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ABSTRACT 

To understand the temporal and spatial variability of switchgrass (Panicum virgatum) and 

restored prairie biomass yield and quality as a bioenergy feedstock at field-scale, a study was 

conducted at Marshall Farm (42.44° N, -85.32° W) and Lux Arbor Farm (42.48° N, -85.44° W) in 

southwest Michigan USA from 2018-2021. Switchgrass annual average biomass yield ranged 

from 4.3 to 9.1 Mg ha-1 over the study period. Restored prairie annual average biomass yield 

ranged from 2.4 to 4.9 Mg ha-1. Under similar field conditions, the monoculture switchgrass 

cropping system exhibited more temporal and spatial variability of biomass yield than the 

polyculture restored prairie. In contrast, the polyculture restored prairie exhibited more spatial 

variability of glucose and xylose content than monoculture switchgrass under similar field 

conditions. However, minimal spatial variability of glucose, xylose and lignin content was 

observed in switchgrass and restored prairie. The ratio of interannual temporal variance to spatial 

variance for glucose, xylose and lignin content of switchgrass at Marshall Farm was 12.2, 3.2 and 

5.5, respectively. The ratio of interannual temporal variance to spatial variance for glucose, xylose 

and lignin content of switchgrass at Lux Arbor Farm was 52.4, 5.8 and 1.0 × 105, respectively. 

The ratio of interannual temporal variance to spatial variance for glucose, xylose and lignin 

content of restored prairie at Marshall Farm was 1.3, 1.7 and 9.1, respectively. The ratio of 

interannual temporal variance to spatial variance for glucose, xylose and lignin content of restored 

prairie at Lux Arbor Farm was 6.1, 4.3 and 18.8, respectively. Soil ammonium, magnesium, 

calcium, and phosphorus concentrations as well as the topographic wetness index were important 

to explain within-field spatial variability in biomass yield, glucose, xylose and lignin content of 

switchgrass and restored prairie at Lux Arbor Farm and Marshall Farm. Lastly, we evaluated 

near-infrared spectroscopy as a quick, non-destructive method for analyzing biomass quality.  



Compared to chemical analyses, near-infrared sprectroscopy had negative biases for glucose 

(switchgrass: -72.5 mg g-1, restored prairie: -78.5 mg g-1) and xylose content (switchgrass: -99.6 

mg g-1, restored prairie: -91.4 mg g-1) and positive biases for lignin content (switchgrass: 32.6 mg 

g-1, restored prairie: 47.8 mg g-1). With bias correction, the agreement between near-infrared 

spectroscopy and chemical analysis was significantly improved. Near-infrared spectroscopy is 

therefore a promising rapid analytical tool for glucose, xylose, and lignin content of biomass. 

With expected increases in precipitation and temperature variability associated with future 

climate change, spatial and temporal variability in biomass quality will likely be exacerbated. 

Understanding the sources of this variability will facilitate the development of management 

practices at the field and biorefinery level to help address the issue. Identifying analytical 

methods to accurately assess variability in biomass quality will be an important step in this 

process.  
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CHAPTER 1 GENERAL INTRODUCTION 

Today’s global energy challenges, exacerbated by current global geopolitical conflicts, are 

reshaping the future of energy sustainability, security and affordability. The detrimental effects of 

climate change make the ongoing energy crisis even more urgent. To face the pressing energy and 

climate challenges, developing and deploying renewable energy has become a global effort. 

Among all types of renewable energy, bioenergy is the largest source of renewable energy 

globally and contributes 55% of renewable energy supply today (IEA, 2022). Especially for liquid 

transportation fuel, bioenergy is the only practical renewable energy option in the near future 

(Skeer et al., 2016; Bergero et al., 2023). Furthermore, bioenergy has been seen as instrumental to 

realize a net zero carbon emission economy globally (Highina et al., 2014; Jeswani et al., 2020). 

The current U. S. administration set a goal to achieve net zero carbon emission no later than 2050, 

which is compatible with IPCC’s 1.5 °C increase limit (IPCC, 2022). The first U.S. National 

Blueprint for Transportation Decarbonization (2023) demonstrated that sustainable advanced 

biofuel has the potential to fully replace fossil fuel in aviation, maritime and rail transportation 

(Muratori et al., 2023). In addition to supplying carbon neutral energy, bioenergy with carbon 

capture and storage (BECCS) as a negative carbon emissions technology has been recognized to 

be essential to offset greenhouse gas emissions from sectors with known difficulty of mitigating 

carbon emission completely (Azar et al., 2010; Hanssen et al., 2020; Rosa et al., 2021). Under the 

net zero carbon by 2050 scenario, the International Energy Agency forecasted that the demand for 

biofuel will increase by 20% from 2022 to 2027 (IEA, 2022). Moreover, other value-added 

biochemical products from the emerging bioenergy industry have great potential to replace oil-

based chemical products (Torres-Mayanga et al., 2019; Meramo et al., 2022). Thus, bioenergy 

and biochemical products from biomass-based resources are integral parts of the greener 
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bioeconomy (Rogers et al., 2017; Scarlat et al., 2015). To meet the projected increasing demand 

of bioenergy and support the bioeconomy, a steady and sustainable biomass feedstock supply is 

paramount.   

Bioenergy feedstocks are generally classified into three groups: 1st, 2nd and 3rd generation 

bioenergy feedstocks. The 1st generation bioenergy feedstocks come from edible crops such as 

corn, sugarcane and soy. With the help of enzymes and microorganisms, biofuel such as ethanol is 

produced from starch in corn or sugar in sugarcane. Via the transesterification process, biodiesel 

is produced from oil in soy or fat in animals. To date, the majority of the biofuel in the U.S. is still 

coming from corn ethanol due to supportive policies such as Renewable Fuel Standard 

(Taxpayers for Common Sense, 2021). The food- or feed-based 1st generation biofuel feedstocks 

have been criticized for having a negative impact on food security and biodiversity (Tenenbaum, 

2008; Hill, 2022; Tudge et al., 2021). Some studies have reported that 1st generation biofuel such 

as corn ethanol can increase greenhouse gas (GHG) emissions when compared to fossil fuel 

(Searchinger et al., 2008; Brandão, 2022; Lark et al., 2022). Lark et al. (2022) summarized that 

the sources of GHG increases are intensive use of synthetic nitrogen fertilizer and land use change 

to grow more corn. To address the concerns associated with 1st generation bioenergy feedstocks, 

lignocellulosic biomass as 2nd generation bioenergy feedstocks have gained more attention. Main 

sources of 2nd generation bioenergy feedstocks are dedicated energy crops such as switchgrass 

(Panicum virgatum), short rotation woody crops such as poplar, agricultural and forestry residues, 

etc. A review reported that 2nd generation bioenergy feedstocks generally decrease GHG 

emissions compared to fossil fuel (Highina et al., 2014). Despite the great GHG emission 

reduction potential, the major technical challenge of using lignocellulosic biomass is developing 

efficient and cost-effective pathways to convert relatively recalcitrant biomass materials into fuel 
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or other value-added co-products (Balan, 2014; Singhvi & Gokhale, 2019). Third generation 

bioenergy feedstocks include lipid rich algal biomass. At the current status of technology, biofuel 

derived from 3rd generation bioenergy feedstocks is not feasible for commercialization owing to a 

large requirement of land and high water footprint (Li-Beisson & Peltier, 2013; Maliha & Abu-

Hijleh, 2022).  

Low input requirements and the perennial nature of candidate crop species make 2nd generation 

bioenergy feedstocks such as switchgrass and restored prairie good candidates for growing on 

marginal lands (Tilman et al., 2006; Mitchell et al., 2008). Marginal lands are defined as lands 

with low biophysical quality and economic marginality for conventional food crop cultivation 

(Kang et al., 2013; Csikós & Tóth, 2023). Growing bioenergy feedstocks on marginal lands 

provides multiple benefits: reduced land use conflicts with food crop cultivation (Qin et al., 2015; 

Jiang et al., 2021), reduced soil erosion (Lai et al., 2018; Næss et al., 2023), increased soil carbon 

stocks (Slessarev et al., 2020; Bazrgar et al., 2020), and improved biodiversity (Valcu-Lisman et 

al., 2016; Von Cossel et al., 2020). Lands enrolled in the Crop Reserve Program (CRP) in the U.S. 

are characterized as low quality and environmentally vulnerable, thus generally considered as 

marginal lands. Therefore, the CRP lands offer unique opportunities to study agronomic practices, 

environmental impacts and economic viability of perennial bioenergy crop cultivation on 

marginal lands. Abraha et al. (2018) reported that converting CRP grassland to perennial 

bioenergy crops such as switchgrass can repay the carbon debt incurred upon conversion in 8 

years. A life-cycle analysis of perennial bioenergy crops on CRP land in the northeastern U.S. 

found that high biomass price and high share of land rental payments leads to high cumulative 

GHG savings (Chen et al., 2021). Hartman et al. (2011) summarized that converting CRP land to 

a bioenergy cropping system closely resembling its original composition such as mixed grasses 
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would maintain biodiversity (Hartman et al., 2011).  

Site specific management or precision agriculture is the key management approach for modern 

agriculture to maximize crop yield, optimize resource use and minimize negative environmental 

impacts by following 5 Rs: right input, right amount, right time, right place and right method 

(Pierce et al., 1994; Mokariya & Malam, 2020). It allows growers to manage not only within-field 

variability at finer resolution but also the temporal dynamic of crops (Plant, 2001). Site specific 

management relies on georeferenced data to understand within-field variability. Historically, grid 

sampling or point sampling was the main data collection method for site specific management. 

With the advance of technology, yield monitors, on-the-go sensors and remote sensing have 

become the data collection powerhouse of precision agriculture. Unlike grain yield monitor 

technology, yield monitoring systems for perennial biomass feedstock yield are not yet 

commercially available. Studies have used remote sensing, primarily unmanned aerial vehicles 

with sensors, to monitor biomass yield (Maesano et al., 2020; Hamada et al., 2021; Impollonia et 

al., 2022). However, the ground truth field level data for bioenergy feedstocks yield are scarce. 

Therefore, point sampling on the ground is essential to understand the variability of perennial 

biomass yield and quality. 

Studies have shown high spatial variability of perennial bioenergy crop yield among fields based 

on plot experiments across a wide geographical range (Fike et al., 2006; Wullschleger et al., 2010; 

Anderson et al., 2011; Ouattara et al., 2022). However, little information is available for within-

field spatial variability of perennial bioenergy crop yield. Understanding temporal and spatial 

variability of crop yield and the causes of the variability will help growers to implement site-

specific management. It is well recognized that annual crop yield is affected by inherent soil 

variability such as soil fertility, soil topography and soil texture (e.g., Marques Da Silva & 



 

5 
 

Alexandre, 2005; Juhos et al., 2015; Wang et al., 2022). Jiang and Thelen (2004) reported that 

corn and soybean yield were affected by slope and very fine sand content. Previous studies found 

that soil properties and topography largely explained within-field variability of corn and soybean 

grain yield. Kaspar et al. (2004) demonstrated that soil pH, landscape position, and curvature 

influenced corn and soybean yield. To the best of our knowledge, only two studies have examined 

within-field spatial variability of early established switchgrass biomass yield using field data (Di 

Virgilio et al., 2007; Schmer et al., 2010). Di Virgilio et al. (2007) found soil nitrogen, 

phosphorus, moisture and pH were correlated with switchgrass biomass yield. Schmer et al. 

(2010) reported soil topography did not significantly affect switchgrass biomass yield. Knowledge 

of within-field temporal and spatial variability of biomass feedstock yield is critical for bioenergy 

feedstock supply chain modeling and planning (Kazemzadeh & Hu, 2013; O’Neill et al., 2022). 

Success of the bioenergy industry not only depends on a sustainable supply of feedstocks but also 

on the quality of the feedstocks. The inherent heterogeneity of biomass feedstocks poses unique 

challenges to biorefineries because it influences conversion efficiency and cost (Kenney et al., 

2013; Castillo-Villar et al., 2017). Generally, biomass quality includes physical characteristics and 

chemical composition. Cell wall chemical composition of lignocellulosic biomass feedstock is 

critical for selecting appropriate conversion pathways and improving conversion efficiency (Li et 

al., 2016). The major components of cell walls include cellulose, hemicellulose and lignin. High 

cellulose, high hemicellulose and low lignin are desired for biochemical conversion of 

lignocellulosic biomass into liquid fuel via enzyme hydrolysis. Although lignin is less desired for 

biochemical conversion pathways due to its recalcitrance, it is a promising material for value-

added chemical production (Weng et al., 2021; Zhou et al., 2022). Previous studies reported that 

variation in biomass cell wall composition was most likely caused by precipitation and 
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temperature patterns (Emerson et al., 2014; Crivellaro et al., 2022). Harvesting time and nitrogen 

fertilization were found to affect switchgrass quality as a biofuel feedstock. Schmer et al. (2012) 

demonstrated cell wall composition of switchgrass had higher field to field variability than within-

field variability. Research on within-field temporal and spatial variability of lignocellulosic 

biomass cell wall composition and the causes of the variability is still lacking. A full 

understanding of within-field temporal and spatial of lignocellulosic biomass cell wall 

composition is critical for developing meaningful biomass quality specifications for various 

conversion pathways. 

The importance of understanding variability in cell wall composition of biomass feedstock 

underlies the need for rapid, low-cost analytical instrumentation and methods to accurately assess 

the variability. Traditional chemical analysis of cell wall composition is time-consuming, labor 

intensive and high cost. Near-infrared spectroscopy coupled with chemometrics as a non-

destructive and high-throughput method have shown promising results in analyzing plant cell wall 

composition (Li et al., 2015; Ai et al., 2022). Increasing portability of near-infrared spectrometers 

makes it attractive as a biomass quality monitoring and control tool from biomass harvest and 

storage to conversion at the biorefinery (Zhu et al., 2022). However, near-infrared spectroscopy 

relies on primary chemical analysis for calibration and validation. More information is still 

needed regarding its performance and measurement bias.  

Crop growth and yield are climate dependent. Ray et al. (2014) reported that one third of the 

global crop yield variability can be explained by climate. Studies have highlighted the impacts 

and risks of climate variability and change on crop production globally (Gornall et al., 2010, 

Wing et al., 2021, Hasegawa et al., 2022). With expected increases in precipitation and 

temperature variability associated with future climate change, spatial and temporal variability in 
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biomass yield and quality will likely be exacerbated.  Understanding the causes of this variability 

will facilitate the development of management practices at the field and biorefinery level to help 

address the issue. 

The main aim of this dissertation is to better understand the temporal and spatial variability of the 

quantity and quality of switchgrass and restored prairie as bioenergy feedstocks at field scale. To 

do this, this dissertation is organized into three main research chapters, bookended by an 

introductory chapter at the beginning and a general conclusion chapter at the end. The second 

chapter focuses on understanding biomass yield variability of switchgrass and restored prairie 

with two objectives: (1) investigate the temporal and spatial variability of switchgrass and 

restored prairie biomass yield at field scale; and, (2) examine the effect of soil fertility features 

and topographical characteristics on switchgrass and restored biomass yield at field scale. The 

third chapter focuses on understanding the variability of glucose, xylose and lignin content of 

switchgrass and restored prairie at field scale with two objectives: 1) investigate the temporal and 

spatial variability of switchgrass and restored prairie biomass quality components at field scale; 

and, 2) examine the effects of soil fertility features and topographical characteristics on glucose, 

xylose and lignin content of switchgrass and restored prairie at field scale. In chapter four, the 

possibility of using near-infrared spectroscopy technique as a low-cost, rapid analytical tool for 

biomass compositional determination is examined. 
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CHAPTER 2 SPATIO-TEMPORAL VARIABILITY OF SWITCHGRASS AND 

RESTORED PRAIRIE BIOMASS YIELD IN THE GREAT LAKES REGION USA 

Abstract 

To date, little research has been done on the spatio-temporal variability of switchgrass (Panicum 

virgatum) and restored prairie biomass yield at the within-field scale. Spatio-temporal variability 

of biomass yield for mature switchgrass and restored prairie fields were examined at Marshall 

Farm (42.44° N, -85.32° W) and Lux Arbor Farm (42.48° N, -85.44° W) in southwest Michigan 

USA from 2018-2021. Average biomass yield for switchgrass at Marshall Farm ranged from a 

low of 5.9 Mg ha-1 in 2020 to a high of 9.1 Mg ha-1 in 2021. Biomass yield for switchgrass at 

Lux Arbor Farm ranged from 4.3 Mg ha-1 in 2019 to 5.8 Mg ha-1 in 2020. Biomass yield for 

restored prairie at Marshall Farm ranged from a low of 2.4 Mg ha-1 in 2020 to a high of 3.7 Mg 

ha-1 in 2021. Biomass yield for restored prairie at Lux Arbor Farm ranged from 3.0 Mg ha-1 in 

2021 to 4.9 Mg ha-1 in 2020. Under similar field conditions, biomass yield of switchgrass had 

higher within-field spatial variability than restored prairie. Temporal variability for biomass yield 

of switchgrass with higher average interannual correlation (Intraclass correlation coefficient 

(ICC): 0.63) at Lux Arbor was lower than switchgrass at Marshall Farm (ICC: 0.06). Similarly, 

temporal variability for biomass yield of restored prairie with higher average interannual 

correlation (ICC: 0.48) at Lux Arbor was lower than restored prairie at Marshall (ICC: 0.17). 

Soil ammonium was positively correlated with biomass yield of switchgrass at Lux Arbor Farm 

and Marshall Farm. Profile curvature had a positive effect on biomass yield of switchgrass at 

Lux Arbor Farm. In contrast, profile curvature had negative effect on biomass yield of 

switchgrass at Marshall Farm. Soil calcium and relative elevation played a critical role to explain 

within-field spatial variability in biomass yield of restored prairie at Lux Arbor Farm and 
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Marshall Farm.  

Introduction 

In the foreseeable future, biofuel as one form of renewable energy will be an integral part of a 

greener future with its inherent ability to mitigate carbon emissions. IPCC states that by the end 

of the century, atmospheric CO2 concentrations need to be brought down to the preindustrial era 

levels in order to maintain temperature increase within 1.5 or 2 °C (IPCC, 2022). By rejoining 

the Paris agreement in 2021, the United States of America set its nationally determined 

contribution (NDC) of greenhouse gas emissions to 50-52% below 2005 levels in 2030 (United 

Nations Climate Change, 2021). One study argued that greenhouse gas (GHG) emissions 

increase the carbon debt of bioenergy cropping systems up to 50% when switching from corn to 

switchgrass (Searchinger et al., 2008). However, perennial cropping systems like switchgrass 

and restored prairie have a shorter carbon debt repayment period than annual cropping systems 

such as corn (Abraha et al., 2019). Furthermore, Fargione et al. (2008) estimated that perennial 

cropping systems on degraded agricultural land either have no or little carbon debt due to land 

use change. Converting to perennial cropping system with no-till management brought down the 

C debt to zero or even negative (Ruan & Robertson, 2020). In addition, Hussain et al. (2019) 

reported on the potential of established perennial bioenergy cropping systems to ameliorate 

nitrogen pollution from the agricultural landscape. Adkins et al. (2019) found that choosing a 

cultivar based on phenological features and associated microbial community could further 

increase the potential of C sequestration in switchgrass. 

Perennial crops coupled with sustainable management practices will help to realize the goal of 

mitigating atmospheric CO2 from the agricultural sector. Due to low fertilizer input 

requirements, perennial grasses for biomass production have great potential to be grown on 
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marginal lands, which are not ideal for food production. Doing so fundamentally removes the 

food vs. fuel concern associated with first generation bioenergy feedstocks. A review 

demonstrates that growing perennial bioenergy crops on marginal lands offers a wealth of 

benefits, such as soil erosion control, soil carbon sequestration, increased biodiversity and 

improved water quality (Jacot et al., 2021). A recent study estimated that there are potentially 

2230 million hectares of marginal lands available for switchgrass production globally, and 

among that total, the USA accounts for 297.5 million hectares (Fan et al., 2020).  

Often the assumption of having a readily available, reliable supply of biomass feedstock for 

biofuel purposes is made by researchers and the general public, but this assumption should not be 

naively made without validation. In agreement, a US government report stated that a reliable 

supply of biomass feedstock is critical for the success of a biofuel economy and in realizing the 

economy of scale necessary to maintain low fuel prices (U.S. Department of Agriculture, 2021).  

Previous studies suggested within-field variability in yields of perennial bioenergy crops like 

switchgrass (Di Virgilio et al., 2007, Schmer et al., 2010). One unanswered question is 

identifying the dominant contributors to spatial and temporal variability of perennial bioenergy 

feedstock yield. To be able to effectively use agronomic inputs and increase average biomass 

yield, it is imperative to understand the spatial and temporal variation of the specific growing 

environment. Once dominant causes of variability are determined, field management plans can 

be tailored to address the identified causes of variability.  

The objectives of this study are to 1) Investigate the temporal and spatial variability of 

switchgrass (Panicum virgatum), restored prairie biomass yield at field scale; and 2) Study the 

effect of soil fertility characteristics and soil topographical features on the temporal and spatial 

variability of switchgrass and restored prairie biomass yield. The knowledge gained from this 
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study will facilitate agronomic management planning for perennial bioenergy cropping systems 

to help ensure a reliable future bioenergy feedstock supply. 

Materials and methods 

Experimental Site Description  

Field-scale experiments were conducted at Marshall Farm (42.44° N, -85.32° W) and Lux Arbor 

Farm (42.48° N, -85.44° W) from 2018 to 2021 (Figure A2.1 and A2.2), which are part of the 

Great Lakes Bioenergy Research Center experimental infrastructure located at Michigan State 

University’s W.K. Kellogg Biological Station (KBS) in southwest Michigan. Soils in southwest 

Michigan are developed on glacial till and outwash from the last retreat of the Wisconsin 

glaciation (circa 12,500 years BP). Most soils are sandy loam and silty clay loams of moderate 

fertility and belong to the Alfisol, Mollisol, Histosol and Entisol soil orders in this area (Crum & 

Collins, 1995). All the fields at Marshall were enrolled in the USDA CRP program in 1987, with 

smooth brome grass (Bromus inermis) planted in the fields. Annual crops had been planted in 

these fields for decades prior to CRP program enrollment. Prior to conversion, all the fields at 

Lux Arbor had been cultivated with a tilled corn-soybean rotation since 1987. In early May 

2009, fields at Marshall and Lux Arbor were planted with glyphosate resistant soybean as a 

breakout crop for one growing season and then converted to switchgrass and restored prairie 

fields.  

Restored prairie (5 grass and 14 forb species, see details in Table A2.1) and switchgrass (cultivar 

Cave-in-rock) were planted following the soybean breakout crop at both farms, which created a 

total of 4 fields varying in size from 11-14 ha. Switchgrass was planted at a seeding rate of 11.2 

kg ha–1 with oats (Avena sativa) as nurse crop in 2010. Restored prairie was planted at a bulk 

seeding rate of 7.8 kg ha–1 with oats as nurse crop in 2010.  
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Switchgrass was fertilized with 28-0-0 liquid urea-ammonium nitrate at the rate of 56 kg ha-1 

nitrogen every spring beginning in 2011. Based on low soil test levels, potash at rate of 140 kg 

ha-1 was applied to restored prairie at Lux Arbor in 2009. No other phosphorus or potassium 

applications were made to switchgrass or restored prairie fields.   

In each field, 30 georeferenced points were randomly selected. In late May 2018 and late May 

2020, soil samples were collected at 0-25 cm depth ‘sat all georeferenced points and sent to 

MSU soil lab for measurements of pH, phosphorus (P: mg kg-1), potassium (K: mg kg-1), calcium 

(Ca: mg kg-1), magnesium (Mg: mg kg-1), ammonium (NH4
+: mg kg-1), and total soil carbon (C: 

wt%) and organic matter (wt%) content, which collectively indicate soil fertility characteristics. 

Soil fertility characteristics were assumed unchanged from 2018 to 2019 and 2020 to 2021. 

Elevation at a resolution of 5 meters was collected by Lidar at all fields in 2008, which were 

used to generate digital elevation maps (DEMs) for each field. Slope, aspect, plane curvature, 

profile curvature, and Topographical Wetness Index (TWI) were obtained and used as soil 

topographical features in R Statistical Programming Language (R Core Team, 2022) with the 

raster (Hijmans, R.J., 2021), rgdal (Bivand, R., et al., 2021), maptools (Bivand, R. & Lewin-Koh, 

N., 2021) and dynatopmodel packages (Metcalfe, P., et al., 2018). Soil sand, and clay content 

were obtained from either deep core (0-50 cm) samples analysis in 2009 or USDA Web Soil 

Survey for all georeferenced sampling points (Web Soil Survey, 2022). The 15 bar lower limit of 

soil water content (LL15), drained upper limit of soil water content (DUL), saturated hydraulic 

conductivity of soil (Ksat), whole profile drainage rate coefficient (SWCON), and saturated 

water content (SAT) were calculated from soil sand content, clay content and total carbon 

content (Saxton & Rawls, 2006). Details on biomass samples and soil samples parameters are 

located in Figure A2.3. Descriptive statistics for soil fertility characteristics and topographical 
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features are located in Table A2.4 to A2.7. In late fall of 2018-2021, switchgrass and restored 

prairie biomass samples were cut at ground level at 30 fixed georeferenced points by using 1×1 

m2 quadrat and clipper at both farms after the first killing frost. In 2019, 2020 and 2021 

harvesting seasons, switchgrass and restored prairie samples were also collected at an additional 

distinct 12 georeferenced points at both farms giving a total of 42 sampling points per field. All 

biomass samples were dried at 65 °C to a constant weight and biomass yield was expressed on a 

dry weight basis.  

Statistical Analysis 

All statistical analyses were done in the R statistical computational environment (R Core Team, 

2022) with packages sf (Pebesma, 2018), sp (Pebesma et al., 2005), gstat (Pebesma, 2004), 

automap (Hiemstra et al., 2008), ape (Paradis & Schliep, 2019), lme4 (Bates et al., 2015), 

DHARMa (Hartig, 2021), and spaMM (Rousset & Ferdy, 2014). All figures were made in R 

statistical computational environment with package ggplot2 (Wickham, 2016). Empirical semi-

variograms were fitted to the data and interpolations were made for switchgrass and restored 

prairie at both farms separately for the years 2018-2021 to visually examine the biomass yield 

variability. Null linear mixed model with intercept for sampling station as random effect were 

fitted to four-year biomass yield data. Then, intra-class correlations were obtained for the null 

models to determine interannual variability of biomass yield. Two-level residuals for sampling 

stations were extracted to study field spatial variability of biomass yield. From 2-level residuals, 

Moran’s I values (Moran, 1950) were calculated for each cropping system at both Lux Arbor and 

Marshall. Linear mixed models with farm, crop, and year coupled with their two- and three-way 

interactions were fitted to obtain the estimated means of biomass yield. The linear mixed model 

was explicitly incorporated with Matern spatial covariance. In order to control family-wise error 
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(α=0.05), only predetermined comparisons were conducted when three-way interaction was 

significant. The comparisons were biomass yield between crops within the same location and 

year (N=8), biomass yield between locations within the same crop and year (N=24) and biomass 

yield between years within the same locations and crops (N=8). Empirical orthogonal functions 

(EOFs) as a dimension reduction technique were used to reveal spatial and temporal patterns for 

switchgrass and restored prairie biomass yield at both Marshall and Lux Arbor with centered 

values. Spatially centered values were used to decompose the dataset into corresponding spatial 

EOFs and paired time series of expansion coefficients (ECs), which together revealed the spatial 

variability patterns. In addition, temporally centered values were similarly used to reveal 

corresponding temporal EOFs and paired time series of expansion coefficients (ECs), which 

together revealed the temporal variability pattern. Ordinary kriging with Matern covariance 

structure was used to generate interpolated spatial and temporal EOF maps.  

Moran’s I value formula: 

I = 
N

W

∑ ∑ (xi−�̅�)(xj−�̅�)N
j=1

N
i=1

∑ (xi−�̅�)2N
i=1

 

where N is the number of the sampling points; W is the sum of weights; wij is weight from a 

distance decay function; xi is the residuals; �̅� is the mean of the residuals. 

Spatially centered values: 

Yspatial (s, t) = y(s, t) -ȳ(t),   

Where y(s, t) is the observed value at location s and in year t. ȳ(t) is the mean of observed value 

over sampling points within farm. 

Temporally centered values: 

Ytemporal (s, t) = y(s, t) -ȳ(s)  

Where y(s, t) is the observed value at location s and in year t. ȳ(s) is the mean of observed value 
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over years for each sampling point. 

A spatio-temporal Gaussian process unconditional model was fitted to examine spatial and 

temporal variability of switchgrass and restored prairies separately at both farms. In addition, a 

spatio-temporal Gaussian process model with selected variables in the final model was fitted to 

investigate the change of spatial variability of switchgrass and restored prairie separately at both 

farms. 

The spatio-temporal Gaussian Process model took the form below: 

y(s, t) = Y(s,t) + ϵ(s, t) 

Where Y(s, t) is mean process part and ϵ(s, t) is noise or error process part. Index s indicates 

location with x, y coordinates; t indicates discrete time point.  

The error part ϵ(s, t) is assumed to have identical independent and distributed normal distribution 

with 0 mean and variance σ2.  The mean process part Y(s, t) is consist of a systematic part and 

error part η(s, t). Error part η(s, t) in mean process is assumed to have 0 mean and variance-

covariance term, which takes account of spatial and temporal dependency. Matern spatial 

correlation was used to model the spatial dependency. Stationarity was also assumed from 

examining the trends along longitude and latitude for dry biomass yield. Since the temporal 

resolution was one measurement per year and only 4 years of data were available, within-field 

spatial variability is assumed static over the study period. Temporal variability was examined by 

including year as random intercept for each crop at both farms. Therefore, independence of 

random variations due to year and Matern spatial covariance was assumed.  

Multi-model inference with backward selection was adopted to study the possible associative 

effects of soil fertility characteristics, soil topographical features and seasonal precipitation on 

switchgrass and restored prairie biomass yield over the study period (2018-2021). Since variable 
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selection techniques often suffer from model instability, checking model stability is 

recommended is an integral part of model fitting (Burnham & Anderson, 2004, Symonds & 

Moussalli, 2011). To this end, a bootstrapping resampling (replication: 1000) technique was used 

to examine stability of the final model chosen by lowest AIC. Variables with at least 70% 

inclusion probability were considered to be the constantly selected variables. Soil P, K, Ca, Mg, 

NH4
+, pH, and total carbon (C: wt%) were included in the models as soil fertility characteristics. 

Elevation, slope, aspect, plane curvature, profile curvature, TWI, LL15, DUL, Ksat, SAT, sand, 

and clay as soil topographical features were included in the models. Cumulative precipitation 

(mm) from April to May as early growing season precipitation (early), June to July as middle 

growing season precipitation (middle), and August to September as late growing season 

precipitation (late) were included in the models. All of soil features and growing season 

precipitation were standardized by abstracting means and dividing by standard deviations before 

model fitting. 

Results 

Air Temperature and Precipitation 

As shown in Table 2.1, 30-year monthly average maximum air temperatures in the area range 

from 0.7 °C in January to 29.7 °C in July. Thirty-year monthly average minimum air temperature 

values range from -7.6 °C in January to 16.1 °C in July. Climatological data (2018-2021) at the 

MSU Kellogg Weather Station represents monthly temperature and monthly cumulative 

precipitation at Marshall. Growing seasons 2019 and 2020 both had higher monthly average 

maximum air temperature and higher monthly average minimum air temperature in July than the 

30-year monthly averages. Thirty-year monthly average total precipitation ranges from 63.8 mm 

in March to 106.4 mm in May. Compared to 30-year monthly average cumulative precipitation, 
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the 2018 growing season was the driest among the four growing seasons under study. In 

comparison with growing season 2019, growing season 2020 had relatively lower cumulative 

precipitation earlier in the season from April to July and relatively higher total precipitation later 

in the season from August to September. The 2021 growing season had substantial lower 

cumulative precipitation earlier in the season from April to May and significantly higher later in 

the season from June to September compared to other growing seasons and the 30 year average 

(Figure A2.4). 

Figure 2.1 shows that both maximum and minimum air temperature had a general trend of 

gradual increase from April until July and August during the four growing seasons under study. 

Precipitation during the study period mainly clustered in two time periods, May to July and 

September to October, respectively.  The 2018 growing season had relatively lower precipitation 

than the 2019 and 2020 growing seasons (April to September). The 2021 growing season had the 

highest precipitation from June to September over the four study years. 

At Lux Arbor, early growing season cumulative precipitation (April and May) and late growing 

season cumulative precipitation (August and September) were generally lower in 2021 than 2018 

to 2020, respectively (Table 2.2). The years 2018 and 2020 had similar cumulative precipitation 

over the growing season (April to September) 
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Figure 2.1. Daily air temperature (°C) and precipitation (mm) at Michigan State University’s 

Kellogg Weather Station (42.41°N, -85.37°W).  Vertical bars represent precipitation. Dots 

represent minimum air temperature and continuous lines represent maximum air temperature. 

