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ABSTRACT

For all of its successes, the Standard Model (SM) of particle physics cannot explain the

observed asymmetry of the matter and antimatter contents of the universe. Toward a so-

lution for this problem, Andrei Sakharov proposed in 1967 three necessary and sufficient

conditions for any extension of the accepted model to be able to produce such an imbal-

ance. In particular, the combined parity (P) and charge conjugation (C) symmetry must

be significantly violated by fundamental interactions. While there is some CP violation in

the electroweak sector of the Standard Model, it is grossly insufficient to account for the

observed difference. A historically attractive probe into sources of CP violation beyond the

Standard Model (BSM) has been the neutron electric dipole moment (nEDM). The exper-

imental upper bound on its value lies several order of magnitude above the lower bound

imposed by the Standard Model, providing a large window to search for CP-violating BSM

phenomena. There are many potential sources. At hadronic scales, these interactions may

be encoded by effective local operators of SM fields. In order to disentangle their contri-

butions, their hadronic matrix elements must be precisely precisely determined, which is

currently only possible within the framework of lattice quantum chromodynamics (LQCD).

The primary difficulty in the computation of these matrix elements is their renormalization,

which mixes the effective operators. Since the only available scale to parametrize the mixing

is the lattice spacing, these computations are prone to potential power divergences related

to lower-dimensional operators in the continuum limit. In this thesis, we propose to use the

gradient flow to temper these divergences. The gradient flow is essentially a gauge-covariant

smearing of the quantum fields. It introduces a fifth dimension, the flow time, that controls

the extent of the smearing. Critically, the flow time also provides an alternative scale to

the lattice spacing. This allows us to define the effective operators through a short-flow-



time expansion, which enjoys a smooth continuum limit for fixed, nonzero flow times. the

expansion coefficients can be determined on the lattice, so long as their ultraviolet behav-

ior is constrained in some manner. The natural way to do this is through perturbation

theory, though the calculations are made much more difficult by the introduction of Gaus-

sian damping factors. In this thesis, we comprehensively construct the perturbation theory

and renormalization of the gradient flow from the ground up, introducing along the way a

new method for calculating dimensionally-regularized loop integrals with difficult angular

dependence. This method relies heavily on the Schwinger proper time representation of

propagators and handles the angular pieces through a combinatorial tensor decomposition.

Using this novel technique, we calculate the renormalization constants and short-flow-time

coefficients of a handful of physically interesting operators, including the topological charge

density and chromoelectric dipole moments. We further use the gradient flow to define a

pure-lattice renormalization scheme along with an induced renormalization group flow, which

we connect to more phenomenologically amenable renormalization schemes using our new

perturbative techniques.
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In the late 1920s, it became apparent that the quantum mechanics of Erwin Schrödinger

and Werner Heisenberg could not fully treat the quantization of the electromagnetic field.

Due to the manifest Lorentz covariance of Maxwell’s equations, it was evident from the

beginning that a properly quantized theory of electrodynamics should also exhibit this co-

variance. Unfortunately, the propagators of Schrödinger’s theory were nonvanishing over the

whole of spacetime, signaling a violation of causality. Moreover, Louis de Broglie’s wavelike

interpretation of the electron implied a wavelike nature for both the matter and forces in

the quantum theory. To that end, Max Born, Pascual Jordan, and Heisenberg constructed

a free field theory in 1925 by treating the degrees of freedom as an infinite set of quan-

tized harmonic oscillators [1]. Paul Dirac further showed in 1927 that this structure could

replicate the Einstein coefficients [2]. The pivotal step was, however, his introduction of the

Dirac equation [3], the first successful relativistic wave equation. Schrödinger himself had

first attempted to use the relativistic dispersion relation to construct his Hamiltonian, giving

what would later be called Klein-Gordon equation for scalar fields [4, 5]. Lacking the full

consideration of spin, this formalism could not reproduce the Bohr levels in hydrogen, so it

was scrapped for the familiar Schrödinger equation.

As it turns out, it is not the Schrödinger equation, but the Hamiltonian operator that fails,

perceived as acting on a single-particle Hilbert space. Indeed, this is partially why the original

Klein-Gordon equation failed. Dirac, too, originally held a single-particle interpretation of

his equation, implying for each state of energy E an accompanying state of energy −E.

While immaterial in a free theory, the energy spectrum of the interaction Hamiltonian was

unbounded below when including electrodynamics. Dirac proposed a sea of negative-energy

eigenstates, all filled with negative-energy electrons save for a number of effectively positively-

charged “holes,” presumed to be protons. It was hoped that this would indirectly bound the
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Hamiltonian from below through the Pauli exclusion principle, but, notwithstanding a grave

misinterpretation of the Fock space, the stability of atoms and the vast discrepancy between

the masses of the proton and electron were enough to condemn this picture [6]. Though the

proton was out of the question, Dirac maintained that there was a fundamental importance

to this symmetry under charge conjugation.

Carl Anderson’s 1932 discovery of the positron rectified the situation [7]. The “antielec-

tron” field, formally identical to the electron but for its positive electric charge, replaced

the Dirac sea; the positron not only fit the bill for the negative energy eigenstates of the

Dirac equation, restoring the positive-definiteness of the Hamiltonian, but its oppositely-

signed currents flowed backwards relative to those of the electron, fixing also the problem of

propagation over spacelike intervals.

These developments form the basis of second quantization, wherein fields are promoted

to local operators acting on a multiparticle Fock space of excitations of the vacuum. The

field operators, themselves subjected to the canonical quantization conditions, compose a

complete set of quantum harmonic oscillators with a particle corresponding to each excita-

tion. The excitations are generated by the coefficients of the Fourier decomposition, having

now been promoted to ladder operators acting on the multiparticle states. The coefficients of

the positive-frequency terms locally produce particles, while their negative-frequency coun-

terparts produce antiparticles. Much of this work on configuration-space is due to Wolfgang

Pauli and Jordan, who proved the commutation relations were Lorentz invariant [8], and to

Vladimir Fock, who constructed the Hilbert space and worked out — along with Eugene

Wigner and Jordan — canonical (anti)commutation relations for bosons (fermions) consis-

tent with spin and statistics [9,10]. All of these advances allowed for the construction of the

S-matrix, which produces all observables.
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In 1949, Freeman Dyson introduced the Dyson series [11], which gave a perturbative con-

struction of the S-matrix. Specifically, his introduction of time-ordered correlation functions

guaranteed causality by forcing amplitudes outside the lightcone to vanish. Gian Carlo Wick

then proposed in 1950 a combinatorial decomposition of the matrix elements produced by

the Dyson series. He related Dyson’s time-ordered products to field contractions and normal-

ordered products, the latter of which gave vanishing contributions to scattering amplitudes.

This reduction expressed the matrix elements in terms of simple two-point functions and

interaction vertices, forming from the local-field perspective a basis for Richard Feynman’s

diagrammatic approach.

Feynman himself preferred a particle theory, motivated by his and John Wheeler’s earlier

development of absorbers. They had built a generalized classical electrodynamics from the

Lagrangian point of view, which was possible due to their unorthodox usage of both advanced

and retarded waves and their dismissal of electrical self-interactions [12,13]. The interactions

were confined to the lightcone with a delta distribution, which Feynman realized could be

relaxed in a small neighborhood to generalize the behavior of electrodynamics at large ener-

gies. To explain the universality of the electron’s mass and charge, Wheeler suggested that

all electrons are one singular entity, traveling on a complicated, looping world line. Then on

any time slice, those sections traveling toward the plane may be considered positrons, while

those pointing away were electrons. Their action was particularly clean, and the absence of

fields simplified both the mathematics and visualization. Feynman successfully incorporated

fields into their theory, though he ultimately dismissed them as bikeshedding, leaving him

suspicious of the Hamiltonian formalism. Indeed, when he moved on to developing a quan-

tized absorber theory, he found his theory to be incompatible with the typical Hamiltonian

methods of the time. He was later introduced to an idea of Dirac, that between two points
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in time, the path-dependence of a particle’s trajectory could be related to an overall complex

phase on the wavefunction, where the argument was proportional to the action along the

path. Infinitesimally iterating along a finite interval, he found that the propagation of a

particle could be described by a sum over all possible paths weighed by a phase equal to

the associated action [14]. This new path integral was a natural setting for his quantum

absorber theory.

The measurement of the Lamb shift eventually forced Feynman to reconsider the self-

energy of the electron. Following the suggestion of Hans Kramers, he worked with Hans

Bethe to calculate the self-energy in his path integral formalism, finding that the infinite

result could be tamed by smearing the delta function in the Lagrangian for the absorber

theory, amounting to a physical cutoff on the spacing of the points of self-interaction [15].

This was an early example of regularization and renormalization, where a measurable pa-

rameter is redefined to be the finite difference of two formally infinite quantities. Around

this time, Feynman developed simpler methods for path integral calculations, culminating

in his 1949 introduction of Feynman diagrams [16]. He, employing his heuristic “spacetime”

method, proceeded to calculate the leading radiative correction to the electron’s anomalous

magnetic moment. Julian Schwinger and Shin'ichirō Tomonaga concomitantly arrived at the

same result as Feynman through the local-field picture, to which Dyson subsequently proved

the spacetime formulation was equivalent. The triplicate determination of the anomalous

magnetic moment and Bethe’s calculation of the Lamb shift were at this point the most accu-

rate calculations in physics, bringing renormalization and the new quantum electrodynamics

(QED) to the theoretical fore.

The 1950s and ‘60s were largely spent building models of the weak and strong interactions,

catalyzed by Feynman’s new, efficient methods and the continuing success of QED. There
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was a shift in attention to Noetherian symmetries and the role of Lie groups. Chen-Ning

Yang and Robert Mills expanded the earlier work of Herman Weyl to describe the relation-

ship between the allowable interactions and the symmetry group of the theory [17]. With

the further work of Murray Gell-Mann providing physical consequences of group-theoretic

considerations, quantum field theory matured into the study of gauge theories, the paradigm

now being Yang-Mills theory [18]. Additionally, the inclusion of fermions into the path inte-

gral was finally treated in full with the implementation of Grassmann calculus, owed chiefly

to David Candlin [19] (who is disgracefully absent from the modern literature). After Chien-

Shiung Wu demonstrated a violation of parity in the electroweak interaction [20], there was

a renewed interest in discrete symmetries as well, akin to the Dirac’s earlier notion of charge

symmetry. This was not the only symmetry broken by weak interactions. In order to incor-

porate both parity-conserving and parity-violating interactions into a gauge theory of the

weak nuclear force, Sheldon Glashow, Adbus Salam, and John Ward developed a semisimple

gauge theories with massive vector bosons [21–23]. Unfortunately, these proposals broke

gauge symmetry and could not be renormalized. As a consequence of the broken gauge sym-

metry, it was expected that the theory would contain massless Nambu-Goldstone bosons. In

1964, three collaborations – one consisting of Peter Higgs, one of Robert Brout and François

Englert, the third of Gerald Guralnik, C. Richard Hagen, and Tom Kibble – determined

that the Nambu-Goldstone bosons could in the presence of a spontaneously broken symme-

try combine with massless gauge bosons to generate particle masses [24–26]. Dubbed the

Higgs mechanism, this explained the absence of Goldstone bosons while producing massive

gauge bosons in a manner consistent with gauge symmetry. Steven Weinberg incorporated

these arguments into Glashow’s and Salam’s earlier theories, unifying the electroweak and

electromagnetic forces as one gauge theory, now commonly called the Glashow-Weinberg-
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Salam (GWS) theory.

These successes inspired a Yang-Mills theory for Gell-Mann’s quark model, quantum

chromodynamics, but the nature of quarks would not receive a satisfactory treatment until

the demonstration by H. David Politzer, David Gross, and Frank Wilczek that asymptotic

freedom could be dynamically realized from the self-interaction of the gauge field [27, 28].

All of this was enabled by two major advancements. The first was the general gauge-fixing

procedure of Ludvig Fadeev and Victor Popov, which removed the overcounting of gauge

configurations in the path integral [29]. The second was a deeper understanding of renor-

malization granted by both the proof by Gerardus ‘t Hooft and Martinus Veltman that

Yang-Mills theories are renormalizable [30, 31] and the identification of the renormalization

group by Kenneth Wilson [32, 33].

The ‘70s saw the grand synthesis of quantum and statistical field theories, led by Wilson’s

systematization of the scaling principles of Curtis Callan and Kurt Symanzik [34–36]. Wilson

viewed the cutoffs of conventional renormalization as threshold scales beyond which the laws

of physics were unknown. He explained how to encode irresolvable high-energy phenomena

at low energies by successively “integrating out” highly energetic degrees of freedom, thus

recasting current theories as effective theories for an as-yet-unknown ultraviolet (UV) theory.

In this way, divergences induced by highly local and energetic interactions were seen to

be artifacts of sending Wilson’s thresholds to infinity. Renormalization was then just a

demand that the physics must be insensitive to the mathematical choices made in imposing

a cutoff. In an attempt to probe the nonperturbative confinement of quarks in hadrons,

Wilson proposed defining the theory on a discrete spacetime lattice from which the physical

theory could be recovered in the continuum and infinite volume limits [37]. Path integrals

constituted an especially natural setting for this lattice field theory, and the path integral
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formula for scattering amplitudes could be easily translated to the discrete language. While

perturbation theory had been extremely successful for weak interaction strengths, one could

now generate numerical predictions for strongly coupled theories. A critical component of

lattice field theory is the Euclideanization of the action. Interestingly, this stipulation led to

the only mathematically rigorous definition of the path integral.

Anticipating the discovery of the Higgs boson in 2012 and the confirmation of the

Glashow-Weinberg-Salam model for electroweak unification, the superstructure of the Stan-

dard Model (SM) of particle physics was reasonably complete, standing as the most precise

and predictive theory of Nature ever constructed. A major blemish on its record, however,

has been its inability to account for the obvious asymmetry of matter and antimatter in

the Universe. Aside from an exceedingly small contribution from the electroweak sector,

the SM predicts a largely democratic universe, producing matter and antimatter at roughly

equal rates. Much of the work following Wilson was dedicated to unification of the forces and

beyond-the-Standard-Model (BSM) extensions to fill in the proliferating gaps between theory

and experiment. A standard feature of these theories is a measurable violation of the discrete

charge-parity (CP) symmetry, in concordance with the Sakharov conditions for baryogenesis.

The mechanisms for CP-violation are typically mediated by heavy particles, detectable only

at very large energies. It is conceivable, however, that signatures of this broken symmetry are

visible in very accessible systems, the archetypical example being the hypothetical neutron

electric dipole moment (nEDM). Due to confinement at low energies, baryons are in general

poorly defined in perturbation theory. On the other hand, Wilson’s lattice field theory is

perfectly suited for these low-energy systems. In this regime, the high-energy BSM interac-

tions are irresolvable. Instead, one may consider effective local interactions built from only

the low-energy modes of the theory. In the Wilsonian picture, the low-energy Lagrangian
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is supplemented with an infinite tower of effective operators, corresponding to the potential

UV completions. The potential contribution of each such interaction to the nEDM may be

computed on the lattice by inserting the operators into hadronic matrix elements with elec-

tromagnetic currents. After a suitable renormalization, these results can be compared with

several experimental measurements to isolate the physical contributions and identify appro-

priate BSM extensions. As we will discuss in Ch. 4, the renormalization of these operators

is highly nontrivial on the lattice, forming the motivation for current manuscript.

In what follows, we develop a method for circumventing the impediments to lattice renor-

malization. The chief difficulty is the treatment of low-dimensional operators. Under renor-

malization, the whole ensemble of operators within a theory is mixed; that is to say, each

operator is renormalized with an infinite series of virtual corrections from every other op-

erator. It follows by dimensional analysis that the series coefficients of lower-dimensional

operators must have positive engineering dimension. This becomes problematic under lattice

regularization. Since the only internal scale is the lattice spacing, which has units of length,

the coefficients must be parametrized by inverse powers of the spacing. If one hopes to make

predictions, the spacing must be taken to zero, so that the model truly simulates a physi-

cal, continuous universe. This is the continuum limit. Any matrix elements containing the

lower-dimensional operators are thus seen to diverge, and numerical uncertainty dominates

any predictions.

Recently, the gradient flow formalism has become an attractive tool for regulating di-

vergences on the lattice. It characterizes a gauge-covariant parabolic smearing of quantum

fields into a new dimension, the flow time t. We have proposed to use the gradient flow

formalism to define matrix elements on the lattice. The primary benefit of the flow is that

it introduces a second scale, t, which may be used to parametrize the operator mixing. The
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flowed operators may be expanded as a linear combinations of physical, unflowed operators

with coefficients depending on the flow time. Then at fixed, positive t, we may be allowed

to perform the continuum limit (and infinite volume limit) free of power divergences, since

the power divergences are now represented by inverse powers of the flow time. BBecause the

flow is a continuum theory, the Wilson coefficients can be calculated in perturbation theory,

and the divergent parts may be systematically removed for small enough values of the cou-

pling on the lattice. Conveniently, the perturbative renormalization of the flowed fields is

strictly multiplicative, involving only a single new field renormalization. Nevertheless, flowed

perturbation theory is generally very difficult.

The typical regularization of perturbation theory involves the analytic continuation of

the spacetime dimension d to the complex plane [31]. One then must be able to find a

coordinate basis in which some d − n-dimensional subspace can be integrated directly by

symmetry, leaving some integer n integrals to be solved by standard means. Spherical

coordinates are typically used, since the problem is reduced to a single radial integral. This

is only useful, however, when the integrand itself has no angular dependence or when a

simple enough parametrization of the integrand exists for which there is no explicit angular

dependence. The gradient flow introduces Gaussian factors for each field propagator that

defy all standard methods. The key to our proposed method is this author’s extension

of Schwinger parametrization [38]. The procedure involves a combinatorial analysis of the

Lorentz structure of tensor integrals. So far, this has only been rigorously justified to two-

loop order, but the path to generalization is clear. All perturbative results obtained herein

will be derived with this new method.

For demonstration, we first renormalize QCD in Minkowski space, obtaining the standard

one-loop results. All of the subsequent calculations will utilize the Euclidean version of this

10



scheme. We calculate the renormalization constant for flowed fermions the one-loop self-

energy, which is so far absent from the literature. More importantly, we calculate the flowed

mixing coefficients for CP-violating operators up to dimension six, excluding four-fermion

operators (a subject of future work). These are genuinely new results. In Part 4 we apply

this procedure to the quark chromoelectric dipole moment operator. In so doing, we are able

to compute a smooth extrapolation of the dominant mixing coefficient over a wide range

of energies. The results concerning perturbative renormalization have been published in

five papers [39–43]; two related papers are in preparation. A third paper being prepared is

a standalone treatment of the new combinatorial method for tensor decomposition, and a

fourth presents a renormalization group flow induced by the gradient flow and an algorithm

for nonperturbative renormalization with perturbative matching.
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Part I

Exposition
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This first part serves to provide a theoretical background of the forthcoming material.

The first chapter lays the technical foundation for quantum field theory upon which we

construct quantum chromodynamics (QCD), the standard theory of the strong interaction

governing the dynamics of quarks and gluons at high energies. QCD further gives rise to

hadronic matter at intermediate scales and – residually, at low energies – to nuclear matter.

Once the Lagrangian is constructed, we explore the perturbative expansion, gauge fixing,

and renormalization. We discuss the impediments to performing calculations connecting

disparate energy regimes, focusing in particular on the need for nonpeturbative methods

and the concept of effective field theory (EFT), wherein some degrees of freedom that are

unresolvable at some reference scale are systematically removed, leaving a series of effective

contributions characterizing the virtual presence of the full theory. This leads naturally

into operator mixing and the operator-product expansion (OPE). These concepts are finally

translated into the language of lattice field theory, giving us lattice quantum chromodynam-

ics (LQCD), a numerical framework for studying QCD nonperturbatively on a discretized

spacetime lattice. Since they are sensitive to the whole of the theory, lattice methods provide

a natural setting for the study of bound states, such as the neutron, which are perturbatively

inaccessible.

The second half of this part introduces baryon asymmetry and the Sakharov conditions

for breaking such a symmetry, focusing on the violation of the combined charge-parity ( CP )

symmetry. We discuss potential beyond-the-Standard-Model (BSM) sources of CP violation

and their signatures in the EFT, leading to the concept of the neutron electric dipole moment

(nEDM), a promising experimental probe of CP violation. This involves the insertion of

effective operators into nucleonic correlation functions at hadronic energy scales accessible

only nonperturbatively. We thus recast the problem into a lattice representation, where
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the QCD corrections to the effective sources may be determined numerically. Critically,

this involves defining a renormalization scheme that is amenable to both the lattice and

perturbation theory, while being sensitive to all operator mixing. For this we apply the

gradient flow, the details of which are deferred to Part II.

The treatment here is moderately long, but the intention is that all techniques and

formulae employed in the following parts be given a firm foundation and that this thesis

should be reasonably self-contained. There are several nonstandard conventions which are

chosen to avoid a proliferation of unnecessary numerical constants or normalizations. For

example, we choose a basis of skew-hermitian generators for the su(N) Lie algebra. The

author’s opinion is that this is more naturally derived from the definition of the algebra.

A fortunate consequence is that the imaginary unit does not appear in any calculations

involving color algebra. This does, however, alter the definitions of the group invariants,

so all results in this thesis differ commensurately from much of the literature. We also

introduce a new general method to calculate dimensionally-regularized Feynman integrals in

both Minkowski and Euclidean spaces; this is treated fully in App. .
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Chapter 1

Quantum Field Theory

The principal difference between quantum field theory and quantum mechanics is Lorentz co-

variance. Since the action is relativistically invariant, the Lagrangian formulation of classical

field theory provides a natural foundation for a relativistic theory. The specific approach we

take in constructing a QFT relies on the Feynman path integral, which expresses a quantum

field theory with the manifest symmetries of the Lagrangian perspective. More importantly,

when the strength of interaction for some phenomenon is too large, typical perturbative

approximation techniques become invalid. The only systematic nonperturbative treatment

of a quantum field theory is lattice field theory, which relies wholly on the discretization

of the path integral. When the theory is QCD, the discrete analogue is lattice quantum

chromodynamics (LQCD, Ch. 4), which is central to the following chapters.

1.1 Relativistic Field Theory

The fundamental object containing the entire dynamics of a field theory is the Lagrangian

density functional:

L = L[{φi},{φ̇i}](x), (1.1)

where φi and φ̇i, i ∈ [n] represent some n fields and their conjugate momenta. These

degrees of freedom assume the traditional role of generalized coordinates, and since they are

themselves functions of both spatial and temporal coordinates, the action is defined over the

whole of spacetime:

S[{φi},{φ̇i}] = ∫ d4x L[{φi},{φ̇i}](x). (1.2)
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For each species of dynamical field, the Lagrangian contains a Lorentz invariant free-field

contribution determined by its spin, for example

spin-0, real scalar φ Klein-Gordon Lagrangian LKG = −
1

2
(∂µφ)(∂

µφ) −
1

2
µ2φ2,

spin-1/2, spinors ψ̄, ψ Dirac Lagrangian LD = ψ̄( /∂ +m)ψ,

spin-1, vector Aµ Proca Lagrangian LP =
1

g2
Tr [

1

2
FµνF

µν +M2AµA
µ] ,

and so on, following the Bargmann-Wigner construction [44]. The interactions are then

determined by the imposition of a local gauge symmetry, following the Yang-Mills construc-

tion, which is generated by the unitary action a compact (semi)simple Lie group G at each

spacetime coordinate. In order that the theory remain invariant under the action of such a

group, the ordinary derivative must be promoted to a gauge covariant derivative,

∂ →D = ∂ +A. (1.3)

The second term is the gauge connection, which is associated with the gauge boson generated

by the symmetry group and takes values in the Lie algebra. Because derivatives are formally

defined at two infinitesimally separated points, the local transformation acts on the field

at each point separately. A tracks the change in the gauge transformation between these

points. In particular, its transformation under the gauge group exactly cancels the change

in the transformation between the two points under the derivative, ensuring local invariance

of the action. To illustrate, consider a local gauge transformation g ∈ G parametrized by the

exponential map,

g(x) = e−ω(x), ω(x) = ωa(x)ta, (1.4)
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where ta are the generators of the Lie algebra g, that acts on fermions as

ψ
g
Ð→ ψ′ = e−ωψ, ψ̄

g
Ð→ ψ̄′ = ψ̄e−ω

†
= ψ̄eω. (1.5)

Under the action of g, the kinetic term in the Dirac Lagrangian differentiates both the gauge

transformation and the fermion field, so that

LD
g
Ð→ L′D = ψ̄g

†[i( /∂g) + ig /∂ −mg]ψ = LD − iψ̄( /∂ω)ψ. (1.6)

If we consider the covariant derivative, the connection transforms as

A
g
Ð→ A′ = gAg† + g∂g†, (1.7)

since it is in the adjoint representation. Hence

iψ̄ /Aψ
g
Ð→ iψ̄′ /A

′
ψ′ = iψ̄g†g( /A − /∂ω†)g†gψ = iψ̄ /Aψ + iψ̄( /∂ω)ψ, (1.8)

which precisely compensates for the new term in Eq. 1.6.

In general, there will be a new term in D associated to each simple factor of a semisimple

gauge group, since the Lie algebra is then a direct sum of simple algebras. In this way,

each factor of the gauge group generates a gauge boson. Additionally, since the symmetry

is continuous by construction, it corresponds to a conserved charge by Noether’s theorem.

More specifically, there is a conserved charge for each generator of the Lie algebra. We will

treat this construction specifically in the case of quantum chromodynamics, Ch. 3. It should

be noted that the definition in Eq. 1.3 implicitly includes the coupling g in the gauge field
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A. The standard convention is to write D = ∂ + gA, but our choice to rescale gA → A will

prove notationally cleaner, particularly in Part II.

When inserted into the Dirac Lagrangian, the connection term in the covariant derivative

produces an interaction of the form

ψ̄ /Aψ = , (1.9)

which characterizes the radiation of an A boson by an initial fermion ψ̄ that exits in the

state ψ. This specific interaction, analogous to the canonical momentum of classical electro-

dynamics, is called minimal. Of course, there may be other gauge-invariant interactions, but

our later discussion of effective field theory (Sec. 1.8) will clarify their absence from typical

applications.

1.2 The Generating Functional

Once we have developed the action, we may encode the theory into a sum over histories, the

generating functional;

Z = ∫ Dφ e
iS[φ], (1.10)

where the integral is meant to be taken over all configurations of the fields, φ. The gen-

erating functional acts as a partition function for the field configurations, where states are

distributed according to the “Boltzmann” factor eiS . The addition of static source fields

to the Lagrangian permits the use of the Schwinger-Dyson equations to generate all Green

functions, or expectation values. Specifically, for some dynamical field φ and static source
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J , the Lagrangian is augmented by

Lsource = Jφ. (1.11)

Successive functional differentiation of the path integral with respect to the source at some

coordinates xi brings down as many powers of iφ(xi). Shutting off the sources and normaliz-

ing by the source-free generating functional Z0 = Z[J = 0] to remove an infinite background

of vacuum fluctuations, we are able to compute all physical observables. Given some operator

O(x1, . . . , xN ) = Γφ(x1)⋯φ(xN ), (1.12)

where the differential, spacetime, and gauge structures are generically encoded in the quan-

tity Γ, we have

⟨O⟩ =
1

Z0
∫ Dφ Oe

iS[φ] =
N

∏
i=1

−iδ

δJ(xi)
⋅
1

Z0
Z[J]∣

J=0

. (1.13)

This formula elucidates the probabilistic nature of the path integral; it gives the expectation

value for a function O of random variable φ distributed by eiS . With the knowledge of all

correlation functions, the theory is effectively solved, although this is generally easier stated

than practiced. Eq. 1.13 indeed generates all interactions, but we must carefully unpack it

before defining both its perturbative and nonperturbative treatments.

1.3 Grassmann Numbers

First we discuss the implementation of fermions. In order to uphold Fermi-Dirac statistics,

any two spinor fields must anticommute. This is accomplished by treating fermions as

Grassmann numbers, which are most easily characterized algebraically. Indeed, there needn’t
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be a a rigorous justification for the entire calculus [45], since ultimately we will only be

interested in integration over entire factors of the Grassmann algebra, defined as follows.

Let {θi} be a basis for an n-dimensional vector space V . The Grassmann algebra Λ(V ) is a

2n-dimensional unital algebra defined by equipping V with the product

θiθj + θjθi = {θi, θj} = 0, ∀i, j ∈ [n]. (1.14)

We may construct functions of the Grassmann numbers θi as elements of the ring of formal

power series in the variables θi over the complex numbers, C[[θ1, . . . , θn]]. A direct con-

sequence of the multiplicative law is that every generator is a zero divisor, in particular a

square root of zero:

θ2i =
1

2
{θi, θi} = 0. (1.15)

It follows that Taylor series truncate quickly; all functions are at most affine with respect to

each variable:

f(θi) = b0 + b1θi, (1.16)

for some complex bi. We can thus define the Berezin integral of a function of a single

Grassmann number [46]:

∫ dθf(θ) = a∫ dθ + b∫ dθ θ, (1.17)

where we have assumed linearity over the complex numbers. With the additional requirement

that, since we are integrating over all θ, the integral must be translationally invariant, we

have

∫ dθ f(θ) = a∫ dθ + b∫ dθ (θ + η) = (a − bη)∫ dθ + b∫ dθ θ, (1.18)
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for another Grassmann number η. The first integral must vanish, since

a∫ dθ = (a − bη)∫ dθ, (1.19)

and a, b are generic. The second integral above is simply an arbitrary normalization factor,

with the conventional choice of

∫ dθ θ = 1. (1.20)

Multiple integration is easily found by extension, with the convention that for n variables θi,

∫ dθn⋯∫ dθ1 θ1⋯θn = 1. (1.21)

We are now able to calculate multivariate Gaussian integrals,

∫ dθ̄1dθ1⋯∫ dθ̄ndθn e
−θ̄iAijθj ,

for some 2n generators θi, θ̄i and an n-dimensional Hermitian matrix A. Since the only terms

that survive the Taylor expansion are linear in each variable, and each of these is totally

antisymmetric, a unitary rotation U of the variables contributes an overall factor of detU .

Thus, by diagonalizing A we find the Matthews-Salam formula [47];

∫ dθ̄1dθ1⋯∫ dθ̄ndθn e
−θ̄iAijθj = detA, (1.22)

contrasting the standard Gaussian integral, which goes as 1/
√
detA. We may now express

the Dirac field as a linear combination of Grassmann numbers ψi with smooth coefficients
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ui(x) forming a basis for Dirac spinors:

ψ(x) = ui(x)ψi, (1.23)

where the Einstein summation convention is implied; we will adopt this notation for the rest

of this work, unless otherwise specified.

1.4 Perturbative Expansion of the Generating Functional

The full generating functional is rarely exactly soluble. The free field theory, on the other

hand, consists of strictly quadratic actions and can be transformed into a product of mani-

festly integrable Gaussians as we will see in Ch. 2. Denoting by g a generic coupling generated

by a gauge interaction, the Lagrangian of any theory may be decomposed into free (0) and

interacting (I) pieces (and perhaps a source term (S)),

L = L0 + gLI (+LS) , (1.24)

where exclusively the interaction Lagrangian may contain higher powers in the coupling. For

some fields collectively referred to as φ, we see immediately that

⟨O⟩ = Z−1[0]∫ Dφ e
i ∫ LO = Z−1[0]∫ Dφ e

i ∫ L0eig ∫ LIO =
Z0[0]

Z[0]
⟨eig ∫ LIO⟩0, (1.25)

where we have absorbed the source term into L0 with a suitable shift of variables and defined

the free partition function:

⟨O⟩0 = Z
−1
0 [0]∫ Dφ e

i ∫ L0O, (1.26)
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with the obvious normalization:

Z0[0] = ∫ Dφ e
i ∫ L0 , (1.27)

which gives us

Z[0] = ∫ Dφ e
i ∫ L = Z0[0] ⟨e

ig ∫ LI ⟩ . (1.28)

Thus,

⟨O⟩ =
⟨eig ∫ LIO⟩0

⟨eig ∫ LI ⟩0
, (1.29)

is now a partition function over the distribution defined by L0.

There is a subtlety here. The Boltzmann factor eiS is purely oscillatory, so the path

integral does not converge as written. We may for now regulate this integral by adding an

infinitesimal imaginary shift to the energy of each field φ̃(p), p0 → p0(1− iε), or equivalently

by adding to the Lagrangian a term

Lε = iεφ
2 (1.30)

for each field (or pair of adjoint fields) φ. Expectation values are then defined in the limit

as ε→ 0:

⟨O⟩ = lim
ε→0

Z−1[0]∫ Dφ e
i ∫ L+i ∫ LεO. (1.31)

We will often ignore this entirely, keeping the factor of iε implicit. Indeed, when we pass

to Euclidean space in Sec. 1.11 the limit will commute with the integral, and we may then

remove it explicitly.
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The form 1.29 begs a formal series expansion in g:

⟨eig ∫ LIO⟩0 =
∞

∑
i=0

in

n!
⋅ gn ⟨(∫ LI)

n
O⟩

0
. (1.32)

Since the distribution here is a (regulated) multivariate Gaussian, we are free to invoke

Isserlis’ theorem [48]:

⟨φ1⋯φ2n⟩0 =
1

2nn!
∑

π∈S2n

sπ⟨φπ(1)φπ(2)⟩0⋯⟨φπ(2n−1)φπ(2n)⟩0, (1.33)

where by S2n we denote the symmetric group on 2n letters, and sπ = ±1 represents a

symmetrization factor for potentially anticommuting fields. Each of these two-point pairings

is called a Wick contraction after Gian Carlo Wick who introduced a similar construction1

to physics within the canonical (operator) formalism. Note that we chose an even number

of fields so that the correlator does not trivially vanish. The denominator of Eq. 1.25 is

clearly the vacuum expectation value, which contributes only vacuum fluctuations without

external states. Typically then, we will simply ignore this normalization and define the

generating functional to produce only amplitudes with external fields. At each order in

Eq. 1.32, the integrand is a sum over all allowed contractions of the fields. Each set of

contractions is decomposed into a number of free propagators and some vertex factors coming

from LI with an integral for each vertex that preserves the locality of the interaction. The

propagators for each species of particle are simply the Green functions for its equations of

motion. Vertex factors are determined by taking the n-point functions at leading order and
1In physics, Isserlis’ product-moment theorem is generally called Wick’s probability theorem. The author

of this thesis holds the opinion that this is a misnomer, since Wick’s formulation relates time- and normal-
ordered products of operator-valued fields, making no explicit reference to any Gaussian distribution. Of
course, while the two approaches are equivalent (for quadratic free Lagrangians), the attribution to Isserlis
is more appropriate in the functional formalism due to the probabilistic nature of the path integral.
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removing the external propagators. Together, the sets of values assigned to the propagators

and fundamental vertices form the Feynman rules for the theory, which allow amplitudes

to be built pictorially and calculated expediently. It is typically simplest to define them in

momentum space, where the mathematical expressions are fairly uncomplicated. Roughly,

propagators of momentum p are represented by oriented lines,

⟨φ(x1)φ(x2)⟩
F
Ð→ (2π)4δ(4)(p1 + p2)⟨φ̃(p2)φ̃(p1)⟩ → , (1.34)

while vertices are given by an intersection of a number rays equal to the number of interacting

fields:

⟨φ(x1)⋯φ(xn)⟩
F
Ð→ (2π)4δ(4)(p1 + ⋅ ⋅ ⋅ + pn)⟨φ̃(p1)⋯φ̃(pn)⟩ → . (1.35)

With some more rules ensuring the proper weight of each contribution, each term in Eq.1.33

may be written as a Feynman diagram, which is labeled according to the rules above. Feyn-

man diagrams will be the primary tool for calculations in this thesis. In Chs. 2 and 3, we

calculate the Feynman rules for QCD explicitly and detail methods of calculating expectation

values through the use of Feynman diagrams.

In a perturbative series, closed loops appear when there are fewer external fields than

interacting fields at any order in the coupling. Each increasing order has an extra factor of

the interaction Lagrangian, which increases the number of loops. We then speak of these

interchangeably; the first nonvanishing order is defined to be the zeroth order or the “tree

level,” while subsequent orders n are called n-loop corrections. Explicitly, if we describe
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some function f as a series in the coupling g beginning at order gm, then we have

f = gm
∞

∑
n=0

f(n)gn. (1.36)

In this case f(0) is the tree-level contribution, and the other f(n) are n-loop corrections.

This should clarify our later discussion of vacuum diagrams, which have no external states

and therefore contain loops in their tree-level contributions.

1.5 Gauge Fixing

Suppose we want to calculate the propagation amplitude for a free vector boson A between

two points x and y, that is, the Green function for the Yang-Mills equations of motion with

zero coupling:

⟨Aν(y)Aµ(x)⟩ = ∫ DA Aν(y)Aµ(x)e
iS[A]. (1.37)

Since we are working in the free theory, where all interactions are quadratic, this integral

should be exactly solvable by Gaussian integration (v.i., Sec. 2.1.1). Transforming to mo-

mentum space with four-momentum q, the Lagrangian goes as2

L̃ ∼ ∫
q
Ãν(q2gµν − qµqν)Ã

µ, (1.39)

2We use the shorthand notations

∫
x
∶= ∫ ddx and ∫

p
∶= ∫

ddp

(2π)d
(1.38)

for position and momentum integrals respectively, where the range of integration is the entire real line
for each component of x or p in d-dimensions (Rd). The context will always make clear whether we are
integrating over position or momentum, and therefore when we should include the (2π)d normalization in
the integral measure.
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where the expression in parentheses has a null eigenvector qµ, corresponding to the unphysical

longitudinal polarization of A, making it singular. In order to extract a Green function, we

must somehow remove this unphysical degree of freedom and fix the gauge. Unfortunately,

removing removing the unphysical degrees of freedom destroys the gauge invariance and the

unitarity of the path integral.

Faddeev and Popov solved this problem for generally nonabelian gauge theories by re-

moving redundant gauge configurations in the functional integral [29]. Notice that the gauge

invariance of the action partitions the symmetry group G into equivalence classes consisting

of the (infinite) orbit of each configuration A. Each orbit contributes an infinite volume

factor to the functional integral which represents the infinite number of physically indistinct

configurations within it. Consequently, the integral measure overcounts each gauge orbit and

is not normalizable by any finite volume. By restricting to a surface which intersects each

gauge orbit once, we may restrict the domain of integration to the set of representatives of

each orbit; in other words, we fix the gauge by imposing a constraint on the action in the

form of a functional F such that

F [A] = 0. (1.40)

Guaranteeing that the induced surface intersects each gauge orbit once is, however, impossi-

ble for the entire space of configurations, since a global section (global basis of coordinates)

cannot be defined for nonabelian theories in general. This characterizes the Gribov am-

biguity in choosing a representative for each orbit with a global choice of gauge [49]. We

can circumvent this problem in perturbation theory, since the Dyson series is defined in the

neighborhood of a specific classical vacuum and is thus strictly local. We will encounter the

nonperturbative breakdown of this loophole in Ch. 4. Given F [A] unambiguously, we may
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impose the gauge condition by integrating over the space of gauge transformations g ∈ G of

A:

∫ Dg δ(F [gAg
−1])det δgF = 1, (1.41)

which is inserted into the path integral:

∫ DA eiS = ∫ D[A,g] e
iSδ(F )det δgF, (1.42)

where gauge invariance allows us to ignore the gauge transformation within the delta func-

tion. The measure D[A,g] represents separate integrations over the equivalence classes of A

and the orbits generated by g. The Jacobian determinant may be represented as a Gaussian

path integral over some Grassmann-valued scalar fields c = cata and c̄ = c̄ata in the adjoint

representation,

det δgF = ∫ D[c, c̄] exp{T
−1
F ∫ Tr c̄(δgF )c} . (1.43)

This can be treated as a phase if we rescale the exponent by a factor of i, producing a new

contribution to the action:

∫ DA eiS = ∫ D[A,g, c, c̄] e
i(S+SFP )δ(F ), (1.44)

where

SFP = ∫ LFP , LFP = T
−1
F Tr c̄(δgF )c (1.45)

is the Faddeev-Popov action. The rescaling by i generates an immaterial factor of idimA;

this may be absorbed into the functional measure, though it will in any case be cancelled

by the normalization factor Z0. The Faddeev-Popov action defines two virtual, anticom-
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muting scalar fields c, c̄, called ghosts and antighosts, which exactly cancel the unphysical

polarizations. The typical generalization of the Lorenz gauge condition is expressed by the

gauge-fixing function

F [A] = ∂µA
µ − ω, (1.46)

for a smooth function ω. In this case, the Jacobian assumes the form

δgF = ∂µD
µ, (1.47)

where the covariant derivative acts on the adjoint representation of G:

Dc = ∂c + [A, c]. (1.48)

The arbitrary function ω may be removed from the path integral by integrating in ω the

entire generating functional with a Gaussian weight, which scales the entire integral by some

volume 1/N :

∫ DA eiS = N ∫ Dω exp{
i

g2ξ
∫ Trω2}∫ D[A,g, c, c̄] e

i(S+SFP )δ(∂µA
µ − ω)

= ∫ D[A,g, c, c̄] e
i(S+SFP ) exp{

i

g2ξ
∫ Tr(∂µA

µ)
2
}.

