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ABSTRACT

A Multiple Loop Square Well Model has been developed to simulate coherent motion

in synchrotron machines, while including space charge and wakefields. The model builds

upon previous single-well work by Blaskiewicz[1] and Burov[2] to allow the approximation

of arbitrary potentials via the superposition of multiple square wells. Model predictions and

experimental observations are discussed. In particular the model predicts TMCI thresholds

at large space charge tune shifts that are not present in similar models. At the same time,

a more realistic solution for convective motion and chromatic effects is arrived at due to the

the more complex longitudinal dynamics.
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PREFACE

The main body of this dissertation is divided into five chapters, with some additional ma-

terial contained in Appendices. This dissertation discusses the development of a Multiple

Loop Square Well (MLSW) model to simulate beam stability in high intensity synchrotron

machines including synchro-betatron coupling, as well as model predictions and experimental

confirmation.

Chapter 1 is primarily concerned with establishing the background for subsequent sec-

tions. This will act as the minimum baseline to understand collective effects and beam in-

stabilities, including sideband generation, coherent space charge tune shift, and wakefields.

This chapter concludes with a brief survey of coherent instabilities and modeling efforts.

Chapter 2 contains the detailed mathematical derivation of the Multiple Loop Square

Well model, although some of the more tedious portions of the derivation were relegated to

the Appendix to improve readability and flow. This model is a description of bunch evolution

in the presence of significant space charge tune shift and is a generalization of previous work

by Blaskiewicz [1] and Burov [2]. This model generalizes the longitudinal dynamics as an

arbitrary system of square potential wells, generating new physical results. The final sections

of the chapter describe the implementation of the MLSW model in a C++ code with Python

wrapper.

Chapter 3 focuses on the predictions of this model, beginning with demonstrating that

this new MLSW matches the well-established results from the limiting case of Blaskiewicz’s

Square Well Model. From there, we move on to study the implications of more complex lon-

gitudinal dynamics, such as approximating arbitrary particle distributions, nonlinear chro-

maticity, along with convective instability[2] and coupled bunch modes over extended time

periods.
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Chapter 4 is focused on an experimental study of mode coupling instabilities at the

Fermilab Recycler to confirm aspects of the MLSW model. Initial work was concentrated

on studying existing data sets from the Waker experiment which uses a kicker to artificially

simulate wake forces. This culminated in a dedicated February 2023 experiment where the

convective instability was observed using the Waker.

In Chapter 5 we end with a study of Periodic Resonances in the AGS. These resonances

are driven by synchro-betatron coupling at significant space charge tune shifts and are there-

fore complementary to the main body of work.
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Chapter 1

Collective Effects and Instabilities

Particle accelerators have gone through many generations of evolution in the past century,

growing from small tabletop experiments to larger Van de Graaff machines and cyclotrons,

and so on to modern day linear accelerators, Free Electron Lasers, and kilometer scale

synchrotrons. The applications of these accelerators have expanded from pure physics to

other applications including materials and biology research from light-sources to medical

isotopes and treatment. Over time, the accelerators have evolved to higher and higher

energies and intensities.

Conventional non-wakefield acceleration is limited by breakdown. If electric fields are

too strong, small imperfections and residual gas will cause an arc between high and low

potentials and reduce the electric field. This makes it less economical to build a high energy

accelerator out of a linear set of voltage gaps once the single particle energy becomes too

high. A more efficient new circular geometry must be adopted. In such an accelerator

particles will pass the same magnets and the same cavities over and over making it possible

to get a much higher final energy than achievable with a linear configuration. The cavity

fields sinusoidal, operating at an harmonic of the time it takes a particle to complete one

revolution. Therefore particles will be accelerated each and every turn. The sinusoidal form

of the cavity fields also provide longitudinal confinement of the bunch, as particles along the

length of the bunch will observe slightly different fields, the proper choice of which will give

linear focusing for a small offset from the central synchronous particle.
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Higher intensity is needed to provide good statistics as the number of events observed

scales linearly with beam intensity. While high intensity is needed, the beam quality must

also be considered, to ensure the particles are where you actually want them, as quantified

by figures of merit like luminosity and bightness. There are several ways to increase inten-

sity, but there are essentially two options: increase the number of bunches, or put more

particles within each bunch. It is possible to transport the same number of bunches as the

harmonic number of the accelerating cavity, but this may not be practical due to tight tim-

ing constraints and interactions between the nearby bunches. Each particle bunch interacts

with the accelerating structures it passes, generating wakefields which may interfere with

the propagation of multiple bunches. These interactions will decay over time, but additional

bunches too soon after the initial bunch can create a feedback loop and disrupt transport.

Wakefields will be discussed in more detail in section 1.4

Adding more particles to a single bunch will increase the free space charge of the bunch.

Like any charged particle distribution it will generate fields which will interact with other

particles in the field. Since all particles within the bunch have the same charge, the coulomb

forces are defocusing, and without external fields from the accelerator will lead to loss. The

interaction of the space charge and wakefields generated by the bunch itself also creates

feedback within the bunch, making it possible to drive particle loss–known as collective

instability–inside the bunch.

It could be said that the final fate of a synchrotron is to become the injector for a next

generation accelerator. Because of this, old machines will often have to transport a higher

current than they were designed for. This can mean that assumptions break down and new

sources of loss can be introduced. A thorough understanding of collective instabilities is

necessary to adjust these old accelerators, as well as to design new higher current machines.
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1.1 Frame of Reference and Coordinates

1.1.1 Accelerator ’Tune’ and ’Time Like’ Coordinates

A particle going through any lattice with optics will oscillate in the transverse planes. This is

known as betatron oscillation. We can think of this as a phase advance that increases along

the optics. For a regular structure that will be traversed repeatedly, the total phase advance

will be the sum of the individual phase advances. A synchrotron is a good example of a

regular structure (the phase advance can change over the ramp, but this is slow). The total

number of oscillations in a revolution around a synchrotron is known as the tune. There is

a tune for each transverse direction Qx, Qy as well as the longitudinal direction Qs.

A bunch in a synchrotron stays centered around the synchronous particle with small

position and velocity offsets from it. Since synchrotrons are relativistic, the velocity of the

synchonous particle is nearly constant. This means that there is a direct correspondence

between the position of the central particle s, the azimuthal angle around the synchrotron θ

and time t. The relation between these for a synchrotron with circumference C is:

βct = s = Cθ (1.1)

This will lead to some artifacts depending on which time like variable is used. For

example, dx/ds is often used instead of dx/dt as a transverse velocity. In this work, all three

of these time like variables (t, s, θ) will be used.

1.1.2 The Beam Frame of Reference

The normal coordinate system for accelerators is known as the Ferret Serret[3] coordinate

system. The coordinate system is defined with a travelling and rotating origin following the

reference orbit of a synchronous particle. By defining the system this way, we essentially
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make a transformation to the bunch’s frame of reference. The time like vector along the

bunch is s⃗ = βctẑ. Small position offsets in the direction of motion are a displacement

z from this synchronous particle. The z dimension is often known as the longitudinal or

synchrotron direction. z is currently defined to be in the direction of beam propagation but

this may be changed as necessary and will be pointed out if so.

The other spatial dimensions x and y are known as the transverse or betatron directions.

x̂ is in the radial direction for a rotating synchronous particle. That is, for a synchronous

particle undergoing rotation about an axis in the ŷ direction passing through point p⃗(s),

x̂ is oriented in the direction of the vector from the center of rotation to the origin of the

synchronous particle. Synchrotrons are circular machines and therefore the direction of

motion of the origin must undergo some rotation to be periodic. Technically this rotation

can be arbitrary as long as it is periodic over one circumference, but generally rotations are

constrained to a single plane. In straight sections of the synchrotron the Ferret Serret vectors

for x̂ and ŷ are multiply defined, but this can be fixed by treating the straight section as

having an infinitesimal curvature in the direction of one’s choice.

1.1.3 Small Phase Advance Optics

To maintain bunch shape and position in an accelerator, constraining forces must are applied.

In order to simplify construction and to enable focusing in both trasnverse planes, focusing is

split into discrete elements along the accelerator. Transverse (betatron) focusing is provided

by magnetic and electrostatic elements that are slowly varied with beam energy. Longitudinal

(synchrotron) focusing and acceleration are generally performed by RF cavities.

Longitudinal focusing tends to be much slower than transverse due to several factors.

Longitudinal focusing occurs with net acceleration from RF potential gaps. Since the bunch is
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ẑ

ŷs⃗
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p⃗(s)

O

Figure 1.1: Diagram of the Frenet-Serret coordinate system.

moving relativistically in the longitudinal direction, kicks provided by RF are comparatively

small compared to the transverse dimensions perpendicular to the relativistic motion.

Since accelerator elements are separated into discrete along s we can define the focusing

strength along the accelerator as a focusing strengthK(s) which varies as it passes individual

elements giving Hill’s Equation:

x′′ +K(s)x = 0 (1.2)

For elements with a constant value K within them, the solution can be represented as a

transfer matrix evaluated at the edge of the bunch and making beam transport along a line

of linear elements matrix multiplication. However, under certain conditions Hill’s Equation

and the corresponding Matrices simplify down to simple harmonic motion.

Let us consider with a FODO (Focusing Drift Defocusing Drift) cell of length ℓ and focal

length f in both transverse directions. This transfer matrix has the form:
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Defocusing Quad1/2 Focusing Quad 1/2 Focusing QuadDriftDrift

Figure 1.2: Diagram of a FODO cell. For symmetry the focusing quad is split into two half
elements. x

x′


s+ℓ

=

 1− ℓ2

8f2
ℓ(1 + ℓ

4f )

− ℓ
4f2

(1− ℓ
4f ) 1− ℓ2

8f2


x

x′


s

(1.3)

The transfer matrix MFODO can be thought of as a solution to a differential equation at

s+ ℓ given certain initial conditions at s. Assuming the cell is small, we take the differential

to get the differential equations of motion.

d

ds

x

x′


s

≈ ∆

∆s

x

x′


s

=
1

ℓ
(MFODO − I)

x

x′


s

(1.4)

These matrices correspond to equations of motion:

x′ = −x ℓ

8f2
+ x′(1 +

ℓ

4f
) (1.5)

x′′ = −x 1

4f2
(1− ℓ

4f
)− x′

ℓ

8f2
(1.6)

Both ℓ and 1/f are small and can be ignored at O(ℓ2), O(ℓf−1), O(f−2), and above.

x′ = x′ +O(2) (1.7)

x′′ = −x 1

4f2
(1− l

4f
) +O(3) (1.8)

Which is just the harmonic oscillator in spatial units. The conversion to time yields a
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harmonic oscillator with ω = βc
2f

√
1− l

4f .

1.1.4 Longitudinal Optics and Chromaticity

Unlike the transverse direction, longitudinal motion is constrained by radio-frequency (RF)

cavities. The cavities give small kicks to bunches that cross them based on the phase of the

bunch. It is possible to make a longitudinal map similar to the transverse one, which also

can be treated as a harmonic oscillator centered around the momentum of the synchronous

particle p0 if the phase advance of each map is small.

The fractional momentum of a particle slightly offset in momentum is defined as δ ≡

(pz − p0)/p0. These momentum offsets will change how the particle itself interacts with

accelerator elements. Particles passing through a given element with some offset momentum

δp0 experience a weaker kick from the element while it is traversing it. For a dipole magnet,

this will mean that the path of an off-momentum particle will be bent slightly askew. The

differing bend angle changes the path length of particles for this off-momentum orbit.

This will cause the off-momentum particles to arrive at a time slightly offset in the

longitudinal phase from the previous turn–which is equivalent to an offset in z. The definition

for this in the revolution period is given in [4]:

∆T

T
=

∆C

C
− ∆β

β

= αcδ −
1

γ2
δ (1.9)

= ηδ

Where η is the phase-slip factor (η = dT/dδ), αc is the increased length of off-momentum

particles travel and is known as the momentum compaction factor. T is the period, C is

the accelerator circumference, β is the fraction of the speed of light and γ is the Lorentz

7



factor. Bunches with an η > 0 will oscillate around the synchrotron particle in the direction

opposite of its momentum, behaving almost like having a negative mass.

The difference in the period of these off-momentum particles is equivalent to a slightly

different revolution frequency and therefore will arrive at the RF cavity slightly out of phase

with the rest of the bunch. The difference in phase will cause particles to shift a small amount

∆z relative to the rest of the bunch over a single revolution. We can define ż ≡ ∆z
ω0
2π as

the approximate change in bunch position with time and is equivalent to the limit where

the phase advance of each revolution is small and the system can be approximated by an

oscillator. We can relate δ to ż in the following way:

∆T

T
= −∆z

C
(1.10)

ηδ = −∆z

βc

ω0
2π

δ = − ż
η

(1.11)

Where ω0 is the angular frequency around the synchrotron. This longitudinal offset

doesn’t just have an effect on the longitudinal dynamics. If a particle is not moving at the

design velocity, there is a slight correction to the single particle tune due to the longitudinal

momentum offset. This is normally defined in terms of δ ≡ ∆p/p, but our choice of variable

ż works as well. Linear order chromaticity is defined in the following way:

ξδ ≡
dQx
dδ

(1.12)

ξż = −1

η

dQx
dδ

(1.13)

If the direction of z is redefined from z → −z as in Chapter 2, the linear chromaticity in Eq.

1.13 will differ by a negative sign.
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1.2 Sideband Modes

In the simplest case, an oscillator can be thought of as an object experiencing a ’spring-like’

force, oscillating at a rate that is dependent on the force and the object itself. The addition

of another spring force orthogonal to the original force generates coherent frequencies offset

by multiples of the second oscillator’s frequency.

In a charged particle bunch, the particles themselves are a system of coupled (and pos-

sibly nonlinear) oscillators. For a synchrotron, the bunch is constrained in all three spatial

dimensions so we should expect to observe sidebands due to coupling between these modes.

This is not the only source of sidebands, as even a single spatial dimension can have multiple

orthogonal modes with corresponding sidebands.

With the multiplicity of different modes describing the bunch, it may seem difficult to

fully analyze them all. Thankfully, this is not necessary. Each sideband mode is orthogonal

to one another so it becomes possible to decompose the bunch into these modes and limit

our view to those which are the most physically interesting.

1.2.1 Betatron Distribution Sidebands

Phase space modes of a beam have effective frequencies contingent on the rotational symme-

try of the mode. An arbitrary one-dimensional distribution is comprised of a sum of these

modes. The zero mode, also known as the stationary or equilibrium distribution[5], is the

fundamental mode and has a zero frequency corresponding to a distribution that does not

vary in time. Higher-order modes have sidebands given by their mode number m. Consider

a phase space ρ that can be expressed in terms of action-angle coordinates (J, φ) along with

the mode number.
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ρ(J, φ) = R(J)cos(mφ) =
R(J)

2
(eimφ + e−imφ) (1.14)

Where R(J) is a function of action. For a harmonic oscillator, φ̇ (the frequency) is a

constant, leading to a constant phase advance along the bunch. In this case, the motion

has two interfering oscillatory components, the forward and backward propagating elements.

These two frequencies for each mode m are its sidebands. In the transverse direction, these

are known as betatron sidebands and in the longitudinal direction synchrotron sidebands.

Sidebands initially are symmetrically offset around a fundamental frequency.

A similar argument can be made using a one-turn map. The initial phase space distri-

bution has an equivalent definition as Eq. 1.14. The phase advance does not need to be

constant over the entire lattice period, only that the map M , defined as Mnq⃗0 = q⃗n must be

linear. For the mth mode the system will oscillate with a constant phase advance for every

application of the map. This map has the same oscillatory properties where it is comprised

of both a positive and negative rotating term.

Experimentally it is necessary to constrain our solutions to positive frequencies as os-

cilloscopes and analyzers only provide positive frequencies[6]. Only positive frequencies are

necessary to describe the system due to the properties of complex numbers. For mth side-

band with a coherent frequency ∆Q which is observed, the pickup signal has the form:

Ae−2πni(mQ−∆Q) = A∗e2πni(mQ−∆Q) (1.15)

making it possible to reflect negative sidebands across the origin. Each sideband mode will

have a different contribution to the total motion of the bunch. For dipole instabilities, the

upper sideband +1Q is often considered to be the dominant term in a possible instability.

However, in order to make the upper sideband physically relevant without its conjugate,

it may be necessary to only take the real component of this sideband since the imaginary

component normally cancels with the lower sideband.

10



1.2.2 Synchro-Betatron Sideband Generation

Synchrotrons are circular accelerators where the beam propagates through the same elements

many times. Multiple transverse focusing elements are needed to generate a net focusing

effect on the bunch in both directions with many oscillations per revolution. The large

number of betatron oscillations along with superperiodicity are necessary (but not sufficient)

for stability from space charge effects. There are fewer longitudinal cavities which are located

near to one another, and so multiple turns are needed to complete a synchorotron oscillation.

Thus it can safely be assumed that Qx > 1 > Qs; Qx >> Qs.

Every individual particle will oscillate with their own amplitude and phase, but with

a well defined wave velocity which is quite interestingly the synchrotron tune Qs where

Qs = ∆φs/∆θ. θ corresponds to the angle around the accelerator which is a time coordinate;

φs is the synchrotron phase along the bunch which is a spatial coordinate. For simplicity, let

us assume that the phase advance per element along the accelerator is small and consistent

enough to be well approximated by a linear oscillator. Effectively this means that individual

particles and waves propagate around the bunch at a rate related to the synchrotron tune.

This system consists of simple uncoupled oscillators, but variations in the spatial distri-

bution of the particle ensemble can be decomposed into orthogonal terms in Fourier space

coupling them together and generating sidebands.

Collective effects and chromaticity have explicit longitudinal dependence which shift the

sideband modes generated by the variations in particle distribution. This explicit synchro-

beta coupling is naturally expressed in terms of conjugate variables z and ż rather than with

phase terms φs and Js, complicating the solutions. The difficulty of including coupling with

sidebands is one of the main driving forces for approximate PDE methods such as the Square
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Well Model [1]. The exact PDE treatment is given in Chapter 3

Coupling between variations in the ensemble can be seen in the first order moment x of

the transverse dimension:

x(θ, ψs) = cos(Qxθ)
∞∑
n=0

An cos(n(Qsθ − φs)) (1.16)

The transverse moment of a bunch varies along the synchrotron phase with the variations

represented by the Fourier series. Variations can come from many sources including Schottky

noise[7]. Each Fourier term is trapped in the same potential, so while they have different

spatial content, they all travel along the bunch at the same rate and undergo a full oscillation

in 1/Qs revolutions. Individual Fourier modes can be restated as synchrotron sidebands using

angle addition.

xn(θ, ψs) = Ancos(Qxθ)cos(n(Qsθ − φs)) (1.17)

= An
2 [cos(Qxθ + n(Qsθ − φs)) + cos(Qxθ − n(Qsθ − φs))] (1.18)

This makes the total bunch motion the sum of all modes x

x(θ, ψs) =
∞∑
n=0

=
An
2
[cos(Qxθ + n(Qsθ − φs)) + cos(Qxθ − n(Qsθ − φs))] (1.19)

It is expected that lower n modes will tend to have larger Fourier components varying

bunch by bunch. It is sufficient to only study sideband modes near to the fundamental in

most cases. Wakes with sufficiently rapid oscillation frequencies compared to the bunch may

drive higher order components.