Data were obtained from Michigan State University Enviro-weather Automated Weather Station 

Network. Available online: https://mawn.geo.msu.edu/station.asp?id=kbs [1/19/2023].

https://mawn.geo.msu.edu/station.asp?id=kbs
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Table 2.1. Monthly climatological data for 2018-2021 growing seasons at Michigan State 

University Kellogg Weather Station (42.41° N, -85.37°W) and 30-year average at Battle Creek 

Weather Station (42.37°N, -85.26°W).  
Month 3 4a 5a 6b 7b 8c 9c 10 11 12 1 2 

 2018-2019d 

Tmax1 5.9 10.1 24.6 26.1 28.4 28.5 24.5 15.1 3.8 3.3 -1.9 1.8 

Tmin1 -3.6 -0.8 12.5 15.6 16.4 15.4 13.0 5.3 -1.8 -3.5 -10.1 -7.4 

PRCP1 36.3 44.4 208.3 77.7 37.6 111.3 58.2 103.1 39.6 32.2 16.8 30.2 

 2019-2020d 

Tmax 5.9 15.0 20.3 25.2 30.1 27.2 24.8 16.4 4.8 4.8 2.5 1.4 

Tmin -4.2 3.5 9.0 14.4 18.3 14.5 14.0 5.8 -2.7 -3.3 -3.9 -6.7 

PRCP  58.7 86.4 110.0 157.0 80.5 44.2 119.4 91.2 32.0 71.4 76.2 10.2 

 2020-2021d 

Tmax 8.9 12.4 19.6 28.0 30.1 28.8 22.2 14.6 12.2 4.1 1.1 -0.7 

Tmin -1.0 1.6 8.9 14.1 17.7 14.8 10.1 3.2 1.6 -3.7 -5.4 -11.3 

PRCP  70.1 73.1 152.4 82.5 48.8 109.2 80.5 107.7 42.4 42.4 13.2 5.3 

 2021-2022d 

Tmax 12.3 15.4 21.1 28.1 27.1 29.3 24.7 18.1 7.9 6.6 -2.0 1.0 

Tmin -0.9 3.2 7.3 15.8 17.0 16.9 12.2 9.5 -0.1 -2.0 -11.5 -8.8 

PRCP 40.1 28.2 21.6 233.4 114.1 121.7 400.2 74.7 31.5 42.7 2.5 46.5 

 30 Year Averagee 

Tmax 9.3 16.4 22.7 27.8 29.7 28.1 24.5 17.8 9.8 2.7 0.7 2.7 

Tmin -2.4 3.2 9.0 14.2 16.1 15.5 11.2 5.8 0.7 -5.1 -7.6 -7.0 

PRCP  63.8 91.7 106.4 104.2 103.1 105.9 92.4 89.1 79.0 62.2 62.6 47.9 

1. Abbreviation: Tmax: Max Air Temperature (°C), Tmin: Minimum Air Temperature (°C) and PRCP: 

Total Precipitation (mm). 

a. April and May are defined as early growing season. 

b. June and July are defined as middle growing season. 

c. August and September are defined as late growing season. 

d. 2018-2021 climatological data were obtained from Michigan State University Enviro-weather 

Automated Weather Station Network. 

Available online: https://mawn.geo.msu.edu/station.asp?id=kbs [4/27/2022] 

e. 30-year average climatological data were obtained from National Centers for Environmental 

Information (Station ID: USC00200552) at National Oceanic and Atmospheric Administration (NOAA). 

Available online: https://www.ncdc.noaa.gov/cdo-web/datatools [1/19/2023].  
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Table 2.2. Monthly precipitation for 2018-2021 growing seasons at Lux Arbor Marginal Land 

Experiment Weather Station (42.48°N, -85.45°W). 
Month 3 4a 5a 6b 7b 8c 9c 10 11 12 1 2 

  2018-2019d  

PRCP1 43.4 64.3 199.4 112.5 46.7 101.9 130.8 98.3 52.6 53.8 24.1 80.0 

 2019-2020d 

PRCP  61.0 133.9 140.7 178.8 52.6 61.2 127.5 136.9 43.9 81.8 96.8 26.2 

 2020-2021d 

PRCP  77.2 79.0 152.9 88.4 78.0 139.2 93.2 99.6 45.2 60.7 25.7 8.6 

 2021-2022d 

PRCP 39.9 31.5 27.4 199.1 64.5 87.1 74.2 132.6 44.7 60.2 2.5 60.2 

1. Abbreviation: PRCP: Total Precipitation (mm). 

a. April and May are defined as early growing season. 

b. June and July are defined as middle growing season. 

c. August and September are defined as late growing season. 

d. 2018-2022 climatological data were obtained from Great Lake Bioenergy Research Center online 

database: https://data.sustainability.glbrc.org/datatables/507 [1/19/2023]. 

Descriptive statistics 

Both switchgrass and restored prairie show within-field spatial variability of dry biomass yield 

over the study period (2018-2021) with a relatively higher coefficient of variation (CV: 0.40 to 

0.49, 0.39 to 0.51 for switchgrass and restored prairie respectively) at Lux Arbor and relatively 

low CV (0.24 to 0.39 and 0.27 to 0.47 for switchgrass and restored prairie respectively) at 

Marshall (Table 2.3). In 2020, switchgrass (mean 5.9 Mg ha-1; standard deviation (SD): 2.0 Mg 

ha-1) and restored prairie (2.4 ± 1.1 Mg ha-1) recorded the lowest biomass yield at Marshall over 

the study period (Table 2.3). Conversely, Lux Arbor recorded its highest biomass yield 

(switchgrass: 5.8 ± 2.6 Mg ha-1; restored prairie: 4.9 ± 1.9 Mg ha-1) over the study period (2018-

2021) in 2020.  Switchgrass dry biomass yields were higher at Marshall than Lux Arbor across 

all four years. However, restored prairie dry biomass yields were lower at Marshall than Lux 

Arbor from 2018 to 2020. In the relatively high precipitation year of 2021, restored prairie yield 

was higher at Marshall than Lux Arbor. This implies differences in the underlying mechanisms 

driving switchgrass and restored prairie biomass yields.  
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Table 2.3. Descriptive statistics of dry biomass yield (Mg ha-1) for switchgrass and restored 

prairie during the study period (2018-2021) at Marshall Farm and Lux Arbor Farm. 

1. Abbreviation: SD: standard deviation, CV: coefficient of variance. 

As shown in Table 2.4, neither switchgrass nor restored prairie at Lux Arbor showed statistically 

significant spatial autocorrelation based on Moran’s I values. Switchgrass showed statistically 

significant spatial autocorrelation in 2020 and 2021 at Marshall. Restored prairie showed 

statistically significant autocorrelation in 2018 and 2020 at Marshall.  

Further examination of spatial autocorrelation by empirical variograms (Figures A2.5, A2.7, 

A2.9 and A2.11 in appendix) corroborate the Moran’s I value results. Best fitted empirical 

variograms show that only switchgrass and restored prairie at Marshall had relatively high pill: 

nugget ratios, indicating spatial dependency. In addition, most of the predicted maps (Figures 

A2.6, A2.8, A2.10 and A2.12 in appendix) from ordinary kriging show a lack of spatial 

dependency. The directional variograms (Figures A2.13 to A2.16 in appendix) show that spatial 

autocorrelations were similar at different directions, which confirmed the stationarity of the 

spatial autocorrelations.   

 

Dry Biomass Yield (Mg ha-1) 

  Marshall  Lux Arbor 

Crop Year Mean SD1 CV1  Mean SD1 CV1 

Switchgrass 2018 6.1 2.3 0.39  4.8 1.9 0.40 

2019 6.1 1.5 0.24  4.3 2.1 0.49 

2020 5.9 2.0 0.34  5.8 2.6 0.44 

2021 9.1 2.7 0.29  4.8 2.1 0.44 

Average 6.9 2.5 0.37  4.9 2.3 0.46 

Restored prairie 2018 3.5 0.9 0.27  4.2 2.0 0.47 

2019 3.7 1.4 0.38  3.8 1.6 0.41 

2020 2.4 1.1 0.47  4.9 1.9 0.39 

2021 3.7 1.4 0.39  3.0 1.5 0.51 

yearly 3.3 1.4 0.41  3.9 1.9 0.47 
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Table 2.4. Moran's I values of observed dry biomass yield (Mg ha-1) for switchgrass and restored 

prairie fields at Marshall Farm and Lux Arbor Farm during the study period (2018-2021). 

    Marshall 

Crop Year Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.031 -0.035 0.026 0.892 

 2019 -0.025 -0.024 0.022 0.989 

 2020 0.041 -0.024 0.022 0.003a 

  2021 0.072 -0.024 0.023 <0.001 

Restored prairie 2018 0.065 -0.035 0.028 <0.001 

 2019 -0.045 -0.024 0.023 0.364 

 2020 0.098 -0.024 0.023 <0.001 

  2021 0.018 -0.024 0.023 0.063 

  Lux Arbor 

  Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.028 -0.035 0.028 0.819 

 2019 -0.048 -0.024 0.022 0.287 

 2020 -0.039 -0.024 0.022 0.494 

  2021 -0.028 -0.024 0.022 0.879 

Restored prairie 2018 -0.006 -0.035 0.031 0.363 

 2019 -0.052 -0.024 0.024 0.250 

 2020 -0.040 -0.024 0.023 0.513 

  2021 -0.050 -0.024 0.023 0.273 

a. p-value < 0.05 is in bold. 

According to the observed biomass yield (Figure 2.3), switchgrass at Marshall in 2020 and 2021 

presented an obvious cluster of relatively high biomass yield at the southeastern corner and 

relatively low yield at the northwestern corner. As shown in Figures 2.2 and 2.3, restored prairie 

had relatively stable biomass yield at both Marshall and Lux Arbor over the study period (2018-

2021). 
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Figure 2.2. Dry biomass yield (Mg ha-1) for switchgrass (upper panel) and restored prairie (lower 

panel) at sampling points during the study period (2018-2021) at Lux Arbor Farm. 

 
Figure 2.3. Dry biomass yield (Mg ha-1) for switchgrass (upper panel) and restored prairie (lower 

panel) at sampling points during the study period (2018-2021) at Marshall Farm. 



 

31 
 

Temporal Variability of Dry Biomass Yield  

Via examination of intraclass correlation (ICC) for null models for switchgrass and restored 

prairie at Marshall and Lux Arbor, prominently higher intraclass correlations existed for 

switchgrass and restored prairie at Lux Arbor compared to switchgrass and restored prairie 

respectively at Marshall (Table 2.5). Higher ICC reflects lower annually temporal variability 

(Liljequist, D., et al. 2019).  Temporal variability of environmental conditions during the study 

period such as precipitation did not significantly lead to temporal yield variability of switchgrass 

and restored prairie biomass yield at Lux Arbor. Lower temporal variability at Lux Arbor could 

be caused by persistent nutrient limitation. Since this study is limited to four growing seasons, 

more growing seasons are needed to confirm the observed lower temporal variability of dry 

biomass yield for switchgrass and restored prairie at Lux Arbor. 

Table 2.5. Intraclass correlation (ICC) of dry biomass yield from null models for switchgrass and 

restored prairie at Marshal Farm and Lux Arbor Farm. 

Croping System Marshall Lux Abor 

switchgrass 0.06 0.63 

restored prairie 0.17 0.48 

 

Within-field Spatial Autocorrelation of Dry Biomass Yield  

Spatial correlation of residuals from null models of switchgrass and restored prairie at Marshall 

and Lux Arbor provides a methodology to evaluate spatial autocorrelation. As shown in Table 

2.6, after stripping off the temporal component, only restored prairie at Marshall presented 

statistically significant spatial autocorrelation (p-value:  0.016), which implies that potential 

underlying spatially correlated factors drive the spatially correlated dry biomass yield of restored 

prairie at Marshall.  
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Table 2.6. Moran’s I test statistics of level-2 residuals of dry biomass yield from null models for 

switchgrass and restored prairie at Marshall Farm and Lux Arbor Farm. 

 Marshall  Lux Arbor 

 Switchgrass Restored prairie  Switchgrass Restored prairie 

Observed Moran I value 0.013 0.064  0.029 0.004 

Expected Moran I value -0.017 -0.017  -0.018 -0.018 

Standard Deviation 0.035 0.034  0.030 0.027 

P-value 0.406 0.016  0.125 0.429 

 

Linear mixed model with spatial covariance structure 

The three-way interaction between location, crop and year had a statistically significant effect 

(p=0.02) on biomass yield. As shown in Figure 2.4, restored prairie biomass yield was 

significantly lower than switchgrass at Marshall over the study period (2018-2021). Restored 

prairie biomass yield was only significantly lower than switchgrass in 2021 at Lux Arbor. 

Switchgrass biomass yield was significantly higher at Marshall than Lux Arbor in 2019 and 2021 

respectively. At Marshall, switchgrass biomass yield in 2021 (9.1 Mg ha-1; 95% Confidence 

Interval (95% CI): 8.4 to 9.7 Mg ha-1) was significantly higher than in 2018 (5.9 Mg ha-1; 95% 

CI: 5.1 to 6.6 Mg ha-1), 2019 (6.1 Mg ha-1; 95% CI: 5.4 to 6.7 Mg ha-1) and 2020 (5.9 Mg ha-1; 

95% CI: 5.3 to 6.6 Mg ha-1). Restored prairie biomass yield at Marshall was significantly higher 

in 2021 (3.7 Mg ha-1; 95% CI: 2.8 to 4.5 Mg ha-1) than in 2020 (2.3 Mg ha-1; 95% CI: 1.5 to 3.2 

Mg ha-1). At Lux Arbor, switchgrass biomass yield in 2020 (5.9 Mg ha-1; 95% CI: 5.2 to 6.5 Mg 

ha-1) was significantly higher than 2019 (4.4 Mg ha-1; 95% CI: 3.7 to 5.1 Mg ha-1). There was no 

significant difference of restored prairie biomass yield at Lux Arbor over the study period (2018-

2021). The numerical ranking of restored prairie biomass yield at Lux Arbor  was 2020 (4.9 Mg 

ha-1; 95% CI: 4.3 to 5.4 Mg ha-1) > 2018 (4.3 Mg ha-1; 95% CI: 3.6 to 4.9 Mg ha-1) > 2019 (3.8 

Mg ha-1; 95% CI: 3.3 to 4.4 Mg ha-1) > 2021 (3.1 Mg ha-1; 95% CI: 2.6 to 3.7 Mg ha-1).  
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Figure 2.4. Estimated mean biomass yield (Mg ha-1) of switchgrass and restored prairie at Lux 

Arbor Farm and Marshall Farm from linear mixed models with spatial covariance structure. Dots 

present estimated mean biomass yield. Vertical bars represent 95% confidence intervals of 

estimated mean biomass yield.  
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Empirical orthogonal functions (EOFs) 

The first two spatial EOFs accounted for most of the variation of dry biomass yield for 

switchgrass and restored prairie at both farms (Table 2.7). The first spatial EOF explained 63.2% 

and 49.4% of variation in switchgrass and restored prairie biomass yield, respectively, at Lux 

Arbor. The first temporal EOFs explained 45.1% and 45.4% of variation in switchgrass and 

restored prairies biomass yield, respectively, at Marshall. Because the spatial EOFs depict the 

normalized contribution to within-field spatial variability, a 0 value of spatial EOF indicates no 

departure from annual mean biomass yield within the field. Figures A2.17 and A2.19 show that 

both switchgrass and restored prairie presented within-field spatial variability of biomass yield at 

both farms. There are isolated pockets of high and low biomass yield in both switchgrass and 

restored prairie at Lux Arbor, which indicate higher within-field spatial variability of biomass 

yield at Lux Arbor (Figure A2.17 in appendix). The expansion efficient (EC) values, which 

represent the amplitude of EOF in each year, had highest values for both switchgrass and 

restored prairie at Lux Arbor in 2020. Figure A2.19 shows that switchgrass biomass yield was 

relatively high in the central area of the Marshall and relatively low at the edge of the field. 

Conversely, restored prairie exhibited more positive departure from the annual mean biomass 

yield at the southern side than northern side of the field at Marshall. Both switchgrass and 

restored prairie had highest EC values in 2021. On a practical basis, this implies that EOF 

analysis could be used to target customized management to address field areas varying 

substantially in yield potential. 

The first two temporal EOFs accounted for most of the variation of dry biomass yield for 

switchgrass and restored prairie at both farms (Table 2.8). The first temporal EOFs explained 

61.4% and 55.4% of variation in switchgrass and restored prairie, respectively, at Lux Arbor. 
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The first temporal EOFs explained 73.7% and 56.4% of variation in switchgrass and restored 

prairie, respectively, at Marshall. Because the temporal EOFs depict the normalized contribution 

to interannual regionalized variability, a 0 value of EOFs indicates no departure from average 

biomass yield over years. Switchgrass at Lux Arbor showed a latitudinal trend of interannual 

variability (Figure A2.18 in appendix). From the south to north side of the switchgrass at Lux 

Arbor, year to year biomass variation gradually increased. The only interannual restored prairie 

biomass yield variability observed at Lux Arbor occurred at the north end of the field (Figure 

A2.18 in appendix). In Figure A2.20, switchgrass at Marshall shows more interannual 

regionalized variability in the center of the field. Similarly, the contribution of the first temporal 

EOFs to temporal variation showed that restored prairie did not exhibit apparent spatial structure 

of interannual variability at Marshall (Figure A2.20 in appendix). The restored prairie exhibited 

biomass yield resilience to annual changes of field environmental conditions.  

Table 2.7. Spatial empirical orthogonal functions (EOFs) explained variance of dry biomass 

yield for switchgrass and restored prairie at Marshall Farm and Lux Arbor Farm over the study 

period (2018-2021). 

    Swithcgrass Restored prairie 

    

Proportion of 

Variance 

Cumulative 

Proportion 

Proportion of 

Variance 

Cumulative 

Proportion 

Mashall 

EOF1 0.451 0.451 0.454 0.454 

EOF2 0.244 0.695 0.272 0.726 

EOF3 0.200 0.894 0.198 0.923 

EOF4 0.105 1 0.077 1 

Lux 

Arbor 

EOF1 0.632 0.632 0.494 0.494 

EOF2 0.219 0.852 0.209 0.703 

EOF3 0.096 0.947 0.172 0.875 

EOF4 0.053 1 0.125 1 
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Table 2.8. Temporal empirical orthogonal functions (EOFs) explained variance of dry biomass 

yield for switchgrass and restored prairie at Marshall Farm and Lux Arbor Farm over the study 

period (2018-2021). 

    Switchgrass Restored prairie 

    

Proportion of 

Variance 

Cumulative 

Proportion 

Proportion of 

Variance 

Cumulative 

Proportion 

Marshall 

EOF1 0.737 0.737 0.564 0.564 

EOF2 0.163 0.9 0.314 0.878 

EOF3 0.1 1 0.1223 1 

Lux 

Arbor 

EOF1 0.614 0.614 0.554 0.554 

EOF2 0.258 0.872 0.278 0.832 

EOF3 0.128 1 0.168 1 

 

Gaussian process unconditional models  

Based on empirical semivariograms and Moran’s I values, different spatial dependencies were 

observed for switchgrass and restored prairie at Marshall and Lux Arbor. Therefore, models were 

fitted separately by cropping systems and farms. As shown in Table 2.9, spatial correlations, 

represented by the decay parameter (ρ =0.006) from Matern spatial correlation, confirmed that 

only restored prairie at Marshall had relatively high spatial dependency. Both switchgrass and 

restored prairie at Lux Arbor had relatively low spatial dependency (ρ =0.296 and 0.253). Spatial 

correlations reduce rapidly and reach 0 approximately at a distance of 60 meters for switchgrass 

and restored praire at Lux Arbor (Figure A2.21 in appendix). Spatial correlation reduced to 0 

around 100 meters for switchgrass at Marshall. Spatial correlations did not reach 0 within the 

maximum sampling distance for restored prairie at Marshall. Except for switchgrass at Marshall, 

switchgrass and restored prairie showed similar interannual variability (variance: 0.302 to 0.399). 

Spatial variability (variance: 3.561 and 1.896 for switchgrass and restored prairie) accounted for 

a substantial amount of total biomass yield variability at Lux Arbor, respectively. Within the 

same farm, switchgrass showed more spatial variability than restored prairie. 
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Table 2.9. Gaussian process model results of unconditional models for dry biomass yield (Mg ha-

1) of switchgrass and restored prairie at Marshall Farm and Lux Arbor Farm. 
    Spatial Correlation Random Part (Variance) 

Location Crop ν1 ρ2 Year spatial residual 

Marshall 
Switchgrass3 16.67 0.185 1.784 0.967 3.644 

Restored prairies 0.20 0.006 0.313 0.334 1.148 

Lux Arbor 
Switchgrass 16.67 0.296 0.302 3.561 1.559 

Restored prairies 16.67 0.253 0.399 1.896 1.469 

1. ν: smoothness parameter. 

2. ρ: decay parameter. 

Multimodel inference for variable selection 

Figure 2.5 shows that soil fertility characteristics Mg, K, NH4
+, pH as well as soil topographic 

features profile curvature and TWI were selected based on Akaike information criterion (AIC) 

and included over 70% among 1000 bootstrap resampling models for switchgrass dry biomass 

yield at Lux Arbor. Soil topographical features TWI and profile curvature were main drivers for 

switchgrass biomass yield at Lux Arbor. The estimated coefficient of TWI was consistently 

estimated positive (1.30 Mg ha-1/SD; 95% Bootstrap CI: 0.66 to 2.02 Mg ha-1/SD). According to 

Pearson’s second moment correlation, TWI was positively correlated with switchgrass biomass 

yield at Lux Arbor over the study period (2018: R = 0.47; 2019: 0.57; 2020:0.49; 2021: 0.70). 

Even though profile curvature has an estimated coefficient of 3.03 Mg ha-1/SD, the 95% 

bootstrap CI lower bound rested on 0. Potassium and pH had a moderate positive estimated 

coefficient of 0.50 Mg ha-1/SD (95% Bootstrap CI:  0 to 1.05 Mg ha-1/SD) and 0.55 Mg ha-1/SD 

(95% Bootstrap CI:  0 to 0.98 Mg ha-1/SD), respectively. Magnesium was found to be negatively 

associated with switchgrass biomass yield (EM: -1.12 Mg ha-1/SD; 95% Bootstrap CI: -1.89 to 0 

Mg ha-1/SD). Ammonium with 0.713 inclusion probability showed a positive estimated 

coefficient of 0.41 Mg ha-1/SD (95% Bootstrap CI:  0 to 0.97 Mg ha-1/SD). Late growing season 

precipitation had 0.957 inclusion probability, which was higher than early season precipitation 

and middle season precipitation, respectively. Late growing season precipitation had a positive 
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estimated coefficient of 5.13 Mg ha-1/SD (95% Bootstrap CI:  0 to 10.66 Mg ha-1/SD). In 

contrast, early growing season precipitation had a negative estimated coefficient of -0.61 Mg ha-

1/SD (95% Bootstrap CI:  -1.37 to 0 Mg ha-1 / SD). Details on model results are located in Table 

2.8 in the appendix. 

 

 
Figure 2.5. Model results from 1000 bootstrap resampling for switchgrass biomass yield (Mg ha-

1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is the estimation from 

full model. Black horizontal is 95% bootstrap confidence interval, open red circle is bootstrap 

median. Coefficient is not included when standard error is greater than 10. Right panel: bootstrap 

probability of inclusion. Red dashed vertical bar indicates probability of 0.7. 

In Figure 2.6, soil fertility characteristics Mg, Ca, P as well as soil topographic features aspect, 

Ksat, DUL, elevation, sand content and SAT were selected based on AIC and included over 70% 

among 1000 bootstrap resampling models for restored prairie dry biomass yield at Lux Arbor. 

Similar to switchgrass at Lux Arbor, Mg was negatively associated with restored prairie yield at 

Lux Arbor (-1.87 Mg ha-1/SD; 95% Bootstrap CI: -2.81 to -0.70 Mg ha-1/SD). The relation of 

yield to aspect was estimated reliably with a positive estimated coefficient of 0.61 Mg ha-1/SD 

(95% Bootstrap CI:  0.25 to 0.89 Mg ha-1/SD). Elevation showed a negative relation of -0.52 Mg 
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ha-1/SD (95% Bootstrap CI:  -1.16 to 0 Mg ha-1/SD). The positive relations of yield with Ca and 

P were 1.11 (95% Bootstrap CI: 0 to 2.04 Mg ha-1/SD) and 0.37 Mg ha-1/SD (95% Bootstrap CI: 

0 to 0.82 Mg ha-1/SD), respectively. The relations of yield with Ksat, DUL and sand had 

substantial standard errors, therefore cannot be reliably estimated from this study. Late growing 

season cumulative precipitation (August to September) was the only precipitation parameter 

selected over 70% of the time among the 1000 bootstrap resampling models. The positive 

estimated coefficient of late growing season cumulative precipitation (August to September) was 

2.70 Mg ha-1/SD (95% Bootstrap CI:  0 to 7.25 Mg ha-1/SD). Details on model results are located 

in Table 2.9 in the appendix. 

 
Figure 2.6. Model results from 1000 bootstrap resampling for restored prairie biomass yield (Mg 

ha-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is estimation from 

full model. Black horizontal is 95% bootstrap confidence interval, open red circle is bootstrap 

median. Coefficient is not included when standard error is greater than 10. Right panel: bootstrap 

probability of inclusion. Red dash vertical bar indicates probability of 0.7. 

At Marshall only total C as soil fertility and profile curvature as topographical characteristics met 

the 70% inclusion criteria for switchgrass biomass yield (Figure 2.7). Profile curvature with 

0.709 inclusion probability had a negative estimated coefficient of -2.61 Mg ha-1/SD (95% 
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Bootstrap CI: -6.60 to 0 Mg ha-1/SD). Total C with 0.701 inclusion probability had a negative 

effect of -0.44 Mg ha-1/SD (95% Bootstrap CI: -1.04 to 0 Mg ha-1/SD). Late growing season 

cumulative precipitation (August to September) had 0.816 inclusion probability and had a 

positive effect of 2.30 Mg ha-1/SD (95% Bootstrap CI:  0 to 5.54 Mg ha-1/SD). Details on model 

results are located in Table 2.10 in the appendix. 

 
Figure 2.7. Model results from 1000 bootstrap resampling for switchgrass biomass yield (Mg ha-

1) at Marshall Farm. Left panel: estimated coefficients: black diamond is estimation from full 

model. Black horizontal is 95% bootstrap confidence interval, open red circle is bootstrap 

median. Coefficient is not included when standard error is greater than 10. Right panel: bootstrap 

probability of inclusion. Red dash vertical bar indicates probability of 0.7. 

Figure 2.8 shows that total C, Ca, NH4
+, pH as soil fertility characteristics and slope, elevation as 

soil topographic features were selected based on AIC and included over 70% among 1000 

bootstrap resampling models for restored prairies dry biomass yield at Marshall. Calcium 

showed a positive effect of 0.42 Mg ha-1/SD (95% Bootstrap CI:  0 to 0.91 Mg ha-1/SD). Total C 

(-0.82 Mg ha-1/SD, 95% Bootstrap CI:  -1.21 to -0.41 Mg ha-1/SD) and NH4
+ (-0.25 Mg ha-1/SD, 

95% Bootstrap CI:  -0.51 to 0 Mg ha-1/SD) were negatively associated with restored prairie yield 

at Marshall. Slope, elevation and pH had a negative estimated coefficient on restored prairie 
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yield. Early growing season cumulative precipitation (April and May), middle growing season 

cumulative precipitation (June and July) and late growing season cumulative precipitation 

(August and September) were all selected in over 70% of the 1000 bootstrap resampling models 

and had positive relationships with restored prairie yield. Details on model results are located in 

Table 2.11 in the appendix. 

 
Figure 2.8. Model results from 1000 bootstrap resampling for restored prairie biomass yield (Mg 

ha-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is estimation from full 

model. Black horizontal is 95% bootstrap confidence interval, open red circle is bootstrap 

median. Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates 

probability of 0.7. 

For switchgrass, NH4
+ had a positive estimated coefficient of 0.29 Mg ha-1/SD (95% Bootstrap 

CI:  0 to 0.79 Mg ha-1/SD) and 0.41 Mg ha-1/SD (95% Bootstrap CI:  0 to 0.97 Mg ha-1/SD) Mg 

ha-1 at Marshall and Lux Arbor, respectively. Profile curvature had positive estimated coefficient 

(3.03 Mg ha-1/SD, 95% Bootstrap CI:  0 to 5.58 Mg ha-1/SD) on switchgrass yield at Lux Arbor. 

On the other hand, profile curvature had negative estimated coefficient (-2.61 Mg ha-1/SD, 95% 

Bootstrap CI:  -6.60 to 0 Mg ha-1/SD) on switchgrass yield at Marshall.  

For restored prairie biomass, Ca had positive relationships with yield at Marshall and Lux Arbor. 
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The magnitude of the relationship with Ca was higher at Lux Arbor (1.11 Mg ha-1/SD; 95% 

Bootstrap CI:  0 to 1.98 Mg ha-1/SD) than Marshall (0.42 Mg ha-1/SD; 95% Bootstrap CI:  0 to 

0.91 Mg ha-1/SD). Elevation was negatively associated with restored prairie biomass yield at 

both farms. 

Gaussian process models with selected variables and Gaussian process full models 

Only variables selected by backward step selection and over 70% inclusion according to 

bootstrapping were included in the final models for biomass yield of switchgrass and restored 

prairie at both Lux Arbor and Marshall. In comparison of unconditional models, Table 2.10 

shows that spatial variability decreased for switchgrass and restored prairie at both farms after 

including selected variables. Matern’s spatial correlation plot with model estimated parameters 

shows that switchgrass and restored prairie grown at Marshall had a spatial dependency of 

biomass yield (Figure A2.22 in the appendix).  

Table 2.10. Gaussian process model results for models with selected variables for biomass yield 

(Mg ha-1) of switchgrass and restored prairie at Marshall Farm and Lux Arbor Farm. 

    Spatial Correlation Random Part (Variance) 

Location Crop ν1 ρ2 Year spatial residual 

Marshall 
Switchgrass 0.252 0.009 1.946 0.899 3.527 

Restored prairies 16.667 0.025 0.334 0.149 1.112 

Lux Arbor 
Switchgrass 16.667 0.471 0.320 0.988 1.554 

Restored prairies 9.622 1.621 0.347 0.182 1.327 

1. ν: smoothness parameter. 

2. ρ: decay parameter 

 

Models including all soil fertility characteristics and topographical features are referred to as full 

models.  The spatial variability from full models for switchgrass and restored prairie at both 

farms decreased to a negligible amount (Table 2.11).  The spatial variability of switchgrass and 

restored prairie at Marshall reduced to 0.00003 (SD: 0.005) and 0.00001(SD: 0.003), 

respectively. The spatial variability of switchgrass and restored prairie at Lux Arbor reduced to 

0.624 (SD: 0.790) and 0.092 (SD: 0.303), respectively. According to Matern’s spatial correlation 
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plot with model estimated parameters, switchgrass at Marshall and restored prairie at Lux Arbor 

show substantial spatial dependency from full model estimation (Figure A2.23 in appendix).  

Table 2.11. Gaussian process model results of full models for dry biomass yield (Mg ha-1) of 

switchgrass and restored prairie at Marshall and Lux Arbor Farms. 

    Spatial Correlation Random Part (Variance) 

Location Crop ν1 ρ2 Year spatial residual 

Marshall 
Switchgrass3 13.149 0.001 1.792 0.00003 3.169 

Restored prairie 0.005 0.117 0.278 0.00001 0.984 

Lux Arbor 
Switchgrass 16.667 0.751 0.206 0.624 1.492 

Restored prairie 16.667 0.036 0.367 0.092 1.236 

1. ν: smoothness parameter. 

2. ρ: decay paramter 

Discussion 

This study provides important evidence of within-field spatial and interannual temporal 

variability of switchgrass and restored prairie biomass yields at the field scale. The four-year 

mean annual biomass yields of switchgrass and restored prairie at Marshall were 6.9 Mg ha-1 

(SD: 2.5 Mg ha-1) and 3.3 Mg ha-1 (SD: 1.4 Mg ha-1), respectively. The four-year mean annual 

biomass yield of switchgrass and restored prairie at Lux Arbor were 4.9 Mg ha-1 (SD: 2.3 Mg ha-

1) and 3.9 Mg ha-1 (SD: 1.9 Mg ha-1), respectively. Switchgrass grown in monocultures near the 

study site as well as at a site in central Wisconsin (USA) yielded as high as 10.9 Mg ha-1 (Wang 

et al., 2010). A 30- year simulation study concluded that switchgrass rgown across the U.S. had 

an average annual yield of 6.2 Mg ha-1 and maximum annual yield of 15.5 Mg ha-1 (Thomson et 

al., 2009). Kordbacheh et al. (2019) reported that prairie in low fertility land produced 4.79 to 

15.5 Mg ha-1 in Iowa, USA. Biomass yield in this study falls into the ranges previously reported 

but may not have reached its maximum potential, especially for switchgrass. Bransby and Huang 

(2014) investigated switchgrass biomass yield over a 20 years study period and found that 

switchgrass increased yield in the first 12 years and slowly declined thereafter. The experiment 

in this study started in 2009. Therefore, the relatively low biomass yield from this study could 



 

44 
 

have been influenced by the advancing stand age.  

