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ABSTRACT 

Common bean (Phaseolus vulgaris L.) is an important legume for human consumption and has 

an important role in cropping systems as a rotational crop. Improving the sustainability in 

agriculture is necessary for meeting the food demands of a growing global population while 

lessening the environmental impact of cropping systems. Developing efficient methods of 

improving host-plant resistance to dry bean anthracnose (Colletotrichum lindemuthianum) and 

the symbiotic nitrogen fixation ability (SNF) can enhance the sustainability of common bean as a 

food crop. A QTL study with the black bean cultivar ‘TU’, known to possess the C.  

lindemuthianum race 109 resistance gene Co-5, was conducted to develop molecular markers to 

deploy in the MSU Dry Bean Breeding Program. Resistance to anthracnose was investigated in 

an F2 population developed from a cross between ‘B19504’ (a susceptible breeding line) and TU. 

25 SNPs were identified between 6.84 and 24.62 Mb on linkage group 07. Improving SNF in 

common bean requires a method of efficiently evaluating breeding lines for the trait. Predictive 

models were developed from remote sensing-derived vegetation indices and machine learning 

algorithms to assess their ability to accurately and reliably estimate percent nitrogen derived 

from the atmosphere. A Random Forest model developed to predict nitrogen derived from the 

atmosphere (Ndfa) using yield and remote sensing (RS) data resulted in an average accuracy of r 

= 0.54. This model is promising in low nitrogen trials as an early selection tool to identify lines 

with higher SNF ability. Two prediction models for yield as an indirect indicator of SNF were 

developed using stepwise general linear modeling (StepwiseGLM) and Bayesian regularized 

artificial neural network (BRNeural Network) were determined to be accurate and reliable 

(StepwiseGLM r = 0.64; BRNeural Network r = 0.65). These models are promising in low 

nitrogen trials as an early selection tool to identify lines with higher SNF ability.
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CHAPTER ONE: GENERAL INTRODUCTION 

INTRODUCTION 

The need for developing sustainable agricultural systems with low environmental impacts 

has become more apparent as the global population grows. Another driving factor is the 

reduction of available land for agriculture alongside diminishing natural resources. Developing 

agricultural technologies and implementing the use of crops with enhanced sustainability is one 

solution to mitigate these issues. Common bean (Phaseolus vulgaris) is one such crop. 

Common bean is the most important legume used for human consumption due to its high 

protein content, dietary fiber, minerals, and carbohydrates. Additionally, common bean has also 

had a positive impact on cropping systems as a rotational crop. Common bean is a host plant for 

nitrogen fixing rhizobia bacteria, able to improve soil fertility by enriching the soil with nitrogen 

fixed from the atmosphere while also requiring less synthetic nitrogen application to produce 

yield (Reinprecht et al., 2020; Uebersax et al., 2022). Harnessing symbiotic nitrogen fixation 

carries the additional advantage of reducing fossil fuel usage to produce and apply fertilizer.  

Common bean is perceived to be a poor fixer compared to other legumes, however findings from 

numerous studies have noted a wide variance between genotypes with some varieties fixing as 

much as 70% of their nitrogen from fixation (Heilig et al., 2017; Kamfwa et al., 2015; Wilker et 

al., 2019). With the specificity of the relationship between hostplant and rhizobia genotypes 

beginning to be explored, the trait stands to be exploited through breeding (Gunnabo et al., 

2019).  

Integrated pest management is integral to agricultural sustainability wherein preventative 

crop protection practices are the foundations of the approach. Host plant resistance is an 

important aspect of preventative management. In common bean, Colletotrichum lindemuthianum 
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is one of the most economically important pathogens affecting the sustainability of production 

(Ferreira et al., 2013; Oblessuc et al., 2012). C. lindemuthianum (Sacc. and Magn.), or common 

bean anthracnose, is a seed borne pathogen that is readily spread between local fields and across 

longer distances between and within countries (Tu, 1994). Anthracnose outbreaks are managed 

using clean disease-free seed, crop rotation, and preventative foliar fungicidal treatments; 

however, these methods tend to be effective only in the short-term as well as dependent on 

environmental conditions. Genetic resistance employing the use of genes conferring broad 

resistance can be a long-term and economical solution to decreasing the use of fungicides and 

fossil fuels consumed during application. 

ANTHRACNOSE 

Colletotrichum lindemuthianum, commonly known as anthracnose, is a seed-borne 

hemibiotrophic fungal pathogen that is one of the most devastating diseases affecting bean 

production (Costa et al., 2021; Ferreira et al., 2013). Its importance among the biotic factors 

affecting commercial production is due to its lethality in susceptible cultivars and its high 

virulence diversity between races (L. C. Costa et al. 2021; Padder et al. 2017). Infected fields of 

susceptible cultivars in favorable, humid, and cool environments can have reduced yields up to 

100% (Nunes et al. 2021). 

Anthracnose has been reported in many African, Latin American, and European 

countries, and has also been found in numerous fields in both the United States and Canada 

(Mohammed 2013). The fungus commonly creates reddish-brown to black lesions on the leaf 

petiole and underside in addition to along the leaf veins, causing vein necrosis (Boersma et al. 

2014). As the disease progresses through the stem it creates round, brown eyespots and lesions 

will also appear on the pods and deterioration will occur in the seeds. Infected seeds are both 

https://www.zotero.org/google-docs/?DeYpdd
https://www.zotero.org/google-docs/?vsi6jP
https://www.zotero.org/google-docs/?k6q0Gp
https://www.zotero.org/google-docs/?LtVdQI
https://www.zotero.org/google-docs/?LtVdQI
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unmarketable to consumers and sources of further infection and spreading of the disease. 

Ultimately, anthracnose can lead to premature defoliation, early flower and pod drop, and plant 

death (S. J. Boersma et al. 2020; Campa et al. 2014; Mohammed 2013; Tu 1983). 

Anthracnose is easily spread to new regions through infected seed and between plants by 

irrigation water, rain drops, or mechanical movement such as farm equipment or wildlife moving 

through a field. Additionally, it can also affect future common bean crops. Anthracnose spores 

can survive winter conditions residing in both seed and plant residues left in the field after 

harvest and can remain virulent in seeds for years (Schwartz and Corrales 1989; Tu 1983). A 

multi-year study performed by Conner et al. found that the survivability of anthracnose spores in 

a field was influenced by environment, the type of infected tissue, and whether the samples were 

buried or not. When studied under a three-year crop rotation, C. lindemuthanium spores were 

still viable and able to infect bean crops in the third year under no-tillage conditions (Conner et 

al., 2019). 

ANTHRACNOSE VARIABILITY 

 Pathogenic variability in C. lindemuthianum was first noted by Barrus (1911) wherein 

two races of anthracnose displayed differing levels of virulence against 139 bean cultivars. These 

two races were the first to be classified as distinct races with the denotation α and β. With this 

first step, further understanding of the hyper-variability of the pathogen would follow. Numerous 

races were characterized in the following years resulting in a need for a standardized method of 

determination as some localities used different codes for identifying anthracnose races rather 

than the Greek letters, which impeded attempts to understand the global variability (Melotto, 

Balardin, and Kelly 2000). A method of isolate race standardization was proposed by Pastor-

Corrales (1991) that utilized 12 differential bean cultivars from both Andean and Mesoamerican 

https://www.zotero.org/google-docs/?V1JGPf
https://www.zotero.org/google-docs/?iG70Qd
https://www.zotero.org/google-docs/?qMi64o
https://www.zotero.org/google-docs/?Dk1GpB
https://www.zotero.org/google-docs/?Dk1GpB
https://www.zotero.org/google-docs/?yquxdt
https://www.zotero.org/google-docs/?yquxdt
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gene pools. The cultivars were assigned binary numbers that are used to identify a specific 

anthracnose race (Table 1). The values of the cultivars showing susceptibility when inoculated 

with an unknown race are summed to give the binary value of that race. For example: an 

unknown race is tested against the differential cultivars and susceptibility is shown in Michelite 

(1), Perry Marrow (4), Cornell 49242 (8), Kaboon (32), and Mexico 222 (64). The race would be 

characterized as 109. Using this method, 182 races have been identified world-wide (Padder et 

al. 2017). 

ANTHRACNOSE RESISTANCE IN HOST 

 Coevolution has been observed between common bean and C. lindemuthianum following 

the gene-for-gene theory established by Flor (1955). The theory states that for every gene that 

conditions resistance in the host there is a complementary gene in the parasite that conditions 

avirulence. In common bean, resistance is conferred by individual, independently segregating 

loci in a family called Co. These genes are grouped in clusters across 7 chromosomes, Pv01, 

Pv02, Pv03, Pv04, Pv07, Pv08, and Pv11. Like other resistance genes, these clusters are often 

encoded by nucleotide-binding leucine-rich repeat (NB-LRR) proteins (Richard W. Michelmore, 

Christopoulou, and Caldwell 2013).  

An incompatible interaction between a host cultivar carrying a Co gene and an avirulent 

race of anthracnose leads to a hypersensitive reaction (HR) characterized by localized host cell 

death and the formation of necrotic spots. This is to prevent the spread of the fungus to further 

cells. However, like many other Colletotrichum species, C. lindemuthianum is hemibiotrophic. 

When the fungus first penetrates the cell wall, the infection hyphae grows between the cell wall 

and membrane and does not trigger defense responses either by masking the presence of the 

hyphae or actively suppressing defense responses (Münch et al. 2008). In C. lindemuthianum, the 

https://www.zotero.org/google-docs/?o1JJ2T
https://www.zotero.org/google-docs/?o1JJ2T
https://www.zotero.org/google-docs/?rQ5ukl
https://www.zotero.org/google-docs/?qJVN8L
https://www.zotero.org/google-docs/?qJVN8L
https://www.zotero.org/google-docs/?Y4gax3
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hyphae is masked by the release of glycoproteins that separate the structure from the plant 

membrane, protecting the fungus from recognition (Perfect et al. 1998). The biotrophic phase can 

last up to three days before the necrotrophic phase is induced and HR occurs within the plant.   

BREEDING FOR ANTHRACNOSE RESISTANCE 

 There are many methods that can be used to manage plant diseases like anthracnose, the 

most efficient being sowing anthracnose-resistant cultivars to stave off locally known races 

(Balardin, Jarosz, and Kelly 1997; Strange and Scott 2005). Integrating gene-specific disease 

resistance into cultivars requires the identification of resistant plants to cross with agronomically 

favorable, but susceptible, plants (Strange and Scott 2005).  Thus far, 20 Co genes have been 

mapped in the common bean genome with the Mesoamerican gene pool containing most of the 

anthracnose resistance genes in common bean (Nunes et al. 2021). New sources of resistance 

have been identified in recent years, particularly Co-Bf (Marcon et al. 2020) and Co-Pa (de Lima 

Castro et al. 2017) and numerous Co genes have been recharacterized as allelic forms rather than 

unique loci. Efforts to investigate new sources of resistance are integral to adapt to the 

continuously developing variability in C. lindemuthianum.  

Resistance to anthracnose can be evaluated using molecular markers or through 

greenhouse inoculation. Inoculations are commonly performed using a spray suspension of 1.0 x 

106 conidia ml-1 of selected races of C. lindemuthianum onto seedlings. The plants are kept at 

high humidity (>80%) for 72 hours with disease symptoms appearing 7-10 days after 

inoculation. Response rating is often performed using the broad characterization of ‘susceptible’ 

and ‘resistant’, assuming a qualitative trait. A 1-9 or 0-5 scale describing the range of reactions 

are also used to identify quantitative genes conferring partial resistance to anthracnose (Drijfhout 

& Davis, 1989; Pastor-Corrales et al., 1998).  

https://www.zotero.org/google-docs/?yjWz44
https://www.zotero.org/google-docs/?7Xkrgw
https://www.zotero.org/google-docs/?qccLcx
https://www.zotero.org/google-docs/?T1OJVh
https://www.zotero.org/google-docs/?6zOETI
https://www.zotero.org/google-docs/?CZCoS9
https://www.zotero.org/google-docs/?CZCoS9
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MOLECULAR MARKERS 

Molecular markers have been used to efficiently identify resistance in breeding lines or 

segregating populations. Markers tightly linked to a region controlling a trait of interest, called 

quantitative trait loci (QTL), can be used to integrate that trait into elite cultivars. QTL-seq is a 

method of identifying DNA markers tightly linked to the causal gene for a given phenotype 

using the combined methodologies of bulked segregant analysis (BSA) and whole genome 

sequencing (WGS) to hasten the identification of QTLs (Takagi et al. 2013). BSA uses the 

progeny of parents with contrasting phenotypes that are scored and bulked for segregation of that 

phenotype (Giovannoni et al. 1991; R W Michelmore, Paran, and Kesseli 1991). Comparative 

genetic analysis is performed on the bulks to identify markers linked to the traits of interest. Like 

BSA, QTL-seq uses the progeny of parents with contrasting phenotypes of the trait of interest in 

a mapping population. The segregation of the phenotype is scored and DNA from the extremes 

are bulked to generate ‘high’ and ‘low’ groups. The proportion of short reads that correspond to 

the parental genomes that can be identified by a SNP is evaluated. The sequencing data is 

aligned to the reference sequence and the number of differing SNPs is counted. The SNP-index 

is defined as the percentage of differing SNPs in the total short reads within a genomic region 

(Takagi et al. 2013). If the index value is close to 1 if all the short reads are representative of the 

genome of the non-reference parent and 0 if representative of the parent used as the reference. 

The methodology of QTL-seq has been altered and improved since its development. Recent 

techniques utilize only the bulked samples with a focus on improving SNP filtering through 

improving alignment and allele accuracy (Korani et al. 2021). 

In dry bean, random amplified polymorphic DNA (RAPD), and restriction fragment 

length polymorphism, sequenced characterized amplified region (SCAR), simple-sequence 

https://www.zotero.org/google-docs/?VTBjNz
https://www.zotero.org/google-docs/?TkJEim
https://www.zotero.org/google-docs/?XTc1XH
https://www.zotero.org/google-docs/?Nm6oq2
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repeats (SSR), single nucleotide polymorphism (SNP), and most recently kompetitive allele-

specific polymerase chain reaction (KASP) markers have been used to map and identify Co 

genes in resistant lines (Burt et al. 2015; Gilio et al. 2020; de Lima Castro et al. 2017; R. Young 

et al. 1998; R. A. Young and Kelly 1997). KASP is a low-cost, accurate and reliable SNP 

genotyping platform that has gained prominence in trait-specific marker development (Cortés, 

Chavarro, and Blair 2011; Gilio et al. 2020; Valentini et al. 2017). KASP markers have been 

used in common bean breeding for anthracnose resistance, drought tolerance, rust resistance, and 

color retention after canning (Bornowski et al., 2020; de Lima Castro et al., 2017; Diaz et al., 

2018; Gilio et al., 2020; Hurtado-Gonzales et al., 2017; Villordo-Pineda et al., 2015).  

The publication of the common bean reference genome by Schmutz et al. (2014) has 

allowed for comparing and mapping of the positions of molecular markers. The progression of 

genotyping technology and the availability of sequencing information has made SNP markers 

incredibly useful in MAS. Numerous SNP genotyping platforms have been developed that utilize 

a variety of allele detection and discrimination techniques, as well as reaction formats (Chen and 

Sullivan 2003; Sobrino, Brión, and Carracedo 2005). Genotyping by next-generation sequencing 

(GBS) is a recent application of SNP genotyping that has become popularized in QTL discovery 

in several crops including common bean, soybean, and wheat (Ariani, Berny Mier y Teran, and 

Gepts 2016; Hart and Griffiths 2015; Iquira, Humira, and Francois 2015; Li et al. 2015). GBS is 

a platform that simultaneously discovers and genotypes many SNPs in multiplexed libraries with 

or without the use of reference genomes (Elshire et al. 2011).  

ANTHRACNOSE CONTROL METHODS 

 General preventative management includes removing or burying plant debris from the 

fields after harvest, rotating crops using non-hosts for two years at a minimum, fungicide 

https://www.zotero.org/google-docs/?pzNp76
https://www.zotero.org/google-docs/?pzNp76
https://www.zotero.org/google-docs/?m0d05N
https://www.zotero.org/google-docs/?m0d05N
https://www.zotero.org/google-docs/?7em9i9
https://www.zotero.org/google-docs/?m0Gdg5
https://www.zotero.org/google-docs/?m0Gdg5
https://www.zotero.org/google-docs/?50TgOm
https://www.zotero.org/google-docs/?50TgOm
https://www.zotero.org/google-docs/?GEJo0K
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treatments on the seeds, and cleaning seed storage facilities (Conner et al., 2019). To prevent 

spores from transferring from one plant to another via water movement, overhead irrigation 

should be avoided and physical movement through the field should be delayed until the leaves 

are dry. Contact and systemic fungicides are the only methods of treating anthracnose present in 

the field, and function only as preventative treatments to limit disease spread, typically by 

inhibiting spore germination. To date, no curative fungicides are known to treat diseased plants 

once infection has occurred.  

 Anthracnose control begins with planting disease-free seed as seed transportation is the 

most common method of introducing the disease (S. J. Boersma et al. 2020). Before planting, 

most dry bean seed is treated with a fungicide as a preventative measure. Commonly used 

fungicides for seed treatment are azoxystrobin, fludioxonil, thiamethoxam, and metalaxyl-m. 

