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ABSTRACT

A Multiple Loop Square Well Model has been developed to simulate coherent motion
in synchrotron machines, while including space charge and wakefields. The model builds
upon previous single-well work by Blaskiewicz[I] and Burov[2] to allow the approximation
of arbitrary potentials via the superposition of multiple square wells. Model predictions and
experimental observations are discussed. In particular the model predicts TMCI thresholds
at large space charge tune shifts that are not present in similar models. At the same time,
a more realistic solution for convective motion and chromatic effects is arrived at due to the

the more complex longitudinal dynamics.
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PREFACE
The main body of this dissertation is divided into five chapters, with some additional ma-
terial contained in Appendices. This dissertation discusses the development of a Multiple
Loop Square Well (MLSW) model to simulate beam stability in high intensity synchrotron
machines including synchro-betatron coupling, as well as model predictions and experimental
confirmation.

Chapter 1 is primarily concerned with establishing the background for subsequent sec-
tions. This will act as the minimum baseline to understand collective effects and beam in-
stabilities, including sideband generation, coherent space charge tune shift, and wakefields.
This chapter concludes with a brief survey of coherent instabilities and modeling efforts.

Chapter 2 contains the detailed mathematical derivation of the Multiple Loop Square
Well model, although some of the more tedious portions of the derivation were relegated to
the Appendix to improve readability and flow. This model is a description of bunch evolution
in the presence of significant space charge tune shift and is a generalization of previous work
by Blaskiewicz [I] and Burov [2]. This model generalizes the longitudinal dynamics as an
arbitrary system of square potential wells, generating new physical results. The final sections
of the chapter describe the implementation of the MLSW model in a C++ code with Python
wrapper.

Chapter 3 focuses on the predictions of this model, beginning with demonstrating that
this new MLSW matches the well-established results from the limiting case of Blaskiewicz’s
Square Well Model. From there, we move on to study the implications of more complex lon-
gitudinal dynamics, such as approximating arbitrary particle distributions, nonlinear chro-
maticity, along with convective instability[2] and coupled bunch modes over extended time

periods.



Chapter 4 is focused on an experimental study of mode coupling instabilities at the
Fermilab Recycler to confirm aspects of the MLSW model. Initial work was concentrated
on studying existing data sets from the Waker experiment which uses a kicker to artificially
simulate wake forces. This culminated in a dedicated February 2023 experiment where the
convective instability was observed using the Waker.

In Chapter 5 we end with a study of Periodic Resonances in the AGS. These resonances
are driven by synchro-betatron coupling at significant space charge tune shifts and are there-

fore complementary to the main body of work.
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Chapter 1

Collective Effects and Instabilities

Particle accelerators have gone through many generations of evolution in the past century,
growing from small tabletop experiments to larger Van de Graaff machines and cyclotrons,
and so on to modern day linear accelerators, Free Electron Lasers, and kilometer scale
synchrotrons. The applications of these accelerators have expanded from pure physics to
other applications including materials and biology research from light-sources to medical
isotopes and treatment. Over time, the accelerators have evolved to higher and higher
energies and intensities.

Conventional non-wakefield acceleration is limited by breakdown. If electric fields are
too strong, small imperfections and residual gas will cause an arc between high and low
potentials and reduce the electric field. This makes it less economical to build a high energy
accelerator out of a linear set of voltage gaps once the single particle energy becomes too
high. A more efficient new circular geometry must be adopted. In such an accelerator
particles will pass the same magnets and the same cavities over and over making it possible
to get a much higher final energy than achievable with a linear configuration. The cavity
fields sinusoidal, operating at an harmonic of the time it takes a particle to complete one
revolution. Therefore particles will be accelerated each and every turn. The sinusoidal form
of the cavity fields also provide longitudinal confinement of the bunch, as particles along the
length of the bunch will observe slightly different fields, the proper choice of which will give

linear focusing for a small offset from the central synchronous particle.



Higher intensity is needed to provide good statistics as the number of events observed
scales linearly with beam intensity. While high intensity is needed, the beam quality must
also be considered, to ensure the particles are where you actually want them, as quantified
by figures of merit like luminosity and bightness. There are several ways to increase inten-
sity, but there are essentially two options: increase the number of bunches, or put more
particles within each bunch. It is possible to transport the same number of bunches as the
harmonic number of the accelerating cavity, but this may not be practical due to tight tim-
ing constraints and interactions between the nearby bunches. Each particle bunch interacts
with the accelerating structures it passes, generating wakefields which may interfere with
the propagation of multiple bunches. These interactions will decay over time, but additional
bunches too soon after the initial bunch can create a feedback loop and disrupt transport.
Wakefields will be discussed in more detail in section [L.4]

Adding more particles to a single bunch will increase the free space charge of the bunch.
Like any charged particle distribution it will generate fields which will interact with other
particles in the field. Since all particles within the bunch have the same charge, the coulomb
forces are defocusing, and without external fields from the accelerator will lead to loss. The
interaction of the space charge and wakefields generated by the bunch itself also creates
feedback within the bunch, making it possible to drive particle loss—known as collective
instability—-inside the bunch.

It could be said that the final fate of a synchrotron is to become the injector for a next
generation accelerator. Because of this, old machines will often have to transport a higher
current than they were designed for. This can mean that assumptions break down and new
sources of loss can be introduced. A thorough understanding of collective instabilities is

necessary to adjust these old accelerators, as well as to design new higher current machines.



1.1 Frame of Reference and Coordinates

1.1.1  Accelerator 'Tune’ and ’Time Like’ Coordinates

A particle going through any lattice with optics will oscillate in the transverse planes. This is
known as betatron oscillation. We can think of this as a phase advance that increases along
the optics. For a regular structure that will be traversed repeatedly, the total phase advance
will be the sum of the individual phase advances. A synchrotron is a good example of a
regular structure (the phase advance can change over the ramp, but this is slow). The total
number of oscillations in a revolution around a synchrotron is known as the tune. There is
a tune for each transverse direction @z, )y as well as the longitudinal direction Q)s.

A bunch in a synchrotron stays centered around the synchronous particle with small
position and velocity offsets from it. Since synchrotrons are relativistic, the velocity of the
synchonous particle is nearly constant. This means that there is a direct correspondence
between the position of the central particle s, the azimuthal angle around the synchrotron 6
and time t. The relation between these for a synchrotron with circumference C' is:

et =s=CH (1.1)

This will lead to some artifacts depending on which time like variable is used. For

example, dx/ds is often used instead of dx/dt as a transverse velocity. In this work, all three

of these time like variables (t, s, ) will be used.

1.1.2 The Beam Frame of Reference

The normal coordinate system for accelerators is known as the Ferret Serret[3] coordinate
system. The coordinate system is defined with a travelling and rotating origin following the

reference orbit of a synchronous particle. By defining the system this way, we essentially



make a transformation to the bunch’s frame of reference. The time like vector along the
bunch is § = fetz. Small position offsets in the direction of motion are a displacement
z from this synchronous particle. The z dimension is often known as the longitudinal or
synchrotron direction. z is currently defined to be in the direction of beam propagation but
this may be changed as necessary and will be pointed out if so.

The other spatial dimensions x and y are known as the transverse or betatron directions.
Z is in the radial direction for a rotating synchronous particle. That is, for a synchronous
particle undergoing rotation about an axis in the g direction passing through point p{s),
2 is oriented in the direction of the vector from the center of rotation to the origin of the
synchronous particle. Synchrotrons are circular machines and therefore the direction of
motion of the origin must undergo some rotation to be periodic. Technically this rotation
can be arbitrary as long as it is periodic over one circumference, but generally rotations are
constrained to a single plane. In straight sections of the synchrotron the Ferret Serret vectors
for £ and gy are multiply defined, but this can be fixed by treating the straight section as

having an infinitesimal curvature in the direction of one’s choice.

1.1.3 Small Phase Advance Optics

To maintain bunch shape and position in an accelerator, constraining forces must are applied.
In order to simplify construction and to enable focusing in both trasnverse planes, focusing is
split into discrete elements along the accelerator. Transverse (betatron) focusing is provided
by magnetic and electrostatic elements that are slowly varied with beam energy. Longitudinal
(synchrotron) focusing and acceleration are generally performed by RF cavities.
Longitudinal focusing tends to be much slower than transverse due to several factors.

Longitudinal focusing occurs with net acceleration from RF potential gaps. Since the bunch is

4



Figure 1.1: Diagram of the Frenet-Serret coordinate system.

moving relativistically in the longitudinal direction, kicks provided by RF are comparatively
small compared to the transverse dimensions perpendicular to the relativistic motion.

Since accelerator elements are separated into discrete along s we can define the focusing
strength along the accelerator as a focusing strength K (s) which varies as it passes individual
elements giving Hill’s Equation:

"+ K(s)x =0 (1.2)

For elements with a constant value K within them, the solution can be represented as a
transfer matrix evaluated at the edge of the bunch and making beam transport along a line
of linear elements matrix multiplication. However, under certain conditions Hill’s Equation
and the corresponding Matrices simplify down to simple harmonic motion.

Let us consider with a FODO (Focusing Drift Defocusing Drift) cell of length ¢ and focal

length f in both transverse directions. This transfer matrix has the form:



1/2 Focusing Quad Drift Defocusing Quad Drift 1/2 Focusing Quad

Figure 1.2: Diagram of a FODO cell. For symmetry the focusing quad is split into two half
elements.
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The transfer matrix Mpopo can be thought of as a solution to a differential equation at
s+ ¢ given certain initial conditions at s. Assuming the cell is small, we take the differential

to get the differential equations of motion.

d 7T A7 1 x
£ ~ — (M .y 1.4
x| N y £< ropo — 1) y (1.4)

S S S

These matrices correspond to equations of motion:

/ Co ¢

= —$W+x (1—1-@) (1.5)

Mo el gy gt
= :B4f2(1 4f) x 372 (1.6)

Both ¢ and 1/f are small and can be ignored at O(£?), O(£f~1), O(f~2), and above.
' =2 +0(2) (1.7)
" 1 l

' =— (1-—)+0() (1.8)

ST AT

Which is just the harmonic oscillator in spatial units. The conversion to time yields a
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harmonic oscillator with w = o 1— #

1.1.4 Longitudinal Optics and Chromaticity

Unlike the transverse direction, longitudinal motion is constrained by radio-frequency (RF)
cavities. The cavities give small kicks to bunches that cross them based on the phase of the
bunch. It is possible to make a longitudinal map similar to the transverse one, which also
can be treated as a harmonic oscillator centered around the momentum of the synchronous
particle pg if the phase advance of each map is small.

The fractional momentum of a particle slightly offset in momentum is defined as § =
(pz — po)/po- These momentum offsets will change how the particle itself interacts with
accelerator elements. Particles passing through a given element with some offset momentum
0pg experience a weaker kick from the element while it is traversing it. For a dipole magnet,
this will mean that the path of an off-momentum particle will be bent slightly askew. The
differing bend angle changes the path length of particles for this off-momentum orbit.

This will cause the off-momentum particles to arrive at a time slightly offset in the
longitudinal phase from the previous turn—which is equivalent to an offset in z. The definition

for this in the revolution period is given in [4]:

AT _AC_ A8
T Cc B
Y

Where 7 is the phase-slip factor (n = dT'/dd), a. is the increased length of off-momentum
particles travel and is known as the momentum compaction factor. 7' is the period, C' is

the accelerator circumference, (3 is the fraction of the speed of light and ~ is the Lorentz



factor. Bunches with an 1 > 0 will oscillate around the synchrotron particle in the direction
opposite of its momentum, behaving almost like having a negative mass.

The difference in the period of these off-momentum particles is equivalent to a slightly
different revolution frequency and therefore will arrive at the RF cavity slightly out of phase
with the rest of the bunch. The difference in phase will cause particles to shift a small amount
Az relative to the rest of the bunch over a single revolution. We can define 2 = Az% as
the approximate change in bunch position with time and is equivalent to the limit where
the phase advance of each revolution is small and the system can be approximated by an

oscillator. We can relate ¢ to 2 in the following way:

AT__AZ
T C
Az wy
775——E%

z
§=—= 111
; (1.11)

Where wq is the angular frequency around the synchrotron. This longitudinal offset

(1.10)

doesn’t just have an effect on the longitudinal dynamics. If a particle is not moving at the
design velocity, there is a slight correction to the single particle tune due to the longitudinal
momentum offset. This is normally defined in terms of 6 = Ap/p, but our choice of variable

Zz works as well. Linear order chromaticity is defined in the following way:

dQy

§5=—= (1.12)
_ 1dQs
fz——; %5 (1.13)

If the direction of z is redefined from z — —z as in Chapter 2, the linear chromaticity in Eq.

1.13| will differ by a negative sign.



1.2 Sideband Modes

In the simplest case, an oscillator can be thought of as an object experiencing a ’spring-like’
force, oscillating at a rate that is dependent on the force and the object itself. The addition
of another spring force orthogonal to the original force generates coherent frequencies offset
by multiples of the second oscillator’s frequency.

In a charged particle bunch, the particles themselves are a system of coupled (and pos-
sibly nonlinear) oscillators. For a synchrotron, the bunch is constrained in all three spatial
dimensions so we should expect to observe sidebands due to coupling between these modes.
This is not the only source of sidebands, as even a single spatial dimension can have multiple
orthogonal modes with corresponding sidebands.

With the multiplicity of different modes describing the bunch, it may seem difficult to
fully analyze them all. Thankfully, this is not necessary. Each sideband mode is orthogonal
to one another so it becomes possible to decompose the bunch into these modes and limit

our view to those which are the most physically interesting.

1.2.1 Betatron Distribution Sidebands

Phase space modes of a beam have effective frequencies contingent on the rotational symme-
try of the mode. An arbitrary one-dimensional distribution is comprised of a sum of these
modes. The zero mode, also known as the stationary or equilibrium distribution[5], is the
fundamental mode and has a zero frequency corresponding to a distribution that does not
vary in time. Higher-order modes have sidebands given by their mode number m. Consider
a phase space p that can be expressed in terms of action-angle coordinates (J, ¢) along with

the mode number.



p(J, ) = R(J)cos(myp) = @(eim‘p + e im) (1.14)

Where R(J) is a function of action. For a harmonic oscillator, ¢ (the frequency) is a
constant, leading to a constant phase advance along the bunch. In this case, the motion
has two interfering oscillatory components, the forward and backward propagating elements.
These two frequencies for each mode m are its sidebands. In the transverse direction, these
are known as betatron sidebands and in the longitudinal direction synchrotron sidebands.
Sidebands initially are symmetrically offset around a fundamental frequency.

A similar argument can be made using a one-turn map. The initial phase space distri-
bution has an equivalent definition as Eq. [I.14f The phase advance does not need to be
constant over the entire lattice period, only that the map M, defined as M"qy = ¢, must be
linear. For the mth mode the system will oscillate with a constant phase advance for every
application of the map. This map has the same oscillatory properties where it is comprised
of both a positive and negative rotating term.

Experimentally it is necessary to constrain our solutions to positive frequencies as os-
cilloscopes and analyzers only provide positive frequencies[6]. Only positive frequencies are
necessary to describe the system due to the properties of complex numbers. For mth side-
band with a coherent frequency AQ) which is observed, the pickup signal has the form:

Ae—2mi(mQ—AQ) _ gx 2mni(mQ—AQ) (1.15)
making it possible to reflect negative sidebands across the origin. Each sideband mode will
have a different contribution to the total motion of the bunch. For dipole instabilities, the
upper sideband +1@) is often considered to be the dominant term in a possible instability.
However, in order to make the upper sideband physically relevant without its conjugate,
it may be necessary to only take the real component of this sideband since the imaginary

component normally cancels with the lower sideband.
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1.2.2 Synchro-Betatron Sideband Generation

Synchrotrons are circular accelerators where the beam propagates through the same elements
many times. Multiple transverse focusing elements are needed to generate a net focusing
effect on the bunch in both directions with many oscillations per revolution. The large
number of betatron oscillations along with superperiodicity are necessary (but not sufficient)
for stability from space charge effects. There are fewer longitudinal cavities which are located
near to one another, and so multiple turns are needed to complete a synchorotron oscillation.
Thus it can safely be assumed that Q; > 1 > Qg; Qr >> Qs.

Every individual particle will oscillate with their own amplitude and phase, but with
a well defined wave velocity which is quite interestingly the synchrotron tune ()5 where
Qs = Apg/AH. 0 corresponds to the angle around the accelerator which is a time coordinate;
s is the synchrotron phase along the bunch which is a spatial coordinate. For simplicity, let
us assume that the phase advance per element along the accelerator is small and consistent
enough to be well approximated by a linear oscillator. Effectively this means that individual
particles and waves propagate around the bunch at a rate related to the synchrotron tune.

This system consists of simple uncoupled oscillators, but variations in the spatial distri-
bution of the particle ensemble can be decomposed into orthogonal terms in Fourier space
coupling them together and generating sidebands.

Collective effects and chromaticity have explicit longitudinal dependence which shift the
sideband modes generated by the variations in particle distribution. This explicit synchro-
beta coupling is naturally expressed in terms of conjugate variables z and 2 rather than with
phase terms ¢g and Jg, complicating the solutions. The difficulty of including coupling with

sidebands is one of the main driving forces for approximate PDE methods such as the Square

11



Well Model [I]. The exact PDE treatment is given in Chapter
Coupling between variations in the ensemble can be seen in the first order moment ¥ of
the transverse dimension:
00
T(0, ¥s) = cos(Qx0) Y Ap cos(n(Qsb — ¢s)) (1.16)
The transverse moment of a bunch VariT(L;(:ﬂong the synchrotron phase with the variations
represented by the Fourier series. Variations can come from many sources including Schottky
noise[7]. Each Fourier term is trapped in the same potential, so while they have different
spatial content, they all travel along the bunch at the same rate and undergo a full oscillation
in 1/Q revolutions. Individual Fourier modes can be restated as synchrotron sidebands using

angle addition.

n(0,1) = Apcos(Qz0)cos(n(Qsl — ps)) (1.17)
— %[cos(@ﬁ +n(Qs0 — vs)) + cos(Qz0 — n(Qsl — vs))] (1.18)
This makes the total bunch motion the sum of all modes =
o0 A,
(0, 0s) =y = 5 leos(Qut +n(Qst — ¢5)) + cos(Qal —n(Qst — 95))]  (1.19)
n=0

It is expected that lower n modes will tend to have larger Fourier components varying
bunch by bunch. It is sufficient to only study sideband modes near to the fundamental in
most cases. Wakes with sufficiently rapid oscillation frequencies compared to the bunch may
drive higher order components.