Concordantly, a three-way interaction of crop, location and year for biomass yield was observed 

in this study (p=0.02). Switchgrass (5.9 Mg ha-1; 95% CI: 5.3 to 6.5 Mg ha-1) and restored prairie 

(4.9 Mg ha-1; 95% CI: 4.3 to 5.4 Mg ha-1) produced the highest biomass yield in 2020, at Lux 

Arbor. At Marshall, switchgrass (9.1 Mg ha-1; 95% CI: 8.4 to 9.7 Mg ha-1) and restored prairie 

(3.7 Mg ha-1; 95% CI: 2.8 to 4.5 Mg ha-1) yielded highest in 2021. The highest yield of 

switchgrass and restored prairie in 2021 at Marshall was likely attributable to higher 

precipitation during June to September in 2021. The higher yield of switchgrass and restored 

prairie in 2020 at Lux Arbor could be attributed to higher precipitation during the later months 

(July to September) of the growing season as well. Several studies reported precipitation to be a 

yield limiting factor for switchgrass (Hui et al., 2018, Wullschleger et al., 2010, Berdahl et al., 

2005, Sanderson et al., 1999, Lee & Boe, 2005, Muir et al., 2001). Evidence shows that 

precipitation from April to September is critical to biomass yield (Berdahl et al., 2005, 

Sanderson et al., 1999). Interestingly, this study shows that cumulative late season (August and 

September) precipitation was the best predictor for switchgrass and restored prairie biomass 

yield. 

In this study, switchgrass (temporal variance: 1.784; SD: 1.336 Mg ha-1) showed more 

interannual temporal variability of biomass yield than restored prairie (temporal variance: 0.313; 

SD: 0.559 Mg ha-1) at Marshall. At Lux Arbor, interannual temporal variability of biomass yield 

was similar between switchgrass (temporal variance: 0.302; SD: 0.549 Mg ha-1) and restored 

prairie (temporal variance: 0.399; SD: 0.632 Mg ha-1). Considerable year-to year-temporal 

variability of biomass yield has been reported in most experiments intended to test switchgrass 

yield potential as bioenergy feedstocks (Lasorella et al., 2011, Tulbure et al., 2012, Alexopoulou 
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et al., 2015, Sanford et al., 2016, Reichmann et al., 2018). Conversely, biomass yield of restored 

prairie has shown resilience to unfavorable weather conditions such as drought (Bajgain et al., 

2020). One theory on prairie resilience to unfavorable conditions is based on compensation 

theory. According to this theory, the multiple species associated with prairie grants the ability of 

compensating poor performance of some species by good performance of others (Pfisterer & 

Schmid, 2002). This suggests future research to investigate relationships between species 

composition and interannual variability of prairie biomass yield. Given future weather 

predictions for higher variability and uncertainty (Lopez-Cantu et al., 2020, Dollan et al., 2022), 

lower interannual variability of restored prairie makes it attractive as a bioenergy feedstock, 

especially when considering additional co-benefits such as increased biodiversity.  

Within-field biomass variability reported in this study is consistent with other studies (Di 

Virgilio et al., 2007, Schmer et al., 2010). Our reported CV of switchgrass ranged from 0.24 to 

0.39 at Marshall and 0.44 to 0.49 at Lux Arbor over the study period (2018-2021); and the CV of 

restored prairie ranged from 0.27 to 0.47 at Marshall and 0.39 to 0.51 at Lux Arbor over the 

study period (2018-2021). The slightly greater CV range we report for Lux Arbor relative to 

Marshall implies that microenvironments associated with specific areas influence within-field 

variability. This might be due to the generally more consistently fertile soil at Marshall resulting 

in more stable biomass yield, thereby reducing within-field variability. More fertile soil in 

Marshall can be attributable to a long history of livestock pasturing and 22 years as CRP 

grassland at Marshall. In this study, switchgrass showed higher within-field biomass variability 

than restored prairie at both locations. The estimated spatial variance representing within-field 

biomass variability for switchgrass was 0.967 (SD: 0.983 Mg ha-1) and 3.561 (SD: 1.887 Mg ha-

1) at Marshall and Lux Arbor, respectively.  The estimated spatial variance representing within-
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field biomass variability for restored prairie was 0.334 (SD: 0.578 Mg ha-1) and 1.896 (SD: 1.377 

Mg ha-1) at Marshall and Lux Arbor, respectively. Under similar soil conditions, restored prairie 

presented less within-field spatial variability than switchgrass. Previous studies showed that 

switchgrass had a wider range of biomass yield than restored prairie under the same weather and 

soil conditions (Sanford et al. 2016, Wang et al., 2020).  

There were sizable residual variance components that remained unexplained for switchgrass and 

restored prairie after accounting for interannual temporal and within-field spatial variability. 

Switchgrass biomass yield at Marshall had unexplained residual variance of 3.644, which was 

higher than both the interannual temporal and within-field spatial variability. It is well 

established that plant traits such as yield are a function of environment, agronomic management 

and genetics. Studies have shown that the inherent genetic variation of switchgrass leads to 

biomass yield variability (Nayak et al., 2020). Future research on switchgrass varietal differences 

in biomass yield are warranted. There is a plethora of evidence showing that species richness, 

evenness and floristic quality influence grass productivity (Henschell et al., 2015, Boeck et al., 

2008). The unexplained biomass variability we observed in restored prairie fields may possibly 

be due to variability of prairie species composition. In this study, there was no consistently 

reliable spatial dependency found for switchgrass (range: < 60 m) and restored prairie (range: 

<100 m). Similarly, Di Virgilio et al. (2007) demonstrated switchgrass biomass yield presented 

weak spatial dependency in a 2-year study. On other hand, failure to observe a reliable spatial 

dependency could be caused by insufficient sampling within the field. This makes it difficult to 

extrapolate spatial covariance out of the range of sampling distances. 

A recent study utilizing a global grassland dataset demonstrated relationships of soil 

physiochemical qualities such as CEC,  soil organic matter, and soil nutrients including  N, P, 
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Zn, and Fe with biomass yield (Radujković et al., 2021). Avohou et al. (2009) showed that 

topographical features like slope, aspect and curvature do not significantly influence biomass 

yield in grasslands. In this study, we observed soil Ca had a positive relationship with biomass 

yield of restored prairie at both farms. Soil Mg had a negative relationship with switchgrass and 

restored prairie at Lux Arbor. Schmer et al. (2012) found that switchgrass responsivity to soil Ca 

supplementation depended on cultivar. Another study reported that prairie strips adjacent to row 

crops increased soil Ca content (Dutter, 2022). The positive soil Ca effect on prairie biomass 

yield could be due to a reverse causal relationship since the experiment started in 2009. We 

observed soil NH4
+ had a positive relationship with switchgrass biomass yield at Marshall and 

Lux Arbor. This agrees with other studies claiming N and P are the most limiting nutrients for 

switchgrass and grasslands (Craine & Jackson, 2010, Fay, 2015, Edwards & Venterink, 2016, 

Niu et al., 2018). Previous studies showed that the leading drivers of switchgrass biomass yield 

are nitrogen fertilization and then climate (Heaton et al., 2004; Wang et al., 2010).  

Soil topographical characteristics related to soil moisture availability such as elevation and slope 

had a negative relationship with TWI had a positive relationship with biomass yield. TWI 

represents soil water accumulation tendency has been used as a proxy for soil moisture 

availability (Beaudette & Geen, 2013, Radu et al., 2018, Winzeler et al., 2022). Virgilio et al. 

(2007) reported a negative effect of slope on switchgrass biomass yield. Previous studies 

demonstrated that the relationship of topographical features such as TWI with biomass yield of 

major grain crops varied year to year due to different precipitation patterns (Kravchenko & 

Bullock, 2000, Jiang & Thelen, 2004, Huang et al., 2008). Jager et al. (2010) reported a positive 

relationship of TWI with yield on upland ecotype switchgrass based on an analysis of published 

switchgrass field trial data across a wide geographical region. Madugundu et al. (2022) 
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demonstrated a positive relationship between Topographical Wetness Index (TWI) and forage 

crop yield. Studies on annual crops have shown that elevation was negatively correlated with 

annual crop yield (Bronson et al., 2002, Iqbal et al., 2005). In contrast, Schmer et al. (2012) 

found no relationship between slope and switchgrass biomass yield, and reasoned it was due to 

the established root system of switchgrass in the study. 

Switchgrass and restored prairie as bioenergy feedstocks are unlikely to receive intensive 

management like high levels of fertilization or irrigation. Nevertheless, this study contributes to 

the identification of potential soil factors affecting crop biomass yield. In practical terms, a 

grower’s understanding of spatial and temporal variability plays a critical role in making 

management decisions for maximizing biomass crop yield.  Similarly, at the biorefinery level, a 

better understanding of regional spatial and temporal variability is critical in developing strategic 

plans for bioenergy feedstocks logistics.  

Conclusion 

The restored prairie polyculture cropping system exhibited a different spatial variation pattern in 

biomass yield relative to the monoculture cropping system of switchgrass under similar soil 

conditions, with the switchgrass cropping system showing greater spatial variability than the 

restored prairie cropping system. In addition, biomass yield of the switchgrass cropping system 

appeared to be driven more by environmental factors at the more fertile Marshall, which may 

explain its greater interannual variability than the restored prairie cropping system. Polycultures 

of restored prairie had relatively low temporal variability in biomass yield. This was likely due in 

part to the multi-species buffering capacity afforded by a mix of grass and forb species having a 

wider range of environmental adaptability relative to a monoculture system. Both switchgrass 

and restored prairie biomass yields were likely limited by multiple factors. Switchgrass biomass 
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yield was positively related to soil NH4
+, but negatively related to soil Mg. Profile curvature had 

a significant influence on switchgrass biomass yield, but with uncertainty of the direction. In the 

restored prairie, biomass yield was positively influenced by soil Ca and negatively influenced by 

elevation. This study had typical scope limitations of sample size, therefore an uncertainty of 

effect of soil characteristics on biomass yield is unavoidable. Future studies should consider 

increasing spatial resolution to reveal finer spatial patterns for biomass yield of switchgrass and 

restored prairie.  
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APPENDIX  

Table A2.1. Plant species and seeding rate at Marshall Farm and Lux Arbor Farm. 
Cropping System Species  Seeding Rate (kg ha-1) 

Restored prairie 
Aster azureus forb 0.07 

Asclepias tuberosa L.  0.04 

Monarda fistulosa L.  0.07 

Asclepias syriaca L.  0.07 

Penstemon digitalis  0.07 

Coreopsis lanceolata  0.14 

Verbena stricta Vent.  0.14 

Rudbeckia triloba L.  0.18 

Rudbeckia hirta L.  0.21 

Ratibida pinnata (Vent.) Barnh.  0.21 

Eryngium yuccifolium Michx.  0.21 

Cassia fasciculata Michx.  0.28 

Echinacea purpurea (L.) Moench  0.28 

Heliopsis helianthoides (L.) Sweet  0.28 

Panicum virgatum var. Southlow grass 0.56 

Andropogon gerardii  0.56 

Schizacyrium scoparium (Michx.) Nash   1.12 

Sorghastrum nutans (L.) Nash ex Small  1.12 

Elymus canadensis  2.24 

Switchgrass Panicum virgatum var. Cave-in-Rock grass 11.21 
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Table A2.2. Land use history at Marshall Farm and Lux Arbor Farm. 
Farm Cropping System Field 

Size 

Pre-conversion 

(from 1987) 

2009 

Conversion Year 

2010 

First Establishment 

Year 

2011 

Second Establishement Year 

Marshall Switchgrass 13 ha CRP Brome grass No-till 

soybean 

Restored prairie species 

and oats as nurse crop 

Restored prairie species 

 Restored prairie 11 ha   Switchgrass and oats as 

nurse crop 

Switchgrass 

Lux Arbor Switchgrass 14 ha Tilled corn-

soybean rotation 

No-till 

soybean 

Restored prairie species 

and oats as nurse crop 

Restored prairie species 

 Restored prairie 13 ha   Switchgrass and oats as 

nurse crop 

Switchgrass 

 

 

 

Table A2.3. Number and distance range (meter) of sampling points for switchgrass and restored prairie at Marshall Farm and Lux 

Arbor Farm. 
    Marshall   Lux Arbor 

Crop Year Minimum Maximum Number  Minimum Maximum Number 

Switchgrass 2018 41.1 331.7 30  33.2 297.7 30 

 2019 14.4 408.8 42  22.9 398.0 42 

 2020 14.4 408.8 42  22.9 398.0 42 

 2021 23.0 400.3 42  22.9 397.7 42 

Restored prairie 2018 27.6 350.5 30  23.7 374.5 30 

 2019 22.0 458.4 42  19.2 401.2 42 

 2020 22.0 458.4 42  19.2 401.2 42 

 2021 21.6 441.5 42  16.3 402.0 42 
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Table A2.4. Descriptive statistics of soil fertility characteristics and topographical features at Lux Arbor Farm in 2018. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 292.56 298.37 296.64 1.61 285.02 294.71 289.85 2.98 

pH 5.7 6.4 6.04 0.19 5.8 6.6 6.22 0.22 

Phosphorus, mg kg-1 6 37 17.87 7.84 9 61 23.37 10.49 

Soil potassium, mg kg-1 30 135 74.83 28.17 37 125 66.07 22.99 

Calcium, mg kg-1 566 1455 975.33 238.58 490 1489 1011.70 261.79 

Magnesium, mg kg-1 110 313 185.73 52.20 80 302 178.77 51.60 

Total soil carbon(C) , wt% 0.64 1.75 1.09 0.26 0.40 1.51 1.00 0.28 

Ammonium (NH4
+), mg kg-1 1.70 5.15 2.97 0.78 1.30 5.20 2.73 0.85 

Sand content, wt% 10.60 73.75 44.54 14.23 16.90 81.25 50.94 18.29 

Clay content, wt% 7.50 30.70 20.48 5.99 0.00 38.10 19.00 10.27 

Slope, ° 0.23 6.03 1.98 1.55 0.38 5.95 2.95 1.41 

Aspect,  42.59 359.42 223.55 84.11 9.71 356.04 279.84 90.96 

Plane curvature, km-1 -0.30 0.30 0.01 0.13 -0.30 0.41 0.03 0.16 

Profile curvature, km-1 -0.57 0.34 0.00 0.18 -0.23 0.38 0.00 0.14 

Topographical wetness index 4.67 11.36 7.07 1.67 4.83 13.35 7.33 1.96 

15 bar lower limit of soil water content (LL15), v% 4.4 18.5 12.36 3.61 1.0 22.7 11.36 6.22 

Drained upper limit of soil water content (DUL), v% 13.70 35.60 24.48 5.27 7.50 37.20 22.17 8.72 

Saturated water content (SAT), v% 38.10 44.40 39.67 1.52 38.10 45.70 40.07 2.06 

Whole profile drainage rate coefficient (SWCON) 17.0 59.1 26.45 9.08 16.6 90.0 38.03 25.87 

Saturated hydraulic conductivity (Ksat), mm h-1 2.00 44.09 11.45 9.08 1.58 113.16 25.89 32.59 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation.  
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Table A2.5. Descriptive statistics of soil fertility characteristics and topographical features at Lux Arbor Farm in 2020. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 292.05 298.37 296.51 1.61 284.11 296.43 289.80 3.32 

pH 5.5 6.4 5.82 0.22 5.5 6.6 5.97 0.27 

Phosphorus, mg kg-1 10 69 21.69 13.95 11 56 24.63 11.60 

Soil potassium, mg kg-1 27 169 76.15 29.20 49 141 76.32 21.67 

Calcium, mg kg-1 442 1477 971.46 254.85 552 1589 1036.18 280.54 

Magnesium, mg kg-1 75 275 181.26 50.39 86 296 179.53 49.76 

Total soil carbon(C) , wt% 0.69 1.81 1.17 0.31 0.58 1.75 0.97 0.31 

Ammonium (NH4
+), mg kg-1 2.26 32.81 5.07 4.99 3.16 10.26 4.96 1.53 

Sand content, wt% 10.60 73.75 47.94 14.10 16.90 81.25 54.58 17.44 

Clay content, wt% 7.50 30.70 20.58 5.44 0.00 38.10 18.69 8.95 

Slope, ° 0.14 6.82 2.06 1.81 0.38 6.55 3.15 1.63 

Aspect,  29.75 359.42 203.02 88.73 9.71 356.04 271.54 97.10 

Plane curvature, km-1 -0.30 0.30 0.02 0.13 -0.30 0.41 0.02 0.14 

Profile curvature, km-1 -0.57 0.34 0.00 0.16 -0.23 0.38 -0.01 0.13 

Topographical wetness index 4.70 14.64 7.53 2.49 4.67 13.34 7.34 1.96 

15 bar lower limit of soil water content (LL15), v% 4.4 18.5 12.27 3.40 1.0 22.7 11.02 5.65 

Drained upper limit of soil water content (DUL), v% 13.70 35.60 23.79 5.24 7.50 37.20 21.21 8.17 

Saturated water content (SAT), v% 38.10 44.40 39.53 1.37 38.10 45.70 39.78 1.92 

Whole profile drainage rate coefficient (SWCON) 17.0 59.1 27.43 9.63 16.6 90.0 38.42 23.35 

Saturated hydraulic conductivity (Ksat), mm h-1 2.00 44.09 12.42 9.63 1.58 113.16 25.68 29.20 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation.
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Table A2.6. Descriptive statistics of soil fertility characteristics and topographical features at Marshall Farm in 2018. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 284.96 294.32 290.40 2.69 289.94 298.48 295.87 2.21 

pH 5.40 6.40 6.05 0.25 5.30 5.80 5.60 0.13 

Phosphorus, mg kg-1 15 126 54.17 22.51 16 119 61.07 23.11 

Soil potassium, mg kg-1 8 363 61.47 65.27 10 333 126.73 66.39 

Calcium, mg kg-1 396 1182 671.73 159.01 488 890 715.03 90.05 

Magnesium, mg kg-1 44 137 66.33 19.09 77 191 114.10 24.45 

Total soil carbon(C) , wt% 0.70 2.05 1.12 0.29 0.94 1.88 1.31 0.22 

Ammonium (NH4
+), mg kg-1 3.02 12.85 5.48 2.11 2.95 18.20 6.56 3.61 

Sand content, wt% 20.00 88.30 69.58 16.66 24.60 86.25 57.40 12.98 

Clay content, wt% 1.25 20.70 9.47 5.09 1.25 27.40 13.69 7.59 

Slope, ° 0.65 12.64 4.86 2.97 0.44 7.32 2.41 1.68 

Aspect,  18.44 318.08 163.87 94.61 120.29 355.52 208.20 67.28 

Plane curvature, km-1 -1.00 0.61 0.07 0.36 -1.54 0.31 -0.03 0.37 

Profile curvature, km-1 -0.77 0.75 0.08 0.36 -0.26 0.52 0.05 0.17 

Topographical wetness index 4.27 14.38 7.02 2.72 4.96 12.43 7.14 1.99 

15 bar lower limit of soil water content (LL15), v% 1.0 12.4 5.43 3.21 1.0 16.6 8.18 4.67 

Drained upper limit of soil water content (DUL), v% 4.90 28.20 13.27 5.87 5.80 31.90 18.19 6.45 

Saturated water content (SAT), v% 38.10 41.60 39.25 0.99 38.00 42.20 39.05 0.96 

Whole profile drainage rate coefficient (SWCON) 20.1 90.0 61.98 23.83 18.1 90.0 45.17 24.31 

Saturated hydraulic conductivity (Ksat), mm h-1 5.07 144.82 58.60 41.84 3.11 137.14 35.83 37.64 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation.
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Table A2.7. Descriptive statistics of soil fertility characteristics and topographical features at Marshall Farm in 2020. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 284.96 294.32 290.34 2.62 289.94 299.01 295.61 2.31 

pH 5.70 7.50 6.17 0.38 5.10 7.70 5.59 0.43 

Phosphorus, mg kg-1 17 127 50.54 23.75 16 124 58.64 23.87 

Soil potassium, mg kg-1 22 245 66.43 48.57 25 266 105.81 49.58 

Calcium, mg kg-1 405 2023 818.73 329.05 393 3438 687.94 489.28 

Magnesium, mg kg-1 45 126 74.78 22.17 58 177 91.97 25.37 

Total soil carbon(C) , wt% 0.64 2.28 1.31 0.37 0.87 2.04 1.33 0.31 

Ammonium (NH4
+), mg kg-1 3.15 14.30 6.10 2.48 3.35 31.40 9.47 6.20 

Sand content, wt% 20.00 88.30 72.30 14.80 24.60 86.25 60.31 13.58 

Clay content, wt% 1.25 20.70 9.89 4.45 1.25 27.40 14.36 7.06 

Slope, ° 0.65 12.64 4.71 2.93 0.21 7.32 2.33 1.66 

Aspect,  10.16 353.16 164.70 104.53 22.84 355.52 205.70 76.38 

Plane curvature, km-1 -1.00 0.61 0.01 0.38 -1.54 0.36 -0.04 0.36 

Profile curvature, km-1 -0.83 0.86 0.04 0.42 -0.26 0.52 0.03 0.16 

Topographical wetness index 4.27 14.38 7.06 2.66 4.96 12.40 7.54 2.16 

15 bar lower limit of soil water content (LL15), v% 1.0 12.5 5.60 2.96 1.0 16.6 8.42 4.47 

Drained upper limit of soil water content (DUL), v% 4.90 28.20 13.05 5.35 5.80 31.90 18.09 6.26 

Saturated water content (SAT), v% 38.10 41.60 39.21 0.91 38.10 42.20 39.03 0.88 

Whole profile drainage rate coefficient (SWCON) 20.1 90.0 62.18 21.91 18.1 90.0 44.74 23.12 

Saturated hydraulic conductivity (Ksat), mm h-1 5.07 144.82 56.64 38.10 3.11 137.14 34.46 35.04 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation.
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Table A2.8. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for switchgrass biomass yield (Mg ha-1) at Lux Arbor Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 4.95 0.19 4.96 0.13 1 4.94 4.59 5.30 

Topographical wetness index (TWI) 1.30 0.37 1.04 0.16 0.997 1.24 0.66 2.02 

Late growing season precipitation (late), mm 5.13 2.64 5.47 2.44 0.957 5.08 0 10.66 

Magnesium (Mg), mg kg-1 -1.12 0.42 -1.08 0.20 0.955 -1.12 -1.89 0 

pH 0.55 0.21 0.55 0.17 0.909 0.55 0 0.98 

Profile curvature, km-1 3.03 1.43 2.93 1.18 0.844 2.96 0 5.58 

Potassium (K), mg kg-1 0.50 0.24 0.47 0.19 0.784 0.50 0 1.05 

Early growing season precipitation (early), mm -0.61 0.34 -0.71 0.29 0.741 -0.63 -1.37 0 

Ammonium (NH4
+), mg kg-1 0.41 0.23 0.29 0.17 0.713 0.41 0 0.97 

Middle growing season precipitation (middle), mm 4.32 2.48 4.62 2.30 0.712 4.22 -0.25 9.43 

Sand content, wt% 1.00 14.62 0.00 0.00 0.697 0 -32.77 28.34 

Saturated water content(SAT), v% -1.50 2.68 -1.23 0.40 0.649 -0.61 -6.86 4.18 

Slope, ° -0.38 0.34 -0.44 0.16 0.631 -0.41 -0.93 0 

Sand content, wt% -0.32 8.39   0.581 0 -16.21 16.44 

Drained upper limit of soil water content (DUL), v% -0.12 16.68   0.518 0 -32.35 32.56 

Saturated hydraulic conductivity (Ksat), mm h-1 0.89 1.84   0.509 0 -2.92 4.19 

Phosphorus (P), mg kg-1 -0.20 0.26   0.404 0 -0.79 0.50 

Whole profile drainage rate coefficient (SWCON) 0.80 1.57 1.25 0.62 0.395 0 -2.69 3.79 

Plane curvature, km-1 0.96 2.23   0.377 0 -2.79 5.29 

Elevation, m 0.09 0.25   0.316 0 -0.47 0.57 

15 bar lower limit of soil water content (LL15), v% 1.08 5.97 1.67 0.79 0.299 0 -8.46 11.64 

Aspect 0.07 0.20   0.280 0 -0.29 0.46 

Calcium (Ca), mg kg-1 -0.09 0.48   0.259 0 -1.12 0.98 

Total soil carbon (C) , wt% 0.01 0.22     0.233 0 -0.44 0.47 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median,  

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A2.9. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for restored prairie biomass yield (Mg ha-1) at Lux Arbor Farm. 

  Full Model 
Backward 

Select Model 
Bootstrap (1000 Replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1 M1 2.5%1  97.5%1  

(Intercept) 4.11 0.43 4.07 0.13 1 3.97 3.23 4.95 

Magnesium (Mg), mg kg-1 -1.87  0.43 -1.83 0.30 0.999 -1.87 -2.81 -0.70 

Aspect  0.61 0.15 0.66 0.14 0.995 0.56 0.25  0.89 

Calcium (Ca), mg kg-1 1.11 0.41 1.21 0.31 0.921 1.17 0 2.04 

Late growing season precipitation (late), mm 2.70 2.00 0.61 0.11 0.872 2.05 0 7.25 

Saturated hydraulic conductivity (Ksat), mm h-1 -83.63 57.04 -2.07 0.98 0.833 -71.31 -206.94 0 

Phosphorus (P), mg kg-1 0.37 0.20 0.51 0.14 0.822 0.41 0 0.82 

Drained upper limit of soil water content (DUL), v% 19.49 9.55 23.89 8.65 0.821 18.31 0 40.2 

Elevation, m -0.52 0.23 -0.55 0.19 0.816 -0.51 -1.16 0 

Sand content, wt% 12.13 6.24 14.97 5.47 0.800 12.00 -0.37 26.52 

Saturated water content (SAT), v% 3.67 2.22 4.51 1.70 0.761 3.72 0 8.53 

Whole profile drainage rate coefficient (SWCON) 81.85 57.24 
  

0.675 60.76 -3.52 206.11 

15 bar lower limit of soil water content (LL15), v% -18.76 23.81 -17.88 6.34 0.655 -11.50 -66.34 34.36 

Potassium (K), mg kg-1 0.27 0.19 0.32 0.14 0.631 0.27 0 0.73 

Middle growing season precipitation (middle), mm 2.03 1.87 
  

0.628 1.52 -0.70 6.36 

Profile curvature 1.76 1.26 1.70 1.11 0.575 1.63 0 4.49 

Plane curvature 1.43 1.06 1.71 0.90 0.538 1.20 0 3.35 

Total soil carbon(C) , wt% 0.27 0.26 
  

0.487 0 0 0.83 

Clay content, wt% 3.96 22.58   0.454 0 -38.25 48.44 

Ammonium (NH4
+), mg kg-1 -0.03 0.19   0.402 0 -0.43 0.74 

Topographical wetness index (TWI) 0.01 0.20   0.388 0 -0.47 0.53 

Early growing season precipitation (early), mm -0.10 0.25   0.369 0 -0.61 0.47 

pH 0.09 0.20   0.333 0 -0.34 0.49 

Slope, ° 0.03 0.22     0.271 0 -0.35 0.48 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median,  

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A2.10. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for switchgrass biomass yield (Mg ha-1) at Marshall Farm. 

  Full Model 
Backward 

Select Model 
Bootstrap (1000 Replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1 M1 2.50%1 97.50%1 

(Intercept) 6.86 0.35 7.12 0.17 1 6.93 6.18 7.57 

Late growing season precipitation (late), mm 2.30 1.61 1.39 0.18 0.816 1.39 0 5.54 

Profile curvature -2.61 1.72 -3.42 1.17 0.709 -2.90 -6.60 0 

Total soil carbon (C), wt% -0.44 0.28 -0.41 0.17 0.701 -0.46 -1.04 0 

Sand content, wt% -0.29 8.56 0.00 0.00 0.674 0 -16.54 15.07 

15 bar lower limit of soil water content (LL15), v% 11.04 8.87 0.00 0.00 0.629 9.25 -3.63 29.30 

Saturated hydraulic conductivity (Ksat), mm h-1 -1.81 2.17 -1.87 0.41 0.625 -0.99 -5.80 2.51 

Drained upper limit of soil water content (DUL), v% -3.39 17.49 -1.44 0.40 0.595 0 -36.17 29.19 

Ammonium (NH4
+), mg kg-1 0.29 0.22 0.29 0.18 0.563 0.28 0 0.75 

Clay content, wt% -9.12 13.29   0.551 0 -29.93 18.75 

Middle growing season precipitation (middle), mm 1.25 1.50   0.549 0 -1.46 4.07 

Saturated water content (SAT), v% 0.19 1.51   0.527 0 -2.51 2.61 

Early growing season precipitation (early), mm 2.01 2.95   0.496 0 -2.92 7.66 

Aspect -0.27 0.25   0.491 0 -0.71 0 

Phosphorus (P), mg kg-1 0.29 0.31   0.466 0 0 0.84 

Plane curvature 0.63 1.12   0.426 0 -1.49 3.13 

Topographical wetness index (TWI) -0.15 0.38   0.385 0 -0.82 0.67 

Elevation, m 0.10 0.38   0.369 0 -0.86 0.92 

pH -0.06 0.44   0.34 0 -0.90 0.97 

Magnesium (Mg), mg kg-1 0.07 0.32   0.317 0 -0.56 0.69 

Whole profile drainage rate coefficient (SWCON) 0.14 1.46   0.306 0 -2.38 2.93 

Calcium (Ca), mg kg-1 -0.13 0.43   0.304 0 -1.08 0.88 

Potassium (K), mg kg-1 0.09 0.35   0.303 0 -0.52 0.75 

Slope, ° 0.02 0.33     0.278 0 -0.67 0.57 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A2.11. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for restored prairie biomass yield (Mg ha-1) at Marshall Farm. 

  Full Model 
Backward 

Select Model 
Bootstrap (1000 Replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1 M1 2.50%1 97.50%1 

(Intercept) 3.20 0.18 3.32 0.09 1 3.25 2.87 3.57 

Total soil carbon(C), wt% -0.82 0.19 -0.71 0.15 1 -0.78 -1.21 -0.41 

Middle growing season precipitation (middle), mm 2.68 0.76 2.76 0.72 0.993 2.66 0.74 4.13 

Late growing season precipitation (late), mm 2.49 0.84 2.55 0.81 0.979 2.51 0.43 4.06 

Early growing season precipitation (early), mm 4.49 1.50 4.62 1.44 0.974 4.47 0 7.28 

pH -0.47 0.19 -0.56 0.14 0.893 -0.48 -0.88 0 

Slope, ° -0.39 0.15 -0.37 0.10 0.88 -0.34 -0.70 0 

Elevation, m -0.31 0.16 -0.31 0.10 0.817 -0.29 -0.61 0 

Calcium (Ca), mg kg-1 0.42 0.23 0.56 0.17 0.781 0.45 0 0.91 

Ammonium (NH4
+), mg kg-1 -0.25 0.13 -0.27 0.10 0.706 -0.23 -0.51 0 

15 bar lower limit of soil water content (LL15), v% 3.25 3.19 
  

0.595 0.61 -3.98 11.31 

Phosphorus, mg kg-1 0.23 0.17 0.18 0.11 0.583 0.19 0 0.62 

Saturated water content (SAT), v% 0.21 0.57 0.28 0.10 0.522 0 -0.93 1.43 

Drained upper limit of soil water content (DUL), v% -4.01 8.56 
  

0.509 0 -19.84 11.12 

Sand content, wt% -2.30 5.35   0.49 0 -12.06 6.99 

Saturated hydraulic conductivity (Ksat), mm h-1 0.22 0.99   0.481 0 -1.86 2.25 

Clay content, wt% -1.02 4.75   0.449 0 -10.50 8.06 

Whole profile drainage rate coefficient (SWCON) -0.02 0.78   0.399 0 -1.73 1.54 

Magnesium (Mg), mg kg-1 0.15 0.19   0.392 0 -0.24 0.61 

Potassium (K), mg kg-1 0.11 0.18   0.378 0 -0.34 0.49 

Profile curvature 0.09 0.38   0.305 0 -0.88 0.78 

Topographical wetness index (TWI) -0.02 0.22   0.274 0 -0.44 0.47 

Aspect 0.07 0.13   0.258 0 -0.17 0.31 

Plane curvature 0.04 0.38     0.221 0 -0.64 0.67 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile
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Figure A2.1. Great Lakes Bioenergy Research Center Scale-up Experiment: aerial view of 

Marshall Farm with field boundaries. 

 

 
Figure A2.2. Great Lake Bioenergy Research Center Scale-up Fields: aerial view of Lux Arbor 

Farm with field boundaries. 

 

 
Figure A2.3.  Flow chart of biomass samples and soil samples parameters. 
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Figure A2.4. Monthly precipitation (mm) during growing season (March-October) at Lux Arbor 

Farm (upper panel) and Marshall Farm (lower panel) over the study period (2018-2021) and 30 

years average. 
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Figure A2.5. Empirical semi-variograms with best fitted Matern correlation models of 

switchgrass biomass yield (Mg ha-1) at Lux Arbor Farm over the study period (2018-2021). 