Various foliar fungicides are used to protect yield and increase seed quality in dry bean, but their 

efficacy is dependent on the severity of the infection and timing of application (S. J. Boersma et 

al. 2020; Conner et al. 2009; Negera and Dejene 2018). Likewise, the success of seed treatments 

is dependent on the severity of infection, thus dry bean yields are best protected when seed 

treatments are utilized with foliar fungicides (Gillard, Ranatunga, and Conner 2012). 

 Bioagents have been deployed to manage anthracnose as cost-effective and less 

ecologically harmful alternatives. The results of previous studies evaluated the efficacy of 

alternative fungicides and antagonistic bioagents suggest that seed treatments with bioagents like 

Pseudomonas fluorescens and Trichoderma viride are effective for inhibiting the pathogen 

(Padder et al. 2010, 2010). Inorganic salts of phosphorous acid (H3PO3), phosphites, and plant 

extracts have been investigated as alternative anthracnose treatment products due to their 

fungistatic and fungicidal effects, respectively. Phosphites have been determined to increase 

https://www.zotero.org/google-docs/?HNAMNW
https://www.zotero.org/google-docs/?saSrcI
https://www.zotero.org/google-docs/?saSrcI
https://www.zotero.org/google-docs/?CvfEZz
https://www.zotero.org/google-docs/?51uBOR
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peroxidase and phenylalanine ammonia lyase activity, enzymes that are positively correlated 

with anthracnose resistance (Jhonata et al. 2015). In addition to increasing defensive enzyme 

activity, phosphites can reduce anthracnose severity by directly inhibiting mycelial growth (B. H. 

G. Costa et al. 2018; Gadaga et al. 2017). Previous success has been noted in controlling 

anthracnose of soybean, Colletotrichum dematium, and other plant diseases with plant extracts 

(Shovan et al. 2008). Dry bean and cowpea seed treatments with acetone- and water-based 

extracts of Allium sativum, Agapanthus caulescens, Carica papaya, and Syzygium cordatum 

expressed inhibitory activity against anthracnose (Masangwa, Aveling, and Kritzinger 2013).  

NITROGEN (N) 

 Proteins are composed of 16% nitrogen (N), making the element necessary for survival 

and growth in plants and animals (Frink, Waggoner, and Ausubel 1999). In crop production, 

yields are often determined by N. As plants cannot directly assimilate molecular N, it is often 

supplied to crops either as NH4
+ and NO3

- (Franche, Lindström, and Elmerich 2009; Ladha et al. 

2005; Lam et al. 1996). The synthesis of ammonia through the Haber-Bosch process allowed for 

the mass production of usable N. The usage of synthetic fertilizers was a major contributing 

factor to the success of the “green revolution” and they are currently an integral part of modern 

agriculture. An estimated 40% of the world’s population relied on fertilizer inputs for food at the 

end of the twentieth century and currently it is estimated roughly 50% of the population is 

supported by synthetic nitrogen (Erisman et al. 2008). 

 Global N inputs have greatly increased in crop production from 37 Tg N per year in 1961 

to 163 Tg N per year in 2009 (Lassaletta et al. 2016). These increases do not come without 

drawbacks, however, as N has become a major pollutant (Ladha et al. 2005; C. Wang et al. 2017; 

Xu et al. 2019; X. Zhang et al. 2015). A majority of the N applied to crops is not absorbed by the 

https://www.zotero.org/google-docs/?K1iUuq
https://www.zotero.org/google-docs/?XlkSTY
https://www.zotero.org/google-docs/?XlkSTY
https://www.zotero.org/google-docs/?JwgdQ2
https://www.zotero.org/google-docs/?BMofl2
https://www.zotero.org/google-docs/?2ka2hk
https://www.zotero.org/google-docs/?wxloLb
https://www.zotero.org/google-docs/?wxloLb
https://www.zotero.org/google-docs/?Sf54gC
https://www.zotero.org/google-docs/?HPjEhR
https://www.zotero.org/google-docs/?t8NvW2
https://www.zotero.org/google-docs/?t8NvW2
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plant and instead lost to the environment through ammonia volatilization, denitrification, soil 

leaching, and eutrophication (Akter, Lupwayi, and Balasubramanian 2017; Asghari and 

Cavagnaro 2011; Turner and Rabalais 1994; Turner, Rabalais, and Justic 2008). Wang et al 2017 

determined that there has been an approximate tenfold increase in N exported from croplands to 

the hydrosphere and a fivefold increase to the atmosphere has occurred since 1860. In addition, 

the Haber-Bosch process requires large quantities of fossil fuels to produce ammonia and 

consequently it releases large amounts of greenhouse gasses (Razon 2014). Projected population 

growth and the rising demand for food necessitates an increase in agricultural production (M. 

Han et al. 2015; Mulvaney, Khan, and Ellsworth 2009; X. Wang et al. 2019). Meeting this 

demand poses long-term ramifications to the ecosystem and human health.  

SYMBIOTIC NITROGEN FIXATION IN LEGUMES 

Biological nitrogen fixation (BNF) is an alternative approach for inputting N in cropping 

systems and reducing synthetic N usage. BNF is a natural process of converting atmospheric N, 

N2, into the usable form NH4
+. This process is performed exclusively by archaea and bacteria. 

These organisms can be classified into three categories: associative, free-living, and symbiotic 

fixers. Associative and symbiotic N fixers are found in the rhizosphere of legume and non-

legumes (Santi, Bogusz, and Franche 2013). Free-living N fixers encompass microbes that fix N 

independent of other organisms. Photosynthetic diazotrophs provide their own energy required to 

chemically convert N2 while nonphotosynthetic diazotrophs rely on a chemical energy source 

(Saikia and Jain 2007). Associative N fixing diazotrophs reside in near proximity to plant roots, 

relying on root exudates to fund their fixation (Mus et al. 2016). Symbiotic N fixation (SNF) 

describes the specific interaction between legumes and rhizobia and is the most effective in N 

https://www.zotero.org/google-docs/?2dWl2b
https://www.zotero.org/google-docs/?2dWl2b
https://www.zotero.org/google-docs/?FdH4Li
https://www.zotero.org/google-docs/?JwJeXs
https://www.zotero.org/google-docs/?JwJeXs
https://www.zotero.org/google-docs/?aNELQe
https://www.zotero.org/google-docs/?6MjRPX
https://www.zotero.org/google-docs/?KyprXa
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fixing (Soumare et al. 2020). Rhizobia is the collective term for the genera Rhizobium, 

Azorhizobium, and Bradyrhizobium.  

The symbiotic relationship begins with the host and rhizobia exchanging chemical 

signals. Flavonoids are secreted by the host plant’s roots that activate specific signaling 

compounds, called Nod factors, in compatible rhizobia (Fisher and Long 1992; Jimenez-Jimenez 

et al. 2019; C.-W. Liu and Murray 2016).  A signaling cascade is triggered in the host plant upon 

its recognition of the Nod factors that lead to the formation of intracellular structures called 

infection threads. Infection threads allow the rhizobia to access root hair tissues where they 

undergo endocytosis, forming nodule cells (Cissoko et al. 2018; Suzaki et al. 2019). Once inside 

the nodule, the bacteria begin to fix nitrogen.  

The fixation ability of rhizobia-host symbiosis is dependent on many factors. Soil, 

genetic (host-rhizobia) interactions, and competition with other microorganisms can affect N-

fixation (Soumare et al. 2020). Soil conditions can alter rhizobia signaling secretions. In general, 

rhizobia are pH-sensitive with their optimal range for growth between 6.0 and 7.0 (Hungria and 

Vargas 2000). Acidic soil affects the host-rhizobia relationship by causing a reduction in 

flavonoid and Nod factor secretion in the rhizobia, by impeding attachment to the root hairs, and 

by impeding nodule formation (Ferguson et al. 2019; Lira Junior 2015; McKay and Djordjevic 

1993). Soil lacking moisture availability over long periods of time decreases nodule formation 

and nodule-specific activity (Serraj, Sinclair, and Purcell 1999). Under drought conditions, the 

rhizobia lack mobility for root infection and growth. Within the nodule, nitrogenase activity 

decreases as oxygen is unable to enter the nodule due to a decrease in permeability and 

respiration is restricted (Durand, Sheehy, and Minchin 1987; Walsh 1995). Drought conditions 

restrict the supply of photosynthate to the nodules and can lead to nodule senescence (Arrese-
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Igor et al. 2011; Kunert et al. 2016). Nitrogen availability in the soil causes a downregulation in 

both nodule formation and activity (J. Streeter and Wong 1988). The process of fixation requires 

energy and resources from the hostplant and thus if there is sufficient N, the host-plant reduces 

its expenditure. In the rhizobia, N in the form of nitrate inhibits the synthesis of flavonoids and 

the expression of the nodulation transcription factor NODULE INCEPTION (NIN) (Barbulova 

et al. 2007; Van Noorden et al. 2016). In contrast, N in the form of ammonium has been 

observed to stimulate nodulation formation in low concentrations (Bollman and Vessey 2006).  

The level of compatibility between host and rhizobia strain can determine fixation ability. 

In legumes the symbiosis is highly specific, controlled at multiple levels within the host and 

rhizobia (D. Wang et al. 2012). These controls allow for the differentiation of rhizobia from 

pathogens in the host and genotype or species discrimination in the rhizobia (Sadowsky et al. 

1991; S. Yang et al. 2010). Incompatibility between host genotype and strain can occur during 

the process of symbiosis where either nodules fail to form or formed nodules fail to fix nitrogen 

(J. Liu et al. 2014; Q. Wang et al. 2017, 2018; S. Yang et al. 2010). Rhizobium and 

Bradyrhizobium species are considered to be promiscuous, having a broad host-range for 

infection (Perret, Staehelin, and Broughton 2000). While able to infect many host-genotypes, 

their fixation efficiency can vary greatly with different combinations of host and strain 

(Schumpp and Deakin 2010; Simsek et al. 2007; Tirichine, de Billy, and Huguet 2000). 

Unfortunately, despite the observed variation in strain-specific N fixation, the mechanisms 

behind the behavior are unknown (D. Wang et al. 2012). 

Rhizobia strains with superior N-fixing ability have been identified over the decades and 

have been used in agricultural practices (Brockwell and Bottomley 1995; J. Brockwell, 

Bottomley, and Thies 1995; J. G. Streeter 1994). However, the use of inoculants does not 
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guarantee the successful infection of that strain. Resident rhizobial strains are just as, if not more 

likely to inhabit nodules on a host-plant while also being less efficient in N-fixation (J. G. 

Streeter 1994; Triplett and Sadowsky 1992). The success of native rhizobial strains in occupying 

nodules is often thought to be due to ‘out-competing’ inoculated strains, being better adapted to 

the environment and in greater numbers. However, there is evidence that host-plant preference 

may play a role in determining nodule occupancy and symbiotic efficiency (Gunnabo et al. 2019; 

Simms and Taylor 2002; Yates et al. 2011).  

METHODOLOGIES FOR MEASURING SNF 

 Quantifying N-fixation often requires the use of an N isotope other than 14N. The stable 

isotope 15N has been proven useful in fixation experiments and has been widely adopted (Giller 

2001). The isotope is utilized across both direct and indirect methods of measuring N-fixation. 

 The direct method of quantifying fixation in plant tissue involves incubating the sample 

in an enclosed atmosphere enriched with 15N2. After incubation, the sample is purified and the 

proportion of 15N present is determined with mass spectrometry. While precise, this method 

requires knowledge of the 15N enrichment of the experimental atmosphere and the incubation 

time is dependent on the rate of fixation relative to the amount of N present in the tissue 

(Bergersen 1980).  

A simple method of quantifying fixed N over a growing season is to measure the 

concentration of N in the tissue and multiply it by the weight of the plant material produced 

(Giller 2001). This method is sensitive to N contamination and is performed using N-free media, 

however it can also be conducted in soil if a non-fixing reference plant is used to estimate the 

amount of N in the soil or if the gains and losses of N are accounted for. The first extension of 
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this method is referred to as the ‘N-difference’ method and the second is the ‘N-balance’ method. 

The equation for the ‘N-balance’ method is as follows: 

%𝑁𝑑𝑓𝑎 =  
𝑁 𝑦𝑖𝑒𝑙𝑑𝑓𝑖𝑥𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡− 𝑁 𝑦𝑖𝑒𝑙𝑑𝑛𝑜𝑛−𝑓𝑖𝑥𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡

𝑁 𝑦𝑖𝑒𝑙𝑑𝑓𝑖𝑥𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡
 𝑥 100                                            Eq. 1 

Where %Ndfa is the percentage of N in the seed at harvest that is derived from the atmosphere 

through fixation, N yield is the product of the plant’s seed yield in kg/ha and the percent of N 

present in the seed from the respective fixing plant and the non-fixing plant. 

Measuring the acetylene reduction activity (ARA) has been used as an indirect method of 

estimating N fixation (Stewart, Fitzgerald, and Burris 1967). Rhizobia nitrogenase, which 

reduces N2 to NH3, can also reduce acetylene to ethylene. The gaseous ethylene can then be 

measured with gas chromatography. N fixation can be estimated from this using the theoretical 

conversion ratio of 4 mol acetylene reduced to 1 mol N fixed (Boddey and Knowles 1987; Giller 

2001). ARA is conducted under controlled environments and on root nodules from plants grown 

in the field (Riar et al. 2018; Zablotowicz and Reddy 2007). 

Ureide assays can be performed to estimate fixed N as N fixed by nodule-inhabiting 

rhizobia is assimilated into glutamine and then metabolized into ureide compounds like allantoin 

and allantoic acid. These compounds can be sampled from the xylem and analyzed with 

colorimetric assays with the results expressed as the relative % ureide content (Herridge 1982; 

Tegeder 2014). Ureide assays estimate only the proportion of N in the plant derived from N 

fixation and sequential estimates are necessary for evaluating the total amount of fixed N. 

A common method of measuring N fixation is the 15N isotope enrichment method. 

Fertilizer composed entirely of 15N is used as the plant’s sole source of N which results in all the 

plant’s N consisting of 15N. A plant that is able to fix atmospheric N, 14N2, will have a proportion 

of 15N less than 100 atom % 15N, with the difference calculated as the amount of N derived from 
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the atmosphere (Chalk 1985).  A reference plant that does not fix N is often used to measure the 

amount of 15N enrichment in the soil. The equation for isotope enrichment is as follows: 

𝑁 𝑓𝑟𝑜𝑚 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 =  [1 − (
𝑎𝑡𝑜𝑚 % 15𝑁 𝑒𝑥𝑐𝑒𝑠𝑠𝑓𝑖𝑥𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡

𝑎𝑡𝑜𝑚 % 15𝑁 𝑒𝑥𝑐𝑒𝑠𝑠𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑜𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑙𝑎𝑛𝑡
)]                        Eq. 2 

Where N from fixation is the amount of N fixed by the plant from the atmosphere, atom % 15N 

excess represents the percentage of N in the reference or test plant from the 15N fertilizer. 

The isotope dilution method of 15N evaluation is similar to the dilution method, with the 

exclusion of applying the 15N fertilizer. The differences in 15N enrichment in the test plants and 

the reference plants indicate the plants’ dependence on atmospheric N and would be used to 

calculate N fixation (Schwenke et al. 1998; Shearer and Kohl 1986). This method additionally 

requires the natural abundance of the N fixing plant grown in N-free media to account for 

isotopic fractionation of atmospheric N during fixation lest the calculation of N fixed would be 

overestimated. The amount of N derived from fixation is calculated using the following equation: 

𝑁 𝑓𝑟𝑜𝑚 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 = (
𝛿15𝑁𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑙𝑎𝑛𝑡− 𝛿15𝑁𝑓𝑖𝑥𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡

𝛿15𝑁𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑙𝑎𝑛𝑡− 𝐵
)                                        Eq. 3 

Where 15N is the 15N content of the reference or the test plant and B refers to a measure of the 

15N content of the test legumes grown under N-free conditions where their only source of N is 

from fixation. 

BREEDING FOR SNF IN COMMON BEAN 

 The genetic variability found between common bean genotypes for fixation ability has 

presented the possibility of breeding for improvement (Buttery, Park, and Berkum 1997; 

Elizondo Barron et al. 1999; Kamfwa, Cichy, and Kelly 2015).  Additionally, Graham & Rosas 

(1977) determined via acetylene reduction that fixation ability varies significantly between 

common bean growth types with climbing, indeterminate cultivars showing consistently greater 
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fixation. Unfortunately, the complexity of the trait has been an obstacle in improving the fixation 

ability in common bean through breeding. Numerous genes control the process of fixation from 

nodule formation to photosynthesis and their expression is sensitive to environmental changes 

and stresses. The latter can obfuscate evaluations for SNF, leading to limited improvement. 

Identifying QTLs and molecular markers for SNF have been proposed to overcome these 

challenges. 

 Previous QTL mapping studies utilizing the 15N natural abundance method and nodule 

counting to evaluate SNF identified QTLs on nearly every chromosome. The nodulation count 

studies found QTLs on Pv01, Pv02, Pv03, Pv05, Pv06, Pv07, Pv09, Pv10, and Pv11 (Nodari et 

al. 1993; Souza et al. 2000; Tsai et al. 1998). Studies using the natural abundance method to 

directly assess SNF also found QTLs on Pv01, Pv03, Pv06, Pv07, and Pv09, Pv10, and Pv11 

with additional QTLs found on Pv04 and Pv08 (Lucy M. Diaz et al. 2017; Heilig et al. 2016; 

Kamfwa, Cichy, and Kelly 2015, 2019; Ramaekers et al. 2013). A genome-wide association 

study identified three genes as candidate genes for Ndfa: Phvul.009G136200 and 

Phvul.009G231000 on Pv09 and Phvul.007G050500 on Pv07 (Kamfwa, Cichy, and Kelly 2015).  

