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ABSTRACT 

Labeling video sequences is a critical task that is required for a wide range of supervised 

learning applications. In general, manually labeling videos is an extremely repetitive and time-

consuming task. Often, the process is sped up by sharing the workload across multiple workers, 

but this can create other problems, such as varying quality and consistency of labels. Meanwhile, 

the area of active learning has been proposed for assisting in the labeling of images for 

classification and object detection tasks. However, minimal prior work is centered around the 

utility of active learning for video labeling. In this thesis, we attempt to address the gap in prior 

efforts by proposing a Semi-Automated Labeling of Video (SALV) framework using active 

learning to support supervised object detection applications. Firstly, we propose a general 

architecture for the SALV framework that is built on intra-video training and testing. The 

proposed SALV architecture exploits the fact that labeling video provides a unique opportunity 

where training and testing can be performed on consecutive frames that contain highly correlated 

information. Secondly, we incorporate traditional active learning methods that utilize the 

confidence values produced by detections to select important frames for the next iteration. 

Thirdly, we propose two strategies for active learning of video labeling: minimal-Distance 

Iterative Active Learning (min-DIAL) and maximal-Distance Iterative Active Learning (max-

DIAL). Lastly, we explore information theory to select frames with the most diversity using the 

Jensen-Shannon divergence to calculate the difference between certain frames based on the 

location of detections. We analyze the performance of the proposed SALV architecture in terms 

of the time taken to complete the labeling of the video sequences and present our results using 

the popular KITTI Tracking dataset. We show that our proposed max-DIAL framework is the 

most efficient method and can reduce the time taken to label video by a factor of 10.  
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INTRODUCTION 

The vast amount of data available has allowed the area of deep learning to advance 

dramatically over the past decade. In particular, an increase in accessible labeled data has 

enabled a wide range of supervised deep learning models to become state-of-the-art for many 

applications and emerging services. In general, increasing the amount of data used during 

training improves the performance of the model, considering that the data is relevant and diverse. 

However, in a supervised learning environment, ground truth labels are required to train the 

models. Despite recent advancements in developing a variety of software annotation and labeling 

tools, ground truth labels are generally produced manually by humans. For tasks like object 

detection, where each object requires its own bounding box, this process is extremely time-

consuming.  

ImageNet [1] was created at a time when most researchers were heavily focused on 

designing new machine learning models when the more pressing issue was the lack of large-scale 

datasets to train current models. However, after early calculations highlighted an unrealistic 

timeline to create the enormous dataset, crowdsourcing was explored instead. Amazon 

Mechanical Turk (AMT) [2], the crowdsourcing marketplace used for creating ImageNet, is a 

platform that allows businesses the opportunity to utilize endless remote workers for a wide 

range of demanding tasks. In over 2 years, using more than 25,000 AMT workers [3], ImageNet 

was created. However, while the time to create the dataset was reduced, the cost of creating the 

dataset was increased. ImageNet was only possible with support from several sponsors; 

therefore, some researchers and smaller businesses may not have sufficient funding to explore 

crowdsourcing options.  
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Other factors that need to be accounted for when planning to manually label data are the 

size and experience of the group of annotators. The larger the group, the larger the variation in 

the quality of the ground truth labels. The smaller the group, the larger the workload for each 

individual. This is likely to result in error-prone work due to tedious, repetitive actions. A lack of 

understanding in advanced areas, which is likely to be extremely common on crowdsourcing 

websites, can further decrease the quality and consistency of the labels.  

In this thesis, we propose a Semi-Automated Labeling of Video (SALV) framework that 

minimizes the amount of human interaction required during the labeling process. Combining a 

small subset of manually labeled images with current deep learning applications, the amount of 

human input can be greatly reduced, while simultaneously improving the accuracy and 

consistency of the labels. Leveraging the fact that consecutive frames in a video sequence share 

many similarities, we manually label a small subset of the data that are used to train an object 

detector. The trained object detector is used to predict objects in the remaining frames of the 

video. As many of the objects used to train the model will also appear in the unlabeled frames, 

perhaps closer or at a slightly different angle, the detections are extremely accurate. After testing 

the object detector on the remaining unlabeled frames, human verification is required to fix any 

false positives (FPs) or false negatives (FNs). The highly accurate detections greatly reduce the 

time required for human verifiers to add or remove any bounding boxes. The main contributions 

of this work include:  

• A Semi-Automated Labeling of Video (SALV) architecture that exploits an intra-video 

training and testing strategy. The proposed SALV framework is built on the notion that 

video labeling provides a unique opportunity where training and testing can be 

accomplished over the same dataset with highly correlated information.  
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• Minimal-Distance Iterative Active Learning (min-DIAL) and maximal-Distance Iterative 

Active Learning (max-DIAL) strategies for the SALV framework. They are simple but 

effective approaches for iteratively selecting new, unlabeled video frames based on their 

respective locations in the video sequence. 

• A Jensen-Shannon Diverge (JSD) metric used to calculate the distance between frames 

based on their distributions. Each frame is divided into 8 sections and the distribution is 

based on the number of detections that are present in each section. 

• We analyze the performance of the proposed SALV architecture based on the time taken 

to label video sequences using traditional active learning methods, our proposed min-

DIAL and max-DIAL approaches, and the JSD metric. Our analysis is presented using 

the popular KITTI Tracking dataset [17]. 
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CHAPTER 1: CURRENT LITERATURE 

It is well understood that supervised deep learning models require an enormous amount 

of labeled data for training. However, many researchers are still focusing their attention on 

building more accurate models using current datasets, rather than producing more efficient ways 

to label new data. Nevertheless, different directions have been explored to combat the bottleneck 

caused by high annotation costs.  