 

 
Figure A2.6. Ordinary kriging maps for switchgrass biomass yield (Mg ha-1) at Lux Arbor Farm 

over the study period (2018-2021). 
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Figure A2.7. Empirical semi-variograms with best fitted Matern correlation models of restored 

prairie biomass yield (Mg ha-1) at Lux Arbor Farm over the study period (2018-2021). 

 

 
Figure A2.8. Ordinary kriging maps for restored prairie biomass yield (Mg ha-1) at Lux Arbor 

Farm over the study period (2018-2021). 
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Figure A2.9. Empirical semi-variograms with best fitted Matern correlation models of 

switchgrass biomass yield (Mg ha-1) at Marshall Farm over the study period (2018-2021). 

 

 
Figure A2.10. Ordinary kriging maps for switchgrass biomass yield (Mg ha-1) at Marshall Farm 

over the study period (2018-2021). 
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Figure A2.9. Empirical semi-variograms with best fitted Matern correlation models of restored 

prairie biomass yield (Mg ha-1) at Marshall Farm over the study period (2018-2021). 

 

 
Figure A2.12. Ordinary kriging maps for restored prairie biomass yield (Mg ha-1) at Marshall 

Farm over the study period (2018-2021). 
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Figure A2.13. Directional semi-variograms for switchgrass biomass yield (Mg ha-1) at Lux Arbor 

Farm over the study period (2018-2021). Direction at 0, 45, 90 and 135 degrees. 
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Figure A2.14. Directional semi-variograms of restored prairie biomass yield (Mg ha-1) at Lux 

Arbor Farm over the study period (2018-2021). Direction at 0, 45, 90 and 135 degrees. 
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Figure A2.15. Directional semi-variograms for switchgrass biomass yield (Mg ha-1) at Marshall 

Farm over the study period (2018-2021). Direction at 0, 45, 90 and 135 degrees. 
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Figure A2.16. Directional semi-variograms of restored prairie biomass yield (Mg ha-1) at Lux 

Arbor Farm over the study period (2018-2021). Direction at 0, 45, 90 and 135 degrees. 



 

77 
 

 
Figure A2.17. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass biomass yield (upper panel) and restored prairie 

biomass yield (lower panel) at Lux Arbor Farm. 

 

 
Figure A2.18. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass biomass yield (upper panel) and restored prairie 

biomass yield (lower panel) at Lux Arbor Farm. 
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Figure A2.19. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass biomass yield (upper panel) and restored prairie 

biomass yield (lower panel) at Marshall Farm. 

 

 
Figure A2.20. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass biomass yield (upper panel) and restored prairie 

biomass yield (lower panel) at Marshall Farm. 
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Figure A2.21. Matern spatial correlation from null model for switchgrass biomass yield and 

restored prairie biomass yield at Marshall Farm and Lux Arbor Farm. 

  

 

 
Figure A2.22. Matern spatial correlation from models with selected variables for switchgrass 

biomass yield and restored prairie biomass yield at Marshall Farm and Lux Arbor Farm. 
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Figure A2.23. Matern spatial correlation plot from full models for switchgrass biomass yield and 

restored prairies biomass yield at Marshall Farm and Lux Arbor Farm.  
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CHAPTER 3 SPATIO-TEMPORAL VARIABILITY OF BIOMASS QUALITY 

COMPONENT LEVELS IN SWITCHGRASS AND RESTORED PRAIRIE IN THE 

GREAT LAKES REGION USA 

Abstract 

To help fill the research gap of spatio-temporal variability of biomass feedstock crop quality at 

field scale, an experiment on switchgrass (Panicum virgatum) and restored prairie quality 

variability was conducted at Marshall Farm (42.44° N, -85.32° W) and Lux Arbor Farm (42.48° 

N, -85.44° W) in southwest Michigan USA from 2018 to 2020. Randomly located biomass 

samples were collected during fall before senescence and analyzed for glucose ([Glc]: mg g-1), 

xylose ([Xyl]: mg g-1) and lignin (mg g-1) content. Interannual temporal variability was higher 

than within-field spatial variability of [Glc], [Xyl] and lignin content for switchgrass and restored 

prairie at both farms. The ratio of interannual temporal variance to spatial variance for glucose 

[Glc] was 12.2 and 52.4 in switchgrass and 1.30 and 6.14 in restored prairie at Marshall Farm 

and Lux Arbor Farm, respectively. The ratio of interannual temporal variance to spatial variance 

for [Xyl] was 3.2 and 5.8 in switchgrass and 1.7 and 4.3 in restored prairie at Marshall Farm and 

Lux Arbor Farm, respectively. The ratio of interannual temporal variance to spatial variance for 

lignin was 5.5 and 1.0 × 105 in switchgrass and 9.1 and 18.8 in restored prairie at Marshall Farm 

and Lux Arbor Farm, respectively. Generally, [Glc] and [Xyl] of switchgrass and restored prairie 

were positively correlated within fields at both farms across the study period (2018-2020).  

Soil phosphorus and calcium concentrations were negatively related to [Glc] and [Xyl] of 

restored prairie at Lux Arbor Farm. Elevation, slope and sand content were positively associated 

with both [Glc] and [Xyl] of switchgrass at Marshall. Topographic wetness index (TWI) was 

negatively related to [Glc], [Xyl] and lignin content of restored prairie at Marshall Farm.  
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Introduction 

Bioenergy is considered to be one of the most promising alternative energy sources for a greener 

energy future, especially for providing liquid transportation fuels (Calvin et al., 2021, IEA, 

2022). Due to the fuel vs. food debate surrounding first generation biofuel feedstocks (grain-

based), research focus has switched to second generation biofuel feedstocks (ligno-cellulosic 

based) (Valentine et al., 2012, Rai et al., 2022). Per current energy policy such as the Renewable 

Fuel Standard as authorized by the U.S. Energy Independence and Security Act of 2007, demand 

for renewable fuel is expected to increase in the future (OECD/FAO, 2021, IEA, 2022). The 

success of meeting the increasing demand of biofuel relies largely on developing a sustainable 

biomass feedstock supply (Kline et al., 2007).  

Bioenergy feedstock production faces unique challenges, including yield and quality variability 

(Stoof et al., 2012). Earlier research focused more on feedstock biomass yield, and rarely 

explored within-field biomass quality variability (Heaton et al., 2004, D. K. Lee et al., 2018, Gill 

et al., 2022). Sanford et al. (2017) stated that biomass yield is the main driver of final product 

ethanol yield on a land area basis. Nonetheless, feedstock quality affects the final biofuel product 

through biomass processing and conversion. Concerns have been raised regarding increased 

biorefinery production costs due to inconsistency or poor quality of biomass feedstocks (Castillo-

Villar et al., 2017). It has been well documented that quality of biomass such as moisture, ash 

and lignin content impact biofuel production and production costs (Castillo-villar et al., 2016, 

Metzner et al., 2019, Lan et al., 2020). The tradeoff between achieving high biomass yield per 

land unit and high quality of biomass has been highlighted by researchers (A. Hoover et al., 

2019). Different feedstock quality features are desired for differing conversion routes. 

Thermochemical conversion processes work best with high caloric content of biomass feedstock 
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such as high lignin content and low mineral content including nitrogen and sulfur (Tanger et al., 

2013). Biochemical conversion routes work best with biomass having more accessible 

polysaccharides and a lower lignin content (Brethauer & Studer, 2015). Recent research has 

demonstrated the possibility of blending biomass feedstocks, termed as feedstock formulation, to 

reduce overall quality variability (Kenney et al., 2013, Allison, 2018). Nevertheless, uniform 

quality of biomass is crucial for optimizing biofuel production from storage to conversion.  

First generation biofuel feedstocks such as corn grain and sugarcane rely on starch and soluble 

sugar to produce fermentable biofuel. Unlike first generation biofuel feedstocks, the main energy 

source of the 2nd generation biofuel feedstocks (ligno-cellulosic based) originates from structural 

biochemicals in the plant cell wall. Plant cell wall material constitutes the largest available 

photosynthesized carbon reservoir (Carpita et al., 2020). The major components of plant cell 

walls are cellulose, hemicellulose and the polyphenol lignin. Cellulose is a linear polymer of β-

1,4-linked glucose and makes up about 40-50% of plant material (Cosgrove, 2005). Multiple 

cellulose chains further form cellulose microfibril bundles, which function as the backbone of the 

cell wall (Maleki et al., 2016). Hemicellulose is assembled as amorphous heterogeneous 

polymers with β-1, 4-linked xylose as the main component (Scheller & Ulvskov, 2010). Through 

physico-chemical interaction, hemicellulose crosslinks cellulose microfibrils to form a complex 

network (Scheller & Ulvskov, 2010). This structural feature reduces the accessibility and 

digestibility of cellulose. Another major component of ligno-cellulosic biomass cell walls is 

lignin, a complex phenolic polymer embedded in the network of cellulose and hemicellulose (Liu 

et al., 2018). It provides plants with rigidity and functions as a defense system to increase plant 

resistance to lodging, pests, drought and other stresses (Liu et al., 2018). However, the 

recalcitrance of lignin hinders biofuel production during the conversion stage (Smith et al., 
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2016). Recent studies on biomass pretreatment focusing on removing lignin and increasing 

accessibility of cellulose and hemicellulose for hydrolysis and fermentation have shown 

substantial increases of biofuel production (Wi et al., 2015, Prasad & Ankit, 2015). In addition to 

biofuel products, biomass feedstocks can also be used to produce platform chemicals and value-

added chemicals such as glycerol, cellulose fiber, resin and bioplastics (Yang et al., 2012, De 

Bhowmick et al., 2018, Takkellapati et al., 2018, Ma et al., 2021). Recent research has shown 

that integrating value-added chemical production with biofuel production in a biorefinery is more 

sustainable and economically feasible than producing biofuel alone (Cheali et al., 2015, Zhang et 

al., 2020, Sharma et al., 2020).  

Differences in biomass quality were not only found between species but also within species of 

bioenergy cropping systems. Bhandari et al. (2014) showed that the switchgrass upland ecotype 

yielded 2% higher lignin concentration than lowland ecotypes. Even within a single plant, stems 

had higher cellulose, hemicellulose and lignin content than leaves (Bergs et al., 2019, Ghasemi et 

al., 2013). In addition to genetic variability, environmental factors such as temperature and soil 

moisture content also play a critical role in biomass quality variability. Hoover et al. (2018) have 

shown that drought leads to high year to year variability of biomass quality. Moreover, research 

showed that agronomic practices such as harvesting time introduce significant variability of 

biomass quality  (Gorlitsky et al., 2015).  

Information regarding within-field variability in biomass feedstock quality at the field scale is 

lacking in the literature. This study evaluates the quality of bioenergy feedstocks on the field 

scale to facilitate the determination of crop species and potential agronomic management 

practices to optimize biomass quality for use as a bioenergy feedstock. Therefore, the objectives 

of this study are to 1) Examine within-field spatial and temporal variability of switchgrass and 
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restored prairie [Glc], [Xyl], and lignin content, and 2) Study the relationships between soil 

fertility characteristics and topographical features with the [Glc], [Xyl], and lignin content of 

switchgrass and restored prairie on the field scale.  

Materials and methods 

Experimental Site Description   

Field-scale experiments were conducted at Marshall Farm (42.44° N, -85.32° W) and Lux Arbor 

Farm (42.48° N, -85.44° W) from 2018 to 2020, which are part of the Great Lakes Bioenergy 

Research Center experimental infrastructure located at Michigan State University’s W.K. 

Kellogg Biological Station (KBS) in southwest Michigan. Soils in southwest Michigan are 

developed on glacial till and outwash from the last retreat of the Wisconsin glaciation (circa 

12,500 years BP). Most soils are sandy loam and silty clay loams of moderate fertility and 

belong to the Alfisol, Mollisol, Histosol and Entisol soil orders in this area (Crum & Collins, 

1995). All the fields at Marshall were enrolled in the USDA CRP program in 1987, with smooth 

brome grass (Bromus inermis) planted in the fields. Annual crops had been planted in these fields 

for decades prior to CRP program enrollment. Prior to conversion, all the fields at Lux Arbor had 

been cultivated with a tilled corn-soybean rotation since 1987. In early May 2009, field at 

Marshall and Lux Arbor were planted with glyphosate resistant soybean as a breakout crop for 

one growing season and then converted to switchgrass and restored prairie fields.  

Restored prairie (5 grass and 14 forb species, see details in Table A3.1) and switchgrass (cultivar 

Cave-in-rock) were planted following the soybean breakout crop at both farms, which created a 

total of 4 fields varying in size from 11-14 ha. Switchgrass was planted at a seeding rate of 11.2 

kg ha–1 with oats (Avena sativa) as a nurse crop in 2010. Restored prairie was planted at a bulk 

seeding rate of 7.8 kg ha–1 with oats as a nurse crop in 2010.  
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Switchgrass was fertilized with 28-0-0 liquid urea-ammonium nitrate at the rate of 56 kg ha-1 

nitrogen every spring beginning in 2011. Based on low soil test levels, potash at a rate of 140 kg 

ha-1 was applied to restored prairie at Lux Arbor in 2009. No other phosphorus or potassium 

applications were made to switchgrass or restored prairie fields.   

Thirty georeferenced points were randomly selected in each field at both Marshall and Lux 

Arbor. In late May 2018 and late May 2020, soil samples were collected at 0-25 cm depth at all 

georeferenced points and sent to the MSU soil lab for measurements of pH, phosphorus (P: mg 

kg-1), potassium (K: mg kg-1), calcium (Ca: mg kg-1), magnesium (Mg: mg kg-1), ammonium 

(NH4
+: mg kg-1), and total carbon (C: wt%) analysis, which collectively indicate soil fertility 

characteristics. Soil fertility characteristics were assumed unchanged from 2018 to 2019. 

Elevation at a resolution of 5 meters was collected by Lidar at all fields in 2008, which was used 

to generate digital elevation maps (DEMs) for each field. Slope, aspect, plane curvature, profile 

curvature, and Topographical Wetness Index (TWI) were obtained and used as soil topographical 

features in R Statistical Programming Language (R Core Team, 2022) with the raster (Hijmans, 

2021), rgdal (Bivand et al., 2021), maptools (Bivand & Lewin-Koh, 2021) and dynatopmodel 

packages (Metcalfe et al., 2018). Soil sand, and clay levels were obtained from either deep core 

(0-50 cm) samples analysis in 2009 or USDA Web Soil Survey for all georeferenced sampling 

points (Web Soil Survey, 2022). The 15 bar lower limit of soil water content (LL15), drained 

upper limit of soil water content (DUL), saturated hydraulic conductivity of soil (Ksat), whole 

profile drainage rate coefficient (SWCON) and saturated water content (SAT) were calculated 

from soil sand content, clay content and total carbon content (Saxton & Rawls, 2006). Details on 

biomass samples and soil samples parameters are located in Figure A3.1. Descriptive statistics 

for soil fertility characteristics and topographical features are located in Table A3.4 to A3.7 in 
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the appendix. In late fall of 2018-2020, switchgrass and restored prairie biomass samples were 

cut at ground level at 30 fixed georeferenced points by using 1x1 m2 quadrat and hand-clipper at 

both farms after the first killing frost. In 2019 and 2020 harvesting seasons, switchgrass and 

restored prairie samples were also collected at an additional distinct 12 georeferenced points at 

both farms giving a total of 42 sampling points per field. All biomass samples were dried at 65 

°C to a constant weight and biomass yield was corrected for dry weight.  

Chemical compositional analysis (Enzymatic hydrolysis) 

All biomass samples were dry ground using a Wiley mill (Thomas Scientific, Swedesboro, NJ) 

to pass a 5 mm screen. Then subsamples were analyzed to determine [Glc], [Xyl], and lignin 

concentration. The protocol is summarized as follows: 10 mg dry biomass samples were held in 

plastic tubes, which were loaded on a robotic arm system to further ball mill with 5.56 mm 

stainless steel balls (Salem Specialty Ball Co, Canton, CT). After that, a 1.5 mg subsample of 

each dry biomass sample was pretreated with 750 μL 0.25% (w/v) NaOH (62.5 mM) solution 

and kept in a water bath set at 90°C for 3 hours. About 7.5 μl of 6N hydrochloric acid was used 

to neutralize the reaction if necessary. Then, the pretreated subsamples were added to 0.5 μL of 

Accellerase 1000 (Genencor, Rochester, NY), 33.3 μl of 1 M citrate buffer (pH 4.5) plus 10 μl of 

1% w/v sodium azide; 72 nL of C-Tec2 and 8 nL of H-tec2 enzymes and incubated in a rotisserie 

oven at 50°C for 20 hours. Supernatants after centrifuge were obtained and transferred to 0.8 mL 

deep-well plates. Finally, enzyme-based assay kits K-GLUC (Megazyme, Ireland) and K-

XYLOSE (Megazyme, Ireland) were used for [Glc] concentration and [Xyl] concentration 

determination, respectively. The analytical extraction methods used for [Glc] and [Xyl] 

estimation as described above were designed for high throughput analysis providing accurate 

qualitative differences between samples.  However, they represent a conservative approach with 
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regard to quantitative estimation, and industrial scale lignocellulosic bioethanol conversions will 

likely be slightly higher. For lignin content determination, 1-1.5 mg subsample of each dry 

biomass sample was added to 100 μl of freshly made acetyl bromide solution (25% v/v acetyl 

bromide in glacial acetic acid) and heated in a capped flask at 50°C for 2 hours initially. Then, 

the samples were heated for an additional hour with vertexing every 15 minutes. After cooling on 

ice to room temperature, 400 μl of 2 M sodium hydroxide and 70 μl of freshly prepared 0.5 M 

hydroxylamine hydrochloride were added to the samples in flasks. Then, flasks were filled with 

glacial acetic acid to the 2.0 ml mark. Absorbance (abs) at 280 nm was read in an ELISA reader 

from a UV specific 96 well plate containing 200 μl of the solution in each well. Detailed 

protocols are available in Santoro et al. (2010) and Foster et al. (2010). 

Statistical Analysis 

All statistical analyses were done in the R statistical computational environment (R Core Team, 

2022) with package sf (Pebesma, 2018), sp (Pebesma et al., 2005), gstat (Pebesma, 2004), 

automap (Hiemstra et al., 2008), ape (Paradis & Schliep, 2019), lme4 (Bates et al., 2015), 

DHARMa (Hartig, 2021), and spaMM (Rousset & Ferdy, 2014). All figures were made in R 

statistical computational environment with package ggplot2 (Wickham, 2016). Empirical semi-

variograms were fitted to the data and ordinary kriging regression interpolations were made for 

switchgrass and restored prairie at both farms separately for the years 2018-2020 to visually 

examine the [Glc], [Xyl] and lignin content variability. Moran’s I values (Moran, 1950) were 

calculated for [Glc], [Xyl] and lignin content of each cropping system at both Lux Arbor and 

Marshall. A linear mixed model with location, crop, and year coupled with their two-way and 

three-way interactions was fitted to obtain the estimated means of [Glc], [Xyl] and lignin 

content. Due to the lack of spatial autocorrelation based on Moran’s I values, a linear mixed 



 

89 
 

model was fitted without spatial covariance structure. When a significant three-way interaction 

was found, predetermined comparisons with Bonferroni adjusted p-values were conducted 

between crop within the same location and year (N=6), between location within the same crop 

and year (N=12), and between year within the same location and crop (N=6).  

Moran’s I value formula: 

I =
N

 W

∑ ∑ (xi−�̅�)(xj−�̅�)N
j=1

N
i=1

∑ (xi−�̅�)2N
i=1

,  

where N is the number of the sampling points; W is the sum of weights; wij is weight from a 

distance decay function; xi is the observed value; �̅� is the mean of the observed value. 

The spatio-temporal Gaussian process unconditional model was fitted to examine spatial and 

temporal variability of [Glc], [Xyl] and lignin content of switchgrass and restored prairies 

separately at both farms. 

The spatio-temporal Gaussian Process model takes the form as below: 

y(s, t) = Y(s, t) + ϵ(s, t) 

Where Y(s, t) is mean process part and ϵ(s, t) is noise or error process part. Index s indicates 

location with x, y coordinates; t indicates discrete time point.  

The error part ϵ(s, t) is assumed to have identical independent and distributed normal distribution 

with 0 mean and variance σ2.  The mean process part Y(s, t) consists of a systematic part and error 

part η(s, t). Error part η(s, t) in mean process is assumed to have 0 mean and variance-covariance 

term, which takes account of spatial dependency and temporal dependency. Matern spatial 

covariance was used to model the spatial dependency. Stationarity was also assumed from 

examining the trends along longitude and latitude for [Glc], [Xyl] and lignin content. Since the 

temporal resolution was one measurement per year and only 3 years of data were available, 

within-field spatial variability is assumed static over the study period. Temporal variability was 
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examined by including year as the random intercept for each crop at both farms. Therefore, 

independence of random variations due to year and Matern spatial covariance was assumed. 

To understand within-field relationships among biomass yield, [Glc], [Xyl] and lignin contents, 

Pearson’s second moment correlation coefficients were computed for these four measurements 

of switchgrass and restored prairie at both farms separately from 2018-2020.  

Multi-model inference with backward selection was adopted to study the possible associations 

between soil fertility characteristics and soil topographical features and switchgrass, restored 

prairie [Glc], [Xyl] and lignin content over the study period (2018-2020). A bootstrapping 

resampling technique (replication: 1000) was used to examine stability of the final model chosen 

by lowest AIC. Variables with at least 70% inclusion probability were considered to be the 

constantly selected variables. Soil P, K, Ca, Mg, NH4
+, pH, and total carbon were included in the 

models as soil fertility characteristics. Elevation, slope, aspect, plane curvature, profile curvature, 

TWI, LL15, DUL, Ksat, SAT, sand, and clay were included in the models as soil topographical 

features. Cumulative precipitation (mm) from April to June was included as early growing 

season precipitation (Early), and cumulative precipitation from July to August as late growing 

season precipitation (Late). All soil features and growing season precipitation amounts were 

standardized by abstracting means and dividing by standard deviations before model fitting. 

Results 

Monthly climatological data 

Table 3.1 shows Marshall had relatively lower precipitation from April to September in 2018 

compared to the 2019, 2020, and the 30 year average. Compared to 2019, the cumulative 

precipitation from April to June was lower in 2020. Table 3.2 shows that cumulative 

precipitation from April to June was relatively higher in 2019 than the 2018 and 2020 growing 
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seasons at Lux Arbor. However, the cumulative precipitation from July to September was 

relatively lower in 2019. 

Table 3.1. Monthly climatological data for 2018-2020 growing seasons at Michigan State 

University’s Kellogg Weather Station (42.41° N, -85.37°W) and 30-year average at the Battle 

Creek Weather Station (42.37°N, -85.26°W). 
Month 3 4a 5a 6a 7b 8b 9b 10 11 12 1 2 

 2018-2019c 

Tmax1 5.9 10.1 24.6 26.1 28.4 28.5 24.5 15.1 3.8 3.3 -1.9 1.8 

Tmin1 -3.6 -0.8 12.5 15.6 16.4 15.4 13.0 5.3 -1.8 -3.5 -10.1 -7.4 

PRCP1 36.3 44.4 208.3 77.7 37.6 111.3 58.2 103.1 39.6 32.2 16.8 30.2 

 2019-2020c 

Tmax 5.9 15.0 20.3 25.2 30.1 27.2 24.8 16.4 4.8 4.8 2.5 1.4 

Tmin -4.2 3.5 9.0 14.4 18.3 14.5 14.0 5.8 -2.7 -3.3 -3.9 -6.7 

PRCP 58.7 86.4 110.0 157.0 80.5 44.2 119.4 91.2 32.0 71.4 76.2 10.2 

 2020-2021c 

Tmax 8.9 12.4 19.6 28.0 30.1 28.8 22.2 14.6 12.2 4.1 1.1 -0.7 

Tmin -1.0 1.6 8.9 14.1 17.7 14.8 10.1 3.2 1.6 -3.7 -5.4 -11.3 

PRCP 70.1 73.1 152.4 82.5 48.8 109.2 80.5 107.7 42.4 42.4 13.2 5.3 

 30 Year Averaged 

Tmax 9.3 16.4 22.7 27.8 29.7 28.1 24.5 17.8 9.8 2.7 0.7 2.7 

Tmin -2.4 3.2 9.0 14.2 16.1 15.5 11.2 5.8 0.7 -5.1 -7.6 -7.0 

PRCP 63.8 91.7 106.4 104.2 103.1 105.9 92.4 89.1 79.0 62.2 62.6 47.9 

1. Abbreviation: Tmax: Max Air Temperature (°C), Tmin: Minimum Air Temperature (°C) and PRCP: 

Total Precipitation (mm). 

a. April, May and June are defined as early growing season. 

b. July, August and September are defined as middle growing season. 

c. 2018-2020 climatological data were obtained from Michigan State University Enviro-weather 

Automated Weather Station Network. 

Available online: https://mawn.geo.msu.edu/station.asp?id=kbs [10/31/2021] 

d. 30-year average climatological data were obtained from National Centers for Environmental 

Information (Station ID: USC00200552) at National Oceanic and Atmospheric Administration (NOAA). 

Available online: https://www.ncdc.noaa.gov/cdo-web/datatools [1/19/2023]. 
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Table 3.2. Monthly precipitation for 2018-2020 growing seasons at Lux Arbor Marginal Land 

Experiment Weather Station (42.48°N, -85.45°W). 

Month 3 4a 5a 6b 7b 8c 9c 10 11 12 1 2 

  2018-2019d  

PRCP1 43.4 64.3 199.4 112.5 46.7 101.9 130.8 98.3 52.6 53.8 24.1 80.0 

 2019-2020d 

PRCP  61.0 133.9 140.7 178.8 52.6 61.2 127.5 136.9 43.9 81.8 96.8 26.2 

 2020-2021d 

PRCP  77.2 79.0 152.9 88.4 78.0 139.2 93.2 99.6 45.2 60.7 25.7 8.6 

1. Abbreviation: PRCP: Total Precipitation (mm). 

a. April and May are defined as early growing season. 

b. June and July are defined as middle growing season. 

c. August and September are defined as late growing season. 

d. 2018-2020 climatological data were obtained from Great Lake Bioenergy Research Center online 

database: https://data.sustainability.glbrc.org/datatables/507 [1/19/2023]. 

 

Descriptive statistics 

As shown in Table 3.3, restored prairie had higher [Glc] than switchgrass each year at both farms 

with a lone exception of 2018 at Lux Arbor. During the study period (2018-2020), both 

switchgrass (161.1 ± 13.3 mg g-1) and restored prairie (167.3 ± 33 mg g-1) had the highest [Glc] 

in 2019 at Marshall. The [Glc] of switchgrass increased from the lowest value in 2018 (100 ± 6.9 

mg g-1) to the highest value in 2019 (143.3 ± 9.6 mg g-1) at Lux Arbor. Across years, [Glc] of 

restored prairie continued to increase from 2018 to 2020 at Lux Arbor. At Marshall, restored 

prairie (SD: 24 to 35.5 mg g-1; CV: 0.2 to 0.27) had a higher SD and CV than switchgrass (SD: 

6.3 to 13.3 mg g-1; CV: 0.07 to 0.09). At Lux Arbor, restored prairie (SD: 8.1 to 22.3 mg g-1; CV: 

0.09 to 0.13) had a higher SD and CV than switchgrass (SD: 6.9 to 13.2 mg g-1; CV: 0.07 to 

0.09). Compared to switchgrass, more within-field variability of [Glc] was observed in the 

restored prairie in each of the three years.  
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Table 3.3. Descriptive statistics of glucose content (mg g-1) for switchgrass and restored prairie at 

Marshall Farm and Lux Arbor Farm during the study period (2018-2020). 

Glucose (mg g-1) 
  Marshall  Lux Arbor 

Crop Year Mean SD1 CV1  Mean SD1 CV1 

Switchgrass 2018 95.7 6.3 0.07  100 6.9 0.07 
 2019 161.1 13.3 0.08  143.3 9.6 0.07 
 2020 119.7 10.9 0.09  143.1 13.2 0.09 

  Average 128.7 28.8 0.22  131.8 21.8 0.17 

Restored prairie 2018 98.7 24 0.24  91.3 8.1 0.09 
 2019 167.3 33.3 0.2  154.2 16.5 0.11 
 2020 133.7 35.5 0.27  165.8 22.3 0.13 

  Average 136.9 41.7 0.3  141.9 35.3 0.25 

1. Abbreviation: SD: standard deviation, CV: coefficient of variance. 

Table 3.4 shows that switchgrass had higher [Xyl] (61.7 to 93.6 mg g-1) than restored prairie 

(52.8 to 86 mg g-1) at Marshall across the three study years (2018-2020). In contrast, restored 

prairie had higher [Xyl] than switchgrass at Lux Arbor in 2019 and 2020. The [Xyl] of both 

cropping systems at both farms increased from 2018-2019 and then decreased in 2020, 

particularly in the restored prairie. Similar to [Glc], restored prairie had higher CV and SD than 

switchgrass across the three study years (2018-2020) at both Lux Arbor and Marshall.  

Table 3.4. Descriptive statistics of xylose content (mg g-1) for switchgrass, restored prairie at 

Marshall Farm and Lux Arbor Farm during the study period (2018-2020). 

Xylose (mg g-1) 
  Marshall  Lux Arbor 

Crop Year Mean SD1 CV1  Mean SD1 CV1 

Switchgrass 2018 61.7 3.9 0.06  66.1 2.7 0.04 
 2019 93.6 10.7 0.11  88.8 6 0.07 
 2020 72.6 8.5 0.12  80.9 6.9 0.09 

  Average 77.5 15.6 0.2  79.9 10.6 0.13 

Restored prairie 2018 52.8 10.5 0.2  65.7 6.2 0.09 
 2019 86 17.3 0.2  89.3 10 0.11 
 2020 66.4 17.9 0.27  83.4 10.2 0.12 

  Average 70 20.8 0.3  80.9 13.2 0.16 

 1. Abbreviation: SD: standard deviation, CV: coefficient of variance. 

As shown in Table 3.5, switchgrass had consistently higher lignin content than restored prairie 

within year and farm. At Lux Arbor, the lignin content decreased from 2018 to 2019 then 
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increased in 2020. Lignin content kept increasing from 2018 to 2020 at Marshall. Over the study 

period (2018-2020), both switchgrass and restored prairie had low CV values at Marshall and 

Lux Arbor (2018-2020). A low CV implies that there is lower within-field variability of [Glc], 

[Xyl] and lignin content for both switchgrass and restored prairie over the study period (2018-

2020). 

Table 3.5. Descriptive statistics of lignin content (mg g-1) for switchgrass and restored prairie at 

Marshall Farm and Lux Arbor Farm during the study period (2018-2020). 

Lignin (mg g-1) 

  Marshall  Lux Arbor 

Crop Year Mean SD1 CV1  Mean SD1 CV1 

Switchgrass 2018 199.1 9.7 0.05  197.4 11.6 0.06 
 2019 185.3 11.5 0.06  175.1 9.3 0.05 
 2020 177.4 10.3 0.06  192.3 6.9 0.04 

  Average 186.0 13.6 0.07  187.3 13.2 0.07 

Restored prairie 2018 186.7 11.5 0.06  195.9 7.2 0.04 
 2019 169.3 11.8 0.07  169.6 8.1 0.05 
 2020 159.3 13.0 0.08  185.4 8.8 0.05 

  Average 170.2 16.2 0.10  182.4 13.4 0.07 

1. Abbreviation: SD: standard deviation, CV: coefficient of variance. 

Neither switchgrass nor restored prairie showed statistically significant spatial autocorrelations 

among [Glc], [Xyl] and lignin content based on Moran’s I (Table A3.8- A3.10 in appendix). In 

addition, empirical semi-variograms (Figures A3.9, A3.11, A3.13, A3.15, A3.17, and A3.19 in 

appendix) did not show discernable spatial autocorrelations among [Glc], [Xyl] and lignin 

content of switchgrass and restored prairie at Marshall and Lux Arbor. Higher [Glc] variability 

was observed across years than the within-field spatial variability for both switchgrass and 

restored prairie at both farms (Figures A3.3- A3.4 in appendix). For [Xyl] and lignin content, 

temporal variability was still higher than within-field spatial variability for switchgrass and 

restored prairie. However, the temporal variability of [Xyl] and lignin content was reduced 

compared to [Glc] for switchgrass and restored prairie at both farms (Figures A3.3- A3.8 in 
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appendix). Ordinary kriging maps (Figures A3.10, A3.12, A3.14, A3.16, A3.18 and A3.20 in 

appendix) after fitting Matern covariance structure to empirical semi-variograms provided more 

empirical evidence that within-field spatial variability of [Glc], [Xyl] and lignin content for 

switchgrass and restored prairie at both farms was smaller than the corresponding temporal 

variability.  

