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ABSTRACT

The ever-increasing demand for data-hungry wireless services and rapid proliferation of wireless

devices in sub-6 GHz band have pushed the current wireless technologies to a breaking point,

necessitating efficient and intelligent strategies to utilize scarce communication resources. This

thesis aims at leveraging novel communication frameworks, artificial intelligence techniques, and

synergies between them in bringing efficiency and intelligence to the next generation of wireless

networks.

In the first chapter of this thesis, we propose a novel spectrum sharing scheme to address

spectrum shortage, a fundamental issue in current and future wireless networks. Our proposed

scheme enables transparent spectrum utilization for a small cognitive radio network by leverag-

ing two interference management techniques that are not reliant on inter-network coordination,

fine-grained synchronization, and knowledge about other occupants of the spectrum. We further

extend this idea in the second chapter of this thesis and enable concurrent device-to-device and

cellular communications in cellular networks where the base station and wireless devices exploit

interference management techniques to avoid causing interference to each other, making concur-

rent spectrum utilization possible for both cellular and device-to-device communications. In the

third chapter, to enhance spectral efficiency, connectivity, and throughput of Wireless Local Area

Networks (WLAN), we propose a non-orthogonal multiplexing scheme (NOMA). In our proposed

scheme, the access point (AP) is equipped with a novel precoder design and user grouping which

are tailored based on the requirements of power-domain NOMA. Also, a novel successive inter-

ference cancellation technique is designed for users which does not require channel estimation to

decode the signals and is more resilient to interference compared to the existing techniques.

The second part of this thesis focuses on taking advantage of artificial intelligence for solv-

ing communication and networking challenges and also taking advantage of novel communication



frameworks to let future wireless networks indulge intelligence-oriented networking and resource

management. In the fourth chapter, we propose a new solution to solve a long-standing issue ahead

of multi-user multiple-input multiple-output (MU-MIMO) communications in WLANs, which is

the large sounding overhead for acquiring the channel state information (CSI). Our learning-based

solution includes an automated mechanism that enables access points to collect, clear, and bal-

ance dataset, and also deep neural networks to compress CSI and reduce the airtime overhead

for channel acquisition. However, with provisioning concurrent MU-MIMO and orthogonal fre-

quency division multiple access (OFDMA) in the new generation of WLANs, not only the sound-

ing overhead problem becomes more acute, but it also marries with a complex resource allocation

problem which makes designing a practical enabler of MU-MIMO-OFDMA transmissions nec-

essary for WLANs. In the fifth chapter of this thesis, we propose DeepMux, which comprises

a deep-learning-based channel sounding and a deep-learning-based resource allocation both of

which reside in access points and impose no computational/communication burden on users, en-

abling efficient downlink MU-MIMO-OFDMA transmissions in WLANs. We finally design a

communication framework for accelerating federated learning in future intelligent transportation

systems, where heterogeneous capabilities and mobility of users along with limited available band-

width for communications are huge obstacles toward making the network intelligent in a distributed

manner. With the aid of a deadline-driven scheduler and asynchronous uplink multi-user MIMO,

our proposed solution reduces data loss at vehicles in a dynamic vehicular environment, making a

concrete step toward the practical adoption of federated learning in future transportation systems.
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Chapter 1

Introduction

The burgeoning demand for data-hungry wireless services and the proliferation of mobile devices

have pushed the current wireless technologies to a breaking point whereby the traditional ways of

deploying, operating, managing, and troubleshooting wireless networks are not efficient anymore.

Only Wireless Local Area Networks (WLANs) have connected more than 22.2 billion devices

around the globe [155], let alone tens of billions Internet of Things (IoT) devices [123] and smart-

phones [35]. The scarcity of spectrum and over-congestion of sub-6GHz band necessitate the

advent of more efficient and intelligent wireless networking and communication paradigms for the

next generations of wireless networks.

Efficient utilization of limited available resources and preservation of optimal performance at

scale are two indispensable requirements in next-generation wireless networks. However, these

two requirements are not easy to fulfill. First, if set to employ shared communication resources,

current wireless technologies compete for exclusive utilization and only consider their individual

performance [2, 67, 69]. Second, the performance of existing networking solutions may not scale

well or even may start setting back, as the number of users grows. In fact, excessive computational

complexity, adverse effect of interference, large communication overhead, and limited power bud-

get at Access Points (APs)/Base Stations (BSs) stations impede the scalability of networks.

In this thesis, we study how efficient communication frameworks, intelligent networking so-

lutions, and synergies between them help to fulfill the two aforementioned requirements. In what
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follows, we discuss our research scope in bringing efficiency and intelligence to wireless networks

and present the overview of this thesis.

1.1 Research Scope and Contribution

Our research scope is broadly categorized into two parts, efficiency and intelligence, both explor-

ing the opportunities for improving the performance of future wireless networks. As shown in

Figure 1.1, the first part of the thesis particularly focuses on the efficient utilization of the scarce

and over-crowded spectrum in next-generation wireless networks. It specifically aims at investi-

gating three problems and offers corresponding solutions as follows.

• Underlay Spectrum Sharing for Cognitive Radio Networks (CRNs)

• Transparent Device-to-Device (D2D) communications in cellular networks

• Non-Orthogonal Multiple Acess (NOMA) for WLANs

The second part of the thesis focuses on the synergy between Artificial Intelligence (AI) and

wireless communications. Our research efforts in this part follow two trajectories: i) leveraging

AI techniques for improving the functionality of wireless networks, and ii) leveraging wireless

communication and networking solutions to pave the way for making intelligence native to the

next generations of wireless networks. The problems we study in this part are as follows.

• Learning-based channel sounding for IEEE 802.11ac

• Learning-based channel sounding and resource allocation for IEEE 802.11ax

• A communication framework for Federated Learning (FL) in transportation systems

2



Figure 1.1: Overview of this thesis.

In the rest of this chapter, we explain our problems of interest and the shortcoming of existing

solutions to each in more detail. We also briefly describe our proposed schemes and their novelty

compared to state-of-the-art schemes.

1.1.1 Efficiency

The first part of the thesis intends to answer one important question; how to re-utilize the precious

spectrum for establishing new communications without adversely affecting the existing ones. This

question is explored in three different networking scenarios. In Chapter 2, we considered a very

heterogeneous environment where the spectrum is potentially being used by a variety of tech-

nologies that are likely unknown to the new spectrum occupant we intend to introduce. While

Chapter 2 focuses on a very generic scenario, Chapter 3 targets cellular networks and tailors a

specific solution enabling spectrum re-utilization in the context of D2D communications. It par-

ticularly leverages the capabilities of the BS as the central coordinator of the network and lays

the foundation of an interference management framework enabling D2D communications in the
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presence of regular cellular devices. Finally, Chapter 4 focuses on WLANs and investigates the

possibility of re-utilizing spectrum for a massive number of WLANs transmissions from a single

AP to many devices without causing co-channel interference. In what follows, we further elaborate

on the problems we intend to solve and the contributions of our proposed schemes.

1.1.1.1 Underlay Spectrum Sharing for Cognitive Radio Networks

Problem Statement and Existing Solutions. Sub-6 GHz frequency spectrum is very crowded

while being the main carrier for the data traffic in commercial wireless systems. The scarcity of

resources and rapid proliferation of devices are pushing the spectrum shortage issue to a breaking

point, necessitating the enhancement in the utilization efficiency of sub-6 GHz spectrum. One

promising solution is spectrum sharing in the context of CRNs. This cost-effective and immediate

solution to solve the spectrum shortage issue has been a long-standing subject of study and several

enablers have been proposed. The common concept among all the proposed enablers is co-channel

interference management among spectrum utilizers through various signal processing techniques,

such as spread spectrum [59], power control [91, 107, 175], and beamforming [49, 133]. Spread

spectrum handles interference in the code domain, and power control tames interference in the

power domain. Beamforming exploits the spatial Degrees of Freedom (DoF) provided by multiple

antennas to steer the secondary signals to some particular directions, thereby avoiding interfer-

ence for primary users. Compared to the other two techniques, beamforming is more appealing in

practice as it is effective in interference management. However, the existing beamforming solu-

tions are reliant on global network information and cross-network channel knowledge or reliant on

cooperation with other occupants of the spectrum.

Proposed Scheme. We propose a practical scheme to enable transparent spectrum sharing

[144] through two complementary modules, Blind BeamForming (BBF) and Blind Interference
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Cancellation (BIC). These two techniques enable a new occupant of the spectrum to mitigate

cross-network interference in the absence of inter-network coordination, fine-grained synchroniza-

tion, and mutual knowledge from other occupants. Unlike the existing solutions, our scheme is

not reliant on the momentary Channel State Information (CSI) nor seeking any coordination and

cooperation from the other occupants of the spectrum for interference management and adjust-

ing its transmission policy. We have built a prototype of our scheme on a wireless testbed and

demonstrated its compatibility with commercial Wi-Fi devices. Experimental results show that

our scheme is able to improve the spectral efficiency of CRNs by 1.1 bit/s/Hz in real-world wire-

less environments.

1.1.1.2 Transparent Device-to-Device Communications in Cellular Networks

Problem Statement and Existing Solutions. D2D communication is a promising technology

for cellular networks [204] to enhance their spectral efficiency. It allows direct communication

between two proximity-based mobile users without traversing the BS or core network. The ad-

vantages of D2D communications go beyond spectral efficiency. Saving the airtime at the core

network, D2D offers more airtime to the BS that can be leveraged to serve a massive number of

low-rate devices such as IoT sensors. It also can potentially reduce packet transmission delay, en-

hance user fairness, offload traffic for BSs, and alleviate congestion for core networks, especially

in networks congested by IoT devices [177]. Despite its potential benefits, a D2D system needs

to control co-channel interference and manage resources for competing users. In order for accom-

plishing these tasks, the enablers of D2D communications include beamforming [115, 165, 176],

spectral resource management [30, 84, 130, 160], power control [9, 10, 61, 62, 98, 160, 174], and

mode selection [15, 27, 60]. Most of existing works consider spectrum re-utilization in either up-

link (see, e.g., [10, 61, 98]) or downlink (see, e.g., [115, 165, 176]) of cellular networks, but not
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both. Moreover, most of the existing works require perfect global channel knowledge as well as

network-wide synchronization.

Proposed Scheme. We propose DM-COM [80], a practical scheme for enabling D2D com-

munications in cellular networks. The enabler of DM-COM is a new approach for managing the

mutual interference between the D2D and cellular devices, which does not require CSI and is,

therefore, amenable to practical implementation. It is also not restricted to only uplink or down-

link and is compatible with both modes of transmission in cellular networks. We have built a

prototype of DM-COM on a wireless testbed. Our experimental results show that using DM-COM

in a small cellular network, D2D users achieve 1.9 bit/s/Hz spectral efficiency, while MU-MIMO

users have less than 8% throughput degradation compared to the case without D2D users. Overall,

DM-COM improves the throughput of the network by 82% compared to the case whole traffic is

traversed to the BS.

1.1.1.3 Non-Orthogonal Multiple Access for WLANs

Problem Statement and Existing Solutions. NOMA allows multiple users to utilize the same

spectrum band for signal transmissions at the same time and, therefore, offers many advantages

such as improving spectral efficiency, enhancing resource allocation flexibility, reducing schedul-

ing latency, increasing cell-edge throughput, and enabling massive connectivity. Although a con-

siderable amount of research efforts have been made on the study of NOMA, most of them are

limited to theoretical exploration and performance analysis in cellular networks. Very limited

progress has been made so far in the development of practical NOMA schemes and experimental

validation of NOMA in WLANs. This stagnation reflects the challenges in the design of practi-

cal NOMA schemes and the engineering issues related to their implementations, such as channel

acquisition and precoding on the transmitter side and Successive Interference Cancellation (SIC)
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realization on the receiver side. Specifically, there is no research effort focusing on the pre-coding

design, user grouping, and SIC for WLANs. Moreover, there is no experimental validation of

NOMA for these networks.

Proposed Scheme. We propose a practical downlink NOMA scheme for WLANs [81] and

evaluate its performance in real-world wireless environments. Our NOMA scheme has three key

components: precoder design, user grouping, and a new SIC scheme. On the transmitter side, we

first formulate the precoding design problem as an optimization problem and then devise an effi-

cient algorithm to construct precoders for downlink NOMA transmissions. We further propose a

lightweight user grouping algorithm to ensure the success of SIC at the receivers. On the receiver

side, we propose a new SIC method to decode the desired signal in the presence of strong interfer-

ence. In contrast to existing SIC methods, our SIC method does not require channel estimation to

decode the signals, thereby improving its resilience to interference. We have also built a prototype

of the proposed NOMA scheme on a wireless testbed. This is the first experimental validation of

NOMA on a real WLAN testbed. Experimental results show that, compared to Orthogonal Multi-

ple Access (OMA), the proposed NOMA scheme considerably improves WLAN’s weighted sum

rate (36% on average).

1.1.2 Intelligence

The second part of the thesis focuses on both leveraging and domesticating intelligence in the next

generations of wireless networks. It first turns its focus on using AI techniques for solving intricate

networking and communication problems in WLANs. Second, as intelligent applications are in-

dispensable parts of future wireless networks, it endeavors to provide a communication framework

to make the intelligence native to these networks considering the application requirements and net-

working challenges. Particularly, Chapter 5 exploits the recent advances in Deep Learning (DL)
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to relax the excessive overhead of channel sounding in the current IEEE 802.11ac [67] WLANs.

If overhead is reduced, more airtime can be assigned for data transmissions, enhancing the overall

throughput of WLANs in Multi-User Multiple-Input Multiple-Output (MU-MIMO) mode. While

our proposed solution, LB-SciFi [79], effectively works for IEEE 802.11ac [67], it falls short in

IEEE 802.11ax [70] where MU-MIMO can be mixed with Orthogonal Frequency Division Multi-

ple Access (OFDMA). This marriage brings two challenges. It significantly scales up the channel

sounding. Also, to fully exploit the gain of MU-MIMO-OFDMA mixed mode, a complicated re-

source allocation problem needs to be solved in real-time. To address these challenges, a novel

technique beyond LB-SciFI is needed. We introduce DeepMux [82] in Chapter 6 to tackle these

issues.

Finally, Chapter 7 lies within the latter trajectory of the second part of the thesis, which is

the domestication of intelligence in wireless networks. We focus on Intelligent Transportation

Systems (ITS) and design an elaborate communication framework to facilitate the establishment

of Federated Learning (FL) in such a dynamic and heterogeneous wireless environment [78].

1.1.2.1 Learning-based Channel Feedback for MU-MIMO in WLANs

Problem Statement and Existing Solutions. To support downlink MU-MIMO communications

in WLANs, an AP needs to access short-term CSI for the construction of beamforming filters. To

acquire CSI, IEEE 802.11 standards [67, 70] adopted explicit CSI feedback. However, due to its

reliance on over-the-air CSI feedback, it suffers from large airtime overhead. The large overhead of

this method can be attributed to a large number of subcarriers in WLANs’ Orthogonal Frequency-

Division Multiplexing (OFDM) modulation, each of which has a channel matrix to be reported. To

reduce the overhead, existing 802.11 protocols may group subcarriers and provide one CSI report

per group. Apparently, such a naive scheme will lead to an inferior beamforming performance
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and drastically compromises the throughput gain of MU-MIMO. Given the severity of this issue,

research efforts have been devoted to studying the effect of channel acquisition parameters on

network throughput or completely altering the channel acquisition paradigm to enhance network

throughput [17, 33, 53, 87, 110, 113, 117, 128, 134, 139, 197, 200]. None of these works focused

on reducing the overhead of explicit channel sounding. Although there are several learning-based

solutions for cellular networks [54, 97, 111, 172, 179, 193], none of them can be directly applied to

WLANs. CSI in WLANs are essentially real-valued spatial angles which are different from CSI in

cellular networks which are complex-valued channel gains.

Proposed Scheme. We present LB-SciFi [79], a learning-based channel feedback framework

for MU-MIMO in WLANs. LB-SciFi takes advantage of deep neural network autoencoder (DNN-

AE) to compress CSI in 802.11 protocols, thereby conserving airtime and improving spectral effi-

ciency. The key component of LB-SciFi is an online DNN-AE training scheme, which allows an

AP to train DNN-AEs by leveraging the side information of existing 802.11 protocols. With this

training scheme, DNN-AEs are capable of significantly lowering the airtime overhead for MU-

MIMO while preserving its backward compatibility with incumbent Wi-Fi client devices. To the

best of our knowledge, LB-SciFi is the first learning-based channel feedback framework designed

for WLANs. We have implemented LB-SciFi on a wireless testbed and evaluated its performance

in indoor wireless environments. Experimental results show that LB-SciFi offers an average of

73% airtime overhead reduction and increases network throughput by 69% on average compared

to 802.11 feedback protocols.

1.1.2.2 Learning-based Channel Sounding and Resource Allocation for IEEE 802.11ax

Problem Statement and Existing Solutions. Wi-Fi networks are evolving from 802.11n/ac to

802.11ax so that a Wi-Fi AP is capable of utilizing the spectrum more efficiently. To do so,
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802.11ax features a new transmission mode in the downlink, i.e., MU-MIMO-OFDMA mixed

mode. However, this new mode comes with two major challenges. The channel sounding overhead

drastically scales up as the number of potential users grows. Second, the marriage of MU-MIMO

and OFDMA largely expands the optimization space of resource allocation at an 802.11ax AP,

making it infeasible to pursue an optimal resource allocation solution in real time due to the lim-

ited computational power of APs. Therefore, a low-complexity, yet efficient, algorithm is needed

for an AP to solve the resource allocation problem. The existing efforts related to channel sounding

overhead in WLANs either focus on re-using outdated CSI or bypassing the problem through lever-

aging implicit channel sounding. The most related prior works are [187] and [79] which reduce

the channel sounding overhead by compressing CSI in the frequency domain. However, these two

efforts require coordination from Wi-Fi clients to fully or partially compress CSI. Such a luxury

is not readily available in practical WLANs. On the other hand, the study on resource allocation

for MU-MIMO-OFDMA in WLANs is scarce. [169] and [170] are the only works considering

downlink MU-MIMO-OFDMA in WLANs. However, these two works employ greedy iterative

algorithms to compute a feasible solution; making them not appealing for real-time resource allo-

cation.

Proposed Scheme. We present DeepMux [82], a deep-learning-based MU-MIMO-OFDMA

transmission scheme for 802.11ax networks. DeepMux mainly comprises two components: DL-

based Channel Sounding (DLCS) and DL-based Resource Allocation (DLRA), both of which re-

side in APs and impose no computational/communication burden on Wi-Fi clients (unlike LB-

SciFi). DLCS reduces the airtime overhead of 802.11 protocols by leveraging DNNs. It uses

uplink channels to train the DNNs for downlink channels, making the training process much faster

than LB-SciFi. DLRA employs a DNN to solve the mixed-integer resource allocation problem,

enabling an AP to obtain a near-optimal solution in polynomial time. We have built a wireless
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testbed to measure the performance of DeepMux in real-world environments. Results show that

DeepMux reduces the sounding overhead by 62.0% ∼ 90.5% and increases the network through-

put by 26.3% ∼ 43.6% .

1.1.2.3 A Communication Framework for Federated Learning in Transportation Systems

Problem Statement and Existing Solutions. Machine Learning (ML) techniques have been ex-

tensively studied to extract useful knowledge from massive data collected by vehicles so as to

enhance the safety and efficiency of ITS. However, the sheer amount of data collected by vehi-

cles and privacy concerns around the collected data make it impractical to transfer raw data to a

server and use of conventional centralized training scheme. While FL can be regarded as a privacy-

preserving and communication-efficient alternative training paradigm for vehicular networks, the

limited communication capacity of these networks along with the heterogeneous sensing, storage,

and processing capabilities of individual vehicles, bring severe challenges ahead of practical im-

plementation of FL in ITS. Recently, pioneering works [28, 29, 40, 152, 171, 189, 195] have been

conducted to incorporate FL into ITS. To the best of our knowledge, existing works mainly employ

cross-layer optimization techniques to enhance learning efficiency. They assume that global CSI

is available on the server. They also assume that CSI remains valid for the time period of an FL

iteration. Given the small channel coherence time caused by the high mobility of vehicles, these

two assumptions may not be valid in practical vehicular networks. Also, the existing works either

rely on inter-vehicle synchronization or separate transmissions across frequency resources.

Proposed Scheme. We present a communication framework for FL (CF4FL) in transportation

systems [78]. CF4FL aims to accelerate the convergence of FL training process through the innova-

tion of two complementary networking components, Deadline-Driven Vehicle Scheduler (DDVS)

and Concurrent Vehicle Polling Scheme (CVPS). DDVS identifies a subset of vehicles for local
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model training in each iteration of FL, with the aim of minimizing data loss while respecting the

deadline constraints derived from vehicles’ storage, computation, and energy budgets. CVPS takes

advantage of multiple antennas on an edge server to enable concurrent local model transmissions

in dynamic vehicular networks, thereby reducing the airtime overhead of each FL iteration. CF4FL

needs neither inter-vehicle synchronization nor instantaneous CSI for asynchronous concurrent ve-

hicle transmissions. Our simulation results show that CF4FL reduces the convergence time of FL

training by more than 39% compared to the existing solution.

1.2 Organization

The rest of the thesis is organized as follows: Chapter 2 presents a blind spectrum sharing scheme

for CRNs. Chapter 3 presents a communication framework enabling concurrent MU-MIMO and

D2D communications in cellular networks, yielding high spectral efficiency and throughput. Chap-

ter 4 presents a downlink power-domain NOMA scheme for WLANs in detail. Chapter 5 de-

scribes LB-SciFi, a learning-based compression approach for reducing excessive airtime overhead

in downlink MU-MIMO of WLANs. Chapter 6 presents DeepMux and its underlying modules

for low-overhead channel sounding and fast resource allocation in downlink MU-MIMO-OFDMA

mode of WLANs. Chapter 7 deals with designing a communication framework to accelerate FL

in ITS and challenges ahead of its successful deployment. Finally, Chapter 8 enumerates possible

research directions for our future research endeavors.
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Chapter 2

Underlay Spectrum Sharing for CRNs

2.1 Introduction

The rapid proliferation of wireless devices and the burgeoning demands for wireless services have

pushed the spectrum shortage issue to a breaking point. Although it is expected that much spec-

trum in the millimeter band (30 GHz to 300 GHz) will be allocated for communication purposes,

most of this spectrum might be limited to short-range communications due to its severe path loss.

Moreover, millimeter band is highly vulnerable to blockage and thus mainly considered for com-

plementary use in next-generation wireless systems. As envisioned, sub-6 GHz frequency spec-

trum, which is already very crowded, will still be the main carrier for the data traffic in commercial

wireless systems. Therefore, it is very necessary to maximize the utilization efficiency of sub-6

GHz spectrum.

To improve spectrum utilization efficiency, spectrum sharing in the context of CRNs has been

widely regarded as a promising and cost-effective solution. In the past two decades, CRNs have

received a large amount of research efforts and produced many cognitive radio schemes. Depend-

ing on the spectrum access strategy at secondary users, the existing cognitive radio schemes can be

classified to three paradigms: interweave, overlay, and underlay [51]. In the interweave paradigm,

secondary users exploit spectrum white holes and intend to access the spectrum opportunistically

when primary users are idle. In the overlay paradigm, secondary users are allowed to access spec-
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trum simultaneously with primary users, provided that the primary users share the knowledge of

their signal codebooks and messages with the secondary users. Compared to these two paradigms,

the underlay paradigm is more appealing as it allows secondary users to concurrently utilize the

spectrum with primary users while requiring neither coordination nor knowledge from the primary

users.

Although there is a large body of work on underlay CRNs in the literature, most of existing

work is either focused on theoretical exploration or reliant on unrealistic assumptions such as cross-

network channel knowledge and inter-network coordination (see, e.g., [34,89,91,107,122,138,146,

166,175]). Thus far, very limited progress has been made in the design of practical underlay spec-

trum sharing schemes. To the best of our knowledge, there is no underlay spectrum sharing scheme

that has been implemented in real-world wireless environments. This stagnation underscores the

challenge in such a design, which is reflected in the following tasks: i) at a secondary transmitter,

how to pre-cancel its generated interference for the primary receivers in its close proximity; and ii)

at a secondary receiver, how to decode its desired signals in the presence of unknown interference

from primary transmitters. These two tasks become even more challenging when secondary users

have no knowledge (e.g., signal waveform and frame structure) about primary users.

In this chapter, we consider an underlay CRN that comprises a pair of primary users and a

pair of secondary users. We assume that the secondary users are equipped with more antennas

than the primary users. By leveraging their multiple antennas, the secondary users take the full

responsibility for cross-network Interference Cancellation (IC). For such a CRN, we propose a

practical spectrum sharing scheme that allows the secondary users to access the spectrum while re-

maining transparent to the primary users. The key components of our scheme are two interference

management techniques: BBF and BIC.

The proposed BBF technique is used at the secondary transmitter to pre-cancel its generated
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interference for the primary receiver. In contrast to existing beamforming techniques, which re-

quire channel knowledge for the construction of beamforming filters, our BBF technique does not

require channel knowledge. Instead, it constructs the beamforming filters by exploiting the sta-

tistical characteristics of the overheard interfering signals from the primary users. The proposed

BIC technique is used at the secondary receiver to decode its desired signals in the presence of

unknown interference from the primary transmitter. Unlike existing IC techniques, which require

CSI and inter-network synchronization, our BIC technique requires neither cross-network channel

knowledge nor inter-network synchronization for signal detection. Rather, it leverages the refer-

ence symbols (preamble) embedded in the data frame of secondary users to construct the decoding

filters for signal detection in the face of unknown interference. With these two IC techniques, the

secondary users can effectively mitigate the cross-network interference in the absence of coordi-

nation from the primary users.

We have built a prototype of our scheme on a wireless testbed to evaluate its performance in

real-world wireless environments. Particularly, we have demonstrated that our prototyped sec-

ondary devices share 2.4 GHz spectrum with commercial Wi-Fi devices (primary users) while not

affecting Wi-Fi devices’ throughput. A demo video of our scheme is presented in [131]. We fur-

ther conduct experiments to evaluate the performance of our secondary network in coexistence

with LTE-like and CDMA-like primary networks in the following two cases: i) the primary users

are equipped with one antenna and the secondary users equipped with two antennas; and ii) the

primary users are equipped with two antennas and the secondary users equipped with three anten-

nas. Experimental results measured in an office environment show that the secondary network can

achieve an average of 1.1 bits/s/Hz spectrum utilization without visibly degrading primary network

throughput. Moreover, the proposed BBF and BIC techniques achieve an average of 25 dB and

33 dB IC capabilities, respectively.
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The contributions of this work are summarized as follows:

• We have designed a new BIC technique for a wireless receiver, which is capable of decoding

its data packets in the presence of unknown interference. Our prototype of such a wireless

receiver can achieve 33 dB IC capability for unknown interference in real-world tests.

• We have designed a new BBF technique for a wireless transmitter, which is capable of pre-

canceling its generated interference for an unintended receiver without the need of channel

knowledge. Our prototype of such a wireless transmitter can achieve 25 dB IC capability for

the unintended receiver.

• To the best of our knowledge, our work is the first one that demonstrates real-time concurrent

spectrum utilization of two wireless systems in the absence of inter-network coordination and

fine-grained synchronization.

2.2 Related Work

We focus our literature survey on spectrum sharing in underlay CRNs and the related interference

management techniques.

Spectrum Sharing in Underlay CRNs. Underlay CRNs allow concurrent spectrum utiliza-

tion for primary and secondary networks as long as the interference at primary users remains at

an acceptable level. Different signal processing techniques have been studied for interference

management in underlay CRNs, such as spread spectrum [59], power control [91, 107, 175], and

beamforming [3, 4, 6, 8, 24, 31, 46, 49, 56, 57, 64, 118, 119, 125, 133, 190, 191, 202, 203]. Spread

spectrum handles interference in the code domain, and power control tames interference in the

power domain. Beamforming exploits the spatial DoF provided by multiple antennas to steer the
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secondary signals to some particular directions, thereby avoiding interference for primary users.

Compared to the other two techniques, beamforming is more appealing in practice as it is effective

in interference management.

Given its potential, beamforming has been studied in underlay CRNs to pursue various ob-

jectives, such as improving energy efficiency of secondary transmissions [49, 64, 133, 191], max-

imizing data rate of secondary users [3, 4], maximizing sum rate of both primary and secondary

users [8, 46, 56, 57], and enhancing the security against eavesdroppers [118, 119, 202]. However,

most of these beamforming solutions are reliant on global network information and cross-network

channel knowledge. Our work differs from these efforts as it requires neither cross-network chan-

nel knowledge nor inter-network cooperation.

BBF in Underlay CRNs. There are some pioneering works that studied BBF to eliminate the

requirement of cross-network channel knowledge for the design of beamforming filters [6, 24, 31,

125, 190, 203]. In [203] and [31], an eigen-value-decomposition-based approach was proposed to

construct beamforming filters at a secondary transmitter using its received interfering signals from

a primary device. When the secondary device transmitting, the constructed beamforming filters

would steer its radio signals to the null subspace of the cross-network channel, thereby avoiding

interference for the primary device. Our BBF technique follows similar idea, but differs in the net-

work setting and design objective. Specifically, [203] and [31] were focused on theoretical analysis

to optimize the data rate of secondary users under certain interference temperature, while the BBF

technique in our work is designed to guarantee its practicality and optimize its IC capability in

real-world OFDM-based networks.

In [6] and [24], the beamforming design is formulated as a part of a network optimization

problem, and some constraints are developed based on statistical channel knowledge to relax the

requirement of cross-network channel knowledge. This approach is of high complexity, and it
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Figure 2.1: A CRN consisting of two active primary users and two active secondary users.

seems not amenable to practical implementation. on the In [125] and [190], spatial learning meth-

ods were proposed to iteratively adjust beamforming filters at the secondary devices based on the

power level of primary transmission, with the objective of reducing cross-network interference

for primary users. However, these learning-based methods are cumbersome and not amenable to

practical use.

MIMO-based BIC. While there are many results on interference cancellation in cooperative

wireless networks, the results of MIMO-based BIC in non-cooperative networks remain limited.

In [142], Rousseaux et al. proposed a MIMO-based BIC technique to handle interference from one

source. In [182], Winters proposed a spatial filter design for signal detection at multi-antenna wire-

less receivers to combat unknown interference. In [52], Gollakota et al. proposed a MIMO-based

solution to mitigate narrow-band interference from home devices such as microwave. BIC was

further studied in the context of radio jamming in wireless communications (see, e.g., [149, 192]).

Compared to the existing BIC techniques, our BIC technique has a lower complexity and offers

much better performance (33 dB IC capability in our experiments).

2.3 Problem Statement

We consider an underlay CRN as shown in Fig. 2.1, which consists of two active primary users and

two secondary users. The primary users establish bidirectional communications in Time-Division

Duplex (TDD) mode. The traffic flow in the primary network is persistent and consistent in both
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Figure 2.2: Consistent and persistent traffic in the primary network.

directions, as shown in Fig. 2.2. The secondary users want to utilize the same spectrum for their

own communications. To do so, the secondary transmitter employs beamforming to pre-cancel

its generated interference for the primary receiver; and the secondary receiver performs IC for its

signal detection. Simply put, the secondary users take full burden of cross-network interference

cancellation, and their data transmissions are transparent to the primary users.

In this CRN, there is no coordination between the primary and secondary users. The secondary

users have no knowledge about cross-network interference characteristics. The primary users have

one or multiple antennas, and the number of their antennas is denoted by Mp. The secondary users

have multiple antennas, and the number of their antennas is denoted by Ms. We assume that the

number of antennas on a secondary user is greater than that on a primary user, i.e., Ms > Mp.

This assumption ensures that each secondary user has sufficient spatial DoF to tame cross-network

interference.

Our Objective. In such a CRN, our objective is four-fold: i) design a BBF technique for

the secondary transmitter to pre-cancel its generated interference for the primary receiver; ii) de-

sign a BIC technique for the secondary receiver to decode its desired signals in the presence of

interference from the primary transmitter; iii) design a spectrum sharing scheme by integrating

these two IC techniques; and iv) evaluate the IC techniques and the spectrum sharing scheme via

experimentation in real wireless environments.

Two Justifications: First, in this work, we study a CRN that comprises one pair of primary users

and one pair of secondary users. Although it has a small network size, such a CRN serves as a
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Figure 2.3: A MAC protocol for spectrum sharing in a CRN that has two primary users and two
secondary users.

fundamental building block for a large-scale CRN that have many primary and secondary users.

Therefore, understanding this small CRN is of theoretical and practical importance. Second, in our

study, we assume that the secondary users have no knowledge about cross-network interference

characteristics. Such a conservative assumption leads to a more robust spectrum sharing solution,

which is suited for many application scenarios.

2.4 A Spectrum Sharing Scheme

In this section, we present a spectrum sharing scheme for the secondary network so that it can use

the same spectrum for its communications while almost not affecting performance of the primary

network. Our scheme consists of a lightweight MAC protocol and a new PHY design for the

secondary users. In what follows, we first present the MAC protocol and then describe the new

PHY design.
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2.4.1 MAC Protocol for Secondary Network

Fig. 2.3 shows our MAC protocol in the time domain. It includes both forward communications

(from SU 1 to SU 2) and backward communications (from SU 2 to SU 1) between the two sec-

ondary users. Since the two communications are symmetric, our presentation in the following will

focus on the forward communications. The backward communications can be done in the same

way.

The forward communications in the proposed MAC protocol comprise two phases: overhear-

ing (Phase I) and packet transmission (Phase II). In the time domain, Phase I aligns with the back-

ward packet transmissions of the primary network, and Phase II aligns with the forward packet

transmissions of the primary network, as illustrated in Fig. 2.3. We elaborate the operations in the

two phases as follows:

• Phase I: SU 1 overhears the interfering signals from PU 2, and SU 2 remains idle, as shown

in Fig. 2.4(a).

• Phase II: SU 1 first constructs beamforming filters using the overheard interfering signals

in Phase I and then transmits signals to SU 2 using the constructed beamforming filters.

Meanwhile, SU 2 decodes the signals from SU 1 in the presence of interference from PU 1.

Fig. 2.4(b) shows the packet transmission in this phase.

When the primary network has consistent and persistent bidirectional traffic, it is easy for sec-

ondary devices to learn primary transmission direction and duration by leveraging wireless signals’

spatial signature (e.g., signal angle-of-arrival). Based on the learned information, the secondary

network can align its transmissions with the transmissions in the primary network, as illustrated

in Fig. 2.3. It is noteworthy that the time alignment requirement of primary and secondary trans-
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(a) Phase I: SU 1 overhears the interfering signals
from PU 2.

(b) Phase II: SU 1 sends data to SU 2 using IC tech-
niques.

Figure 2.4: Illustration of our proposed spectrum sharing scheme.

missions is loose, thanks to the capability of BBF and BIC at the PHY layer. To ensure that the

secondary transmissions will not disrupt the primary transmissions, SU 1 sends its signals only

after it detects the interfering signals from PU 2.

2.4.2 PHY Design for Secondary Users: An Overview

To support the proposed MAC protocol, we use IEEE 802.11 legacy PHY for the secondary net-

work, including frame structure, OFDM modulation, and channel coding schemes. However, IEEE

802.11 legacy PHY is vulnerable to cross-network interference. Therefore, we need to modify the

legacy PHY for the secondary users. The modified PHY should be resilient to cross-network inter-

ference on both transmitter and receiver sides. The design of such a PHY faces the following two

challenges.

Challenge 1. Referring to Fig. 2.4(b), the main task of the secondary transmitter (SU 1) is to

pre-cancel its generated interference for the primary receiver (PU 2). Note that we assume the sec-

ondary transmitter has no knowledge about the primary network, including the signal waveform,

bandwidth, and frame structure. The primary network may use OFDM, Code-Division Multiple

Access (CDMA) or other types of modulation for packet transmission. The lack of knowledge

about the interference makes it challenging for SU 1 to cancel the interference.
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To address this challenge, we design a BBF technique for the secondary transmitter (SU 1) to

pre-cancel its interference at the primary receiver. Our beamforming technique takes advantage

of the overheard interfering signals in Phase I to construct precoding vectors for beamforming.

Our BBF technique can completely pre-cancel the interference at the primary receiver if noise is

zero and the reciprocity of forward/backward channels is maintained. Details of this beamforming

technique are presented in Section 2.5.

Challenge 2. Referring to Fig. 2.4(b) again, the main task of the secondary receiver (SU 2)

is to decode its desired signals in the presence of unknown cross-network interference. Note that

the secondary receiver has no knowledge about the interference characteristics, and the primary

and secondary networks may use different waveforms and frame formats for their transmissions.

The lack of inter-network coordination, cross-network knowledge and fine-grained synchroniza-

tion makes it challenging to tame interference for signal detection.

To address this challenge, we design a MIMO-based BIC technique for the secondary receiver.

The core component of our BIC technique is a spatial filter, which mitigates unknown cross-

network interference from the primary transmitter and recovers the desired signals. Details of

this BIC technique are presented in Section 2.6.

2.5 Blind Beamforming

In this section, we study the beamforming technique at SU 1 in Fig. 2.4. In Phase I, SU 1 first

overhears the interfering signals from the primary transmitter and then uses the overheard interfer-

ing signals to construct spatial filters. Based on channel reciprocity, the constructed spatial filters

are used as beamforming filters in Phase II to avoid interference at the primary receiver. These op-

erations are performed on each subcarrier in the OFDM modulation. In what follows, we first
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present the derivation of beamforming filters and then offer performance analysis of the proposed

beamforming technique.

Mathematical Formulation. Consider SU 1 in Fig. 2.4(a). It overhears interfering signals

from PU 2. The overheard interfering signals are converted to the frequency domain through FFT

operation.1 We assume that the channel from PU 2 to SU 1 is a block-fading channel in the

time domain. That is, all the OFDM symbols in the backward transmissions experience the same

channel. Denote Y(l, k) as the lth sample of the overheard interfering signal on subcarrier k in

Phase I. Then, we have2

Y(l, k) = H
[1]
sp (k)X

[1]
p (l, k) +W(l, k), (2.1)

where H
[1]
sp (k) ∈ CMs×Mp is the matrix representation of the block-fading channel from PU 2

to SU 1 on subcarrier k, X[1]
p (l, k) ∈ CMp×1 is the interfering signal transmitted by PU 2 on

subcarrier k, and W(l, k) ∈ CMs×1 is the noise vector at SU 1. It is noteworthy that SU 1 knows

Y(l, k) but does not know H
[1]
sp (k), X

[1]
p (l, k), and W(l, k).

At SU 1, we seek a spatial filter that can combine the overheard interfering signals in a de-

structive manner. Denote P(k) as the spatial filter on subcarrier k. Then, the problem of designing

P(k) can be expressed as:

min E[P(k)∗Y(l, k)Y(l, k)∗P(k)], s.t. P(k)∗P(k) = 1, (2.2)

where (·)∗ represents conjugate transpose operator.

Construction of Spatial Filters. To solve the optimization problem in (2.2), we use Lagrange

1The interfering signals are not necessarily OFDM signals.
2For the notation in this chapter, superscripts “[1]” and “[2]” mean Phase I and Phase II, respectively. Subscripts

“s” and “p” mean the secondary and primary users, respectively.
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multipliers method. We define the Lagrange function as:

L(P(k), λ)=E
[
P(k)∗Y(l, k)Y(l, k)∗P(k)

]
−λ
[
P(k)∗P(k)−1

]
, (2.3)

where λ is Lagrange multiplier. By setting the partial derivatives of L(P(k), λ) to zero, we have

∂L(P(k), λ)

∂P(k)
= P(k)∗

(
E[Y(l, k)Y(l, k)∗]− λI

)
= 0, (2.4)

∂L(P(k), λ)

∂λ
= P(k)∗P(k)− 1 = 0. (2.5)

Based on the definition of eigendecomposition, it is easy to see that the solutions to equations

(2.4) and (2.5) are the eigenvectors of E[Y(l, k)Y(l, k)∗] and the corresponding values of λ are

the eigenvalues of E[Y(l, k)Y(l, k)∗]. Note that E[Y(l, k)Y(l, k)∗] has Ms eigenvectors, each

of which corresponds to a stationary point of the Lagrange function (extrema, local optima, and

global optima). As λ is the penalty multiplier for the Lagrange function, the optimal spatial filter

P(k) lies within the subspace spanned by the eigenvectors of E[Y(l, k)Y(l, k)∗] that correspond

to the minimum eigenvalue.

For Hermitian matrix E[Y(l, k)Y(l, k)∗], it may have multiple eigenvectors that correspond

to the minimum eigenvalue. Denote Me as the number of eigenvectors that correspond to the

minimum eigenvalue. Then, we can write them as:

[U1,U2, · · · ,UMe ] = mineigvectors
(
E[Y(l, k)Y(l, k)∗]

)
, (2.6)

where mineigvectors(·) represents the eigenvectors that correspond to the minimum eigenvalue.

To estimate E[Y(l, k)Y(l, k)∗] in (2.6), we average the received interfering signal samples over
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time. Denote Y(l, k) as the lth sample of the interfering signals on subcarrier k. Then, we have

[U1,U2, · · · ,UMe ] = mineigvectors
( Lp∑
l=1

Y(l, k)Y(l, k)∗
)
, (2.7)

where Lp is the number of overheard interfering signal samples (e.g., Lp = 20). Also, the neigh-

boring subcarriers can be bonded to improve accuracy. Based on (2.7), the optimal filter P(k) can

be written as:

P(k) =

Me∑
m=1

αmUm, (2.8)

where αm is a weight coefficient with
∑Me
m=1 α

2
m = 1.

Now, we summarize the BBF technique as follows. In Phase I, SU 1 overhears the interfering

signal Y(l, k) from PU 2. Based on the overheard interfering signals, it constructs a spatial filter

P(k) for subcarrier k using (2.7) and (2.8). In Phase II, we use P(k) as the precoding vector for

beamforming on subcarrier k, where (·) is the element-wise conjugate operator.

For this beamforming technique, we have the following remarks: i) This beamforming tech-

nique does not require CSI. Rather, it uses the overheard interfering signals to construct the pre-

coding vectors for beamforming. ii) This beamforming technique requires only one-time eigende-

composition on every subcarrier. It has a computational complexity similar to Zero Forcing (ZF)

and Minimum Mean Square Error (MMSE) precoding techniques. Therefore, it is amenable to

practical implementation.

IC Capability of BBF. For the performance of the proposed beamforming technique, we have

the following lemma:

Lemma 1. The proposed beamforming technique completely pre-cancels interference at the pri-

mary receiver if (i) forward and backward channels are reciprocal; and (ii) noise is zero.
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Proof. We first consider the signal transmission in Phase I and then consider that in the Phase II.

In Phase I, if the noise is zero, we have Y(l, k) = H
[1]
sp (k)X

[1]
p (l, k). Then, we have

Lp∑
l=1

Y(l, k)Y(l, k)∗
(a)
= LpE[Y(l, k)Y(l, k)∗]

(b)
= LpH

[1]
sp (k)Rx(k)H

[1]
sp (k)

∗, (2.9)

where (a) follows from that Y(l, k) is a stationary random process, which is true in practice; and

(b) follows from the definition of Rx(k) = E[X[1]
p (l, k)X

[1]
p (l, k)∗].

Based on (3.12), we have

Rank
(Lp∑
l=1

Y(l, k)Y(l, k)∗
)
=Rank

(
LpH

[1]
sp (k)Rx(k)H

[1]
sp (k)

∗
)
≤ Rank

(
Rx(k)

)
≤Mp. (2.10)

Inequation (2.10) indicates that
∑Lp
l=1Y(l, k)Y(l, k)∗ has at least Ms −Mp eigenvectors that

correspond to zero eigenvalues. This further indicates that [U1,U2, · · · ,UMe ] in (2.7) are corre-

sponding to zero eigenvalues. Therefore, we have

( Lp∑
l=1

Y(l, k)Y(l, k)∗
)
Um = 0, for 1 ≤ m ≤Me. (2.11)

Based on (3.12) and (2.11), we have

(
LpH

[1]
sp (k)Rx(k)H

[1]
sp (k)

∗
)
Um = 0, for 1 ≤ m ≤Me. (2.12)

In real wireless environments, we have Rank
(
H

[1]
sp (k)

)
= Mp and Rank

(
Rx(k)

)
= Mp.

Therefore, the following equation can be deducted from (2.12).

H
[1]
sp (k)

∗Um = 0, for 1 ≤ m ≤Me. (2.13)
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Based on (2.8) and (2.13), we have

H
[1]
sp (k)

∗P(k) =

Me∑
m=1

αmH
[1]
sp (k)

∗Um = 0. (2.14)

We now consider signal transmission in Phase II (see Fig. 2.4(b)). Denote H
[2]
ps as the matrix

representation of the channel from SU 1 to PU 2 on subcarrier k in Phase II. Given that the forward

and backward channels in the two phases are reciprocal, we have H
[2]
ps =

(
H

[1]
sp
)T . Then, we have

H
[2]
ps (k)P(k) =

(
H

[1]
sp
)T

P(k) = H
[1]
sp (k)∗P(k) = 0. (2.15)

It means that the precoding vector P(k) is orthogonal to the interference channel H[2]
ps (k).

Therefore, we conclude that the proposed beamforming scheme can completely pre-cancel the

interference from the secondary transmitter at the primary receiver in Phase II.

The proof of Lemma is based on reciprocity of channels in backward and forward transmis-

sions. To maintain the reciprocity of forward and backward channels in practical wireless systems,

we can employ the relative calibration method in [150]. This relative calibration method is an inter-

nal and standalone method that can be done with assistance from one device. In our experiments,

we have implemented this calibration method to preserve the channels reciprocity.

2.6 Blind Interference Cancellation

In this section, we focus on SU 2 in Phase II as shown in Fig. 2.4(b). We design a BIC technique

for the secondary receiver (SU 2) to decode its desired signals in the presence of interference from

the primary transmitter (PU 1).
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Mathematical Formulation. Recall that we use IEEE 802.11 legacy PHY for data transmis-

sions in the secondary network. Specifically, SU 1 sends packet-based signals to SU 2, which

comprise a bulk of OFDM symbols. In each packet, the first four OFDM symbols carry preambles

(pre-defined reference signals) and the remaining OFDM symbols carry payloads.

