
i 

 

 

 

 

 

 

 

IMPROVING REGIONAL HYDROLOGICAL SIMULATIONS BY ACCOUNTING FOR 

CLIMATE FORCING UNCERTAINTY AND HUMAN IMPACTS 

 

 

 

 

 

 

By 
 

Tamanna Kabir 

 

 

  

 

 

 

 

 

 

 
 

 

 

 
 

A DISSERTATION 

 

 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements  

for the degree of 

 

Civil Engineering – Doctor of Philosophy 

 

2023 

 

 

  



ii 

 

ABSTRACT 

Advancing the understanding of the changes in various water budget components is 

crucial for improved water resource assessment and management at the global, continental, and 

river basin scales. This is important, especially because the intensified hydrologic dynamics due 

to climate change and accelerated human activities are altering the terrestrial water cycle in 

unprecedented ways and over a range of scales. Land surface models (LSMs) are widely used to 

investigate the changes in water resources resulting from natural and human-induced alterations. 

However, these models are subject to inherent uncertainties, including those associated with 

climate forcing and model parameterizations. Therefore, there is an urgent need to address 

climate forcing induced uncertainties in hydrological simulations using process based LSMs. In 

addition, representing human impacts such as irrigation and groundwater pumping in LSMs is 

critical for improving hydrological simulations. This dissertation advances regional hydrological 

simulation, addressing climate forcing uncertainty, by leveraging the potential of emerging 

satellite data and using an advanced LSM. A comprehensive analysis is conducted using a fully-

process based LSM to examine the propagation of precipitation uncertainty into hydrological 

simulations over the Mekong River Basin (MRB). The Community Land Model version 5 

(CLM5) at a relatively high spatial resolution of 0.05° (∼5 km) and without any parameter 

calibration is implemented. Simulations conducted using different precipitation datasets are 

compared to investigate the discrepancies in streamflow, terrestrial water storage (TWS), soil 

moisture, and evapotranspiration (ET). Furthermore, this dissertation advances the simulation of 

basin wide groundwater dynamics in the MRB, providing key insights on the evolving 

groundwater system and improving process-based groundwater modeling capabilities by 

implementing CLM5 with groundwater and irrigation parameterizations. An in-depth analysis is 
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conducted to examine groundwater mechanisms in the MRB, focusing on groundwater flow 

processes that are modulated by climate variability and physiographic features, and primary 

drivers of groundwater-surface water interactions. Further, the influence of extensive irrigation 

and groundwater pumping on groundwater dynamics is quantified. Finally, global drought 

recovery and its drivers across different climate zones and biodiversity hotspots are investigated 

using multi-model hydrological simulations, enhancing the understanding of future drought risk 

and ecosystem resilience. The key findings from the aforementioned multi-scale analyses are: (1) 

precipitation is a key determinant of simulated streamflow and peak flow is particularly sensitive 

to precipitation input; notable differences are also found among TWS, soil moisture, and ET 

simulated using different precipitation products. (2) Precipitation data with a higher spatial 

resolution did not improve the simulations, contrary to the common perception that using 

meteorological forcing with higher spatial resolution would improve hydrological simulations. 

(3) High spatial heterogeneity in groundwater recharge and discharge across the MRB is 

governed by climate and subsurface characteristics; a pronounced seasonality is found in 

groundwater recharge; with substantial carryover to the consecutive dry season that alleviates 

soil moisture. (4) Groundwater discharge is a dominant source of streamflow all year round, and 

irrigation pumping is directly altering groundwater flows and storages. (5) Climate variability 

smoothens pumping effects over long times, but the model simulates region-wide groundwater 

depletion in the Mekong Delta during dry years. (6) The drought recovery time varies 

considerably across different climate regions globally, and there has been a notable increase in 

drought recovery time over the last few decades. This dissertation provides crucial insights on 

precipitation-induced uncertainties in hydrological modeling, also advancing process-based 

groundwater modeling capabilities for regional scale application.  
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1. Chapter 1. Introduction 

1.1 Research Motivation 

 Addressing Climate Forcing Uncertainty in Land Surface Models (LSM) 

An improved understanding of water balance is crucial for water resources assessment 

and management at the global, continental, and river basin scales, especially in light of the 

changing hydrologic dynamics due to climate change and accelerated human activities (e.g., land 

use land cover change, irrigation water withdrawal, and flow regulations) that have left a large 

footprint on the terrestrial water cycle (Haddeland et al., 2011; Pokhrel et al., 2016). The lack of 

long-term and continuous observations of water and energy states and fluxes, however, limits our 

ability to understand the interaction between hydrology, human interventions, and climate 

change and how they affect freshwater availability (Döll et al., 2016). The state-of-the-art land 

surface models (LSMs) bridge this gap by providing spatially complete and temporally 

continuous hydrological simulations that allow for the assessment and prediction of water 

availability by taking into account human activities and climate change (Biemans et al., 2009; 

Bierkens et al., 2015; Hanasaki et al., 2017; Huang et al., 2017; Kumar et al., 2006; Schilling et 

al., 2008; Schmied et al., 2014). The growing interest in using LSM has led to both the 

improvement of process representations and the addition of new processes and functionalities 

(Lawrence et al., 2011, 2016, 2019). Physically-based LSMs with explicit representation of soil 

moisture dynamics, canopy processes, surface, and subsurface runoff parameters as well as 

human impacts such as dynamic vegetation and crop and irrigation has led to improved 

simulation of streamflow, terrestrial water storage, soil moisture, and other states and fluxes 

(Liang et al., 2003; Pokhrel et al., 2014; Zeng et al., 2018). Most LSMs, however, have been 

developed and applied primarily for large-scale applications (e.g., globally) at relatively coarse 
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spatial resolutions (e.g., 0.5º×0.5º) (Lawrence et al., 2011; Schilling et al., 2008; Zaherpour et al., 

2018).  

To adequately address critical issues related to water resources, models need to be 

implemented regionally at high spatial resolution that can explicitly represent the effects of 

topography, soils, and vegetation on hydrological dynamics at the regional scale (Keith J. Beven 

& Cloke, 2012; Merz et al., 2009) accounting for the underlying non-linear dynamics in a way 

fundamentally different than in lumped parameter models. The usage of fully physically based 

LSM on a regional scale will have significant long-term benefits for the assessment of available 

water resources and future changes. When using LSM to assess water resources, it is critical to 

consider modeling uncertainties (Biemans et al., 2009; Di et al., 2014; Schmied et al., 2014; 

Schreiner-McGraw & Ajami, 2020). Models suffer from a variety of sources of uncertainty, 

including hydrological process representation, choice of model parameters, representation of 

human influences, and water use (Schmied et al., 2014). Another, and yet more important, source 

of uncertainty is the input data (Biemans et al., 2009). LSMs are driven by climate forcing input 

data sets (hereafter “climate forcing”), based on station observations, reanalysis (global 

circulation models), and/or remote sensing products. Within the last two decades, numerous 

climate forcing data have been developed, providing data from as early as 1901 until recent years 

(Raimonet et al., 2017; Weedon et al., 2014). These climate forcings differ from each other and 

thus may lead to varying estimations of water and energy fluxes (Beck, Van Dijk, De Roo, et al., 

2017; Biemans et al., 2009; Clark et al., 2015a; Schreiner-McGraw & Ajami, 2020; Thompson et 

al., 2014). Precipitation is one of the key variables in climate forcing and a major driver of 

hydrological simulation that has dominant control over fluxes and states such as streamflow, 

terrestrial water storage (TWS), soil moisture, and evapotranspiration (Biemans et al., 2009; 
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Chen et al., 2018; Fan & Luo, 2019; Lauri et al., 2014; Schreiner-McGraw & Ajami, 2020; 

Wang et al., 2016). For river basins such as the Mekong, over 65% of the streamflow variations 

in parts of the basin is caused by the variations in precipitation alone (Fan & He, 2015).  

Precipitation uncertainty can propagate through various processes simulated, eventually 

translating to similar or even greater uncertainty in the output variables such as river discharge 

(Fekete et al., 2004). Therefore, the use of reliable and accurate precipitation data is crucial for 

hydrological modeling. Many recent studies have characterized precipitation uncertainty on a 

regional scale. Some studies have compared different precipitation products to in-situ 

observations, and others have adopted modeling techniques to investigate precipitation 

uncertainty over Mekong River Basin (MRB) (Fan & Luo, 2019; Lauri et al., 2014; Li et al., 

2019; Luo et al., 2019; Tang et al., 2019; Wang et al., 2016) primarily with a common goal of 

finding a precipitation dataset that can best reproduce the temporal dynamics of observed 

streamflow. These studies have provided important insights on the role of precipitation data in 

hydrological modeling but lack the quantification of the uncertainty arising from precipitation 

data. Also, most of the studies used basin-scale models using parameter calibration which often 

enables improved model performance for a specific variable, but this could come at the cost of 

reduced accuracy of other variables due to unrealistic partitioning of precipitation between runoff 

and other water balance terms (Biemans et al., 2009). This challenge could be overcome by using 

LSMs, with minimal parameters involved in combination with reliable precipitation data. Thus, 

assessment of precipitation uncertainty using a LSM is crucial in order to depict the hydrologic 

behavior at regional scale.  
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 Improving LSM simulations in data-scarce regions by representing missing processes 

and human impacts 

LSMs have undergone significant developments over the years, with advancements made 

in both the model structure and the representation of various physical processes. Some of the 

major advancements in LSMs include improvements in soil and vegetation processes 

representations (Bonan et al., 2011), incorporation of biogeochemical cycles to better represent 

ecosystem dynamics (D. M. Lawrence et al., 2019; P. J. Lawrence et al., 2012), as well as 

nutrient and pollutant transport. Furthermore, progress has been made in improving the irrigation 

parameterizations (Leng et al., 2013, 2014, 2014; Nie et al., 2018, 2021; Pokhrel et al., 2012; 

Pokhrel, Koirala, et al., 2014; Pokhrel et al., 2016), as well as incorporating groundwater and 

water table dynamics (Fan et al., 2013; Yeh & Eltahir, 2005) and lateral flow (Felfelani et al., 

2021; de Graaf et al., 2017; de Graaf & Stahl, 2022). Notably, there has also been an effort to 

include water regulations, such as those representing dams and reservoirs (Pokhrel, Shin, et al., 

2018a; Shin et al., 2019), to better represent anthropogenic influences. These developments have 

substantially improved our understanding of the hydrological system under the influence of 

natural climate, climate change and variability, and anthropogenic stressors. Thus, the use of 

LSMs has increased significantly, and these models have been used in many global and regional 

watersheds to address critical water related issues (De Graaf et al., 2014; Liu et al., 2016; 

Pokhrel et al., 2013; Schmied et al., 2014; Wada et al., 2014, 2016, 2017). However, most of 

these model development studies have focused on data-rich regions such as the US basin where 

issues are rapidly emerging due to increased anthropogenic stressors such as water regulations 

through dams and reservoirs and pumping for irrigation (Maxwell et al., 2015; Nie et al., 2019, 

2021, 2022; Doll et al., 2014; Pokhrel et al., 2015), leaving major gaps that come with 
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challenges, toward using the models in regions where water related issues are rapidly emerging, 

but data are scarce particularly for groundwater study. 

Groundwater is a crucial component of the global water cycle (Bierkens & van den Hurk, 

2007; Condon et al., 2020; Condon & Maxwell, 2015; Gleeson et al., 2012, 2016; R. M. 

Maxwell et al., 2015; Miguez-Macho & Fan, 2012a). It is the world's largest source of freshwater 

that provides clean water to billions of people, forms an integral part of irrigated agriculture, and 

contributes to the health of many ecosystems (Döll, 2009; Scanlon et al., 2012; Stefan Siebert & 

Döll, 2010). Recently, new areas have emerged with heightened groundwater issues, yet they 

pose significant challenges for study due to the notoriously complex and heterogeneous behavior 

of groundwater systems (Condon et al., 2021). The groundwater flow and transport processes is 

highly intricate, and a multitude of factors, such as geological and hydrological properties, can 

significantly influence the behavior of groundwater systems. Moreover, data on groundwater is 

often limited, incomplete, or difficult to obtain. As a result, investigating and modeling these 

systems is an ongoing scientific challenge that requires innovative approaches and advanced 

methodologies particularly for data limited regions.  

The MRB is a prime example of a region where increased groundwater pumping for 

domestic and irrigation purposes is rapidly altering groundwater dynamics. However, basin-scale 

groundwater studies in this region are scarce or non-existent, with inadequate attention given to 

understanding the natural dynamics of groundwater, let alone the growing anthropogenic 

influence (Lacombe et al., 2017). Process-based models can offer promising avenues to simulate 

these changes, resolving the interactions among various governing processes, and identifying the 

key drivers (Koirala et al., 2014; Pokhrel, et al., 2014). Fundamentally, little advancement has 

been made in understanding the critical controls of climate, physiography, and anthropogenic 
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drivers on the dynamics of groundwater over many such data limited regions. Thus, it is 

necessary to leverage our efforts towards utilizing process-based modeling to enhance our 

understanding of groundwater processes, particularly in data limited basins. This approach 

allows for the incorporation of small-scale processes, such as lateral groundwater flow, while 

reducing parameterizations and better representing the subsurface. Moreover, process based 

LSMs have undergone substantial improvements to enable their application across diverse 

geographic and climate settings, while incorporating better parameterizations of human impacts 

such as irrigation development and groundwater extraction (Felfelani et al., 2021; 2015; 

Swenson et al., 2019; Wada et al., 2016).  

Thus, basin-scale and long-term (e.g., decadal evolutions) groundwater modeling at high 

spatial resolution using advance groundwater and irrigation scheme considering climatic and 

anthropogenic drivers can enhance our understanding of evolving groundwater systems over 

many data limited regions across the globe. This has implications on reliable future projections 

of water resource availability and use under climate change and intensified anthropogenic 

activities (Jasechko et al., 2014). Besides, recent development of satellite-based observations of 

crop and irrigation areas can be utilized to better constrain irrigation simulations in LSMs. 

However, to my best knowledge, the potential of using advanced groundwater and irrigation 

schemes constraining the model with emerging datasets has not yet been examined.  

  Global Drought Recovery and its Linkage to Potential Drivers 

Large-scale models have been widely used to investigate the effects of climate change 

and human impacts on terrestrial hydrology and evaluate their consequences on global changes 

such as droughts, floods, and other associated phenomena. However, the ability of the 

hydrological system to recover from drought, such as restoring groundwater recharge and runoff, 
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as well as surface water flow, remains poorly understood (Peterson et al., 2021; Sheffield et al., 

2012; Wen Wang et al., 2016). This knowledge gap limits our understanding of the risks and 

impacts of drought, hindering our ability to develop effective drought mitigation and adaptation 

strategies. Therefore, advancing our understanding of drought recovery and underlying 

mechanisms is crucial for developing more comprehensive and accurate assessments of drought 

risk and impacts, eventually informing more effective drought management strategies in different 

regions of the world. Drought recovery—the time it takes for a system to bounce back to pre-

drought conditions after a drought event—is a complex and multi-faceted process that is 

influenced by a range of hydrological, ecological, and socio-economic factors (Jiao et al., 2021; 

Yang Li et al., 2023; Liu et al., 2019; Schwalm et al., 2017; Guy Davidesko1,2, Amir Sagy1, 

2014; Wu et al., 2019, 2020).  

Droughts exhibit considerable variability in their characteristics, including severity, 

duration, and spatial extent, with recovery mechanisms likely to differ across diverse 

geographical and climatic settings (Yuting et al., 2017). Thus, understanding drought recovery 

can be exceedingly complex. Recovery time can vary significantly due to a range of factors, 

influenced by soil moisture (Samaniego et al., 2013; Sheffield et al., 2004; Sheffield & Wood, 

2008) and precipitation patterns (Anne F. Van Loon et al., 2016), vegetation dynamics and plant 

phenology (Yang Li et al., 2023), catchment characteristics (Anne F. Van Loon et al., 2016), and 

water management practices (J. Wu et al., 2018). Understanding of drought recovery requires 

comprehensive assessments of interplay of these factors that drive drought recovery across 

various regions and climatic zones. However, such studies over the global scale are largely 

lacking, hindering our ability to fully understand global drought risk across different regions with 
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varying climatic and geographic settings. This is particularly critical to understand given the 

expected increase in frequency and intensity of droughts due to climate change.  

Despite the significant progress made in recent years, challenges and opportunities 

remain in using large-scale hydrological models (LHMs) or LSMs for drought studies. One of 

the main challenges is the considerable variation in hydrological process representation and 

parameterization among models. Differences in water partitioning, runoff generation, 

groundwater processes, and soil hydrologic parameterization can lead to varying degrees of 

change in energy and water balances associated with climate impacts. Moreover, uncertainty can 

arise due to variations in human impacts parameterization in the models, which can result in 

inaccurate estimation of hydrological states and fluxes. To overcome these challenges, it is 

crucial to integrate a large ensemble of global hydrological models to provide a range of possible 

drought recovery scenarios in response to climate change, land management, and human 

impacts. Leveraging multi-model simulations of hydrological variables can provide a 

comprehensive understanding of drought recovery across global basins, climate regions, and 

biodiversity hotspots. This approach can provide insights into the diverse traits of drought 

recovery under the impacts of climate change and variability and human activities. 

1.2 Research Goal, Objectives, and Science Questions   

As discussed above, there are both gaps and opportunities for reducing uncertainty in 

hydrological modeling through improved hydrological process representation, accurate climate 

forcing, integration of satellite remote sensing data, and utilization of multi-model ensembles. 

The necessity of addressing climate forcing uncertainty (section 1.1.1) and utilizing advanced 

LSMs in regions with limited data availability (section 1.1.2) lead me to pursue the overarching 

goal of my Ph.D. dissertation. Substantial improvement in hydrological simulation can be 
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achieved by addressing climate forcing uncertainty. The explicit representation of groundwater 

processes and irrigation representation in the LSMs is expected to enhance the simulation of 

groundwater dynamics in the data limited regions. Further, the study has broader implications on 

climate extremes such as monitoring drought as well as on environmental sustainability. The 

overarching scientific questions are: (1) How does climate forcing uncertainty impact the 

simulation of hydrological states and fluxes? (2) What is the potential of utilizing advanced 

LSMs with improved representation of land surface processes and human impacts, along with 

emerging irrigation and crop data, to enhance our understanding of regional groundwater 

dynamics, particularly in data-limited regions? (3) How does drought recovery time evolve over 

decadal timescale and how do climate change and variability and human interventions affect 

drought recovery across different climate regions? These overarching questions are addressed by 

answering the following specific science questions under different chapters. 

