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ABSTRACT

Identifying a high-fidelity model of nonlinear dynamic systems is a prerequisite for achieving

desired specifications in any model-based control design technique. This is because, most control

design methods rely on the availability of an accurate model of the system dynamics and coarse

dynamics models without generalization guarantees typically induce controllers that are either

overly conservative with poor performance or violate spatiotemporal constraints imposed on the

system when applied to the true system.

This dissertation investigates the finite-time identification of deterministic and stochastic sys-

tems. First in Chapter 2, a novel finite-time distributed identification method is introduced for

nonlinear interconnected systems. A distributed concurrent learning (CL) based discontinuous

gradient descent (GD) update law is presented to learn uncertain interconnected subsystems’ dy-

namics by minimizing the identification error for a batch of previously recorded data collected

from each subsystem as well as its neighboring subsystems. The state information of neighboring

interconnected subsystems is acquired through direct communication. Finite-time Lyapunov sta-

bility analysis is performed and easy-to-check rank conditions on the distributed memories data of

subsystems are obtained, under which finite-time stability of the distributed identifier is guaranteed.

These rank conditions replace the restrictive persistence of excitation (PE) conditions which are

hard and even impossible to achieve and verify.

Next, Chapter 3 presents a fixed-time system identifier for continuous-time nonlinear systems. A

novel adaptive update law with discontinuous gradient flows of the identification errors is presented

that leverages CL to guarantee the learning of uncertain dynamics in a fixed time. The CL approach

retrieves a batch of samples stored in a memory and the update law simultaneously minimizes the

identification error for current stream of samples as well as past memory samples. Fixed-time

Lyapunov stability analysis certifies fixed-time convergence to the stable equilibria of the GD flow

of the system identification error under easy-to-verify rank conditions.

In Chapter 4, an online data-regularized CL-based stochastic GD is presented for function

approximation with noisy data. A fixed-size memory of past experiences is repeatedly used in the



update law along with the current streaming data to provide probabilistic convergence guarantees

with much-improved convergence rates (i.e, linear instead of sublinear) and less restrictive data-

richness requirements. This approach allows us to leverage the Lyapunov theory to provide

probabilistic guarantees that assure convergence of the parameters to a probabilistic ultimate bound

exponentially fast, provided that a rank condition on the stored data is satisfied. This analysis shows

how the quality of the memory data affects the ultimate bound and can reduce the effects of the

noise variance on the error bounds.

In Chapter 5, deterministic and stochastic fixed-time stability of autonomous nonlinear discrete-

time (DT) systems are studied. Lyapunov conditions are first presented under which the fixed-time

stability of deterministic DT systems is certified. Extensions to systems under deterministic

perturbations as well as stochastic noise are then considered. For the former, the sensitivity

to perturbations for fixed-time stable DT systems is analyzed, and it is shown that fixed-time

attractiveness is resulted from the presented Lyapunov conditions. For the latter, sufficient Lyapunov

conditions for fixed-time stability in probability of nonlinear stochastic DT systems are presented.

The fixed upper bound of the settling-time function is derived for both fixed-time stable and fixed-

time attractive systems, and the stochastic settling-time function fixed upper bound is derived for

stochastic DT systems.

Finally, using the results of Chapter 5, in Chapter 6, a fixed-time identifier for modeling unknown

DT nonlinear systems without requiring the PE condition is developed. A data-driven update law

based on a modified GD update law is presented to learn the system parameters, which relies on

CL. Fixed-time convergence guarantees are provided for the modified GD update law under a rank

condition on the recorded data. To guarantee fixed-time convergence, fixed-time Lyapunov analysis

is leveraged.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

System identification approaches are typically categorized into batch (offline) or incremental (on-

line) identification methods. Batch identification relies on the availability of a rich set of samples

that are collected offline. In offline learning settings, rich data are assumed to be available and

collected a priori for learning. This includes system identification using the subspace method and

its variants [1–5] and the RL value function learning using the least-square temporal difference

(LSTD) leaning [6–9]. In both cases, the least-squares (LS) method [10,11] is most commonly used

to estimate unknown parameters by minimizing the estimation error. In offline learning settings,

rich data are assumed to be available and collected a priori for learning. This includes system

identification using the subspace method and its variants [1–5] and the RL value function learning

using the least-square temporal difference (LSTD) leaning [6–9]. In both cases, the least-squares

(LS) method [10, 11] is most commonly used to estimate unknown parameters by minimizing the

estimation error.

While classical offline learning methods provide asymptotic-sample guarantees (i.e, conver-

gence to the actual parameters under infinite number of samples), finite-sample guarantees have

been widely considered recently [1–3,12–26]. These methods provide error bounds for every finite

number of samples, only after a sufficiently large number of samples that satisfy the PE condition.

Existing finite-sample results for offline system identification are typically limited to linear sys-

tems, as they are inspired by the subspace method, in which the linear dynamics structure is used to

constructs a Hankel matrix from the input–output pairs. Finally, the offline setting does not comply

with adaptive control settings for which the data samples are streaming and rich PE data are not

available a priori. To adapt to a new situation in adaptive control settings, offline or least-square

methods are not satisfactory, since one has to compute the new estimate from the scratch after

a new sample becomes available. To circumvent this issue, recursive methods leverage the new

data and modify online the immediately past estimate accordingly. The LS estimate for linearly

parameterized approximators (e.g. linear in parameter system identification [27] and linearized
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parametrization of value functions in RL using a single-layer network [28]) can be derived in a

recursive manner. However, in general, the recursive implementation of LS estimate for nonlinear

systems is a daunting challenge.

However, samples must satisfy restrictive independent and identically distributed (i.i.d) con-

ditions which are hard or even impossible to verify and obtain in closed-loop control systems.

Moreover, offline learning cannot account for changes in system dynamics. On the other hand,

online learning provides a framework to learn a system model on the fly and using the stream

of data collected from the system dynamics in real-time. Nevertheless, restrictive persistence of

excitation (PE) conditions [10, 29] must be satisfied to guarantee parameter convergence (which

turns to assure generalization guarantee). Satisfying and verifying PE conditions in real-time pose

limitations on certifying parameter convergence of online system identifiers. Moreover, parameter

convergence guarantees are mainly achieved asymptotically or exponentially.

Concurrent learning (CL) technique has been leveraged to relax the PE condition [30–43].

Chowdhary et al. [35, 36] presented a CL update law for adaptive control systems in which the

identification error is minimized for not only current samples but also a batch of recorded samples.

An easy-to-verify condition on the richness of data is then derived to guarantee the exponential

parameter error convergence, which replaces the restrictive PE condition with a rank condition

on the recorded samples. In CL methods, past recorded data are replayed along with the current

stream of data in the update law to not only minimize the identification error for the current data but

also for the batch of recorded data. CL has been recently extended to adaptive control [33,44,45],

optimal and robust control [39, 46] networked control [32, 38, 47], continuous and discrete-time

system identification [37, 40–42, 48]. In the most of previously mentioned studies, the asymptotic

convergence of the estimated parameters is guaranteed under an easy-to-verify rank condition rather

than PE condition. Recently, a few CL-based methods [40–43] provided the finite-time convergence

for the estimated parameters. However, all the aforementioned identification approaches are dealing

with identification of a single dynamic system.

A class of nonlinear multi-agent systems is interconnected systems which are composed of sev-
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eral (possibly heterogeneous) physically connected subsystems influencing each other’s behavior.

Numerous engineering systems with practical relevance belong to this class of systems, including

intelligent buildings, power systems, transportation infrastructure and urban traffic systems. Typi-

cally, distributed control and monitoring methods for interconnected systems rely on high-fidelity

models of the subsystems. Designing controllers based on coarse dynamic models and without

generalization guarantees may induce closed-loop systems with poor performance or may even

result in instability. Moreover, failure in accurate and timely identification of the dynamics of a sin-

gle subsystem may snowball into an entire network instability due to the physical interconnections

among subsystems.

However, identifying the dynamics of interconnected systems is challenging due to the physical

interconnections among the subsystems. This makes the existing system identification methods for

single-agent systems not directly applicable to interconnected systems. Developing system iden-

tifiers with finite-time guarantees for interconnected systems is of utmost importance in practice,

since it allows the designer to preview and quantify the identification errors. The preview and

qualification of the error bounds can in turn be leveraged by the control and/or monitoring systems

to avoid conservationism. Otherwise, the conservationism introduced due to slow or asymptotic

convergence can degrade the interconnected system performance.

Different types of multi-agent systems’ learning approaches, classified as centralized, de-

centralized, and distributed identification methods, typically employed in control of multi-agent

systems [49–53], can be adopted to identify interconnected system dynamics. Centralized identifi-

cation methods rely on the existence of a learning center that receives data from all subsystems and

identifies the dynamics of the entire network. The centralized approach, however, comes at a high

computation and communication cost and requires access to the global knowledge of the subsys-

tems’ interconnection network. By contrast, in the decentralized learning, an independent identifier

is allocated for every subsystem which only relies on the subsystem’s own information to identify

its dynamics. Since there is no exchange of state information among the subsystems, decentralized

identifiers are unable to identify the interconnection terms in the dynamics of subsystems. On the
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other hand, distributed learning methods can accurately identify the interconnected system dynam-

ics by employing a local identifier for every subsystem while allowing it to communicate its state

information with its neighboring interconnected identifiers. In contrast to the centralized method,

in the distributed identification approach, no access to the global knowledge of the interconnection

network is required.

The distributed identification of interconnected systems can be performed either online or

offline. Generally, in offline (batch) distributed identification [54], a rich batch of data must

be collected from each subsystem and its neighboring subsystems to provide high confidence

generalization guarantees across the entire operating regimes of subsystems [12–16]. In the

batch learning, where finite-time or non-asymptotic convergence refers to generalized guarantees

provided by finite number of samples, satisfying the condition of independent and identically

distributed (i.i.d) is difficult to obtain and hard to verify in closed-loop interconnected systems. On

the other hand, online distributed identification, which is the problem of interest in this dissertation,

uses online data from each subsystem and its neighboring subsystems to learn the dynamics of

interconnected system in real time. Nevertheless, standard approaches for online identification

require the restrictive persistence of excitation (PE) condition [10, 29] to ensure generalization

and exact parameter convergence. This includes online identification of interconnected systems

using both decentralized [55, 56] and distributed [57, 58] learning approaches. The PE condition,

however, is hard to achieve and to verify online and its satisfaction is much more challenging for

interconnected subsystems compared to single-agent systems. This is because the regressor’s PE

condition for a subsystem not only depends on the richness of its own data but also the interactive

data collected from its interaction with its neighboring subsystems.

To satisfy the regressor’s PE condition in interconnected systems, all subsystems must syn-

chronously inject probing noises into their control systems to excite their dynamics and conse-

quently to produce rich data for the entire network of subsystems. Designing such a probing

noise for every subsystem to collectively satisfy the regressors’ PE conditions for all subsystems

while not jeopardizing the overall system stability is a daunting challenge due to the subsystems’
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interconnectivity: the probing noise can snowball in the entire network and lead to the system

instability. Therefore, designing an identification method for interconnected systems without re-

quiring restrictive PE conditions, for which their satisfaction can deteriorate the system’s stability

and performance, is of vital importance.

For interconnected systems, the identification error dynamics are only guaranteed to be locally

uniformly ultimately bounded [55–58].

Based on the concept of finite-time stability [59], several finite-time control methods have

been developed for output feedback control [60] and multi-agent system consensus [61, 62]. In

finite-time control design methods, the controllers are designed to guarantee finite-time stability of

the system dynamics or tracking error dynamics where either no learning is accomplished or some

observers are used along with identifiers whose identification precision is not taken into account;

therefore, there is no requirement on the data richness.

Moreover, several distributed asymptotic-convergent estimators have been designed in [63,

64] to estimate the system states or a specific parameter for multi-agent systems with known

dynamics for which the learning objectives and therefore the rich data recording do not exist. In

contrast, in the multi-agent system identification, a precise model of the system is not available

and the richness of the employed data affects the identification results. For the multi-agent system

identification, specifically interconnected systems, finite-time approaches are essential to assure

collecting rich data to identify the system dynamics in finite time. However, finite-time identification

of interconnected systems is unsettled.

Therefore, in the second chapter of this dissertation, we aim to identify the interconnected

system dynamics in finite time by proposing a novel distributed discontinuous CL-based estimation

law without requiring the standard regressors’ PE condition.

In finite-time CL-based system identifiers [40,41], the convergence settling-time is a function of

initial parameters’ estimation error and varies with initial parameter estimation variations. In finite-

time convergence, the amplitude of the initial parameter estimation error is of great importance

because if the initial error is not bounded, then it is hard to guarantee convergence of the parameters

5



to their true values in a limited time. Moreover, the settling time of their convergence depends on

the initial parameters’ estimation error and thus cannot be computed a priori since the true values

of the system parameters are unknown.

In practice, having an accurate fixed-time identification method, for which the convergence

time is independent of the initial errors is of utmost importance and allows to preview and quantify

the identification errors, which can be leveraged by the control system to avoid conservatism.

Based on the notion of fixed-time stability [65], various fixed-time control methods are ex-

tensively developed in neural control [66], event/self-triggered consensus [67], team-triggered

consensus [68], and prescribed performance control [69, 70]. It is worth noting that in fixed-time

control design methods, the controller is designed to assure fixed-time tracking error or stability

for known system dynamics: No learning is taken placed and conditions on the richness of data are

therefore not required. In sharp contrast, system identification requires learning unknown dynam-

ics while the controller is usually not designed for the sake of identifying dynamics. Therefore,

designing data-efficient system identifier that requires limited access to samples collected from

system dynamics is of vital importance.

Fixed-time observer-based controllers [66] and observers [71–76] are investigated to estimate

the system states [66, 71–73], disturbance [74, 75] and uncertainty [76] where the settling time

usually depends on the observer gains satisfying a Hurwitz condition on the observer gains matrix.

Moreover, a high-fidelity model of the system is assumed to be known in existing fixed-time

observers and/or the controller is designed to achieve fixed-time convergence. Therefore, the

problem of learning and rich data collection does not appear in these approaches. However, in

sharp contrast, in system identification, neither a high-fidelity model of the system is available,

nor the controller is usually designed for the sake of learning the dynamics. Therefore, novel

approaches are required to assure collecting rich data for identifying system dynamics in fixed

time, which is surprisingly unsettled.

Although [77] and [78] presented fixed-time identification methods, they rely on the PE condi-

tion which is hard to verify and certify in real-time. The authors in [79] and [80] introduced two
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short fixed-time stable parameter estimation algorithms by relaxing the PE condition to an interval

excitation condition; however, short fixed-time stability which ensures stability in a finite interval

of time, is a weak form of fixed-time stability. A fixed-time convergent method for time-varying

parameter identification is given in [81] that requires an analogous condition to the PE condition

called injectivity which requires the minimum singular value of the regressor to be always strictly

positive. Furthermore, in [81], the learning rate must satisfy some constraints and to check these

constraints the minimum and maximum singular values of the regressor and the upper bound of

the unknown parameters are needed to be known which are hard to compute and check online.

Despite, the emergent need for an accurate fixed-time identification method in practical cases, to

the best of our knowledge, no fixed-time identification algorithm without requiring the PE condition

is presented in the literature. Therefore, in chapter 3 of this dissertation, we present a fixed-time

identification algorithm independent of the initial estimation errors that eliminates the PE condition

by integrating the capabilities of CL and fixed-time learning. The novel idea of employing the

recorded data in a discontinuous gradient flow along with the current data in the update law has

overcome the challenge of proposing a fixed-time CL method without requiring a PE condition.

In control theory, function mapping in the presence of noisy data has been a long-standing

challenge and amounts to a joint optimization over data-richness satisfaction and function error

reduction. This is because, learning a set of parameters by minimizing a loss function does not

necessarily minimizes the expected parameter estimation error, unless a set of rich data is used

for learning. For instance, in system identification, for which the aim is to learn the unknown

dynamics of a system from collected data, to ensure the system parameters’ convergence to their

actual values, data samples must be persistently exciting (PE) [10]. Otherwise, a set of system

parameters is learned without any convergence guarantee, even though the estimation error for the

set of collected data is minimized. The parameters convergence cannot be guaranteed because

the set of collected data used for leaning the system parameters is not a good representative of

the entire state space. As another example, the PE condition over collected data must be satisfied

in reinforcement learning (RL) to assure convergence of the RL agent to an optimal policy that
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minimizes the cumulative cost of control actions [82]. In online settings, simultaneous satisfaction

of the PE condition and learning of the function parameters requires solving a joint optimization

over the data and the function error to assure rich data collection and learning an optimal set of

parameters, respectively.

A popular approach for online learning for streaming settings is the stochastic gradient descent

(SGD) method [83–88]. However, when the data have temporal dependencies, as shown in [84],

naive implementation of SGD does not show a satisfactory performance. The data-drop technique

drops a large number of samples from the stream to obtain nearly independent samples [84].

However, there is no systematic approach to check whether the stream data are independent and can

provide convergence guarantees and which samples to drop or collect to satisfy the data richness

conditions, which can result in wasting a lot of samples.

Recently, several studies have focused on accelerating SGD methods for linear regressions

corrupted by noise. In [89], a projected SGD based algorithm with weighted iterate-averaging

is presented. The convergence rate, however, is sublinear and the function under optimization is

assumed to be strongly convex. A high-order tuner is presented in [90] for time-varying regressors

that guarantees exponential convergence of parameter estimates to a bound depending on the noise

statistics. Nevertheless, a regularization term is added to penalize the deviation of the parameters

from their initial values, which can lead to a bias from the optimal value. To overcome the problem

of highly correlated steaming data, a SGD with reverse experience replay is developed in [84] that

divides data into small buffers and runs SGD backwards on the data stored in the individual buffers.

This method guarantees a sublinear convergence rate for linear regressors. A non-asymptotic

convergence analysis of a variant of SGD is presented in [91], in which the learning rate is selected

according to the expected data streams to improve the convergence rate. In [92] a stochastic

average gradient method is presented for optimizing strongly convex functions to achieve a linear

convergence rate. The work of [93] leverages the importance sampling approach to improve the

convergence rate of the SGD. Most of these existing results are presented for finite training sets

for which the loss function is sum of a finite set of strongly convex functions. However, as shown
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later, for online time-varying regression, under which the data samples are streaming, the strong

convexity is satisfied under the PE condition on the streaming data. Besides, in existing mentioned

results, the bounds on the smoothness of the function and Lipschitzness of its gradient are assumed

fixed. In sharp contrast, we aim to pave the way to change these bounds and thus to improve the

convergence rate and reduce the ultimate bound of the parameters’ estimation error while reducing

the PE condition to a rank condition on the stored data. Therefore, in chapter 4 of this dissertation,

an online data-regularized concurrent learning-based stochastic gradient descent (CL-based SGD)

update law is presented for function approximation with noisy measurements.

The Lyapunov stability theory has a longstanding history as a powerful tool in control theory

to obtain many important results in the design of a variety of controllers and adaptation laws. The

basic framework of the Lyapunov stability theory provides conditions under which their satisfaction

guarantees the stability of the system in some sense. While finding a function satisfying these

conditions, called Lyapunov function, is generally challenging, controllers and update laws can be

developed to make a candidate Lyapunov function enforce the stability conditions.

The Lyapunov theory generally provides conditions to assure the states of a system convergence

to an equilibrium state. The qualitative guarantees that are provided for the convergence time

determine the stability type, ranging from asymptotic stability, exponential stability, finite-time

stability to fixed-time stability. While asymptotic stability and exponential stability provide as-

surance that the system’s states eventually converge to an equilibrium, many real-world practical

systems demand intense time response constraints, which makes these types of stabilities insuffi-

cient. Therefore, a surge of interest has emerged in the control community in studying finite-time

stability to design control systems and adaptation laws that exhibit finite-time convergence to an

equilibrium point.

Finite-time stability [59] has been studied for continuous-time (CT) and discrete-time (DT)

deterministic and stochastic systems [94–97]. Moreover, finite-time stability concept has been

extensively applied for the finite-time control of DT [98–100] and CT [101–103] systems, as well

as finite-time identification [40–42, 104–110]. In the finite-time stability, however, the settling
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(i.e., convergence) time, depends on the system’s initial condition, and, thus, cannot be specified a

priori. Moreover, when the magnitude of the initial condition is large, it can lead to an unacceptable

convergence time guarantee. Fixed-time stability, on the other hand, imposes a stronger requirement

on the settling time, because it requires convergence guarantees with a pre-specified bound on the

settling-time function, independent of the initial condition. Fixed-time stability of deterministic

and stochastic CT systems, respectively, studied in [65] and [111], have been widely studied within

the frameworks of fixed-time control design [66–70,112–116], fixed-time observer design [71–76]

and fixed-time identification [43, 77–81].

While most real-world systems are CT in nature, DT systems are of great importance since

systems are typically discretized and controlled with digital computers and micro-controllers in

real-world applications. DT Lyapunov analysis is different from its CT counterpart and the analysis

applied for CT systems’ fixed-time stability can not be employed for DT systems. Moreover,

development of Lyapunov conditions that guarantee fixed-time stability of DT deterministic and

stochastic systems is challenging due to the requirement of having a fixed upper bound for the

convergence time. This fixed-time bound represents a priori computable time of convergence

independent of the initial conditions. Even though finite-time stability of DT deterministic

[42, 97, 117] and stochastic [118, 119] systems are recently studied, fixed-time stability of DT

deterministic and stochastic systems is surprisingly unsettled, despite its practical importance.

This gap motivates us to present fixed-time Lyapunov stability conditions that pave the way for the

realization of fixed-time control and identification of DT systems through designing appropriate

controllers and adaptation laws, respectively.

Lyapunov theory can also be leveraged to study the behavior of uncertain systems. There are

typically two types of uncertainties in control systems: randomness which is caused by a noise in a

stochastic system, and deterministic unknown perturbations with known bounds (here, we call the

deterministic systems affected by deterministic perturbations as perturbed deterministic systems).

The stability results are typically presented in terms of stability in probability for stochastic systems’

stability [94,95,111,119,120], which guarantees convergence in probability to an equilibrium point,
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and in terms of attractiveness to a bounded set for perturbed systems. Thus, in Chapter 5 of this

dissertation, we develop fixed-time stability conditions for both deterministic and stochastic DT

autonomous nonlinear systems.

To relax the PE condition, concurrent learning (CL) has been widely leveraged [36] [32,35,37–

39]. In this approach, the identification error is minimized for not only current samples but also a

set of recorded samples. using recorded past data during learning allows us to replace a verifiable

rank condition on the memory data with the strong PE condition. The convergence guarantees,

however, are limited to the exponential or asymptotic convergence of parameters’ errors. Besides,

most of these results are presented for the identification of continuous-time systems. Nevertheless,

in practice, due to the employment of digital computers for controlling the systems, a discrete-time

model is typically needed.

Despite its importance, few results are available on the identification of discrete-time systems

[42, 48, 108, 109, 121, 122]. To improve the convergence, the work of [108] presented a finite-

time identifier for discrete-time systems. However, it requires online invertibility of a regressor

matrix and its inverse computation, which makes it inapplicable for online learning of a large

number of unknown parameters’ identification. The work of [121] presented an estimation method

using dynamic regressor extension and mixing for both continuous-time and discrete-time systems;

however, their results on finite-time convergence are limited to continuous-time systems. The work

in [48] presented a concurrent learning-based function approximator for discrete-time systems

without the PE condition requirement and ensured the asymptotic convergence of the estimated

parameters. The authors in [122] presented a framework for processing gradient algorithms where

finite-time algorithms are given using nabla fractional-order calculus. In [122], time-varying

learning rates that reach zero along with converging to the optimal solution are employed to converge

to the optimal solution regardless of the initial conditions. Although, no fixed time of convergence

and fixed-time Lyapunov analysis are given in [122]. The works of [42] and [109] proposed finite-

time CL identifiers for discrete-time systems’ dynamics identification where rigorous finite-time

Lyapunov analysis guaranteed finite-time convergence.
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While finite-time identifiers have significantly improved the convergence time of classical

system identifiers that rely on standard gradient descent, the settling-time upper bound in these

methods is a function of the initial parameters’ estimation error. Therefore, the settling time of

convergence becomes unbounded as the initial condition’s norm approaches infinity. Moreover, in

finite-time convergence, a bound for the settling time cannot be computed because it would depend

on the unknown true values of the system parameters. Therefore, it is of vital importance to develop

a fixed-time identification method in which the settling-time function upper bound is independent

of the initial errors. This will allow us to quantify the identification errors over time, which leads to

less conservative control design methods that rely on the fixed-time identified system model. This

motivates us to propose an online identifier for discrete-time systems with guaranteed fixed-time

convergence properties using CL with a rank condition on the memory data which eliminates the

requirement of restrictive PE condition.

Although fixed-time controls, identifiers, and observers have been extensively employed for

continuous-time systems [43,66,68–70,72,73,123–127], fixed-time methods for discrete-time sys-

tems are generally unsettled due to the lack of fixed-time stability analysis of discrete-time systems.

The extension of fixed-time stability analysis from continuous-time systems to discrete-time sys-

tems is far from trivial. Recently, we presented fixed-time stability for stochastic and deterministic

discrete-time systems in [128], which opens the door to developing fixed-time learning algorithms.

Therefore, it is desirable to present a fixed-time learning method that can eliminate the restrictive

PE condition for discrete-time systems’ identification due to the need for an accurate fixed-time

identification method in real-world applications. Therefore, in Chapter 6 of this dissertation, a

fixed-time concurrent learning (FxTCL) algorithm for discrete-time systems is presented to 1)

ensure fixed-time parameter convergence independent of the initial estimation errors and 2) relax

the PE condition to a rank condition on the recorded data using CL.

1.1 Organization of the dissertation

Based on the above-elaborated problems, the brief contribution and organization of this disser-

tation are as follows.
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Chapter 2 presents a novel distributed discontinuous CL-based estimation law without requiring

the standard regressors’ PE condition, to identify the interconnected system dynamics in finite

time. To this end, a distributed finite-time identifier is allocated to every subsystem that leverages

local communication to not only learn the subsystem’s own dynamics but also the interconnected

dynamics based on its own state and input data, and its neighbors’ state information. Moreover, in

order to relax the regressors’ PE condition and guarantee finite-time convergence, a discontinuous

distributed CL-based gradient descent update law is presented. Using the presented update law,

every local identifier minimizes the identification error at the current time based on the current

stream of data from its own state and that of its neighbors as well as the identification error for

data collected in a rich distributed memory. The dynamics of the gradient flows are analyzed

using finite-time stability and it is shown that for every subsystem an easy-to-verify rank condition

on the matrix containing the recorded filtered regressor data (that is used to avoid state derivative

measurements) is sufficient to ensure finite-time convergence. Two different cases are considered in

this chapter: 1) Realizable system identification for which there is a set of model parameters that can

make the identification error zero. That is, the minimum functional approximation error (MFAE) is

zero and is realized by an optimal set of unknown system parameters; and 2) non-realizable system

identification for which there are no model parameters that result in zero identification error. For

case 2, the subsystems have mismatch identification errors and their MFAEs are nonzero. In both

cases, linearly parameterized universal approximators such as radial basis function neural networks

are used to model the uncertain system functions. It is shown that under a verifiable rank condition,

the proposed approach results in finite-time zero identification error for case 1 (which is a special

form of case 2) and finite-time attractiveness to a bound near zero for case 2.

Chapter 3 presents a a fixed-time identification algorithm independent of the initial estimation

errors that eliminates the PE condition by integrating the capabilities of CL and fixed-time learning.

The novel idea of employing the recorded data in a discontinuous gradient flow along with the

current data in the update law has overcome the challenge of proposing a fixed-time CL method

without requiring a PE condition. Here, by leveraging the CL technique, unlike [81], no persistence
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of excitation or injectivity condition on the regressor and no upper bound knowledge of the unknown

parameters is required for fixed time convergence. In the proposed fixed-time concurrent learning

(FxTCL), the settling time is independent of the initial parameter estimation error. Therefore, given

the recorded data, the settling time of convergence can be computed a priori regardless of the initial

parameter estimation error. Consequently, the presented FxTCL update law guarantees learning a

high-fidelity model of the system with a priori computable and fixed time of convergence. A fixed

settling time of convergence for the identifier provides a priori computable convergence bound.

This, in turn, allows quantifying system uncertainty for the control design and provides mechanisms

to avoid designing overly conservative controllers caused by long-lasting large model estimation

errors.

Chapter 4 presents an online data-regularized concurrent learning-based stochastic gradient

descent (CL-based SGD) update law is presented for function approximation with noisy measure-

ments. Inspired by the concurrent learning for deterministic settings, a novel parameter estimation

update law is presented that replaces the typical gradient estimation methods with a memory-

augmented gradient update law. That is, the gradient update law not only minimizes the current

estimated estimation error but also the estimation error for past historic data stored in a fixed-size

memory. This is in sharp contrast with mini-batch SGD in which a mini-batch of data are randomly

selected to estimate the noisy gradient. Using the Lyapunov theory, probabilistic guarantees are

provided for the parameters estimation errors, provided that a rank condition on the stored data

is satisfied. It is also shown that the parameters estimation errors converge exponentially to a

probabilistic ultimate bound. The ultimate bound depends on the noise variance of the function

approximation as well as approximation error and richness of the recorded memory data.

Chapter 5 presents fixed-time stability conditions for both deterministic and stochastic DT

autonomous nonlinear systems. First, fixed-time stability for equilibria of deterministic DT au-

tonomous systems is defined. That is, a settling-time function is defined with a fixed upper bound

independent of the initial condition. We then present Lyapunov theorems for fixed-time stability of

both unperturbed and perturbed deterministic DT systems. Moreover, the sensitivity of fixed-time
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stability properties to perturbations of systems is investigated under the assumption of the existence

of a locally Lipschitz discrete Lyapunov function. It is ensured that fixed-time stability is preserved

under perturbations in the form of fixed-time attractiveness. Furthermore, sufficient Lyapunov

conditions for fixed-time stability in probability of stochastic DT systems and their stochastic

settling-time function are presented.

Chapter 6 of this dissertation presents a fixed-time concurrent learning (FxTCL) algorithm

for discrete-time systems to 1) ensure fixed-time parameter convergence independent of the initial

estimation errors and 2) relax the PE condition to a rank condition on the recorded data using

CL. In the presented FxTCL, the settling-time upper bound is independent of the initial parameter

estimation error. To achieve this goal, a modified gradient-descent update law is presented for

learning the unknown system parameters. This update law reuses past collected data at every

time instance and leverages discontinuous and non-integer powers of the identification errors. The

Lyapunov analysis presented in Chapter 5 is then leveraged to guarantee fixed-time convergence of

the system parameters to their true values.

Chapter 7 summarizes and concludes this dissertation and provides future research directions.
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CHAPTER 2

FINITE-TIME DISTRIBUTED IDENTIFICATION FOR NONLINEAR

INTERCONNECTED SYSTEMS

2.1 Introduction

In this chapter, first, a novel finite-time distributed CL identification method is presented for

nonlinear interconnected systems. The proposed discontinuous distributed CL estimation law en-

sures the finite-time convergence of the approximated parameters without requiring the regressors’

PE condition. In the proposed distributed CL, every distributed identifier leverages a local state

communication with its neighboring subsystems to collect and employ a rich distributed memory

to relax the regressor’s PE condition and identify its own interconnected subsystem dynamics in

finite time. Then, based on finite-time Lyapunov analysis, when there is zero MFAE, the finite-

time convergence of interconnected system parameters is ensured through rigorous proofs. For

the case with non-zero MFAE, finite-time attractiveness of the interconnected system parameters’

estimation error is guaranteed. Finally, the upper bounds of the settling-time functions for the finite

convergence time are provided as a function of distributed memory data richness.

Notation The network of subsystems in an interconnected system is shown by a bidirectional

graph �(V,Σ), where V = {1, 2, . . . , #} is the set of vertices representing # subsystems and

Σ ⊂ V × V is the set of graph edges. (8, 9) ∈ Σ indicates that there exists an edge from

node 8 to node 9 which indicates the interconnection between subsystems 8 and 9 . The set of

neighbors of node 8 is shown by #8 =
{
9 : ( 9 , 8) ∈ Σ

}
and |#8 | is the cardinality measure of the

set #8, 8 = 1, ..., # . Throughout this chapter, � is the identity matrix of appropriate dimension.

