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ABSTRACT
Finding the geometric properties of a set is a very old problem. The present text consists of three
chapters where we study such properties with techniques involving Complex and Harmonic Analy-
sis, Probability, and Geometric Measure Theory. We specifically deal with a few considerations of
free boundary problems, we calculate the decay rate of the projections of a certain random Cantor
set, and we describe the shape of planar graphs which avoid having too many intersections with a
positive cone of lines.

To begin with, we introduce Schwarz functions; holomorphic functions on open domains €
satisfying S(£) = £ on T, part of Q’s boundary. Sakai in 1991 gave a complete characterization
of the boundary of a domain admitting a Schwarz function. In fact, if Q is simply connected
and I' = 0Q N D(Z,r), then I has to be regular real analytic. Here, we attempt to describe
I when the boundary condition is slightly relaxed. In particular, three different scenarios over
a simply connected domain Q are treated: when fi(¢) = £ f>(¢) on I with fi, f> holomorphic
and continuous up to the boundary, when U /V equals certain real analytic function on I" with
U,V positive and harmonic on Q and vanishing on T, and when S(¢) = ®(¢, ) on I with ® a
holomorphic function of two variables. It turns out that the boundary piece I" can be, respectively,
anything from real analytic to merely C', regular except finitely many points, or regular except for
a measure zero set.

For the second chapter, we consider a model of randomness for self-similar Cantor sets of finite
and positive 1-Hausdorff measure. We find the sharp rate of decay of the probability that a Buffon
needle lands d-close to a Cantor set of this particular randomness. Two quite different models of

randomness for Cantor sets, by Peres and Solomyak, and by Shiwen Zhang, appear to have the same

[

order of decay for the Buffon needle probability: g T°
5

Here, we prove the same rate of decay for
a third model of randomness, which asserts a vague feeling that any “reasonable” random Cantor

set of positive and finite length will have Favard length of order

< for its 6-neighbourhood. The
log &

estimate from below was obtained long ago by Mattila.

In the last chapter, we show the local Lipschitz property for a graph avoiding multiple-point



intersection with lines directed in a given cone. The assumption is much stronger than those of the
well-known Marstrand’s theorem, but the conclusion is much stronger too. Additionally, we find
that a continuous curve with a similar property is o-finite with respect to Hausdorff length, and we

give an estimate on the Hausdorff measure of each “piece”.
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CHAPTER 1
FREE BOUNDARY PROBLEMS VIA SAKAI’S THEOREM

1.1 Introduction

Let D({p,r) C C denote the open disk centred at {p € C and of radius » > 0. Let Q be an open
subset of D (o, r) where (o € I' = 9Q N D({p, r) is a non-isolated boundary point.

A Schwarz function of Q U I"is a function § : Q UT" — C holomorphic on € and continuous
on Q U I" that satisfies

S()=¢ onT. (1.1.1)

In his Acta Mathematica paper [13], Sakai proved that Schwarz functions completely charac-
terize the shape of I'. One of the technical tools used was the Phragmén—Lindelof principle in the

form below, but it is far from being the key to his proof; his paper is full of very subtle tricks.

Theorem 1.1.1. Let Q be an open set in C and let {y be a non-isolated boundary point of Q. Let f

be a holomorphic function on Q and D ({y, 6) a ball satisfying the following:
(i) limsup |f(z)| < 1 while Q> 7z — { for every { € 0Q2 N D (Lo, 0) \ {{o} and
(ii) |f(z)| < alz = &o|™ in Q N D(Lo, 6) for some positive constants a and .

Then,

limsup | (2)] < 1

while Q 3 7 — ().
In particular, Sakai proved the following, see [13, Theorem 5.2].

Theorem 1.1.2. Let Q C D (o, r) be a bounded open set in C and {y an non-isolated point of its

boundary, T' = 0Q N D({y, r). Suppose S is a Schwarz function on Q U T, that is,
(i) S is holomorphic on Q,

(ii) continuous on QU T, and



(iii) S(&) = onT.
Then, for some small 0 < 6 < r one of the following must occur (where we set D = D({y,0)):

(1) QN D is simply connected and I" N D is a regular real analytic simple arc through (y;

(2a) ' N D determines uniquely a regular real analytic arc through (y; I N D is either an infinite

proper subset of this arc with {y as an accumulation point or equal to it; also, QND = D\ T}

(2b) QN D = Q1 UQy where Q1 and Q, are (open) simply connected and 021 N D and 0Q, N D

are regular real analytic simple arcs through {y and tangent at {y;

(2c) QN D is simply connected and I" N D is a regular real analytic simple arc except for a cusp

at {o; the cusp points into Q.

Recall that a regular arc means a differentiable arc whose derivative never vanishes and simple

means that it is parametrized by an injective continuous function.

Remarks 1.1.3. Here is an example of a cusp of (2c) at {o = 0 with Schwarz function. There
exist analytic functions T on {|z| < n}, for some n > 0, that have a zero of order 2 at 0, are
univalent on closed upper half-disk K, = {|z| <n:Im(z) > O}, and satisfy ' N D c T(-n,n)
and T (K,) ¢ QUT. In fact, it is easy to construct such functions. Every such T leads to a Schwarz
function on the domain Q =T ({|z| < n, Imz > 0}), which has two analytic arcs forming a cusp I'
at 0. In order to have S() = £ onT, it suffices to have a function analytic in {|z| < n,Imz > 0} and
continuous up to (—n,1) such that A(x) = T(x), x € (-1, n). Having such an A we set S = Ao T~
on Q. On the other hand, using that T is analytic in the whole ball {|z| < n}, we can choose A as
Jollows: A(z) = m Moreover, Sakai [13] showed that every Schwarz function on a cusp domain
appears because of an analytic function T as above.

The converse of this theorem also holds, in the sense that if any of the conditions (1), (2a), (2b),

or (2c) is satisfied, then Q admits a Schwarz function.

In order to distinguish between the cases, Sakai also showed an auxiliary result [13, Proposition

5.1], which we will also use here.



Theorem 1.1.4. Set D’ = D(0,r). Let Q' C D’ be an open set and 0 an accumulation point of its

boundary, I" = 0Q' N D’. Then, for some r’ < r, either

(1) there exists a Schwarz function, S;, of (" UT’) N D(0,7") at 0 if and only if there exists a
Sfunction @ defined on (" UT”) N D(0,6) for some § > 0 such that
(i) @ is holomorphic and univalent in Q' N D(0, §),
(ii) @ is continuous on (' UT”") N D(0,9),

(i) ®1({) = |{1* on T" N D(0,6)
or

(2) there exists a Schwarz function, S;, of (" UT") N D(0,r") at 0 if and only if there exists a

function ®, defined on ( UT”) N D(0, ) for some 6 > 0 such that

(i’) @, is holomorphic and univalent in Q' N D(0, §),
(ii’) CD% is continuous on (" UT") N D(0, ),
(iii’) ®3(¢) = 1¢1> onT" N D(0, ),

(iv’) ®(Q N D(0,8)) U (—¢, €) contains a neighbourhood of 0 for € > 0.
In particular, the functions ®1, ®, are related to S; by ®(z) = z5;(z) and ®,(z) = \/z5:(2).

Unfortunately, Theorem 1.1.4 is only valid around O in this form. Nevertheless, we can
“translate” the setup of Theorem 1.1.2 by setting Q' = Q— o, I” =T'—pand S,(z) = S(z+0) -
for z € Q. Then, §; is a Schwarz function on Q" UT” at 0. Cases (1) of the two theorems correspond
with one another as do (2a), (2b), and (2c) with (2).

Sakai gave two applications of his results: the first one describes the local structure of the
boundary of quadrature domains, while the second one deals with a free boundary problem of
classical type, namely, what is the boundary of the set of positivity of a smooth non-negative

function in the disk such that Au = 1 on the set {u > 0}.



It is natural to wonder how one can derive similar results for other forms of (1.1.1). In this
text, we examine three different scenarios for a simply connected domain Q. In Sections 1.2 to 1.4

equation (1.1.1) is replaced by

A =CHQ)  forall £ € 0Q (1.1.2)

where f], f» are holomorphic functions continuous up to the boundary. This is closely related to the
model subspaces Ky and Nevanlinna domains, which will be important here. It is shown that there
are domains so that (1.1.2) holds for which dQ is C® but not real analytic. Further, in Section 1.5
we replace the quantity £ f>(¢) with @(Z, ¢), where ® is a holomorphic function of two variables, to
find that the boundary is locally composed of real analytic arcs. Finally, in Section 1.6 we consider
two positive harmonic functions U and V that are zero on a Jordan arc, I, of the boundary. If their
ratio on I' is equal to a real analytic function of the form |A|?, where A is holomorphic, then I is
real analytic itself with the possible exception of some cusps.

Our interests to the problems considered below also was spurred by an application, which
originates from complex dynamics. A certain complex dynamics question naturally brought the
second author to another free boundary problem described in Section 1.6. After that it was very
natural to ask related questions, where the Sakai setup was generalized in yet two other ways. To
our surprise the answers were quite different and required different techniques: from the use of

Nevanlinna domains and pseudo-continuation to multivalued analytic functions.

1.2 Polynomials & analytic functions
Let Q be an open domain, {( a non-isolated boundary point of Q, and let I' = dQ N D (o, r)
for some r > 0. Suppose S is a holomorphic function on €2 continuous on U I". We start with a

simple yet important case. Instead of (1.1.1), we consider

S()=¢p(Q)  onT, (1.2.1)
where p is a polynomial. We will shortly show that f(z) = % is, in fact, a Schwarz functionon T".



Lemma 1.2.1. Assume that S : Q — C is holomorphic on Q c D((y,r), continuous on QU T,

and that it satisfies
S() =4 -&)"  onT.

Then, the function S;(z) = S(z + (o) — (02" is holomorphic on Q — ¢y c D(0,r), continuous on

(Q = o) U (I = o) and it satisfies

S(0) =4 onT - (.

Proposition 1.2.2. Assume 0 € I" is a non-isolated boundary point of Q c D(0,r) and suppose S

is a holomorphic function on  continuous on Q U I' and satisfying

S()=¢" onT.

Then, for any positive & < r the function %,f) is holomorphic on Q N D (0, 6) and continuous on

(QUT) N D(0,08) \ {0}. Moreover, the following holds while z € QU T\ {0}:

lim 5@ _

z—0 7"

0.

Proof. The function % is clearly holomorphic on Q N D(0, ) and continuous on (Q U I') N
D(0,9) \ {0} for any ¢ € (0, r). It remains to see what happens at 0.

Fix 6 € (0,r). Since S is bounded on Q N D (0, r), say by m, we get

S
'% < m|z|™ on QN D(0,6)

and additionally for any £ € ' D(0,6) \ {0} we have

lim ‘&Z)

Zn

=<6 whileQ>z— /(.

Hence, by the Phragmén-Lindelof principle 1.1.1 we obtain

S .
lim sup g <0 while Q 3 7z — 0.
This last inequality is true for any positive 6 < r and therefore lim % =0asz—0. O



Corollary 1.2.3. Let p be a complex polynomial. Assume that {y € T is a non-isolated boundary
point of Q other than zero and suppose S is a holomorphic function of Q C D (o, r) continuous on

QU T and satisfying
S()=¢p(&)  onT.
Set f(z) =S(z)/p(z) on QUT \ {&o} and f(&o) = Lo. Then, f is a Schwarz function of QUT on

D (o, r) for sufficiently small r > 0.

Proof. Take r so small that p has no zeros on D (o, r) \ {lo}. If p({y) # O, the result is immediate.
If p({p) = 0, we only need to show that f is continuous on (2 U I') N D({p,r). Denote by n

the order of {j as a zero of p and consider the function

(z 50)".

Sn(z) = 8(2) )

Sy 1s holomorphic on €2, is continuous on € U I', and satisfies

Su(Q) =24( - )" onT.

From Lemma 1.2.1 we get
(Su)i() =& onT =

and from Proposition 1.2.2 we deduce that while

_ s on
z—>0 o 7—0 "
s Im Sn(z) = do(z = 40)" _ 0
z—4o (z=4o)"
Sn(z2)  —
— lim = lim ———
lim f(z) = B N =
z € Q, and the conclusion follows. O

Notice that the same proof works with p replaced by any function F that is analytic in a

neighbourhood of . This along with Lemma 1.2.1 give us the following corollary.



Corollary 1.2.4. Assume (o € T is a non-isolated boundary point of Q C D(ly,r). Suppose F
is a function analytic around {y and S is a holomorphic function on Q continuous on Q U I' and
satisfying

S()=CF()  onT.

Set f(z) = S(2)/F(z) on (QUIT)ND (Lo, 8) \ {0} for some sufficiently small § > 0 and f (o) = Lo.
Then, f is a Schwarz function of QU T on D({y, 5).

The converse of this corollary also holds true in the sense that if I" has certain shape, in
particular, if it satisfies (1), (2a), (2b), or (2¢) of 1.1.2, then there is a Schwarz function f of QU T"
at £o such that S(¢) = (F(¢) on T where S = F f.

In fact, we can slightly modify the same proof to get a little more, again through the Phragmén-

Lindelof principle 1.1.1.

Corollary 1.2.5. Let p be a polynomial, F a function analytic in a neighbourhood of Q, and S a
function holomorphic on the (bounded) set Q and continuous on Q U I'. Suppose that for all { € T’

we have
S(0) = p(OF ().