Chapter 2. Analysis of precipitation uncertainty at the regional scale 

Q1. How do uncertainties in the precipitation datasets propagate into hydrological 

simulation and affect various streamflow signatures?  

Q2. How sensitive are other water budget components (i.e., TWS, soil moisture, and ET) 

to the uncertainties in precipitation data?   

Chapter 3. Understanding groundwater dynamics under the influence of natural climate 

variability and human interventions 

Q3. Can we enhance the representation of groundwater dynamics and human 

interventions in LSMs using emerging data on anthropogenic impacts, specifically 

irrigation areas and groundwater pumping?  
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Q4. How do the interplays between long-term climate variability and groundwater 

extraction affect groundwater dynamics? 

Chapter 4. Analysis of drought recovery under the influence of climate change and human 

impacts.  

Q5. How is drought recovery time affected by climate variability and human impacts on 

different global regions? 

Q6. What is the impact of prolonged drought recovery time on ecosystem sustainability 

in various climate zones and biodiversity hotspots? 

To investigate how global LSM performs in regional-scale modeling with high spatial 

resolution, the MRB is chosen as a study area for regional scale study. Regional-scale CLM5 is 

first implemented and validated across the MRB. Climate forcing uncertainty particularly, 

precipitation uncertainty, is examined by using different precipitation datasets at varying 

resolutions. Then, CLM5 with an advanced groundwater model coupled with the irrigation 

scheme is implemented constraining the model with new irrigation datasets. Further, multiple 

hydrological models with explicitly varying hydrological process representation are used in 

identifying drought events and analyzing drought recovery time and mechanisms in different 

climate zones.  

1.3 Dissertation Outline  

The remainder of the dissertation is organized as follows.  

Chapter 2. Precipitation-induced uncertainty in hydrological simulation: A regional Analysis of 

streamflow, TWS, soil moisture, and ET using LSM at high spatial resolution.  

Chapter 3. Groundwater dynamics in the MRB under natural climate variability and under the 

influence of human impacts such as irrigation and groundwater pumping are investigated.  
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Chapter 4. A multi-model assessment of global drought recovery and its drivers in different 

climate zones.  

Chapter 5. Summary and Conclusion.  
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2. Chapter 2. On the Precipitation-Induced Uncertainties in Process-Based 

Hydrological Modeling in the Mekong River Basin 

 

Based on: Kabir, T., Pokhrel, Y., & Felfelani, F. (2022). On the precipitation-induced 

uncertainties in process-based hydrological modeling in the Mekong River Basin. Water 

Resources Research, 58, e2021WR030828. https://doi.org/10.1029/2021WR030828    

 

2.1 Introduction 

Many large global river basins are undergoing rapid hydrological alterations due to 

climate change and variability, land use and land cover change, and modification of natural 

hydrological systems due to land-water management activities (Júnior et al., 2015; Schilling et 

al., 2008; Veldkamp et al., 2018). The Mekong River basin (MRB) in Southeast Asia is one of 

such basins where the hydrological regime had been relatively stable historically but has recently 

begun to transform (Nilsson et al., 2005) due to ongoing climate change and a recent acceleration 

in land-water management activities including basin-wide dam construction (Pokhrel et al., 

2018a; Shin et al., 2020; Yun et al., 2021). The MRB is a transboundary basin shared by six 

nations (China, the Lao PDR, Myanmar, Thailand, Cambodia, and Vietnam), and provides 

critical water resources in the region, especially for over 60 million people living in the five 

downstream countries (MRC, 2005; Pokhrel et al., 2018a). Further, the MRB is the second most 

hydrologically and ecologically diverse river basin in the world, after the Amazon basin (Ziv et 

al., 2012); the basin hosts one of the most productive inland fisheries in the world (Ziv et al., 

2012). Therefore, the hydrological changes within the MRB have important implications on the 

livelihood of millions and the functioning of critical ecosystems that depend on the unique river 

flood pulse (Arias et al., 2013; Kummu & Sarkkula, 2008) that provides a timely supply of water 

and nutrients for agriculture, fishery, and riverine ecosystems (Pokhrel et al., 2018a).   

 

https://doi.org/10.1029/2021WR030828
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The hydrology of the MRB has been increasingly studied in the recent past. Numerous 

studies have used observed data to examine the change in streamflow patterns and attribute the 

observed changes to natural and human factors (i.e., Li et al., 2017; Wang et al., 2017; Yun et al., 

2020). Other studies have focused on modeling to characterize the past and provide future 

projections under climate change (Arias et al., 2012, 2013; Fan & He, 2015; Han et al., 2019; 

Hoang et al., 2019; Lauri et al., 2012, 2014; Hoang et al., 2016; Pokhrel et al., 2018a; Räsänen et 

al., 2012, 2017; Shin et al., 2020; Sridhar et al., 2019). However, even some of the fundamental 

questions regarding the cause of observed changes in streamflow remain unanswered. Crucially, 

outstanding challenges and opportunities exist in developing a comprehensive assessment of the 

ongoing hydrological changes and quantifying the uncertainties in modeling the complex 

hydrology and hydrodynamics of the basin (Bierkens et al., 2015). In terms of hydrological 

modeling, notable progress has been made in basin-wide and sub-basin level modeling of 

streamflow (Johnston & Kummu, 2012); however, there is still a lack of models that 

mechanistically simulate various surface hydrological, soil, groundwater, and river processes on 

a full physical basis and over the entire basin. The complex topographic, geographic, and 

hydrological characteristics of the MRB that originates in the Tibetan Plateau and runs through 

vast topographic gradients across different climate zones make the surface and subsurface 

characterizations in the model extremely challenging (Pokhrel et al., 2018a). The challenges in 

process representation are further compounded by the lack of observed data for the entire MRB 

and the short record of available data (X. Luo et al., 2019). While observed data to constrain and 

evaluate model simulations are vital to ensure the reliability of model results, it is even more 

important to use reliable climate forcing data, especially precipitation, because the uncertainties 
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in climate forcing directly impact hydrological simulations (Lauri et al., 2014; Raimonet et al., 

2017; Tang et al., 2019).   

Numerous studies used global and regional scale hydrological models to quantify the 

spatiotemporal variability of hydrological fluxes and states in the MRB. While some have 

simulated the hydrology of the entire basin (e.g., Kite, 2001), others have focused on parts of the 

basin such as the upper Mekong river basin (UMRB) (Dang et al., 2020; Zhongying Han et al., 

2019b), lower Mekong river basin (LMRB), Tonle Sap Lake (TSL), or the Mekong delta (Arias 

et al., 2014; Han et al., 2019). Models used for basin-wide simulations include the land-use 

runoff process (SLURP) (Kite, 2001), Mac-PDM.09, and MIKE SHE (Thompson et al., 2014), 

Soil Water Assessment Tool (SWAT), Variable Infiltration Capacity (VIC), VMOD (Lauri et al., 

2012), CaMa-Flood (Yamazaki et al., 2011, 2014) and HiGW-MAT (Pokhrel et al., 2014). 

Among these, SWAT, VIC, and VMOD have been commonly used by many studies (e.g., 

Haddeland et al., 2006; Hoang et al., 2019; Lauri et al., 2014; Tatsumi & Yamashiki, 2015), 

demonstrating satisfactory performance in reproducing streamflow and in some cases sediment 

transport (B. Shrestha et al., 2013; Sok et al., 2020). Some studies have also used the VIC model 

to examine the effects of irrigation on energy balance (Haddeland et al., 2006; Tatsumi & 

Yamashiki, 2015) and others used HiGW-MAT and CaMa-Flood to understand the effects of 

dams on flood pulse and inundation dynamics (Pokhrel et al., 2018b; Shin et al., 2019, 2020). 

However, the models like VIC and SWAT employ calibration and validation techniques 

where streamflow observations are used to calibrate model simulation. Such tuning of model 

parameters enables improved model performance for a specific variable, typically streamflow, 

but this could come at the cost of inaccurate process representation leading to unrealistic 

partitioning of precipitation between runoff and other water balance terms (Biemans et al., 2009). 
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This is particularly so when the forcing data contain large uncertainties. Further, the performance 

of calibrated models can degrade for periods outside of the calibration window, hence the models 

may fail to capture the non-linear hydrological dynamics (Biemans et al., 2009), for example, 

under future climate (Kumarasamy & Belmont, 2018). Because many of the calibrated models 

are not fully distributed and/or process-based, it is challenging to assess whether any uncertainty 

in the simulations is caused by missing process representation or due to uncertainties in input 

datasets. Therefore, the uncertainty in simulation arising from climate forcing and model 

structure is incorrectly inferred. This challenge could be overcome by using physically-based 

models, referred to as the land surface models (LSMs), that represent a wide range of 

interconnected processes, explicitly accounting for the underlying non-linear dynamics in a way 

fundamentally different than in lumped parameter models (Drewry et al., 2010; Fisher & Koven, 

2020; Kuppel et al., 2018) that adopt a more conceptual approach for process representation 

(Wei Wang et al., 2016).  

Some studies have used LSMs to simulate the hydrology of the entire MRB; however, 

these studies have relied on global models with a relatively coarse resolution of 0.5º or ~50 km at 

the equator (Haddeland et al., 2006; Tatsumi & Yamashiki, 2015). Amongst those include our 

recent studies (Pokhrel et al., 2018b; Shin et al., 2020) in which we used a global LSM to 

simulate runoff (~50 km resolution) over the entire MRB and routed it using a high resolution 

(~5 km) river-floodplain hydrodynamics model. This enables a more realistic representation of 

the river-floodplain processes compared to the global model, which is crucial in the MRB where 

surface water processes dominate hydrologic dynamics (Pokhrel et al., 2018b). However, such an 

approach only enables improvements in streamflow and flood simulations through a better 

representation of only the river and floodplain processes. Various other surface and subsurface 
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processes (e.g., surface and subsurface runoff generation, evapotranspiration (ET)) are still 

simulated at the coarse resolution, which may impact the overall simulation outcome (S. V. 

Kumar et al., 2006; Vanderkwaak & Loague, 2001; Yuan et al., 2014). Recently, global LSMs 

have been improved and used in regional scale studies at high resolution. For example, Felfelani 

et al. (2021) used a high-resolution version of the Community Land Model version 5 (CLM5) 

over the continental US. Some other studies have also used CLM5 at continental to regional 

scales at high spatial resolution (i.e., ~1-5 km) (Leng et al., 2014; Zeng et al., 2016, 2018). 

However, such advanced LSMs have not been used regionally for the MRB at such high 

resolution.  

Additionally, and more crucially, uncertainties in hydrological simulation over the MRB 

caused by the uncertainties in climate forcing have not been examined using process-based 

models, which has further limited our understanding of the cause of uncertainties in modeling the 

hydrology of the MRB. Calibrated models could misrepresent the uncertainty as the calibration 

process may disguise such uncertainty in forcing dataset (Biemans et al., 2009; Schmied et al., 

2014). Precipitation is amongst the most important forcing data that is subject to major 

uncertainties due to climate and topographic complexities (Faridzad et al., 2018; Imerg-v et al., 

2020; Iui & Yang, 1991; Tang et al., 2018) and directly affects water balance (Bárdossy & Das, 

2008; Nilsson et al., 2005; Wei Wang et al., 2016). Particularly for the MRB, studies have 

suggested that over 65% of the streamflow variations in parts of the basin can be attributed to the 

variations in precipitation alone (Fan & He, 2015). Precipitation uncertainty can eventually 

translate to similar or even greater uncertainty in simulated hydrological variables (Fekete et al., 

2004). Therefore, an in-depth understanding of the role of precipitation data is crucial for 

improved hydrological modeling in the MRB.  



17 

 

Many recent studies have characterized precipitation uncertainty in the MRB (Dinh et al., 

2020; Tian et al., 2021). Some studies have compared different precipitation products to in-situ 

observations, but such comparisons have been limited in scope for the MRB due to the sparse 

gage network. Others have adopted modeling techniques to investigate precipitation uncertainty 

over MRB (Fan & Luo, 2019; Lauri et al., 2014; Li et al., 2019; Luo et al., 2019; Tang et al., 

2019; Wang et al., 2016) primarily with a common goal of finding a precipitation dataset that can 

best reproduce the temporal dynamics of observed streamflow. These studies have provided 

important insights on the role of precipitation data in hydrological modeling but lack the 

quantification of the exact uncertainty arising from precipitation data. More crucially, a 

comprehensive assessment of the precipitation uncertainty on other hydrological variables than 

streamflow (e.g., terrestrial water storage (TWS), soil moisture, and ET) using high-resolution, 

fully distributed process-based models is largely lacking.  

These issues underscore the need for fully distributed, process-based models that simulate 

various surface and subsurface processes on a full physical basis, such that the uncertainties in 

various simulated fluxes and storages caused by precipitation uncertainty can be explicitly 

quantified. Specifically for the MRB, it is equally important to use high-resolution models to 

capture the effects of high contrast in hydrological and topographic characteristics between the 

UMRB and LMRB (Wei Wang et al., 2016). The goal of this study is to address these gaps and 

limitations through hydrological simulations using a state-of-the-art LSM, the CLM5, driven by 

multiple precipitation datasets. CLM5 is set up regionally for the MRB and simulations are used 

to compare key hydrological variables including mean monthly streamflow, low flow, high flow, 

TWS anomaly, soil moisture, and ET from the multiple simulations. The study is driven by the 

following key science questions. (1) How do uncertainties in the precipitation datasets propagate 
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into hydrological simulation and affect different streamflow signatures? (2) How sensitive are 

other water budget components (i.e., TWS, soil moisture, and ET) to the uncertainties in 

precipitation data?  

The remainder of the paper is organized as follows. Study area, model description, data 

used, and simulation settings are described in section 2; results and discussions are provided in 

section 3; and summary and concluding remarks are presented in section 4. 

2.2 Study Area and Methods 

 Study Area 

The study domain is the MRB with a total drainage area of 769,500 km2 (MRC, 2005). 

The MRB is characterized by diverse topography, dense drainage networks, and complex 

geomorphology, with distinct climatic and topographic features in the upper and lower portions 

of the basin (Pokhrel et al., 2018a). The UMRB is narrow with steep topography while the 

LMRB spreads across a wider region and is characterized by a large tributary river system (X. 

Luo et al., 2019). The UMRB makes up 21% of the total area and contributes to 15–20% of the 

river discharge at the outlet of the Mekong river (MRC, 2005; Piman et al., 2013). The 

streamflow in the UMRB is governed by snowmelts in the Tibetan Plateau and plays an 

important role in the low flow hydrology of the MRB, contributing to ~30% of the average dry 

season flow (MRC, 2005). The streamflow in the LMRB is primarily driven by the high-intensity 

monsoonal rainfall that accounts for 85%-90% of annual precipitation (X. Luo et al., 2019). The 

Mekong river is the 10th largest river in the world in terms of mean annual streamflow, with 

average streamflow of ~14,500 m3/s (MRC, 2005). The streamflow in the Mekong is strongly 

modulated by the tropical monsoon (Tian et al., 2021) with distinct flood and dry season. The 

streamflow during the flood season that extends from June to November contributes to 80% to 
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90% of the annual flow volume. Temperate to tropical climate exists in the MRB with relatively 

high annual precipitation (Tang et al., 2019); the UMRB and LMRB receive average annual 

precipitation of ~600 mm and ~3,000 mm, respectively.   

 Model 

We use CLM5 (D. M. Lawrence, Fisher, Koven, Oleson, Zeng, et al., 2019a), the latest 

version of CLM (D. M. Lawrence et al., 2011; K. Oleson & Lawrence, 2013) which is the land 

component of the Community Earth System Model (CESM). CLM5 is a fully distributed global 

LSM that resolves various surface and subsurface hydrological processes (e.g., soil and plant 

hydrology, snow physics, river routing, crop modeling) coupled with energy and biogeochemical 

(carbon and nitrogen) cycles on a full physical basis at the typical spatial resolution of 0.5°×0.5°. 

A complete description of CLM5 can be found in previous literature (D. M. Lawrence et al., 

2011; D. M. Lawrence, Fisher, Koven, Oleson, Zeng, et al., 2019a) and technical documentation 

(NCAR, 2019). For completeness, here we provide a brief description of the key surface and 

subsurface parameterizations.  

CLM5 represents the spatial land surface heterogeneity as a nested sub-grid hierarchy in 

which grid cells are composed of smaller units (i.e., land units, columns, and patches) (NCAR, 

2019). The subsurface has a high vertical resolution for improved simulation of soil water. Soil 

thickness is 8.5 m with 20 active soil layers of varying depth. The depth to bedrock is derived 

from spatially explicit soil thickness data (Tan et al., 2015). The water table depth is determined 

by identifying the first soil layer above the bedrock when the soil water saturation fraction is less 

than a threshold. The threshold is set to 0.9 in standard CLM5 (NCAR, 2019). CLM5 includes an 

irrigation scheme that simulates irrigation requirements based on the soil moisture deficit in the 

root zone (Felfelani et al., 2018; Mutlu Ozdogan, Yang, et al., 2010). When an irrigation scheme 
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is enabled, crop areas are split into irrigated and rainfed fractions based on the dataset of areas 

equipped for irrigation (Portmann et al., 2010). Irrigation is applied to the irrigated portion of a 

grid cell when the crop leaf area index is greater than zero, and the available soil water falls 

below a specified threshold. The details of the irrigation scheme can be found in NCAR (2019).  

Surface runoff is parameterized based on the SIMTOP model (Niu et al., 2005), a 

simplified version of the TOPMODEL developed for large-scale applications (K. J. Beven & 

Kirkby, 1979). In SIMTOP, surface runoff discharges from the saturated portion of the grid cell 

(fsat) as a function of topographic characteristics and soil moisture. fsat is a function of maximum 

saturated fraction (fmax), water table depth and a decay factor (fover). fmax involves an extensive 

computational process because it is calculated globally at 0.125° spatial resolution and 

interpolated to model resolution; fover is determined from sensitivity analysis. Subsurface runoff 

is estimated as a linear function of soil saturated thickness i.e., 𝑞𝑠𝑢𝑏 =

𝛩𝑖𝑐𝑒 𝐾𝑏𝑎𝑠𝑒 𝑡𝑎 𝑛(𝛽) (𝑧𝑏𝑒𝑑𝑟𝑜𝑐𝑘 − 𝑧𝑤𝑡); where, 𝛩𝑖𝑐𝑒 is ice impedance factor, 𝐾𝑏𝑎𝑠𝑒  is a calibration 

parameter, 𝛽 is the mean grid cell slope, 𝑧𝑤𝑡 is water table depth, and 𝑧𝑏𝑒𝑑𝑟𝑜𝑐𝑘 is the bedrock 

(Pelletier et al., 2016). Finally, streamflow is simulated using a process-based Model for Scale 

Adaptive River Transport (MOSART) that routes runoff using kinematic wave formulations (Li 

et al., 2015). We use MOSART hydrography dataset available globally at 0.125° spatial 

resolution. Topographic parameters such as flow direction, channel length and, channel slope are 

derived using the Dominant River Tracking (DRT) algorithm (Li et al., 2015).  

