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ABSTRACT 

Antimicrobial resistance (AMR) has become an apex global public health threat that requires 

a multifaceted One Health approach. According to the CDC, 2.8 million antimicrobial resistant 

infections occur in the United States each year, resulting in more than 35,000 deaths. Although the 

development of AMR is incredibly intricate, it is widely recognized that the employment of 

antibiotics is one of the largest selective pressures of AMR. In many countries, antimicrobial 

consumption in animal agriculture surpasses that of human usage, and it is estimated that nearly 

73% of global antibiotics can be attributed to livestock. Monitoring AMR emergence and historical 

data on a global scale is crucial when working towards the large-scale mitigation of this public health 

threat. One tool that can contribute to monitoring AMR is shotgun metagenomics, which entails 

comprehensive evaluation of the genetic material extracted from all the organisms in a complex 

sample. This subsequently gives genomic insights into the microorganisms residing in the sample of 

interest. The Sequence Read Archive (SRA) is a public repository housed by the National Center for 

Biotechnology Information (NCBI) containing extensive sequence data from metagenomic samples 

in animal agriculture, as well as the associated spatiotemporal attributes. Here we proposed to 

develop analytical framework to leverage the SRA and estimate relative antimicrobial resistant gene 

abundances across animal agriculture on a global scale from publicly available metagenomic 

sequence information. The developed analytical framework was then employed to evaluate 

metagenomic samples from cattle and swine housed in the SRA. Estimated abundances are utilized 

as a proof of concept for evaluating AMR characteristics on a global scale using publicly available, 

highly heterogenous data. The resulting abundance estimation will offer insights into AMR 

emergence and dynamics as well as inform further development of mitigation strategies.
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Chapter 1. Background and significance 
 

1.1 Antimicrobial resistance is a global public health threat 

Antimicrobial resistance (AMR) has become a serious global public health threat. AMR can 

be partitioned into two types of resistance: intrinsic and acquired. Intrinsic AMR can be defined as a 

universally shared resistance within a microbial species that is independent of previous antimicrobial 

exposure. Alternatively, acquired AMR is defined as the ability of a disease-causing microbe to 

survive exposure to an antimicrobial agent that was previously an effective treatment. As a result, 

treating infections caused by microorganisms such as bacteria, viruses, fungi, and parasites gradually 

becomes increasingly impracticable. The Center for Disease Control (CDC) and the World Health 

Organization (WHO) have both determined that drug resistance to potentially disease-causing 

pathogens is amongst the top global health security risks. The WHO in particular has declared that 

AMR exists within the top 10 global public health threats facing humanity. Predictive statistical 

models have recently estimated that in the year 2019 alone, 4.95 million deaths globally were 

associated with bacterial AMR; of which, 1.27 million deaths could be directly attributed to bacterial 

AMR (Antimicrobial Resistance Collaborators, 2022). Alarmingly, in 2016 a government funded 

review on the risks associated with drug-resistant infections estimated that annual global deaths 

associated with AMR could spike to 10 million by the year 2050 (O’Neill, 2016; Antimicrobial 

Resistance Collaborators, 2022).  

While the global burden is shared internationally, there are regional disparities. In 2019, 

estimated deaths attributable to bacterial AMR was found to be highest in western Sub-Saharan 

Africa and lowest in Australasia with rates of 27.3 and 6.5 per 100,000 deaths, respectively 

(Antimicrobial Resistance Collaborators, 2022), reinforcing consistent findings within the literature 

that the burden of AMR is more prevalent in low-income and low-resource geographical locations. 
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Nonetheless, the impact of this health concern is far from obsolete in high-income areas. In the 

United States of America, 2.8 million antimicrobial resistant infections occur each year, resulting in 

more than 35,000 deaths (CDC, 2019). It is abundantly clear that without the rapid implementation 

of comprehensive steps towards mitigation, the risks associated with AMR will continue to rise.  

1.2 Risks and impact of antimicrobial resistance 

The risks and impact of widespread antimicrobial resistance cannot be overstated. The list of 

directly and indirectly associated risks is extensive and in part includes a) increased mortality, b)  

economic burdens, c) reduced effectiveness of medical procedures, and d) diminished food security. 

Increased mortality can result from multiple factors in and of itself, but the primary contributor is 

that of the loss of effective treatments. Regarding economic burdens there are a multitude of 

contributors. Individuals with AMR infections may require more time intensive and specialized 

treatment regimen thus inducing extended hospital stays and consequently higher healthcare costs. 

Additionally, there are increased costs associated with the development of new antimicrobial agents 

which subsequently can lead to higher drug and healthcare costs. According to a report by the CDC 

in 2019, it is estimated that AMR costs the United States $55 billion annually; this can be partitioned 

into costs associated with healthcare and loss of productivity, surmounting to $20 billion and $35 

billion, respectively (Dadgostar, 2019). The decrease in efficacy of antimicrobials and or limitations 

imposed on their use due to prevalent AMR in animal agriculture would greatly contribute to 

economic burden as a result of a variety factors such as reduced production, increased livestock 

mortality and or cull rates, and treatment costs, among others. Furthermore, the use of 

antimicrobials in animal agriculture can lead to the proliferation of resistant bacteria with potential to 

enter the food chain, thus subjecting human individuals to additional sources of AMR transmission 

and compromising food safety (Davies and Wales, 2019). Diminished food security in regard to 

food availability is an additional concern. The global population is continuously expanding, 
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demanding increased food production to mitigate malnutrition, and rampant AMR development in 

animal agriculture could reduce production leading to food shortages.  

One indirect risk of AMR development is the potential reduced effectiveness of medical 

procedures that are highly dependent on the use of antimicrobials. Surgeries such as organ 

transplantations, joint replacement, and caesarean sections, as well as treatments such as 

chemotherapy could experience lower success and survivability rates or even become too risky to 

perform solely as a result of the inefficacy of the antimicrobials for which they are reliant upon 

(O’Neill, 2016). Therefore, AMR can essentially undermine recent developments in contemporary 

medicine and handicap medical professionals when developing courses of action for patients 

experiencing various health related issues. It is abundantly clear that there are a plethora of risks and 

negative impacts of a large magnitude associated with AMR development and emergence. 

Additionally, the known list of factors influenced by AMR is arguably incomplete as unknown 

factors and implications may come to fruition as the severity and comprehensive understanding of 

this global health concern develops further.  

1.3 Emergence of AMR 

 Although the development of AMR is incredibly intricate, it is widely recognized that the 

employment of antibiotics is one of the largest selective pressures of AMR. When used appropriately 

and precisely, antimicrobial utilization can effectively terminate or inhibit microorganisms lacking 

defense mechanisms; however, microbes containing the intrinsic or acquired mechanisms to resist 

the action of antimicrobials are able to persist and reproduce. Thus, microbes with the ability to 

resist antimicrobials have a higher relative fitness than their counterparts when exposed to an 

antimicrobial rich environment, and over time the resistance phenotype and underlying mutations 

will become more prevalent in the population. The functional mechanisms of antimicrobial 

resistance result from the expression of encoded genomic material referred to as antibiotic resistant 
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genes (ARGs). Antibiotic resistant genes are either produced by means of genetic mutations or 

acquired via gene transfer. The random and spontaneous occurrences of genomic mutations carry 

the potential to alter functionality of synthesized proteins resulting from antecedent gene expression 

(Schwarz et al., 2016). If said mutation is nonsynonymous, and therefore induces alterations in both 

the genetic and amino acid sequences of the encoded protein, subsequent protein functionality could 

be altered in terms of efficiency, dissolved completely (loss of function), or even redefined. In 

particular, the redefinition of protein function can result in the acquisition of antimicrobial resistant 

mechanisms by microbes. Mutations conferring subsequent antimicrobial resistance are often found 

in regions associated with the target sites of antimicrobial agents as this is a focal point for a variety 

of resistance mechanisms. In addition, mutations can further induce resistant phenotypes or 

lessened vulnerability to antimicrobials as a result of the enhanced expression for separate genes 

such as those pertaining to efflux.  

Alternatively, antibiotic resistant genes can be inherited by the actions of vertical gene 

transfer (VGT) and or horizontal gene transfer (HGT). Primarily, genetic material is passed down 

from parent to offspring in a vertical process. Resulting in the transmission of various genes and 

developed mutations to the inheriting organisms. However, genomic material can also be acquired 

by means of horizontal gene transfer, a process by which genetic material is transferred between 

distinct evolutionary lineages (Thomas, 2005; Stokes, 2011; Dunning Hotopp, 2011; Soucy, 2015). 

HGT is relatively common amongst microbes, and typically manifests between organisms of the 

same domain (archaea, bacteria, eukarya). HGT is most frequently documented within the bacteria 

domain. Nonetheless, interdomain HGT such as acquisition by eukaryotes from bacteria also occurs 

(Dunning Hotopp, 2011). This is exemplified by organelles such as mitochondria and chloroplast 

transmitting DNA to the nuclear genome of eukaryotes. Mitochondrial transmission in particular is 

well documented in Arabidopsis thaliana (Lin et al., 1999). Regardless of the organisms’ residential 
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domains, each case of HGT can result in the acquisition of novel genes and traits independent of 

those received via VGT inheritance.  