Then, for every non-isolated point {y of the boundary T for which p’({y) # 0, there is some 6 > 0

such that the function p~'(S/F) is a Schwarz function of QUT on D((y, 6).

We wish to examine what happens in the more general case where p in (1.2.1) is replaced
with any analytic function of € continuous on its boundary, but not necessarily analytic on that
boundary. More specifically, suppose that f| and f, are functions analytic on €, continuous on

QU T, and satisfying
fil)=HE&)  onT. (122)

As above, if f,({p) # 0, the function f = f1/f> is a Schwarz function around ¢y € I" and no issues
arise. However, if f>(o) = 0, the situation is very complicated in general.

We start with a lemma analogous to Lemma 1.2.1:



Lemma 1.2.6. Assume that fi, f» : Q — C are holomorphic on Q C D((y,r), continuous on

QU T, and that they satisfy
fiQ) =/ onT.

Then, there exist functions ( f1); and ( f2); holomorphic on Q— y, continuous on (Q—{p) U (I"'= o)

and such that

() =L(f)()  onT =
If additionally f>({y) = 0, then ( f2),(0) = 0.
Proof. Define ( fi); by

(f1):(2) = fi(z + L) — Lofo(z + L0).

Then for { € T" — £y we have

(1)) = (L +20) = Lo fo (L + o)
=+ 0L+ 8o) — Lo (L + Qo)
=L (¢ + o)

Setting (f2):(z) = fo(z + o), we have the desired identity.
Clearly, (f1):(0) =0 and also if f>({o) =0, (f2):(0) = 0. O

Abusing the notation, we denote these new functions again by f and f.

It remains to show a result analogous to Corollary 1.2.3 with p replaced by f,. In particular,
we would like to show that the function f = f;/ f> is holomorphic on €, continuous on I', and that

it satisfies

f1(9)
f2(4)

However, the limit of fi(z)/f2(z) as Q > z — 0 may even fail to exist when f>(0) = 0, and

I3 forall €T.

(&) =

we cannot apply the Phragmén-Lindel6f principle here. We will need to see this problem from a

different scope.



1.3 Nevanlinna domains and inner functions
We recall that a bounded simply connected domain €2 is called a Nevanlinna domain if there

exist bounded holomorphic functions fi, f> in € such that

m _ fi(p(2))
f2(e(2))

for almost every z € T = {z : |z| = 1}, where ¢ is a conformal mapping of the unit disk onto Q.
Note that this definition does not imply any additional regularity (for instance, continuity) of the
functions fi, f> on 0Q.

We will restrict the above situation, and suppose there are holomorphic functions f, f, : Q — C

continuous up to the boundary that satisfy

fi(Q) =2/  forleT. (1.3.1)

In order to better understand the situation, we rewrite (1.3.1) as

fi()

-7 13.1°
AGE (131

which is now fulfilled almost everywhere on I" except for the closed set I' N fz_l {0}, which has zero
measure. Then, Q is what we call a strong Nevanlinna domain and if such f| and f; exist, the ratio
f1/ /> is unique thanks to the Lusin-Privalov uniqueness theorem.

Let ¢ : D — Q be a conformal map and consider the functions F; = fj o ¢ and F, = f, o ¢.

Formulas (1.3.1) and (1.3.1”) transform respectively to

F1(0) = ¢(OF({) (1.3.2)

and
() —= ,
R = 0 (1.3.2°)

both of which hold true in the sense of angular boundary values almost everywhere on T, because ¢

may fail to extend “nicely” to D. By the factorization theorem, we can write F; and F> in D as

Fi=06171 and F, =0, (1.3.3)



where the ¥; are the outer factors of F; and the 6; are their inner factors. Since F, F, € H™, also

F1,F2 € H®, and from (1.3.2°) we get

0.0 F(0)  —
60 R0 - (134

almost everywhere on T in the sense of angular boundary values. We distinguish between two

cases: either 0, divides 61, that is, 81 /6, € H*, or it does not.
1.3.1 6, 6;.
Let h = 0,/6, € H®. Then, the function (h%7) /%, belongs to the class N*, defined as

N* = {i . f,g € H”, gisan outer function},
8

and its (angular) boundary values are equal almost everywhere on T to the (angular) boundary
values of ¢. However, since Q is bounded, we see that ¢ € L®(T, m) where m is the normalized
Lebesgue measure on T. Smirnov’s Theorem tells us that in fact (hF7)/9, € H*™. Therefore, we
have a bounded holomorphic function on the disk that is equal to ¢ almost everywhere on T. This
is impossible whenever ¢ is a bounded holomorphic function on D.

We are necessarily left with the other case.

1.3.2 6,1 6;.
We begin with some notation and definition which will be important for the rest of this text.

LetD, =C \ D. For any function / : D — C we define h as
h(z) = h(1/2).

The notation H will stand for a function H : D, — C and we will write H instead of H for the

function H(1/Z). Observe that h € H* if and only if he H*(D,), and h(0) = 0 if and only if
h(co) = 0.

We will also consider the backward shift operator, 8 : H? — H?, for p € [1, c0), that is

Hf(Z)—f(O).

4

B:.f

10



Definition 1.3.1. Let f be a meromorphic function on D. We say that f admits pseudo-continuation
(across T) if there exists another meromorphic function g on D, such that f = g almost everywhere
(on T) in the sense of non-tangential limits.

The pseudo-continuation of f is called of bounded type or a Nevanlinna-type pseudo-continua-

tion if g is of the form g = hy/hy for some hy, hy € H*(D,).

Definition 1.3.2. A function f € H? is called a cyclic vector for B, or simply cyclic for B if the set

{B" [}, spans the space H”.
The following important result is due to Douglas, Shapiro, and Shields.

Theorem 1.3.3. Consider 1 < p < co. A function f € H? is not cyclic for B if and only if f has a

pseudo-continuation of bounded type.

In the case when p = 2, it is known that any non-cyclic function of 8 belongs to a proper 8-
invariant subspace. As a consequence of Beurling’s theorem, these spaces are of the form (6H?)*

and are known as model spaces and denoted by Ky. Here we will need the fact that

Ky = (6H*)* = H*(T) N 0H2(T),

where in the last identity we mean the boundary values of the corresponding functions and where
Hi ={f € H* : f(0) =0}.

Now, we can proceed with the case when 6, 1 6;:

After dividing both 6; and 6, by their greatest common divisor, we may assume that ; and 6,
have no common zeros and that the Borel supports of their singular measures are disjoint. Much
as above, we see that the function F = (6,%1)/%, = F1 /%, belongs the class N* and thus F € H®,

because 62¢ € L(T, m). Then the following is true in the sense of angular boundary values for

11



almost every { € T:

— _ ()R _ F()

Y= 50RO - 0
= ¢() = 02(O)F(Q) (1.3.5)
F(2)
== . (1.3.6)
= 62(<)

Since F, 6, € H® (D,), we see that ¢ € H* < H?* admits pseudo-continuation across T of bounded
type, and Theorem 1.3.3 shows that ¢ is not cyclic for 8. So, it has to belong to some model space
Ky. See [7, Theorem 1] for more details. In fact, from (1.3.5) and because we “need” to have

F(0) =0, it follows that either

¢ € Ky, if 01(0) =0, or ¢ € Kag, if 0;(0) #0.

1.4 Boundary behaviour of conformal maps in Ky

In this section we show that Theorem 1.1.2 fails when condition (iii) is replaced by (1.3.1). To
this end, we will find a simply connected domain €2 and a conformal map ¢ : D — € continuous up
the boundary that has a pseudo-continuation of bounded type and is smooth but not real analytic on
T. The functions participating in this pseudo-continuation will also be continuous on the boundary.
First, we go one step back and work with Nevanlinna domains. Thanks to [7, Theorem 1] by
Fedorovskiy, this is equivalent to studying the model subspaces, Ky, for different inner functions 6.

If 0(zo) = O for some z(y € D, the function

¢(2) = € KgNC™(T)

1 -720z

has bounded type pseudo-continuation across T and thus ¢ (D) is a Nevanlinna domain. In fact, ¢
can be analytically extended on the whole closed disk, D, and ¢(T) is real analytic. On the other
hand, in a series of papers, [10, 4, 7, 11, 12, 3], it has been shown that the boundary of a Nevanlinna
domain can be “arbitrarily bad”. In particular, it can be nowhere analytic [10], of class C ! but not
in any C L for no @ > 0 [7], or even non-rectifiable [11]. We refer also to the Belov-Fedorovskiy

paper [2], where the description is given of model spaces that contain bounded univalent functions.

12



We mention that the Hausdorff dimension of the accessible boundary of a Nevanlinna domain can

be any number between 1 and 2 as shown in [3], another construction can be found in [12].

However, in all the above work the inner function 6 is a Blaschke product or has a Blaschke
part. Moreover, in order to compare with Sakai’s theorem, we have to consider the case where the
functions Fi, fz e H*(D,) for which ¢ = F / F> on T are continuous up to T. This is not always
possible when 6 is not purely singular (see [4, Example 5.8]).

Therefore, in this section 6 will be a singular inner function of the form

6(2) = exp ( - ﬂdygm)

(-2
T
with pg supported on a Carleson set, E C T. We will show that there is a conformal map ¢ € Ky
continuous on D which is in C*(T) but not real analytic on T.

In view of [6, Theorem 2.1], since supp(ug) is Carleson, the space Ky then contains a non-trivial
function from some smoothness class, for example a function g € H* N C*(T) (or in a Bergman
space, i.e., g € AP! for some p > 1). Since g € Ky, it admits a bounded type pseudo-continuation
of the form

g= G / 0 almost everywhere on T,

where G € H® (D,) vanishes at infinity (see [5, Theorem 5.1.4]). Additionally, g has an analytic
continuation, say G, to C \ supp(u). Of course, G = G / 6 on D, and observe that G cannot be
bounded in D, ; otherwise g would be constant, as Gjp = g and G|p, coincide almost everywhere
onT.

Now, consider @ € D, with 8(1/@) # 0 and the following aggregate:

6() - G(a)

-«

¢(z) =

We will show that ¢ € Ky N C*(T) and ¢ is conformal in D.

Clearly, ¢ is inside H*(D) and also

60(0g(¢) -6(0)G(a) _ G({) -6(H)G(a)
-« -« ’

8(0)¢(2) =
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For z € D, the function

G =006 _ 1 (5. 05,

c-a c-a 8(a)

is analytic around « and vanishes at infinity. Hence, ¢ € K.
Furthermore, ¢ is univalent in D. Indeed, suppose it is not. Then, there exist z,w € D with

z #w and ¢(z2) = ¢(w) or equivalently
8(x) -G(a) _gw)-G(a)

-« w—a
e 8@ sw G G - Ga)— =¥
I—-a@ w-—a I-a WwW-—a«a (z—a)(w—a)
s _ 89 :g(W) 489 :g(W) —e(w) = G(a).
=W Z—w

The left-hand side is bounded, because g € C*(ID), whereas we can pick 1 < @ < 2 so that |G(a)|
is arbitrarily large (recall G|p, is not bounded), a contradiction, and therefore ¢ is univalent in D.
Consequently, if g € K¢ N C™(T) and 6 is a singular inner function, then ¢ is univalent in D and
¢ € KgNC™(T). Also see [1, Section 4] for more details. At the same time, note that G cannot be
analytically extended to the whole DD, because it is unbounded near the unit circle, and thus neither

can ¢; this fails exactly on the Carleson set E.

Now, since ¢ € Ky, we can write
p=0F — 0p=F (1.4.1)

almost everywhere on T for some function F € H? with F(0) = 0. In fact, F € H* because
¢ € C*(D).
It is known that there exists some analytic function, H, with H|g = 0 such that both A and
H@ are Lipschitz on D. In fact, we can further consider H to be an outer function in C*®(T).
Multiplying by H in (1.4.1), we get
(HO)¢ = HF (1.4.2)

almost everywhere on T. In particular, the left-hand side is now smooth on the whole T and the
same therefore holds true for the right-hand side. In a sense, H “annihilates” the singularities of 6

as (1.4.1) fails exactly on the support, E, of ug.

14



At this point, set F'y = HF, F> =H6,and f; = F; o ¢~ for j = 1,2. Then, (1.4.2) becomes
Fi = ¢F>,
which now is fulfilled on the whole boundary T, and in turn

fi(Q)=Cf() forall (€T,

This is exactly the setup we were looking for, albeit it contrasts with Sakai’s result: Even though

I' = ¢(T) is C*-smooth, ¢ cannot be analytic on the Carleson set £ and thus neither can I'.

It is worth mentioning that there are examples of Nevanlinna domains that come from singular
inner functions with particularly irregular boundaries. Namely, in [3] one can find examples
of univalent functions in a Paley-Wiener space such that they map the upper half-plane onto a

Nevanlinna domain whose boundary can have any dimension between 1 and 2.

1.5 Holomorphic functions in C?

In this section we attempt to replace the function ¢ fo(¢) in (1.3.1) with a more general formula.

For some positive r > 0, let Q ¢ D (o, r) be a simply connected open set, letI" = 0QND (o, r),
and let {p € I". Here, we will also need the extra assumption that I" is a Jordan arc (or possibly a
union of Jordan arcs).