Phvul.009G136200 and Phvul.007G050500 encodes leucine-rich repeat receptor-like protein 

kinase, which has been reported to be critical in the signal transduction necessary for nodule 

formation (Stracke et al. 2002). The third gene is involved in the signaling cascade that induces 

nodule formation (Lévy et al. 2004).   

The wide breadth of genomic regions found for SNF could be due in part to differences 

between the gene pools of the genotypes used in these studies. Middle American and Andean 

bean genotypes have been found to have differing SNF abilities and SNF-related traits (Farid and 
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Navabi 2015). Middle American genotypes tend to be better fixers under optimal conditions 

while many Andean genotypes had the advantage in nodule development.  

SNF has been associated with seed yield in numerous studies with the implication that 

SNF can be indirectly selected for under low N conditions via seed yield (Barbosa et al. 2018; 

Buttery, Park, and Berkum 1997; Farid and Navabi 2015; Fenta, Beebe, and Kunert 2020). 

Selecting lines with high yields and SNF ability for variety development is ideal for breeders, but 

it is not uncommon that lines with high SNF are not among the highest grain yielders (Farid et al. 

2017; Reinprecht et al. 2020). Leaf chlorophyll content (SPAD) has often been found to have a 

strong, positive correlation with SNF, suggesting that this trait is an indicator of SNF (Farid et al. 

2017; Jiang et al. 2020; Kamfwa, Cichy, and Kelly 2015). Significant, positive correlations with 

nitrogen fixation have also been found in soybean and peanut (Dinh et al. 2013; Gwata et al. 

2004). Its high heritability in bean suggests the use of the trait as a means of indirectly selecting 

for fixation ability and high yield as long as measurements are taken under low N conditions 

(Farid and Navabi 2015). 

REMOTE SENSING 

 Traditional methods of assessing biochemical and physiological traits in a breeding 

program are time consuming and can be costly. Spectral reflectance has been proposed as a time-

efficient and nondestructive method of measuring plant characteristics (Babar et al. 2006). 

Reflectance in the visible/near infrared region of the electromagnetic spectrum and indices based 

off of emitted wavelengths in those regions have been related to chlorophyll and nitrogen status, 

water status, disease response, and biomass across numerous crops (Boshkovski et al. 2021; 

Grüner, Astor, and Wachendorf 2021; Hansen and Schjoerring 2003; Hunt et al. 2013; Sandino 

Mora et al. 2018; Zhou et al. 2018).  
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 Spectral remote sensing collects data by measuring the radiance emitted, transmitted, or 

reflected from objects or surfaces. In the field, these measurements are impacted by 

environmental conditions, specifically conditions affecting light availability such as cloud cover 

and the time of day. The sensors used in spectral imagery are often either red-green-blue (RGB), 

multispectral, or hyperspectral imaging sensors. These sensors have varying levels of sensitivity; 

RGB sensors only capture visible light wavebands (400 - 700 nm), multispectral sensors capture 

visible light in addition to red edge and near infrared (700 - 1300 nm) bands, and hyperspectral 

sensors can capture hundreds of wavebands (500 - 2500 nm). The measured reflectance is 

dependent on the chemical and morphological characteristics of the surface imaged and changes 

with plant type, developmental stage, vigor, water content, biomass, and pigments present (Babar 

et al. 2006). Spectral reflectance indices, hereafter referred to as vegetation indices or VIs, were 

developed from formulas usually in the form of ratios or differences between reflectances at 

given wavelengths. The information gathered from the captured images is interpreted by 

differences and changes of the canopies’ spectral characteristics and changes in the leaves of 

plants. VIs are validated through correlations between the indices and the traits of interest.  

Many VIs have been developed over the years as a means of quick, cost-efficient high-

throughput phenotyping and many studies have addressed comparisons of performance between 

sensor types. Hyperspectral sensors capture the most bands, but like multispectral sensors, they 

are often expensive and heavy in addition to being more sensitive to ambient light conditions 

(Herzig et al. 2021). Multispectral sensors are commonly used in agriculture for their 

application-specific band selection and the information collected is generally more reliable and 

repeatable due to their radiometric calibration (Haghighattalab et al. 2016; Nebiker et al. 2016). 

RGB cameras offer the lowest cost and the narrowest spectral range, but RGB-derived VIs have 

https://www.zotero.org/google-docs/?4wwcFZ
https://www.zotero.org/google-docs/?4wwcFZ
https://www.zotero.org/google-docs/?QbRNjM
https://www.zotero.org/google-docs/?rDvS4y


  19 

been reported to perform equally or better than multispectral VIs for specific plant traits and 

measurements (Di Gennaro et al. 2018; Gracia-Romero et al. 2017; Marcial-Pablo et al. 2019; 

Travlos et al. 2017). VIs across all imaging sensor types have been shown to be incredibly useful 

in crop management and prediction models for yield and nitrogen status (Bascon et al. 2022; 

Candiago et al. 2015; N. Han et al. 2022; Lu et al. 2019).  

 Spectral data has been captured using a wide variety of vehicles and instruments from 

mobile ground-based vehicles to unmanned aerial systems (UAS) and satellites. Each method of 

data collection comes with their own benefits and limitations. Satellites capture data from large 

areas, but often have limited spatial resolution and are inflexible in regard to scheduling and 

sensor selection (C. Zhang, Marzougui, and Sankaran 2020). Images captured by ground-based 

vehicles can be particularly susceptible to wind and have a limited field of view, but the sensors 

they carry can be customized and the close proximity to field plots allows for high resolution 

images (Virlet et al. 2017). UAS can obtain low-cost, high-resolution images from plots and 

fields (Aasen et al. 2018). UAS are limited to what sensors they can carry due to weight 

restrictions, however they are able to carry RGB, multispectral, and hyperspectral cameras (Fu et 

al. 2021; Gracia-Romero et al. 2017; Herzig et al. 2021).  

MACHINE LEARNING AS A BREEDING TOOL 

With the emergence of big data technologies and high-performance computing, machine 

learning (ML) has become a method to investigate and navigate collected information. ML, as 

first defined by Arthur Samuel in 1959, is the study of computational techniques that gives 

machines the ability to learn and identify patterns without explicit programming (Samuel 2000). 

Many ML models have been developed and deployed across numerous scientific fields including 

agriculture, bioinformatics (Rahman et al. 2021), and medicine (Petersen and Aung 2022).  
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ML methodologies set out to perform a task using patterns ‘learned’ from training data. 

Model performance for a specific task is measured using a metric that improves over time, the 

metrics being any of the various statistical and mathematical models used to evaluate regression 

or classification models. After the pattern is developed using the training data, the trained model 

can be applied to perform the task on a new data set, usually called the testing data. ML tasks are 

divided into categories depending on the learning type (supervised or unsupervised) or learning 

models (regression, classification, clustering, etc.). The goal of supervised learning is to 

determine a rule or equation that relates the variables to the response. Unsupervised learning is 

meant to find hidden patterns from the input data with no distinction of an output or response 

variable. 

ML methods have been applied in agriculture to assist in data-driven decision making 

and predictive modeling. In recent years, different ML algorithms have been used to accurately 

predict yield for different crops. Artificial neural networks have been demonstrated to be 

accurate (Ashapure et al. 2019; Fortin et al. 2011; Q. Yang et al. 2019), as has K-nearest 

neighbor (L. Zhang et al. 2010), gradient boosting (Shendryk, Davy, and Thorburn 2021; Stas et 

al. 2016), and random forest (Kim and Lee 2016). 

A recent study by J. Han et al. (2020) presented a comparative study of random forest, K-

nearest neighbor, back-propagation neural network, decision tree, support vector machines, 

Gaussian process regression, boosting and bagging trees for winter wheat yield using remote 

sensing, climate, and soil data. They used three accuracy metrics to validate the models: Root 

mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination 

(R2). Three models proved to be the best performing methods: support vector machines, random 

forest, and Gaussian process regression. Another comparative study by Gonzalez-Sanchez et al. 
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(2014) investigated the accuracies of multiple linear regression, M5-Prime regression trees, 

perception multilayer neural networks, support vector regression, and K-nearest neighbor in 

predicting yields for ten crops. In contrast to the prior study, the variables used were growth and 

climate measurements. Additionally, K-nearest neighbors was found to be one of the most 

accurate models alongside M5-Prime regression trees. The type of predictor variables included in 

the models may play a strong role in determining model accuracy. 

 ML methods have also been employed in estimating plant N status as a quick, 

nondestructive method. Shi et al. (2021) utilized RGB images in evaluating three regression 

methods, simple nonlinear regression, back-propagation neural networks, and random forest, for 

estimating rice shoot dry matter, N accumulation, and leaf area index. Here, random forest was 

found to be the most accurate model for each response variable. Random forest was also 

determined to be accurate in estimating N in barley and grass silage using RGB, multispectral, 

and hyperspectral bands and indices (Näsi et al. 2018). A comparative study performed by (Yao 

et al. 2015) evaluated six algorithms for estimating wheat leaf N in eight experiments over nine 

years with hyperspectral bands. Two nonlinear ML methods, artificial neural networks and 

support vector machines were compared against linear regression models stepwise multiple 

linear regression, partial least squares regression, and models built from VIs and continuum 

removal. This study found greater accuracy with support vector machines and an overall trend of 

increasing accuracy with a greater inclusion of wavelengths in the models.  
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APPENDIX 

Table 1.1. Anthracnose differential series, host gene pool, resistance genes, and the binary 

number of each cultivar used to characterize the races of anthracnose in common bean. 

Differential Cultivar Gene Pool Host Genes Binary Number 

Michelite Middle American Co-11 1 

MDRK Andean Co-1 2 

Perry Marrow Andean Co-13 4 

Cornell 49242 Middle American Co-2 8 

Widusa Andean Co-15 16 

Kaboon Andean Co-12 32 

Mexico 222 Middle American Co-3 64 

PI 207262 Middle American Co-33; Co-43 128 

TO Middle American Co-4 256 

TU Middle American Co-5 512 

AB 136 Middle American Co-6 1024 

G 2333 Middle American Co-35; Co-42; Co-52 2048 

Binary numbers are calculated from 2n where n is equivalent to the position of the cultivar in the 

series starting with 0. The sum of the cultivars with susceptible reactions gives the binary 

number of a specific race (Pastor-Corrales, 1991). For example, race 109 is virulent on Mexico 

222 [64], Kaboon [32], Cornell 4942 [8], Perry Marrow [4], and Michelite [1]. 
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CHAPTER TWO: MAPPING THE ANTHRACNOSE RESISTANCE 

GENE CO-5 

ABSTRACT 

 Anthracnose is a highly variable and destructive seed-borne disease caused by the fungus 

Colletotrichum lindemuthianum. The most efficient method of managing the disease is to use 

resistant cultivars, but emergent races threaten their durability. The black bean cultivar ‘TU’ 

possesses the Colletotrichum resistance gene Co-5 and is resistant to race 109, an emergent race 

in Michigan (2017). The objectives of this study were to i) map the resistance gene Co-5 and ii) 

develop KASP markers to facilitate future marker assisted selection (MAS) for resistance. An F2 

population developed from a cross between the susceptible Michigan State University (MSU) 

Dry Bean Breeding Program breeding line B19504 and TU was utilized for mapping. QTL-seq 

was performed to identify significant SNP markers associated with race 109 resistance and 

twenty-five SNPs were identified on the Phaseolus vulgaris linkage group Pv07 between 

6.838810 Mb and 24.62480 Mb. Validating KASP markers associated with Co-5 will allow 

breeding programs to efficiently integrate resistance to race 109 into their breeding lines, 

improving the durability of their cultivars. 

INTRODUCTION 

Bean anthracnose, caused by Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & 

Cav., is a seed-borne fungal pathogen  and causal agent of one of the most devastating diseases 

affecting bean production worldwide (Costa et al., 2021). The pathogen is devastating in 

susceptible cultivars and displays high virulence diversity between races (Padder et al., 2017). 

Infected fields of susceptible cultivars in favorable, humid, and cool environments can have up to 

100% yield reduction (Nunes et al., 2021). The pathogen is endemic in numerous African, Latin 
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American, and European countries in addition to many fields in both the United States and Canada 

(Mohammed, 2013). Colletotrichum lindemuthianum is easily spread to new regions by infected 

seed and between plants by rain drops, irrigation water, or mechanical movement such as wildlife 

or farm equipment through the field. As a hemibiotrophic pathogen, the hypersensitive response 

(cell death) in plants is suppressed until the infection has advanced. The fungus creates rust red to 

black lesions on the leaf petiole and along the leaf veins, causing vein necrosis (Boersma et al., 

2014). Brown eyespots and lesions will also appear on the stem and pods, followed by deterioration 

and infection in the seeds. Ultimately, anthracnose can lead to premature defoliation, early flower 

and pod drop, and plant death (Boersma et al., 2020; Tu, 1983). Infected seeds left in the soil avter 

harvest can also infect future bean crops for an average of two to three years (Conner et al., 2019). 

Anthracnose spores can survive winter conditions inside seed and plant debris left in the field and 

become a source of inoculum for the next crop (Schwartz & Corrales, 1989). 

Management strategies such as fungicide application, using certified disease-free seed, 

fungicide seed treatments, and crop rotation can be beneficial, but the most effective and 

sustainable approach is the use of resistant cultivars (Balardin, Jarosz, and Kelly 1997). In common 

bean, resistance follows the gene-for-gene model and is conferred by individual, independently 

segregating loci in Colletotrichum resistance gene family denoted Co followed by a number. 

Currently, 20 resistance genes from the Co family have been identified and mapped in the common 

bean genome, with resistance gene clusters present on Pv01, Pv02, Pv03, Pv04, Pv07, Pv08, and 

Pv11 (Nunes et al., 2021). Integrating gene-specific disease resistance in improved cultivars relies 

on the identification of resistant plants to cross with agronomically favorable plants (Strange & 

Scott, 2005). Resistance to anthracnose can be evaluated directly through greenhouse inoculation 

or indirectly using molecular markers. Inoculations are commonly performed by spraying a conidia 

https://www.zotero.org/google-docs/?5jMiJv
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spore suspension of a selected race onto common bean seedlings. The plants are kept at 80% 

humidity for 72 hours and disease symptoms become apparent between 7 and 10 days after 

inoculation. The responses are rated using either a broad categorization of ‘susceptible’ and 

‘resistant’ or rated on a scale of 1-9 or 0-5 (Drijfhout & Davis, 1989; Pastor-Corrales et al., 1998).   

In previous years, two races of anthracnose were present in Michigan: races 7 and 73 (Kelly 

et al., 1994). Due to their prevalence, the resistance gene Co-12 on Pv01 was commonly deployed 

in navy and black bean cultivars to avoid infection. In 2017, a new isolate of C. lindemuthianum 

was characterized in Michigan that was able to overcome Co-12 (Awale et al. 2018). This race was 

first detected on the cultivar ‘Zenith’ that possesses the Co-12 gene and characterized as 109. 

Severe infections were observed in previously durable varieties across all market classes. In the 

proceeding years the resistance genes Co-1, Co-42, Co-5, and Co-6 were found to confer resistance 

to race 109. Co-42 was deployed in the MSU Dry Bean Breeding Program. Two commercial 

varieties ‘Adams’ and ‘Eiger’ resistant to Race 109 were released using marker assisted selection 

(MAS) with a single nucleotide polymorphism (SNP) marker assay and greenhouse inoculation 

(Kelly et al., 2021a, 2021b).  

MAS is the most efficient means of introgressing resistance (Choudhary et al., 2018). 

Molecular markers tightly linked to resistance quantitative trait loci (QTLs), or genes allow for the 

efficient deployment of anthracnose resistance into dry bean germplasm and cultivars threatened 

by emergent races. One resistance gene can confer resistance to a number of anthracnose races, 

thus combining complementary genes can strengthen the durability of resistance in cultivars 

(Balardin, Jarosz, and Kelly 1997). Before the advent of whole genome sequencing, random 

amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) 

markers were used to map and identify Co genes in common bean (Vallejo & Kelly 2001; Young 

https://www.zotero.org/google-docs/?laHppi
https://www.zotero.org/google-docs/?YWiFcg
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& Kelly 1997; Young & Kelly 1998).  Traditionally, bulked segregant analysis was used to identify 

DNA markers linked to a gene associated with disease resistance (Michelmore, Paran, and Kesseli 

1991). The progression of sequencing technology has led to the  combination of bulked segregant 

analysis with sequencing data in a method referred to as QTL-seq which uses the difference in 

SNP expression between the bulks to rapidly identify QTLs (Takagi et al. 2013). Kompetitive 

allele-specific polymerase chain reaction (KASP) markers have now gained prominence in trait-

specific marker development (Gilio et al., 2020; Valentini et al., 2017). KASP identifies SNP 

variations in a population by utilizing PCR-based amplifications and has been used widely to 

develop trait-specific markers and genetic mapping due the ability to combine several markers in 

a single assay (Cao et al. 2021; Hurtado-Gonzales et al. 2017; Semagn et al. 2014). KASP markers 

were developed for Co-42 (Kelly et al., 2021a), however these new generation markers have not 

been developed for Co-5 and breeders currently rely on the classical SCAR marker developed by 

Vallejo & Kelly (2001). Co-5 confers broad resistance to 31 races (Balardin et al 1997) including 

races 3, 6, 7, 31, 38, 39, 102, 109, 449, 3481, and 3545 (Mahuku & Riascos, 2004). Developing a 

Co-5 KASP molecular marker for modern MAS would allow for efficient deployment in breeding 

programs, in addition to capitalizing on the gene’s broad resistance to reinforce the durability of 

developed cultivars. 