The process of horizontal gene transfer can be split into two independent processes: the 

transfer of the DNA, and incorporation of the DNA into the recipient organisms’ genome (Stokes, 

2011). There are several mechanisms that can facilitate the horizontal transfer of DNA and mobile 

elements, but the three most common and primary mechanisms are conjugation, transformation, 

and transduction. Mobile elements pertain mostly to plasmids and transposons, plasmids are small 

circular DNA strands and transposons are genetic elements that consist of repeat sequences and a 

transposase protein (Thomas, 2005). Mobile genetic elements (MGEs) are capable of carrying and 

disseminating ARGs. Conjugation entails transmission via physical contact of the donor and 

recipient bacterium. A pilus is formed to connect the cells, and then utilized as a medium for the 

exchange of genetic material. The uptake of environmental DNA is classified as transformation and 

is most common in bacteria and archaea. Transduction is the transfer of genetic material by means 

of phages and can be both general and specialized. General transduction is classified as the intake of 

a random segment of the host DNA involving a lysed bacterial cell, whereas specialized transduction 

is performed by temperate bacteriophages without the utilization of lysis. In specialized 

transduction, viral DNA is integrated with the host DNA and exists in a prophage stage (Soucy, 

2015). There are alternative mechanisms of horizontal gene transfer such as cell fusion, gene transfer 

agents, and intercellular transfer, but these are uncommon compared to the aforementioned 

mechanisms. After the genetic material is transferred, it must be stably incorporated into the 

recipient genome. The mechanisms for incorporation are primarily autonomous replication, 

transposition, homologous recombination, and site-specific recombination (Stokes, 2011). 

Autonomous replication pertains primarily to plasmids, whereas transposition pertain mostly to 

transposons, and site-specific recombination involves integrons. Integrons are assembly platforms 
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used to produce functional genes and are considered mobile elements that can be associated with 

transposons and plasmids. Each of the discussed mobile elements can be utilized in parallel with 

homologous recombination to integrate the new genetic information into the host (Stokes, 2011 ; 

van Hoek et al., 2011). Summarized and simply stated, both VGT and HGT present means by which 

antimicrobial resistant gene uptake is facilitated. 

1.4 Classification and mechanisms of antimicrobials  

Antimicrobial agents can be classified in a variety of ways. At the highest tier, antimicrobials 

can be partitioned into groups based on the microorganism they impact such as bacteria 

(antibiotics), fungi (antifungal), viruses (antiviral), and parasites (antiparasitic). We focus in this 

review on antibiotics as they are utilized more frequently than the others in human medicine and 

animal agriculture. It should be noted that the term antibiotic is commonly used to refer to both 

antibacterial and antifungal drugs, as well as used interchangeably with the term antimicrobial despite 

not conforming to the exact definitions. Within the faction of antibiotics, agents can be further 

classified by their type of action: bactericidal and bacteriostatic. Bactericidal refers to antibiotics that 

kill bacteria, whereas bacteriostatic encompasses antibiotics that inhibit bacterial growth and stall 

cellular activity without directly killing the bacteria. Alternatively, spectrum-based classification can 

cluster antibiotics into groups of narrow, broad, or extended spectrum. Spectrum is defined as the 

specificity and range of microorganism that an antibiotic can negatively impact. Narrow spectrum 

antibiotics only target a limited number of bacterial species. Extended spectrum refers to antibiotics 

that have been chemically modified to affect a broader range of bacteria. Broad spectrum antibiotics 

have an even larger scope and can therefore affect a variety of species and types of bacteria such as 

both Gram positive and Gram negative. In a clinical setting when treating infections, typically broad-

spectrum antibiotics are used when the origin of an infection is unknown and narrow spectrum is 

utilized when the origin has been isolated or refined to a small group of possibilities with high 
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confidence. Of note, the employment of broad-spectrum antibiotics is more likely to promote 

antimicrobial resistance and multidrug resistance in bacterial populations as well as disrupt the 

microbiome by altering the intestinal flora (Gerber et al., 2018; Grada & Bunick, 2021). Multidrug 

resistance (MDR) characterizes microbials that are resistant to multiple antimicrobial agents, this 

occurrence makes clinical treatment or corresponding infections more difficult  (Alekshun & Levy, 

2007). Nonetheless, most commonly antibiotics are classified in terms of their mechanism of action 

or their chemical structure.  

Classification in terms of chemical structure produces categories that antimicrobials are 

typically referred to by such as beta-lactams, aminoglycosides, tetracyclines, macrolides and more. 

For example, beta-lactams are characterized by the presence of a beta-lactam ring in their chemical 

structure and macrolides are all comprised of a 14, 15, or 16-membered ring. Tetracyclines, the most 

heavily utilized antimicrobial for animal agriculture domestically in the United States which accounts 

for 65% of sales, are identifiable by four adjacent cyclic hydrocarbon rings (FDA, 2019). Biologically 

speaking, the identity of molecular structures directly equates to the function of the molecule. Thus, 

antimicrobials classified into the same groups by chemical structure primarily exhibit similar 

function, mechanism of action, and or molecular mechanisms.  

Antibiotic mechanisms of action, as shown in Figure 1, primarily fall within three factions: 

cell wall synthesis, protein synthesis, and nucleic acid synthesis (Kapoor et al., 2017). The cell wall 

synthesis category pertains to antibiotics that target the cell wall and inhibit biosynthesis. Beta -

lactams and glycopeptides are two antibiotic classes that fall within the confines of this mechanism 

of action. Beta-lactams, and more specifically penicillin, target penicillin-binding proteins and block 

the production of peptidoglycans which are a significant component of the cell wall. The inhibition 

of this production results in the weakening of the cell wall and leads to subsequent lysis of the 

bacteria. Glycopeptides, vancomycin in particular, also inhibits cell wall synthesis associated with 
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penicillin-binding proteins. However, vancomycin binds to the side chain of peptides that normally 

bind to penicillin-binding proteins as opposed to the binding proteins themselves, subsequently 

blocking the binding of the peptide to the binding proteins and peptidoglycan production, achieving 

cell wall synthesis inhibition. The second mechanism of action, pertaining to inhibition of protein 

synthesis, is carried out by targeting ribosomal subunits necessary for the translation of RNA into 

proteins. Antimicrobial classes associated with this mechanism of action include but are not limited 

to aminoglycosides, tetracyclines, and macrolides which inhibit the 30S, 30S, and 50S subunits of 

ribosomes in bacteria, respectively. As this mechanism occurs within the cell, antimicrobials residing 

in this classification are aided by the aforementioned antimicrobials that target the cell wall since 

they allow easier access into the cell. Nonetheless, the presence of cell wall synthesis inhibitors is not 

required for the effectiveness of protein synthesis inhibitors. Aminoglycosides are positively charged 

molecules capable of forming pores in the cellular membrane to allow entrance of the antibiotic. 

Aminoglycosides inhibit protein synthesis by interacting with the 16S rRNA 30S subunit to induce 

errors in mRNA translation. 16S rRNA comprises the 30S ribosomal subunit and is required for 

protein synthesis and the correct codon-anticodon pairing during mRNA translation. Notably, the 

genes that encode 16S rRNA exist in all bacteria and are both highly conserved and species specific. 

As a result of these characteristics, 16S rRNA genes are commonly used in phylogenetic studies and 

for microbial identification, classification, and quantification. Nonetheless, the aminoglycoside 

induced errors are primarily associated with misreading the mRNA and the untimely termination of 

the process of translation subsequently resulting in cell death. Tetracyclines accomplish protein 

synthesis inhibition by directly binding with the 16S rRNA 30S subunit, therefore blocking 

association with tRNA and preventing a key step in producing the translated amino acid sequences. 

Migrating from 30S subunit inhibitors to a 50S subunit inhibitor, macrolides target conserved 

sequences in 23S rRNA resulting in the production of truncated peptide chains. Finally, 
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antimicrobial agent mechanisms of action can be characterized by inhibitors of nucleic acid 

synthesis. Representatives of this faction are quinolones and fluoroquinolones, which inhibit DNA 

gyrase and topoisomerase IV thereby negatively influencing DNA replication. DNA gyrase is an 

enzyme association with the relaxation of positive supercoils in DNA to allow for the progression of 

DNA replication by DNA polymerase and topoisomerase IV is primarily involved with separating 

daughter DNA strands immediately following replication. Inhibition of nucleic acid synthesis 

regarding either DNA replication or transcription is detrimental to microbial health and is the reason 

that quinolones are commonly bactericidal.  

The final criterion for antimicrobial classification is in terms of medical importance 

(Gelalcha & Kerro Dego, 2022; FDA, 2023). There are two subclasses associated with medical 

importance, antimicrobials deemed medically important, and those that are not medically important. 