Although the system has been approximated as harmonic oscillators, nonlinearity can be

understood qualitatively. If the nonlinearity is sufficiently small, it can be treated by splitting

the bunch into multiple ensembles with each detuned slightly. Nonlinearity in the transverse

dimension (red lines in fig. 1.3) will spread out all the tunes but preserve the spacing between

them. Linear synchro-betatron coupling shifts the sidebands, while nonlinear synchrotron

tunes add tune spread that increases for higher n sidebands (blue lines in fig. 1.3).
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Qx

Qx +Qs

Qx + 2Qs

Qx −Qs

Qx − 2Qs

∆Qx Qx,spread

Qs,spread

2Qs,spread

Linear Sidebands Shifted Sidebands Nonlinear Sidebands

Figure 1.3: Diagram of sideband tunes. The Left side shows the bare case with linear
sidebands separated byQs. Synchro-Betatron coupling causes the modes to deform to deform
in the center, while the right includes transverse and longitudinal nonlinearity. Sidebands
are centered on the fundamental transverse tune Qx.
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So far, bunches have only been looked at in terms of coupling from the longitudinal di-

mension to the transverse. This tends to be dominant because the action of the longitudinal

direction is much larger than that of the transverse plane. Although the inverse is possible,

where betatron motion couples to create sidebands in synchrotron oscillations, such coupling

can be neglected. Since Qx >> Qs this will produce sidebands that are essentially nonphys-

ical. This can be visualized as follows: synchro-betatron coupling creates small changes

in frequency due to small and slow oscillations coupling into a betatron dimension, wearas

in the converse, the frequency change due to a rapid oscillation will average out over the

synchrotron oscillation.

1.2.3 Head-Tail Phase

So far we have limited the scope of our discussions to coupling due to the shape of the

synchrotron bunch distribution, but chromatic effects cannot be ignored. Small variations

in longitudinal momentum (δ) or velocity (ż) cause particles to spend differing amounts of

time in accelerator elements effectively detuning them from the synchronous tune. For linear

chromaticity, particles are over-focused for one half of the synchrotron period and under-

focused in the other. This leads to an overall mismatch in phase φβ over the half synchrotron

period. Where ξ is the linearized chromaticity in term of ż.

φβ =

∫
ξżdψs (1.20)

Although over a complete synchrotron period the betatron phase difference resolves itself,

there is a phase shift from the front to the back of the bunch. This is known as the head-tail

phase shift χ. For a linear chromaticity one obtains a total head-tail phase shift of:

χ = ξ

∫ π

0
sin(φs)dφs (1.21)

This phase difference can be treated as a wave that accumulates and fades away along the
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synchrotron oscillation.

1.3 Free Space Charge

1.3.1 The Electric Field of a Relativistic Particle

The electric and magnetic fields of a single particle in the frame K ′ centered at the origin

and observed at r′ is:

E⃗′(r′) =
q

4πϵ0

r⃗′

r′3
(1.22)

B(r′) = 0 (1.23)

r⃗′ = ρ′ρ̂+ z′ẑ (1.24)

r′ =
√
ρ′2 + z′2 (1.25)

Since we wish to consider the system in the reference frame of the accelerator rather than

the beam inside of it, a boost of −βcẑ to frame K is necessary. For this section β is the

fractional velocity of the boost, c is the speed of light and γ is the Lorentz factor.

Ez = E′
z (1.26)

E⊥ = γ(E′
⊥ + cβẑ ×B′) (1.27)

B⃗ =
β⃗

c
× E′ (1.28)

The lengths are transformed:

γ(z + βct) = z′ (1.29)

ρ = ρ′r⃗ = ρρ̂+ zẑ (1.30)

r =

√
ρ2 + z2 (1.31)

Lorentz transforming the fields and lengths from the at rest frame K ′ to the lab frame
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K yields a result of:

E⃗ = E′
⊥ρ̂+ E′

z ẑ (1.32)

E⃗ =
q

4πϵ0

ρρ̂+ γ(z − βct)ẑ

(ρ2 + γ2(z − βct)2)3/2
(1.33)

B⃗ =
q

4πϵ0c

βρθ̂

(ρ2 + γ2(z − βct)2)3/2
(1.34)

This transformation is for a stationary reference point, but in our case, the reference

point will move with the bunch at the same velocity. The field of the moving reference point

can be thought of as a change of variables to z+ βct→ z, giving an electric field at the new

reference point as:

E⃗ =
q

4πϵ0

ρρ̂/γ + zẑ

γ2(ρ2/γ2 + z2)3/2
(1.35)

B⃗ =
q

4πϵ0c

βρθ̂

(ρ2 + γ2z2)3/2
(1.36)

At a sufficiently relativistic velocity γ >> 1 then the electric fields in the lab frame will

be ’pancaked’ into fields that are more strongly radial but will still have longitudinal force

components. The strength of the electric field |E| scales with r−2. If ρ is dominant this

corresponds to |E| ∝ ρ−2. If z is the dominant term, then scaling of the field will be of the

form (γz)−2. The ratio of the magnitudes of the electric fields of these regimes takes the

form of zρ = γ. Geometrically, this is an angle where the transverse portion of the beam is

dominant and the field significant. This is what is meant when people consider the angular

size of the field itself. In the limit where β → 1, the fields degenerate to a transverse circle

of field.

Besides deforming the fields, the space charge force will decrease at larger boosts. The

force at the reference point moving with the bunch is:
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F⃗sc = q(E⃗ + cβẑ × B⃗)

F⃗sc =
q2

4πϵ0

(1− β2)ρρ̂+ γzẑ

(ρ2 + γ2z2)3/2
(1.37)

F⃗sc =
q2

4πϵ0

γ−2ρρ̂+ γzẑ

(ρ2 + γ2z2)3/2

In the region where r ≈ ρ, the transverse space charge force scales with γ−2. This

demonstrates why space charge effects are stronger at lower energies.

1.3.2 Fields From Moments

For the general case, analytic solutions for particle motion with self fields only exist for

specific pathologic distributions[8]. Rather than limit ourselves to these distributions (many

of which have been studied extensively[9]) or simply simulate the problem (which can be

noise dominated in certain regimes) we will look at how to approximate this space charge

effect.

Space charge derives from the total effect of all particles in the beam distribution. Imag-

ine a distribution of charged particles f comprising a bunch. The electric field will be a

convolution of the electric field of an infantesimal charge and the distribution itself. The

field can then be calculated at an arbitrary point, and be Taylor expanded to a specific order

(unlike that of a single particle, which cannot be Taylor expanded due to its singular nature).

This field can then be separated into linear and nonlinear components. For a sufficiently

small excursion about the center of the expansion, linear components remain the dominant

contribution to the field.

A particle in this linear regime will observe a springlike defocusing force proportional to

its displacement. Over a small time period, it may be adequate to treat this as an external

force but this becomes less accurate as the distribution deforms.
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Another similar but more preferred approach is to express the forces in terms of basis

functions of the distribution rather than Taylor expanding them after the fact. In this case,

the basis functions of the expansion may cross couple to one another. Due to the peaked

nature of the distribution, only limited orders of the Taylor expansion are necessary.

1.3.3 Coherent Tune Shift

To begin with, let us consider the linear order space charge force. As noted earlier, this is a

linear force which acts with a spring like force centered around the center of momentum, and

will have the same effect on the moments of bunch distribution as well. Since these forces

correspond to basis functions of the distribution itself, the bunch distribution will oscillate

with a space charge contribution shifting the frequency.

Because the space charge effect varies along the distribution, the average space charge

detuning for particles at two specific sets of initial conditions are not necessarily the same.

But as coherent space charge is a linear force on particles in the bunch, one might naively

assume that coherent mode is purely a function of λ(z) the linear charge density (∆Qx =√
Q2
x − Cscλ(z) − Qx). While this can be approximately correct in certain cases, it is not

actually true in general, especially when sidebands are included.

Consider a particle with position x only experiencing constant linear focusing and a

coherent space charge force proportional to the displacement from the center of the bunch

x− x.

ẍ = −Q2
xx+ Csc(x− x) (1.38)

Since all particles within the bunch oscillate linearly one expects that motion of a single

particle and the total bunch moment are interrelated. As a result, there is no longer a
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constant offset or a simple driving harmonic. It will average out to an effective tune shift

over a complete synchrotron period. The exact interrelation between these modes will depend

upon the sidebands of the system[6].

1.3.4 Incoherent Tune Spread

The problem fundamentally changes when nonlinearity is no longer neglected. Nonlinearity

can come from either the bare lattice optics or the Taylor expanded nonlinear portion of the

space charge forces. The space charge force assumes a basis set of distributions that shift

and evolve along the distribution with the distribution itself shifting along the bunch.

A central difference for the nonlinear motion is due to amplitude dependent tune (fre-

quency) shifts. This means that particles no longer oscillate in phase with one another.

Therefore, rather than a single coherent tune shift, the tunes spread out into an incoherent

continuum of transverse frequencies. This is not necessarily a bad thing, as incoherent tune

spread over the driving frequency is central for Landau damping. This will mostly be beyond

the scope of this thesis but will be touched on briefly in chapter 3.

1.3.5 Coherent Mode Splitting

When examining a bunch distribution, it is important to understand the continuity and

boundary conditions of the system. Let us consider an infinitesimally thin ’loop’ of current

in longitudinal phase space. This airbag of current has a synchrotron period and exhibits

transverse waves along the length of the bunch that corresponds to synchro-betatron side-

bands. Each wave must be continuous over the longitudinal extent of the bunch and has a

characteristic frequency associated with its sideband.
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Any arbitrary longitudinal phase space distribution can be treated as an infinite collection

of infinitesimal loops of current each of which can interact through space charge and other

collective forces and must simultaneously satisfy their own boundary conditions. These loops

provide sufficient degrees of freedom in frequency domain for multiple valid tunes to exist

that satisfy all the boundary conditions for a given sideband mode. The valid tunes originate

from the same sideband before splitting off from one another.

These split modes can intermittently couple to other modes and become degenerate. Such

degenerate modes correspond to imaginary frequencies (growth and decay modes) and are

lightly unstable examples of the collective instability which will be covered in more detail

later in this work.

Functionally it can be difficult to split a sideband into coherent modes. Such interactions

between loops of current can be difficult to drive, setting a functional limit on how many

coherent modes can be identified. An example of coherent mode splitting for the MLSW

model is shown in Fig. 1.4. This mode splitting can be found in other models such as [10].

1.4 Wakefields

When a particle passes through some structure, it interacts electromagnetically with both its

environment and the rest of the bunch. When a leading particle (called the source particle

and denoted with subscript s) interacts with structure it creates a ’wake’. This wake will

excite an effect on a test particle test particle (denoted with subscript t) some distance z

behind it in the bunch. It is possible to determine the total bunch response in this way.

These wake effects must be characterized in order to understand how these forces can cause

beam degradation or instability. This derivation is based off of [11].
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Figure 1.4: Splitting of coherent modes due to dipole wakes.

1.4.1 Localized Diffuse Wakes

There are a few ways one can derive these wakes depending on the context. For a localized

wake producing structure–located in a single section of the accelerator, the wake generated

by a source particle is defined as:

W⃗loc ≡
c∆pt
qsqt

(1.39)

∆pt = qt

∫ ∞

−∞
dt[E⃗ + βcẑB⃗] (1.40)

Where W⃗loc is the wake, qs is the charge of the source particle, qt is the charge of the test

particle, and ∆pt is the total kick due to the source particle. Since electromagnetic forces

are linear, the total momentum kick on the test particle will be the integrated contribution

of all the particles before it. When the total kick in momentum is small, the effect of this

kick can be considered perturbatively.

If accelerator structures are uniform, the forces generated for a source particle passing

through it will not vary in time as it sees a constant structure. In the case of a regular
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periodic structure this will average to a near uniform value. We can then define a diffuse

wake per unit length Wdif as:

Wdif ≡ Ft
qsqt

=
1

qt
[E⃗ + βcẑB⃗] (1.41)

Where Ft is the force on the test particle. The definitions of the local and diffuse wakes

differ somewhat, but have similar properties within their range of applicability. That being

said, our interest will mostly be focused on diffuse transverse wakes.

1.4.2 Dipole Wakes

With these definitions of wakes, it is possible to define a wake potential V where:

W = ∇V (1.42)

∂2V

∂x2t
+
∂2V

∂y2t
= 0 (1.43)

Let us consider the wake generated by a source particle in a axisymmetric system where

the radius of the source particle is ρs =
√
x2s + y2s , and the radius of the test particle is

ρt =
√
x2t + y2t . In order to simplify the kinematics of the wake, let us reorient the x-axis on

the source particle, defining the displacement of the source particle in the x̂ direction. The

angle between the source and the test particle is ϕ. Since the system is axially symmetric,

particle distributions can be decomposed into multipoles, It is possible to expand this wake

potential V in terms of multipoles which correspond to moments within the system where:

V (ρs, ρt, ϕ, z) =
∞∑
m=0

Vm(ρs, ρt, z)cos(mϕ) (1.44)

Vm(ρs, ρt, z) = Wm(z)ρms ρ
m
t (1.45)

W⊥ =
∑

W(m)
⊥ (1.46)

This is similar in concept to the betatron sidebands in section 1.2.1, where the first order

moments of the distribution are in the dipole m = 1 wake. Any bunch with the same dipole
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moment will produce an equivalent response on a test particle.

W⃗(m)
⊥ = mρms ρ

m−1
t Wm(z)[ρ̂cos(mϕ)− ϕ̂sin(mϕ)] (1.47)

W⃗(1)
⊥ = W1(z)ρs[ρ̂cos(ϕ)− ϕ̂sin(ϕ)] (1.48)

WhereW 1
⊥ is the dipole wake function, or the transverse dipole wake. A bit of rearranging

of the dipole wake has the form:

W⃗(1)
⊥ = ρsW1(z)x̂ (1.49)

The direction of the wake is in the direction of the source particle x̂, meaning that the

kick on the test particle is in the same direction as the transverse displacement with a linear

term ρs. Because of this it is possible to reorient the axis back to the original transverse

axes, making:

W⃗(1)
⊥ = Wm(z)[xx̂+ yŷ] (1.50)

Since the dipole offset is x, the total effect from all prior source particles at point z is:

∆px(z) =
q2

c

∫ z

−∞
dz′λ(z′)Wloc,m(z′ − z) (1.51)

=
q2

c

∫ z

−∞
dz′λ(z′)x(z′)Wloc,m(z′ − z)

This total effect includes the contribution from all previous particles. If the wakes de-

cay quickly, then it is sufficient to choose the lower bound as the beginning of the bunch.

Equivalently we can determine a force due to a diffuse wake as:

Fx(z) = q2
∫ z

−∞
dz′λ(z′)Wdif,m(z′ − z) (1.52)

= q2
∫ z

−∞
dz′λ(z′)x(z′)Wdif,m(z′ − z)

1.4.3 Wake Impedance

The final step is to determine Wm(z). This can be done using the impedance Z⊥(ω), which

is the Fourier transform of
∑
Wm. Keeping only the m = 1 term we get:
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W1(z) =
1

2π

∫ ∞

−∞
dωZ

(1)
⊥ (ω)e−iωz/c (1.53)

1.4.4 Causality Condition For Wakes

It is often assumed that wakes only move from the front of the bunch to the back. For

ultra-relativistic beams this is straightforward to justify–the wake will not propagate from

the back of the bunch to the front as the speed of the wakes is only marginally greater than

the speed of the particles themselves. Therefore, the wake can’t get to the front of the bunch

to drive it which is why forward propagating wakes are considered non-causal.

Interestingly, this same statement can also be made in cases where the the particle velocity

is not ultra-relativistic but still a significant portion of c. In such cases the wake electromag-

netic fields can overtake the bunch with sufficient time. However, the forward propagating

wake will be suppressed due to its comparatively slower motion along the bunch. First,

the longer transit from the back of the bunch to the front of the bunch will cause more

of the wake to be lost to the environment. Secondly and more centrally, transverse bunch

oscillations effectively average out the wake itself and suppress it. This is not to say that

the tail-head wake doesn’t exist, only that in many cases it has little effect on the system (a

prime exception being the CSR wake [11]).

1.5 Transverse Collective Instabilities

The combination of single particle and collective effects are nontrivial. It is not sufficient to

model these collective forces as simple focusing elements.

Interactions between particles and the environment can make the beam catastrophically

unstable, with significant particle loss following. There are many avenues for loss with their
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own characteristic dynamics and a functional ’threshold’ where the beam transfers between

a stable and unstable state. Knowing the physics behind a given instability makes it possible

to find a regime where the beam is stable.

Most collective instabilities have strong intensity dependence. The justification to this

is that one expects to regain stable motion if the bunch intensity is decreased sufficiently,

given that single particle motion is stable.

1.5.1 Head-Tail Instability

In the presence of wake, the head-tail phase χ can drive beam instability. Over many periods

the head-tail phase shift and the wakes that drive it give rise to comparatively slow growth

over time. This growth however is difficult to naturally damp.

1.5.2 Transverse Mode Coupling Instability

Although sometimes called the Fast Head-Tail Instability[12], the Transverse Mode Coupling

Instability (TMCI) has a separate instability mechanism from the head-tail Instability. In-

stead, TMCI occurs when two synchrotron sideband modes are shifted together by wakes

and become degenerate.

It can be unclear what this physically corresponds to, so a two macro particle description

will be used to obtain a simplified model. This method is similar to that in [12], but has

a few different assumptions. These macroparticles oscillate in transverse and longitudinal

dimensions with transverse wakeforces generated by the head particle witnessed by the tail

particle. Every half synchrotron period the macroparticles exchange positions and the head

particle moves to the tail and vice versa. Instability will occur when the interchange between
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particles leads to sustained and uncontrollable growth in bunch (dipole) position.

Let us consider the following inhomogeneous harmonic oscillators along the synchrotron

period. The integer n is the number of synchrotron oscillations, w is the wake strength and

subscripts denote the macroparticle.

ẍ1 +Q2
xx1 =


0 for 2πn < Qsθ < π(2n+ 1)

wx2 for π(2n+ 1) < Qsθ < 2π(n+ 1)

(1.54)

ẍ2 +Q2
xx2 =


wx1 for 2πn < Qsθ < π(2n+ 1)

0 for π(2n+ 1) < Qsθ < 2π(n+ 1)

(1.55)

This can also be given as a set matrix of linear differential equations as of the form:

d

dθ



x1

ẋ1

x2

ẋ2


=



0 1 0 0

−Q2
x 0 0 0

0 0 0 1

w 0 −Q2
x 0





x1

ẋ1

x2

ẋ2


∣∣∣∣∣
2πn<Qsθ<π(2n+1)

(1.56)

d

dθ



x1

ẋ1

x2

ẋ2


=



0 1 0 0

−Q2
x 0 w 0

0 0 0 1

0 0 −Q2
x 0





x1

ẋ1

x2

ẋ2


∣∣∣∣∣
π(2n+1)<Qsθ<2π(n+1)

(1.57)

From here it is simple enough to simulate this two particle model in order to determine

thresholds. But that is not particularly physically meaningful. Other methods are given

in [13] and [14]. Let us consider two adjacent (one odd, one even) synchro-betatron modes

along the bunch. The total motion of the two bunches can be redefined in terms of the even

sum mode x+ = 1
2(x1 + x2) and the odd difference mode x− = 1

2(x1 − x2). Normally each
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mode in a bunch would be driven by small dipole moments along the length of the bunch

where each mode is unique and separately driven. With only two particles only such sum

and difference modes exist. Making a change of variables to sum and difference modes we

obtain:

d

dθ



x+

ẋ+

x−

ẋ−


=



0 1 0 0

−Q2
x +

w
2 0 w

2 0

0 0 0 1

−w
2 0 −Q2

x − w
2 0





x+

ẋ+

x−

ẋ−


∣∣∣∣∣
2πn<Qsθ<π(2n+1)

(1.58)

d

dθ



x+

ẋ+

x−

ẋ−


=



0 1 0 0

−Q2
x +

w
2 0 −w

2 0

0 0 0 1

w
2 0 −Q2

x − w
2 0





x+

ẋ+

x−

ẋ−


∣∣∣∣∣
π(2n+1)<Qsθ<2π(n+1)

(1.59)

With the change of variables, a few phenomena become obvious. The sum mode observes

a defocusing wake in the first half period and a focusing mode in the second half period.

This can be thought of as a physical explanation why beams are not necessarily unstable

to TMCI even while the tail particle is unstable. Since this change is periodic in time, it is

straightforward to combine the equations of motion for the entire domain.