 Data 

2.2.3.1 Atmospheric Forcing Data  

We use WATCH Forcing Data methodology applied to the ERA-Interim reanalysis data 

(WFDEI) dataset (Weedon et al., 2014) as the baseline forcing data. WFDEI data are available at 
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0.5×0.5° spatial resolution since 1979. WFDEI data have been widely used in many global and 

regional hydrological modeling studies (Beck et al., 2017; Felfelani et al., 2017; Hanasaki et al., 

2017; Schmied et al., 2014) and found to well reproduce observed streamflow (Chaudhari et al., 

2019; Monteiro et al., 2016). The forcing variables in WFDEI data include longwave radiation, 

shortwave radiation, surface pressure, air temperature, wind speed, and specific humidity. To 

investigate uncertainty arising from precipitation data, we use four additional precipitation 

datasets, namely the Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2.1 at 

0.1×0.1° spatial resolution (Beck et al., 2017),  Tropical Rainfall Measuring Mission (TRMM-

3B42V7) (X. Luo et al., 2019), Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks - Climate Data Record (PERSIANN-CRD) (Beck et al., 2017) 

and ECMWF Reanalysis 5th Generation (ERA5) at 0.25×0.25° spatial resolution. The temporal 

resolution of all datasets is 3-hour. The precipitation data are selected based on the availability 

period and temporal resolution that is consistent with CLM5 requirements.  

2.2.3.2 Observed Streamflow  

To evaluate streamflow simulations, we use daily discharge data obtained from the 

Mekong River Commission (MRC) for eight gauging stations across the basin. The gauging 

stations are selected with the criteria that at least 20 years of observational data are available 

during the 1979-2016 period.   

2.2.3.3 TWS and Soil Moisture Data  

We use TWS data derived from the Gravity Recovery and Climate Experiment (GRACE) 

satellite mission to validate the simulated TWS anomaly for the 2002-2016 period. GRACE 

provides global monthly TWS anomaly by measuring the Earth’s gravity field changes (Felfelani 

et al., 2017a; S. C. Swenson & Lawrence, 2015). In this study, we use the TWS from GRACE 
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mass concentration block (mascon) because the mascon products are found to better capture 

TWS anomaly signals in many regions globally (Scanlon et al., 2018). Two mascon products 

from the Centre of Space Research (CSR) and the Jet Propulsion Laboratory (JPL) are used. The 

original JPL mascon products are provided at 3×3° grids but have been resampled to 0.5×0.5° 

(Wiese et al., 2016). Basin averaged TWS anomaly is calculated by taking account of the varying 

grid cell area (Chaudhari et al., 2019). TWS anomaly from CLM5 simulations is calculated using 

the base period of 2004-2009, consistent with GRACE products (Landerer & Swenson, 2012).  

We use Soil Moisture Active Passive (SMAP) L4 data, available globally at 9 km spatial 

resolution to validate simulated soil moisture. We compare SMAP with simulated soil moisture 

for the year 2016 which is the only complete overlapping year with SMAP. SMAP is chosen 

over other soil moisture products as SMAP is a widely used, state-of-the-art soil moisture 

product. Further, SMAP product is available as volumetric soil moisture (mm3/mm3) that is 

consistent with CLM5 simulation.  

 Simulation Settings 

CLM5 is set up for the entire MRB at the spatial resolution of 0.05°×0.05° (~5×5 km at 

the equator). First, the model is spun up for 100 years from a cold start and by using WFDEI 

forcing data repeatedly for the year 1979. Then, five different simulations are conducted: a 

baseline simulation for the 1979-2016 period using WFDEI forcing data, and four additional 

simulations by replacing precipitation in the WFDEI forcing data with the four precipitation 

products (Section 2.3.1). All other forcing variables in the latter four simulations remain the 

same as in the baseline simulation. Hereafter, the additional simulations are termed as MSWEP, 

TRMM, ERA5, and PERSIANN-CDR simulations, which are conducted for a shorter period 

because the objective is to examine the uncertainties arising from precipitation data, rather than 
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long-term changes. The simulation period is 1998-2016, chosen to include average, dry, and wet 

years (Section 3.3), except for the PERSIANN-CRD simulation that is conducted for the 2000-

2016 period since PERSIANN-CDR data are not available before 2000. Since the climatological 

equilibrium may vary across precipitation products, an additional spin up of five years is 

conducted for each precipitation data by starting from the 100-year spin up conducted with 

WFDEI forcing. The irrigation module is activated in the simulations. The WFDEI forcing data 

and the four precipitation products, available at varying spatial resolution are spatially 

interpolated to the model resolution (0.05°) within CLM5 using bilinear interpolation.  

2.3 Results and Discussions 

 Evaluation of Simulated Streamflow 

Figure 2-1 presents the long-term (1979-2016) average streamflow and its seasonal 

variation from the simulation driven by the WFDEI forcing data. The seasonal patterns of 

streamflow are reasonably captured by the model with expected upstream-downstream and 

tributary-mainstream contrasts. Importantly, the high seasonal variability in streamflow that 

represents the unique Mekong flood pulse is distinctly reproduced by the model (Figure 2-1; 

right panels). Further, the general streamflow patterns in the major tributary systems including 

the Mun-Chi sub-basin and the 3S river system (Sekong, Sesan, and Sre Pok) are also captured. 

These sub-basins contribute to ~15% and ~17% of the Mekong annual streamflow, respectively 

(Xue et al., 2011). The tributary system connected to the TSL is also captured by the model. 

Validation of these results at the selected gauging stations (red scatters in Figure 2-1) is provided 

in Figure 2-2.  
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Figure 2-1. Long-term mean streamflow (a) and its seasonal variation (b-e) for the 1979-2016 

period from the baseline simulation (with WFDEI forcing). DJF, MAM, JJA, SON denote 

December-February, March-May, June-August, and September-November. The eight gauging 

stations selected for streamflow validation are marked by red hexagon: CS (Chiang Saen), LP 

(Luang Prabang), VT (Vientien), NP (Nakhon Phenom), KC (Kong Chiam), PA (Pakse), ST 

(Stung Treng), KP (Kampong Cham). Mun-Chi sub-basin, 3S river system, and Tonle Sap Lake 

(TSL) boundaries are delineated with different colors.    
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Figure 2-2. Evaluation of monthly streamflow (1979-2016) from the baseline simulation at eight 

gauging stations marked in Figure 2-1. Panels on the right show the mean seasonal cycle. Observed 

data (obtained from the MRC) are shown for only the period available. R2, RMSE, NSE, and KGE 

are shown in each panel. The right and left panels share the same y-axis labels.  

At most of the selected stations, the model captures the observed long-term trend and 

variability as well as the seasonal variations in streamflow remarkably well (see R2 in Figure 2-
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2). The low flow is generally well reproduced at most stations with an exception of CS, the most 

upstream station in the LMRB. Flood peaks are also simulated reasonably well with varying 

accuracies from year to year. Some discrepancies can be seen, which could be partly attributed to 

missing effects of dams, especially the Lancang cascade dams in the UMRB, and partly to 

CLM5 parameterizations (e.g., snowmelt and groundwater) as well as input forcing (discussed 

later). Previous studies have shown that the impacts of the Lancang cascade dams have already 

been observed at the CS station (Han et al., 2019; Li et al., 2017; Räsänen et al., 2017) but the 

impacts are pronounced only after the year 2010 (Shin et al., 2020). 

Dams are not simulated in the present study because CLM5 does not include a reservoir 

operation scheme. Our results indicate that the accuracy is generally higher in the downstream 

stations (see Nash–Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) in Figure 2-2), 

particularly for low flow. In general, the effects of upstream dams are offset in the downstream 

by the substantial flow accumulation from downstream tributaries. The increased downstream 

accuracy is, however, contrary to some previous findings (e.g., Wang et al., 2016) on higher 

accuracies in the upstream. In our study, no adjustment is done to the subsurface runoff 

parameterizations (i.e., CLM5 employs a linear representation of the subsurface runoff which is a 

function of saturated soil thickness as explained in Section 2.2) that could technically be 

calibrated for improved performance (Bisht et al., 2018; Felfelani et al., 2021) especially at the 

upstream location of the MRB where the topography is relatively complex.  

The long-term average seasonal cycle of the simulated streamflow also compares well 

with observations both in terms of magnitude and timing (Figure 2-2 right panels). Again, the 

largest discrepancy among all stations can be seen at the most upstream station (i.e., CS); the 

performance improves toward the downstream with the simulated seasonal cycle comparing 
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extremely well with observation at the middle reach (NP, KC, and PA). Further downstream, the 

performance is not as good, likely due to missing representation of predominant floodplain 

processes including channel bifurcation. In particular, both the timing and magnitude of peak are 

not as accurately reproduced by the model at KP where the mainstream flow could have been 

affected by floodplain processes. Overall, the results provide confidence that CLM5 accurately 

simulates the long-term temporal dynamics as well as the seasonality of streamflow and could be 

used to examine the uncertainties caused by precipitation data discussed in the subsequent 

sections.  

 Evaluation of Simulated TWS with GRACE Data 

Figure 2-3 depicts a comparison of simulated and GRACE-based TWS anomaly averaged 

over the entire MRB and for the GRACE-simulation data overlap period of 2002-2016. Similar 

to streamflow, CLM5 reasonably captures the temporal variability of basin-averaged TWS 

anomaly. In particular, the temporal variability is accurately reproduced, along with the historical 

wet and dry cycles in the MRB even though there are certain discrepancies. For example, the 

TWS amplitude during the relatively dry (e.g., 2005, 2007, and 2015) and wet (e.g., 2011 and 

2013) years are in good agreement with GRACE even though the model missed some events 

such as the low TWS in 2010. Figure 2-3 also includes the surface and subsurface components of 

the simulated TWS anomaly but those could not be evaluated because GRACE data does not 

provide the individual components.   
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Figure 2-3. Comparison of simulated and GRACE-based monthly TWS anomaly averaged over 

the entire MRB for the 2002-2016 period. Simulated surface and subsurface water storage 

components are also shown. Surface water storage includes water stored in rivers, small sub-grid 

scale water bodies, snow, and canopy whereas subsurface water storage includes water stored in 

the soil column. The right panel shows the seasonal cycle. R2 and RMSE are also shown in each 

panel.   

The simulated seasonal cycle of TWS also matches well with the GRACE data with 

slightly underestimated peak amplitude (Figure 2-3; right panel), likely due to lack of flood 

processes such as the two-way flow in the Tonle Sap River and wet-season storage in the TSL 

that plays a role of natural detention reservoir during the flood season. The seasonal cycle of the 

simulated TWS components suggests that when averaged over the entire MRB, ~16% of the 

seasonal TWS amplitude is explained by the amplitude of seasonal surface water storage, in line 

with the findings of Pokhrel, et al., (2018b) who reported this contribution to be ~13% based on 

a global LSM HiGW-MAT that is similar to CLM5 in process representation. Using the results 

from a hydrodynamic model (CaMa-Flood) that explicitly simulates floodplain processes, the 

same study found the surface water contribution to be ~27% of the seasonal TWS amplitude. 

These findings underscore the importance of representing flood inundation processes in the 

models. Further, the remarkably well reproduced streamflow in the middle reaches indicates that 
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the discrepancies in TWS simulations could have come primarily from missing floodplain 

storage in the TSL and Mekong Delta regions where the hydrology is modulated primarily by 

substantial seasonal surface water storages in rivers, floodplains, and wetlands. Overall, these 

TWS comparisons add further confidence that CLM5 reasonably simulates the fundamental 

hydrological processes over the entire basin.   

 Propagation of Precipitation Uncertainty in Streamflow  

Figure 2-4 presents the simulated and observed daily climatological mean streamflow at 

six selected gauging stations where continuous observations are available during the simulation 

period, for five different time windows: 1998-2016 mean (Figure 2-4a), dry years (1998 and 

2015; Figures 2-4b, c), and wet years (2000 and 2011; Figures 2-4d, e). It is readily discernible 

in the figure that streamflow simulated using different precipitation datasets varied substantially 

at all stations as a direct result of the large difference between the precipitation products.  

The following key observations can be made from Figure 2-4. First, the timing of peak 

flow in the long-term mean (Figure 2-4a) is captured well in most simulations, especially in the 

stations downstream of CS; however, peak magnitude is substantially overestimated in all but the 

baseline simulation. For the long-term mean (Figure 2-4a) and when averaged across all stations 

except CS, the peak magnitude is overestimated by ~30% in the MSWEP simulation and ~50% 

in TRMM, ERA5, and PERSIANN-CDR simulations, compared to only 15% in the baseline 

simulation. Because all other forcing variables and experimental settings are identical among 

different simulations, these differences are a direct result of the differences in precipitation data.  

A comparison of the precipitation data indicates that the total precipitation during the wet 

season (i.e., June-November) in the four datasets is 10-25% higher than in the WFDEI data; on 

an annual basis, the difference ranged between 7-19%. That is, the difference in the magnitude of 
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peak flow is generally larger than the difference in total precipitation during the wet season, 

implying that the propagation of precipitation uncertainty into streamflow simulations could 

amplify in terms of the magnitude of peak flow. These findings highlight the need for reliable 

precipitation data to accurately simulate the flood pulse in the MRB. Choice of certain 

parameters in CLM5 including fover and Kbase (see Section 2.2.2 for details) could also be linked 

to the uncertainty and nonlinear response of streamflow to varying precipitation datasets. 

Understanding such dynamic linkages between model parameters and forcing data requires a 

detailed sensitivity analysis, which is beyond the scope of the present study. Second, the low 

flow is generally well captured in most simulations with relatively small differences among the 

five simulations. This is reasonable because the MRB receives a substantial portion of the total 

annual precipitation (~70%) during the wet season (Chen et al., 2018), hence the dry season flow 

is less influenced by precipitation even though the water storage during the dry season—directly 

influenced by precipitation—can buffer dry season flows.   

Third, results indicate that the use of higher resolution precipitation data would not 

necessarily lead to improved streamflow results for the MRB. It is evident from Figure 2-4a and 

validation provided in Section 3.1 that the baseline simulation with WFDEI data (0.5°) produces 

better results compared to the other simulations with higher resolution precipitation data (0.25°-

0.1°; see Section 2.3.1), particularly in terms of the wet-season flow patterns and the peak 

magnitude. All four simulations with higher resolution precipitation data produce comparable 

long-term daily simulations, which cluster away from the baseline simulation and do not 

compare well with observations. Detailed statistics of the comparison of all simulations with 

observation are provided in Table 2-1. At the upstream stations (CS and LP), relatively larger 

discrepancies can be seen between all simulations and observations (see Section 3.1). These 



31 

 

results indicate that the spatial resolution of precipitation data is not the primary cause of 

uncertainties in streamflow simulations; instead, the spatial distribution of precipitation and its 

total amount is important. A direct evaluation of all precipitation datasets with ground 

observations would provide further insights but this is not possible due to lack of observed data.  

Fourth, large differences are found between different simulations for wet and dry years 

(Figures 2-4b-e). In general, there is a large and systematic overestimation of wet season flow 

during dry years in all simulations (Figures 2-4b,c) but, again, the baseline simulation 

outperforms the others. The overestimation in peak magnitude in the baseline simulation ranges 

between 2-28% and 15-51% for 1998 and 2015, respectively; the overestimation in the MSWEP 

simulation is similar with the range being 2-28% and 14-51%, respectively. The overestimation 

is much larger in TRMM, ERA5, and PERSIANN-CDR simulations ranging between 42-79%, 

114-115%, and 51-85%, respectively for 2015. Overall, the systematic wet bias during the wet 

season even in dry years could suggest a potential tendency in CLM5 to overestimate 

streamflow; however, and importantly, the relatively better comparison of the baseline 

simulation with observations indicates that the overestimation is due to overestimated 

precipitation amount. Also, the untimely secondary streamflow peak observed in 1998 in the 

baseline simulation, particularly in the downstream stations (i.e., KC, PA, and ST), mostly 

reflects the precipitation pattern in that year (Figure 2-5), suggesting that precipitation 

uncertainty is directly affecting the magnitude and timing of flow.  
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Figure 2-4. Simulated and observed daily streamflow climatology at six selected gauging stations 

and for five different periods. The simulated results shown are from the baseline simulation and 

four additional runs using different precipitation datasets. The station abbreviations are indicated 

in Figure 2-1.  
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Table 2-1. R2 and RMSE calculated for different periods as shown in Figure 2-4.  