(1.49)

The resulting exponential contains another action defining the gauge-fixing Lagrangian,

Lgf =
1

g2ξ
Tr(∂µA

µ)
2
. (1.50)

Now, the gauge is determined by the choice of some positive real scalar ξ. Gauges with this

choice of the function F are known as renormalizable-ξ (Rξ) gauges. We can see that as ξ

29



tends to zero, finiteness of the action requires that ∂µAµ = 0. This choice, called the Landau

gauge condition, is equivalent to the classical Lorenz condition. The most common gauge

— and the choice for all major results in this thesis — is the Feynman gauge, ξ = 1. The

gauge-fixing Lagrangian contributes to the quadratic term in the gauge fields, so that now

L̃ ∼ ∫ Ãν [q2gµν − (1 −
1

ξ
) qµqν] Ã

µ, (1.51)

which has an invertible kernel:

⟨Ãν(−q)Ãµ(q)⟩ ∼
1

q2
[gµν − (1 − ξ)

qµqν

q2
] . (1.52)

We will generally work in the Feynman gauge, ξ = 1, since the gauge field propagator is

particularly simple with this choice. Somehow, removing the redundant degrees of freedom

also decouples the unphysical polarizations.

This may be explained through the notion of BRST (after Becchi, Rouet, Stora, and

Tyutin) symmetry, which remains unbroken even after gauge fixing [50]. Notice that the

gauge-fixing condition forces ∂2ω = 0, which is precisely the form of the equations of motion

for free ghosts.We might then imagine a gauge-like transformation generated by ghosts with

some other constant Grassmann variable θ ensuring overall commutativity; this is the BRST

transformation:

φ→ φ + θsφ, (1.53)

where s is called the Slavnov differential. To avoid using the equations of motion, we rear-
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range the Lagrangian in terms of an auxiliary Nakanishi-Lautrup field B = Bata [51, 52],

Lgf =
1

g2TF
Tr{B ∂µA

µ −
ξ

4TF
B2} , (1.54)

which may be integrated out of the functional integral since it does not propagate:

ξ

2TF
B − ∂µA

µ = 0⇒ Lgf =
1

g2ξ
Tr(∂µA

µ)
2
. (1.55)

The Slavnov operator is defined so that the action on fermion and gauge fields goes as a

gauge transformation (Eq. 1.5 and Eq. 1.7) generated by c with θsφ = δφ,

δψ = −θcψ, δψ̄ = −θψ̄c, δAµ = θDµc, (1.56)

while ghosts transforms in such a way to maintain invariance of Dµca,

δc = −θc2 = −
1

2
θfabctacbcc. (1.57)

The antighosts cancel the variation of the gauge-fixing term,

δc̄ = θB, (1.58)

and the auxiliary field is unchanged,

δB = 0. (1.59)

With the help of the Jacobi identity, the full gauge-fixed gauge field Lagrangian is found to
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be invariant under the action of s. Moreover, the BRST transformation is nilpotent,

s2φ = 0, (1.60)

for any field φ, so it determines a cohomology on the (pseudo-inner product) space of states.

Since s generates a continuous symmetry, there is a conserved charge called the ghost number.

Schematically, for the space Ωn of states of ghost number n, the nth BRST transformation

maps

s ∶ Ωn → Ωn+1, ∣a,n⟩ ↦ ∣b, n + 1⟩ (1.61)

Since it is nilpotent, we have Bn ⊂ Zn, where

Zn = Ker{s ∶ Ωn → Ωn+1} , Bn = Im{s ∶ Ωn−1 → Ωn} , (1.62)

and the space of states annihilated by s (closed states) is divided into equivalence classes

determined by the nth BRST cohomology group,

Hn
BRST =

Zn

Bn
, (1.63)

the space of BRST-invariant states (BRST-closed) which are not themselves BRST varia-

tions (BRST-exact). In the zero coupling limit, the variations above show that s converts

antighosts to auxiliary fields (equivalent to gauge bosons polarized longitudinally, opposite

the direction of propagation) and converts gauge bosons to ghosts, so that the longitudinal

bosons and ghosts are exact states. There is an analogous anti-BRST cohomology generated

by s† that determines an equivalent condition on the antighost states. The space of states
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then has the Hodge decomposition

Ω =⊕
n
Ωn = H∆ ⊕ Im s⊕ Im s† (1.64)

where we denote the space of harmonic states by H∆ = {φ ∈ Ω∣∆φ = 0} with ∆ = s†s + ss†.

By Im s we represent the direct sum of all Bn and analogously for Im s†.

Kugo and Ojima showed that all physical states must reside in H0
BRST [53], which is

isomorphic to the space of harmonic forms by Hodge’s theorem. Indeed, these must be

closed states of positive-semidefinite norm. The states in the images of s and s† have zero

norm due to nilpotency, so that all nonzero-norm states must be harmonic. To ensure that

the images of s and s† exhaust all zero-norm states, it is sufficient to demand that the

inner product is nondegenerate on the space of physical states. Then any closed state φ is

uniquely determined by requiring that it is also co-closed, s†φ = 0. That is, since φ = s†ψ for

some state ψ, and ss†ψ = 0, the nondegeneracy of the inner product requires that φ itself

must vanish, so that there are no nontrivial co-closed (zero-norm) states in Zn. In other

words, the anti-BRST operator s† fixes the gauge in the space of states in the cohomology

of s so long as the norm is nondegenerate. It follows further that all harmonic states are

either exclusively positive- or negative-definite. Assuming to the contrary that there are two

harmonic states φ and ψ of respectively positive and negative norm, we may construct a

homotopy χt = tφ + (1 − t)ψ so that for some t0, the state χt0 has zero norm, and so must

be an element of Im s. Then the norm is definite on H∆, and we may simply impose the

positivity of the norm with a suitable field redefinition. The harmonic space is then naturally

associated with the unique physical states. We see that the addition of any exact or co-exact

state to an element of the cohomology group has a vanishing contribution to physical matrix

33



elements, which reflects a residual symmetry of these states under gauge transformations.

Indeed, if we rescale the ghosts as gc → c, the new terms in the gauge-fixed action may be

rewritten as

SFV + Sgf =
1

g2TF
sTr∫ c̄(∂µA

µ −
ξ

4TF
B) , (1.65)

confirming that the entire Faddeev-Popov construction is BRST-exact, having no bearing

on physical predictions.

The BRST construction demonstrates the relation between the redundant degrees of

freedom in the path integral and the unphysical polarizations. All physically equivalent gauge

configurations are related up to a (co-)exact form, which is associated with the unphysical

states of the theory. Since the (co-)exact forms have norm zero, they vanish in inner products

and do not affect correlation functions. The nondegeneracy of the inner product requires

negative-norm states in the total Hilbert space, corresponding to the unphysical polarizations

of the gauge fields. These are precisely compensated by the ghost fields, which carry the

opposite sign due to their fermionic nature. Intuitively, since the Faddeev-Popov ghosts are

Grassmann-valued, their contribution to the path integral in d-dimensions goes as det(∂2)d.

On the other hand, free gauge bosons are complex fields following the same wave equation,

so they contribute det(∂2)
−d/2. In four dimensions, the ghosts cancel exactly two degrees of

freedom, the two longitudinal polarizations. We will see this cancellation explicitly when we

calculate the first radiative correction to the gluon propagator in Sec. 3.2.1.

1.6 Renormalization

In a free field theory, once the two-point correlation function is known, the theory is solved.

One may determine the propagation amplitude for a single particle over any spacetime
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interval, which corresponds to an inner product in the Fock space of free eigenstates. As in-

teractions are introduced, however, there are excitations for any number of particles, and the

propagator loses its intuitive interpretation. The eigenspace of the interacting Hamiltonian

is, per Haag’s theorem [54], unitarily inequivalent to the free case, so that no isomorphism

may be found between the free Fock space and interacting Hilbert spaces; in fact, the inter-

acting space need not even be a Fock space. This section introduces renormalization, which

circumvents the assumptions of Haag’s theorem, and allows us to loosely construct a space

of interacting multiparticle states. We may analyze the spectrum of the propagator in the

interacting theory by inserting the completeness relation on the new Hilbert space. Since mo-

mentum is conserved, Hamiltonian eigenstates are simultaneously momentum eigenstates,

and we may express the sum over states as a sum over zero-momentum eigenstates ∣λ,0⟩

integrated over all boosts ∣λ,p⟩ of the resting states:

1 = ∑
λ
∫

d3p

(2π)3
1

2ω(λ,p)
∣λ,p⟩⟨λ,p∣, (1.66)

where ω(λ,p) =
√

p2 +m2
λ

is the energy of the state ∣λ,p⟩ with physical mass mλ. For

simplicity, we specialize to φ4 theory with the Lagrangian3

L = −
1

2
(∂µφ0)(∂

µφ0) −
1

2
m2

0φ
2
0 − g0φ

4
0. (1.67)

3The subscript zeroes are written here for “bare” quantities in anticipation of later results.
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This process will be treated with more care in the following chapter. For now, we simply

quote the relevant results. The free propagator is given by4

S̃
(0)
0 (p,m0) =

−i

p2 +m2
0 − iε

. (1.68)

We now insert Eq. 1.66 into the time-ordered (causal) two-point function:

⟨φ(y)φ(x)⟩0 = ⟨0∣T φ0(y)φ0(x)∣0⟩

= ∑
λ
∫

d3p

(2π)3
θ(x0 − y0)e

ip(x−y) + θ(y0 − x0)e
ip(y−x)

2ω(λ,p)
∣⟨0∣φ0(0)∣λ,0⟩∣

2,
(1.69)

giving us the exact propagator for mass mλ,

⟨0∣T φ0(y)φ0(x)∣0⟩ = ∑
λ

S(x − y,mλ)∣⟨0∣φ0(0)∣λ,0⟩∣
2 = ∫

∞

0

dM

2π
ρ(M)S(x − y,M), (1.70)

where
S(x − y,M) = ∫

d3p

(2π)3
θ(x0 − y0)e

ip(x−y) + θ(y0 − x0)e
ip(y−x)

2ω(λ,p)

= ∫
d4p

(2π)4
−i

p2 +M2 − iε
eipx

(1.71)

is the free propagator for a state of mass M . This is the Källén-Lehmann spectral represen-

tation [55, 56], with the spectral density

ρ(M) = ∑
λ

2πδ(M −mλ)∣⟨0∣φ0(0)∣λ,0⟩∣
2 = 2πδ(M −mφ) ⋅Zφ +⋯, (1.72)

4We have included the iε term discussed in Sec. 1.4 in order that integrals may be solved by Wick rotation.
(See Sec. 1.11.)
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where Zφ = ∣⟨0∣φ0(0)∣1,0⟩∣2 (λ = 1 is a shorthand for a one-particle state), mφ is the mass of

the single-particle state, and the truncated terms represent bound and multiparticle states5.

Passing to momentum space, we may finally write

⟨0∣T φ̃0(−p)φ̃0(p)∣0⟩ =
−iZφ

p2 +m2
φ
− iε
+⋯. (1.73)

Zφ is the vacuum expectation value of a single particle state including all self-interactions.

We may absorb it into the normalization of the fields by defining φ0 = Z
1/2
φ

φ, so that

⟨0∣T φ̃(−p)φ̃(p)∣0⟩ =
−i

p2 +m2
φ
− iε
+⋯, (1.74)

Here, the renormalized field φ now accounts for all of the quantum fluctuations induced by

interactions. The mass mφ in Eq. 1.74 is the physical mass of a single-particle state in the

interacting theory, since it is the eigenvalue of the squared momentum operator. This is to be

contrasted with the parameter m0 in the Lagrangian, which corresponds to the mass of the

free theory. Evidently, in the presence of interactions, the pole of the propagator is shifted

from −m2
0 to −m2

φ
. This is the essence of renormalization; the inclusion of interactions in a

field theory perturbs physical, measurable quantities away from the bare parameters of the

Lagrangian.

We may similarly define the renormalized mass and coupling through Zmm2 = Zφm
2
0 and

5Bound states may contribute poles at masses larger than mφ, while multiparticle states, which may have
a continuum of masses greater than 2mφ, form a branch cut from 2mφ to positive infinity. We have also
quietly discarded the constant – typically vanishing – contribution from the ground state. In φ4 theory, this
term vanishes by Lorentz invariance

37



Zgg = Z2
φ
g0, so that the Lagrangian may be cleanly rewritten as

L = −
1

2
Zφ(∂µφ)(∂

µφ) −
1

2
Zmm

2φ2 −Zggφ
4. (1.75)

Since the free theory undergoes no renormalization due to quantum fluctuations, Z = 1 for

all parameters in the bare Lagrangian (1.67). Then for each renormalization constant Zi we

have the decomposition

Zi = 1 + δi, (1.76)

where δi = O(g0) vanishes as the coupling goes to zero. This allows us to write the renor-

malized Lagrangian:

L = −
1

2
(∂µφ)(∂

µφ) −
1

2
m2φ2 − gφ4 −

1

2
δφ(∂µφ)(∂

µφ) −
1

2
δmm

2φ2 − δggφ
4. (1.77)

The last three terms above are called counterterms. They produce vertices analogous to

those of the bare Lagrangian, and they will prove useful in the next section.

At this point, there is a proliferation of unknowns in the Lagrangian. We must relate

the bare, renormalized, and physical parameters. In general, in order to calculate the renor-

malized parameters, {ai}, we need as many equations, called renormalization conditions,

relating physical observables to calculable6 functions {fi} of the bare parameters {a0i }:

ai = fi(a
0
1, a

0
2, ...). (1.78)

The renormalization conditions reflect the shift in physical parameters due to the intro-
6These will often be implicit functions of the renormalized parameter; see below, Eqs 1.92 and 1.94.
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duction of interactions to the Lagrangian. Since new interactions change the equations of

motion, the solutions change correspondingly. Critically, renormalization depends on the

scale at which we define the renormalization conditions. As we will discuss in the following

section, loop integrals in quantum field theory typically require a regularization scheme to

be made well-defined. This introduces a momentum scale related to the size of the regula-

tor which must be fixed by the choice of renormalization conditions. Since the coupling in

particular depends on this renormalization scale, the speed of (asypmtotic) convergence of

the perturbation series is largely determined by the choice of scale. The best choice is usu-

ally that which minimizes the standard logarithmic corrections encountered in perturbation

theory.

The spectral representation gives us a natural choice of conditions for the mass and field-

strength renormalizations. In the example above, since the physical mass mφ of the scalar

field φ is defined as the location of the kinematical pole of the exact propagator, we can

unambiguously define the renormalized mass m to be the physical mass, a convention known

as on-shell renormalization. This fixes also the field-strength renormalization, which may

be defined as i times the residue at the pole mass. Further renormalization conditions are

required for any other dynamical fields and all couplings. In the case of an interaction of n

fields with coupling gn, one may fix the renormalized couplings by imposing

⟨φ(x1)...φ(xn)⟩scale = ⟨φ(x1)...φ(xn)⟩
(0), (1.79)

where the subscript “scale” represents some choice fixing the renormalization scale, often

chosen in terms of the mass and n external momenta. This forces any loop corrections to

cancel δgn at each order, thereby defining Zgn . If we are able to choose a finite number of
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renormalization conditions which fix each normalization to all orders, the theory is said to

be renormalizable.

Let us briefly return to the idea of BRST symmetry. Since it is unbroken after gauge fix-

ing, we may expect that all loop corrections in perturbations theory remain BRST-invariant

and that there are no symmetry-breaking counterterms. Then, given the most general BRST-

invariant Lagrangian for some gauge theory, all possible counterterms will be encoded in the

definitions of the renormalized fields, masses, and couplings. In the case that this Lagrangian

contains only a finite number of terms, we have also a finite number of counterterms, and

the theory is renormalizable.

1.7 Regularization

In the perturbative expansion, as the interaction Lagrangian is successively inserted into a

correlation function, the increasing number of virtual contractions leads to closed loops of

contracted vertices. In the momentum space representation, the spacetime integral associ-

ated with each insertion generates a delta distribution over the sum of all ingoing momenta,

corresponding to a conservation of momentum at that vertex. In a loop with some n vertices,

the momenta of any n − 1 internal propagators fix the value of the nth momentum, so that

there is an overall integral over the total loop momenta. For example, in φ4 theory the first

loop correction appears at O(g0):

g0S̃
(1)
0 (p) = = ig0

−i

p2 +m2
0 − iε

[−
1

2 ∫
d4k

(2π)4
−i

k2 +m2
0 − iε

]
−i

p2 +m2
0 − iε

,

(1.80)
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where S̃(1)0 is the next-to-leading order (NLO) contribution to the perturbation expansion

of the bare propagator:

S̃0 =
∞

∑
n=0

gn0 S̃
(n)
0 . (1.81)

The integral above diverges quadratically as the loop momenta becomes infinite, as may

be seen by transforming to Euclidean (v.i., Sec. 1.11) spherical coordinates so that the

magnitude of the loop momentum is explicit:

∫
d4k

(2π)4
−i

k2 +m2
0 − iε

= lim
Λ→∞

1

8π2
∫

Λ

0
dk

k3

k2 +m2
0

= lim
Λ→∞

m2
0

(4π)2
[
Λ2

m2
0

− log(1 +
Λ2

m2
0

)] .

(1.82)

This form of the integral, though formally infinite, demonstrates the effect of a hard cutoff

on the loop momentum. If we drop the limit above, we may interpret our theory to be

only well-defined in the infrared region 0 ≤ k2 ≤ Λ2 up to some threshold scale Λ. This is

an elementary example of regularization, where a divergent integral is recast as the limit of

some divergent sequence of finite integrals. Bare quantities are thus defined with a particular

regularization which is reflected in the explicit form of the Z-factors. On the other hand,

the renormalization conditions relate the renormalized parameters to measurable quantities,

which may not depend on the choice of regulator. Renormalized quantities are thus defined

in the limit which removes the regulator, and the renormalization constants are defined such

that the limit exists.

The cutoff regularization above breaks gauge symmetry, so it is of limited practical use.

Instead, divergent Feynman integrals are typically treated in dimensional regularization,

wherein the spacetime dimension is analytically continued away from four dimensions to

a generically complex value d. In order to calculate integrals in d dimensions, we must
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transform to a coordinate system where some number of dimensions may be integrated

directly by symmetry. The easiest and most common practice is to find some parametrization

such that the integrand depends solely on the magnitude of the loop momentum. In this

case, the integrand is made spherically-symmetric, and the (d − 1)-dimensional solid angle

integral may be read off, leaving only the radial integral:

∫
ddk

(2π)d
f(k2) =

1

(2π)d
∫ dΩd−1∫

∞

0
dk kd−1f(k2) = 2

(4π)2−d/2

Γ(d/2) ∫
∞

0
dk kd−1f(k2).

(1.83)

Clearly, now the degree of divergence of the integrand is dependent on the dimension, which

is customarily written as d = 4 − 2ε, where 2ε is the radius of some neighborhood of the

physical value of d = 4. After the momentum integral is calculated, the result is expanded

in a Laurent series about ε = 0. Terms which go as inverse powers of ε represent the same

divergences as in cutoff regularization. In the example above, the dimensionally-regularized

integral is

−
1

2
ig0∫

ddk

(2π)d
−i

k2 +m2
0 − iε

=
1

2
ig0

m2
0

(4π)2
[
1

ε
+ log(

4π

m2
0

) − γE + 1 +O(ε)] , (1.84)

where γE = 0.57721... is the Euler-Mascheroni constant. Since the integration measure is

now d dimensional, we account for the deviation by changing the canonical dimension of the

bare coupling to [g0] = 4 − d through definition of the renormalized coupling:

g0 = µ
2εZgg, (1.85)

where µ is some momentum scale. After renormalization, this compensates for the awkward

dimensionful logarithm in Eq. 1.84, since the µ2ε = 1 + ε logµ2 + O(ε2), and each logarithm

42



is paired with a 1/ε pole, giving an overall contribution of log (4πµ2/m2
0). One drawback of

dimensional regularization is that the spacetime algebra generated must too be generalized

to d-dimensions, which is typically a nontrivial procedure, especially in the case of parity-

violating interactions.

Regardless of the chosen regulator, we may now write the NLO propagator:

S̃0(p) = S̃
(0)
0 (p) + g0S̃

(1)
0 (p) + O(g

2
0)

=
−i

p2 +m2
0 − iε

+ g0
−i

p2 +m2
0 − iε

iΣ(1)
−i

p2 +m2
0 − iε

+O(g20),
(1.86)

where Σ(1) represents an appropriately regularized version of the bracketed expression in

Eq. 1.80. Continuing to higher orders, this sum easily seen to be a geometric series, where

iΣ(n) represents the one-particle-irreducible (1PI) correlation function of order n; viz., the

sum of all Feynman diagrams at O(gn0 ) whose graphs contain no bridges. Chaining these

together by tree-level bridges gives us the series

S̃0(p) =
−i

p2 +m2
0 − iε

∞

∑
n=0
(iΣ

−i

p2 +m2
0 − iε

)

n

=
−i

p2 +m2
0 −Σ − iε

=
−i

p2 +m2
0 − g0Σ

(1) − iε +O(g20)
.

(1.87)

In both regularization schemes above, Σ(1) ∝m2
0, so that it can be absorbed into some shift

in the mass given by Σ = −m2
0Σm +O(g

2
0):

S̃0(p) =
−i

p2 +m2
0 (1 +Σ

(1)
m ) − iε +O(g

2
0)

. (1.88)
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In dimensional regularization, we find

Σm = −
1

2

g0
(4π)2

[
1

ε
+ log(

4π

m2
0

) − γE + 1 +O(ε)] + O(g0). (1.89)

This suggests that the mass m0 in the Lagrangian and the mass satisfying the Klein-Gordon

equation of motion differ in the interacting theory. The infinite shift from m0 in the physical

mass represents the energy of the particle interacting with its own field, the self-energy of

φ0, which receives contributions from infinitely many loop corrections. Since the measured

value is obviously finite, the “bare” mass m0 must compensate for the infinite shift. We

reinterpret the bare mass as the (potentially infinite) rest mass of a single-particle excitation

of φ0, dressed with all virtual self-energy interactions.

At the next order in the coupling, there are momentum-dependent terms that diverge as

the regulator is removed, which we include by writing Σ = −m2
0Σm−p

2Σp. Resumming these

contributions and replacing the bare parameters with their renormalized counterparts, the

exact renormalized two-point function may be written as

S̃(p) =
−i

p2Zφ(1 +Σp) +m
2Zm(1 +Σm) − iε

=
−i

p2 +m2
φ
− iε

, (1.90)

where the second equivalence enforces the Källén-Lehmann representation. We immediately

see that both Zφ(1 + Σp) and Zm(1 + Σm) must be finite as we remove the regulator and

that the pole mass is given by

m2
φ = limε→0

m2Zm
Zψ

1 +Σm
1 +Σp

. (1.91)

In the on-shell scheme, the condition m =mφ fixes both the mass and field renormalization
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constants. In terms of the bare propagator, this means that we encounter a pole at p2 = −m2,

which translates to

Σ∣
p2=−m2 = 0. (1.92)

Further, the residue must be −iZφ. This means that

−iZφ = lim
p2→−m2

(p2 +m2)
−iZφ

p2 +m2 −Σ − iε
= −iZφ ⋅ lim

p2→−m2
(1 −

dΣ

dp2
)

−1

, (1.93)

so that the field renormalization is fixed by

dΣ

dp2
∣
p2=−m2

= 0. (1.94)

We may then simply read off Z−1m = 1 +Σm and Z−1
φ
= 1 +Σp.

The physical and renormalized masses, however, do not coincide in general, and the

renormalization condition may not be so easily expressed. An important example of this

type is the minimal subtraction (MS) scheme in dimensional regularization. Since we require

only that renormalized correlation functions remain finite as the regulator is removed, we

are free to choose how much of the finite part of any bare quantity is left in the renormalized

correlator and how much enters the renormalization constants. In dimensional regularization,

each loop can contribute a pole of the form 1/ε. At some loop-order n, there are potentially

as many overlapping divergences which occur when all vertices coincide at some spacetime

point, contributing a factor of 1/εn. Any subset of these vertices may also overlap, so that

at order n, each renormalization constant is of the form

Z(n) =
n

∑
k=0

an,k

εk
. (1.95)

45



For k > 0, the coefficients an,k are fixed, but we are free to fix all an,0 with the renormalization

conditions. The simplest choice is of course that an,0 = 0 for some scale µ, which is the MS

prescription. We can slightly improve the convergence of the perturbation expansion by

shifting the renormalization scale. In dimensional regularization, each pole carries with it

the finite bit log(4π) − γE , just as in Eqs. 1.84 and 1.89. The term log(4π) comes from the

momentum integral measure and the angular integral, which contribute a factor of (4π)2−d/2.

The term γE comes from the radial integral, which may be expressed as a gamma function

with a pole at d = 4. After renormalizing the coupling, we can absorb these terms into the

renormalization scale by shifting

µ2 → µ̄2 = 4πe−γEµ2. (1.96)

This is the modified minimal subtraction (MS) scheme. In the case of the scalar field, we

may completely define the renormalized mass and field by requiring that an,0 = 0 at the scale

µ̄. From Eq. 1.89, we see that

Zm = 1 +
g

(4π)2
1

2ε
+O(g2), (1.97)

which defines the physical mass:

m2
φ = limε→0

m2Zm
Zψ

1 +Σm
1 +Σp

=m2 {1 −
g

(4π)2
⋅
1

2
[log(

µ̄2

m2
) + 1] +O(g)} , (1.98)

since the denominator is 1 + O(g2). This of course depends on the value of µ̄, but we may

choose this on a case-by-case basis in order that the leading logarithms vanish. In the present

case, this means choosing µ̄ =m.
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The divergences encountered in this section may be understood as artifacts of some

very high-energy phenomena which are irresolvable near the energy at which the action was

defined. This is the focus of Sec. 1.8.

1.8 Effective Field Theory

Much of the formalism regarding renormalization and regularization was largely considered

unphysical and ad hoc until the introduction of the Wilsonian or effective picture of quantum

field theory [57–63]. From this perspective, a theory is defined only up to some scale Λ,

above which the precise physics is unknown. Specifically, the cutoff is placed on the range

of integration in the generating functional, where the measure is decomposed into a product

measures for each Fourier mode:

Dφ̃ =∏
k

dφ̃(k), (1.99)

with k2 ≤ Λ2. However, since the Minkowski metric is indefinite, we must rotate to Euclidean

space in order that k2 be bounded below, deferring once again the details of the Wick rotation

to Sec. 1.11. Returning to the prototypical case of φ4 theory, we define the Euclidean

generating functional,

Z = Z0∫ Dφ̃ e
−∫ L̃[φ̃], (1.100)

with the bare Lagrangian in Euclidean momentum space,

L̃ =
1

2
φ̃(k2 +m2)φ̃ + gφ̃4, (1.101)

where we have dropped the subscripts denoting bare quantities for simplicity. The measure is

decomposed as above with the restriction that 0 ≤ k2 ≤ Λ2. This form allows us to partition
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the range of integration to isolate arbitrary bands of energy within the functional integral.

Fixing some scaling parameter x ∈ (0,1), we restrict our attention to the momentum shell

xΛ2 ≤ k2 ≤ Λ2 and split the momentum-space fields into UV (+) and IR (−) components:

φ̃(k) = θ(xΛ2 − k2)φ̃−(k) + θ(k
2 − xΛ2)φ̃+(k), (1.102)

where θ(x) is the Heaviside step function (the discontinuity needn’t be defined; any conven-

tion may be absorbed into the inequalities defining the range of k without loss of generality).

Dropping the step functions for cleanliness of notation and plugging this into the Lagrangian,

we find that

L̃[φ̃] = L̃[φ̃−] + L̃[φ̃+] + 4gφ̃
3
−φ̃+ + 6gφ̃

2
−φ̃

2
+ + 4gφ̃−φ̃

3
+, (1.103)

and the generating functional may be rewritten

Z = Z0∫ Dφ̃− e
−∫ L̃[φ̃−]∫ Dφ̃+ e

−∫ L̃[φ̃+] exp{−∫ [4gφ̃
3
−φ̃+ + 6gφ̃

2
−φ̃

2
+ + 4gφ̃−φ̃

3
+]} .

(1.104)

The first two exponentials define free field theories for the ultraviolet and infrared modes

separately, so there is a propagator for each set of fields (±) that vanishes outside the as-

sociated range of momenta. We can thus proceed as in standard perturbation theory with

restrictions on the ranges of loop momenta. Notice that, since the integral of any smooth

function of k is well-defined on the upper band xΛ2 ≤ k2 ≤ Λ2, all loops generated by the UV

modes are strictly finite. For example, the φ̃2−φ̃2+ interaction simply represents a finite shift

in the mass of the IR modes, since the φ̃+ fields may be contracted to form a finite loop,

leaving a smooth momentum-dependent function times φ̃2−. Combining the other vertices

through similar contractions, we may construct diagrams with any number n of external φ̃−
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fields7. In each case, the φ̃+ integrals may again be reduced to smooth, finite functions fn,

so that we have an infinite series of terms of the form fn(k)φn−. The functions fn may be ex-

panded in a Taylor series, which allows us to rearrange each of the new n-point interactions

as another infinite series of operators, containing n fields and arbitrarily many spacetime

derivatives and with constant coefficients. Continuing this process to all orders in the cou-

pling, we effectively solve the path integral in the range xΛ2 ≤ k2 ≤ Λ2, a process known as

integrating-out the UV modes. We have added in turn an infinite tower of operators to the

Lagrangian, consisting of all possible local products of φ̃−, its derivatives, and its mass:

L̃ → L̃eff = L̃[φ̃−] + ∑
n1,n2,n3

Cn1n2n3m
n1∂2n2φ̃

n3
− . (1.105)

Though we have removed the explicit dependence on φ̃+, the low-energy effective Lagrangian

Leff retains some artifacts of the ultraviolet degrees of freedom, the Wilson coefficients

Cn1n2n3 and the effective operators. The resulting generating functional defines a low-

energy effective field theory (EFT) which approximates the original theory below some scale

Λ0 = xΛ.

Notice that, for generic dimension d, the fields φ have canonical dimension d/2−1, which

restricts the dimension of the coefficients to

[Cn1n2n3] = d − n3 (
d

2
− 1) − 2n2 − n1. (1.106)

The only intrinsic scale in the defining loop integrals of each Wilson coefficient is the cutoff

Λ, which means Cn1n2n3 ∼ Λ
d−n3(

d
2−1)−2n2−n1 . Then all operators of dimension greater

7Barring a few exceptions, such as vertices containing one or three powers of φ̃−, since they cannot be
constructed by contracting only φ̃+ fields.
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than d have coefficients which go as inverse powers of the cutoff, and may thereby be ignored

for a sufficiently large cutoff. These are called irrelevant operators. Near d = 4, the only

combinations of ni for which the Wilson coefficients have nonnegative mass dimension are

(n1, n2, n3) = (0,0,1) ∶ φ̃− (1,0,2) ∶ mφ̃2−

(0,0,2) ∶ φ̃2− (1,0,3) ∶ mφ̃3−

(0,0,3) ∶ φ̃3− (1,1,1) ∶ m∂2φ̃−

(0,0,4) ∶ φ̃4− (2,0,1) ∶ m2φ̃−

(0,1,1) ∶ ∂2φ̃− (2,0,2) ∶ m2φ̃2−

(0,1,2) ∶ ∂2φ̃2− (3,0,1) ∶ m3φ̃−.

(1,0,1) ∶ mφ̃−

(1.107)

All of the above operators with odd powers of φ̃− are impossible to construct with the

available vertices. The operator mφ̃2− is in principle allowed, but it can be absorbed into the

definitions of m and Λ. This leaves only four operators:

Leff = L[φ̃−] + c1∂
2φ̃2− + c2m

2φ̃2− + c3φ̃
4
− + c4φ̃

2
− +⋯, (1.108)

where the ellipsis represents all higher-dimensional operators. Aside from the last term, all

of the new operators are already present in the Lagrangian, so their reappearance signifies

a shift in the corresponding coupling of each term due to fluctuations in the UV band. The

final term is similarly innocuous, representing another shift in the mass. In fact, we could

have anticipated its presence from the quadratic pole in Eq. 1.82, since the Wilson coefficient

c4 goes as Λ2 by virtue of Eq. 1.106. We then observe that all of the new operators are either
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irrelevant or may be absorbed into the bare parameters of the original Lagrangian; that is

to say, the ultraviolet modes renormalize the bare parameters in the original Lagrangian.

Of course, we are still left with an infinite number of higher-dimensional operators with

Wilson coefficients suppressed by the inverse powers of the cutoff. Since these couplings have

negative mass dimension, they are rendered nonrenormalizable by simple power-counting

arguments. The only choice to restore renormalizability is to send the cutoff to infinity. While

this removes the nonrenormalizable interactions, it also forces the relevant Wilson coefficients

— those which renormalize the bare Lagrangian — to diverge. These are exactly the infinite

shifts we found in our naïve approach to renormalization. It is then natural that we encounter

divergences in loop integrals; we must assume that there is some intrinsic granularity to our

observations, some scale at which our experiments cannot resolve the ultralocal, high-energy

dynamics. Ignoring this scale is tantamount to introducing local products of quantum fields

that generate local divergences. Fortunately, as we have previously seen, it is often possible

to absorb these divergences into the definitions of our bare and physical Lagrangians with a

suitable scheme for regularization and renormalization.

The arguments presented here for the case of scalar field theory are simple to generalize

to more robust theories. Indeed, for any Lagrangian of arbitrarily many species of interacting

fields, integrating out the ultraviolet modes generates both a shift in the bare parameters

of the base theory and an infinite tower of local products of fields, masses, and derivatives.

In the general case, the only restriction on the higher-dimensional operators is that they

reflect the symmetries of the original Lagrangian. Aside from that, the inclusion of all other

operators is perfectly allowed — and in fact compulsory.
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1.9 The Renormalization Group

The Wilsonian picture of quantum field theory presents renormalization as a shift in the low-

energy parameters of a theory due to ultraviolet fluctuations within some momentum shell

xΛ2 ≤ k2 ≤ Λ2. The parameter x describes a smooth dependence on the size of this range.

Treating 1 − x as an infinitesimal deviation from the sharp cutoff Λ, we define a continuous

transformation from a theory defined below the cutoff Λ to a theory defined below xΛ.

We may iterate this procedure for infinitely many of these transformations, which defines

a composition law. This gives us an algebraically-closed set of smooth transformations

with an identity element (x = 1), known as the renormalization group8 (RG). We may

view the process of successively removing UV modes as following a trajectory in the space

of Lagrangian field theories: the initial conditions are defined by the cutoff and the base

Lagrangian, and the trajectory is described by the Wilson coefficients. The parameter x

determines the distance traveled along this path.

From this perspective, the space of all quantum field theories is simply the ring of local

polynomials in the field variables and their derivatives, the fundamental degrees of freedom in

QFT. Any theory is thus defined given a cutoff scale and a set of initial couplings. In the case

that all couplings vanish9, we recover a free field theory. The only constructible interactions

are thus quadratic, so there is no contact between the IR and UV fields. Integrating out the

UV modes then contributes an overall constant to the path integral, which may be absorbed

into the overall normalization. This means that all couplings are unaffected under RG flows;

a free theory remains free and requires no renormalization.
8It is in fact not a group but a semigroup, since integrating out a momentum shell is not invertible.
9Except the for kinetic terms: for any Lagrangian with n terms, there are n−1 degrees of freedom involved

in its normalization. We retain the kinetic term to preserve dynamics and avoid a trivial theory.
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The nescience of the free theory to Wilsonian renormalization characterizes a fixed point

in the space of all theories, a point invariant under RG flows. Since the action in strictly

quadratic, this is known as the Gaussian fixed point. Perturbation theory is then simply

a study of the theories within an infinitesimal neighborhood of the Gaussian fixed point.

If the process of integrating out UV modes drives us toward the fixed point — that is, if

the Wilson coefficients negate the initial couplings at some energy scale — then the theory

is said to be asymptotically free. This is the case in quantum chromodynamics, where the

strong coupling constant vanishes at a sufficiently large energy.

The applicability of perturbation theory rests on size of the coupling, which is determined

by the Wilson coefficients at some fixed x. This is equivalent to renormalizing the bare theory

at the scale xΛ. On the other hand, like the renormalization scale, the scaling parameter

is completely unphysical, so it cannot influence physical predictions. We may impose this

consistency condition by mandating that for any renormalized function Γ = Z−1Γ0,

dΓ

dx
= 0. (1.109)

In perturbation theory with renormalization scale µ, this is equivalent to

µ
dΓ

dµ
= 0. (1.110)

While the renormalized correlation function is itself scale-invariant, it is a function of renor-

malization constants and couplings, both of which depend on the renormalization scale. We
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can expand Eq. 1.110 to account for this dependence explicitly:

µ
dΓ

dµ
= µ

∂Γ

∂µ
+ µ

∂g

∂µ

∂Γ

∂g
+ µ

∂m

∂µ

∂Γ

∂m
+ µ

∂Z−1

∂µ

∂Γ

∂Z−1

= µ
∂Γ

∂µ
+ β ⋅

∂Γ

∂g
+ γm ⋅m

∂Γ

∂m
− γZ ⋅Z

−1 ∂Γ

∂Z−1

= 0.

(1.111)

In the second line, we introduced the beta function

β(g) = µ
∂g

∂µ
(1.112)

and the anomalous dimensions

γm(g) = µ
∂ logm

∂µ
, γZ(g) = µ

∂ logZ

∂µ
. (1.113)

The terms Z−1 ∂Γ
∂Z−1

and m ∂Γ
∂m simply count the number of fields and masses present in Γ.

Then for nZ fields with nm mass insertions, we can write the Callan-Symanzik equation for

Γ:

[µ
∂

∂µ
+ β ⋅

∂

∂g
+ nmγm −

1

2
nZγZ]Γ = 0, (1.114)

which explicitly encodes the scaling behavior of each parameter in a renormalized quantity.

In general, there will be additional terms containing a beta function for each coupling and

anomalous dimensions for each field and each mass. The beta function is particularly im-

portant, because it tells us how far away from the Gaussian fixed point we are allowed to

flow before the perturbation series is invalidated by large values of the coupling.

The anomalous dimension and beta function allow us to connect predictions made at
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disparate energy scales. Given some quantity renormalized at a scale µ0, we can flow to any

other scale µ by direct integration of the related RG functions. The beta function gives us

a separable differential equation which implicitly defines the coupling constants:

µ2

µ20
= exp{2∫

g(µ)

g(µ0)

dg

β(g)
} . (1.115)

The anomalous dimensions give us similar equations for the Z-factors. In the case of the

mass, for example, we find

m2(µ)

m2(µ0)
= exp{2∫

g(µ)

g(µ0)

γm(g)

β(g)
dg} . (1.116)

Using the Callan-Symanzik equation to extract the RG functions perturbatively, we can solve

these integrals to arbitrary order in the coupling. The typical expansions in the coupling

are10

β(g) = −g3
∞

∑
n=0

bng
2n, (1.117)

and

γi(g) = −g
2
∞

∑
n=0

γ
(n)
i g2n. (1.118)

In Sec. 3.3, we will calculate b0 and γ
(0)
m in quantum chromodynamics.

1.10 Operator Mixing

As we saw in Sec. 1.8, the removal of some high energy modes of a theory introduces an

infinite series of effective interactions to the Lagrangian. It is often the case that the precise

nature of physics is unknown at high energies, so that the best we can do is consider the
10The coupling constant typically only appears in even powers in physical theories.
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most general effective Lagrangian consistent with the desired symmetries. Typically, then,

we are left with some low-energy, renormalizable Lagrangian L with couplings gi and a tower

of higher-dimensional effective operators encoding the effects of the high energy modes we

removed. Analogously to Eq. 1.105, we may fix some UV scale Λ0 = xΛ above which all

degrees of freedom shall be integrated out, so that the effective Lagrangian may be written

Leff = L +∑
i
Ci(Λ0)Oi (1.119)

with effective interactions Oi and couplings (Wilson coefficients) Ci. In the sum above, the

index i runs over a basis for the ring of polynomials in the field variables. This can be

arranged so that i represents all operators of a given engineering dimension, and the sum

runs over all dimension-n operators and all dimensions n. Then for any n, the associated

operators and Wilson coefficients have consistent dimensions. Just as the case of the scalar

field theory, where we observed a shift in the mass due to the presence of a φ4 interaction,

the bare correlators of the effective theory are sensitive to contributions from all high-energy

operators, and the Wilson coefficients will shift according to

Ci → Ci + δCi, (1.120)

where the variation has the general dependence

δCi = f(g1, g2, ...,C1,C2, ...). (1.121)

for some polynomial f . Since there is an infinite number of Wilson coefficients, there is also

an infinite number of possible counterterms, and the theory is formally nonrenormalizable.
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At any order in the perturbative expansion, however, the number of counterterms is finite, so

we can absorb all corrections into the bare parameters. We are thus able to define an effective

renormalization scheme valid to any finite order in the coupling. The interdependence of the

Wilson coefficients characterizes the mixing under renormalization of operators in an EFT.

As the cutoff removed, the low-energy correlators diverge, but they may be calculated

within a suitable regularization scheme, and — critically — they depend the scaling parame-

ter x. After renormalization at some scale µ, this dependence is dimensionally transmuted to

the variable µ2/Λ2
0. Further, the effective operators vanish from the total Lagrangian, since

they couple with inverse powers of the cutoff. Of course, we may still like to consider the ef-

fects of these operators from a low-energy perspective by inserting effective interactions into

correlation functions of an interacting theory defined solely by the low-energy Lagrangian,

L. Since the cutoff scale is removed, we must choose a scheme to regulate the Feynman

integrals, conventionally chosen to be dimensional-regularization. In principle, the operators

Oi remain sensitive to the other effective interactions, so that the corrections to any bare

operator may be expressed in a series over renormalized operators:

O0 = ∑
i
ZiOi, (1.122)

with some divergent renormalization constants Zi that capture the corrections to O0 due to

the renormalized operator Oi.