BC02:(G, H) is an operator which stacks the columns of G and H vectors on top of one another. ‖G‖

denotes the vector norm for G ∈ R=, ‖�‖ shows the induced 2-norm of the matrix �. _<8=(�) and

_<0G(�) denote the minimum and maximum eigenvalues of the matrix �, respectively.
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2.2 Preliminaries and Problem Formulation

Preliminaries Consider the following nonlinear system with the equilibrium point in the origin,

¤H(C) = �(C, H), H(0) = H0, (2.1)

where H ∈ DH, � : R+ × DH ↦→ DH and DH ⊂ R= is an open neighborhood of the origin.

Definition 1 (Persistence of excitation [29]) A signal H(C) is persistently exciting if there are

positive scalars [1, [2 and T ∈ R+, such that the following condition on H(C) (PE condition) is

satisfied for ∀C ∈ R+,

[1� ≤
∫ C+T

C
H(g)H) (g)3g ≤ [2� .

Definition 2 (Finite-time stability [59]) The system (2.1) is said to be

1) finite-time stable, if it is asymptotically stable and any solution H(C, H0) of (2.1) reaches the

equilibrium point in finite time, i.e., H(C, H0) = 0,∀C ≥ )(H0), where ) : DH ↦→ R+ ∪ {0} is the

settling-time function.

2) finite-time attractive to an ultimate bounded set . around origin, if any solution H(C, H0) of (2.1)

reaches . in finite-time and stays there ∀C ≥ )(H0) where ) : DH ↦→ R+ ∪ {0} is the settling-time

function.

Lemma 1 [59] Suppose that there exists a positive definite continuous function + : DH ↦→

R+ ∪ {0} in an open neighborhood of the origin and there exist real numbers U > 0 and 0 < A1 < 1

such that +(H) is positive definite and

¤+(H) ≤ −U+A1(H).

Then, the system (2.1) is finite-time stable with a finite settling-time

)(H0) ≤
1

U(1 − A1)
+1−A1(H0),

for all H0 ∈ DH.

Fact 1: In general, for a vector G = [G1, G2, ..., G=]
) ∈ R=, the ?-norm is defined as ‖G‖?=

(
∑=
8=1 |G8 |

?)
1
? . Moreover, for positive constants A and B, if 0 < A < B, then based on Hölder
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inequality [129], one obtains

‖G‖B≤ ‖G‖A≤ =
1
A −

1
B ‖G‖B .

Problem Formulation Consider the following nonlinear interconnected system composed of

# uncertain subsystems described by

¤G8(C) = 58(G8(C)) + 68(G8(C))D8(C) + ∆8(G8(C), G 9 (C)| 9∈#8 ), 8 = 1, ..., #, (2.2)

where G8 = [G81, G82, ..., G8=] ∈ D8 ⊂ R= is the state and D8 ∈ DD ⊂ R< is the control input

of subsystem 8, 8 = 1, ..., #; D8 and DD are compact sets. 58 : D8 ↦→ R
=, 68 : D8 ↦→ R

=×<

and ∆8 : D#8
↦→ R

= are the unknown nonlinear drift, input and interconnection terms with

D#8
⊂ R=( |#8 |+1), respectively.

This chapter aims to present an identification method to learn the unknown dynamics of the

nonlinear interconnected system (2.2) in finite time and in a distributed fashion.

Assumption 1 58(G8(C)) and 68(G8(C)) are both locally Lipschitz in G8(C) and∆8(G8(C), G 9 (C)| 9∈#8 )

is locally Lipschitz in G#8 (C) where G#8 (C) = BC02: (G8(C), G 9 (C))
��
9∈#8

.

In order to learn the subsystems’ uncertain dynamics in a distributed fashion, first, every

subsystem dynamics (2.2) is formulated into a distributed filtered regressor form. The distributed

filtered-regressor form presents the subsystems’ states with a time-varying regressor for which the

dynamic flow of regressors are known and depend on the subsystem’s states and inputs, as well as

its neighbors’ states. This will allow to present update laws without requiring to measure the state

derivatives of the subsystems and their neighbors [10].

To develop filtered regressors, linearly parameterized adaptive approximation models are first

used to respectively represent 58(G8), 68(G8) and∆8(G8, G 9 (C)| 9∈#8 ) for every subsystem 8, 8 = 1, ..., #

as follows,

58(G8(C)) = 5̂8(G8(C),Θ
∗
8 ) + 4 58 (G8(C)), (2.3)

68(G8(C)) = 6̂8(G8(C),Φ
∗
8 ) + 468 (G8(C)), (2.4)
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∆8(G8(C), G 9 (C)| 9∈#8 ) = ∆̂8(G8(C), G 9 (C)| 9∈#8 ,Ψ
∗
8 ) + 4∆8

(G8(C), G 9 (C)| 9∈#8 ), (2.5)

where

5̂8(G8(C),Θ
∗
8 ) = Θ∗)

8 i8(G8(C)), (2.6)

6̂8(G8(C),Φ
∗
8 ) = Φ∗)

8 j8(G8(C)), (2.7)

∆̂8(G8(C), G 9 (C)| 9∈#8 ,Ψ
∗
8 ) = Ψ∗)

8 h8(G8(C), G 9 (C)| 9∈#8 ), (2.8)

4 58 (G8) = BD?
G8∈D8




 58(G8) − 5̂8(G8,Θ8)



 , (2.9)

468 (G8) = BD?
G8∈D8



68(G8) − 6̂8(G8,Φ8)


 , (2.10)

4∆8
(G8, G 9 | 9∈#8 ) = BD?

G8∈D8 ,G 9 ∈D 9




∆8(G8, G 9 | 9∈#8 ) − ∆̂8(G8, G 9 | 9∈#8 ,Ψ8)



 . (2.11)

The matricesΘ∗
8
∈ D 5 ⊂ R?8×=,Φ∗

8
∈ D6 ⊂ R@8×=,Ψ∗

8
∈ D∆ ⊂ RA8×= represent the unknown

optimal adaptive parameters for the approximators given as follows:

Θ∗
8 = arg min

Θ8∈D 5

{4 58 (G8)}, (2.12)

Φ∗
8 = arg min

Φ8∈D6
{468 (G8)}, (2.13)

Ψ∗
8 = arg min

Ψ8∈D∆
{4∆8 (G8, G 9 | 9∈#8 )}, (2.14)

and i8 : D8 ↦→ R
?8 , j8 : D8 ↦→ R

@8 , h8 : D#8
↦→ R

A8 are the basis functions, such that ?8,

@8 and A8 are the number of linearly independent basis functions to approximate 58(G8), 68(G8)

and ∆(G8, G 9 | 9∈#8 ), respectively. The quantities 4 58 (G8), 468 (G8) and 4∆8
(G8, G 9 | 9∈#8 ), defined

in (2.9)-(2.11) are, respectively, the MFAEs for 58(G8), 68(G8) and ∆8(G8, G 9 | 9∈#8 ), denoting the
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residual approximation errors for the case of optimal parameters. As a special case, if the adaptive

approximation models 5̂8(G8,Θ8), 6̂8(G8,Φ8) and ∆̂8(G8, G 9 | 9∈#8 ,Ψ8) can exactly approximate the

unknown functions 58(G8), 68(G8) and ∆8(G8, G 9 | 9∈#8 ), respectively, then, 4 58 = 468 = 4∆8
= 0.

Remark 1 Generally, adaptive approximators can be classified into linearly parameterized and

nonlinearly parameterized [10]. Linearly parameterized approximators are more common in the

literature of adaptive control because they provide mechanism to derive stronger analytical results

for stability and convergence. Linearly parameterized approximators are different and more general

than linear models. In linear models, the entire structure of the system is assumed to be linear.

In linearly parameterized approximators, the unknown nonlinearities are estimated by nonlinear

approximators, where the weights (parameter estimates) appear linearly with respect to nonlinear

basis functions.

Remark 2 The linearly parameterized approximation models as given in (2.6), (2.7) and (2.8),

are linear in parameters Θ∗
8
, Φ∗

8
, and Ψ∗

8
, respectively, and their corresponding basis functions

i8(G8(C)), j8(G8(C)) and h8(G8(C), G 9 (C)| 9∈#8 ), respectively, contain some nonlinear functions. We

consider two different cases [130]: 1) in the first case, the hypothesis class is assumed to be

realizable. That is, the identification is realizable as there is a perfect hypothesis within the

hypothesis class (i.e, basis functions and their corresponding optimum weights) that generates

no error. 2) in the second case, the hypothesis class is assumed to be not realizable (all system

parameters make some identification error). For the first case, the nonlinear basis functions

completely capture the subsystem dynamics (i.e., 4 58 (G8(C)), 468 (G8(C)) 4∆8 (G8(C), G 9 (C)| 9∈#8 , given

in (2.9)-(2.11), are zero) and only parametric uncertainty exists and therefore, the MFAE is zero.

For the second case, the basis functions cannot fully capture the dynamics of the subsystems and

mismatch error exists and therefore, the MFAE is nonzero for all hypotheses.

By using (2.3)-(2.8), each subsystem dynamics (2.2) can be rewritten as

¤G8(C) =,∗)
8 I8(G8(C), D8(C), G 9 (C)| 9∈#8 ) + Y8(G8(C), D8(C), G 9 (C)| 9∈#8 ), (2.15)
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where,∗
8
∈ R(?8+@8+A8)×=, I8(G8, D8, G 9 | 9∈#8 ) ∈ R

(?8+@8+A8),

,∗
8 = [Θ∗)

8 ,Φ
∗)
8 ,Ψ

∗)
8 ]) ,

I8(G8, D8, G 9 | 9∈#8 ) =[i)8 (G8), D
)
8 j

)
8 (G8), h

)
8 (G8, G 9 | 9∈#8 )]

) ,

Y8(G8(C), D8(C), G 9 (C)| 9∈#8 ) =4 58 (G8(C)) + 468 (G8(C))D8 + 4∆8
(G8(C), G 9 (C)| 9∈#8 ).

Assumption 2 The approximation error Y8 are bounded inside compact sets D8, DD and D#8
.

That is, sup
G8∈D8 ,G 9 ∈D 9 ,D8∈DD

‖Y8(G8, D8, G 9 | 9∈#8 )‖≤ 1Y with 1Y ≥ 0. The approximators’ basis

functions are also bounded in the mentioned compact sets.

A distributed filtered regressor is now formulated to circumvent the requirement of measuring

¤G8(C), and is leveraged by the update law later. For regressor filtering, the dynamics (2.15) is

rewritten as

¤G8 = −�G8 +,∗)
8 I8(G8, D8, G 9 | 9∈#8 ) + �G8 + Y8, (2.16)

where � = 2�, 2 > 0 and 8 = 1, ..., # . The state space solution to state model (2.16) can be

expressed as

G8 =4
−�CG8(0) +

∫ C

0
4−�(C−g)[,∗)

8 I8(G8(g), D8(g), G 9 (g)| 9∈#8 ) + �G8(g) + Y8(g)]3g. (2.17)

Now, one can rewrite (2.17) as follows,

G8 =,
∗)
8 38(C) + 2;8(G8) + 4−�CG8(0) + YG8 (C), (2.18)

¤38(C) = −238(C) + I8(G8, D8, G 9 | 9∈#8 ), 38(0) = 0,

¤;8(C) = −�;8(G8) + G8(C), ;8(0) = 0, 8 = 1, ..., #, (2.19)

where ;8(C) =
∫ C
0 4

−�(C−g)G8(g)3g is the filtered regressor version of G8(C), YG8 =
∫ C
0 4

−�(C−g)Y8(g)3g

and G8(0) is the initial state of (2.16), 38(C) =
∫ C
0 4

−2(C−g)I8(G8(g), D8(g), G 9 (g)| 9∈#8 )3g is the dis-

tributed filtered regressor of I8(G8(C), D8(C), G 9 (C)| 9∈#8 ).
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Dividing (2.18) by =8 = 1 + 3)
8
(C)38(C) + ;)

8
(C);8(C) as a normalizing signal, one has,

Ḡ8(C) =,
∗)
8 3̄8(C) + 2;̄8(C) + 4−�C Ḡ8(0) + Ȳ8(C), (2.20)

where 3̄8 =
38
=8

, ;̄8 =
;8
=8

, Ḡ8 =
G8
=8

and Ȳ8 =
YG8
=8

. It is implied by Assumption 2 that Ȳ8(C) is also

bounded, i.e.,

sup
G8∈D8 ,G 9 ∈D 9 ,D8∈DD

‖Ȳ8(G8, D8, G 9 | 9∈#8 )‖≤ 1Ȳ

for some 1Ȳ ≥ 0 and ‖3̄8(C)‖< 1.

To approximate the uncertainties 58(G8), 68(G8) and ∆8(G8, G 9 | 9∈#8 ) in a distributed finite-time

fashion without the need for satisfaction of the PE condition on the regressor, the chapter objective

is to propose a finite-time distributed CL approach that guarantees every interconnected subsystem

8 parameter estimation error, ,̃8(C) := ,̂8(C) −,∗
8
, is:

1) finite-time stable for distributed adaptive approximators with zero MFAE;

2) finite-time attractive to a bounded set around zero for distributed adaptive approximators with

non-zero MFAE; where ,̂8(C) = [Θ̂)
8
(C), Φ̂)

8
(C), Ψ̂)

8
(C)]) ∈ R(?8+@8+A8)×=, Θ̂8(C), Φ̂8(C) and Ψ̂8(C)

are, respectively, the estimated parameter matrices of ,∗
8
, Θ∗

8
, Φ∗

8
and Ψ∗

8
at time C for the

subsystem 8 and ,̃8(C) := ,̂8(C) −,∗
8
:= [Θ̃)

8
(C), Φ̃)

8
(C), Ψ̃)

8
(C)]) such that Θ̃8(C) := Θ̂8(C) − Θ∗

8
,

Φ̃8(C) := Φ̂8(C) − Φ∗
8
, Ψ̃8(C) := Ψ̂8(C) −Ψ∗

8
, 8 = 1, ..., # .

2.3 Finite-time Distributed Concurrent Learning

In this section, a finite-time distributed parameter estimation law for approximating the uncer-

tainties of the nonlinear interconnected system (2.2) is presented. The convergence analysis of the

proposed method is presented based on the Lyapunov approach.

Consider the distributed approximator for subsystem 8 to be of the form

ˆ̄G8(C) =,̂
)
8 (C)3̄8(C) + 2;̄8(C) + 4−�C Ḡ8(0). (2.21)

The state estimation error of the subsystem 8 is obtained as

48(C) = ˆ̄G8(C) − Ḡ8(C). (2.22)
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The state estimation error 48(C), which is later employed in the proposed parameter update law,

is accessible online, because ˆ̄G8(C) is computed online by the approximator (2.21) and Ḡ8(C) is

the normalized measurable state of the system. However, for the sake of parameter convergence

analysis, using (2.20) and (2.21), 48(C) in (2.22) is rewritten as

48(C) = ,̃)
8 (C)3̄8(C) − Ȳ8(C). (2.23)

To use CL, that employs experienced data along with current data in the update law of

the distributed identifier parameters, the memory data is recorded in the memory stacks "8 ∈

R
(?8+@8+A8)×%8 , !8 ∈ R=×%8 and -8 ∈ R=×%8 for each interconnected subsystem 8, 8 = 1, ..., # at

times g1, ..., g%8 as

"8 = [3̄8(g1), 3̄8(g2), ..., 3̄8(g%8 )], !8 = [;̄8(g1), ;̄8(g2), ..., ;̄8(g%8 )],

-8 = [Ḡ8(g1), Ḡ8(g2), ..., Ḡ8(g%8 )], (2.24)

where %8 denotes the number of data points recorded in each stack of subsystem 8. The memory

stack "8 captures the interactive data samples for which their richness depends on collective

richness of the subsystem’s state itself as well as its neighbors. The number of data points %8, for

8 = 1, ..., # , is chosen such that "8 is full-row rank and contains as many linearly independent

elements as the dimension of the distributed filtered regressor 38(C) (i.e., the total number of linearly

independent basis functions for 58(G8), 68(G8) and ∆8(G8, G 9 | 9∈#8 )), given in (2.18), that is called as

rank condition on "8 and requires %8 ≥ ?8 + @8 + A8, for 8 = 1, ..., # .

In order for the matrix "8 to be full-row rank, one needs to collect at least ?8 + @8 + A8 number

of data samples. Therefore, one can check the full-row rank condition on the data matrix "8

online after recording ?8 + @8 + A8 number of data points in the memory stacks of the subsystem 8.

Whenever the full-row rank condition on "8 is satisfied, i.e.,

A0=:("8) = ?8 + @8 + A8,

one can stop recording data samples in the corresponding subsystem’s memory stacks.
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The error 4ℎ
8
(C) for the ℎCℎ recorded data is defined as follows

4ℎ8 (C) = ˆ̄Gℎ8 (C) − Ḡ8(gℎ), (2.25)

where

ˆ̄Gℎ8 (C) =,̂
)
8 (C)3̄8(gℎ) + 2;̄8(gℎ) + 4−�C Ḡ8(0), (2.26)

is the state estimation at time 0 ≤ gℎ < C, ℎ = 1, ..., %8 employing the current estimated parameters

in ,̂8(C) and the recorded 3̄8(gℎ) and ;̄8(gℎ).

The error 4ℎ
8
(C), which is later employed in the proposed parameter update law, is accessible

online, since, ˆ̄Gℎ
8
(C) is computed online by (2.26) using the online estimated ,̂8(C) and the memory

stacks’ elements "8 and !8, and Ḡ8(gℎ) is accessible from the memory stack -8 of the corresponding

subsystem 8. For analysis purposes, using (2.20) and (2.26), one can rewrite (2.25) as follows

4ℎ8 (C) = ,̃)
8 (C)3̄8(gℎ) − Ȳ8(gℎ). (2.27)

Remark 3 In the distributed approximator (2.21), the received neighboring states appear in

the distributed filtered regressor 3̄8(C), as given in (2.19). Therefore, the richness of the local

neighboring data affects the richness and rank condition satisfaction of the distributed data stored

in memory "8.

Finite-time Distributed Concurrent Learning Estimation Law

Now, the finite-time distributed estimation law for the unknown parameters in the interconnected

subsystem 8 approximator (2.21) is proposed as

¤̂
,8(C) = −Γ8(Ξ� 3̄8(C)⌊4)8 (C)⌉

W8 + Ξ�

%8∑

ℎ=1

3̄8(gℎ)⌊4ℎ)8 (C)⌉W8 ), (2.28)

where ⌊.⌉W8 := |.|W8 B86=(.)with |.| and B86=(.) understood in component-wise sense and 0 ≤ W8 < 1.

The matrices Γ8,Ξ� ,Ξ� ∈ R(?8+@8+A8)×(?8+@8+A8) are positive definite, Γ8 > 0 is the learning rate

matrix, Ξ� = b� � and Ξ� = b� � with scalars b� > 0 and b� > 0. The proposed estimation

law is distributed since the current 3̄8(C) and recorded 3̄8(gℎ) are distributed filtered regressors

depending not only on the subsystem 8 states but also on its neighboring states. In (2.28), the first
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term Ξ� 3̄8(C)⌊4)8 (C)⌉
W8 is a gradient descent term, containing the current state approximation error

for the subsystem 8, and the second term Ξ�
∑%8
ℎ=1

3̄8(gℎ)⌊4ℎ)8 (C)⌉W8 , containing the experienced

data of subsystem 8, is the distributed CL term.

Remark 4 In (2.28), the weights Ξ� and Ξ� are not necessarily equal and one of the two

estimation terms can be prioritized over the other by choosing appropriate b� and b� , respectively.

Generally, in (2.28) choosing high learning rates Γ8 or weights b� can increase the convergence

rate. However, it may also lead to chattering in the estimated parameters. Once combined with the

control design, this chattering can result in poor control performance or even instability.

Remark 5 For every distributed identifier that uses (2.28), the shared neighboring states on the

learning time length, not only affect the current value of the distributed regressor, 3̄8(C), but are also

influential on the richness of the distributed memory employed in the second term of (2.28). This

entirely discriminates the current work from single system’s finite-time CL-based identification

methods [40–43].

In the following, the convergence properties for distributed adaptive approximators with zero

and nonzero MFAEs are investigated.

Finite-time Convergence Properties for Distributed Adaptive Approximators with Zero

MFAEs (Ȳ8(C) = 0)

The theorem below shows that using the proposed finite-time distributed concurrent learning

method (2.28), for distributed adaptive approximators with zero MFAEs, i.e. Ȳ8(C) = 0, the

estimated parameters ,̂8(C) converge to their optimal values in finite time.

Theorem 1 Let the distributed approximator for every nonlinear interconnected subsystem

8 in (2.2), be given by (2.21), whose parameters are adjusted by the update law of (2.28) with

0 ≤ W8 < 1 and a distributed filtered regressor given by (2.19), for 8 = 1, ..., # . Let Assumptions

1-2 hold. Once the full-row rank condition on "8, 8 = 1, .., # is satisfied, then for every 8Cℎ adaptive

distributed approximator with zero MFAE, i.e., Ȳ8(C) = 0, the distributed parameter estimation law

(2.28) ensures finite-time convergence of ,̃8(C) to zero for all interconnected subsystems within the
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following settling-time function

) ≤ max
8=1,...,#

2‖,̃8(0)‖1−W8
Z8V8(1 − W8)

, (2.29)

where Z8 = b�_

W8+1
2

<8=
((8), V8 = 2_<8=(Γ8) and (8 =

∑%8
ℎ=1

3̄8(gℎ)3̄
)
8
(gℎ).

Proof 1 Choosing the following Lyapunov function candidate

+(C) =
#∑

8=1

+8(C) =
1

2

#∑

8=1

CA{,̃)
8 (C)Γ

−1
8 ,̃8(C)}, (2.30)

one has

U−18 ‖,̃8(C)‖2≤+8(C) ≤ V−18 ‖,̃8(C)‖2, (2.31)

where U8 = 2_<0G(Γ8), V8 = 2_<8=(Γ8).

The time derivative ¤+8 for 8 = 1, ..., # , using (2.23), (2.27) and (2.28), yields,

¤+8(C) = CA{,̃)
8 (C)Γ

−1
8

¤̂
,8(C)}

= CA{ − Ξ�,̃
)
8 (C)3̄8(C)⌊3̄

)
8 (C),̃8(C)⌉

W8 − Ξ�,̃
)
8 (C)

%8∑

ℎ=1

3̄8(gℎ)⌊3̄)8 (gℎ),̃8(C)⌉
W8 }. (2.32)

One knows that

,̃)
8 (C)3̄8(C)⌊3̄

)
8 (C),̃8(C)⌉

W8 =
=∑

8=1

|(,̃)
8 (C)3̄8(C))8 |

W8+1

= ‖,̃)
8 (C)3̄8(C)‖

W8+1
W8+1, (2.33)

and based on Fact 1

‖,̃)
8 (C)3̄8(C)‖≤ ‖,̃)

8 (C)3̄8(C)‖W8+1, (2.34)

holds for 0 < W8 + 1 < 2. Therefore, using (2.32)-(2.34), one obtains,

¤+8(C) ≤ −b� ‖,̃)
8 (C)3̄8(C)‖

W8+1−b�
%8∑

ℎ=1

‖,̃)
8 (C)3̄8(gℎ)‖

W8+1

≤ −b�
%8∑

ℎ=1

(,̃)
8 (C)3̄8(gℎ)3̄

)
8 (gℎ),̃8(C))

W8+1
2 . (2.35)
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Therefore,

¤+8(C) ≤ −b�_
W8+1
2

<8=
((8)‖,̃8(C)‖W8+1, (2.36)

where (8 =
∑%8
ℎ=1

3̄8(gℎ)3̄
)
8
(gℎ). Using (2.31), (2.36) gives

¤+8(C) ≤ −Z8V
W8+1
2

8
+

W8+1
2

8
(C),

where Z8 = b�_

W8+1
2

<8=
((8) and based on Lemma 1, it is proved that for every subsystem 8, 8 = 1, ..., # ,

,̃8(C) is finite-time stable with the following settling-time function

)8(,̃8(0)) ≤
2‖,̃8(0)‖1−W8
Z8V8(1 − W8)

.

Therefore, the whole interconnected system dynamics can be identified in finite time within the

following settling time,

) ≤ max
8=1,...,#

)8(,̃8(0)) = max
8=1,...,#

2‖,̃8(0)‖1−W8
Z8V8(1 − W8)

.

This completes the proof.

Corollary 1 Let the assumptions and statements of Theorem 1 hold. Then, for adaptive

distributed approximators with zero MFAEs, i.e., Ȳ8(C) = 0, the state estimation error 48(C) for

every subsystem 8, 8 = 1, ..., # , is finite-time stable.

Proof 2 The proof is a direct consequence of Theorem 1.

Remark 6 As shown in (2.29), the settling time function of the identifier depends on the

minimum eigenvalue of the distributed memory matrix, _<8=((8). Therefore, to improve the

convergence speed, an optimization over recorded data can be performed to replace old data with

new ones as more data becomes available to maximize the minimum eigenvalue of the distributed

memory matrix to reduce the convergence time.

Finite-time Convergence Properties for Distributed Adaptive Approximators with Non-

zero MFAEs (Ȳ8(C) 6= 0)

The following theorem gives the finite-time convergence properties for the distributed parameter

estimation law (2.28) of distributed adaptive approximators with non-zero MFAEs, Ȳ8(C) 6= 0, in

interconnected systems’ identification.
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Theorem 2 Let the distributed approximator for nonlinear interconnected subsystem (2.2)

given by (2.21), whose parameters are adjusted by the update law of (2.28) with 0 < W8 < 1 and a

regressor given in (2.19). Consider that Assumptions 1-2 hold. Once the full-row rank condition

on "8 for 8 = 1, ..., # is met, then for adaptive distributed approximators with non-zero MFAEs,

i.e., Ȳ8(C) 6= 0, the proposed parameter estimation law (2.28) guarantees that for every subsystem 8,

8 = 1, ..., # , the ,̃8(C) is finite-time attractive by the following bounded set,

(8
,̃

= {,̃8(C) : ‖,̃8(C)‖≤

√
_<0G(Γ8)

_<8=(Γ8)
¯̀8}, ∀C ≥ ), (2.37)

where

¯̀8 =





<0G{ 1Ȳ

min
{
_

1
2
<8=

(�8(C)),_̄8
}
, (
l8
Z8X

)
1
W8 }, 3̄8(C) 6= 0,

<0G{ 1Ȳ
_̄8
, (
l8
Z8X

)
1
W8 }, 3̄8(C) = 0,

(2.38)

) ≤ max
8=1,...,#

2‖,̃8(0)‖1−W8
Z8V8(1 − X)(1 − W8)

, (2.39)

_̄8 = min
ℎ=1,...,%8

(_
1
2
<8=

(�8(gℎ))), �8(C) = 3̄8(C)3̄
)
8 (C), l8 = =

1−W8
2 1

W8
Ȳ (b� + %8b�),

and 0 < X < 1.

Proof 3 Choose the same Lyapunov function (2.30) that satisfies (2.31). The time derivation

of +8 employing (2.23), (2.27) and (2.28) gives,

¤+8(C) = CA{ − Ξ�,̃
)
8 (C)3̄8(C)⌊3̄

)
8 (C),̃8(C) − Ȳ

)
8 (C)⌉

W8

− Ξ�,̃
)
8 (C)

%8∑

ℎ=1

3̄8(gℎ)⌊3̄)8 (gℎ),̃8(C) − Ȳ
)
8 (gℎ)⌉

W8 }. (2.40)

Consider in the component-wise sense that |(3̄)
8
(C),̃8(C)): |≥ |(Ȳ8(C)): |, for : = 1, ..., =. Note

that the previous inequality is required for 3̄8(C) 6= 0. If 3̄8(C) = 0 then the first term in (2.28) is

zero and in the second term of (2.28), the data collection assures that 3̄8(gℎ) 6= 0, ℎ = 1, ..., %8.

Therefore, B86=(3̄)
8
(C),̃8(C) − Ȳ)8 (C)) = B86=(3̄)

8
(C),̃8(C)) is obtained. Then, for any H, H̄ ∈ R

and 0 < W8 < 1, one has [129],

|H + H̄ |W8< |H |W8+| H̄ |W8 .
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Therefore, defining H = (3̄)
8
(C),̃8(C)): − (Ȳ8(C)): and H̄ = (Ȳ8(C)): , one obtains that for all

: = 1, ..., =,

|(3̄)8 (C),̃8(C)): |
W8= |(3̄)8 (C),̃8(C)): − (Ȳ8(C)): + (Ȳ8(C)): |W8

≤ |(3̄)8 (C),̃8(C)): − (Ȳ8(C)): |W8+|(Ȳ8(C)): |W8⇒

|(3̄)8 (C),̃8(C)): |
W8−|(Ȳ8(C)): |W8≤ |(3̄)8 (C),̃8(C)): − (Ȳ8(C)): |W8 ,

and then in the component-wise sense,

−|3̄)8 (C),̃8(C) − Ȳ8(C)|
W8≤ −|3̄)8 (C),̃8(C)|

W8+|Ȳ8(C)|W8 . (2.41)

Now, using (2.41), (2.40) is upper bounded by

¤+8(C) ≤ CA{ − Ξ�,̃
)
8 (C)3̄8(C)(⌊3̄

)
8 (C),̃8(C)⌉

W8 − |Ȳ8(C)|W8 B86=(3̄)8 (C),̃8(C)))

− Ξ�,̃
)
8 (C)

%8∑

ℎ=1

3̄8(gℎ)(⌊3̄)8 (gℎ),̃8(C)⌉
W8 − |Ȳ8(gℎ)|W8 B86=(3̄)8 (gℎ),̃8(C)))}. (2.42)

Recall that in ⌊.⌉W8 , |.| and B86=(.) are employed in the component-wise sense, i.e.

⌊3̄)8 (C),̃8(C)⌉
W8 =[|(3̄)8 (C),̃8(C))1 |

W8 B86=((3̄)8 (C),̃8(C))1),

|(3̄)8 (C),̃8(C))2 |
W8 B86=((3̄)8 (C),̃8(C))2),

...

|(3̄)8 (C),̃8(C))= |
W8 B86=((3̄)8 (C),̃8(C))=)],

|Ȳ8(C)|W8 B86=(3̄)8 (C),̃8(C)) =[|(Ȳ8(C))1 |W8 B86=((3̄)8 (C),̃8(C))1), |(Ȳ8(C))2 |
W8 B86=((3̄)8 (C),̃8(C))2),

. . . , |(Ȳ8(C))= |W8 B86=((3̄)8 (C),̃8(C))=)].

Therefore, using (2.33), (2.34), ‖3̄8(C)‖≤ 1 and (2.42), one obtains,

¤+8(C) ≤ −b� ‖,̃)
8 (C)3̄8(C)‖

W8+1+b� ‖,̃8(C)‖‖|Ȳ8(C)|W8 ‖

− b�
%8∑

ℎ=1

‖,̃)
8 (C)3̄8(gℎ)‖

W8+1+b�%8 ‖|Ȳ8(gℎ)|W8 ‖‖,̃8(C)‖. (2.43)
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Since ‖|Ȳ8(C)|W8 ‖=
√∑=

:=1
|(Ȳ8(C)): |2W8 = ‖Ȳ8(C)‖

W8
2W8

and by Hölder’s inequality

‖Ȳ8(C)‖2W8≤ =
1−W8
2W8 ‖Ȳ8(C)‖, (2.44)

holds for all 0 < 2W8 < 2, it is given that

¤+8(C) ≤ − b�
%8∑

ℎ=1

(,̃)
8 (C)3̄8(gℎ)3̄

)
8 (gℎ),̃8(C))

W8+1
2 + b�=

1−W8
2 ‖Ȳ8(C)‖W8 ‖,̃8(C)‖

+ b�%8=
1−W8
2 ‖Ȳ8(gℎ)‖W8 ‖,̃8(C)‖.

Therefore,

¤+8(C) ≤ −Z8 ‖,̃8(C)‖W8+1+l8 ‖,̃8(C)‖, (2.45)

where

l8 = =
1−W8
2 1

W8
Ȳ (b� + %8b�)

.