Although the system has been approximated as harmonic oscillators, nonlinearity can be
understood qualitatively. If the nonlinearity is sufficiently small, it can be treated by splitting
the bunch into multiple ensembles with each detuned slightly. Nonlinearity in the transverse
dimension (red lines in fig. will spread out all the tunes but preserve the spacing between
them. Linear synchro-betatron coupling shifts the sidebands, while nonlinear synchrotron

tunes add tune spread that increases for higher n sidebands (blue lines in fig. [1.3)).
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Figure 1.3: Diagram of sideband tunes. The Left side shows the bare case with linear
sidebands separated by (Qs. Synchro-Betatron coupling causes the modes to deform to deform
in the center, while the right includes transverse and longitudinal nonlinearity. Sidebands
are centered on the fundamental transverse tune ().
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So far, bunches have only been looked at in terms of coupling from the longitudinal di-
mension to the transverse. This tends to be dominant because the action of the longitudinal
direction is much larger than that of the transverse plane. Although the inverse is possible,
where betatron motion couples to create sidebands in synchrotron oscillations, such coupling
can be neglected. Since @), >> Q) this will produce sidebands that are essentially nonphys-
ical. This can be visualized as follows: synchro-betatron coupling creates small changes
in frequency due to small and slow oscillations coupling into a betatron dimension, wearas
in the converse, the frequency change due to a rapid oscillation will average out over the

synchrotron oscillation.

1.2.3 Head-Tail Phase

So far we have limited the scope of our discussions to coupling due to the shape of the
synchrotron bunch distribution, but chromatic effects cannot be ignored. Small variations
in longitudinal momentum (J) or velocity (%) cause particles to spend differing amounts of
time in accelerator elements effectively detuning them from the synchronous tune. For linear
chromaticity, particles are over-focused for one half of the synchrotron period and under-
focused in the other. This leads to an overall mismatch in phase @3 over the half synchrotron
period. Where ¢ is the linearized chromaticity in term of 2.
0s = [ xdus (1.20)
Although over a complete synchrotron period the betatron phase difference resolves itself,
there is a phase shift from the front to the back of the bunch. This is known as the head-tail
phase shift x. For a linear chromaticity one obtains a total head-tail phase shift of:

X = 5/0 sin(ps)dps (1.21)

This phase difference can be treated as a wave that accumulates and fades away along the
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synchrotron oscillation.

1.3 Free Space Charge

1.3.1 The Electric Field of a Relativistic Particle

The electric and magnetic fields of a single particle in the frame K’ centered at the origin

and observed at 7’ is:

Buy=-21". 1.22
() dreg '3 (122)
B(r')=0 (1.23)

7 =pp+ 22 (1.24)

r = 4 /p/2 + 12 (125)

Since we wish to consider the system in the reference frame of the accelerator rather than
the beam inside of it, a boost of —fcZ to frame K is necessary. For this section 3 is the

fractional velocity of the boost, ¢ is the speed of light and ~ is the Lorentz factor.

E,=FE, (1.26)
E| =~(E| +cB2x B (1.27)
B = g x E' (1.28)
The lengths are transformed:
v(z + Bet) = 2/ (1.29)
p=pF=pp+ 22 (1.30)
r=4/p?+ 22 (1.31)

Lorentz transforming the fields and lengths from the at rest frame K’ to the lab frame
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K yields a result of:

E=FE\ p+E.: (1.32)
_ 0 — )2
G4 pprale—fBet)z (1.33)
dmeq (p? +92(z — Bet)2)3/2
_ 0
B=-1 bp (1.34)

- dregc (p2 + 42 (2 — Bct)2)3/2

This transformation is for a stationary reference point, but in our case, the reference
point will move with the bunch at the same velocity. The field of the moving reference point
can be thought of as a change of variables to z 4+ Sct — z, giving an electric field at the new

reference point as:

= q pp/y + 2%
E = 1.35
dmeg y2(p? 42 + 22)3/2 (3
. 6
g=-1 bp (1.36)

- 47'('600 (p2 + 7222)3/2
At a sufficiently relativistic velocity v >> 1 then the electric fields in the lab frame will

be 'pancaked’ into fields that are more strongly radial but will still have longitudinal force

components. The strength of the electric field |E| scales with 2.

If p is dominant this
corresponds to |E| o< p~2. If z is the dominant term, then scaling of the field will be of the
form (yz)~2. The ratio of the magnitudes of the electric fields of these regimes takes the
form of ,% = 7. Geometrically, this is an angle where the transverse portion of the beam is
dominant and the field significant. This is what is meant when people consider the angular
size of the field itself. In the limit where 5 — 1, the fields degenerate to a transverse circle
of field.

Besides deforming the fields, the space charge force will decrease at larger boosts. The

force at the reference point moving with the bunch is:
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Fo_ 0 (1= B%)pp+2t
% drmeg (p2+7222)3/2

2 -2 - s
7 q“ Y pp+ 22

7 dmeq (p2 + 4222)32

(1.37)

In the region where r &~ p, the transverse space charge force scales with v~2. This

demonstrates why space charge effects are stronger at lower energies.

1.3.2 Fields From Moments

For the general case, analytic solutions for particle motion with self fields only exist for
specific pathologic distributions[8]. Rather than limit ourselves to these distributions (many
of which have been studied extensively[d]) or simply simulate the problem (which can be
noise dominated in certain regimes) we will look at how to approximate this space charge
effect.

Space charge derives from the total effect of all particles in the beam distribution. Imag-
ine a distribution of charged particles f comprising a bunch. The electric field will be a
convolution of the electric field of an infantesimal charge and the distribution itself. The
field can then be calculated at an arbitrary point, and be Taylor expanded to a specific order
(unlike that of a single particle, which cannot be Taylor expanded due to its singular nature).
This field can then be separated into linear and nonlinear components. For a sufficiently
small excursion about the center of the expansion, linear components remain the dominant
contribution to the field.

A particle in this linear regime will observe a springlike defocusing force proportional to
its displacement. Over a small time period, it may be adequate to treat this as an external

force but this becomes less accurate as the distribution deforms.
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Another similar but more preferred approach is to express the forces in terms of basis
functions of the distribution rather than Taylor expanding them after the fact. In this case,
the basis functions of the expansion may cross couple to one another. Due to the peaked

nature of the distribution, only limited orders of the Taylor expansion are necessary.

1.3.3 Coherent Tune Shift

To begin with, let us consider the linear order space charge force. As noted earlier, this is a
linear force which acts with a spring like force centered around the center of momentum, and
will have the same effect on the moments of bunch distribution as well. Since these forces
correspond to basis functions of the distribution itself, the bunch distribution will oscillate
with a space charge contribution shifting the frequency.

Because the space charge effect varies along the distribution, the average space charge
detuning for particles at two specific sets of initial conditions are not necessarily the same.
But as coherent space charge is a linear force on particles in the bunch, one might naively
assume that coherent mode is purely a function of A(z) the linear charge density (AQ,; =
\/m — @z). While this can be approximately correct in certain cases, it is not
actually true in general, especially when sidebands are included.

Consider a particle with position x only experiencing constant linear focusing and a
coherent space charge force proportional to the displacement from the center of the bunch
r—7.

i=—Q%x + Cse(z — T) (1.38)

Since all particles within the bunch oscillate linearly one expects that motion of a single

particle and the total bunch moment are interrelated. As a result, there is no longer a
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constant offset or a simple driving harmonic. It will average out to an effective tune shift
over a complete synchrotron period. The exact interrelation between these modes will depend

upon the sidebands of the system[6].

1.3.4 Incoherent Tune Spread

The problem fundamentally changes when nonlinearity is no longer neglected. Nonlinearity
can come from either the bare lattice optics or the Taylor expanded nonlinear portion of the
space charge forces. The space charge force assumes a basis set of distributions that shift
and evolve along the distribution with the distribution itself shifting along the bunch.

A central difference for the nonlinear motion is due to amplitude dependent tune (fre-
quency) shifts. This means that particles no longer oscillate in phase with one another.
Therefore, rather than a single coherent tune shift, the tunes spread out into an incoherent
continuum of transverse frequencies. This is not necessarily a bad thing, as incoherent tune
spread over the driving frequency is central for Landau damping. This will mostly be beyond

the scope of this thesis but will be touched on briefly in chapter 3.

1.3.5 Coherent Mode Splitting

When examining a bunch distribution, it is important to understand the continuity and
boundary conditions of the system. Let us consider an infinitesimally thin ’loop’ of current
in longitudinal phase space. This airbag of current has a synchrotron period and exhibits
transverse waves along the length of the bunch that corresponds to synchro-betatron side-
bands. Each wave must be continuous over the longitudinal extent of the bunch and has a

characteristic frequency associated with its sideband.
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Any arbitrary longitudinal phase space distribution can be treated as an infinite collection
of infinitesimal loops of current each of which can interact through space charge and other
collective forces and must simultaneously satisfy their own boundary conditions. These loops
provide sufficient degrees of freedom in frequency domain for multiple valid tunes to exist
that satisfy all the boundary conditions for a given sideband mode. The valid tunes originate
from the same sideband before splitting off from one another.

These split modes can intermittently couple to other modes and become degenerate. Such
degenerate modes correspond to imaginary frequencies (growth and decay modes) and are
lightly unstable examples of the collective instability which will be covered in more detail
later in this work.

Functionally it can be difficult to split a sideband into coherent modes. Such interactions
between loops of current can be difficult to drive, setting a functional limit on how many
coherent modes can be identified. An example of coherent mode splitting for the MLSW

model is shown in Fig. [I.4] This mode splitting can be found in other models such as [10].

1.4 Wakefields

When a particle passes through some structure, it interacts electromagnetically with both its
environment and the rest of the bunch. When a leading particle (called the source particle
and denoted with subscript s) interacts with structure it creates a 'wake’. This wake will
excite an effect on a test particle test particle (denoted with subscript t) some distance z
behind it in the bunch. It is possible to determine the total bunch response in this way.
These wake effects must be characterized in order to understand how these forces can cause

beam degradation or instability. This derivation is based off of [11].
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Figure 1.4: Splitting of coherent modes due to dipole wakes.

1.4.1 Localized Diffuse Wakes

There are a few ways one can derive these wakes depending on the context. For a localized
wake producing structure-located in a single section of the accelerator, the wake generated

by a source particle is defined as:

- cAp;
Wi, = 1.39
loc st ( )
o0 — —
Aps = o / dt[E + BezB) (1.40)
—0

Where Wloc is the wake, g5 is the charge of the source particle, ¢; is the charge of the test
particle, and Apy is the total kick due to the source particle. Since electromagnetic forces
are linear, the total momentum kick on the test particle will be the integrated contribution
of all the particles before it. When the total kick in momentum is small, the effect of this
kick can be considered perturbatively.

If accelerator structures are uniform, the forces generated for a source particle passing

through it will not vary in time as it sees a constant structure. In the case of a regular

21



periodic structure this will average to a near uniform value. We can then define a diffuse
wake per unit length Wy,  as:
F; 1. = =
Wyit = —— = —[E + cZB 1.41
W= w @ | (141)
Where F} is the force on the test particle. The definitions of the local and diffuse wakes

differ somewhat, but have similar properties within their range of applicability. That being

said, our interest will mostly be focused on diffuse transverse wakes.

1.4.2 Dipole Wakes

With these definitions of wakes, it is possible to define a wake potential V' where:

W=vV (1.42)
o’V 9%V
—+—5 =0 (1.43)
Oxy Oyf

Let us consider the wake generated by a source particle in a axisymmetric system where
the radius of the source particle is ps = \/m, and the radius of the test particle is
pr = \/l‘% + yt2. In order to simplify the kinematics of the wake, let us reorient the x-axis on
the source particle, defining the displacement of the source particle in the z direction. The
angle between the source and the test particle is ¢. Since the system is axially symmetric,

particle distributions can be decomposed into multipoles, It is possible to expand this wake

potential V' in terms of multipoles which correspond to moments within the system where:

V(p87pta¢7z) - Z Vm(P8>pt>Z)COS(m¢) (144)
m=0

Vin(ps, pt. 2) = Wi (2)pg" pi" (1.45)

w, =3 wim (1.46)

This is similar in concept to the betatron sidebands in section [1.2.1, where the first order

moments of the distribution are in the dipole m = 1 wake. Any bunch with the same dipole
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moment will produce an equivalent response on a test particle.

W™ = mp o Won(2) [pcos(me) — bsin(ma)] (1.47)
W = Wi (2)pslpeos(0) — dsin(o) (1.48)

Where Wi is the dipole wake function, or the transverse dipole wake. A bit of rearranging

of the dipole wake has the form:
Wj_l) = psWi(z)z (1.49)
The direction of the wake is in the direction of the source particle Z, meaning that the
kick on the test particle is in the same direction as the transverse displacement with a linear
term pg. Because of this it is possible to reorient the axis back to the original transverse

axes, making:

W = W, (2) [ + v (1.50)

Since the dipole offset is 7, the total effect from all prior source particles at point z is:

2 z
Apy(z) =L / A2 N Wigen (2 = 2) (1.51)

€ J-x
q2 : AN / /
= [ NN Wi~ 2
€ J-x
This total effect includes the contribution from all previous particles. If the wakes de-
cay quickly, then it is sufficient to choose the lower bound as the beginning of the bunch.

Equivalently we can determine a force due to a diffuse wake as:

Fole) = [ 4N Waggl ) (152

z
= ¢ / A NT( YWy pn (2 = 2)
—0o0

1.4.3 Wake Impedance

The final step is to determine Wy, (z). This can be done using the impedance Z | (w), which

is the Fourier transform of > W,. Keeping only the m = 1 term we get:
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Wi(z) = L /OO de(j)(w)e_iwz/C (1.53)

27 J_~o

1.4.4 Causality Condition For Wakes

It is often assumed that wakes only move from the front of the bunch to the back. For
ultra-relativistic beams this is straightforward to justify—the wake will not propagate from
the back of the bunch to the front as the speed of the wakes is only marginally greater than
the speed of the particles themselves. Therefore, the wake can’t get to the front of the bunch
to drive it which is why forward propagating wakes are considered non-causal.
Interestingly, this same statement can also be made in cases where the the particle velocity
is not ultra-relativistic but still a significant portion of ¢. In such cases the wake electromag-
netic fields can overtake the bunch with sufficient time. However, the forward propagating
wake will be suppressed due to its comparatively slower motion along the bunch. First,
the longer transit from the back of the bunch to the front of the bunch will cause more
of the wake to be lost to the environment. Secondly and more centrally, transverse bunch
oscillations effectively average out the wake itself and suppress it. This is not to say that
the tail-head wake doesn’t exist, only that in many cases it has little effect on the system (a

prime exception being the CSR wake [11]).

1.5 Transverse Collective Instabilities

The combination of single particle and collective effects are nontrivial. It is not sufficient to
model these collective forces as simple focusing elements.
Interactions between particles and the environment can make the beam catastrophically

unstable, with significant particle loss following. There are many avenues for loss with their
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own characteristic dynamics and a functional 'threshold’” where the beam transfers between
a stable and unstable state. Knowing the physics behind a given instability makes it possible
to find a regime where the beam is stable.

Most collective instabilities have strong intensity dependence. The justification to this
is that one expects to regain stable motion if the bunch intensity is decreased sufficiently,

given that single particle motion is stable.

1.5.1 Head-Tail Instability

In the presence of wake, the head-tail phase y can drive beam instability. Over many periods
the head-tail phase shift and the wakes that drive it give rise to comparatively slow growth

over time. This growth however is difficult to naturally damp.

1.5.2 Transverse Mode Coupling Instability

Although sometimes called the Fast Head-Tail Instability[12], the Transverse Mode Coupling
Instability (TMCI) has a separate instability mechanism from the head-tail Instability. In-
stead, TMCI occurs when two synchrotron sideband modes are shifted together by wakes
and become degenerate.

It can be unclear what this physically corresponds to, so a two macro particle description
will be used to obtain a simplified model. This method is similar to that in [12], but has
a few different assumptions. These macroparticles oscillate in transverse and longitudinal
dimensions with transverse wakeforces generated by the head particle witnessed by the tail
particle. Every half synchrotron period the macroparticles exchange positions and the head

particle moves to the tail and vice versa. Instability will occur when the interchange between
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particles leads to sustained and uncontrollable growth in bunch (dipole) position.
Let us consider the following inhomogeneous harmonic oscillators along the synchrotron
period. The integer n is the number of synchrotron oscillations, w is the wake strength and

subscripts denote the macroparticle.

;

0 for 2mn < Q40 < T(2n + 1)
i+ Qxy = (1.54)
wzry for m(2n+1) < Qs < 2mw(n + 1)

\
,

wzxy for 2mn < Qs < w(2n + 1)
o+ Q2xg = (1.55)

0 for 7(2n +1) < Qg0 < 2w(n + 1)

\

This can also be given as a set matrix of linear differential equations as of the form:

1 0O 1 0 0 1
d | 1 —Q7 0 0 0 1
¥ = ! (1.56)
9 o 0 0 1 o | 12mn<QsO<m(2n+1)
i9 w 0 —Q2 0) \iy
1 O 1 0 0 1
d | 1 —-Qz 0 w 0 T
20 = ! (1.57)
9 0O 0 0 1 9 | Im(2n+1)<Qs0<2m(n+1)
io 0 0 —Q2 0] \io

From here it is simple enough to simulate this two particle model in order to determine
thresholds. But that is not particularly physically meaningful. Other methods are given
in [I3] and [14]. Let us consider two adjacent (one odd, one even) synchro-betatron modes
along the bunch. The total motion of the two bunches can be redefined in terms of the even

sum mode z4 = %(ml + x9) and the odd difference mode z_ = %(xl — x9). Normally each
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mode in a bunch would be driven by small dipole moments along the length of the bunch
where each mode is unique and separately driven. With only two particles only such sum

and difference modes exist. Making a change of variables to sum and difference modes we

obtain:
T 0 1 0 0 T4
d |2+ Q2+ 5 0 g 0] | o4
¥ = (1.58)
T_ 0 0 0 1 r_ | 12mn<Qsf<m(2n+1)
i Y 0 -@2-% o) \i-
T4 0 1 0 0 T4
d |t ~Q2+% 0 ¥ 0|
a0 = (1.59)
T 0 0 0 1 r— | Im(2n+1)<Qs0<2m(n+1)
d 20 -2-% o) \i-

With the change of variables, a few phenomena become obvious. The sum mode observes
a defocusing wake in the first half period and a focusing mode in the second half period.
This can be thought of as a physical explanation why beams are not necessarily unstable
to TMCI even while the tail particle is unstable. Since this change is periodic in time, it is

straightforward to combine the equations of motion for the entire domain.