Consider the signal transmission in Fig. 2.4(b). Denote X [2]
s (l, k) as the signal that SU 1

transmits on subcarrier k in OFDM symbol l. Denote X
[2]
p (l, k) as the signal that PU 1 transmits

on subcarrier k in OFDM symbol l.3 Denote Y(l, k) as the received signal vector at SU 2 on

subcarrier k in OFDM symbol l. Then, we have

Y(l, k) = H
[2]
ss (k)P(k)X

[2]
s (l, k) +H

[2]
sp (k)X

[2]
p (l, k) +W(l, k), (2.16)

where H
[2]
ss (k) is the block-fading channel between SU 2 and SU 1 on subcarrier k, H[2]

sp (k) is the

block-fading channel between SU 2 and PU 1 on subcarrier k, and W(l, k) is noise on subcarrier k

in OFDM symbol l.

At SU 2, in order to decode the intended signal in the presence of cross-network interference,

we use a linear spatial filter G(k) for all OFDM symbols on subcarrier k. Then, the decoded signal

can be written as:

X̂
[2]
s (l, k) = G(k)∗Y(l, k). (2.17)

While there exist many criteria for the design of G(k), our objective is to minimize the mean

square error (MSE) between the decoded and original signals. Thus, the signal detection problem

can be formulated as:

min E
[ ∣∣∣X̂ [2]

s (l, k)−X [2]
s (l, k)

∣∣∣2 ]. (2.18)

3PU 1 does not necessarily send OFDM signals. But at SU 2, the interfering signals from PU 1 can always be
converted to the frequency domain using FFT operation.
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Construction of Spatial Filters. To solve the optimization problem in (2.18), we use Lagrange

multipliers method again. We define the Lagrange function as:

L(G(k)) = E
[ ∣∣∣X̂ [2]

s (l, k)−X [2]
s (l, k)

∣∣∣2 ]. (2.19)

Based on (2.17), (2.19) can be rewritten as:

L(G(k)) = E
[ ∣∣∣G(k)∗Y(l, k)−X [2]

s (l, k)
∣∣∣2 ]. (2.20)

Equation (2.20) is a quadratic function of G(k). To minimize MSE, we can take the gradient

with respect to G(k). The optimal filter G(k) can be obtained by setting the gradient to zero,

which we show as follows:

E
[
Y(l, k)Y(l, k)∗

]
G(k)− E

[
Y(l, k)X

[2]
s (l, k)∗

]
= 0. (2.21)

Based on (2.21), we obtain the optimal filter

G(k) = E
[
Y(l, k)Y(l, k)∗

]+E[Y(l, k)X
[2]
s (l, k)∗

]
, (2.22)

where (·)+ denotes pseudo inverse operation. Equation (2.22) is the optimal design of G(k) in the

sense of minimizing MSE. To calculate E
[
Y(l, k)Y(l, k)∗

]
and E

[
Y(l, k)X

[2]
p (l, k)∗

]
in (2.22),

we can take advantage of the pilot (reference) symbols in wireless systems (e.g., the preamble in

IEEE 802.11 legacy frame). Denote Qk as the set of pilot symbols in a frame that can be used for

the design of interference mitigation filter G(k). Then, we can approach the statistical expectations
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k

k

Figure 2.5: An example of Q(k) in IEEE 802.11 legacy frame.

in (2.22) using the averaging operations as follows:

E
[
Y(l, k)Y(l, k)∗

]
≈ 1

|Qk|
∑

(l,k′)∈Qk

Y(l, k′)Y(l, k′)∗ , (2.23)

E
[
Y(l, k)X

[2]
p (l, k)∗

]
≈ 1

|Qk|
∑

(l,k′)∈Qk

Y(l, k′)X [2]
p (l, k′)∗, (2.24)

where an example of Qk is illustrated in Fig. 2.5.

Note that, with a bit abuse of notation, we replace the approximation sign in (2.23) and (2.24)

with an equation sign for simplicity. Then, the spatial filter G(k) can be written as:

G(k)=
[ ∑
(l,k′)∈Qk

Y(l, k′)Y(l, k′)∗
]+[ ∑

(l,k′)∈Qk

Y(l, k′)X [2]
p (l, k′)

∗]
. (2.25)

We now summarize our BIC technique as follows. In Phase II, SU 2 needs to decode its desired

signal in the presence of interference from PU 1. To do so, SU 2 first constructs a spatial filter for

each of its subcarriers using (2.25), and then decodes its desired signal using (2.17).

For this BIC technique, several remarks are in order: i) The spatial filter in (2.25) not only can-

cels the interference but also equalizes the channel distortion for signal detection. ii) As shown in

(2.17) and (2.25), our BIC technique does not require knowledge about the interference character-
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istics, including waveform and bandwidth. iii) our BIC technique does not require CSI. Rather, it

only requires pilot signals at the secondary transmitter. In contrast to conventional signal detection

techniques (e.g., ZF and MMSE detectors), our BIC technique technique does not require channel

estimation. iv) As shown in (2.17) and (2.25), the computational complexity of our BIC technique

is similar to that of the ZF detector, which is widely being used in real-world wireless systems.

IC Capability of BIC. For the performance of the proposed BIC technique, we have the fol-

lowing lemma:

Lemma 2. If the pilot signals are sufficient and noise is zero, the BIC technique can perfectly re-

cover the desired signals in the presence of cross-network interference (i.e., X̂ [2]
s (k, l) = X

[2]
s (k, l),

∀k, l).

Proof. For notational simplicity, we denote H(k) as the compound channel between the SU 2

and the two transmitters (SU 1 and PU 1), i.e., H(k) =
[
H

[2]
ss (k)P(k) H

[2]
sp (k)

]
; we also denote

X(l, k) as the compound transmit signals at the two transmitters, i.e., X(l, k) =
[
X

[2]
s (l, k) X

[2]
p (l, k)

]T
.

Then, in noise-negligible scenarios, (2.16) can be rewritten as Y(l, k) = H(k)X(l, k).

By defining RX as the autocorrelation matrix of the compound transmit signals, we have

RX = E(XXH)
(a)
=

 Rxs 0

0 Rxp

 =

 1 0

0 Rxp

 , (2.26)

where Rxs is the autocorrelation of SU 1’s transmit signal and Rxp is the autocorrelation matrix

of PU 1’s transmit signals. (a) follows from our assumption that the transmit signal from SU 1 is

independent of the transmit signals from PU 1. Note that Rxp is not necessarily an identity matrix

since the signals from PU 1’s different antennas might be correlated.
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Based on (2.25), (3.4), and (3.5), we have

G(k)=
[ ∑
(l,k′)∈Qk

Y(l, k′)Y(l, k′)H
]+[ ∑

(l,k′)∈Qk

Y(l, k′)X [2]
s (l, k′)

∗]
(a)
= E

[
Y(l, k)Y(l, k)∗

]+E[Y(l, k)X
[2]
s (l, k)

∗]
(b)
=
[
H(k)RXH(k)∗

]+[
H(k)I1

]
, (2.27)

where (a) follows from our assumption that the amount of reference signals is sufficient to achieve

convergence of G(k); (b) follows from the definition that I1 is a vector where its first entry is 1

and all other entries are 0. Based on (2.17) and (3.6), we have

X̂
[2]
s (l, k) = G(k)∗Y(l, k)

=
{[

H(k)RXH(k)∗
]+[

H(k)I1
]}∗

H(k)X(l, k)

= X
[2]
s (l, k), ∀l, k. (2.28)

Pilot Signals for Spatial Filter Construction. Lemma 2 shows the superior performance

of our BIC technique when the pilot signals are sufficient. A natural question to ask is how many

pilot signals are considered to be sufficient. To answer this question, we first present our simulation

results to study the convergence speed of the spatial filter over the number of pilot signals, and then

propose a method to increase the number of pilot signals for the spatial filter construction.

As an instance, we simulated the convergence speed of the spatial filter over the number of pilot

symbols for SU 2 in Fig. 2.4. Fig. 2.6 and Fig. 2.7 present our simulation results in two network

settings: (Mp = 1,Ms = 2) and (Mp = 2,Ms = 3). From the simulation results, we can see
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k

(a) SNR=5dB case.
k

(b) SNR=15dB case.

k

(c) SNR=25dB case.

Figure 2.6: Convergence speed of spatial filter over the number of pilot symbols in (Mp = 1,Ms =
2) network.

k

(a) SNR=5dB case.

k

(b) SNR=15dB case.

k

(c) SNR=25dB case.

Figure 2.7: Convergence speed of spatial filter over the number of pilot symbols in (Mp = 2,Ms =
3) network.

that the spatial filter converges at a pretty fast speed in these two network settings. Specifically, the

spatial filter can achieve a good convergence within about 10 pilot symbols.

Recall that the secondary network uses IEEE 802.11 legacy frame for transmissions from SU 1

to SU 2, which only has four pilot symbols on each subcarrier (i.e., two L-STF OFDM symbols

and two L-LTF OFDM symbols). So, the construction of spatial filter is in shortage of pilot sym-

bols. To address this issue, for each subcarrier, we not only use the pilot symbols on that subcarrier

but also the pilot symbols on its neighboring subcarriers, as illustrated in Fig. 2.5. The rationale

behind this operation lies in the fact that channel coefficients on neighboring subcarriers are highly
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PU 1 PU 2

SU 1 SU 2

(a) Transmission in Phase I.

PU 1 PU 2

SU 1 SU 2

(b) Transmission in Phase II.

Figure 2.8: Experimental setup for an underlay CRN with two network settings: (Mp=1,Ms=2)
and (Mp=2,Ms=3).

correlated in real-world wireless environments. By leveraging the pilot symbols on two neighbor-

ing subcarriers, we have 12 pilot symbols for the construction of the spatial filter, which appears

to be sufficient based on our simulation results in Fig. 2.6 and Fig. 2.7. We note that analytically

studying the performance of BIC with respect to the number and format of pilot signals is beyond

the scope of this work. Instead, we resort to experiments to study its performance in real-world

network settings.

2.7 Performance Evaluation

In this section, we consider an underlay CRN in two time slots as shown in Fig. 2.8. We have

built a prototype of the proposed underlay spectrum sharing scheme in this network on a Software-

Defined Radio (SDR) testbed and evaluated its performance in real-world wireless environments.

2.7.1 Implementation

PHY Implementation. We consider three different primary networks: a commercial Wi-Fi pri-

mary network, a LTE-like primary network, and a CDMA-like primary network. The commercial

Wi-Fi network comprises Alfa AWUS036NHA 802.11n Adapters, each of which has one antenna

for radio signal transmissions and receptions. The LTE-like and CDMA-like primary networks

as well as the secondary network are built using USRP N210 devices and general-purpose com-
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Table 2.1: The implementation parameters of primary and secondary networks.

Primary
network 1

Primary
network 2

Primary
network 3

Secondary
network

System type Commercial Custom-built Custom-built Custom-built
Standard Wi-Fi LTE-like CDMA-like Wi-Fi-like

Waveform OFDM OFDM CDMA OFDM
FFT-Point 64 1024 - 64

Valid subcarriers 52 600 - 52
Sample rate 20 MSps 10 MSps 5 MSps 5, 25 MSps

Signal bandwidth ∼16 MHz ∼5.8 MHz ∼5 MHz ∼4.06, 20.31 MHz
Carrier frequency 2.48 GHz 2.48 GHz 2.48 GHz 2.48 GHz

Max tx power ∼20 dBm ∼15 dBm ∼15 dBm ∼15 dBm
Antenna number 1 1, 2 1 2, 3

puters. The USRP devices are used for radio signal transmission/reception while the computers

are used for baseband signal processing and MAC protocol implementation. The implementation

parameters are listed in Table 2.1.

MAC Implementation. We implement the MAC protocol in Fig. 2.3 for the primary and

secondary networks. The packet transmissions in the two networks are loosely aligned in time, as

shown in Fig. 2.3. Since the bidirectional communications in the secondary network are symmetric,

we only consider the forward communications (from SU 1 to SU 2). We implement BBF on SU 1

to pre-cancel interference for the primary receiver. We also implement BIC on SU 2 to decode its

desired signals in the presence of interference from PU 1. Moreover, we implement the RF chain

calibration method [150] on SU 1 in Fig. 2.8 to maintain relative channel reciprocity. Note that the

calibration needs to be done at a low frequency (0.1 Hz in our experiments) and therefore would

not consume much airtime resource.

2.7.2 Experimental Setup and Performance Metrics

Experimental Setup. Consider the primary and secondary networks in Fig. 2.8. We place the

devices on a floor plan as shown in Fig. 2.9(a). The two primary users are always placed at the
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Figure 2.9: Experimental setting: (a) floor plan of primary and secondary users’ locations; (b) a
primary transceiver; and (c) a secondary transceiver.

spots marked “PU 1” and “PU 2.” The two secondary users are placed at one of the 12 different

locations. The distance between PU 1 and PU 2 is 10 m and the distance between SU 1 and SU 2 is

6 m. Fig. 2.9(b-c) show the prototyped secondary and primary transceivers on our wireless testbed.

The transmit power of primary users is fixed to the maximum level specified in Table 2.1, while

the transmit power of secondary users is properly adjusted to ensure that its generated interference

to the primary receiver (after BBF) is below noise level.

Performance Metrics. We evaluate the performance of the proposed spectrum sharing scheme

using the following four metrics: i) Tx-side IC capability at SU 1: This IC capability is from SU 1’s

BBF. It is defined as βtx = 10 log10(P1/P2), where P1 is the received interference power at PU 2

when SU 1 uses [ 1√
2

1√
2
] or [ 1√

3
1√
3

1√
3
] as the precoder, and P2 is the received interference

power at PU 2 when SU 1 uses our BBF precoder. ii) Rx-side IC capability at SU 2: This IC

capability is from SU 2’s BIC. It is defined as βrx = |EVM| − max{SIRm}, where SIRm is

Signal to Interference Ratio (SIR) on SU 2’s mth antenna and Error Vector Magnitude (EVM) will
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Table 2.2: EVM specification in IEEE 802.11ac [67].
EVM (dB) (inf -5) [-5 -10) [-10 -13) [-13 -16) [-16 -19) [-19 -22) [-22 -25) [-25 -27) [-27 -30) [-30 -32) [-32 -inf)
Modulation N/A BPSK QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM 256QAM 256QAM
Coding rate N/A 1/2 1/2 3/4 1/2 3/4 2/3 3/4 5/6 3/4 5/6
γ(EVM) 0 0.5 1 1.5 2 3 4 4.5 5 6 20/3

Table 2.3: EVM specification for LTE-like PHY [43, 77].

EVM (dB) [-6.3 -9.1) [-9.1 -11.8) [-11.8 -14.2) [-14.2 -16.8) [-16.8 -19.1)
CQI 6 7 8 9 10

Modulation QPSK 16QAM 16QAM 16QAM 64QAM
Coding rate ×1024 602 378 490 616 466

γ(EVM) 1.1758 1.4766 1.9141 2.4063 2.7305
EVM (dB) [-19.1 -21.0) [-21.0 -23.3) [-23.3 -25.7) [-25.7 -28.2) [-28.2 -∞)

CQI 11 12 13 14 15
Modulation 64QAM 64QAM 64QAM 64QAM 64QAM

Coding rate ×1024 567 666 772 873 948
γ(EVM) 3.3223 3.9023 4.5234 5.1152 5.5547

be defined in the following. iii) EVM of the decoded signals at SU 2: It is defined as follows:

EVM = 10 log10

E
[∣∣X̂ [2]

s (l, k)−X [2]
s (l, k)

∣∣2]
E
[∣∣X [2]

s (l, k)
∣∣2]

 . (2.29)

iv) Throughput of secondary and primary networks: The throughput of the primary and secondary

networks are extrapolated based on the measured EVM at SU 2 and PU 2, respectively. To calculate

throughput, we use

r =
Nsc

Nfft +Ncp
· b · ηt · γ (EVM) , (2.30)

where Nsc, Nfft, and Ncp denote number of used subcarriers, FFT points, and the length of cyclic

prefix, respectively. b is the sampling rate in MSps. ηt is the portion of available airtime being

used for signal transmissions. γ(EVM) is the average number of bits carried by one subcarrier.

This parameter is specified in Table 2.2 and Table 2.3 for WiFi-like PHY and LTE-like PHY,

respectively.
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(a) Interference-free scenario.
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(b) Spectrum sharing scenario.

Figure 2.10: Packet delivery rate of the primary network in interference-free and spectrum sharing
scenarios.

2.7.3 Coexistence with Commercial Wi-Fi Devices

We first consider primary network 1 in Table 2.1. The two Wi-Fi devices (Alfa 802.11n don-

gles with Atheros Chipset) in this primary network are connected in the ad-hoc mode, and they

send data packets to each other as shown in Fig. 2.3. These two devices are placed at the spots

marked by blue squares in Fig. 2.9. The secondary network is also specified in Table 2.1. Each

secondary device is equipped with two antennas. We place the two secondary devices at location 1

in Fig. 2.9(a).

Primary Network. We first study the performance of the primary devices with and without

spectrum sharing. Fig. 2.10(a) shows the measured packet delivery rate between the two primary

devices in the absence of secondary devices (i.e., the secondary devices are turned off). Fig. 2.10(b)

shows the measured result when the secondary devices conduct their transmissions in Phase II (see

Fig. 2.8(b)). It can be seen that, in both cases, the primary network achieves almost the same packet

delivery rate. This indicates that the primary network is almost not affected by the secondary

network.

How is the interference from the secondary transmitter handled? Is it because of the BBF on

the secondary transmitter? To answer these questions, we conduct another experiment. When both
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    After moving SU 1's one 

          antenna by 10 cm

Figure 2.11: Packet delivery rate of the primary network before and after moving SU 1’s one
antenna by 10 cm.
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(a) Received interference from PU 1.
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(b) Received signal from SU 1.

Figure 2.12: Relative power spectral density of the received signal and interference at the sec-
ondary receiver’s first antenna.

primary and secondary networks are transmitting, we move one of the secondary transmitter’s

antennas about 10 cm. Fig. 2.11 shows the packet delivery rate of the primary network before and

after the antenna movement. We can see that the movement of SU 1’s one antenna results in a steep

drop of primary network’s packet delivery rate. This indicates that it is SU 1’s BBF that mitigates

the interference for PU 2.

Secondary Network. We now shift our focus to the secondary network. We first check the

strength of signal and interference at the secondary receiver. Fig. 2.12 shows the measured results

on one of SU 2’s antennas. We can see that the signal and interference at the secondary receiver

are at the similar level. This observation also holds for the another antenna. We then check the

performance of the secondary receiver in the presence of interference from the primary transmitter.

To do so, we conduct three experiments: i) interference-free transmission of the secondary network

(secondary devices only, no primary devices); ii) spectrum-sharing transmission with SU 2 using
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Figure 2.13: Constellation diagram of the decoded signals at the secondary receiver (SU 2) in three
different experiments.

our proposed BIC; and iii) spectrum-sharing transmission with SU 2 using ZF signal detection.

The measured results are presented in Fig. 2.13. It is clear to see that, with the aid of BIC, the

secondary receiver can successfully decode its desired signals. Compared to the interference-free

scenario, the EVM degradation is about 3.8 dB. The conventional ZF signal detection method

cannot decode the signal in the presence of interference. This shows the effectiveness of our

proposed BIC technique. A demo video of our real-time spectrum sharing scheme can be found

in [131].

2.7.4 Network Setting: (Mp = 1,Ms = 2)

We now consider the CRN in Fig. 2.8 when the primary devices have one antenna (Mp = 1)

and the secondary devices have two antennas (Ms = 2). Primary networks 2 and 3 specified in

Table 2.1 are used in our experiments.

2.7.4.1 A Case Study

As a case study, we use primary network 3 (CDMA-like) in Table 2.1 and place the secondary

devices at location 1 to examine the proposed spectrum sharing scheme.

Tx-Side IC Capability. We first want to quantify the tx-side IC capability at the secondary
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] as precoder.
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(b) SU 1 uses our BBF technique.

Figure 2.14: Relative power spectral density of PU 2’s received interference from two-antenna SU
1 in two cases.

transmitter (SU 1) from its BBF. To do so, we conduct the following experiments. We turn off the

primary transmitter (PU 1) and measure the received interference at the primary receiver (PU 2) in

two cases: (i) using [ 1√
2

1√
2
] as the precoder; and (ii) using our proposed beamforming precoder

in (2.7) and (2.8) with α1 = 1. Fig. 2.14 presents our experimental results. We can see that, in

the first case, the relative power spectral density of PU 2’s received interference is about −87 dB.

In the second case, the relative power spectral density of PU 2’s received interference is about

−113 dB. Comparing these two cases, we can see that the tx-side IC capability from BBF is about

113− 87 = 26 dB. We note that, based on our observations, the relative power spectral density of

the noise at PU 2 is in the range of−120 dB to−110 dB. Therefore, thanks to BBF, the interference

from the secondary transmitter to the primary receiver is at the noise level.

Rx-Side IC Capability, EVM, and Data Rate. We now study the performance of the sec-

ondary receiver (SU 2). First, we measure SIR at SU 2. Fig. 2.15 shows our measured results

on SU 2’s first antenna. We can see that the relative power spectral density of its received signal

and interference is −83 dB and −73 dB, respectively. This indicates that the SIR on SU 2’s first

antenna is −10 dB (assuming that noise is negligible). Using the same method, we measured that

the SIR on SU 2’s second antenna is −12 dB.

We measure the EVM of SU 2’s decoded signals in the presence of interference. Fig. 2.16(a–b)

present the constellation of the decoded signals at SU 2. It is evident that SU 2 can decode both
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(b) SU 2’s received interference on its first an-
tenna.

Figure 2.15: Relative power spectral density of SU 2’s received signal and interference on its first
antenna.
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Figure 2.16: Constellation diagram of decoded signals at SU 2: our spectrum sharing scheme
versus interference-free scenario.

QPSK and 16QAM signals from SU 1 in the presence of interference from PU 1. The EVM is

−21.9 dB when QPSK is used for the secondary network and −22 dB when 16QAM is used for

the secondary network. As a benchmark, Fig. 2.16(c–d) present the experimental results when

there is no interference from PU 1. Comparing Fig. 2.16(a–b) with Fig. 2.16(c–d), we can see that

SU 2 can effectively cancel the interference from PU 1.

Finally, we calculate SU 2’s IC capability and throughput. Based on the SIR on SU 2’s an-

tennas and the EVM of its decoded signals, SU 2’s IC capability is 10 + 21.9 = 31.9 dB in this

case. Based on (2.30) and the measured EVM, the throughput (data rate) of secondary network is

extrapolated to be 4.5 Mbps.
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(b) Rx-side IC capability from the secondary re-
ceiver’s BIC.

Figure 2.17: Tx-side and rx-side IC capabilities of the secondary network for
(
Mp=1,Ms=2

)
setting.

2.7.4.2 Experimental Results at all Locations

We now extend our experiments from one location to all the 12 locations and present the measured

results as follows.

Tx-Side IC Capability. Fig. 2.17(a) presents the tx-side IC capability of the two-antenna

secondary transmitter (SU 1). We can see that the secondary transmitter achieves a minimum of

20.0 dB and an average of 25.3 dB IC capability across all the 12 locations.

Rx-Side IC Capability. Fig. 2.17(b) presents the rx-side IC capability of the two-antenna

secondary receiver. We can see that the secondary receiver achieves a minimum of 25.0 dB, a

maximum of 38.0 dB, and an average of 32.8 dB IC capability across all the 12 locations, regardless

of the PHY used for the primary network.

Rx-Side EVM. Fig. 2.18(a) presents the EVM of the decoded signals at the two-antenna sec-

ondary receiver in the presence of interference from the primary transmitter. We can see that in all

the locations, although the EVM varies, the EVM achieves an average of −21.8 dB, regardless of

the PHY used for the primary network.

Throughput of Secondary Network. Based on the measured EVM at the secondary receiver,

we extrapolate the achievable data rate in the secondary network using (2.30). Fig. 2.18(b) presents
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(b) Throughput of the secondary network.

Figure 2.18: Performance of the secondary network in the proposed spectrum sharing scheme for(
Mp=1,Ms=2

)
setting.

the results. As we can see, the secondary network achieves a minimum of 3.0 Mbps data rate, a

maximum of 6.7 Mbps, and an average of 5.1 Mbps across all the 12 locations. Note that this data

rate is achieved by the secondary network in 5 MHz bandwidth, and the secondary transmitter’s

power is controlled so that its interference at the primary receiver (after BBF) remains at the noise

level.

2.7.4.3 BBF versus Other Beamforming Techniques

As BBF is the core component of our spectrum sharing scheme, we would like to further examine

its performance by comparing it against the following two beamforming techniques.

• Explicit Beamforming (EBF): In this technique, the secondary transmitter (SU 1) has knowl-

edge of forward channel between itself and the primary receiver (PU 2), i.e., H[1]
sp (k). The

forward channel knowledge is obtained through explicit channel feedback. Specifically, SU 1

sends a Null Data Packet (NDP) to PU 2, which estimates the channel and feed the estimated

channel information back to SU 1. After obtaining the forward channel H[1]
sp (k), SU 1 con-

structs the precoder by P(k) = mineigvectors(H
[1]
sp (k)), where k is subcarrier index.

• Implicit Beamforming (IBF): In this technique, the secondary transmitter (SU 1) has knowl-
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Figure 2.19: Tx-side IC capability of the three beamforming techniques when the secondary device
has three antennas.

edge of backward channel from the primary receiver (PU 2) to itself, i.e., H[1]
ps (k). The

backward channel knowledge is obtained through implicit channel feedback. Specifically,

PU 2 sends an NDP to SU 1. SU 1 first estimates the backward channel H[1]
ps (k). It then

constructs the precoder by P(k) = mineigvectors(H
[1]
ps (k)), where k is subcarrier index.

Channel calibration has been performed at SU 1 before signal transmission.

We conduct experiments to measure the tx-side IC capability of these three beamforming tech-

niques. Fig. 2.19 depicts our results. We can see that, compared to EBF, our proposed BBF has a

maximum of 4.5 dB and an average of 2.1 dB degradation. Compared to IBF, our proposed BBF

has a maximum of 2.5 dB and an average of 1.0 dB degradation. The results show that the proposed

BBF has competitive performance compared to EBF and IBF. We note that, although offering bet-

ter performance, EBF and IBF cannot be used in underlay CRNs as they require knowledge and

cooperation from the primary devices.

2.7.5 Network Setting: (Mp = 2,Ms = 3)

We now study the CRN in Fig. 2.8 when the primary devices have two antennas and the secondary

devices have three antennas (i.e., Mp = 2 and Ms = 3). The primary devices use their two
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Figure 2.20: Tx-side and rx-side IC capabilities of the secondary network for
(
Mp=2,Ms=3

)
setting.

antennas for spatial multiplexing. That is, two independent data streams are transfered in the

primary network. The secondary devices use their spatial DoF provided by their three antennas for

both interference management and signal transmission. Indeed, one data stream is transfered in the

secondary network. The primary network uses LTE-like PHY (see primary network 2 in Table 2.1)

for data transmission. We study our spectrum sharing scheme in this CRN and report the measured

results below.

Tx-Side IC Capability. In this CRN, since the primary receiver has two antennas, the sec-

ondary transmitter needs to cancel its generated interference for both antennas on the primary re-

ceiver. We measure the IC capability of our proposed BBF for the primary receiver’s both antennas.

Fig 2.20(a) exhibits our measured results. We can see that a three-antenna secondary transmitter

can effectively cancel the interference on the primary receiver’s both antennas. Specifically, the

BBF on the secondary transmitter achieves a minimum of 21.7 dB, a maximum of 28.7 dB, and an

average of 25.1 dB IC capability for the primary receiver’s two antennas.

Rx-Side IC Capability. In this CRN, since the primary transmitter sends two independent

data streams, the secondary receiver needs to decode its desired signals in the presence of two in-

terference sources. We measure the rx-side IC capability of our proposed BIC at the three-antenna
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(b) EVM of the decoded data stream 2 at the pri-
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Figure 2.21: EVM of the two data streams in the primary network with and without the secondary
network for

(
Mp=2,Ms=3

)
setting.

secondary receiver. Fig 2.20(b) exhibits our measured results. We can see that the proposed BIC

on the secondary receiver achieves a minimum of 26.5 dB, a maximum of 38.1 dB, and an average

of 33.0 dB IC capability over the 12 locations. This shows the effectiveness of the proposed BIC

in handling unknown interference.

EVM at Primary Receiver. We now study the performance of the two data streams in the

primary network. We want to see if the presence of secondary network harmfully affects the traffic

in the primary network. To do so, we measure the EVM of the decoded two data streams at the

primary receiver in two cases: i) in the presence of the secondary network, and ii) in the absence

of the secondary network. Fig. 2.21 presents our measured results. It can be seen that the presence

of the secondary network does not visibly affect the EVM performance of the primary network.

This indicates that the BBF at the secondary network successfully mitigates the interference from

the secondary transmitter to the primary receiver.

Throughput of Primary Network. Based on the measured EVM at the primary receiver,

we extrapolate the achievable data rate on each data stream of the primary network using (2.30).

The extrapolated throughput is presented in Fig. 2.22. Referring to Fig. 2.22(a), the primary net-

work achieves an average of 32.1 Mbps throughput for its stream 1 in interference-free case and

an average of 31.9 Mbps throughput in coexistence with the secondary network. As shown in
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Figure 2.22: Throughput of the two data streams in the primary network with and without the
secondary network for

(
Mp=2,Ms=3

)
setting.

1 2 3 4 5 6 7 8 9 10 11 12

-30

-20

-10

0

Test location index

EV
M

  (
dB

)

(a) EVM of decoded signals at the secondary re-
ceiver.

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

Th
ro

ug
hp

ut
  

(M
bp

s)

Test location index

(b) Throughput of the secondary network.

Figure 2.23: Performance of the secondary network in the proposed spectrum sharing scheme for(
Mp=2,Ms=3

)
setting.

Fig. 2.22(b), for its data stream 2, the primary network achieves 32.5 Mbps and 32.3 Mbps through-

put on average in the interference-free and spectrum sharing scenarios, respectively. For both data

streams, only 0.2 Mbps degradation is observed in the throughput of the primary network.

EVM at Secondary Receiver. Having confirmed that the spectrum utilization of secondary

network does not degrade the performance of primary network, we now study the achievable per-

formance of the secondary network. Recall that we transfer one data stream in the secondary

network. We measure EVM of the decoded signal at the secondary receiver. Fig. 2.23(a) depicts

the measured results. We can see that the EVM at the secondary receiver achieves a minimum of

−27.7 dB, a maximum of −18.2 dB, and an average of −22.5 dB over the 12 locations.

Throughput of Secondary Network. Based on the measured EVM at the secondary receiver,
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we extrapolate the achievable data rate of the secondary network using (2.30). The extrapolated

data rate is presented in Fig. 2.23(b). We can see that the proposed spectrum sharing scheme

achieves a minimum of 3.0 Mbps, a maximum of 7.5 Mbps, and an average of 5.5 Mbps over the

12 locations. Note that this data rate is achieved by the secondary network in 5 MHz and without

harmfully affecting the primary network.

2.7.6 Summary of Observations

We now summarize the observations from our experimental results as follows:

• BBF: BBF demonstrates its capability of handling cross-network interference in CRNs where

the secondary network has no knowledge about the primary network. In
(
Mp=1,Ms=2

)
network setting, BBF achieves an average of 25.3 dB IC capability. In

(
Mp=2,Ms=3

)
network setting, BBF achieves an average of 25.1 dB IC capability.

• BIC: BIC also demonstrates its capability of decoding the desired signals in the presence

of unknown interference. In
(
Mp=1,Ms=2

)
network setting, it achieves an average of

32.8 dB IC capability. In
(
Mp=2,Ms=3

)
network setting, it achieves an average of 33.0 dB

IC capability.

• Primary Network: The primary network has very small performance degradation when the

secondary network shares the spectrum (compared to the case without secondary network).

As shown in Fig. 2.24(a), the average EVM degradation at the primary receiver is 1.6% over

the 12 locations. Also, as shown in Fig. 2.24(b), the average throughput degradation at the

primary receiver is 0.7% over the 12 locations.

• Secondary Network: Using BBF at its transmitter and BIC at its receiver, the secondary net-
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(a) Measured EVM of primary data streams.
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(b) Extrapolated throughput of primary data
streams.

Figure 2.24: Performance of the proposed spectrum sharing scheme w.r.t. interference-free case
for
(
Mp=2,Ms=3

)
setting.

work intends to establish communications by sharing the spectrum with the primary network.

The secondary network achieves 1.0 bits/s/Hz in the CRN with
(
Mp=1,Ms=2

)
network

setting and 1.1 bits/s/Hz in the CRN with
(
Mp=2,Ms=3

)
network setting.

2.8 Limitations and Discussions

While the proposed scheme demonstrates its potential in real-world networks, there are still some

issues that remain open and need to be addressed prior to its real applications.

Primary Traffic Directions. In our spectrum sharing scheme, we assume that the primary

communications are bidirectional and that the pattern of primary traffic is consistent. Under such

assumptions, duration and direction of primary traffic are easy to learn for beamforming filter

design. In real systems, the pattern of primary traffic might not be consistent. In such a case, a

sophisticated learning algorithm is needed for the secondary devices to differentiate the forward

and backward transmissions of the primary network.

Channel Coherence Time. In static networks (e.g., indoor Wi-Fi), the devices are stationary

or moving at a low speed. Then, the channel coherence time is large enough to cover the entire
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period of primary forward transmission. But in the dynamic networks with highly mobile devices,

the channel coherence time may be smaller than the duration of primary forward transmission.

In such a case, the secondary network cannot use entire airtime of primary forward transmission.

Instead, it can only access the spectrum when its beamforming filters remain valid (i.e., within the

channel coherence time).

Extension to Large-Scale Networks. In this work, we presented a spectrum sharing scheme

for a small-size CRN consisting of one PU pair and one SU pair. This spectrum sharing scheme can

be extended to a large-scale CRN that comprises multiple PU pairs and multiple SU pairs. This is

because in most real-world wireless networks (e.g., Wi-Fi and cellular), only one user pair is active

on a frequency band at a time. Therefore, our current design is a fundamental building block for

spectrum sharing in a large-scale CRN. Nevertheless, extending our design to a large-scale CRN

still faces several challenges. First, a secondary device should be capable of learning the active PU

devices over time as well as their transmission direction and duration. For a secondary device, how

to accurately obtain this information through a learning procedure is a challenging task. Second,

primary devices may not be stationary (e.g., vehicular and unmanned aerial networks). How to

design an adaptive and intelligent spectrum sharing MAC protocol for the secondary network is

another challenging task.

2.9 Chapter Summary

In this chapter, we proposed a spectrum sharing scheme for an underlay CRN that comprises two

primary users and two secondary users. The proposed scheme allows the secondary users to use the

spectrum without affecting the throughput of the primary users. The key components of our scheme

are two MIMO-based IC techniques: BBF and BIC. BBF enables the secondary transmitter to pre-
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cancel its generated interference for the primary receiver. BIC enables the secondary receiver

to decode its desired signals in the presence of unknown cross-network interference. These two

IC techniques make it possible for the secondary users to access the spectrum while remaining

transparent to the primary users. We have built a prototype of our spectrum sharing scheme on a

wireless testbed. We demonstrated that our prototyped secondary devices can coexist with com-

mercial Wi-Fi devices. Extensive experimental results show that, for a secondary user with two

or three antennas, BBF and BIC achieve about 25 dB and 33 dB IC capabilities in real wireless

environments, respectively.
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Chapter 3

D2D Communications in Cellular Networks

3.1 Introduction

Cellular networks are key components of the telecommunications infrastructure in our society.

Their roles of providing ubiquitous wireless Internet services become increasingly important with

the proliferation of Internet-based applications such as smart cities, IoT, and autonomous driving.

To increase the network capacity, provide massive connectivity, and meet the growing demands for

wireless services, many advanced wireless technologies have been proposed for next-generation

cellular networks. MU-MIMO, which allows a multi-antenna BS to simultaneously serve multiple

User Equipment (UEs) on the same spectrum band, is one of the pivotal technologies for cellu-

lar networks [102]. As its benefits are well recognized, MU-MIMO has already been deployed

in real cellular networks to harness its throughput gain in the presence of antenna configuration

asymmetricity.

D2D communication is another promising technology for cellular networks [204]. Its basic

idea is to allow direct communication between two proximity-based mobile users without travers-

ing the BS or core network. As mobile users in today’s cellular networks require high data rate

services (e.g., video sharing, online gaming, proximity-aware networking) in which they could

potentially be in a short range for direct communication, D2D communication can greatly increase

the spectral efficiency of the network. Moreover, the advantages of D2D communication go be-
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yond spectral efficiency. Saving the airtime at the core network, D2D offers more airtime to the

BS that can be leveraged to serve massive number of low-rate devices such as IoT sensors. It also

can potentially reduce packet transmission delay, enhance user fairness, offload traffic for BSs, and

alleviate congestion for core networks, especially in networks congested by IoT devices [177].

Although there are many results of MU-MIMO and D2D communications, most of them are

limited to their respective domains and there is a lack of practical design to harvest the benefits of

both technologies in cellular networks. Such a stagnation underscores the critical need for bridg-

ing this gap. The main challenge in such a joint design is the interference management between

MU-MIMO devices (BS and UEs) and D2D devices. As existing MU-MIMO schemes are vul-

nerable to interference (e.g., pilot contamination), the performance of MU-MIMO communication

will be dramatically degraded by the interference from active D2D devices if the interference is

not properly handled. At the same time, the interference from MU-MIMO devices will also disrupt

the D2D communications. Therefore, the coexistence of D2D and MU-MIMO communications

necessitates a systematic scheme to tame the mutual interference between the two subsystems.

In this chapter, we present DM-COM, a practical scheme for enabling the coexistence of D2D

and MU-MIMO communications for cellular networks. We consider a single cell that comprises

a BS, a set of cellular UEs (C-UEs), and a pair of D2D UEs (D-UEs) on each Physical Resource

Block (PRB). The BS is equipped with several antennas; the C-UEs are equipped with one antenna;

and the D-UEs are equipped with one or multiple antennas. MU-MIMO is used for communication

between the BS and set of C-UEs. D2D technology is used for communication between the pair of

D-UEs. We assume that MU-MIMO communication follows the principles of 5G New Radio (NR)

standard (e.g., waveform and frame structure). We also assume that D-UEs know the network

protocol and transmission pattern used by MU-MIMO as such information will be broadcast by BS

over control channel. We further assume that the D2D applications are sensitive to communication
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latency (e.g., virtual reality, online gaming, and health monitoring) and thus require low-delay

bidirectional transmissions. In such a network, our objective is to enable the concurrent spectrum

utilization of MU-MIMO and D2D communications.

Towards this objective, we employ a blend of two interference management techniques: in-

terference cancellation and beamforming, which are used in the following way. In the uplink

MU-MIMO, the BS receives both desired signals from C-UEs and interfering signals from D-UEs.

To decode its desired signals, the BS leverages the spatial DoF provided by its multiple antennas

and constructs a decoding matrix to cancel the interference and equalize the channel distortion.

In the downlink MU-MIMO, the BS constructs a beamforming (precoding) matrix to send its in-

tended signals to C-UEs while pre-cancelling the interference for the receiving D-UEs. The C-UEs

do not participate in the interference management and, instead, they rely on other devices to handle

their interference. A similar approach is adopted to manage the interference in the D2D subsystem.

While the idea of our interference management scheme is clear, many technical issues remain

challenging. For uplink MU-MIMO transmission, how can the BS decode the signals from C-UEs

in the presence of interference from D-UEs? For downlink MU-MIMO transmission, how can the

BS perform beamforming in the downlink so it can mute its interference for the D-UEs? For these

two questions, one possible solution is to design a dedicated channel acquisition protocol for the

BS to obtain CSI for signal detection and beamforming. However, such a solution not only entails

a large airtime overhead but also complicates the system operation. In light of this, we propose a

new MU-MIMO scheme that is resilient to the interference from/to D-UEs. The key idea of our

new scheme is that, instead of relying on CSI for signal detection and beamforming, we blindly

use the received signals to extract spatial information required to train decoding and beamforming

matrices. Surprisingly, such a scheme leads to a very good performance for signal detection in the

face of interference, provided that the BS has sufficient antennas.

56



For D2D communication, we apply the same approach to managing interference. For a trans-

mitting D-UE, it leverages the overheard interference from C-UEs to construct the precoding ma-

trix for beamforming. For a receiving D-UE, it leverages the reference signals to construct the

decoding matrix for signal detection in the presence of interference. By doing so, the D-UEs do

not require CSI for signal detection and beamforming. Therefore, the need for notorious channel

feedback is eliminated.

Based on the above interference management scheme, we have developed DM-COM to enable

the coexistence of D2D and MU-MIMO communications in cellular networks. In a nutshell, DM-

COM advances the state-of-the-art in the following aspects:

• At the cellular BS, we have designed an interference management technique that cancels

interference from/to D2D users at uplink/downlink. This scheme does not need CSI nor

synchronization with D2D users.

• At the D2D users, we have designed an interference management technique that cancels

interference from/to cellular nodes. This scheme does not need CSI nor synchronization

with cellular subsystem.

• We have proposed DM-COM, a holistic scheme to enable coexistence of D2D and MU-MIMO

technologies without adversely affecting each other.

• We have built a prototype of DM-COM on a wireless testbed consisting of USRP N210

devices and shown DM-COM’s efficacy in handling cross-subsystem interference in real-

world wireless environment.

We evaluated the performance of DM-COM in a pico-cell network where a four-antenna BS

serves two single-antenna C-UEs in accordance with 5G NR standard. In the network, there co-

exists a pair of D-UEs for direct communication. One D-UE has one antenna and the other has
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three antennas. Our experimental results show that DM-COM reaches 1.9 bit/s/Hz spectral effi-

ciency for D2D users. This is achieved at the cost of 8.0% throughput degradation for MU-MIMO

users (compared to the case without D2D users). Moreover, compared to the conventional case

where all the users (C-UEs and D-UEs) are served by the BS, DM-COM improves the average

network throughput from 21.9 Mbps to 35.1 Mbps in 5 MHz bandwidth, i.e., 60.3% throughput

gain for DM-COM is observed. Our experimental results show that DM-COM successfully re-uses

the spectrum that is pre-occupied by C-UEs. DM-COM maintains the performance of incumbent

C-UEs and increases the overall network throughput through establishing D2D communications.

3.2 Related Work

We briefly review D2D and MU-MIMO solutions in cellular networks.

D2D. To accommodate ever-increasing users in cellular networks and enhance the spectrum

re-utilization, D2D users are allowed to communicate directly without involvement of the BS.

Despite its potential benefits, a D2D sub-system needs to control co-channel interference, manage

resources for competing users, and mitigate security threats [177]. In order for accomplishing these

tasks, the enablers of D2D communications include beamforming [115,165,176], spectral resource

management [30, 84, 130, 160], power control [9, 10, 61, 62, 98, 160, 174], and mode selection

[15, 27, 60]. The existing research follows different objectives, such as achievable data rate [9, 10,

15,27,160], fairness [98], interference minimization [61], energy efficiency [62,84,130,165,174],

and security of D2D systems [112, 148, 158]. From another perspective, most of existing works

consider spectrum re-utilization in either uplink (see, e.g., [10, 61, 98]) or downlink (see, e.g.,

[115, 165, 176]) of cellular networks, but not both.

Moreover, most of the existing works require perfect global channel knowledge as well as
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Figure 3.1: Coexisting MU-MIMO and D2D communications over one PRB in a cellular network.

network-wide synchronization. In contrast, DM-COM enables spectrum re-utilization in both up-

link and downlink. It does not require channel feedback between the network devices, nor network-

wide fine-grained synchronization.

MU-MIMO. MU-MIMO has widely been employed in current wireless systems. The main

components of MU-MIMO are beamforming in the downlink and multi-user detection in the up-

link. Most of beamforming methods are reliant on perfect CSI [34, 122, 163]. In the uplink,

blind beamforming methods offer a solution to this challenge, but suffer from high computa-

tional complexity and long processing delays since they need to solve a complex optimization

problem [6, 24, 173] or follow sophisticated procedures to learn spatial information [12, 125, 126].

In the downlink, existing signal detection methods consider benign environments where the net-

work nodes are perfectly synchronized [22,42,183,201]. DM-COM differs from existing methods

as it eliminates the need for channel feedback and network-wide synchronization in both downlink

and uplink.

3.3 Problem Description

Network Setting. We consider a cellular network as shown in Fig. 3.1. It comprises a BS, a

set of C-UEs, and a pair of D-UEs on one PRB. The BS has multiple antennas, and each C-UE has
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a single antenna.1 Let Mbs denote the number of the BS’s antennas. Let N denote the number of

C-UEs. To fully utilize the BS’s antennas and maximize the spectral efficiency, MU-MIMO is used

for the communication between the BS and N C-UEs. The BS coordinates uplink and downlink

transmissions with Time Division Multiple Access (TDMA) to serve cellular users. Within the

cellular network, there coexists a pair of D-UEs intending to conduct bi-directional communication

over a PRB without traversing the BS. without any loss of generality, in the remainder of this

chapter, we focus on one pair of D-UEs over a PRB. All the arguments hold for multiple pair

of D-UEs, each of which exclusively work over one or multiple PRBs. In the D2D pair under

consideration, the two D-UEs may have different numbers of antennas. Let Md1 and Md2 denote

the number of D-UE 1’s and D-UE 2’s antennas, respectively. Without loss of generality, we

also assume that the number of D-UE 1’s antennas is less than or equal to the number of D-UE

2’s antennas, i.e., Md1 ≤ Md2. For such a network, we have the following assumptions and

justifications:

• We assume that the user selection for MU-MIMO and D2D has taken place. User selection

is not within the scope of this work. In real networks, there may exist multiple pairs of

D-UEs. In that case, different pairs of D-UEs can be assigned to different PRBs based on

some criteria. So, focusing on one pair is sufficient to study the coexistence problem which

is indeed the main objective of this chapter.

• We assume that the BS has more antennas than C-UEs, i.e., Mbs > N . This assumption can

be fulfilled through user selection algorithms. Under this assumption, in addition to decoding

the N desired data streams from C-UEs, the BS has remaining spatial DoF provided by its

antennas to cancel interference from/to D-UEs.
1DM-COM can support the case where C-UE has multiple antennas by simply treating a multi-antenna C-UE as

multiple single-antenna C-UEs.

