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ABSTRACT 

 Time and terpenoids mediate interactions between plants and their environment. Time 

has increasingly been recognized as a source of variability in ecological interactions. Despite 

known temporal variability in natural systems, ecological experiments often evaluate treatment 

effects at a single moment or as the aggregation of many moments in a community. I hypothesize 

that both treatment timing (i.e., when we apply a change to a system) and observation timing 

(i.e., when we measure a response) will affect the responses measured in herbivory experiments. 

Studying the interactions between Solidago altissima and insects and pathogens in in situ and 

common garden experiments, I evaluate how the timing and frequency of herbivory, as well as 

the timing of observations, affects estimations of plant growth and community responses. 

Feeding by Slaterocoris sp. (Hemiptera: Miridae) variably impacted subsequent chewing 

herbivory, pathogen damage, and plant height; pathogen damage was generally reduced in mirid-

fed plants until the final observation date, and plant height was reduced in mirid-fed plants at all 

observation dates. In a second experiment, I found that late-timed jasmonic acid sprays 

significantly reduced chewing herbivory damage at the first observation, but not ten days later. 

Multiple sprays had cumulative effects on pathogen susceptibility, depending on spray timing. 

 Terpenoids are the most diverse group of phytochemicals, yet identifying macro-scale 

trends in their diversity across environmental gradients and phylogeny has lagged due to 

limitations in cross-study synthesis and the logistical constraints of analyzing plant tissues at a 

global scale. Through a meta-analysis of studies on more than 200 plant species, I tested how 

terpenoid diversity varies across a gradient of two climate variables—mean annual temperature 

and annual precipitation—and if plant species that are more closely related produce more similar 

terpenoid profiles. I focused on two easily detectable superclasses of terpenoids, monoterpenoids 



  

and sesquiterpenoids. Both compound richness and structural -diversity increased with 

increasing annual precipitation. I also found that more different temperature and precipitation 

regimes are associated with increasingly distinct terpenoid profiles. These patterns may be 

explained by the physicochemical properties that govern terpenoid release from plant tissue, 

including stomatal conductance, but further mechanistic investigations are needed. More closely 

related species produced more similar terpenoid profiles but less similar chemical substructures 

than more distantly related species. These phylogenetic patterns may be explained by plants 

sharing evolutionary history that constrains the overall terpenoid profile. Closely related species 

may also differentiate themselves through chemical substructures that govern other organisms’ 

structurally specific perception to compounds.  

 Assembling large, detailed trait databases is imperative for the advancement of testing 

macroecological and macroevolutionary hypotheses, and most plant trait databases are 

assembled around morphological and life history traits that can be measured readily across many 

plant species. Phytochemicals have gone largely overlooked in the generation of these databases 

because the methods for detection, identification, and reporting vary widely across investigators 

and focal groups of chemicals. To lay a foundation for the development of global, quantitative, 

and methodologically detailed phytochemical databases, I present terpr v1.0.0, a database of 

plant monoterpenoids and sesquiterpenoids from 1127 studies containing 5107 samples from 

1178 plant species, constituting 1852 unique identified monoterpenoids and sesquiterpenoids. I 

collected 86 features, including table indices, for each study, and present the database for further 

investigation into the patterns of terpenoid diversity, identification of valuable natural products, 

and best methodological practices.
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CHAPTER 1: 

INTRODUCTION 

The ecology and diversity of plant-insect interactions are shaped by processes that 

humans cannot immediately observe. These processes are omnipresent in the natural world, from 

the sequestration of toxic plant cardiac glycosides in the gut of the milkweed bug, Oncopeltus 

fasciatus (Scudder and Meredith 1982) to the chewing of galling insects inside plant stems 

(Hartnett and Abrahamson 1979, Fay et al. 1996, Hammer et al. 2021) to parasitoids’ reception 

of chemical cries for help from plants (Turlings et al. 1991, Kroes et al. 2017, Da Silva et al. 

2022). We know they occur in nature, but we often observe the results of these processes, not the 

processes per se. We witness the aposematic coloration of O. fasciatus indicating they are 

unpalatable to predators, the tumorous growth of a gall after the plant reacts to its internal 

infestation, or the zombification of a caterpillar filled with parasitoid eggs after a leafy meal. 

However, many factors—the timing, place, and specific chemical reactions of the ecological 

interaction— must coalesce before we even observe these phenomena. By challenging and 

expanding existing experimental, meta-analytical, synthetic approaches in ecology, we can begin 

to understand how organisms respond to stimuli in various timescales and across different spatial 

extents to reveal the chemical underpinnings of biological and ecological diversity. 

In this dissertation, I focus on two factors—time and chemistry—and how they influence 

ecological and biological variation, specifically in plants and their community interactions with 

insects. Time is a fundamental axis of ecological interactions. Given shifts in organisms’ 

phenologies with climate change, ecologists are challenged with understanding how organisms’ 

internal clocks and calendars are changing from historical norms (Piao et al. 2019, Lian et al. 

2020). From recent analyses, it is increasingly clear that the timing-based effects of climate 
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change cascade from individuals to populations, communities, and ecosystems (Cinto Mejía and 

Wetzel 2023). For instance, flowers now bloom asynchronously with the timing of pollinator 

activity (Kudo and Ida 2013), and insect pests undergo more rapid population growth with 

increased generations per year (Rao et al. 2015). Thus, we need deeper investigations into the 

temporal dynamics of basic and applied ecological systems to understand how and how quickly 

our world is changing and the implications for the ecology of our natural world. 

Changes in systems, such as biotic and abiotic stressors, do not occur at a single time 

point, but rather across many time points that accumulate within and across growing seasons 

(Ryo et al. 2019, Jackson et al. 2021). Therefore, capturing an annual mean, maximum, 

minimum, or final value along the period of study is insufficient for quantifying and describing 

ecological processes. Capturing the full arc of an organism’s growth and interactions with other 

organisms will require modeling repeated measurements of the same system. Long-term 

ecological experiments have been doing this for many years (Cusser et al. 2021, Resasco et al. 

2023). Yet, in every ecological question or hypothesis, time is an implicit, if not explicit, force 

behind observed patterns. Some conditions that change through time are more easily 

quantifiable, including precipitation and temperature, tissue maturation, and nutrient availability. 

Other conditions are more difficult to measure, including unique life history events and 

intraspecific and interspecific encounters. 

Regardless of quantifiability, these events can alter the trajectories of organisms, 

populations, and communities through changes in biochemistry and resource competition. For 

example, insect chewing herbivory, a seemingly isolated one-time event, represents a life history 

event whose influence can cascade across trophic levels beyond those of the focal plant and 

insect (Dicke and van Loon 2000, Orre Gordon et al. 2013). Whether the herbivore chose its host 
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at random or not, there are some irreparable changes in the community—a parasitoid may 

perceive chemical cues from the plant to find its herbivore host, the plant may send signals to its 

plant neighbors to increase defenses, or the plant itself may have induced chemical responses, 

such as stimulating the production of jasmonic acid and its derivative methyl jasmonate 

(Baldwin 1998; Sirhindi et al. 2020), altering investment in defense and growth. Still, these 

individual and community responses do not occur at a single time point, and future experiments 

will require repeated measurements to determine trajectories across scales.  

From flavonoids to fatty acids, chemistry rules the world of plants and insects. By the 

number of identified unique compounds, terpenoids are the most diverse group of plant 

chemicals (Gershenzon and Dudareva 2007). They are also known as isoprenoids and are united 

by their five-carbon building blocks and series of chemical reactions and synthases, as described 

in Chapter 3 (Chen et al. 2011). Many terpenoids are the byproducts of plant primary 

metabolism and so they are referred to as secondary metabolites. Despite this terminology, these 

terpenoid secondary metabolites are hardly the waste products they were once considered. 

Isoprene, the simplest isoprenoid, is responsible for nearly 50% of all biogenic volatile organic 

compound emissions from plants (Guenther et al. 2012), significantly contributes to Earth’s 

overall atmospheric chemistry (Sharkey et al. 2008), and can protect plant tissues from heat 

stress along with its ten-carbon chain counterparts, monoterpenoids (Sharkey et al. 2001; 

Copolovici et al. 2005).  

Lighter weight terpenoids, such as monoterpenoids and 15-carbon sesquiterpenoids are 

found across foliar, floral, and root, among other tissues. They can be released in the gaseous 

phases at the leaf surface or through the stomata allowing for future reception by other plants, 

insects, fungi, and microbes (Niinemets et al. 2004). They can also be ingested by insects, 
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mammals, and birds in aqueous phase, thus constituting a vital source of flavor (Schwab et al. 

2008). Monoterpenoids and sesquiterpenoids are also part of a broader non-volatile and volatile 

bouquet of secondary metabolites that plants produce to defend themselves against antagonism, 

attract mutualists, and communicate with other plants (Kessler and Kalske 2018). 

The abiotic and biotic conditions promoting the diversity of monoterpenoids and 

sesquiterpenoids have been the subject of many hypotheses in plant-insect ecology and 

evolution, with greater emphasis toward the biotic interactions that promote selection for one 

compound, or one configuration of a compound, over another. One of the enduring hypotheses, 

the escape-and-radiate hypothesis (Ehrlich and Raven 1964) posits that plants evolve novel 

defenses to protect against insect antagonists, and in turn, insect antagonists evolve novel 

mechanisms to sequester, evade, or otherwise neutralize these defenses. We may observe more 

closely related species to have more similar chemical profiles (i.e., display phylogenetic signal), 

such as phenylpropanoid glycosides in Mimulus leaves (Holeski et al. 2020), and differentiate 

themselves from near relatives by only a few compounds. Alternatively, defenses may evolve 

independently of phylogeny, as in the case of Inga saplings from the Peruvian Amazon (Endara 

et al. 2017). Many other hypotheses focus on the effects of phytochemical diversity per se. For 

example, the interaction-diversity hypothesis suggests that plants require a multitude of 

chemicals because they interact with many other species (Iason et al. 2011). A recent experiment 

found support for this interaction-diversity hypothesis when examining lepidopteran responses to 

phenolic metabolites (Whitehead et al. 2021). 

Nevertheless, macro-scale analyses testing these hypotheses have lagged behind system-

specific studies, especially those that also evaluate the abiotic conditions constraining or 

promoting phytochemical diversity. Formal incorporation of the environmental conditions that 
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constrain or give rise to phytochemical diversity is a promising avenue of research that has not 

been visited in earnest since the mid-2000s. At that time, specific isoprenoids, including 

isoprene, monoterpenoids, and sesquiterpenoids were found to vary with annual mean 

temperature (Llusià et al. 2006), but recent research has found phytochemical diversity to 

correlate with climatic, geographical, and phylogenetic covariates across many phytochemical 

groups (Defossez et al. 2021).  

Several physiological and physicochemical mechanisms may explain macro-scale trends 

in phytochemical diversity. For example, stomatal conductance correlates with monoterpenoid 

emissions based on the difference between the internal plant tissue partial pressure and the 

atmosphere (Niinemets et al. 2002). When oxygenated monoterpenoids are accumulated in the 

plant tissue, changes in this pressure differential upon stomatal opening promote the emissions of 

these hydrophilic compounds that would otherwise continue to accumulate internally (Niinemets 

et al. 2004). The temperature-dependence of monoterpenoid and sesquiterpenoid emissions from 

plants is another example (Helmig et al. 2013). Despite the many mechanisms that could explain 

phytochemical diversity, especially for monoterpenoids and sesquiterpenoids, hypotheses and 

analyses have not fully embraced incorporating these abiotic covariates and so we have limited 

understanding of the large-scale patterns of how plant secondary metabolites vary with 

environmental conditions. 

Identifying broad diversity patterns in any group of phytochemicals is limited by several 

logistical hurdles. Collecting and analyzing plant tissue with enough geographic and 

phylogenetic coverage is an obvious obstacle due to the logistics of this scale of field work. 

Synthetic approaches that collate information across publications has historically been ruled out 

due to variation in compound identification methods, the different compound naming 
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conventions in different disciplines, and the sheer volume of unstructured (i.e., not tabular form 

that is ready for analysis) data provided by these studies. However, newer software, cloud 

computing capacity, and programming tools have untapped potential to bring these data together 

for the first time so they can be analyzed, existing hypotheses can be refined and tested, and new 

hypotheses can be generated. 

The proliferation of functional trait databases has shifted priorities, general theories, and 

research accessibility in ecology, and existing plant trait databases can serve as models for 

phytochemical databases. Many of these databases have assembled user-submitted data that is 

structured and standardized by the database authors, such as FunAndes (Báez et al. 2022) and the 

TRY plant trait database (Kattge et al. 2011). As of 2019, data from TRY has contributed to over 

250 publications (Kattge et al. 2020) testing hypotheses ranging from the relationship between 

life form and allelopathy (Zhang et al. 2021) to the effects of anthropogenic stress on plant 

height (Newbold et al. 2015). In the latest major publication about TRY, the authors discussed the 

incorporation of legacy and published trait data into the future iterations of the database (Kattge 

et al. 2020). The challenges to assembling a phytochemical database in this way are also faced in 

the development of general plant trait databases—variation in measurement methodology and 

reporting, bias in studies toward certain geographical regions or species groups, and resource 

limitations to process unstructured data. However, database engineering and deployment 

protocols, such as findable, accessible, interoperable, and reproducible (FAIR) (Jacobsen et al. 

2020) and Open Science (Gallagher et al. 2020) principles, provide useful guidance for the next 

generation of databases.  

With the expansion of these principles and technical tools that harness the power of large 

datasets, we can now develop techniques to study global patterns in phytochemical diversity that 



 

  7 

standardize the many methodologies through which compounds are identified and reported. Plant 

monoterpenoids and sesquiterpenoids are well suited to beginning this endeavor. Extracted 

through the distillation of plant tissue or adsorbed from the headspace of the plant, 

monoterpenoids and sesquiterpenoids are two superclasses (i.e., subcategories of compounds that 

share biosynthetic pathways) of secondary plant metabolites that are routinely identified using 

coupled gas chromatography and mass spectrometry (GC-MS). In this method, compounds are 

vaporized into the GC, carried using a gas through a capillary column, and identified by the 

retention time or index relative to an internal standard that is based on their physicochemical 

properties (Sparkman et al. 2011). In a GC-MS system the compounds are also ionized in the MS 

system resulting in more information about the structure and identity of the compound and its 

molecular structure after referencing existing MS libraries (Sparkman et al. 2011). 

Monoterpenoids and sesquiterpenoids have a smaller molecular weight and are more volatile 

than many other groups of phytochemicals, presenting an ideal model for the collection, curation, 

and analysis of phytochemistry across many published studies. 

Explicitly evaluating variation in species interactions throughout time and synthesizing 

the scientific community’s existing data on terpenoids has the potential to reveal overlooked 

processes and factors underlying ecological diversity. In this dissertation, I coordinated a variety 

of approaches to achieve these goals, from experimentation to data synthesis and analysis. First, I 

deployed a common garden experiment and an in situ field experiment with a perennial plant, 

Solidago altissima, and its antagonistic insect and pathogen community. In these experiments, I 

tested how the timing of experimental treatments and response variable measurements influences 

observed variability in ecological interactions. Second, I address the climatic and phylogenetic 

relationships with chemical diversity in plant monoterpenoids and sesquiterpenoids through a 
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meta-analysis from studies of 206 plant species conducted around the globe. Finally, I assemble 

and present the largest, most high resolution database of monoterpenoids and sesquiterpenoids, 

to facilitate future analysis into the causes and effects of plant secondary metabolite diversity. 
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CHAPTER 2: 

TEMPORAL CONTEXT OF HERBIVORY AFFECTS GOLDENROD COMMUNITY 

ECOLOGY AND PLANT GROWTH 

Abstract 

 

Organisms can undergo vast physiological and ecological changes at short time scales, 

yet few studies in ecology examine the temporal pattern of organismal responses to interspecific 

encounters. By varying treatment timings and repeatedly sampling the same individuals and 

communities within a season, we can track the trajectory of species interactions and changes in 

development. Using the tall goldenrod (Solidago altissima)-herbivore-pathogen community, we 

varied two herbivory treatments, foliar mirid feeding and exogenous jasmonic acid (JA) sprays, 

in time and repeatedly measured indicators of plant growth and species interactions across the S. 

altissima ontogeny. The timing and frequency of herbivory treatments resulted in significant 

changes in antagonist damage and plant growth, but effects often varied by observation date. 

After mirid-feeding, we initially found reduced pathogen damage followed by 38% increase 66 

days later. Relative to control plants, mirid-fed plant height was 11% lower at the first 

observation date but only 1% lower by the last. In the JA spray experiment, we initially found a 

34% reduction in chewing herbivory damage in plants that were sprayed with JA at a late timing 

relative to control plants but no significant difference ten days later. We observed a 97% increase 

in chewing herbivory in plants that were sprayed with JA both early and in the middle of the 

experiment relative to plants that were only sprayed in the middle timing. Our findings 

demonstrate the effects of herbivory on community dynamics and plant-growth depend on timing 

and frequency.  
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Introduction 

Time is a fundamental axis on which ecologists explore the patterns of the natural world. 

Population dynamics, phenology, and ontogeny require an explicit use of time to describe 

ecological phenomena. Important ecological events in an organism’s life history include the 

sudden presence of a competitor, predator attack, and both gradual and rapid changes in 

environmental conditions. Some events can cause priority effects—when a species’ early arrival 

in a community alters community development, for example, by shifting resource quality or 

availability for later arriving species (Fukami 2015). These ecological events can have varying 

degrees of impact based on their timing relative to the scale of the organism’s life cycle and the 

trajectory of the ecological community it interacts with (Wauchope et al. 2021; Jackson et al. 

2021).  

An organism’s response to environmental change can dampen, strengthen, or remain static 

as time progresses, but the effects in experimental studies are often measured at a single moment 

or aggregated across time points (Yang 2020). This can hide temporal dynamics that are important 

for understanding interactions within the community and the abiotic environment. In experimental 

ecology, timing can be split into two factors: treatment timing and observation timing. Treatment 

timing can be described as when some organism undergoes a controlled change in their biotic or 

abiotic environment, while observation timing is when the human observer measures some 

response in the organism or its environment. Studies applying treatments at different points along 

organisms’ ontogeny or a community ecological trajectory found variable results across different 

treatment timings (Barton 2013; Yang et al. 2020; Rasmussen and Yang 2022), and some even 

account for variation in both treatment and observation timing (Clark and Johnston 2011; Wang et 
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al. 2018; van Dijk et al. 2020). Without accounting for observational and treatment timings in 

experimental systems, we are unable to generalize the significance of ecological encounters.  

The application of repeated treatments and measurements is a solution that allows 

ecologists to characterize temporal dynamics. This approach is not new in experimental ecology, 

and important insights have been gained from long-term experiments that temporally contextualize 

ecological populations and communities by repeating the same treatments and/or measurements 

(Borer et al. 2014; Bahlai et al. 2021). Yet, the events that constitute these long-term trends are 

scale-dependent, such that low observation frequency can obfuscate the underlying processes 

behind an observed ecological phenomenon (Ryo et al. 2019). By narrowing the window of 

observations in time and manipulating the timing and frequency of experimental treatments, we 

can investigate how the granularity of species interactions scales up from shorter to longer 

trajectories in community ecology.  

Plant-insect herbivore systems are uniquely situated for these temporal investigations. 