Linear mixed model result 

As evident from Figure 3.1, the three-way interaction between farm, crop and year was 

statistically significant (p-value: 0.003) for [Glc]. At Lux Arbor, restored prairie (167.0 mg g-1; 

95% CI: 160.4 to 173.5 mg g-1) had a significantly higher [Glc] than switchgrass (143.7 mg g-1; 

95% CI: 137.0 to 150.4 mg g-1) in 2020 (Bonferroni adjusted p-value: <0.0001). There was no 

significant difference of [Glc] between switchgrass and restored prairie at Marshall across the 

study period (2018-2020). For switchgrass, [Glc] was significantly higher at Marshall than Lux 

Arbor in 2019. Marshall had significantly lower [Glc] of switchgrass and restored prairie than 

Lux Arbor in 2020. At Lux Arbor, switchgrass [Glc] in 2018 (100.6 mg g-1; 95% CI: 93.0 to 

108.2 mg g-1) was significantly lower than in 2019 (143.9 mg g-1; 95% CI: 137.4 to 150.4 mg g-1) 

and 2020 (143.7 mg g-1; 95% CI: 137.0 to 150.4 mg g-1) respectively. The ranking of restored 

prairie [Glc] at Lux Arbor was 2020 (167.0 mg g-1; 95% CI: 160.4 to 173.5 mg g-1) > 2019 

(154.9 mg g-1; 95% CI: 148.3 to 161.4 mg g-1) > 2018 (89.5 mg g-1; 95% CI: 81.9 to 97.0 mg g-

1). At Marshall, the highest [Glc] was in 2019 for switchgrass (161.8 mg g-1; 95% CI: 155.3 to 

168.3 mg g-1) and restored prairie (169.4 mg g-1; 95% CI: 162.9 to 176.0 mg g-1) and lowest in 

2018 for switchgrass (96.0 mg g-1; 95% CI: 88.4 to 103.5 mg g-1) and restored prairie (104.0 mg 

g-1; 95% CI: 96.5 to 111.6 mg g-1).  



 

96 
 

 
Figure 3.1. Estimated mean glucose content (mg g-1) of switchgrass and restored prairie at Lux 

Arbor Farm and Marshall Farm during study period (2018-2020). Dots present estimated mean 

glucose content. Vertical bars represent 95% confidence intervals of estimated mean glucose 

content. 
 

As evident from Figure 3.2, the two-way interactions between farm and year and farm and crop 

were statistically significant for [Xyl] (p-value: <0.0001 and 0.0209 respectively). At Lux Arbor, 

there was no significant difference in [Xyl] between switchgrass (78.5 mg g-1; 95% CI: 75.8 to 

81.3 mg g-1) and restored prairie (79.1 mg g-1; 95% CI: 76.3 to 81.8 mg g-1) averaged over the 

study period (2018-2020). Conversely, switchgrass [Xyl] (76.3 mg g-1; 95% CI: 73.5 to 79.1 mg 

g-1) was significantly higher than restored prairie [Xyl] (70.3 mg g-1; 95% CI: 67.5 to 73.0 mg g-

1) averaged over the study period (2018-2020) at Marshall. At Lux Arbor, the [Xyl] ranking was 

89.0 mg g-1 (95% CI: 86.5 to 91.5 mg g-1) in 2019 > 82.2 mg g-1 (95% CI: 79.6 to 84.7 mg g-1) in 

2020 > 65.2 mg g-1 (95% CI: 62.3 to 68.1 mg g-1) in 2018. At Marshall, [Xyl] ranking was 90.6 

mg g-1 (95% CI: 88.1 to 93.1 mg g-1) in 2019 > 70.5 mg g-1 (95% CI: 68.0 to 73.1 mg g-1) in 

2020 > 58.7 mg g-1 (95% CI: 55.8 to 61.6 mg g-1) in 2018. 
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Figure 3.2. Estimated mean xylose content (mg g-1) of switchgrass and restored prairie at Lux 

Arbor Farm and Marshall Farm during study period (2018-2020). Dots present estimated mean 

xylose content. Vertical bars represent 95% confidence intervals of estimated mean xylose 

content. 

As evident from Figure 3.3, the two-way interactions between farm and year, farm and crop, 

crop and year were statistically significant for lignin content (p-value: <0.0001, p< 0.0001 and 

0.0162 respectively). At Lux Arbor, there was no significant difference in lignin content between 

switchgrass (187.5 mg g-1; 95% CI: 185.0 to 190.0 mg g-1) and restored prairie (183.4 mg g-1; 

95% CI: 181.0 to 185.9 mg g-1) averaged over the study period (2018-2020). Conversely, 

switchgrass lignin content (187.3 mg g-1; 95% CI: 184.8 to 189.8 mg g-1) was significantly 

higher than restored prairie lignin content (172.3 mg g-1; 95% CI: 169.8 to 174.9 mg g-1) 

averaged over the study period (2018-2020) at Marshall. In 2019, Lux Arbor (172.0 mg g-1; 95% 

CI: 169.6 to 174.3 mg g-1) had significantly lower lignin content than Marshall (177.5 mg g-1; 
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95% CI: 175.1 to 179.8 mg g-1). In 2020, Lux Arbor (188.6 mg g-1; 95% CI: 186.2 to 190.9 mg g-

1) had significantly higher lignin content than Marshall (168.8 mg g-1; 95% CI: 166.4 to 171.2 

mg g-1) averaged over crops. The ranking for restored prairie lignin content averaged over farms 

was: 2018 (191.7 mg g-1; 95% CI: 188.9 to 194.4 mg g-1) > 2020 (172.5 mg g-1; 95% CI: 170.1 to 

174.9 mg g-1) > 2019 (169.5 mg g-1; 95% CI: 167.2 to 171.9 mg g-1). The ranking of lignin 

content in switchgrass averaged over farms was: 2018 (197.4 mg g-1; 95% CI: 194.7 to 200.2 mg 

g-1) > 2020 (184.9 mg g-1; 95% CI: 182.5 to 187.3 mg g-1) >2019 (179.9 mg g-1; 95% CI: 177.6 

to 182.3 mg g-1).  

 
Figure 3.3. Estimated mean lignin content (mg g-1) of switchgrass and restored prairie at Lux 

Arbor Farm and Marshall Farm during study period (2018-2020). Dots present estimated mean 

lignin content. Vertical bars represent 95% confidence intervals of estimated mean lignin 

content. 

Gaussian process unconditional model results 

Results from unconditional models (Table 3.6) reveal that both switchgrass and restored prairie 

had significantly lower estimated within-field spatial variance compared to interannual temporal 
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variance in [Glc], [Xyl] and lignin content. The ratio of interannual temporal variance to spatial 

variance is 12.2 for [Glc] of switchgrass and 1.3 for restored prairie at Marshall. At Lux Arbor, 

the ratio of interannual temporal variance to spatial variance of [Glc] is 52.4 for switchgrass and 

6.1 for restored prairie. For [Xyl], the ratios of interannual temporal variance to spatial variance 

are 3.2 and 1.7 for switchgrass and restored prairie at Marshall, respectively. At Lux Arbor, the 

ratios of interannual temporal variance to spatial variance for [Xyl] are 5.8 and 4.3 for 

switchgrass and restored prairie, respectively. For lignin content, the ratios of interannual 

temporal variance to spatial variance are 5.5 and 9.1 for switchgrass and restored prairie at 

Marshall, respectively. Switchgrass at Lux Arbor had extremely low spatial variance (0.0008) for 

lignin content. The ratio of interannual temporal variance to spatial variance for restored prairie 

was 18.8 at Lux Arbor. It is worth noting that the magnitude of spatial variance was similar to 

residual variance in [Glc], [Xyl] and lignin content for both switchgrass and restored prairie at 

both farms.  
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Table 3.6. The Gaussian process model results of unconditional models for glucose content (mg 

g-1), xylose content (mg g-1) and lignin content (mg g-1) of switchgrass and restored prairies at 

Marshall Farm and Lux Arbor Farm. 

      Spatial correlation Random part (Variance) 

Variable Location Crop ν2 ρ3 Year spatial residual 

[Glc]1 

Marshall 
Switchgrass 16.67 0.48 743 61 69 

Restored prairie 16.67 0.72 705 543 492 

Lux Arbor 
Switchgrass 16.67 0.01 419 8 110 

Restored prairie 16.67 0.46 1178 192 131 

[Xyl]1 

Marshall 
Switchgrass 16.67 0.52 183 58 24 

Restored prairie 0.25 2.51 164 94 167 

Lux Arbor 
Switchgrass 16.67 0.48 92 16 20 

Restored prairie 1.91 1.07 107 25 62 

Lignin 

Marshall 
Switchgrass 16.67 0.03 83 15 106 

Restored prairie 16.67 0.40 128 14 106 

Lux Arbor 
Switchgrass 5.06 0.0003 82 0.0008 81 

Restored prairie 1.99 1.63 113 6 59 

1. Abbreviation: [Glc]: Glucose content, [Xyl]: Xylose content. 

2. ν: smoothness parameter. 

3. ρ: decay parameter. 

Pearson’s second moment correlation 

Within-field Pearson’s second moment product correlations among biomass yield, [Glc], [Xyl] 

and lignin content for switchgrass and restored prairie by farm and year are shown in Table 3.7. 

Correlations between [Glc] and [Xyl] were positive for switchgrass and restored prairie at both 

farms over the study period (2018-2020), ranging from 0.71 to 0.82 for restored prairie at Lux 

Arbor and from 0.83 to 0.88 at Marshall. For switchgrass, Lux Arbor in 2019 presented the 

lowest correlation (0.14) between [Glc] and [Xyl] across the three study years. In contrast, 

switchgrass at Marshall in 2019 presented the highest correlation between [Glc] and [Xyl] across 

the three study years. [Glc] was negatively associated with biomass yield for switchgrass and 

restored prairie at both farms across years except in the 2019 switchgrass (0.41) at Marshall. 

Lignin content had a positive correlation with biomass yield except in the 2018 switchgrass (-

0.39), the 2019 restored prairie (-0.02) at Lux Arbor, and the 2020 restored prairie (-0.14) at 
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Marshall. A positive correlation between [Glc] and lignin content, [Xyl] and lignin content was 

statistically significant for restored prairie at Marshall across all three years. At Lux Arbor, the 

correlations between [Glc] and lignin content for restored prairie ranged from -0.01 to 0.37, 

which were lower than Marshall in the same year. In switchgrass, a negative correlation was 

observed between [Glc] and lignin content at Lux Arbor across all three years. Conversely, the 

correlation between [Glc] and lignin content for switchgrass at Marshall was positive in 2019 

and 2020. Correlation between [Xyl] and lignin content was positive for switchgrass and restored 

prairie at both farms in 2019. In 2018, switchgrass and restored prairie had a positive correlation 

between [Xyl] and lignin content at Marshall. Conversely, switchgrass and restored prairie 

biomass had a negative correlation between [Xyl] and lignin content at Lux Arbor in 2018.
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Table 3.7. Pearson product-moment correlation for biomass yield (Mg ha-1), glucose content (mg g-1), xylose content (mg g-1) and 

lignin content (mg g-1) for switchgrass and restored prairie at Marshall Farm and Lux Arbor Farm. 
      Marshall Lux Arbor 

      Yield [Glc]1 [Xyl]1 lignin Yield [Glc] [Xyl] lignin 

2018 

Switchgrass Yield 1 -0.03 0.14 0.26 1 -0.13 0.01 -0.39 

 [Glc]   1 0.21 -0.31  1 0.30 -0.15 

 [Xyl]   1 0.03   1 -0.06 

 lignin    1    1 

Restored Prairie Yield 1 -0.13 0.02 0.16 1 -0.17 -0.18 0.01 

 [Glc]  1.00 0.83*** 0.56**  1 0.71* -0.01 

 [Xyl]   1.00 0.67***   1 -0.20 

  lignin       1.00       1 

2019 

Switchgrass Yield 1 0.41* 0.46* 0.21 1 -0.19 0.17 0.26 

 [Glc]  1 0.87*** 0.25  1 0.14 -0.17 

 [Xyl]   1 0.44*   1 0.02 

 lignin    1    1 

Restored Prairie Yield 1 -0.20 0.05 0.12 1 -0.34 -0.15 -0.02 

 [Glc]  1 0.84*** 0.65***  1 0.79* 0.37 

 [Xyl]   1 0.82***   1 0.42* 

  lignin       1       1 

2020 

Switchgrass Yield 1 -0.05 0.14 0.23 1 -0.31 -0.23 0.31 

 [Glc]  1 0.81*** 0.53***  1 0.80* -0.46* 

 [Xyl]   1 0.54***   1 -0.12 

 lignin    1    1 

Restored Prairie Yield 1 -0.18 -0.09 -0.14 1 -0.27 0.02 0.37 

 [Glc]  1 0.88*** 0.75***  1 0.82*** 0.14 

 [Xyl]   1 0.83***   1 0.29 

  lignin       1       1 

1. Abbreviation: [Glc]: Glucose content, [Xyl]: Xylose content. 

* P-value < 0.05. 

** P-value < 0.01. 

*** P-value < 0.001.
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Multimodel inference for variables selection 

In Figure 3.4, only soil K concentration was included over 70% of the time over 1000 

bootstrapping models for [Glc] of switchgrass biomass yield at Lux Arbor. As shown in Table 

A3.11 in the appendix, the estimated coefficient of K on [Glc] of switchgrass at Lux Arbor was -

4.19 mg g-1/SD (95% Bootstrap CI: -7.16 to 0 mg g-1/SD). Soil P and Ca as soil fertility 

properties, and clay, LL15, SAT, and aspect as soil topographical characteristics were included 

70% of the time in 1000 bootstrapping models for [Glc] of restored prairie biomass yield at Lux 

Arbor (Figure 3.5). Soil P and Ca had negative estimated coefficients of -7.86 mg g-1/SD (95% 

Bootstrap CI: -14.16 to 0 mg g-1/SD) and -7.80 mg g-1/SD (95% Bootstrap CI: -16.08 to 0 mg g-

1/SD), respectively. The estimated coefficients of clay and LL15 cannot be reliably estimated due 

to a significantly high standard error. This could be due to collinearity with other variables in the 

model. SAT and aspect had positive estimated coefficients of 47.2 mg g-1/SD and 3.71 mg g-

1/SD, respectively. Slope, elevation, sand content and Ksat were included over 70% of the time in 

over a 1000 bootstrapping models for [Glc] of switchgrass at Marshall (Figure 3.6). Slope and 

elevation had a positive estimated coefficients of 3.41 mg g-1/SD (95% Bootstrap CI: 0 to 6.47 

mg g-1/SD) and 3.08 mg g-1/SD (95% Bootstrap CI: 0 to 6.77 mg g-1/SD), respectively. Soil sand 

content had a positive estimated coefficient of 16.63 mg g-1/SD (95% Bootstrap CI: -58.39 to 

80.05 mg g-1/SD). Ksat had a negative estimated coefficient of -13.52 mg g-1/SD (95% Bootstrap 

CI: -29.8 to 0 mg g-1/SD). Topographical wetness index, DUL, sand, SAT and total soil C were 

included over 70% of the time over 1000 bootstrapping models for [Glc] of restored prairie at 

Marshall (Figure 3.7). Topographical wetness index and total soil C had negative estimated 

coefficients of -13.04 mg g-1/SD (95% Bootstrap CI: -25.09 to 0 mg g-1/SD) and -8.02 mg g-1/SD 

(95% Bootstrap CI: -18.70 to 0 mg g-1/SD), respectively. SAT had a positive estimated 
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coefficient of 23.02 mg g-1/SD (Bootstrap CI: 0 to 54.80 mg g-1/SD). Details on model results are 

located in Table A3.11- A3.14 in the appendix. 

 
Figure 3.4. Model results from 1000 bootstrap resampling for switchgrass biomass glucose 

content (mg g-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Coefficient is not included when standard error is greater than 100. 

Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates probability of 0.7. 

 
Figure 3.5. Model results from 1000 bootstrap resampling for restored prairie biomass glucose 

content (mg g-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Coefficient is not included when standard error is greater than 100. 

Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates probability of 0.7. 
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Figure 3.6. Model results from 1000 bootstrap resampling for switchgrass biomass glucose 

content (mg g-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Right panel: bootstrap probability of inclusion. Red dash vertical bar 

indicates probability of 0.7. 

 
 

 

Figure 3.7. Model results from 1000 bootstrap resampling for restored prairie biomass glucose 

content (mg g-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Coefficient is not included when standard error is greater than 100. 

Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates probability of 0.7. 
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Topographical wetness index with 0.696 probability of inclusion was negatively associated with 

[Xyl] of switchgrass at Lux Arbor (EM: -1.75 mg g-1/SD; 95% Bootstrap CI: -3.66 to 0.02 mg g-

1/SD). At Lux Arbor, P and Ca as soil fertility characteristics and LL15 and clay content as soil 

topographical features were included over 70% of the time in over 1000 bootstrapping models 

for [Xyl] of restored prairie (Figure 3.9). Soil P and Ca had a negative estimated coefficient of -

4.26 mg g-1/SD and -5.25 mg g-1/SD, respectively. Sand content, Ksat, SAT, elevation, clay, 

SWCON, profile curvature, slope and DUL were included over 70% of the time in over 1000 

bootstrapping models for [Xyl] of switchgrass at Marshall (Figure 3.10). Among them, sand 

content had been estimated consistently with a positive estimated coefficient of 64.93 mg g-1/SD 

(95% Bootstrap CI: 4.54 to 105.33 mg g-1/SD). Elevation, slope, SAT and DUL had positive 

estimated coefficients on [Xyl] of switchgrass at Marshall. Total soil C, Ksat, Mg, SAT, TWI, 

sand content, and clay content were included over 70% of the time in over 1000 bootstrapping 

models for [Xyl] of restored prairie at Marshall (Figure 3.11). Total soil C, Ksat and TWI had a 

negative estimated coefficient of -7.22 mg g-1/SD, -32.86 mg g-1/SD and -6.29 mg g-1 /SD, 

respectively. Soil Mg had a positive estimated coefficient of 5.43 mg g-1/SD. The standard errors 

of sand content and clay content were considerably higher. Therefore, the coefficients of sand 

content and clay content cannot be reliably estimated. Details on model results are located in 

Tables A3.15-A3.18 in the appendix. 
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Figure 3.8. Model results from 1000 bootstrap resampling for switchgrass biomass xylose 

content (mg g-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Right panel: bootstrap probability of inclusion. Red dash vertical bar 

indicates probability of 0.7. 

 

 

 
Figure 3.9. Model results from 1000 bootstrap resampling for restored prairie biomass xylose 

content (mg g-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Coefficient is not included when standard error is greater than 100. 

Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates probability of 0.7. 
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Figure 3.10. Model results from 1000 bootstrap resampling for switchgrass biomass xylose 

content (mg g-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Right panel: bootstrap probability of inclusion. Red dash vertical bar 

indicates probability of 0.7. 

 

 

 

Figure 3.11. Model results from 1000 bootstrap resampling for restored prairie biomass xylose 

content (mg g-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Right panel: bootstrap probability of inclusion. Red dash vertical bar 

indicates probability of 0.7. 
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In Figure 3.12, sand content and SWCON were included over 70% of the time in over 1000 

bootstrapping models for lignin content of switchgrass biomass at Lux Arbor. A positive 

estimated coefficient of 25.12 mg g-1/SD (95% Bootstrap CI: 0 to 43 mg g-1/SD) was found for 

SWCON. Soil K with a 0.699 probability of inclusion had estimated coefficient of 2.42 mg g-

1/SD (95% Bootstrap CI: 0 to 4.98 mg g-1/SD) for lignin content of restored prairie at Lux Arbor 

(Figure 3.13). At Marshall, only clay was included over 70% of the time in over 1000 

bootstrapping models for lignin content of switchgrass (Figure 3.14). Clay had a substantial 

positive estimated coefficient of 114.95 mg g-1/SD (95% Bootstrap CI: 0 to 237 mg g-1/SD). On 

the opposite, soil Mg, Ca, TWI and DUL were included over 70% of the time in over 1000 

bootstrapping models for lignin content of restored prairie biomass at Marshall (Figure 3.15). 

Soil Mg and Ca had conflicting estimated coefficient s of 5.72 mg g-1/SD (95% Bootstrap CI: 0 

to 9.75 mg g-1/SD) and -5 mg g-1/SD (95% Bootstrap CI: -11.52 to 0 mg g-1/SD), respectively. 

Topographical wetness index (TWI) was negatively associated with lignin content of restored 

prairie at Marshall (-5.22 mg g-1/SD; 95% Bootstrap CI: -10.26 to 0 mg g-1/SD). Details on 

model results are located in Tables A3.19-A3.22 in the appendix. 
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Figure 3.12. Model results from 1000 bootstrap resampling for switchgrass biomass lignin 

content (mg g-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Coefficient is not included when standard error is greater than 100. 

Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates probability of 0.7. 

 

 
Figure 3.13. Model results from 1000 bootstrap resampling for restored prairie biomass lignin 

content (mg g-1) at Lux Arbor Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Coefficient is not included when standard error is greater than 100. 

Right panel: bootstrap probability of inclusion. Red dash vertical bar indicates probability of 0.7. 
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Figure 3.14. Model results from 1000 bootstrap resampling for switchgrass biomass lignin 

content (mg g-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Right panel: bootstrap probability of inclusion. Red dash vertical bar 

indicates probability of 0.7. 

 

 

 
Figure 3.15. Model results from 1000 bootstrap resampling for restored prairie biomass lignin 

content (mg g-1) at Marshall Farm. Left panel: estimated coefficients: black diamond is 

estimation from full model. Black horizontal is 95% bootstrap confidence interval, open red 

circle is bootstrap median. Right panel: bootstrap probability of inclusion. Red dash vertical bar 

indicates probability of 0.7. 
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At Lux Arbor, soil P and Ca had negative estimated coefficients on both [Glc] and [Xyl] of 

restored prairie. At Marshall, sand, elevation and slope were positively associated with both 

[Glc] and [Xyl] of switchgrass. Topographical wetness index had negative estimated coefficients 

on [Glc], [Xyl] and lignin content of restored prairie at Marshall.  

The early season (April to June) cumulative precipitation and late season (July to September) 

cumulative precipitation were selected 100% of the time in over 1000 bootstrapping models for 

the interannual variation in [Glc], [Xyl] and lignin content of switchgrass and restored prairie 

biomass at Lux Arbor. The magnitudes of the estimated coefficients of early season (April to 

June) cumulative precipitation and late season (July to September) cumulative precipitation were 

substantially higher than the estimated coefficient s of soil features on the spatial variation in 

[Glc], [Xyl] and lignin content of switchgrass and restored prairie biomass at Lux Arbor. At 

Marshall, late season (July to September) cumulative precipitation was selected 100% of the time 

over 1000 bootstrapping models for [Glc], [Xyl] and lignin content of switchgrass and restored 

prairie biomass. Within farm, the magnitude of late season (July to September) cumulative 

precipitation on [Glc], [Xyl] and lignin content was lower for switchgrass than restored prairie at 

both farms. 

Discussion 

A key component of optimizing biomass logistic systems and biorefinery performance lies in 

understanding and controlling biomass quality from the farm gate. This study sheds light on 

within-field and year-to-year biomass quality variability. The [Glc] ranged from 95.7 to 161.1 

mg g-1 and 91.3 to 167.3 mg g-1 for switchgrass and restored prairie, respectively. The [Xyl] 

ranged from 61.7 mg g-1 to 93.6 mg g-1 and 52.8 mg g-1 to 89.3 mg g-1 for switchgrass and 

restored prairie, respectively. The lignin content ranged from 177.4 mg g-1 to 199.1 mg g-1 and 
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159.3 mg g-1 to 195.9 mg g-1 for switchgrass and restored prairie, respectively.  

Previous studies reported [Glc] (wt %) of harvested switchgrass as high as 32.2 wt % after 

diluted sulfuric acid pretreatment for 20 minutes at 160 °C (Shi et al., 2011). Compared to other 

studies, the lower [Glc] and [Xyl] yields reported here were due to less intensive pretreatment, as 

described above in the Methods section. Most previous studies reported structural polysaccharide 

glucan and xylan content rather than glucose and xylose release.  Hoover et al. (2022) reported 

that glucan ranged from 28 to 37 wt % and xylan ranged from 18 to 24 wt % for an upland 

switchgrass variety. Without 100% conversion, glucose and xylose content is lower than glucan 

and xylan content. Previous studies have shown that plant biomass is composed of 15-30 wt % 

lignin (Agblevor et al., 1994, Thammasouk et al., 1997, Waliszewska et al., 2021). This is 

consistent with the lignin content in this study. In the present study, restored prairie had lower 

[Xyl] than switchgrass at Marshall over the study period (2018-2020). Generally, no significant 

[Glc] difference was detected between switchgrass and restored prairie in this study over the 

study period (2018-2020). Previous studies have shown that higher species richness leads to low 

biomass cellulose and hemicellulose levels (Adler et al., 2009). The CVs of [Glc], [Xyl] and 

lignin content were all substantially lower indicating low within-field spatial variability. In 

addition, the estimated spatial variance of [Glc], [Xyl] and lignin content was considerably lower 

than the corresponding interannual variance.  

To the best of our knowledge, this study is the only one to examine within-field spatial 

variability of sugar and lignin yields from ligno-cellulosic biomass feedstocks at the field scale. 

Templeton et al. (2009) demonstrated that harvest year had a significant effect on corn stover 

biomass composition. The interannual variability of biomass structural sugar content is more 

likely influenced by precipitation and temperature patterns (Barbosa et al., 2013, Emerson et al., 
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2014). The effect of drought on biomass structural sugar content was investigated recently. 

Hoover et al. (2018) and Ong et al. (2016) reported that drought significantly lowered structural 

glucan and xylan in miscanthus and switchgrass. In addition, Ong et al. (2016) found that 

drought increased inhibitory compounds (imidazoles and pyrazine) in ammonia fiber expansion 

pretreated switchgrass, thus negatively impacting fermentation for biofuel conversion. Emerson 

et al. (2014) showed that drought decreased cellulose content but increased hemicellulose 

content in mixed grasses. Previous studies have argued that drought conditions induced plant 

physiological change to divert carbon from cell wall polysaccharides synthesis to maintain turgor 

pressure (Iraki et al., 1989, Gall et al., 2015). In this study, the low [Glc] and [Xyl] in 2018 could 

be attributed to relatively low precipitation during the growing season.  

We observed that both early season cumulative precipitation (April-June) and late season 

cumulative precipitation (July to September) were strongly related to [Glc], [Xyl] and lignin 

content. The drought effect on biomass lignin content varies in the literature with some studies 

showing a negative effect (Emerson et al., 2014) and some showing a positive or no effect (Jiang 

et al., 2012, van der Weijde et al., 2017). The observed drought-induced lignin content increase 

in crops can be explained by activation of lignifying enzymes (Hu et al., 2009, Yang et al., 

2021). Even though the 2018 growing season with relatively low precipitation was not 

considered severe enough to be designated as a drought, the biomass lignin content was higher in 

2018 than 2019 and 2020 for switchgrass and restored prairie at the two study farms. Lignin has 

been considered as a major contributor to biomass recalcitrance, which makes plant biomass 

more resistant to microbial or enzymatic deconstruction (Himmel et al., 2007). Santos et al. 

(2012) identified that lignin content is the most significant factor that reduces enzymatic 

hydrolysis efficiency in kraft-pretreated woody biomass. The modes of action by which lignin 
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contributes to biomass recalcitrance can be summarized into two: one is acting as a physical 

barrier to reduce accessibility of cellulose and hemicellulose, the other one is irreversibly 

adsorbing enzymes in enzymatic hydrolysis (Himmel et al., 2007). Nonetheless, lignin is a 

potential energy resource through thermochemical conversion such as pyrolysis and gasification. 

Extensive research has been conducted demonstrating lignin valorization utilizing an integrated 

biorefinery framework (Ragauskas et al., 2014, Sethupathy et al., 2022). 

High positive correlations between glucan and xylan and glucan and lignin have been observed 

in corn stover (Templeton et al., 2009, Lorenzana et al., 2010). Da Costa et al. (2019) reported a 

high positive correlation between glucose and xylose in Miscanthus biomass. Similarly, [Glc] 

and [Xyl] were positively correlated in this study, but with variable direction of the correlation 

between [Glc] and lignin content, as well as biomass yield and [Xyl]. Correlations between 

biomass yield and [Glc] were mostly negative with the exception of switchgrass at Marshall in 

2019. Sanford et al. (2017) reported a negative and positive correlation between biomass yield 

and [Glc] at two different sites. Recent studies demonstrated that conventional breeding and 

selection of high yield switchgrass did not reduce sugar release from biomass hydrolysis (Casler 

et al., 2022). In this study, none of the negative correlations between biomass yield and [Glc] 

were statistically significant. In contrast, the only statistically significant positive correlation 

between biomass yield and [Glc] of switchgrass was observed at Marshall in 2019.  

The lack of spatial dependency of [Glc], [Xyl] and lignin content indicates there was no 

underlying spatially correlated soil feature associated with spatial variability of [Glc], [Xyl] and 

lignin content.  Most of the soil fertility and topographical feature effects on [Glc], [Xyl] and 

lignin content cannot be reliably estimated. This is expected because of the low spatial variability 

of biomass [Glc] and [Xyl], especially for switchgrass. Soil fertility features (K, P and Ca) were 
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frequently selected as factors that might influence restored prairie quality. Soil topographical 

features such as TWI, slope and elevation were more frequently selected in the models to explain 

variability of [Glc] and [Xyl] in switchgrass. The negative effects of P and Ca on [Glc], [Xyl] of 

restored prairie could be due to forb growth favored by relatively higher P and Ca levels in the 

restored prairie. Garlock et al. (2012) showed that forb dominated feedstocks had lower sugar 

content and were less digestible than grass dominated feedstocks. Extensive research has shown 

that nitrogen fertilization increases hemicellulose and has no effect on cellulose in energy grasses 

(Guo et al., 2017, Emery et al., 2020, Ali et al., 2022). The present study showed that soil 

nitrogen content was not selected consistently as correlating with monosaccharides and lignin 

yield from switchgrass and restored prairie. Slope and elevation positively impacted [Glc] and 

[Xyl] of switchgrass biomass at Marshall. In contrast, TWI negatively impacted [Glc] and [Xyl] 

of restored prairie at Marshall. This suggests that high soil water holding capacity slightly 

reduced [Glc] and [Xyl] in switchgrass biomass. To the best of our knowledge, there is no field-

scale study examining soil topographical effects on [Glc] and [Xyl] release from switchgrass 

biomass. Hoover et al. (2018) demonstrated that drought had no impact on [Glc] and [Xyl] 

release from switchgrass biomass, possibly due to the drought resistance of switchgrass. In 

addition, we found that the magnitude of slope, elevation and TWI were all under 15 mg g-1. 

Templeton et al. (2010) showed that uncertainty of cell wall compositional analysis expressed as 

standard deviation was about 10 mg g-1. More research is needed to elucidate the effects of soil 

fertility and topographical features on biomass quality. 

Within season variability of biomass quality is well documented  (Patton & Gieseker, 1942, 

Adler et al., 2006, Peng et al., 2017). One study at Nashville, Tennessee, USA showed that 

cellulose and hemicellulose contents of switchgrass reached highest levels in July and stayed 
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relatively constant until November, while lignin content increased from June to November (Saini 

et al., 2017). Moreover, studies demonstrated that delayed spring harvest slightly increased 

cellulose and hemicellulose content of switchgrass while substantially decreasing biomass yield 

(Aurangzaib et al., 2016, Ibrahim et al., 2017, Massey et al., 2020). While the present study 

focused on within-field variability of biomass quality, harvesting date should also be an 

important consideration when designing an efficient biomass production system.  