Within the medically important antimicrobials (MIAs) faction there are three additional subclasses, 

critically important antimicrobials (CIAs), highly important antimicrobials (HIAs), and important 

antimicrobials (IAs). The more important the antimicrobial, the larger the human health risk 

associated with potential resistance 

development (FDA, 2023). The ranking 

criteria used to classify antimicrobials 

into one of the three classes of 

importance are as follows. Antimicrobial 

drugs that are unique or exist within a 

limited group of drugs with the ability to 

treat serious human infections are 

considered CIAs. HIAs encompasses 

two characteristics, these drugs are either 

Figure 1 | The three primary factions of antimicrobial 
mechanisms of action. A large subset of antimicrobials 
can be partitioned into three main classes for mechanism 
of action: cell wall, nucleic acid, and protein synthesis 
inhibitors. Adopted from Kapoor et al., 2017. 
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those that can treat serious human infections but with multiple drug classes available for therapeutic 

use, or they are one of the limited therapies that can be utilized to treat non-serious infections in 

humans. IAs are used to treat non-serious human infections when multiple antimicrobial classes of 

therapeutic drugs are effective and available. Antimicrobials deemed not medically important failed 

to meet any of the abovementioned ranking criteria and are considered to have less potential impact 

on human health. Both medically and not medically important antimicrobials are heavily utilized in 

animal agriculture, which can increase the risk of direct and indirect negative impacts on human 

health as a result of AMR selection and emergence, reinforcing the notion that AMR is a One 

Health concern that requires full scale collaboration to aid mitigation.  

1.5 Mechanisms of antimicrobial resistance 

Effective mitigation of AMR is heavily reliant on the large-scale comprehension of the issue 

and its means of operation. The molecular mechanisms associated with antimicrobial resistance 

(Figure 2) are broad, and still require additional research to develop a complete understanding. 

Discussed here is a limited variety of the understood and common AMR mechanisms including 

those that a) modify the antibiotic target, b) modify or degrade the antibiotic itself, and c) reduce the 

intracellular accumulation and or concentration of the antibiotic. Modification of an antimicrobials 

target can reduce binding affinity for the antimicrobial, thus rendering the drug ineffective and 

conferring resistance. Alteration of the target protein is typically mediated though enzymatic 

function and or genomic mutations. Beta lactam and macrolide resistance are commonly developed 

in this manner through mutations of genes associated with penicillin-binding proteins, and 

enzymatic methylation of 16S rRNA by methyltransferases, respectively. Inactivation of the 

antimicrobials themselves can be accomplished though enzymatic modification and degradation of 

its molecular structure. Degradation of the antimicrobials is carried out by hydrolysis of the 

molecules functional group; modification typically involves the enzymatic transfer and addition of 
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chemical groups thus restricting antimicrobial binding to its target. This mechanism of resistance is 

also common in beta lactams, as beta-lactamases are capable of hydrolyzing the amide bond in the 

beta lactam ring which results in antimicrobial degradation (Darby et al., 2022; Jeong et al., 2010; 

Tooke et al., 2019). Modification by the transfer of a chemical group can be exemplified by 

aminoglycosides, for which a multitude of different enzymes can alter the hydroxyl or amino groups 

subsequently reducing binding affinity and decreasing efficacy. Lastly, mechanisms pertaining to the 

reduction of intracellular accumulation and or concentration of antimicrobials has proven an 

effective method of AMR. These mechanisms are primarily associated with membrane permeability 

and efflux systems. As previously discussed, many antimicrobials act within the confines of the cell 

such as nucleic acid and protein synthesis inhibitors, consequently, their effectiveness is reliant upon 

their ability to enter and persist in the cell. Thus, resistance mechanisms that downregulate 

transmembrane proteins such as porins or alter the composition of the cellular envelope can directly 

reduce cell permeability for antibiotics. Additionally, if antibiotics do enter the cell, they can be 

expelled though efflux activity. 

Efflux pumps are 

transmembrane proteins 

capable of diminishing the 

concentration of toxic 

materials such as antibiotics by 

directly exporting the 

compounds out of the cell. 

Efflux is a major contributing 

mechanism to AMR and 

multidrug resistance and has 

Figure 2 | Primary mechanisms of antimicrobial resistance. In 
order to combat the mechanisms of action associated with 
antimicrobials, microbes commonly employ these mechanisms of 
resistance. Mechanisms illustrated here include decreased influx, 
increased efflux, target protection, bypass, and site modification, as 
well as antimicrobial inactivation. Adopted from Darby et al., 2022. 
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been shown to work cooperatively with many of the other resistance mechanisms already discussed 

(Darby et al., 2022). In depth understanding of mechanisms such as these is crucial to mitigating 

AMR, and the dynamics of its emergence moving forward.  

1.6 Monitoring and surveillance of AMR 

 The development of global surveillance systems to monitor AMR dynamics in humans, 

animals, and the environment is critical to fully understand the interface between the three and 

inform future management strategies. Accomplishing this feat is reliant upon the accurate 

quantification of antimicrobial resistance in samples. Traditionally, the benchmark for determining 

antimicrobial resistance has been to selectively culture microbes and measure the exhibited 

phenotypes when subjected to the presence of various antimicrobials. This methodology is 

employed globally for multiple surveillance systems; however, it is based on a limited number of 

culturable pathogens and typically only evaluates antimicrobials relevant to human health. As a 

result, a plethora of unculturable pathogens and many antimicrobials utilized in alternative sectors 

such as animal agriculture are not evaluated. In many countries, antimicrobial consumption in animal 

agriculture surpasses that of human usage, and it is estimated that nearly 73% of global antibiotics 

can be contributed to livestock (Van Boeckel et al., 2017). It should be noted that is it difficult to 

draw comparisons between antimicrobial use in humans and animals due to the large disparity in 

human and animal numbers as well as the dose and duration of antimicrobial administration 

between species (FDA, 2019). Nonetheless, animal agriculture contributes immensely to total global 

antimicrobial usage and moreover the selective pressure on AMR development. Unfortunately, 

surveillance for AMR in farm animals typically relies on passive reporting to gather representa tive 

data (Woolhouse et al., 2015). Active surveillance on the other hand provides more accurate and up 

to date information.  

Regarding alternative methodologies for evaluating AMR presence, recent advancements in 
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high throughput DNA sequencing technologies have made way for cost effective shotgun 

metagenomic sequencing, allowing for the interrogation of an entire collection of DNA present in a 

complex system such as animal and environmental samples, including novel and unculturable 

microorganisms (Quince et al., 2017). The process of shotgun metagenomics from start to finish 

entails 1) sample collection, 2) DNA extraction, 3) random fragmentation of the genomic material, 

4) high throughput sequencing, and 5) subsequent bioinformatic analysis (Quince et al.,  2017). This 

design allows for subsequent data analyses to mine critical information from vast amounts of data 

including the identification and estimation of antibiotic resistance genes (ARGs). Sequencing is 

typically performed on the Illumina platform, but advancements in long read sequencing technology 

from Oxford Nanopore and PacBio has made their utilization viable in the field (Quince et al., 

2017). Shotgun metagenomics is commonly used to identify taxonomic composition and function of 

microbial communities, however, its prevalence in AMR research has grown in recent years. 

Contemporarily, this methodology has been employed to evaluate ARG presence in samples of 

human fecal matter origin (urban sewage and toilet waste from airplanes), and animal agricul ture 

(feces from swine, milk filters from dairy farms, and feces from broiler farms). In 2019, a study by 

Hendriksen et al. sampled untreated urban sewage from 79 cities in 60 countries and subjected them 

to shotgun metagenomic sequencing to interrogate regional variation of ARG abundance and dissect 

factors having potential influence. Their findings concluded that there are regional disparities in 

ARG abundance which are strongly correlated with socioeconomic, health, and environmental 

factors. Regional differences could be conglomerated into two working groups of similarity: Europe, 

North America, and Oceania and Africa, Asia, and South America. Of note, the most highly 

abundant ARGs were associated with macrolides, tetracyclines, aminoglycosides, beta -lactams, and 

sulfonamides (Hendriksen et al., 2019). This study highlights the ability of metagenomics to 

characterize AMR development in healthy populations, and more importantly, that there is global 
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disparity and nonuniform 

dynamics of AMR. 

Transitioning to animal 

agriculture associated studies, 

researchers in Denmark 

shotgun metagenomically 

sequenced fecal samples 

from 181 swine and 178 

poultry farms from nine 

European countries (Munk 

et al. 2018). Interestingly, upon quantification of the resistome for each species there were significant 

differences in abundance and composition. Additionally, the study concluded that AMR prevalence 

was associated with the degree of antibiotic utilization in livestock. Moreover, a country effect on 

resistome composition was determined significant with variable degrees between species. 

Showcasing the ability to differentiate AMR profiles based on associated factors in animal 

agriculture such as species, antibiotic usage, and geographical location. An additional  study 

pertaining to dairy cattle in animal agriculture sought out to evaluate the distribution of ARGs in 

complex samples such as bulk tank milk filters (Rubiola et al., 2022). The purpose of utilizing an 

uncommon sampling source such as milk filters is to a) investigate the ability to determine 

resistomes with raw milk and b) interrogate food security associated risks relevant to AMR. The 

study concluded that the shotgun metagenomic sequencing of raw milk found in bulk tank filters 

can successfully determine the associated resistome, and that raw milk can be considered a source of 

AMR bacteria and genes. Outlining the importance of proper hygiene on dairies, and food safety 

risks associated with the consumption of raw milk. Once again emphasizing the importance of the 

Figure 3 | The routes of transmission of AMR between 
livestock, humans, and the environment. Antimicrobial 
resistance can be acquired through multiple direct and indirect 
pathways for each sector. Adopted from Woolhouse and Ward, 
2013.   
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human, livestock, and environment interface. The routes of AMR transmission in this interface are 

illustrated at a fundamental level in Figure 3 (Woolhouse et al., 2015). Antimicrobial usage in 

humans and livestock encourages the development of resistant microbials, which can then follow 

various routes of transmission. Transmission can occur between different species within livestock 

and humans via close proximity or the consumption of food products from animal agriculture. 