—g for2mn < Qs0 < w(2n +1)
F(O) = (1.60)

5 form(2n+1) < Qs0 < 2m(n + 1)

The inhomogenous portion of the equation is periodic (with a period 27/Qs) and can

therefore be treated as a sum of individual Fourier driving terms.
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F(0) = Z bpsin(nQsh) (1.61)

=1
2r
by = 25 / s 2(0)sin(nQ0)do
2 0

w

™

a: 2
< [/OQS(—l/Q)Sin(nQSQ)dQ—i— /fs(l/Z)Sin(ané)dQ} (1.62)
Qs

i 2

= %[cos(n@ﬁﬂf - cos(nQ89)|%

S
by, = %—17‘; for odd values of n and b, = 0 for even n. The new basis is constructed of two

symmetric coupled differential equations:

iy = (—Q2+ %)x+ + 27“’3; > sm(((222—_11)>c259) (1.63)
. w 2w = sin((2n — 1)Qs0)
ioo=(—Q2 - E)x_ -+ @n=1) (1.64)

i:
Here we reach a conundrum. Although the equations have been simplified, a clean solu-

tion of the system is not obvious. Perturbative solutions are available, but do not exhibit
a clear threshold due to the truncated solution. Two methods show promise: guessing a
solution to the differential equation with synchrobetatron modes, or further simplifying the
differential equations into a more tractable form. This second method is what we shall
attempt.

The sum and difference differential equations are similar in form to one another save
for two aspects. First, the wake drives a small frequency detuning from the transverse fre-
quency. The magnitude of this detuning is small compared to the total oscillation magnitude.
Secondly, the coupling terms have the opposite sign of the wake force due to macroparti-
cle interchange. Thus, if the detuning is vanishingly small the two equations will retain a
constant phase difference and any growth will be slow compared to the speed of transverse
oscillations. If a set of initial conditions can be chosen such that the z4 = —(%)ix_ this

problem simplifies to the form:
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Byo=(-Q5+ %)aur _ 2wl IZ:H Z o 22?;__11))%6) (1.65)
—(—Q2 - %) Q;ﬁxm Z sin 27;__136256) (1.66)

Both sums are of a similar form, with a small frequency offset that will eventually cause
dephasing of the solution. We shall neglect this dephasing as it occurs slowly compared to
the speed of instability growth.

The Fourier sum term is formed due to particle interchange of the two macroparticles.
Under one half synchrotron period the sum mode is driven while in the other half period
the difference mode is driven instead. In order to make this into a solvable form it becomes
necessary to determine if any of the Fourier terms dominate. If so, it may be possible to
neglect minor terms to arrive at a usable solution.

But is this actually the case?” One may expect that harmonics will not drive instabilities
as strongly as that of the fundamental tune. The exact form of such resonances are difficult
to characterize as these harmonics are not independent. The higher order terms aren’t
suppressed either. The Fourier constants are of the form b, ~ 1/(2n — 1), so higher order
terms will have less of a contribution, but the scaling alone is divergent. Therefore, we
cannot justify a simplification to only include a single frequency.

Instead of finding a justification for simplifying the system any further, we can find an
analogous head-tail system instead. Such a system must have an odd wake force and must be
positive in the first half synchrotron period, and negative in the second half. The expression

sin(Qsh) satisfies both criteria. The analogous form has the differential equation:

W x4 sin(Qs0) (1.67)

S

. 2
By~ —Qiry —
This differential equation is a statement of the Matteiu Equation [I5], but it needs to be

massaged slightly to obtain the correct final form. We make a change of variables from the
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Figure 1.5: TMCI threshold shown. The system becomes unstable when the characteris-
tic exponent of the solution becomes complex. Note the distinctive linear form of TMCI

threshold.

azimuthal angle 6 to 7 to retrieve a conventional Mattieu form. Here we define 27 = Q40

where d% = Qf%
d2ZE+ .
5~ + a4+ 2gsin(27)]z4 ~ 0 (1.68)
dr
2Qx 2 4wQy
a = iq =
( 0. )%iq o

This equation has a solution of form [c1e’*™ —cge ~HT|®(7) where ® is a periodic function.
If the characteristic exponent p becomes complex the system is unstable making it possible
to determine the TMCI threshold[16]. Calculating this threshold by hand is unnecessary as
the characteristic exponent is included in many standard libraries. The instability threshold
of such a model is shown in Fig. in terms of the wake strength w. This has a very similar
functional form to that given in Alex Chao [12] with the same synchro-betatron resonances

and overall linear dependence on the inverse tunes and the dipole wake.
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1.5.3 TMCI Models

Perhaps the best known model for TMCI is the two particle model given in Dr. Chao’s text
on collective effects[12]. Unfortunately this model is not the most precise in a realistic case.
To get quantitative results other models need to be applied.

Strong instabilities can be well modeled by Particle in Cell (PiC) codes with full collective
effects from wakefields and space charge. These are attractive methods due to the their ob-
vious applicability to real machines. However, PiC codes can have significant shot noise and
are slow to run [I7]. One can think of PiC codes as multidimensional numerical differential
equations evolving in time with both single particle and ensemble effects. The smaller the
timestep, the lower the error. This numerical error will accumulate to some degree over long
runtimes, potentially muddying the results. As more particles are added, this becomes more
computationally intensive. As particles propagate within the bunch, its space charge forces
and wakes generated need to be correspondingly updated for correct collective motion.

Analytical models are another common method to understand TMCI. TMCI is not an-
alytically solvable with both an arbitrary distribution and space charge so significant sim-
plifications must be made to arrive at a solvable model. One of the largest difficulties in
creating a solvable model are realistic collective effects. Although relatively simple mod-
els can generate necessary wake modes, transverse space charge is effectively 'pancaked’ at
highly relativistic velocities making its effects short ranged along the bunch length and very
sensitive to distribution shape compared to low frequency wakefields.

Good examples of this are the Square Well Model (SWM)[I] and the Airbag Square Well
(ABS) [2]. These models simplify the longitudinal dynamics to a continuum of current in a

square potential well, the average motion of which can be solved as a system of linear ODEs.
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Although solvable, the unrealistic phase space shape is a significant detriment, making it
most useful for its qualitative dynamics.
The SWM is a limiting case of the derivation given in chapter [2]as it gives strong physical

intuition for TMCI and will act as the starting point for the main thrust of this work.

1.5.4 Space Charge and TMCI

The two particle approach gives insight into the onset and prevention of Mode coupling in-
stabilities. Changing the ratio of coupling tunes and decreasing wake impedance are obvious
solutions to move below instability threshold. A feedback system, an artificial wake designed
to counteract natural wakes in the system is also a viable solution to such a problem.

Due to simplifications in the two particle model (specifically the fact that it is just a
two particle model) space charge effects cannot be included in a well justified way. Other
methods and models will have to be used to derive the functional form of space charge effects.
With that said, a qualitative understanding can be arrived at without a space charge model.

As shown in the previous section, TMCI is driven by mode degeneracy. Two previously
stable modes combine together into a new set of unstable tunes with long term growth in
the time-like coordinate. Space charge slows the oscillation of the coherent motion shifting
all the modes of the system. If this shift prevents modes from becoming degenerate, collective

motion will not become unstable.

1.5.5 Circulant Matrix Models and BimBim

Later comparisons in sections [3.5.1] will compare results with the simulation code BimBim

[18]. This is what is known as a Circulant Matrix Model (CMM). For CMM, longitudinal
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phase space is decomposed into radial and azimuthal sections, with each section having a
definite geometric size, shape, and density. Because these are directly sampled from the
distribution, rather than constructed from macroparticles the system is not susceptible to
Schottky noise, making it possible to attain relevant results with fewer model elements.

Each section of longitudinal phase space is assumed to evolve as a single quantity Tp b
in transverse dimensions. These terms are projected onto the z axis before undergoing
transport and collective forces between z, 4’s. Transport and collective effects of this form
can be represented by a Circulant Matrix and are therefore solvable.

It should be noted that BimBim does not have exactly solvable space charge kicks. In-
stead, the space charge is a small correction on the bare lattice path of the beam. In cases
where this correction is small (such as weak space charge or small step size) this is sufficient.

Step size can be varied, but will lead to increased computation time.

1.5.6 Convective Instabilities without TMCI

If wakes continue to be increased but the system remains absolutely temporally stable[2] due
to space charge forces the saturated solution will not grow in time. In such a case oscillation
frequencies shift but do not grow or decay. Unfortunately, stability in time is not sufficient
to prevent beam loss. Head-tail amplification—transverse beam growth along the length of
the bunch—can cause the bunch to reach a maximum transverse displacement near the tail.
If the maximum position is larger than the beam pipe, particles will hit the wall and be lost.

Head-tail amplification can be thought of as unstable growth along the bunch and is
the genesis for the somewhat confusing name of the convective instability. The convective
instability does not need to undergo ’convection’, that is motion to short ranged kinetic

interactions. The moniker convective’ in convective instability is actually due to an unstable
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term 2’% in the total derivative % This term is part of the implicit time dependence of

the total derivative (which is sometimes called the convective derivative) and is similar to a
class of instabilities in plasma physics [19] leading to the name and the confusion.

Coherent space charge itself can effectively be thought of as a retarding/defocusing force,
slowing the oscillation speed of coherent modes. Let us consider some wake driven by an
initial transverse bunch offset. If the wake drives significant motion from the head to the
tail of the bunch, the bunch is convective. Unlike true instabilities, convective motion does
not have a threshold; as long as head-tail amplification is small enough and the beam pipe
large enough, particles will not be lost.

Normally this class of instability is characterized using Burov’s ABS model[2]. However
other analytic models also reproduce convective behavior. An example of such a model is
given below.

According to linear small phase advance optics bunches are constructed of multiple co-
herent modes, with a small wake that does not heavily impact the tune of the system. Each
of these modes has an oscillatory form in time, so here we shall assume the solution is sep-
arable, where x,(t) = Z(z)T(t). There are potentially multiple coherent modes for each
sideband, leading to a large set of valid tune shifts AQ,. The beginning differential equation

has the following form:

2
[% + (Qz + AQy)|z = F(t, z) + O(e) (1.69)
F(t,z) = ) (z — N a(t, 2)d

0

Since F(t,z) is small it would be tempting to consider it a perturbation and obtain a
solution for a short time scale. However this will only be valid over short times, and we

are looking for a more general solution. In fact, we know that for small wakes the system
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remains stable and bounded (which is necessary for accelerators everywhere). Instead we
will look at the spatial dependence of the system. The wake is the convolution of average
particle position and the wake function f(z — 2’). Because of the form of the wake, we can
expect an oscillatory solution in time and phase with varying amplitude along the bunch
length due to the wake forces. There are multiple other coherent frequencies which interact
through their wake forces, but these are not expected to have a significant contribution due
to poor coupling.

The wake force is a convolution of the wake function and the transverse moment A(z)z(t, z).

We can then take the spatial derivative of Eq. [I.70] and obtain the following:

2
j <5t2 +(Qz + AQy)? dz/ flz =N a(t, 2)d (1.70)
2
(5 4 (Qu + AQ)) e = FONG)E — FN0)(0)

The initial bound 2’ = 0 is the position of the particles of the bunch or bunch train. For

beam with exponential tails A(0) = 0. We shall note can see that the wake force will add a
2

small detuning to the system jt—Q = —(Qz + AQs + AQy)?. With this in mind we guess a

solution to the differential equation.

2
(% + (Qz + AQ:@)Q)(%Z(Z)T t) = f(0O)A(z)x — 0
280u(Qx + AQs + 8Qu/2 2 = fo(e)2(2)
2?(@)10 (Qx + AQqs + AQw/Q) a2 )\(z)dz (1.71)

In order for T'(t) to satisfy the differential equation, it must have a form T'(t) = cos(Qz +
AQz + AQy). With this, it is straightforward to finish up solving the spatial portion and

arrive at the complete solution.
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2AQu az_ [
Qe 8Qs + 8Qu/2) [ F = ["aa

T 2AQu (Q + AQy + AQuw/2)

__J() Jg Mz)dz
Z(2) = Z(0)e 28Qu (Qz+AQe+AQu/2)

(1.72)

One might be mistaken in assuming that this is a decay rather than growth of the beam
along the length of the bunch. However, AQy, < 0 and |AQw| ~ Qs so instead of a decaying

exponential along the bunch, it instead grows from head to tail. Tying it all together we

obtain:

x(t,z) = Z(2)T(t)

£(0) fOZ A(2)dz
Z(z) = Z(0)32|AQw| (Qz+AQr+AQw/2) (1.73)

T(t) = cos(Qz + AQz + AQyw)
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Chapter 2

Multiple Loop Square Well

It is clear that including space charge effects may have a significant effect on the instability
threshold. However, at this point many analytic methods for studying instabilities break
down. The structure of the beam itself is necessary to include space charge, leading to
more general systems where self forces are included. One such system, the Square Well
Model[l] includes space charge and arbitrary wake functions. In the intervening years since
its invention, this model has appeared in several different forms including the Airbag Square
Well (ABS)[2] and Core Halo Models[20)].

In order to make both space charge and wakes solvable in such a system, it is necessary
to heavily simplify the longitudinal dynamics. In the case of the SWM it is simplified into
a single longitudinal energy trapped in a square potential well. However, by splitting the
longitudinal dynamics into a series of discrete steps, it is possible to turn the system into a
series of loops of current, each with a different energy and different synchrotron tunes. This
model we shall call the Multiple Loop Square Well (MLSW).

We shall derive the equations which govern the MLSW prior to discussing the limiting

cases of SWM and ABS to give physical intuition and context.

2.1 The Vlasov Equation and Transverse Moments

To begin this derivation shall define a continuity equation in three dimensions:
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of , _df _
‘|’Z%a +pza ) = %—O (2.1)

Eq. is also known as the Vlasov equation. Particle flux is not created or destroyed, but
it can flow in all three dimensions. The transverse dimensions are (z, ps,y,py) Whereas the
coordinates for the synchrotron direction are (z, 2) with z being the position along the bunch
and Z as the momentum coordinate to make the physical meaning of the longitudinal motion

clear. The time dependence can also be represented by other time-like variables as necessary

while £ can be expressed in terms of § (see sections|l.1.1]and [1.1.4)). For a decoupled system,

this can be simplified into a pair of two dimensional Vlasov equations, one for each transverse
dimension. Such a distribution is collisionless but has electromagnetic interactions within
the ensemble.

Due to the collective effects and external optics, the Vlasov equation becomes a mixture
of single particle and collective motion. The collective forces are constructed of moments as
in section [1.3.2] The moments of the bunch distribution f are the following:

. w .
MIF = / dxa’ /dpxpfzf (2.2)
—0o0
For the rest of this section, the bounds of all integrals are —oo to oco. The zeroth (0th)

and the normalized first (1st) order moments of x will be most important and will therefore

wEMo’():/dx/dpr

vX = ME0 = /dm/dpr (2.3)
wP =3 = [do [ dpupet

Normalizing the 1st order moments means that X and P will correspond to the average

be given their own definitions:

position and momenta.
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2.1.1 Derivatives of Moments

Applying the total derivative of the Vlasov equation it is possible to define equations of
motion for the the various moments of the system. These moments are physically meaningful
as TMCI is a dipole instability—which is to say driven by first order moments. Furthermore,
the Vlasov equation makes certain simplifications possible. But first a few identities must
be obtained by integrating the Vlasov equation.

Jo fanh fae [ S0 o o

As these are a proper set of canonical coordinates, Hamilton’s equations can be substi-
tuted for ¢; = 0H/0p; and p; = —0H/Jq;, and further where ¢; = p; and p, = —W

and not a function of p;.

.0 0
/dQI/dPIQxa_f = /de_f/dpa:px (2-5>
qx 0qz

00 af o
s = f1%
. Of dU; af
— 2.
/ dqy / dpypr—=— E / dqy s dps Opa ( 6)
/ 3]?3; f’

This allows us to eliminate the transverse dependence of the integral:
Jo [anlh = [ao [analh+ S5+ pig b =0 2.7
If the transverse motion is oscillatory and is rznixch faster than the synchrotron motion
its net effect averages to zero. Therefore, the longitudinal Hamilton’s equations will not
contain transverse coupling terms. In order to get the equations of motion of the moments
themselves we must compute their derivatives. The derivation of these moments is rather

long and involved and has been moved to the Appendix to facilitate readability.
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2.2 Collective Equations of Motion

Since Mode Coupling is a linear phenomenon it is sufficient to quantify the first order dipole
moments. Higher order transverse terms may have some effect on this dipole motion, but
can be neglected. The differential equations of the first order moment calculated in the

Appendix are given below:
12

X = ZT P - Fy /dey/dpr

=1
Fy = py is the transverse force in the y du"ectlon. There is an equivalent term F). for the

other transverse direction. Taking the derivative and rearranging, we get:

: doX d .

P= Z T; = —go¢ — 1 X — / go—gw)drr/fdpx

1=13
oP
dxFy/dpszf Fya
Py

Combining these equations yields:
X+ 900 + 91X + /(Fx — 90— 9195)d95/fdpx = (2.9)
yc;itg;z dt/dway/dpmf+ iy /dey/dpxpr Fygfy
Note that this equation of motion neglects the effects of nonlinear optics and higher
order space charge terms. Transverse forces of a given nonlinear order generate coupling
to moments of that order and below. If only coherent motion is included, however, this
simplifies into a more elegant relation. For now, we shall narrow our scope to this linearized
system of differential equations:
X~P
Pr—gyp— g1 X
X+gv+nX~0 (2.10)
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For the simplified differential equation, the two transverse dimensions are decoupled,

making the dynamics a set of two simpler Vlasov equations.

2.2.1 Transverse Force F,

It is necessary that we determine gg and g; before Eq. can be solved. These are from
the Taylor series of Fy. (Since Fy = dpﬁ = T is one of Hamilton’s equations) it would be
tempting to define a single particle Hamiltonian and go from there, but this isn’t necessary).
We have previously defined the components of this force in Chapter 1 (Sections , ,
and and can build terms gg and g1, out of bare optics (including chromaticity), coherent
space charge, and diffuse wakes.

One main caveat should be noted however. The collective moments of the transverse
equations become independent from one another when the axes of the beam distribution
and optics are aligned. The space charge effects from a properly rotated bunch will satisfy
this condition. This independence may be violated if the input beam is offset from the beam
optics, although that may not be significant if the offset angle is small.

Including wakes, space charge and optics to the linear order gy and g1 (from the Ap-
pendix) we arrive at the following form:

go(t,z)wo = —2Q,AQ N2)X (t, 2) / Wiz -2\ X(t, ) (2.11)

91(2, 2wy = —Q2 + 2Qu(AQLA(2) — £(2)) (2.12)

Where X = [° ¢Xdz/ [0 1d# and the line density A(z) = [ t¢di. Even after

all that simplifying, we can see this system is still a second-order PDE of three separate

variables. Thankfully, it is possible to simplify the system into one that is more tractable.

The next few sections will focus on this process. These sections parallel that of [2I], which
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is in preparation.