Let @ be a holomorphic function of two variables, that is, a function of the form

+00
Dd(z,w) = Z bum7"w™
n,m=0

where each of the functions ®(z, -) and ®( -, w) is itself holomorphic. Suppose there exists a

function R which is
(i) holomorphic on €,
(ii) continuous on Q, and

(iii) satisfies R(¢) = @(£, ) onT.

15



In view of Lemma 1.2.6, we may assume that {p = 0 and byp = 0 so that R(0) = ®(0,0) = 0. Notice
that R(z) and ®(z,Z) are bounded on Q and thanks to the Phragmén-Lindelof Principle 1.1.1, we

may assume without loss of generality that there exists some non-negative integer k for which

k-1 k

0 0 0

otherwise ® would be identically zero.

We would like to use the Weierstrall approximation theorem for the function ®(z, w) — R(z)
around 0, but R is not holomorphic on the boundary. But since it is continuous by (ii) and I' is
Jordan, we can use Mergelyan’s theorem to get a sequence of polynomials p, that converge to R
uniformly on Q. And we can pick this sequence so that p,(0) =0 foreveryn =0, 1,... .

Next, we define the functions

The W, are holomorphic on C? and converge uniformly to ¥ on Q x C. Observe that for all n we
have ¥, (0,0) = ®(0,0) — p,(0) = 0 and also

0~ o0«
= — for all integers « > 1
owx owk

and all points (z,w). Then, from (1.5.1) and from the Weierstrall approximation theorem, there
exist unique holomorphic functions ag.p, . ..,ax-1;, : C = Cand ¢, : C? - C with aj.,,(0) =0

and ¢, (0,0) # 0 such that
\Pn(za W) = Cn(Z’ W) (Wk + ak—l;n(z)wk_1 +--- aO;n(Z)) .

Following the proof of the Weierstrall theorem and since the convergence ¥,, — ¥ is uniform
on Q x C, we can find sufficiently small ¢ and p with p > 6 > O so that ag., . . ., ar-1,, and the ¢,
converge uniformly on Q N D(0,6) and (Q N D(0,5)) x D(0, p), respectively, to some functions
ao, . .., ax—1 and ¢ with a;(0) = 0 and ¢(0, 0) # 0. Note that the functions a; are holomorphic on

QN D(0, 6) and continuous on Q N D(0, §). Subsequently, we get
D(z,w) — R(z) = c(z,w) (wk +ar (w4t ao(z)) . (1.5.2)
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Let us write

k

P(z,w) = wh + a1 (2w T+ -+ ap(2)

for the polynomial factor. From (iii), (1.5.2) and since ¢(0, 0) # 0, we have
PO =T +ar (0T - +ag(0)=0  forallZ € T n D(0,5). (1.5.3)
Remark. Functions of the form
P(2.3) =2 +ar1 ()7 + -+ ao(2),

where a are polynomials, are called polyanalytic polynomials. One can find more details on these

in[8 11]or[14].

We are interested in the roots of the polynomial P(z, - ) when z € Q N D(0, 6). In other words,

we will study the equation (in w)

P(zw) =0 & wr+a_1(Qw* "+ - +ap(zx) =0
(1.5.4)

when z € QN D(0, §).
Let D(z) be the discriminant of P(z, -) (for any fixed z). Then, D(z) is a polynomial of
the coefficients ao(z),...,ax—1(z) and is equal to O if, and only if, P(z, w) and %P(z, w) share
a common factor. The roots of P(z, -) are given by a multivalued holomorphic function, ‘W,

depending on ay,...,a;_1, and the points where ‘W changes a branch inside Q N D(0, d) are

exactly the zeros of D (in Q N D (0, 9)).

We distinguish between two cases: when D is identically O and when it is not.
Before moving on, let us note that the set M(Q, T, §) of all meromorphic functions on N
D(0, ) continuous up to (QUI') N D(0, &) except possibly a (closed) measure zero subset of I is

a field with the usual operations of addition and multiplication.

1.51 D=+#0
Here P(z,w) is irreducible over M(Q,T", ). Since D is continuous on (Q U I') N D(0, ),
the set (Z)_I{O} NT) N D(0,6) is closed and of zero harmonic measure. Now, we decompose

(T'\ ©~1{0}) N D(0, §) into countably many open connected arcs.
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Let v be one of these arcs. Then, there exists a simply connected set D ¢ Q N D(0, d)
such that dD N 9Q = y. Since D has no zeros on D U y, by the monodromy theorem the
multivalued function ‘W “splits” into k distinct holomorphic functions, W; (j = 1,..., k), and let
Ci={ley: W)= 7}. Notice that the C;’s are closed (in ), they cover y, and any two of
them intersect at a (closed) set of zero harmonic measure.

Unfortunately, C; need not be connected, but we can further decompose each ¢ ;i (whenever it
1S non-empty) into countably many open arcs as in ¢ = U,-y;, for j = 1,...,k. Again, around
each y; we consider a neighbourhood D;. c D with 8D§‘ NoD = y;l (these can, but need not be
simply connected) and let W; =W Diyi-

Then, foreachj =1,...,kandi =1,2... the functions W; are holomorphic on D;, continuous
on D; U 75. and satisfy W;({ )= forall £ € yj.; in other words, they are Schwarz functions on
D;. U y; Since I" is Jordan, all yj. are also Jordan and from Theorem 1.1.2 we conclude that each

y;. is, in fact, a regular real analytic simple arc except possibly some cusps.

152 D=0

In this case, P(z, w) has to be reducible over M(Q, T, §). In particular, we can write P(z, w) =
Pi(z,w) -+ Pr(z,w) for some k < k where each P,(z, w) has now coefficients in M(Q, T, §) and
is irreducible, i.e., D, # 0 where D, is the discriminant of P.(z, -). Since P(Z,¢) = 0 for all
l €T, we can split (I' \ E) N D(0, ), where E is some closed zero-(harmonic)-measure set, into
opensets O, fork =1, ... , k so that P.(Z,0) =0forall ¢ € O. Notice that O, N O = 0 when
P, and P, are different.

Observe that, since P(z,w) factors into the polynomials P,(z,w) (over M(Q,T,0)) and the
roots of P(z, -) are given by the multivalued holomorphic function ‘W, the roots of each P,(z, - ) are
also given by a multivalued holomorphic function W, whose branches are comprised of branches
of W.

Working as above foreach « = 1, ..., k, we separate O, \ D {0} into countably many open
arcs and for each such arc, y, we find some simply connected neighbourhood, D C Q, with

0D N0 =y so that W, “splits” into its different branches. Again following the above arguments,
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we can decompose y — minus a zero-measure set — into countably many open arcs over which
W) =  for some branch W; of ‘W,. Constructing appropriate neighbourhoods, we conclude
that except a zero-measure set, y is a countable union of regular real analytic simple arcs except
possibly some cusps.

In either case, the cusps (if they exist) point into € and may only accumulate on the endpoints

of each open arc.

Now we formulate the above results into a theorem.

Theorem 1.5.1. Let Q be a bounded simply connected domain such that ' = 0Q N D({y,r) is
a (union of) Jordan arc(s). Also, let ® be a (non-trivial) holomorphic function of two variables

defined in D((o,r) X D((o, 1), and suppose there exists a function R
(i) holomorphic on Q,

(ii) continuous on Q, and such that

(iii) R(&) =®(Z,0) forall ¢ €T.

Then, there exists a closed set, E C T', of zero harmonic measure so that I" \ E is a countable union
of regular real analytic simple arcs except possibly for some cusps. The cusps (if they exist) point

into  and may only accumulate on E.

1.6 The U-V problem

In this section, we are interested in the following setup.

Let Q be a simply connected open set in C and let {p € 9 be a boundary point of Q. Assume
that for some p > 0 the connected component, I', of QN D({y, p) containing j is a Jordan curve.
Note that p > dist({p, dQ\T") > 0. For convenience we will write simply Q to denote QN D ({y, p).

Let A be an analytic function in a neighbourhood, D ({y, €), of {y and suppose we have two

functions U and V defined on Q that are not proportional and have the following properties:

I) U and V are positive and harmonic on Q,
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IT) they are continuous on QU I,
III) U=V =0onT, and

Uu
V) ’% =|A({)|* # const for £ € T.

Notice that since U # ¢V, the function |A| needs to be non-constant. Otherwise, we could have
U = ¢V and all our conditions work trivially for any I'. Also, we may assume that p < € without
loss of generality (so that A is defined over the whole €2) to avoid unnecessary technical difficulties.
Formula (IV) is to be understood in the sense of limits, i.e., the limit of U(z)/V(z) as
Q 3 7 — ¢ e I' exists and is equal to |A(¢)|?. In fact, this limit always exists when Q is simply
connected and I" is Jordan (see Remark 1.6.1), so the only assumption here is the values it takes.
Consider a conformal map from the Poincaré plane to Q, ¢ : H — Q. Since I" is connected
and Jordan, Carathéodory’s theorem implies that ¢ extends conformally to a function (abusing the
notation) ¢ : HUvy — QU T which we can pick so that y C R is some bounded open interval with
¢(y) =T and ¢(0) = . Utilizing this ¢, we can “transfer” the information about U and V over

Q to information over H. Define
u=Uogp, v=Vo¢ and a=Ao¢
and note that a is analytic on H and continuous on H U y. As above, we have
1) u and v are positive and harmonic on H,
i1) they are continuous on HU vy,
iii) u =v =0on vy, and
iv) &= la|> on .

Again, (iv) is to be understood in the sense of limits.

20



Now, harmonically extend ¥ and v to HU y U H™ by

u(z), zeH v(z), zeH
u'(z) = 0, ZEYy and V*(Z):‘O, z€y
-u(z), zeH” —v(z), zeH"

and let /1 be the function
w(@ e HUH,

V*(Z) )

A2 = y(2)
u,\z
nor €7

We claim that % is well defined and, in fact, real analytic on HUy UH™. Indeed, using Harnack’s

inequality, for any (x, 0) € 7y there exists a constant ¢ > 0 (dependent on v*) such that

3 <vi(x,y) <c forevery 0 <y < 1, or

1 * 2 -
el YY) 2. (1.6.1)
2-y y y

Recall that v*(x,0) = 0 and take limits as y — 0*. Since v* is harmonic on HU y U H™, (1.6.1)

guarantees that v; > 0 on 7y (the same holds true for ™) and therefore the limit

u(x,y) M;(X,O)
y=0vi(x,y)  vi(x,0)

exists and is finite. Hence, & is a well-defined continuous function on HU y U H™. In fact, since

uy, and v} are real analytic and non-zero around v, h is also real analytic on HUy UH™. What is

more is that
T T S
v3(€) - ngggg @ = la(§)] forany £ € y (1.6.2)

because of (iv) and therefore |a|? is also real analytic on .

h(§) =

Remark 1.6.1. The above is the reason why relation (IV) is meaningful. When we write % onT,

~!as we approach T from the inside of Q. This limit always exist

it really means the limit of h o ¢
on a Jordan arc I" when Q is simply connected thanks to Harnack’s inequality.
It is worth mentioning the work of Jerison and Kenig who showed [9, Theorems 5.1 and 7.9]

that equation (IV) makes sense whenever Q is assumed to be a non-tangentially accessible (NTA)

domain.
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Next, consider A,. Its power series around O € 7 is given by

hyy(x) = Z b,x"
n=0

for some real numbers by, b1, ... This readily extends to a complex analytic function, say r, on

some open neighbourhood, D (0, €'):

r(z) = bat,
n=0

where we can choose ¢ and €’ so that y ¢ D(0, €’). Of course, by construction and from (1.6.2)
we getr), = hj, = lal?.

At this point, we want to “shift” everything back at 2. We set
V=¢gHnND(,€)) cQ
and observe that 0V is a closed Jordan arc such that I' ¢ 9V N D({y, p). Define a new function

R=ro(¢ Hyor, (1.6.3)

which is holomorphic on V, continuous on V U T, and on T it satisfies R(¢) = |A({)[*.
Now, consider the function ®(z, w) = A(z) A(w). ® is holomorphic on D (o, €) X D(,, €) and
it satisfies ®(Z, ) = A(O)A() = |A()|? when z =w = ¢ € T'. As a corollary to Theorem 1.5.1,

the next theorem follows.

Theorem 1.6.2. Let Q be a bounded simply connected domain in C and let T" be an open Jordan arc
of its boundary with {y € I'. Suppose there are two positive non-proportional harmonic functions

U and V on Q continuous on Q U I" and such that

UO =V =0 and ZE AP  forali¢erT,

V()
where A is a non-trivial analytic function on a neighbourhood of Q.
Then, there exists some neighbourhood D of {y and a closed set E C I' of zero harmonic
measure so that (I' \ E) N D is a countable union of regular real analytic simple arcs except

possibly for some cusps. The cusps (if they exist) point into Q and may only accumulate on E N D.
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Of course, Theorems 1.5.1 and 1.6.2 are somewhat far from Sakai’s result. Nevertheless,
because of the special form of the function ®(z,w) = A(z)A(w), we can actually say more in this

case.

Proposition 1.6.3. Let Q be a bounded simply connected domain in C and let T be an open Jordan
arc of its boundary with {y € T'. Suppose there are two positive non-proportional harmonic

Sfunctions U and V on Q continuous on Q U I' and such that

U =V()=0 and % =|AO))?  foralll €T

where A is a non-trivial analytic function on a neighbourhood of T

Then, there exists a neighbourhood D of (o and a function R satisfying the following:
(i) R is holomorphic on QN D,
(ii) R is continuous on (QUT') N D and
(iii) R({) = |A() for { €T N D.
Additionally, for any (o € T" with A’({y) # O either

(1) there exist a function ¥\ holomorphic and univalent on Q N D such that Y1 is continuous on

(QUT)ND, and ¥1(¢) = |A(Q) = A(Lo)|? for e TN D, or

(2) there exist a function Yy holomorphic and univalent on Q N D such that ‘P% is continuous on

(QUT) N D, and ¥3({) = |A(Q) — A(Lo)|* for { e T N D.