Additionally, excrement from the living organisms can transmit AMR microbes and genomic 

material into the environment. Environmental AMR can also be routed back to humans, livestock, 

and food production, where in the case of the living organisms it can be recycled and spread within 

the species. It is clear that animal agriculture plays an integral role in AMR development and 

dissemination, and thus it is vital that rapid and quality livestock surveillance systems be established 

to aid in the mitigation of this global One Health threat.  

1.7 One Health 

Despite the encouragement of amicrobial resistance due to selective pressures of 

antimicrobial use, it should be noted that antimicrobial resistance is not anthropogenic and existed 

prior to the discovery, development, and utilization of contemporary antimicrobial agents (Zhang et 

al., 2022). In fact, a recent study in reconstructed ancient 

microbial genomes from the human gut utilizing over a 

thousand-year-old preserved palaeofaeces samples identified 

the presence of antimicrobial resistance genes (D’Costa et al., 

2011). Additionally, ARGs exist in the environment and 

have been discovered in permafrost cores and pristine soil 

samples from the Yukon territory of Canada and 

Antarctica, respectively (Zhang et al., 2022; Van Goethem 

et al., 2018; Wibowo et al., 2021). Each of these studies 

Figure 4 | The relationship between 
Animal, Human, and Environmental 
Health. At the cross section of these 
three sectors resides the concept of One 
Health, illustrating the importance for 
the optimization of each sectors health 
both individually and as a conglomerate. 
Adopted from the International 
Livestock Research Institute. 
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reinforces that antimicrobial resistance is a natural occurring phenomenon that was not established 

in response to antimicrobial use, but rather amplified though selective pressures and microbial 

proliferation. The existence of antibiotic resistant genes in the environment poses a threat to human 

health as the genes can be acquired by bacterial hosts in humans as well as potential pathogens. The 

development and emergence of AMR is multifaceted, and the large breadth of influence associated 

with this global health threat classifies it as a One Health issue. One Health is the idea that human, 

animal, and environmental health are all intertwined (Figure 4), and the optimization of this kingpin 

requires a collaborative, multisectoral, and transdisciplinary approach. Regarding AMR, practices 

employed within each sector heavily influence the health of all three.  

1.8 Metagenomic data in public databases 

Vast amounts of data produced from published and unpublished studies utilizing shotgun 

metagenomic sequencing have accumulated in public repositories, most notably in the Sequence 

Read Archive (SRA) database hosted by the National Center for Biotechnology Information 

(NCBI). The tens of thousands of metagenomic samples of animal agriculture origin residing in the 

SRA are incredibly diverse in terms of species, sampling source (fecal, intestinal, tissue), time, and 

location. Additionally, the metagenomic data is rather unbiased as a result of unintended sampling 

since the majority of studies were not primarily investigating AMR. That is to say, most studies were 

not actively pursuing samples where a certain degree of AMR prevalence would be likely. As a resul t 

of the aforementioned characteristics associated with these metagenomic samples in the SRA, there 

exists the ability to capture large scale antimicrobial resistance information in global animal 

agriculture though the quantification of ARGs. The estimates of antimicrobial resistance gene 

abundance, and their correlation with a multitude of factors such as national economic indices and 

antimicrobial usage can then be investigated to offer insights into the dynamics and emergence of 

AMR as well as mitigation strategies.  
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Chapter 2. Development of an ARG estimation pipeline 
from metagenomic data 
 

2.1 Introduction  

The development and optimization of a bioinformatic pipeline capable of processing data 

from raw metagenomic sequences to gene abundance is instrumental in the accurate and efficient 

quantification of ARGs. Primarily, bioinformatic pipelines such as these employ one of two 

methodologies: assembly based, or alignment (mapping) based. The process for each method starts 

identically, microbial DNA is 

randomly fragmented into many 

smaller pieces of genomic 

material and then massively 

parallel sequenced i.e., shotgun 

metagenomic sequencing. This 

results in the production of fastq 

files which contain a large 

quantity of reads (nucleic acid 

sequences). As illustrated in 

Figure 5, it is here where the 

divergence of assembly-based and 

alignment-based methods occur. 

The alignment-based method 

entails mapping the prior 

produced sequence reads to a 

Figure 5 | Shotgun metagenomic sequencing and ARG 
abundance estimation. The procedure associated with shotgun 
metagenomic sequencing and the estimation of absolute ARG 
abundance are illustrated. Three distinct hypothetical bacteria are 
sampled and subjected to shotgun metagenomic sequencing. 
The produced sequence reads are subsequently utilized to 
estimate ARG abundance by either a two-step assembly based 
(left) or mapping based (right) approach. 
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reference gene catalog, in our case one comprised of existing ARGs. Abundance estimation is 

subsequently quantified by the number of times each gene in the reference catalog was mapped to 

from the input query read sequences. Alternatively, the assembly-based methods require a two-step 

approach. Reads are first computationally assembled into complete genomes via overlaps of 

similarity between reads. This is made possible due to the high throughput and coverage produced 

from shotgun metagenomics sequencing. The resulting assemblies can then be functionally classified 

to produce a reference gene catalog. Finally, abundance can be estimated by mapping the shotgun 

reads to the assembled gene catalog. In layman’s terms, alignment-based methods entail mapping to 

a known reference gene catalog, whereas assembly-based methods produce their own reference gene 

catalog and entail mapping to the assembled gene catalog. The utilization of each method comes 

with its associated benefits and disadvantages when compared with the alternative. Compared to 

assembly-based methods, alignment-based methods are computationally efficient but may miss 

unannotated genes and normalization across samples is more challenging. On the other hand, the 

assembly-based method is more computationally expensive but is better at capturing the total 

microbiome and may discover novel genes undefined in reference databases. Each method has been 

shown to effectively capture ARG abundance, nonetheless, due to the sheer volume of data we wish 

to process, an alignment-based method was employed. The objective of this project was to establish 

alignment-based analytical framework for estimating ARG abundance in metagenomic samples, that 

is additionally capable of processing large amounts of bulk genomic sequence data in a feasible time 

frame.  
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2.2 Materials and Methods 

2.2.1 Metagenomic data 

The development and optimization of the constructed bioinformatic pipeline utilized in 

house published data from the metagenomic sequencing of ileum, cecum, and colon samples (n=18) 

from 6 distinct pigs (Quan et al., 2020). The objective of the aforementioned study was to compare 

the metagenomes from different intestinal regions of pigs with contrasting feed efficiency, and an 

assembly-based bioinformatic approach was utilized for quantification of ARG abundance. The 

produced data from this study serves here as an evaluation dataset for the development and 

optimization of a new bioinformatic pipeline as well as a means for comparison between assembly 

and alignment based methodologies.  

2.2.2 Reference databases 

Databases utilized for alignment include the Comprehensive Antibiotic Resistance Database 

(CARD) for antimicrobial resistant genes, and the GreenGenes database for 16S rRNA genes which 

are later used for taxonomic purposes. The genes comprising each respective database were 

clustered based on sequence identity to remove any redundancy using CD-HIT. More precisely, CD-

HIT-EST (W. Li & Godzik, 2006) was utilized with the following parameters: local sequence identity 

(as opposed to global), alignment coverage of 90%, clustering to the most similar representative (as 

opposed to the first cluster to meet clustering criteria), and either a 95% or 99% sequence identify 

threshold. The CD-HIT-EST algorithm works as follows: 1) input sequences are sorted in order of 

decreasing length, 2) the longest sorted sequence becomes the representative of the first cluster, 3) 

the following sequences of shorter length are compared to the representatives of the existing  

clusters. The sequence of interest will be partitioned into the first representative sequence for which 

it meets the clustering criteria defined above (sequence identity, alignment coverage, etc.). Therefore, 
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if a sequence of interest meets the clustering criteria for multiple clusters, it will be partitioned into 

the cluster with the longest representative sequence. If a sequence fails to meet a ll of the clustering 

criteria for all of the existing clusters, a new cluster is formed with the sequence of interest serving as 

the cluster representative. Once clustering was finished, the representative sequences were retained 

and used moving forward. Each database was clustered twice, once with 95% and once with 99% 

sequence identity, to inform optimization of the pipeline discussed later in this chapter. Upon 

clustering at 95% sequence identity, the CARD and GreenGenes databases were filtered from 4,605 

genes to 1,323 genes, and 1,075,170 genes to 52,161 genes, respectively. At a sequence identity 

threshold of 99%, the CARD and GreenGenes databases were filtered from 4,605 genes to 1,986 

genes, and 1,075,170 genes to 175,724 genes, respectively. Gene length distributions for the four 

individual nonredundant databases are illustrated in Figure 6. Each clustered database was then 

indexed using BWA-INDEX as required for subsequent mapping to the gene catalogs. This process 

is performed once and is not repeated for each sample processed by the constructed bioinformatic 

pipeline. 