2.2.2 Upper Betatron Sideband Approximation

The total distribution of particles will have moments generated by the order of the betatron
sideband. The £1 betatron sidebands (normal betatron oscillations) are primary oscillation
frequencies that generate first-order moments. By assuming that the tune is primarily due to
this sideband, we can assume a form for X and reduce the order of the differential equation.
In this case we assume X is made up of a slowly varying term X and a fast oscillation at
the upper betatron sideband tune:

X = Re(Xe 1@zt (2.13)

P = Re(( — ZQJ;wOX) iwaOt)
d2

Since the X is slowly varying compared to the betatron tune it is not a significant

contribution to the solution (f( = 0). Thus, when substituting into Eq. [2.10] we obtain a

first order differential equation.

20z &

wq

X = X(Q2% + g1(2,2)) + " @a0 go (¢, 2) (2.14)

The total time derivative can be divided into explicit and implied components % =

%+Z§:1 (%g—i-pl%) Since the transverse dependence has either been integrated out or is

independent, this is equivalent to the one-dimensional total derivative. % =5 047 257 +‘fg (59 3

U(z) is a scaled potential for the proper coordinates with a mass of unity. Substituting this

into the collective equation of motion yields the following:

0X 90X 1dUIX  iwp

ot e 0z mdz 0¢  2Qg

With the current form of the partial differential equation, the solution is not obvious.

[X(Q2 + g1(2, 2)) + Qa0 go (¢, 2)] (2.15)
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Even if a solution could be found, it would likely only be solvable in special cases. However,
if the system can be simplified to a system of linear ODEs, the problem will become solvable.
Therefore, we shall attempt to make the system one dimensional in z only, as well as linearize
it such that the problem has the form Mv — Av = 0 where M is the matrix of differential

equations, ¥/ is an eigenvector constructed of basis functions, and A is the eigenvalue.

2.2.3 Betatron Tune Shift AQ,

In a coherent system like this, the motion is governed by a sum of oscillation frequencies. It
is therefore reasonable to assume a solution where 0/0t = —iAQzwq. Although there are
ways to calculate what this tune shift must be for a given system, it is not necessary as it
can be easily determined using an error minimization scheme. (See section

X iwg 1dU 0X

D2 20,2 [X(Q3 + 912, 2)) + Q00 gy (¢, 2) + 2Q2AQq] + 225 95 (2.16)

2.2.4 Wake Forces

The wake force integral is the last major hurdle that needs to be defined. Specifically, the
wake force must be a basis function (or set of basis functions) of the system of differential
equations in order to be solvable in such a manner.

. z

F = e_ZQxWOt/ W(z—2\X(Y) (2.17)
0

Where W is the wake function, A is the line density, and the line density is the projection

of the distribution function f onto the z axis. The differential equation for F' follows the

Liebniz Integral Rule:
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Z—Z@iQﬂ?th = diz /OZ Wz — 2\ X () (2.18)
=W(z— z))\(z)Y(z)d;iz —W(z - O)/\(O)Y(O)dizo
c0 NV,
. —I—/O gzﬂfégz—z))\(z ) X(2")
EeiQIWOt =W(0)A0)X(2) + /O £W(z - HAX () (2.19)

If the wake force is a sum of xk exponential terms rather than an arbitrary function of the
form W(z—2")=Y7_, wke_o‘k(z_zl>, then it becomes
AF iQuugt _ W(0)A0)X (2) — a i: / “w k=N X () (2.20)
P k ) Uk :
wy and «ayp are chosen to approximate tllie 1actual wake function. If the wake decays
before the next bunch arrives, it can be approximated by a sum of wakes, each of which is
an element of the Fourier series. That being said, it is often considered sufficient to model
the wake with only a few exponential terms. wj. > 0 corresponds to a 'natural’ wake-wake
a that creates forces in the same direction as the offset while a negative w; < 0 corresponds
to a damping kicker creating forces in the opposite direction as the offset that generated
it making it a common choice to tamp down collective motion. Each of these individual

terms k will be a basis function in the system of linear ODEs. For ease of identification,

all basis functions will have a hat, therefore we shall define the wake force basis vectors as

Fy, = e~ 1Quwoty, I e_o‘k(z_zl))\(z')X(z/).

K
F=Y R (2.21)
. k=1
. - . z J—
ddﬂ = wp A\ (0)e @rROtY (2) — akeZwaot/ wkeiak(zle))\(zl)x(z/)

4 0

dF, = -

d_zk = wiA(0)X (2) — o F, (2.22)

Collecting terms and redefining:
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ho = B0U2) iQuint g . ) (2.23)

2Qx
= —AQ;CA(Z)i(t, z) + eiwaOtQQ%x /OZ Wz -2\ X(t, ) (2.24)
2 .
2Qz
= (AQr + AQLA(2) — £(2)) (2.26)
0X i - 1dU 0X
== w70[(h1(z, DX ot D)+ oo (2.27)

2.3 Longitudinal Dynamics

Up to this point, we haven’t made any statement as to the form of the longitudinal phase
space and constraining potential, other than it is an equilibrium distribution and it couples
to the transverse dynamics, while the effect of transverse dynamics on it averages to zero.

Because of this lack of coupling, the tune in the longitudinal dimension is:

_ w0 _wo fdz
= =P

7 is the period of the synchrotron oscillation and 2 = +1/2(Eg — U(z)). To obtain the

(2.28)
ODE form must eliminate the term %%% — 0 from the differential equations of motion
Eq. . Therefore U(z) must be constant, and form a loop in phase space. Such a system
is only satisfied with a square potential well-or a series of finite height square potential wells.
Longitudinal particle velocity is constant and transverse motion is defined by a system of
ordinary linear differential equations between the edges.

The following sections will define the notation and machinery to model nested square

wells.
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2.3.1 Approximating Longitudinal Potentials

Assume that we have a singly peaked potential U(z) that we wish to approximate with N
square potential wells bounded by 2N edges. Only N of the edges need to be defined-the
others will be conjugate equipotentials. Ordering the edges along z we define them in order as
zn, where zq is the head of the bunch and z9p;_7 is the tail. Since this system is periodic over
the bunch train, the head of the next bunch (possibly the same bunch on a subsequent turn)
can be defined as z9 to include multi-bunch wake forces. However, if wakes decay quickly
compared to the distance between bunchs or have some other multiscale characteristic, it
may not be necessary to define z9)y. For simplicity, we have so far assumed that zg = 0
and z9pn_1 = [ (the total length of the bunch), but this can be adjusted to accommodate
for any singly peaked potential. These edges split the domain into a set of 2N subdomains
where subdomain n lies between z,_1 and z,. There are no particles trapped in the final
subdomain.

It should be noted that we cannot know a priori the optimum choice of edges for a given
system. The choices must capture the relevant physics in the bunch, and sufficiently sample
the state space. The choice of edges need not be perfect, but should be chosen according to
the main features of the physics.

After discretiztion, many of the functions will be discontinuous (or discontinuous in the
derivative) at the edges z;,, but continuous within each subdomain. As such it becomes useful
to define these terms in the following way:

f(z) = f(z2) for z;,_1 < 2z < 2y, (2.29)

Where {(z) is an arbitrary function that may be discontinuous at edges z,. The longi-

tudinal potential can be discretized in this form. It should be noted that the range for the
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potential of each subdomain is the average U(z) where:

“n U(z)dz—!—fZZQN_n U(z)dz

Zn—1 2N—n—1
f N
" = (zn—2p_1)+ (29N —p—22N—n—1) or n 7 (2‘30)
e U(z)dz
“n-l 7 forn=N
m=N —|N —n] (2.31)

Terms such as linear density, longitudinal velocity, and the averaged potential U(z) will

be symmetric around the central well, yielding the form f™(z).

2.3.2 Continuity of Current in Airbag Loops

Now that the potential has been approximated, it becomes necessary to discretize the phase
space to reduce the number of equations of motion to a finite set and to generate realistic
synchrotron tunes. Each finite square well traps a continuous ring of energy levels spanning
multiple subdomains. Without discretization, each energy level would contribute another
set of coupled ODEs. Also, due to the stepwise structure of the square potential wells, some
of these energy levels would have unrealistic tunes.

We must further discretize each of these ring surfaces of current into a monoenergetic
"loop’ of current (also known as airbag distributions), with a single loop of current trapped
by each square potential well. The currents of individual loops are constant so the line
density will vary with the velocity of the bunch. For the loop of current trapped by the jth
square well, the continuity between slices n and o has the following form:

2O = 2009 (2.32)

Each loop of current can be divided into two half loops with the opposing velocities

(2-; = —%;). Fig. shows the loops of current in phase space.
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Figure 2.1: An annotated example phase space portrait of multiple loops of current trapped
in a discretized potential.

2.3.3 Determining () for Current Loops

Each current loop has a tune ()5 which will decrease monotonically with the total energy of
the loop. The choice of a proper (g is necessary as mode coupling is heavily dependent on
the synchrotron tune. Since it is monotonic, there is only one corresponding velocity for a
given target tune. The expression for the synchrotron tune of the nth current loop is:
From here it is possible to either invert Qs(FE) or perform a concentration series to bound

the necessary energy. The expression for the synchrotron tune of the jth well is:

w dz w 2N z z
0 n — *n—1
QsjB) =5 ¢ —=—> ‘Zm(En) (2.33)
n=j J J
A=\ 2E; = T™) (2.34)

What is the proper tune for a loop of current? If the loop of current is undergoing linear
focusing, there is only one tune and the solution is trivial. But when nonlinear terms are
present, the synchrotron tune of the original true’ potential will vary with energy. Therefore,
particles trapped within a loop of current will not have a single tune. For maximum accuracy,

one can calculate the average tune of the portion of the 'true’ distribution trapped in a given
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potential well (by using a procedure similar to section [2.3.4)). Or with enough subdomains,

the differences in tune within that loop of current become small and we can use the method

in section directly.

2.3.4 Sculpting Phase Space

Just like the potential, we must bin the particle density into individual subdomains. Because

of current continuity the line density A will be the average value of of the true linear density

)\true<z)-

2N—n
fzzgil )‘true(z)dz+f22N_n_1 Atrue(2)dz ‘ 4N
or n
N =\ = (en—2p—1)+(zaN —pn—22N_—p—1) (2.35)
sz;Z_l Atrue(2)dz

(zn—2p—-1)

forn=N
Since multiple loops of current contribute to the total line density of the system, we can
treat this as a sum of the form:
m
A=AT =23\ (2.36)
7=1
At the edges of the distribution, there is only a single loop of current making the line
density simple to determine ()\1 = 2)\%). Using the continuity of current for a single loop
of current it is possible to determine the complete A*. This in turn makes it possible to

calculate the contribution from the next (loop j = 2) loop. This procedure is repeated until

the system is completely defined.

2.3.5 Generalized Equations of Motion

Now that the longitudinal dynamics are fully determined for the MLSW model we can come
up with the final system of equations. Since the velocity of particles in a subdomain are

constant, we can evaluate Eq. at each longitudinal velocity 2;1 Doing this gives the
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following basis differential equations

dz = wy, Z NHXE + X)) — ag B! (2.37)
N j=
AXT oy o s
= g[hl(% 1) X5 + ho(t, 2)] if 271 is real (2.38)
X7
e eXn if 2 is imaginary, e <<'1 (2.39)
2
X 1 < -
ho(z) = —AQSCZ)\H Xn+Xﬁj)+?ZF£ (2.40)
hi(z, 2) = flz +AQ., Z A+ AQ, (2.41)
j=1

Special notice should be given to Eq. [2.39), if z;L is imaginary, this loop of current has been
trapped by a previous square potential well and is therefore not present in this subdomain.
It is possible to change the size of the matrix at each subdomain (as is done in the code
itself for performance), but this is unnecessary from a notation perspective. Ideally, the
matrices in each subdomain have the same order to facilitate matrix multiplication down
the line. It is valid to extend the smaller matrices with the addition of diagonal elements with
vanishingly small value e. This allows us to match the equations at the boundaries of the
bunch (zg and z9y) rather than matching them one by one as the size of the matrix changes
and loops of current are trapped by progressive square wells. The differential equations for

each subdomain can be expressed with the following matrix:
dvn
dz

= M"Vn (2.42)
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Vo= (2.43)

This matrix form has solutions that are an eigensystem with eigenvalues A and eigenvectors
V.

(M"™ — A)7 = 0 (2.44)

n
Each eigenvector propagates with its given eigenvalue such that v,(z) = ﬁa(znfl)eAa (z=2p-1),
A; is the ith eigenvalue while 7/; is the corresponding eigenvector. This makes the propagation

of the individual basis function V:
K+2N

S 1 -
Vi (z) = Y (")ea Ega(2)vp V" (2n-1) (2.45)

a=1
The diagonal matrix Eqq = e*@(*~2n-1), 1, is a matrix made up of row vectors i/
that translates from the basis of basis functions V to the basis of eigenvectors /. We are
essentially translating the initial conditions at the edge of a subdomain z,_1 into a sum

of eigenvectors before propagating the eigenvectors and then translating back to the initial

basis.
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2.3.6 Continuity and Boundary Conditions

The motion of the bunch is now well defined in a single subdomian for all basis functions.
Wake forces F . and the average position Xij of the bunch are continuous along the length
of the bunch where ‘7]”(2”) = ‘7j-n+1(zn). Therefore, the propagation of all basis functions

has the form:

. k+2N n—1 k+2N .
V()= > (v DneBee2veg [[1D. e Baalza)vd)V (20) (2.46)
e=1 d=1 a=1

for z,, 1 < 2z < 2z,
V(zon) = MV () (2.47)

Now that we can propagate the system to an arbitrary position within the bunch while
maintaining continuity, we can define a vector of boundary conditions that must be satisfied.
First is the boundary condition for the wakes f;., which defines continuity of wakes between
bunches (zg and z9p7). Bunches may be out of phase with one another which will add a
complex multiplicative factor. This will often be a pure rotation as is the case in coupled
bunch modes, but may vary for specific cases.

At the same time, the upper and lower half loops of current Xj and X_j must have
the same value at their edges Xj(Zj,l) = )A(,j(zj‘,l), Xj(ZQN,j) = )A(,j(ZQN,j). We shall
consider the boundary condition at the head portion of the loop to be ay, and the tail of
the loop as by,. This seems to suggest that our boundary conditions are a system of k + 2N
equations with the same number of unknowns. This is however not actually the case. Instead
the head of the outermost loop must be offset from the center of the beampipe by some small
amount-this is because our betatron sideband is nonzero. We may arbitrarily set this initial

offset to 1 as we do not know the true offset of an input beam. Because of this it is not

possible to satisfy all boundary conditions simultaneously except in special cases. Therefore,
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there will be a small error e that must be accounted for on its own. This error could be

included anywhere, but calculations are simplified if the error is accounted for at the tail of

the initial loop. The initial and final boundary conditions V (zp) and V (z9) are:
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(2.48)

Where B is the coupled bunch mode number, 7" is the total number of equally spaced

bunches, and D is a decay factor from the multiscale system. We can represent both of these

vectors of the initial and final conditions in terms of a vector of constraints ¢ and the vector

of the initial offset of the bunch ¢
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(2.51)

With this it becomes possible to use matrix methods to determine the boundary condi-

tions:

V(zon) = MV (20x)

(2.52)

This vector of constraints/initial conditions is only physical when the error boundary

condition e = 0. This is the x + 1 constraint. Since the matrix M changes with the input

tune shift AQ, we can therefore find a choice of tune shift that brings the error to zero.
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2.3.7 Determining AQ),

As we can see, the entire bunch is defined within an error term concentrated at the tail of
the bunch. A real solution will have this error go to zero and satisfy all of the boundary
conditions. This will only occur at certain values of the parameter AQ),, which we can vary
to find proper solutions. We shall minimize this error e using a gradient descent method
[22].

For every initial choice of tune shift AQ, ; there is a complex-valued error e. By choosing
slight offset tune shifts AQ,. ; +dQ and AQ, ; +1d2 we can then calculate the derivatives for
the real and imaginary errors. df2 is a small change to the initial tune shift used to calculate

the numerical derivative.

dRe(e dRe(e
Re(e) _ dRe((Q)) dIm((Q)) Re() (2.53)
tme)) \Gmae ) \Im(©)

() is the change to the tune shift necessary to minimize error if the error is completely
linear. With this in mind we can define a new initial tune shift and iterate the solution
as necessary until the error is below some arbitrary threshold. It can be useful to place an

upper limit on the stepsize in order to not jump toward a more strongly attracting tune

solution.
1
dRe(e dRe(e
dRe((Q>) dIm(<Q)) Re(e) _ Re(92) (2.54)
dIm(e dIm(e
dRe((Q)) dlm((Q)) Im(e) Im($)
AQy f=AQy; — (2.55)

Interestingly, it turns out that this method for calculating tune shifts is very robust for
the system we are studying. It continues to function even with a large number of square

potential wells, as long as a sufficient number of initial starting points near to the coherent
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modes are selected.

2.3.8 Physical Interpretation of MLSW

What we have spent most of this chapter solving is the slowly varying portion of the dipole
moments. Since all basis functions oscillate at the same tune (Q + AQy)), the total dipole

motion of a coherent mode is:
M AN ks
5 > /\j(:vj —l—a:])

2.56
DY (2:56)
Therefore the average position of particles oscillating at a specific tune shift will be:
M \R(41 4 41

Sy =17
The weighted sum of all valid tune shift modes will give the complete solution.

This is the steady-state solution for the coherent bunch motion. Wakes will grow and
bunches deform until this system arrives at these coherent modes. Because of this, it may
take several synchrotron periods in order for the system to reach this final steady and state
crossing the parameter space as it does so. If this path towards the steady state crosses an

instability threshold it may experience this instability even if the steady state itself is stable.

2.3.9 Solving the MLSW with Codes

It should be obvious that although this is an exactly solvable problem, boundary condition
matching for such a system is an iterative process. A code and accompanying wrapper have
been developed to discretize a beam, translate it into the square well method then calculate
the coherent modes of the system.

The Python wrapper discretizes the input potential and generates a set of input files with
longitudinal dynamics and transverse parameters (sections [2.3.12.3.4)). This is then read by

the main C++ code which uses the matrix solver Eigen[23] to satisfy boundary conditions

57



2.3.612.3.7)). The coherent tune shift and the shape of the bunch modes along with the bunch
shape are then saved as output files that can be read and visualized by the wrapper.

The Python wrapper for the MLSW code has the following form. It begins with an
input potential which it discretizes into a set of square potential wells (section and
bins the line particle density. From there the tune of the trapped particles is calculated
and an energy level assigned to give the approximating airbag the correct tune (section
. Particle densities are meted out to the individual loops before being combined with
transverse bunch information (section . The wrapper then saves an input file for each
individual setting which can be used by the main C++ calculation code.