Proof. We have already established the existence of such a function R in (1.6.3).

For the rest, A’({p) # 0 and we may assume without loss of generality that A is conformal on
a neighbourhood of Q. Recall that V from the definition of R in (1.6.3) is such that 9V is Jordan
andT" ¢ 0V N D (o, p) when Q € D(Zy, p). Since A is continuous and injective on V, there exists

some small 6, 0 < 6 < p, such that (A(V)) N D({],0) c A(I).
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Now, let A({o) = £, Q" = A(V) N D({;,6), and I = Q" N D({;, 6). The function
S(z) = %R 0 A7 (2) (1.6.4)
is a Schwarz function of Q" UT" in D({j, 6):
(i) S is holomorphic on Q’,
(ii) it is continuous on Q" U I, and
(iif) S(¢) = zR(A'({) =L onT".

Notice that from (1.6.1) the functions a = A o ¢ and A are always non-zero and thus § is a
well-defined holomorphic function, because 0 cannot be a point of &'

Finally, consider the function S,(z) = S(z + {) - g_(’), which is a Schwarz function on (Q" —
gy) U (I = ¢p) at 0. From Theorem 1.1.4, we know that one of the functions ®;(z) = z5,;(z) and
Dy(z) = m is univalent on (" — £J) N D(0,¢’) for some ¢" < 6. Changing variables to
get back to our initial domain Q, we find that one of the following functions, ¥; or ¥, has to be

univalent on Q N D’:

W\(2) = (A(2) - A)) (% - Tgo))
and
(o) = \/<A<z> — A@) (% - m)
for z € QN D', where D’ = A~ (D(£}, &')). The rest of the desired properties are obvious. O

In the above proof, I'” is the image of a Jordan arc under the (conformal) map A. Therefore, the
existence of a Schwarz function, S, along with Theorem 1.1.2 imply that I/, and in turn I, satisfy
(1) or (2¢c) of Theorem 1.1.2. Case (1) corresponds to (1) of Proposition 1.6.3 and (2c¢) to (2), that

is, I’ (respectively, I') has a cusp if, and only if, the function

\/Z(S(Z+§(’,) - )
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is univalent on (" — £j) N D(0, ¢") (respectively, ¥, on N D).

As a consequence, we have the following theorem, which is the main result of this section.

Theorem 1.6.4. Let Q be a bounded simply connected domain in C and let T be an open Jordan arc
of its boundary with {y € I'. Suppose there are two positive non-proportional harmonic functions

U and V on Q continuous on Q U I and satisfying

U@ _

Vi) - A1 forall{ €T,

U =V()=0 and

where A is a non-trivial analytic function on a neighbourhood of T.
Then, for all but possibly finitely many points {y € I there exists some small neighbourhood D

of {o such that the following holds:
I' N D is a regular real analytic simple arc through {y except possibly a cusp at {o.  (1.6.5)

The finitely many points around which (1.6.5) might fail are the points { € I" where A’({) =0, i.e.,
where A might not be invertible.

There is a cusp at {y if and only if (2) of Proposition 1.6.3 holds true.

Of course, one can ask at this point whether it is possible to actually have a cusp. The answer

is yes as the next example shows.

Example 1.6.5. Let Q be open and I' = 0Q N D(0, p) (with p < 1 sufficiently small) be such
that T" has a cusp at O (i.e., {o = 0). Then, from Remarks 1.1.3, for some n > 0, there is a
holomorphic function T defined on {|z| < n} that maps conformally the closed upper half-disk
K, ={lz] £n : Im(z) > 0} into QUT and "N D C T(-n,n) for some small neighbourhood D of
0. Also, T(0) = 0 with order 2. By dilating appropriately, we may assume that everything happens
in the unit disk, that is, n = 1, T is defined on D and is univalent on K1 = {|z] < 1 : Im(z) > 0},
T(Ky) cQUT,andT"'n D(0,p) c T(-1,1).

Next, consider two positive harmonic functions, u and v, on the upper half-disk D U H that are

zero on (—1,1). As we saw in the beginning of this section, u and v can be extended on the whole
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disk and the ratio u/v is a positive analytic function on (-1, 1). Therefore, on (—1, 1) we can write
u/v = |a|? for some function a holomorphic on D.

Finally, construct the functions
U=uoT", V=voT ', and A=aoT™ "

Then, A is holomorphic around the cusp at 0, and U,V are positive harmonic functions on

QN D(0, p) and zero on the boundary T'. Moreover, U and V satisfy U]V = |A|> onT.

1.7 Some open ““free boundary” problems in the spirit of Sakai

All problems treated above are examples of the so-called free boundary problems (non-
variational free boundary problems).

We would like to call the attention of the reader to one open question: what can one say for
the boundary of a domain Q that is not simply connected but admits positive harmonic functions
vanishing on its boundary and whose ratio is “nice” on that boundary? Finitely connected situations
present no difficulties, but what if, for example, I" is a Cantor set and Q = D \ I'? Suppose we
know that the ratio of two positive harmonic (non-proportional) functions U, V in Q vanishing on
the Cantor set I" has a well-defined ratio on I" (this happens for a wide class of Cantor sets I"’s, for
example for all regular Cantor sets of positive Hausdorft dimension). Suppose this ratio is equal to
|A()|? # const for ¢ € T, where A is a holomorphic function on D. What we can say about the
Cantor set I'? The “desired” answer is that this is impossible to happen on any Cantor set.

This type of problems (we may call them “one-phase free boundary problems”) appear naturally
in certain problems of complex dynamics, see, e.g., [15]. If we would know the aforementioned
answer (we conjecture that no Cantor set would allow such a triple (U, V, A)), then a long-standing

problem about the dimension of harmonic measure on Cantor repellers would be solved.

Another similar one-phase boundary problem concerns functions in R" for n > 2. Let € be a
bounded domain in R”, n > 2, and let I' = Q N D(x, r), where x € dQ. Again, let U,V be two

positive (non-proportional) harmonic functions in Q vanishing continuously on I'. If  is assumed
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to be a Lipschitz domain, then [9] claims that U/ /V makes sense on I" and is additionally a Holder
function on I" (boundary Harnack principle).

Here is a question. Let R be a real analytic function on D(x,r), x € I, and let U /V = R on
' N D(x,r). Is it true that I' N D(x, r) is real analytic, maybe with the exception of some lower

dimensional singular set?
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CHAPTER 2

THE BUFFON’S NEEDLE PROBLEM FOR RANDOM PLANAR DISK-LIKE CANTOR
SETS

2.1 Introduction

Let E be a subset of the unit disk, D. The Buffon needle problem wants to determine the
probability with which a random needle or line intersects E provided that it already intersects the
unit disk. At the same time, let /y be the line passing through the origin and forming angle 6 with
the horizontal axis. The Favard length of E is the average length of the projection of E onto [y

when averaging over all angles 6. It turns out these two quantities are proportional.

Now, consider the following picture: let us have L many (L > 3) disjoint closed disks
(D1,...,Dp) of diameter 1/L and strictly inside D. These are disks of the first generation.
Consider also a piecewise affine map f = (fi,..., fi) from those disks onto D. Then, f~!(D) =
DiU---UDj. Furthermore, f‘l (DyU---UDy) is consists of L? disks (groups of L many disks in
each D;); we call those disks of the second generation. We can iterate this procedure: denoting by
U, the union of disks of the n-th generation, where U; := D U --- U D, we form the self-similar
Cantor set K = ﬂ:’zl U,. This has positive and finite 1-dimensional Hausdorff measure; thus it is
completely unrectifiable in the sense of Besicovitch [8]; and thus its Favard length is zero [8].

Of course, the disks can be replaced by other shapes. For example, U; can consist of L disjoint
squares with side-length 1/L inside the unit square [0, 1]? (where the word “strictly” can be omitted
but “disjoint” cannot). One of such Cantor sets is a rather “famous”, namely the 1/4-corner Cantor

set, K14 (see [7]).

The L™"-neighbourhood of such sets is roughly U,,, and therefore its Favard length
Fav(U,) — 0, asn — oo.

But what is Fav(U,), or what is the speed with which Fav(U,,) decreases? Nobody knows exactly,
but there has been considerable interest in recent years. It is now clear that the answer may depend

on several factors; the magnitude of L; the geometry of Uj; the subtle algebraic and number
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theoretic properties of a certain trigonometric sum built by the centres of the disks of the first
generation. See [2, 3, 4, 6, 10] and the survey paper [5].
For the 1/4-corner Cantor set K4 in particular, the best known estimate from above for its

4™"-neighbourhood is
Ce

1 b

ne ¢

Fav(Ng-n (7(1/4)) < Ve > 0,

for all large n. We suspect that this estimate can be improved to
Ce
Fav(Ng-n (7(1/4)) < F, Ve > 0,

but at this moment this is only a conjecture.

On the other hand, there is a universal estimate from below obtained in [9] for every self-similar

Cantor set constructed as above:

Fav(Ny-n(K)) >

SIe

) (2.1.1)
For any concrete set, this bound from below could be improved. In fact, it is proven in [1] that for
the same 1/4-corner Cantor set K /4

1
Fav (Ng-n(Kija)) > 2,

For random Cantor sets the situation should be simpler. With large probability, Mattila’s lower
estimate (2.1.1) is met by the same estimate from above (with a different constant). The problem is

that in general there can be many different models of randomness.

In this note, we are interested in an analogue of the random Cantor set appearing in [11] and in
[14]. In our case, this will come from the random Cantor disks constructed below at Section 2.2.
The model of randomness presented here is somewhat different from the ones in the above two
papers, but it amazingly exhibits the same behaviour, as we’ll see below in our main Theorem 2.3.1,
which we contrast with [11, Theorem 2.2] and [14, Theorem 1].

In particular, we prove an analogue of [14, Theorem 1]. Unfortunately, the randomness of the

disk model we study here is not equivalent to that of the random (square) Cantor set R = (7, R,
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from [11], but it is nonetheless closer compared to the one constructed in [14]. The essential

1,2 4n-1
o Wiy« o s Wy

difference between [14] and our consideration are the angles w , which are here
allowed to be distinct and independent whereas in [14] are all equal. So, our model is a little “more
random” than the random Cantor sets of Zhang in [14].

We introduce our notations —some borrowed from [14]— in the next Section 2.2. The problem
of interest, namely the Favard length of a random planar disk-like Cantor set, is explained in
Section 2.3. Our results and their proofs are postponed to Sections 2.4 and 2.5. In Section 2.6, we

compare the differences and difficulties between our work and that of Peres and Solomyak’s and

Zhang’s.

2.2 Cantor Disks

Our work will be heavy on notation; without any ado let us introduce our basic “vocabulary”.

The letter n will stand for a (large) positive integer.

The letter w will be used to denote angles with values inside the interval [0, 7]. Now, let us
consider a word of length n made of the alphabet of angles in [0, 7], i.e. a word of the form
w1w3 - - - wy. The subscript in wy denotes the position of the angle w; within such a word of length
n. We refer to the position of an angle within a word as the depth of that angle.

Our operators, which we will introduce below, are such that every choice of an angle, say,
w1 necessitates four different independent choices for the angle w;; every choice of the angle
w; necessitates four different independent choices for the angle ws3; and so on up until depth n
where we will have 4"~ ! different angles w,. In order to differentiate between all those, for each
Jrk=12,... ,4K=1 we write wi" for the ji-th choice of an angle wy at depth k. Notice there are
4%=1 such choices. Therefore, a typical word from our alphabet of angles looks as follows, where

we note that w* € [0, 5]:

ji=1, Je=1,2, 45
W]l wlk Wl where j,=1,2,3,4,

Ja=1,2,...,4"1
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At certain instances, we need to consider cumulatively all angles of a certain depth; given a
collection of words of length n, for each k = 1,2,...,n let ) be the collection of all 4*~! many

angles at depth k, that is a);{ = (w}(, R wikil). With this notation, we may use the symbols w1,

w{ Y w%, and w/ interchangeably as these all refer to the same single angle.

All the above give to our angles the structure of a rooted tree of height n with root w; and

such that each parent has four children. The vertexes have values in [0, 7], and are independent
from each other and from their predecessors and ancestors. This tree we denote by w/ - - - w}; the
trimmed tree with root w; and height k we denote as w - --w) (for any k = 1,2,...,n). For the
subtree of height n — k + 1 with root wi" , which reaches up to the leaves (that is, from depth £ till

depth n with starting vertex wi") we write (I)i" . Later on, we will be working with rooted subtrees

Jn—k+1
n—k+1

—jn—k+l

—jn—k+l
Wy k+1

of the form @, 7,. To reiterate, consists of the angle w (as its root) along with all

jn—k+l

the angles from depth n — k + 1 till depth n (which have w;" ™

as an ancestor). This has height
k. Alternatively, (I)ﬁ ”_’k"fl is the collection of all the words (from our alphabet of angles) which have

depth k and the first letter is a)f; "o There are 4"~% such words.