Conclusion 

Substantial temporal variability of [Glc], [Xyl] and lignin content was found in both switchgrass 

and restored prairie. Compared to temporal variability, the within-field spatial variability of 

[Glc], [Xyl] and lignin content was smaller in both switchgrass and restored prairie. Given the 

same field conditions and climate, spatial variability of [Glc], [Xyl] and lignin content was 

greater in restored prairie than switchgrass. Soil P, Ca, sand content, elevation, slope and 

topographical wetness index were each related to [Glc], [Xyl] and lignin content of switchgrass 

and restored prairie, however the magnitudes of their effects were low. With the expected 

climatic variability in the future due to climate change, temporal variability of biomass quality 

could increase considerably. The implications from this study for downstream biomass logistics 

planning and biorefinery operation are (1) within-field spatial variability switchgrass quality is 

not a significant concern; (2) Due to potential changes in grass: forb ratios, it is worthwhile to 

take account within-field spatial variability of restored prairie when modeling biomass logistics 

and biorefinery production; and (3) Interannual variability of biomass quality should be taken 

into consideration when modeling biomass logistics and biorefinery production.  
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APPENDIX 

 Table A3.1. Plant species and seeding rate at Marshall and Lux Arbor Farms. 
Cropping System Species  Seeding Rate (kg ha-1) 

Restored prairie 
Aster azureus forb 0.07 

Asclepias tuberosa L.  0.04 

Monarda fistulosa L.  0.07 

Asclepias syriaca L.  0.07 

Penstemon digitalis  0.07 

Coreopsis lanceolata  0.14 

Verbena stricta Vent.  0.14 

Rudbeckia triloba L.  0.18 

Rudbeckia hirta L.  0.21 

Ratibida pinnata (Vent.) Barnh.  0.21 

Eryngium yuccifolium Michx.  0.21 

Cassia fasciculata Michx.  0.28 

Echinacea purpurea (L.) Moench  0.28 

Heliopsis helianthoides (L.) Sweet  0.28 

Panicum virgatum var. Southlow grass 0.56 

Andropogon gerardii  0.56 

Schizacyrium scoparium (Michx.) Nash  1.12 

Sorghastrum nutans (L.) Nash ex Small  1.12 

Elymus canadensis  2.24 

Switchgrass Panicum virgatum var. Cave-in-Rock grass 11.21 
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Table A3.2. Land use history at Marshall and Lux Arbor Farms. 
Farm Cropping System Field 

Size 

Pre-conversion 

(from 1987) 

2009 

Conversion Year 

2010 

First Establishment 

Year 

2011 

Second Establishment Year 

Marshall Switchgrass 13 ha CRP Brome grass No-till 

soybean 

Restored prairie species 

and oats as nurse crop 

Restored prairie species 

 Restored prairie 11 ha   Switchgrass and oats as 

nurse crop 

Switchgrass 

Lux Arbor Switchgrass 14 ha Tilled corn-

soybean rotation 

No-till 

soybean 

Restored prairie species 

and oats as nurse crop 

Restored prairie species 

 Restored prairie 13 ha   Switchgrass and oats as 

nurse crop 

Switchgrass 

 

 

Table A3.3. Number and distance range (meter) of sampling points for swtichgrass and restored prairie at Marshall and Lux Arbor 

Farms. 

    Marshall   Lux Arbor 

Crop Year Minimum Maximum Number  Minimum Maximum Number 

Switchgrass 2018 41.1 331.7 30  33.2 297.7 30 

 2019 14.4 408.8 42  22.9 398.0 42 

 2020 14.4 408.8 42  22.9 398.0 42 

 2021 23.0 400.3 42  22.9 397.7 42 

Restored prairie 2018 27.6 350.5 30  23.7 374.5 30 

 2019 22.0 458.4 42  19.2 401.2 42 

 2020 22.0 458.4 42  19.2 401.2 42 

 2021 21.6 441.5 42  16.3 402.0 42 
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Table A3.4. Descriptive statistics of soil fertility characteristics and topographical features at Lux Arbor Farm in 2018.  

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 292.56 298.37 296.64 1.61 285.02 294.71 289.85 2.98 

pH 5.7 6.4 6.04 0.19 5.8 6.6 6.22 0.22 

Phosphorus, mg kg-1 6 37 17.87 7.84 9 61 23.37 10.49 

Soil potassium, mg kg-1 30 135 74.83 28.17 37 125 66.07 22.99 

Calcium, mg kg-1 566 1455 975.33 238.58 490 1489 1011.70 261.79 

Magnesium, mg kg-1 110 313 185.73 52.20 80 302 178.77 51.60 

Total soil carbon (C), wt% 0.64 1.75 1.09 0.26 0.40 1.51 1.00 0.28 

Ammonium (NH4
+), mg kg-1 1.70 5.15 2.97 0.78 1.30 5.20 2.73 0.85 

Sand content, wt% 10.60 73.75 44.54 14.23 16.90 81.25 50.94 18.29 

Clay content, wt% 7.50 30.70 20.48 5.99 0.00 38.10 19.00 10.27 

Slope, ° 0.23 6.03 1.98 1.55 0.38 5.95 2.95 1.41 

Aspect,  42.59 359.42 223.55 84.11 9.71 356.04 279.84 90.96 

Plane curvature, km-1 -0.30 0.30 0.01 0.13 -0.30 0.41 0.03 0.16 

Profile curvature, km-1 -0.57 0.34 0.00 0.18 -0.23 0.38 0.00 0.14 

Topographical wetness index 4.67 11.36 7.07 1.67 4.83 13.35 7.33 1.96 

15 bar lower limit of soil water content (LL15), v% 4.4 18.5 12.36 3.61 1.0 22.7 11.36 6.22 

Drained upper limit of soil water content (DUL), v% 13.70 35.60 24.48 5.27 7.50 37.20 22.17 8.72 

Saturated water content (SAT), v% 38.10 44.40 39.67 1.52 38.10 45.70 40.07 2.06 

Whole profile drainage rate coefficient (SWCON) 17.0 59.1 26.45 9.08 16.6 90.0 38.03 25.87 

Saturated hydraulic conductivity (Ksat), mm h-1 2.00 44.09 11.45 9.08 1.58 113.16 25.89 32.59 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation. 
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Table A3.5. Descriptive statistics of soil fertility characteristics and topographical features at Lux Arbor Farm in 2020. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 292.05 298.37 296.51 1.61 284.11 296.43 289.80 3.32 

pH 5.5 6.4 5.82 0.22 5.5 6.6 5.97 0.27 

Phosphorus, mg kg-1 10 69 21.69 13.95 11 56 24.63 11.60 

Soil potassium, mg kg-1 27 169 76.15 29.20 49 141 76.32 21.67 

Calcium, mg kg-1 442 1477 971.46 254.85 552 1589 1036.18 280.54 

Magnesium, mg kg-1 75 275 181.26 50.39 86 296 179.53 49.76 

Total soil carbon(C), wt% 0.69 1.81 1.17 0.31 0.58 1.75 0.97 0.31 

Ammonium (NH4
+), mg kg-1 2.26 32.81 5.07 4.99 3.16 10.26 4.96 1.53 

Sand content, wt% 10.60 73.75 47.94 14.10 16.90 81.25 54.58 17.44 

Clay content, wt% 7.50 30.70 20.58 5.44 0.00 38.10 18.69 8.95 

Slope, ° 0.14 6.82 2.06 1.81 0.38 6.55 3.15 1.63 

Aspect,  29.75 359.42 203.02 88.73 9.71 356.04 271.54 97.10 

Plane curvature, km-1 -0.30 0.30 0.02 0.13 -0.30 0.41 0.02 0.14 

Profile curvature, km-1 -0.57 0.34 0.00 0.16 -0.23 0.38 -0.01 0.13 

Topographical wetness index 4.70 14.64 7.53 2.49 4.67 13.34 7.34 1.96 

15 bar lower limit of soil water content (LL15), v% 4.4 18.5 12.27 3.40 1.0 22.7 11.02 5.65 

Drained upper limit of soil water content (DUL), v% 13.70 35.60 23.79 5.24 7.50 37.20 21.21 8.17 

Saturated water content (SAT), v% 38.10 44.40 39.53 1.37 38.10 45.70 39.78 1.92 

Whole profile drainage rate coefficient (SWCON) 17.0 59.1 27.43 9.63 16.6 90.0 38.42 23.35 

Saturated hydraulic conductivity (Ksat), mm h-1 2.00 44.09 12.42 9.63 1.58 113.16 25.68 29.20 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation.
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Table A3.6. Descriptive statistics of soil fertility characteristics and topographical features at Marshall Farm in 2018. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 284.96 294.32 290.40 2.69 289.94 298.48 295.87 2.21 

pH 5.40 6.40 6.05 0.25 5.30 5.80 5.60 0.13 

Phosphorus, mg kg-1 15 126 54.17 22.51 16 119 61.07 23.11 

Soil potassium, mg kg-1 8 363 61.47 65.27 10 333 126.73 66.39 

Calcium, mg kg-1 396 1182 671.73 159.01 488 890 715.03 90.05 

Magnesium, mg kg-1 44 137 66.33 19.09 77 191 114.10 24.45 

Total soil carbon (C), wt% 0.70 2.05 1.12 0.29 0.94 1.88 1.31 0.22 

Ammonium (NH4
+), mg kg-1 3.02 12.85 5.48 2.11 2.95 18.20 6.56 3.61 

Sand content, wt% 20.00 88.30 69.58 16.66 24.60 86.25 57.40 12.98 

Clay content, wt% 1.25 20.70 9.47 5.09 1.25 27.40 13.69 7.59 

Slope, ° 0.65 12.64 4.86 2.97 0.44 7.32 2.41 1.68 

Aspect,  18.44 318.08 163.87 94.61 120.29 355.52 208.20 67.28 

Plane curvature, km-1 -1.00 0.61 0.07 0.36 -1.54 0.31 -0.03 0.37 

Profile curvature, km-1 -0.77 0.75 0.08 0.36 -0.26 0.52 0.05 0.17 

Topographical wetness index 4.27 14.38 7.02 2.72 4.96 12.43 7.14 1.99 

15 bar lower limit of soil water content (LL15), v% 1.0 12.4 5.43 3.21 1.0 16.6 8.18 4.67 

Drained upper limit of soil water content (DUL), v% 4.90 28.20 13.27 5.87 5.80 31.90 18.19 6.45 

Saturated water content (SAT), v% 38.10 41.60 39.25 0.99 38.00 42.20 39.05 0.96 

Whole profile drainage rate coefficient (SWCON) 20.1 90.0 61.98 23.83 18.1 90.0 45.17 24.31 

Saturated hydraulic conductivity (Ksat), mm h-1 5.07 144.82 58.60 41.84 3.11 137.14 35.83 37.64 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation. 
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Table A3.7. Descriptive statistics of soil fertility characteristics and topographical features at Marshall Farm in 2020. 

 Restored prairie Switchgrass 

  MIN1 MAX1 MEAN SD1 MIN MAX MEAN SD 

Elevation, m 284.96 294.32 290.34 2.62 289.94 299.01 295.61 2.31 

pH 5.70 7.50 6.17 0.38 5.10 7.70 5.59 0.43 

Phosphorus, mg kg-1 17 127 50.54 23.75 16 124 58.64 23.87 

Soil potassium, mg kg-1 22 245 66.43 48.57 25 266 105.81 49.58 

Calcium, mg kg-1 405 2023 818.73 329.05 393 3438 687.94 489.28 

Magnesium, mg kg-1 45 126 74.78 22.17 58 177 91.97 25.37 

Total soil carbon (C), wt% 0.64 2.28 1.31 0.37 0.87 2.04 1.33 0.31 

Ammonium (NH4
+), mg kg-1 3.15 14.30 6.10 2.48 3.35 31.40 9.47 6.20 

Sand content, wt% 20.00 88.30 72.30 14.80 24.60 86.25 60.31 13.58 

Clay content, wt% 1.25 20.70 9.89 4.45 1.25 27.40 14.36 7.06 

Slope, ° 0.65 12.64 4.71 2.93 0.21 7.32 2.33 1.66 

Aspect,  10.16 353.16 164.70 104.53 22.84 355.52 205.70 76.38 

Plane curvature, km-1 -1.00 0.61 0.01 0.38 -1.54 0.36 -0.04 0.36 

Profile curvature, km-1 -0.83 0.86 0.04 0.42 -0.26 0.52 0.03 0.16 

Topographical wetness index 4.27 14.38 7.06 2.66 4.96 12.40 7.54 2.16 

15 bar lower limit of soil water content (LL15), v% 1.0 12.5 5.60 2.96 1.0 16.6 8.42 4.47 

Drained upper limit of soil water content (DUL), v% 4.90 28.20 13.05 5.35 5.80 31.90 18.09 6.26 

Saturated water content (SAT), v% 38.10 41.60 39.21 0.91 38.10 42.20 39.03 0.88 

Whole profile drainage rate coefficient (SWCON) 20.1 90.0 62.18 21.91 18.1 90.0 44.74 23.12 

Saturated hydraulic conductivity (Ksat), mm h-1 5.07 144.82 56.64 38.10 3.11 137.14 34.46 35.04 

 1. Abbreviation: MIN: minimum, MAX: maximum, SD: standard deviation.
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Table A3.8. Moran's I values of observed glucose content (mg g-1) for switchgrass and restored 

prairie at Marshall and Lux Arbor Farms during the study period (2018-2020). 

    Marshall 

Crop Year Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.37 -0.34 0.25 0.932 

 2019 -0.42 -0.24 0.20 0.388 

 2020 0.04 -0.24 0.21 0.183 

Restored prairie 2018 -0.65 -0.34 0.28 0.279 

 2019 -0.50 -0.24 0.23 0.264 

 2020 -0.15 -0.24 0.23 0.685 

  Lux Arbor 

  Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.28 -0.34 0.26 0.811 

 2019 -0.48 -0.24 0.22 0.292 

 2020 -0.04 -0.24 0.20 0.310 

Restored prairie 2018 -0.62 -0.34 0.25 0.271 

 2019 -0.20 -0.24 0.23 0.866 

 2020 -0.29 -0.24 0.24 0.841 

 

Table A3.9. Moran's I values of observed xylose content (mg g-1) for switchgrass and restored 

prairie at Marshall and Lux Arbor Farms during the study period (2018-2020). 

    Marshall 

Crop Year Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.23 -0.34 0.25 0.638 

 2019 -0.10 -0.24 0.20 0.472 

 2020 -0.29 -0.24 0.22 0.824 

Restored prairie 2018 -0.60 -0.34 0.28 0.367 

 2019 -0.49 -0.24 0.23 0.281 

 2020 -0.36 -0.24 0.23 0.603 

  Lux Arbor 

  Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.46 -0.34 0.27 0.680 

 2019 -0.56 -0.24 0.21 0.137 

 2020 -0.40 -0.24 0.18 0.380 

Restored prairie 2018 -0.53 -0.34 0.27 0.487 

 2019 0.00 -0.24 0.23 0.300 

 2020 -0.46 -0.24 0.24 0.369 
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Table A3.10. Moran's I values of observed lignin content (mg g-1) for switchgrass and restored 

prairie at Marshall and Lux Arbor Farms during the study period (2018-2020). 

    Marshall 

Crop Year Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 0.34 -0.34 0.25 0.006 

 2019 -0.50 -0.24 0.22 0.246 

 2020 -0.43 -0.24 0.22 0.391 

Restored prairie 2018 -0.71 -0.34 0.28 0.193 

 2019 -0.39 -0.24 0.23 0.524 

 2020 -0.13 -0.24 0.23 0.605 

  Lux Arbor 

  Observed Value Expected Value Standard Deviation P-value 

Switchgrass 2018 -0.43 -0.34 0.27 0.756 

 2019 -0.23 -0.24 0.22 0.957 

 2020 -0.45 -0.24 0.21 0.338 

Restored prairie 2018 -0.61 -0.34 0.31 0.400 

 2019 -0.38 -0.24 0.24 0.578 

 2020 -0.07 -0.24 0.24 0.488 
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Table A3.11. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for glucose content (mg g-1) of switchgrass at Lux Arbor Farm. 

  Full Model 
Backward 

Select Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 132.48 1.40 132.26 0.79 1 132.53 129.90 135.13 

Early growing season precipitation (Early), mm 678.93 33.18 669.28 26.88 1 679.50 610.12 753.11 

Late growing season precipitation (Late), mm 678.92 33.47 668.82 26.90 1 679.45 607.84 754.06 

Potassium, mg kg-1   -4.19 1.48 -3.39 0.98 0.959 -4.08 -7.16 0 

Phosphorus, mg kg-1 2.47 1.61 
  

0.671 2.20 0 5.56 

Clay content, wt% -2.13 90.57 
  

0.640 0 -194 192.96 

Sand content, wt% 17.20 51.98 
  

0.617 0 -83 128.86 

Magnesium, mg kg-1 2.69 2.66 2.33 0.96 0.576 2.23 -3.51 8 

Saturated water content (SAT), v% 5.76 16.46 0.00 0.00 0.556 0.00 -25 41.63 

Slope, ° 1.47 2.27 2.35 0.83 0.547 1.73 0.00 6.10 

Drained upper limit of soil water content (DUL), v% 27.66 103.71 
  

0.523 0 -171.81 247.05 

Calcium, mg kg-1 1.48 3.03 
  

0.478 0.00 -4.74 7.62 

Topographical wetness index (TWI) -1.42 2.41 
  

0.460 0.00 -6.32 4 

Saturated hydraulic conductivity (Ksat), mm h-1 -3.14 11.30 
  

0.447 0 -25.76 19.16 

15 bar lower limit of soil water content (LL15), v% -19.96 37.65 
  

0.439 0 -116.43 58.11 

Ammonium (NH4
+), mg kg-1 -1.53 1.49 

  
0.436 0 -4.35 0.00 

Plane curvature, km-1 -3.32 14.48 
  

0.415 0 -30.52 27.61 

Total soil carbon, wt% -0.93 1.39 
  

0.393 0 -3.71 2.27 

Aspect -0.32 1.26 
  

0.386 0 -3.61 2.73 

Whole profile drainage rate coefficient (SWCON) -4.52 9.83 
  

0.367 0 -25.11 15.00 

Elevation, m 0.45 1.59 
  

0.362 0 -2.53 3.80 

Profile curvature, km-1 -3.42 8.91 
  

0.362 0 -25.24 17.87 

pH -0.19 1.40 
  

0.265 0 -2.84 2.90 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.   
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Table A3.12. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for glucose content (mg g-1) of restored prairie at Lux Arbor Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 127.60 7.28 127.60 5.46 1 128.23 113.13 144.31 

Early growing season precipitation (Early), mm 1102.73 54.22 1097.91 45.99 1 1106.15 1020.19 1198.57 

Late growing season precipitation (Late), mm 1105.87 54.61 1100.89 45.99 1 1109.81 1021.82 1203.39 

Clay content, wt% -624.19 303.42 -637.66 227.22 0.918 -586.59 -1189.34 0 

Phosphorus, mg kg-1 -7.86 2.75 -7.05 1.93 0.913 -7.97 -14.16 0 

15 bar lower limit of soil water content (LL15), v% 635.39 319.79 624.79 229.39 0.858 634.06 0 1262.20 

Saturated water content (SAT), v% 47.20 29.76 52.46 16.75 0.796 39.39 0 101.09 

Aspect 3.71 2.06 3.67 1.52 0.751 3.31 0 8.73 

Calcium, mg kg-1 -7.80 5.24 -4.86 2.10 0.735 -6.26 -16.08 0 

Whole profile drainage rate coefficient (SWCON) -444.14 796.90 -23.94 10.17 0.650 -19.70 -2076.34 1011.55 

Sand content, wt% 42.72 85.45 64.49 20.41 0.641 0 -159.20 209.34 

Potassium, mg kg-1   3.79 2.54 2.96 1.81 0.633 3.18 0 8.04 

Drained upper limit of soil water content (DUL), v% -36.26 130.65 
  

0.574 0 -367.87 239.69 

Topographical wetness index (TWI) -2.60 2.77 -3.13 1.91 0.500 0 -8.44 4.18 

Saturated hydraulic conductivity (Ksat), mm h-1 421.35 794.11 
  

0.499 0 -1019.99 2057.36 

Elevation, m 0.61 3.00 
  

0.442 0 -6.50 8.10 

Profile curvature, km-1 5.40 16.44 
  

0.409 0 -36.41 43.84 

Magnesium, mg kg-1 2.16 5.53 
  

0.335 0 -7.84 12.32 

pH 0.41 2.71 
  

0.333 0 -5.31 6.03 

Ammonium (NH4
+), mg kg-1 -0.01 2.83 

  
0.306 0 -11.21 7.10 

Total soil carbon, wt% 0.52 3.75 
  

0.303 0 -7.55 7.18 

Plane curvature, km-1 0.42 14.37 
  

0.274 0 -26.29 32.39 

Slope, ° -0.23 2.87 
  

0.237 0 -4.93 5.58 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.13. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for glucose content (mg g-1) of switchgrass at Marshall Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 130.46 1.89 130.30 0.82 1 130.12 125.75 133.22 

Early growing season precipitation (Early), mm 16.16 0.96 15.21 0.77 1 15.83 13.87 18.05 

Late growing season precipitation (Late), mm 19.75 0.83 20.42 0.74 1 20.03 18.26 21.63 

Slope, ° 3.41 1.42 2.78 1.07 0.813 3.00 0 6.47 

Elevation, m 3.08 1.69 3.94 1.15 0.770 2.81 0 6.77 

Saturated hydraulic conductivity (Ksat), mm h-1 -13.52 9.38 -13.68 5.45 0.751 -10.21 -29.80 0 

Sand content, wt% 16.63 38.14 8.70 2.87 0.740 4.18 -58.39 80.05 

Saturated water content (SAT), v% 7.09 6.51 7.22 3.05 0.681 4.48 -4.69 18.53 

Whole profile drainage rate coefficient (SWCON) -8.91 6.65 -9.37 4.85 0.612 -7.25 -21.93 0 

Profile curvature, km-1 -10.69 7.87 -12.03 6.47 0.610 -10.27 -28.95 0 

Clay content, wt% -30.47 58.39 -14.57 6.12 0.583 0 -142.44 72.82 

Magnesium, mg kg-1 -2.14 1.47 
  

0.553 -1.22 -5.33 2.33 

Drained upper limit of soil water content (DUL), v% 14.96 77.34 
  

0.525 0 -140.96 142.25 

Aspect 1.46 1.13 
  

0.499 0 0 3.68 

Phosphorus, mg kg-1 -1.23 1.35 
  

0.495 0 -4.78 1.97 

Total soil carbon, wt% 1.24 1.35 
  

0.469 0 -1.49 4.61 

Ammonium (NH4
+), mg kg-1 0.88 0.95 

  
0.447 0 0 2.62 

Topographical wetness index (TWI) 1.46 1.75 
  

0.445 0 -1.27 5.14 

Plane curvature, km-1 3.89 5.07 
  

0.412 0 -3.83 17.69 

Potassium, mg kg-1   1.16 1.62 
  

0.390 0 -1.80 5.32 

pH -0.98 2.28 -1.40 0.89 0.382 0 -5.90 3.41 

Calcium, mg kg-1 -0.20 2.28 
  

0.346 0 -10.15 5.13 

15 bar lower limit of soil water content (LL15), v% 7.65 41.15 
  

0.332 0 -58.61 110.43 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.   



 

138 
 

Table A3.14. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for glucose content (mg g-1) of restored prairie at Marshall Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 127.80 5.29 127.13 4.83 1 130.37 116.88 140.20 

Late growing season precipitation (Late), mm 21.36 2.42 21.45 2.30 1 21.53 17.-7 25.76 

Early growing season precipitation (Early), mm 10.78 2.62 10.59 2.46 0.997 10.75 5.34 17.00 

Topographical wetness index (TWI) -13.04 5.67 -16.93 3.42 0.850 -14.21 -25.09 0.00 

Drained upper limit of soil water content (DUL), v% -280.91 211.59 -325.58 192.62 0.779 -91.38 -681.38 284.33 

Total soil carbon, wt% -8.02 4.92 -8.80 3.57 0.761 -8.64 -18.70 0 

Sand content, wt% -163.43 131.60 -189.43 119.35 0.752 -40.34 -410.56 191.76 

Saturated water content (SAT), v% 23.02 14.35 24.24 10.17 0.727 21.11 0.00 54.80 

Saturated hydraulic conductivity (Ksat), mm h-1 -36.90 24.91 -39.32 19.00 0.700 -37.26 -97.39 0.22 

pH 6.91 4.92 5.99 2.86 0.653 5.67 0 17.46 

Magnesium, mg kg-1 6.49 4.81 6.16 3.59 0.598 5.81 0 15.34 

Whole profile drainage rate coefficient (SWCON) -21.71 19.93 -26.96 12.87 0.568 -16.38 -56.17 17.72 

Clay content, wt% 94.20 118.71 112.28 83.60 0.537 0 -217.88 320.49 

Plane curvature, km-1 8.00 9.40 
  

0.507 0 -9.82 32.81 

Slope, ° 3.41 3.46 
  

0.482 0 -3.58 10.01 

Ammonium (NH4
+), mg kg-1 3.14 3.40 

  
0.406 0 -3.22 10.42 

Phosphorus, mg kg-1 -1.46 4.36 
  

0.387 0 -10.63 8.22 

Elevation, m 2.67 4.10 
  

0.365 0 -5.59 12.50 

Profile curvature, km-1 -0.76 9.52 
  

0.358 0 -21.73 22.65 

15 bar lower limit of soil water content (LL15), v% 4.61 80.54 
  

0.344 0 -142.64 178.24 

Calcium, mg kg-1 -2.07 5.85 
  

0.321 0 -14.29 13.02 

Potassium, mg kg-1   -1.64 4.67 
  

0.320 0 -12.89 8.18 

Aspect 0.57 3.30 
  

0.296 0 -6.25 7.68 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile. 
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Table A3.15. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for xylose content (mg g-1) of switchgrass at Lux Arbor Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 80.84 0.69 80.57 0.40 1 80.78 79.35 82.29 

Early growing season precipitation (Early), mm 299.18 16.22 288.30 13.48 1 298.44 265.46 330.37 

Late growing season precipitation (Late), mm 295.57 16.36 284.29 13.49 1 294.75 261.69 327.44 

Topographical wetness index (TWI) -1.75 1.18 
  

0.696 -1.30 -3.66 0.02 

Sand content, wt% 11.01 25.41 
  

0.661 0 -38.46 67.48 

Clay content, wt% 5.29 44.27 
  

0.652 0 -97.14 91.11 

Saturated water content (SAT), v% 0.25 8.04 
  

0.628 0 -14.57 17.82 

Total soil carbon, wt% -0.75 0.68 -0.71 0.40 0.574 -0.79 -2.35 1.34 

Drained upper limit of soil water content (DUL), v% 23.87 50.69 
  

0.563 0 -73.28 139.30 

15 bar lower limit of soil water content (LL15), v% -18.83 18.40   0.55 -0.35 -58.56 20.52 

pH 0.69 0.69 
  

0.542 0.68 0.00 2.16 

Magnesium, mg kg-1 1.34 1.30 
  

0.533 0 -1.95 3.98 

Slope, ° -1.14 1.11 
  

0.531 0 -3.05 1.13 

Saturated hydraulic conductivity (Ksat), mm h-1 0.57 5.52 
  

0.523 0 -11.94 12.66 

Phosphorus, mg kg-1 0.96 0.78 
  

0.516 0.59 0 2.46 

Elevation, m -0.46 0.78 
  

0.483 0 -2.41 1.35 

Plane curvature, km-1 -5.13 7.08 
  

0.426 0 -16.67 9.50 

Calcium, mg kg-1 -0.50 1.48 
  

0.42 0 -3.74 2.69 

Potassium, mg kg-1   -0.64 0.72 
  

0.414 0 -1.94 0.89 

Ammonium (NH4
+), mg kg-1 -0.36 0.73 

  
0.351 0 -1.91 1.19 

Aspect -0.27 0.62 
  

0.345 0 -1.65 0.69 

Profile curvature, km-1 -0.24 4.36 
  

0.311 0 -9.16 9.79 

Whole profile drainage rate coefficient (SWCON) -0.11 4.80 
  

0.267 0 -9.43 8.39 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile. 
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Table A3.16. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for xylose content (mg g-1) of restored prairie at Lux Arbor Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 74.43 4.20 73.80 3.25 1 74.48 66.40 82.44 

Early growing season precipitation (Early), mm 325.89 31.30 325.30 26.78 1 326.48 268.09 390.05 

Late growing season precipitation (Late), mm 322.65 31.52 322.06 26.79 1 323.23 265.36 387.44 

Phosphorus, mg kg-1 -4.26 1.59 -4.33 1.18 0.906 -4.24 -7.30 0 

Clay content, wt% -256.61 175.15 -288.79 128.22 0.811 -255.66 -575.13 36.35 

15 bar lower limit of soil water content (LL15), v% 289.10 184.60 315.37 141.72 0.802 298.05 -6.65 625.68 

Calcium, mg kg-1 -5.25 3.02 -3.70 1.35 0.785 -4.07 -11.22 0 

Drained upper limit of soil water content (DUL), v% -59.00 75.42 -50.30 18.55 0.698 -54.02 -234.52 99.98 

Sand content, wt% -8.44 49.32 0.00 0.00 0.688 0 -121.22 81.38 

Potassium, mg kg-1   2.21 1.47 2.19 1.05 0.682 2.19 0.00 5.09 

Whole profile drainage rate coefficient (SWCON) -321.57 460.01 -9.31 5.04 0.611 -8.64 -1288.16 604.73 

Saturated water content (SAT), v% 14.77 17.18 18.20 6.50 0.597 7.93 -22.25 47.00 

Aspect 1.52 1.19 1.49 0.88 0.548 1.30 0 4.03 

Saturated hydraulic conductivity (Ksat), mm h-1 313.21 458.40   0.504 0 -612.72 1274.46 

Total soil carbon, wt% 1.40 2.16 2.16 1.37 0.433 0 -3.27 5.25 

Topographical wetness index (TWI) -1.30 1.60 -1.75 1.18 0.404 0 -4.57 0.04 

Magnesium, mg kg-1 1.65 3.19   0.374 0 -5.03 7.66 

Ammonium (NH4
+), mg kg-1 0.76 1.63 

  
0.362 0 -3.14 4.63 

Elevation, m -0.04 1.73 
  

0.356 0 -3.94 3.48 

Profile curvature, km-1 3.06 9.49 
  

0.335 0 -17.18 22.50 

pH 0.10 1.56 
  

0.320 0 -3.02 3.16 

Plane curvature, km-1 1.83 8.29 
  

0.307 0 -14.24 20.24 

Slope, ° -0.12 1.66 
  

0.229 0 -2.94 3.07 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.17. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for xylose content (mg g-1) of switchgrass at Marshall Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 80.63 1.33 80.71 0.84 1 80.37 75.89 83.43 

Early growing season precipitation (Early), mm 8.04 0.67 7.91 0.54 1 7.92 6.51 9.31 

Late growing season precipitation (Late), mm 9.65 0.58 9.78 0.51 1 9.74 8.58 10.81 

Sand content, wt% 64.93 26.73 66.61 21.29 0.98 62.10 4.54 105.33 

Saturated hydraulic conductivity (Ksat), mm h-1 -22.40 6.57 -23.89 5.72 0.979 -21.74 -33.42 -2.40 

Saturated water content (SAT), v% 13.60 4.56 14.48 3.73 0.94 13.20 0 21.45 

Elevation, m 3.73 1.18 4.29 0.92 0.927 3.53 0 5.95 

Clay content, wt% -97.18 40.92 -95.07 30.02 0.919 -97.02 -199.53 0 

Whole profile drainage rate coefficient (SWCON) -11.63 4.66 -11.98 3.51 0.85 -10.90 -21.11 0 

Profile curvature, km-1 -12.52 5.51 -13.44 4.59 0.835 -11.84 -25.53 0 

Drained upper limit of soil water content (DUL), v% 112.13 54.20 116.01 42.68 0.793 105.57 0 194.62 

Slope, ° 1.86 1.00 1.47 0.83 0.718 1.72 0 4.30 

Phosphorus, mg kg-1 -1.49 0.94 -1.08 0.70 0.673 -1.45 -4.39 1.01 

pH -1.29 1.60 -1.19 0.73 0.55 -0.88 -5.12 1.62 

Aspect 0.94 0.79 
  

0.517 0 0 2.35 

Plane curvature, km-1 3.60 3.55 
  

0.51 0 -4.16 16.47 

Potassium, mg kg-1   1.09 1.13 
  

0.486 0 0 3.76 

Magnesium, mg kg-1 -0.77 1.03 
  

0.464 0 -3.46 1.80 

Topographical wetness index (TWI) 1.10 1.22 
  

0.443 0 -1.41 4.27 

15 bar lower limit of soil water content (LL15), v% 5.74 28.84 
  

0.39 0 -69.98 130.59 

Total soil carbon, wt% -0.03 0.94 
  

0.358 0 -2.20 2.41 

Calcium, mg kg-1 0.33 1.60 
  

0.309 0 -1.99 7.09 

Ammonium (NH4
+), mg kg-1 -0.07 0.66 

  
0.247 0 -1.58 1.20 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median,  

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.18. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for xylose content (mg g-1) of restored prairie at Marshall Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 68.74 2.87 68.26 1.30 1 68.50 62.54 75.24 

Late growing season precipitation (Late), mm 9.76 1.31 9.78 1.25 1 9.77 7.18 12.05 

Early growing season precipitation (Early), mm 5.37 1.43 5.49 1.34 0.990 5.56 2.55 8.48 

Total soil carbon, wt% -7.22 2.68 -6.50 1.84 0.921 -7.18 -13.12 0 

Saturated hydraulic conductivity (Ksat), mm h-1 -32.86 13.54 -36.22 9.67 0.883 -32.08 -67.12 0 

Magnesium, mg kg-1 5.43 2.61 4.02 1.84 0.842 5.20 0 10.91 

Saturated water content (SAT), v% 16.29 7.80 17.48 5.03 0.835 15.91 0 33.00 

Topographical wetness index (TWI) -6.29 3.08 -6.96 1.76 0.807 -6.39 -12.38 0 

Sand content, wt% 20.95 71.55 10.99 3.74 0.756 5.16 -119.27 178.73 

Clay content, wt% -53.24 64.54 -55.90 26.06 0.713 -21.15 -194.36 70.01 

Drained upper limit of soil water content (DUL), v% 19.35 115.04 
  

0.553 0.00 -203.72 269.94 

pH 2.58 2.67 
  

0.529 1.79 -1.91 8.40 

Plane curvature, km-1 5.36 5.11 
  

0.525 2.08 -0.12 16.68 

15 bar lower limit of soil water content (LL15), v% 32.91 43.79 42.38 27.06 0.465 0 -25.96 128.78 