The C++ code is a multi-threaded code that uses the matrix solver Eigen[23] to perform
the individual matrix calculations. Each input file is read by one of the threads which are
then translated into two sets of matrices. The first matrix is the total system with no
tune shift term M|ag,—o. The second matrix is R, the matrix of constants and prefactors
for the tune shift, where R = (M — M|pQ,—0)/AQz. This way it is possible to evaluate
the total matrix M quickly since M = M|pqg,—0 + AQzR. Then the error minimization
can be performed to satisfy boundary conditions. With boundary conditions satisfied, the
individual coherent modes and the spatial functions are then saved to a file where they can

be visualized by the python wrapper.
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Chapter 3

MLSW Results

The utility of the generalized Multiple Loop Square Well model is to expand our understand-
ing of the system beyond the limiting cases. Therefore we shall begin with a comparison of
the MLSW model with the SWM (section before going into the phenomena for multiple
loops of current (section [3.2)). After that, we use the MLSW to analyze certain systems
such as convective instabilities (section [3.3)), nonlinear chromaticity (section [3.4)), oscillating

wakes (section [3.5)), nonlinear longitudinal potentials (section [3.6)), and prospects for future

work (section [3.7)).

3.1 Comparing TMCI Thresholds

from SWM with MLSW

In the limit of a single square well, the Multiple Loop Square Well reduces to the Square
Well Model[I]. In this section we will demonstrate that the MLSW matches the SWM in

this limiting case. We will survey these results to provide physical intuition and offer a
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A single loop of current will have longitudinal velocity +vg and the corresponding two
equations of motion—one for the forward propagating and one for the backward propagating
portion of the bunch. Since this bunch has a finite number of particles oscillating at a given
tune, the loops of current in this distribution have a density in phase space of AJ(2 %+ vs)/2
where 0 is the Dirac Delta Function. This has the added effect of making the particle density
A(z) constant within the square potential well and zero everywhere else. Evaluating this gives
the set basis of differential equations X+,X_. This completes the set of basis vectors for

the system of linear ordinary differential equations.

dX+ Q) XWo A 1 <«
= —F|(A Xy +ZAQL(Xy — X F, 2
= TEAQ + XX £ SAQUK — X+ g R 62)
; b k=1
dX_ 1T s XWo Ao A 1 .
= — AQ, — X_+-=-A X_-X F 3.3
= 10 - X GAQR - Kk g SR
dF. N .
d_zk = wk)\(X+ + X?) - Oszk (3.4)

Because the system only has particles at mirrored velocities, the chromatic term can
only be meaningfully defined in terms of the head-tail phase shift x or the linear order of
€ (x = &lp) as the even components of the expansion will just lead to a small frequency
detuning. Using section [2.3.6] we can determine the boundary conditions for the SWM. If
the wakes decay to infinitesimal values before the another bunch interacts with them, the

boundary conditions are:

X (0)=X_(0)=1 (3.5)
Xi(ly) = X-(p) =b (3.6)
F.(0) =0 (3.7)
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3.1.1 SWM Beam Instabilities

When a valid tune solution AQ; has a negative imaginary component, Im(AQ,) < 0,
the system becomes unstable and the bunch oscillations will grow exponentially until some
mechanism stabilizes the beam. The most obvious example of this stabilization is due to
particle loss, where the loss will decrease the strength of the wake force, the main source of
instability in our case. But there are other mechanisms that can terminate the instability
as well. For example, at a sufficient distance from the center of the optics nonlinear forces
become stronger and we may exit the linear regime and stabilize the beam. However, even
if such an effect prevents direct particle loss there will still be a significant decrease in beam
quality making this undesirable.

While the negative imaginary tune solutions can be generated by modes combining to-
gether and becoming degenerate as in TMCI, other instabilities (such as the head-tail insta-
bility) are not due to this mode coupling and exhibit negative imaginary tune solutions by

other means.

3.1.2 SWM and TMCI Threshold Under Constant Wake

All tune solutions AQ, for a stable system will reside on the real line (Im(A; = 0)),
making each solution oscillate at an offset from the fundamental betatron tune. If two
modes shift together on the real line they will become degenerate and therefore unstable.
Since the distance between sideband modes without collective effects is QJs, a wake must
shift a sideband ~ @5 in order to drive this instability.

The simplest possible wake, where oy = 0 in Eq. [3.4] is known as a constant wake or

a step wake. When a1 = 0 there is no natural oscillation in the wake itself, and the wake
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will best couple to the zero mode. Thus it is possible to define the approximate tune shift
generated by a step wake of this form known as the Rigid Mode tune shift AQ,,. The rigid
mode tune shift is the change in tune of the rigid bunch (m=0) mode [24] assuming that
wake shifting this mode is not significantly deformed by it. AQ,, = % for a bunch with
a total bunch intensity of I. AQ; ~ —AQy if wy, is sufficiently small and the wake does
not heavily perturb the modes of the solution. However as the wake strength increases, this
shifting of other modes becomes more significant and must not be discounted—leading to the
shape of the instability diagram shown in Fig. [3.1] These other modes can be driven into
instability as well, but only become the dominant unstable term in specific cases.

The TMCI threshold for a constant wake and no space charge is:

w1l wil 1
x > — 3.8
4QSEQ3 dwpws 2 ( )
pr— pu— T —_— 3.9
10,0 @ %) (3.9)

This has a very good agreement between the two-macroparticle model with [12] as well as
the same functional form as the formulation given in section[I.5.2] sharing the same functional
form and expressible with the factor Y. Since the SWM is not a macroparticle model it
does not exhibit the synchro-betatron resonances which are artifacts of the macroparticles

themselves.

3.1.3 SWM and MLSW Mode Responses
for Varying Wake Frequency

Rather than assuming a constant wake function, let us also consider wakes generated by an
oscillatory wake function of the form aj, = iwN'/l;. The parameter A/, which we shall call

the cosine wake mode number is a continuous parameter that can drive a combination of
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Figure 3.1: The TMCI threshold simulated using the SWM. Note the lack of resonance lines
characteristic of macroparticle methods such as those shown in section
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Figure 3.2: This figure shows the corresponding tune shifts of an oscillating wake frequency.
The tune shift response for input to the wake function is an even function of N' (N =
|ag|lp/7) while the tune kick is small. The zero mode is more strongly driven by wakes,
making it easier to drive into an unstable regime compared to other wakes. Both positive
and negative modes are excited equally by these oscillating wakes.

coherent modes. When N is in resonance-slightly above the integer due to interaction with
other modes, it has the same natural frequency as a sideband mode, exciting a tune shift in
the beam, as is shown in Fig. [3.2] For the single well version of this, the fundamental mode is
easier to drive than the offset modes, as the oscillating wakes couple to both the positive and
negative synchro-betatron sidebands (m = +n) and oscillating wakes can couple to multiple
nearby modes at once.

Taking the same approach with three potential wells and measuring the responses we
obtain Fig. |3.3| which has the same rigid fundamental mode, but a decreasing response from
the sidebands. Since the bunch is no longer flat, modes are no longer solely driven by the
ratio of the wake ;. to the length of the bunch [; as the bunch shape itself has its own

resonances. Thus, this will vary with the exact distribution shape.
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Figure 3.3: MLSW with two loops of current driven by an oscillating wake. The oscillating
wake drives a combination of multiple modes, shifting them. As with the single well, this
response is an even function of N/, where N' = ||l /7. The error minimization algorithm
does not always resolve all coherent modes of interest, leading to a few missing datapoints in
the 0 and 1 modes. Both positive and negative modes are excited equally by these oscillating
wakes. This simulation has a stronger kicking wake than in Fig. [3.2 with the same frequency
sweep. Unlike the single well example, sideband modes can bifurcate into multiple coherent
solutions, as exemplified by the m = 9 mode.
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3.1.4 TMCI with Space Charge

In the single well limit, free space charge effects shift all modes except for the fundamental
(n = 0) correspondingly lower, effectively slowing the oscillation speed of the bunch. The
fundamental mode doesn’t shift and space charge alone cannot cause mode coupling, the
positive sideband modes will asymptotically approach the fundamental mode from above
while the negative sideband will continue to decrease linearly with AQg./2. This is not
realistic, as in general the intensity varies longitudinally along the bunch making the space
charge tune shift vary with it.

With a natural wake (wg > 0) space charge is a stabilizing effect. The distance between
the m = 0 and the m = —1 modes will be approximately Qs+ AQsq/2 making the total tune
shift necessary to couple between such modes larger than in the absence of space charge.
But this is a double edged sword, as this correspondingly decreases the distance between
the m = 0 and m = 41 modes. Thus at strong space charge, damper wakes can induce
instability as is shown in Fig. when AQyw/AQse < 0.

Perhaps the most important prediction is that certain beams (below the red line in Fig.
3.4) cannot become unstable to TMCI no matter how high the particle intensity is. This
is because both the wake and the space charge scale with beam intensity and implies that
SWM beams are always stable when 0 < AQy/AQsc < 1.

While TMCI from the zero and one modes may be damped by sufficient space charge,
other modes may not necessarily be damped in the same way. Therefore one should be aware
that higher order terms may become problems at very high intensity even if space charge
dampens the main instability.

When we move on to a multiple loop case this system changes significantly. Although the
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0 2 4 6 8 10
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Figure 3.4: Colormap of instability magnitude for the SWM. As bunch intensity increases,
so do both the rigid mode tune shift (AQy = w1 N/4Q;) and the space charge tune shift
(AQsc). If the ratio the rigid mode to space charge is less than one but still greater than
zero the beam will be stable for any intensity. TMCI at the top left is from modes —1 and
0, the one at the bottom is 0 and +1, while the final mode at the top right is from the —2
and —3 modes and is much weaker.
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same modes exist in Fig. (albeit with their thresholds adjusted slightly), other modes
dominate at high intensity. These features are due to mode splitting in the coherent modes
and will be talked about in section [3.2.5] Therefore for the multiple loop case there is a high

intensity limit beyond which TMCI will occur.

3.1.5 Head-Tail Instability with Linear Chromaticity

Unlike TMCI, the head-tail instability doesn’t require mode degeneracy in order to become
unstable. Instead, the head-tail phase shift x causes a small mismatch between the phase of
the forward and backward propagating loops of current. Without wakes, the phase offset will
satisfy boundary conditions as the upper loop cos(nm+ x) and the lower loop cos(nm—x) are
equal. In the presence of wakes the tune must be complex to satisfy the boundary conditions.
A diagram of this mode structure for the SWM is shown in Fig. [3.6] Since mode coupling
does not occur in this case there is only one complex mode for each sideband, which may be
stable or unstable depending on specific conditions.

Head-tail modes naturally have imaginary components, making it more difficult for modes
to become degenerate and drive TMCI. Because of this, chromaticity is often used to damp
such instabilities. And for systems where the number of loops of current N > 1, chromatic
effects will differ for each loop of current, making it possible to include nonlinear chromatic

effects as well.

3.2 MLSW Phenomena

MLSW fundamentally changes the picture of TMCI instability from the single loop case.

The shape of the bunch itself matters for a multiple loop bunch, as different distributions
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Figure 3.5: Colormap of instability magnitude for N = 3 mulitloop. This bunch has a worse
resolution in order to save computation time so structures are not as well resolved. Note the
spike like nature of some of the instabilities. These are due to orthogonal modes crossing
one another briefly without fully coupling, and are only degenerate over short time in the
parameter space.
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Figure 3.6: A plot of the most unstable modes due linear chromatic effects. Though we use
nonstandard definitions for chromaticity, x should remain unchanged. As has been noted

before, no comparison with MLSW will be shown here, as that will need to be discussed in
more detail in section .

will have shapes that resonate better with different oscillating wakes, but also the space
charge strength will vary along the bunch. Different loops will witness different portions of
the bunch and therefore different space charge effects. These loops can be displaced from
one another if they collectively satisfy the boundary conditions. This combination of each
loop being displaced from others and observing different forces gives rich new phenomena

that merit our focus.

3.2.1 Bunch Shaping and RF

So far we have taken an overview of the differences between the SWM and MLSW generaliza-
tion, with the MLSW system approximating a Gaussian distribution with linear RF forces.
We know however that the exact shape of the bunch can change the results significantly.

As more square wells and loops of current are added the exact shape of a distribution

70



0.10

0.08 1

0.06 1

0.04 - U

0.02 1

Distribution Function A

0.00 - - - - - - -
-10.0 7.5 —=5.0 —2.5 0.0 2.5 5.0 7.5 10.0

Position Along Bunch z

Figure 3.7: The longitudinal distribution of single airbag bunch trapped by nested square
potential wells.

beomes more important. The longitudinal RF potential defines the tune of each individual
loop of current while the particle distribution populates each loop with current. Many beams
are approximately Gaussian in form, but any stationary distribution with a singly peaked
potential can be approximated by the superposition of multipile square wells. It is useful to

think about some special cases, which show interesting results.

3.2.2 Hollow Beams and Beams with weak Collective Effects

Let us begin by thinking about a single loop of current, an airbag trapped in multiple square
wells. With enough potential wells this approximates a hollow distribution, as shown in Fig.
3.7 Interestingly, in the limit without collective effects, a bunch can be thought of as of
multiple hollow distributions evolving independently.

This makes for an interesting thought experiment. If we imagine an input beam without

any collective effects mediating between loops of current, each loop of current will oscillate
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based on their initial offsets. Each loop will have its own individual sidebands that propagate
separately from the others.

What happens when the coupling is included? As soon as there are forces propagating
between the multiple loops of current, the system is fully defined and each loop of current will
eventually shift toward the system’s coherent modes. Before the system reaches equilibrium,
each mode will shift to the final oscillation frequency. For these weak collective effects, the
contribution of all but the outermost loop sum to a small total contribution, making the
system dominated by the outermost loop of current, shown in Fig. [3.8f This is why the
coherent tunes are that of the outermost loop if the coupling strength between loops of
current go to zero.

However, when mode bifurcation occurs these new coherent modes will be some hybrid of
the outermost loop of current and some of inner ones that propagate slightly differently. That
being said, if particles are only in a single loop of current, the bunch will regain the hollow

distribution unperturbed by other loops of current and will not have bifurcating modes.

3.2.3 The Gaussian Distribution

Gaussian beams and other distributions with long tails can be difficult to model by a super-
position of square wells without needing to artificially cut off particles with a large excursion
from the center of the bunch. This is because it is important to have a sufficient number
of particles in each loop of current, but also not so many that the modes cannot be easily
driven. This is particularly important for the outermost loop as it has the initial offset which
will drive the wakes. Fewer particles correspond to a smaller initial offset for the bunch and
may weaken the total response.

We can expect that many beams will have a Gaussian-like shape, so this distribution will
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Figure 3.8: A 6 loop Gaussian distribution with infinitesimally weak collective effects. This
makes the outermost loop dominate the system compared to other transverse offsets. In order
to make the contribution of each mode more clear, the y-axis is a sum of the transverse offset
(which is continuous along the loop of current) and the longitudinal velocity of the section
of the loop of current (which is not continuous).
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Figure 3.9: Coherent modes for an approximated Gaussian distribution with 5 loops of
current. Perhaps most interestingly, it seems that the space charge-less TMCI threshold for
both this and the other models are approximately the same, while space charge forces differ
greatly between them.

act as a good baseline for determining TMCI thresholds for a normal beam (shown in Fig.
. And interestingly, the space charge-less case has a similar TMCI threshold to other
distributions because the wake field kick of the zero mode under a weak constant wake is
Fy = wy [ Mz — wyl, that is it only scales with total bunch intensity rather than bunch
shape. What is different is that this beam has significantly different space charge forces
between the center and the edges of the bunch, which allows coherent modes to split quite

readily from one another compared to a flatter distribution.

3.2.4 TMCI Threshold Convergence

When approximating a given distribution, increasing the number of square wells (and loops
of current) should improve the resolution of the approximation. For a reasonable choice

of square potential wells, increasing the well number should allow the solution to converge
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Figure 3.10: TMCI growth rate of the rigid mode of a Gaussian bunch. The threshold for
mode coupling occurs when the 0 and the —1 synchrotron sidebands couple into one another
generating an exponentially growth rate —wglIm(AQ;). Converging threshold is observed

at % ~ 0.57
toward the true value of such a distribution. If this does not converge or remain constrained
to a small boundary, this approximation method would be suspect.

To demonstrate the convergence of this method we will consider a Gaussian distribution
approximated by N square potential well and linear RF. All loops of current will have
approximately the same synchrotron tune and particle number. This will be shown in two
ways, first an instability will be driven using a rigid wake which is depicted in Fig. [3.10}
After that is completed and instability observed, space charge will effectively dampen the

instability as in Fig. [3.11] In the multiple loop cases, instabilities may also occur after TMCI

is initially damped. These are due to mode splitting, the subject of the next section.
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Figure 3.11: The damping of TMCI with space charge with a rigid mode tune shift of % =
2, around four times the TMCI threshold. The space charge tune shift needed to dampen
this instability for a large number of wells converges asymptotically to AQse ~ 1.51Q

3.2.5 Bifurcating Instability Modes

Each of the N loops of current contributes a degree of freedom to the bunch. These degrees
of freedom make it possible for multiple modes to split off from an original coherent mode
as in section [1.3.5] This phenomena is perhaps most obvious when considering space charge
effects where multiple loops of current can each be offset to satisfy boundary conditions
in a slightly different way. These offset modes split off from the initial synchro-betatron
sidebands. More loops of current correspond to more degrees of freedom that can be excited,
which turn a sparse mode structure into a denser one. It should be noted that these modes
are still discrete and do not represent a continuum of modes.

This has a few clear implications for the motion of the system. While each mode allows

a solution that satisfies the boundaries for all loops of current, an individual loop my be
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dominated by a subset of these modes (the exact distribution of which depends on the
initial conditions). Space charge effects will be split into multiple degrees of freedom with
each observing different average tune shifts. Particles dominated by the center of the beam
motion (inner loops) can be expected to have a larger tune shift compared to mode-dominated
particles at the edge of the bunches where the particle density is less.

Each of these modes can by themselves drive mode coupling with other sidebands, but
they do so in a different ways due to the degrees of freedom. Modes that are from the same
degree of freedom couple normally as discussed in the SWM, but if two orthogonal modes
cross in tune space they will still become briefly degenerate, as shown in Fig. Such
brief degeneracy of modes will cause some beam loss for the system. Although brief, these
modes do have a finite size and therefore cannot be neglected.

It is worth noting that increasing space charge normally dampens instabilities for a
single degree of freedom, but in systems with multiple orthogonal modes space charge can
briefly drive mode coupling from these orthogonal modes. Since such modes are only briefly
degenerate, they exhibit correspondingly smaller growth rates. However, as the intensity of
the bunch increases we can expect these orthogonal modes to continue crossing one another
making the beam likely to be unstable at high intensity. Space charge alone could not drive

these instabilities in the SWM case.