Next, we will need to introduce certain operators and sets. The main objects of interest will be
the operators Dy (k =0, 1, ..., n) which will act on trees of angles of depth k. To understand these

we need some auxiliary constructions first.
For any angle w and for @ = 0, 1, 2, 3 consider the transformations

1 LRy
T, (z) = 7%t Ze("l?_‘”)’

where z is any number on the complex plane C. Observe that if D is the unit disk, Tg (D), TIO(D),
T)(D), and T (D) are disks of radius 1/4 centred respectively at (3/4,0), (0,3/4), (-=3/4,0), and
(0,-3/4). Introducing an angle w in 7(D), rotates (about (0, 0)) the aforementioned disks by
angle w in the clockwise direction.
Moreover, given an angle w',’;" from depth k let Qi" be the set
N
Qlk = U 4k—_1T§)k (D).

a=0
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That is, Qé" is a collection of four disks of radius 4% with centres (0, +3/4%) and (+3/4%, 0) rotated
clockwise by a){;k.
We also give an enumeration to all the disks for all depths. We number the disks of Q‘,’;k SO

Jk
that M%Tgk (D) is the (4j — 3 + @)-th disk at depth k. We call this the k-depth enumeration (of

k-1

1 1 4

the disks lying at depth k). Illustratively, we note 77, (D), 7T, (D), 757, (D), and
A

4/+-1T3 (D) are respectively the 1st, 2nd, (4¢ — 3)-th, and 4%-th disks of depth k. We retain this

enumeration as we translate these disks at different positions on the plane. This will be useful to

track down each disk at each step so that our subsequent constructions make better sense.

Now, we are ready to introduce our main protagonists. The operator Dy acts on the collection
of trees (of angles) of height k and for each such tree outputs a certain collection of 4% disks of

radius 47%. We define these inductively below.

To begin with, set Dy = D to be the unit disk.

Next, we define D, by

3
1
Di(w) = Q) =11 (Dy),
a=0
that is, D;(w}) consists of four disks of radius 1/4 centred at (0,+3/4) and (+3/4,0) rotated
clockwise by w;. Recall these disks are enumerated as in Q%
For the operator D,, consider a tree of height 2, w’lw’z, which consists of the angles a)}, and
1,2 ,3 4

0y W5, W5, Wi Then, we define Z)z(a)’1 u)’z) to be the collection of disks constructed as follows:

Replace the 1st, 2nd, 3rd and 4th disk of D (w) respectively by Qé, Q%, Q% and Q‘z‘. By replacing

w

we mean the translation of Qé in such a way that (0, 0) is translated to the centre of the j-th disk of
Dy (w)).

Consequently, D, (w]w)) consists of 47 disks of radius 472 translated appropriately so that each
Qéz replaces one the disks from D (a)’l). The set, say, Qé is in fact a subset of the 1st disk of
D (w); actually D, (wjw)) € Dy(w)). Again, the disks comprising D;(w'w}) are enumerated

to match Qé, Q%, Qg and Q‘zt as we described above. Also see the Figure 2.1 below.
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Figure 2.1 The collections Dy, D (w)), D (wjw)) and Qé

Continuing inductively, the operator Dy acts on the tree ] - - - w} in this manner: Consider the
collection Dy (a)’1 . ~a);€_ 1). These are 4%~! many (enumerated) disks. Replace the 1st of them
by Q;, the 2nd of them by Q7 etc., until every disk of Dy_; (w' - - - w}_,) has been replaced by four
smaller ones. This replacement is done so that (0, 0), as the “centre” of Qi, is translated to the centre
of the j-th disk of Dy (w] - -~ w)_,). Thatis, we substitute the j-th disk (from depth k — 1) with
the (45 —3)-, (4 — 2)-, (45 — 1)-, and 4-th disks of depth k. The resulting collection, which has
4F many disks of radius 475, is Dy (w) ... }). It holds that Dy (w) - - - w)) C Dy_1 () -~ W, _)).

Jk

In the present work, we will study the collection of disks D, (w] - - - w;,) where the angles w/

(forjr=1,..., 4k=Vandallk = 1,2, ...,n) of the tree w’l -+ - w), are chosen randomly with uniform
and independent distributions on the interval [O, %]. So, let us describe this picture once more
before moving on further.

The set D, (w] - - - w),) consists of 4" disks of radius 4. These can be separated into 4n-1

groups of four, which are copies of

3

; 1 wfn
Q) = U e (Do)

a=0
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(for j, = 1,...,4""!) translated appropriately within the unit disk.

2.3 Favard Length

Recall the Favard length of a planar set E C C is the integral

Fav(E) = %/ﬂ|proj9 E|d9
0

where proj, E is the projection of E onto the line with slope tan 6 passing through the origin, and

|A| is the (1-dimensional) Lebesgue measure of A.

VI8

Now, consider an infinite tree of angles from [0, 5] with root w; and four branches at each

vertex, and let D be the limit set

D = ﬁ@n(w’l cwy).
n=0

Notice that by construction, 9 a purely unrectifiable planar set. As such, Fav(9) = 0 and
by dominated convergence Fav(D,(w] - - w))) — 0 while n — oco. In fact, if the angles are
randomly chosen uniformly and independently over [0, 7], by dominated convergence and Fubini
E[Fav(D)] = 0 and E[Fav(D,(w] - - w;))] — 0as n — oo, where the expectation is taken over
all such angles.

The question arises as to the rate with which E[Fav(D, (v - - w},))] goes to 0. This we answer

in the following theorem:

Theorem 2.3.1. Let n € N and consider a tree of angles of height n with each vertex having
four branches. Suppose that the angles wi" (for all j, = 1,2,... AN and all k = 1,2, ..., n)

are chosen randomly with uniform and independent distributions on the interval [0, 7]. Also set

k-1 .
w;{ = (w}{, wi, e, a)i ) for each k = 1,2,...,n. Then, there exists a constant ¢ > 0 such that

for any 6 € [0, 7] it holds that

Eo e, [PrOjg Da(w) - @) < = VneN. 2.3.1)
n

Consequently,

By [Fav(Dp(w] - wp))] < Vn e N (2.3.2)

S| o
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and also

liminf n Fav(D,(w] - - w},)) < o0 Vn € N almost surely. (2.3.3)
n—oo

Clearly, (2.3.3) follows from (2.3.2) by an immediate application of Fatou’s lemma, whereas (2.3.2)

follows from (2.3.1) through Fubini.

2.4 Statement and use of the main lemma

The present and the following sections are dedicated to the proof of (2.3.1). Towards this goal,
we need to introduce Lemma 2.4.1 below, which describes the decay of the average projection when
transitioning from depth & to depth k£ + 1. The main difficulty will come from obtaining the square

factor appearing in (2.4.1), which emanates from the naturally occurring overlap of the projections.

From now on, suppose we are given a tree of angles of height n with four branches at each

vertex where the angles are uniformly and independently distributed random variables on the

jn—k+l
n—k+1

Jn—k+1

interval [0, 7]. Recall that given such a tree @;"""

is the subtree of height k with the vertex w

/-.-

-+ - w), is the full tree whilst o = wlr (n=12,...,4" are

as its root. Observe that (I){‘ =w
the its leaves, i.e. trees of height 1.

For any 6 € [0, %] and all k = 1,2, ..., n, define the following quantities

, jn=1,2,...,4"1

D{" =E_j, |proj, D1 (@}

"

Jn—k+l _ : — Jn—k+1 . _ —k
Dk" = Ea_)jn_kﬂ projg Dk(wnn—k:l , Jn-k+1 = 1,2,...,4"
n—k+1

i 1
Dy =D, =E_j
1

proj, Dn(a‘){l) , J1=1
Notice that, because we are averaging over the independent and identically distributed wi" ,
DIIC:Di:---:Dinfk forany k =1,2,...,n.

Therefore, it suffices to work with D}{; the rest should be identical. Also, note that

1
D, = E‘”]"‘“’;t

projg Dy, -+~ )]
Now, we are ready to state a simple but important lemma. Also, see [14, Lemma 2.1].
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Lemma 2.4.1. With notation as above, if wi" are uniformly and independently distributed random

variables on [0, 7], there exits a constant ¢ > 4 such that for any n € N (and any 0 € [0, 7])

Diy <Dy -c(D)?  forallk=1,...,n~1. (2.4.1)

In fact, we will see below that ¢ = 8.

Provided this holds true we can give a very compact proof of Theorem 2.3.1 using induction:

Proof of Theorem 2.3.1. Let ¢ be as in Lemma 2.4.1 and note that Dé < D} <2< Also,

[\ST[eY

D}<c.

Next, assume D}{ < ¢ for some 2 < k < n— 1. From Lemma 2.4.1, and by the monotonicity

£

of the function x — x*/c in [0, §

], we see that

1 1_ ~lply2_¢_ ¢ k-1 ¢
Dk+lSDk_C (Dk) <E—EZC7<]€+1.

Therefore, D}C < 1 holds for all for 1 < k < n -1 and thus for k = n we get

c

projy Dy (w) -+ w))| = D} <

Ew o —.
1 n n
Thisis (2.3.1). Equation (2.3.2) follows after integrating with respect to 8, and (2.3.3) after applying

Fatou’s Lemma. O

2.5 Proving the main lemma

Whatever follows is dedicated to the proof of (2.4.1).

First, we rewrite the length of the projection of a set in more convenient way. Let /g and
I3 be two lines through the origin so that /y forms an angle 6 with the horizontal axis and /5 is
perpendicular to ly. Also, let n be the unit normal vector of [ QL. The length of the projection of a

planar set E C C onto the line /4 can be written as

lprojo E|=[{t e R : (I +m) NE # 0} = / dt. (2.5.1)
(I5+m)NE+0

For brevity, we denote the line /; + tn by [;(f) where + € R. Additionally, because of the
symmetry of our considerations, we can assume without loss of generality that § = 0 —as we will

average over all 6 at the end. So, we can simply omit writing 6 altogether from now on.
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The idea behind Lemma 2.4.1 is to look at the collection D, (w] - - - w},) at depth n but “zoomed
in”” so that it looks like depth 1. Then, we go one level up and look at the disks of depth n — 1 and n
zooming in enough so that they to look like depth 2; and so forth. If we rewrite the projections in
the form of (2.5.1), the average overlap at each level is of at least a square factor compared to the
total average projection of the level above.

This last comparison is paramount to the proof. It will follow from the fact that the disks in
our constructions never get too close to one another. In fact, this observation is not true in the case
of the random square Cantor sets, which is the reason why we cannot directly apply the arguments
here to the setting of [11].

Let us proceed with the proof of (2.4.1).

Fix some k = 1,2,...,n and recall that by construction
3 1
w
Di(wy i) = | T2 (Do).
a=0
This means that each disk from the collection Dy (@ rll _k .1) lies inside one of the above four disks,
and therefore we can separate Dy (cD,ll_ 1.1 into four groups of disks depending on their positioning
at depth 1.

More precisely, for each @ = 0, 1,2, 3 define 7;" (“_)r];— P +1) as

wl -
T (@h i) = Ta " (D0) [ | Dr(@)_y1).

That is, the set 7 (a')rll_k .1) consists of those disks of Dy (a‘);_k 1) Which lie inside the %—radius

wl
disk T,,"*'(Dp). We can think of 7* (“_’rl,-k .1) as the East, North, West, and South parts of

Di(@ rll ket 1), respectively for @ = 0, 1,2, 3. From this definition, it is also clear that
3
Di(@hi) = T @ i0)- (2.5.2)
a=0
In fact, 7,*(@! ,,,) depends only on the angle w! ., and the subtree @' 2 = @M+

(Recall our enumeration of the angles in Section 2.2.) Thus, we can write 7;" (@,11_ k .1) as
k(- _ gk 1 -1+
To (@y_ti1) = To (@1 @7 10)-
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2.5.1 Key observations

There are two key observations regarding the sets 7% ((I);_ 4+1)- First, note that each point of
the interval (—1, 1) can be covered by at most two of the projections proj T, -k (D) for different
a’s. Since T* (a‘);_ 1) C T;u ek (Dy), the same holds true for proj 7, (a')rll_ 4115 the intersection
My proj 7K (@ ,11 _x+1) 1s empty when the intersection is over more than two values of a.

: : k( _ k 1 - 1l+a
Second, we can compare the average projections of 7" (Wn—k+1) = 75 (w,_;,1,®,7,,) and

Di-1 (cDrl:Z .»)- Notice that both these collections consist of 41 many disks, which in fact have

the same n-depth enumerations. This means that they correspond to same disks of the collection

1

Dy (w] - - - wy). The difference is that the disks of the former are translated according to Dy (w, _, . )

and have radius 4%, whereas the ones of the latter have radius 4= -1

Consequently, 7.5 (@! , ) is a shifted copy of Dy_1(@'*¢ ) dilated by a factor of 1/4. As

such, the (average of the) projections of 7;"(@,11_ ep) and Z)k_l(d)};% .,) should also differ by a

factor of 1/4. In other words, for any @ = 0, 1, 2,3 we have

gk -1 _ ek 1 -1
Eu_):hk+1 |pI'O_] 7; (wn—k+1)| - EwiikHE@}:’ffﬁz |pI‘OJ 7:1 (wn_k+1a wn_k+2)|

(2.5.3)

1 . -1
- Lo o D010

2.5.2 The estimates

Utilising the above, we can now estimate D}{ in terms of D11<—1:

Dllc = EJ)}!_ |Pr0j D/i (‘*_);la—k+1)|

k+1

3
<Eg Z [proj T4 (@, 41| = Es .., [Proj T (@) N PrOj T (@)
a=0

3
253 1 Z .
a=0

- l+a )‘

~E proj 75" (@ _ge1) N Proj 75 (@) 1))

| |
Wkl
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where the inequality follows from the first observation above (see 2.5.1) and (2.5.2). This in turn

gives

1 . - . _
DllC < Z(D}{_l + Di_l + Di_1 + Di_l) - E@’L_kﬂ |pr0_] 76k (wrlz—k+1) 1 proj ﬂk(wrlz—k+l)|

(2.5.4)
=D - Es .., [proj 7 (@ gesr) N P10J T (@)
since D}f{ =D, ,foranya=0,1,2,3.
The next step, is to estimate the overlap term |pr0j 76" ((Drlz— +1) N Proj 7;1‘ (o rll b+l )| from below.