1.1 Linear Interpolation  

Utilizing the spatial-temporal characteristics of a video, [4] estimates object locations 

between manually labeled keyframes using linear interpolation and homography-preserving 

techniques. Although this technique could be beneficial for basic videos, for applications like 

autonomous driving, where vehicles are accelerating and decelerating at random and 

unpredictable rates, the majority of the predicted bounding boxes are likely to be incorrect.  

1.2 Weakly Supervised  

More recent work has focused on weakly supervised labeling techniques. Instead of 

drawing a bounding box around an object, researchers have attempted to create ways to label 

objects in a much less time-consuming manner. [5] proposes a center-click technique, requiring 

the human annotator to click where they imagine the center of the bounding box around the 

object would lie, reducing labeling time by more than 9x. [6] uses class labels to indicate what 

object categories belong to the image, without any type of localization of the objects present, due 

to the vast number of image-level annotations available on the internet. However, while these 

techniques greatly reduce the annotation time, the accuracy of the model is also significantly 

reduced. [7] only requires human annotators to verify bounding boxes produced automatically 

during an iterative learning process, reducing annotation time by more than a factor of 6x while 



 

  

5 

performing better than weak supervision. Despite these improvements, fully supervised learning 

remains the most accurate method for training object detectors.  

1.3 Efficient Labeling  

The traditional way of drawing bounding boxes, where annotators click and drag a box to 

enclose an object, is often cognitively demanding and inefficient. Therefore, [8] proposes a more 

natural way for human annotators to label objects. Instead of drawing a box around the object of 

interest, annotators are asked to click the 4 extreme points of the object: the top, bottom, left, and 

rightmost points. This simple but effective difference allows annotators to label boxes 5x faster 

than regular bounding box annotations while maintaining the same quality.  

1.4 Object Detection and Tracking  

Although objects may vary in different environments, many features can be learned and 

transferred to different situations. [9,10] both use a pre-trained object detector and tracker to 

label all frames in a video. Afterward, the predictions are passed to a human for verification and 

correction. Although both papers reduce the time required to label their respective datasets, this 

technique is only possible if similar datasets are available for pretraining.  

The most similar work to ours is [11] which uses a manually labeled subset to train a 

model before testing on all remaining frames. However, the dataset used in this paper is a 

relatively simple indoor dataset with the majority of the objects being fire extinguishers and 

chairs that were recorded on a hand-held device. Unlike our work, they use a single iteration 

which restricts the learning of the model as it sees new data.  

1.5 Active Learning  

Active learning (AL) has become a widely used technique for selecting specific samples 

from a dataset. As different objects provide different amounts of information to the model, 
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selecting images that contain the most information has proven to be a more efficient method for 

data labeling. Although the majority of active learning research is based on image classification, 

recent work has extended this method to the more challenging task of object detection 

[12,13,14]. The general idea of active learning is to randomly choose a subset of unlabeled data. 

A human annotator manually labels these samples and uses them to train an object detector, 

which is then tested on the remaining unlabeled samples. The detections produced are used to 

formulate an uncertainty measure for each image that can be used to extract the images that the 

model struggles with the most. These often correspond to the objects that provide the most 

information to the model, considering they are the most challenging. As many of the images are 

likely to contain multiple object instances, there are many ways to derive an uncertainty value for 

a specific image. [12] experiments with the confidence values produced by the bounding box 

detections, a natural extension to the techniques used in image classification. Summing, 

averaging, and taking the minimum confidence value are just a few different ways that 

confidence scores can be used to measure the uncertainty of an image. However, as the images 

contain more objects from a range of different classes, these techniques become less effective. 

[13] and [14] propose more advanced approaches that use adversarial instance classifiers and 

mixture density networks, respectively, to learn the uncertainty of different images. [15] further 

extends active learning for object detection into video, using temporal coherence to detect where 

FPs and FNs may have occurred.  
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CHAPTER 2: SPATIAL-TEMPORAL COHERENCE 

2.1 Intra Training and Testing 

Modern cameras are capable of capturing an extremely large number of frames every 

second, providing a smooth visual experience. However, this produces a high level of similarity 

and redundancy when manually labeling object instances in consecutive frames. Even when a 

vehicle is driving at a relatively high speed, the surrounding scene barely changes on a frame-by-

frame basis.  

In traditional object detection models, the images used during training are required to be 

different from the images used for testing. This allows the performance of models to be 

compared fairly when tested on images it has never seen before. However, for applications such 

as automated labeling, we can approach the problem from a different angle. If, for example, we 

looked at the 1st and 5th frames of a video sequence, it is highly likely that the majority of the 

objects in the 1st frame are also present in the 5th frame. Of course, these objects could move 

closer, further away, or become partially occluded, but the same objects are often present for 

several consecutive frames. Therefore, as an example, if we trained an object detector using the 

1st and 5th frames of a video sequence, we would expect it to perform well when tested on the 

2nd, 3rd, and 4th frames. A visual example of this methodology can be seen in Figure 1. 

Using this logic, we create initial subsets using a range of different subsampling rates. 

These initial subsets are used to train an object detector which is then tested on the remaining 

frames. We decided to use YOLOv5 [16] for this task because of its speed, accuracy, and 

usability. It is important to note that 100% of the dataset is used each time. If a sampling rate of 

10 is used for training, then 1 in every 10 frames (including the first frame) is uniformly added to 

the training set, with the other 9 being added to the test set. This means that for different 
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sampling rates, the train and test sets will be different sizes. Although this is normally bad 

practice when comparing models, for this application we are more concerned about minimizing 

the size of the train set while maintaining a high enough accuracy on the test set. For fairer 

testing, the higher the sampling frequency, the more epochs were allowed during training to 

offset the smaller number of training samples.  