In the following, (2.45) is rewritten as

¤+8(C) ≤ − Z8 ‖,̃8(C)‖W8+1+l8 ‖,̃8(C)‖

≤ − Z8(1 − X)‖,̃8(C)‖W8+1−Z8X‖,̃8(C)‖W8+1+l8 ‖,̃8(C)‖,

where 0 < X < 1. Hence,

¤+8(C) ≤ −Z8(1 − X)‖,̃8(C)‖W8+1, ¯̀8 ≤ ‖,̃8(C)‖, (2.46)

where

¯̀8 =




<0G{ 1Ȳ

min
{
_

1
2
<8=

(�8(C)),_̄8
}
, (
l8
Z8X

)
1
W8 }, 3̄8(C) 6= 0,

<0G{ 1Ȳ
_̄8
, (
l8
Z8X

)
1
W8 }, 3̄8(C) = 0.

From (2.31) and (2.46), it follows that

¤+8(C) ≤ −Z8(1 − X)V
W8+1
2

8
+

W8+1
2

8
(C), (2.47)
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and by comparison principle one obtains

+8(C) ≤ (+

1−W8
2

8
(0) −

Z8(1 − X)(1 − W8)V
W8+1
2

8

2
C)

2
1−W8 ,

then using (2.31), the above inequality ensures that ,̃8(C) satisfies

‖,̃8(C)‖≤
√
U8(V

W8−1
2

8
‖,̃8(0)‖1−W8−

Z8(1 − X)(1 − W8)V
W8+1
2

8

2
C)

1
1−W8 ,

for all C < )8(,̃8(0)). Then, for all C > )8(,̃8(0)), from (2.31), one obtains that ,̃8(C) is bounded as

‖,̃8(C)‖≤

√
_<0G(Γ8)

_<8=(Γ8)
¯̀8, ∀C ≥ )8(,̃8(0)). (2.48)

Therefore, for every subsystem 8, 8 = 1, ..., # , the solutions of ,̃8(C) are finite-time attractive to the

bound in (2.48) where

)8(,̃8(0)) ≤
2‖,̃8(0)‖1−W8

Z8V8(1 − X)(1 − W8)
.

Therefore, all the solutions of ,̃8, 8 = 1, ..., # for the interconnected system are finite-time attractive

to the bound given in (2.37) in the following settling time,

) ≤ max
8=1,...,#

)8(,̃8(0)) = max
8=1,...,#

2‖,̃8(0)‖1−W8
Z8V8(1 − X)(1 − W8)

.

This completes the proof.

Corollary 2 Let the assumptions and statements of Theorem 2 hold. Then, for adaptive

distributed approximators with non-zero MFAEs, i.e., Ȳ8(C) 6= 0, the state estimation error 48(C) for

every subsystem 8, 8 = 1, ..., # , is finite-time attractive.

Proof 4 The proof is a direct consequence of Theorem 2.

Remark 7 In Theorem 2, for W8 = 0, using (2.31) and (2.45) it can be shown that for every

interconnected subsystem 8, 8 = 1, ..., # , if Z8 > l8, ,̃8(C) is finite-time stable and the interconnected

system can be exactly identified with zero MFAE.

Remark 8 As discussed in [79], the concurrent learning approach is based on the combination

of a gradient descent algorithm with an auxiliary static feedback update law, which can be viewed
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as a type of f-modification [10] and allows the requirement on persistence of excitation to be

relaxed by keeping enough measurements in memory. Here, the same extension is applied to the

proposed distributed finite-time concurrent learning in (2.28). Theoretical support of this claim is

provided in Theorem 2 to show the finite-time attractiveness of the proposed parameter update law

(2.28) in case of nonzero MFAEs.

Remark 9 For distributed adaptive approximators with non-zero MFAEs, the richness of

the distributed data stored in "8 influences the finite settling time as well as the error bound.

Accordingly, ,̃8(C) converges to a narrower bound in faster time by maximizing _<8=((8) that

minimizes the error bound and the settling time respectively given in (2.37) and (2.39). Therefore,

after the rank condition satisfaction, optimization over recorded data can improve the convergence

results for every subsystem where one can replace new distributed samples with old ones in "8,

8 = 1, ..., # , if _<8=((8) increases to result in a faster convergence to a lower error bound.

Remark 10 Similar to the concurrent learning literature [30, 33–37, 39, 41] and most sys-

tem identifiers for nonlinear systems, in this chapter it is assumed that the subsystem states are

measurable. Even though the subsystems’ states are measurable, the finite-time identification of

interconnected systems without the persistency of excitation requirement is challenging. Online

finite-time identification of the interconnected system dynamics under output measurements as-

sumption is a direction for future research. This requires coupled distributed identifier and observer

design for every subsystem to be able to identify the subsystem dynamics and observe its states

interactively in finite-time.

Remark 11 In the proposed finite-time distributed concurrent learning estimation law (2.28),

if the concurrent learning term regarding the past historical data is eliminated, the following finite-

time distributed gradient descent estimation law that only depends on the current distributed data

is obtained as

¤̂
,8(C) = − 8 3̄8(C)⌊4)8 (C)⌉

W8 , (2.49)

with  8 > 0. According to the analysis provided in the previous theorems, similar results are

obtained for the estimation law (2.49) provided that 3̄8(C) is persistently excited for every subsystem
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8. The finite-time distributed gradient descent law (2.49) is similar to the estimation law for a single

system in Algorithm 1 of [106] where the short finite-time input to state stability of the mentioned

learning law (ensuring stability in a finite and limited time interval) has been proven, provided that

the regressor 3̄8(C) is nullifying in finite time.

2.4 Simulation Results

Now, the proposed finite-time distributed CL method performance for a nonlinear intercon-

nected system identification is examined in comparison with the finite-time distributed gradient

descent estimation method given in (2.49). The considered nonlinear interconnected system con-

tains 3 inverted interconnected pendulums as depicted in Fig. 2.1. Every inverted pendulum

8 [131], subject to control input D8 is described by




¤G81 = 581(G8) + 681(G8) + ∆81(G8(C), G 9 (C)| 9∈#8 ),

= G82

¤G82 = 582(G8) + 682(G8) + ∆82(G8(C), G 9 (C)| 9∈#8 )

=
6
;
B8=G81 +

D8

<8;
2 +

∑
9∈# 9

:8, 9 0
2

<8;
2 (B8=G 912>BG 91 − B8=G812>BG81),

(2.50)

where G81 = \8 (A03) is the angular position and G82 = ¤\8 (A03/B) is the angular velocity, for

the inverted pendulum 8, 8 = 1, 2, 3. The gravity acceleration 6 is 6 ≈ 10 <

B2
, <8 is the mass of

the 8Cℎ rod (<8 = 0.25 :6, 8 = 1, 2, 3), ; is the length of each rod (; = 2<), 0 is the distance

from the pivot to the center of gravity of the rod (0 = 1<), :8, 9 (
:6

B2
) is the spring constant which

interconnects subsystem 8 to subsystem 9 , 9 ∈ #8, with :8, 9 = : 9 ,8 and :1,2 = :1,3 = 1.5, :2,3 = 2.

In this system, due to the physical limitations, G8 domain is defined by �8 = [�81, �82]
) where

�81 = [−6, 6] and �82 = [−4, 4] for 8 = 1, 2, 3. The initial states and parameters are chosen from

the interval [−2, 2] and stabilizing controllers D8 = −0.06G8 for 8 = 1, 2, 3 are employed. Every

interconnected subsystem 8 dynamics in (2.50) is unknown. For every subsystem 8, 8 = 1, 2, 3,

the proposed finite-time distributed concurrent learning identifier employs the following basis

functions,

I8(G8, D8, G 9 | 9∈#8 ) = [G82, sin G81, D8, sin G81 cos G81, sin G 91 cos G 91]
)
9∈#8 . (2.51)
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Figure 2.1: Interconnection network of the physically interconnected inverted pendulums.

While the regressor vector I8(G8, D8, G 9 | 9∈#8 ) is exciting over some time period, it is not persistently

exciting. The relaxed excitation condition without the PE requirement is achieved without injecting

any exciting probing noise to the subsystems’ controllers.

Therefore, the approximation of (2.50) for every subsystem 8 is as follows,




¤G81 = ?81G82,

¤G82 = ?82B8=G81 + ?83D8 + ?84B8=G812>BG81 +
∑

9∈# 9 ,A=5,...,4+|# 9 |
?8A B8=G 912>BG 91,

(2.52)

where based on the system descriptions, the true parameters for the three interconnected subsystems

are as follows,

[?11, ?
1
2, ?

1
3, ?

1
4, ?

1
5, ?

1
6] = [1, 5, 1,−3, 1.5, 1.5],

[?21, ?
2
2, ?

2
3, ?

2
4, ?

2
5, ?

2
6] = [1, 5, 1,−3.5, 1.5, 2],

[?31, ?
3
2, ?

3
3, ?

3
4, ?

3
5, ?

3
6] = [1, 5, 1,−3.5, 2, 1.5].

We set Γ8 = 3�, b� = 1, b� = 0.1, W8 = 0.5 for 8 = 1, 2, 3. We chose b� > b� , to prioritize

current data to the recorded data in the proposed learning method (2.28) and %8 = 10, 8 = 1, 2, 3,

which are set to be greater than 6, the number of independent basis functions for every subsystem.

To have a fair speed and the precision comparison of the mentioned methods for approximating

5̂8(G8) and 6̂8(G8) on the domain �8, and ∆̂8(G8, G 9 | 9∈#8 ) on the domain of �#8 , the following online
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learning errors are computed for every subsystem 8, 8 = 1, 2, 3,

� 58 (C) =

∫

D8
‖4 58 (G8(C))‖3

=G8, �68 (C) =

∫

D8
‖468 (G8(C))‖3

=G8,

�∆8
(C) =

∫

D#8
‖4∆8 (G#8 (C))‖3

=(#8+1)G#8 , (2.53)

where the notation
∫
D8

‖4 58 (G8(C))‖3
=G8 indicates that the integral of ‖4 58 (G8(C))‖ is calculated over

an =-dimensional region D8. The simulations are done in MATLAB with Euler integration and the

sample time is equal to 0.05 seconds. In the simulation results, the proposed finite-time distributed

concurrent learning method and finite-time distributed gradient descent approach, given in (2.49),

are respectively labeled by FTDCL and FTDGD. Fig. 2.2 shows the approximated parameters

using the proposed finite-time distributed concurrent learning approach and finite-time distributed

gradient descent method (given in (2.49)) for three interconnected subsystems. Fig. 2.2 clearly

shows that the approximated parameters using the proposed finite-time distributed concurrent

learning method have converged to the true parameters, while because of the lack of persistence

of excitation, the estimated parameters for the finite-time distributed gradient descent failed to

converge to the true parameters. Figs. 2.3 to 2.5 depict the online learning errors � 58 (C), �68 (C),

and �∆8 (C) for, respectively, the three interconnected subsystems, 8 = 1, 2, 3, where the results

of the proposed finite-time distributed concurrent learning show the finite-time convergence of all

errors to zero while the learning errors for finite-time distributed gradient descent method did not

converge to the origin due to the lack of regressor’s PE condition.
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Figure 2.2: (a). Parameters of finite-time distributed concurrent learning (FTDCL) identifiers for

subsystems 1, 2 and 3. (b). Parameters of finite-time distributed gradient descent (FTDGD)

identifiers for subsystems 1, 2 and 3.
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Figure 2.3: Online learning errors � 51(C), �61(C), and �∆1
(C) for interconnected subsystem 1.
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Figure 2.4: Online learning errors � 52(C), �62(C), and �∆2
(C) for interconnected subsystem 2.
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Figure 2.5: Online learning errors � 53
(C), �63(C), and �∆3

(C) for interconnected subsystem 3.

2.5 Conclusion

In this chapter, a finite-time distributed concurrent learning method for interconnected sys-

tems’ identification in finite time is introduced. Leveraging local state communication among

interconnected subsystems’ identifiers enabled them to identify every subsystem’s own dynamics

as well as its interconnections’ dynamics. In this method, distributed concurrent learning relaxed

the regressors’ persistence of excitation (PE) conditions to rank conditions on the recorded dis-

tributed data in the memory stack of the subsystems. It is shown that the precision and convergence

speed of the proposed finite-time distributed learning method depends on the spectral properties

of the distributed recorded data. Simulation results show that the proposed finite-time distributed

concurrent learning has outperformed the finite-time distributed gradient descent in both terms of
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precision and convergence speed.
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CHAPTER 3

FIXED-TIME SYSTEM IDENTIFICATION USING CONCURRENT

LEARNING

3.1 Introduction

In this chapter, first, a novel discontinuous update law is presented that employs CL to identify

system uncertainties in a fixed time that can be computed a priori. Fixed-time convergence guar-

antee is certified under a rank condition on recorded experienced data rather than PE condition.

Second, the rigorous analysis based on fixed-time Lyapunov stability certifies the convergence of

the discontinuous gradient flow equipped with CL to zero for the case where minimum functional

approximation error (MFAE) is zero and under a rank condition on stored data. Moreover, for

adaptive approximators with non-zero MFAE, it is ensured that by employing the proposed al-

gorithm, the parameters estimation errors are fixed time attractive to an ultimate bound. Third,

the fixed-time upper bounds of the estimated parameters’ settling-times, independent of the initial

parameter estimation error, are derived for adaptive approximators with zero and non-zero MFAEs.

Notation Throughout this chapter, the following notation is adopted. R and R+ denote the set

of real and positive real numbers, respectively. ‖.‖ is used to denote the Euclidean norm for a

vector and induced 2-norm for a matrix. CA(.) indicates trace of a matrix. _<8=(�) and _<0G(�)

denote the minimum and maximum eigenvalues of matrix � respectively. � is the identity matrix

of appropriate dimension.

3.2 Preliminaries and Problem Formulation

Preliminaries Consider

¤H(C) = �(C, H), H(0) = H0, (3.1)

where H ∈ DH, � : R+ × DH ↦→ DH, is a nonlinear function on the open neighborhood DH of the

origin. Assume the origin is an equilibrium point of (3.1).

Definition 3 [29] The bounded signal H(C) is said to be persistently exciting if there exist positive

scalars `1, `2 and T ∈ R+ such that ∀C ∈ R+, `1� ≤
∫ C+T
C

H(g)H) (g)3g ≤ `2�.
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Definition 4 [65] The system (3.1) is said to be

1) fixed-time stable, if it is asymptotically stable and∀H0 ∈ DH any solution H(C) of (3.1) reaches the

equilibrium point at some finite-time moment, i.e., H(C) = 0,∀C ≥ )(H0), where) : DH ↦→ R+∪{0}

is the settling-time function and the settling-time function )(H0) is bounded, i.e., ∃)<0G > 0 :

)(H0) ≤ )<0G ,∀H0 ∈ DH.

2) fixed-time attractive by a bounded setY around zero, if∀H0 ∈ DH any solution H(C) of (1) reaches

Y in some finite-time moment C = )(H0) and remains there, ∀C ≥ )(H0), ) : DH ↦→ R+ ∪ {0} is

the settling-time function and the settling-time function )(H0) is bounded by some )<0G > 0.

Lemma 2 [65] Let there exist a continuous positive definite function + : DH ↦→ R+ ∪ {0} in

an open neighborhood of the origin and real positive numbers U, V, A1, A2 > 0 such that 0 < A1 < 1

and 1 < A2. Let also any solution H(C) of (3.1) satisfy the inequality,

¤+(H(C)) ≤ −U+A1(H(C)) − V+A2(H(C)). (3.2)

Then, the system (3.1) is fixed-time stable and

)(H0) ≤
1

U(1 − A1)
+

1

V(A2 − 1)
. (3.3)

Fact 1. In general, ∀G ∈ R= with 0 < A < B, one has

‖G‖B≤ ‖G‖A≤ =
1
A −

1
B ‖G‖B .

This is a consequence of Hölder inequality [129].

Problem Formulation Consider the following nonlinear system,

¤G(C) = 5 (G(C)) + 6(G(C))D(C), (3.4)

where G ∈ DG ⊂ R= and D ∈ DD ⊂ R< are the state and input vectors, respectively; DG and DD

are compact sets. Let 5 : DG ↦→ R= and 6 : DG ↦→ R=×< be the unknown nonlinear system and

input dynamics, respectively. The overarching objective of this chapter is to present novel model

learning approaches to learn these uncertain dynamics in a fixed time.

Assumption 3 G(C) is a measurable state vector, and 5 (G(C)) and 6(G(C)) are both locally

Lipschitz in G(C).
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Here, linearly parameterized adaptive approximation models [10] are used to, respectively,

represent 5 (G(C)) and 6(G(C)) as follows,

5 (G(C)) = 5̂ (G(C),Θ∗
5
) + 4 5 (G(C)), (3.5)

6(G(C)) = 6̂(G(C),Θ∗
6) + 46(G(C)), (3.6)

where

5̂ (G(C),Θ∗
5
) = Θ∗)

5
i(G(C)), (3.7)

6̂(G(C),Θ∗
6) = Θ∗)

6 j(G(C)). (3.8)

The matrices Θ 5
∗ ∈ D 5 ⊂ R?×= and Θ6

∗ ∈ D6 ⊂ R@×= denote the unknown optimal parameters

of the adaptive approximation models, defined as follows

Θ∗
5
= arg min

Θ 5 ∈D 5

{ BD?
G(C)∈DG




 5 (G(C)) − 5̂ (G(C),Θ 5 )



 }, (3.9)

Θ∗
6 = arg min

Θ6∈D6
{ BD?
G(C)∈DG



6(G(C)) − 6̂(G(C),Θ6)


 }, (3.10)

where D 5 and D6 are compact sets. The vectors i : DG ↦→ R? and j : DG ↦→ R@, denote the basis

functions, while ? and @ are the number of linearly independent basis functions for approximating

5 (G(C)) and 6(G(C)), respectively. The quantities 4 5 (G(C)) ∈ R= and 46(G(C)) ∈ R=×< are the

MFAEs for 5 (G(C)) and 6(G(C)), respectively, representing the residual approximation error in the

case of optimal parameters. In the special case that the unknown functions 5 (G(C)) and 6(G(C))

can be approximated exactly by the adaptive approximation models 5̂ (G(C),Θ 5 ) and 6̂(G(C),Θ6),

respectively, then 4 5 (G(C)) = 46(G(C)) = 0.

Using (3.5)-(3.8), the system dynamics (3.4) can be written as

¤G(C) = Θ∗) I(G(C), D(C)) + Y(G(C), D(C)), (3.11)
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where Θ∗ = [Θ∗)
5
,Θ∗)

6 ]) ∈ R(?+@)×=, I(G(C), D(C)) = [i) (G(C)), D) (C)j) (G(C))]) ∈ R(?+@), and

Y(G(C), D(C)) = 4 5 (G(C)) + 46(G(C))D(C).

Assumption 4 For the given compact sets DG and DD, the approximators’ basis functions are

bounded. Moreover, the approximation error Y(G(C), D(C)) is bounded by an upper bound 1Y ≥ 0,

i.e.,

sup
G∈DG,D∈DD

‖Y(G, D)‖≤ 1Y

.

Remark 12 Assumption 3 ensures the existence and uniqueness of the solution of system (3.4)

and Assumption 4 is standard in the literature based on universal approximator characteristics [29].

In this chapter, since, ¤G(C) is not available for measurement, a regressor filtering method [39] is

used to obviate its requirement in the presented update law. Therefore, to proceed with regressor

filtering, dynamics (3.11) is written as

¤G(C) = −�G(C) + Θ∗) I(G(C), D(C)) + �G(C) + Y(C), (3.12)

where � = 2�, 2 > 0. The solution of (3.11) can be expressed as

G(C) =Θ∗)3(C) + �;(C) + 4−�CG(0) + Y 5 (C), (3.13)

¤3(C) = −23(C) + I(G(C), D(C)), 3(0) = 0,

¤;(C) = −�;(C) + G(C), ;(0) = 0, (3.14)

where ;(C) =
∫ C
0 4

−�(C−g)G(g)3g is the filtered regressor of G(C), 3(C) =
∫ C
0 4

−2(C−g)I(G(g), D(g))3g

is the filtered regressor of I(G(C), D(C)), Y 5 (C) =
∫ C
0 4

−�(C−g)Y(g)3g, and G(0) is the initial state of

(3.12).

Dividing (3.13) by the normalizing signal =B = 1 + 3) (C)3(C) + ;) (C);(C), one has,

Ḡ(C) =Θ∗) 3̄(C) + 2;̄(C) + 4−�C Ḡ(0) + Ȳ(C), (3.15)

where 3̄ = 3
=B

, ;̄ = ;
=B

, Ḡ = G
=B

and Ȳ =
Y 5
=B

. Note that Assumption 4 implies that Ȳ(C) is also

bounded, i.e.,

sup
G∈DG,D∈DD

‖Ȳ(G, D)‖≤ 1Ȳ
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and ‖3̄(C)‖< 1.

Now, let the approximator of (3.15) for the system (3.4) be of the form

ˆ̄G(C) =Θ̂) (C)3̄(C) + 2;̄(C) + 4−�C Ḡ(0), (3.16)

where Θ̂(C) = [Θ̂)
5
(C), Θ̂)6 (C)]

) ∈ R(?+@)×=, Θ̂ 5 (C) and Θ̂6(C) are, respectively, the estimation of

parameters matrices Θ∗, Θ∗
5

and Θ∗
6 at time C. The state estimation error, 4(C), for system (3.4) is

defined as

4(C) = ˆ̄G(C) − Ḡ(C) = Θ̃) (C)3̄(C) − Ȳ(C), (3.17)

where Θ̃(C) := Θ̂(C) −Θ∗ := [Θ̃)
5
(C), Θ̃)6 (C)]

) is the parameter estimation error with

Θ̃ 5 (C) := Θ̂ 5 (C) −Θ∗
5
, Θ̃6(C) := Θ̂6(C) −Θ∗

6

.

To fulfill the fixed-time learning of the uncertainties 5 (G) and 6(G) in the system (3.4) without

the requirement of the PE condition on the stream of data, a fixed-time CL method is presented

next to guarantee that the parameter estimation error Θ̃(C) dynamics are:

1) fixed-time stable for adaptive approximators with zero MFAE.

2) fixed-time attractive within a bounded set around zero for adaptive approximators with non-zero

MFAE.

3.3 Fixed-time Concurrent Learning Identifier

In this section, a novel fixed-time update law is presented to approximate the uncertainties of

the system (3.4) that leverages the CL in its adaptive update law to eliminate the requirement of

the PE condition. In this section, the introduced update law employs discontinuous gradient flows

of the estimation errors to optimize the estimation error for current samples as well as samples

collected in a recorded data stack, and the convergence analysis of the dynamics of the gradient

update law is presented based on fixed-time Lyapunov stability.

To employ the CL technique, which uses recorded experienced data along with current data

in the update law, the past data is collected and stored in the memory stacks " ∈ R(?+@)×%,
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! ∈ R=×% and - ∈ R=×%, at times g1, ..., g% as,

" = [3̄(g1), 3̄(g2), ..., 3̄(g%)], ! = [;̄(g1), ;̄(g2), ..., ;̄(g%)],

- = [Ḡ(g1), Ḡ(g2), ..., Ḡ(g%)], (3.18)

where % is the number of data points stored in every stack. The number of data points % is chosen

so that " contains as many linearly independent elements as the dimension of 3(C) (i.e., the total

number of linearly independent basis functions for 5 (G(C)) and 6(G(C))), given in (3.13). That is

the rank of " must be ? + @ which requires % ≥ ? + @.

Define the error 4ℎ(C) for the ℎCℎ recorded sample as

4ℎ(C) = ˆ̄Gℎ(C) − Ḡ(gℎ), (3.19)

where

ˆ̄Gℎ(C) =Θ̂) (C)3̄(gℎ) + 2;̄(gℎ) + 4−�C Ḡ(0), (3.20)

is the state estimation at time 0 ≤ gℎ < C, ℎ = 1, ..., %, using the current estimated parameters

matrix Θ̂(C) and the recorded 3̄(gℎ) and ;̄(gℎ). Substituting Ḡ(gℎ), from (3.15), in (3.19) leads to

4ℎ(C) = Θ̃) (C)3̄(gℎ) − Ȳ(gℎ). (3.21)

In the proposed FxTCL method that is presented next, the stored data in " is selected based on

data recording algorithm in [34, 36] to maximize

_<8=(()

_<0G(()

where ( =
∑%
ℎ=1

3̄(gℎ)3̄
) (gℎ).

Fixed-time concurrent learning update law The proposed fixed-time CL update law for the

parameters in the system approximator (3.16) is given as

¤̂
Θ(C) = −Γ[Ξ� 3̄(C)(⌊4) (C)⌉W1 + ⌊4) (C)⌉W2) + Ξ�

%∑

ℎ=1

3̄(gℎ)(⌊4)ℎ(C)⌉
W1 + ⌊4)

ℎ
(C)⌉W2)], (3.22)
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where ⌊.⌉W := |.|WB86=(.)with |.| and B86=(.) understood in component-wise sense and 0 ≤ W1 < 1,

W2 > 1. The matrices Γ,Ξ� ,Ξ� ∈ R(?+@)×(?+@), Γ > 0 is the positive definite learning rate

matrix, Ξ� = b� � and Ξ� = b� � with positive constants b� > 0 and b� > 0. The above

update law has two learning terms, the first term Ξ� 3̄(C)(⌊4) (C)⌉W1 + ⌊4) (C)⌉W2) containing the

current state approximation error that is a nonlinear gradient descent term, and the second term,

Ξ�
∑%
ℎ=1

3̄(gℎ)(⌊4)ℎ(C)⌉
W1 + ⌊4)

ℎ
(C)⌉W2), contains the experienced data, is the CL term. The

weights Ξ� and Ξ� do not need to be equal and by setting appropriate b� and b� , respectively,

one of the two learning terms can be prioritized over the other.

Remark 13 In the update law (3.22) by leveraging CL technique, discontinuous gradient flows

of the current and stored identification errors are concurrently employed to, respectively, minimize

the estimation error for the current stream of data and recorded memory samples. Discontinuous

gradient-based adaptation of past data enables the update law (3.22) to converge to the optimal

parameters in a fixed time regardless of the initial parameters’ estimation error. Therefore, given

the recorded data, the fixed time of convergence can be computed a priori in this method.

The convergence properties of the proposed method are investigated for adaptive approximators

with zero and non-zero MFAEs in the following.

Fixed-time Convergence Properties for Adaptive Approximators with Zero MFAEs (Ȳ(C) =

0)

The following theorem demonstrates the fixed-time convergence of the estimated parameters to

their optimal values for the proposed FxTCL method (3.22), in adaptive approximators with zero

MFAEs, i.e., Ȳ(C) = 0.

Theorem 3 Consider the approximator for nonlinear system (3.4) given in (3.16), whose

parameters are adjusted according to the update law of (3.22) with 0 ≤ W1 < 1, W2 > 1 and a

regressor given in (3.14). Let Assumptions 3-4 hold. Once the rank condition on " is met, then for

adaptive approximators with zero MFAEs, Ȳ(C) = 0, the proposed update law (3.22) guarantees the

fixed-time convergence of Θ̃(C) to zero for C > ) where the settling-time is bounded by ) ≤ )<0G
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and

)<0G =
2

U12

W1+1
2

2 (1 − W1)
+

2

U22

W2+1
2

2 (W2 − 1)

, (3.23)

such that 22 = 2_<8=(Γ), U1 = b�_

W1+1
2

<8=
((), U2 = b�=

1−W2
2 _

W2+1
2

<8=
(().

Proof 5 Consider the Lyapunov function candidate

+(C) =
1

2
CA{Θ̃) (C)Γ−1Θ̃(C)}. (3.24)

We know that

2−11 ‖Θ̃(C)‖2≤+(C) ≤ 2−12 ‖Θ̃(C)‖2, (3.25)

where 21 = 2_<0G(Γ), 22 = 2_<8=(Γ).

The time derivative of + using (3.17), (3.21) and (3.22) yields,

¤+(C) =CA{Θ̃) (C)Γ−1 ¤̂Θ(C)}

=CA{ − Ξ�Θ̃
) (C)3̄(C)(⌊3̄) (C)Θ̃(C)⌉W1 + ⌊3̄) (C)Θ̃(C)⌉W2) − Ξ�Θ̃

) (C)
%∑

ℎ=1

3̄(gℎ)(⌊3̄) (gℎ)Θ̃(C)⌉W1

+ ⌊3̄) (gℎ)Θ̃(C)⌉W2)}. (3.26)

One knows that

Θ̃) (C)3̄(C)⌊3̄) (C)Θ̃(C)⌉W1 =
=∑

8=1

|(Θ̃) (C)3̄(C))8 |W1+1

= ‖Θ̃) (C)3̄(C)‖W1+1
W1+1, (3.27)

and using Fact 1

‖Θ̃) (C)3̄(C)‖≤ ‖Θ̃) (C)3̄(C)‖W1+1, (3.28)

holds for 0 < W1 + 1 < 2. By using (3.27), (3.28) and

‖Θ̃) (C)3̄(C)‖≤ =
W2−1

2(W2+1) ‖Θ̃) (C)3̄(C)‖W2+1, (3.29)

47



that holds based on Fact 1 for 0 < W1 + 1 < 2 < W2 + 1, one obtains,

¤+(C) ≤ − b�(‖Θ̃) (C)3̄(C)‖W1+1+=
1−W2
2 ‖Θ̃) (C)3̄(C)‖W2+1) − b�(

%∑

ℎ=1

‖Θ̃) (C)3̄(gℎ)‖W1+1

+ =
1−W2
2

%∑

ℎ=1

‖Θ̃) (C)3̄) (gℎ)‖W2+1).

Thus,

¤+(C) ≤ −b�
%∑

ℎ=1

(Θ̃) (C)3̄(gℎ)3̄
) (gℎ)Θ̃(C))

W1+1
2 − b�=

1−W2
2

%∑

ℎ=1

(Θ̃) (C)3̄(gℎ)3̄
) (gℎ)Θ̃(C))

W2+1
2 .

(3.30)

One can rewrite (3.30) as follows,

¤+(C) ≤ −U1‖Θ̃(C)‖W1+1−U2‖Θ̃(C)‖W2+1, (3.31)

where U1 = b�_

W1+1
2

<8=
((), U2 = b�=

1−W2
2 _

W2+1
2

<8=
(() and since, ( =

∑%
ℎ=1

3̄(gℎ)3̄
) (gℎ) > 0, we

have U1 > 0 and U2 > 0.

Employing (3.25), (3.31) gives

¤+(C) ≤ −U12
W1+1
2

2 +
W1+1
2 (C) − U22

W2+1
2

2 +
W2+1
2 (C). (3.32)

Let us introduce the following inequalities

+W2+1(C) ≤ +W1+1(C) ≤ +(C) ,∀+(C) ≤ 1, (3.33)

+W2+1(C) > +W1+1(C) > +(C) ,∀+(C) > 1. (3.34)

Hence, from (3.25), (3.32), and (3.34), when +(C) > 1, one obtains

¤+(C) ≤ −U22
W2+1
2

2 +
W2+1
2 (C). (3.35)

Thus, for any Θ̃(C) such that +(Θ̃(0)) > 1, (3.35) ensures +(Θ̃(C)) ≤ 1 for all C ≥ )1 =

2

U22

W2+1
2

2
(W2−1)

.
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Then when +(C) ≤ 1, using inequality (3.33) for every W2 + 1 > W1 + 1 > 1, it follows from

(3.32) that,

¤+(C) ≤ −U12
W1+1
2

2 +
W1+1
2 (C). (3.36)

and we derive +(Θ̃(C)) = 0 for C ≥ )2 where )2 = 2

U12

W1+1
2

2
(1−W1)

. Therefore, +(Θ̃(C)) = 0 for

∀C ≥ )<0G where

)<0G = )1 + )2 =
2

U12

W1+1
2

2 (1 − W1)
+

2

U22

W2+1
2

2 (W2 − 1)

,

and it implies that Θ̃(C) = 0 for ∀C ≥ )<0G .

Fixed-time Convergence Properties for Adaptive Approximators with Non-zero MFAEs

(Ȳ(C) 6= 0)

The fixed-time convergence properties of the proposed FxTCL update law for adaptive approx-

imators with non-zero MFAEs, Ȳ(C) 6= 0, are given in the next theorem.