All sequence processing and abundance estimation was performed on the Michigan State 

University (MSU) High Performance Computing Cluster (HPCC) hosted by the MSU Institute for 

Cyber-Enabled Research (ICER). 
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Figure 6 | Disparity in Gene Length Between Each Nonredundant Reference Database at Variable Sequence Identity 
Clustering Thresholds. Each Database (CARD and GreenGenes) were clustered at 95% and 99% sequence identity. The 
distribution of each nonredundant databases gene lengths, and the average gene length are illustrated. Of note, the 99% 
sequence identity clustering equated to a relatively smaller average gene length as due to the parameters, less genes met the 
clustering criteria for each large cluster representative sequence and instead formed their own cluster. Consequently, more 
clusters with a lower average gene length were produced in the 99% sequence identity reference databases compared to that of 
the 95% sequence identity reference databases.  
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2.2.3  Sequence processing 

2.2.3.1Fastq quality control 

 First and foremost, the raw sequence data housed in fastq files are subjected to quality 

control. This primarily pertains to adapter removal and quality trimming of the shotgun reads, which 

is performed using BBduk (Bushnell, 2014). A variety of alternative tools exist, such as Cutadapt and 

Trimmomatic, but BBduk has been shown to be extremely fast, scalable, and memory-efficient while 

still retaining relatively comparable accuracy to the competition (Guzman & D’Orso, 2017). 

Additionally, BBduk handles both single-end and paired-end reads very smoothly. Regarding 

parameterization, a quality threshold of 20 on the Phred scale (99% base calling accuracy) and a 

minimum length of 50 bases was employed. Filtering of reads based on length is performed after 

adapter removal and quality trimming. Quality control metrics such as these are a balance between 

sensitivity and specificity. If the parameters are too relaxed, then filtering is considered sensitive as 

the retention rate of truly positives is higher. Alternatively, if the parameters are rather strict 

(specific) then a higher proportion of the true negatives are accurately discarded. When selecting 

quality control thresholds, it is desirable to optimize a middle ground between the two ends of the 

spectrum so that reads with high confidence of accuracy off the sequencer are retained and 

potentially accurate data with lesser confidence aren’t massively removed. A quality trimming 

threshold of 20 resides in the middle of this spectrum, and a minimum length of 50 bases errs on the 

side of specificity; both of which generally agree with parameters commonly used in the literature. 

While not included presently, future development of this quality control step can allow for the 

filtering of host reads. This serves two primary purposes, to validate the sample species origin and 

remove contaminants in the data. 

 Validation of the quality control step is performed using FastQC on both the raw sequence 

data and the retained clean data. FastQC performs various basic quality control (QC) metrics 
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including sequence quality, read length distribution, duplication levels, GC content, and adapter 

content. By subjecting both the raw and clean sequence data to FastQC, any QC metrics flagged for 

concern in the raw data can be cross-checked with the associated clean data QC metrics to validate 

that the issues have been resolved. The utilization of this technique allows for the wrangling of 

additional erroneous data that escaped quality control filtering prior to further downstream analysis.   

2.2.3.2Alignment 

A two-pronged alignment is then performed to query the clean sequence data against the 

nonredundant 16S rRNA and ARG gene sets. The BWA-MEM algorithm was employed to map the 

input reads against the references (Figure 7), despite the availability of its contemporary successor 

BWA-MEM2. BWA-MEM2 produces an identical alignment to that of BWA-MEM but is 

significantly faster (up to 3.1x). However, the cost of this rapid alignment is skyrocketed memory 

costs, and due to the high throughput nature of shotgun metagenomic sequencing the utilization of 

BWA-MEM2 became infeasible with the available resources. The Burrows-Wheeler Alignment 

(BWA) (Li & Durbin, 2009) is a read alignment tool contingent upon the Burrows–Wheeler 

Transform (BWT) (Burrows and Wheeler, 1994). In the case of BWA-MEM, alignments are seeded 

with maximal exact matches (MEMs) and then seeds are extended with the affine-gap Smith-

Waterman algorithm (SW) (H. Li, 2013). The algorithm handles sequencing errors very well and 

works with a wide range of sequence lengths. The execution of this algorithm given reference and 

query sequences will 

result in the production 

of SAM (Sequence 

Alignment Map) files 

containing the query 

sequences and the Figure 7 | Overview of the ARG abundance estimation pipeline.  
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reference sequence they aligned to (if applicable). Upon the completion of BWA-MEM alignment 

with default parameters, each output SAM file was converted to BAM (binary) format with 

SAMtools software to conserve storage space on the MSU HPCC. The outputs of the alignment 

step are two BAM files for each input clean fastq file, individually containing mapping information 

for the input reads to either the 16S rRNA or ARG references. These files contain both mapped and 

unmapped reads from the clean data. 

2.2.4 Gene quantification 

2.2.4.1Absolute abundance estimation  

In order to estimate the absolute abundances for the ARG and 16S rRNA genes of interest, 

the unmapped reads from the previously produced alignment files must be filtered out and 

discarded. This is accomplished based on each reads associated MAPQ scores produced by BWA-

MEM during alignment. MAPQ scores for BWA-MEM range from zero to sixty [0,60] on the Phred 

scale, a score of zero means that the read could not meet the mapping criteria for any of the genes in 

the reference catalog (Figure 8). MAPQ scores from one to sixty [1,60] express a level of confidence 

in the mapping of an input read to a particular gene in the catalog and is directly related to the 

number of genes for which a read meets the required mapping criteria. A MAPQ score of 60 equates 

to extreme confidence by the alignment algorithm that the read maps to a single particular gene in 

the reference. As the number of genes a read can map to increases, the MAPQ score decreases as 

the aligner is less confident in which gene is the accurate mapping for the read. Any reads that have 

a MAPQ score of zero are therefore unmapped to any genes in the reference catalog and are 

discarded from further quantification steps in the analysis. At this point, quantification is temporarily 

partitioned into two different bioinformatic processes for single and paired end reads, respectively.  
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 Single end analysis is 

relatively straight 

forward. The number 

of mappings for each 

read in the alignment 

file are summed, and a 

three-column table is 

produced with columns 

1, 2, and 3, equating to 

read name, mapped 

gene name, and number 

of mappings for the 

read in question, 

respectively. To combat 

multimapping for genes 

in the reference catalog, 

the value in column 3 is 

then inverted to weight 

each mapping (i.e., 3 gene mappings by one read is inverted to 1/3 of a count for each gene). This 

ensures that multiple mappings for a single read does not equate to multiple gene counts, as this 

would overestimate abundance.  

 Paired end analysis requires additional considerations since the two paired end reads may not 

necessarily confer identical gene alignments. Consequently, each paired end alignment file must be 

spliced into two alignment files containing the left end and right end reads, respectively. Each of 

Figure 8 | MAPQ Score Distribution Produced by Alignment to Each 
Reference. The distribution of MAPQ scores associated with the 
alignment of one individual sample to the 99% sequence identity clustered 
16S rRNA and ARG gene catalogs is illustrated.  The sample utilized 
(SRS6485642), was randomly selected from the aforementioned pig 
intestinal feed efficiency study. A and B both represent 16S rRNA 
sequence alignment MAPQ scores, however, B illustrates solely MAPQ 
scores ranging from [1,60]. Similarly, C and D both represent ARG 
sequence alignment MAPQ scores, with D illustrating solely MAPQ 
scores ranging from [1,60]. A and C serve to highlight the prevalence of 
unmapped reads (MAPQ=0), as the distribution is so disproportionate 
that none of the alternative MAPQ scores [1,60] can be depicted on the 
same scale. 

A 

B 
 

C 
 

D 
 



 26 

these files are then used to produce a table comprising of three columns where columns 1, 2, and 3, 

represent read name, mapped gene name, and MAPQ score, respectively. Subsequently, the resulting 

tables are merged into a five-column table for which columns 1, 2, 3, 4, and 5, equate to read name, 

left end gene mapping name, right end gene mapping name, left end gene mapping MAPQ score, 

and right end gene mapping MAPQ score, respectively. Here, one of the paired end reads (left end 

or right end) are selected as the representative for which gene the read was mapped. Selection of this 

representative was determine using the following procedure: 1) if only one read mapped to a gene in 

the reference, the mapped read is retained as the representative, 2) if each read was mapped to an 

identical gene the left end read is selected, 3) if each read mapped to different genes, whichever 

mapping boasts a higher MAPQ score is selected, 4) if each read mapped to different genes with 

identical MAPQ score, the left end read is selected. Because of the random nature of left and right 

assignment, the last (4) selection effectively randomly assigns reads to one of the two genes. Once 

representatives for the paired end reads have been determined, the remaining reads are processed 

identically to the single end analysis previously described to produce a three-column table containing 

read name, mapped gene name, and weighted mapping count, respectively.  