First, plant resistance or susceptibility to antagonism is often explained by ontogenetically variable 

investments in physical and chemical defenses, optimal growth-defense-reproduction strategies, 

and resource optima that provide “windows of opportunities” for interacting species (Ochoa-López 

et al. 2015; Rusman et al. 2020; Yang and Cenzer 2020). As plants partition resources and defenses 

in time, herbivorous insects vary in phenology for competitive, reproductive, and survival purposes 

(Cronin 2007; Blitzer and Welter 2011; Ekholm et al. 2020). Fortunately, many events in plant-

insect ecology occur on timescales that can be manipulated and observed  at multiple measurement 

points. For example, insect feeding, or the threat of insect feeding, can induce phytochemical 

changes in plants that affect subsequent species interactions (Agrawal 1998; Karban 2020). These 
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changes can include reduced nutrient quality and increased concentrations of secondary metabolite 

defenses (Nykänen and Koricheva 2004; Kant et al. 2015). 

We conducted two field experiments using a plant-pathogen-herbivore system to explore 

the role of temporal context in plant-insect interactions by varying when we apply a treatment and 

when we observe a pattern. In the first experiment, we applied an herbivory treatment from a 

naturally occurring herbivore that arrives early in the phenology of S. altissima. We repeatedly 

sampled response variables to answer the question: How does a single early-season herbivory 

event alter the temporal pattern of community interactions and plant growth? In the second 

experiment, we applied jasmonic acid (JA) sprays to mimic herbivory at various timings and 

frequencies across the S. altissima growing season to answer the following two questions: How 

does variation in the timing of herbivory affect the temporal pattern of community interactions and 

plant growth? How does variation in the frequency of herbivory affect the temporal pattern of 

community interactions and plant growth? 

Materials and Methods 

Study system 

The common flowering perennial Solidago altissima L. (tall goldenrod; Asteraceae) have 

provided a model system to understand ecological phenomena. Native to North America but 

naturalized or invasive globally, S. altissima grows in old field and early successional 

environments. Its herbivore community feeds through varying modes, from the specialist 

goldenrod gallfly, Eurosta solidaginis (Diptera: Tephritidae), that oviposits in mid-spring 

(Anderson et al. 1989) and whose larvae chew on internal stem tissue to specialist mesophyll 

sucking mirids (e.g., Slaterocoris sp.) to generalist foliar chewing insects (e.g., grasshoppers) 

active later in the season (Burghardt 2016). Solidago altissima has several systems for defense, 



 

  17 

including a “ducking” growth morphology exhibited in some genotypes that is correlated with 

reduced oviposition from E. solidaginis (Wise and Abrahamson 2008) and herbivore-induced 

volatile signals that warn conspecifics of herbivore attack and thus induce resistance (Kalske et al. 

2019). Importantly, S. altissima grows throughout the spring and summer before flowering in early 

fall, with several months of vegetative growth susceptible to herbivory. It reproduces both sexually 

by seed and asexually through rhizomes that form an underground web of connections between 

genetically identical aboveground shoots. 

Experiment #1: Applying early-season herbivory with specialist mirid 

In late Apr- and early May-2019, we collected S. altissima rhizomes from 17 putative 

genets across five populations at the Lux Arbor Forest Reserve (Prairieville Township, Michigan, 

USA; 42.484106, -85.451471). Genets within the same population were sampled at least fifteen 

meters apart to ensure genetically identical individuals were not collected multiple times 

inadvertently (Cain 1990, p. 198; Burghardt 2016). Rhizomes were cleaned and cut into 1.5 mL 

uniform pieces, including any lateral roots, as measured through volume displacement in a 

graduated cylinder (Pang et al. 2011). Then, we placed the rhizome in soil (Suremix, Michigan 

Grower Products, Inc., Michigan, USA) under greenhouse conditions. See Table S2.1 for exact 

coordinates, dates rhizomes were collected, and dates planted in the greenhouse. We collected a 

common vegetative tissue-feeding insect, Slaterocoris sp. (Hemiptera: Miridae), from S. altissima 

plants in late Jun-2019, in the Kellogg Experimental Forest Reserve (Augusta, Michigan, USA; 

42.363827, -85.352920). We placed the mirids on 58 haphazardly selected caged plants on 03-Jul-

2019, while still under greenhouse conditions, and left them to feed until 20% of all expanded leaf 

tissue was damaged, which lasted several hours to about a day for each plant having three to five 

mirids. Eighty-four plants did not have damage (controls). We measured damage through a visual 
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survey of the leaf surface area covered in the fine white stippling Slaterocoris sp. creates after 

feeding by sucking on the mesophyll. We reused some insects across multiple plants due to 

collection limitations. Voucher specimens for Slaterocoris sp. individuals used in this experiment 

are deposited in the A.J. Cook Arthropod Research Collection at Michigan State University under 

Voucher No. 2023-03. 

Immediately after the herbivory treatments were completed on 09-Jul-2019, we 

transplanted unexposed control plants and mirid-damaged plants to a common garden in a former 

agricultural field located approximately 10.5 km away from the plants’ original populations. In the 

common garden, the plants were transplanted into buried plastic pots (3.79 l) with the bottom 

removed. The pots prevented the rhizome from spreading across the common garden, and the pot 

bottoms were open to allow lateral roots from becoming bound. The immediate area 

(approximately 0.25 m radius) around each plant was weeded regularly. Each plant was 1.5 meters 

apart and arranged in an alternating pattern between control and mirid-damaged plants (see Figure 

S2.1 for a map and Table S2.2 for sample sizes at each time point).  

Eight days after transplanting these plants, we conducted the first survey by collecting the 

following information: percent leaf tissue missing due to chewing herbivory measured through 

visual surveying, percent leaf surface area with pathogen damage measured through visual 

surveying, height from the ground to the tallest part of the plant, and the number of leaves. Visual 

surveys were based on all leaves of the plant, and we only measured chewing herbivory damage 

from arthropods. Leaves were rarely completely chewed to the petiole, but for those that were, the 

amount of tissue missing was estimated from nearby leaves of similar age. The pathogens present 

on S. altissima primarily consisted of leaf rust and fungal and bacterial leaf spots, and we could 

not account for pathogen damage that was removed due to leaf herbivory. To observe variations 
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in time and in response to this mirid feeding, we conducted these measurements at four time points 

through the season: 17-19-Jul-2019, 12-14-Aug-2019, 31-Aug-02-Sep-2019, and 21-22-Sep-2019 

(Figure 2.1a). Plants were left in the common garden until we collected them on 13-Dec-2019. The 

rhizomes were separated from aboveground tissue, and we measured their volumes. 

Experiment 2: Manipulating the timing and frequency of herbivory through jasmonic acid sprays  

 This experiment was conducted in a natural population of S. altissima at the Lux Arbor 

Forest Reserve, where we collected rhizomes for the mirid feeding experiment described above. 

The population was split into four replicate plots to ensure sufficient genetic diversity in the focal 

plants (See Figure 2.2 for plots on map). The centers of the plots were at least 15 m apart. Within 

each plot, between 29-32 plants were selected, at least 50 cm apart, and randomly assigned to one 

of the JA spray timings.  

While several chemicals can be sprayed on plants to mimic herbivory, JA is an important 

regulator for plant resistance and defense to antagonism (reviewed in Howe and Jander 2008). The 

exogenous application of JA on plants has been shown to reduce herbivore growth rates and affect 

photosynthetic activity at various time scales (Thaler et al. 1996; Babst et al. 2005). Increased 

levels of JA can be induced in S. altissima through generalist herbivory and simple exposure to 

certain insect herbivores (Tooker and De Moraes 2009; Helms et al. 2013). At concentrations of 

1.0 mM, exogenous JA application can shift growth rate and reproduction in S. altissima (van 

Kleunen et al. 2004).  

We applied a 0.75 mM JA spray to randomly selected plants in each plot. (±)-jasmonic 

acid neat liquid concentrate (Sigma-Aldrich, Missouri, USA; CAS #: 77026-92-7) was mixed with 

an ethanol solvent and subsequently diluted with distilled water to produce the 0.75 mM JA 

solution. Treated plants were sprayed with the JA solution across the entire aboveground shoot to 
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runoff, i.e., the solution began dripping off the leaves (Thaler et al. 1996). Plants were sprayed at 

different timings (i.e., when the spray occurred on a plant; early, middle, and late timings in the 

experiment) and frequencies (i.e., how many times the spray occurred on a plant across those three 

timings) throughout the growing season (Figure 2.1b). When plants were not sprayed with JA, they 

were sprayed with water solution where the volume of JA was substituted with ethanol. At five 

time points after the first spray in the experiment, we measured the same response variables as in 

the mirid-feeding experiment. 

Statistical analyses 

We used generalized linear mixed models (GLMMs) to analyze the response variables 

from both experiments with the lme4 package in R version 4.1.1 (Bates et al. 2015; R Core Team 

2021). For the mirid-feeding experiment, each model contained predictors for observation time 

(days since feeding), mirid-feeding status (exposed/not exposed), and an interaction between time 

and mirid-feeding status. Since the same plants were measured repeatedly, plant was incorporated 

into the model as a random effect. We included another random effect for putative genotype based 

on the proximity of location rhizomes were collected from.  Chewing herbivory and pathogen 

damage were calculated by multiplying the number of leaves of each plant by its estimated 

proportion of tissue lost to or covered with damage. Chewing herbivory and pathogen damage 

were log-transformed. Plants without visible damage had 0.5% added to their total to allow for 

log-transformations, which is biologically realistic given that most plants likely had some small 

amount of herbivory and pathogen damage that may not have been seen. 

For the second experiment, plants were coded to account for the change in treatment status 

throughout time. For example, a plant that was sprayed once at the beginning of the experiment 

and again toward the later part of the experiment would be considered an early-only plant until it 
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was sprayed for the second time, which it was then considered an early + late plant. For that reason, 

the number of plants in any given spray timing group ranged from seven to 126 and the sample 

sizes of the groups changed with additional sprays. For a full list of sample sizes at each 

observation point, see Table S2.3. Three GLMMs per response variable were used to fit the data 

in this experiment and contained predictors for observation time, time and frequency of JA spray, 

and the interaction between observation time and the timing and frequency of JA spray (Figure 

2.1b). The first model was fit only to the data from plants that did not receive exogenous JA 

(heretofore referred as unsprayed) and those that were sprayed with JA at the early timing (08-Jul-

2020). The second model was fit to data for unsprayed plants, early JA sprays (08-Jul-2020), and 

middle JA sprays (30-Jul-2020). The third model was fit to data for unsprayed plants and plants 

with all three JA spray timings—early (08-Jul-2020), middle (30-Jul-2020), and late (23-Aug-

2020). Chewing herbivory and pathogen damage values were calculated as described in the mirid-

feeding experiment and log-transformed.  

For both experiments, we calculated effect sizes at each observation date to determine the 

impact of different spray timings and frequencies. Confidence intervals (95% CI reported in 

parentheses after each effect size) for those predictions were determined using semi-parametric 

bootstrapping with the bootMer function with 2000 iterations in the lme4 package (Bates et al. 

2015). If the confidence intervals between two treatments did not overlap zero, the effect was 

deemed significant. We evaluated the significance of each model through the marginal R2 (i.e., the 

variance explained by the fixed effects) and conditional R2 (i.e., the variance explained by the fixed 

and random effects) with the r.squaredGLMM function from MuMIn v1.40.0 (Bartón 2017). 

The following R packages were used for data wrangling: dplyr v1.0.8 (Wickham et al. 

2022), lubridate v1.7.10 (Grolemund and Wickham 2011), googlesheets v1.0.0 (Bryan 2021), tidyr 



 

  22 

v1.2.0 (Wickham and Girlich 2022), and tibble v3.1.6 (Müller and Wickham 2021). Data was 

visualized with ggplot2 v3.3.5 (Wickham 2016), ggpubr (Kassambara 2020), and ggbeeswarm 

v0.6.0 (Clarke and Sherrill-Mix 2017). 

Results 

How does a single early-season herbivory event alter community interactions and plant growth?  

In this experiment, we evaluated how the difference between undamaged plants (control) 

and plants fed upon by mirids early in the growing season varied across time for each of the 

response variables. The effects of observation time, mirid-feeding, and their interaction explained 

31.9%, 51.0%, and 26.5% of the variance (marginal R2) in chewing herbivory, pathogen damage, 

and plant height, respectively (Table S2.4). The effect of mirid feeding on subsequent chewing 

herbivory varied through time (Figure 2.2a). On 18-Jul-2018, mirid-damaged plants had 27.3% 

(95% CI; 24.5-30.0%) lower chewing herbivory than control plants, yet in absolute terms, there 

was little chewing herbivory damage on plants in the first few weeks after transplant (e.g., the 

absolute mean difference between mirid-fed plants and control was only 0.2 leaves with chewing 

herbivory). However, by the last observation date (22-Sep-2019), plants with mirid damage 

received 37.6% (32.3-43.0%) higher chewing herbivory than control plants (absolute mean 

difference between mirid-fed plants and control was 1.7 leaves with chewing herbivory). Pathogen 

damage on mirid-fed plants exhibited a similar trajectory to chewing herbivory but only had 

significantly higher pathogen damage on the control plants at the final observation date (Figure 

2.2b). Early in the experiment on 18-Jul-2019, Slaterocoris sp.-damaged plants had 56.0% (54.4-

57.4%) less area covered in pathogen damage than plants without early mirid feeding. By the end 

of the observation period, the direction of that effect reversed; plants with mirid feeding having 

7.1% (1.0-13.6%) higher pathogen damage than control plants. Finally, plant height showed a 
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small effect of mirid feeding (Fig 2c), with lower plant height in mirid-fed plants than unfed plants 

at all observations (range of mean effects across all four observation dates: 6.5-21.0% (5.1-36.5%) 

decrease). We found no difference in rhizome volume between mirid-fed and control plants 

(Figure S2.3). See Figure S2.4 for plotted effect sizes and Table S2.5 for a table of all effect sizes 

throughout time. 

How does variation in the timing of herbivory change community interactions and plant growth? 

To evaluate the community and plant effects of herbivory timing, we examined the 

differences in effect sizes between unsprayed and JA sprayed plants for the three response 

variables. While there are many pairwise comparisons to discuss in this experiment, we address 

the most interesting here, but see Figure S2.5 for plotted effect sizes and Table S2.7 for a table of 

all pairwise effect sizes.  

The effects of chewing herbivory varied greatly between sprayed and unsprayed plants 

over time. The fixed effects of the early, mid, and late chewing herbivory models only explained 

0.4%, 1.3%, and 2.9% (marginal R2) of the total variance, respectively (Table S2.6). Early-only 

sprays resulted in consistently higher chewing herbivory at all observation dates compared to 

unsprayed plants. On 18-Jul-2020, early-only plants had 17.0% (5.6-29.8%) higher chewing 

herbivory damage than unsprayed plants (Figure 3a). On 09-Sep-2020, that difference remained 

roughly constant to 20.2% (5.8-36.5%). When compared with unsprayed plants, middle-only 

plants did not differ significantly (Figure 3b). Plants with a late-only spray had 34.2% (7.7-53.0%) 

lower chewing herbivory on 30-Aug-2020, but no significant difference on 09-Sep-2020 (Figure 

3c). 

We also found significant differences in chewing herbivory between the three spray 

timings. Middle-only plants had lower chewing herbivory than early-only plants at the first two 
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observation dates (14-Aug-2020: 36.9% (34.3-39.4%) decrease; 30-Aug-2020: 15.3% (12.7-

17.7%) decrease; 09-Sep-2020, no significant difference; Fig 3b). Late-only plants had lower 

chewing herbivory than early-only and middle-only plants at both observation dates. On 30-Aug-

2020, late-only sprays resulted in 35.2% (23.1-45.4%) and 25.7% (15.9-34.3%) lower chewing 

herbivory than early-only and middle-only plants, respectively (Figure 3c). On 09-Sep-2020, that 

effect remained, with late-only plants having 24.0% (11.0-35.0%) and 36.2% (16.9-34.4%) lower 

chewing herbivory than their early-only and middle-only spray counterparts, respectively (Figure 

3c). 

Plant surface area covered in pathogen damage followed a slightly different pattern than 

chewing herbivory. The fixed effects of the early, mid, and late models explained 7.1%, 3.0%, and 

3.3% (marginal R2) of the total variance in pathogen damage, respectively (S9). The effect of early-

only spray dampened throughout time in comparison to unsprayed plants; on 18-Jul-2020, those 

plants had 12.4% (4.3-19.9%) lower pathogen damage than unsprayed plants, but by 30-Aug-2020, 

that difference was not apparent (5.6% (13.9% decrease-3.6% increase) decrease; Figure 2.4a). 

Middle-only plants did not have significantly different pathogen damage than unsprayed plants on 

any observation date (Figure 2.4b). Late-only plants were not significantly different from 

unsprayed plants, but they had lower pathogen damage than early-only and middle-only plants on 

30-Aug-2020 (Figure 2.4c). 

Plant height was significantly different when compared among spray and observation 

timings, though effect sizes were typically small. The early, mid, and late models respectively 

explained 11.6%, 0.7%, and 1.6% (marginal R2) of the variance. Middle-only plants were 1.1% 

(0.5-1.6%) and 1.5% (0.9-1.9%) taller than early-only plants on 30-Aug-2020 and 09-Sep-2020, 

respectively (Figure 2.5b). Late-only plant heights were not different from early-only plant heights, 



 

  25 

but these plants were shorter than middle-only plants regardless of observation date, with a 3.9% 

(1.0-7.7%) and 4.1% (1.1-7.9%) decrease on 30-Aug-2020 and 09-Sep-2020, respectively (Figure 

2.5c).  

How does the frequency of herbivory events change community interactions and plant growth? 

By spraying plants either once or twice at different intervals throughout the summer, we 

were able to test for accumulating effects of multiple herbivory events on the response variables. 

Although many pairwise comparisons between treatments and observational timings are possible, 

we focus on those that illustrate different community and plant responses to the frequency of 

applications. See Table S2.7 for a table of all effect sizes and Figure S2.6 for plotted effect sizes. 

First, early + middle spray treatment plants had significantly higher levels of chewing 

herbivory than unsprayed plants and middle-only plants at multiple observation dates, but they 

were never different from early-only plants (Figure 3b). On 14-Aug-2020, early + middle plants 

exhibited 76.7% (20.0-160.0%) and 96.7% (53.9-151.5%) greater chewing herbivory when 

compared to unsprayed and middle-only plants, respectively. However, chewing herbivory on 

early + middle plants were not significantly different from unsprayed plants by 30-Aug-2020, yet 

still they maintained 34.0% (10.7-62.3%) higher chewing herbivory than middle-only plants at 

that date. These plants also experienced higher chewing herbivory when compared to late-only 

plants on both 30-Aug-2020 and 09-Sep-2020 (Figure 3c). 

Regardless of observation date, plants treated early + late experienced significantly lower 

chewing herbivory than single spray or unsprayed plants (Figure 3c). For example, plants with 

early + late sprays had 34.1% (2.9-55.3%) and 48.8% (23.9-65.6%) lower chewing herbivory than 

unsprayed plants on 30-Aug-2020 and 09-Sep-2020, respectively. The effect of middle + late 

sprays varied by observation date. On 30-Aug-2020, these plants were only different from late-
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only plants, with 48.7% (42.3-55.2%) higher chewing herbivory. However, by 09-Sep-2020, 

middle + late plants had significantly lower chewing herbivory than unsprayed, early-only, middle-

only, and late-only plants (Figure 3c). 

