ∙ ∫ ∆𝐺[𝜌(𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

                                                                                     (4.7) 

At a time 𝑡 + ∆𝑡 , the stress increment is given by: 

𝜎𝑖(𝑡 + ∆𝑡) = ℎ1 ∙ ∫ ∆𝐺[𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏            

𝑡+∆𝑡

0

                                                 (4.8) 
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Eqn. 4.8 is evaluated by separating it into two parts that are evaluated separately: 

𝜎𝑖(𝑡 + ∆𝑡) = ℎ1 ∙ ∫ ∆𝐺[𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

+ ℎ1 ∫ ∆𝐺[𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡+∆𝑡

𝑡

                                                          (4.9) 

Prior to the evaluation of both parts of Eqn.4.8, we should note that the reduced time 

increment is defined as: 

Δ𝜌 = 𝜌(𝑡 + ∆𝑡) − 𝜌(𝑡)                                                                                                                         (4.10) 

The second term in Eqn.4.8 can be solved approximately by using the mean value theorem 

when ∆𝑡 is small and hence: 

ℎ1 ∙ ∫ ∆𝐺[𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡+∆𝑡

𝑡

= ℎ1 ∙ ℎ2 {
𝜀(𝑡 + ∆𝑡) − 𝜀(𝑡)

∆𝑡
} ∫ ∆𝐺[𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)]𝑑𝜏

𝑡+∆𝑡

𝑡

= ℎ1 ∙ ℎ2 {
∆𝜀

∆𝑡
}∆𝐺(∆𝜌)∆t = ℎ1 ∙ ℎ2 ∙ ∆𝜀 ∙ ∆𝐺(∆𝜌)                                               (4.11) 

To evaluate the first term in Eqn.4.8, a kernel function is defined by setting ∆𝐺 to be a 

multiple-term exponential function which is the Prony series expansion of the generalized 

Maxwell model for the transient relaxation modulus represented as: 

∆𝐺(t) = ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
𝑡

𝜏𝑖
]

𝑛

𝑖=1

                                                                                                                 (4.12) 

This shows that the transient portion of the stress relaxation modulus of the material is 

contributed by n individual Maxwell components, each with its characteristic relaxation time 

𝜏𝑖 (𝑖 = 1,2,…𝑛). Hence the first term of Eqn.4.8 becomes: 

ℎ1 ∙ ∫∆𝐺[𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)]
𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

= ℎ1 ∙ ∑∫𝐺𝑖 ∙ 𝑒𝑥𝑝 (−
𝜌(𝑡 + ∆𝑡) − 𝜌(𝜏)

𝜏𝑖
)

𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏                                               

𝑡

0

𝑛

𝑖=1
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                           = ∑  𝑒𝑥𝑝 [−
∆𝜌

𝜏𝑖
] ∙ ℎ1 ∙ ∫ 𝐺𝑖 ∙ 𝑒𝑥𝑝 (−

𝜌(𝑡) − 𝜌(𝜏)

𝜏𝑖
)

𝑑ℎ2𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

𝑛

𝑖=1

= ∑𝑒𝑥𝑝 [−
∆𝜌

𝜏𝑖
] ∙ 𝜎𝑖(𝑡)

𝑛

𝑖=1

                                                                                           (4.13) 

At a time 𝑡 + ∆𝑡 , the stress increment for each i-th Maxwell component is given by: 

∆𝜎𝑖 = 𝜎𝑖(𝑡 + ∆𝑡) − 𝜎𝑖(𝑡)                                                                                                                    (4.14) 

∆𝜎𝑖 = ℎ1 ∙ ℎ2 ∙ ∆𝜀 ∙ 𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
∆𝜌

𝜏𝑖
] + 𝑒𝑥𝑝 [−

∆𝜌

𝜏𝑖
] ∙ 𝜎𝑖(𝑡) − 𝜎𝑖(𝑡)                                             (4.15) 

From Eqn. 4.4, we know that the total stress increment is the sum of the equilibrium stress 

increment and the stress increment for each i-th Maxwell component. The total stress increment 

can now be expressed as: 

∆𝜎 = ℎ∞ ∙ 𝐺∞ ∙ ∆𝜀 + ∑{ℎ1 ∙ ℎ2 ∙ ∆𝜀 ∙ 𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
∆𝜌

𝜏𝑖
] + 𝑒𝑥𝑝 [−

∆𝜌

𝜏𝑖
] ∙ 𝜎𝑖(𝑡) − 𝜎𝑖(𝑡)} 

𝑛

𝑖=1

      (4.16) 

For the stiffness-based formulation of the Schapery nonlinear model, the nonlinearity 

parameters ℎ1 𝑎𝑛𝑑 ℎ2 are often determined as a product (ℎ1 ∙ ℎ2) using single-step relaxation tests. 

Separating the two parameters requires a two-step stress relaxation test [4].  Furthermore, the 

formulation in Eqn. 4.16 takes away the need to separate the parameters ℎ1 𝑎𝑛𝑑 ℎ2. The product 

(ℎ1 ∙ ℎ2) can be represented as a single term ℎ𝑘 and hence Eqn. 4.16 becomes: 

∆𝜎 = ℎ∞ ∙ 𝐺∞ ∙ ∆𝜀 + ∑{ℎ𝑘 ∙ ∆𝜀 ∙ 𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
∆𝜌

𝜏𝑖
] + 𝑒𝑥𝑝 [−

∆𝜌

𝜏𝑖
] ∙ 𝜎𝑖(𝑡) − 𝜎𝑖(𝑡)}               (4.17)

𝑛

𝑖=1

 

Figure 4.2 below presents the flow chart for the implementation of this algorithm in LS-

DYNA® as a user-defined subroutine. 
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Figure 4.2 Flowchart for the implementation of evaluation of the nonlinear hereditary integral 

with Prony series. 

4.1.3 Modifications to the Schapery Nonlinear Viscoelastic Model 

For the numerical implementation of the evaluation of the hereditary integral (Eqn.4.17), 

to allow for small time steps and stability in explicit simulations, the strain-time shift factor (𝑎𝜺) 

is set to equal to 1. Furthermore, the individual contributions of ℎ1and ℎ2 may be difficult to 

separate. Also, as shown above, the final result of the implementation of the discretization 

algorithm (Eqn.4.17) takes away the necessity to separate the nonlinearity parameters ℎ1 and  ℎ2. 

Furthermore, in literature, the nonlinear viscoelastic response of polymeric materials has been 

modeled with the assumption that some but not all of the Schapery nonlinear parameters are equal 

to 1 [5-8]. Hence, the nonlinearity in this model is considered through only two strain-dependent 

nonlinearity parameters ℎ∞ and ℎ𝑘, with ℎ𝑘 = ℎ1 ∙ ℎ2.  

4.1.4 Plane Stress Stiffness Matrix  

Using the elastic-viscoelastic correspondence principle, the stiffness matrix for the plane-

stress condition of a viscoelastic material is given by: 

𝑮 =
1

[1 − 𝑣12𝑣21]
∙ [

𝐺11(𝑡)      𝑣12𝐺22(𝑡) 0

𝑣21𝐺11(𝑡) 𝐺22(𝑡)      0

0 0 [1 − 𝑣12𝑣21]𝐺66(𝑡)
]                                          (4.18) 
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where 𝐺11(𝑡), 𝐺22(𝑡), and 𝐺66(𝑡) are the relaxation moduli in the MD, TD and in-plane shear 

respectively, 𝑣12 and 𝑣21 are the major and minor Poison’s ratios.  For orthotropic viscoelastic 

materials, 𝑣12 and 𝑣21  are not independent but related by Betti’s reciprocal law [9] such that:  

𝑣12𝐺22 = 𝑣21𝐺11                                                                                                                                     (4.19) 

In nonlinear viscoelastic models for PE thin films [10,11], the above relation was used 

resulting in symmetric in-plane material compliance matrices.   

Furthermore, the bi-axial strain fields have been measured using digital image correlation 

(DIC) in tensile experiments for Celgard®2400 in the strain range of 0.1% - 5% in air by Yan et al 

[12]. It was found that 𝑣12 had a constant value of 0.17 in the entire strain range whereas the value 

of 𝑣21 increased with 𝜀1, the strain in the MD direction. 𝑣21 was fitted with a linear relationship 

expressed as: 

𝑣21 = 0.0354 ∙ 𝜀1 + 0.0801                                                                                                                 (4.20) 

where the unit of 𝜀1 is in percentage strain. When 𝜀1 is greater than 1%, the value of  𝑣21 

determined using Eqn.4.19 starts to deviate from that calculated using Eqn.4.20 [12]. Therefore, 

Eqn.4.20 was used to calculate 𝑣21 in the current model. In other words, the model has five 

independent parameters in the plane stress stiffness matrix. This behavior is suspected to be caused 

by the unique anisotropic porous microstructure of the material.    

4.2 Orthotropic Nonlinear Thermoviscoelastic Material Characterization 

4.2.1 Experimental Procedure 

The polymeric separator used in this study is Celgard®2400, a porous polypropylene (PP) 

material. Celgard®2400 is a single-layer film with a thickness of 25µm. For the experimental 

procedures, the specimens were cut along the MD, TD and 45° off-axis direction using a razor 

blade as described in a previous work by Yan et al [12]. The nominal dimensions of the specimen 

were 45 mm in length and 5 mm in width. The experiments were carried out using the RSA-G2 

dynamical mechanical analyzer (DMA) as shown in Fig. 4.3. For measurements below ambient 

temperature conditions (20°C), liquified nitrogen (LN2) was used to provide the needed cooling. 

For tests carried out under isothermal conditions, the sample was kept at the specified temperature 

for 4 minutes to allow for temperature equilibration before loading.  
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Figure 4.3 RSA-G2 dynamical mechanical analyzer testing set up with a mounted sample. 

Stress relaxation, creep, iso-stress, and tensile experiments were performed at various 

loading and temperature conditions. Table 4.1 presents a summary of the experiments and the 

purpose of each set of experiments. 

Table 4.1 Experimental summary 

Experiment Specimen Test Conditions Purpose 

Stress relaxation 

MD, TD, 

45° off-axis 

0.2-5% strain levels at 20°C Determination of 

nonlinearity 

parameters 

Iso-stress 
AL thin foil  0.02MPa at 3°C/min ramp rate Instrument expansion 

calibration  

Creep MD, TD 3-10MPa, 20°C 

Validation under iso-

thermal condition 

Stress relaxation 
MD, TD 0.7-3% strain, 30°C, 40°C, 

60°C 

Tensile 
MD, TD 0.001, 0.01mm/s at 30°C, 40°C 

50°C 

Stress relaxation 
MD, TD 30°C to 60°C with T=10°C Validation under non 

iso-thermal condition 

 

 To characterize the nonlinear viscoelastic response of the separator, stress relaxation tests 

were carried out at 20°C in the MD, TD and 45° off-axis direction. The tests were performed at 

constant strain levels ranging from 0.2% to 5%.   

To provide data for model validation under creep loading, creep tests were carried out at 

20°C for the MD and TD directions. The linear viscoelastic stress limits of Celgard®2400 have 
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been determined at ambient temperature conditions as 5MPa for the MD and 2MPa for TD [12]. 

For nonlinear model validation, creep tests were performed at 4, 5, 8 and 10MPa, for MD, and 3 

and 5MPa for TD. The creep tests were run for 20 mins. 

For validation at elevated temperatures up to 60°C, stress relaxation tests were carried out 

at several strain levels in the nonlinear region. For MD, stress relaxations were performed at 1% 

strain at 30°C and 40°C, and at 0.7% strain at 60°C. For TD, 1% and 2% strain at 30°C, and 40°C.  

