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ABSTRACT 

This thesis proposes a novel packaging evaluation method using 

corrugated box images and an Artificial Neural Network (ANN). An Artificial 

Neural Network works in a way similar to that of neurons in a human brain: by 

making connections between a trained dataset and the new data provided after 

training. The ANN has been implemented in the industry in various ways but 

limited in the packaging evaluation. This paper is focused on the corrugated box 

damage prediction using ANN. By capturing the damaged corrugated box images 

with an Artificial Neural Network, damaged products can be identified allowing a 

decision to be made as to what type of package failure occurred. One of the 

benefits to using an Artificial Neural Network to evaluate corrugated box images 

is that it allows for the evaluation of package protection in a real distribution 

environment as compared to a controlled lab setting. In turn, this reduces the cost 

of testing, as the package failure will have been identified with the assistance of 

the Artificial Neural Network, rather than full retesting to identify where damage 

occurred. This process would also reduce costs associated with the usage of 

materials for testing, due to the lower number of test samples required. 
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CHAPTER 1: INTRODUCTION 

 Packaging is used in every industry to ensure protection, containment, 

convenience, and communication to consumers and manufacturing professionals. 

Protection and containment refer to the product itself by ensuring that the product 

will arrive at its destination intact and in a damage-free and manageable way. 

Convenience and communication refer to the use of each package. Consumers must 

be able to utilize packaging in a convenient way while also having all pertinent 

information provided to them. There are three layers of packaging commonly used. 

These include primary packaging, which is the packaging in direct contact with the 

product; secondary packaging, which is used outside of primary packaging to group 

products together; and tertiary packaging, which is used by wholesalers for 

shipping products to their destination while avoiding damage. These layers of 

packaging play a fundamental role through the supply chain. All products undergo 

distribution, which can involve rough shipping environments. Ensuring that a 

product’s package will meet each of the four functions of packaging and will assist 

in facilitating smooth distribution. To ensure this, packaging evaluation is used 

before distribution.  

Packaging evaluation is very important for packaging cost and optimization. 

When considering the type of packaging material to be used, there are many costs, 

including the material costs and manufacturing costs, to consider. For example, a 
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package that is created with a heavier-weight corrugate will cost more to produce 

than one with a lighter-weight corrugate. This also impacts the optimization of the 

package. Figure 1 below shows a chart of damage cost vs. package cost. If a 

package cost is low but the damage is high, the product is under packaged. On the 

opposite end of this, if the package cost is high but the damage cost is low, the 

product is over-packaged. Optimization occurs between these when the damage 

cost and package cost are equal, or close to equal. Ensuring that a package is within 

this optimal zone will result in a successfully protected product through the supply 

chain.  

 

Figure 1. Package Optimization in terms of cost. 
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Packaging evaluation is an important step in any product development 

process to ensure that a product will survive the various stressors of distribution. 

The types of distribution include brick-and-mortar and e-commerce. Brick-and-

mortar distribution refers to distribution to a physical store where customers browse 

and make purchasing decisions in person, while e-commerce distribution refers to 

the distribution of products that are purchased online and shipped directly to the 

consumer. Stressors in distribution can include shock and vibration, among others. 

Various physical tests, including vibration, shock, and compression testing are 

conducted on new package designs to ensure protection before distribution.  

Currently, the packaging evaluation process is heavily reliant on mechanical 

testing in a controlled lab setting. Studies have been conducted to evaluate the 

importance of physical testing on packages in this manner (Nygårds M, 2019; 

Fadiji, 2016). Other methods of evaluation include field testing where a package 

will undergo the physical stressors of distribution, and computer simulation where 

a package is simulated and various properties are tested without physical testing. 

Lab testing will ensure that a product is protected under controlled conditions, but 

it does not account for the true stressors of distribution. Field testing, while 

conducted in the true stressors of distribution, cannot account for the many 

variables that are encountered in real-world environments. Computer simulations 

can decrease the cost of physical testing, but their results are not always reliable. 

Another method that has not yet been widely used for packaging evaluation is 
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Artificial Neural Networks (ANN). This tool can be used for many applications but 

is used in this thesis to predict the cause of corrugated Regular Slotted Container 

(RSC) damage from images.   

1.1 Objective 

 Package evaluation using ANN has been implemented in the packaging 

industry, but not as widely for the visual analysis of a package. This thesis aims to 

develop an ANN model that can predict the cause of package damage from images 

of corrugated regular slotted containers (RSCs). To do this, various key objectives 

were identified as follows: 

1. Develop damage prediction model by implementing machine learning tools. 

2. Build ANN modeling process for corrugated RSC damage prediction. 

3. Find optimal image modification for ANN modeling.  
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CHAPTER 2: BACKGROUND 

 Packaging has been utilized since ancient times to ensure that product 

quality is maintained in their route to the consumer. In the ancient era of packaging, 

reed baskets, wineskins, wooden boxes, pottery vases, and more natural material 

containers were utilized. The first set-up boxes were used in the 16th century 

(Twede, 2005). Since ancient times and the 16th century, countless advances have 

been made to improve the functions of packaging in every industry. Materials have 

been modified to better fit the needs of distribution, new technologies have been 

introduced, and testing standards have been created and accepted by the industry. 

These standards ensure that a package meets the needs of the product contained 

while withstanding various stressors of distribution. Innovation is constant, though, 

meaning that the widely accepted ways of developing packages must continue to 

be developed in order to fit the needs of each company and consumer.  

2.1 E-Commerce  

E-commerce is the term for the buying and selling of goods and services 

over the internet. This tool has recently become a heavily utilized resource in the 

supply chain for a variety of products. This style of distribution relates directly to 

the convenience function of packaging, as consumers can obtain a higher level of 

convenience by not having to go in person to search for the product they want. 

There are several advantages to utilizing e-commerce, including its global reach. 

This distribution style has been even further utilized since the start of the COVID-
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19 global pandemic, as consumers faced closings of brick-and-mortar stores and a 

higher likelihood of avoiding public spaces (Jílková, 2021). The quarterly share of 

total U.S. e-commerce retail sales has grown from 9.8% in the second quarter of 

2018 to almost 15% of total sales in the third quarter of 2022 (Coppola, 2022). 

Research by the International Trade Admission suggests that the global growth of 

e-commerce will continue, reaching a point of approximately $7,000 billion in sales 

by 2024 (International Trade Administration, 2023). A chart for this growth is 

shown below in Figure 2.  

 

Figure 2. Retail e-commerce sales worldwide from 2014 to 2024 (in billion US 

dollars) (International Trade Administration, 2023). 

This method of order fulfillment endures greater stressors throughout the 

supply chain than brick-and-mortar because of the tougher environment and 

hazards that packages encounter. In brick-and-mortar distribution, there are a 

minimum of 4 handling points compared to a minimum of 11 handling points in e-
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commerce distribution (Skyline University College, 2016). Figure 3 below shows 

an example of the touchpoints for each of these distribution types. 

 

Figure 3. Touchpoints of brick-and-mortar and e-commerce distribution (Skyline 

University College, 2016). 