 Long term average (R2) Long term average (RMSE) 

 WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR 

CS 0.96 0.86 0.92 0.86 0.88 2075 1728 1654 1828 1835 

LP 0.98 0.91 0.95 0.90 0.93 1737 3332 2913 5184 3908 

NP 0.98 0.98 0.99 0.98 0.99 1293 2514 3012 4534 3402 

KC 0.90 0.95 0.96 0.96 0.94 3159 4236 5793 6377 6704 

PA 0.89 0.95 0.96 0.96 0.94 3225 3105 4453 4871 5390 

ST 0.81 0.93 0.95 0.96 0.93 6028 3859 4517 4212 5735 

 1998 (R2) 1998 (RMSE) 

 WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR 

CS 0.91 0.80 0.85 0.80  1565 2784 1672 3619  
LP 0.89 0.82 0.90 0.85  1520 4312 2958 5627  
NP 0.91 0.89 0.96 0.94  1915 3692 4114 5424  
KC 0.84 0.88 0.96 0.94  3735 5165 6610 7529  
PA 0.83 0.89 0.96 0.95  3643 4590 5971 6824  
ST 0.53 0.83 0.94 0.93  8022 7281 7235 7613  

 2015 (R2) 2015 (RMSE) 

 WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR 

CS 0.76 0.79 0.80 0.84 0.76 2401 2160 1931 2423 2285 

LP 0.80 0.87 0.89 0.91 0.79 2477 4276 3427 6135 4235 

NP 0.84 0.95 0.95 0.95 0.84 2808 4573 4221 6297 4451 

KC 0.78 0.93 0.94 0.93 0.81 3525 6661 6538 8299 6831 

PA 0.82 0.95 0.95 0.95 0.85 3240 6033 5955 7736 6216 

ST 0.78 0.95 0.95 0.96 0.87 4308 8668 7566 9497 8342 

 2000 (R2) 2000 (RMSE) 

 WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR 

CS 0.86 0.88 0.88 0.81 0.87 3295 2344 2353 2306 2300 

LP 0.88 0.93 0.91 0.85 0.92 1852 2469 3293 5967 4273 

NP 0.95 0.94 0.93 0.95 0.93 3486 2950 3761 4862 4140 

KC 0.92 0.93 0.77 0.95 0.92 3213 2868 9393 8823 9077 

PA 0.92 0.93 0.94 0.95 0.92 3600 3331 6385 6895 7358 

ST 0.90 0.83 0.91 0.94 0.87 7681 7263 7445 5538 8949 

 2011 (R2) 2011 (RMSE) 

 WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR WFDEI MSWEP TRMM ERA5 

PERSIANN-

CDR 

CS 0.91 0.75 0.62 0.73 0.71 3230 2639 3121 2201 2776 

LP 0.88 0.93 0.91 0.85 0.92 2874 3460 3101 4622 4308 

NP 0.91 0.94 0.95 0.92 0.92 3118 3583 3382 3852 3785 

KC 0.92 0.94 0.94 0.91 0.91 4034 5105 5750 5580 6909 

PA 0.94 0.95 0.95 0.93 0.91 3617 4966 5588 4999 6906 

ST 0.85 0.96 0.95 0.94 0.89 7405 7172 7222 6363 9768 
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Figure 2-5. Mean annual precipitation climatology for the period of 1998-2016. Simulated results 

for the same period are analyzed to examine precipitation uncertainty.  

Results for the wet years (Figures 2-4d, e) also suffer from overestimation as during dry 

years, especially during the wet season. The results from the baseline simulation show different 

traits with underestimation of 1-18% and overestimation of 10-40% in the years 2000 and 2011, 

respectively. The overestimation is much larger in the other four simulations ranging from 15-

47%, 33-76%, 20-75%, and 26-88% for MSWEP, TRMM, ERA5, and PERSIAN-CDR 

simulations, respectively, for the year 2000. For 2011, these overestimates range between 35-

101%, 36-76%, 19-122%, and 44-135% for MSWEP, TRMM, ERA5, and PERSIAN-CDR 

simulations, respectively. Similar to the peak flow, precipitation uncertainty has a substantial 

impact on the high (Q5) and low (Q95) flows (Figure 2-6). The low flow indicator is 
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underestimated in all simulations, particularly in the upstream and some intermediate stations. 

This is likely because of the missing reservoirs in the model—reservoirs generally augment dry 

season flow.  

 

Figure 2-6. Comparison of simulated and observed high flow indictor (Q5) and low flow indicator 

(Q95) for eight stations for the 1998-2016 period. Markers denote different simulations and colors 

indicate different stations as consistent with Figures 2-4 and 2-5.  

The above results demonstrate that precipitation is a major source of uncertainty for 

streamflow simulations in the MRB. In particular, precipitation data choice tends to substantially 

affect the magnitude of the peak flow—the flood pulse in the MRB—implying that the choice of 

precipitation data may largely govern flood pulse simulations regardless of model 

parameterizations and other input datasets. Models could be calibrated to still match simulated 

streamflows with observations, but such a calibration would lead to the right results for the 

wrong reasons. 

Figure 2-7 presents a more detailed evaluation of streamflow at all stations using the 

Taylor diagram and four widely-used statistical measures, namely the NSE, KGE (Gupta et al., 

2009), Percent Bias (PBIAS), and Mean Percent Error (MPE). The Taylor diagram summarizes 



36 

 

simulation errors in terms of the ratio of standard deviation (SD) of the simulated streamflow to 

the observed streamflow as radial distance and their correlation as an angle in the polar axis 

(Figure 2-7a).  

 

Figure 2-7. The performance of different simulations in capturing monthly streamflow during 

1998-2016 at the eight gauging stations marked in Figure 2-1. The result for PERSIANN-CDR is 

shown for the 2000-2016 period. Simulations are indicated with markers and gauging stations are 

color-coded. The Taylor diagram on the left (a) illustrates the normalized standard deviation (SD) 

on vertical and horizontal axis and the correlation on the radial axis. The reference point (black 

star) is situated where correlation and normalized SD are both unity. Four panels on the right: 

Nash–Sutcliffe efficiency (NSE) (b), Kling-Gupta Efficiency (KGE) (c), Percent Bias (PBIAS) 

(d), and Mean Percent Error (MPE) (e) statistical measures. Figures 2-7b-e share the same x-axis 

labels.  

It is evident from Figure 2-7a that the baseline simulation (i.e., WFDEI) outperforms all 

other simulations in producing the temporal dynamics of streamflow at most stations (correlation 

> 0.9), as also discussed in Section 3.1 (Figure 2-2). Note that the evaluation period here is 

different than that in Figure 2-2. Performance varies between stations and across simulations. For 

example, the normalized SD at the upstream stations (CS, LP, and VT) varies substantially 

across simulations where high ratios (i.e., >1.5) are evident for all simulations but the baseline. 
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Such relatively inferior performance in these stations is also discussed in Section 3.1 and Figure 

2-2. While there are differences in the flow variability ratio (based on the spread of SD in the 

Taylor diagram), most of the simulations capture the temporal dynamics of streamflow with a 

correlation ratio between 0.8 and 0.99. The correlation for the downstream stations is generally 

better (Figure 2-7a). Further, the PERSIANN-CDR and ERA5 simulations form the lower bound 

(lowest correlation) and upper bound (highest correlation), respectively, in the Taylor diagram. A 

more detailed evaluation of the variations in performance across stations and simulations is 

presented in Figures 2-7b-e using additional statistical measures such as the NSE, KGE, PBIAS, 

and MPE. These measures provide insights into how various streamflow signatures are 

reproduced. For example, NSE rates the simulations’ predictive skill in capturing the observed 

streamflow, KGE decomposes NSE into its components (Correlation, variability term and, bias 

ratio) (Knoben et al., 2019), PBIAS measures the tendency of the simulated streamflow to be 

larger or smaller than the observed streamflow, and MPE provides the error of each simulation.  

Varying predictive skills can be seen in terms of NSE and KGE scores across different 

simulations. NSE scores demonstrate that simulation performance improves towards downstream 

stations, with a minimum NSE of 0.6 that ramps up to 0.9 in most downstream stations (Figure 

2-7b). PERSIANN-CDR simulation shows relatively poor performance in terms of NSE whereas 

ERA5 underperforms according to KGE scores. There is, however, a wide range in KGE at some 

stations, particularly at CS, LP, VT, and NP (Figure 2-7c), even though the NSE does not vary 

substantially. Varying KGE score between simulations is a result of the different bias ratios 

(ratio of simulated mean to observed mean), in addition to the difference in flow variability error 

and correlation, as shown in the Taylor diagram (Figure 2-7a). According to the KGE score, 

WFDEI simulations perform the best while ERA5 simulation perform poorly across the 
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MRB. As evident from the varying KGE, performance varies across simulations to capture the 

mean flow for many stations. As other forcing variables and model parameterizations are 

consistent across simulations, such differences in predictive skills could be directly attributed to 

the uncertainty in the precipitation data. PBIAS (Figure 2-7d) indicates that the tendency to 

underestimate streamflow is relatively high in CS, while it is overestimated at the intermediate 

stations (PBIAS < 0). The minimum bias is achieved toward the downstream and especially in 

the WFDEI simulation. Further, streamflow simulation error differs substantially between 

stations and simulations based on MPE (Figure 2-7e). The absolute MPE in the ERA5 simulation 

is the highest in CS to NP stations and substantially large compared to other simulations whereas 

PERSIANN-CDR simulation shows the highest absolute MPE in further downstream stations.  

Some other sources of uncertainty such as wind-induced under-catch tend to 

underestimate precipitation in the mountainous part of the UMRB and the difficulty in 

interpolating input data in the narrow-stretched parts of the basin could possibly add additional 

uncertainty in streamflow simulation. These effects could have affected different precipitation 

products at varying degrees, leading to varied propagation to streamflow simulations. In general, 

the detailed statistical analyses indicate that high spatial resolution of the precipitation data 

would not necessarily improve the simulation efficiency. Specifically, WFDEI and MSWEP 

show nearly similar efficiency at all stations although the spatial resolution of these two datasets 

is substantially different (Section 2.3.1). In contrast, TRMM, ERA5, and PERSINN-CDR have 

varying efficiency (different NSE and KGE) even though they have the same—and relatively 

higher—spatial resolution. Overall, all precipitation except WFDEI and MSWEP show relatively 

poor efficiency across stations (e.g., 0.5>KGE>0; Kling et al. (2012)). Such varying scores of 

different statistical measures further suggest that caution should be taken when using lumped 
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parameter model with parameter tuning using such statistical measures as objective functions to 

improve simulation accuracy.  

 Uncertainty in TWS, Soil Moisture, and ET  

Figure 2-8 presents the uncertainty in simulated TWS resulting from the uncertainty in 

precipitation input by comparing TWS anomaly from different simulations with GRACE data. 

The broad spatial patterns and seasonal variations of TWS are captured in all simulations, 

although differences are evident in the seasonal amplitude. In terms of timing, basin-wide 

discrepancies among simulations and GRACE are notable in some seasons. Examples include 

DJF where none of the simulations could capture the seasonal mean in GRACE data, showing 

disagreement even in the direction of change in some areas. GRACE, for instance, detects 

negative anomaly in the areas around TSL whereas WFDEI, MSWEP, and ERA5 simulations 

show positive anomaly. Some differences are also found in the Mekong delta during MAM when 

GRACE detects relatively small negative TWS anomaly compared to all simulations. The 

differences between GRACE and simulations are likely caused by missing floodplain processes 

as well as uncertainty in forcing datasets as it is evident that precipitation uncertainty largely 

affects streamflow simulation discussed earlier (Section 3.3). Coarse-resolution (i.e., ~0.5-3 

degrees) and lack of fine-scale details in GRACE data limit a fully consistent comparison with 

high resolution (~5km) TWS simulations especially over the narrow-stretched portion of the 

basin.  

While simulations show notable spatial discrepancies (Figure 2-8) as a result of using 

different precipitation datasets, the basin-averaged TWS anomaly largely agrees across 

simulations (Figure 2-9). Spatially, the agreement between simulations is generally good in the 

UMRB as opposed to differences in the LMRB. For example, during DJF, the WFDEI 
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simulation shows positive anomaly over a sizable portion of the LMRB, while other simulations 

except PERSIANN-CDR show positive anomaly at a relatively small magnitude only in some 

parts of the LMRB. The differences within the simulations are also quite evident during MAM, 

with TRMM and PERSIANN-CDR demonstrating strong negative anomaly in the Mun-Chi sub-

basin and delta regions, while other simulations produce negative anomaly only around the 

mainstream of the Mekong River. There are also large basin-wide variations in precipitation 

during MAM (Figure 2-10), which can be linked to variations in simulated TWS during that 

season.   

Also in JJA, there are differences between the simulations, particularly in the 3S river 

system. MSWEP and ERA5 produce different spatial patterns than WFDEI, TRMM, and 

PESIANN-CDR. Conversely, all simulations produce a similar spatial variation of TWS during 

SON. Also, the attributional analysis (discussed later) suggests a relatively small TWS response 

to precipitation during SON. The highest variation in TWS can be seen (Figure 2-8) on the Mun-

Chi sub-basin, areas around TSL, and delta regions where the hydrology is strongly modulated 

by the amount of precipitation in the basin (Figure 2-10). The results indicate that accurate 

spatial distribution of precipitation is crucial to capture the basin-wide changes in TWS. 

Spatially, the mean annual precipitation amount also substantially varies among different 

datasets, particularly in LMRB (Figure 2-11), affecting TWS variations over long terms. Overall, 

TWS anomaly among simulations varies, particularly exhibiting large variations during JJA, 

following the patterns of wet season streamflow, which can be attributed to the variations in 

mean seasonal precipitation amount among five precipitation products (Figure 2-11).  
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Figure 2-8. Spatial variability of the seasonal average of TWS anomaly from five different 

simulations and GRACE data for the 2002-2016 period. GRACE results are shown as the mean of 

mascon solutions from two different processing centers (i.e., CSR and JPL).  
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Simulations driven by different precipitation datasets capture the broad spatial pattern of 

soil moisture seen in SMAP data, and the contrast between UMRB and LMRB, particularly 

during DJF and MAM (Figure 2-12). However, some discrepancies are also evident, especially 

during JJA and SON during which precipitation uncertainty could have substantially affected soil 

moisture simulations. A comparison of soil moisture from different simulations with observed 

soil moisture could provide further insights on the role of precipitation uncertainty in soil 

moisture simulations; however, such an exercise is not possible due to the lack of observed soil 

moisture products for the MRB. Further, even the comparison with SMAP data should be 

interpreted with caution, especially in the southeastern part of the LMRB, because SMAP data 

likely include substantial uncertainties in these densely vegetated and forested areas (Mousa & 

Shu, 2020; Zhang et al., 2019).  

 

Figure 2-9. Comparison of TWS anomaly from multiple precipitation driven simulations for the 

2002-2016 period. In the right panel of the figure comparison of the monthly seasonal cycle of 

TWSA from all simulations and GRACE is also shown.  
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Figure 2-10. Mean seasonal precipitation for the period of 1998-2016. Simulations for the same 

period are analyzed to examine precipitation uncertainty.  
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Figure 2-11. Mean annual precipitation for the period of 1998-2016. Simulated results for the 

same period are analyzed to examine precipitation uncertainty.  
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Figure 2-12. Comparison of seasonal soil moisture with SMAP data for the year 2016.  

Nonetheless, the comparison of soil moisture among simulations (Figure 2-12; left 

panels) suggests that soil moisture can vary considerably between simulations and across the 

basin as a direct result of the uncertainty in seasonal precipitation (Figure 2-10). Spatially, the 

variations in grid-level soil moisture are considerable during DJF and MAM, with results from 
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the WFDEI simulation showing the lowest soil moisture estimates and ERA5 showing the 

highest (Figure 2-7; left panels). Similarly, attributional analysis (Figure 2-14) shows the highest 

disagreement in precipitation between WFDEI and ERA5 during MAM and thereby the highest 

soil moisture response, suggesting that precipitation uncertainty can substantially affect soil 

moisture simulations. The disagreement in the LMRB is pronounced in the wet season, similarly 

to streamflow. For example, soil moisture simulations from WFDEI, MSWEP, and TRMM show 

relatively better agreement with each other in DJF and MAM, but show large differences in JJA 

and SON—especially in the LMRB—during which the total precipitation amount largely varies 

among different precipitation products (Figure 2-11). Discrepancies among simulations suggest 

that the degree of precipitation uncertainty varies spatially across the basin and substantially 

impacts soil moisture simulation at the grid level, which further highlights that accurate 

precipitation data with realistic spatial distribution are critical for consistent simulation of soil 

moisture in the MRB. 

To examine the effect of precipitation on seasonal ET we compare simulated ET from 

different simulations (Figure 2-13; right panels), highlighting how precipitation biases impact 

other water cycle components. Despite differential ET rates among simulations at the grid level, 

all simulations produce a similar pattern of basin-wide ET variations (Figure 2-13; right); this 

includes the contrast between UMRB, LMRB, and the Mekong delta. Results indicate that ET 

variations in the MRB are less sensitive to precipitation than other variables such as TWS and 

soil moisture, likely because there is an upper limit for ET due to energy limitations during the 

wet season. Overall, simulated TWS, soil moisture, and ET differ in their sensitivity to different 

precipitation inputs. Attributional analysis (Figure 2-14) provides further insights on the 

sensitivity of different variables to change in precipitation.  
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Figure 2-13. Spatial variability of the seasonal average of soil moisture (left) and ET (right) from 

five different simulations for the 1998-2016 period except for PERSIANN-CDR. Results for 

PERSIANN-CDR are shown for the 2000-2016 period. Soil moisture is shown for 10 cm depth of 

soil. 

Results from the attributional analysis (Figure 2-14) suggest that runoff and soil moisture 

show the strongest response to precipitation uncertainties compared to other hydrologic variables 

such as TWS and ET (Figure 2-14c and Figure 2-14e). While these results provide some insights 

on the sensitivity of water balance components to precipitation input, further investigation is 

warranted to provide a more detailed and mechanistic understanding of the effect of precipitation 

uncertainty on the partitioning of precipitation into different water balance terms.  
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Figure 2-14. An attributional analysis of monthly runoff (b), TWS (c), soil moisture (d), and ET 

(e) in response to the differences in precipitation (a). Note that all changes are calculated taking 

WFDEI as the benchmark. The differences in precipitation and resulting differences in the runoff, 

TWS, soil moisture, and ET are shown as percentages in the radial axis. Note that the radial axes 

are different among plots. J to D in the angular axis represents the month from January to 

December. 

2.4 Summary and Conclusions 

This study examines the propagation of precipitation uncertainty into hydrological 

simulations over the MRB using CLM5 at a high spatial resolution of 0.05° (~5 km). A baseline 

simulation is first conducted using the WFDEI forcing. Then, four additional simulations are 

conducted by replacing precipitation data in the WFDEI forcing with precipitation from 

MSWEP, TRMM, ERA5, and PERSIANN-CDR. Results are validated with observed 

streamflow, TWS, and soil moisture. Results from simulations driven by five different 

precipitation datasets are then used to compare and evaluate various streamflow signatures and 
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seasonal patterns of simulated TWS, soil moisture, and ET. To the authors’ best knowledge, this 

is the first study to investigate precipitation uncertainty in hydrological simulations over the 

entire MRB using a fully process-based LSM. 