F (θ) =


−w

2 for 2πn < Qsθ < π(2n+ 1)

w
2 for π(2n+ 1) < Qsθ < 2π(n+ 1)

(1.60)

The inhomogenous portion of the equation is periodic (with a period 2π/Qs) and can

therefore be treated as a sum of individual Fourier driving terms.
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F (θ) =
∞∑
i=1

bnsin(nQsθ) (1.61)

bn =
2Qs
2π

∫ 2π
Qs

0
F (θ)sin(nQsθ)dθ

=
wQs
π

[

∫ π
Qs

0
(−1/2)sin(nQsθ)dθ +

∫ 2π
Qs

π
Qs

(1/2)sin(nQsθ)dθ] (1.62)

=
w

2nπ
[cos(nQsθ)|

π
Qs
0 − cos(nQsθ)|

2π
Qs
π
Qs

bn = 2w
nπ for odd values of n and bn = 0 for even n. The new basis is constructed of two

symmetric coupled differential equations:

ẍ+ = (−Q2
x +

w

2
)x+ +

2w

π
x−

∞∑
i=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.63)

ẍ− = (−Q2
x −

w

2
)x− − 2w

π
x+

∞∑
i=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.64)

Here we reach a conundrum. Although the equations have been simplified, a clean solu-

tion of the system is not obvious. Perturbative solutions are available, but do not exhibit

a clear threshold due to the truncated solution. Two methods show promise: guessing a

solution to the differential equation with synchrobetatron modes, or further simplifying the

differential equations into a more tractable form. This second method is what we shall

attempt.

The sum and difference differential equations are similar in form to one another save

for two aspects. First, the wake drives a small frequency detuning from the transverse fre-

quency. The magnitude of this detuning is small compared to the total oscillation magnitude.

Secondly, the coupling terms have the opposite sign of the wake force due to macroparti-

cle interchange. Thus, if the detuning is vanishingly small the two equations will retain a

constant phase difference and any growth will be slow compared to the speed of transverse

oscillations. If a set of initial conditions can be chosen such that the x+ = −(QxQs
)ix− this

problem simplifies to the form:

28



ẍ+ = (−Q2
x +

w

2
)x+ − 2wQx

πQs
ix+

∞∑
n=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.65)

ẍ− = (−Q2
x −

w

2
)x− +

2wQx
πQs

ix−
∞∑
n=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.66)

Both sums are of a similar form, with a small frequency offset that will eventually cause

dephasing of the solution. We shall neglect this dephasing as it occurs slowly compared to

the speed of instability growth.

The Fourier sum term is formed due to particle interchange of the two macroparticles.

Under one half synchrotron period the sum mode is driven while in the other half period

the difference mode is driven instead. In order to make this into a solvable form it becomes

necessary to determine if any of the Fourier terms dominate. If so, it may be possible to

neglect minor terms to arrive at a usable solution.

But is this actually the case? One may expect that harmonics will not drive instabilities

as strongly as that of the fundamental tune. The exact form of such resonances are difficult

to characterize as these harmonics are not independent. The higher order terms aren’t

suppressed either. The Fourier constants are of the form bn ≈ 1/(2n − 1), so higher order

terms will have less of a contribution, but the scaling alone is divergent. Therefore, we

cannot justify a simplification to only include a single frequency.

Instead of finding a justification for simplifying the system any further, we can find an

analogous head-tail system instead. Such a system must have an odd wake force and must be

positive in the first half synchrotron period, and negative in the second half. The expression

sin(Qsθ) satisfies both criteria. The analogous form has the differential equation:

ẍ+ ≈ −Q2
xx+ − 2wQx

πQs
x+sin(Qsθ) (1.67)

This differential equation is a statement of the Matteiu Equation [15], but it needs to be

massaged slightly to obtain the correct final form. We make a change of variables from the
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Figure 1.5: TMCI threshold shown. The system becomes unstable when the characteris-
tic exponent of the solution becomes complex. Note the distinctive linear form of TMCI
threshold.

azimuthal angle θ to τ to retrieve a conventional Mattieu form. Here we define 2τ ≡ Qsθ

where d
dθ = Qs

2
d
dτ .

d2x+
dτ2

+ [a+ 2qsin(2τ)]x+ ≈ 0 (1.68)

a = (
2Qx
Qs

)2; q =
4wQx
πQ3

s

This equation has a solution of form [c1e
iµτ−c2e−iµτ ]Φ(τ) where Φ is a periodic function.

If the characteristic exponent µ becomes complex the system is unstable making it possible

to determine the TMCI threshold[16]. Calculating this threshold by hand is unnecessary as

the characteristic exponent is included in many standard libraries. The instability threshold

of such a model is shown in Fig. 1.5 in terms of the wake strength w. This has a very similar

functional form to that given in Alex Chao [12] with the same synchro-betatron resonances

and overall linear dependence on the inverse tunes and the dipole wake.
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1.5.3 TMCI Models

Perhaps the best known model for TMCI is the two particle model given in Dr. Chao’s text

on collective effects[12]. Unfortunately this model is not the most precise in a realistic case.

To get quantitative results other models need to be applied.

Strong instabilities can be well modeled by Particle in Cell (PiC) codes with full collective

effects from wakefields and space charge. These are attractive methods due to the their ob-

vious applicability to real machines. However, PiC codes can have significant shot noise and

are slow to run [17]. One can think of PiC codes as multidimensional numerical differential

equations evolving in time with both single particle and ensemble effects. The smaller the

timestep, the lower the error. This numerical error will accumulate to some degree over long

runtimes, potentially muddying the results. As more particles are added, this becomes more

computationally intensive. As particles propagate within the bunch, its space charge forces

and wakes generated need to be correspondingly updated for correct collective motion.

Analytical models are another common method to understand TMCI. TMCI is not an-

alytically solvable with both an arbitrary distribution and space charge so significant sim-

plifications must be made to arrive at a solvable model. One of the largest difficulties in

creating a solvable model are realistic collective effects. Although relatively simple mod-

els can generate necessary wake modes, transverse space charge is effectively ’pancaked’ at

highly relativistic velocities making its effects short ranged along the bunch length and very

sensitive to distribution shape compared to low frequency wakefields.

Good examples of this are the Square Well Model (SWM)[1] and the Airbag Square Well

(ABS) [2]. These models simplify the longitudinal dynamics to a continuum of current in a

square potential well, the average motion of which can be solved as a system of linear ODEs.

31



Although solvable, the unrealistic phase space shape is a significant detriment, making it

most useful for its qualitative dynamics.

The SWM is a limiting case of the derivation given in chapter 2 as it gives strong physical

intuition for TMCI and will act as the starting point for the main thrust of this work.

1.5.4 Space Charge and TMCI

The two particle approach gives insight into the onset and prevention of Mode coupling in-

stabilities. Changing the ratio of coupling tunes and decreasing wake impedance are obvious

solutions to move below instability threshold. A feedback system, an artificial wake designed

to counteract natural wakes in the system is also a viable solution to such a problem.

Due to simplifications in the two particle model (specifically the fact that it is just a

two particle model) space charge effects cannot be included in a well justified way. Other

methods and models will have to be used to derive the functional form of space charge effects.

With that said, a qualitative understanding can be arrived at without a space charge model.

As shown in the previous section, TMCI is driven by mode degeneracy. Two previously

stable modes combine together into a new set of unstable tunes with long term growth in θ

the time-like coordinate. Space charge slows the oscillation of the coherent motion shifting

all the modes of the system. If this shift prevents modes from becoming degenerate, collective

motion will not become unstable.

1.5.5 Circulant Matrix Models and BimBim

Later comparisons in sections 3.5.1 will compare results with the simulation code BimBim

[18]. This is what is known as a Circulant Matrix Model (CMM). For CMM, longitudinal
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phase space is decomposed into radial and azimuthal sections, with each section having a

definite geometric size, shape, and density. Because these are directly sampled from the

distribution, rather than constructed from macroparticles the system is not susceptible to

Schottky noise, making it possible to attain relevant results with fewer model elements.

Each section of longitudinal phase space is assumed to evolve as a single quantity xρ,ϕ

in transverse dimensions. These terms are projected onto the z axis before undergoing

transport and collective forces between xρ,ϕ’s. Transport and collective effects of this form

can be represented by a Circulant Matrix and are therefore solvable.

It should be noted that BimBim does not have exactly solvable space charge kicks. In-

stead, the space charge is a small correction on the bare lattice path of the beam. In cases

where this correction is small (such as weak space charge or small step size) this is sufficient.

Step size can be varied, but will lead to increased computation time.

1.5.6 Convective Instabilities without TMCI

If wakes continue to be increased but the system remains absolutely temporally stable[2] due

to space charge forces the saturated solution will not grow in time. In such a case oscillation

frequencies shift but do not grow or decay. Unfortunately, stability in time is not sufficient

to prevent beam loss. Head-tail amplification–transverse beam growth along the length of

the bunch–can cause the bunch to reach a maximum transverse displacement near the tail.

If the maximum position is larger than the beam pipe, particles will hit the wall and be lost.

Head-tail amplification can be thought of as unstable growth along the bunch and is

the genesis for the somewhat confusing name of the convective instability. The convective

instability does not need to undergo ’convection’, that is motion to short ranged kinetic

interactions. The moniker ’convective’ in convective instability is actually due to an unstable
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term ż ∂∂z in the total derivative d
dt . This term is part of the implicit time dependence of

the total derivative (which is sometimes called the convective derivative) and is similar to a

class of instabilities in plasma physics [19] leading to the name and the confusion.

Coherent space charge itself can effectively be thought of as a retarding/defocusing force,

slowing the oscillation speed of coherent modes. Let us consider some wake driven by an

initial transverse bunch offset. If the wake drives significant motion from the head to the

tail of the bunch, the bunch is convective. Unlike true instabilities, convective motion does

not have a threshold; as long as head-tail amplification is small enough and the beam pipe

large enough, particles will not be lost.

Normally this class of instability is characterized using Burov’s ABS model[2]. However

other analytic models also reproduce convective behavior. An example of such a model is

given below.

According to linear small phase advance optics bunches are constructed of multiple co-

herent modes, with a small wake that does not heavily impact the tune of the system. Each

of these modes has an oscillatory form in time, so here we shall assume the solution is sep-

arable, where xn(t) = Z(z)T (t). There are potentially multiple coherent modes for each

sideband, leading to a large set of valid tune shifts ∆Qx. The beginning differential equation

has the following form:

[
d2

dt2
+ (Qx +∆Qx)]x = F (t, z) +O(ϵ) (1.69)

F (t, z) =

∫ z

0
f(z − z′)λ(z′)x(t, z′)dz′

Since F (t, z) is small it would be tempting to consider it a perturbation and obtain a

solution for a short time scale. However this will only be valid over short times, and we

are looking for a more general solution. In fact, we know that for small wakes the system
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remains stable and bounded (which is necessary for accelerators everywhere). Instead we

will look at the spatial dependence of the system. The wake is the convolution of average

particle position and the wake function f(z − z′). Because of the form of the wake, we can

expect an oscillatory solution in time and phase with varying amplitude along the bunch

length due to the wake forces. There are multiple other coherent frequencies which interact

through their wake forces, but these are not expected to have a significant contribution due

to poor coupling.

The wake force is a convolution of the wake function and the transverse moment λ(z)x(t, z).

We can then take the spatial derivative of Eq. 1.70 and obtain the following:

d

dz
(
d2

dt2
+ (Qx +∆Qx)

2)x =
d

dz

∫ z

0
f(z − z′)λ(z′)x(t, z′)dz′ (1.70)

(
d2

dt2
+ (Qx +∆Qx)

2)
d

dz
x = f(0)λ(z)x− f(z)λ(0)x(0)

The initial bound z′ = 0 is the position of the particles of the bunch or bunch train. For

beam with exponential tails λ(0) = 0. We shall note can see that the wake force will add a

small detuning to the system d2

dt2
= −(Qx +∆Qx +∆Qw)

2. With this in mind we guess a

solution to the differential equation.

(
d2

dt2
+ (Qx +∆Qx)

2)
d

dz
Z(z)T (t) = f(0)λ(z)x− 0

−2∆Qw(Qx +∆Qx +∆Qw/2)
dZ(z)

dz
= f(0)λ(z)Z(z)

−2∆Qw
f(0)

(Qx +∆Qx +∆Qw/2)
dZ

Z
= λ(z)dz (1.71)

In order for T (t) to satisfy the differential equation, it must have a form T (t) = cos(Qx+

∆Qx + ∆Qw). With this, it is straightforward to finish up solving the spatial portion and

arrive at the complete solution.
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−2∆Qw
f(0)

(Qx +∆Qx +∆Qw/2)

∫
dZ

Z
=

∫ z

0
λ(z)dz

ln(Z/Z(0))) = − f(0)

2∆Qw

∫ z
0 λ(z)dz

(Qx +∆Qx +∆Qw/2)
(1.72)

Z(z) = Z(0)e
− f(0)
2∆Qw

∫ z
0 λ(z)dz

(Qx+∆Qx+∆Qw/2)

One might be mistaken in assuming that this is a decay rather than growth of the beam

along the length of the bunch. However, ∆Qw < 0 and |∆Qw| ∼ Qs so instead of a decaying

exponential along the bunch, it instead grows from head to tail. Tying it all together we

obtain:

x(t, z) = Z(z)T (t)

Z(z) = Z(0)e
f(0)

2|∆Qw|

∫ z
0 λ(z)dz

(Qx+∆Qx+∆Qw/2) (1.73)

T (t) = cos(Qx +∆Qx +∆Qw)
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Chapter 2

Multiple Loop Square Well

It is clear that including space charge effects may have a significant effect on the instability

threshold. However, at this point many analytic methods for studying instabilities break

down. The structure of the beam itself is necessary to include space charge, leading to

more general systems where self forces are included. One such system, the Square Well

Model[1] includes space charge and arbitrary wake functions. In the intervening years since

its invention, this model has appeared in several different forms including the Airbag Square

Well (ABS)[2] and Core Halo Models[20].

In order to make both space charge and wakes solvable in such a system, it is necessary

to heavily simplify the longitudinal dynamics. In the case of the SWM it is simplified into

a single longitudinal energy trapped in a square potential well. However, by splitting the

longitudinal dynamics into a series of discrete steps, it is possible to turn the system into a

series of loops of current, each with a different energy and different synchrotron tunes. This

model we shall call the Multiple Loop Square Well (MLSW).

We shall derive the equations which govern the MLSW prior to discussing the limiting

cases of SWM and ABS to give physical intuition and context.

2.1 The Vlasov Equation and Transverse Moments

To begin this derivation shall define a continuity equation in three dimensions:
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∂f

∂t
+

3∑
i=1

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
) =

df

dt
= 0 (2.1)

Eq. 2.1 is also known as the Vlasov equation. Particle flux is not created or destroyed, but

it can flow in all three dimensions. The transverse dimensions are (x, px, y, py) whereas the

coordinates for the synchrotron direction are (z, ż) with z being the position along the bunch

and ż as the momentum coordinate to make the physical meaning of the longitudinal motion

clear. The time dependence can also be represented by other time-like variables as necessary

while ż can be expressed in terms of δ (see sections 1.1.1 and 1.1.4). For a decoupled system,

this can be simplified into a pair of two dimensional Vlasov equations, one for each transverse

dimension. Such a distribution is collisionless but has electromagnetic interactions within

the ensemble.

Due to the collective effects and external optics, the Vlasov equation becomes a mixture

of single particle and collective motion. The collective forces are constructed of moments as

in section 1.3.2. The moments of the bunch distribution f are the following:

M j,k ≡
∫ ∞

−∞
dxxj

∫
dpxp

k
xf (2.2)

For the rest of this section, the bounds of all integrals are −∞ to ∞. The zeroth (0th)

and the normalized first (1st) order moments of x will be most important and will therefore

be given their own definitions:

ψ ≡M0,0 =

∫
dx

∫
dpxf

ψX ≡M1,0 =

∫
dxx

∫
dpxf (2.3)

ψP ≡M0,1 =

∫
dx

∫
dpxpxf

Normalizing the 1st order moments means that X and P will correspond to the average

position and momenta.
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2.1.1 Derivatives of Moments

Applying the total derivative of the Vlasov equation it is possible to define equations of

motion for the the various moments of the system. These moments are physically meaningful

as TMCI is a dipole instability–which is to say driven by first order moments. Furthermore,

the Vlasov equation makes certain simplifications possible. But first a few identities must

be obtained by integrating the Vlasov equation.∫
dx

∫
dpx

df

dt
=

∫
dx

∫
dpx[

∂f

∂t
+

3∑
i=1

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
)] = 0 (2.4)

As these are a proper set of canonical coordinates, Hamilton’s equations can be substi-

tuted for q̇i = ∂H/∂pi and ṗi = −∂H/∂qi, and further where q̇i = pi and ṗz = −U(t,z,ż)
dz

and not a function of pi.∫
dqx

∫
dpxq̇x

∂f

∂qx
=

∫
dqx

∂f

∂qx

∫
dpxpx (2.5)∫ ∞

−∞

∂f

∂qx
= f |∞−∞ = 0

∫
dqx

∫
dpxṗx

∂f

∂px
=

∫
dqx

dUi
dqx

∫
dpx

∂f

∂px
(2.6)∫ ∞

−∞

∂f

∂px
= f |∞−∞ = 0

This allows us to eliminate the transverse dependence of the integral:∫
dx

∫
dpx

df

dt
=

∫
dx

∫
dpx[

∂f

∂t
+
∑
i̸=x

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
)] = 0 (2.7)

If the transverse motion is oscillatory and is much faster than the synchrotron motion

its net effect averages to zero. Therefore, the longitudinal Hamilton’s equations will not

contain transverse coupling terms. In order to get the equations of motion of the moments

themselves we must compute their derivatives. The derivation of these moments is rather

long and involved and has been moved to the Appendix to facilitate readability.

39



2.2 Collective Equations of Motion

Since Mode Coupling is a linear phenomenon it is sufficient to quantify the first order dipole

moments. Higher order transverse terms may have some effect on this dipole motion, but

can be neglected. The differential equations of the first order moment calculated in the

Appendix are given below:

Ẋ =
12∑
i=1

Ti = P − Fy
∂X

∂py
+

∫
dxxFy

∫
dpxf

Fy ≡ ṗy is the transverse force in the y direction. There is an equivalent term Fx for the

other transverse direction. Taking the derivative and rearranging, we get:

Ẍ + Fy
d

dt

∂X

∂py
− d

dt

∫
dxxFy

∫
dpxf = Ṗ (2.8)

Ṗ =
24∑
i=13

Ti = −g0ψ − g1X −
∫
(Fx − g0 − g1x)dx

∫
fdpx

+
∂

∂py

∫
dxFy

∫
dpxpxf − Fy

∂P

∂py
Combining these equations yields:

Ẍ + g0ψ + g1X +

∫
(Fx − g0 − g1x)dx

∫
fdpx = (2.9)

−Fy
d

dt

∂X

∂py
+
d

dt

∫
dxxFy

∫
dpxf +

∂

∂py

∫
dxFy

∫
dpxpxf − Fy

∂P

∂py

Note that this equation of motion neglects the effects of nonlinear optics and higher

order space charge terms. Transverse forces of a given nonlinear order generate coupling

to moments of that order and below. If only coherent motion is included, however, this

simplifies into a more elegant relation. For now, we shall narrow our scope to this linearized

system of differential equations:

Ẋ ≈ P

Ṗ ≈ −g0ψ − g1X

Ẍ + g0ψ + g1X ≈ 0 (2.10)
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For the simplified differential equation, the two transverse dimensions are decoupled,

making the dynamics a set of two simpler Vlasov equations.

2.2.1 Transverse Force Fx

It is necessary that we determine g0 and g1 before Eq. 2.10 can be solved. These are from

the Taylor series of Fx. (Since Fx ≡ dpx
dt = −∂H

∂x is one of Hamilton’s equations) it would be

tempting to define a single particle Hamiltonian and go from there, but this isn’t necessary).

We have previously defined the components of this force in Chapter 1 (Sections 1.1.3, 1.3.3,

and 1.4.2) and can build terms g0 and g1, out of bare optics (including chromaticity), coherent

space charge, and diffuse wakes.