60



N

Figure 3.2: The proposed network protocol for coexisting MU-MIMO and D2D communications.

• We assume that the D-UEs know the data flow pattern of MU-MIMO communication indi-

cated by slot format in NR. We also assume that C-UEs are oblivious to D-UEs. C-UEs will

not contribute to the interference management.

• We assume that the channel coherence time is sufficient (e.g., 1 ms). The same assumption

has been made by other beamforming-based MIMO systems [34, 122, 163].

Our Objective. We aim to develop DM-COM, a practical scheme to enable the coexistence

(concurrent spectrum utilization) of D2D and MU-MIMO communications by taming their mutual

interference. More specifically, we aim to maximize the throughput of the D2D communication

while maintaining the performance of MU-MIMO subsystem.

3.4 DM-COM: An Overview

In this section, we first present a network protocol for the concurrent spectrum utilization of coex-

isting MU-MIMO and D2D subsystems, and then analyze the achievable data streams on the D2D

link. Finally, we point out the underlying challenges in interference management at the physical

layer and outline our solutions.
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Figure 3.3: Frame structure for MU-MIMO communication.

3.4.1 Network Protocols

MU-MIMO Communication. In the context of cellular networks, Fig. 3.2(a) presents our

proposed protocol for uplink and downlink MU-MIMO transmissions. The protocol works as

follows. The BS first broadcasts an announcement about MU-MIMO transmission to the selected

C-UEs. Then, the selected C-UEs send their packets to the BS in the uplink, which is followed

by spatial multiplexing in downlink transmissions. The uplink and downlink transmissions repeat

until the session of MU-MIMO communication terminates.

To support MU-MIMO communication, we consider NR-like frame format. Fig. 3.3 depicts

the frame structure in one PRB within a frame. To be specific, this frame structure is adopted

based on N38 frequency band and slot format 45 setting over 5 MHz [1]. As shown in the figure,

the frame is composed of 10 subframes, each of which comprises 14 OFDM symbols according

to numerology µ = 0 in NR. Based on the bandwidth configuration, an OFDM symbol has 300

occupied subcarriers grouped into 25 PRBs.

Reference signals are embedded into frames for synchronization, signal demodulation, phase

tracking, etc. Among the reference signals shown in Fig. 3.3, We will leverage PDSCH DM-RS

of downlink packets and PUSCH DM-RS of uplink packets in our design. As shown in the figure,

not every subcarrier has these reference signals. This is because, the subcarrier spacing is small
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(15 kHz), and the channels of adjacent subcarriers are highly correlated. Therefore, if a subcarrier

does not have reference signal, the reference signals on its adjacent subcarriers can be used for

signal demodulation (detection). This feature will also be leveraged in the design of our signal

detection method. TDD is considered for MU-MIMO to support its uplink and downlink transmis-

sions. The ratio of uplink and downlink duration can be configured as desired based on the slot

format. For ease of demonstration, we have considered slot format 45 with equal downlink/uplink

duration, and we equally assigned flexible OFDM symbols to uplink and downlink transmissions.

D2D Communication. Fig. 3.2(b) shows the proposed transmission protocol for the D2D

communication, with respect to the timeline of uplink/downlink transmission in MU-MIMO sub-

system. In the uplink MU-MIMO, D2D conducts forward transmissions (from D-UE 1 to D-UE 2).

In the downlink MU-MIMO, D2D conducts backward transmissions (from D-UE 2 to D-UE 1).

To establish such a timing alignment, D2D subsystem needs neither fine-grained synchronization

with MU-MIMO subsystem nor coordination from the cellular BS. The D2D subsystem can learn

cellular traffic pattern by either listening the information over the control channel or tracking the

spatial signatures of signals on multiple antennas on D-UEs. It then adjusts its transmission ac-

tivities based on learned pattern. As illustrated in the figure, the time duration of D2D forward

transmissions is slightly shorter than that of uplink MU-MIMO. In this time period, D-UE 2 over-

hears the interfering signals from C-UEs, which will be used for the calculation of its beamforming

matrix.

For the D2D communication, two remarks are in order. First, the mutual interference between

D2D and MU-MIMO communications will be properly handled at physical layer. Therefore, the

D2D and MU-MIMO subsystems remain oblivious to each other from the viewpoint of MAC or

upper layers. Second, as we shall see later, the interference management at the physical layer does

not require PHY-layer cooperation between the D2D and MU-MIMO subsystems. Hence, the D2D
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and MU-MIMO subsystems do not need to use the same frame structure and modulation. As we

will show via experiments, D2D can employ IEEE 802.11 PHY for its transmissions.

3.4.2 Achievable Data Streams (DoF) on the D2D Link

For the protocol in Fig. 3.2, a natural question to ask is how many data streams can be transported

on the D2D link. Apparently, it depends on the number of D-UE 2’s antennas. If D-UE 2 has a

large number of antennas, then many data streams can be transported on the D2D link, provided

that D-UE 1 has enough DoF to support all incoming streams from D-UE 2. If D-UE 2 does

not have sufficient antennas, then no data stream can be transported on the D2D link. We note

that the number of data streams on an MIMO link, which is also known as DoF, is the first-

order approximation of its Shannon capacity with respect to Signal to Noise Ratio (SNR). It also

represents the multiplexing gain of the MIMO link in high-SNR regime. Therefore, studying the

number of data streams is of great theoretical importance to analyze the achievable data rate of the

D2D link (given that analyzing its Shannon capacity is out of our capability). In what follows, we

derive the achievable data streams on the D2D link by analyzing the spatial DoF consumption in

the uplink and downlink MU-MIMO using an existing DoF model [153].

Assume that the bi-directional transmissions on the D2D link are symmetric, i.e., the number

of data streams from D-UE 1 to D-UE 2 is the same as that from D-UE 2 to D-UE 1. We let d ∈ N0

denote the number of data streams on the D2D link. To determine the maximum value of d, we

first consider the uplink MU-MIMO as shown in Fig. 3.4(a). At the BS, it needs to decode N

data streams from C-UEs and cancel d interfering streams from D-UE 1. Based on the DoF model

in [153], we haveN+d ≤Mbs. At D-UE 1, it needs to transmit d data streams. We therefore have

d ≤ Md1. At D-UE 2, it needs to decode d data streams and cancel N data streams from C-UEs.

We have N +d ≤Md2. Based on the above three constraints, the maximum number of achievable
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Figure 3.4: Illustrating the mutual interference between MU-MIMO and D2D subsystems: (a)
uplink; (b) downlink.

data streams on the D2D link can be expressed by

d = min(Md1,Md2−N,Mbs−N)+, (3.1)

where (·)+ returns a nonnegative number, i.e., max(·, 0). By the same token, it is easy to verify

that d in (3.1) is also the maximum number of achievable data streams on the D2D link in downlink

MU-MIMO (see Fig. 3.4(b)).

3.4.3 Interference Management and Its Challenges

Now the question is how to handle the interference at the physical layer so that the D2D link can

achieve d data streams while the MU-MIMO subsystem can maintain its N data streams between

the BS and the N C-UEs. To answer this question, we consider uplink and downlink MU-MIMO
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separately. For the uplink as shown in Fig. 3.4(a), we need to design a signal detection method

for both D-UE 2 and the BS so that they can decode their respective signals in the presence of

interference from unintended transmitters. For the downlink as shown in Fig. 3.4(b), we need

to design a beamforming method for both D-UE 2 and the BS so that they can pre-cancel their

generated interference for their unintended receivers.

While there are many results of signal detection and beamforming in the context of MIMO,

most of them require global CSI and perfect synchronization. Such requirements entail a large

amount of airtime overhead, thereby degrading the spectral efficiency and complicating system

operation. In light of this challenge, we propose a new signal detection method and show its

resilience to interference. In contrast to existing detection methods (e.g., ZF and MMSE detectors),

our signal detection method does not require CSI but is capable of decoding signals in the face of

interference. In the downlink, we propose two new beamforming methods for BS and D-UE 2,

respectively. Again, the proposed beamforming methods do not require CSI for the design of

precoding matrix, differentiating themselves from existing beamforming methods.

3.5 MU-MIMO Communication

In this section, we present new signal detection and beamforming methods for MU-MIMO to

handle the interference between the BS and D-UE 1 (see Fig. 3.4). The interference between C-

UEs and D-UE 2 will be handled by the D2D communication method presented in the next section.

3.5.1 Basic Idea

In the MU-MIMO subsystem, the BS handles its interference in both uplink and downlink trans-

missions by leveraging its spatial DoF offered by multiple antennas. Specifically, in the uplink
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MU-MIMO as shown in Fig. 3.4(a), the BS performs interference cancellation and signal detec-

tion to recover its desired signals from the N C-UEs in the presence of interference from D-UE

1. At the BS, interference cancellation and signal detection will be done using spatial matrices to

combine the received signals from its multiple antennas. In the downlink MU-MIMO as shown in

Fig. 3.4(b), the BS applies beamforming to pre-cancel its generated interference at D-UE 1. Recall

that we assume the BS has more antennas than C-UEs (Mbs > N ). This assumption ensures that

the BS has sufficient spatial DoF to send N data streams towards the N C-UEs and, at the same

time, it is able to nullify its generated interference at D-UE 1.

In contrast to the BS, the C-UEs do not participate in the interference management since they

have a single antenna. They will rely on D-UE 2 to handle the interference in both uplink and

downlink. As such, DM-COM preserves backward compatibility with incumbent C-UEs. In what

follows, we focus on the baseband signal processing at the BS. We first present the signal detection

method for the uplink and then present the beamforming method for the downlink.

3.5.2 Uplink Signal Detection at the BS

Mathematical Formulation. We consider the uplink MU-MIMO transmissions in the presence

of interference from D-UE 1 as shown in Fig. 3.4. Let sc ∈ CN×1 denote the vector of signals that

are transmitted by the N C-UEs. Let sd ∈ Cd×1 denote the vector of signals that are transmitted

by D-UE 1. Let Pd ∈ CMd1×d denote its precoding vector. Also, Hc ∈ CMbs×N denotes the

compound channel between the BS and theN C-UEs, and Hd ∈ CMbs×Md1 stands for the MIMO

channel between the BS and D-UE 1. We further let w ∈ CMbs×1 denote noise at the receiving

BS. Then, the vector of received signals at the BS, which we denote as y ∈ CMbs×1, can be

written as:

y = Hcsc +HdPdsd +w. (3.2)
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At the BS, to recover its desired signal sc in the presence of interference sd and noise w, one

approach is using conventional detectors, such as ZF and MMSE detectors. These approaches,

however, require channel knowledge about Hc and Hd. While Hc is easy to obtain, Hd is not.

If the BS intends to obtain Hd, it requires to cooperatively work with D-UE 1, and a dedicated

protocol is needed for channel sounding as well. This increases the airtime overhead and compli-

cates network operation remarkably. In light of this challenge, we propose an approximate-MMSE

MIMO detector for the BS, which does not require channel knowledge about Hc and Hd for signal

detection.

Detection Matrix Design. We consider linear detection at the BS. By letting G ∈ CN×Mbs

denote the detection matrix, the estimated signal at the BS can be written as ŝc = Gy, where ŝc

is the estimated version of signal sc. Then, the Mean Square Error (MSE) between the original

signal sc and estimated signal ŝc can be written as: MSE = E
[
|Gy− sc|2

]
, where | · |2 is ℓ2-norm

of a complex vector. By letting ∂MSE
∂G = 0, we can obtain G = E[scyH]E[yyH]+, where [·]+ is

Moore-Penrose inverse. This is actually another form of MMSE MIMO detector.2

To calculate G in real systems, we need to compute E[scyH] and E[yyH]. To do so, we take

advantage of the demodulation reference signals for uplink (PUSCH DM-RS) in the frame struc-

ture, as shown in Fig. 3.3. In the uplink frame, one OFDM symbol is used for PUSCH DM-RS

within a PRB. We can use these reference signals to estimate E[yyH] and E[ysHc ]. Let us define

that a PRB has 12 subcarriers and 14 OFDM symbols. Let R denote the set of PUSCH DM-RS

elements in an uplink PRB as shown in Fig. 3.3. Let k and l denote the index of subcarriers

and OFDM symbols, respectively. Then, we have E[yyH] ≈ 1
|R|
∑

(l,k)∈R y(l, k)y(l, k)H and

2By letting H denote the compound channel and assuming that the distribution of transmit signal is i.i.d., G can
be transformed to its classical form: G = E[scyH]E[yyH]+ = HH(HHH + σ2I)−1, where σ2 is the normalized
noise power.
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E[scyH] ≈ 1
|R|
∑

(l,k)∈R sc(l, k)y(l, k)
H. Consequently, G can be approximately expressed as:

G =
[∑
(l,k)∈R

sc(l, k)y(l, k)
H
][∑
(l,k)∈R

y(l, k)y(l, k)H
]+
, (3.3)

where sc(l, k), (l, k) ∈ R, is a PUSCH DM-RS element at the N C-UEs; and y(l, k), (l, k) ∈ R,

is the corresponding received signal at the BS, which includes both PUSCH DM-RS element from

the C-UEs and interfering signals from D-UE 1. We note that in (3.3), we replace the approx-

imation sign (≈) with equation sign (=) for simplicity. We also note that, since G in (3.3) is

an approximation of MMSE MIMO detector, we therefore term it approximate-MMSE MIMO

detector.

Performance Analysis. The approximate-MMSE MIMO detector does not require CSI for

the signal detection. Instead, it uses the transmitted and received reference signals to compute

the detection matrix. For this reason, the approximate-MMSE MIMO detector can decode desired

signals in the presence of unknown interference.

It is interesting to explore the performance of this approximate-MMSE MIMO detector in the

cellular network. Let us assume that the signals in a PRB experience the same channel, i.e., channel

coherence frequency is greater than 12 subcarriers (180 kHz) and channel coherence time is greater

than 14 OFDM symbols (1 ms). Let us further assume that the noise is negligible (i.e., zero-noise).

We have the following lemma:

Lemma 3. If th BS is equipped with sufficient number of antennas then the approximate-MMSE

MIMO detector at BS can perfectly decode the signals from the N C-UEs, i.e., ŝc(l, k) = sc(l, k),

∀l, k.

Proof. We denote H(k) as the compound channel between the BS and all the transmitting UEs

over subcarrier k, i.e., H(k)=
[
Hc(k) Hd1

(k)
]
; we also denote S(l, k) as the compound transmit
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signals at all C-UEs and D-UE 1, i.e., S(l, k)=
[
sc(l, k) sd1(l, k)

]T
. Then, we can re-write (3.2)

over subcarrier k and OFDM symbol l as:

Y(l, k) = H(k)S(l, k). (3.4)

As the auto-correlation matrix of the compound transmit signals, we have

RS = E(SSH)
(a)
=

 Rc 0

0 Rd

 (b)
=

 I 0

0 Rd

 (3.5)

where RS, Rc, and Rd are the auto-correlation matrix of the compound transmit signals, auto-

correlation matrix of C-UEs’ transmit signals, and auto-correlation matrix of D-UE 1 transmit

signals, respectively. Equality (a) follows from the fact that the transmit signal from C-UEs are

independent of the transmit signals from D-UE 1. Also, (b) follows from the fact that transmit

signals from C-UEs are independent too.

Based on (3.3), (3.4), and (3.5), we obtain the approximate-MMSE MIMO detector G(k) over

subcarrier k as follows:

G(k)=
[∑
(l,k′)∈R

Y(l, k′)Y(l, k′)H
]+[∑

(l,k′)∈R
Y(l, k′)sc(l, k′)

H
]

= E
[
Y(l, k)Y(l, k)H

]+E[Y(l, k)sc(l, k)
H]

=
[
H(k)RSH(k)H

]+[
H(k)I′

]
, (3.6)

where I′ is a matrix which its entries on the diameter are one and other entries are zero. Then, we
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have

ŝc(l, k) = G(k)∗Y(l, k)

=
{[

H(k)RSH(k)H
]+[

H(k)I′
]}H

H(k)S(l, k)

= sc(l, k), ∀l, k. (3.7)

This means that the approximate-MMSE MIMO detector G(k) is capable of perfectly recovering

the original signal over subcarrier k and OFDM symbol l in a noise-free environment.

This lemma shows the superior performance of approximate-MMSE MIMO detector in ideal

scenarios (frequency-flat channel, sufficiently large channel coherence time, and zero-noise regime).

For its performance in non-ideal scenarios, we resort to experimentation. Our experimental results

will show that the approximate-MMSE MIMO detector yields a good performance in real network

scenarios.

3.5.3 Downlink Beamforming at BS

Beamforming Matrix Design. We now consider the beamforming for downlink MU-MIMO

as shown in Fig. 3.4(b). Based on the network information theory, if a network can send N data

streams in the uplink, it can also send N data streams in the downlink. This principle inspires us

in the design of beamforming matrix. Our beamforming method is simple – we use the detection

matrix derived in the uplink as the beamforming matrix in the downlink. Let z(l, k) ∈ CN×1

denote the vector of signals in OFDM symbol l on subcarrier k that the BS wants to send towards

N C-UEs. Let x(l, k) ∈ CMbs×1 denote the vector of precoded signals in OFDM symbol l on

subcarrier k that the BS sends to its Mbs antenna ports. Then, the beamforming operation can

be expressed as: x(l, k) = αGTz(l, k), ∀l, k, where G is obtained in the uplink and α ∈ R is a
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scaling factor to meet the requirement of the BS’s transmit power.

In Lemma 3, we showed that the G matrix can perfectly recover the desired signals at the

BS in the uplink. If the uplink and downlink channels reciprocity is maintained, it is evident

that the C-UEs can also perfectly recover their respective signals in the downlink. Moreover, the

BS can perfectly pre-cancel the interference for D-UE 1, which is a receiver in this time period

(see Fig. 3.4(b)). For the beamforming method in non-ideal scenarios, we leave its performance

evaluation to our experimental results in Section 3.7.

Channel Calibration. The proposed beamforming method relies on the channel reciprocity.

For its deployment in real systems, relative channel calibration at the BS can be implemented to

maintain the channel reciprocity. In our experiments, the relative calibration method in [150] was

implemented at the BS as a part of beamforming implementation.

3.5.4 Discussions on Its Limitations

Two remarks on this MU-MIMO method are in order. First, channel coherence time plays a critical

role in the proposed MU-MIMO method. Suppose that both uplink and downlink occupy one sub-

frame (1 ms). Then, the required channel coherence time should be longer than 1 ms. This is a mild

requirement in real wireless environments. Second, the performance of the proposed MU-MIMO

method is dependent on the number of reference signals in an uplink PRB. Per our experiments,

when a device has Nant antennas, R needs to be selected such that |R| ≥ 2Nant. In this case,

the average EVM gap between approximate-MMSE and ideal MMSE detectors is less than 3 dB.

As such, D2D and MU-MIMO subsystems individually set an appropriateR and PUSCH DM-RS

pattern to meet their own needs. For instance,Rmay embrace more than one PRB or PUSCH DM-

RS pattern may entail dense distribution of reference signals to meet the requirements of D-UEs

and the BS.
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3.6 D2D Communication

In this section, we focus on the D2D communication. As the interference related to D-UE 1 has

been tamed by the BS, we now focus on the interference related to D-UE 2. Specifically, we design

a D2D communication scheme such that D-UE 2 can properly handle its related interference in

both uplink and downlink. A proper D2D scheme has to address the following two questions: For

the uplink shown in Figure 3.4(a), how can D-UE 2 decode its intended signals in the presence of

interference from C-UEs? For the downlink in Figure 3.4(b), how can D-UE 2 send its signal to

D-UE 1 while pre-canceling its generated interference for C-UEs? In what follows, we present our

solutions to these questions.

3.6.1 Signal Detection at D-UE 2

Referring to D2D forward transmissions in Figure 3.4(a), we follow the same approach presented

in Section 3.5.2 for D-UE 2 to decode its signals in the presence of interference from C-UEs.

Specifically, D-UE 2 first calculates a detection matrix using (3.3) and then uses the calculated

detection matrix to filter out the interference from C-UEs and equalize the channel distortion for

signal recovery. The remaining question is what frame structure should be used for the D2D

transmission. Actually, the frame structure for D2D transmission is flexible. As we will show in

our experiments, the frame structure of D2D communication can be the same as the MU-MIMO

frame structure as shown in Figure 3.3; it also can be IEEE 802.11 frame structure (consisting of

preamble and data parts [67]).
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3.6.2 Beamforming at D-UE 2

We now consider the D2D backward transmissions in Figure 3.4(b). In this time period, D-UE 2

needs to perform beamforming to pre-cancel its interference for C-UEs. Our beamforming method

takes advantage of the overheard interfering signals in the previous time period, as illustrated in

Figure 3.2. By leveraging the overheard signals, D-UE 2 constructs a beamforming matrix for

signal transmission. In what follows, we detail the construction of beamforming matrix at D-UE

2.

Beamforming Matrix Design. Referring to Figure 3.2, in a short time period at the end of

uplink MU-MIMO, D-UE 1 does not transmit signal and thus D-UE 2 receives only interfering

signals from C-UEs. Let Yd ∈ CMd2×1 denote the received signals at D-UE 2 in this time period.

Then, we have

yd = Hdcsc +Wd, (3.8)

where Hdc ∈ CMd2×N is the channel between C-UEs and D-UE 2; sc ∈ CN×1 is the vector of

transmit signals at the N C-UEs; and wd ∈ CMd2×1 is the noise vector at D-UE 2.

Let Pd ∈ CMd2×d denote the precoding matrix at D-UE 2. Then, based on the received signal

Yd, we construct Pd as:

Pd = U(:,Md2 − d+ 1 :Md2), (3.9)

where U(:, n : m) is a submatrix of U, which is from U’s nth column to mth column. U is

computed by

[UDV] = svd(ydy
H
d ), (3.10)

where D and V are redundant outputs, and svd (·) denotes singular value decomposition. Using

(3.9) and (3.10), we compute a beamforming matrix Pd for each subcarrier in the OFDM symbols.
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Then, the Pd is applied to the corresponding subcarrier for beamforming during D-UE 2’s signal

transmission. Since the matrix Pd is computed using the uplink interfering signal, it necessitates

channel reciprocity when using Pd as the beamforming matrix in the downlink. Therefore, channel

calibration has to been done at D-UE 2 in order to pre-cancel its interference for C-UEs. Again, RF

calibration can be used at D-UE 2 in the baseband signal processing domain to preserve channel

reciprocity.

Performance Analysis. We first study the performance of proposed beamforming scheme in

an ideal network scenario. Let us assume that all the MIMO channels have full rank. Let us assume

that the channel coherence time is sufficiently large (larger than the duration of downlink). Let us

assume that the channel is perfectly calibrated at D-UE 2, i.e., the downlink and uplink channels

are reciprocal. Let us further assume that the noise is negligible, and D-UE 2 has sufficient number

of antennas, i.e., d+N ≤Md2. Then, we have the following lemma:

Lemma 4. The constructed beamforming matrix Pd can completely pre-cancel the interference

for the N C-UEs on every OFDM subcarrier.

Proof. Referring to Fig. 3.2, D-UE 1 first remains silent for a while, and D-UE 2 merely receives

interfering signals fromN C-UEs. Then, D-UE 2 uses the overheard interference to design precod-

ing filter for pre-cancelling its generated interference at C-UEs in backward transmission. The re-

ceived interference can be written as:

yd(k) = Hdc(k)sc(k), (3.11)

where Hdc(k) denotes the compound channel between D-UE 2 and all the C-UEs over subcarrier
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k. Then, we have

E[yd(k)yd(k)H]
(a)
= H

[1]
dc(k)H

[1]
dc(k)

H, (3.12)

where (a) follows from the fact that E[sc(k)sc(k)H] = I as the N C-UEs send N independent data

streams. Recall that N + d ≤Md2 and consequently d ≤Md2 −N . Based on the right hand side

of (3.12), rank of E[yd(l, k)yd(l, k)H] is at most N . The rank reduces when channel is correlated

and rank deficient. Therefore, svd(yd(k)yd(k)H) has at least d zero singular vectors. If ui denotes

the ith left singular vector, based on (3.12), we have

(
Hdc(k)Hdc(k)

H
)
ui = 0, Md2 − d+ 1 ≤ i ≤Md2. (3.13)

If channel reciprocity is maintained with the aid of a channel calibration method, Hcd(k) =(
Hdc(k)

)T . Then, it is easy to show that Hcd(k)P = 0.

Lemma 4 shows the superior performance of the proposed beamforming method. It is worth

noting that, although the beamforming technique presented in Section 3.5 works for D-UE 2, we

observed in experiments that the proposed Singular Value Decomposition (SVD)-based technique

has superior performance in terms of interference leakage. In light ot this, the proposed technique

is applied on D-UE 2 to preserve the performance of MU-MIMO subsystem.

3.7 Experimental Evaluation

In this section, we build a prototype of DM-COM and evaluate its performance in a small network.
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Figure 3.5: Experimental setup and comparison baselines.

3.7.1 Implementation and Experimental Setup

Implementation. We have built a wireless network testbed that consists of a BS, two C-UEs,

and two D-UEs as shown in Fig. 3.5(a). The BS has four antennas. The C-UEs has one antenna.

D-UE 1 has one antenna. D-UE 2 has three antennas. The BS, C-UEs, and D-UEs are built using

USRP N210 devices as the radio transceivers and general-purpose computers as baseband signal

processors.

We implement DM-COM on this testbed. The MU-MIMO subsystem is implemented using

a custom-built 5G NR PHY, while the D2D subsystem is implemented using both NR-like and

WiFi-like PHYs. The PHY parameters of DM-COM implementation are listed in Table 3.1. Based

on these PHYs, we implement the MAC protocols for both MU-MIMO and D2D subsystems as

shown in Fig. 3.2. For the MU-MIMO protocol, both uplink and downlink transmissions have the

same duration. For the D2D protocol, the time duration of “listening at D-UE 2” is about 71.35 µs.

Experimental Setup. Fig. 3.6 depicts the floor plan of our experimentations. The BS and

C-UEs are always placed on the spots marked by blue and red colors, respectively. The distance

between BS and cellular users is about 7 m. D-UE 1 and D-UE 2 are deployed over 50 random

locations in Fig. 3.6. In each location, the distance between D-UEs is about 3 m. We use the

indoor environments for ease of experimentation. Moreover, many small cells will be deployed in

the buildings as mobile hotspot in the near future.
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Table 3.1: The parameters of experimental network.

MU-MIMO
subsystem

D2D
subsystem 1

D2D
subsystem 2

Standard NR-like NR-like WiFi-like
Waveform OFDM OFDM OFDM
FFT point 512 512 64

Valid subcarrier 300 300 52
Sample rate 5 Msps 5 Msps 5 Msps

Symbol duration 71.35 µs 71.35 µs 16 µs
Signal bandwidth 2.9 MHz 2.9 MHz 4 MHz
Carrier frequency 2.48 GHz 2.48 GHz 2.48 GHz
Transmit power ∼ 18 dBm ∼ 18 dBm ∼ 18 dBm

Figure 3.6: The floor plan of our experimentation.

3.7.2 Performance Metrics and Comparison Baselines

Performance Metrics. We use two metrics to evaluate DM-COM. The first one is EVM,

which is defined as follows: EVM = 10 log10(
E[|Ŝ(l,k)−S(l,k)|2]

E[|S(l,k)|2]
), where Ŝ(l, k) and S(l, k) are

the estimated and original signals, respectively. EVM is widely used in both IEEE 802.11 standards

[67] and 3GPP standards [1] to measure quality of decoded signals, define modulation Modulation

and Coding Scheme (MCS), and estimate the achievable data rate as we see shortly.

The second metric is the achievable data rate. Based on the measured EVM, we extrapolate

the achievable data rate using the MCS defined in the 3GPP standard and IEEE 802.11ac standard

as follows: r = 1
2 ·

Nsc
Nfft+Ncp

· b · γ (EVM), where coefficient 1/2 stems from halftime uplink
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Figure 3.7: Decoded (demodulated) signals in the MU-MIMO and D2D subsystems in the up-
link/forward transmission.

(a) Decoded signal from BS at
C-UE 1.

(b) Decoded signal from BS at
C-UE 2.

(c) Decoded signal fromD-UE 2
at D-UE 1.

Figure 3.8: Decoded (demodulated) signals in the MU-MIMO and D2D subsystems in the down-
link/backward transmission.

and halftime downlink transmissions in MU-MIMO. Nsc, Nfft, and Ncp denote number of used

subcarriers, Fast Fourier Transform (FFT) points, and the length of cyclic prefix, respectively. b

is the sampling rate in Msps. γ(EVM) is the spectral efficiency of transmission based on MCS

selection defined in standards. Table 2.3 and Table 2.2 present γ (EVM) for NR-like and WiFi-like

PHYs, respectively.

Comparison Baselines. As shown in Fig. 3.5, we compare DM-COM with two existing

schemes: Cellular-MU-MIMO and Full-MU-MIMO. In the Cellular-MU-MIMO, the BS serves

the two C-UEs only, and the two D-UEs are deactivated. In the Full-MU-MIMO, the BS serves the

two C-UEs while the two D-UEs communicate with each other with the aid of BS. Technically,
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the BS simultaneously serves the four UEs in both uplink and downlink.

3.7.3 A Case Study of DM-COM

We first use a case study to scrutinize DM-COM and its interference cancellation capability. In this

case study, we place the two D-UEs at two spots marked by stars in the upper-left room in Fig. 3.6,

and the D2D subsystem uses NR-like PHY for communications. Recall that DM-COM comprises

two phases: uplink and downlink, as shown in Fig. 3.4. In what follows, we first examine the

decoded signals in the two phases and then study the interference cancellation capability.

Constellation, EVM, and Data Rate. Referring to Fig. 3.4(a), in the uplink, the BS demod-

ulates the signals from the two C-UEs; at the same time, D-UE 2 demodulates the signal from

D-UE 1. Fig. 3.7 exhibits the constellation of the demodulated signals at the BS and D-UE 2, as

well as their EVMs. Based on the measured EVM, the uplink data rates of C-UE 1 and C-UE 2

are extrapolated to 6.2 Mbps and 7.6 Mbps, respectively. Meanwhile, the data rate of D-UE 2 is

extrapolated to 4.5 Mbps.

Referring to Fig. 3.4(b), in the downlink, the BS sends the data to the two C-UEs; at the same

time, D-UE 2 sends data to D-UE 1. Fig. 3.8 presents the constellation of the demodulated signals

at the two C-UEs and D-UE 1, as well as their EVMs. Based on the measured EVM, the down-

link data rates of C-UE 1 and C-UE 2 are extrapolated to 5.3 Mbps and 6.2 Mbps, respectively.

Meanwhile, the data rate of D-UE 1 is extrapolated to 4.6 Mbps.

Beamforming Capability. Referring to Fig. 3.4(b), in the downlink, we examine the effec-

tiveness of beamforming at the two transmitters (BS and D-UE 2) . To do so, we measure the

interference at the receiving nodes (C-UE 1, C-UE 2, and D-UE 1) in two cases: with and without

beamforming. For the case without beamforming, we use precoder [1/2, 1/2, 1/2, 1/2] at the BS

and [1/
√
3, 1/

√
3, 1/

√
3] at D-UE 2. Fig. 3.9 presents the measured the interference at the receiv-
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Figure 3.9: Received interference at the receiving nodes in the downlink with and without beam-
forming at the transmitters.

ing nodes. It is evident that the proposed beamforming methods can very effectively pre-cancel

the interference. Specifically, both beamforming methods achieve at least 28.5 dB interference

cancellation capability. Thanks to the effective beamforming methods, both MU-MIMO and D2D

subsystems can achieve superior performance in the downlink, as shown in Fig. 3.8.

3.7.4 DM-COM vs. Cellular-MU-MIMO and Full-MU-MIMO

By the same token in the case study, we now study the performance of DM-COM by placing the

two D-UEs at 50 different locations as shown in Fig. 3.6. In this study, we use Cellular-MU-MIMO

and Full-MU-MIMO as the comparison baselines (see Fig. 3.5).

EVM Distribution. Fig. 3.10 presents the distribution of measured EVM when the three

schemes are used. Specifically, Fig. 3.10(a) presents the measured EVM of demodulated signals

at the BS in the uplink MU-MIMO when DM-COM, Cellular-MU-MIMO, and Full-MU-MIMO

are respectively used. Particularly, we considered two cases for DM-COM: (i) D2D subsystem

uses NR-like PHY and (ii) D2D subsystem uses WiFi-like PHY. From the figure, we can see that

DM-COM achieves−26.1 dB EVM on average, no matter which PHY (5G NR or WiFi) is used for

D2D communications. In contrast, Cellular-MU-MIMO achieves about −27.6 dB EVM on aver-

age, and Full-MU-MIMO achieves−20.1 dB EVM on average. The EVM gap between DM-COM
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(a) EVM in uplink MU-MIMO. (b) EVM in downlink MU-MIMO.

 

(c) EVM in forward D2D. (d) EVM in backward D2D.

Figure 3.10: EVM distribution of demodulated signals when DM-COM, Cellular-MU-MIMO, and
Full-MU-MIMO are used.

and Cellular-MU-MIMO is only 1.5 dB. This means that, in DM-COM, the EVM degradation at

the BS caused by the interference from D2D subsystem is only 1.5 dB.

Fig. 3.10(b) presents the measured EVM of the demodulated signals at the two C-UEs in

the downlink MU-MIMO. It shows that DM-COM achieves an average of −24.3 dB EVM in

the downlink MU-MIMO. The EVM gap between DM-COM and Cellular-MU-MIMO is about

1.9 dB. This means that, in DM-COM, the EVM degradation at C-UEs caused by the interference

from D2D subsystem is only 1.9 dB.

Fig. 3.10(c) and (d) present the measured EVM in forward and backward D2D transmissions

when DM-COM and Full-MU-MIMO are used. Note that Cellular-MU-MIMO does not sup-

port D2D communication, and thus these two figures do not include the results from Cellular-

MU-MIMO. On average, DM-COM achieves −22.1 dB EVM for forward D2D transmission and
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(a) Per-UE throughput in uplink MU-MIMO. (b) Per-UE throughput in downlink MU-MIMO.

 

(c) D2D forward throughput. (d) D2D backward throughput.

Figure 3.11: Distribution of extrapolated throughput when DM-COM, Cellular-MU-MIMO, and
Full-MU-MIMO are used.

−19.2 dB EVM for backward D2D transmission, no matter which PHY (NR or WiFi) is used for

D2D subsystem. In contrast, Full-MU-MIMO achieves −15.6 dB EVM for forward D2D trans-

mission and −13.2 dB EVM for backward D2D transmission. This means that DM-COM outper-

forms Full-MU-MIMO by 6.5 dB in forward D2D communication and 6.0 dB in backward D2D

communication.

Per-UE Throughput Distribution. We extrapolate per-UE throughput (dat rate) based on the

measured EVM. Fig. 3.11 presents the results. The staircase shape of the curves stems from the

MCS selection, which yields discrete data rate region in nature. On average, DM-COM achieves

6.7 Mbps per-UE throughput in uplink MU-MIMO and 6.1 Mbps per-UE throughput in downlink

MU-MIMO. At the same time, it achieves 5.4 Mbps for forward D2D transmission and 4.2 Mbps

for backward D2D transmission.
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Figure 3.12: Total throughput of the MU-MIMO and D2D subsystems when DM-COM, Cellular-
MU-MIMO and Full-MU-MIMO are respectively used.

3.7.5 Summary of Observations

Fig. 3.12 presents the total throughput of MU-MIMO and D2D subsystems when DM-COM,

Cellular-MU-MIMO, and Full-MU-MIMO are used. The total throughput of MU-MIMO is the

summation of its uplink and downlink data rates. The total throughput of D2D is the summation

of its backward and forward data rates. The total throughput are averaged over the 50 different

locations in Fig. 3.6.

MU-MIMO subsystem. Fig. 3.12(a) shows that DM-COM achieves 25.3 Mbps throughput

for MU-MIMO subsystem when using 5G NR PHY for D2D and 25.7 Mbps throughput when

using WiFi PHY for D2D. In contrast, Cellular-MU-MIMO achieves 27.8 Mbps throughput for

MU-MIMO. This means that, in DM-COM, the throughput degradation of C-UEs caused by the

interference from D-UEs is only 8%. Full-MU-MIMO achieves 16.6 Mbps, which is much less

than DM-COM.

D2D subsystem. Fig. 3.12(b) shows that DM-COM achieves 9.2 Mbps throughput for D2D

subsystem when using 5G NR PHY and 10.1 Mbps throughput when using WiFi PHY. Recall that

the system bandwidth is 5 MHz. This means that DM-COM achieves more than 1.9 bit/s/Hz spec-

tral efficiency for D2D communication. In contrast, Full-MU-MIMO achieves 5.3 Mbps through-
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put for D2D. This means that DM-COM outperforms Full-MU-MIMO by 82%. This can be

partially attributed to the two-hop D2D communication in Full-MU-MIMO.

3.8 Chapter Summary

In this chapter, we presented DM-COM, a practical scheme that combines D2D and MU-MIMO

technologies to advance cellular networks. The main challenge in DM-COM is managing the

interference between D2D and MU-MIMO subsystems. DM-COM takes the advantage of mul-

tiple antennas on the network devices to cancel the interference and recover the desired signals,

without requiring channel state information and fine-grained inter-system synchronization. This

was achieved through the design of practical yet effective multi-user detection and beamforming

methods. We have built a prototype of DM-COM on a custom-built wireless testbed and com-

pared its performance with two existing schemes. Our experimental results show that DM-COM

achieves 1.9 bit/s/Hz spectral efficiency for D2D users. Moreover, the throughput degradation of

MU-MIMO users due to the spectrum utilization of D2D users is less than 8%.

85



Chapter 4

Non-Orthogonal Multiple Access for WLANs

4.1 Introduction

Multiple access is a crucial mechanism for wireless network infrastructure to serve multiple users.

OMA techniques (e.g., TDMA and Frequency Division Multiple Access (FDMA)), albeit easy to

implement, are incapable of approaching network capacity limit due to their exclusivity in resource

allocation. This issue becomes particularly acute for networks with strict user fairness require-

ments. NOMA has recently emerged as a new multiple access paradigm for infrastructure-based

wireless networks. Since its inception, NOMA has attracted a large amount of research attention

and has been widely regarded as a promising candidate for Radio Access Technologies (RAT) for

5G networks and beyond. In contrast to OMA, NOMA allows multiple users to utilize the same

spectrum band for signal transmissions at the same time and, therefore, offers many advantages

such as improving spectral efficiency, enhancing resource allocation flexibility, reducing schedul-

ing latency, increasing cell-edge throughput, and enabling massive connectivity.

Recognizing its great potentials, power-domain NOMA has been studied in a variety of network

settings in an increasingly sophisticated form, such as power allocation in Single-Input Single-

Output (SISO) networks [44, 48, 207], precoder design in Multi-Input Single-Output (MISO) net-

works [7, 32, 55, 209], and privacy protection [25, 108, 208]. Although a considerable amount of

research efforts have been made on the study of NOMA, most of them are limited to theoretical
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exploration and performance analysis in cellular networks. Very limited progress has been made so

far in the development of practical NOMA schemes and experimental validation of NOMA in real

wireless network settings. This stagnation reflects the challenges in the design of practical NOMA

schemes and the engineering issues related to their implementations, such as channel acquisition

and precoding on the transmitter side and SIC realization on the receiver side.

In this chapter, we aim to make a concrete step forward to bridge this gap by proposing a prac-

tical downlink NOMA scheme for WLANs and evaluating its performance on a wireless testbed.

We consider an AP that has one or multiple antennas and a set of widely distributed users that have

one antenna each. In such a network setting, we first examine the precoder design problem at the

AP for downlink NOMA transmissions. We formulate the precoder design problem as an optimiza-

tion problem, which inevitably includes non-convex constraints due to the intrinsic complication of

the problem. To solve this problem, we employ a Minorization-Majorization (MM) approach for

convexification of constraints. Based on the convexification results, we further develop an iterative

algorithm to solve the precoder design problem.

Based on the solution to the precoder design problem, we develop a downlink NOMA scheme

to enable concurrent data transmissions from an AP to multiple users. Our NOMA scheme features

a lightweight user grouping strategy and a new SIC method. Specifically, on the transmitter (AP)

side, we develop a heuristic algorithm to group the users for downlink NOMA transmission; on

the receiver (user) side, we propose a robust SIC algorithm for interference subtraction and signal

detection. In contrast to existing SIC methods [167], which first estimate the channels and then use

the estimated channels to decode the signal/interference sequentially, our proposed SIC method

does not require channel knowledge for interference subtraction and signal detection. Instead, it

directly uses the reference signals (the precoded preamble in a frame) to compute the detection

filters, which are used for interference subtraction and signal detection. As channel estimation is
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vulnerable to interference, the removal of channel estimation in the SIC procedure improves the

performance and reliability of signal detection in our NOMA scheme.

We have built a prototype of the proposed NOMA scheme on a GNURadio-USRP2 wireless

testbed using IEEE 802.11 legacy parameters and conducted extensive experiments in indoor office

wireless environments to evaluate its performance in comparison with a conventional TMDA-based

OMA scheme. We consider the following three network settings: (i) the AP has one antenna and

it serves two users; (ii) the AP has two antennas and it serves two users; and (iii) the AP has

two antennas and it serves three users. Our experimental results show that, compared to OMA, the

proposed NOMA scheme can significantly improve the data rate of the weak user and considerably

improve the weighted sum rate of all users. Specifically, for the cases that we have examined, the

average improvement of data rate of the weak users is about 93.1%, and the average improvement

of weighted sum rate of all users is about 36.1%. Moreover, our experimental results show that,

on average over all the cases that we have considered, our proposed SIC method outperforms the

conventional SIC method (least-squares channel estimation and zero-forcing signal detection) by

13.4% for the AP’s weighted sum rate and 39.6% for the data rate of users performing SIC.

4.2 Related work

Since its inception, NOMA has been studied in an increasingly sophisticated form for cellular net-

works. Given that this work studies power-domain NOMA for the downlink of wireless networks,

we focus our literature review on this specific area.

Power Allocation for NOMA. Power allocation for NOMA has been well studied in cellular

networks where each node has a single antenna. These research efforts mainly focus on the power

allocation strategies for NOMA under different performance considerations, such as user fairness
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[162, 188], outage probability [39, 196], and achievable throughput [129, 199]. This research line

was then expanded to joint optimization of power allocation and subcarrier assignment for NOMA

in OFDMA networks. These research efforts have produced many results, such as maximizing

sum rate subject to the power constraints [44,48,207], minimizing the power consumption subject

to SIC and rate requirements [99], and developing tractable algorithms [106].

Precoder Design for NOMA. When the base station (BS) has multiple antennas, the power

allocation problem in downlink NOMA is escalated to precoder design problem as the power allo-

cation and beam steering operations are tightly coupled. The precoder design at the BS needs to

jointly optimize NOMA’s power allocation and Multi-Input Multi-Output (MIMO)’s beam steer-

ing. In the literature, precoder design has been studied toward different objectives, such as maxi-

mizing network throughput [55, 209], maximizing transmitter’s energy efficiency [7, 32], and pre-

serving users’ signal privacy [25,108,208]. In what follows, we discuss the papers that are mostly

relevant to our work.

In [55], the precoder design problem has been studied for NOMA to maximize sum rate, sub-

ject to the SINR constraints in the SIC process at all the users. A non-convex optimization problem

was formulated and an iterative algorithm was developed to pursue a feasible solution. In [209],

the precoder design problem has been studied to maximize the sum rate of a sophisticated hybrid

network where an unmanned aerial vehicle and a BS serve a set of ground users. Precoder de-

sign aimed to nullify the cross-network interference or maintain the interference below a certain

threshold.

The precoder design problem has also been studied for security enhancement and privacy

preservation for power-domain NOMA. In [210], NOMA was studied under eavesdropping at-

tacks, and artificial jamming approach was studied to combat the attacks. A non-convex optimiza-

tion problem was formulated to maximize the artificial jamming power and, similar to [55], an
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iterative algorithm was developed to solve the problem. In [25], precoders were designed to ensure

the privacy of a particular user. Specifically, precoders were designed to ensure that the private

user’s signal is of the weakest strength at all the users except itself. By doing so, none of the users

are capable of decoding the private user’s message.

As we shall see, our mathematical formulation of the precoder design problem is different from

those existing ones. It features practical considerations in the design of precoders for downlink

NOMA.

User Grouping for NOMA. User grouping is another key component of NOMA. In [37], the

impact of user grouping on the performance of NOMA was studied. It shows that the throughput

gain of NOMA (over OMA) becomes more significant when the channel strengths of the users in

a group increases. However, reaching the optimal user grouping solution demands an exhaustive

search. In [104] and [205], it was shown that the computational complexity of exhaustive-search-

based user grouping algorithm can be relaxed by pruning the search space. Greedy grouping

algorithms (e.g., [36]) and matching-based grouping algorithms (e.g., [100]) were proposed to

reach a near-optimal solution. To further reduce the computational complexity, [38] proposed a

random grouping algorithm, which needs a very low computation. However, this random algorithm

cannot fully exploit the throughput gain of NOMA. The user grouping algorithm in our work is a

lightweight heuristic algorithm, and it is amenable to practical implementation.

Experimental Validation of NOMA. While there is a large body of theoretical work on

NOMA, experimental validation of NOMA in real wireless environments remains limited. Some

pioneering work can be found in [18–21]. Our work differs from these research efforts in the

following two aspects. First, these research efforts study NOMA in cellular networks, while our

work focuses on NOMA for WLANs. Cellular networks and WLANs have significant differences

in many aspects, including frame format, transmission pattern, transmit power, and receiver sensi-

90



N

Figure 4.1: Downlink data transmission in a WLAN.

tivity. The results of NOMA in cellular networks cannot be directly applied to WLANs. Second,

existing experimental efforts primarily investigated the gain of NOMA over OMA with respect to

different system parameters and did not take into account precoder design for the performance op-

timization of NOMA. Our work considers both precoder optimization and NOMA implementation

in WLANs.