A greater number of touchpoints means there are more opportunities for damage to 

occur through e-commerce distribution. Product deformations as a result of shock 

through e-commerce were observed at a rate of 19.3% in a study conducted by 

Spruit et. al (Spruit, 2021). Additionally, product deformations as a result of impact, 

shock, and static load through e-commerce were observed at a rate of 10.5% 

(Spruit, 2021). These damages can result in a higher cost of replacing products, 

especially when considering that a new product will have to endure the same supply 

chain in its route to the consumer. Additionally, when damage is observed a 

package must undergo retesting to ensure that future damage is avoided. This 
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increases costs due to the number of samples required while testing, as well as the 

labor associated with these tests. As shown, it is very important that packaging is 

developed with protection through e-commerce distribution environments in mind. 

This can be achieved through package development and evaluation with a goal of 

ensuring the four functions of packaging.  

2.2 Package Evaluation: Lab Testing 

There are three main approaches to ensure the packaging functions: lab 

testing, field study, and computer simulation. The lab test conducted in a controlled 

laboratory environment follows standards that have been widely accepted in the 

packaging industry. These standards specify the exact methods for evaluating 

packages for various purposes. For example, ISTA 6-Amazon.com-SIOC is the 

standard test method for products that are meant to ship in their primary packaging 

through the Amazon e-commerce platform (ISTA, 2016). There are many standards 

for different distribution environments and each of these standards specifies the 

number of samples that should be used to ensure thorough results (ASTM 

International, 2016; ASTM International, 2022) . These standards have been set up 

for all types of physical testing, including drop testing, vibration testing, and 

compression testing. A common standard for conducting drop testing is the ISTA 

3A standard for Packaged-Products for Parcel Delivery System Shipment (ISTA, 

2018). In this procedure, a series of drops and vibrations are conducted on a single 
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container using a drop tester (Figure 4) and vibration table. For this example, only 

the drop portions will be explained. 

 

Figure 4. Drop testing machine from Lansmont (Lansmont, 2023). 

Packages are loaded with the product including all primary packaging. 

Then, the package undergoes a series of drops from heights ranging from 18-36”. 

The package is positioned for these drops so that it encounters impact on various 

faces, corners, and edges of the corrugated case to ensure that a thorough evaluation 

of damage can be performed.  

A commonly followed standard for vibration testing is ASTM D4728, the 

Standard Test Method for Random Vibration Testing of Shipping Containers 

(ASTM International, 2022). In this procedure, packages undergo a series of 

random vibrations on a vibration (or shaker) tester to determine how they should 
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perform through distribution. Figure 5 shows an example of what this vibration 

tester looks like.  

 

Figure 5. Vibration test system from Lansmont (Lansmont, 2023). 

Packages are loaded with the product and all associated primary packaging. 

The package is placed in either a horizontal or vertical orientation related to the 

direction of corrugate fluting, and supports are positioned to ensure that the package 

will not vibrate off of the table while still allowing space for movement. Then, 

random vibrations are applied for a predetermined amount of time which is specific 

to each individual or group performing the test. In this standard, the vibration rates 

and times can be adjusted to meet the needs of a specific distribution environment. 

For example, if a package must travel for 2 hours to meet its destination and the 

shipping route is known, the vibration test can be conducted for 2 hours under 
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vibration rates similar to those on its route. Many additional types of vibration 

testing can be conducted. These include sine sweep testing, which involves 

subjecting a package to a vibration that gradually increases over time; fixed 

frequency testing, which involves subjecting a package to a constant level of 

vibration; and resonance search testing, which involves identifying the resonant 

frequency of a package and subjecting the package to vibrations around that 

frequency. Additionally, random vibration and sine sweep vibration testing can be 

combined for sine on random testing. In this method, a package is subjected to 

random vibrations that coincide with a single frequency of vibration. This test 

allows the professional to identify how a package will perform both at random 

vibrations and a set vibration over time.  

Compression testing is commonly conducted following ASTM D642-20, 

the Standard Test Method for Determining Compressive Resistance of Shipping 

Containers, Components, and Unit Loads (ASTM International, 2020). In this 

testing method, packages are loaded with the product and any associated primary 

packaging and placed on a compression tester (Figure 6).  
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Figure 6. Compression tester from Lansmont (Lansmont, 2023). 

The package is placed either horizontally or vertically relative to the 

alignment of corrugate fluting and undergoes one compression. The test stops in 

one of two ways: once the compression reaches a predetermined point, or once a 

point of failure has been achieved. Conducting this type of test can assist in 

determining the strength of a container when stacked for long periods of time.  

 Retesting that must occur if large amounts of damages are reported can 

become very expensive and time-consuming as a result of these standards. While 

the widely accepted standards for lab testing are thorough, they are not without 

drawbacks. A study by Frank et.al discusses the limitations of compression testing 
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in-lab on corrugate boxes when compared to their real-world environments and 

found that lab testing alone is not enough to measure the true functionality of a 

package through the supply chain (Frank, 2010). It can be assumed that this holds 

true when comparing brick-and-mortar to e-commerce distribution. To account for 

this, many packaging professionals utilize field testing for further evaluation.  

2.3 Package Evaluation: Field Testing 

Field research on package design can show the truest functionality of a 

package as it moves through the supply chain. This method is commonly used after 

lab testing has been completed. In this evaluation method, products are packaged 

in the way that they are expected to enter the supply chain. They are then sent out 

with either a traditional shipping source, like USPS or UPS, or with company 

owned distribution tools. One benefit of conducting field testing with company 

owned tools is that the test can provide a view of how a package will perform in a 

more controlled environment than that of a typical distribution service. However, 

field testing is not always the closest view to actual distribution. When utilizing this 

method, all factors of distribution are set and controlled by the package producer. 

These factors are not always consistent with how distribution will actually occur, 

resulting in a higher chance for damage after validation testing. This is where it 

may be of benefit to use a traditional shipping source like USPS or UPS. By sending 

a package out into an uncontrolled distribution environment, packaging 

professionals can evaluate how a package will truly perform. Information can be 
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gathered from field testing in numerous ways, including vibration and shock 

records with data logging tools, and physical damage depending on the field test 

administered. An example of a shock and vibration data logger from Lansmont is 

shown in Figure 7 below.  

 

Figure 7. Shock and vibration data logger from Lansmont (Lansmont, 2023). 

With this tool, shock and vibration data from a distribution route can be recorded 

and saved. This can be used in conjunction with lab testing to better simulate the 

environment that a package will undergo.  

 Certain products may have attributes that cannot exceed a set level of 

humidity or temperature. To ensure that a package is meeting the protection needs 

of a product like this, environmental monitoring tools can be utilized in conjunction 

with field testing. Figure 8 (below) shows an example of one of these tools that can 

be implemented in field studies.  



 15 

 
 

 

Figure 8. Environmental monitoring tool from Sensolus. (Sensolus, 2023). 

A tool like the one shown in Figure 8 can store data about humidity, temperature, 

contact, and orientation. This information can be extracted with the specific route 

that was taken, allowing for evaluation of package needs for a product meant to 

follow that same route. Data collected from tools like those shown in Figures 7 and 

8 can assist in optimizing packaging by ensuring that the cost of the package is 

viable when considering the type of product to be packaged. This is especially 

important when considering medical devices and electronics. The cost of each 

product is high, meaning the packaging must be of high enough quality to ensure 
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that losses are not observed in the form of product damage as a result of insufficient 

packaging.  