The differential cultivar TU contains Co-5 as its single known resistance gene (Fouilloux, 

1976). This cultivar is therefore an acceptable source of resistance; however, its agronomic traits 

are undesirable for commercial black bean production. The MSU breeding line B19504 

conversely has preferred agronomic traits, including the I gene which confers resistance to bean 

common mosaic necrosis virus (BCMNV), but lacks anthracnose resistance. BCMNV is one of 

the most common and destructive viruses that affect common bean and, like anthracnose, can 

https://www.zotero.org/google-docs/?CPIbUK
https://www.zotero.org/google-docs/?CPIbUK
https://www.zotero.org/google-docs/?OwFYCq
https://www.zotero.org/google-docs/?doADlE


  41 

cause up to 100% yield loss (Singh & Schwartz, 2010). The I gene is another important 

resistance gene to consider when breeding for disease resistance. This study aimed to identify 

and map SNPs associated with the Co-5 locus on Pv07 associated with resistance to race 109 in 

an F2 population developed from a cross between B19504 and TU. The goal of this study was to 

identify molecular markers tightly linked to Co-5 for future development into high throughput 

KASP markers for rapid deployment in breeding programs to facilitate more effective marker-

assisted selection. A secondary goal of this study was to identify lines from the F2 population 

that contain Co-5 and the I gene to utilize in back-crossing resistance into black bean breeding 

lines in the MSU Dry Bean Breeding Program. 

METHODS AND MATERIALS 

Plant materials 

A mapping population consisting of 446 F2 individuals were derived from a cross 

between the anthracnose race 109-susceptible black bean B19504 and the resistant cultivar TU 

(Figure 2.1). F1 seeds were selfled and grown in the MSU greenhouses for increase, and then the 

F2 seed were bulked. B19504 is a near isogenic black bean line to ‘Adams’, but lacks the 

resistance conferred by Co-42. TU is a differential cultivar that carries the Middle American Co-

5 gene, first characterized by Fouilloux (1976).  

Inoculation procedure and disease scoring 

 In 2022, 446 F2 individuals and 12 anthracnose differential cultivars (Pastor-Corrales, 

1991) were evaluated in the MSU greenhouses, East Lansing, MI. All F2 individuals including 

the parents were grown to the first trifoliate stage in 72-cell trays containing SureMix potting 

soil. Inoculation of anthracnose race 109 was performed by spraying a suspension of 1.2 x 106 C. 

https://www.zotero.org/google-docs/?HB1Q7K
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lindemuthianum conidia ml-1 onto the leaves and stems of the seedlings. The plants were 

maintained under 80% humidity in a mist chamber for three days following inoculation. 

Anthracnose symptoms were observed and evaluated in the population 7 days after inoculation. 

A scale of 1-5 was used to differentiate resistance and susceptibility (Drijfhout & Davis, 1989). 

Plants were assessed using the following classification: 1, no symptoms; 2, minor hypersensitive 

response; 3, pinpoint lesions or small lesions, not sunken; 4, large, sunken lesions; 5, plant death 

by pathogen (Figure 2.2). 

DNA extraction 

DNA was collected from young leaf tissues of the F2 and parental genotypes prior to 

inoculation using a modified CTAB (Hexadecyltrimethyl ammonium bromide) extraction 

protocol (Doyle 1987). The DNA concentrations were measured using a Qubit Flex dsDNA 

Broad Range Assay kit (Thermo Fisher Scientific, Waltham, MA) and quality was checked on an 

agarose gel. 

Genetic analyses 

 Simple inheritance of resistance to anthracnose race 109 was confirmed using a chi-square 

test. DNA from the leaves of the resistant and susceptible F2 individuals were bulked for whole 

genome sequencing (WGS). The bulks consisted of 158 individuals given a rating of 1 and 25 

individuals rated 5 during evaluations. The entire population was sent to the HudsonAlpha 

Genome Sequencing Center (Huntsville, AL) for PCR-free cDNA library construction and 

Illumina paired-end sequencing. Two Illumina Trueseq DNA libraries were prepared from the 

bulks with an insert size of 550 bp. WGS was performed with a NovaSeq using the NovaSeq6000 

S4 Reagent Kit at 3x coverage for the entire population. The resulting data was used for QTL-seq 

analysis of the race 109 resistance trait using a QTL-seq pipeline developed at HudsonAlpha 

https://www.zotero.org/google-docs/?s2BJ47
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Institute for Biotechnology (Korani et al. 2021). Short reads were aligned with the common bean 

genomic DNA sequence (Phaseolus vulgaris v.2.1) at Phytozome, DOE, and JGI 

(https://phytozome-next.jgi.doe.gov). The Khufu var program was utilized to filter and improve 

the data for high-quality reads (Korani et al. 2021). SNPs missing more than 75% of calls, 

monomorphic between parents, or any that were heterozygous in the parents were removed. To 

validate the Khufu variant calling and analysis, a secondary procedure was performed. The raw 

paired-end sequencing reads were processed to discard low quality reads that were shorter than 80 

bp in length and did not meet the default quality threshold of 20 using SICKLE software (Joshi & 

Fass, 2021). The Burrows-Wheeler Alignment Tool (BWA-mem v0.7.17) (Li & Durbin, 2009) 

software was used to map the filtered reads against the common bean reference genome using the 

default parameters. The mapped results were then sorted, indexed, and pileup with SAMtools 

v1.15.1 (Li et al., 2009). The mplieup2snp module of VarScan v2.3.9 (Koboldt et al, 2012) was 

used to call the SNPs using a minimum coverage of 3 and minimum read quality of 22. Multiallelic 

SNPs were discarded alongside markers missing more than 5% of their sites, more than 2.5% 

heterozygous, and with a minor allele frequency higher than 30%.   

The SNP genotyping data from the secondary filtering method was inspected using the 

QTL package in R (Broman et al., 2003) and identical SNPs and individuals were removed. The 

independence logarithm of the odds (LOD) was used to develop the linkage groups beginning at a 

minimum of 8 and a maximum of 20 to extract groups. Linkage groups were assigned to a 

chromosome based on the chromosome assignment of the markers clustered within the linkage 

groups. The SNP-based genetic map was developed using Kosambi’s mapping function (Kosambi, 

1944) in JoinMap 4 (Van Ooijen, 2006)  with the remaining JoinMap default parameters used for 

linkage analysis.  

https://www.zotero.org/google-docs/?XXvc9I
https://phytozome-next.jgi.doe.gov/
https://www.zotero.org/google-docs/?XXvc9I
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The anthracnose response scoring was analyzed in a single-trait QTL analysis using the 

entire population. QTL were identified using the phenotypic data collected from the individuals of 

the population. The QTL package in R was utilized to conduct the QTL analysis with Haley-Knott 

regression (Haley & Knott, 1992). The significance of each QTL was tested using the permutation 

test (Churchill & Doerge, 1994) using 1000 permutations and expressed as a p-value on the -log10 

scale. The QTL and linked SNPs were selected using a significance threshold of 0.01. 

SCAR marker screening 

Resistant individuals from the F2 population were screened for the I gene conferring 

resistance to bean common mosaic necrosis virus (BCMNV) using the SW13 marker developed 

by Melotto, Afanador, and Kelly (1996). This screening was performed to select individuals for 

back crossing that were resistant to both anthracnose race 109 and BCMNV. PCR amplifications 

were conducted using Programmable Thermal Controller (MJ Research, Inc, St. Bruno, QC) in 

25 μl solutions containing 1 μl of the forward and reverse primer, 13.6 μl PCR water, 4.8 μl of 5 

mM dNTP, 3.0 μl 1x buffer, 2.5 μl MgCl2, and 0.3 μl Taq polymerase (Invitrogen citation). The 

PCR procedure consisted of 33 cycles of 10 seconds at 94°C, 40 seconds at 67°C, 2 minutes at 

72°C, followed by one cycle at 5 minutes at 72°C. Amplification products were detected on a 

1.2% agarose gel prepared with 1x TAE (Tris-Borate EDTA) buffer and 0.1μg/100ml ethidium 

bromide. PCR products were loaded into the gel for electrophoretic separation with an electric 

potential maintained at 80 V for 1 hour and visualized under UV light using a Bio-Rad Gel Doc 

EZ Imager (Bio-Rad laboratories, Inc., Hercules, CA).  

 

 

 

https://www.zotero.org/google-docs/?gBX11J
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RESULTS 

Segregation of resistance to race 109 

The observed segregation of resistance within the F2 population deviated from the 

anticipated 3:1 ratio for a major dominant qualitative trait. There were significantly more 

individuals displaying resistance to race 109 within the population than the expected 75% (X2 = 

14.23, p < 0.0001) (Table 2.1) (Figure 2.3). The observed ratio also deviated from the expected 

ratio under a two dominant gene segregating population (X2 = 92.35, p < 0.0001). However, the 

segregation of resistance in the population did meet the expectations of a dominant suppression 

epistasis (X2 = 0.646, p = 0.42) (Table 2.1). 

I gene 

The I gene was observed in nearly 75% of the resistant genotypes and the chi-square 

analysis confirmed adherence to the expected phenotypic ratio of a trait controlled by a dominant 

major gene (X2 = 0.002, p = 0.9675) (Table 2.1). The presence of the I gene in B19504 and 

absence in TU is confirmed in Table 2.2.  

QTL-seq 

 QTL-sequencing and subsequent filtering resulted in 48,110 polymorphic SNPs. QTL-seq 

analysis revealed two possible QTL for anthracnose race 109 resistance on chromosome Pv07. 

The first region was found at an interval between 6.6 Mb and 13.7 Mb, and the second was found 

between 20.6 Mb and 24.5 Mb (Figure 2.4). These regions had a deltaVAR of 1.0. Two QTL were 

identified on chromosome Pv03 between 34.8 Mb and 51.4 Mb (Figure 2.5). The calculated 

deltaVAR for the QTL on this chromosome was also approximately 1.0.  
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QTL mapping 

 A genetic map for the entire B19504 x TU population was constructed with 617 SNPs 

after inspection with the QTL package in R. The map consisted of 16 linkage groups with each 

linkage group representing most chromosomes. Chromosome 3 separated into three groups and 

chromosome 7 separated into two linkage groups.  Anthracnose inoculation response in F2 plants 

identified two potential QTL for race 109 resistance (Figure 2.6). The strongest QTL identified is 

approximately located between the SNPs S07_ 9010419 and S07_9484401 (LOD = 31.84). Both 

markers show strong additive effects with S07_ 9010419 having a value of 0.75 and 

S07_9484401 having a value of 0.66. These flanking SNPs are located on Pv07 at 9.010419 and 

9.484401 Mb (Table 2.3).  The second QTL on Pv07 was located between SNPs S07_24624785 

and S07_24624800 at 24.624785 and 24.6248 Mb (LOD = 12.54). The third QTL on Pv07 

between SNPs S07_156765 at 0.156765 Mb and S07_156864 at 0.156864 Mb (LOD = 5.27) 

(Table 2.3). A fourth, weak QTL was also detected on Pv03 located between S03_51830541 and 

S03_52047723 at 51.830541 Mb and 52.047723 Mb, respectively (LOD = 4.07) (Table 2.3). 

DISCUSSION 

Genetic analyses 

This study utilized a WGS approach via QTL-seq methods for genetic analysis paired with 

genetic analysis through genotyping. The resistant parent, TU, is included in the differential panel 

used for race characterization and thus was identified as resistant to race 109 when it was first 

identified in Manitoba and Ontario and later, in Michigan (Awale et al. 2018; Conner et al. 2020). 

TU has been utilized in previous anthracnose studies investigating systems of resistance (Campa, 

Giraldez, and Ferreira 2009; Campa, Trabanco, and Ferreira 2017). Co-5 and the I gene are major 

dominant genes conferring resistance to their respective diseases, anthracnose and BCMNV. The 

https://www.zotero.org/google-docs/?9U9Ned
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deviation from the expected 3:1 ratio of a major gene observed in the segregation analysis of the 

former could be due to early losses in the population from a lack of germination and because the 

population was a randomly selected subset from a larger population. However, the possibility of 

dominance suppression could indicate the possibility of a Co gene in B19504. The susceptible 

parent is nearly isogenic to the commercial line ‘Adams’ but lacks the resistance conferred Co-42. 

Co-42 also confers resistance to races 7 and 73 which are commonly used to evaluate resistance in 

the MSU Dry Bean Breeding Program, thus it is possible that the additional gene segregating in 

the population also confers resistance to at least one of 7 and 73, but not 109.  

Fouilloux (1976) first characterized the mesoamerican resistance gene Co-5 in the 

differential cultivar TU that confers resistance to races 3, 6, 7, 31, 38, 39, 102, 109, 449, 3481, and 

3545. In comparison to the other differential cultivars in a study by Paulino et al. (2022), Co-5 was 

found to have the third highest resistance index, showing resistance to 81 out of 89 races evaluated. 

Co-5 was later reported to be found in the differential cultivar G2333 and RAPD markers were 

then developed from a F2 population using the G2333-derived line SEL1360 (Young and Kelly 

1997). The marker, OAB3450, was mapped in coupling phase (5.9 ± 1.7 cM) to Co-5 (Young et al. 

1998; and Young and Kelly 1997).  SCAR markers were developed from the RAPD marker by 

Vallejo and Kelly (2001) mapped in coupling-phase (12.98 cM), the inconsistency between the 

two markers thought to be from the use of different mapping populations as the original population 

was no longer available. Both populations utilized resistant parents derived from G2333, the carrier 

of Co-5. In a study by Mahuku and Riascos (2004) reported the gene present in G2333 displayed 

differing susceptibility reactions to race 3481 compared to TU. This led to the conclusion in 

Vallejo and Kelly (2009) that the gene carried by G2333 was an allelic form of Co-5, named Co-

52. Sousa et al. (2014) mapped the gene to a region stretching from 6.98 Mb to 7.02 Mb on Pv07. 

https://www.zotero.org/google-docs/?WakWiI
https://www.zotero.org/google-docs/?OTUfMY
https://www.zotero.org/google-docs/?zDRPTt
https://www.zotero.org/google-docs/?zDRPTt
https://www.zotero.org/google-docs/?cnSZNp
https://www.zotero.org/google-docs/?cnSZNp
https://www.zotero.org/google-docs/?zRFlmz
https://www.zotero.org/google-docs/?4sAVeC
https://www.zotero.org/google-docs/?0OkRS3
https://www.zotero.org/google-docs/?IHSl0b
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Co-5 would also be found in the differential cultivar AB136 alongside another resistance gene on 

Pv07, Co-6 (Campa, Trabanco, and Ferreira 2017). Allelism tests would confirm that the two genes 

are independent of each other with Co-6 located at 9.62 Mb (Campa, Trabanco, and Ferreira 2017).  

The locations of the SNPs identified in this study coincide with the findings of Nunes et 

al (2020). Interestingly, only one of the QTL identified via QTL-seq agrees with the previously 

established location of Co-5. It cannot be stated that the range captured by this study is 

accurately representative of the gene size as the QTL-seq captured many significant polymorphic 

SNPs across Pv07 and the whole genome. B19504 and TU are contrasting in phenotypic traits 

that go beyond anthracnose resistance and it is possible that the bulks included these additional 

traits. B19504 is an upright, indeterminate bush type, matte black bean line and TU is an 

indeterminate bush type with glossy black seeds and high expression of anthocyanin in the seed 

pods and stem. In particular, the QTL identified on linkage group 7.1 could be associated with 

the Asp gene, a major dominant gene that controls the thickness of the seed epicuticular wax 

layer (Cichy et al. 2014). This trait can be phenotyped by the ‘glossiness’ of the common bean 

seed. The ‘shiny’ trait in the black bean market class is undesirable in black bean production as it 

is a major determinant in water uptake during cooking (S. Diaz et al., 2021). The SNPs identified 

on Pv03 are of note as no genes were known to be present on that chromosome in either of the 

parents. Previous studies have found genes on Pv03 near the SNPs identified in this study 

relating to angular leaf spot resistance (Vidigal Filho et al. 2020), anthracnose resistance gene 

Co-17 (Trabanco et al., 2015),  and genes encoding nucleotide binding sites with leucine rich 

repeats (NBS-LRR) (Vaz Bisneta and Gonçalves-Vidigal 2020). The second QTL found on 

linkage group 7.2 is also unknown; no anthracnose genes have been mapped to that region nor is 

it located within the range of the P locus which controls seed coat color (McClean et al., 2018). 

https://www.zotero.org/google-docs/?nPXc1j
https://www.zotero.org/google-docs/?neuQTh
https://www.zotero.org/google-docs/?KNdC8r
https://www.zotero.org/google-docs/?zb2Xg3
https://www.zotero.org/google-docs/?kkBh6y
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Implications in plant breeding 

 Molecular markers provide breeding programs with the means of efficiently deploying 

effective combinations of complementary resistance genes. Utilizing multiple tightly linked 

markers to genes that confer broad resistance to many isolates increases the durability of 

cultivars as they lower the threat of emergent races. In previous years, the MSU dry bean 

breeding program utilized the same source of resistance for anthracnose races 7 and 73, Co-12 

(Kelly et al., 2001; Zuiderveen et al., 2016). More recently, KASP markers have been developed 

for the anthracnose resistance gene Co-42, which has been mapped to Pv08, is reported to confer 

resistance to a broad range of C. lindemuthianum races, demonstrating resistance to 33 out of 34 

races of anthracnose from 9 countries in a study by Balardin et al (1997). Developing KASP 

markers from the validated SNPs identified in this study would result in efficient development of 

lines resistant to anthracnose race 109. Like Co-42, Co-5 confers resistance to a broad range of 

races. In the same Balardin et al (1997) study, Co-5 conferred resistance to 31 out of 34 races. 