4.3 Problem Description

We consider a WLAN as shown in Fig. 4.1, which comprises an AP and a set of user devices (a.k.a.

stations, STAs, or users for simplicity). The AP has one or more antennas, and each station has a

single antenna. Denote M as the number of antennas on the AP. Denote N as the set of stations,

with N being its cardinality (N = |N |). In this network, we assume that the signal from the AP

to the stations experiences significantly different path losses. That is, the signal received by STA i

is much stronger than the signal received by STA i − 1, for 2 ≤ i ≤ N . This assumption can be

fulfilled through a user selection/scheduling algorithm at the upper layer.

A Premier of NOMA. In power domain, NOMA takes advantage of the power difference

between the interference and desired signals to mitigate interference and decode the desired signal

at a receiver. SIC is typically used at the receivers for interference mitigation and signal decod-

ing [167]. To illustrate the original concept behind power-domain NOMA, let us consider the
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Figure 4.2: Illustration of NOMA in downlink data transmission in a WLAN for N = 3.

network in Fig. 4.2 as an example. In this network, a single-antenna AP serves three stations

standing far from each other. The AP sends superimposition of three signals to all stations: signal

s1 for STA 1, signal s2 for STA 2, and signal s3 for STA 3, with a proper power allocation for these

signals. At the stations, the received signals have significantly different strengths as illustrated in

Fig. 4.2. The difference in signal strengths makes it possible for the stations to perform SIC. At

STA 1, since the undesired signals s2 and s3 are relatively weak due to the large path loss, the

desired signal s1 can be easily decoded by treating interference (s2 and s3) as noise. At STA 2, the

strongest undesired signal s1 can be first decoded and subtracted from what is received. For the

resulting signals, the desired signal s2 can be easily decoded by treating s3 as noise. At STA 3, the

strong undesired signal s1 and s2 can be first decoded and removed successively. After that, the

desired signal s3 can be decoded in a conventional way.

As shown in this example, NOMA can enable concurrent data transmissions for STA 2 and

STA 3 without causing much performance degradation for STA 1. Such a multi-user communica-

tion approach provides the AP with a new level of flexibility for its resource allocation and user

scheduling, which can be leveraged for network throughput maximization.
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Design Objectives. We consider the WLAN as shown in Fig. 4.1. We aim at developing a

practical NOMA scheme to maximize the weighted sum rate of the users. For fairness, weak users

have larger weights while strong users have relatively small weights. To do so, several questions

remain open and needed to be addressed: (i) How to design the precoder for each data stream at

the AP is a non-trivial task. When the AP has one antenna, the precoders degrade to complex co-

efficients, which represent the power allocation at the AP. When the AP has multiple antennas, the

precoders determine not only the power allocation but also beam steering at the AP. The design of

the optimal precoders at the AP involves both Signal-to-Interference-and-Noise Ratio (SINR) and

Interference-to-Signal-and-Noise Ratio (ISNR) constraints at each station, making it challenging

to reach the optimality. It is noteworthy that we design a unique precoder for each individual data

stream in order to pursue performance optimality. Compared to the approach that separates the

power allocation and beam-steering design, our joint design promises better possible performance,

especially for the networks with a small number of antennas and a small number of users. (ii) How

to design a practical scheme to enable downlink NOMA in WLANs is another challenging prob-

lem. To support downlink NOMA, the AP needs the knowledge of CSI to compute the precoders;

each station needs to perform signal detection in the face of inter-user interference. All these tasks

require a sophisticated design of protocols and algorithms that are amenable to practical imple-

mentation.

4.4 Precoder Design for Downlink NOMA

In this section, we first formulate the precoder design problem in downlink NOMA transmission

of WLANs. Then, we convexify the non-convex constraints and propose an iterative algorithm to

pursue a feasible solution. Finally, we offer discussions on the proposed algorithm.
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4.4.1 Mathematical Formulation

Consider the downlink data transmission in the WLAN shown in Fig. 4.1. Denote hi ∈ C1×M as

the channel from theAP to STA i, which includes the effects of path loss, shadow fading, and fast

fading. Owing to the large difference in path losses, we assume that ∥h1∥ ≤ ∥h2∥ ≤ . . . ≤ ∥hN∥.

At theAP, denote si as the signal intended for STA i, with E(|si|2) = 1; denote vi ∈ CM×1 as

the precoding vector of this signal. The transmit signals at theAP, which is denoted by x, can be

written as x =
∑
j∈N vjsj . Then, the received signal at STA i ∈ N can be written as:

yi = hi

N∑
j=1

vjsj + ni, i ∈ N . (4.1)

where ni ∼ CN (0, σ2i ) is additive white Gaussian noise.

Transmit Power Constraint. In practice, the transmit power of theAP is bounded by its

maximum power budget, which we denote as Pap. This constraint can be written as:

N∑
i=1

∥vi∥2 ≤ Pap . (4.2)

SIC and SINR Constraints. At STA i ∈ {2, 3, · · · , N}, we employ SIC to mitigate the

strong interference [s1, s2, · · · , si−1] and decode the desired signal si by treating interference

[si+1, si+2, · · · , sN ] as noise. Specifically, we first decode the undesired signal s1 by treating

signals [s2, s3, · · · , sN ] as noise. Based on the estimated signal ŝ1, we can remove the effect of

undesired signal s1 and the resulting signal can be written as y[1]i = hi
∑N
j=2 vjsj+ni ,where y[1]i

denotes the remaining signal after the first iteration of SIC. By the same token, we can continue

to remove undesired signals [s2, s3, · · · , si−1] sequentially. After removing the undesired signals,
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Table 4.1: MCS specification in IEEE 802.11ac [67].
SINR (dB) (inf -5) [-5 -10) [-10 -13) [-13 -16) [-16 -19) [-19 -22) [-22 -25) [-25 -27) [-27 -30) [-30 -32) [-32 -inf)
Modulation N/A BPSK QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM 256QAM 256QAM
Coding rate N/A 1/2 1/2 3/4 1/2 3/4 2/3 3/4 5/6 3/4 5/6
η) 0 0.5 1 1.5 2 3 4 4.5 5 6 20/3
ai 0.079 0.073 0.050 0.025 0.018 0.012 0.004 0.002 0.001 0.001 0
bi 0 0.018 0.247 0.747 0.996 1.495 2.746 3.395 3.996 4.075 6.666

we can decode the intended signal si by treating [si+1, si+2, · · · , sN ] as noise. Suppose that the

SIC procedure is ideal. By denoting SINRi,j as the SINR in the jth iteration of SIC at STA i, we

have

SINRi,j =

∣∣hivj∣∣2∑N
k=j+1 |hivk|

2 + σ2i

, i ∈ N , 1 ≤ j ≤ i. (4.3)

By defining γi,j as a non-negative variable less than or equal to SINRi,j , we have

γi,j ≤
∣∣hivj∣∣2∑N

k=j+1 |hivk|
2 + σ2i

, i ∈ N , 1 ≤ j ≤ i. (4.4)

Data Rate Constraints. In the SIC procedure, STA i needs to decode signals [s1, s2, · · · , si]

sequentially. When decoding signal sj (1 ≤ j ≤ i), we known that its SINR is greater than or equal

to γi,j . To ensure that STA i can successfully decode sj , the data rate of signal sj is determined

by this SINR value. Theoretically, the relationship between the maximum achievable data rate and

the given SINR is governed by Shannon capacity. Denote rj as the data rate from the AP to STA j

in 1 Hz. Then, the achievable data rate constraints can be expressed as:

rj ≤ log2(1 + γi,j), i ∈ N , 1 ≤ j ≤ i. (4.5)

However, Shannon capacity is far from being reached by current WLANs’ technologies. It is

highly inaccurate to characterize the relationship between the achievable data rate and the SINR

in WLANs. In real wireless systems, adaptive MCS is typically used to adjust the data rate based

on the SINR value. Table 4.1 lists the MCS selection criteria that are specified in IEEE 802.11ac
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standard [67]. Fig. 4.3 shows the gap between Shannon capacity and the data rate achieved by

the adaptive MCS approach. It is evident that the gap is large. This indicates that Shannon ca-

pacity is not a good formula to compute the achievable data rate in real WLANs. To enhance the

practicality of our results, we employ the adaptive MCS approach to calculate the achievable data

rate for a given SINR value. However, their relation is expressed as a staircase function, which

is non-convex. To ease our optimization problem, we approximate this non-convex region by the

following linear constraints:

rj ≤ akγi,j + bk, i ∈ N , 1 ≤ j ≤ i, 1 ≤ k ≤ 11, (4.6)

where ak and bk are constants given in Table 4.1. We can see from Fig. 4.3 that, compared to (4.5),

(4.6) is much more accurate to compute MCS-based achievable data rate in real WLANs. It is

worth pointing out that the values of ak and bk in Table 4.1 were derived from the MCS specified

in IEEE 802.11ac. If we want to apply this method to other networks such as IEEE 802.11ax, the

values of ak and bk should be updated according to the MCS specified in corresponding standards.

Optimization Formulation. Based on the above constraints, we can formulate the NOMA

problem as an optimization problem. Here, we consider the weighted sum rate as the objective

function. Other objective functions (e.g., maximizing the minimum data rate) can be formulated in

the same way. Denote wj as the given weight for STA j ∈ N . These weights are used to prioritize

the service for the STAs and maintain the fairness among the STAs. Generally speaking, a STA

with strong channel should be given a small weight, while a STA with weak channel should be

given a large weight. Suppose that the STAs’ weights are pre-defined. Then, the objective function

can be written as:
∑
j∈N wjrj . Then, the optimization problem, which we denote as OPT-NOMA,

can be written as:
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Figure 4.3: The gap between Shannon capacity and the data rate achieved by MCS-based approach.

max
∑
j∈N

wjrj (4.7a)

s.t. rj ≤ akγi,j + bk, i∈N , 1≤j≤ i, 1≤k≤11; (4.7b)

γi,j ≤
∣∣hivj∣∣2

N∑
k=j+1

|hivk|2 + σ2i

, i∈N , 1≤j≤ i; (4.7c)

∑
i∈N
∥vi∥2 ≤ Pap ; (4.7d)

where ri, γi,j , and vi are optimization variables; wj , ak, bk, hi, and σi, and Pap are given param-

eters. Note that we changed the equality in (4.4) to the inequality in (4.7c). It can be verified that

this operation does not alter the optimal value.

Compared to many existing optimization formulations of NOMA (see, e.g., [55, 210]), one

may notice that our formulation does not have explicit constraints to represent the decoding order
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requirements of SIC. Actually, constraints (4.7b) and (4.7c) in our formulation can ensure the

success of SIC at every station. Consider STA i for example. Signal si is its desired signal and sj

(1 ≤ j < i) is interference that should be removed. The combination of (4.7b) and (4.7c) ensures

that interference sj (1 ≤ j < i) can be decoded and subtracted. It also ensures that the desired

signal si can be decoded after subtracting interference sj (1 ≤ j < i). As such, our formulation

can ensure the success of SIC, albeit without explicit constraints to enforce the decoding order

requirements of SIC. Moreover, our formulation is in a simpler format and relatively easier to

solve compared to the existing ones.

OPT-NOMA is a non-convex problem, which is NP-hard in general. There is no efficient

algorithm that can find its optimal solution in polynomial time. In the rest of this section, we delve

into the development of a tractable approach to pursue a suboptimal solution to OPT-NOMA via

disciplinary convexification.

4.4.2 Constraint Relaxation via Disciplinary Convexification

In OPT-NOMA, (4.7a) and (4.7b) are linear and easy to handle by optimization solvers; however,

(4.7c) and (4.7d) are not. In what follows, we focus on these two nonlinear constraints.

Constraint (4.7d). This constraint is convex, but in an indisciplined form. To transform it to a

disciplined convex constraint, we rewrite it as a Lorentz cone [23, Ch. 2]:

∥∥∥[vT1 ,vT2 , . . . ,vTN]∥∥∥ ≤√Pap . (4.8)

Constraint (4.7c). This constraint generates a set of N(N+1)
2 non-convex inequations and

needs to be convexified into a disciplined form. To convexify (4.7c), we introduce an auxiliary

variable zi,j and define zi,j ≥
∑N
k=j+1 |hivk|

2+σ2i . Then, (4.7c) can be equivalently broken into
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the following two sets of constraints:

γi,jzi,j ≤
∣∣hivj∣∣2 , i∈N , 1≤j≤ i; (4.9a)

N∑
k=j+1

|hivk|2 ≤ zi,j − σ2i , i∈N , 1≤j≤ i. (4.9b)

To convexify (4.9), we first focus on (4.9a) and then on (4.9b). For (4.9a), it is a non-convex

constraint because it has a quadratic term on its right-hand side (RHS). To untangle this problem,

we employ tangent point and Taylor expansion to approximate the quadratic term with an appro-

priate affine [66, 210]. To illustrate this idea, let us consider a differentiable convex function f(v)

for example. At any feasible point, say ṽ, a tangent function g(v, ṽ) can be defined such that

f (v) ≥ g(v, ṽ), and the equality holds at v = ṽ. The tangent function g(v, ṽ) is a minorant of

f(v), and the solution to the approximated problem using tangent point ṽ will majorize the mi-

norant [66]. To further make this constraint disciplinary, the first-order Taylor expansion of f(v)

can be used as the tangent function since it removes the high-order nondisciplinary components of

f(v). Using the first-order Taylor expansion, the tangent function can be written as:

g(v, ṽ) = f(ṽ) +∇f(ṽ)H(v − ṽ). (4.10)

We apply this idea to the RHS of (4.9a). If fi(vj) =
∣∣hivj∣∣2 is defined, then we have

∇fi(vj) = 2hih
H
i vj . The tangent function at ṽj can be written as:

gi(vj , ṽj) = fi(ṽj) +∇fi(ṽj)H(vj − ṽj)

= hiṽj ṽ
H
j h

H
i + 2hih

H
i ṽj(vj − ṽj)
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= 2hiṽjv
H
j h

H
j − hiṽj ṽ

H
j h

H
i . (4.11)

Given that both sides of original constraint (4.9a) are real values, we use Re
(
gi(vj , ṽj)

)
as the

tangent function for fi(vj). Then, the RHS of (4.9a) can be approximated by

∣∣hivj∣∣2 ≈ Re
(
gi(vj , ṽj)

)
= 2Re(hiṽjv

H
j h

H
j )− hiṽj ṽ

H
j h

H
i , (4.12)

We apply the same method to convexify the left-hand side (LHS) of (4.9a). To convexify the

product of two variables, we define a bivariate function f (γ, z) = γz. It is neither convex nor

concave since its Hessian matrix is neither positive semidefinite nor negative semidefinite, and it

also has a saddle point at γ = z = 0. However, this function can be expressed as a summation of a

convex function and a concave one, i.e., f (γ, z) = f1 (γ, z) + f2 (γ, z), where f1(γ, z) =
(γ+z)2

4

and f2(γ, z) = − (γ−z)2
4 . To convexify f (γ, z), it suffices to pursue the idea of using a tangent

function for its concave component. Since f2 (γ, z) is a differentiable concave function, tangent

function g (γ, z, γ̃, z̃) is a majorant of f2 (γ, z). Indeed, f2 (γ, z) ≤ g (γ, z, γ̃, z̃). This majorant

can be expressed as a tangent function at point (γ̃, z̃) as:

g (γ, z, γ̃, z̃) =
1

2
(γ̃ − z̃) (γ − γ̃ + z̃ − z)− 1

4
(γ̃ − z̃)2 . (4.13)

Based on the tangent function in (4.13), we can approximate f (γ, z) = γz using f1 (γ, z) +

g (γ, z, γ̃, z̃). Then, the LHS of (4.9a) can be approximated by

γi,jzi,j ≈f1
(
γi,j , zi,j

)
+ g

(
γi,j , zi,j , γ̃i,j , z̃i,j

)
=
1

4

(
γi,j + zi,j

)2 − 1

4

(
γ̃i,j − z̃i,j

)2
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− 1

2

(
γ̃i,j − z̃i,j

) (
γi,j − γ̃i,j + z̃i,j − zi,j

)
. (4.14)

Based on the relaxations in (4.12) and (4.14), the non-convex constraint (4.9a) can be approxi-

mated by the following convex constraint:

1

4

(
γi,j + zi,j

)2 − 1

4

(
γ̃i,j − z̃i,j

)2
− 1

2

(
γ̃i,j − z̃i,j

) (
γi,j − γ̃i,j + z̃i,j − zi,j

)
≤2Re(hiṽjvHj h

H
j )−hiṽj ṽ

H
j h

H
i , i ∈ N , 1 ≤ j ≤ i. (4.15)

So far, we have convexified constraint (4.9a). Now, we focus on (4.9b), which is a restricted

hyperbolic constraint. This constraint is convex but indisciplined. To make it disciplined, we first

introduce an existing technique and then apply it to transform (4.9b). Consider an indisciplined

convex constraint θ2 ≤ αβ, α, β ∈ R+ and θ ∈ R. Based on [11], we have:

θ2 ≤ αβ ⇐⇒
∥∥∥∥[θ, (α− β)2

]∥∥∥∥ ≤ (α + β)

2
, (4.16)

where⇐⇒means that the two sides are equivalent, and the RHS is a disciplined convex constraint.

By taking advantage of this result, indisciplined convex constraint (4.9b) can be equivalently trans-

formed to a disciplined convex constraint as follows:

∥∥∥∥∥
[∣∣hivj+1

∣∣, · · · , |hivN |, (zi,j − σ2i − 1
)

2

]∥∥∥∥∥ ≤
(
zi,j−σ2i +1

)
2

, i ∈ N , 1 ≤ j ≤ i, (4.17)

The relaxed problem using the convexified constraints, which we denote as OPT-NOMA-

RELAX, can be written as:
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max
∑
i∈N

wiri

s.t. (4.7b), (4.8), (4.15), and (4.17).

OPT-NOMA-RELAX is a second-order cone programming (SOCP) problem, which can be

solved in polynomial time by off-the-shelf optimization solvers such as CVX and CVXOPT [13].

4.4.3 Our Proposed Algorithm

Based on OPT-NOMA-RELAX, we propose an algorithm to solve the original problem OPT-

NOMA. The proposed algorithm is an iterative algorithm. In each iteration, we solve OPT-

NOMA-RELAX by taking the output results from the previous iteration as the input parameters

(tangent points for convexification). The iterative algorithm terminates if the increase of the objec-

tive value is less than a pre-defined threshold (ϵ) or the number of iterations reaches a pre-defined

bound (Niter). For notational simplicity, when solving OPT-NOMA-RELAX in iteration l, we

denote
[
ṽ[l−1], γ̃[l−1], z̃[l−1]

]
as the input parameters (the tangent points for convexification) and[

v[l], γ[l], z[l], r[l]
]

as the output results (the optimal solution to OPT-NOMA-RELAX). Alg. 4.1

presents our proposed algorithm.

For such an iterative algorithm, an important question is how to construct an appropriate initial

tangential set for the OPT-NOMA-RELAX problem in the first iteration. It is well known that

the performance of many optimization problems is heavily reliant on their initial search points.

A good initial point significantly accelerates the search process and therefore remarkably reduces

the computational time of the algorithm. In light of this, we develop an algorithm to construct
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Algorithm 4.1 Solving OPT-NOMA.
Inputs: Network parameters hi, σi, N , wj , Pap, ak, bk, and threshold ϵ;
Outputs: A solution to OPT-NOMA

[
v∗, γ∗, z∗, r∗

]
;

1: Compute initial tangent points
[
ṽ[0], γ̃[0], z̃[0]

]
using Alg. 4.2;

2: Specify the max number of iterations (e.g., Niter = 100);
3: for (l = 1; l ≤ Niter; l++) do
4:

[
v[l], γ[l], z[l], r[l]

]
←solving OPT-NOMA-RELAX using

[
ṽ[l−1], γ̃[l−1], z̃[l−1]

]
;

5:
[
ṽ[l], γ̃[l], z̃[l]

]
←
[
v[l], γ[l], z[l]

]
6: if

∥∥∥r[l] − r[l−1]
∥∥∥ < ϵ then

7: Break;
8:
[
v∗, γ∗, z∗, r∗

]
←
[
v[l], γ[l], z[l], r[l]

]
;

a good initial search point for the OPT-NOMA-RELAX problem in the first iteration. Alg. 4.2

shows our proposed algorithm. In this algorithm, we first randomly generate a set of vectors for

ṽ[0] and then normalize its amplitude to meet the power constraint. Upon initializing ṽ[0], we then

calculate γ̃[0] and z̃[0] based on their respective constraints. In this process, a small number ε is

used to ensure the strict feasibility of the tangential set and maximize its corresponding objective

value.

4.4.4 Discussions on the Proposed Algorithm

Alg. 4.1 and Alg. 4.2 constitute our proposed algorithm to solve the optimization problem OPT-

NOMA. We have the following remarks for the proposed algorithm:

Remark 1 (Feasibility). Our proposed algorithm yields a feasible solution to the original op-

timization problem OPT-NOMA. We pinpoint this by arguing that any feasible solution to OPT-

NOMA-RELAX is also feasible to OPT-NOMA. Comparing the two optimization problems, we

can see that the different constraints are (4.7c) in OPT-NOMA and (4.15) and (4.17) in OPT-

NOMA-RELAX; other constraints are the same. Now, let us focus on these two constraints.
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Algorithm 4.2 Constructing the first tangential set for OPT-NOMA-RELAX.
Inputs: Network parameters hi, σi, N , wj , Pap, and safety gap ε;

Outputs: An initial tangential set for OPT-NOMA-RELAX
[
ṽ[0], γ̃[0], z̃[0]

]
;

1: Generate random values for
[
v̂T1 , v̂

T
2 , · · · , v̂

T
N

]
2: for (i = 1; i ≤ N ; i++) do

3: vi =

√
(1−ε)Pap∑N
j=1

∥∥∥v̂j∥∥∥2 v̂i
4: for (i ∈ N , 1 ≤ j ≤ i) do

5: Calculate zi,j = (1 + ε)
(
σ2i +

N∑
k=j+1

|hivk|2
)

6: Calculate γi,j =
(1−ε)

∣∣∣hivj ∣∣∣2
zi,j

7:
[
ṽ[0], γ̃[0], z̃[0]

]
←
[
v, γ, z

]
The relaxation from (4.7c) to (4.15) and (4.17) is actually a minorization-majorization process [66].

That is, we replaced a concave function on the LHS with a tangent affine function and replaced

a convex function on the RHS with a tangent affine function (see (4.12) and (4.14) respectively).

Based on the properties of concave and convex functions, we know that (4.15) and (4.17) are more

restrictive than (4.7c). In other words, a solution satisfying (4.15) and (4.17) certainly satisfies

(4.7c). Therefore, we conclude that a solution feasible to OPT-NOMA-RELAX is also feasible

to OPT-NOMA. According to Alg. 4.1 and Alg. 4.2, it is easy to see that the generated solution

is feasible to OPT-NOMA-RELAX, which is also feasible to the original optimization problem

OPT-NOMA.

Remark 2 (Convergence). Our proposed algorithm converges to a stationary point. Since the

feasible region of OPT-NOMA-RELAX is expanding over the iterations in Alg. 4.1 [66], the value

returned by the objective function is non-decreasing. Moreover, the solution yielded by each itera-

tion (from solving OPT-NOMA-RELAX) is in the feasible region of OPT-NOMA. Because of the

same objective function on both problems, Alg. 1 converges to a stationary point, which could be
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Figure 4.4: An example of WLAN that has a set of widely distributed stations.

either a global or local optimal point.

Remark 3 (Computational Complexity). Our proposed algorithm (Alg. 4.1) has polynomial-

time computational complexity. Alg. 4.1 is an iterative algorithm. In each iteration, its main work

is solving the OPT-NOMA-RELAX problem (an SOCP problem). Given M ≤ N in NOMA, the

complexity of each iteration is O(N6) [120]. Since the number of iterations in Alg. 1 is bounded

by Niter, the overall computational complexity of Alg. 4.1 is O(Niter ·N6).

Remark 4 (Imperfect CSI). In the formulation of OPT-NOMA, we assumed perfect CSI for

the design of precoders. However, in real systems, perfect CSI may not be available. In that case,

we can use the measured (imperfect) CSI as the input to compute the precoders. Apparently, the

imperfection of CSI may lead to a performance degradation.
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4.5 A Downlink NOMA Scheme for WLAN

In this section, we propose a practical scheme based on the precoder design in the previous section

to enable downlink NOMA transmissions in WLANs. We consider a WLAN as shown Fig. 4.4,

which comprises an AP and a set of widely distributed stations (STAs). Denote S as the set of

STAs in the network, with S = |S|. The STAs are sorted in non-decreasing order based on their

channel quality (i.e., ∥hi∥, i ∈ S). STA 1 is the weakest station and STA S is the strongest one. For

such a network, we propose a downlink NOMA framework to support multi-user communications

by leveraging the precoder optimization approach in Section 4.4.

4.5.1 User Grouping at AP

We assume that the AP is responsible for user scheduling and grouping for the downlink transmis-

sions. To perform user grouping, the AP needs to determine the number of stations in one group.

Theoretical exploration of this problem requires an exhaustive search to identify the best grouping

strategy that leads to the maximum network throughput. However, such an approach is overly com-

plicated and not amenable to practical implementation. Therefore, we resort to a heuristic design

for user grouping. In what follows, we first study the user grouping in a simple WLAN and then

propose a heuristic algorithm for user grouping in a generic WLAN.

User Pairing in SISO Network. We consider a WLAN as shown in Fig. 4.4 and assume

that each node (AP or STA/user) has a single antenna. We also assume that each group has two

users in NOMA transmission for simplicity. Denote hw and hs as the channel coefficients of

the weak and strong users in a group, respectively. Denote p(hw, hs) as the normalized portion

of AP’s power allocated to the strong user’s message. Based on the notion of NOMA, the AP’s
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Figure 4.5: Two pairing strategies in NOMA communications.

power allocation for NOMA transmission should have the following property: p(hw, hs) is a non-

increasing function with respect to |hs| / |hw|. Based on this property, we have the following

proposition:

Proposition 1. Suppose that the objective is to maximize the weighted sum rate of all users and

that round-robin scheduler is used for the paired users. Then, the best pairing strategy is (i, S/2+i),

and the worst pairing strategy is (i, S + 1− i), for 1 ≤ i ≤ S/2, as illustrated in Fig. 4.5.

Proof. Consider the pairing strategies in Fig. 4.5. Suppose that the paired users are scheduled in

the round-robin way over a set of time slots and that rbps denotes the weighted sum rate yielded

by the (i, S/2 + i) pairing strategy. Then, we have

rbps=

S/2∑
i=1

w1 log2

(
1+

(1− αi) |hi|2

αi |hi|2+σ2

)
+w2 log2

1+
αi

∣∣∣hS/2+i∣∣∣2
σ2


, (4.18)

where αi = p(hi, hS/2+i), and (1 − αi) is then the normalized portion of AP’s transmit power
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for the weak user, σ2 is the normalized power of noise (w.r.t. the signal power), and w1 and w2

denote the weight assigned to the weak and strong users in a group, respectively. To show that

the (i, S/2 + i) pairing strategy yields the highest weighted sum rate among all possible pairing

strategies, we argue that any permutation over this pairing strategy would lead to a decrease in

the weighted sum rate. Without loss of generality, we assume that the permutation occurs for user

pairs (1, S/2 + 1) and (2, S/2 + 2). After permutation, the resulting pairs are (1, S/2 + 2) and

(2, S/2 + 1). For the permuted user pairs, we let α′1 = p(h1, hS/2+2) and α′2 = p(h2, hS/2+1).

Then, the change of weighted sum rate from the permutation can be written as follows:

∆r = rbps − rperm = w1 log2

(
1 +

(1− α1) |h1|2

α1 |h1|2 + σ2

)
+ w2 log2(1 +

α1
σ2

∣∣∣hS/2+1

∣∣∣2)
+ w1 log2

(
1 +

(1− α2) |h2|2

α2 |h2|2 + σ2

)
+ w2 log2(1 +

α2
σ2

∣∣∣hS/2+2

∣∣∣2)
− w1 log2

(
1 +

(1− α′1) |h1|
2

α′1 |h1|
2 + σ2

)
− w2 log2(1 +

α′1
σ2

∣∣∣hS/2+2

∣∣∣2)
− w1 log2

(
1 +

(1− α′2) |h2|
2

α′2 |h2|
2 + σ2

)
− w2 log2(1 +

α′2
σ2

∣∣∣hS/2+1

∣∣∣2), (4.19)

where rperm denotes the weighted sum rate after permutation.

Through algebraic operations, (4.19) can be rewritten as:

∆r = w1 log2

(
α′2 |h2|

2 + σ2

α2 |h2|2 + σ2

)
−w1 log2

(
α′1 |h1|

2 + σ2

α1 |h1|2 + σ2

)
+

w2 log2

α2
∣∣∣hS/2+2

∣∣∣2 + σ2

α′1

∣∣∣hS/2+2

∣∣∣2 + σ2

−w2 log2

α1
∣∣∣hS/2+1

∣∣∣2 + σ2

α′2

∣∣∣hS/2+1

∣∣∣2 + σ2

. (4.20)

Recall that the users are sorted in increasing order by their channel strength, i.e., |h1| ≤ |h2| ≤∣∣∣hS/2+1

∣∣∣ ≤ ∣∣∣hS/2+2

∣∣∣. Since p(hw, hs) is a non-increasing function with respect to |hs| / |hw|,
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Algorithm 4.3 An algorithm for user grouping.

Inputs: The array of sorted STAs (S = {1, 2, · · · , S}) and each STA’s channel (hi, i ∈ S);
Outputs: The total number of groups (K) and the generated user groups G1,G2, · · · ,GK ;

1: ∆q ← 10;
2: k ← 0;
3: while (S is not empty) do
4: k++;
5: Gk = [S(1)]; // S(1) is the 1st element of S
6: q_value← q(S(1));
7: for (l = 2; l ≤ size(S); l++) do
8: if q(S(l)) ≥ q_value+∆q then
9: Gk ← [Gk S(l)];

10: q_value← q(S(l));
11: Remove all elements in Gk from S;
12: K ← k;

we have α1 ≥ α′1, α′2 ≥ α2, α′2 ≥ α1, and α2 ≥ α′1. Then, the following two inequalities are

imminent.

α′2 |h2|
2 + σ2

α2 |h2|2 + σ2
≥
α′1 |h1|

2 + σ2

α1 |h1|2 + σ2
, (4.21)

α2

∣∣∣hS/2+2

∣∣∣2 + σ2

α′1

∣∣∣hS/2+2

∣∣∣2 + σ2
≥
α1

∣∣∣hS/2+1

∣∣∣2 + σ2

α′2

∣∣∣hS/2+1

∣∣∣2 + σ2
. (4.22)

Based on (4.20), (4.21), and (4.22), it is evident that ∆r ≥ 0. This shows that any permutation

on user pairing (i, S/2 + i) decreases the weighted sum rate. We therefore conclude that the

(i, S/2+ i) pairing strategy yields the highest weighted sum rate. By the same token, we can prove

that the (i, S + 1 − i) pairing strategy yields the lowest weighted sum rate. We omit this part to

converse space.

From Proposition 1, we have the following observations on user pairing: (i) it should try to

avoid pairing two users with similar channel quality; and (ii) it should try to maintain a similar

channel difference for user pairs.

User Grouping in MISO Network. Based on the above two observations, we propose a
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heuristic user grouping algorithm for a generic WLAN. For STA i ∈ S, we define its channel

quality indicator as q(i) = 20 log10(∥hi∥), where hi is STA i’s channel that includes path loss,

shadow fading, and fast fading. Based on the channel quality indicator, we use the following rules

to devise a user grouping algorithm: (i) The STAs in the same group should have at least ∆q chan-

nel quality difference, where ∆q represents the channel quality difference in decibel and should

be adaptively set based on the network environment. In our experiments, extensive measurements

of wireless channels in an office building show that the average channel quality difference of two

users is about 9.3 dB. Based on this observation, we set ∆q = 10 dB for the user grouping algo-

rithm.

(ii) one STA is associated with only one group. Per these two rules, we propose a greedy

algorithm as shown in Alg. 4.3 for user grouping. Essentially, Alg. 4.3 is heuristic. We have the

following remarks on it.

Remark 5 (Single STA in a Group): Based on our algorithm, it is apparent that there is no

guarantee each group has more than one STA. If a group has only one STA, this means that NOMA

is not needed, and OMA can be used for its transmission. Essentially, such a grouping algorithm

requires a combination of NOMA and OMA at the PHY layer for data transmission.

4.5.2 A MAC-Layer Protocol for NOMA

If a group includes multiple users (STAs), then NOMA is used to enable concurrent data transmis-

sion for the STAs. With a bit abuse of notation, we denote {1, 2, · · · , N} as the STAs in the group

under consideration. Fig. 4.6 shows our proposed protocol for NOMA transmission. At high level,

it comprises three steps: Channel sounding, NOMA transmission, and acknowledgment. Since

the acknowledgment step is straightforward, we focus our discussions on channel sounding and

NOMA transmission.
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Figure 4.6: A protocol for NOMA transmission in WLANs.

Channel Sounding. To reduce the airtime overhead, we employ an implicit channel feedback

mechanism in our protocol by leveraging channel reciprocity. Specifically, the AP first broad-

casts a Null Data Packet Announcement (NDPA) to inform the stations of channel sounding and

NOMA transmission. Upon reception of the NDPA packet, the stations sequentially respond with

a NDP following the poll packets from the AP. The NDP includes the preamble (reference sig-

nals) enabling the AP to estimate the uplink channel. At the end of this step, the AP obtains the

uplink channels between itself and all the intended stations. The obtained uplink channels will be

converted to downlink channels through channel calibration.

In such an implicit channel feedback mechanism, three important problems need to be taken

into consideration: (i) For the protocol in Fig. 4.6, the stations should use the same transmit power

when transmitting the NDP (e.g., the maximum transmit power specified in the standards). Use of

different transmit powers will confuse the AP about the channel quality between itself and the

stations, thereby leading to a failure in the downlink NOMA transmission. (ii) Typically, the

stations in a WLAN have the same noise power. In some extreme cases where the stations have

different noise power, the stations need to feed their noise power back to the AP. This can be
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easily done by embedding the noise power information (only a real number) into the NDP when

performing uplink channel sounding. (iii) To perform downlink NOMA transmission, the AP

actually needs to know the downlink channels information. It is therefore imperative to infer the

downlink channels based on the measured uplink channels in our protocol. When the AP has a

single antenna, the difference between an uplink channel and its corresponding downlink channel

can be represented by a complex number in the mathematical channel model. Such a complex

scalar does not affect the NOMA scheduling and transmission results. Therefore, the measured

uplink channels can be equivalently treated as downlink channels. When the AP has multiple

antennas, the difference between uplink and downlink channels is an array of complex numbers.

To compensate the mismatch, a channel calibration procedure is needed at the AP. While there

are many calibration methods, we employ the relative calibration method in [150]. This relative

calibration method is an internal and standalone calibration method that can be done at the AP

without any aid from the stations. In our experiment, we implicitly implement this calibration

method to maintain channel reciprocity.

NOMA Transmission and Frame Structure. After obtaining the downlink channel, the AP

computes precoders using the proposed method in Section 4.4 and selects an MCS for each STA

in the scheduled group. Then, the AP performs downlink NOMA transmission as illustrated in

Fig. 4.6. To perform downlink NOMA transmission, we propose a MU-MIMO-like frame structure

as shown in Fig. 4.7. The proposed frame structure has three parts: (i) The legacy preamble

part comprises a Legacy Short Training Field (L-STF), a Legacy Long Training Field (L-LTF),

and a Legacy Signal (L-SIG) field. This part is designed for frame detection and time/frequency

synchronization on the STA side. (ii) The reference signal part comprises N precoded L-LTFs,

each of which has two identical OFDM symbols. This part is devised for signal detection on the

STA side. (iii) The data (payload) part comprises a sequence of OFDM symbols, each of which is
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Figure 4.7: Proposed frame structure for NOMA transmission.

a superposition of precoded signals for N stations. In what follows, we propose a new SIC method

to decode the desired signal at each STA.

4.5.3 PHY-Layer Signal Processing

At the PHY layer, multiple adjacent subcarriers are bonded together for data transmission in order

to reduce computational complexity. The rationale behind this operation is that the channels of

adjacent subcarriers are typically similar. Hence, the bonding strategy does not cause much per-

formance degradation but reduces the complexity significantly. Fig. 4.7 illustrates an example of

bonding over five adjacent subcarriers. For the bonded subcarriers, we use the same precoder for

power allocation and beam steering on the AP side and the same detection filter for signal recovery

on the user side.

AP-Side Precoding. After computing the precoders for each user, we assemble a downlink

NOMA transmission frame as shown in Fig. 4.7. The first part of the frame is fixed. The second
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part of the frame is computed based on the precoders. Specifically, for the jth LTF in this part,

its frequency-domain data is generated by x(l, k) = vj(k)s̄j(l, k), where s̄j(l, k) is a pre-defined

reference signal. The third part is superposition of precoded data in the frequency domain. It is

generated by x(l, k) =
∑N
j=1 vj(k)sj(l, k). The generated signal vector x(l, k) is converted into

time domain using IFFT operation. The resulting time-domain signal vector will be sent to RF

chains for transmission.

User-Side SIC-based Signal Detection. Since each frame has the IEEE 802.11 legacy pream-

ble, the users can perform frame detection, time synchronization, and frequency offset correction

in the same way as conventional Wi-Fi devices do. Afterward, each user performs SIC to decode

its desired signal. For ease of exposition, we denote l as the index of OFDM symbol in a frame and

denote k as the index of subcarrier in the OFDM modulation. Then, the received signal at STA i

can be written as:

yi(l, k) =
N∑
j=1

hi(k)vj(k)sj(l, k) + ni(l, k). (4.23)

To decode the desired signal at STA i, one approach is using ZF SIC (ZF-SIC). This ap-

proach decodes and subtracts the strongest signal sequentially until its desired signal is obtained.

When decoding the strongest signal, it simply treats other (non-strongest) signals as interference.

When decoding sj , it first estimates the compound channel by ĥj(k) = ȳi(l, k)/s̄j(l, k), where

ȳi(l, k) and s̄j(l, k) are the received and transmitted reference signals, respectively. Then, it uses

the estimated channel to decode the strongest signal by letting ŝj(l, k) = yi(l, k)/ĥj(k), where

ŝj(l, k) is the estimated version of the strongest signal sj(l, k). Although ZF-SIC is amenable

to implementation, its performance is highly suboptimal. This is because it does not take into

account the effect of noise and interference (non-strongest signals) in the course of its signal de-

tection. To improve its performance, we may consider MMSE SIC (MMSE-SIC), which takes into
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account noise and interference. In contrast to ZF-SIC, MMSE-SIC estimates the strongest signal as

follows: ŝj(l, k) = ĥj(k)
∗[ĥj(k)ĥj(k)∗+

1
ρ ]
−1yi(l, k), where ρ is the SINR. MMSE-SIC requires

the knowledge of SINR, making it difficult to implement in practice.

To circumvent the above problems, we propose a new SIC scheme, which uses the refer-

ence signals to construct a detection filter directly. Specifically, at STA i, we decode signals

{s1(l, k), s2(l, k), · · · , si(l, k)} in sequence. When decoding the strongest signal sj(l, k), we

construct the detection filter as follows:

gj(k) =

∑
(l,k)∈Rj(k) yi(l, k)sj(l, k)

∗∑
(l,k)∈Rj(k) yi(l, k)yi(l, k)

∗ , 1 ≤ j ≤ i, (4.24)

where (·)∗ is the conjugate operator, and Rj(k) is the set of reference signals in the jth LTF on

subcarrier k. Fig. 4.7 illustrates an example ofRj(k) when j = 2. It can been seen that we use not

only the reference signals on subcarrier k but also reference signals on its two neighboring sub-

carriers to construct detection filter gj(k). The rationale behind this design is that the summation

over multiple subcarriers can reduce the effect of noise and interference (non-strongest signals).

After calculating the detection filter, we estimate signal sj(l, k) in the data part of the frame as

follows:

ŝj(l, k) = gj(k)
∗yi(l, k), 1 ≤ j ≤ i, (4.25)

where ŝj(l, k) is the estimated version of sj(l, k).

Based on (4.24) and (7.12), we present the proposed SIC algorithm in Alg. 4.4. Apparently,

this algorithm does not require the estimated SINR. But, it can partially reduce the influence of

noise and interference. This is important in SIC detection because all of non-strongest signals

are considered as interference. Meanwhile, this SIC algorithm has a low complexity, and it is

amenable to practical implementation. For its performance, we will show via experimental results
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Algorithm 4.4 The proposed SIC at STA i.

Inputs: Received signal yi(l, k), reference signals in the frame;
Outputs: Estimated signals in the data part of the frame, i.e., ŝi(l, k) for (l, k) ∈ D;

1: for (j = 1; j ≤ i; j++) do
2: Compute decoding filter gj(k) using (4.24);
3: Estimate current signal ŝj(l, k) using (7.12);
4: s̃j(l, k)← QAM-based demodulation of ŝj(l, k);
5: yi(l, k)← yi(l, k)− s̃j(l, k)/gj(k)∗;

that it considerably outperforms ZF-SIC.

4.6 Performance Evaluation

In this section, we conduct experiments to evaluate the performance of the proposed NOMA

scheme in real-world wireless environments.

4.6.1 Prototyping and Experimental Setup

Experimental Testbed. We have prototyped an AP and three users. The AP has been imple-

mented using two USRP N210 devices and one laptop. Each user has been implemented using

an USRP N210 device and one laptop. The USRP devices are used for radio signal transmission

and reception, and the laptop is used for baseband signal processing. All the baseband signal

processing is carried out by the laptop using Python and C++ in GNU Radio software package.

The prototyped AP supports up to two antennas for signal transmission and reception, while users

support one antenna.

On the AP, the relative calibration method in [150] was implemented to preserve the up-

link/downlink channel reciprocity. This relative calibration method is a standalone calibration

procedure that can be done by the AP without requiring the involvement of the users.

Prototyping NOMA. We have implemented the NOMA protocol in Fig. 4.6 on the testbed.
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Figure 4.8: Our NOMA testbed and floor plan.

As shown in Fig. 4.6, the protocol first performs uplink channel sounding to obtain the uplink

channels. Based on the channel knowledge, Alg. 4.1 is used to compute the precoders (vi, i ∈ N )

using a convex optimization solver such as CVX and CVXOPT [13] . In OPT-NOMA, we set

w1 = 3 for weak user, w2 = 2 for middle user, and w3 = 1 for strong user. These weights

are just an example and other weights would also work. After computing the precoders, the AP

sends a superimposition of the signals toward users using the frame structure depicted in Fig. 4.7.

The users perform SIC to decode their desired signals. In our implementation, we use Schmidl-

Cox algorithm for the timing and frequency synchronization at the receivers in both uplink and

downlink transmissions. We use least-squares channel estimation at the AP in the uplink channel

sounding. For the downlink transmissions, we use the precoded reference signals in the frame (see

Fig. 4.7) to construct the channel equalization coefficient gj(k) and then use this coefficient for

signal detection, as detailed in (4.24) and (7.12).

During this protocol, IEEE 802.11 legacy frame parameters are used for both uplink and down-

link transmissions. That is, each OFDM symbol has 64 subcarriers in total; 48 subcarriers are used
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for data transmission; 4 subcarriers are used for pilot; and 12 subcarriers are null. The 52 valid

subcarriers are bonded into two groups for the precoder design in NOMA. The length of cyclic

prefix is 16. Due to the hardware limitation, we set the sampling rate to 5 Msps (to avoid the unflat

circuit response from the CIC) and set the short interframe space (SIFS) to 2 seconds. Given the

5 MSps sampling rate, the time duration of each OFDM symbol is 16 µs. The data part of each

frame consists of 20 OFDM symbols.

Experimental Setup. In our tests, the maximum transmit power for each node (AP or user)

is set to 17 dBm. Fig. 4.8 shows the floor plan of our test scenarios and the prototyped AP and

STA. Regarding the floor plan, the AP is placed at a fixed location marked “AP”. The three users

are placed at one of the six different locations. Specifically, STA 1 is placed Lk1, STA 2 is placed

Lk2, and STA 3 is placed Lk3, for k = 1, 2, · · · , 6. It is noteworthy that the linear deployment of

the three users in a group is for ease of explanation. In a rich scattering environment like an office

building, such a deployment does not impose a significant correlation among users’ channels.

Moreover, it is worth pointing out that our experimentation does not include the user grouping

algorithm.

4.6.2 Performance Metrics and Benchmark

Performance Benchmark. We use OMA as the performance benchmark to evaluate the

throughput gain of NOMA. In OMA, the round-robin scheduler is used at the AP. Specifically, the

AP serves only one user in one time slot, and different users are scheduled in different time slots.

When the AP has multiple antennas, the best antenna is selected for spatial diversity.

Performance Metrics. We evaluate the performance of the proposed NOMA scheme using

the two metrics: EVM and data rate. (i) EVM is a metric widely used in WLANs. At STA j,

its EVM is defined as EVM = 10 log10
(
El,k

[ ∣∣ŝj(l, k)− sj(l, k)∣∣2 ]/ El,k[ ∣∣sj(l, k)∣∣2 ]). (ii) The
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data rate is extrapolated based on the measured EVM at each user using the MCS specified in IEEE

802.11 [67]. Specifically, the data rate at STA j is calculated by

NOMA: rj =
48

80
· b · η(EVM), (4.26a)

OMA: rj =
1

N
· 48
80
· b · η(EVM), (4.26b)

where N is the number of users served by the AP, 48 is the number of payload subcarriers, 80 is

the number of samples in an OFDM symbol, b is the bandwidth (5 MHz), EVM is measured at the

STA j when NOMA or OMA is used, and η(EVM) is the average number of bits carried by one

subcarrier in an OFDM symbol and its value is given in Table 4.1.

4.6.3 Experimental Results of (1× 2)-NOMA

We first consider the case where the AP has one antenna and it serves two users (one weak user

and one strong user). The weak user is placed at Lk1 and the strong user is placed at Lk3, k =

1, 2, · · · , 6.