One main caveat should be noted however. The collective moments of the transverse

equations become independent from one another when the axes of the beam distribution

and optics are aligned. The space charge effects from a properly rotated bunch will satisfy

this condition. This independence may be violated if the input beam is offset from the beam

optics, although that may not be significant if the offset angle is small.

Including wakes, space charge and optics to the linear order g0 and g1 (from the Ap-

pendix) we arrive at the following form:

g0(t, z)ω
−2
0 = −2Qx∆Q

′
scλ(z)X(t, z) +

∫ z

0
W (z − z′)λ(z′)X(t, z′) (2.11)

g1(z, ż)ω
−2
0 = −Q2

x + 2Qx(∆Q
′
scλ(z)− ξ(ż)) (2.12)

Where X ≡
∫∞
−∞ ψXdż/

∫∞
−∞ ψdż and the line density λ(z) =

∫∞
−∞ ψdż. Even after

all that simplifying, we can see this system is still a second-order PDE of three separate

variables. Thankfully, it is possible to simplify the system into one that is more tractable.

The next few sections will focus on this process. These sections parallel that of [21], which
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is in preparation.

2.2.2 Upper Betatron Sideband Approximation

The total distribution of particles will have moments generated by the order of the betatron

sideband. The ±1 betatron sidebands (normal betatron oscillations) are primary oscillation

frequencies that generate first-order moments. By assuming that the tune is primarily due to

this sideband, we can assume a form for X and reduce the order of the differential equation.

In this case we assume X is made up of a slowly varying term X̃ and a fast oscillation at

the upper betatron sideband tune:

X ≡ Re(X̃e−iQxω0t) (2.13)

P = Re(( ˙̃X − iQxω0X̃)e−iQxω0t)

d2

dt2
(X̃e−iQxω0t) = ( ¨̃X − 2iQx ω0

˙̃X −Q2
xω

2
0X̃)e−iQxω0t

Since the X̃ is slowly varying compared to the betatron tune it is not a significant

contribution to the solution ( ¨̃X = 0). Thus, when substituting into Eq. 2.10 we obtain a

first order differential equation.

2Qx
iω0

˙̃X = X̃(Q2
x + g1(z, ż)) + eiQxω0tg2(t, z) (2.14)

The total time derivative can be divided into explicit and implied components d
dt =

∂
∂t+

∑3
i=1(q̇i

∂
∂qi

+ṗi
∂
∂pi

). Since the transverse dependence has either been integrated out or is

independent, this is equivalent to the one-dimensional total derivative. d
dtl

= ∂
∂t+ż

∂
∂z+

dU
dz

∂
∂ż .

U(z) is a scaled potential for the proper coordinates with a mass of unity. Substituting this

into the collective equation of motion yields the following:

∂X

∂t
+ ż

∂X

∂z
− 1

m

dU

dz

∂X

∂ż
=

iω0
2Qx

[X̃(Q2
x + g1(z, ż)) + eiQxω0tg2(t, z)] (2.15)

With the current form of the partial differential equation, the solution is not obvious.
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Even if a solution could be found, it would likely only be solvable in special cases. However,

if the system can be simplified to a system of linear ODEs, the problem will become solvable.

Therefore, we shall attempt to make the system one dimensional in z only, as well as linearize

it such that the problem has the form Mν⃗ − Λν⃗ = 0 where M is the matrix of differential

equations, ν⃗ is an eigenvector constructed of basis functions, and Λ is the eigenvalue.

2.2.3 Betatron Tune Shift ∆Qx

In a coherent system like this, the motion is governed by a sum of oscillation frequencies. It

is therefore reasonable to assume a solution where ∂/∂t = −i∆Qxω0. Although there are

ways to calculate what this tune shift must be for a given system, it is not necessary as it

can be easily determined using an error minimization scheme. (See section 2.3.7)

∂X

∂z
=

iω0
2Qxż

[X̃(Q2
x + g1(z, ż)) + eiQxω0tg0(t, z) + 2Qx∆Qx] +

1

ż

dU

dz

∂X

∂ż
(2.16)

2.2.4 Wake Forces

The wake force integral is the last major hurdle that needs to be defined. Specifically, the

wake force must be a basis function (or set of basis functions) of the system of differential

equations in order to be solvable in such a manner.

F ≡ e−iQxω0t
∫ z

0
W (z − z′)λ(z′)X(z′) (2.17)

WhereW is the wake function, λ is the line density, and the line density is the projection

of the distribution function f onto the z axis. The differential equation for F follows the

Liebniz Integral Rule:
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dF

dz
eiQxω0t =

d

dz

∫ z

0
W (z − z′)λ(z′)X(z′) (2.18)

= W (z − z)λ(z)X(z)
d

dz
z −W (z − 0)λ(0)X(0)

d

dz
0

+

∫ z

0

∂

∂z
W (z − z′)λ(z′)X(z′)

dF

dz
eiQxω0t = W (0)λ(0)X(z) +

∫ z

0

∂

∂z
W (z − z′)λ(z′)X(z′) (2.19)

If the wake force is a sum of κ exponential terms rather than an arbitrary function of the

form W (z − z′) =
∑κ
k=1wke

−αk(z−z
′), then it becomes

dF

dz
eiQxω0t = W (0)λ(0)X(z)− αk

κ∑
k=1

∫ z

0
wke

−αk(z−z
′)λ(z′)X(z′) (2.20)

wk and αk are chosen to approximate the actual wake function. If the wake decays

before the next bunch arrives, it can be approximated by a sum of wakes, each of which is

an element of the Fourier series. That being said, it is often considered sufficient to model

the wake with only a few exponential terms. wk > 0 corresponds to a ’natural’ wake–wake

a that creates forces in the same direction as the offset while a negative wk < 0 corresponds

to a damping kicker creating forces in the opposite direction as the offset that generated

it making it a common choice to tamp down collective motion. Each of these individual

terms k will be a basis function in the system of linear ODEs. For ease of identification,

all basis functions will have a hat, therefore we shall define the wake force basis vectors as

F̂k ≡ e−iQxω0twk
∫ z
0 e

−αk(z−z
′)λ(z′)X(z′).

F =
κ∑
k=1

F̂k (2.21)

dF̂k
dz

= wkλ(0)e
−iQxω0tX(z)− αke

iQxω0t
∫ z

0
wke

−αk(z−z
′)λ(z′)X(z′)

dF̂k
dz

= wkλ(0)X̃(z)− αkF̂k (2.22)

Collecting terms and redefining:
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h0 ≡ g0(t, z)

2Qx
eiQxω0tg2(t, z) (2.23)

= −∆Q′
scλ(z)X̃(t, z) + eiQxω0t

1

2Qx

∫ z

0
W (z − z′)λ(z′)X(t, z′) (2.24)

h1 ≡ Q2
x∆Qx + 2Qx∆Qx + g1(z, ż)

2Qx
(2.25)

= (∆Qx +∆Q′
scλ(z)− ξ(ż)) (2.26)

∂X

∂z
=
iω0
ż

[(h1(z, ż))X̃ + h2(t, z)] +
1

ż

dU

dz

∂X

∂ż
(2.27)

2.3 Longitudinal Dynamics

Up to this point, we haven’t made any statement as to the form of the longitudinal phase

space and constraining potential, other than it is an equilibrium distribution and it couples

to the transverse dynamics, while the effect of transverse dynamics on it averages to zero.

Because of this lack of coupling, the tune in the longitudinal dimension is:

Qs ≡
τω0
2π

=
ω0
2π

∮
dz

ż
(2.28)

τ is the period of the synchrotron oscillation and ż ≡ ±
√

2(E0 − U(z)). To obtain the

ODE form must eliminate the term 1
ż
dU
dz

∂X
∂ż → 0 from the differential equations of motion

Eq. 2.15. Therefore U(z) must be constant, and form a loop in phase space. Such a system

is only satisfied with a square potential well–or a series of finite height square potential wells.

Longitudinal particle velocity is constant and transverse motion is defined by a system of

ordinary linear differential equations between the edges.

The following sections will define the notation and machinery to model nested square

wells.
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2.3.1 Approximating Longitudinal Potentials

Assume that we have a singly peaked potential U(z) that we wish to approximate with N

square potential wells bounded by 2N edges. Only N of the edges need to be defined–the

others will be conjugate equipotentials. Ordering the edges along z we define them in order as

zn where z0 is the head of the bunch and z2N−1 is the tail. Since this system is periodic over

the bunch train, the head of the next bunch (possibly the same bunch on a subsequent turn)

can be defined as z2N to include multi-bunch wake forces. However, if wakes decay quickly

compared to the distance between bunchs or have some other multiscale characteristic, it

may not be necessary to define z2N . For simplicity, we have so far assumed that z0 = 0

and z2N−1 = lb (the total length of the bunch), but this can be adjusted to accommodate

for any singly peaked potential. These edges split the domain into a set of 2N subdomains

where subdomain n lies between zn−1 and zn. There are no particles trapped in the final

subdomain.

It should be noted that we cannot know a priori the optimum choice of edges for a given

system. The choices must capture the relevant physics in the bunch, and sufficiently sample

the state space. The choice of edges need not be perfect, but should be chosen according to

the main features of the physics.

After discretiztion, many of the functions will be discontinuous (or discontinuous in the

derivative) at the edges zn but continuous within each subdomain. As such it becomes useful

to define these terms in the following way:

f(z) ≡ fn(z) for zn−1 < z < zn (2.29)

Where f(z) is an arbitrary function that may be discontinuous at edges zn. The longi-

tudinal potential can be discretized in this form. It should be noted that the range for the
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potential of each subdomain is the average U(z) where:

U
m ≡


∫ zn
zn−1

U(z)dz+
∫ z2N−n
z2N−n−1

U(z)dz

(zn−zn−1)+(z2N−n−z2N−n−1)
for n ̸= N∫ zn

zn−1
U(z)dz

(zn−zn−1)
for n = N

(2.30)

m ≡ N − |N − n| (2.31)

Terms such as linear density, longitudinal velocity, and the averaged potential U(z) will

be symmetric around the central well, yielding the form fm(z).

2.3.2 Continuity of Current in Airbag Loops

Now that the potential has been approximated, it becomes necessary to discretize the phase

space to reduce the number of equations of motion to a finite set and to generate realistic

synchrotron tunes. Each finite square well traps a continuous ring of energy levels spanning

multiple subdomains. Without discretization, each energy level would contribute another

set of coupled ODEs. Also, due to the stepwise structure of the square potential wells, some

of these energy levels would have unrealistic tunes.

We must further discretize each of these ring surfaces of current into a monoenergetic

’loop’ of current (also known as airbag distributions), with a single loop of current trapped

by each square potential well. The currents of individual loops are constant so the line

density will vary with the velocity of the bunch. For the loop of current trapped by the jth

square well, the continuity between slices n and o has the following form:

żnj λ
n
j = żojλ

o
j (2.32)

Each loop of current can be divided into two half loops with the opposing velocities

(ż−j = −żj). Fig. 2.1 shows the loops of current in phase space.
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Figure 2.1: An annotated example phase space portrait of multiple loops of current trapped
in a discretized potential.

2.3.3 Determining Qs for Current Loops

Each current loop has a tune Qs which will decrease monotonically with the total energy of

the loop. The choice of a proper Qs is necessary as mode coupling is heavily dependent on

the synchrotron tune. Since it is monotonic, there is only one corresponding velocity for a

given target tune. The expression for the synchrotron tune of the nth current loop is:

From here it is possible to either invert Qs(E) or perform a concentration series to bound

the necessary energy. The expression for the synchrotron tune of the jth well is:

Qs,j(Ej) =
ω0
2π

∮
dz

ż
=
ω

π

2N−j∑
n=j

zn − zn−1

żmj (Ej)
(2.33)

żmj =
√
2(Ej − U

m
) (2.34)

What is the proper tune for a loop of current? If the loop of current is undergoing linear

focusing, there is only one tune and the solution is trivial. But when nonlinear terms are

present, the synchrotron tune of the original ’true’ potential will vary with energy. Therefore,

particles trapped within a loop of current will not have a single tune. For maximum accuracy,

one can calculate the average tune of the portion of the ’true’ distribution trapped in a given
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potential well (by using a procedure similar to section 2.3.4). Or with enough subdomains,

the differences in tune within that loop of current become small and we can use the method

in section 2.3.4 directly.

2.3.4 Sculpting Phase Space

Just like the potential, we must bin the particle density into individual subdomains. Because

of current continuity the line density λ will be the average value of of the true linear density

λtrue(z).

λ = λm ≡


∫ zn
zn−1

λtrue(z)dz+
∫ z2N−n
2N−n−1 λtrue(z)dz

(zn−zn−1)+(z2N−n−z2N−n−1)
for n ̸= N∫ zn

zn−1
λtrue(z)dz

(zn−zn−1)
for n = N

(2.35)

Since multiple loops of current contribute to the total line density of the system, we can

treat this as a sum of the form:

λ = λm = 2
m∑
j=1

λmj (2.36)

At the edges of the distribution, there is only a single loop of current making the line

density simple to determine (λ1 = 2λ11). Using the continuity of current for a single loop

of current it is possible to determine the complete λm1 . This in turn makes it possible to

calculate the contribution from the next (loop j = 2) loop. This procedure is repeated until

the system is completely defined.

2.3.5 Generalized Equations of Motion

Now that the longitudinal dynamics are fully determined for the MLSW model we can come

up with the final system of equations. Since the velocity of particles in a subdomain are

constant, we can evaluate Eq. 2.27 at each longitudinal velocity żnj . Doing this gives the
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following basis differential equations:

dF̂nk
dz

= wk

m∑
j=1

λnj (X̂
n
j + X̂n

−j)− αkF̂
n
k (2.37)

dX̂n
j

dz
=
iω0
żnj

[h1(z, ż
n
j )X̂

n
j + h0(t, z)] if ż

n
j is real (2.38)

dX̂n
j

dz
= ϵX̂n

j if żnj is imaginary, ϵ << 1 (2.39)

h0(z) = −∆Q′
sc

m∑
j=1

λnj (X̂
n
j + X̂n

−j) +
1

2Qx

κ∑
k=1

F̂nk (2.40)

h1(z, ż
n
j ) = ξ1ż

n
j +∆Q′

sc

m∑
j=1

λnj +∆Qx (2.41)

Special notice should be given to Eq. 2.39, if żnj is imaginary, this loop of current has been

trapped by a previous square potential well and is therefore not present in this subdomain.

It is possible to change the size of the matrix at each subdomain (as is done in the code

itself for performance), but this is unnecessary from a notation perspective. Ideally, the

matrices in each subdomain have the same order to facilitate matrix multiplication down

the line. It is valid to extend the smaller matrices with the addition of diagonal elements with

vanishingly small value ϵ. This allows us to match the equations at the boundaries of the

bunch (z0 and z2N ) rather than matching them one by one as the size of the matrix changes

and loops of current are trapped by progressive square wells. The differential equations for

each subdomain can be expressed with the following matrix:

dV⃗ n

dz
=MnV⃗ n (2.42)
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V⃗ n =



F̂n1

...

F̂nκ

X̂n
1

X̂n
−1

...

X̂n
N

X̂n
−N



(2.43)

This matrix form has solutions that are an eigensystem with eigenvalues Λ and eigenvectors

ν⃗.

(Mn − Λ)ν⃗ = 0 (2.44)

Each eigenvector propagates with its given eigenvalue such that ν⃗a(z) = ν⃗a(zn−1)e
Λna (z−zn−1).

Λi is the ith eigenvalue while ν⃗i is the corresponding eigenvector. This makes the propagation

of the individual basis function V⃗ :

V⃗ n(z) =
κ+2N∑
a=1

(νn)−1
ca E

n
aa(z)ν

n
abV⃗

n(zn−1) (2.45)

The diagonal matrix Eaa ≡ eΛa(z−zn−1). νab is a matrix made up of row vectors ν⃗

that translates from the basis of basis functions V⃗ to the basis of eigenvectors ν⃗. We are

essentially translating the initial conditions at the edge of a subdomain zn−1 into a sum

of eigenvectors before propagating the eigenvectors and then translating back to the initial

basis.
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2.3.6 Continuity and Boundary Conditions

The motion of the bunch is now well defined in a single subdomian for all basis functions.

Wake forces F̂k and the average position X̂±j of the bunch are continuous along the length

of the bunch where V⃗ nj (zn) = V⃗ n+1
j (zn). Therefore, the propagation of all basis functions

has the form:

V⃗ (z) =
κ+2N∑
e=1

(ν−1)heEee(z)νeg

n−1∏
d=1

[
κ+2N∑
a=1

(νd)−1
ca Eaa(zd)ν

d
ab]V⃗

1(z0) (2.46)

for zn−1 < z < zn

V⃗ (z2N ) ≡ MV⃗ (z0) (2.47)

Now that we can propagate the system to an arbitrary position within the bunch while

maintaining continuity, we can define a vector of boundary conditions that must be satisfied.

First is the boundary condition for the wakes fk, which defines continuity of wakes between

bunches (z0 and z2N ). Bunches may be out of phase with one another which will add a

complex multiplicative factor. This will often be a pure rotation as is the case in coupled

bunch modes, but may vary for specific cases.

At the same time, the upper and lower half loops of current X̂j and X̂−j must have

the same value at their edges X̂j(zj−1) = X̂−j(zj−1), X̂j(z2N−j) = X̂−j(z2N−j). We shall

consider the boundary condition at the head portion of the loop to be an and the tail of

the loop as bn. This seems to suggest that our boundary conditions are a system of κ+ 2N

equations with the same number of unknowns. This is however not actually the case. Instead

the head of the outermost loop must be offset from the center of the beampipe by some small

amount–this is because our betatron sideband is nonzero. We may arbitrarily set this initial

offset to 1 as we do not know the true offset of an input beam. Because of this it is not

possible to satisfy all boundary conditions simultaneously except in special cases. Therefore,
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there will be a small error e that must be accounted for on its own. This error could be

included anywhere, but calculations are simplified if the error is accounted for at the tail of

the initial loop. The initial and final boundary conditions V⃗ (z0) and V⃗ (z2N ) are:

V⃗ (z0) =



f1e
−2πiBT −D

...

fκe
−2πiBT −D

1

1

a2

a2

...

aN

aN



, V⃗ (z2N ) =



f1

...

fκ

b1 + e

b1

b2

b2

...

bN

bN



(2.48)

Where B is the coupled bunch mode number, T is the total number of equally spaced

bunches, and D is a decay factor from the multiscale system. We can represent both of these

vectors of the initial and final conditions in terms of a vector of constraints q⃗ and the vector

of the initial offset of the bunch c⃗:
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q⃗ =



f1

...

fκ

e

b1

a2

b2

...

aN

bN



, c⃗ =



0

...

0

1

1

0

0

...

0

0



(2.49)

Where V⃗0 − c⃗ ≡ Riq⃗ and V⃗2N ≡ Rf q⃗. Therefore,

Ri =



e
−2πiBT −D

. . . 0
e
−2πiBT −D

0 0

0 0

1 0

1 0

0 . . .

1 0

1 0



(2.50)
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Rf =



1

. . . 0
1

1 1

0 1

0 1

0 1

0 . . .

0 1

0 1



(2.51)

With this it becomes possible to use matrix methods to determine the boundary condi-

tions:

V⃗ (z2N ) = MV⃗ (z2N )

Rf q⃗ = M(Riq⃗ + c⃗)

M−1Rf q⃗ = Riq⃗ + c⃗

(M−1Rf −Ri)q⃗ = c⃗

q⃗ = (M−1Rf −Ri)
−1c⃗ (2.52)

This vector of constraints/initial conditions is only physical when the error boundary

condition e = 0. This is the κ + 1 constraint. Since the matrix M changes with the input

tune shift ∆Qx we can therefore find a choice of tune shift that brings the error to zero.
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2.3.7 Determining ∆Qx

As we can see, the entire bunch is defined within an error term concentrated at the tail of

the bunch. A real solution will have this error go to zero and satisfy all of the boundary

conditions. This will only occur at certain values of the parameter ∆Qx, which we can vary

to find proper solutions. We shall minimize this error e using a gradient descent method

[22].