To validate the thermomechanical model for non-isothermal conditions, stress relaxation 

experiments were performed with a multi-step temperature history of 30°C-40°C-50°C-60°C. At 

the first step of the test, each sample was kept isothermal for 4 minutes at the desired temperature 

before loading and data collection. At the subsequent temperature steps, data were collected 

simultaneously with the temperature ramp. The stress relaxation tests were run for 20 mins. 

In the non-isothermal stress relaxation procedure, the total applied strain is contributed to, 

by the mechanical strain that induces relaxation and the thermal strain.  Furthermore, in DMA 

systems, the strain is determined by measuring the grip displacement with a sensor located on the 

drive shaft. The thermal expansion of the grip and the drive shaft also contribute to the measured 

thermal strain, in addition to that of the sample [13]. The contribution of the instrument to thermal 

strain can be determined by calibration, using a sample with known CTE.   

 To accurately determine the contribution of the instrument to the thermal strain, iso-stress 

temperature ramp tests were performed using an Al thin foil with a thickness of about 25 µm and 

an initial gage length of 15mm. During the test, a constant small stress level of 0.02MPa was 

applied to keep the sample straight and the temperature was ramped at a rate of 3℃/𝑚𝑖𝑛 from 

ambient to 150℃.  

To validate the model predictions for the stress-strain response, uniaxial tensile tests were 

run at displacement rates of 0.001mm/s and 0.01mm/s. The tests were carried out at constant 

temperatures of 30°C, 40°C, and 50°C in the TD, and at 30°C and 40°C in the MD. For every test, 

each sample was mounted and aligned as shown in Fig. 4.3. A preload force of ~3g was applied to 

ensure the sample was straight before starting each test. All tests were repeated two to three times 

for consistency and the average results are presented. 

4.2.2 Stress Relaxation at Different Strain Levels 

 Stress relaxation tests were carried out on Celgard®2400 samples cut along the MD, TD 

and 45° off-axis direction at different strain levels ranging from 0.2% - 5% as described in the 
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experimental procedure. These tests were carried out at the reference temperature of the model 

calibration (20°C) to determine the strain-dependent model parameters. The results are presented 

in Fig.4.4 and they show that the stress relaxation curves follow the trend described by the 

viscoelastic theory. With an increase in the applied constant strain, the stress relaxation modulus 

decreases and vice versa. 

  
(a) (b) 

 

 

(c)  

Figure 4.4 Stress relaxation results at different strain levels and at 20°C for tests carried out on 

samples cut along the (a) MD, (b) TD, and (c) 45° off-axis direction. 

4.2.3 Determination of In-Plane Shear Relaxation Modulus  

To implement the in-plane stiffness matrix (Eqn.4.18) in the thermoviscoelastic model, the 

in-plane shear modulus needs to be determined. However, it is difficult to experimentally measure 

the in-plane shear property of thin films. In Chapter 3, the linear viscoelastic in-plane shear 

relaxation modulus was determined from the modulus measured from samples cut along the MD, 
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TD, and 45° off-axis through a transformation equation based on the elastic-viscoelastic 

correspondence principle [14,15]. In literature, the elastic-viscoelastic correspondence principle 

has been applied to analyze the response of viscoelastic materials under small deformations 

[2,16,17-20] and by Zhang et al [21] to consider the viscoelastic recovery response in the nonlinear 

deformation region. 

To determine the in-plane shear relaxation modulus in the nonlinear viscoelastic region, 

the transformation equation [16] is modified through the introduction of strain-dependent stiffness 

functions in the form: 

𝐺66(𝑡, 𝜀) = [
4

𝐺45°(𝑡, 𝜀)
−

(1 − 𝑣12)

𝐺11(𝑡, 𝜀)
−

(1 − 𝑣21)

𝐺22(𝑡, 𝜀)
]

−1

                                                                      (4.21) 

where 𝐺11(𝑡, 𝜀), 𝐺22(𝑡, 𝜀), and 𝐺45°(𝑡, 𝜀) are the experimentally measured stress relaxation moduli 

of the samples cut along the MD, TD, and 45° off-axis direction respectively. Eqn.4.21 above was 

utilized to analytically determine the in-plane shear relaxation modulus for different constant strain 

levels at 20°C for the investigated material and the results are presented in Fig.4.5 below. The 

stress relaxation curves produced also followed the trend marked by the negative effect of the 

increasing constant strain level on the relaxation modulus. This is consistent with the viscoelastic 

theory. 

 

Figure 4.5 In-plane shear relaxation modulus for different constant strain levels at 20°C. 
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4.3 Parameter Identification 

4.3.1 Overview 

 This section presents the methodologies involved in the determination of the parameters 

required to calibrate the developed model. The parameters for the Schapery nonlinear viscoelastic 

model have been calibrated in literature [22-26], and these methods used present a basis for the 

methodology used in this work. The challenge has always been the determination of both the strain 

and temperature-dependent parameters. In literature, these parameters have been assumed to be 

decoupled [10,22,24-27] and coupled [28]. For decoupled formulations, the Schapery nonlinear 

parameters have been assumed to be both strain and temperature dependent in additive [24] and 

multiplicative forms [25,26]. The additive form in terms of stiffness is expressed as: 

ℎ𝑖(𝜀, 𝑇) = ℎ𝑖(𝜀) + ℎ𝑖(𝑇)        𝑓𝑜𝑟 𝑖 = ∞, 1, 𝑜𝑟 2                                                                             (4.22) 

𝑎(𝜀, 𝑇) = 𝑎(𝜀) + 𝑎(𝑇)                                                                                                                          (4.23) 

 The multiplicative form is expressed as: 

ℎ𝑖(𝜀, 𝑇) = ℎ𝑖(𝜀) ∙ ℎ𝑖(𝑇)        𝑓𝑜𝑟 𝑖 = ∞, 1, 𝑜𝑟 2                                                                               (4.24) 

𝑎(𝜀, 𝑇) = 𝑎(𝜀) ∙ 𝑎(𝑇)                                                                                                                            (4.25) 

 In this work, the strain and temperature-dependent parameters are assumed to be 

decoupled. The nonlinearity parameters carry the strain dependence (ℎ∞(𝜀),ℎ𝑘(𝜀)) and the 

temperature dependence is introduced through the TTSP using shifting factors. The temperature 

dependence is introduced through the transient linear viscoelastic modulus. Hence, the 

temperature-dependent parameters are determined in the linear viscoelastic strain limit for 

temperatures ranging from the reference temperature (20°C) to 60°C. Finally, the strain-dependent 

parameters are determined at the reference temperature for strain values ranging from the linear 

viscoelastic strain limit (0.2%-0.3%) to 5%.  

4.3.2 Determination of Temperature-Dependent Model Parameters  

The temperature dependence is modeled through master curves based on TTSP [14,15,29-

31]. To build a master curve, viscoelastic properties such as the relaxation moduli or creep 

compliance measured at different temperatures are plotted vs time in a log-log plot. Figure 4.6 

presents the relaxation moduli for MD, TD and in-plane shear directions measured within the linear 

viscoelastic strain limit and at constant temperatures varying from 20°C-60°C [16].  The master 
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curve is constructed by shifting individual curves horizontally and vertically to form a composite 

curve.   

  
(a) (b) 

 

 

(c)  

Figure 4.6 Stress relaxation curves produced from tests carried out under small strains for 

samples cut along the (a) MD, (b) TD, and (c) In-plane shear [16]. 

In Chapter 3, the master curves were built for calibrating the orthotropic linear viscoelastic 

model with relaxation moduli measured from 20°C to 110°C and by using horizontal shifts only 

as they were sufficient at the time for predictions in the linear regions. As a result, the master 

curves covered a wide period from 10-1 to 1013 seconds. To accurately fit the curves was 

challenging. With limited terms, some local regions were not accurately described. Furthermore, 

eliminating vertical shifts resulted in errors in some regions. For a semi-crystalline polymer like 

Celgard®2400, it has been suggested that the horizontal shift accounts for the change in the 

temperature-dependent response in the amorphous region and the vertical shift accounts for the 

change in the degree of crystallinity [4].  Hence, in the current work, the master curves were 
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reconstructed using the relaxation moduli curves measured from 20°C-60°C as shown in Fig.4.6. 

Both horizontal shifts in the log time scale and small vertical shifts in the log modulus scale were 

used to build the master curves. It should be mentioned that both the horizontal and vertical shifts 

were determined according to the need to construct smooth master curves rather than being linked 

to specific physical parameters such as the change in the degree of crystallinity. Fig.4.7 presents 

the master curves constructed from the data in Fig.4.6. 

 
 

(a) (b) 

 

 

(c)  

 Figure 4.7 Time-temperature superposition master curves in the (a) MD, (b) TD, and (c) In-

plane shear. 

 In terms of the horizontal and vertical shifting factors, the stress relaxation modulus can be 

expressed as: 

𝐺(𝑡, 𝑇) =
1

𝑏𝑇
∙ 𝐺 [

𝑡

𝑎𝑇
, 𝑇0]                                                                                                                      (4.26) 
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The viscoelastic behavior of a material over a wide range of time and temperatures can be 

described by the master curves and the shifting factors. In literature, the temperature dependency 

of the horizontal shifting factor has been modeled with the William-Landel-Ferry (WLF) model 

and the Arrhenius equation [14, 29-31]. In this chapter, the horizontal time-temperature shift factor 

(aT) is modeled using the WLF model since the considered temperature range is less than 𝑇𝑔 +

100°𝐶 or less than 𝑇0 + 50°𝐶. The reported  𝑇𝑔 of Celgard®2400 is -15°C in air [32] and the 

reference temperature (𝑇0) is 20°C. The WLF model is expressed mathematically as: 

𝐿𝑜𝑔 (𝑎𝑇) =
−𝐶1 ∙ (𝑇 − 𝑇0)

𝐶2 + (𝑇 − 𝑇0)
                                                                                                                 (4.27) 

where C1 and C2 are material parameters. The horizontal shifting factors for the master curves 

were fitted with the WLF model using the least square regression. The coefficients of 

determination R2 of these fittings were in the range of 0.995-0.9998, indicating excellent fitting 

(Fig.4.8). Table 4.2 compares the experimental horizontal shifting factors and the horizontal 

shifting factors calculated by the WLF model.  

  
(a) (b) 

Figure 4.8 Horizontal shifting factor fitting using the WLF model for master curves in the (a) 

MD, (b) TD, and (c) In-plane shear. 
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Figure 4.8 (Cont’d)  

 

 

(c)  

Table 4.2 Predicted horizontal shifting factors (𝐿𝑜𝑔(𝑎𝑇)) using the WLF model compared with 

experimental horizontal shifting factors 

 Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

T 

(ºC ) 

Experiment Predicted  Experiment Predicted  Experiment Predicted  

20 0.00 0.00 0.00 0.00 0.00 0.00 

30 -0.60 -0.60 -0.60 -0.60 -0.80 -0.81 

40 -1.40 -1.38 -1.30 -1.27 -1.90 -1.75 

50 -2.40 -2.42 -2.00 -2.02 -2.65 -2.86 

60 -3.80 -3.88 -2.80 -2.86 -4.10 -4.19 

Furthermore, it has been argued that the vertical shift factor can be expressed empirically 

[33]. Hence, the vertical shifting factor (bT) was fitted using a simple linear relationship that 

expresses the shifting factor as a function of temperature in the form: 

𝐿𝑜𝑔(𝑏𝑇) = 𝑘1 ∙ 𝑇 + 𝑘2                                                                                                                          (4.28) 

where 𝑘1 and 𝑘2 are material constants. The vertical shifting factors for the master curves were 

also fitted using a least square regression. The vertical shifting factors for the master curves were 

fitted according to the linear relationship (Eqn.4.28) using the least square regression. The 

coefficients of determination R2 of these fittings were in the range of 0.9688-0.9976, indicating 

excellent fitting (Fig.4.9). Table 4.3 compares the experimental vertical shifting factors and the 

vertical shifting factors calculated by the WLF model. Furthermore, the values of the constants C1, 

C2, 𝑘1, and 𝑘2 are summarized in table 4.4. 
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(a) (b) 

 

 

(c)  

Figure 4.9 Vertical shifting factor fitting using a linear relationship for master curves in (a) MD, 

(b) TD, and (c) In-plane shear. 