We synthesize our key findings as follows: First, substantial differences are found between 

streamflow simulations driven by different precipitation datasets and the degree of such 

differences varies spatially across the MRB. Second, the effect of precipitation uncertainty is the 

largest on the peak flow and most simulations tend to overestimate flood peak. Simulated peak 

flow in wet and dry years is also subject to substantial uncertainties that undermine the model’s 

ability to accurately reproduce the seasonal flood pulse, even though the contrast between dry 

and wet years in the streamflow climatology is well captured by most simulations. Third, results 

indicate that using high-resolution precipitation data would not necessarily improve model 

performance; simulations forced by WFDEI precipitation with relatively coarse 

resolution outperform those based on high-resolution datasets. Further, the performance of 

streamflow, TWS, and soil moisture simulations based on the MSWEP precipitation is 

comparable to that from WFDEI despite MSWEP being the highest resolution precipitation data 

used in this study. Fourth, there is no single precipitation data that could promisingly capture 

various streamflow signatures for different periods, suggesting that model parameters from 

calibration for a certain period using a particular climate forcing could not be used with different 

forcing data. For example, if flood pulse simulations are of interest, one could select a different 

precipitation dataset than if drought were to examine. Fifth, the propagation of precipitation 

uncertainty to streamflow simulations is non-linear and the uncertainty may even amplify. Sixth, 

substantial differences are also found in the simulation of TWS, soil moisture, and ET driven by 

different precipitation even though the broad seasonal variations agree well among different 
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simulations. We note that because model parameters are kept constant across all simulations, the 

uncertainties discussed in this study are solely due to the differences in precipitation input. 

The robustness of uncertainty analysis could have been improved if the model did not lack 

the representation of certain hydrological processes important in the MRB. For example, the 

MOSART routing scheme used in CLM5 does not simulate some of the floodplain 

processes that might have impacted the simulations in the LMRB. Further, CLM5 does not 

simulate the effects of dam and reservoir operation, reported to have detectable impacts on the 

Mekong flood pulse especially after 2010 (Shin et al., 2020). Improvements in topographic 

representation and input parameter scaling particularly for MOSART could also improve 

streamflow simulations. The vector-based routing scheme mizuRoute (Mizukami et al., 2021) 

showed promising performance in global streamflow simulations; such a scheme might improve 

regional simulations as well but is computationally intensive for high-resolution applications 

(Mizukami et al., 2021). Some of the parameters that are sensitive to streamflow and affect the 

partitioning of surface and subsurface runoff could be calibrated to address part of the 

uncertainty that may not be related to the choice of precipitation data. As the goal of this paper is 

to investigate precipitation uncertainty, addressing these caveats related to model process 

representation and parameter sensitivity form future research directions for our forthcoming 

publications.   

Despite some limitations, this study provides major advances in simulating the hydrology 

of the MRB using a fully distributed LSM capable of simulating non-linear dynamics of 

hydrological processes on a full physical basis, providing a better understanding of the 

propagation of precipitation uncertainty into streamflow and other key hydrological variables 

including TWS, soil moisture, and ET.  
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3. Chapter 3. Climatic and Anthropogenic Controls on Groundwater Dynamics 

in the Mekong River Basin 

 

Based on: Kabir, T., Felfelani, F., & Pokhrel, Y. (2022). Climatic and Anthropogenic Controls 

on Groundwater Dynamics in the Mekong River Basin, Journal of Hydrology. [Under Revision] 

 

3.1 Introduction 

Groundwater is a crucial component of the global water cycle  (Condon et al., 2021; 

Cooper, 2010; Ferguson & Maxwell, 2010; Miguez-Macho & Fan, 2012a). It is the world's 

largest freshwater resource that supplies water to billions of people, forms an integral part of 

irrigated agriculture, and contributes to the health of many ecosystems (Stefan Siebert & Döll, 

2010, Cuthbert et al., 2019; Gleeson et al., 2012). At least one-fourth of the world’s population 

heavily relies on groundwater (Döll, 2009). The dependence will likely continue to grow in the 

future due to the increase in population and associated demands for water, especially agricultural 

(Siebert & Döll, 2010, Siebert et al., 2015). Agricultural irrigation—which accounts for over 

70% of the total freshwater withdrawal and 90% of the consumptive water use (Gleick, 2018; 

Shiklomanov, 2000)—is reliant heavily on groundwater in many global regions, especially those 

with limited surface water (N. Hanasaki et al., 2013; Leng et al., 2014; Reinecke et al., 2021; 

Yoshihide Wada et al., 2013). This reliance is expected to rise sharply owing to increased 

irrigation needs in relatively dry agricultural regions (Ambika & Mishra, 2019; Crosbie et al., 

2013; Scanlon et al., 2012; Yoshihide Wada et al., 2013) or even in relatively humid regions 

such as the Mekong River Basin (MRB) that are experiencing rapid agricultural intensification 

(Hoang et al., 2019; T. T. H. Nguyen et al., 2012; Sakamoto et al., 2009) or increased 

groundwater pumping as surface water availability continues to decline (Erban & Gorelick, 

2016; Minderhoud et al., 2017). Therefore, there is a growing need, as well as an interest, to 
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improve our understanding of groundwater processes, especially through process-based 

modeling; however, major challenges remain due to the complexity of groundwater system 

(Cuthbert et al., 2019; Y. Fan et al., 2019; Ying Fan et al., 2007; Gleeson et al., 2016).   

Groundwater dynamics is modulated by a variety of regional to local hydrological 

processes that are intricately interconnected and governed by climatic drivers, topographic 

controls, and hydrogeological characteristics (Cuthbert et al., 2019). Thus, groundwater research 

poses unique challenges compared to the study of surface water and it is exceedingly difficult to 

assess and predict the changes in groundwater systems, especially over large scales (E Condon & 

Maxwell, 2015; Engdahl, 2017; Sophocleous, 2002). Observational data challenges make 

groundwater research even more daunting (Evans et al., 2020; Megdal et al., 2015 ), which is 

particularly true for modeling studies that require such data both to constrain and validate the 

models. Especially in data-limited regions, even selecting an appropriate model can be 

challenging (P. Kumar et al., 2021; Tegegne et al., 2017). Parsimonious models are often used in 

such regions because of their simplicity and limited data requirements (Pande et al., 2012; 

Quichimbo et al., 2021). However, while parsimonious models could realistically simulate 

certain hydrologic variables under constrained conditions, the models are not well suited to study 

process interactions and the complexities therein (e.g., land use change, vegetation processes, 

soil hydrology) (Fabrizio Fenicia et al., 2011; W. Wu et al., 2010), especially considering that a 

system response to changing climatic and human drivers can be non-linear (Mcguire & 

Mcdonnell, 2010; Sivapalan et al., 2002).   

Conversely, process-based models (e.g., land surface models; LSMs), offer a more 

physically-based representation of surface and subsurface hydrological processes, including 

infiltration, soil moisture dynamics, and groundwater recharge, making these models more robust 
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and reliable for application in different regions and climates, especially in data-limited basins 

such as the MRB (Koirala et al., 2014; Y. Pokhrel, Koirala, et al., 2014). Furthermore, LSMs 

offer promising avenues for future research on land-atmosphere coupling, enabling an improved 

understanding of the dynamic interactions between groundwater and the atmosphere, and more 

broadly within the entire Earth system (Clark et al., 2015b). As such, many large-scale 

groundwater modeling studies use LSMs account for groundwater in a relatively simple manner 

or with minimal groundwater parametrizations (Koirala et al., 2019; Yadu N. Pokhrel et al., 

2016).  

Despite the challenges in representing groundwater in LSMs due to data scarcity, among 

others, notable progress has been made toward improved groundwater parameterizations. Some 

of the noteworthy advances include the representation of linear groundwater reservoir (F. Fenicia 

et al., 2006), surface water-groundwater interactions (Y. Fan & Schaller, 2009; Kollet & 

Maxwell, 2008; Reed M. Maxwell & Kollet, 2008; Miguez-Macho & Fan, 2012a, 2012b), lateral 

groundwater flow (Barlage et al., 2021; Felfelani et al., 2021; Inge E.M. De Graaf & Stahl, 2022; 

Zeng et al., 2018), and groundwater pumping for irrigation (Felfelani et al., 2021; Inge E.M. de 

Graaf et al., 2019; Leng et al., 2014; Nie et al., 2018; Y. Pokhrel et al., 2012; Yadu N. Pokhrel et 

al., 2015; Yoshihide Wada et al., 2010). These efforts have led to groundwater representations 

with varying degree of complexity in different LSMs including the Variable Infiltration Capacity 

Model (VIC) (Liang et al., 2003), MATSIRO (Pokhrel et al., 2015), Community Land Model 

(CLM) (Kluzek, 2013; D. M. Lawrence, Fisher, Koven, Oleson, Zeng, et al., 2019b; Keith W. 

Oleson et al., 2013; Sean C. Swenson et al., 2019), and Noah-MP (Nie et al., 2018).  

However, most of these model development studies have focused on data-rich regions 

such as the US aquifer systems where groundwater is depleting alarmingly due to rapidly 
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increased pumping for irrigation (R. M. Maxwell et al., 2015; Nie et al., 2019, 2021, 2022; Doll 

et al., 2014; Y. N. Pokhrel et al., 2015), leaving major gaps that come with challenges, toward 

using the models in regions where groundwater issues are rapidly emerging, but data are scarce 

(Jayakumar & Lee, 2017). The MRB is a perfect example of such regions where upstream water 

management (Dang et al., 2016; Galelli et al., 2022; Hecht et al., 2019; Y. Pokhrel, Burbano, et 

al., 2018), climate change and variability (Mauricio E. Arias et al., 2012; Delgado et al., 2012; 

Thompson et al., 2013), and increased groundwater pumping for domestic and irrigation uses are 

rapidly transforming groundwater dynamics but basin-scale groundwater modeling studies are 

rare, if not non-existent (Dang et al., 2016; Johnston & Kummu, 2012; Y. Pokhrel, Burbano, et 

al., 2018) primarily because of the basin wide data limitations to constrain and validate the 

model (Erban et al., 2014; Erban & Gorelick, 2016). Very crucially, leaving the growing 

anthropogenic influence aside, even the natural dynamics of groundwater systems, especially 

over the entire MRB, is not adequately studied (Lacombe et al., 2017).  

Further, growing number of observational studies have reported dramatic shifts in 

groundwater systems over the lower MRB (LMRB)—especially the Mekong Delta region—due 

to the influence of growing anthropogenic activates over the past decade (Duy et al., 2021; 

Haddeland et al., 2006; Kazama et al., 2007; Lee et al., 2017; Loc et al., 2021; Tatsumi & 

Yamashiki, 2015; Tu et al., 2022a). Few studies investigated the historical groundwater situation 

at the sub-catchment level of the MRB under the influence of climate change, irrigation, and 

groundwater extraction (Gunnink et al., 2021; Hoanh et al., 2012; S. Shrestha et al., 2016; 

Tatsumi & Yamashiki, 2015). Other studies underlined the critical issues, such as groundwater 

pollution, and saltwater intrusion in the Mekong Delta and contaminant transport, that is directly 

linked with groundwater flow and groundwater depletion (Minderhoud et al., 2017; Tran et al., 
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2022). However, no basin scale groundwater study exists and process-based models have been 

rarely used to simulate these changes, resolve the interactions among various governing 

processes, and identify the key drivers (Johnston & Kummu, 2012). Fundamentally, little 

advancement has been made in understanding the critical controls of climate, physiography, and 

anthropogenic drivers on the dynamics of groundwater over the MRB.          

Such lack of basin-scale groundwater modeling considering climatic and anthropogenic 

drivers critically hinders the understanding of evolving groundwater systems over the MRB, with 

implications on reliable future projections of water resource availability and use under climate 

change and intensified anthropogenic activities (Jasechko et al., 2014). Some global modeling 

studies have examined water and energy balances over the MRB ( e.g., Haddeland et al., 2006; 

Guillaume Lacombe et al., 2017; Tatsumi & Yamashiki, 2015; Felfelani et al., 2017). However, 

they have applied global models at a relatively coarse spatial resolution (e.g., 50-100km), not 

accounting for finer scale processes including lateral flow (e.g., Felfelani et al., 2021; Krakauer 

et al., 2014) that are crucial in governing groundwater dynamics in the MRB’s landscapes with 

high climatic, topographic, and hydrogeologic gradients (Cooper, 2010; Hung et al., 2012; Y. 

Pokhrel, Burbano, et al., 2018). Lastly, while some sub-basin scale studies have provided 

insights on local-scale groundwater changes, basin-scale and long-term (e.g., decadal evolutions) 

changes and patterns of groundwater dynamics for the MRB are largely lacking.     

Here, we address the gaps identified above by focusing on the following three scientific 

contributions, and to advance groundwater modeling over the MRB. First, we present a fully 

distributed and process based LSM for the MRB, which simulates key hydrological processes on 

a full physical basis, including improved parameterizations for inter-grid lateral groundwater 

flow and aquifer pumping. Second, we use the model for a mechanistic investigation of 
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interactions among the processes governing surface water and groundwater flows, including 

groundwater recharge and discharge, considering basin scale climatic drivers and human 

activities, and encompassing fine scale process heterogeneities. Third, despite dearth of data to 

fully constrain the model, we present first-order quantification of the effects of increased 

irrigation and groundwater pumping on groundwater flow processes and storage dynamics over 

the LMRB.  

We are aware of the challenges, and more so of the pressing need to improve our ability 

to simulate groundwater dynamics at the basin scale over the MRB. The primary goal is to 

capture the basin-scale patterns of groundwater dynamics and quantify the human-induced 

changes in groundwater systems; the underlying objective is to provide a foundational 

framework for basin wide groundwater studies in the MRB considering key governing processes 

and their response to the major climatic and human factors. Such a framework is expected to 

advance the current state of groundwater modeling in the MRB and open avenues for further 

research, including model enhancements. We address the following scientific questions: 1) How 

do climatic drivers, physiographic conditions, and topographic characteristics govern 

groundwater processes—specifically recharge, discharge, and lateral flow—across the MRB? 2) 

What role does groundwater dynamics across the MRB play in modulating surface water systems 

in the LMRB? 3) How are anthropogenic activities—specifically irrigation and groundwater 

pumping—impacting groundwater systems in the LMRB? The model we use is the Community 

Land Model version 5 (CLM5) with the latest updates on groundwater parameterizations (see 

section 2.2).   
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3.2 Study Area and Methods 

 Study Area  

The MRB is shared by six countries in Southeast Asia: China, Myanmar, Lao PDR, 

Thailand, Cambodia, and Vietnam (MRC, 2005). The upper MRB (UMRB) is characterized by a 

steep narrow valley, with its geometry determined primarily by Himalayan orogeny (Carling, 

2009). The LMRB can be divided into four regions: i) the northern Highlands, characterized by 

high elevation and dense vegetation, ii) the Khorat Plateau that includes much of the lowlands 

and a relatively flat landscape, iii) the Tonle Sap basin and iv) the Mekong Delta with an alluvial 

floodplain (Lacombe et al., 2017). The northern Highlands include the north of Thailand and 

Laos and extend into Vietnam. The Khorat Plateau covers most of northeast Thailand with its 

northern and eastern margin in central Laos and has a consistent basin elevation. Farther 

downstream, Tonle Sap Lake (TSL) covers the southern portion of Laos and most of Cambodia.  
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Figure 3-1. Fractional area of irrigated cropland in the MRB with areas marked by green circles 

indicating groundwater-irrigated regions. The pie charts depict the groundwater use fraction for 

two selected regions marked with black squares where groundwater withdrawal for irrigation is 

relatively high. Upper right inset shows the location of the MRB in the global map.  

The climate across the MRB is tropical monsoonal. Precipitation patterns are seasonal, 

with the majority of annual totals occurring during the wet season between May and October 

(Kabir et al., 2022); the highest rainfall of over 2500 mm/yr occurs in the Highlands of Laos and 

the lowest of less than 1000 mm/yr over the Khorat Plateau in northeast Thailand. MRB is 

characterized by dense forest coverage towards the north and crop areas in the LMRB and 
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Mekong Delta towards the south (Figure 3-1). Surface water has historically been the dominant 

water resource for irrigation. However, over the past two decades, household wells and large-

scale, deeper pumping for municipal and industrial purposes including irrigation have risen 

substantially (Hoanh et al., 2014). Currently, there are over one million wells in the Mekong 

Delta (Gunnink et al., 2021; Hoanh et al., 2014; Loc et al., 2021; Minderhoud et al., 2017) and 

the interest in further expanding the use of groundwater for agriculture is increasing (Tran et al., 

2022).  

 Model 

We use CLM5, which is the land component of the Community Earth System Model 

version 2 (CESM2) that resolves various surface and subsurface hydrological processes (e.g., 

soil and plant hydrology, snow physics, river routing, crop modeling) coupled with energy and 

biogeochemical (carbon and nitrogen) cycles on a complete physical basis (Danabasoglu et al., 

2020). Although CLM5 and similar LSMs were traditionally designed to simulate surface water 

and energy fluxes within the Earth system model (ESM) frameworks, major advances have been 

made in recent years to represent sub-surface hydrological processes (Haddeland, Clark, 

Franssen, Ludwig, Voß, Arnell, Bertrand, Best, Folwell, Gerten, Gomes, Gosling, Hagemann, 

Hanasaki, Harding, Heinke, Kabat, Koirala, Oki, Polcher, Stacke, Viterbo, Weedon, & and Pat 

Yeh, 2011; Yadu N. Pokhrel et al., 2016). For example, CLM5 simulates key subsurface 

processes, including infiltration, plant hydraulics, soil moisture dynamics, and groundwater, that 

drive groundwater recharge on a full physical basis (Clark et al., 2015b; Kennedy et al., 2019; D. 

M. Lawrence, Fisher, Koven, Oleson, Swenson, et al., 2019; K W Oleson et al., 1978). Highly 

detailed groundwater models require extensive data and are exceedingly challenging to 

implement in the MRB, whereas simplistic process representation in parsimonious or lumped 
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models can lead to uncertainties when hydrological processes are highly nonlinear or dynamic 

(Paniconi & Putti, 2015). Thus, we use CLM5, striking a balance between data requirements and 

process representation. The standard CLM5 includes a subsurface hydrology scheme with only a 

vertical exchange of water (D. M. Lawrence, Fisher, Koven, Oleson, Zeng, et al., 2019b; Sean C. 

Swenson et al., 2019). We use an advanced model version that includes the representation of 

lateral flow and aquifer pumping to account for the consumptive use of water for irrigation 

(Felfelani et al., 2021). The lateral groundwater flow is represented by Darcy's law following Fan 

et al. (2007), while the pumping scheme is based on HiGW-MAT model (Pokhrel et al., 2015).  