Identifying breeding lines with Co-5 through MAS rather than inoculation testing would increase 

efficiency of resistance evaluations. This study is important for breeders utilizing Co-5 as their 

source of anthracnose resistance to pyramid the gene into their germplasm. For broad, durable 

resistance in Michigan to races 7, 73, and 109, Co-5 should be used in tandem with Co-42 in 

breeding programs. 

CONCLUSION 

Integrating the Co-5 gene into cultivars has become a present concern due to the 

emergence of a new C. lindemuthianum race in Michigan. A major QTL for anthracnose 

resistance to race 109 was identified on Pv07 within a region located between 6.838810 Mb and 

24.62480 Mb between SNPs S07_6838810 and S07_24624800. The strongest peak of this QTL 
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lies between SNPs S07_9010419 and S07_9484401 at 9.010419 and 9.484401 Mb, respectively. 

Additionally, a second, weaker QTL was identified on Pv07 between SNPs S07_156765 at 

0.156765 Mb and S07_156864 at 0.156864 Mb. The location does not coincide with previous 

literature regarding the location of Co-5; however, this weaker QTL may be linked with the Asp 

gene on Pv07 which controls the thickness of the epicuticular wax layer in common bean seeds. 

This QTL may be useful for developing markers for MAS to select against the Asp gene and 

undesirable shiny seed coat phenotype. The genetic information provided by the SNP markers 

identified in this study flanking the Co-5 locus will be useful for the future development of 

molecular markers necessary for MAS. KASP marker development and validation will confirm 

these markers are linked and co-segregate with the Co-5 gene. The availability of high 

throughput markers will expedite efforts to pyramid multiple anthracnose resistance genes in 

improved germplasm for increased cultivar durability to rapidly evolving pathogen populations 

in Michigan and other bean production regions worldwide.  



  51 

TABLES 

 

Table 2.1. Chi square (X2) for the Co-5 resistance gene and I gene in a segregating F2 population. 

Population 
Locus 

Tested 
Generation 

Expected 

Ratio 

Observed 

Ratio 
X2 Probability 

B19504/TU 

Co-5 

F2 

3:1 

369:77 

14.233 p < 0.0001 

15:1 92.35 p < 0.0001 

13:3 0.646 0.42 

I 3:1 151:50 0.002 0.97 
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Table 2.2. Subset of F2 population with amplification products of gene-based markers.  

Plant ID # SW13 marker I gene 

B19504 + 

TU - 

1 + 

2 + 

3 + 

6 + 

7 + 

8 - 

9 - 

10 + 

11 + 

12 - 

13 - 

14 + 

15 - 

16 + 

17 + 

18 - 

19 + 

20 + 

21 + 

22 + 

23 + 

24 + 

25 + 

26 + 

27 + 

28 + 

29 + 

30 + 

31 + 

32 + 

33 + 

34 + 

35 + 

36 - 

37 + 

38 + 

39 + 

40 + 

41 + 

42 + 

43 + 

44 + 
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Table 2.2 (cont’d) 

45 + 

46 + 

47 + 

48 - 

49 + 

50 + 

51 + 

52 + 

53 - 

54 - 

55 - 

56 - 

57 - 

58 - 

60 - 

61 + 

62 + 

63 - 

64 - 

65 - 

66 - 

67 - 

68 - 

69 - 

70 - 

71 - 

72 + 

73 + 

74 + 

75 + 

76 + 

77 + 

79 + 

80 + 

82 + 

83 + 

84 + 

85 + 

86 + 

87 + 

88 + 

89 - 

90 + 

91 + 

92 + 
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Table 2.2 (cont’d) 

93 + 

94 + 

95 + 

96 + 

97 + 

98 + 

99 + 

100 + 

101 + 

103 + 

104 + 

105 + 

106 + 

107 + 

108 + 

109 + 

110 + 

111 - 

112 + 

113 - 

115 + 

116 + 

117 + 

118 + 

119 + 

120 + 

121 + 

122 + 

124 - 

125 + 

126 + 

127 - 

128 - 

129 + 

130 - 

131 + 

132 + 

133 - 

134 + 

135 + 

136 + 

137 + 

138 + 

139 + 

140 - 
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Table 2.2 (cont’d) 

141 - 

142 + 

143 + 

144 + 

145 + 

146 + 

147 + 

148 + 

149 + 

150 + 

151 + 

152 + 

153 - 

154 + 

155 + 

156 + 

157 - 

158 + 

159 + 

160 + 

161 + 

162 - 

163 + 

164 - 

165 + 

166 + 

167 + 

168 + 

169 + 

170 + 

171 + 

172 + 

173 + 

174 + 

175 + 

176 - 

177 - 

178 + 

179 + 

180 + 

181 + 

182 + 

183 + 

184 + 

185 - 
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Table 2.2 (cont’d) 

186 + 

187 + 

188 - 

189 + 

190 + 

191 - 

193 + 

194 + 

195 - 

196 + 

197 + 

198 - 

199 + 

200 - 

201 + 

202 - 

203 + 

204 + 

205 + 

206 - 

207 - 

208 + 

Band present, individual contains the marker +; Band absent, individual lacks the marker -; 

individual is heterozygous for the marker +/-. 
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Table 2.3. SNP markers, location, and position on chromosome Pv07 used to identify major QTL 

for resistance to anthracnose race 109. 

SNP marker Chromosome 
Physical 

Position (Mb) 

SNP position 

(cM) 
LOD 

S07_157260 7.1 0.157260 13.085124 4.14 

S07_158956 7.1 0.158956 39.051732 5.16 

S07_158957 7.1 0.158957 38.548093 5.16 

S07_6838810 7.2 6.838810 69.4459 17.86 

S07_8535219 7.2 8.535219 81.8984 19.67 

S07_9010419 7.2 9.010419 92.7622 30.93 

S07_9484401 7.2 9.484401 101.6100 26.20 

S07_11886839 7.2 11.886839 131.7475 19.36 

S07_11886840 7.2 11.886840 137.8678 18.27 

S07_12209488 7.2 12.209488 150.4089 13.57 

S03_51830541 3.3 51.830541 8.784066 4.05 

S03_52047723 3.3 52.047723 17.134810 3.75 
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FIGURES 

Figure 2.1. Phenotype of the population parents, B19504 and TU, in response to anthracnose race 

109 inoculation. B19504, the maternal parent, is susceptible to race 109. TU is resistant. 
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Figure 2.2. Phenotypic rating scale of the F2 population response to anthracnose race 109 

inoculation. 1, no symptoms; 2, minor hypersensitive response; 3, pinpoint lesions or small 

lesions, not sunken; 4, large, sunken lesions; 5, plant death by pathogen. 

  

1 2 3 4 5 1 2 3 4 5 
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Figure 2.3. Distribution of anthracnose disease severity across a F2 population segregating for 

disease resistance to race 109. The parental genotypes, B19504 (susceptible) and TU (resistant), 

are counted among the rating 5 and rating 1 categories, respectively. 
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Figure 2.4. Significant QTL for anthracnose resistance identified on chromosome Pv07 in dry 

bean. deltaVAR values represent SNP expression across the F2 population: values of 0 signify 

equivalent expression across all individuals; values of 1 signify highly segregating SNPs in the 

population. 

 

Figure 2.5. Significant QTL for anthracnose resistance identified on chromosome Pv03 in dry 

bean. deltaVAR values represent SNP expression across the F2 population: values of 0 signify 

equivalent expression across all individuals; values of 1 signify highly segregating SNPs in the 

population. 

  



  62 

Figure 2.6. QTL for the anthracnose race 109 resistance gene Co-5. The dashed green line 

represents the significance threshold of 3.94 (p = 0.01). ] 

 

Figure 2.7. Additive and dominance effects for all SNP markers carrying alleles from ‘TU’ on 

Pv07.2.  
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CHAPTER THREE: UTILIZING MACHINE LEARNING TO 

PREDICT SYMBIOTIC NITROGEN FIXATION IN COMMON 

BEAN 

ABSTRACT 

 Nitrogen is a major yield limiting factor in common bean (Phaseolus vulgaris L.). 

Common bean like other legumes can fix atmospheric nitrogen (N) through a symbiotic 

relationship formed with specific Rhizobia species that develop complex nodules on the roots of 

bean plants. However, this trait is rarely utilized by growers or selected for in breeding programs 

due to the costly and time-consuming evaluation techniques. Remote sensing techniques utilizing 

unmanned aerial systems (UAS) is a potential solution to this bottleneck while also providing a 

high-throughput phenotyping method for trait evaluation. In this study, we investigated the use 

of vegetation indices (VIs) and machine learning methods in estimating symbiotic nitrogen 

fixation (SNF). Nitrogen derived from the atmosphere (Ndfa) and yield were used as direct and 

indirect measurements of SNF, respectively. Forty-two black bean breeding lines from the 

Michigan State University Dry Bean Breeding Program were grown and compared under both 

high and low N conditions. A Random Forest model developed to predict Ndfa using yield and 

remote sensing (RS) data resulted in an average accuracy of r = 0.54. A three-year evaluation of 

these trials in Michigan demonstrated how seed yield under unfertilized conditions could be used 

as an indirect indicator of SNF ability. Seven black bean breeding lines and cultivars showed 

consistent yields (Zenith, B16504, B18204, Adams, B19309, B19330 and Black Bear) under low 

N conditions. Zenith, B16504, Adams, B19330, B19309 and Black Bear were additionally found 

to have high Ndfa when evaluated in 2021. Two prediction models for yield developed using 

stepwise general linear modeling (StepwiseGLM) and Bayesian regularized artificial neural 

network (BRNeural Network) were determined to be accurate and reliable (StepwiseGLM r = 
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0.64, range of accuracy = 0.42-0.80; BRNeural Network r = 0.65, range of accuracy = 0.42-

0.80). This model is promising in low nitrogen trials as an early selection tool to identify lines 

with higher SNF ability. 

INTRODUCTION 

The use of synthetic N in agriculture has soared over the last four decades, significantly 

improving yields to meet growing global population and food demands (Mulvaney et al., 2009; 

Han et al., 2015). To maximize yield in common bean, it is recommended that the applied synthetic 

N should be tailored to the amount of N measured in the soil, such that the cumulative total lies 

between 18-27 kg N/a (Warncke et al., 2009). However, this rate is often exceeded by growers 

regardless of soil testing, thus a majority of the added N is unabsorbed by the plants and lost into 

the environment (Turner and Rabalais, 1994; Turner et al., 2008; Asghari and Cavagnaro, 2011; 

Akter et al., 2017). This overuse is an economic issue for growers as the cost of fertilizer has risen 

133% in the last year according to the Texas A&M Agricultural and Food Policy Center (Outlaw 

et al., 2022). Geopolitical events impact fertilizer and natural gas prices which directly impact 

agricultural production costs (Broom, 2023). Increased demands coinciding with limited supply 

have also driven manure prices higher (Rembert, 2022). Legumes like common bean offer the 

possibility of reducing the reliance on N fertilizers by exploiting the plant’s ability to convert 

atmospheric nitrogen (N2) to NH3 through symbiotic nitrogen fixation (SNF).  

However, the nitrogen fixing ability of common bean is low compared to other legumes 

(Hardarson et al., 1993). Yet, several studies have found evidence for genetic variation across bean 

genotypes for nitrogen derived from the atmosphere (Ndfa) (Douxchamps et al., 2010; Farid et al., 

2016; Polania et al., 2016; Akter et al., 2017; Barbosa et al., 2018) suggesting the possibility of 

improving the SNF ability of common bean through selection. Furthermore, quantitative trail loci 
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(QTLs) and associated markers linked to SNF traits (nodule number, biomass, N in seed and shoot, 

and root biomass) have been performed in numerous studies for use in marker assisted breeding 

(L. M. Diaz et al., 2017; Heilig et al., 2016, 2017; Kamfwa et al., 2019; Muñoz-Azcarate et al., 

2017; Ramaekers et al., 2013). For example, a study performed by Heilig et al. (2017) identified 

several QTL clusters associated with SNF traits in the black bean market class on chromosomes 

Pv01, Pv06, and Pv08 which may be potential targets for SNF improvement. Ramaekers et al. 

(2013) found several QTLs linked to various SNF traits using recombinant inbred lines generated 

from the landrace ‘G2333’ as did Kamfwa et al. (2015) with the landrace ‘Solwezi’. Similarly, 

single nucleotide polymorphisms (SNPs) for SNF and its related traits were found in a genome-

wide association study performed on the Andean diversity panel by Kamfwa et al. (2017). Other 

works have also identified significant SNPs for Ndfa and Farid et al. (2017) demonstrated a 13% 

genetic gain in response to selection for SNF in recombinant inbred lines under optimal moisture 

conditions (Kamfwa et al., 2015).  

Identifying parents with high SNF and yield potential has also been the focus of studies 

aiming to improve the trait through breeding. For example, Kamfwa et al., (2015) identified seven 

climbing bean lines from the Andean bean breeding program at CIAT with high amounts of 

atmospheric N fixation. Additionally, Wilker et al. (2019) found five heirloom genotypes that fixed 

more than 60% of their N from the atmosphere in their study in addition to finding that modern 

breeding had not reduced SNF capacity. Commercial lines like Zorro, OAC Inferno, and Red Rider 

were amongst the top N fixers in this study overall. While it is possible commercial lines are able 

to fix a moderate or relatively high amount of N, SNF ability of common bean has been disregarded 

as rhizobia activity downregulates with fertilizer use common to conventional production practices 

(Farid and Navabi, 2015a; Heilig et al., 2017; Wilker et al., 2019; Jiang et al., 2020).  SNF 
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evaluation methods also require specialized equipment and expensive analyses, which can be a 

barrier to breeding programs (Lee & Lee, 2013; Li et al., 2019). 

Each SNF evaluation method varies in their means of quantifying the amount of N fixed 

by rhizobia activity. Methods for evaluating N fixation in field experiments commonly relies on 

the stable isotope 15N and its differentiation from fertilizer-sourced 14N (Giller, 2001). The N-

difference evaluation method utilizes the total amount of N2 fixed over the experiment and can be 

extended to soil-based field experiments with the use of a reference non-fixing plant to account 

for soil N. This method, alongside other soil-based evaluations, heavily relies on the assumption 

that the non-fixing reference plant takes up the same amount of soil N as the test plants. In common 

bean, this assumption is met with the use of the non-nodulating navy bean mutant, R99 (Farid & 

Navabi, 2015; Heilig et al., 2016, 2017; Kamfwa et al., 2017; Wilker et al., 2019). All evaluation 

methods rely on assumptions regarding either N uptake in the reference plants or rhizobia activity, 

which can effect estimates if not met (Giller, 2001). Estimations of SNF can be further 

compounded by environmental factors, as rhizobia activity is dependent on many environmental 

factors outside of genetic, and host-rhizobia interactions (Soumare et al., 2020). Due to these 

responses, Ndfa is best measured and rated as a categorical quantitative trait as Ndfa values can 

greatly vary between environments and conditions (van Kessel & Hartley, 2000). To evaluate a 

breeding line’s SNF ability would thus be reliant on repeated measures across multiple locations 

and years. The current evaluation methods are not conducive for integrating SNF improvement 

into most breeding programs with regularity due to the necessity of high-volume sampling. A high-

throughput phenotyping method could improve the efficiency of trait evaluation and thus allow 

more consideration towards adding SNF in breeding schemes. 
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Unmanned aerial systems (UAS) when equipped with optical sensors can be efficient tools 

for rapid phenotyping in field conditions. The sensors are able to capture high-throughput, high-

resolution data from multiple plots (Shi et al., 2016). Light reflectance ratios, commonly known 

as vegetation indices (VIs), captured by these remote sensing (RS) methods have been used to 

estimate nutrient status and plant parameters of various crops (Song et al., 2018; Sankaran et al., 

2018; Liang et al., 2018; Lu et al., 2019). Furthermore, RS can be cost-effective alternative for 

crop N monitoring using the crop’s leaf chlorophyll content (Li et al., 2010; Saberioon et al., 2014). 