Table 4.3 Predicted vertical shifting factors (𝐿𝑜𝑔(𝑏𝑇))  using the linear relationship compared 

with experimental vertical shifting factors 

 Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

T 

(ºC ) 

Experiment Predicted  Experiment Predicted  Experiment Predicted  

20 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.03 0.033 0.037 0.028 0.016 0.018 

40 0.07 0.068 0.065 0.072 0.08 0.06 

50 0.1 0.10 0.13 0.12 0.10 0.09 

60 0.14 0.138 0.175 0.16 0.14 0.13 
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Table 4.4 Model parameters for the horizontal and vertical shifting factors 

Parameters Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

C1 -4.74 -11.40 -10.56 

C2 -88.93 -199.43 -140.73 

𝑘1 0.0035 0.0044 0.0036 

𝑘2 -1.0275 -1.3052 -1.0721 

 

4.3.3 Prony Series Fitting  

The stress relaxation modulus of the separator in the temperature range of 20°C-60°C was 

expressed in terms of a Prony series. The parameters were determined by using the least squares 

curve fitting method implemented in MATLAB. The values of the Prony series parameters for the 

separator material in MD, TD, and in-plane shear are summarized in Table 4.5. To show how well 

the Prony series coefficients generated from the least square fitting compare with the experimental 

data, the curves for the fitted data and the master curves from the experimental data are compared 

in a log – log plot for all three material orientations and presented in Fig.4.10. 

Table 4.5 Prony series parameters 

Machine Direction (MD) Transverse Direction 

(TD) 

In-Plane Shear 

Relaxation 

Coefficients    

Gi (Pa) 

Relaxation 

time 𝝉𝒊(s) 

Relaxation 

Coefficient 

Gi (Pa) 

Relaxation 

time  𝝉𝒊(s) 

Relaxation 

Coefficient 

Gi (Pa) 

Relaxation 

time  𝝉𝒊(s) 

3.75 × 108 - 3.54 × 108 - 2.31 × 107 - 

2.69 × 108   10−1 4.79 × 107   10−1 4.08 × 107   10−1 

1.96 × 108 100 3.65 × 107 100 2.11 × 107 101 

2.09 × 108 101 3.31 × 107 101 1.12 × 107 102 

2.18 × 108 102 4.80 × 107 102 2.04 × 107 103 

2.72 × 108 103 5.96 × 107 103 1.70 × 107 104 

2.21 × 108 104 7.56 × 107 104 1.96 × 107 105 

2.10 × 108 105 9.50 × 107 105 1.22 × 107 106 

2.00 × 108 106 9.45 × 107 106 1.64 × 107 107 
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(a) (b) 

 

 

(c)  

Figure 4.10 Prony series fitting for the stress relaxation master curves in log – log scale for (a) 

MD, (b) TD, and (c) In-plane shear. 

4.3.4 Determination of Strain-Dependent Nonlinear Parameters 

The current model assumes that the strain-dependent and temperature-dependent 

parameters are decoupled. This assumption has been used in literature for modeling the nonlinear 

thermomechanical response of viscoelastic materials [10,22,24-27]. Additionally, this assumption 

greatly simplified the experimental procedure for the determination of the model parameters.  

The nonlinearity in the current model is introduced through two strain-dependent nonlinear 

parameters that introduce nonlinearity in the equilibrium modulus (ℎ∞), and the transient stiffness 

(ℎ𝑘). As ℎ∞ and  ℎ𝑘 are independent of temperature, at the reference temperature, the relaxation 

modulus is expressed as: 

𝐺(𝑡, 𝜀) = ℎ∞(𝜀) ∙ 𝐺∞ + ℎ𝑘(𝜀) ∙ ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
𝑡

𝜏𝑖
]                         

𝑛

𝑖=1

                                               (4.29) 

where 𝐺𝑖, 𝐺∞ and 𝜏𝑖, are the determined Prony series parameters. 
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The nonlinear parameters ℎ∞ and  ℎ𝑘 were determined by least square curve fittings of the 

stress relaxation curves measured at the reference temperature. As these two parameters should 

not be negative, a non-negative criterion was enforced in the least square fitting procedure. The 

fittings for the determination of  ℎ∞ and  ℎ𝑘 in the MD, TD, and in-plane shear are shown in 

Fig.4.11. From Fig.4.11 it is evident that the curves from the fitting and the experimental results 

overlap nicely.  

  
(a) (b) 

 

 

(c)  

Figure 4.11 Curve fitting for stress relaxation curves at 20°C in the (a) MD, (b) TD, and (c) In-

plane shear. 

The nonlinear parameters ℎ∞ and ℎ𝑘 were expressed by polynomial functions of strain, 

given in Eqn. 4.30 through Eqn. 4.32. Fig. 4.12 shows that the values computed by the polynomial 

functions are in good agreement with the values determined from the curve fitting. Furthermore, 

comparisons between the fitted nonlinear parameters and the parameters predicted by the 

polynomial functions are presented in tables 4.6 and 4.7 for ℎ∞ and ℎ𝑘 respectively. 
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𝑀𝐷 ∶ {
ℎ∞ = 1.25 × 106𝜀4−1.59 × 105𝜀3+7.41 × 103𝜀2 − 1.46 × 102𝜀. +1.25  

ℎ𝑘 = −1.25 × 104𝜀3+1.18 × 103𝜀2 − 41.06𝜀. +1.08                                      
              (4.30)     

𝑇𝐷 ∶ {
ℎ∞ = 7.95 × 105𝜀4−1.15 × 105𝜀3+6.10 × 103𝜀2 − 1.44 × 102𝜀 + 1.38       

ℎ𝑘 = −9.61 × 105𝜀4+1.27 × 105𝜀3−5.81 × 103𝜀2 + 88.15𝜀 + 0.79             
         (4.31) 

𝑆ℎ𝑒𝑎𝑟 : {
ℎ∞ = −1.05 × 106𝜀4+1.16 × 105𝜀3−3.71 × 103𝜀2 + 15.93𝜀. +0.64   

ℎ𝑘 = −6.39 × 105𝜀4+7.51 × 104𝜀3−2.80 × 103𝜀2 + 22.62ε + 1.04
              (4.32) 

  
(a) (b) 

 

 

(c)  

Figure 4.12 Polynomial fitting for strain-dependent nonlinearity parameters ℎ∞ and ℎ𝑘 in the (a) 

MD, (b) TD, and (c) In-plane shear. 
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Table 4.6 Fitted values of the nonlinearity in equilibrium modulus (ℎ∞) compared with predicted 

values using the polynomial equations. 

 Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

Strain 

(% ) 

Fitted 

value 

Predicted 

value 

Fitted 

value 

Predicted 

value 

Fitted 

value 

Predicted 

value 

0.2-0.3 1.00 0.98 1.00 1.00 0.65 0.65 

0.7 0.49 0.53 0.63 0.63 - - 

1 0.38 0.38 0.45 0.45 0.54 0.53 

1.5 0.29 0.24 0.26 0.25 - - 

2 0.17 0.20 0.14 0.15 0.21 0.23 

2.5 0.22 0.20 0.10 0.11 - - 

3 0.18 0.21 0.12 0.10 0.06 0.04 

4 0.22 0.20 0.06 0.07 0.03 0.04 

5 0.26 0.26 0.04 0.04 0.02 0.02 

 

Table 4.7. Fitted values of the combined nonlinearities in the transient stiffness and strain rate 

effect (ℎ𝑘) compared with predicted values using the polynomial equations. 

 Machine Direction 

(MD) 

Transverse Direction 

(TD) 

In-Plane Shear 

Strain 

(% ) 

Fitted 

value 

Predicted 

value 

Fitted 

value 

Predicted 

value 

Fitted 

value 

Predicted 

value 

0.2-0.3 1.00 1.00 1.00 1.01 1.08 1.08 

0.7 0.84 0.84 1.18 1.16 - - 

1 0.76 0.77 1.22 1.21 1.07 1.05 

1.5 0.69 0.68 1.16 1.19 - - 

2 0.64 0.63 1.11 1.10 0.84 0.87 

2.5 0.59 0.59 0.98 0.98 - - 

3 0.57 0.57 0.87 0.87 0.74 0.71 

4 0.53 0.53 0.72 0.72 0.62 0.64 

5 0.42 0.43 0.59 0.59 0.52 0.57 

 

4.3.5 Calibration of Instrument Expansion 

The contribution of the instrument to the thermal strain during non-isothermal tests was 

determined by calibrating the instrument using an aluminium thin foil sample of known CTE as 

described in the experimental section. Using a sample with known CTE, it becomes possible to 

identify the thermal strains due to the instrument expansion from the total measured strain during 

the iso-stress test. The contribution of the instrument is determined by subtracting the predicted 
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dimensional change from the dimensional change measured by the DMA. The predicted 

dimensional change of the calibration sample was computed as: 

∆𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛼 ∙ 𝑙0 ∙ (𝑇 − 𝑇0)                                                                                                              (4.33) 

where 𝑙0 is the initial gage length and 𝛼 is the CTE of pure aluminium (Al) determined to be  

24.5 × 10−6/℃ over the temperature range of 20-200°C [34]. Fig.4.13 presents the displacement-

temperature curves for the measured, predicted and calibrated displacements.  

 
Figure 4.13 Displacement versus temperature curves for the measured, predicted and calibrated 

displacements. 

The calibrated displacement vs temperature curve was fitted using a linear least square 

regression relationship to determine the rate at which the instrument grip and the drive shaft 

displace for every degree rise in temperature. From the result, the instrument displaces at a rate of 

0.0013mm/°C and for an initial gage length of 15mm, the thermal strain contributed by the 

instrument for every 1°C increment is 0.0087%. The contribution of the instrument to the thermal 

strain will be accounted for in simulations for model validation in non-isothermal conditions. 

4.4 Analytical Solutions for Stress Relaxation  

For step-loading cases, the hereditary integral in Eqn.4.1 may be evaluated analytically.  In 

this sub-section, analytical solutions for stress relaxation are derived for multi-step strain loading 

at a constant temperature, and for multi-step temperature histories under a constant strain. These 

solutions are useful for verifying the implementation of the numerical model. 
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4.4.1 Single Step Stress Relaxation at Constant Temperature 

The TTSP master curves were fitted according to the generalized Maxwell model in Prony 

series. The mathematical expression for the stress relaxation response of the generalized maxwell 

model for a step strain loading is given by [14]: 

𝐺(𝑡) = 𝐺∞ + ∑𝐺𝑖 ∙ exp (−
𝑡

𝜏𝑖
)

𝑛

𝑖=1

                                                                                                        (4.34) 

where 𝐺∞ and 𝐺I are the Prony series coefficients, t is the time, and 𝜏𝑖 are the characteristic 

relaxation times, respectively. 