The divergent mixing of the effective operator basis is the result of many fields localizing

at a single point. Formally, in order to maintain unitarity of the generating functional, the

inner product on the space of states must be normalizable. This can be ensured by treating

each state as a distribution over all momentum states. Unfortunately, this also introduces
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products of distributions centered at the same point, leading to overlap divergences. These

arguments are the motivation for the operator-product expansion (OPE), which allows us to

define renormalized products of many fields [64–66].

Hidden in Eq. 1.122 is the fact that there is a regulator built into both the bare operators

and the renormalization constants that suppresses the divergent UV modes. In the case of

cutoff regularization, the scale Λ places an upper bound on the ranges of virtual momenta.

Equivalently, predictions are only viable for length scales greater than 1/Λ, so the momentum

cutoff places a lower limit on the separation of field distributions. As long as the regulator

is present, there will be an arbitrarily small displacement between the central points of any

pair of fields. Then, defining the renormalized operators order-by-order in the couplings gi

so that there is a finite number of counterterms to be absorbed, we may rewrite Eq. 1.122

as an asymptotic expansion, the operator-product expansion for O0:

O0(x1, ..., xn; Λ)
xi→x
ÐÐÐ→∑

i
Zi(Λ)Oi(x), (1.123)

where there is a coordinate xi for each field in the bare operator O0. In general, the renor-

malization of bare operators (Oi)0 follows a matrix equation

(Oi)0 = ZijOj , (1.124)

where the renormalization constants Zij quantify the fluctuations in (Oi)0 due to the oper-

ators Oj .

The OPE is particularly useful because it holds at the operator level. This allows us to

insert the full expansion into correlation functions containing the bare operator. For some
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initial and final states ∣i⟩ and ⟨f ∣ renormalized by some product of low-energy renormalization

constants Zfi, we have

⟨f ∣Oi∣i⟩0 = Z
−1
fi Zij⟨f ∣Oj ∣i⟩. (1.125)

The renormalized correlation functions and the mixing matrix may be expanded in the

renormalizable couplings gi. For simplicity, we define Γi = ⟨f ∣Oi∣i⟩. In the case of a single

coupling g the perturbative expansions are

Zij =
∞

∑
n=0

g2nZ
(n)
ij (1.126)

and

Γi =
∞

∑
n=0

g2nΓ
(n)
i . (1.127)

We can use these expressions to iteratively construct the OPE, starting at the leading order.

At NLO, Eq. 1.125 takes the form

(Γi)
(0)
0 +g

2
0(Γi)

(1)
0 +O(g

4
0) = Z

−1
fi (Z

(0)
ij + g

2Z
(1)
ij +O(g

4))(Γ
(0)
j + g2Γ

(1)
j +O(g4)) . (1.128)

Since the bare operator corresponds to gi = 0, we see immediately that Z(0)ij = δij . Inserting

the renormalized coupling11 g0 = Zgg and collecting like powers of g, we have

(Γi)
(0)
0 = Z−1fi ⋅Z

(0)
ij Γ

(0)
j = Z−1fi Γ

(0)
i , (1.129)

and

(Γi)
(1)
0 = Z−1fi ⋅ (Γ

(1)
i +Z

(1)
ij Γ

(0)
j ) . (1.130)

11with a scale µε if working in dimensional regularization
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These equations will be indispensable to our analysis of the mixing of CP -violating operators

in Part III.

By dimensional analysis it is clear that for operators Oi with [Oi] = di, the elements of

the renormalization matrix have dimension

[Zij] = di − dj . (1.131)

Thus the mixing structure is determined by the nature of the chosen regulator. In cutoff

schemes, the mixing goes as Λdi−dj , so any operators for which dj > di are suppressed by the

cutoff scale and may be neglected in the OPE. For dj ≤ di, the all operators must be taken

into account. We saw this phenomenon explicitly in the one-loop correction of the scalar

propagator, Eq. 1.82: the φ2 operator contributed a correction of order Λ2, while φ4 term

contributed a logarithm. Dimensional-regularization, on the other hand, mixes operators

only of the same dimension, as evident in Eq. 1.84, since there is no scale to compensate for

the difference in dimension. In any case, there are only finitely many operators of a given

dimension, so there are also only finitely many counterterms at any order in the coupling,

and the OPE may be truncated. In particular, there are finitely many contributions to

Eqs. 1.129 and 1.130.

1.11 Euclidean Field Theory

In Sec. 1.4, we mentioned that the path integral must be regulated with an imaginary shift

in the Lagrangian, L → L +Lε, with a term of the form

Lε = iεφ
2 (1.132)
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for every species of dynamical field φ. This addition makes the modulus of the Boltzmann

factor decay exponentially,

∣eiS ∣
2
= ei ∫ (L+Lε)e−i ∫ (L+L

∗
ε ) = e−2 ∫ ILε , (1.133)

so that the path integral converges in principle. As far as perturbative calculations are

concerned, the extra term in the action serves only to define free correlation functions un-

ambiguously. Indeed, in our expression for the scalar two-point correlator, Eq. 1.71, the iε

prescription avoids any real poles in the energy (p0) integral. The poles are shifted to the

second and fourth quadrants,

p0 = ±
√

ω2(λ,p) − iε ≈ ±ω(λ,p) ∓ iε, (1.134)

so that the integral is soluble by integration over a semicircular contour in the upper or

lower half-plane. The specific contour of integration is fixed by the sign of x0 − y0: the lower

contour vanishes at infinity for x0 > y0, while the upper contour vanishes for x0 < y0, and

the p0 integral is determined by the residue at the enclosed pole. With this prescription,

we find that the two-point function describes the propagation of a particle from y to x for

x0 > y0 or x to y for y0 > x0, consistent with causality. The choice

Lε = −iεφ
2 (1.135)

would lead to backward propagation.

There is, however, a much deeper problem. In defining the functional integral, Eq. 1.13,

we have assumed the existence of a translationally-invariant measure Dφ on the infinite-

61



Im p0

Re p0

.−ω + iε
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ω − iε

Figure 1.1: The contour of integration defining the Wick rotation

dimensional Hilbert-space of functions φ. Following Riesz’ Lemma [67, 68], it is clear that

this cannot exist in any nontrivial way. Instead, it is possible that the state space may be

densely embedded in a larger Banach space [69, 70], allowing us to define the path integral

via the Wiener measure [71]. The only known construction of this sort is valid only for

Riemannian manifolds [72–74], so one must work with a Euclidean signature. In order to

have a well-defined (free) theory, we must somehow relate Minkowskian QFT to Euclidean

QFT. In fact, the iε prescription allows us to do exactly that12. Since the poles have been

shifted into the second and fourth quadrants, the integration contour may be defined as in

Fig. 1.1. There are no poles enclosed by the contour, so the entire integral vanishes. Further,

the curved paths have a vanishing contribution by Jordan’s lemma, so the integrals over the

remaining contours must precisely cancel. Then we see that

∫

∞

−∞
dp0

−i

−p20 + p2 +m2 − iε
= ∫

i∞

−i∞
dp0

−i

−p20 + p2 +m2 − iε
= ∫

∞

−∞
dpE4

1

pE4
2
+ p2 +m2

,

(1.136)
12while working in a free theory. As we saw in the spectral representation, the presence of interactions

can introduce additional poles corresponding to bound states and a branch cut for multiparticle states.
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where we have defined the Euclidean (E) time coordinate p0 = ipE4 13. In effect, this change of

variables transforms the (−,+,+,+) Minkowski metric into the (+,+,+,+) Euclidean metric.

The process of analytically continuing to complex p0 and transitioning to Euclidean space

is called a Wick rotation. The change of variables above extends to all 4-vectors, including

derivatives, as follows:

coordinates: x0 = −ix
E
4 , xi = x

E
i ,

momenta: p0 = ip
E
4 , pi = p

E
i ,

derivatives: ∂0 = i∂
E
4 , ∂i = ∂

E
i ,

vector fields: A0 = iA
E
4 , Ai = A

E
i ,

gamma matrices: γ0 = γ
E
4 , γi = −iγ

E
4 ,

(1.137)

where the subscript i indicates a spatial component. We can then define the Euclidean action

with the above replacements. In scalar field theory, the Lagrangian becomes

L =
1

2
(∂2 −m2)φ − gφ4 =

1

2
(∂E

2
−m2)φ − gφ4 =∶ −LE . (1.138)

We have defined the Lagrangian with a negative sign so that the Euclidean action is positive-

definite, and the Boltzmann factor is decaying:

iS = ∫ d4xL = −∫ d4xELE = −SE . (1.139)

13More generally, p0 = ipd
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The path integral can now be written in Euclidean space:

ZE = (ZE0 )
−1
∫ Dφe

−SE , (1.140)

where the measure Dφ is the Wiener measure on the space of continuous paths φ on the

underlying d-dimensional Euclidean space. From this perspective, it makes sense to define

the physical Minkowskian path integral as the Wick rotation of a well-defined Euclidean

theory. The precise conditions for this to be possible are given by the Osterwalder–Schrader

axioms [75–77]. One of the conditions, reflection positivity, requires that any Euclidean

correlation function is nonnegative when its spacetime arguments are symmetric about the

x4 = 0 hyperplane. When this holds, the Minkowski functions obtained by Wick rotation are

time-ordered. Under a rotation x4 = e
iθx0 with θ = π/2 − ε, the ordering of the real part of

the time coordinates remains the same, so the ordering of the fields holds as well. Expanding

about small ε, we see that x4 = i(1 − iε)x0 induces the shift p2 → p2 − iεp20 in momentum

space. We can absorb the positive factor of p20 into ε, so that the Minkowskian propagators

are
1

p2 +m2
→

1

p2 +m2 − iε
, (1.141)

reproducing the earlier iε prescription. So long as no poles are encountered in the interval

θ ∈ [0, π/2], we may take the limit ε→ 0.

In the interacting theory, it is possible that many more poles appear, potentially even

in the first and third quadrants [78]. Under these circumstances, calculations require more

careful treatment [79]. There is, at the time of this writing, no known construction of an

interacting theory as above. The full path integral is then treated heuristically and defined

only in terms of the algebraic manipulations that produce intuitively correct correlation
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functions.
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Chapter 2

Perturbation Theory

2.1 Feynman Rules

In Section 1.4, we presented a perturbative treatment of the generating functional. This

depended critically on the assumption that we could absorb the free-field portion of the

Boltzmann factor into the path integral measure. This conveniently allowed us to define

expectation values with respect to the Gaussian density of the free theory and therefore to

express the nth moments — equivalently the n-point correlation functions — in terms of the

two-point functions for each pair of fields. In this section, we derive the rules for the propaga-

tors and vertices needed to translate the perturbation series into a graphical representation

in terms of Feynman diagrams. As with the perturbation series, much of the material in the

present chapter has been discussed or introduced in previous sections. Whereas it was then

only cursorily treated, this chapter serves to flesh out those methods that will be integral to

the rest of this work. In particular, we introduce in Sec. 2.5 a new method for treating the

notoriously cumbersome angular-dependent quantities one encounters within dimensional

regularization. Toward this construction, we illustrate the loop expansion in detail, deriving

Feynman rules along the way, and briefly describe the common parametrization schemes for

loop integrals upon which the new method is based.

2.1.1 Propagators

The two-point functions, or propagators, of a field φ are the most fundamental building

block of perturbative calculations. As a first example, we consider a scalar field φ which
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evolves according to the Klein-Gordon Lagrangian (see Sec. 1.1). The propagator may be

constructed as in Eq. 1.32, taking O = φ(y)φ(x):

⟨φ(y)φ(x)⟩ =
Z0[0]

Z[0]

∞

∑
i=0

in

n!
⋅ gn ⟨(∫ LI)

n
φ(y)φ(x)⟩

0
= ⟨φ(y)φ(x)⟩0 +O(g). (2.1)

If we reintroduce the source field J(x), we can recast the free propagator ⟨φ(y)φ(x)⟩0 above

as a derivative of the free generating functional as in Sec. 1.2,

⟨φ(y)φ(x)⟩0 = −
δ2

δJ(y)δJ(x)

1

Z0[0]
∫ Dφ e

i ∫ (L0+Jφ)∣
J=0

, (2.2)

Recall that the free Lagrangian is quadratic in each species of field, so we may write

L0(x) =
1

2 ∫y
φ(y)K(y, x)φ(x), (2.3)

where K represents the integral kernel of the free action1. In this case, the kernel is given

by δ(y − x)(∂2x −m
2).The above integrand is a shifted Gaussian in the field φ. Since the

path integral measure Dφ is translation-invariant, we are free to “complete the square” in

the exponent by redefining φ up to a shift

φ(x) = φ′(x) − ∫
y
K−1(x, y)J(y), (2.4)

1We will often drop the spacetime arguments of the fields and associated kernels along with delta func-
tionals for ease of notation. This practice is perfectly analogous to suppressing matrix indices and writing
Kronecker deltas as the identity matrix 1 or I.
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and the path integral is greatly simplified:

1

Z0[0]
∫ Dφ e

1
2 i ∫ φKφei ∫ Jφ =

1

Z0[0]
∫ Dφ

′ e
1
2 i ∫ φ

′Kφ′e−
1
2 i ∫ JK

−1J
= e−

1
2 i ∫ JK

−1J . (2.5)

In the last equivalence above, we took the φ-independent source term out of the integrand

and cancelled the remaining integral with the normalization constant Z0[0]. In this form, it

is trivial to take derivatives with respect to the source field J , and for the free propagator,

we find

⟨φ(y)φ(x)⟩0 = −
δ2

δJ(y)δJ(x)
e−

1
2 i ∫ JK

−1J
∣
J=0

= iK−1(y, x). (2.6)

The inverse kernel is easily calculated by Fourier transformation. For scalar fields we have

δ(x−y) = ∫
z
K(x, z)K−1(z, y) = (∂2x−m

2)∫
p
eip(x−y)K̃−1(p) = −∫

p
eip(x−y)(p2+m2)K̃−1(p),

(2.7)

from which it follows that

−(p2 +m2)K̃−1(p) = 1 (2.8)

and

⟨φ(y)φ(x)⟩0 = ∫
p
eip(y−x)

−i

p2 +m2
. (2.9)

We derive the propagators for other fields in an identical manner. For fermions of mass

m, we have the free Lagrangian L0(x) = ∫y ψ(y)K(y, x)ψ(x) with the kernel K(y, x) =

δ(y − x)( /∂ +m). Introducing Grassmann-valued spinor source fields η̄ and η for the ψ and

its adjoint ψ respectively, we may write the free fermion propagator as

⟨ψ(y)ψ(x)⟩0 =
δ2

δη̄(y)δη(x)

1

Z0[0]
∫ DψDψ ei ∫ (ψKψ+η̄ψ+ηψ)∣

η̄,η=0

. (2.10)
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Note the difference in sign as compared to the scalar case due to the anticommutation of the

field ψ and the derivative with respect to η. Shifting again the integration variables,

ψ(x) = ψ
′
(x) − ∫

y
η̄(y)K−1(y, x) and ψ(x) = ψ′(x) − ∫

y
K−1(x, y)η(y), (2.11)

we obtain

⟨ψ(y)ψ(x)⟩0 = −
δ2

δη̄(y)δη(x)
e−i ∫ η̄K

−1η∣
η̄,η=0

= iK−1(y, x). (2.12)

As before, we can extract the inverse with a Fourier transform, so that

⟨ψ(y)ψ(x)⟩0 = i∫
p
eip(y−x)

−i/p +m

p2 +m2
. (2.13)

Finally, for gauge bosons we have the free Lagrangian constructed in Sec. 1.5:

L0 =
1

2g2
Tr{∂[µAν]∂

[µAν]} +
1

ξg2
Tr{∂µAµ∂

νAν} . (2.14)

Integrating by parts and taking the trace, we find the kernel

Kab
µν(y, x) = −

TF
g2
δabδ(y − x) [δµν∂

2
x − (1 −

1

ξ
)∂x,µν] , (2.15)

which allows us to express the generating functional as before:

Z0[J] =
1

Z0[0]
∫ DA exp{i∫ [A

µaKab
µνA

νb + JaµA
µa]} . (2.16)
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Shifting the integration variable once again as

Aaµ(x) = A
′a
µ(x) −

1

2 ∫y
K−1

ab
µν(x, y)J

νb(y), (2.17)

we have

Z0[J] = exp{−
1

4
i∫

xy
Jµa(x)K−1

ab
µν(x, y)J

νb(y)} . (2.18)

From this form, it is clear that

⟨Abν(y)A
a
µ(x)⟩0 =

1

4
i{K−1

ab
µν(x, y) +K

−1ba
νµ(y, x)} =

1

2
iK−1

ba
νµ(y, x), (2.19)

where the inverse kernel is given by

K−1
ab
µν(x, y) =

g2

TF
∫
p
eip(x−y)

δab

p2
{δµν − (1 − ξ)

pµν

p2
} . (2.20)

In Minkowski space, there is one more step required to define the propagators. As we

mentioned before, the path integral measure is oscillatory, so it must be regularized by

introducing a small imaginary part to the Lagrangian. The appropriate prescription for

exponential decay was written in Eqs. 1.30 and 1.141, and with this final ingredient we can

write the Feynman rules for each propagator.

In the diagrammatic representation, we assign to each scalar propagator an undirected

solid line carrying some momentum p from a point x to another point y and one factor of

SF (y − x) = ∫
p
eip(y−x)

−i

p2 +m2 − iε
= , (2.21)

where the subscript “F” stands for Richard Feynman, to whom the iε prescription is due.
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To fermion propagators we associate a directed solid line and a factor of

SF (y − x) = ∫
p
eip(y−x)

/p + im

p2 +m2 − iε
= . (2.22)

The notation SF for scalars is customarily recycled for fermions, but context should make

its usage clear. Gauge bosons are differently represented depending on their species. They

are typically wavy (photons), zig-zag (electroweak bosons), or curly (gluons), but since this

work is focused on QCD, we hereafter adopt the notation for gluons and write

DF
ab
αβ(y − x) =

ig2

2TF
∫
p
eip(y−x)

δab

p2
{δαβ − (1 − ξ)

pαβ

p2
} = . (2.23)

2.1.2 Vertices

In the last section, we considered only the leading-order terms in the perturbative series,

Eq. 1.32. Each of these was generated by a strictly quadratic Lagrangian, since there was no

insertion of the interaction part. At subleading orders, however, we encounter local products

of fields with a higher degree. These correspond to interactions involving more than two

fields, hence vertices in the diagrammatic representation, allowing for nontrivial n-point

correlation functions for n > 2. The treatment of these structures is similar to the case of

the two-point functions, the only difference being the presence of more complex differential

or tensor structures and more propagators. As an introduction, we examine the quartic

interaction of φ4 theory, governed by the Lagrangian

L = −
1

2
(∂µφ)(∂

µφ) −
1

2
m2φ2 +

λ

4!
φ4, (2.24)
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for a real scalar field φ. The first two terms above are immediately recognizable, constituting

the Klein-Gordon Lagrangian. The last term is new; it describes an interaction of four scalar

fields coupled to each other with strength λ/4!. Writing

LI =
λ

4!
φ4, (2.25)

we can rewrite the scalar two-point function as

⟨φ(y)φ(x)⟩ =
Z0[0]

Z[0]

∞

∑
i=0

in

n!
⟨(
λ

4! ∫z
φ4(z))

n

φ(y)φ(x)⟩
0
. (2.26)

We have already considered the case n = 0. For n = 1, we have a single insertion of the

interaction term, and we must calculate the function

λ⟨φ(y)φ(x)⟩(1) =
iλ

4! ∫z
⟨φ4(z)φ(y)φ(x)⟩

0
. (2.27)

We again employ Isserlis’ theorem to express the integrand as a product of propagators:

⟨φ4(z)φ(y)φ(x)⟩
0
= 4 ⋅ 3 ⋅ ⟨φ(y)φ(z)⟩0⟨φ(z)φ(z)⟩0⟨φ(z)φ(x)⟩0

+ 3⟨φ(y)φ(x)⟩0⟨φ(z)φ(z)⟩0⟨φ(z)φ(z)⟩0,

(2.28)

where the numerical coefficients count the redundancies in pairing the fields; in the first term

for example, there are four fields φ(z) which may be paired to φ(y) with three remaining to

be paired with φ(x). In total there are 4 ⋅ 3 + 3 = 15 terms, corresponding to the (2 ⋅ 3 − 1)!!

perfect pairings of the six fields involved. The second term above is called a disconnected

diagram, since the integral over z does not involve the external states. The first factor is
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clearly just the free-field propagator, while the rest generates a vacuum fluctuation. This bit

is identical to the O(λ) term in the denominator of Eq. 2.9, generated by the normalization

Z0/Z. As such, the two terms acquire opposite signs in the series expansion and can easily

be seen to cancel. We thus ignore all disconnected diagrams, since they do not contribute

to scattering processes.

The first term in Eq. 2.28 describes the first appreciable effect of the φ4 interaction:

an excitation of the scalar field propagates from a point x to a point z, where there is

an interaction of four fields, after which it continues to y. At the midpoint, we see the

propagation of another field from z back to the same point. This process was briefly treated

in Sec. 1.7, represented graphically as

⟨φ(y)φ(z)⟩0⟨φ(z)φ(z)⟩0⟨φ(z)φ(x)⟩0 = . (2.29)

The vertex of this graph symbolizes the quartic interaction, and aside from the attached

propagators, it carries along with it a factor of iλ4! . This additional structure is characteristic

of any local product of fields. These will always correspond to vertices in the associated

Feynman diagram and will carry information separate from the propagators. In general,

we can isolate the structure of a vertex involving some n fields by calculating the n-point

function of those fields at tree level, that is, with respect to a free background theory. In the

case of the φ4 interaction, we calculate the correlation function for four fields φ(x1), φ(x2),
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φ(x3), and φ(x4):

⟨φ(x1)φ(x2)φ(x3)φ(x4)⟩
(0) =

iλ

4! ∫z
⟨φ4(z)φ(x1)φ(x2)φ(x3)φ(x4)⟩0

= iλ∫
z
⟨φ(z)φ(x1)⟩0⟨φ(z)φ(x2)⟩0⟨φ(z)φ(x3)⟩0⟨φ(z)φ(x4)⟩0

= iλ∫
z
SF (z − x1) SF (z − x2) SF (z − x3) SF (z − x4)

= iλ∫
p1,p2,p3,p4

(2π)dδ(d)(p1 + p2 + p3 + p4)
4

∏
i=1

e−ipixiS̃F (pi).

(2.30)

In the second line, the factor of 4! was cancelled by the 24 equivalent contractions of the four

fields in the interaction Lagrangian with the four external states. As in the final line, it is

conventional to pass to momentum space, where the Feynman rules assume a relatively simple

form. In momentum space, the spacetime integral over the interaction Lagrangian produces

a delta function over the sum of the momenta, which ensures an overall conservation of

momentum at each point of interaction. In our conventions for the vertex rules, all momenta

are considered to be incoming. Since there will always be propagators attached to a vertex,

we can treat them separately and simply drop the entire integral from the last line, so long

as we remember to attach the appropriate delta function and integrate over all momenta.

We can then simply read off the vertex rule from the remaining expression. In our example,

the vertex rule is

= iλ. (2.31)

Other interactions are treated likewise. The vertex in Eq. 1.9, is derived from the three-point
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function of two fermions and a gauge field:

⟨ψ(x3)A
a
α(x2)ψ(x1)⟩

(0)

= i∫
z
⟨ψ(z) /A(z)ψ(z)ψ(x3)A

a
α(x2)ψ(x1)⟩0

= i∫
z
⟨ψ(x3)ψ(z)⟩0⟨A

b
β(z)A

a
α(x2)⟩0γ

βtb⟨ψ(z)ψ(x1)⟩0

= i∫
z
SF (x3 − z)DF

ba
βα(z − x2)γ

βtbSF (z − x1)⟩0

= i∫
p,q,r
(2π)dδ(d)(p + q + r)e−irx3S̃F (−r)γ

βtbe−iqx2D̃F
ba
βα(q)e

−ipx1S̃F (p).

(2.32)

Here, when we amputate the gauge field propagator, we must leave behind a factor of δαβδab

for bookkeeping.2 This leaves us with the rule

= iγαt
a. (2.33)

We will encounter more complicated vertices in the next chapter, but they are derived in the

same manner.

2.2 Loop Integrals

The tools we have so far derived provide us with a dictionary for the transcription of any

elementary scattering process in terms of spacetime integrals. The integrands are composed

of propagators and local products of fields which are compactly represented in Feynman

graphs by edges and vertices respectively. At the leading order, these graphs are simple

forests3, hence the term “tree-level”. Eventually, however, the repeated insertion of inter-
2Since the propagator is the Green function for the free field kernel, the amputation of each external

leg can be formally defined by acting on the external states by the appropriate kernel for that species and
scaling accordingly to the identity matrix.

3Unless there are no external states, as in the case of vacuum expectation values or condensates
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(a)

Figure 2.1: The most generic form of a loop within a Feynman diagram

action terms forces the number of interior fields to outgrow the number of external states.

At this point, as we saw with the scalar propagator, the edges will form cycles or “loops”

in the diagrammatic representation, where a sequence of propagators leads back to its own

point of origin. We may treat the most general case as follows. Consider the loop in Fig. 2.1

connecting m vertices located at the points zi for i ∈ [m]. Each vertex represents a product

of ni+2 fields, so we attach as many propagators to each respective vertex. For every vertex

i, two propagators connect to the neighboring vertices at points zi±1 (with the indices taken

mod m), leaving ni propagators outside the loop leading either to external states or vertices

at points xi,j for j ∈ [ni]. The total contribution of this loop may be written

L(x) = ∫
z1,...,zm

m

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

ViS(zi+1 − zi)
ni
∏
j=1

S(zi − xi,j)

⎤
⎥
⎥
⎥
⎥
⎦

(2.34)

where the boldface x is the set of all xi,j , Vi is the Feynman rule for the ith vertex, and S

generically represents the propagator for any species of field4. Moving to momentum space,
4The caveat here is that the vertex rule and propagators must be written in the proper order when they

represent noncommuting quantities, for example in the cases of fermions and ghosts. This ordering does not
affect the integral, however, so we ignore it for the current discussion.
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we write

L(x) = ∫
z1,...,zm

m

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣
∫
qi
eiqi(zi+1−zi)ViS̃(qi)

ni
∏
j=1
∫
pi,j

e
ipi,j(zi−xi,j)S̃(pi,j)

⎤
⎥
⎥
⎥
⎥
⎦

(2.35)

where qi are the momenta transferred between points zi and zi+1, and pi,j are the momenta

running to each zi from the ni external fields at the points xi,j . Assuming that we can

reorder the integrals with impunity, this may be simplified to

L(x) = ∫p,q,z

m

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

e−izi(qi−ri−qi−1)ViS̃(qi)
ni
∏
j=1

e
−ipi,jxi,j S̃(pi,j)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.36)

where we again use bold letters to represent entire sets of variables and introduce the short-

hand

ri =
ni
∑
j=1

pi,j . (2.37)

We may now perform the integrals over each zi, leaving a string of delta functions as before:

L(x) = ∫p,q

m

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

(2π)dδ(d)(qi − ri − qi−1)ViS̃(qi)
ni
∏
j=1

e
−ipi,jxi,j S̃(pi,j)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.38)

As we take the q-integrals sequentially from 1 to m−1, the delta functions enforce the relation

qi = qm +
i

∑
j=1

rj , (2.39)

until only one remains, representing an overall conservation of momentum within the loop:

L(x) = ∫p,qm
(2π)dδ(d)(r1 +⋯ + rm)

m

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

ViS̃(qi)
ni
∏
j=1

e
−ipi,jxi,j S̃(pi,j)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.40)
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We can simplify this further by moving the external states to momentum space as well,

defining

(2π)dδ(d)(r1 +⋯ + rm)L̃(p) = ∫x
eip⋅xL(x), (2.41)

from which it follows that

L̃(p) =∏
i,j
S̃(pi,j) ⋅ ∫

q
V1⋯VmS̃(q + r1)⋯S̃(q + r1 +⋯ + rm−1)S̃(q). (2.42)

Loops are typically treated independently, so we will amputate the external legs, and redefine

L̃(p) ∶= L̃amp(p) = ∫
q
V1⋯VmS̃(q + r1)⋯S̃(q + r1 +⋯ + rm−1)S̃(q), (2.43)

which is our master formula for loop integrals. A quantity of this form will be present

for each independent cycle in a Feynman diagram. The number of loops or “loop order”

then corresponds to the cyclomatic number (the first Betti number) of the corresponding

undirected graph [80], given by

b1 = e − v + b0, (2.44)

where e and v are respectively the numbers of edges and vertices, and b0 is the zeroth Betti

number or the number of connected components.

There is one more subtlety in writing down loop integrals. As mentioned in footnote 4,

it becomes necessary to pay attention to the ordering of vertex and propagator rules for

noncommuting objects like fermion and ghost fields. When Grassmann-odd fields form a

loop, there must be at least two insertions of the corresponding interaction Lagrangian.

These terms always introduce a pair of fields f and f̄ with the basic field f on the right
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and the adjoint field f̄ on the left, so that the loop is written as a string of products of

the form (f̄Γf)(f̄Γf)⋯(f̄Γf) for some vertex structure Γ, where the parenthetical terms

freely commute. The propagators are defined in the opposite order, and each field f can be

contracted to the following f̄ in the next insertion. This leaves the first and last fields in

the string uncontracted. Though it can commute through any pair of fields, the first f̄ must

also pass through the final f to form a proper two-point function, so the loop acquires an

overall negative sign. Further, since fermions carry representations of both gauge group and

the Clifford algebra, the same argument results in a trace over each of these sets of indices.

2.3 Integral Parametrizations

As we discussed in Sec. 1.7, integrals encountered in perturbation theory often diverge for

very large or very small values of the loop momenta, so they are rarely well-defined right

out of the box. Instead we must choose a regularization scheme to ensure their convergence.

So far, we have implicitly defined everything in an undetermined number of dimensions d,

consistent with dimensional regularization. This was inconsequential in evaluating Feynman

rules5, but solving dimensionally regularized loop integrals will require more care. For any

loop in a Feynman diagram that is not a self-loop, there will be associated a product of

propagators in the form of Eq. 2.43, each with a quadratic dependence on its momentum in

the denominator. This results in complicated angular contributions for each inner product

q ⋅ ri. Though arduous even in four spacetime dimensions, their treatment is completely

intractable — if not impossible — for generic d. Since we shall want to take smooth limits

d → 4 after renormalization, we must allow the dimension to assume non-integral values;

indeed, d is generally considered complex. For this reason, the integral must be transformed
5so far, while there has been no parity violation
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in such a way that some dimensions are removed by symmetry, leaving a small natural number

of integrals over the remaining dimensions to be performed by hand. The most common

practice is to find a parametrization of the integrand which depends only on the square of the

loop momentum, after which everything can be recast in d-dimensional spherical coordinates.

In this way, the entire (d − 1)-dimensional spherical shell can be directly integrated, leaving

a single radial integral to be solved by other techniques.

If the integrand is already spherically symmetric,

∫
q
f(q2) =

1

(2π)d
∫
Ω
dΩ∫

∞

0
rd−1dr f(r2), (2.45)

where

dΩ =
d−1

∏
k=1

sind−k−1(φk)dφk ⋅ (2.46)

and where the angular domain Ω is defined by

φk ∈ [0, π); k < d − 1

φk ∈ [0,2π); k = d − 1,

(2.47)

we may extract the solid angle as follows. We have assumed for now that d is an integer.

Periodic symmetry allows us to write

∫

π

0
dφk sind−k−1(φk) = 2∫

π/2

0
dφk sind−k−1(φk); k < d − 1 (2.48)

and

∫

2π

0
dφk sind−k−1(φk) = 4∫

π/2

0
dφk; k = d − 1, (2.49)
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so that

∫
Ω
dΩ =2

d−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

2∫
π/2

0
dφk sind−k−1(φk)

⎤
⎥
⎥
⎥
⎥
⎦

=2
d−1

∏
k=1

B(
d − k

2
,
1

2
)

=2Γd−1(
1

2
)
d−1

∏
k=1

Γ(
d − k

2
)/Γ(

d − k + 1

2
).

(2.50)

The numerator of each factor cancels the denominator of the next, and we are left with

∫
Ω
dΩ = 2π

d−1
2

Γ(1/2)

Γ(d/2)
=

2πd/2

Γ(d/2)
. (2.51)

Thus

∫
q
f(q2) =

2(4π)−d/2

Γ(d/2) ∫
∞

0
rd−1dr f(r2). (2.52)

2.3.1 Feynman Parametrization

If the integrand is not even, we must transform it to a spherical form, the standard for which

is Feynman parameterization [16, 81]. A loop with N propagators has the general form

I
nI
µJ
(p;mI) = ∫

q

qµ1⋯qµn

∏
N
i=1 (s

2
i +m

2
i )
ni
, (2.53)

where I = {1, . . . ,N} and J = {1, . . . , n} are multi-indices, and where the product in the

denominator runs over all propagators in the loop with their respective masses and momenta

indexed by i. Each si in the denominator has the form si = q +Ri, where Ri = r1 + ⋯ + ri,

and ri is as defined in Sec. 2.2. The identity (which we will prove in the next subsection)

1

∏
N
i=1 (s

2
i +m

2
i )
ni
=

1

B(n1, . . . , nN )

N

∏
i=1
∫

1

0
dzi z

ni−1
i ⋅

δ (1 −∑Ni=1 zi)

[∑
N
i=1 zi (s

2
i +m

2
i )]
∑Ni=1 ni

. (2.54)
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allows the denominator to be expressed as a sum, so that we can complete the square in the

momentum of integration q:

I
nI
µJ
(pI ;mI) =

1

B(n1, . . . nN )

N

∏
i=1
∫

1

0
dzi z

ni−1
i ⋅ ∫

q

δ (1 −∑Ni=1 zi)

[∑
N
i=1 zi ((q +Ri)

2 +m2
i )]
∑Ni=1 ni

qµJ

=
1

B(n1, . . . nN )

N

∏
i=1
∫

1

0
dzi z

ni−1
i ⋅ ∫

q

δ (1 −∑Ni=1 zi)

[(q +Q)2 +∆]
∑Ni=1 ni

qµJ ,

(2.55)

where

∆ =
N

∑
i=1

zi(R
2
i +m

2
i ) −Q

2, (2.56)

and

Qµ =
N

∑
i=1

ziR
µ
i . (2.57)

Under the change of variables k = q +Q, we have

I
nI
µJ
(pI ;mI) =

1

B(n1, . . . nN )

N

∏
i=1
∫

1

0
dzi z

ni−1
i ⋅ ∫

k

δ (1 −∑Ni=1 zi)

[k2 +∆]
∑Ni=1 ni

(k −Q)µJ , (2.58)

and the parity of the integrand is more easily discernible. The product of vectors (k −Q)µJ

is a polynomial in k, where the even-degree terms will survive integration, and the odd terms

will vanish. The total momentum integral is therefore a sum over integrals of the form

∫
k
f(k2)kµ1⋯kµ2n , (2.59)

for some n. The 2n-fold product ensures that the integral does not trivially vanish, and the

tensor structure will be treated in the following section.
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2.3.2 Schwinger Parametrization

There is an alternative parametrization introduced by Schwinger [38], which, though equiv-

alent to Feynman parametrization, can be easier to use in practice. It relies on the identity

1

An
=

1

Γ(n) ∫
∞

0
dα e−Aααn−1, (2.60)

which may be applied to the denominator of each propagator in Eq. 2.53:

I
nI
µJ
(p;mI) = ∫

q

qµ1⋯qµn

∏
N
i=1 (s

2
i +m

2
i )
ni
= ∫

q
qµJ

N

∏
i=1
∫

∞

0

dαi
Γ(ni)

e−αi(s
2
i +m

2
i )α

ni−1
i (2.61)

If there are no factors of qµi , the integral is a simple scalar quantity. Shifting the variable q

to

kµ = qµ +
1

A

N

∑
i=1

αiR
µ
i . (2.62)

we have a d-fold product of identical Gaussian integrals in the components of k:

I
nI
µJ
(p;mI) =

N

∏
i=1
∫

∞

0

dαi α
ni−1
i

Γ(ni)
⋅ exp

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

A

⎛

⎝

N

∑
i=1

αiRi
⎞

⎠

2

−
N

∑
i=1

αi(R
2
i +m

2
i )

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(∫

∞

−∞

dk

2π
e−k

2A)
d

=
N

∏
i=1
∫

∞

0

dαi α
ni−1
i

Γ(ni)
⋅ exp

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

A

⎛

⎝

N

∑
i=1

αiRi
⎞

⎠

2

−
N

∑
i=1

αi(R
2
i +m

2
i )

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(4πA)−d/2,

(2.63)

where we have used the shorthand notation A = ∑Ni=1αi.

This is as far as we will go in full generality. The bracketed term in Eq. 2.63 can most

often be simplified in practical calculations, where a subset of masses may vanish, where the

momenta Ri are interrelated, or where on-shell conditions may apply. As before, we have

ignored potential tensor structures in the case of Schwinger parameters. These will be briefly
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treated in the next section, and some simple examples will be worked out in the Appendix.

The Schwinger parametrization can in fact be used to prove Eq. 2.54. Beginning from

Eq. 2.61, we change variables to

zi = αi/A for 1 ≤ i < N

A = α1 +⋯ + αN .

(2.64)

The Jacobian is a simple arrowhead matrix,

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂α1
∂z1

. . .
∂α1

∂zN−1

∂α1
∂A

⋮ ⋱ ⋮ ⋮

∂αN−1
∂z1

. . .
∂αN−1
∂zN−1

∂αN−1
∂A

∂αN
∂z1

. . .
∂αN
∂zN−1

∂αN
∂A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A . . . 0 z1

⋮ ⋱ ⋮ ⋮

0 . . . A zN−1

−A . . . −A 1 −∑N−1i=1 zi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.65)

so the determinant can be quickly found by LU factorization:

∣J ∣ = AN−1. (2.66)

After changing variables, we have

I
nI
µJ
(p;mI) = ∫

q
qµJ ∫

∞

0
dA AN−1

N−1

∏
i=1
∫

1

0
dzi
(Azi)

ni−1

Γ(ni)
e−Azi(s

2
i +m

2
i )

×
⎛

⎝
1 −

N−1

∑
i=1

zi
⎞

⎠

nN−1 AnN−1

Γ(nN )
exp

⎧⎪⎪
⎨
⎪⎪⎩

−A
⎛

⎝
1 −

N−1

∑
i=1

zi
⎞

⎠
(s2N +m

2
N )

⎫⎪⎪
⎬
⎪⎪⎭

,

(2.67)
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where the integral over A is elementary:

I
nI
µJ
(p;mI) =

1

B(n1, . . . , nN )
∫
q
qµJ

N−1

∏
i=1
∫

1

0
dzi z

ni−1
i ⋅

⎛

⎝
1 −

N−1

∑
i=1

zi
⎞

⎠

nN−1

×

⎧⎪⎪
⎨
⎪⎪⎩

N−1

∑
i=1

zi(s
2
i +m

2
i ) +
⎛

⎝
1 −

N−1

∑
i=1

zi
⎞

⎠
(s2N +m

2
N )

⎫⎪⎪
⎬
⎪⎪⎭

−n1−⋯−nN

.

(2.68)

The final step is to trade the sums over zi for a new variable zN through the use of a delta

function. It is clear from the definition of zi that

0 ≤ zN ∶= 1 −
N−1

∑
i=1

zi ≤ 1, (2.69)

so we can insert

1 = ∫
1

0
dzN δ(1 − z1 −⋯ − zN ) (2.70)

into our current expression for InIµJ , replacing zN where appropriate, and we reach the desired

result:

I
nI
µJ
(p;mI) =

1

B(n1, . . . , nN )
∫
q
qµJ

N

∏
i=1
∫

1

0
dzi z

ni−1
i ⋅

δ (1 −∑Ni=1 zi)

[∑
N
i=1 zi (s

2
i +m

2
i )]
∑Ni=1 ni

. (2.71)

2.4 Tensor Integral Decomposition

When we derived formulae for the Feynman and Schwinger parametric integrals, we largely

ignored the factors of qµJ , since they play little part in the parametrizations themselves. On

the other hand, they pose a significant obstacle to finding closed-form expressions for the

momentum integrals6. Fortunately, we can always decompose tensor integrals into a linear
6The full parametric integrals rarely have a closed form, but we can at least solve the integrals over

momentum variables, where the dimension d is most consequential
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combination of Lorentz-covariant tensors whose coefficients scalar integrals.

The key observation is that any product qµJ = qµ1⋯qµn in the numerator of a momentum

integral transforms as a n-tensor under Lorentz transformations. Then the solution must

itself be expressible in terms of such n-tensors. The allowable structures must depend only

on the external momenta within the integrand and any number of metric tensors, since these

are the only available Lorentz-covariant quantities. Further, the tensors must be symmetric

under any permutation of the spacetime indices µi. Then an n-tensor integral depending on

some external momenta p1, . . . , pk is most generally expressible as

I
nI
µJ
(p;mI) = ∑

λ

Aλg
⊗λ0/2

{Iλ0

p1
⊗λ1
Iλ1
⋯pk

⊗λk

Iλk
}

(2.72)

where the sum runs over all weak (k + 1)-compositions λ of n with parts λi and with even

λ0. The braces around the multi-indices Ini represent symmetrization over the entire set

µJ , and the tensor product in the exponents indicates that each factor is a tensor product

with λi factors. The coefficients Aλ are scalar integrals. This decomposition is akin to the

Passarino-Veltman decomposition [82], which is ubiquitous in the literature on Feynman

integral calculus.