Previous studies have used leaf chlorophyll content to indicate N status in many crops including 

cereals, common bean, and Solanum tuberosum (potato) (Hansen and Schjoerring, 2003; Zheng et 

al., 2018; Boshkovski et al., 2021). Yang et al (2019) was able to accurately estimate aboveground 

N content in wheat using a combination of VIs and wavelet features (R2 = 0.90, RMSE = 0.33) and 

Li et al (2010) demonstrated that one VI was able to accurately estimate leaf N content (R2 = 0.73, 

RMSE = 0.38). Soil Plant Analysis Development, or SPAD meters were used to measure leaf 

chlorophyll content via handheld equipment and by extension N status before the further 

development of RS methods. Monitoring N applications with SPAD meters have been 

demonstrated to be successful in improving N use efficiency and yield in rice and wheat (Zhang 

et al., 2020). Additionally, SPAD meters have been used in SNF experiments as indicators of Ndfa 

(Farid et al., 2016; Kamfwa et al., 2015). Numerous VIs have been found to be correlated to leaf 

chlorophyll content and may prove to be more advantageous due UAS being able to capture more 

data on a whole field scale (Babar et al., 2006). 

Machine learning (ML) methods have also been utilized in agriculture to assist in data-

driven decision making and in predictive modeling. Many of the ML algorithms have been 

deployed to accurately predict yield in different crops including artificial neural networks 
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(Ashapure et al., 2019), K-nearest neighbor (Zhang et al., 2010), gradient boosting (Shendryk et 

al., 2021), and  random forest (Kim and Lee 2016). Outside of yield predictions, ML methods have 

found success in estimating plant N status in tandem with RS due to their ability to handle the 

analysis of the large amount of information captured by the sensors and in improving modeling 

prediction power (Chlingaryan et al., 2018; Moghimi et al., 2020; Qin et al., 2018; P. Shi et al., 

2021). Yao et al (2015) found high prediction accuracies for leaf N content in winter wheat when 

evaluating ML methods against multivariate models as did Zha et al., (2020) for predicting rice N 

nutrition indices (Yao et al., 2015; Zha et al., 2020).  

Considering the complexities of the phenotyping methods currently used to evaluate SNF 

and the lack of trait integration into breeding programs despite its potential for genetic 

improvement, lowering the barrier of evaluation with a simpler, high efficiency tool would allow 

for greater consideration toward adding selection for SNF into breeding programs. The current 

study was designed to evaluate the performance and SNF ability of advanced dry bean breeding 

lines from the Michigan State University Dry Bean Breeding Program and evaluate RS tools and 

ML techniques to develop a prediction tool to quantify SNF. Therefore, the objectives of this 

study were to evaluate the potential of UAS-based multispectral and RGB imaging for 

phenotyping dry bean breeding trials for SNF under low N conditions and to develop an early-

season predictive model for SNF estimation. Additionally, as a secondary objective, the use of 

yield production under low N conditions was evaluated as an indirect indicator of SNF to 

develop a post-harvest predictive model for SNF estimation. 
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MATERIALS AND METHODS 

Field trials 

A set of 6 independent advanced yield trials (AYT) from the Michigan State University 

(MSU) dry bean breeding program were evaluated under two nitrogen conditions across three 

growing seasons (2019-2021) at the Saginaw Valley Research and Extension Center (SVREC) 

near Frankenmuth, Michigan. Each year the AYT was replicated under no added (-N) and added 

(+N) fertilizer conditions. The +N trials grown in 2019, 2020, and 2021, received routine N 

applications of 21, 24, and 29 kg/ha at sowing, respectively, whereas the -N trial received no N 

fertilizer application. Thus, the only source of N available for the -N trial was the residual soil N. 

The experiment design was a 6x7 or 6x6 lattice with four replicates in all years. A total of 42, 36, 

and 42 entries were grown in 2019, 2020, and 2021, respectively. Individual trials consisted of 

MSU black bean breeding lines, check cultivars, and the non-nodulating mutant navy bean R99 

(Park and Buttery, 2006). Field plots (experimental units) consisted of four 6 m rows in length and 

spaced 50 cm apart. All trials were carried out under rainfed conditions utilizing industry standard 

agronomic practices with exception of the differential fertilizer application. At maturity, plots were 

trimmed to 4.6 m and the center two rows of each plot were harvested with a Wintersteiger Classic 

plot combine. Seed yield was recorded and standardized to 18% moisture measured in kilograms 

per acre (kg/ha). In 2019 and 2021 only, four soil samples were taken from randomly selected 

locations within each replication of each trial. The samples were analyzed for nitrate content at the 

Michigan State University Soil and Plant Nutrient Laboratory. 

Remote sensing data collection and preprocessing for 2021 

SPAD measurements were taken using the MultispeqQ v1.0 device produced by 

PhotosynQ (PhotosynQ inc., East Lansing, MI) for the 2021 trials only. Measurements were 



  74 

collected at the R1 stage on the topmost open trifoliate leaf from four randomly selected plants in 

the center two rows of each plot and averaged.  

The UAS RGB (red-green-blue) digital images were collected using a high-resolution 

digital RGB camera mounted onto a DJI Phantom 4 Pro v2 (DJI Technology Co., Ltd.). Images 

were taken twice weekly from initial growth stages (June 16, 2021) to full maturity (August 30, 

2021). The number of days between flights varied if weather conditions prevented flying (rain, 

wind, and cloudiness) and flights altitude using the RGB camera were conducted at an altitude of 

20 m and a speed of 5 m/s. Multispectral flights (MS) were performed with a DJI Matrice 210 v2 

(DJI Technology Co., Ltd.) drone with a Micasense RedEdge-MX camera attached. The 

multispectral camera collects images in the R (centered at 668 nm, bandwidth of 14 nm), G 

(centered at 560 nm, bandwidth of 27 nm), B (centered at 495 nm, 32 nm bandwidth), red edge 

(centered at 717 nm, 12 nm bandwidth), and near infra-red (centered at 842 nm, bandwidth 57 nm) 

bands. The camera also contains a DSL-2 module that measures irradiance and sun ray angle. The 

Micasense RedEdge-MX camera settings were self-regulated according to the ambient light 

determined by the DLS-2 model. Two MS flights were performed over the season on 19 July and 

2 August at an altitude of 25 m and a speed of 6 m/s. RGB and MS images were captured with 

75% end, and side lap with the area covered greater than the trial area. 

 White circular lids were placed randomly throughout the field as ground control points 

(GCPs) and remained for the duration of the growing season to use as reference markers for 

accurate georeferencing of the images. GCPs were surveyed with a Global Navigation Satellite 

System (GNSS) receiver using a real-time kinematic (RTK) correction (Trimble R4 GNSS system, 

Trimble, Sunnyvale, CA, United States). Othomosaic images and reflectance maps were generated 

using the Pix4D Mapper software (Pix4D SA, 2022). Individual experimental plots were identified 
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using polygons shapefiles and soil masking was applied to extract the wavelength channels solely 

from the vegetation using a hue based VI (threshold = 0.7) for both the RGB and MS data. The 

average digital number values of canopy red, blue, and green channels were extracted using the R 

package FIELDimageR (Matias et al., 2020). A total of 80 VIs were calculated for each plot using 

the captured red, green, blue, near infrared, and far-red wavelengths (Henrich et al., 2012). The 

mean, median, and standard deviation were derived from each VI measurement to be used as 

variables for the prediction models.  

Seed Isotope Analysis  

Seed from the breeding lines grown in 2021 under -N were evaluated for SNF as percent 

nitrogen derived from atmosphere (%Ndfa). A 30g seed subsample from each plot was placed in 

an envelope and dried at 60° C for 72h. The seeds were then ground using a Christy-Turner 

Willey Mill to pass through a 1-mm mesh screen and ground samples were then stored at room 

temperature. Approximately 6mg of ground seed were prepared and shipped to the Stable Isotope 

Facility at University of California, Davis, California, USA, for measurements of total N and 15N 

natural abundance. Ndfa in the seed was measured using the N difference method (Boddey & 

Knowles, 1987; Heilig et al., 2017). The following two equations were used for estimating 

%Ndfa using the 15N balance method and N yield respectively. 

%Ndfa= (N yield-fixer - N yield-non-fixer)/N yield-fixer x 100 Eq. 1 

  

N yield= Seed yield (kg/ha) x %N Eq. 2 

Where %Ndfa is the percentage of N in the seed at harvest that is derived from the atmosphere 

through N fixation and %N is the percent of nitrogen in the seed from the respective N-fixer and 

non-fixer (R99). 

https://www.zotero.org/google-docs/?b3AI48
https://www.zotero.org/google-docs/?g9M1PU
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Phenotypic data analysis 

A linear mixed model was fit for individual and combined environment data using the lmer 

function of the lme4 package in the R coding language (Bates et al., 2015). Best linear unbiased 

estimators (BLUEs) of the genotypes grown in the -N trial in 2021 were estimated for %Ndfa and 

yield. BLUEs were obtained for the -N trial in 2021 using the following statistical model:  

Yijl = µ + Gi + Rj + Bl(j) + εijl 

 

Eq. 3 

where Yijl is the phenotypic observation of the ith genotype on the jth replicate in the lth incomplete 

block. The effects in the models are as follows: µ is the grand mean; Gi is the fixed effect of the 

genotype I; R is the random effect of replicate j; B is the random effect of the incomplete block 

within the replication l(j); and 𝜀𝑖𝑗𝑙 is the random residual. Variance components were estimated 

via the restricted maximum likelihood (REML) method (Patterson and Thompson, 1971) using the 

lmer function of the lme4 R package (Bates et al., 2015), and its significance assessed by the 

likelihood ratio test (LRT) using the ranova function of the lmerTest R package (Kuznetsova et 

al., 2017). Repeatability (H2) on an entry-mean basis was estimated for Ndfa and yield for each 

flight date using the following equation: 

𝐻2 = 
𝜎𝐺

2

𝜎𝐺
2+ 

𝜎𝑒
2

𝑟

 
Eq. 4 

where 𝜎𝐺
2 is the genotypic variance, 𝜎𝑒

2 is the error variance, and r is the number of replicate plots.  

Repeatability was used to select flight dates that captured the most genetic variation between 

breeding lines. The accuracies of prediction models utilizing the full season of flight dates were 

compared against prediction models built only from the selected dates. 

 A second model was developed to incorporate flight date in estimating BLUEs of both 

responses to account for variation from flight date timing.   

https://www.zotero.org/google-docs/?PRC4Ad
https://www.zotero.org/google-docs/?PRC4Ad
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Yijlkmn = µ + [G(flight)]ik + [R(flight)]jk + [B(flight)]lk(j) + [P(flight)]mk+ 

[A(flight)]nk+ εijlkmn 

Eq. 5      

where Yijlkmn is the phenotypic observation, %Ndfa and yield, of the ith genotype on the jth replicate 

in the lth incomplete block in the mth pass and nth range on the kth flight date. The effects in the 

models are as follows: µ is the grand mean; Gik is the fixed effect of the genotype i on flight date 

k; R is the random effect of replicate j on flight date k; B is the random effect of the incomplete 

block within the replication l(j) on flight date k; P is the random effect of pass m on flight date k; 

A is the random effect of range n on flight date k and 𝑒𝑖𝑗𝑙𝑘𝑚𝑛 is the random residual.  

Machine Learning Regression 

The VIs from the RGB and MS images estimates from Eq. [3 & 5] were used to assess the 

predictive ability of %Ndfa and yield. Pearson’s correlations for the VI’s were estimated and any 

correlation coefficient above 0.95 were removed to avoid overfitting and multicollinearity issues, 

which can lead to variance inflation factors among predictors (James et al., 2021). This filtering in 

addition to filtering out VIs missing more than 10% of data left 76 VIs for analysis. Several 

prediction models were fit using multiple machine learning methods including random forest 

(RForest) (Breiman, 2001), extreme gradient boosting (XGBoosting) (Natekin and Knoll, 2013; 

Chen and Guestrin, 2016), K-nearest neighbor (KNNeighbors) (Altman, 1992), Bayesian 

regularized artificial neural network (BRNeural Network) (Burden and Winkler, 2009), partial 

least squares (PLSR) (Tobias, 1995), and general linear model stepwise regression 

(StepwiseGLM). All modeling methods were implemented using the caret package in R (Kuhn, 

2008). The hyperparameter in the RForest model mtry (the number of variables randomly selected 

to be sampled at each tree split) was set as mtry = npredictors/3. Parameters for XGBoosting were run 

using 100 iterations, a learning rate of 0.3, a subsampling rate of 0.75, gamma = 6, and package 

https://www.zotero.org/google-docs/?EUhBDc
https://www.zotero.org/google-docs/?LTpRq8
https://www.zotero.org/google-docs/?LTpRq8
https://www.zotero.org/google-docs/?e9mmDC
https://www.zotero.org/google-docs/?B93L8O
https://www.zotero.org/google-docs/?E3IyLR
https://www.zotero.org/google-docs/?U3hXCx
https://www.zotero.org/google-docs/?U3hXCx
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defaults for the remaining parameters. Default parameters were used for KNNeighbors to 

determine the optimal k-value. The required specification for neuron number in BRNeural 

Network was set to a constant range of 1 through 5. Default parameters were utilized to find the 

optimal number of components for the PLSR prediction models.  

Variable selection was performed to control for models that did not include variable 

selection in their protocols and to identify informative VIs. Selection was performed using Akaike 

information criterion (AIC) as selection criteria. Two models were developed for predicting 

%Ndfa: (1) %Ndfa = VIs + SPAD; (2) %Ndfa = VIs + SPAD + Yield (Figure 2.1). Model 1 is 

applicable during the season, before harvest. Model 2 is only applicable post-harvest. One model 

was developed for predicting yield: Yield = VIs + SPAD (Figure 2.2). 

 The training and testing populations were created using an 80/20 split of the dataset with 

the split repeated 500 times to assess model reliability. A k-fold (k = 10) cross-validation was 

performed for each model using 10 repeats. Models were evaluated for selection using root mean 

square error (RMSE), the Person’s correlation between the predicted and actual values (r), and 

mean absolute error (MAE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
𝛴(𝑦 − �̂�)2          Eq. 6 

𝑀𝐴𝐸 =
𝛴|𝑦−�̂�|

𝑛
           Eq. 7 

where n is the sample size, and y and �̂� are the observed and predicted values in the model, 

respectively.  
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RESULTS 

Multi-Year Yield Analysis 

Yield response varied by year and by treatment across three years (Figure 3.3). Only the 

2019 and 2021 trials for both treatments were significantly different (P < 0.05), with the fertilized 

plots producing higher yields. Overall, the highest yield was recorded in the 2021 added N trials 

with a mean of 1667.4 kg/ha (CV = 9.2%) followed by 2020 with an average of 1555.3 kg/ha (CV 

= 11.0%), and 2019 with 1102.1 kg/ha (CV = 9.0%), respectively (Table 3.1). The highest yield 

in the unfertilized trials was observed in 2020 with a mean of 1534.8 kg/ha (CV = 11.2%) followed 

by 2021 and 2019 with 1457.1 kg/ha (CV = 10.3%) and 979.4 kg/ha (CV = 13.2%), respectively. 

Yields in 2020 did not significantly differ between -N and N trials (p = 0.62).  

Repeatability of Spectral Traits Across Plant Development  

Repeatability for spectral trials across all flight dates ranged from 0.47– 0.86 (Figure 

3.4). The three dates selected by having the highest mean repeatability, Flight 3, Flight 8, and 

Flight 9, represent the V8 through R3 stages of common bean development, from first flower 

development to early pod development. Repeatability showed a consistent pattern across the 

season, matching the plant’s developmental stages. From germination, repeatability increased 

significantly from 0.71 to 0.86 at R2 before falling at the start of the R3 stage (H2 = 0.76). 

Repeatability increased again through R3 and decreased at R4 (H2 = 0.63) and R5 (H2 = 0.51).   

Vegetation Index Correlations 

Overall, the correlations were moderate to weak (r = 0.01 - 0.60) between the variables and 

Ndfa (Table 3.2). The variable with the strongest Pearson’s correlations to Ndfa was yield (r = 

0.57). Moderate correlations were also present between the calculated BLUEs for both Ndfa and 
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yield, with the median of the green soil adjusted vegetation index (GSAVI) (r = -0.12 – 0.38) 

having the strongest correlation out of all the VIs. Many MS and RGB VI bands did show 

significant strong correlations with each other in the positive and negative direction, and MS VIs 

tended to have stronger correlations to the response variables overall. SPAD had weak correlations 

with yield and Ndfa BLUEs (r = 0.04 - 0.19) but showed moderate correlations with a number of 

VIs (r = -0.47 - 0.57). 

Nitrogen Derived from Atmosphere Prediction under -N  

Black bean genotypes evaluated in 2021 varied for %Ndfa (α = 0.05) (Table 3.3). The 

breeding line B20602 had the highest %Ndfa and B20632 had the lowest average %Ndfa. Figure 

3.5 shows the correlation between the predicted and actual %Ndfa for each model using BLUEs 

from both equations (Field Design and Flight Date Variation) and predictive models (Model 1 and 

Model 2). In general, the prediction accuracies of all models ranged between -0.20 – 0.71. Both 

BRNeural Network and StepwiseGLM models had the highest average prediction accuracies of 

0.25 and 0.24, respectively for the Field Design BLUEs, Model 1. The RMSE for all prediction 

models ranged between 0.57 and 1.17 and MAE for the prediction models ranged between 0.45 

and 0.88 (Figure 3.6 and 3.7). Between BRNeural Network and StepwiseGLM, BRNeural 

Network had the lowest average RMSE of 0.83. Flight date selection did not improve the 

prediction accuracies of the VIs + SPAD model. Overall prediction accuracies ranged between -

0.18 – 0.40 for Flight Date Variation BLUES, Model 1 (Figure 3.5). StepwiseGLM and BRNeural 

Network had the highest average prediction accuracies of 0.15 and 0.14, respectively. The RMSE 

of all models ranged between 0.57 – 1.02 and MAE of all models ranged between 0.44 – 0.78. 