Case Study. We use location 4 (k = 4) as an example to examine NOMA. Fig. 4.9 presents

the constellation of the decoded signals at the two users when NOMA and OMA are used, re-

spectively. For the weak user, Fig. 4.9(a) and Fig. 4.9(c) show that NOMA has a small (2.3 dB)

EVM degradation compared to OMA. Using (4.26), the data rate at the weak user is extrapo-

lated to 3.0 Mbps in NOMA and 1.5 Mbps in OMA. This indicates that NOMA has a significant

throughput gain for the weak user. For the strong user, Fig. 4.9(b) show its decoded signals af-

ter SIC in NOMA, respectively. We can see that the strong user can achieve −17.3 dB EVM

after SIC. Compared Fig. 4.9(b) with Fig. 4.9(d), we can see that the strong user has a consider-
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Figure 4.9: Constellations of NOMA and OMA in downlink.
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Figure 4.10: Performance comparison of NOMA and OMA in downlink transmission of a WLAN
where a single-antenna AP serves two single-antenna users.

able EVM degradation (about 9.4 dB) when NOMA is used. Using (4.26), the data rate achieved

by the strong user is extrapolated to 6.0 Mbps in NOMA and 6.7 Mbps in OMA. Compared to

OMA, our NOMA scheme slightly decreases the strong user’s data rate. The reasons are two-

fold. First, NOMA serves two users while OMA serves one user. Moreover, a higher weight is

assigned for the weak user to maintain the fairness in NOMA transmission when we conduct the

optimization (OPT-NOMA). Second, SIC in NOMA is not perfect due to the limited ADC resolu-

tion, circuit nonlinearity and distortion. The imperfection of SIC degrades the performance of the

strong user.

From the AP’s perspective, the weighted sum rate of the two users is 22.5 Mbps in our NOMA

scheme and 16.9 Mbps in OMA. This means that our NOMA scheme has about 33.5% improve-

ment over OMA in terms of weighted sum rate.

Results from All Locations. Fig. 4.10 presents the extrapolated data rate at each user when

NOMA and OMA are used, respectively. Two SIC techniques are implemented for the strong
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Figure 4.11: Constellations of NOMA and OMA in the downlink of WLAN where a two-antenna
AP serves two single-antenna users.

user: ZF-SIC and our proposed SIC. Based on the results, we have the following observations:

(i) For the weak user, our NOMA scheme has a 60.0% data rate gain compared to OMA, on

average over all the locations that we tested. (ii) For the strong user, NOMA yields a 17.9% data

rate degradation on average compared to OMA. This degradation can be attributed to the inter-

user interference and the imperfections of SIC as explained above. (iii) For the AP, the proposed

NOMA scheme outperforms OMA by 18.0% in terms of weighted sum rate. (iv) The proposed

SIC scheme outperforms ZF-SIC by 27.8% for the stronger user’s data rate. This throughput gain

is from the summation operation in (4.24). Mathematically, this summation operation is equivalent

to a low pass filter, which reduces the effects of noise and interference (weak signals) in each

iteration of SIC.

4.6.4 Experimental Results of (2× 2)-NOMA

We now consider the case where the AP has two antennas and it serves two users. The weak user

is placed at Lk1 and the strong user is placed at Lk3, k = 1, 2, · · · , 6.

Case Study. Again, we use location 4 (k = 4) as an example to examine the proposed NOMA

scheme. Fig. 4.11 presents the constellation of the decoded signals at the two users when NOMA

and OMA are used, respectively. We have the following observations from the experimental data.

(i) For the weak user, it has similar EVM in NOMA and OMA. Its extrapolated data rate is
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Figure 4.12: Performance comparison of NOMA and OMA in downlink transmission of a WLAN
where a two-antenna AP serves two single-antenna users.

3.0 Mbps in NOMA and 1.5 Mbps in OMA. This shows that NOMA has a significant throughput

gain for the weak user. (ii) For the strong user, it achieves−20.0 dB EVM in NOMA and−24.9 dB

EVM in OMA. Correspondingly, the extrapolated data rate for this user is 9.0 Mbps in NOMA and

6.0 Mbps in OMA. This shows that NOMA has a considerable throughput gain (50.0%) for the

strong user as well. (iii) For the AP, the weighted sum rate is 27.0 Mbps in NOMA and 15.7 Mbps

in OMA. This shows that our NOMA scheme has a 72.0% gain over OMA.

Results from All Locations. Fig. 4.12 presents the extrapolated data rate at each user when

NOMA and OMA are used, respectively. The experimental results from the six locations corrob-

orate our observations in the case study. On average, NOMA improves the data rate by 55.5% for

the weak user, 40.7% for the strong user, 49.8% for the AP’s weighted sum rate. Moreover, our

proposed SIC outperforms ZF-SIC, yielding 35.7% data rate gain for the strong user.

4.6.5 Experimental Results of (2× 3)-NOMA

Finally, we consider the case where the AP has two antennas and it serves three users. The weak

user is placed at Lk1, the middle user is placed at Lk2, and the strong user is placed at Lk3,

k = 1, 2, · · · , 6.

Case Study. Similar to the previous case studies, we place the users at location 4. Fig. 4.13

presents the constellation of the decoded signals at the users when NOMA is used. When OMA
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Figure 4.13: Constellation of the decoded signals in downlink NOMA transmission when the two-
antenna AP serves three single-antenna users.

is used, the three stations achieve −14.5 dB, −21.4 dB, and −26.8 dB EVM, respectively. Based

on the experimental results, we have the following observations: (i) For the weak user, NOMA

has a small EVM degradation (1.4 dB) compared to OMA. Its extrapolated data rate is 4.5 Mbps

in NOMA and 1.5 Mbps in OMA. (ii) For the middle user, NOMA has a considerable EVM

degradation (8.3 dB) compared to OMA. Its extrapolated data rate is 4.5 Mbps in NOMA and

3.0 Mbps in OMA. (iii) For the strong user, NOMA has a significant EVM degradation (13.7 dB).

Its extrapolated data rate is 3.0 Mbps in NOMA and 4.5 Mbps in OMA. (iv) For the AP, the

weighted sum rate is 25.5 Mbps in NOMA and 15.0 Mbps in OMA. This means that NOMA has

a 70.0% gain over OMA in terms of weighted sum rate.

Results from All Locations. Fig. 4.14 presents the extrapolated data rate at each user when

NOMA and OMA are used. From the experimental results, we can see that NOMA significantly

increases the weak user’s data rate, slightly increases the middle user’s data rate, and considerably

decreases the strong user’s data rate. On average over the six locations, NOMA increases the data

rate by 147.1% for the weak user and by 18.4% for the middle user. However, it decreases the data

rate of the strong user by 26.3%. For the AP, NOMA achieves a weighted sum rate of 21.5 Mbps

and OMA achieves 15.3 Mbps, indicating a 40.5% improvement. Meanwhile, it is evident that our

proposed SIC considerably outperforms ZF-SIC. It improves the strong user’s data rate by 16.7%

and the middle user’s data rate by 50.0%.
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Figure 4.14: Performance comparison of NOMA and OMA in downlink transmission when the
two-antenna AP serves three single-antenna users.

4.6.6 Summary of Observations

Based on our experimental results, we have the following observations on NOMA: (i) NOMA

can significantly increase the weak user’s data rate when compared to OMA. This phenomenon

has been observed in all the cases that we tested in our experiments. (ii) As expected, the use of

NOMA will lead to a degradation for the strong user’s data rate. But in overall, NOMA can greatly

improve the weighted sum rate for the AP. (iii) Our proposed SIC method works in practice and it

offers considerably better performance than ZF-SIC.

4.7 Chapter Summary

In this chapter, we proposed a NOMA scheme for WLANs and evaluated its performance in real-

world wireless environments. Our NOMA scheme has three key components: precoder design,

124



user grouping, and a new SIC method. We formulated the precoder design problem as an op-

timization problem and developed a minorization-majorization algorithm to pursue an efficient

solution to it. Moreover, a robust SIC method has been proposed to decode the desired signal in

the presence of strong interference. Our SIC method does not require channel estimation and is

amenable to practical implementation. We have implemented the proposed NOMA scheme on a

GNURadio-USRP2 testbed. Experimental results show that, compared with OMA, the proposed

NOMA scheme can significantly improve the weak user’s data rate and considerably improve the

AP’s weighted sum rate.
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Chapter 5

Learning-Based Channel Feedback for MU-MIMO in

WLANs

5.1 Introduction

The proliferation of wireless devices, combined with the growth of Internet-based wireless appli-

cations such as online streaming and video chatting, has led to continuously increasing demands

for wireless services in indoor environments such as smart homes, university campuses, football

stadiums, and airports. As one of the largest wireless networks in real world, WLANs carry the

most wireless data traffic (even more than cellular networks) and play a pivotal role in our society.

To meet the increasing demands for data services in WLANs, MU-MIMO is a key technology.

It allows an AP to serve multiple users simultaneously and therefore can significantly improve the

spectral efficiency. Given its potential, MU-MIMO has been specified in the IEEE 802.11 stan-

dards [67,70] and widely been deployed on commercial Wi-Fi devices, e.g., Wi-Fi routers, laptops,

and phones.

In real-world WLANs, the downlink typically has higher demands for data services compared

to the uplink. To support downlink MU-MIMO communications in WLANs, an AP needs to

access short-term CSI for the construction of beamforming filters. The filters will then be used

to project the precoded signals onto the AP’s multiple antennas so that each user can decode its
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data packets. Thus, CSI at the AP is essential to enabling downlink MU-MIMO transmissions.

There are two channel acquisition methods for an AP to obtain CSI: i) implicit channel acquisition,

and ii) explicit channel acquisition. The implicit method is based on channel reciprocity. The AP

infers the downlink CSI through the estimation of uplink CSI and periodic channel calibrations

[124]. This method, however, requires an extra RF chain on hardware or a sophisticated algorithm

for channel calibration, and may not be suited for implementation on low-cost Wi-Fi devices [74,

75, 206].

The explicit method is based on channel feedback over uplink over-the-air channel. Each user

first estimates the downlink CSI and then reports the estimated CSI to the AP. Given its amenabil-

ity to implementation, this method has been adopted by the IEEE 802.11 standards [67, 70] and

been implemented on commercial Wi-Fi systems. However, due to its reliance on over-the-air

CSI feedback, it suffers from large airtime overhead. The large overhead of this method can be

attributed to the large number of subcarriers in WLANs’ OFDM modulation, each of which has a

channel matrix to be reported. Existing 802.11 protocols may group subcarriers for CSI feedback

to reduce the overhead. Apparently, such a naive scheme will lead to an inferior beamforming per-

formance and drastically compromises the throughput gain of MU-MIMO. While there are many

results of MU-MIMO in the literature, the CSI compression for 802.11 MU-MIMO protocols is

highly overlooked and its progress remains limited.

In this chapter, we study explicit channel acquisition in 802.11 MU-MIMO protocols with

the objective of minimizing CSI feedback airtime overhead while preserving CSI feedback ac-

curacy. Toward this objective, we propose a learning-based channel feedback framework (called

LB-SciFi1) for 802.11 protocols to reduce their airtime overhead by taking advantage of recent

1LB-SciFi stands for Learning-Based compression for Ψ (Sci) and Φ (Fi), which are the CSI for feedback in 802.11
MU-MIMO protocols [67, 70].
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Figure 5.1: An overview of DNN-AEs for channel feedback compression in 802.11 MU-MIMO
protocols.

advances in Deep Neural Network Auto-Encoder (DNN-AE). Fig. 5.1 shows the basic idea of LB-

SciFi, which is composed of two phases: online training and real-time exploitation. In the training

phase, LB-SciFi trains DNN-AEs at the AP by leveraging side information from existing 802.11

MU-MIMO protocols, and thus require no extra effort from user devices. In the exploitation phase,

LB-SciFi uses the trained DNN-AEs to compress CSI for efficient feedback. Given the redundancy

of CSI and the effectiveness of DNN-AEs, LB-SciFi can reduce the airtime overhead significantly

without sacrificing CSI feedback accuracy.

The main challenge in the design of LB-SciFi is the online training of DNN-AEs, which should

be capable of capturing the kernel space of all possible channels in a given wireless environment

through the learning of collected CSI at the AP. To address this challenge, we design an efficient

training scheme for the DNN-AEs, which jointly optimize the structure of DNN-AEs, the collec-

tion of training data, and the preprocessing of collected data by leveraging the existing feedback

data in existing 802.11 MU-MIMO protocols. Specifically, the proposed training scheme metic-

ulously chooses the ψ and ϕ angles from Givens Rotation (GR) as the DNN-AEs input based on

a defined Power spectral Entropy (PSE). Moreover, several important engineering problems have
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been addressed to make DNN-AEs work in real-world wireless environments.

This work advances the state-of-the-art in the following respects.

• We propose to employ DNN-AEs for CSI compression in 802.11 MU-MIMO protocols,

and have designed an online training scheme for DNN-AEs while imposing no computation

burden on user devices.

• Based on the DNN-AEs, we have designed a learning-based channel feedback framework

(LB-SciFi) for downlink MU-MIMO. This framework can dramatically reduce the CSI feed-

back airtime overhead for 802.11 MU-MIMO protocols without sacrificing CSI feedback

accuracy.

• We have built a prototype of LB-SciFi and evaluated its performance in real-world indoor en-

vironments. Our experimental results show that LB-SciFi reduces the CSI feedback airtime

overhead by 73% and improves the throughput of MU-MIMO by 69% on average.

5.2 Related Works

We focus our literature review on research efforts studying low-overhead channel acquisition meth-

ods for MU-MIMO transmissions in WLANs and cellular networks.

Channel Acquisition in WLANs. As the core technology of existing WLANs, MU-MIMO

markedly improves users experience with high throughout and low latency. However, airtime over-

head from channel acquisition is a real barrier toward fully exploiting the potential of MU-MIMO.

Given the severity of this issue, research efforts have been devoted to studying the effect of chan-

nel acquisition parameters on network throughput or completely altering the channel acquisition

paradigm to enhance network throughput [17, 33, 53, 87, 110, 113, 117, 128, 134, 139, 197, 200].
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Pioneering work [128, 134, 139, 197] studied the underlying relationship between network

throughput and channel acquisition parameters. The outcome was not surprising; full exploita-

tion of MU-MIMO requires a timely CSI through a frequent channel acquisition. The large airtime

overhead, however, drastically compromises the throughput gain of MU-MIMO. [17, 33, 87, 113,

117] aimed at lowering the frequency of channel acquisitions to reduce channel feedback overhead

for MU-MIMO protocols. However, the airtime overhead was still too large. [53,110,200] revisited

existing channel acquisition paradigm and explored new methods for efficient channel acquisition.

Thus far, there is no efficient method for CSI compression to reduce feedback overhead. Our

work fills this gap by leveraging recent advances in artificial neural networks to compress CSI. The

resultant CSI feedback will entail much less overhead compared to existing 802.11 protocols.

Channel Acquisition in Cellular Networks. Compared to WLANs, the need for low-overhead

channel acquisition methods in cellular networks is appreciated earlier as the emergence of massive-

MIMO revealed the drawbacks of traditional techniques. Toward this objective, the underlying

correlation of CSI reports has been used for compression by removing the redundant correlated

information [54, 97, 111, 172, 179, 193]. In particular, temporal correlation [97, 111, 172], spectral

correlation [54, 179, 193], and spatial correlation [97, 101] have been explored to minimize the

representation of CSI. Channel reciprocity [109, 143, 194] and outdated CSI [73] have also been

studied to enhance the efficiency of channel acquisition.

Our work is orthogonal to these research efforts in the following two aspects: i) Our work

focuses on indoor WLANs, which differ from cellular networks in terms of CSI format, network

architecture, data collection, data processing, and system implementation. ii) While the above

efforts focused on theoretical exploration, our work focuses on practical design based on real-

world 802.11 protocols.
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5.3 Problem Description

In this section, we first offer a primer of existing 802.11 MU-MIMO protocols and underscore their

airtime overhead issue. Then, we will state our design objective and challenges.

5.3.1 Existing 802.11 MU-MIMO Protocols

Consider a WLAN as shown in Fig. 5.1(a), where a multi-antenna AP is serving a set of user

devices (a.k.a. stations or STAs for brevity). The AP is equipped with Nap antennas, and an STA

is equipped with Nsta antennas. Due to the physical size and power limits, an STA typically has

less antennas than an AP, i.e., Nsta < Nap. In such a WLAN, MU-MIMO is widely used to

exploit the spatial DoF of asymmetric antenna configuration by enabling the AP to serve multiple

STAs simultaneously. The application of MU-MIMO not only improves spectral efficiency and

user scheduling flexibility but it also reduces packet delay at the MAC layer and enhances fairness

in resource allocation.

To enable MU-MIMO transmissions in real-world WLANs, protocols with explicit channel

acquisition have been specified in the IEEE 802.11 standards [67, 70]. Fig. 5.2 shows an existing

802.11 MU-MIMO protocol, which is composed of the following four phases:

• MU-MIMO Announcement: The AP selects a subset of STAs for the downlink MU-MIMO

transmission based on some pre-defined criteria.2 After user selection, the AP broadcasts a

NDPA to inform the STAs of MU-MIMO transmission, followed by an NDP for those STAs

to estimate downlink CSI.

• Channel Feedback: After estimating CSI, the selected STAs feed back their CSI to the AP

2Note that user selection is not in the scope of our work, and there are many prior results on user selection for
MU-MIMO.
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Figure 5.2: An MU-MIMO protocol in IEEE 802.11ac [67].

sequentially following the poll frames from the AP, as shown in Fig. 5.2. The CSI feedback

procedure will be detailed shortly.

• Data Transmission: Upon obtaining CSI from all STAs, the AP uses CSI to construct beam-

forming filters and performs downlink data transmission.

• Acknowledgment: After decoding the packets, all STAs sends an ACK/NACK to the AP to

indicate the success/failure of their packet detection.

In the channel feedback phase, if an STA sends raw CSI to the AP, it entails a huge amount

of airtime overhead and thus negates the throughput gain of MU-MIMO. To reduce the airtime

overhead, 802.11 protocols have employed angle-based CSI feedback instead of raw CSI feedback

in the spatial domain and specified subcarrier grouping in the spectral domain. We detail them

below.

Angle Feedback in Spatial Domain. Referring to the protocol in Fig. 5.2, once an STA has

received the NDP from the AP, it estimates the downlink CSI, i.e., H(k) ∈ CNsta×Nap , 1 ≤ k ≤

Nsc, where Nsc is the number of valid subcarriers. Instead of reporting the complex entries of

H(k), the STA reports two sets of angles (Ψ and Φ) to the AP to reduce the feedback overhead. A
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Algorithm 5.1 A high-level description of computing Ψ and Φ at an STA specified in the IEEE
802.11ac/ax [67, 70].

Inputs: Estimated channel at an STA, i.e., H(k) ∈ CNsta×Nap , 1 ≤ k ≤ Nsc
Outputs: Computed angles, i.e., Ψ and Φ

1: Set Ψ = { } and Φ = { }
2: for (k = 1; k ≤ Nsc; k++) do
3: [U, Σ, V] = svd (H(k))
4: V′ = V (: , 1:Nsta)
5: for (l = 1; l ≤ Nsta; l++) do
6: ψk := phase_extraction(V′ (:, l))
7: ϕk := givens_rotations(V′ (:, l))
8: Ψ :=

{
Ψ ψk

}
and Φ :=

{
Φ ϕk

}
9: Quantizing every angle in Ψ using p bits, p ∈ {5, 7}

10: Quantizing every angle in Φ using q bits, q = p+ 2.

high-level description of computing Ψ and Φ is given in Alg. 5.1. This conversion is also known

as Givens Rotations. Details of computing the angles can be found in [156]. With these two sets

of angles, the AP can reconstruct the essential spatial information of H(k), which suffices for

beamforming operations at the AP.

In this method, the number of generated angles in Φ isNϕ = (NapNsta−N2
sta/2−Nsta/2)Nsc,

so is the number of angles in Ψ. These angles need to be reported to the AP via the uplink over-the-

air channels. In 802.11 standards [67], two types of quantization are specified for CSI feedback:

• Type 0: 5 bits for angles in Ψ and 7 bits for angles in Φ,

• Type 1: 7 bits for angles in Ψ and 9 bits for angles in Φ.

Subcarrier Grouping in Spectral Domain. In a typical environment of WLANs, adjacent

subcarriers experience highly correlated channel responses from the medium. Therefore, instead of

reporting CSI for every individual subcarrier, an STA may group multiple neighboring subcarriers

together for CSI feedback. Per IEEE 802.11ac [67], the number of subcarriers in a group, denoted

by Ng, can be 1, 2, or 4, depending on network configuration. In IEEE 802.11ax [70], Ng can also
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be 8 or 16 due to its small subcarrier spacing.

Large Airtime Overhead. Even with the spatial- and spectral-domain compression, 802.11

MU-MIMO protocols still come with a large amount of airtime overhead, which significantly

compromises the throughput gain of MU-MIMO [110, 187]. For example, for an STA with 4

antennas and an AP with 8 antennas, the CSI feedback could be as large as 19.7 kbit for 20 MHz

bandwidth and 170.4 kbit for 160 MHz bandwidth. The problem of CSI feedback airtime overhead

becomes increasingly acute as the evolution of WLANs is accommodating more subcarriers in a

certain frequency band. For example, IEEE 802.11ax employs 256 subcarriers over 20 MHz for

packet transmissions, which is four times greater than that of IEEE 802.11ac.

5.3.2 Our Objective and Challenges

Objective. We aim to reduce the CSI feedback airtime overhead by taking advantage of recent

advances in DNN-AE, which has been successfully used for data compression and feature extrac-

tion in other fields such as image and video compression. Toward this aim, we will compress the

angles in Ψ and Φ in the spectral domain by removing their information redundancy caused by

channel correlation.

Challenges. While the idea is straightforward, there are challenges in the design of practical

DNN-AEs that are amenable to real-world applications. The challenges lie in the following re-

spects: i) The configuration of DNN-AEs should be meticulously selected, including the number

of layers in autoencoder, the number of neurons on each layer, and the preprocessing of input data.

The configuration of DNN-AEs is of great importance as it dictates the compression rate, the infor-

mation loss, and the required data amount and computational power for training. ii) The training of

DNN-AEs should be online and transparent to user devices. User devices are typically constrained

by their computational capability and battery power. It is desirable that the training of DNN-AEs,
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which is computational demanding, will not put a burden on user devices. In what follows, we

propose LB-SciFi to address these two challenges.

5.4 LB-SciFi: A Learning-Based Feedback Framework

To reduce the CSI feedback airtime overhead, we propose LB-SciFi for CSI compression. The core

components of LB-SciFi are two DNN-AEs, which compress CSI at each STA and decompress

CSI at the AP. Fig. 5.1 shows the basic idea of LB-SciFi, which is composed of two phases: online

training and real-time exploitation. As shown in Fig. 5.1(a), the online training is done at the AP

by taking advantage of the side information (Ψ and Φ) from existing 802.11 protocols. Once the

training of DNN-AEs is completed, the AP broadcasts the weights of the DNN-AEs to all STAs

and enters into the exploitation phase as shown in Fig. 5.1(b). In the exploitation phase, each

STA uses DNN-AEs to compress its CSI and reports the compressed CSI to the AP. The AP uses

DNN-AEs to decompress the received CSI for the construction of beamforming filters.

5.4.1 DNN-AEs

Autoencoder is a type of artificial neural network used to learn efficient data coding in a self-

supervised manner. One of its applications is to learn a representation for a set of data for dimen-

sionality reduction. Autoencoders are effectively used for solving many applied problems, ranging

from face recognition to acquiring the semantic meaning of words. In this work, we take advantage

of recent advances in DNN-AEs to compress CSI for 802.11 MU-MIMO protocols. We consider a

DNN-AE as shown in Fig. 5.1, which is composed of two parts: encoder and decoder. The encoder

will be used on each STA to compress its estimated CSI for feedback, and the decoder will be used

at the AP to recover CSI for construction of beamforming filters.
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Figure 5.3: Angle instances in Ψ and Φ as well as their PSE.
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Figure 5.4: Distribution of the measured angles over all subcarriers and at many locations in a
real-world office environment.

Compressibility of Ψ and Φ. Before delving into the details of DNN-AEs, we introduce a

metric to quantify compressibility of angles on an observation basis. The compressibility metric

will lay the foundation for our design of DNN-AEs. Consider an angle sequence θ = [θ1, θ2, · · · , θK ].

Denote its FFT output as ϑ = [ϑ1, ϑ2, · · · , ϑK ]. Then, we define PSE of θ as follows:

PSE(θ) = − 1

log2K

K∑
k=1

p(ϑk) log2 p(ϑk), (5.1)

where p(ϑk) =
|ϑk|2∑K
i=1|ϑi|

2 [65]. Apparently, the PSE of an angle sequence is bounded in [0 1].

In our case, its value reflects the uncertainty of a random angle or fluctuations of a measured angle

over subcarriers. Intuitively, a low value of PSE indicates high compressibility, while a high value

of PSE indicates low compressibility.

In WLANs, STAs are semi-stationary and work on a limited bandwidth. In such an envi-
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Figure 5.5: Compression error for different code dimensions.

ronment, the channels between an AP and STAs are prone to be frequency-flat, and the channel

responses on adjacent subcarriers are highly correlated. Fig. 5.3 exhibits an angle in Ψ and an an-

gle in Φ over 52 valid subcarriers in 20 MHz bandwidth at 2.484 GHz as well as their PSE values.

It is evident that both PSE values are much less than 1, indicating the compressibility of the angles.

Separate DNN-AEs for Ψ and Φ. For an STA, it needs to first compress Ψ and Φ, and then

report compressed Ψ and Φ to the AP. A natural question to ask is whether an STA should use the

same DNN-AE for both Ψ and Φ. To explore an answer to this question, we empirically study the

compressibility of the angles in Ψ and Φ. Specifically, we collected the CSI angles for Ψ and Φ at

the STAs that were widely distributed in a real-world office environment, and plotted the PDF of

the collected angles. Fig. 5.4 shows our measured results. We can see that the angles in Ψ is non-

uniformly distributed, while the angles in Φ are almost uniformly distributed. Based on collected

CSI angles, the measured PSE of Ψ is 0.09, and the measured PSE of Φ is 0.23. The measurement

results indicate that the angles in Ψ and Φ have different levels of compressibility. Given that

the compression ratio is determined by the DNN-AE structure (the ratio of dimension of the input

layer to that of the latent layer), we employ two different DNN-AEs for the compression of Ψ and

Φ.

DNN-AE Settings. Another question to ask is about the parameter selection of the two DNN-
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Figure 5.6: Illustration of two different DNN-AEs for Ψ and Φ.

AEs, including the number of layers, the number of neurons on each layer, quantization bits, and

dimension of the latent layer. Unfortunately, there is no systematic approach that we can utilize

to determine the optimal values for these parameters. Therefore, we focus only on the dimension

of the latent layer (a.k.a. code dimension) as it is the most important parameter for a DNN-AE.

Fig. 5.5 presents the compression error of DNN-AEs for different code dimensions. Using 1.5%

error as reference, we select the code dimension that offers the best compression rate. As such,

our design choices are 52× 8× 3× 8× 52 for Ψ’s DNN-AE and 52× 16× 8× 16× 52 for Φ’s

DNN-AE, as shown in Fig. 5.6.

5.4.2 Online Training: Data Collection

As illustrated in Fig. 5.1, the AP takes advantage of existing 802.11 protocols to train the DNN-AEs.

That is, AP and STAs perform downlink MU-MIMO transmissions using the 802.11 protocol as

shown in Fig. 5.2. In the meantime, the AP trains the DNN-AEs using reported CSI (uncompressed

Ψ and Φ) from the STAs. By doing so, the AP can train the DNN-AEs by collecting side infor-

mation from the existing MU-MIMO protocol, and the training remains transparent to the STAs.

In the course of data collection, care should be taken for the following two tasks.

Avoiding Garbage-In/Garbage-Out. To collect a meaningful dataset for training DNN-AEs,

the AP needs to block out garbage CSI reports from STAs. In real WLANs, an STA may fail in es-
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timating accurate CSI due to various sources of errors such as time and frequency synchronization

errors. As a garbage report has intrinsically a noise-like behavior, several dominant components

exist in its spectral representation. Therefore, the PSE of such a report is high likely to be overly

high. The AP leverages PSE metric in (5.1), and blocks out the sequences with abnormal PSE. The

abnormality is detected by adjusting appropriate thresholds. In our experiment, we assumed that

an abnormal angle in Ψ has PSE ≥ 0.25 and that an abnormal angle in Φ has PSE ≥ 0.5.

Avoiding Overrepresentation. Another important task of the AP is to prepare a balanced data

set. In a typical WLAN, a static STA like smart TV remains at a fixed location without quitting

the WLAN, while a mobile STA wanders through coverage range and may quit the WLAN for a

while. A static STA may temporally experience correlated large-scale fading, making its historical

CSI reports highly correlated. In light of this, the CSI reports from static STAs might be over-

represented, making the DNN-AEs biased in favor of themselves. To avoid overrepresentation, the

AP divides the PSE range into 100 uniform bins. If the AP receives 20 consecutive CSI samples of

the same PSE value from the same STA, it will ignore the subsequent CSI samples from this STA,

until the PSE value of its CSI samples changes. Here, PSE values within a PSE bin are considered

the same.

5.4.3 Online Training: Data Preprocessing

After clearing and balancing the collected datasets, the AP preprocesses the datasets before feeding

them into DNN-AEs for training. In what follows, we first describe the purpose of data prepro-

cessing and then present the preprocessing procedure for the two sets of angles.

Purpose of Data Preprocessing. To avoid biased training and boost the convergence for DNN-

AEs, we wish to obtain the training datasets with a normalized zero-mean probability density

function and uniform subcarrier-wise variance in the feasible space [83]. Such datasets are likely
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Figure 5.7: The probability and variance of the angles in Ψ before and after rectification.

to render an unbiased training for DNN-AEs and yield a high compression ratio. Unfortunately, the

collected angles in Ψ and Φ do not meet these two conditions (normalized zero-mean distribution

and flat subcarrier-wise variance). Therefore, we preprocess the collected datasets with the aim of

rectifying their distributions to accelerate the training.

Preprocessing of Angles in Ψ. Fig. 5.7(a) shows the probability and variance of the angles

in Ψ before the preprocessing. As it can be seen, the angles in Ψ are non-uniformly distributed

within their range. To alleviate this issue, we apply a rectification function f(·) at the encoder

and de-rectification function f−1(·) at the decoder, as shown in Fig. 5.6(a). Here, we employ

f(ψk) = α
(
ψk − ψ̄

)
as the rectification function, where ψ̄ is the average of the angles in Ψ and

α is a normalization constant. In our experiments, we use ψ̄ = 0.68 rad and α = 1.12. After

the rectification, the angles will have zero mean and uniform variance over different subcarriers,

thereby improving the convergence of the DNN-AEs [92] and avoiding zigzag behavior in gradient

descent algorithms [93].

Fig. 5.7(b) shows the probability and variance of the angles in Ψ after the preprocessing. As it
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Figure 5.8: The probability and variance of the angles in Φ before and after rectification.

can be seen, the probability density function has a zero mean after the preprocessing, which leads

to a disciplined training for the corresponding DNN-AE.

Preprocessing of Angles in Φ. Compared to Ψ, the preprocessing of Φ is a bit more tricky.

Fig. 5.8 shows the probability density function and subcarrier-wise variance of the angles in Φ

measured in real WLANs. The non-uniform probability distribution, non-uniform variance, high

variance on each subcarrier, and the large range (even beyond [−4π, 4π]) make the angles in Φ

unsuited for training. Preprocessing is needed to rectify the dataset to improve the convergence of

the DNN-AE and avoid biased training.

One approach that one may think of to rectify the angles is to wrap the angles into [0, 2π) using

a simple function g(ϕ) = mod(ϕ, 2π). This approach, however, is not an effective one. Fig. 5.9

shows an example of this rectification function. It can be seen that the rectified angle curve appears

to be discontinuous. However, the discontinuity of the rectified data cannot be captured by the

DNN-AE, as illustrated in the figure. Therefore, a continuous rectification function is needed for

the preprocessing of Φ.
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Figure 5.9: Illustrating the underlying problem of the rectification function g(ϕ) = mod(ϕ, 2π) for
the angles in Φ.

In light of this requirement, we propose a piece-wise function to rectify the angles in Φ before

feeding them into the DNN-AE:

g(ϕk) =



1
2π (ϕk − 0.07) if mink(ϕk) < 0,

1
2π (ϕk − 6.16) if maxk(ϕk) > 2π,

1
π (ϕk − 3.13) otherwise,

(5.2)

for k = 1, 2, · · · , 52. In this equation, the values of 0.07, 6.16, and 3.13 are the mean of the angles

in their respective category and obtained from our experimental measurements. It is noteworthy

that coefficient 1/π in the third equation in (5.2) differs from the other two. This is because the

angles in this category have a small range and thus a small normalization coefficient is used for

scaling.

Fig. 5.8(b) shows the probability density function and subcarrier-wise variance of all the an-

gles in Φ after preprocessing. Compared to the distribution and variance before preprocessing as

shown in Fig. 5.8(a), it is evident that this preprocessing can flatten both probability and variance

distributions, making the DNN-AE easy to converge.

Given that g(ϕk) is used for data preprocessing on the encoder side, an inverse function is

needed on the decoder side to recover the original angles. However, g(ϕk) is a piece-wise function

and it is not invertible. To address this challenge, we use two bits to indicate the sub-function used
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for rectification, i.e., “00” means g(ϕk) = 1
2π (ϕk − 0.07), “01” means g(ϕk) = 1

2π (ϕk − 6.16),

and “10” means g(ϕk) =
1
π (ϕk−3.13). With these two bits, the decoder is capable of constructing

g−1(ϕk) and inversing the preprocessing at the encoder. In the exploitation phase, each STA should

send these indication bits to the AP via the over-the-air uplink channel. It is worth noting that these

indication bits are of very small size compared to conventional CSI feedback.

5.4.4 Online Training: Settings and Procedure

Training Procedure and Hyper-Parameter Tuning. We train the DNN-AEs shown in Fig. 5.6

using the preprocessed datasets. For the two DNN-AEs, each hidden layer is composed of a fully-

connected layer followed by a batch-normalization layer to speed up the training convergence [72].

Also, Rectified Linear Unit (ReLU) activation function is used. The DNN-AEs are trained to

minimize loss function, which is defined as the relative error:

L(x, x̂) =
∥x̂− x∥
∥x∥

, (5.3)

where x and x̂ represent the input sample and the corresponding reconstructed sample, respec-

tively. The networks are trained using Adam optimizer [85]. We started the training with an

initial learning rate of 0.001 and reduced it with a decay rate of 0.98 following a step-wise ap-

proach. All parameters were initialized using Xavier initialization [50]. Dropout [154] is applied

to all hidden layers to prevent over-fitting and improve the generalization of the model. The final

architectures are the result of random search over hyper-parameters. All DNN-AEs are trained

end-to-end using Pytorch v1.4 library [132].

Readiness of DNN-AEs for Exploitation. While the AP trains the DNN-AEs whenever it

receives a batch of CSI reports from the STAs, a natural question to ask is about the criteria for the
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completion of its training phase. In our experiments, we check the loss function of validation data

to determine the readiness of the DNN-AEs. If the loss function of validation data is consistently

less than 1.5%, we consider the completion of the training phase and the DNN-AEs are ready to

use. The AP then broadcast the weights and bias values of the encoder parts of the two DNN-AEs

as well as the preprocessing parameters to the STAs, so that the STAs can reconstruct the encoder

part to compress the angles in Ψ and Φ, as shown in Fig. 5.1(b). Using 32 bits to represent each

parameter (real number), the total overhead of transmitting the parameters of the trained DNN-AEs

is 5.74 kB, where 1.80 kB is for the parameters of Ψ’s DNN-AE, and 3.94 kB is for the parameters

of Φ’s DNN-AE. This airtime overhead of DNN-AEs broadcast is not an issue for two reasons.

First, the broadcast takes place once for a very long period of time. Second, the broadcast is not

time-sensitive and the AP can broadcast whenever it gets the resource.

Keep Training DNN-AEs. While the AP has broadcast the DNN-AEs to the STAs, there

might be some STAs incapable of utilizing the DNN-AEs for CSI compression. For example, some

incumbent STAs may support MU-MIMO but do not support autoencoder-based CSI compression.

In such a case, the AP can instruct these STAs to report CSI without compression and use the

uncompressed CSI reports for the construction of beamforming filters as that in exiting 802.11

protocols. In the meantime, the AP can use the uncompressed CSI reports from those STAs to

keep training the DNN-AEs.

Updating DNN-AEs. During the training in exploitation phase, the AP will periodically use

validation data to check the loss function. It rebroadcasts the DNN-AEs to STAs whenever it

detects a stable improvement in trained DNN-AEs. Furthermore, the AP rebroadcasts the updated

DNN-AEs to the STAs whenever it observes an increase (e.g., 5%) in downlink packet error rate.

Such an event simply means that the DNN-AEs in use are outdated. It is noteworthy that we

did not observe a failure of the DNN-AEs in our experiments even though we moved the testbed
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Figure 5.10: CSI compression at STA and decompression at AP.

significantly. We enforce this mechanism just to improve the robustness of our design.

5.4.5 Real-Time DNN-AEs Exploitation: CSI Compression

After the AP completes the training phase, the WLAN enters into the exploitation phase. In this

phase, the AP and STAs still use the existing MU-MIMO protocols shown in Fig. 5.2 for downlink

MU-MIMO transmissions, except that DNN-AEs are used for CSI compression of the channel

feedback. In what follows, we describe CSI compression at an STA and CSI decompression at the

AP, respectively.

STA-Side Operations. Fig. 5.10 shows the CSI compression operations at a STA. The STA

first estimates the CSI and then converts the estimated CSI to two sets of angles. Then, the two

sets of angles are preprocessed and fed into the encoders of DNN-AEs for compression. After

that, quantization is performed on the output, followed by frame assembly for uplink CSI report.

A question to ask is how many bits should be used for the quantization of the output of DNN-AEs’

encoders. While there is no analytical guidance to answer this question, we resort to experimental

tests. We found that the angles in Φ are more sensitive to quantization errors than the angles in
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Ψ. We also observed that the setting of 5 bits for each output of Ψ’s DNN-AE and 8 bits for each

output of Φ’s DNN-AE is a good trade-off between performance and airtime overhead. In our

experiments, we will stick to this quantization setting.

AP-Side Operations. Fig. 5.10 shows the CSI decompression operations at the AP, which try

to recover the original CSI based on the compressed angles from an STA. The decompressed CSI

will be used to construct the beamforming filters (e.g., using SVD-based precoding methods) for

downlink MU-MIMO transmissions.

5.4.6 Compression Ratio and Airtime Overhead

As presented in Section 5.3.1, the existing MU-MIMO protocols employ two types of CSI feedback

quantization options and can group different numbers of subcarriers for CSI feedback. Then, the

number of bits required for CSI feedback can be expressed as NscNa(p + q)/Ng, where Nsc is

the number of valid subcarriers, Na is the number of angle-sequences in Ψ or Φ, p and q are the

number of quantization bits as shown in Alg. 5.1, and Ng is the number of subcarriers in a group.

Per the IEEE 802.11ac, we have (p, q) ∈ {(5, 7), (7, 9)}, Ng ∈ {1, 2, 4}.

LB-SciFi uses two DNN-AEs to compress the angle sequences in Ψ or Φ. Based on the

DNN-AE settings and quantization bits as shown in Fig. 5.10, the number of feedback bits is

Na(5× 3 + 8× 8 + 2) = 81Na. Therefore, the compression ratio of LB-SciFi can be written as:

compression_ratio = 1−
81Ng

52(p+ q)
, (5.4)

where (p, q) ∈ {(5, 7), (7, 9)} and Ng ∈ {1, 2, 4} as specified in the IEEE 802.11ac [67].

Based on (5.4), it is easy to check that LB-SciFi can achieve significant compression compared

to the existing protocols. The compression ratio ranges from 48.1% to 90.3%, depending on the

146



setting of the existing channel feedback protocol. While LB-SciFi can significantly reduce the

quantity of CSI feedback, a question to ask is about the quality of its compressed feedback, in-

cluding the feedback error and the impact on downlink MU-MIMO. We will provide experimental

results to answer this question in the next section.

5.4.7 Limitations

Some limitations of LB-SciFi are discussed as follows.

Compression Settings. LB-SciFi involves many parameters such as the number of layers in

DNN-AEs, the number of neurons on each layer, the number of bits for quantization, and the pre-

processing function parameters. These parameters are empirically chosen in our design, and there

is no systematic approach to determine the optimal values of those parameters. So, essentially,

LB-SciFi is heuristic and cannot offer any guarantee on its compression loss performance.

Dataset Size. The key phase of LB-SciFi is training the two DNN-AEs. However, there is

no guideline on how many data samples suffice for the two DNN-AEs’ training. Our experiments

show that 13, 100 data samples can achieve at least 98.5% compression accuracy. However, this

number is not generic and may change in other network environments. In general, the required

dataset size for the DNN-AEs’ training remains unknown.

Variability of Physical Environment. When there is a significant change in the surround-

ings of the AP (e.g., a metal desk placed in front of the AP or the AP is moved into a distinct

environment), re-training will be triggered to update the DNN-AEs. LB-SciFi cannot offer a time

guarantee on the re-training as it depends on the speed of data collection.
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Figure 5.11: Experimental setup for downlink MU-MIMO.

5.5 Experimental Evaluation

In this section, we evaluate the performance LB-SciFi in comparison with existing 802.11 protocols

in an indoor wireless environment. For ease of exposition, we use 802.11-TiGj to denote the IEEE

802.11 MU-MIMO protocol with Type i feedback and j subcarriers in a group, where i ∈ {0, 1}

and j ∈ {1, 2, 4} (see Section 5.3.1 and [67]). Since T1G1 represents the finest feedback and T0G4

represents the coarsest feedback, we will use these two protocols as our performance comparison

baseline.

5.5.1 Experimental Setup and Implementation

Downlink MU-MIMO. We consider a WLAN as shown in Fig. 5.11, where the AP can serve

two, three, or four STAs simultaneously in downlink. While there are many different beamform-

ing methods in the literature, we used ZF beamforming method in our experiments owing to its

popularity and ease of implementation.

Implementation of AP and STAs. Fig. 5.12(a–b) shows our wireless testbed. The AP and

STAs are built using USRP N210 devices and general-purpose computers. Each USRP N210 de-

vice is equipped with VERT2450 Antenna for radio signal transmissions at 2.484 GHz. The com-

puters are used for baseband signal processing and MAC protocol implementation. More specifi-

cally, the AP is implemented using a Dell Inspiron 3671 Desktop, which serves eight USRP N210

148



32 m

 6
 m

 

STA- case study

STA- random location

AP (c)

11

22

33

Figure 5.12: Illustrating our wireless testbed and test environment. (a) Prototyped STA. (b) Proto-
typed AP. (c) Floor plan of tests.

devices through a 10Gb fiber optic cable and a DGS-1210-20/ME Ethernet switch. Each STA is

prototyped with a Lenovo ThinkPad T480 and one USRP N210 device.

Implementation of 802.11 Protocols. IEEE 802.11 protocols are implemented with the legacy

PHY and MAC layers specifications. We use IEEE 802.11 frame format with 64 subcarriers for

OFDM modulation. Out of these 64 subcarriers, 48 subcarriers carry payload and 4 subcarriers

contain pilots. The sampling rate and carrier frequency are set to 20 MSps and 2.484 GHz, respec-

tively. Also, the maximum transmission power is set to 15 dBm. All the necessary 802.11 baseband

signal processing modules are realized with C++ in GNU Radio. For ease of implementation, our

802.11 protocols do not include user scheduling.

Implementation of LB-SciFi. LB-SciFi is implemented on top of 802.11 protocols. It mainly

deals with collecting datasets and training DNN-AEs. On our testbed, the training datasets are

automatically generated in the 802.11 protocols. With the collected datasets, DNN-AEs are trained

end-to-end using Pytorch v1.4 library [132] and Adam optimizer [85].
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Experimental setting. Fig. 5.12(c) shows an office scenario where we conducted the experi-

ments. The AP is placed at the spot marked as a blue square in the figure, while each STA is placed

at a random location marked as a red circle.

5.5.2 DNN-AEs Training and Feedback

Data Collection Campaign. We ran the MU-MIMO communications shown in Fig. 5.11(c) to

collect data for DNN-AEs training at the AP. Specifically, the AP performs downlink MU-MIMO

communications using the 802.11 protocols and, at the same time, it takes advantage of the CSI

reports from the STAs for DNN-AEs training. The data collection campaign was conducted during

two business days from 10am to 8pm. The human activity level in the environment was high

between 11am to 2pm and low to moderate in other periods of time. To cover all areas, we were

moving the STAs around all locations. This can be achieved in real systems thanks to the mobility

of some Wi-Fi devices such as phones and laptops. In our experiments, the AP eventually collected

60, 000 samples from the STAs for training the DNN-AEs.

Sufficiency of Collected Data. A question to ask is whether 60, 000 samples suffice for DNN-

AEs’ training. To answer this question, we conduct convergence test under two criteria: i) the test

loss of DNN-AE should be less than 1.5%, and ii) the loss difference for two validations should

be less than 0.1%. With such two criteria, Ψ’s DNN-AE converges with 7, 300 samples, and Φ’s

DNN-AE converges with 13, 100 samples. This indicates that 60, 000 samples suffice for training.

Computational Complexity of Training. In our experiments, the training process takes less

than 5 seconds on a Desktop PC with i5 CPU and 16 GB memory. A question is how much time is

needed for training DNN-AEs on a commodity AP (Wi-Fi router). Since most commodity APs are

equipped with an ARM processor, we expect that a commodity AP may take minutes to complete

the training. In addition, we note that the training process is not time-sensitive, and an AP can take
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Figure 5.13: Feedback comparison between LB-SciFi and 802.11 protocols (T0G1, T0G2, T0G4,
T1G1, T1G2, and T1G4).

its spare time to complete the training. If an AP is not capable of doing the training by itself, it can

take advantage of its wired Internet connection and a cloud server to run the training.

Feedback Error. With the completion of the first training, we examine the performance of

the DNN-AEs. LB-SciFi introduces CSI error during the feedback. The feedback error can be

attributed to two sources: compression and quantization. The compression error comes from the

imperfection of the DNN-AEs, and the quantization error comes from the limited quantization bits.

The normalized feedback error can be quantified by the loss function in (5.3). As a comparison

baseline, we also measure the normalized feedback error in 802.11 protocols, where the error

comes from the quantization of Ψ and Φ as well as the subcarrier grouping.