 

2.2 Dataset 

Although the primary target of our proposed framework is an unlabeled dataset, to show 

the effectiveness of our method, we must exploit a publicly available dataset that provides 

ground truth annotations. Although there are many suitable datasets accepted by the broader 

research community, this thesis focuses on the KITTI Tracking [17] dataset due to its small size 

and ease of use. It is important to highlight that we used this dataset because it is a collection of 

video sequences and not a set of isolated images. Moreover, although the KITTI dataset is a well-

Figure 1. Initially, all frames are unlabeled (white). We manually label every 5th frame 

(red) which are used to train our model. The model is then tested, verified, and corrected 

on all remaining frames (blue). 
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established benchmark, some bounding boxes need to be added or removed to provide accurate 

results for our application. These consist of:  

• Objects from preceding frames that are still labeled although no longer visible. 

• Objects that have become fully occluded but are still labeled although no longer visible.  

• Some objects of interest that are not labeled. 

As many of the ’Van’, ’Car’, and ’Truck’ classes are very similar, and labeled 

inconsistently, we combined them into a single ’Vehicle’ class. The ’Pedestrian’ class is the only 

other class that has a reasonable number of instances for consideration. However, many of the 

labels contain only part of a pedestrian or multiple pedestrians within the same bounding box. 

The ’Tram’, ’Person Sitting’, ’Misc’, and ’Cyclist’ classes were also removed due to insufficient 

object instances; therefore, the ’Vehicle’ class is the only class considered in this thesis.  

2.3 Evaluation Metric 

Considering that our goal is to minimize the amount of human interaction required to 

label the dataset, we need to calculate an accurate estimation for the time taken to complete each 

experiment. The initial labeling consists of drawing bounding boxes from scratch around all the 

object instances in the uniformly subsampled frames. After training our model and then testing 

on a specific subset, a human is required to verify each frame to remove any FPs and add any 

FNs. After testing our model on the frames of interest, we are provided with values for the 

precision and recall for that subset. This allows us to calculate the number of false positives and 

false negatives using Equation 1 and Equation 2, respectively. Our experiments use 6255 frames 

containing 29,080 vehicle instances, which the train and test split will always sum to. We used 

an intersection-over-union (IOU) threshold of 0.6 to calculate the precision and recall values 

because many of the KITTI labels are inconsistent and insufficiently tight around many of the 
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object instances, as seen in Figure 2. This leads to many extremely accurate detections, and even 

tighter around the object than the ground truth label, being counted as false positives at higher 

IOU thresholds. 

  

 False Positives = Instances ∗ (1 − Precision)   (1)  

 False Negatives = Instances ∗ (1 − Recall)   (2) 

We use the information provided in [18] as a good estimate for the time taken to 

complete the different tasks. Although they provide both median and mean values for each task, 

we opted to use the median values. This is because they show that there are a minority of 

workers that take an unreasonable amount of time, which may be caused by taking breaks or not 

performing the tasks properly. The median time for drawing a single bounding box is 34.5s, 

which includes a 9s quality verification check. They also provide a ’Coverage Verification’ time 

of 7.8s for measuring how long it took annotators to scan an image for all instances. This time 

will be used for the task of scanning each frame to find any FPs and FNs produced by our 

detector. We use a modest value of 8s to remove FPs, based on the fact it is a much simpler task 

than verifying the quality of the box. Therefore, the total time consists of manually labeling the 

Figure 2. The bounding boxes for many object instances in the KITTI dataset should be 

tighter, which would allow more accurate IOU calculations. 
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initial bounding boxes to train our model, scanning the frames that our model was tested on, 

removing any false positives, and finally drawing any false negatives that were missed, shown in 

Equation 3. Note that we have not included the time taken to train the model as we are more 

interested in minimizing the amount of human interaction. 

      Total Time = Initial Label + Scan + Add FN + Remove FP (3) 

 2.4 Labeling Times 

We calculate the time taken to label the full dataset by training our model using different 

subsampling frequencies. The model is then tested on all remaining frames before verifying and 

correcting detections. We sum the time it would take to draw initial boxes, scan test frames, and 

add/remove any boxes, as shown in Table 1. When manually labeling the whole dataset 

(frequency of 1), we are not verifying or removing any boxes. For any of the splits afterward, the 

more frames that we manually label for training, the less we have to verify and correct, and vice 

versa. While varying the subsampling rate alters the number of frames that need to be manually 

labeled and verified, it also affects the accuracy of the model. Generally, the more frames used 

for training, the more accurate the model will be. However, as manual labeling is extremely 

expensive and time-consuming, we are looking for an optimal subsampling rate that uses the 

fewest number of frames to provide a reasonably high accuracy. The total times from Table 1 

can be visualized easier in Figure 3, where the optimal subsampling frequency is 20. Using a 

subsampling rate of 20 takes an estimated time of 44.99 hours, which is around 16% of the 

estimated time taken to manually label the whole dataset. 
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Frequency Initial Scan Add Remove Total (hours) 

1 278.68 0 0 0 278.68 

2 139.41 6.78 1.95 0.65 148.79 

5 55.72 10.84 5.58 1.19 73.33 

10 28.09 12.2 8.52 2.56 51.37 

20 14.26 12.87 14.55 3.31 44.99 

30 9.11 13.1 18.59 4.37 45.17 

40 7.08 13.21 22 4.41 46.7 

50 5.76 13.28 22.38 5 46.42 

60 4.61 13.33 30.7 5.02 53.66 

70 4.07 13.36 25.82 5.67 48.92 

80 3.51 13.38 31.1 5.17 53.16 

90 2.88 13.4 36.13 5.82 58.23 

100 2.94 13.42 31.16 5.63 53.15 

160 1.61 13.47 39.62 6.04 60.74 

320 0.72 13.51 40.31 7.41 61.95 

640 0.31 13.53 54.84 6.39 75.07 

1280 0.03 13.54 98.09 6.2 117.86 

Table 1. Time taken to label the full dataset. Different subsampling rates vary the number of 

frames that need to be manually labeled for training the model. 
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CHAPTER 3: ACTIVE LEARNING 