BRNeural Network had the lowest average RMSE and MAE of 0.77 and 0.60, respectively. 
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The inclusion of yield greatly increased the ML models’ reliability and accuracy (Figure 

3.5). The average accuracy of the RForest model when utilizing all flights increased to 0.43 and 

saw a decrease in RMSE and MAE from 0.87 and 0.68 to 0.79 and 0.62, respectively (Figure 3.6, 

3.7). Yield also improved the accuracies of all models utilizing flight date selection by between 5 

– 41.1%. The average correlation between the predicted and actual values of the RForest model 

increased to 0.54. The RMSE and MAE of all models remained low, with an average RMSE of 

0.67 and average MAE of 0.53 for the RForest model. 

The prediction accuracy of models using BLUEs from the flight date dependent Flight Date 

Variation BLUEs in the VIs + SPAD model was greater in StepwiseGLM compared to the other 

models. This model was also greater than the accuracies of Field Design BLUEs VIs + SPAD 

models with an average accuracy of 0.28. RMSE and MAE remained low across all models, 

however StepwiseGLM had neither the lowest RMSE or MAE. Using only the flight dates with 

the highest heritability in the Flight Date Variation BLUEs VIs + SPAD model lowered the 

prediction accuracies overall. Under these conditions, PSLR had the highest average accuracy of 

0.15 with an RMSE of 0.63 and MAE of 0.47. 

 The inclusion of yield did not significantly affect the prediction accuracies in Flight Date 

Variation BLUEs compared to the results of Field Design BLUEs. StepwiseGLM and BRNeural 

Network were the most accurate models with an average correlation of 0.30.  Utilizing date 

selection did result in greater prediction accuracies, especially in the RForest model. RForest had 

the greatest average accuracy of 0.50 and an RMSE of 0.57 and MAE of 0.43. 
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Yield Prediction  

Significant differences (Tukey HSD, α = 0.050) were present between the yield means of 

the genotypes (Table 3.4). Genotypic variation was a significant source of variation in yield, with 

a difference of 733.9 kg/ha between the highest and lowest yield producers. 

All Field Design BLUEs ML models showed moderate accuracies (Figure 3.8). BRNeural 

Network and StepwiseGLM had the highest average accuracies of 0.65 and 0.64, respectively. 

Between the two, BRNeural Network had the lowest RMSE and MAE (RMSE = 114.8; MAE = 

91.4) (Figure 3.9, 3.10). These models also had a narrow range of variation (r = 0.42 - 0.80). 

Implementing flight date selection in the VI + SPAD model did not improve model accuracies, 

RMSE, and MAE. BRNeural Network remained the model with the highest average prediction 

accuracy of 0.47 with the second lowest RMSE of 131.9 and lowest MAE of 105.6. 

The average prediction accuracies for the BLUEs from the Flight Date Variation model 

were much lower compared to the previous models. StepwiseGLM had the highest average 

accuracy of 0.39 while BRNeural Network had the lowest with 0.11. Additionally, the variation 

between accuracies across the resampling was wider with a range of 0.08 - 0.59. The RMSE of 

StepwiseGLM remained the lowest out of all six models (RMSE = 140.3), but RForest obtained 

the lowest MAE of 111.5. As with the previous implementation of flight date selection, the 

prediction accuracies and model metrics were not improved. StepwiseGLM and PLSR had the 

highest average accuracies of 0.28 with StepwiseGLM having the lowest RMSE and MAE of 

136.1 and 114.1, respectively. 
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DISCUSSION 

SNF Prediction   

 SNF is an important, but underutilized trait in dry bean breeding. Improving the fixation 

ability in dry bean would produce cultivars less reliant on N fertilizer for yield production. 

Evaluating SNF relies on measuring Ndfa, however it is a difficult trait to evaluate not only due to 

the cost and equipment specialization required, but also due to its dependance on environmental 

conditions (Beebe, 2012; Fageria et al., 2013; Farid and Navabi, 2015; Wilker et al., 2020). To 

breed for greater SNF ability by selecting for high Ndfa, repeated evaluations of Ndfa are required 

not only to identify parents, but to evaluate progeny across multiple environments. Remote sensing 

in combination with machine learning methods have the potential for use in agriculture and 

breeding programs through fast, reliable crop assessment.  

Strong correlations between VIs and nitrogen accumulation and associated traits are 

important for accurate modeling. Yield and chlorophyll content measured by PhotosynQ meters 

were found in this study to be the most important indirect variables for estimating seed Ndfa, 

however correlations between the VIs used in this study and Ndfa were, in some cases, moderate 

overall. The correlation analysis between Ndfa and the VIs were much lower as compared to other 

studies utilizing spectral imagery to evaluate nitrogen content in crops. (Lee and Lee, 2013; Li et 

al., 2019; Ge et al., 2021; Shi et al., 2021; Han et al., 2022; Fu et al., 2022). This suggests that 

while VIs can evaluate nitrogen content, they are unable to specifically distinguish N15. Thus, 

models relying solely on VIs were neither accurate nor reliable. Despite the lack of relationship 

with Ndfa, the VIs captured changes in reflectance in the canopy over the growing season. This 

supports previous studies utilizing spectral imaging captured from wheat and maize in a single 

season (Benincasa et al., 2018; Wittwer and van der Heijden, 2020; Han et al., 2022; Fu et al., 

https://www.zotero.org/google-docs/?XQOY48
https://www.zotero.org/google-docs/?OkcA4Q
https://www.zotero.org/google-docs/?OkcA4Q
https://www.zotero.org/google-docs/?y466mL
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2022). These studies associated this variation with changing leaf nitrogen content as nitrogen from 

the plant is sequestered into the seed as it develops. This study used seed as opposed to shoot or 

leaf tissue as a previous study by Polania et al 2016 suggested that seed would be a valid substitute 

for measuring Ndfa as the researchers found a strong correlation (r = 0.83) between the Ndfa 

measured from shoot tissue and Ndfa measured from dry seed. Using seed Ndfa is valuable from 

a breeding perspective as it is a measure indicating genotypes that are better at partitioning and 

remobilizing N15 to the seed (Kamfwa et al., 2015). 

RForest regression predicting BLUEs from the Field Design under the VI + SPAD + Yield 

model had the highest average accuracy (r = 0.54). RForest models have also been proven to be 

accurate in previous studies estimating leaf N content (Näsi et al., 2018; Ge et al., 2021; Shi et al., 

2021). RForest models utilize bootstrap aggregation and random variable selection to reduce 

overfitting, which can lead to great accuracy regardless of data splitting (Breiman, 2001). In this 

model, yield proved to be an important variable for Ndfa prediction, having the greatest correlation 

out of all the variables. This is in line with previous findings where seed yield was significantly 

and positively associated with SNF ability (Farid and Navabi, 2015b; Barbosa et al., 2018). Its 

inclusion improved the models' accuracy and RMSE. This suggests yield production under 

unfertilized field conditions is an indicator of the plant’s ability to fix atmospheric nitrogen. SPAD 

measurements were an important predictor for Ndfa, especially when yield was not involved with 

model development. Due to its strong relationship with yield and Ndfa, leaf chlorophyll content 

may be useable as an indirect indicator of those traits (Ramaekers et al., 2013; Jaramillo et al., 

2013; Kamfwa et al., 2015; Reinprecht et al., 2020; Vollmann et al., 2022). These results suggest 

this proposed model has applicable use for estimating Ndfa in dry beans grown without fertilizer.  

https://www.zotero.org/google-docs/?y466mL
https://www.zotero.org/google-docs/?pMJNtb
https://www.zotero.org/google-docs/?iGBSrB
https://www.zotero.org/google-docs/?iGBSrB
https://www.zotero.org/google-docs/?utxvQe
https://www.zotero.org/google-docs/?Lz5caw
https://www.zotero.org/google-docs/?Lz5caw
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In addition to yield, the Field Design BLUEs, Model 2 RForest model relied on six VIs: 

the quotient of the green band divided by the red band, the difference between the red and blue 

bands, the combination 2 index (COM2) (Guerrero et al., 2012), the triangular green index (TGI), 

and the difference between the red green ratio (Gamon & Surfus, 1999) and the green blue ratio 

indices (Sellaro et al., 2010). The TGI has previously been used to estimate chlorophyll content 

(Hunt Jr. et al., 2011). Interestingly, this VI was not strongly correlated with SPAD (r = -0.31). 

This is in contrast to previous comparisons between TGI and chlorophyll meter measurements 

(Hunt et al., 2013). This discrepancy could be due to the development period chosen for taking the 

SPAD measurement not being equivalent to the three dates TGI was evaluated from. COM2, green 

blue ratio, and red green ratio indices have previously been used to evaluate desertification and the 

classification of vegetation coverage (Xu et al., 2022). While chlorophyll content has clear 

indications towards N content present, canopy coverage, and by extension, plant biomass, is 

dependent on the availability of N have been previously used as SNF-related traits (Heilig et al., 

2016, 2017).  

The VIs taken from the flight dates with the highest repeatability only improved accuracy 

when yield was included as a variable. The timing of image and sensory data capture has been 

reported to influence prediction accuracy in previous studies. Nevavuori et al. (2020) noted the 

accuracy in predicting yields of wheat, barley, and oats was marginally higher when using a 

combination of data collected from 4 weeks of flights as opposed to the complete 5 weeks. Crops 

like maize have periods of exponential growth wherein the timing of the flight dates is crucial as 

noted in Anderson II et al. (2019). They also found that correlations between plant height and yield 

increased over time, suggesting the use of late season flights to predict yield. Late season 

measurements for predicting vineyard yields were also found to be more accurate in Ballesteros et 
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al., (2020). While this study supports the importance of flight timing, we found that flight dates 

between flowering and pod filling captured the greatest variation between genotypes. This could 

be due to a possible relationship between N in the canopy during these periods and Ndfa in the 

seed. As 15N is prioritized for the seed during pod development, the Ndfa in the canopy during pre-

pod development stages may be informative for seed Ndfa. 

Yield Prediction  

 UAS imagery has demonstrated that VIs can accurately predict yield across a wide range 

of crops for the purposes of efficient and nondestructive management and monitoring (Báez-

González et al., 2002; Lobell et al., 2007). We investigated whether VIs could accurately predict 

yield under low N conditions in this study as an efficient means of indirectly selecting for SNF. 

Valid estimations of SNF ability rely on a lack of N added to the system due to the sensitivity of 

rhizobia activity to N fertilizer (Heilig et al., 2017; Wilker et al., 2019). Grain yield as an indirect 

indicator of SNF was established in previous research and is an important and strongly correlated 

variable in this study. SPAD proved to be important in the early prediction models, suggesting that 

it may be useful as a measure in the simultaneous selection for high fixation ability and yield. In 

contrast to the Ndfa models, relying on only VIs and SPAD for predicting yield provided both 

accurate and reliable predictions. The models in this study utilized seventeen VIs in addition to 

SPAD. Six of which were linear equations using the red, green, blue, and near-infrared bands. Like 

the combination 2 index, the hue index has previously been used to distinguish vegetation from 

soil (Meyer & Neto, 2008). The brightness index and the shape index is also used for soil 

measurements (Bakacsy et al., 2023; Schmidt & Karnieli, 2001). The normalized difference red-

edge (NDRE), difference (DVI), chlorophyll green (CIgreen) and chlorophyll red-edge (CIred-edge) 

vegetation indices have all been used to quantify chlorophyll content, and vegetation density in 

https://www.zotero.org/google-docs/?MBySzD
https://www.zotero.org/google-docs/?MBySzD
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previous studies (Ahamed et al., 2011; Gitelson et al., 2003, 2005; Thompson et al., 2019; Tucker, 

1979). Lastly, the blue band and two modified VIs were also utilized in model development: a 

modified brightness index and a modified red chromatic coordinate. The latter of which is used to 

distinguish vegetation from non-vegetative material (Woebbecke et al., 1995). These VIs indicate 

the relevance for chlorophyll content, vegetation density, and canopy coverage towards predicting 

yield. 

VIs using only RGB bands have been shown to be useful in accurately predicting yields of 

numerous crops. For instance, RGB bands were able to accurately predict wheat yield as in Zeng 

et al (2021) (R2 = 0.55 - 0.68) and maize yield in Gracia-Romero et al. (2017) (R2 = 0.66) and 

Buchaillot et al. (2019) (R2 = 0.60). There is also a precedent for the use of only multispectral 

image-derived VIs and in combination with RGB VIs to accurately estimate yield. Ballester et al 

(2017) utilized multispectral VIs associated with biomass and plant to accurately predict cotton 

yield (R2 = 0.64) and Zhou et al (2017) (R2 = 0.71 - 0.75) found comparable results in predicting 

rice grain yield using MS and digital imaging. This study utilized a combination of RGB and 

multispectral VIs. Combining the sensor data can lead to greater accuracies as near-infrared and 

red edge bands have been noted to be efficient in status monitoring (Zheng et al., 2018; Herzig et 

al., 2021; Bascon et al., 2022).   

Yield, like SNF, is a complex trait dependent on both genetic and environmental factors. 

Combining VIs with other metrics, including physical plant measurements and climate data, may 

also improve predictive modeling as shown in Lu et al. (2019),  Zeng et al. (2021) and Han et al. 

(2020). It is notable that the stepwise general linear model performed just as well as the Bayesian 

regularized artificial neural network model. BRNeural Network are robust models that are 

designed to be difficult to overtrain and overfit through the combination of conditional probability 

https://www.zotero.org/google-docs/?o3V1gQ
https://www.zotero.org/google-docs/?o3V1gQ
https://www.zotero.org/google-docs/?o3V1gQ
https://www.zotero.org/google-docs/?dLkh4C
https://www.zotero.org/google-docs/?dLkh4C
https://www.zotero.org/google-docs/?XiIC3L
https://www.zotero.org/google-docs/?yqKu9B
https://www.zotero.org/google-docs/?yqKu9B
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and weight regularization, but like other artificial neural networks they can be difficult to interpret 

how the variables affect model activity (Burden & Winkler, 2009). Unlike with predicting Ndfa, 

flight date selection negatively impacted the performance of the machine learning models under 

both the alpha-lattice and nested flight date designs. This may suggest that while specific periods 

during plant development are more important in evaluating Ndfa, yield in dry bean, a relatively 

short season crop, may not have developmental stages that are more informative in making 

predictions. Thus, accurately predicting yield may be more reliant on season-long measurements. 

Further repetitions of the experiment are required to parse the applicability of both models under 

varying environmental conditions. 

Yield as an Indicator of SNF Under Low N  

 The multi-year study shows the significance of genotype and environment regarding yield 

production under low N conditions (Table 2.1). The trials that received N fertilizer showed an 

advantage in yield overall except in 2020 where added N had no significant effect. These findings 

agree with previous studies conducted by Farid and Navabi (2015),  Farid et al. (2016), Heilig et 

al. (2016), and Heilig et al. (2017) which investigated genetic variation and environmental effects 

on N fixation and subsequent seed yield. 

 Improving SNF ability by selecting genotypes that perform well under low N, or SNF 

dependent, and N-dependent conditions has been demonstrated by Farid et al. (2016) and Fageria 

et al. (2013). Using yield as an indirect indicator under low N for SNF would allow for 

improvement of fixation ability without disregarding yield as a target trait. The equivalent yield 

performance in 2020 between the two trials is possibly indicative of environmental conditions 

where the SNF ability of bean genotypes was equal to genotypes grown with standard fertilizer 

application. 29 of the 36 lines planted in 2020 are repeated lines from either 2019 or 2021, most 

https://www.zotero.org/google-docs/?l7r3Fs
https://www.zotero.org/google-docs/?4ARgrF
https://www.zotero.org/google-docs/?4ARgrF
https://www.zotero.org/google-docs/?Y1HgaR
https://www.zotero.org/google-docs/?7BlSgh
https://www.zotero.org/google-docs/?7BlSgh
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of which responded to fertilizer application in those environments. Seven genotypes, Zenith, 

B16504, B18204, Adams, B19309, B19330, and Black Bear show consistent, high yield 

production under no N and added N across repeated years. The four lines grown in the 2021 trial 

from this selection, Zenith, B16504, B19309, and B19330, showed high %Ndfa when evaluated 

as well. Adams and the maternal parent of Black Bear, Jaguar, were developed in the MSU Dry 

Bean Breeding program under conventional breeding trial conditions. Zenith was selected under 

organic conditions during variety development. Zenith, Adams, and Black Bear share lineage with 

Jaguar, which may have influenced their SNF abilities. Additionally, Zenith’s paternal parent, 

Zorro was tested both in this study and in Wilker et al (2019). While not among the top fixers in 

this study, Zorro was found to be one of the overall top fixers of the conventionally bred lines in 

the Wilker (2019) study. Ndfa is a moderately heritable trait that has been demonstrated to be 

conserved without purposeful selection (Farid et al., 2017). The genotypes indicated in this study 

may be good parental candidates for improving SNF ability indirectly by breeding for improved 

yield under low N conditions. 