For this, recall 7,* (@} ,,,) and 7,*(&! , .,) depend (aside from w! , ) respectively on @! , ,

-2
and @, _, ..
2

. . —_ ] —_
First, we average with respect to the subtrees @y 4o and @, 1o

and afterwards we integrate

1

over their common ancestor w, , ..

To simplify the notation, let us write "% _ for both the
n—k+2

1

subtrees @, _, .,

and a')i_ Y and also ¢ for the angle “);11— PE Then, we have

sk -1 sk =1
E@};}k+2‘ proj Ty (@, 1) N Proj 777 (&, 1)
sk, 1 -1 sk, 1 -2
= E(D:"Ekﬂ |pr0J 76 (a)n—k+1 ’ wn—k+2) N proj ‘71 (wn—k+1 ’ wn—k+2)|

2.5.1) _
/P@"z z(ll(t) N To (@1 Pp_gsn) # 0

n_k+
and [* (1) N f];k(w;_kﬂ, “_’i—k+2) # (Z))dt
= [ Bae (MO N T @ i@hs) # 0)
'P‘D,li-zm (ZL(t) N 7Ik (a)rll_kﬂ, ‘Di—k+2) + Q))dt
B / P@L_mz(ﬂ(t) N Ty (g1 Ppops2) # 0)'
'P‘Di_HZ(H(t) N T (@ o1 Do psn) # @)df
= E(W,y_p41)-
The 3rd equality above holds because for a fixed angle w;_ fal the events

() NTHw! ., 0t )+ 0}

are independent.
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It would be very nice if these two events would have the same probability. Then at the end, we

would use Holder inequality to get

2
a(wrlz—kﬂ) = / [P@L (ZJ_(I) N 75k (wrlz—k+1’a_);11—k+2) # 0)] dt

k+2
2
>cl/[Pp. (ll(z) NTHKw L@l )% @) di
= (O 0 n—k+1° " n—k+2 :
However, this is not the case.

For brevity, let us temporarily denote

o= cc),11_1<+l and s(y) = %(1 —cosi). (2.5.5)

Also, set

F(t) = {I*() N 7" (0,0} ,,,) # 0}. (2.5.6)

For fixed ¢, the events

(N W, o) ) #0} and {I*(t) Ty, 0%, ,,) # 0}

n—k+ n—k+

do not have the same probability; one should take into consideration that the probability of the non-
empty intersection with /*(¢) for the first 7 has the same probability as the non-empty intersection
with [+ (z + s(y))) with 7,*(0, @}, ,,). (Notice what happens with ¢!) And the probability of
the non-empty intersection with /() for the second 7 has the same probability as the non-empty

intersection with [*(¢ + s(¢ + 5))) for the event 76" 0, o! In fact, a simple geometric

n—k+2)‘

consideration shows the following holds:

Lemma 2.5.1. With notation as above we have that

Pl (“(f) NI (U, By_yy) # 0) =P (lL(t +5W) NTFO0,0) ;) # @) (257
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In other words, Lemma 2.5.1 shows that

E() =
) ./ P“_’i—kﬂ(lL(I +5)) N T (0, @y 4,) # 0)'

Por (1045w +3) 0T 0.0} _4,0) # 0)dr

w
n—

:/F(t+s(¢/))~F(t+s(w+g))dt.

Next, if we integrate over ¢ € [0, %], we get that the

Expectation of the overlap = / EW)dy = / / F(t+s(y)) -F(t+s(y+ g))dwdt.

Let’s make this change of variables: u = + %(1 —cosy)and v =t + %(1 —cos(y + 7)). The

Jacobian of this change is at most 3, and thus

2
4 4
Expectation of the overlap > 3 / / F(u)F(v)dudv = 3 (/ F(t)dt) .

3

-4
n—k+1 or w

Since there is no dependence on @ MPIRD

we get

Bz |pr0J To (@ _gyy) N PrOj 71 (@0, )|

= Expectation of the overlap

4 . _ 2
§ (E - |pr0]Tk(w’11_k+l)|)

4 1
2353 2 16( |pr0JZ)k 1(wn k+1)|)
1
= E(Dk—l)z‘

Finally, combing the fact that
Bap o, i T3t (@) ) 0 proi (@] 2 5 (D))
with (2.5.4) and setting ¢ = 12 we get
Dy <D —c (D))
and Lemma 2.4.1 is proved.
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2.6 Comparison with the other random models

The random Cantor set in [14] is a very close relative of the random Cantor set in this note,
the difference is that Zhang’s random construction of n generations has n independent rotations
involved, whereas our construction has 1 + - - - + 4"~! independent rotations. There the disks of
generation k are rotated by the same angle wy, while in this note we have 4~! independent rotations
of disks of generation k. Naturally, it is more difficult to work in a more chaotic model such as
ours, and the techniques here use independence in a more involved way than in [14]. It is just a
little harder to make sense of the combinatorics involved in our model.

On the other hand, there are many “common places”: the use of overlap as the way to see the
rate of decays of successive approximations of the random Cantor set, the use of Lemma 2.4.1, as

well as the technical Lemma 2.5.1.

Concerning [11], there are two main differences which create difficulties. The first is the fact
that at most two of the projections proj, 7,% (@ ,11 _x+1) Can intersect at each point on the line /. This
is equivalent to line [, (¢) intersecting at most two of the disks for any 7, and is key to the square
factor appearing in our calculations.

However, this is simply not true in the case of squares. In fact, in the Peres and Solomyak case
the corresponding line /; () can simultaneously intersect 3 squares of generation k for any k and
any ¢. Because of this, the inequalities appearing here cannot be translated directly in the square

setting.

But even if this wasn’t an obstacle, the reader should pay attention to Lemma 2.5.1. Let’s
pretend that we can repeat everything before this lemma for the model of Peres and Solomyak. The

role of the angle w;_ 1 Will be played by the “Favard angle” 6, the shift function s(a)}l_ rap) Will

+

be replaced by
1
S(0) = > sin 6,

and all seems to be following smoothly along the same lines. Also, the following equality

/ Bl wom@)_)w0y 40 = / Bl arsonont @), #0y 40 (26.1)

44



which would be the analogue of (2.5.7), makes sense in principle if we understand w’s as the random

variables in the Peres—Solomyak model, which assume the values 0, 1, 2, 3 (instead of values in the

interval [0, 5] as in our’s and Zhang’s models).

But, there is a caveat. We reduced the function of two variables
- k -
GW.0) =Py (FONT W6} ) #0)
to the composition with a function of one variable and the shift (see (2.5.6) for the definition of F):
Gy,1) =G0, 1 +5(y)) = F(t+s(y)) (2.6.2)
thanks to (2.5.7). But looking at (2.6.1), we can notice that the function

G(0.0) :=Blipinri(a)_,.#0}

cannot be written as some ¥ (¢ + S(6)).

As a result of this misfortune, we cannot write
Expectation of the overlap = / &E(0)do = / / F(t+S(0)) - F(1)dodt

as before. Working similarly, this would in turn bring about the term ( / Fdt)?. Instead, we only

have that

Expectation of the overlap = / &E(0)do = / / G(0,t)-G(0,t+5(0)))dodt,

and it is not clear (at least to us) how to estimate this integral from below as no change of variables

seems to be of help.
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CHAPTER 3

GEOMETRY OF PLANAR CURVES INTERSECTING MANY LINES IN A FEW
POINTS

3.1 The statement of the problem

The problem at hand is to better understand the structure of Borel sets in R? that have a small
intersection with parallel shifts of lines from a whole cone. Here, we work only with sets that are
graphs and continuous curves. So we have strong assumptions. But the results claim some estimate
on the Hausdorff measure (not merely the Hausdorff dimension).

Initially, we show that a function’s graph intersecting all parallel shifts of lines from a nonde-
generate cone in at most two points is locally Lipschitz and also present a counter-example showing
this fails if more intersection points are allowed.

Next, we prove that any curve that has finitely many intersections with a cone of lines is o-finite
with respect to Hausdorff length and we find a bound on the Hausdorff measure of each “piece.”

On the other hand, in [1] it was shown that, given countably many graphs of functions, there
is another function whose graph has only one intersection with all shifts of the given graphs but
whose graph has dimension 2.

This result shows that there is a “thick” graph having only one intersection with all shifts of
countably many other graphs. In our turn, we show that the graph having finitely many intersection

with shifts of the whole cone of linear functions must be in fact very “thin”.

Proposition 3.1.1. Let A > 0 be a fixed number and consider all the cones of lines with slopes
between A and —A (containing the vertical line). If f: (0,1) — R is a continuous function such

that any line of these cones intersects its graph at at most two points, then f is locally Lipschitz.

Notice that our hypothesis implies that no three points of the graph of f can lie on the same
line that is a parallel shift of a line from a given cone.

For the proof we will need the following lemmas.

Lemma 3.1.2. Every convex (or concave) function on an open interval is locally Lipschitz.
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Figure 3.1 Each line from any cone intersects the graph at at most two points.

Lemma 3.1.3. If a function g: (0,1) — R is continuous and has a unique local extremum, X,
inside (0, 1), then it is strictly monotone in (0,X] and [X, 1) with opposite monotonicity on each

interval.

Proof of Lemma 3.1.3. Suppose X is a local minimum for g. We will show that g is strictly
monotone increasing in [X, 1). Assume the contrary, i.e., consider two points x; < xp € [X, 1) such
that g(x;) > g(x2). On the compact interval [xy, x;], the function g has to attain a minimum and
a maximum, which respectively are at x, and x; otherwise the uniqueness of ¥ is contradicted. If
x1 = X, the point X is not a local minimum and so ¥ < x;. Again, ¥ and x; must be the minimum
and maximum, respectively, of g in [%, x1], which in turn says x; is a local maximum contradicting
the uniqueness of X¥. Therefore, g(x;) < g(xz) and g is strictly monotone increasing on [, 1).
Similarly, on (0, X] g is (strictly) monotone decreasing and the same arguments work for when ¥ is

local maximum. O

, and note that

Proof. Consider the slope function of f, S(x, y) = L=/ ("))C:;C )

S(x,y)

e (R R (e

If for any two points x < y € (0, 1) we have |S(x,y)| < 4, then f is Lipschitz (with Lipschitz

constant at most A).
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(o fwo)

0,”
(b, f(b))

(@o. f(20))

Figure 3.2 S(xo, yo) = A’ > A; The part of the graph of f between xo and yo cannot lie on different
sides of €.

Now suppose that there exist xo, yo € (0, 1) for which |S(xg, yo)| = 4 and consider the case

where S(xg, yg) = A" > A. Since S(x,y) = S(y,x), we may assume that xo < yo. We will denote

the line passing through (xo, f(xo)) and (yo, f(y0)) by €.

If there are numbers xo < a < b < yg such that

(S(x0,a) = A')(S(x0,b) = ') <0,

then by the continuity of S(x, -) there has to exist a number ¢ € [a, b] such that %:5(6) =
v = L60=I00 -yt this means that (x0, f(x0)), (¢, £(c)) and (vo, f(y0)) are colinear, which

X0—Yo

contradicts our hypothesis and therefore S(x¢, y) has to be constantly greater or constantly less than
A’ for xo < y < yo (see Figure 3.2). For the same reasons S(xo, y) has to be constantly greater or
constantly less than A” also for y > yg and the same holds for S(x, yg) for x < xo.

Graphically, this means that €, separates f in three parts that do not intersect €,-; one before
X0, one over (xg, yo), and one after yo. We proceed to show that the part over (xo, yo) lies on a
different side of €, from the other two.

Let us consider the case when S(xg,y) < A’ for xg < y < yo. Then, the function f(x) — A'x
defined on [xg, yo] attains a maximum at xo and at yo (which also implies that S(x, yg) > A’ for

X0 < x < yo)andlet ¥ € (xg, yo) be the point where f(x) — A’x attains a minimum (see Figure 3.4).
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S(xo,y) > A’ S(xo,y) < A’

Figure 3.3 The two cases when xg < y < yj.

e

(Yo f(y0))

(y. f(y))

Figure 3.4 If S(x¢,y) < A’ forevery y ¢ (xo, 1) \ {vo}, by moving the line €, slightly down, we get
three points of intersection.

Now, suppose additionally that S(xg, y) < A’ also for y > yy.
Pick a number k with f(xg) —A’xg > k > max{f(y) - A"y, f(y) — A"y} for some y > yq. Then,
we have simultaneously
f(3) =45 <k < f(xo) = A'xo,
f(3) =45 <k < f(yo) = o,
F(y) =y <k < f(yo) = Vyo.