 Many researchers conducted their research through field study (Dunno, 

2017; Jung, 2012) since studies like these are the closest possible test to a real-

world application. A study by Zhong et.al focuses on corrugate boxes through 

shipping conditions in China and found that a majority of packages aren’t placed in 

the correct position during shipping, resulting in a greater number of package drops 

(Zhong, 2016). The placement of a package through distribution cannot always be 

controlled, so adjusting packages to meet protection needs in uncertain 

environments can assist in ensuring package success. Conducting testing in the field 

quickly becomes costly and time consuming due to the number of resources 

required, especially when considering the cost of the product contained. Moreover, 

these studies cannot measure and evaluate the functionality and protection of the 

package due to the lack of consistency in shipping conditions. These environments 

can change as shipping routes change, as well as when the environment changes 

the conditions of a route naturally.   
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2.4 Package Evaluation: Computer Simulation 

An alternative to lab and field testing is the use of computer models. 

Computer models have become a popular method for simulating and evaluating 

packaging test methods. There are many kinds of computer simulations, including 

computational fluid dynamics, which can be used to model the flow of air, liquid, 

or gas inside a package; moldflow analysis, which can be used to predict how a 

plastic package will be molded during manufacturing; drop and impact simulation, 

which can predict the damage on a package when dropped; and thermal analysis, 

which can be used to evaluate the temperature distribution inside a package through 

various environments. Another common form of computer simulation is the finite 

element method (FEM). Many studies have been conducted simulating various 

stages of the supply chain that a package must endure utilizing FEM, which is a 

computer modeling technique that can be used to simulate the stresses and strains 

placed on a package during distribution and storage. This tool has been used in 

previous research to simulate the behavior of multiple materials to evaluate their 

performance in various applications (Rowson, 2008; Mills, 2005; Hallbäck, 2014; 

Huang T. C., 2022). This technique can help to identify areas of a package that are 

most vulnerable to damage, allowing for a packaging professional to evaluate and 

adjust the package before production. A study by Molina et.al. details a friction-

driven FEM model that simulates the load bridging effect of unit loads stored in 

warehouse racks (Molina, 2021). Figure 9 shows a comparison of movement of unit 
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load components under deflection for in-lab experiments (left) and with FEM 

(right). In this figure, FEM images are labeled based on deflection, with red 

meaning large displacement and blue meaning no movement. As shown with the 

figure, utilizing FEM to simulate the behaviors of packages in various 

environments can provide insightful data for how pallet loads or packages must be 

adapted to survive different conditions.  
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Figure 9. Comparison of movement of unit load components under deflection for 

experimental (left) and FEM (right) for two layers and (a) two columns, (b) three 

columns, and (c) four columns of packages (Molina, 2021). 
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A study by Biancolini et.al focuses on the buckling strength of corrugated 

boxes with FEM and found that the model provides negligible error when compared 

to a lab-tested value under the same conditions (Biancolini, 2003). Based on these 

results, adopting this approach would imply that the monetary costs associated with 

physical testing can be cut back. While the benefits of utilizing FEM have been 

observed, this process is not perfect. Materials have many properties that can be 

changed as their chemical composition is altered. Accounting for each of these 

properties involves a large variety of simulations to be performed. This can increase 

the computational cost, and in many cases, the results are not reliable due to the 

simulations being based on estimations of real-world conditions. Because of this, a 

new method is needed to evaluate packages that endure the stressors of e-commerce 

to ensure customer satisfaction. 

2.5 Artificial Neural Networks (ANN) 

Machine learning (ML), a subset of Artificial Intelligence, is a field of 

computer science that studies algorithms and techniques for automating solutions 

to complex problems that are difficult to program using conventional programming 

methods (Rebala, 2019). There are many types of machine learning algorithms, 

each with varying levels of supervision required by the user. The first of these is 

supervised learning, where the data has already been labeled or classified with the 

correct output. Unsupervised learning involves an algorithm that is trained on 

unlabeled data. Semi-supervised learning contains a combination of labeled and 
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unlabeled data. Finally, reinforcement learning involves an algorithm that learns 

from positive and negative feedback for certain actions.  Within ML exists Artificial 

Neural Networks (ANN). ANNs can be utilized to make assumptions and 

predictions about various datasets and work in a way similar to that of a human 

brain, by making connections between characteristics of data points and drawing 

conclusions. ANNs consist of an input layer which receives data, one or more 

hidden layers where neurons are contained and make connections within the data, 

and an output layer where a result is provided. A conceptual diagram of this is 

shown in Figure 10. 

 

Figure 10. Conceptual diagram of an ANN. (UpGrad, 2022). 

 Each neuron in the hidden layer(s) applies mathematical functions to the 

data and passes the results of these functions to other neurons following the flow 

of the network between layers. These functions are a product of a neuron’s value, 
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as determined by an activation function, multiplied by the weight of each neuron 

which is determined by the solver. All values are added to provide the output data. 

Figure 11 shows a conceptual diagram of the calculations made between neurons, 

as well as the equation used for providing an output.  

 

Figure 11. Conceptual diagram of calculations made within an ANN 

(Obuchowski, 2020). 

Activation functions and solvers are contained between each neuron in the 

ANN. Activation functions introduce nonlinearity into the output of a neuron, 

allowing for the ANN to model complex nonlinear relationships between input and 

output data. Commonly used activation functions include identity, logistic 

(sigmoid), tanh (hyperbolic tangent), and rectified linear unit (ReLu). Graphs for 

each of these activation functions can be found below in Figure 12.  

Where: 

x: numerical value 

of the neuron from 

activation function 

w: weight of each 

connection from 

solver  

h: output value 
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Figure 12. Commonly utilized activation functions: Identity (a), ReLu (b), Tanh 

(c), and Logistic (d) (Šegota, 2020). 

Drawing on the state of research to date, Dubey et.al. posits the following 

explanations for various activation functions. Identity is a linear activation function 

where the output of the function is equal to the input. Logistic, or sigmoid, maps 

input to a value between 0 and 1 and is commonly used in probability models. Tanh 

is a hyperbolic function that maps the value of an input between -1 and 1. ReLu is 

a piecewise linear function that returns the value of an input if it is positive, and a 

0 if it is not (Dubey, 2022). Solvers are used to optimize the weights between each 

neuron. Three commonly used solvers include stochastic gradient descent (SGD), 
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L-BFGS-B, and Adam. SGD is an optimization algorithm that updates the weights 

and biases of the network based on the loss function with respect to each parameter 