For every initial choice of tune shift ∆Qx,i there is a complex-valued error e. By choosing

slight offset tune shifts ∆Qx,i+dΩ and ∆Qx,i+ idΩ we can then calculate the derivatives for

the real and imaginary errors. dΩ is a small change to the initial tune shift used to calculate

the numerical derivative.Re(e)

Im(e)

 =

 dRe(e)
dRe(Ω)

dRe(e)
dIm(Ω)

dIm(e)
dRe(Ω)

dIm(e)
dIm(Ω)


Re(Ω)

Im(Ω)

 (2.53)

Ω is the change to the tune shift necessary to minimize error if the error is completely

linear. With this in mind we can define a new initial tune shift and iterate the solution

as necessary until the error is below some arbitrary threshold. It can be useful to place an

upper limit on the stepsize in order to not jump toward a more strongly attracting tune

solution.  dRe(e)
dRe(Ω)

dRe(e)
dIm(Ω)

dIm(e)
dRe(Ω)

dIm(e)
dIm(Ω)


−1Re(e)

Im(e)

 =

Re(Ω)

Im(Ω)

 (2.54)

∆Qx,f = ∆Qx,i − Ω (2.55)

Interestingly, it turns out that this method for calculating tune shifts is very robust for

the system we are studying. It continues to function even with a large number of square

potential wells, as long as a sufficient number of initial starting points near to the coherent
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modes are selected.

2.3.8 Physical Interpretation of MLSW

What we have spent most of this chapter solving is the slowly varying portion of the dipole

moments. Since all basis functions oscillate at the same tune (Qx +∆Qx)), the total dipole

motion of a coherent mode is:

X̂ =

∑m
j λnj (x̂

n
j + x̂nj )

2
∑m
j λnj

(2.56)

Therefore the average position of particles oscillating at a specific tune shift will be:

X = Re(

∑m
j = 1λnj (x̂

n
j + x̂nj )∑m

j = 1λnj
e−2πiωt(Qx+∆Qx)) (2.57)

The weighted sum of all valid tune shift modes will give the complete solution.

This is the steady-state solution for the coherent bunch motion. Wakes will grow and

bunches deform until this system arrives at these coherent modes. Because of this, it may

take several synchrotron periods in order for the system to reach this final steady and state

crossing the parameter space as it does so. If this path towards the steady state crosses an

instability threshold it may experience this instability even if the steady state itself is stable.

2.3.9 Solving the MLSW with Codes

It should be obvious that although this is an exactly solvable problem, boundary condition

matching for such a system is an iterative process. A code and accompanying wrapper have

been developed to discretize a beam, translate it into the square well method then calculate

the coherent modes of the system.

The Python wrapper discretizes the input potential and generates a set of input files with

longitudinal dynamics and transverse parameters (sections 2.3.1-2.3.4). This is then read by

the main C++ code which uses the matrix solver Eigen[23] to satisfy boundary conditions
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2.3.6-2.3.7). The coherent tune shift and the shape of the bunch modes along with the bunch

shape are then saved as output files that can be read and visualized by the wrapper.

The Python wrapper for the MLSW code has the following form. It begins with an

input potential which it discretizes into a set of square potential wells (section 2.3.1) and

bins the line particle density. From there the tune of the trapped particles is calculated

and an energy level assigned to give the approximating airbag the correct tune (section

2.3.3). Particle densities are meted out to the individual loops before being combined with

transverse bunch information (section 2.3.4). The wrapper then saves an input file for each

individual setting which can be used by the main C++ calculation code.

The C++ code is a multi-threaded code that uses the matrix solver Eigen[23] to perform

the individual matrix calculations. Each input file is read by one of the threads which are

then translated into two sets of matrices. The first matrix is the total system with no

tune shift term M |∆Qx=0. The second matrix is R, the matrix of constants and prefactors

for the tune shift, where R ≡ (M −M |∆Qx=0)/∆Qx. This way it is possible to evaluate

the total matrix M quickly since M = M |∆Qx=0 + ∆QxR. Then the error minimization

can be performed to satisfy boundary conditions. With boundary conditions satisfied, the

individual coherent modes and the spatial functions are then saved to a file where they can

be visualized by the python wrapper.
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Chapter 3

MLSW Results

The utility of the generalized Multiple Loop Square Well model is to expand our understand-

ing of the system beyond the limiting cases. Therefore we shall begin with a comparison of

the MLSW model with the SWM (section 3.1) before going into the phenomena for multiple

loops of current (section 3.2). After that, we use the MLSW to analyze certain systems

such as convective instabilities (section 3.3), nonlinear chromaticity (section 3.4), oscillating

wakes (section 3.5), nonlinear longitudinal potentials (section 3.6), and prospects for future

work (section 3.7).

3.1 Comparing TMCI Thresholds

from SWM with MLSW

In the limit of a single square well, the Multiple Loop Square Well reduces to the Square

Well Model[1]. In this section we will demonstrate that the MLSW matches the SWM in

this limiting case. We will survey these results to provide physical intuition and offer a

comparison point for more complex dynamics of multiple square wells and loops of current.For a single square well, the velocity can be easily defined in terms of tune:

Qs =
ω0
2π

(

∫ lb

0

dz

vs
+

∫ 0

lb

dz

−vs
)

vs =
ω0lb
πQs

(3.1)
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A single loop of current will have longitudinal velocity ±vs and the corresponding two

equations of motion–one for the forward propagating and one for the backward propagating

portion of the bunch. Since this bunch has a finite number of particles oscillating at a given

tune, the loops of current in this distribution have a density in phase space of λδ(ż ± vs)/2

where δ is the Dirac Delta Function. This has the added effect of making the particle density

λ(z) constant within the square potential well and zero everywhere else. Evaluating this gives

the set basis of differential equations X̂+, X̂−. This completes the set of basis vectors for

the system of linear ordinary differential equations.

dX̂+

dz
=
iπQs
lb

[(∆Qx +
χω0
πQs

)X+ +
λ

2
∆Q′

sc(X̂+ − X̂−) +
1

2Qx

κ∑
k=1

F̂k)] (3.2)

dX̂−
dz

= −iπQs
lb

[(∆Qx −
χω0
πQs

)X− +
λ

2
∆Q′

sc(X̂− − X̂+) +
1

2Qx

κ∑
k=1

F̂k)] (3.3)

dF̂k
dz

= wkλ(X̂+ + X̂−)− αkF̂k (3.4)

Because the system only has particles at mirrored velocities, the chromatic term can

only be meaningfully defined in terms of the head-tail phase shift χ or the linear order of

ξ (χ = ξlb) as the even components of the expansion will just lead to a small frequency

detuning. Using section 2.3.6, we can determine the boundary conditions for the SWM. If

the wakes decay to infinitesimal values before the another bunch interacts with them, the

boundary conditions are:

X̂+(0) = X̂−(0) ≡ 1 (3.5)

X̂+(lb) = X̂−(lb) ≡ b (3.6)

F̂k(0) = 0 (3.7)
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3.1.1 SWM Beam Instabilities

When a valid tune solution ∆Qx has a negative imaginary component, Im(∆Qx) < 0,

the system becomes unstable and the bunch oscillations will grow exponentially until some

mechanism stabilizes the beam. The most obvious example of this stabilization is due to

particle loss, where the loss will decrease the strength of the wake force, the main source of

instability in our case. But there are other mechanisms that can terminate the instability

as well. For example, at a sufficient distance from the center of the optics nonlinear forces

become stronger and we may exit the linear regime and stabilize the beam. However, even

if such an effect prevents direct particle loss there will still be a significant decrease in beam

quality making this undesirable.

While the negative imaginary tune solutions can be generated by modes combining to-

gether and becoming degenerate as in TMCI, other instabilities (such as the head-tail insta-

bility) are not due to this mode coupling and exhibit negative imaginary tune solutions by

other means.

3.1.2 SWM and TMCI Threshold Under Constant Wake

All tune solutions ∆Qx for a stable system will reside on the real line (Im(∆x = 0)),

making each solution oscillate at an offset from the fundamental betatron tune. If two

modes shift together on the real line they will become degenerate and therefore unstable.

Since the distance between sideband modes without collective effects is Qs, a wake must

shift a sideband ∼ Qs in order to drive this instability.

The simplest possible wake, where α1 = 0 in Eq. 3.4, is known as a constant wake or

a step wake. When α1 = 0 there is no natural oscillation in the wake itself, and the wake
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will best couple to the zero mode. Thus it is possible to define the approximate tune shift

generated by a step wake of this form known as the Rigid Mode tune shift ∆Qw. The rigid

mode tune shift is the change in tune of the rigid bunch (m=0) mode [24] assuming that

wake shifting this mode is not significantly deformed by it. ∆Qw ≡ wkI
4Qx

for a bunch with

a total bunch intensity of I. ∆Qx ≈ −∆Qw if wk is sufficiently small and the wake does

not heavily perturb the modes of the solution. However as the wake strength increases, this

shifting of other modes becomes more significant and must not be discounted–leading to the

shape of the instability diagram shown in Fig. 3.1. These other modes can be driven into

instability as well, but only become the dominant unstable term in specific cases.

The TMCI threshold for a constant wake and no space charge is:

w1I

4QxQs
∝ w1I

4ωxωs
>

1

2
(3.8)

w1I

4QxQs
=

∆Qw
Qs

= Υ(
ω0
2
)2 (3.9)

This has a very good agreement between the two-macroparticle model with [12] as well as

the same functional form as the formulation given in section 1.5.2, sharing the same functional

form and expressible with the factor Υ. Since the SWM is not a macroparticle model it

does not exhibit the synchro-betatron resonances which are artifacts of the macroparticles

themselves.

3.1.3 SWM and MLSW Mode Responses

for Varying Wake Frequency

Rather than assuming a constant wake function, let us also consider wakes generated by an

oscillatory wake function of the form αk = iπN /lb. The parameter N , which we shall call

the cosine wake mode number is a continuous parameter that can drive a combination of
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Figure 3.1: The TMCI threshold simulated using the SWM. Note the lack of resonance lines
characteristic of macroparticle methods such as those shown in section 1.5
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Figure 3.2: This figure shows the corresponding tune shifts of an oscillating wake frequency.
The tune shift response for input to the wake function is an even function of N (N =
|αk|lb/π) while the tune kick is small. The zero mode is more strongly driven by wakes,
making it easier to drive into an unstable regime compared to other wakes. Both positive
and negative modes are excited equally by these oscillating wakes.

coherent modes. When N is in resonance–slightly above the integer due to interaction with

other modes, it has the same natural frequency as a sideband mode, exciting a tune shift in

the beam, as is shown in Fig. 3.2. For the single well version of this, the fundamental mode is

easier to drive than the offset modes, as the oscillating wakes couple to both the positive and

negative synchro-betatron sidebands (m = ±n) and oscillating wakes can couple to multiple

nearby modes at once.

Taking the same approach with three potential wells and measuring the responses we

obtain Fig. 3.3 which has the same rigid fundamental mode, but a decreasing response from

the sidebands. Since the bunch is no longer flat, modes are no longer solely driven by the

ratio of the wake αk to the length of the bunch lb as the bunch shape itself has its own

resonances. Thus, this will vary with the exact distribution shape.
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Figure 3.3: MLSW with two loops of current driven by an oscillating wake. The oscillating
wake drives a combination of multiple modes, shifting them. As with the single well, this
response is an even function of N , where N = |αk|lb/π. The error minimization algorithm
does not always resolve all coherent modes of interest, leading to a few missing datapoints in
the 0 and 1 modes. Both positive and negative modes are excited equally by these oscillating
wakes. This simulation has a stronger kicking wake than in Fig. 3.2 with the same frequency
sweep. Unlike the single well example, sideband modes can bifurcate into multiple coherent
solutions, as exemplified by the m = 9 mode.
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3.1.4 TMCI with Space Charge

In the single well limit, free space charge effects shift all modes except for the fundamental

(n = 0) correspondingly lower, effectively slowing the oscillation speed of the bunch. The

fundamental mode doesn’t shift and space charge alone cannot cause mode coupling, the

positive sideband modes will asymptotically approach the fundamental mode from above

while the negative sideband will continue to decrease linearly with ∆Qsc/2. This is not

realistic, as in general the intensity varies longitudinally along the bunch making the space

charge tune shift vary with it.

With a natural wake (wk > 0) space charge is a stabilizing effect. The distance between

the m = 0 and the m = −1 modes will be approximately Qs+∆Qsc/2 making the total tune

shift necessary to couple between such modes larger than in the absence of space charge.

But this is a double edged sword, as this correspondingly decreases the distance between

the m = 0 and m = +1 modes. Thus at strong space charge, damper wakes can induce

instability as is shown in Fig. 3.4 when ∆Qw/∆Qsc < 0.

Perhaps the most important prediction is that certain beams (below the red line in Fig.

3.4) cannot become unstable to TMCI no matter how high the particle intensity is. This

is because both the wake and the space charge scale with beam intensity and implies that

SWM beams are always stable when 0 < ∆Qw/∆Qsc < 1.

While TMCI from the zero and one modes may be damped by sufficient space charge,

other modes may not necessarily be damped in the same way. Therefore one should be aware

that higher order terms may become problems at very high intensity even if space charge

dampens the main instability.

When we move on to a multiple loop case this system changes significantly. Although the
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Figure 3.4: Colormap of instability magnitude for the SWM. As bunch intensity increases,
so do both the rigid mode tune shift (∆Qw = w1N/4Qx) and the space charge tune shift
(∆Qsc). If the ratio the rigid mode to space charge is less than one but still greater than
zero the beam will be stable for any intensity. TMCI at the top left is from modes −1 and
0, the one at the bottom is 0 and +1, while the final mode at the top right is from the −2
and −3 modes and is much weaker.
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same modes exist in Fig. 3.5 (albeit with their thresholds adjusted slightly), other modes

dominate at high intensity. These features are due to mode splitting in the coherent modes

and will be talked about in section 3.2.5. Therefore for the multiple loop case there is a high

intensity limit beyond which TMCI will occur.

3.1.5 Head-Tail Instability with Linear Chromaticity

Unlike TMCI, the head-tail instability doesn’t require mode degeneracy in order to become

unstable. Instead, the head-tail phase shift χ causes a small mismatch between the phase of

the forward and backward propagating loops of current. Without wakes, the phase offset will

satisfy boundary conditions as the upper loop cos(nπ+χ) and the lower loop cos(nπ−χ) are

equal. In the presence of wakes the tune must be complex to satisfy the boundary conditions.

A diagram of this mode structure for the SWM is shown in Fig. 3.6. Since mode coupling

does not occur in this case there is only one complex mode for each sideband, which may be

stable or unstable depending on specific conditions.

Head-tail modes naturally have imaginary components, making it more difficult for modes

to become degenerate and drive TMCI. Because of this, chromaticity is often used to damp

such instabilities. And for systems where the number of loops of current N > 1, chromatic

effects will differ for each loop of current, making it possible to include nonlinear chromatic

effects as well.

3.2 MLSW Phenomena

MLSW fundamentally changes the picture of TMCI instability from the single loop case.

The shape of the bunch itself matters for a multiple loop bunch, as different distributions
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Figure 3.5: Colormap of instability magnitude for N = 3 mulitloop. This bunch has a worse
resolution in order to save computation time so structures are not as well resolved. Note the
spike like nature of some of the instabilities. These are due to orthogonal modes crossing
one another briefly without fully coupling, and are only degenerate over short time in the
parameter space.
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Figure 3.6: A plot of the most unstable modes due linear chromatic effects. Though we use
nonstandard definitions for chromaticity, χ should remain unchanged. As has been noted
before, no comparison with MLSW will be shown here, as that will need to be discussed in
more detail in section 3.4.

will have shapes that resonate better with different oscillating wakes, but also the space

charge strength will vary along the bunch. Different loops will witness different portions of

the bunch and therefore different space charge effects. These loops can be displaced from

one another if they collectively satisfy the boundary conditions. This combination of each

loop being displaced from others and observing different forces gives rich new phenomena

that merit our focus.

3.2.1 Bunch Shaping and RF

So far we have taken an overview of the differences between the SWM and MLSW generaliza-

tion, with the MLSW system approximating a Gaussian distribution with linear RF forces.

We know however that the exact shape of the bunch can change the results significantly.

As more square wells and loops of current are added the exact shape of a distribution
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Figure 3.7: The longitudinal distribution of single airbag bunch trapped by nested square
potential wells.

beomes more important. The longitudinal RF potential defines the tune of each individual

loop of current while the particle distribution populates each loop with current. Many beams

are approximately Gaussian in form, but any stationary distribution with a singly peaked

potential can be approximated by the superposition of multipile square wells. It is useful to

think about some special cases, which show interesting results.

3.2.2 Hollow Beams and Beams with weak Collective Effects

Let us begin by thinking about a single loop of current, an airbag trapped in multiple square

wells. With enough potential wells this approximates a hollow distribution, as shown in Fig.

3.7. Interestingly, in the limit without collective effects, a bunch can be thought of as of

multiple hollow distributions evolving independently.

This makes for an interesting thought experiment. If we imagine an input beam without

any collective effects mediating between loops of current, each loop of current will oscillate
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based on their initial offsets. Each loop will have its own individual sidebands that propagate

separately from the others.

What happens when the coupling is included? As soon as there are forces propagating

between the multiple loops of current, the system is fully defined and each loop of current will

eventually shift toward the system’s coherent modes. Before the system reaches equilibrium,

each mode will shift to the final oscillation frequency. For these weak collective effects, the

contribution of all but the outermost loop sum to a small total contribution, making the

system dominated by the outermost loop of current, shown in Fig. 3.8. This is why the

coherent tunes are that of the outermost loop if the coupling strength between loops of

current go to zero.

However, when mode bifurcation occurs these new coherent modes will be some hybrid of

the outermost loop of current and some of inner ones that propagate slightly differently. That

being said, if particles are only in a single loop of current, the bunch will regain the hollow

distribution unperturbed by other loops of current and will not have bifurcating modes.

3.2.3 The Gaussian Distribution

Gaussian beams and other distributions with long tails can be difficult to model by a super-

position of square wells without needing to artificially cut off particles with a large excursion

from the center of the bunch. This is because it is important to have a sufficient number

of particles in each loop of current, but also not so many that the modes cannot be easily

driven. This is particularly important for the outermost loop as it has the initial offset which

will drive the wakes. Fewer particles correspond to a smaller initial offset for the bunch and

may weaken the total response.

We can expect that many beams will have a Gaussian-like shape, so this distribution will
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Figure 3.8: A 6 loop Gaussian distribution with infinitesimally weak collective effects. This
makes the outermost loop dominate the system compared to other transverse offsets. In order
to make the contribution of each mode more clear, the y-axis is a sum of the transverse offset
(which is continuous along the loop of current) and the longitudinal velocity of the section
of the loop of current (which is not continuous).
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Figure 3.9: Coherent modes for an approximated Gaussian distribution with 5 loops of
current. Perhaps most interestingly, it seems that the space charge-less TMCI threshold for
both this and the other models are approximately the same, while space charge forces differ
greatly between them.

act as a good baseline for determining TMCI thresholds for a normal beam (shown in Fig.

3.9). And interestingly, the space charge-less case has a similar TMCI threshold to other

distributions because the wake field kick of the zero mode under a weak constant wake is

F1 = w1
∫
λdz → w1I, that is it only scales with total bunch intensity rather than bunch

shape. What is different is that this beam has significantly different space charge forces

between the center and the edges of the bunch, which allows coherent modes to split quite

readily from one another compared to a flatter distribution.

3.2.4 TMCI Threshold Convergence

When approximating a given distribution, increasing the number of square wells (and loops

of current) should improve the resolution of the approximation. For a reasonable choice

of square potential wells, increasing the well number should allow the solution to converge
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Figure 3.10: TMCI growth rate of the rigid mode of a Gaussian bunch. The threshold for
mode coupling occurs when the 0 and the −1 synchrotron sidebands couple into one another
generating an exponentially growth rate −ω0Im(∆Qx). Converging threshold is observed

at
w1I
4Qx

≈ 0.57

toward the true value of such a distribution. If this does not converge or remain constrained

to a small boundary, this approximation method would be suspect.