Although recent work using active learning has produced more complex algorithms for 

selecting uncertain images, due to the highly accurate detections produced by the initial stage of 

our model, we explore low-complexity active learning strategies to further improve our 

framework. After manually labeling the subsampled frames (anchor frames), we train our model 

and then test on all remaining frames. However, unlike our previous method, we use the 

confidence values from the outputs to select the more difficult frames. We know that the 

detections from our model are extremely accurate, allowing us to locate the frames that the 

model struggles with the most. These frames likely provide our model with the most information 

and allow us to perform an iterative process that updates our model as it sees more data. After 

selecting the data to use for the next iteration, we verify, correct, and add those samples to our 

training set. We train our model with our updated train set before testing on all remaining frames, 

with an example for uniformly sampling every 10 frames shown in Figure 4. This iterative active 

learning process can be repeated multiple times, but it is important to note that each iteration 

requires retraining of the model. 

 

 

 

Figure 4. The anchor frames (red) are manually labeled and used to train our model. All 

frames between the anchor frames are tested and the most informative frames (yellow) are 

selected. The selected frames are verified, corrected, and added to the train set. The model 

is retrained then all remaining frames (blue) are tested, verified, and corrected. 
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A high-level architecture for our proposed Semi-Automated Labeling of Video (SALV) 

framework can be seen in Figure 5, where the goal is to minimize the amount of human 

interaction required to label visual data. Starting with a completely unlabeled dataset, an initial 

subset is selected to be manually annotated. These annotations provide the building blocks for 

our model to label selected frames from our iterative active learning process.  

3.1 Selecting Uncertain Frames 

There are many techniques used to select the most uncertain frames from a dataset. 

However, we use a simple, more traditional method that utilizes the confidence values of the 

detections provided by our model. Along with bounding box predictions, object detectors 

provide confidence scores that express how confident the model is that the bounding box 

encloses the correct object. In general, high confidence values are given to detections that are 

relatively simple objects that the model has no trouble identifying. Whereas lower confidence 

values are often given to objects that are smaller, further away, or partially occluded. These more 

challenging objects are what we are interested in as they provide the model with more 

information than objects it already detects with ease.  

With the majority of frames containing multiple object instances, there are many ways to 

calculate an overall confidence score for each frame. Averaging the individual confidence scores 

within a frame allows there to be no bias regarding the number of detected objects in that 

particular frame. Calculating the median value for each frame allows outliers to be overlooked 

and is more likely to select frames with multiple low-confidence detections. Using the lowest 

confidence value from each frame to represent the overall confidence value allows us to select 

frames with a challenging object in it but doesn’t consider any of the other objects that are 
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present in that frame. Examples of detections and their confidence values can be seen in Figure 6 

and Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Architecture of our SALV framework. After initially training our model, uncertain 

data is selected based on several different metrics. 
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3.2 Comparing Uncertainty Selections 

To understand the distribution of which frames have the lowest uncertainty at each 

iteration, it is important to generate histograms that help visualize any patterns during the 

selection process. A measurement is given to selected frames based on their distance from the 

anchor frame to its left. An example of the distance calculation can be seen in Figure 8, where 

the yellow frames would be selected based on their uncertainty value. After selecting the most 

uncertain frames and calculating their respective distances, we can sum up the number of 

occurrences for each distance. The examples shown in Figure 9 are for a model that was trained 

Figure 6. Frame containing 3 detections with 0.99 confidence. The average, median, and 

lowest values are all 0.99, so it’s unlikely this particular frame will be selected in any of 

our active learning algorithms. 

Figure 7. Frame containing 5 detections with varying confidence values. The average is 

0.742, the median is 0.97, and the lowest value is 0.34. This frame is likely to be selected 

when using the average or single lowest value as an uncertainty measure but unlike. 
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on every 20th frame, meaning 19 possible frames can be selected between each anchor frame. 

Apart from the average, median, and single lowest confidence values, we also randomly selected 

frames between each anchor frame for comparison. It is interesting to note that for all of the 

average, median, and single lowest confidence values, more frames are being selected from 

around the middle. This is expected because the anchor frames are used to train the model, so the 

majority of the frames close to the anchor frames are the most similar and contain many of the 

same object instances. 

 

 

Figure 8. Each selected frame’s (yellow) distance is measured from the anchor frame 

(red) to its left. The anchor frames are used to train the model, and the selected frames 

are chosen based on their average, median, or single lowest confidence values. 

Figure 9. Top Left: Uniformly randomly selected frames show the flattest distribution, as 

expected. Top Right: Lowest single confidence value, Bottom Left: Average confidence 

value, Bottom Right: Median confidence value. 
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3.3 Comparing Times 

When comparing times, it is important to note that the higher the initial subsampling rate, 

the more active learning iterations can be performed. When initially training the model with a 

subsampling rate of 10, we only perform one active learning iteration. This is based on the fact 

that the detections at this point are extremely accurate and performing another iteration barely 

improves the model. However, when we initialize with a subsampling rate of 80, we perform 4 

iterations. The 4th and final iteration when using a subsampling rate of 80 produces the same 

number of labeled images as the 1st and final iteration when using a subsampling rate of 10, for a 

fair comparison. Regardless of the number of iterations performed for each subsampling rate, we 

analyze the time taken to label the full dataset at each iteration. Each uncertainty measure is 

compared with the randomly selected frames for comparison. A positive time difference shows 

that the chosen uncertainty measure performed worse than if we were to randomly select frames 

instead. 