Pathogen damage exhibited a different pattern of response compared with those of chewing 

herbivory in response to the frequency of JA sprays. Early + middle plants had significantly lower 

pathogen damage than other plants toward the end of the season (Figs. 4b-c). On 09-Sep-2020, 

early + middle plants had 43.2% (16.4-61.4%) lower pathogen damage compared to unsprayed 

plants, 37.1% (20.8-50.0%) lower damage than early-only plants, 38.6% (25.9-49.2%) lower 

damage compared to middle-only plants, and 43.6% (38.0-48.6%) lower damage compared to late-

only plants. Early + late treated plants had significantly lower pathogen damage than unsprayed 

and all single-spray plants on 30-Aug-2020, but were only significantly different from the two 

single-spray treatments by 09-Sep-2020, with a 18.6% (5.0-30.3%) decrease in pathogen damage 

against middle-only treated plants and a 19.5% (14.8-24.0) decrease against late-only treated plants 

(Figure 2.4c). Conversely, when compared to unsprayed or single spray plants, middle + late 

treated plants only differed from late-only treated plants on 30-Aug-2020 and not with any single 

spray timing on 09-Sep-2020.  

Plant height was different from other treatments only in those plants receiving two sprays 

that included a late spray, and these effects varied by observation date. Of the double-spray plants, 

only middle + late treated plants grew to different heights than unsprayed plants (Figure 2.5c). 

Early + late plants were taller than late-only plants on 30-Aug-2020 (1.6% (0.4-2.5%) increase) 

and 09-Sep-2020 (2.0% (0.8-2.8%) increase). Middle + late treated plants were significantly 

shorter than middle-only plants on 30-Aug-2020 (12.0% (7.1-18.3%) decrease) and 09-Sep-2020 
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(11.6% (6.8-17.8%) decrease) and late-only plants on Aug 30 (8.4% (6.2-11.4%) decrease) and 

09-Sep-2020 (7.9% (5.7-10.8%) decrease).  

Finally, we can also compare how different double spray timings affect these response 

variables. For example, on 30-Aug-2020, middle + late treated plants had 16% (12.8-19.0%) lower 

chewing herbivory than early + middle treated plants, but they also had 48.6% (47.6-49.6%) higher 

chewing herbivory than early + late treated plants (Figure 3c). However, on that same date, middle 

+ late treated plants had no difference in chewing herbivory from unsprayed, early-only, and 

middle-only treated plants.  

Discussion 

 

Using varying timings of treatments and measurements, we showed that both timing and 

frequency of herbivory along plant ontogeny cannot be overlooked when measuring community 

interactions and plant growth. Likewise, observation date directly impacts the interpretation of 

effect sizes between plants with and without herbivory because plant responses are dynamic and 

vary with the amount of time since their encounter with herbivores. These results indicate that 

antagonism at different moments during a plant’s life cycle can cause different defense and growth 

responses, with cascading effects on species interactions (Walck et al. 1999). 

To interpret the temporally variable effects of herbivory, we should account for the 

phenology of S. altissima, especially when it may invest more in vegetative growth, defense, 

asexual reproduction, and sexual reproduction. Early in the season, when we applied Slaterocoris 

sp. to feed on the plants, S. altissima was actively growing and investing largely in aboveground 

vegetative growth (Walck et al. 1999). In that time, growing taller represents a trade-off while 

goldenrod is also competing for light resources and reducing apparency to key herbivores, such as 

the goldenrod ball gallfly, E. solidaginis. Relative to control plants, Slaterocoris sp.-treated plants 
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grew shortest early the experiment (Figure 2.2c), which follows a similar trajectory as an earlier 

study investigating early-season defoliation’s effect on height (Meyer 1998).  

Reducing apparency to other herbivores or investing resources in other defensive strategies 

rather than growth are two possible explanations for this response. Our results indicate the latter 

explanation is plausible, given the reduced chewing herbivory and pathogen damage early in the 

experiment. However, the early induction of these plants was short-lived since less than two 

months later, the direction of damage patterns reversed, and the previously induced plants were 

more susceptible to damage at the end of the season. In September, S. altissima plants are typically 

investing in the reproductive resources of flowers and seeds (Walck et al. 1999), which may leave 

them more vulnerable to attack, and at this time their grasshopper generalist chewing herbivores 

are most abundant. By then, pathogens such as leaf rust may have dispersed between plants and 

are spreading within plants. This induced defense followed by induced susceptibility has been 

noted in other systems and may be associated with the costs of defending near the time of the 

herbivory event (Underwood 1998). Evaluating the time-dependent changes in phytochemical and 

antagonist preferences in plant tissue is a key next step in identifying the mechanisms behind these 

patterns. 

Traits in plant-insect ecology are often measured statically, yet that is not how they mediate 

interactions in nature. For example, we measured rhizome volume in the winter following our 

mirid-feeding experiment and found no difference between control and mirid-fed plants (Figure 

Figure S2.3). Due to the destructive nature of rhizome collection, we were unable to determine if 

these patterns held into the early-spring sprouting of the following year. In the JA-spray 

experiment, the results demonstrated that community-level responses to a simulated plant-

herbivore encounter are timing-dependent; when compared to unsprayed plants, early and late 
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season sprays resulted in significant, yet opposite, effects on subsequent herbivory damage, while 

mid-season sprays compared to unsprayed plants were not statistically significant. Perhaps this 

lack of effect is caused by investment in growth or reproduction or that similar stimulations to 

those from a JA spray are uncommon at this time in the growing season. Therefore, outstanding 

questions are how the timing of plant defensive response is an evolutionary response to the timing 

of herbivore arrival and how reproductive responses may be undetectable due to measurement 

timing. 

 Intuitively, we may expect multiple stressor effects to accumulate or interact over time, but 

our results do not suggest that is always the case. As in the mirid feeding experiment, JA sprays 

had significant effects on the plants’ interactions with its antagonist community. Early-only spray 

plants experienced elevated chewing herbivore damage at all observation times (Figure 2.3a), yet 

for early + middle plants, this positive effect dissipated as the season progressed (Figure 2.3b). 

This result suggests that even if plants are antagonized early in the season, another antagonistic 

event does not predestine them for more chewing herbivory in the future. However, the opposite 

is observed for this comparison and pathogen damage; early-only plants received (relative to 

controls) more pathogen damage earlier in the season than later in the season (Figure 2.4a), but 

plants with early + middle treatments received relatively the most pathogen damage later in the 

season (Figure 2.4b). This result presents a possible trade-off in resistance to herbivores and 

pathogens, which has been observed with mixed support across various plant stressor events (Biere 

et al. 2004; Löser et al. 2021). Additionally, the magnitude of these differences in height between 

single-spray and double-spray plants may affect apparency to herbivores and pollinators, with 

important implications for competition and fitness. Again, the contrasting effects we observed with 

different spray timings, spray frequency, and observation timings relative to the study organism’s 
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phenology and ontogeny necessitate greater emphasis on the temporal context of ecological 

experiments.  

 Although repeated measurements can reveal important patterns in temporal ecology, it can 

make it more difficult to identify the mechanisms behind the trends. Repeated measurements 

require live organisms at each observation date and thus prohibits the destructive collection of 

biological material for chemical analyses, as well as certain measurements of fitness and growth 

such as rhizome collection and dry biomass. Without some of these direct measures, it is difficult 

to ascertain why pathogens did not spread within plants in some treatments or why chewing 

herbivores may have avoided insect-fed plants early in the experiment. Future field work could 

pair plants to apply herbivory with repeated observations throughout time, with some plants 

serving to measure community interactions and other plants to measure underlying chemical 

changes, which has been achieved at single time observations already (González et al. 2018). 

The biological patterns we observed reflect both treatment and observation timing, and 

these results highlight how important it is for temporal context to be explicitly incorporated into 

ecological experiments. Like many other long-lived plant species, S. altissima is a perennial forb 

whose genets interact with many species at inter-annual and intra-annual time scales. We should 

expect that in systems containing these plant-herbivore-pathogen interactions, responses to 

ecological events are scale-dependent and hierarchical. By repeatedly measuring communities at 

moments of time that eventually build up to the long-term trajectories, we can adjust our ecological 

interpretations and aim for a more nuanced, longitudinal understanding of nature in a changing 

world.  
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FIGURES 

 

Figure 2.1 a) Experimental setup of the early-season herbivory experiment with Slaterocoris sp. 

and b) the varying timing and frequency JA spray experiment. The start of each diverging 

colored line indicates when herbivory (mirid feeding or JA spray) was applied for each group of 

S. altissima individuals. The gray boxes are aligned with the timeline to indicate the observation 

dates covered in each model. 
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Figure 2.2 Mirid-feeding experiment model predictions and 95% CIs by control (green, solid 

line) and mirid-fed (purple, dashed line) plants across time for a) chewing herbivory, b) pathogen 

damage, and c) plant height.  
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Figure 2.3 JA spray model predictions and 95% CIs for chewing herbivory for a) early treated 

plants, b) middle treated plants, and c) late treated plants. 
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Figure 2.4 JA spray model predictions and 95% CIs for pathogen damage for a) early treated 

plants, b) middle treated plants, and c) late treated plants. 
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Figure 2.5 JA spray model predictions and 95% CIs for plant height for a) early treated plants, 

b) middle treated plants, and c) late treated plants. 
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CHAPTER 3: 

PLANT TERPENOID DIVERSITY VARIES WITH TEMPERATURE, 

PRECIPITATION, AND PHYLOGENY: A META-ANALYSIS 

Abstract 

 

Monoterpenoids and sesquiterpenoids are ubiquitous and diverse plant chemicals with 

ecological and human significance. Their availability and diversity within plants may be 

influenced by temperature, precipitation, and phylogeny. Plants produce diverse profiles of 

monoterpenoids and sesquiterpenoids to form mutualisms, defend against enemies, and protect 

against abiotic stress, but broad scale patterns in that diversity have not been investigated 

thoroughly. I conducted a meta-analysis using a global database of published literature to obtain 

the monoterpenoid and sesquiterpenoid profiles of 206 plant species across 277 sites. I identified 

increasing compound richness with increasing annual precipitation, as well as significant 

relationships in how terpene identity and structure vary with annual mean temperature, 

precipitation, and phylogenetic distance. Understanding how these patterns scale across various 

metrics of diversity illuminated the relative importance of abiotic factors, evolutionary history, 

and ecological interactions in plant production of lighter weight terpenoids, with implications for 

chemical ecology and applications across human industries. 
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Introduction 

Biochemicals are the building blocks of plants that nourish and heal us, provide food and 

shelter for wildlife, and sequester carbon and pollutants. Functioning beyond plants’ primary 

metabolic processes (e.g., photosynthesis), phytochemicals known as secondary metabolites 

were considered “waste” only a few decades ago (Hartmann 2007). While people applied these 

natural products in daily life, their diversity and distribution were still mysteries (Gershenzon 

and Dudareva 2007; Kessler and Kalske 2018). Two subclasses of secondary metabolites have 

been crucial to plant chemical ecology and evolution research—monoterpenoids and 

sesquiterpenoids. Thousands of these compounds have now been identified, and defining their 

ecological functions, evolution, and syntheses is an active area of investigation (Tholl 2015; 

Pichersky and Raguso 2018). Their wide array of forms and functions poses a central question—

how does terpenoid diversity vary across abiotic conditions and evolutionary history? Collating 

148 studies from a database of published plant terpenoids, in this study I conducted a meta-

analysis of macroscale relationships between climate, phylogeny, and diversity in 

monoterpenoids and sesquiterpenoids to develop a foundational understanding about how these 

compounds vary in nature. 

Phytochemical diversity can have profound impacts on differences in the ecological 

interactions between closely related species and of genotypes within species (Dyer et al. 2018, 

Philbin et al. 2022, Salazar and Marquis 2022). Throughout plant evolution, the retention of 

existing phytochemicals in a profile and the production of novel phytochemicals are the result of 

numerous biotic and abiotic selective pressures. Compound signals, such as terpenoid volatiles, 

are often received and effective at high specificity (Chen and Song 2008). However, a single 

terpenoid can also serve multiple functions (Pichersky and Raguso 2018). Therefore, producing 
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more compounds may allow plants to interact with more organisms across mutualistic and 

antagonistic capacities. Some compounds may also only be effective ecologically in tandem with 

other compounds (Richards et al. 2015), so phytochemical diversity per se may be advantageous. 

Similar to foundational work on identifying biogeographical patterns in plant species and trait 

diversity, we can begin macroscale studies in phytochemical diversity by describing its 

associations with evolutionary history and the abiotic environment.  

Several experiments have tested hypotheses about phytochemical diversity primarily 

within the context of plants’ ecological interactions and evolutionary history (Becerra 1997, 

Junker et al. 2017, Salazar et al. 2018, Whitehead et al. 2021). A longstanding hypothesis, the 

coevolutionary arms race between plants and insects, has presented phytochemical diversity as a 

function of insect herbivory (Ehrlich and Raven 1964). Plants are suggested to evolve more 

novel and “complex” compounds to defend against their enemies, while insects can evolve 

mechanisms to resist these defenses, such as toxin sequestration or the coopting of chemical cues 

to locate nutrient resources (Berenbaum and Feeny 1981, Després et al. 2007). Two outcomes 

may emerge in the relationship between evolutionary history and terpenoid diversity: (a) plants 

that are more closely related may have more similar terpenoid profiles since they experience 

similar ecological interactions or (b) plants that are more closely related have more different 

terpenoid profiles to differentiate themselves chemically from relatives. Still, defense is only one 

function of these compounds, and plants also communicate to pollinators and attract dispersers 

via terpenoids leading to even more species interaction-based hypotheses (Adler 2000). Most 

hypotheses about plant secondary metabolite diversity suggest adaptation to biotic conditions 

(e.g., interaction diversity hypothesis, synergy hypothesis; Whitehead et al. 2021). Testing of 

hypotheses addressing abiotic, or both abiotic and biotic, factors have relatively lagged behind 
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hypotheses based on antagonistic interactions with herbivores (Moreira et al. 2015, Abdala-

Roberts et al. 2016). 

Incorporating the abiotic environment, such as climate, nutrients, and light availability, 

into our understanding of phytochemical diversity has identified key patterns (Glassmire et al. 

2019, Defossez et al. 2021). For example, annual mean temperature (temperature) is likely 

associated with phytochemical diversity given the effect of temperature on compound volatility, 

temperature-dependent enzymatic activity for chemical synthesis, and terpenoids’ role in plant 

tolerance to thermal stress (Loreto and Schnitzler 2010). Compound volatility is determined by 

atmospheric pressure and temperature and is specific to each compound based on substructural 

composition. For instance, sesquiterpenoids, which have five more carbon atoms than 

monoterpenoids, and cyclical monoterpenoids may have more complex and diverse chemical 

substructures than some acyclic monoterpenoids, possibly decreasing their volatility. We may 

then expect plants to produce more structurally diverse terpenoid profiles in hotter climates, a 

prediction which has been previously supported in field observations where monoterpenoid and 

sesquiterpenoid richness was greater at sites with higher temperatures (Llusiá and Peñuelas 

2000). 

The level of annual precipitation may also influence terpenoid diversity indirectly 

through stomatal adaptations to avoid desiccation in dry regions. Terpenoids are often released 

through the stomata, along with gas-phase diffusion at the tissue-air surface (Niinemets et al. 

2004). Stomatal conductance (e.g., opening of the stomata) is related to volatile terpenoid release 

through the diffusion gradient between the internal tissue and external environment (Fall and 

Monson 1992). The emission of those compounds with high solubility inside plant tissue, such as 

alcohols and aldehydes, is correlated with stomatal conductance (Niinemets et al. 2003). Earlier 
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studies found little effect of increased precipitation on the richness and emissions of 

monoterpenoids and sesquiterpenoids (Llusiá et al. 2010). However, measuring richness and 

emissions does not account for structural differences between compounds, which may exhibit 

different responses. For example, measures of richness are agnostic to the presence/absence of 

substructures that may make compounds more soluble in plant tissue. Therefore, we may expect 

that the terpenoid structural diversity increases with increasing precipitation through its indirect 

effect on stomatal conductance, and plants growing in more similar precipitation environments 

may be expected to produce more similar terpenoids.  

The underpinnings of phytochemical diversity can be challenging to identify when many 

compounds arise from different synthetic pathways or require different laboratory methods for 

identification. Monoterpenoids and sesquiterpenoids can serve as a model set of compounds 

because they share biosynthetic pathways and are easily detected through methods such as gas 

chromatography-mass spectrometry (GC-MS). The 5-carbon precursors isopentenyl diphosphate 

(IPP) and dimethylallyl diphosphate (DMAPP) are universal in the synthesis of all plant 

terpenoids (Christianson 2008). One or two IPP molecules are condensed with DMAPP to form 

the next precursors for monoterpenoids or sesquiterpenoids, respectively. Coded in 15-30 genes, 

synthases then convert those molecules into a diverse array of compounds, followed by possible 

secondary reactions (Chen et al. 2011; Tholl 2006). In volatile and semi-volatile phases, 

terpenoids are perceived, often with high specialization, by antagonistic and mutualistic insects 

through olfactory organs, as revealed by coupled GC-electroantennographic detection (Bleeker et 

al. 2009). Terpenoids can make forests more flammable (Alessio et al. 2008), alarm plant 

neighborhoods of herbivore attack (Kigathi et al. 2019), and glow in the hazy mornings of the 

Blue Ridge Mountains (Went 1960). Some compounds also are used in human medicine for their 
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antioxidant, anti-viral, anti-bacterial and anti-inflammatory properties (Tetali 2019), and many 

are the basis of perfumes and fragrances (Schwab et al. 2013). 

We can analyze phytochemical diversity through metrics typically employed for 

ecological diversity, but the many available metrics can lead to varying conclusions (Dyer 2018). 

If species richness is the count of species in a community or location, phytochemicals can also be 

tallied across various taxonomic and spatial scales to calculate compound richness. Similarly, as 

species can be deconstructed into functional units or traits (i.e., functional diversity), chemical 

compounds can also be parsed into their constituent parts, known as substructures, to calculate 

structural diversity. These chemical substructures, like 4-carbon rings, hydroxyl groups, and the 

location of double bonds between carbon molecules, are essential to the receptivity and volatility 

of terpenoids and may or may not be tied to ecological function. Here, -diversity is the diversity 

(e.g., richness, evenness) within a sampling unit (i.e., a collection of plant tissue from one 

species at a well-described location), while -diversity is the turnover between two sampling 

units. Changes in -diversity along climate and phylogenetic gradients do not account for 

differences in the composition of the compounds or substructures in the terpenoid profile, 

whereas -diversity does. Evaluating patterns -diversity can describe the range of chemical 

diversity that a plant species or sample can hold, and studying -diversity can explain how plant 

species or samples differ from each other chemically. To explore global terpenoid patterns within 

this diversity metrics framework, I conducted a meta-analysis to answer the following three 

questions: 

1. Are plant monoterpenoid and sesquiterpenoid profiles more diverse in warmer and 

wetter climates? 
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2. Do plants growing in more similar climates have more similar monoterpenoids and 

sesquiterpenoids? 

3. Do more closely related plant species have more similar monoterpenoids and 

sesquiterpenoids? 