With the introduction of nonlinear parameters, the stress relaxation modulus as a function 

of time and strain at the reference temperature is given by:  

𝐺(𝑡, 𝜀) = ℎ∞(𝜀) ∙ 𝐺∞ + ℎ𝑘(𝜀) ∙ ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
𝑡

𝜏𝑖
]                         

𝑛

𝑖=1

                                               (4.35) 

A reduced time t’ is used to account for the temperature dependence through the horizontal 

shifting factor, such that: 

𝑡′ =
𝑡

𝑎𝑇
                                                                                                                                                      (4.36)  

Replacing t in Eqn.4.35 with t’, and introducing the vertical shifting factor (bT) to 

Eqn.4.35, we have the expression for the relaxation modulus as a function of time, strain and 

temperature: 

𝐺(𝑡, 𝜀, 𝑇) =
1

𝑏𝑇(𝑇)
∙ {ℎ∞(𝜀) ∙ 𝐺∞ + ℎ𝑘(𝜀) ∙ ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−

𝑡

𝑎𝑇 ∙ 𝜏𝑖
]

𝑁

𝑖=1

}                                         (4.37) 

Furthermore, the stress relaxation as a function of time, strain and constant temperature can 

be calculated from the relaxation modulus expressed above by multiplying by the desired constant 

strain level, 𝜀0. Therefore, the analytical solutions for the stress relaxation accounting for 

temperature dependence for single step loading is given below: 

 

𝜎(𝑡) = 𝜀0 ∙ [
1

𝑏𝑇(𝑇)
∙ {ℎ∞(𝜀) ∙ 𝐺∞ + ℎ𝑘(𝜀) ∙ ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−

𝑡

𝑎𝑇 ∙ 𝜏𝑖
]

𝑁

𝑖=1

}]                                       (4.38) 
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4.4.2 Step loading at constant temperature 

From the linear viscoelastic theory [23], the total stress 𝜎(𝑡) at a given time t, is given by: 

𝜎(𝑡) = ∆𝜀1 ∙ 𝐺(𝑡 − 𝑡1) + ∆𝜀2 ∙ 𝐺(𝑡 − 𝑡2) + ∙∙∙∙∙ +∆𝜀𝑛 ∙ 𝐺(𝑡 − 𝑡𝑛)                                             (4.39) 

Eqn. 4.39 gives the basis the Boltzmann superposition principle, where 𝐺(𝑡 − 𝑡1) is the 

stress relaxation modulus, and ∆𝜀1, ∆𝜀2 and ∆𝜀𝑛 are the strain increments added at times 𝑡1, 𝑡2, 

and 𝑡𝑛.  

For loading cases with strains larger than the linear viscoelastic limit, the relaxation 

modulus becomes a nonlinear function which is dependent on strain and temperature. Extending 

the linear superposition to the nonlinear deformation range, for the one-step loading case at a 

constant temperature T, the total stress is given by: 

 𝜎(𝑡) = ∆𝜀1 ∙ 𝐺(𝑡 − 𝑡1, 𝜀1, 𝑇)                                                                                                               (4.40) 

For the multi-step loading case, the total stress at time 𝑡 is given by: 

𝜎(𝑡) = ∆𝜀1 ∙ 𝐺(𝑡 − 𝑡1, 𝜀1, 𝑇) + ∆𝜀2 ∙ 𝐺(𝑡 − 𝑡2, 𝜀2, 𝑇)  + ∙∙∙∙∙ +∆𝜀𝑛 ∙ 𝐺(𝑡 − 𝑡𝑛, 𝜀𝑛 , 𝑇)              (4.41) 

Where the stress relaxation modulus at a given time interval, as a function of strain and temperature 

(𝐺(𝑡 − 𝑡𝑖 , 𝜀𝑖 , 𝑇)) is expressed by Eqn.4.37. 

4.4.3 Step temperature history at constant strain level 

In section 3.4.3 of chapter 3, the case where the temperature loading is applied stepwise 

and the temperature values 𝑇1, 𝑇2, up to  𝑇𝑛 for n steps are added at times 𝑡1, 𝑡2, up to 𝑡𝑛 was 

considered. It was concluded that to develop the analytical solution for stress relaxation with a step 

temperature history, the reduced time (𝜌(𝑡)) had to be evaluated for the time intervals at which the 

temperature steps are held. 

 The total time was broken down into intervals: 𝑡 ∈ [𝑡1, 𝑡2], 𝑡 ∈ [𝑡2, 𝑡3], … , and 𝑡 > 𝑡𝑛 , 

where n is the total number of time segments. For each time interval, the reduced time was 

calculated and presented as Eqns. 3.36 through 3.39 in chapter 3. However, the temperature 

dependence introduced in the previous chapter did not consider the vertical shifting factor. Hence, 

to complete the development of the analytical solution for stress relaxation with step temperature 

history, the vertical shifting factor needs to be considered. 

From the evaluation of the reduced time at the different time segments (Ch.3), it is evident 

that the reduced time for temperature steps other than the first step carries the fading memory effect 

of the temperature response at previous steps. In other words, the part of the reduced time due to 
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a recent temperature increment [
𝑡−𝑡𝑖

𝑎𝑇𝑖

 ] will contribute more to the stress relaxation than parts of the 

reduced time due to temperature increments in the distant past [
𝑡𝑖+1−𝑡𝑖

𝑎𝑇𝑖

 ]. 

Furthermore, the vertical shift needed to match the reduced time with fading memory effect 

at temperature steps other than the first step is the change in the vertical shift from the previous 

temperature step to the current. This can be represented mathematically as: 

 𝐿𝑜𝑔(𝑏𝑇𝑖+1
) = 𝐿𝑜𝑔(𝑏𝑇𝑖

) ± 𝐿𝑜𝑔(∆𝑏𝑇𝑖→𝑖+1
)                                                                                      (4.42) 

where 𝐿𝑜𝑔(∆𝑏𝑇𝑖→𝑖+1
) is the change in the vertical shift required to go from the stress 

relaxation response at one temperature step to another and i=0,1, 2...n. Reducing Eqn. 4.42 by 

eliminating the logarithmic expression, the change in the vertical shift can be represented as: 

∆𝑏𝑇𝑖→𝑖+1
=

𝑏𝑇𝑖+1

𝑏𝑇𝑖

                                                                                                                                     (4.43) 

Hence, the analytical solution for the stress relaxation as a function of time, strain and 

temperature with step histories is given as: 

𝜎(𝑡, 𝜀, 𝑇) = 𝜀0 ∙
1

∆𝑏𝑇(𝑇)
∙ {ℎ∞(𝜀) ∙ 𝐺∞ + ℎ𝑘(𝜀) ∙ ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−

𝜌(𝑡)

𝜏𝑖
]

𝑛

𝑖=1

}                                   (4.44) 

With temperature change, the thermal strains due to thermal expansion have to be 

accounted for and introduced into the analytical solution. The thermal strain is expressed as: 

𝜀𝑡ℎ = 𝛼 ∙ (𝑇 − 𝑇0)                                                                                                                                   (4.45) 

where 𝛼 is the coefficient of thermal expansion (CTE). Hence the analytical solution for stress 

relaxation accounting for thermal expansion effect takes the form: 

𝜎(𝑡, 𝜀, 𝑇) = [𝜀0 − 𝜀𝑡ℎ] ∙
1

∆𝑏𝑇(𝑇)
∙ {ℎ∞(𝜀) ∙ 𝐺∞ + ℎ𝑘(𝜀) ∙ ∑𝐺𝑖 ∙ 𝑒𝑥𝑝 [−

𝜌(𝑡)

𝜏𝑖
]

𝑛

𝑖=1

}                     (4.46) 

4.5 Orthotropic Nonlinear Thermoviscoelastic Model Verification  

The orthotropic nonlinear thermoviscoelastic material model was written as a user material 

model for shell element simulations in LS-DYNA®. An executable file was then compiled with 

the addition of the user material model to run the simulations. In this section, the implemented 

model is verified using the analytical solutions for stress relaxation for one and two-step loading 

cases at constant temperatures of 20°C and 30°C, and for non-isothermal cases with a step 

temperature history of 30°C-40°C-50°C-60°C at a constant strain level.  
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All simulations were performed with a one-element model, with boundary conditions as 

described in Chapter 3. Also, in these simulations, the required temperature history was applied at 

all four nodes of the shell element. Explicit time integration was used in all simulations with the 

time, scaled so that 1ms will correspond to 1s in real-time.   

For non-isothermal simulations, the thermal expansion was also introduced into the 

simulation through *MAT_ADD_THERMAL_EXPANSION in the LS-DYNA® keyword [35] as 

in the orthotropic linear thermoviscoelastic model. The CTE of Celgard®2400 for samples cut 

along the MD and TD as functions of temperature have been determined and are summarized in 

the work by Yan et. al. [13] and are shown in Table 3.11. Furthermore, the contribution of the 

testing instrument to the total thermal strain was also introduced in the non-isothermal simulations 

for model validation. 

Figure 4.15 presents the model verification in the MD and TD at 20ºC and 30ºC with 

analytical solutions computed using Eqns.4.40 and 4.41 for step loadings at constant temperatures. 

For the one-step loading case, the stress relaxation was monitored at a constant strain level of 1% 

and for the two-step loading case, the strain loading varied according to Fig.4.14. As shown, the 

simulations and analytical solutions coincided for all cases, indicating the model has been 

implemented correctly. 

 
 

(a) (b) 

Figure 4.14 Strain loading for two-step stress relaxation for (a) low to high and (b) high to low 

cases. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.15 Model verification with analytical solutions for one-step, two-step (low to high), and 

two-step (high to low) loading cases respectively in the (a-c) MD and (d-f) TD. 
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The developed nonlinear thermomechanical user material model was also verified using 

analytical solutions computed using Eqns.4.44 and 4.46 for stress relaxation with step temperature 

histories with the applied strain level kept constant at 1%. The applied temperature history is shown 

in Fig.4.16. The analytical solutions were computed for cases with and without considering the 

thermal expansion effect (i.e., thermal stains due to sample expansion alone). From Fig.4.17, the 

predicted stress histories from the simulations match with the stress histories calculated from the 

analytical solutions. The results also show that the numerical model was correctly implemented. 

 
Figure 4.16 Applied temperature history. 

  
(a) (b) 

Figure 4.17 Model verification with the analytical solutions for stress relaxation with step 

temperature history with and without considering thermal expansion in the material response in 

the (a) MD and (b) TD. 
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4.6 Orthotropic Nonlinear Thermoviscoelastic Model Validation 

This section covers the model validation by comparing simulations with experimental 

results from stress relaxation tests at different strain levels and temperature histories, creep tests 

carried out at different loading levels, and tensile tests at different displacement rates, as 

summarized in Table 4.1. 

Stress relaxation tests were carried out on samples cut along the MD, TD, and 45° off-axis 

direction at different strain levels above the linear viscoelastic limit and constant temperature 

values ranging from 20ºC-60ºC. The stress histories predicted by the model compare well with the 

experimental results, as shown in Fig. 4.18. Furthermore, the excellent agreement between the 

experimental results and the model predictions in Fig.4.18(d) verifies the applicability of the 

transformation equation (Eqn.4.21) based on the elastic-viscoelastic correspondence principle in 

the nonlinear deformation region considered in this work. 