Ammonium (NH4
+), mg kg-1 1.67 1.85 

  
0.458 0 -2.61 5.92 

Calcium, mg kg-1 -2.20 3.18 
  

0.430 0 -10.18 5.36 

Profile curvature, km-1 -2.08 5.17 
  

0.349 0 -14.40 9.79 

Whole profile drainage rate coefficient (SWCON) 1.01 10.84 
  

0.346 0 -18.93 23.19 

Phosphorus, mg kg-1 0.42 2.37 
  

0.315 0 -4.44 5.39 

Aspect -0.69 1.79 
  

0.305 0 -4.22 2.79 

Slope, ° -0.17 1.88 
  

0.274 0 -4.28 4.06 

Elevation, m 0.14 2.23 
  

0.25 0 -4.05 5.04 

Potassium, mg kg-1   -0.88 2.54 
  

0.25 0 -6.90 4.36 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.19. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for lignin content (mg g-1) of switchgrass at Lux Arbor Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 188.04 1.54 188.16 0.92 1 187.98 185.72 190.53 

Early growing season precipitation (Early), mm -188.63 36.44 -179.42 29.69 1 -187.65 -278.01 -102.29 

Late growing season precipitation (Late), mm -181.33 36.76 -171.76 29.69 1 -179.89 -269.62 -95.58 

Whole profile drainage rate coefficient (SWCON) 25.12 10.80 21.77 9.02 0.942 22.22 0 43.19 

Sand content, wt% -48.85 57.10 -46.76 27.19 0.788 -11.70 -160.58 53.10 

Clay content, wt% 63.43 99.48 66.04 37.51 0.681 15.56 -83.96 237.79 

Saturated water content (SAT), v% -18.70 18.08 -16.98 8.65 0.669 -11.92 -51.13 4.52 

Drained upper limit of soil water content (DUL), v% -81.17 113.91 -79.57 53.91 0.626 0 -307.13 129.01 

Phosphorus, mg kg-1 1.54 1.76 188.16 0.92 0.539 1.55 -1.29 5.02 

Plane curvature, km-1 9.69 15.90 
  

0.468 0 -18.39 35.94 

Aspect -1.18 1.39 
  

0.429 0 -3.59 1.80 

Saturated hydraulic conductivity (Ksat), mm h-1 -0.26 12.41 
  

0.397 0 -19.56 19.27 

Topographical wetness index (TWI) 0.92 2.65 
  

0.382 0 -4.11 5.76 

Potassium, mg kg-1   0.36 1.62 
  

0.359 0 -3.06 3.83 

Magnesium, mg kg-1 0.58 2.93 
  

0.358 0 -5.46 5.38 

Slope, ° -0.53 2.49 
  

0.357 0 -4.67 3.46 

pH -0.28 1.54 
  

0.331 0 -4.70 2.35 

Calcium, mg kg-1 -0.27 3.33 
  

0.305 0 -5.09 7.51 

Elevation, m 0.71 1.75 
  

0.29 0 -2.46 3.37 

Ammonium (NH4
+), mg kg-1 0.77 1.64 

  
0.271 0 -1.97 3.54 

15 bar lower limit of soil water content (LL15), v% 6.35 41.35 
  

0.266 0 -69.00 78.10 

Total soil carbon, wt% -0.38 1.53 
  

0.231 0 -3.37 1.54 

Profile curvature, km-1 -0.40 9.79 
  

0.225 0 -17.69 15.80 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.20. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for lignin content (mg g-1) of restored prairie at Lux Arbor Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 182.40 4.01 182.21 0.73 1 182.16 173.83 189.87 

Early growing season precipitation (Early), mm -250.43 29.86 -252.92 26.24 1 -258.07 -313.50 -195.69 

Late growing season precipitation (Late), mm -242.90 30.08 -245.37 26.31 1 -250.85 -306.75 -187.06 

Potassium, mg kg-1   2.42 1.40 2.09 0.96 0.699 2.03 0 4.98 

Topographical wetness index (TWI) -1.95 1.52 
  

0.611 -1.86 -5.10 0 

Phosphorus, mg kg-1 -2.17 1.52 -2.08 0.82 0.605 -1.66 -5.04 1.72 

Clay content, wt% 5.82 167.10 
  

0.564 0.00 -350.16 307.39 

Calcium, mg kg-1 -3.02 2.89 -2.50 1.11 0.554 -1.84 -8.92 0.00 

Sand content, wt% -1.97 47.06 
  

0.541 0 -83.89 106.36 

15 bar lower limit of soil water content (LL15), v% -5.00 176.12 
  

0.511 0 -316.56 375.09 

Whole profile drainage rate coefficient (SWCON) 266.70 438.89 
  

0.496 0 -621.23 1084.84 

Elevation, m -1.54 1.65 
  

0.489 0 -5.14 2.89 

Saturated water content (SAT), v% -0.30 16.39 
  

0.487 0 -27.58 38.76 

Saturated hydraulic conductivity (Ksat), mm h-1 -266.90 437.35 
  

0.455 0 -1084.29 618.17 

Total soil carbon, wt% 1.95 2.07 
  

0.452 0 -2.08 5.57 

Drained upper limit of soil water content (DUL), v% -4.81 71.96 -1.68 0.90 0.445 0 -129.79 153.04 

pH 1.31 1.49 1.30 0.89 0.432 0 -1.81 4.12 

Magnesium, mg kg-1 -0.15 3.04 
  

0.424 0 -5.95 6.04 

Plane curvature, km-1 -5.69 7.91 
  

0.371 0 -21.21 9.62 

Aspect 0.45 1.13 
  

0.365 0 -2.01 2.74 

Profile curvature, km-1 4.73 9.06 
  

0.363 0 -16.20 22.74 

Ammonium (NH4
+), mg kg-1 -0.74 1.56 

  
0.337 0 -5.21 3.81 

Slope, ° -0.42 1.58 
  

0.262 0 -2.80 3.22 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.21. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for lignin content (mg g-1) of switchgrass at Marshall Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 187.19 2.22 188.76 1.35 1 187.40 183.03 191.98 

Late growing season precipitation (Late), mm -7.65 0.97 -7.83 0.84 1 -7.65 -9.69 -5.75 

Early growing season precipitation (Early), mm 3.62 1.13 3.80 0.88 0.988 3.51 1.54 5.74 

Clay content, wt% 114.95 68.39 55.22 32.40 0.886 80.78 0.00 236.94 

Drained upper limit of soil water content (DUL), v% -98.54 90.59 -7.38 4.25 0.689 -54.59 -235.90 0 

Slope, ° -2.17 1.67 -1.71 1.21 0.658 -2.32 -5.80 0 

Sand content, wt% -45.32 44.67 
  

0.591 -20.63 -111.66 7.60 

Phosphorus, mg kg-1 -2.12 1.58 -1.52 0.95 0.564 -1.65 -5.04 0.00 

15 bar lower limit of soil water content (LL15), v% -48.83 48.20 -51.09 35.83 0.543 0 -167.55 53.45 

Saturated water content (SAT), v% -5.89 7.63 
  

0.535 0 -18.59 6.69 

Elevation, m 1.52 1.98 2.52 1.20 0.508 0 -2.26 5.74 

Plane curvature, km-1 -2.95 5.94 
  

0.491 0 -17.85 14.52 

Profile curvature, km-1 -7.94 9.22 -8.50 5.98 0.473 0 -31.23 0.00 

Saturated hydraulic conductivity (Ksat), mm h-1 6.89 10.98 
  

0.452 0 -14.15 28.05 

pH 1.24 2.67 
  

0.451 0 -5.31 7.94 

Magnesium, mg kg-1 -0.10 1.72 
  

0.431 0 -3.87 4.94 

Topographical wetness index (TWI) -0.87 2.04 
  

0.412 0 -6.07 3.38 

Aspect -1.03 1.32 
  

0.407 0 -3.54 1.66 

Calcium, mg kg-1 -0.06 2.67 
  

0.396 0 -6.98 9.07 

Total soil carbon, wt% -0.54 1.58 
  

0.386 0 -4.26 2.64 

Potassium, mg kg-1   1.05 1.89 
  

0.323 0 -2.82 4.42 

Whole profile drainage rate coefficient (SWCON) 2.23 7.79 
  

0.312 0 -14.50 15.92 

Ammonium (NH4
+), mg kg-1 0.01 1.11 

  
0.166 0 -1.82 2.02 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.  
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Table A3.22. Results of full model, backward selection model and bootstrap models with backward selection procedure (1000 

replications) for lignin content (mg g-1) of restored prairie at Marshall Farm. 

  Full Model 
Backward Select 

Model 
Bootstrap (1000 replications) 

 Coef1 SE1 Coef1 SE1 Inclusion1  M1 2.5%1  97.5%1 

(Intercept) 166.28 2.34 169.03 1.05 1 167.02 161.63 171.64 

Early growing season precipitation (Early), mm 5.29 1.16 5.61 1.09 1 5.52 3.15 7.93 

Late growing season precipitation (Late), mm -10.63 1.07 -10.75 1.03 1 -10.78 -12.82 -8.73 

Magnesium, mg kg-1 5.72 2.12 4.22 1.65 0.926 5.19 0 9.75 

Topographical wetness index (TWI) -5.22 2.50 -5.04 1.52 0.784 -4.75 -10.26 0 

Calcium, mg kg-1 -5.00 2.58 -5.18 2.06 0.716 -4.32 -11.52 0 

Drained upper limit of soil water content (DUL), v% -99.71 93.49 -20.48 8.61 0.7 -52.53 -294.15 24.42 

Slope, ° -2.79 1.53 -1.72 1.26 0.677 -2.31 -5.89 0 

Sand content, wt% -59.74 58.15 -9.40 4.80 0.667 -30.05 -183.03 10.67 

pH 2.87 2.17 3.50 1.86 0.599 2.74 0 7.61 

Saturated water content (SAT), v% 6.27 6.34 10.00 4.82 0.572 2.13 -9.72 21.08 

15 bar lower limit of soil water content (LL15), v% 32.11 35.59 
  

0.556 7.64 -36.67 113.63 

Saturated hydraulic conductivity (Ksat), mm h-1 -9.81 11.00 -18.94 8.85 0.548 0 -38.06 17.63 

Potassium, mg kg-1   -2.35 2.06 -2.46 1.69 0.54 -2.22 -7.90 0 

Whole profile drainage rate coefficient (SWCON) 6.56 8.81 
  

0.524 0 -9.22 24.36 

Plane curvature, km-1 3.69 4.15 
  

0.522 0 -4.70 14.28 

Total soil carbon, wt% -2.20 2.18 
  

0.514 0 -7.37 2.88 

Elevation, m -2.26 1.81 
  

0.509 0 -5.18 2.69 

Clay content, wt% 15.92 52.46 
  

0.498 0 -95.37 136.09 

Profile curvature, km-1 3.82 4.21 
  

0.485 0 -8.38 13.13 

Ammonium (NH4
+), mg kg-1 0.87 1.50 

  
0.383 0 -3.05 4.32 

Phosphorus, mg kg-1 1.21 1.93 
  

0.357 0 -2.75 5.45 

Aspect -0.06 1.46 
  

0.333 0 -3.40 3.22 

1. Abbreviation: Coef: estimation of coefficient, SE: standard error for the estimation of coefficient, Inclusion: inclusion probability, M: median, 

2.5%: 2.5 percentile, 97.5%: 97.5 percentile.
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Figure A3.1. Flow chart of biomass samples and soil samples parameters.  

 

 
Figure A3.2. Monthly precipitation (mm) during growing season (March-October) at Lux Arbor 

Farm and Marshall Farm over the study period (2018-2020) and 30 years average. 
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Figure A3.3. Glucose content (mg g-1) of switchgrass (upper panel) and restored prairie (lower 

panel) during the study period (2018-2020) at Lux Arbor Farm. 

 

 
Figure A3.4. Glucose content (mg g-1) of switchgrass (upper panel) and restored prairie (lower 

panel) during the study period (2018-2020) at Marshall Farm. 
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Figure A3.5. Xylose content (mg g-1) of switchgrass (upper panel) and restored prairie (lower 

panel) during the study period (2018-2020) at Lux Arbor Farm. 

 

 

 
Figure A3.6. Xylose content (mg g-1) of switchgrass (upper panel) and restored prairie (lower 

panel) during the study period (2018-2020) at Marshall Farm. 
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Figure A3.7. Lignin content (mg g-1) of switchgrass (upper panel) and restored prairie (lower 

panel) during the study period (2018-2020) at Lux Arbor Farm. 

 

 

 
Figure A3.8. Lignin content (mg g-1) of switchgrass (upper panel) and restored prairie (lower 

panel) during the study period (2018-2020) at Marshall Farm. 
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Figure A3.9. Empirical semi-variograms with best fitted Matern correlation models of glucose 

content (mg g-1) of switchgrass (left panel) and restored prairie (right panel) at Lux Arbor Farm 

over the study period (2018-2020. 
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Figure A3.10. Ordinary kriging maps of glucose content (mg g-1) of switchgrass (left panel) and 

restored prairie (right panel) at Lux Arbor Farm over the study period (2018-2020). 
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Figure A3.11. Empirical semi-variograms with best fitted Matern correlation models of glucose 

content (mg g-1) of switchgrass (left panel) and restored prairie (right panel) at Marshall Farm 

over the study period (2018-2020). 
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Figure A3.12. Ordinary kriging maps of glucose content (mg g-1) of switchgrass (left panel) and 

restored prairie (right panel) at Marshall Farm over the study period (2018-2020). 
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Figure A3.13. Empirical semi-variograms with best fitted Matern correlation models of xylose 

content (mg g-1) of switchgrass (left panel) and restored prairie (right panel) at Lux Arbor Farm 

over the study period (2018-2020). 
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Figure A3.14. Ordinary kriging maps of xylose content (mg g-1) of switchgrass (left panel) and 

restored prairie (right panel) at Lux Arbor Farm over the study period (2018-2020). 
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Figure A3.15. Empirical semi-variograms with best fitted Matern correlation models of xylose 

content (mg g-1) of switchgrass (left panel) and restored prairie (right panel) at Marshall Farm 

over the study period (2018-2020). 
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Figure A3.16. Ordinary kriging maps of xylose content (mg g-1) of switchgrass (left panel) and 

restored prairie (right panel) at Marshall Farm over the study period (2018-2020). 
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Figure A3.17. Empirical semi-variograms with best fitted Matern correlation models of lignin 

content (mg g-1) of switchgrass (left panel) and restored prairie (right panel) at Lux Arbor Farm 

over the study period (2018-2020). 
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Figure A3.18. Ordinary kriging maps of lignin content (mg g-1) of switchgrass (left panel) and 

restored prairie (right panel) at Lux Arbor Farm over the study period (2018-2020). 
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Figure A3.19. Empirical semi-variograms with best fitted Matern correlation models of lignin 

content (mg g-1) of switchgrass (left panel) and restored prairie (right panel) at Marshall Farm 

over the study period (2018-2020). 
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Figure A3.20. Ordinary kriging maps of lignin content (mg g-1) of switchgrass (left panel) and 

restored prairie (right panel) at Marshall Farm over the study period (2018-2020).  
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Figure A3.21. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass glucose content (upper panel) and restored prairie 

glucose content (lower panel) at Lux Arbor Farm. 

 

 
Figure A3.22. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass glucose content (upper panel) and restored prairie 

glucose content (lower panel) at Lux Arbor Farm. 
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Figure A3.16. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass glucose content (upper panel) and restored prairie 

glucose content (lower panel) at Marshall Farm. 

 

 
Figure A3.24. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass glucose content (upper panel) and restored prairie 

glucose content (lower panel) at Marshall Farm. 
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Figure A3.25. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass xylose content (upper panel) and restored prairie xylose 

content (lower panel) at Lux Arbor Farm. 

 

 
Figure A3.26. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass xylose content (upper panel) and restored prairie xylose 

content (lower panel) at Lux Arbor Farm. 
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Figure A3.27. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass xylose content (upper panel) and restored prairie xylose 

content (lower panel) at Marshall Farm. 

 

 
Figure A3.28. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass xylose content (upper panel) and restored prairie xylose 

content (lower panel) at Marshall Farm. 
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Figure A3.29. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass lignin content (upper panel) and restored prairie lignin 

content (lower panel) at Lux Arbor Farm. 

 

 
Figure A3.30. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass lignin content (upper panel) and restored prairie lignin 

content (lower panel) at Lux Arbor Farm. 
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Figure A3.31. The leading spatial empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass lignin content (upper panel) and restored prairie lignin 

content (lower panel) at Marshall Farm. 

 

 
Figure A3.32. The leading temporal empirical orthogonal function (EOF) and time series of 

expansion efficient (EC) for switchgrass lignin content (upper panel) and restored prairie lignin 

content (lower panel) at Marshall Farm. 
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CHAPTER 4 NEAR-INFRARED SPECTROSCOPY AS AN ANALYTICAL PLATFORM 

FOR EVALUATING PLANT CELL WALL COMPOSITION  

Abstract 

Identifying analytical instrumentation and methods to quickly and accurately assess variability in 

biomass quality is valuable to facilitate development of best management practices on farms as 

well as process optimization techniques at the biorefinery level. Near-infrared spectroscopy is a 

promising technique to estimate structural glucose, structural xylose and lignin content of 

biomass feedstocks. In this study, structural glucose, structural xylose and lignin content of 168 

switchgrass (Panicum virgatum) samples and 168 restored prairie samples were determined both 

by standard chemical analysis and near-infrared spectroscopy with partial least square algorithm. 

Compared to chemical analyses, near-infrared spectroscopy measurements had a bias of -72.5 

mg g-1 (95% CI: -74.7 to -70.4 mg g-1) and -78.5 mg g-1 (95% CI: -82.3 to -74.7 mg g-1) for 

structural glucose content, and a bias of -99.6 mg g-1 (95% CI: -102.3 to -96.9 mg g-1) and -91.4 

mg g-1 (95% CI: -93.7 to -89.0 mg g-1) for structural xylose content of switchgrass and restored 

prairie, respectively. After bias correction, the highest Lin's concordance correlation coefficient 

was 0.94 (95%: 0.913, 0.958) for structural xylose content of restored prairie. Near-infrared 

spectroscopy measurements had the lowest absolute bias of 32.6 mg g-1 (95% CI: 30.8 to 34.4 

mg g-1) and 47.8 mg g-1 (95% CI: 44.7 to 51.0 mg g-1). However, the Lin's concordance 

correlation coefficient was lowest between standard chemical measurements and bias corrected 

near-infrared measurements of lignin content for switchgrass (0.465, 95% CI: 0.336 to 0.576) 

and restored prairie (0.108, 95%: -0.075, 0.284). With appropriate bias correction, near-infrared 

spectroscopy is a viable rapid analytical method to estimate biomass structural glucose, structural 

xylose and lignin content.  
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Introduction 

To meet the increasing demand for renewable energy and reduction of greenhouse gas emissions 

from the energy sector, lignocellulosic bioenergy feedstocks for conversion to liquid fuels have 

been garnering considerable attention (Liu et al., 2021; Rai et al., 2022). In addition to liquid 

fuel, lignocellulosic bioenergy feedstocks can also provide other value-added biochemical 

products (Den et al., 2018). Lignocellulosic bioenergy feedstocks include two major resources: 

forest-derived resources and agriculture-derived resources. Fuelwood, forest residues, municipal 

solid wastes (MSW), etc. are considered as forest-derived resources. Corn stover, crop residues, 

dedicated energy crops, etc. are considered as agriculture-derived resources. The U.S Billion Ton 

Update (2011) projected there will be 1094 million dry tons of biomass available in the 

contiguous U.S in 2030, under a baseline scenario. Among all the biomass feedstocks assessed in 

the report, dedicated energy crops contribute the highest potential quantity (U.S. Department of 

Energy, 2011).  

Cellulose, hemicellulose and lignin are the key cell wall compositional components for 

producing fuel and biochemicals from lignocellulosic feedstocks. Efforts have been made to 

optimize biomass cell wall compositions through genetic engineering and breeding (Bhatia et al., 

2017; Da Costa et al., 2019; van der Cruijsen et al., 2021). Therefore, rapid analytical methods 

for biomass cell wall composition determination are needed to accurately analyze large quantities 

of samples in order to develop uniform and sustainable lignocellulosic feedstocks (Harman-Ware 

et al., 2022). In addition, rapid analytical data of feedstock cell wall composition from 

intermediate samples acquired during the conversion process help monitor and improve 

conversion efficiency (Hames et al., 2003). 

Analytical methods for biomass composition determination date back to early 20th century 
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(Sluiter et al., 2010). The famous Klason method for lignin quantification in wood was proposed 

by Klason in 1906 (McCarthy & Islam, 1999). In the following three decades, multiple methods 

for wood lignin determination were suggested by researchers by modifying the concentration of 

sulfuric acid pretreatment and hydrolysis temperature (Mahood & Cable, 1922; Ritter et al., 

1932).  Methods for sugar quantification in wood were explored by Ritter et al. (1933) and later 

modified by Saeman et al. (1945). The modified paper chromatography methods were widely 

used for sugar quantification in wood industry for a few decades. From 1980 to 1990, researchers 

tested different methods for fiber analysis of food and feed such as utilizing gas liquid 

chromatography to measure hydrolyzed sugar content (Petterson, 1984). Van Soest et al. (1991) 

suggested a widely used method for forage fiber analysis of animal feed, which is still in use 

today. In the 1990s, scientists at the National Renewable Energy Laboratory published books 

summarizing biomass analysis methods for biofuel application and provided a suite of laboratory 

analytical procedures (LAP) for woody and herbaceous biomass compositional analysis (Milne 

et al., 1990; Sluiter et al., 2008). 

Analytical methods for biomass cell wall composition determination can be generally grouped 

into two types: 1) destructive and 2) non-destructive. Among destructive methods, two subtypes 

exist. They are gravimetric and chromographic/spectrometric. Gravimetric methods are widely 

used for forage fiber analysis and are based on a sequence of extraction and fractionation of 

biomass to determine the weight of different cell wall compositions. After hot neutral solution 

extraction, a neutral detergent fiber (NDF) value is obtained to represent total cell wall 

composition. Acid detergent fiber (ADF) values represent least digestible cell wall composition 

cellulose and lignin derived from acid treated biomass. The difference between NDF and ADF is 

the hemicellulose content. Cellulose is removed from ADF residue through use of a sulfuric acid 
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solution to derive the acid detergent lignin (ADL) value. It was recognized that the ADL value 

underestimated the true lignin content due to partial solubilization of lignin. A more reliable 

method of lignin content determination is the Klason method. The ADL method used diluted 

sulfuric acid at high temperature precede concentrated acid and heat. In contrast, the Klason 

method used higher concentrations of sulfuric acid at low temperature and heat. The major 

limitation of gravimetric methods is the lack of capability to distinguish structural carbohydrates 

such as glucan and xylan content in biomass. Similar to gravimetric methods, spectrophotometric 

methods start with pretreatment step to solubilize lignin in a solvent such as acetylbromide 

(Barnes & Anderson, 2017), HCl triethylene glycol (Yin et al., 2021), or thioglycolate (Wang et 

al., 2022). In the following step, spectrometric measurements are taken at 280 nm using 

extinction coefficients to quantify lignin content. For structural carbohydrates, gas-liquid 

chromatography, high performance liquid chromatography, or anion exchange chromatography 

with pulsed amperometric detection are used to measure hydrolysate sugar content (Alberheim et 

al., 1967; Bhattacharyya, 2012). The destructive methods are time and labor consuming, and 

therefore they are not suitable for analyzing large volumes of biomass samples that are typical 

for genetic screening of biomass feedstocks.  

The widely used noninvasive methods are nuclear magnetic resonance (NMR) spectroscopy and 

near infrared spectroscopy (NIR). Partial least square regression or other multivariate algorithms 

are used to develop predictive models with spectral data and true compositional data from 

standard methods (Roggo et al., 2007). The advantage of noninvasive methods is no pretreatment 

and minimum preparation of biomass samples. On the other hand, the disadvantage of 

noninvasive methods is the requirement of standard methods to calibrate and update predictive 

models.  
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Research has been ongoing to develop high-throughput analytical methods, which generally 

involve modification of pretreatments and utilization of autosampler and plate reading 

techniques (Decker et al., 2018). DeMartini et al. (2011) developed a scaled-down version of a 

two-stage acid hydrolysis high-throughput method for cell wall composition analysis with the 

help of robots to automate sample dispensing and heating.  Selig et al. (2011) developed a high-

throughput method based on two-stage acid hydrolysis using a 96-well reactor plate equipped 

with a spectrophotometer to quantify sugar content. However, the scaled-down, high-throughput 

wet chemistry methods require costly customized equipment and multiple steps to process the 

samples. By comparison, the non-destructive methods such as near infrared spectroscopy are 

promising rapid analytical methods for high-throughput analysis of cell wall composition. 

Studies have been shown that near infrared spectroscopy is a reliable method for biomass cell 

wall composition analysis (Li et al., 2021; Adnan et al., 2022). As the computational speed keeps 

increasing, biomass composition analysis via near infrared spectroscopy can harness the power 

of more advanced machine learning methods (Bai et al., 2022; Zhang et al., 2022). 

This study was conducted with the objectives of 1) Examining the agreement of near-infrared 

spectroscopy and hydrolysis analysis for structural glucose, structural xylose and lignin content 

in switchgrass and restored prairie; and 2) Investigating the bias and precision of the near-

infrared spectroscopy compared to hydrolysis analysis for structural glucose, structural xylose 

and lignin content in switchgrass and restored prairie. 

Materials and methods 

Biomass materials 

Switchgrass (cultivar Cave-in-rock) and restored prairie (5 grass and 14 forb species) were hand 

harvested at ground level by using 1×1 m2 quadrat and clipper at two farms after the first killing 
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frost for 42 randomly selected sampling points each at Marshall Farm (42.44° N, -85.32° W) and 

Lux Arbor Farm (42.48° N, -85.44° W) in 2019 and 2020, respectively. A total of 168 biomass 

samples for switchgrass and restored prairie were analyzed for biomass composition. Before 

composition analysis, all samples were ground to pass a 2-mm mesh and dried at 65 °C to a 

constant weight.  

Chemical compositional analysis (Reference method) 

All biomass samples were processed and analyzed at the MSU Biomass Analysis Facility for 

structural glucose, xylose and lignin content (mg g-1). Roughly 60-70 mg of dry biomass 

subsamples were transferred into plastic tubes and loaded on a robotic arm system to further mill 

them with 5.56 mm stainless steel balls (Salem Specialty Ball Co, Canton, CT). For 

monosaccharide composition determination, 2 mg subsamples were mixed with 100 μg of an 

inositol solution (5mg/ml) as an internal standard, then pretreated with 250 μl of 2M 

trifluoroacetic acid and incubated for 90 min at 121°C. After cooling on ice, samples were 

centrifuged at 10,000 rpm for 10 min. 100 μl of the acidic supernatant was transferred to a glass 

screw cap vials for the alditol acetate derivatization procedure. Then, 200 μl of a sodium 

borohydride solution was added to the dried sample and left at room temperature for 1.5 hours, 

after which 150 μl of glacial acetic acid was added to neutralize the solution. 50 μl of acetic 

anhydride and 50 μl of pyridine were then added to acetylate alditols, then incubated for 20 min 

at 121°C. After samples reached room temperature, 500 μl of ethyl acetate and 2 ml water were 

added and the material was centrifuged at 2,000 RPM for 5 min to obtain an ethyl acetate layer. 

A 50 μl aliquot of the ethyl acetate layer was pipetted into GC/MS vials with inserts for 

quantified structural xylose content. For crystalline cellulose content, the trifluoroacetic acid 

pretreated pellet was added to a screw-capped glass tube with 1 ml of Updegraff reagent (Acetic 
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acid: nitric acid: water, 8:1:2 v/v). Then, the glass tube was heated at 100°C for 30 min. Cooled 

samples were centrifuged at 10,000 rpm for 15 min. Supernatant was discarded and a pellet with 

only crystalline cellulose was obtained. Saeman hydrolysis was used to hydrolyze the pellet into 

glucose with 175 μl of 72% sulfuric acid. After 45 min incubation at room temperature, samples 

were further centrifuged with 825 μl water added at 10,000 rpm for 5 min to obtain supernatant 

with glucose. The colorimetric anthrone assay was used to assay glucose content of the 

supernatant in a 96 well polystyrene microtiter plate. For lignin content determination, 1-1.5 mg 

subsample of each dry biomass sample was mixed with 100 μl of freshly made acetyl bromide 

solution (25% v/v acetyl bromide in glacial acetic acid) and heated in a capped flask at 50°C for 

2 hours initially. Then, the samples were heated for an additional hour with vertexing every 15 

minutes. After cooling on ice to room temperature, 400 μl of 2 M sodium hydroxide and 70 μl of 

freshly prepared 0.5 M hydroxylamine hydrochloride were added to the samples in flasks. Then, 

flasks were filled with glacial acetic acid to the 2.0 ml mark. Absorbance (abs) was read in an 

ELISA reader at 280 nm using a UV specific 96 well plate with 200 μl of the solution. A detailed 

protocol is available in Foster et al. (2010). 

Near-Infrared Spectrometers compositional analysis 

About 20 mg dry biomass samples were first passed through a 2 mm screen via hammer mill 

(Schutte Hammermill, Buffalo NY, USA) and then a 0.5 mm screen via cyclone mill (UDY 

Corporation, Fort Collins Co, USA) before analysis by near-infrared spectroscopy for glucan, 

xylan and lignin content (mg g-1). A Foss XDS near-infrared (NIR) spectrometer (Foss North 

America, Eden Prairie MN, USA) was used to collect NIR spectra. The spectrometer lamp was 

warmed up for thirty minutes before scanning. The ground biomass samples were transferred 

into Foss “quarter cup” vials and spectra of samples were scanned in reflectance mode from 400-
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2500 nm with a resolution of 0.5 nm averaged over 32 scans, resulting in 1 minute total scan 

time. The NIR biomass compositional analysis followed the general calibrate-collect-predict 

cycle. Predictive models were developed by using representative biomass samples with known 

glucan, xylan and lignin content (mg g-1). Normalizing, detrending and smoothing were applied 

to the spectral data of representative biomass samples. Partial least squares models were adopted 

for developing predictive models of final glucan, xylan and lignin concentrations (mg g-1). The 

“leave one out” cross-validation technique was used to validate the predictive models. The 

predictive models were compared by root mean square error and coefficient of determination 

(R2). Best predictive models were used to predict glucan, xylan and lignin concentrations (mg g-

1). Detailed methods are given in Wolfrum et al., (2020). 

Statistical Analysis 

Pearson’s correlation coefficients are often used as a measure of linear relationships between two 

variables. However, examining the possibility of one measurement being substituted by another 

measurement requires assessing agreement between the two measurements, which also be 

referred to as reproducibility assessment. Lin’s concordance correlation coefficient is a metric 

that assesses not only association but also agreement. It is more sensitive to detect the deviation 

from a 1:1 relationship of two measurements (Lin, 1989). Therefore, Lin’s concordance 

correlation coefficients were calculated between structural glucose and near-infrared glucan, 

structural xylose and near-infrared xylan, and acetyl bromide soluble lignin and near-infrared 

lignin for switchgrass and restored prairie, respectively. 1:1 identity plots between two 

measurements were used to visually examine the agreements between two measurements for cell 

wall composition of switchgrass and restored prairie. As a comparison, Pearson’s correlation 

coefficients were calculated as well.  
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Lin’s concordance correlation coefficient: 

ρ̂c =
2sxy √sxsy

sx
2 + sy

2 + (x̅ − y̅)2
 

Where sxy is sample covariance between x and y, sx
2 is sample variance of x, sy

2 is sample 

variance of y, x̄ is sample mean of x, ȳ is sample mean of y. 

Lin’s concordance correlation coefficient is relative metric to measure agreement. More direct 

assessment of agreement can utilize a Bland-Altman plot, which is often used in the medical 

field to check the agreement between the same measurement by two different techniques or 

instruments (Bland & Altman, 1986). Bland-Altman plots were made for structural glucose and 

near-infrared glucan, structural xylose and near-infrared xylan, acetyl bromide soluble lignin and 

near-infrared lignin for both switchgrass and restored prairie.  

In addition, Passing-Bablok regressions were fitted for structural glucose and near-infrared 

glucan, structural xylose and near-infrared xylan, acetyl bromide soluble lignin and near-infrared 

lignin for switchgrass and restored prairie, respectively. Passing-Bablok regression was proposed 

by Passing & Bablok (1983) as a non-parametric regression analysis for methods comparison. In 

comparison of least square regression, Passing-Bablok regression is more robust to outliers.   

All statistical analysis were done in R statistical computation environment (R Core Team, 2022) 

with package SimplyAgree (Caldwell, 2022). All figures were made in R statistical 

computational environment with package ggplot2 (Wickham, 2016).   