Methods 

Data collection and software used 

To develop a comprehensive database of literature of mono- and sesquiterpenoids, I 

searched for a broad array of plant terpenoid studies using combinations of the following terms 

on ISI Web of Science: terpene*, gc*ms, gc-ms, terpenoid*, ecolog*, and herbivor*. These 

searches resulted in 5471 unique peer-reviewed articles. Inclusion criteria were (1) sampled 

living plant tissue for terpenoids, (2) used GC-MS to identify terpenoids, (3) presented a full 

profile of compounds in tabular form (i.e., did not exclude unknown compounds; did not only 

report the most abundant compounds; I did not collect information from original 

chromatograms), (4) did not juice or burn samples prior to compound extraction, (5) presented 

data from at least one plant species, and (6) were written in English. To answer questions about 

climate and phylogeny, I restricted analyses to those papers (n = 557 samples, n = 148 studies, n 

= 206 species) that also (1) collected plant tissue from naturally occurring organisms (i.e., plants 

grown in cultivated settings such as greenhouses, farms, and arboretums were excluded), (2) 

reported exact latitude and longitude coordinates or a searchable municipality to later collect 

latitude and longitude coordinates, (3) analyzed aboveground tissue samples from inflorescences, 

foliar tissue such as leaves and needles, fruit, stem, or bark because these samples had some of 

the highest replication in the database, wider phylogenetic coverage, and are more likely 

associated to ambient air temperature than belowground tissue, and (4) contained samples from 
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seeding plants (i.e., gymnosperms and angiosperms). If only one mono- or sesquiterpenoid was 

detected, and I was calculating Functional Hill Diversity, then the sample size was 533 because it 

is impossible to calculate with only one compound. A list of studies and plant species included in 

our analyses can be found in a Zenodo repository under DOI: doi.org/10.5281/zenodo.7757599. 

I used R version 4.1.1 and Python version 3.9.12 for all data retrieval and analyses 

(Python Software Foundation 2021; R Core Team 2021). The following R packages were used 

for data tidying and wrangling: dplyr v1.0.8 (Wickham et al. 2022), googlesheets4 v1.0.0 (Bryan 

et al. 2021), tidyr v1.2.0 (Wickham and Girlich 2022), stringr v1.4.0 (Wickham 2019), and tibble 

v3.1.6 (Müller and Wickham 2021). These R packages were used for visualization: tidybayes 

v3.0.1 (Kay 2021), ggplot2 v3.3.5 (Wickham 2016), tidytree v0.3.9 (Yu et al. 2022), ggtree 

v3.3.2 (Yu 2020), ggtreeExtra v1.4.2 (Xu et al. 2021), ggpubr v0.4.0 (Kassambara 2020), 

scattermore v0.8 (Kratochvil et al. 2022), gridExtra v2.3 (Baptiste 2017), and RColorBrewer 

v1.1-3 (Neuwirth 2022). The following R packages were used to calculate credible intervals and 

model predictions for the visualizations: performance v0.9.0 (Lüdecke et al. 2021), emmeans 

v1.7.3 (Lenth 2022), and tidybayes v3.0.1. The following R packages were used for interfacing R 

and Python code to collect compound information from the API endpoints: httr v1.4.2 (Wickham 

2020) and reticulate v1.26 (Ushey et al. 2022). The following Python packages were used to 

wrangle and collect data: gspread 5.3.2 (Burnashev et al. 2022), pandas v1.5.2 (McKinney 2010; 

The pandas Development Team 2022), and numpy v1.22.1 (Harris et al. 2020). 

Following the workflow in Grenié et al. (2021), I harmonized plant names with the lcvp 

v3.0.1 and lcvplants v2.1.0 R packages (Freiberg et al. 2020), which references the Leipzig 

catalog for vascular plants at a global scale. Plant names that were returned as synonyms were 

changed to the first result given from the catalog. For those samples that only provided a 
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municipality name, I used the tidygeocoder v1.0.5 R package to collect latitude-longitude data 

using the geocode function (Cambon et al. 2021). Then, I collected historical climate variables at 

a 10-minute resolution using WorldClim data (annual mean temperature, BIO1, and annual 

precipitation, BIO12, as the average from 1970-2000) at the latitude-longitude coordinates of 

each sample (Fick and Hijmans 2017).  

The name of each compound was standardized in two steps: (1) searching the PubChem 

application program interface (API) and (2) manual searches across online databases. In Step 1, I 

ran each compound name through PubChemPy v1.0.4, a Python package that retrieves chemical 

compound information from the United States National Institute of Health PubChem chemical 

database API, and accepted the first result (Swain et al. 2014; Kim et al. 2021). In Step 2, for 

compounds that were not identified from the first result in our Python script, I manually searched 

the remaining compound names on PubChem’s website, Wiley SpectraBase, the Royal Society 

of Chemistry ChemSpider, and the US National Institute of Standards and Technology (NIST)’s 

Chemistry WebBook (John Wiley & Sons, Inc. 2022; Linstrom and Mallard 2022; Royal Society 

of Chemistry 2022).  

Once compound names were standardized, I collected the Simplified Molecular Input 

Line System (SMILES) and/or IUPAC International Chemical Identifier Key (InChIKey) for 

each compound from each source, as available. These two features detail the structural 

configuration, chemical components, and other properties based on a series of symbols and 

letters (Weininger 1988, Heller et al. 2015). They were necessary to locate the PubChem 

fingerprints incorporated in diversity metrics later in the analyses. The SMILES and InChIKey 

were collected through different mechanisms based on the source. If available on PubChem, I 

used PubChemPy to collect each compound’s SMILES and InChIKey. For those compounds 
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only found on SpectraBase and ChemSpider, I manually copied the values from each 

compound’s HTML webpage between May to July 2022. For compounds found on NIST, I 

wrote a Python script to pull the SMILES and InChIKey from the NIST URL for each 

compound. In total, I found the Canonical SMILES or InChIKey for 98.0% of all compound 

observations across these four sources. Only exact matches for compounds were included in 

analyses here (e.g., unknown compounds were excluded, even if they were labeled terpenoids). 

After collecting these values, each entry was labeled through the NPClassifier, which 

uses deep learning tools to identify the molecular pathway and class structure of a compound 

(Kim et al. 2020), via the NPCTable function in the chemodiv package. Then, I excluded all 

chemicals that were not monoterpenoids or sesquiterpenoids. With the get_compounds function 

in PubChemPy, I collected information on each compound’s substructures through PubChem 

Substructure Fingerprints v1.3 (National Center for Biotechnology Information 2009). Each 

fingerprint is a sequence of binary values for the presence or absence of 881 possible 

substructures in a compound. Fingerprints may not distinguish between compounds that differ in 

properties such as charge or atom arrangement. Since the full scope of chemical substructure 

diversity cannot be determined through PubChem fingerprints alone, this approach is a 

conservative estimate of the full range of mono- and sesquiterpenoid structural diversity 

produced by plants, and I still present analyses of compound richness and -diversity to account 

for differences in these properties. As described below, fingerprints can be treated similarly to 

species abundance matrices, where the presence or absence of a chemical substructure (e.g., the 

presence of at least one oxygen molecule) in a compound is analogous to the presence or absence 

of a species in an ecological community. 

Calculating -diversity and -diversity 
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To calculate terpenoid diversity, I considered a sample as the grouping factor (e.g., 

species, location) presented in each study to develop a list of detected terpenoids. Structural -

diversity was calculated as the Functional Hill Diversity with a diversity order of zero, as has 

been described in recent work on incorporating structural dissimilarity into compound richness 

(Petrén et al. 2023). Functional Hill Diversity is determined by combining Rao’s quadratic 

entropy, Q, and the equation for Hill Numbers (Rao 1982; Chao et al. 2019) to calculate the 

effective number of the pairwise structural differences between compounds:  

𝑄 =  ∑ ∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗

𝑆

𝑗=1

𝑆

𝑖=1

 

 𝑞𝐹𝐷(𝑄) =  [∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗
𝑆
𝑖,𝑗=1  ]

1/(1−𝑞)
,   𝑞 ≥ 0, 𝑞 ≠ 1 

In the above equations, q represents the diversity order. As q increases, structural 

diversity is increasingly weighted by the proportional abundance of any given compound. dij 

represents the compound dissimilarity matrix, which I calculated via the Jaccard distance 

between any two compounds, calculated with PubChem fingerprints, with the chemodiv R 

package (Figure 3.1; Petrén et al. 2023). pi and pj are the relative abundances of each compound 

in the sample (S).  When q = 0, Functional Hill Diversity is equivalent to richness weighted by 

compound dissimilarity. In all calculations of structural diversity, compounds were treated as 

being present or absent, and compounds listed as ‘trace’ in a study were not included. Treating 

compounds in this qualitative manner reduces the effect of varying extraction and detection 

methods across studies.  

-diversity was calculated in three ways: (a) compound -diversity through the Jaccard 

index for the presence of terpenoid compounds, (b) structural -diversity through the Jaccard 



 

  51 

index for the presence of chemical structures in a sample’s terpenoid profile, and (c) structural -

diversity through the Bray-Curtis index for the abundance of chemical structures in a sample’s 

Figure 3.1 Structural dissimilarity and number of structural features in common of four 

example monoterpene compounds ((Z)- -ocimene, (E)--ocimene, linalool, and -

pinene). Fifty-three substructures in total were identified across the four compounds, and 

they have 23 substructures in common. Under this fingerprint approach, (E)--ocimene 

and (Z)--ocimene are treated identically, and they have two substructures not present in 

linalool and -pinene (C=C-C=C and C-C=C-C=C). With a Jaccard index of 0.471, 

linalool and alpha-pinene are the most different structurally. Linalool has eleven 

substructures that are not present in any other compound, most notably the hydroxyl 

group. Finally, -pinene has twelve unique substructures, principally stemming from the 

4-carbon ring.  
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terpenoid profile. For (b), I determined the presence of any of 881 possible structures as 

determined by the PubChem fingerprints of each compound. For (c), the Bray-Curtis index was 

calculated by summing all observations of the 881 possible structures to determine an 

“abundance” for any given substructure in a sample. Jaccard and Bray-Curtis indices were 

calculated with the vegdist function in the vegan v2.6-4 R package (Oksanen et al. 2022). 

Phylogenetic methods 

For phylogenetic analyses, I used GBOTB tree of vascular plants and the V.PhyloMaker 

v0.1.0 R package to calculate phylogenetic distance between the plant species in the sample 

studies and the phylogenetic variance-covariance matrix (Smith and Brown 2018; Jin and Qian 

2019). The phylogenetic variance-covariance matrix was calculated via the vcv.phylo function in 

the ape v5.0 R package (Paradis et al. 2019). Phylogenetic distance was calculated through the 

cophenetic.phylo function in the ape R package.  

Statistical methods 

Each diversity metric was analyzed using Bayesian regression models through the brms 

package in R using between 1000 and 2500 iterations (i.e., -diversity models had 2500 

iterations; -diversity models had 1000 iterations), default warmups, and naïve priors (i.e., 

default values in brms; Bürkner 2017). Associations were deemed significant if the 95% credible 

interval (CI) of the effect size did not overlap zero. Richness was modeled with the count of 

unique terpenoid compounds and using a Poisson distribution. I modeled structural -diversity 

with log-transformed Functional Hill Diversity metric for each sample and using a Gaussian 

distribution. For model convergence, I centered each of the temperature and precipitation 

population-level predictors and constrained the values within the same order of magnitude by 

dividing by 10 and 1000, respectively. The richness and structural -diversity models had two 
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group-level effects: one for phylogenetic correlation between species and another for the species 

itself, which addressed any niche or study-specific effects not accounted by phylogeny, 

temperature, or precipitation (Bürkner 2022).  

For the -diversity models, I analyzed each pairwise comparison between samples of the 

same anatomical organ (e.g., leaf samples were compared to leaf samples, floral with floral, fruit 

with fruit, etc.). I excluded pairwise comparisons within the same species. Three population-level 

predictors were included in the model: pairwise difference in temperature, pairwise difference in 

precipitation, and the pairwise phylogenetic distance. For model convergence and efficiency, I 

centered the temperature, precipitation, and phylogenetic distance predictors and constrained the 

values by dividing by 10, 1000, and 100 respectively. Both -diversity metrics (i.e., Jaccard, 

Bray-Curtis) are constrained between zero and one and thus required running the models under a 

zero-one inflated beta distribution (compound-level -diversity) or zero-inflated beta regression 

distribution (structural -diversity). I assigned predictors to the parameters that emphasized the 

explanatory power of values between zero and one. Under the zero-one-inflated beta distribution, 

the predictors were applied to the mean (µ) and precision (ϕ) parameters, while the zero-one 

process-based parameters,  and , only had intercepts. Similarly, under the zero-inflated beta 

distribution, I applied the three predictors to the mean (µ) and precision (ϕ) parameters, but not 

the zero process-based parameter, . 

Results 

 

-diversity: Richness 

In the analyses of terpenoid diversity and climate, temperature was not significantly associated 

with the sample’s terpenoid richness, whereas richness significantly increased by 24.0% (95% 

CI, 0.4-64.3%) per 100 mm in precipitation (Figure 3.2a-b). Temperature and precipitation 
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explained about 0.9% (0.0007-0.95%) of the variation in monoterpenoid and sesquiterpenoid 

richness, while the phylogenetic and species group-level effects explained 84.6% (83.6-85.6%) 

of the variation.  

-diversity: Structural -diversity 

There was no significant association between temperature or precipitation and structural -

diversity (Figure 3.2c-d). When weighing compounds by their structural dissimilarity to calculate 

Functional Hill Diversity at a zero-diversity order, precipitation and temperature explained 1.3% 

Figure 3.2 -diversity by climate variables. a) Compound richness across the global 

temperature and precipitation gradients. b) Effect size posterior densities for compound 

richness by climate variables. (c) Structural -diversity (natural log of Functional Hill 

Diversity with zero diversity order) across the global temperature and precipitation gradients. 

(d) Effect size posterior densities for structural -diversity by climate variables. Black trend 

lines are mean predicted values and the three shaded intervals around represent the 95% 

(lightest), 80% (medium), and 50% (darkest) credible intervals. Posterior density plots have 

quartile lines in black underneath representing the 95% (thinnest), 80% (medium), and 50% 

(thickest) credible intervals. Effect size units are the percentage increase or decrease in the 

response variable per 1C or 100mm. 
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(0.002-4.2%) of the structural -diversity in monoterpenoids and sesquiterpenoids. The 

phylogenetic and species group-level effects explained 84.1% (82.2-85.7%) of the variation.  

-diversity: Compound presence 

After excluding intraspecific comparisons, there were 50,799 pairwise comparisons to test 

climate and phylogenetic variation with -diversity. In absolute terms, the effect sizes may 

appear low. However, Jaccard and Bray-Curtis values are constrained between zero and one, and 

a 1% increase in these values can represent the difference of a few compounds or substructures 

that may have significantly different ecological or physiological functions.  

A difference of 4C was significantly associated with a 1.0% (0.9-1.1%) increase in 

compound-level differences between samples. In other words, if plants were growing in two 

climates that on average had temperature differences of 4C, I observed a 1.0% (0.9-1.1%) 

increase in -diversity. A difference of 500 mm in precipitation was significantly associated with 

a 1.0% (0.9-1.1%) increase in compound-level -diversity. More distantly related species had 

different monoterpenoids and sesquiterpenoids detected (Figure 3.3a-b). A difference of ten 

million years in branch length was associated with an 0.03% (0.03-0.04%) increase in -diversity 

(Figure 3c-d). Temperature, precipitation, and phylogenetic distance explained 1.7% (1.5-1.8%) 

of the variation in the compound-level differences between samples (Jaccard index). 

-diversity: Chemical structure presence 

A difference of 4C between samples was significantly associated with a 0.5% (0.4-0.6%) 

increase in structural presence -diversity. When incorporating structural information about the 

compounds, the effect of distance became more negative; a difference of 500 mm in precipitation 

was marginally, though not statistically, associated with a 0.1% increase (0.005% decrease, 0.2% 
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Figure 3.3 Compound and structural -diversity by climate and phylogenetic variables. 

(a) Compound -diversity across gradients of samples’ pairwise temperature 

differences, precipitation differences, and phylogenetic distance. (b) Effect size 

posterior densities for compound -diversity by climate and phylogenetic variables. (c) 

Structural -diversity based on substructure presence or absence (Jaccard index) across 

gradients of samples’ pairwise temperature differences, precipitation differences, and 

phylogenetic distance. (d) Effect size posterior densities for structural -diversity 

(Jaccard index) by climate and phylogenetic variables. (e) Structural -diversity based 

on substructure abundance (Bray-Curtis index) across gradients of samples’ pairwise 

temperature differences, precipitation differences, and phylogenetic distance. (f) Effect 

size posterior densities for structural -diversity (Bray-Curtis index) by climate and 

phylogenetic variables. Black trend lines are mean predicted values and the three shaded 

intervals around represent the 95% (lightest), 80% (medium), and 50% (darkest) 

credible intervals. Posterior density plots have quartile lines in black underneath 

representing the 95% (thinnest), 80% (medium), and 50% (thickest) credible intervals. 

Effect size units are the percentage increase or decrease in the response variable per 1C 

or 100mm. 
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increase) in structural -diversity. Unlike compound -diversity, more closely related species 

had different structures present in their monoterpenoid and sesquiterpenoid profiles. A 0.20% 

(0.1-0.3%) increase in the structural similarity corresponded with every ten-million-year increase 

in phylogenetic distance (Figure 3.3c-d). Temperature, precipitation, and phylogenetic distance 

explained 0.2% (0.1-0.3%) of the total variation in structural -diversity (Jaccard index). 

-diversity: Chemical structure abundance 

The relationship between temperature and -diversity was strongest when accounting for 

structural abundance; a difference of 4C between samples was associated with a 0.7% (0.5-

0.8%) increase in structural -diversity. Unlike the result in compound -diversity, samples 

growing in environments with more different precipitation levels showed more similar 

abundances in substructures. A difference of 500 mm of precipitation in the environments 

between two samples was associated with a 0.4% (0.3-0.6%) decrease in structural -diversity. 

Phylogenetic distance had a significant association with this diversity metric, with a 0.1% (0.1-

0.1%) increase in structural -diversity associated with a ten-million-year increase in the branch 

length between samples (Figure 3.3e-f). When accounting for the abundance (counts) of these 

structures, precipitation, temperature, and phylogenetic distance explained 0.7% (0.5-0.8%) of 

the variation in structural abundance -diversity (Bray-Curtis index). 

 

Discussion 

 

 This study presents the first geographically extensive meta-analysis that evaluates how 

climate and phylogenetic distance affect the diversity and structure of a specific set of 

phytochemical compounds. This study is also one of the first studies to tie together various 

sources of information on compound presence and structures to understand how plant chemical 
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mixtures may differ in ways not immediately apparent from the compound names alone. For 

example, by incorporating structural information on the terpenoid profiles into the -diversity 

metrics, I observed opposite patterns for precipitation and phylogenetic distance between 

compound presence and substructure abundance. Limiting the comparisons only to those samples 

that followed similar methodological protocols (e.g., GC-MS identification of terpenoids) that 

were relevant to the ecological function and physicochemical constraints of their release into the 

environment (e.g., GC-MS identification of volatile and semi-volatile compounds) was also a 

successful approach. Diving into possible reasons driving these associations, or non-associations, 

will further highlight the significance of the work. 