Theorem 4 Consider the approximator for nonlinear system (3.4), given in (3.16), with param-

eters adjusted by the update law of (3.22) with 0 ≤ W1 < 1, W2 > 1 and a regressor given in (3.14).

Let Assumptions 3-4 and the rank condition on " hold. Then, for adaptive approximators with

non-zero MFAEs, the proposed update law (3.22) guarantees that

1) for W1 = 0, if

max{
√

2_<0G(Γ)

(2_<8=(Γ))
W2+1

,

√
_<0G(Γ)

_<8=(Γ)
} < min{U4, U3}

l

, then Θ̃(C) is fixed-time convergent to zero for C > ) and ) ≤ )<0G with

)<0G =
2

U(W2 − 1)
+

2

U3
√
22 − l

√
21
, (3.37)

2) for 0 < W1 < 1, if

√
2_<0G(Γ)

(2_<8=(Γ))
W2+1 <

U4
l , then Θ̃(C) is fixed-time attractive with the following

bound

‖Θ̃(C)‖≤

√
_<0G(Γ)

_<8=(Γ)
<8={

√
2_<0G(Γ), ¯̀}, ∀C ≥ ), (3.38)
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such that ) ≤ )<0G ,

)<0G =
2

U(W2 − 1)
+

2(1 − (2−0.52 min( ¯̀,
√
21))

1−W1)

U3(1 − X)(1 − W1)2
W1+1
2

2

, (3.39)

¯̀ =





<0G{ 1Ȳ

min
{
_

1
2
<8=

(�(C)),_̄ℎ
}
, ( l
U3X

)
1
W1 }, 3̄(C) 6= 0,

<0G{ 1Ȳ
_̄ℎ
, ( l
U3X

)
1
W1 }, 3̄(C) = 0,

(3.40)

where

_̄ℎ = min
ℎ=1,...,%

_
1
2
<8=

(�(gℎ))}, �(C) = 3̄(C)3̄) (C), U = U32

W2+1
2

2 − l√21,

U3 = b�_

W1+1
2

<8=
(�(C)) + b�_

W1+1
2

<8=
((), U4 = 21−W2=

1−W2
2 (b�_

W2+1
2

<8=
(�(C)) + b�_

W2+1
2

<8=
(()),

l = (b� + %b�)[=
2−W1
4 1

W1
Ȳ + 1

W2
Ȳ ].

Proof 6 Consider the Lyapunov function candidate (3.24) that satisfies (3.25). The time

derivative of + using (3.17), (3.21) and (3.22) yields,

¤+(C) =CA{ − Ξ�Θ̃
) (C)3̄(C)(⌊3̄) (C)Θ̃(C) − Ȳ) (C)⌉W1 + ⌊3̄) (C)Θ̃(C) − Ȳ) (C)⌉W2)

− Ξ�Θ̃
) (C)

%∑

ℎ=1

3̄(gℎ)(⌊3̄) (gℎ)Θ̃(C) − Ȳ) (gℎ)⌉W1 + ⌊3̄) (gℎ)Θ̃(C) − Ȳ) (gℎ)⌉W2)}. (3.41)

Consider in the component-wise sense that |(3̄) (C)Θ̃(C))8 |≥ |Ȳ8(C)|, for 8 = 1, ..., =. It is worth

mentioning that the last inequality is required when 3̄(C) 6= 0. Because, if 3̄(C) = 0 then the first

term in (3.22) will be zero and in the second term of (3.22), called the CL term, the data collection

algorithm ensures that 3̄(gℎ) 6= 0, ℎ = 1, ..., %.

Therefore, B86=(3̄) (C)Θ̃(C) − Ȳ) (C)) = B86=(3̄) (C)Θ̃(C)) is implied. For any H1, H2 ∈ R and

0 ≤ W1 < 1, the following inequality holds [129],

|H1 + H2 |W1≤ |H1 |W1+|H2 |W1 .

Therefore, defining H1 = (3̄) (C)Θ̃(C))8 − Ȳ8(C) and H2 = Ȳ8(C), one obtains that for all 8 = 1, ..., =

|(3̄) (C)Θ̃(C))8 |W1= |(3̄) (C)Θ̃(C))8 − Ȳ8(C) + Ȳ8(C)|W1≤|(3̄) (C)Θ̃(C))8 − Ȳ8(C)|W1+|Ȳ8(C)|W1⇒

|(3̄) (C)Θ̃(C))8 |W1−|Ȳ8(C)|W1≤|(3̄) (C)Θ̃(C))8 − Ȳ8(C)|W1 ,
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and then in the component-wise sense,

−|3̄) (C)Θ̃(C) − Ȳ(C)|W1≤ −|3̄) (C)Θ̃(C)|W1+|Ȳ(C)|W1 . (3.42)

For W2 > 1, the following inequality [129] holds,

|H1 + H2 |W2≤ 2W2−1(|H1 |W2+|H2 |W2).

Thus, for H1 = (3̄) (C)Θ̃(C))8 − Ȳ8(C) and H2 = Ȳ8(C), one has

|(3̄) (C)Θ̃(C))8 |W2= |(3̄) (C)Θ̃(C))8 − Ȳ8(C) + Ȳ8(C)|W2≤2W2−1(|(3̄) (C)Θ̃(C))8 − Ȳ8(C)|W2+|Ȳ8(C)|W2) ⇒

|(3̄) (C)Θ̃(C))8 |W2−2W2−1 |Ȳ8(C)|W2≤2W2−1 |(3̄) (C)Θ̃(C))8 − Ȳ8(C)|W2 , 8 = 1, ..., =,

and then component-wisely, for W2 > 1, it follows that

−|3̄) (C)Θ̃(C) − Ȳ(C)|W2≤ −21−W2 |3̄) (C)Θ̃(C)|W2+|Ȳ(C)|W2 . (3.43)

Now, using (3.42)-(3.43), ¤+(C) in (3.41) is upper bounded by

¤+(C) ≤ CA{ − Ξ�Θ̃
) (C)3̄(C)(⌊3̄) (C)Θ̃(C)⌉W1 + 21−W2 ⌊3̄) (C)Θ̃(C)⌉W2)

+ Ξ�Θ̃
) (C)3̄(C)(|Ȳ(C)|W1B86=(3̄) (C)Θ̃(C)) + |Ȳ(C)|W2B86=(3̄) (C)Θ̃(C)))

− Ξ�Θ̃
) (C)

%∑

ℎ=1

3̄(gℎ)(⌊3̄) (gℎ)Θ̃(C)⌉W1 + 21−W2 ⌊3̄) (gℎ)Θ̃(C)⌉W2)

+ Ξ�Θ̃
) (C)

%∑

ℎ=1

3̄(gℎ)(|Ȳ(gℎ)|W1B86=(3̄) (gℎ)Θ̃(C)) + |Ȳ(gℎ)|W2B86=(3̄) (gℎ)Θ̃(C)))}.

Therefore, using (3.27)-(3.29) and Fact 1, one obtains,

¤+(C) ≤ − b� ‖Θ̃) (C)3̄(C)‖W1+1−b�
%∑

ℎ=1

‖Θ̃) (C)3̄(gℎ)‖W1+1+b� ‖Θ̃) (C)‖(‖|Ȳ(C)|W1 ‖+‖|Ȳ(C)|W2 ‖)

+ b�%‖Θ̃(C)‖(‖|Ȳ(gℎ)|W1 ‖+‖|Ȳ(gℎ)|W2 ‖) − 21−W2=
1−W2
2 (b� ‖Θ̃) (C)3̄(C)‖W2+1

+ b�

%∑

ℎ=1

‖Θ̃) (C)3̄) (gℎ)‖W2+1). (3.44)

Since ‖|Ȳ(C)|W1 ‖=
√∑=

8=1 |Ȳ8(C)|
2W1 = ‖Ȳ(C)‖W12W1 , and by using Fact 1,

‖Ȳ(C)‖2W2≤ ‖Ȳ(C)‖, ‖Ȳ(C)‖2W1≤ =
1−W1
2W1 ‖Ȳ(C)‖, (3.45)
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holds for all 0 < 2W1 < 2 < 2W2. Using (3.45), (3.44) leads to

¤+(C) ≤ −b�(Θ̃) (C)3̄(C)3̄) (C)Θ̃(C))
W1+1
2 − b�

%∑

ℎ=1

(Θ̃) (C)3̄(gℎ)3̄
) (gℎ)Θ̃(C))

W1+1
2

+ b� ‖Θ̃(C)‖(=
1−W1
2 ‖Ȳ(C)‖W1+‖Ȳ(C)‖W2) + b�%‖Θ̃(C)‖(=

1−W1
2 ‖Ȳ(gℎ)‖W1+‖Ȳ(gℎ)‖W2)

− 21−W2=
1−W2
2 (b�(Θ̃

) (C)3̄(C)3̄) (C)Θ̃(C))
W2+1
2 + b�

%∑

ℎ=1

(Θ̃) (C)3̄(gℎ)3̄
) (gℎ)Θ̃(C))

W2+1
2 ).

Therefore,

¤+(C) ≤ −U3‖Θ̃(C)‖W1+1−U4‖Θ̃(C)‖W2+1+l‖Θ̃(C)‖, (3.46)

where

U3 = b�_

W1+1
2

<8=
(�(C)) + b�_

W1+1
2

<8=
((), U4 = 21−W2=

1−W2
2 (b�_

W2+1
2

<8=
(�(C)) + b�_

W2+1
2

<8=
(()),

l = (b� + %b�)[=
1−W1
2 1

W1
Ȳ + 1

W2
Ȳ ].

By using (3.25), (3.46) is written as,

¤+(C) ≤ − U32
W1+1
2

2 +
W1+1
2 (C) − U42

W2+1
2

2 +
W2+1
2 (C) + l

√
21+

1
2 (C), (3.47)

and employing inequality (3.34) when +(C) > 1, one obtains

¤+(C) ≤ −U42
W2+1
2

2 +
W2+1
2 (C) + l

√
21+

1
2 (C)

≤ −U42
W2+1
2

2 +
W2+1
2 (C) + l

√
21+

W2+1
2 (C)

≤ −U+
W2+1
2 (C), (3.48)

where U = U42

W2+1
2

2 − l√21 is positive if

U42

W2+1
2

2 > l
√
21 ⇒ U4

l
>

√
2_<0G(Γ)

(2_<8=(Γ))
W2+1

. (3.49)

Thus, if (3.49) is met, for any Θ̃(C) such that +(Θ̃(0)) > 1, (3.46) ensures +(Θ̃(C)) ≤ 1 for all

C ≥ )3 = 2
U(W2−1)

.
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1) If W1 = 0, for the case that +(C) ≤ 1, using (3.33) and (3.47), one obtains

¤+(C) ≤ − U3
√
22+

1
2 (C) + l

√
21+

1
2 (C). (3.50)

Therefore, satisfying

U3

l
>

√
_<0G(Γ)

_<8=(Γ)
, (3.51)

we have +(Θ̃(C)) = 0 for C ≥ )4 where

)4 =
2

U3
√
22 − l

√
21
.

Therefore, for W1 = 0, once " rank condition, (3.49) and (3.51) are satisfied then +(Θ̃(C)) = 0 for

C ≥ )<0G where

)<0G = )3 + )4 =
2

U(W2 − 1)
+

2

U3
√
22 − l

√
21
.

This completes the proof of part 1.

2) If 0 < W1 < 1, for the case when +(C) ≤ 1, using (46), one obtains

¤+(C) ≤ − U3‖Θ̃(C)‖W1+1+l‖Θ̃(C)‖

≤ − U3(1 − X)‖Θ̃(C)‖W1+1−U3X‖Θ̃(C)‖W1+1+l‖Θ̃(C)‖,

where 0 < X < 1. Hence,

¤+(C) ≤ −U3(1 − X)‖Θ̃(C)‖W1+1, ¯̀ ≤ ‖Θ̃(C)‖≤ √
21, (3.52)

where

¯̀ =




<0G{ 1Ȳ

min
{
_

1
2
<8=

(�(C)),_̄ℎ
}
, ( l
U3X

)
1
W1 }, 3̄(C) 6= 0,

<0G{ 1Ȳ
_̄ℎ
, ( l
U3X

)
1
W1 }, 3̄(C) = 0.

Using (3.25), (3.52) implies that

¤+(C) ≤ −U3(1 − X)2
W1+1
2

2 +
W1+1
2 (C),
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and using comparison principle and (3.25), one obtains

+(C) ≤ (+
1−W1
2 ()3) −

U3(1 − X)(1 − W1)2
W1+1
2

2

2
C)

2
1−W1

≤ 2−12 (<8=( ¯̀,
√
21))

2,

then, the above inequality shows that Θ̃(C) satisfies (3.38), for all C > )<0G where )<0G = )3 + )5

and

)5 =
2(1 − (2−0.52 min( ¯̀,

√
21))

1−W1)

U3(1 − X)(1 − W1)2
W1+1
2

2

.

Therefore, for 0 < W1 < 1, it is concluded that once " rank condition and (3.49) are met then the

solutions Θ̃(C) are finite-time attractive by the bound given in (3.38) and

) ≤ 2

U(W2 − 1)
+

2(1 − (2−0.52 min( ¯̀,
√
21))

1−W1)

U3(1 − X)(1 − W1)2
W1+1
2

2

.

This completes the proof.

Remark 14 The convergence set (3.38) can be kept small by maximizing_<8=(() that maximizes

U3 and helps to minimize ¯̀ in (3.40). Furthermore, choosing % = ? + @ (satisfying % ≥ ? + @)

helps to maximize
_<8=(()
_<0G(()

and minimize l. Moreover, maximizing _<8=(() results in a faster

convergence time for Θ̃(C) as can be found in (3.23), (3.37), and (3.39). These results completely

coincide with the obtained results in [34, 36]. Therefore, while applying the proposed FxTCL,

the data recording algorithm in [34, 36] is used, where appropriate data is selected to maximize

_<8=(()
_<0G(()

.

Remark 15 In [81], for zero MFAE, it is shown that once the regressor satisfies the injectivity

condition (analogous to the PE condition) for W1 = 0 and W2 > 1, the estimated parameters are

fixed-time stable and for W1 ∈ (0, 1) and W2 > 1, the estimated parameters are just ultimately

bounded. Moreover, the learning rate must satisfy some constraints and to check these constraints

the online knowledge of the minimum and maximum singular values of the regressor and the

upper bound of the unknown parameters are required which are hard to compute and check online.
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However, by employing CL technique, in the proposed method for approximators with zero MFAE,

it is shown that for W1 ∈ [0, 1) and W2 > 1, the estimated parameters are fixed-time stable and

no constraint is imposed on the learning rates. Moreover, for both approximators with zero and

nonzero MFAEs, no upper bound for the unknown parameters is required anymore. Above all, in

sharp contrast to [81], employing the CL technique has eliminated the PE or injectivity requirement

in the proposed FxTCL method for both approximators with zero and nonzero MFAEs.

Comparison with other methods Three approaches will be considered in the next section for

comparison.

1) Concurrent learning [36]: The asymptotically converging CL has the following update law,

¤̂
Θ(C) = −Γ�(Σ� 3̄(C)4) (C) + Σ�

%∑

ℎ=1

3̄(gℎ)4
)
ℎ
(C)), (3.53)

where Γ� > 0, Σ� = f� �, Σ� = f� � with positive constants f� > 0, f� > 0. In contrary to the

proposed method (3.22), the update law (3.53) can just guarantee asymptotic convergence of the

estimated parameters rather than the fixed-time convergence.

2) Fixed-time parameter estimation [77, 78, 81]: The fixed-time parameter estimation law [77, 78,

81] is as follows

¤̂
Θ(C) = − 3̄(C)(⌊4) (C)⌉W1 + ⌊4) (C)⌉W2), (3.54)

for some  > 0. In contrast to the proposed method (3.22), (3.54) requires the PE [77, 78]

or injectivity [81] condition on the regressor to guarantee fixed-time convergence. However,

the proposed FxTCL method (3.22) employs past recorded experienced data to obviate the PE

requirement while update law (3.55) only employs current data and require PE or injectivity

condition.

3) Finite-time concurrent learning [41]: The finite-time CL introduced in [41] uses the following

update law,

¤̂
Θ(C) = −Γ′( 13̄(C)4) (C) +  2

%∑

ℎ=1

3̄(gℎ)4
)
ℎ
(C) +  3

∑%
ℎ=1

3̄(gℎ)4
)
ℎ
(C)

‖∑%
ℎ=1

3̄(gℎ)4
)
ℎ
(C)‖

), (3.55)
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where Γ′ > 0,  9 = : 9 � > 0 with constant : 9 > 0 for 9 = 1, 2, 3. In contrast to the proposed

method (3.22), the settling time of (3.55) depends on the initial parameter estimation error Θ̃(0)

as follows

) ≤ )<0G(Θ̃(0)) =
2

U′
;=
U′‖Θ̃(0)‖+V′

√
2_<8=(Γ′)

V′
√
2_<8=(Γ′)

,

U′ = 2_<8=(Γ
′)_<8=(:1�(C) + :2(), V′ = :3

√
2_<8=(Γ′)

_<8=(()

_<0G(()
. (3.56)

Remark 16 It is notable that to guarantee fixed-time convergence for update law (3.54), not only

injectivity or PE condition is required but also its learning rate,  , must satisfy some constraints

on the entire time of learning where the minimum and maximum singular values of the regressor

and the upper bound of the unknown parameters are needed to be known. Moreover, CL (3.53)

only guarantees the asymptotic convergence of the estimated parameters and finite-time CL (3.55)

can only ensure that there is a finite-time of convergence that cannot be computed due to the

dependence of the settling time on initial parameter estimation error. Therefore, the proposed

fixed-time CL update law (3.22) that guarantees fixed-time convergence regardless of the initial

parameter estimation error and does not require PE condition under the rank condition of recorded

data, intuitively outperforms the previously mentioned methods.

3.4 Simulation Results

In this section, the performance of the proposed fixed time CL is numerically examined in

comparison with asymptotically converging CL, fixed-time parameter estimation, and finite-time

CL, given by (3.53), (3.54) and (3.55), respectively.

In the following examples, the G domain is defined by DG = [G! , G� ] where G! = −2 and

G� = 2, initial values and the controllers are all set to zero and a small exponential sum of

sinusoidal input is injected into the system controller to ensure the rank condition on the collected

data where data selection procedure in [34,36] for maximizing
_<8=(()
_<0G(()

is employed for CL, finite-

time CL and the proposed fixed-time CL methods. To fairly compare the speed and precision of

the mentioned online learning methods for approximating 5̂ (G) and 6̂(G) on the whole domain of
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G as time evolves, the following learning errors are computed online

� 5 (C) =

∫

D
‖4 5 (G(C))‖3=G, �6(C) =

∫

D
‖46(G(C))‖3=G.

The simulations are done in MATLAB with Euler integration with the sample time equal to 0.001

seconds. In the simulations, the results of the proposed fixed-time CL, asymptotically converging

CL, fixed-time parameter estimation, and finite-time CL methods respectively given in (3.22),

(3.53)-(3.55), are labeled by FxTCL, CL, FxT, and FTCL, respectively.

Example 1: Adaptive approximators with zero MFAEs

Consider the following system

¤G(C) = ?1G(C) + ?2G(C) cos(G(C)) + ?34
−G(C)D(C), (3.57)

where the regressors are fully known as I(G(C), D(C)) = [G(C), G(C) cos(G(C)), 4−G(C)D(C)]with ?+@ =

3. The unknown parameters are [?1, ?2, ?3] = [−0.5, 0.5, 0.5]. We set % = 3 for CL, finite-time

CL and FxTCL methods. Let b� = f� = :1 = 3, b� = f� = :2 = 1, :3 = 0.1. Set

Γ′ = Γ = Γ� =  = �, W1 = 0.5 and W2 = 2.

Fig. 3.1 depicts the true parameters and the approximated parameters for CL, fixed-time

parameter estimation, finite-time CL, and the proposed fixed-time CL methods. In Fig. 3.1, CL,

finite-time CL and the proposed fixed-time CL succeeded in convergence to true parameters where

FxTCL resulted in faster convergence in comparison with CL and finite-time CL. As shown in Fig.

3.1, fixed-time method (3.54), did not succeed in convergence to the true parameters due to the

lack of the PE condition. The online learning errors � 5 (C) and �6(C) are plotted in Fig. 3.2 where

FxTCL shows faster converging to the origin in comparison with the other methods. The integral

absolute errors (IAEs) of � 5 (C) and �6(C) for all methods are computed in Table 3.1 where FxTCL

with IAEs 14.81 and 2.58, respectively, for � 5 (C) and �6(C) has resulted in the best precision

of online learning in comparison with other mentioned methods. Using data selection algorithm

in [34, 36] to maximize
_<8=(()
_<0G(()

, the maximum of _<8=(() is obtained as 0.07. Therefore, using

(3.23), the upper bound of the settling-time for the proposed FxTCL is obtained as )<0G = 57

seconds. Figs. 3.1 and 3.2 show that the settling-time for the FxTCL method satisfies the expected
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Figure 3.1: Estimated parameters for approximators with zero MFAE.
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Figure 3.2: Online learning errors for approximators with zero MFAE.

Table 3.1: Learning errors comparison

Example 1 Example 2

IAE � 5 (C) IAE �6(C) IAE � 5 (C) IAE �6(C)

CL 30.02 7.37 1448 6079

FxT 111.37 96.33 3252 10587

FTCL 19.11 5.40 1319 4022

FxTCL 14.81 2.58 907 2281

settling-time bound, however, the experienced stacks are not prerecorded and the experienced data

is collected online during the learning. It is worth noting that the obtained bound for the FxTCL is

valid for any initial condition in DG .

Example 2: Adaptive approximators with non-zero MFAEs Now, consider the following
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system

¤G(C) = G(C) sin(0.5G(C)) + (3 + cos(G(C)))D(C), (3.58)

where the associated 5 (G) and 6(G) are fully unknown uncertainties. In this example, since there

is no knowledge about the exact regressors, it is expected that the learning errors are fixed-time

attractive to a bound near zero. Therefore, radial basis function neural networks that are linearly

parameterized universal approximators are used. Here, we consider 5 radial basis functions defined

as exp(−




G−2 9




2

2f9
2 ), 9 = 1, 2, ..., 5, where the centroids 2 9 are uniformly picked on the interval

[G! , G� ] = [−2, 2] and the spreads are all fixed to f9 = 1.2. Therefore, the employed regressor is

I(G(C), D(C)) = [4
− ‖G(C)−(−2)‖

2

2(1.2)2 , ..., 4
− ‖G(C)−(2)‖

2

2(1.2)2 , 4
− ‖G(C)−(−2)‖

2

2(1.2)2 D(C), ..., 4
− ‖G(C)−(2)‖

2

2(1.2)2 D(C)]) ,

with 10 independent basis functions that leads to setting % = 10. Thus, the approximation of (3.58)

is given as

¤G(C) = Θ̂) (C)I(G(C), D(C)) = [?1, ?2, ..., ?10]I(G(C), D(C)).

Let Γ = Γ′ = Γ� =  = �, and b� = f� = :1 = 1, b� = f� = :2 = 0.2, :3 = 0.02 and

W1 = 0.5 and W2 = 2. It should be noted that in finite-time CL, increasing :3 = 0.02 causes

chattering in the approximation error. The mentioned learning methods led to the approximated

parameters depicted in Fig. 3.3. In Fig. 3.3(a), it is shown that the fixed-time parameter estimation

method cannot guarantee convergence of parameters to their true values, due to the lack of PE. Fig.

3.3(d) shows that the proposed FxTCL satisfying the rank condition, succeeded in convergence to

the suitable parameters while CL and FTCL methods need more time for convergence as respectively

shown in parts (b) and (c) of Fig. 3.3. The steady state approximations for the uncertainties 5 (G)

and 6(G), on the x-domain DG , are depicted in Fig. 3.4 where the steady-state approximations of

FxTCL could better match the true values of 5 (G) and 6(G) in comparison with other methods. As

the comparison of the learning errors � 5 (C) and �6(C) in Fig. 3.5 shows, the fixed-time parameter

estimation, did not perform well in learning the uncertainty due to the lack of the PE condition.
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Figure 3.4: Steady state uncertainty approximations.

However, the proposed FxTCL, FTCL and CL errors showed bounded convergence near zero in

Fig. 3.5, where FxTCL method is faster in converging to a smaller bound near zero in comparison

with others. Furthermore, based on the results of IAEs for � 5 (C) and �6(C) in Table 1, FxTCL

resulted in the lowest learning errors during the whole time of online learning in comparison with

other mentioned methods.

In the presented numerical results, it is shown that the proposed FxTCL has outperformed other

mentioned methods both in terms of precision and convergence speed.
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Figure 3.5: Online learning errors for approximators with non-zero MFAE.

3.5 Conclusion

In this chapter, a fixed-time concurrent learning system identification method is introduced

without the persistence of excitation (PE) requirement. In this method, the concurrent learning

relaxes the requirement of the PE condition to a rank condition on the memory stack of recorded

data. It is shown that the richness of the recorded experienced data depends on the minimum

eigenvalue properties of the stack of regressor’s data which influences the speed and precision of

the proposed fixed-time concurrent learning method. Simulation results are given where it is shown

that the proposed fixed-time concurrent learning has outperformed other mentioned methods in

both terms of precision and convergence speed.
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CHAPTER 4

ONLINE IDENTIFICATION OF NOISY FUNCTIONS VIA A

DATA-REGULARIZED LEARNING APPROACH

4.1 Introduction

This chapter presents online learning rule that paves the way to designing an active learning

approach to collect informative data that improves the convergence rate as well as reduce the

effect of the noise variance on the estimation. This is in sharp contrast to the existing online

approaches that require independent and identically distributed (i.i.d) data samples for which

there is no systematic approach to verify them. More specifically, it is shown that as the data is

streaming, the fixed-size memory data can be updated to improve the strong convexity properties

of the data-regularized loss function to reduce the ultimate bound and improve the convergence

speed. The exponential convergence rate is also guaranteed under a rank condition on the matrix

of the memory data. The rate of convergence to the ultimate bound also depends on the quality of

the stored data. More specifically, the employed data-regularized loss function is strongly convex

as long as a rank condition on the fixed-size memory data is satisfied, and does not impose any

bias on the estimated parameters. The strong convexity parameter of the loss function depends

on the maximum and minimum eigenvalues of the memory data matrix, which can be improved

by replacing new samples with old ones. The presented online data-regularized CL-based SGD

ensures a finite-sample performance guarantee by providing a bound of the estimated parameters for

every time step. Moreover, it is shown how the function approximation with noisy measurements

can be leveraged in system identification and RL applications. Simulation examples are also

provided to verify the effectiveness of the proposed approach and the results are compared with the

standard SGD.

Notation R, N, and Z+ respectively show the set of real, natural and all nonnegative integers.

‖.‖ denotes the Euclidean norm for vectors and induced 2-norm for matrices. CA(.) indicates trace

of a matrix. The minimum and maximum eigenvalues of matrix � are, respectively, denoted by

_<8=(�) and _<0G(�). The matrix � denotes the identity matrix of appropriate dimensions. We
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use W1 ◦ W2 to denote the composition of two functions W1 and W2 where W8 : R ↦→ R, for 8 = 1, 2.

A function U : R > 0 ↦→ R > 0 is a K-function if it is continuous, strictly increasing and U(0) = 0;

it is a K∞-function if it is a K-function and also U(B) → ∞ as B → ∞; and it is a positive definite

function if U(B) > 0 for all B > 0, and U(0) = 0. A function V : R > 0× R> 0 → R> 0 is a

KL-function if, for each fixed : > 0, the function V(·, :) is a K-function, and for each fixed B > 0,

the function V(B, ·) is decreasing and V(B, :) → 0 as : → ∞.

All random variables are assumed to be defined on a probability space (Ω, F , P), with Ω as the

sample space, F as its associated Borel f-algebra and P as the probability measure. For a random

variable F : Ω −→ R= defined on the probability space (Ω, F , P), with some abuse of notation, the

statement F ∈ R= is used to state the dimension of the random variable. Finally, E[-] denotes the

expected value of the random variable - on the probability space (Ω, F , P).

4.2 Preliminaries

Consider the following stochastic discrete-time (DT) dynamics system

G(: + 1) = �(G(:), E(:)), (4.1)

where G(:) ∈ D ⊂ R= is the measurable state vector and D is a compact set; E(:) ∈ R= is a

zero-mean independent white noise and � : D × R= ↦→ R=.

The following definition and lemmas are introduced for stability analysis and convergence of

this stochastic system.

Definition 5 [132] Consider the stochastic system (4.1) and fix n ∈ (0, 1). The system is said to

be practical stable in probability (PS-P) if there exist a positive constant W and a class KL-function

V(·, ·) such that

P
{

G(:)



 ≤ V (‖G0‖ , :) + W
}
≥ 1 − n .

The following lemma gives the criterion on practical stability in probability (PS-P) for the

system (4.1).

Lemma 3 [132] The system (4.1) is PS-P if there exist a positive definite function +(G(:)) and
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real scalar 3 ≥ 0 and K∞-functions U1, U2, U3 such that

U1(‖G(:)‖) ≤ +(G(:)) ≤ U2(‖G(:)‖),

and

E
[
+

(
G(: + 1)

) ]
−+(G(:)) ≤ −U3(‖G(:)‖) + 3, (4.2)

where U3 ◦ U−12 is a convex function.

Definition 6 [133] The origin of the system (4.1) is said to be exponentially bounded in mean

square with exponent 0 if there exist constants 0 < 0 < 1, 21 ≥ 0 and 22 > 0 such that

� ‖G(:)‖2≤ 21 + 22(1 − 0): . (4.3)

Remark 17 Definition 6 does not necessarily imply that � ‖G(:)‖2 decreases monotonically for

all : . It only implies that the bound on � ‖G(:)‖2 decreases exponentially and as : → ∞ the mean

square of the process is bounded by � ‖G(∞)‖2≤ 21 where 21 depends on the noise disturbing the

system.

Lemma 4 [134] For the system (4.1), if there exists a function+(G(:)) with+(0) = 0 such that,

∀: ≥ 0, 1) E[+(G(:))] ≥ 2E[d(‖G(:)‖)], and 2) E[+(G(: + 1))] − E[+(G(:))] ≤ " − 0E[+(G(:))],

for some d(.) ∈ K, and constants 2 > 0, " ≥ 0, and 0 < 0 < 1, then

2E[d(‖G(:)‖)] ≤ E[+(G(:))] ≤(1 − 0):E[+(G(0))] + "
:−1∑

8=0

(1 − 0)8, (4.4)

and lim:→∞ E[d(‖G(:)‖)] ≤ "
20 .

The following definitions are also used throughout the chapter.

Definition 7 [135] The sequence {G(:)}∞
:=1

converges to G∗ with a linear (exponentially fast)

rate if ‖G(:+1)− G∗‖≤ W‖G(:)− G∗‖, or equivalently if ‖G(: + 1)− G∗‖≤ W: ‖G(0)− G∗‖ for some

W ∈ (0, 1). The convergence is sublinear if W = 1. For the linear (sublinear) convergence, the error

rate is $(W:) ( O(1
:)
) .

Definition 8 (Markov’s Inequality [136]). Let - be a non-negative random variable. Then for

all real positive constant 0 > 0,

P(- ≥ 0) ≤ E[X]
0
. (4.5)
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Definition 9 (Jason’s inequality [137]): If - is a random variable and i is a convex function,

then i(E[-]) ≤ E[i(-)].

Definition 10 (Persistently exciting (PE) [29]) The bounded vector signal i(G(:)) ∈ R= is PE

if there exist a natural number # and U > 0 such that

g+#∑

:=g

i(G(:))i) (G(:)) ≥ U�, ∀g ∈ Z+. (4.6)

Definition 11 (Strongly Convex and Smooth Functions [138]) A convex function 5 is said to

be U-strongly convex if

5 (H) ≥ 5 (G) + 5 (G)) (H − G) + U

2
| |H − G | |2 (4.7)

Moreover, a continuously differentiable function 5 is V-smooth if its gradient is V-Lipschitz. That

is, if

| | 5 (G) − 5 (H)| |≤ V | |G − H | | (4.8)

A twice differentiable function 5 is U-strongly convex if for all G, one has ∇2 5 (G) ≥ U � and is

V-smooth if for all G, one has ∇2 5 (G) ≤ V �.