  
(a) (b) 

Figure 4.18 Comparison of the stress history predicted by LS-DYNA® simulation using the 

orthotropic nonlinear thermoviscoelastic material model with experimental data for stress 

relaxation tests in the (a) MD at 30ºC and 1% strain: 40ºC and 1% strain; 60ºC and 0.7% strain, 

(b) TD at 30ºC and 1%, 2%, and 3% strain levels, (c) TD at 40ºC and at 1%, and 2% strain 

levels, and (d) 45º off-axis direction at 20ºC and 0.3%-5% strain levels. 
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Figure 4.18 (Cont’d)  

  

(c) (d) 

 

Furthermore, the implemented model is validated against experimental results from stress 

relaxation tests performed under non-isothermal conditions following a multi-step temperature 

history, as shown in Fig.4.16. The experiments were performed at constant strain levels of 1% and 

0.7% in the MD and TD. Simulations were carried out for stress relaxation with the recorded 

temperature history. To examine the thermal expansion effects, the simulations were performed 

with and without considering the CTE. Without the consideration of CTE, the simulation results 

overpredicted the stress histories from the experimental procedures. The results (Fig.4.19) show 

that with the consideration of the thermal expansion effects, the model predictions of stress 

histories in non-isothermal conditions agree well with experimental data. 
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(a) (b) 

  
(c) (d) 

Figure 4.19 Comparison of the stress histories predicted with and without considering CTE by 

LS-DYNA® simulation using the orthotropic nonlinear thermoviscoelastic material model with 

experimental data for non-isothermal stress relaxation with a multi-step temperature history of 

30ºC-40ºC-50ºC-60ºC in the MD at (a) 0.7% strain level, (b) 1% strain level, and in the TD at (c) 

0.7% strain level and (d) 1% strain level. 

The model is also validated against creep tests carried out at different stress levels in the 

nonlinear range at 20ºC. Figure 4.20 shows the comparison between predicted and experimental 

strain histories under constant stress levels of 4, 5, 8 and 10MPa in the MD, and 3 and 5MPa in 

the TD. The results show a good agreement between simulation results and the experimental data. 
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(a) (b) 

Figure 4.20 Comparison of the strain history predicted by LS-DYNA® simulation using the 

orthotropic nonlinear thermoviscoelastic material model with experimental data for creep tests at 

20ºC in the (a) MD and (b) TD. 

Uniaxial tensile tests were carried out on specimens at different displacement rates and 

constant temperatures as summarized in Table 4.1. Figure 4.21 presents a comparison between the 

experimental and the simulation results for the uniaxial stress-strain response in the MD and TD. 

The experimental results showed that with increasing the displacement rate, the material showed 

higher stiffness in its stress-strain response. With increasing temperature, a lower stiffness in the 

material response was the case. Simulation results using the orthotropic linear viscoelastic model 

developed in the previous chapter were introduced in Fig 4.21 to show the discrepancy in accuracy 

of the predictions of the linear and nonlinear viscoelastic models in the large deformation region 

for samples cut along the MD and TD respectively. From the results, the nonlinear viscoelastic 

deformation range of the material was observed to be up to 1.5% strain in the TD. With an increase 

in temperature, the material softened and the onset of permanent deformations and yielding began 

to occur at lower strains for samples cut along the TD. However, the stress-strain behavior of the 

samples cut along the MD showed no distinctive yield point. The MD samples continuously 

deformed with no signs of yielding. The results show that the stress-strain curves predicted by the 

orthotropic nonlinear thermoviscoelastic model agree well with the experimental results and 

capture the trend in the rate and temperature dependence of the stress-strain response of the 

material in the nonlinear viscoelastic deformation range.  
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(a) (b) 

 
 

(c) (d) 

 

 

(e)  

Figure 4.21 Comparison of the stress-strain response predicted by LS-DYNA® simulation using 

the orthotropic nonlinear thermoviscoelastic material model with experimental data from 

uniaxial tensile tests carried out at displacement rates of 0.001mm/s and 0.01mm/s rates for 

samples cut along the MD at (a) 30ºC, (b) 40ºC, and the TD at (c) 30ºC, (d) 40ºC, and (e) 50ºC. 
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4.7 Summary 

The development of an orthotropic nonlinear thermoviscoelastic model for predicting the 

thermomechanical response of polymeric battery separators in thermal ramp scenarios has been 

presented in this work. A discretization algorithm was employed to evaluate the nonlinear 

viscoelastic hereditary integral with a kernel of Prony series based on a generalized Maxwell model 

with nonlinear springs and dashpots. Temperature dependence was introduced into the model 

through the time-temperature superposition principle (TTSP). 

The model parameters were determined for Celgard®2400, which is a porous 

polypropylene (PP) separator. The model was implemented in LS-DYNA® finite element (FE) 

package as a user material model. Analytical solutions for stress relaxation with step loading and 

step temperature history were formulated based on the viscoelastic theory to verify the 

implementation of the model. The developed model was validated against stress relaxation tests, 

creep tests, uniaxial tensile tests at constant temperatures, and stress relaxation at non-isothermal 

conditions accounting for the thermal expansion of the material. The results show that the model 

predictions of the material anisotropy, rate dependence, and temperature dependence of the 

separator under large deformations in the nonlinear viscoelastic region agree well with the 

experimental data.  

Furthermore, it was observed that the nonlinear viscoelastic deformation region of 

polymeric materials like the separator investigated in this work is considerably larger compared to 

the linear viscoelastic region, especially for samples cut along the MD. Hence, the nonlinear 

recoverable response of the polymeric material could be mistakenly considered irrecoverable if 

the linear viscoelastic theory is solely used. The validation results also confirm that assuming the 

strain and temperature-dependent parameters are decoupled was sufficient to describe the wide 

range of thermomechanical behaviors examined in the current work.  This model is limited to 

predictions of the thermomechanical response of the separator under large deformations before 

yielding, the coupling of the nonlinear thermoviscoelastic model with a viscoplastic model to 

capture and predict the separator response under large irrecoverable deformations will be 

addressed in the subsequent chapter. 
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Chapter 5 Coupled Viscoelastic – Viscoplastic Modeling 

This chapter presents the development of a phenomenological viscoplastic constitutive 

model for polymeric battery separators. The developed viscoplastic model is coupled with the 

nonlinear viscoelastic model developed in the previous chapter (Ch.4) to predict the stress-strain 

response of the considered separator material in the entire range of its deformation before the onset 

of failure. The viscoplastic model is developed based on a rheological framework that considers 

the mechanisms involved in the initial yielding, change in viscosity, strain softening and strain 

hardening of polymeric separators. The developed model accounts for the material anisotropy, rate 

and temperature dependence. The model parameters are determined for a polypropylene (PP) 

separator and are implemented in LS-DYNA® finite element (FE) package as a user-defined 

subroutine. Simulations of uniaxial tensile stress-strain response at different strain rates and 

temperatures are compared with experimental data to validate the model predictions. 

5.1 Viscoplastic Model Overview 

The mechanical response of polymeric materials under large deformations beyond the 

onset of yielding has been widely studied and shown to be rate-dependent. Hence to accurately 

predict the response of polymeric materials, viscoplastic models have to be considered. 

Phenomenological viscoplastic constitutive models have been applied widely in literature to model 

the temperature and rate-dependent large strain response of polymeric materials [1-5]. Hence, in 

this chapter, a phenomenological constitutive model is developed to predict the strain rate and 

temperature-dependent post-yield response of polymeric battery separators. To accomplish this, a 

rheological framework is introduced as the basis of the phenomenological viscoplastic constitutive 

model. The rheological framework is proposed with the approach that the stress evolution in the 

material beyond the yield threshold follows a governing relationship that can be simplified using 

a combination of a sliding frictional element, a dashpot and two springs as shown in Fig.5.1 below. 
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Figure 5.1 Rheological framework for viscoplastic model. 

From Fig. 5.1, the rheological model consists of a sliding frictional element to represent 

the yield threshold, a dashpot to account for the changes in the viscosity of the material due to the 

accumulation of plastic strains and changes in the strain rate, and two springs to account for the 

strain softening and strain hardening mechanisms. The elements in the rheological model are 

arranged in such a way that the total stress can be determined by a summation of the stresses in 

the individual elements. Hence, after the yield threshold is exceeded, the stress as a function of the 

plastic strain and the constant strain rate is expressed as: 

𝜎(𝜀𝑝, 𝜀̇) = 𝜎𝑦0(𝜀̇) + 𝜇𝑣𝑝(𝜀̇) ∙ {1 − 𝑒𝑥𝑝(−𝑘(𝜀̇) ∙ 𝜀𝑝)} + 𝐻1(𝜀̇) ∙ 𝜀𝑝 + 𝐻2(𝜀̇) ∙ 𝜀𝑝
𝑚                     (5.1) 

where 𝜎𝑦0 is the initial value of the stress at the onset of permanent deformations or the initial 

yield stress. 𝜎𝑦0 is strain rate and temperature dependent. With an increase in strain rate and a 

decrease in temperature, the initial yield stress increases in value and vice versa. 𝜇𝑣𝑝(𝜀̇) and 𝑘(𝜀̇) 

are the first and second viscosity parameters. 𝜇𝑣𝑝(𝜀̇) accounts for the rate of the change in the 

viscosity of the material in the large deformation region on the flow stress due to changes in strain 

rate and temperature while 𝑘(𝜀̇) regulates the rate at which softening and or hardening occurs after 

the initial yield stress has been exceeded. 𝐻1(𝜀̇) is the rate-dependent softening coefficient that 

accounts for the decrease in flow stress with an increase in strain. 𝐻2(𝜀̇) and 𝑚 are the hardening 

coefficients that combine to depict the increase in flow stress under a further increase in strain.  

To implement the coupled viscoelastic – viscoplastic model, the calibration of the 

viscoplastic model parameters has to be completed. Section 5.2 presents the experimental 

procedure for uniaxial tensile testing of the selected separator material carried out at different strain 

rates and temperatures. Furthermore, the procedures for the determination of the strain rate and 
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temperature-dependent model parameters using uniaxial tensile tests are presented in sections 5.3 

and 5.4 respectively. The model implementation procedure and validation are presented in section 

5.5 and the summary of the findings is given in section 5.6. 

5.2 Uniaxial Tensile Testing 

Uniaxial tensile tests were carried out on the porous PP Celgard®2400 samples at strain 

rates of 0.1/s, 0.01/s, 0.001/s, and 0.0001/s. The nominal dimensions of the specimen were as 

described in Chapter 3. The tensile tests were also carried out at temperatures ranging from 20°C 

to 50°C. For the tests at 20°C using samples cut along the MD and TD of the polymeric separator. 

A liquified nitrogen (LN2) tank was connected to the RSA G2 rheometer as shown in Fig.5.2(b), 

to cool each tested sample to the desired temperature. The experimentally determined stress-strain 

curves for the samples cut along the MD and TD are presented in Figs.5.3 and 5.4 respectively. 

Furthermore, the typical post-test geometry of the samples cut along the MD and TD are presented 

in Fig.5.5 to show the deformation mechanisms the samples undergo under uniaxial tension and 

large strains. 

  
(a) (b) 

Figure 5.2 Experimental set up for uniaxial tensile tests: (a) sample fixture (b) liquified nitrogen 

tank connected to RSA-G2. 
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(a) (b) 

  
(c) (d) 

Figure 5.3 Uniaxial tensile stress-strain curves for samples cut along the MD at different strain 

rates and temperatures of: (a) 20°C, (b) 30°C, (c) 40°C, and (d) 50°C. 

  
(a) (b) 

Figure 5.4 Uniaxial tensile stress-strain curves for samples cut along the TD at different strain 

rates and temperatures of: (a) 20°C, (b) 30°C, (c) 40°C, and (d) 50°C. 
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(a) (b) 

Figure 5.5 Typical post-test geometry of samples under tension in the (a) MD and (b) TD. 