The continuity of f and the above inequalities imply that there must exist numbers a, b, and ¢ in

(x0, %), (7, v0), and (yg, y) respectively such that

fla)=Aa=f(b)-Ab=f(c)-Ac =k
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@, £7))
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(Yo, f(%0)) y

(w0, f(70)) )
° (@./(@)

Figure 3.5 If f attains a local minimum at another point 3’ > ¥, we can find a line of slope greater
than A’ intersecting f at three points.

which implies that (a, f(a)), (b, f(b)), and (c, f(c)) are colinear, a contradiction, and therefore
S(x0,y) has to be greater than A’ for y > yo. Working similarly, we see that S(x, yg) < A’ for
X < Xp.

An identical argument gives us that j is the only point in [xg, yo], and eventually in [xo, 1),
where f(x) — A’x attains a local minimum (see Figure 3.5) and from Lemma 3.1.3 we deduce that

f(x) — A’x has to be monotone increasing in [, 1). Hence, for any x, y > ¥ we have:
7 7 X<y 7
x<y & f(x)-Ax< f(y)-AVy = S(x,y) > 1.

However, observe that for any x and y for which S(x,y) > A’, the function S(x, -) has to be
1-1 otherwise our hypothesis fails in a similar way as above and, since it is continuous, it has to be
monotone in (x, 1) for every x € [¥, 1). Therefore, f is either convex or concave in [y, 1) and thus
locally Lipschitz in (¥, 1) thanks to Lemma 3.1.2.

In particular, f has to be convex in [¥, 1). Indeed, assume f is concave and let x be any number
in (¥,y0), see Figure 3.6. By concavity, the point (J, f(7)) has to lie below the line passing
through (yo, f(yo)) with slope £ = S(x, yo) and, since £ = S(x, yo) > S(xg, yg) = A’ > A, the point

(x0, f(xp)) lies above. Hence, this line will intersect the graph of f at some point (¢, f(c)) with

52



(9. £(9))

Figure 3.6 S(xg, y) has to be strictly monotone increasing in (yo, 1).

¢ € (xo,¥) and the points (c, f(c)), (x, f(x)), and (yo, f(yo)) are colinear, a contradiction.

If we instead assume that S(xg, y) > A’ for xo < y < yo, working similarly we conclude that
there must exist j € [xg, yo| such that f is concave in (0, 7].

The case when there exist xg, yo € (0, 1) for which S(xg, y9) = A’ < —A1 is identical and gives
us the reverse implications.

To sum up, we conclude that there are points %, € (0, 1) such that f has some particular
convexity on (0, %] and on [¥, 1). These intervals cannot overlap, because otherwise f would be a
line segment of slope at least A (or at most —1) on [, X], which contradicts our hypothesis and so
X < y. Let X be the maximal point so that f is, for instance, convex on (0, X], and ¥ the minimal so
that f is convex on [y, 1). When X # J, for every points x, y € [%, ¥] we have |S(x, y)| < A and f
is Lipschitz in [, ¥] with Lipschitz constant A.

This concludes the proof. O

Of course, any continuous function that satisfies the condition of the proposition and has
different convexity on (a, %] and on [y, b) has to additionally satisfy lim,_,+ y—p- [S(x, y)| < 4.

Furthermore, notice that the fact that the cone is vertical (or at least that it contains the vertical
line) is essential to get the locally Lipschitz property. Indeed, if C is a cone avoiding the vertical
line, we can restrict the function v/x to a sufficiently small interval around O so that it intersects all

the lines of the cone at at most two points. But +/x is clearly not Lipschitz around 0. However, we
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Figure 3.7 All the possible ways the graph of f can look like.

do have the following corollary.

Corollary. Let 11 > 0 > Ay be some fixed numbers and consider all the cones of lines with
slopes between A1 and A, (containing the vertical line). If f: (0,1) — R is a continuous function

satisfying the same condition as above, then it is locally Lipschitz.

Proof. The inequalities |S(x, y)| < Aand |S(x, y)| = A in this case correspond to 4, < S(x,y) < 44
and S(x,y) > 41 or S(x,y) < A, respectively. The proof is the same as before and on the regions
where f is not convex or concave it is Lipschitz with Lipschitz constant the maximum of A; and

—As. O

Remark. All the above remains true for any interval (a, b). It is not hard to see that the same
proof also works in the case where f is defined on a closed interval, but Lemma 3.1.2 cannot be

used in this setting. However, if f: [0, 1] — R, its restriction f|o,1) is locally Lipschitz.

3.2 An example

It is natural then to ask whether our assumption still gives us the locally Lipschitz property when
we allow more points of intersection. It turns out this fails even for at most 3 points of intersection
in the sense that there can be infinitely many points around where the function cannot be locally
Lipschitz. Here, we construct such a function whose graph intersects a certain cone of lines at at

most three points.
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Consider the sequence ay = % — 5% for k > 1, and on the each of the intervals [ay, ay,1]| define

a continuous function fj with the following properties:
D f1(0) =0, fi(z) = fo(3) = 1

i) fer1(ake1) = fi(ag+1);

iii) fi(arer) = 3 (filar) + fio1(ax-1));

iv) fax is monotone decreasing and convex on [azk, azk+1] and fax—; is monotone increasing and

concave on a1, az|;
v) the tangent line to f; at (ag, fi(ax)) is vertical.

Let f: [0, 1] — R be the function given by

fi(x) if x € [ak, ars1),
J() =19 fu(1=x) if x € (1 — ager, 1 — agl,
4 ifx=1

for all k > 1 (Figure 3.8), which is clearly continuous in (0, 1) \ {%} because of (ii). Observe that

the sequence (by) = (fi(ay)) is recursively defined by by = % (through property (iii)) and
it converges. In particular, we have % = —% and therefore
—1\ k-1 1 —1\k-1
bis =bi+(5)  (b2=b1) = b =bs- 5(1 -(5) )(bz ~b). (G20

In our case, we have b; = f1(0) =0, by = fZ(élt) = le, and also

fian=5(1-(3)7)

hence limy_ 00 fx(ax) = ’51. But note that for every x € (0, %) there is an n > 1 for which

x € [ay, ap+1) and, since each f; is monotone in [ag, ax+1) for every k, we get

min {fn(an)» fn+1 (an+1)} < f(x) < max {fn(an)’ fn+1(an+1)}-
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Figure 3.8 At most 3 points of intersection with any line inside the cones.

Therefore, we have lim,_, 1- f(x) = % =f (%), and similarly for x € (%, 1), which means that f is
also continuous at %

However, by construction f is locally Lipschitz on (0, 1) \ {%} except at around a; and 1 — ay,
k > 1, and therefore it is not locally Lipschitz around % either, because a; — % as k — +oo.

Now we proceed to show the graph of f has at most 3 intersection points with any line inside a
vertical cone with slopes between A and —A.

Each f; is monotone and has certain concavity on [ag, ai+1], hence its graph is contained inside
the triangle 7} with vertices (ax, f(ax)), (ax+1, fre1(ax+1)), and (ag, f(ar+1)) (see Figure 3.9)
and therefore any line intersecting the graph of f (at at least two points) has to pass through some
of these triangles. Notice, however, that if a line passes through two nonconsecutive triangles, say
Ty and Tiyj (j > 1), then it falls outside the admissible cone of lines. In particular, (because of
properties (ii) through (iv)) each Ty is half the size of T} and they are placed is such a way that
the maximum and minimum slope a line through them can have are respectively the maximum and
the minimum of the quantities

fiwj(aisjs1) = fi(arsr)

k+j(aksj) — fr(ag)
Jiers (@) = ] ( and ,
Af+j — A A+j — Ak+1

when one of the numbers k and k + j is even and the other is odd, and the maximum and minimum
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of the quantities
fiwjarsjsr) = fi(ax) and fivj(aisj) = fi(arsr)

Ag+j — dg Ag+j — Ak+1

when k and k + j are both even or both odd. Using (3.2.1) we can see that each of the above is
bounded in absolute value by A whenever j > 1.
For the same reasons any admissible line passing through (%, %) intersects the graph only at

that point, because

filag) — £

1
ak—i

< A.

A
3

Therefore, the admissible lines intersecting the graph necessarily pass through two (or maybe
only one) consecutive triangles and each such line intersects the graph of f; at at most two points
because of (iv). Furthermore, due to the difference in concavity of f; and f4+1, a line cannot
intersect both of their graphs at two points, because then it would need to have both negative and
positive slope, which is absurd.

An example of a sequence ( f;) of functions with the above properties is the following:

—1\ k-1 -1 k+l/l
7) )+%m
272

A
fi(x) = 5(1 -
3.3 Hausdorff measure
Marstrand in [5, Theorem 6.5.1II] proved that if a Borel set on the plane has the property that
if the lines in a positive measure of directions intersect this Borel set at a set of Hausdorff
dimension zero, then the Hausdorff dimension of this Borel set is at most 1. G0
In particular, this happens if the intersections are at most countable. The Borel assumption is
essential.
That said, Marstrand’s theorem does not in general guarantee the Hausdorff measure of the
Borel set is finite. Our next goal will be to deal with the Hausdorff measure of a continuous curve
and also generalise to arbitrarily many points of intersection with our cones (still finitely many,

though). It turns out that the curve has to always be o-finite with respect to the 4! measure.

In order to proceed we need set up things more rigorously:
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Figure 3.9 The case when k and k + j are both odd.

Notations. Letr C(¢,0) = {(x,y) € R? : |y| > tan(o) |x|} denote the vertical closed cone in
between the lines through the point (0, 0) with slopes tan(¢) and —tan(¢) (where 0 < ¢ < 3). By
C.(¢,0) we will denote the upper half of the cone C(¢,0), that is C+(¢$,0) = {(x,y) e R? : |y| >
tan(¢) |x|, y = 0}, and by C_(¢,0) its lower half. Let C(¢, p) be the cone’s counter-clockwise
rotation by angle p, C(¢,0, h) = Bo(h) N C(¢,0), where B (r) = B(x,r) is the closed ball centred
at x with radius r, and Cp(¢, 0) the translation of C (¢, 0) so that its vertex is the point P. Finally,
C* will denote the dual cone of C, that is C*(¢,0) = W We will be combining different
notation in a natural way, for example C.(¢, p, h) is the upper half of the truncated and rotated
cone with vertex at 0.

y: [0, 1] = R? will be a continuous curve.
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3.3.1 The main hypothesis

Fix an integer k£ > 2. Fix an angle ¢ € (0, Z) and a rotation p € [0, 27). A line contained
(3.3.2)
inside the cone Cp(¢, p) for any point P € R? intersects the curve y at at most k points.

Any such line will be called admissible. A cone consisting of only admissible lines will also be

called admissible.

3.3.2 vy is o-finite
For simplicity and without loss of generality we will assume the the curve y: [0,1] — R? is
bounded inside the unit square and that (0, 0), (1, 1) € y. We additionally assume that the cones of

our hypothesis are vertical, i.e., that p = 0.

Theorem 3.3.1. y can be split into countably many sets y, with finite H' measure. In particular,

v is I-rectifiable.

The following lemma plays a key role in the proof of this theorem, but we will postpone its

proof until later.

Lemma 3.3.2. For every point P € 7y there exists an admissible cone Cp(0, p, h) that avoids the

curve y except at P, that is Cp(0, p, h) Ny = {P}.

In view of Lemma 3.3.2 — by slightly tilting p, enlarging 8 and monotone decreasing 7 — we
may assume the triplet (6, p, i) consists of rational numbers. If {(6,, pn, h,)} is an enumeration
of all rational triples that still lie within our admissible set, then we can decomposed y into the
countably many sets

Vn = {P €y : Cp(@n,pn,hn) Nny= {P}}

(see Figure 3.10). Note that y,, are not necessarily disjoint for different values of n.

We proceed to prove each one of them has finite 7' measure. Note that this is not new
knowledge and it can be found, for example, in [2, Lemma 3.3.5] or [6, Lemma 15.13] in a more
general setup. Nevertheless, we present it here for completeness.

For the rest of this section n will be fixed.
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Figure 3.10 The curve y and its part vy, for 8,, p, = 0, and h,,.

Lemma 3.3.3. H'(y,) < cosz(kﬁn)'

Proof. Without loss of generality we may assume the cone Cp(6,, p,, hy,) is vertical, i.e., that
pn = 0. Let us now split the unit square into N vertical strips, §; (j = 1,2, ..., N), of base length

% with N sufficiently large so that % < cos(8,) hy,. Let J be the set of indices j for which

and for any point P € y denote the connected component of y inside S; through P € S; Ny by
o ().
1

Fix a j € J and consider a point P € §; Ny,. Since ; < cos(6,) hy, the sides of S; necessarily

intersect both sides of the cone Cp(6,,0, h,) creating thus two triangles both contained inside

the ball Bp( (see Figure 3.11). For any point P’ € §; Ny, other than P there are two

Ncol(@n))
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Figure 3.11 Each cone intersects a strip of length % < cos(6,) hy.

cases: either |P — P’| < h, or [P = P’| > h,. In the first case, the sets I',(j) and '}, (j) are
both contained inside the two triangles Cj,(6,,0) N S;. In the second, they are necessarily disjoint,
because Cp(6,,0, h,) is free from points of y (other than P). These additionally imply that there

can be no more than 7 such distinct paths inside S;. In particular,

1
sin(0,

Pelh(j) CS; Ny Bp(hy) C Ch(6,,0,hy) N S; C Bp (W) .