 At this point, the bioinformatic analysis of single end and paired end reads reconvene. For 

each file, the weighted mappings for each gene are summed subsequently producing a two-column 

table comprised of reference gene name and associated summation of weighted mappings, 

respectively. Of note, there are often multiple sequencing runs and produced fastq files for a single 

sample. Now that each of these files have been processed from raw data to a table of absolute 

weighted gene counts, they need to be pooled into a single file representing the original sample. This 

is performed by summing the gene counts for each file and representing them in a new table with 

the identical format of the input tables. The resulting table represents the absolute abundance of 

each gene in the reference catalog for the shotgun metagenomically sequenced sample.   
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2.2.4.2Normalization 

Quantification was performed four times using gene alignments to the nonredundant CARD 

and GreenGenes databases at 95% and 99% sequence identity for both. Resulting in the 

construction of four large tables formatted as sample by reference gene with values equating to the 

absolute abundance of each gene within each sample. However, this abundance estimation can be 

heavily biased due to disparities in microbial abundance between samples which is the purpose for 

16S rRNA quantification. The total abundance of 16S rRNA genes serves as a proxy for the total 

microbial abundance in the metagenomic samples and is used as a means for normalizing quantified 

ARG abundance. Relative ARG abundance is calculated using the formula found in Equation 1 : 

 

 

 

where NARG is the number of reads mapped to an ARG, LARG is the length of the ARG gene, N16S is 

the number of reads mapped to a 16S rRNA gene and L16S is the length of the 16S rRNA gene. After 

normalization, the relative abundances for each ARG are enveloped in a sample by ARG table 

which will serve as the basis for all subsequent bioinformatic analysis.  

Equation 1 | ARG Abundance Normalization. 
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2.3 Results 

2.3.1 Correlation between alignment and assembly based methods 

As previously mentioned, the sequence data utilized in this chapter originates from publicly 

available and published data from Quan et al., 2020. As shown in the publication, ARG abundances 

were estimated utilizing an assembly-based bioinformatic approach (Quan et al., 2020). Thus 

providing available benchmarks for comparison between the authors assembly-based approach, and 

the alignment-based method detailed in this chapter. To evaluate concordance between the 

developed framework utilizing the alignment-based approach, and the existing assembly-based 

method, correlations 

between the concluded 

ARG abundances for each 

method using the same 

dataset were calculated. 

Furthermore, as to 

determine which sequence 

identity threshold should 

be used for reference 

database clustering, two 

correlations were 

calculated. The first of 

which is the correlation 

between the estimated 

ARG abundances from the 

A 

 
B 
 

Figure 9 | Correlation of ARG abundance estimation between the 
alignment-based and assembly-based methodologies. Figure A 
represents the correlation between the alignment-based approach 
using the 95% sequence identity database and the assembly-based 
method. Figure B represents the correlation between the alignment-
based approach using the 99% sequence identity database and the 
assembly-based method. The mean correlation of the estimate relative 
ARG abundance for all samples in A and B are 0.337 and 0.376, 
respectively. 
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95% sequence identity reference database alignment-based approach, and the assembly-based ARG 

abundances from the publication. Secondly, correlations were calculated between the estimated 

ARG abundances from the 99% sequence identity reference database alignment-based approach, 

and the same aforementioned assembly-based ARG abundances from the publication. It should be 

noted that the assembly-based approach is by no means the gold standard for determining ARG 

abundance, but there is merit to concluding comparable results when the alignment-based approach 

is substantially more computationally efficient. As shown in Figure 9, the average correlation for the 

99% sequence identity reference database (0.376) was marginally higher than i ts 95% counterpart 

(0.337). Moreover, the sample with the highest correlation for the 99% reference database was 

0.620, significantly higher than 0.497, which is the highest sample correlation from the alternative 

95% database. As a result, further analyses with the alignment-based approach will utilize the 

nonredundant CARD and GreenGenes databases clustered at 99% sequence identity. Furthermore, 

the results from the alignment-based approach generally agree with the concluded ARG abundances 

produced via the assembly-based approach.  

2.3.2 Computational processing time 

 When it comes to computational efficiency, CPU time spent on gene quantification and 

normalization is negligible and nearly instantaneous. However, sequence data trimming and 

alignment can prove taxing when it comes to large scale data processing. As the pig intestinal data 

processed above comprises of merely 18 samples, computational burden analysis was performed 

using the data set discussed later in chapter 3 which contains 126 samples and provides more 

accurate estimations. As shown in Figure 10, the average time spent to process 1 million reads for 

trimming, 16S alignment, and ARG alignment, was 0.08, 55.09, and 54.60 minutes, respectively. 

Therefore, the average CPU time required to process 1 million reads is 109.77 minutes. The 

relationship between number of reads and time spent for each step generally illustrates a positive 
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and linear relationship. However, as exhibited in Figure 10, components b and c, there is clustering 

of files containing over ~600 million reads for the alignment steps that do not agree with the 

concluded linear relationship. This artifact is a result of variable node efficiency on the MSU HPCC, 

as some nodes are 

newer and faster 

than others and 

the processing of 

the samples 

included in these 

clusters took place 

on these particular nodes. Thus, partially explaining the contradictory nature of these clusters to the 

generally exhibited correlation between number of reads and CPU processing time. This process can 

be accelerated to a certain extent through optimized multithreading and parallelization in the future. 

2.4 Conclusion 

In conclusion, the outlined analytical framework for estimating antimicrobial resistance gene 

abundance in metagenomic samples of animal agriculture origin is capable of processing vast 

amounts of genomic sequence data in an incredibly short amount of time. Moreover, the processing 

time can be accelerated to an even shorter time duration with the incorporation of optimized 

multithreading and parallelization on HPCC’s moving forward. Furthermore, the concluded ARG 

abundances generally correlate with those of which produced by the alternative assembly-based 

methodology. This makes large scale application to bulk datasets of genomic sequence data feasible, 

opening the door for a variety of future explorative studies regarding the identification of ARG 

presence in animal agriculture.  

 Figure 10 | Computational Burdens Associated with Read Processing. 
CPU time allocation for read processing is not equal proportioned. The 
average time to process 1 million reads is 109.77 minutes, 99.9% of which can 
be attributed to alignment. Trimming (a) time is negligible. As shown in a, b, 
and c, number of reads is directly related with the time spent processing.  
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Chapter 3. Application of developed framework on 
metagenomic samples 
 

3.1 Introduction 

Vast amounts of shotgun metagenomic sequence data pertaining to six particular animal 

species in animal agriculture (pig, cattle, chicken, sheep, goat, and horse) exist in the Sequence Read 

Archive (SRA) hosted by NCBI. The SRA is heavily intertwined with the BioSample and BioProject 

databases, also hosted by NCBI. The BioProject database houses information pertaining to each 

study at large and is therefore applicable to multiple samples. The BioSample database contains 

metadata for each unique sample collection. Curation of characterized sequence data from the SRA 

requires the utilization of information stored in each of the three databases. Moreover, the public 

repository has exhibited continual growth in terms of volume for sequence data and number of 

metagenomic samples and is still actively growing. Notably, the number of metagenomic samples 

submitted the last two years (2021, 

2022) has surpassed the previous 

maximum, and 2022 in particular 

experienced the largest growth of 

sample submissions to date. As the 

cost of sequencing in modern day 

continues to drop, it can be 

anticipated that growth will continue 

moving forward. As of November 

2022, the number of shotgun 

metagenomic samples in the SRA 

Figure 11 | Rapid growth of shotgun metagenomic data 
of animal agriculture origin in the SRA. (a) Cumulative 
number of metagenomic samples for six species in the SRA 
over the past three decades. (b) Cumulative size of 
metagenomic sequence data in the SRA over time, split by 
six animal species. The size is expressed in T (1012) Bases. 
(c) Number of samples submitted to the SRA in each year 
for each species, yearly totals stated above the stacked bars.  



 32 

was estimated to be 15,850 by filtering the metadata with associated keywords. It’s important to note 

that this number comprises only shotgun metagenomic samples and does not include 16S amplicon 

sequencing which is a commonly used methodology in the field of metagenomics. 16S amplicon 

sequencing by nature fails to offer insights into the genome at large, and therefore is of no use for 

ARG abundance estimation. Illustrated in Figure 11 are trends and characterization for 

metagenomic samples and sequence data submitted over the years. Currently, the two species with 

the largest amount of metagenomic samples are swine and cattle with 6,009 and 4,379 samples 

respectively. Of particular importance, samples and their associated sequence data in the SRA are 

accompanied by their respective metadata. The associated metadata varies tremendously in terms of 

detail, but ideally each samples metadata comprises of sample species, collection data, and sampling 

location, at a minimum. Upon inspection, 11,831 of the 15,850 (~75%) samples contained at least 

sample collection year information, and collection dates ranged from 1994 to modern day. 