(Bottou, 2012). L-BFGS-B is a quasi-Newton optimization algorithm that 

approximates the Hessian matrix of the loss function to update weights and biases 

within the network (Liu, 1989). Adam is a variant of SGD that adapts the learning 

rate of each weight based on the first and second moments of the gradient 

(Brownlee, 2017). Each activation function and solver provides its own benefits 

depending on the application. Benefits of ANN as a whole include optimization, 

predictive accuracy, and time savings. Applications of this tool can be found in 

various industries, including marketing (Bloom, 2005). ANNs can also be utilized 

for image-based evaluations. Kalyan et. al. details a method for diagnosing disease 

conditions with the use of ANN (Kaylan, 2014). While the functionality of ANN 

has been studied extensively, this application has not yet been widely brought to 

the packaging industry. There have been instances of this tool being utilized in 

terms of packaging analysis (Esfahanian, 2022; Xie, 2023; de Abajo, 2004), but 

little has been done in terms of visual analysis of a package with images. In this 

thesis, a method for utilizing the image analysis capabilities of ANN for corrugated 

RSC evaluation is introduced.  
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2.6 Research Goal 

 The goal of this research is to predict the cause of box damage using 

corrugated RSC images with an artificial neural network (ANN).  It is important to 

know how package failure has occurred in an effort to improve protection 

throughout the supply chain. Knowing the cause of damage allows professionals to 

improve that area without conducting a full investigation, which involves total 

retesting of the package in a controlled lab environment. If the package professional 

utilizes field testing or simulations, largescale damage reports would also result in 

an additional round of these tests and simulations to be performed, increasing 

physical and computational costs further. By utilizing ANN for package evaluation, 

it will be possible for packages to be evaluated in a real-world context, as opposed 

to in-lab controlled testing. Additionally, the costs associated with testing will be 

reduced due to the smaller number of samples required for post-production 

evaluation. The ANN is able to predict what the cause of damage is for each 

corrugated RSC, meaning a full retesting process is not necessary when damage is 

reported. Industry professionals will be able to modify current packaging without 

identifying the issue manually.  
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CHAPTER 3: METHODS 

 This chapter introduces a novel methodology of corrugated box evaluation 

processing. Instead of using typical packaging test standard or numerical 

simulation, image training with ANN was implemented as a main tool for 

corrugated box evaluation. With this tool, the type of damage experienced by a 

corrugated RSC can be predicted, allowing for a more streamlined evaluation 

process. The packaging evaluation process using corrugated RSC images was 

composed of 4 main processes: (i) data collection, (ii) data preparation, (iii) ANN 

model development, and (iv) verification. Each process is important to ensure 

optimized predictive accuracies with the ANN. Figure 13 shows an overview of the 

methodology followed. The process begins with data collection, which involves 

gathering images from previous validation testing, web scraping, or creating new 

images in-lab. These images are then modified in various ways including cropping 

to remove the background and modifying various color properties to fit into 12 

different categories. Data is split into 70% for training and 30% for testing before 

the ANN is modeled, which involves determining the number of hidden layers, the 

number of neurons in each hidden layer, and the activation function and solver for 

the model. Finally, predictions are verified using manual verification and confusion 

matrix evaluation to ensure that all predictions can be considered valid. The 

following sections explain the detailed process of each step.  
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Figure 13. Overview of methodology. 

3.1 Data Collection 

In the data collection portion of this method, there are three ways that 

images can be gathered. The first of these is by utilizing images previously taken 

in the validation stage of package development. Utilizing these images would cut 

down on the cost of new samples required when creating images, but they aren’t 

always created in a way that highlights one form of damage. 

When validation testing, industry standards like ISTA 3A allow for multiple 

tests to be performed on a single sample (ISTA, 2018). While this test is appropriate 

for validation of the package, it is not designed to highlight a single type of damage 

to the container. The second approach is by utilizing a web scraping tool that 

gathers information in various forms from a website. The forms of data that can be 

extracted in web scraping include product prices, consumer reviews, images, and 

more. Figure 14 (below) shows a diagram of the web scraping process.  
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Figure 14. Conceptual diagram of the Web Scraping process. 

To follow the process of web scraping, unstructured data in the form of a 

link to a website is input to the web scraping tool. This tool must be programmed 

to extract data that fits the needs of the user. Structured data can be output in many 

forms, including images. In this method, images that are gathered must be labeled 

manually based on what it looks like the damage could be. Consumers are not 

always able to identify the specific kind of damage that their product has 

experienced and typically will not mention the damage type in reviews. Packaging 

professionals may be able to identify the possible cause of damage, but it may not 

always be the true cause. When utilizing web scraping, it is important to recognize 

that the legality and ethics of the tool have not yet been fully defined (Krotov, 

2018). There is opportunity for this tool to extract data that can pose security risks 

to consumers. Additionally, web scraping can result in the gathering of data that is 
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licensed to a corporation. If utilizing this method, care should be taken to ensure 

that all data gathered is done so in an ethical and legal way.  

The third approach is creating new images via testing. Utilizing this method 

allows for specific kinds of damage to be tested and documented which ensures that 

the image label will be true to the kind of damage shown. For this method 

specifically, impact (drop) testing and compression testing are utilized. Vibration 

testing was not considered for this method due to the minimal visual damages 

observed through testing. To conduct impact testing, the ISTA 3A standard for 

packaged products for parcel delivery system shipment was modified and followed. 

In this standard, a series of drops and vibrations are conducted at various heights 

and vibration levels, focusing on different orientations of the package being tested 

(ISTA, 2018). For the purposes of this research, vibration portions of ISTA 3A 

were not followed. Table 1 below shows an overview of the drop sequence 

associated with the ISTA 3A test. Figure 15 below shows a sample labeling 

example followed in this testing. When following the drop sequence, the corrugated 

RSC is oriented so that the drop occurs on the edge or corner where the numbered 

faces meet. For example, if the drop orientation states “Edge 4-6,” that would 

correspond to the edge between faces 4 and 6 on the RSC.  
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Table 1. ISTA 3A Drop Sequence (ISTA, 2018). 

Drop # Samples <70 lbs. (32 kg) Orientation of Drop 

1 18 in (460 mm) Edge 3-4 

2 18 in (460 mm) Edge 3-6 

3 18 in (460 mm) Edge 4-6 

4 18 in (460 mm) Corner 3-4-6 

5 18 in (460 mm) Corner 2-3-5 

6 18 in (460 mm) Edge 2-3 

7 18 in (460 mm) Edge 1-2 

8 36 in (910 mm) Face 3 

9 18 in (460 mm) Face 3 

 

 

Figure 15. Sample labeling example. 

Face drops were not included due to the minimal visual damage observed 

through testing. Each drop orientation was conducted on a new sample from a 

height of 36" to ensure that the true extent of one type of damage was observed. 

These drops were also expanded to include each corner and edge orientation 

possible for the corrugated RSC. In total, 14 drop orientations were included in the 

drop testing process. Table 2 below shows the drop orientations for this 

methodology in detail. 
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Table 2. Methodology Drop Orientations. 

Orientation # 

(new sample each 

time) 

50 lbs. (22.7 kg) 

loaded sample drop 

height 

Orientation of drop 

1 36 in (910 mm) Corner 3-4-5 

2 36 in (910 mm) Corner 1-2-6 

3 36 in (910 mm) Corner 1-2-5 

4 36 in (910 mm) Corner 1-4-5 

5 36 in (910 mm) Corner 1-4-6 

6 36 in (910 mm) Corner 2-3-5 

7 36 in (910 mm) Corner 2-3-6 

8 36 in (910 mm) Corner 3-4-6 

9 36 in (910 mm) Edge 1-2 

10 36 in (910 mm) Edge 4-5 

11 36 in (910 mm) Edge 4-6 

12 36 in (910 mm) Edge 3-6 

13 36 in (910 mm) Edge 1-5 

14 36 in (910 mm) Edge 3-4 
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Prior to each drop, a load of 50 lbs. (22.7 kg) was inserted into the case. 