3.2.6 Mode Crossing Degeneracy

When modes cross in tune space they can become briefly degenerate, Near this threshold,
there appears to be short term growth due to the beat frequencies of the coherent modes for
the single loop case, but becomes less straightforward in the general multiwell.

Let us consider two valid tune shifts that are slightly offset from one another, where the
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Figure 3.12: Instability diagram of two loops as the intensity of the bunch is increased. The
figure shows both degeneracy briefly driven by two orthogonal modes crossing along with
other more long lasting instabilities. A higher intensity increases the space charge and wakes
at the same time.
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first map has a tune shift AQ, and the second has AQ, + €Q)s where epsilon is an order
parameter that is much less than 1.

For each tune solution that satisfies boundary conditions, there is a corresponding bunch
shape which is the propagation of the individual eigenvectors. As we know from section [2.3.8
the total transverse moment along the length of the beam is a combination of all such modes
with the set of these dipole moments constituting a linearly independent vector space. As the
distance €Qs — 0 the vectors can be represented by vector V|aq, and VIag, + €Vof fset
where V|, rset offset is a component orthogonal to the vector V|ag,. Therefore, if the
beam has a component of eV|,f fs; Which is very small, the amplitudes of the two modes
must be large to represent it. Since these are out of phase, it will lead to large amplitude
beat frequencies when e is real, or strong growth/decay when € is imaginary. This is the
nominal behavior near the instability.

If cases where the vector for the offset mode cannot be linearized in this manner, such
mode crossing degeneracy may not occur. For such a case to exist, there must be multiple
valid solutions with the same tune shift AQ, but orthogonal eigenvectors—implying that

there is no linearized map for small offsets in tune shift of order €Q)s.

3.2.7 Space Charge Self Effect

Additional loops of current distribute the charge among the loops. For the single well case
half of the particles are in the upper filament and the other half are in the lower. Since there
are no self forces, this is why the SWM has the prefactor of 1/2 in front of AQg. for Egs.
and [3.3] As more loops of current are added, this corrects itself as each filament has
a relatively smaller contribution and the lack of self effect becomes less pronounced. This

means that a stronger wake is needed in the multiple loop case to compensate for the space
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charge tune shift and drive TMCI between the 0 and —1 modes. This can be observed in
Fig. which has the same scale as in Figs. and [3.5]

Perhaps surprisingly, the negative TMCI modes are still very much of the same form as
the single well case. In the strong space charge regime, negative (damping) kicks can quickly

drive instability.

3.3 Convective Instabilities

3.3.1 Airbag Square Well

In recent years Burov [2] has expanded upon the Square Well Model with his Airbag Square
Well Model (ABS Model). This model differs from the SWM in two main ways. First of all,
the model eliminates chromatic effects to make certain solutions simpler and more elegant.
Secondly, it has more of a focus on the eigenfunctions of the system to derive the actual

evolution and shape of the forward and backward propagating beams.

3.3.2 Spatial Modes

Since the MLSW model is a system of linear ODEs that propagate along the length of the
bunch, the individual solutions are a sum of exponential solutions with complex growth rates.
This means that in general this system is a combination of decay, growth, and oscillatory
motion, constrined to match boundary conditions. Every subdomain of a multiwell will have
different propagation making the total motion of the bunch more complex. However just as

in the single well case it is still possible for spatial modes to drive the convective instability.
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Figure 3.13: TMCI Threshold Portrait of a three well Gaussian distribution and single well
under a varying wake strength w; and a space charge tune shift of AQg. = 2Q)s. Because of
the lack of self effect, the single well requires a larger tune shift to dampen the instability.
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3.3.3 ABS Convective Instability

There is significant physics in the strong space charge regime where the system is stable
to TMCI, but particle loss and beam quality degradation may still occur. These areas of
beam degradation are due to the same convective instability that was shown in section [1.5.6|
At a high intensity, but below the TMCI threshold, the tune shift eigenvalues will be real
while the bunch shape eigenvectors correspond to extreme amplification from the head of
the bunch to the tail. This amplification can move the portions of the bunch outside of the
dynamic aperture where particles will be lost.

The scaling for head-tail amplification for modes with n > 0 is shown below. Unlike the
model in section [1.5.6 only positive modes become convective.

It should be noted that there are two separate kinds of convective instabilities identified
in [2], the saturating convective instability (SCI) and the absolute convective instability
(ACI). The saturating convective instability will experience growth in the rear of the bunch
until the system fully saturates, at which point the bunch will stop growing and become
stable. If the bunch is still within the aperture, it may be transported without loss. The
absolute convective instability on the other hand is suggested to be a metastable state driven
to instability by small pertrubations such as halo [20].

Interestingly, there is a relatively simple way to identify whether the instability is satu-
rating or absolute. The stroboscopic plot of the transverse centroid (plotting several turns
along z) will have nodes if saturating and waists if absolute. Examples of the saturating
and absolute instabilities are shown in Figs. These are artifacts of the order of the

synchro-betatron sidebands inherent in the system.
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Figure 3.14: Convective instability for a single loop flat distribution. The plot shows the
dipole moment of the bunch for 20 turns. This system has head-tail growth (due to the
convective instability) but has distinct nodes, indicating that TMCI is not being driven.
This is unsurprising as single well models are more resilient to TMCI at strong space charge.
As with our normal convention, the head of the bunch is on the left side of the figure.

3.3.4 MLSW Convective Modes

Since the initial offset of bunch particles has been set to 1, the head-tail amplification is the
maximum amplitude of the spatial modes. We can expect this maximum to be near the tail
of the bunch as the wake will accumulate over the bunch length.

The amount of amplification that will contribute to loss depends upon the initial offset of
the bunch as well as the size of the beam pipe. This makes it difficult to calculate a threshold
for when convective modes begin to drive particle loss. So instead, we shall consider a mode
as convective when head-tail amplification passes some threshold such as is shown in Fig.
5. 10

There are several regions that are of interest shown in Fig. [3.17] First is convective motion

at very weak wakes and strong space charge. This region is not unstable to TMCI in many
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Figure 3.15: Combined TMCI and Convective instability for a 6 loop Gaussian distribution
plotting dipole moment of the bunch for 20 turns. This system has head-tail growth (due to
the convective instability) waists where the dipole moment goes to a finite minimum ampli-

tude (due to TMCI) and therefore has the phenomena of the absolute convective instability.
As with our normal convention, the head of the bunch is on the left side of the figure.

cases, but may be decidedly unstable to convective motion if growth becomes exponential.
Additionally, there is significant amplification before the TMCI threshold near the middle
of the plot. This may function as a source of particle loss for an accelerators with a narrow
aperture.

Past the TMCI threshold, convective motion may still be significant. In this case TMCI
drives exponential growth of a mode and head-tail amplification will also occur if the mode
is unstable to convective instability. Since this is a combination of both the TMCI and
convective motion, this will have both head-tail amplification and waists rather than nodes
making this a possible explanation for the absolute convective instability as seen in Fig. [4.5

as well as experiments observed in [25].

84



10 = Convective
100 = Ampffication

1000 = Factor

Relative Wake Strength AQ,./AQs.

0 2 4 6 a8 10
Space Charge Tune Shift AQ: [Q:]

Figure 3.16: Diagram of TMCI instability strength and the head-tail amplification due

to convective motion in the single well limit. The heatmap shows the maximum TMCI
instability strength while the contours show bunch amplification.
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Figure 3.17: 3 Loop multiwell diagram of TMCI instability strength with contours of con-
stant head-tail amplification shown with colored squares. Unlike the single well version, there
seems to be a maximum head-tail amplification of less than 100 times possible without driv-
ing TMCI. The interaction between multiple loops of current makes head-tail amplification
contour lines less distinct.
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3.4 Chromatic Effects in the MLSW model

If there is chromaticity in a bunch, each loop of current will have a difference in the phase of
the upper and lower halves of the loop. These will couple into the outermost loop to produce
the total head-tail phase shift x for the bunch. In the presence of wakes, this phase shift will
mismatch the boundary conditions which will need to be satisfied by the imaginary portion
of the tune shift Im(AQ,). If the imaginary term is a growth mode where Im(AQ;) < 0
the mode is unstable to the head-tail instability.

In the single loop case it was only possible to include a linear chromatic effect, but the
more realistic longitudinal phase space in the MLSW makes it possible to observe higher

order chromatic modes.

3.4.1 Chromatically Dominated Beams

The head-tail instability can occur below the TMCI threshold, however if the bunch is above
the TMCI threshold, the combination of chromatic effects with TMCI can heavily dampen
the growth rate. In Fig. we can see the strength of the TMCI alone (zero chromaticity)
is near maximum instability strength. Since the MLSW systems become unstable at high
intensity, damping the instability with chromaticity becomes a valuable exercise. If necessary,
the addition of a kicker[26] can be combined to weaken these modes.

To benchmark to this, let us examine an approximately hollow beam with a single loop
of current. With a single degree of freedom, there should only be one set of modes for the
head-tail Instability, making it the structure simpler. We can compare this solution to Fig.

3 in reference [27] where we see good agreement.
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Figure 3.18: The real and imaginary components of the tune shift for the 3 loop multiwell.
The negative imaginary component corresponds to unstable growth in time. Chromaticity
is expressed in nonstandard units, see section for more information. Since each loop
propagates separately, they each have have different head-tail phase shifts x, which is why
we have reverted back to using rescaled chromaticity &.
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3.4.2 Nonlinear Chromaticity

Now that we have a more complex phase space model, it is possible to study arbitrarily
higher order chromatic effects in 2. Of particular interest is the quadratic order which will
make all of the loops symmetric around 2 = 0. Because of this the inner loop will only have

limited chromatic effects while the outer loop will be the most excited.

3.5 Oscillatory Dipole Wakes

Up to this point, we have focused on constant dipole wake functions, since wakes driven
by this mode, known as the rigid mode, are dominant for diffuse wakes. Over a short
bunch, the wake can accumulate, but has little time to decay or evolve on its own making
it approximately constant. However this is not the complete picture. Since growth can be
exponential, it can also have an imaginary exponential (oscillatory) term in it.

This means that we must also be concerned about oscillatory wake functions. These
oscillatory wakes are in principle most applicable to resonant structures like cavities whose
high quality factor allows them to 'ring’ for a long time before the fields decay significantly,
but other diffuse elements may have a wake that is approximately oscillatory over the length
of the bunch. Thus, understanding these oscillatory wakes is important to obtain a clear

picture of the system.

3.5.1 Tune Shifts of Oscillating Wakes

For oscillatory wakes, we have studied the single square well case in detail. Wakes with
a similar pitch to the synchrotron sidebands will make it possible to drive modes beyond

the zero mode. The sideband modes are more difficult to excite than the fundamental by
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about a factor of three. Since all the sidebands can be driven with similar ease, this implies
that with a high enough frequency impedance it may be possible to create instabilities with
arbitrarily large sideband mode numbers. However, this isn’t realistic as arbitrarily high
order sideband modes leave the region of validity of the model and therefore aren’t realistic.

This changes when we migrate to the multiloop case. Fig. shows the instability
thresholds for mode coupling wakes, and that higher order modes are suppressed. This
much more realistically limits modes to near the fundamental and is in stark comparison
to the SWM. The MLSW results demonstrate that there is no need to worry about TMCI
driven by some exotic high frequency phenomena.

We can validate our solutions with the code BimBim [18]. This code has some structural
similarities to the MLSW as the longitudinal dynamics are approximated as loops of current
that are then split into subdomains, but is not exactly solvable with regard to space charge
effects and so should give at least somewhat different results. The figure on page 17 of
reference [28] shows the TMCI threshold for BimBim. The equivalent using the MLSW is
shown in Fig[3.19 Unlike the single square well where the thresholds for sideband wakes
are close to constant, approximating the bunch with multiple loops has the threshold for the

sidebands increase linearly with sideband number.

3.5.2 Nonlinearity of Dipole Wake Kicks

A key question is how many wakes are required to approximate the necessary coupling
physics.

If the modes were linear this would be simple enough, as we only care about some number
of physically relevant modes. If the frequency response of a wake function was linear, this

could be approximated by single frequency kicks. We could integrate over the the total wake
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Figure 3.19: TMCI thresholds for an N = 2 and N = 3 MLSWs. Note that these have
good agreement with the bunches shown in similar BimBim simulations [28]. The two well
version of this model has a slightly smaller threshold compared to the three well, meaning
it is easier to drive instabilities of the higher order sidebands.
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function and get the total response as a combination of individual coherent modes. However,
these modes are not linear and responses change as the bunch deforms due to the input wake.
Therefore, another approach will have to be taken.

This is not to say that the forces aren’t linear—they obviously are since wakes are elec-
tromagnetic in nature. However the total response to these forces also perturbs the bunch
distribution leading to nonlinearities. Also nonlinearity tends to be accentuated by mode
coupling unless the modes are orthogonal. If by prior knowledge one already knows which
modes will couple, one can focus on expressing this portion of the wake physics rather than
the taking a Fourier series. Possibly due to this, in Blaskiewicz[22] it is stated that a wake

function can be approximated by three wakes in the SWM limit.

3.6 Nonlinear Longitudinal Motion

When the longitudinal motion becomes a function of nonlinear forces, the distribution will
have amplitude dependent synchrotron tune Qs(J). When approximated by the MLSW
individual loops of current will have different synchrotron tunes—the nonlinearity sampled
by the MLSW system. This is not true tune spread, but with a large number of loops it
may sufficiently approximate it to produce certain nonlinear phenomena such as Landau
Damping[29]. Beyond the nonlinear effects, higher order harmonics can deform the bunch
shape into a more desirable distribution.

Both bunch lengthening and synchrotron nonlinearity can presumably help stabilize the
beam. Since we have examined the differences between bunch distributions previously, let
us focus on the effect of the nonlinearity itself. We can do this by matching the initial

distribution to the nonlinear RF potential.
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Figure 3.20: The stability diagram for a bunch with a landau cavity. As the strength of the
cavity increases, instabilities magnitude decreases with the synchrotron tune. This does not
indicate actual damping of the instability.

Initial studies were performed using a Landau cavity (Fig. , which is a harmonic
cavity designed to cancel out quadratic portion of the potential. This makes the longitudinal
dynamics inherently nonlinear. Without the linear component, the innermost loops of current
have a much decreased synchrotron tune. Initial simulations were performed to see if this
nonlinaerity could dampen TMCI by slowly increasing the strength of the Landau cavity,
which correspondingly decreased the instability strength. However it was determined that
this decrease was not due to TMCI being damped, and instead was due to the decreasing
synchrotron tune.

Other inherently nonlinear phenomena could be in the Landau cavity case, but to study
these it is better to have a significant linear component that doesn’t vary—that way nonlinear
effects can be more easily discriminated from changes in synchrotron tune. Preliminary

4

simulations of nonlinear z* are promising as they increase the TMCI threshold needed to
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drive mode coupling.

3.7 Prospects

The MLSW has significantly more parameters that can be studied compared with the SWM
and ABS. While this dissertation has been focused on certain aspects of the model, there
are many others that are beyond the scope of this thesis. Further work must be performed
in combination with experiments (as done in chapter [4]) to understand the implications of
the model for a given accelerator.

But there are a few more general takeaways that I shall touch upon here:

First, the MLSW model predicts that there is an upper intensity bound beyond which
TMCI will be driven without some other method to dampen it. However, the strength of
these instabilities is weaker due to the new mode structure. This offers a bridging point with
the SWM[I] where increasing the current of certain beams cannot drive TMCIL. Whereas
other methods [30] predict that TMCI has an infinitesimal threshold at strong space charge
but is only weakly unstable, which can be attributed to the bifurcating modes of the MLSW
model.

Second, the convective instability is a major concern for beams operating near (and even
past) the TMCI threshold. Both TMCI and the convective instability are needed to explain
certain beam behaviors.

Third, the new TMCI thresholds and Convective Instability are less clean and clear cut.
The interaction of various loops of current and modes lead to a fuzziness of the exact mode

structure. This means it may be difficult to exactly determine when a beam begins to cross

the TMCI threshold.
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Fourth, many machines operate beyond threshold these instability thresholds. As can be
seen in Table the Recycler Ring is near the high intensity threshold, but parameters for
the the AGS in Table [5.1] is significantly beyond it at injection. The fact that the AGS and
other accelerators like it are stable is likely due to a combination of nonlinear optics and

Landau damping along with the chromatic effects within the bunch.

3.7.1 Coupled Bunch Modes

In the regime where wakes decay slowly compared to the distance between bunches, we must
focus on how the wakes driven by one bunch affect the others. Let us consider a bunch train
of T total bunches that form a complete cycle around the accelerator. The coupled bunch
mode number B is essentially the phase offset of the next bunch. This is a mode just like
the sideband we have previously focused on for single bunch TMCI. The total evolution of
the bunch will be a weighted sum of these coupled bunch modes. Therefore, if any of these
coupled bunches make the bunch unstable, particle loss will occur.

Bunch trains in certain machines such as the planned EIC[31] have interbunch distances
that are comparable to the length of the bunch itself. As pointed out in section[I.5.3] tracking
codes have difficulty studying coupled bunch modes over long time periods, making this an
attractive area to apply our method. However this is beyond the scope of this thesis, so this
will only be considered speculatively.

Coupled bunch modes are well understood when bunches are treated as macroparticles
equally spaced in a ring. This limit is given in [13]. In order to test coupled bunch modes of
the system, let us consider the limit where the bunch is very small compared to the distance
between bunches. The results should be equivalent to methods where individual bunches are

treated as single macroparticles. Once this limit has been tested, one can generalize to the
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case where the length of the bunch and the distance between bunches are both finite.

With this method benchmarked, it is interesting to consider instabilities in the future
EIC. Using the preconceptual design report[31], we can model a system that is analogous
to the EIC. Specifically we are interested in the fill, which takes tens of minutes, so it is

possible that even small instabilities could balloon into particle loss.

3.7.2 Nonlinear Transverse Optics

Because this relies on linear transverse optics, the system does not properly account for non-
linear effects that appear due to higher order multipole magnets and the inherent nonlinearity
of certain distributions. Including these effects could greatly expand the applicability of such
a method.

There are two main obstacles to such a method, first a nonlinear map must be generated
that is fully constrained and solvable with a similar boundary value problem as the linearized
case. Additionally, nonlinearity will introduce coupling between transverse modes of the
accelerator. Although these are important to the overall dynamics of an accelerator, they
make computation much more intensive.