The 1st and only iteration for a subsampling rate of 10 can be seen in Table 2, with the 

same setup outlined in Figure 4. Out of the 3 uncertainty measures applied, selecting the frame 

with the lowest average confidence value worked the best. However, all 3 of these measures 

performed worse than randomly selecting frames, although the difference is relatively small. 

When training the initial model with a subsampling rate of 20, 1 iteration and 2 iterations of 

active learning were explored. The higher subsampling rate means we are training the initial 

model with fewer frames, allowing us to increase the number of iterations. When performing 

only 1 iteration, the setup is similar to that detailed in Figure 4 and the results can be found in 

Table 3. However, when performing 2 iterations, the setup would be exactly the one shown in 

Figure 10, with the results expressed in Table 4. 
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Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 28.09 12.2 6.99 1.72 49 0 

Average 28.09 12.2 7.45 1.63 49.37 0.37 

Median 28.09 12.2 7.48 1.77 49.54 0.54 

Lowest 28.09 12.2 7.56 1.71 49.56 0.56 

Table 2. Comparing different uncertainty selections with randomly selected frames for the 1st 

and only active learning iteration for an initial subsampling rate of 10. 

 

 

  

 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 14.26 12.87 10.72 2.98 40.83 0 

Average 14.26 12.87 11.09 2.53 40.75 -0.08 

Median 14.26 12.87 10.96 2.64 40.73 -0.1 

Lowest 14.26 12.87 11.43 2.59 41.15 0.32 

Table 3. Comparing different uncertainty selections with randomly selected frames for the 1st of 

2 active learning iterations for an initial subsampling rate of 20. 

 

Figure 10. Performing 2 active learning iterations. The arrows beneath the frames signify 

the groups that the lowest confidence values are considered from. After both iterations, 

the selected frames are verified, corrected, and then added to the training set for the next 

iteration. Lastly, all remaining frames (blue) are tested, verified, and corrected. 
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 It is interesting to note that the 1st iteration for a subsampling rate of 20 produces smaller 

differences when compared to the random selection than the 2nd iteration. This theme continues 

when we perform 3 iterations with an initial subsampling rate of 40, as shown in Table 5, Table 

6, and Table 7. The 1st iteration for all uncertainty measures improves greatly over the random 

selection. However, as we perform more iterations, we can see the difference between the 

random selections becoming minimal. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 14.26 12.87 8.11 2.19 37.43 0 

Average 14.26 12.87 8.86 1.83 37.82 0.39 

Median 14.26 12.87 8.48 1.9 37.51 0.08 

Lowest 14.26 12.87 8.79 1.9 37.82 0.39 

Table 4. Comparing different uncertainty selections with randomly selected frames for the 2nd 

and final active learning iteration for an initial subsampling rate of 20. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 18.3 3.27 41.86 0 

Average 7.08 13.21 16.3 3.56 40.15 -1.71 

Median 7.08 13.21 15.99 3.41 39.69 -2.17 

Lowest 7.08 13.21 15.75 3.63 39.67 -2.19 

Table 5. Comparing different uncertainty selections with randomly selected frames for the 1st of 

3 active learning iterations for an initial subsampling rate of 40. 

  

 As the subsampling rate increases, selecting frames based on their confidence values 

significantly decreases the time taken to label the dataset. However, selecting frames based on 

their confidence values becomes redundant as more iterations are performed. There is little 

difference between selecting random frames because as we perform more iterations, the frames 
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become close enough together that there is little difference between them. So selecting specific 

frames doesn’t benefit the model too much as all frames are similar and provide the same 

information. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 12.4 3.12 35.81 0 

Average 7.08 13.21 11.87 2.83 34.99 -0.82 

Median 7.08 13.21 11.6 2.74 34.63 -1.18 

Lowest 7.08 13.21 12.28 2.63 35.2 -0.61 

Table 6. Comparing different uncertainty selections with randomly selected frames for the 2nd of 

3 active learning iterations for an initial subsampling rate of 40. 

 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 9.48 2.12 31.89 0 

Average 7.08 13.21 9.64 2.06 31.99 0.1 

Median 7.08 13.21 9.3 2.2 31.79 -0.1 

Lowest 7.08 13.21 9.88 2.12 32.29 0.4 

Table 7. Comparing different uncertainty selections with randomly selected frames for the 3rd 

and final active learning iteration for an initial subsampling rate of 40. 
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CHAPTER 4: MIN-DIAL AND MAX-DIAL 

Since we are exploiting intra-video training and testing, we developed Minimal-Distance 

Iterative Active Learning (min-DIAL) and Maximal-Distance Iterative Active Learning (max-

DIAL) approaches. These approaches do not use utilize any confidence values from detections 

but merely select frames based on their relative location to the anchor frames used to train our 

model. These methods are much simpler than calculating the average, median, or lowest 

confidence value for each frame. 

4.1 Min-DIAL 

Under min-DIAL, after manually labeling an initial subset using a specific subsampling 

rate, we train our model before testing on the frames closest to the anchor frames. For example, 

if we trained our model using the 20th and 40th frames, we would test our model on the frames 

either side of the 20th and the 40th frames. This method was chosen due to the frames on either 

side of the anchor frames being the most similar. Therefore, the outputs will be the most 

accurate, and fewer corrections are likely to be required. At each iteration, we are updating the 

model as we propagate inwards. The visualization of the min-DIAL method can be seen in 

Figure 11. 