While this load may be greater than the expected weight of some products, it will 

ensure that damage is shown for each drop administered. Images were taken from 

multiple angles after the drop to capture the full extent of this damage.  

To conduct compression testing, ASTM D642-20 was modified and 

followed (ASTM International, 2020). No weight was added to the case for this 

test. Samples were loaded into a compression tester in either a horizontal or vertical 

orientation in relation to the direction of the corrugate fluting with a preload of 50 

lbs. and compression was applied to the case at a rate of 0.5 in/min until a yield of 

50% from the maximum point of compressive load was achieved. This level of 

yield may exceed the expected compression strength of many packages in use, but 

it will ensure that the fullest extent of possible damage is shown. Photos were again 

taken after each test from multiple angles to capture the full extent of damage. 

Figure 16 shows an example of what this testing looks like in the lab with a vertical 

case orientation. From here, collected data was prepared for modeling the ANN. 
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Figure 16. Box Compression Test Example (Rycobel, 2023). 

3.2 Data Preparation 

In the data preparation process, images were sorted into categories 

respective of their damage and modified. This sorting step is important in order to 

provide the best chance at an accurate damage prediction by the ANN. 

Modifications are important to ensure that the ANN can capture all features 

associated with the damage observed. First, images were sorted into a category that 

corresponds to the type of damage experienced. All drop images were split into 

“Edge” or “Corner,” while all compression images were placed in a category 

labeled “Compression.” Labeling and sorting these images in this manner allows 

for simple data validation as well as organization before image modification. When 

modifying, copies of each sorted damage type were made and placed into another 
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category that specifies the type of image modification done. All modifications were 

done using the computer’s included image modification program. The first 

modification included was to crop each image manually. This was done to 

determine how the background of each image impacts prediction results. By 

conducting this process manually, it can be ensured that the minimum amount of 

background is shown in each image. Once cropping was completed, five additional 

categories of image modifications were performed. These modifications included 

black and white, high contrast, low contrast, low exposure, and high saturation. 

When utilizing the image modification platform included on the computer, 

modification sliders for these modifications were moved to the most extreme 

version of each category. All categories of image modifications are important to 

include because it is not known how the ANN sees and evaluates images. The ANN 

draws information from each pixel associated with the image, making it difficult to 

determine which modification would be best for the prediction. Including and 

testing each modification ensures that at least one modification category will 

provide an accurate prediction. The modification category that predicts most 

accurately will vary between sample properties, meaning this process will need to 

be followed for each application. The following Table 3 shows an example of each 

modification performed on images using a television image gathered from an e-

commerce platform. From here, the ANN can be modeled for use.  
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Table 3. Image Modifications on Television Images from E-Commerce Platform. 

 
Original Cropped 

Original 

 
 

Black and White 

 
 

High Contrast 

 
 

Low Contrast 

 
 

High Saturation 

 
 

Low Exposure 
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3.3 ANN Modeling 

 Modeling the ANN involves splitting data, determining the neuron 

structure, and determining the activation functions and solvers. Data were split into 

70% for training and 30% for testing. Furthermore, each category of damage was 

split with the same 70/30 setup to ensure that examples of each category are 

included in both the testing and training portions. This was done manually to ensure 

that each image modification category contained the same data split, providing a 

true view of how the ANN predicts damage. The next step of ANN modeling was 

determining neuron structure, which includes the number of hidden layers within 

the network and the number of neurons in each hidden layer. Figure 17 below shows 

an example of how hidden layers are set up within the ANN.  

 
Figure 17. ANN Hidden Layers. 
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Following Figure 17, images are input to the first neuron on the left. These 

images are embedded, and numerical values are extracted for each pixel associated 

with the image that are pushed to the first hidden layer. Within this first layer, 

activation functions are used to determine if the neuron should be activated for 

evaluation or not. Then, a solver determines the weight associated with each 

neuron. Values from the activation function and solver are multiplied to provide the 

value for the next hidden layer connection point. This step repeats in the second 

hidden layer, until all values are summed, and a prediction is output in the final 

neuron on the right. This prediction is provided in the form of a damage category.  

 The number of hidden layers that should be used has been researched 

extensively and it has been found that two layers are sufficient for many 

applications of an ANN since the potential number of neurons in each layer can be 

large (Hecht-Nielsen, 1987; Kůrková, 1992; Huang G. B., 2003). Limiting the 

number of hidden layers to two will allow for the prediction to be made with high 

accuracy while limiting the computational cost of determining neuron numbers per 

layer. Determining the number of neurons in each hidden layer was done with an 

exhaustive search method which tests the predictive accuracy of the ANN at each 

increment of neurons per hidden layer.  An example of this process is shown below 

in Table 4.  

 

 



 38 

 
 

Table 4. Exhaustive Search Method Example for Neurons per Hidden Layer. 

NN in 

1st/2nd 

Layer 

LB1 LB1+ LB1+2 . . LB1+n UB1 

LB2 0.881 0.795 0.863 0.885 0.795 0.843 0.874 

LB2+ 0.787 0.642 0.899 0.867 0.885 0.778 0.850 

LB2+2 0.849 0.733 0.881 0.831 0.776 0.687 0.841 

. 0.871 0.873 0.798 0.698 0.851 0.881 0.735 

. 0.777 0.647 0.805 0.805 0.795 0.770 0.815 

LB2+n 0.825 0.842 0.756 0.823 0.801 0.795 0.787 

UB2 0.632 0.881 0.793 0.776 0.884 0.856 0.739 

 

 

 

When utilizing this method, the upper and lower bounds of possible neuron 

numbers must first be determined. The minimum and maximum bounds were 

determined using the rule of thumb method which states that the number of neurons 

per layer should be within the range of the number of datapoints available 

(Karsoliya, 2012). Increments for the exhaustive search were decided according to 

the minimum/maximum range. The combination to be utilized was then selected. 

This method is being used to ensure that the neuron combination does not fall into 

the local minimum. While this method can have high computational costs, it will 

ensure that maximum predictive accuracy is obtained.  

 The final step of ANN modeling was to determine the activation function 

and solver to be used. The available activation functions were identity, logistic, 

tanh, and ReLu. Activation functions decide whether or not a neuron should be 

LB: Lower Bound  

UB: Upper Bound  

KEY: 

Δ: Increment 

NN: Neuron Number 
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activated for prediction while applying a mathematical function to the data. The 

available solvers include L-BFGS-B, SGD, and Adam. Solvers are used to optimize 

the parameters used in predictions by applying weights to each data value. The 

combination to be used was determined using the same exhaustive search method. 

Combinations of each activation function and solver were tested on the ANN and 

the predictive accuracy was recorded. Then, the combination with the highest 

predictive accuracy was selected. The combination selected for this method is tanh, 

Adam. An example of this exhaustive search method is shown below in Table 5.  