From the results, the effects of strain rate and temperature are manifested in the stress-

strain response of the separator in the MD and TD. With increasing strain rate, there is an observed 

increase in the stiffness of the material and vice versa. Also, with increasing temperature, the 

material softened and there was an observed reduction in stiffness. Furthermore, the results also 

show that the stress-strain curves for the samples cut along the TD are that of a typical 

semicrystalline polymer with five major phases in its deformation process. The first phase consists 

of fully recoverable linear viscoelastic deformation. In phase two, the material transitions into a 

non-linear viscoelastic deformation region. Phase three characterizes the yield mechanism after 

which the deformation becomes irrecoverable. Phases four and five are strain softening and strain 

Figure 5.4 (Cont’d)  

  
(c) (d) 
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hardening respectively. For semicrystalline polymers, strain softening is attributed to broken 

crystallization and strain hardening related to recrystallization at large strains [5]. Also, a neck 

formation is observed in the TD sample deformation. The necking region is characterized by a 

rapid decrease in the cross-sectional area at a particular point along the gage length of the 

specimen. This necking phenomenon is expressed in the posttest sample geometry in Fig.5.5(b). 

However, the material response in the MD is different from that of a typical semicrystalline 

material in the sense that there is no clear yielding mechanism following phases one and two which 

constitutes linear and non-linear viscoelastic response. Furthermore, in the MD, there is an 

observed continuous hardening in the material response under very large strains. These distinct 

differences in the uniaxial stress-strain response of the material in the MD and TD introduce 

complexities in the constitutive modelling of polymeric separators under large strains. These 

complexities have to be taken into account. Furthermore, the uniaxial tensile test results give us an 

understanding of the total stress-strain behavior of the separator material in its different 

orientations and present an excellent case for model validation. 

5.3 Identification of Strain Rate-Dependent Model Parameters at Constant Temperature 

 The viscoplastic model parameters at a constant temperature are calibrated using uniaxial 

tensile test results carried out at different strain rates at 20°C. This temperature value is selected 

intentionally as it is the reference temperature for the viscoelastic model that will be coupled with 

the viscoplastic model to predict the stress-strain response of the investigated polymeric separator 

material. The parameters to be determined are the initial yield stress, viscosity coefficients, strain 

hardening and strain softening coefficients. The initial yield stress was determined based on the 

need to identify it within the boundaries of the range of prediction of the nonlinear viscoelastic 

model (0 - 5% strain). Also, identifying the initial yield point of polymeric materials is not as 

straightforward as it is with metals. Hence, the offset method was employed to identify the initial 

yield stresses in the MD and TD of the polymeric separator at different strain rates. From the test 

results for samples cut along the MD, the yield stresses were identified by taking a 1% offset 

equivalent to a value of 2.5% strain at yield. While the yield stresses for samples cut along the TD 

were determined by taking a 0.3% offset equivalent to 1.5% strain at yield. The rationale behind 

taking a larger offset or strain value at yield in the MD than in the TD is supported by the 

superiority in the mechanical response of the material in the MD compared to that in the TD. 

Hence, it is expected that the material will yield at lower strain values in the TD than in the MD. 
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 To determine the other model parameters (𝜇𝑣𝑝(𝜀̇) , 𝑘(𝜀̇), 𝐻1(𝜀̇), and 𝐻2(𝜀̇)), an 

optimization fitting method was scripted in python to minimize the error between the fitted results 

and experimental data and generate the model parameters at each constant strain rate value. The 

fitting was carried out and the determined model parameters for the MD and TD responses are 

summarized in tables 5.1 and 5.2 respectively. Comparisons between the experimental data and 

the fitted curves are shown in Fig.5.6 to show the quality of the implemented fitting method. 

Table 5.1 Viscoplastic model parameters for MD response 

Strain rate 

(𝒔−𝟏) 

𝝈𝒚𝟎 

(𝐌𝐏𝐚) 

𝝁𝒗𝒑 

(𝐌𝐏𝐚) 

𝒌 𝑯𝟏 
(𝐌𝐏𝐚) 

𝑯𝟐 
(𝐌𝐏𝐚) 

𝒎 

0.0001 19.33 22.19 25.21 0 228.77 1 

0.001 21.20 18.11 34.44 0 281.24 1 

0.01 25.61 16.84 41.29 0 307.71 1 

0.1 34.45 9.70 115.36 0 343.93 1 

 

Table 5.2 Viscoplastic model parameters for TD response 

Strain rate 

(𝒔−𝟏) 

𝝈𝒚𝟎 

(𝐌𝐏𝐚) 

𝝁𝒗𝒑 

(𝐌𝐏𝐚) 

𝒌 𝑯𝟏 
(𝐌𝐏𝐚) 

𝑯𝟐 
(𝐌𝐏𝐚) 

𝒎 

0.0001 7.39 6.06 51.25 -4.79 2.76 2 

0.001 8.61 6.13 52.74 -5.98 4.24 2 

0.01 9.83 6.74 63.94 -8.06 7.85 2 

0.1 10.33 7.35 77.86 -8.74 8.49 2 

 

  

(a) (b) 

Figure 5.6 Curve fitting for identifying viscoplastic model parameters at 20°C in the (a) MD and 

(b) TD. 
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 The curve fitting results from Fig.5.6 shows how nicely the fitted curves overlap with the 

experimental curves. This verifies the accuracy in the determination of the model parameters given 

in Tables 5.1 and 5.2. However, from Tables 5.1 and 5.1, we have unique sets of values for each 

viscoplastic model parameter at different strain rate values. To implement the viscoplastic model 

in predictive modeling, given arbitrary strain rate values within the considered range, equations 

relating the viscoplastic parameters as functions of strain rate have to be defined. From the current 

data generated, we have to define 5 equations for the TD and 4 equations for the MD model 

parameters respectively. To reduce the number of relationships generated for the model parameters 

and the number of input parameters for the model implementation overall, a parameter reduction 

method is applied. To reduce the number of parameters required, a strain rate scaling factor (𝑎𝜀̇(𝜀̇)) 

is introduced to modify Eqn.5.1 such that the stress evolution after the yield threshold is exceeded 

at the reference temperature is expressed as: 

𝜎(𝜀𝑝, 𝜀̇) = 𝜎𝑦0(𝜀̇) + {𝜇𝑣𝑝
0 ⋅ {1 − 𝑒𝑥𝑝(−𝑘(𝜀̇) ∙ 𝜀𝑝)} + 𝐻1

0 ∙ 𝜀𝑝 + 𝐻2
0 ∙ 𝜀𝑝

𝑚} ⋅ 𝑎𝜀̇(𝜀̇)                    (5.2) 

where 𝜇𝑣𝑝
0 , 𝐻1

0, and 𝐻2
0 are the rate of change in viscosity, strain softening and strain 

hardening coefficients at the reference strain rate (0.0001/s). Furthermore, the reduced viscoplastic 

model parameters for the MD and TD responses are summarized in Tables 5.3 and 5.4 respectively. 

Figure 5.7 below also shows how well the fitted curves produced using the reduced model 

parameters compare with the experimental data. 

Table 5.3 Reduced viscoplastic model parameters for MD response 

Strain 

rate 

(𝒔−𝟏) 

𝝈𝒚𝟎 

(𝐌𝐏𝐚) 

𝝁𝒗𝒑 

(𝐌𝐏𝐚) 

𝒌 𝑯𝟏 
(𝐌𝐏𝐚) 

𝑯𝟐 
(𝐌𝐏𝐚) 

𝒎 𝒂𝜺̇ 

0.0001 19.33 22.19 25.21 0 228.77 1 1 

0.001 21.20 22.19 25.21 0 228.77 1 1.09 

0.01 25.61 22.19 25.21 0 228.77 1 1.16 

0.1 34.45 22.19 25.21 0 228.77 1 1.12 

 

Table 5.4 Reduced viscoplastic model parameters for TD response 

Strain 

rate 

(𝒔−𝟏) 

𝝈𝒚𝟎 

(𝐌𝐏𝐚) 

𝝁𝒗𝒑 

(𝐌𝐏𝐚) 

𝒌 𝑯𝟏 
(𝐌𝐏𝐚) 

𝑯𝟐 
(𝐌𝐏𝐚) 

𝒎 𝒂𝜺̇ 

0.0001 7.39 6.06 51.25 -4.79 2.76 2 1 

0.001 8.61 6.06 52.74 -4.79 2.76 2 0.98 

0.01 9.83 6.06 63.94 -4.79 2.76 2 1.06 

0.1 10.33 6.06 77.86 -4.79 2.76 2 1.16 
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(a) (b) 

Figure 5.7 Curve fitting for reduced viscoplastic model parameters at 20°C in the (a) MD and (b) 

TD. 

 From the implementation of the parameter reduction methodology, it is clear that a 

combination of the model parameters at the reference temperature along with the strain rate scaling 

factor is enough to fit the experimental curves with good agreement. Furthermore, it is important 

to note that the viscosity parameter (𝑘) is reduced and has a constant value for the material response 

in the MD. However, it is dependent on the strain rate for the TD response. This is mainly due to 

the difference in the stress-strain responses in the MD and TD. From the TD stress-strain curves, 

the rates at which softening and hardening occur after the initial yield stress has been exceeded 

cannot be constant for every strain rate. Keeping this value constant will also cause the fitted curves 

to diverge from the experimental data. However, from the MD curves, this value can be kept 

constant as evident in Fig.5.7.  

 The strain rate dependent parameters are plotted vs the logarithm of strain rate and fitted 

using the least-squares regression method to generate simple linear and polynomial relationships 

that can be introduced into the constitutive model to span out the values of the parameters within 

the range of strain rates. These fittings as well as their mathematical expressions are presented in 

Figs 5.8 and 5.9 for the MD and TD parameters respectively. 
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(a) (b) 

Figure 5.8 Least-squares regression fittings for viscoplastic parameters (a) initial yield stress and 

(b) strain rate scaling factor for MD response. 

  
(a) (b) 

 

 

(c)  

Figure 5.9 Least-squares regression fittings for viscoplastic parameters (a) initial yield stress (b) 

strain rate scaling factor, and (c) viscosity coefficient for TD response. 
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5.4 Introducing Temperature Effect 

 To predict the temperature-dependent response of the investigated polymeric material 

under large deformations, a new term ℎ(𝑇), modified from the G’sell-Jonas model [1] is 

introduced into Eqn.5.2 such that: 

ℎ(𝑇) = 𝑒𝑥𝑝 [𝑎 ∙ (
1

𝑇
−

1

𝑇0
)]                                                                                                                     (5.3) 

𝜎(𝜀𝑝, 𝜀̇, 𝑇) = {𝜎𝑦0(𝜀̇) + {𝜇𝑣𝑝
0 ⋅ {1 − 𝑒𝑥𝑝(−𝑘(𝜀̇) ∙ 𝜀𝑝)} + 𝐻1

0 ∙ 𝜀𝑝 + 𝐻2
0 ∙ 𝜀𝑝

𝑚} ⋅ 𝑎𝜀̇(𝜀̇) } 

∙  ℎ(𝑇)                                                                                                                               (5.4) 

where 𝑎 is a material parameter that accounts for the effect of temperature on the flow stress 

of the material. 𝑇 and 𝑇0  are the current and reference temperatures respectively.  The modified 

term in Eqn.5.3 is different from the original term used in the G’sell-Jonas model [1] in the sense 

that it introduces the reference temperature to give a clearer meaning to the ℎ(𝑇) term. At the 

reference temperature ℎ(𝑇) becomes equal to 1 and Eqn.5.4 reduces to Eqn.5.3 which accounts 

for only the strain rate effect at the reference temperature. 