The lateral flow is driven primarily by groundwater head difference—influenced by 

factors such as climate and topography (i.e., topographic slope in baseflow generation)—

between two adjacent cells and computed based on Darcy's law (Y Fan & Li, 2013) as Q𝑛 =

WT(
h𝑛−h𝑐

𝑙
), where hn and hc are the hydraulic head in nth neighbor and center grid cells, 

respectively, T is the transmissivity, l is the distance between cells, and W=𝜟𝑥 √(0.5 tan (
𝜋

8
)) is 

the width of an imaginary octagon that replaces the square grid cell to provide an equal chance 

for all eight neighboring cells to interact with the center cell (Felfelani et al., 2021). When water 

table lies within the soil layer, the positive net lateral flow is added to soil layers in sequential 

order beginning from the soil layer right above the water table and the negative net lateral flow is 

removed from soil layers in sequential order beginning from the soil layer right below the water 

table (any residual is taken from the underlying aquifer layer) (Felfelani et al., 2021). When the 

water table is below the soil column, the net lateral flow is added (removed) to (from) the aquifer 

storage (Felfelani et al., 2021). Further details of the lateral flow and mass balance of each grid 

cell can be found in Felfelani et al., (2021). In CLM5 soil hydrologic processes are explicitly 

resolved up to 8.5m depth and water table depth can vary from 0 to 80 m (Felfelani et al., 2021).  
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The subsurface is depicted using a high vertical resolution and improved solution to the 

Richard's equation to resolve soil water movement across layers (Felfelani et al., 2021). When 

unconfined aquifer under the soil column is activated, drainage from the lowest soil layer 

(recharge; 𝑞𝑟𝑒𝑐ℎ) is controlled by a head-based lower boundary condition (i.e., 𝑞𝑟𝑒𝑐ℎ=𝑞𝑖 +

𝜕ɵ𝑙𝑖𝑞𝑖  
𝜕𝑞𝑖

𝜕ɵ𝑙𝑖𝑞𝑖
 ). Here, 𝑞𝑖 is the water flux across the lowest interface and ɵ𝑞𝑙𝑖𝑞𝑖 is the liquid 

volumetric soil moisture. When the water table is within the soil column, recharge rate is 

determined using Darcy's equation across the water table. In this configuration, subsurface runoff 

decays exponentially depending on the water table depth (zwt), that is, 𝑞𝑠𝑢𝑏 = ɵ𝑖𝑐𝑒𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 exp 

(−𝑓𝑑𝑟𝑎𝑖𝑧𝑤𝑡), where, ɵ𝑖𝑐𝑒 is ice impedance factor, 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥 is the maximum subsurface runoff 

when 𝑧𝑤𝑡 = 0 and is set to 𝑞𝑑𝑟𝑎𝑖,𝑚𝑎𝑥  = 10 sin(𝛽); 𝛽 is the mean grid cell topographic slope in 

radians and 𝑓𝑑𝑟𝑎𝑖 is the decay factor. 

 Subsurface Hydrologic Parameters 

Hydraulic properties of the soil are weighted combinations of the mineral properties, 

determined based on sand and clay contents (Clapp & Hornberger, 1978; Cosby et al., 1984) and 

organic properties of the soil (D. M. Lawrence & Slater, 2008). Hydraulic conductivity is defined 

at the depth of the interface between two adjacent soil layers and is a function of saturated 

hydraulic conductivity, the liquid volumetric soil moisture of the two layers and an ice 

impedance factor Θice (NCAR, 2019). Note that the lateral hydraulic conductivity (Klat) is 

determined from the vertical hydraulic conductivity (Kver)—resolved in the vertical one-

dimensional soil movement—and percent of clay in the soil layer represents the anisotropy factor 

(i.e., Cclay = Klat/Kver) as described in Fan et al., (2007) and Zeng et al., (2016).   

The prognostic aquifer transmissivity (T) is estimated based on the water table depth and 

hydraulic conductivity (Fan et al., 2007). If water table depth lies within the soil column, 
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T=T1+T2, where T1 is the transmissivity of the saturated portion of the soil column (i.e., from the 

water table to the bottom most layer) and T2 is the transmissivity of the depth below the bottom 

most layer (Felfelani et al., 2021). Here, T2 is estimated using hydraulic conductivity of the 

bottom most layer, exponentially decayed with depth. A more in-depth discussion on the aquifer 

transmissivity estimation can be found in Felfelani et al., (2021) and Fan et al., (2007). 

 Irrigation Parameterizations 

Irrigation application is dynamically responsive to the simulated soil moisture conditions 

(Ozdogan et al., 2010). When irrigation is enabled, the crop areas of each grid cell are divided 

into irrigated and rainfed fractions based on a dataset of areas equipped for irrigation (Portmann 

et al., 2010). Irrigated and rainfed crops are placed on separate soil columns and irrigation is 

applied only to the irrigated portion. In irrigated croplands, a check is conducted once per day (in 

the first-time step after 6 AM local time) to determine whether irrigation is required on that day. 

Irrigation is triggered if crop leaf area index > 0, and the available soil moisture is below a 

specified threshold (Felfelani et al., 2018).  

In the standard CLM5, irrigation water is applied to the soil column as an add-on to 

precipitation, withdrawing water from surface water (i.e., water in the main river channel) as a 

sole source of irrigation (NCAR, 2019). In the improved version of CLM5 used in this study, 

groundwater supplied fraction (provided in the model as input data) is extracted from the 

groundwater (from the aquifer or from the soil layers when water table is within soil column) and  

rest of the irrigation water requirement is withdrawn from the main channel (Felfelani et al., 

2021). This model version is validated in continental US and found to adequately capture the 

subsurface dynamics as well as groundwater depletion (Felfelani et al., 2021), adding confidence 

on the use of the model in other basin such as the MRB.  
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 Surface Water Routing  

To simulate streamflow, we use Model for Scale Adaptive River Transport (MOSART), a 

process-based model that uses kinematic wave formulations to route runoff as described in Li et 

al., (2015). The model uses a hydrography dataset, available globally at a spatial resolution of 

0.125°. Topographic parameters such as flow direction, channel length, and channel slope, were 

obtained using the Dominant River Tracking (DRT) algorithm (H. Y. Li et al., 2015); MOSART 

is the standard river routing scheme employed in CLM5. 

3.3 Data 

We use WATCH Forcing Data methodology applied to ERA-Interim reanalysis (WFDEI) 

global meteorological forcing data at 0.5° spatial resolution and 3-hour timely intervals (Weedon 

et al., 2014). WFDEI has been widely used in the LSM-based studies (Pinnington et al., 2018) 

and sensitivity analysis on the MRB by Kabir et al., (2022) suggests that WFDEI reproduce 

observed hydrological fluxes and states including streamflow, terrestrial water storage (TWS), 

and soil moisture in the MRB better than many other high-resolution climate forcing datasets. 

We utilize the International Geosphere-Biosphere Programme (IGBP) soil data to define soil 

characteristics at different soil layers. 

We utilize the Global Map of Irrigated Areas version 5 (GMIAv5) (Siebert et al. 2015) 

for circa 2005, available at 0.083° spatial resolution (Figure 3-2) to specify the contribution of 

groundwater to total irrigation water withdrawals. In the MRB, fractional groundwater 

contribution varies substantially, ranging from 0-25% and with most groundwater irrigation areas 

found in northern Thailand (Figure 3-1 and Figure 3-2). Irrigation is predominantly surface water 

based in other parts of the basin. The equilibrium water table depth (i.e., climatologic mean that 

represents the long-term balance between the climate-driven recharge and the topography-driven 
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lateral flow) (Fan et al., 2013), aggregated to 0.05° resolution, is used to initialize the water table 

depth in CLM5 to reduce the spin-up period (Zeng et al., 2018). We use observed streamflow 

data from the Mekong River Commission (MRC) to validate streamflow simulations at six 

gauging locations across the basin.  

 

Figure 3-2. Groundwater contribution (in the percentage of each grid cell area) to the total 

irrigation water withdrawal based on the Global Map of Irrigated Areas Version 5 (GMIAv5) 

dataset (S. Siebert et al., 2015). The map shows the data for 2005.  

To validate TWS, we use monthly Gravity Recovery and Climate Experiment (GRACE) 

data: two mass concentration (mascon) solutions from the Center for Space Research (CSR) 
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(Save et al., 2016) at the University of Texas at Austin and Jet Propulsion Laboratory (JPL) 

(Watkins et al., 2014) at California Institute of Technology are used. To validate soil moisture, 

we use the data from Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et al., 

2015); ground-based soil moisture data are not available for the MRB. There are no basin scale 

data available to reasonably validate simulated groundwater table. Thus, we used the synthesized 

data by digitizing the data published in the previous literature (Tiwari et al. 2023).   

3.4 Experimental Settings  

We conduct four simulations with varied settings and time periods (Table 3-1) over the 

MRB at 0.05° spatial resolution (~5 km). First, a multi-decadal simulation is performed without 

considering irrigation and pumping (i.e., natural state), referred to as the control (CTRL) 

simulation. This simulation is used to investigate the MRB's natural groundwater dynamics and 

its climatic and physiographic controls.  

Table 3-1: Experiments and model configurations. 

Simulation Irrigation Pumping  Irrigation Water  

Source 

Groundwater  

Use  

Simulation 

Period 

CTRL No No No Irrigation 0 1979-2016 

CTRL_SW Yes No Surface Water 0 1979-2016 

Sim_GWSW Yes Yes Surface and 

Groundwater  

GMIAv5  2000-2016 

Sim_GW Yes Yes Groundwater 100 %  2000-2016 

 

Then, we conduct three additional simulations with varying irrigation water use scenarios 

to investigate the role of irrigation and groundwater pumping in perturbing groundwater 

dynamics. The CTRL simulation is first spun up for 100 years by using WFDEI forcing data 

repeatedly for the year 1979. (Rodell et al., 2005). The CTRL simulation is performed without 
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activating irrigation and pumping. The CTRL_SW is based on CTRL but activating irrigation 

where full irrigation demand is met from surface water sources. Sim_GWSW is based on CTRL, 

with irrigation and groundwater pumping activated for conjunctive use from surface and 

groundwater. Sim_GW simulation represents a situation where the irrigation demand is met 

solely from groundwater. Since widespread irrigation in the MRB began in the 1990s, we 

conduct Sim_GWSW and Sim_GW simulations for a shorter period beginning in 2000. Head-

based lower boundary condition and lateral flow are active in all simulations. The experiments 

are designed to capture the natural groundwater dynamics of the MRB and the potential 

consequences of anthropogenic impacts such as irrigation and groundwater pumping.   

3.5 Results  

 Surface and Subsurface Water Variations  

Comparison of the simulated monthly streamflow with observations at six gauging 

stations across the LMRB indicates that the model performs well in capturing the temporal 

dynamics of streamflow and its seasonality (correlation coefficient ranges between 0.8-0.99 and 

NSE ranges between 0.7 to 0.95 across various stations). Given minimal precipitation during the 

dry season in the MRB (Hung et al., 2012; Y. Pokhrel, Burbano, et al., 2018; Sun et al., 2021), 

groundwater discharge is arguably the primary contributor to streamflow, particularly during this 

period. Thus, and given that no extensive basin-wide data exist for a direct groundwater 

validation, we focus on the evaluation of low flow indicators that serve as a proxy of 

groundwater discharge (i.e., baseflow) simulations (Pat J.F. Yeh & Eltahir, 2005) along with a 

limited validation of simulated water table anomaly with observations. In general, flows having 

85, 90, and 95 percent exceedance probability, i.e., Q85, Q90, and Q95, respectively, are 

simulated reasonably well across all stations (Figure 3-3a-f). The mean percent deviation (MPD) 
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of simulated and observed Q95, Q90, and Q85 ranges between 4-8%, 1.5-10%, and 1.5-11%, 

respectively. These comparisons of annual and low flows as well as the temporal patterns 

suggest that the model reasonably simulates low flow, hence the underlying groundwater 

discharge or baseflow generation.  

The temporal pattern of the simulated groundwater table anomaly represents a 

comparatively stable trend, unlike the observed water table changes in the MRB that depict a 

continuous decline from 2007 to 2016. Nevertheless, the model captures the declining trend of 

water table depletion, including some of the major water table decline in 2010 and 2014 despite 

certain discrepancies in the magnitude (Figure 3-3i-k). The model also captures some of the 

observed water table recoveries (Figure 3-3k). The findings indicate that the model can 

reasonably capture the observed groundwater anomaly, the seasonal and inter-annual dynamics 

of groundwater changes. We note that a direct comparison between the water table derived from 

a 5 km model grid and very limited point-scale observations is not fully compatible; thus, these 

evaluations should be interpreted with sufficient caution. Further, there could be added 

uncertainties due to climate forcing particularly precipitation (Kabir et al., 2022), subsurface 

parameterization and insufficient representation of the groundwater irrigation areas that can lead 

to underestimation of water table decline. Most importantly, the validation locations are 

predominantly located in the Mekong Delta, where groundwater can be influenced by sea water 

intrusion and tides, factors currently not accounted for in the model. However, due to high data 

paucity (e.g., lack of basin-wide, continuous monitoring of groundwater levels), this is the only 

viable evaluation of our simulations in addition to the validation of discharge and TWS (Figures 

3-3 and 3-5). Given complex topographic features across the MRB, use of a global-scale LSM, 
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and limited data to constrain process simulations, we consider these results to be satisfactory to 

study groundwater processes over the MRB.  

 

Figure 3-3. Evaluation of simulated monthly streamflow (1979-2016) at six mainstream gauging 

stations in the LMRB: VT (Vientien), NP (Nakhon Phenom), KC (Kong Chiam), PA (Pakse), ST 

(Stung Treng), KP (Kampong Cham). The station locations are shown in Figure 3-4. The 

zoomed boxes in panels a-f depict the low flows for each station. The six subplots in the upper 

right panels represent a comparison of seasonal cycle of observed (black) and simulated (red) 

streamflow. Results presented here are based on Sim_GWSW simulation (see Table 3-1).  

Panels (g-k) show the comparison of the simulated water table anomaly with the observation 

(red: simulation; black: observation). Note that the mean of all available well heads within a 

given grid cell is used for a relatively consistent comparison of point data and grid-based 

simulations.  
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Figure 3-4. Mean annual streamflow across the MRB from Sim_GWSW simulation (Table 1 in 

the manuscript: simulation with irrigation water sourced from both surface and groundwater). 

Streamflow validation station locations are shown as red hexagons and observation well locations 

are shown as blue circle. Mean well head (wells that located in a single grid cell) is used for 

validation.  

Similar to streamflow, CLM5 well simulates the temporal variations of basin averaged 

TWS anomaly (Figure 3-5). It is evident from Figure 3-5 that the temporal variability is 

accurately reproduced along with the historical dry-wet transitions compared to GRACE 

observations (i.e., shaded areas in Figure 3-5). The good agreement with GRACE is evident not 

only visually but also statistically as indicated by a high R2 (0.96) and low root mean square 

error (RMSE) (21.2 mm). However, the model did miss some of the events, such as in 2002 and 

2011—two notable flood years in the MRB (Chinh et al., 2016; Dushmanta et al., 2007), and the 
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simulated peak is slightly underestimated. Some of these underestimations and discrepancies are 

likely caused by missing representations of floodplain storage, particularly in the LMRB (Y. 

Pokhrel et al., 2018).  

We find that subsurface storage plays a critical role in modulating the total TWS 

variations and hence the hydrology of the MRB (Figure 3-5a-b). Notably, subsurface storage 

accounts for ~81% of TWS amplitude, while groundwater anomaly explains 65% of the TWS 

anomaly in the MRB (subtracting soil moisture anomaly from the TWS anomaly). About 15% of 

the seasonal TWS amplitude is explained by surface water storage (Figure 3-5, pie chart), in line 

with the findings of previous studies (Y. Pokhrel, Shin, et al., 2018b) that reported this 

contribution to be ∼13% based on a global LSM HiGW-MAT that is similar to CLM5 in process 

representation. Because GRACE provides the vertically integrated total TWS, not individual 

components, groundwater and surface water contribution could not be individually validated, and 

there are no other similar modeling studies for the entire MRB to cross-compare these individual 

TWS components. The comparison of seasonal TWS anomaly with GRACE data reveals that the 

overall seasonal variation is simulated reasonably well (Figure 3-5c-j). Furthermore, the broad 

spatial pattern of the basin wide seasonal TWS anomaly is consistent with the GRACE data. 

However, some discrepancies are evident in the LMRB, likely due to uncertainty in precipitation 

(Kabir et al., 2022) in addition to model parameterizations. The ability to perform a more in-

depth comparison with GRACE data is limited because of the inconsistency in spatial resolution 

between model and GRACE data.  
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Figure 3-5. Comparison of simulated and GRACE-based monthly terrestrial water storage 

anomaly averaged over the MRB for the 2002–2016 period (a). Simulated surface (river storage 

and snow) and subsurface water storage and its components (top 2m soil moisture) are also 

shown. Individual components of surface water storage include water stored in rivers, small sub-

grid scale water bodies, snow, and canopy. In contrast, subsurface water storage includes water 

stored in the soil column as soil moisture and groundwater. The right panel (b) shows the 

seasonal cycle. R2 and RMSE are shown in the right panel. Yellow and green shades highlight 

dry-wet contrasts. Panels c-j present the spatial variability in the seasonal average of terrestrial 

water storage anomaly from simulation and GRACE data for the same period. Results presented 

here are based on the Sim_GWSW simulation. 
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Figure 3-6. Comparison of simulated and SMAP based mean seasonal soil moisture (Entekhabi et 

al., 2015) on top 5 cm soil layer for year 2016.  

We further compare simulated soil moisture with SMAP observations (Figure 3-6). Broad 

arid and humid contrasts of the soil moisture across the basin are reasonably reproduced in the 

simulation. There are, however, some disagreements in the wet season (September-November), 

likely due to precipitation uncertainty (Kabir et al., 2022) or uncertainties in SMAP data (e.g., 

vegetation cover affects SMAP signal) (Colliander et al., 2020; Ma et al., 2017). These 

evaluations of TWS and soil moisture indicate that CLM5 simulates the subsurface 

hydrodynamics of the MRB reasonably well and could be used to examine the mechanistic 

interactions of the groundwater processes. Additionally, dominance of subsurface storage 
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variation on TWS anomaly indicates a strong control of groundwater in MRB's water cycle and 

hence highlight the importance of improving groundwater processes understanding.  