To demonstrate the convergence of this method we will consider a Gaussian distribution

approximated by N square potential well and linear RF. All loops of current will have

approximately the same synchrotron tune and particle number. This will be shown in two

ways, first an instability will be driven using a rigid wake which is depicted in Fig. 3.10.

After that is completed and instability observed, space charge will effectively dampen the

instability as in Fig. 3.11. In the multiple loop cases, instabilities may also occur after TMCI

is initially damped. These are due to mode splitting, the subject of the next section.
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Figure 3.11: The damping of TMCI with space charge with a rigid mode tune shift of
wlI
4Qx

=

2, around four times the TMCI threshold. The space charge tune shift needed to dampen
this instability for a large number of wells converges asymptotically to ∆Qsc ≈ 1.51Qs
.

3.2.5 Bifurcating Instability Modes

Each of the N loops of current contributes a degree of freedom to the bunch. These degrees

of freedom make it possible for multiple modes to split off from an original coherent mode

as in section 1.3.5. This phenomena is perhaps most obvious when considering space charge

effects where multiple loops of current can each be offset to satisfy boundary conditions

in a slightly different way. These offset modes split off from the initial synchro-betatron

sidebands. More loops of current correspond to more degrees of freedom that can be excited,

which turn a sparse mode structure into a denser one. It should be noted that these modes

are still discrete and do not represent a continuum of modes.

This has a few clear implications for the motion of the system. While each mode allows

a solution that satisfies the boundaries for all loops of current, an individual loop my be
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dominated by a subset of these modes (the exact distribution of which depends on the

initial conditions). Space charge effects will be split into multiple degrees of freedom with

each observing different average tune shifts. Particles dominated by the center of the beam

motion (inner loops) can be expected to have a larger tune shift compared to mode-dominated

particles at the edge of the bunches where the particle density is less.

Each of these modes can by themselves drive mode coupling with other sidebands, but

they do so in a different ways due to the degrees of freedom. Modes that are from the same

degree of freedom couple normally as discussed in the SWM, but if two orthogonal modes

cross in tune space they will still become briefly degenerate, as shown in Fig. 3.12. Such

brief degeneracy of modes will cause some beam loss for the system. Although brief, these

modes do have a finite size and therefore cannot be neglected.

It is worth noting that increasing space charge normally dampens instabilities for a

single degree of freedom, but in systems with multiple orthogonal modes space charge can

briefly drive mode coupling from these orthogonal modes. Since such modes are only briefly

degenerate, they exhibit correspondingly smaller growth rates. However, as the intensity of

the bunch increases we can expect these orthogonal modes to continue crossing one another

making the beam likely to be unstable at high intensity. Space charge alone could not drive

these instabilities in the SWM case.

3.2.6 Mode Crossing Degeneracy

When modes cross in tune space they can become briefly degenerate, Near this threshold,

there appears to be short term growth due to the beat frequencies of the coherent modes for

the single loop case, but becomes less straightforward in the general multiwell.

Let us consider two valid tune shifts that are slightly offset from one another, where the
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Figure 3.12: Instability diagram of two loops as the intensity of the bunch is increased. The
figure shows both degeneracy briefly driven by two orthogonal modes crossing along with
other more long lasting instabilities. A higher intensity increases the space charge and wakes
at the same time.
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first map has a tune shift ∆Qx and the second has ∆Qx + ϵQs where epsilon is an order

parameter that is much less than 1.

For each tune solution that satisfies boundary conditions, there is a corresponding bunch

shape which is the propagation of the individual eigenvectors. As we know from section 2.3.8

the total transverse moment along the length of the beam is a combination of all such modes

with the set of these dipole moments constituting a linearly independent vector space. As the

distance ϵQs → 0 the vectors can be represented by vector V |∆Qx and V |∆Qx + ϵV |offset

where V |offset offset is a component orthogonal to the vector V |∆Qx . Therefore, if the

beam has a component of ϵV |offset which is very small, the amplitudes of the two modes

must be large to represent it. Since these are out of phase, it will lead to large amplitude

beat frequencies when ϵ is real, or strong growth/decay when ϵ is imaginary. This is the

nominal behavior near the instability.

If cases where the vector for the offset mode cannot be linearized in this manner, such

mode crossing degeneracy may not occur. For such a case to exist, there must be multiple

valid solutions with the same tune shift ∆Qx but orthogonal eigenvectors–implying that

there is no linearized map for small offsets in tune shift of order ϵQs.

3.2.7 Space Charge Self Effect

Additional loops of current distribute the charge among the loops. For the single well case

half of the particles are in the upper filament and the other half are in the lower. Since there

are no self forces, this is why the SWM has the prefactor of 1/2 in front of ∆Qsc for Eqs.

3.2 and 3.3. As more loops of current are added, this corrects itself as each filament has

a relatively smaller contribution and the lack of self effect becomes less pronounced. This

means that a stronger wake is needed in the multiple loop case to compensate for the space
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charge tune shift and drive TMCI between the 0 and −1 modes. This can be observed in

Fig. 3.13 which has the same scale as in Figs. 3.4 and 3.5.

Perhaps surprisingly, the negative TMCI modes are still very much of the same form as

the single well case. In the strong space charge regime, negative (damping) kicks can quickly

drive instability.

3.3 Convective Instabilities

3.3.1 Airbag Square Well

In recent years Burov [2] has expanded upon the Square Well Model with his Airbag Square

Well Model (ABS Model). This model differs from the SWM in two main ways. First of all,

the model eliminates chromatic effects to make certain solutions simpler and more elegant.

Secondly, it has more of a focus on the eigenfunctions of the system to derive the actual

evolution and shape of the forward and backward propagating beams.

3.3.2 Spatial Modes

Since the MLSW model is a system of linear ODEs that propagate along the length of the

bunch, the individual solutions are a sum of exponential solutions with complex growth rates.

This means that in general this system is a combination of decay, growth, and oscillatory

motion, constrined to match boundary conditions. Every subdomain of a multiwell will have

different propagation making the total motion of the bunch more complex. However just as

in the single well case it is still possible for spatial modes to drive the convective instability.
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Figure 3.13: TMCI Threshold Portrait of a three well Gaussian distribution and single well
under a varying wake strength wl and a space charge tune shift of ∆Qsc = 2Qs. Because of
the lack of self effect, the single well requires a larger tune shift to dampen the instability.
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3.3.3 ABS Convective Instability

There is significant physics in the strong space charge regime where the system is stable

to TMCI, but particle loss and beam quality degradation may still occur. These areas of

beam degradation are due to the same convective instability that was shown in section 1.5.6.

At a high intensity, but below the TMCI threshold, the tune shift eigenvalues will be real

while the bunch shape eigenvectors correspond to extreme amplification from the head of

the bunch to the tail. This amplification can move the portions of the bunch outside of the

dynamic aperture where particles will be lost.

The scaling for head-tail amplification for modes with n ≥ 0 is shown below. Unlike the

model in section 1.5.6, only positive modes become convective.

It should be noted that there are two separate kinds of convective instabilities identified

in [2], the saturating convective instability (SCI) and the absolute convective instability

(ACI). The saturating convective instability will experience growth in the rear of the bunch

until the system fully saturates, at which point the bunch will stop growing and become

stable. If the bunch is still within the aperture, it may be transported without loss. The

absolute convective instability on the other hand is suggested to be a metastable state driven

to instability by small pertrubations such as halo [20].

Interestingly, there is a relatively simple way to identify whether the instability is satu-

rating or absolute. The stroboscopic plot of the transverse centroid (plotting several turns

along z) will have nodes if saturating and waists if absolute. Examples of the saturating

and absolute instabilities are shown in Figs. 3.14 3.15 These are artifacts of the order of the

synchro-betatron sidebands inherent in the system.
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Figure 3.14: Convective instability for a single loop flat distribution. The plot shows the
dipole moment of the bunch for 20 turns. This system has head-tail growth (due to the
convective instability) but has distinct nodes, indicating that TMCI is not being driven.
This is unsurprising as single well models are more resilient to TMCI at strong space charge.
As with our normal convention, the head of the bunch is on the left side of the figure.

3.3.4 MLSW Convective Modes

Since the initial offset of bunch particles has been set to 1, the head-tail amplification is the

maximum amplitude of the spatial modes. We can expect this maximum to be near the tail

of the bunch as the wake will accumulate over the bunch length.

The amount of amplification that will contribute to loss depends upon the initial offset of

the bunch as well as the size of the beam pipe. This makes it difficult to calculate a threshold

for when convective modes begin to drive particle loss. So instead, we shall consider a mode

as convective when head-tail amplification passes some threshold such as is shown in Fig.

3.16.

There are several regions that are of interest shown in Fig. 3.17. First is convective motion

at very weak wakes and strong space charge. This region is not unstable to TMCI in many
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Figure 3.15: Combined TMCI and Convective instability for a 6 loop Gaussian distribution
plotting dipole moment of the bunch for 20 turns. This system has head-tail growth (due to
the convective instability) waists where the dipole moment goes to a finite minimum ampli-
tude (due to TMCI) and therefore has the phenomena of the absolute convective instability.
As with our normal convention, the head of the bunch is on the left side of the figure.

cases, but may be decidedly unstable to convective motion if growth becomes exponential.

Additionally, there is significant amplification before the TMCI threshold near the middle

of the plot. This may function as a source of particle loss for an accelerators with a narrow

aperture.

Past the TMCI threshold, convective motion may still be significant. In this case TMCI

drives exponential growth of a mode and head-tail amplification will also occur if the mode

is unstable to convective instability. Since this is a combination of both the TMCI and

convective motion, this will have both head-tail amplification and waists rather than nodes

making this a possible explanation for the absolute convective instability as seen in Fig. 4.5

as well as experiments observed in [25].

84



Figure 3.16: Diagram of TMCI instability strength and the head-tail amplification due
to convective motion in the single well limit. The heatmap shows the maximum TMCI
instability strength while the contours show bunch amplification.
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Figure 3.17: 3 Loop multiwell diagram of TMCI instability strength with contours of con-
stant head-tail amplification shown with colored squares. Unlike the single well version, there
seems to be a maximum head-tail amplification of less than 100 times possible without driv-
ing TMCI. The interaction between multiple loops of current makes head-tail amplification
contour lines less distinct.
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3.4 Chromatic Effects in the MLSW model

If there is chromaticity in a bunch, each loop of current will have a difference in the phase of

the upper and lower halves of the loop. These will couple into the outermost loop to produce

the total head-tail phase shift χ for the bunch. In the presence of wakes, this phase shift will

mismatch the boundary conditions which will need to be satisfied by the imaginary portion

of the tune shift Im(∆Qx). If the imaginary term is a growth mode where Im(∆Qx) < 0

the mode is unstable to the head-tail instability.

In the single loop case it was only possible to include a linear chromatic effect, but the

more realistic longitudinal phase space in the MLSW makes it possible to observe higher

order chromatic modes.

3.4.1 Chromatically Dominated Beams

The head-tail instability can occur below the TMCI threshold, however if the bunch is above

the TMCI threshold, the combination of chromatic effects with TMCI can heavily dampen

the growth rate. In Fig. 3.18 we can see the strength of the TMCI alone (zero chromaticity)

is near maximum instability strength. Since the MLSW systems become unstable at high

intensity, damping the instability with chromaticity becomes a valuable exercise. If necessary,

the addition of a kicker[26] can be combined to weaken these modes.

To benchmark to this, let us examine an approximately hollow beam with a single loop

of current. With a single degree of freedom, there should only be one set of modes for the

head-tail Instability, making it the structure simpler. We can compare this solution to Fig.

3 in reference [27] where we see good agreement.
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Figure 3.18: The real and imaginary components of the tune shift for the 3 loop multiwell.
The negative imaginary component corresponds to unstable growth in time. Chromaticity
is expressed in nonstandard units, see section 1.1.4 for more information. Since each loop
propagates separately, they each have have different head-tail phase shifts χ, which is why
we have reverted back to using rescaled chromaticity ξ.
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3.4.2 Nonlinear Chromaticity

Now that we have a more complex phase space model, it is possible to study arbitrarily

higher order chromatic effects in ż. Of particular interest is the quadratic order which will

make all of the loops symmetric around ż = 0. Because of this the inner loop will only have

limited chromatic effects while the outer loop will be the most excited.

3.5 Oscillatory Dipole Wakes

Up to this point, we have focused on constant dipole wake functions, since wakes driven

by this mode, known as the rigid mode, are dominant for diffuse wakes. Over a short

bunch, the wake can accumulate, but has little time to decay or evolve on its own making

it approximately constant. However this is not the complete picture. Since growth can be

exponential, it can also have an imaginary exponential (oscillatory) term in it.

This means that we must also be concerned about oscillatory wake functions. These

oscillatory wakes are in principle most applicable to resonant structures like cavities whose

high quality factor allows them to ’ring’ for a long time before the fields decay significantly,

but other diffuse elements may have a wake that is approximately oscillatory over the length

of the bunch. Thus, understanding these oscillatory wakes is important to obtain a clear

picture of the system.

3.5.1 Tune Shifts of Oscillating Wakes

For oscillatory wakes, we have studied the single square well case in detail. Wakes with

a similar pitch to the synchrotron sidebands will make it possible to drive modes beyond

the zero mode. The sideband modes are more difficult to excite than the fundamental by
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about a factor of three. Since all the sidebands can be driven with similar ease, this implies

that with a high enough frequency impedance it may be possible to create instabilities with

arbitrarily large sideband mode numbers. However, this isn’t realistic as arbitrarily high

order sideband modes leave the region of validity of the model and therefore aren’t realistic.

This changes when we migrate to the multiloop case. Fig. 3.19 shows the instability

thresholds for mode coupling wakes, and that higher order modes are suppressed. This

much more realistically limits modes to near the fundamental and is in stark comparison

to the SWM. The MLSW results demonstrate that there is no need to worry about TMCI

driven by some exotic high frequency phenomena.

We can validate our solutions with the code BimBim [18]. This code has some structural

similarities to the MLSW as the longitudinal dynamics are approximated as loops of current

that are then split into subdomains, but is not exactly solvable with regard to space charge

effects and so should give at least somewhat different results. The figure on page 17 of

reference [28] shows the TMCI threshold for BimBim. The equivalent using the MLSW is

shown in Fig 3.19. Unlike the single square well where the thresholds for sideband wakes

are close to constant, approximating the bunch with multiple loops has the threshold for the

sidebands increase linearly with sideband number.

3.5.2 Nonlinearity of Dipole Wake Kicks

A key question is how many wakes are required to approximate the necessary coupling

physics.

If the modes were linear this would be simple enough, as we only care about some number

of physically relevant modes. If the frequency response of a wake function was linear, this

could be approximated by single frequency kicks. We could integrate over the the total wake
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Figure 3.19: TMCI thresholds for an N = 2 and N = 3 MLSWs. Note that these have
good agreement with the bunches shown in similar BimBim simulations [28]. The two well
version of this model has a slightly smaller threshold compared to the three well, meaning
it is easier to drive instabilities of the higher order sidebands.

91



function and get the total response as a combination of individual coherent modes. However,

these modes are not linear and responses change as the bunch deforms due to the input wake.

Therefore, another approach will have to be taken.

This is not to say that the forces aren’t linear–they obviously are since wakes are elec-

tromagnetic in nature. However the total response to these forces also perturbs the bunch

distribution leading to nonlinearities. Also nonlinearity tends to be accentuated by mode

coupling unless the modes are orthogonal. If by prior knowledge one already knows which

modes will couple, one can focus on expressing this portion of the wake physics rather than

the taking a Fourier series. Possibly due to this, in Blaskiewicz[22] it is stated that a wake

function can be approximated by three wakes in the SWM limit.

3.6 Nonlinear Longitudinal Motion

When the longitudinal motion becomes a function of nonlinear forces, the distribution will

have amplitude dependent synchrotron tune Qs(J). When approximated by the MLSW

individual loops of current will have different synchrotron tunes–the nonlinearity sampled

by the MLSW system. This is not true tune spread, but with a large number of loops it

may sufficiently approximate it to produce certain nonlinear phenomena such as Landau

Damping[29]. Beyond the nonlinear effects, higher order harmonics can deform the bunch

shape into a more desirable distribution.

Both bunch lengthening and synchrotron nonlinearity can presumably help stabilize the

beam. Since we have examined the differences between bunch distributions previously, let

us focus on the effect of the nonlinearity itself. We can do this by matching the initial

distribution to the nonlinear RF potential.
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Figure 3.20: The stability diagram for a bunch with a landau cavity. As the strength of the
cavity increases, instabilities magnitude decreases with the synchrotron tune. This does not
indicate actual damping of the instability.

Initial studies were performed using a Landau cavity (Fig. 3.20), which is a harmonic

cavity designed to cancel out quadratic portion of the potential. This makes the longitudinal

dynamics inherently nonlinear. Without the linear component, the innermost loops of current

have a much decreased synchrotron tune. Initial simulations were performed to see if this

nonlinaerity could dampen TMCI by slowly increasing the strength of the Landau cavity,

which correspondingly decreased the instability strength. However it was determined that

this decrease was not due to TMCI being damped, and instead was due to the decreasing

synchrotron tune.

Other inherently nonlinear phenomena could be in the Landau cavity case, but to study

these it is better to have a significant linear component that doesn’t vary–that way nonlinear

effects can be more easily discriminated from changes in synchrotron tune. Preliminary

simulations of nonlinear z4 are promising as they increase the TMCI threshold needed to
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drive mode coupling.

3.7 Prospects

The MLSW has significantly more parameters that can be studied compared with the SWM

and ABS. While this dissertation has been focused on certain aspects of the model, there

are many others that are beyond the scope of this thesis. Further work must be performed

in combination with experiments (as done in chapter 4) to understand the implications of

the model for a given accelerator.

But there are a few more general takeaways that I shall touch upon here:

First, the MLSW model predicts that there is an upper intensity bound beyond which

TMCI will be driven without some other method to dampen it. However, the strength of

these instabilities is weaker due to the new mode structure. This offers a bridging point with

the SWM[1] where increasing the current of certain beams cannot drive TMCI. Whereas

other methods [30] predict that TMCI has an infinitesimal threshold at strong space charge

but is only weakly unstable, which can be attributed to the bifurcating modes of the MLSW

model.

Second, the convective instability is a major concern for beams operating near (and even

past) the TMCI threshold. Both TMCI and the convective instability are needed to explain

certain beam behaviors.

Third, the new TMCI thresholds and Convective Instability are less clean and clear cut.

The interaction of various loops of current and modes lead to a fuzziness of the exact mode

structure. This means it may be difficult to exactly determine when a beam begins to cross

the TMCI threshold.
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Fourth, many machines operate beyond threshold these instability thresholds. As can be

seen in Table 4.1 the Recycler Ring is near the high intensity threshold, but parameters for

the the AGS in Table 5.1 is significantly beyond it at injection. The fact that the AGS and

other accelerators like it are stable is likely due to a combination of nonlinear optics and

Landau damping along with the chromatic effects within the bunch.

3.7.1 Coupled Bunch Modes

In the regime where wakes decay slowly compared to the distance between bunches, we must

focus on how the wakes driven by one bunch affect the others. Let us consider a bunch train

of T total bunches that form a complete cycle around the accelerator. The coupled bunch

mode number B is essentially the phase offset of the next bunch. This is a mode just like

the sideband we have previously focused on for single bunch TMCI. The total evolution of

the bunch will be a weighted sum of these coupled bunch modes. Therefore, if any of these

coupled bunches make the bunch unstable, particle loss will occur.

Bunch trains in certain machines such as the planned EIC[31] have interbunch distances

that are comparable to the length of the bunch itself. As pointed out in section 1.5.3, tracking

codes have difficulty studying coupled bunch modes over long time periods, making this an

attractive area to apply our method. However this is beyond the scope of this thesis, so this

will only be considered speculatively.