Furthermore, assumptions that were made for the SWM and MLSW may no longer be
applicable. Higher order sidebands beyond the upper betatron sideband may cause significant
contributions to these maps and may not be able to be discounted by such a method. Thus,
although this approach should be possible, it may not be the most efficient in the general
case. However, since this approach determines the exact tunes of the system it has a niche
as it is able to better study certain instabilities near the TMCI threshold than many other
models, making further generalizations valuable to the community when studying beams

with very intense space charge.
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Chapter 4

Experimental Verification of MLSW

It is important to verify the results of the MLSW model experimentally, but it can be difficult
to do so in a meaningful way. There is a large parameter space that can be studied, but a
given accelerator may not be able to access the portion of the space necessary to confirm the
model.

The wake impedances are particularly difficult in this respect. The accelerator structures
define the impedance and therefore the wakes making this physics more or less intrinsic to

the machine itself. That is, unless wakes are created artificially with some device—a kicker.

4.1 Recycler Waker Experiment

A kicker is essentially a beam pickup with a electrode operating based off of the pickup
signal. Kickers are normally designed to provide negative feedback and dampen coherent
motion of the bunch. With positive feedback the kicker functions much like a wake itself,
except that this wake has a resolution and function determined by the electronics rather
than the accelerator structure.

Such an artificial wake makes it possible to tune parameters and drive instabilities not
normally present in an accelerator, and while there are natural wakes in the system, they
can be neglected if small enough, or incorporated into the model if not.

The Fermilab Recycler Ring (RR) is a proton synchrotron that has a highly tunable
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"Waker’ kicker feedback system. This Waker is used to drive various mode coupling insta-
bilities and study them. In February 2023, an experiment was performed at the kicker to

observe TMCI and Convective instabilities in the accelerator.

4.1.1 Recycler Ring Parameters

The Recycler Ring is injected to from the Fermilab Booster and was originally used as an
accumulator and cooler for the antiprotons|32]. Currently, the ring accumulates protons into
a more intense beam which it sends into the main injector which it shares a tunnel with.
In the future it will provide an input beam used to generate muons for the g-2 experiment.

The parameters for the Recycler are given in Table [4.1]

Parameter Value
Betatron tune Qz, Qy 25.42,20.44

Synchrotron tune Qs 0.0005

Space charge tune shift*  AQs. —0.004
Chromaticity** €z, &y —0.75,—0.16

Emittance €Nrms 2.57 mm mrad
Energy E 8 GeV
Radius R 528 m

Table 4.1: Parameter list for Recycler Ring from [33]. *Space charge tune shift for 3 x 1011
protons. and is large compared to the synchrotron tune, making TMCI instabilities due to
strong space charge very possible. **For instability experiments the chromaticity is normally
set to some small value close to zero.

4.1.2 Waker Feedback System

The Waker is essentially made up of four main parts [34]. First is the pickup, made up of two
BPMs which are at a 82° phase advance in order to get most of the position and momenta

information. Next is the feedback system which takes the pickup data and transforms it.
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Figure 4.1: Diagram of the Waker at the Fermilab Recycler from [33]

Then come the amplifiers which drive the kicker itself. Finally, the kicker which is a stripline
that mimics a wakefield and has a bandwidth of 200 MHz. In order to obtain a good time
resolution for the bunch, it must be long compared to what is resolvable by the pickup
and the kicker. The length of the bunch is around 150 ns, making the pickup and kicker

resolutions sufficient.

4.1.3 Beam Position and Intensity

The BPMs and a stripline record the response of the bunch and have a sufficient time reso-
lution to resolve bunch motion. Since these are both capacitive pickups they act as differen-
tiators and must be integrated to give the dipole signals. These signals have two channels,
the sum channel which detects beam intensity and a difference channel which detects the

total bunch moment. These provide high time resolution transverse bunch information.
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There are also DC Current Transformers (DCCT) which can measure the intensity of the
Waker over many turns. This provides high resolution intensity measurements of the entire
bunch but cannot resolve the finer structure within the bunch itself. Using this makes it
obvious whether a resonance has been crossed and particles lost, compared to the stripline
and BPM measurements where it can often be difficult to determine the exact onset of

particle loss.

4.2 Observing Instabilities

The objective of these experiments is to study both TMCI and the Convective Instability.
Since these are both dipole instabilities is possible to detect them using a dipole pickup such
as a BPM or stripline. Both the BPM and stripline give similar data which is complementary

to one other.

4.2.1 Coherent Modes

The motion of the bunch is essentially a sum of coherent sidebands that are separated at low
intensity by approximately one synchrotron tune. Nonlinearity will spread out these values,
but these modes should still be resolvable. This can be performed with a normal FFT or
some other more advanced method such as NAFF [35] to determine the coherent modes of
the bunch.

Due to the varying dipole moment for individual modes, certain modes can be expected to
dominate at points along z. It is possible to enhance the signals of these modes by averaging
signals from the portion of the bunch that is more heavily driven by a certain mode. This is

especially true in the case of convective motion, where the tail signal is significantly amplified
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Figure 4.2: Synchro-Betatron modes for three separate experiments at differing wake gains
strengths. The Blue line is saturating convective instability, the orange line is the absolute

convective instability (TMCI combined with and convective motion). And finally, the green
line is TMCI without convective motion.

compared to the rest of the bunch.

Since sideband modes can shift into one another when modes are perturbed by collective
effects, a high resolution is necessary. To obtain a finer resolution than )5 in tune space,
more than 1/Qs turns are necessary. Significantly more turns are needed to resolve the
modes or their tune shifts. To get a sufficient resolution for to resolve coherent modes the
experiments are are 20000 making the resolution ~ @5/10. Fig. shows the FF'T spectrum
of three experimental settings. The shifting of individual modes due to shifting experimental

values can be observed.

4.2.2 Head-Tail Amplification

With high time resolution measurements of the bunch along the detectors, one can determine

the total dipole moment along the bunch at given turn. If there is significant growth from
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head to tail for a specific turn, it is possible that this bunch is convective. This is necessary
but not sufficient to prove that this is a convective mode. In certain cases, such as those
outlined by Metral, et al. in [36], it is possible that a sum of normal coherent modes can
interfere with one another and create something that looks convective for a short time, but
isn’t actually due to the convective instability.

The best way to distinguish between convective motion and a sum of coherent but non-
convective motion is to ensure that these convective elements oscillate together. If these are
actually different modes interfering with one another, there should be some time when the
head-tail growth of the bunch will reverse into tail-head amplification. If the motion of the
coherent modes does not dephase like this, then this the system is undergoing a convective

instability.

4.2.3 Tracing TMCI Thresholds

If looking at an instability with a sharp threshold (TMCI has a sharp threshold unlike
Convective Instability), it is possible to follow the surface of the instability threshold itself.
This relies on the ability to carefully cross the TMCI threshold, which is not particularly
difficult in negative wakes, but becomes more difficult to accomplish for positive/natural

wakes due to the structure of TMCI with multiple loops of current due to mode degeneracy

(see section [3.2.6]).

4.3 Experimental Results

The experiment performed at the Recycler Waker had the following setup. The individual

experiments consisted of 30,000 turn shots, 10,000 turns with the Waker off to begin and
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Figure 4.3: The beam intensity obtained with sum of BPM channels at different turns. The
head of the bunch begins at around 1.75 x 1077 seconds with the tail near 3.25 x 1077
seconds. The BPM is used because it has the proper asymptotic behavior (trends toward
zero) unlike that of the stipline sum signal.

20,000 turns afterwards with the Waker on. The wakes were of the form w0(z — z) where

© is the Heaviside Theta function and wy is the wake constant.

4.3.1 Non-Stationary Longitudinal Distributions

In order for the results to be valid, the longitudinal distribution must be an stationary distri-
bution. If this is not the case, the distribution itself will oscillate in time. The longitudinal
oscillation prevents the bunch from converging to its final state spreading out coherent modes
as the modes shift along along the synchrotron period.

During a number of the experimental runs, the Recycler Ring exhibited significant os-
cillations of the longitudinal distribution which is shown in Fig. Because this motion
spreads out the coherent modes if the entire bunch is sampled, another method is needed to

sample the beam. By focusing on one one point near the tail of the bunch, it is possible to
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resolve coherent modes, especially those with sufficient head-tail amplification.

4.3.2 Instability Observations at the Waker

Both TMCI and the convective instability were observed during the experiment, sometimes
in combination with one another. The three most notable examples are those shown in Fig.
as they show the coherent modes for TMCI (green), TMCI and Convective Instability
(orange), and just the Convective Instability (blue).

As expected, systems with significant head-tail amplification were the most easily ob-
served. The turn by turn (stroboscopic) figures for the normalized transverse moment along
the length of the bunch for two of these instabilities is shown in Figs. and [1.5 Both of
modes are convective as there is no time when the system shifts from head-tail amplification
to tail-head amplification as one would expect if this amplification was due to Metral, et
al.’s [36] interference between coherent modes moving out of phase with one another.

It is interesting to note that the stronger wake shown in Fig. did not exhibit TMCI
while Fig. did. This is not consistent with the ABS case where increasing the wake
strength of a beam should always bring it closer to instability. This is however possible in
the multiple loop case, making this possibly consistent with the MLSW predictions. Further
experiments and accompanying simulations are necessary to determine whether the MSLW

well simulates the Recycler Waker.
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Figure 4.5: Stroboscopic plot of Convective Instability and TMCI observed using the Waker,
with an input step wake of strength 3w; corresponding to a Waker gain of —0.15. Head-tail
amplification of this mode is significant while the modes have waists rather than a node,
indicating an absolute instability such as TMCI combined with the convective instability
and is consistent with the phenomena observed in
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Chapter 5

Periodic Resonance at the Alternating

Gradient Synchrotron

Space charge phenomena have a significant effect on more than just coherent instabilities.
Resonant particle loss, essentially particle loss due to resonances between a particle’s tune
nonlinear optics will be changed by the presence of intense space charge effects. In order to
study one example of this known as Periodic Resonance, experiments were performed at the
Alternating Gradient Synchrotron (AGS) during March and April of Run 22.

The AGS is a synchrotron in the Brookhaven National Laboratory (BNL) Collider Ac-
celerator Complex which injects into the Relativistic Heavy lon Collider (RHIC). It has two
partial Siberian Snakes[37] separated by 1/3 of the ring to preserve the polarization of ions.
The duty cycle is typically 4 seconds for protons, with a 0.5 second ramp up, 2 second flat-
top and a 0.5 second ramp down. After the EIC (Electron Ion Collider) is completed, the
AGS will instead inject into the EIC ion ring. The bunch is injected into the ring at 144
ms (0 ms is the bottom of the AGS ramp) and will remain at this low energy before being
later accelerated. Space charge effects are expected to be most significant during this initial
injection period. Due to the rapid repetition rate, experiments must be performed in single

turn snapshots rather than by sweeping parameters.
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5.1 Space Charge Driven Resonance Crossings

High intensity resonance crossings operate somewhat differently from low intensity ones.
Essentially this is whether we can consider the bunch as approximately point-like in tune
space, or whether nonlinearity and space charge are strong enough to form a large tune
footprint. The high intensity regime is indicated when the width of the resonance is smaller
than the the bunch’s tune shift. This structure is often referred to as the space charge
‘necktie’, the characteristic footprint of the bunch in tune space. An example of multiple
space charge neckties is shown in Fig. [5.1] The particles on or close to a resonance line will
interact with this resonance and cause an emittance growth and/or particle loss. The large
size of the tune footprint means that it is more difficult to choose a working point for the
beam that won’t be resonantly excited. The space charge necktie has a loose correspondence
to its location within the bunch—the maximum tune shift is situated at the maximum particle
density of the bunch, while the edges of the bunch oscillate at what is essentially the single
particle lattice tune.

The strength of a given resonance can be explained in a couple of ways. This derivation
utilizes what is known as a driving term integral[3]. The driving term integral is the strength

of a given multipole (in this case a sextupole) and a phase factor:

G073’l€_i§0,3,l _ ;i; f53/2 o~ iB3Yy(s)—2m(3Qy—1)s/C] 44 (5.1)
G e 62200 _ V2 7{ BY25, Iy ()e—TBUy £ (92m(QuE20a—3/Cl g (5.9)

Where K9 is the magnetic field strength of the sextupole field, [ is the betatron function,
1 is the betatron phase, £ is some accompanying phase factor, and [ is the integer resonance.
Physically we can think of this driving term as a kick. Over one turn there is some total

kick to the bunch. If this kick is in resonance with the tune oscillations, this leads to greater
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Figure 5.1: PyORBIT[38] simulation of AGS injection. The colored dots are the perturbed
betatron tunes of macroparticles forming a ’tune footprint’ with each color corresponding
to different initial tune for the beam. If these perturbed tunes are large enough, they may
cross third order resonance lines, which are in black. In this experiment the solid black lines
were destabilized in order to study the effect of particles crossing these resonances.

108



excitation with each revolution. If not on resonance these kicks will average out.

5.1.1 Periodic Resonance Crossing

Periodic Resonance Crossings [41] are a special type of space charge-driven resonance where
the tune footprint of a bunch crosses a resonance line. Particles undergoing synchrotron
motion will cross these resonances repeatedly over the space of multiple synchrotron periods
leading to a large total kick.

This class of resonance is naturally self-stabilizing. Both emittance growth and particle
loss can decrease the space charge effect and contract the system’s tune footprint. With
enough emittance growth or particle loss, a bunch may no longer cross such resonances.

There are two main types of Periodic Resonances that we can expect to observe. These

are the Trapping and Scattering resonance regimes.

5.1.2 Adiabaticity Parameter T'

It is possible to differentiate between these regimes with a so-called Adiabaticity Parameter.

which is defined in Franchetti, et al. [40] as:

1 0Ly,
QistAr In
where ()¢ is the tune of the islands, AL is the size of the islands in phase space, and L), is

T = (5.3)
the location of the fixed points of the bunch. For small 7" we are in the adiabatic regime and
particles will be trapped on stable islands if the islands are large enough. Particles in these
islands will not experience substantial loss or emittance growth and we can expect that the
bunch shape will not be significantly shortened since the particles are evenly distributed in
the longitudinal direction. Alternately, if the parameter T is large we are in the non-adiabatic

regime, and we expect bunch shortening due to particles scattered by the resonance crossing.
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Particles with large oscillatory amplitude in z are excited as they cross this resonance multiple
times per synchrotron period. Without islands of stability, these particles will be lost.
This will continue until particle loss and emittance growth move the tune shift above the

resonarce.

5.2 lTonization Profile Monitors

Ionization Profile Monitors (IPMs) are beam diagnostic devices designed to project the
transverse distribution onto a detector, effectively imaging the beam. The operation of such
a device can be described as follows:

The beam passes through a residual neutral gas, ionizing some of the gas into a plasma
of electrons and ions. The charged particles are accelerated to electrodes with either the
ions or the electrons impacting a readout detector known as a Microchannel Plate (MCP).
The MCP is segmented into multiple channels which each detect and amplify input signals.
Because of the segmentation of the system, the transverse projection is separated into bins

by the hardware itself.

5.2.1 Electron Collecting IPMs

It is in principle possible to collect either electrons or ions on an MCP, with an electron
collecting IPM called an e[PM. Since electrons are much lighter than the residual gas ions,
electrons will have a much more rapid time response but worse space charge effects deforming
the projected profile. The more rapid time response makes it possible to obtain turn by turn
profile measurements. Our resonances of interest will be quite rapid, so eIPMs are necessary

to observe the growth as it happens.
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Such elPM measurements are useless if free space charge effects perturb the results too
strongly. Although it is possible to simulate the ionizing beam [42], space charge effects can
be countered by including a magnetic field oriented normal to the MCP. This field constraints
particles to a radius that is oc mv | /B where v | is the velocity perpendicular to the field and
B is the magnitude of the magnetic field. If the radius of the field is smaller than the MCP
bins, this will give a similar signal to that of a space charge less eIPM. It should be noted
that this magnetic field will perturb the beam itself, but is small enough to not significantly
interfere with it.

Two eIPMs are installed in AGS straight sections, one in the horizontal plane at D5 and

the other in the vertical plane at D15.

5.2.2 Calibrating AGS eIPMs

The performance and collection efficiency profile of elPMs can change over time. Without
frequent calibration, the drift in e[PM performance can make results unrealistic. Calibration
of the e[PMs is performed by sweeping an already characterized beam across the eIPM and
correcting the responses correspondingly. The bin corrections are a constant offset as well
as a linear factor adjustment. Higher order terms may exist for especially intense beams but
are not specifically corrected for.

Unlike AGS ion IPMs, AGS elPMs can take turn by turn measurements. These can be
averaged over a number of turns to decrease statistical error. Since ionization and counting
are stochastic processes with comparatively few events, this statistical error is significant.
Due to degrading e[PM performance, systematic errors cannot easily be quantified. For these
experiments the error in bin measurement will be defined as the standard deviation of the

counts.
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Figure 5.2: Diagram of the AGS. Adapted from [39]
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Figure 5.3: Example of elPM calibration for 50 turns taken at injection (144 ms), The initial

signals (red dots) are averaged to give the original signal which are averaged (green line).

The calibration correction is applied. Dead bins are then removed with smoothed signals
put in their place.

5.2.3 ’Dead’ Bin Signals

If a beam bin gives results which are obviously erroneous, that bin is excluded and set to a
zero sensitivity. This is not optimal however. This cutout from the distribution can make
it difficult to fit a characteristic distribution to the bunch or calculate the emittance. This
can be solved somewhat by averaging the adjacent bins to get an estimated value. With
this, bunch size can be measured using the full width half maximum (FWHM) or another
method. Our interest is primarily in relative bunch growth so this method will be sufficient.
It should be noted that because the Periodic Resonances may deform the bunch shape, it is

not advisable to use an assumed distribution to calculate the emittance in this case.
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Not all 'Dead’ bins were caught by the calibration step with certain phenomena only
being observed during the experiment. On alternate turns these bins registered anomalously
large signals followed by signals of the correct order but uncorrelated with beam intensity.
Since these signals were not automatically excluded from the analysis, this led to spikes in
the observed emittance as shown in Fig. These bins were identified and removed during
post processing to eliminate these erroneous signal spikes.

The source of these dead bins was not identified, but several observations can be made.
elPM performance can degrade from long-term damage to the system, but not all degra-
dation in signals is permanent. Therefore limiting eIPM use may regenerate some of the
original performance of the device. Because the functioning of these bins can be intermit-
tent, calibration may misidentify these as properly functioning bins. RF does not appear
to correlate with elPM dysfunction with sampled e[PM data, exhibiting the same dead bins

when RF is off or on.