 Groundwater Flow Patterns and Drivers  

Simulated annual average groundwater recharge in the MRB has distinct spatial 

variability, ranging from less than 100 mm/yr to over 1,000 mm/yr, with recharge rates generally 

decreasing from the UMRB to the LMRB (Figure 3-7a). High recharge rates are simulated in 

regions (deep blue color in Figure 3-7a) where precipitation rates are generally high. Laos and 

Vietnam are two such regions with high groundwater recharge and discharge rates. Some regions 

in the LMRB’s floodplains are evident with net negative groundwater recharge (capillary rise) 

likely under shallow groundwater conditions, i.e., groundwater responds to soil moisture stress 

and contributes to evapotranspiration (ET). As expected, groundwater discharge follows similar 

spatial patterns of recharge (Figure 3-7b). However, some areas with high recharge and low 

discharge rates are simulated (zoomed boxes in Figure 3-7a and 3-7b), suggesting that small-

scale variations in soil characteristics and topographical factors govern regional groundwater 

flow and redistribute recharge spatially.  
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Figure 3-7. (a) Annual average groundwater recharge (Rs), (b) groundwater discharge (Qg), and 

(c) groundwater discharge to recharge ratio (Qg/ Rs) for the 1979 to 2016 period. Qg/Rs <1 

indicates groundwater contributor areas shown by different shades of blue, whereas Qg/Rs >1 

marks groundwater receiver parts of the basin in different shades of red. The bottom panel (d) 

shows recharge (Rs) and precipitation (P) climatology for the same period. The results presented 

here are based on CTRL simulation.  

To provide further insights on relatively smaller scale processes and responses, we 

examine the basin-wide recharge to precipitation (Rs/P) ratio (Figure 3-8a) and surface and 

subsurface fluxes in different regions across the MRB (Figure 3-78-m) that represent diverse 

topography, climate, soil, and vegetation characteristics. High precipitation during the wet 

season (June - September) is observed in locations b, c, and e. Similarly, high recharge and 

groundwater discharge are evident in these regions, with similar magnitude and climatological 
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patterns. These regions in the UMRB are dominated by dense natural vegetation (Figure 3-9) and 

sandy soil deposits (~60 % sand content) (Figure 3-10) that favor precipitation infiltrating and 

generating high groundwater recharge (Figures 3-7b-d). Thus, high Rs/P (i.e., Rs/P between 40-

50%) is observed (Figures 8b-d). In addition to soil and vegetation characteristics, the high 

climatic and topographic gradient affects groundwater flow that drives discharge to the 

surrounding valley regions. However, there is no linear correlation between groundwater 

recharge and discharge with the topographic slope. Other possible factors, such as low water 

table gradient and relatively homogeneous soil texture (dominated mainly by sandy soil deposits) 

(Figure 3-10), affect direct recharge and discharge impeding regional groundwater flow.  

In contrast, relatively downstream towards the LMRB (Figure 3-8f-g), Rs/P is rather high; 

however, relatively low discharge indicates possible control of local- to regional-scale 

groundwater flow. Topographic slope, soil characteristics, and water table gradient are likely to 

affect the divergence of groundwater discharge (Figure 3-8f-g). Furthermore, more 

heterogeneous soil composition is observed in these regions (Figure 3-10), which acts as the 

critical factor in controlling groundwater flow. For example, in the intermediate soil layers 

(Figure 3-10, layers 6-10), there is more heterogeneity in soil texture to impact groundwater flow 

paths. Relative control of regional flow owing to differences in topographic slope as well as 

heterogeneous medium (soil characteristics) is evident in the mountainous regions in the MRB 

(Figure 3-8e-g).  
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Figure 3-8. Spatial distribution of annual average recharge to precipitation ratio (Rs/P) (a), 

climatology of precipitation (P), groundwater recharge (Rs), surface runoff (Qs), groundwater 

discharge (Qg) and Rs/P for different locations across the basin are shown in panels b-m. Locations 

are indicated in panel a (black hexagon). The results presented here are based on CTRL simulation 

for the 1979-2016 period. Locations b, c, and d exemplify topographically complex regions (high 

variations in topographic slope) in the northern mountainous areas with moderate to high 

precipitation. Locations e, f, and g illustrate a high permeability zone with intense precipitation. 

Conversely, locations h, i, and j have low permeability in the flat floodplains in the MRB around 

the TSL region. Lastly, locations k, l, and m represent the Mekong Delta.     
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Figure 3-9. Two dominant land cover types (natural vegetation and crop shown are as percentage 

of each grid cell area. Data are taken from the Land Use Model Intercomparison Project (LUMIP) 

(D. M. Lawrence et al., 2016).   
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Figure 3-10. Sand and clay content of 10 soil layers. First two rows represent sand content and 

next two rows represent clay content of the soil. Dataset is based on the International Geosphere-

Biosphere Program (IGBP) Task GSD (2014).   

Farther downstream in the LMRB floodplains (Figure 3-8h-j), Rs/P is relatively low, in 

the order of ~10%, likely because the soil composition (alluvial clay is ~60% of the soil 

composition) inhibits quick percolation and recharge. Precipitation intensity is moderate in the 
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LMRB floodplains. Also, in the wet season, relatively high soil moisture in the LMRB (Figure 3-

6) can create soil saturation near the surface that virtually makes the soil impermeable and cause 

less recharge than in other regions (Figure 3-8b-g). In addition, there is consistently high ET that 

leads to low groundwater recharge in comparison to the amount of water that infiltrates into the 

soil (Figure 3-11). Therefore, despite the high or moderate precipitation rate, a relatively low 

recharge rate is evident. Thus, soil characteristics has a critical control over the groundwater flow 

in the LMRB floodplains. Besides, the low gradient in the water table influenced by flat 

topography in the LMRB floodplains controls the groundwater flow in this region. Rs/P varies in 

the Mekong Delta ranging from 0.2 to 0.4. Like the floodplain in the LMRB, high clay content in 

the soil inhibits groundwater recharge in the Mekong Delta. One primary reason for low recharge 

could be the presence of shallow clay layers (Figure 3-10), which act as a confining layer 

limiting recharge. Similar findings in the Mekong Delta have also been reported by (Tu et al., 

2022). Overall, climatic, and physiographic conditions, along with soil characteristics, play a 

crucial role in governing recharge and discharge. We note that we do not simulate the effects of 

dams and reservoirs that could influence groundwater recharge in the areas with substantial 

water impoundment.  

The ratio of basin-wide discharge to recharge (Qg/Rs) provides further insight into the 

groundwater flow pathways and the impacts of the basin-wide water budget. A vast majority of 

the basin area (indicated as different shades of blue color in Figure 3-7c) is a groundwater 

receiver, suggesting that groundwater a dominant component of the basin-wide water budget in 

the LMRB. Overall, groundwater recharge and discharge zones follow the MRB's north-to-south 

and east-to-west topographic and climatic gradients.  
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 Climatic Control of Groundwater Flow  

High recharge and discharge zones are generally located in areas with high annual 

precipitation and are strongly influenced by precipitation climatology. Basin averaged recharge 

rate peaks above 100 mm in August, the middle of the wet season in the MRB (Figure 3-7d and 

Figure 3-11). In contrast, recharge drops below 40 mm during the onset of the dry season in 

November. About 73% of annual recharge occurs between July and September, during which 

40% of annual precipitation occurs (Figure 3-7e). Precipitation and recharge in the basin are 

highly correlated (R2=0.71), suggesting a strong climate control on groundwater variations. 

Across the basin, the average recharge-to-rainfall ratio is 34% annually and substantially higher 

during the wet season (~52%) than during the dry season (~6%), indicating that rainfall 

seasonality plays a crucial role in governing annual groundwater recharge. Therefore, wet-season 

rainfall substantially contributes to groundwater replenishment and can potentially buffer 

subsurface storage during drought. This is well studied and known in the Amazon River basin  

(Miguez-Macho & Fan, 2012a, 2012b; Yadu N. Pokhrel et al., 2013; Yadu N. Pokhrel, Fan, et 

al., 2014) but remains largely unexamined in the MRB.  

 Role of Groundwater in Surface Water Dynamics and Governing Drivers 

Groundwater discharge over the MRB is simulated to be ~401 mm/yr, accounting for 

over 50% of annual river discharge (Figure 3-8). Groundwater recharge and discharge peaks 

occur during the wet season with a 1-2 month delayed and dampened response to precipitation 

(Figure 3-8b-h and Figure 3-11). A shorter time lag between precipitation and infiltration is 

observed in the UMRB, which is characterized by sandy soil deposits that enhance rapid 

infiltration particularly during heavy rain events. Generally, we observe longer response time and 

high spatial variability toward the LMRB alluvial floodplains (Figure 3-11). Groundwater 



81 

 

recharge and discharge have a 2-3 month delayed response to infiltration and precipitation in the 

LMRB, allowing groundwater recharge to carry over to the subsequent season and acts as a 

critical source of baseflow to rivers to maintain dry season flow. Also, comparable magnitude of 

basin-scale groundwater discharge and total runoff over the entire dry period (November-May) 

further underscores that groundwater supports the bulk of the total streamflow and its seasonal 

variation essentially governs surface water fluxes (Figure 3-11). Further, a substantially higher 

negative Rs/P during the dry season (Figures 3-8f and 3-8i) suggests that groundwater storage 

significantly contributes to augmenting soil moisture and ET. Particularly in the LMRB, some 

regions are evident where a negative Rs/P ratio is observed for consecutive 3-4 months after the 

offset of the wet season in September (Figure 3-8e-g), suggesting that groundwater responds to 

soil moisture deficit for a considerable period when precipitation is low. Basin-wide negative 

recharge during December to May further indicates that groundwater acts as a basin-wide soil 

moisture buffer to support dry season soil moisture and ET (Figure 3-11) implying that 

groundwater dynamics has a far-reaching influence on the water and energy cycle in the MRB.  

Overall, the interaction between groundwater and surface water in the MRB is regulated 

by a complex set of drivers, including seasonal variations in precipitation, soil properties and 

topography. The impacts of human activities, such as irrigation and groundwater pumping, are 

discussed in the later section. Notably, the results are simulation-based and depend on a variety 

of model parameterizations such as soil layer configurations, subsurface parameterizations, and 

input datasets used all of which are subject to certain degree of uncertainty, which all can affect 

simulation outcomes. However, our results provide detailed insights on the different groundwater 

processes from surface (infiltration) to the subsurface (groundwater discharge), leading to a 
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mechanistic understanding on the dynamic interactions among the tightly coupled surface water-

groundwater processes across the MRB. 

 

Figure 3-11. Spatial variability of the monthly mean precipitation (P), Infiltration (If), ET, 

groundwater recharge (Rs), groundwater discharge (Qg) and total runoff (QT) rates for the 1979-

2016 period.  The vertical panels represent different months.  

 Groundwater Flow Impacted by Aquifer Pumping   

Finally, we examine how increased groundwater pumping for irrigation impacts 

groundwater systems in the MRB. We specifically quantify the changes in groundwater flow and 

water table depth caused by increased aquifer pumping for dry season irrigation. We focus on the 

Mekong Delta region that accounts for the majority of irrigated crops and where widespread 
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irrigation is increasing in recent years; in other parts of the MRB, agricultural systems are mostly 

rainfed. The simulated annual irrigation demand in the MRB varies from ~25 to over 250 mm 

(Figure 3-12a). In some portions of the Mekong Delta, irrigation demand is relatively high, for 

example, up to 200 mm/yr (Figure 3-12a), and these results are consistent with previous 

estimates reported in global scale studies for year 2010 (Wada et al., 2016).  

 

Figure 3-12. Mean annual irrigation demand simulated for the 2000-2016 period (a). Groundwater 

withdrawal for irrigation (b) (red box in panel (a)), and lateral groundwater flow from CTRL (c) 

and Sim_GW (d) simulations over the Mekong Delta. Panel (c) and (d) share the same color 

bar. Units are indicated next to the color bars. Note that the groundwater supplied fraction of 

irrigation water demand is used around the year 2005 and made consistent throughout the 

simulation period of 2000-2016.   

Irrigation validation could be further enhanced by using satellite-based datasets (i.e., 

Brocca et al., (2018); Koch et al., (2020)). However, our results should be interpreted with 
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caution because of possible uncertainties arising from the uncertainty in climate forcing and 

irrigation datasets used. Further, there could be under-representation of the recent irrigation 

development that is likely to cause an underestimated groundwater withdrawal. A more in-depth 

evaluation is not possible because of the lack of spatially explicit datasets on irrigation 

withdrawals in the MRB.   

Irrigation-pumping imposes a water table gradient, causing up to half a meter of water 

table decline in the Mekong Delta (Figure 3-13a).  In general, when averaged over a long period, 

the simulated effect of groundwater pumping is not substantial even in the Mekong Delta, 

especially in comparison to that in other major agricultural regions worldwide. This is so even 

when irrigation demand is met from the groundwater resource (i.e., Sim_GW simulation). Since 

irrigation development in the MRB is relatively recent (i.e., it started a few decades ago), long-

term climate variability balances the pumping effects. However, widespread storage depletion is 

simulated in the Mekong Delta during the selected dry years (i.e., 2005 and 2015). The depletion 

is more than double in pumping cells in 2005 and 2015 compared to the long-term average water 

level decline and substantially large area of depletion is readily discernible (Figure 3-13b-c). 

Depletion reaches ~1m at the center of the Mekong Delta and ~0.5 m at the borders during 2005 

under the increased influence of groundwater pumping (Sim_GW simulation). These results are 

consistent with previous estimates reported by regional scale studies on the Mekong Delta, 

although the simulated absolute depletion may be underestimated because the information on the 

recent increase in groundwater pumping for irrigation (Minderhoud et al., 2017, 2020) is not 

accounted for in our model.  

Water table gradient induces a shift in groundwater flow in the Mekong Delta (Figure 3-

13b-c), notably during dry years. The decline in water table (Figure 3-13b) drives large flow 
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towards the pumping cells from the surrounding, resulting in an increase in groundwater 

discharge in the neighboring cells (in Sim_GW simulation) (positive difference) compared to the 

CTRL simulation (Figure 3-13e-f). Such pumping-induced alterations of groundwater dynamics, 

particularly during dry years, imply that groundwater depletion in the Mekong Delta could be 

exacerbated if prolonged droughts were to occur in the future. 

The change in lateral groundwater flow (based on signs) further signifies the growing 

influence of irrigation and pumping on the region’s groundwater systems (Figure 3-12c-d). For 

instance, red cells in Figure 3-12c (lateral outflow) turn blue (lateral inflow) due to the pumping-

induced head gradient that triggers a substantial lateral flow towards the cone of depression (red 

blob, Figure 3-13b). Overall, the lateral flow is not substantial compared to the individual cell’s 

water budget at the spatial resolution at which all the simulations are conducted (0.05°). In 

general, groundwater withdrawals are likely to be unsustainable in the Mekong Delta if irrigation 

and pumping continue to expand in the future. Notably, the model shows promising potential to 

simulate irrigation and its influence on groundwater, and in identifying depletion hotspots. 

However, it is important to note that local scale phenomena such as cone of depression resulting 

from pumping-induced water table gradient may not have been captured adequately at the 

current spatial resolution (i.e., 5 km).  
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Figure 3-13. Differences in water table depth and groundwater discharge between CTRL and 

Sim_GW simulations (see Table 3-1) for three different time windows (i.e., differences in long-

term mean and two dry years of 2005 and 2015). Note that the mean represents the 2000-2016 

period. Top row shows differences in water table depth (a, b and c) and bottom row shows 

differences in groundwater discharge (d, e and f). The color bars differ among top and bottom 

panels. Top color bar represents change in water table depth with larger positive values indicating 

a deeper water table (i.e., a decline) in Sim_GW simulation. Bottom color bar represents change 

in groundwater discharge (positive values indicate an increase in Sim_GW simulation).  

3.6 Conclusion 

This study examines groundwater mechanisms, governing processes, and the interactions 

between groundwater and surface water under natural conditions and anthropogenic influences 

over the MRB using a fully process-based LSM with improved groundwater representation that 

accounts for lateral groundwater flow and aquifer pumping. Results are first validated with 

observed streamflow, water table, GRACE-based TWS, and SMAP-based soil moisture data, then 

used to examine groundwater flow processes across the MRB, the governing mechanism, and the 
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effects of increasing irrigation activities on groundwater systems in the LMRB. The following 

summarizes the key findings of the study. 

First, groundwater flow in the MRB exhibits high spatially heterogeneities, driven by a 

combination of factors including regional topography, climate, and local or regional scale 

subsurface characteristics. The climate (precipitation intensity and seasonality) has a first-order 

control on recharge and discharge variations across the basin. Further, regional subsurface 

characteristics dominantly control the recharge dynamics, especially in the LMRB. Second, in the 

LMRB, groundwater is the dominant source of streamflow, and its spatial variation and seasonality 

strongly modulate surface water dynamics; in some regions, groundwater perennially feeds 

streamflow. This mechanism is highlighted using an in-depth analysis over selected regions across 

the MRB with varying climatic, hydrologic, and geologic characteristics. Third, groundwater 

storage acts as a hydrological buffer and contributes substantially to soil moisture and ET for a 

considerable period of the year. These findings suggest a strong control of groundwater dynamics 

on the MRB’s surface water and energy balances, with potential implications of perturbing the 

natural groundwater dynamics on surface water and energy fluxes. Fourth, groundwater use for 

irrigation has not had notable impact on groundwater dynamics over the long term, but the model 

simulates a region-wide storage depletion in the Mekong Delta during dry years, resulting in a 

shift in groundwater dynamics, also altering the magnitude and direction of groundwater discharge 

and lateral flow.  

We note that our results are based on model simulations and may include uncertainties 

arising, for example, from forcing data, model resolution and imperfect groundwater 

parameterizations. Thus, the results should be interpreted with caution particularly for local scale 

implications of groundwater depletion hotspots and cone of depression. Further, the irrigation 
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and groundwater data we used are from global databases, which may not include the most recent 

developments in groundwater irrigation, potentially underestimating the irrigation-induced 

changes in groundwater in the Mekong Delta. Our study offers a detailed discussion on the 

natural groundwater dynamics in the MRB as well as the potential impacts of irrigation 

development and groundwater withdrawal. A more comprehensive understanding of the 

groundwater dynamics in the MRB could require consideration of dams and reservoir operation 

and inclusion of local scale irrigation practices in the simulation, which forms a potential avenue 

for future research. Future studies could address these limitations by further refining model 

parameterizations, improving process representation, and using any new datasets. Despite certain 

limitations, this study provides the first results on groundwater modeling for the entire MRB and 

by using a process-based LSM that includes a prognostic groundwater scheme and aquifer 

pumping for irrigation. Our study also advances groundwater modeling capabilities in data-

limited regions such as the MRB.   
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4. Chapter 4. Analysis of Drought Recovery under the Influence of Climate 

Change and Human Impacts 

 

Based on: Kabir, T & Pokhrel, Y. (2023). Drought recovery under climate change and human 

impacts, Geophysical Research Letter. [Under Preparation] 

 

4.1 Introduction 

Drought recovery—a complex and multi-faceted process—influenced by a range of 

hydrological, ecological, and socio-economic factors (Jiao et al., 2021; Yang Li et al., 2023; L. 