Bias = 
1

𝑛
∑ (𝑀𝑒𝑡ℎ𝑜𝑑1𝑖 − 𝑀𝑒𝑡ℎ𝑜𝑑2𝑖)𝑛

𝑖  

Where n is number of paired measurements from both methods. Method1i is the measurement 

from method1, and Method2i is the measurement from method2 (Reference measurement). 

95% Limit of agreement (LoA): 
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Upper LoA = Bias + 1.96 × Sd   

Lower LoA = Bias + 1.96 × Sd 

Where Sd is the standard deviation of differences between results from the two methods. 

Standard error of the estimated limits of agreement: 

SELoA = √(
1

𝑛
+

1.962

2(𝑛−1)
) 𝑆𝑑 

Where n is number of paired measurements from both method. Sd is the standard deviation of 

difference between two methods` measurements. 

Results 

Descriptive statistics 

In Table 4.1, the structural glucose measurement by chemical analysis of switchgrass samples 

ranged from 345.9 to 443.6 mg g-1, whereas the near-infrared glucan measurement of switchgrass 

samples ranged from 279.2 to 362.1 mg g-1. The structural glucose measurement by chemical 

analysis of restored prairie samples ranged from 270.1 to 458.5 mg g-1, whereas the near-infrared 

glucan measurement of restored prairie samples ranged from 277.8 to 363.6 mg g-1. The mean 

and median of structural glucose measurements by chemical analysis were higher than near-

infrared glucan measurements for both types of biomass samples. As shown in Figures 4.1 and 

4.2, the distributional shapes of measurements for compositional glucose content from two 

methods were similar for both types of biomass samples. However, the distributions of structural 

glucose measurements by chemical analysis shifted to higher values than near-infrared glucan 

measurements. 

The structural xylose measurement by chemical analysis of switchgrass samples ranged from 

191.8 to 343.4 mg g-1, whereas the near-infrared xylan measurement of switchgrass samples 

ranged from 102.2 to 230 mg g-1. The structural xylose measurement by chemical analysis of 
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restored prairie samples ranged from 172.9 to 335.5 mg g-1, whereas the near-infrared xylan 

measurement of restored prairie samples ranged from 93.6 to 222.7 mg g-1. Similar to structural 

glucose measurements, the mean and median of structural xylose measurements by chemical 

analysis were higher than near-infrared xylan measurements for both types of biomass samples. 

The structural xylose measurements by chemical analysis tended to be higher than near-infrared 

xylan measurements.  

The ABSL measurement of switchgrass ranged from 152.7 to 216 mg g-1, whereas near-infrared 

lignin measurement of switchgrass ranged from 183.6 to 238.3 mg g-1. The ABSL measurement 

of restored prairie ranged from 131.2 to 198 mg g-1, whereas the near-infrared lignin 

measurements of restored prairie ranged from 176.7 to 254.2 mg g-1. In contrast to structural 

glucose and xylose measurements, the mean and median of ABSL measurements were lower 

than near-infrared lignin measurement for both types of biomass samples. The ABSL 

measurements tended to be lower than near-infrared lignin measurements. 

Table 4.1. Descriptive statistics of structural glucose and near-infrared glucan, structural xylose 

and near-infrared xylan, acetyl bromide soluble lignin and near-infrared lignin content for 

swtichgrass and restored prairie. Unit: mg g-1. 
  Structural glucose (mg g-1)   Near-infrared glucan (mg g-1) 

Crop Mean(SD1) Median  Min Max  Mean(SD1) Median  Min Max 

Switchgrass 394.3(18.6) 390.6 345.9 443.6  321.8(19.0) 319.4 279.2 362.1 

Restored prairie 401.8(32.7) 408.8 270.1 458.5  323.3(18.8) 326 277.8 363.6 

  Structural xylose (mg g-1)  Near-infrared xylan (mg g-1) 

 Mean(SD1) Median  Min Max  Mean(SD1) Median  Min Max 

Switchgrass 301.9(19.8) 302.7 191.8 343.4  202.3(17.2) 203.8 102.2 230 

Restored prairie 269.7(37.2) 279 172.9 335.5  178.3(34.1) 187 93.6 222.7 

  ABSL1 (mg g-1)  Near-infrared lignin (mg g-1) 

 Mean(SD1) Median  Min Max  Mean(SD1) Median  Min Max 

Switchgrass 183.4(11.0) 184.2 152.7 216  215.0(10.7) 217.4 183.6 238.3 

Restored prairie 169.1(12.8) 170.1 131.2 198   217.6(12.4) 217.2 176.7 254.2 

1. Abbreviation: SD: standard deviation, ABSL: acetyl bromide soluble lignin. 
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Figure 4.1. Boxplots of switchgrass quality data. Left panel shows structural glucose content (mg 

g-1) and near infrared glucan content (mg g-1). Middle panel shows structural xylose (mg g-1) and 

near infrared xylan content (mg g-1). Right panel shows acetyl bromide soluble lignin content 

(mg g-1) and near infrared lignin content (mg g-1). 

 
Figure 4.2. Boxplots of restored prairie quality data. Left panel shows structural glucose (mg g-1) 

and near-infrared glucan content (mg g-1). Middle panel shows structural xylose (mg g-1) and 

near-infrared xylan content (mg g-1). Right panel shows acetyl bromide soluble lignin content 

(mg g-1) and near-infrared lignin content (mg g-1). 

Pearson’s correlation coefficients and Lin’s concordance correlation coefficients 

As shown in Table 4.2, structural glucose by chemical analysis and near-infrared glucan had the 

highest Pearson’s correlation coefficient of 0.731 (95% CI: 0.650, 0.792) among all three 
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compositional components measurements of switchgrass.  ABSL and near-infrared lignin had the 

lowest Pearson’s correlation coefficient of 0.468 (95% CI: 0.311, 0.555) among all three 

compositional components measurements of switchgrass. In contrast, ABSL and near-infrared 

lignin had the highest Lin's concordance correlation coefficient of 0.088 (95% CI: 0.057, 0.119) 

among all three compositional components measurements of switchgrass.  

Structural xylose by chemical analysis and near-infrared xylan had the highest Pearson’s 

correlation coefficient of 0.943 (95%: 0.911, 0.962) among all three compositional components 

measurements of restored prairie (Table 4.2). In consistent, structural xylose and near-infrared 

xylan had the highest Lin's concordance correlation coefficient of 0.218 (95% CI: 0.169, 0.267) 

among all three compositional components measurements of restored prairie. Similar to 

switchgrass, both Pearson’s correlation coefficient and Lin's concordance correlation coefficient 

exhibited lowest value for ABSL and near-infrared lignin of restored prairie. 

Table 4.2. Pearson correlation coefficients with 95% bootstrap confidence intervals and Lin's 

concordance correlation coefficients with 95% confidence intervals of biomass cell wall 

composition of switchgrass and restored prairie between chemical compositional analysis and 

near-infrared spectrometer compositional analysis. 
 

 

Crop Methods 

Pearson’s 

Correlation 

Coefficient 

Lin's concordance 

correlation coefficient 

Switchgrass 

Structural glucose and NIR1 glucan  0.731[0.650, 0.792]a 0.086[0.065, 0.107]b 

Structural xylose and NIR1 xylan 0.560[0.336, 0.743] 0.036[0.025, 0.047] 

ABSL1 and NIR1 lignin  0.468 [0.269, 0.593] 0.088[0.057, 0.119] 

Restored 

prairie 

  

Structural glucose and NIR1 glucan  0.637[0.270, 0.760] 0.103[0.069, 0.136] 

Structural xylose and NIR1 xylan 0.943[0.911, 0.962] 0.218[0.169, 0.267] 

ABSL1 and NIR1 lignin  0.108[-0.101, 0.326] 0.013[-0.001, 0.036] 

1: Abbreviations: ABSL: Acetyl bromide soluble lignin, NIR: near-infrared. 

a: 95% bootstrap confidence interval of pearson correlation coefficient. 

b: 95% confidence interval of Lin's concordance correlation coefficient. 

Bland-Altman plots 

The biases of near-infrared glucan measurement compared to structural glucose measurement by 

chemical analysis of switchgrass and restored prairie were -72.5 mg g-1 (95% CI:-74.7 to -70.4 
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mg g-1) and -78.5 mg g-1 (95% CI: -82.3 to -74.7 mg g-1), respectively (Table. 4.3). As shown in 

Figure 4.3, most of the measurements differences of structural glucose content for switchgrass 

and restored prairie from two methods fell within the range of 95% limits of agreement (LoA). 

There was no relation of structural glucose measurement differences of switchgrass with the 

absolute concentrations. In contrast, a downward trend showing higher negative bias associated 

with higher measurement value was observed for restored prairie structural glucose content.  

 
Figure 4.3. Bland-Altman plots for structural glucose measurements (mg g-1) and near-infrared 

glucan measurements (mg g-1) of switchgrass (left panel) and restored prairie (right panel). 

Horizontal blue line is bias (near-infrared glucan measurement – structural glucose 

measurement) between two measurement methods and gray shaded area is 95% confidence 

interval. Top horizontal red line is upper bound of 95% limit of agreement (LoA) of two 

measurement methods and gray shaded area is 90% confidence interval. Bottom horizontal red 

line is lower bound of 95% limit of agreement (LoA) of two measurement methods and gray 

shaded area is 90% confidence interval. 

Similarly, biases were observed between near-infrared xylan measurement and structural xylose 

measurements by chemical analysis of switchgrass (-99.6 mg g-1, 95% CI: -102.3 to -96.9 mg g-

1) and restored prairie (-91.4 mg g-1, 95% CI: -93.7, -89.0 mg g-1) (Table. 4.3). Most of the 

measurement differences in structural xylose content for switchgrass and restored prairie from 

two methods fell within the range of 95% limits of agreement. A slight downward trend showing 
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higher negative bias associated with higher measurement value was observed for structural 

xylose content in both switchgrass and restored prairie (Figure 4.4). 

 
Figure 4.4. Bland-Altman plots for structural xylose measurements (mg g-1) and near-infrared 

xylan measurements (mg g-1) of switchgrass (left panel) and restored prairie (right panel). 

Horizontal blue line is bias (near-infrared xylan measurement – structural xylose measurement) 

between two measurement methods and gray shaded area is 95% confidence interval. Top 

horizontal red line is upper bound of 95% limit of agreement (LoA) of two measurement 

methods and gray shaded area is 90% confidence interval. Bottom horizontal red line is lower 

bound of 95% limit of agreement (LoA) of two measurement methods and gray shaded area is 

90% confidence interval. 

In contrast, Table 4.3 shows that the bias between near-infrared lignin and ABSL was positive 

for switchgrass (32.6 mg g-1, 95% CI: 30.8 to 34.4 mg g-1) and restored prairie (47.8, 95% CI: 

44.7 to 51.0 mg g-1). Most of the measurement differences for lignin content of switchgrass and 

restored prairie from two methods were tightly scattered around the corresponding bias and 

showed no systematic relation with the absolute concentrations (Figure 4.5).  
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Figure 4.5. Bland-Altman plots for acetyl bromide soluble lignin measurements (mg g-1) and 

near-infrared lignin measurements (mg g-1) of switchgrass (left panel) and restored prairie (right 

panel). Horizontal blue line is bias (near-infrared lignin measurement –acetyl bromide soluble 

lignin measurement) between two measurement methods and gray shaded area is 95% 

confidence interval. Top horizontal red line is upper bound of 95% limit of agreement (LoA) of 

two measurement methods and gray shaded area is 90% confidence interval. Bottom horizontal 

red line is lower bound of 95% limit of agreement (LoA) of two measurement methods and gray 

shaded area is 90% confidence interval. 

As shown in Table 4.3, the absolute value of the bias of compositional glucose measurements 

and lignin measurements from the two methods was higher for restored prairie compared to 

switchgrass. In contrast, the absolute value of compositional xylose measurements from the two 

methods was lower for restored prairie compared to switchgrass. In comparing compositional 

glucose and xylose measurements, the absolute value of the bias between acetyl bromide soluble 

lignin measurements and near-infrared lignin measurements was the lowest for both types of 

biomass materials. The absolute value of the bias of compositional xylose measurements from 

two methods was slightly higher than the bias of compositional glucose measurements from two 

methods. 
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Table 4.3. Bias, 95% limits of agreement for near-infrared glucan and structrual glucose, near-

infrared xylan and structrual xylose, near-infrared lignin and acetyl bromide soluble lignin 

(ABSL) content of switchgrass and restored prairie samples. Unit: mg g-1. 

  Near-infrared glucan and Structural glucose (mg g-1) 

 Switchgrass Restored prairie 

Bias1 -72.5[-74.7, -70.4]a -78.5[-82.3, -74.7] 

Lower LoA4 -99.7[-102.1, -97.2]b -118.2[-122.5, -113.9] 

Upper LoA -45.4[-47.9, -43.0]b -38.7[-43.0, -34.4] 

 Near-infrared xylan and Structural xylose (mg g-1) 

 Switchgrass Restored prairie 

Bias2 -99.6[-102.3, -96.9] -91.4[-93.7, -89.0] 

Lower LoA -133.6[-136.6, -130.5] -114.99[-117.7, -112.3] 

Upper LoA -65.6[-68.6, -62.5] -67.72[-70.4, -65.1] 

 Near-infrared lignin and ABSL4 (mg g-1) 

 Switchgrass Restored prairie 

Bias3 32.6[30.8, 34.4] 47.8[44.7, 51.0] 

Lower LoA 10.0[8.0, 12.1] 14.3[10.7, 17.8] 

Upper LoA 55.2[53.2, 57.2] 81.4[77.8, 85.0] 

1. Bias = near-infrared glucan measurement – structural glucose measurement. 

2. Bias = near-infrared xylan measurement – structural xylose measurement. 

3. Bias = near-infrared lignin measurement – structural acetyl bromide lignin measurement. 

4. Abbreviation: LoA: Limit of Agreement, ABSL: Acetyl Bromide Soluble Lignin. 

a. Values within square brackets for biases are 95% confidence intervals. 

b. Values within square brackets for 95% limits of agreement are 90% confidence intervals. 

Passing-Bablok regression  

As shown in Figure 4.6, structural glucose measurements and near-infrared glucan measurements 

did not lie on the 1:1 line for either switchgrass or restored prairie. Structural glucose 

measurements were consistently higher than near-infrared glucan measurements for switchgrass. 

There were only two near-infrared glucan measurements that were higher than structural glucose 

measurements for restored prairie. The bias-corrected near-infrared glucan measurements and 

structural glucose measurements were closer to the 1:1 relationship (Figure 4.6). The least 

squared regression fitted line exhibited a proportional bias (slope: 0.72, 95% CI of slope: 0.61, 

0.82) of compositional glucose content between measurements from two methods for 

switchgrass. The Passing-Bablok regression fitted line was parallel with bias-corrected identity 

line with the median slope of 0.96 (95% CI: 0.84 to 1.09) for switchgrass. In contrast, the least 
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square regression fitted line (Slope: 1.11, 95% CI of slope: 0.86 to 1.36) for restored prairie was 

parallel with bias-corrected identity line. However, the Passing-Bablok regression fitted line 

exhibited a considerable proportional bias (Slope: 1.65, 95% CI of slope: 1.39 to 1.97) for 

restored prairie, implying that bias increases as measurement value increases. 

 
Figure 4.6. Regression plots for structural glucose measurements (mg g-1) and near-infrared 

glucan measurements (mg g-1) of switchgrass (left panel) and restored prairie (right panel). Black 

dotted line is 45 degree one on one identity line. Light blue dotted line is the 45 degree one on 

one bias-corrected (near-infrared glucan - bias) identity line. Red solid line is fitted line from 

least square regression. Green solid line is fitted line from Passing-Bablok regression. 

Structural xylose measurements and near-infrared xylan measurements did not lie on the 1:1 line 

for either switchgrass or restored prairie (Figure 4.7). Structural xylose measurements were 

consistently higher than near-infrared xylan measurements for switchgrass and restored prairie. 

For switchgrass, the least squared regression line exhibited a downward proportional bias (slope: 

0.64, 95% CI of slope: 0.49 to 0.79) of compositional xylose content between measurements. In 

contrast, the Passing-Bablok regression line showed upward proportional bias (Slope: 1.31, 95% 

CI of slope: 1.04 to 1.60) for switchgrass, which was driven by the two low values of 

compositional xylose content. For restored prairie, both the least squared regression line (Slope: 
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1.03, 95% CI of slope: 0.96 to 1.10) and the Passing-Bablok regression line (Slope: 1.08, 95% CI 

of slope: 1 to 1.16) were nearly parallel with the bias-corrected identity line.  

 
Figure 4.7. Regression plots for structural xylose measurements (mg g-1) and near-infrared xylan 

measurements (mg g-1) of switchgrass (left panel) and restored prairie (right panel). Black dotted 

line is 45 degree one on one identity line. Light blue dotted line is the 45 degree one on one bias-

corrected (near-infrared xylan - bias) identity line. Red solid line is fitted line from least square 

regression. Green solid line is fitted line from Passing-Bablok regression. 

Acetyl bromide soluble measurements and near-infrared lignin measurements did not lie on the 

1:1 line for either switchgrass or restored prairie (Figure 4.8). In contrast to compositional 

glucose and xylose content, acetyl bromide soluble measurements were consistently lower than 

near-infrared lignin measurements for switchgrass and restored prairie with the exception of only 

one datum for switchgrass. The least squared regression line exhibited a substantial downward 

proportional bias of lignin content between measurements for switchgrass (slope: 0.53, 95% CI 

of slope: 0.39 to 0.69) and restored prairie (slope: 0.08, 95% CI of slope: 0.39 to 0.69). In 

contrast, the Passing-Bablok regression line showed an upward proportional bias for switchgrass 

(Slope: 1.27, 95% CI of slope: 1.08 to 1.53) and restored prairie (Slope: 1.06, 95% CI of slope: -

1.54 to 1.48).  
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Figure 4.8. Regression plots for acetyl bromide soluble lignin measurements (mg g-1) and near-

infrared lignin measurements (mg g-1) of switchgrass (left panel) and restored prairie (right 

panel). Black dotted line is 45 degree one on one identity line. Light blue dotted line is the 45 

degree one on one bias-corrected (near-infrared lignin - bias) identity line. Red solid line is fitted 

line from least square regression. Green solid line is fitted line from Passing-Bablok regression. 

Table 4.4 shows that bias correction improved the relationship between two measurement 

methods for structural glucose, structural xylose and lignin content. Lin’s concordance 

correlation coefficient increased from 0.086 to 0.731 and 0.103 to 0.551 for structural glucose 

contents of switchgrass and restored prairie, respectively. Lin’s concordance correlation 

coefficient increased from 0.036 to 0.554 and 0.218 to 0.94 for structural xylose content of 

switchgrass and restored prairie, respectively. For lignin content measurement, Lin’s 

concordance correlation coefficient increased from 0.088 to 0.465 and 0.013 to 0.108 for 

switchgrass and restored prairie, respectively.  

 

 

 

 

 

 

 



 

189 
 

Table 4.4. Lin's concordance correlation coefficients with 95% confidence intervals of biomass 

cell wall composition of switchgrass and restored prairie between chemical compositional 

analysis and near-infrared analysis Spectrometers compositional analysis after bias correction. 
 

 

Crop Methods 

Lin's concordance correlation 

coefficient 

Switchgrass 

Structural glucose and NIR1 glucan  0.731[0.651, 0.795]a 

Structural xylose and NIR1 xylan 0.554[0.439, 0.651] 

ABSL1 and NIR1 lignin  0.465[0.336, 0.576] 

Restored prairie 

  

Structural glucose and NIR1 glucan  0.551[0.438, 0.646] 

Structural xylose and NIR1 xylan 0.940[0.913, 0.958] 

ABSL1 and NIR1 lignin  0.108[-0.075, 0.284] 

1: Abbreviations: ABSL: Acetyl bromide soluble lignin, NIR: near-infrared. 

a: 95% confidence interval of Lin's concordance correlation coefficient. 

Discussion 

In this study, the structural glucose content from chemical analysis for switchgrass ranged from 

345.9 to 443.6 mg g-1, which is comparable with other studies. Previous studies showed that the 

structural glucose of switchgrass ranged from 38 to 43 wt% as determined by similar chemical 

analysis (Hu et al., 2010; Shi et al., 2011). The structural xylose content of switchgrass from 

chemical analysis had relatively high values (191.8 to 343.4 mg g-1). Frederick et al. (2016) 

reported structural xylose content of switchgrass of 24.35 wt% (standard deviation: 2.51 wt%). 

Previous studies reported that the lignin content of switchgrass determined by Klason method 

ranged from 17.5% (Kgblevo et al., 1994) to 21.4% (Thammasouk et al., 1997). This is 

consistent with the range (184.2 to 216 mg g-1) of lignin content of switchgrass observed in this 

study. 

A study investigating mixed grass biomass from several CRP grasslands in Oregon, USA 

reported that structural glucose content ranged from 28.76 to 36.01 wt%, structural xylose 

content ranged from 14.21 to 21.98 wt%, and lignin content ranged from 13.4 to 17.45 wt% 

(Juneja et al., 2011). Another study examined chemical composition of big bluestem 

(Andropogon gerardii) and showed that structural glucose content ranged from 31.8 to 36.5 wt%, 
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structural xylose content ranged from 24.96 to 39.74 wt%, and lignin content ranged from 14.4 

to 18.0 wt% (Zhang et al., 2012). Compared to these two studies (Juneja et al., 2011; Zhang et 

al., 2012), structural glucose content (270.1 to 458.5 mg g-1), structural xylose content (172.9 to 

335.5 mg g-1) of restored prairie were relatively higher in this study. The structural glucose 

content and structural xylose content of restored prairie were more variable than switchgrass in 

this study. This is expected because of the multi-species nature of restored prairie. 

To the best of our knowledge, the literature has focused on reporting coefficients of 

determination and prediction errors to evaluate performance of near-infrared spectroscopy for 

determining cell wall composition. Understanding bias is also critical for applying near-infrared 

spectroscopy in the research and industry setting.  

Because the chemical analysis conducted in this study was in a different lab as the reference 

chemical analysis used in developing predictive model with near-infrared spectra data, biases 

were expected between chemical analysis in this study and near-infrared spectroscopy 

measurements for the three cell wall compositional components. Interlaboratory variability of 

measurements on the same substance is a common phenomenon but the causes are multifactorial 

(La Bastide & Van Goor, 1978). Templeton et al. (2016) observed the high variability of glucan 

content measurements from 14 different labs on the same biomass samples. The multi-factors 

associated with interlaboratory variability include instrument differences, modified protocols, 

analysts’ differences, etc. It is noteworthy that measurements from near-infrared measurements 

varied less than standard chemical analysis. This could be explained by the random errors 

introduced by multiple steps involved in traditional chemical analysis.  

Near-infrared spectroscopy utilizes the spectrum absorption of molecular bonds (such as C-H, O-

H, etc.) in the sample to qualitatively and quantitatively determine the chemical composition 



 

191 
 

(Manley, 2014).There are four common measurement modes of near-infrared spectroscopy: 

transmittance, transflectance, diffuse reflectance and transmittance through scattering medium 

(Skvaril et al., 2017). For solid material in this study, transflectance mode was used to collect 

near-infrared spectra. The thickness of the samples, the heterogeneity of the sample and moisture 

in the sample may contribute to the variability of the measurements for solid material (Hong & 

Chia, 2021). Consequently, less useful information can be derived through predictive models. 

Measures need to be taken to account for these factors when building the predictive model.  

The predictive model in this study for near-infrared spectra data used leave-one-out cross 

validation to validate model performance. Leave-one-out cross validation is one of the preferred 

methods to estimate out of sample prediction error (Magnusson et al., 2020). However, there is 

an ongoing debate in the literature on whether leave-one-out cross validation could bias the 

prediction error (Varma & Simon, 2006; Tibshirani & Tibshirani, 2009). In this study, all the 

Pearson’s coefficient of correlation between the two methods for cell wall composition is below 

0.90 (coefficient of determination is 0.81) with exception of structural xylose content of restored 

prairie (Pearson’s coefficient of correlation: 0.94, coefficient of determination: 0.89). This low 

coefficient of determination could be attributed to optimistically underestimated prediction error 

of the predictive model selected based on lowest prediction error in this study. More advanced 

calibration techniques have been explored to realistically estimate the prediction error (Tian et 

al., 2007; Baumann & Baumann, 2014; Efron, 2021). 

A few studies demonstrated that coupling partial least square regression (PLS) with various 

variable selection techniques could increase predictive accuracy for determination of cell wall 

components. These includes genetic algorithms (Lestander et al., 2003; Yang et al., 2017), 

competitive adaptive reweighted sampling (Ai et al., 2022) and variable combination population 
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analysis (Bonah et al., 2020; Mishra & Woltering, 2021). Elle et al., 2019 showed that partial 

least square regression with competitive adaptive reweighted sampling (CARS) effectively 

increased the accuracy for lignin content determination compared to PLS with full spectrum. 

Likewise, Liang et al. (2020) showed that partial least square regression with genetic algorithms 

increased the accuracy for lignin content determination compared to PLS with full spectrum for 

lignin content of pulp wood.    

A typical pipeline of developing a predictive model with near-infrared spectral data begins with 

preprocessing the spectral data. The main goal of this critical step is to reduce the noise in 

spectral data, and therefore improve the quality of the data for the model training step (Rinnan et 

al., 2009). The present study used standard normal variate (SNV) normalization, detrending and 

Savitzky-Golay smoothing as preprocessing treatment. Xu et al. (2008) proposed an ensemble 

preprocessing method to improve the spectral data quality from NIR. Furthermore, the 

systematic and proportional biases found in the present study emphasize the importance of 

continuing maintenance of predictive model. The predictive model performance utilizing near-

infrared spectroscopy and multivariate analysis depends heavily on the coverage of training data 

(Balabin & Smirnov, 2012). The predictive model should be regularly recalibrated for a wide 

range of biomass material to improve the predictive performance. Researchers have identified 

the need of calibration maintenance for the predictive model to ensure wide application of NIR 

spectroscopy technique (Workman, 2018; Qiao et al. 2021). The commonly used calibration 

maintenance methods are piecewise standardization, bias/slope correction and model updating 

(Bouveresse & Massart, 1996). 

Despite there being room for improvement in the NIR spectroscopy analytical method, it is 

appealing for process monitoring in a biorefinery setting due to its non-destructive nature and 
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minimal sample preparation requirements. For biochemical conversion from biomass to biofuel, 

timely monitoring the quality of biomass assists adjustment of yeast mass loading, thereby 

increasing conversion efficiency (Gomes et al., 2018). NIR spectroscopy has been demonstrated 

to be useful as an inline monitoring tool for biodiesel production by inserting a probe directly in 

the reactor (López-Fernández et al., 2022). 

The speed of the NIR spectroscopy analytical method is much faster relative to traditional 

chemical analysis. In this study, the NIR spectroscopic method takes 32 reads within 1 minute on 

average per instrument (Wolfrum et al., 2020). In contrast, only 20-30 samples on average can be 

processed per day per analyst using current wet-chemistry analytical techniques (Foster et al., 

2010b). In addition, the near-infrared spectroscopy analytical method does not consume any 

laboratory reagents. Therefore, it is more environmentally friendly.  

Recently, a new research direction on miniaturization and portability of NIR spectrometers has 

been explored (Beć et al., 2020; Beć et al., 2021). The satisfactory performance of portable NIR 

spectrometers has been shown in the food and wood industries (Teixeira Dos Santos et al., 2013; 

Pan et al., 2015; Diniz et al., 2019). The increasing portability of NIR spectrometers combined 

with reduced cost of instruments opens more opportunities for NIR spectrometer application 

along the life cycle of bioenergy products. Zhu et al., (2022) summarized and compared the main 

types of commercial portable NIR spectrometers. The weight of the currently available 

commercial portable NIR spectrometer ranges from 15 to 1180 g. With more and more 

advancement in NIR spectroscopy techniques, the method has the potential to be an increasingly 

valuable analytical tool in bioenergy research and in commercial biorefinery applications. 

Conclusion 

Near-infrared spectroscopy underestimated both structural glucose and structural xylose content 
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of switchgrass and restored prairie. In contrast, NIR spectroscopy overestimated lignin content of 

switchgrass and restored prairie. On a positive note, the biases for structural glucose, structural 

xylose and lignin content of switchgrass and restored prairie from chemical analysis and near-

infrared spectroscopy measurements were maintained within the limits of agreement. A higher 

absolute value of bias was associated with higher values of restored prairie structural glucose 

measurements and switchgrass structural xylose measurements. The absolute value of bias was 

lowest for lignin measurements of switchgrass and restored prairie. After bias correction, Lin's 

concordance correlation coefficient for all three cell wall compositional components of 

switchgrass and restored prairie improved substantially. 

In summary, near-infrared spectroscopy shows promise as a high throughput analytical 

instrument for measurement of structural glucose and xylose content of biomass with correction 

for potential biases. Furthermore, accuracy would be expected to increase over time using 

conventional predictive equation recalibration methods from new sample comparisons.  The 

current NIR spectroscopy method for lignin content measurements needs further improvement to 

reduce measurement noise before widespread adoption can be recommended. Analytical 

instrumentation and methods to accurately assess variability in biomass quality are valuable to 

facilitate field and biorefinery management practices.   
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CHAPTER 5 GENERAL CONCLUSION 

This study was undertaken to fill the gap in understanding interannual temporal and within-field 

spatial variability of biomass yield and quality of two bioenergy crops - switchgrass and restored 

prairie. The main objectives of the study were to (1) evaluate interannual temporal and within-

field spatial variability of biomass yield and quality of switchgrass and restored prairie; (2) 

examine the relationships of soil fertility characteristics and topographical features with biomass 

yield and quality of switchgrass and restored prairie; and (3) assess the viability of using near-

infrared spectroscopy to determine cell wall composition of bioenergy feedstock biomass. 

In chapter 2, we found that both switchgrass and restored prairie showed within-field variability 

of biomass yield. The monoculture cropping system of switchgrass had more within-field spatial 

variability of biomass yield than the polyculture cropping system of restored prairie under the 

same field and climate conditions. Moreover, the interannual temporal variability of biomass 

yield in the monoculture cropping system of switchgrass was also higher than in the polyculture 

cropping system of restored prairie. Among all the soil fertility characteristics and topographical 

features examined, there were considerable uncertainties in their relationships with biomass 

yield. Nonetheless, soil NH4+, Mg, and topographical wetness index were significantly related to 

switchgrass biomass yield; and, soil Ca, P and SAT were significantly related to biomass yield of 

restored prairie. 

In chapter 3, we provided the first comprehensive assessment of within-field variability of 

biomass quality of switchgrass and restored prairie as bioenergy feedstocks at the field scale. The 

three major components of cell wall composition—glucose, xylose and lignin—were selected to 

represent biomass quality. The within-field spatial variability of glucose, xylose and lignin 

contents was considerably lower than the corresponding annual temporal variability for 
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switchgrass and restored prairie. Restored prairie had a higher interannual temporal variability of 

glucose and xylose content than switchgrass. There were no clear relationships of the examined 

soil fertility characteristics and topographical features with our measures of biomass quality. 

In chapter 4, we assessed the viability of substituting traditional wet chemistry analysis of 

biomass with near-infrared spectroscopy to determine structural glucose, xylose and lignin 

content of biomass materials. Biases were found between chemical analysis and near-infrared 

spectroscopy methods for determining glucose, xylose and lignin content. After bias correction, 

near-infrared spectroscopy had better agreement with the chemical analysis according to Lin's 

concordance correlation coefficient. We concluded that near-infrared spectroscopy with bias 

correction is a promising analytical method for rapid cell wall composition determination. 

The Insights gained from this study will benefit agronomic management of bioenergy crops, as 

well as bioenergy feedstock supply chain design and biorefinery operation planning. Scientists 

have reached a general consensus that the frequency and intensity of extreme weather is expected 

to increase in the future. And, like all agriculture in general, bioenergy crop production will be 

impacted by the expected extreme weather events. Therefore, it is important to understand the 

variability of bioenergy feedstock biomass yield and quality in order to adapt to future climatic 

uncertainty. The biomass yield of switchgrass and restored prairie in this study showed good 

temporal stability during the study period (2018-2021). However, the within-field spatial 

variability of switchgrass biomass yield implies the potential to improve field scale biomass 

yield with site-specific agronomic management practices. More research is needed to elucidate 

the causes of within-field spatial variability of switchgrass biomass yield.  

The relatively lower within-field spatial variability of restored prairie biomass yield makes it a 

good candidate for growing in marginal lands with low-input field management strategies. Since 
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biomass quality of switchgrass and restored prairie is more subject to interannual variability than 

within-field spatial variability, biomass quality of restored prairie may be more consistent from 

year to year at the field scale. Currently, most supply chain biomass quality research focuses on 

moisture content. Incoporating more biomass quality component parameters, such as cell wall 

composition, into biomass supply chain design will more accurately evaluate the efficiency of 

the supply chain. At the biorefinery level, efforts should be made to reduce year to year 

variability in biomass quality in order to improve conversion efficiency. In addition, near-

infrared spectroscopy with chemometrics will be a powerful analytical tool to assess and monitor 

biomass quality variability throughout the field to fuel production pipeline. 