Fig. 5.13(a) shows our measured normalized feedback errors. It can be seen that LB-SciFi

has a larger feedback error than 802.11-T0G1/T1G1 protocols, and it has a smaller feedback error

compared to 802.11-T0G2/T0G4/T1G2/T1G4 protocols. This is because 802.11-T0G1/T1G1 pro-

tocols do not compress the CSI in the spectral domain while other protocols naively compress CSI

in the spectral domain.

Feedback Overhead. While LB-SciFi introduces larger error than 802.11-T0G1 and 802.11-

T1G1, it uses much smaller uplink airtime resource for CSI feedback and therefore entails much

smaller overhead. Fig. 5.13(b) compares the normalized feedback overhead of LB-SciFi with the
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existing 802.11 protocols. It can be seen that LB-SciFi entails much less overhead compared to

802.11 protocols. LB-SciFi’s overhead is 0.1 while the lowest normalized overhead among IEEE

802.11 protocols is 0.2. Also, LB-SciFi’s compression ratio ranges from 48.1% to 90.3%, thereby

conserving much airtime resource for data transmissions.

5.5.3 LB-SciFi: Performance Metrics

We now focus on the overall performance of downlink MU-MIMO. We will consider the following

performance metrics.

EVM. EVM is widely used to assess the quality of received signals at a receiver device. It is

defined as follows: EVM = 10 log10

(
E[|X̂−X|2]
E[|X|2]

)
, whereX and X̂ are the original and estimated

signals on a subcarrier of an OFDM symbol, respectively.

Gross Throughput. Gross throughput refers to the data rate achieved by a device (AP or STA)

without taking into account the CSI overhead. For STA i, based on the EVM of its decoded signal,

its gross throughput can be extrapolated as follows: ri =
Nsp

Nfft+Ncp
·b ·γ (EVMi), whereNsp = 48

is the number of subcarriers carrying payload, Nfft = 64 is FFT points, Ncp = 16 is the length

of cyclic prefix, b = 20 is the sampling rate, and EVMi is EVM of the STA i’s decoded signal,

and γ(EVMi) is the average number of bits carried by one subcarrier. This parameter is given in

Table 2.2. As such, the gross throughput at the AP can be computed by r =
∑
i ri.

Net Throughput. The net throughput refers to the data rate achieved by a device after sub-

tracting the overhead mainly caused by CSI feedback in the MU-MIMO protocols. Denote r̄ as

the net throughput achieved by the AP. Then, it can be expressed by: r̄ =
∑
i tiri

maxi{ti}+toverhead
,

where toverhead is the time duration of overhead (NDPA, NDP, Poll, CBR, and ACK) and ti is

the time duration required by STA i for its downlink data transmission (see Fig. 5.2). While the

value of toverhead is fixed, the value of ti is not. ti is determined by the downlink data packet
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size and selected modulation and coding scheme. In real WLANs, a data packet should not exceed

2304 bytes [135]. In our experiments, we consider the maximum packet size to measure the lowest

throughput gain that can be achieved by LB-SciFi.

5.5.4 Micro Performance of LB-SciFi: A Case Study

We use a case study to examine the micro performance of LB-SciFi. We consider the network

shown in Fig 5.11(b) and place the three STAs at the spots marked with golden stars in Fig. 5.12(c).

We compare the performance of LB-SciFi with 802.11-T1G1/T0G4 protocols.

EVM.: We conduct downlink MU-MIMO transmissions using LB-SciFi, 802.11-T0G4, and

802.11-T1G1. Fig. 5.14 exhibits the constellation of the decoded data packet at each STA with the

three protocols. As shown in Fig. 5.14(a), LB-SciFi achieved −16.5 dB EVM at STA 1, −19.0 dB

EVM at STA 2, and−19.6 dB EVM at STA 3. In contrast, Fig. 5.14(b) shows the achieved EVM at

the three STAs when 802.11-T0G4 is used; and Fig. 5.14(c) shows the achieved EVM at the three

STAs when 802.11-T1G1 is used. It can be seen that LB-SciFi achieves an EVM performance sim-

ilar to 802.11-T1G1 and outperforms 802.11-T0G4. We note that the constellations in Fig. 5.14

can be successfully decoded thanks to the powerful LDPC channel code. It is also worth point-

ing out that LB-SciFi can support any modulation and coding scheme as long as channel quality

permits.

Feedback Overhead. In the MU-MIMO transmissions, the CSI reports are transmitted from

STAs to the AP using BPSK rate to ensure the feedback reliability [110]. Table 5.1 lists the feed-

back overhead using different protocols. As we can see from the table, LB-SciFi entails 0.6 kbit

feedback overhead per STA. In contrast, 802.11-T0G4 entails 1.1 kbit feedback overhead per STA,

and 802.11-T1G1 entails 5.8 kbit feedback overhead per STA.

Gross and Net Throughput. Table 5.1 lists each STA’s and the AP’s gross/net throughput.

153



-1 0 1

-1

0

1

EVM= -16.5 dB

-1 0 1

-1

0

1

EVM= -19.0 dB

-1 0 1

-1

0

1

EVM= -19.6 dB

(a) LB-SciFi: Constellation measured at three STAs.

-1 0 1

-1

0

1

EVM= -16.2 dB

-1 0 1

-1

0

1

EVM= -18.3 dB

-1 0 1

-1

0

1

EVM= -18.8 dB

(b) 802.11-T0G4: Constellation measured at three STAs.

-1 0 1

-1

0

1

EVM= -16.4 dB

-1 0 1

-1

0

1

EVM= -19.3 dB

-1 0 1

-1

0

1

EVM= -20.0 dB

(c) 802.11-T1G1: Constellation measured at three STAs.

Figure 5.14: Constellations of decoded signals at STAs when using LB-SciFi, 802.11-T0G4, and
802.11-T1G1.

Table 5.1: Experimental results of the case study for LB-SciFi and 802.11 protocols.

STA 1 STA 2 STA 3 AP

L
B

-S
ci

Fi EVM (dB) -16.5 -19.0 -19.6 –
Feedback overhead (kbit) 0.6 0.6 0.6 –
Gross throughput (Mbps) 24.0 36.0 36.0 96.0
Net throughput (Mbps) 15.9 23.9 23.9 63.7

T
0G

4

EVM (dB) -16.2 -18.3 -18.8 –
Feedback overhead (kbit) 1.1 1.1 1.1 –
Gross throughput (Mbps) 24.0 24.0 24.0 72.0
Net throughput (Mbps) 15.0 15.0 15.0 45.0

T
1G

1

EVM (dB) -16.4 -19.3 -20.0 –
Feedback overhead (kbit) 5.8 5.8 5.8 –
Gross throughput (Mbps) 24.0 36.0 36.0 96.0
Net throughput (Mbps) 9.4 14.1 14.1 37.6
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Figure 5.15: Comparison of LB-SciFi and 802.11 protocols in the two-user MU-MIMO network.

We can see that LB-SciFi’s gross throughput is larger than 802.11-T0G4 but less than 802.11-

T1G1. However, LB-SciFi’s net throughput is larger than both of them. The overall net throughput

gain of LB-SciFi is 41.7% over 802.11-T0G4 and 68.8% over 802.11-T1G1.

5.5.5 Macro Performance of LB-SciFi: Extensive Results

We now extend our case study to a more generic scenario. We consider the three networks

in Fig. 5.11 and measure their performance at many different locations as shown in Fig. 5.12.

Our evaluation methodology follows the previous case study.

Two-User MIMO. Fig. 5.15 presents the CDF of our measured EVM, gross throughput, and

net throughput over all locations when the AP serves two STAs. Per Fig. 5.15(a), the average

EVM of decoded signals at the two STAs is −20.7 dB for LB-SciFi, −19.1 dB for 802.11-

T0G4, and −21.2 dB for 802.11-T1G1. Compared to T0G4, LB-SciF has 1.6 dB EVM improve-

ment. Compared to T1G1, LB-SciF has 0.5 dB EVM degradation. Per Fig 5.15(b), LB-SciFi

achieves an average of 35.8 Mbps per-STA gross throughput, while 802.11-T0G4 and 802.11-

T1G1 achieve 30.2 Mbps and 38.7 Mbps, respectively. Per Fig 5.15(c), LB-SciFi achieves an

average of 17.6 Mbps per-STA net throughput, while 802.11-T0G4 and 802.11-T1G1 achieve

14.1 Mbps and 8.8 Mbps, respectively. The results indicate that LB-SciFi offers 25.0% net through-

put gain over 802.11-T0G4 and 99.8% gain over 802.11-T1G1.

[187] proposed a 3-dimensional (time, frequency, and quantization) Adaptive Feedback Com-
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Figure 5.16: Comparison of LB-SciFi and 802.11 protocols in the three-user MU-MIMO network.

pression (AFC) scheme for WLANs. While LB-SciFi is orthogonal to the time-domain AFC,

we compare LB-SciFi with the frequency-domain AFC. Experimental results in [187] show the

frequency-domain AFC achieves 12.7% throughput gain when compared to 802.11-T1G1 (“Size1”

in its Fig. 13b). LB-SciFi achieves an average of 99.8% throughput gain over 802.11-T1G1.

The comparison result is not surprising because LB-SciFi exploits DNN-AEs to reduce channel’s

inter-subcarrier correlation for feedback compression, rather than simply grouping a subset of sub-

carriers for feedback compression.

Three-User MIMO. Fig. 5.16 presents the CDF of our measured EVM, gross throughput, and

net throughput over all locations when the AP serves three STAs. Per Fig 5.16(a), the average

EVM of decoded signals at the three STAs is −16.5 dB for LB-SciFi, −15.3 dB for 802.11-T0G4,

and −16.8 dB for 802.11-T1G1. Per Fig 5.16(b), LB-SciFi achieves an average of 23.3 Mbps per-

STA gross throughput, while 802.11-T0G4 and 802.11-T1G1 achieve 20.0 Mbps and 24.0 Mbps,

respectively. Per Fig 5.16(c), LB-SciFi achieves an average of 10.5 Mbps per-STA net throughput,

while 802.11-T0G4 and 802.11-T1G1 achieve 8.4 Mbps and 4.9 Mbps. Therefore, LB-SciFi offers

25.7% net throughput gain over 802.11-T0G4 and 116.8% net throughput gain over 802.11-T1G1.

Four-User MIMO. Fig. 5.17 presents the CDF of our measured EVM, gross throughput, and

net throughput over all the locations when the AP serves two STAs. Per Fig 5.17(a), the average

EVM of decoded signals at the four STAs is −14.5 dB for LB-SciFi, −13.4 dB for 802.11-T0G4,

and −14.9 dB for 802.11-T1G1. Per Fig 5.17(b), LB-SciFi achieves an average of 18.3 Mbps per-

156



-30 -20 -10

EVM (dB)

0

0.5

1

C
D

F
LB-SciFi

T0G4

T1G1

(a) EVM.

0 30 60

Throughput (Mbps)

0

0.5

1

C
D

F

LB-SciFi

T0G4

T1G1

(b) Gross throughput.

0 10 20

Throughput(Mbps)

0

0.5

1

C
D

F

LB-SciFi

T0G4

T1G1

(c) Net throughput.

Figure 5.17: Comparison of LB-SciFi and 802.11 protocols in the four-user MU-MIMO network.
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Figure 5.18: Net throughput of LB-SciFi and 802.11 protocols.

STA gross throughput, while 802.11-T0G4 and 802.11-T1G1 achieve 15.6 Mbps and 19.0 Mbps.

Per Fig 5.17(c), LB-SciFi achieves an average of 8.3 Mbps per-STA net throughput, while 802.11-

T0G4 and 802.11-T1G1 achieve 6.4 Mbps and 3.8 Mbps, respectively. LB-SciFi offers 28.9% net

throughput gain over 802.11-T0G4 and 117.3% net throughput gain over 802.11-T1G1.

Summary of Observations. We now focus on the net throughput achieved by the AP. Fig. 5.18

depicts the total net throughput achieved by the AP when it employs these three protocols. As it can

be seen, the three protocols yield similar throughput in two-user, three-user, and four-user MIMO

cases. On average, LB-SciFi achieves 26.5% net throughput gain compared to 802.11-T0G4 and

111.3% throughput gain over 802.11-T1G1.
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5.6 Chapter Summary

In this chapter, we presented LB-SciFi, an online learning-based channel feedback framework

for existing IEEE 802.11 MU-MIMO protocols. LB-SciFi reduces the CSI feedback overhead

for 802.11 protocols by leveraging recent advances in deep neural networks to compress CSI in

the spectral domain without compromising the CSI feedback accuracy. The key component of

LB-SciFi is an online training scheme, which requires no dedicated training datasets but takes

advantage of available side information from existing 802.11 protocols to train the autoencoders.

As such, LB-SciFi can be easily plugged into existing 802.11 protocols and thus amenable to prac-

tical implementation. We have built a prototype of LB-SciFi on a wireless testbed and evaluated

its performance in indoor wireless environments. Experimental results show that LB-SciFi can

reduce the feedback overhead by 73% and increases the network throughput by 69% on average.
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Chapter 6

A Learning-Based Channel Sounding and Resource

Allocation for IEEE 802.11ax

6.1 Introduction

After two decades of evolution from its genesis, Wi-Fi technology has become the dominant car-

rier of the Internet traffic [181] and penetrated every aspect of our lives. With the continuous

proliferation of the Internet-based applications, Wi-Fi market is growing at an unprecedented rate,

and more than four billion Wi-Fi devices have shipped in 2019 alone [181]. To serve the large

number of Wi-Fi devices and meet their high data rate demands, Wi-Fi networks are evolving from

802.11n/ac to 802.11ax so that a Wi-Fi AP is capable of utilizing the spectrum more efficiently

and accommodating more Wi-Fi clients at the same time. Compared to the carrier-sense-based

802.11n/ac, 802.11ax features centralized resource allocation and fine-grained inter-device syn-

chronization. With these two features, it introduces OFDMA and uplink MU-MIMO techniques

for the first time.

Although OFDMA and MU-MIMO has been well studied in cellular networks (see Table 6.1),

their joint optimization in Wi-Fi networks remains scarce because OFDMA is introduced to Wi-

Fi networks in 802.11ax for the first time. Given that cellular and Wi-Fi networks have different

PHY and MAC layers, and that BSs and APs have very different computational power, the MU-
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MIMO-OFDMA transmission schemes designed for cellular networks may not be suited for Wi-Fi

networks, necessitating research efforts to innovate the MU-MIMO-OFDMA design for 802.11ax

networks. Particularly, the MU-MIMO-OFDMA transmission in 802.11ax faces two challenges.

First, to perform downlink MU-MIMO transmissions, an AP needs to have CSI for the construction

of beamforming filters so that it can concurrently send independent data streams to multiple Wi-Fi

clients on the same Resource Unit (RU). However, existing 802.11 channel sounding protocols are

notorious for their large airtime overhead, which significantly compromises the throughput gain of

MU-MIMO. Therefore, a low-overhead channel sounding protocol is needed. Second, the marriage

of MU-MIMO and OFDMA largely expands the optimization space of resource allocation at an

802.11ax AP, making it infeasible to pursue an optimal resource allocation solution in real time due

to the limited computational power of APs. Therefore, a low-complexity, yet efficient, algorithm

is needed for an AP to solve the resource allocation problem.

In this chapter, we study the channel sounding and resource allocation problems for down-

link transmissions in an 802.11ax Wi-Fi network, where an AP serves many STAs on a set of

pre-defined RUs jointly using MU-MIMO and OFDMA techniques. We assume that the AP is

equipped with multiple antennas, while each STA is equipped with one antenna. In such an

802.11ax network, we propose a practical scheme, called DeepMux, to enhance the efficiency

of downlink MU-MIMO-OFDMA transmissions by leveraging recent advances in DL. Deep-

Mux addresses the above two challenges using DNNs, and it mainly comprises the following

two key components: DLCS and DLRA. Both of them reside in APs and impose no computa-

tional/communication burden to the STAs.

To reduce the channel sounding overhead, DLCS in DeepMux compresses the frequency-

domain CSI during the feedback procedure by leveraging the compression capability of DNNs.

Specifically, instead of reporting CSI on all the grouped tones, each STA only reports the quan-
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tized CSI on a small number of tones to the AP. Based on the limited CSI, the AP infers CSI over

all tones using well-trained DNNs. Particularly, the AP takes advantage of channel reciprocity and

uses uplink CSI, which is easy to obtain, to train the DNNs for downlink CSI, making the training

process easy to conduct.

To obtain a near-optimal resource allocation solution in real time at the AP, DLRA in DeepMux

employs a DNN to solve a Mixed-Integer Non-Linear Programming (MINLP) optimization prob-

lem. Specifically, DLRA decouples the complex resource allocation optimization problem into

two sub-problems: RU assignment and power allocation. A DNN is then employed to compute a

sub-optimal solution to the RU assignment sub-problem. Once RU assignment is determined, the

original MINLP problem degrades to a Linear Programming (LP) problem, which is easy to solve.

The contributions of this work are summarized as follows.

• We have designed DLCS, a DL-based channel sounding protocol for 802.11ax networks.

DLCS employs an online training process and requires no efforts from STAs. Numerical re-

sults show that DLCS is capable of reducing the channel sounding overhead by 62.0%∼90.5%

without sacrificing CSI feedback accuracy.

• We have designed DLRA, a DL-based resource allocation algorithm for 802.11ax APs to

perform efficient downlink transmissions. Numerical studies show that DLRA is capable of

yielding a sub-optimal solution to MINLP resource allocation problems in polynomial time.

• By combining DLCS and DLRA, we have designed DeepMux to enable efficient downlink

MU-MIMO-OFDMA transmissions in 802.11ax networks. We have evaluated DeepMux on

a wireless testbed. Experimental results show that DeepMux improves network throughput

by 26.3%∼43.6% compared the greedy utilization of DoF by strongest STAs on each RU.
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6.2 Related Work

We focus our literature review on channel sounding and resource allocation in both Wi-Fi and

cellular networks.

6.2.1 Channel Sounding

Channel Sounding for Wi-Fi. The sounding overhead issue in Wi-Fi networks has been in

focal point of view since accommodation of MU-MIMO in IEEE 802.11 standards. Existing re-

search efforts have been invested to tackle this issue by optimizing channel sounding parame-

ters [17, 33, 113], seeking new channel sounding paradigms [53, 110], or compressing CSI frames

[79, 187]. As the pioneering trials of reducing sounding overhead, research efforts in [17, 33, 113]

have exploited the semi-static nature of Wi-Fi networks to adaptively reduce the frequency of chan-

nel sounding and avoid unnecessary sounding overhead. Implicit channel sounding has also been

studied for rectifying sounding overhead [53, 110]. Although implicit channel sounding can sig-

nificantly lower the overhead, it requires extra hardware for channel calibration and thus may not

be amenable to low-cost Wi-Fi networks. DeepMux is orthogonal to these works as DLCS neither

manipulates the channel sounding frequency nor employs implicit channel sounding.

[187] and [79] are two prior efforts that reduce the channel sounding overhead by compressing

CSI in the frequency domain. However, these two efforts require coordination from Wi-Fi clients

to fully or partially compress CSI. In contrast, DLCS runs solely on Wi-Fi routers and requires no

coordination from Wi-Fi clients. Simply put, DLCS is transparent to Wi-Fi clients. DLCS also

differs from these two works in terms of computational complexity. Specifically, [187] and [79]

require Wi-Fi clients to estimate CSI for all frequency tones while DLCS requires Wi-Fi clients to
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Table 6.1: A summary of resource allocation schemes in Wi-Fi and cellular networks.

Objective Network Mode
MU-MIMO

Polynomial
complexitysum-rate Fairness Latency Energy Wi-Fi Cellular Uplink Downlink

DeepMux ✓ ✓ ✓ ✓ O
(
n2.5

)
[41] ✓ ✓ ✓ ✓ O

(
n3
)

[88] ✓ ✓ ✓ ✓
[169, 170] ✓ ✓ ✓ ✓

[71] ✓ ✓ ✓
[16] ✓ ✓ ✓ O

(
n3
)

[184] ✓ ✓ ✓
[121] ✓ ✓ ✓ ✓ ✓
[186] ✓ ✓ ✓ O

(
n3
)

[58] ✓ ✓ ✓ ✓
[116] ✓ ✓ ✓ ✓ O

(
n2.5

)
[45, 76, 141] ✓ ✓ ✓ ✓

estimate CSI only for a small number of tones.

Learning-Based Channel Sounding in Cellular Networks. Sounding overhead is also a

critical problem in cellular networks. Temporal correlation [97, 111, 172] and spatial correlation

[97] have been harvested to remove the redundancy of CSI and reduce the airtime overhead of CSI

acquisition. DeepMux differs from these works as it focuses on the frequency domain. Frequency-

domain correlation of CSI has been studied in [179] and [54] to reduce the channel sounding

overhead in cellular networks. DeepMux differs from these works because DLCS is transparent

to users (i.e., imposing no computation on users). In addition, CSI in cellular networks is very

different from that in Wi-Fi networks. DeepMux is meticulously tailored for Wi-Fi networks.

Finally, most prior works are limited to theoretical investigations and numerical evaluations while

DeepMux takes into account incumbent Wi-Fi protocols and has been validated in practical indoor

wireless environments.

6.2.2 Resource Allocation

Table 6.1 summarizes existing resource allocation schemes in cellular and Wi-Fi networks, where

n denotes the number of active users served by an AP or a BS. Clearly, DeepMux differs from
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existing works in terms of objective, network scenario, transmission mode, or computational com-

plexity. In what follows, we elaborate the existing studies and point out the differences between

DeepMux and these works.

Resource Allocation for Wi-Fi Networks. Recently, [178] has studied downlink OFDMA in

wireless local area networks (WLANs) and showed that its performance is highly dependent on

the resource assignment strategies at APs. This problem has been followed in [41], with the objec-

tive of improving the fairness among users. DLRA differs from the proposed resource allocation

scheme in [41] as it focuses on pursuing a sub-optimal resource allocation scheme with a low com-

putational complexity. [88] has considered the throughput maximization under the assumption that

a user can be assigned to at most one RU and offered a solution for both uplink and downlink trans-

missions. Compared to [88], DLRA expands the problem scope by allowing multiple RUs to serve

a user and also by allowing an RU to serve multiple users concurrently. [169] and [170] are the

only works considering downlink MU-MIMO-OFDMA in WLANs. However, these two works

employ greedy iterative algorithms to compute a feasible solution. In contrast, DLRA employs

learning-based approach and offers a solution in polynomial time. [16, 71, 184] studied resource

allocation in uplink OFDMA WLANs, which is not the scope of our work.

Resource Allocation in Cellular Networks. Since there are many research results of resource

allocation in cellular networks, we focus our review on MIMO-OFDMA techniques. [121] has

studied the resource allocation problem under latency constraint. However, the complexity of

the proposed solution is prohibitively large. [186] has studied the resource allocation problem

with the objective of enhancing energy efficiency. The authors has proposed an algorithm with

polynomial-time complexity. However, it only works for single-user MIMO-OFDMA networks.

[58] and [116] have investigated the resource allocation problem for MU-MIMO-OFDMA cellular

networks and proposed low-complexity algorithms to compute the solutions. However, these two
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works focus on maximizing energy efficiency. In contrast, DeepMux aims to maximize network

throughput. [45, 76, 141] have explored downlink MU-MIMO-OFDMA transmissions in different

network scenarios. These research efforts have proposed greedy algorithms to pursue optimal

solutions for maximizing network throughput. DeepMux is very different from these works in

terms of network settings and computational complexity.

6.3 Problem Description

Consider an 802.11ax network comprising a multi-antenna AP and many single-antenna STAs.

Denote Nap as the number of antennas on the AP. Denote Nsta as the number of STAs in the

network. We consider a dense network where Nsta > Nap. In 802.11ax standard, OFDMA and

MU-MIMO techniques have been included for efficient communications between the AP and its

serving STAs. Fig. 6.1 shows the four possible RU configurations when the network works on

20 MHz bandwidth. As the figure shows, the total number of valid tones is 242, and an RU could

consists of 26, 52, 106, or 242 tones. When MU-MIMO is enabled, an RU can serve multiple

STAs, depending on the channel condition, data traffic, and network setting. In the downlink

transmissions, in order for an AP to serve multiple STAs per RU, it needs to first perform channel

sounding to obtain the CSI and then construct the spatial filters for beamforming. By doing so,

independent data streams can be delivered to different STAs simultaneously. In this process, CSI

is crucial. In what follows, we first present the existing channel sounding protocol and then state

our design objectives.
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Figure 6.1: Four different RU configurations over 20 MHz as specified in IEEE 802.11ax [70].

6.3.1 802.11 Channel Sounding Protocol in Nutshell

Fig. 6.2 shows the channel sounding protocol specified in 802.11ax, and we elaborate on it in the

following.

Announcement. The AP initiates the channel sounding procedure by broadcasting an NDPA

frame, which contains the addresses of intended STAs. Then, the AP sends out an NDP frame for

STAs to estimate the downlink channels between themselves and the AP.

Channel Estimation. Each STA leverages the preamble in the NDP frame to estimate the

complex-valued channel vectors between the AP and itself. Reporting the raw channel vectors to

the AP, however, entails too much airtime overhead. To reduce the airtime overhead, each STA

employs GR and tone grouping to pre-process its estimated channel vectors. The pre-processing

leads to a CSI compression in both spatial and spectral domains.

Spatial compression. In its general form, the spatial compression includes a series of GR, pre-

multiplications, and post-multiplications applied to the right singular vectors of a channel matrix

to extract its spatial information [67, 68, 70]. Each rotation or pre-multiplication is realized by

an angle, which stores a part of spatial information [156]. On each tone, two sets of angles will

be generated: Nψ ψ-type angles from GR and Nϕ ϕ-type angles from pre-multiplications, where

Nψ = Nϕ =
(
2NapNr −N2

r −Nr
)
/2 andNr is the number of the STA’s antennas in general case

(we assumed Nr = 1 throughout this chapter). For notional simplicity, we denote these two sets
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Figure 6.2: Existing channel sounding protocol in IEEE 802.11ax.

over all tones as Ψ =
{
ψi,k

}
∀i,k and Φ =

{
ϕi,k

}
∀i,k, where i is the angle index (1 ≤ i ≤ Nψ), k

is the tone index (1 ≤ k ≤ Ntone), and Ntone is the number of tones.

Generally speaking, ψi,k ∈ [0, π/2) and ϕi,k ∈ [0, 2π). The angles will be quantized before

being sent to the AP. In 802.11 standards, two types of quantization are specified for feedback:

• Feedback type 0 uses 5 bits for each angle in Ψ and 7 bits for each angle in Φ.

• Feedback type 1 uses 7 bits for each angle in Ψ and 9 bits for each angle in Φ.

Tone Grouping. As Wi-Fi networks typically work in indoor scenarios for short-range commu-

nications, their coherence bandwidth tends to be large. Hence, tone grouping has been employed

to bond Ng tones. In 802.11ax standard [70], Ng = {1, 4, 16}. Particularly, Ng = 1 means that no

grouping is employed. Also, Ng = 16 is only allowed with feedback type 1.

Beamforming Report (BR). The BR frames carry the quantized angles (Ψ and Φ) from each

STA to the AP. These frames are also used to carry the channel strength information (average SNR

and SNR deviation for each group of tones) from each STA to the AP. Based on the reported SNR
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information, the AP manages available spectral and power resources to serve STAs.

Polling: Polling is a mechanism to coordinate the report process among STAs. Once all STAs

have prepared their BR frames, the AP sends Trigger Beamforming Report Poll (TBRP) frames

sequentially. Each TBRP frame coordinates a group of STAs to send their BR frames through

uplink MU-MIMO as illustrated in Fig. 6.2. The AP decodes the BR frames and identifies the

sender of each report using the MAC address in the corresponding frame. After polling all the

groups, the AP obtains information required for downlink MU-MIMO transmission.

6.3.2 Design Objectives and Challenges

The objectives of this work are to design and evaluate a practical, yet efficient, downlink MU-

MIMO-OFDMA transmission scheme for 802.11ax networks. Towards these objectives, we face

the following two challenges.

Challenge 1 – Channel Sounding Overhead. Channel sounding is crucial for beamforming in

downlink MU-MIMO transmissions. However, the existing channel sounding protocol in Fig. 6.2

entails a large airtime overhead and significantly compromises the throughput gain of MU-MIMO.

For instance, consider an AP with 8 antennas and a single-antenna STA working on 160 MHz

bandwidth. Even with the tone grouping, the angles information in a single report could be as

large as 7.0 kB1, which is far beyond a maximum transmission unit (2.3 kB) in WLANs [135].

This means that a BR frame in Fig. 6.2 can take more than 3 packets for CSI feedback. Such a

large airtime overhead not only consumes network bandwidth but it also ruins the freshness of CSI

for beamforming.

Challenge 2 – Joint Resource Allocation. The marriage of MU-MIMO and OFDMA cre-

1In this case, Nψ = Nϕ = 7 and feedback type 1 is used over 498 groups of tones. Representation of angles
requires 55, 776 bits ≈ 7.0 kB.
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ates a joint resource allocation problem for the AP, which involves RU assignment for users and

power allocation for MIMO streams. This problem is complicated as it crosses spectral and power

domains. Solving the resource allocation problem is time-constrained as the coherence of wire-

less channels degrades over time. It is therefore important for an AP to have a low-complexity

algorithm that can find an efficient resource allocation solution in real time. A classical approach

for solving this problem is to first formulate the problem as an optimization problem and then

employ existing optimization solvers to compute the optimal solution. This approach, however,

is infeasible in practice due to the high computational complexity from an exhaustive search over

RU assignment instances. For example, consider a small 802.11ax network where a 4-antenna

AP serves 6 single-antenna STAs over four 52-tone RUs on 20 MHz bandwidth. We formulate

the resource allocation problem as an MINLP optimization problem and employ CVX package

to solve it for a given RU assignment. Our observation is that it takes up to 342 minutes to find

an optimal solution with search over 223.3 RU assignment instances. Such a large delay makes

resource allocation infeasible for practical use and urges us to devise a low-complexity resource

allocation mechanism.

6.4 Overview of DeepMux

In this section, we present an overview of DeepMux, which leverages recent advances in DNNs

to address the challenges for downlink MU-MIMO-OFDMA transmissions in 802.11ax networks.

Fig. 6.3 shows a high-level structure of DeepMux. It mainly comprises two components: DLCS

and DLRA. In what follows, we present the basic idea of these two components.
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Figure 6.3: The overview of DeepMux.

6.4.1 Basic Idea of DLCS

DLCS is an enhanced 802.11 channel sounding protocol aiming to reduce the sounding overhead.

Its design is based on the following two observations: i) wireless channels in local area networks

are highly correlated in the frequency domain; and ii) tone grouping in the current 802.11 sounding

protocol is not an efficient approach for feedback compression. Motivated by the success of DNNs

for image compression, we propose to use DNNs to reduce the channel sounding overhead in the

CSI feedback process. Specifically, instead of reporting CSI over a large number of tones, each

STA only reports CSI over a small number of tones. Based on the reported CSI over sparse tones,

the AP attempts to infer the CSI over all tones using DNNs.

While the idea is straightforward, an important question is how to train the DNNs so that they

can infer the full CSI based on the limited feedback. For this question, one solution is that the

AP asks every STA to report a large amount of CSI over all tones at the beginning and uses the

large amount of CSI to train the DNNs. This solution, however, imposes heavy computational
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and communication burdens on STAs, and thus is not amenable to implementation. To circum-

vent this issue, we use uplink CSI, instead of downlink CSI, for the training of DNNs. This is

because uplink and downlink channels have the same profile in the frequency domain, thanks to

the channel reciprocity [109]. In other words, uplink and downlink channels bear the same shape

over frequency domain even without channel calibration, making it possible for DNNs to learn the

downlink frequency-domain CSI correlation using uplink CSI samples in the absence of channel

calibration.

Additionally, an AP can easily obtain uplink CSI over all tones. Obtaining uplink CSI re-

quires no effort from STAs, making the training process transparent to the STAs. Whenever an

AP receives packets from STAs, it can measure the uplink channel based on the packets’ pream-

ble. We note that, different from prior channel reciprocity applications, channel calibration is not

needed for our application. Details of DLCS are presented in Section 6.5.

6.4.2 Basic Idea of DLRA

The marriage of MU-MIMO and OFDMA creates a challenge for an 802.11ax-enabled AP to

optimally allocate the available spectral and power resources in a reasonable amount of time.

To address this challenge, DeepMux formulates the resource allocation problem as an optimization

problem. In its original form, the optimization problem is an MINLP problem, where its binary

variables correspond to RU assignment sub-problem and its continuous variables correspond to

power allocation sub-problem. DeepMux approaches the MINLP problem by reformulating it into

a Mixed-Integer Linear Programming (MILP) problem. Unlike an MINLP problem, an MILP

problem can be systematically solved in two steps: i) an organized search mechanism over discrete

instances of the feasible region (RU assignment instances), and ii) an interior-point algorithm that

solves the convex sub-problem (power allocation) for a given RU assignment.
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Figure 6.4: Spectral correlation of angles in Ψ and Φ.

Given that MILP is NP-hard in general, we take advantage of recent advances in DNNs to

determine the optimal RU-assignment in the first step. Specifically, DeepMux employs a DNN to

compute the values for the binary optimization variables in the MILP problem. Such a DNN is

trained offline, in a supervised manner, using the SNR reports from STAs, as shown in Fig. 6.3.

After the binary variables (corresponding to the RU assignment sub-problem) are determined, the

MILP problem degrades to a linear programming problem, which is easy to solve. Details of

DLRA are presented in Section 6.6.

6.5 DLCS: A Low-Overhead Channel Sounding

DLCS enhances the 802.11 channel sounding protocol in Fig. 6.2 by reducing the airtime con-

sumed by BR frames. This is done through sparsification of Ψ and Φ angles in the frequency

domain. That is, each STA reports CSI angles over a few tones, and the AP infers the CSI angles

for all tones based on the sparsified feedback using DNNs.

Before diving into DLCS, we first take a look at the frequency-domain correlation of CSI

angles. We collected 50, 000Ψ and Φ samples in an office environment to measure the frequency-

domain correlation. For a sequence x ∈ R1×L, we define CD as its correlation at depth D by
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letting:

CD = Em

 x(m+1:m+D)x
T
(m+D+1:m+2D)∣∣∣x(m+1:m+D)

∣∣∣ ∣∣∣x(m+D+1:m+2D)

∣∣∣
 , (6.1)

where x(i:j) ≜
[
xi, xi+1, · · · , xj

]
with xi being the ith element in x, and (·)T is transpose oper-

ator. Fig. 6.4 shows the correlation of the collected CSI angles at different tone depths. It can be

seen that, when the tone depth is greater than 16 (i.e., D > 16), the correlation is still considerable

for both Ψ and Φ angles. This means that, grouping the angles over Ng tones (simply by averag-

ing operation) cannot fully harvest such a significant correlation for compression purpose. On the

other hand, tone grouping may lead to an inaccurate feedback when Ng > 16. DLCS is a more

sophisticated compression approach to reduce the sounding overhead by exploiting inter-tone CSI

correlation.

In what follows, we first present the settings of DNNs and then elaborate on their training

(exploration) and sparsification (exploitation) phases separately.

6.5.1 DNNs Settings

As shown in Fig. 6.5, DLCS employs DNNs at the AP to infer full CSI angles based on a sparsified

feedback. One DNN is used for the angles in Ψ and another DNN is used for the angles in Φ. The

dimension of input layer is S, corresponding to the quantized CSI angles over S tones. The value

of S is selected through experimental studies, which will be shown shortly. The DNNs have

Ntone neurons on the output layer, corresponding to the inferred CSI angles over all tones (e.g.,

Ntone = 234 for all the nine 26-tone RUs over 20 MHz bandwidth). DNNs have multiple hidden

layers, say L hidden layers. The dimension of the ith hidden layer is di. Each hidden layer is fully-

connected, followed by a batch-normalization layer to speed up the training convergence [72].
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Figure 6.5: DNNs’ structure at the AP for inferring Ψ and Φ based on limited feedback.

ReLU activation function is used for each layer. Since the DNNs are designed for interpolation

purpose, they are in an enlarging trapezoid shape.

6.5.2 Training Phase

As we explained before, the AP does not require STAs to report a large amount of downlink

CSI angles for training DNNs because doing so imposes heavy computational and communication

burdens on STAs. Instead, the AP uses its estimated uplink channels to calculate CSI angles

and train the DNNs by taking advantage of wireless channel reciprocity. Since the DNNs focus

only on learning the frequency-domain properties of CSI, channel calibration is not necessary to

compensate the response difference between Tx and Rx RF chains.

Using the uplink CSI to train the DNNs have two benefits. First, it is easy for an AP to collect

a large amount of samples for training purpose. As long as an STA sends a packet, the AP can

estimate the uplink channel and use it for generating angles and training DNNs. Simply put, the
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AP requires zero effort to obtain dataset for training DNNs. Second, it tends to offer better training

results as uplink CSI does not suffer from tone grouping and quantization errors. If the AP wants

to use downlink CSI for training DNNs, quantization of the estimated downlink CSI at STAs is

needed to facilitate the feedback. This introduces quantization error and degrades the training

performance. In contrast, using uplink CSI for training purpose does not suffer from this issue.

In what follows, we describe the operations of DNNs training at the AP. No extra effort is

needed at the STAs.

Data Collection. AP and STAs work in their ordinary mode. Whenever the AP receives a

packet, it decodes the packet and records its estimated uplink channel on all tones. Then, the

AP performs spatial compression on the estimated uplink channel over every tone, as specified

in 802.11 standards [70] to collect CSI angles (i.e., Ψ and Φ). The generated CSI angles are

organized in batches and used for training DNNs.

Data Preprocessing. As shown in Fig. 6.3, each batch of CSI angles are pre-processed before

being used for training the DNNs. The pre-process is to make the angles zero-mean and unite-

variance over all tones [83]. Albeit simple, this pre-process significantly improves the convergence

of DNNs [83], especially when gradient descent algorithms are used for weight adaptation [92].

The AP also quantizes these pre-processed angles with different numbers of bits and keeps all

versions to examine their performance.

Training Parameters and Provisions. Normalized Mean Squared Error (NMSE) loss function

is employed to measure the sparsification error. The DNNs are trained using Adam optimizer [85].

The training is performed with an initial learning rate of 0.001 and decaying rate of 0.98 following

a step-wise approach. The batch size is set to 128. All parameters are initialized using Xavier

initialization [50]. Dropout [154] is applied to all hidden layers to prevent over-fitting and improve

the generalization of the model. All DNNs are trained end-to-end using Pytorch v1.4 library [132].
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Figure 6.6: DLCS workflow in sparsification (exploitation) phase.

6.5.3 Sparsification Phase

After completing the training phase, the AP initiates the sparsification phase. That is, the network

begins to use the trained DNNs to reduce the channel sounding overhead when applicable. To do

so, the AP informs all STAs of Sψ, Sϕ, qψ, and qϕ, where Sψ and Sϕ are the number of tones for

which STAs report angles of Ψ and Φ, respectively. qψ and qϕ are the number of bits for quantizing

each angle in Ψ and Φ, respectively. Fig. 6.6 illustrates the CSI reporting process when the AP is

equipped with the trained DNNs. In what follows, we elaborate the operations at an STA and the

AP, respectively.

Operations at an STA. Referring to Fig. 6.2, when MU-MIMO transmission is triggered

by an NDPA frame, each STA estimates the downlink channel vector H(k) based on the re-

ceived NDP frame, where k = {kψ, kϕ} is the selected tone indices, kψ ∈ {⌊0.5Ntone/Sψ⌋,

⌊1.5Ntone/Sψ⌋, · · · , ⌊(Sψ − 0.5)Ntone/Sψ⌋} is the set of tone indices for which STAs report Ψ

and kϕ ∈ {⌊0.5Ntone/Sϕ⌋, ⌊1.5Ntone/Sϕ⌋, · · · , ⌊(Sϕ− 0.5)Ntone/Sϕ⌋} is the set of tone indices

for which STAs report Φ. Spatial compression is performed on H(k) to obtain the angles in Ψ and

Φ, which are then quantized using qψ and qϕ bits (using the quantization method in [67]), respec-

tively. In the BR frame shown in Fig. 6.2, instead of reporting CSI angles on all groups of tones,

the STAs report ψ and ϕ angles only on those Sψ tones and Sϕ tones, respectively. In addition,
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Table 6.2: End-to-end error of DNNs in inferring the angles in Ψ.

Sψ=5 Sψ=6 Sψ=7 Sψ=8 Sψ=9
qψ=3 bits 10.55% 10.63% 12.00% 8.99% 9.88%

qψ=4 bits 5.85% 4.95% 5.03% 3.86% 3.29%

qψ=5 bits 3.97% 2.77% 2.52% 1.93% 1.32%

qψ=6 bits 3.52% 2.16% 1.53% 1.35% 1.14%

qψ=7 bits 3.19% 2.08% 1.16% 1.14% 0.80%

Table 6.3: End-to-end error of DNNs in inferring the angles in Φ.

Sϕ=5 Sϕ=6 Sϕ=7 Sϕ=8 Sϕ=9
qϕ=3 bits 26.51% 22.70% 27.39% 29.83% 21.57%

qϕ=4 bits 8.30% 6.63% 6.33% 6.09% 5.73%

qϕ=5 bits 3.01% 2.40% 2.19% 2.14% 1.85%

qϕ=6 bits 2.67% 2.06% 1.10% 1.01% 0.76%

qϕ=7 bits 2.30% 1.07% 0.82% 0.77% 0.57%

each STA also reports the measured SNR values to the AP in the BR frame, following the existing

802.11 protocol [67].

Operations at the AP. Upon receiving the reports from an STA, the AP extracts the quantized

angles and SNR reports. As illustrated in Fig. 6.6, the received angles are then fed into the DNNs to

infer the angles over all tones. The output of the DNNs are then used to construct the beamforming

vectors for downlink MU-MIMO transmissions.

6.5.4 Parameter Selection and Numerical Results

A question to ask is how to choose the values for sparsification parameters Sψ, Sϕ, qψ, and qϕ.

In our design, the parameter values are selected to ensure the end-to-end errors below a pre-defined

threshold, which is empirically set. Specifically, after the AP collects the sufficient channel data, it

first trains DNNs under different values of sparsification parameters and then records the end-to-

end error in the test phase. The AP selects the values for sparsification parameters that yield the
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Figure 6.7: Error and overhead comparison between DLCS and existing 802.11 protocols [70].

lowest sounding overhead while meeting the end-to-end error requirement (below a pre-defined

threshold).

To illustrate this selection approach, we resort to experiments. We implemented DLCS in an

indoor environment and collected about 50, 000 angle samples in the uplink over 20 MHz band-

width. We tuned those parameters and examined the performance of well-trained DNNs. As a

possible end-to-end error threshold in inferring the angles, we use error from the tone grouping

mechanism. Table 6.2 and Table 6.3 present our results. In each table, the DNN settings which

meet the end-to-end error requirement are highlighted in green color. Based on the results, we

choose (Sψ = 9, qψ = 5) which leads to 0.19 bits/angle/tone overhead and 1.32% error for the

angles in Ψ. We choose (Sϕ = 6, qϕ = 7) for the angles in Φ which leads to 0.18 bits/angle/tone

overhead and 1.07% error. Finally, the DNNs we choose are a 9× 16× 32× 64× 128× 234 DNN

for sparsification of Ψ and a 6× 16× 32× 64× 128× 234 DNN for sparsification of Φ. We note

that the resultant parameter values are scenario-specific. When an AP is moved to a new scenario,

it needs to re-tune the parameters to obtain the “best” values for those parameters. Fortunately, the

parameter re-tuning process can be done by the AP automatically without human intervention.

We now compare DLCS with existing 802.11 protocols in terms of error and sounding over-
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head. Fig. 6.7 presents our results. Particularly, TiGj in the figure means feedback type i is

employed and Ng = j tones are grouped for feedback. Fig. 6.7(a) shows the superior performance

of DLCS in terms of error. DLCS reaches 1.19% error, while T0G4, T1G4, and T1G16 reach

2.48%, 1.64%, and 7.05% error, respectively. Fig. 6.7(b) shows that DLCS entails significantly

lower overhead compared to existing 802.11 protocols. DLCS reaches a sounding overhead as low

as 0.19 bits/angles/tone while T0G4, T1G4, and T1G16 reach 1.50, 2.00, and 0.50 bits/angles/tone

overhead, respectively. This means DLCS reduces sounding overhead by 62.0%∼90.5%.

6.6 DLRA: A Lightweight Resource Allocation

In this section, we employ DNNs to facilitate the resource allocation problem at the AP, which

includes two sub-problems: RU assignment and power allocation. Recall that the AP recovers

angles in Ψ and Φ using DNNs, and it also collects SNR values over all tones. The angles in Ψ

and Φ can be used to partially reconstruct the right singular vectors of channel matrices, which can

be leveraged to mitigate inter-user interference in the downlink transmissions. The SNR values

provide the information of channel quality, which can be used to optimize the resource allocation.

In what follows, we first formulate the resource allocation problem as an optimization problem,

and then develop a learning-based algorithm to solve it. Finally, we offer numerical results to show

the effectiveness of the proposed learning-based algorithm.

6.6.1 Problem Formulation and Reformulation

Problem Formulation. At an AP, denote N as the set of STAs that it serves in the downlink

MU-MIMO-OFDMA transmission. Denote R as the set of RUs, which are the granularity for

assignment. Let |N | = Nsta and |R| = Nru. We define a binary variable zi,j to indicate the RU
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assignment. Specifically, zi,j = 1 if RU j is assigned to STA i; and zi,j = 0 otherwise. Denote

pi,j as the portion of the AP’s power allocated to STA i on RU j. Denote Wj as the bandwidth of

RU j. Denote γi,j as reported SNR at STA i on RU j. Denote ri,j as the data rate achieved by STA

i on RU j. Denote ri as the achievable data rate for STA i. Denote Ω(·) as the mapping function

from SNR to data rate.