Since monoterpenoids and sesquiterpenoids are often only functionally useful as volatile 

and semi-volatile compounds, the lack of association between temperature and -diversity is 

surprising. As indicated by the results across all measures of -diversity, the specific compounds 

and substructures significantly differ across a gradient of temperature differences. Together, the 

results from - and -diversity analyses suggest the identities of the compounds and 

substructures are associated more strongly with temperature than diversity per se. Warmer 

temperatures may not allow for greater diversity if a volatile set of compounds degrades more 

quickly than at lower temperatures, reducing their role in ecological interactions. While warmer 

temperatures may increase terpenoid production and emissions, temperatures above thermal 

optima can shut down key enzymatic reactions (Loreto et al. 2006). Finally, there is evidence 

that some isoprenoids (e.g., terpenoids), may aid thermal stress tolerance (Loreto et al. 1998). If 

these compounds, such as isoprene and some monoterpenoids, help protect plants’ cellular 

membranes when facing thermal stress, then this adaptive role may be stronger than selecting 

compounds that contribute to a more diverse chemical bouquet.  
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My finding of greater terpenoid -diversity at higher precipitation levels should prompt 

further investigation into the role of stomatal closure and presence of highly soluble oxygenated 

terpenoids. My analyses did not separate oxygenated and non-oxygenated compounds, despite 

oxygenated compounds having higher solubility in plant tissue and being less likely to diffuse 

into the external environment without stomatal opening (Niinemets et al. 2004). Wetter 

environments, such as those found at lower latitudes, are often hypothesized to have greater 

herbivory pressure, which may represent an indirect effect behind these patterns. The -diversity 

patterns were variable at the compound and substructure levels; while compound -diversity was 

lower between samples of more similar precipitation levels, structural -diversity decreased with 

more similar precipitation levels. Overall, plants growing in more similar precipitation 

environments may have the same baseline compounds that function given the physiological 

constraints for those conditions. However, under extreme precipitation conditions, plants may 

have similar substructures that either help them tolerate those stressors or are a byproduct of the 

stress caused by both drought and wet conditions. 

 Phylogenetic distance between samples was positively associated with compound -

diversity. At least in monoterpenoids and sesquiterpenoids, plants that are more closely related 

tend to have more similar terpenoid bouquets. However, by incorporating the substructural 

composition of these compounds into the structural -diversity calculations, a more nuanced 

story arises. Given the negative association between phylogenetic distance and structural -

diversity, more related plant species may produce a few substructures that distinguish themselves 

from their relatives. The specificity in reception to these compounds in ecological interactions 

and the large array of phytochemicals present in a plant community may necessitate these 

substructural differences in a community of closely related plants. Nevertheless, from these 
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analyses, I cannot draw conclusions about whether these compounds and substructures are more 

diverse in some species groups than others. Future analyses with these data may identify the 

origins of certain common monoterpenoids and sesquiterpenoids as well as attempt to understand 

if terpenoid diversity begets species diversity or vice versa. 

The application of ecological diversity metrics to phytochemical compounds and their 

constituent structures represents a novel avenue to understand how diversification arose and how 

compound bouquets influence plant, insect, and microbial interactions. I focused on diversity per 

se as it relates to temperature, precipitation, and phylogenetic relatedness. Rather than using a 

quantitative measure of relative compound abundance, diversity was calculated through 

compound presence. When accounting for compound concentration (i.e., the abundance of a 

compound), these relationships may differ because some compounds, such as -pinene, can 

dominate the relative amounts in a terpenoid profile. More complex models incorporating the 

methodological differences in terpenoid detection (e.g., compound polarity, extraction method, 

machine run time) will be required to increase the order q with these data.  

Investigating monoterpenoid and sesquiterpenoid diversity as opposed to other chemical 

classes was intentional. These compounds are produced within connected biosynthetic pathways. 

By focusing analyses on these groups, possible explanations for observed patterns are more 

specific than if we analyzed the diversity of phytochemicals that are encoded across different 

segments of genomes, produced via different pathways, and/or require different resources. 

Monoterpenoids and sesquiterpenoids are more uniformly detectable and widely described than 

heavier weight terpenoids like diterpenoids and triterpenoids. They are also more easily 

volatilized and are composed of different substructures than other phytochemicals. Therefore, 

their diversity may follow different geographical, climatic, and phylogenetic relationships than 
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those found with other chemical classes, like tannins, flavonoids, or phenolics (Pearse and Hipp 

2012, Moreira et al. 2018, Agrawal et al. 2022). If other chemical compound classes or 

subclasses covary with phylogenetic distance and environmental gradients, attention should be 

given to contextualize how those compounds are synthesized and encoded in the plant genome 

before extrapolating broader conclusions. 

Plants have adapted a variety of mechanisms to protect themselves, communicate, and 

interact with other organisms, including the production of secondary metabolites like 

monoterpenoids and sesquiterpenoids. The identity and synthesis of these chemicals has come 

into clearer view (Pickersky and Raguso 2018), but the “where,” when,” and “why” these 

chemical are so diverse remain largely unresolved. By analyzing such a broad range of abiotic 

conditions and phylogenetic distances, I successfully identified where along climate and 

phylogenetic distance gradients monoterpenoid and sesquiterpenoid -diversity and -diversity 

is greatest. These results lead to many questions about why, such as (1) does the ambient air 

temperature directly constrain or promote plant monoterpenoids and sesquiterpenoids diversity, 

or is there some other cofactor like animal diversity or metabolic activity at warmer temperatures 

driving this pattern? (2) do plants that are more closely related phylogenetically have more 

similar antagonist and mutualist communities that drive the patterns we see here? If available, 

future environmental analyses could include mean atmospheric pressure as a predictor of 

structural diversity, as it is a complementary determinant for volatility and the diffusion gradient 

between internal plant tissue and the external environment. These analyses could also account for 

daily and annual variation in environmental predictors. We could also analyze the occurrences of 

these specific substructures (e.g., those substructures that lead to higher solubility) to determine 

the physicochemical and ecological correlates of terpenoid diversity beyond these broad metrics. 
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Experimental approaches coupled with the prior knowledge of these broad-scale patterns in 

phytochemical diversity will lead us probably to more answers and certainly more questions. But 

for now, we know that hypotheses should address the biotic and abiotic environment to 

understand universal patterns of phytochemical diversity in nature. 
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CHAPTER 4: 

TERPR V1.0.0: A DATABASE OF PLANT MONOTERPENOIDS AND 

SESQUITERPENOIDS 

Abstract 

Monoterpenoids and sesquiterpenoids are ubiquitous phytochemicals that serve as 

warning signals of stress, attractants to pollinators, and natural products for many human uses. 

Although thousands of these compounds have been identified, their diversity and distribution 

within and across species. have not been centralized in a database due to methodological 

variation in their identification and quantification, differences in compound naming conventions, 

and the unstructured nature of data in published studies. Here I present terpr v1.0.0, the first 

iteration of a global database of monoterpenoids and sesquiterpenoids covering 1178 plant 

species across 5107 samples from 1227 studies. The relational database consists of 86 features 

across six tables that describe the detected monoterpenoids and sesquiterpenoids, plant growth 

and tissue collection methods, and analytical chemistry analyses in each study. The database can 

be used to identify broad patterns in the diversity and distribution of these compounds across 

plants, to answer long-standing questions in ecology and evolution, as well as to model how a 

database of complex, unstructured information can be engineered using modern technological 

and coding tools.  
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Background & Summary 

 

 The centralization of scientific literature through publishing websites, online databases, 

and search engines has unlocked vast potential for the synthesis of existing knowledge. The 

identification and publication of biologically synthesized chemical compounds has 

revolutionized pharmaceutical discovery, the study of ecology, and our understanding of 

biogenic effects on climate (Hartmann 2007, Tetali 2019; Zu et al. 2020; Weber et al. 2022). For 

millions of years, plants have been incubators of chemical diversity—producing thousands of 

unique compounds that ward off insect attack, prevent the establishment of competitors, and 

signal times of stress to neighbors (Becerra 1997; Junker et al. 2018; Kalske et al. 2019). Those 

compounds that are not responsible for plant primary metabolism, known as secondary 

metabolites, have exhibited particularly high diversification in form and function over the course 

of plant evolution (Kessler and Kalske 2018). Despite the plethora of studies describing 

phytochemical profiles across thousands of plant species, the unstructured (i.e., not in a form that 

can be readily analyzed) nature of these data has prevented synthetic approaches to identify 

broader patterns and the discovery of novel metabolites that can explain ecological interactions 

and benefit humans. Compiling studies identifying two biochemical subclasses—

monoterpenoids and sesquiterpenoids—across many plant species, I present a central source, 

terpr v1.0.0, to reference, analyze, and serve as a model for the curation of large quantities of 

phytochemical knowledge. 

Monoterpenoids and sesquiterpenoids are ideal chemical superclasses of plant chemicals 

with which to break down the barriers obscuring high level patterns in phytochemical diversity 

and distribution. These compounds are ubiquitous in plants and their biosynthesis shares similar 

pathways across species (Chen et al. 2011). However, terpenoids can differ from each other in 
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configuration, polarity, and the addition of functional groups. They are also easily and uniformly 

detected in a well-established and accepted laboratory method—gas chromatography-mass 

spectrometry (GC-MS). Prior to qualitative identification with GC-MS, compounds are extracted 

from tissues through methods such as hydrodistillation, extraction via organic solvent, and static 

and dynamic headspace sampling. GC-MS is often paired with gas chromatography-flame 

ionization detection (GC-FID) or some dynamic sampling method and direct injection to reliably 

quantify the concentration of a given compound in a plant’s chemical profile. Alternatively, 

headspace solid-phase microextraction (HS-SPME), a type of static headspace sampling method, 

has been shown to give more variable concentrations than the other methods (Tholl et al. 2006). 

Given their light molecular weight relative to larger terpenoids and other plant-produced 

hydrocarbons, monoterpenoids and sesquiterpenoids are routinely detected across the most 

common GC run times. These and other methodological differences may present a significant 

source of variation between studies. Given the numerous other methods for detecting 

phytochemicals, such as liquid chromatography-mass spectrometry and newly expanding 

metabolomics techniques, focusing on this single identification approach allows for synthetic 

comparisons among the numerous studies using GC-MS. 

Existing compendia of phytochemicals typically present data as “natural products” 

pertaining to human use for food, therapeutics, and/or pharmaceuticals. A recent review of 

natural product databases found 92 open-access resources made available in the last ~20 years 

(Sorokina and Steinbeck 2020). These databases include, but are not limited to, publicly 

available online repositories such as Dr. Duke’s Phytochemical and Ethnobotanical Database 

(Duke and Bogenschutz 1994) and Natural Products ALERT Database (Loub et al. 1985), and 

newer, geographically specific repositories published as data papers, such as the database of 
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Indian Medicinal Plants, Phytochemistry, and Therapeutics (Mohanraj et al. 2018). As the 

natural products industry boomed with information, the nascent field of biocuration also 

launched in the last decade (Howe et al. 2008; International Society for Biocuration 2018). 

Primarily focused on the collection, maintenance, and operability of large amounts of biomedical 

data and gene ontologies, biocuration presents an interesting parallel to the work of 

phytochemical data curation as it emphasizes the effectiveness of amalgamations across many 

knowledge bases. 

Based on the standards set by this foundational work, I present a relational database of 

plant monoterpenoids and sesquiterpenoids identified via GC-MS, terpr v1.0.0, for use in our 

basic understanding of phytochemical diversity and for natural product discovery. The terpr 

v1.0.0 database consists of the highest resolution database for the collection of plant tissue, 

compound detection methodology, and the locations of two specific chemical subclasses known 

to date. With interoperability across other chemical databases, such as PubChem (Kim et al. 

2021) and ChemSpider (Royal Society of Chemistry 2022), this database serves in two 

capacities: (1) as a source of central knowledge to test hypotheses about the ecology, evolution, 

and function of plant monoterpenoids and sesquiterpenoids and (2) a model for the curation of 

databases of other subclasses of phytochemicals following FAIR principles so that data is 

findable, accessible, interoperable, and reproducible (Sansone et al. 2019; Jacobsen et al. 2020). 
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Methods 

 

Study inclusion 

  

 Data were collected from primary literature describing the chemical profiles of plants 

using GC-MS and filtered through a series of criteria (Figure 4.1). I searched ISI Web of Science 

for the broadest search of papers using a combination of terms indicating GC-MS usage and the 

evaluation of terpenes and terpenoids (Table 4.1). In October 2020, I organized a working group 

Search terms Result count Date searched 

terpene* gc*ms 60 23-Nov-2020 

terpene* gc-ms 2121 23-Nov-2020 

terpenoid* gc*ms 36 23-Nov-2020 

terpenoid* gc-ms 1472 23-Nov-2020 

terpene* ecolog* 928 01-Dec-2020 

terpene* herbivor* 666 01-Dec-2020 

terpenoid* ecolog* 822 01-Dec-2020 

terpenoid* herbivor* 582 01-Dec-2020 

 of four graduate students and four faculty across five universities who had specialized research 

interests in terpenoids, chemical ecology, and quantitative methods. This working group helped 

determine the study inclusion criteria and the features collected from each paper. Since there 

Table 4.1 Details on ISI Web of Science search. 

Figure 4.1 Filter with the study count at each stage of criteria 

evaluation. 
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were specific interests in the working group producing this database on the ecological and 

evolutionary implications of these lightweight terpenoids, I also searched terms for ecology and 

herbivory/herbivores.  

Each paper underwent an initial review of the title for exclusion if the paper mentioned 

only animal, fungus, bacteria, animal product (i.e., milk), detritus, fermented material (e.g., wine 

or beer) as the study focus. For studies that were not initially excluded or that were ambiguously 

titled under this criterion, a more detailed review followed. In this second review, I only included 

papers that (a) detected chemical compounds via GC-MS, (b) presented detected compounds in 

tabular form, (d) did not exclude unknown compounds (i.e., peak was detected but not formally 

identified), (e) grouped samples only within a single plant species, (f) did not juice or burn 

samples, (g) collected initial tissue samples from living plants, (h) did not indicate only the most 

abundant compounds were reported (i.e., top 10 most abundant compounds by emissions rate), 

and (i) were written in English. Dried samples were included. If a paper presented some plants 

that were grown in culture or in vitro, those samples were excluded from the database. Finally, as 

data collection progressed, 584 papers were not included due to resource and time constraints 

because those papers were either (a) written with ambiguous details about tissue sampling and/or 

chemical methodology or (b) required labor-intensive manual data collection of the detected 

compounds and/or methodology. In future database iterations, those papers that require manual 

data collection (i.e., table in PDF was not easily copied) could be run through natural language 

processing pipelines or manually transcribed if more labor resources are available. 

 

 

 



 

  75 

Data collection 

 Each table in the relational database required separate collection protocols, with custom 

tools necessary for the Concentration and Chemical Methods tables. The generalized data 

collection workflow (Figure 4.2) for an article that met my inclusion criteria was: (a) collect 

sample information from the main text and/or supplemental tables for each column in the 

article’s relevant table(s); (b) collect treatment, location, and chemical methods (in no particular 

order) from the article’s main text and/or supplemental tables while collecting, transforming, and 

standardizing concentration values and compound names; (c) organize the studies’ samples by 

Connecting the sample_id as a secondary key to the primary keys for the Chemical Methods, 

Location, and Treatment tables; and (d) random sample checks and verification that every group 

of concentration values (i.e., sample) has an associated sample_id. 

I present each table’s protocol in alphabetical order, separated by relational database 

table. Each terpr table can be related through primary and secondary keys (e.g., “sample_id”, 

Figure 4.2 Workflow for each study, from filtering by inclusion criteria to validation. 
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“location_id”, “paper_id”). Here, I review some key features and their construction, but full lists 

of every table feature, their definition, and possible values are in Tables 2-7.  

R version 4.1.1 and Python version 3.9.12 were used for data retrieval and analyses 

(Python Software Foundation 2021; R Core Team 2021). Data were cleaned and organized with 

the following packages: dplyr v1.0.8 (Wickham et al. 2022), googlesheets4 v1.0.0  (Bryan et al. 

2021), stringr v1.4.0 (Wickham 2019), tibble v3.1.6 (Müller and Wickham 2021), and tidyr 

v1.2.0 (Wickham and Girlich 2022). The following R packages visualized the summary data 

presented in the database: ggplot2 v3.3.5 (Wickham 2016), ggrepel v0.9.1 (Slowikowski 2021), 

scattermore v0.8 (Kratochvil et al. 2022) and viridis v0.9.1 (Garnier et al. 2021). The following 

R packages helped connect R and Python code and/or collect compound information from the 

API software development kits: httr v1.4.2 (Wickham 2020) and reticulate v1.26 (Ushey et al. 

2022). The following Python packages were used to collect, organize, and save data: gspread 

5.3.2 (Burnashev et al. 2022), numpy v1.22.1 (Harris et al. 2020), and pandas v1.5.2 (McKinney 

2010; The pandas Development Team 2022). 

Chemical Analysis Methods 

 The number of features collected about the chemical analyses was too high to input data 

reliably and directly in a Google or Excel spreadsheet. Instead, I wrote two custom R Shiny apps 

to facilitate data collection within the working group. One R Shiny app was a form that each  

member filled with all features listed (Table 4.2, Figure 4.2a). I collected information for GC-

FID explicitly because studies often paired quantitative results from runs with different 

conditions on GC-FID with qualitative results from GC-MS. 529 studies included data from GC-

FID. If a study did not analyze concentration data through GC-FID, then the form automatically 

input ‘NA’ values for those features relevant to GC-FID. While we did not collect the full GC 
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key value 

chem_method_id primary key for chemical method 

paper_id secondary key for paper 

extraction_type 

type of extraction (e.g., dynamic headspace, 

hydrodistillation) 

biomass_init 

initial biomass of plant tissue for hydrodistillation 

or extraction by organic solvent 

solvent_compound 

name of solvent compound if extracted by organic 

solvent 

fid 

binary indicator if study used fid to quantify 

compound concentration 

fid_carrier_gas carrier gas used for gc-fid 

fid_flow_rate gas flow rate for gc-fid 

fid_flow_units flow rate unites for gc-fid 

fid_run_time total run time for gc-fid 

fid_inlet_temp injector temperature for gc-fid 

fid_split use of split method for gc-fid 

fid_column_type capillary column type for gc-fid (e.g., DB-5) 

fid_column_length column length for gc-fid 

fid_inner_diameter inner diameter for gc-fid 

fid_film_thickness film thickness for gc-fid 

fid_start_temp oven start temperature for gc-fid 

fid_final_temp oven final temperature for gc-fid 

inlet_temp injector temperature for gc-ms 

carrier_gas carrier gas used for gc-ms 

flow_rate gas flow rate for gc-ms 

flow_units gas flow units for gc-ms 

run_time total run time for gc-ms 

split use of split method for gc-ms 

column_type capillary column type for gc-ms (e.g., DB-5) 

column_length column length for gc-ms 

inner_diameter inner diameter for gc-ms 

film_thickness film thickness for gc-ms 

oven_start_time oven start temperature for gc-ms 

oven_final_temp oven final temperature for gc-ms 

ion_method ionization method (e.g. electron impact, chemical) 

ion_energy ionization energy (e.g. 70 eV) 

ion_source_temp ionization source temperature 

Table 4.2 Structure of the Chemical methods table. Blue shading signifies the 

table’s primary key, and yellow signifies the table’s secondary key that connects it 

to other tables. 
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temperature program (e.g., ramp, rate of temperature increase, and hold times), we input those 

values into a “Run Time Calculator” R Shiny app which took those values and output a single 

run time (Figure 4.3b). The formula for calculating machine run time was:  

Figure 4.3 Representative previews of Shiny form used (a) to collect chemical methods 

data, (b) to calculate the machine run time from the temperature program reported in 

each study, (c) to transform compound and concentration values from each study. Not 

all fields in the chemical methods data form were included in the final version of terpr 

v1.0.0. After pressing “Calculate Run Time” in (b), the output would be manually 

copied to the chemical methods form in (a). Transformed (wrangled) tables in (c) were 

manually inspected for errors and proper formatting. They were then pushed to the cloud 

for further processing. 