Moreover, of the 15,850 samples, 15,085 (95%) contained at least country information representing 

37 countries in all six continents other than Antarctica. However, sample distribution is uneven as 

three counties (USA, China, New 

Zealand) comprise 55% of the total 

number of samples. Figure 12 illustrates 

the distribution of samples on a global 

scale as well as the dynamics of sample 

contribution over the past decade. As 

shown, sample submission is growing 

globally but additional sampling and 

sequencing is required, especially in 

low-income countries. Nonetheless, 

Figure 12 | Spatiotemporal distribution of metagenomic 
samples from animal agriculture in the SRA. Snapshots 
of the cumulative number of SRA samples from animal 
agriculture are illustrated for the years 2013, 2016, 2019, and 
2022. Significant growth in number of metagenomic 
samples over the past decade is apparent. 
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the significant amount of shotgun metagenomic sequence data of animal agriculture origin present in 

the SRA could prove useful for evaluating spatiotemporal disparity associated with ARGs. The 

objective of this project was to apply the previously discussed analytical framework for estimating 

ARG abundance to a subset of metagenomic samples of animal agriculture origin from the SRA, 

and explore trends associated with the geographical distribution of ARGs on a global scale.  

3.2 Materials and methods 

3.2.1 Experimental design 

An experiment was designed to evaluate regional variation of ARG abundance and serve as a 

proof of concept for further large-scale analysis of the SRA. Shotgun metagenomic samples from a 

variety of BioProjects, countries, time points, and species housed in the SRA were hand curated to 

produce a working data set representing a subset of global metagenomic samples from animal 

agriculture. The curated samples were then subjected to in-depth annotation, and the associated 

sequence data was downloaded and pushed though the bioinformatic pipeline established in chapter 

2 to produce relative ARG abundance estimations. In conjunction with total absolute and relative 

ARG abundance estimation, ARG composition in terms of associated antimicrobial drug class was 

also explored. Subsequently, ARG variation between and within various geographical regions and 

BioProjects were evaluated, and conclusions were drawn. 

3.2.2 Sample curation 

As previously mentioned, cattle and swine comprise the largest portions of submitted 

metagenomic samples in the SRA. Therefore, we focused on these two species when curating a 

working data set as this allowed for the inclusion of more geographical regions within the same 

species group. The goal was to accumulate a diverse set of samples representing 6 continents 

(exclusion of Antarctica), and a multitude of countries, for both cattle and swine. When selecting 
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samples, the availability of a publication was deemed a prerequisite as to 1) ensure that quality data is 

obtained and utilized, and 2) allow for confident, accurate annotation of the associated samples. 

Additionally, as an attempt to keep the study relatively balanced, 12 samples were selected for each 

country included in this study. Of note, availability of quality shotgun metagenomic sequence data 

(not 16S amplicon sequencing) in Africa was incredibly limited, and available data was refined to one 

available publication in Malawi which comprised of 31 samples. Of these 31 samples, only 10 were 

sequenced via shotgun metagenomics and usable for this study. Thus, the selected representative 

samples from Malawi, Africa (10) did not fit the mold of 12 samples per country despite the 

availability of both cattle and swine samples. However, for countries with a surplus of available data, 

curated samples were scattered amongst the geographical landscape within the country. For 

example, in China, samples were split amongst the cities of Hangzhou and Yunfu, representing the 

eastern and southern regions, respectively. In the USA, samples were split amongst the states of 

Pennsylvania, Texas, Colorado, and South Dakota resulting in latitudinal and longitudinal variation 

for the curated representative samples. Selection of samples within BioProjects were hand selected 

to represent diverse collection times and geographical locations. For example, if a large study 

sampled continuously for three years, a relatively equal number of samples were selected from each 

year. However, within each block of year and location, the utilized samples were randomly selected. 

Table 1 highlights the number of samples allocated to each country, BioProject, and species for the 

final working group of curated samples. The selected samples represent 15 unique BioProjects, 11 

different countries, and 6 continents; of the 4581 samples attributable to these projects, 130 samples 

were retained. These 130 curated samples, and their associated publications then progressed to 

annotation and bioinformation analysis.  
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3.2.3 Sample annotation 

Due to the highly heterogeneous nature of the SRA, selected samples were annotated to 

confirm available data and or fill in missing data. Additionally, annotation allows for the 

standardization of the metadata fields. This can be exemplified by collection date heterogeneity as 

the date October 3rd, 1998, can be expressed as 10/3/1998, 3/10/1998, 10/3/98, etc. Following 

sample annotation, variation in metadata formatting such as the collection date example can be 

refined to a singular format which will aid downstream analyses. Prior to sample annotation, the  

hand curated samples and their associated metadata housed within the BioSample, BioProject, and 

SRA databases are conglomerated into a local database so that each sample is accompanied by a 

plethora of information including species, collection date, geographical location, and various 

accession IDs (SAMN, PRJNA, SRS, SRR).  

The curated sample metadata is then subjected to full scale annotation by multiple 

independent reviewers. The sample annotation procedure is rather detailed, and is solely summarized 

here, additional information can be found in the appendix. First and foremost, the presence of any 

missing data in the local database is evaluated and noted. Then, the associated accession IDs for 

each sample are searched in the three online NCBI databases, and any disparity between the online 

and local databases is evaluated. Further annotation from this point is reliant upon access to a 

publication for the sample of interest, which can be identified within the BioProject metadata or 

through internet exploration. BioProject IDs are typically found within the data availability section 

of publications, thus providing confirmation once a publication is isolated for a sample of interest. If 

publications fail to be found during exploration, the submitting authors of the data are contacted via 

email to acquire missing data or confirmation for the curated metadata. Due to the experimental 

design defined above, all samples curated for this study are accompanied by detailed publications 

which were heavily utilized for annotation by the reviewers. Each reviewer read the publication, 
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identified key information, and annotated the hand curated samples in the local database. Each 

curated sample was annotated for sample collection date (DD:MM:YYYY format), host species 

(cattle or swine), animal breed, geographical location (Farm:City:State/Providence:Country format), 

and source of sample (feces, intestinal, drinking water, etc.). Additionally, variation within 

BioProjects such as number of species sampled, different sources of sampling, and multiple methods 

for sequencing (16S amplicon and shotgun metagenomics) are explicitly stated in the annotations. 

Following annotation of the previously mentioned metadata, reviewers were encouraged to provide 

additional notes as well as a confidence level in their produced annotations. Confidence levels range 

from 0% to 100% and are a direct function of specificity in the evaluated publications, if each piece 

of the necessary metadata was explicitly stated in the publication, then confidence levels were very 

high. Lastly, concordance between reviewers was evaluated in an all or nothing binary sense. 

Reviewers either completely agreed with every aspect of the samples’ metadata, or they disagreed, 

regardless of the degree of disagreement.  

Following the conclusion of local database annotation, a diverse dataset of shotgun 

metagenomic sequence data in terms of geographical location and collection time was constructed 

and validated. The lowest confidence level allocated to a samples’ metadata by a reviewer was 70%, 

and the average confidence level amongst all reviewers for all samples was approximately 91%. 

Additionally, the annotations for each sample between reviewers was in complete concordance as no 

disparity existed between annotations. As a result, every sample curated in the local database 

progressed to the next stage, sequence data download and processing.  
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Table 1 | Anatomy of Curated Samples. The selected SRA samples are associated with 15 BioProjects, 11 distinct 
countries, and either cattle or swine. Filtering to isolate only samples related to animal agriculture and shotgun metagenomic 
sequencing resulted in 1,945 samples comprising these 15 projects, for which a subset of 130 was hand selected for further 
analysis. Collection dates for each sample is shown. The publication DOI and citation for each study is provided.  
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3.2.4 Sequence data download and processing  

From the original 130 metagenomic samples selected, 126 samples were successfully 

downloaded onto the MSU HPCC as 4 samples were problematic on the SRA end. The associated 

sequence data for each of the 126 samples were then processed using the developed bioinformatic 

pipeline characterized in chapter 2. Estimated relative abundances of ARG for each sample were 

then reassociated with their respective 

annotated metadata, and conclusions 

were drawn from the produced 

abundances in each geographical 

location. Figure 13 illustrates the 

employed procedure for sample 

annotation, downloading the sequence 

data, and estimating global 

antimicrobial resistance gene 

abundance.  

3.3 Results and discussion 

Although the number of samples utilized in the study was limited and therefore did not provide 

enough power to perform formal statistical analyses, some interesting trends in the ARG abundance 

data could be teased out. Disparities in ARG abundance is evaluated on the BioProject level, 

however, geographical location such as country of sampling location is indicated to facilitate 

interpretation. 

Figure 13 | Framework for sample annotation, 
download, and processing. (1) illustrates the muti-person 
annotation of curated SRA data, (2) highlights the general 
schema of the analytical framework to progress from 
curated sample information and download to global 
antibiotic resistance gene abundance estimation. 
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3.3.1 Analysis of ARGs in metagenomic samples of cattle origin 

In cattle, the largest average total relative ARG abundance was found in PRJEB42019 (Malawi), 

followed by PRJNA420682 (Canada), PRJNA292471 (USA), and PRJNA684454 (Brazil), 

respectively. Of note, although PRJEB42019 (Malawi) had the highest average ARG abundance, this 

could be an artifact of the limited number of samples found in the study. Moreover, the individual 

sample with the highest total relative ARG abundance was found in PRJNA684454 (Brazil). This 

sample has nearly twice the total ARG abundance than the second highest sample. Additionally, as 

illustrated in Figure 14a, there is disparity between BioProjects in terms of within BioProject 

variation. PRJNA684454 (Brazil) has the largest within BioProject variation, which is significantly 

wider than that of BioProjects such as PRJNA420682 (Canada), PRJNA597489 (China), and 

PRJEB23561 (France). 