Now, let #; be a maximal set of points in S; N 7y, such that the sets I',(j) for P € $; are

all disjoint and observe that S; N 7y, is covered by the balls B p( with P € $;. Indeed,

Noos@)

if Pp € §; Ny, is not inside the set Pep; Bp( , then by construction it is also outside

Ncol(en))
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Upep, Bp(hy) and therefore I ;‘,0 (/) and I'; () are disjoint for all P € P;, which contradicts the
maximality of $;. Moreover, due to the connectedness of y, the set { P} has to be path-connected
with (0, 0) and (1, 1) and therefore each I',(j) has to intersect at least one side of the strip §;. Hence,

because of (3.3.2), there can be at most 2k of these paths, i.e., #(73]-) < min{2k, } <2k

51n(0 ) hy

for every j € J. Therefore,
1 1
)/nﬂSjC U Bp (Ncos(@n)) . ’y”CU U Bp (Ncos(@,,))
PeP; J€J PeP;
and the total sum of the radii of these balls is at most

1 2k
2k———#(J) < ——.
N cos(6,) ) < cos(6,)

Finally, if y, = {P € v : Cp(0,,0,h,/2) Ny = {P}}, then y, C ¥,. Repeating the above
construction with l < cos(6,) %", we get a cover of §, — and thus of y,, — consisting of balls

with a total sum of radii at most —==-—. The result follows. O

cos(G )*

Remark. In the above construction we are in fact able to cover the whole part of y inside | Jjc; S,

with the same balls, and not merely vy,,.

Eventually, the curve y has to be o -finite.

3.3.3 Cones free of y

Here we prove Lemma 3.3.2.

Fix P € y. Since y is bounded, there must existan /2 > 0 such that Cp(¢, 0)Ny = Cp(¢, 0, h)Ny.
If

Cp(¢',0) Ny ={P} or Cp(¢',0,h)Ny={P}

for some ¢’ € [¢, 5) and some h > 0, then we are done.
Suppose this does not happen. Then, for all ¢” € [, 7) and for all sufficiently small 2 > 0 we
have

Cp(¢',0,h) Ny \ {P} #0. (3.3.3)

Lemma 3.3.4. Forany P € vy the set Cp(¢,0) Ny has finitely many (closed) connected components.
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Proof. Since vy is connected, every point of Cp(¢, 0) Ny has to be path-connected with the point P
through some part of the curve y. There are two possibilities: either that path is entirely contained
inside Cp(¢,0) or it has to pass through its sides. If a path does not intersect the sides, then it
necessarily has to pass through P otherwise y would not be connected. This yields precisely one
connected component — the one containing P — and all the rest (if any) have to intersect the
sides of the cone. If these components are infinitely many, there have to exist also infinitely many
points of intersection on the sides of the cone; at least one for each connected component. But this

contradicts (3.3.2). O

Remark. The connected components of Lemma 3.3.4 total at most 2k and P need not be a point
of the curve. This lemma is still valid regardless of the cone we are working with as soon as it is in

our admissible family of cones.

Let T'p(¢,0) be the connected component of Cp(¢,0) N y that contains the point P, which
because of (3.3.3) cannot be precisely the point set {P}. Because of Lemma 3.3.4, the set
Cp(¢,0)Ny\I'p(¢,0) is compact and thus there exists iy > 0 such that Cp(¢, 0, hg)Ny C T'p(9,0).
Observe that Cp(¢,0) Ny \ I'p(¢,0) could be empty in general in which case iy = oo, however,
we can always assume that sy < h.

Next, we bisect our cone into two new identical cones sharing one common side

Cp(#,0) = Cp(¢1,p1) U Cp(d1,—p1),

where ¢ = 7 + % and p; = 7 — % and repeat the above arguments for each new cone: If

Cp(¢',p1) Ny={P} or Cp(¢',p1,h)Ny={P}

for some ¢" € [¢1, 5) and some h > 0, then we are done. Similarly for —p; in place of p;.
Suppose none of these happen. Then, for all ¢" € [¢1, 5) and for all sufficiently small / and /'

we have

Cp(¢,p1, ) Ny \{P}#0 and Cp(¢',—p1, /') Ny \{P}#0. (3.3.4)
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h

Figure 3.12 Finding a cone free from points of y. The parameters r, d, and 4 determine the radius.

We denote by I'p(p1, p1) and I'p(¢;, —p1) the connected component of

Cp(¢1,p1)Ny and Cp(¢1,—p1) Ny

containing P, respectively. Then, the sets Cp(¢1,01) Ny \ I'p(¢1,p1) and Cp(¢1,—p1) Ny \

I'p(¢1,—p1) are compact (thanks to Lemma 3.3.4) and thus there exist A, 11,1 € (O, h] such that

Cp(d1,p1, h1p) Ny € T'p(¢1,p1) and Cp(d1, —p1, h1,1) Ny C Tp(d1,—p1).

We iterate this construction indefinitely (Figure 3.12). If at any step we get

Cp(¢',p,h) Ny ={P} (3.3.5)

for some ¢’, p, and h, then we have found our desired cone and we stop. Otherwise, we get an
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infinite sequence of smaller and smaller cones satisfying the following:

{P} G CP(¢I1’ Pnis hn,i) N Y C FP(¢na pn,i) - CP(¢n’ pn,i)

foralli=0,1,...,2" -1

for all n > 0 where

— — z ? _ z n-1
$o=¢ $r=7+7 $n=+—
_ _ . ¢ _ _ 2(¢n — §)
poo =0 PLO=PL= 7~ 3 P11 =—p1 Pni = (¢n = ¢) —i——
hoo = ho 0 < hy; < h.

Note that at the nth iteration we have exactly 2" truncated closed cones separated by the lines

ln,i =P+ {(xay) :y =tan(m — ¢n+pn,i)x}

through P. The sets I'p(¢,, pn;) might intersect these lines, but this can happen at at most k£ may
points due to (3.3.2). Let r,,; be the smallest distance between these points of intersection (if any)

and P, that is

rn,i = dISt (Pa ln,i ﬁ FP(¢H5 pn,i) \ {P})

(again we can arbitrarily set some O < 7,; < 7 if I,; N Tp(dn, pni) \ {P} = 0) and let
dni = min { sup{d(P,Tpy() \ P) : 1 € (0, 1]}, sup{d(P,Tp_(1) \ P) : 1 € (0,1]}

where I'p, () and I'p_(¢) are parametrisations of the sets I'p (@, 0n.)) NCp+(Pn, Pni) and T'p(¢y, ppi)N
Cp—(¢n, pn,i) respectively (which in general could be precisely the point set {P}) with I'p,(0) =

I'p_(0) = P. Finally, we set
/’ln = min{rn,i, dn,,', hn,,‘ = 0, 1, Ce ,2” - 1}

Since the above set is finite, 4, > 0. From this construction for every n > 0 we get a collection of

truncated cones Cp(¢y, pn.i, hn), fori =0,1,...,2" — 1, (see Figure 3.12) that have the following
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property.
There is a path (part of ) lying inside the cone that connects the point P with at least one
of the two arcs of length (7 — 2¢,)h, which bound the cone Cp(¢,,, p.i, hn). Moreover,
(3.3.6)
these paths avoid any other intersections with that cone’s boundary aside P and the

(closed) arc(s).
Now, fix n sufficiently large so that 2" > 2k + 3. Then, we can find at least k + 2 of the

cones Cp(dn, pn.i> hy) that contain some path of those mentioned at (3.3.6) all lying on the same
half-cone, say on Cp.(¢,0, h,). Consider one of the sides of our initial cone Cp(¢,0), say
[ =P+{(x,y) : y=tan(¢)x}, ix 0 < € < h,sin(nr — 2¢,) and translate [/ vertically by e:
le =1+ (0,€). Then, [, necessarily intersects all the 2" different sectors of the ball Bp(h,) inside
Cp+(¢,0, hy,), but only the right-most one, Cp. (¢, pn2n—1, hy), at its arc-like part of the boundary.
In particular, /¢ has to intersect the sides of at least k + 1 sectors that contain the paths described in
(3.3.6) and therefore also intersects these paths. Hence, /¢ is one of our admissible lines that has at
least k + 1 intersections with vy, a contradiction.

Lemma 3.3.2 is proved. O

Remarks. i) In the definition of h,, three different parameters occur, ry, ;, dn i, and hy ;. Without
hn.i, (3.3.5) automatically fails; d, ; is to ensure I'p(p,, pn.;) will always intersect the boundary

of the corresponding cone and ry; forces this intersection to avoid the sides.

ii) In the above construction we bisected the initial cone into 2, 4, 8 etc. smaller cones every time.
However, any possible way to cut the cones would still work as soon as it eventually yields an

infinite sequence.

iii) The same proof can be applied to any cone within our admissible set of directions.

3.4 Higher dimensions

Mattila in [7, Lemma 6.4] generalised Marstrand’s results from [5] and showed the following.
Lemma 3.4.1 (Mattila). Let E be an H* measurable subset of R" with 0 < H*(E) < oo. Then,

dm(EN(V+x)>s+m—n
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for almost all (x,V) € E X G(n, m).

In particular, for a Borel set in, say, R? we have:
if any 2-dimensional plane in a positive measure of directions intersects this Borel set at
a set of Hausdorff dimension at most 1, then the Hausdorff dimension of this Borel set is

at most 2.

Furthermore, if every line in the direction of some 2-dimensional cone intersects a Borel set (not
merely the graph of some continuous function) at at most countably many points, then any 2-
dimensional plane in a positive measure of directions intersects this Borel set by a set of Hausdorft
dimension at most 1 (Marstrand) and then the Hausdorff dimension of this Borel set is at most 2
(Mattila).

Of course, the same is also true in R”, that is, if a Borel set has countable intersection with a

certain cone of lines, then its dimension does not exceed n — 1.

Now, we restrict our attention to what happens with only 2 points of intersection in higher
dimensions and we would like to generalize Proposition 3.1.1 to R".
Suppose we have a continuous function z = f(x,y), say, on a square in R?, satisfying the
property that
any line in the direction of a certain open cone with axis along a vector v € R? intersects G41)

the graph at at most two points.

Then, we would want f to obey the same rule. Namely we ask the following:

Question. Is a continuous function on (=1, 1)? having property (3.4.1) locally Lipschitz?

3.5 Relationships with perturbation theory

The problem we consider in this note grew from a question in perturbation theory of self-adjoint
operators (see [4]). The question was to better understand the structure of Borel sets in R” that
have a small intersection with a whole cone of lines. Marstrand’s and Mattila’s theorems in [5]
and [7], respectively, give a lot of information about the exceptional set of finite-rank perturbations

of a given self-adjoint operator. The exception happens when singular parts of unperturbed and
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perturbed operators are not mutually singular. It is known that this is a rare event in the sense that
its measure is zero among all finite-rank perturbations. The paper [4] proves a stronger claim: the
dimension of a bad set of perturbations actually drops.

Let us explain what was the thrust from [4] and why that paper naturally gives rise to the
questions considered above: what is the structure of Borel sets in R” that have a small intersection
with all the lines filling a whole cone and their parallel shifts?

In [4], a family of finite rank (self-adjoint) perturbations, A,, of a self-adjoint (suppose bounded

for simplicity) operator A in a Hilbert space H is considered:
Ay := A+ BaB*

parametrized by self-adjoint operators a: C¢ — C? (i.e., Hermitian matrices). The operator
B: C? — H is a fixed injective and bounded operator. It is also assumed that range of B is cyclic
with respect to A. In the case when d = 1 (rank-one perturbations), the Aronszajn-Donoghue
theorem states that the singular parts of the spectral measures of A and A, are always mutually
singular. However, it is known that for d > 1 the singular parts of the spectral measures of
unperturbed and perturbed operators are not always mutually singular.

Notice that the space of perturbations, that is the space H(d) of Hermitian (d X d) matrices, has
dimension d?. In [3], it was proved that, given a singular measure v, the scalar spectral measure
U of the perturbation A, is not singular with respect to v for the set of a’s having zero Lebesgue
measure in H(d). Such a’s are called exceptional, and this result shows that even though the set of
exceptional @’s can be non-empty (for d > 1), it is a thin set. But is it maybe thinner?

In fact, the following result was proved in [3]. Fix @, @) € H(d) where « is in the cone of
positive Hermitian matrices and consider a(¢) = a¢ + ta;. Then, for any such «g, @ there are
at most countably many ¢ € R such that the «(¢) is exceptional. This extra information allowed
the authors in [4] to prove that the Hausdorff dimension of exceptional perturbations is actually at
most d? — 1.

The reader might have noticed an underlying geometric measure theory fact: a Borel set in R"

(here n = d?) that has an at most countable intersection with a whole cone of lines and their parallel
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shifts is, in fact, of dimension n — 1.

Thus the dimension drop detected in Marstrand’s and Mattila’s theorems was instrumental for
the drop in dimension for exceptional perturbations.

It seems enticing to understand the structure of the sets that have even less than countable
intersection with all parallel shifts of all lines from a fixed cone. Suppose the Borel set under
investigation intersects only at at most two, or at most k < oo, points with these lines. What
additional knowledge one can obtain about this set? This question motivated the work presented in

the previous sections.
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