(a) 

(b) (c) 
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𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 =  ∑
𝑓𝑖𝑛𝑎𝑙. 𝑡𝑒𝑚𝑝𝑖 − 𝑠𝑡𝑎𝑟𝑡. 𝑡𝑒𝑚𝑝𝑖

𝑟𝑎𝑚𝑝𝑖

𝑛

𝑖=1

+  ∑ ℎ𝑜𝑙𝑑. 𝑡𝑖𝑚𝑒𝑗

𝑜

𝑗=1

 

If the authors reported a final run time in the article that differed from our calculation, 

then we made a note. If authors used multiple capillary columns with different stationary phases 

and levels of polarity, we recorded the column as multiple, and made a note in the “comments” 

column. We did not distinguish between push and push/pull dynamic headspace sampling 

methods. Rather, they are listed as “dynamic headspace.” We did not record if the tissue had 

been dried before phytochemical extraction. Each sample has only one chemical method, but a 

study can have multiple chemical methods (e.g., one study had two samples: one extracted with 

hydrodistillation and one extracted with multiple organic solvents). 

Compound names 

 Some of these steps are identical to those in Chapter 3, but I will reiterate them here. 

Compound names were copied and pasted from the original article text as a Portable Document 

Format (PDF) or Hypertext Markup Language (HTML). Compound names were amended by 

hand if the text was not rendered properly when copying (e.g., original name: -pinene, copied 

name: ?-pinene, amended name: a-pinene or alpha-pinene). Greek letters substituted Latin 

alphabetical spellings in compound names in the custom R Shiny App described in the 

Concentration section below. I manually reviewed every compound name (19543 records 

without standardizing character cases) to ensure white space, duplicate names, and any 

overlooked typos from copying and pasting in names were amended. 

 Studies often presented the same compound with different common names. I standardized 

these names through either (1) the PubChem application program interface (API) via 

PubChemPy v1.0.4 and accepted the first result given (Swain et al. 2014; Kim et al. 2021) or (2) 
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for those compounds not resolved with PubChemPy, I manually searched PubChem’s website, 

Wiley SpectraBase, ChemSpider, and the Chemistry WebBook (John Wiley & Sons, Inc. 2022; 

Linstrom and Mallard 2022; Royal Society of Chemistry 2022). I used regular expressions to 

convert names between Roman and Greek alphabetical characters in R or Python as needed.  

 As I standardized the common names, I also collected the Simplified Molecular Input 

Line System (SMILES) and/or IUPAC International Chemical Identifier Key (InChIKey) to 

detail the specific configuration and substructures of these compounds if they were available on 

any of the above sources (Weininger 1988, Heller et al. 2015). I automatically collected these 

values if the compound was identified with PubChemPy, and I manually collected these values 

between May and July 2022 if the compound was found in SpectraBase or ChemSpider. I also 

wrote a Python script to automatically extract the SMILES and InChIKey from the NIST URL 

hosting the compound’s information.  

Studies reported unidentified compound peaks, unidentified compounds of a known 

superclass, or compounds of an unidentified configuration. If this occurred, I labeled those 

compound’s identification_resolution as “unknown,” “unknown_{superclass},” or “compound,” 

respectively. If an “exact” compound match was found (e.g., verbatim name was list in the 

names of synonyms in PubChem), then the identification_resolution was labeled “exact.” In 

total, I found the Canonical SMILES or InChIKey for 98.0% of all exact compound observations 

through these four sources. After collecting all these values, each entry was labeled through the 

NPClassifier, via the NPCTable function in the chemodiv package. NPClassifier is an online tool 

that determines the molecular pathway and class structure of a compound through deep learning 

algorithms (Kim et al. 2020). 
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key value 

compound_id primary key for chemical compound 

paper_id secondary key for treatment 

sample_id secondary key for paper  

compound_name Reported name of chemical compound 

id_resolution 

resolution of compound identification (e.g. 

exact match, superclass, unknown) 

superclass* 

classification as monoterpenoid or 

sesquiterpenoid 

smiles** Canonical SMILES if available 

inchikey** InChIKey if available 

detected 

chemical compound detection status (e.g., 

detected, not detected, trace) 

concen_mean mean concentration of chemical compound 

concen_error 

error around the mean concentration of 

chemical compound 

concen_error_type type of error value 

concen_type type of concentration value 

concen_units concentration units 

Chemical Concentrations 

 Concentration values were copied and pasted from the original article text simultaneously 

with the compound names. Each study’s table(s) were manually inspected and cleaned of any 

footnotes and paste errors, and column names were indexed to “pivot” (i.e., transpose) longer in 

the next step. If a study had more than one table that fit our criteria for inclusion, then we 

manually concatenated the tables (Figure 4.2). Once the tables in spreadsheets were clean, I 

deployed a “terpr table wrangler” Shiny app to standardize the form of each table (Figure 4.3c). 

The Shiny app accepted a .csv file and a required fields about the concentration units and paper 

Table 4.3 Structure of the Concentration table. * signifies that the feature 

determined with Canonical SMILES and InChIKey with NPClassifier (Kim et al. 

2020) via the chemodiv R package (Petrén et al. 2023). ** signifies that the feature 

determined through the PubChemPy Python package or manual searches through 

PubChem, NIST, SpectraBase, and ChemSpider. Yellow signifies the table’s 

secondary key that connects it to other tables. 
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identification number. A button initiated table transformation, a process “pivoting” the table 

long, adding the additional concentration unit fields, and printing an in-app preview. Given the 

wide variation across studies in quantitative data reporting styles, the transformation process also 

standardized the values of each detected, not detected, or trace compound presented in a study. 

The button converted concentration values of zero, ‘NA’, ‘ND’, ‘-‘, blank spaces, and other 

common indicators to NA and listed the value as ‘not_detected’ in the detection feature. Values 

listed as ‘tr’ or ‘trace’ were given NA concentration values and listed as ‘trace’ in the detection 

feature. Numerical values greater than zero were listed as ‘detected.’ Some studies only reported 

presence-absence compound observations, or the tables were already presented in “long” format. 

Since they fit out of the scope of the Shiny app transformation process, these studies’ tables were 

transformed by hand in a Google Sheet. All studies’ tables were then concatenated in an R script 

to complete the Concentration table for the database.  

 The Concentration table was joined by compound name to the Compound table, and for 

clarity and ease of use, I present them together in this version of the database (Table 4.3). Only 

‘detected’ and ‘trace’ compounds are included. I also excluded all chemicals that were not 

monoterpenoids or sesquiterpenoids based on the labeling through NPClassifier.  

Location 

 Location data were collected mostly from the “Materials and Methods” sections of papers 

and supplemental materials. Locations were split into two categories: source and experimental 

(Table 4.4). Source locations denoted the originating plant tissue that was analyzed for 

phytochemicals. Experimental locations denoted locations were locations where source plants 

were relocated, transplanted, or grown in a common garden or agricultural setting. I did not 

collect location information when plants were grown inside. Source data does not include the 
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location of seeds used in an experimental, common garden, or agricultural setting. If location 

data was unclear, then the location coordinates and name was designated “unknown.” 

 Latitude and longitude coordinates were often presented in Degree Minute Second 

(DMS) notation in the original study text. I converted all coordinates to decimal degrees at the 

precision of six decimal places. In 22 locations, the DMS record for either the latitude or 

longitude of the source or experimental material reported exceeded the maximum possible (e.g., 

a record claimed the tissue was collected at a latitude of 4278’41.2N’’). I recorded locality 

names generally as they were presented in the text with the following format depending on the 

amount of location information presented: colloquial location name (e.g., Michigan State 

University), municipality (e.g., East Lansing), region (e.g., Michigan), country (e.g., USA). Each 

value is delimited by a comma. If a study only presented a country name, I only recorded that 

country name. However, when a region (e.g., state or province) was reported with no country, I 

added the country name to the locality information.  

 

 

 

 

 

 

 

 

 

key value 

location_id primary key for location 

paper_id secondary key for paper 

exp_long longitudinal coordinates for common garden location 

exp_lat latitudinal coordinates for common garden location 

exp_name municipality, state/province, country of common garden location 

source_long longitudinal coordinates for wild/source population 

source_lat latitudinal coordinates for wild/source population 

source_name municipality, state/province, country of wild/source population 

Table 4.4 Structure of the Location table. Blue shading signifies the table’s primary 

key, and yellow signifies the table’s secondary key that connects it to other tables. 

 



 

  84 

Sample 

 Data on the identity, sampling effort, phenological stage, and age were collated in the 

Sample table (Table 4.5). Plant genera and species are reported as they were in the papers and are 

not taxonomically standardized in the terpr database. Cultivar and genotype information were 

recorded as they were written in each study. The plant_organ feature is a specific record of the 

sampled plant part (e.g., anther, pericarp, leaf vein, bark, root) as it was presented in the study. 

The organ_mod feature is a modified from the plant_organ feature that has a broad 

categorization of the type of plant tissue sampled (e.g., floral, fruit, leaf, bark, root). The organ 

stage was reported verbatim from the study, while the phenological_stage feature was inferred or 

recorded exactly from the text with possible records including “flowering,” “fruiting,” 

“vegetative,” “sporophyte,” and “unknown.” The life_stage feature was inferred or recorded 

exactly from the text with records such as “seedling,” “sapling,” “juvenile,” “mature.” 

I recorded the number of individuals included in a sample, which can be considered 

biological replicates, in the num_individuals feature. I could not independently verify if the 

number of individuals were genetically unique for all studies. I also recorded the number of 

technical replicates, runs on the GC-MS or GC-FID, that produced the value (e.g., mean and 

variance) presented in the concentration table in the sample_size. The data_reported feature is a 

brief note about concentration data aggregation in each study, such as a minimum-maximum 

range (“min_max”), mean and variance (“mean_error”), mean, and solely presence/absence data 

(“presence_absence”). 
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key value 

sample_id primary key for sample 

paper_id secondary key for paper  

treatment_id secondary key for treatment 

chem_method_id secondary key for chemical method 

location_id secondary key for location 

family plant family name 

genus plant genus name 

species plant species name 

subspecies plant subspecies name 

genotype plant genotype/variety 

life_stage plant life stage 

organ_stage organ stage 

plant_age plant age 

tissue_age tissue age 

num_individuals 

number of plant individuals (biological replicates) represented 

in sample 

plant_organ plant organ sampled 

sample_size number of technical replicates for reported concentration 

data_reported 

aggregation factor for data (e.g., mean, mean_error, median, 

presence/absence) 

Study 

 The study table includes all results from the searches, inclusive of those papers that did 

not fit the criteria for collecting all data (Table 4.6). I include it here in case other researchers 

would like to examine those studies that were excluded or to collect data from those studies for 

which I did not have the resources to collect all data. The following fields were based on the 

output from the export of the search term results on ISI Web of Science: authors, title, journal,  

pub_date, pub_year, volume, issue, start_page, end_page, and doi. 

Table 4.5 Structure of the Sample table. Blue shading signifies the table’s primary 

key, and yellow signifies the table’s secondary key that connects it to other tables. 
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Treatment 

 Data on general plant growth conditions and special experimental treatments were 

collected for each study (Table 4.7). The collection_year feature is noted for all plants grown 

outside, regardless of cultivated or wild growth. If collection occurred across multiple years, and 

the samples years were not disaggregated in the concentration table, then all years were recorded 

and delimited by commas. I collected the location_type feature as eight possible factors: (1) 

“common_garden” for plants grown on farms, experimental plots planted by humans, botanical 

gardens, arboreta, (2) “wild_population” for plants grown in the wild, agnostic to native and 

cultivated statuses, (3) “growth_chamber” for plants grown in small chambers under controlled 

conditions, (4) “commercial” for plant material bought as an essential oil or in a store or market 

with unknown growth conditions, (5) “greenhouse” for plants grown in rooms under controlled 

conditions, (6) “screenhouse” for plants grown in rooms with exposure to natural weather 

key value 

paper_id primary key for paper 

authors list of study’s authors 

title study title 

journal study publication 

pub_date publication date of study 

pub_year publication year of study 

volume study volume 

issue study issue 

start_page first page of issue that contains study 

end_page last page of issue that contains study 

search_terms 

the search terms on ISI web of science that resulted in this 

study 

doi digital object identifier 

exclusion 

indicator for exclusion from the database (values: 0 – 

included in database; 1 – did not fit title criteria; 2 – did not 

fit main text criteria; 3 – removed due to limited resources 

to process; 4 – could not locate text or required explicit 

requests to authors; 5 – duplicated across searches) 

Table 4.6 Structure of the Study table. Blue shading signifies the table’s primary key. 
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conditions, but excluded from wild ecological interactions, (7) “unknown” for unknown growth 

location type, and (8) “multiple” for plant tissue sampled across multiple location types. 

Treatment features, such water, thermal, and nutrient (i.e., fertilizer) stress, herbivory 

damage, and pathogen inoculation, were indicated by “yes” or “no.”  A “yes” under these 

treatment features indicates the sample had the treatment. A “no” under these treatment features 

indicates the sample did not have the treatment. Some studies resampled plants and/or plant 

communities multiple times after a treatment, and I collected information on the time since the 

treatment was applied in days. For example, a value of “-1” indicates that the sample was 

collected one day before a treatment was applied, and a value of 365 indicates that the sample 

was collected a year after a treatment was applied. If the time_since_treatment feature has a 

numeric value, but there is not a “yes” indicated in a treatment feature, then the study may have a 

treatment that is not within the scope of the data we collected. 

key value 

treatment_id primary key for treatment 

paper_id secondary key for paper  

fertilizer_treatment indicator if fertilizer treatment 

water_treatment indicator if water treatment 

temp_reported indicator if growing temperature was recorded 

pressure_reported indicator if ambient pressure was recorded  

temp_treatment indicator if temperature treatment 

fire_treatment indicator if fire treatment 

time_measure_treatment time since treatment 

herbivory_treatment indicator if herbivory was a treatment 

pathogen_treatment indicator if pathogen inoculation/introduction was a treatment 

location_type type of growth conditions (e.g., wild population, greenhouse) 

collection_year year of tissue collection if grown outside 

 

 

Table 4.7 Structure of the Treatment table. Blue shading signifies the table’s primary 

key, and yellow signifies the table’s secondary key that connects it to other tables. 
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Data Records 

Access 

 The terpr v1.0.0 database can be accessed as .csv files upon request to the author. 

Development and deployment as an SQL database are ongoing. 

Data coverage 

 Overall, the database includes 1227 studies containing 5107 samples from 1178 plant 

species. The species counts are based on standardizing names with the Leipzig catalog of 

vascular plants (Freiberg et al. 2020), and non-vascular plant names were not standardized for 

the count. The database has high geographical coverage in Europe, Northern Africa, and South  

 

 

 

(a) 

(b) 

Figure 4.4 Locations for (a) wild-grown plants and (b) plants grown in outdoor 

common garden settings. 
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Asia (Figure 4.4). Few samples are from North America, the Amazon, North Asia, Central 

Africa, and Western Australia. The largest coverage within angiosperm clades is in the Lamiales 

(number of species = 197) and Asterales (number of species = 154), and high representation in 

Pinales (number of species = 77; Figure 4.5). Ferns and non-vascular plants do not have high 

sampling in the database, representing less than 5% of all plants species in the database, 

respectively. The database is biased toward foliar tissue samples, followed by the grouped aerial 

Figure 4.5 Vascular plant phylogeny of all plant families. Green and labeled tips 

indicate families present in the database. The plant phylogeny is based on the 

GTOTB.extended tree of vascular plant families (Smith and Brown 2018). All family 

names were standardized using the lcvplants R package (Freiberg et al. 2020).  

 

Figure 4.6 Study count by grouped organ feature (Sample table feature: 

“organ_mod”). 
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parts of plant tissue (i.e., shoots), which contained stem, foliar tissue, and sometimes fruit or 

floral tissue depending on the sampled phenological stage (Figure 4.6). The mean machine run 

time across all chemical methods was 56.3 minutes +/- 23.5 (1SD). The most common extraction 

type was hydrodistillation (Figure 4.7).  

Accounting for configuration, charge, and other structural differences between 

compounds, 1852 unique monoterpenoids and sesquiterpenoids are reported across all studies’ 

6829 total unique compounds of all classes. A few compounds were more present across the 

Figure 4.6 Study count by extraction type feature (Chemical methods table feature: 

“extraction_type”). 

Figure 4.7 Number of species with observed monoterpenoid or sesquiterpenoid. 

Superclass was determined by NPClassifier (Kim et al. 2020) and molecular weight 

was collected from PubChem, NIST, ChemSpider, or SpectraBase. 
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species in my database than others. In terms of species coverage, -pinene and caryophyllene 

were the most commonly found monoterpenoid and sesquiterpenoid, respectively (Figure 4.7).  

Technical Validation 

 

 Several data quality, collection process, and transformation checks were incorporated into 

the workflow. First, whenever possible, data collection was automated to reduce mistakes (i.e., 

transforming wide table formats to long table formats through the R Shiny app). Despite reduced 

time and energy efficiency, paste errors from concentration data collection were corrected 

manually to ensure data integrity. I validated all compound names for chemical metadata across 

at least one of the four sources—PubChem, ChemSpider, SpectraBase, and NIST.  

Beyond its necessity for the database structure, sample indexing was a detailed validation 

process ensuring that the secondary keys in the Sample table were properly related to the primary 

keys of the Treatment, Location, and Chemical methods tables. Locations were also validated via 

visual inspection on a map. Finally, a random sample of 50 samples were chosen for validation 

with the Concentration table, with an error rate of 2% (n = 1 sample). In this case, the sample 

had the incorrect cultivar listed, and it was corrected. With such a low error rate, it would not be 

time or cost efficient to validate more samples. However, users are welcome to validate, check, 

and provide feedback to enhance the integrity of such a large database. 

Usage Notes 

 

 While I attempted to achieve both breadth and depth in this database, several limitations 

persist when compiling data across many sources, including information that was not reported or 

was outdated. The terpr v1.0.0 was designed with this fact in mind, and I have built in several 

features to connect to other databases and software packages to overcome reporting limitations, 

changes in taxonomy, and chemical classification (Figure 4.2). However, due to resource 
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limitations, I was unable to record the retention indices and times and their associated library 

citations for identification. A future iteration of the database may include these data from each 

study, if available. 

I provide the Canonical SMILES and InChIKey values for connection to various 

chemical databases, including NPClassifier, PubChem, and ChemSpider. Chemical metadata and 

properties can be connected to the database through various chemical database APIs. To 

facilitate these connections, users can deploy existing software development kits that exist for 

Python, such as PubChemPy and ChemSciPy (Swain 2018), in R, such chemodiv, webchem 

(Szöcs et al. 2020), and ChemmineR (Cao et al. 2008).  