4.3 Problem Formulation and Motivation

Stochastic Function Identification: Problem Formulation Consider the following DT func-

tion

H(:) = 5 (G(:)) + E(:), (4.9)

where G ∈ D ⊂ R= is the measurable state vector and D is a compact set; 5 : D ↦→ R=, E ∈ R= is

an additive zero-mean independent white noise.

Assumption 5 The function 5 (.) is unknown; however, its noisy measurements H(:) as well as

G(:) are available for measurement.

The noise E(:) in system (4.9) satisfies the following assumption.
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Assumption 6 For ∀B, C ∈ Z+,E
{
E(B)

}
= E

{
E(C)

}
= 0, and

E

{
E(B))E(C)

}
=





f2, B = C,

0, B 6= C.

In this chapter, we consider the problem of online DT function identification, 5 (G(:)), from

streaming noisy measurements and recorded experienced data.

Here, linearly parameterized adaptive approximation models [10] are employed to represent

5 (G(:)) as follows,

5 (G(:)) = Θ∗)i(G(:)) + Y(G(:)), (4.10)

where the matrix Θ∗ ∈ DΘ ⊂ R@×= denotes the unknown optimal parameters of the approximater,

given by

Θ∗ = arg min
Θ∈DΘ

{ BD?
G(:)∈D



Y(G(:))


 }, (4.11)

where DΘ is a compact set. The measurable vector i : D ↦→ R@ denotes the basis functions, while

@ is the number of linearly independent basis functions for approximating 5 (G(:)). The quantity

Y(G(:)) ∈ R= is the minimum functional approximation error (MFAE) for 5 (G(:)). If the unknown

functions 5 (G(:)) can be approximated exactly by the model, one has Y(G(:)) = 0.

Assumption 7 For the compact set D, the approximators’ basis functions are bounded i.e.,

11 ≤ ‖i(G(:))‖≤ 12,∀G ∈ D, where 11 ≥ 0 and 12 > 0. Moreover, the approximation error

Y(G(:)) is bounded by 1Y ≥ 0, i.e.,

sup
G∈D

‖Y(G)‖≤ 1Y .

Now using (4.10), (4.9) can be written as

H(:) = Θ∗)i(G(:)) + Y(G(:)) + E(:). (4.12)

Let the approximator of (4.12) be of the form

Ĥ(:) = Θ̂) (:)i(G(:)), (4.13)
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where Θ̂(:) ∈ R@×= is the estimation of parameter matrix Θ∗ at time : . The approximation error

4(:) is defined as

4(:) = Ĥ(:) − H(:) = Θ̃) (:)i(:) − Y(:) − E(:), (4.14)

where Θ̃(:) := Θ̂(:) −Θ∗ is the parameter estimation error.

The goal of function approximation is to learn the unknown parameters vector Θ∗ by Θ̂ by

fitting (4.13) to data samples. This function approximation problem has many applications in

machine learning. For example, identification of dynamic systems and learning the value function

in reinforcement learning can be transformed into this regressor, as shown later. The following

definition is needed to formalize the goal of this chapter, stated in Problem 1.

Definition 12 [139] Let 0 < n < 1. Let a learning algorithm � is designed to iteratively learn

the unknown parameters Θ∗ and let its output at iteration or time : be Θ̂(:). We say that the set

(Θ(:) is a probabilistic bound of the learning algorithm at time : , if P[Θ∗ − Θ̂(:) ∈ (Θ(:)] ≥

(1 − n) for time : and after. We say (Θ is the probabilistic ultimate bound of the learning if

P[lim:→∞(Θ∗ − Θ̂(:)) ∈ (Θ] ≥ (1 − n).

Problem 1 Consider the function (4.12) and let its approxixmator be (4.13). Let Assumptions 5-

7 be satisfied. Design an iterative learning algorithm � such thatΘ∗−Θ̂(:) converges exponentially

fast to a probabilistic ultimate bound with minimum size. Moreover, the algorithm � provides

finite-sample guarantees for the estimation error.

Remark 18 The probabilistic ultimate bound in Definition 12 can be achieved by assuring that

the error dynamics of the learning, i.e, Θ̃, is PS-P (which is defined in Definition 5). In this case,

the exponential convergence to the ultimate bound is characterized by the V(·, ·) function, and the

ultimate bound is characterized by W. Moreover, the sets (Θ(:) and (Θ are balls of radius with

V(Θ(0), :) + W and W, respectively.

Remark 19 Note that due to the noise in (4.12), no point estimate Θ̂(:) of the unknown

parameters Θ∗ can entirely predict the outcome of the stochastic function (4.12). Therefore, a

high-confidence set for the estimation is typically found to provide guarantees on how far the

estimated parameters can be from the optimal parameters. In our proposed approach, we will show
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that this set has a transient part that goes to zero as : goes to infinity and the steady state part

depends on the noise variance and the MFAE. An efficient algorithm is then the one that makes the

transient response faster (i.e, faster convergence to the ultimate bound) and also makes the size of

the ultimate bound smaller (more confidence and robust learning).

Standard SGD algorithms are typically presented to reduce the computational complexity of

the optimization for the case where the noise and MFAE are both identically zero in (4.12). To

clarify this, consider the case where the noise and MFAE are both identically zero and # samples

{q(G(:), H(:))}#
:=1

are collected that span the entire space of the function. Then, optimizing

the following finite sum of the function approximation error using either least squares or gradient

decent guarantees convergence to the optimal parameter,

ℓΘ̃(:) =
#∑

:=1

4(:)2. (4.15)

However, when # is large, then, to reduce the computational complexity, the SGD randomly

samples from the set of # data samples and perform the following gradient descent only on the

randomly selected sample,

Θ̂(: + 1) = Θ̂(:) − b: i(:)4) (:), (4.16)

where b: is the learning rate. That is, the SGD optimizes the instantaneous loss function

ℓΘ̃(:) =
1

2
4) (:)4(:). (4.17)

Convergence of the SGD is shown to include a transient part and a steady-state part (depending on

the variance of the estimation of the entire gradient with the gradient of one sample). However,

in our setting, the ultimate bound of the estimation error depends on the inherent measurement

noise and not on randomly selecting from available set of samples. Besides, for the time-varying

regressor for which the data samples are streaming and not available at once, the signals i(:)

interacting with the parameter estimates must remain PE during the estimation procedure. If PE

condition is not satisfied, the parameters converge to either a wrong value or do not converge at all.

The following Lemma shows that if the PE condition is satisfied, then the optimization solution

becomes unique due to strong convexity of the empirical average of the loss function.
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Lemma 5 Consider the function approximation problem with noisy measurements (4.12) and

the approximation error (4.14). Let the SGD algorithm (4.16) be used to learn the unknown

parameters Θ∗, where b: is a time-varying learning rate satisfying b: > 0, ∀: ∈ N and the

sequence {b: }∞:=1
converges to 0 and that

∑∞
:=1

b: = ∞. Then, at any time C ≥ 1, the SGD

optimizes the empirical average of the loss unction given by

ℓΘ̃(C) =
1

2C

C∑

:=1

4) (:)4(:). (4.18)

Moreover, it converges to a unique solution if the signal i(:) is PE.

Proof 7 While the SGD (4.16) optimizes the instantaneous loss function defined in (4.17) at

every time step, it is shown in [140] that using a learning rate that satisfies the conditions provided

in the statement of the lemma, the update law (4.16), any any time C ≥ 1, optimizes the empirical

average of the observations in (4.18). The gradient and hessian of the instantaneous error ℓΘ̃(:) at

Θ̃(:) are, respectively, given as

∇ℓΘ̃(:) = i(:)4) (:)

= i(:)i) (:)Θ̃(:) − i(:)Y) (:) − i(:)E) (:), (4.19)

and

∇2ℓΘ̃(:) = i(:)i) (:). (4.20)

Therefore, for the empirical average function ℓΘ̃(C), this becomes

∇2ℓΘ̃(C) =
1

C

C∑

:=1

i(G(:))i) (G(:)). (4.21)

If the signal i(:) is PE (i.e., if it satisfies (4.6)), then ∇2ℓΘ̃(C) ≥ U� and thus ℓΘ̃(C) is strongly

convex after some time C ≥ # . Therefore, due ot the strong convexity, a unique solution to the

optimization problem is found. This completes the proof.

On one hand, when the excitation of the signal q(G) decays quickly, the online SGD cannot

receive necessary amount of information about Θ∗ and fails to estimate it correctly. If the PE

condition is not satisfied, the error terms (4.18) is only convex over time and not strongly convex,
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and thus can become zero even if Θ∗ converges to a wrong value. On the other hand, even though

gradient descent achieves linear convergence rate for a strongly convex function, SGD does not

enjoy the linear convergence rate of gradient descent under strong convexity and only achieve

sublinear convergence rate [141, 142]. Sublinear convergence rate, however, is not strong because

it has the property that the longer you run the algorithm, the less progress it makes. A fundamental

question is how to develop new online learning algorithms that achieve linear convergence rates

and under relaxed PE condition that can be easily verified and improved.

To fulfill the learning of the uncertainties 5 (G) in (4.9) without requiring the PE condition on

the data stream, a data-regularized CL-based SGD based learning is proposed next to ensure that

the parameter estimation error Θ̃(:) dynamics is PS-P, and thus solve Problem 1. Before presenting

our algorithm, the following subsection shows two applications of the function identification with

noisy measurements.

Motivation for Function Identification: Value Learning in Reinforcement Learning and

System identification as Function Identifiers In this subsection, we show that the value learning

in RL and the model learning in system identification can be formalized as instances of the problem

of stochastic DT function identification. Value Function Learning Consider the system described

by the following stochastic nonlinear difference equation

G(: + 1) = �(G(:), D(:)) + E(:), (4.22)

where G ∈ D ⊂ R= and D ∈ DD ⊂ R< are the system’s states and inputs, respectively; D and DD

are compact sets, � : D × DD ↦→ D is the dynamics function, and E(:) is the zero mean white

noise at time : with covariance Σ.

A stage cost or reward function for the state G and actionD at time : is considered as A(G(:), D(:)).

For a fixed control policy c : D ↦→ DD, the cost-to-go for a single realization and the initial

condition G(0) is defined by

�(G(0), c)=E

[
#∑

:=0

A (G(:), c(G(:)))
]

. (4.23)
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Defining the value function for the policy c as +c(G) := �(G , c), the following Bellman

equation is obtained

+c(G(:)) = A(G(:), D(:)) + E[+c(G(: + 1))], (4.24)

where D(:) = c(G(:)) and G(: + 1) is the system’s next state under the control action D(:). Based

on (4.24), consider the Bellman operator introduced below,

)+c(G(:)) := A(G(:), D(:)) + E[+c(G(: + 1))]. (4.25)

Then, the Bellman equation (4.24) becomes

+c(G) = )+c(G). (4.26)

To solve (4.26) for value function, the value function is typically parametrized in the form of

+c
Θ
(G(:)) = Θ∗) q(G(:)) where Θ∗ are the unknown optimal parameters of the approximation

model. The goal is to learn the unknown parameter Θ∗ using data.

The fact that the Bellman equation (4.26) is a contraction map [143] is leveraged in many

studies by the stochastic approximation to learn the parameters of the parametrized value function.

The exact value of )+c(G) is not available due to the expectation operator and only its noisy

estimates are provided typically using the temporal difference approach. Defining !(Θ̂(:), G(:)) =

[+c
Θ
(G(:)) − )+c

Θ
(G(:))]2, then only its noisy measurements are available due to the expectation

operator in )+c
Θ
(G(:)). The goal is to learn the probabilistic ultimate bound (Θ, such that

P[lim:→∞(Θ∗−Θ̂(:)) ∈ (Θ] ≥ (1−n) for n ∈ (0, 1), while only noisy measurements are available

for the loss function !(Θ̂(:), G(:)). Iteratively solving the Bellman’s equation by solving this

optimization problem using noisy samples is at the heart of reinforcement learning algorithms such

as policy iteration and value iteration.

System Dynamics Identification

Consider the following DT system,

G(: + 1) =f (G(:)) + g(G(:))D(:) + E(:), (4.27)
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where G ∈ D ⊂ R= and D ∈ DD ⊂ R< are the system’s states and inputs, respectively; D and

DD are compact sets; f : D ↦→ R
=, and g : D ↦→ R

=×< are the unknown nonlinear drift and

input terms,respectively, and E(:) ∈ R= is a zero-mean independent white noise with covariance Σ.

The system identification aim is to learn the unknown dynamics in (4.27), namely to approximate

f (G(:)) and g(G(:)).

Linearly parameterized adaptive approximation models are employed to, respectively, represent

f (G(:)) and g(G(:)) as follows,

f (G(:)) = Θ∗)
f
k(G(:)) + 4f (G(:)), (4.28)

g(G(:)) = Θ∗)
g j(G(:)) + 4g (G(:)), (4.29)

where the matrices Θ∗
f
∈ DΘf

⊂ RA×= and Θ∗
g ∈ DΘg ⊂ RB×= denote the unknown optimal

parameters of the adaptive approximation models, where DΘf
and DΘg are compact sets. The

vectors k : D ↦→ R
A and j : D ↦→ R

B, are the computable basis functions; A and B are the

number of linearly independent basis functions to, respectively, approximate f (G(:)) and g(G(:)).

In (4.28) and (4.29), 4f (G(:)) ∈ R= and 4g (G(:)) ∈ R=×< are, respectively, the MFAEs for f (G(:))

and g(G(:)). If f (G) and g(G) can be approximated exactly by the models Θ)
f
k(G) and Θ)g j(G),

respectively, one has 4f (G) = 4g (G) = 0.

Using (4.28)-(4.29), the system dynamics (4.27) is rewritten as

G(: + 1) = Θ∗) I(G(:), D(:)) + Y(G(:), D(:)) + E(:), (4.30)

where Θ∗ = [Θ∗)
f
,Θ∗)

g ]) ∈ R(A+B)×= and I(G(:), D(:)) = [k) (G(:)), D) (:)j) (G(:))]) ∈ R(A+B)

and Y(G, D) = 4f (G) + 4g (G)D.

Now, consider the approximator be

Ĝ(: + 1) =Θ̂) (:)I(G(:), D(:)), (4.31)

where Θ̂(:) = [Θ̂)
f
(:), Θ̂)g (:)]

) ∈ R(A+B)×=, Θ̂f (:) and Θ̂g (:) are respectively the estimation for

parameter matrices Θ∗, Θ∗
f

and Θ∗
g at time : .
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Let hΘ(G(:)) be defined as

hΘ(G(:)) = Ĝ(: + 1) − G(: + 1)

= Θ̃) I(G(:), D(:)) − Y(:) − E(:), (4.32)

where Θ̃(:) := Θ̂(:) − Θ∗ := [Θ̃)
f
(:), Θ̃)g (:)]

) is the parameter estimation error with Θ̃f (:) :=

Θ̂f (:) −Θ∗
f
, Θ̃g (:) := Θ̂g (:) −Θ∗

g .

The goal is to learn the probabilistic ultimate bound (Θ, such that P[lim:→∞(Θ∗ − Θ̂(:)) ∈

(Θ] ≥ (1 − n) for n ∈ (0, 1), while only noisy measurements are available for the loss function

!(Θ̂(:), G(:)) = [hΘ(G(:))]
2. The availability of G(: + 1) at time : , which is required based on

(4.32), can be relaxed either by employing regressor filtering [42] or using estimators [37].

4.4 Data-regularized Concurrent Learning-based SGD for Function Identi-

fier with noisy measurements

In this section, a data-regularized CL-based SGD update law is presented to approximate

the function given in (4.9). In sharp contrast to SGD and mini-batch SGD version, rather than

estimating the gradient of the error using a single (current) sample or mini-batch of random samples,

the presented approach approximates the gradient flows of the estimation errors using the current

data as well as fixed samples collected in recorded data stacks. Leveraging a fixed-size memory

of data, for which the data are selected based on an easy-to-verify data-richness condition, rather

than random, allows us to not only eliminate the PE condition requirement on the stream of data,

but also to improve the convergence rate and providing guarantees using the Lyapunov theory. The

convergence analysis of the dynamics of the data-regularized CL-based SGD estimation law is

given based on practical stability in probability.

To employ the data-regularized CL-based SGD, which uses recorded experienced data along

with current data, the previous data are collected and stored in the memory stacks M ∈ R@×% and

Y ∈ R=×%, at times g1, ..., g% as,

M = [i(g1), i(g2), ..., i(g%)], Y = [H(g1), H(g2), ..., H(g%)], (4.33)
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where % is the number of data points stored in the history stacks. % is determined such that M

contains as many linearly independent elements as the dimension of i(:) (i.e., the number of

linearly independent basis functions for 5 (G(:))). That is, % ≥ @.

The error 4ℎ(:) for the ℎCℎ recorded sample, but using the current estimation of the function

parameters at time : , is

4ℎ(:) = Ĥℎ(:) − H(gℎ), (4.34)

where

Ĥℎ(:) = Θ̂) (:)i(gℎ), (4.35)

is the estimation at time 0 ≤ gℎ < : , ℎ = 1, ..., %, using the current estimated parameters matrix

Θ̂(:) and the recorded i(gℎ). Substituting H(gℎ), from (4.12), in (4.34) leads to

4ℎ(:) = Θ̃) (:)i(gℎ) − Y(gℎ) − E(gℎ). (4.36)

Now, the following data-regularized loss function is considered

ℓΘ̃(:) =
1

2
4) (:)4(:) +

1

2

%∑

ℎ=1

4)
ℎ
(:)4ℎ(:). (4.37)

The following lemma guarantees that this data-regularized objective function is strongly convex in

the absence of PE condition when the rank condition on M is satisfied.

Lemma 6 The loss function (4.37) is strongly convex if the matrix M in (4.33) is full-row rank.

Proof 8 The gradient and hessian of ℓΘ̃(:) in (4.37) at Θ̃(:) are respectively defined as

∇ℓΘ̃(:) = i(:)4) (:) +
%∑

ℎ=1

i(:)4)
ℎ
(:)

= i(:)i) (:)Θ̃(:) − i(:)Y) (:) − i(:)E) (:)

+
%∑

ℎ=1

{i(gℎ)i) (gℎ)Θ̃(:) − i(gℎ)Y) (gℎ) − i(gℎ)E) (gℎ)}, (4.38)

and

∇2ℓΘ̃(:) = i(:)i) (:) +
%∑

ℎ=1

i(gℎ)i
) (gℎ). (4.39)
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Figure 4.1: Data-regularized CL-based SGD for noisy function identification

In (4.39), the satisfaction of M rank condition keeps ( =
∑%
ℎ=1

i(gℎ)i
) (gℎ) > 0 which ensures

the strong convexity of ℓΘ̃(:), i.e., ∇2ℓΘ̃(:) > 0. The data-regularized CL-based SGD parameter

estimation law presented in the next subsection, which is obtained by minimizing (4.37), results

in the linear convergence of the approximated parameters’ error to a probabilistic ultimate bound

and thus solves Problem 1. Moreover, it is shown how the selection of stored data in M which

maximizes the condition number
_<8=(()
_<0G(()

with ( =
∑%
ℎ=1

i(gℎ)i
) (gℎ), improves the convergence

rate and reduces the parameters’ estimation error bound. This is in contrast to standard SGD for

which there is no systematic approach for data selection to reduce the convergence bound and

improve the convergence rate. The proposed data-regularized CL-based SGD update law for the

approximator (4.13) is given as

Θ̂(: + 1) = Θ̂(:) − [Ξ�i(:)4
) (:) + Ξ�

%∑

ℎ=1

i(gℎ)4
)
ℎ
(:)]. (4.40)

The matrices Ξ� ,Ξ� ∈ R@×@, are the positive definite learning rate matrices for, respectively,

the gradient descent term (i(:)4) (:)) and concurrent learning term (
∑%
ℎ=1

i(gℎ)4
)
ℎ
(:)) where

Ξ� = b� � and Ξ� = b� � with constants b� > 0 and b� > 0. Fig. 4.1 shows the introduced

data-regularized CL-based SGD for noisy function identification.

The stochastic convergence properties of the proposed data-regularized CL-based SGD are
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investigated next.

Stochastic Convergence Properties for Data-regularized Concurrent Learning-based SGD

Update Law

In this section, first PS-P of the estimated parameters in convergence to their optimal values is

ensured using the proposed data-regularized CL-based SGD method (4.40). Then, it is discussed

that the proposed data-regularized CL-based SGD method (4.40) guarantees the finite-sample

boundedness in probability of the estimated parameters’ error in every step : .

Exponential Probabilistic Ultimate Boundedness of Parameters’ Estimation Error

Theorem 5 Consider the approximator of nonlinear function in (4.9) given in (4.13), whose

parameters are adjusted according to the update law of (4.40). Let Assumptions 5-7 hold. Once

the rank condition on M is satisfied and b� > 0 and b� > 0 are chosen such that

1

2
(b�1

2
2 + b�_<0G(())

2 < b�_<8=(() + b�1
2
1 < 1, (4.41)

then, the update law (4.40) guarantees PS-P and exponential probabilistic ultimate boundedness of

Θ̃(:) = Θ̂(:) −Θ∗. That is, for n ∈ (0, 1),

P{‖Θ̃(:)‖≤
√
1

n
} ≥ 1 − n, (4.42)

where 1 = 23
_<8=(&)

,

3 =
2�212Y
_<8=(&)

+ �(f), (4.43)

_<8=(&) = 2b�_<8=(() + 2b�1
2
1 − (b�1

2
2 + b�_<0G(())

2, (4.44)

� = 12[b� + b�% + b2
�
122 + b�b�1

2
2% + b�b�_<0G(() + b2

�
_<0G(()%], (4.45)

�(f) =12Y1
2
2(b� + %b�)

2 + 122f
2(b2

�
+ b2

�
%2). (4.46)

Proof 9 Consider the Lyapunov function candidate

+(:) = CA{Θ̃) (:)Θ̃(:)}. (4.47)
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One knows that

+(Θ̃(:)) ≤ ‖Θ̃(:)‖2. (4.48)

For the given +(:) one has

E[+(: + 1)] −+(:) = E[CA{Θ̃) (: + 1)Θ̃(: + 1)}] − CA{Θ̃) (:)Θ̃(:)}

= CA{E[Θ̃) (: + 1))Θ̃(: + 1)] − Θ̃) (:)Θ̃(:)}. (4.49)

Using Θ̃(:) = Θ̂(:) −Θ∗ in (4.40) gives

Θ̃(: + 1) =Θ̃(:) − [Ξ�i(:)4
) (:) + Ξ�

%∑

ℎ=1

i(gℎ)4
)
ℎ
(:)]. (4.50)

Substituting (4.50) in (4.49) gives

E[+(: + 1)] −+(:) = CA{E[(Θ̃) (:) − [Ξ�4(:)i
) (:) + Ξ�

%∑

ℎ=1

4ℎ(:)i
) (gℎ)])(Θ̃(:)

− [Ξ�i(:)4
) (:) + Ξ�

%∑

ℎ=1

i(gℎ)4
)
ℎ
(:)])] − Θ̃) (:)Θ̃(:)}. (4.51)

Using (4.14) and (4.36), one has

E[+(: + 1)] −+(:) = CA{E[(Θ̃) (:) − [Ξ�Θ̃
) (:)i(:)i) (:) − Ξ�Y(:)i

) (:) − Ξ�E(:)i
) (:)

+ Ξ�

%∑

ℎ=1

Θ̃) (:)i(gℎ)i
) (gℎ) − Ξ�

%∑

ℎ=1

Y(gℎ)i
) (gℎ) − Ξ�

%∑

ℎ=1

E(gℎ)i
) (gℎ)])(Θ̃(:)

− [Ξ�i(:)i
) (:)Θ̃(:) − Ξ�i(:)Y

) (:) − Ξ�i(:)E
) (:) + Ξ�

%∑

ℎ=1

i(gℎ)i
) (gℎ)Θ̃(:)

− Ξ�

%∑

ℎ=1

i(gℎ)Y
) (gℎ) − Ξ�

%∑

ℎ=1

i(gℎ)E
) (gℎ)])] − Θ̃) (:)Θ̃(:)}. (4.52)

By employing ( =
∑%
ℎ=1

i(gℎ)i
) (gℎ) and q(:) = i(:)i) (:), (4.52) is written as,

E[+(: + 1)] −+(:) = CA{E[(Θ̃) (:) − [Ξ�Θ̃
) (:)q(:) − Ξ�Y(:)i

) (:) − Ξ�E(:)i
) (:)

+ Ξ�Θ̃
) (:)( − Ξ�

%∑

ℎ=1

Y(gℎ)i
) (gℎ) − Ξ�

%∑

ℎ=1

E(gℎ)i
) (gℎ)])(Θ̃(:) − [Ξ�q(:)Θ̃(:)

− Ξ�i(:)Y
) (:) − Ξ�i(:)E

) (:) + Ξ�(Θ̃(:) − Ξ�

%∑

ℎ=1

i(gℎ)Y
) (gℎ)

− Ξ�

%∑

ℎ=1

i(gℎ)E
) (gℎ)])] − Θ̃) (:)Θ̃(:)}. (4.53)
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Based on the independency of noise E(:) and Assumption 6, the expectation of cross terms

multiplication of E(:) with Θ̃(:) and Y(:), for every : ∈ Z+, is equal to zero and hence omitted.

Therefore, (4.53) is rewritten as follows

E[+(: + 1)] −+(:) = CA{E[Θ̃) (:)Θ̃(:) − 2Ξ�Θ̃
) (:)q(:)Θ̃(:) − 2Ξ�Θ̃

) (:)(Θ̃(:)

+ Ξ2
�
Θ̃) (:)q) (:)q(:)Θ̃(:) + 2Ξ�Ξ�Θ̃

) (:)(q(:)Θ̃) (:) + Ξ2
�
Θ̃) (:)()(Θ̃) (:)

+ 2Ξ�Y(:)i
) (:)Θ̃(:) + 2Ξ�

%∑

ℎ=1

Y(gℎ)i
) (gℎ)Θ̃(:) − 2Ξ2

�
Y(:)i) (:)q) (:)Θ̃(:)

+ Ξ2
�
Y(:)i) (:)i(:)Y) (:) − 2Ξ�Ξ�

%∑

ℎ=1

i(gℎ)Y
) (gℎ)q

) (:)Θ̃(:) − 2Ξ�Ξ�Y(:)i
) (:)(Θ̃(:)

− 2Ξ2
�
Θ̃) (:)()

%∑

ℎ=1

i(gℎ)Y
) (gℎ) + 2Ξ�Ξ�

%∑

ℎ=1

i(gℎ)Y
) (gℎ)i(:)Y

) (:)

+ Ξ2
�
E(:)i) (:)i(:)E) (:) + Ξ2

�

%∑

ℎ=1

Y(gℎ)i
) (gℎ)

%∑

ℎ=1

i(gℎ)Y
) (gℎ)

+ Ξ)
�
Ξ�

%∑

ℎ=1

E(gℎ)i
) (gℎ)

%∑

ℎ=1

i(gℎ)E
) (gℎ)] − Θ̃) (:)Θ̃(:)}. (4.54)

Now using

& = 2Ξ�( + 2Ξ�q(:) − Ξ2
�
q) (:)q(:) − 2Ξ�Ξ�q(:)( − Ξ2

�
()(, (4.55)

one obtains the upper bound of (4.54) as

E[+(: + 1)] −+(:) ≤ −Θ̃) (:)_<8=(&)Θ̃(:) + 2‖Θ̃(:)‖�1Y + �(f), (4.56)

where _<8=(&), � and �(f) are given in (4.44)-(4.46).

Knowing

2‖Θ̃(:)‖�1Y −
1

2
_<8=(&)‖Θ̃(:)‖2≤ 2�212Y

_<8=(&)
,

one rewrites (4.56) as

E[+(: + 1)] −+(:) ≤ −1
2
_<8=(&)‖Θ̃(:)‖2+ 2�212Y

_<8=(&)
+ �(f)

= −U3(‖Θ̃(:)‖) + 3, (4.57)
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where 3 is given in (4.43) and

U3(‖Θ̃(:)‖) = 1

2
_<8=(&)‖Θ̃(:)‖2.

Using (4.48), one can rewrite (4.57) as follows

E[+(Θ̃(: + 1))] −+(Θ̃(:)) ≤ −1
2
_<8=(&)‖Θ̃(:)‖2+3

≤ −1
2
_<8=(&)+(Θ̃(:)) + 3. (4.58)

Taking expectation on both sides of the above equation, and using E[12_<8=(&)+(Θ̃(:))] ≥
1
2_<8=(&)E[+(Θ̃(:))] derived from Jason’s inequality, one has

E[+(Θ̃(: + 1))] − E[+(Θ̃(:))] ≤ −1
2
_<8=(&)E[+(Θ̃(:))] + 3. (4.59)

Now using Lemma 4 and (4.59), in order to show that the mentioned bound in (4.42) is

exponential bounded in probability, one needs

0 <
1

2
_<8=(&) < 1. (4.60)

In order to satisfy 0 < 1
2_<8=(&), using (4.44), one needs to choose b� > 0 and b� > 0 such

that

1

2
(b�1

2
2 + b�_<0G(())

2 < b�_<8=(() + b�1
2
1, (4.61)

and to meet 1
2_<8=(&) < 1 or _<8=(&) < 2, using (4.44), one obtains

2b�_<8=(() + 2b�1
2
1 − (b�1

2
2 + b�_<0G(())

2 < 2 ⇒

(b�1
2
2 + b�_<0G(())

2 + 2(1 − b�_<8=(() − b�121) > 0 ⇒

0 < b�_<8=(() + b�1
2
1 < 1. (4.62)

Since b� > 0 and b� > 0 are chosen such that (4.41) is met, (4.61) and (4.62) are also satisfied

and this leads to (4.60).

Thus, ifE[+(Θ̃(:))] > 23
_<8=(&)

, thenE[+(Θ̃:+1)]−E[+(Θ̃(:))] < 0, whereas, afterE[+(Θ̃(:))]

enters the set

DΘ̃ = {Θ̃(:) : E[+(Θ̃(:))] ≤ 1}, (4.63)
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it is possible to haveE[+(Θ̃:+1)]−E[+(Θ̃(:))] ≥ 0where 1 = 23
_<8=(&)

. However,E[+(Θ̃(:))] stays

within the positive invariant setDΘ̃. Thus, forE[+(Θ̃(0))] > 1, ultimately one hasE[+(Θ̃(:))] ≤ 1.

Based on the Markov’s inequality, for any n ∈ (0, 1), one has

P{+(Θ̃(:)) >
1

n
} ≤ nE[+(Θ̃(:))]

1
≤ n . (4.64)

Thus, using (4.48), it yields that

P{‖Θ̃(:)‖2> 1

n
} ≤ nE[+(Θ̃(:))]

1
≤ n, (4.65)

which leads to

P{‖Θ̃(:)‖≤
√
1

n
} ≥ 1 − n . (4.66)

Therefore, based on Lemma 3 and Definition, Θ̃ is PS-P and exponential probabilistic ultimate

bounded to the bound given in (4.42). This completes the proof.

Finite-sample Boundedness of the Parameters’ Estimation Error in probability The pro-

posed data-regularized CL-based SGD update rule (4.40) guarantees the exponential probabilistic

ultimate boundedness of the parameter estimation error as : → ∞. Moreover, the following lemma

ensures that the proposed method can also guarantee finite-sample boundedness in probability of

the parameters’ estimation error Θ̃(:) at any time : where : > %. Therefore, it solves Problem 1.

Lemma 7 Consider the approximator of nonlinear function in (4.9) given in (4.13), whose

parameters are adjusted according to the update law of (4.40). Let Assumptions 5-7 hold. Once

the rank condition on M is satisfied and b� > 0 and b� > 0 are chosen such that (4.41) is met,

then the proposed update law (4.40) guarantees finite-sample boundedness in probability at every

time : > % for parameter estimation error Θ̃(:) = Θ̂(:) −Θ∗. That is,

P{‖Θ̃(:)‖≤
√
1:

n
} ≥ 1 − n, (4.67)

where

1: = (1 − 1

2
_<8=(&))

: ‖Θ̃(0)‖2+ 3

1
2_<8=(&)

, (4.68)
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is a constant for every time : > %, _<8=(&) and 3 are respectively given in (4.44) and (4.43).