 

Table 5. Exhaustive Search Method Example for Activation Function and Solver. 

 

3.4 Verification 

The final step in this methodology was to verify that the results obtained are 

accurate to the true labels of each image. This was done utilizing two methods: 

manual verification and confusion matrix evaluation. When verifying manually, 

image prediction labels were compared to the true label of their respective image. 

By comparing each photo manually, the user can identify which image is not being 

predicted correctly and identify any possible cause of the incorrect prediction. 

Additionally, the ANN’s confidence rate in each prediction can be calculated as a 
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result. A strong confidence rate for an incorrect prediction could mean that there is 

an issue with the data, allowing the user to identify this. The second method of 

verification is utilizing confusion matrices. These show the breakdown of predicted 

categories vs. the actual categories of data, which can also assist in determining 

which images are not being predicted correctly. An example of a confusion matrix 

is shown below in Figure 18. 

 

Figure 18. Conceptual Confusion Matrix (Draelos, 2019). 

If a predicted positive datapoint is actually negative, the confusion matrix 

would show this datapoint as a “false positive.” Evaluating these matrices can also 

assist in determining which image modification category will work best for the 

damage the user is looking to predict. For example, if one image modification 

category is predicting at a higher rate than others for the category “corner,” it may 

be best to focus on that image modification for future corner damage predictions.  

Figure 19 below shows an overview of the prediction workflow using the 

Orange Data Mining software with Image Analytics add on (Orange Data Mining 
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Platform, 2023). As a reminder, Training data consists of 70% of the data while 

testing data consists of the remaining 30%. Following this figure, training images 

are input to the widget labeled “Training Images.” These images are embedded to 

extract numerical data which is pushed into the ANN widget to train the model. The 

trained ANN model is connected to the prediction widget. Then, testing images are 

uploaded to the “Testing Images” widget. These images are also embedded, and 

numerical data for each is pushed to the prediction widget as data. Predictions are 

made with the ANN’s trained dataset on the testing images, providing a table of 

prediction results with the confidence rates, predicted damage category, and error 

rates. A confusion matrix widget is attached to the prediction widget which can 

show the overview of how images were predicted, both correct and incorrect data. 

The image viewer widget connected to the confusion matrix widget can show 

selected categories from the confusion matrix, allowing for simple verification of 

the images predicted.  

 

Figure 19. Prediction Workflow Overview. 
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The testing dataset, training dataset, and ANN widgets are also connected 

to a “Test and Score” widget. This test and score widget provides the predictive 

accuracy without a breakdown of each image, as well as the option to split data 

randomly to evaluate how the ANN would perform without manual splitting of 

data. This widget is helpful when determining how data should be split to provide 

the most accurate predictions for each case, as well as when determining the neuron 

structure as the breakdown of each predicted image is not necessary during that 

step. The process of this ANN can be summarized as consisting of four steps: data 

collection, data preparation, ANN modeling, and result verification. 
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CHAPTER 4: CASE STUDY 

 This case study was conducted utilizing corrugated regular slotted 

containers (RSC). Images were gathered by conducting new testing in-lab with a 

focus on one type of damage for every sample, ensuring that each image label was 

accurate to the type of damage experienced. From there, images were cropped and 

various color properties were modified, resulting in 12 image categories for 

predictions. Results were obtained, and verification was conducted with two 

methods: manual verification and confusion matrix evaluation to ensure that all 

predictions were valid to consider. The following sections explain this process in 

detail.   

4.1 Data Collection 

In this data collection process, images were created from in-lab testing on 

corrugated RSCs, which were selected given that they are one of the most common 

shipping containers. Creating data in a controlled environment allows for accurate 

labels of the damage that occurred, as well as a true example of each category of 

damage. During this process, a total of 69 corrugated RSCs underwent compression 

and impact testing. During impact testing, 43 samples were used in various sizes 

shown in Table 6 below. These samples were labeled in uniform fashion before 

testing following the example in Figure 20 to ensure consistency across samples. 

Corrugated RSCs were loaded with 50 lbs. of weight and dropped from a height of 

36" one time per sample, following a modified ISTA 3A test detailed in the 
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methodology section. The drops were structured to ensure that one sample would 

show damage from one component of the case: corner or edge. Additionally, each 

of the 12 edges and 8 corners of a case were represented in the data. Images were 

taken after the drop from multiple angles to ensure that all effects of damage are 

shown. During the compression testing phase, 26 samples were used in various 

sizes shown in Table 6.  

 
Figure 20. Sample labeling example. 
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Table 6. Corrugated RSC Sample Dimensions. 

Corrugated 

RSC 

Dimensions 

Impact 

Testing 

Samples 

Number 

of 

Images 

Corrugated 

RSC 

Dimensions 

Compression 

Testing 

Samples 

Number 

of 

Images  

12"x12"x12" 5 17 12"x8"x8" 1 3 

14"x10"x8" 1 3 12"x10"x8" 1 3 

14"x10"x12" 9 25 14"x6"x8" 1 2 

14"x12"x12" 5 15 14"x8"x8" 2 6 

14"x14"x8" 1 3 14"x10"x8" 1 3 

14"x14"12" 2 6 14"x14"x8" 6 18 

16"x8"x8" 1 3 16"x8"x8" 1 3 

16"x12"x10" 1 3 16"x14"x8" 8 24 

16"x14"x8" 1 3 16"x16"x8" 5 15 

16"x14"x12" 6 18 - - - 

16"x16"x12" 11 34 - - - 

 

The preload associated with compression testing was 50 lbs. Compression 

stopped once the cases reached a yield of 50% from the maximum point of 

compression. This stopping point was set in the machinery but can also be 

determined by evaluating the graph provided during testing.  After the compression 

load was applied, images were taken from multiple angles to ensure that all effects 

of compression were recorded. From here, the collected data was prepared before 

the ANN was modeled.  
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4.2 Data Preparation 

In the data preparation process, images were first labeled to represent the 

type of damage experienced. All drop images were labeled either “Edge” or 

“Corner”, while all compression images were labeled into “Compression.” Table 7 

below shows a distribution breakdown of how many images were sorted into each 

category.  

Table 7. Number of Images in Each Damage Category. 

Damage Category # of Images 

Edge 70 

Corner 62 

Compression 77 

Total: 209 

 

Labeling images in this manner allows for simple data verification as well 

as organization before image modification. When modifying, copies of each label 

were created and placed into another category that specifies the type of image 

modification done. All modifications were performed using the computer’s 

included image modification program. Images were first manually cropped to 

determine how the background will impact prediction results. Once this was 

completed, five additional categories of modifications were performed on both the 

cropped and original versions of images. These include black and white, high 

contrast, low contrast, low exposure, and high saturation. Including every 

modification shown will ensure that at least one of the workflows will capture 
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details needed for the ANN to make a prediction.  Table 8 below shows an example 

of each modification performed on the lab created images.  

Table 8. Image Modifications on Corrugated RSC Images. 

 
Original Cropped 

Original 

  

Black and White 

  

High Contrast 

  

Low Contrast 

  

High Saturation 

  

Low Exposure 

  



 48 

 
 

 

Images were modified to the most extreme version of each category. In 

some cases of image modification, it appeared as though all features that could 

assist in predicting the cause of damage were muted. Figure 21 (below) shows an 

example of three images from the “High Contrast” category of image modification. 