 To implement the fully developed model, the values of the parameter 𝑎, have to be 

determined for the material response in the MD and TD. At the same strain value (𝜀), the value of 

the flow stress (𝜎) is related to the strain rate and current temperature (𝑇). To determine parameter 

𝑎, at a constant large strain value and strain rate, some points are selected as: 

(𝜀, 𝜎1), (𝜀, 𝜎2), 𝑎𝑛𝑑 (𝜀, 𝜎𝑖) at different temperatures 𝑇1, 𝑇2, and 𝑇𝑖 respectively. Where 𝑖 is the 

maximum number of constant temperature values considered. At the reference temperature, the 

reference flow stress is obtained by Eqn.5.2. Therefore, the stress at the current temperature can 

be expressed as: 

𝜎(𝜀𝑝, 𝜀̇, 𝑇) = 𝜎(𝜀𝑝, 𝜀̇, 𝑇0) ∙  ℎ(𝑇)                                                                                                           (5.5) 

In this case, the reference temperature was selected as 20°C (293K) and reference stress is 

already known. Hence, parameter 𝑎 can be determined by fitting the relationship between the flow 

stress and temperature with Eqn.5.5. A similar methodology for determining the parameter 𝑎 was 

applied by Zhu et al [5] in constitutive modeling of thermoplastics. Furthermore, least square curve 

fittings were carried out according to Eqn.5.5 at different strain rates in the MD and TD as shown 

in Figs.5.10 through 5.13. The analysis for the determination of parameter 𝑎 was carried out at 

different large strain values. For MD samples, the analysis was carried out at 20% constant strain 

in the MD and the determined parameter 𝑎 values were different at different strain rates. The 



 135 

determined values of parameter 𝑎 showed a linear relationship with the strain rate as shown in 

Fig.5.14. However, for the TD samples, the analysis was carried out at 20%, 30% and 40% constant 

strain values and the values of parameter 𝑎, determined were similar for the different strain values 

and the different strain rates. Hence, the average value of 1100.64 was selected as parameter 𝑎 to 

calibrate the material response in the TD. The determined values of parameter 𝑎 for the material 

response in the MD and TD are summarized in Table 5.5.  

  
(a) (b) 

  
(c) (d) 

Figure 5.10 Least-squares regression analysis at 20% strain for the determination of parameter 𝑎 

for MD response at (a) 0.0001/s, (b) 0.001/s, (c) 0.01/s, and (d) 0.1/s strain rates. 
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(a) (b) 

  
(c) (d) 

Figure 5.11 Least-squares regression analysis at 20% strain for the determination of parameter 𝑎 

for TD response at (a) 0.0001/s, (b) 0.001/s, (c) 0.01/s, and (d) 0.1/s strain rates. 

  
(a) (b) 

Figure 5.12 Least-squares regression analysis at 30% strain for the determination of parameter 𝑎 

for TD response at (a) 0.0001/s, (b) 0.001/s, (c) 0.01/s, and (d) 0.1/s strain rates. 
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Figure 5.12 (Cont’d)  

  
(c) (d) 

 

Figure 5.13 Least-squares regression analysis at 40% strain for the determination of parameter 𝑎 

for TD response at (a) 0.0001/s, (b) 0.001/s, (c) 0.01/s, and (d) 0.1/s strain rates. 

 

 

  
(a) (b) 

  
(c) (d) 
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Figure 5.14 Linear least-squares regression fitting of parameter 𝑎 for MD response. 

Table 5.5 Determined parameter 𝑎 values 

Strain rate 

(𝒔−𝟏) 

𝑴𝑫 𝟐𝟎% 𝑻𝑫 𝟐𝟎% 𝑻𝑫 𝟑𝟎% 𝑻𝑫 𝟒𝟎% TD Average 

0.0001 1581.70 1298.60 1293.60 1305.6 1299.27 

0.001 1156.40 918.87 910.48 908.12 912.49 

0.01 763.02 1144.5 1144.50 1154.30 1149.47 

0.1 632.76 965.24 1063.4 1095.4 1041.35 

 

5.5 Coupled Viscoelastic – Viscoplastic Model Implementation and Validation 

The developed coupled viscoelastic – viscoplastic model was implemented as a user-

defined material model for shell element simulations in LS-DYNA®. To couple the orthotropic 

nonlinear viscoelastic model with the viscoplastic model, a uniaxial Von-Misses yield criterion 

was introduced to mark the onset of the yielding mechanism. The yield function introduced is 

expressed as: 

𝑓 = 𝜎𝑇𝑟𝑖𝑎𝑙 − 𝜎𝑦0                                                                                                                                        (5.6) 

where 𝜎𝑇𝑟𝑖𝑎𝑙 is the viscoelastic trial stress. The onset of yielding is marked when the yield 

function 𝑓 is equal to or greater than zero. Once the yield threshold is exceeded, the flow stress 

evolution becomes governed by the viscoplastic mechanism. The coupled viscoelastic – 

viscoplastic model is implemented according to the following steps: 

Step 1: Implement nonlinear viscoelastic predictor 

∆𝜎 = ℎ∞ ∙ 𝐺∞ ∙ ∆𝜀 + ∑{ℎ𝑘 ∙ ∆𝜀 ∙ 𝐺𝑖 ∙ 𝑒𝑥𝑝 [−
∆𝜌

𝜏𝑖
] + 𝑒𝑥𝑝 [−

∆𝜌

𝜏𝑖
] ∙ 𝜎𝑖(𝑡) − 𝜎𝑖(𝑡)}                  (5.7)

𝑛

𝑖=1
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𝜎𝑇𝑟𝑖𝑎𝑙 = 𝜎 + ∆𝜎                                                                                                                                        (5.8) 

Step 2: Check for plastic flow – uniaxial Von-Misses criterion 

If the yield function is less than zero (𝑓 < 0), then the total stress is the same as the 

viscoelastic trial stress (𝜎 = 𝜎𝑇𝑟𝑖𝑎𝑙) and there is no plastic strain evolution (𝜀𝑝 = 0). However, the 

yield threshold is exceeded when the yield function becomes greater than or equal to zero  (𝑓 ≥ 0). 

Step 3: Implement the flow stress predictor 

This step is only activated when the yield function becomes greater than or equal to zero. 

Once this is the case, the total stress is determined as the flow stress given by Eqn.5.4 and also 

there is plastic strain accumulation in the form: 

𝜀𝑝 = 𝜀𝑝 + ∆𝜀                                                                                                                                              (5.9)   

 The model predictions were validated by comparing simulation results with uniaxial tensile 

test results carried out at different strain rates and temperatures for samples cut along the MD and 

TD. All simulations were carried out using a one-element model, with boundary conditions as 

described in Chapter 3 and the required temperature history was applied at all four nodes of the 

shell element.  

Figs.5.15 and 5.16 presents the comparison between the experimental and the simulation 

results for the uniaxial stress-strain response in the MD and TD respectively. The results show that 

the stress-strain curves predicted by the coupled viscoelastic - viscoplastic model are in good 

agreement with the experimental results and capture the trend in the rate and temperature 

dependence of the stress-strain response of the polymeric separator.  
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(a) (b) 

 
 

(c) (d) 

Figure 5.15 Comparison of the stress-strain response predicted by LS-DYNA® simulation using 

the coupled viscoelastic - viscoplastic material model with experimental data from uniaxial 

tensile tests carried out at different strain rates for samples cut along the MD at (a) 20ºC, (b) 

30ºC, (c) 40ºC, and (d) 50ºC. 
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(a) (b) 

  
(c) (d) 

Figure 5.16 Comparison of the stress-strain response predicted by LS-DYNA® simulation using 

the coupled viscoelastic - viscoplastic material model with experimental data from uniaxial 

tensile tests carried out at different strain rates for samples cut along the TD at (a) 20ºC, (b) 

30ºC, (c) 40ºC, and (d) 50ºC. 

5.6 Summary 

This chapter presents the development of a coupled viscoelastic-viscoplastic model for 

predicting the thermomechanical response of polymeric battery separators. The theoretical 

framework for the viscoplastic model is given on the basis of a rheological model consisting of a 

sliding frictional element, viscoplastic dashpot and two springs representing the strain softening 

and hardening mechanisms. The formulation for the stress-strain response of the polymeric 

material after the yield threshold has been exceeded takes the form of a modified G’sell – Jonas 

model.  
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The strain rate and temperature-dependent model parameters were determined for a 

selected PP Celgard®2400 separator. A parameter reduction method was introduced to decrease 

the number of strain rate-dependent parameters needed to calibrate the model. The model was 

implemented in LS-DYNA® finite element (FE) package as a user material model. The developed 

model was validated against uniaxial tensile tests carried out at constant strain rates and 

temperatures. The results show that the model predictions of the material anisotropy, rate 

dependence, and temperature dependence of the separator in its range of deformation before failure 

agree well with the experimental data.  

Furthermore, the validation results also confirm the validity of the offset method used to 

determine the yield stresses in the MD and TD as it was sufficient to describe the stress-strain 

response of the separator material before failure.  The developed model is not only limited to the 

prediction of uniaxial tensile response as it can be calibrated to predict uniaxial compression. It 

can also be extended to account for biaxial responses of the separator. The developed coupled 

viscoelastic – viscoplastic model also has applications in thermomechanical modeling of a wide 

range of polymers and biomaterials. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

In this study, thermomechanical models have been developed to predict the response of 

polymeric battery separators in thermal ramp scenarios. Experimental techniques have been 

employed to characterize the mechanical and thermal responses of a selected PP separator. The 

experimental results were also employed to calibrate and validate the developed models under 

different combined thermal and mechanical loadings. The developed models can be implemented 

in commercial finite element analysis (FEA) software for simulating the thermomechanical 

response of polymeric battery separators. The developed models can also be incorporated into 

multiscale and multiphysics models for safety and health assessment of LIBs as well as vehicle 

crash simulations. It is important to remark that the models developed in this study can also be 

applied for modeling the thermomechanical response of other viscoelastic and viscoplastic 

materials such as polymers, polymer films, polymer matrix composites, and biomaterials. The 

major conclusions and findings from this study are as follows: 

6.1.1 Orthotropic Linear Thermoviscoelastic Modeling 

An orthotropic linear thermoviscoelastic model has been developed in this work to predict 

the thermomechanical response of polymeric battery separators in thermal ramp scenarios. The 

model is built upon a linear viscoelastic framework and the temperature effect is introduced 

through the TTSP. Stress relaxation tests were carried out at small constant strain values to identify 

the linear viscoelastic limit of the material response. It was observed that an increase in temperature 

and the presence of a solvent increased the strain limit of the linear viscoelastic response of the 

material. A new TTSSM was also proposed to account for the plasticization effect of electrolyte 

solutions and predict the response of the polymeric separator in electrolyte solutions using its 

response in air as a framework. The developed model was calibrated using stress relaxation tests 

performed for a PP separator, Celgard®2400, within the linear viscoelastic limit at temperatures 

ranging from 20C to 110C in air and at temperatures of 20C to 40C in DMC. The model was 

implemented as a user material model in LS-DYNA®. Analytical solutions for stress relaxation 

were developed to verify the model predictions and the model predictions were validated against 

experimental results from stress relaxation, iso-strain temperature ramp tests and uniaxial tensile 

tests. The model predictions were found to accurately replicate the material anisotropy, rate 
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dependence, temperature dependence and electrolyte effect on the material response within the 

linear viscoelastic domain of the material deformation. The results from the model validation in 

non-isothermal conditions show that the simulations without considering the thermal 

expansion/shrinkage behavior of the separator resulted in large errors. 