Proof 10 Using (4.59) and (4.4) in Lemma 4, one has

E[+(Θ̃(:))] ≤(1 − 1

2
_<8=(&))

:
E[+(Θ̃(0))] + 3

:−1∑

8=0

(1 − 1

2
_<8=(&))

8 ⇒

E[‖Θ̃(:)‖2] ≤(1 − 1

2
_<8=(&))

: ‖Θ̃(0)‖2+ 3

1
2_<8=(&)

. (4.69)

Now, using Markov’s inequality, for every 0 < n < 1, one has

P{+(Θ̃(:)) >
1:

n
} ≤ nE[+(Θ̃(:))]

1:
≤ n, (4.70)

which implies (4.67) with 1: is given in (4.68). Therefore, (4.67) represents the finite-sample

bound in probability of

√
1:
n for ‖Θ̃(:)‖ at every finite-time : > %. This completes the proof.

Remark 20 As discussed in [124], the concurrent learning approach is based on the combination

of a gradient descent algorithm with an auxiliary static feedback update law, which can be viewed

as a type of f-modification [10] and ensures bounded exponential convergence without the PE

requirement by keeping enough measurements in memory. Here, the same extension is applied to

the proposed data-regularized CL-based SGD in (4.40).

Remark 21 The parameter estimation law (4.40) converges exponentially fast to a bound which

depends on the noise variance. Employing the memory data selection algorithm [144] which

maximizes
_<8=(()
_<0G(()

helps to shrink the convergence bound of parameters’ estimation error in

(4.42). Moreover, leveraging rich memory data in terms of maximizing
_<8=(()
_<0G(()

leads to a narrower

finite-sample bound in (4.67) for the parameters’ estimation error. Intuitively, maximizing
_<8=(()
_<0G(()

provides a higher convexity parameter for the introduced data-regularized loss function (4.37).

Remark 22 The analysis of this section shows that Based on (4.69), the error E[‖Θ̃(:)‖2] rate at

any time : is$((1− 1
2_<8=(&))

:)+$( 3
_<8=(&)

). Therefore, the parameter estimation error with a

linear rate of$((1− 1
2_<8=(&))

:) converges to the bound 3
1
2_<8=(&)

shrinking by rich memory data

selection through maximizing
_<8=(()
_<0G(()

that maximizes _<8=(&). Note that _<8=(() amounts to the

U-strong convexity and _<0G(() amounts to the V-smoothness. Therefore, through selecting data

to reuse, the condition number of the function under optimization is improved and consequently

the learning rate is improved.
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4.5 Simulations

In this section, the performance of the presented data-regularized CL-based SGD for online

approximators with zero and non-zero MFAEs is compared with SGD [145] whose estimation law

is given as follows,

Θ̂(: + 1) = Θ̂(:) − Γ� [i(:)4
) (:)], (4.71)

where Γ� = W� �, with positive constants W� > 0.

In the examples, the simulation time span is [:0, : 5 ] with :0 = 0 and : 5 = 10000, and

the G domain is defined by D = [G! , G� ] with G! < G� , G! , G� ∈ R and D is quantized by

[G! :
G�−G!
: 5 −:0

: G� ]. In the proposed data-regularized CL-based SGD method, b� and b� are

chosen such that (4.41) is satisfied and setting b� > b� , the current data is prioritized over

recorded data. For SGD (4.71), let W� = 0.1. In all cases, the initial parameters’ values are all

set to zero. The additive measurement noise E(:) is a zero-mean independent white noise with

uniform distribution in the interval [−Ē, Ē], i.e., E(:) = −Ē + 2Ē(A0=3), where A0=3 is used to

generate pseudorandom scalar with uniform distribution on the interval (0, 1). Two different values

of Ē = 0.01 and Ē = 0.1 which respectively lead to the variances f2 = 3×10−5 and f2 = 3×10−3

for the defined noise are respectively employed for Examples 1 and 2.

To have a fair comparison between the mentioned methods for approximating 5 (G) on the whole

domain of G, the learning error, given below, is calculated.

�(:) = E[

∫

D
‖4(G(:))‖3=G],

where the expected value is estimated by averaging over several realizations of the learning algo-

rithms, starting from the same initial condition. In the simulations, the results of the proposed

data-regularized CL-based SGD and SGD methods are respectively labeled by CL-SGD and SGD.

Example 1: Approximator with zero MFAE (Y(:) = 0)

Consider the following function

H(:) = ?14
−G(:) + ?24

−G(:) sin(G(:)) + E(:),
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where the parameters [?1, ?2] are unknown and the regressors are known as

I(G(:)) = [4−G(:), 4−G(:) sin(G(:))],

with @ = 2. The unknown parameters are [?1, ?2] = [−0.5, 0.5] and D is given with G! = 0 and

G� = 2. We set % = 2 for data-regularized CL-based SGD methods. Let b� = 0.1, b� = 0.01

for data-regularized CL-based SGD method. Based on the obtained results, the rank condition on

M matrix is satisfied in the first @ = 2 steps. Therefore, % is chosen as % = 2 which satisfies

% ≥ @. After % steps, the data selection algorithm [144] is employed to improve the richness of the

recorded memory data.

Fig. 4.2 depicts the true parameters and the approximated parameters for data-regularized CL-

based SGD and SGD methods for two different noise variances f2 = 3× 10−5 and f2 = 3× 10−3.

For both noise variances, Fig. 4.2 shows that while SGD could not converge to the vicinity of

true parameters, but data-regularized CL-based SGD succeeded in convergence to the vicinity of

true parameters. The online learning error �(:) of data-regularized CL-based SGD and SGD

for different noise variances f2 = 3 × 10−5 and f2 = 3 × 10−3 are plotted in Fig. 4.3 where

data-regularized CL-based SGD shows converging to the vicinity of the origin while SGD could

not approach zero. However, in Figs. 4.2 and 4.3, the converged values for the case with higher

noise variance f2 = 3 × 10−3 show larger variations in comparison with lower noise variance

f2 = 3 × 10−5, as expected from (4.42). The integral absolute errors (IAEs) of �(:) for data-

regularized CL-based SGD and SGD methods are computed in Table 4.1 where data-regularized

CL-based SGD with �(:) IAEs, 348.41 and 480.97, respectively, for noise variancesf2 = 3×10−5

and f2 = 3 × 10−3, has resulted in better precision of online learning compared with SGD.

In this example, using data selection algorithm [144], one obtains _<8=(() = 0.24, _<0G(() =

1.01, 11 = 0.2 and 12 = 1. Since in this example 1Y = 0, for n = 0.2, the probabilistic

bounds in (4.42) for the defined noise with variances f2 = 3 × 10−5 and f2 = 3 × 10−3 is,

respectively, obtained as 0.06 and 0.6. Fig. 4.4 shows that for 20 different implementations of the

data-regularized CL-based SGD method for noise variances f2 = 3×10−5 and f2 = 3×10−3, the

parameter estimation error Θ̃(:) stays within the specified bounds. Example 2: Approximators
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Figure 4.2: Parameters’ estimation for approximators with zero MFAE.
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Figure 4.3: Online learning errors for approximators with zero MFAE.

Table 4.1: IAE �(:) learning errors comparison

Example 1 Example 2

f2 = 3 × 10−5 f2 = 3 × 10−3 f2 = 3 × 10−5 f2 = 3 × 10−3

CL-SGD 348.41 480.97 15052 15369

SGD 1342.9 1347.9 42210 42213
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Figure 4.4: Online parameter estimation error of approximators with zero MFAE for 20 different

implementations.

with non-zero MFAE (Y(:) 6= 0)

Now, consider the following function,

H(:) = 2 + cos(G(:)) + E(:), (4.72)

where the associated 5 (G) = 2 + cos(G(:)) is fully unknown.

For this example, a radial basis function neural network is used with 5 radial basis functions

4
− ‖G(:)−28 ‖

2

2f8
2

, 8 = 1, 2, ..., 5,

where the centroids 28 are uniformly picked on D = [G! , G� ] = [−2, 2] and the spreads f8 = 1.2

for all basis functions. The rank condition on M matrix is satisfied in @ = 5 steps; therefore, % is

chosen as % = @ = 5 satisfying % ≥ @. The data selection algorithm in [144] is employed after the

first 5 steps to improve the richness of the recorded data. The approximation of (4.72) is given as

Ĥ(:) = Θ̂) (:)i(G(:)) = [?1, ?2, ..., ?5][4
− ‖G(:)+2‖2

2(1.2)2 , ..., 4
− ‖G(:)−2‖

2

2(1.2)2 ]) .

Employing b� = 0.1, b� = 0.05 for data-regularized CL-based SGD method for noise variances

f2 = 3×10−5 andf2 = 3×10−3 leads to the approximated parameters shown in Fig. 4.5. The SGD

parameters in Fig. 4.5 did not converge to the suitable parameters, while data-regularized CL-based
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Figure 4.5: Parameters’ estimation for approximators with non-zero MFAE.
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Figure 4.6: Steady-state uncertainty approximations.
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Figure 4.7: Identification errors for approximators with non-zero MFAE.
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SGD succeeded in convergence to the appropriate parameters. The steady state approximations

for the function 5 (G) is given in Fig. 4.6 where for the two different values of the noise variances,

it is depicted that the data-regularized CL-based SGD could better identify the unknown function

compared with SGD. As the comparison of the learning error �(:) in Fig. 4.7 shows, the SGD

method could not perform well in the unknown function identification, however data-regularized

CL-based SGD error showed ultimate bounded convergence near zero. Moreover, based on the

IAE for �(:) in Table 1, data-regularized CL-based SGD results in 15052 and 15369 for noise

variances f2 = 3 × 10−5 and f2 = 3 × 10−3, respectively, which are lower in comparison with

SGD.

4.6 Conclusion

This chapter presents a data-regularized concurrent learning-based stochastic gradient descent

(CL-based SGD) method that leverages recorded data to guarantee linear (exponential) bounded

convergence of the estimated parameters’ error. It is shown that the richness of the memory data

improves the speed of convergence and reduces the probabilistic bound of convergence. Lyapunov

analysis guaranteed that the proposed data-regularized CL-based SGD method not only ensures the

practical stability in probability of the estimated parameters’ error but can ensure a finite-sample

boundedness in probability of the estimated parameters’ error. Simulation results verified that the

employed data-regularized CL-based SGD could improve the speed and precision of convergence

for the estimated parameters in comparison with SGD.
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CHAPTER 5

DETERMINISTIC AND STOCHASTIC FIXED-TIME STABILITY OF

DISCRETE-TIME AUTONOMOUS SYSTEMS

5.1 Introduction

In this chapter, we develop fixed-time stability conditions for both deterministic and stochastic

DT autonomous nonlinear systems. First, fixed-time stability for equilibria of deterministic DT

autonomous systems is defined. That is, a settling-time function is defined with a fixed upper

bound independent of the initial condition. We then present Lyapunov theorems for fixed-time

stability of both unperturbed and perturbed deterministic DT systems. Moreover, the sensitivity

of fixed-time stability properties to perturbations of systems is investigated under the assumption

of the existence of a locally Lipschitz discrete Lyapunov function. It is ensured that fixed-time

stability is preserved under perturbations in the form of fixed-time attractiveness. Furthermore,

sufficient Lyapunov conditions for fixed-time stability in probability of stochastic DT systems and

their stochastic settling-time function are presented. The presented framework will pave the way

for designing control laws with guaranteed satisfaction of a given performance measure in fixed

time. Moreover, the presented stability results can be leveraged to develop fixed-time observers

and identifiers for deterministic and stochastic DT systems, which are of great importance in

control of safety-critical systems that highly rely on a system model and a state estimator to make

less-conservative and feasible decisions. This is because fixed-time stability allows the system to

preview and quantify probable errors in state estimators and identifiers considerably fast, which

can be employed by the control system to avoid conservatism.

Notations: In this chapter, the following notations are employed. R, R+, Z, N+, and N

represent, respectively, the set of real numbers, non-negative real numbers, integer numbers,

natural numbers except zero, and natural numbers. Moreover, R= represents the set of = × 1 real

column vectors. ‖.‖ is used to denote induced 2-norm for matrices and the Euclidean norm for

vectors. The trace of a matrix � is indicated with CA(�). |.| denotes the absolute value of any scalar

G. ⌊.⌋ : R ↦→ Z is the floor function. ∆(.) is the DT difference operator for deterministic systems
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and is defined for a function +(H(:)) : R= ↦→ R+ as ∆+(H(: + 1)) = +(H(: + 1)) −+(H(:)).

All random variables are assumed to be defined on a probability space (Ω, F , P), with Ω as the

sample space, F as its associated Borel f-algebra and P as the probability measure. For a random

variable a : Ω −→ R= defined on the probability space (Ω, F , P), with some abuse of notation, the

statement a ∈ R= is used to state the dimension of the random variable. E[-] denotes the expected

value of the random variable - on the probability space (Ω, F , P). It is assumed that the probability

space (Ω, F , P) admits a sequence of mutually independent identically distributed random vectors

a(:), : ∈ N.

5.2 Fixed-time Stability for Deterministic Discrete-time Systems

In this section, the fixed-time stability of autonomous unperturbed deterministic DT systems is

defined and the Lyapunov theorem specifying the sufficient conditions for their fixed-time stability

is presented.

Consider the following nonlinear DT system,

H(: + 1) = �(H(:)), (5.1)

where � : DH ↦→ DH, �(0) = 0 is a nonlinear function on DH, and DH is an open set with 0 ∈ DH.

Moreover, H(:) ∈ DH ⊆ R=, : ∈ N is the system state vector. For an initial condition H(0), define

the solution sequence H(:), : ∈ NH(0) ⊆ N, where NH(0) is the maximal interval of existence of

H(:) after which the solution may cease outside the domain of �(.). Then, the solution sequence

H(:), : ∈ NH(0) ⊆ N is uniquely defined in forward time for every initial condition H(0) ∈ DH

irrespective of whether or not the function �(.) is a continuous function [97].

Before proceeding, the following definitions are needed.

Definition 13 (Locally Lipschitz function) A function 5 (G) is locally Lipschitz on a domain Ω ⊂ R=

if for each point in Ω there exist a neighborhood Ω0 and a positive constant ! such that

| | 5 (G) − 5 (H)| |≤ ! | |G − H | |,∀G ∈ Ω0, H ∈ Ω0. (5.2)

Moreover, ! is called the Lipschitz constant of 5 (G).
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The following definition extends the fixed-time stability definition presented in [65] for CT

systems to DT systems.

Definition 14 (Fixed-time stability) Consider the DT nonlinear system (5.1). The zero solution

of H(:) = 0 to the system (5.1) is said to be fixed-time stable, if there exist an open neighborhood

NH ⊆ DH of the origin and a settling time function  : NH\{0} ↦→ N+, such that:

1) The system (5.1) is Lyapunov stable. That is, for every n > 0, there exists a X > 0 such that if

| |H(0)| |≤ X, then | |H(:)| |≤ n for all : ∈ {0, ...,  (H(0)) − 1}.

2) For every initial condition H(0) ∈ NH\{0}, the solution sequence H(:) of (5.1) reaches the

equilibrium point and remains there after : >  (H(0)) and ∀H(0) ∈ NH, where  : NH\{0} ↦→ N+.

3) The settling-time function  (H(0)) is bounded, i.e., ∃ <0G ∈ N+ :  (H(0)) ≤  <0G ,∀H(0) ∈

NH\{0}. DT nonlinear system (5.1) is globally fixed-time stable if it is fixed-time stable with

NH = DH = R
=.

Remark 23 If only conditions 1) and 2) of the above definitions are satisfied, the finite-time

stability [59] is resulted. In contrast, the fixed-time stability imposes the additional condition 3).

This requirement makes the upper bound of the settling time in the fixed-time stability independent

of the initial condition, in contrast to the finite-time stability. Therefore, the fixed-time stability is

a stronger type of stability than the finite-time stability.

The following theorem provides sufficient conditions under which the system (5.1) is fixed-time

stable.

Theorem 6 Consider the nonlinear DT system (5.1). Suppose there is a Lyapunov function

+ : DH ↦→ R+ where DH is an open neighborhood around the origin and there exist a neighborhood

ΩH ⊂ DH of the origin such that

+(H(0)) = 0, (5.3)

+(H(:)) > 0, H(:) ∈ ΩH\{0}, (5.4)

∆+(H(: + 1)) ≤ −Umin{+(H(:))
U

,max{+A1(H(:)), +A2(H(:))}}, H(:) ∈ ΩH\{0}, (5.5)

for some positive constants 0 < U < 1, 0 < A1 < 1, and A2 > 1. Then, the system (5.1) is fixed-time
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stable and has a settling-time function  : NH ↦→ N+ that satisfies

 (H(0)) ≤ ⌊U
1

1−A1 (1 − U
1

1−A1 )⌋ + ⌊U−1(U
1

1−A2 − 1)⌋ + 3, (5.6)

for all H(0) ∈ NH\{0} where NH is an open neighborhood of the origin. Moreover, if DH = R=,

+(.) is radially unbounded and (5.5) holds on R=, then system (5.1) is globally fixed-time stable.

Proof The Lyapunov stability of the system (5.1) can be concluded using similar arguments as

of [97]. The proof of fixed-time stability consists of three parts. In the first part, we show that

for +(H(0)) ≥ U
1

1−A2 , the settling time function is  (H(0)) = 1. In the second part, we show

that if U
1

1−A1 < +(H(0)) < U
1

1−A2 , there exists a settling-time function with a fixed upper bound

 ∗ (i.e.,  (H(0)) ≤  ∗) such that one has +(H(:)) = 0, ∀: >  ∗. Finally, in the third part,

for +(H(0)) ≤ U
1

1−A1 , the Lyapunov function reaches +(:) = 0 with the settling-time function

 (H(0)) = 1.

Since 0 < A1 < 1 and A2 > 1, one has

+A2(H(:)) ≤ +A1(H(:)), ∀+(H(:)) ≤ 1, (5.7)

+A1(H(:)) < +A2(H(:)), ∀+(H(:)) > 1. (5.8)

We first prove part 1 where +(H(0)) ≥ U
1

1−A2 . In this case, since U
1

1−A2 > 1, using (5.8), (5.5)

leads to

∆+(H(: + 1)) ≤ −Umin{+(H(:))
U

,+A2(H(:))}. (5.9)

Moreover, since +(H(0)) ≥ U
1

1−A2 , the above inequality for : = 0 yields

∆+(H(1)) ≤ −+(H(0)). (5.10)

Now, (5.10) implies that the settling time function is  (H(0)) = 1, for +(H(0)) ≥ U
1

1−A2 .

For part 2 where

U
1

1−A1 < +(H(:)) < U
1

1−A2 ,

based on (5.5), first we show that +(:) reduces to +(H(:)) ≤ 1 after some time where this time is

upper bounded by a fixed constant  ∗
1 .
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Note that for 1 < +(H(:)) < U
1

1−A2 , using (5.8), one has

min{+(H(:))
U

,max{+A1(H(:)), +A2(H(:))}} = +A2(H(:)), (5.11)

Then, (5.11) and (5.5), lead to

+(H(: + 1)) ≤ +(H(:)) − U+A2(H(:)). (5.12)

The condition (5.12) holds for : = 0, ...,  ∗
1 − 1 where 1 < +(H(:)) < U

1
1−A2 . Therefore, using

(5.12) for : = 0, 1, ...,  ∗
1 − 1, one has

+(H(1)) −+(H(0)) ≤ −U+A2(H(0)),

+(H(2)) −+(H(1)) ≤ −U+A2(H(1)),
...

+(H( ∗
1 − 1)) −+(H( ∗

1 − 2)) ≤ −U+A2(H( ∗
1 − 2)),

+(H( ∗
1)) −+(H( 

∗
1 − 1)) ≤ −U+A2(H( ∗

1 − 1)), (5.13)

where summing up the left and right-hand-side terms leads to

+(H( ∗
1)) −+(H(0)) ≤

 ∗
1
−1∑

:=0

−U+A2(H(:)). (5.14)

Using the fact that +(H(:)) < +(H(: − 1)) and (5.14), one has

 ∗
1
−1∑

:=0

+A2(H(:) ≥  ∗
1+

A2(H( ∗
1 − 1)), ⇒ −U

 ∗
1
−1∑

:=0

+A2(H(:) ≤ −U ∗
1+

A2(H( ∗
1 − 1)). (5.15)

Employing (5.14) and (5.15) leads to

+(H( ∗
1)) −+(H(0)) ≤ −U ∗

1+
A2(H( ∗

1 − 1)), (5.16)

which implies

 ∗
1 ≤

+(H(0)) −+(H( ∗
1))

U+A2(H( ∗
1 − 1))

. (5.17)
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Using +(H(:)) < +(H(: − 1)), one can rewrite (5.17) as follows

 ∗
1 ≤

+(H(0)) −+(H( ∗
1))

U+A2(H( ∗
1))

. (5.18)

Having 1 < +(H(0)) < U
1

1−A2 for : <  ∗
1 and +(H( ∗

1)) ≤ 1, (5.18) implies

 ∗
1 ≤ U

1
1−A2 − 1

U
, (5.19)

which leads to the integer upper bound for  ∗
1 as follows

 ∗
1 ≤ ⌊U−1(U

1
1−A2 − 1)⌋ + 1. (5.20)

Note that since for : >  ∗
1 one has +(H(:)) ≤ 1. Thus, for U

1
1−A1 < +(H(:)) ≤ 1, using (5.7)

one has

min{+(H(:))
U

,max{+A1(H(:)), +A2(H(:))}} = +A1(H(:)),

which leads to rewriting (5.5) as follows

+(H(: + 1)) ≤ +(H(:)) − U+A1(H(:)). (5.21)

There exists a fixed positive integer  ∗
2 and time : >  ∗

2 such that +(:) reaches +(H(:)) ≤ U
1

1−A1

and using (5.21) for : =  ∗
1 ,  

∗
1 + 1, ...,  ∗

2 − 1 one obtains

+(H( ∗
1 + 1)) −+(H( ∗

1)) ≤ −U+A1(H( ∗
1)),

+(H( ∗
1 + 2)) −+(H( ∗

1 + 1)) ≤ −U+A1(H( ∗
1 + 1)),

...

+(H( ∗
2 − 1)) −+(H( ∗

2 − 2)) ≤ −U+A1(H( ∗
2 − 2)),

+(H( ∗
2)) −+(H( 

∗
2 − 1)) ≤ −U+A1(H( ∗

2 − 1)), (5.22)

Summation of the left and right-half-side terms in (5.22) gives

+(H( ∗
2)) −+(H( 

∗
1)) ≤ −U

 ∗
2
− ∗

1
−1∑

8=0

+A1(H( ∗
1 + 8)). (5.23)
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Using the fact that+(:) ≤ +(:−1) and (5.23), by employing a similar procedure as in (5.14)-(5.18),

one obtains,

 ∗
2 −  

∗
1 ≤

+( ∗
1) −+( 

∗
2 − 1)

U+A1(H( ∗
2 − 1))

. (5.24)

Since U
1

1−A1 < +(H(:)) < 1 for : =  ∗
1 ,  

∗
1 + 1, ...,  ∗

2 − 1, (5.24) reduces to

 ∗
2 ≤  ∗

1 + ⌊U
1

1−A1 (1 − U
1

1−A1 )⌋ + 1. (5.25)

Using (5.20), (5.25) is rewritten as follows

 ∗
2 ≤ ⌊U−1(U

1
1−A2 − 1)⌋ + ⌊U

1
1−A1 (1 − U

1
1−A1 )⌋ + 2. (5.26)

At time : >  ∗
2 for which +(H(:)) ≤ U

1
1−A1 , (5.5) reduces to

∆+(H(: + 1)) ≤ −+(H(:)), (5.27)

which leads to +(H(: + 1)) = 0 for : ≥  ∗
2 + 1. This completes the proof of part 2.

The proof of part 3 where+(H(0)) ≤ U
1

1−A1 is also derived based on (5.27) where+(:) reaches

zero with  (H(0)) = 1.

Hence, the Lyapunov function reaches +(H(:)) = 0 with the settling-time function  (H(0))

such that

 (H(0)) = 1, +(H(0)) ≥ U
1

1−A2 0=3 +(H(0)) ≤ U
1

1−A1 , (5.28)

and

 (H(0)) ≤ ⌊U−1(U
1

1−A2 − 1)⌋ + ⌊U
1

1−A1 (1 − U
1

1−A1 )⌋ + 3, U
1

1−A1 < +(H(0)) < U
1

1−A2 .

(5.29)

Therefore, the system is fixed-time stable, and the system trajectory converges to the origin with

the settling-time function given in (5.6). This completes the proof.

94



Moreover, if NH = DH = R= and +(.) is radially unbounded, the global fixed-time stability

follows using the same procedure. �

Remark 24 Based on the definitions of fixed-time [65] and finite-time [59] stabilities, an

autonomous DT fixed-time stable system is also finite-time stable. Fixed-time stability, which

requires stronger conditions in comparison with finite-time stability, needs to represent a fixed

upper bound for the settling-time function. However, in finite-time stability, the settling-time is

a function of the initial conditions and no fixed upper bound is provided. Therefore, fixed-time

stability is a stronger type of stability than asymptotic, exponential and finite-time stabilities for

DT systems.

5.3 Sensitivity to Deterministic Perturbation for Fixed-time Stable

Discrete-time Systems

The system (5.1) usually describes a nominal model of the system that works under ideal

conditions. Nevertheless, many real-world systems are under uncertainties and disturbances that

affect the system’s behavior. To account for these uncertainties, a more accurate representation of

the system can be given by the following deterministic perturbed model

H(: + 1) = �(H(:)) + 6(:, H(:)), (5.30)

where 6 represents a perturbation caused by disturbances, uncertainties, or modeling errors. This

section investigates the solution behavior of the deterministic perturbed system (5.30) in a neigh-

borhood of the fixed-time stable equilibrium of the nominal system (5.1).

Assumption 8 The perturbation term 6 is bounded, i.e.,

sup
N+×DH

‖6(:, H(:))‖< X0, (5.31)

for some X0 < ∞.

The following definition extends the fixed-time attractiveness definition presented in [65] and

[146] for CT systems to DT systems.

Definition 15 (Fixed-time attractiveness) The perturbed system (5.30) is said to be fixed-time

attractive by a bounded set Y around the equilibrium point, if ∀H(0) ∈ NH the solution sequence
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H(:) of (5.30) reaches Y in finite time : >  (H(0)) and remains there for all : >  (H(0)), where

 : NH\{0} ↦→ N+ is the settling-time function and the settling-time function  (H(0)) is bounded,

i.e., ∃ <0G ∈ N+ :  (H(0)) ≤  <0G ,∀H(0) ∈ NH.

The following lemma is required in the proof of Lyapunov-based fixed-time attractiveness of

perturbed deterministic systems.

Lemma 8 Let +(H(:)) : DH ↦→ R
+ be a fixed-time Lyapunov function for the the nominal

(unperturbed) system (5.1), i.e., +(H(:)) satisfies conditions (5.3)-(5.5) for the system (5.30) when

6 = 0. Let also +(H(:)) be locally Lipschitz continuous on DH with Lipschitz constant !+ and

Assumption 8 hold. Then, for the perturbed deterministic system (5.30), +(:) satisfies

∆+(H(: + 1)) ≤ − Umin{+(H(:))
U

,max{+A1(H(:)), +A2(H(:))}} + !+ ‖6(:, H(:))‖, (5.32)

where ∆+(H(: + 1)) is computed along the solution of the unperturbed deterministic system.

Proof The proof is similar to [147], which is developed for exponential stability, and is thus

omitted. �

The following theorem provides the behavior of deterministic fixed-time stable DT systems

under bounded deterministic perturbations.

Theorem 7 Suppose there exists a Lyapunov function + : ΩH ↦→ R+ which is locally Lipschitz

on an open neighborhood ΩH of the origin with Lipschitz constant !+ and satisfies (5.3)-(5.5)

for the nominal system (5.1) for some real positive numbers U, A1, A2 > 0 such that 0 < U < 1,

0 < A1 < 1, and A2 > 1. Let Assumption 8 hold. Then, around the origin, the system (5.30) is

fixed-time attractive to the following bound

1H = {H ∈ ΩH : +(H) ≤ B}, (5.33)

where

B =





(
<1!+X0

U )
1
A2 , 1 < +(H(0)) < U

1
1−A2 ,

(
<2!+X0

U )
1
A1 , U

1
1−A1 < +(H(0)) ≤ 1,

(5.34)
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and its fixed-time bounded settling-time function is  (H(0)) ≤  ∗ where

 ∗ =





⌊U−12 (U
1

1−A2 − 1)⌋ + 1, 1 < +(H(0)) < U
1

1−A2 ,

⌊U−1
3
(U

A1
A1−1 − U)⌋ + 1, U

1
1−A1 < +(H(0)) ≤ 1,

(5.35)

U2 = (1 − 1
<1

)U, U3 = (1 − 1
<2

)U. The constants <1 > 1 and <2 > 1 are selected such that




UBA2 − <1!+X0 > 0, 1 < +(H(0)) < U
1

1−A2 ,

UBA1 − <2!+X0 > 0, U
1

1−A1 < +(H(0)) ≤ 1 .

(5.36)

Proof According to Theorem 6, the origin is the fixed-time stable equilibrium for the unper-

turbed or nominal system (5.1).

Lemma 8 and (5.31) imply that

∆+(H(: + 1)) ≤ −Umin{+(H(:))
U

,max{+A1(H(:)), +A2(H(:))}} + !+X0. (5.37)

For 1 < +(H(0)) < U
1

1−A2 , (5.37) leads to

∆+(H(: + 1)) ≤ −U+A2(H(:)) + !+X0. (5.38)

Having 1 < +(H(0)) < U
1

1−A2 and +(H(0)) > B, and using (5.36) and <1 > 1, one has

UBA2 − <1!+X0 > 0 ⇒ −UBA2 + <1!+X0 < 0,

⇒ −UBA2 + !+X0 < 0, (5.39)

which results in

!+X0 <
1

<1
UBA2 . (5.40)

For H(0) /∈ 1H (+(H(0)) > B) and 1 < +(H(0)) < U
1

1−A2 , (5.38) and (5.40) imply that

∆+(H(: + 1)) ≤ −U+A2(:) + 1

<1
UBA2 . (5.41)

Using +(H(:)) > B, (5.41) is upper bounded as follows

∆+(H(: + 1)) ≤ −U2+A2(H(:)), (5.42)
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such that U2 = (1 − 1
<1

)U is positive. Using the results of part 2 in the proof of Theorem 6, (5.42)

implies that for H(0) /∈ 1H and 1 < +(H(0)) < U
1

1−A2 with U < <1!+X0, H(:) reaches the invariant

set (5.33) within the fixed time steps  ∗ = ⌊U−12 (U
1

1−A2 − 1)⌋ + 1 and remains there after.

Using (5.37), for U
1

1−A1 < +(H(0)) ≤ 1, one has

∆+(H(: + 1)) ≤ −U+A1(H(:)) + !+X0. (5.43)

Having U
1

1−A1 < +(H(0)) ≤ 1 and +(H(0)) > B, and using (5.36) and <2 > 1, one has

UBA1 − <2!+X0 > 0 ⇒ −UBA1 + <2!+X0 < 0,

⇒ −UBA1 + !+X0 < 0. (5.44)

From (5.44), one obtains

!+X0 <
1

<2
UBA1 . (5.45)

For H(0) /∈ 1H (+(H(0)) > B) and U
1

1−A1 < +(H(0)) ≤ 1, then (5.43) and (5.45) imply that

∆+(H(: + 1)) ≤ −U+A1(H(:)) + 1

<2
UBA1 . (5.46)

Using +(H(:)) > B, (5.46) is upper bounded as follows

∆+(H(: + 1)) ≤ −U3+A1(H(:)), (5.47)

such that U3 = (1− 1
<2

)U is positive. Using the results of part 2 in Theorem 6 proof, (5.47) implies

that for H(0) /∈ 1H and U
1

1−A1 < +(H(0)) < 1 with <2!+X0 < U, H(:) reaches the invariant set

(5.33) within the fixed time steps  ∗ = ⌊U−1
3
(U

A1
A1−1 − U)⌋ + 1 and remains in 1H ever after. This

completes the proof. �

Remark 25 In (5.33), the bound B is either a function of <1 or <2, as given is (5.34). Notice

that the fixed-time attractive bound (5.34) increases by choosing large values for <1 or <2 and

accordingly the fixed-time of convergence given in (5.35) decreases. Therefore, the bigger we

choose the bounded set B, the shorter the fixed-time of convergence will be.
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5.4 Fixed-time Stability in Probability for Stochastic Discrete-time Systems

Consider the DT nonlinear stochastic system given by

y(: + 1) =f (y(:)) + g(y(:))a(:) , �(y(:), a(:)), y(0)
a.s.≡ y0, : ∈ N, (5.48)

where, for every : ∈ N, y(:) ∈ D ⊆ R= is a D-valued stochastic process with y0 ∈ D, and

a(:) ∈ R=, : ∈ N, is the independent and identically distributed zero-mean stochastic process on

(Ω, F , P). f : D → D and g : D → R=×= are continuous functions with f (0) = 0 and g(0) = 0

where y4 = 0 is the equilibrium of the system (5.48), if and only if y(.) is P-almost surely (a.s.)

equal to zero (i.e., y(.)
a.s.≡ 0) and is a solution of (5.48).