In this modification, portions of the corrugated RSC can appear to be “blacked out.” 

This can be beneficial for the ANN evaluation as the impacted areas become 

highlighted. Image “A” of this figure shows one corner of the corrugated RSC 

highlighted at the location of damage from the drop. Similarly in image “B,” a 

majority of the frontmost face of the RSC is muted with the exception of the 

damaged corner. In image “C,” the muted portions of the RSC bring more attention 

to the bright face of the box as well as the split on the corner. These examples show 

that while an image modification may not seem like the best representation, there 

are still useful details that can assist in predicting the damage type.  



 49 

 
 

 

4.3 ANN Modeling 

To begin modeling the ANN for use, data was first split into training and 

testing portions. In total, 167 training images and 42 testing images were used. 

When splitting the data, each drop and compression category was split into 70% for 

training and 30% for testing to ensure that each damage category had images in 

both ‘training’ and ‘testing’ portions. These data splits were performed manually 

to guarantee that each remained the same across each image modification category. 

This ensured that each accuracy was a consistent view of how the ANN made 

predictions on the images provided. Table 9 below shows a breakdown of how each 

damage category was split between training and testing. 

 

 

Figure 21. Examples of images from the "High Contrast" modification 

category. 

B 

B 

A C 
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Table 9. Number of Images per Damage Category for Testing and Training Split. 

Damage Category 
# of Images 

Training Testing 

Edge 56 14 

Corner 50 12 

Compression 61 16 

Total: 167 42 

 

The next step of this modeling was determining neuron structure, including 

the number of hidden layers and number of neurons per hidden layer. This was done 

using an exhaustive search method with a minimum bound of 30 and a maximum 

bound of 100. The increment for testing combinations was chosen to be 10 and all 

combinations were tested and evaluated for the local maximums. Table 10  below 

shows an example of this exhaustive search for the category “High Saturation 

Cropped.” As shown in this table, numerous occurrences of the local maximum 

were observed, which indicate the highest predictive accuracies of the model. For 

this research, the combination (40,30) was used as it was the first instance of this 

maximum in the “High Saturation Cropped” category. Figure 22 shows a contour 

plot of the exhaustive search for this category. The same exhaustive search method 

was performed across all image modification categories, providing a different 

number of neurons in each hidden layer for every category. A summary of the 

results of these exhaustive searches can be found in Table 11 below.  
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Table 10. Neurons per Layer High Saturation Cropped. 

 30 40 50 60 70 80 90 100 

30 0.863 0.844 0.863 0.863 0.883 0.905 0.863 0.863 

40 0.905 0.863 0.905 0.863 0.863 0.883 0.883 0.905 

50 0.816 0.863 0.883 0.883 0.844 0.881 0.883 0.905 

60 0.844 0.863 0.883 0.883 0.883 0.835 0.883 0.884 

70 0.883 0.826 0.905 0.853 0.863 0.879 0.844 0.863 

80 0.863 0.883 0.863 0.863 0.826 0.883 0.863 0.905 

90 0.883 0.816 0.883 0.863 0.883 0.863 0.863 0.844 

100 0.905 0.905 0.835 0.905 0.905 0.883 0.863 0.883 

 

 

Figure 22. Contour Plot for High Contrast Cropped Predictive Accuracies. 
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Table 11. Neurons per Hidden Layer in Each Image Modification Category. 

 

Original 

Black 

& 

White 

High 

Saturation 

High 

Contrast 

Low 

Exposure 

Low 

Contrast 

O
ri

g
in

a
l 1st 

Layer 
90 40 70 60 70 70 

2nd 

Layer 
30 40 60 40 70 40 

C
ro

p
p

ed
 

1st 

Layer 
100 50 40 30 40 50 

2nd 

Layer 
70 30 30 30 30 30 

 

Activation functions and solvers were determined using the same 

exhaustive search method. All combinations of the available activation functions 

and solvers were tested, and the predictive accuracies recorded for each 

modification category. Table 12 shows the results of this search method for the 

category “High Saturation Cropped.” As shown, the activation function ‘tanh’ 

provided high predictive accuracy in conjunction with two solvers, L-BFGS-B and 

Adam. The solver ‘Adam” was selected as this combination provided high 

predictive accuracy throughout multiple categories of modification. This activation 

function and solver combination was used across all image modification categories. 

Once the ANN was modeled, two steps were taken to verify that the results obtained 

were accurate.  
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Table 12. Activation Function and Solver for High Saturation Cropped. 
S

o
lv

er
 

Activation 

 Identity Logistic Tanh ReLu 

L-BFGS-B 0.835 0.785 0.905 0.742 

SGD 0.835 0.338 0.801 0.878 

Adam 0.863 0.844 0.905 0.834 

 

4.4 Results and Verification 

The ANN prediction accuracy results from this case study can be found in 

Figure 23 below. The highest predictive accuracies were found in the categories 

“Black and White Original,” "High Saturation Original,” “Low Contrast Cropped,” 

and “High Saturation Cropped” at a rate of 91%. These accuracy rates show that 

cropping the images does not always ensure higher predictive accuracy.  In fact, the 

two “High Saturation” categories predicted at the same rate. Throughout the whole 

data, there were four instances where the cropped images predicted at an equal or 

higher rate than their original counterparts.  
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Figure 23. Predictive Accuracies of Corrugated RSC Images in each modification 

category. 

Figure 24 below shows images from the four highest predicted categories 

for comparison of cropped images vs. original.  

 
Figure 24. Images from the Highest Predicted Categories: “Black and White 

Original” (A), “High Saturation Original” (B), “Low Contrast Cropped” (C), and 

“High Contrast Cropped” (D).    

 Evaluating Figure 24 provides some possible explanations for why cropped 

images do not always predict at a higher rate than original images. When cropping 

A B 
C D 
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images, it is common that the resolution decreases. This can make it more difficult 

for the ANN to identify details and distinguish between similar attributes in an 

image. Additionally, removing a majority of the background of each image can 

cause loss of context. This is important for distinguishing between the area of 

interest in an image and the background. In this case, the smaller background area 

could cause the ANN to not know that the corrugated RSC in question is the 

majority of the image, resulting in a prediction based on portions of the RSC instead 

of the RSC in its entirety. While this wasn’t the case in the two cropped categories 

that predicted at a high rate, it could explain the lower predictive accuracies in other 

cropped categories.  This further proves that it is important to include all image 

modification categories when modeling the ANN since it is not completely certain 

how the ANN views and analyzes images. To dive deeper into these results, two 

verification methods were utilized.  

 
 The first method of verification was manual. In this method, a table from 

the data mining software’s prediction, shown below in Table 13, was utilized. 
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Table 13. Prediction Table Output from ANN. 