Limitations 

VIs proved useful in leaf nitrogen estimation in previous studies. However, leaf canopy N 

content may be a poor direct indicator of Ndfa because the N captured in the spectral data is neither 

the same as nor proportional to the 15N analyzed from the seed. As opposed to N from the soil or 

fertilizer, atmospheric nitrogen is generally prioritized for grain storage rather than for depositing 

in the soil or remaining in the plant (Westermann et al., 1985; Fustec et al., 2010). The models 

relying on VIs alone were neither accurate nor reliable and this could be due to the weak 

relationship between leaf nitrogen content and seed Ndfa. Prediction accuracy of Ndfa using VIs 

could be strengthened by exploring the relationship between leaf nitrogen content and seed Ndfa 

https://www.zotero.org/google-docs/?uzJgSb
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in future studies. The models predicting yield did fare better in prediction accuracy and reliability 

despite the relationship between the VIs and yield being as weak as with seed Ndfa.  

The best performing Ndfa model relies on the inclusion of yield for predicting Ndfa. 

Utilizing this model requires RS imagery taken from plants grown under low-N conditions where 

no fertilizer is added. Adding fertilizer decreases nitrogen fixation and any predictions made with 

fertilized plants may not accurately reflect their fixation abilities (Reinprecht et al., 2020). While 

the model can be utilized as a suggestive indication of fixation ability, the model should be used 

in multi-year, multi-location trials to evaluate its efficacy under varying environments before fully 

deploying it in a breeding program. The same can be said for the yield models. This study has 

demonstrated potential application of indirectly selecting for SNF using yield and has trained an 

accurate and reliable yield prediction model. However, the model was also developed from data 

collected under low-N conditions. Additionally, both models’ accuracy may vary between years 

and locations because soil characteristics and environmental conditions influence SNF, and it may 

be beneficial to use control plots to calibrate the model’s precision (Thilakarathna and Raizada, 

2018). 

Applications in Plant Breeding 

 Rising fertilizer costs and global food demand have driven increased efforts in developing 

crops with high yield production and lower input requirements. The ability in common bean to fix 

enhanced levels of atmospheric nitrogen and decrease reliance on applied fertilizer presents the 

opportunity to meet this aim. Dry bean has been characterized as a poor nitrogen fixer relative to 

other legumes (Hardarson et al., 1993), however previous studies have found moderate to high 

fixation ability in commercial cultivars, elite breeding lines in the MSU Dry Bean Breeding 

program, and among the Andean Diversity panel (avg %Ndfa = 12.4 - 63.3) (Kamfwa et al., 2015; 

https://www.zotero.org/google-docs/?hE4O7i
https://www.zotero.org/google-docs/?lY3lCE
https://www.zotero.org/google-docs/?lY3lCE
https://www.zotero.org/google-docs/?V4chsd
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Heilig et al., 2017). This genetic variability can be leveraged for improving fixation ability through 

breeding, however, the time and cost of measuring this trait is a barrier to improved variety 

development due to the frequency of measurements required to evaluate potential parents and 

progeny. UAS imagery offers a cost-effective, quick, and efficient method of estimating crop 

metrics using VIs and has been shown to adequately capture nitrogen content in crops.  

Using prediction models as a selection tool in a breeding program requires both accuracy 

and reliability. Additionally, an ideal model would be applied early in the season to identify parents 

that could be rapidly advanced into a breeding pipeline. The BRNeural Network and 

StepwiseGLM yield models described in this study can be applied pre-harvest. Using either of 

these models would negate the time and cost of preparing and submitting plant material samples 

for N15 analysis, with results from the prediction model available before harvest.  

CONCLUSION 

 This study explored the potential of UAS imaging in estimating Ndfa and seed yield. The 

goal was to develop an accurate and reliable predictive model to deploy in breeding programs to 

develop dry bean lines that require less fertilizer to produce yields comparable to conventional 

commercial practices. We found that Ndfa measured in the seed could not be estimated reliably or 

accurately. This is inferred to be due to the lack of distinction between soil-derived N and SNF 

derived N in the canopy captured by the imaging. The random forest model developed with the 

addition of yield to RS data showed improvement in accuracy and reliability, providing the 

groundwork for future research in the application of VIs as indirect measurements of Ndfa. Further 

validation is required for this model. 

We also investigated the use of yield as an indirect measure of SNF. The three-year N study 

showed the positive effect of increasing N applications on yield and revealed genotypes that 

https://www.zotero.org/google-docs/?V4chsd
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produce comparable yields under -N fertilization over repeated years. Seven breeding lines and 

cultivars (Zenith, B18204, Adams, B16504, B19309, B19330 and Black Bear) were identified as 

having consistent yields under low N conditions. These lines show promise as potential parents in 

breeding programs that aim to increase yield potential and SNF ability. In addition to this, we were 

able to develop two accurate and reliable yield prediction models using StepwiseGLM and 

BRNeural Network and only using RS data. Overall, using remote sensing and machine learning 

show promise to develop prediction tools to improve SNF in common bean.        
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TABLES 

 

Table 3.1. Seed-yield production for the multi-year nitrogen trial. N- no nitrogen trial; N+ added 

nitrogen trial; CV coefficient of variation. 

Year Number of entries Trial Mean (kg/acre) CV P-value 

2019 42 
N+ 1102.1 0.09 

< 0.0001 
N- 979.4 0.13 

2020 36 
N+ 1555.3 0.11 

0.62 
N- 1534.8 0.11 

2021 42 
N+ 1667.4 0.09 

< 0.0001 
N- 1457.14 0.1 
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Table 3.2. Pearson’s correlation plot of vegetation indices, SPAD, yield, and BLUEs for %Ndfa 

and yield calculated from the field design and flight date variation model. 

Vegetation Indices SPAD Yield 

Yield 

BLUEs 

Field 

Yield 

BLUEs 

Flight 

Ndfa 

BLUEs 

Field 

Ndfa 

BLUEs 

Flight 

B std RGB -0.38** -0.21 -0.76*** -0.89*** -0.71*** -0.30* 

CI std RGB -0.44*** -0.01 -0.56*** -0.80*** -0.59*** -0.36** 

GdivB median RGB -0.73*** 0.01 -0.33* -0.66*** -0.44*** -0.32* 

GdivR mean RGB -0.61*** 0.39** -0.08 -0.48*** -0.25 -0.29* 

GmnR std RGB 0.71*** -0.07 0.08 0.33* 0.09 -0.06 

HUE mean RGB 0.76*** -0.39** 0.05 0.43*** 0.19 0.09 

MRCCbyAlper mean 

RGB 
-0.39** -0.46*** -0.86*** -0.88*** -0.75*** -0.18 

MRCCbyAlper std 

RGB 
-0.27* -0.56*** -0.91*** -0.88*** -0.79*** -0.25 

MyIndexi std RGB -0.25 -0.40** -0.82*** -0.86*** -0.75*** -0.37** 

RCC mean RGB 0.14 -0.85*** -0.70*** -0.38** -0.46*** 0.01 

RmnB std RGB -0.49*** -0.40** -0.78*** -0.88*** -0.74*** -0.29* 

TGI mean RGB -0.61*** -0.1 -0.65*** -0.84*** -0.64*** -0.14 

B median MS 0.55*** -0.38** -0.38** 0.05 -0.08 0.38** 

B std MS 0.63*** -0.14 0.31* 0.65*** 0.40** 0.30* 

RE median MS -0.67*** -0.09 -0.52*** -0.78*** -0.57*** -0.27* 

RE std MS -0.61*** -0.57*** -0.42** -0.57*** -0.63*** -0.49*** 

NIR std MS 0.53*** 0.03 0.58*** 0.77*** 0.51*** 0.13 

CCCI std MS -0.68*** -0.23 -0.54*** -0.77*** -0.65*** -0.35** 

CVI std MS 0.53*** 0.15 0.65*** 0.82*** 0.59*** 0.19 

redEdgeNDVI median 

MS 
-0.72*** 0.19 -0.17 -0.55*** -0.34** -0.32* 

GRNDVI std MS 0.62*** -0.36** 0.17 0.53*** 0.26* 0.17 

CIrededge mean MS 0.54*** 0.34** 0.72*** 0.85*** 0.67*** 0.25 

CIrededge std MS 0.41** 0.27* 0.73*** 0.83*** 0.58*** 0.17 

GSAVI median MS 0.26* 0.59*** 0.86*** 0.81*** 0.69*** 0.16 

NormG std MS -0.55*** -0.54*** -0.76*** -0.84*** -0.76*** -0.30* 

DVI std MS 0.13 0.26* 0.79*** 0.73*** 0.53*** -0.05 

NDRE std MS -0.62*** -0.55*** -0.64*** -0.74*** -0.77*** -0.37** 

BCC std MS 0.41** 0.04 0.60*** 0.75*** 0.48*** 0.1 

BdivG std MS 0.63*** -0.03 0.47*** 0.74*** 0.50*** 0.21 

BI std MS 0.02 -0.91*** -0.72*** -0.42** -0.58*** -0.03 

BIM std MS 0.55*** -0.42*** 0.12 0.49*** 0.19 0.19 

CI mean MS 0.35** -0.84*** -0.48*** -0.11 -0.25 0.01 

CI std MS -0.75*** -0.11 -0.24 -0.56*** -0.48*** -0.42*** 

EXR std MS 0.35** -0.80*** -0.25 0.09 -0.17 -0.06 

GCC std MS 0.56*** -0.26* 0.36** 0.63*** 0.36** 0.08 

GmnR std MS -0.65*** -0.30* -0.60*** -0.81*** -0.66*** -0.35** 

I median MS -0.51*** -0.29* -0.74*** -0.86*** -0.67*** -0.18 

IF std MS 0.65*** -0.05 0.44*** 0.72*** 0.48*** 0.21 
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Table 3.2 Cont’d 

  

MSRGR std MS -0.19 -0.74*** -0.18 -0.17 -0.35** -0.48*** 

RdiB std MS -0.55*** -0.65*** -0.60*** -0.70*** -0.68*** -0.42*** 

RmnB std MS 0.62*** -0.40** 0.11 0.48*** 0.23 0.2 

TGI std MS -0.64*** -0.30* -0.65*** -0.83*** -0.68*** -0.29* 

VEG std MS -0.68*** -0.34** -0.48*** -0.73*** -0.61*** -0.46*** 

SPAD 1 0.11 0.02 0.35** 0.24 0.16 

Yield 0.11 1 0.50*** 0.28* 0.47*** 0.15 

Yield BLUEs Field 0.02 0.50*** 1 0.81*** 0.88*** 0.11 

Yield BLUEs Flight 0.35** 0.28* 0.81*** 1 0.71*** 0.52*** 

Ndfa BLUEs Field 0.24 0.47*** 0.88*** 0.71*** 1 0.08 

Ndfa BLUEs Flight 0.16 0.15 0.11 0.52*** 0.08 1 



  96 

Table 3.3. Tukey’s honest significant difference of percent nitrogen derived from the atmosphere 

(%Ndfa) of 42 black bean genotypes grown in 2021. R99 is the reference plant. 

Line Letter %Ndfa BLUEs 

B20602 A 97.32 

B20591 AB 97.19 

B19345 ABC 96.89 

B19344 ABCD 96.74 

B20527 ABCDE 96.70 

B20579 ABCDEF 96.53 

B20549 ABCDEF 96.50 

B20617 ABCDEFG 96.48 

B20532 BCDEFGH 96.43 

Zenith BCDEFGHI 96.36 

B20597 BCDEFGHI 96.35 

B20642 CDEFGHI 96.31 

B19330 CDEFGHIJ 96.30 

B19309 CDEFGHIJ 96.26 

B20620 CDEFGHIJ 96.25 

B16504 CDEFGHIJ 96.21 

B20536 CDEFGHIJK 96.16 

B20627 CDEFGHIJKL 96.12 

B20629 DEFGHIJKLM 95.95 

Adams DEFGHIJKLMN 95.94 

Black Bear DEFGHIJKLMN 95.92 

B19339 DEFGHIJKLMN 95.90 

B20542 EFGHIJKLMN 95.83 

B18236 FGHIJKLMN 95.79 

B19341 FGHIJKLMNO 95.74 

B20590 FGHIJKLMNO 95.71 

Nimbus FGHIJKLMNO 95.71 

B20623 FGHIJKLMNO 95.69 

B20599 FGHIJKLMNO 95.67 

Zorro FGHIJKLMNO 95.67 

B20639 GHIJKLMNO 95.62 

B19332 HIJKLMNO 95.59 

B20538 IJKLMNO 95.53 

B19340 GHIJKLMNO 95.53 

B20616 JKLMNO 95.44 

B20621 KLMNO 95.31 

B20582 LMNO 95.12 

Black Beard NO 95.07 

B20547 O 94.88 

B20632 P 93.28 

R99 Q 0 
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Table 3.4. Tukey’s honest significant difference of seed yield (kg/a) of 42 black bean genotypes 

grown in 2021. 

Line Letter Yield BLUEs 

B20536 A 1827.3 

B19344 AB 1774.8 

B20542 ABC 1760.3 

B16504 ABCD 1730.8 

B20597 ABCD 1725.3 

Zenith ABCDE 1707.5 

B20599 ABCDE 1703.2 

B20602 ABCDE 1701.5 

B20591 ABCDE 1695.2 

B20590 ABCDEF 1694.8 

Adams ABCDEF 1690.7 

B20617 ABCDEF 1688.8 

B19309 ABCDEF 1684.7 

B20616 ABCDEF 1654.9 

B19330 ABCDEF 1641.5 

B20532 ABCDEF 1635.6 

B20549 ABCDEFG 1613.0 

B20538 ABCDEFG 1606.7 

B20527 ABCDEFG 1604.4 

B20579 ABCDEFG 1597.9 

B20547 ABCDEFG 1590.9 

B20642 ABCDEFG 1569.3 

B19332 ABCDEFG 1546.9 

B19339 ABCDEFG 1527.2 

B19345 ABCDEFG 1522.2 

B19341 ABCDEFG 1521.3 

B20639 ABCDEFG 1488.2 

B20623 ABCDEFG 1485.0 

B19340 ABCDEFG 1484.9 

B20621 ABCDEFG 1468.2 

B20620 BCDEFG 1439.0 

B20629 ABCDEFG 1438.5 

Zorro BCDEFG 1422.9 

B20627 BCDEFG 1418.3 

B18236 BCDEFG 1411.4 

Eclipse BCDEFG 1403.7 

Nimbus CDEFG 1358.2 

B20582 DEFG 1349.6 
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Table 3.4 (cont’d) 

Black Bear EFG 1316.3 

B20632 FG 1308.0 

Black Beard G 1240.4 

R99 H 51.8 
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FIGURES 

Figure 3.1. Prediction model design and development methodology for estimating %Ndfa.  

 

Figure 3.2. Prediction model design and development methodology for estimating yield.   
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Figure 3.3. Distribution of yield (kg/ha) over 2019, 2020, and 2021 between the two N 

treatments. 

 

Figure 3.4. Average repeatability for 12 RGB imaging dates taken over the 2021 season. Dates 

not connected by the same letter are significantly different (P < 0.05) according to Tukey’s 

honest significant difference. 
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Figure 3.5. Percent nitrogen derived from the atmosphere (%Ndfa) predictions accuracies for the 

ML models grouped by predictive model and BLUE model. KNNeighbors, K-nearest neighbors; 

StepwiseGLM, stepwise general linear model; BRNeural Network, Bayesian regularized neural 

network; XGBoosting, extreme gradient boosting; PLSR, partial least squares; RForest, random 

forest. 

 

Figure 3.6. MAE for the ML models predicting %Ndfa grouped by predictive model and BLUE 

model. KNNeighbors, K-nearest neighbors; StepwiseGLM, stepwise general linear model; 

BRNeural Network, Bayesian regularized neural network; XGBoosting, extreme gradient 

boosting; PLSR, partial least squares; RForest, random forest. 
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Figure 3.7. RMSE for the ML models predicting %Ndfa grouped by predictive model and BLUE 

model. KNNeighbors, K-nearest neighbors; StepwiseGLM, stepwise general linear model; 

BRNeural Network, Bayesian regularized neural network; XGBoosting, extreme gradient 

boosting; PLSR, partial least squares; RForest, random forest. 

 

Figure 3.8. Prediction accuracies for the ML models predicting Yield grouped by BLUE model. 

KNNeighbors, K-nearest neighbors; StepwiseGLM, stepwise general linear model; BRNeural 

Network, Bayesian regularized neural network; XGBoosting, extreme gradient boosting; PLSR, 

partial least squares; RForest, random forest. 
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Figure 3.9. MAE for the ML models predicting Yield grouped by BLUE model. KNNeighbors, 

K-nearest neighbors; StepwiseGLM, stepwise general linear model; BRNeural Network, 

Bayesian regularized neural network; XGBoosting, extreme gradient boosting; PLSR, partial 

least squares; RForest, random forest. 

 

Figure 3.10. RMSE for the ML models predicting Yield grouped by BLUE model. 

KNNeighbors, K-nearest neighbors; StepwiseGLM, stepwise general linear model; BRNeural 

Network, Bayesian regularized neural network; XGBoosting, extreme gradient boosting; PLSR, 

partial least squares; RForest, random forest. 
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