A stochastic process y : [0, ^] × Ω → D is a solution sequence of (5.48) on the discrete-time

interval [0, ^] with initial condition y(0)
a.s.≡ y0 if y(:) satisfies (5.48) almost surely.

The following definitions are given for stability in probability for the zero solution y(:)
a.s.≡ 0

of the DT nonlinear stochastic system (5.48).

Definition 16 [119, 148]

1) The zero solution y(:)
a.s.≡ 0 to (5.48) is Lyapunov stable in probability, if for every Y > 0 and

d ∈ (0, 1), there exist X = X(Y, d) > 0 such that, for all | |y0 | |< X,

P

(
sup
:∈N

‖y(:)‖> Y
)
≤ d.

2) The zero solution y(:)
a.s.≡ 0 to (5.48) is asymptotically stable in probability if it is Lyapunov

stable in probability and, for every d ∈ (0, 1), there exists X = X(d) > 0 such that if | |y0 | |< X, then

P

(
lim
:→∞

‖y(:)‖= 0

)
≥ 1 − d.

3) The zero solution y(:)
a.s.≡ 0 to (5.48) is globally asymptotically stable in probability if it is

Lyapunov stable in probability and, for all y0 ∈ R=,

P

(
lim
:→∞

‖y(:)‖= 0

)
= 1.

4) The zero solution y(:)
a.s.≡ 0 to (5.48) is exponentially stable in probability if for some

0 < W < 1 independent of a, it is Lyapunov stable in probability and, for every d ∈ (0, 1), there
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exists X = X(d) > 0 such that if | |y0 | |< X, then

P

(
lim
:→∞

‖W:y(:)‖= 0

)
≥ 1 − d.

5) The zero solution y(:)
a.s.≡ 0 to (5.48) is globally exponentially stable in probability if for some

0 < W < 1 independent of a, it is Lyapunov stable in probability and, for all y0 ∈ R=,

P

(
lim
:→∞

‖W:y(:)‖= 0

)
= 1.

Definition 17 [119] For the DT stochastic dynamical system (5.48) and + : D → R
+, the

difference operator ∆+ of y is given as follows,

∆+(y) = E[+(�(y , a))] −+(y), y ∈ D .

Note that the difference operator in Definition 5 is a deterministic function and does not involve

the expectation of the system state trajectory and only involves the expectation over the random

noise variable a. Moreover, the random vectors a(:), : ∈ N, all have the same distribution.

In the following, sufficient conditions for Lyapunov, asymptotic and exponential stability in

probability for the system (5.48) are given.

Lemma 9 [118,148]: Consider the discrete-time nonlinear stochastic system (5.48) and assume

that there exists a continuous function + : D → R+ such that

+(0) = 0,

+(y) > 0, y ∈ D, y 6= 0,

∆+(y) ≤ 0, y ∈ D .

Then, the zero solution y(:)
a.s.≡ 0 to (5.48) is Lyapunov stable in probability. Moreover, if

∆+(y) < 0, y ∈ D, y 6= 0,

then the zero solution y(:)
a.s.≡ 0 to (5.48) is asymptotically stable in probability. Furthermore, if

∆+(y) < −W+(y), 0 < W < 1, y ∈ D, y 6= 0,
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then the zero solution y(:)
a.s.≡ 0 to (5.48) is exponentially stable in probability. If D = R= and

+(·) is radially unbounded, then the zero solution y(:)
a.s.≡ 0 to (5.48) is globally asymptotically

or exponentially stable in probability under the defined Lyapunov conditions.

The following definition provides the characteristics of stochastic DT systems under which they

are fixed-time stable in probability.

Definition 18 (Fixed-time stability in probability) Consider the stochastic DT nonlinear system

(5.48). The zero solution of y(:)
a.s.≡ 0 to the system (5.48) is said to be fixed-time stable in

probability, if there exist a stochastic process called stochastic settling time function  (y , ·), such

that:

1) The system (5.48) is Lyapunov stable in probability. That is, for every n > 0 and d ∈ (0, 1),

there exists a X = X(n, d) > 0 such that for all y(0)
a.s.≡ y0 ∈ D\{0}, if | |y(0)| |≤ X, then

P

(

sup
:∈[0, (y0,a))



y(:)


 > Y

)

≤ d.

2) For every initial condition y(0)
a.s.≡ y0 ∈ D\{0}, the solution sequence y(:) is defined on

[
0,  

(
y0, a

) )
, a ∈ Ω, y(:) ∈ D\{0}, : ∈

[
0,  

(
y0, a

) )
, and

P
(

y

(
 

(
y0, a

) )

 = 0
)
= 1.

3) The stochastic settling-time function  (y , ·), for all y ∈ D, is finite almost surely and there exist

a fixed-time upper bound for the stochastic settling-time  (y , ·), i.e., E[ (y0, a)] ≤  <0G where

 <0G is a positive integer.

The zero solution y(:)
a.s.≡ 0 to (5.48) is globally fixed-time stable in probability if it is fixed time

stable in probability with D = R=.

Lemma 10 Consider the nonlinear stochastic DT system (5.48) and the scalar system

+(G(: + 1)) = W(+(G(:))), G(:) ∈ R=, (5.49)

where

W(+(G(:))) = +(G(:)) − Umin{+(G(:))
U

,max{+A1(G(:)), +A2(G(:))}}, (5.50)
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such that 0 < U < 1, 0 < A1 < 1, and A2 > 1. If there exists a continuous positive-definite function

+ : R= → R+and the nondecreasing function W : R+ → R+such that

E
[
+(�(y , a)] ≤ W(+(y)), H ∈ R=,

then

+
(
y0

)
≤ G0, G0 ∈ R+

implies

E[+(y(:))] ≤ G(:), : ∈ N,

where the sequence G(:), : ∈ N, satisfies (5.49).

Proof. This Lemma is an extension of finite-time stability conditions [119], which is provided

for fixed-time stability conditions. The proof is similar and is omitted. �

The following theorem represents the sufficient Lyapunov conditions for fixed-time stability in

probability for stochastic DT nonlinear systems.

Theorem 8 Consider the nonlinear stochastic system (5.48). If there exists a continuous and

radially unbounded function + : R= → R+ such that

+(0) = 0, (5.51)

+(y) > 0, y ∈ R=\{0}, (5.52)

E[+(�(y , a))] ≤ W(+(y)), y ∈ R=\{0}, (5.53)

where W(.) is given in (5.50), then the zero solution y(:)
a.s.≡ 0 to (5.48) is globally fixed-time

stable in probability. Moreover, there exists a stochastic settling-time  : R= → N such that

E
[
 

(
y0

) ]
≤  ̂ (G0) <  <0G , (5.54)

where  (·) is almost surely finite stochastic settling-time function and  ̂ (G0) is the finite settling-

time function of (5.49) and  <0G is the fixed upper bound for  ̂ (G0) and E
[
 

(
y0

) ]
.

Proof Based on (5.50) and (5.53), one has

E[+(�(y , a))] −+(y) ≤ W(+(y)) −+(y) < 0, y ∈ R=\{0}, (5.55)
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and hence, it follows from Lemma 9 that the zero solution y(:)
a.s.≡ 0 to (5.48) is globally

asymptotically stable in probability. Now, consider the nonlinear DT system (5.49) and note that,

by Theorem 6, the zero solution G(:) ≡ 0 to (5.49) is globally fixed-time stable and there exists

 ̂ (G0) < ⌊U
1

1−A1 (1 − U
1

1−A1 )⌋ + ⌊U−1(U
1

1−A2 − 1)⌋ + 3,

such that

G(:) = 0, : ≥  ̂ (G0) , G0 ∈ R+.

Now, let +
(
y0

)
< G0, y(0)

a.s.≡ y0 ∈ R=, and it follows from Lemma 10 that

E[+(y(:))] = 0, : ≥  ̂ (G0) .

Since +(y(:)), : ∈ N, is a nonnegative random variable, it follows that +(y(:))
a.s.≡ 0 for all

: ≥  ̂ (G0). Then, it follows from (5.51) and (5.52) that y(:)
a.s.≡ 0 for all : ≥  ̂ (G0). Therefore,

there exists a stochastic settling-time E[ 
(
y0

)
] ≤  ̂ (G0) such that y(:) = 0, : ≥  

(
y0

)
. Finally,

since E[ 
(
y0

)
] ≤  ̂ (G0), it follows that

E
[
 

(
y0

) ]
≤  ̂ (G0) < ⌊U

1
1−A1 (1 − U

1
1−A1 )⌋ + ⌊U−1(U

1
1−A2 − 1)⌋ + 3,

and hence, Definition 6 is satisfied. �

5.5 Example Illustration and Simulation

This sections provides examples to verify the correctness of the presented fixed-time stability

results. Examples 1 and 2 are, respectively, presented for deterministic scalar and higher-order

systems without uncertainties and perturbations. Examples 3 and 4 are counterexamples that show

that if the Lyapunov conditions for a deterministic scalar or higher-order system guarantee its

fixed-time stability, by adding noise to the system, the same Lyapunov candidate only guarantees

exponential stability in probability, and not fixed-time stability in probability. These examples

clearly show that moving from a fixed-time stable deterministic system to a stochastic system with

the same dynamics, one might look for new Lyapunov function candidates than the one used for

the deterministic system to show its fixed-time stability in probability, if there exists one.
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Example 1. (Fixed-time stable scalar deterministic discrete-time system) Consider the scalar

nonlinear DT system given as follows

H(: + 1) =0H(:) − U′B86=(H(:))min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}, (5.56)

where H(:) ∈ R , : ∈ N, 1
2 < 0 ≤ 1, U′ ∈ (0, 1), A′1 ∈ (0, 1) and A′2 > 1. Now, using Theorem

6, it is shown that the zero solution H(:) = 0 to (5.56) with 0 = 1 is globally fixed-time stable.

Consider +(H(:)) = H2(:) and H! < H(0) < H� where H! = U′
1

1−A1 and H� = U′
1

1−A2 (Note that

if H(0) > H� or H(0) < H! , then the zero solution H(:) = 0 for (5.56) with 0 = 1 is fixed-time

stable with  (H(0)) = 1).

The difference of +(H(:)) = H2(:) is as follows,

∆+(H(:)) =[0H(:) − U′B86=(H(:))min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}]2 − H2(:)

=(0H(:))2 − 20U′|H(:)|min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}

+ (U′min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}})2 − H2(:)

=(02 − 1)H2(:) + U′min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}×

(−20 |H(:)|+U′min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}). (5.57)

Using the fact that

|H(:)|> U′min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}, (5.58)

one has

− 20 |H(:)|+U′min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}} <

(1 − 20)U′min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}}. (5.59)

Therefore, using (5.59), (5.57) leads to,

∆+(H(:)) ≤ (02 − 1)H2(:) + (1 − 20)U′2min{H2(:)/U′2,max{H2A
′
1(:), H

2A′
2(:)}}, (5.60)

and using +(H(:)) = H2(:) one can rewrite (5.60) as follows,

∆+(H(:)) ≤ (02 − 1)+(H(:)) + (1 − 20)U′2min{+(:)/U′2,max{+A
′
1(:), +

A′
2(:)}}. (5.61)
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Table 5.1: Parameters U′, A′1, A′2, and fixed-time upper bound of settling-time function ( ∗) for

(5.56) with 0 = 1 and the initial condition H(0) = 20.

U′ A′1 A′2  ∗ H! H�
Case 1 0.4 0.2 1.2 59601 0.31 97.6
Case 2 0.7 0.9 1.1 2558 0.02 35.4

Case 3 0.3 0.6 1.3 34002 0.04 55.3
Case 4 0.7 0.9 10 3 0.02 1.04

Since 1
2 < 0 ≤ 1, (5.61) is rewritten as

∆+(H(:)) ≤ −VU′2min{+(:)/U′2,max{+A
′
1(:), +

A′
2(:)}}, (5.62)

where V = (20 − 1) and for 1
2 < 0 ≤ 1, 0 < V ≤ 1.

For 0 = 1, (5.62) leads to

∆+(H(:)) ≤ −U′2min{+(:)/U′2,max{+A
′
1(:), +

A′
2(:)}}, (5.63)

which is analogous to (5.5) where U = U′2, A1 = A′1 and A2 = A′2, and all the parameters conditions

mentioned in Theorem 6 are satisfied. Therefore, it is shown that system (5.56) with 0 = 1 is

globally fixed-time stable. Based on (5.6), the fixed upper bound for the settling-time function of

system (5.56) with 0 = 1 is

 ∗ = ⌊U′
2

1−A′
1 (1 − U′

2
1−A′

1 )⌋ + ⌊U′−2(U′
2

1−A′
2 − 1)⌋ + 3. (5.64)

The state trajectory of the system (5.56) with 0 = 1 is simulated in Fig. 5.1 for 4 different values

of parameters U′, A′1 and A′2 to verify the fixed-time convergence of the system (5.56) with 0 = 1,

and H(0) = 20 such that H! < H(0) < H� in Cases 1-3 and H(0) > H� for Case 4. As depicted in

Fig. 5.1, the settling-time is less than  ∗ for Cases 1-3 where  ∗ is calculated using (5.64) and

given in Table 5.5, and as mentioned in (5.28), for Case 4,  (H(0)) = 1. In Fig. 5.2, the state

trajectory of system (5.56) with 0 = 1 and Case 1 parameters (U′ = 0.4, A′1 = 0.2, A′2 = 1.2) is

simulated for 4 different initial conditions, H(0) = 0.1, (H(0) < H!), H(0) = 8, (H! < H(0) < H�),

H(0) = 80, (H! < H(0) < H�) and H(0) = 8000, (H� < H(0)) where as expected for H(0) = 0.1 and

H(0) = 8000, the settling-time is  (H(0)) = 1, and for H(0) = 8 and H(0) = 80 the convergence to

zero is achieved in few steps which ensures  (H(0)) ≤  ∗.
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Figure 5.1: Different fixed times of convergence for system (5.56) with 0 = 1 and different values

of U′, A′1 and A′2.
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Figure 5.2: Fixed-time convergence for Case 1 of system (5.56) with 0 = 1 for different initial

values.
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However, for 1
2 < 0 < 1, based on (5.62), Lemma 9 and a similar procedure to Theorem 6

proof, one can show that the system (5.56) with 1
2 < 0 < 1 is exponentially stable.

It is worth to note that the autonomous system given in (5.56) with 0 = 1 can be considered as

the following closed-loop system

H(: + 1) = �H(:) + �D(:), (5.65)

where � = 1, � = 1 and D(:) = −U′B86=(H(:))min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}} with

H(:) ∈ R , : ∈ N, U′ ∈ (0, 1), A′1 ∈ (0, 1) and A′2 > 1. In other words, in this example we have

presented a fixed-time feedback controller

D(:) = −U′B86=(H(:))min{|H(:)|/U′,max{|H(:)|A
′
1 , |H(:)|A

′
2}},

which could stabilize the linear system (5.65) in a fixed amount of time.

Example 2. (Fixed-time stable deterministic discrete-time higher-order system) Consider the

nonlinear DT system of order 3 given as follows

H1(: + 1) = H1(:) − ŪB86=(H1(:))min{|H1(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}, (5.66)

H2(: + 1) = H2(:) − ŪB86=(H2(:))min{|H2(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}, (5.67)

H3(: + 1) = H3(:) − ŪB86=(H3(:))min{|H3(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}, (5.68)

where H(:) = [H1(:), H2(:), H3(:)]
) ∈ R3 , : ∈ N, Ū ∈ (0, 1), Ā1 ∈ (0, 1) and Ā2 > 1. Now, using

Theorem 6, it is shown that the zero solution H(:) = 0 to the above higher-order system is globally

fixed-time stable. Consider

+(H(:)) = |H1(:)|+|H2(:)|+|H3(:)|, (5.69)

and +! < +(0) < +� where +! = Ū
1

1−Ā1 and +� = Ū
1

1−Ā2 (Note that if +(0) > +� or

+(0) < +! , then the zero solution H(:) = 0 of the above higher-order system is fixed-time stable
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with  (H(0)) = 1). The difference of (5.69) is as follows,

∆+(H(:)) = |H1(: + 1)|−|H1(:)|+|H2(: + 1)|−|H2(:)|+|H3(: + 1)|−|H3(:)|, (5.70)

where using (5.66)-(5.68) leads to

∆+(H(:)) = |H1(:) − ŪB86=(H1(:))min{|H1(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}|−|H1(:)|+|H2(:) − ŪB86=(H2(:))min{|H2(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 , [|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}|−|H2(:)|

+ |H3(:) − ŪB86=(H3(:))min{|H3(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}|−|H3(:)|. (5.71)

Consider

a =H8(:),

b =ŪB86=(H8(:))min{|H8(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}, (5.72)

where one knows that a and b have the same sign and for 8 = 1, 2, 3, |a |≥ |b |. Therefore one has

|a − b |= |a |−|b |. (5.73)

Thus using (5.72)-(5.73), (5.71) is rewritten as follows

∆+(H(:)) =

− Ūmin{|H1(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 , [|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}

− Ūmin{|H2(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 , [|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}

− Ūmin{|H3(:)|/Ū,
1

3
max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 , [|H1(:)|+|H2(:)|+|H3(:)|]Ā2}},

(5.74)

where (5.74) leads to

∆+(H(:)) ≤ − Ūmin{ |H1(:)|+|H2(:)|+|H3(:)|
Ū

,max{[|H1(:)|+|H2(:)|+|H3(:)|]Ā1 ,

[|H1(:)|+|H2(:)|+|H3(:)|]Ā2}}. (5.75)
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Using +(H(:)) = |H1(:)|+|H2(:)|+|H3(:)|, (5.75) is rewritten as follows

∆+(H(:)) ≤ − Ūmin{+(H(:))
Ū

,max{+(H(:))Ā1 , +(H(:))Ā2}}, (5.76)

which is analogous to (5.5) where U = Ū, A1 = Ā1 and A2 = Ā2, and all the parameters conditions

mentioned in Theorem 6 are satisfied. Therefore, it is shown that the higher-order system specified

in (5.66)-(5.68) is globally fixed-time stable. Based on (5.6), the fixed upper bound for the settling-

time function of this higher-order system is

 ∗ = ⌊Ū
1

1−Ā1 (1 − Ū
1

1−Ā1 )⌋ + ⌊Ū−1(Ū
1

1−Ā2 − 1)⌋ + 3. (5.77)

The state trajectories for the system (5.66)-(5.68) with Ū = 0.47, Ā1 = 0.2 and Ā2 = 1.2 are

simulated in Figs. 5.3-5.5 for three different values of initial conditions. Based on the given

parameters, one has +! = Ū
1

1−Ā1 = 0.3892 and +� = Ū
1

1−Ā2 = 43.60. Fig. 5.3 shows the system

(5.66)-(5.68) trajectories reached the origin with  (H(0)) = 1 for initial conditions H1(0) = 0.1,

H2(0) = 0.01, H3(0) = 0.001 which imply that +(0) < +! . Fig. 5.4 shows that for the 3 states’

trajectories, it took several steps to reach the origin because the initial conditions are H1(0) = 9,

H2(0) = 9.5, H3(0) = 10 and +� < +(0) < +! . Moreover, in this case, using (6), the fixed upper

bound for the convergence time is obtained as 93 steps where the convergence is achieved before

this time. In Fig. 5.5 where the initial conditions are H1(0) = 90, H2(0) = 900, H3(0) = 9000 and

+(0) < +� , the state trajectories reached the origin with  (H(0)) = 1.

Example 3. (Lyapunov function candidate: from deterministic fixed-time stable scalar systems

to their stochastic counterparts)

In this counterexample we show that the deterministic global fixed-time stable system may not

preserve its fixed-time stability under the same Lyapunov function candidate after it is exposed to

stochastic noise.

Consider the scalar stochastic nonlinear DT system as follows

y(: + 1) = 0y(:) − U′B86=(y(:))min{|y(:)|/U′,max{|y(:)|A
′
1 , |y(:)|A

′
2}} + 1y(:)a(:),

(5.78)
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Figure 5.3: State trajectories for higher-order system (5.66)-(5.68) with +(0) < +! .

where y(:) ∈ R , : ∈ N, U′ ∈ (0, 1), A′1 ∈ (0, 1) and A′2 > 1, a(:) ∈ R is a zero-mean stochastic

noise with E[a(:)] = 0 and E[a2(:)] = f2, 1
2 < 0 ≤ 1 and 1 <

√
1−02
f2

.

Now, using Theorem 8 and the results of Example 1, it is shown that the zero solution y(:)
a.s.≡ 0

to (5.78) (the stochastic version of (5.56)) does not show global fixed-time stability in probability

for 0 = 1 but preserves its exponential stability in probability for 1
2 < 0 < 1, using the same

Lyapunov function as in Example 1.
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Figure 5.4: State trajectories for higher-order system (5.66)-(5.68) with +! < +(0) < +� .
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Figure 5.5: State trajectories for higher-order system (5.66)-(5.68) with +� < +(0).

Consider +(y(:)) = y2(:) such that for (5.78), one has

∆+(y(:)) = E[(0y(:) − U′B86=(y(:))min{|y(:)|/U′,

max{|y(:)|A
′
1 , |y(:)|A

′
2}} + 1y(:)a(:))2] − y2(:), (5.79)

where one can rewrite (5.79) as below,

∆+(y(:)) =

E[02y2(:) + (U′min{|y(:)|/U′,max{|y(:)|A
′
1 , |y(:)|A

′
2}})2 + 12y2(:)a2(:)

+ 201y2(:)a(:) − 20U′|y(:)|min{|y(:)|/U′,max{|y(:)|A
′
1 , |y(:)|A

′
2}}

− 21U′a(:)|y(:)|min{|y(:)|/U′,max{|y(:)|A
′
1 , |y(:)|A

′
2}}]

− y2(:). (5.80)

Applying expectation operator to the first term on the left-half-side of (5.80), leads to

∆+(y(:)) =

(02 + 12f2 − 1)y2(:) + U′2min{|y(:)|2/U′2,max{|y(:)|2A
′
1 , |y(:)|2A

′
2}}

− 20U′|y(:)|min{|y(:)|/U′,max{|y(:)|A
′
1 , |y(:)|A

′
2}}. (5.81)
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Using (5.58), (5.81) leads to,

∆+(y(:)) ≤ (02 + 12f2 − 1)y2(:) − (20 − 1)U′2min{y2(:)/U′2,max{y
2A′
1(:), y

2A′
2(:)}},

(5.82)

where using +(H(:)) = H2(:) one can rewrite (5.82) as follows,

∆+(y(:)) ≤ (02 + 12f2 − 1)+(:) − VUmin{+(:)/U,max{+(:)A1(:), +(:)A2(:)}}, (5.83)

where V = 20 − 1, U = U′2, A1 = A′1 and A2 = A′2.

For 0 = 1, (5.83) reduces to

∆+(y(:)) ≤ 12f2+(:) − Umin{+(:)/U,max{+(:)A1(:), +(:)A2(:)}}. (5.84)

However, (5.84) can not support the global fixed-time stability in probability of the system (5.78)

with 0 = 1, due to the injected noise stochasticity, while in Example 1 it was shown that the same

system without noise is fixed-time stable.

For 1
2 < 0 < 1 and 1 <

√
1−02
f2

, one has 0 < V < 1 and 02 + 12f2 − 1 < 0. Thus, using (5.83)

one obtains

∆+(y(:)) ≤

− VUmin{+(:)/U,max{+(:)A1(:), +(:)A2(:)}}. (5.85)

By using (5.85), Lemma 9 and a similar procedure to Theorem 8 proof, one can show that the

system (5.78) with 1
2 < 0 < 1 and 1 <

√
1−02
f2

is exponentially stable in probability. Therefore,

the stochastic system (5.78) preserves exponential stability in probability for 1
2 < 0 < 1 and

1 <

√
1 − 02
f2

.

Example 4. (Lyapunov function candidate: from deterministic fixed-time stable higher-order

systems to their stochastic counterparts) In this counterexample we show that the deterministic

global fixed-time stable higher-order system may not preserve its fixed-time stability under the
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same Lyapunov function candidate after it is exposed to stochastic noise. Consider the higher-order

stochastic nonlinear DT system as follows

y1(: + 1) = y1(:) − ŪB86=(y1(:))min{|y1(:)|/Ū,
1

3
max{[|y1(:)|+|y2(:)|+|y3(:)|]Ā1 ,

[|y1(:)|+|y2(:)|+|y3(:)|]Ā2}} + y1(:)a(:), (5.86)

y2(: + 1) = y2(:) − ŪB86=(y2(:))min{|y2(:)|/Ū,
1

3
max{[|y1(:)|+|y2(:)|+|y3(:)|]Ā1 ,

[|y1(:)|+|y2(:)|+|y3(:)|]Ā2}} + y2(:)a(:), (5.87)

y3(: + 1) = y3(:) − ŪB86=(y3(:))min{|y3(:)|/Ū,
1

3
max{[|y1(:)|+|y2(:)|+|y3(:)|]Ā1 ,

[|y1(:)|+|y2(:)|+|y3(:)|]Ā2}} + y3(:)a(:), (5.88)

where y(:) = [y1(:), y2(:), y3(:)] ∈ R3 , : ∈ N, Ū ∈ (0, 1), Ā1 ∈ (0, 1) and Ā2 > 1, a(:) ∈ R is a

zero-mean stochastic noise withE[a(:)] = 0 andE[|a(:)|] = 22, 0 < 2 <
√
Ū. Now, using Theorem

8 and the results of Example 2, it is shown that the zero solution y(:)
a.s.≡ 0 to (5.86)-(5.88) (the

stochastic version of (5.66)-(5.68)) does not show global fixed-time stability in probability, using

the same Lyapunov function as in Example 2. Consider

+(y(:)) = |y1(:)|+|y2(:)|+|y3(:)|, (5.89)

such that for the system (5.86)-(5.88), one has

∆+(y(:)) = E[|y1(:) − ŪB86=(y1(:))min{|y1(:)|/Ū,
1

3
max{[|y1(:)|+|y2(:)|+|y3(:)|]Ā1 ,

[|y1(:)|+|y2(:)|+|y3(:)|]Ā2}} + y1(:)a(:)|]

− |y1(:)|+E[|y2(:) − ŪB86=(y2(:))min{|y2(:)|/Ū,
1

3
max{[|y1(:)|+|y2(:)|+|y3(:)|]Ā1 ,

[|y1(:)|+|y2(:)|+|y3(:)|]Ā2}} + y2(:)a(:)|]

− |y2(:)|+E[|y3(:) − ŪB86=(y3(:))min{|y3(:)|/Ū,
1

3
max{[|y1(:)|+|y2(:)|+|y3(:)|]Ā1 , [|y1(:)|+|y2(:)|

+ |y3(:)|]Ā2}} + y3(:)a(:)|] − |y3(:)|, (5.90)
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Using triangle inequality for a, b (a and b are defined in (5.72)) and c = y8(:)a(:), for 8 = 1, 2, 3,

as

|a − b + c |≤ |a − b |+|c |, (5.91)

and employing (5.89), (5.72)-(5.73), and the noise properties, one can rewrite (5.90) as below,

∆+(y(:)) ≤ − Ūmin{+(:)/Ū,max{+(:)Ā1 , +(:)Ā2}}

+ 22+(:), (5.92)

One knows that (5.92) can not support the global fixed-time stability in probability of the system

(5.86)-(5.88), due to the injected noise stochasticity, while in Example 2 it was shown that the

same system without noise is fixed-time stable. By using Lemma 9, one can show that the system

(5.86)-(5.88) preserved its exponential stability in probability for 0 < 2 <
√
Ū.

5.6 Conclusion and Future work

This chapter addressed the fixed-time stability for deterministic and stochastic discrete-time

(DT) autonomous systems based on fixed-time Lyapunov stability analysis. Novel Lyapunov

conditions are derived under which the fixed-time stability of autonomous DT deterministic and

stochastic systems is certified. The sensitivity to perturbations for fixed-time stable DT systems is

analyzed and the analysis shows that fixed-time attractiveness can be resulted from the presented

Lyapunov conditions. For both cases of fixed-time stable and fixed-time attractive systems, the

fixed upper bounds of the settling-time functions are given. For the future work, we plan to employ

the presented fixed-time stability analysis to develop fixed-time identifiers and controllers for DT

systems.

114



CHAPTER 6

DISCRETE-TIME NONLINEAR SYSTEM IDENTIFICATION: A FIXED-TIME

CONCURRENT LEARNING APPROACH

6.1 Introduction

The overarching objective of this chapter is to present a fixed-time concurrent learning (FxTCL)

algorithm for discrete-time systems to 1) ensure fixed-time parameter convergence independent of

the initial estimation errors and 2) relax the PE condition to a rank condition on the recorded

data using CL. In the presented FxTCL, the settling-time upper bound is independent of the

initial parameter estimation error. To achieve this goal, a modified gradient-descent update law

is presented for learning the unknown system parameters. This update law reuses past collected

data at every time instance and leverages discontinuous and non-integer powers of the identification

errors. The Lyapunov analysis presented in our previous work in [128] is then leveraged to guarantee

fixed-time convergence of the system parameters to their true values.

The main contributions of this chapter include the following. First, a novel discrete-time update

law is presented using the CL technique that identifies system uncertainties in a fixed amount of time.

Fixed-time convergence is guaranteed under a rank condition on recorded memory data, which is

weaker than the standard PE condition. The rigorous analysis using fixed-time Lyapunov stability

guarantees the convergence of estimated parameters’ error to zero for adaptive approximators with

parametric uncertainties under a condition on the learning rate. Third, a fixed-time upper bound

for the parameters’ estimation error settling-time function, independent of the initial parameter

estimation error, is computed.

NotationR,Z, andN+, respectively, denote the sets of real, integer, and natural numbers without

zero. ‖.‖ denotes the Euclidean and induced 2 norms for vectors and matrices, respectively. CA(.)

shows the trace of a matrix. _<8=(�) and _<0G(�), respectively, show the minimum and maximum

eigenvalues of matrix �. � is the identity matrix of appropriate dimensions. ⌊.⌋ : R ↦→ Z denotes

the floor function.

In general, for a vector G = [G1, G2, ..., G=]
) ∈ R=, the ?-norm is defined as ‖G‖?= (

∑=
8=1 |G8 |

?)
1
? .
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Moreover, for positive constants A and B, if 0 < A < B, based on Hölder inequality [129], one has

‖G‖B≤ ‖G‖A≤ =
1
A −

1
B ‖G‖B.

Frobenius norm of matrix � ∈ R<×= defined as ‖�‖�=
√
CA(�) �), implies ‖�‖≤ ‖�‖�≤

√
min (<, =)‖�‖.

6.2 Problem Formulation

Consider a nonlinear discrete-time system as below,

G(: + 1) = 5 (G(:)) + 6(G(:))D(:), (6.1)

where G ∈ DG ⊂ R= and D ∈ DD ⊂ R< are, respectively, the system state and control input vectors,

DG and DD are compact sets; the drift and input functions 5 : DG ↦→ R= and 6 : DG ↦→ R=×< are

functions with parametric uncertainty.