5.2.4 eIPMs as Intensity Monitors

There are dedicated monitors in the AGS to quantify the bunch intensity. The wall current
transformer (WCT) has a robust response with the ability to determine the peak of a given
resonance as well as the saturated intensity after resonant beam loss. Because elPM events
scale with intensity, it is possible to use them in a mode where they also act as bunch intensity
monitors. This is useful to double check the WCT data and to act as a backup if the WCT
is offline. The other advantage of an e[PM is that it provides a true statistical measure of
the count errors (which is not available with the WCT). This gives true turn by turn data,
however the window size limits the ability to identify beam loss as it occurs. Using this

method, the relative intensity of a bunch is proportional to the number of calibrated events
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per unit of time, while the average survival rate for a particle from one time to another is
the ratio of the final over initial intensities.

An eIPM used in this way can be expected to display some systemic errors. Mainly, these
are calibration errors and errors due to dead wires. Each bin has its own calibration and its
own error. The error of a bin at some initial time will be correlated with the error at some
later time. Because of this, there is a correlation between the shape of the bunch (which
bins it is divided into) and the associated error. This effectively increases the contribution of
these errors to the total calculated current. Because of this, as the bunch grows one expects
to observe errors when using the e[PM to determine bunch intensity.

Other systematic errors can be encountered when using an e[PM. The main problem is
the calibration of the bunch itself. Since the AGS calibration is calculated from an input
test beam, that places an initial limit on the accuracy of such a model. Also important is
the eIPM model itself especially at strong space charge. There is also a chance to under-
count at high intensity due to MCP saturation at high intensities[43]. Higher order intensity
corrections may be needed to correct for this if a bunch shape changes significantly. This

may lead to observed intensity changes from e[PMs that are not physical.

5.2.5 eIPMs at the Relativistic Heavy Ion Collider

Although this experiment was only concerned with the AGS, it is worth performing a study
at the Relativistic Heavy Ion Collider (RHIC). Since the dead bins have been identified as
the source of error we can perform a similar search of historical data from RHIC.

As can be seen in Fig. [5.4] RHIC does not exhibit the anomalous dead bins seen in the
AGS. This is not surprising as the performance of RHIC eI[PMs seem to be more stable than

the AGS devices. As with the AGS case, each bin has a varying sensitivity yielding striations
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Figure 5.4: eIPM at RHIC, note that less corrections are needed for RHIC bins. There seem
to be no missing/dead bins.
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for each individual bin.

5.3 Periodic Resonance at AGS Run 22

With continued high intensity operations at the AGS there is interest in studying resonances
at strong space charge, primarily 3rd order resonances. The single particle tune during AGS
run 22 is @y ~ 8.9, two of the nearest accessible third order resonances are 3¢y = 26 and
2Qz + @y = 26. Before the introduction of the partial snakes, these resonances had been
studied at low intensity[44] and corrected with sextupole families. Current AGS settings
(Table have shifted to a tune further away from the third order resonances, but at high
intensity they may still be a concern. Therefore, our focus was to drive periodic resonances
over a series of initial lattice tunes—beginning directly on resonance and slowly increasing

the vertical tune @y until effects from the resonance crossing are no longer observed. The

Parameter Value
Betatron tune Qz, Qy 8.85,8.7

Synchrotron tune Qs 0.001
Space charge tune shift AQs. ~ —0.1
Injection energy E 2.3 GeV
Bending radius R 85.378 m
Circumference C 807.11 m

Intensity I ~ 1013 protons

Table 5.1: Parameter list for AGS. Some parameters are from [39], but are are updated and
added to for experimental relevance.

experiment was conducted as follows. First the vertical tune was brought near to the res-
onance line @y = 26/3. This vertical resonance was chosen as the vertical elPMs at the
AGS are less noisy than their horizontal counterparts. This can be done in the current AGS

configuration, but this tune will not preserve polarization of the bunch. Since polarization
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is not important in this experiment, its loss will not be missed. Three main devices were
employed to study resonant effects. First, the eIPM which was discussed in detail in section
[.2] This provided bunch size and emittance measurements along with intensity calculations
at 1 ms increments starting at 144 ms (the injection). Secondly there was the Wall Current
Transformer, which gives the total intensity of the bunch over a longer time scale than the
elPM is capable of. Finally, there was the Wall Current Monitor, which gives the intensity
of the bunch in z over a very short time scale. This makes it possible to resolve changes in

the longitudinal bunch projection as particles are lost, and observe ’bunch shortening’.

5.3.1 Resonance Driving Term Adjustments

At the nominal settings for the AGS, the loss due to the periodic resonance was not easily
resolved. With enough time, even a small resonance could lead to loss, however the accelera-
tion cycle of the AGS made long time studies of such weaker resonances impossible. Instead
it was decided to strengthen the 3rd order nonlinear driving term to make the resonance
detectable. This was originally performed with two sextupoles that were spaced such that
they have an additive contribution to the driving term, but no effect on the chromaticity.
However, the currents necessary to produce such an effect on the beam were not achievable
in the AGS. Instead, it was decided to use the sextupole corrector family originally designed
to dampen this resonance. By purposefully adjusting this sextupole family, it was possible
to strengthen the driving term and make the resonances correspondingly stronger.

With the adjusted driving term significant resonant particle loss was observed, indicating
that the resonance was able to interact strongly with the input beam and cause loss and

emittance growth.
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5.3.2 Experimental Observations

With the Enhanced resonance strength, emittance growth and particle loss can be observed
at injection before quickly saturating on the order of a few milliseconds. As the bunch crosses
the resonance (Fig. left to right) we note that initially the emittance grows, then these
excited particles are lost to the walls of the beam pipe and are registered on the Wall Current
Transformer. This implies that emittance of resonant particles will grow until they either
saturate the instability, or are lost. Once particles are lost, the emittance decreases as the
driving resonant force is proportional to J 32, T herefore, once edge particles are lost, the
emittance decreases and only central particles survive.

It is worth discussing the particle loss in more detail. The eIPM counts observe a lo-
cal particle loss minima before the main resonance. This is not theoretically expected as
emmittance growth should precede particle loss (and dampen the emittance growth peak)
since particles must grow transversely to be lost by this mechanism. Since no other loss
mechanism or resonance can be identified for this minima and further because the WCT in
Fig. does not reproduce this behavior, we must conclude that this is erroneous. This is
not unexpected as correlations between bin signals could create significant error for beams
growing transversely.

Finally the Wall Current Monitor should also be mentioned. The original longitudinal
projection does not change shape significantly for any of the resonance crossings tested.

The lack of bunch shortening makes it difficult to classify this periodic resonance as
either adiabatic rregime trapping or the non-adiabatic regime scattering. Bunch shortening
is normally a sign that the machine is in the adiabatic regime, but it is possible that noise in

the RF could have flattened the bunch profile of the non-adiabatic scattering regime. Future
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Figure 5.5: Periodic Resonance at injection. Emittance growth and bunch survival is con-
sistent with work from Franchetti, et al. [41] [40]. Note the slight deviation in survival rates
between the two methods, specifically the local minimum observed in the eIPM at @, = 8.73.
This disagreement seems to be due to a systemic error in the eIPM survival rate.
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experiments are likely needed to conclusively prove one or the other conjecture.
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APPENDIX

Transverse Moments

Normalization Moment, w

¥ = %w(t, Y, Pys 25 2) (4)
1 along with the other moments does not depend on z or p; (as those terms were
integrated away). Therefore,
b= vty ) [do [apey = [do [al G4 S v g (9
Which is zero by eq. 2.7, Thus the x projection of the distribution function 1, does not

vary in time.

Y =0 (.6)

Position Moment, X

3
dX 0X L 0X L 0X
— = EJF;(%T +p20_pi> (.7)

i
a(,;t( Mt/dm/ Do f = ¢/dmx/dpx (8)

The explicit time dependence can be substituted into the Vlasov equation. This makes the

derivative d/dt a sum of terms of the form u% [dzx [ dpy — [dzx | dpxu%.

X = —l[/dm:/dpsza—f —/da:x/dszxﬁ—l— dxx/dpzpyg—f
dU 0
/dxx/dpxFyﬁ dxa:/dplpz / /d xd afz (.9)
0X

_ 0X N 0X o N dU 0X
x@pgc Py gy oy y@ Dy pz 8,2 Cdz 8pz
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Each individual integral can be evaluated on their own for clarity.
1 g 1 0
Ty = —wfdx:vfdpxpma—i Ty = Efd:mfdpxe@T’;
T = —%fdxxfdpxpy% Ty = %fdxxfdmey%

Ts = —%fd:m:fdpxng—ﬁ T = %fdwxfdpmcclgggz

Ty = pg& Ty = -Fofx
)¢ _ 0X
Ty = py T, T = _Fy%
X X

Ty = pz%—z Tig = —%2@

This allows us to express the integral X as a finite sum of integrals.

0X

00
- dX 19
X = =sT,

6

We shall now evaluate terms 77 through 779 sequentially in the following sections.

T

/dm/dpxpx = w/dpxpx(xﬂm——oo —/dwf) =0+P

Ty =P

@z)/d”/dpx% Do ¢/d Fx/dpxapx

= E/dxxeﬂg;oo

Evaluating the limits
T =0
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(.10)

(.11)

(.15)



__% /dm / dpxpy% Py 0 / - / dpf (.16)

Dy 8X

_ _yva A7
v 0y (-17)
Ty
T. L / d / dp, F, of / drxF, / dpz f (.18)
4= — Tx D T 1% .
(0 v yapy ¢apy Y !

f Iy is a function of z this cannot be further simplified.
Ty = drxF, / dpz f .19
w apy / Y v (19)

If Fy is not an function of z then the x dynamics are not coupled in to the other transverse

direction making further simplification possible.

F,0X
T, = Y47~ .20
= o (-20)

T5
1 of Py O / /

_ A 21
15 " / drx / dpzpz G b 02 dxx | dpep.f ( )

p2 0X
= = .22
T5 e (-22)
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1
dU 9 f aUu 9 o fdadns

1
Th — =
6 ¢/d”/dp””dzapz U dz o

. _ 1dUoX
0= % dz ap,

09X pg O
T7 = px or b 0z x fdxdpy

We then apply the power rule.

Ty — IZ[ / dadpy f + / x—dxdpx]
= %[¢+/dpxxf|z:_oo —/dpx%]

— %[w_¢+/dpz(xf§ooo)]
T7 =0

F,0X / /
Ty = ——F— drx | d
8 b apx px

@D
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drvxfpe - oo

(.23)

(.24)

(.25)

(.26)

(.27)

(.28)



Tg thI‘Ollgh T12

0X
Ty = py— .30
There is no need to simplify any further as it cancels with 753.
0X
Tio=—F,— 31
Yy apy ( )
There is no need to simplify any further as it cancels with T}y.
0X
Ty = .32
11 =Pz 02 ( )
There is no need to simplify any further as it cancels with 75.
dU 0X
Tig = ——— .33
12 e (-33)
There is no need to simplify these terms any further. The total time derivative of the
spatial moment is therefore:
12
X=>T;=P- Fy / dax Fy / dpy f (.34)
i=1
And if F, is not a function of z,
12
X=>T;=P (.35)
1=1
Momentum Moment, P
3
dP 0P oP oP
—_— == i— + Di— .36

%I; Mt/dm/dpr = /d:vm/dpx 5 (.37)



The explicit time dependence can be substituted int the Vlasov equation. This makes the

derivatived/dt a sum of terms of the form ug—f [ dxx f dpx — [dax [ dpxu%

E

1 af
_E[ / dx / dpxp?c dx / dpxpxe / dx / dpxpxpy 3

dU 0
—/d$/dpxpxFya /dx/dpxpxpz /dm/dpxpxd 8; (.38)
Py z
OP OP

+ — Fp— —i— op - F + dU 0P
Pr gy or ¥ O 8px Pyay dy yapy pz 82 dz 8pz

Once again we will evaluate each individual integral.

Tig=— [do [dpapi3h  Tua=f [ de [ dpepe gl

Ty5 = —1 fd:cfdpxpxpy% Tie = lfdmfdpxpry%

Ty7 = —+ fdxfdpxpxpzyf Tis =3 5[ de [ dpapa %
Tig = pu 9 Ty = —Fx%
Tor = py% = _Fy%
Tos sz% Ty = _Ccll_[z]%

OP
=5 = 18T (.39)
. dP 24
113
0 1
T3 = ——/dfc/dpxp2 / =~ dpapa I3 oo =0 (.41)
Ti3 =0 (.42)
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1 af 1 of
Ty = — dx/d F—:—/dxF/d - 43
=y [ o fanerigs = [ ast [ apg )

- % / A Fy(pa fI50— o0 / dpaf) = —% / daFy / dpq f

Evaluating this integral becomes exceedingly messy for incoherent space charge and other
nonlinear fields. It is possible to Taylor expand the higher orders, but this leads to the
additional difficulty where higher order terms must also be solved in order to get a exactly
solvable solution. We define the Taylor expansion of the transverse force around the origin

1 d"F
nl dxnxxnyo'

as gp =
Ti4 = —g0 — 1 X — —/ — g0 — glﬂf)dl’/fdp:c (:44)

If higher order terms are sufficiently weak, the higher order terms can reasonably be

neglected.
T1s
1
115 =~ [do [ dpudpapy 5 = -2 [ ax [ dpopas (45
8P
Tis = —py—— o (-46)
Tis
Tig = — /dxx/dp Fy— /dme /dp f A7
If Fy is a function of x this cannot be further simplified without going to a higher order.
Zﬂ—Li/mp/d f (48)
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If Fy is not an function of z then the x dynamics are not coupled in to the other transverse

direction making further simplification possible.

0X
Tig = Fya
Py

Ti7
1
Ty7 = _J/dx/dpxpxpza = /d$/dpxpa:pzf
Ty = —
17 pz (92
T
1 dU of 1dU 0
T8 = w/dﬁ/dpxpmgapz Eaa— P fdrdpy
_avor
1870 op.
T

Tlg—px /d x/dpx
Ox Opx

d:cxfpx__oo

1/1

T19=0
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oP 0
T = ~Fuy - = ~Foy - [ pofdndp, (:56)
We then apply the power rule.
Fy af
Ty = ——| [ dxd —I—/d d
20 = ¥ [/ xdpy f x pxpxapm]
_ I o / 9f
— 2wt [ et~ [ dng) (57)
F.
— =0+ [ dpelpefas o)
Ty =0 (.58)
T5; through 15y
oP
To1 = py— .59
21 = Dy ay ( )
0P
Ty = —F)— .60
22 yapy ( )
OP
To3 = pz% (-61)
dU oP
Toy = _Eﬁ_pz (:62)

There is no need to simplify any further as they are already in a usable form and mostly

cancel. Summing the terms together we obtain the complete solution for P.

P = Z Ty =—g90— X — _/(Fx - 90 —glw)d»”ﬂ/fdpx (.63)

oprP
o [ sty [ dvener ~ 1,50
Py

And if F, is not a function of z, and the system is linear it is possible to simplify further.
For external electromagnetic fields, the presence of nonlinearity implies coupling (where F},

is a function of =) due to Maxwell’s equations.
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24
P=3% T;=—g9-gX (.64)
1=13
Thus for linear forces without coupling, it is possible to express the collective motion of the
beam bunch as a set of coupled partial differential equations. This is not true for

nonlinearities and coupling, but that is beyond the scope of this section. A discussion of

the implications of longitudinal nonlinearity and coupling can be found in section (3.6

135



	Chapter 1Collective Effects and Instabilities
	Frame of Reference and Coordinates
	Accelerator 'Tune' and 'Time Like' Coordinates 
	The Beam Frame of Reference
	Small Phase Advance Optics
	Longitudinal Optics and Chromaticity

	Sideband Modes
	Betatron Distribution Sidebands 
	Synchro-Betatron Sideband Generation
	Head-Tail Phase

	Free Space Charge
	The Electric Field of a Relativistic Particle
	Fields From Moments 
	Coherent Tune Shift
	Incoherent Tune Spread
	Coherent Mode Splitting

	Wakefields 
	Localized Diffuse Wakes
	Dipole Wakes
	Wake Impedance
	Causality Condition For Wakes

	Transverse Collective Instabilities
	Head-Tail Instability
	Transverse Mode Coupling Instability
	TMCI Models
	Space Charge and TMCI
	Circulant Matrix Models and BimBim
	Convective Instabilities without TMCI


	Chapter 2Multiple Loop Square Well 
	The Vlasov Equation and Transverse Moments
	Derivatives of Moments

	Collective Equations of Motion
	Transverse Force Fx
	Upper Betatron Sideband Approximation
	Betatron Tune Shift Delta Qx
	Wake Forces

	Longitudinal Dynamics
	Approximating Longitudinal Potentials
	Continuity of Current in Airbag Loops
	Determining Qs for Current Loops
	Sculpting Phase Space
	Generalized Equations of Motion
	Continuity and Boundary Conditions
	Determining Qs
	Physical Interpretation of MLSW
	Solving the MLSW with Codes


	Chapter 3MLSW Results
	Comparing TMCI Thresholds from SWM with MLSW
	SWM Beam Instabilities
	SWM and TMCI Threshold Under Constant Wake
	SWM and MLSW Mode Responses for Varying Wake Frequency
	TMCI with Space Charge
	Head-Tail Instability with Linear Chromaticity

	MLSW Phenomena
	Bunch Shaping and RF
	Hollow Beams and Beams with weak Collective Effects
	The Gaussian Distribution
	TMCI Threshold Convergence
	Bifurcating Instability Modes 
	Mode Crossing Degeneracy
	Space Charge Self Effect

	Convective Instabilities
	Airbag Square Well
	Spatial Modes
	ABS Convective Instability
	MLSW Convective Modes

	Chromatic Effects in the MLSW model
	Chromatically Dominated Beams
	Nonlinear Chromaticity

	Oscillatory Dipole Wakes
	Tune Shifts of Oscillating Wakes
	Nonlinearity of Dipole Wake Kicks

	Nonlinear Longitudinal Motion
	Prospects
	Coupled Bunch Modes
	Nonlinear Transverse Optics


	Chapter 4Experimental Verification of MLSW
	Recycler Waker Experiment
	Recycler Ring Parameters
	Waker Feedback System
	Beam Position and Intensity

	Observing Instabilities
	Coherent Modes
	Head-Tail Amplification
	Tracing TMCI Thresholds

	Experimental Results
	Non-Stationary Longitudinal Distributions
	Instability Observations at the Waker


	Chapter 5Periodic Resonance at the Alternating Gradient Synchrotron
	Space Charge Driven Resonance Crossings
	Periodic Resonance Crossing
	Adiabaticity Parameter T

	Ionization Profile Monitors
	Electron Collecting IPMs
	Calibrating AGS eIPMs
	'Dead' Bin Signals
	eIPMs as Intensity Monitors 
	eIPMs at the Relativistic Heavy Ion Collider

	Periodic Resonance at AGS Run 22
	Resonance Driving Term Adjustments
	Experimental Observations


	Bibliography
	Appendix