Coupled bunch modes are well understood when bunches are treated as macroparticles

equally spaced in a ring. This limit is given in [13]. In order to test coupled bunch modes of

the system, let us consider the limit where the bunch is very small compared to the distance

between bunches. The results should be equivalent to methods where individual bunches are

treated as single macroparticles. Once this limit has been tested, one can generalize to the
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case where the length of the bunch and the distance between bunches are both finite.

With this method benchmarked, it is interesting to consider instabilities in the future

EIC. Using the preconceptual design report[31], we can model a system that is analogous

to the EIC. Specifically we are interested in the fill, which takes tens of minutes, so it is

possible that even small instabilities could balloon into particle loss.

3.7.2 Nonlinear Transverse Optics

Because this relies on linear transverse optics, the system does not properly account for non-

linear effects that appear due to higher order multipole magnets and the inherent nonlinearity

of certain distributions. Including these effects could greatly expand the applicability of such

a method.

There are two main obstacles to such a method, first a nonlinear map must be generated

that is fully constrained and solvable with a similar boundary value problem as the linearized

case. Additionally, nonlinearity will introduce coupling between transverse modes of the

accelerator. Although these are important to the overall dynamics of an accelerator, they

make computation much more intensive.

Furthermore, assumptions that were made for the SWM and MLSW may no longer be

applicable. Higher order sidebands beyond the upper betatron sideband may cause significant

contributions to these maps and may not be able to be discounted by such a method. Thus,

although this approach should be possible, it may not be the most efficient in the general

case. However, since this approach determines the exact tunes of the system it has a niche

as it is able to better study certain instabilities near the TMCI threshold than many other

models, making further generalizations valuable to the community when studying beams

with very intense space charge.
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Chapter 4

Experimental Verification of MLSW

It is important to verify the results of the MLSWmodel experimentally, but it can be difficult

to do so in a meaningful way. There is a large parameter space that can be studied, but a

given accelerator may not be able to access the portion of the space necessary to confirm the

model.

The wake impedances are particularly difficult in this respect. The accelerator structures

define the impedance and therefore the wakes making this physics more or less intrinsic to

the machine itself. That is, unless wakes are created artificially with some device–a kicker.

4.1 Recycler Waker Experiment

A kicker is essentially a beam pickup with a electrode operating based off of the pickup

signal. Kickers are normally designed to provide negative feedback and dampen coherent

motion of the bunch. With positive feedback the kicker functions much like a wake itself,

except that this wake has a resolution and function determined by the electronics rather

than the accelerator structure.

Such an artificial wake makes it possible to tune parameters and drive instabilities not

normally present in an accelerator, and while there are natural wakes in the system, they

can be neglected if small enough, or incorporated into the model if not.

The Fermilab Recycler Ring (RR) is a proton synchrotron that has a highly tunable
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’Waker’ kicker feedback system. This Waker is used to drive various mode coupling insta-

bilities and study them. In February 2023, an experiment was performed at the kicker to

observe TMCI and Convective instabilities in the accelerator.

4.1.1 Recycler Ring Parameters

The Recycler Ring is injected to from the Fermilab Booster and was originally used as an

accumulator and cooler for the antiprotons[32]. Currently, the ring accumulates protons into

a more intense beam which it sends into the main injector which it shares a tunnel with.

In the future it will provide an input beam used to generate muons for the g-2 experiment.

The parameters for the Recycler are given in Table 4.1.

Parameter Value

Betatron tune Qx, Qy 25.42, 20.44
Synchrotron tune Qs 0.0005

Space charge tune shift* ∆Qsc −0.004
Chromaticity** ξx, ξy −0.75,−0.16

Emittance ϵN,rms 2.5π mm mrad
Energy E 8 GeV
Radius R 528 m

Table 4.1: Parameter list for Recycler Ring from [33]. *Space charge tune shift for 3× 1011

protons. and is large compared to the synchrotron tune, making TMCI instabilities due to
strong space charge very possible. **For instability experiments the chromaticity is normally
set to some small value close to zero.

4.1.2 Waker Feedback System

The Waker is essentially made up of four main parts [34]. First is the pickup, made up of two

BPMs which are at a 82◦ phase advance in order to get most of the position and momenta

information. Next is the feedback system which takes the pickup data and transforms it.
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Figure 4.1: Diagram of the Waker at the Fermilab Recycler from [33]

Then come the amplifiers which drive the kicker itself. Finally, the kicker which is a stripline

that mimics a wakefield and has a bandwidth of 200 MHz. In order to obtain a good time

resolution for the bunch, it must be long compared to what is resolvable by the pickup

and the kicker. The length of the bunch is around 150 ns, making the pickup and kicker

resolutions sufficient.

4.1.3 Beam Position and Intensity

The BPMs and a stripline record the response of the bunch and have a sufficient time reso-

lution to resolve bunch motion. Since these are both capacitive pickups they act as differen-

tiators and must be integrated to give the dipole signals. These signals have two channels,

the sum channel which detects beam intensity and a difference channel which detects the

total bunch moment. These provide high time resolution transverse bunch information.
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There are also DC Current Transformers (DCCT) which can measure the intensity of the

Waker over many turns. This provides high resolution intensity measurements of the entire

bunch but cannot resolve the finer structure within the bunch itself. Using this makes it

obvious whether a resonance has been crossed and particles lost, compared to the stripline

and BPM measurements where it can often be difficult to determine the exact onset of

particle loss.

4.2 Observing Instabilities

The objective of these experiments is to study both TMCI and the Convective Instability.

Since these are both dipole instabilities is possible to detect them using a dipole pickup such

as a BPM or stripline. Both the BPM and stripline give similar data which is complementary

to one other.

4.2.1 Coherent Modes

The motion of the bunch is essentially a sum of coherent sidebands that are separated at low

intensity by approximately one synchrotron tune. Nonlinearity will spread out these values,

but these modes should still be resolvable. This can be performed with a normal FFT or

some other more advanced method such as NAFF [35] to determine the coherent modes of

the bunch.

Due to the varying dipole moment for individual modes, certain modes can be expected to

dominate at points along z. It is possible to enhance the signals of these modes by averaging

signals from the portion of the bunch that is more heavily driven by a certain mode. This is

especially true in the case of convective motion, where the tail signal is significantly amplified
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Figure 4.2: Synchro-Betatron modes for three separate experiments at differing wake gains
strengths. The Blue line is saturating convective instability, the orange line is the absolute
convective instability (TMCI combined with and convective motion). And finally, the green
line is TMCI without convective motion.

compared to the rest of the bunch.

Since sideband modes can shift into one another when modes are perturbed by collective

effects, a high resolution is necessary. To obtain a finer resolution than Qs in tune space,

more than 1/Qs turns are necessary. Significantly more turns are needed to resolve the

modes or their tune shifts. To get a sufficient resolution for to resolve coherent modes the

experiments are are 20000 making the resolution ≈ Qs/10. Fig. 4.2 shows the FFT spectrum

of three experimental settings. The shifting of individual modes due to shifting experimental

values can be observed.

4.2.2 Head-Tail Amplification

With high time resolution measurements of the bunch along the detectors, one can determine

the total dipole moment along the bunch at given turn. If there is significant growth from
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head to tail for a specific turn, it is possible that this bunch is convective. This is necessary

but not sufficient to prove that this is a convective mode. In certain cases, such as those

outlined by Metral, et al. in [36], it is possible that a sum of normal coherent modes can

interfere with one another and create something that looks convective for a short time, but

isn’t actually due to the convective instability.

The best way to distinguish between convective motion and a sum of coherent but non-

convective motion is to ensure that these convective elements oscillate together. If these are

actually different modes interfering with one another, there should be some time when the

head-tail growth of the bunch will reverse into tail-head amplification. If the motion of the

coherent modes does not dephase like this, then this the system is undergoing a convective

instability.

4.2.3 Tracing TMCI Thresholds

If looking at an instability with a sharp threshold (TMCI has a sharp threshold unlike

Convective Instability), it is possible to follow the surface of the instability threshold itself.

This relies on the ability to carefully cross the TMCI threshold, which is not particularly

difficult in negative wakes, but becomes more difficult to accomplish for positive/natural

wakes due to the structure of TMCI with multiple loops of current due to mode degeneracy

(see section 3.2.6).

4.3 Experimental Results

The experiment performed at the Recycler Waker had the following setup. The individual

experiments consisted of 30,000 turn shots, 10,000 turns with the Waker off to begin and
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Figure 4.3: The beam intensity obtained with sum of BPM channels at different turns. The
head of the bunch begins at around 1.75 × 10−7 seconds with the tail near 3.25 × 10−7

seconds. The BPM is used because it has the proper asymptotic behavior (trends toward
zero) unlike that of the stipline sum signal.

20,000 turns afterwards with the Waker on. The wakes were of the form w1Θ(z − z′) where

Θ is the Heaviside Theta function and w1 is the wake constant.

4.3.1 Non-Stationary Longitudinal Distributions

In order for the results to be valid, the longitudinal distribution must be an stationary distri-

bution. If this is not the case, the distribution itself will oscillate in time. The longitudinal

oscillation prevents the bunch from converging to its final state spreading out coherent modes

as the modes shift along along the synchrotron period.

During a number of the experimental runs, the Recycler Ring exhibited significant os-

cillations of the longitudinal distribution which is shown in Fig. 4.3. Because this motion

spreads out the coherent modes if the entire bunch is sampled, another method is needed to

sample the beam. By focusing on one one point near the tail of the bunch, it is possible to
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resolve coherent modes, especially those with sufficient head-tail amplification.

4.3.2 Instability Observations at the Waker

Both TMCI and the convective instability were observed during the experiment, sometimes

in combination with one another. The three most notable examples are those shown in Fig.

4.2 as they show the coherent modes for TMCI (green), TMCI and Convective Instability

(orange), and just the Convective Instability (blue).

As expected, systems with significant head-tail amplification were the most easily ob-

served. The turn by turn (stroboscopic) figures for the normalized transverse moment along

the length of the bunch for two of these instabilities is shown in Figs. 4.4 and 4.5. Both of

modes are convective as there is no time when the system shifts from head-tail amplification

to tail-head amplification as one would expect if this amplification was due to Metral, et

al.’s [36] interference between coherent modes moving out of phase with one another.

It is interesting to note that the stronger wake shown in Fig. 4.4 did not exhibit TMCI

while Fig. 4.5 did. This is not consistent with the ABS case where increasing the wake

strength of a beam should always bring it closer to instability. This is however possible in

the multiple loop case, making this possibly consistent with the MLSW predictions. Further

experiments and accompanying simulations are necessary to determine whether the MSLW

well simulates the Recycler Waker.
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Figure 4.4: Stroboscopic plot of a Saturating Convective Instability using Waker, with an
input step wake of strength 5w1 corresponding to a Waker gain of −0.25. head-tail am-
plification of this mode is observed along with clearly defined nodes, indicating the lack of
an absolute instability. This convective motion and lack of instability can be noted in the
saturating convective instability in 3.14

Figure 4.5: Stroboscopic plot of Convective Instability and TMCI observed using the Waker,
with an input step wake of strength 3w1 corresponding to a Waker gain of −0.15. Head-tail
amplification of this mode is significant while the modes have waists rather than a node,
indicating an absolute instability such as TMCI combined with the convective instability
and is consistent with the phenomena observed in 3.15
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Chapter 5

Periodic Resonance at the Alternating

Gradient Synchrotron

Space charge phenomena have a significant effect on more than just coherent instabilities.

Resonant particle loss, essentially particle loss due to resonances between a particle’s tune

nonlinear optics will be changed by the presence of intense space charge effects. In order to

study one example of this known as Periodic Resonance, experiments were performed at the

Alternating Gradient Synchrotron (AGS) during March and April of Run 22.

The AGS is a synchrotron in the Brookhaven National Laboratory (BNL) Collider Ac-

celerator Complex which injects into the Relativistic Heavy Ion Collider (RHIC). It has two

partial Siberian Snakes[37] separated by 1/3 of the ring to preserve the polarization of ions.

The duty cycle is typically 4 seconds for protons, with a 0.5 second ramp up, 2 second flat-

top and a 0.5 second ramp down. After the EIC (Electron Ion Collider) is completed, the

AGS will instead inject into the EIC ion ring. The bunch is injected into the ring at 144

ms (0 ms is the bottom of the AGS ramp) and will remain at this low energy before being

later accelerated. Space charge effects are expected to be most significant during this initial

injection period. Due to the rapid repetition rate, experiments must be performed in single

turn snapshots rather than by sweeping parameters.
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5.1 Space Charge Driven Resonance Crossings

High intensity resonance crossings operate somewhat differently from low intensity ones.

Essentially this is whether we can consider the bunch as approximately point-like in tune

space, or whether nonlinearity and space charge are strong enough to form a large tune

footprint. The high intensity regime is indicated when the width of the resonance is smaller

than the the bunch’s tune shift. This structure is often referred to as the space charge

’necktie’, the characteristic footprint of the bunch in tune space. An example of multiple

space charge neckties is shown in Fig. 5.1. The particles on or close to a resonance line will

interact with this resonance and cause an emittance growth and/or particle loss. The large

size of the tune footprint means that it is more difficult to choose a working point for the

beam that won’t be resonantly excited. The space charge necktie has a loose correspondence

to its location within the bunch–the maximum tune shift is situated at the maximum particle

density of the bunch, while the edges of the bunch oscillate at what is essentially the single

particle lattice tune.

The strength of a given resonance can be explained in a couple of ways. This derivation

utilizes what is known as a driving term integral[3]. The driving term integral is the strength

of a given multipole (in this case a sextupole) and a phase factor:

G0,3,le
−iξ0,3,l =

√
2

24π

∮
β
3/2
y K2(s)e

−i[3ψy(s)−2π(3Qy−l)s/C]ds (5.1)

G±2,1,le
−iξ±2,1,l =

√
2

8π

∮
β
1/2
x βyK2(s)e

−i[3ψy(s)±2ψx(s)−2π(Qy±2Qx−l)s/C]ds (5.2)

Where K2 is the magnetic field strength of the sextupole field, β is the betatron function,

ψ is the betatron phase, ξ is some accompanying phase factor, and l is the integer resonance.

Physically we can think of this driving term as a kick. Over one turn there is some total

kick to the bunch. If this kick is in resonance with the tune oscillations, this leads to greater
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Figure 5.1: PyORBIT[38] simulation of AGS injection. The colored dots are the perturbed
betatron tunes of macroparticles forming a ’tune footprint’ with each color corresponding
to different initial tune for the beam. If these perturbed tunes are large enough, they may
cross third order resonance lines, which are in black. In this experiment the solid black lines
were destabilized in order to study the effect of particles crossing these resonances.
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excitation with each revolution. If not on resonance these kicks will average out.

5.1.1 Periodic Resonance Crossing

Periodic Resonance Crossings [41] are a special type of space charge-driven resonance where

the tune footprint of a bunch crosses a resonance line. Particles undergoing synchrotron

motion will cross these resonances repeatedly over the space of multiple synchrotron periods

leading to a large total kick.

This class of resonance is naturally self-stabilizing. Both emittance growth and particle

loss can decrease the space charge effect and contract the system’s tune footprint. With

enough emittance growth or particle loss, a bunch may no longer cross such resonances.

There are two main types of Periodic Resonances that we can expect to observe. These

are the Trapping and Scattering resonance regimes.

5.1.2 Adiabaticity Parameter T

It is possible to differentiate between these regimes with a so-called Adiabaticity Parameter.

which is defined in Franchetti, et al. [40] as:

T =
1

Qisl∆L

∂Lfp
∂n

(5.3)

where Qisl is the tune of the islands, ∆L is the size of the islands in phase space, and Lfp is

the location of the fixed points of the bunch. For small T we are in the adiabatic regime and

particles will be trapped on stable islands if the islands are large enough. Particles in these

islands will not experience substantial loss or emittance growth and we can expect that the

bunch shape will not be significantly shortened since the particles are evenly distributed in

the longitudinal direction. Alternately, if the parameter T is large we are in the non-adiabatic

regime, and we expect bunch shortening due to particles scattered by the resonance crossing.
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Particles with large oscillatory amplitude in z are excited as they cross this resonance multiple

times per synchrotron period. Without islands of stability, these particles will be lost.

This will continue until particle loss and emittance growth move the tune shift above the

resonance.

5.2 Ionization Profile Monitors

Ionization Profile Monitors (IPMs) are beam diagnostic devices designed to project the

transverse distribution onto a detector, effectively imaging the beam. The operation of such

a device can be described as follows:

The beam passes through a residual neutral gas, ionizing some of the gas into a plasma

of electrons and ions. The charged particles are accelerated to electrodes with either the

ions or the electrons impacting a readout detector known as a Microchannel Plate (MCP).

The MCP is segmented into multiple channels which each detect and amplify input signals.

Because of the segmentation of the system, the transverse projection is separated into bins

by the hardware itself.

5.2.1 Electron Collecting IPMs

It is in principle possible to collect either electrons or ions on an MCP, with an electron

collecting IPM called an eIPM. Since electrons are much lighter than the residual gas ions,

electrons will have a much more rapid time response but worse space charge effects deforming

the projected profile. The more rapid time response makes it possible to obtain turn by turn

profile measurements. Our resonances of interest will be quite rapid, so eIPMs are necessary

to observe the growth as it happens.
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Such eIPM measurements are useless if free space charge effects perturb the results too

strongly. Although it is possible to simulate the ionizing beam [42], space charge effects can

be countered by including a magnetic field oriented normal to the MCP. This field constraints

particles to a radius that is ∝ mv⊥/B where v⊥ is the velocity perpendicular to the field and

B is the magnitude of the magnetic field. If the radius of the field is smaller than the MCP

bins, this will give a similar signal to that of a space charge less eIPM. It should be noted

that this magnetic field will perturb the beam itself, but is small enough to not significantly

interfere with it.

Two eIPMs are installed in AGS straight sections, one in the horizontal plane at D5 and

the other in the vertical plane at D15.

5.2.2 Calibrating AGS eIPMs

The performance and collection efficiency profile of eIPMs can change over time. Without

frequent calibration, the drift in eIPM performance can make results unrealistic. Calibration

of the eIPMs is performed by sweeping an already characterized beam across the eIPM and

correcting the responses correspondingly. The bin corrections are a constant offset as well

as a linear factor adjustment. Higher order terms may exist for especially intense beams but

are not specifically corrected for.

Unlike AGS ion IPMs, AGS eIPMs can take turn by turn measurements. These can be

averaged over a number of turns to decrease statistical error. Since ionization and counting

are stochastic processes with comparatively few events, this statistical error is significant.

Due to degrading eIPM performance, systematic errors cannot easily be quantified. For these

experiments the error in bin measurement will be defined as the standard deviation of the

counts.
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Figure 5.2: Diagram of the AGS. Adapted from [39]
.

112



Figure 5.3: Example of eIPM calibration for 50 turns taken at injection (144 ms), The initial
signals (red dots) are averaged to give the original signal which are averaged (green line).
The calibration correction is applied. Dead bins are then removed with smoothed signals
put in their place.

5.2.3 ’Dead’ Bin Signals

If a beam bin gives results which are obviously erroneous, that bin is excluded and set to a

zero sensitivity. This is not optimal however. This cutout from the distribution can make

it difficult to fit a characteristic distribution to the bunch or calculate the emittance. This

can be solved somewhat by averaging the adjacent bins to get an estimated value. With

this, bunch size can be measured using the full width half maximum (FWHM) or another

method. Our interest is primarily in relative bunch growth so this method will be sufficient.

It should be noted that because the Periodic Resonances may deform the bunch shape, it is

not advisable to use an assumed distribution to calculate the emittance in this case.
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Not all ’Dead’ bins were caught by the calibration step with certain phenomena only

being observed during the experiment. On alternate turns these bins registered anomalously

large signals followed by signals of the correct order but uncorrelated with beam intensity.

Since these signals were not automatically excluded from the analysis, this led to spikes in

the observed emittance as shown in Fig. 5.3. These bins were identified and removed during

post processing to eliminate these erroneous signal spikes.