Liu et al., 2019; Schwalm et al., 2017). Drought recovery refers to the time it takes for a system 

to bounce back to pre-drought conditions after a drought event (Guy Davidesko1,2, Amir Sagy1, 

2014; J. Wu et al., 2019, 2020). Understanding of the drought recovery can be extremely 

complex as recovery time can vary greatly depending on a range of factors such as soil moisture 

(Samaniego et al., 2013; Sheffield et al., 2004; Sheffield & Wood, 2008), precipitation patterns 

(A F Van Loon et al., 2014), vegetation dynamics and plant phenology (Yang Li et al., 2023), 

catchment characteristics (Anne F. Van Loon et al., 2016) and water management practices (J. 

Wu et al., 2018). Thus, it is difficult to accurately understand drought recovery time, particularly 

under changing climatic conditions and anthropogenic disturbances and study on drought 

recovery is largely limited. Alternately, increasing attention is given to the conventional 

assessment of droughts frequency, intensity, duration, and the likelihood of occurrence under 

varying climate change scenarios using a range of approaches, including remote sensing 

(Aghakouchak et al., 2015; Anne F. Van Loon et al., 2016; J. Wu et al., 2019), hydrological 

modeling (Elkouk et al., 2021; Y. Pokhrel et al., 2021), and data analytics (Jiang & Zhou, 2023; 

Mondal et al., 2023; Yin et al., 2023) and machine learning . These studies have advanced our 

understanding of the global risk of drought and demonstrate varying potential to enhance drought 
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preparedness and response efforts. Drought recovery, however, remains largely underexplored 

hindering our ability to adequately quantify drought risk across global regions (Peterson et al., 

2021; Sheffield et al., 2012; Wen Wang et al., 2016).  

The present understanding of drought is extremely limited and has generally focused on 

water deficits such as precipitation (Singh et al., 2021), terrestrial water storage deficit (Geruo et 

al., 2017; Long et al., 2013), and drought propagation (J. Wu et al., 2020) as opposed to the 

ability of the hydrological system to attain the pre-drought condition such as restoring 

groundwater recharge and runoff and surface water flow, etc. Drought characteristics have large 

variability that is unique in terms of severity, duration, and spatial extent, and traits of recovery 

are very likely to be different in different geographical and climatic settings (Yuting et al., 2017). 

Very few studies investigated recovery of record-breaking drought such as the California drought 

in 2014 (Alam et al., 2021; Yuting et al., 2017), and the millennium drought in southern 

Australia during 1997-2001. These studies suggest drought recovery time as a crucial indicator 

of drought risk assessment and provided in-depth insight into how drought risk can be 

exacerbated considering drought recovery time (Hao & AghaKouchak, 2013; Anne F. Van Loon, 

2015). However, such studies over the large domain or global scale are largely lacking, hindering 

our ability to fully understand global drought risk across different regions with varying climatic 

and geographic settings.  

Further, understanding of global drought recovery patterns are limited to vegetation 

restoration (Yang Li et al., 2023), gross primary production, and phenology development, a 

complex function of the terrestrial water cycle recovery and its components such as precipitation 

and soil moisture recovery. Studies that particularly investigated hydrological drought recovery 

linked precipitation recovery and ecosystem restoration time from the conventional belief that 
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watersheds always recover from drought when precipitation is recovered. However, divergent 

response of drought to precipitation recovery exists and evidence suggests that drought recovery 

is not simply a function of precipitation recovery. The watershed in southern Australia is the best 

example of one such region that didn’t recover fully and many parts of the watersheds didn’t 

show any sign of recovery even though precipitation is recovered (Peterson et al., 2021). Other 

studies suggested that there are time lags in recovery of the terrestrial water cycle components; 

for instance, in comparison, the recovery of baseflow exhibits a longer time lag than the recovery 

of streamflow.  

Also, understanding recovery can largely vary upon the scale of analysis, and it is crucial 

to understand at which scale recovery is locally relevant. Some studies acknowledged the necessity 

of studying drought recovery, providing a framework for drought recovery study. Yet no notable 

studies examined historical trajectories of drought recovery and the likelihood of different climate 

zones and biodiversity hotspot recovering from historical droughts. This knowledge gap is 

particularly challenging given the expected increase in frequency and intensity of droughts due to 

climate change. Studies suggested that many regions have experienced prolonged drought and 

more short-term drought before approaching to recovery state. Without a thorough understanding 

of the recovery process, we risk underestimating the long-term effects of droughts and developing 

inadequate response measures.  

In addition, the increase in global temperature and the probability of multiple extremes 

such as drought and heatwaves are likely to occur substantially, and the cumulative effect in 

drought recovery is a crucial indicator of drought risk. Despite its significant impact, limited 

studies have focused on drought recovery and underlying mechanisms and drivers. Therefore, 

there is a need of comprehensive assessments of drought recovery mechanisms and their 
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interactions with other factors, such as climate change and global warming, land use change, and 

biodiversity loss, to systematically examine the global drought risk. Further, a substantial body 

of literature exists on the multi-model ensemble-based study of drought assessment, the 

spatiotemporal pattern of drought severity under current and future climate, and human impact 

scenarios using different drought indices. However, opportunities and challenges remain in 

further understanding drought and examining the resilience of hydrological systems to recover 

from repetitive drought events even before fully recovering from a short-term drought.  

Here we present a global assessment of drought recovery. To quantify drought recovery, 

we estimate drought recovery time in different climate zones globally over a historical timescale. 

By examining the global pattern of drought recovery, we identify regions of greater sensitivity to 

drought non-recovery and the areas that may have finite resilience to climate change and human 

impacts that lead to the persistence of longer drought duration and slow recovery. We provide a 

mechanistic understanding of the drivers that leads to longer recovery time. Here we quantify the 

post-drought recovery time of runoff (streamflow) at grid (0.5° spatial resolution) using a multi-

model ensemble study for historical periods. We focus on runoff as its sensitivity to drought is 

well documented, and its spatiotemporal patterns can be estimated in several ways. Simulations 

are conducted under the framework of the Inter-Sectoral Impact Model Intercomparison Project, 

phase 3a (ISIMIP3a; https://www.isimip.org/). We use the multi-model weighted mean of runoff 

indices, calculated by weighting the ensemble members on the basis of their continent-level skill 

scores of simulations of hydrological fluxes and storages. We address the following science 

question through this study: (1) How is drought recovery time affected by climate variability and 

human impacts on different global regions? (2) What is the impact of prolonged drought 

recovery time on ecosystem sustainability in various climate zones and biodiversity hotspots? 



93 

 

4.2 Methods 

 Model Simulation setting and Forcing Data 

We use simulated monthly discharge (0.5◦×0.5◦spatial resolution) for the period 1901–

2019 from five global hydrological models (GHMs): CWatM, H08, WaterGAP2-2e, HydroPy, 

and Jules-w2. All simulations are carried out under the modeling framework of phase 3a of the 

Inter-Sectoral Impact Model Inter-comparison Project 

(ISIMIP3a:www.isimip.org/protocol/#isimip3a). All models simulate the key terrestrial 

hydrological processes, including soil vegetation and river processes. GSWP3 meteorological 

forcing data is used to simulate the models participating in the ISIMIP3 protocols. The climate 

variables included in the forcing data are precipitation, air temperature, solar radiation (short and 

long wave), wind speed, specific humidity, and surface pressure, which are bias-adjusted and 

downscaled to 0.5° × 0.5° spatial resolution of the hydrology models. A comprehensive 

description of bias adjustment and downscaling can be found in the previous literature. An 

overview of the model characteristics of each of the GHMs, and the methods used to 

parameterize hydrological processes and human impact, can be found in table 4-1.  

Table 4-1. The main characteristics of the GHMs based on ISIMIP 3a used in the study. 

Abbreviations for five water use sectors that are represented in the model: Do (domestic), Li 

(livestock), In (industry), Ir (irrigation), Ma (manufacturing).  

Type Name Land use 

change 

Water use  Water regulations  

GHM H08 Annual Do, In and Ir Dams and reservoirs 

 WaterGap2-2e Static land use  Do, In, Ir, Li, and Ma Dams and reservoirs 

 HydroPy Annual crop 

fraction  

Ir No dams and reservoirs 

 CWatM Annual Ir No dams and reservoirs 

 Jules-w2  Annual   No dams and reservoirs 
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 Identification of Drought Events and Drought Recovery 

Hydrological drought events are identified based on standardized runoff index (SRI). SRI 

is calculated as follows: SRI =
𝑅𝑢𝑛𝑜𝑓𝑓−𝑚𝑒𝑎𝑛 𝑟𝑢𝑛𝑜𝑓𝑓

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. SRI < -2 indicates extreme drought 

condition. First, SRI is calculated at timescale of 1,6,9,12 months. Finally, 12-month SRI 

(SRI12) is used in the analysis for capturing long-term droughts disregarding short term 

fluctuations in runoff. SRI12 is smoothened by a 3-month forward moving window to smooth 

out short-term fluctuation and highlights the longer-term trends in drought severity. Drought 

recovery is defined as the duration (months) starting from the month from the SRI12 < -2 to the 

months when SRI bounce back to long term mean or SRI12 = 0 after drought events. A drought 

event and recovery that is fully contained between 1901-2019 is analyzed in calculating mean 

drought recovery time. For example, drought that started in 2016 and ends after 2019 is not 

considering in calculating mean drought recovery time. This may lead to possible 

underestimation of drought events. However, given that we are analyzing for a long historical 

timescale from 1901-2019, mean drought event and recovery time will not be substantially 

impacted. Finally, drought recovery time, recovery pattern and drivers are analyzed on various 

spatial scales. IPCC-SREX climate zones are identified to analyze drought over broad spatial 

scale. Alternately, some watershed and country scale analysis are performed to differentiate how 

drought recovery can vary over different spatial domains.  

4.3 Results and Discussions 

 Validation of Streamflow 

Figure 4-1 presents the combined assessment of streamflow simulation by various 

members of the GHMs ensemble at river stations chosen from eight hydrobelts across the globe. 

The ensemble member's simulation performance varies across different hydrobelts, 
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demonstrating better agreement with observations in BOR, EQT, NDR, NML, and NST, with 

high correlation and low RMSE. However, relatively weak agreement is observed in SDR and 

SST. Although the simulations perform well in general in the BOR hydrobelt, some 

inconsistencies are detected in Lena and Yenisei watersheds. Moreover, none of the simulations 

can accurately replicate the observed magnitude and timing of the streamflow peak in the 

Brahmaputra basin. Additionally, the simulations fail to capture the magnitude and timing of 

flow in the Colorado basin, possibly because they do not account for dams and reservoirs, which 

can impact the ensemble mean's performance. Nonetheless, all ensemble members perform well 

in the Amazon and Mekong basins, which are wet basins with significant rainfall throughout the 

year. Generally, a wide range of variability among ensemble members is observed in highly 

managed basins such as Mackenzie, Missouri, Colorado, and St. Lawrence, primarily due to 

varying water use and regulations parameterizations in the ensemble models. 
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Figure 4-1. Comparison of seasonal cycle of simulated and observed streamflow. The red line 

indicated the average simulated streamflow climatology, and the shaded region shows the 

distribution across all ensemble members. Black like indicates the observed streamflow obtained 

from the global runoff data centre (GRDC). Validation stations are chosen across eight hydrobelts. 

Hydrobelts are named: BOR= boreal, NML = northern mid-latitude, NDR= northern dry, NST = 

northern subtropical, EQT = equatorial, SML=southern mid-latitude, SDR = southern dry and SST 

= southern subtropical. 

 Validation of TWS 

To verify the models' ability to simulate storage variations in conjunction with 

hydrological flux such as streamflow, the TWS anomaly is compared to GRACE observations. 

The TWS validation includes all major watersheds. In general, all ensemble members perform 

well in replicating the seasonal dynamics and amplitude variations of TWS anomaly, with less 

variability observed in simulated TWS between ensemble members compared to streamflow 
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simulations. However, there are certain disparities in some river basins, such as Amur, Churchill, 

and Indus, which may be due to differences among ensemble members in their representation of 

water use and regulations and soil layer classification, leading to significant discrepancies 

compared to GRACE observations. 

 
 

Figure 4-2. Seasonal cycle of simulated and GRACE TWS anomaly for the selected river basins. 

The thick black line represents the mean of GRACE products from CSR and JPL mascon.  

 Variations of Simulated Fluxes and Storages  

The results show notable disparities in the simulated fluxes and storages across ensemble 

members (Figure 4-3, 4-4 and 4-5), which are attributable to differing model parameterizations 

and water management practices. Specifically, there are significant differences between CWatM 
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and the other models in terms of runoff, with CWatM producing higher runoff than the other 

models. Additionally, there are considerable discrepancies in the simulated ET, with CWatM 

exhibiting higher ET compared to all other models. This discrepancy in ET is likely due to the 

wet bias present in CWatM, which affects both soil moisture and ET simulation. 

 
Figure 4-3. Simulated streamflow from all ensemble model members.  
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Figure 4-4.  Simulated runoff from all model members.  
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Figure 4-5.  Seasonal ET variations from different ensemble model members. 
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  Drought Events and Spatial Pattern of Hydrological Drought Recovery Time 

 

Figure 4-6. Spatial pattern of drought recovery time. The figure shows the ensemble’s mean 

recovery time of selected models used in this study. Different SREX climate zones are shown in 

the map. 12-month SRI applied in recovery calculation to account for relatively long-term drought 

(see Methods – different time integration applied).  

Figure 4-6 depicts a prominent spatial pattern of drought recovery time across different 

regions. The recovery time tends to be longer in several zones, including SSA, CNA, WNA, 

CGI, SAH, TIB, and NAU. The northern high latitude, particularly the Russian far east and 

Alaska, experiences the longest recovery times. The Sahel region in the SAH zone and the NAU 

and SAU regions also exhibit longer recovery times over a large spatial extent. In very dry 

systems, recovery times increase with decreasing precipitation, while arid and semi-arid regions 

show the longest recovery times. This reflects a trend where regions with more precipitation 

experience a quicker recovery after drought events. Some regions exist having longer drought 

development time than recovery time. 
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Figure 4-7. Drought recovery time of different decades. A Thirty months moving forward window 

average method is applied to capture the long-term trajectories of drought recovery time.  

Overall, there is a substantial increase in drought recovery time across most of the 

climate zones including NEB, CEU, WNA. The increase in recovery time is particularly 

prominent post-1980, possibly due to the effects of climate change-induced alterations in 

precipitation patterns and surface temperature. Thus, climate change significantly affect the 

land's water budget, leading to a prolonged recovery time of drought events because of reduction 

in global runoff and streamflow.  

4.4 Conclusion  

This chapter employs a multi-model ensemble approach to investigate the drought 

recovery time across different climate zones and its drivers using five global hydrological 

models (H08, WaterGAP2-2e, CWatM, HydroPy, and Jules-W2) output within the modeling 

framework of phase 3a of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a). 

The chapter heighlights that recovery time is longest in water-limited regions and has exhibited 

an upward trend across all climate zones in recent decades. Results underscore the significant 

influence of climate as a key driver of drought recovery time, and highlight the critical need for a 
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comprehensive understanding of climate change and water availability across diverse global 

regions. 
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5. Chapter 5. Summary and Conclusion 

Despite significant progress in hydrological modeling, uncertainty remains regarding the 

ability of the models to capture the intricate behavior of various surface and subsurface 

hydrologic processes, and the impacts of land-water management practices when applied across 

varying spatial domain.  

In Chapter 2, the propagation of precipitation uncertainty into hydrological simulations 

over the Mekong River basin (MRB) is investigated using the Community Land Model version 5 

(CLM5) at a relatively high spatial resolution of 0.05° (~5 km). Simulations conducted using 

different precipitation datasets (reanalysis and satellite) are compared to investigate the 

discrepancies in streamflow, terrestrial water storage (TWS), and evapotranspiration (ET) caused 

by precipitation uncertainty. Results indicate that precipitation is a key factor impacting the 

accuracy of simulated streamflow in the MRB; the peak flow is particularly sensitive to 

precipitation input. Notable differences are also observed among TWS, soil moisture, and ET 

simulated using different precipitation products. Further, precipitation data with a higher spatial 

resolution did not improve the simulations, contrary to the common perception that using 

meteorological forcing with higher spatial resolution would improve hydrological simulations. 

The chapter provides crucial insights on precipitation-induced uncertainties in process-based 

hydrological modeling and uncovers these uncertainties in the MRB.  

In Chapter 3, CLM5 with an improved groundwater and irrigation parameterizations and 

with a better representation of irrigation areas is used to investigate the groundwater dynamics of 

the MRB. The chapter provides an in-depth understanding of various groundwater mechanisms 

in the MRB, focusing on groundwater flow processes that are modulated by climate variability 

and physiographic features, and primary drivers of groundwater-surface water interactions as 
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well as the influence of anthropogenic activities on groundwater dynamics. Overall results 

indicate high spatial heterogeneity in groundwater recharge and discharge across the basin 

governed by climate and subsurface characteristics. A pronounced seasonality is found in 

groundwater recharge due to precipitation, with substantial carryover to the consecutive dry 

season that modules soil moisture. Importantly, groundwater discharge is a dominant source of 

streamflow all year round, which suggests a strong surface water-groundwater coupling in the 

MRB. Finally, our results indicate that irrigation pumping is directly altering groundwater flows 

and storages; climate variability smoothens pumping effects over long times, but the model 

simulates region-wide groundwater depletion in the Mekong Delta during dry years. This chapter 

provides key insights on the evolving groundwater systems in the MRB, and also advancing 

process-based groundwater modeling capabilities.  

In Chapter 4, the drought recovery and its potential drivers are investigated using a multi-

model ensemble approach. Five global hydrological models (i.e., H08, WaterGAP2-2e, CWatM, 

HydroPy, and Jules-W2) under historical climate for the period 1901–2019 are used for the 

analysis. All simulations are carried out under the modeling framework of phase 3a of the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP3a). Hydrological drought recovery time 

(based on standardized runoff index) is investigated for different climate regions. Results 

indicate that drought recovery time is the longest in the water-limited regions and there has been 

a sharp upward trend in recovery time across all climate zones over the past several decades. The 

climate is a dominant driver that significantly affects drought recovery time. This chapter 

provides key insights on the drought recovery across global regions and highlights the 

importance of understanding climate change and water availability across different global 

regions.  
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