 Confidence Rates  

Image 

# 
Compression Corner Edge Prediction Error 

Actual 

Category 

Image 

Name 

1 0.00 1.00 0.00 Corner 0.001 Corner 
Sample 

42.2 

2 0.00 1.00 0.00 Corner 0.002 Corner 
Sample 

44.3 

3 0.00 0.76 0.23 Corner 0.238 Corner 
Sample 

25.3 

4 0.04 0.00 0.96 Edge 0.998 Corner 
Sample 

22.1 

5 0.00 1.00 0.00 Corner 0.001 Corner 
Sample 

50.2 

6 0.00 0.99 0.00 Corner 0.005 Corner 
Sample 

35.2 

7 0.01 0.01 0.98 Edge 0.990 Corner 
Sample 

48.1 

. . . . . . . . 

. . . . . . . . 

42 0.07 0.93 0.01 Corner 0.073 Corner 
Sample 

2.3 

 

Table 13 provided the confidence level in the prediction made, shown in the 

confidence rates columns where three values ranging from 0-1 are shown. The first 

confidence level corresponds to the category “Compression,” the second to 

“Corner,” and the third to “Edge.” For example, for row 4 of this Table, the ANN 

had a confidence level of 0.04 that the image was compression damage, 0.00 that it 

was corner damage, and 0.96 that it was edge damage. As shown from the 

“Prediction” column compared to the “Actual Category” column, this prediction 

was incorrect. This is also shown by the “Error” column which contains an error 
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rate of 0.998 for this specific prediction. Analyzing confidence levels for each 

prediction can show if the prediction is reliable to consider. If the ANN is not very 

confident in a prediction, correct or incorrect, the image can be checked to ensure 

that all modifications are accurate as well as that the sorting is correct. If the 

confidence level is high, the prediction can be considered valid.  Performing manual 

verification is useful to ensure that each image was modified and sorted correctly 

before confusion matrix verification.  

 The second verification method used involved evaluating confusion 

matrices. These were used to see how the ANN performed in a broader sense. To 

evaluate the impact of the image background on prediction results, confusion 

matrices for the categories “Black and White” original (A) and cropped (B) are 

shown below in Figure 25. In both categories, all compression images were 

predicted correctly. For the “Black and White Original” category (A), two corner 

images were predicted to be edge damage, while two edge images were predicted 

to be corner damage. In the “Black and White Cropped” category (B), one corner 

image and one edge image were predicted to be compression damage, and 5 edge 

images were predicted to be corner damage. In these cases, it is obvious that the 

cropped category performed worse than the original category. A portion of the 

incorrectly predicted images from the “Black and White Cropped” category can be 

seen in Figure 26, below.  
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Figure 25. Confusion Matrices for Black and White "Original" (A) and "Cropped" 

(B). 

 

 

Figure 26. Incorrectly predicted edge images from the category "Black and White 

Cropped". 

A 

B 

A 

B 

C 
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The images shown in Figure 26 are edge damage images predicted to be 

corner damage. Image A has been predicted incorrectly across multiple 

modification categories. In this case, it can be assumed that the background is not 

what causes the ANN to predict incorrectly, as it was predicted to be corner damage 

consistently. For image B, it could be assumed that the ANN chose the category 

“corner” because the entire edge impacted is not visible in the image. This raises 

questions about image C, though. The entire edge is visible in the image, but it was 

still predicted to be corner damage. This could be due to the largest amount of 

visible damage being shown in the corner closest to the camera. The black-and-

white image modification does not highlight the damage shown on the edge very 

strongly in this case. As shown in the confusion matrices for the “Black and White” 

category, it is not always the case that cropped images are predicted at a higher 

accuracy rate than original photos of the same modification.  

Figure 27 shows confusion matrices from the highest predictive accuracy 

categories Black and White Original (A), High Saturation Original (B), High 

Saturation Cropped (C), and Low Contrast Cropped (D). All of these categories 

were predicted at a rate of 91% accuracy.  
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Figure 27. Confusion matrices for the highest predicted categories: Black and 

White Original (A), High Saturation Original (B), High Saturation Cropped (C), 

and Low Contrast Cropped (D). 

A 

B

 

C

 

D 
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 Three of these categories, Black and White Original (A), High Saturation 

Original (B), and High Saturation Cropped (C) predicted all compression images 

correctly. In the category Low Contrast Cropped (D), all but one compression 

image was predicted correctly, with one being predicted to be in the category 

‘corner.’ This implies that compression images are consistently predicted correctly, 

regardless of the image modification performed. Most of the differences between 

each matrix lie within the corner and edge image predictions. In the categories 

Black and White Original (A) and High Saturation Cropped (C), two corner images 

were predicted to be ‘edge,’ while two edge images were predicted to be ‘corner.’ 

For the category High Saturation Original (B), one corner image was predicted to 

be ‘edge,’ one edge image was predicted to be ‘corner,’ and two edge images were 

predicted to be ‘compression.’ In Low Contrast Cropped (D), one edge image was 

predicted to be corner damage, and two corner images were predicted to be edge 

damage. Drop testing a corrugated RSC can provide damage that extends beyond 

the point of impact, resulting in a higher chance that the damage observed could fit 

into multiple categories. Figure 28 below shows an example of one corner drop 

image and one edge drop image from the “Original” category with damage that 

could result in a prediction for either category. Image A in this figure is a corner 

drop image and image B is an edge drop image. Both of these examples show 

damage that extends beyond the point of impact. In image A, the left edge 

associated with the corner drop shows signs of impact. In image B, the corner 
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associated with damage is closest to the camera, showing the corner damage more 

than the edge damage. Both of these images were part of the training group, but 

they could have been predicted as either “Edge” or “Corner” damage if included in 

the testing group. Additionally, there are many more options for RSC positioning 

in impact testing compared to compression testing. In total, there were 14 

orientations utilized in drop testing compared to the 2 orientations for compression 

testing. Most of the damage observed in compression testing is in the form of a line 

at the buckling point of the RSC that extends throughout the case. This kind of 

damage is more consistent than impact testing, which could explain the difference 

in predictions between the three categories of damage. 

 

Figure 28. Images that could fit in either "Edge" or "Corner" prediction 

categories. Image A: Corner Drop, Image B: Edge Drop. 

 

A B 
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CHAPTER 5: CONCLUSION 

This thesis proposes a method that uses Artificial Neural Networks (ANN) 

to evaluate corrugated box damage using images. The process begins with 

collecting data from previous validation testing images, e-commerce platforms, or 

new images created in-lab using a web scraping tool. The data is then prepared for 

ANN modeling by sorting each image into a damage category and modifying it to 

fit into 12 image modification categories. The ANN is modeled through data 

splitting, determining the neuron structure, and selecting an appropriate activation 

function and solver. Data is verified through manual verification and confusion 

matrix evaluation to ensure that all predictions are valid for consideration. The 

results show that modifying images in various ways provides high predictive 

accuracy in multiple categories of modifications. Adopting this approach offers 

several benefits, including reduced expenses for retesting packages in case of 

damage following the initial validation phase, exceptional predictive accuracy, and 

streamlined processes due to the significant reduction in time required to assess 

damaged packages. This method is novel to the packaging industry and can be 

expanded upon. Future research ideas include expanding from lab-created images 

to review images from an e-commerce platform and predicting damage from a 

combination of validation test images and e-commerce review images. 

Additionally, this methodology could be expanded to account for the numerous 

packaging types used in the industry.  
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