Then, the resource allocation problem with the objective of maximizing total STAs’ data rate

can be expressed as:

maximize
p,z

∑
i∈N

ri (6.2a)

s.t. ri ≤
∑
j∈R

ri,j , i∈N ; (6.2b)

ri,j ≤ Wjzi,jΩ
(
pi,jγi,j

)
, i∈N , j∈R; (6.2c)∑

i∈N
zi,j ≤ Nap, j∈R; (6.2d)

∑
i∈N ,j∈R

pi,j ≤ 1 . (6.2e)

In this formulation, z = {zi,j}i∈N ,j∈R and p = {pi,j}i∈N ,j∈R are optimization variables.

{γi,j}i∈N ,j∈R, {Wj}j∈R, andNap are given parameters. Constraint (7.4b) calculates the achieved

data rate by an STA. Constraint (7.4c) defines the achievable rate region. Constraint (6.2d) is spatial

DoF constraints on the maximum number of STAs that can be allocated to an RU. Constraint (6.2e)

characterizes the power budget at the AP.

Achievable Rate Region. A classical way to map SNR to data rate is Shannon capacity, which

is a theoretical bound and hard to reach in practice. In 802.11 networks, adaptive MCS is used
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Figure 6.8: Illustration of Shannon capacity, MCS-based data rate, and achievable data rate.

to adjust the data rate based on SNR. As shown in Fig. 6.8, there is a significant gap between

Shannon capacity and MCS-based data rate. Therefore, Shannon capacity is not an ideal function

for our purpose. Moreover, when taking into account the overhead from OFDM cyclic prefix

and pilot tones in 802.11ax2, the achievable data rate becomes even lower, as shown in Fig. 6.8.

The achievable data rate region (MCS-based rate with overhead) is characterized by a staircase

curve, which is non-convex function. To simplify the optimization, we approximate the achievable

rate region using a series of linear constraints as illustrated by Fig. 6.8.

Mathematically, by defining γ as a measured SNR value, we approximate the achievable rate

region as follows:

Ω (γ) ≤ akγ + bk; k ∈ K, (6.3)

where ak and bk are given in Table 6.4 as per IEEE 802.11ax; and K ≜ {1, 2, · · · , 13}. We note

that the EVM in Table 6.4 is equivalent to the inverse of post-SNR of a decoded data stream

2For 802.11ax with 20 MHz bandwidth, every 26-tone RU has 2 tones for pilot.

181



Table 6.4: EVM specified in IEEE 802.11ax [70].

EVM (dB) [+∞,−5) [−5,−8) [−8,−10) [−10,−13) [−13,−16) [−16,−19) [−19,−22)
Modulation N/A BPSK BPSK QPSK QPSK 16QAM 16QAM
Coding rate N/A 1/2 3/4 1/2 3/4 1/2 3/4
Γ(EVM) N/A 1/2 3/4 1 3/2 2 3

ai 0.1067 0.0536 0.0457 0.0339 0.0170 0.0170 0.0085
bi 0 0.1679 0.2177 0.3359 0.6734 0.6718 1.3468

EVM (dB) [−22,−25) [−25,−27) [−27,−30) [−30,−32) [−32,−35) [−35,−∞) [−35,−∞)
Modulation 64QAM 64QAM 64QAM 256QAM 256QAM 1024QAM 1024QAM
Coding rate 2/3 3/4 5/6 3/4 5/6 3/4 5/6
Γ(EVM) 4 9/2 5 6 20/3 15/2 25/3

ai 0.0021 0.0018 0.0013 0.0008 0.0007 N/A 0
bi 2.3609 2.4605 2.6968 3.2806 3.3696 N/A 5.6250

at a receiver. The relation of γ in (6.3) and the EVM value in Table 6.4 can be expressed as

γ = 10−EVM/10.

Based on the EVM regions specified in Table 6.4, the approximated achievable rate region with

its boundaries is shown in Fig. 6.8. Then, constraints in (7.4c) can be expressed as:

ri,j ≤ Wjzi,j(akpi,jγi,j + bk), i ∈ N , j ∈ R, k ∈ K. (6.4)

Using (6.4), the resource allocation problem in (7.4) can be re-defined as:

maximize
p,z

∑
i∈N

ri (6.5)

s.t. (7.4b), (6.2d), (6.2e), and (6.4).

The optimization problem in (6.5) is an MINLP problem. The non-linear term is from (6.4),

where binary and continuous optimization variables are multiplied.

Problem Reformulation. To reduce the processing time, we reformulate the MINLP problem

(6.5) to an MILP problem by leveraging a classic linearization technique [151]. To do so, we as-

sume that the SNR value is bounded. This is a valid assumption in practice. Denote γmax as the
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maximum value of SNR (e.g., 45 dB in our design) and define a constantA = maxj,k{Wj(akγmax+

bk)}. Then, (6.4) can be equivalently expressed as:

ri,j ≤ Wj(akpi,jγi,j + bk), i ∈ N , j ∈ R, k ∈ K. (6.6a)

0 ≤ ri,j ≤ zi,jA, i ∈ N , j ∈ R. (6.6b)

Therefore, the MINLP problem in (6.5) can be reformulated to the following MILP problem:

maximize
p,z

∑
i∈N

ri (6.7)

s.t. (7.4b), (6.2d), (6.2e), and (6.6).

We note that the MINLP problem in (6.5) and the MILP problem in (6.6) have identical fea-

sible region. The reformulation does not alter the solution space. The new optimization problem

involves 2NstaNru+Nsta continuous variables,NstaNru binary variables, and 14NstaNru+Nsta+

Nru + 1 constraints. Recall the example in Section 6.3.2, where a 4-antenna AP serves six STAs

on four 52-tone RUs. By formulating the resource allocation problem in the form of (6.7), off-

the-shelf optimization solver MOSEK [14] can find an optimal solution within 5 seconds for most

cases. In general, MILP is NP-hard. Its computational complexity is still beyond the acceptable

range of a wireless AP device.

6.6.2 DLRA: A Deep-Learning-Based Resource Allocation

Solving an MILP problem is still beyond the computational capacity of an 802.11ax-enabled AP

to allocate its resources for downlink transmissions. To reduce the computational complexity,

we take advantage of recent advances in DNNs. Specifically, we first reformulate the resource
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Figure 6.9: DLRA workflow in training and exploitation phases.

allocation problem as an MILP problem as shown in (6.7), and then employ a DNN to compute

the binary variables. Once the binary variables are determined, the MILP problem degrades to a

linear programming problem, which is easy to solve. In what follows, we focus on the design of a

DNN to determine the binary variables in (6.7).

DNN Settings. Fig. 6.9 shows the DNN-based approach in training and sparsification (ex-

ploitation) phases. The input of the DNN is the SNR values reported by the STAs. The dimension

of input layer is NstaNru. The DNN consists of multiple hidden layers. Each hidden layer is fully-

connected, followed by a batch-normalization layer to speed up the training convergence [72].

Sigmoid activation function is used for each layer. The output layer has NstaNru neurons, each

of which corresponds to a binary variable in RU assignment sub-problem. In our experiments, we

consider the case where an 8-antenna AP serves 20 STAs on 9 RUs. For this case, the input and

output layers both have 180 neurons, and the overall DNN’s structure we trained for RU assignment

is 180× 128× 128× 180.

Data Collection and Pre-processing. We collect 60, 000 SNR reports from an office envi-
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ronment. Each report consists SNR values over all the nine 26-tone RUs on 20 MHz bandwidth.

Every set of SNR values (20 SNR reports) will be flattened, normalized, and then used for training

the DNN as an instance of its input. At the same time, the set of unprocessed SNR values will

be fed into (6.7). The output of (6.7) includes RU assignment and power allocation coefficients.

The resultant RU assignment will be used as the reference output of the DNN in its supervised

training procedure. We use MOSEk v.9 [14] to solve (6.7) for a given set of SNR values. Since data

generation process is pretty slow, we augment the training data set by adding negligible noise to

the original input samples. Moreover, we set aside one third of input-output sample pairs for test

purpose. We augment the remaining samples 4.5 times.

Training Process. To train the DNN, we use NMSE loss function. The outputs of (6.7) for

given sets of SNR values are used as reference outputs of the DNN in training loss calculation.

For training the DNN, we use Adam optimizer [85] and PyTorch v1.4 library [132]. We also

apply batch normalization [72] and Xavier initialization [50] approaches to accelerate the training

process.

Post-Processing. The output of DNN will be post-processed in two steps: binarization and

correction. The output of DNN is a vector comprising real values bounded between 0 and 1.

We apply a threshold-based binarization on outputs of the DNN to transform them into binary

entities. Once the binary vector is obtained, we can use our domain knowledge to further polish

this vector. Two rules are followed in the correction step: i) If the DoF constraint is violated on an

RU, the STA with the lowest SNR will be removed until the DoF constraint is met. ii) When the

DoFs on an RU are under-utilized, the STA with the highest SNR will be activated if there is an

assigned STA with a lower SNR.

Computational Complexity. Referring to Fig. 6.9, the computational complexity of pre-

processing and post-processing operations is O (Nsta), provided that Nru<Nsta. For the trained
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Figure 6.10: Illustrating the performance of DLRA when compared to an optimal solution.

DNN, assuming that the size of hidden layer is proportional to the size of input, its computational

complexity is O
(
N2
sta

)
. For a given RU assignment, MILP in (6.5) degrades to an LP problem.

The computational complexity of solving the LP problem is O
(
N2.5
sta

)
. Therefore, the overall

complexity of DLRA is O
(
N2.5
sta

)
.

Numerical Results. After the DNN is trained, we use a set of data samples to test its per-

formance. We examine the accuracy of DNN output when different thresholds are used for the

binarization post-processing. Fig. 6.10(a) shows the results. It can be seen, DLRA reaches 98.9%

accuracy when using 0.54 as the binarization threshold. This means that DLRA offers a very ac-

curate RU assignment. We measured the performance gap between two cases, where the AP uses

DLRA and where the AP uses MILP problem for resource allocation. As shown in Fig. 6.10(b),

the results confirm that the DLRA almost reaches the optimal performance.

6.7 Experimental Evaluation

In this section, we evaluate the performance of DeepMux by comparing it with existing 802.11ax

protocols.
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Figure 6.11: Illustrating our wireless testbed and test environment. (a) Prototyped STA. (b) Proto-
typed AP. (c) Floor plan of tests.

6.7.1 Experimental Settings

Wireless Testbed and Experimental Setting. Fig. 6.11(a) and Fig. 6.11(b) show the wireless

testbed that we use to evaluate DeepMux. The testbed has one AP and four STAs which are built

using USRP N210 devices and general computers. The AP is equipped with 8 antennas while each

STA is equipped with one antenna. As shown in Fig. 6.11(c), the AP is placed at a fixed location,

while the four STAs have many random locations to be placed.

Implementation of 802.11ax. The 802.11ax protocol in Fig. 6.2 is implemented on the testbed.

The carrier frequency is set to 2.484 GHz, and the bandwidth is set to 20 MHz. Due to the hard-
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ware limitation, the inter-frame spacing is equal to one second. A frame has 256 tones in its OFDM

modulation, with 18 pilot tones, 216 payload tones, and 22 unused tones. The 26-tone RU con-

figuration (see Fig. 6.1) is used in our study. The transmission power of the AP and STAs is set

to 15 dBm. The signal processing modules at both AP and STAs are implemented using C++ in

GNURadio-Companion. LDPC channel encoding and decoding are not implemented to reduce the

implementation complexity.

Implementation of DeepMux. DeepMux is implemented on top of the 802.11ax protocol, and

its DNNs are trained at the AP using Pytorch v1.4 library [132]. To train DNNs, our data collection

campaign lasted three days. During the campaign, low and moderate human activities (i.e., 0∼5

persons with brisk walking speed) were observed in the environment shown in Fig. 6.11(c). In this

campaign, 100, 000 angles (50, 000 vectors in Ψ and 50, 000 vectors in Φ) on 234 tones were

collected for DLCS to train its two DNNs. Meanwhile, 60, 000 SNR reports were collected from

the BR frames for DLRA to train its DNN.

6.7.2 Performance Metrics

EVM. EVM is widely used to measure the quality of received signal. Mathematically, EVM is

defined as: EVM = 10 log10

(
E[|X̂−X|2]
E[|X|2]

)
, where X and X̂ are original and estimated signals,

respectively.

Gross Throughput. Gross throughput is the over-the-air data rate achieved by an STA or the

AP. It can be inferred based on the measured EVM by r =
Np

Nfft+Ncp
· b · Γ (EVM), where r is

the gross throughput, Np is the number of payload tones, Nfft is FFT points, Ncp is the length of

cyclic prefix, b is the sampling rate, and Γ(EVM) is the average number of bits carried by one tone,

as specified in Table 6.4. Γ(EVM) is determined by modulation order and (LDPC) coding rate.

Net Throughput. Net throughput calculates the data rate while taking into account chan-
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Figure 6.12: Test scenarios used for evaluation of DLCS.

nel sounding airtime overhead. It can be expressed as: rnet =
tpayload

tpayload+toverhead
· r, where

tpayload and toverhead are the time duration of data transmission and channel sounding, respec-

tively. toverhead is determined by the airtime used for transmitting BR, NDPA, NDP, and TBRP

frames. For simplicity, we do not consider inter-frame space, re-transmission, and frame aggrega-

tion in our calculations.

Comparison Baselines. For DLCS, we compare it with the tone grouping approaches speci-

fied in 802.11ax. For notational simplicity, we use TiGj to denote the 802.11 channel sounding

protocol with feedback type i ∈ {0, 1} and j ∈ {4, 16} tones in each group. For DLRA, there

is not a standardized baseline for comparison. Hence, we implement the best resource allocation

effort onto IEEE 802.11ax. The best effort is full utilization of available DoFs on each RU.

6.7.3 A Case Study for DLCS

We consider the case as shown in Fig. 6.12(b), where the AP serves three STAs. The AP is placed

at the square mark in Fig. 6.11(c), and the three STAs are placed at the triangle marks in the

figure. Every RU serves these three STAs with equal power allocation, and no resource allocation

is involved in this study. In what follows, we present our results.

Constellation. We perform downlink MU-MIMO transmissions using both 802.11ax and

DLCS channel sounding protocols and collect the decoded signals at the three STAs. Fig. 6.13
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(b) 802.11-T0G4: Constellation of decoded signals at the three STAs.
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(c) 802.11-T1G4: Constellation of decoded signals at the three STAs.
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(d) 802.11-T1G16: Constellation of decoded signals at the three STAs.

Figure 6.13: Constellations of decoded signals at STA 1 (left), STA 2 (middle), and STA 3 (right),
when the WLAN uses different feedback protocols.
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Table 6.5: A case study for comparing DLCS of DeepMux with 802.11 protocols.

STA 1 STA 2 STA 3 AP

D
ee

pM
ux EVM (dB) -23.5 -19.1 -24.0 –

Per RU Gross throughput (Mbps) 6.5 4.9 6.5 17.9
Net throughput (Mbps) 19.1 14.3 19.1 52.5

T
0G

4 EVM (dB) -20.1 -17.6 -21.3 –
Per RU Gross throughput (Mbps) 4.9 3.2 4.9 13.0

Net throughput (Mbps) 13.7 9.1 13.7 36.5

T
1G

4 EVM (dB) -23.0 -17.9 -23.6 –
Per RU Gross throughput (Mbps) 4.9 3.2 4.9 13.0

Net throughput (Mbps) 14.7 7.4 14.7 36.8

T
1G

16 EVM (dB) -19.8 -18.2 -20.7 –
Per RU Gross throughput (Mbps) 6.5 3.2 6.5 16.2

Net throughput (Mbps) 15.6 10.4 15.6 41.6

shows the constellations of decoded signals at the three STAs. The EVMs of the decoded signals

are presented in Table 6.5. It can be seen from the measured EVMs that DeepMux offers the best

signal quality in the downlink transmissions. This is because the DNNs at the AP can accurately

recover CSI over all tones based on the limited CSI feedback. It also can be seen from Fig. 6.13 that

DeepMux and 802.11-T1G4 achieve similar signal quality (constellation) in the downlink. This is

because we used 802.11-T1G4 as the performance benchmark to select the DNN parameters for

DLCS in our experiments.

Feedback Overhead. DeepMux entails 0.6 kbit overhead for CSI feedback from each STA.

In contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 entails 4.9 kbit, 6.5 kbit, and 1.6 kbit

overhead for CSI feedback, respectively.

EVM, Gross Throughput, and Net Throughput. Table 6.5 presents our experimental results.

We have the following observations. First, in terms of EVM and gross throughput, DLCS is slightly

better than 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16. Second, in terms of net throughput,

DLCS is significantly superior to 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16. This is not

surprising because DLCS consumes much lower airtime for CSI feedback compared to 802.11

channel sounding protocols.
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Figure 6.14: Comparison of DeepMux and 802.11 protocols in two-user MIMO downlink trans-
mission.

6.7.4 Extensive Results of DLCS

We extend the case study to extensive experimental trials to thoroughly examine the performance of

DLCS. We consider three cases: two-user, three-user, and four-user MIMO as shown in Fig. 6.12.

The AP serves these two/three/four users exclusively on all RUs, with equal power allocation.

Each STA is placed at a randomly selected spot marked with a filled circle in Fig. 6.11(c).

Two-User Case. Fig. 6.14 presents the comparison results of DeepMux and 802.11 proto-

cols in terms of EVM, gross throughput, and net throughput. Per Fig. 6.14(a), DeepMux achieves

−27.1 dB EVM on average, while 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 reach−24.7 dB,

−26.7 dB, and −23.8 dB EVM, respectively. Per Fig. 6.14(b), DeepMux slightly outperforms

802.11 protocols in terms of gross throughput. DeepMux achieves 7.7 Mbps gross throughput per

RU on average. In contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve 6.8 Mbps,

7.5 Mbps, and 6.4 Mbps gross throughput per 26-tone RU, respectively.

Net throughput reflects the advantage of DLCS as it takes into account airtime overhead in the

calculation of throughput. As shown in Fig. 6.14(c), DeepMux obtains 45.2 Mbps net through-

put on all RUs on average. In contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve

34.2 Mbps, 33.5 Mbps, and 38.2 Mbps net throughput, respectively. DeepMux offers 31.6%,

34.3%, and 17.8% net throughput gains compared to 802.11-T0G4, 802.11-T1G4, and 802.11-
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Figure 6.15: Comparison of DeepMux and 802.11 protocols in three-user MIMO downlink trans-
mission.

T1G16, respectively.

Three-User Case. The observations in three-user case are consistent with those in two-user

case. Fig. 6.15 shows the experimental results. DeepMux slightly outperforms 802.11 protocols

in terms of EVM and gross throughput. Per Fig. 6.15(a), DeepMux achieves −20.4 dB EVM

on average, while 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve −19.6 dB, −20.1 dB,

and −18.9 dB EVM, respectively. Per Fig. 6.15(b), DeepMux achieves 4.9 Mbps gross through-

put on average per RU, while 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve 4.1 Mbps,

4.6 Mbps, and 4.4 Mbps respectively. DeepMux offers a significant gain of net throughput over

802.11 protocols. Per Fig. 6.15(c), DeepMux obtains 45.2 Mbps net throughput on average. In

contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve 36.1 Mbps, 34.8 Mbps, and

39.4 Mbps net throughput, respectively. This indicates that DeepMux offers 25.2%, 30.0%, and

14.7% gains compared to 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16, respectively.

Four-User Case. The observations in this case are consistent with those in previous two cases.

Fig. 6.16 presents the experimental results. In the end, DeepMux achieves 43.7 Mbps net through-

put on average. In contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve 35.2 Mbps,

34.6 Mbps, and 37.0 Mbps net throughput, respectively. Numerically, DeepMux offers 24.1%,

26.3%, and 18.1% net throughput gains compared to 802.11-T0G4, 802.11-T1G4, and 802.11-
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Figure 6.16: Comparison of DeepMux and 802.11 protocols in four-user MIMO downlink trans-
mission.
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Figure 6.17: Test scenario for evaluating DeepMux in MU-MIMO-OFDMA transmissions.

T1G16, respectively.

6.7.5 Overall Performance of DeepMux

Methodology. The full evaluation of DeepMux requires a large-scale wireless testbed with

many STAs to mimic real 802.11ax networks in MU-MIMO-OFDMA transmissions. However, we

do not have such a luxury. We therefore use a hybrid approach that combines emulation and

experimentation to evaluate DeepMux. Fig. 6.17 shows our testbed setting, where the AP serves 4

real STAs and 16 virtual STAs. The 4 real STAs perform over-the-air transmissions, while the 16

virtual STAs are created by the AP based on the pre-stored CSI from other locations. The virtual

STAs are used for DLRA. In the downlink transmission, the AP sends precoded signals to all (real

and virtual) STAs, and the performance is measured at STAs.
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Figure 6.18: A case study on resource allocation by DLRA.

-1 0 1

-1

0

1

EVM= -13.1 dB

(a) DeepMux

-2 0 2

-2

0

2

EVM= -8.3 dB

(b) 802.11-T0G4

-2 0 2

-2

0

2

EVM= -9.9 dB

(c) 802.11-T1G4

-2 0 2

-2

0

2

EVM= -7.2 dB

(d) 802.11-T1G16

Figure 6.19: EVM of decoded signal on first STA over first RU.

A Close Look into DLRA. As a case study, we place one of real STAs at the locations marked

by triangle 1 in Fig. 6.11(c). Fig. 6.18(a) shows the SNR values from the real and virtual STAs.

The reported SNR values are first preprocessed for normalization, as shown in Fig. 6.18(b). The

normalized values are then fed into a DNN for RU assignment. Fig. 6.18(c) shows the RU assign-

ment results from the DNN. With the RU assignment results from DNN, the optimization problem

in (6.7) degrades to an LP problem. The LP problem is then solved to obtain the power allocation

results, which are shown in Fig. 6.18(d).

Referring to Fig. 6.18(d), the rightmost column denotes RU assignment and allocated power to

the STA of interest. Fig. 6.19 shows the constellation of received signal by the mentioned STA on
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Figure 6.20: Comparison of DeepMux and 802.11 protocols when an 8-antenna AP serves 20
stations on 20 MHz bandwidth.

the first RU with the aid of DeepMux and existing protocols in 802.11ax. The results reveal supe-

rior performance of DeepMux in terms of EVM. For this STA, the gross throughput achieved on

the first RU is 2.4 Mbps, 1.2 Mbps, 1.2 Mbps, and 0.8 Mbps with DeepMux, 802.11-T0G4, 802.11-

T1G4, and 802.11-T1G16, respectively. The net throughput achieved by this user on the first RU

is 9.1 Mbps, 4.9 Mbps, 6.5 Mbps, and 4.7 Mbps with DeepMux, 802.11-T0G4, 802.11-T1G4, and

802.11-T1G16, respectively. Over all RUs, DeepMux obtains 43.5 Mbps net throughput, while

802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 respectively achieve 31.7 Mbps, 29.9 Mbps, and

37.8 Mbps.

Extensive Results. To obtain more comprehensive results, we place the four real STAs at dif-

ferent locations marked with filled circles in Fig. 6.11(c). The experimental results are summarized

as follows.

• EVM: Fig. 6.20(a) presents the measured EVM at STAs. On average, DeepMux achieves

−11.2 dB EVM for STAs, while 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 reach

−10.1 dB, −10.9 dB, and −8.6 dB EVM, respectively.

• Gross Throughput per RU: Fig. 6.20(b) presents gross throughput per RU. DeepMux achieves

1.6 Mbps gross throughput per 26-tone RU. In contrast, 802.11-T0G4, 802.11-T1G4, and

802.11-T1G16 achieve 1.4 Mbps, 1.6 Mbps, and 1.1 Mbps, respectively.
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Figure 6.21: Average net throughput achieved by DeepMux and 802.11 protocols.

• Net Throughput: Fig. 6.20(c) shows the net throughput achieved by different protocols,

and Fig. 6.21 shows the average net throughput at the AP. Specifically, DeepMux achieves

45.9 Mbps net throughput on average. In contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-

T1G16 achieve 35.7 Mbps, 32.0 Mbps, and 36.4 Mbps, respectively. The net throughput

gain of DeepMux is 34.9% compared to 802.11-T0G4, 43.6%, compared to 802.11-T1G4,

and 26.3% compared to 802.11-T1G16.

6.8 Chapter Summary

In this chapter, we presented DeepMux, a deep-learning-based approach to enhance the efficiency

of downlink MU-MIMO-OFDMA transmissions in 802.11ax networks. DeepMux is designed

upon two components, namely DLCS and DLRA, both of which reside in APs and impose no

computation/communication burden to Wi-Fi clients. DLCS leverages DNNs to reduce overhead

of CSI feedback in 802.11 protocols. It uses uplink channels to train the DNNs for downlink chan-

nels, making the training process easy to implement. Numerical results show that it can reduce

the sounding overhead by 62.0%∼90.5% without sacrificing CSI feedback accuracy. DLRA tack-

les an MILP resource allocation problem by decoupling its integer and continuous optimization
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sub-problems and employing a DNN to compute a solution to the integer part. Numerical results

show that DLRA can achieve 98.9% optimality in RU assignment while bearing a low computa-

tional complexity. We have built a wireless testbed to examine the performance of DeepMux in an

indoor environment. Experimental results show that DeepMux increases network throughput by

26.3%∼43.6% compared to 802.11 protocols.
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Chapter 7

A Communication Framework for FL in Intelligent

Transportation Systems

7.1 Introduction

Knowledge about vehicles, drivers, environments, and their mutual interactions is critical for ITS.

ML techniques have been extensively studied to extract useful knowledge from massive data col-

lected by vehicles so as to enhance the safety and efficiency of ITS. Conventional ML techniques

are propelled by a central server with unconditional access to data collected by vehicles and in-

frastructure. However, with the advancement of autonomous vehicles, the amount of data from the

sensors of vehicles (e.g., ;lidars, radars, cameras, and inertial sensors) can easily reach to gigabit

per second, making it impractical to transfer raw data to a server, let alone the privacy issue around

sharing raw data.

FL has been introduced as a privacy-preserving and communication-efficient alternative, where

individual clients (rather than a central server) carry out the model training process [96]. While FL

is a promising training paradigm for vehicular networks, the limited communication capacity of

these networks along with the heterogeneous sensing, storage, and processing capabilities of in-

dividual vehicles, bring up an important question – how to optimize the design and operation of

wireless vehicular networks to facilitate FL.
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Different strategies have been proposed for FL to address its communication cost, such as

decreasing the communication frequency [114], reporting local models using a sparse represen-

tation [5, 103, 147, 157], and quantization of model parameters [140, 168, 180]. The main idea

of these strategies is to reduce the communication overhead of FL by tuning learning parame-

ters and structure, which will likely cause FL performance degradation. Recently, pioneering

work [28, 29, 40, 152, 171, 189, 195] has been conducted to address FL’s communication overhead

problem from a networking perspective by efficient resource allocation and scheduling schemes.

To the best of our knowledge, existing works mainly employ cross-layer optimization techniques

to enhance learning efficiency. They assume that global CSI is available at the server. They also

assume that CSI remains valid for the time period of an FL iteration (a.k.a. global iteration).

Given the small channel coherence time caused by high mobility of vehicles, these two assump-

tions may not be valid in practical vehicular networks.

In this paper, we present a Communication Framework for FL (CF4FL) for ITS, with the aim

of accelerating the FL training process. We consider a vehicular network that comprises a server

(for model aggregation and dissemination) and many distributed vehicles (for data collection and

local model training). Each vehicle continuously collects data samples from its surrounding en-

vironment using on-board sensors such as camera, radar, and lidar; and it uses its collected data

samples for local model training when scheduled by the server. To embrace topology dynamicity

and hardware heterogeneity of vehicular networks, a deadline is defined for each vehicle as the

maximum number of global iterations during which the vehicle can keep/store its collected data

samples. Once the deadline is reached, the newly collected data samples will be partially or entirely

lost due to the limited storage or other limiting factors. CF4FL considers the case where each ve-

hicle has a specific deadline for its data collection. CF4FL mainly comprises two complementary

components: DDVS and CVPS.

200



DDVS is an online scheduler equipped with two scheduling schemes: a general but complex

scheduler and a lightweight heuristic scheduler. DDVS selects a subset of vehicles in each global

iteration. The selected vehicles will perform local model training (using their collected data sam-

ples) and send their resultant local models to the server in the current FL iteration, while the vehi-

cles that are not selected will continue to collect data samples. Given the deadline of data collection

at vehicles, DDVS must meticulously and systematically select the vehicles in each FL iteration

to maximize the amount of data samples for local model training and therefore minimize the data

loss at vehicles. CVPS, on the other hand, focuses on enhancing the communication capacity be-

tween vehicles and server to reduce the duration of a global iteration. CVPS allows the server to

concurrently poll multiple vehicles in a global iteration. The key challenge is the time misalign-

ment of multiple concurrent packets caused by the signal propagation delay, packet processing

delay, and clock imperfections. CVPS addresses this challenge by a novel spatial signal detec-

tion algorithm, which decodes asynchronous data packets from multiple vehicles. CVPS needs

neither inter-vehicle synchronization nor instantaneous CSI for asynchronous concurrent vehicle

transmissions.

We have evaluated CF4FL through a blend of experimentation and simulation. We imple-

mented CVPS on an SDR vehicular testbed where the server has four antennas and each vehi-

cle has one antenna, and evaluated its performance in three typical scenarios: parking lots, local

streets, and highways. Our experimental results shows four vehicles can send their local mod-

els to the server simultaneously with 98% success rate. The experimental results are utilized to

conduct trace-driven simulation for the performance evaluation of CF4FL. Our results show that,

DDVS reduces data loss by 76%, 54%, and 59% compared to Random, Round-Robbin, Earliest-

Deadline-First schedulers, respectively. Overall, CF4FL reduces the training convergence time of

FL by 39%.
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7.2 Related Work

In the literature, there are two research lines involving both FL and networking: FL for networking

and networking for FL. This work belongs to the latter category.

FL in Wireless Vehicular Networks. While many works studied FL applications for trans-

portation systems [63, 145, 164], few investigated the unique challenges of FL in vehicular net-

works. [198] considered the heterogeneity of local data samples and designed an approach to selec-

tively collect and aggregate local models for fast convergence. [86] proposed a privacy-preserving

aggregation for FL in navigation systems. In [26, 136, 137], blockchain-based FL frameworks

were proposed to protect the privacy of vehicles when sharing local models. [159] proposed a new

clustered architecture for FL in vehicular networks which leverages vehicle-to-vehicle commu-

nications to conserve communication resources. [185] proposed a greedy algorithm to accelerate

FL by assigning resources to the vehicles with high-quality data samples. [171] and [105] are the

most relevant works to this paper. [171] proposed an algorithm for vehicle selection and wireless

resource allocation in cellular systems based on dataset content. This work took into account both

limited bandwidth and packet error rate in its resource allocation strategy to maximize learning effi-

ciency. The proposed resource allocation is reliant on the exact realization of links capacity and the

availability of CSI. While CF4FL pursues a similar objective, it differs from [171] in the problem

settings, including the lack of instantaneous CSI and concurrent vehicle polling. [105] accelerates

FL in vehicular networks by selecting vehicles with massive local datasets and dropping those with

few data samples. It neither considers vehicle-specific deadlines nor focuses on minimizing data

loss.

Resource Allocation and Scheduling for FL. Resource allocation and participant scheduling

in each global iteration are important for FL convergence. Several research efforts have been made
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to study participant scheduling and resource allocation toward different objectives, such as mini-

mizing FL loss [28,29,171], minimizing latency [152], improving energy efficiency [40,189,195],

and enhancing learning efficiency [90]. However, these works are limited to stationary or semi-

stationary networks where instantaneous CSI with relatively large coherence time can be estimated

at the server in each global iteration. In practice, such an luxury is barely available, especially in

vehicular networks. CF4FL differs from these efforts in terms of requirements, objective, and

network settings.

Communication Airtime Overhead of FL. The limited communication capacity is a realistic

barrier for the FL deployment in wireless networks, which throttles the learning process and slows

down the learning convergence. Pioneering works have been done to resolve the communication

problem for FL using different approaches, such as decreasing the communication frequency (i.e.,

the number of global iterations) [114], reporting local models using their sparsified representa-

tions [5, 103, 147, 157], and quantization of model parameters [140, 168, 180]. Apparently, CF4FL

is orthogonal to these efforts as it does not optimize FL but innovates the networking design to

improve the convergence speed of FL training.

7.3 Federated Learning in Vehicular Networks

The deployment of FL in vehicular networks is a complex task due to the unique features of vehic-

ular networks and the stringent requirements of data collection. CF4FL assumes that vehicles can

label their collected data for local training. It also assumes that vehicles have sufficient computa-

tional power for local training [127]. In what follows, we first describe the system model and then

formulate the problem. Finally, we point out the challenges in the design of an efficient solution.
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7.3.1 System Model

Practical realization of ITS requires to collect an immense amount of data in vehicular environ-

ments, such as information of other vehicles, the condition of road surface, the probability of

accidents, and the existence of local objects. The collected data by different vehicles is a valuable

source of information to train ML models for the applications such as pothole detection, collision

avoidance, object/pedestrian identification, and curb avoidance. For vehicles, sharing their raw

data samples with a central server for training a unified model may not be a good idea due to the

concerns about data privacy, the limited network bandwidth, and the huge size of data samples.

FL alleviates these issues and offers a decentralized framework to train a global model through the

local model training at individual vehicles using their privately-owned data.

We consider a vehicular network that comprises a central server and many vehicles as shown

in Fig. 7.1 , where each vehicle is equipped with a single antenna and the server is equipped with

multiple antennas. The server is responsible for vehicle scheduling, receiving local models from

scheduled vehicles, aggregating models, and broadcasting the aggregated model to all vehicles.

Each vehicle performs continuous data collection from its surrounding environment using its on-

board sensors. If it is scheduled in the current iteration, it first uses its collected data for local

model training and then reports the updated local model to the server; otherwise (not scheduled),

it continues to collect data until its deadline is reached. To describe FL training, let us consider

a network at global iteration t. Denote N (t) as the set of vehicles associated to a server, with

|N (t)| = N(t). Denote M as the number of antennas at the server. Denote Ii(t) as the dataset

at vehicle i in global iteration t. Assume that the data collection and transmissions at vehicles

are done in parallel. Also, assume that a unique frequency band (e.g., a channel in 802.11p or a

resource block in C-V2X) is assigned to the FL task under consideration, and the frequency band
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Figure 7.1: FL in a vehicular network.

is used via TDMA for communications between vehicles and the server.

7.3.2 Problem Formulation

In the conventional training process of FL as shown in Fig. 7.1 and Fig. 7.2, the server selects

a subset of vehicles for local model training. Denote S(t) as the set of selected vehicles in

global iteration t. Each selected vehicle, say i, trains its local model to minimize a loss func-

tion. Denote Θi(t) as the local model parameters. Then, the loss function can be written as:

L (Θi(t), Ii(t)|Θi(t− 1)), where Θi(t − 1) is the initial parameters of local model. In the rest of

this paper, we drop the condition of Θi(t− 1) for notation simplicity. Vehicle i sends Θi(t) to the

server and discards Ii(t) in its buffer to collect future data. An unselected vehicle, on the other

hand, piles up the collected data samples during the current iteration on top of what it already has in

its buffer, until it has been selected. Piling up data samples can adversely affect the entire training

process, especially in a dense vehicular network where some vehicles would not be selected for

many global iterations. These vehicles face several issues. First, the size of unused data samples

(i.e., data samples collected since the last participation in FL) may exceed the storage limit. Sec-
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Figure 7.2: Sequential polling for the iterative training of FL in vehicular networks.

ond, vehicle stragglers (i.e., computation-slow vehicles) drastically increase the time duration of a

global iteration. The local processing time can contribute to a time limit (i.e., deadline) for each

vehicle or equivalently a virtual cap on an allowable amount of data that the vehicle can collect.

We denote this cap as Fi (in bits) for vehicle i. When vehicle i is not selected for a long time and

its unused data samples exceed Fi bits, the data samples will be lost from that point on.

At the end of a global iteration, the server receives local models from the selected vehicles and

aggregates them to obtain a new global model. The contribution of each local model to the global

one is proportional to the amount of data that is used in training that local model [29]. Simply put,

the aggregation is a weighted average of the polled local models. Denote Θg(t) as the parameters

of the aggregated global model. Then, we have

Θg(t) =

∑
i∈S(t) |Ii(t)| ·Θi(t)∑

i∈S(t) |Ii(t)|
. (7.1)

Similarly, the global loss is evaluated as a weighted average on loss of local models, i.e.,

L(Θg(t)) =

∑
i∈S(t) |Ii(t)| · L (Θi(t), Ii(t))∑

i∈S(t) |Ii(t)|
. (7.2)

As shown in Fig. 7.2, the server then broadcasts the global model to all the vehicles, includ-
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ing those who were not selected for local model training in the current global iteration. At all

vehicles, their local models are replaced with the global one to initialize the next iteration of local

model training. The network continues global iterations until the global model converges, e.g.,

|L(Θg(t)) − L(Θg(t − 1))| ≤ ϵ, where ϵ is a pre-defined threshold. We define the learning effi-

ciency of global iteration t as |L(Θg(t)) − L(Θg(t − 1))| · 1
∆t , where ∆t is the time duration of

global iteration t.

Now, the question to ask is how to increase learning efficiency in each global iteration while

avoiding data loss due to the deadline and storage constraints. To answer this question, we first

formulate the learning efficiency in its general form for conventional FL setting. As shown in

Fig. 7.2, ∆t is dominated by the uplink and downlink data transmissions as well as local processing

time. Then, it can be calculated as:

∆t =
∑
i∈S(t)

(
τi(t) +

Z(Θi(t))

Cui(t)

)
+

Z(Θg(t))

min
i∈N (t)

Cdi(t)
, (7.3)

where τi(t), Cui(t), and Cdi(t) are vehicle i’s local processing time, uplink data rate, and down-

link data rate, respectively. Z(·) returns the size of its input in bits. Here, we have Z(Θi(t)) =

Z(Θg(t)), ∀i ∈ S(t). The uplink transmissions also take place sequentially in a TDMA manner. In

practice, the server typically limits the maximum time duration of a global iteration, i.e., ∆t ≤ T ,

where T is a pre-defined constant.

In each global iteration, the server selects a subset of vehicles that maximize learning efficiency

without losing collected data at vehicles. Hence, the problem can be formulated as:

maximize
S(t)

1

∆t
·
(
L(Θg(t))− L(Θg(t− 1))

)
(7.4a)

s.t. ∆t ≤ T, (7.4b)
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|Ii(t+ 1)| ≤ Fi, ∀i ∈ N (t)/S(t), (7.4c)

where (7.4b) is the maximum allowable time for a global iteration, and (7.4c) attempts to avoid data

loss for the vehicles that are not selected for local model training in the current global iteration.

7.3.3 Challenges

There are two challenges to solve the problem in (7.4).

Challenge 1. Solving (7.4) requires perfect global CSI knowledge for the server to select ve-

hicles. However, obtaining fresh CSI for the server is extremely difficult, if not impossible. This is

because the channel coherence time in vehicular networks is too short for channel acquisition.

For example, consider a relatively small neural network model with 8, 778 parameters, which we

later use for digit classification in Section 7.7. If each parameter is represented by 32 bits, it takes

at least 10.1 ms to transmit the entire model in the uplink using the most aggressive MCS of IEEE

802.11p, 64QAM and 3/4 coding rate. However, 10.1 ms is very likely beyond the channel coher-

ence time of many vehicular networks. To address this challenge, we propose a deadline-driven

vehicle scheduler, which allows the server to poll vehicles in the absence of CSI.

Challenge 2. Another challenge is to reduce the airtime consumption of a global iteration.

A natural approach is uplink MU-MIMO transmission, which allows the server to communicate

with multiple vehicles at the same time. However, existing uplink MU-MIMO schemes require the

packets from vehicles to be aligned in time. This is extremely hard in vehicular networks due to the

high mobility (e.g., 60 mph) and the dynamic network topology. Pursuing network-wide timing

synchronization, even if possible in practice, inevitably entails a large amount of airtime overhead.

To combat this challenge, we propose an asynchronous uplink MU-MIMO scheme, which allows
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(a) Step 1: If necessary, DDVS removes some of
the vehicles (gray colored) and considers a set of
vehicles which are schedulable (white colored).
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(b) Step 2: Without knowing CSI, DDVS de-
signs a scheduler merely based on vehicles dead-
lines and buffer status and selects a subset vehi-
cles (green colored).
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(c) Step 3: CVPS recovers local models which
are concurrently sent by selected vehicles.

DDVSCVPS
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(d) Step 4: Server aggregates the local models
and sends back the global model to all vehicles.

Figure 7.3: An overview of CF4FL and its underlying components: DDVS schedules the vehicles
without requiring global CSI and CVPS recovers concurrent, but asynchronous, packets transmit-
ted by vehicles.

the server to receive packets from multiple vehicles at the same time.

7.4 CF4FL: Overview

CF4FL is a heuristic vehicular communication framework to accelerate FL in general. To maxi-

mize the learning efficiency in (7.4), CF4FL focuses on two tasks. First, CF4FL endeavors to max-

imize the numerator of the objective function in (7.4a) (i.e., learning accuracy). CF4FL pursues

the the same objective as the schedulers proposed in [29,94,152,171], in which the analysis shows

that learning efficiency will be improved by using (consuming) more data samples for training local
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models. CF4FL assumes that data at all vehicles are independent and identically distributed (iid)

and bear the same quality. It also assumes a direct relation between the data consumption of local

training and the convergence of global model. CF4FL considers the vehicle-specific deadlines and

avoids data sample loss at vehicles. Leveraging the maximum number of local data samples for

training the global model, CF4FL improves the objective function in (7.4a). Second, given the

set of selected vehicles (i.e., S(t)), concurrent polling minimizes the denominator of the objective

function in (7.4a) (i.e., ∆t). CF4FL strives to solve (7.4) and meet constraints (7.4b) and (7.4c),

provided that the original problem has a feasible solution. These two tasks will be carried out

by DDVS and CVPS, respectively, as shown in Fig. 7.3. In what follows, we highlight the key

components of CF4FL.

Server. As the central controller, the server is responsible for three tasks: i) passing appropriate

information (i.e., deadlines, which are translation of Fi in time domain) to DDVS; ii) aggregating

local models; and iii) broadcasting the global model at the end of each global iteration. The calcu-

lation of the deadlines is detailed in Section 7.5.1.

DDVS. At the beginning of each global iteration, DDVS receives the deadlines from server and

designs a scheduler to poll at mostM vehicles by CVPS, whereM is the number of antennas at the

server. It is the available spatial DoF for polling. If the scheduling problem is feasible, it guarantees

that a vehicle is polled before reaching its deadline. Unfortunately, the scheduling problem is

not always feasible. As such, DDVS first determines the feasibility of the scheduling problem.

If infeasible, DDVS removes some vehicles with the shortest deadlines to make the scheduling

problem feasible. This process is illustrated in Fig. 7.3(a). Once the scheduling feasibility (termed

schedulability) is secured, DDVS finds a scheduler to poll the remaining vehicles within a finite

number of iterations.

CVPS. Upon receiving a poll frame from DDVS, the selected vehicles prepare their local mod-
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els and send them to the server. CVPS leverages multiple antennas at the server to decode the

uplink data packets. As the vehicles are asynchronous in nature, CVPS first compensates the time

and frequency offsets of the collided frames. Then, it constructs a spatial detection filter to recover

the data packets, from which local models are extracted by the server.

7.5 Deadline-Driven Vehicle Scheduler (DDVS)

DDVS is responsible for examining the feasibility of (7.4) and designing a scheduler based on the

deadlines specified by the server. We first propose a general scheduler to find a cyclic scheduler

that guarantees zero data loss if the network deadline (deadlines of all vehicles in the network) is

schedulable. The general scheduler comes with a high computational complexity as it needs to find

a cycle on a large graph called steady state graph, making it hard to implement for large vehicular

networks. We therefore propose a lightweight scheduler to handle vehicle selection problem in

large vehicular networks.

7.5.1 Network Deadline and State

DDVS determines vehicles’ polling order based on their deadline and state, which we describe

below.

Deadline. For a vehicle, say vehicle i, we denote its deadline as di. It indeed translates Fi

into time domain based on three parameters: the worst-case duration of a global iteration, the

sensing rate of vehicle i, and processing delay of vehicle i, which are denoted by tw, bi, and

τi, respectively. tw is conservatively defined with respect to the case where the lowest MCS in

802.11p is used for all transmissions in a global iteration. bi and τi root in hardware capabilities of

vehicle i. We also assume the vehicles persistently collect data in time domain, and the number of
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their collected data samples linearly increases over time. Then, the deadline for vehicle i is defined

as di = ⌊Fi/(tw.bi) + τi/tw⌋, which is reflected in (7.4c).

Zero data loss is guaranteed for vehicle i if it collects data no more than di subsequent global

iterations before being polled. With respect to the individual deadline of vehicles, we further define

network deadline as d⃗(t) ≜
(
d1, d2, · · · , dN(t)

)
for global iteration t. The individual and network

deadlines are calculated at the server. Vehicle i, reports Fi and bi once to the server as a part of its

association process. On the other hand, the server is aware of M , Z(θg), and MCS; therefore, it

easily obtains tw which is fixed during the whole training cycle. Then, the server calculates di.

State. To indicate the number of global iterations elapsed from the last time a vehicle has been

polled, we define a counter, i.e., buffer state. For vehicle i, the buffer state is denoted by pi(t) and

can be written as:

pi (t) =


1, if i ∈ S(t);

pi(t− 1) + 1, if i /∈ S(t).
(7.5)

We further define network state as p⃗(t) ≜
(
p1(t), p2(t), · · · , pN(t)(t)

)
for global iteration t.

7.5.2 Schedulability of Network Deadline and General Scheduler

The objective of DDVS is to design a scheduler to honor the constraint of p⃗(t) ≼ d⃗(t) for ∀t > 0.

To design such a scheduler, we need to answer two fundamental questions: i) Is the network dead-

line schedulable (i.e., the existence of a scheduler that satisfies the constraints in (7.4))? ii) If a

network deadline is schedulable, how to find a scheduler for it? To answer these two questions,

we have the following remarks. First, not every network deadline is schedulable. If the network

deadline is not scheduable, DDVS first removes some of vehicles to secure the scheduability. Sec-

ond, for a schedulable network deadline, DDVS designs a cyclic scheduler, which turns out to

be optimal but with high computational complexity. Subsequently, a low-complexity heuristic is
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designed for large-scale vehicular networks.