4.2 Max-DIAL 

Under max-DIAL, after manually labeling an initial subset using a specific subsampling 

rate, we train our model before testing on the next subsampling rate down. For example, if we 

trained our model using every 80th frame (including the 0th frame), we would then test on every 

40th frame that wasn’t included in the training set. This method was chosen based on the fact 

that the unlabeled frames that sit centrally between two anchor frames are likely to be the most 

uncertain from that particular group. This is based on the fact that they are the furthest distance 
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away from any frames used to train the model. After manually verifying and correcting any 

incorrect detections, we are left with the ground truth labels for every 40th frame. The selection 

of frames using the max-DIAL approach can be visualized in Figure 12.  

 

 

 

To see which method works best, we compare the time taken to label the full dataset 

using different subsampling frequencies. Table 8 shows the different times using min-DIAL and 

max-DIAL and Figure 13 provides a graphical view of the time taken at each subsampling 

frequency. From Table 8 and Figure 13, we can see that max-DIAL performs the best out of the 

Figure 11. Overview of the min-DIAL method. The trained model is tested on the frames 

closest to either side of the anchor frames. After each iteration, the frames tested are 

verified, corrected, and added to the training set for the next iteration. 

Figure 12. Overview of the max-DIAL method. The trained model is tested on the frames 

that sit centrally between the anchor frames. After each iteration, the frames that are 

tested are verified, corrected, and added to the training set for the next iteration. 
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two proposed methods. In fact, as the subsampling frequency increases, the distance between the 

times for each method increases. A potential reason for this could be as we increase the initial 

subsampling frequency, min-DIAL requires more neighboring frames to be tested on at each 

iteration to compensate for the larger number of unlabeled frames between anchor frames. 

Frequency Initial Scan Add Remove Total (hours) 

5 55.72 10.84 5.58 1.19 73.33 

10 + 1xMin-DIAL 28.09 12.19 7.03 1.84 49.15 

10 + 1xMax-DIAL 28.09 12.2 6.52 1.6 48.41 

20 + 2xMin-DIAL 14.26 12.87 9.03 1.85 38.01 

20 + 2xMax-DIAL 14.26 12.87 7.37 1.86 36.36 

40 + 3xMin-DIAL 7.08 13.21 11.5 2.3 34.09 

40 + 3xMax-DIAL 7.08 13.21 8.3 1.95 30.54 

80 + 4xMin-DIAL 3.51 13.38 15.73 2.8 35.42 

80 + 4xMax-DIAL 3.51 13.38 8.8 2.01 27.7 

Table 8. Time taken to completely label the dataset using different initial subsampling 

frequencies and different numbers of min-DIAL and max-DIAL iterations. 

 

Moving forward, we will only consider Max-DIAL due to its superiority. Table 9 outlines 

the full range of subsampling frequencies for our max-DIAL method. Note that we add training 

times because as we increase the subsampling frequency, which subsequently increases the 

number of possible active learning iterations, there becomes a point where minimal time is saved 

by increasing the initial subsampling frequency. By including the training times, we can show 

that the minimal time decrease becomes redundant with the extra time taken to train the model 

for another iteration. The effect of adding the training time can be better expressed in Figure 14.  
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Frequency Initial Scan Add Remove Total (hours) Train Complete (hours) 

5 55.72 10.84 5.58 1.19 73.33 3 76.33 

10 + 1xAL 28.09 12.2 6.52 1.6 48.41 6 54.41 

20 + 2xAL 14.26 12.87 7.37 1.86 36.36 9 45.36 

40 + 3xAL 7.08 13.21 8.3 1.95 30.54 12 42.54 

80 + 4xAL 3.51 13.38 8.8 2.01 27.7 15 42.7 

160 + 5xAL 1.61 13.47 9.09 2.06 26.23 18 44.23 

320 + 6xAL 0.72 13.51 9.22 2.07 25.52 21 46.52 

640 + 7xAL 0.31 13.53 9.31 2.07 25.22 24 49.22 

1280 + 8xAL 0.03 13.54 9.4 2.08 25.05 27 52.05 

Table 9. Different initial subsampling frequencies with our max-DIAL method. The total time 

refers to the amount of human time required to label the dataset. The complete time is the total 

human time but also accounts for the model's training time. 
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Figure 13. Visual representation of the total time taken to label the full dataset using 

min-DIAL and max-DIAL using different subsampling frequencies. 
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4.3 Comparing Max-DIAL with Traditional Active Learning 

The results for an initial subsampling rate of 10, with one iteration of active learning, can 

be seen in Table 10. The max-DIAL results are compared to the randomly selected frames and 

the most efficient uncertainty measure from the traditional active learning methods. Even when 

performing 1 iteration, our max-DIAL method decreases the time taken to label the dataset. 

When applying our max-DIAL method to a subsampled frequency of 20, we continue to see 

promising improvements over traditional active learning methods. Table 11 and Table 12 outline 

the times for performing 1 and 2 iterations, respectively, using our max-DIAL method. The 3 

iterations for an initial subsampling frequency of 40 can be seen in Tables 13, 14, and 15. At 

every iteration, across all subsampling frequencies, max-DIAL outperforms the random selection 

of frames. It also outperforms or performs equivalently to all other uncertainty measures. 

Following previous patterns, the initial iterations produce a larger gap in performance over the 
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Figure 14. Max-DIAL method using different initial subsampling frequencies. Total 

time considers training time also. Although increasing the initial subsampling rate 

decreases the time taken, after a subsampling rate of 80, the time begins to level out. 
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randomly selected sample. As we increase the number of iterations, the difference becomes 

smaller as we incorporate more and more frames.  