The source of these dead bins was not identified, but several observations can be made.

eIPM performance can degrade from long-term damage to the system, but not all degra-

dation in signals is permanent. Therefore limiting eIPM use may regenerate some of the

original performance of the device. Because the functioning of these bins can be intermit-

tent, calibration may misidentify these as properly functioning bins. RF does not appear

to correlate with eIPM dysfunction with sampled eIPM data, exhibiting the same dead bins

when RF is off or on.

5.2.4 eIPMs as Intensity Monitors

There are dedicated monitors in the AGS to quantify the bunch intensity. The wall current

transformer (WCT) has a robust response with the ability to determine the peak of a given

resonance as well as the saturated intensity after resonant beam loss. Because eIPM events

scale with intensity, it is possible to use them in a mode where they also act as bunch intensity

monitors. This is useful to double check the WCT data and to act as a backup if the WCT

is offline. The other advantage of an eIPM is that it provides a true statistical measure of

the count errors (which is not available with the WCT). This gives true turn by turn data,

however the window size limits the ability to identify beam loss as it occurs. Using this

method, the relative intensity of a bunch is proportional to the number of calibrated events
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per unit of time, while the average survival rate for a particle from one time to another is

the ratio of the final over initial intensities.

An eIPM used in this way can be expected to display some systemic errors. Mainly, these

are calibration errors and errors due to dead wires. Each bin has its own calibration and its

own error. The error of a bin at some initial time will be correlated with the error at some

later time. Because of this, there is a correlation between the shape of the bunch (which

bins it is divided into) and the associated error. This effectively increases the contribution of

these errors to the total calculated current. Because of this, as the bunch grows one expects

to observe errors when using the eIPM to determine bunch intensity.

Other systematic errors can be encountered when using an eIPM. The main problem is

the calibration of the bunch itself. Since the AGS calibration is calculated from an input

test beam, that places an initial limit on the accuracy of such a model. Also important is

the eIPM model itself especially at strong space charge. There is also a chance to under-

count at high intensity due to MCP saturation at high intensities[43]. Higher order intensity

corrections may be needed to correct for this if a bunch shape changes significantly. This

may lead to observed intensity changes from eIPMs that are not physical.

5.2.5 eIPMs at the Relativistic Heavy Ion Collider

Although this experiment was only concerned with the AGS, it is worth performing a study

at the Relativistic Heavy Ion Collider (RHIC). Since the dead bins have been identified as

the source of error we can perform a similar search of historical data from RHIC.

As can be seen in Fig. 5.4, RHIC does not exhibit the anomalous dead bins seen in the

AGS. This is not surprising as the performance of RHIC eIPMs seem to be more stable than

the AGS devices. As with the AGS case, each bin has a varying sensitivity yielding striations
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Figure 5.4: eIPM at RHIC, note that less corrections are needed for RHIC bins. There seem
to be no missing/dead bins.
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for each individual bin.

5.3 Periodic Resonance at AGS Run 22

With continued high intensity operations at the AGS there is interest in studying resonances

at strong space charge, primarily 3rd order resonances. The single particle tune during AGS

run 22 is Qy ∼ 8.9, two of the nearest accessible third order resonances are 3Qy = 26 and

2Qx + Qy = 26. Before the introduction of the partial snakes, these resonances had been

studied at low intensity[44] and corrected with sextupole families. Current AGS settings

(Table 5.1) have shifted to a tune further away from the third order resonances, but at high

intensity they may still be a concern. Therefore, our focus was to drive periodic resonances

over a series of initial lattice tunes–beginning directly on resonance and slowly increasing

the vertical tune Qy until effects from the resonance crossing are no longer observed. The

Parameter Value

Betatron tune Qx, Qy 8.85, 8.7
Synchrotron tune Qs 0.001

Space charge tune shift ∆Qsc ∼ −0.1
Injection energy E 2.3 GeV
Bending radius R 85.378 m
Circumference C 807.11 m

Intensity I ∼ 1013 protons

Table 5.1: Parameter list for AGS. Some parameters are from [39], but are are updated and
added to for experimental relevance.

experiment was conducted as follows. First the vertical tune was brought near to the res-

onance line Qy = 26/3. This vertical resonance was chosen as the vertical eIPMs at the

AGS are less noisy than their horizontal counterparts. This can be done in the current AGS

configuration, but this tune will not preserve polarization of the bunch. Since polarization
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is not important in this experiment, its loss will not be missed. Three main devices were

employed to study resonant effects. First, the eIPM which was discussed in detail in section

5.2. This provided bunch size and emittance measurements along with intensity calculations

at 1 ms increments starting at 144 ms (the injection). Secondly there was the Wall Current

Transformer, which gives the total intensity of the bunch over a longer time scale than the

eIPM is capable of. Finally, there was the Wall Current Monitor, which gives the intensity

of the bunch in z over a very short time scale. This makes it possible to resolve changes in

the longitudinal bunch projection as particles are lost, and observe ’bunch shortening’.

5.3.1 Resonance Driving Term Adjustments

At the nominal settings for the AGS, the loss due to the periodic resonance was not easily

resolved. With enough time, even a small resonance could lead to loss, however the accelera-

tion cycle of the AGS made long time studies of such weaker resonances impossible. Instead

it was decided to strengthen the 3rd order nonlinear driving term to make the resonance

detectable. This was originally performed with two sextupoles that were spaced such that

they have an additive contribution to the driving term, but no effect on the chromaticity.

However, the currents necessary to produce such an effect on the beam were not achievable

in the AGS. Instead, it was decided to use the sextupole corrector family originally designed

to dampen this resonance. By purposefully adjusting this sextupole family, it was possible

to strengthen the driving term and make the resonances correspondingly stronger.

With the adjusted driving term significant resonant particle loss was observed, indicating

that the resonance was able to interact strongly with the input beam and cause loss and

emittance growth.
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5.3.2 Experimental Observations

With the Enhanced resonance strength, emittance growth and particle loss can be observed

at injection before quickly saturating on the order of a few milliseconds. As the bunch crosses

the resonance (Fig. 5.5 left to right) we note that initially the emittance grows, then these

excited particles are lost to the walls of the beam pipe and are registered on the Wall Current

Transformer. This implies that emittance of resonant particles will grow until they either

saturate the instability, or are lost. Once particles are lost, the emittance decreases as the

driving resonant force is proportional to J3/2. Therefore, once edge particles are lost, the

emittance decreases and only central particles survive.

It is worth discussing the particle loss in more detail. The eIPM counts observe a lo-

cal particle loss minima before the main resonance. This is not theoretically expected as

emmittance growth should precede particle loss (and dampen the emittance growth peak)

since particles must grow transversely to be lost by this mechanism. Since no other loss

mechanism or resonance can be identified for this minima and further because the WCT in

Fig. 5.5 does not reproduce this behavior, we must conclude that this is erroneous. This is

not unexpected as correlations between bin signals could create significant error for beams

growing transversely.

Finally the Wall Current Monitor should also be mentioned. The original longitudinal

projection does not change shape significantly for any of the resonance crossings tested.

The lack of bunch shortening makes it difficult to classify this periodic resonance as

either adiabatic rregime trapping or the non-adiabatic regime scattering. Bunch shortening

is normally a sign that the machine is in the adiabatic regime, but it is possible that noise in

the RF could have flattened the bunch profile of the non-adiabatic scattering regime. Future
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Figure 5.5: Periodic Resonance at injection. Emittance growth and bunch survival is con-
sistent with work from Franchetti, et al. [41] [40]. Note the slight deviation in survival rates
between the two methods, specifically the local minimum observed in the eIPM at Qy = 8.73.
This disagreement seems to be due to a systemic error in the eIPM survival rate.
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experiments are likely needed to conclusively prove one or the other conjecture.
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APPENDIX

Transverse Moments

Normalization Moment, ψ̇

ψ̇ =
d

dt
ψ(t, y, py, z, ż) (.4)

ψ along with the other moments does not depend on x or px (as those terms were

integrated away). Therefore,

ψ̇ = ψ(t, y, py, z, ż)

∫
dx

∫
dpx

df

dt
=

∫
dx

∫
dpx[

∂f

∂t
+
∑
i̸=x

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
)] (.5)

Which is zero by eq. 2.7. Thus the x projection of the distribution function ψ, does not

vary in time.

ψ̇ = 0 (.6)

Position Moment, Ẋ

dX

dt
=
∂X

∂t
+

3∑
i=1

(q̇i
∂X

∂qi
+ ṗi

∂X

∂pi
) (.7)

∂X

∂t
=

1

ψ

∂

∂t

∫
dxx

∫
dpxf =

1

ψ

∫
dxx

∫
dpx

∂f

∂t
(.8)

The explicit time dependence can be substituted into the Vlasov equation. This makes the

derivative d/dt a sum of terms of the form u̇∂f∂u
∫
dxx

∫
dpx −

∫
dxx

∫
dpxu̇

∂f
∂u .

Ẋ = − 1

ψ
[

∫
dxx

∫
dpxpx

∂f

∂x
−
∫
dxx

∫
dpxFx

∂f

∂px
+

∫
dxx

∫
dpxpy

∂f

∂y

−
∫
dxx

∫
dpxFy

∂f

∂py
+

∫
dxx

∫
dpxpz

∂f

∂z
−
∫
dxx

∫
dpx

dU

dz

∂f

∂pz
] (.9)

+px
∂X

∂x
− Fx

∂X

∂px
+ py

∂X

∂y
− Fy

∂X

∂py
+ pz

∂X

∂z
− dU

dz

∂X

∂pz

126



Each individual integral can be evaluated on their own for clarity.

T1 = − 1
ψ

∫
dxx

∫
dpxpx

∂f
∂x T2 = 1

ψ

∫
dxx

∫
dpxFx

∂f
∂px

T3 = − 1
ψ

∫
dxx

∫
dpxpy

∂f
∂y T4 = 1

ψ

∫
dxx

∫
dpxFy

∂f
∂py

T5 = − 1
ψ

∫
dxx

∫
dpxpz

∂f
∂z T6 = 1

ψ

∫
dxx

∫
dpx

dU
dz

∂f
∂pz

T7 = px
∂X
∂x T8 = −Fx ∂X∂px

T9 = py
∂X
∂y T10 = −Fy ∂X∂py

T11 = pz
∂X
∂z T12 = −dU

dz
∂X
∂pz

This allows us to express the integral Ẋ as a finite sum of integrals.

∂X

∂θ
= Σ6

i=1Ti (.10)

Ẋ =
dX

dθ
= Σ12

i=1Ti (.11)

We shall now evaluate terms T1 through T12 sequentially in the following sections.

T1

T1 = − 1

ψ

∫
dxx

∫
dpxpx

∂f

∂x
= − 1

ψ

∫
dpxpx(xf |∞x=−∞ −

∫
dxf) = 0 + P (.12)

T1 = P (.13)

T2

T2 =
1

ψ

∫
dxx

∫
dpxFx

∂f

∂px
=

1

ψ

∫
dxxFx

∫
dpx

∂f

∂px
(.14)

=
1

ψ

∫
dxxFxf |∞px=−∞

Evaluating the limits

T2 = 0 (.15)
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T3

T3 = − 1

ψ

∫
dxx

∫
dpxpy

∂f

∂y
= −

py
ψ

∂

∂y

∫
dxx

∫
dpxf (.16)

T3 = −
py
ψ

∂X

∂y
(.17)

T4

T4 =
1

ψ

∫
dxx

∫
dpxFy

∂f

∂py
=

1

ψ

∂

∂py

∫
dxxFy

∫
dpxf (.18)

f Fy is a function of x this cannot be further simplified.

T4 =
1

ψ

∂

∂py

∫
dxxFy

∫
dpxf (.19)

If Fy is not an function of x then the x dynamics are not coupled in to the other transverse

direction making further simplification possible.

T4 =
Fy
ψ

∂X

∂py
(.20)

T5

T5 = − 1

ψ

∫
dxx

∫
dpxpz

∂f

∂z
= −pz

ψ

∂

∂z

∫
dxx

∫
dpxpzf (.21)

T5 = −pz
ψ

∂X

∂z
(.22)
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T6

T6 =
1

ψ

∫
dxx

∫
dpx

dU

dz

∂f

∂pz
=

1

ψ

dU

dz

∂

∂pz

∫
xfdxdpx (.23)

T6 =
1

ψ

dU

dz

∂X

∂pz
(.24)

T7

T7 = px
∂X

∂x
=
px
ψ

∂

∂x

∫
xfdxdpx (.25)

We then apply the power rule.

T7 =
px
ψ
[

∫
dxdpxf +

∫
x
∂f

∂x
dxdpx]

=
px
ψ
[ψ +

∫
dpxxf |∞x=−∞ −

∫
dpx

∂f

∂x
] (.26)

=
px
ψ
[ψ − ψ +

∫
dpx(xf

∞
x=−∞)]

T7 = 0 (.27)

T8

T8 = −Fx
ψ

∂X

∂px
= −Fx

ψ

∫
dxx

∫
dpx

∂f

∂px
(.28)

= −Fx
ψ

∫
dxxf∞px=−∞
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T8 = 0 (.29)

T9 through T12

T9 = py
∂X

∂y
(.30)

There is no need to simplify any further as it cancels with T3.

T10 = −Fy
∂X

∂py
(.31)

There is no need to simplify any further as it cancels with T4.

T11 = pz
∂X

∂z
(.32)

There is no need to simplify any further as it cancels with T5.

T12 = −dU
dz

∂X

∂pz
(.33)

There is no need to simplify these terms any further. The total time derivative of the

spatial moment is therefore:

Ẋ =
12∑
i=1

Ti = P − Fy
∂X

∂py
+

∫
dxxFy

∫
dpxf (.34)

And if Fy is not a function of x,

Ẋ =
12∑
i=1

Ti = P (.35)

Momentum Moment, Ṗ

dP

dt
=
∂P

∂t
+

3∑
i=1

(q̇i
∂P

∂qi
+ ṗi

∂P

∂pi
) (.36)

∂P

∂t
=

1

ψ

∂

∂t

∫
dxx

∫
dpxf =

1

ψ

∫
dxx

∫
dpx

∂f

∂t
(.37)
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The explicit time dependence can be substituted int the Vlasov equation. This makes the

derivatived/dt a sum of terms of the form u̇∂f∂u
∫
dxx

∫
dpx −

∫
dxx

∫
dpxu̇

∂f
∂u .

Ṗ = − 1

ψ
[

∫
dx

∫
dpxp

2
x
∂f

∂x
−

∫
dx

∫
dpxpxFx

∂f

∂px
+

∫
dx

∫
dpxpxpy

∂f

∂y

−
∫
dx

∫
dpxpxFy

∂f

∂py
+

∫
dx

∫
dpxpxpz

∂f

∂z
−
∫
dx

∫
dpxpx

dU

dz

∂f

∂pz
] (.38)

+px
∂P

∂x
− Fx

∂P

∂px
+ py

∂P

∂y
− Fy

∂P

∂py
+ pz

∂P

∂z
− dU

dz

∂P

∂pz

Once again we will evaluate each individual integral.

T13 = − 1
ψ

∫
dx

∫
dpxp

2
x
∂f
∂x T14 = 1

ψ

∫
dx

∫
dpxpxFx

∂f
∂px

T15 = − 1
ψ

∫
dx

∫
dpxpxpy

∂f
∂y T16 = 1

ψ

∫
dxx

∫
dpxpxFy

∂f
∂py

T17 = − 1
ψ

∫
dx

∫
dpxpxpz

∂f
∂z T18 = 1

ψ

∫
dx

∫
dpxpx

dU
dz

∂f
∂pz

T19 = px
∂P
∂x T20 = −Fx ∂P∂px

T21 = py
∂P
∂y T22 = −Fy ∂P∂py

T23 = pz
∂P
∂z T24 = −dU

dz
∂P
∂pz

This allows us to express the integral Ṗ as a finite sum of integrals.

∂P

∂θ
= Σ18

i=13Ti (.39)

Ṗ =
dP

dθ
= Σ24

i=13Ti (.40)

T13

T13 = − 1

ψ

∫
dx

∫
dpxp

2
x
∂f

∂x
= − 1

ψ

∫
dpxp

2
xf |∞x=−∞ = 0 (.41)

T13 = 0 (.42)
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T14

T14 =
1

ψ

∫
dx

∫
dpxFx

∂f

∂px
=

1

ψ

∫
dxFx

∫
dpxpx

∂f

∂px
(.43)

=
1

ψ

∫
dxFx(pxf |∞px=−∞ −

∫
dpxf) = − 1

ψ

∫
dxFx

∫
dpxf

Evaluating this integral becomes exceedingly messy for incoherent space charge and other

nonlinear fields. It is possible to Taylor expand the higher orders, but this leads to the

additional difficulty where higher order terms must also be solved in order to get a exactly

solvable solution. We define the Taylor expansion of the transverse force around the origin

as gn ≡ 1
n!
dnFx
dxn xn|0.

T14 = −g0 − g1X − 1

ψ

∫
(Fx − g0 − g1x)dx

∫
fdpx (.44)

If higher order terms are sufficiently weak, the higher order terms can reasonably be

neglected.

T15

T15 = − 1

ψ

∫
dx

∫
dpxdpxpy

∂f

∂y
= −

py
ψ

∂

∂y

∫
dx

∫
dpxpxf (.45)

T15 = −py
∂P

∂y
(.46)

T16

T16 =
1

ψ

∫
dxx

∫
dpxFy

∂f

∂py
=

1

ψ

∂

∂py

∫
dxxFy

∫
dpxf (.47)

If Fy is a function of x this cannot be further simplified without going to a higher order.

T16 =
1

ψ

∂

∂py

∫
dxFy

∫
dpxpxf (.48)
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If Fy is not an function of x then the x dynamics are not coupled in to the other transverse

direction making further simplification possible.

T16 = Fy
∂X

∂py
(.49)

T17

T17 = − 1

ψ

∫
dx

∫
dpxpxpz

∂f

∂z
= −pz

ψ

∂

∂z

∫
dx

∫
dpxpxpzf (.50)

T17 = −pz
∂P

∂z
(.51)

T18

T18 =
1

ψ

∫
dx

∫
dpxpx

dU

dz

∂f

∂pz
=

1

ψ

dU

dz

∂

∂pz

∫
pxfdxdpx (.52)

T18 =
dU

dz

∂P

∂pz
(.53)

T19

T19 = px
∂P

∂x
=
px
ψ

∫
dxx

∫
dpx

∂f

∂px
(.54)

=
px
ψ

∫
dxxf∞px=−∞

T19 = 0 (.55)

133



T20

T20 = −Fx
∂P

∂px
= −Fx

∂

∂px

∫
pxfdxdpx (.56)

We then apply the power rule.

T20 = −Fx
ψ

[

∫
dxdpxf +

∫
dxdpxpx

∂f

∂px
]

= −Fx
ψ

[ψ +

∫
dpxpxf |∞x=−∞ −

∫
dpx

∂f

∂px
] (.57)

= −Fx
ψ

[ψ − ψ +

∫
dpx(pxf

∞
p+x=−∞)]

T20 = 0 (.58)

T21 through T24

T21 = py
∂P

∂y
(.59)

T22 = −Fy
∂P

∂py
(.60)

T23 = pz
∂P

∂z
(.61)

T24 = −dU
dz

∂P

∂pz
(.62)

There is no need to simplify any further as they are already in a usable form and mostly

cancel. Summing the terms together we obtain the complete solution for Ṗ .

Ṗ =
24∑
i=13

Ti = −g0 − g1X − 1

ψ

∫
(Fx − g0 − g1x)dx

∫
fdpx (.63)

+
1

ψ

∂

∂py

∫
dxFy

∫
dpxpxf − Fy

∂P

∂py

And if Fy is not a function of x, and the system is linear it is possible to simplify further.

For external electromagnetic fields, the presence of nonlinearity implies coupling (where Fy

is a function of x) due to Maxwell’s equations.
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Ṗ =
24∑
i=13

Ti = −g0 − g1X (.64)

Thus for linear forces without coupling, it is possible to express the collective motion of the

beam bunch as a set of coupled partial differential equations. This is not true for

nonlinearities and coupling, but that is beyond the scope of this section. A discussion of

the implications of longitudinal nonlinearity and coupling can be found in section 3.6.
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