We can in fact count the number pλ of such compositions for each pair (n, k). It is well

known that there are exactly (n+k−1k−1 ) weak k-compositions of an integer n. Then, given that

the number of indices attached to metric tensors must be even, we seek the number of weak

k-compositions of the remaining n − λ0 indices, where λ0 = 2i with 0 ≤ i ≤ ⌊n/2⌋. This is
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simply7

pλ(n, k) =
⌊n/2⌋

∑
i=0
(
n − 2i + k − 1

k − 1
)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 k = 0

limm,`→n,k (
m+`−1
`−1 )3F2 (1,

1−m
2 ,−m2 ;

1−m−`
2 , 1−m−`2 ; 1) k > 0

.

(2.73)

The function 3F2 in the second line is a special case of the generalized hypergeometric

function, defined by the series

pFq(a1, . . . , ap; b1, . . . , bq; z) ∶= ∑k = 0∞
(a1)k⋯(ap)k
(b1)k⋯(bq)k

zk

k!
. (2.74)

In order to determine the coefficients Aλ, we must reduce the tensor equation, Eq. 2.72,

to a scalar form. For each composition λ, we can contract either side of the decomposition

above with the tensor associated to λ. This saturates all indices in InIµJ , producing a system

of as many linear equations for the scalar integrals Aλ.

The decomposition formula 2.72 is quite unwieldy, but it is often easy to write down for

simple integrals. For example, an integral with two free indices and two external momenta

can be written as

I
nI
µ1µ2
(p1, p2;mI) = A(2,0,0)gµ1µ2 +A(0,2,0)p1µ1µ2 +A(0,1,1)p1{µ1

p2µ2}
+A(0,0,2)p2µ1µ2 ,

(2.75)

7The limit is required in the final expression, because we have to recast the binomial coefficient in the
first line in terms of Pochhammer symbols indexed by i in order to obtain a hypergeometric series. Since the
arguments contain −2i, we must use the dimidiation and reflection formulae to obtain the index i at the cost
of gamma functions of negative argument. We must then treat n and k as non-integral positive numbers for
these manipulations, in order that the gamma functions are defined. After some simplification, we find that
the limits back to integer values are well-behaved, and the second line follows.
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where we indeed find pλ(2,2) = 4 terms. Contracting the equation above with gµ1µ2 , we

have

∫
q

q2

∏
N
i=1 (s

2
i +m

2
i )
ni
= dA(2,0,0) +A(0,2,0)p

2
1 + 2A(0,1,1)p1 ⋅ p2 +A(0,0,2)p

2
2. (2.76)

Contracting likewise with the other three tensors in Eq. 2.75, we obtain four linear equations

relating the coefficients Aλ to scalar integrals as above.

Eq. 2.72 is simplest when the integrand is already spherically symmetric, for example,

in the context of Feynman parameters. Since the parametrized denominators depend only

Lorentz scalars, there can be no tensors in the decomposition that depend on the external

momenta, which covary with Lorentz transformations. Moreover, the denominators are even

in the loop momentum q, so only the even tensor powers of q survive the parametrization.

Then for a rank-2n integral, the tensor decomposition contains only a symmetrized product

of n metric tensors. This can be written explicitly as

S
(2n)
I2n
∶= g{µ1µ2

⋯gµ2n−1µ2n}
=

1

2nn!
∑

π∈S2n

n

∏
i=1

gµπ(2i−1)µπ(2i) , (2.77)

which is simply a sum over all of the ways to distribute the 2n indices among the n metric

tensors, that is, the perfect pairings of [2n]. There are of course (2n)! permutations of

the indices, but many of these are redundant. First, the metric tensors commute among

themselves, so we overcount by n! permutations of these factors. Second, each tensor is

itself symmetric in its two indices, so we further overcount by 2n. These two redundancies

correspond to the Sn-action on n-tuples of pairs of indices and n Z2-actions on the pairs

themselves. Overall then, each set of equivalent permutations is stabilized by the subgroup
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S2 ≀[n] Sn < S2n, which is simply the hyperoctahedral group Bn. The size of the redundancy

is thus

∣Bn∣ = ∣S2 ≀[n] Sn∣ = ∣S2∣
∣[n]∣
∣Sn∣ = 2

nn!, (2.78)

and the total number of unique permutations is

(2n)!

2nn!
= (2n − 1)!!, (2.79)

the expected number of pairings over 2n objects. This explains the combinatorial prefactor

of the sum in Eq. 2.103. The S tensors in Eq. 2.103 are a special case of the most general

isotropic tensor of even rank:

∑
π∈Mn

aπ
n

∏
i=1

gµπ(2i−1)µπ(2i) (2.80)

where aπ are arbitrary coefficients (see for example [83]), and Mn ∶= S2n/Bn is the set of

perfect matchings. Setting aπ = 1 for all permutations, we recover S. In particular, this

allows us to sum over the group S2n instead of the set Mn.

A spherically symmetric integral thus has the general decomposition

∫
q
f(q2)qµ1⋯qµ2n = AS

(2n)
µ1⋯µ2n

. (2.81)

Since all permutations of the indices are contained within the tensor S, we can contract with

any n-fold product of metric tensors containing these indices to solve for A. We may as well
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choose gµ1µ2⋯gµ2n−1µ2n , so that

∫
q
(q2)nf(q2) = Agµ1µ2⋯gµ2n−1µ2nS

(2n)
µ1⋯µ2n

. (2.82)

As we will prove in App. , the contraction on the right simplifies to

gµ1µ2⋯gµ2n−1µ2nS
(2n)
µ1⋯µ2n

= (d)n,2 =∶ 1/WN (2.83)

where

(x)n,k = k
n(x/k)n = k

nΓ(x/k + n)

Γ(x/k)
(2.84)

is the Pochhammer k-symbol. The general formula for this family of integrals is thus

∫
q
f(q2)qµ1⋯qµ2n =

(4π)−d/2

2n−1Γ(d/2 + n)
S
(2n)
µ1⋯µ2n ∫

∞

0
dq qd+2n−1f(q2) (2.85)

after integrating out the spherical shell. This particular decomposition will be the most

important in the following chapters.

2.5 A Novel Treatment of Schwinger Parametrization

We now describe a new general method, introduced in [40], for treating dimensionally-

regularized momentum integrals. For this section, we will proceed in Euclidean space, where

we are conveniently assured that the inner product of any two momenta is positive definite.

This technique was in fact devised for the perturbative treatment of the gradient flow (see

below, Part II), an innately Euclidean scheme [84]. In the next chapter, however, we will

demonstrate an application in Minkowski space, which, due to the unfortunate necessity of
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Wick rotations and contour integrals, is much less efficient.

Let us imagine a theory whose propagators generically assume the form8

S̃(q) =
f(q)

q2 +m2
, (2.86)

where the numerator is some as yet undetermined smooth function f defined by the La-

grangian of that theory. In order to solve loop integrals in such a scenario, we would need a

procedure for integrating products like

S̃(q)S̃(q + p1)⋯S̃(q + pn) =
f(q)

q2 +m2

f(q + p1)

(q + p1)2 +m2
⋯

f(q + pn)

(q + pn)2 +m2
(2.87)

over loop momentum q. Again, the predominant difficulty is dealing with cross-terms pi ⋅ q

that introduce some angular dependence to the integrand. In familiar theories like the

Standard Model, the function f is a simple polynomial. In QCD, for example, the most

complicated numerator is in the fermion propagator, where f(q) = −i/q+m. Feynman param-

eters are a perfectly good choice in this setting, because they at most introduce a shift in the

integration variable, so the numerator remains a polynomial. For other functions we may

not be so lucky, unless we can reduce the integrand to a (potentially tensor-valued) rational

function of q. When f is smooth, we can do just that by expanding each propagator as a

Maclaurin series in pi ⋅ q:

S̃(q + pi) =
∞

∑
ki=0

(pi ⋅ q)
n

ki!
⋅
∂ki S̃(q + pi)

∂(pi ⋅ q)
k
i

∣
pi⋅q=0

. (2.88)

8We have dropped Feynman prescription and the subscript F , since they are unnecessary in Euclidean
space.
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Each term in this series is now of the form qIki+mi
fki
(q2), where Iki+mi is a multi-index

representing the some ki indices donated by the factor (pi ⋅q)ki and another mi indices which

may be latent to the function f . We can repeat this expansion for each propagator with

dependence on an external pi, resulting in an integral with exactly the structure of Eq. 2.85

when (k1 +m1) +⋯ + (kn +mn) = 2N for some integer N :

∫
q
qIk1+m1

⋯Ikn+mn
fk1(q

2)⋯fkn(q
2)

=
(4π)−d/2

2N−1Γ(d/2 +N)
S
(2N)
µ1⋯µ2N ∫

∞

0
dq fk1(q

2)⋯fkn(q
2) q2N+d−1.

(2.89)

This formula is, again, quite unmanageable in full generality, but we can find some nice

formulae for simple cases when the exact form of the free propagator is known. In the

present work, we are concerned with the cases f(q) = e−q2t and f(q) = e−q2t(−i/q+m), which

arise naturally in flowed perturbation theory, Sec. 5.3. The quantity t is a real, nonnegative

parameter related to the “flow time,” which measures the delocalization or smearing of

the fields. In this setting, Feynman parameters do more harm than good, since we have

products of momentum in the denominators but sums in the arguments of the exponentials.

Instead, the exponential factors suggest that we use Schwinger parameters, where everything

is treated on the same footing:

S̃(q + p) =
e−(q+p)

2t

(q + p)2 +m2
= ∫

∞

0
dz e−(q+p)

2(t+z)e−m
2z. (2.90)

This allows us to easily write the Taylor series for the cross term,

S̃(q + p) = ∫
∞

0
dz e−m

2ze−p
2(t+z)e−q

2(t+z)
∞

∑
k=0

(−2(t + z))k

n!
pIk

qIk
, (2.91)
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and continue as in the general case.

In the following subsections, we should imagine that t is a small parameter which is

only important up to logarithmic order. The reason for this is detailed in Ch. 7, which

introduces the short-flow-time expansion. This assumption will make our life much easier,

because it determines when we can truncate the Taylor series. The tensor decomposition

will invariably result in a hypergeometric function with parameters related to the index of

summation and argument related to the angle between external momenta. Because the series

can be truncated, we require only a small number of hypergeometric functions at specific

values of the parameters, a great many of which are known exactly in closed form. For the

results in this thesis, we need to treat only a few simple cases, with at most three propagators

per loop. We now derive the relevant formulae for these integrals, saving a brief discussion

about their generalization until the end of this section.

2.5.1 Two Point Functions: One Loop, Two Propagators

When calculating two-point correlation functions at one-loop order, we regularly encounter

integrals of the form

I = ∫
q

e−q
2t

(q2 +m2)a

e−(q+p)
2s

((q + p)2 +M2)b
qµ1⋯qµ` , (2.92)

for some positive numbers a, b, t, and s. The first factor is already quadratic in q, so we can

leave it as is and use Eq. 2.91 to rewrite the second:

I = ∫
q

e−q
2t

(q2 +m2)a
∫
z

zb−1

Γ(b)
e−M

2ze−p
2(s+z)e−q

2(s+z)
∞

∑
n=0

(−2(s + z))n

n!
pInqIn+`

, (2.93)

There are now two cases to consider: even ` and odd `.
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In the even case, we can relabel `→ 2` and shift the summation index likewise from n to

2n, since these will be the only terms that survive integration. Then

I = ⨋
n,z

zb−1

Γ(b)

(2(s + z))2n

(2n)!
e−M

2ze−p
2(s+z)pI2n ∫q

e−q
2(t+s+z)

(q2 +m2)a
qI2n+2`

, (2.94)

where we have introduced the shorthand notation ⨋n,z = ∑
∞
n=0 ∫

∞
0 dz, the ranges of summa-

tion and integration being implied. We again employ Eq. 2.85 and transform to spherical

coordinates, so that

∫
q

e−q
2(t+s+z)

(q2 +m2)a
qI2n+2`

=
(4π)−d/2

2n+`−1Γ(d/2 + n + `)
S
(2n+2`)
I2n+2`

∫

∞

0
dq
e−q

2(t+s+z)

(q2 +m2)a
q2n+2`+d−1 (2.95)

Changing variables to x = q2/m2, the integral becomes

∫

∞

0
dqe−q

2(t+s+z)q2n+2`+d−1 =
1

2
md+2n+2`−2a

∫

∞

0
dxe−m

2(t+s+z)xx
d/2+n−1

(x + 1)a
, (2.96)

which is just the integral representation of the Tricomi confluent hypergeometric func-

tion [85]:

U(a, b, z) =
1

Γ(a) ∫
∞

0
dte−ztta−1(1 + t)b−a−1. (2.97)

The momentum integral is, finally,

∫
q

e−q
2(t+s+z)

(q2 +m2)a
qI2n+2`

=
(4π)−d/2

2n+`
md+2n+2`−2aU (

d

2
+ n + `,

d

2
+ n + ` − a + 1,m2(t + s + z))S

(2n+2`)
I2n+2`

.

(2.98)
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When a = 1 this reduces to an incomplete gamma function, since

U(a, a, z) = ezΓ(1 − a, z). (2.99)

An even simpler case is that of zero mass, where

∫
q

e−q
2(t+s+z)

(q2)a
qI2n+2`

=
(4π)−d/2

2n+`Γ(d/2 + n + `)

Γ(d/2 + n + ` − a)

(t + s + z)d/2+n+`−a
S
(2n+2`)
I2n+2`

. (2.100)

In the odd case, we relabel `→ 2` + 1 and similarly reindex the sum from n to 2n + 1, so

that

I = ⨋
n,z

zb−1

Γ(b)

(2(s + z))2n+1

(2n + 1)!
e−M

2ze−p
2(s+z)pI2n+1 ∫q

e−q
2(t+s+z)

(q2 +m2)a
qI2n+2`+2

. (2.101)

The momentum integral is identical the the even case with n shifted to n + 1.

In any case, after performing the integral over q, we are left with a product of vectors

pµi that must be contracted with an isotropic tensor S. The simplest case is of course ` = 0,

where the tensor is completely saturated by the momenta:

pI2nS
(2n+2`)
I2n+2`

`→0
ÐÐ→ pI2nS

(2n)
I2n

. (2.102)

Referring back to the definition of S, Eq. 2.103, it is clear that

pI2nS
(2n)
I2n
=

1

2nn!
∑

π∈S2n

pI2n

n

∏
i=1

gµπ(2i−1)µπ(2i) =
1

2nn!
∑

π∈S2n

(p2)n = (2n − 1)!!(p2)n, (2.103)

since pI2n is invariant under permutations of the indices. All other cases may be found by
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repeated differentiation with respect to p. The chain rule on the product pI2n gives us

∂

∂pν
pI2n =

2n

∑
i=1

δνµi∏
j≠i

pµj (2.104)

Because the tensor S carries all of the indices on pI2n , every term is the sum above contracts

to the same quantity, pI2n−1S
(2n)
I2n−1ν

, and we find

∂

∂pν
pI2n = 2npI2n−1S

(2n)
I2n−1ν

. (2.105)

On the other hand,
∂

∂pν
(p2)n = 2n(p2)n−1pν , (2.106)

so that

pI2n−1S
(2n)
I2n−1ν

= (2n − 1)!!(p2)n−1pν ⇒ pI2n+1S
(2n+2)
I2n+1ν

= (2n + 1)!!(p2)npν . (2.107)

Further useful cases are

pI2nS
(2n+2)
I2nµν

= (2n − 1)!!(p2)n (δµν + 2n
pµν

p2
) , (2.108a)

pI2n+1S
(2n+4)
I2n+1µνρ

= (2n + 1)!!(p2)n (
1

2
δ{µνpρ} + 2n

pµνρ

p2
) , (2.108b)

pI2nS
(2n+4)
I2nµνρσ

= (2n − 1)!!(p2)n (S
(4)
µνρσ +

n

2

p{µνδρσ}

p2
+
(n − 1)n

6

pµνρσ

(p2)2
) . (2.108c)
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These follow from the general identities9

∂2mJ2m
pI2n+2mS

(2n+2m)
I2n+2m

= (2n + 1)2mpI2nS
(2n+2m)
I2nJ2m

=(2n + 2m − 1)!!∂2mJ2m
(p2)

n+m,

(2.109)

and

∂2mJ2m
(p2)

n+m = 2m(n + 1)m
m

∑
k=0

2k−m

(2k)!(m − k)!

n!

(n − k)!

2k

(p2)k
p⊗2k
{J2k

δ⊗m−k
J2m−2k}

, (2.110)

which are easily proven by induction on m. These combine to give us the general contraction

rule for the even case.

pI2nS
(2n+2m)
I2nJ2m

= (2n − 1)!!(p2)n
m

∑
k=0

2k−m

(2k)!(m − k)!

n!

(n − k)!

2k

(p2)k
p⊗2k
{J2k

δ⊗m−k
J2m−2k}

. (2.111)

The odd case follows by differentiating once further.

2.5.2 Three Point Functions: One Loop, Three Propagators

In Sec. 8.2, we will calculate three-point functions at one-loop order, where we will encounter

integrals of the form

I = ∫
q

e−q
2t

(q2 +M2)a

e−(q+p1)
2s1

((q + p1)2 +m
2
1)
b1

e−(q+p2)
2s2

((q + p2)2 +m
2
2)
b2
. (2.112)

9We use the shorthand ∂2mJ2m
= ∂
∂pµ1

⋯ ∂
∂pµ2m

.
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After absorbing the mixed denominators into the exponents with two Schwinger integrals,

we will find a double sum over the cross-terms:

I = ⨋
n,x

xb1−1

Γ(b1)

(−2(s1 + x))
n

n!
e−p

2
1(s1+x)e−m

2
1x⨋

m,y

yb2−1

Γ(b2)

(−2(s2 + y))
m

m!
e−p

2
2(s2+y)e−m

2
2y

× ∫
q

e−q
2(t+s1+x+s2+y)

(q2 +M2)a
p1Inp2JmqInJm ,

(2.113)

which is not as easily treated as the previous case. The momentum integral is easily decom-

posed: we seek even combinations of n+m, so that each index is either even (m+n→ 2m+2n),

or each is odd (m + n→ 2m + 2n + 2). After this, the integration goes as before, and we find

a Tricomi function.

In the former case, where both indices are even, the tensor decomposition on q gives us

a factor of

PEnm ∶= p1I2nS
(2n+2m)
I2nJ2m

p2J2m . (2.114)

Fortunately, we have done most of the heavy lifting already in the last subsection. We can

simply contract our master formula for two-point functions, Eq. 2.111, with 2m factors of a

second momentum. With the current labels,

PEnm = (2n − 1)!!(p
2
1)
np2J2m

m

∑
k=0

2k−m

(2k)!(m − k)!

n!

(n − k)!

2k

(p21)
k
p1
⊗2k
{J2k

δ⊗m−k
J2m−2k}

. (2.115)

Since p2J2m is totally symmetric in its 2m indices, the permutations within the summand

are immaterial under contraction, so we find (2m)! identical terms:

p2J2mp1
⊗2k
{J2k

δ⊗m−k
J2m−2k}

= (2m)!(p1 ⋅ p2)
2k(p22)

m−k. (2.116)
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With some rearranging, we have

PEnm = (2n − 1)!!(p
2
1)
n (2m)!

2mm!
(p22)

m
m

∑
k=0

22k

(2k)!

m!

(m − k)!

n!

(n − k)!
(
(p1 ⋅ p2)

2

p21p
2
2

)

k

. (2.117)

The fraction in front of the sum is simply the definition of the double factorial on odd

integers, Eq. 2.79. The summand can be further simplified using identities for the gamma

function and Pochhammer symbols. We first recognize that

m!

(m − k)!
=
Γ(m − k + 1 + k)

Γ(m − k + 1)
= (m − k + 1)k (2.118)

and likewise for the n-dependent factor. The reflection formula for Pochhammer symbols is

(m − k + 1)k = (−1)
k(−m)k, (2.119)

so
m!

(m − k)!

n!

(n − k)!
= (−m)k(−n)k. (2.120)

The remaining bit can be rewritten as

22k

(2k)!
=

22k

(2k)!

kΓ(k)

k!
=
22k−1

Γ(2k)

Γ(k)

k!
, (2.121)

which is readily simplified further by means of the Legendre duplication formula:

Γ(2k)

22k−1Γ(k)
=

Γ(1/2)

Γ(k + 1/2)
=

1

(1/2)k
. (2.122)
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We now have

PEnm = (2n − 1)!!(2m − 1)!!(p
2
1)
n(p22)

m
m

∑
k=0

(−n)k(−m)k
(1/2)kk!

(
(p1 ⋅ p2)

2

p21p
2
2

)

k

. (2.123)

Since m is a nonnegative integer, the factor of (−m)k vanishes for k >m, and we can extend

the upper limit of the sum to infinity without any repercussions. The result is exactly the

Gaussian hypergeometric series:

2F1(a, b; c; z) ∶=
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
, (2.124)

so

PEnm = (2n − 1)!!(2m − 1)!!(p
2
1)
n(p22)

m
2F1 (−n,−m;

1

2
;Π12) , (2.125)

where

Πij ∶= cos
2 θij , (2.126)

and we have defined the angle θij through the dot product

pi ⋅ pj = ∣pi∣∣pj ∣ cos θij ⇒
(p1 ⋅ p2)

2

p21p
2
2

= cos2 θij . (2.127)

The odd case,

POnm ∶= p1I2n+1S
(2n+2m+2)
I2n+1J2m+1

p2J2m+1 , (2.128)

can again be found by differentiation, where on one hand,

p2µ
∂

∂p1µ
PEn+1 m =

∂

∂p1µ
p1I2n+2S

(2n+2m+2)
I2n+2J2m

p2J2mµ = (2n + 2)P
O
nm. (2.129)
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On the other hand,

p2µ
∂

∂p1µ
PEn+1 m = p2µ

∂

∂p1µ
(2n + 1)!!(2m − 1)!!(p21)

n+1(p22)
m
2F1 (−n − 1,−m;

1

2
;Π12)

= (2n + 2)(2n + 1)!!(2m − 1)!!(p21)
n(p22)

m(p1 ⋅ p2)

× {2F1 (−n − 1,−m;
1

2
;Π12) + 2(1 −Π12)2F1 (−n,−m − 1;

3

2
;Π12)} .

(2.130)

The braced term in the second line can be reduced using Gauss’ contiguous relations,

2F1 (−n − 1,−m;
1

2
;Π12)+2(1−Π12)2F1 (−n,−m − 1;

3

2
;Π12) = (2m+1)2F1 (−n,−m;

3

2
;Π12) ,

(2.131)

and the final result is

POnm = (2n + 1)!!(2m + 1)!!(p
2
1)
n(p22)

m(p1 ⋅ p2)2F1 (−n,−m;
3

2
;Π12) . (2.132)

Returning to Eq. 2.113 and remembering that the momentum integration itself introduces

a confluent hypergeometric function, the general formula for three-point functions is once

again totally unmanageable10. Although we cannot find a closed solution for any generic

loop, the combinatorial contributions can be greatly simplified for certain configurations of

the external momenta. If p1 and p2 are collinear, then Π12 = 1, and the hypergeometric

function has unit argument. Since 1/2 > −n −m, we can use Gauss’ summation theorem:

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
, R(c) >R(a + b). (2.133)

Alternatively, if the momenta are perpendicular, Π12 vanishes, and only the first term in the
10There might be a pattern here.
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hypergeometric series survives, so

2F1(a, b; c; 0) = 1. (2.134)

2.5.3 Vacuum Functions: Two Loops, Three Propagators

The final case we will consider is the two-loop vacuum diagram, which is generically express-

ible as

∫
p,q

e−p
2s1

(p2 +m2
1)
n1

e−q
2s2

(q2 +m2
2)
n2

e−(p−q)
2s3

((p − q)2 +m2
3)
n3
pInqJm , (2.135)

where we once again handle the last factor using Schwinger parameters. After the Taylor

expansion, we are left with a product of momenta pInK`
qJmK`

, where ` is the index of

summation. Since each momentum is integrated, each requires a tensor decomposition.

Accordingly, the only scenarios in which the integral does not trivially vanish are those when

n and m are both either odd or even (and therefore ` has the same parity). We consider the

even case, where we must calculate

QEn`m ∶= pI2nS
(2n+2`)
I2nK2`

S
(2`+2m)
K2`J2m

qJ2m . (2.136)

We take a different, less direct approach to compute this contraction. Consider the integral

Inlm = ∫
r
e−r

2t(r ⋅ q)2mpI2nS
(2n+2`)
I2nK2`

rK2`
. (2.137)

The Gaussian in the integrand is just a weight function ensuring convergence. We can go

about calculating this integral in two ways.

The first method begins by directly decomposing the tensor integral into a scalar integral
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and an isotropic tensor:

Inlm = pI2nqJ2mS
(2n+2`)
I2nK2`

∫
r
e−r

2trK2`J2m

= pI2nS
(2n+2`)
I2nK2`

S
(2`+2m)
K2`J2m

qJ2m
1

(d)`+m,2
∫
r
e−r

2t(r2)` +m

= QEn`m
1

(d)`+m,2

(4π)−d/2

Γ(d/2)

Γ(d/2 + ` +m)

td/2+`+m

= (4πt)−d/2(2t)−`−mQEn`m.

(2.138)

where in the third line we used the definition of QE
n`m

, Eq. 2.136, and the familiar transfor-

mation to spherical coordinates. We can invert this equation for QE
n`m

, so that

QEn`m = (4πt)
d/2(2t)`+mInlm. (2.139)

The second approach gives us an exact formula for the integral. We start by recognizing

the definition of PEnm in the integrand, which we replace with the closed-form solution,

Eq. 2.125:

Inlm = ∫
r
e−r

2t(r ⋅ q)2mpI2nS
(2n+2`)
I2nK2`

rK2`

= (2n − 1)!!(2` − 1)!!(p2)nqJ2m ∫r
e−r

2t(r2)`2F1 (−n,−`;
1

2
;Πpr) rJ2m .

(2.140)

the hypergeometric function can be replaced by its series representation, whereafter the
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momentum integral is ready for another tensor decomposition:

Inlm = (2n − 1)!!(2` − 1)!!(p
2)nqJ2m ⨋r,k

e−r
2t(r2)`

(−n)k(−`)k
(1/2)kk!

(
(p ⋅ r)2

p2r2
)

k

rJ2m

= (2n − 1)!!(2` − 1)!!(p2)nqJ2m

∞

∑
k=0

(−n)k(−`)k
(1/2)kk!

pI2k
(p2)k

∫
r
e−r

2t(r2)`−krI2kJ2m

= (2n − 1)!!(2` − 1)!!(p2)n
∞

∑
k=0

(−n)k(−`)k
(1/2)kk!

PE
km

(p2)k
1

(d)k+m,2
∫
r
e−r

2t(r2)`+m

= (2n − 1)!!(2` − 1)!!(p2)n
∞

∑
k=0

(−n)k(−`)k
(1/2)kk!

PE
km

(p2)k
(4πt)−d/2

2m+ktm+`
Γ(d/2 +m + `)

Γ(d/2 +m + k)
,

(2.141)

where in the third line we used

pI2k
S
(2k+2m)
I2kJ2m

qJ2m = P
E
km. (2.142)

We again replace PE
km

with its closed form to write

Inlm = 2
`αn`m

(4πt)−d/2

(2t)m+`

∞

∑
k=0

(−n)k(−`)k
(1/2)k

(2k − 1)!!

2kk!

(d/2 +m)`
(d/2 +m)k

2F1 (−k,−m;
1

2
;Πpq) , (2.143)

where we have defined

αn`m ∶= (2n − 1)!!(2` − 1)!!(2m − 1)!!(p
2)n(q2)m. (2.144)

The Legendre duplication formula allows us to cancel (2k − 1)!! in the numerator with

2k(1/2)k in the denominator. Then replacing the hypergeometric function with its series

definition, we have

Inlm = 2
`αn`m

(4πt)−d/2

(2t)m+`

∞

∑
k=0

(−n)k(−`)k
k!

(d/2 +m)`
(d/2 +m)k

∞

∑
j=0

(−k)j(−m)j

(1/2)j

Π
j
pq

j!
. (2.145)
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Because In`m ∝ Qn`m, and because Qn`m is clearly finite by definition, we can reorder the

sums, and use the fact that the factor of (−n)k(−`)k forces the second sum to terminate:

Inlm = 2
`αn`m

(4πt)−d/2

(2t)m+`

∞

∑
j=0

(−m)j

(1/2)j

Π
j
pq

j!

min(n,`)

∑
k=0

(d/2 +m)`
(d/2 +m)k

(−k)j(−n)k(−`)k
k!

. (2.146)

We now use the reflection formula to rewrite

(−k)j = (−1)
j(k − j + 1)j . (2.147)

We also use the ratio formulae,

(x)m
(x)n

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(x +m)n−m n ≥m

1
(x+n)m−n

m ≥ n,

(2.148)

to rewrite

(−n)k(−`)k = (−n)j(−`)j(j − n)k−j(j − `)k−j (2.149)

and

(d/2 +m)k = (d/2 +m)j(d/2 +m + j)k−j , (2.150)

so that

Inlm = 2
`(d/2 +m)`αn`m

(4πt)−d/2

(2t)m+`

∞

∑
j=0

(−n)j(−`)j(−m)j

(1/2)j(d/2 +m)j

Π
j
pq

j!

×

min(n,`)

∑
k=0

(j − n)k−j(j − `)k−j

(d/2 +m + j)k−j

(−1)j(k − j + 1)j

k!
.

(2.151)
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The second sum can be reindexed, so that

min(n,`)

∑
k=0

(j − n)k−j(j − `)k−j

(d/2 +m + j)k−j

(k − j + 1)j

k!
=
∞

∑
k=0

(j − n)k(j − `)k
(d/2 +m + j)kk!

= 2F1 (n − j, ` − j,
d

2
+m + j; 1) ,

(2.152)

which is further simplified by using Gauss’ summation formula, Eq. 2.133:

min(n,`)

∑
k=0

(j − n)k−j(j − `)k−j

(d/2 +m + j)k−j

(k − j + 1)j

k!
=
Γ(d/2 +m + j)Γ(d/2 + n + ` +m − j)

Γ(d/2 +m + n)Γ(d/2 +m + `)
. (2.153)

Rearranging the gamma functions into Pochhammer symbols, the final sum is

Inlm = 2
`(d/2 +m + n)`αn`m

(4πt)−d/2

(2t)m+`

∞

∑
j=0

(−n)j(−`)j(−m)j

(1/2)j(1 − d/2 − n − ` −m)j

Π
j
pq

j!
, (2.154)

which is easily recognized as another generalized hypergeometric series:

Inlm = αn`m(d + 2m + 2n)`,2
(4πt)−d/2

(2t)m+`
3F2 (−n,−`,−m;

1

2
,1 −

d

2
− n − ` −m;Πpq) . (2.155)

Combining this with Eq. 2.139, we reach the final result:

QEn`m = αn`m(d + 2m + 2n)`,2 3F2 (−n,−`,−m;
1

2
,1 −

d

2
− n − ` −m;Πpq) . (2.156)

2.5.4 Generalization

The calculations in the last three subsections have held to a pattern. In order to decompose

the tensor integrals that appear in our Taylor series, we always need to find a way to contract

strings of isotropic tensors S and some external momenta with some distribution of shared

indices. The structure of the isotropic tensors may hint at a more general framework for
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computing quantities like PE,Onm and Q
E,O
n`m

. For each of these, we needed to attach some

number of of external momenta p1 to another momenta p2 through all perfect matchings of

their indices. It is tempting to try to embed this structure into a Brauer algebra Bn(d) [86].

A Brauer algebra is an algebra over the ring Z[d] for some indeterminate number d with

a basis of all perfect matchings of two sets x1, . . . , xn and y1, . . . , yn. This is most easily

described in terms of Brauer diagrams, where the set {xi} is presented as a set of graph

vertices in a horizontal line, and {yi} is a set of vertices placed in a parallel line below

them. The matching defines a set of edges each joining any two of these 2n vertices. The

composition law is concatenation of diagrams, where, for some diagrams A and B, A ⋅B is

formed by placing A above B and identifying the y vertices from A with the x vertices from

B. When the concatenation of A and B forms some ` loops, the loop is deleted from the

resulting diagram, product acquires a factor of d`, A ⋅B = d`AB.

This is very similar to our construction. An S tensor is a sum of all perfect matchings of

its indices, where the matchings are represented as pairs of indices distributed across products

metric tensors. The indices can be identified with the vertex sets of a Brauer diagram, and

the metric tensors form the edge set. Then contraction of any two tensors is equivalent to the

sum over concatenations of the corresponding Brauer diagrams. In particular, a loop formed

under concatenation of Brauer diagrams is the same as a trace formed by the contraction of

isotropic tensors. Each contributes a factor of d and drops out of the resultant matching. In

the context of the isotropic tensors, d is just the dimension of the underlying spacetime.

While the exact correspondence between the contraction formulae and Brauer algebras

has not been fully worked out yet, there is a rich set of literature on the associated topics.

Of particular interest are Bn(d)-modules, which are seemingly very closely related to the

structure of the S tensors. This work is ongoing.
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Chapter 3

Quantum Chromodynamics

3.1 Yang-Mills Theory

Quantum chromodynamics is the gauge theory for the strong interaction. It is easily con-

structed from only a few empirical principles. We begin with the fermionic Lagrangian,

describing a set of uncoupled spin-1/2 quarks with nf = 6 flavors:

Lf =

nf

∑
i=1

ψ̄i( /∂ +mi)ψi (3.1)

From now on the sum over flavors will be assumed, and we will drop the corresponding

indices. The interacting theory is determined by imposing a local gauge symmetry with the

condition of renormalizability. In order to choose a symmetry group, we observe that the

branching fractions for mounic and hadronic decay channels in electron-positron strongly sug-

gest that quarks compose a triplet representation of their gauge group [47]. Since SO(3) and

SU(3) are the only compact, simple Lie groups up to isomorphism with three-dimensional

irreps, it must be one of these two. However, quarks cannot be their own antiparticles,

so we require a complex representation, which exclusively establishes SU(3) as the gauge

group. The fundamental triplet representation is defined over a vector space of three basis

”color” charges held by the quarks. For full generality in choosing the number of colors N ,

we instead study SU(N) for the remainder of this text.

Now, as in Sec. 1.1, in order that the Lagrangian maintain invariance under local gauge

transformations, the derivative term must be made to transform covariantly. The true rea-
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son for our earlier construction is the locality of the transformation. Since this means ω

is coordinate-dependent, the infinitesimally-separated fields under the derivative transform

separately, and we need to consider their parallel transport on a path across the displacement:

δψ = Aµψ. (3.2)

where Aµ is the gluon field, which assumes values in the Lie algebra su(3). Adding this to

the naïve derivative yields the gauge covariant derivative,

Dµψ = (∂µ +Aµ)ψ, (3.3)

which transforms as desired; viz., for some U ∈ SU(3),

Dµψ
U
Ð→D′µψ

′ = UDµψ. (3.4)

Since SU(N) is a matrix Lie group, the covariant derivative acts on fields in the fundamental

representation – fermions in the present case – by multiplication as in Eq. 3.3. The gluons

instead assume the adjoint representation, for which the connection is simply adA(⋅) = [A, ⋅],

so the covariant derivative acts accordingly:

DµAν = ∂µAν + [Aµ,Aν] = (∂µA
a
ν + f

abcAbµA
c
ν) t

a. (3.5)

The replacement ∂ →D adds an interaction piece to the fermionic Lagrangian,

Lint = ψ̄ /Aψ, (3.6)
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and may be identified with the minimal coupling prescription. We have now traded gauge

variance for a new vector field, A, which further requires its own free Lagrangian in order to

be dynamical. The Proca Lagrangian,

LP =
1

g2
Tr [

1

2
GµνG

µν +M2AµA
µ] , (3.7)

where Gµν = [Dµ,Dν], describes free vector particles of mass M . The tensor Gµν = Gaµνta is

known as the field-strength (curvature) tensor for the field A. The mass term in the above

Lagrangian is not gauge invariant1; setting M = 0, we arrive at the Yang-Mills Lagrangian:

LYM =
1

2g2
TrGµνG

µν . (3.8)

We now have the nonperturbative QCD Lagrangian, containing kinetic terms for both mas-

sive fermions and massless gauge bosons — respectively the quarks and gluons — and a

minimal interaction term between them:

LQCD = Lf + LYM + Lint = ψ̄( /D +m)ψ +
1

2g2
TrGµνG

µν . (3.9)

The gluon Lagrangian also hides two self-interactions generated by nonlinearities in the

field-strength tensor

Gaµν = ∂[µA
a
ν]
+ fabcAbµA

c
ν . (3.10)

Because the gauge group in nonabelian, the commutator is generically nonzero, and the

product GµνGµν contains quadratic, cubic, and quartic interactions.

1This is not necessarily problematic, since the mass term may be acquired through a spontaneously broken
symmetry, but there is no physical indication that the SU(3) symmetry is broken.
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From here, the generating functional produces all correlation functions:

⟨

nG
∏
i=1

Gµi(zi)

nψ

∏
j=1

ψ(yj)

nψ

∏
k=1

ψ̄(xk)⟩

=

nG
∏
i=1

−iδ

δJµi(zi)

nψ

∏
j=1

iδ

δη̄(yj)

nψ

∏
k=1

−iδ

δη(xk)

1

Z0
∫ D[A,ψ, ψ̄]e

iS∣
η̄,η,J=0

,

(3.11)

where we have inserted the appropriate numerical factors respecting fermionic statistics and

modified the action to include the appropriate sources, as in Sec. 1.2:

S = ∫ d4x [LQCD + JµA
µ + ψ̄η + η̄ψ] . (3.12)

Here, in accordance with the fields they source, the J field is a Lorentz vector taking values

in the adjoint representation of SU(3), while the η, η̄ fields are Grassmann-valued spinors.

In order to study QCD perturbatively, we must fix the gauge. Following the Faddeev-

Popov procedure as before, we introduce two new terms to the action for the Faddeev-

Popov and gauge-fixing Lagrangians (Eqs. 1.45 and 1.50) defined in an Rξ gauge. The total

Lagrangian is thus

LQCD = LD + LYM + Lgf + LFP + LJ , (3.13)

where

LD = Lf + Lint = ψ̄( /D +mi)ψ, (3.14a)

LYM =
1

2g2
TrGµνG

µν , (3.14b)

Lgf =
1

g2ξ
Tr(∂µA

µ)
2
, (3.14c)

LFP =
1

g2TF
Tr c̄(∂µD

µ)c, (3.14d)
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LJ = JµA
µ + ψ̄η + η̄ψ + c̄κ + κ̄c, (3.14e)

and we have introduced the Grassmann-odd, scalar source fields κ, κ̄ for the ghosts. For

now, all fields and parameters should be considered bare; we exclude the subscript zero for

notational convenience. We may now construct the two-point Green functions, or propa-

gators, for the fermions and gluons. Since we are calculating two-point functions, the only

contributions at leading order in the coupling come from the kinetic part of the action, which

is strictly quadratic in the fields. Following the Gaussian integration procedure in Sec. 2.1.1,

we have three propagators. The fermion propagator is

⟨ψ̃ψ̃⟩ ∶ = S̃F (p) = i
/p −m

p2 +m2 − iε
. (3.15a)

We have already considered the gauge propagator in Secs. 1.5 and 2.1.1. In QCD, since the

gauge group is SU(N), we can replace TF = −1/2 to avoid a proliferation of Dynkin indices.

The gluon propagator is then

⟨ÃÃ⟩ ∶ = D̃F
ab
αβ(q) = −g

2 iδab

q2 − iε
[gαβ − (1 − ξ)

qαqβ

q2 − iε
] . (3.15b)

We did not consider the ghost propagator before, but its treatment is no different than that

of any other field. Since free ghosts obey the Laplace (or Poisson for nonzero iε) equation,

their propagator is the well-known fundamental solution,

⟨c̃c̃⟩ ∶ = D̃ab
F (p) = −i

g2δab

p2 − iε
. (3.15c)

There are also four vertices involving higher powers of the fields. As we mentioned before,
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the Yang-Mills action contains vertices with three and four gluons:

⟨Ã3⟩ ∶ = −
fabc

g2
[(p − q)γgαβ + (q − r)αgβγ + (r − p)βgγα] , (3.16a)

⟨Ã4⟩ ∶ =
i

g2
[fabefcde(gαγgβδ − gαδgγβ)

+facefbde(gαβgγδ − gαδgγβ)

+fadefbce(gαβgγδ − gαγgβδ)].