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 28.09 12.2 6.99 1.72 49 0 

Average 28.09 12.2 7.45 1.63 49.37 0.37 

Max-DIAL 28.09 12.2 6.52 1.7 48.51 -0.49 

Table 10. Comparing random selection and the most efficient traditional active learning 

technique previously computed (average) with our max-DIAL method for the 1st and only 

iteration for an initial subsampling rate of 10. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 14.26 12.87 10.72 2.98 40.83 0 

Median 14.26 12.87 10.96 2.64 40.73 -0.1 

Max-DIAL 14.26 12.87 10.13 2.64 39.9 -0.93 

Table 11. Comparing random selection and the most efficient traditional active learning 

technique previously computed (median) with our max-DIAL method for the 1st of 2 iterations 

for an initial subsampling rate of 20. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 14.26 12.87 8.11 2.19 37.43 0 

Median 14.26 12.87 8.48 1.9 37.51 0.08 

Max-DIAL 14.26 12.87 7.9 1.87 36.9 -0.53 

Table 12. Comparing random selection and the most efficient traditional active learning 

technique previously computed (median) with our max-DIAL method for the 2nd and final 

iteration for an initial subsampling rate of 20. 
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Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 18.3 3.27 41.86 0 

Single 7.08 13.21 15.75 3.63 39.67 -2.19 

Max-DIAL 7.08 13.21 16 3.59 39.88 -1.98 

Table 13. Comparing random selection and the most efficient traditional active learning 

technique previously computed (single) with our max-DIAL method for the 1st of 3 iterations for 

an initial subsampling rate of 40. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 12.4 3.12 35.81 0 

Median 7.08 13.21 11.6 2.74 34.63 -1.18 

Max-DIAL 7.08 13.21 11.16 2.68 34.13 -1.68 

Table 14. Comparing random selection and the most efficient traditional active learning 

technique previously computed (median) with our max-DIAL method for the 2nd of 3 iterations 

for an initial subsampling rate of 40. 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 9.48 2.12 31.89 0 

Median 7.08 13.21 9.3 2.2 31.79 -0.1 

Max-DIAL 7.08 13.21 8.93 1.96 31.18 -0.71 

Table 15. Comparing random selection and the most efficient traditional active learning 

technique previously computed (median) with our max-DIAL method for the 3rd and final 

iteration for an initial subsampling rate of 40. 
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CHAPTER 5: JENSEN-SHANNON DIVERGENCE 

 After training a model with uniformly sampled anchor frames, more advanced methods 

can be explored to select uncertain frames to be used in the next iteration. The Jensen-Shannon 

Divergence (JSD) calculates the distance between two distributions, P and Q, shown in Equation 

4. The JSD distance metric is based on the Kullback-Leibler divergence between 2 distributions, 

KL(P || Q), but is symmetric, meaning that the order of the distributions is irrelevant. The output 

is between 0 and 1, with 0 showing no difference between the two distributions. 

 JSD(P || Q) = 
1

2
KL(P || M) + 

1

2
KL(Q || M), where M = 

1

2
(𝑃 + 𝑄) (4) 

 If we create a distribution for each frame, we can select the frames of interest based on 

the difference between the anchor frames. The frames with a larger difference from the anchor 

frames have a higher probability of providing the model with more information. As these frames 

will contain different objects, or the same objects but located in different parts of the frame, 

adding these frames to the training set will likely improve the model the most.  

5.1 Creating Distributions 

 There are many ways to create a distribution for an image. Creating histograms based on 

the number of different colored pixel values is one option. However, many of the frames in our 

video sequences may contain completely different backgrounds but include the same objects. As 

we are more interested in the objects in the frame, this technique is not beneficial for our 

application. Our method for creating histograms is to divide each frame into smaller sections and 

count the number of detections in each subsection, shown in Figure 15. Based on the fact that the 

detections are highly accurate using the intra-video training and testing method, the majority of 

the detections are correct and can be considered as actual objects, with the distribution shown in 

Figure 16. If we divide each frame into 2 or 3 sections, there is not much difference in the 
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distributions because the locations of the detections have to change significantly. Conversely, if 

we divide the frame into a large number of sections, almost every frame that is compared, even if 

they are neighboring frames, receive a high difference value. This is because an object only has 

to move a small distance to enter another section, meaning the distribution will change almost 

every frame. For this reason, we used 8 different sections as they produce reasonably wide 

sections. We use ground truth labels to calculate the distributions for the anchor frames. 

 

 

5.2 Calculating Difference Value 

 When calculating a difference value for a frame, it is important to incorporate the anchor 

frames from either side. For example, if we wanted to select a frame from between the 10th and 

20th frames of a video sequence, we need to calculate each frame’s difference from both the 10th 

and the 20th frames. It is clear that the 11th frame will share the most similarities with the lower 

anchor frame (the 10th frame) and be most different from the upper anchor frame (the 20th 

frame). So, calculating the difference between a frame and only one of the anchor frames doesn’t 

provide much information. Therefore, we compute the average of the differences between each 

frame and the lower and upper anchor frames. By averaging the two differences, we are more 

Figure 15. A frame divided into 8 sections containing multiple detections. The center point of 

the bounding box for each detection is marked as a red cross. Each center location is placed in 

one of the 8 bins based on which section it falls in. 
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likely to select frames from around the middle, where the frames are different from both anchor 

frames. If an anchor frame has no ground truth labels or a frame from between the two anchor 

frames we are comparing with has no detections, the difference score from the two frames is 

given a value of zero. If all frames between two anchor frames have the same difference value, 

we select the middle frame. This is based on the success shown using our max-DIAL method.  

5.3 JSD Results and Comparison 

 The results for selecting the frames to use for the next iteration based on our JSD 

uncertainty measure compared with all previous active learning methods for a subsampled rate of 

10 can be seen in Table 16. Although our JSD approach takes slightly less time than the 

traditional methods, it doesn’t perform as well as our max-DIAL approach. 