Regarding the antimicrobial 

class composition of the 

estimated ARGs in cattle 

(Figure 15), there is clearly 

clustering based on the 

geographical location of 

sampling. Samples residing 

in the same country exhibit 

highly similar 

compositions, whereas 

composition between 

countries varies rather 

significantly. Across the 

Figure 14 | Regional Disparities in ARG Abundance for Cattle 
and Swine. Total relative ARG abundance is represented for each 
BioProject, which are split into two subsets: cattle (A) and swine (B). 
Within BioProject variation is represented by the box and whisker 
plots. BioProjects are color coded by continent as indicated by the 
legends in the lower right corners. 
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board, most commonly ARGs correlated to tetracycline comprise the largest proportion. For 

PRJNA631951 (Iran), PRJNA420682 (Canada), and PRJEB23561 (France) in particular, ARGs 

associated with tetracycline comprise over 50% of the total ARG abundance. Contrastingly, the 

majority of ARGs in PRJNA292471 (USA), PRJNA390551 (USA), PRJNA563872 (USA), 

PRJNA684454 (Brazil), and PRJEB42019 (Malawi) are associated with classes other than macrolides, 

streptogramins, lincosamides, aminoglycosides, and tetracyclines. According to a report from the 

FDA in 2021, of all the domestic sales for antibiotics, an estimated 79% of cephalosporins, 45% of 

sulfonamides, 52% of aminoglycosides, and 43% of tetracyclines were intended for use in cattle. 

That being said, in terms of mass (kg) for antimicrobials utilized in food producing animals , 

cephalosporins and aminoglycosides are rather negligible while tetracyclines are the clear number 

one (FDA 2021). Due to the large volume and proportion of tetracyclines utilized in the USA, the 

identification of vast amounts of ARGs associated with tetracyclines in the composition analysis 

(Figure 15) is far from perplexing. However, no formal conclusion regarding the influence of 

antimicrobial use on AMR development could be extrapolated in this study.   

3.3.2 Analysis of ARGs in metagenomic samples of swine origin 

In the curated swine samples, the largest average total relative ARG abundance was found in 

PRJNA823879 (New Zealand), followed by PRJEB42019 (Malawi) and PRJNA526405 (Australia), 

respectively. Similar to cattle, as illustrated in Figure 14b, there is disparity between BioProjects in 

terms of within BioProject variation for ARGs in metagenomic samples for swine. The largest 

amount of variation, and the sample with the highest total relative ARG abundance are both found 

in PRJNA823879 (New Zealand). Moreover, while there is variation between BioProjects, the 

degree of variation is not as dramatic as the results from metagenomic samples of cattle origin. 

Regarding ARG composition (Figure 15), tetracyclines once again comprised the largest proportion 

of ARGs by drug class. Clustering of drug class proportions based on each samples’ associated 
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country allows for differentiation to a minimal extent, a larger sample size is necessary to further 

differentiate countries by ARG composition for swine. Of note, the proportion of ARGs associated 

with tetracyclines, aminoglycosides, and lincosamides in PRJNA526405 (Australia) are consistent 

across samples. PRJNA823879 (New Zealand), PRJEB42019 (Malawi), and PRJNA575543 (China) 

all vary significantly in terms of ARG composition. In PRJEB31650 and PRJEB26961 (both 

Denmark), composition of ARGs in each sample generally agree, but to a lesser extent than that of 

PRJNA526405 (Australia). Interestingly, the prevalence of ARGs associated with lincosamides 

appears to be greater in PRJNA526405 (Australia) than the alternative BioProjects.  

3.3.3 Limitations of the developed tool 

 As samples for both species were not curated for each country, it is impossible to draw any 

conclusion pertaining to disparity between cattle and swine on the global stage. One significant 

limitation imposed by the utilized experimental design. Moreover, a larger sample size is required to 

determine temporal dynamics of AMR at the country level. Additionally, it is important to note that 

the results from large-scale application of this pipeline to the SRA should merely be used for 

exploration. The 

metadata, sequence 

data, and sampling 

methods associated with 

samples in the SRA are 

highly heterogenous, 

which limits highly 

confident ARG 

quantification. 

Furthermore, 

Figure 15 | Composition of total estimated ARG abundance by 
drug class. Samples from each country and species are clustered 
together. Composition for each antimicrobial drug class as a percent of 
total ARG abundance for each sample is illustrated. The most prevalent 
drug classes (tetracyclines, aminoglycosides, lincosamides, macrolides 
and streptogramins, and macrolides) are color coordinated with the 
graphic, any abundance of genes not partitionable into the 
aforementioned classes are pooled together are deemed as ‘other’.  
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comparisons and conclusions should primarily be made at the BioProject level as larger, randomly 

selected, sample sizes are needed for the experiment to summarize the results at the country level.  

3.4 Conclusion 

In conclusion, estimated total ARG abundance and ARG composition varied between 

BioProjects for metagenomic samples of both cattle and swine origin. Furthermore, the degree of 

variation within BioProjects for both ARG abundance and ARG composition is not consistent. 

While the estimated abundances cannot be interpreted as absolute, this tool could prove useful to 

inform future studies as far determining sampling locations and exploring regional trends. Moreover, 

this tool could identify potentially high priority areas where actions can be made to aid the 

mitigation of AMR. The primary conclusion of this study is that large-scale application of the 

developed analytical framework for estimating ARG abundance in metagenomic samples of animal 

agriculture origin is feasible, and when employed conjointly with publicly housed genomic sequence 

data such as that found in the SRA, the spatiotemporal distribution of ARGs on a global scale can 

be deduced.  
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APPENDIX 

SRA Sample Annotation Procedure 
 
1. Evaluate the presence of any missing data for the sample in the local database.   

1. Collection Date (NOT submission date), Organism, Location (State/City), Source of 
Sample (Fecal, Intestinal, etc.), additional Accession IDs 

2. Access the SRA website, search associated Accession ID, and locate samples or project.   
1. Can search any or multiple of the accession numbers (SRS, SRP, PRDJ, etc.)  
2. Information on meaning of different IDs can be found here: 

3. Jump between BioProject, SRA, and BioSample hyperlinks to confirm that you have found the 
exact samples and or project of interest. 

1. Note similar and or contradicting information between online metadata and our local 
metadata. Update local database as needed.   

4. If there is still missing / unconfirmed / contradicting data in our local file:  
1. Is there an explicit and exact publication stated in the SRA metadata? 

1. YES 
1. Navigate to the publication online, and review the paper: 

1. What to Find: 
1. Sample Collection Date 

1. Format: 
1. DD:MM:YYYY 

2. If there is a range of dates all in same year, just 
record the year: 

1. YYYY 
3. If it is a multi-year study, annotate each sample 

individually with a collection date. If per sample 
resolution is not available just record the more 
recent year (YYYY). 

2. Host Species 
3. Geographical Location 

1. Format:  
1. Farm:City:State/Province/Country 

1. If any missing replace with “NA”: 
2. i.e. NA:NA:Michigan:USA 

4. Source of Sample (fecal, nasal, etc.) 
5. Additional (these can be indicated in notes section): 

1. Were all samples collected roughly in the same 
area for the study? If they vary significantly then 
we will need resolution down to each sample for 
that project. 

2. Were all samples taken from the same species? If 
not, are samples collected from an alternative 
species annotated correctly? AND are these 
alternative species samples included in our local 
database?  

 
 

https://www.ncbi.nlm.nih.gov/sra/docs/submitmeta/#anatomy-of-the-sra-data
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3. Are there duplicated sample IDs in our 
spreadsheet for this project? This likely indicates 
16s rRNA amplicon sequencing. 
 

b. Order for Evaluation: 
1. Title 
2. Materials and Methods 
3. Abstract 

4. Supplemental Figures and Information 
5. Data Availability 

1. Use this to check alternative areas that data 
information may be housed if the above four 
sections fail to offer insight.   

ii. NO   
1. Search the internet for publications tied to authors and data that may be 

available but not explicitly stated in the SRA metadata. 
1. Copy and paste #PRJxxxxx from SRA into google.  
2. Copy and paste abstract and or title or alternative Accession IDs 

into google. 
3. Once a paper has been located and confirmed use the same 

procedure as identified above in 4.a.i.1. 
2. If still can’t find publication: 

1. Send to Lee Ackerson or Dr. Wen Huang 
2. They will email authors for confirmation or discovery 

of the associated data. 
3. An executive decision may be made to remove the PRJ 

from our study due to low confidence metadata. 
1. Factors Affecting this decision: 

1. Size of study (#samples) 
2. Completeness and detail of SRA 

annotation by sample submitter 
 
 
5. Lastly, sign initials in column saying that you finished the annotation and record any notes 
you feel may be significant in the designated column. Also state your confidence level in your 
annotation from 0%-100% in the designated column. If you are the second reviewer, note your 
annotation concordance (agree or disagree) with the first reviewer; if disagreement, note what 
deciphered metadata differs.  
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