(3.16b)

The quark-quark-gluon vertex arises as a result of promoting the derivative to a covariant

derivative, as in Sec. 1.1:

⟨ψ̃Ãψ̃⟩ ∶ = iγαt
a. (3.16c)

Likewise, at nonzero coupling the covariant derivative in the Faddeev-Popov action generates

a ghost-ghost-gluon vertex:

⟨c̃Ãc̃⟩ ∶ = −
fabc

g2
rα. (3.16d)

3.2 Renormalization

Now that we have the Feynman rules for QCD, we can in principle calculate correlation

functions to any order – at least in terms of momentum integrals. Nevertheless, one en-

counters difficulties extracting analytical results already at next-to-leading order.2 After the

tree-level, a new vertex appears for each factor of the interaction Lagrangian in Eq. 1.32,
2Except for vacuum correlation functions of nontrivial operators, whose leading order diagrams are already

one-loop
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and the extra legs contract to form loops. These fluctuations correspond to the mixing of all

couplings in the Lagrangian. Hence, these diagrams represent the renormalizations of the

bare fields and parameters. QCD contains six bare parameters: the normalizations of the

fermion, gluon, and ghost wavefunctions; the strong coupling g0; the fermion mass m0, and

the gauge-fixing parameter ξ0. The renormalized fermions and masses are simply written

ψ0 = Zψψ, ψ0 = ψZψ, m0 = Zmm. (3.17)

The gauge sector is not so straightforward. The parameter ξ0 in particular requires

renormalization in order to maintain gauge invariance. To see this, let us briefly consider

the geometric series for the gluon propagator (see Eqs. 1.87 and 3.15b),

D̃ab
αβ(q) = D̃F

ab
αβ(q) + D̃F

ac
αµ(q)Π̃

(1)µν cd(q)D̃F
db
νβ](q) +⋯, (3.18)

where Π̃ab
αβ
(q) represents the sum over all 1PI diagrams in the propagator of a gauge

boson. Lorentz invariance and the conservation of gluon charge restrict its form to

iq2δab (π1gαβ − π2
qαqβ

q2
) for some functions π1,2(q). According to the transformation law

for A, Eq. 1.7, a gauge transformation shifts any physical state by a total derivative that

must identically vanish in order to uphold gauge invariance. In momentum space, this is the

Slavnov-Taylor (ST) identity

qαΠ̃abαβ(q) = 0. (3.19)

This additionally requires that π1 = π2 =∶ Π, so that only the transverse polarizations of the

gluon propagator receive loop corrections. Since the gauge-fixing term is entirely longitudi-
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nal, we must ensure that it does not acquire an anomalous dimension. If we write

g0 = µ
εZgg, ξ0 = Zξξ, A0 = Z

1/2
A A, (3.20)

the corresponding renormalized Lagrangian goes as ZA
ZξZ

2
g

, which is restricted to one by the

ST identity. This evidently allows us to discard one of these constants. To make later

manipulations cleaner, we choose ZA = ZξZ2
g .

Typically, the ghosts are renormalized symmetrically:

c0 = Z
1/2
c c, c̄0 = c̄Z

1/2
c . (3.21)

We choose a different prescription in order to simplify the notation of Sec. 6.4. Like the

gluon field, we have absorbed the coupling into the ghost fields,

gc→ c, gc̄→ c̄ , (3.22)

allowing us to write the ghost and gauge-fixing Lagrangians as a single, manifestly closed

BRST variation, Eq. 1.65. With this rescaling, we choose

c0 = ZgZ
1/2
ξ

Zcc, c̄0 = c̄ZgZ
−1/2
ξ

. (3.23)

Modulo the rescaling by g, this choice is equivalent to Eq. 3.21, as the ghost renormal-

ization is only relevant to c̄c pairs. Further, this asymmetric convention ensures that no

renormalization constants enter the Slavnov-Taylor identities of flowed QCD, Part II.

We can now calculate all five renormalization constants with only four correlation func-
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(a) (b) (c) (d)

Figure 3.1: One-loop contributions to the three-gluon vertex

tions. Zξ may be extracted from the gluon propagator, Zψ and Zm from the quark propaga-

tor, and Zc from the ghost propagator. Zg is computed with the gluon three-point function;

this calculation is long and uses no new methods, so we simply quote the result for Zg. It

would typically be found to cancel the total divergence of four amputated diagrams, shown

in Fig. 3.1. Since the tree-level is of order g20, the renormalized three-point function will be

proportional to Z2
g . No factors of ZA appear, since we amputate the legs. In dimensional

regularization, the total pole may be canceled at leading order by setting

Zg = 1 +
g2

(4π)2
(
11

6
TA −

2

3
TFnf)

1

ε
+O(g4). (3.24)

For the remaining renormalization constants, we proceed in bare perturbation theory with

a regulated dimension d = 4 − 2ε. These are standard results, but for demonstration the

following calculations use the robust method introduced in Sec 2.5 of this thesis to decompose

difficult angular integrals in dimensional regularization.

3.2.1 Gluon Self-Energy

The perturbative expansion of the gluon propagator was given in Eq. 3.18. In this section

we will calculate the one-loop correction Π̃ab
αβ
(q). There are four Feynman diagrams at this

order, pictured in Fig. 3.2. Two are totally gluonic, coming from the nonlinear terms in the
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gauge action. The third contains a ghost loop that exactly cancels the longitudinal terms

in the pure-gauge diagrams. The last diagram has a quark loop representing the screening

of the gluon field by virtual quark-antiquark pairs. We label the diagrams [Γi]abαβ(q) for

i ∈ {a, b, c, d} and set ξ0 = 1 for the time being. The full results will be listed at the end.

Using the Feynman rules, Eqs 3.15-3.16, diagram (a) may be written

(a) (b) (c) (d)

Figure 3.2: One-loop contributions to the vacuum polarization of the gluon field

Γa = −∫
k

facd

g20
{(q − k)δgαγ + (q + 2k)αgγδ − (2q + k)γgδα}

g20
(q + k)2 − iε

×
fbdc

g20
{−(2q + k)γgδβ + (q + 2k)βg

δγ + (q − k)δg
γ
β
}

g20
k2 − iε

.

(3.25)

The structure constants simplify to TAδ
ab. To simplify the algebra, we define the three

tensors,

Nαβ = (d − 6)qαβ + 5q
2gαβ ,

Eαβ
µ = (2d − 3)qαg

µ
β
+ 2qµgαβ ,

Zαβ
µν = (2d − 3)(g

µ
αg
ν
β + g

ν
αg
µ
β
) + 2gαβg

µν ,

(3.26)

so that the numerator of the integrand may be written in powers of k:

Γa = −TAδ
ab
∫
k

Nαβ +Eαβ
µkµ +Zαβ

µνkµν

(k2 − iε)((q + k)2 − iε)
. (3.27)

Now, in order to perform the integral in d-dimensions, we must write the integrand as

a spherically-symmetric function; that is, a function of only the magnitude k2. The only
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impediment is the cross-term 2k ⋅q in the denominator. One could treat this with Feynman or

Schwinger parametrization, which amount to completing the square in the denominator with

some parametric integral and absorbing the shift into k by translation invariance. Instead,

we propose to use a modified3 Schwinger parametrization to write

1

(q + k)2 − iε
= i∫

∞

0
dz e−i(q+k)

2z−εz = i∫
∞

0
dz e−iq

2z−ik2z−εz
∞

∑
n=0

(−2iz)n

n!
qInkIn , (3.28)

where the second equivalence is found by Taylor-expanding the cross-term e−2izq⋅k. Now the

denominator is strictly symmetric, and the numerator is a polynomial in the components

of k. All terms with an odd power of k will vanish due to the symmetry of the integration

range, while the even terms may be decomposed to scalar integrals. We then split the sum

into odd and even terms, reindexing n → 2n for the terms containing Nαβ and Zαβ
µν and

n→ 2n + 1 for the term with Eαβ
µ. After some simplification, we have

Γa = −iTAδ
ab
⨋
n,z

(2iz)2n

(2n)!
qI2ne−iq

2z−εz
∫
k

e−ik
2z

k2 − iε
kI2n

× (Nαβ −
2iz

2n + 1
qµ2n+1Eαβ

µkµµ2n+1 +Zαβ
µνkµν) ,

(3.29)

This form is ready for tensor decomposition. Using Eq. 2.83, we make the replacements

kI2n →WnS
(2n)
I2n
(k2)n (3.30)

and utilize the contraction formulae for the isotropic tensors S, Eqs. 2.105-2.108. For the term

with no accompanying powers of k, all indices are contracted, and we can write qI2nS(2n)I2n
=

(2n − 1)!!(q2)n. Similarly, for the terms of order one and two, we write qI2n+1S(2n+2)I2n+1µ
=

3This form is useful in Minkowski space, where the square of any momentum needn’t be positive.
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(2n+1)!!(q2)nqµ and qI2nS(2n+2)I2nµν
= (2n−1)!!(q2)n (δµν + 2nqµqν/q2) respectively. Now, after

performing all contractions, using Wn = (d+2n)m,2Wn+m, and simplifying the combinatorial

factors, we are able to take the momentum integrals to spherical coordinates. First, we

transform to Euclidean spacetime with the Wick rotation k0 = ik4, so that

∫ ddk f(k2) = i∫ ddxE f(k2E). (3.31)

In our case, the integrals are of the form

∫

∞

0
dz e−iq

2z−εz
∫
kM

e
−ik2Mz

(k2M )
n−1zm = i∫

∞

0
dz e−iq

2z−εz
∫
kE

e
−ik2Ez(k2E)

n−1zm

(3.32)

for some nonnegative integers n and m. The momentum integral does not converge for

real z, but we can circumvent this problem by writing the Schwinger integral as a contour

integral (Fig. 3.3) about a quarter circle in the fourth (first) quadrant of the complex plane

for positive (negative) q2 +k2, not unlike a Wick rotation. Since the Schwinger integral runs

over an entire function, there are no poles enclosed, and the entire contour integral vanishes.

We can further prove that the quarter-circular contours give a vanishing contribution in the

limit of large R. For Q ∶= q2 + k2 ≷ 0, the integrals are

∫
C±
R

dz e∓i∣Q∣z−εzzm = i∫
∓π/2

0
dθ e−(±i∣Q∣+ε)Re

iθ
(Reiθ)

m+1
= −

Γ(m + 1, (±i∣Q∣ + ε)Rz)

(±i∣Q∣ + ε)m+1
∣

∓i

z=1

.

(3.33)

This quantity has the asymptotic behavior

−
Γ(m + 1, (±i∣Q∣ + ε)Rz)

(±i∣Q∣ + ε)m+1
R→∞
∼ −((±i∣Q∣ + ε)Rz)m exp{−(±i∣Q∣ + ε)Rz} (3.34)
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Im z

Re z

(a) q2 + k2 > 0

Im z

Re z

(b) q2 + k2 < 0

Figure 3.3: Contours for rotating the Schwinger parameter z

for large R, so that the contributions from C±R diminish exponentially. The remaining inte-

grals along the imaginary z-axis then allow us to write the relation

∫

R

0
dz e∓i∣Q∣z−εzzm = (∓i)m+1∫

R

0
dz e−∣Q∣z±iεzzm, (3.35)

and we can now discard ε. The full integral then becomes

∫

∞

0
dz e−iq

2z
∫
kM

e
−ik2Mz

(k2M )
n−1zm = ±∫

∞

0
dz e−q

2z
∫
kE

e
−k2Ez(k2)n−1(∓iz)m (3.36)

for q2+k2E ≷ 0. We now drop all Euclidean labels and write the result in spherical coordinates

with Eq. 2.52:

∫

∞

0
dz eiq

2z
∫
kM

e
ik2Mz

(k2M )
n−1zm = ±

(4π)−d/2

Γ(d/2) ∫
∞

0
dz e−q

2z(∓iz)m
Γ(d/2 + n − 1)

zd/2+n−1
.

(3.37)
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Putting all of this together and changing variables to ζ = q2z ≥ 04, the total is

Γa = −2iTA
δab

q2
(
4π

q2
)

−d/2

⨋
n,ζ

(ζ)n−d/2

(d + 2n − 2)(d + 2n)n!
e−ζ

× { [(d + 2n − 2)(3d + 2n − 3) + ζ(3d + 6n + 4)] δαβ

+ [2n(2d − 3)(d + 2n − 2) − ζ(d(3d + 6n − 8) + 12)]
qαβ

q2
}.

(3.38)

Summing over n would produce an upper incomplete gamma function, so it is simpler to

first integrate over ζ; the operations commute for d < 4, so this is allowed. After this, we

may sum over n. The result is

Γa = 2iTAδ
ab q2

(4π)2
(
4π

q2
)

2−d/2
B(d/2, d/2)Γ(2 − d/2)

2 − d
{(6d − 5)δαβ − (7d − 6)

qαβ

q2
} . (3.39)

Replacing d = 4− 2ε and expanding about ε to zeroth order, the final expression for diagram

(a) is

Γa = −
1

18

TA
(4π)2

⋅ iδabq2 {(57Lε + 116)Tαβ − 9(Lε + 2)Λαβ +O(ε)} , (3.40)

where the divergent bit is contained within

Lε =
1

ε
+ log(

4π

q2
) − γE , (3.41)

and we have defined the transverse projector,

Tαβ = δαβ −
qαβ

q2
, (3.42)

4Without loss of generality, we can now assume q2 > 0. We should in principle write the integral in terms
of ±∣q∣ again, but we would find the same result in both cases, since the ± sign of Eq. 3.37 is absorbed into
the measure after changing variables.
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and the longitudinal projector,

Λαβ =
qαβ

q2
. (3.43)

The result with generic ξ0 is

Γa = −
1

18

TA
(4π)2

⋅ iδabq2 {((75 − 18ξ0)Lε + 9ξ
2
0 + 18ξ0 + 89)Tαβ − 9(Lε + 2)Λαβ +O(ε)} ,

(3.44)

The second diagram produces a scaleless integral; that is, the integrand contains no dimen-

sionful quantities other than the integration variable. In dimensional regularization these

are defined to vanish, as we will later discuss in Sec. 7.3. For now, we may formally define

the integral by inserting the identity

1

q2 + iε
=

1

q2 + µ2 + iε
+

1

q2 + iε

µ2

q2 + µ2 + iε
(3.45)

where q is the integration variable, and µ is some fictitious positive mass parameter. In the

present case, the first integral will only converge for 0 < d < 2, while the second converges for

2 < d < 4. If we calculate the integrals anyway, they give opposite contributions in the d→ 4

limit, and the total integral vanishes. Hence,

Γb = 0. (3.46)

The third and fourth diagrams involve the quark and ghost fields, but are otherwise treated

the same. One subtlety is that the fermion loop introduces a trace over the quark flavors.

For the case of mass-degenerate flavor singlets, this simply introduces a factor of nf , the

number of fermion flavors. In any case, we disregard the mass, since it is not needed for the
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computation of Zξ. The results for diagrams (c) and (d) are

Γc = −
1

36

TA
(4π)2

⋅ iδabq2 {(3Lε + 8)Tαβ + 9(Lε + 2)Λαβ +O(ε)} , (3.47)

and

Γd =
4

9

TFnf

(4π)2
⋅ iδabq2 {(3Lε + 5)Tαβ +O(ε)} . (3.48)

All diagrams may now be summed with proper weights accounting for redundant contrac-

tions. In diagram (a), there is a factor of 1/2! accounting for the interchange of vertices, a

factor of 1/3! for each vertex to count the Wick contractions within the Feynman rule, and

a factor of 3! for each vertex to count the ways to contract them. The symmetry factors are

sa =
1

2
, sb =

1

2
, sc = 1, and sd = 1. (3.49)

Notice that the ghost loop now exactly cancels the longitudinal degrees of freedom for dia-

gram (a) (and trivially (b)). Further, since the quark loop is completely transverse, the full

one-loop correction is as well:

Π̃abαβ(q) = Π(q
2) ⋅ iq2δabTαβ = (siΓi) + O(g

2
0). (3.50)

Adding everything up, we find that

Π(q2) = −
1

(4π)2
[(

13 − 3ξ0
6

TA −
4

3
TFnf)Lε+

1

4
(ξ20 + 2ξ0 +

97

9
)TA−

20

9
TFnf +O(ε)]+O(g

2
0).

(3.51)
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We may resum the 1PI propagator as in Eq. 3.18 by noting that not only is T idempotent,

TαγT
γ
β
= Tαβ , (3.52)

but it also projects the longitudinal modes to zero,

TαγΛ
γ
β
= 0, (3.53)

so that TD(0) ∝ T . Then the bare geometric series simplifies to

[D̃0]
ab
αβ(q) = g

2
0
iδab

q2
{
∞

∑
n=0
(g20Π(q

2))
n
⋅ Tαβ + ξ0Λαβ} = g

2
0
iδab

q2
{

1

1 − g20Π(q
2)
Tαβ + ξ0Λαβ} .

(3.54)

Inserting the appropriate Z-factors, the exact renormalized propagator simplifies to

D̃ab
αβ(q) = limε→0

µ2εg2
iδab

q2

⎧⎪⎪
⎨
⎪⎪⎩

Z−1
ξ

1 − µ2εZ2
gg2Π(q2)

Tαβ + ξΛαβ

⎫⎪⎪
⎬
⎪⎪⎭

. (3.55)

Expanding both Zξ and Π to leading order, we see that the quantity

1 − g2Z
(1)
ξ
+O(g4)

1 − µ2εg2Π(1) +O(g4)
= 1 − g2Z

(1)
ξ
+ µ2εg2Π(1) +O(g4) (3.56)

must be finite. At leading order, we may then write

Z
(1)
ξ
=
1

ε
Res{µ2εΠ(1), ε→ 0} = −

1

(4π)2
(
13 − 3ξ0

6
TA −

4

3
TFnf)

1

ε
, (3.57)
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and

Zξ = 1 −
g2

(4π)2
(
13 − 3ξ0

6
TA −

4

3
TFnf)

1

ε
+O(g4). (3.58)

3.2.2 Fermion Self-Energy

Consider again the resummation of one-particle irreducible diagrams in the perturbative

expansion of the fermion two-point function, S̃(p). To proceed, it is algebraically convenient

to write the leading order contribution to the fermion propagator as a formal inverse:

S̃(0)(p) = S̃F (p) = i
−i/p +m

p2 +m2 − iε
= −i(i/p +m − iε)

−1 =∶
i

i/p +m − iε
(3.59)

Defining the sum of 1PI diagrams as −iΣ(p), we may write

S̃0(p) = S̃
(0)(p)

∞

∑
n=0
[−iΣ(p)S̃(0)(p)]

n
=

i

i/p +m0 −Σ(p) − iε
. (3.60)

The function Σ(p) is restricted by dimension to be of the form

Σ(p) = Σp(p)i/p +Σm(p)m0. (3.61)

Then, employing Eq. 3.17, the full renormalized propagator may be written

S̃(p) =
iZ−1
ψ

(1 −Σp)i/p + (1 −Σm)Zmm − iε
, (3.62)

from which it is clear that Zψ exactly cancels the poles in Σp, and the product ZmZψ exactly

cancels those in Σm.

We now continue to the calculation of Σ(p) to leading order. The one-loop contribution
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(a)

Figure 3.4: The one-loop contribution to the quark self-energy

to the fermion self-energy is given by a single diagram, Fig. 3.4. Arranging the Feynman

rules, we have

−iΣ(1)(p) = −g20 ∫k
γβtb

i/k +m0

k2 +m2
0 − iε

γαta
δab

(p + k)2 − iε
[δαβ − (1 − ξ0)

(p + k)αβ

(p + k)2 − iε
] . (3.63)

At this point, it is useful to expand to leading order in the mass. Since the functions Σp,m are

dimensionless, the truncation error will be O(m2
0/p

2). The perturbative regime is typically

fairly high-energy, so the quark masses may be considered negligible, and these terms may

be dropped:

iΣ(1)(p) = g20 ∫k
γβtb

i/k +m0

k2 − iε
γαta

δab

(p + k)2 − iε
[δαβ − (1 − ξ0)

(p + k)αβ

(p + k)2 − iε
]+O(m2

0). (3.64)

The momentum integrals are treated just as in the last section: rewrite the integrand with

Schwinger parameters, Taylor-expand the cross-term, decompose the tensor integrals, rotate

to Euclidean space, and integrate. In the end, we find that

Σ(1)(p) = g20
C2(F )

(4π)2
[ξ0(Lε + 1)i/p + ((ξ0 + 3)Lε + 2ξ0 + 4)m0 +O(m

2
0, ε)] , (3.65)

leading to

Σp = g
2
0
C2(F )

(4π)2
[ξ0(Lε + 1) + O(m

2
0, ε)] +O(g

4
0),

Σm = g
2
0
C2(F )

(4π)2
[(ξ0 + 3)Lε + 2ξ0 + 4) + O(m

2
0, ε)] +O(g

4
0).

(3.66)
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(a)

Figure 3.5: The one-loop contribution to the ghost self-energy

The renormalization constants can now be read off:

Zψ = 1 + g
2C2(F )

(4π)2
ξ

ε
+O(g4),

Zm = 1 + g
2C2(F )

(4π)2
3

ε
+O(g4).

(3.67)

3.2.3 Ghost Self-Energy

The final renormalization constant in QCD is the ghost field-strength renormalization, which

is defined with the ghost two-point function. We may, as in the previous sections, write the

exact bare ghost propagator as

D̃ab
0 (p) =

−ig20δ
ab

p2 + iε

∞

∑
n=0
[iΓ(p)

−ig20
p2 + iε

]

n

=
−ig20δ

ab

p2 − g20Γ(p) + iε
, (3.68)

where iδabΓ(p) represents the sum over 1PI diagrams. Inserting the proper Z-factors, the

renormalized propagator is

D̃ab(p) =
−iZ−1c µ2εg2δab

p2 − µ2εZgg2Γ(p) + iε
. (3.69)

There is again only a single diagram at one-loop order, Fig. 3.5. The calculation is straight-

forward, and we find that

Γ(p) =
1

4

TA
(4π)2

p2 [(ξ0 − 3)Lε − 4 +O(ε)] + O(g
2
0). (3.70)
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At next-to-leading order, the effect of the coupling renormalization constant is shifted into

O(g40), so the only counterterm that appears is Z(1)c . Therefore

Zc = 1 + g
2 TA
(4π)2

3 − ξ

4

1

ε
+O(g4). (3.71)

3.3 The Running of QCD Parameters

Now that we have renormalized QCD to one-loop order, we may study the scaling of its

parameters. The most straightforward RG function is the beta function:

β(g) = µ
∂g

∂µ
. (3.72)

Writing the the renormalized coupling as g = µ−εZ−1g g0, we find

β(g) = −εg − g
µ

Zg

∂Zg

∂µ
. (3.73)

In dimensional regularization, the renormalization constants are of the generic form

Z =
∞

∑
n=0

n

∑
k=0

an,k
g2n

εk
, (3.74)

since the largest multiplicity of any pole is the maximum possible number of overlapping

loop divergences, which is the loop order n. We now invert this series, writing

Z =
∞

∑
n=0

g2n

εn

n

∑
k=0

an,n−kε
k. (3.75)
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Since the beta function is finite (in the perturbative region) for d = 4, the second term on

the righthand side of Eq. 3.73, β̃ ∶= µ
Zg

∂Zg
∂µ , should be finite as well. Then we may write

Zgβ̃ = µ
∂Zg

∂µ
= β

∂Zg

∂g
. (3.76)

Plugging in Eqs. 3.73 and 3.75 for the case of Zg, this becomes

β̃ {a0,0 +
∞

∑
n=1
(2n + 1)

g2n

εn

n

∑
k=0

an,n−kε
k} = −ε

∞

∑
n=1

2n
g2n

εn

n

∑
k=0

an,n−kε
k. (3.77)

At zero coupling Z = 1, so that a0,0 = 1 always. The finite portion of the left side is given

by the all terms for which k = n. On the other hand, this is true for k = n − 1 on the right.

Equating the finite parts, we have an expression for β̃:

β̃ = −2K
∞

∑
n=1

n an,1g
2n, K−1 ∶= 1 +

∞

∑
n=1
(2n + 1)an,0g

2n. (3.78)

All poles must exactly cancel on either side, so that this remains valid in the d → 4 limit.

Returning to Eq. 3.73, the general result for the beta function in dimensional regularization

is

β(g) = −εg + 2K
∞

∑
n=1

n an,1g
2n+1 ε→0

ÐÐ→ 2K
∞

∑
n=1

n an,1g
2n+1. (3.79)

In the cases of MS-like subtraction schemes, the renormalization constants contain no finite

parts, so that an≥1,0 = 0 and K = 1. The beta function is then simply a weighted sum over

the simple poles at each order in the coupling:

β(g) = 2
∞

∑
n=1

n an,1g
2n+1. (3.80)
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The standard perturbative expansion is reads

β(g) = −g3
∞

∑
n=0

bng
2n, (3.81)

so that bn = −2(n + 1)an+1,1. Bearing in mind that

Z
(n)
g =

n

∑
k=0

an,k

εk
⇒ Z

(1)
g =

a1,1

ε
, (3.82)

we quickly arrive at the one-loop QCD beta function [27, 28]:

β(g) = 2g3a1,1 +O(g
5) =

g3

(4π)2
(
11

3
TA −

4

3
TFnf) +O(g

5) = −
g3

(4π)2
(
11

3
N −

2

3
nf) +O(g

5).

(3.83)

Evidently, the beta function decreases for 11N > 2nf . In the case of QCD, N = 3, nf = 6,

this is satisfied, and we see that the coupling decreases at high energy, corresponding to

the asymptotic freedom of quarks. Conversely, at low energies the coupling grows, and

perturbation theory becomes unreliable. At some scale ΛQCD, the quarks become confined

to hadrons, SU(N) singlets composed of multiple quarks and/ or antiquarks. In perturbation

theory,

lim
µ→Λ+

QCD

g2(µ) = ∞. (3.84)

Using the confinement scale as a reference point, we can integrate the perturbative beta

function to find the one-loop running of the coupling:

log
µ2

Λ2
QCD

= −2∫
∞

g(µ)
β−1(g)dg = −

1

b0g2
+O(log g2). (3.85)
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Rearranging this, we find that

g2(µ)

(4π)2
= −

3

(11N − 2nf ) log
µ2

Λ2
QCD

+O(log g2). (3.86)

For now, the only other coupling we need consider is the mass. The mass anomalous

dimension is

γm =
∂ logm

∂ logµ
= −β

∂ logZm
∂g

. (3.87)

Of course, each power of g2 within the derivative carries with it a series of poles, so we need

to express the beta function as in Eq. 3.73 in order to find the simple pole. Instead of going

through a finite-part analysis as before, we simply note that

∂ logZm
∂g

= 2gZ
(1)
m +O(g3), (3.88)

so

γm = g (ε + β̃) ⋅ 2gZ
(1)
m +O(g4)

ε→0
ÐÐ→ 6C2(F )

g2

(4π)2
+O(g4). (3.89)
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Chapter 4

Lattice Quantum Chromodynamics

4.1 The Simplest Gauge Action

We define the n × m Wilson loop Wn×m
µν (x) as the path-ordered product of gauge links

around a closed convex loop. This SU3(C) matrix encodes the holonomy of the gauge

covariant derivative around discretized curves on a 4 −D lattice. The simplest case, a so-

called plaquette W 1×1
µν (x), is given by

W 1×1
µν (x) ≡ Uµ(x)Uν(x + aµ̂)U

†
µ(x + aν̂)U

†
ν(x). (4.1)

We may expand this product explicitly, keeping only terms up to order a2, where a is the

lattice spacing:

W 1×1
µν (x) = e

igaAµ(x)eigaAν(x+aµ̂)e−igaAµ(x+aν̂)e−igaAν(x)

= 1 + iga2Gµν(x) − g
2a4GµνGµν(x) + O(a

6).

(4.2)

The first line expresses the gauge links as exponentials. The second line expands pairwise

the products of the exponentials in terms of the Baker-Campbell-Hausdorff (BCH) formula

to second order in the lattice spacing. The third line expands the gauge potentials A about

x to first order in a. This avoids more onerous commutators, as it allows us to immediately

identify and ignore any higher order terms in the subsequent BCH expansion. The fourth

line uses the BCH formula again to expand the final product, this time absorbing any cubic

terms into the O(a3) term, which cancel as we expand the exponential.
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We may now express the lattice gauge action in terms of the plaquette W 1×1
µν (x):

SG[U] ≡
2

g2
∑
x
∑
µ<ν

ReTr{1 −W 1×1
µν (x)} =

1

2
a4∑

x
∑
µ,ν
[Tr{GµνGµν} +O(a2)]. (4.3)

In the limit of zero lattice spacing, the sum over lattice points becomes an integral in 4 −D

Euclidean space with volume a4; videlicet, a4∑x → ∫ d4x as a → 0. Thus the lattice and

continuum gauge actions are equal in the continuum limit:

SG[U] ≈
1

2
a4∑

x
∑
µ,ν

Tr{GµνGµν}
a→0
ÐÐ→

1

4 ∫R4
d4x GaµνG

a
µν ≡ SG[A]. (4.4)

4.2 The Naïve Dirac Action

The simplest discretization of the Dirac operator involves replacing the derivative with a

symmetrized finite difference quotient and inserting gauge links to restore gauge invariance:

SNF [ψ, ψ̄,U] ≡ a
4
∑
x
{
1

2a
∑
µ
ψ̄(x)γµ[Uµ(x)ψ(x + aµ̂) −U−µ(x)ψ(x − aµ̂)] +mψ̄(x)ψ(x)}

a→0
ÐÐ→ ∫R4

d4x ψ̄( /D +m)ψ

= SF [ψ, ψ̄,U].

(4.5)

This may be recast more compactly by noting that x is quantized by the lattice spacing:

x = na, which allows us to condense the gauge link dependence into a linear combination of

Kronecker delta functions. Define

MN
xy ≡

1

2a
∑
µ
[γµ(Uµ)xδx,y−aµ̂ − γµ(Uµ)x−aµ̂δx,y+aµ̂] +mδx,y. (4.6)
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Then the above reduces to

SNF [ψ, ψ̄,U] = a
4
∑
x,y

ψ̄xM
N
xyψy. (4.7)

This form is conducive to faster computation, especially when the fields have been previously

generated at all lattice sites. The delta functions simply project out the values at the relevant

points on the lattice.

A problem arises, however, when constructing the free fermion propagator from this ac-

tion. Let us transform to momentum space to illustrate this, turning off the gauge potentials

to restore the free particle action (U → 1):

S0F [ψ, ψ̄] = a
4
∑
x=na

ψ̄(na){
1

2a
∑
µ
γµ[ψ(na + aµ̂) − ψ(na − aµ̂)] +mψ(na)}

= a4∫
a/π

−a/π

dk

(2π)4
˜̄ψ(k){

i

a
∑
µ
γµsin(kµa) +m}ψ̃(k).

(4.8)

Thus, we have constructed the momentum-space propagator for naïve lattice fermions:

SF (k,m) =
i

a
∑
µ
γµsin(kµa) +m. (4.9)

In the chiral limit, the inverse propagator has roots at the origin and the boundaries of the

first Brillouin zone (xp ∈ {0, a/π}), so there are 2D=4 = 16 poles which characterize the famous

”doublers” problem. Various correction schemes and systematic limitations of discretization

will be discussed later.
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4.3 The Haar Measure

By construction, the QCD action is invariant under gauge transformations:

S[U] = S[U ′]. (4.10)

Reasonably, we require also that any observables are gauge invariant, so the functional

integral

Z = ∫ D[U]e−S[U] (4.11)

must be gauge invariant. This is tantamount to invariance under a change of variables. This

restriction on the path integral translates to demanding invariance under the action of the

gauge group G of the integral measure D[U] for any measurable subset U ⊆ G. The Haar

measure satisfies this requirement naturally. We will construct this explicitly. For any locally

compact T2 group G, let us define the left translate of a Borel set U ∈ σ(G):

gU = {gu ∣ u ∈ U}, for some g ∈ G. (4.12)

Intuitively, this object should be the same ”size” as the untranslated set. The goal is to find

some measure µ(U), such that left translation by an element of the enclosing group does

not affect this size; this is the Haar measure. We now state Haar’s existence and uniqueness

theorem for such a measure:

There exists a nontrivial, additive, regular measure on the Borel subsets of a
locally compact Hausdorff group which is unique up to normalization, finite over
compact sets, and invariant under left translation.
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Such a measure is called the left Haar measure:

µ(U) = µ(gU). (4.13)

The details of the proof are beyond the scope of this thesis, but we may nonetheless apply

the result to the gauge group in concern, SU3(C). Moreover, not only does there exist a left

Haar measure in our case, but so also a right Haar measure, owing to the unimodularity of

all compact Lie groups, SUN (C) included. We have, then, that

µ(gU) = µ(U) = µ(Ug) (4.14)

for any g ∈ SUN (C) with U ∈ σ(G). Equipped with a measure, we may now consider

integrals over locally compact groups. The invariance of the measure immediately implies

the invariance of Lesbegue integrals when the integration variable is translated:

∫
U
dµ(u)f(u) = ∫

U
dµ(gu)f(gu) = ∫

U
dµ(u)f(gu) = ∫

U
dµ(u)f(ug) (4.15)

for some u ∈ U . This relationship is instrumental in finding exact solutions to many group

integrals without requiring an explicit form of the Haar integral measure in terms of coordi-

nates of the underlying manifold (odd sphere bundles in the case of SUN (C)). We present

a few useful results now:

∫
U
dµ(u)uab = 0 (4.16)

∫
U
dµ(u)uabucd = 0 (4.17)

∫
U
dµ(u)uabu

†
cd
= δadδbc (4.18)
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∫
U
dµ(u)f(u) = ∫

U
dµ(gu)f(gu) = ∫

U
dµ(u)f(gu) = ∫

U
dµ(u)f(ug) (4.19)
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Part II

The Gradient Flow
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Chapter 5

The Flowed Formalism

The gradient flow belongs to a class of parabolic partial differential equations called geometric

flows. In general, these equations describe the diffusion of some geometric quantity on a

manifold. In particular, gradient flows in QFT are nonlinear heat equations on the space of

configurations of a gauge field φ, which characterize its diffusion along some new dimension,

the flow time t. Critically, this gives us the boundary condition that for t = 0 the flowed field

Φ should coincide with the physical field φ. In order that the evolution is stable, the field

should flow toward a local minimum of the action. This is accomplished by writing

∂tΦ(x; t) = −
δS[Φ]

δΦ
, Φ(x; 0) = φ(x), (5.1)

where S[φ] is the action associated to the field φ at t = 0. Since the right side is proportional

to the negative gradient of the action, we are assured that increasing the flow time drives

the action toward a minimum as quickly as possible. We will find that this corresponds to

a smearing of the gauge field in spacetime that suppresses ultraviolet modes.

5.1 The Yang-Mills Gradient Flow

In the case of the Yang-Mills action, Eq. 3.12, it is straightforward to verify that

δSYM [A]

δAaµ
= −(DνGνµ)

a. (5.2)
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Plugging this into the schematic equation (5.1) above, we arrive at a prototypical Yang-Mills

gradient flow equation:

∂tBµ =DνGνµ[B], Bµ∣t=0 = Aµ, (5.3)

where B is the flowed counterpart of the gluon field A defined in the bulk of the (d + 1)-

dimensional half-space with coordinates (x; t ≥ 0). The boundary condition above enforces

that Yang-Mills theory lives on the d-dimensional boundary at t = 0.

This form of the equation is not amenable to perturbation theory, however, due to the

presence of nonrenormalizable longitudinal modes in the propagator

D̃ab
αβ(q; t) = g

2
0
δab

q2
[(δαβ −

qαqβ

q2
) e−q

2t + ξ0
qαqβ

q2
] . (5.4)

The solution is to add a restoring force which fixes a plane normal to the gauge orbits [87].

For some gauge function F , the covariant derivative provides an appropriate tangent vector.

Choosing a Lorenz-like gauge function F = ∂ ⋅B as in Sec. 1.5, we have [84]

∂tBµ =DνGνµ[B] + α0Dµ∂νBν , Bµ∣t=0 = Aµ. (5.5)

In Sec. 5.3, we will explore the perturbative solution to the flow equation. Considering

only terms linear in B, the leading-order flow equation is simply

∂tBµ = ∂
2Bµ + (α0 − 1)∂µνBν , (5.6)

and the free bulk field is easily seen to diffuse according to a heat equation. This is most
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easily analyzed in momentum space with the standard Fourier analysis. Setting α0 = 1 for

now, the linearized equation above simplifies to the standard multivariate heat equation, and

the fundamental solution is the heat kernel:

K̃(x − y; t) ∼ ∫
p
eip(x−y)e−p

2t = (4πt)−d/2e
−(x−y)2

4t . (5.7)

This may be convoluted with the boundary condition, leading to the free-field solution

B̃µ(q; t) = (4πt)
−d/2
∫ ddx e−iqx∫ ddy e−

(x−y)2

4t A(y) = e−q
2tÃµ(q). (5.8)

The Gaussian factor represents a delocalization of the gauge field over a d-dimensional sphere

with root-mean-squared radius

⟨x⟩2rms = ∫ ddx x2e−
x2
4t = 2dt, (5.9)

which sets a natural scale µ = (2dt)−1/2 for flowed computations. In practice, it is often

simpler to choose µ = (2t)−1/2eγE/2, corresponding to the MS subtraction point, so that all

logarithms vanish in perturbation theory. The Gaussian smearing suppresses the high-energy

modes of the boundary field, so that the gauge field is less singular at positive flow time.

The flow equation may be added as a constraint on the action through the use of Lagrange

multiplier fields Lµ = Laµta, giving us a new term in the action:

S = SYM + Sgf + SFP + SB , (5.10)
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where

SB = −2∫ dt∫ ddx Tr{Lµ(∂tBµ −DνGνµ − α0Dµ∂νBν)} . (5.11)

The coefficient of −2 accounts for the normalization TF = −1/2 of the trace for the particular

case of SU(N). Now, the equation of motion for Lµ is exactly the gradient flow equation

(5.5). The boundary condition Bµ(x; 0) = Aµ(x) is implemented by defining

Bµ(x; t) = bµ(x, t) + ∫ ddy Kµν(x − y; t)Aν(y), (5.12)

where bµ(x; 0) = 0, and Kµν(x − y; t) is a heat kernel which solves linearized flow equation

(to be discussed in Sec. 5.3). Since the latter term satisfies Eq. 5.6, the propagator between

the L and A fields vanishes, leaving propagators of the form ⟨AA⟩, ⟨AB⟩, ⟨BB⟩, and ⟨LB⟩.

5.2 The Fermion Flow

The treatment of fermions in the flowed formalism differs slightly from that of the gauge

fields [88]. Since the Dirac action breaks chiral symmetry and is only first order in the

derivative, it is not suitable for a gradient flow. Instead, we may construct a covariant flow

equation for fermions with the gauge-covariant Laplacian and its adjoint:

∆ =DµDµ,
←
∆=
←
Dµ
←
Dµ, (5.13)

with

Dµ = ∂µ +Bµ,
←
Dµ=

←
∂µ −Bµ, (5.14)
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Introducing flowed fermion fields χ and χ, we define the fermion flow equation

∂tχ =∆χ − α0∂µBµχ, χ∣
t=0
= ψ, (5.15a)

and its adjoint

χ
←
∂ t = χ

←
∆ +α0χ∂µBµ, χ∣

t=0
= ψ. (5.15b)

Since the covariant Laplacian coincides with the ordinary Laplacian at leading order, this

prescription guarantees that the relaxation of the flowed fermions follows a heat equation as

well.

Again, we constrain the action with some (Grassmann-odd) Lagrange multipliers λ and

λ, introducing another term to the action:

Sχχ = ∫ dt∫ ddx {λ(∂t −∆ + α0∂µBµ)χ + χ(
←
∂ t −

←
∆ −α0∂µBµ)λ} (5.16)

with decompositions similar to Eq. 5.12 to enforce the boundary conditions.

5.3 Perturbation Theory

The flow equations, Eq. 5.5 and Eq. 5.15, constitute a system of coupled, nonlinear, parabolic

PDEs for the flowed fields, so they are not soluble in any straightforward manner. On the

other hand, at leading order in the coupling each reduces to a heat equation, which is readily

integrated as in Sec. 5.1. The nonlinear terms may then be treated as perturbations. In the
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case of the gauge field, the flow equation may be written [84]

∂tBµ = ∂
2Bµ + (α0 − 1)∂µνBν +Rµ, (5.17)

where

Rµ = 2[Bν , ∂νBµ] − [Bν , ∂µBν] + (α0 − 1)[Bµ, ∂νBν] + [Bν , [Bν ,Bµ]] (5.18)

is the nonlinear remainder that generates radiative corrections to the free solution. The

kernel may be easily determined in momentum space:

K̃µν(q; t) = (δµν −
qµqν

q2
) e−q

2t +
qµqν

q2
e−α0q

2t, (5.19)

leading to the solution

B̃µ(q; t) = K̃µν(q; t)Ãν(q) + ∫
t

0
ds K̃µν(q; t − s)R̃ν(q; s). (5.20)

We immediately find the flowed gauge field propagator:

⟨B̃bν(−q; s)B̃
a
µ(q; t)⟩

(0) = g20
δab

q2
[(δµν −

qµqν

q2
) e−q

2(t+s) + ξ0
qµqν

q2
e−α0q

2(t+s)] , (5.21)

which includes the propagators ⟨AA⟩ and ⟨AB⟩ in the limits of vanishing t and s. The ⟨LB⟩

propagator is obtained by considering the Schwinger-Dyson equation for L:

⟨Lbν(y; s)[δµρ∂t − δµρ∂
2 − (α0 − 1)∂µ∂ρ]B

a
ρ(x; t)⟩ = δ

abδµνδ
(d)(x − y)δ(t − s), (5.22)
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with the condition that ⟨LB⟩∣
s>t=0

= 0. This has the unique solution

⟨Lbν(y; s)B
a
µ(x; t)⟩

(0) = ∫
q
eiq(x−y)δabθ(t − s)K̃µν(q; t − s), (5.23)

called a (gauge boson) flow or kernel line.