6.1.2 Orthotropic Nonlinear Thermoviscoelastic Modeling  

To predict the thermomechanical response of polymeric battery separators in thermal ramp 

scenarios under large deformation before the onset of irrecoverable deformations, an orthotropic 

nonlinear thermoviscoelastic model has been developed. A discretization algorithm was employed 

to evaluate the nonlinear viscoelastic hereditary integral with a kernel of Prony series based on a 

generalized Maxwell model assumed to consist of nonlinear springs and dashpots. Temperature 

dependence was introduced into the model through the transient linear relaxation modulus by 

implementing the TTSP. In this model, the nonlinearity and temperature effect are decoupled as 

the nonlinear parameters are only dependent on the strain and not temperature. 

The strain-dependent model parameters were calibrated using stress relaxation tests carried 

out at different constant strain values ranging from within the linear viscoelastic strain limit 

(~0.2%) up to 5% strain at the reference temperature (20°C). The TTSP was implemented using 

stress relaxation tests carried out within the linear viscoelastic limit at temperatures ranging from 

20°C to 60°C. The model was implemented in LS-DYNA® finite element (FE) package as a user 

material model. Analytical solutions for stress relaxation were formulated based on the viscoelastic 

theory to verify the implementation of the model. The developed model was validated against 

stress relaxation tests, creep tests, uniaxial tensile tests at constant temperatures, and stress 

relaxation at non-isothermal conditions accounting for the thermal expansion of the material. The 

results show that the model predictions of the material anisotropy, rate dependence, and 

temperature dependence of the separator under large deformations in the nonlinear viscoelastic 

region agree well with the experimental data. 

6.1.3 Coupled Viscoelastic – Viscoplastic Modeling  

The developed orthotropic nonlinear thermoviscoelastic model has been coupled with a 

viscoplastic model to predict the thermomechanical response of polymeric battery separators under 

large strains. A theoretical framework for the viscoplastic model was presented on the basis of a 

rheological model consisting of a sliding frictional element, viscoplastic dashpot and two springs 
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representing the strain softening and hardening mechanisms. The rheological framework captures 

the deformation mechanisms of polymeric materials and these mechanisms were reflected in the 

stress-strain formulation. 

The strain rate and temperature-dependent model parameters were calibrated for the 

selected PP Celgard®2400 separator. A parameter reduction method was introduced and employed 

to reduce the number of parameters needed for the calibration of the strain rate–dependent model 

parameters. The temperature dependence of the flow stress at constant large strain values was 

exploited to determine the temperature-dependent parameter necessary to introduce temperature 

dependence into the viscoplastic model. The model was implemented in LS-DYNA® finite element 

(FE) package as a user material model. The developed model was validated against uniaxial tensile 

tests carried out at constant strain rates and temperatures. The results show that the model 

predictions of the material anisotropy, rate dependence, and temperature dependence of the 

separator in its range of deformation before failure agree well with the experimental data. The 

developed coupled viscoelastic–viscoplastic model is capable of predicting the thermomechanical 

response of polymeric battery separators in every stage of their deformation before the onset of 

failure. 

6.2 Future Work 

 The developed thermomechanical models have been implemented in LS-DYNA® as user-

defined material models, verified and validated against experimental results produced by tests 

carried out under combined thermal and mechanical loadings. Although great strides have been 

made in this study, there are a few more efforts that need to be taken for the thermomechanical 

modeling of battery separators to be complete. The future work necessary to complete the 

thermomechanical modeling of battery separators is divided into two major groups. The first group 

deals with model extension and adaptations while the second group deals with model 

implementation.  

6.2.1 Model Extension and Adaptation 

To complete the thermomechanical model development and to make sure the constitutive 

responses and the deformation patterns of separators in their working condition are taken into 

account, the following works are required: 
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Validation for biaxial loading cases: In literature [1-3], the biaxial punch test has been identified 

as a representative loading case for separators in most real-world mechanical abuse scenarios. The 

developed orthotropic linear thermoviscoelastic model has been validated against biaxial punch 

tests carried out at ambient conditions [3]. The predicted strain patterns agreed well with the 

experimental results. However, more work needs to be done by adopting this same approach to 

validate the orthotropic nonlinear thermoviscoelastic model against biaxial punch tests carried out 

at different punch rates and temperatures. Furthermore, the viscoplastic model has to be extended 

for predictions of the separator response in biaxial loading cases. 

Plasticization effect of electrolyte solution: As detailed in Chapter 3, the separator in LIBs is 

immersed in an electrolyte solution that acts as a plasticizer and reduces its mechanical response. 

This effect has been accounted for in orthotropic linear thermoviscoelastic modeling through the 

time-temperature-solvent superposition method. However, further research has to be carried out to 

account for the solvent effect in the nonlinear thermoviscoelastic and viscoplastic modeling of 

battery separators. 

Multiaxial failure criteria: Future work will also involve introducing a multiaxial failure criterion 

to the coupled viscoelastic – viscoplastic model to mark the onset of failure of the separator under 

large deformations in multiaxial loading scenarios. 

6.2.2 Model Implementation 

 The developed thermomechanical models have been implemented for a single-layer PP 

separator. The developed model is also applicable for modeling tri-layered dry-processed 

polymeric separators as well as wet-processed separators with more isotropic microstructures, and 

mechanical and thermal behaviors. Future work will involve calibrating the developed models for 

application to these different types of battery separators. 

           Furthermore, the extended model will be incorporated into multiscale and multiphysics 

models for coupled thermal and mechanical analysis of LIBs in thermal ramp scenarios. Aside 

from integration into models for thermal ramp scenarios in vehicle crash analysis, the developed 

models can be introduced into multiphysics models for the safety and health assessment of LIBs. 
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APPENDIX A. SUPPLEMENTARY EXPERIMENTAL RESULTS 

  
(a) (b) 

 

 

(c)  

Figure A.1 Uniaxial stress strain curves at different displacement rates for samples cut along the 

MD direction at (a) 30C, (b) 40C, and (c) 60C. 

 
 

 



 150 

  
(a) (b) 

  
(c) (d) 

Figure A.2 Uniaxial stress strain curves at different displacement rates for samples cut along the 

TD direction at (a) 30C, (b) 40C, (c) 50C and (d) 60C. 

 

Figure A.3 Uniaxial stress strain curves for samples cut along the off-axis 45 direction at 20C 

at different strain rates. 
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Figure A.4 Stress relaxation test in air at 0.3% constant strain level with step temperature history 

(30C- 40C) for samples cut along the TD direction. 

  
(a) (b) 

Figure A.5 Iso-stress (iso-force) temperature ramp tests at different stress (force) levels in the (a) 

MD and (b) TD. 
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APPENDIX B. MATLAB SCRIPT FOR DETERMINATION OF PRONY SERIES 

PARAMETERS 

# MATLAB Script for the determination of Prony series parameters 

from stress relaxation tests   

# Royal Chibuzor Ihuaenyi, Michigan State University 2023  

# Date of last modification: 05/1/2022  

# Code Notes  

# The code is split into two parts.  

# 1) Subroutine for the stress relaxation function  

# 2) Subroutine for least square curve fitting, parameter and plot 

generation 

 

# Subroutine for the  stress relaxation function 

function j=relaxation(x,t) 

! Input relaxation times 

T1=10^(-1);T2=10^(0); T3=10^(1); T4=10^(2);T5=10^(3); T6=10^(4); 

T7=10^(5); T8=10^(6); 

! Execute stress relaxation function  

j=x(1)*x(1)+x(2)*x(2).*exp(-t/T1)+x(3)*x(3).*exp(-

t/T2)+x(4)*x(4).*exp(-t/T3)+x(5)*x(5).*exp(-

t/T4)+x(6)*x(6).*exp(-t/T5)+x(7)*x(7).*exp(-

t/T6)+x(8)*x(8).*exp(-t/T7)+x(9)*x(9).*exp(-t/T8); 

 
# Subroutine for least square curve fitting, parameter and plot 

generation 

clc 

clear 

x0 = [1;1;1;1;1;1;1;1;1]; 

xdata=dlmread('xdata.txt'); 

ydata=dlmread('ydata.txt'); 

[xe,resnorm] = lsqcurvefit(@relaxation,x0,xdata,ydata); 

T1=10^(-

1);T2=10^(0);T3=10^(1);T4=10^(2);T5=10^(3);T6=10^(4);T7=10^(5);T

8=10^(6); 

j=xe(1)*xe(1)+xe(2)*xe(2).*exp(-xdata/T1)+xe(3)*xe(3).*exp(-

xdata/T2)+xe(4)*xe(4).*exp(-xdata/T3)+xe(5)*xe(5).*exp(-

xdata/T4)+xe(6)*xe(6).*exp(-xdata/T5)+xe(7)*xe(7).*exp(-

xdata/T6)+xe(8)*xe(8).*exp(-xdata/T7)+xe(9)*xe(9).*exp(-

xdata/T8); 

subplot(2,1,1); 

subplot(2,1,1); 

plot(xdata,j,'r+') 

hold 

plot(xdata,ydata,'b*') 

legend('Fitted Curve','Experimental Data'); 

subplot(2,1,2) 
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semilogx(xdata,j,'r+') 

hold 

semilogx(xdata,ydata,'b*') 

legend('Fitted Curve','Experimental Data'); 
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APPENDIX C. PYTHON SCRIPT FOR NON-NEGATIVE LEAST SQUARE CURVE 

FITTING 

 
# Python Script for non-negative least square curve fitting for 

the determination of strain dependent nonlinear viscoelastic 

parameters   

# Royal Chibuzor Ihuaenyi, Michigan State University 2023  

# Date of last modification: 10/10/2022  

 

#Import necessary modules and curvefit functions 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

%matplotlib inline 

from scipy.optimize import curve_fit 

from lmfit import minimize, Parameters, Parameter, report_fit 

 

#Read stress relaxation data in form of a csv file 

xdata,ydata = np.loadtxt("data.csv", usecols = (0,1), unpack= 

True, delimiter=',') 

 

#Input Prony series parameters for TTSP master curve 

G=[] 

T=[] 

 

#Execute curve fitting, parameter identification and plotting 

bounds=[] 

i=0 

while i<2: 

    i=i+0.001 

    bounds.append(i) 

print(bounds) 

def func2(params, x, data): 

 

    h1 = params['h1'].value 

    hk = params['hk'].value 

 

    model = G0*h1 + (hk*(G1*np.exp(-x/T1)+G2*np.exp(-

x/T2)+G3*np.exp(-x/T3)+G4*np.exp(-x/T4)+G5*np.exp(-

x/T5)+G6*np.exp(-x/T6)+G7*np.exp(-x/T7)+G8*np.exp(-x/T8)))  

    return model - data #This is what is minimized 

 

#Create a set of Parameters 

params = Parameters() 

for i in bounds: 
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    params.add('h1', value = 1, min = i, max = i+2) #value is 

the initial condition 

    params.add('hk', value = 1, max = 2) 

    result = minimize(func2, params, args =(xdata, ydata)) 

    final = ydata + result.residual 

    rss = (result.residual**2).sum() # same as result.chisqr     

    tss = sum(np.power(ydata - np.mean(ydata), 2))  

    r_squared=1 - rss/tss 

    if r_squared>=0.95: #value can be regulated depending on 

your requirement on accuracy 

        print(result.params) 

        print(f"R² = {1 - rss/tss:.3f}") 

        try: 

            import pylab 

            pylab.plot(xdata, ydata, 'k+') 

            pylab.plot(xdata, final, 'r') 

            pylab.show() 

        except: 

            pass 

    else: 

        pass 
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