 

 

 

Extending our JSD method to a subsampling rate of 20, we can see the results for 1 and 2 

iterations in Tables 17 and 18. Our JSD method now performs slightly worse than the traditional 

active learning method. However, our max-DIAL approach still performs the best out of all 

approaches. Lastly, we use our JSD uncertainty measure to select frames from the 3 iterations 

Figure 16. The distribution of the center points for each detection from Figure 15. 
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performed using a subsampling rate of 40. The results are shown in Figures 19, 20, and 21, 

respectively. The JSD method appears to perform similarly to traditional active learning 

methods. The difference is often minimal, showing that the JSD method isn’t a very effective 

method for selecting uncertain frames. Again, however, our max-DIAL method performs 

substantially better than all other active learning methods.  

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 28.09 12.2 6.99 1.72 49 0 

Average 28.09 12.2 7.45 1.63 49.37 0.37 

Median 28.09 12.2 7.48 1.77 49.54 0.54 

Single 28.09 12.2 7.56 1.71 49.56 0.56 

Max-DIAL 28.09 12.2 6.52 1.7 48.51 -0.49 

JSD 28.09 12.2 6.97 1.79 49.05 0.05 

Table 16. Comparison of JSD with all other active learning methods for the 1st and only 

iteration for an initial subsampling rate of 10. 

 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 14.26 12.87 10.72 2.98 40.83 0 

Average 14.26 12.87 11.09 2.53 40.75 -0.08 

Median 14.26 12.87 10.96 2.64 40.73 -0.1 

Single 14.26 12.87 11.43 2.59 41.15 0.32 

Max-DIAL 14.26 12.87 10.13 2.64 39.9 -0.93 

JSD 14.26 12.87 11.77 2.55 41.45 0.62 

 

Table 17. Comparison of JSD with all other active learning methods for the 1st of 2 iterations for 

an initial subsampling rate of 20. 
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Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 14.26 12.87 8.11 2.19 37.43 0 

Average 14.26 12.87 8.86 1.83 37.82 0.39 

Median 14.26 12.87 8.48 1.9 37.51 0.08 

Single 14.26 12.87 8.79 1.9 37.82 0.39 

Max-DIAL 14.26 12.87 7.9 1.87 36.9 -0.53 

JSD 14.26 12.87 8.85 1.94 37.92 0.49 

 

Table 18. Comparison of JSD with all other active learning methods for the 2nd and final 

iteration for an initial subsampling rate of 20. 

 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 18.3 3.27 41.86 0 

Average 7.08 13.21 16.3 3.56 40.15 -1.71 

Median 7.08 13.21 15.99 3.41 39.69 -2.17 

Single 7.08 13.21 15.75 3.63 39.67 -2.19 

Max-DIAL 7.08 13.21 16 3.59 39.88 -1.98 

JSD 7.08 13.21 16.25 3.67 40.21 -1.65 

 

Table 19. Comparison of JSD with all other active learning methods for the 1st of 3 iterations for 

an initial subsampling rate of 40. 
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Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 12.4 3.12 35.81 0 

Average 7.08 13.21 11.87 2.83 34.99 -0.82 

Median 7.08 13.21 11.6 2.74 34.63 -1.18 

Single 7.08 13.21 12.28 2.63 35.2 -0.61 

Max-DIAL 7.08 13.21 11.16 2.68 34.13 -1.68 

JSD 7.08 13.21 12.77 2.8 35.86 0.05 

 

Table 20. Comparison of JSD with all other active learning methods for the 2nd of 3 iterations for 

an initial subsampling rate of 40. 

 

Uncertainty Initial Scan Add Remove Total (hours) Difference 

Random 7.08 13.21 9.48 2.12 31.89 0 

Average 7.08 13.21 9.64 2.06 31.99 0.1 

Median 7.08 13.21 9.3 2.2 31.79 -0.1 

Single 7.08 13.21 9.88 2.12 32.29 0.4 

Max-DIAL 7.08 13.21 8.93 1.96 31.18 -0.71 

JSD 7.08 13.21 9.32 2.12 31.73 -0.16 

 

Table 21. Comparison of JSD with all other active learning methods for the 3rd and final 

iteration for an initial subsampling rate of 40. 
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CONCLUSION 

We have introduced a semi-automated video labeling framework that attempts to 

minimize human interaction time while applying active learning strategies to maximize the 

accuracy of our automated labeling process. We have shown that applying our proposed SALV 

framework, which exploits training, testing, and active learning on frames from the same video 

sequences, produces highly accurate results. This is due to the similarity of the environment 

between images captured within a small timeframe. Combining intra-video sequence training and 

testing with our max-DIAL approach for active learning, we further improved the accuracy of 

the detections and reduced the time taken to label the full dataset. Our max-DIAL approach 

outperformed all the traditional active learning methods explored, as well as our proposed JSD 

approach, allowing us to reduce the labeling time by more than 90%, compared to manual 

labeling. It is important to note that we did not include the training times of the model in our 

calculations. This is based on the fact that training does not require any assistance from a human. 

While the training is running, other tasks for semi-automated labeling can be completed. We are 

also more interested in reducing the workload on the human; therefore, we are only interested in 

how much time the human needs to spend on the overall labeling process.  

Future work could look at an ablation study that varies the confidence threshold of the 

detections. In this thesis we allowed all detections to be present. However, only allowing high-

confidence detections would improve the precision, meaning fewer detections need to be 

removed. Conversely, this may reduce the recall, meaning that more bounding boxes have to be 

added, which is more time-consuming than removing them. An optimum confidence threshold 

could potentially reduce the time even further.  
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