The remainder contains terms quadratic and cubic in the bulk fields which correspond

to new three- and four-point vertices. Writing

R̃aµ(q; t) =
1

2! ∫p1,p2
(2π)dδ(d)(q + p1 + p2)X

(2,0)(q, p1, p2)
ab1b2
µν1ν2

B̃
b1
ν1
(−p1; s)B̃

b2
ν2
(−p2; s)

+
1

3! ∫p1,p2,p3
(2π)dδ(d)(q + p1 + p2 + p3)

×X(3,0)(q, p1, p2, p3)
ab1b2b3
µν1ν2ν3

B̃
b1
ν1
(−p1; s)B̃

b2
ν2
(−p2; s)B̃

b3
ν3
(−p3; s),

(5.24)

they are, respectively,

X(2,0)(p, q, r)abcµνρ = if
abc {(r − q)µδνρ + 2qρδµν − 2rνδρµ + (α0 − 1)(qνδρµ − rρδµν)} (5.25)

and

X(3,0)(p, q, r, s)abcdµνρσ =f
abefcde(δµσδνρ − δµρδσν) + f

adefbce(δµρδσν − δµνδρσ)

+ facefdbe(δµνδρσ − δµσδνρ).

(5.26)

Inspecting the remainder term in SB , it is obvious that these correspond to B2L and B3L

vertices. As such, the kernel lines may only connect bulk gauge fields to the flow vertices

X(2,0) and X(3,0). One subtlety of the flow lines is that they may not form closed loops.
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Of course, these cannot appear in the perturbative expansion, but they are allowed when

naïvely constructing all graphs, so one must take care to remove these diagrams manually

in automated implementations [89].

The fermion flow is linearized analogously to the gauge fields:

∂tχ = (∂
2 +∆′)χ, (5.27)

where ∆′ = 2Bµ∂µ − (α0 − 1)∂µBµ + BµBµ. The leading-order equation is identical to the

ordinary heat equation, so the fermion kernel is strictly Gaussian,

J̃(p; t) = e−p
2t, (5.28)

and we have a general solution:

χ̃(p; t) = J̃(p; t)ψ̃(p) + ∫
t

0
ds J̃(p; t − s)∆̃′χ̃(p; s). (5.29)

The adjoint flow is similar:

χ̃(p; t) = ψ̃(p)J̃(p; t) + ∫
t

0
ds χ̃(p; s)

←̃
∆
′

J̃(p; t − s), (5.30)

where
←
∆
′

= −2Bµ∂µ+(α0−1)∂µBµ+BµBµ, and J̃(p; t) = e−p2t. The propagators are obtained

exactly as before, leading to

⟨χ̃(−p; s)χ̃(p; t)⟩(0) =
−i/p +m

p2 +m + 2
e−p

2(t+s), (5.31)

⟨χ̃(−p; t)λ̃(p; s)⟩(0) = θ(t − s)J̃(p; t − s) (5.32)
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⟨λ̃(−p; s)χ̃(p; t)⟩(0) = θ(t − s)J̃(p; t − s). (5.33)

Rewriting the remainder as before,

∆̃′χ̃(q; t) =
1

1! ∫p1,p2
(2π)dδ(d)(q + p1 + p2)Y

(1,1)(q, p1, p2)
a1
µ1
B̃
a1
µ1
(−p1; s)χ̃(−p2; s)

+
1

2! ∫p1,p2,,p3
(2π)dδ(d)(q + p1 + p2 + p3)

× Y (1,2)(q, p1, p2, p3)
a1a2
µ1µ2

B̃
a1
µ1
(−p1; s)B̃

a2
µ2
(−p2; s)χ̃(−p3; s),

(5.34)

we find two more vertices,

Y (1,1)(p, q, r)aµ = −it
a {(1 − α0)rµ + 2qµ} (5.35)

and

Y (1,2)(p, q, r, s)abµν = δµν {t
a, tb} , (5.36)

corresponding to χλB and χλB2. The adjoint flow equation, too, generates two vertices;

Y
(1,1)
(p, q, r)aµ = it

a {(1 − α0)rµ + 2qµ} (5.37)

and

Y
(1,2)
(p, q, r, s)abµν = δµν {t

a, tb} , (5.38)

corresponding to λχB and λχB2.

Altogether, we have the following Feynman rules. The flowed propagators are

⟨B̃B̃⟩ ∶ = g20
δab

q2
[(δαβ −

qαqβ

q2
) e−q

2(t+s) + ξ0
qαqβ

q2
e−α0q

2(t+s)] , (5.39a)
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⟨L̃B̃⟩ ∶ = δabθ(t − s) [(δαβ −
qαqβ

q2
) e−q

2(t−s) +
qαqβ

q2
e−α0q

2(t−s)] , (5.39b)

⟨χ̃χ̃⟩ ∶ =
−i/p +m

p2 +m + 2
e−p

2(t+s), (5.39c)

⟨χ̃λ̃⟩ ∶ = θ(t − s)e−p
2(t−s), (5.39d)

⟨λ̃χ̃⟩ ∶ = θ(t − s)e−p
2(t−s). (5.39e)

The vertices are

⟨B̃2L̃⟩ ∶ = ifabc∫
∞

0
ds[δβγ(q − r)α + 2δγαrβ − 2δαβqγ

+ (α0 − 1)(δαβrγ − δγαqβ)],

(5.40a)

⟨B̃3L̃⟩ ∶ = −∫

∞

0
ds[fabefcde(δαγδβδ − δαδδγβ)

+ facefbde(δαβδγδ − δαδδγβ)

+ fadefbce(δαβδγδ − δαγδβδ)],

(5.40b)

⟨χ̃B̃λ̃⟩ ∶ = −ita∫
∞

0
ds [2rα + (1 − α0)qα] , (5.40c)

⟨χ̃B̃2λ̃⟩ ∶ = δαβ{t
a, tb}∫

∞

0
ds, (5.40d)

⟨λ̃B̃χ̃⟩ ∶ = ita∫
∞

0
ds [2rα + (1 − α0)qα] , (5.40e)

⟨λ̃B̃2χ̃⟩ ∶ = δαβ{t
a, tb}∫

∞

0
ds. (5.40f)

Above, fermions are represented by oriented solid lines; gauge bosons by curly lines; fermionic

flow lines by oriented, double solid lines; and gauge boson flow lines by double curly lines.
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This notation differs notably from much of the literature, wherein all flow lines are single

straight lines with an adjacent arrow indicating the direction of increasing flow time, deter-

mined by the attached Heaviside θ functions. In order to avoid a proliferation of arrows,

we choose the double-line notation. The direction of flow time is unambiguous, since all

subgraphs consisting of only flow lines and vertices are directed trees with each child vertex

at a flow time less than or equal than that of its parent and the root at the maximum flow

time (flow-line loops having been already excluded).

The integrals over s in the vertices are meant to be performed only after all attached legs

are taken into the integrand. The flow vertices are inscribed by an X or Y to signify bosonic

or fermionic vertices. Note that flow lines cannot be cut when constructing 1PI diagrams,

since they represent genuine corrections to the flowed field.
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Chapter 6

Renormalization and BRST Symmetry

A remarkable feature of the Yang-Mills gradient flow is that once the boundary theory is

renormalized, the bulk gauge fields are finite to all orders. This is not the case for bulk

fermions, though they may be rendered finite by a multiplicative field strength renormaliza-

tion. in order to see this, we will evaluate the one-loop propagators of both the bulk gauge

field and the bulk fermions. We fix α0 = 1 but leave ξ0 free, since it requires renormalization

at one-loop. To perform the momentum integrals, we use dimensional regularization with

d = 4 − 2ε and employ the novel method introduced in App.

6.1 Gauge Field Self-Energy

In Chapter 3, we showed that the bare gluon propagator,

⟨Ãbβ(−q)Ã
a
α(q)⟩0 = g20

δab

q2
[Παβ + ξ0Λαβ]

−
g40
(4π)2

δab

q2
[(

13 − 3ξ0
6

TA +
2

3
nf)L0 +

1

4
(ξ20 + 2ξ0 +

97

9
)TA +

10

9
nf]Παβ

+O(g60),

(6.1)

may be renormalized by making the replacements

A0 = ZgZξA, g0 = µ
εZgg, ξ0 = Zξξ. (6.2)

At one-loop order, the propagator of the bulk gauge fields, ⟨B̃b
β
(−q)B̃aα(q)⟩ is the sum

of eight diagrams (Fig. 6.1). The first four of these diagrams ((a)-(d)) are identical to the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: One-loop contributions to the propagator of the flowed gauge field

Figure 6.2: Diagram 6.1e with labels

unflowed diagrams up to the external fields. Since the difference is O(t), both the divergent

and finite parts are unaffected at small t. The four additional diagrams ((e)-(h)) contain flow

lines and vertices, representing the nonlinear terms in the flow equation. These are the first

diagrams which exhibit the incomplete gamma integrals of App. , due to Gaussian factors

within the loops. For demonstration, we will calculate diagram (d) explicitly. For brevity,

we will set ξ0 = α0 = 1, writing the full result only at the end.

Starting from the Feynman rules, Eqs. 5.39 and Eqs. 5.40, we have (dropping external

indices and the outgoing AA leg)

Γe = ∫
k

ifbcd

g20
[−(q + k)δδβγ + (2k − q)βδγδ + (2q − k)γδδβ]

× ifadc [δδγ(2k − q)α − 2δγαkδ + 2δαδ(q − k)γ]

× ∫

t

0
du
⎛

⎝
g20
e−k

2u

k2
⎞

⎠

⎛

⎝
g20
e−(q−k)

2u

(q − k)2
⎞

⎠
e−q

2(t−u).

(6.3)
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Simplifying the numerical and color factors, collecting like terms in k, and writing the (q−k)

propagator in Schwinger parameters,

Γe = −g
2
0TA∫

t

0
du∫

∞

0
dz e−q

2(z+t)
∫
k

e−k
2(2u+z)

k2
e2(k⋅q)(u+z)

×{ [(d − 5)qαqβ + 4q
2δαβ] − 2 [(d − 2)(qαδβµ + qβδαµ) + 2qµδαβ]kµ

+ 2 [(d − 2)(δανδβµ + δβνδαµ) + 2δµνδαβ]kµkν},

(6.4)

it is clear that the only term with angular dependence is e2(k⋅q)(u+z). If we expand this

as a MacLaurin series, we can again collect like powers of the loop momentum and discard

all odd powers due to the symmetry of the integral. The first bracketed term above is

constant with respect to k, so it multiplies only even powers of k ⋅ q, and we can reindex

n → 2n. Likewise, the second and third terms are respectively odd and even in k, so they

are reindexed according to n→ 2n + 1 and n→ 2n:

Γe = −g
2
0TA∫

t

0
du∫

∞

0
dz e−q

2(z+t)
∫
k

e−k
2(2u+z)

k2

∞

∑
n=0

(2(u + z))2n

(2n)!
qI2nkI2n

×{ [(d − 5)qαqβ + 4q
2δαβ] + 2 [(d − 2)(δανδβµ + δβνδαµ) + 2δµνδαβ]kµkν

−
4(u + z)

2n + 1
[(d − 2)(qαδβµ + qβδαµ) + 2qµδαβ] qµ2n+1kµ2n+1kµ},

(6.5)

All terms are now even in k, so they may be decomposed according to Eqs. 2.105-2.108 and

replaced by:

qI2nkI2n →
1

(d)n,2
qI2nS

(2n)
I2n
=
(2n − 1)!!

(d)n,2
(q2)

n
(k2)

n
, (6.6a)

qI2n+1kI2n+1µ →
1

(d)n+1,2
qI2n+1S

(2n+2)
I2n+1µ

=
(2n + 1)!!

(d)n+1,2
(q2)

n
(k2)

n+1
qµ, (6.6b)

qI2nkI2nµν →
1

(d)n+1,2
qI2nS

(2n+2)
I2nµν

=
(2n − 1)!!

(d)n+1,2
(q2)

n
(k2)

n+1
(δµν + 2n

qµqν

q2
) . (6.6c)
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The momentum integrals are now in the form of Eq. 2.52, and we can simplify the expression

by making the substitutions u = tυ, z = tζ, and τ = q2t:

Γe = −g
2
0
TAδ

ab

(4π)2
(4πt)2−d/2∫

1

0
dυ∫

∞

0
dζ

∞

∑
n=0

τn

n!

(ζ + υ)2n

(ζ + 2υ)d/2+n
e−τ(ζ+1)

×{
2τ(ζ + 2υ)

d + 2n − 2
((d − 5)

qαqβ

q2
+ 4δαβ)

−
8τ(ζ + υ)

d + 2n
((d − 2)

qαqβ

q2
+ δαβ)

+
8

d + 2n
((d + n − 1)δαβ + (d − 2)n

qαqβ

q2
)}.

(6.7)

There are a few ways to sum and integrate this expression. One can recast the factor

(ζ+2υ)−d/2−n as a binomial series so that the integrals are simpler. Alternatively, integrating

in υ first produces hypergeometric functions, and integrating in ζ or summing over n produces

incomplete gamma functions. By replacing these special functions by their integral or series

definitions, a complete solution can be obtained, but the intermediate expressions are fairly

intractable and lead to the same result. Instead, it is far simpler to note that for the first

two bracketed terms above are at least O(t) for all n ≥ 0, as is the third term for n ≥ 1, so

they may be discarded. We are left with

Γe = −8g
2
0
TA
(4π)2

d − 1

d
(4πt)2−d/2∫

1

0
dυ∫

∞

0
dζ

e−τ(ζ+1)

(ζ + 2υ)d/2
δabδαβ +O(τ). (6.8)

Integrating over ζ, we have

Γe = −8g
2
0
TA
(4π)2

d − 1

d
(4πt)2−d/2e−τ τd/2−1∫

1

0
dυ e2τυΓ(1 −

d

2
,2τυ) δabδαβ +O(τ). (6.9)

153



Integrating over υ, we are left with

Γe = −8g
2
0
TA
(4π)2

d − 1

d(d − 2)
(4πt)2−d/2τd/2−2

× {e−τΓ(2 −
d

2
) − eτΓ(2 −

d

2
,2τ)} δabδαβ +O(τ),

(6.10)

which may be expanded in ε and t to zeroth order:

Γe = −3g
2
0
TA
(4π)2

{
1

ε
+ log(8πt) +

5

6
} δabδαβ +O(ε, t). (6.11)

Proceeding as above for generic ξ0, we find

Γe(q; t) = −
1

2
⋅
3

2
g20

TA
(4π)2

(ξ0 + 1){
1

ε
+ log(8πt) +

5

6
} δab (Λαβ +Παβ) + O(ε, t), (6.12a)

Γf (q; t) =
1

8
g20

TA
(4π)2

{(ξ0 − 9) [
1

ε
+ log(8πt)] +

1

2
(ξ0 + 3)} δ

ab (Λαβ +Παβ) + O(ε, t),

(6.12b)

Γg(q; t) =
1

2
⋅
3

4
g20

TA
(4π)2

{(ξ0 + 3) [
1

ε
+ log(8πt)] +

1

6
(5ξ0 + 3)} δ

ab (Λαβ +Παβ) + O(ε, t),

(6.12c)

Γh(q; t) =
1

2
⋅ O(t, s), (6.12d)

where the symmetry factors have been written explicitly. There are three additional diagrams

which are simply mirror images of (e)-(g), related by the interchange t ↔ s. Summing all
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contributions with external legs included, the bare propagator is

⟨B̃bβ(−q)B̃
a
α(q)⟩0 = g

2
0
δab

q2
[Παβ + ξ0Λαβ]

−
g40
(4π)2

δab

q2
{[(

13 − 3ξ0
6

TA +
2

3
nf)(

1

ε
+ log(

4π

q2
) − γE)

+
ξ0 + 3

4
TA (

2

ε
+ log(8πt) + log(8πs))

+
9ξ0(ξ0 + 4) + 115

36
TA +

10

9
nf]Παβ

+ [
ξ0(ξ0 + 3)

4
TA (

2

ε
+ log(8πt) + log(8πs))

+
ξ0(ξ0 + 1)

2
TA]Λαβ +O(ε, t, s)}

+O(g60).

(6.13)

Replacing the bare coupling g0 and gauge-fixing parameter ξ0 by their renormalized coun-

terparts as in Eq. 6.2, we find a finite result without any field renormalization:

⟨B̃bβ(−q)B̃
a
α(q)⟩ = g

2 δ
ab

q2
[Παβ + ξΛαβ]

−
g4

(4π)2
δab

q2
{[(

13 − 3ξ

6
TA +

2

3
nf)(log(

4πµ2

q2
) − γE)

+
ξ + 3

4
TA (log(8πµ

2t) + log(8πµ2s))

+
9ξ(ξ + 4) + 115

36
TA +

10

9
nf]Παβ

+ [
ξ(ξ + 3)

4
TA (log(8πµ

2t) + log(8πµ2s))

+
ξ(ξ + 1)

2
TA]Λαβ +O(t, s)}

+O(g6).

(6.14)

Then, at least to one-loop order, the bulk gauge fields require no renormalization. In fact,
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(a) (b) (c)

(d) (e)

Figure 6.3: One-loop contributions to the propagator of the flowed fermion fields

we will show that there are no bulk counterterms for the gauge field at any order in Sec. 6.3.

6.2 Fermion Self-Energy

At one loop, the fermion self-energy receives contribution from eight diagrams with five

unique topologies, Fig. 6.3. Since the relevant fermion masses, mu,md,ms, are all far less

than than typical hadronic scales, Λ ∼ 1 GeV, and since they are identically zero in the

chiral limit, we consider them perturbations and keep only the leading order. Treating the

integrals as we did in evaluating the gauge field propagator, we calculate:

Γa(p; t) = −g
2
0
C2(F )

(4π)2
1

p2
{ξ0 [

1

ε
+ log(

4π

p2
) − γE + 1] i/p

+ [(3 − ξ0)(
1

ε
+ log(

4π

p2
) − γE) + 4]m0} +O(ε, t, s,m

2
0),

(6.15a)

Γb(q; t) = −g
2
0
C2(F )

(4π)2
ξ0
p2
(
1

ε
+ log (8πt) + 1)(−i/p +m0) + O(ε, t, s,m

2
0), (6.15b)

Γc(q; t) = O(t, s), (6.15c)

Γd(q; t) =
1

2
⋅ g20

C2(F )

(4π)2
1

p2
[(ξ0 + 3) (

1

ε
+ log (8πt)) + ξ0 + 1] (−i/p +m0) + O(ε, t, s,m

2
0),

(6.15d)

Γe(q; t) = O(t, s). (6.15e)
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Summing these along with three additional diagrams related to (b)-(d) by the interchange

t↔ s, the total bare propagator is

⟨χ̃(−p; s)χ̃(p; t)⟩0

=
−i/p +m0

p2

+ g20
C2(F )

(4π)2
1

p2
{ − i/p [

3

ε
+ ξ0 log(

4π

γ′p2
) +

3 − ξ0
2
(log(8πt) + log(8πs)) + 1]

+m0 [(ξ0 − 3)(log(
4π

γ′p2
) −

1

2
log(8πt) −

1

2
log(8πs)) − ξ0 − 3]

+O(ε)}

+O(g40,m
2
0, t, s).

(6.16)

Replacing the bare mass, coupling, and gauge-fixing parameter with renormalized parame-

ters,

m0 = Zmm, g0 = µ
εZgg, ξ0 = Zξξ, (6.17)

the bare propagator becomes

⟨χ̃(−p; s)χ̃(p; t)⟩0

=
−i/p +m

p2

+ g2
C2(F )

(4π)2
1

p2
{ − i/p [

3

ε
+ ξ log(

4πµ2

γ′p2
) +

3 − ξ

2
(log(8πµ2t) + log(8πµ2s)) + 1]

+m [
3

ε
+ (ξ − 3)(log(

4πµ2

γ′p2
) −

1

2
log(8πµ2t) −

1

2
log(8πµ2s)) − ξ − 3]

+O(ε)}

+O(g4,m2, t, s),

(6.18)
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and there is an overall pole of 3/ε remaining in both the mass and kinetic terms. This may

be canceled by defining a renormalized bulk fermion field:

χ0 = Z
1/2
χ χ, χ0 = χZ

1/2
χ , (6.19)

where

Zχ = 1 + g
2C2(F )

(4π)2
3

ε
+O(g4). (6.20)

The fully renormalized one-loop propagator is thus

⟨χ̃(−p; s)χ̃(p; t)⟩

=
−i/p +m

p2

+ g2
C2(F )

(4π)2
1

p2
{ − i/p [ξ log(

4πµ2

γ′p2
) +

3 − ξ

2
(log(8πµ2t) + log(8πµ2s)) + 1]

+m [(ξ − 3)(log(
4πµ2

γ′p2
) −

1

2
log(8πµ2t) −

1

2
log(8πµ2s)) − ξ − 3]}

+O(g4,m2, t, s).

(6.21)

In the flowed action, the only fermionic counterterm allowed by gauge invariance, Grass-

mann parity, and the counting of engineering dimensions,

[χ] =
d − 1

2
, [λ] =

d + 1

2
, (6.22)

is proportional to

∫ dt∫ ddx (χλ + λχ) . (6.23)

At positive flow time there is always at least one flowed propagator at every order in per-
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turbation theory, so high-energy modes are Gaussian suppressed, and there are no local

counterterms corresponding to the bulk fermions. This is not, however, the case on the

boundary, where the corresponding term,

S
λ,λ
= ∫ ddx (ψλ∣t=0 + λ∣t=0ψ) , (6.24)

is required by BRST invariance. This forces us to reciprocally renormalize the fermionic

Lagrange multipliers:

λ0 = Z
−1/2
χ λ, λ0 = λZ

−1/2
χ . (6.25)

We will return to this at the end of Sec. 6.3.

6.3 BRST Symmerty in (d + 1) Dimensions

The flow equation, Eq. 5.5, is invariant under a gauge transformation, Eq. 1.7, so long as

the gauge function ω satisfies

(∂t − α0Dµ∂µ)ω = 0. (6.26)

This condition may be fixed in a manner similar to the Faddeev-Popov construction, namely,

by introducing a bulk ghost field d and a bulk antighost d with the action [84, 90]

S
dd
= −2∫ dt∫ ddx Tr{d(∂t − α0Dµ∂µ)d} . (6.27)

The ghost field has the boundary condition dt=0 = c, while the antighost is left unfixed on

the boundary, since it acts as a Lagrange multiplier generating a flow equation for d. The

bulk ghost field then receives perturbative corrections just as the gauge and fermion fields
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do. In particular, the ghost field flow equation has the recursive solution

d̃(p; t) = e−α0p
2tc̃(p)

+ ∫

t

0
ds e−α0p

2(t−s)
∫
p1,p2

(2π)dδ(d)(p + p1 + p2)

×X(1,1)(p, p1, p2)
aa1a2
µ1

B̃
a1
µ1
(−p1; s)d̃

a2(−p2; s),

(6.28)

which gives us the propagators

⟨d̃b(−p; s)d̃
a
(p; t)⟩(0) = δabθ(t − s)e−α0p

2t (6.29)

and, by virtue of the boundary condition,

⟨d̃b(−p; s)c̃a(p; t)⟩(0) = g20δ
ab e
−α0p

2t

p2
. (6.30)

There is also a vertex

X(1,1)(p, q, r)abcµ = −iα0f
abcrµ, (6.31)

giving us the Feynman rule

⟨d̃B̃d̃⟩ ∶ = iα0f
abcrα,

(6.32)

Where d is represented by a double dotted line, d by the standard dotted line. These fields

generally do not enter perturbation theory, but they are necessary for a complete BRST-
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invariant action:

S = Sd + Sd+1 (6.33)

where the unflowed action is the sum

Sd = SYM + SD + SFP + Sgf , (6.34)

and the flowed part of the action is

Sd+1 = SB + Sχχ + Sdd. (6.35)

The boundary theory, Sd, was shown to be invariant under BRST transformations in

Sec. 1.5. Extending that procedure to the flowed theory, the variations of the bulk gauge,

fermion, and ghost fields are exactly like those at t = 0, Eqs. 1.56-1.57,

δχ = −θdχ, δχ = −θχd, δBµ = θDµd, δdµ = −θd
2. (6.36)

For each of these, the associated Lagrange multipliers transform similarly,

δλ = −θdλ, δλ = −θχd, δLµ = θ[Lµ, d], (6.37)

with the exception of the bulk antighost field, whose variation has an unusual structure:

δd = θ {DµLµ − {d, d} + λt
aχta − χtaλta} . (6.38)

This last expression is derivable by extending the configuration space to include components
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of the gauge field in the t-direction, B = (Bµ,Bt), so that gauge transformations assume a

(d + 1)-dimensional form [91]. Under these variations, the total action is invariant:

δS = 0. (6.39)

6.4 Perturbative Renormalizability

In order to prove the renormalizability, we follow Ref. [92], omitting many details. The

Slavnov-Taylor (Ward) identities associated to the BRST symmetry of the flowed theory are

generated by the Zinn-Justin (ZJ) equation [93], which requires a few definitions in advance.

First we introduce a source J for each field:

SJ = ∑
φ
∫ ddx (±Jφφ) +∑

Φ
∫ ddx ∫ dt (±JΦΦ) (6.40)

(where the sums are taken over all boundary fields φ and all bulk fields Φ with traces implied

where necessary and signs accounting for canonical ordering of anticommuting fields), as well

as a source K for each variation:

SK = ∑
φ
∫ ddx (±Kφδφ) +∑

Φ
∫ ddx ∫ dt (±KΦδΦ). (6.41)

We now define the effective action functional, which produces all 1PI correlation functions,

as the Legendre transform of the energy with respect to the sources:

Γ[K,φ,Φ] = − logZ[J,K] − SJ , Z[J,K] = ∫ D[φ,Φ]e
−S−SJ−SK . (6.42)
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Working in the off-shell scheme, one may simplify the following arguments by eliminating

the Nakanishi-Lautrup field Ba and the antighost ca through a shift in the effective action,

Γ̃[K,φ,Φ] = Γ[K,φ,Φ] −
1

TF
∫ ddx TrB

δΓ

δB
, (6.43)

which is absorbed by the source of the variation of the gauge field on the boundary, KA.

Now the Zinn-Justin equation assumes the form

∑
φ
∫ ddx (±

δΓ̃

δφ

δΓ̃

δKφ
) +∑

Φ
∫ ddx ∫ dt (±

δΓ̃

δΦ

δΓ̃

δKΦ
) = 0 (6.44)

Renormalizability is then proven by induction on n, the order of the perturbative expansion

of the effective action:

Γ̃ =
∞

∑
n=0

g2nΓ̃(n) (6.45)

where Γ̃(0) = S + SK with all counterterms set to zero. Defining now the BRST operator in

the form of a functional derivative,

Dn = ∑
φ
∫ ddx (

δΓ̃(n)

δφ

δ

δKφ
+
δΓ̃(n)

δKφ

δ

δφ
) +∑

Φ
∫ ddx ∫ dt (

δΓ̃(n)

δΦ

δ

δKΦ
+
δΓ̃(n)

δKΦ

δ

δΦ
) ,

(6.46)

with

D =
∞

∑
n=0

g2nDn, (6.47)

we may rewrite the ZJ equation as

DΓ̃ = 0. (6.48)
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At tree-level, this is simply a statement of the BRST closure of the action:

D0Γ̃
(0) = 0, (6.49)

which forms the base case of our induction. Since Eq. 6.48 holds at all orders in perturbation

theory, we expand it and reindex,

DΓ̃ =
∞

∑
n=0

∞

∑
m=0

g2m+2nDnΓ̃
(m) =

∞

∑
n=0

g2n
n

∑
m=0

DmΓ̃(n−m) = 0, (6.50)

so that for all n we find
n

∑
m=0
DmΓ̃(n−m) = 0. (6.51)

Now consider the divergent pieces, Γ̃(n)∞ , and suppose that our renormalization prescriptions,

Eqs. ref, exactly cancel all divergences at nth order. Then at the next order,

D0Γ̃
(n+1) = D0Γ̃

(n+1)
finite +D0Γ̃

(n+1)
∞ = −

n+1

∑
m=1
DmΓ̃(n−m+1). (6.52)

In our inductive hypothesis, however, we assumed that Γ̃
(m)
∞ = 0 for all m ≤ n. Thus all of

the terms on the far right of Eq. 6.52 are finite, and we have

D0Γ̃
(n+1)
∞ = 0. (6.53)

In principle, Γ̃(n+1)∞ is allowed to have counterterms both in the bulk and on the boundary.

The former may be immediately ruled out following the discussion preceding Eq. 6.25. Since

external fields in the bulk will always induce at least one Gaussian damping factor, the

relevant momentum integrals are convergent. The BPHZ theorem [94] then ensures that
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all boundary subdiagrams are finite as well, as the boundary theory is renormalized. Then

there may be no divergent counterterms in the bulk.

This leaves only boundary counterterms, which must be proportional to local products

of fields at t = 0 with mass dimension d = 4 and zero ghost number. The terms containing

flow-time derivatives may be discarded, since no product satisfying these restrictions may

contain Lagrange multiplier fields, which are required by the action. Since these terms do

not appear, Eq. 6.44 in turn excludes the sources K of the variations of such fields. The

remaining KΦ, too, may be ruled out by mass dimension, leaving only the fields A, ψ, ψ,

c, KA, Kψ, K
ψ

, Kc, and the Lagrange multipliers on the boundaries, L∣t=0, d∣t=0, λ∣t=0,

and λ∣t=0. The most general form of this counterterm (see Ref. [92], Eqs. 4.48 and 4.59), is

determined up to seven formally divergent coefficients: one, w, for the gauge action; one for

each the kinetic term, x1, and the mass term, x2, in the fermion action; three, y1, y2, and

y3, for the sources KA, K
ψ(ψ)

, and Kc; and one final constant, z, for the fermionic Lagrange

multipliers, which are not ruled out by the ZJ equation. Choosing

Z
(n+1)
ψ

= x1 + 2y2,

Z
(n+1)
c = −y1 − y3,

Z
(n+1)
χ = x1 + 4y2 − 2z,

Z
(n+1)
g = w,

Z
(n+1)
m = x2 − x1,

Z
(n+1)
ξ

= 2y1 −w,

(6.54)

exactly cancels all potential divergences in Γ̃
(n+1)
∞ , and we may conclude that these six

renormalization constants are sufficient to negate all divergences to all loop orders.
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A couple remarks are now in order concerning the proof outlined above. First, there

is a problem in defining sources at vanishing flow time for the fields B, χ, χ, and d, since

they are constrained on the boundary and are thus not true degrees of freedom. In order

to circumvent this ambiguity, the authors of Ref. [92] discretized flow time with a forward

difference prescription, allowing them to omit the t = 0 time slice from the relevant action

integrals. This violates the Zinn-Justin equation, but these terms are shown to vanish in the

continuum limit.

Second, the bulk gauge fields somehow need no renormalization in the bulk, while the

fermions do. This disparity may be clarified by examining the boundary counterterms gen-

erated by the flow equations. Consider the (perfectly allowed) counterterm containing the

Lagrange multipliers of the gauge sector on the boundary:

Γ̃
L,d
=

1

TF
∫ ddx Tr (z1L∣t=0A + z2d∣t=0c) , (6.55)

with two divergent coefficients z1 and z2. Taking the variations of these fields to the boundary

as well, the ZJ equation requires that

TFD0Γ̃L,d = ∫ ddx Tr [z1δL∣t=0 ⋅A + z1L∣t=0 ⋅ δA + z2δd∣t=0 ⋅ c − z2d∣t=0 ⋅ δc]

= ∫ ddx Tr [(z1 − z2)L∣t=0∂c − z2 (L∣t=0[A, c] + d∣t=0c
2)]

(6.56)

must vanish (ignoring the fermionic piece of δd without loss of generality). Since the BRST

transformation is inhomogeneous, we must set z1 = z2 = 0; thus the gauge fields undergo no

renormalization in the bulk. On the other hand, for the analogous fermionic counterterm

with coefficient z,

Γ̃
λ,λ
= z∫ ddx (λ∣t=0ψ + ψλ∣t=0) , (6.57)

166



the variation is itself homogeneous:

D0Γ̃λ,λ = z∫ ddx (λ∣t=0ψ + ψλ∣t=0)

= z∫ ddx (δλ∣t=0ψ − λ∣t=0δψ + δψλ∣t=0 − ψδλ∣t=0)

= z ⋅ 0.

(6.58)

In this case, since the integral vanishes, there is no condition on z, so the fields λ and λ indeed

produce a counterterm on the boundary (and so require wavefunction renormalization).

Recalling that there may be no bulk counterterms like Eq. 6.23, we conclude that the fermions

require the inverse renormalization.
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Chapter 7

The Short-Flow-Time Expansion

7.1 Composite Operators

In the previous chapter, we found that, due to the Gaussian damping factors induced by the

flow equations, the renormalization counterterms of a flowed theory reside exclusively on its

boundary. As a result, all correlation functions of the form

⟨B
a1
α1
(x1; t1)⋯B

an
αn(xn; tn)χ(y1; s1)⋯χ(ym; sm)χ(z1;u1)⋯χ(zm;um)⟩

= Z−mχ ⟨B
a1
α1
(x1; t1)⋯B

an
αn(xn; tn)χ(y1; s1)⋯χ(ym; sm)χ(z1;u1)⋯χ(zm;um)⟩0

(7.1)

are strictly finite at positive flow times provided that the boundary theory is appropriately

renormalized. Remarkably, this finiteness carries over to correlation functions as above

for which any number of the spacetime coordinates coincide. This follows again from the

association of a heat kernel to each flowed field. First observe that the flow does not affect

the infrared regime, since all Gaussians tend to unity for small momenta and nonzero flow

time, as they must in order to fulfill the boundary conditions. Then we may expect that

any IR divergences originate on the boundary. Any other divergences will be ultraviolet,

corresponding to the contact of any number of flowed fields at a single point. As the centers

of the flowed distributions overlap, the momentum tends to infinity, driving the Gaussians

to zero. Functions of the resulting local product of fields will then contain two types of loop

integrals. The flowed integrals generated by direct contraction with the operator product are

exponentially damped at UV scales by the flowed fields involved, so they converge absolutely.

All other loops are radiative corrections to the boundary theory, which are exactly canceled
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by the boundary counterterms. It follows that for any bare operator

O0(x; t) = ΓB
n(x; t)χm0 (x; t)χ

m
0 (x; t), (7.2)

where indices are suppressed and all tensor structure is generically represented by Γ, we need

only renormalize the fermions (in addition to the boundary parameters, as usual). Then the

renormalized operator is simply

O(x; t) = Z−mχ O0(x; t). (7.3)

This allows us to define renormalized correlation functions of local operator products at finite

flow time with a simple multiplicative prescription.

7.2 The Short-Flow-Time Expansion

We now have a straightforward and efficient method to renormalize composite operators. If

this is to have any predictive power, the flowed matrix elements ought to be relatable to

the physical theory at t = 0. Of course, as the flow time tends to zero, we expect that the

contact divergences of the boundary theory should be recovered, so that all renormalized

matrix elements of local operators will in general diverge in this limit. In Sec. 1.10, we saw

that these divergences could be absorbed into a suitable renormalization of the composite

operators by means of the OPE,

(Oi)0 = ZijOj , (7.4)

where the implied sum over j runs over a basis of operators Oj restricted only by the quantum

numbers of Oi. In this case, the equivalence is meant to be interpreted in the limit that

169



the coordinates of all fields in the operator coincide. The infinite constants Zij contain the

contact divergences generated in this limit. Under the flow, the contact terms are smeared

with the fields as functions of the flow time t. Following the same arguments, we may write

an analogous asymptotic expansion for renormalized flowed operators near the boundary:

Oi(x; t)
t→0
∼ cij(t)Oj(x), (7.5)

called the short flow time expansion (SFTE). On the right-hand side, all flow-time-

dependence is isolated within the Wilson coefficients cij(t). By purely dimensional argu-

ments, we may determine their leading-order scaling with the flow time:

[cij(t)] = [Oi(x; t)] − [Oj(x)] = di − dj , (7.6)

so that

cij(t) ∝ t
dj−di

2 . (7.7)

In the event that di = dj , the Wilson coefficient diverges logarithmically with t. The more

interesting cases, however, are when di > dj , and the dependence on t of the mixing coef-

ficients goes as an inverse power of the flow time. These power divergences are typically

absent from perturbation theory with dimensional regularization, since they are generated

by integrals which become scaleless on the boundary. This is particularly attractive to lat-

tice applications, because the mixing coefficients are decoupled from the lattice regulator at

leading order. Of course, in a discretized setting, there may be subleading corrections which

depend on the lattice spacing, but these vanish in the continuum limit. In the remaining case,

di < dj , the Wilson coefficient is suppressed by some positive power of t and vanishes on the
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boundary. These terms correspond to irrelevant operators and will be hereafter neglected;

we will truncate the sum at the logarithmic order and write the irrelevant contributions as

an error of O(t).

7.3 Wilson Coefficients

Since the SFTE is an operator-level relation, we are afforded a considerable amount of

freedom in choosing probes for the Wilson coefficients. Specifically, we may choose any

external fields with any kinematics to construct matrix elements of the flowed operator.

Choosing an operator as in Eq. 7.2 and some external state with generic flowed or unflowed

fields Φk, we define the renormalized correlation function

Γi(x, y1, ..., yn; t, s1, ..., sn) ≡ ⟨Φ1(y1, s1)⋯Φn(yn, sn)Oi(x; t)⟩

= Z−1Φ1
⋯Z−1ΦnZ

−m
χ ⟨Φ1(y1, s1)⋯Φn(yn, sn)Oi(x; t)⟩0,

(7.8)

where, in case Φk = B for some k, we write ZB = 1 identically. With a suitable choice

of external states depending on the field structure of the boundary operators, we may can

choose which terms at any order contribute to the expansion of the correlation function.

Particularly at next-to-leading order, the external states may often be chosen so that matrix

elements of the form above vanish entirely for some j. Inserting this expression into the

SFTE, we have

⟨Φ1(y1, t1)⋯Φn(yn, tn)Oi(x; t)⟩ = ∑
j
cij(t)⟨Φ1(y1, t1)⋯Φn(yn, tn)Oj(x)⟩. (7.9)
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Introducing the shorthand Γi(t) = Γi(x, y1, ..., yn; t, s1, ..., sn) for t ≥ 0, we may express the

SFTE as a loop expansion. Writing

Γi(t) =
∞

∑
n=0

g2nΓ
(n)
i (t), cij(t) =

∞

∑
n=0

g2nc
(n)
ij , (7.10)

the expansion assumes the form

∞

∑
n=0

g2nΓ
(n)
i (t) = ∑

j

∞

∑
n=0

g2nc
(n)
ij (t)

∞

∑
m=0

g2mΓ
(m)
j (0) = ∑

j
∑

0≥m≥n
g2nc

(n−m)
ij (t)Γ

(m)
j (0). (7.11)

Equating terms of the same order, we have

Γ
(n)
i (t) = ∑

j

n

∑
m=0

c
(n−m)
ij (t)Γ

(m)
j (0). (7.12)

On the right side, the boundary correlators may be further expanded in an OPE,

Γj(0) = Z
−1
jk [Γk]0(0), (7.13)

with renormalization constants likewise expanded in the coupling:

Z−1jk =
∞

∑
n=0

g2n[Z−1jk ]
(n). (7.14)

We may then write the nth term of the SFTE as

Γ
(n)
i (t) = ∑

j,k
∑

0≤`≤m≤n

c
(n−m)
ij (t)[Z−1jk ]

(m−`)[Γk]
(`)
0 (0). (7.15)
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The most useful cases within the scope of this work are the tree-level and one-loop expressions

at n = 0,1. In the former case, we have the trivial expression

Γ
(0)
i (t) = c

(0)
ij (t)[Z

−1
jk ]
(0)[Γk]

(0)
0 (0), (7.16)

where the operator sums over j and k are once again made implicit. Using Z(0)
jk
= δjk, and

noting that the tree-level structures of the flowed and unflowed matrix elements are identical

up to kernels attached to the flowed fields (therefore up to terms of at least order t),

Γ
(0)
i (t) = c

(0)
ij (t)[Γj]

(0)
0 (0) = [Γi]

(0)
0 (0) + O(t), (7.17)

we conclude that c(0)ij = δij +O(t). For n = 1, we have after some simplification

Γ
(1)
i (t) = {c

(1)
ij (t) + [Z

−1
ij ]
(1)} ⋅ [Γj]

(0)
0 (0) + [Γi]

(1)
0 (0) + O(t), (7.18)

which gives us an easy recipe for calculating the NLO Wilson coefficients. We will take two

approaches in calculating the correlation functions in the next Part of this thesis. Many

flowed diagrams will be exactly solvable by the same novel method used to calculate the

renormalization constants in previous chapters. On the other hand, when we renormalize

the topological charge density and gluon chromoelectric dipole moment operators, many

of the integrals or sums will be unsolvable with current methods. When they are exactly

solvable, we calculate every term above. After renormalizing the boundary parameters,

the renormalization of any χ fields will take care of all remaining poles on the flowed side.