For the location data, I recommend the tidygeocoder R package (Cambon et al. 2021) to 

supplement the latitude and longitude coordinates supplied here. The tidygeocoder R package 

contains functions that can search municipality names across various geolocation APIs and 

append latitude and longitude data. I recommend validating and standardizing plant taxonomy 

via the lcvplants R package, or equivalent taxonomic standardization software package, while 

following the protocol outlined in Grenié et al. (2021), as I did to complete Figure 4.4 (Freiberg 

et al. 2020).  

While not a completely exhaustive collection of studies, the database can be a starting 

point or supplement for meta-analyses into the effects of these treatments on terpenoid emissions 

and diversity. However, the coverage across treatment features varies widely. For example, 47 

studies have herbivory treatments, while eight studies have pathogen inoculation treatments. 

Other search criteria for treatments may yield more studies, similar to the targeted searches I did 

for studies with herbivory treatments. Additionally, beyond being a reference for previously 

successful chemical identification methods, database meta-analyses can determine the efficacy of 
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various capillary columns, machine run times, extraction times, and other detection parameters 

collated here. 

Finally, this database can be a resource to answer foundational questions across, but not 

exclusive to, four disciplines: ecology (e.g., are specific terpenoids associated with particular 

species interactions? Do plants that produce more diverse terpenoid profiles interact with more 

species? Can we identify multifunctionalities in particular compounds? Are there synergistic 

effects on plant community interactions when producing more structurally diverse terpenoid 

profiles?), evolution (e.g., are there hotspots of terpenoid diversity across the plant phylogeny? 

How can we leverage phylogenetic comparative techniques to study terpenoid evolution? Is the 

origin of the production of common monoterpenoids and sesquiterpenoids common across all 

groups or did it evolve independently?), conservation (e.g., are threatened areas more prone to 

chemical diversity loss in addition to biological diversity loss?), and application (e.g., are there 

synergistic effects when combining terpenoids for medicinal use? Are there taxonomic reservoirs 

of untapped terpenoid diversity for applied exploration?).  

Code Availability 

 All code to demonstrate the core processes of the workflow (Figure 4.2) is available upon 

request to the author. Additionally, the code to reproduce the figures here is available upon 

request. Intermediary tables (e.g., individual studies’ wide-formatted and cleaned concentration 

tables) are also available upon request.  
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CHAPTER 5: 

CONCLUSION 

As is often the case in a doctoral program, this dissertation journey had many twists and 

turns before settling on its final state here. However, half of the duration of my dissertation 

occurred during the COVID-19 pandemic and its related shutdowns. Most of my experimental 

plants died in the greenhouse in March and April 2020 because I could not access them, I lost all 

hired labor resources in the 2020 field season, and I was unsure when or if processes, resources, 

places, and supply chains would return to their previously functional levels. I decided to shift the 

substance of my dissertation from primarily field-based ecological experiments on plant-insect 

interactions to computer-based, large data work on phytochemical diversity. By addressing the 

pandemic’s effects on this dissertation, I rationalize the seemingly disparate subject matters 

between the goldenrod chapter and the terpenoid chapters. For each project, I address room for 

growth, methods that worked well, and some that did not work so well. 

Temporal context of herbivory affects goldenrod community ecology and plant growth 

 Chapter 1 focused on the community ecology of a plant and its antagonists. I found that 

the temporal context following a species interaction event (e.g., early-season mirid feeding or 

variation in jasmonic acid spray timing) had significant influences on the conclusions deduced 

from the results. These results emphasize the necessity for temporally explicit ecological 

experiments, a perspective that is growing in ecology (Yang 2020). We can look to the successes 

and failures of my experimental approaches to arrive at a better understanding of temporal 

dynamics in the natural world.  

 My common garden and in situ field experiments evaluated intra-annual variation in 

species interactions and plant growth at various time points throughout a single growing season. 

Ecological systems can exhibit immediate or lagged responses to events that vary in duration and 
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intensity (Jackson et al. 2021). These lagged responses have not been thoroughly investigated in 

an evolutionary perspective. Therefore, a core question in the evolutionary ecology of plant-

insect interactions will be answered if “immediate” or “lagged” responses result in greater 

fitness. For instance, in my common garden experiment, mirid-fed plants exhibited reduced 

pathogen loads earlier in the season, but not later in the season. Future experiments may address 

the fitness benefits of that more “immediate” response to an herbivory event, rather than a lagged 

or sustained response. Another next step would be replicating previous ecological experiments 

and measuring responses at different time points along an organism’s ontogeny or phenology to 

determine if the observed effects vary temporally. 

 The biology and ecology of S. altissima and its herbivores are conducive for experimental 

manipulation, given my experience with the approaches I took. The application of herbivory 

feeding by the specialist mirid, Slaterocoris sp., was generally straightforward. The white 

stippling created as the bug feeds on the leaf mesophyll is clearly visible by eye and thus allows 

for the standardization of herbivory application. Beyond the mirid-feeding application, I also 

recommend measuring rhizomes by volume displacement as opposed to length or weight if 

clonally propagating S. altissima. From my personal observation, different putative S. altissima 

genotypes varied widely in rhizome thickness; some putative genotypes were at least half as 

thick than other putative genotypes. Rhizome cut closer to the aboveground shoot also tended to 

be thicker than rhizomatous tissue farther from the aboveground shoot. Rhizomes can also dry 

out if not kept moist in a refrigerated environment before replanting. Since they are wet, the mass 

cannot be measured reliably. Although a more tedious and time-consuming method, volume 

displacement avoids these biases in length- and mass-based measurements.  
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 To address some of the issues that I had in these experimental protocols, I would avoid 

pulling rhizomes in the spring. In southwestern Michigan, by the time I had pulled rhizomes in 

April and May, the wild-growing plants may have already received several bouts of warm 

weather to begin budding fresh shoots. By placing the plants in the greenhouse after the spring 

cues had already arrived, dozens of potential ramets never sprouted from the soil. The following 

year, when I had planted rhizomes that were dug up in December and sat in a refrigerator near 

5C for a month, most rhizomes sprouted. I had little success trying to induce sprouting via 

bagging rhizomes with wet paper towels and placing in the greenhouse. I do not recommend this 

protocol without carefully monitoring the humidity inside the bag and avoiding burning the 

rhizomes. 

Finally, I initially planned to run field and greenhouse experiments based on intraspecific 

diversity in goldenrod’s responses to species interaction events. However, this was not possible 

because my collaborators were unable to genotype the plants by microsatellite amplification after 

troubleshooting primer and DNA sets, combinations, and thermal cyclers. I do not recommend 

combined molecular DNA and experimental approaches without some advances in our ability to 

genotype this species and its complex. 

Plant terpenoid diversity varies with temperature, precipitation, and phylogeny: a meta-analysis 

I aimed for the first analysis of the terpenoid database to address large, synthetic 

questions about how the diversity of these compounds varies across plants. In a practical sense, I 

chose climatic and phylogenetic covariates because questions about their relationship with 

phytochemical diversity required minimal additional data collection beyond the 100,000s of data 

points I had already collected for the database. The two climate variables I included—annual 

mean temperature and annual total precipitation—are only two covariates that could influence 
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monoterpenoid and sesquiterpenoid diversity. As mentioned in the meta-analysis chapter, a 

crucial next step in this research is observing trends across gradients of atmospheric pressure. I 

could not easily locate and extract this covariate with publicly available datasets, but that does 

not mean it cannot be obtained in the future or that other approaches will fail. Within the 

WorldClim data, information on temperature variability, seasonality, and solar radiation could be 

incorporated into complex models for a more complete understanding of the abiotic correlates of 

plant monoterpenoids and sesquiterpenoids. These models would need to be carefully crafted, 

however, to consider the expected covariation between climatic variables. 

The tools and workflows I employed for data collection here only scratched the surface of 

available analyses. To calculate -diversity, I had to pull the individual PubChem fingerprints for 

all 881 compound features that make each unique. My analyses were agnostic to the specific 

identity of these features, but we should not always limit our analyses like this. For example, if 

those compounds that have more hydroxyl groups are more hydrophilic and require greater 

stomatal conductance to be released from plant tissue, then we could explore the prevalence of 

these molecular features across climate gradients. We can also incorporate compound properties 

that are relevant for ecological interactions, such as molecular weight, into our analyses. With 

our advancements in tools and frameworks for collecting compound metadata and properties, 

investigations on the perception and effects of phytochemicals on plant-insect interactions can 

synthesize my approaches developed in this dissertation with experiments to identify 

mechanisms in field, greenhouse, and lab settings. 

 When analyzing this amount of data especially in Bayesian contexts, models can take a 

long time to converge. I found that simply centering and scaling my continuous variables for 

temperature and precipitation, so they were within the same order of magnitude and centered 
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around their respective mean, vastly decreased model duration and improved model 

convergence. Additionally, I was not able to confidently determine phylogenetic signal in -

diversity by calculating Pascal’s  from the models’ group-level effects. I recommend future 

analyses run more complex comparative analyses to find the appropriate measure for 

phylogenetic signal (Münkemüller et al. 2012). 

No meta-analysis encompasses every bit of information available to answer a set of 

questions, and this meta-analysis is no exception. Several limitations arose regarding location 

data availability. Many studies were excluded from the analyses in this chapter because the 

authors did not provide precise enough geographical information or were unclear if the plants 

were growing in a wild or cultivated context. Fortunately, I could increase the sample size of 

those studies with latitude and longitude coordinates by deploying the tidygeocoder R package to 

those samples with municipality-level location descriptions. I also found that the WorldClim data 

had wide coverage across the globe for these types of analyses; only twelve samples that had 

geographic coordinates were not matched to climate data in WorldClim. While data quality will 

always be vital to the success of any meta-analysis (Koricheva and Gurevitch 2014), context-

appropriate database connections can facilitate increasing sample sizes when inclusion criteria 

are strict and lengthy. 

terpr v1.0.0: A database of plant monoterpenoids and sesquiterpenoids  

Assembling the terpenoid database required more manual labor than anticipated. Each 

study required meticulous care to collect its dozens of variables along with chemical compound 

tables containing, sometimes, hundreds of data points. Programmatic extraction of compound 

concentration tables from PDFs was not possible for several reasons. For tables that were 

embedded as text in rows and columns, papers reported the tables too variably (i.e., the table 
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names and captions were worded too differently or placed in different sequences by study) to 

automate extraction. Despite growing calls for standard table formats (Broman and Woo 2018), 

many tables were not rectangular, contained implicit column headers, and empty cells, which 

required a human to review and fix inconsistencies. For tables in PDFs that are scans of 

documents, tools, such as optimal character recognition (OCR), would be required for table 

extraction, which is computationally intensive, and I did not have the resources or time to run 

tests on the accuracy of OCR methods for the purposes of creating this database. Since most 

papers were published since the proliferation of digitally published academic articles, these cases 

were not as common as the others.  

If I were to replicate this project, I would hire a team of about a dozen researchers with 

expertise in analytical chemistry, plant biology, terpenoids, and meta-analyses. I would have two 

separate individuals collect data on each paper, compare their values, and discuss to arrive at a 

mutually agreeable conclusion for each database feature. Early in the data collection process, I 

had to remove a table that recorded the retention index, time, and specification about compound 

identification (e.g., reference mass-spectrometry library) due to time and resource constraints. If 

future researchers would like to prioritize collecting more data from the papers already existing 

in the database, I highly recommend spending resources collecting this information.  

A few technical tools were vital in my work with the terpenoid database. Importantly, not 

all tools are available in one programming language, and not all tools had equal efficiency. My 

preferences for some software development kits and packages for certain tasks, such as the 

Python library PubChemPy (Swain et al. 2014) for compound metadata searches and the R 

package lcvp (Freiberg et al. 2020) for reconciling plant species names, do not mean these are 

the only tools available and it is possible that others will be developed in the future. Switching 
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between languages was challenging logistically, but “newer” tools, such as the reticulate R 

package (Ushey et al. 2022) and Quarto documents created by Posit Software, present promising 

avenues to integrate code between programming languages within the same pipelines. 

Unfortunately, the data collection process for a database like terpr cannot be streamlined into a 

single script (e.g., .R or .py file) or notebook (e.g., Quarto, RMarkdown, or Jupyter Notebook). A 

likely solution would be to integrate those data orchestration tools used in applied and business 

contexts (e.g., Prefect or Airflow). Most emphasis on inter-database connections with my 

monoterpenoid and sesquiterpenoid database was on the relationships with other chemical 

databases (e.g., those with ChemSpider and PubChem; Kim et al. 2021, Royal Society of 

Chemistry 2022), but connection to plant trait databases, like TRY (Kattge et al. 2020), 

FunAndes (Báez et al. 2022), and the China Plant Trait Database (Wang et al. 2022), can be 

similarly valuable.  

If future researchers would like to collect data from newly published papers, I would 

invite authors to a portal with prompts and file submission guidelines for including data in the 

database. Submitted data can then be cross-checked by a trained individual on the database team. 

I wrote custom Shiny apps to facilitate the data collection, which can offer a start to the data 

submission portal. However, before that, a reasonable next step would be to return to those 

papers that I excluded due to resource constraints. I also only included monoterpenoids and 

sesquiterpenoids in this version of terpr, but many chemical “byproducts” of the data pipeline 

(e.g., green leaf volatiles and fatty acids) were observed and excluded and could thus be 

incorporated into other databases or analyses. If desired, the database could be augmented to all 

studies that analyze plant tissue with gas-chromatography mass-spectrometry, regardless of focus 

phytochemical superclass. Finally, chemical ecologists and biochemists alike can apply the many 
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tools and scripts that I provide in this chapter to chemicals found in the tissue of other organisms, 

such as insects, fungi, and algae.  
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APPENDIX 1: 

RECORD OF DEPOSITION OF VOUCHER SPECIMENS 

 

The specimens listed below have been deposited in the named museum as samples of 
those species or other taxa, which were used in this research. Voucher recognition 
labels bearing the voucher number have been attached or included in fluid preserved 
specimens. 
 
 
Voucher Number: 2023-03 
 
 
Author and Title of thesis:  
 
Daniel B. Turner, “Time and terpenoids: experimental and data-intensive investigations 
into temporal ecology and phytochemistry” 
 
 
Museum(s) where deposited: 
Albert J. Cook Arthropod Research Collection, Michigan State University (MSU) 
 
Specimens: 
 
Family Genus-species Life Stage Quantity Preservation 

 
Miridae 

 
Slaterocoris sp. 

 
Adult 

 
10 

 
point pinned 
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APPENDIX 2: 

SUPPLEMENT FOR TEMPORAL CONTEXT OF HERBIVORY AFFECTS 

GOLDENROD COMMUNITY ECOLOGY AND PLANT GROWTH 

Putative 

genotype 
Source latitude Source longitude Date collected 

Dates rhizome 

planted in 

greenhouse 

152 42.4903847 -85.448568 10-May-19 10-May-19 

153 42.4769322 -85.461359 10-May-19 10-May-19 

163 42.4845879 -85.451522 12-Apr-19 25-Apr-19 

171 42.4841886 -85.451529 19-Apr-19 25-Apr-19 

180 42.487991 -85.448502 09-May-19 10-May-19 

185 42.4849231 -85.451122 19-Apr-19 25-Apr-19 

197 42.4771473 -85.460672 10-May-19 10-May-19 

220 42.4904796 -85.448968 10-May-19 10-May-19 

242 42.4878199 -85.448148 19-Apr-19 25-Apr-19 

308 42.4899983 -85.449072 19-Apr-19 25-Apr-19 

314 42.4901646 -85.448943 19-Apr-19 25-Apr-19 

335 42.484711 -85.450802 12-Apr-19 25-Apr-19 

363 42.4845832 -85.451169 09-May-19 10-May-19 

366 42.4878624 -85.448518 09-May-19 10-May-19 

385 42.4793761 -85.457742 12-Apr-19 25-Apr-19 

386 42.4902613 -85.448932 19-Apr-19 25-Apr-19 

391 42.4877635 -85.448291 10-May-19 10-May-19 

 

Table S2.1 Rhizome collection details from mirid-feeding experiment. Putative genotype 

identification number is arbitrary and based on the physical location where rhizomes were 

collected, not with molecular techniques. 
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Figure S2.1 Map of mirid-feeding experiment. ‘C’ stands for ‘control’ plants that did not receive 

mirid-feeding. ‘T’ stands for ‘treatment’ plants, which received mirid feeding. 
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Measurement 

Round 1 (17-

19-Jul-2019) 

Measurement 

Round 2 (12-

14-Aug-2019) 

Measurement 

Round 3 (31-

Aug-2019 & 

2-Sep-2019) 

Measurement 

Round 4 (21-

22-Sep-2019) 

Control 84 84 84 84 

Treatment 58 58 58 58 

 

Table S2.2 Sample sizes from mirid-feeding experiment by response variable measurement 

round. 
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Figure S2.2 Map from JA spray experiment in Lux Arbor Forest Reserve, Kellogg Biological 

Station, Michigan, USA. 
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Round 1 

(18-Jul-

2020) 

Round 2 

(31-Jul-

2020) 

Round 3 

(14-15-Aug-

2020) 

Round 4 

(30-Aug-

2020) 

Round 5 

(09-Sep-

2020) 

Control (No 

JA) 
126 111 103 93 93 

Early-only 34 27 27 19 19 

Middle-only 

  

23 15 15 

Early + 

Middle 
7 7 7 

Late-only 

 

10 10 

Early + Late 8 8 

Middle + 

Late 
8 8 

 

Table S2.3 Sample sizes JA spray experiment by response variable measurement round and 

spray timing. Blank merged cells are left intentionally blank because that spray timing was not 

applicable at that measurement round. 

  



 

  113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.3 Rhizome volume from mirid-feeding experiment. 
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Response variable Marginal R2 

Chewing herbivory 31.9% 

Pathogen damage 51.0% 

Plant height 26.5% 

 

Table S2.4 Variance explained (marginal R2) for each model in the mirid-feeding experiment. 
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Figure S2.4 Plotted effect sizes for each mirid-feeding experiment on (a) chewing herbivory, (b) 

pathogen damage, and (c) plant height. Shown are the model predicted means (points) and 95% 

CI (lines). Yellow indicates significantly negative effects on the measured parameters, and blue 

indicates significantly positive effects.   

a 

b 
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(a) Chewing herbivory 

 

Date Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

18-Jul-2019 -27.3 -30.0 -24.5 Significantly Negative 

13-Aug-2019 -6.5 -8.9 -4.3 Significantly Negative 

02-Sep-2019 13.4 10.3 16.5 Significantly Positive 

22-Sep-2019 37.6 32.3 43.0 Significantly Positive 

 

(b) Pathogen damage 
 

Date Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

18-Jul-2019 -56.0 -57.6 -54.4 Significantly Negative 

13-Aug-2019 -37.3 -39.8 -35.2 Significantly Negative 

02-Sep-2019 -18.2 -21.9 -14.4 Significantly Negative 

22-Sep-2019 7.1 1.0 13.6 Significantly Positive 

 

(c) Plant height 

 

Date Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

18-Jul-2019 -21.0 -36.5 -13.8 Significantly Negative 

13-Aug-2019 -11.5 -15.7 -8.7 Significantly Negative 

02-Sep-2019 -8.4 -10.8 -6.6 Significantly Negative 

22-Sep-2019 -6.5 -8.2 -5.1 Significantly Negative 

 

(d) Rhizome volume 

 

Date Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

13-Dec-2019 0.5 0.0 1.0 Not significant 

 

Table S2.5 Effect sizes for the mirid-feeding experiment in tabular form. 
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Table S2.6 Variance explained (marginal and conditional R2) for each model.  