The two tasks, examining the schedulibility of a network deadline and designing a scheduler,

are tightly intertwined. Apparently, the network deadline d⃗(t) is schedulable if there exists a sched-

uler S (with S(t) being the set of selected vehicles at global iteration t) such that p⃗(t) ≼ d⃗(t) for

∀t > 0. Such a scheduler should select vehicle i at least once per di global iterations. In ad-

dition, as we will show, CVPS will allow the server to poll M vehicles in a global iteration.

Definel(d⃗(t)) ≜
∑N(t)
i=1

1
di

as the network load. Then, we have the following necessary condition

for the schedulibility of d⃗(t).

Lemma 5. If d⃗(t) is schedulable, then l(d⃗(t)) ≤M .

Proof. For vehicle i, zero data loss is guaranteed if it is polled at least once in every di subse-

quent global iterations. Let us assume the network’s deadline does not change within t ∈ [0, T ].

Polling rate ri for vehicle i then satisfies ri = limT→∞
1
T

∑T
t=1 Ii(S(t)) ≥

1
di

, where Ii(S(t)) =

1 if i ∈ S(t); otherwise, Ii(S(t)) = 0. For all vehicles, we have M
(a)
≥
∑N(t)
i=1 ri

(b)
≥
∑N(t)
i=1

1
di

,

where (a) holds as M is the maximum number of vehicles that can be polled by CVPS in global

iteration, and (b) is directly concluded from the constraint on polling rate.

Lemma 5 implies that the network load supported by the server should not exceed M . DDVS

does not set a limit on the number of vehicles for scheduling. Instead, it sets a limit on the network

load for schedulability. DDVS can work for a small-size network with as less as M vehicles or a

large-scale network with many vehicles. DDVS first determines if the network deadline meets the

necessary condition. If not, DDVS removes vehicles with the smallest deadlines one by one until

the condition is met. This treatment follows two reasons. First, a vehicle with the shortest deadline

is the bottleneck of scheduling as it has the highest contribution to the network load. Second, a

vehicle with the shortest deadline has the lowest contribution in improving global model per poll.
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Figure 7.4: An example of checking the necessary condition of schedulibility, constructing feasi-
bility and steady-state graphs, finding the shortest cycle, and obtaining a cyclic scheduler.

We use a small example shown in Fig. 7.4 to illustrate this process. In this example, four

vehicles with network deadline d⃗(t) = (1, 2, 3, 3) are associated to a server with two antennas, i.e.,

M = 2. Referring to step 1 in the example, the initial network load is l(d⃗(t)) = 2.16. As the

network load does not meet the necessary condition, DDVS removes first vehicle with d1 = 1 and

updates the network deadline to d⃗(t) = (2, 3, 3). Then, we have l(d⃗(t)) < 2, which meets the

necessary condition of schedulability.

Feasibility Graph. Once d⃗(t) meets the necessary condition of schedulability, DDVS exam-

ines the schedulability of d⃗(t). To do so, DDVS constructs a feasible scheduling space including

feasible network states and possible transitions between the network states. The feasible schedul-

ing space is constructed using a directed graph called feasibility graph. The feasibility graph G is

constructed as follows.

G = (V,E), (7.6a)

V = {p⃗(t) : p⃗(t) ≼ d⃗(t)}, (7.6b)

E = {p⃗(t− 1)→ p⃗(t) : ∃ S(t) and p⃗(t) ∈ V }. (7.6c)

Referring to Fig. 7.4, the constructed feasibility graph for a given network deadline d⃗(t) = (2, 3, 3)

is shown in Step 2. To further clarify state and transitions in this graph, let us focus on an example

where the network state is p⃗(t) = (1, 3, 1) and S(t) = {1, 2}. Since vehicles 1 and 2 are selected,
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their buffer will be cleared and the network state transits to p⃗(t + 1) = (1, 1, 2) according to

(7.5). Since p⃗(t) ≼ d⃗(t), p⃗(t + 1) ≼ d⃗(t + 1), and |S(t)| = M , both states and corresponding

transition belong to the feasibility graph. As an another example, let us consider the case that,

for the same initial state, i.e., p⃗(t) = (1, 3, 1), first and third vehicles are selected for polling.

Then, p⃗(t+1) = (1, 4, 1), which is not a feasible state. Therefore, p⃗(t+1) and the transition from

p⃗(t) are not in the feasibility graph.

Per (7.6c), an edge in the feasibility graph corresponds to a scheduling decision, and a cycle

in the graph corresponds to a cycle of decisions that can be followed for infinite time. Therefore,

a unique correspondence exists between a cycle on feasibility graph G and a cyclic scheduler S.

A cycle with length c in the feasibility graph is equivalent to a cyclic scheduler having S(t+ c) =

S(t) for t > 0. It is easy to see that, under such a cyclic scheduler, we also have p⃗(t + c) = p⃗(t)

for t > c. This correspondence is exploited to determine the schedulibility of a network deadline.

Lemma 6. d⃗(t) is schedulable if and only if there is a cycle on the feasibility graph G in (7.6), and

the repetition of the cycle represents a feasible cyclic scheduler for (7.4).

Proof. If the deadlines and number of vehicles are finite, the number of vertices in G is also finite

as:

|V | =
N(t)∏
i=1

di <∞, if N(t) <∞ and di <∞ ∀i ∈ N (t). (7.7)

Therefore, there exists two distinct FL rounds t′ and t′′ with 1 ≤ t′ < t′′ ≤ |V | + 1 for which

p⃗(t′) = p⃗(t′′). Any path with a length larger than |V | includes a cycle. In other words, we cannot

infinitely move on the feasibility graph without forming any cycle. If p⃗(t′) = p⃗(t′′) and a cycle

is formed, all vehicles are polled at least once within [t′, t′′]. This statement itself can be proved
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based on contradiction. If vehicle i is not polled, we have:

∄ t ∈ [t′, t′′] s.t. i ∈ S(t), (7.8a)

pi(t
′) < pi(t

′′), (7.8b)

p⃗(t′) ̸= p⃗(t′′). (7.8c)

where (7.8b) follows from the fact that buffer state is a monotonic increasing function as long as

the vehicle is not polled. (7.8b) directly results (7.8c) which is in contradiction to our assumption

p⃗(t′) = p⃗(t′′). Therefore, all vehicles will be polled at least once within a cycle. The repetition of

the cycle on feasibility graph G results in a cyclic scheduler which results pi(t) ≤ di for t > 0 and

∀i ∈ N (t).

.

Lemma 6 implies that finding a scheduler for d⃗(t) is equivalent to finding a cycle on graph

G. The complexity of such a search is O(|V | + |E|) [161], which is likely to be intractable in

practice.1

Pruning feasibility graph. To reduce the computational complexity, we narrow down the

search space by pruning graph G while maintaining its cycles. This is done by removing all the

network states and their connected edges that cannot be a part of any cycle inG. We call the pruned

graph steady state graph Gs = (Vs, Es). If p⃗(t) ∈ V is also a vertex in Vs, it has the following

features: i) no more than M elements of p⃗(t) have hit their deadline; ii) no more than M elements

of p⃗(t) that have not hit the deadline carry the same values; and iii) one or more elements of p⃗(t)

1The number of states in a feasibility graph is |V | =
∏N(t)
i=1 di, and the number of outgoing edges from one state

can reach up to CN(t)
M , which is the number of M -combinations from N(t) vehicles. For a network with tens of

vehicles and a few antennas at the server, |V | + |E| can easily reach to millions, making the search for a cycle on G
intractable.
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equal to 1. The latter feature can be relaxed to the case where exactly M elements are equal to

1, if the vehicular network is very dense and DDVS intends to use all available spatial degrees of

freedom to poll M vehicles in each global iteration. It is obvious that all cycles in G do exist in Gs

and vice versa. Obtaining the steady state graph is illustrated in Step 3 of the example shown in

Fig. 7.4, where the feasibility graph is pruned as described above. The steady state graph is much

smaller than the feasibility graph. For the example in Fig. 7.4, it has only 5 states (marked as S1

to S5).

Shortest Cycle in Steady State GraphGs. The shortest cycle inGs is critical as it keeps pi(t)

for all i ∈ N (t) at small values. Hence, if a vehicle suddenly leaves the network or stops participat-

ing in FL, then a small number of data samples will be lost. To find a cycle with the shortest length,

we sort vertices in Vs and derive an adjacency matrix A for Gs such that A(i, j) = 1 if there exists

an edge from vertex i to vertex j, and A(i, j) = 0 otherwise. If N(t) > M , which is the case for a

typical vehicular network, all the diagonal entries of A are zero, i.e, diag(A) = 0 where 0 denotes

an all-zero vector with length |Vs|. For such an adjacency matrix, the shortest cycles has length n

if n is the smallest integer number for which diag(An) ̸= 0. A state corresponding to the position

of a non-zero element on diameter of An is located on the shortest cycle(s). Then, we can leverage

Floyd–Warshall algorithm [47] to find the shortest cycle for that state. If N(t) ≤M , even with the

most pressing deadlines, i.e., di = 1 ∀i ∈ N (t), the network load meets the necessary condition of

schedulibility. All vehicles will be scheduled to serve in every global iterations. In the steady state

graph, this scheduler is a self-loop that starts and ends at the same state in every global iteration.

Referring to the example in Fig. 7.4, the adjacency matrix is calculated. As the first element

on the diameter of A2 is non-zero, the length of the shortest cycle is 2 and it passes through S1.

DDVS finds such a cycle on the steady state graph. It chooses one of the two existing cycles with

such conditions. In this example, the cycle between S1 and S5 is selected. The cycle corresponds
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Algorithm 7.1 A deadline-driven cyclic scheduler.

1: Input. The network deadline d⃗(t)
2: if d⃗(t) = d⃗(t− 1) then
3: Keep current scheduler
4: else
5: Q = N (t)
6: S = ∅
7: while

∑
i∈Q 1/di > M or S = ∅ do

8: Q ←− Q\{i} such that di = min{d⃗(t)}
9: Update d⃗(t)

10: if
∑
i∈Q 1/di < M then

11: Construct feasibility graph G
12: Obtain Gs from G with adjacency matrix A
13: if ∃n ∈ N such that diag(An) ̸= 0⃗ then
14: Find smallest n
15: Find cyclic scheduler S with length n using Floyd–Warshall algorithm [47]
16: Return S

to a cyclic scheduler which selects vehicles 2 and 3 on odd global iterations and selects vehicle 1

and 3 on even ones.

A General Scheduler. Alg. 7.1 presents an algorithm to check the schedulability of d⃗(t) and

construct a cyclic scheduler. It comprises four main steps: preparing network deadline, construct-

ing and pruning feasibility graph, constructing steady state graph, and finding the shortest cycle.

Computational Complexity of General Scheduler. The computational complexity of finding

the shortest cycles on the steady state graph Gs = (Vs, Es) using Floyed-Warshall algorithm is

O(|Vs|3). The number of vertices in Gs can be approximated by: |Vs| ≈
∑C

N(t)
M

j=1

∏
k∈CMj

(dk)−∑N(t)
i=M+1C

N(t)
i −

∑N(t)
i=M+1

∑C
N(t)
i

j=1 mink∈Cij (dk − 1) where where Cij is the jth realization of

i-combinations fromN(t) vehicles. In the worst case, the computational complexity of the general

scheduler is O(d3(N(t)−M)
max ), where dmax = max

i∈N (t)
{di}. It can be seen that the computational

complexity grows polynomially w.r.t. deadlines and exponentially w.r.t. the number of vehicles.

Due to its high complexity, this scheme is intractable in dense vehicular networks.
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7.5.3 A Lightweight Scheduler

While Alg. 7.1 is capable of constructing a cyclic scheduler for a given network deadline, it is of

high computational complexity and thus only suited for small networks. For large-scale networks,

we propose a heuristic called Extended Polynomial Scheduler Extended Polynomial Scheduler

(EPS), which is of a low computational complexity.

Main Idea. EPS was inspired by the transformation of “Fictitious Polynomial Mapping” in

[95]. The main idea behind EPS is to map a network deadline d⃗(t) to a Fictitious Polynomial

Deadline (FPD) ⃗̃d(t) that satisfies ⃗̃d(t) ≼ d⃗(t). Based on FPD, we propose EPS for the polynomial

deadline ⃗̃d(t). Given ⃗̃d(t) ≼ d⃗(t), the proposed scheduler by EPS will also meet the original

deadline d⃗(t).

Transformation. EPS is designed based on a special structure of FPD. A vector ⃗̃d(t) =

(d̃1, d̃2, · · · , d̃N(t)) is FPD if d̃i = b · 2mi for ∀i ∈ N (t), b ∈ N, and mi ∈ Z [95]. Now, a

question is that for a given d⃗(t), how can we find an FPD ⃗̃d(t) such that di ≥ d̃i for all i’s and

l( ⃗̃d(t)) ≤ M? To find such an FPD, it is sufficient to check N(t) different realizations of FPD,

i.e., di = d̃i for i ∈ {1, 2, · · · , N(t)}. Specifically, for each i ∈ {1, 2, · · · , N(t)}, we construct

⃗̃d(t) =
(
di2
⌊log2(d1/di)⌋, di2

⌊log2(d2/di)⌋, · · · , di2
⌊log2(dN(t)/di)⌋). We can find a mapping for

d⃗(t) if and only if we have l( ⃗̃d(t)) ≤ M for one of these realizations. If such an FPD is not found

from all the realizations, we remove vehicles with the shortest deadlines one by one until an FPD

is found. It is worth noting that for a single network deadline, multiple FPDs with suitable load

may exist. In such a case, we pick the FPD with the lowest load.

We illustrate the mapping procedure through the example as shown in Fig 7.5. In this example,

the network deadline is d⃗(t) = (2, 2, 3, 3, 3, 4, 5, 6, 7, 9, 9, 9, 10), yielding l(d⃗(t)) = 3.19. We

pick d1 = 2 for mapping. Then, we have ⃗̃d(t) = (2 × 2⌊log2(2/2)⌋, 2 × 2⌊log2(2/2)⌋, · · · , 2 ×
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2⌊log2(10/2)⌋) = (2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8), yielding l( ⃗̃d(t)) = 4. Since the network load

meets l( ⃗̃d(t)) ≤M condition in Lemma 5, we use the polynomial deadline ⃗̃d(t) for scheduling.

Grouping. Once an FPD with a proper load is found, we then construct a feasible scheduler.

For the special case where M = 1, the Fictitious Scheduler Construction (FSC) algorithm in [95]

can provide a feasible scheduler when d⃗(t) can be mapped to ⃗̃d(t) whose load is no more than one,

i.e., l( ⃗̃d(t)) ≤ 1. Therefore, for the general case with M > 1, if we can divide N (t) into M sepa-

rate groups and each group can be mapped to an FPD with load no greater than 1, then a feasible

scheduler can be constructed. We now present a procedure to divide N (t) into such M separate

groups. Recall that d⃗(t) can be mapped to an FPD ⃗̃d(t) with l( ⃗̃d(t)) ≤ M . Without loss of gener-

ality, we assume d̃1 ≤ d̃2 ≤ · · · ≤ d̃N(t). Then, we pick the first k elements with
∑k−1
i=1 1/d̃i < 1

and
∑k
i=1 1/d̃i ≥ 1 as one group. Again, referring to the example shown in Fig. 7.5, the FPD

is divided into four groups, each of which holds a load no less than 1. The deadlines of the four

groups are {2, 2}, {2, 2}, {2, 4, 4}, and {4, 4, 8, 8, 8, 8}.

Construction of feasible scheduler. To design the feasible scheduler, we apply FSC on each

group. The schedulers designed for all groups will be aggregated toward a final scheduler, which

makes a decision for polling a subset of vehicles in each global iteration. For the final scheduler,

we have the following lemma:

Lemma 7. For any d⃗(t) that can be mapped to an FPD ⃗̃d(t) with ⃗̃d(t) ≼ d⃗(t) and l( ⃗̃d(t)) ≤ M ,

EPS can find a feasible scheduler.

Proof. d̃i can be written as d̃i = b/2mi , where mi ∈ N, mi is non-increasing with i, and b is an

integer. Equivalently, 1/d̃i = 2mi/b. For the first group including vehicle 1 to vehicle k, we have:

s ≜
k∑
i=1

2mi (7.9a)
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Figure 7.5: An example of using EPS for scheduling. The network includes 13 vehicles with
network deadline d⃗(t) = (2, 2, 3, 3, 3, 4, 5, 6, 7, 9, 9, 9, 10) and l(d⃗(t)) = 3.19. Final scheduler is
the output of step 4 and it is a cyclic scheduler with cycle length 8.

(s− 2mk)/b ≤ 1, (7.9b)

s/b > 1. (7.9c)

(7.9b) and (7.9c) follow from (7.9a) and the definition of a group. Based on (7.9b) and (7.9c),

s can be expressed as s = ⌈b/2mk⌉ · 2mk = ⌈d̃k⌉ · 2mk . Given that mi ≥ mk for all i < k, we

have s ≤ ⌈b/2mi⌉ · 2mi = ⌈d̃i⌉ · 2mi for i < k. Therefore, we can obtain an FPD ⃗̃g with l(⃗̃g) = 1

as ⃗̃g = (d̃1, d̃2, · · · , d̃k) · s/b. For g̃i, i = 1, 2, · · · , k, we have g̃i = d̃i · s/b ≤ d̃i · ⌈d̃i⌉ · 2mi/b =

⌈d̃i⌉ ≤ di. Therefore, (d1, d2, · · · , dk) can be mapped to ⃗̃g and we can use FSC to find a scheduler

for it [95]. We repeat the above procedure up to (M − 1) times for remaining groups, and use FSC

to find a feasible scheduler for each of them. Then we combine the M different schedulers and get

feasible scheduler S.

In our example shown in Fig. 7.5, a cyclic scheduler is designed for each group using FSC

in [95]. As an instance, for the first group which includes vehicles 1 and 2, the scheduler polls

vehicle 1 on every even global iteration and polls vehicle 2 on every odd global iteration.

Aggregation. Once a cyclic scheduler is constructed for each group. In each global iteration,

we poll the vehicles specified by each group. Referring to the example in Fig. 7.5, at t = 3, the
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vehicle selected in the third global iteration are S(3) = {1, 3, 5, 10}. For the general case, if the

number of groups are less than M , more than one vehicle specified by a scheduler will be selected.

For example, if there are two groups and M = 4, on each global iteration, two subsequent vehicles

will be selected by the scheduler of each group.

Computational Complexity of EPS. The computational complexity of EPS can be attributed

to finding FPD and FSC. FSC is called only once when an appropriate FPD is found. Finding an

appropriate FPD may go through an iterative removal of vehicles with the shortest deadline to relax

the network load. EPS finds FPD over the entire set of vehicles. Based on the computational com-

plexity analysis in [95], the computational complexity of EPS isO(N3(t))+O(Mdmax log dmax).

In a dense vehicular network, the computational complexity of EPS grows polynomially w.r.t.

N(t), which is much lower compared to the general scheduler.

When to Invoke EPS. Alg. 7.1 presents a generic scheduler, which can find a feasible cyclic

scheduler that may not be realized by EPS. This issue can be intuitively inferred by considering the

gap between necessary condition of schedulability (i.e., d⃗(t) ≤ M ) and a network load threshold

that guarantees existence of at least one FPD (i.e., d⃗(t) ≤ M ln(2)) [95]. However, in moderate-

size or large-size vehicular networks, steady state graphs become too large to store and process.

Based on the available computational resources at the server, a threshold is needed to be set on the

network size to efficiently switch between EPS and the general scheduler, and to gain a suitable

trade-off between performance and complexity.

How DDVS (EPS and General Schedulers) Mitigate Stragglers Effect. After incorporating

processing delays into the deadlines, if a straggler exists in the network, the network load drasti-

cally increases. When such an increase pushes the network load beyond the threshold of schedu-

lability, DDVS removes the vehicles with the shortest deadline. These vehicles are less-capable

vehicles, and likely pose high processing delays. Therefore, DDVS treats the schedulability of the
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Algorithm 7.2 Extended polynomial scheduler (EPS).

1: Input: The network deadline d⃗(t)
2: if d⃗(t) = d⃗(t− 1) then
3: Keep current scheduler
4: else
5: Q = N (t)

6: Sort d⃗(t) in increasing order
7: while 1 do
8: for i = 1, 2, · · · , |Q| do
9: Set ⃗̃d(t) = [di2

⌊log2(d1/di)⌋, · · · , di2⌊log2(d|Q|/di)⌋]

10: if l( ⃗̃d(t)) ≤M then
11: goto line 14
12: Q ←− Q\{1}
13: Update d⃗(t)
14: while |Q| > 0 do
15: if

∑|Q|
i=1 1/d̃i > 1 then

16: Find the smallest k such that
∑k
i=1 1/d̃i ≥ 1

17: else
18: Set k = |Q|
19: For [d1, d2, · · · , dk], use FSC to find a feasible scheduler and aggregate it into S
20: Q ←− Q\{1, 2, · · · , k}
21: Update d⃗(t) and ⃗̃d(t)
22: Return S

network by ignoring stragglers with high processing delays.

Summary of EPS. Alg. 7.2 summarizes EPS. It first sorts the vehicles based on their deadline

in a non-decreasing order and then maps it to multiple FPDs. If EPS finds an FPD with load

less than M , it uses that FPD for scheduling; otherwise, it removes the vehicle with the shortest

deadline and repeats this procedure. Once an FPD with a load less than M is found, it partitions

the FPD into multiple groups and constructs a scheduler for each of them. The aggregation of

schedulers for different groups leads to a desired scheduler.
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7.6 Concurrent Vehicle Polling Scheme (CVPS)

Concurrent vehicle polling will significantly improve the FL convergence, and uplink MU-MIMO

is an approach to achieving concurrent vehicle polling. While uplink MU-MIMO has been well

studied in WiFi and cellular networks, existing techniques are limited to stationary or semi-stationary

networks as they assume the perfect time alignment of uplink transmissions. This assumption,

however, is not valid in vehicular networks. This is because, while the frequency synchronization

can be achieved using GPS or other techniques, the time misalignment of uplink transmissions

(caused by signal propagation delay, packet processing delay, clock jitters, etc.) is hard to elimi-

nated in dynamic vehicular networks. To address this issue, we propose an asynchronous uplink

MU-MIMO transmission scheme to enable concurrent vehicle polling. It should be noted that

the asynchronism CVPS deals with is different from that in asynchronous FL. CVPS deals with

the signal-level asynchrony, while FL deals with the message-level asynchrony. In Asynchronous

FL, the server receives delayed local models even after the termination of a global iteration. The

asynchronism in asynchronous FL is in the order of packets or frames. In contrast, CF4FL deals

with the synchronous FL where all local models from the selected vehicles will be received by the

server within the corresponding global iteration. The PHY-layer asynchronism in CF4FL is in the

order of signal samples.

When DDVS initiates a global iteration, the selected vehicles simultaneously send their local

models to the server as shown in Fig. 7.6. The vehicles transmit their local models through multiple

frames within a stream. This is because a frame must lie within channel coherence time, which

is relatively short in vehicular networks. Per 802.11p standard, each frame comprises a preamble

including an L-STF and an L-LTF, an L-SIG, and payload (frame body).

As shown in Fig. 7.7, CVPS employs M antennas of the server to mitigate inter-vehicle in-
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Figure 7.7: PHY-layer structure of CVPS.

terference and recovers all the transmitted frames within streams. To do so, the received signal

samples from M antennas first go through the signal projection module, which decomposes the

signaling space into M subspaces in the time domain. The projection of signal in each subspace is

used for time and frequency synchronization. Once time and frequency offsets are compensated,

the signals will be converted to frequency domain using OFDM demodulation. A spatial detection

filter is then designed for each interfered frame. The spatial detection filter not only suppresses

inter-vehicle interference, but it also equalizes the unknown channel. The recovered frame is de-

modulated after phase offset compensation. In what follows, we describe the key components of

CVPS.

Synchronization via Signal Projection. In the vehicular scenario shown in Fig. 7.6, syn-

chronization of streams is challenging as each stream is polluted by inter-vehicle interference.
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To alleviate the interference, we project the time-domain signal samples into M orthogonal sub-

spaces. Let us denote the nth received samples from all antennas by y(n) ∈ CM×1. The basis of

signal subspaces at sampling index n, B(n), can be calculated through eigenvalue decomposition

as follows:

[B(n),Λ(n)] = EVD

 1

2Ls + 1

n+Ls∑
i=n−Ls

(
y(i)y(i)H

) , (7.10)

where EVD(·) denotes eigenvalue decomposition, (·)H is conjugate transpose operation, Ls is

an integer number that defines a window length in calculation, Λ(n) ∈ CM×M is a diagonal

matrix containing eigenvalues, and B(n) ∈ CM×M has corresponding eigenvectors with Bj(n)

being its jth columns. Bj(n) is the base for the jth subspace and can be used to project received

signal samples at sampling index n onto subspace j. The projected signals are then used for

synchronization. To find the appropriate subspace for a certain stream, we try all subspaces and

choose the one with highest cross-correlation peak in time synchronization. That said, if the jth

subspace is chosen for stream i, ỹi(n) ≜ Bj(n)
Hy(n) is employed for time and frequency offset

compensations of stream i. The beginning of a frame in stream i is then calculated w.r.t. the peak

of correlation between LTF waveform used by vehicle i and ỹi. Also, the carrier frequency offset is

computed by θi = 1/K ·∠(
∑n=n0+K−1
n=n0

ỹi(n)ỹi(n+K)H), where ∠(·) is the angle of a complex

number, K is the FFT size, and n0 is the position of the first LTF sample in a frame. The calculated

offset is corrected before further processing.

Spatial Detection Filter. The synchronized signals are first translated into the frequency do-

main by OFDM demodulation. Let us focus on the first frame of stream i coming from vehicle i.
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In the frequency domain, the received signal can be written as:

Y(l, k) = hui(k)xi(l, k) +
∑

j∈S(t),j ̸=i
(huj(k)xj(l, k)), (7.11)

where Y(l, k) ∈ CM×1 and xi(l, k) ∈ C are the received signal at the server and the transmitted

signal from vehicle i on subcarrier k and sample l, respectively. Also, hui(k) ∈ CM×1 denotes

the channel from vehicle i to the server on subcarrier k. Although the channel gain may vary over

the stream, it is assumed to be unchanged over one frame. For recovering a frame in stream i, we

particularly look for filter P(k) ∈ CM×1 that nullifies
∑
j∈S(t),j ̸=i huj(k)xj(l, k) and equalizes

the effect of channel hui(k). The filter can be constructed as:

P(k)=

 ∑
(l,k′)∈Rik

Y(l, k′)Y(l, k′)H


−1 ∑

(l,k′)∈Rik

Y(l, k′)Ri(l, k
′)H

, (7.12)

where Ri(l, k′) is the reference signal on sample l and subcarrier k′ of the preamble used by

vehicle i and Y(l, k′) denotes the corresponding received signal samples over all the antennas.

Rik is the set of reference signal samples located within a pre-defined sliding window around

subcarrier k. With this filter, interference mitigation and channel equalization can be achieved

through x̂i(l, k) = P(k)HY(l, k), where x̂i(l, k) is the estimated signal symbol. (7.12) suggests

that the design of P(k) is not reliant on CSI and it only needs pre-known reference signal samples

in the preamble of desired frame, which is the case for L-LTF and L-STF samples in IEEE 802.11p.

Computational complexity of Filter Design. The computational complexity of designing a

spatial filter is independent of the size of vehicular networks since at most M vehicles will be

polled in each global iteration. The design of such a filter requires matrix multiplication, addition,

and inversion. The overall computational complexity of designing a spatial filter is O(NscM3),
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Figure 7.8: Illustrating the idea of CVPS.

where Nsc is the number of subcarriers.

Mitigating Preamble Misalignment. The detection filter in (7.12) can remove unintended

streams if those streams interfere with the preamble of the desired frame. This requirement cannot

be met at the first frame of each stream due to the lack of network-wide synchronization. As an

example, consider the transmitted streams shown in Fig. 7.8, where the preamble of the first frame

from stream 1 is not collided with stream 2. If the reference signal samples in the preamble are

leveraged to design a detection filter like P11, this filter cannot mitigate the interference caused

by stream 2. To address this issue, we do not use the preamble of the first frame for filter design.

Instead, once the filter P12 is designed for the second frame, it is used for both first and second

frames. Here, we have assumed that time misalignment does not exceed the length of a frame.

It is worth noting that time misalignment is not a challenge for the frames located on the tail of

streams. This is because a non-interfering stream at the preamble will not interfere with the rest of

the frame. Therefore, starting from the second frame, the detection filter leverages the reference

signal samples to recover the frame’s body within the same frame as shown in Fig. 7.8 for frames

2 to L.
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7.7 Performance Evaluation

In this section, we evaluate the performance of CF4FL and its two components (DDVS and CVPS)

using experiments and trace-driven simulation.

7.7.1 Evaluation Methodology

We first implement CVPS on a wireless vehicular testbed and investigate its performance on park-

ing lots, local streets, and highways. The measurement results will be used to simulate vehicle

polling in large vehicular networks with N(t) = 5 ∼ 25 vehicles. In our simulation, DDVS uses

the general scheduler if N(t) ≤ 8 and EPS otherwise. Through trace-driven simulation, we then

evaluate CF4FL in dynamic vehicular networks of different sizes.

Vehicular Testbed. Fig. 7.9 shows our small-size vehicular testbed used to evaluate CVPS.

It has three vehicles: one acts as the server, and the other two act as four virtual vehicles. The server

is implemented using a USRP N310 radio with four antennas (M = 4) for the transmission/reception

of RF signals, a ThinkPad T480 with Quad-Core i5-8250U CPU for baseband signal processing,

and an APC 1500VA UPS battery as shown in Fig. 7.9(b). Each of the two client vehicles carries

a USRP X310 device, a ThinkPad T480 with Quad-Core i5-8250U CPU, and a BESTEK 300W

power inverter as shown in Fig. 7.9(c). Since USRP X310 has two independent RF chains, we use

the two client vehicles to emulate four client vehicles, each of which has one antenna for radio

signal transmission and reception.

Experimental Route. We evaluate CVPS using sequential polling (i.e., single-user MIMO) as

the comparison baseline in three scenarios: a parking lot as shown in Fig. 7.9(d) at 0 ∼ 15 mph

speed, local streets at 25 ∼ 55 mph speed on 6.3 miles, and a highway at 55 ∼ 70 mph speed on
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Figure 7.9: Experimental scenarios and our vehicular testbed for evaluating polling approaches.

3.9 miles, as shown in Fig. 7.9(e). The two client vehicles keep staying within 50 ∼ 300 ft distance

from the server during several laps on the experimental route.

Trace-Driven Simulation. We simulate CF4FL for large networks with different numbers of

vehicles based on our collected experimental results. Specifically, we assume a network with size

(number of vehicles) N(0) at the beginning, where a vehicle can join/leave the network based

on the arrival/leave global iterations drawn from Poisson distribution with parameter λ. In our

simulation, we let N(0) ∈ {10, 15, 20} and λ ∈ {0.02, 0.04}, with the same probability for a

vehicle joining and leaving the network. In a simulated network, each vehicle has an integer

deadline drawn from uniform distribution between 2 to 10. Also, we assume a vehicle collects a

batch of data during each global iteration.
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Figure 7.10: CNN-based FL application for digit classification.

7.7.2 FL Task

As a case study, we use FL to classify images of digits 0 to 9 in our evaluation. The digit classi-

fication is a useful tool in vehicular environments for different purposes, such as recognizing road

sign of speed limit, identifying the information on traffic sign, recognizing clearance limits, weight

limits, etc.

Dataset. We use MNIST dataset. It includes 70,000 images of handwritten digits, where

60,000 are used for training and 10,000 for test. Each image has 28×28 pixels and labeled with a

number from 0 to 9. In our experiments, the dataset is partitioned among vehicles in an iid manner.

Neural Network Architecture. We use a Convolutional Neural Network (CNN) as shown in

Fig. 7.10 to perform the desired FL task. The input is 28 × 28 pixels. The first 2D convolutional

layers are followed by batch normalization, ReLu, and max pooling layers. The outputs of the last

2D convolutional layers are flattened and then flowed into a dense layer. A softmax layer is applied

to the output of dense layer to represent the predicted digit.

Training and Convergence. For training digit classifier, the learning rate is set to 0.001 and it

is not decayed as the data samples in vehicles will be discarded after consumption (past, current,

and future data samples are equally valuable). The number of global iterations is also not pre-

set. We assume that the global model converges when the classification accuracy change of two

consecutive global iterations is less than 0.1%.
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Benchmarks. For DDVS, we employ the following three schedulers as the performance bench-

mark.

• Random Scheduler (RND): At each global iteration, RND scheduler selects M vehicles

among N(t) vehicles with equal probabilities. The selection is performed regardless of

vehicles status (i.e., d⃗(t) and p⃗(t)).

• Round-Robin Scheduler (RR): The RR scheduler is essentially a cyclic time-sharing sched-

uler. It selects M vehicles in each global iteration such that in a large number of global

iterations, all the vehicles are polled with equal probability.

• Earliest Deadline First Scheduler (EDF): In each global iteration, EDF scheduler selects

M vehicles that are closest to their corresponding deadline (i.e., M vehicles corresponding

to M smallest elements in d⃗(t) − p⃗(t)). If more than M vehicles are found with the same

closeness, the ones with more data samples are selected.

For CVPS, we employ Sequential Polling (SP) as the performance baseline. While CVPS polls

M vehicles in a global iteration concurrently, SP pollsM vehicles sequentially in a global iteration.

Finally, for CF4FL, we combine the benchmark schedulers with SP to provide three benchmarks:

RND+SP, RR+SP, EDF+SP.

7.7.3 Performance of DDVS

A Case Study. We simulate a vehicular network starting with N(0) = 15 vehicles at the first

global iteration. Vehicles join or leave the network at the beginning of each global iteration, follow-

ing a Poisson distribution with λ = 0.02. An instance of such a network is shown in Fig. 7.11(a).

The network size varies between 15 to 20 vehicles during 1, 000 global iterations. The shortest and
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Figure 7.11: Data loss of different schedulers for a vehicular network with N(0) = 15 and λ =
0.02.

longest interval between two subsequent changes are 1 and 97 global iterations. The network load

also varies between 2.8 to 5.9 as shown in Fig. 7.11(b). Also, we assume M = 4 and, therefore,

the necessary condition for the schedulibilty of network load is l(d⃗(t)) ≤ 4. We leverage all bench-

mark schedulers along with DDVS on this network and measure the lost batches of data in each

iteration. The maximum data loss is 6, 10, 8, and 10 batches in an iteration for DDVS, RND, RR,

and EDF schedulers, respectively. The average data loss of DDVS, RND, RR, and EDF schedulers

is 0.9, 4.0, 2.2, and 2.9 batch per global iteration, respectively.

Extensive Simulation. By the same token, we repeat the above study through extensive sim-

ulation to measure the gain of DDVS scheduler in different network sizes and different network

dynamics. Fig. 7.12 presents the loss of data, from which we have following observations: i) com-

pared to RND scheduler over all cases, DDVS reduces the data loss by 76.1% on average; ii) com-

pared to RR scheduler, DDVS reduces the data loss by 53.9% on average; and iii) compared to

EDF scheduler, DDVS reduces the data loss by 59.0% on average.
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Figure 7.12: Data loss of DDVS, RND, RR, and EDF schedulers in different vehicular networks.
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Figure 7.13: The EVM performance of CVPS when decoding four concurrent data packets.

7.7.4 Performance of CVPS

A Case Study. The case study is conducted at the location marked in Fig. 7.9(a). We first

conduct sequential polling and send a stream from each antenna of vehicles 1 and 2 one by one.

The error vector magnitude (EVM)2 of decoded signals are −19.8 dB, −20.0 dB, −19.1 dB, and

−17.3 dB. The average data rate achieved by sequential polling is interpolated to 11 Mbps. We then

conduct CVPS, which concurrently polls four streams from vehicles 1 and 2. The constellations

of first decoded frame in all streams are shown in Fig. 7.13. The EVM of decoded frames is

2EVM is calcuated by EVM = 10 log10(
E[|Ŝ(l,k)−S(l,k)|2]

E[|S(l,k)|2]
), where Ŝ(l, k) and S(l, k) are the lth estimated

and original modulated symbols on the kth subcarrier, respectively.
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Figure 7.14: EVM of decoded frames via CVPS and sequential polling in parking lot, local streets,
and highway.

−16.7 dB, −19.2 dB, −15.5 dB, and 12.5 dB. Collectively, CVPS yields 34 Mbps data rate. As

a global iteration includes the polling of M = 4 vehicles in uplink and a broadcast in downlink,

CVPS reduces the time consumption of a global iteration by 2.2× compared to sequential polling.

Extensive Experiments. We perform extensive experiments to measure the EVM of de-

coded signals polled by CVPS and sequential approaches at parking lot, local streets, and high-

way. The cumulative distribution function (CDF) of measured EVMs is illustrated in Fig. 7.14.

The average EVM of decoded signals with CVPS is −19.5 dB, −16.8 dB, and −15.9 dB at the

parking lot, local streets, and highway, respectively. The average EVM of decoded signals with

sequential polling is−22.0 dB,−20.2 dB, and−19.4 dB at parking lot, local streets, and highway,

respectively. Apparently, CVPS has a slight EVM degradation compared to sequential polling.

This degradation is caused by the residual inter-vehicle interference of concurrent transmissions.

Fig. 7.15 presents probability of MCS selection for uplink transmissions in both CVPS and

sequential polling. It shows that CVPS causes 1% and 4% data packet loss in local streets and

highway, respectively. In contrast, no loss is observed for sequential polling. This is because se-

quential polling selects a single vehicle for uplink transmissions+, while CVPS selects four vehi-

cles for concurrent uplink transmissions. The data packet loss is caused by the poor uplink channel.

Fig. 7.16 shows the data rate achieved by two polling strategies. It is proportional to the data rate
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Figure 7.15: Comparison of CVPS and sequential polling in terms of MCS selection probability.
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Figure 7.16: Data rate achieved by CVPS and sequential polling.

of local model polling. Evidently, CVPS offers a much higher data rate for local model polling in

the uplink, thereby shortening the time consumption of each global iteration. CVPS alone reduces

the duration of a global iteration by 58.3%, 52.4%, and 52.4% in a parking lot, local streets, and

highways, respectively.

7.7.5 Performance of CF4FL (DDVS + CVPS)

Finally, we evaluate the performance of CF4FL by comparing it with RND+SP, RR+SP, and

EDF+SP benchmarks in two cases: i) N(0) = 10 and λ = 0.02, and ii) N(0) = 20 and λ = 0.04.
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Figure 7.17: Convergence of CF4FL and benchmark approaches in different vehicular scenarios.

Two cases are simulated in the three environments (parking lot, local streets, and highways), and a

total of six scenarios are evaluated. The performance of CF4FL and its benchmarks are presented

in Fig. 7.17. And we have the following observations.

• FL Convergence Speed. On average over all scenarios, CF4FL reduces the convergence

time by 48.2%, 34.9%, and 35.3% compared to RND+SP, RR+SP, and EDF+SP, respectively.

• Data Collection Speed. As shown in Fig. 7.17(a)-(f), CF4FL obtained 60,000 data samples

in a shorter period of time compared to the benchmarks. On average, data collection speed

of CF4FL is 2.2×, 1.8×, and 1.7× faster than RND+SP, RR+SP, and EDF+SP, respectively.

7.7.6 Effect of Vehicle Selection and Deadlines on Learning

To determine how the number of selected vehicles per global iteration and vehicles’ deadlines

affect FL training, we have considered two additional test scenarios on a vehicular network at a
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Figure 7.18: Effect of vehicle selection and deadlines on FL training.

parking lot with N(0) = 20, λ = 0.04, and a four-antenna server. First, we investigate the effect

of selected vehicles by putting an intentional limit on the number of selected vehicles per global

iteration. In the second scenario, while four vehicles are selected per iteration, the deadlines are

scaled by a factor of 1, 2, and 3. As shown in Fig. 7.18(a), increasing the number of selected

vehicles (up to M = 4) per global iteration will accelerate the learning process. When the server

selects 2, 3, and 4 vehicles per iteration, the global model converges within 3.0s, 2.3s, and 1.4s.

Referring to Fig. 7.18(b), doubling and tripling the deadlines reduce the convergence time by

23.3% and 53.3%, respectively.

7.8 Chapter Summary

In this paper, we studied vehicle scheduling and polling problems associated with FL in vehicular

networks, with the aim of accelerating the convergence speed of FL training process. To tackle the

above two problems, we presented CF4FL, a vehicular communication framework for FL training

process. CF4FL comprises two complementary components, namely DDVS and CVPS. DDVS

is a scheduler for each global iteration of FL, which reduces data loss under deadline constraints.

CVPS takes advantage of multiple antennas at the server to enable concurrent local model polling,
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thereby significantly reducing the time duration of each global iteration and leading to a faster

convergence of FL. We have evaluated CF4FL through a blend of experimentation and trace-driven

simulation. Our results show that CF4FL reduces the convergence time by 39.4%, and it collects

data samples 1.9× faster than existing solutions in parking lots, local streets, and highways.
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Chapter 8

Summary and Outlook

In this thesis proposal, we strode to bring intelligence and efficiency to the next-generation wireless

networks. We leveraged communication frameworks, artificial intelligence, and synergies between

them to take most out of limited communication resources and improve both learning process and

performance of wireless networks. We plan to continue our research to develop more practical

solutions for wireless communication networks. In the following, we first summarize our past

efforts and then explain open problems in intelligent networking we intend to purse.

8.1 Summary

Efficiency. In this thesis, we first proposed new communication frameworks targeting improve-

ment of spectral efficiency and throughput. Specifically, we proposed a spectrum sharing scheme

to enable two uncoordinated networks concurrently utilize the available spectrum. We designed

two blind interference cancellation techniques to mitigate co-channel interfereg in-band underlay

D2D communications in cellular networks. nce and establish an underlay spectrum sharing mech-

anism for the two networks. We further extended our idea for enablin We then shifted our focus to

re-visit multiple access in a single WLAN. We proposed a downlink NOMA scheme to enhance

connectivity and throughput of WLANs. Our scheme benefits from new pre-coder and SIC tech-

niques to improve per-group throughput and a new user grouping approach to improve network
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throughput.

Intelligence. With the aid of recent advances in artificial intelligence, we proposed two tech-

niques for WLANs. We proposed LB-SciFi, which uses DNNs for frequency-domain compression

of CSI required for downlink MU-MIMO in WLANs. Reducing the airtime overhead caused by

CSI acquisition, LB-SciFi significantly increases the net throughput achieved by MU-MIMO in

WLANs. We also proposed DeepMux, which puts a solid step toward implementation of downlink

MU-MIMO-OFDMA mode in future WLANs. DeepMux is equipped with two DNNs, one for

interpolating CSI reports which are already sparsified by users, another for accelerating resource

allocation at AP. We finally presented CF4FL to put a concrete step forward deployment of FL in a

challenging environment like vehicular networks. CF4FL benefits from deadline-driven scheduler

which aims to reduce data sample loss in vehicle, thereby accelerating convergence of global ML

model. CF4FL further enables asynchronous concurrent transmissions for polling vehicles which

reduces time period of global iteration. CF4FL, in brief, improves the learning efficiency of FL.

8.2 Future Focus

As our future research efforts mainly target bringing intelligence to wireless communication net-

works, we describe a number of challenging issue ahead of practical deployment and broadening

the scope of our proposed solutions in this thesis as follows.

Proprietary Solutions.: While DeepMux and LB-SciFi have centrally trained DNN-AEs for

CSI compression, the trained model is intrinsically a two-sided model which will be deployed

partially at both users and the AP. This centralized training and decentralized deployment are not

straightforward as users and AP are usually from different vendors, each of which may prefer to

use its own proprietary encoder/decoder. Eaither users’ vendors or APs’ vendors may be unwilling

241



to transfer a part of their models. How to keep encoder(s) at user(s) and decoder(s) at AP, yet

perform a successful training without model transfer, is a challenging task in practice.

Multi-vendor Training Collaboration. In a real wireless ecosystems, users and APs from

different vendors form a wireless network. For CSI compression, how to enable an AP to train one

decoder in conjunction with multiple encoders is a challenging task.

Model Monitoring. For model monitoring in CSI compression, either users need to send raw

CSI to the AP so that AP can calculate CSI reconstruction accuracy or the AP sends its decoder to

users so that users can monitor performance of entire DNN-AE. Neither of these approaches are

practical. First, AP may refuse to reveal its decoder to the other parties, let alone model exchange

overhead. Second, monitoring is a continuous process. If the CSI samples need to be sent for

the AP, monitoring inflicts a huge airtime overhead to the wireless network. Non-input-based

monitoring is required to isolate the monitoring process at one side (either users or AP).

Quantization-Aware training. LB-SciFi and DeepMux apply post-training quantization for

exchanging CSI feedback which is not an efficient solution since ML models have never been

exposed to the quantization. The optimal solution is incorporation of quantization in the training

process so that the core architecture of ML models learn to mitigate quantization error. Unfortu-

nately, quantization is a non-differentiable function which disrupts the back propagation and model

updates during the training process. It is necessary to investigate quantization-aware training to im-

prove the performance of ML models in inference phase.

Quantization misalignment. Quantization misalignment arises when encoders and decoders

from different AP and users vendors are trained to work with different quantization methods.

As such, in the inference stage, the quantization and dequantization methods are not necessar-

ily matched. How to make the models robust against such a misalignment is a challenging but

necessary research direction. Novel solutions are required to enable reducing the burden of data
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collection in current wireless technologies.

Low-Overhead Data Collection. ML models for CSI compression usually are trained at the

AP/BS; however, users have access to CSI measurements. Due to excessive size of data samples

in scale, it is not possible to continuously transfer data from users to the AP/BS. Also, relying on

channel reciprocity for collecting high resolution CSI samples is not always possible.

Fairness of FL in heterogeneous ITS. CF4FL has assumed the vehicular environment is rich

of data samples, so that the vehicles can continuously collect i.i.d data samples. While CF4FL is

the first of its kind focusing on vehicular environment, it will be more practical to extend its scope

to heterogeneous environment from data collection perspective. It is challenging to train a fair ML

model, equally works well for all vehicles, in such an environment using FL.
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