On the expanded side, the poles from the bare one-loop matrix element are cancelled by the

boundary counterterm. For the unsolvable cases, it is easiest to use the method of projectors.
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To proceed, we first choose a set of external states, defining correlation functions Γj as above,

and rotate to momentum space. We then define as many differential operators Pi satisfying

PiΓ
(0)
j = δij , (7.19)

or, in other words, project out the tree level associated with jth operator. The projectors

generally contain derivatives with respect to masses and to any momenta related to deriva-

tive couplings and traces over all fermionic, Lorentz, and gauge group indices. After the

derivatives are taken, all external scales are taken to zero. In order that these traces do not

trivially vanish, we also insert appropriate elements of the spacetime and gauge algebras. To

ensure orthogonality, we may diagonalize the operator basis. Finally, we normalize to one

by dividing out various numerical constants (polynomials in d, group invariants, etc.). As

an example, consider the qCMDM operator,

OCM = kCMψσµνGµνψ, (7.20)

where kCM is some unimportant normalization constant, and σµν =
i
2γ[µ,ν]. Choosing

an external state of two fermions and a gluon, the amputated tree-level result is just the

Feynman rule:

[ΓCM ]0(p, q, r) = ⟨ψ̃(r)Ã
a
α(q)ψ̃(p)Oi⟩0 = −2ikCM taσαβqβ . (7.21)
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We now differentiate with respect to qγ and multiply by taσγα so that the traces do not

vanish (ta is traceless, and σµν is antisymmetric), which determines the normalization:

Tr{taσγα
∂

∂qγ
[−2ikCM taσαβqβ]} = 2ikCMd(d − 1)nfC2(F ), (7.22)

The projector for the qCMDM is then:

PCM [X] =
1

2ikCMd(d − 1)nfC2(F )
Tr{taσγα

∂

∂qγ
X} . (7.23)

We will not often worry about orthogonality. Indeed, there is another operator in Sec. 8.2

which will not vanish when acted upon by PCM , but the pieces are trivial to disentangle,

and the derivative is the critical operation.

When we apply a projector to subleading diagrams, since all external scales are neglected,

there may be nothing the regulate the infrared region of some loop integrals. At zero flow

time, the loop integrals appearing in [Γk]
(`)
0 (0) for ` > 0 will in general be of the form

In(0) = ∫
p

1

(p2)n
=
2(4π)−d/2

Γ(d/2) ∫
∞

0
dp pd−2n−1 =

2(4π)−d/2

Γ(d/2)
⋅
pd−2n

d − 2n
∣

∞

p=0

. (7.24)

In the radial form above, it is easy to see that the disjoint domains of convergence are defined

by d > 2n in the IR region (p → 0) and d < 2n in the UV (p →∞). There is no dimensionful

parameter in the integrand, but the integral has a mass dimension of d− 2n, so we expect it

to vanish. This may be achieved by introducing a factor of one into the formal (undefined)

integral and expanding as such:

In(0) = ∫
p

1

(p2)n
(
p2 +m2

p2 +m2
)

k

=
k

∑
`=0

(
k

`
)m2`

∫
p

(p2)k−`−n

(p2 +m2)k
. (7.25)
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for some integer k. Performing the integral then the sum, we arrive at

In(0) =
m4−2n

(4π)2
(
4π

m2
)
2−d/2

⋅ (−1)n
d − 2k

d − 2n

sin(kπ)

π

Γ(d/2 − k)Γ(k − d/2)

Γ(d/2)
. (7.26)

Since k is an integer, the sine and therefore the integral both vanish.

It is more practically useful to recover this result by analytically continuing the dimension.

In this case we split the region of integration by some scale Λ instead of inserting a unit:

In(0) =
2(4π)−d+/2

Γ(d+/2)
∫

Λ

0
dp pd+−2n−1 +

2(4π)−d−/2

Γ(d−/2)
∫

∞

Λ
dp pd−−2n−1. (7.27)

in the first integral, we set d+ = 2n + εIR with εIR > 0 to regulate the infrared divergence.

For the second integral, we contrariwise define d− = 2n − εUV with εUV > 0. The integrals

evaluate to

In(0) =
2(4π)−d+/2

Γ(d+/2)

Λd+−2n

d+ − 2n
−
2(4π)−d−/2

Γ(d−/2)

Λd−−2n

d− − 2n
, (7.28)

which is easily expanded to leading order near d± = 2n. For n = 2, we have

I2(0) =
1

(4π)2
[

1

εIR
+

1

εUV
] +O(εIR, εUV ), (7.29)

so that continuing εIR → −εUV forces the integral to vanish. For any other value of n, the

total trivially vanishes:

In≠2(0) =
1

(4π)2
[−

Λ4−2n

n − 2
+
Λ4−2n

n − 2
] +O(εIR, εUV ) = O(εIR, εUV ). (7.30)

This partition of the integrand is especially important for computing flowed integrals after

projection. In Eq. 7.18, the correlators at zero flow time vanish by the above arguments.
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The flowed correlation functions typically contain integrals of the form

In(u) = ∫
p

e−p
2u

(p2)n
=
2(4π)−d/2

Γ(d/2) ∫
∞

0
dp e−p

2upd−2n−1, (7.31)

where u is some nonnegative parameter dependent on the flow time that endows the integral

with a scale and damps the UV modes. For d > 2n, this is a simple gamma function:

In<d/2(u) = (4πu)
2−d/2 u

n−2

(4π)2
Γ(d/2 − n)

Γ(d/2)
. (7.32)

For d ≤ 2n, however, we encounter another IR divergence, so we use d = d+. Expanding the

integral, we have

In≥d/2(u) = −
1

(4π)2
[

1

εIR
− log(4πu) − 1 +O(εIR)] , (7.33)

evincing the IR pole. These should cancel the the UV pole from any necessary renormal-

ization factors and the boundary counterterm proportional to [Z−1ij ]
(1), but the signs are

wrong. We may then define the boundary integrals as in Eq. 7.29 before analytically contin-

uing, which reintroduces all UV poles and cancels the IR poles. Equivalently, we can simply

set εIR = −εUV in all calculations, and the poles manifestly cancel.

Now that we have two methods for calculating loop integrals, we can rearrange the

SFTE at one-loop order, expressing the Wilson coefficient in terms of quantities we can now

calculate:

c
(1)
ij (t)[Γj]

(0)
0 (0) = Γ

(1)
i (t) − [Γi]

(1)
0 (0) − [Z

−1
ij ]
(1)[Γj]

(0)
0 (0) + O(t). (7.34)
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The mixing coefficients are then easily readable as the (finite) coefficients of the tree-levels

for each operator j.
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Part III

CP -Violating Operator Mixing
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Chapter 8

Results

In this chapter, we discuss the mixing a few physically-relevant CP -odd operators. The three

operators we will cover are the topological charge density (TCD), the quark chromoelectric

dipole moment (qCEDM), and the gluon chromoelectric moment (gCEDM).

The TCD is defined as

Oq =
kq

g2
TrGµνG̃µν , (8.1)

where G̃ is the Hodge dual of the curvature G,

G̃ = −
1

2
εµνρσGρσ (8.2)

and the Levi-Civita tensor ε ensures parity violation. As we mentioned in Sec. 1.5, renormal-

izability requires the most general BRST-invariant Lagrangian, which in the case of QCD

should include the charge. Nevertheless, experimental evidence suggests that QCD preserves

parity, so that the coupling of this term must be nearly zero. In light of this fact, the TCD

is typically completely ignored when defining the QCD Lagrangian.

The second operator we consider is the quark chromoelectric dipole moment:

OCE = kCEψ̄σ̃µνGµνψ. (8.3)

The dimension of the qCEDM is dCE = 3d/2−1, which coincides with dCE = 5 in four dimen-

sions. This is an effective interaction formed by integrating out the squarks and gluinos from

supersymmetric extensions of the Standard Model. The gCEDM is similarly constructed.
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In n-Higgs doublet models with n ≥ 2, one of the physical states is a pseudoscalar. In these

models, a heavy quark loop with a virtual Higgs exchange can be reduced to a local inter-

action by integrating out all degrees of freedom heavier than the quarks. For a three-gluon

external state mediated by such a loop, the result is the gCEDM, often called the Weinberg

operator [95]:

OW =
kW
g2

TrGµρGνρG̃µν , (8.4)

with dgC = 5d/2 − 4 (dgC = 6 in four dimensions).

These operators may be renormalized by means of the OPE, Eq. 1.124. Granted that

the latter two operators are both higher-dimensional (di > d) when d > 2, we expect that

the corresponding Wilson coefficients will run as some inverse power in the chosen regulator.

We use the gradient flow to regulate these divergences, transitioning to the SFTE,

Oi(t) = cij(t)Oj(0), (8.5)

instead of the standard OPE. We then treat the flowed operators as insertions with unflowed

external states, so that the overlap singularities alone are parametrized by the flow time. At

leading order we can use Eq. 7.18 to extract the flowed Wilson coefficients, cij . Since the

flow time has dimension [t] = −2, we expect that

cij(t) ∼ t
dj−di

2 . (8.6)

The unflowed renormalization matrix Zij in the MS scheme was determined for dimension-

five operators in Ref. [96] and for dimension-six operators in Ref. [97]. In the flowed case,

we need only renormalize the external fields and the flowed fermions. Then all we must
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calculate are the bare correlation functions at both t = 0 and t > 0. We proceed in dimensional

regularization with the MS subtraction scheme.

8.1 Topological Charge Density

In QFT, the topological charge density counts instanton configurations, classical solutions

to the Yang-Mills equations of motion with finite action. When we insert the TCD into

the action, the resulting integral is always an integer (up to the normalization kq = 1/16π2)

called the topological charge or instanton number. More precisely, the topological charge

density is the divergence of the Chern-Simons current K:

Q = ∫ Oq =
kq

g2
∫ TrGµνG̃µν =

kq

g2
∫ Tr∂µKµ, (8.7)

where

Kµ = −εµνρσ (AνGρσ +
2

3
Aνρσ) . (8.8)

The Feynman rule for the topological charge density is thus directly proportional to the total

momentum of the operator. Without any injected momentum, we expect that all correlation

functions including the TCD will vanish. Since the total charge is the relevant observable,

the operator is always integrated, projecting the total momentum — and the operator itself

— to zero. However, as we are only interested in renormalization and mixing in the present

context, we can avoid this problem by injecting some momentum k into any correlation

functions including the charge. After the Wilson coefficients are computed, we are free to

discard k.
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We write the SFTE for the topological charge density as

Oq(t) = cq,P (t)OP (0) + cq,∂A(t)O∂A(0) + cq,q(t)Oq(0) + Ot, (8.9)

where the operators OP and O∂A are respectively the pseudoscalar fermionic current and

the divergence of the axial current:

OP = kPψγ5ψ, (8.10a)

O∂A = ∂µ(ψγ̃µψ), (8.10b)

where γ̃µ = 1
2[γµ, γ5] is a d-dimensional generalization of γµγ5 which retains Hermiticity.

Note that the coefficient cq,P has dimension dP − dq = 1, so that the mixing cannot be an

integral power of the flow time. Instead, the difference of dimension is compensated by a

factor of the mass, which ensures that both sides of Eq. 8.9 have the same chirality.

8.1.1 Mixing With Quark Bilinears: cq,P (t) and cq,∂A(t)

(a) Γ
(1)
q (t ≥ 0)

Figure 8.1: The lone contribution to Γ
(1)
q (t ≥ 0)

We can probe the quark bilinear operators by choosing a fermionic external state. Defin-

ing

Γi(k; t) = ∫
p
e−ip(y−x)∫ ddze−ikz⟨ψ(y; 0)Oi(z; t)ψ(x; 0)⟩, (8.11)
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the SFTE becomes

Γq(k; t) = cq,P (t)ΓP (t)(k; 0) + cq,∂A(t)Γ∂A(k; 0) + cq,q(t)Γq(k; 0) + Ot. (8.12)

While we have suppressed the external momentum p in the above notation, the correlation

functions depend on both p and k. Further, we need both momenta to extract the Feynman

rules for each term. In this case, since the loop integrals quickly become very difficult, we

can use the method of projectors, expanding the integrands to linear order in both p and k.

As we discussed in Ch. 7, this allows us to discard the all subleading contributions to the

t = 0 amplitudes. At one-loop order, the reduced SFTE is

Γ
(1)
q (k; t) = c

(1)
q,P (t)Γ

(0)
P (t)(k; 0) + c

(1)
q,∂A
(t)Γ

(0)
∂A
(k; 0) + c

(1)
q,q (t)Γ

(0)
q (k; 0) + Ot. (8.13)

On the left, we have only a single diagram, Fig. 8.1. On the right, the first two correlation

functions are simply the Feynman rules for OP and O∂A, while the last term vanishes

identically. Using the Feynman rules from earlier and solving the momentum integral as

before we find

Γ
(1)
q (k; t) = ikqTFC2(F )

g2

(4π)2
{−

1

εIR
+ log(2µ̄2t) + γE +

3

2
}kµεµνρσγνρσ +O(p

2, k2,m2, t).

(8.14)

Since there are no terms linear in the mass, we can immediately see that the NLO Wilson

coefficient cq,P vanishes to this order:

c
(1)
q,P = 0. (8.15)
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Using the identity

εµνρσγνρσ = 3γ̃µ, (8.16)

and replacing the bare parameters with their renormalized counterparts, we have

g2Γ
(1)
q (k; t) = 3ikqTFC2(F )

g2

(4π)2
{−

1

εIR
+ log(2µ̄2t) + γE +

3

2
}kµγ̃µ +O(p

2, k2,m2, t),

(8.17)

which is easily written in terms of Γ(0)
∂A

:

g2Γ
(1)
q (k; t) = 6TFC2(F )

kq

k∂A

g2

(4π)2
{−

1

εIR
+ log(2µ̄2t) + γE +

3

2
}Γ
(0)
∂A
+O(p2, k2,m2, t).

(8.18)

The boundary diagram allows us to replace −εIR → εUV = ε, giving us renormalization

constant

Z
(1)
q,∂A

−1
= −6TF

kq

k∂A

C2(F )

(4π)2
1

ε
(8.19)

and subsequently the Wilson coefficient:

c
(1)
q,∂A
(t) = 6

kq

k∂A

TFC2(F )

(4π)2
{log(2µ̄2t) + γE +

3

2
} . (8.20)

8.1.2 Self-Mixing: cq,q(t)

The self-mixing of the topological charge density, cq,q may be extracted with a two-gluon

external state, since this choice projects the quark bilinear terms to zero at one-loop order.

This time, the function

Γq(k; t) = ∫
p
e−ip(y−x)∫ ddze−ikz⟨Abβ(y; 0)Oq(z; t)A

a
α(x; 0)⟩ (8.21)
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(a) Γ
(1,1A)
q,q (t ≥ 0) (b) Γ

(1,1B)
q,q (t > 0) (c) Γ

(1,1C)
q,q (t > 0) (d) Γ

(1,1D)
q,q (t > 0)

(e) Γ
(1,2A)
q,q (t ≥ 0) (f) Γ

(1,2B)
q,q (t > 0) (g) Γ

(1,3A)
q,q (t ≥ 0) (h) Γ

(1,3B)
q,q (t > 0)

(i) Γ
(1,4)
q,q (t ≥ 0) (j) Γ

(1,5A)
q,q (t > 0) (k) Γ

(1,5B)
q,q (t > 0) (l) Γ

(1,5C)
q,q (t > 0)

Figure 8.2: All topologically distinct contributions to Γ
(1)
q,q (t ≥ 0)

is represented by twelve one-loop diagrams, shown in Fig. 8.2. Expanding again in k and p,

the individual contributions can be evaluated as before:

Γ
(1,1A)
q (t) = 1 ⋅ 5

TA
(4π)2

{−
1

εIR
+ log(2µ̄2t) + γE +

3

2
}Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22a)

Γ
(1,1B)
q (t) = 1 ⋅ (−

9

2
)

TA
(4π)2

Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22b)

Γ
(1,1C)
q (t) = 1 ⋅ (−1)

TA
(4π)2

Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22c)

Γ
(1,1D)
q (t) = 1 ⋅ (−

9

8
)

TA
(4π)2

Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22d)

Γ
(1,2A)
q (t) =

1

2
⋅ 0 +O(p2, k2, t), (8.22e)

Γ
(1,2B)
q (t) = 1 ⋅ 0 +O(p2, k2, t), (8.22f)

Γ
(1,3A)
q (t) =

1

2
⋅ (−6)

TA
(4π)2

{−
1

εIR
+ log(2µ̄2t) + γE + 1}Γ

(0)
q (k; 0) + O(p

2, k2, t), (8.22g)

Γ
(1,3B)
q (t) = 1 ⋅

25

8

TA
(4π)2

Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22h)

Γ
(1,4)
q (t)

1

2
⋅ 0 +O(p2, k2, t), (8.22i)
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Γ
(1,5A)
q (t) =

1

2
⋅ (−6)

TA
(4π)2

{
1

εUV
+ log(2µ̄2t) + γE +

5

6
}Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22j)

Γ
(1,5B)
q (t) = 1 ⋅ (−2)

TA
(4π)2

{
1

εUV
+ log(2µ̄2t) + γE − 1

1

4
}Γ
(0)
q (k; 0) + O(p

2, k2, t), (8.22k)

Γ
(1,5C)
q (t) =

1

2
⋅ 6

TA
(4π)2

{
1

εUV
+ log(2µ̄2t) + γE +

1

3
}Γ
(0)
q (k; 0) + O(p

2, k2, t). (8.22l)

Amazingly, the sum total of these diagrams reduces to

Γ
(1)
q (k; t) = −2

TA
(4π)2

[
1

εIR
+

1

εUV
] +O(p2, k2, t) = O(p2, k2, t), (8.23)

so self-mixing coefficient of the topological charge density vanishes at next-to-leading order:

cq,q(t) = δij +O(g
4). (8.24)

Actually, this should be expected. As we argued above, the topological charge density

operator vanishes under momentum conservation in perturbation theory, so one cannot find

any dependence on its coupling with any finite number of Feynman diagrams. There is

therefore no perturbative anomalous dimension for the charge. The charge does, however,

contribute to the path integral nonperturbatively [98].

The entire SFTE for the charge now reads

Oq(t) = c
(1)
q,∂A
(t)O

(0)
∂A
(0) + O(g2, t). (8.25)

At least to one-loop order, the perturbative renormalization of the charge is simply a finite

shift proportional to the divergence of the axial current [99].
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8.2 Quark Chromoelectric Dipole Moment

We now consider renormalization of the quark chromoelectric- and chromomagnetic-dipole-

moment operators (qCEDM and qCMDM) at one-loop order and at positive flow time. These

operators are defined as

OCE = kCEψ̄σ̃µνGµνψ, (8.26a)

OCM = kCM ψ̄σµνGµνψ, (8.26b)

where ki are generic normalization constants; F and G are, respectively, the U(1) and

SU(NC) curvature tensors:

Fµν = ∂[µAν], (8.27a)

Gµν = t
aGaµν = t

a {∂[µG
a
ν]
+ fabcGbµG

c
ν} ; (8.27b)

and σ and σ̃ are tensor and pseudotensor elements of the d-dimensional spacetime algebra:

σµν =
i

2
γ[µ,ν], (8.28a)

σ̃µν =
1

2
{σµν , γ5}

d→4±
ÐÐÐ→ σµνγ5; (8.28b)

To avoid confusion in this section, we temporarily label the electric fields A and the chro-

moelectric fields G.

For the dipole-moment operators above, the short-flow-time expansions read

ORCE(t) = cCE,P (t)O
R
P (0) + cCE,E(t)O

R
E(0) + cCE,CE(t)O

R
CE(0) + O(m, t), (8.29a)
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ORCM (t) = cCM,S(t)O
R
S (0) + cCM,M (t)O

R
M (0) + cCM,CM (t)O

R
CM (0) + O(m, t), (8.29b)

where the scalar, pseudoscalar, qEDM, and qMDM operators are defined by

OS = kSψ̄ψ, (8.30a)

OP = kP ψ̄γ5ψ, (8.30b)

OE = kEψ̄σµνFµνψ, (8.30c)

OM = kM ψ̄σ̃µνFµνψ. (8.30d)

For now, we neglect the quark mass. There are a handful of operators which contribute only

at finite mass; these will be studied in a later section.

8.2.1 Mixing With the Pseudoscalar Density: cCE,P (t)

Choosing two quark fields as external states, we define the correlation functions Γi(p; t):

Γi(p; t) = ∫
p
e−ip(y−x)∫ ddz ⟨ψ(y; 0)Oi(z; t)ψ(x; 0)⟩, (8.31)

189



At zero electromagnetic coupling, expanding Eq. 8.29a to O(g2), we have

Γ
(0)R
CE,P (t) + g

2Γ
(1)R
CE,P (t) = [c

(0)
CE,P (t) + g

2c
(1)
CE,P (t)] [Γ

(0)R
P,P (0) + g

2Γ
(1)R
P,P (0)]

+ [c
(0)
CE,CE(t) + g

2c
(1)
CE,CE(t)] [Γ

(0)R
CE,P (0) + g

2Γ
(1)R
CE,P (0)] + O(g

4, t)

=[c
(0)
CE,P (t)Γ

(0)R
P,P (0) + c

(0)
CE,CE(t)Γ

(0)R
CE,P (0)]

+g2[c
(0)
CE,P (t)Γ

(1)R
P,P (0) + c

(1)
CE,P (t)Γ

(0)R
P,P (0)

+c
(0)
CE,CE(t)Γ

(1)R
CE,P (0) + c

(1)
CE,CE(t)Γ

(0)R
CE,P (0)]

+ O(g4,m, t)s

(8.32)

Collecting like powers in the strong coupling and discarding correlation functions that vanish

trivially, we have

0 = c
(0)
CE,P (t)Γ

(0)R
P,P (0) + O(m, t), (8.33a)

Γ
(1)R
CE,P (t) = c

(0)
CE,P (t)Γ

(1)R
P,P (0) + c

(1)
CE,P (t)Γ

(0)R
P,P (0) + c

(0)
CE,CE(t)Γ

(1)R
CE,P (0) + O(m, t).

(8.33b)

Eq. 8.33a enforces

c
(0)
CE,P (t) = 0 +O(m, t), (8.34)

and, choosing external states as in Sec. 8.2.4, we can easily see that

c
(0)
CE,CE(t) = 1 +O(m, t). (8.35)
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(a) Γ
(1,1)
CE,P

(t ≥ 0) (b) Γ
(1,2)
CE,P

(t ≥ 0) (c) Γ
(1,3)
CE,P

(t > 0)

Figure 8.3: All topologically distinct contributions to Γ
(1)
CE,P (t ≥ 0)

We are then left with

Γ
(1)R
CE,P (t) = c

(1)
CE,P (t)Γ

(0)R
P,P (0) + Γ

(1)R
CE,P (0) + O(m, t). (8.36)

On the lefthand side, there are three Feynman graphs which contribute to Γ
(1)
CE(t), shown

in Fig. 8.3:

Γ
(1,1)
CE,P (t) = 3i

kCE
kP

C2(F )

(4π)2
{
1

t
+ p2 [log(2p2t) + γE −

11

4
]}γ5 +O(m, t), (8.37a)

Γ
(1,2)
CE,P (t) = 0 +O(m, t), (8.37b)

Γ
(1,3)
CE,P (t) = 0 +O(m, t). (8.37c)

Of course, diagrams 8.3a and 8.3c each have a twin diagram under the exchange of the

position of the qCEDM vertex with the QCD or flow vertex. The results are identical under

the interchange p↔ p′, so that

Γ
(1)
CE,P (t) = 2Γ

(1,1)
CE,P (t) = 6ikCE

C2(F )

(4π)2
{
1

t
+ p2 [log(2p2t) + γE −

11

4
]}γ5 +O(m, t). (8.38)

Notice the term proportional to p2 in brackets. Since we are working at zero mass, we
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encounter the off-shell operator

O
∂2P
= k

∂2P
ψ̄γ5

↔

∂2 ψ. (8.39)

This term leads to the mixing of the qCEDM with the off-shell operator, but it clearly

vanishes as we send p2 to zero. Since the SFTE is insensitive to our kinematics, we may for

now choose to put the quarks on shell, so that the subtraction of the pseudoscalar coefficient

is cleaner.

For the righthand side of Eq. 8.36, there is a single graph for each term. The pseudoscalar

term is tree-level and therefore trivial; it will be modded out of the final result to solve for

the Wilson coefficient. The second term receives a contribution from a a pair of diagrams

topologically identical to Fig. 8.3a. We find

Γ
(0)
P,P (0) = kP γ5, (8.40a)

Γ
(1)
CE,P (0) = −6ikCE

C2(F )

(4π)2
{[

1

ε
+ log(

4π

eγEp2
) +

4

3
+
10

9
δHV ]}p

2γ5 +O(m, t). (8.40b)

The second term is purely off-shell, so we set it to zero for now, and we may solve for the

pseudoscalar mixing coefficient:

c
(1)
CE,P (t) = 6i

kCE
kP

C2(F )

(4π)2
1

t
+O(t). (8.41)

or

cCE,P (t) = 6iC2(F )
kCE
kP

g2

(4π)2
1

t
+O(g4, t). (8.42)

Returning to the off-shell SFTE and subtracting the pseudoscalar piece from both sides,
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we are left with only the off-shell pieces of the correlation functions; taking their difference

modulo the tree-level gives us the off-shell mixing coefficient:

c
(1)

CE,∂2P
(t) = 6i

kCE
k
∂2P

C2(F )

(4π)2
{log(2µ̄2t) + γE −

17

12
+
10

9
δHV } +O(t). (8.43)

8.2.2 Mixing With the Topological Charge Density: cCE,q(t)

If we include fermion masses in Eq. 8.29a, it is possible for the qCEDM to receive corrections

from the topological charge density, as follows. Choosing two gluon fields as external states,

we recycle our notation Γi(q; t):

Γq(k; t) = ∫
p
e−ip(y−x)∫ ddze−ikz⟨Gbβ(y; 0)Oq(z; t)G

a
α(x; 0)⟩ (8.44)

At next-to-leading order, only the topological charge term survives on the right side of the

short flow time expansion, so we need only compute the flowed correlator. There are three

contributions to Γ
(1)
CE(t), presented in Fig. 8.15. Expanding each Feynman diagram to first

order in the mass and proceeding as before, we find

Γ
(1,1)
CE (k; t) = 4i

kCE
kq

nf dim(F )

(4π)2
{log(2k2t) + γE − 1} ⋅mΓ

(0)
q (k; 0) + O(m

2, t), (8.45a)

Γ
(1,2)
CE (k; t) = 0 +O(m

2, t), (8.45b)

Γ
(1,3)
CE (k; t) = 0 +O(m

2, t). (8.45c)

Any potential pole must then reside in the boundary correlator. Indeed, we find

Γ
(1,1)
CE (k; 0) = −4i

kCE
kq

nf dim(F )

(4π)2
{
1

ε
+ log(

µ̄2

k2
) + 2} ⋅mΓ

(0)
q (k; 0) + O(m

2, t), (8.46)
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(a) Γ
(1,1)
CE

(t ≥ 0) (b) Γ
(1,2)
CE

(t ≥ 0) (c) Γ
(1,3)
CE

(t > 0)

Figure 8.4: All distinct contributions to Γ
(1)
CE(t ≥ 0)

so that

Z
(1)
CE,q

−1
= 4i

kCE
kq

nf dim(F )

(4π)2
1

ε
. (8.47)

The mixing coefficient is then easily read off:

c
(1)
CE,q(t) = 4i

kCE
kq

nf dim(F )

(4π)2
{log(2µ̄2t) + γE + 1} +O(t). (8.48)

8.2.3 Mixing With the Quark Electric Dipole Moment: cCE,E(t)

Choosing now two quark fields and a single nondynamical photon as external states, we

recycle our notation Γ:

(2π)dδ(d)(p+q−r)ΓRi,E(p, r; t) = ∫wxyz
e−ipwe−iqxeiry⟨ψR(y)ORi (z; t)A

R
α (x)ψ̄

R(w)⟩. (8.49)

Repeating the expansion and reduction as in Sec. 8.2.1, we have

Γ
(1)R
CE,E(t) = c

(1)
CE,P (t)Γ

(0)R
P,E (0) + c

(1)
CE,E(t)Γ

(0)R
E,E (0) + Γ

(1)R
CE,E(0) + O(t). (8.50)

This time there are extra diagrams on the left that exactly cancel the pseudoscalar term on

the right. These are non-1PI, so we may study an equivalent equation where the correlators
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are strictly 1PI;

Γ
(1)R
CE,E(t) = c

(1)
CE,E(t)Γ

(0)R
E,E (0) + Γ

(1)R
CE,E(0) + O(t). (8.51)

(a) Γ
(1,1a)
CE,E

(t ≥ 0) (b) Γ
(1,1b)
CE,E

(t ≥ 0)

Figure 8.5: All 1PI contributions to Γ
(1)
CE,E(t ≥ 0)

There is one pair of diagrams for each term, shown in Fig. 8.5. Since the mixing is linear

in the photon momentum qα, we are free to discard other soft scales; the IR divergences

will be regulated by this momentum so long as the outgoing quark is kept off-shell. This,

however, breaks the symmetry under the exchange of quark indices, and we must evaluate

the graphs in both Figs. 8.5a and 8.5b independently. Further, this choice of kinematics

introduces another “nuisance” operator:

ON = kN ψ̄Eγ5ψE , (8.52)

where the equation-of-motion fields

ψE = ( /D +m)ψ, (8.53a)

ψ̄E = ψ̄(
←

/D −m) (8.53b)

vanish on the mass shell. At (p, r) = (0, q), there are two tensors which appear within this

195



calculation, taqαγ5 and taσαβγ5qβ , which are related to the tree-level correlators by

taqαγ5 =
1

2kE
Γ
(0)
E +

i

kN
Γ
(0)
N , (8.54a)

taσαβγ5qβ =
i

2kE
Γ
(0)
E . (8.54b)

At positive flow time,

Γ
(1,1a)
CE,E(t) = 2

C2(F )

(4π)2
{[log(2q2t) + γE − 1]Γ

(0)
E

+
3

2
i
kCE
kN
[log(2q2t) + γE −

3

2
]Γ
(0)
N } +O(m, ε),

(8.55a)

Γ
(1,1b)
CE,E(t) = 2

C2(F )

(4π)2
{[log(2q2t) + γE − 1]Γ

(0)
E

+
3

2
i
kCE
kN
[log(2q2t) + γE − 1]Γ

(0)
N } +O(m, ε).

(8.55b)

On the boundary,

Γ
(1,1a)
CE,E(0) = −2

C2(F )

(4π)2
{[

1

ε
+ log(

4π

eγEp2
) +

3

2
+
1

3
δHV ]Γ

(0)
E

+
3

2
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
+
10

9
δHV ]Γ

(0)
N } +O(m, ε),

(8.56a)

Γ
(1,1b)
CE,E(0) = −2

C2(F )

(4π)2
{[

1

ε
+ log(

4π

eγEp2
) + 2 +

1

3
δHV ]Γ

(0)
E

+
3

2
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
+
10

9
δHV ]Γ

(0)
N } +O(m, ε),

(8.56b)

and the Wilson coefficients are

cCE,E(t) = 4C2(F )
g2

(4π)2
{log(2µ̄2t) + γE +

3

2
+
2

3
δHV } +O(g

4,m, t), (8.57a)

cCE,N (t) = 4C2(F )
g2

(4π)2
{log(2µ̄2t) + γE +

1

6
+
20

9
δHV } +O(g

4,m, t). (8.57b)
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8.2.4 Self-Mixing: cCE,CE(t)

We now choose two quark fields and a single gluon as external states and again redefine Γ:

(2π)dδ(d)(p + q − r)ΓRi,CE(p, r; t) = ∫wxyz
e−ipwe−iqxeiry⟨ψR(y)ORi (z; t)G

aR
α (x)ψ̄

R(w)⟩.

(8.58)

Reducing the SFTE, we may subtract all one-particle reducible diagrams from both sides,

so that all pseudoscalar and qEDM terms cancel, leaving us with

Γ
(1)R
CE,CE(t) = c

(1)
CE,CE(t)Γ

(0)R
CE,CE(0) + Γ

(1)R
CE,CE(0) + O(t). (8.59)

The one-loop flowed correlator produces thirty-four 1PI diagrams, which are shown in

Figs. 8.6-8.12, as well as a handful of unique topologies related to the renormalization of the

strong coupling and the fermion fields at positive flow time, shown in Figs. 8.13 and 8.14.

These latter diagrams have poles at d = 4 which are renormalized away; however, they also

contain logarithms and finite pieces which ultimately contribute to the self-mixing coefficient

for the qCEDM. The 1PI diagrams are collected into classes by the structure of their radia-

tive corrections. Classes 1 − 5 consist of the topologies that exist on the boundary, along

with their corrections derived from higher-order terms in the flow equations. Classes 6 and

7 are 1PI diagrams that exist only in the bulk.

(a) Γ
(1,1A)
CE,CE

(t ≥ 0) (b) Γ
(1,1B1)
CE,CE

(t > 0) (c) Γ
(1,1B2)
CE,CE

(t > 0) (d) Γ
(1,1C)
CE,CE

(t > 0)

Figure 8.6: All contributions to Γ
(1,1)
CE,CE(t ≥ 0)
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(a) Γ
(1,2A1)
CE,CE

(t ≥ 0) (b) Γ
(1,2A2)
CE,CE

(t ≥ 0) (c) Γ
(1,2B1)
CE,CE

(t > 0) (d) Γ
(1,2B2)
CE,CE

(t > 0)

(e) Γ
(1,2C1)
CE,CE

(t > 0) (f) Γ
(1,2C2)
CE,CE

(t > 0)

Figure 8.7: All contributions to Γ
(1,2)
CE,CE(t ≥ 0)

(a) Γ
(1,3A1)
CE,CE

(t ≥ 0) (b) Γ
(1,3A2)
CE,CE

(t ≥ 0) (c) Γ
(1,3B1)
CE,CE

(t > 0) (d) Γ
(1,3B2)
CE,CE

(t > 0)

(e) Γ
(1,3C1)
CE,CE

(t > 0) (f) Γ
(1,3C2)
CE,CE

(t > 0) (g) Γ
(1,3D1)
CE,CE

(t > 0) (h) Γ
(1,3D2)
CE,CE

(t > 0)

(i) Γ
(1,3E1)
CE,CE

(t > 0) (j) Γ
(1,3E2)
CE,CE

(t > 0)

Figure 8.8: All contributions to Γ
(1,3)
CE,CE(t ≥ 0)

(a) Γ
(1,4A1)
CE,CE

(t ≥ 0) (b) Γ
(1,4A2)
CE,CE

(t ≥ 0) (c) Γ
(1,4B1)
CE,CE

(t > 0) (d) Γ
(1,4B2)
CE,CE

(t > 0)

Figure 8.9: All contributions to Γ
(1,4)
CE,CE(t ≥ 0)
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(a) Γ
(1,5A)
CE,CE

(t ≥ 0) (b) Γ
(1,5B)
CE,CE

(t > 0)

Figure 8.10: All contributions to Γ
(1,5)
CE,CE(t ≥ 0)

(a) Γ
(1,6A1)
CE,CE

(t > 0) (b) Γ
(1,6A2)
CE,CE

(t > 0) (c) Γ
(1,6B1)
CE,CE

(t > 0) (d) Γ
(1,6B2)
CE,CE

(t > 0)

Figure 8.11: All contributions to Γ
(1,6)
CE,CE(t ≥ 0)

(a) Γ
(1,7A1)
CE,CE

(t > 0) (b) Γ
(1,7A2)
CE,CE

(t > 0) (c) Γ
(1,7B1)
CE,CE

(t > 0) (d) Γ
(1,7B2)
CE,CE

(t > 0)

Figure 8.12: All contributions to Γ
(1,7)
CE,CE(t ≥ 0)

As with the qEDM mixing, if we set (p, r) = (0, q), we have a simpler calculation with

no loss of information on the mixing of on- or off-shell operators at the expense of having

to calculate all diagrams, including mirror-images. The diagrams are labeled Γ
(1,XY Z)
CE,CE : X

is the class; Y is the diagram within that class; and Z is the orientation, with 1 having

the operator directly connected to the ψ̄ field and 2 having the operator insertion on the ψ

field. On the flowed side of Eq. 8.59, the momentum of the incoming gluon q regulates all IR

divergences, while the flow time regulates the UV for all 1PI diagrams, and no regulator is

needed; viz., all diagrams are evaluated directly at d = 4. The reducible diagrams (Figs. 8.13-

8.14) are equal to their counterparts from Secs. 6.1 and 6.2 (modulo their tree-levels) times

the tree-level qCEDM. Thus, the definition of σ is purely four-dimensional within Γ
(1)
CE,CE(t >

0). The t = 0 side loses its UV regulator, and must be evaluated at d = 4−2ε, where 1 > ∣ε∣ > 0.
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We must then make a choice of prescription for γ5, or more specifically, σ̃µν . We present

results in two γ5 schemes with three definitions of σ̃µν : naïve dimensional regularization

(NDR) and the t‘Hooft-Veltman-Breitenlohner-Maison (HVBM) scheme, with the definitions

σ̃µν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
{σµν , γ5} , scheme 1; (8.60a)

−
1

2
εµνρσσρσ, scheme 2; (8.60b)

−
1

(d − 2)(d − 3)
εµνρσσρσ, scheme 3; (8.60c)

all of which coincide in NDR, for which

σ̃µν = σµνγ5. (8.61)

Of course, all conventions yield the same logarithms, but the finite parts are scheme-

dependent. To that end, we define

δiHV =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, scheme i,

0, else.
(8.62)

For t > 0, we find

Γ
(1,1A)
CE,CE(t) = O(m), (8.63a)

Γ
(1,1B1)
CE,CE(t) = O(m), (8.63b)

Γ
(1,1B2)
CE,CE(t) = O(m), (8.63c)

Γ
(1,1C)
CE,CE(t) = O(m), (8.63d)
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Γ
(1,2A1)
CE,CE(t) = −

C2(A) − 2C2(F )

(4π)2
⋅ { [log (2q2t) + γE − 1]Γ

(0)
CE

+
3

2
i
kCE
kN
[log (2q2t) + γE −

3

2
]Γ
(0)
N } +O(m, t),

(8.63e)

Γ
(1,2A2)
CE,CE(t) = −

C2(A) − 2C2(F )

(4π)2
⋅ { [log (2q2t) + γE − 1]Γ

(0)
CE

+
3

2
i
kCE
kN
[log (2q2t) + γE − 1]Γ

(0)
N } +O(m, t),

(8.63f)

Γ
(1,2B1)
CE,CE(t) =

C2(A) − 2C2(F )

(4sπ)2
⋅ {

13

16
Γ
(0)
CE +

15

8
i
kCE
kN

Γ
(0)
N } +O(m, t), (8.63g)

Γ
(1,2B2)
CE,CE(t) =

C2(A) − 2C2(F )

(4π)2
⋅ { −

13

16
Γ
(0)
CE −

3

8
i
kCE
kN

Γ
(0)
N } +O(m, t), (8.63h)

Γ
(1,2C1)
CE,CE(t) =

C2(A) − 2C2(F )

(4π)2
⋅
1

16
Γ
(0)
CE +O(m, t), (8.63i)

Γ
(1,2C2)
CE,CE(t) = O(m), (8.63j)

Γ
(1,3A1)
CE,CE(t) = −

C2(A)

(4π)2
⋅ {

7

4
[log (2q2t) + γE −

3

14
]Γ
(0)
CE

+
3

4
i
kCE
kN
[log (2q2t) + γE +

3

2
]Γ
(0)
N } +O(m, t),

(8.63k)

Γ
(1,3A2)
CE,CE(t) = −

C2(A)

(4π)2
⋅ {

5

4
[log (2q2t) + γE −

1

5
]Γ
(0)
CE

−
3

2
i
kCE
kN
[log (2q2t) + γE −

1

2
]Γ
(0)
N } +O(m, t),

(8.63l)

Γ
(1,3B1)
CE,CE(t) =

C2(A)

(4π)2
⋅
3

8
Γ
(0)
CE +O(m, t), (8.63m)

Γ
(1,3B2)
CE,CE(t) = O(m), (8.63n)

Γ
(1,3C1)
CE,CE(t) = 2

C2(A)

(4π)2
⋅ {

3

32
Γ
(0)
CE −

9

16
i
kCE
kN

Γ
(0)
N } +O(m, t), (8.63o)

Γ
(1,3C2)
CE,CE(t) = 2

C2(A)

(4π)2
⋅ {

11

32
Γ
(0)
CE −

3

16
i
kCE
kN

Γ
(0)
N } +O(m, t), (8.63p)

Γ
(1,3D1)
CE,CE (t) = 2

C2(A)

(4π)2
⋅
1

16
Γ
(0)
CE +O(m, t), (8.63q)

Γ
(1,3D2)
CE,CE (t) = O(m), (8.63r)

Γ
(1,3E1)
CE,CE(t) = 2

C2(A)

(4π)2
⋅
3

64
Γ
(0)
CE +O(m, t), (8.63s)
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Γ
(1,3E2)
CE,CE(t) = O(m), (8.63t)

Γ
(1,4A1)
CE,CE(t) =

C2(A)

(4π)2
⋅ {

1

2
[log (2q2t) + γE − 1]Γ

(0)
CE

+
3

2
i
kCE
kN
[log (2q2t) + γE − 1]Γ

(0)
N } +O(m, t),

(8.63u)

Γ
(1,4A2)
CE,CE(t) = O(m), (8.63v)

Γ
(1,4B1)
CE,CE(t) = −

C2(A)

(4π)2
⋅
1

2
Γ
(0)
CE +O(m, t), (8.63w)

Γ
(1,4B2)
CE,CE(t) = O(m), (8.63x)

Γ
(1,5A)
CE,CE(t) =

1

2

C2(A)

(4π)2
⋅ 3 [log (2q2t) + γE − 1]Γ

(0)
CE +O(m, t), (8.63y)

Γ
(1,5B)
CE,CE(t) = −2

C2(A)

(4π)2
⋅
25

32
Γ
(0)
CE +O(m, t), (8.63z)

Γ
(1,6A1)
CE,CE(t) = O(m), (8.63aa)