Response variable Observation Timing Marginal R2 

Chewing herbivory Early 0.4% 

Chewing herbivory Mid 1.3% 

Chewing herbivory Late 2.9% 

Pathogen damage Early 7.1% 

Pathogen damage Mid 3.0% 

Pathogen damage Late 3.3% 

Plant height Early 11.6% 

Plant height Mid 0.7% 

Plant height Late 1.6% 
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Figure S2.5 Effect sizes with 95% CI between unsprayed plants and plants with JA sprays, 

treated at various timings faceted by applicable observation date, for a-c) early spray timing, d-f) 

middle spray timing, g-i) late spray timing, and j-l) double spray timing. Effect sizes are 

presented as the mean predicted values (dot) and 95% CI (line). Yellow indicates significantly 

negative effects on the measured parameters, and blue indicates significantly positive effects. 

Gray dots and lines represent not significant results. 
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(a) Chewing herbivory – early 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

18-Jul-

2020 
Unsprayed x Early-only 17.0 5.6 29.8 

Significantly 

Positive 

31-Jul-

2020 
Unsprayed x Early-only 17.8 7.8 28.8 

Significantly 

Positive 

14-Aug-

2020 
Unsprayed x Early-only 18.7 8.5 29.8 

Significantly 

Positive 

30-Aug-

2020 
Unsprayed x Early-only 19.6 7.4 33.1 

Significantly 

Positive 

09-Sep-

2020 
Unsprayed x Early-only 20.2 5.8 36.5 

Significantly 

Positive 

 

(b) Chewing herbivory – mid 

 

Date Comparison 
Mean Effect 

(%) 

2.5% CI 

(%) 

97.5% CI 

(%) 
Significance 

14-Aug-2020 Unsprayed x Middle-only -10.2 -22.0 3.4 Not Significant 

14-Aug-2020 
Unsprayed x Early + 

Middle 
76.7 20.0 160.0 Significantly Positive 

14-Aug-2020 Early-only x Middle-only -36.9 -39.4 -34.3 Significantly Negative 

14-Aug-2020 
Early-only x Early + 

Middle 
24.1 -6.7 65.2 Not Significant 

14-Aug-2020 
Middle-only x Early + 

Middle 
96.7 53.9 151.5 Significantly Positive 

30-Aug-2020 Unsprayed x Middle-only -5.3 -17.0 8.0 Not Significant 

30-Aug-2020 Unsprayed x Early + 
Middle 

26.9 -8.2 75.3 Not Significant 

30-Aug-2020 Early-only x Middle-only -15.3 -17.7 -12.7 Significantly Negative 

30-Aug-2020 Early-only x Early + 

Middle 
13.6 -9.0 41.6 Not Significant 

30-Aug-2020 Middle-only x Early + 

Middle 
34.0 10.7 62.3 Significantly Positive 

09-Sep-2020 Unsprayed x Middle-only -2.2 -17.9 16.6 Not Significant 

09-Sep-2020 Unsprayed x Early + 

Middle 
3.2 -28.5 48.9 Not Significant 

09-Sep-2020 Early-only x Middle-only 1.9 -2.3 6.2 Not Significant 

09-Sep-2020 Early-only x Early + 

Middle 
7.4 -14.9 35.7 Not Significant 

09-Sep-2020 Middle-only x Early + 
Middle 

5.5 -12.9 27.7 Not Significant 

Table S2.7 Effect sizes for the JA-spray experiment in tabular form. 
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Table S2.7 (cont’d) 

 

(c) Chewing herbivory – late 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

30-Aug-

2020 
Unsprayed x Late-only -34.2 -53.0 -7.7 

Significantly 

Negative 

30-Aug-

2020 
Unsprayed x Early + Late -34.1 -55.3 -2.9 

Significantly 

Negative 

30-Aug-

2020 
Unsprayed x Middle + Late -2.1 -33.1 43.3 Not Significant 

30-Aug-

2020 
Early-only x Late-only -35.2 -45.4 -23.1 

Significantly 

Negative 

30-Aug-

2020 
Early-only x Early + Late -35.1 -48.0 -19.1 

Significantly 

Negative 

30-Aug-

2020 
Early-only x Middle + Late -3.6 -22.2 19.4 Not Significant 

30-Aug-

2020 
Middle-only x Late-only -25.7 -34.3 -15.9 

Significantly 

Negative 

30-Aug-

2020 
Middle-only x Early + Late -25.6 -37.5 -11.5 

Significantly 

Negative 

30-Aug-

2020 

Middle-only x Middle + 

Late 
10.5 -6.5 30.6 Not Significant 

30-Aug-

2020 

Early + Middle x Early + 
Late 

-43.4 -41.7 -45.1 
Significantly 

Negative 

30-Aug-

2020 

Early + Middle x Middle + 

Late 
-16.0 -12.8 -19.0 

Significantly 

Negative 

30-Aug-

2020 
Late-only x Middle + Late 48.7 42.3 55.2 

Significantly 

Positive 

30-Aug-

2020 
Late-only x Early + Late 0.05 -4.8 5.2 Not Significant 

30-Aug-

2020 
Late-only x Early + Middle 76.9 63.2 91.7 

Significantly 

Positive 

30-Aug-

2020 

Early + Late x Middle + 

Late 
48.6 49.6 47.6 

Significantly 

Positive 

09-Sep-

2020 
Unsprayed x Late-only -27.7 -47.9 0.2 Not Significant 

09-Sep-

2020 
Unsprayed x Early + Late -48.8 -65.6 -23.9 

Significantly 

Negative 

09-Sep-

2020 
Unsprayed x Middle + Late -44.7 -62.0 -19.6 

Significantly 

Negative 

09-Sep-

2020 
Early-only x Late-only -24.0 -35.0 -11.0 

Significantly 

Negative 

09-Sep-

2020 
Early-only x Early + Late -46.1 -57.1 -32.4 

Significantly 

Negative 

09-Sep-

2020 
Early-only x Middle + Late -41.8 -52.6 -28.6 

Significantly 

Negative 
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09-Sep-

2020 
Middle-only x Late-only -26.2 -34.4 -16.9 

Significantly 

Negative 

09-Sep-

2020 
Middle-only x Early + Late -47.7 -56.6 -36.9 

Significantly 

Negative 

09-Sep-

2020 

Middle-only x Middle + 

Late 
-43.5 -52.1 -33.3 

Significantly 

Negative 

09-Sep-

2020 

Early + Middle x Early + 
Late 

-53.0 -51.8 -54.2 
Significantly 

Negative 

09-Sep-

2020 

Early + Middle x Middle + 
Late 

-49.3 -46.8 -51.6 
Significantly 

Negative 

09-Sep-

2020 
Late-only x Middle + Late -23.5 -27.0 -19.8 

Significantly 

Negative 

09-Sep-

2020 
Late-only x Early + Late -29.1 -33.9 -24.0 

Significantly 

Negative 

09-Sep-

2020 
Late-only x Early + Middle 50.8 37.1 65.9 

Significantly 

Positive 

09-Sep-

2020 

Early + Late x Middle + 
Late 

8.0 10.5 5.6 
Significantly 

Positive 

 

(d) Pathogen damage – early 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

18-Jul-

2020 
Unsprayed x Early-only -12.4 -19.9 -4.3 

Significantly 

Negative 

31-Jul-

2020 
Unsprayed x Early-only -10.4 -17.2 -3.1 

Significantly 

Negative 

14-Aug-

2020 
Unsprayed x Early-only -8.0 -15.0 -0.5 

Significantly 

Negative 

30-Aug-

2020 
Unsprayed x Early-only -5.6 -13.9 3.6 Not Significant 

09-Sep-

2020 
Unsprayed x Early-only -3.9 -13.7 7.0 Not Significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2.7 (cont’d) 
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Table S2.7 (cont’d) 

 

(e) Pathogen damage – mid 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

14-Aug-

2020 
Unsprayed x Middle-only -13.6 -26.5 1.6 Not Significant 

14-Aug-

2020 

Unsprayed x Early + 

Middle 
-2.1 -34.4 46.1 Not Significant 

14-Aug-

2020 
Early-only x Middle-only -9.4 -12.4 -6.4 

Significantly 

Negative 

14-Aug-

2020 

Early-only x Early + 
Middle 

2.5 -21.9 34.6 Not Significant 

14-Aug-

2020 

Middle-only x Early + 
Middle 

13.2 -10.9 43.8 Not Significant 

30-Aug-

2020 
Unsprayed x Middle-only -9.8 -23.3 6.0 Not Significant 

30-Aug-

2020 

Unsprayed x Early + 

Middle 
-30.0 -51.1 0.4 Not Significant 

30-Aug-

2020 
Early-only x Middle-only -2.3 -5.1 0.6 Not Significant 

30-Aug-

2020 

Early-only x Early + 
Middle 

-24.1 -39.5 -4.7 
Significantly 

Negative 

30-Aug-

2020 

Middle-only x Early + 
Middle 

-22.3 -36.3 -5.3 
Significantly 

Negative 

09-Sep-

2020 
Unsprayed x Middle-only -7.4 -24.1 12.9 Not Significant 

09-Sep-

2020 

Unsprayed x Early + 

Middle 
-43.2 -61.4 -16.4 

Significantly 

Negative 

09-Sep-

2020 
Early-only x Middle-only 2.5 -1.7 6.9 Not Significant 

09-Sep-

2020 

Early-only x Early + 

Middle 
-37.1 -50.0 -20.8 

Significantly 

Negative 

09-Sep-

2020 

Middle-only x Early + 
Middle 

-38.6 -49.2 -25.9 
Significantly 

Negative 
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Table S2.7 (cont’d) 

 

(f) Pathogen damage – late 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

30-Aug-

2020 
Unsprayed x Late-only -22.2 -43.4 6.9 Not Significant 

30-Aug-

2020 
Unsprayed x Early + Late -30.6 -51.9 0.1 Not Significant 

30-Aug-

2020 
Unsprayed x Middle + Late -0.1 -30.9 44.6 Not Significant 

30-Aug-

2020 
Early-only x Late-only -22.5 -33.0 -10.3 

Significantly 

Negative 

30-Aug-

2020 
Early-only x Early + Late -30.9 -43.1 -16.0 

Significantly 

Negative 

30-Aug-

2020 
Early-only x Middle + Late -0.4 -18.3 21.3 Not Significant 

30-Aug-

2020 
Middle-only x Late-only -10.1 -18.5 -1.0 

Significantly 

Negative 

30-Aug-

2020 
Middle-only x Early + Late -19.9 -30.8 -7.3 

Significantly 

Negative 

30-Aug-

2020 

Middle-only x Middle + 
Late 

15.4 -0.6 34.0 Not Significant 

30-Aug-

2020 

Early + Middle x Early + 
Late 

-16.0 -12.5 -19.1 
Significantly 

Negative 

30-Aug-

2020 

Early + Middle x Middle + 
Late 

21.0 25.3 16.9 
Significantly 

Positive 

30-Aug-

2020 
Late-only x Middle + Late 28.4 21.9 35.3 

Significantly 

Positive 

30-Aug-

2020 
Late-only x Early + Late -10.9 -15.1 -6.4 

Significantly 

Negative 

30-Aug-

2020 
Late-only x Early + Middle 6.1 -2.7 15.7 Not Significant 

30-Aug-

2020 

Early + Late x Middle + 
Late 

44.1 43.7 44.5 
Significantly 

Positive 

09-Sep-

2020 
Unsprayed x Late-only -7.8 -32.6 26.1 Not Significant 

09-Sep-

2020 
Unsprayed x Early + Late -25.8 -48.8 7.5 Not Significant 

09-Sep-

2020 
Unsprayed x Middle + Late -10.5 -37.6 28.5 Not Significant 

09-Sep-

2020 
Early-only x Late-only 8.7 -5.1 24.4 Not Significant 

09-Sep-

2020 
Early-only x Early + Late -12.5 -27.8 6.0 Not Significant 

09-Sep-

2020 
Early-only x Middle + Late 5.6 -12.1 26.8 Not Significant 
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09-Sep-

2020 
Middle-only x Late-only 1.1 -8.3 11.5 Not Significant 

09-Sep-

2020 
Middle-only x Early + Late -18.6 -30.3 -5.0 

Significantly 

Negative 

09-Sep-

2020 

Middle-only x Middle + 

Late 
-1.8 -15.1 13.6 Not Significant 

09-Sep-

2020 

Early + Middle x Early + 
Late 

42.6 48.1 37.4 
Significantly 

Positive 

09-Sep-

2020 

Early + Middle x Middle + 
Late 

72.1 80.3 64.3 
Significantly 

Positive 

09-Sep-

2020 
Late-only x Middle + Late -2.9 -7.4 1.9 Not Significant 

09-Sep-

2020 
Late-only x Early + Late -19.5 -24.0 -14.8 

Significantly 

Negative 

09-Sep-

2020 
Late-only x Early + Middle -43.6 -48.6 -38.0 

Significantly 

Negative 

09-Sep-

2020 

Early + Late x Middle + 
Late 

20.7 21.8 19.6 
Significantly 

Positive 

 

(g) Plant height – early 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

18-Jul-

2020 
Unsprayed x Early-only -2.2 -5.3 0.5 Not Significant 

31-Jul-

2020 
Unsprayed x Early-only -2.2 -5.0 0.4 Not Significant 

14-Aug-

2020 
Unsprayed x Early-only -2.2 -4.8 0.1 Not Significant 

30-Aug-

2020 
Unsprayed x Early-only -2.2 -4.71 0.1 Not Significant 

09-Sep-

2020 
Unsprayed x Early-only -2.2 -4.69 0.0 Not Significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2.7 (cont’d) 
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Table S2.7 (cont’d) 

 

(h) Plant height – mid 

 

Date Comparison Mean Effect (%) 2.5% CI (%) 97.5% CI (%) Significance 

14-Aug-

2020 
Unsprayed x Middle-only -2.6 -7.2 1.4 Not Significant 

14-Aug-

2020 

Unsprayed x Early + 

Middle 
-4.8 -16.9 5.7 Not Significant 

14-Aug-

2020 
Early-only x Middle-only 0.5 -0.2 1.1 Not Significant 

14-Aug-

2020 

Early-only x Early + 
Middle 

-1.8 -10.7 5.4 Not Significant 

14-Aug-

2020 

Middle-only x Early + 
Middle 

-2.3 -10.5 4.3 Not Significant 

30-Aug-

2020 
Unsprayed x Middle-only -1.9 -6.4 1.9 Not Significant 

30-Aug-

2020 

Unsprayed x Early + 

Middle 
-3.9 -15.6 6.3 Not Significant 

30-Aug-

2020 
Early-only x Middle-only 1.1 0.5 1.6 

Significantly 

Positive 

30-Aug-

2020 

Early-only x Early + 
Middle 

-0.9 -9.4 6.0 Not Significant 

30-Aug-

2020 

Middle-only x Early + 
Middle 

-2.0 -9.9 4.3 Not Significant 

09-Sep-

2020 
Unsprayed x Middle-only -1.5 -5.9 2.3 Not Significant 

09-Sep-

2020 

Unsprayed x Early + 

Middle 
-3.3 -14.9 6.8 Not Significant 

09-Sep-

2020 
Early-only x Middle-only 1.5 0.9 1.9 

Significantly 

Positive 

09-Sep-

2020 

Early-only x Early + 

Middle 
-0.4 -8.7 6.4 Not Significant 

09-Sep-

2020 

Middle-only x Early + 
Middle 

-1.8 -9.5 4.4 Not Significant 
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Table S2.7 (cont’d) 

 

(i) Plant height – late 

 

Date Comparison 
Mean 

Effect (%) 

2.5% CI 

(%) 

97.5% CI 

(%) 
Significance 

30-Aug-2020 Unsprayed x Late-only -2.2 -11.9 6.4 Not Significant 

30-Aug-2020 Unsprayed x Early + Late -0.6 -11.5 9.1 Not Significant 

30-Aug-2020 Unsprayed x Middle + Late -10.4 -22.0 -0.2 Significantly Negative 

30-Aug-2020 Early-only x Late-only 3.3 -1.1 6.8 Not Significant 

30-Aug-2020 Early-only x Early + Late 5.0 -0.7 9.5 Not Significant 

30-Aug-2020 Early-only x Middle + Late -5.4 -12.4 0.2 Not Significant 

30-Aug-2020 Middle-only x Late-only -3.9 -7.7 -1.0 Significantly Negative 

30-Aug-2020 Middle-only x Early + Late -2.4 -7.3 1.5 Not Significant 

30-Aug-2020 Middle-only x Middle + 
Late 

-12.0 -18.3 -7.1 Significantly Negative 

30-Aug-2020 Early + Middle x Early + 

Late 
3.9 6.2 2.4 Significantly Positive 

30-Aug-2020 Early + Middle x Middle + 

Late 
-6.4 -6.4 -6.4 Significantly Negative 

30-Aug-2020 Late-only x Middle + Late -8.4 -11.4 -6.2 Significantly Negative 

30-Aug-2020 Late-only x Early + Late 1.6 0.4 2.5 Significantly Positive 

30-Aug-2020 Late-only x Early + Middle -2.2 -5.4 0.1 Not Significant 

30-Aug-2020 Early + Late x Middle + 
Late 

-9.9 -11.8 -8.5 Significantly Negative 

09-Sep-2020 Unsprayed x Late-only -2.1 -11.7 6.5 Not Significant 

09-Sep-2020 Unsprayed x Early + Late -0.1 -11.1 9.5 Not Significant 

09-Sep-2020 Unsprayed x Middle + Late -9.7 -21.2 0.4 Not Significant 

09-Sep-2020 Early-only x Late-only 2.7 -1.7 6.2 Not Significant 

09-Sep-2020 Early-only x Early + Late 4.7 -0.9 9.2 Not Significant 

09-Sep-2020 Early-only x Middle + Late -5.3 -12.3 0.1 Not Significant 

09-Sep-2020 Middle-only x Late-only -4.1 -7.9 -1.1 Significantly Negative 

09-Sep-2020 Middle-only x Early + Late -2.2 -7.2 1.7 Not Significant 

09-Sep-2020 Middle-only x Middle + 

Late 
-11.6 -17.8 -6.8 Significantly Negative 

09-Sep-2020 Early + Middle x Early + 

Late 
5.0 7.4 3.3 Significantly Positive 

09-Sep-2020 Early + Middle x Middle + 

Late 
-5.1 -4.8 -5.4 Significantly Negative 
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09-Sep-2020 Late-only x Middle + Late -7.9 -10.8 -5.7 Significantly Negative 

09-Sep-2020 Late-only x Early + Late 2.0 0.8 2.8 Significantly Positive 

09-Sep-2020 Late-only x Early + Middle -2.9 -6.2 -0.4 Significantly Negative 

09-Sep-2020 Early + Late x Middle + 

Late 
-9.6 -11.4 -8.3 Significantly Negative 

 

 

 

 

  

Table S2.7 (cont’d) 
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Figure S2.6 Effect sizes with 95% CI between unsprayed plants and plants with JA sprays, 

treated at various frequencies faceted by applicable observation date, for a, c, e) middle spray 

timing and b, d, f) late spray timing. Effect sizes are presented as the mean predicted values (dot) 

and 95% CI (line). Yellow indicates significantly negative effects on the measured parameters, 

and blue indicates significantly positive effects. Gray dots and lines represent not significant 

results. 
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