The functions 5 (G) and 6(G) with parametric uncertainties are represented as

5 (G(:)) = Θ∗)
5
i(G(:)), (6.2)

6(G(:)) = Θ∗)
6 j(G(:)), (6.3)

where Θ∗
5
∈ D 5 ⊂ R?×= and Θ∗

6 ∈ D6 ⊂ R@×= are the optimal unknown parameters, and D 5 and

D6 are compact sets. i : DG ↦→ R? and j : DG ↦→ R@, are the basis functions, where ? and @

are, respectively, the number of linearly independent basis functions to approximate 5 (G(:)) and

6(G(:)). Using (6.2)-(6.3), (6.1) is written as

G(: + 1) = Θ∗) I(G(:), D(:)), (6.4)

where Θ∗ = [Θ∗)
5
,Θ∗)

6 ]) ∈ R(?+@)×=, and I(G(:), D(:)) = [i) (G(:)), D) (:)j) (G(:))]) ∈

R
(?+@).

The measurements of G(: + 1) are not accessible. Therefore, regressor filtering [10, 39, 42] of

the system (6.4), gives

G(:) = Θ∗)3(:) − ;(:) + �:G(0), (6.5)

3(: + 1) = 23(:) + I(G(:), D(:)), 3(0) = 0,

;(: + 1) = �;(:) + �G(:), ;(0) = 0, (6.6)
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where � = 2�,−1 < 2 < 1, ;(:) =
∑:−1
ℎ=0

�:−ℎG(ℎ) is the filtered regressor of G(:), and

3(:) =
∑:−1
ℎ=0

2:−ℎ−1I(G(ℎ), D(ℎ)) is the filtered regressor of I(G(:), D(:)). By dividing (6.5) to

=B := 1 + 3) (:)3(:) + ;) (:);(:), one has the normalized form of (6.5) given below,

Ḡ(:) =Θ∗) 3̄(:) − ;̄(:) + �: Ḡ(0), (6.7)

where 3̄ = 3
=B

, ;̄ = ;
=B

, and Ḡ = G
=B

.

Consider the approximator of (6.7) as follows,

ˆ̄G(:) =Θ̂) (:)3̄(:) − ;̄(:) + �: Ḡ(0), (6.8)

where Θ̂(:) = [Θ̂)
5
(:), Θ̂)6 (:)]

) ∈ R(?+@)×=, Θ̂ 5 (:) and Θ̂6(:) are, respectively, the estimated

parameters’ matrices for Θ∗, Θ∗
5

and Θ∗
6 at time : . The state estimation error is given as

4(:) = ˆ̄G(:) − Ḡ(:) = Θ̃) (:)3̄(:), (6.9)

where Θ̃(:) := Θ̂(:) − Θ∗ := [Θ̃)
5
(:), Θ̃)6 (:)]

) is the parameter estimation error such that

Θ̃ 5 (:) := Θ̂ 5 (:) −Θ∗
5
, Θ̃6(:) := Θ̂6(:) −Θ∗

6.

Problem 1: Consider the system (1), or equivalently (7). Let the system model (8) be used

for identifying the unknown parameters of (7). Design a fixed-time update law to ensure that the

parameter estimation error Θ̃(:) dynamics are fixed-time stable.

Remark 26 To our knowledge, fixed-time system identification for discrete-time systems has

not been investigated in the literature. We present for the first time a solution to Problem 1 by

developing a modified gradient descent-based update law that leverages the recorded past data to

relax the PE condition.

6.3 Preliminaries

Definition 19 [29] The signal 3(:) is called persistently exciting if there are positive scalars

h1, h2 and ) ∈ N+ where ∀g ∈ N+, h1� ≤
∑g+)
:=g

3(:)3) (:) ≤ h2�.

Definition 20 (Fixed-time stability [59]) Consider the system

I(: + 1) = �(I(:)), (6.10)
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where I ∈ DI, � : DI ↦→ R= and DI is an open neighborhood of the origin which is the equilibrium

point of (6.10). The nonlinear system (6.10) is fixed-time stable, if there is an open neighborhood

NI ⊆ DI of the origin and a settling time function  : NI\{0} ↦→ N+, such that:

1) The system (6.10) is Lyapunov stable, i.e., for every n > 0, there exists a X > 0 such that if

| |I(0)| |≤ X, then | |I(:)| |≤ n for all : ∈ {0, ...,  (I(0)) − 1}.

2) For every initial condition I(0) ∈ NI\{0}, the solution sequence I(:) of (6.10) reaches the

equilibrium point and remains there after : >  (I(0)) and ∀I(0) ∈ NI, where  : NI\{0} ↦→ N+.

3) The settling-time function  (I(0)) is bounded, i.e., ∃ <0G ∈ N+ :  (I(0)) ≤  <0G ,∀I(0) ∈

NI\{0}.

Lemma 11 [128] Consider the nonlinear discrete-time system (6.10). Consider there is a

continuous Lyapunov function + : DI ↦→ R where DI is an open neighborhood around the origin

and there exists a neighborhoodΩI ⊂ DI of the origin such that+(I(0)) = 0,+(I(:)) > 0, I(:) ∈

ΩI\{0} and

∆+(I(: + 1)) ≤ −Umin{+(I(:))
U

,max{+A1(I(:)), +A2(I(:))}}, I(:) ∈ ΩI\{0}, (6.11)

for constants 0 < U < 1, 0 < A1 < 1, and A2 > 1. Then, system (6.10) is fixed-time stable and has

a settling time function  : NI ↦→ N+ that for all I(0) ∈ NI\{0} satisfies

 (I(0)) ≤ ⌊U
1

1−A1 (1 − U
1

1−A1 )⌋ + ⌊U−1(U
1

1−A2 − 1)⌋ + 3, (6.12)

where NI is an open neighborhood of the origin.

6.4 Fixed-time Concurrent Learning of the Unknown Discrete-time Dynam-

ics

To employ CL for the approximation (6.8), the past data of (6.5)-(6.6) is recorded in the memory

matrices " ∈ R(?+@)×%, ! ∈ R=×% and - ∈ R=×%, at time steps g1, ..., g%,

" = [3̄(g1), 3̄(g2), ..., 3̄(g%)], ! = [;̄(g1), ;̄(g2), ..., ;̄(g%)],

- = [Ḡ(g1), Ḡ(g2), ..., Ḡ(g%)], (6.13)
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where % (the number of stored data in each memory matrice) is chosen such that " is full-row

rank, which is called " rank condition and requires % ≥ ? + @. Now, for the ℎCℎ stored data, the

error 4ℎ(:) is defined as

4ℎ(:) = ˆ̄Gℎ(:) − Ḡ(gℎ), (6.14)

where

ˆ̄Gℎ(:) =Θ̂) (:)3̄(gℎ) − ;̄(gℎ) + �: Ḡ(0), (6.15)

is the state estimation at time step 0 ≤ gℎ < : , ℎ = 1, ..., %, using the recorded 3̄(gℎ) and ;̄(gℎ),

and the current estimated parameters matrix Θ̂(:). Substituting Ḡ(gℎ) into (6.14), one obtains

4ℎ(:) = Θ̃) (:)3̄(gℎ). (6.16)

The proposed FxTCL law for estimating the parameters of the system approximator is presented as

follows

Θ̂(: + 1) = Θ̂(:) − Γ[Ξ� 3̄(:)4
) (:) + Ξ�(

%∑

ℎ=1

3̄(gℎ)(⌊4)ℎ(:)⌉
W1 + ⌊4)

ℎ
(:)⌉W2))], (6.17)

where ⌊.⌉W := |.|WB86=(.)with |.| and B86=(.) understood in component-wise sense and 0 < W1 < 1,

W2 > 1. Γ = W� is the learning rate with constant W > 0. Ξ� = b� � and Ξ� = b� � are weight

matrices with constants b� > 0 and b� > 0, which can be set to prioritize one of the two learning

terms (i.e. 3̄(:)4) (:) and
∑%
ℎ=1

3̄(gℎ)(⌊4)ℎ(:)⌉
W1+⌊4)

ℎ
(:)⌉W2)) in (6.17) over the other. Moreover,

before the few % steps of learning, required for filling the data stacks in (6.13) and satisfying the

rank condition, we set Ξ� = 0 such that (6.17) only employs current data to update the estimated

parameters.

6.5 Fixed-time Convergent Analysis

In this section, the convergence analysis of the gradient update law dynamics is given based on

fixed-time Lyapunov stability.

Theorem 9 Let the system (6.1) be approximated by (6.8), whose parameters are adjusted using

(6.17) with 0 < W1 < 1, W2 > 1 and a regressor given in (6.6). Let the rank condition on " is

119



satisfied. If W satisfies

max{0D, 1D} < W < min{ 2

=b�
, 1D, 0D}, 5 >A 1 < Υ, (6.18)

max{0; , 1;} < W < min{ 2

=b�
, 0; , 1;}, 5 >A 0 < Υ ≤ 1, (6.19)

W = 0, 5 >A Υ = 0, (6.20)

where Υ = ‖∑%
ℎ=1

4)
ℎ
(: − 1)‖. Then, the update law (6.17) ensures the fixed-time convergence of

Θ̃(:) to zero for : >  (Θ̃0) (i.e., it solves Problem 1). Besides, the settling time of convergence

is given by

 (Θ̃0) ≤ max
U8>0

{⌊U
2

1−W1
8

(1 − U
2

1−W1
8

)⌋ + ⌊U−18 (U

2
1−W2
8

− 1)⌋} + 3, (6.21)

such that U8 = min{08, 18}, 8 = 1, 2. For 1 < Υ, one has 8 = 1,

01 = 0D(
W

=
)
W1+1
2 , 11 = 1D(

W

=
)
W2+1
2 ,

and [1 ≥ ΥW2−1; for 0 < Υ ≤ 1, one has 8 = 2,

02 = 0;(
W

=
)
W1+1
2 , 12 = 1;(

W

=
)
W2+1
2 ,

and [2 ≥ 1

Υ1−W1
; where

0D =b� [2_

W1+1
2

<8=
(() − =W_

W1+1
2

<0G (()(2b�(=
1−W1
2 ) + b�(=

1−W1)], (6.22)

1D =2b� [(=
1−W2
2 )_

W2+1
2

<8=
(() − =W_

W2+1
2

<0G (()(b� + b�(=
1−W1
2 ) + 0.5b�[1)], (6.23)

0; =2b� [_

W1+1
2

<8=
(() − =W_

W1+1
2

<0G (()=
1−W1
2 (b� + b�) + 0.5b�(=

1−W1
2 )[2], (6.24)

1; =b� [2(=
1−W2
2 )_

W2+1
2

<8=
(() − =Wb�_

W2+1
2

<0G (()(2b� + b�)], (6.25)

0D =
a − 1

b
, 0D =

a

b
, 1D =

(=
1−W2
2 )a − 1

c
, 1D =

(=
1−W2
2 )a

c
, (6.26)

0; =
a − 1

d
, 0; =

a

d
, 1; =

(=
1−W2
2 )a − 1

e
, 1; =

(=
1−W2
2 )a

e
, (6.27)
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a =2b�_

W1+1
2

<8=
((), e = _

W2+1
2

<0G (()=[4b�b� + b2
�
],

b =_

W1+1
2

<0G (()=[2b�b�(=
1−W1
2 ) + b2

�
(=1−W2)],

c =_

W2+1
2

<0G (()=[4b�b� + 2b2
�
(=

1−W1
2 ) + b2

�
[1(=

1−W1)],

d =_

W1+1
2

<0G (()=[(=
1−W1
2 )2b�b� + 2b2

�
(=

1−W1
2 ) + b2

�
[2(=

1−W1)],

( =
%∑

ℎ=1

3̄(gℎ)3̄
) (gℎ).

Proof 11 Consider the Lyapunov function, +(:) as follows

+(:) = CA{Θ̃) (:)Γ−1Θ̃(:)}. (6.28)

where its change rate, ∆+(:) = +(:) −+(: − 1), is given below,

∆+(:) = CA{Θ̃) (:)Γ−1Θ̃(:) − Θ̃) (: − 1)Γ−1Θ̃(: − 1)}

= CA{(Θ̃(:) − Θ̃(: − 1)))Γ−1(Θ̃(:) + Θ̃(: − 1))}. (6.29)

Using (6.17), (6.29) gives,

∆+(:) = CA{(−Γ[Ξ� 3̄(: − 1)4) (: − 1) + Ξ�(
%∑

ℎ=1

3̄(gℎ)(⌊4)ℎ(: − 1)⌉W1 + ⌊4)
ℎ
(: − 1)⌉W2))]))×

Γ−1(2Θ̃(: − 1) − Γ[Ξ� 3̄(: − 1)4) (: − 1) + Ξ�(
%∑

ℎ=1

3̄(gℎ)(⌊4)ℎ(: − 1)⌉W1 + ⌊4)
ℎ
(: − 1)⌉W2))])},

(6.30)
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and using �̄(:) = 3̄) (:)3̄(:), (6.30) is rewritten as,

∆+(:) = CA{ − 2Ξ�4(: − 1)4) (: − 1) − 2Ξ� [
%∑

ℎ=1

⌊4ℎ(: − 1)⌉W14)
ℎ
(: − 1)

+
%∑

ℎ=1

⌊4ℎ(: − 1)⌉W24)
ℎ
(: − 1)] + ΓΞ2

�
4(: − 1)�̄(: − 1)4) (: − 1)

+ 2ΓΞ�Ξ�

%∑

ℎ=1

⌊4ℎ(: − 1)⌉W1 3̄) (gℎ)3̄(: − 1)4) (: − 1)

+ 2ΓΞ�Ξ�

%∑

ℎ=1

⌊4ℎ(: − 1)⌉W2 3̄) (gℎ)3̄(: − 1)4) (: − 1)

+ ΓΞ2
�

%∑

ℎ=1

⌊4ℎ(: − 1)⌉W1 3̄) (gℎ)
%∑

ℎ=1

3̄(gℎ)⌊4)ℎ(: − 1)⌉W1

+ 2ΓΞ2
�

%∑

ℎ=1

⌊4ℎ(: − 1)⌉W1 3̄) (gℎ)(
%∑

ℎ=1

3̄(gℎ)⌊4)ℎ(: − 1)⌉W2)

+ ΓΞ2
�

%∑

ℎ=1

⌊4ℎ(: − 1)⌉W2 3̄) (gℎ)(
%∑

ℎ=1

3̄(gℎ)⌊4)ℎ(: − 1)⌉W2)}. (6.31)

Using ‖⌊3̄) (gℎ)Θ̃(: − 1)⌉W8 ‖= ‖3̄) (gℎ)Θ̃(: − 1)‖W82W8 for 8 = 1, 2, and Facts 1-2, one rewrites

(6.31) as follows

∆+(:) ≤ −2b� ‖4) (: − 1)‖2−2b�
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W1+1

W1+1−2b�
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W2+1

W2+1

+ =W[b2
�
‖4) (: − 1)‖2+2b�b�

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W12W1 ‖4

) (: − 1)‖

+ 2b�b�

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W22W2 ‖‖4

) (: − 1)‖+b2
�
(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W12W1)

2

+ 2b2
�
=
1−W1
2

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W1

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W2+b2

�
(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W22W2)

2]. (6.32)

Using
∑%
ℎ=1

‖4)
ℎ
(: − 1)‖W8≤ (

∑%
ℎ=1

‖4)
ℎ
(: − 1)‖)W8 , ‖4)

ℎ
(: − 1)‖≤ ∑%

ℎ=1
‖4)
ℎ
(: − 1)‖, 8 = 1, 2, and
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Fact 1, one has

∆+(:) ≤ −(2b� − =Wb2
�
)‖4) (: − 1)‖2−2b�

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W1+1

− 2b�(=
1−W2
2 )

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W2+1+=W[2b�b�=

1−W1
2 (

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)1+W1

+ 2b�b�(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)1+W2 + b2

�
(=1−W1)(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)2W1

+ 2b2
�
=
1−W1
2 (

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W1+W2 + b2

�
(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)2W2 ]. (6.33)

For Υ > 1 with Υ = ‖∑%
ℎ=1

4)
ℎ
(: − 1)‖, and knowing 0 < 2W1 < W1 + 1, W1 + 1 < W1 + W2 <

W2 + 1 < 2W2, one has

Υ2W1 < ΥW1+1, ΥW1+W2 < ΥW2+1. (6.34)

Moreover, for Υ > 1 one obtains

Υ2W2 ≤ [1ΥW2+1 5 >A [1 ≥ ΥW2−1. (6.35)

Therefore, for Υ > 1, using (6.34) and (6.35), (6.33) is rewritten as follows,

∆+(:) ≤ −(2b� − =Wb2
�
)‖4) (: − 1)‖2−2b�(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W1+1

+ (=
1−W2
2 )

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W2+1) + =W[[1b

2
�
(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W2+1

+ 2(=
1−W1
2 )b�b�(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)1+W1 + 2b�b�(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)1+W2

+ b2
�
(=1−W1)(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W1+1 + 2b2

�
=
1−W1
2 (

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W2+1], (6.36)

For the first term of (6.36) to have 2b� − =Wb2
�

≥ 0, one needs

W ≤ 2

=b�
. (6.37)

Hence, for Υ > 1 and W ≤ 2
=b�

, using (6.9), (6.16), and ( =
∑%
ℎ=1

3̄(gℎ)3̄
) (gℎ), (6.36) is rewritten

as

∆+(:) ≤ −0D ‖Θ̃(: − 1)‖W1+1−1D‖Θ̃(: − 1)‖W2+1, (6.38)
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where 0D and 1D are given in (6.22) and (6.23), respectively.

In order to have 0 < 0D < 1 and 0 < 1D < 1, W should, respectively, satisfy the following

inequalities

0D < W < 0D, 1D < W < 1D, (6.39)

where 0D, 0D, 1D and 1D are given in (6.26).

For the case where 0 < Υ ≤ 1, and using 0 < 2W1 < W1+1, W1+1 < W1+ W2 < W2+1 < 2W2,

one obtains

ΥW1+W2 < ΥW1+1, Υ2W2 < ΥW2+1. (6.40)

Furthermore, for 0 < Υ ≤ 1, one has

Υ2W1 ≤ [2ΥW1+1 5 >A [2 ≥ 1

Υ1−W1
. (6.41)

Therefore, for 0 < Υ ≤ 1 and W satisfying (6.37), using (6.40) and (6.41), (6.33) is rewritten as

follows,

∆+(:) ≤ −2(b�
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W1+1+(=

1−W2
2 )

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖W2+1)

+ =W[[2b
2
�
=1−W1(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W1+1 + 2=

1−W1
2 b�b�(

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)1+W1

+ 2b�b�(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)1+W2 + 2b2

�
=
1−W1
2 (

%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W1+1

+ b2
�
(
%∑

ℎ=1

‖4)
ℎ
(: − 1)‖)W2+1], (6.42)

Thus, for 0 < Υ ≤ 1 and W ≤ 2
=b�

, (6.42) is rewritten as

∆+(:) ≤ −0; ‖Θ̃(: − 1)‖W1+1−1; ‖Θ̃(: − 1)‖W2+1, (6.43)

where 0; and 1; are, respectively, given in (6.24) and (6.25).

In order to have 0 < 0; < 1 and 0 < 1; < 1, W should, respectively, satisfy the following

inequalities

0; < W < 0; , 1; < W < 1; , (6.44)
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where 0; , 0; , 1; and 1; are given in (6.27).

Therefore, in order to satisfy (6.37) and the inequalities (6.39) and (6.44) for Υ > 1 and

0 < Υ ≤ 1, respectively, W needs to satisfy the following inequalities, respectively,

max{0D, 1D} <W < min{ 2

=b�
, 1D, 0D}, 5 >A 1 < Υ, (6.45)

max{0; , 1;} <W < min{ 2

=b�
, 0; , 1;}, 5 >A 0 < Υ ≤ 1. (6.46)

One obtains from (6.28) and Fact 2 that

+(Θ̃(:)) ≤ =

W
‖Θ̃(:)‖2 ⇒

√
W

=
+
1
2 (Θ̃(:)) ≤ ‖Θ̃(:)‖. (6.47)

Using (6.47), one rewrites (6.38) and (6.43) as follows

∆+(:) ≤ −08+
W1+1
2 (: − 1) − 18+

W2+1
2 (: − 1), 8 = 1, 2, (6.48)

where for Υ > 1, 8 = 1,

01 = 0D(
W

=
)
W1+1
2 , 11 = 1D(

W

=
)
W2+1
2 ,

for 0 < Υ ≤ 1, 8 = 2,

02 = 0;(
W

=
)
W1+1
2 , 12 = 1;(

W

=
)
W2+1
2 .

One can rewrite (6.48) as follows,

∆+(:) ≤ −U8max{+
W1+1
2 (: − 1), +

W2+1
2 (: − 1)}, (6.49)

where U8 = min{08, 18}, 8 = 1, 2. One knows that

min{+(: − 1), U8max{+
W1+1
2 (: − 1), +

W2+1
2 (: − 1)}}

≤ U8max{+
W1+1
2 (: − 1), +

W2+1
2 (: − 1)}, (6.50)

implies

− U8max{+
W1+1
2 (: − 1), +

W2+1
2 (: − 1)} ≤

−U8min{+(: − 1)

U8
,max{+

W1+1
2 (: − 1), +

W2+1
2 (: − 1)}}. (6.51)
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Therefore, using (6.51), for 8 = 1, 2, (6.49) leads to

∆+(:) ≤ −U8min{+(: − 1)

U8
,

max{+
W1+1
2 (: − 1), +

W2+1
2 (: − 1)}}. (6.52)

Lemma 11 and (6.52) imply that Θ̃(:) converges to zero and a settling-time function is obtained

as given in (6.21). By convergence of Θ̃(:) to zero which results in Υ = 0, no further learning is

required and one sets W = 0 as given in (6.20). This completes the proof.

Remark 27 The settling-time fixed upper bound in (6.21) certifies that the richer the recorded

data in terms of having a bigger ratio of
_<8=(()
_<0G(()

(which leads to the bigger values of U8), the

smaller would be the upper bound for the settling-time in (6.21) and the identification converges in

a faster fixed amount of time. Moreover, the fixed upper bound of the settling-time function can be

computed along with the learning procedure and is obtained before Θ̃(:) convergence to zero.

Remark 28 Since the recorded regressors’ data are normalized, the lower bounds of learning

rate W, max{0D, 1D} and max{0; , 1;}, respectively, given in (6.18) and (6.19), are usually negative

for b� < 1. In order to ensure that a positive W is chosen that satisfies (6.18)-(6.19) for Υ 6= 0, W

can be chosen as follows,

W = max{min{ 2

=b�
, 1D, 0D} − n,max{0D, 1D} + n}, 1 < Υ,

W = max{min{ 2

=b�
, 0; , 1;} − n,max{0; , 1;} + n}, 0 < Υ ≤ 1,

where n is a very small positive constant (such as n = 0.01min{ 2
=b�

, 1D, 0D} for 1 < Υ or

n = 0.01min{ 2
=b�

, 0; , 1;} for 0 < Υ ≤ 1). Moreover, to satisfy [1 ≥ ΥW2−1 and [2 ≥ 1

Υ1−W1
,

one can choose [1 = ΥW2−1 and [2 = 1

Υ1−W1
, respectively.

Remark 29 The learning rate W extracted from either (6.18) or (6.19), is not a fixed constant

and it is an adaptive time-varying scalar due to employing time-varying adaptive constants [1 =

ΥW2−1 and [2 = 1

Υ1−W1
, (respectively, satisfying (6.35) and (6.41)) where Υ = ‖∑%

ℎ=1
4)
ℎ
(: −

1)‖= ‖∑%
ℎ=1

3̄) (gℎ)Θ̃(: − 1)‖ depends on the parameter estimation error Θ̃(:) at every time : .

Therefore, (6.17) is not the explicit Euler discretization of the continuous finite-time method given
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in [43]. Moreover, in this chapter, the adaptive time-varying W is different from the time-varying

discretization for continuous finite-time systems in [149], which preserves finite-time and fixed-

time proprieties but guarantees convergence in infinite time. Furthermore, employing an adaptive

time-varying learning rate matches with the concepts of other discrete and finite-time learning

studies [109, 122].

6.6 Simulation Results and Discussion

In this section, the performance of the presented fixed-time concurrent learning is examined

in comparison with traditional gradient descent (GD) [10], asymptotically converging concurrent

learning (CL) [48] and finite-time concurrent learning (FTCL) [42, 109] with, respectively, the

following estimation laws,

Θ̂(: + 1) = Θ̂(:) − Γ� 3̄(:)4
) (:),

Θ̂(: + 1) = Θ̂(:) − Γ� [Σ� 3̄(:)4
) (:) + Σ�

%∑

ℎ=1

3̄(gℎ)4
)
ℎ
(:)],

Θ̂(: + 1) = Θ̂(:) − Γ′[ 13̄(:)4) (:) +  2(
%∑

ℎ=1

3̄(gℎ)4
)
ℎ
(:) +

∑%
ℎ=1

3̄(gℎ)4
)
ℎ
(:)

^ + ‖∑%
ℎ=1

3̄(gℎ)4
)
ℎ
(:)‖

)],

(6.53)

where Γ� = W� �, Γ� = W� �, Γ
′ = W′�, Σ� = f� �, Σ� = f� �,  1 = :1� and  2 = :2� with

constants W� > 0, W� > 0, f� > 0, f� > 0, W′ > 0, :1 > 0, :2 > 0 and ^ > 0.

The time interval for the simulation is given as [:0, : 5 ] with :0 = 0 and : 5 = 1000, and

DG = [G! , G� ] where G! = 0, G� = 2 and DG is discretized by [G! :
G�−G!
: 5 −:0

: G� ]. In the presented

FxTCL, W is chosen to meet either (6.18) or (6.19) based on the value of Υ. We choose b� > b�

to prioritize current data over recorded data. For gradient descent, W� = 0.6, for CL according

to [48], W� is chosen as W� = 1
2f�+f�_<0G(()

and for finite-time CL according to [109], W′ is

chosen as

W′ =
2:1_<8=(�̄(: − 1)) + 2:2_<8=(()

(:1_<0G(�̄(: − 1)) + :2_<0G(()(1 +
1
^ ))

2
. (6.54)

The controllers and initial values for all methods are zero. To ensure the rank condition on the
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recorded data, a very small exponential decaying sum of sinusoidal input is added to the controller

for the data selection procedure [144] employed in FxTCL, FTCL, and CL methods. For the speed

and precision comparison of the mentioned methods for approximating 5 (G) and 6(G) on the entire

domain of G, the following online learning errors are computed.

� 5 (:) =

∫

DG
‖4 5 (G(:))‖3=G, �6(:) =

∫

DG
‖46(G(:))‖3=G.

Consider the nonlinear system given below,

G(: + 1) = ?14
−G(:) + ?24

−G(:) cos(G(:)) +
?3

1 + G(:)
D(:),

where [?1, ?2, ?3] are the unknown parameters and the regressor is fully known as

I(G(:), D(:)) = [4−G(:), 4−G(:) cos(G(:)),
D(:)

1 + G(:)
],

where ? + @ = 3. The values of unknown parameters are [?1, ?2, ?3] = [−1, 1.5, 1]. We choose

% = 3 for FxTCL, FTCL and CL methods. Let f� = 0.6, f� = 0.3 for CL method, and :1 = 0.6,

:2 = 0.3 and ^ = 0.4 for FTCL method, and b� = 0.6, b� = 0.3, W1 = 0.8 and W2 = 1.1 for

FxTCL method. Fig. 6.1 shows the true and the approximated parameters for FxTCL, FTCL, CL,

and GD approaches. As depicted in Fig. 6.1, while GD did not succeed to converge to the true

parameters, FxTCL, FTCL, and CL converged to true values. However, FxTCL converged faster to

the true values compared with the other mentioned methods. The online learning errors � 5 (:) and

�6(:) for the FxTCL, FTCL, CL, and GD are shown in Fig. 6.2 where FxTCL converged faster to

zero in comparison with other mentioned methods.
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Figure 6.1: Estimated parameters.
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Figure 6.2: Online learning errors.

Table 6.1: Learning errors comparison

IAE � 5 (:) IAE �6(:)

FxTCL 33.84 50.93

FTCL 35.67 72.57

CL 45.01 101.85

GD 297.10 1295.6

The integral absolute errors (IAEs) of � 5 (:) and �6(:) for FxTCL, FTCL, CL, and GD methods

are computed and given in Table 6.1 where FxTCL with IAEs 33.84 and 50.93 respectively for

� 5 (:) and �6(:) has the lowest learning error compared with the other methods.

6.7 Conclusion

This chapter presented a fixed-time learning method for discrete-time system dynamics’ iden-

tification where concurrent learning is used to relax the persistence of excitation requirement on

the regressor to an easy-to-check rank condition of the recorded data. The learning rate conditions

are achieved for fixed-time convergence based on discrete fixed-time analysis. The richness of

the memory data in terms of the data spectral proprieties affects the speed of convergence for the

presented fixed-time learning method. Simulations verify that the presented fixed-time concurrent

learning convergence speed and precision have outperformed the other methods.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In conclusion, first we introduced a finite-time distributed concurrent learning method for inter-

connected systems’ identification in finite time. Leveraging local state communication among

interconnected subsystems’ identifiers enabled them to identify every subsystem’s own dynamics

as well as its interconnections’ dynamics. In this method, distributed concurrent learning relaxed

the regressors’ persistence of excitation (PE) conditions to rank conditions on the recorded dis-

tributed data in the memory stack of the subsystems. It is shown that the precision and convergence

speed of the proposed finite-time distributed learning method depends on the spectral properties

of the distributed recorded data. Simulation results show that the proposed finite-time distributed

concurrent learning has outperformed the finite-time distributed gradient descent in both terms

of precision and convergence speed. For future work, we aim to develop finite-time distributed

identifiers and observers to be employed in appropriate distributed controllers for interconnected

systems.

Then we presented a fixed-time concurrent learning system identification method without the

persistence of excitation (PE) requirement. In this method, the concurrent learning relaxes the

requirement of the PE condition to a rank condition on the memory stack of recorded data. It

is shown that the richness of the recorded experienced data depends on the minimum eigenvalue

properties of the stack of regressor’s data which influences the speed and precision of the proposed

fixed-time concurrent learning method. Simulation results are given where it is shown that the

proposed fixed-time concurrent learning has outperformed other mentioned methods in both terms

of precision and convergence speed. For future work, it is intended to extend the existing results

for discrete-time systems.

We also proposed a data-regularized concurrent learning-based stochastic gradient descent

(CL-based SGD) method that leverages recorded data to guarantee linear (exponential) bounded

convergence of the estimated parameters’ error. It is shown that the richness of the memory data

improves the speed of convergence and reduces the probabilistic bound of convergence. Lyapunov
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analysis guaranteed that the proposed data-regularized CL-based SGD method not only ensures the

practical stability in probability of the estimated parameters’ error but can ensure a finite-sample

boundedness in probability of the estimated parameters’ error. Simulation results verified that the

employed data-regularized CL-based SGD could improve the speed and precision of convergence

for the estimated parameters in comparison with SGD.

Furthermore, we presented the fixed-time stability for deterministic and stochastic discrete-

time (DT) autonomous systems based on fixed-time Lyapunov stability analysis. Novel Lyapunov

conditions are derived under which the fixed-time stability of autonomous DT deterministic and

stochastic systems is certified. The sensitivity to perturbations for fixed-time stable DT systems

is analyzed and the analysis shows that fixed-time attractiveness can result from the presented

Lyapunov conditions. For both cases of fixed-time stable and fixed-time attractive systems, the

fixed upper bounds of the settling-time functions are given.

Finally, we proposed a fixed-time learning method for discrete-time system dynamics’ identifi-

cation where concurrent learning is used to relax the persistence of excitation requirement on the

regressor to an easy-to-check rank condition of the recorded data. The learning rate conditions

are achieved for fixed-time convergence based on discrete fixed-time analysis. The richness of

the memory data in terms of the data spectral proprieties affects the speed of convergence for the

presented fixed-time learning method. Simulations verify that the presented fixed-time concurrent

learning convergence speed and precision have outperformed the other methods.

For future work, we plan to employ the presented fixed-time stability analysis to develop

fixed-time identifiers based on the dynamic regressor extension and mixing (DREM) technique.

Moreover, the ideas of this dissertation can be easily extended to fixed-time controllers and identi-

fiers for CT and DT systems.
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