Γ
(1,6A2)
CE,CE(t) = O(m), (8.63ab)

Γ
(1,6B1)
CE,CE(t) = −

C2(F )

(4π)2
⋅ {3Γ

(0)
CE + 6i

kCE
kN

Γ
(0)
N } +O(m, t), (8.63ac)

Γ
(1,6B2)
CE,CE(t) = O(m), (8.63ad)

Γ
(1,7A1)
CE,CE(t) = O(m), (8.63ae)

Γ
(1,7A2)
CE,CE(t) = 2

C2(A) − 4C2(F )

(4π)2
⋅
1

64
Γ
(0)
CE +O(m, t), (8.63af)

Γ
(1,7B1)
CE,CE(t) = O(m), (8.63ag)

Γ
(1,7B2)
CE,CE(t) = O(m). (8.63ah)

The diagrams related to the coupling renormalization and quark field renormalization

are easily evaluated:

Γ
(1,Π1)
CE,CE(t ≥ 0) =

19

12

C2(A)

(4π)2
⋅ {

1

ε
+ log(

4π

eγE q2
) +

116

57
}Γ
(0)
CE +O(ε, t), (8.64a)
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(a) Γ
(1,Π1)
CE,CE

(t ≥ 0) (b) Γ
(1,Π2)
CE,CE

(t ≥ 0) (c) Γ
(1,Π3)
CE,CE

(t ≥ 0) (d) Γ
(1,Π4)
CE,CE

(t ≥ 0)

(e) Γ
(1,Π5)
CE,CE

(t > 0) (f) Γ
(1,Π6)
CE,CE

(t > 0) (g) Γ
(1,Π7)
CE,CE

(t > 0)

Figure 8.13: Gluon Leg Corrections

Γ
(1,Π2)
CE,CE(t ≥ 0) = O(ε), (8.64b)

Γ
(1,Π3)
CE,CE(t ≥ 0) =

1

12

C2(A)

(4π)2
⋅ {

1

ε
+ log(

4π

eγE q2
) +

8

3
}Γ
(0)
CE +Oε, (t), (8.64c)

Γ
(1,Π4)
CE,CE(t ≥ 0) =

4

3

TFnf

(4π)2
⋅ {

1

ε
+ log(

4π

eγE q2
) +

5

3
}Γ
(0)
CE +O(ε, t), (8.64d)

Γ
(1,Π5)
CE,CE(t > 0) =

3

2

C2(A)

(4π)2
⋅ {

1

ε
+ log (8πt) +

5

6
}Γ
(0)
CE +O(ε, t), (8.64e)

Γ
(1,Π6)
CE,CE(t > 0) =

C2(A)

(4π)2
⋅ {

1

ε
+ log (8πt) −

1

4
}Γ
(0)
CE +O(ε, t), (8.64f)

Γ
(1,Π7)
CE,CE(t > 0) = −

3

2

C2(A)

(4π)2
⋅ {

1

ε
+ log (8πt) +

1

3
}Γ
(0)
CE +O(ε, t), (8.64g)

Γ
(1,Σ1a)
CE,CE(t ≥ 0) = −

C2(F )

(4π)2
⋅ {

1

ε
+ log(

4π

eγE q2
) − 1}Γ

(0)
CE +O(ε,m, t), (8.64h)

Γ
(1,Σ1b)
CE,CE(t ≥ 0) = −

C2(F )

(4π)2
⋅ {

1

ε
+ log(

4π

eγEp2
) − 1}Γ

(0)
CE +O(ε,m, t), (8.64i)

Γ
(1,Σ2a)
CE,CE(t > 0) =

C2(F )

(4π)2
⋅ {

1

ε
+ log (8πt) + γE + 1}Γ

(0)
CE +O(ε,m, t), (8.64j)

Γ
(1,Σ2b)
CE,CE(t > 0) =

C2(F )

(4π)2
⋅ {

1

ε
+ log (8πt) + γE + 1}Γ

(0)
CE +O(ε,m, t), (8.64k)
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Γ
(1,Σ3a)
CE,CE(t > 0) = O(m, t), (8.64l)

Γ
(1,Σ3b)
CE,CE(t > 0) = O(m, t), (8.64m)

Γ
(1,Σ4a)
CE,CE(t > 0) = −2

C2(F )

(4π)2
⋅ {

1

ε
+ log (8πt) + γE +

1

2
}Γ
(0)
CE +O(ε,m, t), (8.64n)

Γ
(1,Σ4b)
CE,CE(t > 0) = −2

C2(F )

(4π)2
⋅ {

1

ε
+ log (8πt) + γE +

1

2
}Γ
(0)
CE +O(ε,m, t). (8.64o)

The diagram in Fig. 8.64i vanishes for p = 0, since the loop becomes scaleless. We leave it

here, however, so that the pole will be explicitly renormalized by Zψ on both sides of the

flow equation, taking the p → 0 limit of the Wilson coefficient. (The p-dependence cancels

precisely between the two sides.) At t = 0, we have

(a) Γ
(1,Σ1a)
CE,CE

(t ≥ 0) (b) Γ
(1,Σ1b)
CE,CE

(t ≥ 0) (c) Γ
(1,Σ2a)
CE,CE

(t > 0) (d) Γ
(1,Σ2b)
CE,CE

(t > 0)

(e) Γ
(1,Σ3a)
CE,CE

(t > 0) (f) Γ
(1,Σ3b)
CE,CE

(t > 0) (g) Γ
(1,Σ4a)
CE,CE

(t > 0) (h) Γ
(1,Σ4b)
CE,CE

(t > 0)

Figure 8.14: Quark Leg Corrections

Γ
(1,1A)
CE,CE(0) = O(m), (8.65a)

Γ
(1,2A1)
CE,CE(0) =

C2(A) − 2C2(F )

(4π)2
{[

1

ε
+ log(

4π

eγE q2
) +

3

2
+
1

3
δ1HV +

1

2
δ2HV +

7

2
δ3HV ]Γ

(0)
CE

+
3

2
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
+
10

9
δ1HV + δ

2
HV + 4δ

3
HV ]Γ

(0)
N }

+O(ε,m),

(8.65b)
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Γ
(1,2A2)
CE,CE(0) =

C2(A) − 2C2(F )

(4π)2
{[

1

ε
+ log(

4π

eγE q2
) + 2 +

1

3
δ1HV +

1

2
δ2HV +

7

2
δ3HV ]Γ

(0)
CE

+
3

2
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
+
10

9
δ1HV + δ

2
HV + 4δ

3
HV ]Γ

(0)
N }

+O(ε,m),

(8.65c)

Γ
(1,3A1)
CE,CE(0) =

C2(A)

(4π)2
{
7

4
[
1

ε
+ log(

4π

eγE q2
) +

11

7
+

8

21
δ1HV +

3

7
δ2HV +

24

7
δ3HV ]Γ

(0)
CE

+
3

4
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
−
2

9
δ1HV + 3δ

3
HV ]Γ

(0)
N }

+O(ε,m),

(8.65d)

Γ
(1,3A2)
CE,CE(0) =

C2(A)

(4π)2
{
5

4
[
1

ε
+ log(

4π

eγE q2
) +

4

5
+

8

15
δ1HV +

3

5
δ2HV +

18

5
δ3HV ]Γ

(0)
CE

−
3

2
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
+
10

9
δ1HV + δ

2
HV + 4δ

3
HV ]Γ

(0)
N }

+O(ε,m),

(8.65e)

Γ
(1,4A1)
CE,CE(0) =

C2(A)

(4π)2
{ −

1

2
[
1

ε
+ log(

4π

eγE q2
) + 2 + 3δ3HV ]Γ

(0)
CE

−
3

2
i
kCE
kN
[
1

ε
+ log(

4π

eγE q2
) +

4

3
+
2

3
δ1HV +

2

3
δ2HV +

11

3
δ3HV ]Γ

(0)
N }

+O(ε,m),

(8.65f)

Γ
(1,4A2)
CE,CE(0) = O(m), (8.65g)

Γ
(1,5A)
CE,CE(0) =

C2(A)

(4π)2
{ −

3

2
[
1

ε
+ log(

4π

eγE q2
) + 2 + 3δ3HV ]Γ

(0)
CE}

+O(ε,m),

(8.65h)

205



Summing all contributions on either side, we find the bare correlators:

Γ
(1)
CE,CE(t) =

1

(4π)2
{ [ (2C2(F ) − 2C2(A)) log (8πt)

+(
14

3
C2(A) − 5C2(F ) +

4

3
TFnf) log(

4π

eγE q2
)

−C2(F ) log(
4π

eγEp2
) +

169

36
C2(A) −

13

2
C2(F ) +

20

9
TFnf]Γ

(0)
CE

+
3

8
i
kCE
kN
[ (16C2(F ) − 2C2(A)) log (8πt)

+ (2C2(A) − 16C2(F )) log(
4π

eγE q2
)

+C2(A) − 44C2(F )]Γ
(0)
N } +O(m, t),

(8.66a)

Γ
(1)
CE,CE(0) =

1

(4π)2
{ [ (

14

3
C2(A) − 5C2(F ) +

4

3
TFnf)(

1

ε
+ log(

4π

eγE q2
))

−C2(F )(
1

ε
+ log(

4π

eγEp2
)) +

241

36
C2(A) − 5C2(F ) +

20

9
TFnf

+(2C2(A) −
4

3
C2(F )) δ

1
HV + (

5

2
C2(A) − 2C2(F )) δ

2
HV

+(
23

2
C2(A) − 14C2(F )) δ

3
HV ]Γ

(0)
CE

+
3

8
i
kCE
kN
[ (2C2(A) − 16C2(F ))(

1

ε
+ log(

4π

eγE q2
))

+
8

3
C2(A) −

64

3
C2(F ) + (

4

3
C2(A) −

160

9
C2(F )) δ

1
HV

+(
4

3
C2(A) − 16C2(F )) δ

2
HV

+(
22

3
C2(A) − 64C2(F )) δ

3
HV ]Γ

(0)
N } +O(ε,m).

(8.66b)
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These renormalize as

ΓRCE,CE(0) =Z
−1
ψ Z−1A Z−1CEΓCE,CE(0), (8.67)

ΓRCE,CE(t) =Z
−1
ψ Z−1A Z−1χ ΓCE,CE(t), (8.68)

where we have implicitly renormalized the coupling with

g20 = Zgµ
2εg2, (8.69)

and the MS Z-factors are

Zg =1 +
g2

(4π)2
⋅ [−

11

3
C2(A) −

4

3
TFnf]

1

ε
+O(g4), (8.70a)

Zξ =1 +
g2

(4π)2
⋅ [
13 − 3ξ

6
C2(A) +

4

3
TFnf]

1

ε
+O(g4), (8.70b)

Zψ =1 +
g2

(4π)2
⋅ [−C2(F )]

1

ε
+O(g4), (8.70c)

Zχ =1 +
g2

(4π)2
⋅ [−3C2(F )]

1

ε
+O(g4), (8.70d)

ZCE =1 +
g2

(4π)2
⋅ [−C2(A) −C2(F )]

1

ε
+O(g4), (8.70e)

ZA =Z
1/2
g Z

1/2
ξ

. (8.70f)

Then, in the Feynman gauge, ξ = 1, we have

cCE,CE(t) = 1 +
g2

(4π)2
⋅ { [2C2(F ) − 2C2(A)] log (2e

γE µ̄2t) − 2C2(A) −
3

2
C2(F )

−(2C2(A) −
4

3
C2(F )) δ

1
HV − (

5

2
C2(A) − 2C2(F )) δ

2
HV

−(
23

2
C2(A) − 14C2(F )) δ

3
HV } +O(g

4,m, t)

(8.71)
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for the self-mixing coefficient and

cCE,N (t) = 1 +
g2

(4π)2
⋅ i
kCE
kN
{ [6C2(F ) −

3

4
C2(A)] log (2e

γE µ̄2t) −
5

8
C2(A) −

17

2
C2(F )

−(
1

2
C2(A) −

20

3
C2(F )) δ

1
HV − (

1

2
C2(A) − 6C2(F )) δ

2
HV

−(
11

4
C2(A) − 24C2(F )) δ

3
HV ]Γ

(0)
N } +O(ε,m, t)

(8.72)

for the coefficient of the purely SU(NC) nuisance operator. (We have implicitly taken ge → 0

for this calculation, so the photon term drops out of the covariant derivative.)

8.3 Gluon Chromoelectric Dipole Moment

8.3.1 Mixing With the Topological Charge Density: cW,q(t)

The gluon CEDM is treated just as before. To extract its mixing with the topological charge

density, we define once again a two-gluon correlation function:

Γi(k; t) = ∫
p
e−ip(y−x)∫ ddze−ikz⟨Abβ(y; 0)Oi(z; t)A

a
α(x; 0)⟩. (8.73)

There are three contributions, Fig. 8.15, one of which vanishes. The results are

(a) Γ
(1,1)
W

(t ≥ 0) (b) Γ
(1,2)
W

(t ≥ 0) (c) Γ
(1,3)
W

(t > 0)

Figure 8.15: All distinct contributions to Γ
(1)
W (t ≥ 0)

Γ
(1,1)
W (k; t) = −

9

4

kW
kq

TA
(4π)2

1

t
Γ
(0)
q (k; 0) + O(p

2, t), (8.74a)
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Γ
(1,2)
W (k; t) = 0 +O(p2, t), (8.74b)

Γ
(1,3)
W (k; t) = −

9

8

kW
kq

TA
(4π)2

1

t
Γ
(0)
q (k; 0) + O(p

2, t), (8.74c)

and the power-divergent mixing coefficient is

c
(1)
W,q(t) = −

27

8

kW
kq

TA
(4π)2

1

t
+O(t). (8.75)

8.3.2 Self-Mixing: cW,W (t)

The final mixing coefficient we consider is the self-mixing of the gCEDM. We calculate the

coefficient by again expanding in all external scales. There are fifteen diagrams contributing

to the flowed correlator, displayed in Fig. 8.16, and none on the unflowed side. There is

another nuisance operator to consider:

ON = kN Tr{G̃µν∂µDρGρν} . (8.76)

The results are

Γ
(1,1)
W (k; t) =

1

2
⋅ (

1

4
)

TA
(4π)2

{7 [LIR +
299

252
]Γ
(0)
W (k; 0) −

kW
kN
[LIR +

3

4
]Γ
(0)
N (k; 0)} +O(t),

(8.77a)

Γ
(1,2)
W (k; t) = 1 ⋅ (−

1

8
)

TA
(4π)2

{
17

3
Γ
(0)
W (k; 0) −

kW
kN

Γ
(0)
N (k; 0)} +O(t), (8.77b)

Γ
(1,3)
W (k; t) = 1 ⋅ (−

1

16
)

TA
(4π)2

{3Γ
(0)
W (k; 0) −

11

6

kW
kN

Γ
(0)
N (k; 0)} +O(t), (8.77c)

Γ
(1,4)
W (k; t) = 1 ⋅ (−

1

8
)

TA
(4π)2

{
7

3
Γ
(0)
W (k; 0) +

kW
kN

Γ
(0)
N (k; 0)} +O(t), (8.77d)
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Γ
(1,5)
W (k; t) =

1

2
⋅ (−

1

2
)

TA
(4π)2

{[LIR +
7

12
]Γ
(0)
W (k; 0) + 3

kW
kN
[LIR +

13

36
]Γ
(0)
N (k; 0)} +O(t),

(8.77e)

Γ
(1,6)
W (k; t) = 1 ⋅ (−

35

96
)

TA
(4π)2

{
1

3
Γ
(0)
W (k; 0) +

kW
kN

Γ
(0)
N (k; 0)} +O(t), (8.77f)

Γ
(1,7)
W (k; t) =

1

2
⋅ (−2)

TA
(4π)2

{[LIR +
7

12
]Γ
(0)
W (k; 0) − 3

kW
kN
[LIR +

13

36
]Γ
(0)
N (k; 0)} +O(t),

(8.77g)

Γ
(1,8)
W (k; t) = 1 ⋅ (

7

8
)

TA
(4π)2

{Γ
(0)
W (k; 0) − 3

kW
kN

Γ
(0)
N (k; 0)} +O(t), (8.77h)

Γ
(1,9)
W (k; t) = 0 +O(t), (8.77i)

Γ
(1,10)
W (k; t) = 0 +O(t), (8.77j)

Γ
(1,11)
W (k; t) = 0 +O(t), (8.77k)

Γ
(1,12)
W (k; t) = 0 +O(t), (8.77l)

Γ
(1,13)
W (k; t) =

1

2
⋅ (−3)

TA
(4π)2

[LUV +
5

6
]Γ
(0)
W (k; 0) + O(t), (8.77m)

Γ
(1,14)
W (k; t) = 1 ⋅ (−1)

TA
(4π)2

[LUV −
1

4
]Γ
(0)
W (k; 0) + O(t), (8.77n)

Γ
(1,15)
W (k; t) =

1

2
⋅ (

3

2
)

TA
(4π)2

[LUV +
1

3
]Γ
(0)
W (k; 0) + O(t), (8.77o)

where we have employed the shorthand notation:

LIR = −
1

εIR
+ log(8πt), and LUV =

1

εUV
+ log(8πt). (8.78)

Summing these diagrams and replacing ε = −εIR = εUV , we have

Γ
(1)
W (k; t) = −

17

8

TA
(4π)2

{ [
1

ε
+ log (2µ̄2) + γE +

91

306
]Γ
(0)
W (k; 0)

−
kW
kN
[
1

ε
+ log (2µ̄2) + γE −

137

204
]Γ
(0)
N (k; 0)} +O(t),

(8.79)
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and we can read off both the renormalization constants and the Wilson coefficients:

Z
(1)
W,W

−1
= −

17

8

TA
(4π)2

1

ε
, (8.80a)

Z
(1)
W,N

−1
=
17

8

kW
kN

TA
(4π)2

1

ε
, (8.80b)

(8.80c)

and

c
(1)
W,W (t) = −

17

8

TA
(4π)2

[log (2µ̄2) + γE +
91

306
] + O(t), (8.81a)

c
(1)
W,N (t) =

17

8

kW
kN

TA
(4π)2

[log (2µ̄2) + γE −
137

204
] + O(t). (8.81b)
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(a) Γ
(1,1)
W

(t ≥ 0) (b) Γ
(1,2)
W

(t ≥ 0) (c) Γ
(1,3)
W

(t > 0) (d) Γ
(1,4)
W

(t ≥ 0)

(e) Γ
(1,5)
W

(t ≥ 0) (f) Γ
(1,6)
W

(t > 0) (g) Γ
(1,7)
W

(t ≥ 0) (h) Γ
(1,8)
W

(t ≥ 0)

(i) Γ
(1,9)
W

(t > 0) (j) Γ
(1,10)
W

(t ≥ 0) (k) Γ
(1,11)
W

(t ≥ 0) (l) Γ
(1,12)
W

(t > 0)

(m) Γ
(1,13)
W

(t ≥ 0) (n) Γ
(1,14)
W

(t ≥ 0) (o) Γ
(1,15)
W

(t > 0)

Figure 8.16: All distinct contributions to Γ
(1)
W (t ≥ 0)
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Part IV

Discussion
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This thesis has covered two major projects in renormalization. First, we studied the short-

flow-time expansion of CP-violating operators. In doing so we were able to linearly relate

physical operators on the boundary of the flowed theory to those in the bulk. Because the

flow reparametrizes the Wilson coefficients, the continuum limit is free of local divergences.

On the lattice, one solves the SFTE for the physical operators, effectively subtracting the

divergences which have plagued all past explorations of the neutron electric dipole moment on

the lattice. Since the coefficients contain the divergent mixings, subtracting the flowed matrix

elements exactly cancels the poles at zero flow time, and physical predictions may be made as

we extrapolate toward the boundary. Due also to this reparametrization, the corresponding

perturbative treatment was seen to be free from artifacts of the lattice action. Consequently,

our SFTE was restricted only by continuum symmetries, reducing the dimension of the

operator basis.

The entire SFTE was calculated for three CP-violating operators with ostensibly large

contributions to the nEDM. The topological charge density was briefly treated, confirming

that it renormalizes by a simple shift proportional to the divergence of the axial vector

current. We then treated two effective operators, the qCEDM and the gCEDM. The for-

mer represents the hypothetical effect of supersymmetric CP-violating interactions at the

hadronic scale. The latter is the result after integrating out heavy quark loops containing

a BSM Higgs exchange. Its contribution is potentially very large, since there is no suppres-

sion by light quark masses. These operators represent the foremost BSM candidates for CP

violation during baryogenesis. This work represents the first steps taken toward a complete

nonperturbative renormalization of EDM operators.

The perturbative methods presented in this thesis are brand new. Since the Gaussian

damping factors in the flowed formalism precluded the use of standard integral representa-
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tions for Feynman integrals, we developed a method which brings any analytic integrand

to a spherically symmetric form. Expanding the integrand in a MacLaurin series about the

angular terms, the integral is reduced to a scalar integral and an infinite series of potential

tensor decompositions. The possible contractions of these tensors is an exercise in combina-

torics for which many low-order solutions were derived. The author hopes to expand these

arguments to arbitrary order with a more robust treatment in invariant theory, currently in

development, which should be readily automated.

The second project was the development of a new nonperturbative renormalization

scheme for lattice operators. In this section, we showed how a renormalization group flow

can be induced by using the flow time as a scaling parameter. This is particularly useful in

that it allows us to define renormalization conditions with no reference to the lattice spacing

while respecting the symmetries of the discretized action. Similarly to the first project, this

permits a smooth continuum limit. Additionally, we defined the scheme with manifestly

gauge-invariant vacuum correlation functions. As applied to the lattice, this eliminates the

need for gauge fixing, so the Gribov ambiguity is completely avoided. This construction is

computationally inexpensive and applicable over a large range of scales accessible only on

the lattice. In order to minimize cutoff effects, the relevant operator and its probe were fixed

at some physical separation in Euclidean time much larger than the inverse flow-time radius.

As a result, the perturbative treatment in the natural time-momentum representation was

seemingly impossible by brute force. Instead we proposed to inject some nonzero momen-

tum into the correlators, which may then calculated purely in reciprocal space. Taking the

Fourier transform in the limit of vanishing spatial momenta returned us to coordinate space

with the necessary time separation. As a pilot study we rederived the anomalous dimen-

sions of the fermion bilinears at one loop-order with these vacuum correlators. For now,
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the difficulties of flowed perturbation theory stand as the single disadvantage of our scheme,

although the techniques are currently being simplified and extended to higher loop order

with the ultimate goal of complete automation. This will allow the nonperturbative results

found on the lattice to be integrated up to high energies through the renormalization group,

at which point they may be compared directly to phenomenological results.
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APPENDIX

COMBINATORIAL TENSOR DECOMPOSITION

In the perturbation theory associated with the Yang-Mills gradient flow, one regularly

encounters integrals of the form

Iabcijk (p,µ; t) = ∫q

e−ap
2
e−bq

2
e−c(p+q)

2

(p2)
i
(q2)

j
((p + q)2)

k
; a, b, c, i, j, k ∈ R, (A.1)

where we define the shorthand

∫
q
≡ µ4−d∫Rd

ddq

(2π)d
. (A.2)

The energy scale µ and the dimension d = 4 − 2ε are included to prepare the integral for

dimensional regularization and renormalization by construction. We will, for full generality,

solve all integrals in d-dimensions, which will allow the reader to modify the integrals without

worrying about regulators.

A.1 Standard Integrals in Dimensional Regularization

Without the gradient flow, loop integrals are relatively simple to generalize to d-dimensions,

where they generally take the form

I
nI
µI
(pI ;mI) = ∫

q

qµ1⋯qµn

∏
N
i=1 (r

2
i +m

2
i )
ni

(A.3)

with muti-index I = {1, . . . ,N}, where the product in the denominator runs over all propa-

gators in the loop with their respective masses and momenta indexed by i, and the vectors

224



in the numerator are the result of n derivative couplings (non-scalar vertices). Each ri in

the denominator has the form ri = q+si, where si = p1+⋯+pi for external momenta {pi}Ni=1.

The dimension of the integral is undetermined and generically non-integral, so we cannot

integrate over each component directly. If the integrand is spherically symmetric, however,

we may transform to spherical coordinates, where the (d − 1)-dimensional spherical shell is

readily integrated out, as follows. First we extract the solid angle:

∫
q
f(q2) =

µ4−d

(2π)d
∫
Ω
dΩ∫

∞

0
rd−1dr f(r2), (A.4)

where

dΩ =
d−1

∏
k=1

sind−k−1(φk)dφk ⋅ (A.5)

and where the angular domain Ω is defined by

φk ∈ [0, π); k < d − 1

φk ∈ [0,2π); k = d − 1.

(A.6)

Symmetry allows us to write

∫

π

0
dφk sind−k−1(φk) = 2∫

π/2

0
dφk sind−k−1(φk); k < d − 1 (A.7)

and

∫

2π

0
dφk sind−k−1(φk) = 4∫

π/2

0
dφk; k = d − 1, (A.8)
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so that

∫
Ω
dΩ =2

d−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

2∫
π/2

0
dφk sind−k−1(φk)

⎤
⎥
⎥
⎥
⎥
⎦

=2
d−1

∏
k=1

B(
d − k

2
,
1

2
)

=2Γd−1(
1

2
)
d−1

∏
k=1

Γ(
d − k

2
)/Γ(

d − k + 1

2
).

(A.9)

The numerator of each factor cancels the denominator of the next, and we are left with

∫
Ω
dΩ = 2π

d−1
2

Γ(1/2)

Γ(d/2)
=

2πd/2

Γ(d/2)
. (A.10)

Thus

∫
q
f(q2) =

2µ4−d

(4π)d/2Γ(d/2)
∫

∞

0
rd−1dr f(r2). (A.11)

If the integrand is not even, we must transform it to a spherical form, the standard for which

is Feynman parameterization. The identity

1

∏
N
i=1 (r

2
i +m

2
i )
ni
=

1

B(n1, . . . nN )
∫

∞

0
dz1⋯∫

∞

0
dzN

δ (1 −∑Ni=1 zi)∏
N
i=1 z

ni−1
i

[∑
N
i=1 zi (r

2
i +m

2
i )]
∑Ni=1 ni

(A.12)

allows the denominator to be expressed as a sum, so that we can complete the square in the

momentum of integration q:

I
nI
µI
(pI ;mI) =

1

B(n1, . . . nN )
∫

∞

0

N

∏
i=1
(z
ni−1
i dzi)∫

q

δ (1 −∑Ni=1 zi)

[∑
N
i=1 zi ((q + si)

2 +m2
i )]
∑Ni=1 ni

qµ1⋯qµn

=
1

B(n1, . . . nN )
∫

∞

0

N

∏
i=1
(z
ni−1
i dzi)∫

q

δ (1 −∑Ni=1 zi)

[(q +Q)2 +∆]
∑Ni=1 ni

qµ1⋯qµn ,

(A.13)
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where

∆ =
N

∑
i=1

zi(s
2
i +m

2
i ) −Q

2, (A.14)

and

Qµ =
N

∑
i=1

zi(si)µ. (A.15)

Under the change of variables kµ = qµ +Qµ, we have,

I
nI
µI
(pI ;mI) =

1

B(n1, . . . nN )
∫

∞

0

N

∏
i=1
(z
ni−1
i dzi)∫

k

δ (1 −∑Ni=1 zi)

[k2 +∆]
∑Ni=1 ni

(k −Q)µ1⋯(k −Q)µn ,

(A.16)

and the evenness or oddness of the integrand is more obvious. The product of vectors

(k −Q)µi is a polynomial in k, so the even-degree terms will survive integration, and the

odd terms will vanish. Since the fraction above is even, the momentum integral is a sum

over integrals of the form

∫
q
f(q2)qµ1⋯qµ2n , (A.17)

for some n. The 2n-fold product ensures that the integral does not trivially vanish, but we

now must discern the tensor structure.

A.2 Reduction of Tensor Integrals

The solution of the integral must have the same symmetry as the integrand, so it must be

proportional to some tensor with such symmetry:

∫
q
f(q2)

2n

∏
m=1

qµm = A ⋅ Tµ1⋯µ2n . (A.18)
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Since the product is commutative, it is entirely symmetric with respect to any permutation

of the 2n indices µm. The only tensor with such a symmetry is the symmetrized sum of

products of n metric tensors over all unordered partitions of the 2n indices into n pairs.

Let σr(s) denote the rth permutation on the index s of this form. Note that under these

restrictions, the following partitions are all equivalent:

{1,2},{3,4},{5,6}{2,1},{3,4},{5,6}{3,4},{1,2},{5,6} (A.19)

We must first count the number of ways we may group 2n indices into n pairs. Choosing

an index generically, there are 2n − 1 remaining indices available for pairing. Continuing in

this manner, there are 2n − 2 indices we may choose to begin the second pair, with 2n − 3

partners remaining, and so on to (2n)!. Since the ordering of the pairs doesn’t matter, we

divide by n!. Moreover, each pair is itself unordered with respect to its two elements, so we

divide again by 2n. There are, then, (2n)!2nn! = (2n − 1)!! distributions of the indices, and the

sum over each permutation σr(s) runs from r = 1 to r = (2n − 1)!! with s ∈ [1, n] ∩N, so

Tµ1⋯µ2n =
(2n−1)!!

∑
r=1

n

∏
s=1

gµσr(2s−1)µσr(2s)
(A.20)

To find the constant of proportionality A, contract both sides of equation (A.18) with any

term of the sum over permutations; any term may be chosen due to its symmetrical con-

struction. Without loss of generality, we make the natural choice gµ1µ2⋯gµ2n−1µ2n :

n

∏
k=1

gµ2k−1µ2k ∫q
f(q2)

2n

∏
m=1

qµm = A
n

∏
k=1

gµ2k−1µ2k

(2n−1)!!

∑
r=1

n

∏
s=1

gµσr(2s−1)µσr(2s)
. (A.21)

Commutativity and associativity under addition allow us to rearrange the products and
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contract all indices first, resulting in a scalar expression. On the left, the components of

the momentum q are simply paired into a product of n squares, leaving (q2)n in place of

the integrand’s product. The right side is far less trivial, and it will require a bit of care.

Before we tackle this problem, however, we note that the integral has been indeed reduced

to a scalar, and we are left with a combinatorial problem on the right-hand side:

1

A ∫q
f(q2) ⋅ (q2)n =

n

∏
k=1

gµ2k−1µ2k

(2n−1)!!

∑
r=1

n

∏
s=1

gµσr(2s−1)µσr(2s)
. (A.22)

A.3 Normalizing the Totally Symmetric Tensor with Graphs

The product on the right-hand side of equation (A.22),

sn =
n

∏
k=1

gµ2k−1µ2k

(2n−1)!!

∑
r=1

n

∏
s=1

gµσr(2s−1)µσr(2s)
, (A.23)

where we have introduced the shorthand sn, is most easily illustrated by examining the n = 2

case, where it reads

s2 =
2

∏
k=1

gµ2k−1µ2k

3

∑
r=1

2

∏
s=1

gµσr(2s−1)µσr(2s)
= gµνgρσ ⋅ (gµνgρσ + gµρgνσ + gµσgνρ) . (A.24)

Contracting all indices gives s2 = d2+d+d, following the order of the parenthetical term. We

notice that only the first term shares the ordering of the indices gµνgρσ, while the other two

do not. Since the first term shares this pairing, there is an n-fold product over traces gµνgµν ,

each of which evaluates to the value of the dimension d. The second and third terms differ

by a transposition, so the factor outside the parentheses serves to connect the permuted
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indices, e.g.:

gµνgρσ ⋅ gµρgνσ = gµσgµσ = gµµ = d, (A.25)

but in doing so, we lose two powers of the metric tensor, so the result will be correspondingly

reduced by a trace, or, in other words, one power of the dimension. Since in the preceding

case n was very small, there is no need for more advanced machinery. Recall, however, that

the number of terms in the parentheses will grow as (2n − 1)!!. Even for the n = 3 case,

there are 15 terms, and the result is not trivial. At n = 4,5, . . . , there are 105,945, . . . terms,

and the number of contractions becomes intractable. Fortunately, this problem is mapped

very cleanly to graphs. Let each of the 2n indices µi represent a vertex on a graph GI2n,

where the multi-index I = {1,2, . . . ,2n} represents the ordered set of indices being mapped

to the graph’s vertices. Then let each metric tensor represent an edge connecting the vertices

corresponding to its indices. Since each index appears once and only once in each term, and

since the metric tensor connects only two indices, we have the mapping

gµiµj ↦
µi µj . (A.26)

Since each metric tensor only connects two points, we can write the n-fold product of (un-

contracted) metric tensors as a (disjoint) graph union:

gµiµjgµkµl ↦ G
ij
2 ⊕ Gkl2 = µi µj

µk µl
. (A.27)

If we have a product of metric tensors with repeated indices, then we take a simple graph

union:

gµiµjgµiµj ↦ G
ij
2 ∪ G

ij
2 =

µi µj . (A.28)
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When a cycle appears as above, we recognize the trace of a metric tensor; since every edge

corresponds to a metric tensor, and there are no 1-valent vertices, every index is contracted

until we are left with a trace over a single metric tensor. These cycles, then, map back to

powers of the dimension d, and a graph with k cycles corresponds to dk. Then we have a

correspondence:
n

∏
s=1

gµσr(2s−1)µσr(2s)
∼ G

Ir
2n, (A.29)

where the multi-index Ir is defined by Ir = {σr(1), . . . , σr(2n)}, and edges are meant to exist

between every two vertices as they are ordered in Ir. These graphs are 1-regular, since there

are no repeated indices in the product of metric tensors, but there is a metric tensor (edge)

pairing each index (vertex) to one other. We define G
IiIj
2n = G

Ii
2n ∪ G

Ij
2n to be the 2-regular

union of 1-regular graphs with edges defined by the ith and jth permutations on the indices.

Each term in the sum sn then maps to a graph G
IiIj
2n for some i, j ∈ {1,2, . . . , (2n − 1)!!}.

Since G
IiIj
2n is 2-regular, it must be a union of cycles, each of which evaluates to a power of d.

Summarily: each term (gµ1µ2⋯gµ2n−1µ2n)(gµσr(1)µσr(2)⋯gµσr(2n−1)µσr(2n)) in sn maps

to a 2-regular graph G
IIr
2n which contains k cycles, and maps back to dk. Thus sn has the

form

sn =
n

∑
k=1

G(n, k)dk, (A.30)

where G(n, k) is the number of 2-regular graphs containing the 1-regular subgraph GI2n,

which decompose into k cycles. Note that this number is invariant under the choice of

multi-index I. We are now left to the problem of counting these graphs. Fortunately, we

may construct them recursively. Consider any such 2-regular graph on 2n indices. If we

wish to create another 2-regular graph on 2n + 2 vertices, we may add the vertices µ2n+1

and µ2n+2 in d + 2n ways, as follows. First, note that there must be an edge between µ2n+1
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and µ2n+2. This comes from the restriction that we must recover the 1-regular graph GI2n+2

as a subgraph, and such a subgraph must contain every edge from µ2i+1 and µ2i+2 for all

i ∈ {0,1, . . . , n − 1} and no more. For the same reason, every graph we create by adding

µ2n+1 and µ2n+2 also must contain all edges of this form. Therefore, we can add the two

new vertices as a disjoint 2-cycle, or we may break any existing cycle and insert the new

vertices, increasing the size of the cycle by two. Thus the first case corresponds to a disjoint

union and its natural mapping back to a polynomial in d:

G
{µ2n+1,µ2n+2}{µ2n+1,µ2n+2}
2 ⊕

⎛

⎝

(2n−1)!!

⋃
r=1

G
IIr
2n

⎞

⎠
↦ d ⋅ sn. (A.31)

Onto the latter case, since each graph is 2-regular, then ∣E∣ = ∣V ∣ necessarily. Then, for the

graph on 2n vertices, we may cut each of the 2n edges and insert the new vertices. We can

insert this new edge in 2 ways for each cut, but we must retain the subgraph GI2n, so half of

the cuts produce unusable graphs, and we must divide by two. Then we have 2n graphs for

each of the graphs in sn, which adds 2n ⋅ sn to our total. This gives us a recursion:

sn+1 = (d + 2n) ⋅ sn. (A.32)

Finally, induction on n gives us

sn = d(d + 2)(d + 4)⋯(d + 2(n − 1)) = (d)n,2, (A.33)

where

(d)n,2 =
2nΓ(d/2 + n)

Γ(d/2)
(A.34)
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is the Pochhammer 2-symbol. Using the identity

(x)n,k = k
n
n

∑
j=0
[
n

j
] (
x

k
)
j
, (A.35)

we find that

G(n, k) = 2n−k[
n

k
]. (A.36)

In fact, there is a reason for the Stirling numbers of the first kind to appear, and we present

an alternative proof of equation (A.33) via explicit permutations on the indices in Appendix

A.4. Finally, we have

∫
q
f(q2)

2n

∏
m=1

qµm =
1

(d)n,2
Tµ1⋯µ2n ⋅ ∫q

f(q2) ⋅ (q2)n. (A.37)

The case for n = 3 is illustrated in Appendix A.5

A.4 Normalizing the Symmetric Tensor (Alternative Method)

Whichever term has the identical arrangement of indices scompared to the term with which

we chose to contract will evaluate to dn, where d is the dimension, since the result is a product

of n traced metric tensors, each equal to d by definition. For each remaining term in the sum

over distributions, we wish to find the number of interchanges of indices which will return the

ordering to the arbitrary arrangement with which we are contracting; in our case, we want to

return each permutation to the natural numerical order (1,2); (3,4); . . . ; (2n − 1,2n). Begin

by fixing the first element of the chosen permutation (the odd numbers in our scenario);

this leaves n free indices, so we consider the permutation group Sn. We now decompose

each element into k disjoint cycles, where k ranges from 1 to n. These may be counted
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using the unsigned Stirling numbers of the first kind [nk] = ∣S1(n, k)∣; specifically, there are

[
n
k] elements of Sn which may be decomposed as the composition of k disjoint cycles. The

unsigned Stirling numbers of the first kind are recursively defined as

[
n + 1

k
] = n[

n

k
] + [

n

k − 1
] (A.38)

for k > 0 with the initial conditions that

[
n

0
] = [

0

n
] = 0 and [0

0
] = 1 (A.39)

for n > 0. These may be further decomposed into n − k transpositions. Transpositions are

functionally equivalent to contraction with a metric tensor indexed by the two indices to be

transposed. For each contraction, the exponent of d will be reduced by one, since we have one

fewer square of a metric tensor. Since there are n − k transpositions for some term, we have

dn−(n−k) = dk. We now consider the weight factor for each k, since we have obviously ignored

many (namely (2n−1)!!−n!) distributions of pairs by fixing the first index of each pair. The

remaining distributions may be constructed by transposing the indices for the pairs. The

term with which we choose to contract is insensitive to such transpositions, so the powers

of d on the left should be as well. We are simply counting multiplicities of each power of d.

For each k of our fixed-index permutations under Sn, we can construct 2n−k permutations

with the pairwise transposition symmetry of our chosen term, since each permutation has

been decomposed into n − k transpositions. Thus for each k we have 2n−k[nk] terms which

evaluate to dk. We now sum over the permutations, which has been shown to be equivalent
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to summing over powers of the dimension with the aforementioned weighting:

(2n−1)!!

∑
r=1

n

∏
k=1

gµ2k−1µ2k

n

∏
s=1

gµσr(2s−1)µσr(2s)
=

n

∑
k=1

2n−k[
n

k
]dk. (A.40)

This may be further simplified by noting that

n

∑
k=1

[
n

k
]xk = xn̄, (A.41)

called the rising factorial or Pochhammer symbol. In our case, we find

n

∑
k=1

2n−k[
n

k
]dk = 2n

n

∑
k=1

[
n

k
] (
d

2
)
k

= 2n (
d

2
)
n̄

, (A.42)

Which is the definition of the Pochhammer k-symbol (x)n,k in the case that x = d and k = 2.

Note that setting d = 1, which is tantamount to ignoring contractions and simply counting

our permutations, we have

n

∑
k=1

2n−k[
n

k
] = 2n (

1

2
)
n̄
= 2n

Γ(n + 1/2)

Γ(1/2)
= 2n
√
π(2n − 1)!!

2n
1
√
π
= (2n − 1)!!, (A.43)

which is exactly the number of ways we may split the set of 2n indices into n pairs, which

provides a nice sanity check.

We may now solve for our constant of proportionality A:

∫
q

e−(b+c+z)q
2

(q2)
j
(q2)n = (d)n,2A⇒ A =

Γ(d/2)

2nΓ(d/2 + n) ∫q

e−(b+c+z)q
2

(q2)
j
(q2)n, (A.44)

where we have used the the identity (d)n,2 = 2n
Γ(d/2+n)
Γ(d/2)

. We finally evaluate the momentum
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integral in its scalar, spherically symmetric form.

A.5 Graphs for n = 3

The following is an explicit example of the graph representation of the isotropic tensors for

the case n = 3. Note the presence of the n = 2 subgraphs of the disconnected graphs, for

example, on vertices 3 − 6 of the first three graphs.
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µ1 µ2

µ3

µ4µ5

µ6 ∪

⎛
⎜
⎜
⎜
⎝

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

+

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

+

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

+

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

+

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

+

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

+

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6 +

µ1 µ2

µ3

µ4µ5

µ6

⎞
⎟
⎟
⎟
⎠

↦ d3 + d2 + d2 + d2 + d + d + d2 + d + d + d + d + d2 + d + d + d2

= 1 ⋅ d3 + 6 ⋅ d2 + 8 ⋅ d

= d(d + 2)(d + 4).

(A.45)
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